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Abstract

In this thesis, attempts have been made to investigate the dynamics of pest control

models considering various pest management tactics with birth pulses. The mathemat-

ical models in pest management are the system of differential equation with impulsive

conditions. These impulsive effects may occur due to the instantaneous killing of pest

using pesticides, releasing natural enemies and harvesting pest. Dynamical behaviors

of some impulsive models with time-dependent strategies as well as state-dependent

strategies have been explored. Emphasis is given to exploring the factors that are

responsible for pest eradication. Due to impulses in pest control systems underly-

ing equations have complex dynamical behavior, including periodic solutions, quasi-

periodic, chaotic behavior etc.. The numerical simulations are carried out to explore

the dynamic complexity in impulsive models. The efforts have been made to interpret

mathematical results and to explore the biological relevance of these results.

Chapter 1 includes brief introduction including basic concepts for pest control,

mathematical tools, literature survey and summary of the thesis. The chapters 2, 3

and 4 are devoted to the control of pest using single pest management strategy. The

next three chapters incorporate the Integrated Pest Management approach to control

the pest population. The effect of pesticides on the environment is considered in chapter

8. A state dependent control is discussed in chapter 9. The conclusions and future

scope are presented in the last chapter.

In particular, the second chapter deals with the dynamics of an impulsive stage-

structured pest control model. In this model, birth pulses occur at regular intervals to

release immature pest. The Ricker type birth function is assumed. Pest population is

controlled by periodic spray killing mature as well as immature pest instantaneously.

This is synchronized with birth pulses. The discrete dynamical system determined
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by the stroboscopic map is analyzed. The threshold condition for pest eradication is

established. It is found that if the birth rate parameter is below the critical level,

then the pest can be effectively controlled. Finally, numerical simulations depict the

complex dynamics of the model.

In chapter 3, birth pulse and chemical spray are no more synchronous. The pesticide

is sprayed periodically before the birth at the fixed time. The effect of pesticide spray

timing on threshold condition for pest eradication is studied. The pest will extinct

when the time of pesticide spray exceeds the critical value. The maximum reduction

in immature and mature densities will occur near the birth pulse when the basic re-

production number exceeds one. Further, asynchronous pulses reduce the complexity

of the system.

A pest control model using pesticides having residual effects is discussed in chapter

4. The effect of residual pesticide can be described by kill function. Birth pulse

and chemical spray are assumed to be asynchronous. The basic reproduction number

for pest eradication has been computed. The effects of various model parameters on

the threshold condition are investigated. It is found that the killing efficiency rate

reduces the threshold below unity which is required for effective pest control. Further,

the decay rate of the pesticide enhances the threshold and pest outbreak may occur.

Finally, numerical simulations depict the complex dynamical behaviors.

In chapter 5, a model is developed considering the continuous mechanical effort

(harvesting) to control the immature pest while mature pest is controlled impulsively by

the pesticide. It is found that the pest cannot be controlled successfully in the absence

of harvesting effort. The combination of harvesting effort and pesticide is needed

for successful pest control. The use of pesticides can be reduced by incorporating

mechanical control. It is found that when mature pest density goes beyond a critical

level, then the pest-free state will be stable. Further, the rate reduces the complexity

of the system with an increase in immature pest mortality rate. Due to asynchronous

pulses, the harvesting reduces the complexity of the system. The chances of pest-

eradication also increase with less toxic pesticides.

In chapter 6, an impulsive model with three pulses is considered where the mechan-

ical, chemical control and birth pulse occur at three different fixed times. The increase
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in time delay of chemical control reduces the mature pest density as well as the thresh-

old for pest eradication. The threshold value of harvesting effort has been obtained

for the stable pest-free state. The critical level of pulse period is obtained to control

the pest population. Numerical simulations have been performed to show the com-

plex dynamical behavior, including period-doubling bifurcation and chaotic dynamics.

The Lyapunov exponent and Lyapunov dimension are computed to establish the pest

outbreak in the form of chaotic attractor.

In chapter 7, integrated pest management approach comprising of the impulsive

chemical as well as mechanical control is considered. The residual effect of pesticide

with the delayed response is assumed. The harvesting effort and birth pulse occur

asynchronously. The basic reproduction number has been computed. The bifurcation

diagram with respect to birth rate has been plotted to show the stability regions of the

pest-free state and interior fixed point. The harvesting effort of immature and mature

pest reduces the threshold condition and thereby enhancing the stability of pest-free

state. Numerical simulations reveal that increasing the delayed response may stabilize

the pest-free state. It is found that the shorter delayed response rate is not sufficient

for pest eradication. The combination of time delay in harvesting and the delayed

response rate is required to control the pest population.

Chapter 8 investigates the toxic effects of pesticides on the environment. The

sufficiently small toxicant removal from the environment may eradicate the pest suc-

cessfully. Otherwise, the pest will occur in regular/irregular periodic manner. For the

lower birth rate pest can be eradicated completely. Similarly, the pest outbreak will

occur when toxin input into the environment is sufficiently small.

A state-dependent combined strategy for biological and chemical control is discussed

in chapter 9. The Poincare map is used to explore the system dynamics. Sufficient

conditions for the existence and stability of natural enemy-free and positive period-1

solutions are obtained. The positive period-1 solution bifurcates from the semi-trivial

solution through a fold bifurcation. Complex dynamical behavior, including chaos is

obtained. It is also observed that if more natural enemies are released, the complexity

of the system increase, but the pest population will remain below the threshold level.
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Chapter 1

Introduction

1.1 General Introduction

Over the last few decades, one of the major challenges of the farmers in the agricultural

field is controlling the pest. The apparently uncertain behavior of the pest may cause

serious ecological and economic problems for the farmers. The pest attacks the crop and

reduces the agricultural crop production since early civilization [181, 182]. The main

motives of the farmers are to minimize the losses due to the pest by the most economical

means and with the least impact on the environment [228]. In this context, the use of

mathematical models is particularly significant. Mathematical models are applied in

all scenarios of the real world [1, 15, 22, 27, 32, 34, 35, 37, 47, 48, 49, 72, 106, 108, 110,

111, 112, 122, 192, 193, 199, 212]. Mathematical modeling of pest control models has

a very long history and they emphasizes on preventing pest damage [147, 214, 240].

Mathematical models can give direction to understand the implementation of different

pest control mechanism [81, 190]. The main aim of the pest control modeling is to

understand the life cycle of the pest, to determine the pest control methods and to

predict the effectiveness of control strategies that can help in reducing pest outbreak

[216, 227]. Usually, farmers implemented two schemes to prevent pest damage:

• To implement control at a fixed time for pest eradication [45, 154].

• To implement measures only when the amount of pests reaches a critical level

and reduce the pest below that level not to extinct the pest [156, 169].

1



2 Chapter 1: Introduction

Most of the pest control models focus on various aspects such as the amount of the

pest population killed to avoid economic damage, reduce the use of the pesticide and

fraction of releasing natural enemies for pest control as well as reducing the use of

pesticides. In this thesis, stage-structured mathematical models are used with single

control tactic and the combination of control tactic. A system of impulsive differential

equations represents the mathematical representation of pest control problem. In this,

impulsive reduction in the pest population occurs after poisoning/trapping.

The aim of the present work is to study the dynamical behavior of some pest

control models in which various control methods are used. The attempts are made to

explore different mechanisms that may eradicate the pest population. The stability of

dynamical models has been investigated and bifurcation analysis has been carried out.

Emphasis is given to provide the threshold for pest elimination or keeping it below that

level.

In the following sections, the brief discussion about the basic concepts, methods,

and tools related to the work are described.

1.1.1 Pest Management

Pest species have been defined as unwanted organisms that disturbs human activity.

Pests create a nuisance, spread disease to people, animals, and plants. It is judged by

man to cause harm to himself, his crops, animals or his property. Pest includes insects,

rodents, bacteria, and plants. In agricultural field, an insect may be classified as a pest.

Pest cause damage directly to the products, e.g. codling moth larval damage to apples.

It is well known that a variety of pest species pose a serious health risk to humans and

pets, as well as causing great damage to property and crops. If the damage to crops

by the pest is sufficient to reduce the yield by an amount then it is unacceptable to

the farmer. Controlling insects and other arthropods are complex. Some attempts

to control or manage the harm caused by insects has a long and varied history. Pest

management practices which in turn will provide some ideas (economic, social and

technical) to be acting in the future. Such pest control often involves chemical control.

There are different approaches to get rid of agricultural pests [20, 21, 206].

• Cultural Control The goal of cultural control is to suppress pest problems by
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minimizing the resources for their survival (water, shelter, food). More than hun-

dred years ago, cultural methods started with the use of chalks, wood dash and

neem leaves etc.. Further, tobacco extract spray and powder of chrysanthemum

flowers was used to keep away from pests [88].

• Mechanical Control Mechanical control involves the use of machines, devices

and physical methods to control pests. Traps, screens, barriers, fences, etc. are

used to prevent pest activity or remove pests from the area.

• Chemical Control The pesticide was initially viewed as a miraculous way of

controlling the pest. This is an important method to get rid of the pest. Insec-

ticides are useful because they quickly kill a significant proportion of an insect

population. Chemical control relies mainly on the use of synthetic pesticides to

suppress pests. But sometimes chemical control provides an only feasible method

for preventing economic loss. There are many deleterious effects associated with

the use of chemicals that need to be reduced or eliminated. Pesticide pollution is

also recognized as a major health hazard to human as well as to the environment.

The chemicals adversely affect many other species, including the natural enemies

of pests [153].

• Biological Control Biological control is the reduction in pest populations by

other living organisms, often called natural enemies or beneficial species. Virtu-

ally all pests have some natural enemies. The key to successful biological control

is to identify the pest and its natural enemy. The density of natural enemy and

its times of release is critical to maintain the pest below economic injury levels.

For example, Mynah bird for the control of locusts (Mauritius, 1762) and Vedalia

beetle for cottony cushion scale on citrus (USA, 1889) were used to control pest

population. Biological products often contain the bacterium Bacillus thuringien-

sis, viruses, fungi, or parasitoids. One of the first successful cases of biological

control in greenhouses was the use of the parasitoid Encarsia Formosa against

the greenhouse whitefly Trialeurodes vaporariorum on tomatoes and cucumbers

[68, 227, 228].
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1.1.2 Pest Management Goals

There are many tactics which are effective for pest control. Single or combination of

tactics will give pesticide applications the best strategy for a specific goal. Prevention,

suppression, and eradication are three approaches to maintain pest population below

the economic injury level.

Prevention Prevention includes planting weeds, disease-free seeds. growing varieties

of plant resistance to disease or insects. Sometimes, cultural controls can also use

to prevent weedy plants from seeding. Pesticides and choosing harvesting times

are sometimes used for pest prevention.

Suppression Suppression pest control methods are used to reduce pest population

levels. The main aim of choosing method is not to eliminate all pests, but reduce

their populations to a point below the economic injury level.

Eradication Eradication is the total elimination of a pest. The eradication may be

very expensive over larger areas and it will be less successful.

1.1.3 Integrated Pest Management

The concept of integrates pest management(IPM) was introduced in the late 1950

[207]. It was widely practised during the 1970 and 1980 and used several tactics such

as biological control, crop rotation, harvesting, and pesticide spray, etc. to reduce

pest populations below economic levels [58, 224, 225, 227, 228]. Integrated pest

management is a long-term, low-cost strategy that uses a combination of biological,

cultural and chemical tactics that reduce pest population to tolerable levels.

Integrated pest management(IPM) strategy is proven to be more effective and

less damaging to the environment than the classic tactics (such as biological control

or chemical control) both experimentally [58, 225, 226] and theoretically [14, 176,

224, 233]. The main aim is to eradicate the pest or keep the pest population below a

threshold for ecological damage [216].
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Figure 1.1: Relationship between economic threshold to the economic injury level and

time of taking action

In IPM, the emphasis is given on two main concepts: economic injury level(EIL)

and economic threshold(ET). The economic threshold(ET) is usually defined as the

number of the pest in the field when control actions must be taken to effectively prevent

the economic injury level(EIL)from being reached and exceeded (see 1.1). Economic

injury level(EIL) is the lowest pest population density that will cause economic damage.

The economic threshold must be less than the economic injury level [207].

Mathematical models are being used in pest management to estimate and predict

economic threshold for pest populations [68, 176]. Impulsive differential equations are

commonly used to model chemical [125] and biological strategies [158, 170] which

are applied in pulses periodically to control pest population [137, 147, 190, 216].

These pulses are applied at a distinct time or state of the system. The mathematical

techniques are vital for exploring the rapid changes in the control parameters across the

threshold. This threshold can cause abrupt changes between the states of an impulsive

system. Such type of changes between different states of an ecological system often

accompanied by the occurrence of extinction, periodic solutions, and chaos. Few papers

have been published on impulsive dynamical behavior including limit cycles, invariant

sets, and attractors [183, 218]. In the next section, the attempts have been made to
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study impulsive systems.

1.2 Impulsive Differential Equations

Many evolution processes are characterized by the fact that at certain moments of

time they experience a change of state abruptly. These processes are subject to short-

term perturbations whose duration is negligible in comparison with the duration of the

process. Consequently, it is natural to assume that these perturbations act instanta-

neously, that is, in the form of impulses. It is known that many biological processes

exhibit impulsive effects. Thus, impulsive differential equations, that is, differential

equations involving impulse effects, appear as a natural description of observed evolu-

tion phenomena of several real-world problems. Equations of such type can be found in

every domain of applied sciences [11, 12, 140, 187, 218, 220]. Impulsive systems have

much richer dynamics than the corresponding theory of differential equations with-

out impulses and has emerged an important area of investigation. These differential

equations [11, 59, 120] have been recently used in population dynamics in relation

to impulsive vaccination [2, 45, 62, 87, 201], population ecology [93, 129, 142], the

chemotherapeutic treatment of disease [118, 173], birth pulses [218]. The IPM model

based on combination of biological and chemical control applied impulsively were pre-

sented in [88, 138]. The host-parasitoid model with impulsive control was considered

in [216]. The model considering microbial control with pathogen has also been inves-

tigated in [63, 97].

In 1960, the theory of impulsive differential equations started with the pioneer-

ing work of Mil’man and Myshkis [159]. Further, the fundamental theory of impulsive

differential equations is developed in the monographs by Bainov and Simeonov [12],

Lakshmikantham, Bainov and Simeonov [120], and Samoilenko and Perestyuk [194]

during the 1990s. These monographs present qualitative solution properties, the exis-

tence of solutions, asymptotic properties of solutions and stability theory of impulsive

differential equations.

The impulsive differential equations can be successfully used for mathematical

simulation of processes and phenomena which are subject to short-term perturbations
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during their evolution [12]. Impulsive differential equations undergoes rapid develop-

ment in the theory of biology, economics, electronics, medicine, optimal control and

population dynamics [80, 118, 120, 142, 145, 236]. Lakmeche et al. [118] transformed

the problem of periodic solution into a fixed-point problem. They obtained the exis-

tence conditions of the trivial solution and the positive period-1 solution. The duration

of the perturbations is negligible in comparison with the duration of the process consid-

ered, and they can be thought of as momentary. Even though the impulsive dynamical

system is first formulated by Mil’man and Myshkis [159]. From a long period, it is

a subject of intensive investigations [118, 120, 218, 237]. An impulsive differential

equation is divided into three components:

• A continuous-time differential equation which governs the state of the system

between impulses.

• An impulse equation, which models an impulsive jump defined by a jump function

at the instant an impulse occurs.

• A jump criterion, which defines a set of jump events in which the impulse equation

is active.

Consider the system

dX

dt
= F (X, t), t ̸= nT, n ∈ 1, 2, 3, ...,

∆X = B(X), t = nT, (1.2.1)

X(0+) = X(0).

The system (1.2.1) is a system of impulsive differential equation. The solution X(t) of

the system (1.2.1) is piecewise continuous function from ℜ+ → ℜn
+. The solution X(t)

is continuous in the intervals (nT ≤ t < (n+1)T ]. Further, it is easy to prove that the

system (1.2.1) has a positive solution for positive initial conditions.

Consider ℜ+ = [0,∞), ℜn
+ = {X = (X1, X2, X3...Xn) ∈ ℜn, X1, X2, X3...Xn ≥ 0}

and F = {F1, F2, ..., Fn}. Let V : ℜ+×ℜn
+ → ℜ+, then the function V belongs to class

V0 if

1. V(t) is continuous in (nT ≤ t < (n + 1)T ] × ℜn
+ for each X ∈ ℜn

+, n ∈ Z+and

lim(t,X)→(nT+,X) V (t,X) = V (nT+, X) exist.
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2. L is locally Lipschitzian in X.

Definition 1.2.1. Let V ∈ V0, then for (t,X) ∈ (nT ≤ t < (n+1)T ]×ℜn
+, the upper

right derivative of V (t,X) with respect to the impulsive differential system (1.2.1) can

be defined as

D+V (t,X) = lim
h→0

sup
1

h

[
V (t+ h,X + hF (t,X))− V (t,X)

]
.

Theorem 1.2.1. If the function F is Lipschitz in X, then there exists a unique solution

of the system (1.2.1).

Theorem 1.2.2. Let X(t) be a solution of the system (1.2.1) with X(0+) ≥ 0, then

X(t) ≥ 0 for all t ≥ 0. Further, X(t) > 0, for t > 0 if X(0+) > 0.

Let the map X → F (X) from an open subset D ⊂ Rn toRn be such that the solution

X(t) to the differential equation (1.2.1) is uniquely determined by its initial value

X(0) = X0 and this solution is denoted by X(t,X0). It is assumed that

1. D is simply connected,

2. X is the only equilibrium point in D and,

3. there is a compact absorbing set K ⊂ D.

Definition 1.2.2. A set K is called absorbing in D if, X(t,F) ⊂ K for each component

set F ⊂ D1 ⊂ D (D1 is an open set) for sufficiently large t > 0.

In the system (1.2.1), impulses are applied at the fixed time. However, in the pest

management system, control strategies are applied, when the pest density reaches at

economic threshold level (ET). For an IPM strategy, action must be taken once critical

density of the pest is observed in the field so that the EIL is not exceeded Fig.1.1.

In such case, the impulses are state dependent. For instance, impulsive reduction of

the pest density is possible by trapping or by poisoning with chemicals. An impulsive

increase of a controlling predator density is possible by artificial breeding and releases.
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The state-dependent impulsive system is written as:

dx

dt
= G(x(t))x(t)−H(x(t), y(t)) = G1(x, y),

dy

dt
= γH(x(t), y(t)− dy(t) = G2(x, y),

x ̸= h,

∆x(t) = −ϵ1x(t),

∆y(t) = −ϵ2y(t) + τ,

x = h, (1.2.2)

x(0+) = x0 < h, y(0+) = y0. (1.2.3)

Here, 0 < ϵ1, ϵ2 < 1 be the reduction in the pest and natural density respectively, by

killing or trapping once the number of pests reaches h and τ > 0 be the number of

natural enemies released at this time [214].

1.3 Mathematical Modeling

Pest management is concerned with developing explanation and insight about the eradi-

cation, persistence, structure and dynamics of pest species. To portray the complicated

phenomena of pest management system, mathematical model is constructed.

1.3.1 Compartmental Model

In the absence of stage-structure, consider that pest density be N(t) at any time t. It

changes according to the growth equation [116]:

dN(t)

dt
= B(N(t))N(t)− dN(t). (1.3.1)

Here, d > 0 is the mortality rate and B(N(t)) is the birth rate function at time t.

Assume that, the function B(N(t)) satisfy the following assumptions for N ∈ [0,∞):

A1 B(N) > 0.

A2 The function B : ℜ → [0,∞) is continuously differentiable with B′(N) < 0.

Biologically, it means that the per capita birth rate for a pest is decreased due

to the intra-specific competition as pest population increases. Further, B−1(N)

exists for N ∈ (B(∞), B(0+)).
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A3 B(0+) > d > B(∞). Biologically, it implies the saturation effect.

In biological literature, the dependence of vital rates on pest density (birth, death and

survival rates) is defined by birth functions B(N) as:

Ricker Function [186] B1(N) = be−N , b > d.

Beverton-Holt Function [42, 218] B2(N) = p(q +Nn)−1, p, q, n > 0, pq−1 > d.

Deriso-Schnute Function [17] B3(N) = b(1− vN)
1
v , b > 0, v ≤ 0.

Roberts and Kao [187] B4(N) = b− cN θ, b, c, θ > 0.

These functions and their generalizations have been discussed in [42, 53, 113, 187, 215].

B3(N) reduces to B1(N) when v → 0. Further, it reduces to B2(N) if v = −1, n = 1.

1.3.2 Stage Structure

In most of the population models, it is assumed that all individuals are identical and

ignore the inherent stage. Many pest species go through multiple stages in their life

history as they proceed from birth to death. Some of the pest species are going through

four stages: egg, larva, pupa and adult. The egg is the unborn stage of insects, the

larva is a young stage, the pupa is a stage between larva and adult. There may also

exist some other insects going through three stages: egg (unborn stage), nymph (young

stage) and adult (final stage). Moreover, some of the birds, mammals and reptiles have

a very simple life cycle: they born and then grow up. Most popularly, the population

goes through two stages in their life cycle recognized as immature and mature. This

stage-structured phenomenon has its own significance in the dynamics of the interacting

species. However, in many situations age structure can influence population size and

growth in a major way. It has been recognized that mortality and fertility depend on

an individual’s age and even sometimes on the size of the individuals.

In pest management, it is particularly important as all the stages of pest do not

harm the crops equally. Considering the stage-structure in the pest species so that

the total pest population N(t) be divided in two stages: immature/juvenile stage x(t)

and mature/ adult stage y(t), N(t) = x(t) + y(t) at time t. The immature pest has
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no reproductive capability. Let A(N(t)) be the per capita maturation rate of imma-

tures/juveniles. Let D1(N(t)) and D2(N(t)) be the per capita death rate functions

of immature and mature pest respectively. The dynamics of a stage-structured model

with continuous birth function B(N(t)) is governed by the system of differential equa-

tions is given as follows [Kostara [115]]:

dx

dt
= −D1(N(t))x(t)− A(N(t))x(t) + B(N(t))y(t)

dy

dt
= A(N(t))x(t)−D2(N(t))y(t). (1.3.2)

The dynamics of the system (1.3.2) is characterized by the equilibria and periodic

solutions in [18, 19, 115]. In most cases, ordinary differential equations are used

to build stage structure models. However, the impulsive differential equations are

more suitable for the mathematical simulation of evolutionary processes in which the

parameters undergo relatively long periods of smooth variation followed by a short-term

rapid change in their values.

1.3.3 Impulsive Differential Equations Incorporating Births in

Pulses

Many species give birth in a very short time period. It means a dynamics, increase in

population due to birth are assumed to be time-independent. In this thesis, the birth

rate function B(N(t))N(t) is assumed to be of Ricker type and Beverton-Holt Type.

Birth pulses play an important role in the ecological system. Researchers have

mostly considered that the mature pest reproduces throughout the year, but almost

always births are seasonal or occur in regular pulses. Hence, the term of the continuous

reproduction of mature population is replaced with an annual birth pulse. This growth

pattern has been termed as a birth pulse [28]. Due to birth pulses, the system may lead

to chaotic behavior and a variety of complex dynamical behaviors such as the existence

of quasi-periodic, period-doubling bifurcation, chaotic attractor etc. may be expected.

The linear birth pulse ∆N(t) = B(N(t))N(t), was discussed in [144].

It is assumed that the mature pest reproduce periodically in the birth pulse at

an interval T1. Let x(mT1)
+ and y(mT1)

+ be the density of immature and mature pest

after mth birth pulse. The system (1.3.2) can be modified by incorporating birth pulses
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using impulsive differential equations as:

dx

dt
= −D1(N(t))x(t)− A(N(t))x(t),

dy

dt
= A(N(t))x(t)−D2(N(t))y(t),

 t ̸= mT1,m = 1, 2, 3, ..., (1.3.3)

x(mT1)
+ = x(mT1) +B(N(mT1))y(mT1),

y(mT1)
+ = y(mT1),

 t = mT1. (1.3.4)

Now to control the pest population, many pest management strategies have been ap-

plied periodically, which instantaneously kills a portion of pest. Accordingly, the in-

stant effect of the pest management strategies will be modeled as an impulsive phe-

nomenon which occurs periodically. As mechanical control affects the immature and

mature pests differently with the differential killing rates k and µ respectively, are

assumed for them under the impulsive control strategy at time t = mT2, i.e.

x(mT2)
+ = (1− k)x(mT2),

y(mT2)
+ = (1− µ)y(mT2),

 t = mT2. (1.3.5)

Chemical control has been used frequently in agricultural fields. Before pesticide con-

trol is introduced into the biological systems, there are two important things to note.

First, in order to concentrate on the development of the model for pest population

dynamics, it is assumed that the pest will be equally susceptible to the pesticides at

different ages, such as larvae and adult stages. When the pesticide is sprayed, it kills

pest instantly or it may remain in the crop or pest. On the basis, the effect of the

pesticide on the pest can be formulated mathematically as:

Instantaneous Effect of Pesticides: When the pesticide is sprayed, it kills im-

mature and mature pest instantaneously with constant killing rate α and β. Under

impulsive control strategy, this phenomena can be modeled at the fixed time moments

as:

x(mT3)
+ = (1− α)x(mT3),

y(mT3)
+ = (1− β)y(mT3),

 t = mT3. (1.3.6)

Residual effect of Pesticides: In many cases, the amount of the pesticide may

remain in the crop/ in the pest after it has been sprayed [155, 209, 230]. If pesticides

have long-term residual effects then pesticide application frequencies can be reduced.
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When the pesticides have residual effects on the pest, the impact of the pesticide on the

pest population can be described by different kill functions. Kill functions incorporating

residual effects can be modeled as:

• Let m1 be the mortality rate or killing efficiency rate, a1 > 0 be the decay rate.

High pest mortality requires a large dosage of pesticide, then the impact of the

pesticide or the kill function of the pest populations can be defined as [23]:

k(t)x(t) = m1e
−a1tx(t). (1.3.7)

Due to the degradation of the pesticide, the kill function incorporating decay

effect of the pesticide can be defined as a negative exponential function.

• If pesticide applications have been applied repeatedly at time nT (where T is the

period of pesticide application), then the kill function with residual effects can

be described as follows:

k(t)x(t) = m1e
−a1(t−nT )x(t), nT < t < (n+ 1)T. (1.3.8)

• The step function is highly useful when dealing with jump discontinuities in

the pest population function. The spraying of pesticide at specific time T4, the

pesticide dosage function or kill function is [126]:

k(t)x(t) =

 mx(t), T < t < (n+ T4)T,

0, (n+ T4)T < t < (n+ 1)T,
(1.3.9)

where, T4 is the duration of pesticide residues.

Pesticide controls are not limited to only once during the time interval. Farmers may

spray more than once and with different dosages of pesticide during the time interval.

The mathematical expression with the assumption that there is more than one spray

time in the time interval. Due to this, pest develops resistance to the pesticide. Hence,

once there is a delayed response to the pesticide application, the pests must increase

continuously. Therefore, it is necessary to involve a delayed response to pesticides into

the kill function which yields the following piecewise periodic function [172, 173]:

k(t) = m1(e
−a1(t−nT ) − e−c1(t−nT )), nT < t < (n+ 1)T, (1.3.10)
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where, c1 is the delayed response rate with c1 > a1. Pest-natural enemy systems to

model IPM strategies have been proposed and investigated the effects of a piecewise kill

function and a step kill function on the success of pest control [221]. The existence and

stability of pest-free periodic solutions have been derived. The effects of parameters

on the threshold values have been discussed.

1.4 Mathematical Techniques

In this section, some fundamental mathematical tools are required to investigate the

dynamical behavior of impulsive pest management systems with time-dependent as

well as state-dependent impulsive strategies.

The impulsive systems are a combination of continuous and discrete components.

The stroboscopic map is a tool to describe the system dynamics. It is obtained in two

steps: properties of the system are embodied in the discrete system. Following steps

has been used to construct the stroboscopic map:

(a) The analytical solution of the continuous part of the impulsive system between

the pulses is obtained using the initial conditions.

(b) The discrete condition is applied to the analytical solution. It determines the

solution after nth pulse in terms of the previous pulse, n = 1, 2, 3, .... This

represents the discrete stroboscopic map.

The dynamics of impulsive system is determined by the dynamics of the stroboscopic

map. The following qualitative methods of discrete dynamical systems have been

applied to analyze various impulsive dynamical models proposed in this thesis.

1.4.1 Fixed Points of the Map

Consider the following system of first order autonomous difference equations or maps:

X(n+ 1) = F (X(n)) or X → F (X), (1.4.1)
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with

X = (X1, X2, X3...Xm) ∈ ℜm,

F = (F1, F2, F3...Fm) ∈ ℜm,

and F : ℜm → ℜm.

Here, X(n) denote the state of the system (1.4.1) at discrete time n ∈ Z. Observe

that, the system (1.4.1) is autonomous as it does not contain time variable explicitly.

The system (1.4.1) with the initial conditions can take the form:

X(n+ 1) = F (X(n)) or X → F (X), (1.4.2)

with

X = (X(1), X(2), X(3)...X(m)) ∈ ℜm,

F = (F1, F2, F3...Fm) ∈ ℜm,

and F : ℜm → ℜm,

X(n = 0) = X(0), X(0) = (X(10), X(20), X(30)...X(m0)).

For notational compactness, to indicate the integer dependence of the equation, sub-

scripts can be used. Now the discrete dynamical system (1.4.2) can be written as:

Xn+1 = F (Xn) or X → F (X) X(0) = X0. (1.4.3)

Definition 1.4.1. (Invariant Set) The set S ⊆ ℜm is said to an invariant set for the

map X → F (X) (1.4.3) if

X0 ∈ S ⇒ F n(X0) ∈ S, ∀ n.

If a solution belongs to S at some time instant, then it belongs to S for all future and

past time [231].

Definition 1.4.2. (Positively Invariant Set) A set S is said to be a positively invariant

set if

X0 ∈ S ⇒ F n(X0) ∈ S, ∀ n ≥ 0.

It means that a solution initiating in S remains in S.
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Definition 1.4.3. (Fixed Points of Map) A point X∗ of the system (or map)(1.4.3) is

said to be a fixed point if it satisfies F (X∗) = X∗.

In other words, equilibrium solution does not change with time. It is also known

as critical point/ equilibrium point/ singularity/ stationary point or steady state.

The analysis of the dynamical system is concerned with fixed points of the system

because there is no general method available to find the analytical solutions of nonlinear

systems. Therefore, qualitative analysis is very helpful to know the long-term behavior

of the system. In order to describe the behavior of solutions near a fixed point, some

tools will be discussed in the next section:

1.4.2 Local Stability Analysis

Stability theory is a fundamental topic in applied science, including every branch of

control theory. There are many kinds of stability concepts such as absolute stability,

Lyapunov stability, the stability of periodic solution etc.. The Lyapunov stability

concept has been studied extensively for a long time. There is a rich literature on this

topic [69, 74, 119, 120, 151, 160, 165, 194, 210, 231]. It is important to analyze the

behavior of non-linear system near the possible fixed points.

Definition 1.4.4. The fixed point X∗ of the system (1.4.3) is said to be locally sta-

ble(Lyapunov Stable), if for each ϵ > 0 there exists a δ > 0 such that

∥ F n(X0)−X∗ ∥< ϵ whenever ∥ X0 −X∗ ∥< δ. (1.4.4)

According to the definition, a fixed point is said to be locally stable if any solution

trajectory that starts from any point near to the point X∗ then it remains close to X∗.

Definition 1.4.5. The fixed point X∗ of the system (1.4.3) is said to be unstable if it

is not stable.

Definition 1.4.6. The fixed point X∗ of the system (1.4.3) is said to be asymptotically

stable if X∗ is locally stable and there exists a δ > 0 such that

lim
n→∞

F n(X) = X∗ when ∥ X0 −X∗ ∥< δ. (1.4.5)
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It means that the solution trajectories starting from the initial conditions close to

the equilibrium point not only remain close to it but also converge to it asymptotically.

However, the behavior of the solution near a fixed point may be studied by the

linearized system. The behavior of the nonlinear systems in the neighborhood of the

fixed point will be decided by the eigenvalues of the linearized system [180]. The

difference equations governing interacting populations often take the form:

Xin+1 = Fi(X1n, X2n, ..., Xnn), Xi(0) = Xi0 ≥ 0, i = 1, 2, ..., n. (1.4.6)

Let X be any solution in the neighborhood of X∗ and

X = X∗ + ϑ

Consider ϑ = ϑ1, ϑ2, ..., ϑn is a small perturbation from the fixed point then

ϑn+1 = Aϑn. (1.4.7)

The matrix A = (aij)X∗(i, j = 1, 2, ...n) is the Variational/Jacobi matrix at the fixed

point X∗. The linear system (1.4.7) with the Jacobian matrix is called linearization

of non-linear system (1.4.3) at X∗. Let ϑ0 be the initial perturbation from the fixed

point X∗ then

ϑn = Anϑ0.

The stable or unstable behavior is decided by the eigenvalues of the linearized system

(1.4.7). Let λ be the eigenvalue of A with the corresponding eigenvector ϑ then ϑn =

λnϑ0. The characteristic equation is

det(A− λI) = λn + a1λ
n−1 + ...+ an, a0 ̸= 0. (1.4.8)

The necessary and sufficient condition for local stability is that the eigenvalues of

linearized matrix lie in the unit circle [188, 231].

Stable A fixed point X∗ of the system (1.4.3) is said to be stable if the maximum

modulus of the eigenvalues of A is less than one.

Unstable A fixed point X∗ of the system (1.4.3) is called unstable if the maximum

modulus of the eigenvalues of A is not less than one.
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Saddle A fixed pointX∗ of the system (1.4.3) is called saddle if the maximum modulus

of at least one eigenvalue of A is less than one while other eigenvalue greater than

one.

Definition 1.4.7. [231] A fixed point X∗ is said to be a hyperbolic fixed point of the

system (1.4.3) if none of the eigenvalues of A have unit modulus.

A fixed point X∗ is called non-hyperbolic point of the system if

1. The linearized matrix A has at least one eigenvalue equal to 1 while remaining

eigenvalues having moduli not equal to 1.

2. The linearized matrix A has at lest one eigenvalue equal to −1 while remaining

eigenvalues having moduli not equal to 1.

3. The linearized matrix A has at least two complex conjugate eigenvalues having

modulus 1 (which are not one of the first four roots of unity) while remaining

eigenvalues having moduli not equal to 1.

In particular, for n = 2, the characteristic equation (1.4.8) is written as:

λ2 − a1λ+ a2 = 0, (1.4.9)

with a1 > 0 and a2 > 0. Let the characteristic equation (1.4.9) in terms of trace T and

determinant D be written as:

λ2 − Trλ+Det = 0. (1.4.10)

The fixed point X = (x, y) is stable when the magnitude of eigenvalues of A is less than

unity. Now, the necessary and sufficient conditions under which roots of the equation

(1.4.10) lie in a unit circle, are given by the Jury’s condition:

1− Tr +Det >, (1.4.11)

1 + Tr +Det > 0, (1.4.12)

1−Det > 0. (1.4.13)
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If inequality (1.4.11) is violated, then one of the eigenvalues of A is larger than 1. If

inequality (1.4.12) is violated, then one of the eigenvalues of A is less than −1. Finally,

if inequality (1.4.13) is violated, then A has a complex-conjugate pair of eigenvalues

lying outside the unit circle. The general result can be found in the reference [99].

Theorem 1.4.1. (Hartman-Grobman Theorem) Wiggins[231] If X∗ is a hyper-

bolic equilibrium point, then there is a homeomorphism from ℜn to ℜn defined in the

neighborhood of X∗. That maps trajectories of nonlinear system to the trajectories of

the linearized system.

Accordingly, the behavior of a dynamical system near a hyperbolic equilibrium

point is qualitatively same as the behavior of its linearized matrix near this equilibrium

point provided that no eigenvalue of the linearized matrix has modulus ±1. Also the

method fails if any eigenvalue has modulus one.

Following theorems are used to get an idea regarding qualitative behavior of the

system:

Theorem 1.4.2. [The Stable Manifold Theorem] [51]: Let X∗ be a hyperbolic fixed

point of a map F : ℜm → ℜm then in the neighborhood of an open set O of X∗ there

exists two manifolds W S(X∗) of dimension ES and WU(X∗) of dimension EU such

that:

• The stable subspace ES is tangent to W S(X∗) at X∗ and for any solution X(n)

of (1.4.3) with X(0) ∈ W S, lim
n→∞

X(n) = X∗.

• The unstable subspace EU is tangent to WU(X∗) and X(0) ∈ W u(X∗), then there

exists a principal negative solution x(−n) with lim
n→∞

X(−n) = X∗.

where, S and U are the local stable and unstable manifold of the fixed point respectively.

1.4.3 Global Stability

A fixed point X∗ of the system (1.4.3) is said to be globally asymptotically stable if it

is asymptotically stable and for all initial values converges to the fixed point X∗ [6]. A

system which is stable for all initial conditions in the state space is globally stable.
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The global behavior of a nonlinear difference equation can be different from its

local behavior. In local stability, the system is stable at a particular point, but in global

stability, the system is stable in the entire domain. A locally stable system may not

be stable globally, but the globally stable system is always locally stable everywhere.

Asymptotic stability is a local property, however, for linear systems, this is the same

as global asymptotic stability.

There are several methods for analyzing global stability, but in analyzing differ-

ence equations, Lyapunov stability theory plays an important role. Lyapunov stability

theory generally includes Lyapunov first and second methods [51, 61, 231]. In 1892,

for investigating the stability of nonlinear differential equations, the Russian mathe-

matician A.M. Lyapunov introduced a method which is known as a Lyapunovs direct

method. This method is used to investigate the qualitative nature of solutions without

actually determining the solutions themselves [127].

In this thesis, Lyapunovs second method has been established to analyze the

global behavior of difference equations. The method is described below:

Consider X∗ be a fixed point of the system (1.4.3). Let V : ℜn → ℜ be defined

as a real-valued function. The variation of V relative to (1.4.3) can be defined as:

∆Vn = V (Xn+1)− V (Xn) (1.4.14)

Let there exist a continuously differentiable, real-valued function V : ℜn → ℜ, such

that

• The function V is positive definite, i.e.

V (X) > 0, ∀ X ̸= 0, V (0) = 0. (1.4.15)

• The time derivative of V (x) is negative definite, i.e.

V̇ (X) < 0, ∀ X ̸= 0, V̇ (0) = 0. (1.4.16)

The positive definite function V from an open subset G of ℜn into ℜ is a Lyapunov

function on the set G if

• V is continuous on G.
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• ∆V ≤ 0 whenever both Xn and Xn+1 = F (Xn) are in G.

According to the Lyapunov second method, if there exists a positive definite Lyapunov

function for the system (1.4.3) then the fixed point is globally asymptotically stable.

However, if derivative of V (x) is negative semi definite, i.e.

V̇ (X) < 0, ∀ X ̸= 0. (1.4.17)

then the fixed point is globally stable.

This method gives a sufficient condition only, which means that failure of a Lya-

punov function does not mean that the equilibrium point is not stable or asymptotically

stable. To apply this method for any nonzero equilibrium point, the system is to be

shifted to the origin.

Definition 1.4.8. [Periodic Solutions] The fixed point X∗ of the system (1.4.3) is

called the periodic solution if there exists a constant ω, such that

F ω(X∗) = X∗,

F i(X∗) ̸= X∗ for i = 1, 2, 3, ..., ω − 1,

then the solution X∗ is called ω-periodic solution and ω is called the period of the

solution X [166].

1.4.4 Bifurcation

Consider the system (1.4.3) depending on the parameter b:

Xn+1 = F (Xn, b), X ∈ ℜm, b ∈ ℜp. (1.4.18)

A study of changes in the qualitative behavior of dynamical systems as parameters

are varied is called bifurcation theory. Large qualitative changes in the dynamics of

the system due to small quantitative changes in parameter result in bifurcations. The

parameters which are responsible for qualitative changes in the behavior are called

bifurcation parameter. In particular, fixed points can be created, destroyed, or can

change their stability with variation in parameter b. As the parameter is varied, these

qualitative changes in the behavior of the system can occur at certain critical values of

the parameter.
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Bifurcation analysis investigates the change in the nature of the attractor, i.e.

stable to unstable, fixed point to cycle, etc. due to parameter variation. To destabilize

the fixed point, one or more of the eigenvalues have to cross the unit circle as the

parameter b changes its value.

In this thesis, several types of bifurcations have been studied, e.g. fold(tangent),

transcritical, period halving and flip(period-doubling) bifurcations. In the following,

some results related to them will be recalled.

• Fold bifurcation(or Saddle-node bifurcation) is the basic mechanism by which

fixed points are created and destroyed. As a critical parameter is varied, two

fixed points move toward each other, collide, and mutually annihilate. Saddle-

node bifurcation is a bifurcation of a fixed point onto two fixed points at a

critical value of a control parameter with one being of saddle type and the other

being stable node. Sometimes it is called Saddle-node bifurcation or tangent

bifurcation.

• Transcritical bifurcation is exchange or transfer of stability between two fixed

points at a critical value of a control parameter. In this bifurcation, the stable

node becomes a saddle and the saddle becomes a stable node. In the transcritical

case, the two fixed points don’t disappear after the bifurcation, instead, they just

switch their stability. A fixed point must exist for all values of a parameter and

can never be destroyed.

Theorem 1.4.3. [Wiggins (1990)] Consider a one-parameter family of one-

dimensional maps

x→ f(x, b), x ∈ ℜ, b ∈ ℜ, (1.4.19)

having a non-hyperbolic fixed point with an eigenvalue 1, then the map (1.4.19)

undergoes a fold bifurcation at (x, b) = (x0, b0) provided

f(x0, b0) = 0,

∂f(x0, b0)

∂x
= 1,

 non hyperbolic fixed point, (1.4.20)

with
f(x0, b0)

∂b
̸= 0,

∂2f(x0, b0)

∂2x
̸= 0. (1.4.21)
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If the condition (1.4.21) are changed to

f(x0, b0)

∂b
= 0,

f(x0, b0)

∂x∂b
̸= 0,

∂2f(x0, b0)

∂2x
̸= 0, (1.4.22)

then the system (1.4.19) experiences a transcritical bifurcation at the fixed point

x0 as the parameter b varies through the bifurcation value b = b0.

For detailed analysis one can refer Wiggins (1990) [231], Guckenheimer and

Holmes (1983)[69] and Kuznetsov (2013) [117].

• Period-halving bifurcation is a bifurcation in which the system switches to

a new behavior with half the period of the original system. A series of period-

halving bifurcations leads the system from chaos to order.

• Flip bifurcation(Period-doubling Bifurcation) is a bifurcation in which the sys-

tem switches from a periodic solution to another periodic solution with twice

the period of the original solution, i.e. a new periodic solution emerges from an

existing periodic solution, and the period of the new periodic solution is twice

that of the old one. Period doubling bifurcation is also called flip bifurcation.

Consider the map (1.4.18) has a non-hyperbolic fixed point and the eigenvalue

associated with the linearization of the map about the fixed point is −1 rather

than 1. Now a result will be presented that ensures the flip bifurcation:

Theorem 1.4.4. [Guckenheimer and Holmes (1983)] Let fb : ℜ → ℜ be a one-

parameter family of one-dimensional maps having such that fb0 has a fixed point

x0 with an eigenvalue −1. Assume that

f(x0, b0) = 0,

∂f(x0, b0)

∂x
= −1,

 non hyperbolic fixed point,

∂f

∂b

∂2f(x0, b0)

∂x2
+ 2

∂2f(x0, b0)

∂x∂b
̸= 0, at(x0, b0),

ā =
1

2

(
∂2f

∂x2

)2

+
1

3

∂3f

∂x3
̸= 0, at(x0, b0),

then, there exists a smooth curve of fixed points of fb passing through (x0, b0),

the stability of which changes at (x0, b0). There is also a smooth curve γ passing
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through (x0, b0) so that γ-{(x0, b)} is a union of hyperbolic period-2 orbits. The

sign of ā determines the stability and the direction of bifurcation of the orbits of

period-2. If ā is positive, the orbits are stable, if ā is negative they are unstable

[231].

The period doubling cascade is a sequence of doubling of periods and a further

doubling of the repeating period, as the bifurcation parameter is changed and so on.

In a series of papers in 1958-1963, Pekka Myrberg was the first to discover the period-

doubling bifurcation. After the first period-2 bifurcation, the system undergoes a series

of period-doubling bifurcation in which a cycle of period 2k losses its stability and a

stable cycle of period 2k+1 arises. As bifurcation parameter varies, periodic orbits of

periods 2, 4, 8, 16, occur [167, 168]. This is a well-known phenomenon of the period-

doubling route to chaos and the hallmark of logistic and Ricker maps [150, 152].

Period-doubling bifurcation has been studied extensively in [50].

The period-adding sequence means the successive generation of periodic so-

lutions with longer periods when the value of a control parameter is changed. Period-

adding sequence includes chaotic states between periodic states in a 1-parameter bifur-

cation diagram, the phenomenon is called the alternating periodic-chaotic sequence

[5]. These phenomena are interesting in terms of bifurcation phenomena because they

can be considered as successive local bifurcations. These period-adding sequences have

been observed in chemical reactions [54], electrical circuits [89]. Such type of sequences

has been studied in one-dimensional difference equations [100, 101, 105]. Period adding

is also present in a delay-difference equation population model with density-dependent

reproduction [24] and in the density-dependent age-structured model [70].

1.4.5 Center Manifold Theorem

To analyze the behavior of hyperbolic equilibria when the maximum modulus of the

eigenvalues was not unity. In cases where the equilibrium is not hyperbolic, the lin-

earization may fail to reveal the behavior of the system on certain subspaces of the state

space. These subspaces are associated with the eigenvectors of the Jacobian matrix

with eigenvalue λ = 1.
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The theory resulting from the analysis of these subspaces is called Center Mani-

fold Theory. The specific case of Center Manifold Theory for the two dimensions will

be expounded here.

Consider a discrete dynamical system with transition function defined from the

state space ℜ2 → ℜ2, with an associated parameter space a subset of ℜ2. This analysis

will concern the qualitative changes happen to the systems fixed point due to variation

in input parameters.

Denote this system as

Xn+1 = F (Xn, b), X ∈ ℜm, b ∈ ℜp. (1.4.23)

For the purposes of analysis, it will also assume that F (X, b) has continuous derivatives

at least up to the third degree. For a given value of b say b∗ the point X∗ is said to be

an equilibrium of the system if

F (X∗, b∗) = X∗. (1.4.24)

By the suitable change of variables, the system (1.4.23) can be represented as:

x → Ax+ f(x, y), (1.4.25)

y → By + g(x, y), (x, y) ∈ ℜc ×ℜs,

or

xn+1 → Axn + f(xn, yn), (1.4.26)

yn+1 → Byn + g(xn, yn).

It is considered that the modulus value of all eigenvalues of the c × c matrix A is

one, and all the eigenvalues of s × s matrix B are less than one in magnitude where,

c+ s = m.

f(0, 0) = 0, Df(0, 0) = 0 g(0, 0) = 0 Dg(0, 0) = 0. (1.4.27)

Evidently, (x, y) = (0, 0) is a fixed point of the map (1.4.23). The linear approximation

is not sufficient for determining its stability. The following theorem guarantees the

existence of a center manifold which is a curve y = h(x) on which the dynamics of the

system (1.4.25) (or (1.4.26)) is given by the map on the center manifold [231].
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Theorem 1.4.5. [Existence] There exists a center manifold for the system (1.4.25) (or

(1.4.26)) which is tangent to {(x, y) ∈ (ℜc × ℜs) | y = 0} can be represented locally as

a graph of a function h : ℜc → ℜc such that

W c = {(x, y) ∈ ℜc ×ℜs | y = h(x), h(0) = 0, Dh(0) = 0, | x |< δ}, (1.4.28)

for a sufficiently small δ. Further, the dynamics restricted to W c (1.4.28) is given by

the map:

u→ Au+ f(x, h(u)), u ∈ ℜc. (1.4.29)

The next result allows to conclude that (x, y) = (0, 0) is stable or unstable based

on whether or not u = 0 is stable or unstable in (1.4.29) [231].

Theorem 1.4.6. [Stability]

• Suppose the zero solution of (1.4.29) is stable (asymptotically stable) (unstable).

Then the zero solution of (1.4.25) (or (1.4.26)) is stable (asymptotically stable)

(unstable).

• Suppose that the zero solution of (1.4.29) is stable. Let (xn, yn) be a solution of

(1.4.25)(or (1.4.26)) with (x0, y0) sufficiently small. Then there is a solution un

of (1.4.29) such that | xn − un |≤ nβn and | yn − h(un) |≤ nβn for all n where n

and β are positive constants with β < 1.

For detailed analysis can be found in Carr (1981) [26], Elaydi (2008) [52] and

Zhang (2006) [242].

1.4.6 Lyapunov Exponents

One of the characteristic of chaotic orbits is its sensitive dependence on initial condi-

tions. This means that the orbits corresponding to nearby initial conditions eventually

move apart as the system moves forward in time. Lyapunov exponent may be used to

obtain a measure of the sensitive dependence upon initial conditions. The Lyapunov

exponent is the important tool for chaotic solution [6, 13, 119, 171, 177]. They are

similar to eigenvalues used in the local stability analysis of non-linear dynamical sys-

tem [57]. Lyapunov exponents describe what happens near an entire trajectory rather

than describing what happens near a fixed point.
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The Lyapunov exponents provide basic stability information about the directional

rates of convergence or divergence between initially neighboring trajectories, like eigen-

values in linear systems [67]. Lyapunov exponents are the measure of exponential rates

of convergence or divergence of nearby trajectories in phase space [139].

Let Lyapunov exponents [119] be defined for the trajectory X(t) = (X1(t), X2(t),

..., Xn(t)) of the system (1.4.3). Two trajectories of the n-dimensional phase space

starting from two nearby initial conditions X0 and X
′
0 = X0+δX0 are considered. They

evolve with time yielding the vectors X(t) and X ′(T ) = X(t) + δX(t), respectively. It

is measured by Euclidean norm.

d(X0, t) = ∥ δX(X0, T ) ∥≡
√
δX2

1 + δX2
2 + ...δX2

n. (1.4.30)

Let d(X0, t) be the distance at any time t between two trajectories X(t) and X ′(t). By

linearizing (1.4.3), the time evolution of δX

δẊ = M(X(T )).δX, (1.4.31)

where, M is the linearized matrix of the system (1.4.3). Then, Lyapunov Exponent is

defined as the mean rate of divergence of two close trajectories

λ(X0, δX) = lim
t→∞

1

t
log

(
d(X0, t)

d(X0, 0)

)
. (1.4.32)

Furthermore, there are n− orthonormal vectors ei of δXi, i = 1, 2, ..., n such that

λėi = M(X0)ei, M = diag(λ1, λ2, ..., λn). (1.4.33)

That is, there are n− Lyapunov exponents given by

λi(X0) = λi(X0, ei), i = 1, 2, ..., n. (1.4.34)

From (1.4.32) and (1.4.34),

di(X0, t) = di(X0, 0)e
λit, i = 1, 2, ..., n. (1.4.35)

To identify whether the motion is periodic or chaotic, it is sufficient to consider the

nonzero Lyapunov exponent λm and Rearranging the other exponents in descending

order λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ ............ ≥ λn, the attractors are classified as follows:
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• λm < 0: Stable Equilibrium Points/ Periodic Attractors

As it increases, d(X0, t) (or simply d(t)) decreases and for t→ ∞,| d(X0, t) |→ 0 .

This is the case for a stable equilibrium point or a stable periodic solution where

two nearby trajectories converge towards the same attractor in the limit t→ ∞.

- For a stable equilibrium point λi < 0, ∀i.

- For a stable limit cycle, λ1 = 0 and λi < 0 for i = 2, 3, 4, ..., n.

- For a stable torus or quasi- periodic, λ1 = λ2 = 0 and λi < 0 for i = 3, 4, ..., n.

• λm > 0: Chaotic Attractors

- For strange attractor at least one Lyapunov exponent should be positive. As t

increases, | d(X0, t) | grows exponentially fast, implying sensitive dependence on

perturbation about initial condition. Thus, a positive Lyapunov exponent is the

essence of deterministic chaos.

Thus, all negative exponents represent regular orbits, while at least one positive expo-

nent signals the presence of chaotic motion.

1.4.7 Lyapunov Dimension

The most basic property of a strange attractor is its fractal dimension. Strange at-

tractor generally has a non-integer dimension. There is a relationship between the

Lyapunov exponents and one of the fractal dimensions, which is called the Lyapunov

dimension. The appealing feature of this dimension is that it is easy to calculate if the

Lyapunov exponents are known.

There are several ways to compute the attractor dimension: the capacity dimen-

sion, information dimension, correlation dimension and Lyapunov exponent. Only the

Lyapunov dimension is presented here, for other types [177].

Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ ............ ≥ λn be the Lyapunov exponents of a

dynamical system. Let j be the largest integer for which the sum of the j largest

Lyapunov exponent is non-negative i.e.
∑j

i=1 λi ≥ 0. The Lyapunov dimension DL as
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suggested by Kaplan and Yorke [104] is defined:

DL =


j +

∑j
i=1 λi

|λj+1|
, j < n,

n, j = n,

0, otherwise.

(1.4.36)

For the n−dimensional system, the Lyapunov dimension DL is defined by Eq. (1.4.36).

Therefore, according to the classification of the attractors with respect to its Lyapunov

exponents, DL = 0 for stable fixed point, DL = 1 in case of periodic solution, DL = 2

for a quasi-periodic attractor. For the strange attractor the Lyapunov dimension is

non-integer. For example, in 2D chaotic dynamics with Lyapunov exponents λ− and

λ+, the Lyapunov dimension is non-integer numbers between 1 and 2.

1.4.8 Chaos

Chaos is the phenomenon of occurrence of bounded non-periodic evolution in com-

pletely deterministic nonlinear dynamical systems with high sensitive dependence on

initial conditions.

• Deterministic means their future dynamics are fully defined by their initial con-

ditions. That is, the system has no random or noisy inputs or parameters.

• Non-periodic means that there are trajectories which do not settle down to fixed

points, periodic orbits, or quasi-periodic orbits as t→ ∞.

• The irregular behavior arises from the system’s nonlinearity, rather than from

noisy driving forces.

• Sensitive dependence on initial conditions means that nearby trajectories separate

exponentially fast, i.e., the system has a positive Lyapunov exponent.

The effect of nonlinearity often renders a periodic solution unstable for certain para-

metric choices. While nonlinearity does not guarantee chaos, its make the chaotic

existence possible [38, 39, 51].

The positive Lyapunov exponent is the spirit of deterministic chaos.
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1.4.9 Mathematical Tools for State-Dependent System

In this section, basic concepts of the state-dependent impulsive theory are reviewed.

Definition 1.4.9. (Poincare Map): Consider x̂(t) be a periodic solution through

the point x∗ of the system

dx(t)

dt
= F (x)

If
∏

be a hyperplane perpendicular to x̂(t) at the point x∗, then for any point x near

x∗, the solution curve through x will cross
∏

again at a pointM(x), near x∗. The map

M : N ⊂
∏

→
∏
.

x→M(x)

is called the Poincare map for the periodic orbit. Further, x∗ is a fixed point for M ,

when M(x∗) = x∗.

Definition 1.4.10. (Stability of Periodic Orbits): The periodic solution x̂(t) of

the system (1.2.2)− (1.2.3) is stable if for each ϵ > 0, there exists a δ such that

|| x− x∗ ||< δ =⇒||Mn(x)− x∗ ||< ϵ.

Definition 1.4.11. (Asymptotic Stability of Periodic Orbits): The periodic

solution x̂(t) of the system (1.2.2) − (1.2.3) is asymptotically stable if it is stable and

there exists a δ > 0 such that

|| x− x∗ ||< δ =⇒ lim
n→∞

Mn(x) = x∗.

The periodic solution is called asymptotic orbitally stable.

Definition 1.4.12. A trajectory of the system (1.2.2) − (1.2.3) is said to be of order

k-periodic if there exists a positive integer k ≥ 1 such that k is the smallest integer for

y0 = yk.

Definition 1.4.13. A solution (x(t), y(t)) of the system (1.2.2)− (1.2.3) is said to be

semi-trivial solution if one of its components is zero and another is nonzero.
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1.4.10 Analogue of Poincare Criterion

The state dependent impulsive system (1.2.2)− (1.2.3) can be rewritten as:
dx

dt
= G1(x, y),

dy

dt
= G2(x, y) if Φ(x, y) ̸= 0,

∆x(t) = α1(x, y), ∆y(t) = β1(x, y) if Φ(x, y) = 0
(1.4.37)

The function Φ(x, y) is a sufficiently smooth function on a neighborhood of the points

ψ(tk), ϕ(tk) such that gradΦ(x, y) ̸= 0 and tk is the moment of the kth jump, where

k ∈ ℵ. Let the suffix k demotes the evaluation at the point ψ(t+k ), ϕ(t
+
k ).

Let system admits a T− periodic solution x = ψ(t), y = ϕ(t),ψ(t + T ) = ψ(t) and

ϕ(t+ T ) = ϕ(t). Define ∆k as:

∆k =

G1+

(
∂β1
∂y

∂Φ

∂x
− ∂β1

∂x

∂Φ

∂y
+
∂Φ

∂x

)
+G2+

(
∂α1

∂x

∂Φ

∂y
− ∂α1

∂y

∂Φ

∂x
+
∂Φ

∂y

)
G1
∂ψ

∂x
+G2

∂ϕ

∂y

The multiplier λ is defined as:

λ =

q∏
k=1

∆kexp

[∫ T

0

(
∂G1

∂x
(ψ(t), ϕ(t)) +

∂G2

∂y
(ψ(t), ϕ(t))

)
dt

]
,

The T-periodic solution x = ψ(t), y = ϕ(t) of the system (1.2.2) − (1.2.3) is orbitally

asymptotically stable if the multiplier λ satisfies the condition | λ |< 1. The proofis

referred to [202].

Let ϕ(t) be a fundamental matrix of impulsive system (1.2.2)−(1.2.3), then there

exists a unique non-singular matrix B ∈ Cn×n such that

ϕ(t+ nT ) = ϕ(t)B, t ∈ R, (1.4.38)

The matrix B is the monodromy matrix [120] of the impulsive system (1.2.2)− (1.2.3)

(corresponding to the fundamental matrix). A monodromy matrix is the inverse of

the fundamental matrix of a system of ODEs evaluated at zero times the fundamental

matrix evaluated at the period of coefficients of the system. All monodromy matrices of

the system (1.2.2)− (1.2.3) are similar and have the same eigenvalues. The eigenvalues

µj, j = 1, 2, ..., n of the monodromy matrices are called the Floquet multipliers of the

system (1.2.2)− (1.2.3) [120].

Floquet Theory: The stability of periodic solution can also be studied in terms

of characteristic or Floquet multiplier. Then, the T-periodic impulsive system (1.2.2)−

(1.2.3) is
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• Stable if and only if all multipliers µj, j = 1, 2, ..., n satisfy the inequality | µj |≤

1.

• Asymptotically stable if and only if all multipliers µj, j = 1, 2, ..., n satisfy the

inequality | µj |< 1.

• Unstable if | µj |> 1 for some j = 1, 2, ..., n.

1.5 Literature Survey

A brief literature survey is presented that includes the studies of those articles which

are related to the research work of this thesis.

Several mathematical models have been investigated in literature by considering

different aspects such as stage structure [3, 4, 10, 78, 79, 121, 124, 164, 191], residual

effect [126, 221], integrated pest management strategy [14, 84, 233], state dependent

[214, 229] etc. which are helpful for pest control.

This thesis is mainly focused on pest control. The success of any pest man-

agement regime depends on the control methods, their timings and the dynamics of

biological species. Many mathematical models are developed to predict the success of a

pest management plan using different mechanisms for controlling pests. The chemical

control is a common and more effective method for pest control. When the pesticide is

sprayed, the pest density abruptly reduces to a lower level [92, 225]. For the process of

effective pest control, excessive use of a single control strategy is undesirable. There-

fore, different pest-control techniques should work together rather than alone. Also, to

reduce the use of chemical, non-chemical control strategies should be combined with

it [31, 58]. Some mathematical models incorporate the dynamics of pest when chem-

ical control /biological controls are applied continuously [30, 158, 184, 185, 206] or

impulsively [8, 97, 170, 189, 216, 234]. Tang et al. [222] proposed an impulsive pest-

natural enemy model in which periodically spraying pesticides and releasing natural

enemies were considered. They investigated three cases in terms of different patterns

of insecticide applications.

As most of the pest species go through many life stages: immature stage and ma-

ture stage. Their vital rates depend on age, size, or development stage which can have
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a significant influence on the dynamics at the population level. In order to understand

the dynamics of pests, it is necessary to consider this diversity adequately into account

[157]. The stage structure of pest population is critical as different stages of pest re-

spond differently to chemical / biological controls. For example, Saltcedar leaf beetle

is such a pest for which eggshell, pathogens may not be effective against pest eggs.

Another example is pesticides are not effective against the immature stage of the pest.

Therefore, incorporation of the stage-structured pest population is necessary for the

implementation of control strategies. Stage-structured population models are widely

used to examine the importance of different life stages. The concept of compartmental

models have been received much attention because such type of models are simpler

than the models governed by partial differential equations. Also, these models can

exhibit similar phenomena as the models based on partial differential equations [16].

The delayed ODE juvenile-adult models [78, 79], compartmental ODE models without

delay [10, 218, 219] and difference equation models [51] have been investigated.

The mathematical, as well as biological approach of a single-species growth model

with stage-structured has been discussed by Aiello and Freedman [3]. The effect of

impulsive harvesting of the pest on a stage-structured pest-natural enemy model has

been discussed [204]. Some stage-structured predator-prey systems for pest control

have been addressed with the impulse to model the process of periodically releasing

natural enemies [175, 196].

In some models, the continuous reproduction of population is removed from the

models and replaced with a birth pulse. The effect of density-dependent birth pulses

and stage-structured has been considered by Sanyi Tang and Lansun Chen [218]. The

author analyzed the dynamics of the system by using the stroboscopic map for different

density-dependent birth pulses. Many authors have investigated harvesting models

with stage-structured and birth pulse [86, 96, 220]. Roberts and Kao et al. [187]

investigated a model for the dynamics of a fatal infectious disease with the birth pulse.

They discussed the existence and the stability of periodic solutions. Several single-

species models have also been proposed with impulsive control strategies and birth

pulses [61, 131, 149, 219]. Some work of integrated pest management model with

birth pulses have also been done for pest control [86, 96]
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Sometimes chemical pesticides have a residual effect on pest control, that is,

the amount of pesticide may remain on or in a crop/pest after it has been applied

[155, 209, 230]. Some examples of pesticides with residual effects can be found in

[114, 195, 221]. To model the effect of the pesticides, Panetta et al. [172, 174]

addressed continuous or piecewise-continuous periodic functions. The threshold value

is obtained. Very few mathematical models on pest control with residual effect have

been available in literature [103, 126, 221]. Liang et al. [126] have considered the effect

of delayed response to the pesticides on the pest and natural enemy. They have used

the continuous periodic function to model the residual effect with a delayed response

of the pesticide.

These models assume that the pest population killed instantaneously. However,

real scenario is not always the same. In particular, pesticide appears in the environment

first, after that it is absorbed by the pest, and then the pest is affected which is the

toxicity of pesticide. It does not affect the pest immediately, it will remain for a short-

time period in the field before toxins are capable of decreasing the growth rate of the

pest [136]. Therefore, it is necessary to introduce the effect of toxicant input to model

the pest-control system.

Most toxicant-population models are based on the work of Hallam and his cowork-

ers [75, 76, 77]. Some continuous mathematical population models with toxicant effect

have been studied [66, 162, 197, 198]. Some of the single/multiple population systems

with toxicant effect have been investigated [98, 128, 133, 134, 135, 136]. However,

the majority of these studies has been emphasized on the effects of toxicant emitted

into the environment from industrial and household resources on biological species.

But very few literature is found for pest-control problems with pesticide toxin input

[31, 133, 136]. Recently, Liu et al. [133] have also investigated a stage-structured model

for pest control. They have modeled the impulsive system by introducing a constant

periodic pesticide input and releasing natural enemies at the different fixed moment.

They impulsive pest control models have also been proposed with birth pulses in the

polluted environment [148]. The effects of pulse harvesting time on the maximum

annual-sustainable yield has been analyzed. Liu et al. [144] employed two species

system in a polluted environment with a birth pulse and obtained the conditions for a
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positive periodic solution.

Biological control is the reduction in the pest populations from the releasing of

natural enemies or beneficial species [40, 41]. Many authors have employed impul-

sive pest-natural enemy systems to investigate the dynamics of pest control model

[7, 9, 137, 138, 142, 147]. Liu et al. [142] investigated the predator-prey system by pe-

riodic impulsive immigration of natural enemies and establish the conditions for pest

extinction. Liu et al. [138] ignored the side effects of pesticide on natural enemies.

Also, they assumed that the time of spraying pesticide and releasing natural enemies

is synchronous. Further, the effects of pesticide on natural enemies have been incor-

porated and a predator-prey impulsive system with integrated pest strategies at the

different fixed time has been discussed [137]. Lu et al. [147] analyzed the pest-predator

model under insecticides used impulsively. They have focused on the effects of the frac-

tion of population which died due to the pesticide. They concluded that different pest

control techniques should work together rather than a single tactic.

However, these studies only consider impulsive control at fixed time intervals

to eradicate the pest population. Such control measure of pest management is called

fixed-time control strategy, modeled by impulsive differential equations. Although this

control measure is better than the classical one, it has shortcomings. In recent years, in

order to overcome such drawbacks, several researchers have started paying attention to

another control measure based on the state feedback control strategy, which is taken

only when the amount of the monitored pest population reaches a threshold value

[92, 93, 94, 95]. Obviously, this control measure is more effective and economical for

pest control [179, 237, 244]. The impulsive stage-structured system has been discussed

with state feedback control [93]. Many mathematical models have been studied for

interactions between pest, natural enemy, and pesticides in the last decades. The

interactions between pest and the natural enemy is a predator-prey interaction.

The population dynamics of predator-prey interactions can be modeled by using

the Lotka-Volterra equations [210, 211]. Several investigations have been carried out

for two species, ecological models incorporating species interactions and non-linear

functional responses [33, 46, 56, 71, 73, 82, 83, 107, 109, 123, 161, 208, 232]. Several

mathematical models have incorporated pest-natural systems (prey-predator) using
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state dependent impulsive effects [92, 95, 169, 223, 229]. Jiang et al. [92, 95] obtained

the sufficient conditions of existence and stability of semi-trivial solution, and positive

periodic solution by using the Poincar map.

Time delay plays an important role in the ecological system. The delay may

occur due to gestation time of natural enemy and maturation time of pest. Delay-

induced destabilization and oscillations can be observed in predator-prey models [36,

60, 163]. Therefore, consideration of delay effect in the pest-natural enemy model is

realistic. In recent years, significant progress has been made in the theory of impulsive

ordinary differential equations and delayed differential equations. However, a number

of difficulties are realized while dealing with delay differential equations [143]. Difficulty

level may be elevated when delay incorporated in impulsive systems.

Few researchers study dynamical systems with delay and state-dependent im-

pulses [43, 44] and they tend to focus more on a purely mathematical point of view.

Moreover, the stability of the system is usually investigated by constructing a Lyapunov

function which is complex and not easy to get [141].

In the next section, summary of the thesis is presented.

1.6 Organization of the Thesis

The thesis includes total ten chapters, organized as follows:

Chapter 1 is the introductory part of the thesis in which all basic components

regarding pest control models are discussed. It is followed by the literature survey.

Furthermore, thesis summary has also been incorporated.

Chapter 2 employs an impulsive pest control system with single tactics. The

stage-structured system consists of the mature and immature pest. Birth pulses occur

at regular intervals to release immature pest. The Ricker type birth function is as-

sumed. The pest population is controlled by the periodic spray of chemical pesticides

killing mature as well as immature pest instantaneously. This is synchronized with

birth pulses. The discrete dynamical system determined by the stroboscopic map is

analyzed. The threshold condition for the stability of the pest-free state is obtained

and the existence of a period-1 solution is established. Finally, numerical simulations
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show the complex dynamics of the model. There exists a characteristic sequence of

bifurcations above the threshold value of birth rate leading to chaos. Periodic halving

bifurcations are also observed in some cases.

In chapter 3, the birth pulses and chemical spray are no more synchronous. It

is assumed that both are used with the same periodicity. The problem of finding a

non-trivial periodic solution is reduced to the existence of a non-trivial fixed point of

the associated stroboscopic map. The effect of pesticide spray timing on the threshold

condition of pest eradication is studied. It is shown that once a threshold condition is

reached, a stable a non-trivial periodic solution emerges via bifurcation. More complex

dynamical behaviors are observed in this case as compared to synchronous pesticide

spray.

In chapter 4, a stage-structured pest control model using pesticides with residual

effects is discussed. Birth pulses and chemical sprays are assumed to be asynchronous.

The pesticide is considered to have residual effects on immature as well as a mature

pest. The residual pesticide has a long-time continuous effect on the pest which can be

described by the kill function. The conditions for the existence of pest eradication as

well as a non-trivial period-1 solution are obtained and their stabilities are discussed.

The conditions of transcritical and flip bifurcation are established. The effects of various

model parameters on the threshold conditions are investigated. Finally, numerical

simulations depict the complex dynamical behaviors of the model. There exists a

characteristic sequence of bifurcations above the threshold value of parameter leading

to chaos. Periodic halving bifurcations are also observed in some cases.

In chapter 5, integrated pest management approach comprising of chemical

and mechanical control is investigated. It is assumed that chemical control and birth

pulse occur at same fixed times. The pesticide is assumed to kill the only mature

pest. Further, the continuous mechanical effort (harvesting) is applied to control the

immature pest. The Beverton-Holt type of birth function and the differential death

rates for mature and immature pest are considered. The discrete system obtained

from the stroboscopic map is analyzed for the dynamical behavior of the system. The

existence of the pest-free state and positive period-1 solution is investigated. The

threshold conditions for the stability of pest-free state as well as a period-1 solution



38 Chapter 1: Introduction

are investigated. The effect of killing rate due to mechanical and chemical control on

the basic reproduction number is shown. Numerical simulations have been performed to

show complex dynamical behavior. Another model incorporates asynchronous pulses.

The harvesting reduces the complexity of the system. The chances of pest eradication

also increase with less toxic pesticides.

In chapter 6, an impulsive model with three pulses of the same periodicity is

introduced. Mechanical control, chemical control, and birth pulse occur at different

fixed times. Discrete system obtained from the stroboscopic map is analyzed. The con-

ditions for the stability of pest-free state as well as a period-1 solution are investigated.

The effect of harvesting and pesticide spray timing on pest is shown. The existence of

transcritical bifurcation has been established. Numerical simulations are performed to

show the complex dynamical behavior. The period-doubling bifurcation is observed.

Also, above the threshold level, there is a characteristics sequence of bifurcation leading

to chaotic dynamics.

In chapter 7, integrated pest management approach comprising the chemical as

well as mechanical control is considered. The delayed response of residual pesticide

is incorporated. Mechanical control and birth pulse occur at different fixed times.

However, the periodic mechanical effort is applied asynchronously. The discrete system

obtained from the stroboscopic map is analyzed for the dynamical behavior of the

system. The existence of the pest-free solution and positive period-1 solution are

investigated. The threshold conditions for the stability of pest-free state as well as a

period-1 solution are investigated. Due to a delayed response, the threshold value for

pest eradication decreases.

Chapter 8 deals with a single species stage-structured impulsive pest control

model with birth pulses. In this model, the pest density is controlled by spraying toxic

pesticides and cultural control. Also, the effect of pesticide’s toxicity to the environ-

ment as well as to the pest is considered. The discrete dynamical system determined

by the stroboscopic map is analyzed. Sufficient conditions for the stability of pest-free

State as well as the non-trivial period-one solution are obtained. Numerical simulations

are carried out to illustrate our theoretical results and facilitate their interpretation.

Chapter 9 describes delay differential pest-natural enemy system with impulsive
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state feedback control. Chemical and biological controls are applied to control the pest.

Boundedness of solution is analyzed using the comparison theorem. The Poincare map

is used to discuss the dynamics of an impulsive system. Sufficient conditions for the

existence and stability of natural enemy-free positive period-1 solution are obtained.

When semi-trivial periodic solution loses its stability, the existence and stability of the

non-trivial period solution are also established. Complex dynamical behavior, including

chaos is obtained. Numerical simulations substantiate the analytical results.

Chapter 10 incorporates the conclusions and the future scope of the work.
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Chapter 2

An Impulsive Stage-Structured

Pest Control Model Using

Chemical Control Synchronized

with Birth Pulse

2.1 Introduction

In agricultural systems, chemical pesticides are commonly used for controlling pest as

they are relatively cheap and instantaneously reduce the pest load. In most instances,

pesticide spray occurs in pulses and is modeled as impulsive systems. Generally, pest

responds differently to pesticides depending on their life stages. This makes the incor-

poration of stage-structure in the pest control models inevitable.

Many pest management models without stage-structure have been developed

assuming continuous growth of pest [63, 88, 97, 138, 216]. Some impulsive models have

also been investigated incorporating stage structure [93, 196, 238]. Very few models

for pest control are available incorporating birth pulses [131]. However, impulsive

models with birth pulses have been discussed in other contexts [86, 144, 187, 219].

A single-species stage-structured model with birth pulses has been studied by Sanyi

Tang and Lansun Chen [218]. Stage-structured harvesting model with birth pulses

have been discussed [96, 148, 220]. In most of the stage-structured models, death rates

41
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for immature and mature populations are considered to be the same which may not be

realistic.

In the present chapter, a stage-structured pest control model with a birth pulse

is proposed and analyzed. Different mortality rates are considered for the immature

and mature pest. Further, different killing rates due to pesticides are also considered.

The spray timing is synchronized with the birth pulse.

2.2 Model Formulation

Let a be the constant maturation rate and di, i = 1, 2 be the constant mortality rates

of immature and mature pest. The system (1.3.2) is written as:

dx

dt
= B(N(t))y(t)− d1x(t)− ax(t),

dy

dt
= ax(t)− d2y(t). (2.2.1)

In this chapter, the birth rate function B(N(t))N(t) is assumed to be of Ricker type.

B(N) = be−N . (2.2.2)

It is assumed that the mature pest reproduce in pulses periodically with period T1.

Let the density of immature and mature pest after mth birth pulse be x(mT1)
+ and

y(mT1)
+, respectively. The system (2.2.1) incorporating birth pulses is given as:

dx

dt
= −d1x(t)− ax(t),

dy

dt
= ax(t)− d2y(t),

 t ̸= mT1,m = 1, 2, 3, ..., (2.2.3)

x(mT1)
+ = (1− k)x(mT1) +B(N(mT1))y(mT1),

y(mT1)
+ = (1− µ)y(mT1),

 t = mT1. (2.2.4)

The pesticide is sprayed on the pest periodically, which instantaneously kills a portion

of pest. No residual effect is considered for pesticide. Accordingly, the pesticide spray

is modeled as impulsive phenomenon which occurs periodically. As pesticides affect

immature and mature pests differently, therefore the differential killing rates k and µ

respectively are assumed. Accordingly, periodic pesticide spray at time t = mT2 gives
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the following jump conditions:

x(mT2)
+ = (1− k)x(mT2),

y(mT2)
+ = (1− µ)y(mT2),

 t = mT2. (2.2.5)

Here, the densities of immature and mature pest are x(mT2)
+ and y(mT2)

+ respectively

just after pesticide spray. For simplicity, it is further assumed that new births and

chemical spray of pesticide are synchronized, i.e. T1 = T2 = T . Accordingly, the

impulsive conditions (2.2.4) and (2.2.5) can be combined as:

x(mT )+ = (1− k)x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = (1− µ)y(mT ),

 t = mT.

The dynamics of stage-structured impulsive pest control system defined on the set

ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0} with positive model parameters is written as:

dx

dt
= −d1x(t)− ax(t),

dy

dt
= ax(t)− d2y(t),

 t ̸= mT, (2.2.6)

x(mT )+ = (1− k)x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = (1− µ)y(mT ),

 t = mT, (2.2.7)

x(0) = x0 > 0, y(0) = y0 > 0. (2.2.8)

Equations (2.2.7) represent the synchronous birth pulses and chemical spray at times

t = mT , T being the periodicity of the two pulses. The system (2.2.6) − (2.2.8) is

associated with the initial conditions (2.2.8).

2.3 Model Analysis

Let the immature and mature pest densities be x = xm−1 and y = ym−1 at t = (m−1)T

respectively. The analytical solution of the differential equations (2.2.6) between the

birth pulses (m− 1)T ≤ t < mT is obtained as:

x(t) = e−(a+d1)(t−(m−1)T )xm−1,

y(t) =

(
a(1− e(ϵ−a)(t−(m−1)T ))

a− ϵ
xm−1 + ym−1

)
e−d2(t−(m−1)T ), (2.3.1)

ϵ = d2 − d1.



44
Chapter 2: An Impulsive Stage-Structured Pest Control Model Using Chemical

Control Synchronized with Birth Pulse

The following map can be obtained from (2.3.1) by applying impulsive condition (2.2.7):

xm = f(xm−1, ym−1), ym = g(xm−1, ym−1),

f(xm−1, ym−1) = (1− k)e−(a+d1)Txm−1 + b× exp[−(e−(a+d1)T + β̂)xm−1 + e−d2Tym−1]

×[β̂xm−1 + e−d2Tym−1],

g(xm−1, ym−1) = (1− µ)(β̂xm−1 + e−d2Tym−1), (2.3.2)

β̂ =
ae−d2T (1− e(ϵ−a)T )

a− ϵ
.

The map (2.3.2) constitutes difference equations. These equations describe the densities

of immature and mature pest at mth pulse in terms of values at previous pulse. This is

stroboscopic sampling at the time when the birth pulse (chemical spray) occurs. For

the Ricker Function, the dynamical behavior of the system (2.2.6) − (2.2.8) will be

given by the dynamical behavior of the map (2.3.2) coupled with the system (2.3.1).

Let R0 be the intrinsic net reproductive number denoting the average number of

offspring that an individual produces over the period of its lifetime [146]. Define

b0 = β̂−1[(1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )],

R0 = b b−1
0 . (2.3.3)

2.3.1 Existence of Fixed Points

The fixed points of the map (2.3.2) are obtained by solving the system x = f(x, y),

y = g(x, y). Accordingly, the stroboscopic map (discrete dynamical system) (2.3.2)

admits the following two fixed points:

1. The unique pest-free state E0 = (0, 0) exists without any parametric restriction.

2. The non-trivial fixed point E∗ = (x∗, y∗) is obtained as:

x∗ =
(ϵ− a)(1− (1− µ)e−d2T ) log(R0)

a(R + 1)e−d2T (e(ϵ−a)T − 1)
,

y∗ =
(1− µ) log(R0)

R + 1
,

R =
be−(d1+a)T

R0(1− (1− k)e−(d1+a)T )
.

Consequently, the interior point exists for R0 > 1, for biological feasible choices of ϵ

and a. If R0 = 1 then interior fixed point collides with the pest-free state, i.e. E∗ = E0.
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2.3.2 Local Stability Analysis of Fixed Points

Let X = (x, y) be any arbitrary fixed point. The local stability about the fixed point is

based upon the standard linearization technique. The linearized system corresponding

to (2.3.2) about X = (x, y) is given by:

Xm = AXm−1. (2.3.4)

The coefficients of the matrix A = (aij)2×2 are:

a11 = (1− k)e−(d1+a)T + b× exp[−(e−(d1+a)T + β̂)x− e−d2Ty]× {β̂

− (β̂x+ e−d2Ty)× (e−(d1+a)T + β̂)},

a12 = b× exp[−d2T − xe−(d1+a)T − β̂x− e−d2Ty]× {1− (β̂x+ e−d2Ty)},

a21 = (1− µ)β̂,

a22 = (1− µ)e−d2T .


(2.3.5)

The characteristic equation in terms of trace Tr and determinant Det be written as:

λ2 − Trλ+Det = 0

Theorem 2.3.1. The fixed point E0 = (0, 0) of the map (2.3.2) is locally asymptotically

stable if

R0 < 1. (2.3.6)

Proof. Using (2.3.5), coefficients of the linearized matrix A = (aij)2×2 are evaluated

about the pest-free state (0, 0) as:

a11 = (1− k)e−(d1+a)T + bβ̂, a12 = be−d2T ,

a21 = (1− µ)β̂, a22 = (1− µ)e−d2T .

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1− k)e−(d1+a)T + bβ̂ + (1− µ)e−d2T ,

Det = (1− k)(1− µ)e−(d1+d2+a)T .

In the following, it is observed that Jury’s conditions (1.4.12) and (1.4.13) are always

satisfied:

1 + Tr +Det = (1 + (1− k)e−(d1+a)T )(1 + (1− µ)e−d2T ) + bβ̂ > 0,

1−Det = 1− (1− k)(1− µ)e−(d1+d2+a)T > 0.
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The expression 1− Tr +Det simplifies to:

1− Tr +Det = 1− (1− k)e−(d1+a)T − bβ̂ − (1− µ)e−d2T

+(1− k)(1− µ)e−(d1+a+d2)T

= (1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )− bβ̂.

Accordingly, the Jury’s condition (1.4.11), that is 1− Tr +Det > 0 gives:

(1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T ) > bβ̂.

i.e.

b < (1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )β̂−1 = b0. (2.3.7)

Using (2.3.3) and (2.3.7), the stability condition (2.3.6) is obtained.

Thus, the pest eradication is possible when R0 < 1 and the trajectories of the

map (2.3.2) in the neighborhood of (0, 0) tend to origin. The existence of non-trivial

fixed point is overruled in this case. From (2.3.3) and (2.3.6), the fixed point (0, 0) is

locally stable for b ∈ (0, b0).

When R0 > 1, the fixed point (0, 0) is unstable and non-trivial fixed point E∗

exists in this case. The next theorem establishes the local stability of E∗.

Theorem 2.3.2. Let us denote

C = 2[ϵ(ed2T − (1− µ)) + ae2(a−ϵ)T ((1− µ)− e(d1+a)T )](1 + (1− k)(1− µ)e−(d1+d2+a)T ),

F = [ϵ(ed2T + (1− µ))− ae2(a−ϵ)T ((1− µ) + e(d1+a)T )](1− (1− k)e−(d1+a)T )

×(1− (1− µ)e−d2T ).

The non-trivial fixed point E∗ = (x∗, y∗) is locally asymptotically stable provided

b0 < b < b0 exp(CF
−1)(= bc). (2.3.8)

Proof. Using (2.3.5), coefficients of linearized matrix A are computed around E∗ as:

a11 = (1− k)e−(d1+a)T + b0[β̂ − (β̂x∗ + y∗e−d2T )(e−(d1+a)T + β̂)],

a12 = b0e
−d2T [1− (β̂x∗ + e−d2Ty∗)], a21 = (1− µ)β̂, a22 = (1− µ)e−d2T .
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The trace Tr and determinant Det are computed as:

Tr = (1− k)e−(d1+a)T + b0[β̂ − (β̂x∗ + e−d2Ty∗)(e−(d1+a)T + β̂)] + (1− µ)e−d2T ,

Det = e−(d1+d2+a)T [(1− k)(1− µ)− b0y
∗].

It is observed that Jury’s conditions (1.4.11) and (1.4.13) are always satisfied:

1− Tr +Det = 1− (1− k)e−(d1+a)T − b0[(β̂ − (β̂x∗ + e−d2Ty∗)(e−(d1+a)T + β̂)]

−(1− µ)e−d2T + e−(d1+d2+a)T [(1− k)(1− µ)− b0y
∗]

= (1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )− b0[β̂ − (β̂x∗ + e−d2Ty∗)

×(e−(d1+a)T + β̂)− e−(d1+d2+a)Ty∗]

= (1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )(1− log(R0) > 0,

1−Det = 1− e−(d1+d2+a)T [(1− k)(1− µ)− b0y
∗] > 0.

The expression 1 + Tr +Det simplifies to:

1 + Tr +Det = 1 + (1− k)e−(d1+a)T + b0[(β̂ − (β̂x∗ + e−d2Ty∗)(e−(d1+a)T + β̂)]

+(1− µ)e−d2T + e−(d1+d2+a)T [(1− k)(1− µ)− b0y
∗]

= (1 + (1− k)e−(d1+a)T )(1 + (1− µ)e−d2T ) + b0[β̂ − (β̂x∗ + e−d2Ty∗)

×(e−(d1+a)T + β̂) + e−(d1+d2+a)Ty∗]

= (1 + (1− k)e−(d1+a)T )(1 + (1− µ)e−d2T )

+(1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )

×
[
1− ϵ(ed2T + (1− µ))− ae2(a−ϵ)T ((1− µ) + e(d1+a)T )

ϵ(ed2T − (1− µ)) + ae2(a−ϵ)T ((1− µ)− e(d1+a)T )
log(R0)

]
.

Accordingly, Jury’s condition (1.4.12), 1 + Tr +Det > 0, gives

R0 < exp

(
2[ϵ(ed2T − (1− µ)) +H](1 + (1− k)(1− µ)e−(d1+d2+a)T )

[ϵ(ed2T + (1− µ))−H](1− (1− k)e−(d1+a)T )

)
, (2.3.9)

where H = ae2(a−ϵ)T ((1− µ)− e(d1+a)T ).

Therefore, using (2.3.9) and (2.3.3) with the existence condition b0 < b gives the

required condition (2.3.8).

Since the fixed point E∗ is locally stable, the trajectories of the system (2.2.6)−

(2.2.8) approach to the following period-1 solution (xe(t), ye(t)) for b0 < b < bc:

xe(t) = e−(a+d1)(t−(m−1)T )x∗, (2.3.10)

ye(t) =

(
a(1− e(ϵ−a)(t−(m−1)T ))

(a− ϵ)
x∗ + y∗

)
e−d2(t−(m−1)T ), (m− 1)T < t < mT.
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Consequently, periodic solution (2.3.10) of the system (2.2.6)−(2.2.8) is locally asymp-

totically stable in the range b0 < b < bc.

Further increasing the value of b beyond bc, the fixed point E∗ losses its stabil-

ity and the system (2.2.6) − (2.2.8) may exhibit complex dynamics. The bifurcation

analysis at b = b0 and b = bc is carried out in the next section.

2.3.3 Bifurcation Analysis

It is observed that the pest-free state E0 = (0, 0) becomes non-hyperbolic as one of the

eigenvalues becomes 1 at b = b0 (R0 = 1). At R0 = 1, the interior fixed point E∗ collides

with E0. Thus, as b increases through b0, interior fixed point E∗ = (x∗, y∗) passes

through the fixed point at (0, 0) and exchange their stabilities at b = b0. Theorem 1.4.3

and Center Manifold Theorem 1.4.5 are used to characterize the nature of bifurcation

point b = b0 in the following theorem:

Theorem 2.3.3. The map (2.3.2) undergoes transcritical bifurcation at b = b0.

Proof. Consider the map
x

y

→


b× (β̂x+ e−d2Ty)× exp[−e−(d1+a)Tx− β̂x− e−d2Ty]

+(1− k)e−(d1+a)Tx

(1− µ)(β̂x+ e−d2Ty)

 . (2.3.11)

Let x = u, y = v, b = b0 + b1. The fixed point E0 of the map (2.3.2) is transformed to

(u, v) and the map (2.3.11) becomes:
u

v

→


(1− k)e−(d1+a)Tu+ (β̂u+ e−d2Tv)× (b1 + b0)

×exp[−e−(a+d1)Tu− β̂u− e−d2Tv]

(1− µ)(β̂u+ e−d2Tv)

 . (2.3.12)

The map (2.3.12) can be rewritten as:
u

v

→M


u

v

+


−b0[e−2d2Tv2 + (β̂2 + β̂e−(d1+a)T )u2

+e−d2Tuv(2̂β + e−(d1+a)T )] + e−d2T b1v + β̂b1u

0

 .(2.3.13)

The matrix M is obtained as:

M =

 (1− k)e−(d1+a)T + b0β̂ b0e
−d2T

(1− µ)β̂ (1− µ)e−d2T

 .
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The eigenvalues of M are 1 and (1− k)(1− µ)e−(a+d1+d2)T .

The corresponding eigenvectors V1 and V2 are {v1, 1}T and {v2, 1}T respectively

where v1 = (1− (1−µ)e−d2T )(1−µ)−1β̂−1 and v2 = [−e−d2T (1− (1− k)e−(d1+a)T )]β̂−1.

Consider the transformation u

v

 = J

 x̄

ȳ

 , J = (V1 V2).

Using (2.3.13) and further, simplification gives: x̄

ȳ

→

 1 0

0 (1− k)(1− µ)e−(d1+d2+a)T

 x̄

ȳ

+

 f1(x̄, ȳ, b1)

f2(x̄, ȳ, b1)

 , (2.3.14)

where

f1(x̄, ȳ, b1) = a1b1x̄+ a2b1ȳ + a3x̄ȳ + a4x̄
2 + a5ȳ

2,

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1),

a1 = ψ−1[e−d2T + (1− (1− µ)e−d2T )(1− µ)−1],

a2 = ψ−1[e−d2T − (1− (1− k)e−(d1+a)T )e−d2T ],

a3 = ψ−1

[
− 2e−d2T − 2

(
(1− (1− k)e−(d1+a)T )(1− (1− µ)e−d2T )

(1− µ)β̂2

)
(β̂2 + e−2(d1+a)T )

−(2β̂ + e−(d1+a)T )

(
(1− (1− µ)e−d2T )

(1− µ)β̂
− e−d2T (1− (1− k)e−(d1+a)T )

β̂

)]
b0e

−d2T ,

a4 = ψ−1

[
− e−d2T −

(
(1− (1− µ)e−d2T )

(1− µ)β̂

2)
(β̂2 + βe−2(d1+a)T )− e−d2T (2β̂ + e−(d1+a)T )

×(1− (1− µ)e−d2T )(1− µ)−1β̂−1

)]
b0,

a5 = ψ−1

[
− 1− e−d2T (1− (1− k)e−(d1+a)T )2β̂−2(β̂2 + βe−2(d1+a)T )

+(2β̂ + e−(d1+a)T )× (1− (1− k)e−(d1+a)T )β̂−1

]
b0e

−d2T ,

ψ = [1− (1− µ)(1− k)e−(d1+d2+a)T ](1− µ)−1β̂−1.

The center manifold wc(0) for the map (2.3.11) can be represented as:

wc(0) = {(x̄, ȳ, b1) ∈ ℜ3|ȳ = f(x̄, b1), f(0, 0) = 0, Df(0, 0) = 0}.
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Let ȳ = f(x̄, b1) = B0b1 +B1b1x̄+B2x̄
2 +O(|b1|2 + |x̄|3).

Computation for Center Manifold gives:

B0 = 0, B1 =
a1

1− (1− µ)(1− k)exp[−(a+ d1 + d2)T ]
,

B2 =
a4

(1− µ)(1− k)exp[−(a+ d1 + d2)T ]− 1
.

The map restricted to the center manifold is given by:

f̄ : x̄→ x̄+ f(x̄, ȳ, b1) = x̄+ a1b1x̄+ a2b1ȳ + a3x̄ȳ + a4x̄
2 + a5ȳ

2,

= x̄+ a1b1x̄+ a3
a4

(1− k)(1− µ)e−(a+d1+d2)T
x̄3 + a4x̄

2 +O(|b1|2 + |b1x̄2|+ |x̄|4).

Using Theorem 1.4.3, it can be calculated that

∂f̄(0, 0)

∂b1
= 0,

∂2f̄(0, 0)

∂x∂b1
= a1 ̸= 0,

∂2f̄(0, 0)

∂2x
= 2a4 ̸= 0.

Note that, all the conditions of Theorem 1.4.3 are satisfied at (x̄, b1) = (0, 0). Further,

E∗ becomes E0 at b = b0. Hence, the map (2.3.2) undergoes to transcritical bifurcation

at b = b0.

Similarly, the non-trivial fixed point E∗ = (x∗, y∗) becomes non-hyperbolic at

b = bc as one of the eigenvalues of A becomes −1. The associated bifurcation is called

flip bifurcation (period-doubling bifurcation). The following theorem characterizes flip

bifurcation at b = bc.

Theorem 2.3.4. The map (2.3.2) undergoes to flip bifurcation about E∗ at b = bc.

Moreover, if ā > 0 (ā < 0), then period-2 solutions that bifurcate from this fixed point

are stable (unstable).

Proof. Consider the map
x

y

→


b× (β̂x+ e−d2Ty)× exp[−e−(d1+a)Tx− β̂x− e−d2Ty]

+(1− k)e−(d1+a)Tx

(1− µ)(β̂x+ e−d2Ty)

 . (2.3.15)

Let x = x∗+U , y = y∗+V , b = bc+ bc1. The fixed point E∗ of the map is transformed

to (U, V ) and the map (2.3.15) becomes: U

V

→

 c11U + c12V + c13U
2 + c14UV + c15V

2 + c16bc1U + c17bc1V

c21U + c22V

 ,(2.3.16)
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where

c11 = (1− k)e−(d1+a)T + bc × exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗]{β̂ − (β̂x∗ + e−d2Ty∗)

×(e−(d1+a)T + β̂)},

c12 = bc × exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗]{e−d2T − (β̂x∗ + e−d2Ty∗)e−d2T},

c13 = bc × exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗]{(−β̂(e−(d1+a)T + β̂) +
1

2
(e−d2Ty∗ + β̂x∗)

×(e−(d1+a)T + β̂)2)},

c14 = bc × exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗]{(−e−d2T (e−(d1+a)T + 2β̂) + e−d2T

×(e−d2Ty∗ + β̂x∗)(e−(d1+a)T + β̂))},

c15 = bc × exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗]{−e−2d2T +
1

2
(e−d2Ty∗ + β̂x∗)e−2d2T ))},

c16 = exp[e−(d1+a)T − x∗ − β̂x∗ − e−d2Ty∗](β̂ − (e−d2Ty∗ + β̂x∗)(e−(d1+a)T − β̂)),

c17 = exp[−e−(d1+a)Tx∗ − β̂x∗ − e−d2Ty∗](e−d2T − e−d2T (e−d2Ty∗ + β̂x∗)),

c21 = (1− µ)β̂,

c22 = (1− µ)e−d2T .

The map (2.3.16) can be written as: U

V

→ C

 U

V

+

 c13U
2 + c14UV + c15V

2 + c16bc1U + c17bc1V

0

 .(2.3.17)

The eigenvalues of C = (Cij)2×2 are −1 and λ.

The corresponding eigenvectors V3 and V4 are {v3, 1}T and {{v4, 1}T respectively

where v3 = −(1 + (1− µ)e−d2T )(1− µ)−1β̂−1 and v4 = (λ− (1− µ)e−d2T )(1− µ)−1β̂−1.

Consider the transformation U

V

 = J
′

 x̄

ȳ

 , J
′
= (V3 V4).

Using (2.3.17) and simplification gives: x̄

ȳ

→

 −1 0

0 λ

 x̄

ȳ

+

 f1(x̄, ȳ, bc1)

f2(x̄, ȳ, bc1)

 . (2.3.18)

The functions in the above map are obtained as:

f1(x̄, ȳ, bc1) = g1b1x̄+ g2b1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2,

f2(x̄, ȳ, bc1) = −f1(x̄, ȳ, b1),
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g1 = [c16v3 + c17]ψ
−1
1 , g2 = [c16v4 + c17]ψ

−1
1 ,

g3 = [c15 − c14(v3 + v4)− 2c13v3v4]ψ
−1
1 , g4 = [c15 − c14v3 + v23]ψ

−1
1 ,

g5 = [c15 + c14v4 + v24]ψ
−1
1 , ψ1 = −(1 + λ)(1− µ)−1β̂−1.

The center manifold theorem [69] is used to determine the nature of bifurcation about

E0 at bc1 = 0. The center manifold of the map (2.3.15) can be represented as:

wc(0) = {(x̄, ȳ, bc1) ∈ ℜ3|ȳ = h(x̄, bc1), h(0, 0) = 0, Dh(0, 0) = 0}.

Let ȳ = h(x̄, bc1) =M0bc1 +M1bc1x̄+M2x̄
2 +O(|bc1|2 + |x̄|3).

Computation for center manifold gives:

M0 = 0, M1 = ψ−1
1 [c17 − (1 + (1− µ)e−d2T )(1− µ)−1β̂−1](1 + λ)−1,

M2 = ψ−1
1

[
c15 − c14

(1 + (1− µ)e−d2T )

(1− µ)β̂
+

(
−(1 + (1− µ)e−d2T )

β̂(1− µ)

)2]
(1− λ)−1.

Thus, the map restricted to the center manifold is given by:

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄+ g2bc1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2,

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄+ g3ψ
−1
1 (1− λ)−1x̄3

×
[
c15 − c14

(1 + (1− µ)e−d2T )

(1− µ)β̂
+

(
(1 + (1− µ)e−d2T )

β̂(1− µ)

)2]
+g4x̄

2 +O(|bc1|2 + |bc1x̄2|+ |x̄|4).

From Theorem 1.4.4, it can be observed that

∂h̄(0, 0)

∂bc1

∂2h̄(0, 0)

∂x2
+ 2

∂2h̄(0, 0)

∂x∂bc1
= 0 + 2g1 ̸= 0,

ā =
1

2

(
∂2h̄(0, 0)

∂x2

)2

+
1

3

∂3h̄(0, 0)

∂x3

= 2g24 + 2g3ψ
−1
1

[
c15 − c14

(1 + (1− µ)e−d2T )

(1− µ)β̂
+

(
(1 + (1− µ)e−d2T )

β̂(1− µ)

)2]
(1− λ)−1

̸= 0.

Note that, all the conditions of Theorem 1.4.4 are satisfied at (x̄, bc1) = (0, 0). The

map (2.3.2) undergoes to flip bifurcation at b = bc. Accordingly, there exist, period-2

solutions. These bifurcating period-2 solutions will be stable if ā > 0 and unstable if

ā < 0.



2.3 Model Analysis 53

There exist a series of bifurcations that lead to chaotic dynamic when b increases

from bc. This will be explored through numerical simulation in the next section later.

For the global stability of two fixed points, the following theorems are concluded:

2.3.4 Global Stability Analysis

In this section, Lyapunov Second Method will be used to establish the global stability

of various fixed points.

Theorem 2.3.5. The locally asymptotically stable pest-free point E0 of the map (2.3.2)

is globally asymptotically stable in the interior of a positive quadrant of x− y plane.

Proof. Observe that, R0 < 1, means that b < b0. Also, 0 < 1 − (1 − k)e−(a+d1)T ) < 1

and 0 < (1− (1− µ)e−d2T ) < 1.

Similarly, 0 < bβ̂ < 1− (1−k)e−(a+d1)T ) < 1 and 0 < bβ̂ < (1− (1−µ)e−d2T ) < 1

also hold.

Consider the positive definite function

V1(xm, ym) = xm + ym.

Computation of ∆V1 and its simplification gives

∆V1(xm, ym) = f(xm, ym) + g(xm, ym)− xm − ym

= (1− k)e−(a+d1)Txm + b[β̂xm + e−d2Tym]exp[−(e−(a+d1)T + β̂)xm

−e−d2Tym] + [(1− µ)(β̂xm + yme
−d2T )]− xm − ym

≤ [(1− k)e−(a+d1)T + bβ̂ + (1− µ)β̂ − 1]xm + [(b+ (1− µ))e−d2T − 1]ym

≤ [−(1− k)(1− µ)e−(a+d1+d2)T + (1− k)e−(a+d1)T + bβ̂ + (1− µ)e−d2T

−1]xm + [be−d2T + (1− µ)e−d2T − 1]ym

< [bβ̂(1− (1− k)e−(a+d1)T )−1(1− (1− µ)e−d2T )−1 − 1]xm

+[bβ̂(1− (1− µ)e−d2T )−1 − 1]ym

< [bβ̂(1− (1− k)e−(a+d1)T )−1(1− (1− µ)e−d2T )−1 − 1]xm

+[bβ̂(1− (1− k)e−(a+d1)T )−1(1− (1− µ)e−d2T )−1 − 1]ym

∆V1(xm, ym) < −(1−R0)(xm + ym).



54
Chapter 2: An Impulsive Stage-Structured Pest Control Model Using Chemical

Control Synchronized with Birth Pulse

It is observed that V1(xm, ym) is negative definite when R0 < 1. Therefore, V1(xm, ym)

is a Lyapunov function. Hence, the pest-free point E0 is globally asymptotically stable.

Theorem 2.3.6. The local asymptotically stable interior fixed point E∗ of the map

(2.3.2) is globally asymptotically stable in the interior of a positive quadrant of x − y

plane.

Proof. Observe that, the interior fixed point E∗ exists if b > b0(R0 > 1). Consider the

positive definite function:

V2(xm, ym) = | xm − x∗ | + | ym − y∗ | .

Computation of ∆V2 and its simplification gives

∆V2 = | [(1− k)e−(a+d1)Txm + b[β̂xm + e−d2Tym]× exp[−{e−(a+d1)T + β̂}xm − e−d2Tym]

−(1− k)e−(a+d1)Tx∗ + b[β̂x∗ + e−d2Ty∗]× exp[−{e−(a+d1)T + β̂}x∗ − e−d2Ty∗] |

+ | (1− µ)(β̂xm + yme
−d2T )− (1− µ)(β̂x∗ + y∗e−d2T ) | − | xm − x∗ | − | ym − y∗ |

= | [(1− k)e−(a+d1)Txm + b[β̂xm + e−d2Tym]× exp[−{e−(a+d1)T + β̂}xm − e−d2Tym]

−(1− k)e−(a+d1)Tx∗ − b0(R + 1)−1 log(R0) | − | (xm − x∗) | − | (ym − y∗) |

+ | [(1− µ)(β̂xm + yme
−d2T )− (1− µ)(R + 1)−1 log(R0)] |

≤ | [(1− k)e−(a+d1)Txm + b[β̂xm + e−d2Tym]− x∗ | − | (xm − x∗) | − | (ym − y∗) |

+ | [(1− µ)(β̂xm + yme
−d2T )− y∗] |

< − | [bβ̂(1− (1− k)e−(a+d1)T )−1(1− (1− µ)e−d2T )−1 − 1]xm |

− | [bβ̂(1− (1− µ)e−d2T )−1(1− (1− k)e−(a+d1)T )−1 − 1]ym |

∆V2 < − | b− b0 | × | xm | − | b− b0 | × | ym |

∆V2 < − | R0 − 1 | × | xm | − | R0 − 1 | × | ym | .

Since V2(xm, ym) is negative if the condition (2.3.8) holds. Thus, V2 is a Lyapunov

function and interior fixed point E∗ is globally asymptotically stable.

2.4 Numerical Simulations

To study the dynamical behavior, numerical simulations have been carried out for the

set of parameters. The threshold R0 is analyzed with respect to model parameters.
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The objective is not limited to local stability, but to explore the existence of complex

dynamical behavior, including periodic solutions and chaos in the system (2.2.6) −

(2.2.8). Consider the set of parameters as:

a = 0.4, b = 4, k = 0.6, µ = 0.8, d1 = 0.5. (2.4.1)
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Figure 2.1: (a) Time series (b) Phase portrait in x− y plane depicting stability of the

pest-free state in the system (2.2.6)− (2.2.8) at b = 2, d2 = 0.2.

Considering T = 1.0 and d = d1 = d2 = 0.5, the constant b0 is computed as

b0 = 3.6797. For b = 3.0, the basic reproduction number R0 is less than 1 (R0 =

bb−1
0 = 0.8153). According to Theorem 2.3.1, the pest-free state of the map (2.3.2)

is locally asymptotically stable. Taking b = 4, (R0 = 1.087 > 1), the pest-free state

becomes unstable and the non-trivial fixed point E∗ = (0.1316, 0.0060) is stable as

b0 < b < 38.7733 (Theorem 2.3.2). The transcritical bifurcation occurs at b = 3.6797.

Considering, the case d1 > d2, d2 = 0.2, while keeping other parameters un-

changed, the threshold for the stability of E0 is reduced to b0 = 2.9732. Accordingly,

the pest-free state of the map (2.3.2) is locally asymptotically stable for b < 2.9732

and unstable for b > b0. The non-trivial fixed point E∗ = (0.4310, 0.0202) of the map

(2.3.2) is locally stable for 2.9732 < b < 31.51. The transcritical bifurcation occurs at

b = 2.9732.
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For, d1 > d2, d2 = 0.2, Fig. 2.1 and Fig. 2.2 shows the stability of the pest-free

state and period-1 solution (xe, ye) of the system (2.2.6)− (2.2.8) respectively.
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Figure 2.2: (a) Time series (b) Phase portrait in x − y plane depicting stability of
Period-1 solution of the system (2.2.6)− (2.2.8) at b = 10, d2 = 0.2.
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Figure 2.3: Variation of R0 with T at d2 = 0.2.

Fig. 2.3 shows the variation of R0 with pulse period T for d2 = 0.2 and different
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values of d1. E0 is stable in the range 0 < T < TA ∪ TB < T < 1 for d1 = 0.1. The

non-monotonic behavior of R0 with respect to pulse period T is observed. As the value

of T increases, R0 first increases and attains a peak and then it decreases with increase

in T . It can be easily observed that as d1 increases, the domain of stability of E0 with

respect to T increases and pest eradication may occur. Observe that, R0 < 1, for all

values of T when d1 = 0.8. Thus, E0 remains stable irrespective of T for d1 = 0.8 and

d2 = 0.2.

In Fig. 2.4, the curve R0 = 1 corresponding to equation (2.3.3) is drawn on T−d2
plane, keeping other parameters as in (2.4.1). This curve bifurcates the T − d2 domain

into pest eradication (green) and coexistence (red) regions. It is observed that there

exists a critical value of d2 (say d2c), for which pest eradication is possible irrespective

of pulse period T . For the given data set, it is obtained as d2c = 0.6271. For smaller

values of d2, eradication is still possible depending upon the pulse period T .

Figure 2.4: Two-parameter bifurcation diagram on T − d2 plane.

Similarly, two-parameter bifurcation diagrams with respect to T and d1 are drawn

in Fig. 2.5 for d2 = 0.2, 0.5 and 0.6. It is clear that the region of pest eradication in-

creases with increasing d2. For d2 = 0.2, the critical d1 may exist for d2 > 1 outside

the domain (see Fig. 2.5(a)). Further, the critical d1 decreases with increase in d2. Ac-

cordingly, the pest will be eradicated when d1 > d1c irrespective of T . The eradication
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is still possible for a suitable choice of T in d1 < d1c.

Figure 2.5: Two-parameter bifurcation diagrams on T − d1 plane at (a) d2 = 0.2 (b)
d2 = 0.5 (c) d2 = 0.6.

Figure 2.6: Two-parameter bifurcation diagrams on T−a Plane at (a) d1 = 0.5 d2 = 0.2

(b) d1 = d2 = 0.5 (c) d1 = 0.5, d2 = 0.6.

Another set of two-parameter bifurcation diagrams with respect to T and a is

shown in Fig. 2.6 in three cases: d1 > d2, d1 = d2 and d1 < d2. The pest eradication
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will occur when a < ac irrespective of T . For a > ac, the eradication is possible for

a suitable choice of T . The eradication of pest is most probable for d1 < d2 for the

choice of a and T as the corresponding region is biggest out of the three cases.

To study the complex dynamical behavior, typical bifurcation diagrams are drawn

for total pest population in Fig. 2.7 with respect to critical parameter b which is

involved in R0 = b b−1
0 as well as in Rc = b b−1

c . The three diagrams are drawn for the

cases: (a) d1 = d2, (b) d1 > d2 and (c) d1 < d2. The case (a) is idealized and mostly

considered by the investigators. The case (b) is more realistic while case (c) is rarely

observed in nature. The case (c) is considered only for completeness. The diagrams

show the existence of chaos through period-doubling route. The comparison of Fig.

2.7(b) with Fig. 2.7(a) clearly shows that the dynamics is more complex in the case

d1 > d2 than d1 = d2.

(a) (b) (c)

Figure 2.7: Bifurcation diagrams of the map (2.3.2) for total pest population with

respect to b (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.

The critical value for the period-doubling bifurcation parameter is bc = 31.51 as

obtained from equation (2.3.8) is confirmed from the diagram. The period-2 solution

occurs in the range b ∈ (31.51, 106.1). As the parameter value of b increases further, the

successive period-doubling with period-4, period-8 and period-16 occur in the intervals

(106.1, 149.16),(149.16, 160) and (160, 163) respectively. Typical periodic attractors are
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drawn in these intervals in Fig. 2.8 for b = 50, 110, 150 and 162. It ultimately leads

to chaos in the interval (163, 350.55). This chaotic region is followed by a region of

the period-3 solution in the interval (350, 516) which again becomes chaotic through

period-doubling for b > 749. The pest coexists in periodic solution/chaotic attractor

for these domains. The cascades of period-doubling is observed in the bifurcation

diagram, which is the route to chaos in the system (2.2.6)− (2.2.8).
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Figure 2.8: Periodic attractors of the system (2.2.6) − (2.2.8): (a) Period-2 at b = 50

(b) Period-4 at b = 110 (c) Period-8 at b = 150 (d) Period-16 at b = 162.

The chaotic regions of Fig. 2.7(b) are separately blown up in Fig. 2.9. The rich
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dynamical behavior is clearly visible, including crises, chaos, periodic windows, stability

and period-doubling. It is known that Lyapunov exponents quantify the exponential

divergence of initially close trajectories and identify a chaotic behavior.

(a) (b)

Figure 2.9: Magnified parts of bifurcation diagram 2.7(b) (a) b ∈ (160, 350) (b) b ∈
(750, 1000).
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Figure 2.10: Two Lyapunov exponents of the map (2.3.2) for total pest population

with respect to b (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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Lyapunov exponents drawn in Fig. 2.10 further confirm the existence of chaos.

Accordingly, attractors drawn in Fig. 2.11(a) and Fig. 2.11(b) at b = 200 and b = 900

are strange attractors. Crisis is shown in the neighborhood of b = 757 in Fig. 2.12.
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Figure 2.11: Chaotic attractors of the system (2.2.6)−(2.2.8) at (a) b = 200 (b) b = 900.
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Figure 2.12: Emergence of crises of the system (2.2.6) − (2.2.8) at (a) b = 757 (b)
b = 758.

Fig. 2.13 shows the bifurcation diagrams with respect to maturation rate a ∈

(0, 1) with b = 500. The existence of chaos is observed in all the three cases through
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repeated period-doubling with an increase in maturation rate a. However, the smallest

chaotic region is obtained for the case d1 > d2. Period-3 solutions appear beyond the

chaotic region in all the cases. Further, period-doubling occurs only in the case d1 > d2.

(a) (b) (c)

Figure 2.13: Bifurcation diagrams of the map (2.3.2) for total pest population with

respect to a (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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Figure 2.14: Two Lyapunov exponents of the map (2.3.2) for total pest population
with respect to a (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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To further confirm the chaotic nature of the map (2.3.2), two Lyapunov expo-

nents are drawn in Fig. 2.14. The negative Lyapunov exponents confirm the complex

dynamics for certain range of parameter a.

(a) (b) (c)

Figure 2.15: Bifurcation diagrams of the map (2.3.2) for total pest population with

respect to k (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.

(a) (b) (c)

Figure 2.16: Bifurcation diagrams of the map (2.3.2) for total pest population with
respect to µ (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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Similarly, bifurcation diagrams with respect to killing rates k and µ are drawn in

Fig. 2.15 and Fig. 2.16 respectively. Chaotic region is again found to be the smallest

when d1 > d2. Two chaotic regions are separated by a region of the period-3 solution.
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Figure 2.17: Two Lyapunov exponents of the map (2.3.2) for total pest population

with respect to k (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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Figure 2.18: Two Lyapunov exponents of the map (2.3.2) for total pest population
with respect to µ (a) d1 = d2 = 0.5 (b) d1 = 0.5, d2 = 0.2 (c) d1 = 0.5, d2 = 0.6.
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Lyapunov exponents corresponding to bifurcation diagram are plotted in Fig.

2.17 and Fig. 2.18. The map (2.3.2) has at least one zero Lyapunov exponent at

some values of k and µ which shows the existence of periodic orbits. The sum of two

Lyapunov exponent is negative for the smaller values of k and µ indicating the presence

of chaos.

Figure 2.19: Bifurcation diagrams of the map (2.3.2) for total pest population with

respect to d1 (a) d2 = 0.2 (b) d2 = 0.5 (c) d2 = 0.8.

Now, to see the effects of variation in mortality rate of the pest on the dynamics

of the map (2.3.2), bifurcation diagrams and the corresponding spectrum of Lyapunov

exponents are drawn in Fig. 2.19 and Fig. 2.20 respectively.

Lyapunov exponent confirms the existence of chaotic regions and periodic win-

dows in the parametric space. For some parameter values, one of the Lyapunov expo-

nents is obtained to be higher than zero such that the sum of exponents is still less

than zero. This confirms the existence of chaos. It can be observed from Fig. 2.19

and Fig. 2.20 that, there exist stable periodic windows in the chaotic region. No chaos

is observed when d2 = 0.2. The chaotic region exists for higher values of d1 when

d2 = 0.5. It occurs in the region d1 > d2. However, when d2 = 0.8, it occurs even for

d1 < d2. The chaotic region increases with increasing d2.
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Figure 2.20: Two Lyapunov exponents of the map (2.3.2) for total pest population

with respect to d1 (a) d2 = 0.2 (b) d2 = 0.5 (c) d2 = 0.8.

2.5 Discussion

In this chapter, a stage-structured pest control model with birth pulses is considered. A

time-dependent impulsive control strategy for chemical control is used. Pesticide spray

timing is synchronized with birth pulse. Discrete dynamical system (2.3.2) determined

by the stroboscopic map, possesses two fixed points, corresponding to wash out of

pest and coexistence. Stability analysis has been carried out about two fixed points.

Threshold conditions which guarantee the existence and stability of pest extinction as

well as positive period-1 solution are obtained about the birth parameter. The con-

ditions for transcritical and flip bifurcation are also obtained and analyzed. It reveals

that the period-1 solution bifurcates from the pest-free state through a transcritical

bifurcation.

The behavior of net reproductive number with respect to model parameters has

been investigated numerically. When the mortality rates of the immature and mature

pest are smaller, the threshold value for pest extinction reduces. Numerical results

show that the rich dynamics of the system (2.2.6) − (2.2.8) including stable period-1,
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period-n and chaotic solutions. Bifurcation diagrams and Lyapunov exponents show

the range of parameters for which the map (2.3.2) has a chaotic solution. The solution

may tend to stable point or strange attractor depending upon the parameter values.



Chapter 3

An Impulsive Pest Control Model

with Birth Pulse Using

Asynchronous Pesticide Spray

3.1 Introduction

In most impulsive models, different kinds of impulsive effect are assumed to be synchro-

nized. Some impulsive models incorporating asynchronous pulses have been discussed

[63, 65, 130, 169, 239, 243]. In [131], stage-structured pest control model with asyn-

chronous pulses has been investigated. They have considered that pesticide spray kills

the only mature pest. Some pesticides for e.g., Tetrachlorvinphos is effective against

both stages of the pest Rhizopertha in Sorghum. Zhongjun et al. have proposed a

stage-structured impulsive pest control model incorporating birth pulses [149]. They

have assumed that pesticide effects both immature and mature pest with same killing

efficiency rate.

This chapter extends stage-structured pest control model when the birth pulses

are not synchronized with pulses of chemical spray. The simplifying assumption of the

previous chapter is relaxed. The purpose of this chapter is to examine the effect of

pesticide spray timing on the threshold and the dynamics of the system.

69
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3.2 The Mathematical Model

In this section, a stage-structured impulsive pest control model is developed consider-

ing periodic pesticide spray asynchronous with birth pulses. To formulate the model

following assumptions have been made:

• For simplicity, mortality rates of immature and mature pest are assumed to be

the same, i.e. d1 = d2 = d.

• Birth pulse take places periodically at t = mT , m = 1, 2, 3... .

• The pesticide is sprayed between two successive ( say (m− 1)th and mth ) birth

pulses at time t = (m + l − 1)T, 0 < l < 1. The periodicity of chemical spray T

is the same as that of the birth pulse.

• The mature and immature pests are killed instantaneously at rates α and β,

0 < α, β < 1, respectively.

x((m+ l − 1)T )+ = (1− β)x((m+ l − 1)T ),

y((m+ l − 1)T )+ = (1− α)y((m+ l − 1)T ),

 t = (m+ l − 1)T.

Using these assumptions, the model is written as:

dx

dt
= −dx(t)− ax(t),

dy

dt
= ax(t)− dy(t),

 t ̸= (m+ l − 1)T, t ̸= mT, (3.2.1)

x((m+ l − 1)T )+ = (1− β)x((m+ l − 1)T ),

y((m+ l − 1)T )+ = (1− α)y((m+ l − 1)T ),

 t = (m+ l − 1)T, (3.2.2)

x(mT )+ = x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = y(mT ),

 t = mT, (3.2.3)

x(0) = x0 > 0, y(0) = y0 > 0. (3.2.4)

The biomass of the immature and mature pest just after themth birth pulse are x(mT )+

and y(mT )+ respectively. All parameters of the model (3.2.1) − (3.2.4) are assumed
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to be positive. The initial densities of immature and mature pests are x0 and y0

respectively. Equations (3.2.2) and (3.2.3) represent the asynchronous pesticide spray

with birth pulse at times t = (m+ l− 1)T and t = mT , T being the periodicity of two

pulses. The birth rate function B(N(t))N(t) is assumed to be of Ricker type:

B(N) = be−N .

The dynamics of stage-structured impulsive pest control system (3.2.1) − (3.2.4) is

defined on the set:

ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0}.

3.3 Model Analysis

Let, the immature and mature pest densities be x = xm−1 and y = ym−1 at t = (m−1)T

respectively. Then the analytical solution of differential equations (3.2.1) between the

pulses (m− 1)T ≤ t < (m+ l − 1)T is obtained as:

x(t) = e−(a+d)(t−(m−1)T )xm−1,

y(t) = e−d(t−(m−1)T )[(1− e−a(t−(m−1)T ))xm−1 + ym−1],

 (m− 1)T ≤ t < (m+ l − 1)T.

Similarly, the analytical solution of differential equations (3.2.1) and applying impulsive

conditions (3.2.2) at (m+ l − 1)T gives the solution:

x(t) = (1− β)e−(a+d)(t−(m−1)T )xm−1,

y(t) = [ϵ̌xm−1 + (1− α)ym−1]× e−d(t−(m−1)T )

− (1− β)e−(a+d)(t−(m−1)T )xm−1,

ϵ̌ = [(α− β)e−alT + (1− α)],


(m+ l − 1)T ≤ t < mT. (3.3.1)

The application of impulsive condition (3.2.3) in (3.3.1) gives the solution of the system

(3.2.1)− (3.2.4) at t = mT as:

xm = F1(xm−1, ym−1), ym = G1(xm−1, ym−1),

F1(xm−1, ym−1) = (1− β)e−(a+d)Txm−1 + b× exp[−(ϵ̌xm−1 + (1− α)ym−1)e
−dT ]

×[ϵ̌e−dTxm−1 + (1− α)e−dTym−1 − (1− β)e−(d+a)Txm−1],

G1(xm−1, ym−1) = µ̌e−dTxm−1 + (1− α)e−dTym−1, (3.3.2)

µ̌ = ϵ̌− (1− β)e−aT .
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The difference equations (3.3.2) describe the stroboscopic sampling of the immature

and mature pest at mth birth pulse in terms of previous pulse.

The intrinsic net reproductive number R10 can be computed as:

R10 = b b−1
10 , (3.3.3)

where

b10 = (1− (1− β)e−(d+a)T )(1− (1− α)e−dT )edT µ̌−1.

Remark 3.3.1. R10 > 0 is positive provided

µ̌ = (α− β)e−alT + (1− α)− (1− β)e−aT > 0.

3.4 Equilibria and Stability Analysis

In this section, analysis is carried out regarding the fixed points of the map (3.3.2).

Proposition 3.4.1. The pest-free state E0 = (0, 0) always exists.

Proposition 3.4.2. Let

x∗ =
(1− (1− α)e−dT ) log(R10)

e−dT (ϵ̌− (1− α)(1− β)e−(d+a)T )
,

y∗ =
(ϵ̌− (1− β)e−aT ) log(R10)

ϵ̌− (1− α)(1− β)e−(d+a)T
,

R10 =
b((α− β)e−alT + (1− α)− (1− β)e−aT )

(1− (1− β)e−(d+a)T )(1− (1− α)e−dT )edT
.

A non-trivial interior fixed point E∗ = (x∗, y∗) exists when ϵ̌−(1−α)(1−β)e−(d+a)T > 0

and R10 > 1.

Remark 3.4.1. It may be noted that E∗ = E0 if R10 = 1.

Remark 3.4.2. The unique interior fixed point is feasible if the birth rate of the pest

is more than a critical value b10 which depends upon all model parameters.

The local stability analysis for various feasible fixed points has been performed.

The linearized system about any arbitrary fixed point X = (x, y) can be written as:

Xm = AXm−1. (3.4.1)
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The coefficients of linearized matrix A are:

a11 = (1− β)e−(d+a)T + b[µ̌− (µ̌x+ (1− α)y)ϵ̌]× exp[−dT − (ϵ̌x+ (1− α)y)e−dT ],

a12 = b(1− α)× [1− µ̌xe−dT − (1− α)ye−dT ]× exp[−dT − ϵ̌xe−dT − (1− α)ye−dT ],

a21 = ϵ̌e−dT − (1− β)e−(d+a)T , a22 = (1− α)e−dT .

The characteristic equation corresponding to (3.4.1) is:

λ2 − Trλ+Det = 0.

For the stability of the pest-free state, the following theorem is established:

Theorem 3.4.3. The pest-free state E0 = (0, 0) is locally asymptotically stable if

R10 < 1, (3.4.2)

and unstable for R10 > 1.

Proof. The coefficients of the linearized matrix A at the pest-free fixed point are:

a11 = (1− β)e−(d+a)T + bµ̌× e−dT , a12 = b(1− α)× e−dT ,

a21 = ϵ̌e−dT − (1− β)e−(d+a)T , a22 = (1− α)e−dT .

The eigenvalues are given by the following quadratic equation:

λ2 − ((1− β)e−(d+a)T + bµ̌e−dT + (1− α)e−dT )λ+ (1− α)(1− β)e−(2d+a)T = 0.

The two Jury’s conditions (1.4.12) and (1.4.13) that is 1+Tr+Det > 0 and 1−Det > 0

are always satisfied.

By applying Jury’s condition (1.4.11) that is 1− Tr +Det > 0 gives:

1− ((1− β)e−(d+a)T + bµ̌e−dT + (1− α)e−dT ) + (1− α)(1− β)e−(2d+a)T > 0,

i.e.

b < (1− (1− β)e−(d+a)T )(1− (1− α)e−dT )edT µ̌−1 = b10. (3.4.3)

It is observed that, the condition (3.4.3) with the condition (3.3.3) establish the local

stability condition (3.4.2) of the pest-free state. Hence, the threshold condition for

stability is R10 < 1. However, for R10 > 1, then one of the eigenvalues will be greater

than 1. Hence, the pest-free state will be unstable for R10 > 1.
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Remark 3.4.3. The pest eradication is possible when R10 < 1 or b lies in the range

b ∈ (0, b10). For this range of b, trajectories of the map (3.3.2) approach to the origin

and the pest will be eradicated.

Remark 3.4.4. When R10 > 1, the pest outbreak can occur as it is the existence

condition for the interior non-trivial fixed point.

Remark 3.4.5. It is found that one of the eigenvalues of A about E0 is one at R10 = 1.

Therefore, the pest-free point becomes non-hyperbolic. To analyze the behavior of E0

at R10 = 1, the center manifold theory has been performed in the next section.

For the stability of interior fixed point, the following theorem is concluded:

Theorem 3.4.4. Let us assume the constants P and Q as:

P = 2(ϵ̌− (1− α)(1− β)e−(d+a)T )× (1 + (1− β)(1− α)e−(2d+a)T ),

Q = (1− (1− α)e−dT )× (ϵ̌+ (1− α)(1− β)e−(d+a)T )× (1− (1− β)e−(d+a)T ).

The non-trivial fixed point E∗ = (x∗, y∗) is locally asymptotically stable provided

b < b10 exp (P/Q)(= b1c). (3.4.4)

Proof. Coefficient of linearized matrix A[E∗] are computed around E∗ = (x∗, y∗) as:

a11 = (1− β)e−(d+a)T + b10e
−dT [ϵ̌− (1− β)e−aT − ϵ̌y∗],

a12 = b10(1− α)[1− y∗]e−dT , a21 = ϵ̌e−dT − (1− β)e−(d+a)T , a22 = (1− α)e−dT .

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1− β)e−(d+a)T + b10e
−dT [ϵ̌− (1− β)e−aT − ϵ̌y∗] + (1− α)e−dT ,

Det = (1− β)(1− α)e−(2d+a)T [1− b10y
∗].

It is observed that Jury’s conditions (1.4.11) and (1.4.13) are always satisfied:

1− Tr +Det = 1− (1− β)e−(d+a)T b10e
−dT [ϵ̌− (1− β)e−aT − ϵ̌y∗]− (1− α)e−dT

−(1− β)(1− α)e−(2d+a)T [1− b10y
∗]

= (1− (1− β)e−(d+a)T )(1− (1− α)e−dT )− b10[(α− β)e−alT

+(1− α)− (1− β)e−aT ](1− y∗)e−dT

= (1− (1− β)e−(d+a)T )(1− (1− α)e−dT )y∗ > 0.

1−Det = 1− (1− β)(1− α)e−(d+a)T [1− b10y
∗] > 0.
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The expression 1 + Tr +Det simplifies to:

1 + Tr +Det = 1 + (1− β)e−(d+a)T + b10[(α− β)e−(d+al)T + (1− α)e−dT

−(1− β)e−(d+a)T − {(α− β)e−(d+al)T + (1− α)e−dT}y∗]

+(1− α)e−dT + (1− β)(1− α)e−(2d+a)T [1− b10y
∗]

= (1 + (1− β)e−dT−aT )(1 + (1− α)e−dT ) + b10[(α− β)e−alT

+(1− α)− (1− β)e−aT − {(α− β)e−alT + (1− α)

+(1− β)(1− α)e−(d+a)T}y∗]e−dT

= (1 + (1− β)e−dT−aT )(1 + (1− α)e−dT )

+(1− (1− β)e−dT−aT )(1− (1− α)e−dT )

×[1− (α− β)e−alT + (1− α) + (1− β)(1− α)e−(d+a)T

(α− β)e−alT + (1− α)− (1− β)(1− α)e−(d+a)T
log(R10)].

Further, simplifying the Jury’s condition (1.4.12), 1 + Tr +Det > 0,

R10 < exp
2(ϵ̌− (1− α)(1− β)e−(d+a)T )× (1 + (1− β)(1− α)e−(2d+a)T )

(1− (1− α)e−dT )(ϵ̌+ (1− α)(1− β)e−(d+a)T )(1− (1− β)e−(d+a)T )
.(3.4.5)

Accordingly, the condition (3.4.5) and (3.3.3) together with the existence condition

b10 < b yields the stability condition (3.4.4).

The trajectories of the system (3.2.1)−(3.2.4) tend to following period-1 solution

(xe(t), ye(t)):

xe(t) = x∗e−(a+d)(t−(m−1)T ), (3.4.6)

ye(t) = [(1− e−a(t−(m−1)T ))x∗ + y∗]e−d(t−(m+l−1)T ), (m− 1)T ≤ t < (m+ l − 1)T.

xe(t) = (1− β)x∗e−(a+d)(t−(m−1)T ), (m+ l − 1)T ≤ t < mT, (3.4.7)

ye(t) = [ϵ̌x∗e−al(t−(m−1)T ) + (1− α)y∗ − (1− β)x∗e−a(t−(m−1)T )]e−d(t−(m+l−1)T ).

Remark 3.4.6. Since E∗ is locally stable, the periodic solution (3.4.6)− (3.4.7) of the

system (3.2.1)− (3.2.4) is locally stable in the range b10 < b < b1c.

Remark 3.4.7. The interior fixed point become non-hyperbolic at b = b1c and one of

the eigenvalues becomes 1. So, there is a possibility of flip bifurcation.
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3.5 Bifurcation Analysis

First, transcritical bifurcation is carried out at b = b10. The flip bifurcation at b = b1c is

established in the next subsection. The behavior of bifurcation will be analyzed using

Center Manifold Theorem 1.4.5.

3.5.1 Transcritical Bifurcation Analysis

Theorem 3.5.1. [Transcritical Bifurcation] The map (3.3.2) exhibits transcritical bi-

furcation at R10 = 1 (b = b10).

Proof. Considering b to be the bifurcation parameter, b = b10 corresponds to R10 = 1:

b10 = (1− (1− β)e−(d+a)T )(1− (1− α)e−dT )edT µ̌−1.

Consider the map
x

y

→


b× [µ̌x+ (1− α)y]× exp[−dT − ϵ̌e−dTx+ (1− α)e−dTy]

+(1− β)xe−(a+d)T

µ̌xe−dT + (1− α)ye−dT

 . (3.5.1)

Let us introduce x = u, y = v, b = b10 + b1. The fixed point E0 of the map (3.3.2) is

transformed to (u, v) and the map (3.5.1) becomes:
u

v

→


(b1 + b10)(µ̌u+ (1− α)v)× exp[−dT − (ϵ̌u+ (1− α)v)e−dT ]

+(1− β)e−(a+d)Tu

µ̌ue−dT + (1− α)ve−dT

 .(3.5.2)

Now, the map (3.5.2) can be rewritten as: u

v

→M

 u

v

+

 c11u
2 + c12uv + c13v

2 + c14b1u+ c15b1v

0

 . (3.5.3)

The coefficients of the matrix M = mij2×2 and coefficients cij1×5 are obtained as:

m11 = (1− β)e−(d+a)T + b10(ϵ̌e
−dT − (1− β)e−(d+a)T ), m12 = b10(1− α)e−dT ,

m21 = ϵ̌e−dT − (1− β)e−(d+a)T , m22 = (1− α)e−dT ,

c11 = −b10e−2dT [(α− β)2e−2alT + 2(1− α)(α− β)e−alT + (1− α)2

−ϵ̌(1− β)e−aT ],

c12 = −b10(1− α)e−2dT [2(α− β)e−alT + 2(1− α)− (1− β)e−aT ],

c13 = −b10(1− α)2e−2dT , c14 = ϵ̌e−dT − (1− β)e−(d+a)T , c15 = (1− α)e−dT .
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The eigenvalues of M are 1 and (1− α)(1− β)e−(a+2d)T .

The corresponding eigenvectors are V5 = {v5, 1}T and V6 = {v6, 1}T respeectively

where v5 = (1− (1− α)e−dT )µ̌−1edT and v6 = (1− α)((1− β)e−(d+a)T − 1)µ̌−1.

Consider the transformation u

v

 = JE0

 x̄

ȳ

 , JE0 = (V5 V6) . (3.5.4)

Using the transformation (3.5.4), the map (3.5.3) can be written as: x̄

ȳ

→

 1 0

0 (1− α)(1− β)e−(a+2d)T

 x̄

ȳ

 +

 f1(x̄, ȳ, b1)

f2(x̄, ȳ, b1)

 ,(3.5.5)

where

f1(x̄, ȳ, b1) = d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2,

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1),

d1 = (1− (1− α)(1− β)e−(a+2d)T )× (ϵ̌− (1− β)e−aT )−1edT ,

d2 = (1− α)(1− β)(1− (1− α)(1− β)e−(a+2d)T )(ϵ̌− (1− β)e−aT )−1e−(a+d)T ,

d3 =

(
2c13 + 2c11e

dT × µ̌−2(1− α)((1− β)e−(d+a)T − 1)(1− (1− α)e−dT ),

+c12e
dT µ̌−1(1− 2(1− α)e−dT + (1− α)(1− β)e−(2d+a)T )

)
×edT µ̌−1(1− (1− α)(1− β)e−(a+2d)T ),

d4 =

(
c11µ̌

−2e2dT (1− (1− α)e−dT )2 + c12µ̌
−1edT (1− (1− α)e−dT ) + c13

)
×(1− (1− α)(1− β)e−(a+2d)T )edT µ̌−1,

d5 = (1− (1− α)(1− β)e−(a+2d)T )edT
(
c11(1− α)2((1− β)e−(d+a)T − 1)2µ̌−2

+c12(1− α)((1− β)e−(d+a)T − 1)µ̌−1 + c13

)
× µ̌−1.

Applying, the center manifold for the map (3.5.1) can be represented as:

wc(0) = {(x̄, ȳ, b1) ∈ ℜ3|ȳ = f(x̄, b1), f(0, 0) = 0, Df(0, 0) = 0}.

Let ȳ = f(x̄, b1) = B0b1 +B1b1x̄+B2x̄
2 +O(|b1|2 + |b1x̄2|+ |x̄|3). The coefficients in ȳ

can be computed as:

B0 = 0, B1 =
d1

(1− (1− α)(1− β)e−(a+2d)T )
, B2 =

d4
(1− α)(1− β)e−(a+2d)T − 1

.
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The map restricted to the center manifold is given by:

f̄ : x̄→ x̄+ f1(x̄, ȳ, b1) = x̄+ d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2

= x̄+ d1b1x̄+ d3
d4

(1− α)(1− β)e−(a+2d)T − 1
x̄3 + d4x̄

2

+O(|b1|2 + |b1x̄2|+ |x̄|4).

From the conditions 1.4.22, it can be observed that

∂f̄(0, 0)

∂b1
= 0,

∂2f̄(0, 0)

∂x∂b1
= d1 ̸= 0,

∂2f̄(0, 0)

∂2x
= 2d4 ̸= 0.

Note that, all conditions of transcritical bifurcation are satisfied at (x̄, b1) = (0, 0).

Further, E∗ becomes E0 as b = b10. Hence the map (3.3.2) undergoes to a transcritical

bifurcation between E0 = (0, 0) and E∗ = (x∗, y∗) at b = b10.

3.5.2 Flip Bifurcation Analysis

Theorem 3.5.2. [Flip Bifurcation] The map (3.3.2) undergoes flip bifurcation at b =

b1c.

Proof. Consider the map
x

y

→


b× [µ̌x+ (1− α)y]× exp[−dT − (ϵ̌x+ (1− α)y)e−dT ]

+(1− β)xe−(a+d)T

µ̌e−dTx+ (1− α)e−dTy

 . (3.5.6)

Let x = x∗ + u, y = y∗ + v, b = b1c + bc1. The fixed point E∗ of the map (3.3.2) is

transformed to (u, v) and the map (3.5.6) becomes: u

v

→

 s11u+ s12v + s13u
2 + s14uv + s15v

2 + s16bc1u+ s17bc1v

s21u+ s22v

 . (3.5.7)

where

s11 = (1− β)e−(d+a)T + b1cexp[−dT − ϵ̌e−dTx∗ + (1− α)e−dTy∗]× {ϵ̌− (1− β)e−aT

−ϵ̌e−dT × (ϵ̌x∗ + (1− α)y∗ − (1− β)e−aTx∗)},

s12 = b1c(1− α)exp[−dT − ϵ̌e−dTx∗ − (1− α)e−dTy∗]× {1− (µ̌x∗ + (1− α)y∗)e−dT},

s13 = ϵ̌b1c × exp[−2dT − ϵ̌e−dTx∗ − (1− α)e−dTy∗]×
{
1

2
(µ̌x∗ + (1− α)y∗)× ϵ̌e−dT

−(ϵ̌− (1− β)e−aT )

}
,

s14 = b1c(1− α)exp[−2dT − (ϵ̌x∗ + (1− α)y∗)e−dT ]{ϵ̌(µ̌x∗ + (1− α)y∗)e−dT − µ̌− ϵ̌},



3.5 Bifurcation Analysis 79

s15 = b1c(1− α)2exp[−2dT − (ϵ̌x∗ + (1− α)y∗)e−dT ]

{
1

2
(µ̌x∗ + (1− α)y∗)e−dT − 1

}
,

s16 = exp[−dT − (ϵ̌x∗ + (1− α)y∗)e−dT ]{ϵ̌− (1− β)e−aT − ϵ̌e−dT (µ̌x∗ + (1− α)y∗)},

s17 = (1− α)× exp[−dT − (ϵ̌+ (1− α)y∗)e−dT ]× {1− e−dT µ̌x∗ − (1− α)e−dTy∗},

s21 = ϵ̌e−dT − (1− β)e−(d+a)T , s22 = (1− α)e−dT .

The map (3.5.7) can be rewritten as: u

v

→ S

 u

v

+

 s13u
2 + s14uv + s15v

2 + s16bc1u+ s17bc1v

0

 . (3.5.8)

The eigenvalues of S = (sij)2×2 are 1 and λ.

The corresponding eigenvectors are V7 = {v7, 1}T and V8 = {v8, 1}T respectively

where v7 = −edT (1 + (1− α)e−dT )µ̌−1 and v8 = edT (λ− (1− α)e−dT )µ̌−1.

Consider the transformation u

v

 = J
′

 x̄

ȳ

 , J
′
= (V7 V8) . (3.5.9)

Using the transformation (3.5.9) in the map (3.5.8): x̄

ȳ

→

 −1 0

0 λ

 x̄

ȳ

+

 f1(x̄, ȳ, bc1)

f2(x̄, ȳ, bc1)

 . (3.5.10)

The functions in the above map are obtained as:

f1(x̄, ȳ, bc1) = g1bc1x̄+ g2bc1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2,

f2(x̄, ȳ, bc1) = −f1(x̄, ȳ, bc1),

g1 = g−1
6 × [s17 − (1 + (1− α)e−dT )µ̌−1edT s16],

g2 = g−1
6 × [s17 + (λ− (1− α)e−dT )µ̌−1edT s16],

g3 = g−1
6 × [2s15 + s14(λ− 1− 2(1− α)e−dT )(ϵ̌e−dT − (1− β)e−(d+a)T )−1

−2s13(1 + (1− α)e−dT )(λ− (1− α)e−dT )(ϵ̌e−dT − (1− β)e−(d+a)T )−2],

g4 = [s13 − s14(1 + (1− α)e−dT )(ϵ̌− (1− β)e−aT )−1edT

+(1 + (1− α)e−dT )2µ̌−2e2dT ]× g−1
6 ,

g5 = [s13 + s14(λ− (1− α)e−dT )(ϵ̌− (1− β)e−aT )−1edT

+(λ− (1− α)e−dT )2µ̌−2e2dT ]× g−1
6 ,

g6 = −(1 + λ)[ϵ̌e−dT − (1− β)e−(d+a)T ]−1.
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The center manifold theorem is used to determine the nature of the bifurcation of the

fixed point (0, 0) at bc1 = 0. The center manifold of the map (3.5.6) can be represented

as:

wc(0) = {(x̄, ȳ, bc1) ∈ ℜ3|ȳ = h(x̄, bc1), h(0, 0) = 0, Dh(0, 0) = 0}.

Let ȳ = h(x̄, bc1) =M0bc1 +M1bc1x̄+M2x̄
2 +O(|bc1|2 + |bc1x̄2|+ |x̄|3). The coefficients

in ȳ can be computed as:

M0 = 0,

M1 = g−1
6 (1− λ)−1 × [s17 − (1 + (1− α)e−dT )µ̌−1edT s16],

M2 = g−1
6 (λ− 1)−1[s13 − s14(e

dT + (1− α))(ϵ̌− (1− β)e−aT )−1 + (edT + (1− α))2µ̌−2].

The map restricted to the center manifold is:

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄+ g2bc1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2,

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄+ g3g
−1
6 (λ− 1)−1[s13 − s14(e

dT + (1− α))

×(ϵ̌− (1− β)e−aT )−1 + (edT + (1− α))2µ̌−2]x̄3 + g4x̄
2

+O(|bc1|2 + |bc1x̄2|+ |x̄|4).

Using Theorem 1.4.4:

∂h̄(0, 0)

∂bc1

∂2h̄(0, 0)

∂x2
+ 2

∂2h̄(0, 0)

∂x∂bc1
= 0 + 2g1 ̸= 0.

ā =
1

2
(
∂2h̄(0, 0)

∂x2
)2 +

1

3

∂3h̄(0, 0)

∂x3

= 2g24 − 2g3
(1− λ)2

ϵ̌e−dT − (1− β)e−(d+a)T

(
s13 +

s14(1 + (1− α)e−dT )

ϵ̌e−dT − (1− β)e−(d+a)T
+ s17

)
̸= 0.

Since all conditions for flip bifurcation are satisfied at (x̄, bc1) = (0, 0). There exist,

period-2 solutions. These bifurcating period-2 solutions will be stable if ā > 0 and

unstable if ā < 0.

Further, increasing the parameter value b > b1c, the fixed point E∗ losses its

stability and the map (3.3.2) may exhibit complex dynamics. The complex dynamical

behavior will be shown in a later section.
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3.6 Effect of Pesticide Spray Timing and Killing

Rate

The primary concern associated with the eradication of the pest is the minimum use

of pesticides with maximum reduction of the pest population. This reduces the cost of

pest control with minimal effect on the environment. This can be achieved by suitably

selecting the spray time l.

3.6.1 Effect of Pesticide Spray Timing l

The threshold depends on pesticide spray timing l. The derivative of R10 with respect

to l is computed:

dR10

dl
= − abT (α− β)e−dT−alT

(1− (1− α)e−dT )(1− (1− β)e−(d+a)T )
.

Accordingly, the threshold R10 is a monotonic decreasing function with respect to l

when α > β and monotonic increasing function when α < β. This indicates that if

killing (poisoning) rate of mature pest is greater than immature pest then threshold R10

decreases. Once, the threshold R10 becomes less than unity, the pest will be eradicated.

The expression of y∗ involves killing rate of immature and mature pest is affected

by pesticide spray timing. Taking the first order derivative of the mature pest density

with respect to parameter l:

dy∗

dl
= −aT (1− β)(α− β)(1− (1− α)e−dT )e−alT−a log(R10)

(ϵ̌− (1− α)(1− β)e−(d+a)T )2

− aT (α− β)e−alT

(ϵ̌− (1− α)(1− β)e−(d+a)T
.

Further, it can be easily seen that the equilibrium density of mature pest is a decreasing

function with respect to pesticide spraying time parameter l for α > β. Accordingly,

bigger the value of l, lower will be the mature pest density at equilibrium.

Similarly, it can be proved that the equilibrium density of immature pest is a monotonic

function with respect to parameter l.
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3.6.2 Effect of Killing Rate α and β on Threshold R10

The killing efficiency rates α and β also affect the threshold R10. The effects of pesticide

spray on threshold R10 will be analyzed by taking first order derivatives of the threshold

R10 defined by (3.3.3) with respect to β and α respectively and these are obtained as:

dR10

dβ
= −be

−dT ((1− α)e−(d+a)T (1− e−alT ) + e−alT − e−aT )

(1− (1− α)e−dT )(1− (1− β)e−(d+a)T )2
< 0.

dR10

dα
= −be

−dT [(1− β)e−dT (e−alT − e−aT ) + 1− e−alT ]

(1− (1− α)e−dT )2(1− (1− β)e−(d+a)T )
< 0.

It can be easily observed that increasing killing (or poisoning) rate β or α reduces the

threshold value R10. Accordingly, with sufficient large values of killing rates α and β,

the pest eradication may be possible.

3.7 Numerical Simulations

In this section, numerical analysis of the system (3.2.1)−(3.2.4) and the map (3.3.2) are

performed based on the analytical results. The critical parameters for the investigation

are identified as a, d, l, T , α and β that are involved in R10 which affect the dynamics

of the system (3.2.1)− (3.2.4). Consider the following parameter set

a = 0.4, d = 0.2, α = 0.8, β = 0.4. (3.7.1)

The positive equilibrium of the map (3.3.2) depends on pesticide spray timing l. Fig.

3.1 shows the variation of the equilibrium level of pest density versus l for different

killing rates β, α ∈ (0, 1) of immature and mature pest. It is observed that the lowest

equilibrium level of the pest is possible when l = 1. Fig. 3.1(a) shows that when

α < β, immature pest equilibrium density increases, which is not effective for pest

control. From a biological point of view, the aim is to reduce the pest to the lower

level not to eliminate it.

From Table 3.1, it can be observed that pesticide spray timing l reduce the pest

density. If pesticide will be sprayed at time l = 0.1, the reduction in immature and

mature pest equilibrium densities are 6.4% and 83.30% respectively. The reduction is

83.82% and 98.26% of immature and mature pest respectively if the pesticide is sprayed
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just before the birth pulse. The maximum reduction in the immature and mature pest

is 95.83% and 99.59% if the time of spraying pesticide is the same with that of birth

pulse (l = 1). Therefore, the best timing of pesticide spray is just before the births.

l x∗ Percent y∗ Percent R10 b1c b10 E∗

decrease decrease

in x in y

0.0 2.5106 0 2.2574 0 39.6040 9233.60 0.3030 stable

0.1 2.3500 6.40 0.3769 83.30 2.9243 75.3061 3.7616 stable

0.2 2.1694 13.59 0.3274 85.49 2.6824 80.6293 4.1009 stable

0.3 1.9690 21.57 0.2796 87.61 2.4499 86.6899 4.4900 stable

0.4 1.7491 30.33 0.2337 89.65 2.2265 93.6580 4.9404 stable

0.5 1.5106 39.83 0.1898 91.59 2.0119 101.7607 5.4674 stable

0.6 1.2550 50.01 0.1481 93.44 1.8057 111.3072 6.0917 stable

0.7 0.9841 60.80 0.1089 95.18 1.6076 122.7296 6.8424 stable

0.8 0.7003 72.11 0.0725 96.79 1.4173 136.6512 7.7613 stable

0.9 0.4062 83.82 0.0392 98.26 1.2344 154.0045 9.9110 stable

1 0.1048 95.83 0.0094 99.59 1.0587 176.2511 10.3899 stable

Table 3.1: Effect of impulsive pesticide spraying time on pest density and stability of

positive fixed point for b = 11, β = 0.4, α = 0.8.

From Fig. 3.1(b), it is concluded that when α = 0.8, the pest will remain

below the threshold level. Also, for α = 0.9, the pest will be totally eradicated. But,

highly toxic pesticides are needed to reduce the pest which may not be environmentally

friendly.

Considering T = 1.0, l = 0.5 and data set (3.7.1), the constant b10 is computed as

b10 = 5.4674. For b = 5, the basic reproduction number is obtained as (R10 = 0.9145 <

1). According to Theorem (3.4.3), the pest-free state is locally asymptotically stable

and coexistence is not possible. Taking b = 11, the pest-free fixed point becomes

unstable. The non-trivial fixed point E∗ = (1.5106, 0.1898) is stable as b10 < b <

101.7607 (Theorem (3.4.4)). Further, transcritical bifurcation occurs at b = 5.4674.
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Figure 3.1: Equilibrium density versus l for data set (3.7.1).

Fig. 3.2 is drawn to show the variation of R10 with β in the range 0 < β < 1

for fixed α = 0.2, 0.3, 0.4, 0.6 and 0.8 and l = 0.5. It is observed that the threshold

R10 is monotonic decreasing function with respect to β. It is concluded that when

α < β = 0.8, the threshold R0 is less than 1 and the pest eradication will occur.

0 0.2 0.4 0.6 0.8 1
β

0

0.5

1

1.5

2

2.5

3

R
10

α=0.8

α=0.6

α=0.4

α=0.3

α=0.2

Figure 3.2: Variation of R10 versus β.

Fig. 3.3(a) shows the variation of R10 with pulse period T for l = 0.5. The

non-monotonic behavior of R10 with respect to impulsive period T is observed. As
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the values of T increases, R10 first increases and attains a peak, then it decreases

with increase in T . Once the threshold value R10 becomes less than 1, the pest go to

extinction.
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Figure 3.3: (a) Variation of R10 with T (b) Two-parameter bifurcation diagram in l− b
plane.

To see complexity due to pesticide spray timing and birth rate, two-parameter

bifurcation diagram is drawn in the l − b plane. In Fig. 3.3(b), region of the pest

extinction is shown by white, while the region of the stable period-1 solution is shown

by light-grey. For higher birth rates of the pest, the map (3.3.2) becomes chaotic, which

is shown in the black region. At lower birth rates, the pest will be eradicated for all

values of pesticide spray time. It has been observed that the pest will go to extinction

in a small neighborhood of (0, 0). The period doubling leads to chaos for the higher

birth rate.

In Fig. 3.4, the line R10 = 1 separates the region of the pest-free state and interior

fixed point stability. The region below the line R10 = 1 is the region of stability of the

pest-free state. On the other hand, the region above the line R10 = 1 is the region of

the instability of the pest-free state. For a fixed value of pesticide spray timing l, the

corresponding killing rate of mature pest is needed to clear the pest population.

Fig. 3.5 is drawn to show the importance of incorporating asynchronous pulses.

The threshold R10 is plotted with the killing efficiency of immature pest β in the range
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β ∈ (0, 1) for the data set (3.7.1) and l = 0.5. For synchronous pulses, R10 is greater

than 1 and pest outbreak will occur. Further, the threshold R10 becomes less than unity

for β > 0.10936 for asynchronous pulses. Accordingly, the pest-free state remains stable

for β > 0.10936 (0.10936 < β < α = 0.8) and the pest will be eradicated. Therefore,

incorporation of asynchronous pulses is a better choice to achieve the pest-free solution.
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Figure 3.4: Two-parameter bifurcation diagram in R10− l plane for (a) Different values
of α (b) Different values of β.
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Figure 3.5: Effect of synchronous and asynchronous pulses.
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The typical bifurcation diagram is drawn for total pest population in Fig. 3.6(a)

with respect to critical parameter b which is involved in R10 = bb−1
10 as well as in

Rc = bb−1
1c . The bifurcation diagram of the system (3.2.1) − (3.2.4) shows the exis-

tence of chaos through period-doubling route. For l = 0.5, the critical value obtained

from equation (3.4.4) for a flip bifurcation parameter is b1c = 101.7607. Period-

doubling bifurcation is confirmed from Fig. 3.6(a). The stable period-1 solution

occurs in the range b ∈ (5.4674, 101.7607). As the parameter value of b increases

beyond b1c, the period-1 solutions destabilize and successive period-doubling with

period-2, period-4, period-8 and period-16 occur in the intervals (101.7607, 296.841),

(296.841, 406.783), (406.783, 434.8518) and (434.8518, 441.16) respectively. The cas-

cades of period-doubling are observed in the bifurcation diagram, which is the route

to chaos in the system. Several periodic windows are visible in the interval (500, 700).

For more clarity, a region of Fig. 3.6(a) is separately blown up in Fig. 3.6(b) in the

interval (690, 720) and a periodic window is clearly visible.

(a) (b)

Figure 3.6: (a) Bifurcation diagram of the system (3.2.1)− (3.2.4) for total pest pop-

ulation with respect to parameter b (b) Blown up in (690, 720).

Fig. 3.7 shows bifurcation diagrams of the system (3.2.1)− (3.2.4) with respect

to pesticide spray time l ∈ (0, 1) with b = 450. The system (3.2.1) − (3.2.4) depicts

the very complex dynamical behavior if the pesticide is sprayed just before birth pulse.
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As parameter l increases, chaotic behavior is followed by a period-halving bifurcation.

From an ecological point of view, it can be observed that immature and mature pest

decreases as pesticide spray timing l increases. It is noted that pesticide spray time

may reduce complexity with increasing l and may stabilize the system.

(a) (b)

Figure 3.7: Bifurcation diagrams of the system (3.2.1)− (3.2.4) for (a) Immature pest
(b) Mature pest with respect to l.

3.8 Discussion

In this chapter, a stage-structured pest model is considered with the birth pulse and

impulsive pesticide spray at a fixed time. By using the stroboscopic map, the complete

expression for a periodic solution with period-1 is obtained. Also, the threshold con-

ditions for the stability of two fixed points are obtained. The effects of pesticide spray

timing on the immature and mature pest are considered. The results show that the

best time of pesticide spray is towards the end of the season, i. e. before and near the

next birth pulse. The system with Ricker type birth function shows a very complex

dynamical behavior. As the parameter l increases, period-halving bifurcations followed

by chaotic behavior. The mature pest density decreases with respect to pesticide spray

timing l provided α > β. Also, there exists a cascade of period-halving bifurcations

from chaos to cycles.



Chapter 4

An Impulsive Pest Control Model

with Birth Pulse Using Pesticide

Having Instantaneous and Residual

Effects

4.1 Introduction

Most of the pesticides are assumed to be of non-residual nature, that is, they kill

the pest instantaneously and have no residual effects. For example, Pyrethrum is

widely used non-residual insecticide. However, some pesticides are residual pesticides

which remain effective on or in a crop/pest after the pesticide spray for some length of

time [209, 230]. Some residual pesticides control the pest for weeks, months or even

years. The biological pesticides are environmentally friendly, but they have a short-

term residual effect. On the other hand, Organochlorine insecticides have a long-term

residual effect. The instantaneous effect of chemicals on the pest is assumed in most of

the impulsive models. The instantaneous killing efficiency of the pesticides on the pest

(i.e. without residual effect) has been extensively discussed [216, 217, 218, 219, 222].

Residual effects of pesticides play a vital role in successful pest control. This resid-

ual pesticide may affect the pest continuously. The residual pesticide effects are mod-

eled by continuous or piecewise-continuous periodic functions which affect the growth

89
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rate of pest [172]. In the absence of stage-structure and birth pulses, very few pest

control models are available which incorporate residual effects of pesticides [126, 221].

In previous chapters, 2 and 3, the only instantaneous effect of the pesticide has been

incorporated.

In this chapter, a pest control nonlinear dynamical model has been proposed and

analyzed. The stage-structured model incorporates asynchronous chemical spray and

birth pulses. It considers the residual effect of pesticides on both immature and mature

pest. The effects of residual pesticide on threshold condition will be investigated.

4.2 The Mathematical Model

For the stage-structured pest control model following assumptions have been made:

• The deaths of immature and mature pests are assumed to be proportional to

their densities x and y respectively. Their death rates are constant.

• The maturation rate of immature pest is constant a.

• The mature pest reproduce periodically and birth occurs in pulses at an interval

T . The birth function B(N(t)) is considered of Ricker type.

• The pesticide spray occurs impulsively at the time t = τmp = (m − 1)T + τp

where τp = lT , (0 < l < 1) between two successive birth pulses which occur at

t = (m − 1)T and t = mT , m = 1, 2, 3... . The pesticide has instantaneous as

well as residual effect on the pest.

• The pesticide kills both immature and mature pest population instantaneously

at different rates β and α respectively, 0 < α, β < 1:

x(τmp)
+ = (1− β)x(τmp), y(τmp)

+ = (1− α)y(τmp), t = τmp.(4.2.1)

• The residual pesticide has long-time continuous effect on the pest. Its effect on

the pest is described by the kill rate function k(t) [126]. Let m1 be the killing

efficiency and a1 be its decay rate. Then

k(t) = m1e
−a1(t−τp), t > τp. (4.2.2)
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The impulsive stage-structured pest control model with birth pulse using a pesticide

spray that have residual effect is defined on the set ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0}.

Considering all parameters to be constant and positive, the complete model can be

formulated as:

dx

dt
= −(d+ a+m1e

−a1(t−τp))x(t),

dy

dt
= ax(t)− (d+m1e

−a1(t−τp))y(t),

 t ̸= τ, t ̸= mT, (4.2.3)

x(τmp)
+ = (1− β)x(τmp),

y(τmp)
+ = (1− α)y(τmp),

 t = τmp, (4.2.4)

x(mT )+ = x(mT ) + be−x(mT )−y(mT )y(mT ),

y(mT )+ = y(mT ),

 t = mT, (4.2.5)

x(0) = x0 > 0, y(0) = y0 > 0. (4.2.6)

4.3 Model Analysis

Theorem 4.3.1. The system (4.2.3)− (4.2.6) is ultimately bounded.

Proof. Define a positive definite continuous function

V (t) = x(t) + y(t).

Let D+V (t,X) denotes Dini’s derivative [120]. Using (4.2.3), it is computed as:

D+V (t,X) = −(d+m1e
−a1(t−τp))(x(t) + y(t)), t ̸= mT, t ̸= τmp.

Considering 0 < d+m1 < d1, it simplifies to yields:

D+V (t,X) ≤ −d1V (t,X), t ̸= mT, t ̸= τmp. (4.3.1)

Using condition (4.2.4) at t = τmp and choosing γ = min{β, α} gives:

V (τmp)
+ = (1− β)x(τmp) + (1− α)y(τmp),

≤ (1− γ)V (τT ). (4.3.2)
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Applying birth pulses (4.2.5) at t = mT :

V (mT+) = x(mT ) + be−x(mT )−y(mT )y(mT ) + y(mT ) ≤ V (mT ) + b. (4.3.3)

Using Lemma 2.5 in [8], it can be obtained that

V (t) ≤ V (0+)e−d1t + b

(
e−d1(t−mT ) − e−d1T

(1− e−d1T )

)
→ b

e−d1T

(1− e−d1T )
, as t→ ∞.

Therefore, the solution (x(t), y(t)) of the system (4.2.3) − (4.2.6) is bounded by a

constant b > 0, x(t) ≤ b and y(t) ≤ b ∀ large values of t. Hence, V (t) is uniformly

ultimately bounded.

4.3.1 Stroboscopic Map

Let x = xm−1 and y = ym−1 be the immature and mature pest density respectively at

t = (m − 1)T . The analytical solution of differential equations (4.2.3) after the birth

pulse and before the chemical spray can be obtained as:

x(t) = xm−1e
−(a+d)(t−(m−1)T )+ϕ, (m− 1)T ≤ t < τmp,

y(t) = e−d(t−(m−1)T )+ϕ[ym−1 + xm−1(1− e−a(t−(m−1)T ))].

The analytical solution of the equations (4.2.3) with after the chemical spray and before

the birth pulse (4.2.4) is:

x(t) = (1− β)xm−1e
−(a+d)(t−(m−1)T )+ϕ, τmp ≤ t < mT,

y(t) = [(α− β)xm−1e
−(d+a)lT + (1− α)(ym−1 + xm−1)e

−dlT ]e−d(t−τp)+ϕ

−(1− β)xm−1e
−(a+d)(t−(m−1)T )+ϕ, (4.3.4)

a1ϕ = m1[e
−a1(t−(m−1)T ) − 1].

After the chemical spray, the solution (4.3.4) with impulsive conditions (4.2.5) gives

the following map after each successive birth pulse at t = mT :

xm = b× exp[−(α− β)xm−1e
−(d+al)T+θ − (1− α)(ym−1 + xm−1)e

−dT+θ]

×[(α− β)xm−1e
−alT + (1− α)(ym−1 + xm−1)− (1− β)xm−1e

−aT ]× e−dT+θ

+(1− β)xm−1e
−(a+d)T+θ, (4.3.5)

ym = [(α− β)xm−1e
−alT + (1− α)(ym−1 + xm−1)− (1− β)xm−1e

−aT ]e−dT+θ,

a1θ = m1[(e
−a1T − 1)] < 0.
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The discrete system of equations (4.3.5) is the stroboscopic sampling of the immature

and mature pest. The dynamical behavior of the system (4.2.3)− (4.2.6) will be given

by the dynamical behavior of the map (4.3.5) coupled with the system (4.3.4).

The intrinsic net reproductive number R0 is computed as:

R0 = b b−1
0 , (4.3.6)

b0 =
(1− (1− β)e−dT−aT+θ)(1− (1− α)e−dT+θ)

((α− β)e−alT + (1− α)− (1− β)e−aT )
e−dT+θ.

Remark 4.3.1. Since the numerator in b0 should be always positive. Therefore, the

basic reproduction number R0 will be positive provided

(α− β)e−alT + (1− α)− (1− β)e−aT ) > 0.

4.3.2 Fixed Points of Stroboscopic Map

The stroboscopic map (4.3.5) admits the following two equilibrium states:

• The unique pest-free fixed point E0 = (0, 0) exists without any parametric re-

striction.

• The unique non-trivial interior fixed point E∗ = (x∗, y∗) exists for R0 > 1 and is

obtained as

x∗ =
(1− (1− α)e−dT+θ) log(R0)

e−dT+θ((α− β)e−alT + (1− α)− (1− α)(1− β)e−(d+a)T+θ)
,

y∗ =
((α− β)e−alT + (1− α)− (1− β)e−aT ) log(R0)

(α− β)e−alT + (1− α)− (1− α)(1− β)e−(d+a)T+θ
.

Thus, E∗ is biologically feasible if the birth rate of the pest is more than a critical value

b0 which depends upon all model parameters.

Remark 4.3.2. For R0 = 1, the interior fixed point E∗ collides to the pest-free point

E0.
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4.3.3 Stability Analysis about the Fixed Points

For the local stability of any fixed point E = (x, y) of the map (4.3.5), the coefficients

of linearized matrix A are given as:

a11 = bΨ[ϵ̌− (1− β)e−aT − ϵ̌{ϵ̌x+ (1− α)y − (1− β)e−aTx}e−dT+θ]e−dT+θ

+ (1− β)e−(d+a)T+θ,

a12 = b(1− α)Ψ[1− e−dT+θ((1− α)y + ϵ̌x− (1− β)e−aTx)]e−dT+θ,

a21 = [ϵ̌− (1− β)e−aT ]e−dT+θ, a22 = (1− α)e−dT+θ,

Ψ = exp[−ϵ̌e−dT+θx− (1− α)ye−dT+θ], ϵ̌ = (1− α) + (α− β)e−alT .


.(4.3.7)

For the local stability of the pest-free state, the following theorem establishes:

Theorem 4.3.2. The pest-free state E0 = (0, 0) of the map (4.3.5) is locally asymp-

totically stable if

R0 < 1. (4.3.8)

Proof. Using (4.3.7), the linearized matrix A[E0] about (0, 0) is computed as:

A[E0] =

 [(1− β)e−aT + b(ϵ̌− (1− β)e−aT )]e−dT+θ (ϵ̌− (1− β)e−aT )e−dT+θ

b(1− α)e−dT+θ (1− α)e−dT+θ

 .

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1− β)e−(d+a)T+θ + b(ϵ̌− (1− β)e−aT )e−dT+θ + (1− α)e−dT+θ,

Det = (1− β)(1− α)e−(2d+a)T+2θ.

It is observed that Jury’s conditions (1.4.12) and (1.4.13) are always satisfied:

1 + Tr +Det = 1 + (1− β)e−(d+a)T+θ + b(ϵ̌− (1− β)e−aT )e−dT+θ

+(1− α)e−dT+θ + (1− β)(1− α)e−(2d+a)T+2θ > 0,

1−Det = 1− (1− β)(1− α)e−(2d+a)T+2θ > 0.

The expression 1− Tr +Det simplifies to:

1− Tr +Det = 1− (1− β)e−(d+a)T+θ − be−dT+θ[(1− α) + (α− β)e−alT

−(1− β)e−aT ] + (1− α)e−dT+θ + (1− β)(1− α)e−(2d+a)T+2θ

= (1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ)

−b[(1− α)e−dT+θ + (α− β)e−(d+al)T+θ − (1− β)e−(d+a)T+θ].
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Accordingly, the Jury’s condition (1.4.11), 1− Tr +Det > 0 gives

(1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ) > be−dT+θ[ϵ̌− (1− β)e−aT ],

i.e.

b <
(1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ)

e−dT+θ((1− α) + (α− β)e−alT − (1− β)e−aT )
= b0. (4.3.9)

The stability condition (4.3.8) is obtained using (4.3.9) and (4.3.6). This completes

the proof.

The solution trajectories in the neighborhood of (0, 0) tend to origin and the

pest will be eradicated for b ∈ (0, b0). When the condition R0 < 1 is not satisfied, the

pest-free state is locally unstable.

Remark 4.3.3. In the absence of residual effect, i.e. (m1 = 0, θ = 0), the threshold

RN
0 is obtained as:

RN
0 = b

((α− β)e−alT + (1− α)− (1− β)e−aT )

(1− (1− β)e−dT−aT )(1− (1− α)e−dT )
e−dT .

Observe that, R0 < RN
0 . Note that, RN

0 is the same as R0 computed in the chapter

3. The threshold R0 reduces to RN
0 when only the instantaneous effect of pesticide is

considered. Therefore, inclusion of residual effect of pesticide increases the possibility

of stable the pest-free state as compared to instantaneous effect.

Remark 4.3.4. The model parameters m1 and a1 are involved in the threshold R0.

The first order derivatives of the threshold R0 defined by (4.3.6) with respect to m1

and a1 respectively are obtained as:

dR0

dm1

=
b(1− (1− β)(1− α)e−(2d+a)T+2θ)((α− β)e−alT + (1− α)− (1− β)e−aT )

(1− (1− α)e−dT+θ)2(1− (1− β)e−(d+a)T+θ)2

×e−dT+θ(e−a1T − 1)a1 < 0,

dR0

da1
=

b(1− (1− β)(1− α)e−(2d+a)T+2θ)((α− β)e−alT + (1− α)− (1− β)e−aT )

(1− (1− α)e−dT+θ)2(1− (1− β)e−(d+a)T+θ)2

×m1e
−a1T (ea1T − 1− a1T )a

−2
1 e−dT+θ > 0.

This indicates that R0 is monotonic decreasing with respect to m1 and monotonic

increasing with respect to a1. Therefore, a sufficient increase in the killing efficiency

rate m1 may reduce the threshold R0 below unity and eradicate the pest from the field.

This is due to the stability of the pest-free state (Theorem 4.3.2). Increasing the decay

rate a1, enhances the threshold and the pest may persist in the field.
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Remark 4.3.5. The basic reproduction number R0 depends upon killing rates α and

β due to pesticide spray. The first order derivatives of R0 with respect to α and β are

found to be negative:

dR0

dα
= −be

−dT+θ((1− β)e−dT+θ(e−aT − e−a1lT ) + 1− e−alT )

(1− (1− α)e−dT+θ)2(1− (1− β)e−(d+a)T+θ)
< 0.

dR0

dβ
= −be

−dT+θ((1− α)e−(d+a)T+θ(1− e−a1lT ) + e−aT − e−alT )

(1− (1− α)e−dT+θ)(1− (1− β)e−(d+a)T+θ)2
< 0.

Accordingly, a sufficient increase in any of these two parameters may reduce the thresh-

old value R0 and once R0 < 1, the pest population can be eradicated successfully.

The pest-free state is stable if R0 < 1. Since E0 is only fixed point when R0 < 1,

it is possible that it may be globally stable. The next theorem proves its global stability.

Theorem 4.3.3. The locally asymptotically stable pest-free state E0 of the map (4.3.5)

is globally asymptotically stable in the interior of positive quadrant of x− y plane.

Proof. Consider the positive definite function

V1(xm, ym) = xm + ym.

Now, computation of ∆V1 and its simplification gives

∆V1(xm, ym) = f(xm, ym) + g(xm, ym)− xm − ym

= (1− β)e−(d+a)T+θxm + be−dT+θ[(α− β)e−alTxm + (1− α)(ym + xm)

−(1− β)e−aTxm]exp[−e−dT+θ(ϵ̌xm − (1− α)ym)]

+[ϵ̌xm + (1− α)ym − (1− β)e−aTxm]e
−dT+θ − xm − ym

≤ [{(1− β)e−aT + b{ϵ̌− (1− β)e−aT}+ (1− β)e−aT + (1− α)

−(α− β)e−alT}e−dT+θ − 1]xm + [(1− α){b+ 1}e−dT+θ − 1]ym.

Further simplification of ∆V1 yields:

∆V1 < −(1−R0)V1(xm, ym) < 0.

Further, ∆V1(0, 0) = 0. Therefore, V1(xm, ym) is negative definite when R0 < 1. Thus,

V1(xm, ym) is a Lyapunov function and the pest-free state E0 is globally asymptotically

stable in the positive quadrant of x− y plane.
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Remark 4.3.6. The pest-free state E0 of the map (4.3.5) will become non-hyperbolic

at R0 = 1 (or b = b0) and there is a possibility of transcritical bifurcation. Also, at

this point E∗=E0.

To analyze the stability about E0 at R0 = 1, the center manifold theory is used.

The following theorem explores the existence of transcritical bifurcation:

4.3.4 Transcritical Bifurcation Analysis

Theorem 4.3.4. The map (4.3.5) undergoes a transcritical bifurcation at b = b0.

Proof. Let Υ = e−dT+θ((α− β)e−alT + (1− α)− (1− β)e−aT ). Consider the map
x

y

→


b× exp[−(α− β)xe−(alT+d)T+θ − (1− α)(y + x)e−dT+θ]

×[Υx+ (1− α)e−dT+θy] + (1− β)xe−(a+d)T+θ

Υx+ (1− α)e−dT+θy

 . (4.3.10)

Let x = u, y = v , b = b1 + b0, b0 = Υ−1(1 − (1 − β)e−dT−aT+θ)(1 − (1 − α)e−dT+θ).

The pest-free point E0 of the map (4.3.5) is transformed to (u, v) and the map (4.3.10)

becomes: u

v

→

 (b1 + b0)Θ(Υu+ (1− α)ve−dT+θ) + (1− β)ue−(a+d)T+θ

Υu+ (1− α)ve−dT+θ

 , (4.3.11)

where Θ = exp[−(α− β)ue−(d+al)T+θ − (1− α)(v + u)e−dT+θ].

The map (4.3.11) can be rewritten as: u

v

→M

 u

v

+

 c11u
2 + c12uv + c13v

2 + c14b1u+ c15b1v

0

 .

The coefficients of the matrix M = (mij)2×2 and coefficients (cij)1×5 are computed as:

m11 = (1− β)e−(d+a)T+θ + b0Υ, m21 = Υ, m12 = b0(1− α)e−dT+θ,

m22 = (1− α)e−dT+θ, c11 = −b0Υ[(α− β) + (1− α)]e−dT+θ,

c12 = −b0(1− α)[Υ + (α− β)e−(d+al)T+θ + (1− α)e−dT+θ]e−dT+θ,

c13 = −b0(1− α)2e−2(dT+θ), c14 = Υ, c15 = (1− α)e−dT+θ.

The eigenvalues of M are 1 and (1− α)(1− β)e−(a+2d)T+2θ.

The corresponding eigenvectors V9 and V10 are {v9, 1}T and {v10, 1}T respectively where
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v9 = Υ−1(1− (1− α)e−dT+θ) and v10 = Υ−1e−dT+θ(1− α)((1− β)e−(d+a)T+θ − 1).

Consider the transformation u

v

 = J

 x̄

ȳ

 , J
′
= (V9 V10).

Now, the map (4.3.11) can be simplified as: x̄

ȳ

→

 1 0

0 (1− α)(1− β)e−(a+2d)T+2θ

 x̄

ȳ

 +

 f1(x̄, ȳ, b1)

f2(x̄, ȳ, b1)

 ,

where

f1(x̄, ȳ, b1) = d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2,

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1),

d1 = [1− (1− α)(1− β)e−(a+2d)T+2θ]Υ−1,

d2 = (1− α)(1− β)[1− (1− α)(1− β)e−(a+2d)T+2θ]Υ−1e−(a+2d)T+θ,

d3 = [2c13 + 2c11Υ
−2e−dT+θ(1− α)((1− β)e−(d+a)T+θ − 1)(1− (1− α)e−dT+θ)

+c12Υ
−1(1− 2(1− α)e−dT+θ + (1− α)(1− β)e−(d+a)T+θ)]

×(1− (1− α)(1− β)e−(a+2d)T+2θ)Υ−1,

d4 = [c11Υ
−1(1− (1− α)e−dT+θ)2 + c12Υ

−1(1− (1− α)e−dT+θ) + c13]

×(1− (1− α)(1− β)e−(a+2d)T+2θ)Υ−1,

d5 = (1− (1− α)(1− β)e−(a+2d)T+2θ)[c12(1− α)((1− β)e−(d+a)T+θ − 1)Υ−1

e−dT+θ + c11(1− α)2((1− β)e−(d+a)T+θ − 1)2Υ−2e−2dT+2θ + c13]Υ
−1.

The center manifold theorem [69] is used to determine the nature of bifurcation about

E0 at b1 = 0. The center manifold for the map (4.3.10) can be represented as:

wc(0) = {(x̄, ȳ, b1) ∈ ℜ3|ȳ = f(x̄, b1), f(0, 0) = 0, Df(0, 0) = 0}.

Let ȳ = f(x̄, b1) = B0b1 +B1b1x̄+B2x̄
2 +O(|b1|2 + |b1x̄2|+ |x̄|3). Coefficients in ȳ can

be computed as:

B0 = 0, B1 =
−d1

1− (1− α)(1− β)e−(a+2d)T+2θ
, B2 =

d4
(1− α)(1− β)e−(a+2d)T+2θ − 1

.

The map restricted to the center manifold is given by:

f̄ : x̄→ x̄+ f1(x̄, ȳ, b1) = x̄+ d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2x̄2|+ |x̄|4)

= x̄+ d1b1x̄+
d3d4x̄

3

(1− α)(1− β)e−(a+2d)T+2θ − 1
+ d4x̄

2 +O(|b1|2 + |b1x̄2|+ |x̄|4).
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Using Theorem 1.4.3, it can be calculated that

∂f̄(0, 0)

∂b1
= 0,

∂2f̄(0, 0)

∂x∂b1
= d1 ̸= 0,

∂2f̄(0, 0)

∂2x
= 2d4 ̸= 0.

Note that, all conditions of transcritical bifurcation are satisfied at (x̄, b1) = (0, 0).

Further, E∗ becomes E0 as b = b0. Hence, the map (4.3.5) undergoes to transcritical

bifurcation about E0 = (0, 0) and E∗ = (x∗, y∗) at b = b0.

Note 1: The expression

b =
(1− (1− β)e−dT−aT+θ)(1− (1− α)e−dT+θ)

((α− β)e−alT + (1− α)− (1− β)e−aT )
e−dT+θ = b0.

can be used to obtain the transcritical bifurcation with respect to α, β and l also.

Note 2: The map (4.3.5) neither admits saddle-node nor pitchfork bifurcation about

E0 and E∗.

Note 3:The survival state E∗ exists if the pest-free state is unstable.

Remark 4.3.7. There exists no periodic solution of the map (4.3.5) in x − y plane

when R0 < 1 and period-1 solution exists when R0 > 1. To analyze the stability of

period-1 solution, following theorem has been established.

Theorem 4.3.5. Let us define the constants C and F as:

C = 2(ϵ̌− (1− β)(1− α)e−(d+a)T+θ)(1 + (1− β)(1− α)e−2(d+a)T+2θ),

F = (1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ)(ϵ̌+ (1− β)(1− α)e−(d+a)T+θ).

The non-trivial interior fixed point E∗ = (x∗, y∗) of the map (4.3.5) is locally asymp-

totically stable provided

b < b0exp(CF
−1)(= bc). (4.3.12)

Proof. Using (4.3.7), the coefficients of the matrix A[E∗] are computed around E∗ as:

a11 = (1− β)e−(d+a)T+θ + b[ϵ̌− (1− β)e−aT − (ϵ̌x∗ + (1− α)y∗

−(1− β)e−aTx∗)ϵ̌e−dT+θ]e−dT+θΨ,

a12 = b[1− e−dT+θ((1− α)y∗ + ϵ̌x∗ − (1− β)e−aTx∗)]× (1− α)e−dT+θΨ,

a21 = [(α− β)e−alT + (1− α)− (1− β)e−aT ]e−dT+θ, a22 = (1− α)e−dT+θ,

Ψ = exp[−e−dT+θ((α− β)x∗e−alT + (1− α)(x∗ + y∗))].
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The trace Tr and determinant Det are computed as:

Tr = b[(1− α) + (α− β)e−alT − (1− β)e−aT − ((α− β)x∗e−alT + (1− α)(x∗ + y∗)

−(1− β)e−aTx∗)ϵ̌e−dT+θ]e−dT+θΨ+ (1− β)e−(d+a)T+θ + (1− α)e−dT+θ,

Det = (1− β)(1− α)e−(2d+a)T+2θ[1− b0y
∗].

It is observed that the inequalities (1.4.11) and (1.4.13) are always satisfied:

1− Tr +Det = 1− (1− α)e−dT+θ − (1− β)e−(d+a)T+θ − bΨ[ϵ̌− (1− β)e−aT

−e−dT+θ(ϵ̌x∗e−alT + (1− α)y∗ − (1− β)e−aTx∗)× ϵ̌]e−dT+θ

+(1− β)(1− α)e−(2d+a)T+2θ[1− b0y
∗]

= (1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ) logR0 > 0.

1−Det = 1− (1− β)(1− α)e−(2d+a)T+2θ[1− b0y
∗] > 0.

The expression 1 + Tr +Det simplifies to:

1 + Tr +Det = 1 + (1− α)e−dT+θ + (1− β)e−(d+a)T+θ + bΨe−dT+θ[ϵ̌

−(1− β)e−aT − e−dT+θ(ϵ̌x∗ + (1− α)y∗ − (1− β)e−aTx∗)× ϵ̌]

+(1− β)(1− α)e−(2d+a)T+2θ[1− b0y
∗]

= (1 + (1− β)e−(d+a)T+θ)(1 + (1− α)e−dT+θ) + b0[(α− β)e−alT

+(1− α)− (1− β)e−aT − ((α− β)e−alT + (1− α))y∗e−dT+θ

+(1− β)(1− α)e−(2d+a)T+2θy∗]

= (1 + (1− β)e−(d+a)T+θ)(1 + (1− α)e−dT+θ)

+(1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ)

×[1− (α− β)e−alT + (1− α) + (1− β)(1− α)e−(d+a)T+θ

(α− β)e−alT + (1− α)− (1− β)(1− α)e−(d+a)T+θ
log(R0)].

Accordingly, Jury’s condition (1.4.12), 1 + Tr +Det > 0, gives:

log(R0) <
2(ϵ̌− (1− β)(1− α)e−(d+a)T+θ)(1 + (1− β)(1− α)e−2(d+a)T+2θ)

(1− (1− β)e−(d+a)T+θ)(1− (1− α)e−dT+θ)(ϵ̌+ (1− β)(1− α)e−(d+a)T+θ)
.

(4.3.13)

The condition (4.3.13) with the existence condition b0 < b gives the stability condition

(4.3.12). Hence, if b ∈ (b0, bc) then E
∗ is locally asymptotically stable.
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Accordingly, the fixed point E∗ of the map (4.3.5) is locally asymptotically stable

if b ∈ (b0, bc). The trajectories of the system (4.2.3) − (4.2.6) tend to asymptotically

stable period-1 solution (xe(t), ye(t)):

xe(t) = x∗e−(a+d)(t−(m−1)T )+ϕ, (m− 1)T ≤ t < τmp,

ye(t) = e−d(t−(m−1)T )+ϕ[y∗ + x∗(1− e−a(t−(m−1)T ))].

xe(t) = (1− β)x∗e−(a+d)(t−(m−1)T )+ϕ, τmp ≤ t < (m− 1)T,

ye(t) = [(1− α)y∗ + ϵ̌x∗ − (1− β)e−a(t−(m−1)T ))x∗]× e−d(t−(m−1)T )+ϕ.

It may be observed that violation of condition (4.3.12) will lead to instability of interior

fixed point. It can be concluded that if there is a small increase in the birth rate beyond

the critical value b0, the map (4.3.5) has a positive period-1 solution until birth rate

parameter b reaches the critical point b = bc.

Theorem 4.3.6. The locally asymptotically stable positive interior fixed point E∗ of

the map (4.3.5) is globally asymptotically stable.

Proof. Consider the positive definite function:

V2(xm, ym) = | xm − x∗ | + | ym − y∗ | .

Computing ∆V2 on the same lines as in Theorem 4.3.3 proves that V2 is a Lyapunov

function. This proves the theorem.

Note 4: The fixed point E∗ loses its stability with increase in b (i.e. beyond

b > bc). If the stability condition of E∗ is violated, then flip bifurcation occurs at

b = bc. Further, a stable Period-1 solution losses its stability and period-2 solution

occurs.

Remark 4.3.8. The interior fixed point become non-hyperbolic at b = bc. So, there

is a possibility of flip bifurcation. Therefore, period-doubling can occur at b = bc.

The following theorem characterizes the flip bifurcation at b = bc.
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4.3.5 Flip Bifurcation Analysis

Theorem 4.3.7. The map (4.3.5) undergoes a flip bifurcation about E∗ = (x∗, y∗) at

b = bc. Moreover, if ā > 0(resp. ā < 0), then period-2 solutions that bifurcate from

this fixed point are stable (resp. unstable).

Proof. Consider the map
x

y

→


b× exp[−(α− β)xe−(alT+d)T+θ − (1− α)(y + x)e−dT+θ]

×[Υx+ (1− α)e−dT+θy] + (1− β)xe−(a+d)T+θ

Υx+ (1− α)e−dT+θy

 , (4.3.14)

where,Υ = e−dT+θ((α− β)e−alT + (1− α)− (1− β)e−aT ).

Let x = x∗ + U , y = y∗ + V , b = bc1 + bc. The fixed point E∗ of the map (4.3.5) is

perturbed to (U, V ). The map (4.3.14) is transformed into: U

V

→

 s11U + s12V + s13U
2 + s14UV + s15V

2 + s16bc1U + s17bc1V

s21U + s22V

 ,(4.3.15)

where,

s11 = bcΨ1e
−dT+θ[Υ− {Υx∗ + (1− α)y∗e−dT+θ}{(α− β)e−alT + (1− α)}]

+(1− β)e−(d+a)T+θ,

s12 = bc(1− α)e−dT+θΨ1[1− (1− α)y∗e−dT+θ −Υx∗],

s13 = bcΨ1e
−dT+θ

{
−Υ+

(
Υe−dT+θ

2
x∗ +

(1− α)

2
y∗
)
{(α− β)e−alT + (1− α)}

}
×((α− β)e−alT + (1− α)),

s14 = bc(1− α)e−dT+θΨ1{(Υx∗ − 1)((α− β)e−(d+al)T+θ + (1− α)e−dT+θ)

+((α− β)e−(d+al)T+θ + (1− α)e−dT+θ)(1− α)e−dT+θy∗ −Υ},

s15 = bc(1− α)2Ψ1e
−2dT+2θ

{
− 1 +

1

2

(
(1− α)y∗e−dT+θ +Υ

)}
,

s16 = Ψ1[Υ− e−dT+θ{(α− β)e−alT + (1− α)}{(1− α)e−dT+θy∗ +Υx∗}Υ],

s17 = (1− α)Ψ1[1− (1− α)e−dT+θy∗ −Υx∗]e−dT+θ, s21 = Υ, s22 = (1− α)e−dT+θ,

Ψ1 = exp[−(α− β)x∗e−(al+d)T+θ + (1− α)(x∗ + y∗)e−dT+θ].

The map (4.3.15) can be rewritten as: U

V

→ T

 U

V

+

 s13U
2 + s14UV + s15V

2 + s16bc1U + s17bc1V

0

 .(4.3.16)
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The eigenvalues of T = (sij)2×2 are −1 and λ.

The corresponding eigenvectors are V11 and V12 are {v11, 1}T and {v12, 1}T respectively

where, v11 = −(1 + (1− α)e−dT+θ)Υ−1 and v12 = (λ− (1− α)e−dT+θ)Υ−1e−dT+θ.

Consider the transformation U

V

 = J
′

 x̄

ȳ

 , J
′
= (V11 V12).

Now, the map (4.3.16) can be transformed as: x̄

ȳ

→

 −1 0

0 λ

 x̄

ȳ

+

 f1(x̄, ȳ, bc1)

f2(x̄, ȳ, bc1)

 .

The functions f1(x̄, ȳ, bc1) and f2(x̄, ȳ, bc1) are obtained as:

f1(x̄, ȳ, bc1) = g1bc1x̄+ g2bc1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2, f2(x̄, ȳ, bc1) = −f1(x̄, ȳ, bc1),

g1 = −(1 + λ)Υ−1(−s16(1 + (1− α)e−dT+θ)Υ−1 + s17),

g2 = −(1 + λ)Υ−1(s16(λ− (1− α)e−dT+θ)Υ−1 + s17),

g3 = −(1 + λ)Υ−1(2s15 − s14(1− λ+ 2(1− α)e−dT+θ)Υ−1

−2s13(1 + (1− α)e−dT+θ)(λ− (1− α)e−dT+θ)Υ−2,

g4 = −(1 + λ)Υ−1[s13 + s14(1 + (1− α)e−dT+θ)Υ−1 + (1 + (1− α)2e−2dT+2θ)Υ−2),

g5 = −(1 + λ)Υ−1[(s13 + s14(λ− (1− α)e−dT+θ)Υ−1 + (λ− (1− α)e−dT+θ)2Υ−2].

The center manifold wc(0) for the map (4.3.14) can be represented as:

wc(0) = {(x̄, ȳ, bc1) ∈ ℜ3|ȳ = h(x̄, bc1), h(0, 0) = 0, Dh(0, 0) = 0}.

Let ȳ = h(x̄, bc1) =M0bc1 +M1bc1x̄+M2x̄
2 +O(|bc1|2 + |bc1x̄2|+ |x̄|3).

Coefficients in ȳ can be computed as:

M0 = 0, M1 = −(1− λ)−1Υ−1([−s16(1 + (1− α)e−dT+θ)Υ−1 + s17]),

M2 = (1− λ)−1Υ−1[s14(1 + (1− α)e−dT+θ)Υ−1 + (1 + (1− α)2e−2dT+2θ)Υ−2 − s13].

The map restricted to the center manifold is given by:

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄+ g2bc1ȳ + g3x̄ȳ + g4x̄
2 + g5ȳ

2,

h̄ : x̄→ −x̄+ h(x̄, ȳ, bc1) = −x̄+ g1bc1x̄−Υ−1[s13 − s14(1 + (1− α)e−dT+θ)Υ−1

+(1 + (1− α)2e−2dT+2θ)Υ−2]g3(1− λ)−1x̄3 + g4x̄
2

+O(|bc1|2 + |bc1x̄2|+ |x̄|4).
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The conditions of flip bifurcation are computed below:

∂h̄(0, 0)

∂bc1

∂2h̄(0, 0)

∂x2
+ 2

∂2h̄(0, 0)

∂x∂bc1
= 0 + 2g1 ̸= 0.

ā =
1

2

(
∂2h̄(0, 0)

∂x2
)2 +

1

3

∂3h̄(0, 0)

∂x3

)
= 2g3(1− λ2)Υ−1((s13 + s14)(1 + (1− α)e−dT+θ)Υ−1 − s17) + 2g24 ̸= 0.

Accordingly, conditions of the Theorem 1.4.4 are satisfied at (x̄, bc1) = (0, 0). Accord-

ingly, there exist period-2 solutions. These bifurcating period-2 solutions will be stable

if ā > 0 and unstable if ā < 0.

It is noted that −1 is the eigenvalues of A[E∗] at b = bc. If b increases beyond

bc, there exist a variety of dynamical behaviors, including a series of bifurcations that

lead to chaotic dynamic. This will be explored through numerical simulation in the

next section.

4.4 Numerical Simulations

In the last sections, the qualitative analysis of the map (4.3.5) has been performed.

Numerical simulation of stroboscopic map is performed to illustrate the analytical

results. Further, objective is to explore the possibility of complex dynamical behavior.

Extensive numerical simulation is carried out for various values of parameters. The

controlling parameter is taken as b and keeping others parameter fixed as:

a = 0.4, d = 0.2, l = 0.5, α = 0.6, β = 0.4, a1 = 0.9,m1 = 1. (4.4.1)

Considering T = 1.0, the dynamical behavior of the map (4.3.5) in the positive quad-

rant is shown in Table 4.1 for different choices of parametric values. The column 2

depicts the linear stability behavior of positive equilibrium point and the results in

column 3 are obtained by solving the system (4.2.3)− (4.2.6) numerically.

Choosing b = 10, the basic reproduction number can be computed as R0 =

0.9926 < 1(b < 10.0746). Accordingly, the pest-free state is locally asymptotically

stable (Theorem 4.3.2) and interior fixed point does not exist. Further, transcritical

bifurcation occurs at b = b0 = 10.0746 (Theorem 4.3.4). As b increases beyond b0,
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choosing b = 12, E0 becomes unstable and E∗ = (0.8516, 0.0701) exists. E∗ is stable

as b0 < b < 104.7929 (Theorem 4.3.5) or period-1 solution occurs. The map (4.3.5)

undergoes a flip bifurcation at b = bc = 107.7929 (Theorem 4.3.7).

Table 4.1: Behavior of the map (4.3.5) for the data set (4.4.1).

Parameter varied Analytical behavior Numerical behavior

b < 10.0746 E0 stable, E∗ not exists Stable pest-free state

b = 10.0746 E0 Non-Hyperbolic, E0 = E∗ Transcritical Bifurcation

10.0746 < b < 107.7929 E0 unstable, E∗ exists, stable Period-1 solution

b = 107.7929 Flip Bifurcation Period-2 solution

b > 107.7929 E∗ does not exists Complex dynamics

0 1 2 3 4 5 6 7
0

0.5

1

1.5

T

R
0

Figure 4.1: Plot of R0 with respect to T .

Fig. 4.1 shows the variation of the threshold R0 with pulse period T for b = 12.

The non-monotonic behavior of R0 with respect to impulsive period T is observed. As

the value of T increases, R0 first increases and attains a peak. It decreases with further

increase in T . The pest eradication solution is stable in the region where R0 < 1. The

pest-free solution is unstable in the region T ∈ (0.216, 2.085). The pest outbreak can

occur for R0 > 1.
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The effects of pesticide spray time l on the thresholds R0 and RN
0 are shown

in Fig. 4.2. It illustrates that R0 < RN
0 . So, it is better to choose pesticide having

a residual effect rather than instantaneous effect only and the pest will be controlled

easily. However, residual pesticide may have adverse effects on the environment/human

beings. This aspect should also be incorporated.
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Figure 4.2: Effect of pesticide spray timing on threshold.
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Figure 4.3: Two-parameter bifurcation diagram in (a) T −m1 plane (b) T − a1 plane.
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Two-parameter bifurcation diagram with respect to T and m1 is drawn in Fig.

4.3(a) for b = 8. The curve R0 = 1 bifurcates the T −m1 plane into two regions of pest

eradication (R0 < 1) and pest existence (R0 > 1). The pest will be eradicated when

m1 > 0.7673 irrespective of T . The eradication is still possible for a suitable choice of

T where, m1 < 0.7673.

Similarly, Fig. 4.3(b) , the curve R0 = 1 corresponding to equation (4.3.6) is

drawn on T − a1 plane keeping other parameters as in (4.4.1) and b = 8. This curve

also bifurcates the T − a1 domain into pest eradication and coexistence regions. For

smaller values of a1, eradication may be possible depending upon the pulse period T .

Further, for larger values of T (T > 6.3065) eradication is possible for any choice of a1.

Figure 4.4: Two-parameter bifurcation diagram in l − b plane.

Another, two-parameter bifurcation diagram is drawn in l− b plane see Fig. 4.4.

In this figure, a region of pest extinction is shown in white color, while the region of

the stable period-1 solution is shown in light-grey color. For higher birth rates of the

pest, the system (4.2.3) − (4.2.6) becomes chaotic, which is shown in the black color.

At lower birth rates, the pest will be eradicated for all values of pesticide spray time.

It has been observed that the pest will go to extinction in a small neighborhood of

(0, 0). The periodic doubling is the route to the chaos in the system (4.2.3) − (4.2.6)

for the higher birth rate. This is shown in the next diagram.

To study the complex dynamical behavior, the typical bifurcation diagram is
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drawn for total pest population in Fig. 4.5(a) with respect to parameter b. The

bifurcation diagram shows the existence of chaos through period-doubling route. The

critical value for a period-doubling bifurcation parameter is bc = 104.7929 which is

confirmed from the diagram. The rich dynamical behavior is clearly visible, including

stability, period-doubling, narrow and wide periodic windows, crises and chaos. The

Table 4.2 summarized the different dynamical behaviors in different domains of b.
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Figure 4.5: (a) Bifurcation diagram with respect to parameter b (b) Blown up of the
bifurcation diagram for b ∈ (632, 642) (c) Two Lyapunov exponents of the map (4.3.5)
for total pest population.

Table 4.2: Behavior of the map (4.3.5) for the data set (4.4.1) about E∗.

Parameter varied Analytical behavior Numerical behavior

b ∈ (10.0746, 104.7929) E0 unstable, E∗ stable Period-1 solution

b ∈ (104.7929, 343.814) E∗ unstable Period-2

b ∈ (343.814, 486.163) E∗ unstable Period-4

b ∈ (486.163, 424.8518) E∗ unstable Period-8

b ∈ 424.8518, 525.16) E∗ unstable Period-16

b ∈ (525.16, 1137.8) E∗ unstable Chaotic

b ∈ (632, 642) E∗ unstable Periodic Windows
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The chaotic region of Fig. 4.5(a) is separately blown up in Fig. 4.5(b) and a

periodic window is clearly visible. Sudden changes in attractors can be observed easily.

These sudden changes are usually related to periodic-windows in the middle of the

chaotic range of attractors (see Fig. 4.5(b)).

Fig. 4.5(c) shows two Lyapunov exponents with respect to birth parameter b.

The existence of the chaotic regions in the parametric space is clearly visible for one

of the Lyapunov exponents is positive and other is negative. Further, two Lyapunov

exponents corresponding to b = 630 are λ1 = 0.2205 and λ2 = −1.8537 such that their

sum is negative. Therefore, the map (4.3.5) admits a strange attractor for this choice

of b.
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Figure 4.6: (a) Bifurcation diagram (b) Two Lyapunov exponents of the map (4.3.5)

for total pest population with respect to l.

The Fig. 4.6(a) shows bifurcation diagrams with respect to l ∈ (0, 1) with

b = 500. As parameter l increases, chaotic behavior is followed by a period-halving

bifurcation. Note that, pesticide spray time may reduce complexity with increasing l.

To further confirm chaotic nature, two Lyapunov exponents are drawn in Fig. 4.6(b).

The Fig. 4.7(a) shows the bifurcation diagram with respect to maturation rate

a ∈ (0, 1) with b = 500. The existence of chaos is observed through period-doubling. To

further confirm the chaotic nature, two Lyapunov exponents are drawn in Fig. 4.7(b).



110
Chapter 4: An Impulsive Pest Control Model with Birth Pulse Using Pesticide

Having Instantaneous and Residual Effects

(a)

0 0.2 0.4 0.6 0.8 1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

a

L
y
a

p
u

n
o

v
 E

x
p

o
n

e
n

t

(b)

Figure 4.7: (a) Bifurcation diagram (b) Two Lyapunov exponents of the map (4.3.5)

for total pest population with respect to a.

Figure 4.8: Bifurcation diagram of the map (4.3.5) for total pest population with

respect to β.

Bifurcation diagram with respect to killing rate β for total pest population is

drawn in Fig. 4.8 for b = 500. Initially, chaotic behavior is observed. Further, for a

higher kill rate periodic behavior is obtained.
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Figure 4.9: (a) Bifurcation diagram (b) Two Lyapunov exponents of the map (4.3.5)
for total pest population with respect to α.
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Figure 4.10: (a) Bifurcation diagram (b) Two Lyapunov exponents of the map (4.3.5)

for total pest population with respect to m1.

Similar behavior is obtained with respect to killing rate α of the mature pest,

killing efficiency rate m1 and decay rate a1 in Fig. 4.9, Fig. 4.10. and Fig. 4.11.
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Figure 4.11: (a) Bifurcation diagram (b) Two Lyapunov exponents of the map (4.3.5)
for total pest population with respect to a1.

4.5 Discussion

The stage-structured pest control model with birth pulses and an impulsive pesticide

spray has been formulated and analyzed for studying the effects of chemical control

on the pest. The period of pesticide spray timing and birth pulse is same but not

synchronized. The threshold R0 is obtained which is the basic reproduction number

for the pest-free state. When the threshold is less than unity, the stability analysis of

the pest-free fixed point has been established. Accordingly, the pest can be eradicated

for R0 < 1. The existence and stability of the interior fixed point have been obtained.

The conditions for existence of the period-1 solution is R0 > 1. The combined effects

of pesticide (i.e. instantaneous as well as residual effects) are required to control the

pest. The residual effect not only affects the stability but also has desirable effects on

equilibrium densities. The conditions for transcritical and flip bifurcation have been

obtained and analyzed analytically. Due to the residual effect of pesticide threshold

condition reduces. The increase in the killing efficiency rate and decay rate reduces

the threshold condition. Numerical results show that the system (4.2.3) − (4.2.6) has

complex dynamical behavior. The bifurcation diagrams and Lyapunov exponents show

the range of parameters for which the system (4.2.3)− (4.2.6) has a chaotic solution.



Chapter 5

A Mathematical Model for

Integrated Pest Management

Incorporating Birth Pulse

5.1 Introduction

In previous chapters, some pest control models have been investigated that involve

single control strategy (impulsive use of pesticide). However, pesticides are not en-

vironmentally friendly and harmful to human beings. To preserve the quality of the

environment Integrated Pest Management (IPM) strategies (i.e. combination of two

or more control tactics) should be applied [58, 207, 225, 226, 227, 228]. It has been

proved that IPM has been more effective rather than single tactics [14, 233]. Several

mathematical models of Integrated Pest Management have been investigated to control

the pest by the chemical control/biological control [88, 126, 138, 216, 221, 222, 223].

They have not incorporated stage structure and birth pulses.

Sometimes pesticides are effective against the specific stage of the pest life cy-

cle. For example, pesticides are ineffective against the immature stage of Pest Fly.

A stage-structured impulsive model incorporating integrated pest management assum-

ing continuous growth of pest has been discussed [241]. The impulsive models with

the birth pulse and integrated pest management using microbial control have been

discussed [238].
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In some cases, the pest may hide in the soil or crops, etc. to avoid exposure to

pesticides. In such cases, the harvesting may be an effective approach for control of the

pest. It may reduce the use of pesticides. Several stage-structured pest control model

with birth pulses and impulsive harvesting have been discussed [29, 96].

In this chapter, a stage-structured pest control model has been proposed using

Integrated Pest Management Strategies considering impulsive chemical control and

cultural control (harvesting). Pesticide affects only the mature pest. Harvesting effort

is applied to control the immature pest. The chemical spray is synchronized with birth

pulses.

5.2 Model I: An Impulsive Stage-Structured IPM

Model with Chemical Control and Birth Pulses

Let the total pest population at any time t be N(t) such that N(t) = x(t) + y(t). The

model is formulated under following assumptions:

• Different mortality rates d1 and d2 are considered for immature and mature pest

respectively.

• To reduce the immature pest load, physical effort is applied with harvesting rate

E > 0.

• It is assumed that the mature pest can reproduce in a single birth pulse which

occur periodically at time t = mT1, m = 1, 2, ....

• Pesticide is sprayed to control the pest population impulsively at time t = mT2,

m = 1, 2, .... It affects only the mature pest with killing rate µ.

• For simplicity, it is assumed new births and chemical spray of pesticide is syn-

chronized at time t = mT,m = 1, 2, ..., T = T1 = T2 .

The dynamics of stage-structured impulsive pest control system defined on the set

ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0} with positive model parameters is written as:

dx

dt
= −d1x(t)− ax(t)− Ex(t),

dy

dt
= ax(t)− d2y(t),

 t ̸= mT, (5.2.1)
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x(mT )+ = x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = (1− µ)y(mT ),

 t = mT, (5.2.2)

x(0) = x0 > 0, y(0) = y0 > 0. (5.2.3)

The birth function is assumed to be of Beverton-Holt function as:

B(N) = p (q +Nn)−1. (5.2.4)

5.2.1 Stroboscopic Map

Let x = xm−1 and y = ym−1 be the densities of immature and mature pest respectively

at t = (m − 1)T . The analytical solution of differential equations (5.2.1) between the

pulses (m− 1)T ≤ t < mT can be written as:

x(t) = xm−1e
−(a+d1+E)(t−(m−1)T ),

y(t) = [a(a− ϵ)−1(1− e(ϵ−a)(t−(m−1)T ))xm−1 + ym−1]e
−d2(t−(m−1)T ), (5.2.5)

ϵ = d2 − d1 − E.

The following stroboscopic map of the system (5.2.1) − (5.2.3) can be obtained from

(5.2.5) by applying impulsive condition (5.2.2)

xm = xm−1e
−(a+E+d1)T +

p[βxm−1 + ym−1e
−d2T ]

q + (xm−1e−(a+E+d1)T + βxm−1 + ym−1e−d2T )n
,

ym = (1− µ)(βxm−1 + ym−1e
−d2T ), (5.2.6)

β = ae−d2T (1− e(ϵ−a)T )(a− ϵ)−1.

The difference equations (5.2.6) describe the stroboscopic sampling of the immature

and mature pest population. For the Beverton-Holt Function, the dynamical behavior

of the system (5.2.1) − (5.2.3) will be given by the dynamical behavior of the map

(5.2.6) associated with the system (5.2.5).

The basic reproduction number R0 is computed as:

R0 = pp−1
0 , (5.2.7)

p0 = q(1− e−d1T−aT−ET )(1− (1− µ)e−d2T ))β−1.
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5.2.2 Existence of Fixed Points

For the map (5.2.6), the following fixed points are obtained:

(i) A unique pest-free fixed point E0 = (0, 0) exists without any parametric restriction.

(ii) The non-trivial fixed point E∗ = (x∗, y∗) exists for R0 > 1 and is obtained as:

x∗ =
(1− (1− µ)e−d2T ) n

√
q(R0 − 1)

(e−(d1+a+E)T − (1− µ)e−(d2+d1+a+E)T + β)
,

y∗ =
β(1− µ) n

√
q(R0 − 1)

(e−(d1+a+E)T − (1− µ)e−(d2+d1+a+E)T + β)
.

5.2.3 Local Stability Analysis of Fixed Points

To discuss the local stability about feasible fixed point (x, y) the linearized system

about X = (x, y) is obtained as:

Xm = AXm−1. (5.2.8)

The coefficients of the matrix A = (aij)2×2 are:

a11 = e−(d1+a+E)T + p β D−1
1 − npa(xe−(a+E+d1)T + βx+ ye−d2T )n−1

× (e−(a+E+d1)T + β)[βx+ ye−d2T ]D−2
1 ,

a12 = −pan(xe−(a+E+d1)T + βx+ ye−d2T )n−1e−d2T [βx+ ye−d2T ]D−2
1

pe−d2TD−1
1 ,

a21 = (1− µ)β, a22 = (1− µ)e−d2T ,

D1 = q + (xe−(a+E+d1)T + βx+ ye−d2T )n,


. (5.2.9)

Theorem 5.2.1. The fixed point E0 = (0, 0) of the map (5.2.6) is locally asymptotically

stable provided

R0 < 1. (5.2.10)

Proof. The coefficients of the linearized matrix evaluated about the pest-free state E0

are:

a11 = e−(d1+a+E)T + p β q−1, a12 = pe−d2T q−1, a21 = (1− µ)β, a22 = (1− µ)e−d2T .

The trace Tr and determinant Det are computed as:

Tr = e−(d1+a+E)T + p β q−1 + (1− µ)e−d2T ,

Det = (1− µ)e−(d1+d2+a+E)T .
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It is observed that Jury’s conditions (1.4.12) and (1.4.13) are always satisfied:

1 + Tr +Det = 1 + e−(d1+a+E)T + pβq−1 + (1− µ)(e−d2T + e−(d1+d2+a+E)T ) > 0,

1−Det = 1− (1− µ)e−(d1+d2+a+E)T > 0.

The expression 1− Tr +Det simplifies to:

1− Tr +Det = 1− e−(d1+a+E)T − p β q−1 − (1− µ)e−d2T − (1− µ)e−(d1+d2+a+E)T

= (1− e−(d1+a+E)T )(1− (1− µ)e−d2T )− p β q−1.

The Jury’s condition (1.4.11), 1− Tr +Det > 0 gives the condition for stability

(1− e−(d1+a+E)T )(1− (1− µ)e−d2T ) > p β q−1.

p < q(1− e−(d1+a+E)T )(1− (1− µ)e−d2T )β−1 = p0. (5.2.11)

Using (5.2.7) and (5.2.11), the stability condition (5.2.10) is obtained.

Accordingly, the fixed point (0, 0) is locally stable for p ∈ (0, p0). The trajectories

in the neighborhood of (0, 0) tend to origin and the pest is eradicated. The existence

of non-trivial fixed point is overruled in this case.

When R0 > 1, the fixed point (0, 0) is unstable. Bifurcation occurs at R0 = 1

and further, analysis is required, which is carried out later.

Derivative of R0 with respect to killing rate µ is found to be negative

dR0

dµ
= −pβe−d2T q−1(1− e−d1T−aT−ET )−1(1− (1− µ)e−d2T ))−2 < 0.

Therefore, the killing (or poisoning) rate µ reduces the threshold value R0 and once

R0 < 1, the pest can be eradicated successfully.

Theorem 5.2.2. Let us define constants S and C as

S = n(1− e−(d1+a+E)T )(e−(a+E+d1)T + β + (1− µ)e−(d2+d1+a+E)T )

×(1− (1− µ)e−d2T ),

C = 2(1 + (1− µ)e−(d1+d2+a+E)T )(e−(d1+a+E)T − (1− µ)e−(d2+d1+a+E)T + β).

The non-trivial fixed point E∗ = (x∗, y∗) of the map (5.2.6) is locally asymptotically

stable provided

p0 < p <
S p0
S − C

= pc. (5.2.12)
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Proof. Let us define

D2 = (e−(d1+a+E)T − (1− µ)e−(d2+d1+a+E)T + β)qR0.

Using (5.2.9) coefficients of the linearized matrix A = (aij)2×2, the trace Tr and deter-

minant Det are evaluated about the interior fixed point (x∗, y∗) as:

a11 = e−(d1+a+E)T + p0 β q
−1 − p0nβ(R0 − 1)(e−(a+E+d1)T + β)D−1

2 ,

a12 = p0 e
−d2T q−1 − nβp0D

−1
2 (R0 − 1)e−d2T ,

a21 = (1− µ)β, a22 = (1− µ)e−d2T ,

T r = e−(d1+a+E)T + p0 β q
−1 + (1− µ)e−d2T − p0nβ(R0 − 1)(e−(a+E+d1)T + β)D−1

2 ,

Det = (1− µ)e−(d1+d2+a+E)T − (1− µ)p0nβ(R0 − 1)e−(a+E+d1+d2)TD−1
2 .

In the following it is observed that condition (1.4.11) and (1.4.13) are always satisfied:

1− Tr +Det = 1− e−(d1+a+E)T + p0 β q
−1 + (1− µ)e−(d1+d2+a+E)T

+p0nβ(R0 − 1)q−1R−1
0 > 0,

1−Det = 1 + [nβp0(R0 − 1)D−1
2 − 1](1− µ)e−(d1+d2+a+E)T > 0.

The expression 1 + Tr +Det simplifies to:

1 + Tr +Det = 1 + e−(d1+a+E)T − p0nβ(R0 − 1)(e−(a+E+d1)T + β)D−1
2

+(1− µ)e−d2T + p0 β q
−1 + (1− µ)e−(d1+d2+a+E)T

−(1− µ)p0nβ(R0 − 1)e−(a+E+d1+d2)TD−1
2

= (1 + e−(d1+a+E)T )(1 + (1− µ)e−d2T ) + p0 β q
−1

[1− n(R0 − 1)(e−(a+E+d1)T + β + (1− µ)e−(d2+d1+a+E)T )D−1
2 ]

= (1 + e−(d1+a+E)T )(1 + (1− µ)e−d2T )

+(1− e−(d1+a+E)T )(1− (1− µ)e−d2T )

×[1− n(R0 − 1)(e−(a+E+d1)T + β + (1− µ)e−(d2+d1+a+E)T )D−1
2 ].

For the condition (1.4.13), that is, 1 + Tr +Det > 0, further simplification yields

R0 <
S

S − C
. (5.2.13)

The stability condition (5.2.12) is obtained with the existence condition p > p0 and

using (5.2.13). Hence, if p < pc then E
∗ is locally asymptotically stable.
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Further, increasing the parameter value p, the fixed point E∗ losses its stability

and the system may exhibit complex dynamics.

Accordingly, when p0 < p < pc, the interior fixed point E∗ exists and is lo-

cally asymptotically stable. The trajectories of the system (5.2.1) − (5.2.3) tend to

asymptotically stable period-1 solution (xe(t), ye(t)):

xe(t) = x∗e−(a+d1+E)(t−mT ), (5.2.14)

ye(t) =

(
ax∗(1− e(ϵ−a)(t−mT ))

a− ϵ
+ y∗

)
e−d2(t−mT ).

The trivial fixed point E0 = (0, 0) of the map (5.2.6) becomes non-hyperbolic at p = p0

and one of the eigenvalues is 1. Note that, when R0 = 1, then E∗ = (0, 0). It is

observed that at p = p0, E0 = (0, 0) and E∗ = (x∗, y∗) exchange their stability. The

system (5.2.1)− (5.2.3) undergoes a transcritical bifurcation at p = p0.

The interior fixed point E∗ = (x∗, y∗) of the map (5.2.6) becomes non-hyperbolic

at p = pc where one of the eigenvalues is −1. The associated bifurcation is called

flip bifurcation. The system (5.2.1) − (5.2.3) undergoes a flip bifurcation about E∗ =

(x∗, y∗) at p = pc.

There exist a series of bifurcations that lead to chaotic dynamic when p increases

from pc. This will be explored through numerical simulation in the next section.

5.3 Numerical Simulations

In this section, some numerical experiments are presented to discuss various dynam-

ical aspects of the system (5.2.1) − (5.2.3) and the map (5.2.6). The following set

of parameters is considered to illustrate the theoretical results obtained in previous

sections:

a = 0.8, c = 1, y = 14, E = 0.3, d2 = 0.6, µ = 0.5. (5.3.1)

For T = 1.0 and d = d1 = d2 = 0.6, the constant p0 is obtained as p0 = 2.2272.

The basic reproduction number can be computed as (R0 = 0.8980 < 1) when p = 2.

Accordingly, the pest-free state is locally asymptotically stable (Theorem (5.2.1)) and

coexistence is impossible in this case. Further, choosing p = 2.5, the fixed point E0

becomes unstable as (R0 = 1.1225 > 1). The non-trivial fixed point can be computed
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as E∗ = (1.5659, 0.2873) and it is stable as p0 < p < 2.7915 (Theorem (5.2.2)). Further,

transcritical bifurcation occurs at p ≈ 2.3688 and flip bifurcation occurs at p ≈ 2.7915

respectively.

For data set (5.3.1) with T = 1.0 and d1 = 0.2(d1 < d2). The constant p0 is

evaluated as p0 = 1.6717. For p = 1, the pest-free state is stable and E∗ does not exist

as R0 = 0.5982(< 1) (Theorem (5.2.1)). Also, for p = 2, the fixed point E0 is unstable

and interior fixed point E∗ exists as R0 = 1.1964 > 1. The interior fixed point E∗ is

computed as (1.2579, 0.2737) and stable in the parametric range p ∈ (1.6717, 2.1578).

The transcritical and flip bifurcation occurs at p ≈ 1.6717 and p ≈ 2.1578 respectively.
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Figure 5.1: (a) Time series (b) Phase plot depicting stable behavior of pest-free state

of the system (5.2.1)− (5.2.3) at p = 2, d1 = 0.8.

Considering the case d1 > d2. The threshold for the stability of pest-free state E0

is computed as p0 = 2.5116 for T = 1.0, d1 = 0.8. The pest-free fixed point of the map

(5.2.6) is locally asymptotically stable for p < 2.5116. For p = 2, the threshold R0 is

obtained as R0 = 0.79631 < 1. Accordingly, when p = 3, the fixed point E0 is unstable

for p > p0(R0 = 1.1945 > 1) and the interior fixed point E∗ = (1.8223, 0.3085) is locally

stable for 2.5116 < p < 3.1226. The transcritical bifurcation occurs at p = 2.5116.

For, d1 = 0.8(d1 > d2) the Fig. 5.1 and Fig. 5.2 shows the stability of pest-free
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state and period-1 solution, respectively for the system (5.2.1)− (5.2.3).
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Figure 5.2: (a) Time series (b) Phase plot depicting stable behavior of interior fixed

point of the system (5.2.1)− (5.2.3) at p = 3, d1 = 0.8.
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Figure 5.3: Variation of R0 with T .

The Fig. 5.3 is drawn to show the variation of R0 with pulse period T in the
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range 0 ≤ T ≤ 3 and for fixed values of d1 = 0.2(2)0.8. For d1 = 0.2 and T ∈ (0, 0.78),

R0 is greater than 1 and for T ∈ (0.78, 3) R0 is less than 1. Further, R0 remains greater

than one for given choices of d1 and T . Accordingly, R0 < 1 for all values of T when

d1 = 0.8. Therefore, the pest can be controlled.

Figure 5.4: Plot of R0(T, d1) = 1 in T − d1 plane.

Two-parameter bifurcation diagram with respect to T and d1 is drawn in Fig.

5.4. The curve R0 = 1(in red color) bifurcates the T − d1 plane in pest eradication

(R0 < 1)(in green color) and pest outbreak (R0 > 1)(in blue color) regions. For pest

eradication, pulse period becomes smaller as d1 increases. Accordingly, the pest will

be eradicated when T > 2.3460988 for all values of d1. If T < 1.1003955, the pest

eradication is not possible irrespective of d1 for fixed d2. Note that, combination of

pulse period and the mortality rate of immature pest is needed to control the pest.

In Fig. 5.5, the region of stability and instability for the pest-free state is drawn

on T − d2 plane, keeping other parameters as in (5.3.1). The aqua green color cor-

responding to the R0 < 1(i.e all eigenvalues lies inside the unit circle) is the region

of stability. On the other hand, at least one eigenvalue will lie outside the unit circle

about E0 in the navy blue region. Therefore, for R0 > 1, the pest population will

vary periodically. For a fixed value of mortality rate d2, the corresponding pulse period

T > Tc is required to eradicate the pest. In Fig. 5.5(c), for d2 < 0.271855, the pest will



5.3 Numerical Simulations 123

survive for all values of the pulse period. Further, for d2 > 0.271855, the fixed points

E0 and E∗ may exist depending on the pulse period T .

(a) (b) (c)

Figure 5.5: Plot of R0(T, d2) = 1 in T − d2 plane at (a) d1 = 0.2 (b) d1 = 0.6 (c)
d1 = 0.8.

(a) (b) (c)

Figure 5.6: Two-parameter bifurcation diagrams in T − a plane at (a) d1 = 0.2 (b)

d1 = 0.6 (c) d1 = 0.8.
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Another set of two-parameter bifurcation diagrams with respect to T and a has

been drawn in Fig. 5.6 in three cases: d1 < d2, d1 = d2 and d1 > d2. The stability

of the pest-free state depends upon the threshold R0. The critical parameters T and

a are involved in R0. The parameter space is divided into two regions by the curve

R0 = 1. On the right side of red curve only the pest-free state is stable and the pest

can be controlled effectively. However, on the left side, the survival state E∗ may exist

depending on the pulse period T and maturation rate a. For a < .2228635, the pest

eradication is possible for all values of T . If maturation rate a > .2228635, the pest

will survive irrespective of pulse period T .

(a) (b) (c)

Figure 5.7: Two-parameter bifurcation diagrams in µ − E plane for (a) d1 = 0.2 (b)

d1 = 0.6 (c) d1 = 0.8.

Again in Fig. 5.7, a set of two-parameter bifurcation diagram has been plotted in

µ−E plane showing the relationship between harvesting effort and the killing rate due

to chemical control. The influence of the harvesting effort E and killing rate µ on the

stability of the pest-free state E0 has been shown. The region with aqua green color

corresponds to eigenvalues inside the unit circle. It is the region of stability about the

pest-free state E0. The region below the red curve shows the pest-free state is unstable.

Also, it can be observed that domain of pest eradication increases with an increase in

mortality rate d1. It can be observed that the maximum pest eradication region occurs
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in Fig. 5.7(c) for d2 < d1. If harvesting effort increases, then killing rate of immature

pest decreases. By applying mechanical control, use of pesticides can be decreased,

which can be beneficial for the environment.

Note that, if no harvesting effort is applied (i.e. E = 0), the pest eradication

is not possible irrespective of µ see Fig. 5.7. Also, in Fig. 5.7 the pest population

will persist when chemical control is not applied. Therefore, the single strategy is not

effective for pest control. In Fig. 5.7(c) it can be observed that for lower harvesting

effort (E < .06424) or lower killing rate due to pesticide spray (µ <.298731), the pest

population cannot be controlled. It is concluded that the combination of harvesting

effort and the killing rate is needed to control the pest population. Therefore, integrated

pest management strategy is more effective rather than the single tactic. Also, from

the Fig. 5.7(c), it can be concluded that for higher harvesting effort, low toxic pesticide

should be used which is environmentally friendly.

In Fig. 5.8, three bifurcation diagrams are drawn with respect to key parameter

b for the set of parameters (5.3.1) in the cases: (a)d1 < d2 in Fig. 5.8(a) (b)d1 = d2

in Fig. 5.8(b) and (c)d1 > d2 in Fig. 5.8(c). The case (b) is idealized and mostly

considered by the investigators. The case (c) is more realistic while case (a) is rarely

observed in nature. The case (a) is considered only for completeness. By comparison,

it is clear that the dynamical behaviors of the map (5.2.6) are less complex in the

case d1 > d2 rather than in the cases d1 = d2 or d1 < d2. The diagrams show the

period-doubling phenomena which is route to chaos.

Table 5.1: Behavior of impulsive system about fixed points.

Parameter varied Parameter Value Dynamical behavior Figure

p < 2.5116 p = 2 Pest-free Solution Fig. 5.1

p = 2.5116 < p < 3.1226 p = 3 Period-1 Solution Fig. 5.2

3.1226 < p < 3.53 p = 3.3 Period-2 solution Fig. 5.9(a)

p = 3.45 Period-4 solution Fig. 5.9(b)

p = 3.5 Period-8 solution Fig. 5.9(c)

3.53 < p < 3.682 p = 3.6 Chaotic solution Fig. 5.9(d)
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(a) (b)

(c)

Figure 5.8: Bifurcation diagrams of the map (5.2.6) for total pest population with

respect to p (a) d1 = 0.2, d2 = 0.6 (b) d1 = d2 = 0.6 (c) d1 = 0.8, d2 = 0.6.

The map (5.2.6) exhibits stability of the pest-free state up to p = 2.51160 in Fig.

5.8(c). The map (5.2.6) has period-1 solution in the range p = 2.5116 < p < 3.1226.

More complex periodic solutions are observed in the range 3.1226 < p < 3.53. A stable

periodic window is also visible in the range 3.682 < p < 3.701. The system exhibits

complex dynamical behavior in the range 3.53 < p < 3.682 including chaos.
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The system (5.2.1)−(5.2.3) dynamical behaviors are further explored for different

values of p while other parameters kept fixed. Also, it is shown that the systems

(5.2.1) − (5.2.3) and the map (5.2.6) have same dynamical behavior. The results are

discussed in the table 6.3.
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Figure 5.9: The attractors of the system (5.2.1) − (5.2.3) (a) Period-2 at p = 3.3 (b)

Period-4 at p = 3.45 (c) Period-8 at p = 3.5 (d) Strange attractor at p = 3.6 (e) Strange

attractor at p = 5.65.
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The critical value for a flip bifurcation parameter is bc = 3.1226 as obtained from

equation (5.2.12) is confirmed from the Fig. 5.8.

The chaotic regions of Fig. 5.8(c) are separately blown up in Fig. 5.10 for (a)

p ∈ (3.68, 3.71) (b) b ∈ (6.2, 6.5). Clearly, the rich dynamical behavior is visible includ-

ing, periodic solutions/period-doubling/narrow and wide periodic windows/crises and

chaos.

(a) (b)

Figure 5.10: The bifurcation diagrams for (a) p ∈ (3.68, 3.71) (b) p ∈ (6.22, 6.41).

The two Lyapunov exponents for d2 = 0.6, drawn in Fig. 5.11 further confirms

that the attractor is chaotic. Accordingly, Fig. 5.9(d) shows a typical attractor for the

data set (5.3.1) with p = 3.6. Another, typical strange attractor is shown at p = 5.65

in Fig. 5.9(e).

Fig. 5.12(a) is the time series plot for p = 4. Here, green and red curves are drawn

with respect to initial conditions x = 1.4, y = 4.24 and x = 1.4001 and y = 4.24001

respectively. The solution is found to be sensitive to initial conditions which indicates

the presence of chaos at p = 4. Fig. 5.12(b) shows a strange attractor at p = 4.

In Fig. 5.13 chaotic attractor is drawn for p = 4. Here, blue and black curves

show the strange attractor of impulsive system (5.2.1)− (5.2.3) and phase portrait of

stroboscopic map (5.2.6) for the data set (5.3.1). It is observed that both the system



5.3 Numerical Simulations 129

behaves alike.
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Figure 5.11: Lyapunov exponents of the map (5.2.6) for total pest population with

respect to p at (a) d1 = 0.2, d2 = 0.6 (b) d1 = d2 = 0.6 (c) d1 = 0.8, d2 = 0.6.
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Figure 5.12: (a) Time series to show sensitive dependence to initial condition (b) Phase

plot at p = 4 of the system (5.2.1)− (5.2.3).
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Figure 5.13: Chaotic attractor of the system (5.2.1)− (5.2.3) at p = 4.

A set of the bifurcation diagrams is plotted against maturation rate a ∈ (0, 1)

with p = 3 in Fig. 5.14. In these figures it can be observed that overall complexity
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decreases with increase in parameter d1. The existence of chaos is observed in the first

two cases through repeated period-doubling with increase in a. No chaotic region is

obtained for the case d1 > d2. For d1 > d2, the pest will be eradicated for a < 0.58 in

5.14(c). Further, transcritical bifurcation occurs at a ≈ 0.58 and period-1 and period-2

solution occurs for a > 0.58 in Fig. 5.14(c).

(a) (b)

(c)

Figure 5.14: Bifurcation diagrams of the map (5.2.6) for total pest population with

respect to a at p = 3 (a) d1 = 0.2, d2 = 0.6 (b) d1 = d2 = 0.6 (c) d1 = 0.8, d2 = 0.6.
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Similarly, A set of bifurcation diagrams have been plotted with respect to the

killing rates µ in the Fig. 5.15. It can be observed that overall complexity reduces with

increase in parameter d1. There period-doubling and period-halving behavior occurs

with the chaotic region in between. Further, the solution settles down to the pest-free

state with increase in the killing rate of the mature pest µ in Fig. 5.15(b) and in Fig.

5.15(c).

(a) (b)

(c)

Figure 5.15: Bifurcation diagrams of the map (5.2.6) for total pest population with

respect to µ at p = 3 (a) d1 = 0.2, d2 = 0.6 (b) d1 = d2 = 0.6 (c) d1 = 0.8, d2 = 0.6.



5.3 Numerical Simulations 133

When the d1 = d2, the pest will be eliminated for a certain value of µ > 0.989 in

Fig. 5.15(b). For d1 > d2, only periodic behavior is observed and for µ > 0.786 pest

eradication will be possible in the Fig. 5.15 (c). Very narrow periodic windows can

also be observed in the Fig. 5.15(a) and Fig. 5.15(b).

(a) (b)

(c)

Figure 5.16: Bifurcation diagrams of the map (5.2.6) for total pest population with

respect to E at p = 3 (a) d1 = 0.2, d2 = 0.6 (b) d1 = d2 = 0.6 (c) d1 = 0.8, d2 = 0.6.
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Another set of bifurcation diagrams is plotted for pest population with respect

to harvesting rate E for p = 3 in Fig. 5.16. From these figures it can be observed

that complexity decreases with the increase of parameter d1. A period-doubling and

period halving cascade can be observed with chaotic regions in between in Fig. 5.16(a)

but only period-halving behavior will appear in Fig. 5.16(b) and Fig. 5.16(c). The

chaotic behavior will become periodic after a certain value of E. No chaotic behavior

will appear in Fig. 5.16. Further, in Fig. 5.16, the periodic solutions become stable

the pest-free solution after a critical value of the harvesting rate say Ec. The pest will

be eradicated for E > 0.856 ≈ Ec and E > 0.656 ≈ Ec in Fig. 5.16. Further, in

Fig. 5.16 respectively. Therefore, by indicating a critical value of the harvesting rate,

pest eradication is possible. These observations suggest that harvesting rate can play

a crucial role in eliminating pest.

Figure 5.17: Bifurcation diagram of the map (5.2.6) for total pest population with

respect to d1 at p = 3.

Fig. 5.17 shows another bifurcation diagram as a function of the mortality rate

of immature pest d1 in the range (0, 1) keeping the rest of the parameters fixed as

in the data set (5.3.1). The figure demonstrates an abundance of period and chaotic

regions. The green color shaded region is drawn for d1 > d2 and periodic behavior is

observed. For d1 < d2, the red color region is drawn and the solution is more complex.
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The period-halving occurs in the range 0 < d1 < 0.6.

(a) (b)

(c)

Figure 5.18: Bifurcation diagrams of the map (5.2.6) for total pest population with

respect to d2 at p = 3 (a) d1 = 0.2 (b) d1 = 0.6 (c) d1 = 0.8.

Bifurcation diagram is plotted with respect to d2 for p = 3 in Fig. 5.18, keeping

other parameters as in (5.3.1). In all cases, the stable periodic solution will settle down

to complex dynamical behavior, including periodic windows, quasi-periodic/chaotic
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behaviors are observed. The green with green color shows d1 > d2 and red color region

depicts d1 < d2. No chaos is observed when d2 > d1 in Fig. 5.18(b) and Fig. 5.18(c).

5.4 Model II: Dynamic Complexities in an Inte-

grated Pest Management Model with Birth Pulse

and Asynchronous Pulses

In this section, the dynamics of a stage-structured system with birth pulse subjected

to time-dependent impulsive control strategy is investigated with asynchronous pulses.

The impulsive system considers the presence of two different control strategies, namely

chemical control and mechanical control. Pesticide spray is taken impulsively at a fixed

time. Mechanical control is applied continuously. The selective harvesting of immature

and mature pest is considered. The following assumptions are made to formulate the

model:

• The pesticide is sprayed on the pest impulsively at t = (m+ l − 1)T, 0 < l < 1.

Both immature and mature pest are instantaneously affected by pesticide spray

at the fixed time t = (m+ l− 1)T, 0 < l < 1,m = 1, 2, ... impulsively at different

killing rates,0 < β < 1 and 0 < α < 1 respectively

x((m+ l − 1)T )+ = (1− β)x(m+ l − 1),

y((m+ l − 1)T )+ = (1− α)y(m+ l − 1),

 t = (m+ l − 1)T.

• To control the pest density, harvesting effort E is applied to both immature and

mature pest.

• The birth function B(N) is assumed to be of Beverton-Holt type [42]:

B(N) = p(c+ (x(t) + y(t))−n.

The above assumptions led to the following impulsive stage-structured system with

birth pulse and integrated pest management strategies:

dx

dt
= −(d+ a+ E)x(t),

dy

dt
= ax(t)− (d+ E)y(t),

 t ̸= (m+ l − 1)T, t ̸= mT, (5.4.1)
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x((m+ l − 1)T )+ = (1− β)x(m+ l − 1),

y((m+ l − 1)T )+ = (1− α)y(m+ l − 1),

 t = (m+ l − 1)T, (5.4.2)

x(mT )+ = x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = y(mT ),

 t = mT, (5.4.3)

x(0) = x0 > 0, y(0) = y0 > 0. (5.4.4)

The model is defined on the set ℜ2
+ = {(x1, x2) ∈ ℜ2 | x ≥ 0, y ≥ 0}. All model

parameters are assumed to be positive. The model is associated with the non-negative

initial immature and mature pest densities x0 and y0 respectively.

5.4.1 Preliminary Analysis

Theorem 5.4.1. The system (5.4.1)− (5.4.4) has ultimately bounded solution.

Proof. Define a positive definite continuous function

L(t) = x(t) + y(t).

Let D+V (t,X) denotes Dini’s derivative [120]. Using (5.4.1), it is computed as:

D+L(t,X) + d1L(t,X) = −(d+ E)(x(t) + y(t)) ≤ d1(x(t) + y(t)).

When t = (m+ l − 1)T , Using condition (5.4.2) and choosing γ = min{β, α} gives:

L((m+ l − 1)T+) = (1− β)x1((m+ l − 1)T ) + (1− α)y((m+ l − 1)T )

≤ γL((m+ l − 1)T ).

When t = mT , applying birth pulses (5.4.3):

L(mT+) = x(mT ) +
p

c+ (x(mT ) + y(mT ))n
y(mT ) + y(mT ) ≤ L(mT ) +

pM1

2
.

Therefore, Using Lemma 2.5 in [8]. For as t→ ∞, it can be concluded that

L(t) ≤ L(0+)e−(d+E)t +M1(1− e−(d+E)t) + p
e−d(t−T )

1− e−(d+E)T
+ p

e(d+E)T

e(d+E)T − 1

→ M1

(d+ E)T
+ p

e(d+E)T

e(d+E)T − 1
.

Since ∃ a constant M1 > 0, x(t) ≤M1/2 and y(t) ≤M1/2 for each solution (x(t), y(t))

of the system (5.4.1) − (5.4.4) for all large value of t. Therefore, V (t) is uniformly

bounded.
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5.4.2 Model Analysis

Let x = xm−1 and y = ym−1 be the initial density of immature and mature pest

respectively at t = (m − 1)T . The analytical solution of differential equations (5.4.1)

between the pulses can be written as:

x(t) = xm−1e
−(a+d+E)(t−(m−1)T ), (m− 1)T ≤ t < (m+ l − 1)T,

y(t) = e−(d+E)(t−(m−1)T )[ym−1 + xm−1(1− e−a(t−(m−1)T ))].

x(t) = (1− β)xm−1e
−(a+d+E)(t−(m−1)T ), (m+ l − 1)T ≤ t < mT,(5.4.5)

y(t) = [(α− β)xm−1e
−(d+a+E)lT + (1− α)(ym−1 + xm−1)e

−(d+E)lT ]e−(d+E)(t−(m+l−1)T )

−(1− β)xm−1e
−(a+d+E)(t−(m−1)T ).

Applying impulsive condition (5.4.3) with the analytical solution (5.4.5) gives the stro-

boscopic map of system (5.4.1)−(5.4.4) after each successive birth pulse can be obtained

as:

xm = p(c+Bn)−1[B − (1− β)xm−1e
−(d+a+E)T ] + (1− β)xm−1e

−(a+d+E)T ,

ym = B − (1− β)xm−1e
−(d+E+a)T , (5.4.6)

B = (α− β)xm−1e
−(d+al+E)T + (1− α)(xm−1 + ym−1)e

−(d+E)T .

The difference equations (5.4.6) describe the stroboscopic sampling of immature and

mature pest.

It is observed that for positive initial conditions the solution (5.4.6) of the system

(5.4.1)− (5.4.4) always exists and stay positive if α > β. Therefore, each xm and ym of

the map (5.4.6) is positive if α > β. Further the system is dissipative for β, α ∈ (0, 1).

Let us define the intrinsic net reproductive number R0 as

R0 =
pe−(d+E)T ((α− β)e−alT + (1− α)− (1− β)e−aT )

c(1− (1− β)e−(d+a+E)T )(1− (1− α)e−(d+E)T )
=

p

p0
. (5.4.7)

It represents the average number of offspring that a pest produces over the period of

its life span.

5.4.3 Existence and Stability Analysis of Fixed Points

The following two equilibrium states will exist for the map (5.4.6) :
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The trivial pest-free fixed point E0 = (0, 0) exists without any parametric re-

striction.

The non-trivial fixed point E∗ = (x∗, y∗) is established if R0 > 1 and is given as:

x∗ =
(1− (1− α)e−(d+E)T ) n

√
c(R0 − 1)

e−(d+E)T ((α− β)e−alT + (1− α)− (1− α)(1− β)e−(d+a+E)T )
,

y∗ =
((α− β)e−alT + (1− α)− (1− β)e−aT ) n

√
c(R0 − 1)

(α− β)e−alT + (1− α)− (1− α)(1− β)e−(d+a+E)T
.

The unique interior fixed point is feasible if the birth rate of pest is more than a critical

value b0 which depends upon all model parameters.

The stability analysis of the various fixed points has been performed. For this,

the coefficients of the linearized matrix A for the map (5.4.6) about any state E = (x, y)

can be computed as:

a11 = (1− β)e−(d+a+E)T + p(c+Bn)−1e−(d+E)T [(α− β)e−alT + (1− α)− (1− β)e−aT ]

+np((α− β)e−alT + (1− α))e−(d+E)TBn−1(c+Bn)−2[B − (1− β)xe−(d+a+E)T ],

a12 = p(c+Bn)−1(1 + npBn−1(c+Bn)−2 × [B − (1− β)xe−(d+a+E)T ](1− α)e−(d+E)T ),

a21 = [(α− β)e−alT + (1− α)− (1− β)e−aT ]e−(d+E)T , a22 = (1− α)e−(d+E)T .

Theorem 5.4.2. The pest-free state is locally asymptotically stable if R0 < 1 and

unstable for R0 > 1.

Proof. For small perturbation about E0, coefficients of matrix A[E0] are computed. It

is observed that conditions 1 + Tr + Det > 0 and 1 − Det > 0 are always satisfied.

However, for stability, Jury’s condition 1 − Tr + Det > 0 must also be satisfied. On

simplification, it yields condition R0 < 1 establishing the local stability of E0.

Accordingly, the pest-free point E0 is locally asymptotically stable for p ∈ (0, p0).

The trajectories in the neighborhood of (0, 0) tend to origin and pest will extinct. Thus,

the pest eradication is possible when R0 < 1. The existence of non-trivial fixed point

is overruled in this case. However, for R0 > 1, one of the Jury’s condition does not

satisfy. Hence the pest-free fixed point will be unstable for R0 > 1.

It is found that 1 − Tr − Det = 0 at R0 = 1 and one of the eigenvalues is 1.

Therefore, the pest-free state E0 becomes non-hyperbolic at R0 = 1. So, there is a
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possibility of transcritical bifurcation. Also, at R0 = 1 pest-eradication point collides

with E∗.

Theorem 5.4.3. Let us define constants C and F as

F = 2((α− β)e−alT + (1− α)− (1− α)(1− β)e−(d+a+E)T )

×(1 + (1− β)(1− α)e−(2d+a+2E)T ),

C = n(1− (1− β)e−(d+a+E)T )(1− (1− α)e−(d+E)T )((α− β)e−alT + (1− α)

+(1− α)(1− β)e−(d+a+E)T ).

The non-trivial fixed point E∗ = (x∗, y∗) is locally asymptotically stable provided

p0 < p < p0
C

C − F
(= pc). (5.4.8)

Proof. The matrix A is computed around (x∗, y∗). It is easily seen that inequalities

1− Tr +Det > 0 and 1−Det > 0 are always satisfied. The stability condition p < pc

is obtained from condition 1 + Tr +Det > 0 after rearranging the model parameters.

Hence, if p ∈ (p0, pc) then E
∗ = (x∗, y∗) is locally asymptotically stable.

Accordingly, when p ∈ (p0, pc), E
∗ is locally asymptotically stable. The tra-

jectories of system (5.4.1) − (5.4.4) tend to asymptotically stable period-1 solution

(xe(t), ye(t)):

xe(t) = x∗e−(a+d+E)(t−(m−1)T ), (m− 1)T ≤ t < (m+ l − 1)T,

ye(t) = e−(d+E)(t−(m−1)T )[y∗ + x∗(1− e−a(t−(m−1)T ))].

xe(t) = (1− β)x∗e−(a+d+E)(t−(m−1)T ), (m+ l − 1)T ≤ t < mT,

ye(t) = [(α− β)x∗e−alT + (1− α)(x∗ + y∗)− (1− β)x∗e−aT ]e−(d+E)(t−(m−1)T ).

It can be easily concluded that if there is a small increase in p beyond the critical

value p0, the system (5.4.1)− (5.4.4) has a positive period-1 solution (xe(t), ye(t)). The

period-doubling can occur at p = pc. Further, increasing the parameter value p > pc,

E∗ losses its stability and the system may exhibit complex dynamics which will be

shown in a later section.
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Theorem 5.4.4. The locally asymptotically stable pest-free point E0 is globally asymp-

totically stable in the interior of positive quadrant of x− y plane for the map (5.4.6).

Proof. Consider the positive definite function

V1(xm, ym) = | xm | + | ym | .

Now, computing ∆V1 and its simplification gives

∆V1(xm, ym) = | (α− β)xme
−(d+al)T + (1− α)(ym + xm)e

−dT − (1− β)xme
−(d+a)T |

+ | pe−dT [(α− β)xme
−alT + (1− α)(ym + xm)− (1− β)xme

−aT ]

×(c+Bn)−1 + (1− β)xme
−(a+d)T | − | xm | − | ym | .

Further simplification of ∆V1 yields:

∆V1 ≤ | p[(α− β)e−(d+al)T + (1− α)e−dT − (1− β)e−(d+a)T ] + (α− β)e−(d+al)T

+(1− α)e−dT − 1 | xm+ | p(1− α)e−dT + (1− α)e−dT − 1 | ym,

∆V1 < −(1−R0)V1(xm, ym).

Thus, V1 is a Lyapunov function and the pest-free fixed point E0 = (0, 0) is globally

asymptotically stable.

Theorem 5.4.5. The local asymptotically stable positive interior fixed point E∗ of the

map (5.4.6) is globally asymptotically stable.

Proof. Define the positive definite function

V2(xm, ym) = | xm − x∗ | + | ym − y∗ | .

Computing ∆V2 on the same lines as in Theorem 5.4.4 proves that V2 is a Lyapunov

function. This proves the theorem.

5.4.4 Numerical Explorations

To illustrate the stability of the pest-free state and interior fixed point, the numerical

experiments of the map (5.4.6) are performed for the following data given as:

a = 0.8, c = 1, d = 0.6, l = 0.5, n = 7, α = 0.6, β = 0.4. (5.4.9)
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Considering T = 1.0 and E = 0.5, the critical value p0 is computed as p0 = 8.9632

for parameter set (5.4.9). For the above data set and p = 7, R0 = 0.7810 < 1

and the pest-free state is locally asymptotically stable. Taking p = 10, the pest-free

fixed point becomes unstable and E∗ exists. It is given as the non-trivial fixed point

E∗ = (3.8413, 0.3901) is locally asymptotically stable as p0 < p < 13.1858.

Fig. 5.19 shows the variation of R0 with impulsive period T for parameter set

(5.4.9) when E = 0.5. The non-monotonic behavior of R0 with respect to T is observed.

The maximum value of threshold R0 is 1.6289 at T = 0.3614. The basic reproduction

number R0 is less than 1 for T ∈ (0, 0.09)∪(1.1268, 3). The pest-free solution is possible

in this range and pest outbreak can occur for T ∈ (0.09, 1.1268).

Fig. 5.19(b) shows the variation of R0 with respect to harvesting effort. It is

observed that threshold R0 decreases with increase in E. Pest eradication is possible

for 0.5883 < E < 5.
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Figure 5.19: Two-parameter bifurcation diagram in (a) T − R0 plane at E = 0.5 (b)

E −R0 plane at T = 1.

Two-parameter bifurcation diagram in the E−p plane is shown in Fig. 5.20. For

sufficiently lower birth rate pest will be eradicated for all values of harvesting effort.

With an increase in birth rate p, the pest may survive with the harvesting effort. The
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chaotic dynamics is evident in a region of E − p plane. The periodic doubling leads to

chaos for higher birth rates.
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Figure 5.20: Two-parameter bifurcation diagram in E − p plane.

(a) (b)

Figure 5.21: Bifurcation diagrams of the map (5.4.6) for total pest population with

respect to p at (a) E = 0 (b) E = 0.5.

Typical bifurcation diagrams are drawn in Fig. 5.21 for E = 0 and E = 0.5 with

respect to critical parameter p. The bifurcation diagram shows the existence of chaos
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through period-doubling route. The critical values for period-doubling bifurcation

parameter are pc = 7 and pc = 13 is confirmed from Fig. 5.21(a) and Fig. 5.21(b)

respectively. The period-1 solution occurs in range p ∈ (8.9632, 13) for E = 0.5.

Figure 5.22: Bifurcation diagram of the map (5.4.6) for total pest population with

respect to E at p = 30.

(a) (b)

Figure 5.23: Bifurcation diagrams of the map (5.4.6) for total pest population with

respect to l (a) E = 0 (b) E = 0.5 at p = 30.
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To see the complex dynamical behavior with the variation in the harvesting

effort E, bifurcation diagram is drawn in Fig. 5.22 by keeping all parameters fixed as

mentioned above in (5.4.9) and p = 30. Initially, periodic halving behavior occurs. As

the harvesting effort parameter value increases chaotic behavior occurs.

Fig. 5.23 shows bifurcation diagrams with respect to the pesticide spray timing

l ∈ (0, 1) with p = 30. The map (5.4.6) depicts the very complex dynamical behavior if

no harvesting effort is applied. Also, the pesticide is sprayed just after the birth pulse.

As parameter l increases, chaotic behavior is followed by a period-halving bifurcation.

If the harvesting effort is taken, then complexity reduces.

5.5 Discussion

An impulsive stage-structured model with birth pulse at fixed time has been formu-

lated. The system incorporates impulsive applications of chemical as well as mechanical

control to control the pest. Only the mechanical control is assumed to be continuous.

It is assumed that some proportion of the pest population is reduced periodically by

pesticide spray. The combination of both strategies decreases the use of chemicals.

The two equilibrium states are obtained. For R0 < 1, only the pest-free state will

exist and is also found to be globally stable. At R0 = 1, one of the eigenvalues of

the Jacobian matrix about the pest-free state becomes one. The period- 1 solution of

stroboscopic map is obtained. Some dynamical results such as boundedness, existence

and stability of fixed points are analyzed. The sufficient condition for the stability of

positive interior fixed point and flip bifurcation are also investigated. The effects of

pesticide spray timing and harvesting on the density of pest are investigated. Through

numerical analysis, various dynamical aspects including a chaotic behavior have been

shown. The system with Beverton-Holt function shows a very complex dynamical be-

havior. As parameter l increases, there exist, period-halving bifurcations followed by

chaotic behavior.
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Chapter 6

A Stage-structured Pest Control

Model

6.1 Introduction

One of the significant roles of mathematics in pest management is to predict the effec-

tiveness of control tactics. Integrated pest management in agriculture fields is consider-

ably more effective than single tactics [58, 226]. Since pest triggers serious agricultural

problems, the first line of action is to control the pest using pesticides. However, the

pest develops resistance to the pesticides very quickly and then they are no more ef-

fective. Another efficient way to combat the pest is the use of cultural/mechanical

control.

Many IPM models used single impulsive strategy [88, 126, 138, 216, 223]. Some

impulsive models have also been investigated incorporating multiple pulses [63, 102,

132, 137]. However, they have neglected stage-structure and birth pulses. Few mathe-

matical models with stage-structure and birth pulses have been investigated incorporat-

ing single pulse [144, 218] and two pulses [149]. Several stage-structured pest control

model with the birth pulse and impulsive harvesting have been discussed [29, 96]. But,

they have considered only single tactic for pest control.

This chapter is devoted to multiple pulses impulsive stage-structured pest man-

agement system. Integrated pest management strategy is used impulsively by applying

two strategies (chemical/mechanical control) at two different fixed times. The model

147
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incorporates stage structure and birth pulse. The focus is on the effectiveness of com-

bining mechanical and chemical control. It is shown that mechanical control reduces

the pesticide use.

6.2 Formulation of the Model

In this section, the impulsive model for pest control has been developed considering

periodic harvesting and pesticide spray asynchronous with birth pulses. To formulate

the model following assumptions have been made:

• For simplicity, mortality rates of immature and mature pest is assumed to be the

same, i.e. d1 = d2 = d.

• The immature transforms to the mature pest with constant maturation rate a.

• The mature pest reproduces periodically and the birth occurs in pulses at an

interval T at the time t = mT , m = 1, 2, 3....

• Let the pesticide be sprayed periodically after each birth pulse with a delay

τ2 = l2T , l2 being a constant lying between 0 and 1. The pesticide is ineffective

against the immature pest. Considering 0 < α < 1 is the instantaneous killing

efficiency of the pesticide with which it kills the mature pest. The impulsive

conditions at t = τm2 = (m− 1)T + τ2 are:

x(τm2)
+ = x(τm2),

y(τm2)
+ = (1− α)y(τm2),

 t = τm2.

• The pesticide has no residual effect.

• The mechanical control is applied periodically after each birth pulse with a delay

τ1 = l1T , 0 < l1 < 1, where l1 is a constant. The mechanical control is applied

before chemical control, thereby 0 < τ1 < τ2 < 1. Considering the constant

harvesting effort 0 < E < 1 is applied to capture immature pest only. The

impulsive conditions at t = τm1 = (m− 1)T + τ1 are:

x(τm1)
+ = (1− E)x(τm1),

y(τm1)
+ = y(τm1),

 t = τm1.
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Using these assumptions, the impulsive stage-structured pest control model with mul-

tiple pulses is written as:

dx

dt
= −(d+ a)x(t),

dy

dt
= ax(t)− dy(t),

 t ̸= τm1, t ̸= τm2, t ̸= mT, (6.2.1)

x(τm1)
+ = (1− E)x(τm1),

y(τm1)
+ = y(τm1),

 t = τm1 , (6.2.2)

x(τm2)
+ = x(τm2),

y(τm2)
+ = (1− α)y(τm2),

 t = τm2 , (6.2.3)

x(mT )+ = x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = y(mT ),

 t = mT, (6.2.4)

x(0) = x0 > 0, y(0) = y0 > 0. (6.2.5)

The biomass of the immature and mature pest just after themth birth pulse are x(mT )+

and y(mT )+ respectively. All model parameters are assumed to be positive. The initial

densities of the immature and mature pest are x0 and y0 respectively. Equations (6.2.2),

(6.2.3) and (6.2.4) represent the asynchronous harvesting and pesticide spray with birth

pulse at times t = τm1, t = τm2 and t = mT respectively, T being the periodicity of

pulses. The birth function B(N(t)) is considered of Ricker type.

The dynamics of the system (6.2.1)− (6.2.5) is defined on the set

ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0}.

6.3 Analysis of the Model

Let the immature and mature pest density at t = (m− 1)T be x = xm−1 and y = ym−1

respectively. The analytical solution of the differential equations (6.2.1) between the

pulses (m− 1)T ≤ t < τm1 can be written as:

x(t) = e−(a+d)(t−(m−1)T )xm−1,

y(t) = e−d(t−(m−1)T )[ym−1 + (1− e−a(t−(m−1)T ))xm−1],

 . (6.3.1)
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Similarly, the analytical solution of differential equations (6.2.1) with the impulsive

condition (6.2.2) between the harvesting and chemical pulses (say τm1 ≤ t < τm2) is

obtained as:

x(t) = (1− E)e−(a+d)(t−(m−1)T )xm−1,

y(t) = [(1− Ee−aτ1 − (1− E)e−a(t−(m−1)T ))xm−1 + ym−1]e
−d(t−(m−1)T ),

 . (6.3.2)

Further, solving the system (6.2.1) with the impulsive condition (6.2.3) after the chem-

ical control pulses τm2 ≤ t < mT , yields:

x(t) = (1− E)e−(a+d)(t−(m−1)T )xm−1,

y(t) = e−d(t−(m−1)T )[O1 + (1− E){e−aτ2 − e−a(t−(m−1)T )}xm−1],

O1 = (1− α)[{1− Ee−aτ1 − (1− E)e−aτ2}xm−1 + ym−1],

 . (6.3.3)

After the chemical pulses, apply impulsive condition (6.2.4) with (6.3.3), gives the map

of the system (6.2.1)− (6.2.5) after each successive birth pulse.

xm = (1− E)e−(a+d)Txm−1 + be−O2 [O2 − (1− E)e−(d+a)Txm−1],

ym = O2 − (1− E)e−(d+a)Txm−1, (6.3.4)

O2 = [(1− E)e−aτ2xm−1 +O1]e
−dT .

The map (6.3.4) constitutes the difference equations. These equations describe the

densities of the immature and mature pest at mth pulse in terms of values at previous

pulse. This is a stroboscopic sampling at the time when birth pulse occurs. For the

Ricker Function, the dynamical behavior of the system (6.2.1) − (6.2.5) will be given

by the dynamical behavior of the map (6.3.4) associated with the system (6.3.3).

It is observed that for positive initial conditions the solution (6.3.3) of the system

(6.2.1)− (6.2.5) always exists and stay positive. Therefore, each xm and ym of the map

(6.3.4) are positive.

Let R0 be the intrinsic net reproductive number denoting the average number of

offspring that an individual produces over the period of its lifetime. It is computed as:

R0 =
be−dT (O3 − (1− E)e−aT )

(1− (1− E)e−(d+a)T )(1− (1− α)e−dT )
=

b

b0
, (6.3.5)

O3 = [(1− E)e−aτ2 + (1− α)(−Ee−aτ1 + 1− (1− E)e−aτ2)].

Remark 6.3.1. For 0 < τ1 < 1, 0 < τ2 < 1, 0 < E < 1 and 0 < α < 1, R0 will be

positive under the condition O3 − (1− E)e−aT > 0.



6.3 Analysis of the Model 151

Two fixed points of the map (6.3.4) can be obtained as:

• There exists a unique pest-free fixed point E0 = (0, 0) without any parametric

restriction.

• The non-trivial fixed point E∗ = (x∗, y∗) is obtained as:

x∗ =
(1− (1− α)e−dT ) logR0

(O3 − (1− α)(1− E)e−(d+a)T )e−dT
,

y∗ =
(O3 − (1− E)e−aT ) logR0

(O3 − (1− α)(1− E)e−(d+a)T )
.

The necessary condition for the coexistence of immature and mature pest is R0 > 1.

The interior fixed point is feasible if the birth rate of the pest is more than a critical

value b0 which depends upon all model parameters.

Remark 6.3.2. The derivative of equilibrium mature pest density y∗ with respect to

τ2 is obtained as:

dy∗

dτ2
= −aα(1− E)2e−a(τ2+T )(1− (1− α)e−dT+θ) log(R0)

(O3 − (1− α)(1− E)e−(d+a)T ))2

− aα(1− E)e−aτ2

(O3 − (1− α)(1− E)e−(d+a)T )
< 0.

The equilibrium density of mature pest is a decreasing function with respect to

delay parameter τ2. Accordingly, the mature pest density at equilibrium reduces with

increase in time delay τ2 of chemical control.

Similarly, it can be proved that the equilibrium density of immature pest is a

monotonic function with respect to parameter τ1.

The local stability analysis of the biological feasible fixed point is discussed in

the next subsection.

6.3.1 Stability Analysis of the Fixed Points

Let X = (x, y) be any arbitrary fixed point. The linearized system about the arbitrary

fixed point X = (x, y) is given as:

Xm = AXm−1. (6.3.6)
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The coefficients of the matrix A = (aij)2×2 are evaluated as:

a11 = (1− E)e−(d+a)T + be−dT−O4e−dT
[O3 − (1− E)e−aT

− {O4 − (1− E)e−aTx}O3e
−dT ],

a12 = b(1− α)e−dT−O4e−dT
[1− {O4 − (1− E)e−aTx}e−dT ],

a21 = (O3 − (1− E)e−aT )e−dT , a22 = (1− α)e−dT ,

O4 = (α(1− E)xe−aτ2 + (1− α){(x+ y)− Exe−aτ1},


. (6.3.7)

Theorem 6.3.1. The pest-free fixed point E0 = (0, 0) of the map (6.3.4) is locally

asymptotically stable provided

R0 < 1. (6.3.8)

Proof. Using (6.3.7), the linearized matrix AE0 = (aij)2×2 is evaluated about the pest-

free state (0, 0) as:

AE0 =

 (1− E)e−(d+a)T + be−dT [O3 − (1− E)e−aT ] (b(1− α)e−dT

O3 − (1− E)e−aT )e−dT (1− α)e−dT

 . (6.3.9)

The characteristic equation corresponding to (6.3.9) is:

λ2 − e−dT [(1− E)e−aT + b[O3 − (1− E)e−aT + 1− α]λ+ (1− E)(1− α)e−(2d+a)T = 0.

The eigenvalues are computed as:

λ1 =
X1e

−dT + e−dT
√
X2

1 − 4(1− E)(1− α)e−aT

2
,

λ2 =
X1e

−dT − e−dT
√
X2

1 − 4(1− E)(1− α)e−aT

2
,

X1 = (1− E)e−aT + b[O3 − (1− E)e−aT ] + (1− α).

The eigenvalues λ1 and λ2 will lie in the unit circle (i.e. | λ1 |< 1 and | λ2 |< 1) if

b <
(1− (1− E)e−(d+a)T )(1− (1− α)e−dT )

e−dT [O3 − (1− E)e−aT ]
= b0. (6.3.10)

Using (6.3.5) and (6.3.10), the stability condition (6.3.8) for the pest-free state E0 is

obtained.

Accordingly, the pest-free fixed point (0, 0) is locally asymptotically stable for

b ∈ (0, b0). The trajectories in the neighborhood of (0, 0) tend to origin and pest

population will be eradicated. Thus, the pest eradication is possible when R0 < 1.

When R0 > 1, the pest-free state is unstable. Biologically, the pest will survive in

future time. Hence, the pest will persist if R0 > 1.
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Remark 6.3.3. The first order derivative of R0 with respect to killing rate α is found

to be negative:

dR0

dα
= −be−dT {1− (1− E)e−aτ2 − Eeaτ1}

(1− (1− α)e−dT )(1− (1− E)e−(d+a)T )

−be−dT (O3 − (1− E)e−aT )e−dT

(1− (1− α)e−dT )2(1− (1− E)e−(d+a)T )
< 0.

Accordingly, the killing (or poisoning) rateα reduces the threshold value R0. Therefore,

increase in the killing rate of mature pest α will be able to establish the pest-free state,

once R0 becomes less than unity.

Remark 6.3.4. The expression of R0 involves harvesting effort E. The first order

derivative with respect to E is obtained as:

dR0

dE
= −be−dT (1− α)(e−aτ2 − e−aτ1)− e−aτ2 + e−aT

(1− (1− E)e−(d+a)T )(1− (1− α)e−dT )

−be−dT (O3 − (1− E)e−aT )

(1− (1− E)e−(d+a)T )2(1− (1− α)e−dT )
< 0.

The threshold R0 is monotonic decreasing function with respect to E. It can be con-

cluded that still pest-free state can be obtained if the harvesting rate gets higher from

critical value Ec provided R0 < 1.

Remark 6.3.5. The pest-free fixed point of the map (6.3.4) become non-hyperbolic

at R0 = 1 and one of the eigenvalues becomes 1. Further, the map (6.3.4) admits

transcritical bifurcation corresponding to the eigenvalue 1 if R0 = 1. A threshold

parametric value with respect to other parameter for transcritical bifurcation is:

α = 1− be−dT (1− E)e−aτ2 + (1− E)e−(d+a)T − 1

e−dT (1− (1− E)e−(d+a)T )− be−dT (1− Ee−aτ1 − (1− E)e−aτ2)
.

Remark 6.3.6. When R0 > 1, the non-trivial fixed point E∗ of the map (6.3.4) exists

in this case. This means that the pest population can not eradicate completely and

may occur in a periodic manner.

Further, stability analysis for interior fixed point E∗ is carried in the next section.

Theorem 6.3.2. Let us denote

C = 2(O3 − (1− E)e−(d+a)T )(1 + (1− E)e−2(d+a)T ),

F = (1− (1− E)e−(d+a)T )(1− (1− α))e−dT )(O3 + (1− E)e−(d+a)T ).
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The non-trivial fixed point E∗ = (x∗, y∗) of the map (6.3.4) is locally asymptotically

stable provided

b0 < b < b0exp(CF
−1)(= bc). (6.3.11)

Proof. Using (6.3.7), coefficients of the linearized matrix AE∗ = (aij)2×2 are evaluated

about interior fixed point (x∗, y∗) as:

a11 = (1− E)e−(d+a)T + b exp(−dT −O5e
−dT ) [O3 − (1− E)e−aT

− {O5 − (1− E)e−aTx∗}O3e
−dT ],

a12 = b(1− α)exp(−dT −O5e
−dT )[1− {O5 − (1− E)e−aTx∗}e−dT ],

a21 = (O3 − (1− E)e−aT )e−dT ,

a22 = (1− α)e−dT ,

O5 = α(1− E)x∗e−aτ2 + (1− α){(x∗ + y∗)− Ex∗e−aτ1},


. (6.3.12)

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1− E)e−(d+a)T + b exp(−dT −O5e
−dT ) [O3 − (1− E)e−aT

−{O5 − (1− E)e−aTx∗}O3e
−dT ] + (1− α)e−dT ,

Det = (1− α)(1− E)e−(2d+a)T [1− b0y
∗].

It is easily seen that (1.4.11) and (1.4.13) are always satisfied. The Jury’s condition

(1.4.12), 1 + Tr +Det > 0 if

R0 < exp

(
2(O3 − (1− E)e−(d+a)T )(1 + (1− E)e−2(d+a)T )

(1− (1− E)e−(d+a)T )(1− (1− α)e−dT )(O3 + (1− E)e−(d+a)T )

)
.(6.3.13)

The stability condition (6.3.11) is obtained from (6.3.13) and the existence condition

b0 < b. Hence, if b ∈ (b0, bc) then the interior fixed point E∗ = (x∗, y∗) of the map

(6.3.4) is locally asymptotically stable.

Accordingly, when b ∈ (b0, bc), the interior fixed point E∗ of the map (6.3.4) is

locally asymptotically stable. The trajectories of the system (6.2.1) − (6.2.5) tend to

asymptotically stable period-1 solution (xe(t), ye(t)): xe(t) = e−(a+d)(t−(m−1)T )x∗, (m− 1)T ≤ t < τm1,

= (1− E)e−(a+d)(t−mT )x∗, τm1 ≤ t < mT,
(6.3.14)
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ye(t) = e−d(t−(m−1)T )[y∗ + (1− e−a(t−(m−1)T ))x∗],

(m− 1)T ≤ t < τm1,

= [(1− Ee−aτ1 − (1− E)e−a(t−(m−1)T ))x∗ + y∗]e−d(t−(m−1)T ),

τm1 ≤ t < τm2,

= [(1− E){e−aτ2 − e−a(t−mT )}x∗ + (1− α)O6]× e−d(t−mT ),

τm2 ≤ t < mT,

O6 = {1− Ee−aτ1 − (1− E)e−aτ2}x∗ + y∗.

(6.3.15)

Remark 6.3.7. Since the interior fixed point E∗ of the map (6.3.4) is locally stable,

the period-1 solution (6.3.14)− (6.3.15) of the system (6.2.1)− (6.2.5) is locally stable

in the range b0 < b < bc. This would mean that after the increase in the critical birth

rate beyond b0, the pest population will vary periodically.

Further, increasing the parameter value b > bc, the interior fixed point E∗ of the

map (6.3.4) losses its stability and the map (6.3.4) may exhibit complex dynamics.

This implies that the pest population may occur in regular/irregular periodic manner

when birth rate increase beyond the critical value bc. The complex dynamical behavior

will be discussed later.

6.3.2 Bifurcation Analysis

The pest-eradication point E0 = (0, 0) of the map (6.3.4) becomes non-hyperbolic at

b = b0 as one of the eigenvalues becomes 1. Note that when R0 = 1, then E∗ = (0, 0).

It is observed that at b = b0, the fixed points E0 = (0, 0) and E∗ = (x∗, y∗) exchange

their stability.

Theorem 6.3.3. The map (6.3.4) undergoes a transcritical bifurcation at b = b0.

Proof. Consider the map x

y

→

 (1− E)e−(a+d)Tx+ be−O4 [O4 − (1− E)e−(d+a)Tx]

(O4 − (1− E)e−(d+a)Tx

 . (6.3.16)

Let x = u, y = v, b = b1 + b0. The fixed point E0 of the map (6.3.16) is transformed to

(u, v). Now, the map (6.3.16) becomes: u

v

→

 (1− E)e−(a+d)Tu+ be−O7 [O7 − (1− E)e−(d+a)Tu]

(O7 − (1− E)e−(d+a)Tu

 , (6.3.17)
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where, O7 = α(1− E)ue−aτ2 + (1− α){(1− E)(u + v)− Eue−aτ1}. The map (6.3.17)

can be rewritten as: u

v

→M

 u

v

+

 c11u
2 + c12uv + c13v

2 + c14b1u+ c15b1v

0

 . (6.3.18)

The coefficients of the matrix M = mij2×2 and coefficients cij1×5 are obtained as:

m11 = (1− E)e−(d+a)T + b0(O3 − (1− E)e−aT )e−dT , m12 = b0(1− α)e−dT ,

m21 = (O3 − (1− E)e−aT )e−dT , m22 = (1− α)e−dT ,

c11 = −b0e−2dT (O2
3 −O3(1− α)e−aT ), c12 = b0(1− α)e−(a+2d)T (2O3 − (1− E)e−aT ),

c13 = −b0(1− α)2e−2dT , c14 = (O3 − (1− E)e−aT )e−dT , c15 = (1− α)e−dT .

The eigenvalues of M are 1 and (1− α)(1− E)e−(a+2d)T .

The corresponding eigenvectors O8 and O9 are {o8, 1}T and {o9, 1}T respectively where

o8 =
1− (1− α)e−dT+θ

(O3 − (1− E)e−aT )e−dT+θ
, o9 =

(1− α)((1− E)e−(d+a)T+θ − 1)

(O3 − (1− E)e−aT )e−dT+θ
.

Consider the transformation u

v

 = J

 x̄

ȳ

 , J = (O8 O9). (6.3.19)

Now, the map (6.3.18) can be written as: x̄

ȳ

→

 1 0

0 (1− α)(1− E)e−(a+2d)T

 x̄

ȳ

 +

 f1(x̄, ȳ, b1)

f2(x̄, ȳ, b1)

 .(6.3.20)

f1(x̄, ȳ, b1) = d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2,

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1),

d1 =
[
c14(1− (1− α)e−dT )(O3 − (1− E)e−aT )−1edT + c15

]
κ−1,

d2 =
[
c14((1− α)(1− E)e−(d+a)T − 1)(O3 − (1− E)e−aT )−1edT + c15

]
κ−1,

d3 =

[
2c13 + 2c11

(1− (1− α)e−dT )(1− α)((1− E)e−(d+a)T−1)

(O3 − (1− E)e−aT )2e−2dT
κ−1

+c12
(1− 2(1− α)e−dT ) + (1− α)(1− E)e−(d+a)T

(O3 − (1− E)e−aT )e−dT

]
κ−1,

d4 =

[
c11

(
(1− (1− α)e−dT )

(O3 − (1− E)e−aT )e−dT

)2

+ c12
(1− (1− α)e−dT )

(O3 − (1− E)e−aT )e−dT
+ c13

]
κ−1,

d5 = [c13 + c11
(
((1− α)((1− E)e−(d+a)T − 1))(O3 − (1− E)e−aT )−2e2dT

)
+c12(1− α)((1− E)e−(d+a)T − 1)(O3 − (1− E)e−aT )−1edT ]κ−1,

κ = (1− (1− α)(1− E)e−(d+a)T )((O3 − (1− E)e−aT )e−dT )−1.
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The center manifold wc(0) for the map (6.3.16) can be represented as:

wc(0) = {(x̄, ȳ, b1) ∈ ℜ3|ȳ = f(x̄, b1), f(0, 0) = 0, Df(0, 0) = 0}.

Let ȳ = f(x̄, b1) = B0b1 +B1b1x̄+B2x̄
2 +O(|b1|2 + |b1x̄2|+ |x̄|3). The coefficients in ȳ

can be computed as:

B0 = 0, B1 =
−d1

(1− (1− α)(1− E)e−(a+2d)T )
, B2 =

−d4
1− (1− α)(1− E)e−(a+2d)T

.

The map restricted to the center manifold is given by:

f̄ : x̄→ x̄+ f1(x̄, ȳ, b1) = x̄+ d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2

= x̄+ d1b1x̄+ d3
d4

(1− α)(1− E)e−(a+2d)T − 1
x̄3 + d4x̄

2 +O(|b1|2 + |b1x̄2|+ |x̄|4).

Using Theorem 1.4.3, it can be calculated that

∂f̄(0, 0)

∂b1
= 0,

∂2f̄(0, 0)

∂x∂b1
= d1 ̸= 0,

∂2f̄(0, 0)

∂2x
= 2d4 ̸= 0.

Note that, all the conditions of the Theorem 1.4.3 are satisfied at (x̄, b1) = (0, 0).

Further, E∗ becomes E0 as b = b0. Hence the map (6.3.4) undergoes to transcritical

bifurcation between E0 = (0, 0) and E∗ = (x∗, y∗) at b = b0.

The following theorem characterizes the flip bifurcation at b = bc.

Theorem 6.3.4. The map (6.3.4) undergoes a flip bifurcation about E∗ = (x∗, y∗) at

b = bc. Moreover, if ā > 0(resp. ā < 0), then period−2 solutions that bifurcate from

this fixed point are stable (resp. unstable).

Proof. Proof is omitted here. It is on the same lines as in previous chapters.

There exist a series of bifurcations that lead to chaotic dynamic when b increases

from bc. This will be explored through numerical simulation in the next section.

6.4 Numerical Simulations

In the previous sections, birth rate parameter is considered as the control parameters

to diagnose chaotic behavior. To detect chaos, bifurcation diagrams, Lyapunov expo-

nents and Lyapunov dimension have been analyzed numerically. Extensive numerical
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simulations are carried out to illustrate the analytical findings. Consider the following

parameter set

a = 0.4, d = 0.2, E = 0.4, α = 0.6, τ1 = 0.21, τ2 = 0.6. (6.4.1)

Bifurcation diagram is plotted with respect to control parameter b for the fixed pa-

rameters (6.4.1). The maxima of the pest population is plotted as a function of birth

rate parameter b. The bifurcation diagram in Fig. 6.1 exhibits variety of dynamical

behaviors of the map (6.3.4) as the parameter b changes.

Figure 6.1: Bifurcation diagram of the map (6.3.4) for total pest population with
respect to parameter b.

Table 6.1: Study of the map (6.3.4) for the data set (6.4.1) about E0.

Parameter varied Analytical behavior Numerical behavior

b ∈ (0, 4.1) E0 stable Stable Pest-free State

b = 4.1 = b0 E0 non-hyperbolic Transcritical Bifucartion

b > 4.1 E0 unstable Pest will Persist

E∗ exists Periodic/Chaotic behavior

In Fig. 6.2(a), magnified part of the Fig. 6.1 has been drawn between 0 < b ≤ 10.
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The pest will die out for b < 4.1 (≈ b0), confirming the result obtained in Theorem

6.3.1. The Fig. 6.2(a) shows that birth rate should be small to eliminate the pest. The

system dynamics about the trivial fixed point can be summarized in Table 6.1.

(a) (b)

Figure 6.2: (a) Transcritical Bifurcation (b) Period-doubling phenomena for the data
set (6.4.1).

Table 6.2: Behavior of impulsive system about interior fixed points.

Parameter varied Analytical Behavior Numerical behavior

4.1 < b < 79.105 E∗ stable Period-1 Solution Blue Curve

b = 79.105 = bc E∗ non-hyperbolic Flip Bifurcation Red Line (PD1)

3.1226 < b < 236.5 E∗ unstable Period-2 solution Red Curve

b = 236.5 Second Period-doubling Red Line (PD2)

236.5 < b < 327.5 Period-4 solution Cyan Color

b = 327.5 Third Period-doubling Red Line (PD3)

327.5 < b < 351.15 Period-8 solution Magenta Color

b = 351.15 Fourth Period-doubling Red Line (PD4)

357.42 < b < 470 Chaotic solution Black Color

440 < b < 447.9 Periodic Window Green Line
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Fig. 6.2(b) is the blown up bifurcation diagram of Fig. 6.1 in the range 0 <

b ≤ 470, shows successive period doubling leading to chaos. The region of stability,

periodic and chaotic behavior are clearly visible. The system exhibits complex dynam-

ical behavior, including chaos. Very narrow periodic window can be observed in this

figure. The dynamics of the system is further explored by different values of b while

other parameter are fixed. The observations are summarized in the Table 6.2.
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Figure 6.3: Lyapunov exponents of the map (6.3.4) with respect to b.

Table 6.3: Behavior of impulsive system about fixed points.

Parameter Parameter Lyapunov exponent DL Dynamical

varied Value behavior

b ∈ (4.1, 351.15] b = 200 LE1=-0.438503997, 0 Stable Periodic

LE2=-1.452704796 Solution

b ∈ (351.15, 357.42] b = 357.42 LE1=0, 1 Quasi-Periodic

LE2=-1.619674207 Solution/Torus

b ∈ (357.42, 868.59] b = 420 LE1=0.207510507, 1.1244 Strange attractor/

LE2=-1.667962525 Chaos
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The Lyapunov exponents with respect to parameter b have been shown in Fig.

6.3. The Blue color shows the largest Lyapunov exponent (say LE1) and red color

shows the smallest Lyapunov exponent(say LE2). It can be easily observed that LE2

is always negative. Further, LE1 is zero for some values of b. Therefore, the map

(6.3.4) is dissipative. The results for system dynamics are summarized in Table 6.3.

For b = 420, the sum of two Lyapunov exponents is negative (say LE1 + LE2 =

0.207510507 − 1.667962525 = −1.4604552018 < 0). The Lyapunov dimension DL for

b = 420 is 0 < DL = 1.1244 < 2 and there exists strange attractor.

Fig. 6.4 shows the variation of R0 with impulsive period T for b = 6. E0 is stable

in the range 0 < T < 0.388 ∪ 4.24 < T < 1. The non-monotonic behavior of R0 with

respect to pulse period T is observed. As the value of T increases, R0 first increases

and attains a peak at critical value T = 1.44 and then it decreases with increase in T .

It can be easily observed that pest will survive in the domain T ∈ [0.388, 4.24].
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Figure 6.4: Plot of R0 with respect to parameter T .

The bifurcation diagram is plotted with respect to the maturation rate a with

b = 350 in the Fig. 6.5. With the increase in maturation rate, the periodic solution

settles down to a chaotic solution. In this case too, a number of periodic-doubling

cascades can be observed. Very narrow and wide periodic windows will appear in this

figure. A Period-5 period window will appear at a = 0.79.
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Figure 6.5: Bifurcation diagram of the map (6.3.4) for total pest population with

respect to the parameter a.

Figure 6.6: Bifurcation diagram of the map (6.3.4) for total pest population with
respect to the parameter E.

The bifurcation diagram has been plotted with respect to E in Fig. 6.6 taking

b = 350 while other parameters are fixed as in data set (6.4.1). For this figure, it can
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be easily observed that complexity increases with increase of parameter E. A period

doubling and period halving cascade can be seen with the chaotic region in between.

Initially, the stable periodic solution becomes unstable and there exist complex behavior

after a critical value of E. Further, the complex solutions become stable after a certain

choice of parameter E. The chaotic behavior will occur for E ∈ (0.405, 0.615).

Similarly, bifurcation diagram has been plotted with respect to the killing rates

α in the Fig. 6.7. Initially, periodic behavior can be observed. As the parameter, α

increase, the periodic solution will lead to chaotic behavior. Further, the increasing

killing rate due to chemical spray, the chaotic behavior will settle down to periodic

behavior. Also, there exists period-doubling and period-halving behavior with the

occurrence of the chaotic region in between. Very narrow and wide periodic windows

can also be observed.

Figure 6.7: Bifurcation diagram of the map (6.3.4) for total pest population with

respect to the parameter α.

For the data set (6.4.1), the bifurcation diagram has been plotted with respect to

the parameter τ1 with b = 350 in Fig. 6.8. It can be observed that overall complexity

increases with increase in parameter τ1. Initially, the solution settles down to periodic

behavior which required eliminating pest. Further, with an increase in pesticide spray

timing, chaotic behavior will occur. In this case too, a number of periodic doubling
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cascades can be observed.

Figure 6.8: Bifurcation diagram of the map (6.3.4) for total pest population with

respect to to the parameter τ1.

Figure 6.9: Bifurcation diagram of the map (6.3.4) for total pest population with
respect to the parameter τ2.

The bifurcation diagram has been plotted with the time of impulsive harvesting
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in Fig. 6.9 for b = 350. Here, the chaotic regions are predominant and as τ2 increase,

the chaotic solution will settle down to periodic behavior. Various periodic windows can

be observed in Fig. 6.9. The figure shows that for higher values of delay in harvesting

reduces the complexity of the system. Also, in this case too, a number of periodic

halving cascades can be observed.
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Figure 6.10: Plot of R0 with respect to parameter E.

The Fig. 6.10 is drawn to show the variation of R0 with respect to harvesting

rate E in the range 0 < E < 1 and for fixed values of α = 0.2(2)0.8 with b = 3. For

α = 0.8, R0 remains less than one for all values of E. Accordingly, the pest-free state

is stable and pest eradication will be possible. For α = 0.6, the pest-free state E0

stabilizes when the harvesting rate parameter E exceeds beyond 0.21. However, for

α = 0.4, the pest-free state remains stable for E > 0.45375. Accordingly, sufficient

amount of harvesting rate and killing efficiency rate are needed to achieve the pest-free

state.

6.5 Discussion

The impulsive pest control model has been formulated and analyzed for studying the

effects of chemical and mechanical control. The threshold R0 is obtained which is the
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basic reproduction number for the pest-free state. When the threshold R0 is less than

unity, the local stability of the pest-free state has been established. Accordingly, pest

eradication can be possible. The combined effects of chemical control and mechanical

control are required to control the pest. These effects enhance the stability of pest-free

state and interior fixed point.

Numerical simulations have been carried out for the resulting system reveal that

the impulsive system can have a variety of complex dynamical properties including

complex dynamical behavior. The bifurcation diagram with respect to birth rate pa-

rameter shows that for b < b0 pest can be eradicated successfully. It can be concluded

that for b > bc, the pest will oscillate in regular/irregular periodic manner for the

interior fixed point E∗ which shows the unstable behavior of the interior fixed point.

Further, Lyapunov exponent and Lyapunov dimension are obtained confirming the

existence of chaos.



Chapter 7

A Stage-structured Pest Control

Model with Birth Pulse, Impulsive

Harvesting, and Pesticide that have

Residual Effects

7.1 Introduction

The study in chapter 5 and chapter 6 incorporated instantaneous effect of the pesticide

on the pest. However, chemical pesticides may have long-term residual as well as

delayed effects. Delayed response occurs due to repeated exposure to pesticides over

long time [228]. Due to a delayed response, the adverse effects may not appear

immediately after the pesticide spray. Such a lack of immediate responses by pests

to a pesticide application means that the pest density increase for a time even after a

pesticide application has been made [205, 209]. This delayed response is important

from the pest control point of view. Some pest does not succumb after being pesticide

spray for several weeks, months or years. For example, Mycopesticide Metarhizium

Acridum takes 1-4 weeks to kill pest population of grasshoppers and locusts [114, 195].

An IPM strategy must consider the residual effect and delayed response to achieve

successful pest control. It can be described by continuous or piecewise-continuous

periodic functions which affect the growth rate of the pest [172, 174]. Tang et al.

167
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Harvesting, and Pesticide that have Residual Effects

developed an impulsive pest-natural enemy model using the residual effect of pesticides

on pest and threshold dynamical analysis has been discussed in different cases [221].

An IPM model for pest control has been discussed incorporating delayed response

to the pesticide application [126]. The IPM model with dose-response effect with a

delayed response of pesticides has been discussed by [103].

In this chapter, an impulsive stage-structured pest control model is proposed to

incorporate IPM strategies (chemical and mechanical control). The model incorporates

residual effects and delayed response of pesticide. The mechanical control is applied

impulsively. The effects of delayed response and residual effect of pesticide on pest and

the threshold condition have also been addressed. Using the center manifold theorem,

bifurcation analysis has been performed.

7.2 Model Formulation

In this section, an impulsive stage-structure pest control with the birth pulse and

integrated pest management is discussed using asynchronous pulses. However, in this

chapter, the timing of mechanical control and birth pulse are not synchronized. Further

to formulate the model following assumption has been made:

• The mortality rates of the immature and mature pest are assumed to be constant

d.

• The maturation rate of immature pest is constant a.

• Birth pulses take place periodically at t = mT , m = 1, 2, 3... where T being

the periodicity of the pulses. The birth function B(N(t)) is considered of Ricker

type. Accordingly,

x(mT )+ = x(mT ) +B(N(mT ))y(mT ),

y(mT )+ = y(mT ),

 t = mT. (7.2.1)

• The pest population is controlled using chemical and mechanical methods applied

periodically with period T .

• The instantaneous effects of the pesticides are ignored.
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• Its residual effect with delayed response on immature and mature pest can be

described by the kill functions [221] k1(t) and k2(t) respectively. Let m1 be the

killing efficiency, a1 be its decay rate and c1 > a1 be the delayed response rate.

The kill functions k1(t) and k2(t) between two successive pulses can be written

as:

k1(t) = m1(e
−a1(t−(m−1)T ) − e−c1(t−(m−1)T ))x(t),

k2(t) = m1(e
−a1(t−(m−1)T ) − e−c1(t−(m−1)T ))y(t),

 (m− 1)T < t < mT.(7.2.2)

• The mechanical control (harvesting effort) is applied periodically after each birth

pulse with a delay τ3 = l3T , l3 being a constant lying between 0 and 1. The

immature and mature pest are harvested with constant harvesting rates E1 and

E2, 0 < E1, E2 < 1 respectively. The impulsive conditions at τm = (m− 1)T + τ3

are:

x(τm)
+ = (1− E1)x(τm),

y(τm)
+ = (1− E2)y(τm),

 t = τm. (7.2.3)

Using these assumptions, the dynamics of impulsive system incorporating residual effect

with delayed response of pesticides (7.2.2), harvesting (7.2.3) and birth pulses (7.2.1)

is written as:

dx

dt
= −dx(t)− ax(t)− k1(t),

dy

dt
= ax(t)− dy(t)− k2(t),

 t ̸= τmT, t ̸= mT, (7.2.4)

x(τm)
+ = (1− E1)x(τm),

y(τm)
+ = (1− E2)y(τm),

 t = τm, (7.2.5)

x(mT )+ = x(mT ) + B(N(mT ))y(mT ),

y(mT )+ = y(mT ),

 t = mT, (7.2.6)

x(0) = x0 > 0, y(0) = y0 > 0. (7.2.7)

All model parameters are assumed to be constant and positive. Here, x(mT )+ and

y(mT )+ be the biomass of the immature and mature pest after the mth birth pulse.
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All parameters of the model are assumed to be positive. Let x0 and y0 be the initial

densities of immature and mature pest respectively. Equations (7.2.5) and (7.2.6) rep-

resent the asynchronous harvesting with birth pulse at times t = τm and t = mT . The

dynamics of stage-structured impulsive pest control system (7.2.4)-(7.2.7) is defined on

the set:

ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0}.

7.3 Model Analysis

In the next subsection, the stroboscopic map is described which is used as a tool to

discuss the dynamics of the system (7.2.4)-(7.2.7).

7.3.1 Stroboscopic Map

Let, the immature and mature pest densities be x = xm−1 and y = ym−1 at t =

(m − 1)T respectively. The analytical solution of the differential equations (7.2.4)

before mechanical control (m− 1)T ≤ t < τm is obtained as:

x(t) = xm−1e
−(a+d)(t−(m−1)T )+ϕ,

y(t) = e−d(t−(m−1)T )+ϕ[ym−1 + xm−1(1− e−a(t−(m−1)T ))], (m− 1)T ≤ t < τm,

ϕ = m1

(
e−a1(t−(m−1)T ) − 1

a1
− e−c1(t−(m−1)T ) − 1

c1

)
.

Furthermore, the analytical solution of differential equations (7.2.4) with the impulsive

conditions (7.2.5) between the pulses τm ≤ t < mT is obtained as:

x(t) = (1− E1)xm−1e
−(a+d)(t−(m−1)T )+ϕ,

y(t) = [C1xm−1 + (1− E2)ym−1]e
−d(t−(m−1)T )+ϕ, τm ≤ t < mT,

C1 = (E2 − E1)e
−aτ3 + (1− E2)− (1− E1)e

−a(t−(m−1)T ). (7.3.1)

After the mechanical control, the solution (7.3.1) of the system (7.2.4)-(7.2.7) at the

initial point (xm−1, ym−1) jumps to the point (xm, ym) with the effect of impulsive
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conditions (7.2.6). Now the map after each successive birth pulse at t = mT is:

xm = (1− E1)xm−1e
−(a+d)T+θ + bexp[−(Cxm−1 + (1− E2)ym−1)e

−dT+θ]

×[(Cxm−1 + (1− E2)ym−1)e
−dT+θ], (7.3.2)

ym = (Cxm−1 + (1− E2)ym−1)e
−dT+θ,

θ = m1

(
(e−a1T − 1)

a1
− (e−c1T − 1)

c1

)
< 0,

C = (E2 − E1)e
−aτ3 + (1− E2)− (1− E1)e

−aT .

The system (7.3.2) constitutes the difference equations. These equations describe the

numbers of the immature and mature pest at mth pulse in terms of values at previous

pulse. This is stroboscopic sampling at the time when birth pulse occurs. For the

Ricker Function, the dynamical behavior of the system (7.2.4)-(7.2.7) will be given by

the dynamical behavior of the system (7.3.2) coupled with system (7.3.1).

7.3.2 Basic Reproduction Number

Let R0 be the intrinsic net reproductive number denoting the average number of off-

spring that an individual produces over the period of its lifetime. Define

b0 =
(1− (1− E1)e

−(d+a)T+θ)(1− (1− E2)e
−dT+θ)

e−dT+θ(A− (1− E1)e−aT )
, (7.3.3)

R0 = bb−1
0 , (7.3.4)

A = (E2 − E1)e
−aτ3 + (1− E2).

Remark 7.3.1. R0 is positive whenever A− (1− E1)e
−aT > 0.

Remark 7.3.2. In the absence of delayed response, θ = m1

(
(e−a1T − 1)

a1

)
= θ0,

RR
0 =

be−dT+θ0(A− (1− E1)e
−aT )

(1− (1− E1)e−(d+a)T+θ0)(1− (1− E2)e−dT+θ0)
.

When only the decay rate of residual pesticide is considered then the threshold R0

reduces to RR
0 . Observe that, R0 < RR

0 . Therefore, inclusion of delayed response of

residual pesticides is more effective to reduce the threshold value.
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7.3.3 Existence of Fixed Points

Two fixed points are obtained for the map (7.3.2):

1. The pest-free state E0 = (0, 0) exists for all set of parameters.

2. The expressions for the non-trivial fixed point E∗ = (x∗, y∗) are obtained as:

x∗ =
(1− (1− E2)e

−dT+θ) log(R0)

e−dT+θ(A− (1− E2)(1− E1)e−(d+a)T+θ)
,

y∗ =
(A− (1− E1)e

−aT ) log(R0)

(A− (1− E2)(1− E1)e−(d+a)T+θ)
.

Introducing b > b0, the existence condition for E∗ becomes

R0 > 1. (7.3.5)

Remark 7.3.3. For,

τ3c =
1

a
ln

[
be−dT+θ(E2 − E1)

(1− (1− E1)e−(d+a)T+θ)(1− (1− E2)e−dT+θ) + be−dT+θ[(1− E1)e−aT − 1 + E2]

]
.

the existence condition for E∗ is τ3 < τ3c. Thus, for R0 > 1, there is the critical value

for delay in harvesting over which pest will persist.

7.4 Stability Analysis about Fixed Points

Now for the stability analysis, the linearized matrix A for the map (7.3.2) about any

arbitrary fixed point (x, y) is computed as:

A =

 a11 a12

a21 a22

 .

The coefficients of the matrix A = (aij)2×2 are evaluated as :

a11 = (1− E1)e
−(d+a)T+θ + bexp[−dT + θ − (Ax+ (1− E2)y)e

−dT+θ]

×(C − (Cx+ (1− E2)y)Ae
−dT+θ), (7.4.1)

a12 = b(1− E2)exp[−dT + θ − (Ax+ (1− E2)y)e
−dT+θ](1− ((1− E2)y + Cx)e−dT+θ),

a21 = (A− (1− E1)e
−aT )e−dT+θ, a22 = 1− E2)e

−dT+θ.
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7.4.1 Local Stability Analysis of Pest-free State (E0)

For the stability of pest-free state, the following theorem is established:

Theorem 7.4.1. The pest- free state E0 = (0, 0) is locally asymptotically stable for

R0 < 1. (7.4.2)

Proof. Using (7.4.1), the coefficients of the linearized matrix AE0 at the pest-free fixed

point are evaluated as:

a11 = (1− E1)e
−(d+a)T+θ + bCe−dT+θ, a21 = Ce−dT+θ,

a12 = b(1− E2)e
−dT+θ, a22 = (1− E2)e

−dT+θ.

Accordingly, the trace Tr and determinant Det are computed as:

Tr = (1− E1)e
−(d+a)T+θ + bCe−dT+θ + (1− E2)e

−dT+θ,

Det = (1− E1)(1− E2)e
−(2d+a)T+2θ.

Note that, the Jury’s conditions (1.4.12) and (1.4.13) are always satisfied:

1 + Tr +Det = 1 + (1− E1)e
−(d+a)T+θ + bCe−dT+θ + (1− E2)e

−dT+θ

+(1− E1)(1− E2)e
−(2d+a)T+2θ > 0,

1−Det = 1− (1− E1)(1− E2)e
−(2d+a)T+2θ > 0.

The expression 1− Tr +Det simplifies to:

1− Tr +Det = 1− (1− E1)e
−(d+a)T+θ − be−dT+θ[(1− E2) + (E2 − E1)e

−alT

−(1− E1)e
−aT ] + (1− E2)e

−dT+θ + (1− E1)(1− E2)e
−(2d+a)T+2θ

= (1− (1− β)e−(d+a)T+θ)(1− (1− E2)e
−dT+θ)

−b[(1− E2)e
−dT+θ + (E2 − E1)e

−(dT+aτ3)+θ − (1− E1)e
−(d+a)T+θ].

Accordingly, the Jury’s condition (1.4.11), that is 1− Tr +Det > 0 gives:

(1− (1− E1)e
−(d+a)T+θ)(1− (1− E2)e

−dT+θ) > be−dT+θ[A− (1− E1)e
−aT ],

i.e.

b <
(1− (1− E1)e

−(d+a)T+θ)(1− (1− E2)e
−dT+θ)

e−dT+θ((1− E2) + (E2 − β)e−aτ3 − (1− E1)e−aT )
= b0. (7.4.3)

Using (7.3.4) and (7.4.3), the stability condition (7.4.2) is obtained.
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Accordingly, the pest-free state is locally asymptotically stable for b ∈ (0, b0).

When R0 < 1, all the eigenvalues will lie in unit circle and therefore the pest eradication

is possible. The trajectories in the neighborhood of (0, 0) tend to origin.

When R0 > 1, then one eigenvalue lies outside the unit circle provided

b >
(1− (1− E1)e

−(d+a)T+θ)(1− (1− E2)e
−dT+θ)

e−dT+θ((1− E2) + (E2 − β)e−aτ3 − (1− E1)e−aT )
= b0. (7.4.4)

Thus, for R0 > 1, there is a critical level for birth rate over which pest will persist and

the pest-free state E0 will be unstable. This means that the birth rate b is the crucial

parameter that affects the dynamics of pest-free state.

Remark 7.4.1. When threshold R0 is independent of delayed response as well as

residual effect, i.e. m1 = 0, θ = 0, the threshold condition is obtained as:

RD
0 =

be−dT ((E2 − E1)e
−aτ3 + (1− E2)− (1− E1)e

−aT )

(1− (1− E1)e−(d+a)T )(1− (1− E2)e−dT )
. (7.4.5)

In the absence of residual effect, it can be observed that R0 < RD
0 . If single tactic

(only mechanical control) will be used, the threshold value will increase, which is not

effective for pest control. Therefore, inclusion of residual effects (combination of two

strategies) may transfer unstable pest-free state to a stable state.

The pest-free state E0 is stable if R0 < 1. Since E0 is only fixed point and it is

locally stable if R0 < 1. It is possible that it may be globally stable. The next theorem

proves its global stability.

7.4.2 Global Stability Analysis about Pest-free State

Theorem 7.4.2. The locally asymptotically stable pest-free point E0 is globally asymp-

totically stable in the interior of positive quadrant of x− y plane for the map (7.3.2) if

R0 < 1.

Proof. Consider the positive definite function

V1(xm, ym) = xm + ym.
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Now, computation of ∆V1 and its simplification gives

∆V1(xm, ym) = f(xm, ym) + g(xm, ym)− xm − ym

= (1− E1)e
−(d+a)T+θxm + be−dT+θ[(E2 − E1)e

−aτ3xm + (1− E2)ym

+(1− E2)xm − (1− E1)e
−aTxm]exp[−e−dT+θ(Axm − (1− E2)ym)]

+[Axm + (1− E2)ym − (1− E1)e
−aTxm]e

−dT+θ − xm − ym

≤ [{(1− E1)e
−aT + b{A− (1− E1)e

−aT}+ (1− E1)e
−aT + (1− E2)

−(E2 − E1)e
−aτ3}e−dT+θ − 1]xm + [(1− E2){b+ 1}e−dT+θ − 1]ym.

Further simplification of ∆V1 yields:

∆V1(xm, ym) < −(1−R0)V1(xm, ym) < 0.

Further, ∆V1(0, 0) = 0. Therefore, V1(xm, ym) is negative definite when R0 < 1. Thus,

V1(xm, ym) is a Lyapunov function and pest-free point E0 is globally asymptotically

stable in the positive quadrant of x− y plane.

Remark 7.4.2. The point E0 collides with E
∗. The pest-free fixed point become non-

hyperbolic at R0 = 1 and one of the eigenvalues becomes 1. Further, the map (7.3.2)

may admit transcritical bifurcation about E0 with respect to birth rate parameter

b = b0(R0 = 1).

When the pest-free fixed point is unstable then the interior fixed point exists. In

the next subsection, stability for interior fixed point E∗ will be analyzed. The next

theorem establishes the local stability of E∗.

7.4.3 Local Stability Analysis about E∗

Theorem 7.4.3. Let us assume the constants P and Q as:

P = 2(A− (1− E2)(1− E1)e
−(d+a)T+θ)(1 + (1− E2)(1− E1)e

−(2d+a)T+2θ),

Q = (1− (1− E2)e
−dT+θ)(A+ (1− E1)(1− E2)e

−(d+a)T+θ)(1− (1− E1)e
−(d+a)T+θ).

The non-trivial interior fixed point E∗ = (x∗, y∗) of the system (7.3.2) is locally asymp-

totically stable provided

b0 < b < b0exp(PQ
−1)(= bc). (7.4.6)
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Proof. Using (7.4.1), coefficients of linearized matrix A[E∗] are computed around E∗

as:

a11 = b[A− (1− E1)e
−aT − {C2 − (1− E1)e

−aTx∗}Ae−dT+θ]

×exp[−dT + θ − C2e
−dT+θ] + (1− E1)e

−(d+a)T+θ,

a12 = bexp[−dT + θ − C2e
−dT+θ][1− {C2 − (1− E1)e

−aTx∗}e−dT+θ]× (1− E2),

a21 = (A− (1− E1)e
−aT )e−dT+θ, a22 = (1− E2)e

−dT+θ,

C2 = (E2 − E1)(x
∗e−aτ3 + (1− E2)(x

∗ + y∗).

The trace Tr and determinant Det are computed as:

Tr = be−dT+θ[A− (1− E1)e
−aT − {C2 − (1− E1)e

−aTx∗}Ae−dT+θ]

×exp[−C2e
−dT+θ] + {(1− E1)e

−aT + (1− E2)}e−dT+θ,

Det = (1− E1)(1− E2)e
−(2d+a)T+2θ[1− b0y

∗].

It is observed that condition (1.4.11) and (1.4.13) are always satisfied:

1− Tr +Det = 1− bexp[−dT + θ − C2e
−dT+θ][A− (1− E1)e

−aT

−{C2 − (1− E1)e
−aTx∗}Ae−dT+θ]− (1− E2)e

−dT+θ

+(1− E1)(1− E2)e
−(2d+a)T+2θ[1− b0y

∗]− (1− E1)e
−(d+a)T+θ

= (1− (1− E1)e
−(d+a)T+θ)(1− (1− E2)e

−dT+θ) logR0 > 0,

1−Det = 1− (1− E1)(1− E2)e
−(2d+a)T+2θ[1− b0y

∗] > 0.

The expression 1 + Tr +Det simplifies to:

1 + Tr +Det = 1 + (1− E1)e
−(d+a)T+θ + b0[A− (1− E1)e

−aT − Ay∗]

+(1− E2)e
−dT+θ + (1− E1)(1− E2)e

−(2d+a)T+2θ × [1− b0y
∗]

= (1 + (1− E1e
−(d+a)T+θ)(1 + (1− E2)e

−dT+θ)

+b0[A− (1− E1)e
−aT − Ay∗ + (1− E1)(1− E2)e

−(2d+a)T+2θy∗]

= (1 + (1− E1e
−(d+a)T+θ)(1 + (1− E2)e

−dT+θ)

+(1− (1− E1e
−(d+a)T+θ)(1− (1− E2)e

−dT+θ)

×
[
1− A+ (1− E1)(1− E2)e

−(d+a)T+θ

A− (1− E1)(1− E2)e−(d+a)T+θ
log(R0)

]
.
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Accordingly, Jury’s condition (1.4.12), that is 1 + Tr +Det > 0, gives

R0 < exp

(
2(A− (1− E2)(1− E1)e

−(d+a)T+θ)(1 + (1− E2)(1− E1)e
−(2d+a)T+2θ)

(1− (1− E2)e−dT+θ)(A+ (1− E1)(1− E2)e−(d+a)T+θ)(1− (1− E1)e−(d+a)T+θ)

)
.

(7.4.7)

Therefore, using (7.4.7) with the existence condition b0 < b gives the required condition

(7.4.6).

The next theorem establishes the global stability analysis about E∗.

7.4.4 Global Stability Analysis about E∗

Theorem 7.4.4. The locally asymptotically stable positive interior fixed point E∗ of

the map (7.3.2) is globally asymptotically stable.

Proof. Consider the positive definite function:

V2(xm, ym) = | xm − x∗ | + | ym − y∗ | .

Computing ∆V2 on the same lines as in Theorem 7.4.2 proves that V2 is a Lyapunov

function. This proves the theorem.

Accordingly, when b ∈ (b0, bc), the fixed point E∗ is locally asymptotically stable.

Accordingly, when b ∈ (b0, bc), the fixed point E∗ is locally asymptotically stable. The

trajectories of the system (7.2.4)-(7.2.7) tend to asymptotically stable period-1 solution

(xe(t), ye(t)):

xe(t) = x∗e−(a+d)(t−(m−1)T )+θ, (m− 1)T ≤ t < τm

ye(t) = e−d(t−(m−1)T )+ϕ[y∗ + x∗(1− e−a(t−(m−1)T ))].

xe(t) = (1− E1)x
∗e−(a+d)(t−(m−1)T )+ϕ, τm ≤ t < mT,

ye(t) = [(E2 − E1)x
∗e−(d+a)τ3 + (1− E2)(y

∗ + x∗)e−dτ3 ]e−d(t−τm)+ϕ

− (1− E1)x
∗e−(a+d)(t−(m−1)T )+ϕ.

As b increases beyond b0, E
∗ remains stable until it reaches to the point b = bc.

It may be observed that violation of condition (7.4.6) will lead to instability of

interior fixed point. From the above, it can be concluded that the trajectories of the

system (7.2.4)-(7.2.7) tends to positive period-1 solution in the range b ∈ (b0, bc).
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The period-1 solution, period-2 solution or flip bifurcation and complex dynam-

ical behavior occurs for the conditions b < bc, b = bc and b > bc respectively. Further,

increasing the parameter value b > bc, the fixed point E∗ losses its stability and the

system may exhibit complex dynamics.

7.5 Bifurcation Analysis

To analyze the behavior of bifurcation about E0 following theorem is established:

7.5.1 Transcritical Bifurcation Analysis

Theorem 7.5.1. [Transcritical Bifurcation] The map (7.3.2) undergoes a transcritical

bifurcation at b = b0.

Proof. Consider the map


x

y

→


(1− E1)xe

−(a+d)T+θ + bexp[−(Ax+ (1− E2)y)e
−dT+θ]

×[(Cx+ (1− E2)y)e
−dT+θ]

(Cx+ (1− E2)y)e
−dT+θ

 . (7.5.1)

Let x = u, y = v , b = b1 + b0, b0 =
(1− (1− E1)e

−(d+a)T+θ)(1− (1− E2)e
−dT+θ)

e−dT+θ(A− (1− E1)e−aT )
.

The pest-free point E0 of the map (7.3.2) is transformed to (u, v) and the map (7.5.1)

becomes: u

v

→

 (b1 + b0)℘(Cu+ (1− E2)v)e
−dT+θ + (1− E1)e

−(a+d)Tu

Cu+ (1− E2)ve
−dT+θ

 . (7.5.2)

where ℘ = exp[−(E2 − E1)ue
−(d+al)T+θ − (1− E2)(v + u)e−dT+θ].

The map (7.5.2) can be rewritten as:

 u

v

→M

 u

v

+

 c11u
2 + c12uv + c13v

2 + c14b1u+ c15b1v

0

 ,
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The coefficients of the matrix M = mij2×2 and coefficients cij1×5 are obtained as:

m11 = (1− E1)e
−(d+a)T+θ + Cb0e

−dT+θ, m12 = b0(1− E2)e
−dT+θ,

m21 = (A− (1− E1)e
−aT )e−dT+θ, m22 = (1− E2)e

−dT+θ,

c11 = −b0e−2dT+2θ(A2 − A(1− E2)e
−aT ),

c12 = −b0(1− E2)e
−2dT+2θ((1− E1)e

−aT − 2A), c13 = −b0(1− E2)
2e−2(dT+θ),

c14 = (A− (1− E1)e
−aT + (1− E2)e

−dT+θ, c15 = (1− E2)e
−dT+θ.

The eigenvalues of M are 1 and (1− E1)(1− E2)e
−(a+2d)T+2θ. .

The corresponding eigenvectors V25 and V26 are {v25, 1}T and {v26, 1}T respectively

where v25 =
edT−θ(1− (1− E2)e

−dT+θ)

(A− (1− E1)e−aT )
and v26 =

(1− E2)((1− E1)e
−(d+a)T+θ − 1)

(A− (1− E1)e−aT )
.

Consider the transformation u

v

 = J

 x̄

ȳ

 , J
′
= (V9 V10). (7.5.3)

Using the translation (7.5.3), the map (7.5.1) becomes: x̄

ȳ

→

 1 0

0 λ

 x̄

ȳ

 +

 f1(x̄, ȳ, b1)

f2(x̄, ȳ, b1)

 , (7.5.4)

where

f1(x̄, ȳ, b1) = d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2,

f2(x̄, ȳ, b1) = −f1(x̄, ȳ, b1),

d1 = (1− (1− E1)(1− E2)e
−(a+2d)T+2θ)C−1edT−θ,

d2 = (1− E1)(1− E2)e
−(a+d)T+θ[1− (1− E1)(1− E2)e

−(a+2d)T+2θ]C−1,

d3 = [2c13 + 2c11(1− E2)((1− E1)e
−(d+a)T+θ − 1)(1− (1− E2)e

−dT+θ)C−2edT−θ

+c12(1− 2(1− E2)e
−dT+θ + (1− E2)((1− E1)e

−(d+a)T+θ)e−dT+θ)]C−1edT−θ

×(1− (1− E1)(1− E2)e
−(a+2d)T+2θ)edT−θC−1,

d4 = [c11C
−1(1− (1− E2)e

−dT+θ)2e−dT+θ + c12C
−1(1− (1− E2)e

−dT+θ)e−dT+θ + c13,

d5 = (1− (1− E1)(1− E2)e
−(a+2d)T+2θ)[c12(1− E2)((1− E1)e

−(d+a)T+θ − 1)C−1e−dT+θ

+c11(1− E2)
2((1− E1)e

−(d+a)T+θ − 1)2Cn−2e−2dT+2θ + c13]C
−1.
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The center manifold theorem [69] is used to determine the nature of bifurcation about

E0 at b1 = 0. The center manifold for the map (7.5.1) can be represented as:

wc(0) = {(x̄, ȳ, b1) ∈ ℜ3|ȳ = f(x̄, b1), f(0, 0) = 0, Df(0, 0) = 0}.

Let ȳ = f(x̄, b1) = B0b1 +B1b1x̄+B2x̄
2 +O(|b1|2 + |b1x̄2|+ |x̄|3). The coefficients in ȳ

can be computed as:

B0 = 0, B1 =
−d1

(1− (1− E1)(1− E2)e−(a+2d)T+2θ)
,

B2 =
d4

1− (1− E1)(1− E2)e−(a+2d)T+2θ
.

The map restricted to the center manifold is given by:

f̄ : x̄→ x̄+ f1(x̄, ȳ, b1) = x̄+ d1b1x̄+ d2b1ȳ + d3x̄ȳ + d4x̄
2 + d5ȳ

2

= x̄+ d1b1x̄+ d3
d4

(1− E1)(1− E2)e−(a+2d)T+2θ − 1
x̄3 + d4x̄

2 +O(|b1|2 + |b1x̄2|+ |x̄|4).

Using Theorem 1.4.3, it can be calculated that

∂f̄(0, 0)

∂b1
= 0,

∂2f̄(0, 0)

∂x∂b1
= d1 ̸= 0,

∂2f̄(0, 0)

∂2x
= 2d4 ̸= 0.

Note that, all conditions of transcritical bifurcation are satisfied at (x̄, b1) = (0, 0).

Further, E∗ becomes E0 as b = b0. Hence the map (7.3.2) undergoes to a transcritical

bifurcation between E0 = (0, 0) and E∗ = (x∗, y∗) at b = b0.

The interior fixed point become non-hyperbolic at b = bc and one of the eigen-

values becomes −1. So, there is a possibility of flip bifurcation. To characterize the

nature of the fixed point E∗ at b = bc, following theorem is concluded.

7.5.2 Flip Bifurcation Analysis

Theorem 7.5.2. [Flip Bifurcation] The system (7.3.2) undergoes a flip bifurcation

about E∗ = (x∗, y∗) at b = bc. Moreover, if ā > 0(resp. ā < 0), then period-2 solutions

that bifurcate from this fixed point are stable (resp. unstable).

Proof. Proof is omitted here. It is on the same lines as in previous chapters.
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7.6 Effect of Pesticide Residual Effects with De-

layed Response

The threshold value R0 is

R0 =
be−dT+θ((E2 − E1)e

−aτ3 + (1− E2)− (1− E1)e
−aT )

(1− (1− E1)e−(d+a)T+θ)(1− (1− E2)e−dT+θ)
,

θ = m1

(
(e−a1T − 1)

a1
− (e−c1T − 1)

c1

)
< 0.

The long-term effect of delayed response rate:

lim
c1→∞

R0 =
be−dT+θ0((E2 − E1)e

−aτ3 + (1− E2)− (1− E1)e
−aT )

(1− (1− E1)e−(d+a)T+θ0)(1− (1− E2)e−dT+θ0)
= RR

0 ,

θ0 = m1

(
e−a1T − 1

a1

)
< 0.

This would mean that the larger delayed response gives smaller threshold value. There-

fore, the pest population can be controlled more effectively. Further, the delayed re-

sponse c1 affects the threshold R0. The effects of delayed response on threshold R0 will

be analyzed by taking first order derivatives of the threshold R0 with respect to c1:

dR0

dc1
= −bm1e

−dT+θ((E2 − E1)e
−aτ3 + (1− E2)− (1− E1)e

−aT )

(1− (1− E2)e−dT+θ)2(1− (1− E1)e−(d+a)T+θ)2

× (1 + (1− E1)(1− E2)e
−(2d+a)T+2θ)e−c1T (ec1T − 1− c1T )c

−2
1 < 0.

This would mean that after the increase in critical delayed response, the pest density

will be eradicated otherwise it will vary periodically.

The threshold R0 depends on decay rate a1. The derivatives of R0 with respect to a1

is computed:

dR0

da1
=

bm1e
−dT+θ((E2 − E1)e

−aτ3 + (1− E2)− (1− E1)e
−aT )

(1− (1− E2)e−dT+θ)2(1− (1− E1)e−(d+a)T+θ)2

× (1 + (1− E1)(1− E2)e
−(2d+a)T+2θ)e−a1T (ea1T − 1− a1T )a

−2
1 > 0.

It is noted that an increase in decay rate will enhance the threshold R0. Therefore, as

a1 increase, the threshold R0 goes above unity and pest density will vary periodically.

Therefore, pest eradication is difficult. However, increasing decay rate in sufficient

amount may destabilize the pest-free state. The model parameters m1 is involved in
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the threshold R0. The first order derivatives of the threshold R0 with respect to m1 is

computed as:

dR0

dm1

=
be−dT+θ(1 + (1− E1)(1− E2)e

−(2d+a)T+2θ)

(1− (1− E2)e−dT+θ)2(1− (1− E1)e−(d+a)T+θ)2

(
e−a1T − 1

a1
− e−c1T − 1

c1

)
× ((E2 − E1)e

−aτ3 + (1− E2)− (1− E1)e
−aT ) < 0.

This indicates that R0 is monotonic decreasing function with respect to m1. Sufficient

increase in the killing efficiency rate m1 may stabilize the pest-free state. Therefore,

the threshold R0 become less than unity and the pest can be eradicated successfully.

This is due to the stability of the pest-free state (see Theorem 7.4.1).

7.7 Effect of Mechanical Control

The expression of R0 involves E1 and E2. The first derivatives of R0 with respect to

E1 and E2 are found to be negative:

dR0

dE1

= −be
−dT+θ((1− E2)e

−(d+a)T+θ(1− e−a1lT ) + e−aT − e−alT )

(1− (1− E2)e−dT+θ)(1− (1− E1)e−(d+a)T+θ)2
< 0,

dR0

dE2

= −be
−dT+θ((1− E1)e

−dT+θ(e−aT − e−a1lT ) + 1− e−alT )

(1− (1− E2)e−dT+θ)2(1− (1− E1)e−(d+a)T+θ)
< 0.

R0 is monotonic decreasing function with respect to E1 and E2. Accordingly, harvesting

effort E1 and E2 reduces the threshold R0. Once R0 < 1, pest can be eradicated

successfully.

7.8 Effect of Harvesting Timing τ3

It is necessary that mechanical control will be selected suitably to achieve successful

pest control. The first order derivative of the threshold R0 with respect to harvesting

timing:

dR0

dτ3
= − baT (E2 − E1)e

−dT−aτ3+θ

(1− (1− E2)e−dT+θ)(1− (1− E1)e−(d+a)T+θ)
.

Accordingly, the threshold R0 is a monotonic decreasing function with respect to har-

vesting time τ3, when E2 > E1 and monotonic increasing function when E2 < E1. That

is, if harvesting timing increase from critical t > τ3c,

τ3c =
1

a
ln

[
be−dT+θ(E2 − E1)

(1− (1− E1)e−(d+a)T+θ)(1− (1− E2)e−dT+θ) + be−dT+θ[(1− E1)e−aT − 1 + E2]

]
.
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then pest eradication will occur for E2 > E1. Otherwise, for t < τ3c may destabilize

the pest-free state.

The derivative of y∗ with respect to τ3 is obtained as

dy∗

dτ3
= −aT (E2 − E1)(1− E1)e

−a(τ3+T )(1− (1− E2)(1− α)e−dT+θ)) log(R0)

(A− (1− E2)(1− E1)e−(d+a)T+θ)2

− aT (1− α)(E2 − E1)e
−aτ3

(A− (1− E2)(1− E1)e−(d+a)T+θ)
.

The equilibrium density of mature pest is a decreasing function with respect to parame-

ter l if the harvesting rate of mature pest is greater than the immature pest. Therefore,
dy∗

dτ3
< 0 provided E2 > E1. Accordingly, the mature pest density at equilibrium re-

duces with increase in time delay τ3 of mechanical control.

7.9 Numerical Simulations

In the foregoing sections, the analytical results have been established and qualitative

analysis of the system has been carried out using analytical tools. In this section,

extensive numerical simulations are carried out to illustrate the analytical findings. To

study the effect of delayed response and mechanical control in the model dynamics,

the following data set has been chosen:

a = 0.4, d = 0.2, τ3 = 0.6, a1 = 0.2, c1 = 0.5,m1 = 3, E1 = 0.6, E2 = 0.8. (7.9.1)

In the Table 7.1, for different values of harvesting time τ3, the thresholds R0 and R
D
0 (in

the absence of residual effect) are computed which are responsible for the stability and

existence of fixed points E0 and E∗. For τ3 < 1, in the absence of residual effect, the

condition (7.4.5) for stability of the pest-free state is violated while interior fixed points

exist. Therefore, pest eradication is not possible when chemical control is not applied.

The threshold reduces below less than one by applying chemical control. From the

Table 7.1, it can be observed that the pest-free state stabilizes when m1 ̸= 0. The

condition (7.3.4) for the pest-eradication will be satisfied as R0 < 1. Therefore, the

pest will extinct.
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τ3 0.2 0.4 0.6 0.8 1

R0 0.9781 0.8589 0.7589 0.6474 0.5536

RD
0 1.6075 1.4116 1.2308 1.0639 0.7444

Table 7.1: Numerical simulation for effectiveness of residual effect of pesticide.

τ3 x∗ y∗ b0 bc R0 Analytical Numerical

behavior Behavior

0.0 1.4374 0.1471 9.9398 107.0264 1.4092 E∗ stable Period-1 Solution

0.1 1.2061 0.1203 10.5630 112.9629 1.3254 E∗ stable Period-1 Solution

0.2 0.9577 0.0948 11.2461 119.3825 1.2449 E∗ stable Period-1 Solution

0.3 0.6913 0.0705 11.9913 126.3835 1.1675 E∗ stable Period-1 Solution

0.4 0.4059 0.0476 12.8066 134.0040 1.0932 E∗ stable Period-1 Solution

0.5 0.1001 0.0260 13.7016 142.3428 1.0218 E∗ stable Period-1 Solution

0.6 - - 14.6879 - 0.9532 E0 stable Pest-free Solution

0.7 - - 15.7791 - 0.8872 E0 stable Pest-free Solution

0.8 - - 16.9921 - 0.8239 E0 stable Pest-free Solution

0.9 - - 18.3472 - 0.7631 E0 stable Pest-free Solution

1 - - 19.8696 - 0.7046 E0 stable Pest-free Solution

Table 7.2: Effect of harvesting timing on pest density and stability of pest-free state

for b = 14.

In the Table 7.2, considering τ3 = 0.6, the constant b0 is found as b0 ≈ 14.6879.

For b = 14, the basic reproduction number is computed as R0 = 0.9532. Accordingly,

the pest-free state of the map (7.3.2) is locally asymptotically stable as R0 < 1(b < b0)

(see Theorem 7.4.1) and interior fixed point does not exist. For b > b0 ≈ 14.6879, the

pest-free state becomes unstable as R0 > 1 and interior fixed point E∗ exists.

The bifurcation diagram drawn in Fig. 7.1 verifies the local stability of E0 and

existence of E∗. The diagram has two different color lines. When b < 14.6879, the blue

line shows stable pest-free state and the red line shows that the interior fixed point

does not exists. For b > 14.6879, the blue line shows E∗ will exists and the red line
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shows that line of unstable pest-free state. It is observed that transcritical bifurcation

occurs at b ≈ 14.6879.

0 5 10 15 20 25 30

b

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M
a

tu
re

 p
e

st
 (

y)

Stable E
0

E* exists

E* does not exists

Bifurcation point (b=b
0
)

Unstable E
0

Figure 7.1: Variation of mature pest density versus b.

In Table 7.3, it can be observed that the threshold R0 is greater than 1 for b = 20

and data set (7.9.1). In other words, the pest-free state is unstable for higher birth

rates. The interior fixed point is found as E∗ = (1.4626, 0.0843) for τ3 = 0.6. According

to Theorem 7.4.3., the interior fixed point is locally asymptotically stable for b > b0.

The flip bifurcation will occur at bc ≈ 151.5037. Therefore, the period-1 solution will

occur in 14.6879 < b < 151.5037.

From Table 7.3, it can be observed that the increase in time delay of harvesting

τ3 reduces the immature/mature pest density and the threshold R0. If the time delay

is harvesting is very small i.e. τ3 = 0.1, the reduction in immature and mature pest

densities are 6.78% and 12.31% respectively. When the harvesting effort is applied just

before the birth pulse (i.e. l = 0.9) The reduction is 85.26% and 92.02% of mature

and mature pest densities respectively. The maximum reduction in the immature and

mature pest is 98.86% and 99.43% if the time delay is the same with that of birth pulse

(l = 1). Therefore, the best time of harvesting is just before the births.
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τ3 x∗ y∗ b0 bc R0 Decrease Decrease

in x(in %) in y(in %)

0.0 2.9320 0.2498 9.9398 107.0264 2.0131 - -

0.1 2.7331 0.2190 10.5630 112.9629 1.8934 6.78 12.31

0.2 2.5172 0.1895 11.2461 119.3825 1.7782 14.15 24.14

0.3 2.2834 0.1612 11.9913 126.3835 1.6679 22.12 35.47

0.4 2.0305 0.1342 12.8066 134.0040 1.5617 30.75 46.27

0.5 1.7574 0.1086 13.7016 142.3428 1.4597 40.06 56.53

0.6 1.4626 0.0843 14.6879 151.5037 1.3617 50.12 66.25

0.7 1.1447 0.0614 15.7791 161.6112 1.2675 60.96 75.41

0.8 0.8019 0.0400 16.9921 172.8162 1.1770 72.65 84.011

0.9 0.4322 0.0199 18.3472 185.3035 1.0901 85.26 92.02

1 0.0334 0.0014 19.8696 199.3012 1.0066 98.86 99.43

Table 7.3: Effect of harvesting timing on pest density and stability of interior fixed

point for b = 20.
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Figure 7.2: Variation of R0 versus E1.

The Fig. 7.2 is drawn to show the variations of the threshold R0 with E1 in

the range 0 < E1 < 1 and for fixed values of E2 = 0.2(2)0.8. For E2 = 0.8, the
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threshold R0 is less than one. Accordingly, the pest-free state is stable for all values

of E1. Further, choices of E1 and E2, the threshold R0 will remain less than one. The

pest-eradication is possible for E1 > E1c for a choice of harvesting effort E2 (i.e. for

E2 = 0.4, R0 < 1 when E1 > 0.16 = E1c). Accordingly, the harvesting effort E1 can

stabilize the pest-free state. For E2 = 0.6, the state E0 is unstable if E1 < 0.505 = E1c

and survival state will exist.
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Figure 7.3: Variation of R0 versus E2.

Similarly, in the Fig.7.3, variation of R0 with the harvesting effort E2 in the range

0 < E2 < 1 for fixed values of E1 = 0.2(2)0.8. For E1 = 0.2, the pest-free state E0 is

stable for E2 > 0.58 as R0 is less than one and the state E∗ does not exist. Further,

the state E∗ is expected to be locally stable for E1 = 0.4 in the range E2 > 0.458

as R0 > 1. However, E0 is stable for the range E2 < 0.458 while E∗ does not exist.

Further, the pest-free state E0 stabilizes when the harvesting effort of mature pest E2

exceeds beyond 0.458. Accordingly, the combination of harvesting effort of immature

and mature pest is needed to control the pest. For E1 = 0.6, the threshold R0 is less

than 1 for E2 > 0.347. Further, R0 remains greater than 1 for E2 < 0.347. Accordingly,

pest will eradicated for E2 > 0.347 while the states E∗ does not exist in this range. It is

concluded that the sufficient amount of harvesting efforts of mature and immature pest

are needed to achieve the pest-free state. At R0 = 1, E0 become the non hyperbolic
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fixed points and the fixed points E0 and E∗ collide. Transcritical bifurcation occurs

along the line R0 = 1 as the states E0 and E∗ exchange their stability along this line.
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Figure 7.5: Variation of decay rate and pulses period in T − a1 plane.

In Fig. 7.4, the variation of the threshold R0 with respect to the delayed response

of pesticide c1 and pulse period T is drawn on T − c1 plane keeping other parameters

fixed as in (7.9.1). The green color curve is drawn corresponding to the equation R0 = 1



7.9 Numerical Simulations 189

in (7.3.4) which bifurcates the T − c1 domain into pest eradication state and survival

state. It can be observed that for larger delayed response c1, the threshold R0 will be

less than unity. It is apparent from the Fig. 7.4 that for c1 > 0.36, R0 < 1 for all

values of T and pest can be eradicated successfully. If the delayed rate is sufficiently

small (i.e. c1 < 0.36), pest eradication is possible irrespective of pulse period T . This

emphasizes that the combination of the pulse period and delayed response rate is useful

in reducing the pest load and ultimately to eradicate the pest density.

Similarly, in Fig. 7.5, the effect of decay rate a1 and pulse period T on the

threshold R0 is drawn in T − a1 plane, keeping other parameters fixed as in (7.9.1). It

is evident from the figure that the threshold R0 reduces when the decay rate becomes

smaller irrespective of T . For a fixed value of pulse period, the corresponding decay rate

a1 < a1c is needed to eradicate the pest population. The stable and unstable regions of

pest-free state E0 is divided by the yellow curve(R0 = 1). For a1 < 0.318, the pest-free

state will be stable for all values of pulse period T . Otherwise, for a1 > 0.318, pest

population will vary periodically irrespective of T and R0 becomes greater than one.

Therefore, pest eradication will not possible. Hence, pest eradication is possible for

different combinations of decay rate and pulse period.
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Again in Fig. 7.6, the influence of the parameters T and m1 on the stability
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of the pest-free state E0 has been shown. Clearly, the region in left side of the green

line corresponds to R0 > 1. It is the region of instability of E0. Beyond this, the

pest-free state will become stable and pest will be eradicated. The threshold R0 will

become smaller when killing rate is high for all values of T . This implies that the

pest population can be minimized by making the threshold less than one. For m1 <

1.761, the system may admit periodic solution or more complex dynamical behavior

irrespective of T . Therefore, sufficient amount of killing rate m1 > 1.761 will be

required for pest control.
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Figure 7.7: Effect of chemical control in T −R0 plane.

In Fig. 7.7, variation of R0 and R
D
0 with pulse period T in the range 0 < T < 4.5.

For m1 = 0, the pest-free state remains stable for T < 0.5524 while it become globally

stable for T > 0.5524. Further, when m1 ̸= 0, the pest-free state E0 stabilizes for all

values of pulse period T as R0 < 1. Also, the state E∗ does not exist when the chemical

control is applied. It is observed that in the absence of chemical control (i.e. m1 = 0),

for the data set (7.9.1), the threshold for pest eradication increases than that has been

obtained by the chemical control.

A set of the bifurcation diagrams has been plotted with the delayed response

rate c1 in Fig. 7.8 a-d taking b = 20, 60, 180, 540, while other parameters are fixed

as in (7.9.1). From these figures, it can be easily observed that complexity increases
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with the increase of birth rate parameter b. The pest-free state becomes stable after a

certain value of c1, say c1k in Fig. 7.8(a). In this figure, the pest will be eradicated for

c1 > 0.747 = c1k, confirming the result obtained in Theorem 7.4.1. Thereby indicating

a critical value of delayed response pest can be effectively controlled. A period halving

cascade can be observed in Fig. 7.8(d). These observations suggest that delayed

response can play a crucial role in eliminating the pest from the field.

(a) (b)

(c) (d)

Figure 7.8: Bifurcation diagrams of the map (7.3.2) for total pest population with

respect to c1 at (a) b = 20 (b) b = 60 (c) b = 180 (d) b = 540.
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(a) (b)

(c) (d)

Figure 7.9: Bifurcation diagrams of the map (7.3.2) for total pest population with

respect to τ3 at (a) c1 = 0.3 (b) c1 = 0.54 (c) c1 = 0.7 (d) c1 = 0.95.

Another set of bifurcation diagrams has been plotted with the parameter τ3 in

Fig. 7.9 for c1 = 0.3, 0.54, 0.7, 0.95 and other parameters are fixed as in the data set

(7.9.1). No chaotic behavior is observed in these figures. The threshold for pest-free

state decreases with increase of parameter c1, the delayed response rate of pesticide

in Fig. 7.9(a), the delayed response rate would be not enough to eliminate the pest.
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In other figures, the increase in delayed response rate decreases the harvesting time

required to eliminate the pest. This occurs due to the long-term effectiveness of the

residual effect. Further, delay in harvesting, the period-1 solution will lead to stable

pest-free state where pest can be eliminated after a certain value of τ3 say τ3k. Further,

τ3k decreases with increase in c1. The pest will be eradicated when τ3 > 0.954 ≈ τ3c.
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Figure 7.10: Lyapunov exponents of the map (7.3.2) with respect to c1 for b = 540.

The Lyapunov exponents with respect to delayed response rate c1 have been

shown in Fig. 7.10 for b = 540 and other parameters are fixed as in the data set

(7.9.1). The Blue color shows the largest Lyapunov exponent (say LE1) and red color

shows the smallest Lyapunov exponent(say LE2). It can be easily observed that LE2 is

always negative. Further, LE1 is zero for some values of c1. Therefore, the map (7.3.2)

is dissipative.

Further, the Lyapunov dimension of chaotic attractor obtained in the map (7.3.2)

is computed by the formula of Kaplan and Yorke [104] as:

DL = j +
1

|λj+1|

j∑
i=1

λi. (7.9.2)

The results for the system dynamics are summarized in Table 7.4.
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Table 7.4: Lyapunov exponents and behavior of the system (7.3.2)

.

Parameter Parameter Lyapunov exponent DL Dynamical

varied Value behavior

c1 ∈ (0, 0.2554] c1 = 0.1 LE1=0.27203, 1.1549 Strange attractor/

LE2=-1.75619 Chaos

c1 ∈ (0.125, 0.128) c1 = 0.126 LE1=-0.18675, 0 Periodic window

LE2=-1.66242

c1 ∈ (0.2554, 1] c1 = 0.474 LE1=0, 1 Quasi-Periodic

LE2=-2.04691 Solution/Torus

c1 = 0.8 LE1=-4.87948, 0 Stable Periodic

LE2=-2.08672 Solution

A set of the bifurcation diagrams has been plotted in the Fig. 7.11 with respect

to the parameter E2 for b = 15, b = 45, b = 135, b = 405 while other parameters are

fixed as in the data set (7.9.1). In these figures it is observed that the complexity of

the system increase with an increase in birth rate. In the Fig. 7.11(b)-Fig. 7.11(d),

increases in the birth rate increases the threshold for pest-free solution and therefore,

pest eradication is not possible. This happens due to the fact that more and more

pest are produced with an increase in birth rate b. In the Fig. 7.11(a), for the smaller

birth rate b = 15, pest can be controlled for higher harvesting rate. The pest can be

eliminated for a critical level of harvesting effort E2 > 0.805.

The bifurcation diagrams are plotted in the Fig. 7.12 with respect to the pulse

period T for b = 540, b = 740, b = 940, b = 1040 while other parameters are fixed as in

the data set (7.9.1). In these figures, it can be noted that the threshold for pest eradi-

cation increases, with the increase in the birth rate parameter b. The regular/irregular

behavior will lead to stable pest-free state after a critical value of pulse period T say

Tk. As b increase, critical level for pest eradication Tk increase. If the pulse period

exceeds beyond T > Tk, then the pest can be effectively controlled. The pest-free state

stabilizes for T > 5.4 ≈ Tk when b = 1040. Further, with an increase in birth rate, the

complexity of the system increases. In this case, too, periodic doubling and periodic
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halving cascade can be observed.

(a) (b)

(c) (d)

Figure 7.11: Bifurcation diagrams of the map (7.3.2) for total pest population with

respect to E2 at (a) b = 15 (b) b = 45 (c) b = 135 (d) b = 405.
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(a) (b)

(c) (d)

Figure 7.12: Bifurcation diagrams of the map (7.3.2) for total pest population with

respect to pulse period T at (a) b = 540 (b) b = 740 (c) b = 940 (d) b = 1040.

7.10 Discussion

In this chapter, the dynamics of stage-structured pest control model with birth pulses

has been formulated and analyzed through the impulsive system. A time-dependent
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the impulsive control strategy for chemical control is used. The model incorporates

the residual effect with the delayed response of pesticide. The existence condition for

periodic solution and stability conditions for two fixed points have been obtained. The

critical level of time delay in harvesting τ3 has been obtained which is found to be

responsible for pest extinction. It is also found that large value of time delay stabilizes

the pest-free state. Further bifurcation plots for relevant parameters have been drawn

to analyze the stable and the unstable domain of the pest-free state. It is concluded

that the pest-free state can be obtained if R0 < 1 provided birth rate gets lower than

a critical level.

The pest-free state stabilizes when time delay exceeds beyond a critical level.

Otherwise, pest density varies periodically. This implies that when τ3 < τ3c the pest

could not be eradicated and may occur in a periodic manner. This may happen due

to early harvesting of the pest population. It is observed from numerical simulations

that increasing delayed response to a sufficient level stabilizes the pest-free state.

On the other hand, when the decay rate is greater than a critical level, the

interior fixed point exists. However, the state E0 is unstable. Further, it is found that

increasing harvesting effort of mature pest reduces the complexity of the system and

pest can be eradicated completely. By numerical simulation, it is found that there

exists transcritical bifurcation, flip bifurcation, period-halving bifurcation and chaotic

behavior.
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Chapter 8

Integrated Pest Management

Strategy in a Birth Pulse Pest

Control Model with Impulsive

Toxin Input

8.1 Introduction

Many single or multiple populations models have been developed and studied exten-

sively assuming continuous input of toxicant [76, 197, 198, 200]. Some population

models have been investigated incorporating impulsive input of toxicant [128, 136].

Few mathematical models incorporate the effects of pollutants from industry/ house-

holds/ other sources on the biological species as well as on the environment [85, 98].

The effect of impulsive toxin input on a predator-prey system in a polluted environ-

ment has been investigated by X. Yang et al. [235]. The effect of pulse toxicant input

into a polluted environment on a two-species competition system has been discussed

by B. Liu et al. [135]. B. Liu et al. investigated the effects of impulsive toxicant input

on two-species Lotka-Volterra system [128]. S. Cai discussed the effect on a stage-

structured single species model with pulse input into a polluted environment [25]. The

pesticides not only kill the pest instantaneously, but it has long time effects on the

pest as well as on the environment. The mathematical models for the polluting effect

199
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of the pesticide have been developed and analyzed [31, 133]. It can be pointed that

the effects of the toxicant on the biological species are impulsive while the pest growth

is continuous in these models. The effect of continuous toxin input with birth-pulse

single-species model and pulse harvesting was studied by Y. Ma et al. [148]. But, the

effect of toxin input is continuous, not impulsive.

In this chapter, a mathematical model for controlling the pest with pesticide

spray is developed combining the effect of pesticide present in the environment as well

as the pesticide uptake by the pest. The presence of toxin in the environment reduces

the growth rate of the pest. The reduction in the growth rate of the pest may affect

the dynamics of the system. The model has been analyzed mathematically as well as

numerical simulations have been carried out to study the complex dynamical behaviors.

8.2 Model Formulation

A pest control model with toxin(pesticide) input due to pesticide spray in the environ-

ment is formulated under the following assumptions:

• x(t), C0(t) and CE(t) represent the pest density, the concentration of toxicant

in the pest and the concentration of toxicant in the environment at the time t

respectively,

• Due to uptake of the toxicant from the environment, the pest density declines at

a constant rate r which depends upon x(t) as well as C0(t). Let constant d be the

natural death rate of the pest. The pest density is controlled by its harvesting

at the rate E > 0,

• kCE(t) represents the absorbing rate of the toxicant by the pest from the envi-

ronment. The excretion and depuration rates of the toxicant from the pest are

gC0(t) and cC0(t) respectively,

• The depletion rate of toxicant from the environment is hCE(t),

• The toxicant entered into the environment impulsively by the constant rate µ at

the time t = mT , m = 1, 2, 3...,
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• The growth rate B(x(t)) of the pest occurs in pulses. It is assumed that the pest

reproduce in pulses periodically with period T at different fixed times t = mT ,

• Birth pulse and impulsive toxical input are synchronized at time t = mT ,

• All model parameters are positive constants.

The dynamics of a pest control system with impulsive toxin input and birth pulse is

writhen as:

dx

dt
= −rC0(t)x(t)− dx(t)− Ex(t),

dC0(t)

dt
= kCE(t)− gC0(t)− cC0(t),

dCE(t)

dt
= −hCE(t),

 t ̸= mT, (8.2.1)

x(mT )+ = x(mT ) +B(x(mT ))x(mT ),

C0(mT )
+ = C0(mT ),

CE(mT )
+ = CE(mT ) + µ

 t = mT. (8.2.2)

Here, x(mT )+, C0(mT )
+ and CE(mT )

+ are the biomass of the population just after

the birth pulse. Equation (8.2.2) represents the synchronous birth pulse and toxin

input at time t = mT . The period of the exogenous input of the toxicant and periodic

birth is T . The initial distribution of state variables at the time t = 0 associated with

the system (8.2.1)− (8.2.2) are:

x(0) = xi > 0, C0(0) = C0i > 0, CE(0) = CEi > 0. (8.2.3)

The birth function B(N) is assumed to be of Ricker type [186] as:

B(x) = be−x. (8.2.4)

The dynamics of impulsive pest control system is defined on the set:

ℜ3
+ = {(x,C0, CE) ∈ ℜ3 | x ≥ 0, C0 ≥ 0CE ≥ 0}.

Remark 8.2.1. For 0 ≤ C0(t), CE(t) ≤ 1, it is compulsory that

g ≤ k ≤ g + c.

The detailed analysis can be found in [85].
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8.3 Model Analysis

Let x(t) = xm−1, C0(t) = C0m−1, CE(t) = CEm−1 be the pest density, toxicant con-

centration in the pest and toxicant concentration in the environment at t = (m− 1)T

respectively. The analytical solution of the differential equations of system (8.2.1)

between the pulses (m− 1)T ≤ t < mT is obtained as:

x(t) = xm−1e
D,

C0(t) = C0m−1e
−(g+c)(t−(m−1)T ) +

kCEm−1(e
(−h(t−(m−1)T )) − e−(g+c)(t−(m−1)T ))

(g + c− h)
,

CE(t) = CEm−1e
(−h(t−(m−1)T )), (m− 1)T ≤ t < mT, (8.3.1)

D = −krCEm−1

g + c− h

(
1− e−h(t−(m−1)T )

h
− 1− e−(g+c)(t−(m−1)T )

g + c

)
,

−(d+ E)(t− (m− 1)T )− rC0m−1T (1− e−(g+c)(t−(m−1)T ))

g + c
.

The following map can be obtained from (8.3.1) by applying impulsive conditions

(8.2.2):

xmT = xm−1e
D1(1 + be−x(m−1)T eD1 ) = f(xm−1, C0m−1, CE(m−1),

C0mT = C0m−1e
−(g+c)T +

kCEm−1(e
−hT − e−(g+c)T )

(g + c− h)
= g(xm−1, C0m−1, CEm−1),

CEmT = CEm−1e
−hT + µ = ψ(xm−1, C0m−1, CEm−1), (8.3.2)

D1 = −rC0m−1(1− e−(g+c)T )

g + c
− krCEm−1

g + c− h

(
1− e−hT

h
− 1− e−(g+c)T

g + c

)
−(d+ E)T.

The map (8.3.2) constitutes the difference equations. These equations describe the pest

density, toxicant concentration in the pest and toxicant concentration in the environ-

ment at mth pulse in terms of values at previous pulse. This is stroboscopic sampling

at the time when birth pulse and toxin input in the environment occurs. For the Ricker

Function, the dynamical behavior of the system (8.2.1) − (8.2.2) will be given by the

dynamical behavior of the map (8.3.2) coupled with system (8.3.1).

The intrinsic net reproductive number R0 denotes the average number of offspring

that a pest produces over the period of its life span. Define:

R0 =
b

exp

[
dT + ET +

krµ

h(g + c)

]
− 1

=
b

b0
. (8.3.3)
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8.3.1 Existence of Fixed Points

The fixed points of the map (8.3.2) are obtained by solving the system

x = f(x,C0, CE), C0 = g(x,C0, CE), CE = gψ(x,C0, CE).

Accordingly, the fixed points can be obtained as follows:

1. The pest-free state E0 = (0, C0, CE) is obtained as:

C0 =
kµ(e−hT − e−(g+c)T )

(1− e−hT )(g + c− h)(1− e−(g+c)T )
,

CE =
µ

1− e−hT
.

2. The non-trivial interior fixed point E∗ = (x∗, C0, CE) is obtained as:

x∗ = exp

[
dT + ET +

krµ

h(g + c)

]
log(R0).

Remark 8.3.1. The interior fixed point E∗ exists for R0 > 1, for biological feasible

choices of parameters.

Remark 8.3.2. If R0 = 1 then positive interior fixed point collides with the pest-free

fixed point, i.e. E∗ = E0.

8.3.2 Local Stability Analysis of Fixed Points

Let X = (x,C0, CE) be any arbitrary fixed point. The local stability about the feasible

fixed points is based upon the standard linearization technique corresponding to (8.3.2)

about X = (x,C0, CE) is given by:

Xm = AXm−1. (8.3.4)

where A is the linearized matrix. The fixed point of the system is stable if the eigen-

values λi, i = 1, 2, 3 are less than 1 in magnitude.

Theorem 8.3.1. The pest-free state E0 = (0, C0, CE) is locally asymptotically stable

provided

b < exp

[
dT + ET +

krµ

h(g + c)

]
− 1(= b0)(orR0 < 1). (8.3.5)
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Proof. The coefficients of linearized matrix A are evaluated about the pest-free point

E0 = (0, C0, CE) as:

a11 =
(1 + b)

exp

[
dT + ET +

krµ

h(g + c)

] , a22 = e−(g+c)T ,

a23 =
k(e−hT − e−(g+c)T )

g + c− h
, a21 = 0, a31 = 0, a32 = 0, a33 = e−hT .

Also, the linearized matrix A is the triangular matrix therefore there is no need to find

other terms. The eigenvalues of the matrix A are

λ1 = (1 + b)exp

[
− dT − ET − krµ

h(g + c)

]
, λ2 = e−gT , λ3 = e−hT .

It can be easily concluded that λ2 < 1 and λ3 < 1. The fixed point is stable if all the

absolute eigenvalues are less than one. Therefore, the pest-free state E0 is stable if the

condition (8.3.5) is satisfied.

Accordingly, the pest-free fixed point E0 is locally stable for b ∈ (0, b0). The

trajectories in the neighborhood of E0 tend to C0 − CE plane and the pest will be

eradicated. Thus, the pest eradication is possible when R0 < 1. However, when the

condition R0 < 1 is not satisfied, the pest-free state is locally unstable.

Remark 8.3.3. The stability condition of pest-free state E0 guarantees the non-

existence of E∗.

Remark 8.3.4. The pest-free state will become non-hyperbolic at b = b0(R0 = 1).

There is a possibility of transcritical bifurcation. Also, at this point E0 collides with

E∗.

Remark 8.3.5. The condition (8.3.5) can be re-written in terms of a threshold Ec on

the harvesting rate:

E >
1

T
(log(b+ 1)− dT − krµ

h(g + c)
) = Ec. (8.3.6)

The next theorem analyzes the stability of interior fixed point:

Theorem 8.3.2. The non-trivial fixed point E∗ = (x∗, C∗
0 , C

∗
E) is locally asymptotically

stable provided

b0 < b < b0exp

[
2exp

(
dT + ET +

kµr

h(g + c)

)
b−1
0

]
= bc. (8.3.7)
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Proof. The coefficients of the linearized matrix A of the map (8.3.2) around the fixed

point E∗ = (x∗, C∗
0 , C

∗
E) are computed as:

a11 = 1−

(
1− exp

[
− dT − ET − krµ

h(g + c)

])
log(R0), a22 = e−(g+c)T ,

a23 =
k(e−hT − e−(g+c)T )

g + c− h
, a21 = 0, a31 = 0, a32 = 0, a33 = e−hT .

The linearized matrix A is again a triangular matrix. Its eigenvalues are

λ1 = 1−

(
1− exp

[
− dT − ET − krµ

h(g + c)

])
log(R0), λ2 = e−gT−cT , λ3 = e−hT .

It can be easily concluded that λ2 < 1 and λ3 < 1. The fixed point is stable if all the

absolute eigenvalues are less than one. Therefore, the stability condition of the positive

interior fixed point is obtained as (8.3.7). Further, the threshold condition for stability

is b0 < b < bc.

Also, when b0 < b < bc, the trajectories of the system (8.2.1) − (8.2.2) tends to

asymptotically stable period-1 solution (xe, C0e, CEe)

xe(t) = x∗eD2 ,

C0e(t) = C∗
0e

−g(t−mT ) +
kC∗

E(e
(−h(t−mT )) − e−(g+c)(t−mT ))

(g + c− h)
,

CEe(t) = C∗
Ee

(−h(t−mT )),

D2 = −(d+ E)(t−mT )− rC∗
0(1− e−g(t−mT ))

g + c

− krC∗
E

g + c− h

(
1− e−h(t−mT )

h
− 1− e−(g+c)(t−mT )

g + c

)
,

If b > bc, E
∗ is unstable and a small density of the pest population will be increased

from E∗. Further, increasing the parameter value b, the non-trivial fixed point E∗

losses its stability and the system may exhibit complex dynamics.

Remark 8.3.6. The interior fixed point will become non-hyperbolic at b = bc and

there exists a flip bifurcation. As, at this point b = bc, when one of the eigenvalues

becomes −1.

8.4 Numerical Simulations

The numerical simulations have been carried out in the system (8.2.1) − (8.2.2). The

possibility of existence of the periodic solutions and chaotic solutions of the systems
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has been explored. Consider the following parameter set:

c = .2, d = 0.4, g = 1, h = 1.5, k = 1, r = 2, E = 0.5, µ = 0.25. (8.4.1)

Considering T = 1.0 and parameter set (8.4.1), the constant b0 is computed as b0 =

2.2472. The necessary condition (8.3.5) for the stability of pest-free state is satis-

fied for b < 2.2472. According to Theorem 8.3.1, the pest free fixed point E0 =

(0, 0.11978, 0.3218) of the map (8.3.2) is locally asymptotically stable for b < 2.2472.
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Figure 8.1: (a) Time series (b) Phase plane showing stability of pest-free state of the

system (8.2.1)− (8.2.2) at b = 1.

Fig. 8.1 displays the stable dynamics of the system (8.2.1) − (8.2.2). The solu-

tion converges to the origin showing the pest-extinction. This means that the system

(8.2.1)− (8.2.2) is locally asymptotically stable around the pest-free state.

Considering b = 10, in this case, the basic reproduction number is obtained as

R0 = 4.44998 > 1. According to the Theorem 8.3.1, the pest-free state of the map

(8.3.2) is unstable as b > b0 (R0 > 1) . Further, the map (8.3.2) admits a locally

stable non-trivial fixed point E∗ = (2.1053, 0.11978, 0.3218) for 2.2472 < b < 40.4344

(Theorem 8.3.2). The transcritical bifurcation occurs at b = 2.2472. The system

(8.2.1)− (8.2.2) has stable period-1 solution (see Fig. 8.2).
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Figure 8.2: (a) Time series (b) Phase plane showing stability of period-1 solution of

the system (8.2.1)− (8.2.2) at b = 3.

Figure 8.3: Variation of b with T .

In Fig. 8.3, the curve b = b0 and b = bc corresponding to equation (8.3.3) and

(8.3.7) respectively, are drawn on T − b plane, keeping other parameters as in (8.4.1).
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This curve bifurcates T − b domain into pest eradication, stable period-1 solution and

periodic/chaos regions. In this figure, region of periodic solutions/chaos is shown in

black color, while the region of stability is shown by dark-grey color. Due to lower

birth, the pest population goes into extinction. This is observed in the region shown

in light-grey.

Figure 8.4: Bifurcation diagram of the map (8.3.2) versus pest population with respect

to the parameter b.

Table 8.1: Behavior of the impulsive system (8.2.1)− (8.2.2).

Parameter varied Parameter Value Dynamical behavior Figure

b < 2.2472 b = 1 Pest-free Solution Fig. 8.1

b ∈ (2.2472, 40.4344) b = 3 Period-1 Solution Fig. 8.2

b ∈ (40.4344, 125.6) b = 50 Period-2 solution Fig. 8.5

b ∈ (125.6, 174.59) b = 150 Period-4 solution Fig. 8.6

b ∈ (174.59, 186.41) b = 180 Period-8 solution Fig. 8.7

b ∈ (186.41, 285.13) b = 250 Chaotic attractor Fig. 8.8

To study the complex dynamical behavior, the typical bifurcation diagram is

drawn for the pest with respect to critical parameter b in Fig. 8.4. The diagram shows
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the existence of chaos through period doubling route. The chaotic region is followed by

a region of the period-3 solution in the interval b ∈ (487.29, 666.1) which again becomes

chaotic through period-doubling.

Variety of dynamical behaviors, including periodic solution/chaotic attractor will

appear for different values of b. The observations are summarized in Table 8.1. The

cascades of period-doubling are observed in the bifurcation diagram which is the route

to chaos in the system.
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Figure 8.5: (a) Time series (a’) Phase portrait showing Period-2 solution of the system

(8.2.1)− (8.2.2) at b = 50.
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Figure 8.6: (a) Time series (a’) Phase portrait showing Period-4 solution of the system
(8.2.1)− (8.2.2) at b = 150.

The chaotic regions of Fig. 8.4 are separately blown up in Fig. 8.9. The rich

dynamical behavior is clearly visible, including stability, period-doubling, narrow and

wide periodic windows, crises and chaos. Accordingly, the attractors are drawn in

Fig. 8.10 at b = 400 and b = 950 are strange attractors. The crises are shown in the

neighborhood of b = 300 in Fig. 8.11.
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Figure 8.7: (a) Time series (a’) Phase portrait showing Period-8 solution of the system
(8.2.1)− (8.2.2) at b = 180.
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Figure 8.8: (a) Time series (a’) Phase portrait showing chaotic attractor of the system
(8.2.1)− (8.2.2) at b = 250.

Figure 8.9: The magnified parts of the bifurcation diagram 8.4 in b ∈ (200, 400).
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Figure 8.10: Chaotic attractors of the system (8.2.1)−(8.2.2) at (a) b = 400 (b) b = 950.
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Figure 8.11: Emergence of crises of the system (8.2.1) − (8.2.2) at (a) b = 285 (b)

b = 290 (c) b = 295.

Fig. 8.12 depicts the bifurcation diagrams with respect to E for a range of

values of b keeping other parameters fixed as mentioned in (8.4.1). It can be observed

from these figures that overall complexity increase with an increase in birth rate b. The

appearance of period-doubling and period-halving cascade can be observed. For b = 50,
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b = 150, b = 180, b = 182, periodic solutions occurs while the chaotic behavior does

not appear. Period of oscillatory solution increases with the increase in the parameter

value of b. For b = 185, Fig. 8.12(e) shows the appearance of chaos in a range value of

E. For b = 200, a chaotic solution may arise for bigger range of harvesting rate of E

see Fig. 8.12(f). Very narrow periodic windows can be observed in Fig. 8.12(e) and

Fig. 8.12(f). These figures imply that the harvesting rate should be low/high enough

to control the pest. Also, it can be observed that the higher birth rate is responsible

for the pest outbreak.

(a) (b) (c)

(d) (e) (f)

Figure 8.12: Bifurcation diagrams of the map (8.3.2) versus pest population with

respect to E at (a) b = 50 (b) b = 150 (c) b = 180 (d) b = 182 (e) b = 185 (f) b = 200.

Now, the effect of impulsive toxicant input in the environment has been explored.

In Fig. 8.13, bifurcation diagram is drawn with respect to key parameter µ for the
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choice of the parameters as in (8.4.1). Initially, the solution is chaotic. The sensitivity

of the solution to initial condition is checked for the range 0 < µ < 0.32. The solution

is observed to be sensitive. The sensitivity to initial conditions shows the system is

chaotic. Further, the periodic nature of the solution is evident in the range 0.34 <

µ < 0.41 and when 0.32 < µ < 0.34 multi-periodicity can be observed. Also, periodic

halving behavior can be observed. It may be observed that for a lower input rate of

toxicant, the pest will persist. But as the toxicant rate increases, the system is well

behaved.

Figure 8.13: Bifurcation diagram of the map (8.3.2) versus pest population with respect

to impulsive toxin input µ at b = 250.

In Fig. 8.14, bifurcation diagram of the pest population against parameter h

is drawn in the interval 0 < h < 1 with b = 250 while all parameters are fixed as

in (8.4.1). From, this figure, it can be easily observed that complexity increases with

increase in parameter h. A period-doubling cascade can be observed. The periodic

solution becomes chaotic after a certain value of h, say hc. Further, the pest will

extinct for h < 0.1 (≈ hk) < hc confirming the result as obtained in Theorem 8.3.1.

The sufficiently small toxicant removal from the environment may eradicate the pest

successfully. Therefore, indicating a critical value for toxicant removal from the envi-

ronment may responsible for the pest elimination. These observations suggest that the
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rate of change of toxicant from the environment can play a crucial role in eliminating

the pest.

Figure 8.14: Bifurcation diagram of the map (8.3.2) versus pest population with respect

to h at b = 250.

8.5 Discussion

In this chapter, an impulsive differential model for pest control has been formulated

and analyzed. It is also assumed that a constant amount of toxicant enters from the

environment at a specific interval of time. The critical values of birth rate b0 and bc

are obtained. It can be concluded that b < b0 the pest can be effectively controlled.

When the harvesting effort increases beyond the critical value Ec then the pest will

be eradicated. Numerical simulations have been carried out for resulting impulsive

system which reveals that the impulsive system have a variety of dynamical properties

including complex dynamical behavior. It can be concluded from the numerical simu-

lation that for h < hk and b < b0, the pest can be eradicated. Further, for birth rate b

and removal rate of toxicant h satisfying b > b0 and h > hk respectively, the pest will

persist.



Chapter 9

Dynamics of Integrated Pest

Management System with State

Dependent Control

9.1 Introduction

Many impulsive models that incorporate various IPM strategies have been discussed

[64, 137, 147, 178, 216, 217, 233]. These strategies include periodic spraying of pes-

ticides [125] and/or release of natural enemies of pest [158, 170, 185]. These are

applied at predetermined times, irrespective of the state of the system at that time. In

recent years, several researchers have started paying attention to another control mea-

sure based on the state feedback control strategy in which control tactics are applied

when the population reaches a threshold level [91, 92, 94, 95]. The state-dependent

methods are more effective and economical for pest control [169, 237, 244]. However,

state-dependent impulses have been relatively less studied due to underlying difficul-

ties in analyzing state dependent control systems [12, 202]. Dynamics of impulsive

pest control models incorporating state-dependent strategy have been addressed in

[214, 229].

When biological control is applied delay differential equations are formulated

to incorporate discrete time delay due to the gestation/maturation time of natural

enemy. Very few models are available incorporating delay and state-dependent impulses

215
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[43, 44]. Due to the time delay in the non-autonomous delay differential equations, a

stable equilibrium can become unstable and have complex dynamics [36, 60, 143]. It

is an important component in pest management systems. Anuraj et al. have discussed

State-dependent impulsive control of a prey-predator system with gestation delay [203].

In this chapter, an integrated pest control model with state-dependent feedback

control is considered. It is assumed that the natural enemy is introduced to anni-

hilate the pest. Chemical control is also applied affecting pest as well as a natural

enemy. Control is applied when the pest density reaches a critical level. The problem

is formulated as a state-dependent impulsive pest-natural enemy system. The model

also incorporates a delay due to maturation of natural enemy. The dynamic of the

underlying model is analyzed and numerical simulations are performed.

9.2 The Mathematical Model

Let x(t) and y(t) be the respective densities of prey and predator at the time t. The

predator is taking food from the prey. The predator-prey model is considered with

Holling type II functional response and maturation delay in predator dynamics. The

mortality rate of the predator in the absence of prey is assumed to be constant. Assum-

ing logistically growing prey, the predator-prey dynamics is governed by the following

system of equations:

dx

dt
= x(1− x)− ax(t)y(t− τ)

x(t) + k
,

dy

dt
=

rx(t)y(t− τ)

x(t) + k
)− dy(t). (9.2.1)

The above system is subjected to the initial conditions

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ) ∀ θ ∈ [−τ, 0],

(ϕ1, ϕ2) ∈ C([−τ, 0],ℜ2
+), ϕi(0) ≥ 0, i = 1, 2..

All model parameters have usual meaning and assumed to be positive.

Many investigations have been made on the model (9.2.1). The delay model

(9.2.1) has equilibrium point (0, 0) which is saddle [55]. Also, the complex dynamical

behavior has been observed due to delay. In the scenario of pest management, for the
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system (9.2.1), there is no stable pest-eradication solution and such types of approaches

are not effective for pest control. The model (9.2.1) is modified with state-dependent

impulsive strategies and integrated pest management. The chemical, as well as biolog-

ical control, are applied. The model formulation considers following assumptions:

• Pest is controlled by poisoning (or catching) pest population and releasing its

natural enemy. The control is applied when the pest population reached at

threshold value l at the time ti(l), i = 1, 2, 3, .... . At such times, a constant

fraction µ of natural enemies are released increasing its density instantaneously.

• The pesticide spray instantaneously kills a portion of pest and natural enemy.

No residual effect is considered for pesticide. Accordingly, the pesticide spray is

modeled as impulsive phenomenon. As pesticides affect pest and natural enemy

differently, therefore the respective killing rates are α and β <, 0 < α, β < 1.

Chemical and biological control are applied concurrently at t = ti(l) then the

impulsive conditions become:

x(t)+ = (1− α)x(t), y(t)+ = (1− β + µ)y(t), x(t) = l.

The dynamics of the impulsive pest control system with state dependent strategy is

defined on the set ℜ2
+ = {(x, y) ∈ ℜ2 | x ≥ 0, y ≥ 0} with positive model parameter.

The IPM model with above assumptions is modeled by the following impulsive system:

dx

dt
= x(1− x)− ax(t)y(t− τ)

x(t) + k
= F1(x(t), y(t)),

dy

dt
=
rx(t)y(t− τ)

x(t) + k
)− dy(t) = F2(x(t), y(t)),

x(t) ̸= l, (9.2.2)

x(t)+ = (1− α)x(t),

y(t)+ = (1− β)y(t) + µy(t),

x(t) = l. (9.2.3)

The dynamical properties for solutions of the system (9.2.2) − (9.2.3) are discussed

under the assumptions that µ is a control parameter for fixed α, β and l. In this

chapter, it is assumed that l < 1 because the maximum carrying capacity of the pest

is 1.
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9.3 Preliminary Analysis

Some preliminary results are stated to show that the model is well behaved. It may

be considered that F1(x, y) and F2(x, y) are piecewise continuously differentiable func-

tions then the pest control impulsive system (9.2.2) − (9.2.3) has non-negative initial

conditions.

9.3.1 Boundedness

Theorem 9.3.1. The system (9.2.2)− (9.2.3) has an ultimately bounded solution.

Proof. The first equations of system (9.2.2) and (9.2.3) gives:

dx

dt
≤ x(t)(1− x(t)), x(t) ̸= l,

x(t)+ = (1− α)x(t), x(t) = l.

Let x = x̂(t) be the solution of the following impulsive differential equation

dx̂(t)

dt
= x̂(t)(1− x̂(t)), x̂(t) ̸= l,

x̂(t)+ = (1− α)x̂(t), x̂(t) = l,

x̂(0) = ϕ1(0).

Solving the above system between tk ≤ t ≤ tk+1, k = 1, 2, 3, 4, ...

x̂(t) =
(1− α)le(t−tk)

1− (1− α)l + (1− α)le(t−tk)
< 1.

The pest population just after (k + 1)th pulse becomes

x̂(tk+1) =
(1− α)

1− (1− α)lb

(1− α)le(tk+1−tk)
+ b

< 1− α < 1.

Hence, it can be observed x̂(t) < 1. The standard comparison theorem of impulsive

differential equation [12] yields:

lim sup
t→∞

x(t) ≤ 1.

Hence, x(t) of the system (9.2.2)− (9.2.3) is bounded for t→ ∞. The second equation

of the system (9.2.2) and impulsive condition (9.2.3) gives:

dy

dt
=

rx(t)y(t− τ)

x(t) + k
)− dy(t), x(t) ̸= l,

y(t)+ = (1− β)y(t) + µy(t), x(t) = l.
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Let ŷ(t) be the solution of the above impulsive differential equation and for x(t) ≤ 1:

dŷ(t)

dt
<
ry(t− τ)

1 + k
)− dy(t).

On simplification,it yields

ŷ(t) < e−dt

∫ t

0

eds
ry(s− τ)

1 + k
)ds+ C0e

−dt.

Solving, between the pulse t+k+1 ≤ t ≤ tk+1 + τ, k = 1, 2, 3, ...

ŷ(t) < (1− β + µ)y(t+k )e
−d(t−t+k ) + µ.

By continuity of y in t+k+1 ≤ t ≤ tk+1 + τ

ŷ(t) → 0 as t→ ∞.

Using comparison theorem of impulsive differential equation for t→ ∞.

lim sup
t→∞

y(t) = 0.

and y(t) is bounded. Therefore, the solutions of the system (9.2.2) − (9.2.3) are ulti-

mately bounded.

9.3.2 Poincare Map

x(t)

y
(t

)

S0 S1

E

E+

l(1-α)l x(t)

y(
t)

S1
S0

(1-α)l l

E

E+
Ak

+

A2
+

A1
+

A0
+

B
0
+

B
1
+

B
2
+

Bk
+

Figure 9.1: (a) Period-1 solution (b) Distributed solution with periodic solution of the

system (9.2.2)− (9.2.3).
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In this section, the Poincare map is described which is used as a tool to discuss the

dynamics of the system (9.2.2)− (9.2.3).

Let us consider the sections S0 and S1 of the x− y phase plane as:

S0 = {(x, y) : x = (1− α)l, y0 ≥ 0},

S1 = {(x, y) : x = l, y0 ≥ 0}.

An approximate formula will be used to establish the Poincare map of S1. Consider that

the system (9.2.2)− (9.2.3) has a positive period-1 solution (ξ(t), η(t)) with period T .

The periodic trajectory with the initial point p0 = E+ = ((1−α)l, y0) on S0 intersects

the Poincare section S1 at the point E = (l, y1). After that it jumps to the point

E+ = ((1−α)l, y0) on the Poincare section S0 due to the impulsive effects (9.2.3) with

x(t+) = (1− α)x(t) and y(t+) = (1− β + µ)y(t) (See Fig. 9.1). Thus

ξ(0) = (1− α)l, η(0) = y0, ξ(T ) = l, η(T ) =
y0

(1− β + µ)
= y1.

Now, consider another solution (ξ̄(t), η̄(t)) with slightly perturbed initial values ξ̄(0) =

(1 − α)l and η̄(0) = y0 + δy0 on S0. The disturbed trajectory starting from the point

A+
0 ((1− α)l, y0 + δy0),where (δy0 is very small) first intersects the Poincare section S1

at the point B+
0 (l, ȳ1) when t = T +δt. After that, it jumps to the point A+

1 ((1−α)l, ȳ)

on S0. Therefore,

ξ̄(0) = (1− α)l, η̄(0) = y0 + δy0, ξ̄(T + δt) = l, η̄(T + δt) = ȳ1.

Now, difference between the undisturbed (ξ(t), η(t)) and disturbed (ξ̄(t), η̄(t)) trajec-

tories are denoted by (δx, δy) where δx = ξ̄(t)− ξ(t) and δy = η̄(t)− η(t). Therefore,

δx(0) = x0 = ξ̄(0)− ξ(0), δy(0) = δy0 = η̄(0)− η(0) =| A+
0 E

+ | .

Consider δy1 =| A+
1 E

+ |= ȳ2 − y0 and δy∗0 = ȳ1 − y1 =| B+
0 E |. Now the relation

between δy0 and δy1 will be calculated. It is known that, for 0 < t < T , the variables

δx and δy are described by the relation δx(t)

δy(t)

 =M(t)

 δx0

δy0

+O(δx20 + δy20) ≃M(t)

 0

δy0

+O

 0

δy20

 .(9.3.1)

Here, the fundamental solution matrix M(t) satisfies the variational matrix equation

dM(t)

dt
= A(t) ∗M(t), M(0) = I2(identity matrix). (9.3.2)
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The coefficients of the variational matrix A(t) are calculated along the periodic trajec-

tory (ξ(t), η(t)) corresponding to the system (9.2.2)− (9.2.3)

A(t) =


∂F1

∂x

∂F1

∂y
∂F2

∂x

∂F2

∂y

 . (9.3.3)

Let

F1(ξ(t), η(t)) = ξ(t)

(
1− ξ(t)− aη(t− τ)

ξ(t) + k

)
,

F2(ξ(t), η(t)) =
rη(t− τ)ξ(t)

(1− p)ξ(t) + k
− dη(t).

The disturbed trajectory (ξ̄(t), η̄(t)) in a first-order Taylor’s expansion for t = T + δt

can be expressed as:

ξ̄(T + δt) ≈ ξ(T ) + δx(T ) + F1(ξ(T ), η(T ))δt. (9.3.4)

η̄(T + δt) ≈ η(T ) + δy(T ) + F2(ξ(T ), η(T ))δt. (9.3.5)

As ξ̄(T + δt) = ξ(T ) = l, from (9.3.4)

δt = −δx(T )
F1(T )

. (9.3.6)

It follows from (9.3.5)

δy∗0 = ȳ1 − y1 =| B0E |= δy(T ) + F2(T )δt. (9.3.7)

Hence,

δy∗0 = δy(T )− F2(T )δx(T )

F1T
. (9.3.8)

As ȳ2 = (1− β + µ)ȳ1, it is concluded that δy1 = ȳ2 − y0 = (1− β + µ)(ȳ1 − y1). Thus

δy1 = (1− β + µ)δy∗0. Substituting the value of δy∗0 from (9.3.8) , the Poincare map f

of S0 can be constructed as follows:

δy∗1 = f(β, δy0) = (1− β + µ)

[
δy(T )− F2(T )δx(T )

F1T

]
. (9.3.9)

where, δx(T ) and δy(T ) are calculated from (9.3.1).

Now, another type of Poincare maps will be considered. Suppose that, the point

B+
k (l, yk) is on the Poincare section S1. Then A

+
k ((1−α)l, (1−β+µ)yk) is on Poincare
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map S0 due to the impulsive effects (9.2.3). The trajectory with initial point A+
k

intersects Poincare section S1 at the point B
+
k+1(l, yk+1) where yk+1 is calculated by yk

and the parameters β and µ. Thus Poincare map F can be obtained as follows:

yk+1 = f(β, µ, yk). (9.3.10)

The function f is continuous on β, µ and yk because solutions are dependent on the

initial conditions. It can be observed that for each fixed point of the map f (9.3.10)

there is an associated periodic solution of the system (9.2.2)− (9.2.3), and vice versa.

9.4 Existence of Semi-trivial Periodic Solution and

Its Stability

The existence of a semi periodic solution is established in the following theorem.

Theorem 9.4.1. The system (9.2.2) − (9.2.3) admits semi-trivial periodic solution

(ξ(t), η(t)):

ξ(t) =
(1− α)le(t−(k−1)T )

1− (1− α)l + (1− α)le(t−(k−1)T )
,

η(t) = 0,

 (k − 1)T ≤ t ≤ kT, (9.4.1)

with the pulse period

T = ln
1− (1− α)l

(1− α)(1− l)
.

Proof. Consider y(t) = 0 in the system (9.2.2) − (9.2.3) for t ∈ (0,∞) to calculate a

semi-trivial periodic solution for the system:

ẋ(t) = x(1− x), x ̸= l,

x(t)+ = (1− α)x, x = l. (9.4.2)

Setting the initial value as x0 = x(0) = (1 − α)l, the solution of the equation
dx

dt
=

x(t)(1− x(t)) is

x(t) =
Cet

1 + Cet
. (9.4.3)

The arbitrary constant can be computed as C =
(1− α)l

1− (1− α)l
.
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Now, assume that x(0) = x((k − 1)T ) = (1− α)l. Then at t = (k − 1)T ,

x(t) =
(1− α)let−(k−1)T

1− (1− α)l + (1− α)let−(k−1)T
. (9.4.4)

When x(T ) = l and x(T )+ = x0, the pulse period T = ln
1− (1− α)l

(1− α)((1− l)
.

Hence, the system (9.2.2)−(9.2.3) admits the semi-trivial periodic solution (9.4.1)

with period T for (k − 1)T ≤ t ≤ kT .

The stability of the periodic semi-trivial solution (9.4.1) of the system (9.2.2)−

(9.2.3) is obtained with the help of Poincare map (9.3.9).

Suppose that delay τ > 0 is sufficiently small so that the natural enemy density

does not vary rapidly and y(t) can be approximated as y(t − τ) = y(t) − τ ẏ(t). The

system (9.2.2)− (9.2.3) can be rewritten as:

dx

dt
= x(t)(1− x(t))− ax(t)(y(t)− τ ẏ(t))

x(t) + k
,

dy

dt
=
rx(t)(y(t)− τ ẏ(t))

x(t) + k
− dy(t),

x(t) ̸= l, (9.4.5)

x(t)+ = (1− α)x(t),

y(t)+ = (1− β)y(t) + µy(t),

x(t) = l. (9.4.6)

With this approximation, after rearranging the terms in the system (9.4.5) − (9.4.6),

the model (9.2.2)− (9.2.3) can be rewritten as:

dx

dt
= x(t)(1− x(t))− a(1 + dτ)x(t)y(t)

(1 + rτ)x(t) + k
= G1(x, y),

dy

dt
=
r(1 + τd)x(t)y(t)

(1 + rτ)x(t) + k
− dy(t) = G2(x, y),

x(t) ̸= l, (9.4.7)

x(t)+ = (1− α)x(t),

y(t)+ = (1− β)y(t) + µy(t),

x(t) = l. (9.4.8)

Theorem 9.4.2. The semi-trivial periodic solution (ξ(t), 0) of the system (9.2.2) −

(9.2.3) is stable provided

0 < µ < µ0, (9.4.9)

where

µ0 =

[
[(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1 + rτ)(1− α)l + k](1− l)

]−r(1+τd)
(1+rτ)+k

[
(1− α)(1− l)

1− (1− α)l

]−d

− 1 + β.
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Proof. Using (9.3.2) with the linearized matrix of the delayed system (9.4.7)− (9.4.8)

about the semi-trivial periodic solution (ξ(t), 0), the matrix M = (mij)2×2 is given by:

dM(t)

dt
=

 1− 2ξ(t) − a(1 + dτ)ξ

(1 + rτ)ξ(t) + k

0
r(1 + τd)ξ(t)

(1 + rτ)ξ(t) + k
− d

 ∗M(t), M(0) = I2. (9.4.10)

Let

M(t) =

 m11 m12

m21 m22

 . (9.4.11)

For 0 < t < T , using (9.4.10) and (9.4.11):

ṁ11(t) = (1− 2ξ(t))m11(t)−
a(1 + dτ)ξ

(1 + rτ)ξ(t) + k
m21(t),

ṁ12(t) = (1− 2ξ(t))m12(t)−
a(1 + dτ)ξ

(1 + rτ)ξ(t) + k
m22(t),

ṁ21(t) =

(
r(1 + τd)ξ(t)

(1 + rτ)ξ(t) + k
− d

)
m21(t),

ṁ22(t) =

(
r(1 + τd)ξ(t)

(1 + rτ)ξ(t) + k
− d

)
m22(t),

(9.4.12)

where,

M(0) =

 1 0

0 1

 .

For 0 < t < T , observe that, δx(0) = 0 = δx0 and

G2(t) =

(
rξ(t)

ξ(t) + k
− d

)
× 0 = 0,

then

δy1 = f(β, µ, δy0) = (1− β + µ)

(
δy(T )− G2(T )δx(T )

G1T

)
= (1− β + µ)δy(T )

= (1− β + µ)(m21(T )δx0 +m22(T )δy0) = (1− β + µ)m22(T )δy0.

Now, it is only necessary to calculate m22(t). From the fourth equation of (9.4.12), it

can be obtained that

m22(t) = Aexp

(∫ (
r(1 + τd)ξ(t)

(1 + rτ)ξ(t) + k
− d

)
dt

)

= Aexp

(∫ (
r(1 + τd)cet

[(1 + rτ)c+ c]et + k
− d

)
dt

)
= A[((1 + rτ)c+ c)et + k]

r(1+τd)
(1+rτ)+k .e−dt.
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For t = 0,

m22(0) = A[((1 + rτ)c+ c) + k]
r(1+τd)
(1+rτ)+k = 1,

then

A = [((1 + rτ)c+ c) + k]
−r(1+τd)
(1+rτ)+k .

Now,

m22(t) = [((1 + rτ)c+ c) + k]
−r(1+τd)
(1+rτ)+k [((1 + rτ)c+ c)et + k]

r(1+τd)
(1+rτ)+k .e−dt

=
[((1 + rτ)c+ c)et + k]

[((1 + rτ)c+ c) + k]

r(1+τd)
(1+rτ)+k

e−dt.

Since

T = ln
1− (1− α)l

(1− α)(1− l)
, eT =

1− (1− α)l

(1− α)(1− l)
, C =

(1− α)l

1− (1− α)l
.

Therefore,

m22(T ) =

[
[(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1 + rτ)(1− α)l + k](1− l)

] r(1+τd)
(1+rτ)+k

[
(1− α)(1− l)

1− (1− α)l

]d
.

Now,

δy1 = (1−β+µ)
[
[(1 + rτ)l + k(1− l) + l](1− l(1− α))

[l(1 + rτ)(1− α) + k](1− l)

] r(1+τd)
(1+rτ)+k

[
(1− α)(1− l)

1− (1− α)l

]d
δy0.

Observe that, δy0 = 0 is a fixed point of f(β, µ, δy0) and

Dδy0f(β, µ, 0) = (1− β + µ)m22(T )

= (1− β + µ)

[
[(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1 + rτ)(1− α)l + k](1− l)

] r(1+τd)
(1−p)(1+rτ)+k

[
(1− α)(1− l)

1− (1− α)l

]d
.

The system will be stable when 0 < Dδy0f(β, 0) < 1 with l < 1. That is,

0 < µ < µ0.

Hence, the system (9.2.2)− (9.2.3) has a stable semi-trivial periodic solution under the

condition (9.4.9).

Remark 9.4.1. For small delay, the semi-trivial periodic solution of the system (9.2.2)−

(9.2.3) is unstable if µ > µ0.

Remark 9.4.2. Let

µ0 =

[
[(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1 + rτ)(1− α)l + k](1− l)

]−r(1+τd)
(1+rτ)+k

(
(1− α)(1− l)

1− (1− α)l

)−d

− 1 + β.

A bifurcation occurs at µ = µ0 since Dδy0f(β, µ, 0) = 1.
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9.5 Existence of Positive Period-1 Solution and Its

Stability

In this section, existence of periodic solution of the system (9.2.2) − (9.2.3) and its

stability will be carried out for µ > µ0.

The semi-trivial periodic solution passing through the points A((1− α)l, 0) and

B(l, 0) is stable ifµ > µ0. Define, Z(x) = f(µ, 0, ϵ) where f is the Poincare map.

Now, it can be proved that there exist two positive numbers ϵ and ω0 such

that Z(ϵ) > 0 and Z(ω0) ≤ 0 as follows: First, it will be proven that for ϵ > 0,

0.1 0.15 0.2 0.25 0.3 0.35
x(t)

0

0.1

0.2

0.3

0.4

0.5

y(
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M

S0 S1

N

A2

A1

N1

B2

B1
BA

Figure 9.2: Location of positive periodic solution of the system (9.2.2)− (9.2.3).

Z(ϵ) > 0. Let A1((1 − α)l, ϵ) where ϵ > 0 is sufficiently small. From Fig. 9.2, it can

be observed that trajectory starting from the initial point A1 at Poincare section S0

intersects the Poincare section S1 at the point B1(l, ϵ̄). After that it jumps to the point

A2((1 − α)l, (1 − β + µ)ϵ1) and goes to the point B2(l, ϵ1) on the Poincare section S1

again. Since (1 − β + µ)ϵ̄ > ϵ, the point A2 is above the point A1 on the Poincare

section S0 and then the point B2 is above the point B1 on the Poincare section S1.

Thus, observe that ϵ1 > ϵ̄. From (9.3.10), it can be obtained that ϵ1 = f(β, µ, ϵ̄). So,

ϵ̄− f(β, µ, ϵ̄) = ϵ̄− ϵ1 < 0. (9.5.1)
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Now, consider that the line

w : 1− x(t)− a(1 + dτ)y(t)

(1 + rτ)x(t) + k
= 0,

intersects the Poincare section S0 at the point

M

(
(1− α)l,

(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)

)
.

The trajectory from the initial point M intersects the Poincare section S1 at the point

N(l, η0). After that it jumps to the point N+((1 − α)l, (1 − β + µ)η0) on Poincare

section S0 and again meets the Poincare section S1 at the point N1(l, η̄0). Consider

that there exists some µ0 > 0 such that

(1− β + µ0)η0 =
(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)
,

then the point N+ is just the pointM for µ = µ0. Observe that, the point N+ is above

the point M for µ > µ0, while it is under the point M for µ < µ0. Note that, the

location of the point (i.e. above the point M , under the point M or just M) depends

on the different values of parameter µ. However, for any µ > µ0, the point N1 is not

above the point N in view of the vector field of the system (9.2.2) − (9.2.3). Then

η̄0 ≤ η0.

(a) If η̄0 = η0, then the system (9.2.2) − (9.2.3) has period-1 solution given by the

cycle NMN .

(b) If η̄0 < η0, then

η0 − f(β, µ, η0) = η0 − η̄0 > 0. (9.5.2)

From (9.5.1) and (9.5.2) it can be observed that the Poincare map (9.3.10) has a

fixed point corresponds to positive period-1 solution of the system (9.2.2)− (9.2.3) for

µ > µ0 + ϵ̄.

Remark 9.5.1. From the Theorem 9.4.2, it can be observed that the semi-trivial

periodic solution of the system (9.2.2) − (9.2.3) is stable when 0 < µ < µ0. The

positive period-1 solution exist for µ > µ0 + ϵ̄. Since Dδy0f(µ0, 0) = 1, a transcritical

bifurcation will occurs at µ = µ0. Furthermore, the system (9.2.2) − (9.2.3) has a
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positive period-1 solution (ξ(t), η(t)) passing through the point ((1−α)l, (1−β+µ)η0)

and (l, η0) which satisfies the condition

(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)
= (1− β + µ1)η0,

for some µ1 > µ0.

Now, with the help of Analogue of the Poincare criterion, the stability analysis of

positive period-1 solution of the system (9.2.2)− (9.2.3) will be carried out for smaller

delay

Theorem 9.5.1. The positive periodic solution (ξ(t), η(t)) of the system (9.2.2) −

(9.2.3) is locally asymptotically stable if

µ0 < µ < µ1, (9.5.3)

where

g(µ) = ∆1e
∫ T
0 G(t)dt, g(µ1) = −1.

Proof. Consider the period-1 solution (ξ(t), η(t)) of the system (9.2.2)− (9.2.3) passes

through the points E+((1 − α)l, (1 − β + µ)η0) and E(l, η0). The stability of positive

period-1 solution (ξ(t), η(t)) of the system (9.4.7)−(9.4.8) will be discussed by Analogue

of the Poincare criterion [202].

G1(x, y) = x(t)(1− x(t))− a(1 + dτ)x(t)y(t)

(1 + rτ)x(t) + k
,

G2(x, y) =
r(1 + τd)x(t)y(t)

(1 + rτ)x(t) + k
− dy(t),

and

α1(x, y) = −αx, β1(x, y) = −βy + µy, Θ(x, y) = x− l,

Then,

∂G1

∂x
= 1− 2x(t)− ak(1 + dτ)y(t)

((1 + rτ)x(t) + k)2
,

∂G2

∂y
=

r(1 + τd)x(t)

(1 + rτ)x(t) + k
− d,

∂α1

∂y
= 0,

∂α1

∂x
= −α, ∂β1

∂y
= −β + µ,

∂β1
∂x

= 0,
∂Φ

∂x
= 1,

∂Φ

∂y
= 0.
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Note that

(ξ(T ), η(T )) = (l, η0), (ξ(T+), η(T+)) = ((1− α)l, (1− β + µ)η0).

Now,

∆1 =

G1+

(
∂β1
∂y

∂Θ

∂x
− ∂β1

∂x

∂Θ

∂y
+
∂Θ

∂x

)
+G2+

(
∂α1

∂x

∂Θ

∂y
− ∂α1

∂y

∂Θ

∂x
+
∂Θ

∂y

)
G1

∂ξ

∂x
+G2

∂η

∂y

.

∆1 =
(1− β + µ)G1+(ξ(T

+), η(T+))

G1(ξ(T ), η(T ))
.

∆1 =

(1− β + µ)(1− α)l

[
1− (1− α)l − a(1 + dτ)(1− β + µ)η0

(1 + rτ)(1− α)l + k

]
l(1− l)− a(1 + dτ)lη0

(1− p)(1 + rτ)l + k

=

(1− β + µ)(1− α)

[
1− (1− α)l − a(1 + dτ)(1− β + µ)η0

(1 + rτ)(1− α)l + k

]
(1− l)− a(1 + dτ)η0

(1 + rτ)l + k

.

Consider

Ψ(t) =
∂G1

∂x
(ξ(t), η(t)) +

∂G2

∂y
(ξ(t), η(t),

then

λ = g(µ) = ∆1e
∫ T
0 Ψ(t)dt,

λ =

(1− β + µ)(1− α)

[
1− (1− α)l − a(1 + dτ)(1− β + µ)η0

(1 + rτ)(1− α)l + k

]
(1− l)− a(1 + dτ)η0

(1 + rτ)l + k

e
∫ T
0 Ψ(t)dt.

It can be concluded that
dλ

dµ
< 0 for µ > µ0. Also, it can be observed that λ is strictly

decreasing on µ for µ ∈ (µ0,∞).

Now, as mentioned above, consider that the pointM+((1−α)l, (1−β+µ)m0) is similar

to the point

N

(
(1− α)l,

(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)

)
,

for µ = µ1, µ0 < µ1, then

(1− β + µ0)m0 =
(1− (1− α)l)((1 + rτ)(1− α)l + k)

al(1 + dτ)
,
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and

λ =
0

(1− l)− a(1 + dτ)η0
(1 + rτ)l + k

e
∫ T
0 G(t)dt = 0.

Since

| λ |= 0 < 1, µ = µ1, (9.5.4)

then the periodic solution is stable.

For µ0 < µ < µ1, the point M+ is just below the point N . Therefore, the point

E+ is below the point N and

(1− β + µ0)m0 <
(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)
,

which results in

[1− (1− α)l − a(1 + dτ)(1− β + µ)η0
(1 + rτ)(1− α)l + k

] > 0.

Since, e
∫ T
0 Ψ(t)dt > 0 and

[
1− l − a(1 + dτ)η0

(1 + rτ)l + k

]
> 0 then λ > 0 for 0 < µ < µ1.

Note that, at the bifurcation point of transcritical bifurcation, µ = µ0 for η0 = 0,

T = ln
1− (1− α)l

(1− α)(1− l)
,

λ = 1, µ = µ0. (9.5.5)

which substantiates the result of the periodic semi-trivial solution in the previous sec-

tion.

From (9.5) and (9.5.5)

0 < λ < 1, µ0 < µ < µ1. (9.5.6)

For µ > µ1, M
+ is above the point N and

(1− β + µ0)m0 >
(1− (1− α)l)((1 + rτ)(1− α)l + k)

a(1 + dτ)
,

[1− (1− α)l − a(1 + dτ)(1− β + µ)η0
(1 + rτ)(1− α)l + k

] < 0.

It can be observed that λ < 0 for µ2 > µ1. If | λ |< 1

|
(1− β + µ)(1− α)[1− (1− α)l − a(1 + dτ)(1− β + µ)η0

(1 + rτ)(1− α)l + k
]

(1− l)− a(1 + dτ)η0
(1 + rτ)l + k

e
∫ T
0 G(t)dt |< 1.

Therefore, it can be found that µ2 > µ1 such that λ = g(µ2) = −1, then | λ |= 0 < 1

for µ ∈ (µ0, µ2). Then the positive periodic solution is stable.
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Remark 9.5.2. If there exists µ2 > µ1 such that λ = −1, the positive period-1 solution

losses its stability and a flip bifurcation may occur at µ = µ2. If a flip bifurcation occurs,

∃ a stable positive period-2 solution of the system (9.2.2) − (9.2.3) for µ > µ2, which

may also loss its stability with increasing the parameter µ.

Remark 9.5.3. For small values of delay, the system (9.2.2) − (9.2.3) has a positive

period-1 solution. Moreover, for the system (9.2.2)−(9.2.3), there exist a stable periodic

semi-trivial solution for 0 < µ < µ0 and a stable positive period-1 solution for µ0 <

µ < µ2. The transcritical bifurcation occurs at µ = µ0 and flip bifurcation can occur

at µ = µ2 . It is also possible that the system (9.2.2)− (9.2.3) has chaotic solution.

9.6 Bifurcation analysis

In this section, bifurcation of semi-trivial periodic solution of the system (9.2.2)−(9.2.3)

about µ = µ0 will be discussed. Consider the Poincare map y+k = (1− β + µ)f(y+k−1).

Put Ω = y+k and Ω ≥ 0 to be very small. In terms of a new variable, the Poincare map

can be written as:

Ω → (1− β + µ)f(Ω) = G3(Ω, µ). (9.6.1)

Now, g(0) = 0 because the uniqueness of the solution. Therefore, the semi-trivial pe-

riodic solution which is discussed in the above section is associated with the fixed

point zero of this map. Since the solution depends on the initial conditions, the

function G3(u, µ) is continuously differentiable with respect to u and µ. Therefore,

limu→0+ f(u) = f(0) = 0. To discuss the bifurcation of the map (9.6.1), Theorem 1.4.3

and following lemma will be required.

Lemma 9.6.1. For the map (9.6.1), f ′(u) ̸= 0 and f ′′(u) ̸= 0.

Proof. Any trajectory through the initial point ((1 − α)l, u) where 0 ≤ u ≤ y0 = u0

intersects the Poincare section S1 at the point (l, f(u)). The system (9.4.7) − (9.4.8)

can be written as follows:
dy

dx
=
G2(x, y)

G1(x, y)
. (9.6.2)

Let(x, y) be an point of the system (9.6.2). Assume that x0 = (1 − α)l and y0 = u.

Then

y(x, u) = y(x; (1− α)l, u), 0 < u ≤ u0, (1− α)l ≤ x ≤ l. (9.6.3)
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Therefore, with the help of (9.6.3)

∂y(x, u)

∂u
= exp

[ ∫ l

(1−α)l

∂

∂y

(
G2(ω, y(ω, u))

G1(ω, y(ω, u))

)
dω

]
> 0.

∂2y(x, u)

∂u2
=
∂y(x, u)

∂u
exp

[ ∫ l

(1−α)l

∂2

∂y2

(
G2(ω, y(ω, u))

G1(ω, y(ω, u))

)
∂y(ω, u)

∂u
dω

]
.

Now,

f ′(0) =
∂y(l, 0)

∂u
= exp

[ ∫ l

(1−α)l

∂

∂y

(
G2(ω, y(ω, 0))

G1(ω, y(ω, 0))

)
dω

]
(9.6.4)

=
[(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1 + rτ)(1− α)l + k](1− l)

r(1+τd)
(1+rτ)+k

(
(1− α)(1− l)

1− (1− α)l

)d

.

Therefore,

f ′′(0) = f ′(0)exp

[ ∫ l

(1−αl)

z(s)
∂y(ω, 0)

∂u

]
dω,

where

z(s) =
∂2

∂y2

(
G2(ω, y(ω, 0))

G1(ω, y(ω, 0))

)
dω = −2

(
a(1 + τd)s

(1 + rτ)s+ k

)(
r(1 + τd)s

(1 + rτ)s+ k
)− d

)
< 0.

Because x1 is the smaller zero point of the function f(x). Observe that f(x) is mono-

tonically decreasing in the interval [0, x1]. It shows that f(s) > 0 when s ∈ [0, x1) for

h ≤ x1. Therefore g
′′(0) < 0.

Now, Lemma 9.5.1 is applied to the one parameter map (9.4.10) for proving the

following theorem:

Theorem 9.6.2. The transcritical bifurcation will occur at µ = µ0.

Proof. The system (9.2.2)−(9.2.3) has a transcritical bifurcation if following conditions

will be satisfied.

1. G3(0, µ) = (1− β + µ)f(0) = 0,

2.
∂G3(0, µ)

∂u
= (1− β + µ)f ′(0)

= (1−β+µ)
[
[(1− p)(1 + rτ)l + k(1− l) + l](1− (1− α)l)

[(1− p)(1 + rτ)(1− α)l + k](1− l)

] r(1−p)(1+τd)
(1−p)(1+rτ)+k

[
(1− α)(1− l)

1− (1− α)l

]d
,

Now it can be calculated that
∂G3(0, µ0)

∂u
= 1. Hence, (0, µ0) is a fixed point with

the eigenvalue 1.

3.
∂G3(0, µ)

∂µ
= f(0) = 0,
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4.
∂2G3(0, µ0)

∂u∂µ
= f ′(0) > 0,

5.
∂2G3(0, µ0)

∂u2
= (1− β + µ)f ′′(0) < 0.

Hence, all the conditions of the Theorem 1.4.3 have been satisfied and there exists

transcritical bifurcation at µ = µ0.

9.7 Numerical Simulations

In this section, some numerical results are explored to carried out the dynamical as-

pects of the system (9.2.2) − (9.2.3). To illustrate analytical findings following set of

parameters is chosen:

a = 2.814, d = 0.8, k = 2, l = 0.2, r = 2, α = 0.5, β = 0.2. (9.7.1)

The system (9.2.2)− (9.2.3) admits a positive equilibrium point (1.333, 0.3949). Con-

sidering τ = 0.001 and data set (9.7.1), with the initial value (0.15, 0.03), the solution

of the system (9.2.2) − (9.2.3) tends to periodic solution E+EE+ for µ = 3.2. This

solution is stable if 0 < β < β0 for µ > 0 see Fig. 9.3.
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Figure 9.3: Phase portrait of the system (9.2.2)− (9.2.3).
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The two cross-sections of the system (9.2.2)− (9.2.3) are:

S0 = {(x, y) : x = 0.15, y0 ≥ 0}

S1 = {(x, y) : x = 0.30, y0 ≥ 0}

From Theorem 9.4.2.

µ0 =

[
[(1.002)0.3 + 2(1− 0.3) + 0.3]0.85

[(1.002)0.15 + 2]0.7

]−2(1+0.001×0.8)
3.002

[
0.15

0.85

]−0.8

− 1 + 0.2 ≈ 0.92

For µ = 0.6, the semi-trivial solution of the system (9.2.2) − (9.2.3) is shown in Fig.

9.4. The solution of the system (9.2.2)− (9.2.3) with the initial point (0.15, 0.03) tends

to the semi-trivial solution as t increase. It shows that the semi-trivial solution of the

system (9.2.2)− (9.2.3) is stable.
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Figure 9.4: (a) Time series (b) Phase portrait showing the stability of semi-trivial

solution of the system (9.2.2)− (9.2.3) at µ = 0.6.

Consider µ = 6.2, the system (9.2.2)− (9.2.3) displays a stable positive period-1

solution see Fig. 9.5. Further releasing more natural enemies to µ = 8.7, the system

(9.2.2) − (9.2.3) exhibits a stable positive period-2 solution see Fig. 9.6(a). As the

parameter µ increases repeated period-doubling leads to chaos. The period-4 solution

will appear at µ = 16.7 see Fig. 9.6(b).
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Figure 9.5: Phase portrait showing stability of positive period-1 solution of the system

(9.2.2)− (9.2.3) at µ = 6.2.
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Figure 9.6: Positive periodic solution of the system (9.2.2) − (9.2.3) (a) Period-2 at

µ = 8.7 (b) Period-4 at µ = 16.7.

Further increasing parameter µ, period-8 solution can be observed in Fig. 9.7(a)

at µ = 18.4. As parameter µ increases, the chaotic solution at µ = 25.7 is shown Fig.
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9.7(b). It is observed that there exists a cascade of period-doubling bifurcation which

results in the chaotic solutions.
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Figure 9.7: (a) Period-8 solution at µ = 18.4 (b) Chaotic solution at µ = 25.7 of the

system (9.2.2)− (9.2.3).
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Figure 9.8: Period-3 solution of the system (9.2.2)− (9.2.3) at µ = 30.2.

To show the existence of chaos, a period-3 solution of the system (9.2.2)− (9.2.3)
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is drawn in Fig. 9.8 at µ = 30.2. For more clarity, it’s magnified part is also drawn in

Fig. 9.8.

Above numerical results are computed for small delay τ = 0.001 but time delay

has the advantage to make the dynamical systems more complex. Now, phase trajec-

tory is drawn for large value of delay τ = 0.9 at µ = 6.2. Observe that, there exists

a multi-periodic solution in Fig. 9.9. Hence, on comparing the Fig. 9.5 and Fig. 9.9,

more complex dynamical behavior occurs for large value of delay.

0.1 0.15 0.2 0.25 0.3
x(t)

0

0.5

1

1.5

2

y(
t)

Figure 9.9: Multi-periodic solution of the system (9.2.2) − (9.2.3) at τ = 0.9 and

µ = 6.2.

9.8 Discussion

A delayed pest-natural enemy model with impulsive state feedback is analyzed to con-

trol the pest. It is observed that the system (9.2.2) − (9.2.3) is bounded. For small

delay, there exists a semi-trivial periodic and positive period-1 solution. The stability

of semi-trivial periodic solution and period-1 solutions are analyzed. The conditions

for flip bifurcation and transcritical bifurcation are also investigated. The numerical

simulations exhibit the existence of chaotic behavior. The various diagrams indicate

the rich dynamics, including stable, periodic and chaotic solutions. It can be proved

that when the pest density reaches a given threshold, the pest density can be reduced
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below a certain level with the help of an impulsive state feedback strategy. More-

over, qualitative analysis for the system (9.2.2)− (9.2.3) with the large delay has been

analyzed which shows the more complex dynamical behavior.



Chapter 10

Conclusions and Future Scope

In this chapter, the main results of the thesis have been wrapped and further, research

directions for future research work have been provided.

10.1 Conclusions

In this thesis, some mathematical models have been developed for pest control with

impulsive time-dependent and state-dependent strategies. The factors responsible for

pest eradication and a variety of complex dynamical behaviors in impulsive pest man-

agement systems ranging from order to chaos have been investigated. Such a study is

important since the ecological systems have all the necessary ingredients to control the

pest or to support chaos. The objective is either pest eradication or reduces its density

below the threshold level. Efforts have been made to explore the different mechanism

that may control the pest below the injury level. To understand the effect of pest man-

agement strategies in pest dynamics, the stage-structured pest control models have

been proposed and analyzed. In particular, the conclusions of this work are presented

as below:

• The synchronous pesticide application with birth pulses may reduce the threshold

below unity. It is required for successful pest control. A critical level of the birth

rate parameter is obtained, below which the pest can be successfully eliminated.

If the birth rate goes beyond this critical level, then the pest density oscillates

in regular/irregular manner. Center manifold theorem is used to establish the

239
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existence of bifurcation. Other factors which affect the dynamics of the system

are mortality rates, killing rates of immature/mature pest and pulse period.

• Further, in case of asynchronous pulses, the delay in pesticide spray timing re-

duces the threshold and the equilibrium level of mature pest density. The pest-

free state stabilizes and complexity of the system reduces. It is found that higher

killing rates of mature pest than that of the immature pest may lead to pest

eradication.

• The presence of residual effect of pesticide further reduces the threshold for pest

eradication. The threshold depends upon the pulse period, decay rate and killing

efficiency of residual pesticide.

• It is found that only impulsive chemical control or continuous mechanical control

(harvesting) would not be sufficient to control the pest. The combinations of

chemical and mechanical control are more effective in controlling the pest. Also,

use of pesticides can be lowered by introducing mechanical control which is envi-

ronment friendly. Both the synchronous and asynchronous cases are considered

and the latter case is found to be more effective for pest control.

• Threshold for pest eradication is obtained for multiple pulses IPM model. The

effects of time delays in chemical and mechanical control are investigated. For

effective pest control, it is suggested that harvesting delay should be reduced

while pesticide spray can be delayed.

• The delayed response of residual pesticide has been considered in another model.

The critical value of the delayed response rate and pulse period has been com-

puted to control the pest. It is concluded that if only mechanical control is

applied, then the threshold level may be greater than one and the pest may per-

sist. Further, combining mechanical control with chemical control reduces the

threshold and pest eradication is possible.

• An IPM model incorporating toxic effects of the pesticides on the environment

has also been considered. The pest can be eradicated, but the toxicant persists in

the environment and in the pest. The critical level of harvesting effort is obtained
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to stabilize the pest-free state. The harvesting may reduce the toxicant in the

environment.

• Another IPM model using chemicals as well as biological control is studied with

state-dependent feedback control strategy. The motivation is to maintain the

pest below an economic threshold level. While releasing more natural enemies,

the pest density remains below the given threshold even though the complexity

of the system increases. From a biological point of view, the state-dependent

strategy is more effective to control the pest.

10.2 Future Scope

In future, this research work can be extended in the following directions:

• To reduce pest load, apart from chemical/mechanical control other strategies can

be incorporated.

• To account for patch system, Network models can be developed for the patchy

system.

• The idea of optimal control can be applied to find out the optimal timing for the

pesticide applications which can suppress the pest most effectively. Optimum

use of pesticide and an optimum rate for release of natural enemies, calls for new

efforts and endeavors for the future investigation.

• In this thesis, state-dependent feedback control strategy has been discussed for

a pest-natural enemy model for the small delay. Qualitative analysis of the sys-

tem with state-dependent impulses and large delay is an interesting problem to

be investigated in the future. The global stability and bifurcation analysis of

impulsive models using state-dependent feedback control strategy, which is not

covered in this thesis, is advisable in order to get more appropriate results into

the realistic models.
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