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Abstract

This thesis presents approximation of functions by several well known positive lin-

ear operators, by their generalized forms and integral modifications. We divide the

thesis into nine chapters. Chapter 0 is an introductory part of the thesis which deals

with the upbringing of approximation theory, literature survey, some notations and

basic definitions of approximation methods which are used throughout the thesis.

In the first chapter, we define a genuine family of Bernstein-Durrmeyer type

operators based on Polya basis functions. We establish a global approximation the-

orem, local approximation theorem, Voronovskaya-type asymptotic theorem and a

quantitative estimate of the same type. Lastly, we study the approximation of func-

tions having a derivative of bounded variation.

The second chapter is a continuation of the first one in which we introduce the

Bézier variant of genuine Durrmeyer type operators and give direct approximation

results and a Voronovskaya type theorem by using the Ditzian-Totik modulus of

smoothness. The rate of convergence for functions whose derivatives are of bounded

variation is also obtained. Further, we show the rate of convergence of these opera-

tors to certain functions by illustrative graphics using the Matlab algorithms.

In the third chapter, we define the Szász-Durrmeyer type operators by means of
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multiple Appell polynomials. We study a quantitative Voronovskaya type theorem

and Grüss-Voronovskaya type theorem. We also establish a local approximation

theorem in terms of the Steklov means and Voronovskaya type asymtotic theorem.

Further, we discuss the degree of approximation by means of a weighted space.

Lastly, we find the rate of approximation of functions having derivatives of bounded

variation.

In the fourth chapter, we introduce the Bézier variant of Durrmeyer modification

of the Bernstein operators based on a function τ. We give the rate of approximation

of these operators in terms of usual modulus of continuity and the K−functional.

Next, we establish the quantitative Voronovskaja type theorem. In the last section

we obtain the rate of convergence for functions having derivatives of bounded vari-

ation.

In the fifth chapter, we define a sequence of Stancu type operators based on the

same function τ as defined in the preceding chapter and show that these operators

present a better degree of approximation than the original ones. We give a direct

approximation theorem by means of the Ditzian-Totik modulus of smoothness and

a Voronovskaya type theorem.

In the sixth chapter, we introduce the Bézier variant of modified Srivastava-

Gupta operators and give a direct approximation theorem by means of the Ditzian-

Totik modulus of smoothness and the rate of convergence for functions with deriva-

tives equivalent to a function of bounded variation. Furthermore, we show the

comparisons of the rate of convergence of the Srivastava-Gupta operators vis-a-vis

its Bézier variant to a certain function by illustrative graphics using Maple algo-

rithms.
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In the seventh chapter, we construct the Stancu-Durrmeyer-type modification of

q-Bernstein operators by means of Jackson integral. Here, we establish basic con-

vergence theorem, local approximation theorem and an approximation result for a

Lipschitz type space. Also, we establish the Korovkin type A-statistical approxi-

mation theorem and rates of A-statistical convergence in terms of the modulus of

continuity.

The last chapter is an continuation of our work in chapter seven. Here, we con-

struct a bivariate generalization of Stancu-Durrmeyer type operators and study the

rate of convergence by means of the complete modulus of continuity and the partial

moduli of continuity. Subsequently, we define the GBS (Generalized Boolean Sum)

operators of Stancu-Durrmeyer type and give the rate of approximation by means

of the mixed modulus of smoothness and the Lipschitz class of Bögel-continuous

functions.
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Introduction

0.1 General Introduction

Approximation theory is used both in pure and applied mathematics. It includes a

wide area ranging from abstract problems in real, complex, and functional analysis

to direct applications in engineering and industry. Therefore, approximation the-

ory is closely related to mathematical analysis, operator theory, harmonic analysis,

quantum calculus, algorithms, probability theory etc. In mathematical analysis, it

deals with the approximation of some kind of complicated functions by the simpler

one with desirable rate of approximation.

Approximation of functions by positive linear operators is an important research

area that provides us key tools for exploring the computer-aided geometric design,

numerical analysis and the solutions of ordinary and partial differential equations

that arise in the mathematical modeling of real world phenomena. The foundation

of approximation theory known as Weierstrass approximation theorem was intro-

duced by Carl Weierstrass in 1885, which states that any real continuous function

on a closed and bounded interval can be uniformly approximated on that interval

by a sequence of polynomials to any degree of accuracy. Several proofs of this theo-

rem have been given by great mathematicians e.g. Runge, Lebesgue, Landau, Fejér

and Jackson. In 1912, S. N. Bernstein [29] gave a simpler proof by constructing a
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sequence of polynomials called Bernstein polynomials as

Bn(f ;x) =
n∑
k=0

pn,k(x)f

(
k

n

)
, x ∈ [0, 1],

where pn,k(x) =
(
n
k

)
xk(1− x)n−k. This sequence converges uniformly to any contin-

uous function on [0, 1].

After that the fundamental theorem of uniform convergence by a general se-

quence of positive linear operators was established by Bohman [33] and Korovkin

[107]. Szász [152] generalized the Bernstein polynomials to approximate continuous

functions defined on the infinite interval [0,∞). Kantorovich [101] introduced an

integral modification of Bernstein polynomials to approximate Lebesgue integrable

functions defined on [0, 1]. Durrmeyer [52] used another kind of integral modification

of Bernstein polynomials to approximate these functions. Subsequently, many new

sequences and classes of operators were constructed and studied for their approxima-

tion behavior by prominent researchers. Some well known operators introduced by

researchers to study the approximation of functions are due to Stancu [148], Lupas

and Lupas [111], Phillips [130], Baskakov [28], Gupta and Srivastava [146], Rathore

and Singh [137], Abel and Heilmann[2] etc.

The approximation methods deal with the convergence behavior of the positive

linear operators to the functions. The study of the convergence is carried out by

some direct results, asymptotic behavior of the operators, several tools of approxi-

mation and weighted approximation. In the field of approximation theory, Jackson

[95] was the first who gave the direct theorems in his classical work on algebraic

and trigonometric polynomials. For more contribution on the study of direct theo-

rems we refer to ([60], [61], [140] and [151], etc.). King [104] initiated a new kind

of modification for the operators which do not reproduce the linear functions, to

achieve a better degree of approximation. Motivated by this, Cardenas-Morales et

al. [37] defined a sequence of Bernstein type operators by generalizing the Korovkin
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set from {1, t, t2} to {1, τ, τ 2} and investigated its shape preserving and convergence

properties as well as its asymptotic behavior.

The study of the rate of convergence for functions of bounded variation by linear

positive operators is another interesting area of research. Cheng [40] investigated

the rate of convergence of Bernstein polynomials for functions of bounded varia-

tion. Using probablistic approach, Bojanic and Cheng ([34], [35]) studied the rate

of convergence of Bernstein polynomials for functions with derivatives of bounded

variation. Srivastava et al. [145] estimated the rate of convergence for functions hav-

ing derivative of bounded variation. Recently, Ispir et al. [91] considered the Kan-

torovich modification of Lupas operators based on Polya distribution and studied

the rate of approximation of the functions having derivatives of bounded variation.

Researchers studied these problems for several other sequences of linear positive op-

erators (cf. [13], [14], [82], [86], [90] and [112] etc.).

It is well known that Bézier curves are the parametric curves, used in computer

graphics and designs, interpolation, approximation, curve fitting etc. In graphics of

vectors, these are used to model smooth curves and also used in animation designs.

These curves were invented by Pierre Etienne Bézier, a French engineer at Renault.

Zeng and Piriou [169] pioneered the study of Bézier variant of Bernstein operators.

Later on, Chang [39] introduced Bézier variant for generalized Bernstein operators

and studied some of its approximation properties. Zeng and Chen [168] introduced

the Bézier Bernstein-Durrmeyer operators and studied the rate of convergence for

these operators. Srivastava and Gupta [147] studied the rate of convergence for the

Bézier variant of the Bleimann-Butzer-Hahn operators for the functions of bounded

variation. Subsequently, Bézier variants for several sequences of operators have been

introduced and studied by researchers (cf. [15], [73], [166], [162] etc.).

3



In 1968, Stancu [148] introduced a generalization of Bernstein operators depend-

ing on a non negative parameter α. Lupas and Lupas [111] considered a special

case α = 1
n
, n ∈ N, for these operators. Gupta and Rassias [82] introduced the

Durrmeyer-type integral modification of Lupas and Lupas operators and obtained

local and global direct estimates and a Voronvskaya-type asymptotic formula. Later,

the same authors [83] considered a Durrmeyer type modification of the Jain operators

and studied the asymptotic formula, error estimation in terms of the modulus of con-

tinuity and weighted approximation. Gupta et al. [84] proposed certain Lupas-beta

operators which preserve constant as well as linear functions and established some

direct results and the approximation of functions having a derivative of bounded

variation.

Jakimovski and Leviatan [96] proposed a generalization of Szász-Mirakjan oper-

ators by means of the Appell polynomials and gave the rate of approximation for

these operators. Subsequently, generalizations of the Szász-Mirakyan operators by

means of Sheffer polynomials, Brenke-type polynomials and Boas-Buck type poly-

nomials were introduced and investigated in (cf. [88], [142], [154] and [155] etc.).

Gupta and Srivastava [146] introduced a general family of summation-integral

type operators known as Srivastava-Gupta operators. Yadav [163] introduced a mod-

ification of these operators and studied a direct estimate, asymptotic formula and

statistical convergence. After that, Verma and Agrawal [157] introduced the gen-

eralized form of these operators and studied some of its approximation properties.

Many researchers have studied the approximation properties of Srivastava-Gupta

operators and its various generalizations over the past decade (cf. [9], [45] and [93]

etc.).

Some of the recently introduced sequences and classes of operators which have
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been extensively studied by researchers are, Bernstein-Durrmeyer type operators

([1], [67], [66], [78] etc.), Bernstein-Kantorovich type operators ([74], [125], [92],

[114] etc.), Hybrid type operators ([14], [80], [84] etc.), Gamma type operators

([94], [102], [103] etc.), Chlodowsky and Stancu variants of operators ([17], [126],

[156] etc.), linear positive operators constructed by means of the Chan-Chayan-

Srivastava multivariable polynomials [54] and the operators defined in ([43], [44],

[46], [98], [118], [136], [138], [139], [160], [161] etc.). More detailed account of such

operators can be found in the books (cf. [18], [82] and [85] etc.).

0.2 Fundamentals of q-calculus

In the last decade, the application of q-calculus in the field of approximation the-

ory has been an active area of research. More applications of q-calculus are in

number theory, combinatorics, orthogonal polynomials, hypergeometric functions,

mechanics, theory of relativity, quantum theory and theoretical physics. In 1987,

Lupas [110] initiated the study of q-analogue of the classical Bernstein polynomials.

Later, Phillips [130] proposed another q-generalization of the Bernstein polynomials

and established the rate of convergence and Voronovskaja type asymptotic formula

for these operators. Gupta [75] introduced the q-analogue of Bernstein-Durrmeyer

operators and studied some approximation properties of these operators. Gupta

and Wang [79] introduced q-Durrmeyer type operators and studied the rate of con-

vergence in terms of modulus of continuity. Subsequently, Finta and Gupta [59]

studied some local and global approximation theorems for the q-Durrmeyer opera-

tors. Acar and Aral [6] studied the pointwise convergence for q-Bernstein operators

and their q-derivatives. Dalmanoglu [41] introduced Kantorovich type modification

of q-Bernstein operators. For some deatails we refer the readers to (cf. [4], [53], [59],

[75], [87], [113], [116], [119], [135] [164], [165] and [167] etc.)
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0.3 Statistical convergence

The study of statistical convergence is another interesting area of research in the

field of approximation theory. In 1951, Fast [57] introduced the concept of statistical

convergence. After that, Gadjiev [62] proved Korovkin type approximation theorem

via statistical convergence. Kolk [106] proved that statistical convergence is stronger

than ordinary convergence. In this direction, for some related papers we refer to (cf.

[51], [81], [117], [123], [150] etc.).

Statistical convergence: Any sequence x =< xn >, is said to be statistically

convergent to a number l if for any given ε > 0, we get lim
n→∞

|{k : |xk − l| ≥ ε}|
n

= 0

and it is denoted by st− lim
n→∞

xn = l.

A-Statistical convergence: Let A = (ajn) be a non-negative infinite summabil-

ity matrix. For a given sequence x =< xn >, the A-transform of x denoted by

Ax = (Ax)j is defined as

(Ax)j =
∞∑
n=1

ajnxn

provided the series converges for each j. A is said to be regular if lim
j

(Ax)j = L

whenever lim
n
xn = L. The A-density of K,K ⊆ N(the set of the natural numbers),

denoted by δA(K), is defined as δA(K) = limj

∞∑
n=1

ajnχK(n), provided the limit

exists, where χK(n) is the characteristic function of K.

A sequence x =< xn > is said to be A-statistically convergent to L i.e. stA−lim
n
xn =

L if for every ε > 0, lim
j

∑
n:|xn−L|≥ε

ajn = 0 or equivalently δA{n ∈ K : |xn−L| ≥ ε} =

0.

If we replace A by C1 then A is a Cesaro matrix of order one and A-statistical

convergence is reduced to the statistical convergence. Similarly, if A = I, the identity
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matrix then A-statistical convergence reduces to ordinary convergence.

Let A = (ajn) be a non negative infinite regular summability matrix and < bj >

be a positive non increasing sequence. If for every ε > 0, limj
1
bj

∑
n:|xn−L|≥ε

ajn = 0,

then we say that the sequence x =< xn >, converges A-statistically to number L

with the rate of o(bj) and this is denoted by xn−L = stA− o(bn), as n→∞. If for

every ε > 0, supj
1
j

∑
n:|xn|≥ε

ajn < ∞, then x is called A-statistically bounded with

the rate O(bn), as n→∞.

0.4 Bivariate and GBS (Generalized Boolean sum)

Extension

Kingsely [105] initiated the study of Bernstein operators for the two variable case for

the class of k− times continuously differentiable functions on a closed and bounded

rectangle region. Butzer [36] investigated some approximation properties for these

operators. After that, Stancu [149] introduced another kind of generalization of

Bernstein operators for the two and several variables case. Barbosu et. al [24]

introduced a q-analogue of the bivariate Durrmeyer operators and studied the rate

of convergence in terms of modulus of continuity. Örkcü [122] introduced a bivariate

generalization of the q-Szász-Mirakyan-Kantorovich operators and established the

rate of pointwise convergence and weighted A-statistical approximation properties.

Bivariate generalization for several positive linear operators have been discussed in

([20], [25], [50], [144] and [159] etc.)

Dobrescu and Matei [49] introduced the GBS-Bernstein operators and obtained some

convergence theorems for these operators. Subsequently, Badea and Cottin [23]

obtained Korovkin theorems for GBS operators. After that, Pop [133] introduced

Voronovoskaja type theorems for certain GBS operators. Recently, Sidharth et al.
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[143] introduced the GBS operators of bivariate q-Bernstein-Schurer-Kantorovich

type and estimated the rate of convergence in terms of mixed modulus of smoothness.

We refer the readers to some of the related papers (cf. [24], [25], [26], [27], [55], [56],

[134] and [132] etc.)

0.5 Notations and Basic definitions

Now, we recall some basic definitions of q-calculus. For more details we refer to

books (cf. [18], [99] etc.).

Definition 0.5.1. For a non-negative integer n, the q-integer [n]q is defined as

[n]q =


1− qn

1− q
, q 6= 1,

n, q = 1.

Definition 0.5.2. The q-factorial [n]q! is defined as

[n]q! =

{
[1]q[2]q[3]q.......[n]q, n ≥ 1,

1, n = 0.

Definition 0.5.3. The q-binomial coefficient is defined as[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

Definition 0.5.4. The q-beta function is defined as

Bq(k, n) =

∫ 1

0

tk−1(1− qt)n−1q dqt

or

Bq(k, n) =
[k − 1]q![n− 1]q!

[n+ k − 1]q!
.

Definition 0.5.5. Suppose that 0 < a < b, 0 < q < 1 and f be a real valued function.

Then the q-Jackson integral of f over the interval [0, b] and over the generic interval

[a, b] are respectively defined as∫ b

0

f(x)dqx = (1− q)b
∞∑
j=0

f(bqj)qj (0.5.1)
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and ∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx,

provided the sum in (0.5.1) converges absolutely.

Throughout this thesis we denote by C, a constant not necessarily the same at

each occurrence and [0,∞) by R+
0 .

Let f ∈ C(I) be the space of all continuous functions on an interval I.

Definition 0.5.6. For r being a positive integer, the rth order modulus of continuity

ωr(f, δ), for f ∈ C(I) is defined by

ωr(f, δ) = sup
0<|h|6δ

{
|∆r

hf(x)| : x, x+ rh ∈ I
}
,

where ∆k
hf(x) is the kth forward difference with step length h.

Let us define

W r(I) = {g ∈ C(I) : g(r) ∈ C(I)}.

Definition 0.5.7. The Peetre’s K−functional [129] is defined as

Kr(f ; δ) = inf
g∈W r(I)

{
||f − g||+ δ||g(r)|| : δ > 0

}
,

From [47], it is known that there exists a constant C > 0, such that

Kr(f ; δr) ≤ Cωr(f ; δ) ∀r = 1, 2, 3... (0.5.2)

Let CB(I) be the space of all continuous and bounded functions on I with the norm

||f || = sup
x∈I
|f(x)|.

Definition 0.5.8. The rth order Ditzian-Totik modulus of smoothness ωr,φ(f, δ), for

f ∈ CB(I) is defined by

ωr,φ(f, δ) = sup
0<|h|6δ

{
|∆r

hφf(x)| : x, x+ rhφ ∈ I
}
,

9



where ∆r
hφf(x) is the rth forward difference with step length hφ. In the particular

case r = 1, we denote ω1,φ(f, δ) by ωφ(f, δ).

Let us define

W r
φ(I) = {g : g(r−1) ∈ ACloc(I) and ||φrg(r)|| <∞},

where g(r−1) ∈ ACloc(I) means g(r−1) is absolutely continuous on every [a, b] ⊂ I. In

the particular case r = 1, we denote W 1
φ(I) by Wφ(I).

Definition 0.5.9. The K−functional is defined as

Kr,φ(f ; δ) = inf
g∈W r

φ(I)

{
||f − g||+ δr||φrg(r)|| : δ > 0

}
.

In the particular case r = 1, we denote K1,φ(f ; δ) by Kφ(f ; δ).

From [48], it is known that there exists a constant C > 0, such that

C−1ωr,φ(f ; δ) ≤ Kr,φ(f ; δr) ≤ Cωr,φ(f ; δ) ∀r = 1, 2, 3... (0.5.3)

Let DBV (I) be the class of all absolutely continuous functions f having a deriva-

tive f
′

equivalent with a function of bounded variation on every finite subinterval

of I. We observe that the functions f ∈ DBV (I) possess a representation

f(x) =

∫ x

0

g(t)dt+ f(0), (0.5.4)

where g ∈ BV (I) i.e. g is a function of bounded variation on every finite subinterval

of I. Throughout the thesis
∨b
a f(x) denotes the total variation of f(x) on [a, b].

0.6 Contents of the Thesis

The present thesis consists of eight chapters and the contents of these are as given

below:
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Chapter 1. In this chapter, we construct a genuine family of Bernstein-Durrmeyer

type operators based on Polya basis functions. We establish some moment estimates

and the direct results which include global approximation theorem in terms of classi-

cal modulus of continuity and a local approximation theorem in terms of the second

order Ditizian-Totik modulus of smoothness. Also, we obtain a Voronovskaya-type

asymptotic theorem and a quantitative Voronovskaya-type estimate. Lastly, we

study the approximation of functions having a derivative of bounded variation.

The results in this chapter are published in Filomat ( University of Nǐs, Ser-

bia).

Chapter 2. This chapter is the study of the Bézier variant of genuine-Durrmeyer

type operators having Polya basis functions. We give a global approximation theo-

rem in terms of second order modulus of continuity, a direct approximation theorem

and a Voronovskaja type theorem by using the Ditzian-Totik modulus of smooth-

ness. Next, we establish the rate of convergence for functions whose derivatives are

of bounded variation. Further, we show the rate of convergence of these operators

to certain functions by illustrative graphics using the Matlab algorithms.

The results in this chapter are published in Carpathian Journal of Mathemat-

ics (North University of Baia Mare, Romania).

Chapter 3. In the present chapter, we establish a link between the Szász-

Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-

Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth

order central moment and Grüss-Voronovskaya type theorem. We also establish a

local approximation theorem by means of the Steklov means in terms of first and
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second order modulus of continuity and Voronovskaya type asymtotic theorem. Fur-

ther, we discuss the degree of approximation for functions in polynomial weighted

spaces. Lastly, we find the rate of approximation of functions having a derivative of

bounded variation.

The contents of this chapter accepted for publication in Journal of Inequalities

and Applications (Springer Publications).

Chapter 4. In this chapter, we introduce the Bézier-variant of Durrmeyer modi-

fication of the Bernstein operators based on a function τ, which is infinite times con-

tinuously differentiable and strictly increasing function on [0, 1] such that τ(0) = 0

and τ(1) = 1. Here the Korovkin set {1, t, t2} is generalized to {1, τ, τ 2}. We give

the rate of approximation of these operators in terms of usual modulus of continu-

ity and the K−functional. Next, we establish the quantitative Voronovskaja type

theorem. In the last section, we obtain the rate of convergence for functions having

derivatives of bounded variation.

The contents of this chapter are published in Results in Mathematics (Springer

Publications).

Chapter 5. In this chapter, we construct a sequence of Stancu-type operators

that are based on the same function τ, defined in preceding chapter. We compare

the new operators with classical Stancu operators and show that on a certain in-

terval, these operators present a better degree of approximation than the original

ones. Also, we give a direct approximation theorem by means of the Ditzian-Totik

modulus of smoothness and a Voronovskaja type theorem.

The results of this chapter are published in Numerical Functional Analysis and
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Optimization (Taylor and Francis Group).

Chapter 6. In the present chapter, we introduce the Bézier variant of the modi-

fied Srivastava-Gupta operators defined by Yadav [163] and give a local approxima-

tion theorem by means of the Ditzian-Totik modulus of smoothness and the rate of

convergence for absolutely continuous functions having a derivative equivalent to a

function of bounded variation. Furthermore, we show the comparisons of the rate

of convergence of the Srivastava-Gupta operators vis-a-vis its Bézier variant to a

certain function by illustrative graphics using Matlab algorithms.

The content of this chapter are published in Revista de la Union Mathematica

Argentina (Union Mathematica Argentina).

Chapter 7. In this chapter, we propose the Stancu-Durrmeyer-type modifica-

tion of q-Bernstein operators by means of q-Jackson integral. Here, we study basic

convergence theorem, local approximation theorem in terms of the first and second

order modulus of continuity and direct theorems by means of Lipschitz type space

and Lipschitz type maximal function. Further, we establish the Korovkin type ap-

proximation theorem by using A-statistical convergence. Lastly, we give the rates

of A-statistical convergence in terms of the modulus of continuity.

The contents of this chapter are published in Applied Mathematics and Infor-

mation Sciences (Natural Sciences).

Chapter 8. This chapter is in continuation of our work in Chapter 7. Here, we

construct a bivariate generalization of Stancu-Durrmeyer-type operators and study

the rate of convergence by means of the complete modulus of continuity and the

partial moduli of continuity and the degree of approximation with the aid of the
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Peetre’s K−functional. Also, we show the convergence of the operators to a certain

function for two different values of q by illustrative graphics. Subsequently, we de-

fine the GBS(Generalized Boolean Sum) operators of Stancu-Durrmeyer type and

give the rate of approximation by means of the mixed modulus of smoothness and

the Lipschitz class of Bögel-continuous functions.

The results of this chapter are accepted for publication in Mathematical Com-

munications (Croatian Mathematical Society).
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Chapter 1

A genuine family of

Bernstein-Durrmeyer type

operators based on Polya basis

functions

1.1 Introduction

In 1968, Stancu [148] introduced a sequence of positive linear operators

P
(α)
n : C[0, 1] −→ C[0, 1], depending on a non negative parameter α as

P (α)
n (f ;x) =

n∑
k=0

f

(
k

n

)
p
(α)
n,k(x), (1.1.1)

where p
(α)
n,k(x) is the Polya distribution with density function given by

p
(α)
n,k(x) =

(
n

k

)∏k−1
v=0(x+ vα)

∏n−k−1
µ=0 (1− x+ µα)∏n−1

λ=0(1 + λα)
, x ∈ [0, 1].

In case α = 0, the operators (1.1.1) reduce to the classical Bernstein polynomials.

For these operators , Lupas and Lupas [111] considered a special case of the above

operators for α =
1

n
which reduces to
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P
( 1
n
)

n (f ;x) =
2(n!)

(2n)!

n∑
k=0

(
n

k

)
f

(
k

n

)
(nx)k(n− nx)n−k, (1.1.2)

where the rising factorial (x)n is given by (x)n = x(x+ 1)(x+ 2).....(x+ n− 1) with

(x)0 = 1.

Gupta and Rassias [82] introduced the Durrmeyer-type integral modification for the

operators (1.1.2) and obtained local and global direct estimates and a Voronvskaya-

type asymptotic formula. Very recently, Gupta [76] defined a genuine Durrmeyer

type modification of the operators given by (1.1.2) and obtained a Voronovskaya-

type asymptotic theorem and a local approximation theorem. Gonska and Pǎltǎnea

[67] established a very interesting link between the Bernstein polynomials and their

Bernstein-Durrmeyer variants with several particular cases which preserve linear

functions and gave recursion formula for moments and estimates for simultaneous

approximation of derivatives. After that, the same authors [66] established quan-

titative Voronovskaya-type assertions in terms of the first order and second order

moduli of smoothness.

Motivated by these studies, for f ∈ LB[0, 1], the space of bounded and Lebesgue

integrable functions on [0, 1] and a parameter ρ > 0, we now propose a genuine Dur-

rmeyer type modification of the operators given by (1.1.2), which preserve linear

functions, as

Uρ
n(f ;x) =

n∑
k=0

F ρ
n,kp

( 1
n
)

n,k (x), (1.1.3)

where

F ρ
n,k =


∫ 1

0
f(t)µρn,kdt, 1 ≤ k ≤ n− 1

f(0), k = 0

f(1), k = n,

and

µρn,k(t) =
tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
,
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B(m,n) being the beta function defined as

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
, m, n > 0.

For ρ = 1, the operators Uρ
n reduce to the operators defined by Gupta [76] and

when ρ→∞, these operators reduce to the operators considered by Lupas and Lu-

pas [111], in view of the fact that F ρ
n,k → f

(
k

n

)
, as shown by Gonska and Pǎltǎnea

[3,Thm 2.3, p.786].

The purpose of this chapter is to establish a global approximation theorem in

terms of the classical second order modulus of continuity and a local-approximation

theorem in terms of the second order Ditzian-Totik modulus of smoothness, a

Voronovskaya type asymptotic theorem and also a quantitative Voronovskaya type

estimate. In the last section of the chapter, the approximation of functions having

a derivative of bounded variation is also discussed.

1.2 Auxiliary Results

Lemma 1.2.1. [115] For the operators defined by (1.1.2), one has

(i) P
( 1
n
)

n (1;x) = 1,

(ii) P
( 1
n
)

n (t;x) = x,

(iii) P
( 1
n
)

n (t2;x) = x2 +
2x(1− x)

n+ 1
,

(iv) P
( 1
n
)

n (t3;x) = x3 +
6nx2(1− x)

(n+ 1)(n+ 2)
+

6x(1− x)

(n+ 1)(n+ 2)
,

(v) P
( 1
n
)

n (t4;x) = x4 +
12(n2 + 1)x3(1− x)

(n+ 1)(n+ 2)(n+ 3)
+

12(3n− 1)x2(1− x)

(n+ 1)(n+ 2)(n+ 3)

+
2(13n− 1)x(1− x)

n(n+ 1)(n+ 2)(n+ 3)
.

Lemma 1.2.2. For Uρ
n(tm;x), m = 0, 1, 2, 3, 4, we obtain,

(i) Uρ
n(1;x) = 1,
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(ii) Uρ
n(t;x) = x,

(iii) Uρ
n(t2;x) =

nρ

nρ+ 1

(
x2 +

2x(1− x)

n+ 1

)
+

x

nρ+ 1
,

(iv) Uρ
n(t3;x) =

1

(nρ+ 1)(nρ+ 2)

{
n2ρ2

(
x3 +

6nx2(1− x)

(n+ 1)(n+ 2)
+

6x(1− x)

(n+ 1)(n+ 2)

)
+

3nρ

(
x2 +

2x(1− x)

n+ 1

)
+ 2x

}
,

(v) Uρ
n(t4;x) =

1

(nρ+ 1)(nρ+ 2)(nρ+ 3)

{
n3ρ3

(
x4 +

12(n2 + 1)x3(1− x)

(n+ 1)(n+ 2)(n+ 3)

+
12(3n− 1)x2(1− x)

(n+ 1)(n+ 2)(n+ 3)
+

2(13n− 1)x(1− x)

n(n+ 1)(n+ 2)(n+ 3)

)
+ 6n2ρ2

(
x3 +

6nx2(1− x)

(n+ 1)(n+ 2)
+

6x(1− x)

(n+ 1)(n+ 2)

)
+ 11nρ

(
x2 +

2x(1− x)

n+ 1

)
+ 6x

}
.

By a simple calculation and using Lemma 1.2.1, we obtain the proof of the

lemma. Hence we omit the details.

In our next lemma, we find the central moment estimates required for the main

results of the paper.

Lemma 1.2.3. For Uρ
n((t− x)m;x), m ∈ N

⋃
{0}, we have,

(i) Uρ
n((t− x);x) = 0,

(ii) Uρ
n((t− x)2;x) =

(2nρ+ n+ 1)x(1− x)

(n+ 1)(nρ+ 1)
,

(iii) Uρ
n((t− x)4;x) =

x(1− x)

(n+ 1)(n+ 2)(n+ 3)(1 + ρn)(2 + ρn)(3 + ρn)

{
3

(
− ρ(2ρ+

1)2n4+2(14ρ3+14ρ2+9ρ+3)n3+(120ρ2+109ρ+36)n2+6(23ρ+11)n+36

)
(x(1−x))+

2

(
(13ρ3 +18ρ2 +11ρ+3)n3 +(−ρ3 +54ρ2 +55ρ+18)n2 +33(2ρ+1)n+18

)}
.

Consequently, for every x ∈ [0, 1],

lim
n→∞

nUρ
n((t− x)2;x) =

2ρ+ 1

ρ
φ2(x)

and

lim
n→∞

n2Uρ
n((t− x)4;x) =

−3(2ρ+1)2

ρ2
φ4(x), (1.2.1)

where φ2(x) = x(1− x).
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Remark 1.2.4. From Lemma 1.2.3, we have

Uρ
n((t− x)2;x) ≤ (2ρ+ 1)

(nρ+ 1)
φ2(x) ≤ 1

4

(2ρ+ 1)

(nρ+ 1)
, ∀x ∈ [0, 1]

= δ2n,ρ, (say),

and for every x ∈ [0, 1],

Uρ
n((t− x)4;x) ≤ C

n2
φ4(x),

where C is some positive contant dependent on ρ.

In what follows, let ‖.‖ denote the uniform norm on [0, 1], ||f || = sup
x∈[0,1]

|f(x)|.

Lemma 1.2.5. For every f ∈ C[0, 1], we have

|Uρ
n(f ; .)‖ ≤ ‖f‖.

Proof. Using Lemma 1.2.2, the proof of this Lemma is straightforward. Hence we

skip the details.

Now, we present a theorem which will be needed to obtain a quantitative Voronovskaya

type theorem using the least concave majorant of the first order modulus of conti-

nuity.

Theorem 1.2.6. [65] Let q ∈ N
⋃
{0} and f ∈ Cq[0, 1] (space of q-times contin-

uously differentiable functions on [0, 1]) and let L : C[0, 1] → C[0, 1] be a positive

linear operator. Then∣∣∣∣L(f ;x)−
q∑
r=0

L

(
(t−x)r;

f (r)(x)

r!

)∣∣∣∣ ≤ L(|e1 − x|q;x)

q!
ω̃

(
f (q);

1

(q + 1)

L(|t− x|q+1;x)

L(|t− x|q;x)

)
,

where ω̃ is the least concave majorant of the first-order modulus of continuity.

1.3 Main results

1.3.1 Global approximation theorem

First we will establish a global approximation theorem for the operators Uρ
n(f ;x)

using the classical modulus of continuity.
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Theorem 1.3.1. Let f ∈ C[0, 1]. Then there exists a constant C > 0, such that

‖Uρ
n(f ; .)− f(.)‖ ≤ Cω2(f ; δn,ρ),

where δn,ρ is as defined in Remark 1.2.4 and C > 0, is an absolute constant.

Proof. Let g ∈ W 2[0, 1] and t ∈ [0, 1]. Then by Taylor’s expansion, we have

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Applying Uρ
n(.;x) to both sides of the above equation, we get

Uρ
n(g;x)− g(x) = g′(x)Uρ

n(t− x;x) + Uρ
n

(∫ t

x

(t− u)g′′(u)du;x

)
.

Using Lemma 1.2.3 and Remark 1.2.4, we get

|Uρ
n(g;x)− g(x)| ≤ Uρ

n

(∣∣∣∣ ∫ t

x

|(t− u)||g′′(u)|du
∣∣∣∣;x)

≤ ‖g′′‖
2

Uρ
n((t− x)2;x)

≤ ‖g′′‖
2

δ2n,ρ. (1.3.1)

Now, for f ∈ C[0, 1] and g ∈ W 2[0, 1], using Lemma 1.2.5 and inequality (1.3.1), we

obtain

|Uρ
n(f ;x)− f(x)| ≤ |Uρ

n(f − g;x)|+ |Uρ
n(g;x)− g(x)|+ |f(x)− g(x)|

≤ 2‖f − g‖+
‖g′′‖

2
δ2n,ρ.

Taking infimum on the right side of the above inequality over all g ∈ W 2[0, 1], we

get

|Uρ
n(f ;x)− f(x)| ≤ 2K2(f ; δ2n,ρ), ∀x ∈ [0, 1].

Consequently,

‖Uρ
n(.;x)− f(.)‖ ≤ 2K2(f ; δ2n,ρ).

Using the relation (0.5.2) between K-functional and the second order modulus of

continuity, we get the required result. This completes the proof.
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1.3.2 Local approximation theorem

Next, we shall prove a local approximation theorem by using the Ditzian-Totik

modulus of smoothness.

Theorem 1.3.2. Let f ∈ C[0, 1]. Then for every x ∈ [0, 1], we have

|Uρ
n(f ;x)− f(x)| ≤ Cω2,φ

(
f ;

√
2ρ+ 1

nρ+ 1

)
,

where C > 0, is an absolute constant and φ(x) =
√
x(1− x).

Proof. Let g ∈ W 2
φ [0, 1] and t ∈ [0, 1]. Then by Taylor’s expansion, we have

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Now applying Uρ
n(f ;x) to both sides of the above equation and using Lemma 1.2.3,

we get

|Uρ
n(g;x)− g(x)| = |g′(x)Uρ

n(t− x;x)|+
∣∣∣∣Uρ

n

(∫ t

x

(t− u)g′′(u)du;x

)∣∣∣∣
≤ Uρ

n

(∣∣∣∣ ∫ t

x

|t− u||g′′(u)|du
∣∣∣∣;x). (1.3.2)

Since φ2(x) is a concave function on [0, 1], for u = λx + (1 − λ)t, 0 < λ ≤ 1 and

x ∈ (0, 1), we get,

|t− u|
φ2(u)

=
|t− λx− (1− λ)t|
φ2(λx+ (1− λ)t)

≤ λ|t− x|
λφ2(x) + (1− λ)φ2(t)

≤ |t− x|
φ2(x)

.

Combining this inequality and equation (1.3.2), in view of Remark 1.2.4 we obtain

|Uρ
n(g;x)− g(x)| ≤ Uρ

n

(∣∣∣∣ ∫ t

x

|t− u|
φ2(u)

‖φ2g′′‖du
∣∣∣∣;x)

≤ 1

φ2(x)
‖φ2g′′‖Uρ

n((t− x)2;x)

≤ 2ρ+ 1

nρ+ 1
‖φ2g′′‖.
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Using Lemma 1.2.5 and taking infimum over all g ∈ W 2
φ [0, 1] on the right hand side

of the above inequality, we have

|Uρ
n(f ;x)− f(x)| ≤ |Uρ

n(f − g;x)|+ |Uρ
n(g;x)− g(x)|+ |g(x)− f(x)|

≤ 2‖f − g‖+
2ρ+ 1

nρ+ 1
‖φ2g′′‖

≤ 2K2,φ

(
f ;

2ρ+ 1

nρ+ 1

)
.

In view of the relation (0.5.3), we get the desired result.

1.3.3 Voronovskaya theorem

Now we will establish a Voronovskaya type asymptotic for the operators Uρ
n(f ;x).

Theorem 1.3.3. Let f ∈ LB[0, 1]. If f ′′ exists at a point x ∈ [0, 1], then

lim
n→∞

n[Uρ
n(f ;x)− f(x)] =

2ρ+ 1

2ρ
φ2(x)f ′′(x). (1.3.3)

The convergence in (1.3.3) holds uniformly if f ′′ ∈ C[0, 1].

Proof. By Taylor’s expansion for the function f , we may write

f(t)− f(x) = (t− x)f ′(x) +
(t− x)2

2
f ′′(x) + η(t, x)(t− x)2,

where η(t, x) → 0 as t → x and is a bounded function, ∀t ∈ [0, 1]. Now, applying

Uρ
n on the above Taylor’s expansion and using Lemma 1.2.3, we get

Uρ
n(f ;x)− f(x) = Uρ

n((t− x)f ′(x);x) + Uρ
n

(
(t− x)2

2
f ′′(x);x

)
+ Uρ

n

(
η(t, x)(t− x)2;x

)
=

f ′′(x)

2

(2nρ+ n+ 1)

(n+ 1)(nρ+ 1)
x(1− x) + Uρ

n

(
η(t, x)(t− x)2;x

)
.

Hence,

lim
n→∞

n[Uρ
n(f ;x)− f(x)] =

(2ρ+ 1)

2ρ
φ2(x)f ′′(x) + F,

where F = lim
n→∞

nUρ
n

(
η(t, x)(t − x)2;x

)
. Now we shall show that F = 0. Since

η(t, x)→ 0 as t→ x, for a given ε > 0, there exists a δ > 0, such that |η(t, x)| < ε
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whenever |t − x| < δ. For |t − x| ≥ δ, the boundedness of η(t, x) on [0, 1] implies

that |η(t, x)| ≤M
(t− x)2

δ2
, for some M > 0. Let χδ(t) be the characteristic function

of the interval (x− δ, x+ δ). Then, from Lemma 1.2.3, for every x ∈ [0, 1], we have∣∣∣∣Uρ
n

(
η(t, x)(t− x)2;x

)∣∣∣∣ ≤ Uρ
n

(
|η(t, x)|(t− x)2χδ(t);x

)
+ Uρ

n

(
|η(t, x)|(t− x)2(1− χδ(t));x

)
≤ εUρ

n

(
(t− x)2;x

)
+
M

δ2
Uρ
n

(
(t− x)4;x

)
= εO

(
1

n

)
+
M

δ2
O

(
1

n2

)
.

Thus, for every x ∈ [0, 1], we get

n

∣∣∣∣Uρ
n

(
η(t, x)(t− x)2;x

)∣∣∣∣ = εO(1) +
M

δ2
O

(
1

n

)
.

Taking limit as n → ∞, due to the arbitrariness of ε > 0, we get F = 0. This

completes the proof of the first assertion of the theorem.

To prove the uniformity assertion, it is sufficient to remark that δ(ε) in the above

proof can be chosen to be independent of x ∈ [0, 1] and all the other estimates hold

uniformly on [0, 1]. This completes the proof.

1.3.4 Quantitative Voronovskaya type theorem

In the next result, we establish a quantitative Voronovskaya type estimate for the

operators Uρ
n.

Theorem 1.3.4. For f ∈ C2[0, 1] and x ∈ [0, 1], we have∣∣∣∣Uρ
n(f ;x)− f(x)− f ′′(x)

2!
(t− x)2

∣∣∣∣ ≤ 1

2!

(2ρ+ 1)

(nρ+ 1)
φ2(x)ω̃

(
f ′′;

M

3
√
n

)
,

where, M > 0 and ω̃(f ; .) is the least concave majorant of first order of the function

ω(f ; .)(see[65], Thm 2.1), defined as

ω̃(f ; ε) =

 sup
0≤x≤ε≤y≤1

(ε− x)ω(f ; y) + (y − x)ω(f ;x)

y − x
, 0 ≤ ε ≤ 1,

ω(f ; 1), ε > 1.
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Proof. Using the Cauchy-Schwarz inequality, we note that

Uρ
n(|t− x|3;x)

Uρ
n((t− x)2;x)

≤

√
Uρ
n((t− x)4;x)

Uρ
n((t− x)2;x)

. (1.3.4)

For q = 2, using Theorem 1.2.6 and equation (1.3.4), we get∣∣∣∣Uρ
n(f ;x)− f(x)− f ′′(x)

2!
Uρ
n((t− x)2;x)

∣∣∣∣ ≤ Uρ
n((t− x)2;x)

2!
ω̃

(
f ′′;

1

3

Uρ
n(|t− x|3;x)

Uρ
n((t− x)2;x)

)
≤ Uρ

n((t− x)2;x)

2!
ω̃

(
f ′′;

1

3

√
Uρ
n((t− x)4;x)

Uρ
n((t− x)2;x)

)
≤ 1

2!

(2ρ+ 1)

(nρ+ 1)
φ2(x)ω̃

(
f ′′;

M

3
√
n

)
.

This completes the proof.

1.3.5 Rate of approximation

In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators Uρ
n in an integral form as follows:

Uρ
n(f ;x) =

∫ 1

0

Kρ
n(x, t)f(t)dt, (1.3.5)

where the kernel Kρ
n(x, t) is given by

Kρ
n(x, t) =

n−1∑
k=1

p
(1/n)
n,k (x)µρn,k(t) + p

( 1
n
)

n,0 (x)δ(t) + p
( 1
n
)

n,n (x)δ(1− t),

δ(u) being the Dirac-delta function.

Lemma 1.3.5. For a fixed x ∈ (0, 1) and sufficiently large n, we have

(i) ξρn(x, y) =
∫ y
0
Kρ
n(x, t)dt ≤ (2ρ+ 1)

(nρ+ 1)

φ2(x)

(x− y)2
, 0 ≤ y < x,

(ii) 1− ξρn(x, z) =
∫ 1

z
Kρ
n(x, t)dt ≤ (2ρ+ 1)

(nρ+ 1)

φ2(x)

(z − x)2
, x < z < 1.
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Proof. (i) Using Lemma 1.2.3, we get

ξρn(x, y) =

y∫
0

Kρ
n(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

Kρ
n(x, t)dt

≤ Uρ
n((t− x)2;x)(x− y)−2

≤ (2ρ+ 1)

(nρ+ 1)

φ2(x)

(x− y)2
.

The proof of (ii) is similar hence the details are omitted.

Theorem 1.3.6. Let f ∈ DBV ([0, 1]). Then, for every x ∈ (0, 1) and sufficiently

large n, we have

|Uρ
n(f ;x)− f(x)| ≤

√
2ρ+ 1

(nρ+ 1)
φ(x)

∣∣∣∣f ′(x+)− f ′(x−)

2

∣∣∣∣+
2ρ+ 1

(nρ+ 1)
φ2(x)x−1

[
√
n ]∑

k=1

x∨
x−x/k

((f
′
)x) +

x√
n

x∨
x−x/

√
n

((f
′
)x) +

2ρ+ 1

(nρ+ 1)

φ2(x)

(1− x)

[
√
n]∑

k=1

x+(1−x)/k∨
x

((f
′
)x) +

(1− x)√
n

x+(1−x)/
√
n∨

x

((f
′
)x),

where f ′x is defined by

f
′

x(t) =


f
′
(t)− f ′(x−), 0 ≤ t < x

0, t = x

f
′
(t)− f ′(x+) x < t < 1.

(1.3.6)

Proof. Since Uρ
n(1;x) = 1, using (1.3.5), for every x ∈ (0, 1) we get

Uρ
n(f ;x)− f(x) =

∫ 1

0

Kρ
n(x, t)(f(t)− f(x))dt

=

∫ 1

0

Kρ
n(x, t)

∫ t

x

f
′
(u)dudt. (1.3.7)

For any f ∈ DBV [0, 1], from (1.3.6) we may write

f ′(u) = (f ′)x(u) +
1

2
(f ′(x+) + f ′(x−)) +

1

2
(f ′(x+)− f ′(x−))sgn(u− x)

+δx(u)[f ′(u)− 1

2
(f ′(x+) + f ′(x−))], (1.3.8)
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where

δx(u) =

{
1 , u = x

0 , u 6= x
.

Obviously,∫ 1

0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u)du

)
Kρ
n(x, t)dt = 0. (1.3.9)

Using Lemma 1.2.3, we get∫ 1

0

(∫ t

x

1

2
(f ′(x+) + f ′(x−))du

)
Kρ
n(x, t)dt

=
1

2
(f ′(x+) + f ′(x−))

∫ 1

0

(t− x)Kρ
n(x, t)dt

=
1

2
(f ′(x+) + f ′(x−))Uρ

n((t− x);x)

= 0. (1.3.10)

Applying Cauchy-Schwarz inequality, we have∫ 1

0

Kρ
n(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))sgn(u− x)du

)
dt

≤ 1

2
| f ′(x+)− f ′(x−) |

∫ 1

0

|t− x|Kρ
n(x, t)dt

=
1

2
| f ′(x+)− f ′(x−) | Uρ

n(|t− x|;x)

≤ 1

2
| f ′(x+)− f ′(x−) |

(
Uρ
n((t− x)2;x)

)1/2

. (1.3.11)

Using Lemma 1.2.3 and equations (1.3.7-1.3.11) , we obtain

|Uρ
n(f ;x)− f(x)| ≤ 1

2
|f ′(x+)− f ′(x−)|

√
2ρ+ 1

(nρ+ 1)
φ(x)

+

∣∣∣∣ ∫ x

0

∫ t

x

((f
′
)x(u)du)Kρ

n(x, t)dt+

∫ 1

x

∫ t

x

(
(f
′
)x(u)du

)
Kρ
n(x, t)dt

∣∣∣∣.
(1.3.12)

Now, let

Aρn(f ′, x) =

∫ x

0

∫ t

x

((f ′)x(u)du)Kρ
n(x, t)dt,
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and

Bρ
n(f ′, x) =

∫ 1

x

∫ t

x

((f ′)x(u)du)Kρ
n(x, t)dt.

Thus our problem is reduced to calculate the estimates of the terms Aρn(f ′, x) and

Bρ
n(f ′, x). Since

∫ b
a
dtξ

ρ
n(x, t) ≤ 1 for all [a, b] ⊆ [0, 1], using integration by parts and

applying Lemma 1.3.5 with y = x− x/
√
n, we have

|Aρn(f ′, x)| =

∣∣∣∣ ∫ x

0

∫ t

x

(
(f ′)x(u)du

)
dtξ

ρ
n(x, t)

∣∣∣∣
=

∣∣∣∣ ∫ x

0

ξρn(x, t)(f ′)x(t)dt

∣∣∣∣
≤

∫ y

0

|(f ′)x(t)| |ξρn(x, t)|dt+

∫ x

y

|(f ′)x(t)| |ξρn(x, t)|dt

≤ 2ρ+ 1

nρ+ 1
φ2(x)

∫ y

0

x∨
t

((f ′)x)(x− t)−2dt+

∫ x

y

x∨
t

((f ′)x)dt

≤ 2ρ+ 1

nρ+ 1
φ2(x)

∫ y

0

x∨
t

((f
′
)x)(x− t)−2dt+

x√
n

x∨
x−x/

√
n

((f ′)x)

=
2ρ+ 1

nρ+ 1
φ2(x)

∫ x−x/
√
n

0

x∨
t

((f
′
)x)(x− t)−2dt+

x√
n

x∨
x−x/

√
n

((f ′)x).

Substituting u = x/(x− t), we get∫ x−x/
√
n

0

(x− t)−2
x∨
t

(f
′
)x)dt =

∫ √n
1

x∨
x−x/u

((f
′
)x)du

≤ x−1
[
√
n]∑

k=1

∫ k+1

k

x∨
x−x/k

((f
′
)x)du

≤ x−1
[
√
n]∑

k=1

x∨
x−x/k

((f ′)x).

Thus,

|Aρn(f ′, x)| ≤ 2ρ+ 1

nρ+ 1
φ2(x)x−1

[
√
n]∑

k=1

x∨
x−x/k

((f
′
)x) +

x√
n

x∨
x−x/

√
n

((f
′
)x). (1.3.13)

Again, using integration by parts in Bρ
n(f

′
, x) and applying Lemma 1.3.5 with
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z = x+ (1− x)/
√
n, we have

|Bρ
n(f

′
, x)| =

∣∣∣∣ ∫ 1

x

∫ t

x

((f ′)x(u)du)Kρ
n(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

∫ t

x

((f ′)x(u)du)dt(1− ξρn(x, t)) +

∫ 1

z

∫ t

x

((f ′)x(u)du)dt(1− ξρn(x, t))

∣∣∣∣
=

∣∣∣∣[ ∫ t

x

((f ′)x(u)du)(1− ξρn(x, t))

]z
x

−
∫ z

x

(f ′)x(t)(1− ξρn(x, t))dt

+

∫ 1

z

∫ t

x

((f ′)x(u)du)dt(1− ξρn(x, t))

∣∣∣∣
=

∣∣∣∣ ∫ z

x

((f ′)x(u)du)(1− ξρn(x, z))−
∫ z

x

(f ′)x(t)(1− ξρn(x, t))dt

+

[ ∫ t

x

((f ′)x(u)du)(1− ξρn(x, t))

]1
z

−
∫ 1

z

(f ′)x(t)(1− ξρn(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(f ′)x(t)(1− ξρn(x, t))dt+

∫ 1

z

(f ′)x(t)(1− ξρn(x, t))dt

∣∣∣∣
≤ 2ρ+ 1

nρ+ 1
φ2(x)

∫ 1

z

t∨
x

(f ′)x(t− x)−2dt+

∫ z

x

t∨
x

(f ′)xdt

=
2ρ+ 1

nρ+ 1
φ2(x)

∫ 1

x+(1−x)/
√
n

t∨
x

(f ′)x(t− x)−2dt+
(1− x)√

n

x+(1−x)/
√
n∨

x

(f ′)x.

By substituting u = (1− x)/(t− x), we get

|Bρ
n(f

′
, x)| ≤ 2ρ+ 1

nρ+ 1
φ2(x)

∫ √n
1

x+(1−x)/u∨
x

(f ′)x(1− x)−1du+
(1− x)√

n

x+(1−x)/
√
n∨

x

(f ′)x

≤ 2ρ+ 1

nρ+ 1

φ2(x)

(1− x)

[
√
n]∑

k=1

∫ k+1

k

x+(1−x)/k∨
x

(f ′)xdu+
(1− x)√

n

x+(1−x)/
√
n∨

x

(f ′)x

=
2ρ+ 1

nρ+ 1

φ2(x)

(1− x)

[
√
n]∑

k=1

x+(1−x)/k∨
x

(f ′)x +
(1− x)√

n

x+(1−x)/
√
n∨

x

(f ′)x.

(1.3.14)

Collecting the estimates (1.3.12-1.3.14), we get the required result. This completes

the proof.
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Chapter 2

Bézier variant of

genuine-Durrmeyer type operators

based on Polya distribution

2.1 Construction of Operator

In this chapter, we define the Bézier variant of the genuine Bernstein-Durrmeyer

operators given by (1.1.3) and study some approximation properties.

Păltănea [127] defined a class of operators U
ρ

n : C[0, 1] →
∏

n(the class of all poly-

nomials of degree at most n) as follows:

U
ρ

n(f ;x) :=
n−1∑
k=1

(∫ 1

0

tkρ−1(1− t)(n−k)ρ−1

β(kρ, (n− k)ρ)
f(t)dt

)
pn,k(x) + f(0)(1− x)n + f(1)xn,

(2.1.1)

where ρ > 0, x ∈ [0, 1] and pn,k(x) =

(
n

k

)
xk(1− x)n−k.

Remark 2.1.1. Let us consider a function f : [0, 1]→ R,

f(x) =


x2 sin 1

x
, x 6= 0,

0, x = 0.
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For ρ = 1 and n = 20, we computed the error of approximation for Uρ
n given by

(1.1.3) and U
ρ

n given by (2.1.1) at certain points from [0.6, 0.7] in the Table 1.

Table 1. Error of approximation for Uρ
n and U

ρ

n

x |Uρ
n(f ;x)− f(x)| |Uρ

n(f ;x)− f(x)|
0.60 0.001239490900 0.001509158700

0.61 0.000351701000 0.001971924300

0.62 0.0004378093000 0.002365328800

0.63 0.001135096600 0.002695352000

0.64 0.001746098000 0.002967653800

0.65 0.002276601100 0.003187565800

0.66 0.002732224700 0.003360091000

0.67 0.003118397000 0.003489901500

0.68 0.003440343200 0.003581349400

From the above results it follows that the error of approximation for Uρ
n is better

than U
ρ

n to the function f at the points xi = 0.6 + 0.01 · i, i = 0, 8.

Here, we propose a Bézier variant of the operators given by (1.1.3) as

Uρ
n,α(f ;x) =

n∑
k=0

F ρ
n,kQ

(α)
n,k(x), (2.1.2)

where, Q
(α)
n,k(x) = [Jn,k(x)]α − [Jn,k+1(x)]α , α ≥ 1 with Jn,k(x) =

∑n
j=k p

(1/n)
n,j (x),

when k ≤ n and 0 otherwise. Clearly, Uρ
n,α is a linear positive operator. If α = 1,

then the operators Uρ
n,α reduce to the operators Uρ

n.

The aim of this chapter is to investigate a global approximation theorem, a

direct approximation result, a quantitative Voronovskaya type theorem and the rate

of convergence for differentiable functions having derivatives of bounded variation

on [0, 1] for the operators (2.1.2). Lastly, we show the rate of convergence of these

operators to certain functions by some illustrative graphics.
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2.2 Auxiliary Results

In what follows let ‖.‖ denotes uniform norm on C[0, 1].

Lemma 2.2.1. Let f ∈ C[0, 1]. Then, we have

‖ Uρ
n,α(f ; .) ‖≤ α ‖ f ‖ .

Proof. Using the inequality | aα − bα |≤ α | a − b | with 0 ≤ a, b ≤ 1, α ≥ 1 and

from the definition of Q
(α)
n,k, we have

0 < [Jn,k(x)]α − [Jn,k+1(x)]α ≤ α(Jn,k(x)− Jn,k+1(x) = αp
(1/n)
n,k (x).

Hence from the definition of Uρ
n,α and Lemma 1.2.5, we obtain

‖ Uρ
n,α(f) ‖≤ α ‖ Uρ

n(f) ‖≤ α ‖ f ‖ .

This completes the proof.

Remark 2.2.2. We have

Uρ
n,α(e0;x) =

n∑
k=0

Q
(α)
n,k(x) = [Jn,0(x)]α

=

[
n∑
j=0

p
(1/n)
n,j (x)

]α
= 1, since

n∑
j=0

p
(1/n)
n,j (x) = 1.

The operators Uρ
n,α can be expressed in an integral form as follows:

Uρ
n,α(f ;x) =

∫ 1

0

Kρ
n,α(x, t)f(t)dt, (2.2.1)

where

Kρ
n,α(x, t) =

n−1∑
k=1

Qα
n,k(x)pρn,k(t) +Qα

n,0(x)δ(t) +Qα
n,n(x)δ(1− t),

δ(u) being the Dirac-delta function.

Lemma 2.2.3. For a fixed x ∈ (0, 1) and sufficiently large n, we have
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(i) ξρn,α(x, y) =
∫ y
0
Kρ
n,α(x, t)dt ≤ α

2ρ+ 1

nρ+ 1

φ2(x)

(x− y)2
, 0 ≤ y < x,

(ii) 1− ξρn,α(x, z) =
∫ 1

z
Kρ
n,α(x, t)dt ≤ α

2ρ+ 1

nρ+ 1

φ2(x)

(z − x)2
, x < z < 1,

Proof. (i) Using Lemma 2.2.1 and Remark 1.2.4, we get

ξρn,α(x, y) =

y∫
0

Kρ
n,α(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

Kρ
n,α(x, t)dt

≤
Uρ
n,α((t− x)2;x)

(x− y)2
≤ α

Uρ
n((t− x)2;x)

(x− y)2
≤ α

2ρ+ 1

nρ+ 1

φ2(x)

(x− y)2
.

The proof of (ii) is similar hence the details are omitted.

2.3 Main Results

2.3.1 Direct results

For f ∈ C[0, 1] and δ > 0, the appropriate Peetre’s K-functional [129] is defined by

K2(f ; δ) = inf
g∈W 2[0,1]

{
‖f − g‖+ δ‖g′‖+ δ2‖g′′‖

}
. (2.3.1)

From [47], there exists an absolute constant C > 0, such that

K2(f ; γ) ≤ Cω2(f ;
√
γ), (2.3.2)

where ω2(f ;
√
γ) is the second order modulus of continuity of f ∈ C[0, 1].

First, we establish a global approximation theorem for the operators Uρ
n,α using the

classical modulus of continuity.

Theorem 2.3.1. Let f ∈ C[0, 1]. Then there exists an absolute constant C > 0,

such that

||Uρ
n(f ; .)− f(.)|| ≤ Cω2(f ;

√
α1/2δn,ρ),

where δn,ρ is the same as defined in Remark 1.2.4.
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Proof. Let g ∈ W 2[0, 1] and t ∈ [0, 1]. Then by Taylor’s expansion, we have

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Now applying Uρ
n,α to both sides of the above equation, we get

Uρ
n,α(g;x)− g(x) = g′(x)Uρ

n,α(t− x;x) + Uρ
n,α

(∫ t

x

(t− u)g′′(u)du;x

)
.

Applying Cauchy-Schwarz inequality and Lemma 2.2.1 and Remark 1.2.4, we get

|Uρ
n,α(g;x)− g(x)| ≤ |g′(x)||Uρ

n,α(t− x;x)|+
∣∣∣∣Uρ

n,α

(∫ t

x

(t− u)g′′(u)du;x

)∣∣∣∣
≤ ‖g′‖Uρ

n,α(|t− x|;x) +
‖g′′‖

2
Uρ
n,α((t− x)2;x)

≤ ‖g′‖
(
Uρ
n,α((t− x)2;x)

) 1
2

+ α
‖g′′‖

2
Uρ
n((t− x)2;x)

≤
√
α‖g′‖δn,ρ + α

‖g′′‖
2

δ2n,ρ. (2.3.3)

Now, for f ∈ C[0, 1] and g ∈ W 2[0, 1], using Lemma 2.2.1 and (2.3.3), we obtain

|Uρ
n,α(f ;x)− f(x)| ≤ |Uρ

n,α(f − g;x)|+ |Uρ
n,α(g;x)− g(x)|+ |f(x)− g(x)|

≤ (α + 1)‖f − g‖+
√
α‖g′‖δn,ρ + α

‖g′′‖
2

δ2n,ρ.

Taking infimum on the right side of the above inequality over all g ∈ W 2[0, 1], we

get

|Uρ
n,α(f ;x)− f(x)| ≤ (α + 1)K2(f ;α1/2δn,ρ), ∀x ∈ [0, 1].

Using the relation (2.3.2) between the K-functional and the second order modulus

of continuity, we get the required result. This completes the proof.

Now, we establish a direct approximation theorem by means of Ditzian-Totik

modulus of smoothness.

Theorem 2.3.2. Let f be in C[0, 1] and φ(x) =
√
x(1− x) then for every x ∈ (0, 1),

we have

| Uρ
n,α(f ;x)− f(x) |< Cωφ

(
f ;

√
2ρ+ 1

nρ+ 1

)
, (2.3.4)

where C is a constant independent of n and x.
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Proof. Using the representation g(t) = g(x) +
∫ t
x
g′(u)du, we get∣∣Uρ

n,α(g;x)− g(x)
∣∣ =

∣∣∣∣Uρ
n,α

(∫ t

x

g′(u)du;x

)∣∣∣∣ . (2.3.5)

For any x, t ∈ (0, 1), we find that∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||φg′||∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣. (2.3.6)

But, ∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣ =

∣∣∣∣ ∫ t

x

1√
u(1− u)

du

∣∣∣∣ ≤ ∣∣∣∣ ∫ t

x

(
1√
u

+
1√

1− u

)
du

∣∣∣∣
≤ 2

(
|
√
t−
√
x | + |

√
1− t−

√
1− x |

)
= 2|t− x|

(
1√

t+
√
x

+
1√

1− t+
√

1− x

)
< 2|t− x|

(
1√
x

+
1√

1− x

)
≤ 2
√

2 |t− x|
φ(x)

. (2.3.7)

Combining (2.3.5)-(2.3.7) and using Cauchy-Schwarz inequality, we obtain

|Uρ
n,α(g;x)− g(x)| < 2

√
2||φg′||φ−1(x)Uρ

n,α(|t− x|;x)

≤ 2
√

2||φg′||φ−1(x)

(
Uρ
n,α((t− x)2;x)

)1/2

≤ 2
√

2||φg′||φ−1(x)

(
α Uρ

n((t− x)2;x)

)1/2

.

Now, using Remark 1.2.4, we get

|Uρ
n,α(g;x)− g(x)| < C

√
2ρ+ 1

nρ+ 1
||φg′||. (2.3.8)

Using Lemma 2.2.1 and (2.3.8), we can write

| Uρ
n,α(f : x)− f(x) | ≤ | Uρ

n,α(f − g;x) | +|f(x)− g(x)|+ | Uρ
n,α(g;x)− g(x) |

≤ C

(
||f − g||+

(√
2ρ+ 1

nρ+ 1
||φg′||

))
. (2.3.9)

Taking infimum on the right hand side of the above inequality over all g ∈ Wφ[0, 1],

we get

| Uρ
n,α(f ;x)− f(x) |< CKφ

(
f ;

√
2ρ+ 1

nρ+ 1

)
.

Using the relation (0.5.3), this theorem is proven.
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2.3.2 Quantitative Voronovskaja type theorem

In the following we prove a quantitative Voronovskaja type theorem for the oper-

ator Uρ
n,α. This result is established using the first order Ditzian-Totik modulus of

smoothness.

Theorem 2.3.3. For any f ∈ C2[0, 1] the following inequalities hold

i)

∣∣∣∣n{Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)}∣∣∣∣
≤Cωφ

(
f ′′, φ(x)n−1/2

)
,

ii)

∣∣∣∣n{Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)}∣∣∣∣
≤Cφ(x)ωφ

(
f ′′, n−1/2

)
.

Proof. Let f ∈ C2[0, 1] be given and t, x ∈ [0, 1]. Then by Taylor’s expansion, we

have

f(t)− f(x) = (t− x)f ′(x) +

∫ t

x

(t− u)f ′′(u)du.

Hence

f(t)− f(x)− (t− x)f ′(x)− 1

2
(t− x)2f ′′(x) =

∫ t

x

(t− u)f ′′(u)du−
∫ t

x

(t− u)f ′′(x)du

=

∫ t

x

(t− u)[f ′′(u)− f ′′(x)]du.

Applying Uρ
n,α(·;x) to both sides of the above relation, we get∣∣∣∣Uρ
n,α(f ;x)− f(x)− f ′(x)Uρ

n,α(t− x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t− x)2;x

)∣∣∣∣
≤ Uρ

n,α

(∣∣∣∣∫ t

x

|t− u||f ′′(u)− f ′′(x)|du
∣∣∣∣ ;x) . (2.3.10)

The quantity

∣∣∣∣∫ t

x

|f ′′(u)− f ′′(x)| |t− u|du
∣∣∣∣ was estimated in [58, p. 337] as follows:

∣∣∣∣∫ t

x

|f ′′(u)− f ′′(x)||t− u|du
∣∣∣∣ ≤ 2‖f ′′ − g‖(t− x)2 + 2‖φg′‖φ−1(x)|t− x|3, (2.3.11)

where g ∈ Wφ[0, 1].
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Now combining (2.3.10)-(2.3.11), applying Cauchy-Schwarz inequality and using

Remark 1.2.4, we get∣∣∣∣Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)∣∣∣∣
≤ 2‖f ′′ − g‖Uρ

n,α

(
(t− x)2;x

)
+ 2‖φg′‖φ−1(x)Uρ

n,α

(
|t− x|3;x

)
≤ 2‖f ′′ − g‖α 2ρ+ 1

nρ+ 1
φ2(x) + 2α‖φg′‖φ−1(x)

{
Uρ
n(t− x)2;x

}1/2 {
Uρ
n

(
(t− x)4;x

)}1/2
≤ 2‖f ′′ − g‖α 2ρ+ 1

nρ+ 1
φ2(x) + 2α

C

n
‖φg′‖

√
2ρ+ 1

nρ+ 1
φ2(x)

≤ C

{
2ρ+ 1

nρ+ 1
φ2(x)‖f ′′ − g‖+

1

n

√
2ρ+ 1

nρ+ 1
φ2(x)‖φg′‖

}
≤ C

n

{
φ2(x)‖f ′′ − g‖+ n−1/2φ2(x)‖φg′‖

}
.

Since φ2(x) ≤ φ(x) ≤ 1, x ∈ [0, 1], we obtain∣∣∣∣Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)∣∣∣∣
≤ C
n

{
‖f ′′−g‖+n−1/2φ(x)‖φg′‖

}
.

and ∣∣∣∣Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)∣∣∣∣
≤ C
n
φ(x)

{
‖f ′′−g‖+n−1/2‖φg′‖

}
.

Taking the infimum on the right hand side of the above relations over g ∈ Wφ[0, 1],

we get ∣∣∣∣n{Uρ
n,α(f ;x)−f(x)−f ′(x)Uρ

n,α(t−x;x)− 1

2
f ′′(x)Uρ

n,α

(
(t−x)2;x

)}∣∣∣∣
≤


CKφ

(
f ′′;φ(x)n−1/2

)
,

Cφ(x)Kφ

(
f ′′;n−1/2

)
.

Using relation (0.5.3), the theorem is proved.
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2.3.3 Degree of approximation

Lastly, we discuss the approximation of functions with a derivative of bounded

variation on [0, 1].

Theorem 2.3.4. Let f ∈ DBV [0, 1]. Then, for every x ∈ (0, 1) and sufficiently

large n, we have

|Uρ
n,α(f ;x)− f(x)| ≤ {|f ′(x+) + αf ′(x−)|+ α|f ′(x+)− f ′(x−)|}

√
α

α + 1

2ρ+ 1

nρ+ 1
φ2(x)

+
2ρ+ 1

nρ+ 1

αφ(x)

x

[
√
n]∑

k=1

 x∨
x−x/k

f ′x

+
x√
n

 x∨
x−x/

√
n

f ′x


+

2ρ+ 1

nρ+ 1

αφ(x)

1− x

[
√
n]∑

k=1

x+(1−x)/k∨
x

f ′x

+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x

 ,

where f ′x is defined by

f
′

x(t) =


f
′
(t)− f ′(x−), 0 ≤ t < x

0, t = x

f
′
(t)− f ′(x+) x < t < 1.

(2.3.12)

Proof. Since Uρ
n,α(1;x) = 1, using (2.2.1), for every x ∈ (0, 1) we get

Uρ
n,α(f ;x)− f(x) =

∫ 1

0

Kρ
n,α(x, t)(f(t)− f(x))dt

=

∫ 1

0

Kρ
n,α(x, t)

∫ t

x

f
′
(u)dudt. (2.3.13)

For any f ∈ DBV [0, 1], from (2.3.12) we may write

f ′(u) = f ′x(u) +
1

α + 1
(f ′(x+) + αf ′(x−)) +

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x)

+
α− 1

α + 1

)
+ γx(u)[f ′(u)− 1

2
(f ′(x+) + f ′(x−))], (2.3.14)

where

γx(u) =

{
1 , u = x

0 , u 6= x
.
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Obviously,∫ 1

0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
γx(u)du

)
Kρ
n,α(x, t)dt = 0. (2.3.15)

Using Lemma 2.2.1, we get

A1 =

∫ 1

0

(∫ t

x

1

α + 1
(f ′(x+) + αf ′(x−))du

)
Kρ
n,α(x, t)dt

=
1

α + 1
(f ′(x+) + αf ′(x−))

∫ 1

0

(t− x)Kρ
n,α(x, t)dt

=
1

α + 1
(f ′(x+) + αf ′(x−))Uρ

n,α((t− x);x) (2.3.16)

and

|A2| =

∣∣∣∣ ∫ 1

0

Kρ
n,α(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α + 1

)
du

)
dt

∣∣∣∣
=

∣∣∣∣12
(
f ′(x+)− f ′(x−)

)[
−
∫ x

0

(∫ x

t

(
sgn(u− x) +

α− 1

α + 1

)
du

)
Kρ
n,α(x, t)dt

∣∣∣∣
+

∫ 1

x

( t∫
x

(
sgn(u− x) +

α− 1

α + 1

)
du

)
Kρ
n,α(x, t)dt

]

≤ α

α + 1
|f ′(x+)− f ′(x−)|

∫ 1

0

|t− x|Kρ
n,α(x, t)dt

=
α

α + 1
|f ′(x+)− f ′(x−)|Uρ

n,α

(
|t− x| ;x

)
. (2.3.17)

Using Lemma 2.2.1 and equations (2.3.13-2.3.17) and applying Cauchy-Schwarz in-

equality, we obtain

|Uρ
n,α(f ;x)− f(x)| ≤ 1

α + 1
|f ′(x+) + αf ′(x−)|

√
α

√
2ρ+ 1

nρ+ 1
φ(x)

+
α

α + 1
|f ′(x+)− f ′(x−)|

√
α

√
2ρ+ 1

nρ+ 1
φ(x)

+

∣∣∣∣ ∫ x

0

(∫ t

x

f
′

x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣
+

∣∣∣∣ ∫ 1

x

(∫ t

x

f
′

x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣. (2.3.18)

Now, let

Aρn,α(f ′x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt,
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and

Bρ
n,α(f ′x, x) =

∫ 1

x

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt.

Thus our problem is reduced to calculate the estimates of the terms Aρn,α(f ′x, x) and

Bρ
n,α(f ′x, x). From the definition of ξρn,α given in Lemma 2.2.3, we can write

Aρn,α(f ′x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
∂

∂t
ξρn,α(x, t)dt.

Applying the integration by parts, we get

∣∣Aρn,α(f ′x, x)
∣∣ ≤ ∫ x

0

|f ′x(t)|ξρn,α(x, t)dt

≤
∫ x− x√

n

0

|f ′x(t)|ξρn,α(x, t)dt+

∫ x

x− x√
n

|f ′x(t)|ξρn,α(x, t)dt := I1 + I2.

Since f ′x(x) = 0 and ξρn,α(x, t) ≤ 1, we have

I2 :=

∫ x

x− x√
n

|f ′x(t)− f ′x(x)| ξρn,α(x, t)dt ≤
∫ x

x− x√
n

(
x∨
t

f ′x

)
dt

≤

 x∨
x− x√

n

f ′x

∫ x

x− x√
n

dt =
x√
n

 x∨
x− x√

n

f ′x

 .

By applying Lemma 2.2.3 and considering t = x− x

u
, we get

I1 ≤ α
2ρ+ 1

nρ+ 1
φ2(x)

∫ x− x√
n

0

|f ′x(t)− f ′x(x)| dt

(x− t)2

≤ α
2ρ+ 1

nρ+ 1
φ2(x)

∫ x− x√
n

0

(
x∨
t

f ′x

)
dt

(x− t)2

= α
2ρ+ 1

nρ+ 1

φ2(x)

x

∫ √n
1

 x∨
x− x

u

f ′x

 du ≤ α
2ρ+ 1

nρ+ 1

φ2(x)

x

[
√
n]∑

k=1

 x∨
x−x

k

f ′x

 .

Therefore,

|Aρn,α(f ′x, x)| ≤ α
2ρ+ 1

nρ+ 1

φ2(x)

x

[
√
n]∑

k=1

 x∨
x−x

k

f ′x

+
x√
n

 x∨
x− x√

n

f ′x

 . (2.3.19)
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Also, using integration by parts in Bρ
n(f ′x, x) and applying Lemma 2.2.3 with

z = x+ (1− x)/
√
n, we have

|Bρ
n,α(f

′

x, x)| =

∣∣∣∣ ∫ 1

x

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(∫ t

x

f ′x(u)du

)
∂

∂t
(1− ξρn,α(x, t))dt

+

∫ 1

z

(∫ t

x

f ′x(u)du

)
∂

∂t
(1− ξρn,α(x, t))dt

∣∣∣∣
=

∣∣∣∣[ ∫ t

x

(f ′x(u)du)(1− ξρn,α(x, t))

]z
x

−
∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt

+

∫ 1

z

∫ t

x

(f ′x(u)du)
∂

∂t
(1− ξρn,α(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(f ′x(u)du)(1− ξρn,α(x, z))−
∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt

+

[ ∫ t

x

(f ′x(u)du)(1− ξρn,α(x, t))

]1
z

−
∫ 1

z

f ′x(t)(1− ξρn,α(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt+

∫ 1

z

f ′x(t)(1− ξρn,α(x, t))dt

∣∣∣∣
≤ α

2ρ+ 1

nρ+ 1
φ2(x)

∫ 1

z

(
t∨
x

f ′x

)
(t− x)−2dt+

∫ z

x

t∨
x

f ′xdt

≤ α
2ρ+ 1

nρ+ 1
φ2(x)

∫ 1

x+(1−x)/
√
n

(
t∨
x

f ′x

)
(t− x)−2dt+

1− x√
n

x+(1−x)/
√
n∨

x

f ′x

 .

By substituting u = (1− x)/(t− x), we get

|Bρ
n,αf

′
x, x)| ≤ α

2ρ+ 1

nρ+ 1
φ2(x)

∫ √n
1

x+(1−x)/u∨
x

f ′x

 (1− x)−1du+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x


≤ α

2ρ+ 1

nρ+ 1

φ2(x)

(1− x)

[
√
n]∑

k=1

x+(1−x)/k∨
x

f ′x

+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x

 . (2.3.20)

Collecting the estimates (2.3.18 - 2.3.20), we get the required result. This completes

the proof.
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2.4 Numerical examples

Example 2.4.1. Let us consider the following two functions f, g : [0, 1]→ R

f(x) =


x2 sin

1

x
, x 6= 0

0, x = 0

and

g(x) =


(1− x) cos

π

1− x
, x 6= 1

0, x = 1

The function f is differentiable and of bounded variation on [0, 1], while g is contin-

uous but is not of bounded variation on [0, 1].

For n = 20, ρ = 1 and α ∈
{

1

2
, 1,

3

2

}
, the convergence of Uρ

n,α to f and g is

illustrated in Figure 2.1 and Figure 2.2, respectively.

Figure 2.1: The convergence of Uρ
n,α(f ;x) to f(x)
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Figure 2.2: The convergence of Uρ
n,α(g;x) to g(x)
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Chapter 3

Quantitative Voronovskaya and

Grüss-Voronovskaya type

theorems for Szász-Durrmeyer

type operators blended with

multiple Appell polynomials

3.1 Introduction

For f ∈ C(R+
0 ) and x ∈ R+

0 , Szász [152] introduced the well-known operators as

Sn(f ;x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, (3.1.1)

such that Sn(|f |;x) < ∞. Aral et al. [19] proposed a generalization of Szász-

Mirakyan operators defined in (3.1.1) by introducing a function ρ and studied some

shape-preserving properties such as the ρ-convexity and the monotonicity for these

operators. Several generalizations of Szász operators have been introduced in the

literature and authors have studied their approximation properties.
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Jakimovski and Leviatan [96] proposed a generalization of Szász-Mirakjan oper-

ators by means of the Appell polynomials as follows:

Pn(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
, (3.1.2)

where g(z) =
∞∑
n=0

anz
n, g(1) 6= 0 is an analytic function in the disc |z| ≤ r, r > 1

and pk(x) denote the Appell polynomials having the generating function

g(u)eux =
∞∑
k=0

pk(x)uk, pk(x) ≥ 0, ∀x ∈ R+
0 .

For g(u) = 1, the operators defined by (3.1.2) reduce to Szász-Mirakjan operators

given by (3.1.1).

Now let us recall the definition of multiple Appell polynomials [108]. A set of

polynomials {pk1,k2(x)}∞k1,k2=0 with degree (k1 + k2) for k1, k2 ≥ 0, is called multiple

polynomial system (multiple PS) and a multiple PS is called multiple Appell if it is

generated by the relation

A(t1, t2)e
x(t1+t2) =

∞∑
k1=0

∞∑
k2=0

pk1,k2(x)

k1!k2!
tk11 t

k2
2 , (3.1.3)

where A is given by

A(t1, t2) =
∞∑
k1=0

∞∑
k2=0

ak1,k2
k1!k2!

tk11 t
k2
2 , (3.1.4)

with A(0, 0) = a0,0 6= 0.

Theorem 3.1.1. For multiple PS, {pk1,k2(x)}∞k1,k2=0, the following statements are

equivalent:

(a) {pk1,k2(x)}∞k1,k2=0 is a set of multiple Appell polynomials.

(b) There exists a sequence {ak1,k2}∞k1,k2=0 with a0,0 6= 0 such that

pk1,k2(x) =
∞∑
r1=0

∞∑
r2=0

(
k1
r1

)(
k2
r2

)
ak1−r1,k2−r2x

r1+r2 .

(c) For every k1 + k2 ≥ 1, we have

p′k1,k2(x) = k1pk1−1,k2(x) + k2pk1,k2−1(x).
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For any f ∈ C(R+
0 ), Varma [154] defined a sequence of linear positive operators

as

Kn(f ;x) =
e−nx

A(1, 1)

∞∑
k1=0

∞∑
k2=0

pk1,k2

(
nx

2

)
k1!k2!

f

(
k1 + k2
n

)
, (3.1.5)

provided A(1, 1) 6= 0,
ak1,k2
A(1,1)

≥ 0 for k1, k2 ∈ N, and series (3.1.3) and(3.1.4) converge

for |t1| < R1, |t2| < R2 (R1, R2 > 1) respectively.

For α > 0, ρ > 0, x ∈ R+
0 and f : R+

0 → R, being integrable function, Pǎltǎnea

[128] defined a modification of Szász operators as

Lρα(f ;x) =
∞∑
k=1

e−αx
(αx)k

k!

∫ ∞
0

αρe−αρt(αρt)kρ−1

Γ(kρ)
f(t)dt+ e−αxf(0), (3.1.6)

which reproduce linear functions and established the rate of convergence of these

operators for continuous functions by means of moduli of continuity.

Motivated by the above research work for f ∈ CE(R+
0 ), the space of all continuous

functions satisfying |f(t)| ≤ Keat, (t ≥ 0) for some positive constants K and a, we

propose an approximation method by linking the operators (3.1.6) and the multiple

Appell polynomials as

Lρn(f ;x) =
e−nx

A(1, 1)

∑
k1 k1+k2≥1

∑
k2

pk1,k2

(
nx

2

)
k1!k2!

∫ ∞
0

nρe−nρt(nρt)(k1+k2)ρ−1

Γ(k1 + k2)ρ
f(t)dt

+
e−nx

A(1, 1)
p0,0

(
nx

2

)
f(0),

and establish a quantitative Voronovskaya type theorem, Grüss Voronovskaya type

theorem, a local approximation theorem by means of Steklov mean, a Voronovskaya

type asymptotic theorem and error estimates for a space. Lastly, we study the rate

of convergence of functions having derivatives of bounded variation.

3.2 Basic Results

In order to prove the main results of the chapter, we shall need the following auxiliary

results:
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Lemma 3.2.1. For Kn(ti;x), i = 0, 1, 2, 3, 4, we have

(i) Kn(1;x) = 1,

(ii) Kn(t;x) = x+
At1(1, 1) + At2(1, 1)

nA(1, 1)
,

(iii) Kn(t2;x) = x2+
x

n

{
1+

2

A(1, 1)

(
At1(1, 1)+At2(1, 1)

)}
+

1

n2A(1, 1)

{
At1(1, 1)+

At2(1, 1) + At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

}
,

(iv) Kn(t3;x) = x3+
3x2

n

{
1+

1

A(1, 1)

(
At1(1, 1)+At2(1, 1)

)}
+
x

n2

{
1+

3

A(1, 1)

(
2At1(1, 1)+

2At2(1, 1) + At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

)}
+

1

n3A(1, 1)

{
At1(1, 1) +

At2(1, 1) + 3At1t1(1, 1) + 6At1t2(1, 1) + 3At2t2(1, 1) +At1t1t1(1, 1) +At2t2t2(1, 1) +

3At1t1t2(1, 1) + 3At2t2t1(1, 1)

}
,

(v) Kn(t4;x) = x4+
x3

n

{
6+

4

A(1, 1)

(
At1(1, 1)+At2(1, 1)

)}
+
x2

n2

{
7+

6

A(1, 1)

(
3At1(1, 1)+

3At2(1, 1)+At1t1(1, 1)+2At1t2(1, 1)+At2t2(1, 1)

)}
+
x

n3

{
1+

1

A(1, 1)

(
14At1(1, 1)+

14At2(1, 1)+18At1t1(1, 1)+36At1t2(1, 1)+18At2t2(1, 1)+4At1t1t1(1, 1)+4At2t2t2(1, 1)+

12At1t1t2(1, 1)+12At2t2t1(1, 1)

)}
+

1

n4A(1, 1)

{
At1(1, 1)+At2(1, 1)+7At1t1(1, 1)+

14At1t2(1, 1)+7At2t2(1, 1)+6At1t1t1(1, 1)+6At2t2t2(1, 1)+18At1t1t2(1, 1)+18At2t2t1(1, 1)+

At1t1t1t1(1, 1)+At2t2t2t2(1, 1)+4At1t1t1t2(1, 1)+4At2t2t2t1(1, 1)+6At1t1t2t2(1, 1)

}
.

The values of the moments Kn(ti;x) for i = 0, 1, 2 are given in [154] while the

values of Kn(ti;x) for i = 3, 4 have been obtained by us after simple calculations

and hence the details are omitted.

Lemma 3.2.2. For the sequence of linear positive operators Lρn(ti;x), i = 0, 1, 2, 3, 4,

we find

(i) Lρn(1;x) = 1,

(ii) Lρn(t;x) = x+
At1(1, 1) + At2(1, 1)

nA(1, 1)
,
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(iii) Lρn(t2;x) = x2+
x

n

{(
1+

1

ρ

)
+

2

A(1, 1)

(
At1(1, 1)+At2(1, 1)

)}
+

1

n2A(1, 1)

{(
1+

1

ρ

)(
At1(1, 1) + At2(1, 1)

)
+ At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

}
,

(iv) Lρn(t3;x) = x3 +
3x2

n

{(
1 +

1

ρ

)
+

1

A(1, 1)

(
At1(1, 1) +At2(1, 1)

)}
+
x

n2

{(
1 +

3

ρ
+

2

ρ2

)
+

3

A(1, 1)

(
2

(
1+

1

ρ

)(
At1(1, 1)+At2(1, 1)

)
+At1t1(1, 1)+2At1t2(1, 1)+

At2t2(1, 1)

)}
+

1

n3A(1, 1)

{(
1+

3

ρ
+

2

ρ2

)(
At1(1, 1)+At2(1, 1)

)
+3

(
1+

1

ρ

)(
At1t1(1, 1)+

2At1t2(1, 1)+At2t2(1, 1)

)
+At1t1t1(1, 1)+At2t2t2(1, 1)+3At1t1t2(1, 1)+3At2t2t1(1, 1)

}
,

(v) Lρn(t4;x) = x4 +
x3

n

{
6

(
1+

1

ρ

)
+

4

A(1, 1)

(
At1(1, 1)+At2(1, 1)

)}
+
x2

n2

{((
7+

18

ρ
+

11

ρ2

)
+

6

A(1, 1)

(
3

(
1+

1

ρ

)(
At1(1, 1)+At2(1, 1)

)
+At1t1(1, 1)+2At1t2(1, 1)+

At2t2(1, 1)

)}
+
x

n3

{(
1+

6

ρ
+

11

ρ2
+

6

ρ3

)
+

1

A(1, 1)

((
14+

36

ρ
+

22

ρ2

)(
At1(1, 1)+

At2(1, 1)

)
+18

(
1+

1

ρ

)(
At1t1(1, 1)+2At1t2(1, 1)+At2t2(1, 1)

)
+4At1t1t1(1, 1)+

4At2t2t2(1, 1) + 12At1t1t2(1, 1) + 12At2t2t1(1, 1)

)}
+

1

n4A(1, 1)

{(
1 +

6

ρ
+

11

ρ2
+

6

ρ3

)(
At1(1, 1)+At2(1, 1)

)
+

(
7+

18

ρ
+

11

ρ2

)(
At1t1(1, 1)+2At1t2(1, 1)+At2t2(1, 1)

)
+

6

(
1+

1

ρ

)(
At1t1t1(1, 1)+At2t2t2(1, 1)+3At1t1t2(1, 1)+3At2t2t1(1, 1)

)
+At1t1t1t1(1, 1)+

At2t2t2t2(1, 1) + 4At1t1t1t2(1, 1) + 4At2t2t2t1(1, 1) + 6At1t1t2t2(1, 1)

}
.

Consequently,

Lρn((t− x)2;x) =
x

n

(
1 +

1

ρ

)
+

1

n2A(1, 1)

{(
1 +

1

ρ

)(
At1(1, 1) + At2(1, 1)

)
+At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

}
≤ C

n

(
1 +

1

ρ

)
(1 + x) = δ2n,ρ(x), (say). (3.2.1)

where,

C = max

(
1,
|At1(1, 1)|+ |At2(1, 1)|+ |At1,t1(1, 1)|+ 2|At1,t2(1, 1)|+ |At2,t2(1, 1)|

|A(1, 1)|

)
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and

Lρn((t− x)4;x) =
3x2

n2

{
1 +

2

ρ
+

1

ρ2

}
+

x

n3

[(
1 +

6

ρ
+

11

ρ2
+

6

ρ3

)
+

1

A(1, 1)

{
(

13 +
33

ρ
+

20

ρ2

)(
At1(1, 1) + At2(1, 1)

)
+ 6

(
1 +

1

ρ

)(
At1t1(1, 1)

+2At1t2(1, 1) + At2t2(1, 1)

)
− 6At1t1t1(1, 1)− 6At2t2t2(1, 1)

}]
.

Using Lemma 3.2.2, after simple calculations, the proof of the lemma easily

follows. So, we omit the details. The expression for Lρn((t − x)6;x) has not been

included in Lemma 3.2.2 because it is very lengthy and complicated however we

found its order of convergence in the following remark as it will be required to prove

the quantitative Voronovskaya type theorem.

Remark 3.2.3. From Lemma 3.2.2, we obtain

lim
n→∞

nLρn((t− x);x) =
At1(1, 1) + At2(1, 1)

A(1, 1)
, (3.2.2)

lim
n→∞

nLρn((t− x)2;x) = x

(
1 +

1

ρ

)
, (3.2.3)

lim
n→∞

n2Lρn((t− x)4;x) = 3x2
(

1 +
2

ρ
+

1

ρ2

)
(3.2.4)

lim
n→∞

n3Lρn((t− x)6;x) = 15x3
(

1 +
3

ρ
+

3

ρ2
+

1

ρ3

)
. (3.2.5)

3.3 Approximation theorems

Theorem 3.3.1. Let f ∈ CE(R+
0 ). Then lim

n→∞
Lρn(f ;x) = f(x), uniformly on each

compact subset of R+
0 .

Proof. Considering Lemma 3.2.2, it follows that lim
n→∞

Lρn(ti;x) = xi, i = 0, 1, 2,

uniformly on every compact subset of R+
0 . Applying Bohman Korovkin theorem, we

obtain the desired result.

For f ∈ CB(R+
0 ), the Steklov mean of second order [77] is defined as

fh(x) =
4

h2

∫ h
2

0

∫ h
2

0

[2f(x+ u+ v)− f(x+ 2(u+ v))]dudv, h > 0. (3.3.1)
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Hence

f(x)− fh(x) =
4

h2

∫ h/2

0

∫ h/2

0

42
u+vf(x)dudv, and

f ′′h (x) =
1

h2
(842

h/2f(x)−42
hf(x)).

Thus, it follows that

||fh − f || ≤ ω2(f, h). (3.3.2)

Further, f ′h, f
′′
h ∈ CB(R+

0 ) and

||f ′h|| ≤
5

h
ω(f, h), ||f ′′h || ≤

9

h2
ω2(f, h), (3.3.3)

where δn,ρ(x) is defined by equation (3.2.1).

Theorem 3.3.2. For f ∈ CB(R+
0 ) and x ∈ R+

0 , we have

|Lρn(f ;x)− f(x)| ≤ 5ω(f ; δn,ρ(x)) +
13

2
ω2(f ; δn,ρ(x)).

Proof. Using the Steklov mean fh defined by (3.3.1), we may write

|Lρn(f ;x)− f(x)| ≤ |Lρn((f − fh);x)|+ |Lρn(fh(t)− fh(x);x)|+ |fh(x)− f(x)|.

Applying Lemma 3.2.2, we have

||Lρn(f)|| ≤ ||f ||, (3.3.4)

Using inequality (3.3.4) and relation (3.3.2), we have

|Lρn((f − fh);x)| ≤ ||f − fh|| ≤ ω2(f, h).

Now by Taylor’s expansion and applying Cauchy-Schwarz inequality, we have

|Lρn(fh(t)− fh(x);x)| ≤ |Lρn((t− x)f ′h(x);x)|+
∣∣∣∣Lρn(∫ t

x

(t− u)f ′′h (u)du;x

)∣∣∣∣
≤ ||f ′h|||Lρn(|t− x|;x)|+ ||f ′′h ||Lρn

(∣∣∣∣ ∫ t

x

|t− u|du
∣∣∣∣;x)

= ||f ′h||
√
Lρn((t− x)2;x) +

1

2
||f ′′h ||Lρn((t− x)2;x).

Applying Lemma 3.2.2 and using (3.3.2)-(3.3.3) in (3.3.4), on choosing h as δn,ρ(x)

we get the required result.
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Theorem 3.3.3. For f ∈ C2
E(R+

0 ), we obtain

lim
n→∞

n[Lρn(f ;x)− f(x)] =
At1(1, 1) + At2(1, 1)

A(1, 1)
f ′(x) +

x

2

(
1 +

1

ρ

)
f ′′(x),

uniformly in x ∈ [0, a], a > 0.

Proof. By Taylor’s expansion of f, for some fixed x ∈ [0, a] we obtain

f(t)− f(x) = (t− x)f ′(x) +
1

2
(t− x)2f ′′(x) + ξ(t, x)(t− x)2, (3.3.5)

where ξ(t, x) ∈ CE(R+
0 ) and lim

t→x
ξ(t, x) = 0.

Hence by linearity of the operators Lρn, from relation (3.3.5), we get

n[Lρn(f ;x)− f(x)] = nLρn(t− x;x)f ′(x) +
1

2
nLρn((t− x)2;x)f ′′(x)

+ nLρn(ξ(t, x)(t− x)2;x). (3.3.6)

Applying Cauchy-Schwarz inequality in the last term of the equation (3.3.6), we

have

|nLρn(ξ(t, x)(t− x)2;x)| ≤
√
n2Lρn((t− x)4;x)Lρn(ξ2(t, x);x). (3.3.7)

From Remark 3.2.3, it follows that

lim
n→∞

n2Lρn((t− x)4;x) = 3x2
(

1 +
2

ρ
+

1

ρ2

)
,

uniformly in x ∈ [0, a].

Further, let ξ2(t, x) = ν(t, x), x ≥ 0, then ν(t, x) ∈ CE(R+
0 ) and hence from Theorem

3.3.1, we get

lim
n→∞

Lρn(ξ2(t, x);x) = lim
n→∞

Lρn(ν(t, x);x) = ν(x, x) = 0,

Hence from equation(3.3.7), we obtain

lim
n→∞

(
nLρn(ξ(t, x)(t− x)2;x)

)
= 0,

uniformly in x ∈ [0, a]. Now, taking limit as n → ∞ in (3.3.6) and using Remark

3.2.3, we get the desired result. This completes the proof.
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3.4 Weighted approximation

Let θ(x) ≥ 1 be a weight function on R+
0 . We consider the following weighted space

defined on R+
0 as

Bθ(R+
0 ) := {f : |f(x)| ≤Mfθ(x), ∀x ∈ R+

0 and Mf > 0}.

Further, let

Cθ(R+
0 ) := {f ∈ Bθ(R+

0 ) : f is a continuous function on R+
0 },

and

C∗θ (R+
0 ) :=

{
f ∈ Cθ(R+

0 ) : lim
x→∞

f(x)

θ(x)
= Kf <∞

}
.

We define the norm in the space Bθ(R+
0 ) as

||f ||θ = sup
x∈R+

0

|f(x)|
θ(x)

.

The usual modulus of continuity of the function f on [0, p] is defined as

ωp(f ; δ) = sup
|t−x|≤δ

sup
t,x∈[0,p]

|f(t)− f(x)|. (3.4.1)

Let us denote ||.||C[a,b] as supremum norm on [a, b]. Throughout the chapter we have

taken θ(x) = 1 + x2.

Theorem 3.4.1. For x ∈ [0, c] and f ∈ Cθ(R+
0 ), we have

||Lρn(f ; ·)− f ||C[0,c] ≤ 4Mf (1 + c2)η2n,ρ + 2ωc+1(f ; ηn,ρ),

where η2n,ρ = max
x∈[0,c]

(
Lρn((t− x)2;x)

)
.

Proof. Let x ∈ [0, c] and t > c+ 1 then t− x > 1. Hence for f ∈ Cθ(R+
0 ), we have

|f(t)− f(x)| ≤Mf (2 + t2 + x2)

= Mf (2 + 2x2 + (t− x)2 + 2x(t− x))

≤Mf (t− x)2(3 + 2x2 + 2x) ≤ 4Mf (1 + x2)(t− x)2. (3.4.2)
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For x ∈ [0, c] and t ∈ [0, c+ 1], we have

|f(t)− f(x)| ≤ ωc+1(f ; |t− x|) ≤
(

1 +
|t− x|
δ

)
ωc+1(f ; δ). (3.4.3)

From equations (3.4.2) and (3.4.3), for x ∈ [0, c] and t ≥ 0, we have

|f(t)− f(x)| ≤ 4Mf (1 + x2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωc+1(f ; δ).

Applying Cauchy-Schwarz inequality and choosing δ = ηn,ρ, we get

|Lρn(f ;x)− f(x)| ≤ 4Mf (1 + x2)Lρn((t− x)2;x) +

(
1 +

1

δ
Lρn(|t− x|;x)

)
ωc+1(f ; δ)

≤ 4Mf (1 + c2)η2n,ρ(c) + 2ωc+1

(
f ; ηn,ρ(c)

)
.

This completes the proof.

Theorem 3.4.2. For f ∈ Cθ(R+
0 ), we have

lim
n→∞

sup
x∈R+

0

|Lρn(f ;x)− f(x)|
(1 + x2)1+η

= 0,

where η is some positive constant.

Proof. Since |f(x)| ≤ ||f ||θ(1 + x2), then for a fixed y > 0, we may write

sup
x∈R+

0

|Lρn(f ;x)− f(x)|
(1 + x2)1+η

≤ sup
x∈[0,y]

|Lρn(f ;x)− f(x)|
(1 + x2)1+η

+ sup
x∈(y,∞)

|Lρn(f ;x)− f(x)|
(1 + x2)1+η

≤ ||Lρn(f ; .)− f ||C[0,y] +
||f ||θ

(1 + y2)η

+ ||f ||θ sup
x∈(y,∞)

|Lρn(1 + t2;x)|
(1 + x2)1+η

. (3.4.4)

Using Theorem 3.3.1, for a given ε > 0, there exists k ∈ N such that

|Lρn(1 + t2;x)− 1 + x2| < ε

3||f ||θ
, ∀n ≥ k.

Also, we can write

Lρn(1 + t2;x) < 1 + x2 +
ε

3||f ||θ
, ∀n ≥ k.
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Hence,

||f ||θ
Lρn(1 + t2;x)

(1 + x2)1+η
<

||f ||θ
(1 + x2)1+η

(
1 + x2 +

ε

3||f ||θ

)
<

||f ||θ
(1 + y2)η

+
ε

3
, ∀n ≥ k.

Therefore,

||f ||θ sup
x∈[y,∞)

Lρn(1 + t2;x)

(1 + x2)1+η
≤ ||f ||θ

(1 + y2)η
+
ε

3
, ∀n ≥ k. (3.4.5)

Let us choose y to be so large that

||f ||θ
(1 + y2)η

≤ ε

6
. (3.4.6)

In view of Theorem 3.4.1, for ε > 0 there exists a n ≥ l such that

||Lρn(f ; ·)− f ||C[0,y] <
ε

3
, n ≥ l. (3.4.7)

Taking m = max(k, l) and combining equations (3.4.4)-(3.4.7), we get

sup
x∈R+

0

|Lρn(f ;x)− f(x)|
(1 + x2)1+η

< ε, n ≥ m.

This completes the proof.

Following [89], the weighted modulus of continuity ω(g; δ) for g ∈ Cθ(R+
0 ) is

defined as

ω(g; δ) = sup
0<|h|≤δ, x∈R+

0

|g(x+ h)− g(x)|
(1 + h2)(1 + x2)

. (3.4.8)

Also for g ∈ C∗θ (R+
0 ), the weighted modulus of continuity has the following properties

(i) lim
δ→0

ω(g; δ) = 0,

(ii) ω(g;λδ) ≤ 2(1 + λ)(1 + δ2)ω(g; δ), λ > 0.

For g ∈ Cθ(R+
0 ), from equations (3.4.8) and property (ii) of ω(g; δ), we get

|g(t)− g(x)| ≤
(

1 + (t− x)2
)

(1 + x2)ω(g; |t− x|)

≤ 2

(
1 +
|t− x|
δ

)
(1 + δ2)ω(g; δ)

(
1 + (t− x)2

)
(1 + x2).

(3.4.9)
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Theorem 3.4.3. For f ∈ C∗θ (R+
0 ), we have

sup
x∈R+

0

|Lρn(f ;x)− f(x)|
(1 + x2)2

≤ Cω

(
f ;

√
1

n

)
,

where C is a positive constant independent of n.

Proof. By the linearity and positivity of the operators Lρn, we get

|Lρn(f ;x)− f(x)| ≤ Lρn(|f(t)− f(x)|;x)

Using equation (3.4.9) and the Cauchy-Schwarz inequality, we get

|Lρn(f ;x)− f(x)| ≤ 2(1 + δ2)ω(f ; δ)(1 + x2)Lρn
((

1 +
|t− x|
δ

)(
1 + (t− x)2

)
;x

)
≤ 2(1 + δ2)ω(f ; δ)(1 + x2)

{
Lρn(1;x) + Lρn

(
(t− x)2;x

)
+

1

δ
Lρn
(
|t− x|;x

)
+

1

δ
Lρn
(
|t− x|(t− x)2;x

)}
≤ 2(1 + δ2)ω(f ; δ)(1 + x2)

{
Lρn(1;x) + Lρn

(
(t− x)2;x

)
+

1

δ

√
Lρn
(

(t− x)2;x

)

+
1

δ

√
Lρn
(

(t− x)2;x

)√
Lρn
(

(t− x)4;x

)}
. (3.4.10)

Using Lemma 3.2.2, we obtain

Lρn
(

(t− x)2;x

)
≤ C1

1

n
(1 + x2) (3.4.11)

and

Lρn
(

(t− x)4;x

)
≤ C2

1

n2
(1 + x2), (3.4.12)

for some positive constants C1 and C2 dependent on ρ and A(t1, t2).

Now combining equations (3.4.10)-(3.4.12) and taking δ =
√

1
n
, we have

|Lρn(f ;x)− f(x)| ≤ 2

(
1 +

1

n

)
ω

(
f ;

√
1

n

)
(1 + x2)

{
1 + C1

1

n
(1 + x2)

+
√
C1

√
(1 + x2) +

√
C1

√
(1 + x2)

√
C2

√
(1 + x2)

}
.
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Hence, we get

sup
x∈R+

0

|Lρn(f ;x)− f(x)|
(1 + x2)2

≤ Cω

(
f ;

√
1

n

)
,

where C = 2(1 + C1 +
√
C1 +

√
C1

√
C2). This completes the proof.

3.5 Quantitative Voronovskaya theorem

In the following result, we discuss a quantitative Voronovskaja type theorem by

using the weighted modulus of smoothness ω(f ; δ). Recently, many researchers (cf.

[5], [8] and [10] etc.) have made remarkable contribution in this area.

Theorem 3.5.1. For f, f
′
, f
′′ ∈ C∗θ (R+

0 ) and any x ∈ R+
0 , we have∣∣∣∣n(Lρn(f ;x)− f(x)

)
− f ′(x)

(
At1(1, 1) + At2(1, 1)

A(1, 1)

)
− f ′′(x)

2!

[
x

(
1 +

1

ρ

)
+

1

nA(1, 1){(
1 +

1

ρ

)(
At1(1, 1) + At2(1, 1)

)
+ At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

}]∣∣∣∣
= O(1)ω

(
f ′′;

1√
n

)
, as n→∞.

Proof. Let x, t ∈ R+
0 , then by Taylor’s expansion, we have

f(t) = f(x) + f ′(x)(t− x) +
f ′′(x)

2!
(t− x)2 + E(t, x),

where E(t, x) =
f ′′(ϕ)− f ′′(x)

2!
(t− x)2 and ϕ lies between t and x.

Now, we get∣∣∣∣Lρn(f ;x)− f(x)− f ′(x)Lρn((t− x);x)− f ′′(x)

2!
Lρn((t− x)2;x)

∣∣∣∣ ≤ Lρn(|E(t, x)|;x).

Multiplying by n on both sides of above inequality and using Lemma 3.2.2, we obtain∣∣∣∣n(Lρn(f ;x)− f(x)

)
− f ′(x)

(
At1(1, 1) + At2(1, 1)

A(1, 1)

)
− f ′′(x)

2!

[
x

n

(
1 +

1

ρ

)
+

1

n2A(1, 1){(
1 +

1

ρ

)(
At1(1, 1) + At2(1, 1)

)
+ At1t1(1, 1) + 2At1t2(1, 1) + At2t2(1, 1)

}]∣∣∣∣
≤ nLρn(|E(t, x)|;x). (3.5.1)
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Using the property of weighted modulus of smoothness given by (3.4.9), we get∣∣∣∣f ′′(ϕ)− f ′′(x)

2!

∣∣∣∣ ≤ 1

2
ω(f ′′; |ϕ− x|)(1 + (ϕ− x)2)(1 + x2)

≤ 1

2
ω(f ′′; |t− x|)(1 + (t− x)2)(1 + x2)

≤
(

1 +
(|t− x|)

δ

)
(1 + δ2)ω(f ′′; δ)

×(1 + (t− x)2)(1 + x2), δ > 0.

Also,

∣∣∣∣f ′′(ϕ)− f ′′(x)

2!

∣∣∣∣ ≤
 2(1 + δ2)2(1 + x2)ω(f ′′; δ), |t− x| ≤ δ,,

2(1 + δ2)2(1 + x2)
(t− x)2

δ4
ω(f ′′; δ), |t− x| ≥ δ.

Now for 0 < δ < 1, we obtain∣∣∣∣f ′′(ϕ)− f ′′(x)

2!

∣∣∣∣ ≤ 8(1 + x2)ω(f ′′; δ)

(
1 +

(t− x)4

δ4

)
.

Therefore, we get

|E(t, x)| ≤ 8(1 + x2)ω(f ′′; δ)

(
(t− x)2 +

(t− x)6

δ4

)
.

Now by the linearity and positivity of the operator Lρn and using Remark 3.2.3, for

any x ∈ R+
0 , we obtain

Lρn(|E(t, x)|;x) ≤ 8(1 + x2)ω(f ′′; δ)

{
Lρn((t− x)2;x) +

1

δ4
Lρn((t− x)6;x)

}
= 8(1 + x2)ω(f ′′; δ)

{
O

(
1

n

)
+O

(
1

n3

)}
, as n→∞.

Choosing δ = 1√
n
, we obtain

Lρn(|E(t, x)|;x) = 8(1 + x2)ω

(
f ′′;n−

1
2

)
O

(
1

n

)
, as n→∞.

(3.5.2)

Hence combining (3.5.1) and (3.5.2), we reach the required result.
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3.6 Grüss-Voronovskaya-type theorem

Grüss [72] first established an inequality which shows the error estimate of the

integral of product of two functions with the product of integrals of the two functions.

Acu et al. [10] determined some applications of Grüss inequality for Bernstein,

Hermite-Fejer operator, interpolation operator and convolution-type operators by

using least concave majorant. After that Gonska and Tachev [69] discussed Grüss-

type inequality using second order modulus of smoothness. For the first time Gal

and Gonska [64], studied the Grüss Voronovskaya type theorem for the Bernstein,

Păltănea and Bernstein-Faber operators by means of the Grüss inequality which

concerns with the non-multiplicavity of these operators. For more papers in this

direction we refer the readers to (cf. [5], [11], [42] [153] etc.) In the following

theorem, we study the non-multiplicativity of the positive linear operator Lρn.

Theorem 3.6.1. For f ′(x), g′(x), f ′′(x), g′′(x), (fg)′(x), (fg)′′(x) ∈ C∗θ (R+
0 ),

there holds the following equality:

lim
n→∞

n

{
Lρn(fg;x)− Lρn(f ;x)Lρn(g;x)

}
= x

(
1 +

1

ρ

)
f ′(x)g′(x).

Proof. We have

(fg)′′(x) = f ′′(x)g(x) + 2f ′(x)g′(x) + g′′(x)f(x).

By making an appropriate arrangement, we get

n{Lρn((fg);x)− Lρn(f ;x)Lρn(g;x)}

= n

{
Lρn((fg);x)− f(x)g(x)− (fg)

′
(x)Lρn(t− x;x)− (fg)

′′
(x)

2!
Lρn((t− x)2;x)

−g(x)

(
Lρn(f ;x)− f(x)− f ′(x)Lρn(t− x;x)− f ′′(x)

2!
Lρn((t− x)2;x)

)
−Lρn(f ;x)

(
Lρn(g;x)− g(x)− g′(x)Lρn(t− x;x)− g′′(x)

2!
Lρn((t− x)2;x)

)
+2
Lρn((t− x)2;x)

2!
f ′(x)g′(x) + g′′(x))

Lρn((t− x)2;x)

2!

(
f(x)− Lρn(f ;x)

)
+(g)′(x))Lρn(t− x;x)

(
f(x)− Lρn(f ;x)

)}
.
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Applying Theorem 3.3.1, for each x ∈ R+
0 , L

ρ
n(f ;x) → f(x) as n → ∞ and for

f
′′ ∈ C∗θ (R+

0 ), x ∈ R+
0 , by Theorem 3.5.1, we have

lim
n→∞

(
Lρn(f ;x)− f(x)− f ′(x)Lρn((t− x);x)− f ′′(x)

2!
Lρn((t− x)2;x)

)
= 0.

Therefore, using Remark 3.2.3, we get the desired result.

3.7 Rate of approximation

In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators Lρn in an integral form as follows:

Lρn(f ;x) =

∫ ∞
0

Kρ
n(x, t)f(t)dt, (3.7.1)

where the kernel Kρ
n(x, t) is given by

Kρ
n(x, t) =

e−nx

A(1, 1)

∑
k1 k1+k2≥1

∑
k2

pk1,k2

(
nx

2

)
k1!k2!

nρe−nρt(nρt)(k1+k2)ρ−1

Γ(k1 + k2)ρ
+

e−nx

A(1, 1)
p0,0

(
nx

2

)
δ(t),

δ(t) being the Dirac-delta function.

In the sequel, we shall need the following lemma:

Lemma 3.7.1. For a fixed x ∈ R+
0 and sufficiently large n, we have

(i) ξρn(x, y) =
∫ y
0
Kρ
n(x, t)dt ≤

C(1 + 1
ρ
)(1 + x)

n

1

(x− y)2
0 ≤ y < x,

(ii) 1− ξρn(x, z) =
∫∞
z
Kρ
n(x, t)dt ≤

C(1 + 1
ρ
)(1 + x)

n

1

(z − x)2
, x < z <∞.

Proof. (i) Using Lemma 3.2.2, we get

ξρn(x, y) =

y∫
0

Kρ
n(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

Kρ
n(x, t)dt

≤ Lρn((t− x)2;x)(x− y)−2

≤
C(1 + 1

ρ
)(1 + x)

n

1

(x− y)2
.

The proof of (ii) is similar hence the details are omitted.
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Theorem 3.7.2. Let f ∈ DBV (R+
0 ). Then, for every x ∈ R+

0 and sufficiently large

n, we have

|Lρn(f ;x)− f(x)| ≤ 1

2
(f ′(x+) + f ′(x−))

(
At1(1, 1) + At2(1, 1)

nA(1, 1)

)
+

1

2
| f ′(x+)− f ′(x−) |√

C

n

(
1 +

1

ρ

)
(1 + x) +

C

n

(
1 +

1

ρ

)
(1 + x)

x2
|f(2x)− f(x)− xf ′(x+)|

+
x√
n

x+x/
√
n∨

x

(f ′x) +
C

n

(
1 +

1

ρ

)(
1 +

1

x

) [
√
n]∑

k=1

x+x/
√
k∨

x

f ′x

+
C

n

(
1 +

1

ρ

)
(1 + x)

(
M + |f(x)|

x2
+ 4M

)
+ |f ′(x+)|

√
C

n

(
1 +

1

ρ

)
(1 + x).

where f ′x is defined by

f
′

x(t) =


f
′
(t)− f ′(x−), 0 ≤ t < x

0, t = x

f
′
(t)− f ′(x+) x < t <∞.

(3.7.2)

Proof. Since Lρn(1;x) = 1, using (3.7.1), for every x ∈ (0, 1) we get

Lρn(f ;x)− f(x) =

∫ ∞
0

Kρ
n(x, t)(f(t)− f(x))dt

=

∫ ∞
0

Kρ
n(x, t)

∫ t

x

f
′
(u)dudt. (3.7.3)

For any f ∈ DBV (R+
0 ), from (3.7.2) we may write

f ′(v) = (f ′)x(v) +
1

2
(f ′(x+) + f ′(x−)) +

1

2
(f ′(x+)− f ′(x−))sgn(v − x)

+Ex(v)[f ′(v)− 1

2
(f ′(x+) + f ′(x−))], (3.7.4)

where

Ex(u) =

{
1 , v = x

0 , v 6= x
.

We get,∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
Ex(v)dv

)
Kρ
n(x, t)dt = 0. (3.7.5)
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We have

∫ ∞
0

(∫ t

x

1

2
(f ′(x+) + f ′(x−))dv

)
Kρ
n(x, t)dt

=
1

2
(f ′(x+) + f ′(x−))

∫ ∞
0

(t− x)Kρ
n(x, t)dt

=
1

2
(f ′(x+) + f ′(x−))Lρn((t− x);x)

=
1

2
(f ′(x+) + f ′(x−))

(
At1(1, 1) + At2(1, 1)

nA(1, 1)

)
.

Using Lemma 3.2.2 and applying Cauchy-Schwarz inequality, we obtain

∣∣∣∣ ∫ ∞
0

Kρ
n(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))sgn(v − x)dv

)
dt

∣∣∣∣
≤ 1

2
| f ′(x+)− f ′(x−) |

(
Lρn((t− x)2;x)

)1/2

≤ 1

2
| f ′(x+)− f ′(x−) |

√
C

n

(
1 +

1

ρ

)
(1 + x).

Combining equations (3.7.3 -3.7.6) , we obtain

|Lρn(f ;x)− f(x)| ≤ 1

2
(f ′(x+) + f ′(x−))

(
At1(1, 1) + At2(1, 1)

nA(1, 1)

)
+

1

2
| f ′(x+)− f ′(x−) |

√
C

n

(
1 +

1

ρ

)
(1 + x) + |I1|+ |I2|,

where

I1 =

∫ x

0

∫ t

x

((f ′)x(v)dv)Kρ
n(x, t)dt

and

I2 =

∫ 1

x

∫ t

x

((f ′)x(v)dv)Kρ
n(x, t)dt.

Since
∫ b
a
dtξ

ρ
n(x, t) ≤ 1 for all [a, b] ⊆ R+

0 , using integration by parts and applying
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Lemma 3.7.1, on substituting y = x− x/
√
n, we get

I1 =

∣∣∣∣ ∫ x

0

∫ t

x

(
(f ′)x(v)dv

)
dtξ

ρ
n(x, t)

∣∣∣∣ =

∣∣∣∣ ∫ x

0

ξρn(x, t)(f ′)x(t)dt

∣∣∣∣
≤

∫ y

0

|(f ′)x(t)| |ξρn(x, t)|dt+

∫ x

y

|(f ′)x(t)| |ξρn(x, t)|dt

≤ C

n

(
1 +

1

ρ

)
(1 + x)

∫ y

0

x∨
t

((f ′)x)(x− t)−2dt+

∫ x

y

x∨
t

((f ′)x)dt

≤ C

n

(
1 +

1

ρ

)
(1 + x)

∫ x−x/
√
n

0

x∨
t

((f
′
)x)(x− t)−2dt+

x√
n

x∨
x−x/

√
n

((f ′)x).

Substituting v = x/(x− t), we get

(1 + x)

∫ x−x/
√
n

0

(x− t)−2
x∨
t

((f
′
)x)dt = (1 + x)x−1

∫ √n
1

x∨
x−x/u

((f
′
)x)dv

≤ (1 + x)x−1
[
√
n]∑

k=1

∫ k+1

k

x∨
x−x/k

((f
′
)x)dv ≤

(
1 +

1

x

) [
√
n]∑

k=1

x∨
x−x/k

((f ′)x).

Thus,

|I1| ≤
C

n

(
1 +

1

ρ

)(
1 +

1

x

) [
√
n]∑

k=1

x∨
x−x/k

((f
′
)x) +

x√
n

x∨
x−x/

√
n

((f
′
)x). (3.7.6)

Again, using integration by parts, we get

|I2| =

∣∣∣∣ ∫ ∞
x

∫ t

x

((f ′)x(v)dv)Kρ
n(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ 2x

x

∫ t

x

((f ′)x(v)dv)dt(1− ξρn(x, t)) +

∫ ∞
2x

∫ t

x

((f ′)x(v)dv)Kρ
n(x, t)dt

∣∣∣∣
=

∣∣∣∣[ ∫ t

x

((f ′)x(v)dv)(1− ξρn(x, t))

]2x
x

∣∣∣∣+

∣∣∣∣ ∫ 2x

x

(f ′)x(t)(1− ξρn(x, t))dt

∣∣∣∣
+

∣∣∣∣ ∫ ∞
2x

∫ t

x

(
(f ′(v)− f ′(x+))dv

)
Kρ
n(x, t)dt

∣∣∣∣
≤

∣∣∣∣ ∫ 2x

x

(
(f ′)x(v)dv

)
(1− ξρn(x, 2x)) +

∣∣∣∣ ∫ 2x

x

(f ′)x(t)(1− ξρn(x, t))dt

∣∣∣∣
+

∣∣∣∣ ∫ ∞
2x

f(t)Kρ
n(x, t)dt

∣∣∣∣+ |f(x)|
∣∣∣∣ ∫ ∞

2x

Kρ
n(x, t)dt

∣∣∣∣+ |f ′(x+)|
∣∣∣∣ ∫ ∞

2x

((t− x))Kρ
n(x, t)dt

∣∣∣∣.
Applying Cauchy-Schwarz inequality, Lemma 3.7.1 and substituting
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z = x+ (1− x)/
√
n, we obtain

|I2| ≤
C

n

(
1 +

1

ρ

)
(1 + x)

x2

∣∣∣∣ ∫ 2x

x

((f ′(v)− f(x+))dv

∣∣∣∣+

∣∣∣∣ ∫ x+x/
√
n

x

f ′x(t)dt

∣∣∣∣
+
C

n

(
1 +

1

ρ

)
(1 + x)

∣∣∣∣ ∫ 2x

x+x/
√
n

(t− x)−2f ′x(t)dt

∣∣∣∣+

∣∣∣∣ ∫ ∞
2x

f(t)Kρ
n(x, t)dt

∣∣∣∣
+|f(x)|

∣∣∣∣ ∫ ∞
2x

Kρ
n(x, t)dt

∣∣∣∣+ |f ′(x+)|
(∫ ∞

2x

(t− x)2Kρ
n(x, t)dt

)1/2

.

By substituting t = x+ x
u

and proceeding in a similar way as in the estimate of I1,

we get

|I2| ≤
C

n

(
1 +

1

ρ

)
(1 + x)

x2
|f(2x)− f(x)− xf ′(x+)|+ x√

n

x+x/
√
n∨

x

(f ′x)

+

[
√
n]∑

k=1

C

n

(
1 +

1

ρ

)(
1 +

1

x

) x+x/
√
n∨

x

f ′x +

∫ ∞
2x

M(1 + t2)Kρ
n(x, t)dt

+|f(x)|
∣∣∣∣ ∫ ∞

2x

Kρ
n(x, t)dt

∣∣∣∣+ |f ′(x+)|

√
C

n

(
1 +

1

ρ

)
(1 + x). (3.7.7)

For t ≥ 2x, it follows that t ≤ 2(t− x) and x ≤ t− x. Now using Lemma 3.2.2 , we

obtain ∫ ∞
2x

M(1 + t2)Kρ
n(x, t)dt+ |f(x)|

∫ ∞
2x

Kρ
n(x, t)dt

≤ M

x2

∫ ∞
2x

(t− x)2Kρ
n(x, t)dt+ 4M

∫ ∞
2x

(t− x)2Kρ
n(x, t)dt

+
|f(x)|
x2

∫ ∞
2x

(t− x)2Kρ
n(x, t)dt

≤ C

n

(
1 +

1

ρ

)
(1 + x)

(
M + |f(x)|

x2
+ 4M

)
. (3.7.8)

Collecting the estimates (3.7.6-3.7.8), we get the required result.
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Chapter 4

Bézier variant of the

Bernstein-Durrmeyer type

operators

4.1 Introduction

In 1912, Bernstein [29] defined a sequence of positive linear operators for f ∈ C[0, 1],

as

Bn(f ;x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1]

which preserves linear functions.

To make convergence faster, King [104] introduced a modification of these operators

as

((Bnf) ◦ rn) (x) =
n∑
k=0

(
n

k

)
(rn (x))k (1− rn (x))n−k f

(
k

n

)
,

which depends on a sequence rn(x) of continuous functions on [0, 1] with 0 ≤ rn(x) ≤

1, for each x ∈ [0, 1] and considered a particular case for the sequence rn(x) such that

the corresponding operators preserve the test functions e0 and e2(ei = ti, i = 0, 1, 2)

of the Bohman-Korovkin theorem. Cárdenas-Morales et al. [37] extended this result

considering a family of sequences of operators Bn,α that preserve e0 and e2 + αe1
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with α ∈ [0,∞). Gonska et al. [68] constructed sequences of King-type operators

which are based on a strictly increasing continuous function τ such that τ (0) = 0

and τ (1) = 1. These operators are defined by V τ
n : C [0, 1]→ C [0, 1]

V τ
n f = (Bnf) ◦ τn = (Bnf) ◦ (Bnτ)−1 ◦ τ,

and preserve the test functions e0 and e1. Inspired by the above ideas, for any

function τ being infinite times continuously differentiable on [0, 1], such that τ(0) =

0, τ(1) = 1 and τ ′(x) > 0 for x ∈ [0, 1], Cardenas-Morales et al. [38] defined a

sequence of linear Bernstein type operators for f ∈ C[0, 1] as

Bτ
n (f ;x) =

n∑
k=0

(
n

k

)
τ k (x) (1− τ (x))n−k

(
f ◦ τ−1

)(k
n

)
, (4.1.1)

and investigated its shape preserving and convergence properties as well as its

asymptotic behavior and saturation. This type of approximation generalizes the

Korovkin set from {e0, e1, e2} to {1, τ, τ 2} and also presents a better degree of

approximation depending on τ. To approximate the Lebesgue integrable functions

on [0, 1], Acar et al. [7] defined the Durrmeyer type modification for the operators

(4.1.1) as

Dτ
n (f ;x) = (n+ 1)

n∑
k=0

pτn,k (x)

1∫
0

(
f ◦ τ−1

)
(t) pn,k (t) dt, (4.1.2)

where, pτn,k (x) :=
(
n
k

)
τ k (x) (1− τ (x))n−k , pn,k (x) :=

(
n
k

)
xk (1− x)n−k and studied

Voronovskaya type asymptotic formula as well as its quantitative version and the

local approximation properties of Dτ
n in quantitative form in terms of K-functional

and Ditzian-Totik moduli of smoothness.

Motivated by the above work, we introduce the Bézier-variant of the operators given

by (4.1.2) as

Dτ,θ
n (f ;x) = (n+ 1)

n∑
k=0

Qτ,θ
n,k (x)

1∫
0

(
f ◦ τ−1

)
(t) pn,k (t) dt, (4.1.3)
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where Qτ,θ
n,k(x) =

[
Iτn,k(x)

]θ − [Iτn,k+1(x)
]θ
, θ ≥ 1 with Iτn,k(x) =

∑n
j=k p

τ
n,k(x), when

k ≤ n and 0 otherwise and study the degree of approximation in terms of the

modulus of continuity and the K-functional for the operators given by (4.1.3). The

quantitative Voronoskaya type theorem and the rate of convergence of the functions

having derivatives of bounded variation for these operators is also investigated.

4.2 Auxiliary Results

In the sequel, we shall require the following lemmas to prove the main results of this

chapter.

Lemma 4.2.1. [7] For the operators Dτ
n, one has

Dτ
n(1) = 1, Dτ

n(τ) =
1 + τn

n+ 2
, Dτ

n(τ 2) =
τ 2n (n− 1) + 4nτ + 2

(n+ 2) (n+ 3)
.

Consequently, for the m-th order central moment of the operators Dτ
n defined as

µτn,m (x) = Dτ
n ((τ (t)− τ (x))m ;x) , m ∈ N,

for all n ∈ N, there follows

µτn,0 (x) = 1, µτn,1 (x) =
1− 2τ (x)

n+ 2
,

µτn,2 (x) =
τ (x) (1− τ (x)) (2n− 6) + 2

(n+ 2) (n+ 3)
, (4.2.1)

By a simple calculation, we have

µτn,4 (x) =

4ϕ2
τ (x)

{
(3n2 + 25n− 210)ϕ2

τ (x) + (6n+ 12)

}
+ 24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
.

Remark 4.2.2. [7] For all n ∈ N, we have

µτn,2 (x) ≤ 2

n+ 2
δ2n,τ (x) , (4.2.2)

where δ2n,τ (x) := ϕ2
τ (x) +

1

n+ 3
, ϕ2

τ (x) := τ (x) (1− τ (x)) , x ∈ [0, 1] .
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Lemma 4.2.3. [7] For every f ∈ C[0, 1],

‖Dτ
n(f ; .)‖ ≤ ‖f‖.

Applying Lemma 4.2.1 , the proof of this lemma easily follows. Hence the details

are omitted.

Lemma 4.2.4. Let f ∈ C[0, 1]. Then, we have

‖ Dτ,θ
n (f ; .) ‖≤ θ ‖ f ‖ .

Proof. Using the inequality | aθ − bθ |≤ θ | a− b | with 0 ≤ a, b ≤ 1, θ ≥ 1 and from

the definition of Qτ,θ
n,k, we have

0 <
[
Iτn,k(x)

]θ − [Iτn,k+1(x)
]θ ≤ θ(Iτn,k(x)− Iτn,k+1(x) = θpτn,k(x).

Hence from the definition of Dτ,θ
n and Lemma 4.2.3, we obtain

‖ Dτ,θ
n (f) ‖≤ θ ‖ Dτ

n(f) ‖≤ θ ‖ f ‖ .

This completes the proof.

Remark 4.2.5. We have

Dτ,θ
n (e0;x) =

n∑
k=0

Q
(θ)
n,k(x) = [Jn,0(x)]θ

=

[
n∑
j=0

pτn,j(x)

]θ
= 1, since

n∑
j=0

pτn,k(x) = 1.

4.3 Main Results

4.3.1 Direct results

Throughout this chapter we assume that inf
x∈[0,1]

τ ′(x) ≥ a, a ∈ (0,∞).

Theorem 4.3.1. For f ∈ C[0, 1] and x ∈ [0, 1], there holds

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ {1 +

√
2θ

(
ϕ2
τ (x) +

1

n+ 3

)}
ω

((
f ◦ τ−1

)
;

√
1

n

)
,

where ω((f ◦ τ−1) ; δ) is the usual modulus of continuity.
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Proof. By linearity of the operators Dτ,θ
n , we get

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ (n+ 1)
n∑
k=0

Qτ,θ
n,k (x)

1∫
0

pn,k (t) |
(
f ◦ τ−1

)
(t)− f(x)|dt

≤ (n+ 1)
n∑
k=0

Qτ,θ
n,k (x)

1∫
0

pn,k (t)

(
1 +
|t− τ(x)|

δ

)
dtω(

(
f ◦ τ−1

)
; δ).

Applying Hölder’s inequality and Lemma 4.2.3, we obtain∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ {
1 +

1

δ

(
Dτ,θ
n ((τ(t)− τ(x))2;x)

)1/2}
ω(
(
f ◦ τ−1

)
; δ)

≤
{

1 +
1

δ

(
θDτ

n((τ(t)− τ(x))2;x)

)1/2}
ω(
(
f ◦ τ−1

)
; δ)

≤
{

1 +
1

δ

√
2θ

n+ 2

(
ϕ2
τ (x) +

1

n+ 3

)}
ω

((
f ◦ τ−1

)
; δ)

)
.

Taking δ =

√
1

n
, we get the desired result.

Next, we establish a direct result using the Ditzian-Totik modulus of smoothness.

Let us take φ(x) = ϕτ (x) :=
√
τ(x)(1−τ(x))

Theorem 4.3.2. Let f ∈ C[0, 1]. Then for every x ∈ (0, 1), we have

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ C(θ)ωϕτ

(
f ;

1

a

√
θ

n+ 2

(
1 +

1

(n+ 3)ϕ2
τ (x)

))
.

Proof. Using the representation

h(t) =
(
h ◦ τ−1

)
(τ(t)) =

(
h ◦ τ−1

)
(τ(x)) +

∫ τ(t)

τ(x)

(
h ◦ τ−1

)′
(u)du,

we get ∣∣Dτ,θ
n (h;x)− h(x)

∣∣ =

∣∣∣∣∣Dτ,θ
n

(∫ τ(t)

τ(x)

(
h ◦ τ−1

)′
(u)du

)∣∣∣∣∣ . (4.3.1)

But, ∣∣∣∣∣
∫ τ(t)

τ(x)

(
h ◦ τ−1

)′
(u)du

∣∣∣∣∣ =

∣∣∣∣∫ t

x

h′(y)

τ ′(y)
τ ′(y)dy

∣∣∣∣ =

∣∣∣∣∫ t

x

ϕτ (y)

ϕτ (y)
· h
′(y)

τ ′(y)
τ ′(y)dy

∣∣∣∣
≤ ‖ϕτh

′‖
a

∣∣∣∣∫ t

x

τ ′(y)

ϕτ (y)
dy

∣∣∣∣ , (4.3.2)
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and∣∣∣∣∫ t

x

τ ′(y)

ϕτ (y)
dy

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

x

(
1√
τ(y)

+
1√

1− τ(y)

)
τ ′(y)dy

∣∣∣∣∣
≤ 2

(∣∣∣√τ(t)−
√
τ(x)

∣∣∣+
∣∣∣√1− τ(t)−

√
1− τ(x)

∣∣∣)
= 2 |τ(t)− τ(x)|

(
1√

τ(t) +
√
τ(x)

+
1√

1− τ(t) +
√

1− τ(x)

)

< 2|τ(t)− τ(x)|

(
1√
τ(x)

+
1√

1− τ(x)

)
≤ 2
√

2|τ(t)− τ(x)|
ϕτ (x)

.

(4.3.3)

Hence from relations (4.3.1)-(4.3.3) and using Cauchy-Schwarz inequality, we obtain

|Dτ,θ
n (h;x)− h(x)| ≤ 2

√
2
‖ϕτh′‖
aϕτ (x)

Dτ,θ
n (|τ(t)− τ(x)|;x)

≤ 2
√

2
‖ϕτh′‖
aϕτ (x)

[
Dτ,θ
n

(
(τ(t)− τ(x))2;x

)]1/2
≤ 2
√

2
‖ϕτh′‖
aϕτ (x)

[
θDτ

n

(
(τ(t)− τ(x))2;x

)]1/2
≤ 4

a
‖ϕτh′‖

√
θ

n+ 2

(
1 +

1

(n+ 3)ϕ2
τ (x)

)
. (4.3.4)

Using Lemma 4.2.4 and (4.3.4) it follows that∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ ∣∣Dτ,θ
n (f − h;x)

∣∣+ |f(x)− h(x)|+
∣∣Dτ,θ

n (h;x)− h(x)
∣∣

≤

{
(θ + 1)‖f − h‖+

4

a
‖ϕτh′‖

√
θ

n+ 2

(
1 +

1

(n+ 3)ϕ2
τ (x)

)}

≤ C1(θ)

{
‖f − h‖+

1

a
‖ϕτh′‖

√
θ

n+ 2

(
1 +

1

(n+ 3)ϕ2
τ (x)

)}
,

where C1(θ) = max

{
(θ + 1), 4

}
.

Taking the infimum on the right hand side of the above inequality over all

g ∈ Wϕτ [0, 1], we get

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ C1(θ)Kϕτ

(
f ;

1

a

√
θ

n+ 2

(
1 +

1

(n+ 3)ϕ2
τ (x)

))
.

Using the relation (0.5.3), the theorem is proved.
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4.3.2 Quantitative Voronovskaya type theorem

In this section we prove a quantitative Voronovskaja type theorem for the operator

Dτ,θ
n in terms of the first order Ditzian-Totik modulus of smoothness. In the recent

years, several researchers have made significant contributions in this direction (cf.

[3], [58], [71], [100], [115], [131], [153] etc.).

Theorem 4.3.3. For any f ∈ C2[0, 1] and x ∈ [0, 1], the following inequalities hold

|
√
n
[
Dτ,θ
n (f ;x)−f(x)

]
| ≤

√
2θ

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||
+||
(
f ◦ τ−1

)′′ || θ√
n
ϕ2
τ (x) +

C√
n
ωϕτ

(
(f ◦ τ−1)′′; 2

√
6

an1/2
ϕτ (x)

)
+ o(n−1), as n→∞;

|
√
n
[
Dτ,θ
n (f ;x)−f(x)

]
| ≤

√
2θ

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||
+||
(
f ◦ τ−1

)′′ || θ√
n
ϕ2
τ (x) +

C√
n
ϕτ (x)ωϕτ

(
(f ◦ τ−1)′′; 2

√
6

an1/2

)
+ o(n−1), as n→∞,

where C is a constant depending on θ.

Proof. Let f ∈ C2[0, 1] and x, t ∈ [0, 1]. Then by Taylor’s expansion, we have

f(t) =
(
f ◦ τ−1

)
(τ(t)) =

(
f ◦ τ−1

)
(τ(x)) +

(
f ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))

+

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(u)du.

Hence,

f(t)− f(x) =
(
f ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))− 1

2

(
f ◦ τ−1

)′′
(τ(x)) (τ(t)− τ(x))2

+

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(u)du−

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(τ(x))du

=
(
f ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))− 1

2

(
f ◦ τ−1

)′′
(τ(x)) (τ(t)− τ(x))2

+

∫ τ(t)

τ(x)

(τ(t)− u)
[(
f ◦ τ−1

)′′
(u)−

(
f ◦ τ−1

)′′
(τ(x))

]
du.
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Applying Dτ,θ
n to both sides of the above relation, we get∣∣Dτ,θ

n (f ;x)− f(x)
∣∣

≤
∣∣∣(f ◦ τ−1)′ (τ(x))Dτ,θ

n ((τ(t)− τ(x)) ;x)
∣∣∣− 1

2

(
f ◦ τ−1

)′′
(τ(x))Dτ,θ

n ((τ(t)− τ(x))2 ;x)

+

∣∣∣∣∣Dτ,θ
n

(∫ τ(t)

τ(x)

(τ(t)− u)
[(
f ◦ τ−1

)′′
(u)−

(
f ◦ τ−1

)′′
(τ(x))

]
du;x

)∣∣∣∣∣ (4.3.5)

For g ∈ Wφτ [0, 1], we have∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(f ◦ τ−1)′′ (u)−

(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ du∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(f ◦ τ−1)′′ (u)−

(
g ◦ τ−1

)
(u)
∣∣∣ du∣∣∣∣∣

+

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣(g ◦ τ−1) (u)−

(
g ◦ τ−1

)
(τ(x))

∣∣ du∣∣∣∣∣
+

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(g ◦ τ−1) (τ(x))−

(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ du∣∣∣∣∣
=

∣∣∣∣∫ t

x

∣∣∣(f ◦ τ−1)′′ (τ(y))− g(y)
∣∣∣ |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

|g(y)− g(x)| |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

∣∣∣g(x)−
(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
≤ 2‖

(
f ◦ τ−1

)′′ − g‖ ∣∣∣∣∫ t

x

|τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

|g′(v)|dv
∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ ‖

(
f ◦ τ−1

)′′ − g‖(τ(t)− τ(x))2

+‖ϕτg′‖
∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

dv

ϕτ (v)

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣ . (4.3.6)

Using the inequality [48, p. 141]

|y − v|
v(1− v)

≤ |y − x|
x(1− x)

, v is between y and x ,

we can write

|τ(y)− τ(v)|
τ(v)(1− τ(v))

≤ |τ(y)− τ(x)|
τ(x)(1− τ(x))

.
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Also,

‖ϕτg′‖
∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

dv

ϕτ (v)

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ ‖ϕτg′‖

∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

|τ(y)− τ(x)|1/2

τ ′(v)ϕτ (x)
· τ ′(v)

|τ(y)− τ(v)|1/2
dv

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)

∣∣∣∣∫ t

x

|τ(y)− τ(x)| |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)

∣∣∣∣∫ t

x

(τ(t)− τ(x))2τ ′(y)dy

∣∣∣∣
≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)|τ(t)− τ(x)|3. (4.3.7)

Now combining the relations (4.3.5)-(4.3.7) and applying the Cauchy-Schwarz in-

equality, we get

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣
≤ |
(
f ◦ τ−1

)′
(τ(x))|Dτ,θ

n (|τ(t)− τ(x)| ;x) +
1

2
|
(
f ◦ τ−1

)′′
(τ(x)|Dτ,θ

n ((τ(t)− τ(x))2 ;x)

+‖(f ◦ τ−1)′′ − g‖Dτ,θ
n ((τ(t)− τ(x))2;x) + 2

‖ϕτg′‖
a

ϕ−1τ (x)Dτ,θ
n (|τ(t)− τ(x)|3;x)

≤ ||
(
f ◦ τ−1

)′ ||(Dτ,θ
n

(
((τ(t)− τ(x))2;x)

)1/2

+
1

2
||
(
f ◦ τ−1

)′′ ||Dτ,θ
n ((τ(t)− τ(x))2 ;x)

+‖(f ◦ τ−1)′′ − g‖Dτ,θ
n

(
(τ(t)− τ(x))2;x

)
+

2‖ϕτg′‖
a

ϕ−1τ (x)(
Dτ,θ
n

(
(τ(t)− τ(x))2;x

))1/2(
Dτ,θ
n

(
(τ(t)− τ(x))4;x

))1/2

.

Applying Lemma 4.2.4, we have

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤ || (f ◦ τ−1)′ ||(θDτ
n(
(
(τ(t)− τ(x))2

)
;x)

)1/2

+
1

2
||
(
f ◦ τ−1

)′′ ||(θDτ
n((τ(t)− τ(x))2 ;x)

)
+‖(f ◦ τ−1)′′ − g‖

(
θDτ

n

(
(τ(t)− τ(x))2;x

))
+

2‖ϕτg′‖
a

ϕ−1τ (x)(
θDτ

n

(
(τ(t)− τ(x))2;x

))1/2(
θDτ

n

(
(τ(t)− τ(x))4;x

))1/2

.
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Hence using Lemmas 4.2.1 and 4.2.3, we get∣∣Dτ,θ
n (f ;x)− f(x)

∣∣
≤

√
2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||+ || (f ◦ τ−1)′′ || θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
+

2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
‖
(
f ◦ τ−1

)′′ − g‖+ ϕ−1τ (x)
2‖ϕτg′‖

a
.

√
2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}√√√√√
θ

[4ϕ2
τ (x)

{
(3n2 + 25n− 210)ϕ2

τ (x) + (6n+ 12)

}
+ 24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

]

≤

√
2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||+ || (f ◦ τ−1)′′ || θ

n+ 2
ϕ2
τ (x)

+
2θ

n+ 2

{
ϕ2
τ (x)‖

(
f ◦ τ−1

)′′ − g‖+
‖ϕτg′‖
a

ϕτ (x)
2
√

6

n1/2

}
+ o(n−3/2).

Because ϕ2
τ (x) ≤ ϕτ (x) ≤ 1, x ∈ [0, 1] we obtain∣∣Dτ,θ

n (f ;x)− f(x)
∣∣ ≤√ 2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||+ || (f ◦ τ−1)′′ ||
θ

n+ 2
ϕ2
τ (x) +

2θ

n+ 2

{
‖(f ◦ τ−1)′′ − g‖+

2
√

6

an1/2
ϕτ (x)‖ϕτg′‖

}
+ o(n3/2), (4.3.8)

∣∣Dτ,θ
n (f ;x)− f(x)

∣∣ ≤√ 2θ

n+ 2

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||+ || (f ◦ τ−1)′′ ||
θ

n+ 2
ϕ2
τ (x) +

2θ

n+ 2
ϕτ (x)

{
‖(f ◦ τ−1)′′ − g‖+

2
√

6

an1/2
‖ϕτg′‖

}
+ o(n3/2). (4.3.9)

Taking the infimum on the right hand side of (4.3.8) and (4.3.9) over all g ∈ Wϕτ [0, 1],

we get

|
√
n
[
Dτ,θ
n (f ;x)−f(x)

]
| ≤

√
2θ

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||
+||
(
f ◦ τ−1

)′′ || θ√
n
ϕ2
τ (x) +

C√
n
Kϕτ

(
(f ◦ τ−1)′′; 2

√
6

an1/2
ϕτ (x)

)
+ o(n−1);

|
√
n
[
Dτ,θ
n (f ;x)−f(x)

]
| ≤

√
2θ

{
ϕ2
τ (x) +

1

n+ 3

}
||
(
f ◦ τ−1

)′ ||
+||
(
f ◦ τ−1

)′′ || θ√
n
ϕ2
τ (x) +

C√
n
ϕτ (x)Kϕτ

(
(f ◦ τ−1)′′; 2

√
6

an1/2

)
+ o(n−1).
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Using relation (0.5.3), we reach the desired result.

4.3.3 Rate of approximation

Lastly we discuss the approximation of functions with a derivative of bounded vari-

ation on [0, 1]. The operators Dτ,θ
n can be expressed in an integral form as follows:

Dτ,θ
n (f ;x) =

∫ 1

0

Kτ,θ
n (x, t)(f ◦ τ−1)(t)dt, (4.3.10)

where the kernel Kτ,θ
n is given by

Kτ,θ
n (x, t) = (n+ 1)

n∑
k=0

Qτ,θ
n,k (x) pn,k (t) .

Lemma 4.3.4. For a fixed x ∈ (0, 1) and sufficiently large n, we have

(i) ξτ,θn (x, y) =
∫ y
0
Kτ,θ
n (x, t)dt ≤ 2θ

n+ 2

δ2n,τ (x)

(τ(x)− y)2
, 0 ≤ y < τ(x),

(ii) 1− ξτ,θn (x, z) =
∫ 1

z
Kτ,θ
n (x, t)dt ≤ 2θ

n+ 2

δ2n,τ (x)

(z − τ(x))2
, τ(x) < z < 1,

where δ2n,τ (x) is defined in Remark 4.2.2.

Proof. (i) Using Remark 4.2.2 and Lemma 4.2.4, we get

ξτ,θn (x, y) =

∫ y

0

Kτ,θ
n (x, t)dt ≤

∫ y

0

(
τ(x)− t
τ(x)− y

)2

Kτ,θ
n (x, t)dt

≤ Dτ,θ
n ((τ(t)− τ(x))2;x)

(τ(x)− y)2
≤ θ

Dτ
n((τ(t)− τ(x))2;x)

(τ(x)− y)2
≤ θ

δ2n,τ (x)

(τ(x)− y)2
.

The proof of (ii) is similar hence the details are omitted.

Theorem 4.3.5. Let f ∈ DBV [0, 1]. Then, for every x ∈ (0, 1) and sufficiently
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large n, we have

|Dτ,θ
n (f ;x)− f(x)| ≤

{
1

θ + 1

∣∣∣∣(f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−))

∣∣∣∣
+

∣∣∣∣(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

∣∣∣∣}
√

2θ

n+ 2
δn,τ (x)

+
2θ

n+ 2

δ2n,τ (x)

τ(x)

[
√
n]∑

k=1

 τ(x)∨
τ(x)− τ(x)

k

(f ◦ τ−1)′x

+
τ(x)√
n

 τ(x)∨
τ(x)− τ(x)√

n

(f ◦ τ−1)′x


+

2θ

n+ 2

δ2n,τ (x)

(1− τ(x))

[
√
n]∑

k=1

τ(x)+
(1−τ(x))

k∨
τ(x)

(f ◦ τ−1)′x


+

(1− τ(x))√
n

τ(x)+
(1−τ(x))√

n∨
τ(x)

(f ◦ τ−1)′x

 ,

where (f ◦ τ−1)′x is defined by

(f ◦ τ−1)′x(t) =


(f ◦ τ−1)′(t)− (f ◦ τ−1)′(τ(x−)), 0 ≤ t < τ(x)

0, t = τ(x)

(f ◦ τ−1)′(t)− (f ◦ τ−1)′(τ(x+)) τ(x) < t < 1.

(4.3.11)

Proof. Since Dτ,θ
n (1;x) = 1, using (4.3.10), for every x ∈ (0, 1) we get

Dτ,θ
n (f ;x)− f(x) =

∫ 1

0

Kτ,θ
n (x, t)((f ◦ τ−1)(t)− (f ◦ τ−1)(τ(x)))dt

=

∫ 1

0

Kτ,θ
n (x, t)

∫ t

τ(x)

(f ◦ τ−1)′(u)dudt. (4.3.12)

For any f ∈ DBV [0, 1], from (4.3.11) we may write

(f ◦ τ−1)′(u) = (f ◦ τ−1)′x(u) +
1

θ + 1

(
(f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−))

)
+

1

2

(
(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

)(
sgn(u− τ(x)) +

θ − 1

θ + 1

)
+δx(u)

[
(f ◦ τ−1)′(u)− 1

2

(
(f ◦ τ−1)′(τ(x+)) + (f ◦ τ−1)′(τ(x−))

)]
,

(4.3.13)

where

δx(u) =

{
1 , u = τ(x)

0 , u 6= τ(x)
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Obviously,

∫ 1

0

[ ∫ t

τ(x)

{
(f ◦ τ−1)′(u)− 1

2

(
(f ◦ τ−1)′(τ(x+)) + (f ◦ τ−1)′(τ(x−))

)}
δx(u)du

]
Kτ,θ
n (x, t)dt = 0. (4.3.14)

Let us define

A1 =

∫ 1

0

(∫ t

τ(x)

1

θ + 1
((f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−)))du

)
Kτ,θ
n (x, t)dt

=
1

θ + 1

(
(f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−))

)∫ 1

0

(t− τ(x))Kτ,θ
n (x, t)dt

=
1

θ + 1

(
(f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−))

)
Dτ,θ
n ((τ(t)− τ(x));x),

(4.3.15)

and

A2 =

∫ 1

0

Kτ,θ
n (x, t)

(∫ t

τ(x)

1

2

(
(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

)
.(

sgn(u− τ(x)) +
θ − 1

θ + 1

)
du

)
dt =

1

2

(
(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

)
[
−
∫ τ(x)

0

{∫ τ(x)

t

(
sgn(u− τ(x)) +

θ − 1

θ + 1

)
du

}
Kτ,θ
n (x, t)dt

+

∫ 1

τ(x)

( t∫
τ(x)

(
sgn(u− τ(x)) +

θ − 1

θ + 1

)
du

)
Kτ,θ
n (x, t)dt

]
.

Then,

|A2| ≤
∣∣∣∣(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

∣∣∣∣ ∫ 1

0

|t− τ(x)|Kτ,θ
n (x, t)dt

=

∣∣∣∣(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

∣∣∣∣Dτ,θ
n

(
|τ(t)− τ(x)| ;x

)
. (4.3.16)
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Combining equations (4.3.12 -4.3.16), on an application of Cauchy-Schwarz inequal-

ity and Remark 4.2.2, we obtain

|Dτ,θ
n (f ;x)− f(x)| ≤ 1

θ + 1

∣∣∣∣(f ◦ τ−1)′(τ(x+)) + θ(f ◦ τ−1)′(τ(x−))

∣∣∣∣
√

2θ

n+ 2
δn,τ (x)

+

∣∣∣∣(f ◦ τ−1)′(τ(x+))− (f ◦ τ−1)′(τ(x−))

∣∣∣∣
√

2θ

n+ 2
δn,τ (x)

+

∣∣∣∣ ∫ τ(x)

0

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
Kτ,θ
n (x, t)dt

∣∣∣∣
+

∣∣∣∣ ∫ 1

τ(x)

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
Kτ,θ
n (x, t)dt

∣∣∣∣. (4.3.17)

Now, let

Aτ,θn ((f ◦ τ−1)′x, x) =

∫ τ(x)

0

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
Kτ,θ
n (x, t)dt,

and

Bτ,θ
n ((f ◦ τ−1)′x, x) =

∫ 1

τ(x)

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
Kτ,θ
n (x, t)dt.

In order to calculate the estimates of the terms Aτ,θn ((f ◦ τ−1)′x, x), using the defini-

tion of ξτ,θn given in Lemma 4.3.4, we can write

Aτ,θn ((f ◦ τ−1)′x, x) =

∫ τ(x)

0

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
∂

∂t
ξτ,θn (x, t)dt.

Applying integration by parts, we get

∣∣∣Aτ,θn ((f ◦ τ−1)′x, x)
∣∣∣ ≤ ∫ τ(x)

0

|(f ◦ τ−1)′x(t)|ξ
τ,θ
n (x, t)dt

≤
∫ τ(x)− τ(x)√

n

0

|(f ◦ τ−1)′x(t)|ξ
τ,θ
n (x, t)dt+

∫ τ(x)

τ(x)− τ(x)√
n

|(f ◦ τ−1)′x(t)|ξ
τ,θ
n (x, t)dt

:= I1 + I2.
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Since (f ◦ τ−1)′x(τ(x)) = 0 and ξτ,θn (x, t) ≤ 1, we have

I2 :=

∫ τ(x)

τ(x)− τ(x)√
n

∣∣∣(f ◦ τ−1)′x(t)− (f ◦ τ−1)′x(τ(x))
∣∣∣ ξτ,θn (x, t)dt

≤
∫ τ(x)

τ(x)− τ(x)√
n

τ(x)∨
t

(f ◦ τ−1)′x

 dt ≤

 τ(x)∨
τ(x)− τ(x)√

n

(f ◦ τ−1)′x

∫ τ(x)

τ(x)− τ(x)√
n

dt

=
τ(x)√
n

 τ(x)∨
τ(x)− τ(x)√

n

f ′x

 .

Using Lemma 4.3.4 and considering t = τ(x)− τ(x)

u
, we get

I1 ≤
2θ

n+ 2
δ2n,τ (x)

∫ τ(x)− τ(x)√
n

0

∣∣∣(f ◦ τ−1)′x(t)− (f ◦ τ−1)′τ(x)(x)
∣∣∣ dt

(τ(x)− t)2

≤ 2θ

n+ 2
δ2n,τ (x)

∫ τ(x)− τ(x)√
n

0

τ(x)∨
t

(f ◦ τ−1)′x

 dt

(τ(x)− t)2

=
2θ

n+ 2

δ2n,τ (x)

τ(x)

∫ √n
1

 τ(x)∨
τ(x)− τ(x)

u

(f ◦ τ−1)′x

 du

≤ 2θ

n+ 2

δ2n,τ (x)

τ(x)

[
√
n]∑

k=1

 τ(x)∨
τ(x)− τ(x)

k

(f ◦ τ−1)′x

 .

Therefore,

|Aτ,θn ((f ◦ τ−1)′x, x)| ≤ 2θ

n+ 2

δ2n,τ (x)

τ(x)

[
√
n]∑

k=1

 τ(x)∨
τ(x)− τ(x)

k

(f ◦ τ−1)′x


+

τ(x)√
n

 τ(x)∨
τ(x)− τ(x)√

n

(f ◦ τ−1)′x

 . (4.3.18)

Also, using integration by parts in Bτ,θ
n (f ′x, x) and applying Lemma 4.3.4
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with z = τ(x) + (1− τ(x))/
√
n, we have

|Bτ,θ
n ((f ◦ τ−1)′x, x)| =

∣∣∣∣ ∫ 1

τ(x)

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
Kτ,θ
n (x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ z

τ(x)

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
∂

∂t
(1− ξτ,θn (x, t))dt

+

∫ 1

z

(∫ t

τ(x)

(f ◦ τ−1)′x(u)du

)
∂

∂t
(1− ξτ,θn (x, t))dt

∣∣∣∣
=

∣∣∣∣[ ∫ t

τ(x)

((f ◦ τ−1)′x(u)du)(1− ξτ,θn (x, t))

]z
τ(x)

−
∫ z

τ(x)

(f ◦ τ−1)′x(t)(1− ξ
τ,θ
n (x, t))dt

+

[ ∫ t

τ(x)

((f ◦ τ−1)′x(u)du)(1− ξτ,θn (x, t))

]1
z

−
∫ 1

z

(f ◦ τ−1)′x(t)(1− ξ
τ,θ
n (x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

τ(x)

(f ◦ τ−1)′x(t)(1− ξ
τ,θ
n (x, t))dt+

∫ 1

z

(f ◦ τ−1)′x(t)(1− ξ
τ,θ
n (x, t))dt

∣∣∣∣
≤ 2θ

n+ 2
δ2n,τ (x)

∫ 1

z

 t∨
τ(x)

(f ◦ τ−1)′x

 (t− τ(x))−2dt+

∫ z

τ(x)

t∨
τ(x)

(f ◦ τ−1)′xdt

≤ 2θ

n+ 2
δ2n,τ (x)

∫ 1

τ(x)+
(1−τ(x))√

n

 t∨
τ(x)

(f ◦ τ−1)′x

 (t− τ(x))−2dt

+
1− τ(x)√

n

τ(x)+
(1−τ(x))√

n∨
τ(x)

(f ◦ τ−1)′x

 .

By substituting u = (1− τ(x))/(t− τ(x)), we get

|Bτ,θ
n f ′x, x)| ≤ 2θ

n+ 2
δ2n,τ (x)

∫ √n
1

τ(x)+
(1−τ(x))

u∨
τ(x)

(f ◦ τ−1)′x

 (1− τ(x))−1du

+
1− τ(x)√

n

τ(x)+
(1−τ(x))√

n∨
τ(x)

(f ◦ τ−1)′x


≤ 2θ

n+ 2

δ2n,τ (x)

1− τ(x)

[
√
n]∑

k=1

τ(x)+
(1−τ(x))

k∨
τ(x)

(f ◦ τ−1)′x


+

1− τ(x)√
n

τ(x)+
(1−τ(x))

k∨
τ(x)

(f ◦ τ−1)′x

 . (4.3.19)

Collecting the estimates (4.3.17 - 4.3.19), we get the required result.
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Chapter 5

Approximation properties of the

modified Stancu operators

5.1 Introduction

In the recent years there has been an increasing interest in modifying linear positive

operators so that the new versions present a better degree of approximation than

the original ones.

In the present chapter, we deal with the modified Stancu operator. We com-

pare the new operators with classical Stancu operators (1.1.2) and observe that on

a certain interval, these operators present a better degree of approximation than

the original ones. Also, a Voronovskaja type theorem by using the Ditzian-Totik

modulus of smoothness is proved.

5.2 Modified Stancu operators

In this section, we introduce a modification of the Stancu operators (1.1.2). The

main properties of this new approximation process are studied.

For an infinite times continuously differentiable function τ on [0, 1], such that

τ(0) = 0, τ(1) = 1 and τ ′(x) > 0 for x ∈ [0, 1], we introduce the sequence of Stancu
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type operators for f ∈ C[0, 1] as

P
< 1
n
,τ>

n (f ;x) =
n∑
k=0

p
< 1
n
,τ>

n,k (x)(f ◦ τ−1)
(
k

n

)
, x ∈ [0, 1], (5.2.1)

where

p
< 1
n
,τ>

n,k (x) =
2n!

(2n)!

(
n

k

)
(nτ(x))k (n− nτ(x))n−k .

In the following example, we show that if the function τ(x) is chosen suitably then

the operators defined by (5.2.1) provide a better rate of convergence than the oper-

ators (1.1.2).

Example 5.2.1. Let τ1(x) =
x2 + x

2
, τ2(x) = sin

π

2
x and f(x) = cos(10x),

x ∈ [0, 1]. For n = 40, the approximation to the function f by the modified Stancu

operators P
< 1
n
,τ1>

n defined by (5.2.1)and the Stancu operators P
( 1
n
)

n defined by (1.1.2)

is illustrated in the Figure 5.1.

Figure 5.1
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The error of approximation for P
( 1
n
)

n , P
< 1
n
,τ1>

n and P
< 1
n
,τ2>

n at certain points of

[0, 1] is computed in the following Table.

Table 2.

x |P ( 1
n
)

n (f ;x)− f(x)| |P< 1
n
,τ1>

n (f ;x)− f(x)| |P< 1
n
,τ2>

n (f ;x)− f(x)|
0.04 0.0719078440 0.0918804542 0.0491775787

0.08 0.0899902045 0.0949187558 0.0656722344

0.12 0.0472944810 0.0215916952 0.0431323566

0.16 0.0464266575 0.1024165160 0.0144204290

0.20 0.1684314306 0.2437174913 0.0943043728

0.24 0.2889352546 0.3677734502 0.1783441641

0.28 0.3780208231 0.4453240720 0.2468493195

0.32 0.4121574493 0.4575642665 0.2826616675

0.36 0.3791213446 0.3992005780 0.2745554027

0.40 0.2804560850 0.2789088716 0.2194175892

0.44 0.1310964673 0.1171877712 0.1228721695

0.48 0.0436865547 0.0579307255 0.0017044307

0.52 0.2133696908 0.2164713841 0.1355396341

0.56 0.3482733387 0.3323367044 0.2577115929

0.60 0.4254746884 0.3882544972 0.3486510319

0.64 0.4333817144 0.3789143428 0.3932519814

0.68 0.3740607726 0.3116949702 0.3831315495

0.72 0.2628264094 0.2048387962 0.3179584077

0.76 0.1251131158 0.0834187551 0.2061763439

0.80 0.0088333903 0.0261223418 0.0655133299

0.84 0.1104739425 0.1017791431 0.0769549422

0.88 0.1594595824 0.1309512530 0.1865335751

0.92 0.1487803128 0.1135004422 0.2263598837

0.96 0.0874521271 0.0621541233 0.1673068131

Therefore, we notice that depending on choice of function τ , the modified op-

erator P
< 1
n
,τ>

n presents a better degree of approximation than P
( 1
n
)

n on a certain

interval.
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In order to prove our main results, we shall need some auxiliary results. The proofs

are similar to the corresponding results for the Stancu operators, therefore the de-

tails are omitted.

Lemma 5.2.2. For modified Stancu operator P
< 1
n
,τ>

n , we have

P
< 1
n
,τ>

n 1 = 1, P
< 1
n
,τ>

n τ = τ, P
< 1
n
,τ>

n τ 2 = τ 2 +
2τ(1− τ)

n+ 1
.

Let µτn,m(x) = P
< 1
n
,τ>

n ((τ(t)− τ(x))m;x) =
n∑
k=0

p
< 1
n
,τ>

n,k (x)

(
k

n
− τ(x)

)m
be the

central moment operator.

Lemma 5.2.3. The central moment operator verifies:

i) µτn,2(x) =
2

n+ 1
ϕ2
τ (x);

ii) µτn,4(x) =
12(n2 − 7n)ϕ2

τ (x) + (26n− 2)

n(n+ 1)(n+ 2)(n+ 3)
ϕ2
τ (x),

where ϕ2
τ (x) := τ(x)(1− τ(x)).

Lemma 5.2.4. If f ∈ C[0, 1], then ‖P< 1
n
,τ>

n f‖ ≤ ‖f‖, where ‖ · ‖ is the uniform

norm on C[0, 1].

Proof. By the definition of the modified Stancu operators (5.2.1) and using Lemma

5.2.2 we have∣∣∣P< 1
n
,τ>

n (f ;x)
∣∣∣ ≤ n∑

k=0

p
< 1
n
,τ>

n,k (x)

∣∣∣∣(f ◦ τ−1)(kn
)∣∣∣∣ ≤ ‖f ◦ τ−1‖P< 1

n
,τ>

n (e0;x) = ‖f‖.

Theorem 5.2.5. If f ∈ C[0, 1], then P
< 1
n
,τ>

n f converges to f as n tends to infinity,

uniformly on [0, 1].

Proof. Using Lemma 5.2.2, the Korovkin theorem and the fact that {1, τ, τ 2} is an

extended complete Tchebychev system on [0, 1], we obtain that the modified Stancu

operator P
< 1
n
,τ>

n f converges uniformly to f ∈ C[0, 1].
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Example: We consider f : [0, 1] → R, f(x) = cos(10x) and τ(x) =
x2 + x

2
. The

convergence of the modified Stancu operator P
< 1
n
,τ>

n to the function f is illustrated

in Figure 5.2 for n ∈ {20, 50, 100}.

Figure 5.2

We remark that as the values of n increase, the error in the approximation of the

operator to the function becomes smaller.

Using the result of Shisha and Mond [141] we have∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ (1 +

µτn,2(x)

δ2

)
ω(f, δ), for δ > 0,

where ω(f, δ) is the usual modulus of continuity of f ∈ C[0, 1].

Example 5.2.6. The rates of convergence of the modified operators and the original

ones depend on the selection of the function τ . If we choose τ(x) =
(
sin πx

2

)2
,

we have τ(x) (1− τ(x)) ≤ x(1 − x), for all x ∈ [0, 1] and this inequality leads to

µτn,2(x) ≤ µn,2(x). Therefore, the modified operators P
< 1
n
,τ>

n presents a better order

of approximation than P
( 1
n
)

n .

5.3 Approximation properties

In what follows, we present approximation properties for modified Stancu operators

in terms of modulus of smoothness. In order to give our main results we will use
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the following result.

Lemma 5.3.1. [70] If f ∈ Cq[0, 1], then for all 0 < h ≤ 1

2
there are functions

g ∈ Cq+2[0, 1], such that

i) ‖f (q) − g(q)‖ ≤ 3

4
ω2(f

(q);h),

ii) ‖g(q+1)‖ ≤ 5

h
ω1(f

(q);h),

iii) ‖g(q+2)‖ ≤ 3

2h2
ω2(f

(q);h),

where ωk is the classical kth order modulus of smoothness on [0, 1].

Throughout this chapter, we assume that inf
x∈[0,1]

τ ′(x) ≥ a, a ∈ R+.

Theorem 5.3.2. If f ∈ C[0, 1], then the operators P
< 1
n
,τ>

n verify the following

inequality∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ 3

2

(
1 +

1

a2

)
ω2

(
f ;

ϕτ (x)√
n+ 1

)
+

5ϕτ (x)‖τ ′′‖

a3
√
n+ 1

ω1

(
f ;

ϕτ (x)√
n+ 1

)
,

where ω1 (f ; δ) and ω2 (f ; δ) are the first and second order modulus of continuity

respectively.

Proof. Let g ∈ W 2[0, 1] and t ∈ [0, 1]. Then by Taylor’s expansion, we get

g(t) =
(
g ◦ τ−1

)
(τ(t))

=
(
g ◦ τ−1

)
(τ(x)) +

(
g ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))

+

∫ τ(t)

τ(x)

(τ(t)− u)
(
g ◦ τ−1

)′′
(u)du. (5.3.1)

The quantity

∫ τ(t)

τ(x)

(τ(t)− u)
(
g ◦ τ−1

)′′
(u)du was estimated in [7, p. 35] as follows:

∫ τ(t)

τ(x)

(τ(t)− u)
(
g ◦ τ−1

)′′
(u)du

=

∫ τ(t)

τ(x)

(τ(t)− u)
g′′(τ−1(u))

[τ ′(τ−1(u))]2
du−

∫ τ(t)

τ(x)

(τ(t)− u)
g′(τ−1(u))τ ′′(τ−1(u))

[τ ′(τ−1(u))]3
du.

(5.3.2)
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From (5.3.1) and (5.3.2) we can write

g(t) = g(x) +
(
g ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x)) +

∫ τ(t)

τ(x)

(τ(t)− u)
g′′(τ−1(u))

[τ ′(τ−1(u))]2
du

−
∫ τ(t)

τ(x)

(τ(t)− u)
g′(τ−1(u))τ ′′(τ−1(u))

[τ ′(τ−1(u))]3
du. (5.3.3)

Now applying P
< 1
n
,τ>

n to both sides of the relation (5.3.3), we can write

P
< 1
n
,τ>

n (g;x) = g(x) + P
< 1
n
,τ>

n

(∫ τ(t)

τ(x)

(τ(t)− u)
g′′(τ−1(u))

[τ ′(τ−1(u))]2
du;x

)

− P< 1
n
,τ>

n

(∫ τ(t)

τ(x)

(τ(t)− u)
g′(τ−1(u))τ ′′(τ−1(u))

[τ ′(τ−1(u))]3
du;x

)
.

Therefore,∣∣∣P< 1
n
,τ>

n (g;x)− g(x)
∣∣∣ ≤ 1

2
µτn,2(x)

(
‖g′′‖
a2

+
‖g′‖ · ‖τ ′′‖

a3

)
=
ϕ2
τ (x)

n+ 1

(
‖g′′‖
a2

+
‖g′‖ · ‖τ ′′‖

a3

)
.

By Lemma 5.2.4, it follows∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ =

∣∣∣P< 1
n
,τ>

n (f − g;x)
∣∣∣+
∣∣∣P< 1

n
,τ>

n (g;x)− g(x)
∣∣∣+ |g(x)− f(x)|

≤ 2‖f − g‖+
ϕ2
τ (x)

n+ 1

(
‖g′′‖
a2

+
‖g′‖ · ‖τ ′′‖

a3

)
.

According to Lemma 5.3.1, for the given 0 < h ≤ 1

2
, there exists g ∈ C2[0, 1] such

that

‖f − g‖ ≤ 3

4
ω2(f ;h), ‖g′‖ ≤ 5

h
ω1(f ;h), ‖g′′‖ ≤ 3

2h2
ω2(f

′;h).

Consequently,∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ 3

2
ω2(f ;h) +

ϕ2
τ (x)

n+ 1

(
3

2h2a2
ω2(f, h) +

5‖τ ′′‖
ha3

ω1(f ;h

)
.

Taking h =
ϕτ (x)√
n+ 1

, the theorem is proved.

Remark 5.3.3. If we chose τ(x) = x in Theorem 5.3.2, we get∣∣∣P< 1
n
>

n (f ;x)− f(x)
∣∣∣ ≤ 3ω2

(
f ;

ϕ(x)√
n+ 1

)
.

Regarding the estimates of P
< 1
n
>

n , better constant in front of ω2 were obtained

in ([71], [100], [131]).
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5.4 Voronovskaja type theorems

The Voronovskaja type theorem for Stancu operators dealing with error estimates for

continuous functions and twice continuously differentiable functions, were obtained

in [115] as follows:

Theorem 5.4.1. For x ∈ [0, 1], the following inequalities hold

i)
∣∣∣P ( 1

n
)

n (f ;x)− f(x)
∣∣∣ ≤ 3

2
ω1

(
f ;

1√
n

)
, f ∈ C[0, 1],

ii) n

∣∣∣∣P ( 1
n
)

n (f ;x)− f(x)− x(1− x)

n+ 1
f ′′(x)

∣∣∣∣ ≤ 5

8
ω1

(
f ′′;

1√
n

)
f ∈ C2[0, 1].

Now, we establish a local approximation theorem for the operators P
< 1
n
,τ>

n by

means of Ditzian-Totik modulus of smoothness.

Theorem 5.4.2. Let f ∈ C[0, 1]. Then for every x ∈ (0, 1), we have∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ Cωϕτ

(
f ;

2

a
√
n+ 1

)
,

where C > 0 is a constant.

Proof. Using the representation

g(t) =
(
g ◦ τ−1

)
(τ(t)) =

(
g ◦ τ−1

)
(τ(x)) +

∫ τ(t)

τ(x)

(
g ◦ τ−1

)′
(u)du

we get

∣∣∣P< 1
n
,τ>

n (g;x)− g(x)
∣∣∣ =

∣∣∣∣∣P< 1
n
,τ>

n

(∫ τ(t)

τ(x)

(
g ◦ τ−1

)′
(u)du

)∣∣∣∣∣ . (5.4.1)

But, ∣∣∣∣∣
∫ τ(t)

τ(x)

(
g ◦ τ−1

)′
(u)du

∣∣∣∣∣ =

∣∣∣∣∫ t

x

g′(y)

τ ′(y)
τ ′(y)dy

∣∣∣∣ =

∣∣∣∣∫ t

x

ϕτ (y)

ϕτ (y)
· g
′(y)

τ ′(y)
τ ′(y)dy

∣∣∣∣
≤ ‖ϕτg

′‖
a

∣∣∣∣∫ t

x

τ ′(y)

ϕτ (y)
dy

∣∣∣∣ , (5.4.2)
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and∣∣∣∣∫ t

x

τ ′(y)

ϕτ (y)
dy

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

x

(
1√
τ(y)

+
1√

1− τ(y)

)
τ ′(y)dy

∣∣∣∣∣
≤ 2

(∣∣∣√τ(t)−
√
τ(x)

∣∣∣+
∣∣∣√1− τ(t)−

√
1− τ(x)

∣∣∣)
= 2 |τ(t)− τ(x)|

(
1√

τ(t) +
√
τ(x)

+
1√

1− τ(t) +
√

1− τ(x)

)

< 2|τ(t)− τ(x)|

(
1√
τ(x)

+
1√

1− τ(x)

)
≤ 2
√

2|τ(t)− τ(x)|
ϕτ (x)

.

(5.4.3)

Hence from relations (5.4.1)-(5.4.3) and using Cauchy-Schwarz inequality, we obtain

|P< 1
n
,τ>

n (g;x)− g(x)| ≤ 2
√

2
‖ϕτg′‖
aϕτ (x)

P
< 1
n
,τ>

n (|τ(t)− τ(x)|;x)

≤ 2
√

2
‖ϕτg′‖
aϕτ (x)

[
P
< 1
n
,τ>

n

(
(τ(t)− τ(x))2;x

)]1/2
≤ 4

a
√
n+ 1

‖ϕτg′‖. (5.4.4)

Using Lemma 5.2.4 and (5.4.4), it follows that∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ ∣∣∣P< 1

n
,τ>

n (f − g;x)
∣∣∣+ |f(x)− g(x)|+

∣∣∣P< 1
n
,τ>

n (g;x)− g(x)
∣∣∣

≤ 2

{
‖f − g‖+

2

a
√
n+ 1

‖ϕτg′‖
}
.

Taking infimum on the right hand side of the above inequality over all

g ∈ Wϕτ [0, 1], we get∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)
∣∣∣ ≤ 2Kϕτ

(
f ;

2

a
√
n+ 1

)
.

Using the relation (0.5.3) this theorem is proved.

In this section we prove a quantitative Voronovskaja type theorem for the oper-

ator P
< 1
n
,τ>

n in terms of the first order Ditzian-Totik modulus of smoothness.

Theorem 5.4.3. For any f ∈ C2[0, 1] and x ∈ (0, 1), the following inequalities:

hold
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i) n

∣∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)− 1

n+ 1
· 1

[τ ′(x)]2

[
f ′′(x)− f ′(x)

τ ′′(x)

τ ′(x)

]
ϕ2
τ (x)

∣∣∣∣
≤ Cωϕτ

(
(f ◦ τ−1)′′; ϕτ (x)

a
uτn(x)

)
,

ii) n

∣∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)− 1

n+ 1
· 1

[τ ′(x)]2

[
f ′′(x)− f ′(x)

τ ′′(x)

τ ′(x)

]
ϕ2
τ (x)

∣∣∣∣
≤ Cϕτ (x)ωϕτ

(
(f ◦ τ−1)′′; u

τ
n(x)

a

)
,

where C > 0 is a constant and uτn(x) = 2

√
2(n2 − 7n)ϕ2

τ (x) + 13n− 1

n(n+ 2)(n+ 3)
.

Proof. Let f ∈ C2[0, 1] and x ∈ (0, 1). Then by Taylor’s expansion for t ∈ (0, 1), we

have

f(t) =
(
f ◦ τ−1

)
(τ(t)) =

(
f ◦ τ−1

)
(τ(x)) +

(
f ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))

+

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(u)du.

Hence, we may write

f(t)− f(x)−
(
f ◦ τ−1

)′
(τ(x)) (τ(t)− τ(x))− 1

2

(
f ◦ τ−1

)′′
(τ(x)) (τ(t)− τ(x))2

=

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(u)du−

∫ τ(t)

τ(x)

(τ(t)− u)
(
f ◦ τ−1

)′′
(τ(x))du

=

∫ τ(t)

τ(x)

(τ(t)− u)
[(
f ◦ τ−1

)′′
(u)−

(
f ◦ τ−1

)′′
(τ(x))

]
du.

Applying P
< 1
n
,τ>

n to both sides of the above relation, we get∣∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)− 1

2

[
f ′′(x)

(τ ′(x))2
− f ′(x)

τ ′′(x)

(τ ′(x))3

]
µτn,2(x)

∣∣∣∣
=

∣∣∣∣∣P< 1
n
,τ>

n

(∫ τ(t)

τ(x)

(τ(t)− u)
[(
f ◦ τ−1

)′′
(u)−

(
f ◦ τ−1

)′′
(τ(x))

]
du;x

)∣∣∣∣∣
≤ P

< 1
n
,τ>

n

(∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(f ◦ τ−1)′′ (u)−

(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ du∣∣∣∣∣ ;x
)
.

(5.4.5)
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For g ∈ Wϕτ [0, 1], we have∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(f ◦ τ−1)′′ (u)−

(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ du∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(f ◦ τ−1)′′ (u)−

(
g ◦ τ−1

)
(u)
∣∣∣ du∣∣∣∣∣

+

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣(g ◦ τ−1) (u)−

(
g ◦ τ−1

)
(τ(x))

∣∣ du∣∣∣∣∣
+

∣∣∣∣∣
∫ τ(t)

τ(x)

|τ(t)− u|
∣∣∣(g ◦ τ−1) (τ(x))−

(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ du∣∣∣∣∣
=

∣∣∣∣∫ t

x

∣∣∣(f ◦ τ−1)′′ (τ(y))− g(y)
∣∣∣ |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

|g(y)− g(x)| |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

∣∣∣g(x)−
(
f ◦ τ−1

)′′
(τ(x))

∣∣∣ |τ(t)− τ(y)| τ ′(y)dy

∣∣∣∣
≤ 2‖

(
f ◦ τ−1

)′′ − g‖ ∣∣∣∣∫ t

x

|τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
+

∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

|g′(v)|dv
∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ ‖

(
f ◦ τ−1

)′′ − g‖(τ(t)− τ(x))2

+‖ϕτg′‖
∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

dv

ϕτ (v)

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣ . (5.4.6)

Using the inequality [48, p. 141]
|y − v|
v(1− v)

≤ |y − x|
x(1− x)

, v is between y and x ,

we can write
|τ(y)− τ(v)|
τ(v)(1− τ(v))

≤ |τ(y)− τ(x)|
τ(x)(1− τ(x))

. Therefore,

‖ϕτg′‖
∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

dv

ϕτ (v)

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣ (5.4.7)

≤ ‖ϕτg′‖
∣∣∣∣∫ t

x

∣∣∣∣∫ y

x

|τ(y)− τ(x)|1/2

τ ′(v)ϕτ (x)
· τ ′(v)

|τ(y)− τ(v)|1/2
dv

∣∣∣∣ |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)

∣∣∣∣∫ t

x

|τ(y)− τ(x)| |τ(t)− τ(y)|τ ′(y)dy

∣∣∣∣
≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)

∣∣∣∣∫ t

x

(τ(t)− τ(x))2τ ′(y)dy

∣∣∣∣ ≤ 2
‖ϕτg′‖
a

ϕ−1τ (x)|τ(t)− τ(x)|3.

(5.4.8)
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Now combining the relations (5.4.5)-(5.4.8), applying Lemma 5.2.3 and the Cauchy-

Schwarz inequality, we get∣∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)− 1

n+ 1

[
f ′′(x)

(τ ′(x))2
− f ′(x)

τ ′′(x)

(τ ′(x))3

]
ϕ2
τ (x)

∣∣∣∣
≤ ‖(f ◦ τ−1)′′ − g‖P< 1

n
,τ>

n

(
(τ(t)− τ(x))2;x

)
+2
‖ϕτg′‖
a

ϕ−1τ (x)P
< 1
n
,τ>

n

(
|τ(t)− τ(x)|3;x

)
≤ 2

n+ 1
ϕ2
τ (x)‖

(
f ◦ τ−1

)′′ − g‖+
2‖ϕτg′‖

a
ϕ−1τ (x)[

P
< 1
n
,τ>

n

(
(τ(t)− τ(x))2;x

)]1/2 [
P
< 1
n
,τ>

n

(
(τ(t)− τ(x))4;x

)]1/2
=

2

n+ 1
ϕ2
τ (x)‖

(
f ◦ τ−1

)′′ − g‖
+

4

n+ 1

‖ϕτg′‖
a

ϕτ (x)

√
6(n2 − 7n)ϕ2

τ (x) + (13n− 1)

n(n+ 2)(n+ 3)

=
2

n+ 1

{
ϕ2
τ (x)‖

(
f ◦ τ−1

)′′ − g‖
+

2‖ϕτg′‖
a

ϕτ (x)

√
6(n2 − 7n)ϕ2

τ (x) + (13n− 1)

n(n+ 2)(n+ 3)

}
.

Because ϕ2
τ (x) ≤ ϕτ (x) ≤ 1, x ∈ (0, 1) we obtain∣∣∣∣P< 1

n
,τ>

n (f ;x)− f(x)− 1

(n+ 1)[τ ′(x)]2

[
f ′′(x)− f ′(x)

τ ′′(x)

τ ′(x)

]
ϕ2
τ (x)

∣∣∣∣
≤ 2

n+ 1

{
‖(f ◦ τ−1)′′ − g‖+

ϕτ (x)

a
uτn(x)‖ϕτg′‖

}
; (5.4.9)

∣∣∣∣P< 1
n
,τ>

n (f ;x)− f(x)− 1

(n+ 1)[τ ′(x)]2

[
f ′′(x)− f ′(x)

τ ′′(x)

τ ′(x)

]
ϕ2
τ (x)

∣∣∣∣
≤ 2

n+ 1
ϕτ (x)

{
‖(f ◦ τ−1)′′ − g‖+

uτn(x)

a
‖ϕτg′‖

}
. (5.4.10)

Taking the infimum on the right hand side of (5.4.9) and (5.4.10) over all g ∈

Wϕτ [0, 1], we get

n

∣∣∣∣P< 1
n
,τ>

n (f ;x)−f(x)− 1

n+1

ϕ2
τ (x)

[τ ′(x)]2

[
f ′′(x)−f ′(x)

τ ′′(x)

τ ′(x)

]∣∣∣∣
≤ 2Kϕτ

(
(f ◦ τ−1)′′; u

τ
n(x)

a
ϕτ (x)

)
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and

n

∣∣∣∣P< 1
n
,τ>

n (f ;x)−f(x)− 1

n+1

ϕ2
τ (x)

[τ ′(x)]2

[
f ′′(x)−f ′(x)

τ ′′(x)

τ ′(x)

]∣∣∣∣
≤ 2ϕτ (x)Kϕτ

(
(f ◦ τ−1)′′; u

τ
n(x)

a

)
.

Using (0.5.3), the theorem is proved.

Remark 5.4.4. If we choose τ(x) = x in Theorem 5.4.2 and Theorem 5.4.3 we get

i)
∣∣∣P< 1

n
>

n (f ;x)− f(x)
∣∣∣ ≤ C1ωϕ

(
f ; 2√

n+1

)
, for f ∈ C[0, 1]

ii) n
∣∣∣P< 1

n
>

n (f ;x)− f(x)− ϕ2(x)
n+1

f ′′
∣∣∣ ≤ C2ωϕ (f ′′;ϕ(x)un(x)) for f ∈ C2[0, 1],

where C1, C2 are positive constants and un(x) = 2

√
2(n2 − 7n)ϕ2(x) + 13n− 1

n(n+ 2)(n+ 3)
,

ϕ2(x) = x(1− x).

93



94



Chapter 6

Bézier variant of modified

Srivastava-Gupta operators

6.1 Introduction

In order to approximate Lebesgue integrable functions on R+
0 , Srivastava and Gupta

[146] introduced a general family of summation-integral type operators as

Ln,c(f, x) = n
∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f(t)dt+ pn,0(x, c)f(0), (6.1.1)

where pn,k(x, c) =
(−x)k

k!
φ
(k)
n,c(x) and

φn,c(x) =

{
e−nx, c = 0,

(1 + cx)−n/c, c ∈ N := {1, 2, 3....}.

Ispir and Yuksel [93] introduced the Bézier variant of the operators (6.1.1) and

studied the estimate of the rate of convergence of these operators for functions of

bounded variation. Deo [45] gave a modification of these operators and established

the rate of convergence and a Voronovskaya type result. Recently, Acar et al. [3]

introduced Stancu type generalization of the operators (6.1.1) and obtained an esti-

mate of the rate of convergence for functions having derivatives of bounded variation

and also studied the simultaneous approximation for these operators.
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Yadav [163] introduced a modification of the operators (6.1.1) as

Gn,c(f, x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t

n

)
dt

+pn,0(x, c)f(0) (6.1.2)

and studied its moment estimates, direct estimate, asymptotic formula and statisti-

cal convergence. Very recently, Maheshwari [112] studied the rate of approximation

for the functions having derivative of bounded variation on every finite subinterval

of R+
0 for the operators (6.1.2).

We propose a Bézier variant of the operators given by (6.1.2) as

Gα
n,c(f, x) = n

∞∑
k=1

Q
(α)
n,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t

n

)
dt

+Q
(α)
n,0(x, c)f(0), (6.1.3)

where, Q
(α)
n,k(x, c) = [Jn,k(x, c)]

α−[Jn,k+1(x, c)]
α , α ≥ 1 with Jn,k(x, c) =

∑∞
j=k pn,j(x, c),

when k < ∞ and 0 otherwise. Clearly, Gα
n,c(f, x) is a linear positive operator. If

α = 1, then the operators Gα
n,c(f, x) reduce to the operators Gn,c(f, x).

The aim of this chapter is to investigate a direct approximation result and the rate of

convergence for functions having a derivative equivalent with a function of bounded

variation on every finite subinterval of R+
0 for the operators (6.1.2). Lastly, a com-

parison of the rate of convergence of the operators (6.1.2) vis-a-vis operators (6.1.3)

to a certain function is illustrated by some graphics.

6.2 Primary Results

Lemma 6.2.1. [163] For Gn,c(t
m, x), m = 0, 1, 2, one has

(i) Gn,c(1, x) = 1

(ii) Gn,c(t, x) = x

(iii) Gn,c(t
2, x) =

(n− c)(x2(n+ c) + 2x)

n(n− 2c)
.
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Consequently,

Gn,c((t− x)2, x) =
x2c(2n− c) + 2(n− c)x

n(n− 2c)
and

Gn,c((t− x)2, x) ≤ λx(1 + cx)

n
for sufficiently large n and λ > 2.

From [112], one has

Gn,c((t− x)2r, x) = O(n−r), as n→∞. (6.2.1)

Remark 6.2.2. We have

Gα
n,c(1;x) =

∞∑
k=0

Q
(α)
n,k(x, c) = [Jn,0(x, c)]

α

=

[
∞∑
j=0

pn,k(x, c)

]α
= 1, since

∞∑
j=0

pn,k(x, c) = 1.

Lemma 6.2.3. For every f ∈ CB(R+
0 ), we have

‖Gα
n,c(f ; .)‖ ≤ ‖f‖.

Applying Remark 6.2.2 , the proof of this lemma easily follows. Hence the details

are omitted.

Remark 6.2.4. For 0 ≤ a, b ≤ 1, α ≥ 1, using the inequality

| aα − bα |≤ α | a− b |

and from the definition of Q
(α)
n,k(x, c), ∀k = 0, 1, 2....., we have

0 < [Jn,k(x, c)]
α − [Jn,k+1(x, c)]

α ≤ α(Jn,k(x, c)− Jn,k+1(x, c))

= αpn,k(x, c).

Hence from the definition of Gα
n,c(f ;x), we get

|Gα
n,c(f, x)| ≤ αGn,c(|f |, x).
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6.3 Main Results

To describe our first result, let us take φ(x) =
√
x(1 + cx). Here the appropriate

Petree’s K-functional is defined by

Kφ(f, δ) = inf
g∈Wφ(R+

0 )
{||f − g||+ δ||φg′||+ δ2||g′||, δ > 0}. (6.3.1)

It is well known ([48] Thm. 3.1.2, ) that Kφ(f, t) ∼ ωφ(f, t) which means that

there exists a constant C > 0 such that

C−1ωφ(f, t) ≤ Kφ(f, t) ≤ Cωφ(f, t). (6.3.2)

6.3.1 Local approximation

Theorem 6.3.1. Let f ∈ CB(R+
0 ), then for every x ∈ R+

0 we have

|Gα
n,c(f ;x)− f(x)| ≤ Cωφ

(
f ;

1√
n

)
, (6.3.3)

where C is a constant independent of n and x.

Proof. For fixed n, x, choosing g = gn,x ∈ Wφ(R+
0 ) and using the representation

g(t) = g(x) +

∫ t

x

g′(u)du,

we get

|Gα
n,c(g;x)− g(x)| =

∣∣∣∣Gα
n,c

(∫ t

x

g′(u)du;x

)∣∣∣∣. (6.3.4)

Now to find the estimate of
∫ t
x
g′(u)du, we split the domain into two parts i.e. F c

n =

[0, 1/n] and Fn = (1/n,∞). First, if x ∈ (1/n,∞) then Gα
n,c((t− x)2;x) ∼ 2α

n
φ2(x).

We have ∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||φg′||∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣. (6.3.5)

98



For any x, t ∈ (0,∞), we find that∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣ =

∣∣∣∣ ∫ t

x

1√
u(1 + cu)

du

∣∣∣∣
≤

∣∣∣∣ ∫ t

x

(
1√
u

+
1√

1 + cu

)
du

∣∣∣∣
≤ 2

(√
t−
√
x+

√
1 + ct−

√
1 + cx

c

)
= 2|t− x|

(
1√

t+
√
x

+
1√

1 + ct+
√

1 + cx

)
< 2|t− x|

(
1√
x

+
1√

1 + cx

)
≤ 2(c+ 1)√

c(c− 1)

|t− x|
φ(x)

. (6.3.6)

Combining (6.3.4)-(6.3.6) and using Cauchy-Schwarz inequality for x ∈ ( 1
n
,∞), we

obtain

|Gα
n,c(g;x)− g(x)| <

2(c+ 1)√
c(c− 1)

||φg′||φ−1(x)Gα
n,c(|t− x|;x)

≤ 2(c+ 1)√
c(c− 1)

||φg′||φ−1(x)

(
Gα
n,c((t− x)2;x)

)1/2

≤ 2(c+ 1)√
c(c− 1)

||φg′||
(

2α

n

)1/2

≤ C||φg′|| 1√
n
. (6.3.7)

For x ∈ F c
n = [0, 1/n], Gα

n,c((t− x)2;x) ∼ 2α

n2
and∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||g′|| |t− x|.
Therefore for x ∈ [1/n,∞), using Cauchy-Schwarz inequality we have

|Gα
n,c(g;x)− g(x)| ≤ ||g′||Gα

n,c(|t− x|;x) ≤ ||g′||
(
Gα
n,c((t− x)2;x)

)1/2

≤ ||g′||
√

2α

n
≤ C||g′|| 1

n
. (6.3.8)

From (6.3.7) and (6.3.8), we obtain

|Gα
n,c(g;x)− g(x)| < C

(
||φg′|| 1√

n
+ ||g′|| 1

n

)
. (6.3.9)
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Using Lemma 6.2.3 and (6.3.9), we can write

|Gα
n,c(f ;x)− f(x)| ≤ |Gα

n,c(f − g;x)|+ |f(x)− g(x)|+ |Gα
n,c(g;x)− g(x)|

≤ C

(
||f − g||+ ||φg′|| 1√

n
+ ||g′|| 1

n

)
. (6.3.10)

Taking the infimum on the right hand side of the above inequality over all g ∈

Wφ(R+
0 ), we get

|Gα
n,c(f ;x)− f(x)| = CKφ

(
f ;

1√
n

)
.

Using (6.3.2), we get the desired relation (6.3.3).

6.3.2 Rate of Approximation

Lastly, we shall discuss the rate of approximation of functions with a derivative of

bounded variation on R+
0 . Let DBVγ(R+

0 ) ⊂ DBV (R+
0 ), γ ≥ 0 with |f(t)| ≤Mtγ.

In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators Gα
n,c in an integral form as follows:

Gα
n,c(f ;x) =

∫ ∞
0

Kα
n,c(x, t)f

(
(n− c)t

n

)
dt, (6.3.11)

where the kernel Kα
n,c(x, t) is given by

Kα
n,c(x, t) =

∞∑
k=1

Q
(α)
n,k(x, c)pn+c,k−1(t, c) +Q

(α)
n,0(x, c)δ(t),

δ(u) being the Dirac-delta function.

Lemma 6.3.2. For a fixed x ∈ R+
0 and sufficiently large n, we have

(i) ξαn,c(x, y) =
∫ y
0
Kα
n,c(x, t)dt ≤ α

λx(1 + cx)

n

1

(x− y)2
0 ≤ y < x,

(ii) 1− ξαn,c(x, z) =
∫∞
z
Kα
n,c(x, t)dt ≤ α

λx(1 + cx)

n

1

(z − x)2
, x < z <∞.
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Proof. (i) Using Lemma 6.2.1 and Remark 6.2.4, we get

ξαn,c(x, y) =

y∫
0

Kα
n,c(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

Kα
n,c(x, t)dt

≤ Gα
n,c((t− x)2;x)(x− y)−2

≤ αGn,c((t− x)2;x)(x− y)−2

≤ λαx(1 + cx)

n

1

(x− y)2
.

The proof of (ii) is similar hence we skip the details.

Theorem 6.3.3. Let f ∈ DBVγ(R+
0 ). Then, for every x ∈ (0,∞) and sufficiently

large n, we have

|Gα
n,c(f ;x)− f(x)|

≤ 1

α + 1
|f ′(x+) + αf ′(x−)|

√
2αx(1 + cx)

n
+

α

α + 1
|f ′(x+)− f ′(x−)|√

2αx(1 + cx)

n
+
λα(1 + cx)

n

[
√
n]∑

k=1

x+x/k∨
x−x/k

f
′

x +
x√
n

x+x/
√
n∨

x−x/
√
n

f
′

x +
λα(1 + cx)

nx

|f(2x)− f(x)− xf ′(x+)|+ αC(n, c, r, x)

nr
+
|f(x)|
x

λα(1 + cx)

n
,

where f ′x is defined by

f
′

x(t) =


f
′
(t)− f ′(x−), 0 ≤ t < x

0, t = x

f
′
(t)− f ′(x+) x < t <∞.

(6.3.12)

Proof. Since Gα
n,c(1;x) = 1, using (6.3.11), for every x ∈ (0,∞) we get

Gα
n,c(f ;x)− f(x) =

∫ ∞
0

Kα
n,c(x, t)(f(t)− f(x))dt

=

∫ ∞
0

Kα
n,c(x, t)

∫ t

x

f
′
(u)dudt. (6.3.13)

For any f ∈ DBVγ(R+
0 ), from (6.3.12) we may write

f ′(u) = f ′x(u) +
1

α + 1
(f ′(x+) + αf ′(x−)) +

1

2
(f ′(x+)− f ′(x−))(

sgn(u− x) +
α− 1

α + 1

)
+ δx(u)[f ′(u)− 1

2
(f ′(x+) + f ′(x−))],

(6.3.14)
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where

δx(u) =

{
1 , u = x

0 , u 6= x
.

From equations (6.3.13) and (6.3.14), we get

Gα
n,c(f ;x)− f(x)

=

∫ ∞
0

Kα
n,c(x, t)

∫ t

x

[
f ′x(u) +

1

α + 1
(f ′(x+) + αf ′(x−)) +

1

2
(f ′(x+)− f ′(x−))(

sgn(u− x) +
α− 1

α + 1

)
+ δx(u)[f ′(u)− 1

2
(f ′(x+) + f ′(x−))]du

]
dt

= A1 + A2 + A3 + Aαn,c(f
′
x, x) +Bα

n,c(f
′
x, x),

where

A1 =

∫ ∞
0

(∫ t

x

1

α + 1
(f ′(x+) + αf ′(x−))du

)
Kα
n,c(x, t)dt,

A2 =

∫ ∞
0

Kα
n,c(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α + 1

)
du

)
dt,

A3 =

∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u)du

)
Kα
n,c(x, t)dt,

Aαn,c(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
Kα
n,c(x, t)dt and

Bα
n,c(f

′
x, x) =

∫ ∞
x

(∫ t

x

f ′x(u)du

)
Kα
n,c(x, t)dt.

Obviously,

A3 =

∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u)du

)
Kα
n,c(x, t)dt = 0.

Further,

A1 =

∫ ∞
0

(∫ t

x

1

α + 1
(f ′(x+) + αf ′(x−))du

)
Kα
n,c(x, t)dt

=
1

α + 1
(f ′(x+) + αf ′(x−))

∫ ∞
0

(t− x)Kα
n,c(x, t)dt

=
1

α + 1
(f ′(x+) + αf ′(x−))Gα

n,c((t− x);x), (6.3.15)
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and

|A2| =

∣∣∣∣ ∫ ∞
0

Kα
n,c(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α + 1

)
du

)
dt

∣∣∣∣
=

∣∣∣∣12
(
f ′(x+)− f ′(x−)

)[
−
∫ x

0

(∫ x

t

(
sgn(u− x) +

α− 1

α + 1

)
du

)
Kα
n,cdt

+

∫ ∞
x

( t∫
x

(
sgn(u− x) +

α− 1

α + 1

)
du

)
Kα
n,c(x, t)dt

]∣∣∣∣
≤ α

α + 1
|f ′(x+)− f ′(x−)|

∫ ∞
0

|t− x|Kα
n,c(x, t)dt

=
α

α + 1
|f ′(x+)− f ′(x−)|Gα

n,c

(
|t− x| ;x

)
. (6.3.16)

Using Remark 6.2.4 and equations (6.3.13 -6.3.16) and applying Cauchy-Schwarz

inequality we obtain

|Gα
n,c(f ;x)− f(x)|

≤ 1

α + 1
|f ′(x+) + αf ′(x−)|(αGn,c((t− x)2;x))1/2

+
α

α + 1
|f ′(x+)− f ′(x−)|(αGn,c((t− x)2;x))1/2 + |Aαn,c(f ′x, x)|+ |Bα

n,c(f
′
x, x)|

≤ 1

α + 1
|f ′(x+) + αf ′(x−)|

√
λαx(1 + cx)

n
+

α

α + 1
|f ′(x+)− f ′(x−)|√

λαx(1 + cx)

n
+ |Aαn,c(f ′x, x)|+ |Bα

n,c(f
′
x, x)|. (6.3.17)

Thus our problem is reduced to calculate the estimates of the terms Aαn,c(f
′
x, x) and

Bα
n,c(f

′
x, x). Since

∫ b
a
dtξ

α
n,c(x, t) ≤ 1 for all [a, b] ⊆ R+

0 , using integration by parts we

get

|Aαn,c(f ′x, x)| =

∣∣∣∣ ∫ x

0

(∫ t

x

f ′x(u)du

)
dtξ

α
n,c(x, t)

∣∣∣∣
=

∣∣∣∣ ∫ x

0

ξαn,c(x, t)f
′
x(t)dt

∣∣∣∣
≤

∫ y

0

|f ′x(t)| |ξαn,c(x, t)|dt+

∫ x

y

|f ′x(t)| |ξαn,c(x, t)|dt.
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Applying Lemma 6.3.2 with y = x− x/
√
n, we have

|Aαn,c(f ′x, x)| ≤ λαx(1 + cx)

n

∫ y

0

( x∨
t

f ′x

)
(x− t)−2dt+

∫ x

y

( x∨
t

f ′x

)
dt

≤ λαx(1 + cx)

n

∫ y

0

( x∨
t

f
′

x

)
(x− t)−2dt+

x√
n

( x∨
x−x/

√
n

f ′x

)

=
λαx(1 + cx)

n

∫ x−
x√
n

0

( x∨
t

f
′

x

)
(x− t)−2dt+

x√
n

( x∨
x−x/

√
n

f ′x

)
.

Substituting u = x/(x− t), we get∫ x−x/
√
n

0

(x− t)−2
( x∨

t

f
′

x

)
dt = x−1

∫ √n
1

( x∨
x−x/u

f
′

x

)
du

≤ x−1
[
√
n]∑

k=1

∫ k+1

k

( x∨
x−x/k

f
′

x

)
du ≤ x−1

[
√
n]∑

k=1

( x∨
x−x/k

f ′x

)
.

Thus,

|Aαn,c(f ′x, x)| ≤ λ(1 + cx)

n

[
√
n]∑

k=1

 x∨
x−x/k

f
′

x

+
x√
n

 x∨
x−x/

√
n

f
′

x

 . (6.3.18)

Again, using integration by parts in Bρ
n(f

′
x, x), applying Lemma 6.3.2 and Cauchy-

Schwarz inequality, we have

|Bα
n,c(f

′

x, x)|

≤
∣∣∣∣ ∫ ∞

2x

(∫ t

x

f ′x(u)du

)
dtK

α
n,c(x, t)

∣∣∣∣+

∣∣∣∣ ∫ 2x

x

(∫ t

x

f ′x(u)du

)
dt(1− ξαn,c(x, t)

∣∣∣∣
≤
∣∣∣∣ ∫ ∞

2x

(f(t)− f(x))Kα
n,c(x, t)

∣∣∣∣+ |f ′(x+)|
∣∣∣∣ ∫ ∞

2x

(t− x)Kα
n,c(x; t)dt

∣∣∣∣
+

∣∣∣∣ ∫ 2x

x

f ′x(u)du

∣∣∣∣|1− ξαn,c(x, 2x)|+
∣∣∣∣ ∫ 2x

x

f ′x(t)(1− ξαn,c(x, t))dt
∣∣∣∣

≤
∣∣∣∣ ∫ ∞

2x

f(t)Kα
n,c(x, t)

∣∣∣∣+ |f(x)|
∣∣∣∣ ∫ ∞

2x

Kα
n,c(x, t)

∣∣∣∣
+|f ′(x+)|

(∫ ∞
2x

(t− x)2Kα
n,c(x; t)dt

)1/2

+
λα(1 + cx)

nx

∣∣∣∣ ∫ 2x

x

((f ′(u)− f ′(x+))du

∣∣∣∣
+

∣∣∣∣ ∫ x+x/
√
n

x

f ′x(t)dt

∣∣∣∣+
λαx(1 + cx)

n

∣∣∣∣ ∫ 2x

x+x/
√
n

(t− x)−2f ′x(t)dt

∣∣∣∣.
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We see that there exists an integer r(2r ≥ γ), such that f(t) = O(t2r), as t → ∞.

Now proceeding in a manner similar to the estimate of Aαn,c(f
′
x;x), on substituting

t = x+ x
u
, we get

|Bα
n,c(f

′
, x)| ≤M

∫ ∞
2x

t2rKα
n,c(x, t)dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t)dt

+|f ′(x+)|
√
λαx(1 + cx)

n
+
λα(1 + cx)

nx
|f(2x)− f(x)− xf ′(x+)|

+
x√
n

x+x/
√
n∨

x

(f ′x) +
λαx(1 + cx)

n

∣∣∣∣ ∫ 2x

x+x/
√
n

(t− x)−2f ′x(t)dt

∣∣∣∣
≤M

∫ ∞
2x

t2rKα
n,c(x, t)dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t)dt

+|f ′(x+)|
√
λαx(1 + cx)

n
+
λα(1 + cx)

nx
|f(2x)− f(x)− xf ′(x+)|

+
x√
n

x+x/
√
n∨

x

f ′x

+
λα(1 + cx)

n

[
√
n]∑

k=1

x+x/
√
n∨

x

f ′x

 . (6.3.19)

For t ≥ 2x, we get t ≤ 2(t− x) and x ≤ t− x. Now using the equation (6.2.1) and

Lemma 6.2.1 , we obtain∫ ∞
2x

t2rKα
n,c(x, t)dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t)dt

≤ 22r

∫ ∞
2x

(t− x)2rKα
n,c(x, t)dt+

|f(x)|
x2

∫ ∞
2x

(t− x)2Kα
n,c(x, t)dt

≤ αC(n, c, r, x)

nr
+
|f(x)|
x2

λαx(1 + cx)

n
. (6.3.20)

Collecting the estimates (6.3.17- 6.3.20), we get the required result.
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6.4 Numerical examples

Next, we illustrate the comparison of the rate of convergence of the operators (6.1.1),

(6.1.2) and (6.1.3) to a certain function by some graphics using Matlab algorithm.

Let us consider the function

f (x) =

{
0, x = 0

x1/3 sin(π/x), x 6= 0
. (6.4.1)

Then, f is of bounded variation on [0, 1].

Example 1: In case c = 150, α = 10, the convergence of the Bézier-Srivastava-Gupta

(named as BzGS in Figures) operators given by (6.1.3) for n = 160(green) and

n = 200(red) to function f(x) (blue) given by (6.4.1), for x ∈ [0, 1], x ∈ [0, 2/π] ,

x ∈ [0, 5] and x ∈ [0, 10] is shown in Figures 6.1, 6.2, 6.3 and 6.4 respectively.

Figure 6.1 Figure 6.2
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Figure 6.3 Figure 6.4

It is observed that as the interval become bigger, the approximation of operators to

the function becomes better.

Example 2: In case c = 150, α = 10 and n = 160, the convergence of the Srivastava-

Gupta (named as GS in Figures) operators given by (6.1.1) and the Bézier-Srivastava-

Gupta operators to function f (x) , for x ∈ [0, 2/π] and x ∈ [0, 10] is shown in Figures

6.5 and 6.6 respectively.

Figure 6.5 Figure 6.6
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It is clearly seen that the Bézier-Srivastava-Gupta operators yield a better rate of

convergence to the function than the Srivastava-Gupta operators.

Example 3: In case c = 0, α = 10 and x ∈ [0, 1], the convergence of Bézier-

Srivastava-Gupta operators to function f(x), for n = 160, n = 200 and n = 50,

n = 100, is shown in Figures 6.7 and 6.8 respectively.

Figure 6.7 Figure 6.8

It is evident that the approximation of the function by the Bézier-Srivastava-Gupta

operators becomes better as n increases.

Now let’s compare the convergence of the Yadav operators given by (6.1.2) and

Bézier-Srivastava-Gupta operators given by (6.1.3).

Example 4: For c = 0, n = 50 and α = 10, the convergence of the Yadav op-

erators(named as Ydv in Figures) and the Bézier-Srivastava-Gupta operators to

108



function f(x) is shown in Figure 6.9.

Figure 6.9

It is observed that the operator Bézier-Srivastava-Gupta operators (6.1.3) yield a

better approximation to the function f(x) than the Yadav operator (6.1.2).

Example 5: In case α = 10 and n = 160, the convergence of the Bézier-Srivastava-

Gupta operators and Yadav operators to function f (x), for c = 1 and c = 150, is

illustrated in Figures 6.10 and 6.11 respectively.

Figure 6.10 Figure 6.11

We notice that Bézier-Srivastava-Gupta operators (6.1.3) provides a better conver-

gence to the function f(x) than the Yadav operator (6.1.2).
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Chapter 7

Stancu-Durrmeyer type operators

based on q-integers

7.1 Introduction

In 2009, Nowak [120] defined the q-analogue for the operators defined by (1.1.1) for

any function f ∈ C[0, 1], q > 0, α ≥ 0 and each n ∈ N as

Bq,α
n (f ;x) =

n∑
k=0

pq,αn,k(x)f

(
[k]q
[n]q

)
, x ∈ [0, 1], (7.1.1)

where,

pq,αn,k(x) =

[
n

k

]
q

∏k−1
ν=0(x+ α[ν]q)

∏n−k−1
µ=0 (1− qµx+ α[µ]q)∏n−1

λ=0(1 + α[λ]q)

and investigated the Korovkin type approximation properties for these operators.

For α = 0, operators defined by (7.1.1) reduce to q-Bernstein polynomials and for

q → 1−, these operators reduce to Bernstein-Stancu operators. For α = 0 and

q → 1−, these operators reduce to the classical Bernstein polynomials. Jiyang et

al. [97] studied the rate of convergence and Voronovskaya type theorem for these

operators defined by (7.1.1). After that ”Agratini [12] introduced some estimates

for the rate of convergence for the operators by means of modulus of continuity and

Lipschitz type maximal function and also gave a probabilistic approach.”
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For f ∈ C[0, 1], 0 < q < 1, Erencin et al. [53] introduced the Kantorovich type

generalization of these operators by means of the Riemann type q-integral and inves-

tigated some approximation properties and also established a local approximation

theorem.

Motivated by these studies for f ∈ C[0, 1], we propose the Durrmeyer type

integral modification for the operators defined by (7.1.1) as

Dα
n(f ; q;x) = [n+ 1]q

n∑
k=0

pq,αn,k(x)

∫ 1

0

pqn,k(t)f(t)dqt, (7.1.2)

where

pq,αn,k(x) =

[
n

k

]
q

∏k−1
ν=0(x+ α[ν]q)

∏n−k−1
µ=0 (1− qµx+ α[µ]q)∏n−1

λ=0(1 + α[λ]q)
,

and

pqn,k(t) =

[
n

k

]
q

tk(1− qt)n−kq .

Clearly, when α = 0, we have pqn,k(t) = q−kpq,αn,k(qt).

In this chapter, we obtain moments for the operators (7.1.2), basic convergence

theorem, local approximation theorem, A-statistical convergence theorem and the

rate of A-statistical convergence.

7.2 Preliminaries

In what follows, ‖.‖ will denote the uniform norm on [0, 1].

Lemma 7.2.1. [120] For Bq,α
n (tm, x), m = 0, 1, 2, one has

(i) Bq,α
n (1;x) = 1

(ii) Bq,α
n (t;x) = x

(iii) Bq,α
n (t2;x) =

1

(1 + α)

(
x(x+ α) +

x(1− x)

[n]q

)
.

Lemma 7.2.2. For Dα
n(tm; q;x), m = 0, 1, 2, we have
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(i) Dα
n(1; q;x) = 1

(ii) Dα
n(t; q;x) =

1

[n+ 2]q
(1 + q[n]qx)

(iii) Dα
n(t2; q;x) =

1

[n+ 2]q[n+ 3]q

{
(1 + q) + q(1 + 2q)[n]qx +

q3[n]2q
1 + α

(
x(x + α) +

x(1− x)

[n]q

)}
.

Consequently,

(i) Dα
n(t− x; q;x) =

1

[n+ 2]q
+

1

[n+ 2]q
(q[n]q − [n+ 2]q)x

(ii) Dα
n((t− x)2; q;x) =

1 + q

[n+ 2]q[n+ 3]q
+

{
1

[n+ 2]q[n+ 3]q

(
q(1 + 2q)[n]q +

q3[n]q([n]qα + 1)

(1 + α)

)
− 2

[n+ 2]q

}
x+

{
q3[n]q([n]q − 1)

[n+ 2]q[n+ 3]q(1 + α)
− 2q[n]q

[n+ 2]q
+ 1

}
x2.

Lemma 7.2.3. For f ∈ C[0, 1] there holds ‖Dα
n(f ; q; .)‖ ≤ ‖f‖.

Proof. From (7.1.2)

|Dα
n(f ; q;x)| ≤ [n+ 1]q

n∑
k=0

pq,αn,k(x)

∫ 1

0

pqn,k(t)|f(t)|dqt

≤ ‖f‖ [n+ 1]q

n∑
k=0

pq,αn,k(x)

∫ 1

0

pqn,k(t)dqt

= ‖f‖,

which implies that ‖Dα
n(f ; q; .)‖ ≤ ‖f‖. This completes the proof.

7.3 Main results

First we will establish the basic convergence theorem for the operators Dαn
n .

Theorem 7.3.1. Let < qn > and < αn > be the sequences such that 0 < qn < 1,

αn ≥ 0 and
1

[n]qn
→ 0, as n → ∞. Then for any f ∈ C[0, 1], Dαn

n (f ; qn;x)

converges to f uniformly in x ∈ [0, 1] iff limn qn = 1 and limn αn = 0.
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Proof. First we assume that qn → 1 and αn → 0, as n→∞. From Lemma 7.2.2,

we observe that

Dαn
n (1; qn;x) = 1,

Dαn
n (t; qn;x) =

1

[n+ 2]qn
(1 + qn[n]qnx)→ x, and

Dαn
n (t2; qn;x) =

1

[n+ 2]qn [n+ 3]qn

{
(1 + qn) + qn(1 + 2qn)[n]qnx

+
q3n[n]2qn
1 + αn

(
x(x+ αn) +

x(1− x)

[n]qn

)}
→ x2,

uniformly in x ∈ [0, 1], as n→∞.Hence, by Bohman-Korovkin theoremDαn
n (f ; qn;x)

converges to f uniformly in x ∈ [0, 1], as n→∞

Conversely, suppose that Dαn
n (f ; qn;x) converges to f uniformly in x ∈ [0, 1], as

n→∞ then

Dαn
n (t; qn;x) =

1

[n+ 2]qn
(1 + qn[n]qnx)→ x

uniformly in x ∈ [0, 1], as n→∞, which implies that qn → 1, as n→∞. Next,

Dαn
n (t2; qn;x) =

1

[n+ 2]qn [n+ 3]qn

{
(1 + qn) + qn(1 + 2qn)[n]qnx

+
qn

3[n]2qn
1 + αn

(
x(x+ αn) +

x(1− x)

[n]qn

)}
→ x2,

uniformly in x ∈ [0, 1], as n→∞.

Hence,

1 + qn
[n+ 3]qn [n+ 2]qn

→ 0,

1

[n+ 2]qn [n+ 3]qn

{
qn(1 + 2qn)[n]qn +

q3n[n]2qn
1 + αn

(
αn +

1

[n]qn

)}
→ 0

and

q3n[n]2qn
(1 + αn)[n+ 2]qn [n+ 3]qn

(
1− 1

[n]qn

)
→ 1, as n→∞. (7.3.1)

From (7.3.1) it follows that, αn → 0, as n→∞. This completes the proof.
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Now, we will prove a local approximation theorem for the operators Dα
n(f ; q;x).

Let us define an auxiliary operator as

D̃α
n(f ; q;x) = Dα

n(f, q, x) + f(x)− f
(

1

[n+ 2]q
(1 + q[n]qx)

)
. (7.3.2)

Hence applying lemma (7.2.3), it follows that

‖D̃α
n(f ; q; .)‖ ≤ 3‖f‖. (7.3.3)

In what follows, let qn be a sequence in (0, 1) such that qn → 1, as n→∞ and

1

[n]qn
→ 0. Further, let αn be a sequence of non-negative real numbers such that

αn → 0, as n→∞.

Theorem 7.3.2. Let f ∈ C[0, 1]. Then for each x ∈ [0, 1], we have

|Dαn
n (f ; qn;x)− f(x)| ≤ 2Cω2

(
f ;
δαnn,qn(x)
√

2

)
+ ω

(
f,

∣∣∣∣ 1

[n+ 2]qn
+

(
qn[n]qn

[n+ 2]qn
− 1

)
x

∣∣∣∣),
where δαnn,qn(x) =

{
Dαn
n ((t− x)2; qn;x) +

(
1 + qn[n]qnx

[n+ 2]qn
− x
)2}

Proof. From (7.3.2), using Lemma 7.2.2 we get D̃αn
n (1; qn;x) = 1 and

D̃αn
n (t; qn;x) = x. Hence

D̃αn
n (t− x; qn;x) = 0. (7.3.4)

For g ∈ W 2[0, 1] and x ∈ [0, 1], by Taylor’s theorem, we have

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Then using (7.3.4) and (7.3.3), we get

D̃αn
n (g(t); qn;x)− g(x) = D̃αn

n

(
(t− x)g′(x); qn;x

)
+ D̃αn

n

(∫ t

x

(t− u)g′′(u)du; qn;x

)
= g′(x)D̃αn

n (t− x; qn;x) + D̃αn
n

(∫ t

x

(t− u)g′′(u)du; qn;x

)
= D̃αn

n

(∫ t

x

(t− u)g′′(u)du; qn;x

)
= Dαn

n

(∫ t

x

(t− u)g′′(u)du; qn;x

)

−
∫ 1 + qn[n]qnx

[n+ 2]qn
x

(
1 + qn[n]qnx

[n+ 2]qn
− u
)
g′′(u)du,
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which implies that

|D̃αn
n (g(t); qn;x)− g(x)| ≤ Dαn

n

(∣∣∣∣ ∫ t

x

|t− u||g′′(u)|du
∣∣∣∣; qn;x

)

+

∣∣∣∣ ∫
1 + qn[n]qnx

[n+ 2]qn
x

∣∣∣∣1 + qn[n]qnx

[n+ 2]qn
− u
∣∣∣∣g′′(u)du

∣∣∣∣
≤ ‖g′′‖Dαn

n

(∣∣∣∣ ∫ t

x

|t− u|du
∣∣∣∣; qn;x

)

+ ‖g′′‖
∫ 1 + qn[n]qnx

[n+ 2]qn
x

∣∣∣∣1 + qn[n]qnx

[n+ 2]qn
− u
∣∣∣∣du

= I1 + I2, (say).

Now,

I1 = ‖g′′‖Dαn
n

(∣∣∣∣ ∫ t

x

|t− u|du
∣∣∣∣; qn;x

)
= ‖g′′‖Dαn

n

(
(t− x)2

2
: x

)
,

I2 = ‖g′′‖
∫ 1 + qn[n]qnx

[n+ 2]qn
x

∣∣∣∣1 + qn[n]qnx

[n+ 2]qn
− u
∣∣∣∣du =

(
1 + qn[n]qnx

[n+ 2]qn
− x
)2

2
‖g′′‖.

So, we have

|D̃αn
n (g(t); qn;x)− g(x)| ≤ ‖g′′‖

2

{
Dαn
n ((t− x)2; qn;x) +

(
1 + qn[n]qnx

[n+ 2]qn
− x
)2}

=
‖g′′‖

2
(δαnn,qn(x))2, (say). (7.3.5)

Now using (7.3.2), we obtain∣∣∣∣Dαn
n (f ; qn;x)− f(x)

∣∣∣∣ =

∣∣∣∣D̃αn
n (f ; qn;x)− f(x) + f

(
1 + qn[n]qnx

[n+ 2]qn

)
− f(x)

∣∣∣∣
≤

∣∣∣∣D̃αn
n (f − g; qn;x)

∣∣∣∣+

∣∣∣∣D̃αn
n (g; qn;x)− g(x)

∣∣∣∣
+

∣∣∣∣f(x)− g(x)

∣∣∣∣+

∣∣∣∣f(1 + qn[n]qnx

[n+ 2]qn

)
− f(x)

∣∣∣∣.
Using equations (7.3.3) and (7.3.5), we get∣∣∣∣Dαn

n (f ; qn;x)− f(x)

∣∣∣∣ ≤ 4‖f − g‖+ 4
‖g′′‖

2
(δαnn,qn(x))2

+ ω

(
f,

∣∣∣∣ 1

[n+ 2]qn
+

(
qn[n]qn

[n+ 2]qn
− 1

)
x

∣∣∣∣).
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Taking infimum on the right hand side of the above inequality over all g ∈ W 2[0, 1],

we obtain∣∣∣∣Dαn
n (f ; qn;x)− f(x)

∣∣∣∣ ≤ 4K2

(
f,

(δαnn,qn(x))2

2

)
+ ω

(
f,

∣∣∣∣ 1

[n+ 2]qn
+

(
qn[n]qn

[n+ 2]qn
− 1

)
x

∣∣∣∣).
Using the relation between K-functional and second modulus of smoothness from

equation (0.5.2), we get∣∣∣∣Dαn
n (f ; qn;x)− f(x)

∣∣∣∣ ≤ Cω2

(
f,
δαnn,qn(x)
√

2

)
+ ω

(
f,

∣∣∣∣ 1

[n+ 2]qn
+

(
qn[n]qn

[n+ 2]qn
− 1

)
x

∣∣∣∣).
This completes the proof.

For 0 < r ≤ 1, we consider the following Lipschitz-type space [124]:

Lip∗M(r) =

{
f ∈ C[0, 1] : |f(t)− f(x)| ≤M

|t− x|r

(t+ x)
r
2

;M > 0, t ∈ [0, 1] and x ∈ (0, 1]

}
.

In our next theorem, we estimate the error in the approximation for a function in

Lip∗M(r).

Theorem 7.3.3. For f ∈ Lip∗M(r), 0 < r ≤ 1, x ∈ (0, 1] and n ∈ N, we have∣∣∣∣Dαn
n (f ; qn;x)− f(x)

∣∣∣∣ ≤M

(
µqn,αnn,2 (x)

x

) r
2

,

where µqn,αnn,2 (x) = Dαn
n ((t− x)2; qn;x).

Proof. We may write

|Dαn
n (f, qn, x)− f(x)| ≤ [n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

∫ 1

0

pqnn,k(t)|f(t)− f(x)|dqnt.

Applying Hölder’s inequality in the integral form for p =
2

r
and q =

2

2− r

|Dαn
n (f, qn, x)− f(x)|

≤ [n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

(∫ 1

0

pqnn,k(t)|f(t)− f(x)|
2
r dqnt

) r
2
(∫ 1

0

pqnn,kdqnt

) 2−r
2

= [n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

(∫ 1

0

pqnn,k(t)|(f(t)− f(x))|
2
r dqnt

) r
2
(

1

[n+ 1]qn

) 2−r
r

.
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Again, applying Hölder’s inequality for the summation for p =
2

r
and q =

2

2− r

|Dαn
n (f, qn, x)− f(x)|

≤
(

[n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

∫ 1

0

pqnn,k(t)|f(t)− f(x)|
2
r dqnt

) r
2
( n∑

k=0

pqn,αnn,k (x)

) 2−r
2

≤
{

[n+ 1]qn

n∑
k=0

pqnn,k, αn(x)

∫ 1

0

pqnn,k(t)

(
M
|t− x|r

(t+ x)
r
2

) 2
r

dqnt

} r
2

.1

≤ M

(x)
r
2

(
[n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

∫ 1

0

pqnn,k(t)|t− x|
2dqnt

) r
2

≤ M

(x)
r
2

(
Dαn
n ((t− x)2, qn, x)

) r
2

= M

(
µqn,αnn,2 (x)

x

) r
2

.

This completes the proof.

Lipschitz type maximal function of order β introduced by Lenze [109], is defined

as

ω̃β(f, x) = sup
t6=x,t∈[0,1]

|f(t)− f(x)|
|t− x|β

, x ∈ [0, 1] and β ∈ (0, 1].

Now, we will obtain a local direct estimate for the operator Dαn
n (f, qn, x) in terms

of ω̃β(f, x).

Theorem 7.3.4. Let f ∈ C[0, 1], 0 < β ≤ 1. Then ∀ x ∈ [0, 1], we have

|Dαn
n (f, qn, x)− f(x)| ≤ ω̃β(f, x)

(
µqn,αnn,2 (x)

)β
2

,

where µqn,αnn,2 (x) is as defined in equation (7.3.5).

Proof. Applying Hölder’s inequality twice first for the integration and then for the

summation with p =
2

β
and q =

2

2− β
, we have

|Dαn
n (f, qn, x)− f(x)| ≤

(
[n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

∫ 1

0

pqnn,k(t)|f(t)− f(x)|
2
β dqnt

)β
2

.
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Using the definition of the Lipschitz-type maximal function, we obtain

|Dαn
n (f, qn, x)− f(x)| ≤ ω̃β(f, x)

(
[n+ 1]qn

n∑
k=0

pqn,αnn,k (x)

∫ 1

0

pqnn,k(t)|t− x|
2dqnt

)β
2

= ω̃β(f, x)

(
Dαn
n ((t− x)2; qn;x)

)β
2

= ω̃β(f, x)

(
µqn,αnn,2 (x)

)β
2

.

This completes the proof.

7.4 A-statistical convergence

First, we recall the following Korovkin type theorem in the case of A-statistical

convergence:

Theorem 7.4.1. [63] If the sequence of positive linear operators Ln : C[a, b] →

C[a, b] satisfies the conditions st − limn ‖Ln(ei; q; .) − ei‖ = 0 where ei(t) = ti, i =

0, 1, 2, then for any f ∈ C[a, b], we have st− limn ‖Ln(f ; q; .)− f‖ = 0.

The result given above also works for A-statistical convergence. Now we will es-

tablish the followingA-statistical approximation theorem for the operatorsDα
n(f, q, x).

Theorem 7.4.2. Let A = (ajn)be a non-negative infinite regular summability matrix

and q =< qn >, 0 < qn < 1 and α =< αn > be the sequences satisfying the following

conditions:

stA − lim
n
qn = 1, stA − lim

n
qnn = a, a < 1

stA − lim
n
αn = 0 and stA − lim

n

1

[n]qn
= 0, (7.4.1)

then for f ∈ C[0, 1], we have

stA − lim
n
‖Dαn

n (f, qn, .)− f‖ = 0.
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Proof. From Theorem 7.4.1, it is enough to prove that

stA − lim
n
‖Dαn

n (ei, qn, .)− ei‖C[0,1] = 0, i = 0, 1, 2.

In view of Lemma 7.2.2, we have Dαn
n (e0, qn, x) = 1, hence

st− lim
n
‖Dαn

n (e0, qn, .)− e0‖ = 0.

Now, again using Lemma 7.2.2 we have

‖Dαn
n (e1, qn, .)− e1‖ = sup

x∈[0,1]

∣∣∣∣ 1

[n+ 2]qn
(1 + qn[n]qnx)− x

∣∣∣∣
≤

∣∣∣∣ qn[n]qn
[n+ 2]qn

− 1

∣∣∣∣+
1

[n+ 2]qn
. (7.4.2)

For any given ε > 0, let us define the following sets

U =

{
n : ‖Dαn

n (e1, qn, .)− e1‖ ≥ ε

}
,

U1 =

{
n :

∣∣∣∣ qn[n]qn
[n+ 2]qn

− 1

∣∣∣∣ ≥ ε

2

}
,

and

U2 =

{
n :

1

[n+ 2]qn
≥ ε

2

}
.

From (7.4.2) it is easy to see that U ⊆ U1

⋃
U2, so we have

∑
n∈U

ajn ≤
∑
n∈U1

ajn +
∑
n∈U2

ajn. (7.4.3)

From equation (7.4.1), we obtain

stA − lim
n

(
qn[n]qn

[n+ 2]qn
− 1

)
= 0

and

stA − lim
n

(
1

[n+ 2]qn

)
= 0.

Hence taking limit on both sides of (7.4.3), as j →∞, we get

stA − lim
n
‖Dαn

n (e1, qn, .)− e1‖ = 0. (7.4.4)
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Similarly, using Lemma 7.2.2 , we have

‖Dαn
n (e2, qn, .)− e2‖

= sup
x∈[0,1]

∣∣∣∣ 1

[n+ 2]qn [n+ 3]qn

{
(1 + qn) + qn(1 + 2qn)[n]qnx

+
q3n[n]2qn
1 + αn

(
x(x+ αn) +

x(1− x)

[n]qn

)}
− x2

∣∣∣∣
≤ 1 + qn

[n+ 2]qn [n+ 3]qn
+

∣∣∣∣ 1

[n+ 2]qn [n+ 3]qn

(
qn(1 + 2qn)[n]qn +

q3n[n]2qn
1 + αn(

αn +
1

[n]qn

)∣∣∣∣+

∣∣∣∣ 1

[n+ 2]qn [n+ 3]qn

q3n[n]2qn
1 + αn

(
1− 1

[n]qn

)
− 1

∣∣∣∣. (7.4.5)

For ε > 0, let us define the following sets:

U =

{
n : ‖Dαn

n (e2, qn, .)− e2‖ ≥ ε

}
,

U1 =

{
n :

1 + qn
[n+ 2]qn [n+ 3]qn

≥ ε

3

}
,

U2 =

{
n :

∣∣∣∣ 1

[n+ 2]qn [n+ 3]qn

(
qn(1 + 2qn)[n]qn +

q3n[n]2qn
1 + αn

(
αn +

1

[n]qn

)∣∣∣∣ ≥ ε

3

}
,

and

U3 =

{
n :

∣∣∣∣ 1

[n+ 2]qn [n+ 3]qn

q3n[n]2qn
1 + αn

(
1− 1

[n]qn

)
− 1

∣∣∣∣ ≥ ε

3

}
.

From (7.5.2) it follows that U ⊆ U1

⋃
U2

⋃
U3, hence

∑
n∈U

ajn ≤
∑
n∈U1

ajn +
∑
n∈U2

ajn +
∑
n∈U3

ajn. (7.4.6)

Now, using (7.4.1) we find

st− lim
n

1 + qn
[n+ 2]qk [n+ 3]qk

= 0,

st− limn
1

[n+ 2]qn [n+ 3]qn

{
qn(1 + 2qn)[n]qn +

q3n[n]2qn
1 + αn

(
αn +

1

[n]qn

)}
= 0, and

st− lim
n

{
1

[n+ 2]qn [n+ 3]qn

q3n[n]2qn
1 + αn

(
1− 1

[n]qn

)
− 1

}
= 0.
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Hence taking limit on both sides of (7.4.6), as j →∞ we get

stA − lim
n
‖Dαn

n (e2, qn, .)− e2‖ = 0. (7.4.7)

This completes the proof.

7.5 Rate of A-statistical convergence

Let f ∈ C[0, 1]. Then for any x, t ∈ [0, 1], we have |f(t) − f(x)| ≤ ω(f, |t − x|),

which implies that

|f(t)− f(x)| ≤ (1 + δ−2(t− x)2)ω(f, δ), δ > 0. (7.5.1)

In our next theorem we give the rate of A-statistical convergence for the operators

Dα
n(f ; q;x) in terms of modulus of continuity.

Theorem 7.5.1. Let A = (ajn) be a non negative regular summability matrix and

for each x ∈ [0, 1], < bn(x) > be a positive non-increasing sequence and let q =<

qn >, 0 < qn < 1 and α =< αn > be sequences satisfying equation (7.4.1) and

ω(f ;µqn,αnn,2 ) = stA − o(bn(x)) with µqn,αnn,2 (x) = Dαn
n ((t − x)2; qn;x), then for any

function f ∈ C[0, 1] and x ∈ [0, 1], we have Dαn
n (f ; qn;x)− f(x) = stA − o(bn(x)).

Proof. By monotonicity and linearity of the operators Dαn
n (f ; qn;x), we have

|Dαn
n (f ; qn;x)− f(x)| ≤ Dαn

n (|f(t)− f(x)|; qn;x)

≤
(

1 + δ−2Dαn
n ((t− x)2; qn;x)

)
ω(f ; δ), for any δ > 0.

Taking δ as
√
µqn,αnn,2 (x), we get

|Dαn
n (f ; qn;x)− f(x)| ≤ 2ω(f ;

√
µqn,αnn,2 ). (7.5.2)

For ε > 0, let us define the following sets:

U =

{
n : |Dαn

n (f ; qn;x)− f(x)| ≥ ε

}
and U1 =

{
n : 2ω

(
f,
√
µqn,αnn,2 (x)

)
≥ ε

}
.
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From (7.5.2), we have

1

bn(x)

∑
n∈U

ajn ≤
1

bn(x)

∑
n∈U1

ajn.

Taking limit on the above inequality as j → ∞ and using ω(f ;µqn,αnn,2 ) = stA −

o(bn(x)), we obtain the required result. This completes the proof.

Theorem 7.5.2. Let A = (ajn), < bn(x) >, q =< qn >, and α =< αn > be

all same as in Theorem 7.5.1. Assume that the operators Dαn
n (f ; qn;x) satisfy the

condition ω(f ;µqn,αnn,2 (x)) = stA − oη(bn(x)) with µqn,αnn,2 (x) = Dαn
n ((t − x)2; qn;x).

Then for all f ∈ C[0, 1], we have Dα
n(f ; q;x)− f(x) = stA − oη(bn(x)).

Similar results hold when little “oη” is replaced by the big “Oη”.

Let us define

||f ||W 2[0,1] := ||f ||+ ||f ′||+ ||f ′′||. (7.5.3)

The Peetre’s K−functional [129] is defined as

K(f ; δ) = inf
g∈W 2[0,1]

{
||f − g||+ δ||g||W 2[0,1] : δ > 0

}
.

We know that for the K−functional and the modulus of smoothness [47], there

exists a constant C > 0, such that

K(f ; δ) ≤ Cω2(f ;
√
δ). (7.5.4)

Theorem 7.5.3. Let A = (ajn) be a non negative regular summability matrix and

let q =< qn >, 0 < qn < 1 and α =< αn > be sequences satisfying equation (7.4.1).

For each f ∈ C[0, 1], we have

‖Dαn
n (f ; qn; .)− f‖ ≤ Cω2(f ;

√
δqn,αnn ),

where

δqn,αnn = ‖Dαn
n ((e1 − .); qn; .)‖+

∥∥∥∥Dαn
n ((e1 − .)2; qn; .)

∥∥∥∥.
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Proof. For g ∈ W 2[0, 1], applying Taylor’s expansion , we have

Dαn
n (g; qn;x)− g(x) = g′(x)Dαn

n (e1 − x; qn;x) +
1

2
g′′(ξ)Dαn

n ((e1 − x)2; qn;x),

where ξ lies between t and x.

By using (7.5.3), we get

‖Dαn
n (g; qn; .)− g‖ ≤ ‖g′‖‖Dαn

n ((e1 − .); qn; .)‖

+
1

2
‖g′′‖

∥∥∥∥Dαn
n ((e1 − .)2; qn; .)

∥∥∥∥
≤ δqn,αnn ‖g‖W 2[0,1], (say).

For f ∈ C[0, 1] and g ∈ W 2[0, 1], we have

‖Dαn
n (f ; qn; .)− f‖ ≤ ‖Dαn

n (f ; qn; .)−Dαn
n (g; qn; .)‖

+ ‖Dαn
n (g; qn; .)− g‖+ ‖f − g‖

≤ 2‖f − g‖+ ‖Dαn
n (g; qn; .)− g‖

≤ 2‖f − g‖+ δqn,αnn ‖g‖W 2[0,1]

≤ 2

(
‖f − g‖+ δqn,αnn ‖g‖W 2[0,1]

)
.

Taking infimum on the right hand side of the above inequality over all g ∈ W 2[0, 1]

and using equation (7.5.4), we get

‖Dαn
n (f ; qn; .)− f‖ ≤ 2K(f ; δqn,αnn ) ≤ Cω2(f ;

√
δqn,αnn ).

Using equations (7.4.4) and (7.4.7), we get stA − limn δ
qn,αn
n = 0, hence

stA − limn ω2(f ;
√
δqn,αnn ) = 0, which gives the required result.
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Chapter 8

Approximation of functions by

bivariate q-Stancu-Durrmeyer type

operators

8.1 Construction of bivariate operators

This chapter is concerned with the bivariate generalization of the q-analogue of the

Stancu operators given by (7.1.2) in the previous chapter.

Let I = [0, 1], I2 = I × I and C(I2) denote the class of all real valued continuous

functions on I2 endowed with the norm ||f || = sup
(x,y)∈I2

|f(x, y)|. Then, for f ∈ C(I2),

the bivariate generalization of q-Stancu-Durrmeyer type operators (7.1.2) is defined

as

D
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) = [n1 + 1]qn1 [n2 + 1]qn2

n1∑
k1=0

n2∑
k2=0

p
qn1 ,αn1
n1,k1

(x)p
qn2 ,αn2
n2,k2

(y)

∫ 1

0

∫ 1

0

p
qn1
n1,k1

(t)p
qn2
n2,k2

(s)f(t, s)dqn1 t dqn2s, (8.1.1)

∀(x, y) ∈ I2. The aim of this chapter is to study the rate of convergence of the

operators given by (8.1.1) by means of the complete modulus of continuity, partial

modulus of continuity and the Peetre’s K-functional. A bivariate Voronovskaya type

theorem for the bivariate q-Stancu-Durrmeyer operators is established. We also
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introduce the associated GBS operators and determine the degree of approximation

with the aid of mixed modulus of smoothness for B-continuous and B-differentiable

functions.

8.2 Moments

Lemma 8.2.1. For D
αn1 ,αn2
n1,n2 (eij; q1, q2, x, y), eij = xiyj, i, j ∈ N∪{0}, x, y ∈ [0, 1],

we have

(i) D
αn1 ,αn2
n1,n2 (e00; qn1 , qn2 , x, y) = 1;

(ii) D
αn1 ,αn2
n1,n2 (e10; qn1 , qn2 , x, y) =

1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x);

(iii) D
αn1 ,αn2
n1,n2 (e01; qn1 , qn2 , x, y) =

1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y);

(iv) D
αn1 ,αn2
n1,n2 (e11; qn1 , qn2 , x, y) =

1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)

1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y);

(v) D
αn1 ,αn2
n1,n2 (e20; qn1 , qn2 , x, y) =

1

[n1 + 2]qn1 [n1 + 3]qn1

{
[2]qn1+qn1(1+2qn1)[n1]qn1x+

q3n1
[n1]

2
qn1

1 + αn1

(
x(x+ αn1) +

x(1− x)

[n1]qn1

)}
;

(vi) D
αn1 ,αn2
n1,n2 (e02; qn1 , qn2 , x, y) =

1

[n2 + 2]qn2 [n2 + 3]qn2

{
[2]qn2+qn2(1+2qn2)[n2]qn2y+

q3n2
[n2]

2
qn2

1 + αn2

(
y(y + αn2) +

y(1− y)

[n2]qn2

)}
;

(vii) D
αn1 ,αn2
n1,n2 (e20+e02; q1, q2, x, y) =

1

[n1 + 2]qn1 [n1 + 3]qn1

{
[2]qn1+qn1(1+2qn1)[n1]qn1x+

q3n1
[n1]

2
qn1

1 + αn1

(
x(x+ αn1) +

x(1− x)

[n1]qn1

)}
+

1

[n2 + 2]qn2 [n2 + 3]qn2

{
[2]qn2 + qn2(1 +

2qn2)[n2]qn2y +
q3n2

[n2]
2
qn2

1 + αn2

(
y(y + αn2) +

y(1− y)

[n2]qn2

)}
.

Lemma 8.2.2. For D
αn1 ,αn2
n1,n2 ((t− x)i(s− y)j; qn1 , qn2 , x, y), i, j = 1, 2, we have

(i) D
αn1 ,αn2
n1,n2 (t−x; qn1 , qn2 , x, y) =

1

[n1 + 2]qn1
+

1

[n1 + 2]qn1

(
qn1 [n1]qn1−[n1+2]qn1

)
x;
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(ii) D
αn1 ,αn2
n1,n2 (s − y; qn1 , qn2 , x, y) =

1

[n2 + 2]qn2
+

1

[n2 + 2]qn2

(
qn2 [n2]qn2 − [n2 +

2]qn2

)
y;

(iii) D
αn1 ,αn2
n1,n2 ((t−x)2; qn1 , qn2 , x, y) =

[2]qn1
[n1 + 2]qn1 [n1 + 3]qn1

+

{
1

[n1 + 2]qn1 [n1 + 3]qn1(
qn1(1 + 2qn1)[n1]qn1 +

q3n1
[n1]qn1 ([n1]qn1αn1 + 1)

(1 + αn1)

)
− 2

[n1 + 2]qn1

}
x

+

{
q3n1

[n1]qn1 ([n1]qn1 − 1)

[n1 + 2]qn1 [n1 + 3]qn1 (1 + αn1)
−

2qn1 [n1]qn1
[n1 + 2]qn1

+ 1

}
x2;

(iv) D
αn1 ,αn2
n1,n2 ((s−y)2; qn1 , qn2 , x, y) =

[2]qn2
[n2 + 2]qn2 [n2 + 3]qn2

+

{
1

[n2 + 2]qn2 [n2 + 3]qn2(
qn2(1 + 2qn2)[n2]qn2 +

q3n2
[n2]qn2 ([n2]qn2αn2 + 1)

(1 + αn2)

)
− 2

[n2 + 2]qn2

}
y

+

{
q3n2

[n2]qn2 ([n2]qn2 − 1)

[n2 + 2]qn2 [n2 + 3]qn2 (1 + αn2)
−

2qn2 [n2]qn2
[n2 + 2]qn2

+ 1

}
y2.

8.3 Direct results

In what follows, let 0 < qni < 1 and αni ≥ 0 be sequences such that lim
ni→∞

qni = 1,

lim
ni→∞

qnini = ai(0 ≤ ai < 1) and lim
ni→∞

αni = 0, i = 1, 2. Also, assume that

δ
αn1
n1,qn1

(x) =

√
D
αn1
n1 ((t− x)2; qn1 , x) and δ

αn2
n2,qn2

(y) =

√
D
αn2
n2 ((s− y)2; qn2 , y).

(8.3.1)

Theorem 8.3.1. [158] Let I1 and I2 be two compact intervals of the real line. Let

Tn1,n2 with (n1, n2) ∈ N× N be the linear positive operators on C(I1 × I2) such that

lim
n1,n2→∞

Tn1,n2(eij) = eij, (i, j) ∈ {(0, 0), (1, 0), (0, 1)}

and

lim
n1,n2→∞

Tn1,n2(e20 + e02) = e20 + e02,

uniformly on I1×I2, then the sequence (Tn1,n2f) converges uniformly to f on I1×I2,

for any f ∈ C(I1 × I2).
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Theorem 8.3.2. The sequence of bivariate q-Stancu Durrmeyer operators

D
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) converges uniformly to f(x, y), for any f ∈ C(I2).

Proof. Using Theorem 8.3.1 and Lemma 8.2.1, the proof easily follows. Hence the

details are omitted.

In the following we give some numerical results which show the rate of conver-

gence of the operator D
αn1 ,αn2
n1,n2 to certain functions using Matlab algorithms.

Example 8.3.3. Let us consider f : R2 → R, f(x, y) = x2y2 + x3y − 2x4. The

convergence of the operator D
αn1 ,αn2
n1,n2 to the function f is illustrated in Figure 8.1

and Figure 8.2, respectively for n1 = n2 = 10, qn1 = qn2 = 0.5, αn1 = αn2 = 0.2 and

n1 = n2 = 100, qn1 = qn2 = 0.9, αn1 = αn2 = 0.2, respectively.

Figure 8.1: The convergence of D
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) to f(x, y), for qn1 = qn2 =

0.5 (red f , blue D0.2,0.2
10,10 )
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Figure 8.2: The convergence of D
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) to f(x, y), for qn1 = qn2 =

0.9 (red f , blue D0.2,0.2
100,100)

We remark that as the values of n1 and n2 increase, the error in the approximation

of the function by the operator becomes smaller.

Theorem 8.3.4. Let f ∈ C1(I2) and (x, y) ∈ I2. Then, we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ ||f ′x||δ

αn1
n1,qn1

(x) + ||f ′y||δ
αn2
n2,qn2

(y). (8.3.2)

Proof. For a fixed point (x, y) ∈ I2, we may write

f(t, s)− f(x, y) =

∫ t

x

f ′u(u, s)du+

∫ s

y

f ′v(x, v)dv (8.3.3)

Applying D
αn1 ,αn2
n1,n2 on the above equation (8.3.3), we get

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ D

αn1 ,αn2
n1,n2

(∣∣∣∣ ∫ t

x

|f ′u(u, s)|du
∣∣∣∣; qn1 , qn2 , x, y

)
+ D

αn1 ,αn2
n1,n2

(∣∣∣∣ ∫ s

y

|f ′v(x, v)|dv
∣∣∣∣; qn1 , qn2 , x, y

)
.
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Since

∣∣∣∣ ∫ t

x

|f ′u(u, s)|du
∣∣∣∣ ≤ ||f ′x|||t− x| and

∣∣∣∣ ∫ s

y

|f ′v(x, v)|dv
∣∣∣∣ ≤ ||f ′y|||s− y|, we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)|

≤ ||f ′x||D
αn1 ,αn2
n1,n2 (|t− x|; qn1 , qn2 , x, y) + ||f ′y||D

αn1 ,αn2
n1,n2 (|s− y|; qn1 , qn2 , x, y)

= ||f ′x||D
αn1
n1 (|t− x|; qn1 , x) + ||f ′y||D

αn2
n2 (|s− y|; qn2 , y).

Now applying Cauchy Schwarz inequality and Lemma 7.2.2 of the previous chapter,

we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ ||f ′x|||

√
D
αn1
n1 ((t− x)2; qn1 , x)

√
D
αn1
n1 (1; qn1 , x)

+ ||f ′y||
√
D
αn2
n2 ((s− y)2; qn2 , y)

√
D
αn2
n2 (1; qn2 , y)

= ||f ′x||δ
αn1
n1,qn1

(x) + ||f ′y||δ
αn2
n2,qn2

(y).

This completes the proof.

Example 8.3.5. Let f ∈ C1(I2). Considering n1 = n2 = 10 and αn1 = αn2 = 0.2,

in the Table 3 we compute the error of approximation of f(x, y) = x2y2 + x3y− 2x4

by using the relation (8.3.2). We observe that the error of approximation becomes

smaller as qni → 1, as ni →∞, i = 1, 2.

Table 3. Error of approximation for D
αn1 ,αn2
n1,n2

qn1 = qn2 Error of approximation

0.4 2.172377390

0.5 1.880657031

0.6 1.606452189

0.7 1.366444984

0.8 1.170958744

0.9 1.022298931

For f ∈ C(I2), the complete modulus of continuity for the bivariate case is

defined as follows:

ω̄(f ; δ1, δ2) = sup

{
|f(t, s)− f(x, y)| : (t, s), (x, y) ∈ I2 and |t− x| ≤ δ1, |s− y| ≤ δ2

}
.
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Equivalently,

ω̄(f ; δ1, δ2) = sup

{
|f(t, s)− f(x, y)| : (t, s), (x, y) ∈ I2 and

√
(t− x)2 + (s− y)2 ≤ δ

}
,

where ω̄(f ; δ1, δ2) satisfies the following properties:

(i) ω̄(f ; δ1, δ2)→ 0, if δ1 → 0 and δ2 → 0;

(ii) |f(t, s)− f(x, y)| ≤ ω̄(f ; δ1, δ2)

(
1 +
|t− x|
δ1

)(
1 +
|s− y|
δ2

)
.

The details of the complete modulus of continuity for the bivariate case can be found

in [16]. Further, the partial moduli of continuity with respect to x and y are given

by

ω1(f ; δ) = sup

{
|f(x1, y)− f(x2, y)| : y ∈ I and |x1 − x2| ≤ δ

}
,

and

ω2(f ; δ) = sup

{
|f(x, y1)− f(x, y2)| : x ∈ I and |y1 − y2| ≤ δ

}
.

Evidently, they satisfy the properties of the usual modulus of continuity. Let

C2(I2) :=

{
f ∈ C(I2) : fxx, fxy, fyx, fyy ∈ C(I2)

}
.

The norm on the space C2(I2) is defined as

||f ||C2(I2) = ||f ||+
2∑
i=1

(∥∥∥∥∂if∂xi
∥∥∥∥+

∥∥∥∥∂if∂yi
∥∥∥∥) .

The Peetre’s K-functional of the function f ∈ C(I2) is defined by

K(f ; δ) = inf
g∈C2(I2)

{||f − g||+ δ||g||}, δ > 0.

Also,

K(f ; δ) ≤M

{
ω̄2(f ;

√
δ) + min(1, δ)||f ||

}
,

holds for all δ > 0. The constant M in the above inequality is independent of δ

and f and ω̄2(f ;
√
δ) is the second order modulus of continuity for the bivariate case
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given as

ω̄2(f ;
√
δ)

= sup

{∣∣∣∣ 2∑
ν=0

(−1)2−νf(x+ νh, y + νk)

∣∣∣∣ : (x, y), (x+ 2h, y + 2k) ∈ J2, |h| ≤ δ, |k| ≤ δ

}
.

The following theorem provides the degree of approximation in terms of the mixed

modulus of smoothness.

Theorem 8.3.6. Let f ∈ C(I2) and (x, y) ∈ I2. Then, we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ 4ω̄

(
f, δ

αn1
n1,qn1

(x), δ
αn2
n2,qn2

(y)

)
.

Proof. Using the linearity and positivity of the operators D
αn1 ,αn2
n1,n2 and in view of

property (ii) of the complete modulus of continuity, we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ D

αn1 ,αn2
n1,n2 (|f(t, s)− f(x, y)|; qn1 , qn2 , x, y)

≤ ω̄

(
f, δ

αn1
n1,qn1

(x), δ
αn2
n2,qn2

(y)

)(
1 +

1

δ
αn1
n1,qn1

(x)
D
αn1
n1 (|t− x|; qn1 , x)

)
×
(

1 +
1

δ
αn2
n2,qn2

(y)
D
αn2
n2 (|s− y|; qn2 , y)

)
.

Now applying the Cauchy-Schwarz inequality and Lemma 7.2.2, we get

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ D

αn1 ,αn2
n1,n2 (|f(t, s)− f(x, y)|; qn1 , qn2 , x, y)

≤ ω̄

(
f, δ

αn1
n1,qn1

(x), δ
αn2
n2,qn2

(y)

)(
1 +

1

δ
αn1
n1,qn1

(x)

√
D
αn1
n1 ((t− x)2; qn1 , x)

)
×
(

1 +
1

δ
αn2
n2,qn2

(y)

√
D
αn2
n2 ((s− y)2; qn2 , y)

)
. (8.3.4)

Considering (8.3.1), from the above inequality, the desired result is immediate.

In our nest result we obtain the rate of convergence by means of the partial

moduli of continuity.

Theorem 8.3.7. Let f ∈ C(I2) and (x, y) ∈ I2. Then, we have

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ 2ω1

(
f ; δ

αn1
n1,qn1

(x)

)
+ 2ω2

(
f ; δ

αn2
n2,qn2

(y)

)
.
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Proof. Using the definition of the partial modului of continuity and applying the

Cauchy-Schwarz inequality and Lemma 7.2.2, we may write

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ D

αn1 ,αn2
n1,n2 (|f(t, s)− f(x, y)|; qn1 , qn2 , x, y)

≤ D
αn1 ,αn2
n1,n2 (|f(t, s)− f(t, y)|; qn1 , qn2 , x, y) +D

αn1 ,αn2
n1,n2 (|f(t, y)− f(x, y)|; qn1 , qn2 , x, y)

≤ D
αn1 ,αn2
n1,n2

(
ω1(f ; |t− x|); qn1 , qn2 , x, y

)
+D

αn1 ,αn2
n1,n2

(
ω2(f ; |s− y|); qn1 , qn2 , x, y

)
≤ ω1(f, δ

αn1
n1,qn1

(x))

{
1 +

1

δ
αn1
n1,qn1

(x)
D
αn1
n1 (|t− x|; qn1 , x)

}
+ω2(f, δ

αn2
n2,qn2

(y))

{
1 +

1

δ
αn2
n2,qn2

(y)
D
αn2
n2 (|s− y|; qn2 , y)

}
≤ ω1(f, δ

αn1
n1,qn1

(x))

{
1 +

1

δ
αn1
n1,qn1

(x)

(
D
αn1
n1 ((t− x)2; qn1 , x)

)1/2}
+ω2(f, δ

αn2
n2,qn2

(y))

{
1 +

1

δ
αn2
n2,qn2

(y)

(
D
αn2
n2 ((s− y)2; qn2 , y)

)1/2}
.

Replacing δ
αn1
n1,qn1

(x) and δ
αn2
n2,qn2

(y) from (8.3.1) in the above relation, we get the

desired result.

In our next result we establish the rate of approximation of the Stancu-Durrmeyer

type operators to the function f ∈ C(I2) by means of Peetre’s K-functional.

Theorem 8.3.8. For the function f ∈ C(I2), we have the following inequality

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)|

≤ M

{
ω̄2

(
f ;

√
A
αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y)

)
+ min{1, Aαn1 ,αn2n1,n2 (qn1 , qn2 , x, y)}||f ||

}
+ ω

(
f ;

√(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2

+

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2)
,

where

A
αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y)

=

{
(δ
αn1
n1,qn1

(x))2 +

(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2

+(δ
αn2
n2,qn2

(y))2 +

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2}
,

and the constant M > 0, is independent of f and A
αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y).
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Proof. We introduce the auxiliary operators as follows:

D
∗αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) = D

αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) + f(x, y)

−f
(

1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x),

1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)

)
. (8.3.5)

Then using Lemma 8.2.2, we have

D
∗αn1 ,αn2
n1,n2 (1; qn1 , qn2 , x, y) = 1, D

∗αn1 ,αn2
n1,n2 (t− x; qn1 , qn2 , x, y) = 0

D
∗αn1 ,αn2
n1,n2 (s− y; qn1 , qn2 , x, y) = 0. (8.3.6)

Next, using Lemma 8.2.1

|D∗αn1 ,αn2n1,n2 (f ; qn1 , qn2 , x, y)|≤|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)|

+

∣∣∣∣f( 1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x),

1

[n2+2]qn2
(1+qn2 [n2]qn2y)

)∣∣∣∣+|f(x, y)|

≤ 3||f ||. (8.3.7)

Let g ∈ C2(I2) and t, s ∈ I. Using the Taylor’s theorem, we may write

g(t, s)− g(x, y) =
∂g(x, y)

∂x
(t− x) +

∫ t

x

(t− u)
∂2g(u, y)

∂u2
du

+
∂g(x, y)

∂y
(s− y) +

∫ s

y

(s− v)
∂2g(t, v)

∂v2
dv.

Applying the operator D
∗αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) on both sides of the above equation

and using (8.3.6) and relation (8.3.5), we get

D
∗αn1 ,αn2
n1,n2 (g; qn1 , qn2 , x, y)− g(x, y) = D

∗αn1 ,αn2
n1,n2

(∫ t

x

(t− u)
∂2g(u, y)

∂u2
du; qn1 , qn2 , x, y

)
+D

∗αn1 ,αn2
n1,n2

(∫ s

y

(s− v)
∂2g(x, v)

∂v2
dv; qn1 , qn2 , x, y

)
= D

αn1 ,αn2
n1,n2

(∫ t

x

(t− u)
∂2g(u, y)

∂u2
du; qn1 , qn2 , x, y

)
−
∫ 1

[n1+2]qn1
(1+qn1 [n1]qn1 x)

x

(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− u

)
∂2g(u, y)

∂u2
du

+D
αn1 ,αn2
n1,n2

(∫ s

y

(s− v)
∂2g(x, v)

∂v2
dv; qn1 , qn2 , x, y

)
−
∫ 1

[n2+2]qn2
(1+qn2 [n2]qn2 y)

y

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− v

)
∂2g(x, v)

∂v2
dv.
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Hence using (8.3.1), we get

|D∗αn1 ,αn2n1,n2 (g; qn1 , qn2 , x, y)− g(x, y)|

≤ D
αn1 ,αn2
n1,n2

(∣∣∣∣ ∫ t

x

|t− u|
∣∣∣∣∂2g(u, y)

∂u2

∣∣∣∣du∣∣∣∣;x, y)
+

∣∣∣∣ ∫ 1
[n1+2]qn1

(1+qn1 [n1]qn1 x)

x

∣∣∣∣ 1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− u

∣∣∣∣∣∣∣∣∂2g(u, y)

∂u2

∣∣∣∣du∣∣∣∣
+D

αn1 ,αn2
n1,n2

(∣∣∣∣ ∫ s

y

|s− v|
∣∣∣∣∂2g(x, v)

∂v2

∣∣∣∣dv∣∣∣∣;x, y)
+

∣∣∣∣ ∫ 1
[n2+2]qn2

(1+qn2 [n2]qn2 y)

y

∣∣∣∣ 1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− v

∣∣∣∣∣∣∣∣∂2g(x, v)

∂v2

∣∣∣∣dv∣∣∣∣
≤
{
D
αn1 ,αn2
n1,n2 ((t− x)2; qn1 , qn2 , x, y) +

(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2}
||g||C2(I2)

+

{
D
αn1 ,αn2
n1,n2 ((s− y)2; qn1 , qn2 , x, y) +

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2}
||g||C2(I2)

≤
{

(δ
αn1
n1,qn1

(x))2 +

(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2}
||g||C2(I2)

+

{
(δ
αn2
n2,qn2

(y))2 +

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2}
||g||C2(I2)

= A
αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y)||g||C2(I2). (8.3.8)

Hence in view of (8.3.7) and (8.3.8), we get

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| =

∣∣∣∣D∗αn1 ,αn2n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)

+f

(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x),

1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)

)
− f(x, y)

∣∣∣∣
≤ |D∗αn1 ,αn2n1,n2 (f − g; qn1 , qn2 , x, y)|+ |D∗αn1 ,αn2n1,n2 (g; qn1 , qn2 , x, y)− g(x, y)|

+|g(x, y)− f(x, y)|

+

∣∣∣∣f( 1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x),

1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)

)
− f(x, y)

∣∣∣∣
≤ 4||f − g||+ A

αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y)||g||C2(I2)

+ω

(
f ;

√(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2

+

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2)
.
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Taking the infimum on the right hand side over all g ∈ C2(I2), it follows that

|Dαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ 4K(f ;A

αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y))

+ω

(
f ;

√(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2

+

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2)
≤M

{
ω2

(
f ;

√
A
αn1 ,αn2
n1,n2 (qn1 , qn2 , x, y)

)
+ min{1, Aαn1 ,αn2n1,n2 (qn1 , qn2 , x, y)}||f ||C(I2)

}
+ω

(
f ;

√(
1

[n1 + 2]qn1
(1 + qn1 [n1]qn1x)− x

)2

+

(
1

[n2 + 2]qn2
(1 + qn2 [n2]qn2y)− y

)2)
,

which is the desired conclusion.

8.4 Voronovskaya type theorem

In this section we shall establish a Voronovskaya type theorem for the operators

D
αn1 ,αn2
n1,n2 . First, we need an auxiliary result contained in the following lemma.

Lemma 8.4.1. Assume that 0 < qn < 1, qn → 1 and qnn → a, a ∈ [0, 1) as n→∞.

If lim
n→∞

αn = 0 and lim
n→∞

nαn = l ∈ R, then

lim
n→∞

[n]qnD
αn
n (t− x; qn;x) = 1− (1 + a)x,

lim
n→∞

[n]qnD
αn
n

(
(t− x)2; qn;x

)
= (l + 2)x(1− x), (8.4.1)

lim
n→∞

[n]2qnD
αn
n

(
(t− x)4; qn;x

)
= 3x2(1− x)2l(l + 4) + x2(1− x)(7x2 − 7x+ 5).

(8.4.2)

Proof. Using Lemma 7.2.2, we get

lim
n→∞

[n]qnD
αn
n (t− x; qn;x) =

[n]qn
[n+ 2]qn

− [n]qn
[n+ 2]qn

(1 + qn+1
n ) = 1− (1 + a)x,
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and

lim
n→∞

[n]qnD
αn
n

(
(t− x)2; qn;x

)
= (2 + l)x− x2 + lim

n→∞

[n]qn
[n+ 2]qn [n+ 3]qn(1 + αn)

×{q3[n]2qn − 2qn[n]qn [n+ 2]qn [n+ 3]qn + [n+ 2]qn [n+ 3]qn

+[n+ 3]qnαn([n+ 2]qn − 2qn[n]qn)}x2

= (l + 2)x− (l + 1)x2 + lim
n→∞

[n]qn
[n+ 2]qn [n+ 3]qn(1 + αn){

q3n(qnn)2 + 2qn(1 + qn)qnn − q2n[n]qn + 1
}
x2

= (l + 2)x(1− x).

The relation (8.4.2) is obtained in a similar way using Lemma 7.2.2 of the previous

chapter and Lemma 3.2 ([121]).

The main result of this section is the following Voronovskaja type theorem:

Theorem 8.4.2. Let f ∈ C2 (I2) and (qn)n be a sequence in the interval (0, 1) such

that qn → 1 and qnn → a, a ∈ [0, 1) as n→∞. If lim
n→∞

αn = 0 and lim
n→∞

nαn = l ∈ R,

then for every (x0, y0) ∈ I2, we have

lim
n→∞

[n]qn
{
Dαn,αn
n,n (f ; qn, qn, x0, y0)− f(x0, y0)

}
= [1− (a+ 1)x0]f

′
x(x0, y0)

+[1− (a+ 1)y0]f
′
y(x0, y0) +

l + 2

2

{
x0(1− x0)f ′′xx(x0, y0) + y0(1− y0)f ′′yy(x0, y))

}
.

Proof. Let (x0, y0) ∈ I2 be a fixed point. By the Taylor formula, it follows that

f(t, s) = f(x0, y0) + f ′x(x0, y0)(t− x0) + f ′y(x0, y0)(s− y0)

+
1

2

{
f ′′xx(x0, y0)(t−x0)2+2f ′′xy(x0, y0)(t−x0)(s− y0)+f ′′yy(x0, y0)(s−y0)2

}
+ ϕ(t, s, x0, y0)

(
(t− x0)2 + (s− y0)2

)
,

where (t, s) ∈ I2 and lim
(t,s)→(x0,y0)

ϕ(s, t, x0, y0) = 0. From the linearity of Dαn,αn
n,n , we
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have

Dαn,αn
n,n (f(t, s); qn, qn, x0, y0) = f(x0, y0) + f ′x(x0, y0)D

αn,αn
n,n (t− x0; qn, qn, x0, y0)

+f ′y(x0, y0)D
αn,αn
n,n (s− y0; qn, qn, x0, y0) +

1

2

{
f ′′xx(x0, y0)D

αn,αn
n,n ((t− x0)2; qn, qn, x0, y0)

+2f ′′xy(x0, y0)D
αn,αn
n,n ((t− x0)(s− y0); qn, qn, x0, y0)

+ f ′′yy(x0, y0)D
αn,αn
n,n ((s− y0)2; qn, qn, x0, y0)

}
+Dαn,αn

n,n

(
ϕ(t, s)

(
(t− x0)2 + (s− y0)2

)
; qn, qn, x0, y0

)
= f(x0, y0) + f ′x(x0, y0)D

αn
n (t− x0; qn, x0) + f ′y(x0, y0)D

αn
n (s− y0; qn, y0)

+
1

2

{
f ′′xx(x0, y0)D

αn
n ((t− x0)2; qn, x0) + f ′′yy(x0, y0)D

αn
n ((s− y0)2; qn, y0)

+2f ′′xy(x0, y0)D
αn
n ((t− x0); qn, x0)Dαn

n ((s− y0); qn, y0)
}

+Dαn,αn
n,n

(
ϕ(s, t)

(
(t− x0)2 + (s− y0)2

)
; qn, qn, x0, y0

)
. (8.4.3)

Applying Cauchy-Schwarz inequality, we have∣∣Dαn,αn
n,n

(
ϕ(t, s, x0, y0)

(
(t− x0)2 + (s− y0)2

)
; qn, qn, x0, y0

)∣∣
≤
∣∣Dαn,αn

n,n

(
ϕ(t, s, x0, y0)(t−x0)2; qn, qn, x0, y0

)∣∣
+
∣∣Dαn,αn

n,n

(
ϕ(t, s, x0, y0)(s−y0)2; qn, qn, x0, y0

)∣∣
≤
{
Dαn,αn
n,n

(
ϕ2(t, s, x0, y0); qn, qn, x0, y0

)}1/2 {
Dαn,αn
n,n

(
(t−x0)4; qn, qn, x0, y0

)}1/2
+
{
Dαn,αn
n,n

(
ϕ2(t, s, x0, y0)

2; qn, qn, x0, y0
)}1/2 {

Dαn,αn
n,n

(
(s−y0)4; qn, qn, x0, y0

)}1/2
=
{
Dαn,αn
n,n

(
ϕ2(t, s, x0, y0); qn, qn, x0, y0

)}1/2 [{
Dαn,αn
n,n

(
(t−x0)4; qn, qn, x0, y0

)}1/2
+
{
Dαn,αn
n,n

(
(s−y0)4; qn, qn, x0, y0

)}1/2 ]
Using Theorem 8.3.2, we get

lim
n→∞

Dαn,αn
n,n

(
ϕ2(t, s, x0, y0); qn, qn, x0, y0

)
= ϕ2(x0, y0) = 0,

and hence using Lemma 8.4.1 we have

lim
n→∞

[n]qnD
αn,αn
n,n

(
ϕ(t, s)

(
(t− x0)2 + (s− y0)2

)
; qn, qn, x0, y0

)
= 0.

Finally applying Lemma 8.4.1 in (8.4.3), the theorem is proved.
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8.5 GBS generalization

8.5.1 Introduction

In [30] and [31], Bogel introduced a new concept of Bögel-continuous (B-continuous)

and Bögel-differentiable (B-differentiable) functions and also established some im-

portant theorems using these concepts.

We give some basic definitions and notations, for further details, one can refer to

[32].

A function f : X × Y → R is called B-continuous at (x0, y0) ∈ X × Y, where X

and Y are compact subsets of R if

lim
(x,y)→(x0,y0)

∆f [(x, y); (x0, y0)] = 0,

where, ∆f [(x, y); (x0, y0)] = f(x, y)−f(x0, y)−f(x, y0)+f(x0, y0) denotes the mixed

difference of f .

A function f : X × Y → R is called B-differentiable at (x0, y0) ∈ X × Y if,

lim
(x,y)→(x0,y0)

∆f [(x, y); (x0, y0)]

(x− x0)(y − y0)

exists and is finite. This limit is named as B-differential of f at the point (x0, y0)

and is denoted by Dbf(x0, y0).

The function f : A ⊂ X×Y → R is called B-bounded on A if there exists M > 0

such that |∆f [t, s;x, y]| ≤ M, for every (x, y), (t, s) ∈ A. Here, if A is a compact

subset of R2 then each B-continuous function is a B-bounded function on A.

Throughout this chapter, we denote by Cb (A) and Db (A) , the space of all B-

continuous and B-differentiable functions on A respectively and Bb (A) denote the

class of B-bounded functions on A endowed with the norm

‖f‖B = sup
(x,y),(t,s)∈A

|∆f [t, s;x, y]| .

It is known that C (A) ⊂ Cb (A) ([32], page 52). Badea et al. [21] proved the

139



following Korovkin-type theorem in order to approximate B-continuous functions

by using GBS-operators.

Theorem 8.5.1. Let (Ln1,n2), Ln1,n2 : Cb(A) → B(A), n1, n2 ∈ N be a sequence of

bivariate linear positive operators, Gn1,n2 be the GBS-operators associated to Ln1,n2

and the following conditions are satisfied:

(i) Ln1,n2(e00;x, y) = 1

(ii) Ln1,n2(e10;x, y) = x+ un1,n2(x, y)

(iii) Ln1,n2(e01;x, y) = y + vn1,n2(x, y)

(iv) Ln1,n2(e20 + e02;x, y) = x2 + y2 + wn1,n2(x, y)

for all (x, y) ∈ A. If the sequences (un1,n2), (vn1,n2) and (wn1,n2) converge to zero

uniformly on A, then the sequence (Gn1,n2f) converge to f uniformly on A for all

f ∈ Cb(A).

8.5.2 Construction of operators

We define the GBS operator of the operator D
αn1 ,αn2
n1,n2 given by (8.1.1) for any

f ∈ Cb(I2) and n1, n2 ∈ N, by

G
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) = D

αn1 ,αn2
n1,n2 (f(t, y) + f(x, s)− f(t, s); qn1 , qn2 , x, y),

for all (x, y) ∈ I2. More precisely for any f ∈ Cb(I2), the GBS operators of q-Stancu-

Durrmeyer type operators is given by

G
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y) = [n1 + 1]qn1 [n2 + 1]qn2

n1∑
k1=0

n2∑
k2=0

p
qn1 ,αn1
n1,k1

(x)p
qn2 ,αn2
n2,k2

(y)

∫ 1

0

∫ 1

0
p
qn1
n1,k1

(t)p
qn2
n2,k2

(s)[f(t, y) + f(x, s)− f(t, s)]dqn1 tdqn2s.

(8.5.1)

Evidently, the operators G
αn1 ,αn2
n1,n2 are linear operators.
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8.5.3 Approximation theorems

We define the mixed modulus of smoothness for f ∈ Cb (I2) as follows:

ωmixed (f ; δ1, δ2) := sup {|∆f [t, s;x, y]| : |t− x| < δ1, |s− y| < δ2} ,

for all (x, y), (t, s) ∈ I2 and for any (δ1,δ2) ∈ (0,∞)× (0,∞) with

ωmixed : [0,∞)× [0,∞)→ R.

The basic properties of ωmixed were obtained by Badea et al. in [23] and [22] which

are similar to the properties of the usual modulus of continuity.

Badea et al. [22] established the following Shisha-Mond type theorem to obtain the

degree of approximation for B-continuous functions using GBS operators:

Theorem 8.5.2. Let L : C(A) → C(A) be a bivariate linear positive operator and

G : Cb(A)→ C(A) be the associated GBS-operator. The following inequality

|G(f ;x, y)− f(x, y)| ≤ |f(x, y)||L(1;x, y)− 1|+ {L(1;x, y) +

δ−11

√
L((t− x)2;x, y) + δ−12

√
L((s− y)2;x, y)

+ δ−11

√
L((t− x)2;x, y)δ−12

√
L((s− y)2;x, y)}ωmixed(f ; δ1, δ2),

holds for all f ∈ Cb(A), (x, y) ∈ A and δ1, δ2 > 0.

Theorem 8.5.3. For every f ∈ Cb(I2) and (x, y) ∈ I2, we have

|Gαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ 4ωmixed(f, δ

αn1
n1,qn1

(x), δ
αn2
n2,qn2

(y)).

Proof. Applying Theorem 8.5.2, we have

|Gαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)|

≤ |f(x, y)||Dαn1 ,αn2
n1,n2 (1; qn1 , qn2 , x, y)− 1|+ {Dαn1 ,αn2

n1,n2 (1; qn1 , qn2 , x, y)

+δ−11

√
D
αn1 ,αn2
n1,n2 ((t− x)2; qn1 , qn2 , x, y) + δ−12

√
D
αn1 ,αn2
n1,n2 ((s− y)2; qn1 , qn2 , x, y)

+δ−11 δ−12

√
D
αn1 ,αn2
n1,n2 ((t− x)2; qn1 , qn2 , x, y)

√
D
αn1 ,αn2
n1,n2 ((s− y)2; qn1 , qn2 , x, y)}.

ωmixed(f ; δ1, δ2),
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Applying Lemmas 8.2.1 and 8.2.2, on choosing δ1 = δ
αn1
n1,qn1

(x) and δ2 = δ
αn2
n2,qn2

(y),

we obtain the desired result.

Theorem 8.5.4. Let f ∈ Db(I
2) with DBf ∈ B(I2). Then, for each (x, y) ∈ I, we

have

|Gαn1 ,αn2
n1,n2 f ; qn1 , qn2 , x, y − f(x, y)|

≤ M

[n1]
1/2
qn1

[n2]
1/2
qn2

(
||DBf ||∞ + ωmixed(DBf ; [n1]

−1/2
qn1

, [n2]
−1/2
qn2

)

)
.

Proof. Since f ∈ Db(I
2) and DBf ∈ B(I2), then from

DBf(x, y) = lim
(x,y)→(x0,y0)

∆f [(t, s); (x, y)]

(t− x)(s− y)

it follows that ∆f [t, s;x, y] = (t−x)(s− y)DBf(ξ, η), where ξ, η lie between t and

x and s and y respectively.

Since DBf ∈ B(I2), using the following relation

DBf(ξ, η) = ∆DBf(ξ, η) +DBf(ξ, y) +DBf(x, η)−DBf(x, y),

we obtain

|Dαn1 ,αn2
n1,n2 (∆f [t, s;x, y]; qn1 , qn2 , x, y)|

= |Dαn1 ,αn2
n1,n2 ((t− x)(s− y)DBf(ξ, η); qn1 , qn2 , x, y)|

≤ D
αn1 ,αn2
n1,n2 (|t− x||s− y||∆DBf(ξ, η)|; qn1 , qn2 , x, y)

+D
αn1 ,αn2
n1,n2 (|t− x||s− y|(|DBf(ξ, y)|

+|DBf(x, η)|+ |DBf(x, y)|); qn1 , qn2 , x, y)

≤ D
αn1 ,αn2
n1,n2 (|t−x||s−y|ωmixed(DBf ; |ξ−x|, |η−y|); qn1 , qn2 , x, y)

+3 ||DBf ||∞ D
αn1 ,αn2
n1,n2 (|t− x||s− y|; qn1 , qn2 , x, y).

Using the basic properties of ωmixed, we have

ωmixed(DBf ; |ξ − x|, |η − y|) ≤ ωmixed(DBf ; |t− x|, |s− y|)

≤ (1 + δ−1n1
|t− x|)(1 + δ−1n2

|s− y|) ωmixed(DBf ; δn1 , δn2).
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Hence applying the Cauchy-Schwarz inequality, we get

|Gαn1 ,αn2
n1,n2 f ; qn1 , qn2 , x, y − f(x, y)| = |Dαn1 ,αn2

n1,n2 ∆f [t, s;x, y]; qn1 , qn2 , x, y|

≤ 3||DBf ||∞
√
D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)2; qn1 , qn2 , x, y)

+

(
D
αn1 ,αn2
n1,n2 (|t− x||s− y|; qn1 , qn2 , x, y)

+δ−1n1
D
αn1 ,αn2
n1,n2 ((t− x)2|s− y|; qn1 , qn2 , x, y)

+δ−1n2
D
αn1 ,αn2
n1,n2 (|t− x|(s− y)2; qn1 , qn2 , x, y)

+δ−1n1
δ−1n2

D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)2; qn1 , qn2 , x, y)

)
ωmixed(DBf ; δn1 , δn2)

≤ 3||DBf ||∞
√
D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)2; qn1 , qn2 , x, y)

+

(√
D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)2; qn1 , qn2 , x, y)

+δ−1n1

√
D
αn1 ,αn2
n1,n2 ((t− x)4(s− y)2; qn1 , qn2 , x, y)

+δ−1n2

√
D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)4; qn1 , qn2 , x, y)

+δ−1n1
δ−1n2

D
αn1 ,αn2
n1,n2 ((t− x)2(s− y)2; qn1 , qn2 , x, y)

)
ωmixed(DBf ; δn1 , δn2).

We observe that for (x, y), (t, s) ∈ I and i, j ∈ {1, 2}

D
αn1 ,αn2
n1,n2 ((t− x)2i(s− y)2j; qm, qn, x, y) = Dα1

n1
((t− x)2i; qm, x, y)Dα2

n2
((s− y)2j; qn, x, y).

Now taking δn1 = δ
αn1
n1,qn1

(x) ≤ C1

[n1]
1/2
qn1

, δn2 = δ
αn2
n2,qn2

(y) ≤ C2

[n2]
1/2
qn2

, and

using (8.4.2), we obtain the desired result.

Let β, γ ∈ (0, 1] , then

LipM (β, γ) =
{
f ∈ Cb

(
I2
)

: |∆f [t, s;x, y]| ≤M |t− x|β |s− y|γ , for (t, s) , (x, y) ∈ I2
}

is the Lipschitz class for B-continuous functions. Our next theorem gives the rate

of convergence for the operators G
αn1 ,αn2
n1,n2 by means of the class LipM (β, γ).

Theorem 8.5.5. Let f ∈ LipM(β, γ) and (x, y) ∈ I2. Then for M > 0, β, γ ∈ (0, 1],

we have

|Gαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤M

(
δ
αn1
n1,qn1

(x)

)β(
δ
αn2
n2,qn2

(y)

)γ
.
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Proof. By the definition of G
αn1 ,αn2
n1,n2 , we may write

G
αn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)

= D
αn1 ,αn2
n1,n2 (f(x, s) + f(t, y)− f(t, s); qn1 , qn2 , x, y)

= D
αn1 ,αn2
n1,n2 (f(x, y)−∆f [t, s;x, y]; qn1 , qn2 , x, y)

= f(x, y)D
αn1 ,αn2
n1,n2 (e00; qn1 , qn2 , x, y)−Dαn1 ,αn2

n1,n2 (∆f [t, s;x, y]; qn1 , qn2 , x, y).

Hence, using Lemma 8.2.1 and the definition of the Lipschitz class

|Gαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤ D

αn1 ,αn2
n1,n2 (|∆f [t, s;x, y]|; qn1 , qn2 , x, y)

≤ MD
αn1 ,αn2
n1,n2 (|t− x|β|s− y|γ; qn1 , qn2 , x, y)

= MD
αn1
n1 (|t− x|β; qn1 , x, )D

αn2
n2 (|s− y|γ; qn2 , x).

Applying the Hölder’s inequality with p1 = 2/β, q1 = 2/ (2− β) and p2 = 2/γ,

q2 = 2/ (2− γ) and Lemma 7.2.2, we have

|Gαn1 ,αn2
n1,n2 (f ; qn1 , qn2 , x, y)− f(x, y)|

≤M

(
D
αn1
n1 ((t− x)2; qn1 , x, )

)β/2
×
(
D
αn2
n2 ((s− y)2; qn2 , y)

)γ/2
≤M

(
δ
αn1
n1,qn1

(x)

)β(
δ
αn2
n2,qn2

(y)

)γ
.
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which preserve polynomials. Comput. Math. Appl., 62(1):158–163, 2011.

[39] G. Z. Chang. Generalized Bernstein-Bézier polynomials. J. Comput. Math,
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Fiz, 4:85–90, 1966.

[50] O. Doğru and V. Gupta. Korovkin-type approximation properties of bivariate

q-Meyer-König and Zeller operators. Calcolo, 43(1):51–63, 2006.
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[67] H. Gonska and R. Păltănea. Simultaneous approximation by a class of

Bernstein-Durrmeyer operators preserving linear functions. Czechoslovak

Math. J., 60(3):783–799, 2010.
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