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Abstract

The classical theory of orthogonal polynomials has found several applications in recent

years, particularly, in the areas of spectral theory and mathematical physics. Many ad-

vancements are obtained through the matrix representations and associated eigenvalue

problems of the orthogonal polynomials as well as the continued fraction expansions

of the special functions that arise in such studies. The underlying theme of the thesis

on one hand is to explore both structural and qualitative aspects of perturbations of

the continued fraction parameters in case of special functions and recursion coefficients

in case of orthogonal polynomials and on the other hand to obtain biorthogonality

relations of the related functions.

The structural and qualitative aspects of two perturbations in the parameters of a

g-fraction is studied. The first perturbation is when a finite number of parameters gj

are missing in which case we call the corresponding g-fraction a gap-g-fraction. Using

one of the gap-g-fractions, a class of Pick functions is identified. The second case is

replacing {gn}∞n=0 by a new sequence {g(βk)
n }∞n=0 in which the jth term gj is replaced by

g
(βk)
j and the results are illustrated using the Schur and Carathéodory functions.

The consequences of the map mn 7→ 1−mn, where mn, n ≥ 0, is the minimal pa-

rameter sequence of a chain sequence, are explored in case of polynomials orthogonal

both on the real line and on the unit circle. In this context, the concept of comple-

mentary chain sequence is introduced. It is shown, in particular, how the map can be

useful in characterizing chain sequences with a single parameter sequences.

The map F(λ) 7→ F(λ2), where F(λ) is a general T -fraction, is used to define

generalized Jacobi pencil matrices. The denominators of the approximants of a T -

fraction satisfy a recurrence relation of RI type, with which is associated a sequence of

Laurent polynomials. The biorthogonality relations of these Laurent polynomials are

i



discussed. This serves as the bridge between the two parts of the thesis and provides

a gradual transition from perturbation theory to the concept of biorthogonality.

The sequence {Qn(λ)}∞n=0, where Qn(λ) := Pn(λ)+αnPn−1(λ), αn ∈ R\{0}, n ≥ 0,

is considered with {Pn(λ)}∞n=0 satisfying

Pn+1(λ) = ρn(λ− βn)Pn(λ) + τn(λ− γn)Pn−1(λ), n ≥ 1.

A unique sequence {αn}∞n=0 is constructed such that {Qn(λ)}∞n=0 not only satisfies

mixed recurrence relations of RI and RII type but also Qn(1) = 0, ∀n ≥ 1. The

polynomials Qn(λ), n ≥ 1, are shown to satisfy biorthogonality relations with respect

to a discrete measure that follows from their eigenvalue representations. With certain

additional conditions, a para-orthogonal polynomial is also obtained from Qn(λ).

The recurrence relation of RII type

On+1(λ) = ρn(λ− νn)On(z) + τn(λ− an)(λ− bn)On−1(λ), n ≥ 1,

is used to construct a sequence of orthogonal rational functions {ϕn(λ)} satisfying two

properties. First, the related matrix pencil has the numerator polynomials On(λ) as

the characteristic polynomials and ϕn(λ) as components of the eigenvectors. Second,

the orthogonal sequence {ϕn(λ)} is also biorthogonal to another sequence of rational

functions. A Christoffel type transformation of the orthogonal rational functions so

constructed is also obtained, illustrating the differences with the results available in

the literature.

There is a conscious effort to give the results obtained in the thesis a proper context

in the vast theory of orthogonal polynomials and biorthogonality. At the same time,

future direction of research is also provided wherever possible.
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2.3 The images of the disc |ω| < 0.999 under the mappings F(ω) and F(2;ω)

for a = 0, b = 0.1, c = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 The zeros of Rn(b + 1;λ), φn(b + 1;λ), φ∗n(b + 1;λ), φ∗n(b;λ), φ∗n−1(b;λ)

for n = 12 and b = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xi



xii



Chapter 1

Introduction

1.1 Orthogonal Polynomials

The theory of orthogonal polynomials is a classical one and has found several ap-

plications, among others, in numerical interpolation and quadrature (Gautschi [79]),

dynamical systems and control theory (Datta and Mohan [49]), rational approxima-

tion (Nikishin and Sorokin [136], Bultheel and Barel [31]), special functions (Askey [6]),

non-linear differential equations (Van Assche [178]), random matrix theory and inte-

grable systems (Deift [57]), statistical quantum mechanics, spectral theory and other

areas of mathematical physics (Simon [158]). There have been special applications of

orthogonal polynomials in analytic function theory, particularly, de Branges proof [50]

of the Bieberbach conjecture and finding zero free regions of polynomials (Lewis [121]).

While the theory of orthogonal polynomials on the real line can be traced to

the initial developments in the areas of planetary motion and continued fractions

(Khrushchev [106]), the study of orthogonal polynomials on the unit circle was initi-

ated by Szegő [167,168]. We refer to the monographs of Freud [74], Geronimus [81]and

Szegő [169] for early developments in the area of orthogonal polynomials on the unit

circle, while a compendium of modern research in the area as well as historical notes,

can be found in the two volumes of Simon [156,157].

In this section, we give a brief overview of basic properties of polynomials orthogonal

on both the real line and the unit circle. These properties, among several other related

concepts will be mainly used in the thesis.

1



Chapter 1: Introduction 2

1.1.1 Orthogonal Polynomials on the real line (OPRL)

Let N be a linear functional defined on the linear space P of polynomials with complex

coefficients. Defining the moments associated with N as µn = N(xn), the Gram matrix

[N(xi+j)]∞i,j=0 associated with N is given by

H =



µ0 µ1 · · · µn · · ·

µ1 µ2 · · · µn+1 · · ·
...

...
...

. . .
...

µn µn+1 · · · µ2n · · ·
...

...
...

...
...


.

If the determinants ∆n of the principal leading (n+ 1)× (n+ 1) submatrices of H are

such that ∆n 6= 0, n ≥ 0, then N is called quasi-definite. In such a case, a sequence

{Pn(x)}∞n=0 of unique (up to a non-zero factor) polynomials can be defined satisfying

N(Pn(x) Pm(x)) = hnδn,m, hn 6= 0.

The polynomial Pn(x), n ≥ 1, is of degree n and {Pn(x)}∞n=0 is called a sequence of

orthogonal polynomials on the real line (OPRL). In case the leading coefficient of Pn(x)

is unity, {Pn(x)}∞n=0 is called a sequence of monic OPRL.

We would like to note that, in general, for a m × n matrix H, the matrix H∗H is

called the Gram matrix ofH and many of their properties, particularly their inverse, are

studied, for example, in Kurmayya and Ramesh [116] and Reddy and Kurmayya [147].

We would also like to refer to Kulkarni and Sukumar [112,113] for spectral analysis in

associative algebras.

Three term recurrence relation

A fundamental property of a sequence of monic OPRL is that any three polynomials

of consecutive degrees are connected by a linear relation of the form

Pn+1(x) = (x− bn+1)Pn − a2
nPn−1, n ≥ 0 (1.1.1)



3 1.1 Orthogonal Polynomials

with the initial conditions P−1(x) = 0 and P0(x) = 1. This is because the polynomial

xPn(x) belongs to the space Pn+1 of polynomials of degree at most n + 1, which is

spanned by the orthogonal basis {P0(x), P1(x), · · · ,Pn+1(x)}. The relation (1.1.1)

follows from the orthogonality of the polynomials Pn(x), n ≥ 0.

Conversely, if a sequence of polynomials {Pn(x)}∞n=0 satisfies (1.1.1) with the same

initial conditions as above and where {bn}∞n=1 and {a2
n}∞n=1 are arbitrary sequences of

complex numbers with a2
n 6= 0, n ≥ 0, then, there exists a quasi-definite functional N

with {Pn(x)}∞n=0 as its corresponding sequence of OPRL. This result is referred in the

literature as Favard’s Theorem.

Existence of a positive measure

The functional N is said to be positive definite if det ∆n > 0. In this case, there exists

a non-trivial positive measure dµ(x) supported on some subset E′ of the real line such

that N has the integral representation

N(xn) =

∫
E′
xndµ(x), n ≥ 1.

Favard’s Theorem holds for a positive definite functional if, and only if bn ∈ R and

a2
n > 0, n ≥ 0, where bn and a2

n occur in (1.1.1). Further, {Pn(x)}∞n=0 is the monic

sequence of OPRL with respect to N.

Jacobi matrix

The recurrence relation (1.1.1) written as

xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x), n ≥ 0,

yields the matrix representation xP(x) = JP(x), where

J :=


b1 1 0 · · ·

a2
0 b2 1 · · ·

0 a2
1 b3 · · ·

...
...

...
...


and P :=

(
P0(x) P1(x) P2(x) · · ·

)
.
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The matrix J is called the monic Jacobi matrix associated with N. It is also the

matrix representation of the multiplication operator x 7→ xp(x) with respect to the

basis {1, x, x2, · · · }. A fundamental property of the matrix J is that Pn(x) is the

characteristic polynomial of the n×n leading principal submatrix Jn of J , so that the

eigen-values of Jn are precisely the zeros of Pn(x), n ≥ 1.

Interlacing of zeros

Let the functional N be such that N(π(x)) > 0 for every real polynomial π(x) which is

non-negative on E ⊆ (−∞,∞) and which does not vanish identically on E. Then N is

said to be positive definite on the interval E. In this case, the zeros of the associated

OPRL Pn(x), n ≥ 1, are real, simple and lie in the interior of E. Further, if {xn,j}nj=1

denote the zeros of Pn(x), then, the following relation

xn+1,1 < xn,1 < xn+1,2 < · · · < xn+1,n < xn,n < xn+1,n+1, n ≥ 1, (1.1.2)

called as the interlacing of zeros of Pn(x) and Pn+1(x) holds. Moreover, the interval

[ξ1, η1], where ξi = limn→∞ xn,i and ηj = limn→∞ xn,n−j+1, i, j = 1, 2, · · · , is called

the true interval of orthogonality of the sequence of OPRL and is the smallest closed

interval containing all the zeros of all the polynomials Pn(x).

Conversely, if (1.1.2) holds, Wendroff [185] proved that these zeros can be embedded

in an orthogonal sequence, that is, there exist a sequence {Pk(x)}∞k=0, such that Pn(x) =

(x− xn,1) · · · (x− xn,n) and Pn+1(x) = (x− xn+1,1) · · · (x− xn+1,n+1). We also refer to

Beardon et al. [15] who investigated the relation between the zeros and the recursion

coefficients for such embedding to occur.

Kernel polynomials

Let pn(x) be the orthonormal polynomial obtained from Pn(x), n ≥ 1. The polynomials

Kn(y, x) =
n∑
i=0

pi(y)pi(x), n ≥ 1,

where pn(x) is a real polynomial and y ∈ R, are called kernel polynomials. Further, they

have the reproducing property that, for any polynomial π(x), π(t) = N(π(x)Kn(t, x)),



5 1.1 Orthogonal Polynomials

where N is positive definite and operates on x. The monic form Kn(y, x) of the kernel

polynomials Kn(t, x)) is given by

Kn(y, x) =
Pn+1(x)− Pn+1(y)

Pn(y)
Pn(x)

x− y
, n ≥ 1.

This follows from the fact that Kn(y, x), n ≥ 1, are orthogonal with respect to the

functional N∗y, where

N∗y(x
n) = µn+1 − µn; N∗y(π(x)) = N[(x− y)π(x)].

Symmetric OPRL

Let N be a functional defined as N(xn) = S(x2n), where S is a symmetric quasi-definite

functional (all odd ordered moments are zero). If {Sn(x)}∞n=0 is the sequence of monic

OPRL with respect to S, then

S2m(x) = Pm(x2) and S2m+1(x) = xKm(x2), m ≥ 0, (1.1.3)

where {Pn(x)}∞n=0 and {Kn(x) := Kn(0, x)}∞n=0 are respectively, the sequences of monic

OPRL and the corresponding kernel polynomials with respect to N.

Conversely, with N a quasi-definite functional, let a symmetric moment functional

S be defined by S(x2i) = N(xi), S(x2i+1) = 0, i = 0, 1, · · · . Let {Pn(x)}∞n=0 be the

sequence of monic OPRL with respect to N and {Kn(x)}∞n=0 be the corresponding

kernel polynomials. If {Sn(x)}∞n=0 is a new sequence of monic polynomials defined as

in (1.1.3) then, S(S2m(x)S2n+1(x)) = 0, m,n = 0, 1, · · · , which shows that {Sn(x)} is

the sequence of monic OPRL with respect to S.

Classical orthogonal polynomials

The classification of classical orthogonal polynomials initially arose in Bochner’s [20]

investigation of polynomial solutions of degree n of the Sturm-Liouville equation

a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) + λy(x) = 0,
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for each eigenvalue λ = λn, n ≥ 0.

After several classification theorems provided for example, in Kwon and Little-

john [118], Marcellán et al. [128] and references therein, the Hermite, Laguerre and

Jacobi polynomials orthogonal on the real line with respect to the normal, gamma and

beta distributions respectively are characterized as the classical orthogonal polynomi-

als. The classical orthogonal polynomials satisfy several common properties. They

include the following:

– They satisfy a second order Sturm-Liouville differential equation of the form

a2(x)y′′(x) + a1(x)y′(x) + λny(x) = 0, where a2(x) is a polynomial of degree at

most two, a1(x) is linear polynomial and λn depends only on n.

– They are orthogonal with respect to a positive weight function ω(x) which satisfies

Pearson’s differential equation p(x)ω′(x) = q(x)ω(x), where p(x) and q(x) are

polynomials of degree at most two and of exact degree one respectively.

– They satisfy the Rodrigue’s formula dn

dxn
[pn(x)ω(x)] = enω(x)Pn(x), n = 0, 1, · · · ,

where en is a normalization constant.

– Their derivatives also form an orthogonal sequence but with different parameters.

For various results in this direction, we refer to Atia and Alaya [9], Littlejohn [123],

Vinet and Zhedanov [182] and references therein. We would also like to add that

the Hermite and Laguerre polynomials are examples of Sheffer sequences arising in

combinatorics. The Sheffer sequences are studied, for example, in Jana et al. [95] and

Rapeli et al. [145].

1.1.2 Orthogonal Polynomials on the unit circle (OPUC)

Let N be a Hermitian linear moment functional defined on the linear space of Laurent

polynomials
∧

= span {zn}n∈Z. Then, an inner product associated with N can be

defined on
∧

as

〈p(z), q(z)〉N = 〈N, p(z)q(1/z̄)〉, p(z), q(z) ∈
∧

.
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The sequence of complex numbers {cn}∞n=−∞ defined by

cn = 〈zn, 1〉N = 〈N, zn〉 = 〈N, z−n〉 = c̄−n, n ∈ Z,

is said to be the moment sequence associated with N. The Gram matrix [〈zi, zj〉N]∞i,j=0

associated with the functional N with respect to the basis {zn}∞n=0 of the linear space

P is given by

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn · · ·

c−1 c0 · · · cn−1 · · ·
...

...
...

. . . · · ·

c−n c−n+1 · · · c0 · · ·
...

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and is known in the literature as Toeplitz matrix. We note that N being a Hermitian

functional implies that T is Hermitian. If detT n 6= 0, n ≥ 0, where T n is the (n+ 1)×

(n + 1) principal leading submatrix of T , then, there exists a sequence {Φn(z)}∞n=0 of

monic polynomials satisfying

〈Φn(z),Φm(z)〉N = tnδn,m, tn 6= 0, n ≥ 0,

and hence orthogonal with respect to N.

Existence of a positive measure

If c0 = 1 and detT n > 0, n ≥ 0, then N is said to be positive definite. There

exists a positive measure dµ(z) supported on the unit circle ∂D such that the sequence

{Φn(z)}∞n=0 with positive leading coefficient satisfy the orthogonality property

∫
∂D

(z̄)jΦn(z)dµ(z) =

∫
∂D

(z)−jΦn(z)dµ(z) = 0 j = 0, 1, . . . , n− 1, n ≥ 1,

on the unit circle and are also called Szegő polynomials. Further, the moments are

defined as µn =
∫
∂D e

−inθdµ(θ), n = 0,±1, . . . , where µ−n = µ̄n.
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Szegő recurrence

The monic Szegő polynomials satisfy the first order recurrence relations

Φn(z) = zΦn−1(z)− ᾱn−1Φ∗n−1(z), Φ∗n(z) = −αn−1zΦn−1(z) + Φ∗n−1(z), n ≥ 1,

where Φ∗n(z) = znΦn(1/z̄). The complex numbers αn−1 = −Φn(0) are called Verblunsky

coefficients in Simon [156]. The Verblunsky coefficients completely characterize the

Szegő polynomials in the sense that any sequence {αn−1}∞n=1 lying within the unit

circle gives rise to a unique probability measure µ(z) which leads to a unique sequence

of Szegő polynomials. The above result, called the Verblunsky theorem in Simon [156],

is the analogue of Favard’s theorem on the real line.

The Szegő polynomials also satisfy the three term recurrence relation

Φn+1(z) =

(
Φn+1(0)

Φn(0)
+ z

)
Φn(z)− (1− |Φn(0)|2)Φn+1(0)

Φn(0)
zΦn−1(z), n ≥ 1, (1.1.4)

with Φ0(z) = 1 and Φ1(z) = z+Φ1(0). We note that if Φn(0) = 0, n ≥ 1, then the three

term recurrence relation ceases to exist. In such a case, we have Φn(z) = zn, which is

given as the free case in Simon [156, p. 85]. Further, 〈Φn(z),Φn(z)〉 =
∥∥Φn(z)

∥∥2
= tn,

which using (1.1.4) is given by

t2n =
(

1− |Φ1(0)|2
)(

1− |Φ2(0)|2
)
· · ·
(
1− |Φn(0)|2

)
, n ≥ 1. (1.1.5)

Para-orthogonal Polynomials

In order to develop a quadrature formula on the unit circle, Jones et al. [101] introduced

the para-orthogonal polynomials which vanish only on the unit circle. With |τn| = 1

and |ωn| = 1, the para-orthogonal polynomials have the representation

Xn(z, ωn) = Φn(z) + τnΦ∗n(z), n ≥ 1.

and satisfy the orthogonality properties

〈Xn, zm〉 = 0, m = 1, 2, . . . , n− 1, 〈Xn, 1〉 6= 0, 〈Xn, zn〉 6= 0.
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The para-orthogonality in Jones et al. [101] was proved using the concept of τn-invariant

polynomials. We note that a sequence of polynomials {Yn} is called τn-invariant if

Y∗n(z) = τnYn(z), n ≥ 1.

Kernel polynomials

The kernel polynomials Kn(z, ω) satisfy the Christoffel–Darboux formula

Kn(z, ω) =
n∑
k=0

φk(z)φk(ω) =
φ∗n+1(z)φ∗n+1(ω)− φn+1(z)φn+1(ω)

1− zω̄
. (1.1.6)

Let τn(ω) = Φn(ω)/Φ∗n(ω), n ≥ 1, where |ω| = 1. The monic kernel polynomials related

to the Szegő polynomials is given by

Pn(ω; z) =
zΦn(z)− ωτn(ω)Φ∗n(z)

z − ω
, n ≥ 1, (1.1.7)

which satisfy a three term recurrence relation (Costa et al. [40]) of the form

Pn+1(ω; z) = [z + bn+1(ω)]Pn(ω; z)− an+1(ω)zPn−1(ω; z), n ≥ 1, (1.1.8)

where bn(ω) = τn(ω)
τn−1(ω)

and an+1 = [1 + τn(ω)αn−1]
[
1 − ωτn(ω)αn

]
ω, n ≥ 1. The

polynomials Pn(ω; z) are τn(w)-invariant sequences of polynomials which can be easily

verified from (1.1.7).

Carathéodory functions

Let C(z) be a complex valued function defined as

C(z) =

〈
N,

ω + z

ω − z

〉
=

∫
∂D

ω + z

ω − z
dµ(z),

where the integral representation holds if N is a positive definite functional and is

called the Riesz-Herglotz transformation of the measure dµ(z). The function C(z) for

|z| < 1 is called a Carathéodory function with Re(C(z)) > 0 for |z| < 1. Further, C(z)



Chapter 1: Introduction 10

has the power series representation

C(z) = 1 + 2
∞∑
k=1

c−kz
k, |z| < 1,

where {c−k} are the moments associated with the functional N.

1.2 Special functions and continued fraction repre-

sentations

Let An(ω) and Bn(ω) be, respectively, the numerator and denominator of the nth

approximant of the continued fraction

fn(ω) = b0(ω) +
a1(ω)

b1(ω) +
a2(ω)

b2(ω) +
. . .

= b0(ω) +
a1(ω)

b1(ω) +

a2(ω)

b2(ω) +
· · · ,

that is

An(ω)

Bn(ω)
= b0(ω) +

a1(ω)

b1(ω) +

a2(ω)

b2(ω) +
· · ·

+

an(ω)

bn(ω)
.

With the initial values A−1(ω) = 1, A0(ω) = b0(ω), B−1(ω) = 0 and B0(ω) = 1, they

satisfy the linear difference equations

An(ω) = bn(ω)An−1(ω) + an(ω)An−2(ω),

Bn(ω) = bn(ω)Bn−1(ω) + an(ω)Bn−2(ω), n = 1, 2 · · · ,

as well as the determinant formula

An(ω)Bn−1(ω)− Bn(ω)An−1(ω) = (−1)n−1

n∏
k=1

ak(ω) 6= 0, n = 1, 2, · · · . (1.2.1)
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The determinant formula (1.2.1) plays a fundamental role in the correspondence of a

continued fraction to a power series. The series

L = cmω
m + cm+1ω

m+1 + cm+2ω
m+2 + · · · , cm ∈ C \ {0}, m ∈ Z (1.2.2)

is called a formal Laurent series (fLs) with L(f) denoting the fLs of the function f

merormophic at the origin. A sequence {Rn := Rn(ω)} of functions meromorphic at

the origin is said to correspond to a formal Laurent series L at ω = 0 if

lim
n→∞

λ(L− L(R)) =∞, where λ(L) =

 ∞, L = 0;

m, L 6= 0.

Here, m is as defined in (1.2.2). The order of correspondence of Rn(ω) is defined to be

νn = λ(L− L(Rn)),

which signifies that, L(Rn) and L agrees term by term up to and including the term

containing ωνn−1. Many properties of correspondence of a continued fraction are stud-

ied in Jones and Thron [102, Chapter 5]. We state one such fundamental result.

Theorem 1.2.1. [102, Theorem 5.1] Given a sequence {Rm(ω)} of functions meromor-

phic at the origin, there exists a formal Laurent series L such that {Rm(ω)} corresponds

to L if, and only if

lim
n→∞

λ(L(Rn+1)− L(Rn)) =∞. (1.2.3)

If (1.2.3) holds, then the L to which {Rn(ω)} corresponds is determined uniquely.

Further, if the sequence {λ(L(Rn+1) − L(Rn))} tends monotonically to infinity, then

the order of correspondence of Rn(ω) is given by νn = λ(L(Rn+1)− L(Rn)).

For a comprehensive study of continued fractions, we refer to the monographs of

Jones and Thron [102], Lorentzen and Waadeland [124] and Wall [184].

Now, we give a brief review of the continued fractions that are used in this thesis

and the special functions they represent.
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Schur function and Schur fractions

The class of Schur functions was studied extensively by J. Schur [153]. A function f

which is analytic in the unit disk D := {z ∈ C : |z| < 1} such that |f(D)| ≤ 1 is called

a Schur function. The Schur function is further said to be normalized if f(0) ∈ (−1, 1).

Using Schwarz’s lemma and the fact that disk automorphisms are given by the

bilinear transformations
z − α
1− ᾱz

, |α| < 1, Schur gave the “continued fraction like”

algorithm

f0(z) = f(z), fn+1(z) =
fn(z)− αn

z(1− ᾱnfn(z))
, αn := fn(o), n ≥ 0, (1.2.4)

to obtain a sequence of Schur functions {fn(z)}. It is clear that |αn| = |fn(0)| ≤ 1.

However, the algorithm terminates if a Schur function fN is obtained in (1.2.4) such

that |fN | = 1.

Wall [184] converted the algorithm (1.2.4) into the continued fraction

α0 +
(1− |α0|2)z

ᾱ0z +

1

α1 +

(1− |α1|2)z

ᾱ1z +

1

α2 +

(1− |α2|2)z

ᾱ2z +
· · · . (1.2.5)

The continued fraction (1.2.5) is called a Schur fraction in Jones et al. [99] and is

completely determined by {αn}∞n=0. In case |αn| < 1, n ≥ 0, the Schur fraction is

called positive.

Carathéodory function and g-fractions

Related to the Schur function f(z) are the Carathéodory function C(z) given by

C(z) =
1 + zf(z)

1− zf(z)
, z ∈ D. (1.2.6)

From (1.2.6), it is clear that C(0) = 1 and Re C(z) = (1 − |zf(z)|2)/(|1 − zf(z)|2).

Hence for |z| < 1, |f(z)| ≤ 1 ⇐⇒ Re C(z) ≥ 0. In fact, (1.2.6) describes an one-one

correspondence between the class of Carathéodory functions and the class of Schur

functions.

To derive a continued fraction for Carathéodory functions, Wall [183] defined the
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sequence {γn}∞n=0 satisfying the recurrence relation

γ0 := 0, γn+1 :=
γn − ᾱn
1− αnβn

, n = 0, 1, · · · .

and introduced the functions hn(z) as

hn(z) :=
1− γnfn(z)

1 + zβnfn(z)
, n = 0, 1, · · · , (1.2.7)

usually referred to as the Wall Ansatz (Derevyagin [62]). Here, fn(z) are the Schur

functions obtained from the Schur algorithm (1.2.4) and {αn}∞n=0 are the parameters

appearing in the Schur fraction (1.2.5). Using (1.2.4), and the Wall Ansatz (1.2.7) the

following continued fraction

C(z) =
1 + z

1− z
+

2(γ0 − ᾱ0)z

γ1 − γ0z +

(γ1 + ᾱ0)(γ1 − ᾱ1)z

γ2 − γ1z +

(γ2 + ᾱ1)(γ2 − ᾱ2)z

γ3 − γ2z +
· · · ,

was obtained for a Carathéodory function C(z). Further, if C(z) is such that C(R) ⊆ R

and normalized by C(0) = 1, then the following continued fraction expansion

1− z
1 + z

C(z) =
1

1 -

(1− g0)g1ω

1 -

(1− g1)g2ω

1 -

(1− g2)g3ω

1 -
· · · , z ∈ D, (1.2.8)

can be derived (Wall [183]), where g0 = 0, gp = (1 − αp−1)/2, p = 1, 2, · · · and

w = −4z/(1− z)2. Note that |αn| ≤ 1 implies 0 ≤ gn ≤ 1 with the continued fraction

terminating in case equality holds. In general,the continued fraction appearing in the

right hand side of (1.2.8) with 0 ≤ gn ≤ 1, n = 0, 1, · · · , is called the g-fraction and

are used, in particular, to represent analytic functions on bounded domains.

Szegő polynomials and PC-fractions

In a series of papers, Jones et al. [99–101], investigated the connection between Szegő

polynomials and continued fractions. In this context, the following continued fraction

δ0 −
2δ0

1 +

1

δ̄1z +

(
1− |δ1|2

)
z

δ1 +

1

δ̄2z +

(
1− |δ2|2

)
z

δ2z +
· · · . (1.2.9)
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was introduced and was called Hermitian Perron–Carathéodory fractions or HPC-

fractions. They are completely determined by δn ∈ C, where δ0 6= 0 and |δn| 6= 1

for n ≥ 1. Under the stronger conditions δ0 > 0 and |δn| < 1, for n ≥ 1, (1.2.9) is

called a positive PC fraction (PPC-fractions).

Let An(z) and Bn(z) be respectively the numerator and denominator of the nth

approximant of a PPC-fraction. Then, by Jones et al. [101, Theorems 3.1 and 3.2], the

Szegő polynomials Φn(z) are precisely the odd ordered denominators B2n+1(z) while

Φ∗n(z) are the even ordered denominators B2n(z). The δ′ns are then given by δn = Φn(0)

and are called the Schur parameters or the reflection coefficients.

For |ζ| < 1, the polynomials Ψn(z) =
∫
∂D

z+ζ
z−ζ (Φn(z) − Φn(ζ))dµ(ζ), n ≥ 1, are

known in the literature as the associated Szegő polynomials or polynomials of the

second kind (Geronimus [81]). They arise as the odd ordered numerators of (1.2.9).

The function −Ψ∗n(z) is called the polynomial associated with Φ∗n(z) respectively and

these −Ψ∗n(z)′s are the even ordered numerators in (1.2.9). It is also known that for

|z| < 1, C(z)− Ψ∗n(z)
Φ∗n(z)

= O
(
zn+1

)
, where C(z) is the Carathéodory function.

In another direction of study of PC fractions, Korteweg-de Vries (KdV) equations

related to linear evolution of the orthogonality measure on the unit circle and their inte-

grable discretization leading to an algorithm for a modified PC-fractions are presented

in Mukaihira and Nakamura [135]. We refer to Joshi and Srinivasan [105] and Kichenas-

samy and Srinivasan [107] for information of KdV equations and related Painlevé ex-

pansions.

Hypergeometric functions and T - fractions

The Gaussian hypergeometric function is defined by the power series

2F1(a, b; c;ω) := F (a, b; c;ω) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

ωn, |ω| < 1,

where a, b ∈ C, c ∈ C \ {0,−1,−2, · · · } and

(λ)0 = 1, (λ)n = λ(λ+ 1) · · · (λ+ n− 1) =
Γ(λ+ n)

Γ(λ)
,
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is called the Pochhammer symbol. The series converges absolutely for |ω| = 1 if

Re (c−a−b) > 0 and converges conditionally if ω = eiθ 6= 1 and −1 < Re (c−a−b) ≤ 0.

The series diverges if Re (c− a− b) ≤ −1.

The Gaussian hypergeometric function has the following Euler integral representa-

tion

F (a, b; c;ω) =
Γ(c)

Γ(c)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− ωt)−adt, Re (c) > Re (b) > 0,

where Γ(z) is the Gamma function (Srinivasan [164]). The Euler integral provides an

analytic continuation of F (a, b; c;ω) to the entire complex plane except for a branch

cut along the real axis from 1 to ∞ and has been interpreted as a fractional integral

in Andrews et al. [4, Section 2.9]. The Gaussian hypergeometric function is also given

by Barnes integral (Srinivasan [165]) which is a contour integral involving products of

gamma functions.

The Gaussian hypergeometric function satisfies the second order differential equa-

tion

ω(1− ω)y′′ + [c− (a+ b+ 1)ω]y′ − aby = 0,

which has three regular singular points at 0, 1 and∞ with exponents 0, 1−c; 0, c−a−b

and a, b respectively. It is in fact the canonical form (Andrews et al. [4]) of any second

order differential equation with three regular singular points.

The Gaussian hypergeometric polynomial as well as the differential equation have

been studied in various directions. In case b, c ∈ R, the orthogonality of the polynomial

F (−n, b; c;ω) is stated in Dominici et al. [67, Theorem 1].

Theorem 1.2.2. [67] Let n ∈ N0 := N ∪ {0}, b, c ∈ R and c 6= 0,−1,−2, · · · .

Then F (−n, b; c;ω) is the nth degree orthogonal polynomial for the n-dependent positive

weight function |ωc−1(1− ω)b−c−n| on the intervals

(i) (−∞, 0) for c > 0 and b < 1− n,

(ii) (0, 1) for c > 0 and b > c+ n− 1,

(iii) (1,∞) for c+ n− 1 < b < 1− n.
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As a consequence of orthogonality, F (−n, b; c;ω) has n zeros, real, simple and lying

in its interval of orthogonality for the corresponding ranges. Another context is the

properties of the zeros of the solutions of the hypergeometric differential equation,

obtained in Deaño et al. [52] and Dimitrov and Sri Ranga [66], through classical Sturm

theorems and their extensions.

Two Gaussian hypergeometric functions are said to be contiguous if they are func-

tions of the same variable and the difference between the corresponding parameters

is at most unity. A linear relation exists between two contiguous Gaussian hyperge-

ometric functions which can be iterated to yield a linear relation between any three

Gaussian hypergeometric functions whose parameters differ by integers. Such relations

are called contiguous relations and have been used to explore many properties of the

function F (a, b; c;ω); for example, many special functions can be represented by ratios

of Gaussian hypergeometric functions. For more details, we refer to Andrews [4].

In fact, the contiguous relations are used to derive continued fractions of the form

F(λ) =
f1λ

1 + g1λ +

f2λ

1 + g2λ +

f3λ

1 + g3λ +
· · · , λ ∈ C, (1.2.10)

for ratios of Gaussian hypergeometric functions, where fn > 0 and gn > 0. Such

continued fractions are called T -fractions and are used in simultaneous correspondence

to formal Laurent series at λ = 0 and λ = ∞. We refer to Jones and Thron [102]and

Wall [184] for further information on the convergence and correspondence properties

of such T -fractions.

1.3 Spectral Transformations on unit circle

In the theory of orthogonal polynomials, both on the real line and on the unit circle,

different kinds of perturbations are studied leading to new spectral properties of the

associated matrices. They are perturbations of either the orthogonality measure or

the recurrence coefficients or the moment sequence. In case of perturbations of the

orthogonality measure, three canonical transformations are usually studied which in-

clude multiplying the measure by a polynomial, addition of one or two mass points,
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and division of the measure by a polynomial along with the addition of mass point(s).

In this section, we briefly explain spectral transformations both of the functional N

as well the positive measure that exists in case of the functional being positive definite.

However, we restrict ourselves to the unit circle case only.

Canonical transformations of linear functional

Given the linear functional N and α ∈ C, the three transformations usually studied in

the literature are

• Canonical Christoffel transformation:

〈p(z), q(z)〉NC = 〈(z − α)p(z), (z − α)q(z)〉N, α ∈ C. (1.3.1)

• Canonical Uvarov transformation:

〈p(z),q(z)〉NU = 〈p(z), q(z)〉N + mp(α)q(1/ᾱ) + m̄p(1/ᾱ)q(α),

|α| > 1, m ∈ C \ {0}.
(1.3.2)

• Canonical Geronimus transformation:

〈(z − α)p(z), (z − α)q(z)〉NG = 〈p(z), q(z)〉N, α ∈ C. (1.3.3)

The canonical Uvarov transformation (1.3.2) denotes the addition of two mass points

which are symmetric about the unit circle. In case of addition of a single mass point,

we have m ∈ R and

〈p(z), q(z)〉NU = 〈p(z), q(z)〉N + mp(α)q(1/ᾱ), α ∈ C.

Canonical transformations of measure

In the case N is a positive definite linear functional, there exist a positive measure µ

supported on the unit circle such that

cn =

∫
∂D
zndµ(t), n ∈ Z, and 〈p(z), q(z)〉N =

∫
∂D

p(z)q(1/z̄)dµ(t).
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The spectral transformation of the orthogonality measure dµ corresponding to (1.3.1),

(1.3.2) and (1.3.3) are

dµC = |z − α|2dµ, α ∈ C, (1.3.4a)

dµU = dµ+ mδ(z − α) + m̄δ(z − 1/ᾱ), |α| ∈ R+ \ {0, 1}, m ∈ C, (1.3.4b)

dµG =
1

|z − α|2
dµ. (1.3.4c)

The canonical Geronimus transformation can be seen to be the inverse of the canonical

Christoffel transformation. However, as shown in Marcellán [127], the inverse transform

NG 7→ NC is not unique and they are defined up to the addition of a linear functional

mδ(z−α)+ m̄δ(z−1/ᾱ). Hence, in the positive definite case, the canonical Geronimus

transformation (1.3.4c) can be written as

dµ(G,m) =
dµ

|z − α|2
+ mδ(z − α) + m̄δ(z − 1/ᾱ), |α| > 1, m ∈ C \ {0}, (1.3.5)

with the integral representation

〈p(z), q(z)〉NG,m =

∫
∂D

p(z)q(z)
dµ

|z − α|2
+ mp(1/ᾱ)p(α) + m̄p(1/ᾱ)q(α).

If we denote the canonical Christoffel transformation (1.3.4a), the canonical Uvarov

transformation (1.3.4b) and the Geronimus transformation (1.3.5) by ΥC(α), ΥU(α,m)

and ΥG(α,m) respectively, then

ΥC(α) ◦ΥG(α,m) = I and ΥG(α,m) ◦ΥC(α) = ΥU(α,m),

where I is the identity transformation.

The structure of the perturbed orthogonal polynomials as well as the associated

Verblunsky coefficients and Carathéodory functions corresponding to the canonical

Christoffel, Geronimus and Uvarov transformations are studied, for example, in Garza

and Marcellán [77, 78]. We note that in all three cases, the respective perturbed
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Carathéodory function CC(z), CG(z) and CU(z) are of the form

a(z)C(z) + b(z)

c(z)C(z) + d(z)

where a(z), b(z), c(z) and d(z) are polynomials. In case, a(z)d(z)− b(z)c(z) 6= 0, the

spectral transformation of the Carathéodory function is said to be rational. One notable

example of such rational spectral transformation is the Aleksandrov transformation of

C(z) defined by

C(λ)(z) =
(1− λ) + (1 + λ)C(z)

(1 + λ) + (1− λ)C(z)
, |λ| = 1. (1.3.6)

For more information on Aleksandrov transformation, Aleksandrov measures and the

related orthogonal polynomials on the unit circle, we refer to Simon [156, p. 35]. The

above transformations have also been interpreted in terms of matrix decompositions.

We refer to Castillo et al. [38], Daruis et al. [48] Garza and Marcellán [78] and references

therein for a matrix perspective of spectral transformations in general.

1.4 Chain Sequences, DG1POP, DG2POP

An important concept that is used in the present work is the theory of chain sequences.

We give a brief introduction to chain sequences and then illustrate the role played by

them in the theory of orthogonal polynomials on the unit circle. A sequence {dn}∞n=1

which satisfies

dn = (1− gn−1)gn, n ≥ 1,

is called a positive chain sequence (Chihara [42]) if {gn}∞n=0, called the parameter

sequence, is such that 0 ≤ g0 < 1, 0 < gn < 1 for n ≥ 1. This is a stronger condition

than the one used in Wall [184], where 0 ≤ gn ≤ 1, n ≥ 0. The parameter sequence

{gn}∞n=0 is called a minimal parameter sequence and denoted by {mn}∞n=0 if m0 = 0.

Further, for a fixed chain sequence {dn}∞n=1, let M be the set of all parameter sequences
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{gk} of {dn}∞n=1. Let the sequence {Mn}∞n=0 be defined by

Mn = sup{gn, for each n, {gk} ∈ M}, n ≥ 0,

where sup is supremum of the set. Then, {Mn}∞n=0 is called the maximal parameter

sequence of {dn}∞n=1. Every chain sequence has a minimal and a maximal parameter

sequence which is unique to the chain sequence. For instance, the constant sequence

{1/4} is a chain sequence with mn = n/2(n+ 1), n ≥ 0, as the minimal and Mn = 1/2,

n ≥ 0, as the maximal parameter sequences.

An important property of a chain sequence {dn}∞n=1 is that {dn+1}∞n=1 is again

a chain sequence with parameter sequence {gk+1}∞k=0, where {gk}∞k=0 is any param-

eter sequence of {dn}∞n=1. Further, {Mk+1}∞k=0 is the maximal parameter sequence

of {dn+1}∞n=1. However, if {m1,k}∞k=0 denotes the minimal parameter sequence of

{dn+1}∞n=1, then m1,k < mk+1, k ≥ 0. The proofs of these results can be found in

Chihara [42, Chapter III, Theorem 5.4]. There is also a nice section in Ismail [90, Sec-

tion 7.2] about chain sequences and their properties.

A positive chain sequence {dn+1}∞n=1 appears in the three term recurrence relation

satisfied by the sequence of polynomials {Rn(z)}∞n=0. where Rn(z) is a normalization

of the kernel polynomial Pn(1, z) defined in (1.1.7). Hence, using (1.1.8), we obtain the

following recurrence relation

Rn+1(z) = [(1 + icn+1)z + (1− icn+1)]Rn(z)− 4dn+1zRn−1(z), n ≥ 1, (1.4.1)

with R0(z) = 1 and R1(z) = (1 + ic1)z + (1 − ic1). Indeed, it is shown in Costa et

al. [40] that for n ≥ 1,

Rn(z) =

n−1∏
j=0

[1− τjαj]

n−1∏
j=0

[1− Re(τjαj)]

Pn(1; z), where τj = τj(1) =

j∏
k=1

1− ick
1 + ick

.

Further, {cn}∞n=1 is a real sequence where

cn =
−Im(τn−1αn−1)

1− Re(τn−1αn−1)
, n ≥ 1,
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and dn+1 = (1− gn)gn+1, n ≥ 1, is a chain sequence with parameter sequence

gn =
1

2

|1− τn−1αn−1|2

[1− Re(τn−1αn−1)]
, n ≥ 1.

It is also not difficult to verify from (1.4.1) that Rn(z) has rn,n =
∏n

k=1(1 + ick) as

the leading coefficient and rn,0 = r̄n,n =
∏n

k=1(1− ick) as the constant term. Further,

R∗n(z) = znRn(1/z̄) = Rn(z), n ≥ 1, a property due to which Rn(z) is called a self-

inversive polynomial.

The three term recurrence relation (1.4.1) has been studied extensively in Bracciali

et al. [25], Castillo et al. [37] and Costa et al. [40] wherein it is shown that Rn(z),

n ≥ 1, can be used to obtain a sequence of Szegő polynomials with respect to the

positive non-trivial measure µ(z) and having {αn−1}∞n=1 as the sequence of Verblunsky

coefficients. In fact, Rn(z) are special forms of para-orthogonal polynomials and we

briefly illustrate the role of chain sequences in this context.

Chain sequences and para-orthogonality

The two sequences of para-orthogonal polynomials

R(1)
n (z) = zΦn−1(z) + Φ∗n−1(z), and (z − 1)R(2)

n (z) = zΦn(z)− Φ∗n(z), n ≥ 1,

are considered by Delsarte and Genin [58], wherein they are referred to as first and

second kind singular predictor polynomials respectively. They are further shown to

satisfy the three term recurrence relations

R(1)
n (z) = (z + 1)R

(1)
n−1(z)− 4d

(1)
n+1zR

(1)
n−1(z),

R(2)
n (z) = (z + 1)R

(2)
n−1(z)− 4d

(2)
n+1zR

(2)
n−1(z), n ≥ 1,

(1.4.2)

where R
(1)
0 (z) = R

(1)
0 (z) = 1, R

(2)
1 (z) = R

(2)
1 (z) = z + 1,

d
(1)
n+1 =

1

4
(1− αn−2)(1 + αn−1) and d

(2)
n+1 =

1

4
(1 + αn−1)(1− αn), n ≥ 1.

Following Bracciali et al. [25], we will refer to R
(1)
n (z) and R

(2)
n (z) as Delsarte and

Genin 1 para-orthogonal polynomials (DG1POP) and Delsarte and Genin 2 para-
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orthogonal polynomials (DG2POP) respectively. It may also be observed that (1.4.1)

reduces to either of the recurrence relations (1.4.2) if cn = 0, n ≥ 1.

Such para-orthogonality arises when the measure satisfy the symmetry property

dµ(ei(2π−θ)) = −dµ(eiθ). The Verblunsky coefficients are real, given by αn−1 = −Φn(0),

n ≥ 1 and in such a case, both d
(1)
n+1 and d

(2)
n+1 become chain sequences. Later, Delsarte

and Genin [59] extended the results to include complex Verblunsky coefficients using

the recurrence relation

R̂n+1(z) = (β̄nz + βn)R̂n(z)− zR̂n−1(z), n ≥ 1,

which is a special case of (1.4.1), with βn ∈ C, n ≥ 1 and observing that the chain

sequence used is the constant chain sequence {dn+1 = 1/4}∞n=1.

Extension to include complex measures

The fundamental idea in such extension is that while the kernel polynomial Pn(1; z) is

unique for a sequence of Szegő polynomials, the converse is not true. That is, there

can be more than one sequence of Szegő polynomials that have the same sequence of

kernel polynomials. In fact, it was shown in Costa et al. [40], that the family of Szegő

polynomials Φ
(t)
n (z), n ≥ 1, corresponding to the family of non-trivial measures on the

unit circle given by

∫ 2π

0

f(eiθ)dµ(t,1)(eiθ) =
1− t
1− δ

∫ 2π

0

f(eiθ)dµ(δ)(e
iθ) +

t− δ
1− δ

f(1),

lead to the same kernel polynomial sequence {Pn(z; 1)}. Here, it is assumed that the

measure µ(δ) (with total mass 1) has a jump δ, 0 ≤ δ < 1 at θ = 0 so that µ(t,1) has a

jump t, 0 ≤ t < 1 also at θ = 0.

The case δ = 0 was considered in Castillo et al. [37], wherein it was proved that

the sequence of polynomials {Φ(t)
n (z)} where

Φ
(t)
0 (z) = 1 and Φ(t)

n (z) =
Rn(z)− 2(1−m(t)

n )Rn−1(z)∏n
k=1(1 + ick)

, n ≥ 1, (1.4.3)
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is a sequence of Szegő polynomials with the Verblunsky coefficients given by

α
(t)
n−1 =

1− 2m
(t)
n − icn

1 + icn

n∏
k=1

1 + ick
1− ick

, n ≥ 1. (1.4.4)

Here, {m(t)
n }∞n=0 is the minimal parameter sequence of the chain sequence {dn}∞n=1

obtained from the chain sequence {dn+1}∞n=1 by defining d1 = (1− t)M (t)
1 .

Further, if cn = 0, n ≥ 1, in (1.4.3), it follows that (z − 1)Rn(z) = zΦ
(t)
n (z) −

(Φ
(t)
n (z))∗ and hence provides an extension of DG2POP to include complex Verblunsky

coefficients given by (1.4.4). In the present thesis, we will be concerned only with

DG2POP and the associated chain sequences.

Similarly, an extension of DG1POP is studied in Bracciali et al. [25, Theorem 3.1].

Choosing the additional term d1 in this case such that d1 6= 0, the sequence of Szegő

polynomials are given by

Φ̂n(z) =
Rn+1(z)− 2(1−mn)Rn(z)

(z − 1)
∏n+1

k=1(1 + ick)
, n ≥ 0,

with the Verblunsky coefficients

α̂n−1 = −
n∏
k=1

1 + ick
1− ick

1− 2mn − icn+1

1− icn+1

, n ≥ 1.

Here {mn}∞n=0 is the minimal parameter sequence of the chain sequence {dn+1}∞n=1 and

is given by mn = 1− Rn+1(1)
2Rn(1)

, n ≥ 0.

1.5 Generalized recurrence relations

Recurrence relations of the form

Pn+1(λ) = ρn(λ− βn)Pn(λ) + τn(λ− γn)Pn−1(λ), n ≥ 1, (1.5.1)

with P1(λ) = ρ0(λ − β0) and P0(λ) = 1 are studied in Ismail and Masson [91]. In

addition to the restrictions ρn 6= 0 and τn 6= 0, n ≥ 0, it was shown that if one also

assumes Pn(γn) 6= 0, n ≥ 1, in (1.5.1), then there exists a linear functional M such
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that the orthogonality relations

M[γ0] 6= 0, M

[
λk∏n

k=1(λ− γk)
Pn(λ)

]
6= 0, 0 ≤ k < n,

hold. Following Ismail and Masson [91], the recurrence relation (1.5.1) will be referred

to as recurrence relation of RI type and Pn(λ), n ≥ 1, generated by this recurrence

relation as RI polynomials.

A non-trivial positive measure of orthogonality defined either on the unit circle or

on the real axis is associated with (1.5.1) whenever γn = 0, n ≥ 1 and the parameters

satisfy certain positivity conditions. For instance, if ρn > 0, βn > 0 and τn < 0, then

it is shown in Jones et al. [103] that the corresponding polynomials satisfy the Laurent

orthogonality property

∫ ∞
0

t−n+sPn(t)dφ(t) = 0, s = 0, 1, · · · , n− 1.

Similarly, when ρn = 1, βn 6= 0 and τn 6= 0, there exists (Sri Ranga [162, Theorem 2.1])

a positive measure µ on the unit circle such that {Pn(λ)}∞n=1 is a sequence of Szegő

polynomials whenever the inequality 0 < τnβ
−1
n < 1− |Pn(0)|2, n ≥ 1, holds.

Recurrence relations of the form

Qn+1(λ) = ρn(λ− νn)Qn(λ) + τn(λ− an)(λ− bn)Qn−1(λ), n ≥ 1, (1.5.2)

with initial conditions Q0(λ) = 1 and Q1(λ) = ρ0(λ − ν0) are also studied in Ismail

and Masson [91]. It was shown that if Qn(an) 6= 0, Qn(bn) 6= 0, τn 6= 0 and ρn 6= 0,

n ≥ 0, then, there exists a rational function

φ0(λ) = 1, φn(λ) =
n∏
k=1

Qn(λ)

(λ− ak)(λ− bk)
, n ≥ 1,

and a linear functional M defined on the span {λkφn(λ) : 0 ≤ k ≤ n} such that the

relationN (λkφn(λ)) = 0, for 0 ≤ k < n holds. Conversely, we can always obtain (1.5.2)

from a sequence of rational functions {φn(z)}∞n=0 having poles at {ak}∞k=0 and {bk}∞k=0

and satisfying a three term recurrence relation. Following Ismail and Masson [91], we
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call (1.5.2) as recurrence relations of RII type and Qn(λ) the RII polynomials.

From the RII type recurrence relations, it is clear that the RII polynomials appear

as denominators of the approximants of the continued fraction

1

ζ0(λ) -

σL1 (λ)σR1 (λ)

ζ1(λ) -

σL2 (λ)σR2 (z)

ζ2(λ) -
. . . ,

where σLk (λ), σRk (λ) and ζk(λ) are polynomials of degree one. In case of {Qn(z)}

satisfying (1.5.2), σLk (λ) = τLk (λ− ak), σRk (λ) = τRk (λ− bk) and ζk(λ) = ρk(λ− νk).

Related to the recurrence relations of RI and RII type, are important concepts of

linear pencil matrix, and rational functions satisfying both orthogonality and biorthog-

onality properties which are briefly explained below.

1.5.1 Orthogonal rational functions

The orthogonal rational functions has been studied extensively and there is a vast

literature available on the subject. The theory of rational functions orthogonal on the

unit circle is developed parallel to that of polynomials orthogonal on the unit circle and

is available in the monograph by Bultheel et al. [33]. A sequence of orthogonal rational

functions is obtained from the Gram-Schmidt orthonormalization process in the linear

space of rational functions which, in fact, can be characterized by the poles of the basis

elements as well. In this direction, for example, in Bultheel et al. [32] and Li [122],

starting from a set of pre-defined poles, the rational functions are characterized by

Favard type theorems as well as in terms of three-term recurrence relations similar to

that of orthogonal polynomials on the real line but with rational coefficients.

In other directions of study, the effect of poles on the asymptotics of the Christoffel

functions associated with the orthogonal rational functions and their interval of or-

thogonality was studied in Deckers and Lubinsky [56]. The spectral methods in case of

orthogonal rational functions are illustrated in Velázquez [181]. Linear combinations

of orthogonal rational functions and the corresponding rational functions of the second

kind with rational coefficients are studied in Deckers et al. [55]. Boyd [28], Langer and

Lasarow [119] and Pan [138] found many applications of orthogonal rational functions

in the direction of numerical methods.
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1.5.2 Linear pencil matrix

Unlike the case for orthogonal polynomials on the real line or on the unit circle, the RII

polynomials Qn(z), n ≥ 1, satisfying (1.5.2) is the characteristic polynomial of a matrix

pencil Gn − λHn, where both Gn and Hn are tridiagonal matrices. This was proved

in Zhedanov [192], wherein the biorthogonality and Christoffel type transformation of

rational functions obtained from RII polynomials were illustrated.

A particular case of linear pencil matrix is considered in Ismail and Ranga [94],

where both Gn and Hn are Hermitian while Hn is positive definite as well. Such

generalized eigenvalue problem is related to the RII type recurrence relation

Qn+1(x) = (x− cn+1)Qn(x)− dn+1(x2 + 1)Qn−1, n ≥ 1,

where {cn}∞n=1 is a real sequence and {dn+1}∞n=1 is a positive chain sequence. Using the

associated linear matrix pencil, it is shown that a positive measure on the unit circle

can always be associated to such recurrence relations of RII type. In a different context

of obtaining Nevanlinna functions (functions mapping upper half plane to upper half

plane) from Carathéodory functions, it is shown in Derevyagin [62] that Qn(x) appear

as denominators of the approximants of continued fraction representations of such

Nevanlinna functions. We also refer to Bora et al. [21,22] for numerical aspects of the

eigenvalue problems associated with matrix pencils.

1.5.3 Biorthogonality of polynomials

The term “biorthogonality” has been defined in the literature in different ways. Among

these, we will use the following definition formulated in Konhauser [108].

Let p(x) and q(x) be polynomials in x with real coefficients and degree p and s

respectively. If Pm(x) and Qn(x) are polynomials in p(x) and q(x) of degree m and n

respectively, then p(x) and q(x) are called basic polynomials.

Definition 1.5.1. [108] The sequences {Pm(x)}∞m=0 and {Qn(x)}∞n=0 are biorthogonal

over the interval (a, b) with respect to the weight function ω(x) and the basic polynomials
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p(x) and q(x) provided the orthogonality conditions

∫ b

a

Pm(x)Qn(x)ω(x)dx

 = 0, m, n = 0, 1, · · · , m 6= n;

6= 0, m = n.
(1.5.3)

are satisfied.

Note that, in contrast to the usual orthogonality condition, two different sequences

of polynomials are used for the biorthogonality condition (1.5.3).

Further, the real valued function ω(x) of the real variable x on the interval (a, b) is

such that the moments

Ii,j =

∫ b

a

[p(x)]i[q(x)]jω(x)dx, i, j = 0, 1, · · · ,

exist with I0,0 =
∫ b
a
ω(x)dx 6= 0. In this case, ω(x) is called an admissible weight

function. Using the generalized moments Ii,j, Konhauser [108] provided necessary and

sufficient conditions for the existence of biorthogonal polynomials.

Theorem 1.5.1. [108] Given the basic polynomials p(x) and q(x) and an admissible

weight function ω(x) on the interval (a, b), the polynomial sequences {Pm(x)}∞m=0 and

{Qn(x)}∞n=0 satisfying the biorthogonality condition (1.5.3) exist if, and only if, the

determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣

I0,0 I0,1 · · · I0,n−1

I1,0 I1,1 · · · I1,n−1

...
...

. . .
...

In−1,0 In−1,1 · · · In−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0, n = 1, 2, · · · .

Moreover, the polynomials are unique, each up to a multiplicative constant.

Biorthogonal polynomials were also obtained as solutions of differential equations.

In fact, Preiser [142] proved that there exists only one third order differential equation

a(x)y
′′′

n (x) + b(x)y
′′

n(x) + c(x)y
′

n(x) = λnyn(x),
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having biorthogonal polynomials solutions of degree n in xm and such that its adjoint

differential equation

−[p(x)a(x)zn(x)]
′′′

+ [p(x)b(x)zn(x)]
′′ − [p(x)c(x)zn(x)]

′
= λnp(x)zn(x),

has biorthogonal polynomial solutions of degree n in x. Here, a(x), b(x), c(x) are

functions of x independent of n and λn is a parameter independent of x.

Several families of biorthogonal polynomials are known in the literature, some of

them having explicit representations. For instance, a great deal of study has been made

on the polynomials

Pm(z;α, β) = F (−m,α + β + 1; 2α + 1; 1− z); Qn(z) = Pn(z;α,−β),

which were proved to be biorthogonal in Askey [7] (see also Borrego-Morell and Rafaeli

[23]) with respect to the weight function

ω(θ) = (2− 2 cos θ)α(−eiθ)β, θ ∈ [−π, π], Reα > −1/2.

Sri Ranga [162] later proved that the sequence {Pm(z;α, β)}∞m=0 is also orthogonal with

respect to the weight function ω̂(θ) = 22αe(π−θ)Imβ sin2α θ/2 if α ∈ R, α > −1/2 and

iβ ∈ R. We further refer to Askey [8] and Temme [171] for proofs of the biorthogonality

of the polynomials Pm(z;α, β) and Qn(z) and related discussions.

In some recent advancements, the zero distribution of polynomials that are biorthog-

onal to exponentials is analyzed in Lubinsky and Sidi [125] while integral representa-

tions of biorthogonal functions using generalized Hankel determinants are found in Is-

mail and Simeonov [93]. Further, while biorthogonality of rational functions is studied

in Rosengren [151], biorthogonality of Laurent polynomials, is studied in Cruz-Barroso

et al. [43], Pastro [139] and Zhedanov [190].

As mentioned earlier, different conditions of biorthogonality are also studied in var-

ious areas of rational interpolation, Padé approximation, non linear PDEs and random

matrix theory. We make no mention of these definitions and refer to Bertola et al. [18],

Iserles and Nørsett [88], Iserles and Saff [89] and references therein.
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1.6 Motivation and outline of the thesis

The underlying theme of the thesis on one hand is to explore both structural and

qualitative aspects of perturbations of the continued fraction parameters in case of

special functions and recursion coefficients in case of orthogonal polynomials and on

the other hand to obtain biorthogonality relations of Laurent polynomials. One of

the perturbations that is studied in the thesis is the map F(λ) 7→ F(λ2), where F(λ)

is the T -fraction defined in (1.2.10). This leads us to introduce generalized linear

Jacobi pencil matrices and study biorthogonality relations of the associated Laurent

polynomials. Hence, it is natural to study further biorthogonality relations using the

recurrence relations of RI and RII types. Illustrations are provided for results obtained

in the thesis, mostly using the hypergeometric functions. This is due to the fact that

many special functions, can be represented as either hypergeometric functions or their

ratios. We would also like to add that the thesis involves mostly infinite matrices,

whose recent applications can be found in the monograph by Shivakumar et al. [155].

A brief overview of the chapters

From the point of view of their applications, it is obvious that the parameters gn of

the g-fraction occurring in the right hand side of (1.2.8) contain hidden information

about the properties of the dynamical systems or the special functions they represent.

One way to explore this hidden information is through perturbation; that is, through

a study of the consequences when some disturbance is introduced in the parameters

gn, n ≥ 0. The main objective of Chapter 2 is to study the structural and qualitative

aspects of the following two perturbations in the parameters gn, n ≥ 0.

(i) The first is when a finite number of parameters gj are missing in which case we

call the corresponding g-fraction a gap-g-fraction.

(ii) The second case is replacing {gn}∞n=0 by a new sequence {g(βk)
n }∞n=0 in which the

jth term gj is replaced by g
(βk)
j .

The first case is illustrated using Gaussian hypergeometric functions, where we use the

fact that many g-fractions converge to ratios of Gaussian hypergeometric functions in
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slit complex domains. The second case is studied by applying the technique of coeffi-

cient stripping (Simon [156]) to the sequence of Schur parameters {αj}∞j=0. This follows

from the fact that the Schur fraction and the g-fraction are completely determined by

the related Schur parameters αk and the gk-parameters respectively. These parameters

are related by g0 = 0, gk = (1− αk−1)/2, k ≥ 1, so that a perturbation in αj produces

a unique change in gj and vice-versa.

The first half of Chapter 3 draws inspiration from the recurrence relation

Rn+1(z) = [(1 + icn+1) + i(1− icn+1)]Rn(z)− 4dn+1zRn−1(z), n ≥ 1, (1.6.1)

studied extensively in Castillo et al. [37], Costa et al. [40] and Bracciali et al. [25]. Both

the Szegő polynomials and the Verblunsky coefficients given respectively in (1.4.3) and

(1.4.4) are expressed in terms of the minimal parameter sequence {m(t)
n }∞n=0 of the chain

sequence {dn}∞n=1. Hence, we study the case when the minimal parameter sequence

{m(t)
n }∞n=0 of {dn}∞n=0 is replaced by the minimal parameter sequence {kn}∞n=0 of the

chain sequence {an}∞n=1, where k
(t)
0 := 0 and k

(t)
n := 1−m(t)

n , n ≥ 1. This motivates us

to define the concept of complementary chain sequences.These complementary chain

sequences are unique in perturbation theory of chain sequences, due to the following

reason. In the theory of chains sequences, if minimal parameter sequence {mn}∞n=0 and

maximal parameter sequence {Mn}∞n=0 coincide, it is called a single parameter positive

chain sequence (SPPCS) which is very useful in characterizing corresponding functions

and polynomials. However, all functions and polynomials may not have SPPCS. The

concept of complementary chain sequence provide SPPCS, even if the original chain

sequence do not possess this property. Hence the concept of complementary chain

sequence play an important contribution in the thesis.

The second half of Chapter 3 explores the consequences of the perturbation

mn 7→ 1 − mn in case of polynomials orthogonal on the real line. The perturba-

tion is extended to any parameter sequence of the associated chain sequence, which

is called as the generalized complementary chain sequence. The generalized pertur-

bation yields two sequences of orthogonal polynomial on the real line that have the

same kernel polynomials. Chapter 4 serves as the bridge between the two parts of the

thesis. The matrix representation of the polynomial map S(λ) 7→ λS(λ2), where S(λ)
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is a Stieltjes function is studied in Derevyagin [61]. Precisely, the map is interpreted

as the Darboux transformation of the Jacobi matrix associated with the orthogonal

polynomials on the real line, which are in turn related to Sn(x). Hence, we study the

map F(λ) 7→ F(λ2), where F(λ) is a general T -fraction. The denominators of the

approximants of a T -fraction satisfy a RI type recurrence relation (1.5.1), with which

is associated a sequence of Laurent polynomials. This yields a generalized linear pen-

cil matrix, which further leads to biorthogonality relations of the associated Laurent

polynomials.

Results on linear combination of orthogonal polynomials are abundant in litera-

ture and are studied in the context of quasi-orthogonality. A polynomial sequence

{qn(x)}∞n=0 is said to be quasi-orthogonal of order r with respect to a positive weight

ω(x) on [a, b] ⊆ R if, and only there exists another sequence of polynomials {pn(x)}∞n=0

orthogonal with respect to ω(x) on [a, b] such that

qn(x) = c0pn(x) + c1pn−1(x) + · · ·+ crpn−r(x),

where ci depend only on n and c0cr 6= 0. Linear combination of polynomials which

are orthogonal either on the real line or on the unit circle has also been studied as an

inverse problem in Alfaro et al. [3], with conditions being obtained for the orthogonality

of such linear combinations.

Motivated by linear combinations of polynomials and their orthogonality as well as

algebraic properties, our aim in Chapter 5 is to study the linear combination of two

successive RI polynomials of a sequence {Pn(λ)}∞n=0 that satisfies (1.5.1), that is

Qn(λ) := Pn(λ) + αnPn−1(λ), αn ∈ R \ {0}, n ≥ 0,

where β0 6= 0,±1 and βn 6= 0, n ≥ 1. We construct a unique sequence {αn}∞n=0 such

that {Qn(λ)}∞n=0 not only satisfies mixed recurrence relations of RI and RII type but

also has a common zero.

The polynomials Qn(λ), n ≥ 1, are shown to satisfy biorthogonality relations that

follow from their eigenvalue representations. With certain additional conditions, we

also show that a para-orthogonal polynomial of degree n can be obtained fromQn+1(λ).
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Further, common zeros of an orthogonal sequence have been considered in the past,

see for example, Driver and Muldoon [70] and Wong [186]. However, the novelty in

our approach is that we actually construct such a sequence before studying its orthog-

onality properties. Such procedure of constructing the zeros before characterizing the

orthogonality properties is limited in the literature. Hence this approach provides an

important contribution to the thesis.

The recurrence relations (1.5.2) of RII type are used to define the generalized eigen-

value problems GnϕRn = λHnϕ
R
n and ϕLnGn = λϕLnHn. In this case, both Gn and Hn are

tridiagonal matrices and the components of the eigenvectors ϕLn and ϕRn are rational

functions with the numerator polynomials Qn(λ) satisfying the recurrence relations

(1.5.2) of RII type. However, while the three term recurrence relation satisfied by the

sequence of rational functions

φ0(λ) := 1, φn(λ) :=
Pn(λ)∏n

j=1(λ− aj)(λ− bj)
, n ≥ 1,

is used to obtain the pencil matrix Gn − λHn, the usual process available in the lit-

erature, for example in Zhedanov [192] and Beckermann et.al. [16], is to partition the

poles to form the rational functions

pLn(λ) =
Pn(λ)∏n

k=1(λ− ak)
=
Pn(λ)∏n
k=1 σ

L
k

and pRn (λ) =
Pn(λ)∏n

k=1(λ− bk)
=
Pn(λ)∏n
k=1 σ

R
k

.

The two sequences of rational functions {pLn(λ)}∞n=0 and {pRn (λ)}∞n=0 form the compo-

nents of the left and right eigenvectors of the matrix pencil G − λH and hence are

biorthogonal to each other. However we note that two sequences of rational functions

that are biorthogonal to each other need not themselves form an orthogonal sequence.

Motivated by the procedure of proving biorthogonality given in Zhedanov [192],

and other results referred to earlier in Askey [7], Sri Ranga [162] and Temme [171]

the central theme of the Chapter 6 is to study a sequence of rational functions that

is both orthogonal as well as biorthogonal. Precisely, we are interested in construct-

ing a sequence of orthogonal rational functions {φn(λ)} satisfying the following two

properties

(i) The related matrix pencil has the numerator polynomials Pn(z) as the character-
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istic polynomials and φn(z) as components of the eigenvectors.

(ii) The orthogonal sequence {φn(z)} is also biorthogonal to another sequence of

rational functions.

We also give a Christoffel type transformation of such rational functions illustrating

the differences with the ones that are available in the literature on orthogonal rational

functions.

Concluding remarks are given at the end of each chapter to provide a passage to

the next chapter through existing literature. A detailed list of references related to the

thesis is given at the end. There is a conscious effort to include both the seminal papers

that initiated a particular direction of study as well as recent references that reflect

developments in the last few years. At the same time, due to too classical nature of

the references and in some cases non-availability of the original research article, we cite

modern works for classical results. It is expected that the references given at the end

of such citations will provide a good idea of various problems that are based on these

classical results. Finally, wherever required, we include references within brackets so

as not to disturb the flow of the language.
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Chapter 2

Perturbed g-fractions and a class of

Pick functions

The main objective of the chapter is to investigate structural and qualitative aspects

of two different perturbations of the parameters of g-fractions. In this context, the

concept of gap g-fractions is introduced. While tail sequences of a continued fraction

play a significant role in the first perturbation, Schur fractions are used in the second

perturbation of the g-parameters. The application of such perturbations is illustrated

in geometric properties of analytic functions like subordination. Further, using a par-

ticular gap g-fraction, a class of Pick functions is identified.

2.1 Gap g-fractions

Given an arbitrary real sequence {gk}∞k=0, a continued fraction expansion of the form

1

1 -

(1− g0)g1z

1 -

(1− g1)g2z

1 -

(1− g2)g3z

1 -
· · · , z ∈ C, (2.1.1)

is called a g-fraction if the parameters gj ∈ [0, 1], j ≥ 0. It terminates and equals a

rational function if gj ∈ {0, 1} for some j ≥ 0. If 0 < gj < 1, j ≥ 0, the g-fraction

(2.1.1) still converges uniformly on every compact subset of the slit domain C \ [1,∞)

(Wall [184, Theorem 27.5] and Jones and Thron [102, Corollary 4.60]) and in this case,

(2.1.1) represents an analytic function, say F(z).

35
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Applications of g-fractions in number theory (Runckel’s points) and dynamical sys-

tems like the ABC flow are studied in Tsygvintsev [175, 176]. The fact that many

analytic functions on bounded domains possess a g-fraction expansion provides a con-

venient way to approach moment problems. In particular, it has been proved in

Wall [184, Theorem 69.2] that the Hausdorff moment problem

νj =

∫ 1

0

σjdν(σ), j ≥ 0,

has a solution if and only if (2.1.1) corresponds to a power series of the form 1 +

ν1z + ν2z
2 + · · · , z ∈ C \ [1,∞). Further, the g-fractions have also been used, in the

methodology, to study the geometric properties of ratios of Gaussian hypergeometric

functions as well as their q-analogues. See for example, the proofs of Küstner [117,

Theorem 1.5] and Baricz and Swaminathan [13, Theorem 2.2]).

Among several properties of g-fractions, one of the most fundamental results is

given by Wall [184, Theorem 74.1] in which holomorphic functions having positive real

part in C \ [1,∞) are characterized. Precisely, Re (
√

1 + z F(z)) is positive if, and

only if, F(z) has a continued fraction expansion of the form (2.1.1). Moreover, F(z)

has the integral representation

F(z) =

∫ 1

0

dφ(t)

1− zt
, z ∈ C \ [1,∞),

where φ(t) is a bounded non-decreasing function having a total increase 1.

As the name suggests, gap-g-fractions correspond to a sequence of g-parameters,

{gk}∞k=0, with certain terms missing. We study three cases in this section and in each

case, the concept of tail sequences of a continued fraction plays an important role. We

present only those results on the tail sequences that are required. For more information,

we refer to Lisa and Waadeland [124, Ch. II].

The N th tail of the continued fraction

b0(z) +
a1(z)

b1(z) +

a2(z)

b2(z) +
· · ·

+

aN+1(z)

bN+1(z) +
· · · , (2.1.2)
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is the continued fraction

aN+1(z)

bN+1(z) +

aN+2(z)

bN+2(z) +

aN+3(z)

bN+3(z) +
· · · . (2.1.3)

One of the properties of tails of continued fractions is the following.

Theorem 2.1.1. [124, Theorem1, Ch. II] The following three statements are equiva-

lent.

(i) The continued fraction (2.1.2) converges.

(ii) The N th tail (2.1.3) converges for an N ∈ N ∪ {0}.

(iii) The N th tail (2.1.3) converges for all N ∈ N ∪ {0}.

Further, if the numerator and denominator of the approximants of the tail (2.1.3)

are denoted, respectively, by AN
n (z) and BN

n (z), then the nth approximant is given by

fNn (z) = SNn (0), where SNn (z) = sN+1◦sN+2◦· · ·◦sN+n(z), with sn(z) = an(z)/(bn(z)+

z), n = 1, 2, · · · . The corresponding determinant formula is

AN
n (z)BN

n−1(z)− AN
n−1(z)BN

n (z) = −
N+n∏
j=N+1

(−aj(z)). (2.1.4)

2.1.1 Structural relations

For z ∈ C \ [1,∞), let F(z) be the continued fraction (2.1.1) and

F(k; z) =

1

1 -

(1− g0)g1z

1 -
· · · (1− gk−2)gk−1z

1 -

(1− gk−1)gk+1z

1 -

(1− gk+1)gk+2z

1 -
· · · .

(2.1.5)

Note that (2.1.5) is obtained from (2.1.1) by removing gk for some arbitrary k (which

is not equivalent to substituting gk = 0).
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Theorem 2.1.2. Suppose F(z) is given. Let F(k; z) denote the perturbed g-fraction

in which the parameter gk is missing. Then, with dj = (1− gj−1)gj, j ≥ 1,

F(k; z) = Sk(0)−
∏k−1

j=1 djz
k−1h(k; z)

Yk−1(0; z)Yk(0; z)h(k; z)− [Yk(0; z)]2
, (2.1.6)

where Yk(0; z), Sk(0) and −(1−gk−1)−1(1−gk)h(k; z) are, respectively, the kth denom-

inator, the kth approximant and the (k + 1)th tail of F(z).

Proof. Let −(1− gk)Hk+1(z) be the (k + 1)th tail of F(z) so that

Hk+1(z) =
gk+1z

1 -

(1− gk+1)gk+2z

1 -

(1− gk+2)gk+3z

1 -
· · · . (2.1.7)

We note that Theorem 2.1.1 guarantees the existence of Hk+1(z) since F(z) always

converges. Further, if h(k; z) = (1 − gk−1)Hk+1(z), k ≥ 1, then, from (2.1.5) and

(2.1.7) we obtain the rational function

Xk(h(k; z); z)

Yk(h(k; z); z)
=

1

1 -

(1− g0)g1z

1 -
· · · (1− gk−2)gk−1z

1− h(k; z)
, (2.1.8)

where we note that

Sk(0) =
Xk(0; z)

Yk(0; z)
=

Ak(0)

Bk(0)
=

1

1 -

(1− g0)g1z

1 -
· · · (1− gk−2)gk−1z

1
,

is the kth approximant of (2.1.1). From (2.1.8) it follows that

Xk(h(k; z); z)

Yk(h(k; z); z)
=
Xk(0; z)− h(k; z)Xk−1(0; z)

Yk(0; z)− h(k; z)Yk−1(0; z)
.

Then,

Xk(h(k; z); z)

Yk(h(k; z); z)
− Xk(0; z)

Yk(0; z)
=
h(k; z)[Xk(0; z)Yk−1(0; z)−Xk−1(0; z)Yk(0; z)]

Yk(0; z)[Yk(0; z)− h(k; z)Yk−1(0; z)]

=
h(k; z)zk−1

∏k−1
j=1(1− gj−1)gj

Yk(0; z)[Yk(0; z)− h(k; z)Yk−1(0; z)]
,

where the last equality follows from from the determinant formula for a continued
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fraction. Denoting dj = (1− gj−1)gj, j ≥ 1, we have from (2.1.8)

Xk(h(k; z); z)

Yk(h(k; z); z)
=
Xk(0; z)

Yk(0; z)
−

∏k−1
j=1 djz

k−1h(k; z)

Yk−1(0; z)Yk(0; z)h(k; z)− [Yk(0; z)]2
,

which is (2.1.6).

Note 2.1.1. In what follows, by F(z) we will mean the unperturbed g-fraction as given

in (2.1.1) with gk ∈ [0, 1], k ∈ N ∪ {0}. Further, as the notation suggests, the rational

function Sk(0) is independent of the missing parameter gk and is known whenever F(z)

is given. The information of the missing parameter gk at the kth position is stored in

h(k; z) and hence the notation F(k; z).

It may also be noted that the polynomials Yk(0; z) can be easily computed from

the recurrence relations

Yj(0; z) = Yj−1(0; z)− (1− gj−2)gj−1zYj−2(0; z), j ≥ 2,

with the initial values Y0(0; z) = Y1(0; z) = 1.

It is evident that the right side of (2.1.6) is of the form

a(z)h(k; z) + b(z)

c(z)h(k; z) + d(z)
,

with a(z), b(z), c(z), d(z) being well defined polynomials. Rational functions of such

form are said to be rational transformations of h(k; z) and occur frequently in the

spectral theory of orthogonal polynomials. For more details, we refer, for example, to

Garza and Marcellán [77], Zhedanov [189] and references therein.

A similar result for the perturbed g-fraction in which a finite number of consecutive

parameters are missing can be obtained by an argument analogous to Theorem 2.1.2.

We state this result without proof.

Theorem 2.1.3. Let F(z) be given. Let F(k, k+1, · · · , k+l−1; z) denote the perturbed

g-fraction in which the l consecutive parameters gk, gk+1, · · · , gk+l−1 are missing. Then,

F(k, k + 1, · · · , k + l − 1; z) =
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Sk(0)−
∏k−1

j=1 djz
k−1h(k, k + 1, · · · , k + l − 1; z)

Yk−1(0; z)Yk(0; z)h(k, k + 1, · · · , k + l − 1; z)− [Yk(0; z)]2
, (2.1.9)

where −(1− gk−1)−1(1− gk+l−1)h(k, k+ 1, · · · , k+ l− 1; z) is the (k+ l)th tail of F(z).

The next result is about the perturbation in which only two parameters gk and gl

are missing, where l need not be k ± 1.

Theorem 2.1.4. Let F(z) be given and −(1−gk−1)−1(1−gk)h(k, l; z) be the perturbed

(k + 1)th tail of F(z) in which gl is missing. Then

S(k+1)
m (0) +

(1− gk)
(1− gk−1)

h(k, k +m+ 1; z)

=

∏k+m
j=k+1 djz

mh(k +m+ 1; z)

[Y(k+1)
m (0; z)]2 − Y(k+1)

m−1 (0; z)Y(k+1)
m (0; z)h(k +m+ 1; z)

.

where we assume l = k + m + 1, m ≥ 1. Further, if F(k, l; z) denotes the perturbed

g-fraction in which two parameters gk and gl are missing, then

F(k, l; z) = Sk(0)−
∏k−1

j=1 djz
k−1h(k, l; z)

Yk−1(0; z)Yk(0; z)h(k, l; z)− [Yk(0; z)]2
. (2.1.10)

Here, Y(k+1)
m (0; z) and S(k+1)

m (0) are, respectively, the mth denominator and mth ap-

proximant of the (k + 1)th tail of F(z) and −(1− gl−1)−1(1− gl)h(l; z) is the (l + 1)th

tail of F(z).

Proof. Let

Hk+1(l; z) =
gk+1z

1 -

(1− gk+1)gk+2z

1 -
· · · (1− gl−1)gl+1z

1 -

(1− gl+1)gl+2z

1 -
· · ·

(2.1.11)

so that −(1−gk)Hk+1(l; z) is the perturbed (k+1)th tail of F(z) in which gl is missing.

Then, we can write

F(k, l; z) =
Xk(h(k, l; z); z)

Yk(h(k, l; z); z)
=

1

1 -

(1− g0)g1z

1 -
· · · (1− gk−2)gk−1z

1− h(k, l; z)
,
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where h(k, l; z) = (1−gk−1)Hk+1(l; z). Now, proceeding as in Theorem 2.1.2, we obtain

F(k, l; z) = Sk(0; z)−
∏k−1

j=1 djz
k−1h(k, l; z)

Yk−1(0; z)Yk(0; z)h(k, l; z)− [Yk(0; z)]2
.

Hence, all that remains is to find the expression for h(k, l; z) or Hk+1(l; z). Now, let

Hl+1(z) =
gl+1z

1 -

(1− gl+1)gl+2z

1 -

(1− gl+2)gl+3z

1 -
· · · ,

and h(l; z) = (1 − gl−1)Hl+1(z). From (2.1.11) and Lorentzen and Waadeland [124,

eqn.(1.1.4), p.57], we have

−(1− gk)Hk+1(l; z) =
−(1− gk)gk+1z

1 -

(1− gk+1)gk+2z

1 -
· · · (1− gl−2)gl−1z

1− h(l; z)

=
X (k+1)
l−k−1(h(l; z); z)

Y(k+1)
l−k−1(h(l; z); z)

.

It is clear that, the rational function [X (k+1)
l−k−1(0; z)/Y(k+1)

l−k−1(0; z)] is the approximant of

the (k + 1)th tail −(1− gk)Hk+1(z) of F(z). Then, using (2.1.4) we obtain

X (k+1)
l−k−1(h(l; z); z)

Y(k+1)
l−k−1(h(l; z); z)

−
X (k+1)
l−k−1(0; z)

Y(k+1)
l−k−1(0; z)

=
−h(l; z)

∏l−1
k [djz]

Y(k+1)
l−k−1(0; z)[Y(k+1)

l−k−1(0; z)− h(l; z)Y(k+1)
l−k−2(0; z)]

.

Finally, using the fact that l = k +m+ 1, we obtain

−(1− gk)Hk+1(k +m+ 1; z) =

S(k+1)
m (0, z)−

∏k+m
j=k+1 djz

mh(k +m+ 1; z)

[Y(k+1)
k+m+1(0; z)]2 − Y(k+1)

k+m (0; z)Y(k+1)
k+m+1(0; z)h(k +m+ 1; z)

,

where

S(k+1)
m (0, z) =

−(1− gk)gk+1z

1 -

(1− gk+1)gk+2z

1 -
· · · (1− gk+m−1)gk+mz

1
,

is the mth approximant of the (k + 1)th tail of F(z).
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As mentioned earlier, from (2.1.6), (2.1.9) and (2.1.10), it is clear that tail sequences

play a significant role in deriving the structural relations for the gap g-fractions. We

now illustrate the role of tail sequences using particular g-fraction expansions, which

will be later used to derive the class of Pick functions.

2.1.2 Tail sequences using hypergeometric functions

Consider the Gauss continued fraction

F (a, b+ 1; c+ 1;ω)

F (a, b; c;ω)
=

1

1 -

(1− g0)g1ω

1 -

(1− g1)g2ω

1 -

(1− g2)g3ω

1 -
· · · , (2.1.12)

where F (a, b; c;ω) is the Gauss hypergeometric function and the parameters gj, j ≥ 0

are given by

g2p =
c− a+ p

c+ 2p
and g2p+1 =

c− b+ p

c+ 2p+ 1
, p ≥ 0.

The correspondence and convergence properties of the Gauss continued fraction is

studied in Wall [184, Theorem 89.1] using the contiguous relations satisfied by the

Gauss hypergeometric function. Now, shifting b and c to b − 1 and c − 1 respectively

in (2.1.12), we obtain

F (a, b; c;ω)

F (a, b− 1; c− 1;ω)
=

1

1 -

(1− g0)g1ω

1 -

(1− g1)g2ω

1 -

(1− g2)g3ω

1 -
· · · (2.1.13)

so that the parameters gj, j ≥ 0 are given by

g2p =
c− a+ p− 1

c+ 2p− 1
and g2p+1 =

c− b+ p

c+ 2p
, p ≥ 0.

For the rest of the chapter, the g-fractions that will be studied have the parameters kp

where kp = 1− gp, p ≥ 0 with gp appearing as in (2.1.13). That is

k2p =
a+ p

c+ 2p− 1
and k2p+1 =

b+ p

c+ 2p
, p ≥ 0.
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Our first goal is to find the analytic function having the continued fraction represen-

tation

1

1 -

k1ω

1 -

(1− k1)k2ω

1 -

(1− k2)k3ω

1 -
· · · .

For this, let R(a,b,c)(ω) be the analytic function obtained from (2.1.13), as

R(a,b,c)(ω) = 1− 1

k0

[
1− F (a, b− 1; c− 1;ω)

F (a, b; c;ω)

]

= 1− (1− k1)ω

1 -

k1(1− k2)ω

1 -

k2(1− k3)ω

1 -

k3(1− k4)ω

1 -
· · · .

(2.1.14)

Consider the following two contiguous relations

F (a, b; c;ω) = F (a, b− 1; c− 1;ω) +
a(c− b)
(c− 1)c

ωF (a+ 1, b; c+ 1;ω), (2.1.15a)

F (a, b; c;ω) = (1− ω)F (a+ 1, b; c;ω) +
c− b
c

ωF (a+ 1, b; c+ 1;ω), (2.1.15b)

that can be easily proved by comparing the coefficients of ωk on both sides. Now, using

k0 = a/(c− 1) in (2.1.15a), we have

R(a,b,c)(ω) = 1− c− 1

a

[
F (a, b; c;ω)− F (a, b− 1; c− 1;ω)

F (a, b; c;ω)

]
= 1− c− b

c

F (a+ 1, b; c+ 1;ω)

F (a, b; c;ω)

= (1− ω)
F (a+ 1, b; c;ω)

F (a, b; c;ω)
,

where the last equality follows from (2.1.15b). Using the well known identity

1

1 +
g1z

1 +
(1− g1)g2z

1 +
(1− g2)g3z

1 +
. . .

· 1

1 +
(1− g1)z

1 +
g1(1− g2)z

1 +
g2(1− g3)z

1 +
. . .

=
1

1 + z
(2.1.16)
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proved in Wall [184, (75.3), p.281], we obtain from the continued fraction representation

(2.1.14) of R(a,b,c)(ω),

F (a+ 1, b; c;ω)

F (a, b; c;ω)
=

1

1 -

b
c
ω

1 -

(c−b)(a+1)
c(c+1)

ω

1 -

(c−a)(b+1)
(c+1)(c+2)

ω

1 -
· · · . (2.1.17)

Remark 2.1.1. The continued fraction (2.1.17) has also been derived by different

means in Küstner [117] and studied in the context of geometric properties of hyper-

geometric functions.

For further analysis, we note that by interchanging a and b in the Gauss continued

fraction (2.1.12), we obtain

F (a+ 1, b; c+ 1;ω)

F (a, b; c;ω)
=

1

1 -

b(c−a)
c(c+1)

ω

1 -

(a+1)(c−b+1)
(c+1)(c+2)

ω

1 -

(b+1)(c−a+1)
(c+2)(c+3)

ω

1 -
· · · . (2.1.18)

Denoting the analytic function in the left hand side of (2.1.18) by G
(a,b,c)
1 (ω), we have

G
(a,b,c)
1 (ω) =

1

1 -

k1(1− k2)ω

1 -

k2(1− k3)ω

1 -

k3(1− k4)ω

1 -
· · · .

The following result gives a kind of generalization of the continued fraction identity

(2.1.18). The correspondence and convergence properties of these continued fractions

can be discussed similarly to that of the Gauss continued fraction.

Proposition 2.1.1. For n ≥ 1, let

G(a,b,c)
n (ω) =

1

1 -

kn(1− kn+1)ω

1 -

kn+1(1− kn+2)ω

1 -

kn+2(1− kn+3)ω

1 -
· · · .

(2.1.19)

Then, G
(a,b,c)
n (ω), n ≥ 1, is given by ratios of Gaussian hypergeometric functions, where

G
(a,b,c)
2j (ω) =

F (a+ j, b+ j; c+ 2j;ω)

F (a+ j, b+ j − 1; c+ 2j − 1;ω)
j ≥ 1,

G
(a,b,c)
2j+1 (ω) =

F (a+ j + 1, b+ j; c+ 2j + 1;ω)

F (a+ j, b+ j; c+ 2j;ω)
j ≥ 0.
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Proof. The case j = 0 is the identity (2.1.18). Comparing the continued fractions for

G
(a,b,c)
2j+1 (ω) and G

(a,b,c)
2j−1 (ω), j ≥ 1, it can be seen that G

(a,b,c)
2j+1 (ω) can be obtained from

G
(a,b,c)
2j−1 (ω) j ≥ 1 by shifting a 7→ a+ 1, b 7→ b+ 1 and c 7→ c+ 2.

For n = 2j, j ≥ 1, we note that the continued fraction on the right side of (2.1.19) is

nothing but the Gauss continued fraction (2.1.12) with the respective shifts a 7→ a+ j,

b 7→ b+ j − 1 and c 7→ c+ 2j − 1 in the parameters.

Instead of starting with kn(1 − kn+1), as the first partial numerator term in the

continued fraction (2.1.19), a modification by inserting a new term changes the hyper-

geometric ratio given in Proposition 2.1.1. We state this result as follows.

Theorem 2.1.5. For n ≥ 1, let

F(a,b,c)
n (ω) =

1

1 -

knω

1 -

(1− kn)kn+1ω

1 -

(1− kn+1)kn+2ω

1 -
· · · .

Then for j ≥ 0,

F
(a,b,c)
2j+1 (ω) =

F (a+ j + 1, b+ j; c+ 2j;ω)

F (a+ j, b+ j; c+ 2j;ω)
,

F
(a,b,c)
2j+2 (ω) =

F (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)

F (a+ j + 1, b+ j; c+ 2j + 1;ω)
.

Proof. For n ≥ 1, let us denote

E
(a,b,c)
n+1 (ω) := 1− 1

kn

(
1− 1

G
(a,b,c)
n (ω)

)

= 1− (1− kn+1)ω

1 -

kn+1(1− kn+2)ω

1 -

kn+2(1− kn+3)ω

1 -
· · · .

Then, using the identity (2.1.16), we obtain

F
(a,b,c)
n+1 (ω) =

E
(a,b,c)
n+1 (ω)

1− z
=

1

1 -

kn+1ω

1 -

(1− kn+1)kn+2ω

1 -

(1− kn+2)kn+3ω

1 -
· · · .

Hence, we need to determine the functions E
(a,b,c)
n+1 (ω) in terms of hypergeometric func-
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tions. For n = 2j, j ≥ 1, using k2j = (a+ j)/(c+ 2j − 1) in (2.1.15a) yields

1

k2j

1− 1

G
(a,b,c)
2j (ω)

 =
c− b+ j

c+ 2j
ω
F (a+ j + 1, b+ j; c+ 2j + 1;ω)

F (a+ j, b+ j; c+ 2j;ω)
.

Further, shifting a 7→ a+ j, b 7→ b+ j and c 7→ c+ 2j in (2.1.15b), we find that

E
(a,b,c)
2j+1 (ω) = (1− ω)

F (a+ j + 1, b+ j; c+ 2j;ω)

F (a+ j, b+ j; c+ 2j;ω)
,

so that

F
(a,b,c)
2j+1 (ω) =

F (a+ j + 1, b+ j; c+ 2j;ω)

F (a+ j; b+ j; c+ 2j;ω)
j ≥ 1.

Repeating the above steps, we find that for n = 2j+1, j ≥ 0 and k2j+1 = (b+j)/(c+2j),

j ≥ 0,

E
(a,b,c)
2j+2 (ω) = (1− ω)

F (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)

F (a+ j + 1, b+ j; c+ 2j + 1;ω)
, j ≥ 0,

which implies

F
(a,b,c)
2j+2 (ω) =

F (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)

F (a+ j + 1; b+ j; c+ 2j + 1;ω)
, j ≥ 0.

For particular values of F
(a,b,c)
n (ω), further properties of the ratio of hypergeometric

function can be discussed. One particular case and ratios of hypergeometric functions

that belong to a class of Pick functions are given in Section 2.3. Before discussing

such specific cases, we consider another type of perturbation in g-fractions in the next

section.

2.2 Perturbed Schur parameters

The Schur fraction is defined as

α0 +
(1− |α0|2)z

ᾱ0z +

1

α1 +

(1− |α1|2)z

ᾱ1z +

1

α2 +

(1− |α2|2)z

ᾱ2z +
· · · , (2.2.1)
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where αj is related to the gj occurring in the g-fraction (1.2.8) of a Carathéodory

function by αj = 1−2gj, j ≥ 1. Similar to g-fraction, the Schur fraction also terminates

if |αn| = 1 for some n ∈ N ∪ {0}. It may be noted that such a case occurs if, and only

if, (Jones et al. [99]) f(z) is a finite Blaschke product.

Let An(z) and Bn(z) denote the nth partial numerator and denominator of (2.2.1)

respectively. Then, with the initial values A0(z) = α0, B0(z) = 1, A1(z) = z and

B1(z) = ᾱ0z, the numerators and denominators of the even approximants satisfy

A2p(z) = αpA2p−1(z) + A2p−2(z),

B2p(z) = αpB2p−1(z) + B2p−2(z), p ≥ 1,
(2.2.2)

while the numerators and denominators of the odd approximants satisfy

A2p+1(z) = ᾱpzA2p(z) + (1− |αp|2)zA2p−1(z),

B2p+1(z) = ᾱpzB2p(z) + (1− |αp|2)zB2p−1(z), p ≥ 1.
(2.2.3)

Using (2.2.2) in (2.2.3) we obtain

A2p+1(z) = zA2p−1(z) + ᾱpzA2p−2(z),

B2p+1(z) = zB2p−1(z) + ᾱpzB2p−2(z).
(2.2.4)

The relations (2.2.2) and (2.2.4) are sometimes written in the matrix form as

 A2p+1(z) B2p+1(z)

A2p(z) B2p(z)

 =

 z ᾱpz

αp 1


 A2p−1(z) B2p−1(z)

A2p−2(z) B2p−2(z)

 , p ≥ 1. (2.2.5)

It is also known (Nj̊astad [137]) that

A2n+1(z) = zB∗2n(z) ; B2n+1(z) = zA∗2n(z)

A2n(z) = B∗2n+1(z) ; B2n(z) = A∗2n+1(z), (2.2.6)

where P∗n(z) = znPn(1/z̄) for any polynomial Pn(z) with complex coefficients and of
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degree n. From (2.2.6), it follows that

A2n+1(z)

B2n+1(z)
=

(
A∗2n(z)

B∗2n(z)

)−1

,
A2n(z)

B2n(z)
=

(
A∗2n+1(z)

B∗2n+1(z)

)−1

.

Since the parameters gj and αj are uniquely related, the case of a single parameter

gk being replaced by g
(βk)
k can be studied using the Schur parameters. It is obvious

that this is equivalent to studying the perturbed sequence {α(βk)
j }∞j=0, where

α
(βk)
j =

 αj, j 6= k;

βk, j = k.
(2.2.7)

Hence, we start with a given Schur function and study the perturbed Carathéodory

function and its corresponding g-fraction. The following theorem gives the structural

relation between the Schur function and the perturbed one. The proof follows the

transfer matrix approach, which has also been used in the literature, for example, in

Castillo [36] to study perturbed Szegő recurrences. For details of the method, we refer

to Simon [156, Sections 3.2 and 3.4]

Theorem 2.2.1. Let Ak(z) and Bk(z) be the nth partial numerators and denominators

of the Schur fraction associated with the sequence {αk}∞k=0. If Aj(z; k) and Bj(z; k) are

the jth partial numerators and denominators of the Schur fraction associated with the

sequence {α(βk)
j }∞j=0 as defined in (2.2.7), then the following structural relations hold

for p ≥ 2k, k ≥ 1.

zk−1

k∏
j=0

(1− |αj|2)

 A2p+1(z; k) A2p(z; k)

B2p+1(z; k) B2p(z; k)

 = T(z; k)

 A2p+1(z) A2p(z)

B2p+1(z) B2p(z)

 ,

(2.2.8)

where the entries of the transfer matrix T(z; k) are given by

 T(1,1) T(1,2)

T(2,1) T(2,2)


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=

 pk(z, k)A2k−1(z) + q∗k(z, k)A2k−2(z) qk(z, k)A2k−1(z) + p∗k(z, k)A2k−2(z)

pk(z, k)B2k−1(z) + q∗k(z, k)B2k−2(z) qk(z, k)B2k−1(z) + p∗k(z, k)B2k−2(z)

 ,

with the polynomial coefficients

pk(z, k) = (αk − βk)B2k−1(z) + (1− βkᾱk)B2k−2(z),

qk(z; k) = (βk − αk)A2k−1(z)− (1− ᾱkβk)A2k−2(z).

Proof. Let us define

Ωp(z;α) :=

 A2p+1(z) B2p+1(z)

A2p(z) B2p(z)

 and

Ωp(z;α; k) :=

 A2p+1(z; k) B2p+1(z; k)

A2p(z; k) B2p(z; k)

 .

Then the matrix relation (2.2.5) can be written as

Ωp(z;α) = Tp(αp) · Ωp−1(z;α)

= Tp(αp) · Tp−1(αp−1) · · · · · T1(α1) · Ω0(z;α), p ≥ 1, (2.2.9)

with the transfer matrices for p ≥ 1 given by

Tp(αp) :=

 z ᾱpz

αp 1

 and Ω0(z;α) := T0(α0) =

 z ᾱ0z

α0 1

 .

From (2.2.7), it is clear that the perturbation arises while replacing αk by βk and hence

Ωp(z;α; k) = Tp(αp) · · ·Tk+1(αk+1)︸ ︷︷ ︸ ·Tk(βk) · Tk−1(αk−1) · · ·T1(α1)Ω0(z;α)︸ ︷︷ ︸ . (2.2.10)

Defining the matrix product

Ω
(k+1)
p−(k+1)(z;α) := Tp(αp)Tp−1(αp−1) · · ·Tk+1(αk+1)Ω0(z;α),
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whose entries are called associated polynomials of order k + 1, we have

Tp(αp)Tp−1(αp−1) · · ·Tk+1(αk+1) = Ω
(k+1)
p−(k+1)(z;α) · [Ω0(z;α)]−1, (2.2.11)

where [Ω0(z;α)]−1 denotes the matrix inverse of Ω0(z;α). Now, using (2.2.9) and

(2.2.11) in (2.2.10), we get

Ωp(z;α; k) = Ω
(k+1)
p−(k+1)(z;α) · [Ω0(z;α)]−1 · Tk(βk) · Ωk−1(z;α). (2.2.12)

Again from (2.2.9),

Ωp(z;α) = Tp(αp) · · ·Tk+1(αk+1)︸ ︷︷ ︸ ·Tk(αk) · · ·T1(α1)Ω0(z;α)︸ ︷︷ ︸
= Ω

(k+1)
p−(k+1)(z;α)Ω−1

0 (z;α) · Ωk(z;α),

which means

Ω
(k+1)
p−(k+1)(z;α) = Ωp(z;α) · [Ωk(z;α)]−1 · Ω0(z;α). (2.2.13)

Using (2.2.13) in (2.2.12), we get

Ωp(z;α; k) = Ωp(z, α) · [Ωk(z, α)]−1 · Ω0(z;α) · [Ω0(z;α)]−1 · Tk(βk) · Ωk−1(z, α),

which implies

[Ωp(z;α; k)]T = [Tk(βk)Ωk−1(z, α)]T · [Ωk(z, α)]−T︸ ︷︷ ︸ ·[Ωp(z, α)]T

where [Ωp(z, α)]T denotes the matrix transpose of Ωp(z, α). Using the relations (2.2.6),

it can be proved that the product [Tk(βk)Ωk−1(z, α)]T · Ω−Tk (z, α) gives the transfer

matrix T(z; k) leading to the structural relations (2.2.8).
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2.2.1 Rational transformation of Schur functions

It follows from the structural relations obtained in Theorem (2.2.1) that

zk−1

k∏
j=0

(1− |αj|2)

 A2p(z; k)

B2p(z; k)

 = T(z; k)

 A2p(z)

B2p(z)


=

 T(1,1)A2p(z) + T(1,2)B2p(z)

T(2,1)A2p(z) + T(2,2)B2p(z)

 ,

which implies the sequence of even approximants of the Schur fraction is

A2p(z; k)

B2p(z; k)
=

T(1,2) + T(1,1)

(
A2p(z)/B2p(z)

)
T(2,2) + T(2,1)

(
A2p(z)/B2p(z)

) , p ≥ 1. (2.2.14)

The following result regarding the convergence of a positive (|αn| < 1, n ≥ 0) Schur

fraction is proved in Jones et al. [99, Theorem 2.2].

Theorem 2.2.2. Given a positive Schur fraction, the sequence {A2m/B2m}∞m=0 con-

verges to a function f(z), analytic for |z| < 1. Further, if α0 ∈ R \ {0}, then the

sequence {A2m+1/B2m+1}∞m=0 converges to g(z), analytic for |z| > 1. The function f(z)

is a Schur function and g(z) = 1/f(1/z̄).

The essence of Theorem 2.2.2 is that the (2n)th approximant of the Schur fraction

(1.2.5) coincides with the nth approximant of the Schur algorithm (1.2.4) so that f(z)

is the limit of A2n(z)/B2n(z) in the unit disk D. Hence taking limits on both sides

of (2.2.14) gives the perturbed Schur function as

f (βk)(z; k) =
T(1,2) + T(1,1)f(z)

T(2,2) + T(2,1)f(z)
. (2.2.15)

Now, we discuss these structural relations in case of a non-constant Schur function

of the form f(z) = cz + d with the perturbation α1 7→ β1. From Theorem 2.2.1, we

have

p1(z, 1) = (α1 − β1)ᾱ0z + (1− ᾱ1β1); p∗1(z, 1) = (1− α1β̄1)z + (ᾱ1 − β̄1)α0;

q1(z, 1) = (β1 − α1)z − (1− ᾱ1β1)α0; q∗1(z, 1) = (β̄1 − ᾱ1)− (1− α1β̄1)ᾱ0z.
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The entries of the transfer matrix T(z; k) are

T(1,1) = (α1 − β1)z2 + [(1− β1ᾱ1)− (1− α1β̄1)|α0|2]z + α0(β̄1 − ᾱ1),

T(1,2) = (β1 − α1)z2 + [(1− α1β̄1)α0 − (1− ᾱ1β1)α0]z + (ᾱ1 − β̄1)α2
0,

T(2,1) = (α1 − β1)(ᾱ0)2z2 + [(1− β1ᾱ1)ᾱ0 − (1− α1β̄1)ᾱ0]z + (β̄1 − ᾱ1),

T(2,2) = (β1 − α1)ᾱ0z
2 + [(1− α1β̄1)− (1− ᾱ1β1)|α0|2]z + (ᾱ1 − β̄1)α0.

Using (2.2.15), the transformed Schur function is a rational function given by

f (β1)(z, 1) =
Az3 +Bz2 + Cz +D

Âz3 + B̂z2 + Ĉz + D̂
,

where

A = (α1 − β1)ᾱ0c, B = (β1 − α1)(1− ᾱ0d) + c(1− β1ᾱ1)− c|α0|2(1− α1β̄1),

C = (1− α1β̄1)(α0 − d|α0|2) + (1− ᾱ1β1)(d− α0) + cα0(β̄1 − ᾱ1),

D = (β̄1 − ᾱ1)(d− α0)α0,

and

Â = (α1 − β1)(ᾱ0)2c, B̂ = (β1 − α1)(1− ᾱ0d)ᾱ0 + c(1− β1ᾱ1)ᾱ0 − c(1− α1β̄1)ᾱ0,

Ĉ = (1− α1β̄1)(1− dᾱ0) + (1− β1ᾱ1)(dᾱ0 − |α0|2) + c(β̄1 − ᾱ1),

D̂ = (β̄1 − ᾱ1)(d− α0).

Since d = f(0) = α0, D = D̂ = 0. This leads to the following easy consequence of

Theorem 2.2.1.

Corollary 2.2.1. Let f(z) = cz + α0 denote the class of Schur functions. Then, with

the perturbation α1 7→ β1, the resulting Schur function is the rational function given by

f (β1)(z; 1) =
Az2 +Bz + C

Âz2 + B̂z + Ĉ
, A 6= 0, Â 6= 0. (2.2.16)

We consider an example illustrating the above results.

Example 2.2.1. Consider the sequence of Schur parameters {αn}∞n=0 given by α0 = 1/2
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and αn = 2/(2n + 1), n ≥ 1. Then, as in Jones et al. [99, Example 6.3], the Schur

function is f(z) = (1 + z)/2 with

A2m(z) =
1

2
+

2zm+2 − 2(m+ 1)z2 + 2mz

(2m+ 1)(z − 1)2
,

B2m(z) = 1 +
zm+2 + zm+1 − (2m+ 1)z2 + (2m− 1)z

(2m+ 1)(z − 1)2
,

A2m+1(z) =
z + z2 − (2m+ 3)zm+2 + (2m+ 1)zm+3

(2m+ 1)(z − 1)2
,

B2m+1(z) =
zm+1

2
+ 2

z − (m+ 1)zm+1 +mzm+2

(2m+ 1)(z − 1)2
.

We study the perturbation α1 7→ β1 = 1/2. For the transfer matrix T(z; k), the poly-

nomials required are

p1(z) =
z

12
+

2

3
, p∗1(z) =

2

3
z +

1

12
, q1(z) = −z

6
− 1

3
, q∗1(z) = −z

3
− 1

6
,

so that the entries of T(z; k) are

T(1,1) =
z2

12
+
z

2
− 1

12
, T(1,2) = −z

2

6
+

1

12
,

T(2,1) =
z2

24
− 1

6
, T(2,2) = − z

2

12
+
z

2
+

1

12
.

Hence, the transformed Schur function is given by (2.2.16),

f (1/2)(z; 1) = 2
z2 − 3z + 5

z2 − 3z + 20
.

Observe that the functions f(z) and f (1/2)(z; 1) are analytic in the unit disk D with

f(0) = f (1/2)(0; 1). Further, the analytic function ω(z) defined as

ω(z) := f−1(f (1/2)(z; 1)) =
3z(z − 3)

z2 − 3z + 20
,

is analytic in D with |ω(z)| < 1. By Schwarz lemma |ω(z)| < |z| for 0 < |z| < 1 unless

ω(z) is a pure rotation. In such a case the range of f (1/2)(z; 1) is contained in the

range of f(z). The function f (1/2)(z; 1) is said to be subordinate to f(z) and written

as f (1/2)(z; 1) ≺ f(z) for z ∈ D. For more information about subordination of analytic
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functions, we refer to Duren [72, Ch. 6].

We plot the ranges of both the Schur functions below. In Figure 2.1, the outermost

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2.1: Subordinate Schur functions

circle is the unit circle while the middle one is the image of |z| = 0.9 under f(z) which

is again a circle with center at z = 1/2. The innermost figure is the image of |z| = 0.9

under f (1/2)(z; 1).

2.2.2 The change in Carathéodory function

Let the Carathéodory function associated with the perturbed Schur function f (βk)(z; k)

be denoted by C(βk)(z; k). Then, using (2.2.15), we can write

C(βk)(z; k) =
1 + zf (βk)(z; k)

1− zf (βk)(z; k)
=

(T2,2 + zT1,2) + (T2,1 + zT1,1)f(z)

(T2,2 − zT1,2) + (T2,1 − zT1,1)f(z)
.

Further, using the relations

C(z) =
1 + zf(z)

1− zf(z)
⇐⇒ f(z) =

C(z)− 1

z(C(z) + 1)
,

the perturbed Carathéodory function is

C(βk)(z; k) =
Y−(z) + Y+(z)C(z)

W−(z) +W+(z)C(z)
, (2.2.17)

where the coefficients in terms of the entries of the transfer matrix are

Y±(z) = z(T(2,2) + zT(1,2))± (T(2,1) + zT(1,1)),
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W±(z) = z(T(2,2) − zT(1,2))± (T(2,1) − zT(1,1)).

As an illustration, for the Schur function f(z) = (1 + z)/2, it can be verified from

(2.2.17) that

C(z) =
2 + z + z2

2− z − z2
and C(1/2)(z; 1) =

2z3 − 5z2 + 7z + 20

−2z3 + 7z2 − 13z + 20
.

We plot these Carathéodory functions below.

-4 -2 2 4

-4

-2

2

4

(a) The function C(z).

-4 -2 2 4

-4

-2

2

4

(b) The function C(1/2)(z; 1).

Figure 2.2: Perturbed mapping properties of Carathéodory functions.

In Figures 2.2a and 2.2b, the ranges of the original and perturbed Carathéodory

functions are respectively plotted for |z| = 0.9. It may be observed that the range

of C(z) is unbounded (Figure 2.2a) which is clear as z = 1 is a pole of C(z). How-

ever C1/2(z; 1) has simple poles at 5/2 and (1 ± i
√

15)/2 and hence with the use of

perturbation we are able to make the range bounded (Figure 2.2b).

We recall that the sequence {γj}∞j=0 satisfying the recurrence relation

γ0 = 1, γp+1 =
γp − ᾱp
1− αpγp

, p ≥ 0. (2.2.18)

where α′js are the Schur parameters play an important role in the g-fraction expansion

for a special class of Carathéodory functions C(z) such that C(R) ⊆ R and C(0) = 1.
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Let the sequence {γ(βk)
j } correspond to the perturbed Carathéodory function C(βk)(z; k).

Since only αk is perturbed, it is clear that γj remains unchanged for j = 0, 1, · · · , k.

The first change, γk+1 to γ
(βk)
k+1 , occurs when αk is replaced by βk. Consequently, γk+j,

j ≥ 1, change to γ
(βk)
k+j , j ≥ 1, respectively. The next result shows that γ

(βk)
j can be

expressed as a bilinear transformation of γj for j ≥ k + 1.

Theorem 2.2.3. Let {γj}∞j=0 be the sequence corresponding to {αj}∞j=0 and {γ(βk)
j }∞j=0

that to {α(βk)
j }∞j=0. Then,

γ
(βk)
k+j =

āk+jγk+j − bk+j

−b̄k+jγk+j + ak+j

, j ≥ 1, (2.2.19)

where

(i) ak+1 =
1− ᾱkβk
1− |βk|2

and bk+1 =
β̄k − ᾱk
1− |βk|2

, (j=1).

(ii) For j ≥ 2,

 ak+j

bk+j

 =
1

1− |αk+j−1|2

 1 αk+j−1

ᾱk+j−1 1


 ak+j−1 − ᾱk+j−1b̄k+j−1

bk+j−1 − ᾱk+j−1āk+j−1

 .

Proof. First, consider the expression

ak+1γ
(βk)
k+1 + bk+1

b̄k+1γ
(βk)
k+1 + āk+1

.

Substituting γ
(βk)
k+1 = (γk − β̄k)/(1 − βkγk) and the given values of ak+1 and bk+1, it

simplifies to

(1− ᾱkβk)(γk − β̄k) + (β̄k − ᾱk)(1− αkγk)
(βk − αk)(γk − β̄k) + (1− αkγ̄k)(1− βkγk)

=
γk(1− |βk|2)− ᾱk(1− |βk|2)

(1− |βk|2)− αkγk(1− |β|2)
= γk+1.

Since |ak+1|2 − |bk+1|2 = (1− |αk|2)/(1− |βk|2) 6= 0, (2.2.19) is proved for j = 1.

Next, let

ak+2γ
(βk)
k+2 + bk+2

b̄k+2γ
(βk)
k+2 + āk+2

=
(ak+2 − αk+1bk+2)γ

(βk)
k+1 + (bk+2 − ᾱk+1ak+2)

(b̄k+2 − αk+1āk+2)γ
(βk)
k+1 + (āk+2 − ᾱk+1b̄k+2)

=
NUM(γk)

DEN(γk)
.
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Substituting the given values of ak+2 and bk+2, the numerator is

NUM(γk) = (1− |αk+1|2)[(ak+1 − ᾱk+1b̄k+1)γ
(βk)
k+1 + (bk+1 − ᾱk+1āk+1)],

which, by using γ
(βk)
k+1 = (āk+1 − bk+1)/(−b̄k+1γk+1 + ak+1), can be written as

NUM(γk) = (1− |αk+1|2)(|αk+1|2 − |bk+1|2)(γk+1 − ᾱk+1).

With similar calculations, we obtain

DEN(γk) = (1− |αk+1|2)(|αk+1|2 − |bk+1|2)(1− αk+1γk+1).

This means

NUM(γk)

DEN(γk)
=

γk+1 − ᾱk+1

1− αk+1γk+1

= γk+2,

where |ak+2|2 − |bk+2|2 = |ak+1|2 − |bk+1|2 6= 0, thus proving (2.2.19) for j = 2. The

remaining part of the proof follows by a simple induction on j.

However, we note that since γj and γ
(βk)
j are related by a bilinear transformation,

the expressions for ak+j and bk+j, j ≥ 1, are not unique. Finally, we note the following.

C(0) = C(βk)(0; k) = 1 and both C(z) and C(βk)(z; k) are real for real z. Hence, the

following g-fraction

1− z
1 + z

C(βk)(z) =
1

1 -

g1ω

1 -

(1− g1)g2ω

1 -
· · ·

(1− gk)g(βk)
k+1ω

1 -

(1− g(βk)
k+1 )gk+2ω

1 -
· · ·

is obtained for k ≥ 0, where gj = (1−αj−1)/2, j = 1, · · · , k, k+2 · · · , g(βk)
k+1 = (1−βk)/2

and ω = −4z/(1− z)2.

Remark 2.2.1. It is interesting to observe that study of such perturbations in Schur

parameters leads to subordination results in function spaces. The Littlewood Subordi-

nation Theorem (Kumar and Singh [114]) for example leads to contractive composition

operators on spaces of functions holomorphic on the unit disk. We refer to Cui et

al. [44], Ghosh and Srivastava [82], Sharma and Kumar [154] and Maji and Srivas-
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tava [126] for information on such function spaces.

2.3 Two classes of special functions

Consider a function f(ω) analytic in the complex plane except for a slit along the real

axis from 1 to ∞. If f(0) = f ′(0) − 1 = 0, f(R) ⊆ R and Im f(ω) 6= 0 for z ∈ C \ R

in this slit plane, f(ω) is said to be typically-real in this slit plane. A fundamental

result regarding such functions is the following lemma proved in corollaries 2.1 and 2.2

of Merkes [132].

Lemma 2.3.1. [132] A necessary and sufficient condition for f(ω) to be a typically

real function in the cut plane C \ [1,∞) is that there exists a non-decreasing function

ν(t) : [0, 1] −→ [0, 1] such that ν(1)− ν(0) = 1 and

f(ω) =

∫ 1

0

ω

1− ωt
dν(t), ω ∈ C \ [1,∞). (2.3.1)

Let the sequence {νj}∞j=0 with ν0 = 1 be defined by νj =
∫ 1

0
tjdν(t), j ≥ 0, where

dν(t) is as obtained in (2.3.1). Then, {νj}∞j=0 becomes the Hausdorff moment sequence.

By Wall [184, Theorem 69.2], the power series F (ω) =
∑∞

j=0 νjω
j =

∫ 1

0

1

1− ωt
dν(t),

has a continued fraction expansion of the form

∫ 1

0

1

1− ωt
dν(t) =

1

1 -

(1− g0)g1ω

1 -

(1− g1)g2ω

1 -

(1− g2)g3ω

1 -
· · · ,

where 0 ≤ gp ≤ 1, p ≥ 0. Such functions F (ω) are analytic in the slit domain C\ [1,∞)

and belong to the class of Pick functions which are analytic in the upper half plane

and have a positive imaginary part. For more details on Pick functions, we refer to the

monograph of Donoghue [68].

2.3.1 A class of Pick functions

We characterize some members of the class of Pick functions using the gap g-fraction

F
(a,b,c)
2 (ω) (which is still a g-fraction) given in Theorem 2.1.5. The procedure is similar

to that of Küstner [117, Theorem 1.5]. The discussion uses the results of Küstner [117,



59 2.3 Two classes of special functions

Lemma 3.1, Remark 3.2 ] and Merkes [132, Theorem 3.1] which we state as the following

lemma.

Lemma 2.3.2. [117,132] Let ν : [0, 1] −→ [0, 1] be non-decreasing with ν(1)−ν(0) = 1.

Then the function

ω 7→
∫ 1

0

ω

1− ωt
dν(t)

is analytic in the cut plane C \ [1,∞) and maps both the unit disk D and the half-plane

{ω ∈ C : Re ω < 1} univalently onto domains which are convex in the direction of the

imaginary axis.

By a domain convex in the direction of imaginary axis, it is meant that every line

parallel to the imaginary axis has either connected or empty intersection with the

corresponding domain. For more information in this direction, we refer to Baricz and

Swaminathan [13], Duren [72] and Ismail et al. [92].

Theorem 2.3.1. If a, b, c ∈ R with −1 < a ≤ c and 0 ≤ b ≤ c, then the functions

ω 7→ F (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
; ω 7→ ωF (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)

ω 7→ F (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b; c+ 1;ω)
; ω 7→ ωF (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b; c+ 1;ω)

ω 7→ F (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b+ 1; c+ 1;ω)
; ω 7→ ωF (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b+ 1; c+ 1;ω)

are analytic in C\ [1,∞) and each function map both the open unit disk D and the half

plane {ω ∈ C : Re ω < 1} univalently onto domains that are convex in the direction of

the imaginary axis.

Proof. From Theorem 2.1.5 we have

F
(a,b,c)
2 (ω) =

1

1 -

k2ω

1 -

(1− k2)k3ω

1 -

(1− k3)k4ω

1 -
· · · ,

where F
(a,b,c)
2 (ω) = F (a+ 1, b+ 1; c+ 1;ω)/F (a+ 1, b; c+ 1;ω),

k2p =
a+ p

c+ 2p− 1
and k2p+1 =

b+ p

c+ 2p
, p ≥ 1.
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Then, with the given restrictions on a, b and c, 0 < kj < 1 and hence F
(a,b,c)
2 (ω) has

a g-fraction expansion. By Wall [184, Theorem 69.2], there exists a non-decreasing

function ν0 : [0, 1] 7→ [0, 1] with a total increase of 1 and

F (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
=

∫ 1

0

1

1− ωt
dν0(t), ω ∈ C \ [1,∞), (2.3.2)

which implies

ωF (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
=

∫ 1

0

ω

1− ωt
dν0(t), ω ∈ C \ [1,∞). (2.3.3)

From the power series correspondence of the g-fraction expansion of F
(a,b,c)
2 (ω), k2 is

the coefficient of w which, from (2.3.2), is also given by
∫ 1

0
tdν0(t). Hence, if we define

ν1(σ) =
1

k2

∫ σ

0

sdν0(s), k2 =
(a+ 1)

(c+ 1)
> 0,

it follows that ν1 : [0, 1] 7→ [0, 1] is again a non-decreasing map with ν1(1)− ν1(0) = 1.

Further, interchanging a and b in the contiguous relation

F (a+ 1, b; c;ω)− F (a, b; c;ω) =
b

c
ωF (a+ 1, b+ 1; c+ 1;ω), (2.3.4)

we obtain

k2ω
F (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b; c+ 1;ω)
=
F (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
− 1. (2.3.5)

Now,
∫ 1

0
ω

1−ωtdν1(t) = 1
k2

∫ 1

0
ωt−1+1

1−ωt dν0(t) implies

k2

∫ 1

0

ω

1− ωt
dν1(t) =

F (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
− 1.

Comparing with (2.3.5), we obtain

ωF (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b; c+ 1;ω)
=

∫ 1

0

ω

1− ωt
dν1(t), ω ∈ C \ [1,∞),
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and hence

F (a+ 1, b+ 1; c+ 1;ω)

F (a+ 1, b; c+ 1;ω)
= 1 + k2

∫ 1

0

ω

1− ωt
dν1(t), ω ∈ C \ [1,∞).

Further, noting that the coefficient of ω in F (a+ 2, b+ 1; c+ 2;ω)/F (a+ 1, b; c+ 1;ω)

is [(b+ 1)(c− a)]/[(c+ 1)(c+ 2)] = k3 + (1− k3)k2, we define

ν2(σ) =
1

k3 + k2(1− k3)

∫ σ

0

sdν1(s),

and find that

F (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b; c+ 1;ω)
= 1 + [k3 + k2(1− k3)]

∫ 1

0

ω

1− σω
dν2(σ).

Finally from Gauss continued fraction (2.1.12), we conclude that F (a + 2, b + 1; c +

2;ω)/F (a + 1, b + 1; c + 1;ω) has a g-fraction expansion and so there exists a map

ν3 : [0, 1] 7→ [0, 1] which is non-decreasing, ν3(1)− ν3(0) = 1 and

ωF (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1; b+ 1; c+ 1;ω)
=

∫ 1

0

ω

1− σω
dν3(σ), ω ∈ C \ [1,∞).

For a < c, defining

ν4(σ) =
1

(1− k2)k3

∫ σ

0

sdν3(s),

gives (1− k2)k3 > 0, and using the fact that the coefficient of ω in F (a + 2, b + 1; c +

2;ω)/F (a+ 1, b+ 1; c+ 1;ω) is (1− k2)k3, we obtain

F (a+ 2, b+ 1; c+ 2;ω)

F (a+ 1, b+ 1; c+ 1;ω)
= 1 + [(1− k2)k3]

∫ 1

0

ω

1− σω
dν4(σ).

Thus, with νj, j = 0, 1, 2, 3, 4, satisfying the conditions of Küstner [117, Lem. 3.1] and

Merkes [132, Cor. 2.1], the proof of the theorem is complete.

Remark 2.3.1. Ratios of Gaussian hypergeometric functions having mapping proper-

ties described in Theorem 2.3.1 are also found in Küstner [117, Theorem 1.5] but for

the ranges −1 ≤ a ≤ c and 0 < b ≤ c. Hence for the common range −1 < a ≤ c and
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0 < b ≤ c, two different ratios of hypergeometric functions belonging to the class of

Pick functions can be obtained leading to the expectation of finding more such ratios

for every possible range.

In particular, it may be noted that it is proved in Küstner [117, Theorem 1.5] that

the ratio of Gaussian hypergeometric functions in (2.1.17), denoted here as F(z), has

the mapping properties given in Theorem 2.3.1.

Remark 2.3.2. The Gaussian hypergeometric function has been generalized in sev-

eral directions. One of them is the Wright type hypergeometric functions, whose basic

properties like integral representions are studied, for example, in Desai and Shukla [64]

and and Rao et al. [144]. In the present context, it would be interesting to associate a

g-fraction expansion to ratios of Wright type hypergeometric functions and study the

resulting class of Pick functions.

We now consider the g-fraction expansion of F
(a,b,c)
3 (ω) with the parameter k2 miss-

ing. Using the contiguous relation (2.3.4) and the notations used in Theorems 2.1.2

and 2.1.5, it is clear that F
(a,b,c)
3 (ω) = F (a+ 2, b+ 1; c+ 2;ω)/F (a+ 1, b+ 1; c+ 2;ω)

and

H3(ω) = 1− 1

F
(a,b,c)
3 (ω)

=
b+ 1

c+ 2
ω
F (a+ 2, b+ 2; c+ 3;ω)

F (a+ 2, b+ 1; c+ 2;ω)
,

so that

h(2;ω) = (1− k1)H3(ω) =
(c− b)(b+ 1)

(c)(c+ 2)
ω
F (a+ 2, b+ 2; c+ 3;ω)

F (a+ 2, b+ 1; c+ 2;ω)
.

Then, from Theorem 2.1.2,

F(2;ω) =
1

1− (1− k0)k1ω
− (1− k0)k1ωh(2;ω)

[1− (1− k0)k1ω]h(2;ω)− [1− (1− k0)k1ω]2

=
c

c− bω
− bcωh(2;ω)

c(c− bω)h(2;ω)− (c− bω)2
,
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which implies

F(2;ω) =
c

c− bω
−

b(b+ 1)(c− b)
c+ 2

ω2F (a+ 2, b+ 2; c+ 3;ω)

F (a+ 2, b+ 1; c+ 2;ω)

(c− b)(b+ 1)(c− bω)

c+ 2
ω
F (a+ 2, b+ 2; c+ 3;ω)

F (a+ 2, b+ 1; c+ 2;ω)
− (c− bω)2

that is F(2;ω) is given as a rational transformation of a new ratio of hypergeometric

functions. It may also be noted that for −1 ≤ a ≤ c and 0 < b ≤ c, both F(ω)

and F(2;ω) will map both the unit disk D and the half plane {ω ∈ C : Re ω < 1}

univalently onto domains that are convex in the direction of the imaginary axis.

As an illustration, we plot both these functions in Figures (2.3a) and (2.3b).
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(a) The function F(ω)

0.9 1.0 1.1 1.2 1.3

-0.4

-0.2

0.0

0.2

0.4

(b) The function F(2;ω)

Figure 2.3: The images of the disc |ω| < 0.999 under the mappings F(ω) and F(2;ω)
for a = 0, b = 0.1, c = 0.4.
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2.3.2 A class of Schur functions

From Theorem 2.1.5 we obtain

k2j+1ω

1− (1− k2j+1)k2j+2ω

1− (1− k2j+2)k2j+3ω

1− · · ·

= 1− F (a+ j, b+ j; c+ 2j;ω)

F (a+ j + 1, b+ j; c+ 2j;ω)

=
b+ j

c+ 2j

ωF (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)

F (a+ j + 1, b+ j, c+ 2j;ω)

where the last equality follows from the contiguous relation (2.3.4). Further, using

Wall [183, eqns. 3.3 and 5.1] we get

1− z
2

1− f2j(z)

1 + zf2j(z)
=

b+ j

c+ 2j

F (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)

F (a+ j + 1, b+ j; c+ 2j;ω)
, j ≥ 1,

where fn(z) is the Schur function and ω and z are related as ω = −4z/(1 − z)2.

Similarly, interchanging a and b in (2.3.4) we obtain

1− z
2

1− f2j+1(z)

1 + zf2j+1(z)
=

a+ j + 1

c+ 2j + 1

F (a+ j + 2, b+ j + 1; c+ 2j + 2;ω)

F (a+ j + 1, b+ j + 1; c+ 2j + 1;ω)
, j ≥ 0,

where ω = −4z/(1− z)2.

Moreover, using the relation αj−1 = 1 − 2kj, j ≥ 1, the related sequence of Schur

parameters is given by

αj =


c− 2b

c+ j
, j = 2n, n ≥ 0;

c− 2a− 1

c+ j
, j = 2n+ 1, n ≥ 1.

We note the following particular case. For a = b− 1/2 and c = b, the resulting Schur

parameters are α
(b)
j = −b/(b+ j), j ≥ 0. Such parameters have been considered in Sri

Ranga [162] (when b ∈ R) in the context of orthogonal polynomials on the unit circle

or the Szegő polynomials.

Finally, as an illustration we note that while the Schur function associated with the

parameters {α(b)
j }j≥0 is f(z) = −1, that associated with the parameters {α(b)

j }j≥1 is
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given by

1− z
2

1− f (b)(z)

1 + zf (b)(z)
=
b+ 1/2

b+ 1

F (b+ 3/2, b+ 1; b+ 2;ω)

F (b+ 1/2,−;−;ω)
, ω = −4z/(1− z)2.

2.4 Concluding remarks

In this chapter, certain perturbation of g-fraction and Schur fraction are considered

that provide some mapping properties and admissible function to the class of Pick

functions. The partial numerators of a g-fraction which are of the form (1 − gn−1)gn,

arise in chain sequences which are already defined in Chapter 1. We also obtained a

well known g-fraction (with parameters kn) from the Gauss continued fraction using

the transformation kn = 1 − gn, n ≥ 0. As our focus is on orthogonal polynomials

pertaining to unit circle, we study the perturbation mn 7→ 1 − mn in the context

of chain sequences related to orthogonal polynomials on the unit circle in the next

chapter.
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Chapter 3

Orthogonal Polynomials from

Complementary Chain Sequences

In this chapter, we define and study the consequences of complementary chain se-

quences both on the unit circle and on the real line which we view as perturbations

of the minimal parameter sequences. Using the relation between these complementary

chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal

polynomials and the associated Szegő polynomials are analyzed. On the real line, they

are studied in the context of the Chihara construction of symmetric orthogonal polyno-

mials. Three illustrations, involving Gaussian hypergeometric functions, Carathéodory

functions and Laguerre polynomials are also provided.

3.1 Para-orthogonal polynomials from an Uvarov

transformation

The Uvarov transformation is precisely the addition of mass points which are usually

taken to be lying either on the unit circle or outside the unit circle. This is achieved

through the addition of the Dirac delta functional or the Dirac measure. Huertas et

al. [87] and Arceo et al. [5] respectively studied the Uvarov modification of a positive

measure and a Freud like weight leading, in both the cases, to an electrostatic inter-

pretation of the perturbed zeros. In Castillo et al. [39], perturbation by the addition of

the first derivative of Dirac delta to a quasi-definite functional is introduced, which is

67
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also shown to be an iteration of the Christoffel and Geronimus transformations. In the

present chapter, however, we will study perturbations in the chain sequences obtained

by an Uvarov transformation in the context of para-orthogonality.

The connection between kernel polynomials Kn(z;ω) defined as

Kn(z, ω) =
n∑
k=0

φk(z)φk(ω) =
φ∗n+1(z)φ∗n+1(ω)− φn+1(z)φn+1(ω)

1− zω̄
.

and the para-orthogonal polynomials has been observed by Cantero et al. [34], Golin-

skii [84] and later in the articles Bracciali et al. [25] and Costa et al. [40]. We briefly

describe the results obtained in the last two references that will serve as the motivation

for the definition of the complementary chain sequences.

Let Φn(z) be the monic Szegő polynomials, with αn−1 and φn(z), the corresponding

Verblunsky coefficients and orthonormal Szegő polynomials respectively. With tn =

‖Φn‖2 and τn(ω) = Φn(ω)/Φ∗n(ω), |ω| = 1, the monic form of the kernel polynomials

Kn(z;ω), given by

Pn(ω; z) =
tn+1ω̄

Φn(ω)

Kn(z;ω)

1 + αnτn+1(ω)
, n ≥ 1,

satisfy the orthogonality property

∫
∂D
z−n+jPn(ω; z)(ω − z)dµ(z) =


γ̌n(ω), j = −1;

0, 0 ≤ j ≤ n− 1;

γ̂n(ω), j = n,

n ≥ 1, (3.1.1)

where µ(z) is a non-trivial measure on the unit circle, γ̂n(ω) = −τn+1(ω)γ̌n(ω) and

γ̌n(ω) = −(1− ωτn(ω)αn)tn.

However, though the polynomials Pn(ω; z) are uniquely defined by the orthogonal-

ity conditions (3.1.1), the corresponding sequence of Szegő polynomials that generate

Pn(ω; z), n ≥ 1, is not unique. In fact, assuming the measure µ(z) has a jump δ,
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0 ≤ δ < 1, at z = ω, which we denote as µ(δ), the following family of measures

∫
∂D
f(z)dµ(t,ω)(z) =

1− t
1− δ

∫
∂D
f(z)dµ(δ)(z) +

t− δ
1− δ

f(ω), 0 ≤ t < 1,

was defined in Costa et al. [40] which can be seen as an Uvarov transformation of

the measure dµ(δ). The measure µ(t,ω) has a jump t, 0 ≤ t < 1, at z = ω with

µ(δ,ω) = µ(δ). Further, if we denote the family of Szegő polynomials and monic kernel

polynomials associated with the measure µ(t,ω) by Φ
(t,ω)
n (z) and P

(t)
n (ω; z) respectively,

then P
(t)
n (ω; z) = Pn(ω; z) with Φ

(δ,ω)
n (z) = Φn(z), n ≥ 0.

Restricting the value of ω to be 1, the rest of the discussion will be for the measure

µ(t,1) defined as

∫
∂D
f(z)dµ(t,1)(z) =

1− t
1− δ

∫
∂D
f(z)dµ(δ)(z) +

t− δ
1− δ

f(1), 0 ≤ t < 1, (3.1.2)

where δ is the jump in µ(δ) at z = 1. In this context, the normalized monic polynomials

Rn(z) given by

Rn(z) =

∏n−1
j=0 [1− τjαj]∏n−1

j=0 [1− Re (τjαj)]
Pn(1; z), n ≥ 1, (3.1.3)

was introduced in Costa et al. [40, Theorem 2.2] and satisfy the recurrence relation

Rn+1(z) = [(1 + icn+1)z + (1− icn+1)]Rn(z)− 4dn+1Rn−1(z), n ≥ 1, (3.1.4)

with R0(z) = 1, R1(z) = (1 + ic1)z + (1− ic1), where

cn =
−Im (τn−1αn−1)

1− Re (τn−1αn−1)
and dn+1 =

1

4

[1− |τn−1αn−1|2]|1− τnαn|2

[1− Re (τn−1αn−1)][1− Re (τnαn)]
, n ≥ 1.

Here τn := τn(1) = Φn(1)/Φ∗n(1). Further, while {cn} is a real sequence, {dn+1}∞n=1 is a

positive chain sequence such that dn+1 = (1− gn)gn+1, n ≥ 1, where

0 < gn+1 =
1

2

|1− τnαn|2

[1− Re (τnαn)]
< 1, n ≥ 0.

We note from (3.1.3) and (3.1.4), that, Rn(z) being a constant multiple of Pn(1; z)
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is independent of the jump t at z = ω = 1, and so do the sequences {cn}∞n=1, {dn+1}∞n=1

and {τn}∞n=0. Moreover, {gn+1}∞n=0 is only one of the parameter sequence of the chain

sequence {dn+1}∞n=1. The following result of Costa et al. [40, Theorem 3.3] describes

all the parameter sequences of {dn+1}∞n=1 as well as the maximal parameter sequence.

Theorem 3.1.1. [40] For 0 ≤ t < 1, let φ
(t,1)
n (z) be the monic Szegő polynomials with

respect to the measure µ(t,1) defined in (3.1.2) with α
(t,1)
n = −φ(t,1)

n+1(0) as the Verblunsky

coefficients. Then the sequence {g(t,1)
n+1}∞n=0 given by

g
(t,1)
n+1 =

1

2

|1− τnα(t,1)
n |2

[1− Re (τnα
(t,1)
n )]

, n ≥ 0.

is a parameter sequence of the chain sequence {dn+1}∞n=1. Further, if 0 ≤ t1 < t2 < 1,

then 0 < g
(t2,1)
n+1 < g

(t1,1)
n+1 < 1, n ≥ 0, with the initial parameters related by g

(t2,1)
1 =

1−t2
1−t1 g

(t1,1)
1 .

An important implication of Theorem 3.1.1 is that the initial parameter g
(t,1)
1 is

a decreasing function of t and hence {g(0,1)
n+1 }∞n=0 is the maximal parameter sequence

of {dn+1}∞n=1. That is, we obtain the maximal parameter sequence {Mn+1}∞n=0 of

{dn+1}∞n=1 in case of “zero” jump at z = 1. Further, with t2 = 1 and t1 = 0, the

relation

g
(t,1)
1 = (1− t)g(0,1)

1 = (1− t)M1, (3.1.5)

describes the dependence of the initial parameter on the jump t. In particular, for the

measure µ(δ), with respect to which Rn(z) is orthogonal with the parameter sequence

{gn+1}∞n=0, we have g1 = (1− δ)M1.

The relation (3.1.5) also provides a way to extend the chain sequence {dn+1}∞n=1 to

include the term d1 so that {dn}∞n=1 is a chain sequence corresponding to the measure

µ(t,1). Thus, if we choose d1(t) = g
(t,1)
1 = (1− t)M1, then, {dn}∞n=1 is a chain sequence

with the minimal {mn}∞n=0 and maximal {Mn}∞n=1 parameter sequences given by

m0 = 0, mn = g(t,1)
n , n ≥ 1, M0 = t and Mn = g(0,1)

n , n ≥ 1.

This suggests that the “zero” jump is interpreted as the maximal and the minimal
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parameter sequences coinciding, in which case, the chain sequence is said to determine

its parameters uniquely. The above extension forms the content of Costa et al. [40,

Theorem 4.2].

The recurrence relation (3.1.4) is also studied independently in Castillo et al. [37]. It

is proved that there exists a unique non-trivial probability measure on the unit circle

such that t = M0 is the jump at z = 1 and φ
(t,1)
n (z) = Rn(z) − 2(1 − mn)Rn−1(z),

n ≥ 1, forms a sequence of Szegő polynomials. The associated Verblunsky coefficients

are given by

α
(t,1)
n−1 =

1− 2mn − icn
1 + icn

n∏
k=1

1 + ick
1− ick

, n ≥ 1. (3.1.6)

The zeros of Rn(z) are proved in Dimitrov and Sri Ranga [66] to be simple and

lying on the unit circle. Further, if the zeros of Rn(z) are denoted as zn,j = eiθn,j ,

j = 1, 2, · · · , n, then

0 < θn+1,1 < θn,1 < θn+1,2 < · · · < θn,n < θn+1,n+1 < 2π, n ≥ 1,

that is, the zeros of Rn(z) and Rn+1(z) interlace.

Remark 3.1.1. It can be said that the kernel polynomials Pn(ω; z), n ≥ 1, are invariant

under the addition of a dirac measure. In another direction, it is proved in Dueñas and

Garza [71] that the Laguerre-Hahn class of functionals (whose corresponding Stieltjes

function satisfies Riccati differential equation with polynomial coefficients) is preserved

under the addition of Dirac delta derivatives.

3.2 Complementary chain sequences

As is obvious from the definition of chain sequences, the minimal and maximal pa-

rameter sequences are uniquely defined for any given chain sequence. Also, the chain

sequence for which the minimal and maximal parameter sequences coincide, that is,

M0 = 0, has its own importance as illustrated in the previous section. Such a chain

sequence is said to determine its parameters uniquely and is referred to as a single

parameter positive chain sequence (SPPCS) in Bracciali et al. [25]. By Wall’s crite-
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ria [184, p. 82] for maximal parameter sequence, this is equivalent to

∞∑
n=1

m1

1−m1

· m2

1−m2

· m3

1−m3

· · · mn

1−mn

=∞. (3.2.1)

Thus, introducing a perturbation in the minimal parameters mn will lead to a uniquely

defined change in the chain sequence.

Definition 3.2.1. Suppose {dn}∞n=1 is a chain sequence with {mn}∞n=0 as its minimal

parameter sequence. Let {kn}∞n=0 be another sequence given by k0 = 0 and kn = 1−mn

for n ≥ 1. Then the chain sequence {an}∞n=1 having {kn}∞n=0 as its minimal parameter

sequence is called the complementary chain sequence of {dn}.

Such chain sequences satisfy relations like Wall [184, equation (75.3)]

1

1 +
d1z

1 +
d2z

1 +
d3z

1 +
. . .

· 1

1 +
a1z

1 +
a2z

1 +
a3z

1 +
. . .

=
1

1 + z
.

They also satisfy

d1 − a1 = 1− 2k1 = 2m1 − 1, dn − an = 4mn−1 = −∇kn, n ≥ 2,

where 4 and ∇ are the forward and backward difference operators respectively. Fur-

ther, of particular interest is the ratio of these two chain sequences given by

d1

a1

=
m1

1−m1

,
dn
an

=
kn−1

1− kn−1

mn

1−mn

, n ≥ 2.

This implies

mn

1−mn

=
dn
an

mn−1

1−mn−1

= · · · = dndn−1 · · · d1

anan−1 · · · a1

, n ≥ 1. (3.2.2)

Substituting (3.2.2) in (3.2.1), we have the following lemma.

Lemma 3.2.1. Let {dn}∞n=1 and {an}∞n=1 be two chain sequences complementary to
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each other. Then {dn}∞n=1 will be a SPPCS if and only if

∞∑
n=1

n∏
j=1

d1d2 · · · dj
a1a2 · · · aj

=∞.

Similarly, {kn}∞n=0 being the minimal parameter sequence of {an}∞n=1, the chain

sequence {an}∞n=1 is a SPPCS if and only if

∞∑
n=1

n∏
j=1

a1a2 · · · aj
d1d2 · · · dj

=∞.

Lemma 3.2.2. Let {dn}∞n=1 and {an}∞n=1 be two complementary chain sequences of

each other. If {dn}∞n=1 is not a SPPCS, then {an}∞n=1 is a SPPCS.

Proof. If {dn}∞n=1 is not a SPPCS then its minimal parameter sequence {mn}∞n=0 is

such that

∞∑
n=1

m1

1−m1

· m2

1−m2

· m3

1−m3

· · · mn

1−mn

<∞.

Hence, lim
n→∞

n∏
j=1

mj/(1−mj) = 0 and we have

∞∑
n=1

n∏
j=1

kj
1− kj

=
∞∑
n=1

n∏
j=1

1−mj

mj

=∞,

thus concluding the proof of the lemma.

3.2.1 On unit circle: Two sequences of Szegő polynomials

The results in Lemma 3.2.1 and Lemma 3.2.2 are useful in determining whether a

chain sequence or its complementary chain sequence is a SPPCS without using the

corresponding minimal parameter sequences. The next lemma however imposes condi-

tions on the minimal parameters.

Lemma 3.2.3. Let {dn}∞n=1 be a chain sequence and {an}∞n=1 be its complementary

chain sequence with minimal parameter sequences {mn}∞n=0 and {kn}∞n=0 respectively.

1. If 0 < mn < 1/2, n ≥ 1, then an is a SPPCS.



Chapter 3: Orthogonal Polynomials from Complementary Chain Sequences 74

2. If 1/2 < mn < 1, n ≥ 1, then dn is a SPPCS.

Proof. Observe that if 0 < mn < 1/2, kn/(1 − kn) > 1 for all n ≥ 1. Similarly,

1/2 < mn < 1 implies mn/(1 − mn) > 1 for all n ≥ 1. The results now follow

from (3.2.1).

It is known that (Wall [184, p. 79]) if dn ≥ 1/4, n ≥ 1, every parameter sequence

{gn}∞n=0, in particular the minimal parameter sequence {mn}∞n=0, of {dn}∞n=1 is non-

decreasing. For the special case when dn = 1/4, n ≥ 1, mn → 1/2 as n → ∞. This

implies 0 < mn < 1/2, n ≥ 1. By Lemma 3.2.3, {an}∞n=1 is a SPPCS. In other words,

the chain sequence complementary to the constant chain sequence {1/4} determines

its parameters gn, n ≥ 1, uniquely, which are further given by

g0 = 0, gn =
n+ 2

2(n+ 1)
, n ≥ 1.

Moreover, if dn ≥ 1/4, there exist some n ∈ N such that an < 1/4 ≤ dn. Indeed

dn = (1−mn−1)mn ≥ mn−1(1−mn) = an, n ≥ 2,

with the sign of the difference of d1 and a1 depending on whether m1 ∈ (0, 1/2) or

(1/2, 1). If an ∈ (1/4, 1) for n ≥ 1, kn has to be non-decreasing. This is a contradiction

as kn = 1−mn for n ≥ 1.

Let {cn}∞n=1 and {dn+1}∞n=1 be, respectively, the real sequence and positive chain

sequence as given in (3.1.4). Let
{
m

(t,1)
n

}∞
n=0

be the minimal parameter sequence of

the augmented chain sequence {dn}∞n=1, where d1 = (1 − t)M1 and {Mn+1}∞n=0 is the

maximal parameter sequence of {dn+1}∞n=1. Viewing complementary chain sequences

as a perturbation of the Verblunsky coefficients given by (3.1.6) we give the following

result.

Theorem 3.2.1. Let
{
k

(t,1)
n

}∞
n=0

be the minimal parameter sequence of the positive

chain sequence {an}∞n=1 obtained as complementary to {dn}∞n=1. Set τn = 1−icn
1+icn

τn−1,

α
(t,1)
n−1 = τn

[
1− 2m

(t)
n − icn

1 + icn

]
and β

(t,1)
n−1 = τn

[
1− 2k

(t)
n − icn

1 + icn

]
,
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for n ≥ 1, with τ0 = 1. Let µ(t,1)(z) and ν(t,1)(z) be, respectively, the probability

measures having α
(t,1)
n−1 and β

(t,1)
n−1 as the corresponding Verblunsky coefficients. Then the

following statements hold.

1. For 0 < t < 1, the measure µ(t,1)(z) has a jump of size t at z = 1, while ν(t,1)(z)

does not.

2. β
(t,1)
n−1 = −τnτn−1α

(t,1)
n−1, n ≥ 1.

Proof. First we observe that α
(t,1)
n−1, n ≥ 1, are the generalized Verblunsky coefficients of

the measure µ(t,1)(z) as given by (3.1.2). Consequently, for 0 < t < 1, the probability

measure µ(t,1)(z) has a jump of size t at z = 1. Since d1 = (1 − t)Mn, choosing

M0 = t > 0, the sequence {t,M1,M2,M3, . . .} is the maximal parameter sequence of

{dn}∞n=1. Since t > 0, {dn}∞n=1 is a non SPPCS and hence, by Lemma 3.2.2, the sequence

{an}∞n=1 is a SPPCS so that
{
k

(t,1)
n

}∞
n=0

is also its maximal parameter sequence. Thus,

by results established in Costa et al. [40], the measure ν(t,1)(z) has a “zero” jump

(t = 0) at z = 1. This proves the first part of the theorem.

Now to prove the second part, we first have

β
(t,1)
n−1 = τn

[
1− 2k

(t,1)
n − icn

1 + icn

]
= τn

[
−1 + 2m

(t,1)
n − icn

1 + icn

]
.

By conjugation of the expression for α
(t,1)
n−1, we have

−α(t,1)
n−1 = τn

[
−1 + 2m

(t,1)
n − icn

1− icn

]
,

which leads to the second part of the theorem.

We note the following two particular cases of the real sequence {cn}∞n=1 in the

context of complementary chain sequence.

Proposition 3.2.1. With the notations of Theorem 3.2.1,

1. For n ≥ 1, if cn = (−1)nc, c ∈ R, then, β
(t,1)
n−1 = −1−ic

1+ic
α

(t,1)
n−1, n ≥ 1.

2. If cn = 0, n ≥ 1 then the Verblunsky coefficients, given to be real, are such that

β
(t,1)
n−1 = −α(t,1)

n−1, n ≥ 1.
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Proof. Clearly with cn = (−1)nc, n ≥ 1 we have τ 2n = 1 and τ 2n+1 = 1−ic
1+ic

. Thus, the

first part of the proposition is established. The other part follows by taking τnτn−1 = 1,

n ≥ 1. This is only possible if cn = 0, n ≥ 1.

The results of Proposition 3.2.1 are important cases of the Aleksandrov transfor-

mation (1.3.6) with λ = 1 and, the case of second part of Proposition 3.2.1 gives rise

to second kind polynomials (Simon [156]) for the measure µ(t,1). In this particular

case, the recurrence relation (3.1.4) assumes a very simple form, similar to the one

considered in Delsarte and Genin [58].

3.2.2 On real line: A variant of the Chihara construction

The theory of chain sequences is used to study many properties of a given orthogonal

polynomial sequence on the real line (OPS) and its kernel polynomial sequence (KOPS).

For instance, chain sequences are used to characterize the true interval of orthogonality

of an OPS, which is the smallest closed interval that contains all the zeros of all

the polynomials of such sequence. Let the true interval of orthogonality of the OPS

{Pn(x)}∞n=0 satisfying the recurrence relation

Pn+1(x) = (x− bn+1)Pn(x)− a2
nPn−1(x), n ≥ 1, (3.2.3)

with P0(x) = 1 and P1(x) = x− b1 be denoted as [ξ1, η1]. Then, with

ωn(t) =
a2
n

(t− bn)(t− bn+1)
, n ≥ 1,

the following statements

(i) [ξ1, η1] is contained in (a, b),

(ii) bn+1 ∈ (a, b) for n ≥ 0 and both {ωn(a)} and {ωn(b)} are chain sequences,

are proved to be equivalent in Ismail [90, Corollary 7.2.4]. In particular, [ξ1, η1] is a

subset of (0,∞) if and only if bn+1 > 0 for n ≥ 0 and ωn(0) is a chain sequence, that

is, there are numbers gn such that 0 ≤ g0 < 1, 0 < gn < 1, n ≥ 1, satisfying,

(1− gn−1)gn =
a2
n

bnbn+1

= ωn(0), n ≥ 1.
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As in Chihara [42, Chapter 1, Theorems 9.1, 9.2], the sequence {gn}∞n=0 is constructed

using another sequence {γn}∞n=1, where γ1 ≥ 0 and γn > 0, n ≥ 2. Precisely, gn =

γ2n+1/bn+1, n ≥ 0, where bn+1 = γ2n+1 +γ2n+2, n ≥ 0 and a2
n = γ2nγ2n+1, n ≥ 1. Hence

when γ1 = 0, we obtain the minimal parameter sequence {mn}∞n=0.

Associated with the chain sequence {ωn(0)}, the sequence {ϑ̃n(0)} arises in a very

natural way. Defining ϑ̃1(0) = (1− k0)k1 = γ4/b2 and

ϑ̃n(0) =
γ2n−1γ2n+2

bnbn+1

= (1− kn−1)kn, n ≥ 2,

it can be seen that {ϑ̃n(0)}∞n=1 becomes a chain sequence with the minimal parameter

sequence {kn}∞n=0 where k0 = 0 and kn = 1 − gn, n ≥ 1. Hence {ϑ̃n(0)}∞n=1 is the

complementary chain sequence of {ωn(0)}∞n=1.

If γ1 > 0, it is clear that a non-minimal parameter sequence {gn}∞n=0 is obtained for

the chain sequence {ωn(0)}∞n=1. In this case, the associated chain sequence {ϑ̂n(0)}∞n=1,

is defined as

ϑ̂n(0) = (1− k′n−1)k′n =
γ2n−1γ2n+2

bnbn+1

, n ≥ 1,

where k′n = 1− gn for n ≥ 0. We call {ϑ̂n(0)}∞n=1 the generalized complementary chain

sequence of {ωn(0)}∞n=1.

It may be noted from the above two definitions that for a fixed chain sequence,

while its complementary chain sequence is unique, its generalized complementary chain

sequence need not be unique. In fact, a chain sequence will have as many generalized

complementary chain sequences as its non-minimal parameter sequences. However, it is

obvious that the complementary chain sequence and all the generalized complementary

chain sequences will coincide in case the chain sequence is a SPPCS.

We would like to mention that the chain sequences {ϑ̃n(0)}∞n=1 and {ϑ̂n(0)}∞n=1 have

definite sources in the theory of orthogonal polynomials on the real line. To see this,

we first construct the OPS {Pn(x)}∞n=0 and the KOPS {Kn(x)}∞n=0 from {Sn(x)}∞n=0 as

in (1.1.3)

Pm(x2) = S2m(x) and xKm(x2) = S2m+1(x), m ≥ 0, (3.2.4)
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and note the following result of Chihara [42, Theorem 9.1].

Suppose the polynomials {R(i)
n (x)}, i = 1, 2, satisfy the recurrence relation,

R
(i)
n+1(x) = (x− b(i)

n+1)R(i)
n (x)− (a2

n)(i)R
(i)
n−1(x), n ≥ 0, (3.2.5)

with R
(i)
−1(x) = 0 and R

(i)
0 (x) = 1. Then,

(i) R
(1)
n (x) ≡ Pn(x), n ≥ 0, if, and only if,

b
(1)
1 = γ2, b

(1)
n+1 = γ2n+1 + γ2n+2, (a2

n)(1) = γ2nγ2n+1, n ≥ 1,

(ii) R
(2)
n (x) ≡ Kn(x), n ≥ 1, if, and only if,

b
(2)
n+1 = γ2n+2 + γ2n+3, n ≥ 0 and (a2

n)(2) = γ2n+1γ2n+2, n ≥ 1.

With these notations, the parameter sequences can be denoted as mn = γ2n+1/b
(1)
n+1

and gn = γ2n+1/b
(1)
n+1, n ≥ 0. Further, denoting ã2

n = γ2n−1γ2n+2, n ≥ 1, the following

theorem shows that the polynomials {P̃n(x)} and {P̂n(x)} associated respectively, with

the complementary chain sequence {ω̃n(0)} and the generalized complementary chain

sequence {ϑ̂n(0)}, can be attributed to a particular perturbation of the recurrence

relation satisfied by the polynomials Sn(x), n ≥ 1.

Theorem 3.2.2. Let the symmetric polynomials {S̃n(x)}∞n=0 satisfy

S̃n(x) = xS̃n−1(x)− ν̃nS̃n−2(x), n ≥ 1, (3.2.6)

with S̃−1(x) = 0, S̃0(x) = 1 and where, for n ≥ 1,

ν̃n =

 γ2j−1, n=2j, j=1,2,· · ·

γ2j+2, n=2j+1, j=0,1,· · · .
(3.2.7)

Then, with γ1 6= 0, {P̃n(x)}∞n=0, where S̃2n(x) = P̃n(x2), satisfy,

P̃n+1(x) = (x− b(1)
n+1)P̃n(x)− ã2

nP̃n−1(x), n ≥ 1, (3.2.8)
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with the initial conditions P̃0(x) = 1 and P̃1(x) = (x− γ1).

Proof. First note that, the perturbation (3.2.7) implies that the sequence of coefficients

{γ1, γ2, γ3, γ4, · · · } is replaced by {γ2, γ1, γ4, γ3, · · · }. That is, {γ2k−1, γ2k} are pair-wise

interchanged to {γ2k, γ2k−1}, k ≥ 1. Then, for n = 2m, (3.2.6) yields

S̃2m(x) = xS̃2m−1(x)− γ2m−1S̃2m−2(x), m ≥ 1

which implies,

P̃m(x) = xK̃m−1(x)− γ2m−1P̃m−1(x), m ≥ 1. (3.2.9)

Similarly, for n = 2m+ 1,

S̃2m+1(x) = xS̃2m(x)− γ2m+2S̃2m−1(x), m ≥ 0,

which implies

K̃m(x) = P̃m(x)− γ2m+2K̃m−1(x), m ≥ 0. (3.2.10)

Using (3.2.9) and (3.2.10), it can be seen that,

xK̃m−1(x) = P̃m(x) + γ2m−1P̃m−1(x),

P̃m(x) = K̃m(x) + γ2m+2K̃m−1(x), m ≥ 0.

Using these relations in (3.2.10) and (3.2.9), respectively, yield

K̃m(x) = [x− (γ2m−1 + γ2m+2)]K̃m−1(x)− γ2m−1γ2mK̃m−2(x), m ≥ 1, (3.2.11a)

P̃m+1(x) = [x− (γ2m+1 + γ2m+2)]P̃m(x)− γ2m−1γ2m+2P̃m−1(x), m ≥ 1, (3.2.11b)

with the initial conditions K̃−1(x) = 0, K̃0(x) = 1 (using (3.2.10)), P̃0(x) = 1 and

P̃1(x) = x− γ1 (using (3.2.9)), thus proving the theorem.

Proposition 3.2.2. Consider the OPS {P̂n(x)}∞n=0 satisfying (3.2.11b) with the mod-

ification m ≥ 0. Then {P̂n(x)}∞n=0 is associated with the generalized complementary
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chain sequence {ϑ̂n(0)}∞n=1.

Proof. From the recurrence relation

P̂m+1(x) = [x− (γ2m+1 + γ2m+2)]P̂m(x)− γ2m−1γ2m+2P̂m−1(x), m ≥ 0, (3.2.12)

with P̂−1(x) = 0 and P̂0(x) = 1, the chain sequence is given by

{
γ2n−1γ2n+2

(γ2n−1 + γ2n)(γ2n+1 + γ2n+2)

}∞
n=1

with the parameter sequence {k′n}∞n=0 = {γ2n+2/(γ2n+1 + γ2n+2)}∞n=0. The result now

follows since k′n = 1− gn, n ≥ 0.

The OPS {P̃n(x)}∞n=1 can be seen to be co-recursive with respect to the OPS

{P̂n(x)}∞n=1 arising from the initial conditions P̃0(x) = 1 and P̃1(x) = P̂1(x) + γ2.

The co-recursive polynomials have been investigated in the past, for example, in Chi-

hara [41] and Marcellán et al. [129], in which the structure and spectrum of the gener-

alized co-recursive polynomials have been studied.

Further, from (3.2.11b), the associated chain sequence is {ã2
n/b

(1)
n b

(1)
n+1}∞n=1 with the

first few terms as

ã2
1

b
(1)
1 b

(1)
2

=
γ4

(γ3 + γ4)
= (1− k0)k1;

ã2
2

b
(1)
2 b

(1)
3

=
γ3γ6

(γ3 + γ4)(γ5 + γ6)
= (1− k1)k2;

ã2
3

b
(1)
3 b

(1)
4

=
γ5γ8

(γ5 + γ6)(γ7 + γ8)
= (1− k2)k3; . . .

Proceeding as above, we obtain the minimal parameter sequence {kn}∞n=0 where k0 = 0

and kn = γ2n+2/b
(1)
n+1 = 1 − gn, n ≥ 1, which shows that the OPS {P̃n(x)}∞n=1 is

associated with the complementary chain sequence {ϑ̃n(0)}∞n=1.

Viewing the generalized complementary chain sequences as perturbations of the

minimal parameters or simply a transformation of the original chain sequence, we give

an important consequence of Theorem 3.2.2.

Proposition 3.2.3. The kernel polynomial sequence {Pn(x)}∞n=1 remains invariant
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under generalized complementary chain sequence if the sequence {γn}∞n=1 satisfies,

γ2n+1 − γ2n−1 = γ2n+2 − γ2n, n ≥ 1.

Proof. The proof follows from a comparison of (3.2.11a) and the expressions for b
(2)
n+1

and a
(2)
n .

Proposition 3.2.3 is important because it is known (Chihara [42, Ex. 7.2, p. 39]),

that the relation between the monic orthogonal polynomials and the kernel polynomi-

als is not unique. That is, for fixed t ∈ R, though {Pn(x)} will lead to a unique kernel

polynomial system {Kn(t, x)}, there are infinite number of other monic orthogonal

polynomial systems which has the same {Kn(x)} as their kernel polynomial system.

Hence generalized complementary chain sequences can be used to construct two or-

thogonal polynomials systems having the same kernel polynomial systems.

We make two observations about the consequences of complementary chain se-

quences regarding zeros of an OPS. Let the zeros of {Pn(x)}∞n=1 and {P̃n(x)}∞n=1 be

denoted as

0 < xn,1 < xn,2 < · · · < xn,n−1 < xn,n and 0 < x̃n,1 < x̃n,2 < · · · < x̃n,n−1 < x̃n,n,

respectively. For fixed n, by interlacing of zeros of Pn(x) and P̃n(x) it is understood

that xn,j are mutually separated by x̃n,j for j = 1, 2, · · · , n. In the present case, it is

interesting to note from (3.2.5) and (3.2.11b), that the sum of the roots of Pn(x) is

given by γ2 + γ3 + · · ·+ γ2n while that for P̃n(x) is γ1 + γ3 + · · ·+ γ2n.

Observation 3.2.1. It is clear that if γ1 = γ2, interlacing of the zeros of {Pn(x)}∞n=1

and {P̃n(x)}∞n=1 can never occur.

Observation 3.2.2. For γ1 6= γ2 and fixed n, the zeros {xn,j}nj=1 and {x̃n,j}nj=1 cannot

interlace if (γ1 − γ2) and (xn,j − x̃n,j) have the same sign for some j = 1, 2, · · · , n.

Indeed, suppose γ1 > γ2 and xn,j > x̃n,j for some j = 1, 2, · · · , n. If the zeros of Pn(x)

and P̃n(x) interlace, then
∑n

j=1 x̃n,j <
∑n

j=1 xn,j which is a contradiction. The case

γ1 < γ2 and xn,j < x̃n,j follows similarly.



Chapter 3: Orthogonal Polynomials from Complementary Chain Sequences 82

The next result shows that while the generalized complementary chain sequence of

associated with {P̂n(x)}∞n=1 yields an OPS, that associated with the associated (nu-

merator) polynomials {P̂(1)
n (x)}∞n=1 leads to a KOPS.

Theorem 3.2.3. Consider the OPS {P̂(1)
n (x)}∞n=1. Then the generalized complemen-

tary chain sequence associated with P̂
(1)
n (x) leads to a KOPS {Qn(x)}∞n=1 satisfying the

relation

Qn+1(x) = (x− γ2n+3 − γ2n+4)Qn(x)− γ2n+2γ2n+3Qn−1(x), n ≥ 0, (3.2.13)

with Q−1(x) = 0 and Q0(x) = 1.

Proof. It is clear from (3.2.12) that {P̂(1)
n (x)}∞n=1 satisfy

P̂
(1)
n+1(x) = (x− γ2n+3 − γ2n+4)P̂(1)

n (x)− γ2n+2γ2n+3P̂
(1)
n−1(x), n ≥ 1

with P̂
(1)
−1(x) = 0 and P̂

(1)
0 (x) = 1. The associated chain sequence is

{
γ2n+1γ2n+4

(γ2n+1 + γ2n+4)(γ2n+3 + γ2n+5)

}∞
n=1

with the (non-minimal) parameter sequence {γ2n+4/(γ2n+3+γ2n+4)}∞n=0. Hence the OPS

{Qn(x)}∞n=1 associated with the generalized complementary chain sequence satisfy the

three term recurrence relation (3.2.13). To prove that {Qn(x)}∞n=1 is a KOPS, consider

the polynomials {Xn(x)}∞n=1 given by xQn(x) = Xn+1(x) + γ2n+3Xn(x), n ≥ 0. The

first thing we require is Xn+1(0) = −γ2n+3Xn(0), so that choosing X1(0) = −γ3, we

have Xn+1(0) = (−1)n+1γ2n+3γ2n+1 · · · γ5γ3.

Now, suppose that {Xn(x)}∞n=1 satisfy the recurrence relation

Xn+1(x) = (x− σn+1)Xn(x)− ηnXn−1(x), n ≥ 1,

with X0(x) = 1 X1(x) = x − γ3 and where the coefficients {σn} and {ηn} are to be

determined. One way to determine them is that the equality Xn+1(0) = −σn+1Xn(0)−

µnXn−1(0) must hold, which implies γ2n+1σn+1 − µn = γ2n+3γ2n+1, n ≥ 1. A possible



83 3.2 Complementary chain sequences

choice for σn+1 and µn satisfying these relations is

σn+1 = γ2n+3 + γ2n+2 and µn = γ2n+1γ2n+2, n ≥ 1.

Since µn > 0 for n ≥ 1, by Favard’s Theorem (Chihara [42, Theorem 4.4, p. 21])

{Xn(x)}∞n=1 becomes a OPS and {Qn(x)}∞n=1 its corresponding KOPS (Chihara [42, eqn.

7.3, p. 35]).

We end this section with some information on the Jacobi matrices associated with

the complementary chain sequences.

The Jacobi matrix of the polynomials Pn(x) and P̃n(x) are given respectively by,

JP =



γ2 1 0 · · ·

γ2γ3 γ3 + γ4 1 · · ·

0 γ4γ5 γ5 + γ6 · · ·

0 0 γ6γ7 · · ·
...

...
...

. . .


JP̃ =



γ1 1 0 · · ·

γ1γ4 γ3 + γ4 1 · · ·

0 γ3γ6 γ5 + γ6 · · ·

0 0 γ5γ8 · · ·
...

...
...

. . .


The respective LU decomposition of the above Jacobi matrices are then given by,

LP =



1 0 0 0 · · ·

γ3 1 0 0 · · ·

0 γ5 1 0 · · ·

0 0 γ7 1 · · ·
...

...
...

...
. . .


, UP =



γ2 1 0 0 · · ·

0 γ4 1 0 · · ·

0 0 γ6 1 · · ·

0 0 0 γ8 · · ·
...

...
...

...
. . .



LP̃ =



1 0 0 0 · · ·

γ4 1 0 0 · · ·

0 γ6 1 0 · · ·

0 0 γ8 1 · · ·
...

...
...

...
. . .


, UP̃ =



γ1 1 0 0 · · ·

0 γ3 1 0 · · ·

0 0 γ5 1 · · ·

0 0 0 γ7 · · ·
...

...
...

...
. . .


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It may be observed that LP and LP̃ can be obtained from the matrix products UP̃ · J

and UP · J respectively, where

J =



0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·
...

...
...

...
. . .


.

This is equivalent to the removal of the first column of the matrices UP̃ and UP .

3.3 Three illustrations

In this section, starting with particular minimal parameter sequences and assuming

cn = 0, n ≥ 1, we construct the para-orthogonal polynomials and the related Szegő

polynomials to illustrate our results.

3.3.1 Using Carathéodory functions

Consider the sequence {δn}∞n=0, which satisfies δ0 > 0, |δn| < 1 and

δn+1 − δn = δnδn+1, n ≥ 1. (3.3.1)

Our aim is to first use a chain sequence to construct the Szegő polynomials Φ
(t,1)
n (z),

having δn ∈ R and satisfying (3.3.1) as the Verblunsky coefficients. We will also use the

complementary chain sequence to get another sequence of Szegő polynomials Φ̃
(t,1)
n (z)

which has −δn as the Verblunsky coefficients. The associated Carathéodory function

in each case is also given.

We start with the sequence
{
m

(t,1)
n

}∞
n=0

, where m
(t,1)
0 = 0 and m

(t,1)
n = (1 − δn)/2,

n ≥ 1. These minimal parameters are obtained by first substituting ck = 0, k ≥ 1 in

the Verblunsky coefficients (3.1.6) and then equating them to δn. The corresponding
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chain sequence is

d1 =
1− δ1

2
and dn =

1

4
(1 + δn−1)(1− δn) =

1

4
(1− 2δn−1δn), n ≥ 2.

The following two algebraic relations of δn, n ≥ 1,

δn+1 − δ1 = δ1δ2 + δ2δ3 + δ3δ4 + · · ·+ δnδn+1,

δn =
δn+1

1 + δn+1

= · · · = δn+k

1 + kδn+k

, k ∈ N,
(3.3.2)

will be needed later and can be proved by simple induction using (3.3.1).

Proposition 3.3.1. The sequence of monic polynomial {Rn(z)}∞n=0, where

R0(z) = 1, Rn(z) = 1 +
n∑
k=1

[1 + 2k(n− k)δ1δn]zk, n ≥ 1, (3.3.3)

satisfies the recurrence relation

Rn+1(z) = (z + 1)Rn(z)− (1− 2δnδn+1)zRn−1(z), n ≥ 0,

with R−1(z) = 0 and R0(z) = 1.

Proof. First, note that R1(z) = (z + 1) is of the form (3.3.3). Suppose Rn(z) has this

form and satisfies the recurrence relation for n = 1, 2, . . . , j. We shall now show

Rj+1(z) + (1− 2δjδj+1)zRj−1(z) = (z + 1)Rj(z), j ≥ 1. (3.3.4)

Using (3.3.2), the coefficient of zk in the left-hand side of (3.3.4) is

1 + 2k(j − k + 1)δ1δj+1 + (1− 2δjδj+1)[1 + 2(k − 1)(j − k)δ1δj−1]

= 1 + 2
k(j − k + 1)

j
(δj+1 − δ1) + 1− 2(δj+1 − δj) + 2

(k − 1)(j − k)

j − 2
(δj−1 − δ1)

− 2 · 2(k − 1)(j − k)

j − 2
(δj−1 − δ1)(δj+1 − δj).

(3.3.5)

It is easy to verify that the coefficients of δj+1 and δj−1 vanish in (3.3.5). The coefficient
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of δ1 is

− 2k(j − k + 1)

j
− 2(k − 1)(j − k)

j − 2
− 2 · 2(k − 1)(j − k)

j(j − 2)
+

2 · 2(k − 1)(j − k)

(j − 1)(j − 2)

= −2k(j − k)

j − 1
− 2(k − 1)(j − k + 1)

j − 1
.

(3.3.6)

Similarly, the coefficient of δj is

2 +
2 · 2(k − 1)(j − k)

j − 1
=

2k(j − k)

j − 1
+

2(k − 1)(j − k + 1)

j − 1
. (3.3.7)

Using (3.3.6) and (3.3.7) in (3.3.5), the coefficient of zk in the left-hand side of (3.3.4)

is given by

[1 + 2(k − 1)(j − k + 1)δ1δj] + [1 + 2k(j − k)δ1δj],

which is nothing but the coefficient of zk in the right-hand side of (3.3.4). Hence, by

induction the proof is complete.

We now obtain the Szegő polynomials Φ
(t,1)
n (z) from the para-orthogonal polynomi-

als Rn(z) given by (3.3.3). Since Φ
(t,1)
n (z) = Rn(z) − 2(1 −mn)Rn−1(z), n ≥ 1, it can

be seen that the coefficient of zk, 1 ≤ k ≤ n− 1, in Φ
(t,1)
n (z) is −δn(1− 2kδ1). Hence,

the Szegő polynomials are given by

Φ(t,1)
n (z) = zn − δn

[
(1− 2(n− 1)δ1)zn−1 + · · ·+ (1− 2δ1)z + 1

]
, n ≥ 1, (3.3.8)

with α
(t,1)
n−1 = −Φ

(t,1)
n (0) = δn.

Next, we find the Carathéodory function associated with the parameters δn’s given

by (3.3.1). For this, consider the analytic function

C(z) = 1− 2(1− σ)z

1 + (1− 2σ)z
=

1− z
1 + (1− 2σ)z

, |z| < 1,

where 0 < σ < 1. That C(z) corresponds to a PPC-fraction with the parameter γn,
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where

γn =
1

n+ σ
1−σ

, n ≥ 1, (3.3.9)

can be shown by applying the algorithm in Jones et al. [99], which is similar to the

Schur algorithm. With the initial values C0(z) = (1−z)/(1+(1−2σ)z), γ0 = C0(0) = 1,

define

C1(z) =
γ0 − C0(z)

γ0 + C0(z)
=

z

1 + σ
1−σ −

(
1− 1−2σ

1−σ

)
z
, γ1 = C ′1(0) =

1

1 + σ
1−σ

.

Assume, for k ≥ 1, the following form of the Carathéodory function

Ck(z) =
z

k + σ
1−σ −

(
k − 1−2σ

1−σ

)
z
, γk = C ′k(0).

The form is true for k = 1. Now define

Ck+1(z) =
γkz − Ck(z)

γkCk(z)− z
, n ≥ 1. (3.3.10)

It can be shown that

γk =
1− σ

k − (k − 1)σ
=

1

k + σ
1−σ

,

which is also true for k = 1. Simplifying (3.3.10), we obtain

Ck+1 =
z(

k + 1 + σ
1−σ

)
−
(
k + 1− 1−2σ

1−σ

)
z
,

from which γk+1 = 1
k+1+ σ

1−σ
. Hence by induction, and because of the uniqueness of the

Carathéodory function that corresponds to a given PPC-fraction, the assertion follows.

Moreover, observe that δn = −γn satisfies (3.3.1) and so Φ
(t)
n (0) = 1

n+ σ
1−σ

.

Further, if χ−2
n =

∥∥∥Φ
(t,1)
n (z)

∥∥∥2

then, using the fact that the Verblunsky coefficients
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are all real, we have

χ−2
n = µ0(1− |Φ1(0)|2)(1− |Φ2(0)|2) · · · (1− |Φn(0)|2) =

n∏
k=1

(
1− δ2

k

)
.

Moreover, the Verblunsky coefficients can be written as

δn =
1

n+ σ
1−σ

=
1− σ

n(1− σ) + σ
, n ≥ 1,

from which we obtain

1− δ2
n =

[n(1− σ) + σ − 1 + σ][n(1− σ) + σ + 1− σ]

[n(1− σ) + σ]2

=
[(n− 1)− (n− 2)σ][(n+ 1)− nσ]

[n− (n− 1)σ]2
.

This yields the fact that

χ−2
n =

σ[(n+ 1)− nσ]

[n− (n− 1)σ]
= σ

(
1 +

1− σ
n(1− σ) + σ

)
= σ(1 + δn).

Hence, χ−2
n =

∥∥Φ
(t)
n (z)

∥∥2
tends to σ > 0 as n→∞.

Consider now the parameter sequence
{
k

(t,1)
n

}∞
n=0

, defined by k
(t,1)
0 = 0 and k

(t,1)
n =

1−m(t,1)
n = (1+δn)/2, n ≥ 1. From (3.3.1), it is easy to check that 1+δn+1 = 1/(1−δn),

n ≥ 1. In this case, the constant sequence {1/4} becomes the complementary chain

sequence so that equation (3.1.4) assumes the form

R̃n+1(z) = (1 + z)R̃n(z)− zR̃n−1(z), n ≥ 1.

The above recurrence relation is satisfied by the palindromic polynomials zn+r(zn−1 +

· · ·+ z) + 1, r ∈ R. (We note that a polynomial pn(z) = c0 + c1z + · · ·+ cnz
n is called

palindromic if ci = cn−i, i = 0, 1, · · · , n). For r = 1, the para-orthogonal polynomials

are the partial sums of the geometric series given by

R̃n(z) = 1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
, n ≥ 1.
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Then the Szegő polynomials from the complementary chain sequence are given by

Φ̃(t,1)
n (z) = zn + δnz

n−1 + · · ·+ δnz + δn, n ≥ 1, (3.3.11)

with α
(t,1)
n−1 = −δn. The polynomials Φ̃

(t,1)
n (z) are also considered in Ronning [149] where

it is proved that

Φ̃(t,1)
n (0) = δn = − 1

n+ σ
1−σ

, n ≥ 1. (3.3.12)

Further, the corresponding Carathéodory function is C̃(z) = 1+(1−2σ)z
1−z , |z| < 1, where

0 < σ < 1.

Further, let µ(t,1)(z) be the probability measure associated with the positive chain

sequence {dn}∞n=1. Its complementary chain sequence {1/4} is not a SPPCS, with {1/2}

as its maximal parameter sequence. Hence by Lemma 3.2.2, {dn}∞n=1 is a SPPCS and

µ(t)(z) has zero jump (t = 0) at z = 1. This also implies that if ν(t)(z) is the measure

associated with {1/4}, then, ν(t)(z) has a jump t = 1/2 at z = 1.

We end this illustration with two observations which we state as remarks.

Remark 3.3.1. As n → ∞, both the minimal parameter sequences approach 1/2.

From the expressions (3.3.8) and (3.3.11) it follows that for fixed z, Φ
(t)
n (z) and Φ̃

(t)
n (z)

approach zn as n becomes large. The polynomials zn are called the Szegő–Chebyshev

polynomials and correspond to the standard Lebesgue measure on the unit circle.

Remark 3.3.2. Suppose the minimal parameters are given in terms of some variable ε.

Then, the coefficients of the polynomial Rn(z) satisfying (3.1.4) with cn = 0, n ≥ 1 will

be given in terms of ε. Since Rn(z) is palindromic for the chain sequence {dn} = {1/4},

Rn(z) can always be expressed as the sum of two polynomials, one of them a palindromic

and the other one being such that it vanishes whenever ε is chosen so that dn = 1/4.

3.3.2 Using Gaussian hypergeometric functions

Consider the contiguous relation

(c− a)F (a− 1, b; c; z) = (c− 2a− (b− a)z)F (a, b; c; z) + a(1− z)F (a+ 1, b; c; z),
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which, as shown in Sri Ranga [162], can be transformed to the three term recurrence

relation

%n+1(z) =

(
z +

c− b+ n

b+ n

)
%n(z)− n(c+ n− 1)

(b+ n− 1)(b+ n)
z%n−1(z), n ≥ 1, (3.3.13)

satisfied by the monic polynomial

%n(z) =
(c)n
(b)n

F (−n, b; c; 1− z). (3.3.14)

It was also shown that for the specific values b = λ ∈ R and c = 2λ− 1, the polynomi-

als (3.3.14) are Szegő polynomials. We note that with b = λ+1, %n(z) given by (3.3.14)

are called the circular Jacobi polynomials, Ismail [90, Example 8.2.5]. For other spe-

cialized values of b and c in (3.3.13), %n(z) becomes a para-orthogonal polynomial.

Let λ > −1/2 ∈ R. Taking b = λ+ 1 and c = 2λ+ 2, (3.3.13) reduces to

%n+1(z) = (z + 1)%n(z)− n(2λ+ n+ 1)

(λ+ n)(λ+ n+ 1)
z%n−1(z), n ≥ 1,

satisfied by

%n(z) = Rn(z) =
(2λ+ 2)n
(λ+ 1)n

F (−n, λ+ 1; 2λ+ 2; 1− z), n ≥ 1.

Consider now the sequence {dn+1}∞n=1, where

dn+1 =
1

4

n(2λ+ n+ 1)

(λ+ n)(λ+ n+ 1)
, n ≥ 1.

As established in Bracciali et al. [25, Example 3], Castillo et al. [37] and Costa et al. [40],

for λ > −1, the sequence {dn+1}∞n=1 is a positive chain sequence and {m(t,1)
n }∞n=0, where

m(t,1)
n =

n

2(λ+ n+ 1)
, n ≥ 0,

is its minimal parameter sequence. When −1/2 ≥ λ > −1, {m(t,1)
n }∞n=0 is also the

maximal parameter sequence of {dn+1}∞n=1, which makes it a SPPCS. However, when

λ > −1/2 then {dn+1}∞n=1 is not a SPPCS and its maximal parameter sequence
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{Mn+1}∞n=0 is such that

Mn+1 =
2λ+ n+ 1

2(λ+ n+ 1)
, n ≥ 0.

The coefficients dn+1, n ≥ 1 are the same coefficients occurring in the recurrence

formula for ultraspherical (or Gegenbauer) polynomials.

Further, for λ > −1/2 and 0 ≤ t < 1, if
{
m

(t,1)
n

}∞
n=0

is the minimal parameter

sequence of the positive chain sequence {dn}∞n=1, obtained by adding d1 = (1 − t)M1

to {dn+1}∞n=1, then

Φ(t,1)
n (z) = Rn(z)− 2

(
1−m(t,1)

n

)
Rn−1(z), n ≥ 1

and are the monic OPUC with respect to the measure µ(t,1)(z), where µ(t,1)(z) is as

defined by (3.1.2). To find µ(t,1)(z), we first find the measure µ(0,1)(z) arising when

{dn}∞n=1 becomes a SPPCS (t = 0). As shown in Sri Ranga [162], the monic OPUC

Φ
(0)
n (z), n ≥ 1, are given by

Rn(z)− 2(1−Mn)Rn−1(z) =
(2λ+ 1)n
(λ+ 1)n

F (−n, λ+ 1; 2λ+ 1; 1− z), n ≥ 1.

Further, the Verblunsky coefficients are given by

α
(0)
n−1 = −Φ(0)

n (0) = − (λ)n
(λ+ 1)n

, n ≥ 1. (3.3.15)

It is proved in Sri Ranga [162] that the Verblunsky coefficients α
(0)
n−1 are associated

with the non-trivial probability measure

dµ(0)
(
eiθ
)

= τ (λ) sin2λ(θ/2)dθ, τ (λ) =
|Γ(1 + λ)|2

Γ(2λ+ 1)
4λ.

Hence

∫
∂D
f(ζ)dµ(t)(ζ) = (1− t)τ (λ)

∫ 2π

0

f
(
eiθ
)

sin2λ(θ/2)dθ + tf(1).

We characterize the Szegő polynomials associated with the complementary chain
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sequence since it is not possible to find closed form expressions for the coefficients of the

para-orthogonal polynomials and Szegő polynomials. Since {Rn(z)}, depends on the

parameter b (= λ+ 1), in what follows, we denote Rn(z) by R
(b)
n (z). We also denote cn

and dn by c
(b)
n and d

(b)
n respectively. Now, note that if

Q(b)
n (z) =

1

2(1− t)M1

∫
T

R
(b)
n (z)−R(b)

n (ζ)

z − ζ
(1− ζ)dµ(t)(ζ), n ≥ 0,

then
{
Q

(b)
n (z)

}∞
n=0

satisfies

Q
(b)
n+1(z) =

[(
1 + ic

(b)
n+1

)
z +

(
1− ic(b)

n+1

)]
Q(b)
n (z)− 4d

(b)
n+1zQ

(b)
n−1(z), n ≥ 1,

with Q
(b)
0 (z) = 0 and Q

(b)
1 (z) = 1. That is, the three term recurrence for

{
Q

(b)
n (z)

}∞
n=0

is the same as for
{
R

(b)
n (z)

}∞
n=0

, with the difference being only on the initial conditions.

The polynomials
{
Q

(b)
n (z)

}
are generally called the numerator polynomials associated

with
{
R

(b)
n (z)

}
. Further, observe that the three term recurrence for

{
Q

(b)
n (z)

}∞
n=0

can

also be given in the shifted form

Q
(b)
n+2(z) =

[(
1 + ic

(b)
n+2

)
z +

(
1− ic(b)

n+2

)]
Q

(b)
n+1(z)− 4d

(b)
n+2zQ

(b)
n (z), n ≥ 1, (3.3.16)

with Q
(b)
1 (z) = 1 and Q

(b)
2 (z) =

(
1 + ic

(b)
2

)
z +

(
1− ic(b)

2

)
.

Consider now the parameter sequence given by k
(t,1)
n = 1−m(0,1)

n = n/[2(λ+n)] for

n ≥ 1. For sake of clarity, we would like to note that t need not be necessarily 0. It

depends on whether the resulting chain sequence for
{
k

(t,1)
n

}
, given by

a
(b)
1 =

1

2λ+ 2
and a

(b)
n+1 =

1

4

(n+ 1)(2λ+ n)

(λ+ n)(λ+ n+ 1)
, n ≥ 1, (3.3.17)

is a SPPCS or not.

Let ν(t,1)(z) be the measure associated with the Verblunsky coefficients
{
β

(t,1)
n−1

}∞
n=1

given by

β
(t,1)
n−1 = τn

[
1− 2k

(t)
n − ic(b)

n

1 + ic
(b)
n

]
, n ≥ 1.
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Following Theorem 3.2.1, the corresponding Szegő polynomials are

Φ̃(t,1)
n (z) =

R̃
(b)
n (z)− 2

(
1− k(t,1)

n

)
R̃

(b)
n−1(z)

n∏
k=1

(
1 + ic

(b)
k

) , n ≥ 1,

where the polynomials R̃
(b)
n are given by

R̃
(b)
n+1(z) =

[(
1 + ic

(b)
n+1

)
z +

(
1− ic(b)

n+1

)]
R̃(b)
n (z)− 4a

(b)
n+1zR̃

(b)
n−1(z), n ≥ 1, (3.3.18)

with R̃
(b)
0 (z) = 1 and R̃

(b)
1 (z) =

(
1 + ic

(b)
1

)
z +

(
1 − ic(b)

1

)
. Observing that c

(b)
n = c

(b−1)
n+1 ,

a
(b)
n+1 = d

(b−1)
n+2 , n ≥ 1, we have from (3.3.16) and (3.3.18)

R̃(b)
n (z) = Q

(b−1)
n+1 (z), n ≥ 0,

and hence

Φ̃(t)
n (z) =

Q
(b−1)
n+1 (z)− 2

(
1− k(t,1)

n

)
Q

(b−1)
n (z)

n∏
k=1

(
1 + ic

(b−1)
k+1

) , n ≥ 1.

That is, if R
(b)
n (z) generates the Szegő polynomials Φ

(t)
n (z), Q

(b−1)
n (z), which are the

numerator polynomials for R
(b−1)
n (z) generates the Szegő polynomials Φ̃

(t)
n (z) associated

with the complementary chain sequences. We note that, in the present case too, c
(b)
n (=

cn) = 0, n ≥ 1 and so by Theorem 3.2.1, β
(t)
n−1 = −α(0)

n−1, n ≥ 1. Hence dν(t)(z) are the

Aleksandrov measures associated with dµ(0)(z), Simon [156].

Further, we note that such Szegő polynomials result from perturbations of the

Verblunsky coefficients obtained in the Illustration 3.3.1. Indeed, for σ = λ/(1 +

λ), {λδn} corresponds to the Verblunsky coefficients given by (3.3.15), whereas by

Verblunsky theorem, {λγn} corresponds to those given by the complementary chain

sequence {a(b)
n+1} given by (3.3.17). Here {δn} and {γn} are the ones chosen respectively

by (3.3.9) and (3.3.12).

Further, when
{
a

(b)
n+1

}∞
n=1

is the constant chain sequence {1/4}, R̃(b)
n (z) are the
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palindromic polynomials given by

R̃(b)
n (z) = zn + ν(λ)

(
zn−1 + · · ·+ z

)
+ 1, n ≥ 1,

where ν(λ) is a constant depending on λ. Here we study the cases λ = 0 and λ = 1 for

which the complementary chain sequence a
(b)
n+1 = 1/4.

Case 1, λ = 0. Let

R̃(b)
n (z) = zn + ν(0)

(
zn−1 + · · ·+ z

)
+ 1, n ≥ 1.

The complementary chain sequence is {1/2, 1/4, 1/4, . . . } which is known to be a SP-

PCS. Hence
{
k

(t)
n

}∞
n=0

where k
(t)
0 = 0, k

(t)
n = 1/2, n ≥ 1 is also the maximal parameter

sequence implying that t = 0 and so

Φ̃(0)
n (z) = zn +

(
ν(0) − 1

)
zn−1.

For ν(0) = 1, Φ̃
(0)
n (z) = zn and from Remark 3.3.1, λ = 0 can be viewed as the limiting

case for the Verblunsky coefficients obtained in Section 3.3.1. Note that the Verblunsky

coefficients are 0, as can be verified from (3.3.15).

Case 2, λ = 1. Let

R̃(b)
n (z) = zn + ν(1)

(
zn−1 + · · ·+ z

)
+ 1, n ≥ 1.

The complementary chain sequence is {1/4, 1/4, 1/4, . . . } and k
(t)
0 = 0, k

(t)
n = n/2(n+

1), n ≥ 1. In this case, t = 1/2 and

Φ̃(1/2)
n (z) = zn +

(
ν(1) − n+ 2

n+ 1

)
zn−1 − ν(1)

n+ 1

(
zn−2 + · · ·+ z

)
− 1

n+ 1
, n ≥ 1,

so that the Verblunsky coefficients are given by 1/(n + 1). Again it can be verified

from (3.3.15) that the Verblunsky coefficients corresponding to λ = 1 are (1)n/(2)n =

1/(n + 1). Finally, for ν(1) = 0, R̃
(b)
n = zn + 1, which has been considered as the first

example in Bracciali et al. [25].
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3.3.3 Using Laguerre polynomials

Perturbations of the Laguerre weight xαe−x have been studied by many authors. For

example, Xu et al. [187, 188] found the Hankel determinants associated with the per-

turbed measure using Painlevé transcendents. Deaño et al. [54] considered the Geron-

imus transformation of the Laguerre weight xαe−x along with the addition of a mass

and studied related asymptotic behavior. Such perturbation, particularly its numerical

aspects, is also investigated in Branquinho et al. [26] and Beuno et al. [30].

In this illustration, we study a perturbation in the chain sequences related to these

orthogonal polynomials. The Laguerre polynomials are orthogonal on (0,∞) with

respect to the weight function xαe−x for α > −1. Consider the three term recurrence

relation satisfied by the monic Laguerre polynomials {L(α)
n (x)}, (Chihara [42, Page

154]),

R(1)
n+1(x) = [x− (2n+ α + 1)]R(1)

n (x)− n(n+ α)R(1)
n−1(x), n ≥ 1, (3.3.19)

with R(1)
0 (x) = 1 and R(1)

1 (x) = x − (1 + α) and where R(1)
n (x) ≡ L

(α)
n (x), n ≥ 1.

Using the notations introduced immediately after (3.2.5), the associated chain sequence

{dn}∞n=1 is,

dn =
(a2
n)(1)

b
(1)
n b

(1)
n+1

=
n(n+ α)

(2n+ α− 1)(2n+ α + 1)
, n ≥ 1,

and as can be easily verified, the minimal parameters are given by, mn = n/(2n+α+1),

n ≥ 0. It is easily seen that 0 < mn < 1/2, n ≥ 1 and hence by Lemma 3.2.3,

the chain sequence complementary to dn is a chain sequence with a single parameter

sequence. Moreover, for −1 < α < 0, mn/(1 − mn) > n/(n − 1) > 1 and hence by

Wall’s criteria [184, Theorem 19.3], for SPPCS {dn} determines its parameters uniquely.

Further, choosing γ1 = 0, it is found that γ2 = (1 + α) and γ2γ3 = 1.(1 + α) implies

γ3 = 1. Similarly, γ3 + γ4 = α + 3 implies γ4 = α + 2. Proceeding further on similar

lines, it can be easily proved by induction that γ1 = 0, γ2n = n + α and γ2n+1 = n,

n ≥ 1. This gives the recurrence relation for the associated kernel polynomials as

R(2)
n+1(x) = [x− (2n+ α + 2)]R(2)

n (x)− n(n+ α + 1)R(2)
n−1(x), n ≥ 1, (3.3.20)
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with R(2)
0 (x) = 1 and R(2)

1 (x) = x− (2 +α). Clearly, as is known, R(2)
n (x) = L

(α+1)
n (x),

n ≥ 1.

Consider now the polynomials {En(x)}∞n=0 satisfying the recurrence relation

En+1(x) = [x− (2n+ α + 2)]En(x)− (n+ 1)(n+ α)En−1(x), n ≥ 1

with E0(x) = 1 and E1(x) = x − (α + 1). From the related chain sequence, we obtain

the sequence {γn}∞n=1 where γ1 = 0, γ2n = n+ α and γ2n+1 = n+ 1, n ≥ 1. The kernel

polynomial sequence {Kn(x)}∞n=0 associated with {En(x)}∞n=0 satisfy

Kn+1(x) = [x− (2n+ α + 3)]Kn(x)− (n+ 1)(n+ α + 1)Kn(x), n ≥ 0

with K−1(x) = 0 and K0(x) = 1. If we let γ1 = 1, the resulting polynomials satisfy

Pn+1(x) = [x− (2n+ α + 2)]Pn(x)− (n+ 1)(n+ α)Pn−1(x), n ≥ 0

with P−1(x) = 0 and P0(x) = 1. From (3.3.19) it is clear that these polynomials are the

associated generalized Laguerre polynomials of order 1 but with α shifted to α−1. The

polynomial sequence {P̂n(x)} corresponding to the generalized complementary chain

sequence satisfy

P̂n+1(x) = [x− (2n+ α + 2)]P̂n(x)− n(n+ α + 1)P̂n−1(x), n ≥ 0

with P̂−1(x) = 0 and P̂0(x) = 1. Comparing with (3.3.20), we find that P̂n(x) ≡

L
(α+1)
n (x), n ≥ 1.

The (co-recursive) polynomials {P̃n(x)} corresponding to the complementary chain

sequence satisfy the recurrence relation

P̃n+1(x) = [x− (2n+ α + 2)]P̃n(x)− n(n+ α + 1)P̃n−1(x), n ≥ 1

with P̃0(x) = 1 and P̃1(x) = x− 1.

Moreover, since the condition in Proposition 3.2.3 is satisfied, the kernel polynomials

for the OPS {P̃n(x)}∞n=0 is the same (upto a constant multiple) as that for the OPS
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{En(x)}∞n=0.

One of the aspects of Laguerre polynomials is that their asymptotic behavior in the

complex plane has been illustrated for example, in Atia et al. [10], Dai and Wong [47],

Dai et al. [46] and Deano et al [53]. It would be interesting to explore the consequences

of complementary chain sequences in the context of asymptotics of such orthogonal

polynomials.

3.4 Concluding remarks

In this chapter, we defined and studied consequences of the complementary chain se-

quences which we view as perturbations of the minimal parameter sequences. However,

such a perturbation is one of many perturbations that one can have in the context of

chain sequences. It would be interesting to see how these perturbations of the chain

sequence affect the measure of orthogonality.

We would like to add that the motivation to study chain sequences was provided by

perturbations of the g-fractions discussed in the previous chapter.We proceed further

in this direction where, instead of considering the perturbation given in this chapter,

we consider a polynomial map on the T -fraction in the next chapter. This provides

important consequences leading to the study of different polynomial sequences in the

subsequent chapters.
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Chapter 4

Generalized Jacobi pencil matrix

In the previous two chapters, we studied two perturbations in the g-fractions, which

served as the motivation to define complementary chain sequence. In this chapter, a

general T -fraction denoted by F(λ) is studied under the transformation F(λ) 7→ F(λ2).

Two generalized linear matrix pencils are defined and the orthogonality properties of

the associated Laurent polynomials are discussed.

4.1 The polynomial map S(λ) 7→ λS(λ2)

The theory of polynomial mappings in the framework of orthogonal polynomials has re-

ceived special attention in the recent past. Given two sequences {fn(x)} and {gn(x)},

Carlitz [35] found conditions such that the sequence {hn(x)}, defined as h2m(x) =

fm(x2) and h2m+1(x) = xgm(x2), is also an orthogonal sequence. After this, several

authors studied quadratic and cubic transformations of orthogonal polynomials, in-

cluding Atia et al. [11] and Barrucand and Dickinson [14]. We also refer to Bessis and

Moussa [19], de Jesus and Petronilho [51], Geronimo and Van Assche [80], Peherstor-

fer [140], and Petronilho [141] for various results in this direction.

Consider the Stieltjes function S(λ) having the following asymptotic expansion

S(λ) = −s0

λ
− s1

λ2
− s2

λ3
· · · − s2n

λ2n+1
− · · · , λ ∈ C, at infinity. The transformation

S(λ) 7→ λS(λ2) (4.1.1)

was interpreted in Derevyagin [61] in terms of a tridiagonal matrix which is a general-

99
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ization of the Jacobi matrix associated with orthogonal polynomials on the real line.

Precisely, it was shown (Derevyagin [61]) that the transformation (4.1.1) is equivalent

to the Darboux transformation of such generalized Jacobi matrices, which proved to

be an important aspect for further study in this direction. The spectral theory of

these generalized Jacobi matrices is explored in Kovalyov [109] and Derevyagin and

Derkach [60]. The generalized Stieltjes continued fractions associated with such gener-

alized Jacobi matrices is studied in Derkach and Kovalyov [63].

The transformation (4.1.1) appears in the classical formula relating Hermite and

Laguerre polynomials (Carlitz [35]) and is used in Dickinson and Warsi [65] to generate

two different sequences of polynomials orthogonal on the real line. We recall that,

given a sequence of polynomials {Pn(λ)}∞n=1, where Pn(λ) is orthogonal with respect to

a measure dµ(t) on (0,∞), the kernel polynomials Kn(λ) := Kn(0;λ) associated with

Pn(λ) are orthogonal with respect to tdµ(t) on (0,∞).

The symmetric polynomials Sn(λ), n ≥ 1, defined by

S2n(λ) = Pn(λ2), S2n+1(λ) = λKn(λ2), n ≥ 1, (4.1.2)

are orthogonal with respect to the measure dζ(t) = sgn (t)
2
dµ(t2) on the real line. Here,

sgn is the signum function defined as

sgn(x) :=


−1, x < 0;

0, x = 0;

1, x > 0.

The monic polynomials Sn(λ), n ≥ 0, are also known to satisfy the recurrence relation

(Chihara [42, Theorem 4.3, p.21])

Sn(λ) = λSn−1(λ)− γnSn−2(λ), n ≥ 1,

with S−1(λ) = 0 and S0(λ) = 1. Here γn 6= 0, n ≥ 2 and γ1 =
∫∞
−∞

sgn (t)
2
dµ(t2).

Following Derevyagin [61], we call (4.1.2) the Chihara construction, whose details can

be found in Chihara [42, Chapter I, Section 9].
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Remark 4.1.1. From computational point of view, it is desirable to associate matrix

representations, in particular, matrix decompositions to polynomial maps. In this re-

spect, one direction of study could be the polynomials maps arising from matrix splitting,

which are special matrix decompositions used in numerical linear algebra. Such decom-

positions are studied in Baliarsingh and Mishra [12], Jena et al. [96] and Kurmayya

and Sivakumar [115].

4.1.1 Extending the map to T -fractions

It can be seen that using the map (4.1.1), one can construct a sequence of polynomials

orthogonal on (−∞,∞) from a sequence of polynomials orthogonal on (0,∞). Hence,

the transformation (4.1.1) is also called the unwrapping transformation in Derevya-

gin [61], the unwrapping happening here being that of the measure dµ(t). In terms

of moment problems, the transformation (4.1.1) is used in Wall [184, Section 87] to

reduce a Stieltjes moment problem to a Hamburger moment problem

The objective of this chapter is to study the transformation (4.1.1) in the context

of T -fractions

F(λ) =
f1λ

1 + g1λ +

f2λ

1 + g2λ +

f3λ

1 + g3λ +
· · · , λ ∈ C, (4.1.3)

introduced in the study of strong Stieltjes moment problems by Jones et al. [103].

However, we restrict ourselves to the transformation F(λ) 7→ F(λ2), which in the

process leads to two generalized linear tridiagonal matrix pencils.

Further, for computation purposes, we consider the following T -fraction

F(λ) =
α1λ

λ− β1 -

α2λ

λ− β2 -

α3λ

λ− β3 -
· · · , λ ∈ C, (4.1.4)

which is equivalent to (4.1.3). Here α1 = −f1/g1, αn+1 = −fn+1/gngn+1 and βn =

−1/gn, n ≥ 1. Equivalent continued fractions have the same sequence of approxi-

mants and hence converge to the same analytic function. Details about the equivalent

transformations of continued fractions can be found in Jones and Thron [102, Section

2.3] and Wall [184, Section 3]. The numerators An(λ) and denominators Bn(λ) of the
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approximants to (4.1.4) satisfy the recurrence relation

Wn+1(λ) = (λ− βn+1)Wn(λ)− αn+1λWn−1(λ), n ≥ 1, (4.1.5)

with the initial values A0(λ) = 0, A1(λ) = −α1λ, B0(λ) = 1 and B1(λ) = λ− β1. The

determinant formula for (4.1.4) is given by

An+1(λ)Bn(λ)− An(λ)Bn+1(λ) = (−1)2n+1

n+1∏
j=1

αjλ
n+1. (4.1.6)

The rest of the chapter is devoted to the study of the transformation F(λ) 7→ F(λ2)

using the recurrence relation (4.1.5). Laurent polynomials play a fundamental role,

leading to generalized tridiagonal matrix pencils and biorthogonality relations.

4.1.2 Associated Laurent polynomials

First, we recall some basic facts about the general T -fraction (4.1.3) and the recurrence

relation (4.1.5). We state the following theorem, proved in Jones et al. [103, Theorem

2.1], illustrating the correspondence properties of the T -fraction (4.1.3).

Theorem 4.1.1. [103, Theorem 2.1] Let the formal Laurent series

L =
∞∑
n=1

anλ
n and L∗ =

∞∑
n=0

a∗−nλ
−n (4.1.7)

be given. There exists a general T -fraction which with fn 6= 0 and gn 6= 0 for all n ≥ 1

corresponds to L at z = 0 and to L∗ at z =∞ if, and only if, ∆n 6= 0 and Φn 6= 0,

n = 0, 1, · · · . Here ∆0 = Φ0 = 1 and for n ≥ 1

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δ−n+1 δ−n+2 · · · δ0

δ−n+2 δ−n+3 · · · δ1

...
...

. . .
...

δ0 δ1 · · · δn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
; Φn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δ−n+1 δ−n+2 · · · δ1

δ−n+2 δ−n+3 · · · δ2

...
...

. . .
...

δ1 δ2 · · · δn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The δk are defined by δk = a∗k − ak where it is understood that ak = 0 for k ≤ 0 and

a∗k = 0 for k > 1. The order of correspondence is {n+ 1} at λ = 0 and {n} at λ =∞.
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The fn and gn are given by

f1 = −Φ1; fn+1 =
−∆n−1Φn+1

∆nΦn

; gn =
−∆n−1Φn

∆nΦn−1

, n ≥ 1.

We suppose that ∆n 6= 0 and Φn+1 6= 0, n ≥ 1, so that the general T -fraction

(4.1.3) exists with fn 6= 0 and gn 6= 0, n ≥ 1. It can be proved from (4.1.4) and (4.1.5)

that Bn(0) = (−1)nβ1β2 · · · βn. By use of the determinant formula (4.1.6), we have

An+1(λ)

Bn+1(λ)
− An(λ)

Bn(λ)
=

(−1)2n+1
∏n+1

j=1 αjλ
n+1

Bn(λ)Bn+1(λ)
,

which yields the following, for correspondence at λ = 0,

An+1(λ)

Bn+1(λ)
− An(λ)

Bn(λ)
=

1

β1 · · · βn

n+1∏
j=1

αj
βj
λn+1 + gn+2λ

n+2 + · · · . (4.1.8)

Similarly, for correspondence at λ =∞, we have

An+1(λ)

Bn+1(λ)
− An(λ)

Bn(λ)
= (−1)2n+1

n+1∏
j=1

αjλ
−n + h−n−1λ

−n−1 + · · · . (4.1.9)

It follows that the order of correspondence of the general T -fraction (4.1.3) to L and

L∗ defined in (4.1.7) are n+ 1 and n respectively.

Lemma 4.1.1. The polynomials Vn(λ), n ≥ 1, satisfying the recurrence relation (4.1.5)

have the determinant expression

Vn(λ) =
χn+1

∆n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λn λn−1 λn−2 · · · λ2 λ 1

a∗−n+1 a∗−n+2 a∗−n+3 · · · a∗−1 a∗0 −a1

a∗−n+2 a∗−n+3 a∗−n+4 · · · a∗0 −a1 −a2

a∗−n+3 a∗−n+4 a∗−n+5 · · · −a1 −a2 −a3

...
...

...
. . .

...
...

...

a∗−1 a∗0 −a1 · · · −an−3 −an−2 −an−1

a∗0 −a1 −a2 · · · −an−2 −an−1 −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.1.10)

where aj and a∗j are the coefficients of the formal power series L and L∗ defined in
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(4.1.7) and χn+1 = (−1)2n+1
∏n+1

j=1 αj.

Proof. We provide an outline of the proof. Let the polynomials Un(λ) and Vn(λ), n ≥ 1,

satisfying the recurrence relation (4.1.5) be written as

Un(λ) = un1λ+ un2λ
2 + · · ·+ unnλ

n,

Vn(λ) = vn0 + vn1λ+ vn2λ
2 + · · ·+ vnnλ

n, n ≥ 1.

From the correspondence relations (4.1.8) and (4.1.9), it can be shown that

LVn(λ) = un1λ+ un2λ
2 + · · ·+ unnλ

n + (−1)n
n+1∏
j=1

αj
βj
λn+1 + µn+2λ

n+2 + · · · and

L∗Vn(λ) = un1λ
−n+1 + un2λ

−n+2 + · · ·+ unn + (−1)2n+1

n+1∏
j=1

αjλ
−n + µ−n−1λ

−n−1 + · · ·

where L and L∗ are the formal Laurent series defined in (4.1.7). Equating coefficients

of λ in the above two power series expressions, we obtain two systems of equations

respectively. Subtracting corresponding equations to eliminate un1, un2,· · · ,unn, and

choosing δk = a∗k − ak, we obtain the system of equations

δ−nvnn + δ−n+1vn,n−1 + δ−n+2vn,n−2 + · · ·+ δ−1vn1 + δ0vn0 = (−1)2n+1

n+1∏
j=1

αj,

δ−n+1vnn + δ−n+2vn,n−1 + δ−n+3vn,n−2 + · · ·+ δ0vn1 + δ1vn0 = 0,

...
...

...
...

...
...

...
...

...
...

...

δ−1vnn + δ0vn,n−1 + δ1vn,n−2 + · · ·+ δn−2vn1 + δn−1vn0 = 0,

δ0vnn + δ1vn,n−1 + δ2vn,n−2 + · · ·+ δn−1vn1 + δnvn0 = 0.

(4.1.11)

The determinant of the system of equations (4.1.11) is ∆n+1 6= 0. Hence an application

of Cramer’s rule along with the facts that ak = 0 for k ≤ 0 and a∗k = 0 for k > 1 yield

the required determinant (4.1.10).

For further discussion, we study the T -fraction (4.1.4), which under the transfor-
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mation F(λ) 7→ F(λ2) =: F(λ) is given by

F(λ) =
α1λ

2

λ2 − β1 -

α2λ
2

λ2 − β2 -

α3λ
2

λ2 − β3 -

α4λ
2

λ2 − β4 -
· · · , λ ∈ C. (4.1.12)

As mentioned earlier, our objective is to associate two generalized linear matrix pencils

with (4.1.12) and to discuss the orthogonality of the related Laurent polynomials. For

this, we note from (4.1.7), that the asymptotic series to which F(λ) corresponds are

L(λ) := L(λ2) =
∞∑
n=1

anλ
2n and L∗(λ) := L∗(λ2) =

∞∑
n=0

a∗−nλ
−2n,

where the correspondence is at λ = 0 and λ =∞ respectively. However, it is construc-

tive to deal with

L(λ) =
∞∑
n=1

anλ
n and L∗(λ) =

∞∑
n=0

a∗−nλ
−n (4.1.13)

where a2n+1 := 0, a2n := an, n ≥ 1 and a∗−2n+1 := 0, a∗−2n := a∗−n, n ≥ 0. Further,

the denominators Pn(λ), n ≥ 1, of the partial approximants of the continued fraction

(4.1.12) satisfy the recurrence relation

Pn+1(λ) = (λ2 − βn+1)Pn(λ)− αn+1λ
2Pn−1(λ), n ≥ 1, (4.1.14)

with the initial conditions P0(λ) = 1 and P1(λ) = λ2 − β1. It can be easily seen that

degPn(λ) = 2n and Pn(λ) = Vn(λ2), n ≥ 1, where Vn(λ) satisfies (4.1.5).

Introducing the Laurent polynomials

σR0 (λ) := P0(λ) = 1, σRn (λ) := λ−2nPn(λ), n ≥ 1,

we obtain the recurrence relation for σRn (λ), n ≥ 1, from (4.1.14) as

λ2σRn+1(λ) = (λ2 − βn+1)σRn (λ)− αn+1σ
R
n−1(λ), n ≥ 1, (4.1.15)

with σR0 (λ) = 1 and σR1 (λ) = λ−2(λ2 − β1).
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4.2 Biorthogonality from right eigenvectors

The final step before obtaining an eigenvalue representation is to linearize the system

(4.1.15) in λ, which we do by introducing another sequence of Laurent polynomials as

TR2n(λ) := σRn (λ) = λ−2nPn(λ), TR2n+1(λ) := λσRn (λ) = λ−2n+1Pn(λ), n ≥ 0. This gives

λTR0 (λ) = TR1 (λ), λ[−TR1 (λ) + TR3 (λ)] = −β1T
R
0 (λ) and

λTR2n(λ) = TR2n+1(λ),

λ[−TR2n+1(λ) + TR2n+3(λ)] = −βn+1T
R
2n(λ)− αn+1T

R
2n−2(λ), n ≥ 1.

This yields the generalized eigenvalue problem λGRTR = HRTR where

GR =



1 0 0 0 0 0 · · ·

0 −1 0 1 0 0 · · ·

0 0 1 0 0 0 · · ·

0 0 0 −1 0 1 · · ·

0 0 0 0 1 0 · · ·

0 0 0 0 0 −1 · · ·
...

...
...

...
...

...
. . .


, HR =



0 1 0 0 0 0 · · ·

−β1 0 0 0 0 0 · · ·

0 0 0 1 0 0 · · ·

−α2 0 −β2 0 0 0 · · ·

0 0 0 0 0 1 · · ·

0 0 −α3 0 −β3 0 · · ·
...

...
...

...
...

...
. . .


and hence we obtain the following generalized linear pencil matrix

JR(λ) =



λ −1 0 0 0 0 · · ·

β1 −λ 0 λ 0 0 · · ·

0 0 λ −1 0 0 · · ·

α2 0 β2 −λ 0 λ · · ·

0 0 0 0 λ −1 · · ·

0 0 α3 0 β3 −λ · · ·
...

...
...

...
...

...
. . .


,

associated with the eigenvector

TR =

(
TR0 (λ) TR1 (λ) TR2 (λ) TR3 (λ) TR4 (λ) TR5 (λ) · · ·

)T
.
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Theorem 4.2.1. Consider the moment functional

M(λn) =

 −a−n, n = −1,−2, · · · ;

a∗−n, n = 0, 1, 2, · · · .
(4.2.1)

where aj and a∗j are the coefficients appearing in the formal Laurent series (4.1.13).

Then, {TRj (λ)}∞j=0 satisfies the following orthogonality relations

M(TR2n(λ) ζRj (λ)) =
χn+1∆n

∆n+1

δ2n,j, (4.2.2a)

M(TR2n+1(λ) ζRj (λ)) =
χn+1∆n

∆n+1

δ2n−1,j, n, j ≥ 1, (4.2.2b)

where {ζRk (λ)}∞k=0 is a sequence of functions defined as

ζR2n(λ) = Pn(λ), ζR2n+1(λ) = λ−1Pn+1(λ), n ≥ 0.

Proof. Note that for n ≥ 1, TR2n(λ) contains only even powers of λ whereas ζR2n+1(λ)

contains only odd powers of λ. Since a2n−1 = a∗−(2n−1) = 0, n ≥ 0, it follows that

M(TR2n(λ) ζR2n−1(λ)) = 0, n ≥ 1.

Further, from the determinant expression (4.1.10) for Vn(λ), we get

TR2n(λ)λ2j =
χn+1

∆n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2j λ2j−2 λ2j−4 · · · λ−2n+2j+4 λ−2n+2j+2 λ−2n+2j

a∗−n+1 a∗−n+2 a∗−n+3 · · · a∗−1 a∗0 −a1

a∗−n+2 a∗−n+3 a∗−n+4 · · · a∗0 −a1 −a2

a∗−n+3 a∗−n+4 a∗−n+5 · · · −a1 −a2 −a3

...
...

...
. . .

...
...

...

a∗−1 a∗0 −a1 · · · −an−3 −an−2 −an−1

a∗0 −a1 −a2 · · · −an−2 −an−1 −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.2.3)

Hence, using (4.2.1), it is clear that M(TR2n(λ) λ2j) = 0 for j = 0, 1, · · · , n − 1, while
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for j = n, we have M(TR2n(λ) λ2n) = χn+1∆n

∆n+1
6= 0. This implies

M(TR2n(λ) ζR2j(λ)) = 0, M(TR2n(λ) ζR2n(λ)) =
χn+1∆n

∆n+1

, n ≥ 1,

which proves (4.2.2a). Similarly, for n ≥ 0, TR2n+1(λ) contains only odd powers of λ

(including λ−1) while ζR2n(λ) contains only even powers of λ. Hence

M(TR2n+1(λ) ζR2n(λ)) = 0, n ≥ 0.

In this case, the determinant occurring in the right hand side of (4.2.3) is equal to

TR2n+1(λ)λ2j−1 and so M(TR2n+1(λ) λ2j−1) = 0 for j = 0, 1, · · · , n − 1 while for j = n,

we have M(TR2n+1(λ) λ2n−1) = χn+1∆n

∆n+1
6= 0. This implies

M(TR2n+1(λ) ζR2j−1(λ)) = 0, M(TR2n+1(λ) ζR2n−1(λ)) =
χn+1∆n

∆n+1

, n ≥ 1,

which proves (4.2.2b).

4.3 Biorthogonality relations from left eigenvectors

Consider the normalized polynomials

σL0 (λ) := P0(λ) = 1 and σLn (λ) :=
Pn(λ)

(α2α3 · · ·αn+1)
, n ≥ 1.

Then from (4.1.14), we obtain the recurrence relation

αn+2σ
L
n+1(λ) = (λ2 − βn+1)σLn (λ)− λ2σLn−1(λ), n ≥ 1, (4.3.1)

with σL0 (λ) = 1 and σL1 (λ) = α−1
2 (λ2 − β1). To linearize (4.3.1) in λ, we intro-

duce the sequence of polynomials {TLn(λ)}∞n=0 where TL0 (λ) := σL0 (λ) = 1, TL2n(λ) :=

σLn (λ), TL2n+1(λ) := λσLn (λ), n ≥ 1. Hence, we obtain the system λTL0 (λ) = TL1 (λ),

λ[−TL1 (λ)] = −β1T
L
0 (λ)− α2T

L
2 (λ) and

λTL2n(λ) = TL2n+1(λ),
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λ[TL2n−1(λ)− TL2n+1(λ)] = −βn+1T
L
2n(λ)− αn+2T

L
2n+2(λ), n ≥ 1.

This gives the following generalized eigenvalue problem λTLGL = TLHL where

GL =



1 0 0 0 0 0 · · ·

0 −1 0 1 0 0 · · ·

0 0 1 0 0 0 · · ·

0 0 0 −1 0 1 · · ·

0 0 0 0 1 0 · · ·

0 0 0 0 0 −1 · · ·
...

...
...

...
...

...
. . .


, HL =



0 −β1 0 0 0 0 · · ·

1 0 0 0 0 0 · · ·

0 −α2 0 −β2 0 0 · · ·

0 0 1 0 0 0 · · ·

0 0 0 −α3 0 −β3 · · ·

0 0 0 0 1 0 · · ·
...

...
...

...
...

...
. . .


and

TL =

(
TL0 (λ) TL1 (λ) TL2 (λ) TL3 (λ) TL4 (λ) TL5 (λ) · · ·

)
.

Thus, we obtain the following generalized linear pencil matrix

J L(λ) =



λ β1 0 0 0 0 · · ·

−1 −λ 0 λ 0 0 · · ·

0 α2 λ β2 0 0 · · ·

0 0 −1 −λ 0 λ · · ·

0 0 0 α3 λ β3 · · ·

0 0 0 0 −1 −λ · · ·
...

...
...

...
...

...
. . .


Note that the corresponding blocks in JR(λ) and JL(λ) are transpose of each other and

lead to the respective generalized eigenvalue problems

TLJ L(λ) = 0 and J R(λ)TR = 0.

We state the following result about the orthogonality of TLj (λ), j ≥ 1. The proof is

similar to that of Theorem 4.2.1 and hence omitted.
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Theorem 4.3.1. Let the moment functions M be defined as in (4.2.1). Then the

sequence of polynomials {TLj (λ)}∞j=1 satisfies the orthogonality property

M(TL2n(λ) ζLj (λ)) =
χn+1∆n

∆n+1

δ2n,j,

M(TL2n+1(λ) ζLj (λ)) =
χn+1∆n

∆n+1

δ2n+1,j, n, j ≥ 1,

where {ζLk (λ)}∞k=0 is a sequence of Laurent polynomials defined as

ζL2n(λ) := λ−2nPn(λ), ζL2n+1(λ) := λ−2n−1Pn(λ), n ≥ 0.

Remark 4.3.1. In continuation of Remark 4.1.1, an operator theoretic interpretation

of the matrix pencils and hence the polynomials maps considered in this chapter could

be an interesting direction of study. We refer to Ganesh et al. [75] and Veeramani and

Sukumar [166] for information in this direction.

4.4 Towards RI and RII polynomials

As mentioned in Chapter 1, the polynomial sequences {Pn(λ)}∞n=0 and {Qn(λ)}∞n=0

satisfying

Pn+1(λ) = ρn(λ− βn)Pn(λ) + τn(λ− γn)Pn−1(λ), n ≥ 1 (4.4.1a)

Qn+1(λ) = ρn(λ− νn)Qn(z) + τn(λ− an)(λ− bn)Qn−1(λ), n ≥ 1, (4.4.1b)

with appropriately defined initial values are called RI and RII polynomials respectively.

We note that the recurrence relations satisfied by the para-orthogonal polynomials

{Rn(z)} studied in Chapter 3 as well as (4.1.5) satisfied by the denominators of a

general T -fraction are particular cases of the recurrence relation (4.4.1a) of RI type.

The RII polynomials are studied extensively in the context of biorthogonal rational

functions. Some references in this direction are Bultheel et al. [32] and Zhedanov [192].

Precisely, Qn(λ) satisfying (4.4.1b) appear as the numerator polynomials of the orthog-

onal rational functions having poles at {an} and {bn}. In case, an = zn and bn = z̄n,

(4.4.1b) is the recurrence relation satisfied by the denominators of the partial approxi-
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mants of the continued fraction expansions of Nevanlinna functions (Derevyagin [62]).

The particular case of an = i and bn = −i was studied in Ismail and Ranga [94] in the

context of orthogonality on the unit circle.

It is also proved in Zhedanov [192] that the polynomials {Pn(λ)} and {Qn(λ)} arise

as characteristic polynomials of the linear matrix pencil

G − λH :=



ζ1(λ) −σR1 (λ) 0 0 · · ·

−σL1 (λ) ζ2(λ) −σR2 (λ) 0 · · ·

0 −σL2 (λ) ζ3(λ) −σR3 (λ) · · ·

0 0 −σL3 (λ) ζ4(λ) · · ·

· · · · · · · · · · · · . . .


, (4.4.2)

where G, H are tridiagonal matrices, ζj(λ) is a polynomial of degree one while σLj (λ)

and σR1 (λ) are polynomials of degree at most one.

It may be observed that the generalized Jacobi pencil matrices obtained in the

present chapter are comparable to (4.4.2). This serves as our motivation to study

the RI and RII polynomials in the context of biorthogonality, generalized eigenvalue

problems and orthogonal rational functions. This forms the content of the next two

chapters of the thesis.
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Chapter 5

Orthogonality of linear

combinations of RI polynomials

The recurrence relations involving linear combinations of orthogonal polynomials on

the real line (quasi-orthogonal) are obtained in Draux [69]. Such recurrence relations

have polynomial coefficients that are either linear or quadratic. In some cases, as in

Jordaan and Toókos et al. [104], the recurrence relations are of mixed type depending on

the parameters involved. In this chapter, we consider one such linear combination of RI

polynomials that satisfy orthogonality properties. In addition to the mixed recurrence

relations, such linear combinations also satisfy biorthogonality relations that can be

derived from their eigenvalue representations. With certain additional conditions, we

further show that such linear combinations lead to para-orthogonal polynomials.

5.1 Constructing a sequence with a common zero

We study the linear combination of two successive RI polynomials of a sequence

{Pn(λ)}∞n=0, where Pn(λ), n ≥ 0, satisfies the recurrence relation

Pn+1(λ) = ρn(λ− βn)Pn(λ) + τn(λ− γn)Pn−1(λ), n ≥ 1, (5.1.1)

113
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of RI type with P0(λ) := 1 and P1(λ) := ρ0(λ−β0). That is, we consider the sequence

{Qn(λ)}∞n=0 where

Qn(λ) := Pn(λ) + αnPn−1(λ), αn ∈ R \ {0}, n ≥ 0.

We assume that βn 6= 0, n ≥ 0, so that Pn(0) 6= 0, n ≥ 1, in case γn = 0, n ≥ 1. We

will also use the condition β0 6= ±1, so that Q2(λ) does not have a repeated root at

λ = 1. The later condition will become clearer in section 5.3. We construct a unique

sequence {αn}∞n=0 such that {Qn(λ)}∞n=0 not only satisfies mixed recurrence relations

of RI and RII type but also all terms of the sequence have a common zero. We recall

that the following recurrence relation

P̂n+1(λ) = ρ̂n(λ− β̂n)P̂n(λ) + τ̂n(λ− γ̂(1)
n )(λ− γ̂(2)

n )P̂n−1(λ), n ≥ 1,

with P̂0(λ) = 1 and P̂1(λ) = ρ̂0(λ − β̂0) is called a recurrence relation of RII type in

Ismail and Masson [91] if ρ̂n 6= 0 and τ̂n 6= 0 for n ≥ 0.

The first result shows that Qn(λ), n ≥ 1, satisfies a three term recurrence relation

with polynomial coefficients of degree at most two.

Theorem 5.1.1. Given a sequence {Pn(λ)}∞n=1 of polynomials satisfying RI type re-

currence relations (5.1.1), consider the linear combinations of two successive such poly-

nomials

Qn(λ) = Pn(λ) + αnPn−1(λ), αn ∈ R \ {0}, n ≥ 0, (5.1.2)

where Q0(λ) := P0(λ) = 1. Then there exist constants {pn, qn, rn, sn, tn, un, vn, wn}

such that {Qn(λ)}∞n=1 satisfies a three term recurrence relation of the form

(pnλ+ qn)Qn+1(λ)

= (rnλ
2 + snλ+ tn)Qn(λ) + (unλ

2 + vnλ+ wn)Qn−1(λ), n ≥ 1, (5.1.3)

with Q0(λ) = 1 and Q1(λ) = ρ0(λ+ α1ρ
−1
0 − b0).
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Proof. For n ≥ 1, consider the following system

Qk(λ) = Pk(λ) + αkPk−1(λ), k = n− 1, n, n+ 1,

Pk(λ) = ρk−1(λ− βk−1)Pk−1(λ) + τk−1(λ− γk−1)Pk−2(λ), k = n, n+ 1,
(5.1.4)

written in the matrix form as

[Cn−1]



Qn−1(λ)

Pn−2(λ)

Pn−1(λ)

Pn(λ)

Pn+1(λ)


=



Qn+1(λ)

Qn(λ)

0

0

0


,

where

[Cn−1] =



0 0 0 αn+1 1

0 0 αn 1 0

−1 αn−1 1 0 0

0 0 τn(λ− γn) ρn(λ− βn) −1

0 τn−1(λ− γn−1) ρn−1(λ− βn−1) −1 0


is the coefficient matrix. Using Cramer’s rule, the first unknown variable Qn−1(λ) is

given by

det[Cn−1]Qn−1(λ) = det[An+1]Qn+1(λ)− det[Bn]Qn(λ),

where

[An+1] =


0 αn 1 0

αn−1 1 0 0

0 τn(λ− γn) ρn(λ− βn) −1

τn−1(λ− γn−1) ρn−1(λ− βn−1) −1 0


,
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[Bn] =


0 0 αn+1 1

αn−1 1 0 0

0 τn(λ− γn) ρn(λ− βn) −1

τn−1(λ− γn−1) ρn−1(λ− βn−1) −1 0


.

Expanding all the determinants by their respective last columns gives det[An+1] =

pnλ+ qn, det[Bn] = rnλ
2 + snλ+ tn and det[Cn−1] = unλ

2 + vnλ+wn, where, for n ≥ 1,

pn = αn−1ρn−1 − τn−1, qn = αn−1(αn − ρn−1βn−1) + τn−1γn−1,

rn = ρnpn, sn = ρnqn + α−1
n pnqn+1 − αn−1pn+1,

tn = −αn−1ρn−1βn−1(αn+1 − ρnβn) + γn−1(αn−1αn+1 − τn−1βnρn)− αn−1τnγn,

un = τn−1pn+1, vn = τn−1(qn+1 − γn−1pn+1), wn = −τn−1γn−1qn+1,

are the constants given explicitly in terms of the recurrence parameters used in (5.1.1)

and αn, n ≥ 0. Further, the values of Qk(λ), k = 0, 1 are obtained from (5.1.4) for

n = 0, 1 and hence the recurrence relation (5.1.3) is well-defined.

An immediate consequence is the following result that provides certain choices for

αn, n ≥ 0, such that Qn(λ), n ≥ 1, again satisfies a recurrence relation of RI type.

Corollary 5.1.1. The polynomials Qn(λ) = Pn(λ) + αnPn−1(λ), n ≥ 0, form a se-

quence of RI polynomials if αn = ρn−1βn−1 and γn = 0, n ≥ 0 or αn = τnρ
−1
n , n ≥ 0.

Proof. Choosing αn = τnρ
−1
n , n ≥ 0, makes pn and hence rn and un equal to zero for

n ≥ 1. Similarly, with αn = ρn−1βn−1 and γn = 0 we have tn = wn = 0 for n ≥ 1. Thus

(5.1.3) reduces to the recurrence relations

Qn+1(λ) = q−1
n (snλ+ tn)Qn(λ) + q−1

n (vnλ+ wn)Qn−1(λ), n ≥ 1,

Qn+1(λ) = p−1
n (rnλ+ sn)Qn(λ) + p−1

n (unλ+ vn)Qn−1(λ), n ≥ 1,

of RI type respectively.



117 5.1 Constructing a sequence with a common zero

5.1.1 Mixed recurrence relations of RI and RII type

It is clear that there are obvious ways to choose αn, n ≥ 0, if we require the linear

combinations Qn(λ), n ≥ 1, to be RI polynomials ab initio. We will verify this choice

in Section 5.3 when we obtain a para-orthogonal polynomial from Qn(λ). However, in

the present section, we suppose pn+1 6= 0, qn 6= 0, γn = γ ∈ C, n ≥ 1 and consider the

linear combinations

Qn(λ) = Pn(λ+ γ) + anPn−1(λ+ γ), n ≥ 1,

where Pn(λ+ γ) satisfies the recurrence relation (5.1.1). In such a case, we have

Pn+1(λ+ γ) = ρn(λ+ γ − βn)Pn(λ+ γ) + τnλPn−1(λ+ γ), n ≥ 1,

which is nothing but the recurrence relation (5.1.1) with γn = γ = 0, n ≥ 1. Then,

Qn(λ), n ≥ 1, satisfies the recurrence relation (5.1.3) but with the much simplified

constants

pn = αn−1ρn−1 − τn−1, qn = αn−1(αn − ρn−1βn−1), rn = ρnpn,

sn = α−1
n pnqn+1 + αn−1(τn − ρn−1βn−1ρn), tn = −α−1

n αn−1ρn−1βn−1qn+1,

un = τn−1pn+1, vn = τn−1qn+1, wn = 0.

(5.1.5)

which are obtained by substituting γn = 0 in Theorem 5.1.1. We use these simplified

constants to convert the recurrence relation (5.1.3) into a form that is appropriate for

further discussion.

Theorem 5.1.2. Suppose the sequence {αn}∞n=0 is constructed recursively as

αn = −(ρn−1 − α−1
n−1τn−1) + ρn−1βn−1, n ≥ 2, (5.1.6)

where α1 6= ρ0β0 is arbitrary. If α0 := τ0ρ
−1
0 , then {Qn(λ)}∞n=1 satisfies the mixed

recurrence relations

Q2(λ) =
s1

q1

(
λ+

t1
s1

)
Q1(λ)− τ0q2

q1

λ(λ− 1)Q0(λ) and (5.1.7a)
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Qn+1(λ) = ρn

(
λ− tn

rn

)
Qn(λ) +

τn−1qn+1

qn
λQn−1(λ), n ≥ 2, (5.1.7b)

with Q0(λ) = 1 and Q1(λ) = ρ0(λ+ α1ρ
−1
0 − β0).

Proof. The recursive relation (5.1.6) can be rearranged as

αn−1αn = −ρn−1αn−1 + τn−1 + αn−1ρn−1βn−1,

which implies that the relations (5.1.5) can be further simplified, for n ≥ 2, as

qn = −pn, rn = ρnpn, sn = −α−1
n pnpn+1 − αn−1pn+1 − ρnpn,

tn = α−1
n αn−1ρn−1βn−1pn+1, un = −vn = τn−1pn−1, wn = 0.

Then, for n ≥ 2, the recurrence relation (5.1.3) takes the form

(λ− 1)Qn+1(λ) = p−1
n [rnλ

2 + snλ+ tn]Qn(λ) + p−1
n unλ(λ− 1)Qn−1(λ). (5.1.8)

Further, pn + qn = 0, n ≥ 2, implies

pn + αn−1αn

(
1− ρn−1βn−1

αn

)
= 0

⇐⇒ pn+1

αn
+
αn−1pn+1

pn

(
1− ρn−1βn−1

αn

)
= 0

⇐⇒ ρn −
pn+1

αn
− αn−1pn+1

pn
− ρn +

αn−1ρn−1βn−1pn+1

αnpn
= 0

⇐⇒ p−1
n (rn + sn + tn) = 0, n ≥ 2.

This means that λ − 1 is a factor of the polynomial coefficient of Qn(λ) in (5.1.8).

Hence, excluding the factor (λ− 1), (5.1.8) can now be written as

Qn+1(λ) = ρn

(
λ− αn−1ρn−1βn−1pn+1

αnρnpn

)
Qn(λ) +

τn−1pn+1

pn
λQn−1(λ),

which is (5.1.7b) for n ≥ 2.

Now, with the conditions α0 = τ0ρ
−1
0 and α1 6= ρ0β0, we observe that p1 = 0 and
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q1 6= 0. Further

r1 = 0, s1 = ρ1q1 − α0p2, t1 = a0ρ0b0p2α
−1
1 , u1 = −v1 = τ0p2, w1 = 0.

Thus, (5.1.3) takes the form

q1Q2(λ) = (s1λ+ t1)Q1(λ) + τ0p2λ(λ− 1)Q0(λ),

which is (5.1.7a).

Remark 5.1.1. Similar to (5.1.6), one can also construct {αn}∞n=0 with qn = pn,

n ≥ 2. In this case also, as in (5.1.8), λ+ 1 becomes a factor of both the coefficients of

Qn(λ) and Qn−1(λ) which by a simple computation leads to the same mixed recurrence

relations (5.1.7a) and (5.1.7b).

5.1.2 Uniqueness of the sequence {αn}∞n=0

It is desirable to have the sequence {αn}∞n=0 uniquely defined. With α0 = τ0ρ
−1
0 , we

only need to define α1, so that (5.1.6) generates αn, n ≥ 2, uniquely. It is clear that

there are various ways to choose α1 subject to the only restriction that α1 6= ρ0β0.

We choose α1 so that one of our objectives that is, construction of a sequence of linear

combinations of RI polynomials such that all the terms in this sequence have a common

zero is achieved.

Theorem 5.1.3. Suppose Q1(1) = 0. Then Qn(λ) has a common zero at λ = 1 for

n ≥ 2, with Q2(λ) having a double zero at λ = 1 if, and only if, α1 6= ρ0b0 is a root of

the quadratic equation

ρ1x
2 − ρ0β0τ1 = 0. (5.1.9)

However, if Q2(λ) does not have a double zero at λ = 1, then, Qn(λ) and Qn−1(λ),

n ≥ 2, do not have a common zero except at λ = 1.

Proof. If Q1(λ) has a zero at λ = 1, it follows from the recurrence relations (5.1.7a)

and (5.1.7b) that λ = 1 is a root of Qn(λ), n ≥ 1. To check whether Q2(λ) has a
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double zero at λ = 1, differentiating both sides of (5.1.7a) with respect to λ, we obtain

q1Q′2(λ) = s1Q1(λ) + (s1λ+ t1)Q′1(λ) + 2λτ0p2 − τ0p2.

Since q1 6= 0, Q2(λ) has a double zero at λ = 1 if, and only if, (s1 + t1)ρ0 + τ0p2 = 0,

which upon substitution of the values of s1, t1 and p2 from Theorem 5.1.2, is equivalent

to the condition

ρ0

(
ρ1q1 + α0α

−1
1 q2(α1 − ρ0β0)

)
− τ0α1(α2 − ρ1β1) = 0

⇐⇒ ρ0q1(ρ1 + α2 − ρ1β1)− τ0α1(α2 − ρ1β1) = 0

⇐⇒ ρ0α0α
−1
1 τ1(α1 − ρ0β0) + τ0ρ1α1 − τ0τ1 = 0

⇐⇒ ρ1α
2
1 − ρ0β0τ1 = 0.

To prove the last part of the theorem, we use the procedure given in da Silva

and Sri Ranga [45, Lemma 2.1]. First, we note that Q1(0) = α1 − ρ0β0 6= 0 and

Qn+1(0) = tnq
−1
n 6= 0, n ≥ 1. We write (5.1.7b) as

τn−1qn+1

qn
λ =
Qn+1(λ)

Qn−1(λ)
− ρn

(
λ− tn

rn

)
Qn(λ)

Qn−1(λ)
(5.1.10)

and proceed to prove by induction. By hypothesis, Q1(λ) and Q2(λ) do not have

common zeros except at λ = 1. For n ≥ 3, suppose that Qn−1(λ) and Qn(λ) do

not vanish simultaneously at any point ω 6= 1 ∈ C. This means if Qn(ω) = 0, then

Qn−1(ω) 6= 0 and (5.1.10) yields τn−1qn+1ω/qn = Qn+1(ω)/Qn−1(ω). Since Qn+1(0) 6=

0, ω 6= 0, which further implies that Qn+1(ω) 6= 0.

The uniqueness of the sequence {αn}∞n=0 hence follows from the observationQ1(1) =

0 implies choosing α1 = ρ0(β0 − 1). In case we require that Q2(λ) does not have a

repeated root at λ = 1, we assign a value to α1 such that α1 does not satisfy (5.1.9).

Hence, we choose the initial values such that

τ1ρ
−1
1 6= ρ0β

−1
0 (1− β0)2 and β0 6= 0,±1. (5.1.11)

For the rest of the chapter, we will assume that the sequence {Qn(λ)}∞n=0 has been
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constructed with ρ0, β0, ρ1 and τ1 satisfying the inequalities (5.1.11). However, the fact

that such a sequence is obtained from linear combinations of RI polynomials suggest

that this sequence must itself satisfy some orthogonality properties and this forms the

content of the next two sections.

5.2 Biorthogonality from linear combinations

In this section, we consider the sequence {Qn(λ)}∞n=1 constructed from (5.1.6) with

α1 = ρ0(β0 − 1), so that Qn(1) = 0 for n ≥ 1. We further assume that the other zeros

of Qn(λ) are distinct, that is Qn(λ), n ≥ 1, has no repeated zeros.

Note that from the recurrence relations (5.1.7a) and (5.1.7b), the leading coefficient

of Qn(λ) is κn−1 = ρn−1ρn−2 · · · ρ0 6= 0, n ≥ 1. This also follows from the fact that the

leading coefficients of Qn(λ) and Pn(λ) are equal for n ≥ 1. Again from the recurrence

relations (5.1.7a) and (5.1.7b), it can be shown that Qn(λ), n ≥ 1, has the determinant

representation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0(λ− 1) τ0q2q
−1
1 (λ− 1) 0 · · · 0

λ q−1
1 (s1λ+ t1) −τ1q3q

−1
2 · · · 0

0 λ ρ2(λ− t2r−1
2 ) · · · 0

0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · ρn−1(λ− tn−1r
−1
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.2.1)

if one expands the determinant by its last column.

As the first step towards obtaining a biorthogonality relation, we express Qn(λ) as

the characteristic polynomial of a matrix.

Theorem 5.2.1. The zeros of the monic polynomials Q̂n(λ) = κ−1
n−1Qn(λ) are the
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eigenvalues of the matrix

Dn :=



s1q
−1
1

ρ1

τ0τ1q2q
−1
1

α1ρ1ρ0

−τ0τ1q3q
−1
1

ρ1ρ0

0 · · · 0

−1

ρ1

−ϑ2

α1ρ1

τ1q3q
−1
2

ρ1

0 · · · 0

1

ρ2ρ1

ϑ2

α1ρ2ρ1

−ϑ3

ρ2ρ1

−τ2q
−1
3 q4

ρ2

· · · 0

−1

ρ3ρ2ρ1

−ϑ2

α1ρ3ρ2ρ1

ϑ3

ρ3ρ2ρ1

−ϑ4

ρ3ρ2

· · · 0

...
...

...
...

. . .
...

(−1)n+1

ρn−1 · · · ρ1

(−1)n+1ϑ2

α1ρn−1 · · · ρ1

(−1)n+2ϑ3

ρn−1 · · · ρ1

(−1)n+3ϑ4

ρn−1 · · · ρ2

· · · −ϑn
ρn−1ρn−2


where ϑ2 = q2 and ϑn = qn(1 + ρn−2α

−1
n−1), n ≥ 3.

The proof of Theorem 5.2.1 involves the inversion of a tridiagonal matrix. Such

inverses for particular tridiagonal matrix operators are studied in Sivakumar [159].

However, we use the following lemma proved in Usmani [177] for the expression of the

matrix inverse of the general tridiagonal matrix given by

Jn =



b1 c1 0 · · · 0 0

a2 b2 c2 · · · 0 0

0 a3 b3 · · · 0 0
...

...
...

. . . bn−1 cn−1

0 0 0 · · · an bn


.

Lemma 5.2.1. Let J −1
n = [αi,j]. Then for ak 6= 0 and i ≥ j,

αi,j =

 (−1)i+jaj+1aj+2 · · · ai θj−1φi+1

θn
, j = 1, 2, · · · , i− 1;

θi−1φi+1

θn
, j = i,

(5.2.2)

while for r < s,

αr,s =
s−1∏
k=r

ck
ak+1

αs,r. (5.2.3)
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Here, θn is the determinant of the matrix Jn, while the sequence {φk}nk=1 is defined as

φk = bkφk+1 − ak+1ckφk+2, k = 1, 2, · · · , n,

φn+1 = 1, φn+2 = 0.
(5.2.4)

Proof of Theorem 5.2.1. The determinant expression (5.2.1) for Qn(λ), n ≥ 1, can be

expressed as the determinant of a linear matrix pencil λGn −Hn, where

Gn =



ρ0 τ0q2q
−1
1 0 · · · 0

1 s1q
−1
1 0 · · · 0

0 1 ρ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ρn−1


and

Hn =



ρ0 τ0q2q
−1
1 0 · · · 0

0 −t1q−1
1 τ1q3q

−1
2 · · · 0

0 0 −t2q−1
2 · · · 0

...
...

...
. . .

...

0 0 0 · · · −tn−1q
−1
n−1


.

Here we used the relation tjρjr
−1
j = tjp

−1
j = −tjq−1

j , j ≥ 2. Then, for n ≥ 1,

Qn(λ) = det(λGn −Hn) = det(Gn) · det(λIn − G−1
n Hn),

where In is the n × n identity matrix. However det(Gn) = κn−1 6= 0 implies that Gn
is invertible and κ−1

n−1Qn(λ) = det(λIn − G−1
n Hn). Hence, Q̂n(λ) is the characteristic

polynomial of the matrix product Dn = G−1
n Hn. The proof will be complete once we

find the matrix inverse G−1
n .

Comparing the matrix Gn with the matrix Jn, we have c1 = τ0q2q
−1
1 and ci = 0,

ai = 1 for i ≥ 2. Further, θn = det(Gn) = κn−1 and hence from (5.2.4), φk =

ρn−1ρn−2 · · · ρk−1, k = n, n − 1, · · · , 3, 1 with φ2 = ρn−1ρn−2 · · · ρ2s1q
−1
1 . Using (5.2.2),
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the diagonal elements of G−1
n are

α1,1 =
θ0φ2

θn
=
ρn−1ρn−2 · · · ρ2s1q

−1
1

ρn−1ρn−2 · · · ρ0

=
s1q
−1
1

ρ0ρ1

,

αi,i =
θi−1φi+1

θn
=
ρ0ρ1 · · · ρi−2 · ρn−1ρn−2 · · · ρi

ρ0ρ1 · · · ρn−1

=
1

ρi−1

, i ≥ 2,

while for i ≥ j, j = 1, 2, · · · , i− 1, i = 1, 2, · · · , n,

αi,j =
(−1)i+j

ρi−1ρi−2 · · · ρj−1

.

Thus the elements on and below the diagonal of G−1
n are estimated. For i ≤ j, we note

that the right hand side of (5.2.3) is non-zero only for r = 1 and s = 2 since ci = 0 for

i ≥ 2. Hence

α1,2 = τ0q2q
−1
1 α2,1 = −τ0q2q

−1
1

ρ1ρ0

.

Explicitly, the matrix inverse G−1
n is given by



s1q
−1
1

ρ1ρ0

−τ0q2q
−1
1

ρ1ρ0

0 · · · 0

− 1

ρ1ρ0

1

ρ1

0 · · · 0

1

ρ2ρ1ρ0

− 1

ρ2ρ1

1

ρ2

· · · 0

...
...

...
. . .

...

(−1)n+1

ρn−1 · · · ρ0

(−1)n+2

ρn−1 · · · ρ1

(−1)n+3

ρn−1 · · · ρ2

· · · 1

ρn−1


and the proof is complete by calculating the matrix product Dn = G−1

n Hn.

With the assumptions made at the beginning of this section, the eigenvalues of the

matrix Dn are distinct and the intersection of the spectrum of Dn with that of Dn+1,

n ≥ 1, is non-empty, consisting only of the point λ = 1. However, note that both G−1
n

and Dn can be viewed as the matrix forms E1G + εGE2G and E1D + εDE2D respectively,

where E1G, E2G, E1D and E2D are n×n matrices while εG and εD are constants. Precisely,
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E1G is a lower triangular matrix, E1D is a lower Hessenberg matrix,

E2G =


0 1 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

. . . · · · 0

0 0 0 0 · · · 0


, E2D =


0 0 1 0 · · · 0

0 0 0 0 · · · 0
...

...
...

. . . · · · 0

0 0 0 0 · · · 0


.

εG = −τ0q2q
−1
1 /ρ1ρ0, and εD = −τ0τ1q3q

−1
1 /ρ1ρ0. The effect of such linear perturbation

of the spectra of the matrix are investigated in Alam and Bora [1, 2].

5.2.1 Eigenvectors from Qn(λ)

We construct the left and right eigenvectors of the pencil matrix λGn − Hn. The su-

perscript L(R) corresponds to the left (right) eigenvectors respectively. With σL0 (λ) :=

σR0 (λ) := Q0(λ) = 1, consider the following rational functions

σLk (λ) :=
Qk(λ)

(−λ)k
, σRk (λ) := − Qk(λ)∏k−1

j=0 τjqk+1q
−1
1 (λ− 1)

, (5.2.5)

for k = 1, 2, · · · , n. Then, (5.1.7a) and (5.1.7b) written in terms of σLn (λ) and σRn (λ)

will yield respectively

λ[ρ0σ
L
0 (λ) + σL1 (λ)] = ρ0σ

L
0 (λ),

λ[τ0q2q
−1
1 σL0 (λ) + s1q

−1
1 σL1 (λ) + σL2 (λ)] = τ0q2q

−1
1 σL0 (λ)− t1q−1

1 σL1 (λ),

λ[ρnσ
L
n (λ) + σLn+1(λ)] = τn−1qn+1q

−1
n σLn−1(λ)− tnq−1

n σLn (λ)

(5.2.6)

and

λ[ρ0σ
R
0 (λ) + τ0q2q

−1
1 σR1 (λ)] = τ0q2q

−1
1 σR1 (λ) + ρ0σ

R
0 (λ),

λ[σR0 (λ) + t1q
−1
1 σR1 (λ)] = τ1q3q

−1
2 σR2 (λ)− t1q−1

1 σR1 (λ),

λ[σRn−1(λ) + ρnσ
R
n (λ)] = τnqn+2q

−1
n+1σ

R
n+1(λ)− tnq−1

n σRn (λ).

(5.2.7)
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Defining the sequences {χLn(λ)}∞n=0 and {χRn (λ)}∞n=0 where

χL0 (λ) = ρ0σ
L
0 (λ) + σL1 (λ), χL1 (λ) = τ0q2q

−1
1 σL0 (λ) + s1q

−1
1 σL1 (λ) + σL2 (λ),

χLn(λ) = ρnσ
L
n (λ) + σLn+1(λ), n ≥ 2,

(5.2.8)

and

χR0 (λ) = ρ0σ
R
0 (λ) + τ0q2q

−1
1 σR1 (λ), χR1 (λ) = σR0 (λ) + t1q

−1
1 σR1 (λ),

χRn (λ) = σRn−1(λ) + ρnσ
R
n (λ), n ≥ 2.

(5.2.9)

(5.2.6) can be written as

λχL0 (λ) = ρ0σ
L
0 (λ), λχL1 (λ) = τ0q2q

−1
1 σL0 (λ)− t1q−1

1 σL1 (λ),

λχLn(λ) = τn−1qn+1q
−1
n σLn−1(λ)− tnq−1

n σLn (λ), n ≥ 2.
(5.2.10)

while (5.2.7) can be written as

λχR0 (λ) = τ0q2q
−1
1 σR1 (λ) + ρ0σ

R
0 (λ), λχR1 (λ) = τ1q3q

−1
2 σR2 (λ)− t1q−1

1 σR1 (λ),

λχRn (λ) = τnqn+2q
−1
n+1σ

R
n+1(λ)− tnq−1

n σRn (λ), n ≥ 2.
(5.2.11)

For n ≥ 1, the matrix equations corresponding to (5.2.6) and (5.2.7) are respectively

λσL(λ)Gn = σL(λ)Hn + λσLn (λ)eTn and (5.2.12a)

λGnσR(λ) = Hnσ
R(λ) + τn−1qn+1q

−1
n σRn (λ)en, (5.2.12b)

where en is the nth column of the n× n identity matrix In,

σL(λ) =

(
σL0 (λ) σL1 (λ) · · · σLn−1(λ)

)
and

σR(λ) =

(
σR0 (λ) σR1 (λ) · · · σRn−1(λ)

)T
.

Here Gn and Hn are the matrices defined in Theorem 5.2.1. Let the zeros of Qn(λ),

n ≥ 1, be denoted as λn,j, j = 1, 2, · · · , n. Since both σLn (λ) and σRn (λ) vanish at λnj,

it follows from (5.2.12a) and (5.2.12b) that σLn(λnj) and σRn (λnj) are the left and right

eigenvectors of the linear pencil matrix Gn − λHn respectively.
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5.2.2 The associated measure

Using the matrix representations (5.2.12a) and (5.2.12b) we obtain a discrete measure

of biorthogonality which requires the removal of the common zero λ = 1. First, we

recall the following standard result and outline a proof to provide further clarity.

Lemma 5.2.2. The trace of the matrix product σR(ω)σL(λ)Gn which is also equal to

the trace of GnσR(ω)σL(λ) is same as the matrix product σL(λ)GnσR(ω).

Proof. The matrix product σR(ω)σL(λ)Gn is



σR0 (ω)σL0 (λ) σR0 (ω)σL1 (λ) · · · σR0 (ω)σLn−2(λ) σR0 (ω)σLn−1(λ)

σR1 (ω)σL0 (λ) σR1 (ω)σL1 (λ) · · · σR1 (ω)σLn−2(λ) σR1 (ω)σLn−1(λ)
...

...
. . .

...
...

σRn−2(ω)σL0 (λ) σRn−2(ω)σL1 (λ) · · · σRn−2(ω)σLn−2(λ) σRn−2(ω)σLn−1(λ)

σRn−1(ω)σL0 (λ) σRn−1(ω)σL1 (λ) · · · σRn−1(ω)σLn−2(λ) σRn−1(ω)σLn−1(λ)


n×n

×



ρ0 τ0q2q
−1
1 0 0 · · · 0 0

1 s1q
−1
1 0 0 · · · 0 0

0 1 ρ2 0 · · · 0 0

0 0 1 ρ3 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · ρn−2 0

0 0 0 0 · · · 1 ρn−1


n×n

so that the trace is

[ρ0σ
L
0 (λ) + σL1 (λ)]σR0 (ω) + [τ0q2q

−1
1 σL0 (λ) + s1q

−1
1 σL1 (λ) + σL2 (λ)]σR1 (ω)

+ [ρ2σ
L
2 (λ) + (ω)σL3 (λ)]σR2 (ω) + [ρ3σ

L
3 (λ) + σL4 (λ)]σR3 (ω) + · · ·

+ [ρn−2σ
L
n−2(λ) + σLn−1(λ)]σRn−2(ω) + ρn−1σ

R
n−1(ω)σLn−1(λ).

(5.2.13)
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The sum (5.2.13) can also be represented as the matrix product

σL(λ)GnσR(ω) =



ρ0σ
L
0 (λ) + σL1 (λ)

τ0q2q
−1
1 σL0 (λ) + s1q

−1
1 σL1 (λ) + σL2 (λ)

ρ2σ
L
2 (λ) + σL3 (λ)

ρ3σ
L
3 (λ) + σL4 (λ)

...

ρn−2σ
L
n−2(λ) + σLn−1(λ)

ρn−1σ
L
n−1(λ)



T

n×1



σR0 (ω)

σR1 (ω)

σR2 (ω)

σR3 (ω)
...

σRn−2(ω)

σRn−1(ω)


n×1

thus proving the lemma.

The following result gives an expression for the measure of biorthogonality. The

proof is motivated by the analysis in da Silva and Sri Ranga [45, Section 2].

Theorem 5.2.2. Let the zeros of Qn(λ) be denoted as λn,j, j = 1, 2, · · · , n, with

λn,n = 1. Then, the following biorthogonality relation

n−1∑
i=0

σRi (λn,j)χ̃
L
i (λn,k)µn,j,k = δj,k, j, k = 0, 1, · · · , n− 2, (5.2.14)

holds, where χ̃Li (λn,k) = χLi (λn,k), i = 1, 2, · · · , n− 2 and χ̃n−1(λ) = ρn−1σ
L
n−1(λ). The

weight function µn,j,k has the expression

µn,j,k = [τn−1qn+1q
−1
n [σRn (λn,j)]

′
σLn−1(λn,k)]

−1, j, k = 1, · · · , n− 1.

Proof. Post-multiplying (5.2.12b) by σL(λ) and pre-multiplying (5.2.12a) by σR(ω)

after evaluating (5.2.12b) at ω, we obtain the systems

λσR(ω)σL(λ)Gn = σR(ω)σL(λ)Hn + λσR(ω)σLn (λ)eTn and (5.2.15a)

ωGnσR(ω)σL(λ) = Hnσ
R(ω)σL(λ) + τn−1qn+1q

−1
n σRn (ω)enσ

L(λ). (5.2.15b)

The first step is to subtract the matrix traces of the corresponding sides of (5.2.15b)

from (5.2.15a). By Lemma 5.2.2, the left hand side after subtraction of the matrix

traces gives (λ− ω)σL(λ)GnσR(λ).
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We now find the traces of the matrix products appearing in the right hand sides of

(5.2.15a) and (5.2.15b). Since en is the nth column of the n × n identity matrix, the

matrix product τn−1qn+1q
−1
n σRn (ω)enσ

L(λ) is



0

0
...

0

τn−1qn+1q
−1
n σRn (ω)


n×1

(
σL0 (λ) σL1 (λ) · · · σLn−2(λ) σLn−1(λ)

)
1×n

which implies the trace of τn−1qn+1q
−1
n σRn (ω)enσ

L(λ) is τn−1qn+1q
−1
n σRn (ω)σLn−1(λ). The

trace of the matrix product λσR(ω)σLn (λ)eTn is λσRn−1(ω)σLn (λ) which follows from

λ



σR0 (ω)

σR1 (ω)
...

σRn−2(ω)

σRn−1(ω)


n×1

(
0 0 · · · 0 σLn (λ)

)
1×n

.

Hence, subtracting the matrix trace of (5.2.15b) from the matrix trace of (5.2.15a)

yields

σL(λ)GnσR(ω) =
λσRn−1(ω)σLn (λ)− τn−1qn+1q

−1
n σRn (ω)σLn−1(λ)

λ− ω
. (5.2.16)

Since, σLn (λn,j) and σRn (λn,k) vanish at λ = λn,j and ω = λn,k, j = 1, 2, · · · , n with

k = 1, 2, · · · , n but j 6= k, (5.2.16) yields

σL(λnj)GnσR(λnk) = 0, j, k = 1, 2, · · · , n, j 6= k.

Now, we proceed for the case j = k. The idea is to let ω −→ λ and see the behavior

of the right hand side of (5.2.16). However, for this purpose we need to exclude the
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common point λn,n = ωn,n = 1. Then, as ω −→ λ in (5.2.16), we obtain

σL(λ)GnσR(λ) = τn−1qn+1q
−1
n [σRn (λ)]

′
σLn−1(λ)− λ[σRn−1(λ)]

′
σLn (λ).

Hence at the zeros λ = λn,j, j = 1, 2, · · · , n− 1,

σL(λn,j)GnσR(λn,j) = τn−1qn+1q
−1
n [σRn (λn,j)]

′
σLn−1(λn,j).

Denoting µ−1
n,j := τn−1qn+1q

−1
n [σRn (λn,j)]

′
σLn−1(λn,j), we note the following points.

• By Theorem 5.1.3, Qn−1(λ) and Qn(λ) n ≥ 1, do not have common zeros which

implies that σLn−1(λnj) 6= 0.

• [σRn (λ)]
′
=

−1∏k−1
j=1 τjqk+1q

−1
1

Q′n(λ)(λ− 1)−Qn(λ)λ

(λ− 1)2
leads to

[σRn (λnj)]
′
=

−1∏k−1
j=1 τjqk+1q

−1
1

Q′n(λnj)(λnj − 1)

(λnj − 1)2
6= 0, because λnj 6= 1,

for j = 1, · · · , n−1 and Q′n(λnj) 6= 0 (as Qn(λ) is assumed to have simple zeros).

Hence µ−1
n,j 6= 0, j = 1, · · · , n− 1 so that from (5.2.16), the orthogonality relations

[
GTn [σL(λn,j)]

T
]T
σR(λn,k) = µ−1

n,jδj,k, j, k = 1, 2, · · · , n− 1, (5.2.17)

hold. This shows that the two finite sequences {GTn [σL(λn,j)]
T}n−1

j=1 and {σR(λn,k)}n−1
k=1

are biorthogonal to each other.

To proceed further in the proof, we define

µ−1
n,j,k := τn−1qn+1q

−1
n [σRn (λn,j)]

′
σLn−1(λn,k),

where we note that for k = j, µ−1
n,j,j = µ−1

n,j. Further, from (5.2.17) the relation

σL(λnj)GnσR(λnk) = τn−1qn+1q
−1
n [σRn (λnj)]

′
σLn−1(λnj)δj,k,

can also be written as the matrix product

σL(λnj)

σLn−1(λnj)
Gn ·

σR(λnk)

τn−1qn+1q−1
n [σRn (λnj)]

′ = δj,k, j, k = 1, 2, · · · , n− 1. (5.2.18)
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Note that for j, k = 1, 2, · · · , n−1, the RHS of (5.2.18) is the (n−1)× (n−1) identity

matrix In−1. The first matrix product in the left hand side of (5.2.18) gives the row

vector

σL(λnj)

σLn−1(λnj)
Gn =

(
χL0 (λn,j)

σLn−1(λn,j)

χL1 (λn,j)

σLn−1(λn,j)
· · ·

χLn−2(λn,j)

σLn−1(λn,j)

ρn−1σ
L
n−1(λn,j)

σLn−1(λn,j)

)
,

which when expanded for j = 1, 2, · · · , n− 1, gives the (n− 1)× n matrix

Bn−1×n =



χL0 (λn,1)

σLn−1(λn,1)

χL1 (λn,1)

σLn−1(λn,1)
· · ·

χLn−2(λn,1)

σLn−1(λn,1)

ρn−1σ
L
n−1(λn,1)

σLn−1(λn,1)
χL0 (λn,2)

σLn−1(λn,2)

χL1 (λn,2)

σLn−1(λn,2)
· · ·

χLn−2(λn,2)

σLn−1(λn,2)

ρn−1σ
L
n−1(λn,2)

σLn−1(λn,2)
...

...
. . .

...
...

χL0 (λn,j)

σLn−1(λn,j)

χL1 (λn,j)

σLn−1(λn,j)
· · ·

χLn−2(λn,n−2)

σLn−1(λn,n−2)

ρn−1σ
L
n−1(λn,n−2)

σLn−1(λn,n−2)
χL0 (λn,n−1)

σLn−1(λn,n−1)

χL1 (λn,n−1)

σLn−1(λn,n−1)
· · ·

χLn−2(λn,j)

σLn−1(λn,n−1)

ρn−1σ
L
n−1(λn,n−1)

σLn−1(λn,n−1)


.

Similarly, the second matrix product in the left hand side of (5.2.18) gives the following

n× (n− 1) matrix

An×(n−1) =



σR0 (λn1)

cn1

σR0 (λn2)

cn2

· · · σR1 (λn,n−2)

cn,n−2

σR1 (λn,n−1)

cn,n−1

σR1 (λn1)

cn1

σR1 (λn2)

cn2

· · · σR1 (λn,n−2)

cn,n−2

σR1 (λn,n−1)

cn,n−1
...

...
. . .

...
...

σRn−2(λn1)

cn1

σRn−2(λn2)

cn2

· · ·
σRn−2(λn,n−2)

cn,n−2

σRn−2(λn,n−1)

cn,n−1

σRn−1(λn1)

cn1

σRn−1(λn2)

cn2

· · ·
σRn−1(λn,n−2)

cn,n−2

σRn−1(λn,n−1)

cn,n−1


,

where cnj = τn−1qn+1q
−1
n [σRn (λnj)]

′
. Note that χLi (λ), i = 1, 2, · · · , n − 2 is as defined

in (5.2.8) while σRi (λ) is as defined in (5.2.5). It follows from (5.2.17) that the matrix

relation Bn−1×n · An×n−1 = In−1 holds. The system of equations that results from

ATn−1×n · BTn×n−1 = In−1 can be written as

n−1∑
i=0

σRi (λn,j)χ̃
L
i (λn,k)µn,j,k = δj,k, j, k = 1, · · · , n− 1,
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which is (5.2.14), thus proving that the two finite sequences {σRi (λ)}n−1
i=0 and {χLk (λ)}n−1

k=0

are biorthogonal to each other on the point set λ = λn,1, λn,2, · · · , λn,n−1, which is the

set of zeros of Qn(λ) excluding the point λ = 1.

If
∧

denotes the space of Laurent polynomials, define a linear functional N on∧
×
∧

as

N (k,j)
n−1 [hi(λ) gi(λ)] =

n−1∑
i=0

hi(λn,j)gi(λn,k)µn,j,k.

Then, we have the following result.

Theorem 5.2.3. The sequence {Qn(λ)}∞n=1 satisfy

N (k,j)
n−1

[
λ−n+m
n,k (λ− 1)−1Qi(λ)

]
= 0, N (k,k)

n−1

[
λ−n+m
n,k (λ− 1)−1Qi(λ)

]
6= 0,

for k = 1, · · · , n− 1, and m = 1, 2, · · · , n.

Proof. From Theorem 5.2.2, we have

N (k,j)
n−1 [σRi (λ)χ̃i(λ)] = δj,k, 0 ≤ i ≤ n− 1, 1 ≤ j, k ≤ n− 1.

Using the definitions (5.2.8) of χLk (λ), it is clear that

{χ̃L0 (λn,k), χ̃
L
1 (λn,k), · · · , χ̃Ln−1(λn,k)},

(where χ̃Lj (λ) = χLj (λ), j = 0 · · · , n− 2 and χ̃n=1(λ) = ρn−1σ
L
n−1(λ)), forms a basis for

the subspace of Laurent polynomials spanned by {1, λ−1
n,k, λ

−2
n,k, · · · , λ

−n+1
n,k }. Note that

each fixed k yields n− 1 such subspaces. Further, this implies

N (k,j)
n−1 [λ−n+m

n,k σRi (λ)] = 0, j, k = 0, 1, · · · , n− 1, m = 1, 2, · · · , n,

while N (k,j)
n−1 [λ−n+m

n,k σRi (λ)] 6= 0, whenever σRi (λ) is evaluated at λ = λn,k. The theorem

now follows from the fact that σRi (λ) = −[
∏i−1

j=0 τjqi+1q
−1
1 (λ− 1)]−1Qi(λ).

It may be observed that biorthogonality relations satisfied only up to a finite num-

ber of polynomials in a sequence are obtained in the present section. Such cases are
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considered in da Silva and Sri Ranga [45] and Zhedanov [191]. In general, the matrices

A and B in such cases are non-singular n×n matrices and the biorthogonality relations

are obtained through the matrix relation AB = I =⇒ B−1A−1 = I. In the present

case, this is not applicable since the matrices involved are rectangular.

One way of representation is to find the matrix transpose as illustrated above.

Another way can be the use of generalized inverses, for example, the Moore-Penrose

inverse which always exists and is unique. We refer, for example, to Mishra and

Sivakumar [133,134] and Kulkarni and Ramesh [110,111] for information on the Moore-

Penrose inverse of a matrix.

5.3 Para-orthogonality from linear combinations

The orthogonality condition in Theorem 5.2.2 which required the removal of any com-

mon zeros of consecutive polynomials motivates us to study the sequence of polynomials

in which the common zero λ = 1 has been removed. Hence, we consider the sequence

{Rn(λ)}∞n=1 where R0(λ) := and Rn(λ) = κ−1
n (λ− 1)−1Qn+1, n ≥ 1. We recall that κn

is the leading coefficient of Qn+1(λ), thus making Rn(λ) monic.

For para-orthogonality, we impose conditions on the parameters used in the recur-

rence relation (5.1.1) of RI type. First, −2 < τnρ
−1
n < 0, n ≥ 0. By a direct com-

putation from (5.1.7a), we obtain Q2(λ) = κ2(λ− 1)(λ + t1ρ
−1
1 q−1

1 ). Then, Q2(λ) has

the second zero at λ = −1 if t1 = ρ1q1 which is equivalent to α1 = τ1ρ
−1
1 β0(1 + β0)−1.

Since α1 = ρ0(β0 − 1), this narrows down the choice of the initial values to satisfy

τ1ρ
−1
1 = ρ0β

−1
0 (β2

0 − 1). We note that such a choice does not contradict the inequalities

(5.1.11) given at the end of Section 5.1 since β0 6= ±1.

Hence from (5.1.7b), Rn(λ), n ≥ 1, satisfies the recurrence relation

Rn+1(λ) =

(
λ− tn+1

rn+1

)
Rn(λ) +

τnpn+2

ρnrn+1

λRn−1(λ), n ≥ 1, (5.3.1)

with the initial conditions R0(λ) = 1 and R1(λ) = λ+ 1. The following result imposes

further restrictions on the choice of αn for Rn(λ) to be a para-orthogonal polynomial.

Theorem 5.3.1. Let the sequence {αn}∞n=1 be so constructed from the recursive relation
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(5.1.6) that, the following conditions

αnρn = (2ρn + τn)(ρn−1αn−1 − τn−1) + τn and (5.3.2a)

αnρn = −ρn−1βn−1(2ρn + τn)αn−1, n ≥ 2, (5.3.2b)

where α0 = ρ0τ
−1
0 and α1 = ρ0(β0−1) are also satisfied. Then {Rn(λ)}∞n=1 is a sequence

of para-orthogonal polynomials.

Proof. The condition (5.3.2a) implies (αnρn − τn)/(αn−1ρn−1 − τn−1) = (pn+1)/(pn) =

2ρn+ τn, n ≥ 2, while (5.3.2b) implies (αn−1ρn−1βn−1(2ρn+ τn))/(αnρn) = tn/rn = −1,

n ≥ 2. Further, with rn = ρnpn, we obtain

pn+1

pn
= 2ρn + τn =⇒ pn+1

rn
− τn
ρn

= 2, n ≥ 2.

We, choose τnρ
−1
n = −2(1 −mn), n ≥ 1, so that 2mn = pn+1r

−1
n , n ≥ 2, with 2m1 =

2 + τnρ
−1
n . Further, 0 < mn < 1 since −2 < τnρ

−1
n < 0, n ≥ 1 and hence the recurrence

relation (5.3.1) for Rn reduces to

Rn+1(λ) = (λ+ 1)Rn(λ)− 4dn+1λRn−1(λ), n ≥ 1, (5.3.3)

with R0(λ) = 1 and R1(λ) = λ+ 1. Moreover

τnpn+2

ρnrn+1

= −4(1−mn)mn+1 n ≥ 1,

implies dn+1 = (1 − mn)mn+1 is a positive chain sequence (Ismail [90, Section 7.2]).

The recurrence relation (5.3.3) is a particular case studied in Castillo et al. [37] and

hence it follows that {Rn(λ)}∞n=1 is a sequence of para-orthogonal polynomials.

The recurrence relation (5.3.3) is also considered in Chapter 3 in the context of

complementary chain sequences. Further, from Castillo et al. [37, Theorems 4.1 and

5.2], we can state the following. There exists a non-trivial probability measure on the

unit circle such that for n ≥ 1,

∫
C
ζ−n+kRn(ζ)(1− ζ)dµ(ζ) = 0, k = 0, 1, · · · , n− 1.
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This implies that the linear combinations of RI polynomials, Qn(λ), n ≥ 1, satisfy

∫
C
ζ−n+kQn(ζ)dµ(ζ) = 0, k = 0, 1, · · · , n− 1.

Moreover, the monic polynomials

Φn(λ) = Rn(λ)− 2(1−mn)Rn−1(λ) = Rn(λ) + τnρ
−1
n Rn−1(λ), n ≥ 1, (5.3.4)

are orthogonal polynomials on the unit circle with respect to the probability measure µ

and αn−1 = −Φn(0) = −(1+τnρ
−1
n ), n ≥ 1. The parameters αn−1 are called Verblunsky

coefficients (Simon [156]) and, since −2 < τnρ
−1
n < 0, lie in the real interval [−1, 1] in

the present case.

The polynomials Φn(λ), n ≥ 1, called as Szegő polynomials, also satisfy

Φn+1(λ) =

(
Φn+1(0)

Φn(0)
+ λ

)
Φn(λ)− (1− |Φn(0)|2)Φn+1(0)

Φn(0)
λΦn−1(λ), n ≥ 1,

which is a recurrence relation of RI type. With the results obtained in this chapter, they

can be viewed as RI polynomials, that can further be expressed as a linear combination

of consecutive polynomials of another class of RI polynomials. Note that we have

chosen αn = τnρ
−1
n , n ≥ 1, thus verifying Corollary 5.1.1.

Remark 5.3.1. Since Szegő polynomials can also be viewed as RI polynomials, by

definition (Jones et al. [101]), a para-orthogonal polynomial is always obtained as a

linear combination of RI polynomials satisfying appropriate three term recurrence re-

lations. In fact, expressing the parameters ρn, βn and τn in terms of αn can lead to the

identification of the class of RI polynomials whose linear combinations with constant

coefficients are para-orthogonal polynomials.

5.4 A hypergeometric function of RI type

Consider the recurrence relation of RI type

Pn+1(λ) =
b+ n

c+ n

(
λ− b− c− n

b+ n

)
Pn(λ)− n

c+ n
λPn−1(λ), n ≥ 1,
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where P0(λ) := 1 and P1(λ) := b
c
(λ − b−c

b
). Comparing with the general recurrence

relation (5.1.1) of RI type, the parameters are given by

ρn =
b+ n

c+ n
, βn =

b− c− n
b+ n

, τn+1 = − n+ 1

c+ n+ 1
, γn = 0, n ≥ 0,

with τ0 6= 0. Further, Pn(λ) = F (−n, b; c; 1−λ), n ≥ 0, which follows (Sri Ranga [162])

by substituting a = −n in the contiguous relation

(a− c+ 1)F (a, b; c;λ) = (2a− c+ 2 + (b− a− 1)λ)F (a+ 1, b; c;λ)

+ (a+ 1)(λ− 1)F (a+ 2, b; c;λ).

We consider the linear combinations Qn(λ) = Pn(λ)+αnPn−1(λ), n ≥ 0, with Q0(λ) :=

1 and our first aim is to construct the sequence {αn}∞n=0 so that Qn(λ), n ≥ 1, has a

common zero at λ = 1. We start with the initial verifications (5.1.11) given at the end

of Section 5.1 to check if Q2(λ) has a double root at λ = 1.

Clearly, c 6= 0 in F (−n, b; c; 1 − λ) and so β0 6= 1. Since we also require β0 6= 0,

and β0 6= −1, we exclude the relations c = b and c = 2b respectively. We further verify

that c 6= −1 implies

−(b+ 1)−1 = τ1ρ
−1
1 6= ρ0β

−1
0 (1− β0)2 = c(b− c)−1,

which by (5.1.11) further implies that Q2(λ) does not have a double root at λ = 1.

This can also be verified by the fact that we choose

α1 = ρ0(β0 − 1) =
b

c

(
b− c
b
− 1

)
= −1,

so that α1 is not a root of the quadratic equation (5.1.9). This follows from the

inequality ρ1α
2
1 − ρ0β0τ1 = b/c 6= 0. Further, from the recursive relation (5.1.6), we

have αn = −1, n ≥ 1. Since α1 = ρ0(β0 − 1), this also means that Qn(λ), n ≥ 1, has

a common zero at λ = 1 for the unique sequence αn = −1, n ≥ 1. Moreover, as b 6= 0

and c 6= 2b,

− n(b+ n)−1 = τnρ
−1
n 6= αn = −1 and
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(b− c− n+ 1)(c+ n− 1)−1 = ρn−1βn−1 6= αn = −1, n ≥ 1,

respectively. Hence, by Corollary 5.1.1, Qn(λ), n ≥ 1, is not a RI polynomial. In fact,

the linear combination

Qn(λ) = F (−n, b; c; 1− λ)− F (−n+ 1, b; c; 1− λ), n ≥ 1,

satisfies the mixed recurrence relations (5.1.7a) and (5.1.7b). With αn+1 = −1, γn = 0,

n ≥ 0, the relations in Theorem 5.1.1 yield

−pn = qn =
b

c+ n− 1
, rn = − b(b+ n)

(c+ n)(c+ n− 1)
, sn =

b(2b− c+ 1)

(c+ n− 1)(c+ n)
,

tn = − b(b− c− n+ 1)

(c+ n− 1)(c+ n)
, un = −vn =

(n− 1)b

(c+ n− 1)(c+ n)
, wn = 0, n ≥ 2.

For n = 1, we have

p1 = −
(
b

c
+ τ0

)
, q1 =

b

c
, r1 = −b+ 1

c+ 1

(
b

c
+ τ0

)
, s1 =

τ0b

c+ 1
+
b(2b− c+ 1)

c(c+ 1)
,

t1 = − b(b− c)
c(c+ 1)

, −u1 = v1 =
τ0b

c+ 1
, w1 = 0.

Hence we need to choose τ0 = −b/c so that p1 = r1 = 0. Then, from (5.1.7a) and

(5.1.7b), we obtain the mixed recurrence relations

Q2(λ) =
b− c+ 1

c+ 1

(
λ− b− c

b− c+ 1

)
Q1(λ) +

b

c+ 1
λ(λ− 1)Q0(λ),

Qn+1(λ) =
b+ n

c+ n

(
λ− b− c− n+ 1

b+ n

)
Qn(λ)− n− 1

c+ n
λQn−1(λ), n ≥ 2.

The initial conditions are Q0(λ) := 1 and Q1(λ) := b
c
(λ − 1). Note that, since α0 =

τ0ρ
−1
0 , ρ0 = b

c
gives α0 = −1. Moreover, from the power series representations for the

hypergeometric functions, it can be easily proved that

Q0(λ) = 1, Qn(λ) =
b

c
(λ− 1)F (−n+ 1, b+ 1; c+ 1; 1− λ), n ≥ 1.
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5.4.1 Biorthogonal hypergeometric functions

To discuss the biorthogonality relations obtained in Section 5.2 from Qn(λ) in the

hypergeometric settings, we first note that the rational functions defined in (5.2.5) are

σRi (λ) = −

(λ− 1)
i−1∏
j=0

τjqi+1q
−1
1

−1

Qi(λ)

=
c+ i

c

(c+ 1)i−1

(−i+ 1)i−1

F (−i+ 1, b+ 1; c+ 1; 1− λ), i ≥ 2,

with σR0 (λ) = 1 and σR1 (λ) = (c + 1)/c. Further, from (5.2.8), we have χLk (λ) =

ρkσ
L
k (λ) + σLk+1(λ), k =≥ 2, where σLk (λ) = (−λ)−kQk(λ), k ≥ 1. Hence

χLk (λ) = (−1)k+1 b

c

(λ− 1)

λk+1
[F (−k,b+ 1; c+ 1; 1− λ)

− b+ k

c+ k
λF (−k + 1, b+ 1; c+ 1; 1− λ)].

We find a closed form expression for χLk (λ) using another contiguous relation

(a− c)F (a− 1, b; c, λ) + (c− b)F (a, b− 1; c;λ) + (λ− 1)(a− b)F (a, b; c;λ) = 0,

which can be written as

c− b
c− a

F (a+ 1, b; c+ 1;λ) = F (a, b+ 1; c+ 1;λ)− b− a
c− a

(1− λ)F (a+ 1, b+ 1; c+ 1;λ).

Hence, with a = −k and λ 7→ (1− λ), we obtain

χLk (λ) = (−1)k+1 b(c− b)
c(c+ k)

(λ− 1)λ−k−1F (−k + 1, b; c+ 1; 1− λ), k ≥ 2.

We also have χL0 (λ) = ρ0σ
L
0 (λ) + σL1 (λ) =

b

c
λ−1 and

χL1 (λ) = τ0q2q
−1
1 σL0 (λ) + s1q

−1
1 σL1 (λ) + σL2 (λ)

= − b

c(c+ 1)λ
[(b+ 1)λ+ c− b− 1] + σL2 (λ)

=
b

c

λ− 1

λ2
F (−1, b+ 1; c+ 1; 1− λ)− b(b+ 1)

c(c+ 1)

λ− 1

λ
− b

(c+ 1)λ
.
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Note that we have written χL1 (λ) in the form χL1 (λ) = σL2 (λ) + ρ1σ
L
1 (λ)− bλ−1

(c+1)
and this

can be further simplified to χL1 (λ) = −bλ−2

(c+1)
F (−1, b; c; 1− λ).

Let the weight function µn,j,k be the function µλ evaluated at the zeros λn,j and λn,k,

j, k = 1, · · · , n− 1 of Qn(λ), that is, at the n− 1 zeros of F (−n+ 1, b+ 1; c+ 1; 1− λ)

which clearly does not include the point λ = 1. We recall that

µλ = τn−1qn+1q
−1
n [σRn (λ)]

′
σLn−1(λ), n ≥ 2.

Since

σLn−1(λ) = (−1)n−1 b

c
λ−n+1(λ− 1)F (−n+ 2, b+ 1; c+ 1; 1− λ) and

[σRn (λ)]
′
=

(c+ n)(c+ 1)n−1

c(−n+ 1)n−1

F ′(−n+ 1, b+ 1; c+ 1; 1− λ)

= −(b+ 1)(c+ n)(c+ 2)n−2

c(−n+ 2)n−2

F (−n+ 2, b+ 2; c+ 2; 1− λ),

we have

µλ = Yn−2(λ)[F (−n+ 2, b+ 1; c+ 1; 1− λ)× F (−n+ 2, b+ 2; c+ 2; 1− λ)]−1,

where

Yn−2(λ) =
c2(−n+ 2)n−2λ

n−1

(−1)n−1(n− 1)b(b+ 1)(c+ 2)n−2(λ− 1)
, n ≥ 2.

By Chu-Vandermonde formula (Ismail [90, p.12, (1.4.3)])

F (−n+ 1, b+ 1; c+ 1; 1) =
(c− b)n−1

(c+ 1)n−1

6= 0.

This implies λ = 0 is not a zero of F (−n+ 1, b+ 1; c+ 1; 1− λ). Hence Yn−2(λ) never

vanishes.

Hence by Theorem 5.2.2, we obtain two finite sequences {σRi (λ)}n−1
i=0 and {χ̃Lk (λ)}n−1

k=0

of hypergeometric functions that are biorthogonal to each other with the weight func-

tion µλ, all quantities being evaluated at the n−1 zeros of F (−n+1, b+1; c+1; 1−λ).
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Here, χ̃Lk (λ) = χLk (λ), k = 0, 1, · · · , n− 2 and

χ̃Ln−1(λ) = ρn−1σ
L
n−1(λ)

= (−1)n−1 b(b+ n− 1)

c(c+ n− 1)
λ−n+1(λ− 1)F (−n+ 2, b+ 1; c+ 1; 1− λ).

5.4.2 Para orthogonal polynomials with two representations

Now, we discuss the para-orthogonality of polynomials obtained from Qn(λ) in the

hypergeometric settings. With ρn = b+n
c+n

, the leading coefficient of Qn+1(λ) is κn =

ρn · · · ρ0 = (b)n+1

(c)n+1
. Hence, we consider the monic polynomials

Rn(λ) =
(c+ 1)n
(b+ 1)n

F (−n, b+ 1, c+ 1, 1− λ), n ≥ 0,

and proceed to find conditions on b and c such that Rn(λ) is a para-orthogonal poly-

nomial. The conditions obtained in the beginning of Section 5.3 are

−2 < τnρ
−1
n < 0 and τ1ρ

−1
1 = ρ0β

−1
0 (β2

0 − 1).

The first one requires b > −n/2 for n ≥ 1 so that we have b > −1/2. The second one

requires c − b = (c − 2b)(b + 1) which implies c = 2b + 1. It can be verified that the

other conditions (5.3.2a) and (5.3.2b) in Theorem 5.3.1, that is

αnρn = (2ρn + τn)(ρn−1αn−1 − τn−1) + τn and

αnρn = −ρn−1βn−1(2ρn + τn)αn−1, n ≥ 2,

are also satisfied for αn = −1 and c = 2b + 1. Hence Rn(λ), n ≥ 1, satisfies the

recurrence relation

Rn+1(λ) = (λ+ 1)Rn(λ)− 4dn+1λRn−1(λ), n ≥ 1,

which is (5.3.3) and when using (5.3.1), we have

dn+1 = −1

4

τn
ρn

pn+2

rn+1

=
1

4

n(2b+ n+ 1)

(b+ n)(b+ n+ 1)
, n ≥ 1.
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The parameter sequence is given by mn = pn+1

2rn
= 2b+n

2(b+n)
, n ≥ 2, with m1 = 1 + τ1

2ρ1
=

2b+1
2(b+1)

. Further, the Szegő polynomials are given by

Φn(λ) = Rn(λ)− 2(1−mn)Rn−1(λ)

=
(2b+ 2)n
(b+ 1)n

F (−n, b; 2b+ 1; 1− λ)

− n

(b+ n)

(2b+ 2)n−1

(b+ 1)n−1

F (−n+ 1, b; 2b+ 1; 1− λ), n ≥ 1,

with the Verblunsky coefficients

αn−1 = −(1 + τnρ
−1
n ) = − b

b+ n
, n ≥ 1.

We make an observation. From results illustrated above, for c = 2b + 1, the linear

combination Qn(λ) yields

b

2b+ 1
(λ− 1)F (−n+ 1, b+ 1; 2b+ 2; 1− λ)

= F (−n, b; 2b+ 1; 1− λ)− F (−n+ 1, b; 2b+ 1; 1− λ), n ≥ 1. (5.4.1)

Denoting the monic polynomials

Rn(b;λ) =
(2b)n
(b)n

F (−n, b, 2b, 1− λ), n ≥ 1 and

φn(b;λ) =
(2b+ 1)n
(b+ 1)n

F (−n, b+ 1, 2b+ 1, 1− λ), n ≥ 1,

it has been proved (the concluding remarks in Sri Ranga [162]) that for b > −1/2,

φn(b;λ) is a Szegő polynomial with respect to the weight function [sin θ/2]2b and in fact,

is obtained from Gegengauer polynomials using the Szegő transformation. Further, the

reversed Szegő polynomials φ∗n(b;λ) = λnφn(b; 1/λ̄) are given by

φ∗n(b;λ) =
(2b+ 1)n
(b+ 1)n

F (−n, b; 2b+ 1; 1− λ).
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Thus, multiplying both sides of (5.4.1) by (2b+1)n+1

(b)n+1
, we observe that

Rn(b+ 1;λ) =
2b+ n+ 2

b

[
φ∗n+1(b;λ)− 2b+n+3

b+n+1
φ∗n(b;λ)

λ− 1

]
, n ≥ 1. (5.4.2)

On the other hand, we obtain from Sri Ranga [162, Theorem 5.1]

Rn(b+ 1;λ) =

(
2b+ n

b+ n

)−1

[φn(b+ 1;λ) + φ∗n(b+ 1;λ)], n ≥ 1, (5.4.3)

which follows the usual definition of a para-orthogonal polynomial given in Jones et

al. [101].

5.4.3 Graphical illustration

For the purpose of illustration, we plot the distribution of the zeros of Rn(b + 1;λ),

φ∗n(b;λ), φ∗n−1(b;λ), φn(b+ 1;λ) and φ∗n(b+ 1;λ) for n = 12 and b = 0.5.
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(a) The case (5.4.2)
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(b) The case (5.4.3)

Figure 5.1: The zeros of Rn(b+ 1;λ), φn(b+ 1;λ), φ∗n(b+ 1;λ), φ∗n(b;λ), φ∗n−1(b;λ) for
n = 12 and b = 0.5.

In figures (5.1a) and (5.1b), the red circular dots ( ) are the zeros of R12(1.5, λ) lying

on the unit circle. The green squares ( ) are the zeros of φ∗11(0.5;λ) and φ∗12(1.5;λ)

respectively, while the blue diamonds ( ) are the zeros of φ∗12(0.5;λ) and φ12(1.5;λ)

respectively.
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5.5 Concluding remarks

Linear combinations of some particular cases of parameterized Gaussian hypergeomet-

ric polynomials like the Jacobi polynomials and Meixner-Pollaczek polynomials are

studied in Johnston et al. [97]. In particular, the orthogonality and location of the

zeros of these polynomials are studied for special values of the parameters. However,

these are polynomials that are orthogonal on the real line and do not satisfy a recur-

rence relation of RI type. The central idea of the chapter is to consider the linear

combinations of polynomials that satisfy a recurrence relation of RI type.

Further, it is interesting to note that a recurrence relation of RII type arises in

this discussion. This suggests that there is some sort of interplay between linear com-

binations of RI polynomials and the RII polynomials and the respective generalized

eigenvalue problems. Expressing a RII polynomial as a linear combination of two or

more RI polynomials can be of further research interest.

This motivates us to study the RII polynomials and the related biorthogonality.

Similar to the present chapter, we give an abstract construction of a sequence of or-

thogonal rational functions whose numerators satisfy recurrence relations of RII type

and study other consequences in the next chapter.
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Chapter 6

Biorthogonal rational functions of

RII type

In the previous chapter, a sequence {Qn(z)} of polynomials was constructed that sat-

isfied biorthogonality properties. It was shown that Qn(z) , n ≥ 1, satisfied mixed re-

currence relations of RI and RII type. The RII polynomials also appear as numerators

of orthogonal rational functions, which are studied in the present chapter. Precisely,

our aim is to construct a sequence {ϕn(z)}∞n=0 of orthogonal rational functions that is

biorthogonal to another sequence of rational functions. We obtain a generalized eigen-

value problem such that the numerators rn(z) of ϕn(z), n ≥ 1, are the characteristic

polynomials, while ϕn(z) form the components of the corresponding eigenvector. We

also find a Christoffel type transform of the rational functions constructed, illustrating

the differences with the available literature.

6.1 Fundamental spaces

Let {αj}∞j=1 and {βj}∞j=1 be two given sequences where,

αj, βj ∈ C \ {0}, j ≥ 1. (6.1.1)

145
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We define

u2j(z) :=
1

1− zβ̄j
, u2j+1(z) :=

1

z − αj+1

, j ≥ 0,

where β0 := 0. The basis {uj}nj=0, n ≥ 1, is used to generate the complex linear spaces

Ln=span{u0, u1, · · · , un} and L = ∪∞n=0Ln. Equivalently, Ln= span{u0, u1, · · · , un},

where

u2j(z) =
z2j∏j

k=1(z − αk)
∏j

k=1(1− zβ̄k)
j ≥ 0,

u2j+1(z) =
z2j+1∏j+1

k=1(z − αk)
∏j

k=1(1− zβ̄k)
, j ≥ 0.

Further, the product spaces Lm ·Ln and L·L consist of functions of the form hm,n(z) =

fm(z)gn(z) and h(z) = f(z)g(z) respectively, where fm(z) ∈ Lm, gn(z) ∈ Ln and

f(z), g(z) ∈ L.

The substar transform h∗(z) of a function h(z) is defined as h∗(z) = h(1/z̄). Let L

be a linear functional defined on L · L such that

〈f(z), g(z)〉 := L(f(z)g∗(z)), (6.1.2)

is Hermitian and positive-definite, and hence defines an inner product on the space L.

We note that L is said to be Hermitian if it satisfies L(h∗) = L(h̄) for every h ∈ L · L

and positive definite if L(hh∗) > 0 for every h 6= 0 ∈ L.

6.1.1 Associated rational functions

Let ϕj(z), j ≥ 0, be the sequence of functions that are orthonormal with respect to

L and obtained from the Gram-Schmidt process of the basis {uj}nj=0, n ≥ 1. That is

ϕj(z), j ≥ 0, satisfy the orthogonality property

〈ϕm(z), ϕn(z)〉 = L(ϕm(z)ϕn∗(z)) = δm,n, m, n = 0, 1, · · · .
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Further, it is clear that ϕn(z) are rational functions of the form ϕ0(z) = 1,

ϕ2j+2(z) =
r2j+2(z)∏j+1

k=1(z − αk)
∏j+1

k=1(1− zβ̄k)
, j ≥ 0,

ϕ2j+1(z) =
r2j+1(z)∏j+1

k=1(z − αk)
∏j

k=1(1− zβ̄k)
, j ≥ 0,

(6.1.3)

where rn(z) ∈ Πn, the linear space of polynomials of degree at most n. Moreover, L2n

can now be interpreted as the space of rational functions having poles belonging to the

set {α1, · · · , αn, 1/β̄1, · · · , 1/β̄n} with the order of the pole at αj or 1/β̄j depending on

its multiplicity. The rational function ϕ2n(z) ∈ L2n has a simple pole at each of the

points α1, · · · , αn, 1/β̄1, · · · , 1/β̄n. Here, αj and βj are as defined in (6.1.1). A similar

interpretation for L2n+1 follows.

In fact, the regularity conditions in the present case can be obtained as follows.

The expansion in terms of the basis elements gives

ϕ2n(z) = A0 +
A1z

z − α1

+
A2z

2

(z − α1)(1− zβ̄1)
+ · · ·+ A2nz

2n∏n
i=1(z − αi)

∏n
i=1(1− zβ̄i)

,

so that r2n(z) = A0

∏n
i=1(z − αi)

∏n
i=1(1− zβ̄i) + · · ·+ A2n. Then A2n 6= 0 if

r2n(αn) 6= 0 and r2n(1/β̄n) 6= 0. (6.1.4)

Similarly, for ϕ2n+1(z), we obtain

r2n+1(αn+1) 6= 0 and r2n+1(1/β̄n) 6= 0. (6.1.5)

The regularity conditions (6.1.4) and (6.1.5) are required to guarantee that ϕ2n(z) ∈

L2n \ L2n−1 and ϕ2n+1(z) ∈ L2n+1 \ L2n respectively.

6.1.2 Three term recurrence relations

Using the definition (6.1.2) and the properties of the inner product 〈·, ·〉, the follow-

ing result is immediate and will be used in deriving the recurrence relations for the

orthogonal rational functions ϕj(z).
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Lemma 6.1.1. Let γn ∈ C \ {0}, n = 1, 2, · · · . The following equality holds for the

rational functions f := f(z) and g := g(z) in L

〈
1− zγ̄n
z − γn−1

f, g

〉
=

〈
f,

z − γn
1− zγn−1

g

〉
;

〈
z − γn+1

1− zγ̄n
f, g

〉
=

〈
f,

1− zγ̄n+1

z − γn
g

〉
.

Proof. The first relation follows from the equality

〈
f(z),

z − γn
1− zγ̄n−1

g(z)

〉
= L

(
f(z) · 1/z − γ̄n

1− γn−1/z
g(1/z̄)

)
= L

(
1− zγ̄n
z − γn−1

f(z) · g(1/z̄)

)
=

〈
1− zγ̄n
z − γn−1

f(z), g(z)

〉
.

Similarly, the second relation follows from

〈
f(z),

1− zγ̄n
z − γn−1

g(z)

〉
= L

(
f(z) · 1/z − γ̄n

1− γn−1/z
g(1/z̄)

)
= L

(
1− zγ̄n
z − γn−1

f(z) · g(1/z̄)

)
=

〈
1− zγ̄n
z − γn−1

f(z), g(z)

〉
,

and the proof is complete.

In addition to the regularity conditions (6.1.4) and (6.1.5) we also assume that the

following

r2n(βn−1) 6= 0, r2n(1/ᾱn) 6= 0, r2n+1(βn) 6= 0, r2n+1(1/ᾱn) 6= 0,

hold. Here and in what follows, we consider the sequences {αj} and {βj} as defined in

(6.1.1), unless specified otherwise.

Theorem 6.1.1. The orthonormal rational functions {φn(λ)}∞n=0, with φ−1(λ) := 0

and φ0(λ) := 1 satisfy the recurrence relations,

ϕ2n+1(z) =

[
e2n+1

z − αn+1

+
d2n+1(z − βn)

z − αn+1

]
ϕ2n(z) + c2n+1

1− zᾱn
z − αn+1

ϕ2n−1(z), (6.1.6a)

ϕ2n+2(z) =

[
e2n+2

1− zβ̄n+1

+
d2n+2(1− zᾱn+1)

1− zβ̄n+1

]
ϕ2n+1(z) + c2n+2

z − βn
1− zβ̄n+1

ϕ2n(z),

(6.1.6b)

for n ≥ 0, where β0 := 0, the constants ej, dj ∈ C and cj ∈ C \ {0}, j ≥ 0.
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Proof. Consider the function

W2n(z) =
1− zβ̄n
z − βn−1

ϕ2n(z)− a2n

z − βn−1

ϕ2n−1(z), n ≥ 1.

We first find the appropriate choice of a2n for which W2n(z) ∈ L2n−1 \ L2n−2. Using

the rational forms (6.1.3) of ϕ2n(z) and ϕ2n−1(z), we have

1− zβ̄n
z − βn−1

ϕ2n(z) =
r2n(z)

(z − βn−1)
∏n

i=1(z − αi)
∏n−1

i=1 (1− zβ̄i)
and

ϕ2n−1(z)

z − βn−1

=
r2n−1(z)

(z − βn−1)
∏n

i=1(z − αi)
∏n−1

i=1 (1− zβ̄i)
.

Further, we can write the numerator polynomials rj(z), j ≥ 1, as

r2n(z) = (z − βn−1)q2n−1(z) + r2n(βn−1),

r2n−1(z) = (z − βn−1)q2n−2(z) + r2n−1(βn−1),

which yields for a2n = r2n(βn−1)/r2n−1(βn−1) 6= 0, n ≥ 1,

W2n(z) =
q2n−1(z)∏n

i=1(z − αi)
∏n−1

i=1 (1− zβ̄i)
− r2n(βn−1)

r2n−1(βn−1)

q2n−2(z)∏n
i=1(z − αi)

∏n−1
i=1 (1− zβ̄i)

.

This implies W2n(z) ∈ L2n−1 \ L2n−2, so that we have

W2n(z) = b2nϕ2n−1(z) + c2nϕ2n−2(z) +
2n−3∑
j=0

a
(2n)
j ϕj(z),

where a
(2n)
j = 〈W2n(z), ϕj(z)〉, j = 0, 1, · · · , 2n − 3. We now proceed to prove that

a
(2n)
j = 0 for j = 0, 1, · · · , 2n − 3, and c2n 6= 0 which will lead to the required three

term recurrence relation for ϕ2n(z). For this, we note that

a
(2n)
j =

〈
1− zβ̄n
z − βn−1

ϕ2n(z), ϕj(z)

〉
− r2n(βn−1)

r2n−1(βn−1)

〈
ϕ2n−1(z)

z − βn−1

, ϕj

〉
, (6.1.7)

for j = 0, 1, · · · , 2n− 3. Since

z − βn
1− zβ̄n−1

ϕj ∈ L2n−2 and
z

1− zβ̄n−1

ϕj ∈ L2n−2,
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for j = 0, 1, · · · , 2n− 3, using Lemma 6.1.1, we have〈
1− zβ̄n
z − βn−1

ϕ2n(z), ϕj(z)

〉
=

〈
ϕ2n(z),

z − βn
1− zβ̄n−1

ϕj(z)

〉
= 0 and〈

ϕ2n−1(z)

z − βn−1

, ϕj

〉
=

〈
ϕ2n−1,

z

1− zβ̄n−1

ϕj(z)

〉
= 0.

We conclude from (6.1.7) that a
(2n)
j = 0 for j = 0, 1, · · · , 2n− 3 and hence

ϕ2n(z) =

[
a2n

1− zβ̄n
+ b2n

z − βn−1

1− zβ̄n

]
ϕ2n−1(z) + c2n

z − βn−1

1− zβ̄n
ϕ2n−2(z), n ≥ 1.

However, we note that both {1, z − βn−1} and {1, 1 − zᾱn} form a basis for Π1 and

hence writing a2n + b2n(z−βn−1) = e2n + d2n(1− zᾱn), the recurrence relation (6.1.6b)

follows.

To prove c2n 6= 0, we multiply both sides of (6.1.6b) by

1− zβ̄n∏n
i=1(1− zᾱi)

∏n−1
i=1 (z − βi)

.

The definition of the inner product (6.1.2) gives the left hand side as

L

(
ϕ2n(z) · 1− zβ̄n∏n

i=1(1− zᾱi)
∏n−1

i=1 (z − βi)

)

= L

(
ϕ2n(z) · z(1/z − β̄n)

z2n−1
∏n

i=1(1/z − ᾱi)
∏n−1

i=1 (1− βi/z)

)

=

〈
ϕ2n(z),

(z − βn)z2n−2∏n
i=1(z − αi)

∏n−1
i=1 (1− zβ̄i)

〉
= 0,

since the second term in the last inner product belongs to L2n−1. With similar calcu-

lations, we obtain from (6.1.6b)

c2n

〈
ϕ2n−2(z),

z2n−2∏n
i=1(z − αi)

∏n−2
i=1 (1− zβ̄i)

〉
+ e2n

〈
ϕ2n−1(z), u2n−1(z)

〉
= 0,

which proves c2n 6= 0, n ≥ 1.
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To derive the recurrence relation for ϕ2n+1(z), consider

W2n+1(z) =
z − αn+1

1− zᾱn
ϕ2n+1(z)− a2n+1

1− zᾱn
ϕ2n(z), n ≥ 0.

We find the appropriate value of a2n+1 so thatW2n+1 ∈ L2n \L2n−1. Using the rational

forms (6.1.3) of ϕ2n(z) and ϕ2n+1(z), we have

z − αn+1

1− zᾱn
ϕ2n+1(z) =

r2n+1(z)

(1− zᾱn)
∏n

i=1(z − αi)
∏n

i=1(1− zβ̄i)
and

ϕ2n(z)

1− zᾱn
=

r2n(z)

(1− zᾱn)
∏n

i=1(z − αi)
∏n

i=1(1− zβ̄i)
.

Writing the numerator polynomials rj(z) as

r2n+1(z) = q2n(z)(1− zᾱn) + r2n+1(1/ᾱn)

r2n(z) = q2n−1(z)(1− zᾱn) + r2n(1/ᾱn), n ≥ 0,

we obtain for a2n+1 = r2n+1(1/ᾱn)/r2n(1/ᾱn) 6= 0,

W2n+1(z) =
q2n(z)∏n

i=1(z − αi)
∏n

i=1(1− zβ̄i)
− r2n+1(1/ᾱn)

p2n(1/ᾱn)

r2n−1(z)∏n
i=1(z − αi)

∏n
i=1(1− zβ̄i)

,

so that W ∈ L2n \ L2n−1, n ≥ 0. Hence, we can write

W2n+1(z) = b2n+1ϕ2n(z) + c2n+1ϕ2n−1(z) +
2n−2∑
j=0

a
(2n+1)
j ϕj(z),

where a
(2n+1)
j = 〈W2n+1(z), ϕj(z)〉, j = 0, 1, · · · , 2n− 2. As in the case of ϕ2n+1(z), we

show that c2n+1 6= 0 and a
(2n+1)
j = 0 for j = 0, 1, · · · , 2n − 2 to obtain the required

three term recurrence relation for ϕ2n(z). Using Lemma 6.1.1, we have

a
(2n+1)
j =

〈
z − αn+1

1− zᾱn
ϕ2n+1(z), φj(z)

〉
− r2n+1(1/ᾱn)

r2n(1/ᾱn)

〈
ϕ2n(z)

1− zᾱn
, ϕj(z)

〉
=

〈
ϕ2n+1,

1− zᾱn+1

z − αn
ϕj(z)

〉
− r2n+1(1/ᾱn)

r2n(1/ᾱn)

〈
ϕ2n(z),

z

z − αn
ϕj(z)

〉
= 0, j = 0, 1, · · · , 2n− 2,
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where the last equality follows from the fact that

1− zᾱn+1

z − αn
ϕj(z) ∈ L2n−1 and

z

z − αn
ϕj(z) ∈ L2n−1,

for j = 0, 1, · · · , 2n− 2. Hence we obtain the recurrence relation

ϕ2n+1(z) =

[
a2n+1

z − αn+1

+ b2n+1
1− zᾱn
z − αn+1

]
ϕ2n(z) + c2n+1

1− zᾱn
z − αn+1

ϕ2n−1(z), n ≥ 0,

which can also be written as (6.1.6a) since {1, 1− zᾱn} and {1, z − βn} both span the

linear space Π1.

To prove c2n+1 6= 0, we multiply both sides of the recurrence relation (6.1.6a) by

(z − αn+1)∏n
i=1(1− zᾱi)

∏n
i=1(z − βi)

.

As in the case for c2n, the inner product (6.1.2) and Lemma 6.1.1 gives

c2n+1

〈
ϕ2n−1(z),

z2n−1∏n−1
i=1 (z − αi)

∏n
i=1(1− zβ̄i)

〉
+ e2n+1〈ϕ2n(z), u2n(z)〉 = 0,

from which it follows that c2n+1 6= 0, n ≥ 1.

The numerator polynomials of orthogonal rational functions satisfy the recurrence

relations of RII type. Indeed, from (6.1.6a) and (6.1.6b), it can be shown that

r2n+1(z) = [e2n+1 + d2n+1(z − βn)]r2n(z) + c2n+1(1− zᾱn)(1− zβ̄n)r2n−1(z), (6.1.8a)

r2n+2(z) = [e2n+2 + d2n+2(1− zᾱn+1)]r2n+1(z) + c2n+2(z − αn+1)(z − βn)r2n(z),

(6.1.8b)

for n ≥ 0, where we define r0(z) := 1 and β0 := 0. We use (6.1.8a) and (6.1.8b) to

obtain a generalized eigenvalue problem such that the zeros of rj(z), j ≥ 1, are the

eigenvalues (that is, rj(z) is the characteristic polynomial) while the corresponding

rational functions are the components of the corresponding eigenvector.
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6.1.3 The rational functions as components of an eigenvector

Consider two infinite matrices H = (hi,k)
∞
i,k≥0 and G = (gi,k)

∞
i,k≥0, where

H =



d1 g1 0 0 · · ·

h1,0 −d2ᾱ1 g2 0 · · ·

0 h2,1 d3 g3 · · ·

0 0 h3,2 −d4ᾱ2 · · ·

0 0 0 h4,3 · · ·
...

...
...

...
. . .


,

G =



−e1 + β0d1 α1g1 0 0 · · ·

h1,0β0 −e2 − d2 ᾱ1g2 0 · · ·

0 h2,1/ᾱ1 −e3 + β1d3 α2g3 · · ·

0 0 h3,2β1 −e4 − d4 · · ·

0 0 0 h4,3/ᾱ2 · · ·
...

...
...

...
. . .


,

with g2k+2 = −c2k+3β̄k+1/h2k+2,2k+1, g2k+1 = −c2k+2/h2k+1,2k, k ≥ 0. Here, αj, βj, ej, dj

and cj are the constants appearing in the recurrence relations (6.1.8a) and (6.1.8b) while

{hi,i−1}∞i=1 is a sequence of arbitrary non-vanishing complex numbers. The following

result is well-known, for example, see Ismail and Sri Ranga [94, Theorem 1.1] and

Zhedanov [192].

Proposition 6.1.1. [94, 192] Let Hj and Gj denote the jth principal minors of H

and G respectively. Then (−1)jrj(λ), j ≥ 1, is the characteristic polynomial of the

generalized eigenvalue problem

Gj%j = λHj%j, (6.1.9)

where {rj} satisfies (6.1.8a) and (6.1.8b).

The generalized eigenvalue problem (6.1.9) has j − 1 free variables hi,i−1 which
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shows that the matrix pencil associated with the recurrence relations of RII type is

not unique. We now assign appropriate values to these free variables to obtain an

eigenvector %j.

Theorem 6.1.2. Let the terms of the sequence {hi,i−1}∞i=1 be assigned the values

h2i,2i−1 = −c2i+1ᾱi, h2i−1,2i−2 = c2i, i ≥ 1.

Then, %j =

(
ϕ0 ϕ1 · · · ϕj

)T
is the eigenvector of the generalized eigenvalue

problem (6.1.9) corresponding to the eigenvalue which is a zero of rj(λ).

Proof. Upon substitution of the values of hi,i−1, the recurrence relations (6.1.6a) and

(6.1.6b) can be written as (−e1 + d1β0)ϕ0 − α1ϕ1 = z[d1ϕ0 − ϕ1] and

−c2k+3ϕ2k+1 − (e2k+3 − d2k+3βk+1)ϕ2k+2 − αk+2ϕ2k+3

= z[−c2k+3ᾱk+1ϕ2k+1 + d2k+3ϕ2k+2 − ϕ2k+3],

βkc2k+2ϕ2k − (e2k+2 + d2k+2)ϕ2k+1 + ϕ2k+2

= z[c2k+2ϕ2k − d2k+2ᾱk+1ϕ2k+1 + β̄k+1ϕ2k+2],

for k ≥ 0, which can be rearranged to yield the matrix equations

G2n%2n = zH2n%2n − (z − βn)ϕ2ne2n,

G2n+1%2n+1 = zH2n+1%2n+1 − (z − αn+1)ϕ2n+1e2n+1,

where ej is the jth column of the unit matrix. Observing the fact that (z − βn)ϕ2n

does not vanish for z = βn, %2j becomes an eigenvector for the generalized eigenvalue

problem (6.1.9) with the zeros of r2n(z) as eigenvalues. Similarly, %2j+1 becomes an

eigenvector with the zeros of r2n+1(z) as eigenvalues and the proof is complete.

Theorems 6.1.1 and 6.1.2 serve the first step of our construction. That is, we have

obtained a sequence of rational functions that is orthogonal with respect to the linear

functional L. These rational functions are also the components of the eigenvector of a

matrix pencil whose characteristic polynomials are the numerator polynomials of such

rational functions. In the next section, we will discuss the biorthogonality properties
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of {ϕn(z)}. At this point, we make the following remark about the recurrence relations

(6.1.8a) and (6.1.8b) satisfied by these rational functions.

6.2 A biorthogonality relation for the rational func-

tions

In the present section, we use the recurrence relations (6.1.8a) and (6.1.8b) obtained in

Section 6.1 to define biorthogonality relations involving the orthogonal rational func-

tions {ϕj}. To start with, we introduce the rational functions O0(z) = 1 and

O2n+1(z) =
r2n+1(z)∏n+1

j=1 (z − αj)
∏n

j=1(1− zᾱj)
∏n

j=0(z − βj)
∏n

j=1(1− zβ̄j)
,

O2n+2(z) =
r2n+2(z)∏n+1

j=1 (z − αj)
∏n+1

j=1 (1− zᾱj)
∏n

j=0(z − βj)
∏n+1

j=1 (1− zβ̄j)
.

(6.2.1)

for n ≥ 0. Here {rj} satisfies (6.1.8a) and (6.1.8b) so that the sequence {Oj(z)} satisfies

(z − αn+1)(z − βn)O2n+1(z) = [e2n+1 + d2n+1(z − βn]O2n(z) + c2n+1O2n−1(z),

(1− zᾱn)(1− zβ̄n)O2n(z) = [e2n + d2n(1− zᾱn)]O2n−1(z) + c2nO2n−2(z),

for n ≥ 1. Then, similar to Theorem 3.5 and its following corollary of Ismail and

Masson [91], we have

Theorem 6.2.1. Consider the rational functions given by (6.2.1). Then there exists a

linear functional N on the span of rational functions {zOn(z)} such that the orthogo-

nality relation

N(zkOn(z)) = 0, k = 0, 1, · · · , n− 1,

holds. Further, if N(1) = m0, N(znOn(z)) = mn, n ≥ 1, then

ᾱnβ̄nm2n + d2nᾱnm2n−1 − c2nm2n−2 = 0, n ≥ 1

m2n+1 − d2n+1m2n − c2n+1m2n−1 = 0, n ≥ 1.
(6.2.2)
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We will also need the following relations among the leading coefficients of the poly-

nomials {rj(z)}, j ≥ 1. If rj = κjz
j + lower order terms, then from (6.1.8a) and

(6.1.8b),

κ2n + d2nᾱnκ2n−1 − c2nκ2n−2 = 0 n ≥ 1,

κ2n+1 − d2n+1κ2n − ᾱnβ̄nc2n+1κ2n−1 = 0 n ≥ 1.
(6.2.3)

It is clear that each of the the recurrence relations (6.2.2) and (6.2.3) involve two

arbitrary initial values. We choose m0 and m1 such that m1 6= d1m0. Since κ0 = 1

and κ1 = d1, this implies κ0m1 − κ1m0 6= 0.

Consider another sequence of rational functions {ϕ̃j(z)}∞j=0 where ϕ̃0(z) := 1,

ϕ̃2n+1(z) =
r2n+1(z)∏n

j=1(1− zᾱj)
∏n

j=0(z − βj)
and

ϕ̃2n+2(z) =
r2n+2(z)∏n+1

j=1 (1− zᾱj)
∏n

j=0(z − βj)
,

(6.2.4)

for n ≥ 0. Here {rj(z)} satisfy (6.1.8a) and (6.1.8b). Let J̃m(z) = χ−1
m ϕ̃m(z), where

χ2m = ᾱ1(β̄1)−1 · · · ᾱm(β̄m)−1 and χ2m+1 = ᾱ1(β̄1)−1 · · · ᾱm(β̄m)−1ᾱm+1. Define

ψ̃2j(z) :=
c2j+1(β̄j)

2

ᾱj+1

J̃2j−1(z)− d2j+1

ᾱj+1

J̃2j(z) + J̃2n+1(z), n ≥ 1,

ψ̃2j+1(z) :=
c2j+2β̄j+1

ᾱj+1

J̃2j(z)− d2j+2ᾱj+1β̄j+1J̃2j+1(z) + ᾱj+1J̃2j+2(z), n ≥ 0,

with ψ̃0(z) := 1. The following theorem gives the biorthogonality relations for ϕ(z)

constructed in the previous section.

Theorem 6.2.2. The sequences of rational functions {ϕj(z)} and {ψ̃j(z)} satisfy the

following biorthogonality relations

N(ϕ2n(z) · ψ̃m(z)) =
c2c3 · · · c2n+1(m1κ0 −m0κ1)

χ2n+1

δ2n,m, (6.2.5)

N(ϕ2n+1(z) · ψ̃m(z)) =
c2c3 · · · c2n+2(m1κ0 −m0κ1)

χ2n+2

δ2n+1,m, (6.2.6)

where mj = N(zjOj(z)) and κj is the leading coefficient of rj(z).

Proof. For simplicity, we write ϕj := ϕj(z) and similar notations follow for others. We
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divide the proof into the following cases. First, let m < 2n and m has even value, say

m = 2j. Then

N(ϕ2n · ψ̃m) = N(ϕ2n · ψ̃2j)

=
c2j+1β̄j
ᾱj+1

N(ϕ2n · J̃2j−1)− d2j+1

ᾱj+1

N(ϕ2n · J̃2j) + N(ϕ2n · J̃2j+1).

We evaluate the first term. We have N(ϕ2n · J̃2j−1)

=
1

χ2j−1

N

(
r2n∏n

k=1(z − αk)
∏n

k=1(1− zβ̄k)
· r2j−1∏j−1

k=1(1− zᾱk)
∏j−1

k=0(z − βk)

)
=

1

χ2j−1

N(O2n · r2j−1(1− zᾱj) · · · (1− zᾱn)(z − βj) · · · (z − βn−1))

=
(−ᾱj) · · · (−ᾱn)κ2j−1

χ2j−1

m2n.

A similar evaluation of the remaining two terms yields

N(ϕ2n · J̃2j) =
(−ᾱj+1) · · · (−ᾱn)κ2j

χ2j

m2n,

N(ϕ2n · J̃2j+1) =
(−ᾱj+1) · · · (−ᾱn)κ2j+1

χ2j+1

m2n.

Using the relations (6.2.3), we obtain N(ϕ2n(z) · ψ̃m(z)) = 0 for m = 2j < 2n.

In the second case, let m > 2n and m has odd value, say m = 2j + 1. Then

N(ϕ2n · ψ̃m)

=
c2j+2β̄j+1

ᾱj+1

N(ϕ2n · J̃2j)− d2j+2ᾱj+1β̄j+1N(ϕ2n · J̃2j+1) + ᾱj+1N(ϕ2n · J̃2j+2),

so that, as in the case of ψ̃2j(z), we have

N(ϕ2n · J̃2j+2) =
κ2nm2j+2

χ2j+2

, N(ϕ2n(z) · J̃2j(z)) =
κ2nm2j

χ2j

,

N(ϕ2n(z) · J̃2j+1(z)) =
κ2nm2j+1

χ2j+1

.

Hence, using (6.2.2) we have N(ϕ2n(z) · ψ̃m(z)) = 0 for m = 2j + 1 > 2n.

In the third case, we prove the biorthogonality relations (6.2.5) and (6.2.6). For
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m = 2n, we obtain

N(ϕ2n(z) · ψ̃2n(z)) =
1

χ2n+1

(κ2nm2n+1 − d2n+1κ2nm2n − c2n+1β̄nᾱnκ2n−1m2n).

From (6.2.2), we find that m2n+1κ2n − d2n+1κ2nm2n = c2n+1m2n−1κ2n, so that

M(ϕ2n(z) · ψ̃2n(z)) =
c2n+1

χ2n+1

(κ2nm2n−1 − ᾱnβ̄nκ2n−1m2n).

To simplify the numerator in the right hand side above, we note from (6.2.2) and (6.2.3)

that the following relations

κ2nm2n−1 − ᾱnβ̄nκ2n−1m2n = c2n(m2n−1κ2n−2 −m2n−2κ2n−1),

κ2n−2m2n−1 − κ2n−1m2n−2 = c2n−1(m2n−3κ2n−2 − ᾱn−1β̄n−1m2n−2κ2n−3),
(6.2.7)

hold which further imply that

κ2nm2n−1 − ᾱnβ̄nκ2n−1m2n = c2nc2n−1 · · · c2(m1κ0 −m0κ1) 6= 0.

The proof of (6.2.6) follows the exact techniques and line of argument as in the proof

of (6.2.5). Indeed, proceeding as above we obtain, for m = 2n+ 1,

N(ϕ2n+1(z) · ψ̃2n+1(z)) =
c2n+2(κ2nm2n+2 − κ2n+1m2n)

χ2n+2

.

Simplifying the numerator in the right hand side above, we note from (6.2.7) that

m2n+1κ2n − κ2n+1m2n = c2n+1c2n · · · c2(κ0m1 −m0κ1) 6= 0.

The proof of the biorthogonality relations (6.2.5) and (6.2.6) for the remaining cases,

that is, m > 2n, m = 2j and m < 2n, m = 2j + 1, can be obtained with similar

arguments, thus completing the proof.

Remark 6.2.1. The technique of using the leading coefficients κn and the normaliza-

tion constants mn to prove biorthogonality, as is evident in the present section, is avail-

able in the literature, for example, in Zhedanov [192]. However, the difference between

the present work and Zhedanov [192] is our second objective of proving biorthogonal-
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ity for exactly the same rational functions that were used to arrive at the recurrence

relations of RII type for the numerator polynomals rj(z) which is also evident from

Remark 6.3.1.

As mentioned in Chapter 1, while the sequence of rational functions

φ0(λ) := 1, φn(λ) :=
Pn(λ)∏n

j=1(λ− aj)(λ− bj)
, n ≥ 1,

is used to obtain the pencil matrix Gn − λHn, the usual process available in the lit-

erature, for example in Zhedanov [192] and Beckermann et.al. [16], is to partition the

poles to form the rational functions

pLn(λ) =
Pn(λ)∏n

k=1(λ− ak)
and pRn (λ) =

Pn(λ)∏n
k=1(λ− bk)

.

The two sequences of rational functions {pLn(λ)}∞n=0 and {pRn (λ)}∞n=0 form the compo-

nents of the left and right eigenvectors of the matrix pencil Gn − λHn. It is clear that

instead of partitioning the poles, we choose a basis of rational functions with alternat-

ing poles (in αj and βj) so that the degree (even or odd) of the numerator polynomials

play an important role in our analysis. This is the main difference between the orthog-

onal rational functions constructed in the present chapter and the ones available in the

literature.

6.3 Spectral transformation of Christoffel type

The Christoffel transformation (Chihara [42, p. 35]) of well-known orthogonal poly-

nomials is abundant in the literature. In the present section, we find a Christoffel

type transformation of the orthogonal rational functions given in (6.1.3) for the special

case |βj| = 1 and αj = α ∈ C \ {0}, j ≥ 1. We begin with the recurrence relations

(6.1.8a) and (6.1.8b) of RII type for the numerator polynomials {rn(z)}∞n=0 which are

now written, for n ≥ 0, as

r2n+1(z) = ρ2n(z − ν2n)r2n(z)− τ2n(z − 1/ᾱ)(z − βn)r2n−1(z), (6.3.1a)

r2n+2(z) = ρ2n+1(z − ν2n+1)r2n+1(z)− τ2n+1(z − α)(z − βn)r2n(z), (6.3.1b)
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where the new parameters {ρn} and {νn} are given by

ρ2n = d2n+1, ν2n =
d2n+1βn − e2n+1

d2n+1

, τ2n = −c2n+1ᾱβ̄n,

ρ2n+1 = −d2n+2ᾱ, ν2n+1 =
e2n+2 + d2n+2

d2n+2ᾱ
, τ2n+1 = c2n+2.

The recurrence relations (6.3.1b) and (6.3.1a) written in terms of the rational functions

ϕj(λ), j ≥ 0 (as defined in (6.1.3)) yield

(z − α)ϕ2n+1(λ) = u2n(z − ν2n)ϕ2n(z) + λ2n(z − 1/ᾱ)ϕ2n−1(z),

(z − βn+1)ϕ2n+2(z) = u2n+1(z − ν2n+1)ϕ2n+1(z) + λ2n+1(z − αn)ϕ2n(z),
(6.3.2)

for n ≥ 0, where u2n = ρ2n, u2n+1 = −ρ2n+1/βn+1, λ2n+2 = τ2n+2βn+1 and λ2n+1 =

τ2n+1/βn+1. The recurrence relations (6.3.2) can be further arranged in the following

form of an eigenvalue problem as

αϕ1 − u0ν0ϕ0 = z[ϕ1 − u0ϕ0],

αϕ2n+1 − u2nν2nϕ2n −
λ2n

ᾱ
ϕ2n−1 = z[ϕ2n+1 − u2nϕ2n − λ2nϕ2n−1],

βnϕ2n − u2n−1ν2n−1ϕ2n−1 − βn−1λ2n−1ϕ2n−2 = z[φ2n − u2n−1φ2n−1 − λ2n−1ϕ2n−2].

(6.3.3)

Moreover, for n ≥ 0, if we define the shift operators Γ and Λ as

Γϕ2n+1 := βn+1ϕ2n+2 − u2n+1ν2n+1ϕ2n+1 − λ2n+1βnϕ2n,

Γϕ2n := αϕ2n+1 − u2nν2nϕ2n − λ2n/ᾱϕ2n−1,

Λϕ2n+1 := ϕ2n+2 − u2n+1ϕ2n+1 − λ2n+1ϕ2n,

Λϕ2n := ϕ2n+1 − u2nϕ2n − λ2nϕ2n−1,

(6.3.4)

then (6.3.3) leads to the generalized eigenvalue problem Γ% = zΛ% with the eigenvalue

z and the eigenvector % =

(
ϕ0 ϕ1 ϕ2 · · ·

)T
.
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6.3.1 The case ϕ2n+1(λ)

Let ϕ̂2n+1(z) denote the Christoffel type transform of ϕ2n+1(z), n ≥ 0, obtained under

the action of the operator D, where Dϕj(z) = ϕ̂j(z). We note that ϕ̂2n(z), is an

arbitrary rational function in the present case. Further, we suppose that

%̂ =

(
ϕ̂0 ϕ̂1 ϕ̂2 · · ·

)T
,

where D% := %̂, is the eigenvector of some generalized eigenvalue problem with the

same eigenvalue z.

The following lemma gives information on the action of the operator D on an

arbitrary rational function Yk := Yk(λ) which belongs to the space Lj. We recall that

Ln = span{u0, u1, · · · , un}, where uj, j ≥ 0, are basis elements defined in Section 6.1.

Lemma 6.3.1. Let

DYk := Ω(z)(Yk+1 + ζjYk), Yk ∈ Lj, j ≥ 0,

where Ω(z) is a function of z but independent of k and hence, is a constant with respect

to D. Then

ζ2j+1 = −θ2j+2

θ2j+1

and ζ2j = −θ2j+1

θ2j

, j ≥ 0,

where θj is any function satisfying the recurrence relations (6.3.3).

Proof. Define another operator K as

KΓ = ΓoD and KΛ = ΛoD. (6.3.5)

Then, the effect of K on the generalized eigenvalue problem Γ% = zΛ% gives

KΓ% = zKΛ% =⇒ ΓoD% = zΛoD% =⇒ Γo%̂ = zΛo%̂,

which gives the generalized eigenvalue problem for %̂. Further, similar to (6.3.4), we
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define the shift operators Γo and Λo by

ΓoY2n := β̂nY2n+1 − û2n+1ν̂2n+1Y2n − β̂n−2λ̂2n+1Y2n−1,

ΓoY2n+1 := α̂Y2n+2 − û2nν̂2nY2n+1 − λ̂2n/ ˆ̄αY2n

(6.3.6)

and

ΛoY2n := Y2n+1 − û2n+1Y2n − λ̂2n+1Y2n−1,

ΛoY2n+1 := Y2n+2 − û2nY2n+1 − λ̂2nY2n,
(6.3.7)

respectively. We proceed to find the parameters used in (6.3.6) and (6.3.7) in terms

of the parameters used in the recurrence relations (6.3.1a) and (6.3.1b). For this, we

use the operator relations defined in (6.3.5) for ϕ2n and ϕ2n+1. Similar to D, let the

operator K be defined as

KYk := Ω(z)(Yk+1 + ηjYk), Yk ∈ Lj, j ≥ 0, (6.3.8)

where Ω(z) is a function of z and independent of k and hence, constant with respect

to K. Then, we have the following four cases.

Case I. Using the definitions of D and Γ, the relation Γ0Dϕ2n = KΓϕ2n, n ≥ 0, can

be written as

Γo[ϕ2n+1 + ζ2nϕ2n] = K[αϕ2n+1 − u2nν2nϕ2n − (λ2n/ᾱ)ϕ2n−1], n ≥ 0,

which implies

α̂[ϕ2n+2 + ζ2n+1ϕ2n+1]− û2nν̂2n[ϕ2n+1 + ζ2nϕ2n]− (λ̂2n/ ˆ̄α)[ϕ2n + ζ2n−1ϕ2n−1]

=[αϕ2n+2 − u2n+1ν2n+1ϕ2n+1 − (λ2n+1/ᾱ)ϕ2n]

+η2n+1[αϕ2n+1 − u2nν2nϕ2n − (λ2n/ᾱ)ϕ2n−1].

Comparing the coefficients of ϕ2n+2, ϕ2n+1 , ϕ2n and ϕ2n−1, we obtain

α̂ = α, π̂2n = π2n+1 + α(ζ2n+1 − η2n+1),
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û2nν̂2nζ2n +
λ̂2n

ˆ̄α
= u2nν2nη2n+1 +

λ2n+1

ᾱ
, λ̂2n =

η2n+1

ζ2n−1

λ2n, n ≥ 1,

where πj = ujνj and π̂j = ûj ν̂j.

Case II. Similar to Case I, comparing the coefficients of ϕ2n+1, ϕ2n and ϕ2n−2, in the

relation Γ0Dϕ2n−1 = KΓϕ2n−1 gives

β̂n = βn+1, π̂2n+1 = π2n + βn+1ζ2n − βnη2n and λ̂2n+1 =
η2n

ζ2n−2

λ2n−1,

for n ≥ 1, where we define α̂−1 := 0.

Case III. The comparison of the coefficient of ϕ2n+1 in the relation ΛoDϕ2n = KΛϕ2n,

n ≥ 0, gives

û2n = u2n+1 − η2n+1 + ζ2n+1, n ≥ 0.

Case IV. The comparison of the coefficient of ϕ2n+2 in ΛoDϕ2n+1 = KΛϕ2n+1, n ≥ 0,

gives

û2n+1 = u2n − η2n + ζ2n, n ≥ 0.

This implies that the operators Γo and Λo defined in terms of the parameters β̂n etc.

in (6.3.6) and (6.3.7) are well-defined. Now, using (6.3.5), we note

(Γo − zΛo)D%2n+1 = (KΓ− λKΛ)%2n+1,

which implies that %2n+1 is an eigenvector with respect to the operators Γ and Λ if,

and only if, %̂2n+1 is an eigenvector with respect to the operators Γo and Λo. Let θj be

an eigenvector of the generalized eigenvalue problem Γθj = ẑΛθj, with the eigenvalue

ẑ, which is equivalent to θj being a solution of the recurrence relation (6.3.3) with z

replaced by ẑ. Then, we have (Γo − ẑΛo)Dθ2n+1 = 0. This is satisfied, in particular,

by Dθ2n+1 = 0, which gives

θ2n+2 + ζ2n+1θ2n+1 =⇒ ζ2n+1 = −θ2n+2

θ2n+1

, n ≥ 0.
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A similar argument for θ2n gives Dθ2n = 0, which implies ζ2n = −θ2n+1/θ2n, thus

completing the proof.

The expressions for ηj are obtained from the operator relations ΛoDYk = ẑKΛYk
for Yk = θ2n and θ2n+1 as

η2n = − θ2n+1 − u2nθ2n − λ2nθ2n−1

θ2n − u2n−1θ2n−1 − λ2n−1θ2n−2

and

η2n+1 = −θ2n+2 − u2n+1θ2n+1 − λ2n+1θ2n

θ2n+1 − u2nθ2n − λ2nθ2n−1

.

(6.3.9)

In particular, from Cases I and III, the following relations

û0ν̂0ζ0 +
λ̂0

ᾱ
= u0ν0η1 +

λ1

ᾱ
and û0 = u1 + ζ1 − η1. (6.3.10)

hold for n = 0. We use the relations (6.3.10) to find the (constant) Ω(z) occurring in

the definitions of both the operators D and K leading to the Christoffel type transform

of ϕ2n+1(z). We also remark here that though β0 = 0, we continue using β0 in the

expressions that follow. The reason is to show explicitly, the role played by β0 in the

calculations

Theorem 6.3.1. The Christoffel type transform of ϕ2n+1(z) is given by

ϕ̂2n+1(z) = σ
z − α1

z − ẑ

[
ϕ2n+2(z)− ϕ2n+2(ẑ)

ϕ2n+1(ẑ)
ϕ2n+1(z)

]

for some constant σ. Further if % =

(
ϕ0 ϕ1 · · ·

)T
is the eigenvector for the

generalized eigenvalue problem Γ% = zΛ%, there exists another generalized eigenvalue

problem Γo%̂ = zΛo%̂, with the same eigenvalue z for which %̂ =

(
ϕ̂0 ϕ̂1 · · ·

)T
is

the eigenvector.

Proof. The last part of the theorem is about the existence of generalized eigenvalue

problems for the column vectors % and %̂ which follows from the proof of Lemma 6.3.1.

It is also clear that the Christoffel type transform is given by the shift operator D and

hence to find the expression for ϕ̂2n+1(z), we need to find Ω(z) which is independent

of n. Further, we obtained the functions θj, j ≥ 0, with θ−1 = 0, that satisfy the
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recurrence relations (6.3.3) with z replaced by ẑ. These equations for n ≥ 0, written

explicitly as

αθ2n+1 − u2nν2nθ2n − (λ2n/ᾱ)θ2n−1 = ẑ[θ2n+1 − u2nθ2n − λ2nθ2n−1], (6.3.11a)

βn+1θ2n+2 − u2n+1ν2n+1θ2n+1 − βnλ2n+1θ2n = ẑ[θ2n+2 − u2n+1θ2n+1 − λ2n+1θ2n].

(6.3.11b)

Let the Christoffel type transform of ϕ2n+1(z) be the rational function

ϕ̂2n+1(z) =
r̂2n+1(z)

(z − α̂)n+1
∏n

j=1(1− zβ̂j)
=

r̂2n+1(z)

(z − α)n+1
∏n+1

j=2 (1− zβ̂j)
,

where {r̂j(λ)} satisfies the recurrence relations (6.3.1a) and (6.3.1b), but with the

coefficients u replaced by û etc. To determine the constant Ω(z), we note that the

implication

ϕ̂2n+1 = Ω(z)(ϕ2n+2 + ζ2n+1ϕ2n+1) =⇒ Ω(z) =
(z − β1)r̂1(z)

r2(z) + ζ1(z − β1)r1(z)

follows from the values for n = 0. Further, from (6.3.11a), we obtain for n = 0,

αθ1 − u0ν0θ0 = ẑ(θ1 − u0θ0) =⇒ θ1

θ0

=
u0(ẑ − ν0)

ẑ − α
.

Similarly, from (6.3.11b) for n = 0,, we obtain

β1θ2 − u1ν1θ1 − λ1β0θ0 = ẑ[θ2 − u1θ1 − λ1θ0],

which gives

(ẑ − β1)
θ2

θ1

= u1(ẑ − ν1) + λ1(ẑ − β0)
θ0

θ1

.

Then, from Lemma 6.3.1, we obtain

−ζ1 =
θ2

θ1

=
u1(ẑ − ν1)

ẑ − β1

+
λ1(ẑ − β0)(ẑ − α)

u0(ẑ − β1)(ẑ − ν0)
,
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so that the denominator of Ω(z) has the expression

r2(λ) + ζ1(z − β1)r1(z) = u0u1(z − ν0)(z − ν1) + λ1(z − β0)(z − α)

− z − β1

ẑ − β1

u0(z − ν0)

[
u1(ẑ − ν1) +

λ1(ẑ − β0)(ẑ − α)

u0(ẑ − ν0)

]
.

This implies that

(ẑ − ν0)(ẑ − β1)[r2(z) + ζ1(z − β1)r1(z)]

= u0u1[(z − ν0)(z − ν1)(ẑ − ν0)(ẑ − β1)− (ẑ − ν0)(ẑ − ν1)(z − ν0)(z − β1)]

+ λ1[(z − β0)(z − α)(ẑ − ν0)(ẑ − β1)− (ẑ − β0)(ẑ − α)(z − ν0)(z − β1)].

Further simplification yields

Ω(z) =
z − β1

z − ẑ
(ẑ − ν0)(ẑ − β1)r̂1(z)

Υ(z)
,

where Υ(z) = Υ1z + Υ0, with

Υ1 = u0u1(ẑ − ν0)(ν1 − β1) + λ1(β1ν0 + β0ẑ + αẑ − β1ẑ − ν0ẑ − αβ0),

Υ0 = −u0u1(ẑ − ν0)(ν1 − β1)ν0 + λ1[ν0(β1ẑ − αβ1 − β0β1 + αβ0)− αβ0ẑ + αβ0β1].

Next, using the relations (6.3.9) and (6.3.10), we have r̂1(z) = û0(z − ν̂0), where

û0 = u1 + ζ1 − η1 with

ζ1 = −θ2

θ1

and η1 = −(θ2 − u1θ1 − λ1θ0)

(θ1 − u0θ0)
.

Further, we have û0ν̂0 = u1 + α(ζ1 − η1). This implies,

û0(α− ν0)

ẑ − ν0

=
u1(ν1 − β1)(α− ẑ)

(ẑ − β1)(ẑ − ν0)
+

λ1(ẑ − α)

u0(ẑ − ν0)2(ẑ − β1)
[β1ẑ − β1ν0 − β0ẑ − αẑ + ν0ẑ + αβ0] ,
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which on further simplification yields

ζ0û0(α− ν0)(ẑ − β1)

= u0u1(ν1 − β1)(ẑ − ν0) + λ1(β1ν0 + β0ẑ + αẑ − β1ẑ − ν0ẑ − αβ0).

Using the fact that −ζ0 = u0(ẑ − ν0)/(ẑ − α), we finally have

ζ0û0(α− ν0)(ẑ − β1) = Υ1.

Further, substituting the value of η1, we have from the first relation in (6.3.10)

u0u1(β1 − ν1)(ẑ − ν0) + λ1

[
ν0(ẑ − α)(β1 − β0)− 1

ᾱ
(α− ν0)(ẑ − β1)

]
+
λ̂0

ᾱ
(α− ν0)(ẑ − β1) = −ζ0(α− ν0)(ẑ − β1)ρ̂0ν̂0.

Defining λ̂0 := λ0 − β0ᾱ (since β0 = 0, λ̂0 := λ0), finally yields

−ζ0(α− ν0)(ẑ − β1)û0ν̂0 = Υ0.

Hence, we have ζ0(α− ν0)(ẑ − β1)r̂1(z) = Υ(z), which means

Ω(z) =
ẑ − ν0

ζ0(α− ν0)

z − β1

z − ẑ
= σ

z − β1

z − ẑ
,

where σ = (ẑ − α)/(u0(ν0 − α)). Finally, we note that since θj satisfies (6.3.11a) and

(6.3.11b), θj must necessarily be equal to ϕj(ẑ).

Remark 6.3.1. We would like to emphasize here the use of the relations (6.3.10) and

the second degree polynomial r2(z) in deriving the above expressions. This is different

from the one given in Zhedanov [192], where the linear polynomial r1(λ) was used.

Remark 6.3.2. The operators used in deriving the Christoffel type transformation are

basically matrix multiplication operators. A study of such operators, from a measure

theoretic point of view can be found in Hudzik et al. [86].
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6.3.2 The case φ2n(λ)

Let ϕ̂2n(λ) denote the Christoffel type transform of ϕ2n(λ), n ≥ 0. In the present case,

we use the shift operators Γe and Λe where, for n ≥ 0, Γe is given by

ΓeY2n := β̂n+1Y2n+1 − û2n+1ν̂2n+1Y2n − β̂n−1λ̂2n+1Y2n−1,

ΓeY2n+1 := α̂Y2n+2 − û2nν̂2nY2n+1 − λ̂2n/ ˆ̄αY2n,
(6.3.12)

and Λe is same as Λo, which was defined in the case of ϕ2n+1(λ) as that is

ΛeY2n = Y2n+1 − û2n+1Y2n − λ̂2n+1Y2n−1,

ΛeY2n+1 = Y2n+2 − û2nY2n+1 − λ̂2nY2n.

The derivation of the expression for ϕ̂2n(z) follows the same technique as in the case

of ϕ̂2n+1(z). In fact, this technique is used to find the Christoffel type transforms

of orthogonal rational functions with arbitrary poles. However, as remarked earlier,

only the polynomial r1(z) is used which makes the calculations easier. We present the

proof of the following theorem illustrating the difference in the calculations involved in

deriving the expressions for ϕ̂2n+1(λ) and ϕ̂2n(λ).

Theorem 6.3.2. The Christoffel type transform of ϕ2n(z) is given by

ϕ̂2n(z) = σ
z − α
z − ẑ

[
ϕ2n+1(z)− ϕ2n+1(ẑ)

ϕ2n(ẑ)
ϕ2n(z)

]
,

for some constant σ = (ẑ − α)/(u0(ν0 − α)). Moreover, if % =

(
ϕ0 ϕ1 · · ·

)T
is

the eigenvector for the generalized eigenvalue problem Γ% = zΛ%, there exists another

generalized eigenvalue problem Γe%̂ = zΛe%̂, with the same eigenvalue z for which

%̂ =

(
ϕ̂0 ϕ̂1 · · ·

)T
is the eigenvector.

Proof. As in Lemma 6.3.1, we define the two shift operators D and K in the present

case as

DYk := Ψ(z)(Yk+1 + ζjYk), KYk := Ψ(z)(Yk+1 + ζjYk), Yk ∈ Lj, j ≥ 0,

which also satisfy the operator relations KΓ = ΓeD and KΓ = ΛeD. and where Ψ(z) is
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independent of k. It follows that

Γ% = zΛ%⇐⇒ Γe%̂ = zΛe%̂, (6.3.13)

which proves the existence of a generalized eigenvalue problem for the column vector

%̂ with the eigenvalue z. Further, as in the four cases in the proof of Lemma 6.3.1, the

parameters used in the definitions (6.3.7) and (6.3.12) of Λ̂ and Γ̂e can be found from

ΓeDYj = KΓYj and ΛeDYj = KΛYj,

first for Yj = ϕ2n and then for Yj = ϕ2n+1. These parameters are given by

β̂n = βn, û2n+1 = u2n + ζ2n − η2n, λ̂2n+1 =
η2n

ζ2n−2

λ2n−1,

α̂ = α, π̂2n = π2n+1 + β(ζ2n+1 − η2n+1), λ̂2n =
η2n+1

ζ2n−1

λ2n,

û2n = u2n+1 + ζ2n+1 − η2n+1.

We note again from (6.3.13) that

(Γe − zΛe)D% = (KΓ− zKΛ)%

implies % is an eigenvector with respect to the operators Γ and Λ if, and only if, D% = %̂

is an eigenvector with respect to the operators Γe and Λe.

As in the proof of Theorem 6.3.1, let θj be an eigenvector of the generalized eigen-

value problem Γθj = ẑΛθj, with the eigenvalue λ̂, which is equivalent to θj being

a solution of the recurrence relation (6.3.3) with z replaced by ẑ. Then, we have

(Γe − ẑΛe)Dθ2n+1 = 0. This is satisfied, in particular, by Dθ2n+1 = 0, which gives

θ2n+2 + ζ2n+1θ2n+1 =⇒ ζ2n+1 = −θ2n+2

θ2n+1

, n ≥ 0.

A similar argument for θ2n gives Dθ2n = 0, which implies ζ2n = −θ2n+1/θ2n. It then

follows that for these values for ζj, ηj satisfies the equations (6.3.9).
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Let the Christoffel type transform of φ2n(λ) be the rational function

ϕ̂2n(z) =
r̂2n(z)

(z − α̂)n
∏n

j=1(1− z ¯̂
βj)

=
r̂2n(z)

(λ− α)n
∏n

j=1(1− zβ̄j)
,

where r̂2n(z) satisfies the recurrence (6.3.1b) but with the coefficients un replaced by

ûn etc. To determine the constant Ψ(z), we note that the implication

ϕ̂2n(z) = Ψ(z)(ϕ2n+1(z) + ζ2nϕ2n(z)) =⇒ Ψ(z) =
(z − α)

r1(z) + ζ0(z − α)
,

which follows from the values for ϕ1 and ϕ0. Using the facts that r1(z) = u0(z − ν0)

and −ζ0 = θ1/θ0 = u0(ẑ − ν0)/(ẑ − α), we have

Ψ(z) =
z − α

u0(z − ν0)− u0(ẑ − ν0)

ẑ − α
(z − α)

=
(ẑ − α)(z − α)

u0(ν0 − α)(z − ẑ)
.

Choosing σ = (ẑ−α)/u0(ν0−α), we arrive at the required expression for the Christoffel

type transform ϕ̂2n(z).

Note 6.3.1. The constant σ obtained in the case of Christoffel type transform of ϕ2n(z)

is the same as that obtained in the case of Christoffel type transform of ϕ2n+1(z).

We conclude this section with the moment functional associated with the Christoffel

type transforms. Define the following two linear functionals as

N0 :=
z − ẑ
z − β1

N and Ne :=
z − ẑ
z − α

N, (6.3.14)

where N is as defined in Theorem 6.2.1. Further, by multiplication of a functional by

a function f(z)N it is understood that N acts on the space of the space of functions

g(z) as N(f(z)g(z)). Then we have

Theorem 6.3.3. The following orthogonality relations hold

No

(
zj

(1− zᾱ)n
∏n

k=0(z − βk)
ϕ̂2n+1(λ)

)
= 0, j = 0, 1, · · · , 2n,

Ne

(
zj

(1− zᾱ)n
∏n−1

k=0(z − βk)
ϕ̂2n(λ)

)
= 0, j = 0, 1, · · · , 2n− 1,
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where N0 and Ne are defined in (6.3.14).

Proof. Using Theorem 6.2.1, it is easy to see that

No

(
zjϕ̂2n+1(z)

(1− zᾱ)n
∏n

k=0(z − βk)

)
= σN

(
zj(ϕ2n+2(z) + ζ2n+1ϕ2n+1(z))

(1− zᾱ)n
∏n

k=0(z − βk)

)
= σN(zj{(1− zᾱ)O2n+2(z) + ζ2n+1O2n+1(z)})

= 0, j = 0, 1, 2, · · · , 2n,

where Oj(z) are the rational functions defined in (6.2.1). The proof for the case of

φ̂2n(z) is similar and hence omitted.

6.4 Concluding remarks

The orthogonal rational functions obtained in this chapter can lead to a variety of

research problems. For instance, the class of Pick functions obtained in Chapter 2

consists of ratios of Gaussian hypergeometric functions which can always be brought

to rational function forms under certain restrictions. Hence, it can be expected that

this class of Pick functions satisfy some sort of orthogonality as well as biorthogonality

properties.

Moreover, the RII recurrence relations (6.1.8a) and (6.1.8b) are similar to the re-

currence relations satisfied by the orthogonal Laurent polynomials (Bultheel et al. [33,

Theorem 11.14, p.263]). Hence, further study of such RII recurrence relations and

the related eigenvalue problems can also be made. Since no conditions are imposed

on the poles except that they are non-vanishing to derive biorthogonality, interesting

particular cases can be obtained when the poles satisfy special conditions.
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[117] R. Küstner, Mapping properties of hypergeometric functions and convolutions of

starlike or convex functions of order α, Comput. Methods Funct. Theory 2 (2002),

no. 2, 597–610.

[118] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polyno-

mials, J. Korean Math. Soc. 34 (1997), no. 4, 973–1008.

[119] H. Langer and A. Lasarow, Solution of a multiple Nevanlinna-Pick problem via

orthogonal rational functions, J. Math. Anal. Appl. 293 (2004), no. 2, 605–632.

[120] N. N. Lebedev, Special functions and their applications, Revised edition, trans-

lated from the Russian and edited by Richard A. Silverman. Unabridged and

corrected republication. Dover Publications, Inc., New York, 1972. xii+308 pp.

[121] J. L. Lewis, Applications of a convolution theorem to Jacobi polynomials, SIAM

J. Math. Anal. 10 (1979), no. 6, 1110–1120.



BIBLIOGRAPHY 184

[122] X. Li, Regularity of orthogonal rational functions with poles on the unit circle,

J. Comput. Appl. Math. 105 (1999), no. 1-2, 371–383.

[123] L. L. Littlejohn, On the classification of differential equations having orthogonal

polynomial solutions, Ann. Mat. Pura Appl. (4) 138 (1984), 35–53.

[124] L. Lorentzen and H. Waadeland, Continued fractions with applications, Studies

in Computational Mathematics, 3, North-Holland, Amsterdam, 1992.

[125] D. S. Lubinsky and A. Sidi, Zero distribution of composite polynomials and

polynomials biorthogonal to exponentials, Constr. Approx. 28 (2008), no. 3, 343–

371.

[126] A. Maji and P. D. Srivastava, On some geometric properties of generalized

Musielak-Orlicz sequence space and corresponding operator ideals, Banach J.

Math. Anal. 9 (2015), no. 4, 14–33.

[127] F. Marcellán, Polinomios ortogonales no estándar. Aplicaciones en análisis
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[149] F. Rønning, PC-fractions and Szegő polynomials associated with starlike univa-

lent functions, Numer. Algorithms 3 (1992), no. 1-4, 383–391.
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