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Abstract

This thesis presents approximation of functions by several well known positive lin-
ear operators, by their generalized forms and integral modifications. We divide the
thesis into nine chapters. Chapter 0 is an introductory part of the thesis which deals
with the upbringing of approximation theory, literature survey, some notations and

basic definitions of approximation methods which are used throughout the thesis.

In the first chapter, we define a genuine family of Bernstein-Durrmeyer type
operators based on Polya basis functions. We establish a global approximation the-
orem, local approximation theorem, Voronovskaya-type asymptotic theorem and a
quantitative estimate of the same type. Lastly, we study the approximation of func-

tions having a derivative of bounded variation.

The second chapter is a continuation of the first one in which we introduce the
Bézier variant of genuine Durrmeyer type operators and give direct approximation
results and a Voronovskaya type theorem by using the Ditzian-Totik modulus of
smoothness. The rate of convergence for functions whose derivatives are of bounded
variation is also obtained. Further, we show the rate of convergence of these opera-

tors to certain functions by illustrative graphics using the Matlab algorithms.

In the third chapter, we define the Szasz-Durrmeyer type operators by means of



multiple Appell polynomials. We study a quantitative Voronovskaya type theorem
and Griiss-Voronovskaya type theorem. We also establish a local approximation
theorem in terms of the Steklov means and Voronovskaya type asymtotic theorem.
Further, we discuss the degree of approximation by means of a weighted space.
Lastly, we find the rate of approximation of functions having derivatives of bounded

variation.

In the fourth chapter, we introduce the Bézier variant of Durrmeyer modification
of the Bernstein operators based on a function 7. We give the rate of approximation
of these operators in terms of usual modulus of continuity and the K —functional.
Next, we establish the quantitative Voronovskaja type theorem. In the last section
we obtain the rate of convergence for functions having derivatives of bounded vari-

ation.

In the fifth chapter, we define a sequence of Stancu type operators based on the
same function 7 as defined in the preceding chapter and show that these operators
present a better degree of approximation than the original ones. We give a direct
approximation theorem by means of the Ditzian-Totik modulus of smoothness and

a Voronovskaya type theorem.

In the sixth chapter, we introduce the Bézier variant of modified Srivastava-
Gupta operators and give a direct approximation theorem by means of the Ditzian-
Totik modulus of smoothness and the rate of convergence for functions with deriva-
tives equivalent to a function of bounded variation. Furthermore, we show the
comparisons of the rate of convergence of the Srivastava-Gupta operators vis-a-vis
its Bézier variant to a certain function by illustrative graphics using Maple algo-

rithms.
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In the seventh chapter, we construct the Stancu-Durrmeyer-type modification of
g-Bernstein operators by means of Jackson integral. Here, we establish basic con-
vergence theorem, local approximation theorem and an approximation result for a
Lipschitz type space. Also, we establish the Korovkin type A-statistical approxi-
mation theorem and rates of A-statistical convergence in terms of the modulus of

continuity.

The last chapter is an continuation of our work in chapter seven. Here, we con-
struct a bivariate generalization of Stancu-Durrmeyer type operators and study the
rate of convergence by means of the complete modulus of continuity and the partial
moduli of continuity. Subsequently, we define the GBS (Generalized Boolean Sum)
operators of Stancu-Durrmeyer type and give the rate of approximation by means
of the mixed modulus of smoothness and the Lipschitz class of Bogel-continuous

functions.
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Introduction

0.1 General Introduction

Approximation theory is used both in pure and applied mathematics. It includes a
wide area ranging from abstract problems in real, complex, and functional analysis
to direct applications in engineering and industry. Therefore, approximation the-
ory is closely related to mathematical analysis, operator theory, harmonic analysis,
quantum calculus, algorithms, probability theory etc. In mathematical analysis, it
deals with the approximation of some kind of complicated functions by the simpler
one with desirable rate of approximation.

Approximation of functions by positive linear operators is an important research
area that provides us key tools for exploring the computer-aided geometric design,
numerical analysis and the solutions of ordinary and partial differential equations
that arise in the mathematical modeling of real world phenomena. The foundation
of approximation theory known as Weierstrass approximation theorem was intro-
duced by Carl Weierstrass in 1885, which states that any real continuous function
on a closed and bounded interval can be uniformly approximated on that interval
by a sequence of polynomials to any degree of accuracy. Several proofs of this theo-
rem have been given by great mathematicians e.g. Runge, Lebesgue, Landau, Fejér

and Jackson. In 1912, S. N. Bernstein [29] gave a simpler proof by constructing a



sequence of polynomials called Bernstein polynomials as

.0 =Y pui (1), reion)

where p, x(x) = (Z) 2k (1 — 2)"~*. This sequence converges uniformly to any contin-
uous function on [0, 1].

After that the fundamental theorem of uniform convergence by a general se-
quence of positive linear operators was established by Bohman [33] and Korovkin
[107]. Szész [152] generalized the Bernstein polynomials to approximate continuous
functions defined on the infinite interval [0, 00). Kantorovich [101] introduced an
integral modification of Bernstein polynomials to approximate Lebesgue integrable
functions defined on [0, 1]. Durrmeyer [52] used another kind of integral modification
of Bernstein polynomials to approximate these functions. Subsequently, many new
sequences and classes of operators were constructed and studied for their approxima-
tion behavior by prominent researchers. Some well known operators introduced by
researchers to study the approximation of functions are due to Stancu [148], Lupas
and Lupas [111], Phillips [130], Baskakov [28], Gupta and Srivastava [146], Rathore
and Singh [137], Abel and Heilmann[2] etc.

The approximation methods deal with the convergence behavior of the positive
linear operators to the functions. The study of the convergence is carried out by
some direct results, asymptotic behavior of the operators, several tools of approxi-
mation and weighted approximation. In the field of approximation theory, Jackson
[95] was the first who gave the direct theorems in his classical work on algebraic
and trigonometric polynomials. For more contribution on the study of direct theo-
rems we refer to ([60], [61], [140] and [151], etc.). King [104] initiated a new kind
of modification for the operators which do not reproduce the linear functions, to
achieve a better degree of approximation. Motivated by this, Cardenas-Morales et

al. [37] defined a sequence of Bernstein type operators by generalizing the Korovkin

2



set from {1,¢,¢%} to {1,7, 7%} and investigated its shape preserving and convergence

properties as well as its asymptotic behavior.

The study of the rate of convergence for functions of bounded variation by linear
positive operators is another interesting area of research. Cheng [40] investigated
the rate of convergence of Bernstein polynomials for functions of bounded varia-
tion. Using probablistic approach, Bojanic and Cheng ([34], [35]) studied the rate
of convergence of Bernstein polynomials for functions with derivatives of bounded
variation. Srivastava et al. [145] estimated the rate of convergence for functions hav-
ing derivative of bounded variation. Recently, Ispir et al. [91] considered the Kan-
torovich modification of Lupas operators based on Polya distribution and studied
the rate of approximation of the functions having derivatives of bounded variation.
Researchers studied these problems for several other sequences of linear positive op-

erators (cf. [13], [14], [82], [86], [90] and [112] etc.).

It is well known that Bézier curves are the parametric curves, used in computer
graphics and designs, interpolation, approximation, curve fitting etc. In graphics of
vectors, these are used to model smooth curves and also used in animation designs.
These curves were invented by Pierre Etienne Bézier, a French engineer at Renault.
Zeng and Piriou [169] pioneered the study of Bézier variant of Bernstein operators.
Later on, Chang [39] introduced Bézier variant for generalized Bernstein operators
and studied some of its approximation properties. Zeng and Chen [168] introduced
the Bézier Bernstein-Durrmeyer operators and studied the rate of convergence for
these operators. Srivastava and Gupta [147] studied the rate of convergence for the
Bézier variant of the Bleimann-Butzer-Hahn operators for the functions of bounded
variation. Subsequently, Bézier variants for several sequences of operators have been

introduced and studied by researchers (cf. [15], [73], [166], [162] etc.).



In 1968, Stancu [148] introduced a generalization of Bernstein operators depend-
ing on a non negative parameter «. Lupas and Lupas [111] considered a special
case o = %, n € N, for these operators. Gupta and Rassias [82] introduced the
Durrmeyer-type integral modification of Lupas and Lupas operators and obtained
local and global direct estimates and a Voronvskaya-type asymptotic formula. Later,
the same authors [83] considered a Durrmeyer type modification of the Jain operators
and studied the asymptotic formula, error estimation in terms of the modulus of con-
tinuity and weighted approximation. Gupta et al. [84] proposed certain Lupas-beta
operators which preserve constant as well as linear functions and established some

direct results and the approximation of functions having a derivative of bounded

variation.

Jakimovski and Leviatan [96] proposed a generalization of Szdsz-Mirakjan oper-
ators by means of the Appell polynomials and gave the rate of approximation for
these operators. Subsequently, generalizations of the Szasz-Mirakyan operators by
means of Sheffer polynomials, Brenke-type polynomials and Boas-Buck type poly-

nomials were introduced and investigated in (cf. [88], [142], [154] and [155] etc.).

Gupta and Srivastava [146] introduced a general family of summation-integral
type operators known as Srivastava-Gupta operators. Yadav [163] introduced a mod-
ification of these operators and studied a direct estimate, asymptotic formula and
statistical convergence. After that, Verma and Agrawal [157] introduced the gen-
eralized form of these operators and studied some of its approximation properties.
Many researchers have studied the approximation properties of Srivastava-Gupta
operators and its various generalizations over the past decade (cf. [9], [45] and [93]

etc.).

Some of the recently introduced sequences and classes of operators which have



been extensively studied by researchers are, Bernstein-Durrmeyer type operators
([1], [67], [66], [78] etc.), Bernstein-Kantorovich type operators ([74], [125], [92],
[114] etc.), Hybrid type operators ([14], [80], [84] etc.), Gamma type operators
([94], [102], [103] etc.), Chlodowsky and Stancu variants of operators ([17], [126],
[156] etc.), linear positive operators constructed by means of the Chan-Chayan-
Srivastava multivariable polynomials [54] and the operators defined in ([43], [44],
[46], [98], [118], [136], [138], [139], [160], [161] etc.). More detailed account of such
operators can be found in the books (cf. [18], [82] and [85] etc.).

0.2 Fundamentals of ¢-calculus

In the last decade, the application of g-calculus in the field of approximation the-
ory has been an active area of research. More applications of ¢-calculus are in
number theory, combinatorics, orthogonal polynomials, hypergeometric functions,
mechanics, theory of relativity, quantum theory and theoretical physics. In 1987,
Lupas [110] initiated the study of g-analogue of the classical Bernstein polynomials.
Later, Phillips [130] proposed another g-generalization of the Bernstein polynomials
and established the rate of convergence and Voronovskaja type asymptotic formula
for these operators. Gupta [75] introduced the g-analogue of Bernstein-Durrmeyer
operators and studied some approximation properties of these operators. Gupta
and Wang [79] introduced ¢g-Durrmeyer type operators and studied the rate of con-
vergence in terms of modulus of continuity. Subsequently, Finta and Gupta [59]
studied some local and global approximation theorems for the g-Durrmeyer opera-
tors. Acar and Aral [6] studied the pointwise convergence for ¢g-Bernstein operators
and their ¢-derivatives. Dalmanoglu [41] introduced Kantorovich type modification
of g-Bernstein operators. For some deatails we refer the readers to (cf. [4], [53], [59],

[75], [87], [113], [116], [119], [135] [164], [165] and [167] etc.)
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0.3 Statistical convergence

The study of statistical convergence is another interesting area of research in the
field of approximation theory. In 1951, Fast [57] introduced the concept of statistical
convergence. After that, Gadjiev [62] proved Korovkin type approximation theorem
via statistical convergence. Kolk [106] proved that statistical convergence is stronger
than ordinary convergence. In this direction, for some related papers we refer to (cf.
[51], [81], [117], [123], [150] etc.).

Statistical convergence: Any sequence r =< z, >, is said to be statistically

k -1 >
convergent to a number [ if for any given € > 0, we get lim [k« Jz = U] = €} =0
n—oo n

and it is denoted by st — lim =z, = (.

n—oo
A-Statistical convergence: Let A = (a;,) be a non-negative infinite summabil-
ity matrix. For a given sequence x =< =z, >, the A-transform of x denoted by

Ax = (Azx); is defined as

o0

(Az); = Zajnxn

n=1
provided the series converges for each j. A is said to be regular if lim(Ax); = L
J
whenever limz,, = L. The A-density of K, K C N(the set of the natural numbers),

denoted by 04(K), is defined as d4(K) = lim, ZajnxK(n), provided the limit
n=1
exists, where xk(n) is the characteristic function of K.
A sequence r =< x,, > is said to be A-statistically convergent to Li.e. sty—limz, =
L if for every € > 0, lim Z aj, = 0 or equivalently d4{n € K : |z, —L| > €} =
n:|zn,—L|>e
0.

If we replace A by C) then A is a Cesaro matrix of order one and A-statistical

convergence is reduced to the statistical convergence. Similarly, if A = I, the identity
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matrix then A-statistical convergence reduces to ordinary convergence.

Let A = (a;,) be a non negative infinite regular summability matrix and < b; >

be a positive non increasing sequence. If for every € > 0, lim; bi Z an = 0,
J
n:lxpn—L|>e€
then we say that the sequence r =< x, >, converges A-statistically to number L

with the rate of o(b;) and this is denoted by x,, — L = st4 —o(b,), as n — oo. If for

every € > 0, supj% Z a;, < 00, then x is called A-statistically bounded with
n:lzn|>e

the rate O(b,), as n — oo.

0.4 Bivariate and GBS (Generalized Boolean sum)

Extension

Kingsely [105] initiated the study of Bernstein operators for the two variable case for
the class of k— times continuously differentiable functions on a closed and bounded
rectangle region. Butzer [36] investigated some approximation properties for these
operators. After that, Stancu [149] introduced another kind of generalization of
Bernstein operators for the two and several variables case. Barbosu et. al [24]
introduced a g-analogue of the bivariate Durrmeyer operators and studied the rate
of convergence in terms of modulus of continuity. Orkcii [122] introduced a bivariate
generalization of the ¢-Széasz-Mirakyan-Kantorovich operators and established the
rate of pointwise convergence and weighted A-statistical approximation properties.
Bivariate generalization for several positive linear operators have been discussed in
([20], [25], [50], [144] and [159] etc.)

Dobrescu and Matei [49] introduced the GBS-Bernstein operators and obtained some
convergence theorems for these operators. Subsequently, Badea and Cottin [23]
obtained Korovkin theorems for GBS operators. After that, Pop [133] introduced

Voronovoskaja type theorems for certain GBS operators. Recently, Sidharth et al.
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[143] introduced the GBS operators of bivariate g-Bernstein-Schurer-Kantorovich
type and estimated the rate of convergence in terms of mixed modulus of smoothness.
We refer the readers to some of the related papers (cf. [24], [25], [26], [27], [55], [56],
[134] and [132] etc.)

0.5 Notations and Basic definitions

Now, we recall some basic definitions of g-calculus. For more details we refer to

books (cf. [18], [99] etc.).

Definition 0.5.1. For a non-negative integer n, the q-integer [nl, is defined as
1—4q"
, a7 L
[n]g = 1—q
n, qg=1.

Definition 0.5.2. The g-factorial [n],! is defined as

[n} | — { [1]q[2]q[3]q ....... [n]q, n 2 1,

1, n = 0.
Definition 0.5.3. The g-binomial coefficient is defined as

Definition 0.5.4. The g-beta function is defined as

1
Bq(k‘,n):/o t’“—l(l—qt)j;—ldqt

or

[k —1],![n — 1],

Bq(kn) = n+k—1),

Definition 0.5.5. Suppose that) < a <b,0 < q < 1 and f be a real valued function.
Then the q-Jackson integral of f over the interval [0,b] and over the generic interval

[a,b] are respectively defined as
b 00
| Hadge == a3 00 (0.5.1)
0 =

8



and

[ 1= [ s [ @

provided the sum in (0.5.1) converges absolutely.

Throughout this thesis we denote by C, a constant not necessarily the same at
each occurrence and [0, 00) by Ry .

Let f € C(I) be the space of all continuous functions on an interval I.

Definition 0.5.6. Forr being a positive integer, the r'" order modulus of continuity
w(f,0), for f € C(I) is defined by
wo(£,0) = sup {|IALF(@)| a4 rh e T,
0<|h|<é

where Af f(z) is the k™ forward difference with step length h.

Let us define
W'(I)={gecC): g™ eC()}.

Definition 0.5.7. The Peetre’s K—functional [129] is defined as
K, (f;6) = inf — 8llgM]|: 6 >0},
(f;9) gelvalT(I){Hf gll +ollg™"l] i
From [47], it is known that there exists a constant C' > 0, such that
K, (f;0") < Cuw,(f;6) Vr=1, 2, 3... (0.5.2)

Let Cp(I) be the space of all continuous and bounded functions on I with the norm

£l = Sup | f(@)].

Definition 0.5.8. The r'" order Ditzian- Totik modulus of smoothness w, 4(f,d), for

f € Cg(I) is defined by

wrg(f,0) = sup {|A},f(2)] @,z +rho € I},

0<|h|<o



where A, f(x) is the r'" forward difference with step length ho. In the particular

case r = 1, we denote wy 4(f,0) by wy(f,9).
Let us define
Wi(I) = {g: g" " € ACie(I) and||¢"g"|| < o0},

where ¢~V € AC,.(I) means g~V is absolutely continuous on every [a,b] C I. In

the particular case 7 = 1, we denote W(I) by Wy([).

Definition 0.5.9. The K—functional is defined as
K,s(f;0) = inf —gll4+ 6" g"| 6 >0} .
g = int I = oll+ 1l 6> 0)
In the particular case r = 1, we denote Ky 4(f;0) by Kys(f;9).
From [48], it is known that there exists a constant C' > 0, such that
Clwg(f;0) < Ky(f;07) < Cw,p(f;0) Vr=1, 2, 3... (0.5.3)

Let DBV (I) be the class of all absolutely continuous functions f having a deriva-
tive f  equivalent with a function of bounded variation on every finite subinterval

of I. We observe that the functions f € DBV (I) possess a representation

@)= [ attat + 100), (0.5.4)

where g € BV (I) i.e. g is a function of bounded variation on every finite subinterval

of I. Throughout the thesis \/* f(x) denotes the total variation of f(z) on [a, b].

0.6 Contents of the Thesis

The present thesis consists of eight chapters and the contents of these are as given

below:

10



Chapter 1. In this chapter, we construct a genuine family of Bernstein-Durrmeyer
type operators based on Polya basis functions. We establish some moment estimates
and the direct results which include global approximation theorem in terms of classi-
cal modulus of continuity and a local approximation theorem in terms of the second
order Ditizian-Totik modulus of smoothness. Also, we obtain a Voronovskaya-type
asymptotic theorem and a quantitative Voronovskaya-type estimate. Lastly, we

study the approximation of functions having a derivative of bounded variation.

The results in this chapter are published in Filomat ( University of Nis, Ser-
bia).

Chapter 2. This chapter is the study of the Bézier variant of genuine-Durrmeyer
type operators having Polya basis functions. We give a global approximation theo-
rem in terms of second order modulus of continuity, a direct approximation theorem
and a Voronovskaja type theorem by using the Ditzian-Totik modulus of smooth-
ness. Next, we establish the rate of convergence for functions whose derivatives are
of bounded variation. Further, we show the rate of convergence of these operators

to certain functions by illustrative graphics using the Matlab algorithms.

The results in this chapter are published in Carpathian Journal of Mathemat-

ics (North University of Baia Mare, Romania).

Chapter 3. In the present chapter, we establish a link between the Szasz-

Durrmeyer type operators and multiple Appell polynomials. We study a quantitative
Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth
order central moment and Griiss-Voronovskaya type theorem. We also establish a

local approximation theorem by means of the Steklov means in terms of first and

11



second order modulus of continuity and Voronovskaya type asymtotic theorem. Fur-
ther, we discuss the degree of approximation for functions in polynomial weighted
spaces. Lastly, we find the rate of approximation of functions having a derivative of

bounded variation.

The contents of this chapter accepted for publication in Journal of Inequalities

and Applications (Springer Publications).

Chapter 4. In this chapter, we introduce the Bézier-variant of Durrmeyer modi-
fication of the Bernstein operators based on a function 7, which is infinite times con-
tinuously differentiable and strictly increasing function on [0, 1] such that 7(0) = 0
and 7(1) = 1. Here the Korovkin set {1,t,t*} is generalized to {1,7,72}. We give
the rate of approximation of these operators in terms of usual modulus of continu-
ity and the K —functional. Next, we establish the quantitative Voronovskaja type
theorem. In the last section, we obtain the rate of convergence for functions having

derivatives of bounded variation.

The contents of this chapter are published in Results in Mathematics (Springer

Publications).

Chapter 5. In this chapter, we construct a sequence of Stancu-type operators
that are based on the same function 7, defined in preceding chapter. We compare
the new operators with classical Stancu operators and show that on a certain in-
terval, these operators present a better degree of approximation than the original
ones. Also, we give a direct approximation theorem by means of the Ditzian-Totik

modulus of smoothness and a Voronovskaja type theorem.

The results of this chapter are published in Numerical Functional Analysis and

12



Optimization (Taylor and Francis Group).

Chapter 6. In the present chapter, we introduce the Bézier variant of the modi-
fied Srivastava-Gupta operators defined by Yadav [163] and give a local approxima-
tion theorem by means of the Ditzian-Totik modulus of smoothness and the rate of
convergence for absolutely continuous functions having a derivative equivalent to a
function of bounded variation. Furthermore, we show the comparisons of the rate
of convergence of the Srivastava-Gupta operators vis-a-vis its Bézier variant to a

certain function by illustrative graphics using Matlab algorithms.

The content of this chapter are published in Revista de la Union Mathematica

Argentina (Union Mathematica Argentina).

Chapter 7. In this chapter, we propose the Stancu-Durrmeyer-type modifica-
tion of g-Bernstein operators by means of g-Jackson integral. Here, we study basic
convergence theorem, local approximation theorem in terms of the first and second
order modulus of continuity and direct theorems by means of Lipschitz type space
and Lipschitz type maximal function. Further, we establish the Korovkin type ap-
proximation theorem by using A-statistical convergence. Lastly, we give the rates

of A-statistical convergence in terms of the modulus of continuity.

The contents of this chapter are published in Applied Mathematics and Infor-

mation Sciences (Natural Sciences).

Chapter 8. This chapter is in continuation of our work in Chapter 7. Here, we
construct a bivariate generalization of Stancu-Durrmeyer-type operators and study
the rate of convergence by means of the complete modulus of continuity and the

partial moduli of continuity and the degree of approximation with the aid of the

13



Peetre’s K —functional. Also, we show the convergence of the operators to a certain
function for two different values of ¢ by illustrative graphics. Subsequently, we de-
fine the GBS(Generalized Boolean Sum) operators of Stancu-Durrmeyer type and
give the rate of approximation by means of the mixed modulus of smoothness and

the Lipschitz class of Bogel-continuous functions.

The results of this chapter are accepted for publication in Mathematical Com-

munications (Croatian Mathematical Society).

Based on the subject matter of thesis, the following papers have been prepared:

Published /Accepted

1. Trapti Neer and P. N. Agrawal, A genuine family of Bernstein-Durrmeyer type
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Chapter 1

A genuine family of
Bernstein-Durrmeyer type
operators based on Polya basis

functions

1.1 Introduction

In 1968, Stancu [148] introduced a sequence of positive linear operators

P C[0,1] — C[0, 1], depending on a non negative parameter « as

B (f;x) = Zf(%)pffﬁ(x), (1.1.1)

where pfla,i(x) is the Polya distribution with density function given by

@) = (n) [Izo(x +ve) [T=5 (1 — & + pa)

pn,k’ Z n—1 , € [0, 1]

k Y—o(1+ )
In case o = 0, the operators (1.1.1) reduce to the classical Bernstein polynomials.
For these operators , Lupas and Lupas [111] considered a special case of the above

1
operators for &« = — which reduces to
n
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lﬁikfmﬂ::ggg-n0<2)f<§)(mﬂk0%—n$%/m (112)

(2n)!

where the rising factorial (z), is given by (z), = z(x+1)(z +2).....(x +n — 1) with
(x)o = 1.

Gupta and Rassias [82] introduced the Durrmeyer-type integral modification for the
operators (1.1.2) and obtained local and global direct estimates and a Voronvskaya-
type asymptotic formula. Very recently, Gupta [76] defined a genuine Durrmeyer
type modification of the operators given by (1.1.2) and obtained a Voronovskaya-
type asymptotic theorem and a local approximation theorem. Gonska and Paltanea
[67] established a very interesting link between the Bernstein polynomials and their
Bernstein-Durrmeyer variants with several particular cases which preserve linear
functions and gave recursion formula for moments and estimates for simultaneous
approximation of derivatives. After that, the same authors [66] established quan-
titative Voronovskaya-type assertions in terms of the first order and second order
moduli of smoothness.

Motivated by these studies, for f € Lg|0, 1], the space of bounded and Lebesgue
integrable functions on [0, 1] and a parameter p > 0, we now propose a genuine Dur-
rmeyer type modification of the operators given by (1.1.2), which preserve linear

functions, as

Un(f;x) Z kpnk (1.1.3)
where
By = f(O), k=0
and

kp—1 1 — (n—k)p—1
QR Lk i
#) = B = B)p)
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B(m,n) being the beta function defined as

I'(m)I'(n)
B(m,n) = m, m,n > 0.

For p = 1, the operators U’ reduce to the operators defined by Gupta [76] and
when p — oo, these operators reduce to the operators considered by Lupas and Lu-
pas [111], in view of the fact that Fj;yk — f (%), as shown by Gonska and Paltanea
[3,Thm 2.3, p.786].

The purpose of this chapter is to establish a global approximation theorem in
terms of the classical second order modulus of continuity and a local-approximation
theorem in terms of the second order Ditzian-Totik modulus of smoothness, a
Voronovskaya type asymptotic theorem and also a quantitative Voronovskaya type

estimate. In the last section of the chapter, the approximation of functions having

a derivative of bounded variation is also discussed.

1.2 Auxiliary Results

Lemma 1.2.1. [115] For the operators defined by (1.1.2), one has
(i) P (Lia) = 1

) Pl oy
(i) Py’ (tx) =z,

2z(1 — x)
n+1
6nz*(1 — x) 6z(1 — )

m+1D(n+2) (m+1)(n+2)

Gy g 124 1)2%(1 — ) 12(3n — 1)2?%(1 — z)
(v) Ba®(t52) = 27 + m+Dn+2)n+3)  (n+(n+2)(n+3)
2(13n — 1)z(1 — z)
nn+1)(n+2)(n+3)

1
(iii) PV (12, 2) = 22 +

Y

(iv) Pﬁ)(t?’; r) =12+

Lemma 1.2.2. For Uf(t™;x), m =0,1,2,3,4, we obtain,
(i) Up(Lz) =1,
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(it) Uf(t;x) =z,

(iii) UP(t%z) — i($2+ 2x(1 —w)) LT

np+1 n+1 np—i—l’
. P43 7\ 1 2 2( .3 6nz’(1 — z) Gz (1 — )
(iv) UL (t% x) = (np +1)(np + 2) {n P (SE * m+1)(n+2) (n+ 1)(n—i—2)) *
3np<w2+M +2$}
n+1 ’

p(#he ) — 1 38t 12(n? + 1D)a3(1 — z)
(v) Ut ) (np+1)(np+2)(np+3){ ”< i+ )0 +2)(n+3)
12(3n — 1)2%(1 — ) 2(13n — 1)z(1 — x)
m+1(n+2)(n+3) nn+1)(n+2)(n+3)
6nz?(1 — ) 6z(1 — ) ,  2x(l—x)
(n+1)<n+2)+(n+1)<n+2))“1””<“" T >+6’”}‘

By a simple calculation and using Lemma 1.2.1, we obtain the proof of the

) + 6n2p? (933 +

lemma. Hence we omit the details.
In our next lemma, we find the central moment estimates required for the main

results of the paper.

Lemma 1.2.3. For Uf((t —x)™;z), m € NJ{0}, we have,

(1) UL((t —x);2) =0,

(2np+n+1)z(1l —z)
(n+1)(np+1)

e o1 a) )
(i) Un((t =) )_(n+1)(n+2)(n+3)(1+pn)(2+pn)(3+pn){3( pL2p+

1)2n*42(14p*+14p*+9p+3)n3+(120p*+109p+36 ) n*+6(23 p+1 1)n+36) (x(l—x))+

(it) U((t — 2)* ) =

Y

2 ((13p3 +18p% +11p+3)n + (—p® +54p* +55p + 18)n? + 33(2p+ 1)n + 18) }

Consequently, for every x € [0, 1],

2 1
lim nU2((t — 2)%2) = 2 ¢%(x)
n—o0 p
and
—3(2p+1)?

: 2170 _ 4. —
Jim n"UR((t = 2)%; ) 7

where ¢?(x) = z(1 — ).

* (), (1.2.1)
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Remark 1.2.4. From Lemma 1.2.3, we have

2p+1) 1(2p+1)
Us((t — )% @0t D) oy <122HD Ty o
Ht—nha) € @) < i, Ve e 1)
2

= 0y p (say),

and for every x € [0, 1],
C

U((t — 2)'50) < 0 ),

where C' is some positive contant dependent on p.
In what follows, let ||.|| denote the uniform norm on [0,1], ||f|| = sup |f(x)].
z€[0,1]

Lemma 1.2.5. For every f € C[0,1], we have

ORI < A

Proof. Using Lemma 1.2.2; the proof of this Lemma is straightforward. Hence we

skip the details. O

Now, we present a theorem which will be needed to obtain a quantitative Voronovskaya
type theorem using the least concave majorant of the first order modulus of conti-
nuity.

Theorem 1.2.6. [65] Let ¢ € N{J{0} and f € C9)0,1] (space of q-times contin-

uously differentiable functions on [0,1]) and let L : C[0,1] — C10,1] be a positive

linear operator. Then

5013 e 2020 | M=t g, 1=y

r! q! g+ 1) L(|t — x|%;x)

where W is the least concave majorant of the first-order modulus of continuity.

1.3 Main results

1.3.1 Global approximation theorem

First we will establish a global approximation theorem for the operators UZ(f;z)

using the classical modulus of continuity.
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Theorem 1.3.1. Let f € C[0,1]. Then there ezists a constant C' > 0, such that

1UR(f3) = FON < Cwa(f;0n),
where 0, , 1s as defined in Remark 1.2.4 and C' > 0, is an absolute constant.

Proof. Let g € W?[0,1] and ¢ € [0,1]. Then by Taylor’s expansion, we have

t

o(t) — g(x) = (t — 2)g'(z) + / (t — u)g(u)du.

x

Applying UP(.; x) to both sides of the above equation, we get

Uttg:0) — o) = o @080 — ) + U2 [ (0 — itz )

)

Using Lemma 1.2.3 and Remark 1.2.4, we get

2tgi) ~ o)) = 0z(| [ 10wl wlan

Vi
< 1 0pp - aypin)
191 -
< —2 5n7p. (1.3.1)

Now, for f € C[0,1] and g € W?[0, 1], using Lemma 1.2.5 and inequality (1.3.1), we

obtain

UR(fi2) = f(o)] < [UR(f = g:2)| + |Uf (g5 2) — ()] + [ f () — g(2)]

lg”|

< 2l -+ E0e2,

Taking infimum on the right side of the above inequality over all g € W?2[0, 1], we

get
UL(fiz) — f(z)| < 2Ks(f;0%,), Vo e [0,1].
Consequently,
U£(s) = FOI < 2Ka(f307,).

Using the relation (0.5.2) between K-functional and the second order modulus of

continuity, we get the required result. This completes the proof. O]
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1.3.2 Local approximation theorem

Next, we shall prove a local approximation theorem by using the Ditzian-Totik

modulus of smoothness.

Theorem 1.3.2. Let f € C[0,1]. Then for every x € [0, 1], we have

2p+1
U2(530) = 1) < Cuono (111251
where C' > 0, is an absolute constant and ¢(x) = \/x(1 — x).

Proof. Let g € WZ[0,1] and ¢ € [0,1]. Then by Taylor’s expansion, we have

o(t) = o) = (t = )¢ (&) + [ (¢ = w)g"(u)dc

Now applying U?(f; ) to both sides of the above equation and using Lemma 1.2.3,

U;;( / t(t — w)g" (u)du; g;)

/; 1t — ullg (u)|du m) (1.3.2)

we get

UR(g:z) —g(x)] = |g'(x)UR(t — zi2)| +

slm(

Since ¢?(x) is a concave function on [0,1], for u = Az + (1 — A\)t, 0 < A < 1 and

z € (0,1), we get,

|t—u|:|t—)\x—(1—/\)t|< At — x| <|t—a:|
?*(u) A+ (1=Nt) = A*(z) + (1= A)¢*(t) = ¢*(x)

Combining this inequality and equation (1.3.2), in view of Remark 1.2.4 we obtain

Us(gi ) — g(a)] < w( t%%%W%Wm;Q
1 1!
< oI - e
20+ 1, 5
< 22N,
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Using Lemma 1.2.5 and taking infimum over all g € qu [0, 1] on the right hand side

of the above inequality, we have

Uz (fix) = fo)] < [UR(f = g; )I IU”(g; z) — g(@)| + |g(x) = f(2)|

< 2/f - g||+ ||cb2 I

2p+ 1
2hze (f; np + 1)’

IA

In view of the relation (0.5.3), we get the desired result. O

1.3.3 Voronovskaya theorem
Now we will establish a Voronovskaya type asymptotic for the operators UP(f;x).

Theorem 1.3.3. Let f € Lg[0,1]. If f" exists at a point x € [0, 1], then

lim nfVZ(f:2) = f(@)] = g 02(a) " o) (133)

The convergence in (1.8.3) holds uniformly if f” € C[0,1].

Proof. By Taylor’s expansion for the function f, we may write

(t— =)

@)+ ) (- @)

f@t) = flz) = (t —2)f'(x) +

where n(t,z) — 0 as ¢t — z and is a bounded function, V¢ € [0, 1]. Now, applying

U? on the above Taylor’s expansion and using Lemma 1.2.3, we get

() = 1) = U= 0 @)+ U (S g )+ 02 (e — a7

n
f”;x) (2np +n + 1>>$(1 _a) 4+ UP (n(t, 2)(t — 1)’ x) .

(n+1)(np+1

Hence,

lim (U2 (f;2) - fa)] = 2D

n—o0

where F' = lim nU? <77(t,x)(t — x)z;w). Now we shall show that F' = 0. Since

n(t,x) — 0 as t — x, for a given € > 0, there exists a ¢ > 0, such that |n(¢,z)| < e
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whenever |t — z| < 0. For |t — x| > §, the boundedness of n(t,z) on [0, 1] implies

(t — x)*

52

that [n(t,z)| < M , for some M > 0. Let xs(t) be the characteristic function

of the interval (x — 6,2 + 0). Then, from Lemma 1.2.3, for every x € [0, 1], we have

0z (nte.a)(e - 20| < 0z(Inte. 0l - o)

+ vzttt - 2P0~ xalo)ia)
< eU5<(t — m)2;x) + %Uﬁ((t — x)4;x)

1 M 1
Thus, for every z € [0, 1], we get

Uﬁ(n(t,x)(t—m)Q;x>’ _ 60(1)+%0<1).

n

n

Taking limit as n — oo, due to the arbitrariness of ¢ > 0, we get F' = 0. This
completes the proof of the first assertion of the theorem.

To prove the uniformity assertion, it is sufficient to remark that §(e) in the above
proof can be chosen to be independent of z € [0, 1] and all the other estimates hold

uniformly on [0, 1]. This completes the proof. ]

1.3.4 Quantitative Voronovskaya type theorem

In the next result, we establish a quantitative Voronovskaya type estimate for the

operators UF.

Theorem 1.3.4. For f € C?[0,1] and x € [0, 1], we have

va(fia) = o) - Lo - 0| < S Do (1),

where, M > 0 and &(f;.) is the least concave majorant of first order of the function

w(f;.)(see[65], Thm 2.1), defined as

sup (e —2)w(f5y) + (y — z)w( ;I)7 0<e<l,

O(f;€) = 0<a<e<y<1 y—x
w(f7 1)7 e > 1.
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Proof. Using the Cauchy-Schwarz inequality, we note that

gl —afte) _ [UR—5e)
UR((t — )2 x) = \/Uﬁ((t —2)%x) (1.3.4)

For g = 2, using Theorem 1.2.6 and equation (1.3.4), we get

vatsie) - ) - Lo - s < B DD (pr L 2T
Up((t —2)%a) (L, 1 JUR((t —2)% )
= ol ‘”(f’ﬁ\/U,e((t x)Z,a;))
1L @2p+1) oo M
s e @)
This completes the proof. n

1.3.5 Rate of approximation

In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators Uf in an integral form as follows:
1
vafi) = [ Keeof @t (135)
0

where the kernel K”(z,t) is given by

K5, Zp @)t (0) P (@)8(0) + pria (2)0(1 = 1),
d(u) being the Dirac-delta function.

Lemma 1.3.5. For a fized x € (0,1) and sufficiently large n, we have
(2p+1) ¢*(x)
(np+1) (z —y)?

(20+1) ¢()
(np+ 1) (z— 2

(1) &hlz.y) = J) Kf(x,t)dt < ,0<y<uw,

(i) 1—¢&0(x,2) = [} K&(x,t)dt < r<z<l1.
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Proof. (i) Using Lemma 1.2.3, we get

(ny) = /Kﬁ(x,t)dtg/oy(x_t> KP(w, )t
0

T —y
< UN((t—x)%2)(z—y)~°

(2p+1) ¢*(x)

= )@y

The proof of (ii) is similar hence the details are omitted. ]

Theorem 1.3.6. Let f € DBV ([0,1]). Then, for every x € (0,1) and sufficiently

large n, we have

- 2oL fen) = fa)| | 241
2(a) = @l <\ 2ot TR LD, 2
Vr] = x
/ K2 , 2p+1 ¢*(x)
WA st(-a)/k (1) =0V
2.V W= V()

where f! is defined by

f@t)y=fa=), 0<t<u
fi(t) = 0, t=uzx (1.3.6)
)= f(at) z<t<l,

Proof. Since UF(1;z) = 1, using (1.3.5), for every x € (0,1) we get
1
Ui = 1) = [ K@ (o - )
_ / Ko ) / " F (w)dudt. (1.3.7)
0 T
For any f € DBV|0,1], from (1.3.6) we may write

) = (Felw) + 5P G4) + £ =) + 5 ) = Fo=))sgnlu — 2

() = S0 )+ f @) (1.33)
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where

Obviously,

/01 (/; (f/(“) - %(f'(xﬂ + f'(l“—))) 5x(U)du) KP(z,t)dt =0.  (1.3.9)

Using Lemma 1.2.3, we get

/01 (/t %U () + f’<x—))du) K?(z, t)dt

= S0 + ) [ K

= S ) + P ) UR((E — );)

= 0. (1.3.10)

Applying Cauchy-Schwarz inequality, we have

/1 KP(2,t (/tl (ot )—f’(x—))sgn(u—x)du)dt

_—|fI+ |/|t—x|K”a:t
= 1) ) = Fam) | Ut - ala)
1/2
<5 1) = fao) ] (e - o) (13.11)

Using Lemma 1.2.3 and equations (1.3.7-1.3.11) , we obtain

P(fx)— f(x 1’95—'3:— 2p+1$
Un(fiz) — [(@)] < S| (a+) = fl(z—)] (np+1>¢()

duK”xtdtJr//( )Kpa:t)d‘

(1.3.12)

Now, let

/ / w)du) K (x, )dt,



and

/ / w)du) K (z, t)dt.

Thus our problem is reduced to calculate the estimates of the terms A?(f’, z) and
B (f', ). Since f: dih(x,t) <1 for all [a,b] C [0, 1], using integration by parts and

applying Lemma 1.3.5 with y = z — 2/+/n, we have

( du)dtg (@, t)'
/ 0 (x,t)(f)a(t) t‘

/r IWxtW+/\ (0)] |€0(z, 1)/ dt

AL @) =

IN

2p+1 , .z
= np+1 / )z —1) dt+/ \/
2p+1 , B . |
= / Jo—)di + ﬁmyﬁ((nx)
z—x/\/n % . .
- %Qf(l’)/o \/((fl)x)(-f—t)*th—k% \/ ((f/)x)

t

Substituting v = z/(z — t), we get

N @ Vi@
A C%ﬂ”VWmﬁzuf \/ ((f).)du

IA IA
K 8
L L
<= w\w
+
= <=
&
—
&h
g
QL
=

i o/t
Thus,
, 241, . e z N\
AL )] < 2w ;x_\/m((f >x>+%$_>//ﬁ<<f )).  (1.3.13)

Again, using integration by parts in B?(f',z) and applying Lemma 1.3.5 with
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z=ux+ (1 —x)/\/n, we have

BA(f \2)] = / / duK”xt)dt‘
= // u)du)di(1 = &f(,1)) // w)du)d,(1 — & (z,1))

- U((f) (w)du)(1 — (. t”L‘/x (F)alt) (1 = €8, 1))t

[ [ - )

[ (- o) - [ (100 - g0y

o| [ ma - fﬁ@at»]: - [~ &2 )it

[ .00 =g+ [ (.00 -ge t>>dt]

20+ 1 n .

n/;——il_—l /\/ +(t — ) dt—i—/ \/

2p+1 ! ¢ (1—2) z+(1-x)/v/n

— np + 1¢ (-T) /m—i—(l—x)/\/ﬁ \!(f’)x(t — 1’)_ dt + \/ﬁ \/ (f/)a:

By substituting v = (1 — z)/(t — =), we get

IN

x+(1 z)/u a+(1—z)//n
, 2,0—i—l VR (1—2)
Bl < e / ot S,
o+ ( 1 —) z+(1-z)/v/n
_ 2t P wH a4 L= Vo)
~ np+1( 1—x \/_ v z
np+1( 1—x NG v z

(1.3.14)

Collecting the estimates (1.3.12-1.3.14), we get the required result. This completes

the proof. O
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Chapter 2

Bézier variant of
genuine-Durrmeyer type operators

based on Polya distribution

2.1 Construction of Operator

In this chapter, we define the Bézier variant of the genuine Bernstein-Durrmeyer
operators given by (1.1.3) and study some approximation properties.
Piltanea [127] defined a class of operators U, : C[0,1] — [],(the class of all poly-

nomials of degree at most n) as follows:

., e n—1 1 tkpfl(l _ t)(nfk)pfl _ . o o
Titrin) = 3 (| i g0 Prale) + SO =21+ £ 027

(2.1.1)

where p > 0, z € [0,1] and P, . (2) = (Z) (1 —2)"
Remark 2.1.1. Let us consider a function f :[0,1] — R,

a?sin L, x #0,
flz) =
0, z=0.
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For p =1 and n = 20, we computed the error of approximation for U given by

(1.1.3) and U, given by (2.1.1) at certain points from [0.6,0.7] in the Table 1.

Table 1. Error of approzimation for UP and U’

v | |U(fix) = f(@)] | U (f;2) - f(2)]
0.60 | 0.001239490900 0.001509158700
0.61 | 0.000351701000 0.001971924300
0.62 | 0.0004378093000 | 0.002365328800
0.63 | 0.001135096600 0.002695352000
0.64 | 0.001746098000 0.002967653800
0.65 | 0.002276601100 0.003187565800
0.66 | 0.002732224700 | 0.003360091000
0.67 | 0.003118397000 | 0.003489901500
0.68 | 0.003440343200 0.003581349400

From the above results it follows that the error of approzimation for UF is better

than UZ to the function f at the points x; = 0.6 + 0.01 -4, 2 = 0, 8.
Here, we propose a Bézier variant of the operators given by (1.1.3) as
Uhalfix) =D FLQu0w), (2.1.2)
k=0

where, Q(x) = [Jor(2)]* = [urrr(2)]*, @ > 1 with J,x(2) = S, " (@),
when £ < n and 0 otherwise. Clearly, Uf , is a linear positive operator. If a =1,
then the operators U , reduce to the operators UJ.

The aim of this chapter is to investigate a global approximation theorem, a
direct approximation result, a quantitative Voronovskaya type theorem and the rate
of convergence for differentiable functions having derivatives of bounded variation

on [0, 1] for the operators (2.1.2). Lastly, we show the rate of convergence of these

operators to certain functions by some illustrative graphics.
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2.2 Auxiliary Results

In what follows let ||.|| denotes uniform norm on C10, 1].

Lemma 2.2.1. Let f € C[0,1]. Then, we have

U () IS all fI

Proof. Using the inequality | a® — b* [< | a —b | with 0 < a,b < 1, > 1 and

from the definition of QS,Z, we have

0 < [Juk(@)]® = [Jogr1 (@) € a(Jup(2) = Jupsr(z) = aplly" (@).

Hence from the definition of Uf , and Lemma 1.2.5, we obtain

U7 () I<a [ URA) < all -
This completes the proof.

Remark 2.2.2. We have

3

U J(ei) = Y Q%) (x) = [Juol2))”
k=0
= [ pffj”%:o] =1, since Y _pl;"(2) =1
j=0 j=0

The operators Uf , can be expressed in an integral form as follows:
1
Utalfio) = [ Kpa(e 070
0
where
n—1
Kfo(2,t) = ) Qnu(@)0 1 (1) + Q5 o(2)0(1) + Q5 (2)8(1 — 1),
k=1
d(u) being the Dirac-delta function.

Lemma 2.2.3. For a fized x € (0,1) and sufficiently large n, we have
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20+ 1 ¢*(x)

i) ¢ t)dt < a L0<y<ua,

(1) naiﬂy fO nax np+1(x_y)2 =Y z
2 1 ¢?

(i) 1—¢r = [VK? (2, t)dt < oL @) ci<,
np+1(z—x)2

Proof. (i) Using Lemma 2.2.1 and Remark 1.2.4, we get

v r—t\?
haly) = / xtdt</ ( )Kﬁ,a(x,t)dt
0 r—y

o Unallt=0%a) _ Un( - a)e) _ 2pt 1 B()

(x—y2 —  (@-y? T nptl@—y?

The proof of (ii) is similar hence the details are omitted. O

2.3 Main Results

2.3.1 Direct results

For f € C[0,1] and § > 0, the appropriate Peetre’s K-functional [129] is defined by

Kolfi0) = inf {nf gl +8llg +62ug"u}. (23.1)

geW?2[0,1]

From [47], there exists an absolute constant C' > 0, such that

Ks(f;7) < Cws(f5/7), (2.3.2)

where ws(f;/7) is the second order modulus of continuity of f € C[0, 1].
First, we establish a global approximation theorem for the operators Uf , using the

classical modulus of continuity:.

Theorem 2.3.1. Let f € C[0,1]. Then there ezists an absolute constant C' > 0,

such that
NUL(f: ) = FOI < Cwalfs /ot /26,,),

where 9, , is the same as defined in Remark 1.2.4.
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Proof. Let g € W?2[0,1] and ¢ € [0,1]. Then by Taylor’s expansion, we have

4(t) - g(z) = (t — 2)g'(z) + / (t — u)g(u)du.

Now applying U , to both sides of the above equation, we get

U2u5:) = 0(0) = ¢ @02t~ ) + U2, ([ (6= g )i ).

Applying Cauchy-Schwarz inequality and Lemma 2.2.1 and Remark 1.2.4, we get
t
U2algi) =) < 1902l sl + |z ([ (0= gyt )

Uhal(t — 2)% 2)

< gLt =zl 2) +
< / P _ 2. Hg
< gl Ugalt —2)%2) ) +a

g//
Valg'l|on, + ol 5 Hcﬁ,,. (2.3.3)

Now, for f € C[0,1] and g € W?[0, 1], using Lemma 2.2.1 and (2.3.3), we obtain

IIH

Ut — 7))

IN

UL (fi2) = f(2)| < |ULL(f = gi o) + UL o (g;2) — g()| + | £ () — g(x))|
< (@t DI gl + Valg I, + 1215z,

Taking infimum on the right side of the above inequality over all g € W?[0,1], we
get

Upo(fiz) = f(2)] < (a+1)Ks(f;0'?5,,), Yo el0,1].
Using the relation (2.3.2) between the K-functional and the second order modulus

of continuity, we get the required result. This completes the proof. O

Now, we establish a direct approximation theorem by means of Ditzian-Totik

modulus of smoothness.

Theorem 2.3.2. Let f be in C|[0, 1] and ¢(x) = \/x(1 — z) then for every x € (0, 1),

we have

(2.3.4)

UL (i) — f(x) |< Cuoy (f; 20+ 1),

np + 1

where C' is a constant independent of n and x.
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Proof. Using the representation g¢(t) = g(z) + f g (u)du, we get

U o(giz) — g(x)] = U5a</ 9 (u)du; x) : (2.3.5)
For any x,t € (0,1), we find that
g (w)du (2.3.6)
But,
b ! 1
[ = | [ ==l [ (=)
< 2(|\/E—¢E|+|¢1—t—x/1—x|)
= 2|t — x| < ! + ! )
B Vit vz Vi—i+V/1-z
1 22 |t — x|
2|t 2.3.7
<A ’<f iz ) o(x) 230
Combining (2.3.5)-(2.3.7) and using Cauchy-Schwarz inequality, we obtain
UL o(g52) — g(@)] < 2v2||6g||¢7 (@)U, (|t — ;)
1/2
< 2Valog o™ o) (U2t - 0%52))
1/2
< 2alloglo o) UL - 0%
Now, using Remark 1.2.4, we get
2 1
Ut ol ) = (@) < €\ L7 o (23.5)

Using Lemma 2.2.1 and (2.3.8), we can write

IN

| Una(f ca) = f(2) | | Unall = gi2) | +[f(2) = g(@)[+ [ U} o (g;7) = g(2) |

o(117 = all+ ({22 ea) ). (23.9)

Taking infimum on the right hand side of the above inequality over all g € W,[0, 1],

IN

we get

2 1
| U2li0) = @) < O (132251 ).

Using the relation (0.5.3), this theorem is proven. O
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2.3.2 Quantitative Voronovskaja type theorem

In the following we prove a quantitative Voronovskaja type theorem for the oper-
ator U ,. This result is established using the first order Ditzian-Totik modulus of

smoothness.

Theorem 2.3.3. For any f € C?[0,1] the following inequalities hold

) | {UtalFs)= o)~ PV lt=i0) = @0 (0% |
< Clay (", 6%,

i) |0 {02100 @) - POVl 51 @2 (-050) |
<Co(x)wy (f',n7'12).

Proof. Let f € C?0,1] be given and ¢,z € [0,1]. Then by Taylor’s expansion, we

have

f0) = @) = (t=2)f @) - 3t =02 @) = [ @ ufwdu= [ (-0
— [ =l - e

Applying Uf ,(+; ) to both sides of the above relation, we get

US ol f12) = F(@) = PVt 23) — 3 f"(@)08, (¢ — 2% 7)

/ 1t — ullf" () — f"(2)|du

<Ut, ( ;x) . (2.3.10)

The quantity was estimated in [58, p. 337] as follows:

[ 157 = @) e ulda

/ () = (@)t = uldu| < 2|[f" = gll(t — 2)* + 2l|¢g'll¢~ ()]t — 2I?, (2.3.11)

where g € Wy[0, 1].
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Now combining (2.3.10)-(2.3.11), applying Cauchy-Schwarz inequality and using
Remark 1.2.4, we get

UL o(f5:0)= F2) = 1 (@) UL (1=25:0) =5 1 (@) UL (=) 2)
< 21" = gUL ((t = @)%5) + 20109/ |67 (@)UL, (It = af's)
2 1 2 i oA—1 p 2. 1/2 4 4.

Do)+ 20llog 0 ) {UA(E — )%y {UL (¢ - 2)'5))

2p+1
np+1

1 /2 1
PN gl + 1| L ol

1/2
<2/|f" - gl /

5(@) + 20 oo/ || L2 62(a)

< 2]/ ~ glla o

{O@If" = gll + 26 (@)llog'lI}

Since ¢?(x) < ¢(z) < 1,z € [0, 1], we obtain

Ul ol f:2) = (@)~ F (@) UL ot —52) = 3 ") UL ((6—2)% )

C
<—{If"=gll+n"6@)log'l1}

and

UL ol f:2)— (@) F (@) UL ot —52)— 3 "2V ((6—2)%: )

C
<o) {Ilf"—gl+n 20|}

Taking the infimum on the right hand side of the above relations over g € W,[0, 1],

we get
1
0 {02 Fi0) = F0) = P U0 1 @02 (e=a0)
CEy (f"; o(x)n™'72)
<
Coa) Ky (f;n12)
Using relation (0.5.3), the theorem is proved. O
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2.3.3 Degree of approximation

Lastly, we discuss the approximation of functions with a derivative of bounded

variation on [0, 1].

Theorem 2.3.4. Let f € DBV|0,1]. Then, for every x € (0,1) and sufficiently

large n, we have

va 2p+1 ,

Uzalfi) = f@] < AU ) +af =)+ alf ) = S o) g o
[f] x
20 +1 ¢
(v f) (V)
k=1 x—x/k z—z/\/n
2 +10a6) Wn] [z+(1-x) 1_33 z+(1-z)/Vn ,
Tl 1—:5]; \/ f BV \f Je |

where f. is defined by

f@)—f(z=), 0<t<um
fa(t) = 0, t=uz (2.3.12)
fit)y=f(z+) z<t<l.

Proof. Since Uf (1;x) = 1, using (2.2.1), for every x € (0,1) we get

U (f0) — f(z) = / K2 () (f(t) — f(a))dt

— /O 1 K? (x,1) / t £ (u)dudt. (2.3.13)

For any f € DBV|0,1], from (2.3.12) we may write

Pl = 20+ () + af @) + () - 1) (sgntu—2)

a+1
+Z ¥ 1) +a(w)lf(w) = %(f'(f“r) +.f'(x=))); (2.3.14)
where
1, u==x
%(U):{ 0, u#x

¢ (x)



Obviously,

/01 (/: (f/(“) - %(f’(er) + f(iﬂ—)))%(t&)du) K? (z,t)dt =0. (2.3.15)

Using Lemma 2.2.1, we get

A = /01(/;ail(f’(xﬂ+af’(x—))du)Kfl’ja(x,t)dt
= LD Fafeo) [ - DKL

a+1
= () af e )UE (¢ - 2 2) (2:3.16)

and
| = /01 K2 (2,1) (/t %(f’(:m) - f’(x—))(sgn(u _ o)+ Z:)du) dt‘

— '% (f’(x+) - f’(a:—)) { - /0 </t <sgn(u — )+ Z - Ddu) Kg,a(x,t)dt‘

([ (ot o+ 2 gt
< P = o] [ ol Kl
- aj‘_lyf'(x+) — f’(a:—)\Uf{}a(\t—a:\ x) (2.3.17)

Using Lemma 2.2.1 and equations (2.3.13-2.3.17) and applying Cauchy-Schwarz in-

equality, we obtain

2p+1
np+1

o , , 2p+1
b ) = Flam)Vay L

/Oz < / t f;(u)du) K;;’a(x’t)dt‘
/: (/; f;(u)du) K{l’,a(a:,t)dt‘. (2.3.18)

A= [ ( / t f;<u>du) K (a0t
40

ULa(fi) = F@] € —I7 ) +af eo)lVa

()

¢(x)

Now, let



and

o ([ o)

Thus our problem is reduced to calculate the estimates of the terms Af (fr,z) and

B! (fs, 7). From the definition of £/ , given in Lemma 2.2.3, we can write
AP (fr, Ydu | =&° t)dt.
ot = ([ fwan) S
Applying the integration by parts, we get

At < [ 101t
0 x
ETACIE: d T dt == I + L.
< [ T [ R0 i 1,

B

Since f,(z) =0 and & (v,t) <1, we have

Lo [ 100 - f@lgae < [ . (\/n) @

un
z z " z
< \ £ / dt = 7 \ %
x—% x—% x—%

By applying Lemma 2.2.3 and considering t = = — f, we get
u

2 +1 YR
ho< ol i [T 8 - Ll

20+1 , =\ dt
<
= anp+1¢ (I)/O (\/fm) (x —t)2

np+1 x J; T T onpt+l o &~ U

T—= = -2
Therefore,
[\/ﬂ x T
2p + 1 ¢*(x) x
AP (flx)] <« "+ —= ! 2.3.19
Al S altmm = M:Mb \m$yf (2.3.19)
k v



Also, using integration by parts in B2(f., x) and applying Lemma 2.2.3 with
z=u1x+ (1 —x)/y/n, we have

1 (/tf/ (u du) K, x,t)dt‘
/ (/ Jolu )a_ (1= &5 ol 1))dt
+ / (/xf( )du)g(l_gp @ t))dt‘

_ H w)du)(1 — €2 ] /f — &0 o (2 t))dt

|Bf o fr)] =

4/ w S =€l 0
/(f D)1= €0 2) — [ L0 - o)

n U(f( )du) (1 — €2 . ( ] /f (1 =& [, t))dt‘

D~ & ﬁ+/f 1—¢4xmﬂ

aigii / (\/f) (t—x) 2dt+/ \/fdt
2p+1 ' t / —2 -z /
am¢ (2) /n:—l—(l—a:)/ﬁ <\x/ f;;;) (t — ) dt + Jn ( \x/ fx) :

By substituting v = (1 — z)/(t — ), we get

z+(1—z)/u z+(1—2)//n
/ 20+1 v -1 l—x /
|B£L,afzv'r)| anp+1 \/ f (1_'1:) du + \/ﬁ \/ fx

IN

IN

IN

xT

+(1—2)/k

o)1 2y W sV
< an’;il(f(iz:( \/ f) \/_( \/ fx). (2.3.20)

T

Collecting the estimates (2.3.18 - 2.3.20), we get the required result. This completes
the proof. O]
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2.4 Numerical examples

Example 2.4.1. Let us consider the following two functions f, ¢g:[0,1] = R

1
2?sin —, x # 0
T

flz) =
0,z=0
and
(1—:10)(30517T ,r#1
g(x) = o
0,xr=1

The function f is differentiable and of bounded variation on [0, 1], while g is contin-
uous but is not of bounded variation on [0, 1].

1.3
Forn =20, p=1and a € {5,1,5}, the convergence of UL, to f and g is

wllustrated in Figure 2.1 and Figure 2.2, respectively.

Figure 2.1: The convergence of U (f;x) to f(z)
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Figure 2.2: The convergence of Uf (g;x) to g()
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Chapter 3

Quantitative Voronovskaya and
Gruss-Voronovskaya type
theorems for Szasz-Durrmeyer
type operators blended with
multiple Appell polynomials

3.1 Introduction

For f € C(RJ) and x € R, Szdsz [152] introduced the well-known operators as

Sulfia)=e™ ) 1), (3.1.1)
! n
k=0
such that S,(|f];x) < oo. Aral et al. [19] proposed a generalization of Szasz-
Mirakyan operators defined in (3.1.1) by introducing a function p and studied some
shape-preserving properties such as the p-convexity and the monotonicity for these
operators. Several generalizations of Szasz operators have been introduced in the

literature and authors have studied their approximation properties.
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Jakimovski and Leviatan [96] proposed a generalization of Szész-Mirakjan oper-

ators by means of the Appell polynomials as follows:
P =5 Lomio ( ) (3.1.2)

where g(z Zan , (1) # 0 is an analytic function in the disc |z| < r, r > 1

and pg(7) denote the Appell polynomials having the generating function
Zpk ok, pr(z) >0, Vo e Ry,

For g(u) = 1, the operators defined by (3.1.2) reduce to Szasz-Mirakjan operators
given by (3.1.1).

Now let us recall the definition of multiple Appell polynomials [108]. A set of
polynomials {px, k,(7)}75 1,0 With degree (k1 + k) for ki, k2 > 0, is called multiple
polynomial system (multiple PS) and a multiple PS is called multiple Appell if it is

generated by the relation

Aty tp)er 1) = 3~ p—]Z’TZ' te52, (3.1.3)
k1=0 ko=0 1:ha

where A is given by

Ay koo
A(ty,t2) = Z Z Pl s, (3.1.4)

k1=0 k2 =0

with A(0,0) = agp # 0.

Theorem 3.1.1. For multiple PS, {pr, x,(7)}7 1,—0, the following statements are
equivalent:

(@) {Pky ko () 375 1,0 78 @ set of multiple Appell polynomials.

(b) There exists a sequence {ak, gy }oy p,—0 With ago # 0 such that

DPho ko (T Z Z (k1> (kQ) Wy —p by —ry T T2

r1=07r2=0

(c) For every ky + ko > 1, we have
Pho s (€)= F1Diy 1,15 (2) + KDy op—1().
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For any f € C(R{), Varma [154] defined a sequence of linear positive operators

as

» <nx)

_ o] 00 k1,k -

e ™ 12 2 kl +k2

K, (fix)=—— , 3.1.5
(fi2) A(1,1)kz::0k Jor ey f( n ) (3.1.5)

2=0

provided A(1,1) # 0, Zk(ll'“f) > 0 for ky, ky € N, and series (3.1.3) and(3.1.4) converge
for |t1| < R17 |t2| < Ry (Rl, Ry > 1) respectively.
For a > 0, p >0, z € R} and f : R — R, being integrable function, Paltanea

[128] defined a modification of Szdsz operators as

: — S —ax (Oz.ﬁ(})k OO Oépe_a”t(apt)kf’_l
By = Soemerliall [Taclon

k=1
which reproduce linear functions and established the rate of convergence of these

F(O)dt + e £(0), (3.1.6)

operators for continuous functions by means of moduli of continuity.

Motivated by the above research work for f € Cg(R{), the space of all continuous
functions satisfying | f(¢)| < Ke™, (t > 0) for some positive constants K and a, we
propose an approximation method by linking the operators (3.1.6) and the multiple

Appell polynomials as

nx

—nz Py ko (_) oo —npt (k1+k2)p—1
. _ e 2 / npe "t (npt)
O = qap 2R S Tlarky O

K1 fythy>1 k2
e

+—= — | /(0),
A(1’1>p0,0( 2 )f( )
and establish a quantitative Voronovskaya type theorem, Griiss Voronovskaya type
theorem, a local approximation theorem by means of Steklov mean, a Voronovskaya

type asymptotic theorem and error estimates for a space. Lastly, we study the rate

of convergence of functions having derivatives of bounded variation.

3.2 Basic Results

In order to prove the main results of the chapter, we shall need the following auxiliary

results:
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Lemma 3.2.1. For K, (t';z), i =0,1,2,3,4, we have

(i) Kn(1§x) =1,

At1(17 1) + At2<17 1)

(i) K,(t;z) = nA(1,1) )

(iii) K, (t*; z) :x2+%{1+A<12 0 (At1(1,1)+At2(1,1)>}+m{ml(1,1)+

At2(17 1) + At1t1(17 1) + 2At1t2(17 1) + At2t2(17 1)}7

(iv) K (t%2) = o +3i{1+A(11 3 (At1(1,1)+At2(1,1))}+£{1+A<3’ )<2At1(1,1)+

2At2(17 1) + At1t1(17 1) + 2At1t2<17 1) + At2t2<17 1>> } + n
At2(17 1) + 3At1t1 (17 1) + 6At1t2(17 1) + 3At2t2<17 1) + At1t1t1 (17
3At1t1t2(17 1) + 3At2t2t1(17 1)}’

(v) K,(t%; 1) :m4+f{6+A(f ) (At1(1,1)+At2(1,1)>}+2—z{7+ﬁ (3At1(1,1)+

3A4, (1, 1)+Ap 4, (1, 1) 42444, (1, 1)+ A, (1, 1)) }+n£{1+ (14At1(1, 1)+

1
A(L,1)
14 A, (1, 1)+18 A4+, (1, 1)+36Asy e, (1, 1)+18 A4, (1, ) +4 Ay 46, (1, D) +4 A, (1, 1)+

1
12At1t1t2(1 1>+12At2t2t1(1 )) }+W{Atl(1, 1)+At2(17 1)+7At1t1(17 1)+
1414151752(1 1>+7At2t2(1 1)+6At1t1t1( )+6At2t2t2<17 1)+18At1t1t2<17 1>+18At2t2t1 (17 1>+

Atltltltl (1) 1) + At2t2t2t2 (17 1) +4At1t1t1t2 (17 1) +4At2t2t2t1 (17 1) + 6At1t1t2t2 (17 1) }

The values of the moments K, (t;z) for i = 0,1,2 are given in [154] while the
values of K, (t%;x) for i = 3,4 have been obtained by us after simple calculations

and hence the details are omitted.

Lemma 3.2.2. For the sequence of linear positive operators LF(t;z), i = 0,1,2,3,4,

we find

(1) L(Lx) =1,

At1(17 1) + At2(1a 1)
nA(1,1) ’

(11) LE(t;x) = x +
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(iii) L0(t%:2) = x2+%{ (1+%) LD (Atl(l, 1)+A,, (1, 1)> }er{ (1+
%) (Atl(l, 1) + Ay (1. 1)) A (1,1) 4 2400, (1,1) + Ay (1 1)},

(1+%> +ﬁ(Atl(1,1)+At2(1,1)>}+%{(1+

{
(1+—) (Atl(l, 1)+ A, (1, 1)) + A (1,1)+2A4,,(1, 1)+

(”%*j ) (Atl(l 1)+ A4, (1, 1))+3(1+%) (Atmu, 1)+

Atltltl (17 1)+At2t2t2<1’ 1>+3At1t1t2(17 1)+3At2t2t1(17 1)}?

)
(v) L0t 2) = x4+%3{6<1+%) + A(f’ 5 (Atl(l, 1)+ Ay, (1, 1)) } +2—Z{ ((7+
6

§+E)+ (3(1+1)(At1(1 )+At2( )+Am<1 1)4+244,,,(1,1)+

p P p ! D
Atm(l,l)) +£{1 L ) <(14+ += )(Atl(1,1)+
+ 1)+ Apye, (1, 1)) +4 A4 (1, 1)+

1
Atz(l,l)) 18( — <At1t1 (1,1) —|—2At1t2(
LA
n4A 1,1) p p?

p
4At2t2t2( ) + 12At1t1t2(17 1) + 12At2t2t1 )

6 18 11

;) (At1<]‘7 1)+At2(17 1)) (7+ P +P ) (At1t1(17 1)+2At1t2(1v 1)+At2t2<1’ 1))+

1
6 (1+;) (Atltltl (17 1>+At2t2t2(17 1)+3At1t1t2(17 1>+3At2t2t1 (17 1)) +At1t1t1t1 (17 1)+

_l_

At2t2t2t2(17 1) + 4At1t1t1t2(17 1) + 4At2t2t2t1 (17 1) + 6At1t1t2t2(17 1)}

Consequently,

Lot 2)a) = %(1 4 %) 4 m{ (1 + %) (Atl(l, 1)+ Ay (1, 1))
+ A (1, 1) + 24, (1,1) + A, (1, 1)}

C 1
< . (1 + ;) (1+2z) =082 (2), (say). (3.2.1)
where,
C = max (17 ‘Atl(l, 1)' + ‘Al‘a(la 1)' + ‘Atlih((ll’ 11))“+ 2’At17t2<17 1)' + |At27t2(17 1)‘)
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and

32 2 1 x 6 11 6 1
14 — 4. = — — - —a - ) Y
L’n((t :L’),Ji) 2 {1+p+p2}+n3[<1+p+p2+p3>+A(1,1){
33 20 1
(13 + ? + ?) (Ah(]-v 1) + Atz(lv 1)) + 6<1 + ;) (Atltl(l’ 1)

+2At1t2(17 1) + At2t2(17 1)) - 6At1t1t1(1? 1) - 6At2t2t2(17 1)}:| .

Using Lemma 3.2.2, after simple calculations, the proof of the lemma easily
follows. So, we omit the details. The expression for £2((t — x)% z) has not been
included in Lemma 3.2.2 because it is very lengthy and complicated however we
found its order of convergence in the following remark as it will be required to prove

the quantitative Voronovskaya type theorem.

Remark 3.2.3. From Lemma 3.2.2, we obtain
Ay (1,1) + A (1,1)

: Bl(s N _

nh_)rgonﬁn((t T);x) AT ; (3.2.2)
1

. p . 2. _ L

nll_{lolo nLh((t —x)%x) x(l + p)’ (3.2.3)
L2 4 2 2 1

lim n°L0((t —x)%2) = 3271+ -+ — (3.2.4)
3 6 3 3.3 1

lim nL0((t —x)%x) = 15271+ p + o + ) (3.2.5)

3.3 Approximation theorems

Theorem 3.3.1. Let f € Cy(Ry). Then lim L(f;z) = f(x), uniformly on each

n—oo

compact subset of Ry .

Proof. Considering Lemma 3.2.2, it follows that lim £7(t';z) = 2', i = 0,1,2,

n—oo

uniformly on every compact subset of R{. Applying Bohman Korovkin theorem, we

obtain the desired result. O

For f € Cp(R{), the Steklov mean of second order [77] is defined as
fu(z) 2 / / 2f(z+u+v)— f(x+2(u+wv))|dudv, h>0. (3.3.1)
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Hence

4 h/2  rh/2
f(x) = fulz) = e AZJrvf(l’)dudU, and
0 0

1) = 8] uf(@) — D}F())

Thus, it follows that

1 fn = fI| < wa(f,h). (3.3.2)
Further, f1, f/' € Cp(R{) and
) 9
1< D), A < an £, 33

where 0, ,() is defined by equation (3.2.1).
Theorem 3.3.2. For f € Cp(RY) and x € R, we have
L50F:) = F(@)| < B0 (380 (0) + ol f: 6 (2).
Proof. Using the Steklov mean f, defined by (3.3.1), we may write
1L0(f52) = fo)] < [LR(0f = fu); o) + L5 (fu(t) = ful@); 2)| + | fu2) — f(2)].
Applying Lemma 3.2.2, we have

LR (HOIT <L (3.3.4)

Using inequality (3.3.4) and relation (3.3.2), we have

[L((f = f)s )| < If = Jull < w2l h).

Now by Taylor’s expansion and applying Cauchy-Schwarz inequality, we have

cg( / (= ) £ ()l x)
/;|t—u|du ;x)

= IV D7) + Sl — o)),

Applying Lemma 3.2.2 and using (3.3.2)-(3.3.3) in (3.3.4), on choosing h as 6, ,(z)

L5 (fa(t) = fu(); )| < |LR((E = ) fy(x); 2) | +

< IIAEedt - 2l @) + ||f;;||£z(

we get the required result. O]
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Theorem 3.3.3. For [ € C%(R]), we obtain

i [ i) = o) = 200D ER D ) 1 £ (14 0 o)

uniformly in x € [0,a],a > 0.

Proof. By Taylor’s expansion of f, for some fixed = € [0, a] we obtain

f@) = f(@) =t —2)f'(z) + %(t — )’ f"(z) + £(t,2)(t — 2)?, (3.3.5)
where £(t,z) € Cr(R{) and li_r>n§(t, z)=0.
Hence by linearity of the operators £, from relation (3.3.5), we get
nlE(fia) — F(@)] = neh(t—x:2)f (@) + snLh((t — %) f(a)
+ nLl(Et,x)(t — x)%2). (3.3.6)

Applying Cauchy-Schwarz inequality in the last term of the equation (3.3.6), we

have

[nLh (&t ) (t — 2)%2)] < \/ngﬁfz((t — ) a) L (E(t @) ). (3.3.7)
From Remark 3.2.3, it follows that

2 1
lim n?LA((t — x)*; z) = 322 <1 + -+ —),

n—00 1% p2
uniformly in z € [0, al.
Further, let £3(t,x) = v(t,z), x > 0, then v(t, z) € Cy(R{) and hence from Theorem

3.3.1, we get

lim £2(&3(t,z);2) = lim LP(v(t,7);2) = v(z,7) =0,

n—oo n—0o0

Hence from equation(3.3.7), we obtain

n—oo

im (net(€(t.2)(t - o50)) =0,

uniformly in = € [0, a]. Now, taking limit as n — oo in (3.3.6) and using Remark

3.2.3, we get the desired result. This completes the proof. O]
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3.4 Weighted approximation

Let O(z) > 1 be a weight function on RZ. We consider the following weighted space

defined on Ry as
Bo(Ry) :=A{f : |f(x)| < M;0(z), Vo € R and M; > 0}.
Further, let

Co(Ry) :={f € Byp(R]) : f is a continuous function on RJ},

and
\ - f(z)
Ci(RY) = {fGCg(]RS-) :Ch_)rgom = K; <ooy.
We define the norm in the space By(R7) as
f(a
171l = sup L
xeRg ([L’)

The usual modulus of continuity of the function f on [0, p] is defined as

wp(f;0) = sup sup [f(t) — f(x)] (3.4.1)

[t—z|<d t,z€[0,p]
Let us denote ||.||¢[q,5 as supremum norm on [a, b|. Throughout the chapter we have
taken 6(z) = 1 + 2.
Theorem 3.4.1. For x € [0,c] and f € Cy(R]), we have
||‘sz(fa ) - f“C[O,C] < 4Mf(1 + 62)77121,;; + 2Wc+1<f; nn,p)a
where 7;. , = max (EZ((t — )% :U))

z€[0,c]

Proof. Let x € [0,c] and ¢t > ¢+ 1 then ¢t — x > 1. Hence for f € Cy(Ry), we have

f(8) = f@)] < Mp(2+ £ +2?)
= M(2+22° + (t — 2)* + 22(t — 7))

< My(t — 2)*(3 + 22° + 27) < AMp(1 + 22)(t — z)>. (3.4.2)
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For z € [0,¢] and t € [0, ¢+ 1], we have

|t — |

1f@) = f(@)] Swenr(f;lt—2]) < <1 + )wc+1(f;5)- (3.4.3)

From equations (3.4.2) and (3.4.3), for x € [0,¢] and ¢ > 0, we have

10 = F < byt e -2 + (14 5 w0,

Applying Cauchy-Schwarz inequality and choosing 6 = 7, ,, we get
1
C2(fi0) = S < AN+ A8 = aia) + (1 G alia) (30
< AL+ 2 (6) + 2o Fiml)).

This completes the proof. n

Theorem 3.4.2. For [ € Cp(Ry), we have

i sup L) — J(2)

we (L a2

=0,
where n 15 some positive constant.

Proof. Since |f(z)] < ||f]le(1 + 2?), then for a fixed y > 0, we may write

1L(f;2) = f(=)] L4 (f;2) — f(2)] 1L (f;2) = (=)
) ) L e O R
< [I£5(f:-) = fllcom + %

L1+t
o lflle sup AT

et (yso0) (1+ 2217 (3.4.4)

Using Theorem 3.3.1, for a given € > 0, there exists k£ € N such that

€
— Vn>k
3/ fllo

[Lh(L+ 1% 2) — 1+ 2% <
Also, we can write

€

31f1le”

LP(L+t%2) <1422+ VYn > k.
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Hence,

LP(1+t%x) |1/ 1]o 2 ¢
Moy = v\ T3,

flle | €
m + 3 Vn > k.

Therefore,

£p(1 tQ'x) Hf“e €
f u n 7 < + =, Vn>k. 3.4.5
|| ”ezes[y,poo) (1 + w2)1+n - (1 + y2)n 3’ "= ( )

Let us choose y to be so large that

[1.f1lo €
— < - 3.4.6
(L+y*)7 — 6 (3.4)
In view of Theorem 3.4.1, for € > 0 there exists a n > [ such that
€
15 (f5) = Fllewy < 50 n 2L (3.4.7)
Taking m = max(k,[) and combining equations (3.4.4)-(3.4.7), we get
C£o(f: 1) —
| ”(1f’x)2 1{5@' < € n>m.
zeRY ( +x )
This completes the proof. n

Following [89], the weighted modulus of continuity @(g;d) for g € Cy(R{) is
defined as

w(g;0) = sup l9(z+h) = 9()| : (3.4.8)

0<|h|<8, zeRS (14 h2)(1+ 22)

Also for g € C3(R7), the weighted modulus of continuity has the following properties

(1) lim@s(g;6) = 0,
(i) @(g: \6) < 2(1 + A)(1+ )@(g:5), A > 0.
For g € Cy(R{), from equations (3.4.8) and property (i) of @(g; ), we get
90~ o) < (14 (=014 (s~ o)
< 2(1 + “%ﬂ) (14 6%)w(g;9) (1 + (t — x)2> (1+27).
(3.4.9)
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Theorem 3.4.3. For f € C;(RY), we have
P(F:q) — 1
sup £hf5w) — J(@)l < C'w(f; —),

seR} (14 22)? n

where C is a positive constant independent of n.

Proof. By the linearity and positivity of the operators L, we get

1Lh(fi2) = f(@)] < Lo(1f (1) — f(@)];2)

Using equation (3.4.9) and the Cauchy-Schwarz inequality, we get

2t - sl < 20t (1057 (1 - a2 )ia)

< 2014+ 8)w(f;6)(1 + 2?) Efl(l;:v)—l—ﬁfl((t—x)g;x)

\
v gen(le=ale) + gz (1o sl - o) |
{

2(1 + %) w(f;0)(1 + ) LE(1;2) + LF, ((t — )% :c)

+ %\/ﬁﬁ((t—x)z;az)
+ %\/cg((t_x)m) \/£ﬁ<(t—a:)4;x>}. (3.4.10)

Using Lemma 3.2.2, we obtain

IN

Lg((t — )% :c) < 01%(1 + 2?) (3.4.11)
and
Lr <(t — )% x) < 02%(1 + 2?), (3.4.12)

for some positive constants C; and Cy dependent on p and A(tq,ts).

Now combining equations (3.4.10)-(3.4.12) and taking 6 = \/g, we have

|LE(f;2) — f(z)] < 2(1+%)w(f;\/%)(1+x2){1+01%(1+x2)
+ VEVITE ) + VT VGV T |
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Hence, we get

L0 (frx) — f(2)] (. |1
swp TS < o1y

where C' = 2(1 + C; + /C1 + v/C11/C3). This completes the proof. O

3.5 Quantitative Voronovskaya theorem

In the following result, we discuss a quantitative Voronovskaja type theorem by
using the weighted modulus of smoothness @(f;0). Recently, many researchers (cf.

[5], [8] and [10] etc.) have made remarkable contribution in this area.

Theorem 3.5.1. For f, f,f € C;(RY) and any x € Ry, we have

At1(1,1)+At2(1,1)> (@) HH 1) L1

w(ezi - @) - o (2ol 2 ) o) AT

{ <1 + %) (Atl(l, 1)+ A (1, 1)> F Ay (1,1) 4 2400 (1,1) + Ap, (1, 1)}]

= O(l)w(f”; %) ,as n — o0o.

Proof. Let z,t € R}, then by Taylor’s expansion, we have

f"(x)

o (t — )+ E(t,z),

f@) = fz) + fi(a)(t —x) +

1 Y/
where E(t,z) = W(t — )% and ¢ lies between t and .

Now, we get

£A(fi) — fa) — F @)L~ i)~ L ep (- o) < cp0E )0

Multiplying by n on both sides of above inequality and using Lemma 3.2.2, we obtain

n(etsio - s@)) - o (Rt LS (0 2y

{ (1 + %) <At1(1, 1) + Ay (1, 1)) A (1,1) 4 24,0, (1, 1) + Ay (1, 1)” ‘
< nLP(|E(t,z)|; x). (3.5.1)

n
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Using the property of weighted modulus of smoothness given by (3.4.9), we get

f//((p) _ f/l(x)
2!

IN

(f"sle = 2[)(L+ (o — 2)*)(1 + 27)

gl

IN
N = N =

@(f"5 [t — )1+ (t — 2)*)(1 + 2%)

1+ (It —=l) _5 xD) (14 62w (f":0)

VAN
X -~/

(1+(t—2)*)(1+2%), 6 >0.

Also,

') = I"(@) ey
B 1+62)2(1+x2)gw(f”;5), it — x| > 0.

21+ 8P +a@(f"58), |t —a <3,
2! = v
. 2( 5

Now for 0 < § < 1, we obtain

f"(e) = ()
2!

< 8(1+2(f": ) (1 G ;4@4).

Therefore, we get

|E(t,z)] < 8(1+2H)w(f";9) ((t —z)? + (t ?54:6) )

Now by the linearity and positivity of the operator £? and using Remark 3.2.3, for

any x € RaL , we obtain

CllBCalkn) < 8L+ RO L2l - 2)%0) + 5oL - 2%

= 8(1+x2)w(f”;5){0(%) +O<%)}, asn — oo.

Choosing 6 = \/Lﬁ, we obtain

LO(E(t, 2)|iz) = 8(1+x2)w< ";né)()(%), asn — oo.
(3.5.2)

Hence combining (3.5.1) and (3.5.2), we reach the required result. O
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3.6 Griuss-Voronovskaya-type theorem

Griiss [72] first established an inequality which shows the error estimate of the
integral of product of two functions with the product of integrals of the two functions.
Acu et al. [10] determined some applications of Griiss inequality for Bernstein,
Hermite-Fejer operator, interpolation operator and convolution-type operators by
using least concave majorant. After that Gonska and Tachev [69] discussed Griiss-
type inequality using second order modulus of smoothness. For the first time Gal
and Gonska [64], studied the Griiss Voronovskaya type theorem for the Bernstein,
Paltanea and Bernstein-Faber operators by means of the Griiss inequality which
concerns with the non-multiplicavity of these operators. For more papers in this
direction we refer the readers to (cf. [5], [11], [42] [153] etc.) In the following

theorem, we study the non-multiplicativity of the positive linear operator L~.

Theorem 3.6.1. For f'(z), ¢'(z), ["(x), ¢"(x), (fg)'(x), (f9)"(x) € CF(Ry),

there holds the following equality:

n—oo

i of 22(73:0) = £33 ) C80as ) | = (142 ) P00,
Proof. We have
(F9)'(2) = £"(@)g(a) + 21 (2)g' (@) + 9" (@)f (@)
By making an appropriate arrangement, we get
n{L5((fg); ) — LL(f3 2) L (g5 7))
= d e - 1) - (o) 0122t — w0 - SD D - %
e apio)

2!

g//<x)
2!

(10 - 221552

() (cz< 2) = f(2) — @)Lt - ;)

Lo (fs) (cz<g;x> —g(a) = f @)Lt —asz) — LD ot x>2;x>)




Applying Theorem 3.3.1, for each z € Ry, LA(f;x) — f(x) as n — oo and for
f e CxRY), z €Ry, by Theorem 3.5.1, we have

"
i (0(f50) = o) = 7 @80~ a)i) - L eni(e - o)) =
Therefore, using Remark 3.2.3, we get the desired result. [

3.7 Rate of approximation

In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators £ in an integral form as follows:

oo = [ Kplas o (3.71)
0
where the kernel K?(z,t) is given by
p (nw)
—nx kika |\ 757 —npt (k14k2)p—1 —nx
e 2 ) npe " (npt) e nx
KP(x,t) = — ot
2@t = 7 1)Z 2 Jor ey Tt hp  Tag Pl 7 )00
R kitho>1 F2
d(t) being the Dirac-delta function.
In the sequel, we shall need the following lemma:
Lemma 3.7.1. For a fized x € R} and sufficiently large n, we have
Cl+H(14+z) 1
i) & = [V Kf(z,t)dt < £ <
(i) &na,y) = Jy Kz, t)dt < - CIE 0<y<uz,
Cl+H(1+z 1
(i) 1—&5(x,2) = [ KE(x, t)dt < ( p?i( ) O T < z<oo.
Proof. (i) Using Lemma 3.2.2, we get
Y 2
Yix—t
(x,y) = /Kﬁ(x,t)dt < / ( > KP(x,t)dt
) 0o \T Y
< Lo((t—a)a)(e —y)~
1
_ Cl+:)(1+z) 1
- n (x —y)*
The proof of (ii) is similar hence the details are omitted. O
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Theorem 3.7.2. Let f € DBV (R{). Then, for every x € R} and sufficiently large

n, we have

(o) + e (Bt e B 4 e - o) |

\/Q (1 + %)(1 + )+ %(1 - %) (1;96) |f(2x) — f(z) — xf'(x+)]

VS ) E
o

x x+)|\/%<1+%>(1+x).

+%<1+%>(1+x)(—M+|f
F@t)y=fa=), 0<t<u

where fl is defined by
fo(t) = 0, t=2 (3.7.2)

fit)—f(z+) z<t<oo.

N | —

1Lh(f5x) = fo)] <

Proof. Since LP(1;x) = 1, using (3.7.1), for every = € (0,1) we get
Lo(fiz) = flz) = K3z, t)(f(t) — f(x))dt
- / " Ke(, 1) / F (u)dudt. (3.7.3)
For any f € DBV (R{), from (3.7.2) we may write

F0) = (Fal0) + 2 e) + fa=)) + %(f'(%”r) — ['(z=))sgn(v — x)

2
FE)0) — 5/ (a4) + F )] (37.4)
where
1, v==x
Balu) = { 0,v#x
We get,

/000 (/: (fl(U) - %(f'(@”r) + f'(fﬂ—))) Ex(v)dv) Kf(x,t)dt =0.  (3.7.5)
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We have

/0°° (/; %(f/(xﬂ + f'(l“—))dv) K (x,t)dt

=5+ £ [ =Rz

_ §< at) + fla=)en((t — z);2)

1 / / At1(171>+At2(171)
= 5+ e (Rl et

Using Lemma 3.2.2 and applying Cauchy-Schwarz inequality, we obtain

/ KP(2,1) (/ Fla4) — f(x—))sgn(v—x)dv)dt‘

<51 - fao (¢ <<t—x>2x>)1/2

2
| f ]\/ 1—|— 1+ z).

Combining equations (3.7.3 -3.7.6) , we obtain

<

N | —

ol f. 1 / / At1(1’ 1) + At2(1> 1)
L) = ] < 3+ oLl el D)
s L) - ) \/%(H SN o)+ i +

where
n= [ [ na

and

I, = / / v)dv)KF(x,t)dt.

Since fab di&P(x,t) < 1 for all [a,b] C RS, using integration by parts and applying
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Lemma 3.7.1, on substituting y = x — z/y/n, we get

( dv)dfxt
g/| Hﬁxtldt+/\ !ISdet
gn( )1+x/\/ xtdt—l—/\/f

z/vn * v
< (e dasa [TV 0 S V(@)
’ t z—a/Vn

Substituting v = x/(z — t), we get

v/ V7 @ NI
(1+2) / (= )2\ (f)e)dt = (1 + 2)a! / \/ ((F)a)dv
0 t 1 z—z/u
k+1 T 1 V] T
(14+2)x 1+ = ((fN2)
SV e (HD)E V.
Thus,

L)<= ¢ (1 + 1> ( ) Z \7 \/_xgﬁ((f’)x), (3.7.6)

Again, using integration by parts, we get

Ll - // P, t)dt

_ // v)dv)d;(1 — €5(x,1)) // “”dt‘

_ U“f/) (0)dv)(1 - € t))U+ / (1a(t)(1 ~ €ila ))dt'
‘/ /( ) (xt)dt‘

| oo > +| [ inoa-genal

‘/ () dt‘+|f / K xt)dt‘Jrlf(x—l—)I Lj((t—x))Kﬁ(m,t)dt.

Applying Cauchy-Schwarz inequality, Lemma 3.7.1 and substituting
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z=ux+ (1 —x)/y/n, we obtain

L] < Q(HE)M
n p

2z z+z/\/n
S ) = i +‘ / f;(t)dt’
+% (1+ %)(1+x) /x:ﬁ(t—x)”f;(t)dt‘ + ‘ /: f(t)Kg(x,t)dt‘
)| /: KP(x,t)dt| + |f’(x+)|(/Qm(t—x)QKg(m,t)dt)l/z.

X
By substituting ¢ = x + ¥ and proceeding in a similar way as in the estimate of I,

+[f(x

we get
zta/vn

w < (1) e s —erenis 2 V)
B 0)

T K / ¢ 1 .
|/2m Kn(x,t)dt‘+|f(x+)|\/n 1+p (1+z). (377

Tt/ y/n
\/ f +/ M(1+ )KP (z, t)dt

+[f(x)

For t > 2x, it follows that ¢t < 2(t — ) and z < t — z. Now using Lemma 3.2.2 | we

obtain

e}

MO+ )KL (z, t)dt + |f(z)] | K.(z,t)dt

2z

o

2z
oo

<% (t— )K”(xt)dt+4M/ (t— 2)2KP (. t)dt

|f | 2K (x,t)dt
- (1 + p) (1+ )(% + 4M>. (3.7.8)

Collecting the estimates (3.7.6-3.7.8), we get the required result.
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Chapter 4

Bézier variant of the
Bernstein-Durrmeyer type

operators

4.1 Introduction

In 1912, Bernstein [29] defined a sequence of positive linear operators for f € C|0, 1],

as

Bo(f:z) = k; <Z)xk(1 — )k (g) Lz €[0,1]

which preserves linear functions.
To make convergence faster, King [104] introduced a modification of these operators

as

(@apon) @ =3 (1) a1 = (£)),

n
k=0

which depends on a sequence r,(x) of continuous functions on [0, 1] with 0 < r,(x) <
1, for each x € [0, 1] and considered a particular case for the sequence r,(z) such that
the corresponding operators preserve the test functions eg and ey(e; = t%, i = 0, 1, 2)
of the Bohman-Korovkin theorem. Cérdenas-Morales et al. [37] extended this result

considering a family of sequences of operators B, , that preserve ey and es + ey
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with @ € [0,00). Gonska et al. [68] constructed sequences of King-type operators
which are based on a strictly increasing continuous function 7 such that 7 (0) = 0

and 7 (1) = 1. These operators are defined by V.7 : C'[0,1] — C'[0, 1]

VTf=(Bnf)oT, = (B,f)o (BnT)_l oT,

and preserve the test functions ey and e;. Inspired by the above ideas, for any
function 7 being infinite times continuously differentiable on [0, 1], such that 7(0) =
0, 7(1) = 1 and 7'(z) > 0 for x € [0, 1], Cardenas-Morales et al. [38] defined a

sequence of linear Bernstein type operators for f € C[0,1] as

n

By (fix) =Y (Z) (@) (1 =7 (@) " (for™) <5> , (4.1.1)

k=0 "
and investigated its shape preserving and convergence properties as well as its
asymptotic behavior and saturation. This type of approximation generalizes the
Korovkin set from {eg, €1, €2} to {1, 7, 72} and also presents a better degree of
approximation depending on 7. To approximate the Lebesgue integrable functions
on [0,1], Acar et al. [7] defined the Durrmeyer type modification for the operators
(4.1.1) as

DT (fiz) = (n+1) ank /fOT £) pus (1) dt. (4.1.2)
- 0

where, p  (z) == ()7 (z) (1 —7 @), pui (z) = (B)ak (1 - 2)"" and studied
Voronovskaya type asymptotic formula as well as its quantitative version and the
local approximation properties of D] in quantitative form in terms of K-functional
and Ditzian-Totik moduli of smoothness.

Motivated by the above work, we introduce the Bézier-variant of the operators given

by (4.1.2) as

DY (fiz)=(n+1)) Q% (for™) () i (t) dt, (4.1.3)

=
O\H
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where Q7 (z) = [I7,(2)]" = [T 1 (2)]", 0> 1 with I, (2) = 37, pj (), when
k < n and 0 otherwise and study the degree of approximation in terms of the
modulus of continuity and the K-functional for the operators given by (4.1.3). The
quantitative Voronoskaya type theorem and the rate of convergence of the functions

having derivatives of bounded variation for these operators is also investigated.

4.2 Auxiliary Results

In the sequel, we shall require the following lemmas to prove the main results of this

chapter.

Lemma 4.2.1. [7] For the operators D, one has

14+

2 -1 4 2
Dr(1) =1, Dr(r)— m°n(n—1)+4nt +

(n+2)(n+3)

DT 2y

Consequently, for the m-th order central moment of the operators D], defined as
fm () = Dp((7(t) —7(x))";2), meN,

for all n € N, there follows

1 —27(x)
T - 1 T e S
:un,() (.’L‘) ) :un,l (.1') n+2 )
T(x)(1—7(x))(2n —6) + 2
r 4.2.1
By a simple calculation, we have
élgoz(:lc){(iin2 + 25n — 210)p2(x) + (6n + 12)} + 24
o () = n+2)(n+3)(n+4)(n+5)
Remark 4.2.2. [7] For all n € N, we have
T 2 2
fin,2 () < n—_’_25n,7 (x), (4.2.2)
1
where 6, - (x) := @7 (2) + ——=, 97 (€) =7 (@) (1 =7 (2)), x € [0, 1].
’ n
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Lemma 4.2.3. [7] For every f € C[0,1],

1D7(f5 DM < (1A

Applying Lemma 4.2.1 , the proof of this lemma easily follows. Hence the details

are omitted.

Lemma 4.2.4. Let f € C[0,1]. Then, we have

I DY) 1< 01 f 1
Proof. Using the inequality | a® — 4% [< 60| a—b| with 0 <a,b < 1,0 > 1 and from

the definition of Q;’i, we have

0 < [I7@)]" = [I1pn ()] <005 (2) = 17, (2) = 09 ().

Hence from the definition of D™ and Lemma 4.2.3, we obtain

DR <ol DI <ol £1I-

This completes the proof. O]

Remark 4.2.5. We have

Difegiw) = > Q@) = [Jno(x)]’
k=0
n 9 n
- S| = S -
j=0 Jj=0

4.3 Main Results

4.3.1 Direct results

Throughout this chapter we assume that ir[%)fl} () > a,a € (0,00).
xe|0,

Theorem 4.3.1. For f € C[0,1] and x € [0, 1], there holds

IDE(f0) — f()] < {1 " \/29 (w%(x) ¥ n%zg) }w( (for™); @)

where w((f o771 ;6) is the usual modulus of continuity.
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Proof. By linearity of the operators D7, we get

DY (i) = f@)] < (n+1) ZQ /pnk( ) (for™h) (1) — fla)ldt

< (n+1)) Q% (@/pn,k (1) (1+W)dtw((fo¢l);5).

0

Applying Holder’s inequality and Lemma 4.2.3, we obtain

IN

Dt sl < {1e LD -0 Jui(ror )0
(s L (o011~ i) Jet(r o7 0

< {1+%\/n252<903(x) + ni?))}w((fofl) ;5>)-

1
Taking 0 = \/j , we get the desired result. O
n

Next, we establish a direct result using the Ditzian-Totik modulus of smoothness.
Let us take ¢(z) = o (z) :=/7(x)(1—7(x))

Theorem 4.3.2. Let f € C[0,1]. Then for every x € (0,1), we have

TO(fr)— f(x W 0 ;
D (f30) = f(@)] < OO, (fv \/n+2<“<n+3>goz<x>)>‘

Proof. Using the representation

7(t)

h(t) = (hor ) (7(t) = (ho ™) (r(x)) + / ) (hor Y (u)du,

we get o ,
| DY (hyx) — h(z)| = | D}’ (/ (hor™h) (u)du>|. (4.3.1)
7(2)
But,
Oy W(y) Yerly) Py
[, oY | = “” T ‘ [ e o
||¢Th’ y
) ‘ (4.3.2)
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and

" 7'(y) ! /
/x %(Z)dy’ = /l, <\/j(y) + \/1_17@))7(?/)6@
§2<‘W—M‘+‘\/1_T(t)_\/1_7(x>‘>

= 2|7(t) = 7(2)]

1 1
<W+W+¢1—T t)+v/1-7(@ >
<2|7<t)—7<:c>|< =t T ) M'T&) @l

(4.3.3)

Hence from relations (4.3.1)-(4.3.3) and using Cauchy-Schwarz inequality, we obtain

D7 (hs ) — ()| < 202D Do (17 () )

apr(z)
oWt o (m ey — r )2 )12
<2fa%( y DR8 ((r () = 7(2)% )]
<2\/—!z:hu 0D, ((r(t) - 7(x))% 2)]""?
IIsDT I — . (4.3.4)
\/ +2 (n+3)y ())

Using Lemma 4.2.4 and (4.3.4) it follows that

[D(f52) = @) < [DI(F = hs)| + |f(@) = hl@)] + [D (hs) - h(@)]

< {<0+ IIf = hl +§H%h’“\/niz<” (n+31)s02(56))}
< Cy(0) {Hf — A+ 2||‘P7h/‘|\/ni2 (1 * (n+31)902(f6)> } ’

where (4 (f) = max {(9 + 1),4}.

Taking the infimum on the right hand side of the above inequality over all
g € W,,[0,1], we get

7,0 ) — X 1 ’ ;
|DF(f52) = f(2)] < CL(O) Ky, (f’a\/mz(”(nm)@z(x)))'

Using the relation (0.5.3), the theorem is proved. O
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4.3.2 Quantitative Voronovskaya type theorem

In this section we prove a quantitative Voronovskaja type theorem for the operator
D7% in terms of the first order Ditzian-Totik modulus of smoothness. In the recent

years, several researchers have made significant contributions in this direction (cf.

3], [58], [71], [100], [115], [131], [153] etc.).

Theorem 4.3.3. For any f € C?[0,1] and x € [0, 1], the following inequalities hold

n+3

Vi [D3(fr2) = f(2)] | < \/29{903(:1?) + L}H (for )l

H (7or ™) IG=pa) + = ((f 01y QH—ﬁmm) +o(nt), asn — oo

Vi [D30(fr2) = f(2)] ] < \/29{903(96) + L}H (for )l

n+3
AT 2 C —1\/ -1
[ (for™) H%%(x) + ﬁ%(x)w% ((fOT ) ;jﬁ) +o(n™), asn — oo,

where C is a constant depending on 6.

Proof. Let f € C?0,1] and z, ¢ € [0,1]. Then by Taylor’s expansion, we have

/

[y = (for ™) @@®)=(for ™) (r(@)+ (for ™) (r(z)) (r(t) — 7(x))
7(t)
n / (r(t) — ) (f o 71)" (w)d

(z)



Applying D7 to both sides of the above relation, we get

| DY (f; ) = f(2)]

+

Dy’ ( [ew-w[rery @ - (ror ) @) du;x)

7(z)
For g € Wy-[0, 1], we have

/TT(t) () —ul ‘(f or ) (w) = (for™)" (T(QZ))‘ du

<

/T(t) |7 (t) — ul ’(f or )" (u) = (gor) (u)‘ du

T(t)
[ = llgor) )~ (g0 ) ()] du

4 /TT(t) (1)~ ul [(g.077) (7)) = (f o 77)" ()| du
[
| [l s 170 = 7l )

[

<2 (fo7'*1

(7o) (+19) = 9] 1) = 701 'y

_|_

o) - <fof1> () 170) = )l 70

(t) - )l (y >dy\

v)|do||7(t) — 7(y)|7 (y)d ’
<l for’ﬁ —gll(r(t) — 7(x))?
By do /
[ S5 im0 = ). (436)

Using the inequality [48, p. 141]

+lergl

ly—vl _ ly—7
v(l—v) ~ z(1—2)’

v is between y and x ,

we can write
7(y) — 7(v)|
T(v)(1 = 7(v))

7(y) = 7(2)]
7(x)(1 = 7(x))

<
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Also,

/; / wf&) I7(®) = T</y>lf’<y>dy,
/z/xh(ff)(;);fx)' ' () dv

() |r(y) =)'/
S 2”90;9 ||(,0;1(£L’)

[ 1= 7@l = i s

lo-g'll

I7(t) — 7(y) 7' (y)dy

< |le-d'll

/
S 2”9079 ||(,0;1(1’)
a

[ )=y

<2l 1wy - oo (43.7)

Now combining the relations (4.3.5)-(4.3.7) and applying the Cauchy-Schwarz in-

equality, we get

|D}(f;2) — f(=)|
<|(for ™) (r(x)|DF(|7(t) — 7(x)|;2) + %| (for ™) (r(x)|DLO((r(t) — 7(2))*; )

IO o 7Y = gD ((r(8) — 7)) + 222N @) Do) — (o) i)

1/2
<G o) I(D ()~ r@ia)) 4311 (7077 ID5((r) = (o))

2|lo-g'l 4
o (v)

(DZ’G ((r(t) = 7(2))* ) )1/2 (Dﬁ’e ((r(t) = 7(x))"; ) )1/2-

HI(for™)" =gl DY ((r(t) — (@))% 2) +

Applying Lemma 4.2.4, we have

1/2
D7 (f2) = f@)| < [ (for™)ll (0D2<(<T<t> —7(x))?) ;m>)
#51 (£ o ) 100700 = ) 0))

H(for™) =gl (QD; ((r(t) = 7(x))* z) ) + _2”%0;9'“ oL (z)

1/2

(997 () = 7o) )m CAGUEREIERY
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Hence using Lemmas 4.2.1 and 4.2.3, we get

\DRP(f;2) — f(2)]

<\/”252{ 2 n—11-3}|| for™) I+l (for™) ||3{¢T( )+%+3}
+n2f2{ }l ( o) IIsOC:g ||

for™M) —gll+¢;

\/ 20 B }Je 402 (x 3n + 25n — 210)¢?(x )+(6n+12)}+24]

n+2 (n+2)(n+3)(n+4)(n+5)
s\/n+2{ 2 }H For Y I+ 1 (For) Il —tsite)
; 2f2{ ()] (f o) — gl + 1ET] ”907(90)2\1//;} +o(n™).

Because ¢?(z) < o.(z) < 1, x € [0, 1] we obtain

|D;ﬂ(f;x>—f<x>|s\/ 20 {soi(an%:g}ll( DN+ (For ™)l

n+2

0 20 B 2.6
)+ {Il(f or 1) — gl + mmmu%g'ﬂ} +o(n"/?),(4.3.8)

DR (f30) — f(o)| < \/ngfz{soiu) n+3}|| (For )N+ (for™)]

0 20 i 21/6 .
n+2w3(:v) + ?sor( ){H(fOT D" =gl + (ml/QHsOTg ||} +o(n*?).(4.3.9)

Taking the infimum on the right hand side of (4.3.8) and (4.3.9) over all g € W,,_[0, 1],

we get

I\/E[DZ"’(f;w)—f(fv)]lé\/w{ o)+ s I (For )

H (7077 1526 + =K, ((fw 20 e >> +o(n™);

W[Dﬁ"’(f;x)—f(x)]ls\/z@{ <>+L}||(fw N

+3
" 0 2 C —1\n 2\/6 -1
| @) + @)K, ((fOT ) ;anm> +o(n™).

4
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Using relation (0.5.3), we reach the desired result.

4.3.3 Rate of approximation

Lastly we discuss the approximation of functions with a derivative of bounded vari-

ation on [0, 1]. The operators D7¢ can be expressed in an integral form as follows:

Dﬁmwszﬁmquﬂww

0

where the kernel K7 is given by

n

Kz, t) = (n+1)) Q% (z) pa (t).
k=0

Lemma 4.3.4. For a fized x € (0,1) and sufficiently large n, we have

3 0o ) — [P K 2 32, ()
() € (00) = J} Ko )t < =g 0 <y <),

20 0y ()

(i) 1= &, 2) = [ K2 )t < o= 20,

T(x) < 2z < 1,
where 02 _(z) is defined in Remark 4.2.2.

Proof. (i) Using Remark 4.2.2 and Lemma 4.2.4, we get

Yy y 2
7,0 ’ _ KT,G t dt < (T($) - t> KT,9 't dt
I I e N ) Rl

T(x) —y
DY ((r(t) = 7(x))% ) < pDalr(t) = 7(2))%2) _

IN

(4.3.10)

0 ()

The proof of (ii) is similar hence the details are omitted.

(7(z) —y)? (7(x) —y)? G

(z) —y)*

]

Theorem 4.3.5. Let f € DBV|0,1]. Then, for every x € (0,1) and sufficiently
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large n, we have

D3 (fr) = f(@)] < {ﬁ (For™)(r(z4)) +0(for 1>’<r<x—>>\
H(rortrwh) = (o 7 e g0

where (f o 771) is defined by

(for™(®) = (for ) (r(z=)), 0<t<r(x)

(fo 7_1);@) = { 0, t=r71(x) (4.3.11)
(for™)(®) = (for ) (r(z+)) r(x) <t<Ll.

Proof. Since D7%(1;x) = 1, using (4.3.10), for every = € (0,1) we get
Dy (fi2) = flx) = /0 K3 (e, 0)((for)(t) = (f o7 )(r(x)))dt

= /K;ﬂ(x,t)/ (f o™ (uw)dudt. (4.3.12)
0 7(x)

For any f € DBV|0, 1], from (4.3.11) we may write

(For™(w) =(for™(u+ % ((f o7 ((a+)) +0(f o Tl>’<T<$‘”)

" (( for Y (r(@t) —(fo Tl>’<f<x—>>) (sgnw —7@)+ %)

.00 70 - S (o) + (o )]
(4.3.13)

where
1, u=r1(z)
O.(u) =
() {O,U%T(x)
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Obviously,

[ werm=g(ger et +iroreen))

5w(u)du] K™ (x,t)dt = 0. (4.3.14)
Let us define

A /(/ - N (@) + 0(f o 7Y (r(a )))du)K (. )t

and

= 7(2)| K" (. t)dt

DY ( I7(t) — ()] ;x) . (4.3.16)



Combining equations (4.3.12 -4.3.16), on an application of Cauchy-Schwarz inequal-

ity and Remark 4.2.2, we obtain

D3(fi2) — f(2)] < ﬁ\u o7 (r(e+)) +6(f o T‘1>'<T<x‘”‘

(o r Y ire) - <fo71>’<r<x—>>\ 2

+/ (/ (for™), )du>KT‘9(x t)dt‘

+/ (T@ (for . )du>KT"(x t)dt' (4.3.17)

Now, let

AP (for ) = [ " ( / " (fo T-1>;<u>du) Kro(z,

(z)

and

B ((for ) = [ (/ " (fo P ) K o

(@) \J7(z)

In order to calculate the estimates of the terms AZ?((f o 77'), 2), using the defini-

tion of 77 given in Lemma 4.3.4, we can write

AL(for™),m) = /0 h ( / t <for—1>;<u>du) o &yt

(z)

Applying integration by parts, we get

7(x)
A((for ). o) < / (F o7 V)LD (x, )t

m(z)—

T(I)_\(/%) —1y/ 7,0 T(I) —1y/ 7.0
< / (F o r LB (o, 1)t + / oo L 0lE

= ]1 + _[2.
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Since (f oY) (7(z)) = 0 and &79(x,¢) < 1, we have

7(z)
]2 = /
T(:D)fﬁ

vn

/ /

(for™h),(t) = (for ), (r(2))| &7 (x, t)dt

7(z) 7(z)

(@) (@)
<[ \Vuer)as| V ower] [ a
T(I)—% T

T(x (I)_Li)
' OB v

@) T\(j P
\/ﬁ T(:):)fﬁ ’

vn

7(2)

Using Lemma 4.3.4 and considering t = 7(x) — —=, we get
u

T(x)— =
I < 20 527 (x)/ Jn
0

20 r@)-5 (76 , dt
< e | (For ™),
n+ 2 0 \t/ (1(z) —t)?
26 5317— T \/ﬁ T(‘Z)
= ( )/ (fOT_l)/ du
n+2 7(z) J; v
T(m)—TSf>
20 &2 (@[ @ .
< , _
T ont2 7(x) \/ (for™)s
= T(:E)—T(:)
Therefore,
: 2 G [ Y

AL ((for™ )l <

n+2 7(x) =\t
)~
7(x)
7(x) v
+ —= (for )x . (4.3.18)
\/ﬁ \/T(z
T(ac)—ﬁ

Also, using integration by parts in B7?(f! x) and applying Lemma 4.3.4
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with z = 7(z) + (1 — 7(z))/+/n, we have

1 t
= / (/ (fOT_l);(u)du) Kgﬂ(a;,t)dt‘
7(x) \J7(z)

_ [ / ((for-1>;<u>du><1—s;%,w)} - [ (ror a0 ar
7(x) 7(z) 7(x)

!
+ [/T;)((f o7 (u)du)(1 — fflﬁ(x,t))} 1 — /Zl (for M. (1)1 - Sg’e(x,t))dt‘

z

/ ( (o L0~ & i + / (forYL(t)(1 — €0z, t))dt\

< n2f25’2”(5”')/z (\/ (fwl);> (t—T(x))—de/z (ForY.di

7(x) (@) 7 (@)

t

20 ! Ly -
S [ (\/ (for m) (1= (o)

(z)

T(z)Jr(l—T(ﬂf))
+1_—7—(:U) \/\/71 (f o 7_—1)/
n |

7(z)

By substituting u = (1 — 7(x))/(t — 7(z)), we get

)+ (1*;(16))

o
1B fr2)| < 2y (33)/1 ( V (fOTl);) (1—7(2)) "du

“—n4+2"

T(I)+(1*\}(I))
1—7(x) ! N
7 ( \V  (for h)

b1 (@)
)4 (=7 @)
RELUNE H\/k (for™), (4.3.19)
oT . .O.
vn (z) '
Collecting the estimates (4.3.17 - 4.3.19), we get the required result. O
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Chapter 5

Approximation properties of the

modified Stancu operators

5.1 Introduction

In the recent years there has been an increasing interest in modifying linear positive
operators so that the new versions present a better degree of approximation than
the original ones.

In the present chapter, we deal with the modified Stancu operator. We com-
pare the new operators with classical Stancu operators (1.1.2) and observe that on
a certain interval, these operators present a better degree of approximation than
the original ones. Also, a Voronovskaja type theorem by using the Ditzian-Totik

modulus of smoothness is proved.

5.2 Modified Stancu operators

In this section, we introduce a modification of the Stancu operators (1.1.2). The
main properties of this new approximation process are studied.
For an infinite times continuously differentiable function 7 on [0, 1], such that

7(0) =0, 7(1) = 1 and 7'(z) > 0 for x € [0, 1], we introduce the sequence of Stancu
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type operators for f € C0,1] as

n

T2 =Y par T @) (for ) (%) Lz e 0,1, (5.2.1)

k=0

3=

P<

where
<%77—> 2n! n
Pp i (z) = w L (n7(z))), (n —n7(2)), 4 -
In the following example, we show that if the function 7(x) is chosen suitably then
the operators defined by (5.2.1) provide a better rate of convergence than the oper-
ators (1.1.2).
4+

2
x € [0,1]. For n = 40, the approximation to the function f by the modified Stancu

Example 5.2.1. Let 7y(z) = , To(2) = sin gm and f(z) = cos(10z),

operators prn defined by (5.2.1)and the Stancu operators Pr(ﬁ) defined by (1.1.2)

18 tllustrated in the Figure 5.1.

1

0.3+

-0.54

i | {1 \
T R () P (o
P n P n Pﬂﬂ

fix)=rcos{10x)

Figure 5.1
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The error of approximation for PY(L%), Py > and Py w2 at certain points of
[0, 1] is computed in the following Table.
Table 2.
e LB (fs) = @) [ 1P (i) = f@) [P () — S
0.04 | 0.0719078440 0.0918804542 0.0491775787
0.08 | 0.0899902045 0.0949187558 0.0656722344
0.12 | 0.0472944810 0.0215916952 0.0431323566
0.16 | 0.0464266575 0.1024165160 0.0144204290
0.20 | 0.1684314306 0.2437174913 0.0943043728
0.24 | 0.2889352546 0.3677734502 0.1783441641
0.28 | 0.3780208231 0.4453240720 0.2468493195
0.32 | 0.4121574493 0.4575642665 0.2826616675
0.36 | 0.3791213446 0.3992005780 0.2745554027
0.40 | 0.2804560850 0.2789088716 0.2194175892
0.44 | 0.1310964673 0.1171877712 0.1228721695
0.48 | 0.0436865547 0.0579307255 0.0017044307
0.52 | 0.2133696908 0.2164713841 0.1355396341
0.56 | 0.3482733387 0.3323367044 0.2577115929
0.60 | 0.4254746884 0.3882544972 0.3486510319
0.64 | 0.4333817144 0.3789143428 0.3932519814
0.68 | 0.3740607726 0.3116949702 0.3831315495
0.72 | 0.2628264094 0.2048387962 0.3179584077
0.76 | 0.1251131158 0.0834187551 0.2061763439
0.80 | 0.0088333903 0.0261223418 0.0655133299
0.84 | 0.1104739425 0.1017791431 0.0769549422
0.88 | 0.1594595824 0.1309512530 0.1865335751
0.92 | 0.1487803128 0.1135004422 0.2263598837
0.96 | 0.0874521271 0.0621541233 0.1673068131

Therefore, we notice that depending on choice of function 7, the

<l,T>
erator P, "

interval.
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In order to prove our main results, we shall need some auxiliary results. The proofs
are similar to the corresponding results for the Stancu operators, therefore the de-

tails are omitted.

1 T
Lemma 5.2.2. For modified Stancu operator P >, we have

l7'> 2_ 2 27(1_7-)

1 1
<=, 7> <=, 7> <=,
" T=1,P" =17
n+1

Let. (o) = PEE () = 7(0))50) = 3w @) (£ = 1) e e

central moment operator.

Lemma 5.2.3. The central moment operator verifies:

2

i) pra(7) = @R (@);
R _12(n* — Tn)p2(x) + (26n —2)
e N R [ ) A R

where ©2(z) := 7(z)(1 — 7(x)).

Lemma 5.2.4. If f € C[0,1], then |Pa™"" f|| < |fIl, where || - || is the uniform

norm on C10, 1].

Proof. By the definition of the modified Stancu operators (5.2.1) and using Lemma
5.2.2 we have

P ()| £ 3w )

k=0

k <ir>
or) ()| <o 1P i) = 151
O

l T . .
Theorem 5.2.5. If f € C[0,1], then P >f converges to f as n tends to infinity,

uniformly on [0, 1].

Proof. Using Lemma 5.2.2, the Korovkin theorem and the fact that {1, 7,72} is an
extended complete Tchebychev system on [0, 1], we obtain that the modified Stancu

1 .
operator Py "7 f converges uniformly to f € C[0, 1]. ]
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2
Example: We consider f : [0,1] — R, f(z) = cos(10z) and 7(x) = ‘ ;—m The

1
convergence of the modified Stancu operator Py to the function f is illustrated

in Figure 5.2 for n € {20, 50,100}.

1A

0.5

-0.5 1

*+ n=20 — — n=50 n=100 - f(x}=cus(10x)i

Figure 5.2
We remark that as the values of n increase, the error in the approximation of the
operator to the function becomes smaller.

Using the result of Shisha and Mond [141] we have

1

52
where w(f,d) is the usual modulus of continuity of f € C|0, 1].

)w(f,5), for 6 > 0,

Example 5.2.6. The rates of convergence of the modified operators and the original
ones depend on the selection of the function 7. If we choose T(x) = (sin %)2,
we have 7(z) (1 —7(z)) < 2(1 — ), for all x € [0,1] and this inequality leads to
ph2(x) < pna(x). Therefore, the modified operators Pn<%’7> presents a better order

1
of approximation than P,E").

5.3 Approximation properties

In what follows, we present approximation properties for modified Stancu operators

in terms of modulus of smoothness. In order to give our main results we will use
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the following result.

1
Lemma 5.3.1. [70] If f € C9]0,1], then for all 0 < h < 5 there are functions
g € C72(0,1], such that

| 3

i) IF9 = gD < Jwr(F; h),
i) gD < e (£,
ZZ) ||g H < Eo‘;l(f ah)>

3
i) 19| < Szn(F Vs ),

where wy, is the classical k™ order modulus of smoothness on [0,1].

Throughout this chapter, we assume that ir[lf ]T'(x) >a,a € RT.
z€(0,1

Theorem 5.3.2. If f € C[0,1], then the operators P werify the following

mequality

where wy (f;8) and ws (f;0) are the first and second order modulus of continuity

respectively.

Proof. Let g € W?[0,1] and ¢ € [0,1]. Then by Taylor’s expansion, we get

(t)
+ / (r(t) —u) (go77)" (u)du. (5.3.1)

T(t)
The quantity / (T(t) —u) (go 7"1)” (u)du was estimated in [7, p. 35] as follows:
(z)

(x)

Y e O G ) W),

JIRCOR /Tm e 1Y) A
(5.3.2)
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From (5.3.1) and (5.3.2) we can write

=g(x or VY (r(2) (r(t) — T(z " T(t) —u —g”(T_l(u)) du
o0) = o(x) + (507 ) () ¢~ @) + [ ) —w) ST
- 7(t) ) g/(T_l(u))T”(T_l(u)) .
fo €O R 539

1 T . . .
Now applying Py to both sides of the relation (5.3.3), we can write

1 1 (t) "r—1(u
R?”>@ﬂﬁ=g@%+3?”>(/ <ﬂw—u»ﬁi—il%mWﬂ

(@) [T (77 (u))]
e (O _ug%r%wwwfwwnmw>
" <[@>(“) T rewr )
Therefore,
}ﬁw>@w%y@wS%%ﬂ@<%y+wwuyw>:ii?<%y+mmgh

By Lemma 5.2.4, it follows

P (o) = flo)| = [P = g + | P (g50) = 9(@)| + lg(e) - f@)
( ) (llg"ll, gl - 11"
<2||f — .
<ollf g+ 222 (1], Il
1
According to Lemma 5.3.1, for the given 0 < h < 2 there exists g € C?[0, 1] such
that
3 5 3
£ = all < Sntrim). 91 < Zen(rih). gl € ().
Consequently,
T 3 2(x 3 57"
R (i) — )] < B+ 2O (- A )
2 2h?%a
Taking h = or(z) , the theorem is proved. O

vn+1
Remark 5.3.3. If we chose 7(x) = x in Theorem 5.3.2, we get

P§%>(f;fc)—f(f€)‘§3w2 (f; ol) )

1
Regarding the estimates of Pn<">, better constant in front of wy were obtained

in ([71], [100], [181]).
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5.4 Voronovskaja type theorems

The Voronovskaja type theorem for Stancu operators dealing with error estimates for
continuous functions and twice continuously differentiable functions, were obtained

in [115] as follows:

Theorem 5.4.1. For x € [0, 1], the following inequalities hold

)

P (i) - fa )] <g l(f;%), f e,

1

=)o < B () s e

) fla) - T

i) n

T>

Now, we establish a local approximation theorem for the operators P by
means of Ditzian-Totik modulus of smoothness.
Theorem 5.4.2. Let f € C[0,1]. Then for every x € (0,1), we have
P (i) - )] <, (Fi )
n " X)) = J ()| = by, T ——= >
v avn+1
where C' > 0 is a constant.
Proof. Using the representation
1 1 T 1y/
o) = (907 61 = (o7 ) ) + [ (gor) (i
we get
<Lr> <ir> ® 1\/
PERT (g5) — gl)| = | AT / (907 (u)du (5.4.1)
()
But,
T 9 W) Yorly) 9'W)
1 - \y) g\y) ,
gor~Y (i P \ [ 8- L8y
[, e ) o) )
y
5.4.2
) oan
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and

') 'f /
[ 58wl |] (arotm) om
<2 (V70 - Vr@)| + [VI=r - VI- r<x>\)

=2|7(t) — 7(x)

1
|<m+m 1—7(t)++/1—-7(x >
o [ 1\ 2V —r@)
VT \/1—7' WT()

< 2|7(t) —

(5.4.3)
Hence from relations (5.4.1)-(5.4.3) and using Cauchy-Schwarz inequality, we obtain

<k N =9l p<im> 1oy — i o
[P (giw) — g(a)] < 2v2 PES wor@y T =r@)ko)

< oalP I TR (o) — (o))

CLSOT( )

4
< |lod||. 5.4.4
S =llerd| (5.4.4)

Using Lemma 5.2.4 and (5.4.4), it follows that

1
<=,7>
-PTLTL7

(fi2) = f(@)] < P (gsw) — ()

P () = )|+ 17@) - g(a)

2{||f I+ —2—| '||}
g a/n 1 ©rg .

Taking infimum on the right hand side of the above inequality over all

g€ W, [0,1], we get

Pn<%ﬁ>(f;x) — f(g;)‘ <2K,, (f, a\/%) .

Using the relation (0.5.3) this theorem is proved. O

In this section we prove a quantitative Voronovskaja type theorem for the oper-

1 T . . . .
ator Pn< "™ in terms of the first order Ditzian-Totik modulus of smoothness.

Theorem 5.4.3. For any f € C?[0,1] and z € (0,1), the following inequalities:
hold
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i) n

PEvT (fi2) = fl) — n+1 [r(z)]

< ot (1 orys 52).

a

2(n? —Tn)p2(z) +13n — 1
n(n+2)(n+ 3)

where C' > 0 is a constant and u](x) = 2\/

Proof. Let f € C?[0,1] and x € (0,1). Then by Taylor’s expansion for ¢ € (0, 1), we

have

O = (for ) @®) = (for ™) @)+ (for™) ((x) (r(t) - 7(x))

Hence, we may write

F(t) = f@) = (for™) (r(2)) (7(t) = 7(x)) — % (for ™) (r(2)) (r(t) —7(x))*
T(t) 1

T(t) 1
= / (1(t) — u) (f o 7'_1) (u)du — / (1(t) — u) (f o 7'_1) (1(x))du
T 7(x)

T(t)
= /T (7(t) — u) [(f o 7'*1)” (u) = (fo 7'71)// (7'(95))] du.

1 T . .
Applying Py to both sides of the above relation, we get

) @]
3 [~ e et

P (frx) — f(x)
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For g € W, [0, 1], we have

T(t)
/ 7(t) —
7(x)
7(t)
/ I7(t) —
7(x)

7(t)
[0 - ullgor) @) - (g07) ()
(z)

7(t)
+ / 7(t) —
7(x)

[ 17 0 - st 170 - 7l 7 01
[ lotw) = 9@ 17(0) = )] 7w}y

<2 (for™)" ~4l
e[ 1] e o - T<y>|r'<y>dy'
<N (for™) —gllr(t) — 7(2))?
LY do /
/x /w%—(v) \T(t)—T(y)!T(y)dy'- (5.4.6)

Using the inequality [48, p. 141] léJl_ U|) = |§Jl_ x|)7
v(l—wv L=z

) = @) _ rly) — (@)

(for ™) (w) = (for™)" <T<x>>(du

<

(for ™) (u) - (907_1)(u)‘du

(gor™) (r(x)) = (for™)" (T(CE))‘ du

+

#| [ o) = 7o) )| 110 - sl )

/ I7(t) — 7(y) 17 (y)dy

+[lo- 4|

v is between y and x ,

we can write SR < S o iR . Therefore,
Jiro'| / /% (0~ Tl ()| (.47
(| ST T’(ﬁz | 1) — Tl )y
<2””” = /|T A Ir(t) = )l 1)
<20y | [ r@pran| < 212 rn - o

(5.4.8)
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Now combining the relations (5.4.5)-(5.4.8), applying Lemma 5.2.3 and the Cauchy-

Schwarz inequality, we get

< T> 1 f”(:lf) / T"(l‘) 2 T
(fi) = 1) - iy | 2 - i 28| o)
(

<II(f oYY = gl P ((r(t) = 7))
”90;9 I ol (a )P<" i (|T(t) — T(x)|3;$)

2 L1y 2.9l
<jsof( )| (for™) —g||+Tsof (z)

(2557 (00 - @) [P (0 - )]
— 2@ (Fer ) gl

I 201 \/6<n2 — Tn)g(r) + (130 — 1)

n+1 n(n+2)(n+3)

2 e
- 2 e@nuery -

gl \/W — Tn)¢2(x) + (13n — 1) }

a n(n+2)(n+3)

Because ©?(z) < ¢ (z) <1, z € (0,1) we obtain

P (i) = 10) ~ i [0 - 05 o)
< 2 {irory - o+ 2 @leng | (5.49
R (i) = @) = oy [f"u) - ) ((i))} 2 (a)
< Lo @{Irory -l + Sy g} 5.410

Taking the infimum on the right hand side of (5.4.9) and (5.4.10) over all g €

W, [0, 1], we get

| PR () o) - nil EE -1

:C
< 2K, <(fo ” n )




and

n B (fra)— () - nil e [ro-re Tl
< 2,8, (For s i),
Using (0.5.3), the theorem is proved. ]

Remark 5.4.4. If we choose 7(x) = x in Theorem 5.4.2 and Theorem 5.4.3 we get

f><f;w> ~ J@)] < Cu (£ 7 ) for £ € CPo,1)

ii) n |P5 (f12) — f(x) - 28 1) < Cow (f"; p(@)un(w)) for f € C2[0,1],

— Tn)e?(x) + 13n — 1
n(n + 2)(n + 3) ’

2(n?
where Cy,Cy are positive constants and u,(x) = 2\/ (

©*(z) = 2(1 — z).
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Chapter 6

Bézier variant of modified

Srivastava-Gupta operators

6.1 Introduction

In order to approximate Lebesgue integrable functions on R{, Srivastava and Gupta

[146] introduced a general family of summation-integral type operators as

Ln,c(fa x) =n an,k(x7 C) /Ooo pn-i—c,k—l(t? C)f<t>dt —|—pn70<l’, C)f(()), (6'1°1)

k=1

_ ="
where p,i(z,c) = One(r) and

bal2) = { e‘m_ c=0,
(1+cx)™¢, ceN:={1,2,3....}.
Ispir and Yuksel [93] introduced the Bézier variant of the operators (6.1.1) and
studied the estimate of the rate of convergence of these operators for functions of
bounded variation. Deo [45] gave a modification of these operators and established
the rate of convergence and a Voronovskaya type result. Recently, Acar et al. [3]
introduced Stancu type generalization of the operators (6.1.1) and obtained an esti-
mate of the rate of convergence for functions having derivatives of bounded variation

and also studied the simultaneous approximation for these operators.
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Yadav [163] introduced a modification of the operators (6.1.1) as

Gn,c(fa 1}) = nzpn,k(% C) /OO pn+c,k71<t7 c)f<<n — C)t>dt
k=1 0

n

+Pno(@, ) f(0) (6.1.2)

and studied its moment estimates, direct estimate, asymptotic formula and statisti-
cal convergence. Very recently, Maheshwari [112] studied the rate of approximation
for the functions having derivative of bounded variation on every finite subinterval
of R{ for the operators (6.1.2).

We propose a Bézier variant of the operators given by (6.1.2) as

e - a > (n - C)t
Gn,c(fv I’) =N Z Qiyli(xv C) / pn+c,k—1(ta C)f (T dt
k=1 0

Qo0 f(0), (6.1.3)
where, Qilag(:p, ¢) = [Jnk(w, 0" = [Tnpr1(z,0)]", a > 1with J, .(z,¢) = D772 pnj(z, €,
when k& < oo and 0 otherwise. Clearly, Gy .(f, ) is a linear positive operator. If
a = 1, then the operators Gy .(f, r) reduce to the operators Gy, .(f, 7).
The aim of this chapter is to investigate a direct approximation result and the rate of
convergence for functions having a derivative equivalent with a function of bounded
variation on every finite subinterval of Ry for the operators (6.1.2). Lastly, a com-

parison of the rate of convergence of the operators (6.1.2) vis-a-vis operators (6.1.3)

to a certain function is illustrated by some graphics.

6.2 Primary Results

Lemma 6.2.1. [163] For G, .(t™,z), m = 0,1,2, one has
(1) Gpe(l,x) =1

(1)) Gpo(t,z) =2

(n—c)(z*(n+c) + 2:8)‘

(iii) Gt x) = n(n — 2¢)
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Consequently,
2?c(2n —c¢) +2(n — )z

2 )
Gn,c((t r)%, ) n(n —20) and
Az (1
Gre((t—2)%x) < M for sufficiently large n and A > 2.
From [112], one has
Greo((t—2),2) =0(n™"), asn — oco. (6.2.1)

Remark 6.2.2. We have

[e.e]

Grelliz) = D Q) = [no(w, o))"
k=0
= [an,k(x,c)] =1, since an,k(ﬁ,C) =1.
Jj=0 j=0

Lemma 6.2.3. For every f € Cy(Ry), we have

G (F5 I < 1IN

Applying Remark 6.2.2 | the proof of this lemma easily follows. Hence the details

are omitted.

Remark 6.2.4. For 0 <a,b <1,a > 1, using the inequality
la® =b"|<al|a—10]

and from the definition of Qfla,i(x, ¢), Vk=0,1,2....., we have

0 < [Jak(@, 0" = [Tngrr(2, )" < alJnk(z,c) = Jogsr(z,c))

= appi(z,c).
Hence from the definition of Gy, .(f;x), we get

|Gg,c(f7 r)] < O‘Gn,C(|f|7x)‘
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6.3 Main Results

To describe our first result, let us take ¢(z) = y/x(1 + cx). Here the appropriate

Petree’s K-functional is defined by

Ko(f,0) = {Ilf gl +dllegIl + 0*[lg'll, 6 > 0}. (6.3.1)

9€W¢»(

It is well known ([48] Thm. 3.1.2, ) that K4(f,t) ~ we(f,t) which means that

there exists a constant C' > 0 such that

Clwy(f,t) < Ky(f,t) < Cwy(f, ). (6.3.2)

6.3.1 Local approximation

Theorem 6.3.1. Let f € Cp(RY), then for every x € R{ we have

1
(Ga.fia) = flo)] < Cuo( 11 ) 659
where C' 1s a constant independent of n and x.

Proof. For fixed n, z, choosing g = g,. € W,(R{) and using the representation

we get

|Gy o(g57) — g(z)] =

vac( / t J (w)du; x) ‘ (6.3.4)

Now to find the estimate of f g (u)du, we split the domain into two parts i.e. F¢ =
[0,1/n] and F,, = (1/n,0). First, if z € (1/n,00) then G ((t — x)* x) ~ —¢2(x).
’ n

We have
/ "(u)du| <

(6.3.5)




For any x,t € (0,00), we find that

u(l 4+ cu)

()
< 2<¢2_\/5+\/1+ct—¢1+cg;>

C

1 1
= 2]t—x!<\/-+\/—+\/1+ct+\/1+cx)

< -l 5+ yes)
2(c+1) |t —z|

Ve(e—1) o)

Combining (6.3.4)-(6.3.6) and using Cauchy-Schwarz inequality for z € (1, 00), we

(6.3.6)

obtain

|G (g5 7) — g(z)]

A

2D g ig @)1t~ 0
1/2
Lo lo" (2 (Gi,c((t - x>2;x>)

2(c + ) 20\
< m\wg (%)
Cllcbg’II%. (6.3.7)

For x € Fy = [0,1/n], Gy .((t — 2)*x) ~ — and

/{: g (u)du

Therefore for x € [1/n, 00), using Cauchy-Schwarz inequality we have

< |lg'll [t = xl.

1/2
6% (gi2) — g(a)] < Hg’ucz,cw—xr;:c)sng'u(ez,c«t—x)%@)
V2 ol
< 122 < oy - (6.38)

From (6.3.7) and (6.3.8), we obtain
G2 (g:0) — ()\<C(H¢gll\f+l\gll—) (6.3.9)
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Using Lemma 6.2.3 and (6.3.9), we can write

G (i) = )] € 1GLF — i) + (@) — g(a)| + G (g: ) — o)
< ¢l =gl +liog'l = + 1) (6:3.10)

Taking the infimum on the right hand side of the above inequality over all g €
W4(Ry), we get

1
a N — e .- .
G (fs2) — f()] CK¢,<f, \/ﬁ)
Using (6.3.2), we get the desired relation (6.3.3). O

6.3.2 Rate of Approximation

Lastly, we shall discuss the rate of approximation of functions with a derivative of
bounded variation on Ry . Let DBV, (RY}) C DBV (R{), v > 0 with |f(¢)| < Mt".
In order to discuss the approximation of functions with derivatives of bounded vari-

ation, we express the operators G . in an integral form as follows:

_ /OOO Ke (x, t)f((” — C)t>dt, (6.3.11)

where the kernel K7 (z,t) is given by

[e.9]

Z e, )Pnsera(tc) + Qo ) (1),

k=

d(u) being the Dirac-delta function.

Lemma 6.3.2. For a fized x € R} and sufficiently large n, we have

: Ax(l4+cx) 1
(i) & o(x,y) = [) K2 (2, t)dt < « - (x_y)20§y<a:,
1 1
(i) 1—& = ["K xtdtgak(—i_cw) , T <z < 00.
n (z —x)?
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Proof. (i) Using Lemma 6.2.1 and Remark 6.2.4, we get

vir—t\?
£ (2,y) = / Loe < [ ( )Kscu,t)dt
) 0 x_y i

nelt =) ) (x —y) ™
aGho((t — )% ) (z —y) ™
Aax(l+cx) 1
o (z—y)?*
The proof of (ii) is similar hence we skip the details. O

IN

IN

IN

Theorem 6.3.3. Let f € DBV, (R{). Then, for every x € (0,00) and sufficiently

large n, we have

|G (f32) = f(2)]
2ax(1 + cx)

< O%me +af el T S at) - ()
2ax(1 + c:r;) a(l + cx) [m N ol 1+ cx)
fot == fot
720) ~ @) — 2/ )] + “C(”;Zf’ na 55 2 M“J Cx)?

where f is defined by
f#)=f(z=), 0<t<uz

fo(t) = 0, t=uz (6.3.12)
ft)—f(z+) v<t<oo

Proof. Since G, .(1;2) = 1, using (6.3.11), for every x € (0,00) we get

G (fr0) — fla) = / £(0) — fla)dt

_ / (1) / £ (w)dudt. (6.3.13)

For any f € DBV,(R}), from (6.3.12) we may write

f) = S+ — () +af (=) + (@) — 1)
= 1) + 0 (w)[f'(w) -

S ) + )

(sgn(u—x) + w1

(6.3.14)
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where

1, u==x
Oy = ’ )
(u) {O,U#x

From equations (6.3.13) and (6.3.14), we get

Gg,c(f; I) - f(&?)

= [T [ |+
(somu = a) + 557 )+ 8017 @) = 57 + o=l
= A1+ Ay + Az + A5 (fr.7) + By (fr,2),

where
= [T [ e + are-nan) K Go
ao= [Trpen( [ 30en - e (sontu—n) + 27 Ja)ar

Obviously,

ao= [T ([ (F - e + £ )t ) Kzl =0

A = /OOO (/t a}rl(f’(:zc—l—) —i—af’(x—))du) K (x, t)dt

= ) af o) [ - Kz

= L (Pt T af @))CL(t — a);a), (6.3.15)

a+1

102



and

([ 300 = 1w (snta— )+ 257 Yo
- |5 (f’(a:+) 1) = [ (sonta =)+ 5 )
(e
aﬂﬁv(ﬁ @ [ 1= ol K3 )

= |f (z+) — f'(z—)] Gic( |t — x| ;x). (6.3.16)

a+1

Using Remark 6.2.4 and equations (6.3.13 -6.3.16) and applying Cauchy-Schwarz

inequality we obtain

Ga o (fi2) = f(@)
< 1)+ af o) (@G (¢ — 250
F ) = F @) @Gel(t = )% )V AL (Fh )| + B (£ )

< P afeop i), e

/ !/ _
)y ) - )
Aaz(l +cx N N
ATLEED) || ag ()] + 1B )] 6:317)
Thus our problem is reduced to calculate the estimates of the terms Ay .(f;, z) and
By (fi, ). Since f di&% (z,t) < 1 for all [a,b] C R{, using integration by parts we

get

An (o) =

[(/ t L)) g (o.)
| enr )dt‘

< / O] IS (D)t + / L) 1€ (D).
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Applying Lemma 6.3.2 with y = x — x//n, we have
Ane(fe @) <

r)
- )\ax(l—l—cx ( )x_t QdH_( i ;>

_ —/\w(ner)/o \/_(\? )x—t 2dt+—( \x// )

>\Oél‘(1 + cx) <

z—x/u

Vnl k41 x (V7] z
(e (V)

k=1"k a—z/k k=1 “Na—x/k

Thus,

[\/m x
A () < AL S ( V f;> ( V f) (6:3.18)

k=1 \z—z/k x—x/\/n

Again, using integration by parts in B2(f,, ), applying Lemma 6.3.2 and Cauchy-

Schwarz inequality, we have

|Byolfa
< /% (/f du)dt ( du)dtl—fyc(x,t)
< / (f(t) = f(2) Ky (. t)]| + | f'(z+)] /x (t — ) K5 ( xtdt‘
/Mf Ydu|[1 — € (x, 27)| + N ))dt'

<| [ rax

xt'+|f

Aa(l + cx)

nx

/ZI (t — x)—2f;(t)dt‘.
wta/v/n
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We see that there exists an integer r(2r > v), such that f(t) = O(t*"), as t — oc.
Now proceeding in a manner similar to the estimate of Ay .(f;;z), on substituting

t=uw+ 1, we get

Bro(fa)l <M | KR (e 0)d+ | f(2)] | K (et

@y 2oxdter) | Ao “““’Nf( 20) — f(a) — af (at)|
ZE Vs ! /\ax(1+cx) 2 -2 pr
v A e /m/f“_“’) oyt

gM/ KR (x, t)dt + | f(2) /
22
)\ozx(1+cx)+)\ (1+cx)

+[f'(2+)] f(22) — f(z) — zf'(z+)]
x , Aa(l+ ca;) ,
o \! Lo +=——— ;:1 \x/ . (6.3.19)

For t > 2x, we get t < 2(t — x) and < ¢t — . Now using the equation (6.2.1) and

Lemma 6.2.1 , we obtain

/tQTKO‘(xtdt+|f |/ Sz, t)dt
2x
§22r/ ( )QT‘KTOL(( )dt+|f( )|

2x

JZ 2x

< aC(n,c,r,x) N |f(z)| Aax(l + cx)-

( - I>2Kg,c($7 t)dt

(6.3.20)

nr 2 n

Collecting the estimates (6.3.17- 6.3.20), we get the required result. ]
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6.4 Numerical examples

Next, we illustrate the comparison of the rate of convergence of the operators (6.1.1),
(6.1.2) and (6.1.3) to a certain function by some graphics using Matlab algorithm.

Let us consider the function

0, =0
f(x)—{ sin(r/a). T A0 (6.4.1)

Then, f is of bounded variation on [0, 1].

Example 1: In case ¢ = 150, a = 10, the convergence of the Bézier-Srivastava-Gupta
(named as BzGS in Figures) operators given by (6.1.3) for n = 160(green) and
n = 200(red) to function f(x) (blue) given by (6.4.1), for x € [0,1], z € [0,2/7],

z € [0,5] and z € [0,10] is shown in Figures 6.1, 6.2, 6.3 and 6.4 respectively.

M P 140 r
120 120
1M hLLIY
i1} i1}
[21] [21]
4k 40
20 20
L1} L1}
[} 02 04 06 08 0 01 02 03 o4 05 06
X X
BzGS160 BzGS160
—_— BzGS2HH — BzGS2HH
— — e
Figure 6.1 Figure 6.2
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40 140
120 120
100 100
o o
1) bl
40 40
20 20
L] [}
[] 1 2 3 4 5 L] 2 4 6 L] 10
X X
BzG5160 BzGS5160
—_— B2GE20 — B2GS20
—_— —_—
Figure 6.3 Figure 6.4

It is observed that as the interval become bigger, the approximation of operators to
the function becomes better.

Example 2: In case ¢ = 150, &« = 10 and n = 160, the convergence of the Srivastava-
Gupta (named as GS in Figures) operators given by (6.1.1) and the Bézier-Srivastava-

Gupta operators to function f (x), for x € [0,2/7] and = € [0, 10] is shown in Figures

6.5 and 6.6 respectively.

il 1000

200 o

o0 500

™ ™

20 200

N S TR R T 0 ) 7 3 5 1n
Figure 6.5 Figure 6.6
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It is clearly seen that the Bézier-Srivastava-Gupta operators yield a better rate of
convergence to the function than the Srivastava-Gupta operators.

Example 3: In case ¢ = 0, « = 10 and x € [0, 1], the convergence of Bézier-
Srivastava-Gupta operators to function f(z), for n = 160, n = 200 and n = 50,

n = 100, is shown in Figures 6.7 and 6.8 respectively.

BN 41
o] E L

|
«m—l 2000

|
2000 1000

Il-l Q.L
[} 02 04 06 o8 [} 02 04 06 a8
) BzG5160 )
= ——— BGSWe
Figure 6.7 Figure 6.8

It is evident that the approximation of the function by the Bézier-Srivastava-Gupta
operators becomes better as n increases.

Now let’s compare the convergence of the Yadav operators given by (6.1.2) and
Bézier-Srivastava-Gupta operators given by (6.1.3).

Example 4: For ¢ = 0, n = 50 and a = 10, the convergence of the Yadav op-

erators(named as Ydv in Figures) and the Bézier-Srivastava-Gupta operators to

108




function f(z) is shown in Figure 6.9.

w0

w000

50
:”%
Figure 6.9

It is observed that the operator Bézier-Srivastava-Gupta operators (6.1.3) yield a
better approximation to the function f(x) than the Yadav operator (6.1.2).

Example 5: In case a = 10 and n = 160, the convergence of the Bézier-Srivastava-
Gupta operators and Yadav operators to function f (z), for ¢ = 1 and ¢ = 150, is

illustrated in Figures 6.10 and 6.11 respectively.

1400 o
1000 4
B0 3000
oo 2000
[\ -
% [] 01 02 03 04 05 L1 : [] 01 02 03 04 5 L1
Figure 6.10 Figure 6.11

We notice that Bézier-Srivastava-Gupta operators (6.1.3) provides a better conver-

gence to the function f(z) than the Yadav operator (6.1.2).
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Chapter 7

Stancu-Durrmeyer type operators

based on g-integers

7.1 Introduction

In 2009, Nowak [120] defined the g-analogue for the operators defined by (1.1.1) for

any function f € C[0,1],¢ > 0,a > 0 and each n € N as

BIo(fiz) sz:i(as)f(@),x e 0.1, (7.11)

0 [nlq

where,

o) m [ +all)ITim (1 — ¢z + alul,)
e e, o+ ali)

and investigated the Korovkin type approximation properties for these operators.
For a = 0, operators defined by (7.1.1) reduce to g-Bernstein polynomials and for
q — 1—, these operators reduce to Bernstein-Stancu operators. For o = 0 and
q — 1—, these operators reduce to the classical Bernstein polynomials. Jiyang et
al. [97] studied the rate of convergence and Voronovskaya type theorem for these
operators defined by (7.1.1). After that ” Agratini [12] introduced some estimates
for the rate of convergence for the operators by means of modulus of continuity and

Lipschitz type maximal function and also gave a probabilistic approach.”
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For f € C[0,1], 0 < ¢ < 1, Erencin et al. [53] introduced the Kantorovich type
generalization of these operators by means of the Riemann type g-integral and inves-
tigated some approximation properties and also established a local approximation
theorem.

Motivated by these studies for f € C0,1], we propose the Durrmeyer type

integral modification for the operators defined by (7.1.1) as
D3(f ) 23) 0 [ i (7.12)

where

Y

%%@__r}Hiax+aH)HL§%1—¢w+aM0
Pt k], N1+ aly)

and
n _
it = [1] - a0y
q

Clearly, when a = 0, we have p, . (t) = ¢ kpflc,’;(qt).

In this chapter, we obtain moments for the operators (7.1.2), basic convergence
theorem, local approximation theorem, A-statistical convergence theorem and the

rate of A-statistical convergence.

7.2 Preliminaries
In what follows, |.|| will denote the uniform norm on [0, 1].
Lemma 7.2.1. [120] For BY“(t",z), m =0, 1,2, one has
(i) B(la) = 1
(ii)) BL(t;x) =

(iti) By (8% x) =

(x(:zH—Oz) + xﬁn—]_qx))

Lemma 7.2.2. For DX(t™;q;x), m = 0,1,2, we have

(1+a)
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(i) Dy(L;q;2) =1

(ii) Dy (t;q;2) =

(L al)

1
[n+2],[n+ 3],

¢l

(1) D (t% q;x) = T o

ol

{(1~|—q) + q(1 + 2¢)[n],x + (x(az—iroz) +

Consequently,
) 1 1
() Da(t = ::2) = g + g alnly = [+ 2,
() Dt~ 05ai0) = g+ { e (a0 200l +
@ lnly(nlga + 1) 2 Fil(nl— 1) 2ally )
(1+a) )‘ [n+21q}“{[n+2]q[n+31q<1+a> B [n+2]q+1}x '

Lemma 7.2.3. For f € C[0,1] there holds || D%(f;q; )] < |fl-

Proof. From (7.1.2)
D(figa) < [t 1] ank / PO (1) dyt

< Ifl [ +1 Zp /pnk@)dt
_—

which implies that || D&(f;q;.)|| < ||f||. This completes the proof. O

7.3 Main results

First we will establish the basic convergence theorem for the operators Di».

Theorem 7.3.1. Let < q, > and < o, > be the sequences such that 0 < q, < 1,

a, > 0 and — 0, asn — oo. Then for any f € C[0,1], D% (f;qn;x)

rs
converges to f uniformly in x € [0,1] iff lim, g, =1 and lim, a,, = 0.
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Proof. First we assume that ¢, — 1 and a,, — 0, as n — co. From Lemma 7.2.2,

we observe that

Do (15 gy ) = 1,

Dy (t; gn; ) = (14 gn[n)q, ) = x,and

[n + 2]y,

1
[0+ 2], [n+ 3], {(1 + qn) + qu(1 + 2qn)[n]qnx

4 Gnlrla, (x(x + o) + 36(1—_06))} =

1+ a, n]g,

uniformly in z € [0,1], as n — oo. Hence, by Bohman-Korovkin theorem D" ( f; g; x)

Do (1% qn; 1) =

converges to f uniformly in z € [0,1], as n — o
Conversely, suppose that D% (f; g,; x) converges to f uniformly in x € [0, 1], as
n — oo then

Do (t; gy @) = (1 + guln]g,7) = =

[n+ 2]y,

uniformly in = € [0,1], as n — oo, which implies that ¢, — 1, as n — co. Next,

DY (Fia0a) = g () + a1+ 20,0

O (o e+ T ) e

1+ a, n]g,

uniformly in = € [0,1], as n — oo,

Hence,
14 ¢, 0
n+ 34,0+ 2], ’
1 ¢ n); ( 1 )}
w(1+ 2g, + = ay, + —0
m+ﬂ%m+m%{Q( A T A
and
3 2
@, [nl; < 1 )
- 1-— — 1, as n — oo. 7.3.1
(T o+ 2+ 3, "~ Tl (73.1)

From (7.3.1) it follows that, «, — 0, as n — oco. This completes the proof. ]
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Now, we will prove a local approximation theorem for the operators D2(f; q; ).

Let us define an auxiliary operator as

D) = D3l + o)~ 1 (b (i) (732
Hence applying lemma (7.2.3), it follows that
1Dg(f 5 )1 < 31 £l (7.3.3)

In what follows, let ¢, be a sequence in (0, 1) such that ¢, — 1, as n — oo and

] — 0. Further, let a,, be a sequence of non-negative real numbers such that
n qn
a, — 0, as n — oo.

Theorem 7.3.2. Let f € C[0,1]. Then for each x € [0, 1], we have

1D (fsaniz) — f(2)] < 20w, (f; %) +w(f, B +12]qn + ([z”iniq]’; - l>x

where 6% (x) = {D"‘”((t — )% gy ) + (—1 + o[, — $)2}
R N T

Proof. From (7.3.2), using Lemma 7.2.2 we get Eﬁ“(l;qn;x) =1 and

)

D (t; gn: 2) = x. Hence
Do (t — x: qn; ) = 0. (7.3.4)
For g € W?[0,1] and z € [0, 1], by Taylor’s theorem, we have
o(0) = 3(0) = (6= 215/ 2) + [ (=) @
Then using (7.3.4) and (7.3.3), we get
D™ (g(t); gniz) — g(w) = Dy ((t — 2)g'(2); gu; x) + Dy (/;(t —u)g" (u)du; gn; x)

t
@)D (t - wgui) + DO ( R )

= Dy [ (¢ we g
= oy [ (¢ wi g

1+ gn[nlg, =

[T (T g,

[n + 2],
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which implies that

D5 (9(8); s @) — ()|

Now,
n - MWD#(
1+ guln
o= g P ”+2 \

So, we have

D2 (g(t); gns ) — g(a))|

IN

Now using (7.3.2), we obtain

Dy (fs qus ) — f(x)

<

_|_

t
/ |t — u|du

< o (| [ 1=l la gio)
1+ qu[n]g, >
+ /x [+ 2, ‘—1 [J;({Z[;]]qi"x — u|g"(u)du
< |@"nDz"( t——uuu;qma)
1+ qn
g [ e "+2 ]1%%%@f_um
dn

— L+, (say).

t— 2
ane) = llog (575 )
X

[n + 2]‘]71

90 f pis s oy (Ll Y
TP+ (e o) |
970 g, @2, (say) (7.35)

L+ guln],a

D3 (f3qui ) — f(2) +f( [n+2],

) - s

Do (f — giqn; )| + ‘53" (95 Gn; ) — g(x)

fx) -

P(Li@—L—>—f@%

+ 2](]71

Using equations (7.3.3) and (7.3.5), we get

Dy (fs g @) — f(x)

Hg”H

< Al - gll + 47500, (@)

*’“(ﬁhnjﬂ%*'st%;‘”)x
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Taking infimum on the right hand side of the above inequality over all g € TW?2[0, 1],

we obtain

‘Dfi”(f; b ) — ()

< 4K, (f ((SQ—Q(W> +°"< | +12]qn i ([zﬂ?q R 1>x

Using the relation between K-functional and second modulus of smoothness from

© cals B oo+ (2

This completes the proof. O

)

equation (0.5.2), we get

‘Dfi"(f; 4i ) — ()

)

For 0 < r <1, we consider the following Lipschitz-type space [124]:

Lip}‘vf(r):{fGC[O,l]:|f(t)—f(x)|§M|t_x|r,M>0 t €10,1] and z € (0, 1]}

(t+x)2
In our next theorem, we estimate the error in the approximation for a function in

Lipy (r).
Theorem 7.3.3. For f € Lipy,(r), 0 <r <1, z € (0,1] and n € N, we have

dn,0n %
SM(IU”H,Q ( )) 7

T

Dy (fr qns ) — f(x)

where i (x) = D3 ((t — 2)% ;).

Proof. We may write

| Dy (fs s ) — f2)] < n+1qnzpq"a” /pnk()lf(t)—f(ﬁf)ldqnt-

2 2
Applying Holder’s inequality in the integral form for p = — and ¢ = 5
r —r
|Dan(f7 Qn, X ) - f(l’)|
1 , z 1 2
<t ot [ 110 - s ) ([ i)
0 0
T 2—r
2

1 %Zp%% ([ oo - et ()



2
Again, applying Holder’s inequality for the summation for p = — and ¢ =
r

D (o) ~ J10)
g(n+ qnzp%% ) [ 1) = s@)F e

[ V]
~~_
NI
VR
]
e
£3
)
3
8
S~—
~~

k=0
< ot [ oo () )
— n n pn 7Oén x pn r n °
q P k 0 k (t+l’>2 q
n 1 é
< (i 1 Xt @) [ ool - o)
()2 =
M 3
< o (o= 02000
()
(s (@)
)
This completes the proof. O

Lipschitz type maximal function of order j introduced by Lenze [109], is defined

as

wa(f,x) = sup /() = J(@)] z €[0,1] and g € (0,1].

t£a,te[0,1] it -z 7

Now, we will obtain a local direct estimate for the operator D" (f, ¢,,z) in terms

of (:Dg(f, 1‘)

Theorem 7.3.4. Let f € C[0,1],0 < < 1. ThenV x € |0, 1], we have

(NI

D () = ) < F570) ()
where ™ (x) is as defined in equation (7.3.5).

Proof. Applying Hélder’s inequality twice first for the integration and then for the

2
summation with p = — and ¢ = ——, we have

B 2-p

@

D2 (g ) — f(@)] < (n+ %qunan ) [ pnk<t>|f<t>—f<x>|%dqnt>
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Using the definition of the Lipschitz-type maximal function, we obtain

2

n 1
D2 (fr g ) — f(2)] < @(f,w)<[n+1]qn2pi’f"(x) / pzﬁk<t>|t—x\2dqnt)
k=0

NIy

_ @(f,x)(Dgn((t—x)z;qn;x))

= Gt (ut o)

This completes the proof. n

7.4 A-statistical convergence

First, we recall the following Korovkin type theorem in the case of A-statistical

convergence:

Theorem 7.4.1. [63] If the sequence of positive linear operators L, : Cla,b] —
Cla,b] satisfies the conditions st — lim,, ||L,(e;; q;.) — €i]] = 0 where e;(t) = t',i =

0,1,2, then for any f € Cla,b], we have st — lim, ||L,(f;q;.) — f]| = 0.

The result given above also works for A-statistical convergence. Now we will es-

tablish the following A-statistical approximation theorem for the operators DS( f, ¢, x).

Theorem 7.4.2. Let A = (a;,)be a non-negative infinite reqular summability matriz
and g =< q, >, 0< q, <1 and o =< «,, > be the sequences satisfying the following

conditions:
sta —limg, =1, sty —limg, =a,a<1
1
sty —lima, =0 and sty — lim —— =0, (7.4.1)
n n I:n](In
then for f € C|0,1], we have
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Proof. From Theorem 7.4.1, it is enough to prove that
sta — liin | D5y (€is s -) — €illcro) =0, ©=0,1,2.
In view of Lemma 7.2.2, we have D" (eq, ¢,, ) = 1, hence
st — 1171111 | Ds(eq, G, -) — €ol] = 0.

Now, again using Lemma 7.2.2 we have

Dy (€1, qn, ) — €1l = sup |——=—(1+ qu[n]q,v) — 2
ze0,1] | 7+ 2]g, !
_alnlg, b (7.4.2)
[n + 2]qn [n + 2]%

For any given € > 0, let us define the following sets

U= {n : HDgn(QDQm ) - 61“ 2 6}7

Ulz{n

ﬂﬁﬁL_4>E}

)
1

UQ:{n:[—z

[n+2],,
n+ 2], }'

From (7.4.2) it is easy to see that U C U, | U, so we have

Z Qjn S Z Qjn + Z Ajn,. (743)

nelU nely nels

and

DN

From equation (7.4.1), we obtain

-t (1) g

n + 2](111

and

1
sta—lim| — | =0.
AT ([n+2an)

Hence taking limit on both sides of (7.4.3), as j — oo, we get
sty — lim || Do (eq, gn,.) — €1]| = 0. (7.4.4)
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Similarly, using Lemma 7.2.2 | we have

HDTOzln(e% Qn,, ) - 62”

1
= sup
z€[0,1] [n+ z]qn [n + 3]qn

+% (x(x + an) + M)} —z?

{(1 + Gn) + n(1 + 2¢,)[0]g, @

1+ ay [n]qn
1+ gy, 1 a[nl;
(14 2g,)[n],, + 2
Sr 3, T a3, (q( e+ T

1 ¢ [n5, (1 _ 1 ) _ 1‘, (7.4.5)

n+2],,n+3, 1+ a, n]g,

(vl

For € > 0, let us define the following sets:

U= {n : HDzn(ezan ) - eQH Z 6}7

14 ¢, €
U= ; > -0,
' {n [n+2g,[n+3lg, — 3}
1

TR T (AR IO %(O‘ ’ ﬁ)‘ 25}

ng{n:

From (7.5.2) it follows that U C U, |J Uz |J Us, hence

Z Qjn S Z Qjn + Z Ajn + Z Qjn. (746)

nelU nelU; nelUs nelUs

UQI{H

and

T 2]%1[71 a3l ilginfn (1 - [ni) - 1‘ = %}

Now, using (7.4.1) we find

14+ qn
st — lim +a =0,
n [n+ 2, [n+ 3,
. 1 a[nl? 1 )
st — lim,, (1 +2g,) ], + —2( a, + =0, and
[n+21qn[n+31qn{q< L R

st — lim

n { [n+ 2]%1[71 3, Cllgjrnfz (1 - [qun) — 1} = 0.
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Hence taking limit on both sides of (7.4.6), as j — oo we get
sty — lim || Do (e2, gn, .) — €2]| = 0. (7.4.7)

This completes the proof. O

7.5 Rate of A-statistical convergence

Let f € C[0,1]. Then for any z,t € [0,1], we have |f(t) — f(z)| < w(f, |t — z|),

which implies that
1f@t) — f(2)] < (1+ 82t — 2)*)w(f,0), 6> 0. (7.5.1)

In our next theorem we give the rate of A-statistical convergence for the operators

D&(f;q;x) in terms of modulus of continuity.

Theorem 7.5.1. Let A = (a;,) be a non negative regular summability matriz and
for each x € [0,1], < b,(x) > be a positive non-increasing sequence and let ¢ =<
n >,0 < ¢, < 1 and o =< «, > be sequences satisfying equation (7.4.1) and
W3 pli™) = sta — olbu(@) with 5™ (@) = Dge((t — @)% i), then for any
function f € C[0,1] and x € [0, 1], we have D2 (f; qn;x) — f(z) = sta — o(bn(x)).

Proof. By monotonicity and linearity of the operators D%"(f;q,; ), we have

Dy (fs s ) — f(2)]

IN

De([f(t) = f(@)]; gn; @)
< (1 + 672D ((t — x)Q;qn;a:))w(f;(S),for any 0 > 0.

dn,0n

Taking § as /)™ (x), we get

1D (s ani ) — f(0)] < 20(f5 4/ 1n’s™)- (7.5.2)

For € > 0, let us define the following sets:

0= {1z i) - 50 2 e} ana 0= {20 (1 i) 2 o]
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From (7.5.2), we have

1 1
mZamﬁ m Z(Zjn.

nelU nel;

qn,0n

Taking limit on the above inequality as j — oo and using w(f; s ") = sta —

o(b,(z)), we obtain the required result. This completes the proof. O

Theorem 7.5.2. Let A = (a;,), < by(x) >, ¢ =< ¢, >, and @ =< «a, > be
all same as in Theorem 7.5.1. Assume that the operators Di™(f;qn;x) satisfy the
condition w(f; pl's™ (x)) = sta — oy(bn(x)) with pl's™ (x) = DY ((t — )% Gn; x).
Then for all f € C[0,1], we have DS (f;q;x) — f(x) = sta — 0,(bn(2)).

Similar results hold when little “0,” is replaced by the big “O,".

Let us define

1A w210,y := LA+ LT+ 171 (7.5.3)

The Peetre’s K —functional [129] is defined as

K(f:0) = inf {IIf = gll + llgllwepo : 0> 0}

geW?(0,1]

We know that for the K—functional and the modulus of smoothness [47], there

exists a constant C' > 0, such that
K(f;6) < Cwn(f; V). (7.5.4)

Theorem 7.5.3. Let A = (a;,) be a non negative regular summability matriz and
let g =< g, >,0<q, <1 and o =< a,, > be sequences satisfying equation (7.4.1).

For each f € C|0, 1], we have

1Dy (fs s -) — fII < Cuwa(f; Vorm ™),

where

s = D (e = i + | Di(er = i)
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Proof. For g € W?|0,1], applying Taylor’s expansion , we have

1
Dy (g; gny ) — g(x) = g'(2) Dy (er — @5 gn; ) + 59”(5)1953"((61 —2)% qn; 1),

where ¢ lies between t and x.

By using (7.5.3), we get

102 ) =gl < NP3 (Cer = s ani )
1 (0%
b g1 [Dite = i)
< o gllwe, (say).

For f € C[0,1] and g € W?[0,1], we have

1 Do (fsqns ) — fIl < 1D (f5 63 -) — Dy (g5 G )l
+ 1DY"(g; qns-) — gll + 1.f — 9l
< 2|f =gl + 1Dy (g5 a3 -) — 9l

IA

21 = gl + 05 lgllw2p0.

2(Hf — gl + 5%”’“"”9”W2[0,1}> :

IN

Taking infimum on the right hand side of the above inequality over all g € W?2[0, 1]

and using equation (7.5.4), we get

1D (Fran:.) — fll < 2K (f;8m%) < Cuws(f; v/00°").

Using equations (7.4.4) and (7.4.7), we get st — lim,, 02" = 0, hence
sta — lim, wo(f; Vo ") = 0, which gives the required result. ]
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Chapter 8

Approximation of functions by
bivariate g-Stancu-Durrmeyer type

operators

8.1 Construction of bivariate operators

This chapter is concerned with the bivariate generalization of the g-analogue of the
Stancu operators given by (7.1.2) in the previous chapter.

Let I =[0,1], I* = I x I and C(I?) denote the class of all real valued continuous
functions on I? endowed with the norm || f|| = sup 2 |f(x,y)|. Then, for f € C(I?),
the bivariate generalization of q—Stancu—Durrmfegc}’fggrG iype operators (7.1.2) is defined
as

Dty " (f3 @nys Gz, y) = [+ g, [n2 + 1, Z Z P (@)Payiy " ()
k1=0 ko=0

[ ] e ontiz sty s, 10

V(z,y) € I?. The aim of this chapter is to study the rate of convergence of the
operators given by (8.1.1) by means of the complete modulus of continuity, partial
modulus of continuity and the Peetre’s K-functional. A bivariate Voronovskaya type

theorem for the bivariate ¢-Stancu-Durrmeyer operators is established. We also
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introduce the associated GBS operators and determine the degree of approximation

with the aid of mixed modulus of smoothness for B-continuous and B-differentiable

functions.

8.2 Moments

Lemma 8.2.1. For Dyihs " (eij; a1, G, 7, y), €5 = 2'y?, 4,7 € NU{0}, =,y € [0,1],

we have
(i) Darliy " (€003 Gy s Gng» T, y) = 1
(ii) Dnyhs " (€105 Gny s Gy T,Y) = m(l + Gy [11]g,, 2);
(i) Dnyhiy " (€015 Gy » Gng T, Y) = m(l + Gy [12)g,,Y);
(iv) Dnihy " (€113 Gny s Gngs T, Y) = W(l + an, [nﬂqnlx)m(l + qny [2]4,,Y);
n n
1

(’U) Dzilnfn2 (620; GnisQnqs T, y)

q;?:l [”ﬂgnl

o (st on

Anyp,Ang

(vi) Dny'ing
2

q?m [”2]%2

1+ ap,

(602; ny 5 9nay Ty y)

<y(y + omy) +

(vii) Dpihs ™
a, [ inl

1+—a<( +om)

qgg [”2]3n2

2qy, —_—
q 2)[n2]QH2y+ 1 + anz

z(1l—x)

y(1—y)

(e20+€02; q1, G2, X, Y) = [

z(l—x)

(y(y + o) +

N [n1 + 2]%1 [n1 + 3] {[2]%1 +q”1(1+2q”1)[n1]qn1x+

)}
" 2+ 2,

)}

ny + 2]%1 [n1 + 3]

qny

[nl]qnl

1
[n2 -+ 3]

{[21%;%<1+2qn2>[nz1qn2y+

Gnoy

[n2]Qn2

{[2]qn1+qm<1+2qm>[m]qu+

qnq

) } Tt 2]%21[712 3 {[2]% + Gy (14

%)

[”2]%2

[nl]QHl qno

Lemma 8.2.2. For Duihs ™ ((t — 2)(s — Y)Y @nys Guos T, Y), 4, 7 = 1,2, we have

. Anq,Qng
(i) Dni'is

(t_xa Qny5Y9nyy T, y) - [

Ly
m + Q]QHI

1
[n1 + 2]

(qm [nl]qm—[nﬁz]qm)x;

qny
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1 n 1
N9y —+ 2](1n2 [n2 -+ 2]

(”) Dgilnfnz (5 - y;ananv'xay) = [ (QnQ[TLZ]an - [n2 +

2]%2)%

(iii) Dby (E=2)% Guy s Gy, T, ) =

Gny

YR S

[n1 + 2]Qn1 [n1 + 3]Qn1 [n1 + Q]in [n1 + 3]‘1711
an, (M1 gn, ([M1)g,, Oy +1) 2

(qnl (1 + Qqnl)[nl]qnl + (1 + O{nl) ) a [nl + Q]in }x

qgl [nl]in([nl]in —1) 2¢y, [nl]qnl 9.

+{[n1—|—2] i+ 3y, (Lt am) [+ 2] “}x’

qnq qnq

2], N { 1
[ng + Q]an [ng + 3]%2 [712 + 2]qn2 [n2 + B]an
qf;2 [n2]Qn2 ([n2]qn2 Uy + 1) 2
(34 20, + BT 2 - 2
Gy (M2, ([M2g,, — 1) 2qn, [n2]4,,, 5
" {[”2+2]qn2[”2+3]¢1n2(1+0‘n2) - [ng + 2] +1}y .

any

(iv) Duihis ™ ((5=Y)% Gnys Gna» T, Y) =

ny

8.3 Direct results

In what follows, let 0 < ¢,, < 1 and «a,,, > 0 be sequences such that lim ¢, =1,

Nn;—r00
lim ¢ = a;(0 <a; <1)and lim a,, =0, i =1,2. Also, assume that
n;—>00 N —00
5t (2) = DI (¢ = )23 g, ) and 8555, (8) = / D2 (5 — )% duas ).

(8.3.1)

Theorem 8.3.1. [158] Let I and Iy be two compact intervals of the real line. Let

Ty my with (ny,n2) € N x N be the linear positive operators on C(I; x I3) such that

lim Tm n2(€U> Cijs (Za]) € {(0>0)7<170>7(071)}

niy,na—0o0

and

lim 7}, n,(e20 + €02) = €20 + €2,
ni,n2—0o0

uniformly on I X Iy, then the sequence (T, », f) converges uniformly to f on I X I,

for any f € C(I; x Iy).
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Theorem 8.3.2. The sequence of bivariate q-Stancu Durrmeyer operators

Danl sQng

nimz (5 Gnys Qoo T, y) converges uniformly to f(x,y), for any f € C(I?).

Proof. Using Theorem 8.3.1 and Lemma 8.2.1, the proof easily follows. Hence the

details are omitted. O

In the following we give some numerical results which show the rate of conver-

Anyp,Qng

gence of the operator Dy}, ? to certain functions using Matlab algorithms.

Example 8.3.3. Let us consider f : R? — R, f(x,y) = 2%y* + 23y — 221, The
convergence of the operator Dy hs™ to the function f is illustrated in Figure 8.1
and Figure 8.2, respectively for ny = ng = 10, ¢y, = Gn, = 0.5, ayp, = ap, = 0.2 and

ny = ng = 100, ¢n, = ¢n, = 0.9, ay,, = oy, = 0.2, respectively.

Qnqp,Qng

Figure 8.1: The convergence of Dny s 2 (fiGnys Gnys T, Y) to f(x,y), for gn, = Gn, =
0.5 (red f, blue D?dz,i%2)
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|—|_|_[_F_f_'-_|——'_
02 04 06 OR

v

1

Qnq,Qng

Figure 8.2: The convergence of D%y " (f5 Qnys Gngs T, y) to f(z,y), for ¢, = Gn, =
0.9 (red £, blue Dy

We remark that as the values of n; and ns increase, the error in the approximation

of the function by the operator becomes smaller.

Theorem 8.3.4. Let f € C*(I?) and (z,y) € I*. Then, we have
| Dt (s G G 2,9) = f(@,9)| < | fl0nsl, (@) + 11l 100550, (). (8.3.2)

Proof. For a fixed point (z,y) € I?, we may write

f(t, s)—f(x,y):/ fi(u, s)du+/ fl(z,v)dv (8.3.3)

Applying Dy;'%, " on the above equation (8.3.3), we get

;Qnmqrmvxvy)

t
| Db ™ (f Gnrs Qo T, y) — f2,y)] < Dfi{’%?”(‘/ | fi(u, s)|du

+ Dﬁ;’};?”?(‘/ Ifé(x,v)ldv;qnl,qm,ﬂs,y)
Y
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Since < |I£,llls = yl, we have

/ (o, 8)] s

| Dot " (f s s Gng» 2, ) — f(,9)]
< || fullDnrhs " ([t = s Gy s G 2, ) + |LFo ][ D "2 (15 = Y15 Gy s o 2, )

= |I£21Dni” (1t = @[; gy @) + £ Dn3” (Is = 9l Gua )

< It = 2] and \/ (2, 0)ldv
Yy

Now applying Cauchy Schwarz inequality and Lemma 7.2.2 of the previous chapter,

we have

DTN (G o 29) — P )| < (LI DR (= 2% Gy )y DI (15 g )
I D (s = )2 nes 1)y D5 (13 s 9)

121101, () + [1£318m5 7, (1)
This completes the proof. n

Example 8.3.5. Let f € CY(I?). Considering ny = ny = 10 and a,, = a,, = 0.2,
in the Table 3 we compute the error of approzimation of f(x,y) = 2%y* + 23y — 22*
by using the relation (8.3.2). We observe that the error of approximation becomes

smaller as q,, — 1, as n; = 0o, 1 =1,2.

Table 3. Error of approximation for Dy ™
Gn, = Gn, | Error of approzimation
0.4 2.172377390
0.5 1.880657031
0.6 1.606452189
0.7 1.366444984
0.8 1.170958744
0.9 1.022298931

For f € C(I?), the complete modulus of continuity for the bivariate case is

defined as follows:
@(f; 51752) = Sup {’f(ta 8) - f(xay)’ : (tv 3)7 (l’,y) S 12 and ‘t _‘Il S 517 |S - y’ < 52}
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Equivalently,

w(f;01,02) = Sup{lf(t, s) = fla,y)l = (t.5), (x,y) € Pand /(t —2)? + (s —y)* < 5},

where w(f; 01, d2) satisfies the following properties:
(i) w(f;01,02) — 0, if 63 — 0 and §y — 0;

(i) [f(t,s) = f(z,y)] §w(f;51,52)(1+‘tg_1x|) (1+ |S;2y\)

The details of the complete modulus of continuity for the bivariate case can be found
n [16]. Further, the partial moduli of continuity with respect to x and y are given
by

w(f;0) = sup{|f(x1,y) — flxo,y)| iy €1 and |x1 — x| < 5},
and

w%ﬁ&z&m{ﬁ@wﬁ—f@wﬂkﬁefamﬂm—yﬂ§5}

Evidently, they satisfy the properties of the usual modulus of continuity. Let

()= {1 € CUY: Lo B S € €1 .
The norm on the space C?(I?) is defined as

mwm4w+Zq ‘ )

The Peetre’s K-functional of the function f € C(I?) is defined by

ol f
oy

K(f;0) = o {11 = gll +ollgl[}, 0 > 0.

Also,

Kqﬁngw%wﬁ¢®+mmuﬁmm}

holds for all 4 > 0. The constant M in the above inequality is independent of §

and f and @,(f;V/§) is the second order modulus of continuity for the bivariate case
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given as

@a(f; V9)

:sup{

The following theorem provides the degree of approximation in terms of the mixed

2
Z(—l)%”f(x—i— vh,y +vk)|: (v,y), (x +2h,y + 2k) € J?, |h| < 6, |k < 5}.
v=0

modulus of smoothness.

Theorem 8.3.6. Let f € C(I?) and (z,y) € I*. Then, we have

DS (fr g o) — (2, 9)] < 40 (f 5 (a), 0005 <y>).

ny:¥ng

Proof. Using the linearity and positivity of the operators Dyhs™* and in view of

property (i7) of the complete modulus of continuity, we have

‘D’ZCIL,ITZS’% (f;anqnzaxay) - f<x>y)‘ S Dgﬁl’ﬂ’gnQ(’f(ta S) - f(xay)hQTLu%lQ?may)

anl ang 1 CY”l
< w(f 5 (), 00 <y>) (1 bl D g, x))
5”17qn1 (':C)

1 o
. 1+%—Dn"2<|s—y|;qn,y>).
( 5”272(]712 (y) ’ ’

Now applying the Cauchy-Schwarz inequality and Lemma 7.2.2, we get

|Dan1 aang anl 7an2

ni,n2 (f;QRUQ’nzwray)_f(m)y” SD”LWQ (|f(tﬂs)_f(x7y)|7qn1aqn27$ay)

Cny Cng 1 Gny .
< w(f Ont iy (), 0030, (y)) (1 + m\/D ((t —2)? aQHux))

1 a
( 5”27‘1712 (y) \/

Considering (8.3.1), from the above inequality, the desired result is immediate. [J

In our nest result we obtain the rate of convergence by means of the partial

moduli of continuity.

Theorem 8.3.7. Let f € C(I?) and (z,y) € I*. Then, we have
DI s 2) = Flo0)] < 26 F3000, 00) + 22 (110332, ).
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Proof. Using the definition of the partial modului of continuity and applying the

Cauchy-Schwarz inequality and Lemma 7.2.2, we may write

| Db ™ (f Gnrs Gnas @5 y) — F(2,9)| < Dathis ™ (1 £, 8) — F(2,9)]; Gnrs Gna» T, Y)
< Duthis (1 £(t,8) = F(£,9)5 Gnys Gnas T Y) + Dris 2 (1F & y) — F(2,9)]; @nrs a7, Y)

< D’fl[;nn?nQ (wl(fu ’t - x’);qnuqnz?xuy) + Dgiln’;YnQ ((.U2<f, ’8 - y|>7 QTL17qn27x7y)

< Wl 8 <x>>{1 ; DI (It - a:|;qm,x>}

1
Oy, ()
1 an2
Dny?(Is = yl; Gnas y)

Ons 2y (V)

N 1 N 1/2
< W88 {14 5o (DI (- i) )
nvanl(x)
1/2
Ony 7 N\ DZ‘;Q - 2; n2) .
5n;?qm<y>( om y>> }

Replacing 6py4,, (¥) and 0ny%,. (y) from (8.3.1) in the above relation, we get the

(55 () { 1t

(55 () {1 ¥

desired result. O

In our next result we establish the rate of approximation of the Stancu-Durrmeyer

type operators to the function f € C(I?) by means of Peetre’s K-functional.

Theorem 8.3.8. For the function f € C(I?), we have the following inequality

|Dnths ™ (f5 Gnys Gng» 7,Y) — f(2,9)]

< atfa (o A st ) L AT )L

+ o, \/ (oo 1+ bl ) - x) ¥ (ma + Gualalin,9) — y>)

where

Aanl yQng

ni,n2 (Qnu qn27 z, y)

_ {(5;“?}% (2))* + (W

9nq

(1 + gno[n2lg,,y) — y>2}

(1 + o) 3) — )

+(Gnsn, ()% + (W

Qnoy

and the constant M > 0, is independent of f and An e ™ (Gny s Gy, T, ).
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Proof. We introduce the auxiliary operators as follows:

D" (5 @y Gna> ,Y) = Dty " (f3 Qs s T, y) + f(7,9)

1 1
—f (m(l + Gny [M1] g, ), m(l + Gn, [m]%y)). (8.3.5)

Then using Lemma 8.2.2, we have

D*anl yQ&ng

ni,n2 (L qnuqnz?x)y) = 17 D:l?fbnganZ (t - ZU, qn17qn27x7y) = 0

D552 (5 = i Gy s Qg ,y) = 0. (8.3.6)
Next, using Lemma 8.2.1

| Dy ™2 (5 @nys Gngs @5 9)| < | Dt 2 (F5 @y s Gy @, 9)|

+'f(m(1 + Gy [, ), m(lﬂlm [nz]qu)) ‘Jrlf(ﬂﬁ, y)l

< 3[IA1l- (8.3.7)

Let g € C*(I?) and t, s € I. Using the Taylor’s theorem, we may write

ot = gten) = Pyt [0,
(

dg(x,y) / Pg(t,v)
oy (s —y)+ y(s v) 507 dv.

Applying the operator Dni ™" (f; Gn, Gny» T, y) on both sides of the above equation

and using (8.3.6) and relation (8.3.5), we get

D*anl Qg *anl Qg

ni,n2 (g;Qmaanxay)_g( n1n2

(U)

— AU @ny s Gy, T, Y

Danl ;&ng ( )
- ni,n2

— AU @ny s Gy, T, Y

*an JQin Z,
n1nlz 2( S_U ( >d’U y4nyyQnyy T, Y

N N N

o (14qn; [n1]gp, @) 2
(n1+2]gpn, 1 1 a g(“’? y)
— —(1 n —u | ——=>4d
\/x' <[TL1 + Q]qnl ( + qn, [nl]in 1’) U) Ou2 u

s 82
any san g(x,v)
+Dn1,ln2 g (/ (S - U) Ov2 dv;gnu@lnzvxay)
Yy

g (14+any [n2] g, v) 2
(22T, 21M2lany 1 0%g(z,v)
- T (144, v |2 g,

/y ([m ], el t) “) o
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Hence using (8.3.1), we get

| Dt (G5 Gy s Qg T y) g( ,Y)|

<D,Cf?1n2a"2(‘/ |t — )‘du;x,y>

e (1+qn, 1] gn, © 2
1+ 2Tqn 1 v 1 0%g(u,y)
' | IEI@T“+%W”%@ N =ae | ™
ni
3%3"2( / |s — )dv;ﬂf,y)
(14+gny[n2]gn, y) 2
T2l (IFananalan, d*g(z,v)
m(l + Gy [12) g, Y) — U’ o dv
n

2
{%ﬁ”tﬂw&m%wwH([ u+%mmwww>}mwm

n1+2]

qnq
1 2
{A%” =020 + (g (04 b)) Pl

ny

s 1 ’
{ n1 bnl (m(l + an, [nl]qnlv”’?) - ff) }HQHCQ(I?)

1 2
an 2
+{(6"2:2qn2 (¥)” + ([nz ] (1 + gn, [nQ]qngy) - y) }”9“02(12)
- Az;nngnz (QTZNqn,zax7y)||g||c2(12)' (838)

an

Hence in view of (8.3.7) and (8.3.8), we get
|Dgi1n’;1n2 (fv Qny5Qnys Ts y) - f(l’, y)| = D:(l?jl’ﬂl2’an2 (fv Qnyi5Qnys Ts y) - f(il), y)

1 1
+f<m(1 + Gy 114, ), Tt

Gnoy

u+qmmmww)—fuwﬂ
< |Dnt s (f = G5 Gnas Gnos T, Y)| + | Dnsins™ "2 (05 Gn s Gna» 7, Y) — 9(,9)|

1 1
+‘f(W R

ng

(1 + Gn, [n2]qn2y)> — fl(z, y)‘

< 4:||f - g|| + AzT}n’?"2 (qn17QH27I7y)||g||C2(I2)

vy (g bl ) =)+ (i1 + dalalan) —v) ).
i+ 2, 2+ 2y,
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Taking the infimum on the right hand side over all g € C?(I?), it follows that

| Dt ™ (f5 Gy Gnay T, y) — f(2,9)| < AK(F; Antis " (s Gnos T, Y))

1 2 1 2
15 fiy] | (L + g [)g, ) =7 ) + [ (1 + gy [n2] g, y) —
(f \/([n1+2]qn1( q 1[ 1}!1 1 ) ) ([n2+2]qn2( q 2[ 2]q Qy) y) )
< M{wz <f; \/Azﬁln’?"g (Gn1» Gz y)) +min{1, A" (G s G ) | f] Ic(m}

+w(f; \/(m(l + o [t ) — J,)z . (Mu + g (20, y) — y)2),

which is the desired conclusion. O

8.4 Voronovskaya type theorem

In this section we shall establish a Voronovskaya type theorem for the operators

Qpq O . . . . .
Dy 5, . First, we need an auxiliary result contained in the following lemma.

Lemma 8.4.1. Assume that 0 < g, <1, ¢, = 1 and ¢ — a, a € [0,1) as n — oo.

If lim a,, =0 and lim na, =1 € R, then

n—oo n—oo

lim [n],, Do™ (t — 25 qn;x) = 1 — (1 4 a)x,

T 1]y, D2 (2 — )% i 7) = (14 2)a(1 — ), (s.41)
nlgg()[n]iﬂDf{” ((t—2)% gus2) = 32*(1 — 2)?1(l + 4) + 2*(1 — z)(72* — Tz + ).
(8.4.2)

Proof. Using Lemma 7.2.2, we get

. an N [n]qn [n]Qn nt+ly _
nh_{IOlo[n]ann (t — qn,x) - [n + 2]% - [n+ 2]%(1 + dp ) -+ (1 + (Z)Q?,
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and

li Dy ((t = )% gu; =2+ Dz —2"+ i ol
A lrla, D (=) w) = O e = i T+ S (T T an)

<{q’[n]g, = 2au[nlo.[n + 2], [0+ 3g, + [0 + 2, [0+ 3,

qn

+n + 3], an([n +2]g, — QQn[”]qn)}xQ

= (1+2)z— (I + D2’ + I 7l
(2 = (o D e T T 81, (1 F o)
{22 +2¢,(1 + ¢2)q) — ¢2[ng, + 1} 2°

=({+2)z(1—2x).

The relation (8.4.2) is obtained in a similar way using Lemma 7.2.2 of the previous

chapter and Lemma 3.2 ([121]). O

The main result of this section is the following Voronovskaja type theorem:

Theorem 8.4.2. Let f € C?(I?) and (¢,), be a sequence in the interval (0,1) such

that ¢, — 1 and ¢ — a, a € [0,1) asn — oo. If lim «a,, =0 and lim na, =1 € R,

n—oo n—oo

then for every (xo,1y0) € I?, we have

lim [n]CIn {Dg,nn,an (f? qn; qn, Lo, y0) - f(-CEanO)} = [1 - (a + 1).T0]f;(.f170, ?Jo)

n—oo

[+2
+[1 = (a + Dyol f, (w0, o) + 5 {0(1 = w0) f (w0, 90) + yo(1 — o) fyy, (0, 1)) } -
Proof. Let (z9,y0) € I? be a fixed point. By the Taylor formula, it follows that

f(t,s) = f(zo,y0) + fr(20,y0)(t — 20) + £, (20, 40) (s — %0)
+ % {f;'x(xo,yo)(t—xo)2+2f;'y(xo,yo)(t—xo)(s - yo)+f£,/g,($07 ?Jo)(S—yo)Q}

+(t, 5,20, 40) ((t — 20)* + (s —%0)?) ,

Qn,0Qn
n,n

where (t,s) € I and  lim  (s,t,79,y0) = 0. From the linearity of D

, We
(t,5)—=(x0,y0)
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have

Dy (f(t,8); Gns @ns T, %0) = f (0, y0) + folo, Yo) Dy (t = 20; Gns Gn, To, Yo)
+f3/,($0, Yo) Dy (8 = 405 Gny Gns Tos Yo) + % {f;lx(mo,yo)szﬁa"((t — 20)%; s Gn> 0, Y0)
+2f1, (20, Yo) Dy (t — 20) (5 = Y0); @n» @n; To5 Yo)

+ o (@0, o) Dy (s — Y0)”; G Gn> Tos Yo) }

+Dpn ((t, ) ((t = 20)* + (5 = %0)%) 3 Gns Gn> T0, Y0)

= f(l’o Yo) + fr(zo, o) Dp™ (t = 203 qn, o) + £, (20, Y0) Di™ (5 — Y05 Gns Ho)

+5 {fmaz 20, 40) D™ ((t — 20)*; > x0) + Sy (0, y0) D™ (5 — ¥0)*; s o)

+2fxy($0a yo) D ((t = 20); n> 20) D™ ((5 — Y0); Gy 40) }

_i_Dinn’a" (90(57 t) ((t - ‘TO)2 + (S - y0)2) s dns dn,y X0, y(]) . (843)

Applying Cauchy-Schwarz inequality, we have

| Dgmer (o(t, 5,20, 90) ((t = 20)* + (5 = 90)2) 5 s G T, 40|

< ‘Dﬁ,”n’a" (¢(t, s, 0, Y0) (t—0); qn, Gn, 9607?/0)|

+ [ Dgmen (ot s, 20, Y0) (5= ¥0)%; Gns n> To, Yo) |

<D (2t 5,70, Y03 s G w0, 90) } 1 { D (E=20)"; G s 70, 90) }
D5 (9 (85,20, 50)% s G0 30) 1 { D55 (5 =0)*; s s w0, 0) }

= { D2 (Q*(t, 5,20, Y0): s s 0, 30) } [{DQ" 0 ((t=20)"; Gu, G 20, 90) }

+ { D ((S_y0)4;QnaQnaxO7y0)}1/2:|

Using Theorem 8.3.2, we get

lim Dgr;zan (902(157 S, L0, yO)? qn; dn, Lo, yO) = 902('%0’ yO) = 07

n—o0

and hence using Lemma 8.4.1 we have

lim [n]QanLé,nn’an (QO(t, 8) ((t - 370)2 + (S - y0>2) 3 Gns dn, Lo, 3/0) = 0.

n—oo

Finally applying Lemma 8.4.1 in (8.4.3), the theorem is proved. O
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8.5 GBS generalization

8.5.1 Introduction

In [30] and [31], Bogel introduced a new concept of Bogel-continuous (B-continuous)
and Bogel-differentiable (B-differentiable) functions and also established some im-
portant theorems using these concepts.
We give some basic definitions and notations, for further details, one can refer to
(32].

A function f: X XY — R is called B-continuous at (z¢,yo) € X x Y, where X
and Y are compact subsets of R if

lim Af[(ilf, y); ('7707 yO)] =0,

(@,y)=(20,y0)

where, Af[(z,v); (zo,v0)] = f(x,y)— f(x0,y)— f(z,y0)+ f(x0, yo) denotes the mixed
difference of f.
A function f: X XY — R is called B-differentiable at (z¢,yo) € X x Y if|

lim Af[(z,y); (w0, yo)]
(@)= (zow0) (T — 20)(y — Yo)

exists and is finite. This limit is named as B-differential of f at the point (x¢,yo)
and is denoted by Dy f (0, yo)-

The function f : A C X xY — Ris called B-bounded on A if there exists M > 0
such that |Af[t,s;x,y]| < M, for every (z,vy), (t,s) € A. Here, if A is a compact
subset of R? then each B-continuous function is a B-bounded function on A.

Throughout this chapter, we denote by C} (A) and Dy (A), the space of all B-
continuous and B-differentiable functions on A respectively and By, (A) denote the
class of B-bounded functions on A endowed with the norm

Ifllz="sup |Af[t sz, 9]l
(z,y),(t,s)eA

It is known that C'(A) C Cy(A) ([32], page 52). Badea et al. [21] proved the
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following Korovkin-type theorem in order to approximate B-continuous functions

by using GBS-operators.

Theorem 8.5.1. Let (Ly, ny)s Linyny 2 Co(A) = B(A), ni,ny € N be a sequence of

bivariate linear positive operators, G, n, be the GBS-operators associated to Ly, n,

and the following conditions are satisfied:
(1) Lnyn,(€00;x,y) =1
(11) Ly, ny(€10;%,Y) = T + Upy ny (T, Y)
(111) Ly ng (€015 %, Y) = Y + Vnyny (7, )
(10) Ly ny(€20 4 €025 2, y) = 2 + Yy 4 Wny 0y (2, Y)

for all (z,y) € A. If the sequences (Uny ny); (Vnyny) and (Wy, n,) converge to zero
uniformly on A, then the sequence (Gy, n,f) converge to f uniformly on A for all
fe Cb(A)

8.5.2 Construction of operators

We define the GBS operator of the operator Dy %y given by (8.1.1) for any
f € Cy(I?) and ny,ny € N, by

Grihis " (fiGnys s T, Y) = Db ™ (F(ty) + f(2,8) — F(£,9); Gnrs Gnas T5 1),

for all (x,y) € I*. More precisely for any f € C,(I?), the GBS operators of g-Stancu-

Durrmeyer type operators is given by

Ggilﬁ;an (.f? Qnu qn27 'ZC? y) [nl + 1]Q711 n2 _I_ 1 Q’nz Z Z pggi’;‘i{nl pZIZ%k‘ZMQ (y)
k1=0 k2=0
1 qgn n
Jo Jo Pt (OP2, ($)F (6 y) + fla.s) = f(t, 5)]dy, tdy, 5.
(8.5.1)

ny,Q&ng

Evidently, the operators Gy he " are linear operators.
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8.5.3 Approximation theorems

We define the mixed modulus of smoothness for f € Cj, (I?) as follows:
Winized (f501,02) == sup {|Af [t, s;z,y]| : [t — z[ <1, [s —y| <o},

for all (z,y), (t,s) € I? and for any (d;.d2) € (0,00) x (0,00) with

Wmized © [0,00) X [0,00) = R.

The basic properties of wy,izeq Were obtained by Badea et al. in [23] and [22] which
are similar to the properties of the usual modulus of continuity.

Badea et al. [22] established the following Shisha-Mond type theorem to obtain the

degree of approximation for B-continuous functions using GBS operators:

Theorem 8.5.2. Let L : C(A) — C(A) be a bivariate linear positive operator and
G : Cy(A) = C(A) be the associated GBS-operator. The following inequality

G(fiz,y) = fle, )l < [yl LL e y) = 1+ {L(12,y) +

67 VL((t — )% m,y) + 65V L((s — y)% 3, y)

+ 0 WLt — )% 2,9)65 VL((s — 9)% %, y) }omigea(f3 01, 02),

holds for all f € Cy(A), (z,y) € A and 61,09 > 0.

Theorem 8.5.3. For every f € Cy(I?) and (z,y) € I?, we have

|Ggln,17712an2 (f7 ina an? .f, y) (x y)| < 4wmzmed(f 570;?1(1711 ( ) 52[;2‘1712 (y))

Proof. Applying Theorem 8.5.2, we have

|Gty ™ (f5 dnys o 5 y) — f(2,9)]

< |f (@ )1 Dl ™ (15 G s g 2, y) — 1+ { Dl ™ (13 g s o 7. 9)

+0y \/Dﬁflnf"z ((t = 2)% Guy s Gz 2, Y) +5‘1\/D3f,%§"2((8—y)Q;qm,qnmx,y)
07105 DTN (= @)% s s 2 9)y D™ (5 = )23 s s 2, 9) -

wmi:ped(f; 517 52)7
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an2

Applying Lemmas 8.2.1 and 8.2.2, on choosing §; = 531"}(1”1 (7) and b2 = 6y 5., (¥),

we obtain the desired result. O

Theorem 8.5.4. Let f € Dy(I?) with Dgf € B(I?). Then, for each (x,y) € I, we

have

IGoihs ™ [ Gy Qo T,y — f(2,9)]

2 112 (||DBf| loo + Winized(DBf; [”1];n11/2> [HQ]%Z/Q)) ‘
[nl](Inl [ng]qn2

Proof. Since f € Dy(I*) and Dgf € B(I?), then from

e M)
DBf(x’ y) N (x,y)L(xo,yo) (t - x)(s - y)

it follows that Af[t,s;x,y] = (t —z)(s—y)Dpf(£,n), where &, n lie between ¢t and
x and s and y respectively.

Since Dpf € B(I?), using the following relation

Dpf(§,m) = ADgf(&§,n) + Dpf(&,y) + Dpf(x,n) — Dpf(z,y),

we obtain

| Dy " (AL, 852, ) Gy s G T, Y))|

= |Dnth " ((t = x)(s = ¥) DS (€,0); Gny» G T, Y)|

< Dntly ([t = z||s = yl|ADB (& 0)]; dnss s 2, Y)
+D5ihs " ([t = xl[s — y|(IDsf (€, )]

+Dpf(z,m)| + |Dpf(z,9)]); @nys @na» T, Y)

< Doty ™2 (|t=||s —ylwmivea(Dp f3 =], 10=Y1): Gy Gy 7, 1)

+3 |[Dpflloe Dattis 2 (It = s = yl; @uys Gno» ,9).
Using the basic properties of wy,izeq, Wwe have

wmixed(DBf; |§ - $|7 |77 - y|) < wmixed(DBf; |t - $|7 |S - y|)
< (146, t —2) (140, s — Y|) Winiwed(DB 3 6n1s Ona)-

1
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Hence applying the Cauchy-Schwarz inequality, we get

|Goihs ™ fi Gny s Gnay T,y — F(2,9)] = | Daris > AFIt, 832, Y] Gny s Gng» T, Y|

< 3(1D5 fllooy DEHE™ (£ = 2)2(5 — )% dos s 23)

QAny,Qng

+<Dn1,n2 <|t_x||s_y|7Q’rl17QTL27xay>
+6 lef’lanO‘WQ ((t - $)2|5 - ?/|, QnisQngs T, y)
+0,, Dty 2 ([t = /(s = Y); Gy s Gz 2, Y)

—1—5”115”211)%}712%2 ((t - ZL‘)2(S - y)Qa QnyyQnyy Ts y))wmixed(DBf; 51117 577,2)

< 31D oo/ D™ (£ = 2)2(5 — )% s s 219)

<\/D1o":;ln72an2 t - x)Q(S - y)27 Qny;>Y9ny, T, y)

+§n1 \/Dz‘flnv;)‘"z t— 1‘)4(5 - y)2; Gnis9ng, T, y)
+5n2 \/DgilngnQ t - x)Q(S - y)4’ qn1 9 ana l‘, ?/)

+6n115n21D701T,1n’2an2 ((t - 13)2(8 - 9)2, Anys Gnoy Ly y))wmimed(DBf; 57117 5712)

We observe that for (z,y),(t,s) € [ and 7,5 € {1,2}

Db (8 = 2)* (s = 1) @ @y 2, y) = DE((E — )% @y 2, 9) D22 ((5 — 4) 7 g, 2, ).

Q C Qn, C
Now taking 6,, = dny,, () < 1 55 Ony = Onggn, (y) < i 5, and
[nl]qr/ll [712]%{2
using (8.4.2), we obtain the desired result. O

Let 8,7 € (0,1], then

Lipy (8,7) = {f €Cy (I?) t|Af [t syl < Mt —al |s —y[" for (¢,5), (z,y) € 12}

is the Lipschitz class for B-continuous functions. Our next theorem gives the rate

ny1,0ng

of convergence for the operators Gy 4, "> by means of the class Lips (5,7).

Theorem 8.5.5. Let f € Lipy/(8,7) and (z,y) € I2. Then for M >0, 3, € (0,1],

we have

B vy
G (F s s, 9) — F( )] < M<5§1”3qn1 (a:>) (53;?% <y>) |
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Proof. By the definition of Gnite ™, we may write

Ganl yOng

ni,n2 (f;anqnz)xay)
= Dot " (f(x,8) + f(t,y) = F(£,8); Gy Gnas T, Y)
= Dgf}ﬂ’?ng(f(xay> - Af[t75§$7y];Qn1>Qn2;17yy)

= f(zay)Dgil’HfHQ (600; QTH?qTLQ?:C?y) - D’?lé;lngn2 (Af[ta 37377:[/]7 inaqngax7y)'

Hence, using Lemma 8.2.1 and the definition of the Lipschitz class

|Gg;1n’§n2(f;Qn17qn27x7y)_f(‘r7y)| S Dzr,%SRQ(’Af[tas;x7y]|;qn17qn27x7y)
< MDZZ%’?"?(H—IIJWS—yPSanC]nz,x:?/)

MDu (It = 2% Guys 7, ) Dry? (15 — Y| @y, ).

Applying the Holder’s inequality with p; =2/8,¢1 =2/ (2 — ) and py = 2/7,

¢2 =2/ (2 —~) and Lemma 7.2.2, we have

IGaths ™ (f; Gnys Gna» @, y) — f2, )]

N B/2 N v/2
< M(Dnrl (L= 2)% qu, )) . (Dn?((s g, y>)

a g « !
SM(cSnffqnl <x>) (csn:,zn2<y>) |
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