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SYNOPSIS  

The flow and thermal features of fluids across the periodic array of cylinders and/or over tube 

banks are considered as one of the classical problems in the fluid mechanics because of its 

widespread industrial applications. For instance, the flow of process streams in the shell side of 

tubular heat exchangers is often used to model the flow over the tube banks. Screens used to filter 

polymer melts are sometimes modeled as randomly oriented cylinders. Longitudinal flow over 

rod bundles is common in most fuel elements of nuclear power reactors where the main heat 

exchanging equipment is composed of a large number of parallel fuel rods arranged in a regular 

array. To allow sufficient and regularly distributed space for the coolant flow parallel to the axes 

of the fuel rods, suitable spacing devices are used, which also provide rigidity to the fuel element. 

Moreover, this flow arrangement is also found significant in the fluidized bed drying of fibrous 

materials, filtration of paper and pulp suspensions and biological systems, etc. (Duli et al., 1995; 

Martin et al., 1998; Vijaysri et al., 1999; Mandhani et al., 2002; Mangadoddy et al., 2004). 

The above flow geometries are oriented in different geometrical arrangements in the process 

equipment such as heat exchangers, evaporators, boilers and condensers, etc. Typically, tube 

banks consist of square, triangular, rectangular and hexagonal array of cylinders. Amongst all 

these arrangements, the square array of cylinders is most popular and widely used because of its 

simple geometrical orientations. Because the physical geometry of interest, the expected patterns 

of the flow through an array of cylinders have a periodically repeating nature. The present work 

is devoted to the periodic flow of fluids across a square array of circular cylinders in cross-flow. 

Understanding of the flow and thermal features from such a system is always challenging, 

because the boundary layers are periodic and continuous which cause a great resistance to the 

flow of fluids. The kind of flow whether longitudinal or transverse, laminar or turbulent and the 

porosity of the cylinders (cylinder arrays are treated as porous media), are the other factors which 

further make the problem more stimulating to explore and investigate. For instance, in the case 

of transverse flow, the buoyancy acts perpendicular to flow direction, which enhances the rate of 

heat transfer.  Few such examples are the air flowing horizontally over a heated pipe, steam 

leaving a boiler passes through a pipe where a fan blowing over it, etc. Other examples include 

the applications in solar thermal extraction system as well as some parts of electronic equipment 

cooling, etc. (Gowda et al., 1998; Soares et al., 2009; Daniel and Dhiman, 2013).   

Furthermore, the non-Newtonian fluid (shear-thinning and shear-thickening) nature and 

the buoyancy induced flow are the additional factors which make the problems more intricate 

and ambiguous due to the direct impact of these parameters on the flow and thermal fields, drag 
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force and Nusselt number, etc. In fact, a thorough and in-depth understanding of the detailed 

kinematics of such a flow is germane to the development of a reliable methodology for the 

process equipment design. In other words, the flow and heat transfer characteristics across a 

periodic array of cylinders are one of the starving areas to be studied in fluid mechanics. 

Owing to such an excellent industrial relevance, still very little is known about the flow 

and heat transfer characteristics across a periodic array of cylinders even with simple Newtonian 

kind of fluids (Koch and Ladd, 1997; Martin et al., 1998; Spelt et al., 2005b). Notwithstanding, 

in the literature, two distinct approaches/schemes are available to investigate such type of flow 

and thermal problems. In the first scheme, the field equations are solved for the different 

geometrical arrangements of a periodic array of cylinders/spheres with known geometrical 

configuration, whereas, in the second scheme, the assemblage of cylinders/spheres is modeled 

by using the approximate cell models where the modeling depends upon particle-particle 

interactions. For instance, a frictional pressure gradient over an assemblages of long cylinders 

was estimated by employing a most common velocity and stress-variational principle (Slattery, 

1972). Further, free surface cell model (Happel, 1964) was used to determine the interferences 

amongst the cylinders. The drag on cylinders was described to gradually reduce under the 

analogous value of Newtonian fluids with an increasing shear-thinning behavior. Subsequently, 

the model equations were solved by using free surface cell models, zero vorticity cell model, etc. 

(Vijaysri et al., 1999; Shibu et al. 2001; Mandhani et al., 2002; Mangadoddy et al., 2004, etc.) 

 In summary, the critical review of the available literature on the periodic flow across an 

array of cylinders for Newtonian and non-Newtonian fluids suggests that insights for global 

engineering parameters such as the drag coefficients, pressure loss, permeability, Nusselt 

numbers, etc. using various cell models are available, but they are limited to lemianr creeping 

flow and low porosity of the cylinders. In fact, there is no literature which could reveal the flow 

and thermal features by using the direct periodic array of cylinders. Additionally, in case of mixed 

convection flow problems, negligible literature/studies are available to such flow geometries. 

These gaps in the literature motivated us to investigate the problems of forced and mixed 

convection across an array of cylinders to explore the features of Newtonian and non-Newtonian 

power-law fluids flow through such an industrially important flow geometry. 

Therefore, with the aim of fulfilling the gap in the literature, this thesis is concerned with the 

numerical investigation of steady forced/mixed convection flow and heat transfer characteristics 

of Newtonian and non-Newtonian power-law fluids across an array of circular cylinders in a 

square arrangement. 
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Objectives of the thesis 

 

The objectives of this thesis are to supplement the available knowledge through a CFD 

investigation for the wide ranges of pertinent dimensionless parameters such as fluid volume 

fraction, power-law index, Reynolds, Prandtl and Richardson numbers to explore the momentum 

and heat transfer characteristics of Newtonian and non-Newtonian fluids across a periodic array 

of circular cylinders in square configuration. Particularly, this dissertation has focused on an 

investigation of the five problems as mentioned in the following Table.  

 

Table: Problems studied in this dissertation 

 

S. No. Problems studied across a periodic array of 

cylinders in a square configuration 

Ranges of physical 

parameters 

 

1. Forced convection flow and heat transfer 

characteristics of Newtonian fluids   
0.70 ≤ f  ≤ 0.99 

0.70 ≤ Pr ≤ 100 

1 ≤ Re ≤ 40 

2. Forced convection flow characteristics of non-

Newtonian power-law fluids 
0.70 ≤ f  ≤ 0.99 

1 ≤ Re ≤ 40 

1 ≤ Pr ≤ 100 

0.4 ≤ n ≤ 1.8 

3. Forced convection heat transfer characteristics of 

non-Newtonian power-law fluids 
0.70 ≤ f  ≤ 0.99 

1 ≤ Re ≤ 40 

1 ≤ Pr ≤ 100 

0.4 ≤ n ≤ 1.8 

4. Mixed convection flow and heat transfer 

characteristics of Newtonian fluids 
0.70 ≤ f  ≤ 0.99 

0.70 ≤ Pr ≤50 

1 ≤ Re ≤ 40 

0 ≤ Ri ≤ 2 

5. Mixed convection flow and heat transfer 

characteristics of power-law fluids 
0.70 ≤ f  ≤ 0.99 

1 ≤ Pr ≤ 50 

1 ≤ Re ≤ 40 

0 ≤ Ri ≤ 2 

0.4 ≤ n ≤ 1.8 

( f : fluid volume fraction, Pr: Prandtl number, Re: Reynolds number, Ri: Richardson 

number and n: power-law index) 
 

The solution of aforementioned problems has been obtained by solving the modified form of 

Navier-Stokes equations with appropriate boundary conditions for the various cases and 

conditions with and without the use of Boussinesq approximations by using commercial CFD 

solver ANSYS Fluent (2009). An unstructured non-uniform grid consisting of triangular cells 

was generated by using a commercial grid tool GAMBIT. A finer mesh was generated near the 

cylinder surfaces to better resolve the sharper gradients. The 2-D, laminar and segregated solver 
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was utilized to simulate the incompressible flow on the collocated grid arrangement. A second 

order upwind scheme was used to discretize the convective terms appearing in both flow and 

thermal equations. A SIMPLE scheme was used to handle the pressure and velocity coupling. 

The double precision solver was used to improve the accuracy of solutions and the converged 

results were obtained when each of the continuity, momentum residuals reached in the order of 

10-10 and energy residuals in the order of 10-14.   In view of all these facts, the above five problems 

are discussed herein for a brief overview of this dissertation:  

 

1. Forced convection flow and heat transfer characteristics of Newtonian fluids across 

periodic array of circular cylinders 

  
The forced convection flow and heat transfer characteristics of Newtonian fluids have been 

studied for the ranges of parameters as mentioned in Table.  Particularly, the influences of flow 

governing parameters (Re, Pr and f ) on the local and global characteristics have been revealed. 

The numerical results suggest that for a given value of Reynolds number, the total drag 

coefficients decrease drastically as the fluid volume fraction increases. The importance of inertia 

diminishes with an increasing compactness of cylinders (i.e., the decreasing f ) because of the 

largest contribution of viscous dissipation in this limit in small gaps between the cylinders. 

Therefore, the friction drag is dominating over pressure drag. These features reveal that there is 

the strong dependence of drag coefficient on both fluid volume fraction as well as Reynolds 

number. In the case of heat transfer, for the fixed values of Reynolds and Prandtl numbers, the 

average Nusselt number increases with decreasing fluid volume fraction. This increase in average 

Nusselt number is greatly influenced by the interactions between the cylinders. Attempts are also 

made to interpret the average Nusselt number values in terms of the Colburn heat transfer factor 

(
Hj ) for their easy use in process engineering and design calculations. Further, the numerical 

results of individual and total drag coefficients and the average Nusselt number have been used 

to develop the simple correlations as a function of pertinent dimensionless variables (i.e., Re, Pr 

and f ) and results have been compared with the available literature which displayed an 

excellent agreement. 

 

2. Forced convection momentum transfer characteristics of power-law fluids across 

periodic array of circular cylinders  

  
Here, the flow features of power-law fluids have been displayed for the ranges of parameters as 

listed in Table. The results are presented in terms of streamlines, pressure coefficient and 

individual and total drag coefficients for the governing parameters. The dependence of individual 
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and total drag coefficients on the power-law index, fluid volume fraction and Reynolds number 

shows the non-monotonous behavior. For shear-thinning fluids (n < 1), the pressure drag 

coefficient dominates over friction drag coefficient; whereas, an opposite behavior was seen for 

the shear-thickening fluids (n > 1) except at Re = 40. Further, both of the individual and total 

drag coefficients were seen to increase and decrease with the increase in the power-law index 

over the range of fluid volume fraction (0.70 ≤ f  ≤ 0.90) and (0.92 ≤ f  ≤ 0.99), respectively. 

Strong interactions between the periodic cylinders were observed at the lower values of fluid 

volume fractions which diminish with the increasing value of fluid volume fractions. The results 

were further used to develop an empirical correlation for the pressure, friction and total drag 

coefficients to give an additional physical insight of this study. The results have been compared 

with the available literature which shows an excellent agreement.  

 

3. Forced convection heat transfer characteristics of power-law fluids across periodic array 

of circular cylinders 

 

In this part, the results have been discussed in terms of local and global characteristics of heat 

transfer such as isotherm patterns, local and average Nusselt numbers for the broad range of 

governing parameters (Table). The numerical results revealed the heat transfer enhancement of 

approximately 97% in the shear-thinning fluids among the lowest and the highest fluid volume 

fractions for the highest value of Pr and the lowest value of Re and n. Under the identical 

conditions, the enhancement was about 83% in the shear-thickening region. For the ranges 

examined herein, different levels of improvement in the average Nusselt number were noticed 

because of the shear-thinning and shear-thickening natures. The results were further used to 

develop an empirical correlation for the average Nusselt number and the Colburn heat transfer 

factor to give additional physical insight. Additionally, the present results have been compared 

with the available literature which displayed a good agreement.  

 

4. Aiding buoyancy mixed convection characteristics of Newtonian fluids across periodic 

array of circular cylinders  

 

Mixed convection features of Newtonian fluids have been studied under the aiding buoyancy 

conditions for the ranges of parameters stated in Table. The numerical results were observed to 

be the strongly dependent on the governing parameters ( f , Re, Pr and Ri). The drag coefficients 

were observed to be diminished with an upturn in Reynolds number and fluid volume fractions, 

whereas an opposite behavior was noticed with the rise in Prandtl number and buoyancy 

parameter (Ri). Further, the local and average Nusselt numbers were improved with increased 
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value of Prandtl and Reynolds numbers and surprisingly with the fluid volume fractions (
f ) 

also, as opposed to decrease in forced convection case. Additionally, aiding buoyancy enhances 

both flow as well as heat transfer features. The strong influence of 
f on results was observed 

relative to other parameters (Re, Pr and Ri). Moreover, at the higher values of f , Re and Pr, a 

transient behavior was also noticed. Statistical correlations were developed for the total drag 

coefficient and average Nusselt number to gain the further physical insights. Finally, the results 

have been compared with the scant available literature which displayed an excellent agreement.  

 

5. Aiding buoyancy mixed convection characteristics of power-law fluids across periodic 

array of circular cylinders   

 

The mixed convection flow and heat transfer characteristics to non-Newtonian fluids across a 

periodic array of circular cylinders have been investigated numerically for a wide range of 

governing parameters (n, f , Re, Pr and Ri) under the aiding buoyancy conditions (Table). The 

influences of these parameters on the streamlines, pressure coefficient, isotherm patterns and 

individual and total drag coefficients, local and average Nusselt numbers were explored and 

presented. The local flow phenomenon (streamlines, pressure coefficient and isotherm patterns) 

describes that the dense arrays offer higher resistances to flow of fluids and hence sparse array 

is required to minimize the flow resistances. Further, the drag coefficients decrease gradually 

with increasing value of Re for all the values of fluid volume fractions and power-law index. 

However, an increase in drag coefficients was observed with increasing value of Prandtl number 

in the mixed convection (Ri > 0) case as opposed to forced convection case (Ri = 0). The isotherm 

patterns reveal that the increasing inertial effects enhance the rate of heat transfer due to the dense 

clustering of the isotherms near the cylinder surfaces. The average Nusselt number was observed 

to be increased with the increasing values of f , Re, Pr and Ri and the decreasing value of n 

(increasing shear-thinning behavior). A transient behavior was observed for both of the drag 

coefficients as well as average Nusselt number at higher fluid volume fractions and Reynolds 

numbers. Additionally, aiding buoyancy enhances both of the flow and thermal parameters in the 

vicinity of periodic cylinders. Moreover, statistical correlations for the drag coefficients and 

average Nusselt numbers are developed for gaining the more physical insight of the results.  

 

 In summary, the detailed insights of the forced and mixed (aiding buoyancy) convection 

flow and heat transfer characteristics have been gained and presented for both Newtonian and 

non-Newtonian power-law fluids for the wide ranges of flow governing parameters across a 

periodic array of circular cylinders in a square geometrical configuration.  
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NOMENCLATURE 

 

 

Ai Flow area (m2) 

CD total drag coefficient (-) 

N

DC  normalized total drag coefficient (-) 

CDF friction drag coefficient (-) 

N

DFC  normalized friction drag coefficient (-) 

CDP pressure drag coefficient (-) 

N

DPC  normalized pressure drag coefficient (-) 

CDR drag ratio (-) 

cp specific heat (J/kg K) 

CP surface pressure coefficient (-) 

D cylinder diameter (m) 

Dhi hydraulic diameter (m) 

Eij the rate of strain tensor (s-2) 

F the correction factor (-) 

Fa tube arrangement factor (-) 

FD drag force per unit length of the cylinder (N/m) 

FDF viscous drag force per unit length of the cylinder (N/m) 

FDP pressure drag force per unit length of the cylinder (N/m) 

g gravitational acceleration (m/s2) 

Gi grid  sizes (i = 1, 2, 3 and 4) 

Gr Grashof number (-) 

h convective heat transfer coefficient (W/m2K) 
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k thermal conductivity (W/m K) 

L cylinder spacing (m) 
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T temperature (K) 

Ti inlet fluid temperature (K) 

To outlet fluid temperature (K) 
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V volume averaged velocity (m/s) 
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s Solid 
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Chapter 1 

 

INTRODUCTION 

1.1 Motivation  

The flow of fluids across periodic array of cylinders and/or over tube banks represent an 

idealization to many industrially important processes as encountered in chemical and allied 

industries, polymer industries as well as biological and food industries, etc. (Vijaysri et al., 1999; 

Prasad and Chhabra 2001; Shibu et al., 2001). Accordingly, these flow geometries are found 

significant in the design of several heat and mass transfer equipments, filtration of paper and pulp 

suspensions, autoclave processes, coating of textiles, fluidized bed drying of fibrous materials 

(e.g. coconut shell and rice husk, etc.), composite manufacturing and oil recovery, etc. (Sangani 

and Acrivos, 1982; Drummond and Tahir, 1984; Talwar and Khomami, 1995; Koch and Ladd, 

1997; Mandhani et al., 2002; Mangadoddy et al., 2004; Spelt et al., 2005a, b). For instance, the 

flow of process streams in the shell side of tubular heat exchangers which also display the non-

Newtonian behaviors are often used to model the flow from these geometries. Screens used to 

filter polymer melts are sometimes modeled as a randomly oriented cylinders. Further, 

longitudinal flow over tubes or rod bundles is common in most fuel elements of nuclear power 

reactors. In the principal heat exchanging equipment, the core is composed of a large number of 

parallel fuel rods arranged in a regular array. To allow sufficient and regularly distributed space 

for the coolant flowing parallel to the axes of the fuel rods, suitable spacing devices are used, 

which also provide rigidity to the fuel element, etc.  

The above tube banks/flow geometries are oriented in different geometrical arrangements 

in process piping systems such as heat exchangers, evaporators, boilers and condensers, etc. 

Typically encountered arrangements found in tube banks consist of square, triangular, 

rectangular and hexagonal array of cylinders. Amongst all these arrangements, the square array 

of circular cylinders is most popular and widely used because of its simple geometrical 

orientation. Further, the flow which occurs through this geometry is repeating in nature over 

some module or periodic length and therefore is called as periodic flow. The present work is 

devoted to the periodic flow of fluids across a periodic array of circular cylinders in a square 

configuration. In fact, the flow and thermal features from such an industrially important 

geometry are one of the starving classical problems to be studied in fluid mechanics. 
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The common engineering problem of flow across a periodic array of cylinders is to 

investigate the nature of flow and heat transfer characteristics. Understanding of the flow and 

thermal features from such a system is always challenging, because the boundary layers are 

periodic and continuous which cause a great resistances to flow of fluids. The kind of flow 

whether longitudinal or transverse, laminar or turbulent along with the varying porosity of the 

cylinders (cylinder arrays are approximated as porous media) are the other factors which further 

make the problem more stimulating to explore and investigate. For instance, in case of transverse 

flow, the buoyancy acts perpendicular to flow direction, which enhances the rate of heat transfer. 

Few such examples are the air flowing horizontally over a heated pipe, steam leaving a boiler 

passes through a pipe where a fan blowing over it, etc. Other examples include the applications 

in solar thermal extraction system as well as some parts of electronic equipment cooling, etc. 

(Gowda et al., 1998; Soares et al., 2009; Daniel and Dhiman, 2013).   

Furthermore, the non-Newtonian fluid (shear-thinning and shear-thickening) nature and 

the buoyancy induced flow are the additional factors which make the problems more intricate 

and ambiguous due to the direct impact of these parameters on the flow and thermal fields, drag 

force and Nusselt number, etc. In fact, a thorough and in-depth understanding of the detailed 

kinematics of such a flow is germane to the development of a reliable methodology for the 

process equipment design. In other words, the flow and heat transfer characteristics across a 

periodic array of cylinders are one of the starving areas to be studied in fluid mechanics. 

 

Owing to such an excellent industrial relevance, still a very little is known about the flow 

and heat transfer characteristics across a periodic array of cylinders even with simple Newtonian 

kind of fluids (Koch and Ladd, 1997; Martin et al., 1998; Spelt et al., 2005b) and therefore, it’s 

still an infancy area of research. Fortunately, over the past few decades, considerable research 

efforts have been made to this flow configuration to determine the local and global flow and heat 

transfer characteristics (streamlines, pressure and isotherm contours, individual and total drag 

coefficients, local and average Nusselt numbers, etc.) for the different ranges of parameters. 

Many reviews, books, survey articles (Zukaukas, 1987b; KaKac et al., 1987; Skartsis et al., 

1992a; Ghosh et al., 1994; Perry, 1997) and research papers (Happel, 1959; Launder and Massey, 

1978; Sangani and Acrivos, 1982; Drummond and Tahir, 1984; Edwards et al., 1990; Astrom et 

al., 1992; Ghaddar, 1995; Talwar and Khomami, 1995; Koch and Ladd, 1997; Martin et al., 1998; 

Spelt et al., 2005a, b, etc.) are present in the literature to display the above behaviour from these 

flow configurations. No doubt, most of these are concentrated on Newtonian fluid flow than the 

corresponding non-Newtonian flow. In fact, scant literature is available for the forced convection 
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flow and heat transfer features of non-Newtonian fluids to the periodic array of circular cylinders. 

Additionally, in the case of mixed convection flow and thermal problems, almost negligible 

literature/studies are available for the array of cylinders. These gaps in the literature motivated 

us to investigate the problems of forced and mixed convection across a periodic array of circular 

cylinders to reveal the features of Newtonian and non-Newtonian power-law fluids from such an 

industrially important flow geometries.  

 Therefore, the aim of this thesis is to fill up the gaps in the literature through a CFD 

investigation for the wide ranges of pertinent dimensionless parameters such as fluid volume 

fractions, power-law index, Reynolds number, Prandtl number and Richardson number to 

explore the momentum and heat transfer characteristics of Newtonian and non-Newtonian 

power-law fluids across a periodic array of circular cylinders in square configuration. The 

problem was modeled as a unit cell with symmetric and periodic boundary conditions and the 

governing equations (continuity, momentum and thermal energy) have been solved numerically. 

The study examined the dependence of local and global characteristics (i.e., streamlines, pressure 

and isotherm contours, pressure coefficients, individual and total drag coefficients and local and 

average Nusselt numbers, the Colburn jH factor) to both of the Newtonian and non-Newtonian 

fluids.  

1.2 Organization of thesis 

This dissertation consists of ten chapters. Chapter 2 presents the fundamental concepts of 

periodic flow, a brief knowledge of different kinds of fluids, engineering parameters used in this 

study and the relevant literature review for the flow across a periodic array of cylinders and/or 

tube banks. It, in turn, facilitates the objectives of this dissertation based upon the gaps found in 

the literature. Chapter 3 discusses the problem description, mathematical modeling, governing 

equations and boundary conditions, etc. In Chapter 4, the solution methodology, choices of 

numerical parameters and grid independence test have been discussed. The five problems studied 

in this thesis have been thoroughly discussed in Chapters 5 to 9, which includes a brief 

description of problems, useful governing equations and validation/benchmarking of the results 

and finally the results and discussions. Lastly, Chapter 10 presents the concluding remarks and 

scope for the future works.  
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Chapter 2  

 

FUNDAMENTAL CONCEPTS AND LITERATURE REVIEW 

This chapter deals with the basic ideas about periodic flow across an array of cylinders including 

their various kinds and flow geometry to understand the elementary flow phenomena. Various 

dimensionless parameters used in this study have also been defined herein. It is followed by the 

relevant literature on the flow of Newtonian and non-Newtonian fluids across the periodic array 

of circular cylinders and/or over tube banks to discuss the latest development of forced and mixed 

convection flow and heat transfer characteristics.  

 

2.1 Periodic flow 

Periodic flow is defined in terms of periodically repeating nature, as shown in Fig. 2.1. The 

assumption of periodicity implies that the velocity components repeat themselves in space as 

follows: 

                        𝑢(𝑟) = 𝑢(𝑟 + 𝐿⃗⃗) = 𝑢(𝑟 + 2𝐿⃗⃗⃗⃗⃗) = ⋯                                                          (2.1a) 

                        𝑣(𝑟) = 𝑣(𝑟 + 𝐿⃗⃗) = 𝑣(𝑟 + 2𝐿⃗⃗⃗⃗⃗) = ⋯                                                          (2.1b) 

                        𝑤(𝑟) = 𝑤(𝑟 + 𝐿⃗⃗) = 𝑤(𝑟 + 2𝐿⃗⃗⃗⃗⃗) = ⋯                                                        (2.1c) 

 

Where 𝑟 is the position vector and 𝐿⃗⃗ is the periodic length vector of the domain considered as 

shown in Fig. 2.1.  
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CBA
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


                                    (2.2)                

Figure 2.1: Schematics of periodic flow geometry (ANSYS Fluent, 2009) 
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The points A, B and C of length L


in Fig.2.1 are the periodic length. The velocity and pressure 

are equal through these periodic length. 

 

2.1.1 Types of periodic flow 

In periodic flow, since the geometry as well as flow features are repetitive in nature and, 

therefore, based on these repetitions, it is categorized in two types as rotational and translational. 

In the first type, i.e., rotational, no pressure drop occurs across the periodic planes whereas, in 

the second type, i.e., translational, a pressure drop occurs across the translationally periodic 

boundaries which yield the fully developed or stream-wise periodic flow. Stream-wise periodic 

conditions exist when the flow pattern repeats over some periodic length L with a constant 

pressure drop across each repeating module along the stream-wise direction. In such a flow 

configuration, the geometry varies in a repeating manner along the direction of the flow leading 

to a periodically fully developed flow regime in which the flow pattern repeats in successive 

cycles and due to this feature, the modeling of periodic flow is straightforward. The examples of 

translational and rotational periodic planes are shown in Figs. 2.2 (a) and 2.2 (b), respectively.  

                                 

     (a)                                                                                   (b) 

Figure 2.2: (a) Translational and (b) rotational periodic plane (ANSYS Fluent, 2009). 

 

2.1.2 Various arrangements for periodic flow 

The different kinds of flow arrangements for a periodic array of circular cylinders are presented 

herein according to their geometrical orientations. Fig. 2.3 represents a square arrangement of 

circular cylinders through which the fluid is flowing in the transverse direction. For instance, Fig. 

2.3(a) shows the approach of fluid across a general square packing arrangement and Fig. 2.3 (b) 

displays the occurrence of periodic flow inside the tube bundles which are repeating in nature. 

Similarly, Fig. 2.4 (a) displays a general transverse flow for a triangular array and an example of 

hexagonal arrangement is shown in Fig. 2.4 (b). 
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(a)                                                                          (b) 

Figure 2.3: General transverse flow across a regular array of cylinders for square arrangement 

(a) Bruschke and Advani, 1993 (b) Drummond and Tahir, 1984 

              

(a)                                                                      (b) 

Figure 2.4: (a) General transverse flow for a triangular array (Drummond and Tahir, 1984) and 

(b) an example of cylindrical tubes in hexagonal arrangement (Bruschke and Advani, 1993) 

Notwithstanding, the possible geometrical arrangements of tubes inside the tube 

banks/rod bundles may be infinite, perhaps, three different kinds of arrangements are well-known 

under the assumption of equal tube diameters, namely (i) a regular triangular array of tubes (ii) a 

regular square  array of tubes  and (iii)) a circular array of tubes.  Among all these three 

arrangements, the regular square array of tubes/rods contained in square channels is very 

common and most widely used (Fig. 2.5). Further, all these tube bundle arrangements are 

subdivided into three types of subchannels, e.g., central, wall and corner subchannels. The 

present study is concerned with square central subchannels.   

The main geometrical parameters for tube bundles are the tube outside diameter D, the 

distance between the tube centers (pitch) L, the distance W from the wall which is equal to the 

tubes diameter plus the shortest distance between a rod and the channel wall, and the number of 
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tubes nT in a tube bundle. Table 2.1 displays the types of subchannels, their flow areas and wetted 

perimeters for regular square arrays. The hydraulic diameter for each subchannel of Table 2.1 is 

determined by Dh, i = 4Ai/Pw, i ; where, i is the kind of subchannel, e.g., square central, wall or 

square corner subchannel, etc. 

 

Figure 2.5: Typical geometrical arrangements of tube bundles for regular square arrays (KaKac 

et al., 1987)     

Table 2.1: Geometrical parameters for square array of cylinders/rod bundles (adapted 

from KaKac et al., 1987) 

Subchannels  

Type (i) 

Number of 

tubes in tube 

bundles (ni) 

Flow Area (Ai) Wetted Perimeter (Pw, i) 

Total number of rods, nT = N2 

Central  (N+1)2 22 D
4

L


  D  

Wall 4(N-1) 
2D

8
L

2

D
W











  LD

2



 

Corner 4 
2

2

D
162

D
W











  












2

D
W2D

4
 

 

Further, the geometrical arrangements for various type of cylinders arrays have been used 

in computational works using their pitches as shown in Figs. 2.6 (a-c) for the square, rectangular 

and triangular arrays of the cylinders, respectively. Also, for example, the expressions to 

calculate their flow area, wetted perimeters and number of tubes etc. have been shown in Table 

2.1 for the square array of cylinders/tube bundles.   
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           (a)                                       (b)                                                       (c) 

Figure 2.6: (a) Square pitch array (Martin et al., 1998) (b) triangular pitch array (Chmielewski et 

al., 1990) and (c) rectangular pitch array (Chmielewski et al., 1990) 

 

Moreover, the above flow geometries apparently cause a different kind of flow phenomena 

subject to the various parameters such as nature of approaching flow (laminar or turbulent), type 

of fluids (Newtonian or non-Newtonian) and cross-sectional shape of the body, i.e., circular or 

non-circular, and the arrangement of cylinders (in-line or staggered), etc. Given all these factors, 

the flow characteristics are further influenced by the type of fluids and, particularly, in the case 

of non-Newtonian fluids which characterizes the power-law model exhibiting shear-thickening, 

shear-thinning and time-independent behavior the influences are observed to be quite significant. 

The detailed discussion of these fluids is available in the various reference books, text books, etc. 

(Chhabra and Richardson, 1999, 2008; Bird et al., 2002). However, for the sake of completeness, 

an overview of these fluids is briefly described in the following section. 

2.2  Definition and classifications of fluids   

This section briefly describes the different kinds of fluids such as Newtonian, non-Newtonian 

and viscoelastic along with their classifications and applications, etc. 

2.2.1 Newtonian fluids 

 

A Newtonian fluid is one who follows Newton’s law of viscosity and expressed as   

dy

dvx
yx                                                                                      (2.3) 

where, μ is the viscosity and a constant independent of shear rate. The above equation states that 

the shear force per unit area is proportional to the magnitude of local velocity gradient or shear 

rate. All gases and most of the simple liquids follow Newton’s law of viscosity. A flow diagram 

between shear stress and shear rate is shown in Fig. 2.7 where the Newtonian fluids yield a 



 

10 
 

straight line with slope μ which completely characterizes the Newtonian behavior of the fluids. 

Though no real fluids accommodate the characterization perfectly, many familiar liquids and 

gases, such as water, air and most low molecular weight substances can be presumed to be 

Newtonian for practical applications under normal conditions. 

 

2.2.2 Non-Newtonian fluids 

 

Non-Newtonian fluids are those who do not obey Newton’s law of viscosity, i.e., whose 

flow curve between shear stress vs. shear rate curve is non-linear and does not pass through 

origin. The viscosity of non-Newtonian fluids is not constant at a given temperature and pressure 

but depends on the other factors such as the rate of shear in the fluid and the duration of shear, 

or its previous history.  Few examples of the fluids which display the non-Newtonian behaviours 

are solid suspensions, ketchup, toothpaste, human blood, egg whites, drilling muds, molten 

polymers, mayonnaise, etc. Based the different nature of non-Newtonian fluids, these are 

classified into three general classes (Bird et al., 2002; Chhabra and Richardson, 1999, 2008) as 

described below. 

 

2.2.3 Time independent fluids  

 

The fluid in which the rate of shear (
.

 ) at any point in the fluid is a function of the shear stress (

 ) at that point are termed as non-Newtonian time independent fluids. These fluids may be 

described by the rheological equation of the form:  

 yxyx f 


                 (2.4) 

Depending on the form of Eq. (2.4), these fluids are further subdivided into three distinct types 

as follow.  

 

2.2.3.1 Shear-thinning or Pseudoplastic fluids  

 

These are the most common type of non-Newtonian time-independent fluids which are 

characterized by an apparent viscosity which constantly reduces with the growth in shear rate. 

Majority of non-Newtonian fluids are in this category. Fluids such as polymer solutions or melts, 

greases and multi-phase mixtures such as emulsions, suspensions, foams etc. exhibit the shear-

thinning behavior. Other examples of these kind of fluids are the ketchup, whipped cream, paints, 

nail paints, detergent slurries, biological fluids, etc. The shape of the flow curve is shown in Fig. 
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2.7, which is generally represented as the power-law equation (sometimes called power-law or 

Ostwald de Waele model): 

 

n

yxyx m 










                                                (2.5) 

  

Where, m is the power-law consistency index and n is the power-law index or flow behavior 

index. Also, n < 1 represents the shear-thinning fluids. The extent of pseudo-plasticity 

increases as the values of n decreases.  

 

Figure 2.7: Types of time-independent flow behaviour (Chhabra and Richardson, 1999, 2008) 

 

2.2.3.2 Shear-thickening or Dilatant fluids 

 

Similar to shear-thinning fluid, no yield stress is present for the shear-thickening fluid. On the 

contrary, the apparent viscosity of dilatant fluids increases with the growth in the shear rate. 

These fluids also obey the power-law equation (i.e., Eq. 2.5) and thus for shear-thickening fluids, 

n > 1. Examples of dilatant fluids are rare as some highly concentrated suspensions exhibit shear-

thickening property, for example, kaolin-water solution, corn flour-water solution, suspensions 

of titanium.  

 

2.2.3.3 Viscoplastic fluids 

 

The non-Newtonian fluids which are characterized the presence of yield stress ( 0 ) (which is a 

threshold stress) are known as visco-plastic fluids. For flow or deform of such fluids, the stress 
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must be exceeded. Molten chocolate, yogurt, tomato puree, tomato sauce, blood, cosmetics, nail 

paints, are some of the examples of yield-stress fluids. When the yield stress is more than the 

applied stress for such substances, then they behave like elastic solids. Whereas, when the 

external yield stress surpasses the yield stress, then the fluid may exhibit Newtonian or shear-

thinning behavior. There are so many mathematical models available to represent the viscoplastic 

behavior such as the Bingham plastic model, the Herschel-Bulkley fluid model and the Casson 

fluid model. 

 

2.2.4 Time-dependent fluids 

 

The apparent viscosity of complex fluids depends not only on the shear rate but also on the 

time of shear. These fluids are divided into two classes; namely thixotropic and rheopectic.  

 

2.2.4.1 Thixotropic fluids    

 

If a thixotropic fluid is sheared at a constant rate, after a certain period of rest, the structure of 

the material is progressively broken down and the apparent viscosity decreases with time. The 

rate of breakdown of the structure during application of shear at a given rate depends on the 

number of linkages available for breaking and hence decreases with time. The simultaneous rate 

of reformation of the structure with time as the number of possible new structural linkages 

increases. A state of dynamic equilibrium is eventually reached when the rate of reformation of 

structure equals the rate of breakdown. Thixotropy, therefore, is a reversible process and after 

resting, the structure of the material builds up gradually. A hysteresis loop for a thixotropic fluid 

is observed on the curve of shear stress vs. shear rate, if the curve is plotted for the rate of shear 

increasing and decreasing at a constant rate, respectively.  

 

2.2.4.2   Rheopectic fluids 

 

Rheopectic fluids are those in which gradual formation of the structure is observed on application 

of shear. For example, a 42 percent gypsum paste (1-10μ) in water shaking re-solidifies in 40 

minutes if at rest, but in 20 s if the container is gently rolled in the palms of hands, indicating 

that small shearing motions facilitate structure build-up but large shearing (shaking) destroys it 

and there is a critical shear rate beyond which breakdown of structure occurs instead of 

reformation. Vanadium pentoxide and bentonite in dilute aqueous solutions show this type of 

behaviours. 
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2.3 Viscoelastic fluids 

 

An important distinction between fluids and solids is the way that these substances dispose of 

the work upon them in shearing deformations. All the work done on a purely viscous fluid in 

shear is immediately dissipated as heat, whereas the work done on a perfectly elastic substance 

in shear, is not dissipated but may be recovered at any time by allowing the elastic material to 

regain its original configurations. 

Further, there exist some materials whose behaviour is partly fluid-like and partly solid-like, 

the work of shearing deformation in these materials is not completely conserved as in solids, nor 

completely dissipated as in fluids. These materials are called viscoelastic materials as they 

possess both of the elastic as well as viscous properties. Although, the various 

characteristics/properties of these fluids have also been described in terms of the different 

dimensionless parameters in the literature. Therefore, before presenting the concerned literature 

on the flow and thermal nature of these fluids through various flow arrangements, it is appropriate 

now to define these dimensionless parameters which have been used in this study and appeared 

in literature also.  

 

2.4 Dimensionless parameters 

 

The various pertinent dimensionless parameters which have been used in this work and appear 

in the literature also are described briefly herein: 

 Reynolds number (Re): The Reynolds number (Re) for the power-law fluids is defined 

as: 

            
m

VD
Re

n2n 
         (2.6) 

Where, D, ρ and V are the cylinder diameter, density and velocity of the fluids 

respectively. Reynolds number is the ratio of inertial forces to viscous forces. So, a low 

Reynolds number means the viscous forces are dominating over inertial forces and vice-

versa. Also, for Newtonian fluids (n = 1), Eq. (2.10) reduces to μ/DVρ=Re  and with

m . 

 Prandtl number (Pr): The Prandtl number (Pr) for the power-law fluids is defined as: 

       
1n

p

D

V

k

c
Pr











        (2.7) 
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where, cp and k are the specific heat and thermal conductivity of the fluids, respectively. 

Prandtl number is the ratio of momentum diffusivity to thermal diffusivity. A small 

value of Prandtl number (Pr < <1) suggests that the thermal diffusivity dominates over 

momentum diffusivity and vice-versa. For Newtonian fluids (n = 1), Eq. (2.11) reduces 

to kcPr p . 

 Peclet number (Pe): The Peclet number (Pe) is defined as: 

k

VDc
PrRePe

p
         (2.8) 

The Peclet number is independent of the power-law index and thus offers the possibility 

of reconciling the results for Newtonian and non-Newtonian power-law fluids both. 

 

 Richardson number (Ri): For the case of mixed convection, the buoyancy effects are 

important which are well described in terms of Richardson number (Ri). The Richardson 

number (Ri) or buoyancy parameter characterizes the significance of natural convection 

to that of forced convection (Srinivas et al., 2009) and is defined as follows: 

                              
2

0w

2 V

D)TT(g

Re

Gr
Ri


      (2.9) 

where, Gr is the Grashof number describes the relative significance of buoyancy forces 

to that of viscous forces acting on the fluid. In the case of a power-law fluid, it is defined 

as below: 

 n12

2

32

D

V

m

DTg
Gr











                        (2.10) 

where, g, β and ΔT=Tw –T0; is the gravitational force, the coefficient of volumetric 

thermal expansion and temperature difference, respectively. Here, in contrast to 

Newtonian fluids, Prandtl number and Grashof number for power-law fluids also depend 

on the velocity and diameter of the cylinder along with the thermo-physical properties. 

Though, the Richardson number is independent of power-law indices (m, n). The 

definitions given here are extensively used in the heat transfer literature and are very 

popular to explain the results of mixed-convection heat transfer. Further, Ri = 0 and 

Ri→∞ represents the cases of forced and free convections respectively, whereas, Ri > 0 

and Ri < 0 represents the cases of aiding and opposing buoyancy mixed convections, 

respectively. 
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 Pressure coefficient (CP): The pressure coefficient (CP) on the surfaces of cylinders 

(solid boundaries) is defined as: 

2

0
p

V)2/1(

p)(p
C




          (2.11) 

where, p (θ) is the surface pressure at an angle θ and p0 is the free stream pressure at the 

exit boundary. The pressure coefficient is the ratio of static pressure to dynamic pressure.  

 

2.5 Literature review 

The relevant literature on Newtonian and non-Newtonian fluids to display the forced and 

mixed convection features across the periodic array of cylinders and/or tube banks is presented 

and discussed here in this section.   

  

2.5.1 Forced convection features of Newtonian fluids  

  

Extensive research efforts have been devoted to reveal the flow and heat transfer features 

across the periodic array of cylinders and/or over tube banks in various geometrical 

configurations (e.g., square, rectangular, triangular and hexagonal arrangements of cylinders, 

etc.). A sharp inspection of the available literature suggests that the detailed discussion of 

numerous aspects can be found in many excellent reviews, survey articles, encyclopedia and 

books (e.g. see Nishimura, 1986; KaKac et al., 1987; Zukaukas, 1987b; Nishimura et al., 1991, 

1993; Skartsis et al., 1992a; Ghosh et al., 1994; Perry, 1997; Abrate, 2002, 2011; Ghoshdastidar, 

1998, 2012, 2017; Sharma, 2016, etc.) and briefly it is described herein. For instance, the flow 

through fibrous media and tube bundles has been reviewed by Zukaukas (1987b) and emphasized 

that the quantitative nature of flow in high porosity cylinder arrays (cylinder arrays are 

approximated as porous media) is still an infancy area of research. Another review has been 

presented by Skartsis et al. (1992a) for the Newtonian flow of aligned cylinders in regular 

arrangements. It encapsulates the relevant literature concerned with fibrous media and cylinder 

arrays for regular and staggered arrangements. The review includes the theoretical and 

experimental aspects of determining the permeability through aligned and randomly oriented 

cylinder arrays. Further review by Ghosh et al. (1994) is concentrated on the flow and heat 

transfer phenomena over the tube banks etc. Moreover, most of the past studies from these 

geometries are focused on creeping flow (Sangani and Acrivos, 1982; Drummond and Tahir, 

1984; McPhedran, 1986; Bruschke and Advani, 1993; Spelt et al., 2005a) for the various features 

such as drag coefficients, mobility factor, velocity distribution and Nusselt numbers, etc. Besides, 

some studies are also based on the energy analysis and thermal modeling of heat transfer 
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equipment for improving their efficiencies, etc. (Martin et al., 2004; James et al., 2012b). 

Moreover, numerous studies are focused on the permeability, stability analysis, inelastic 

instabilities, pressure drop and effective viscosity (μeff), etc. for both of Newtonian and non-

Newtonian fluids using various geometrical configurations of periodic array of cylinder and/or 

tube banks etc. (Singh et al., 1989; Andjelic and Popp, 1989; Chmielewski et al., 1990; Georgiou 

et al., 1991; Astrom et al., 1992; Nagelhout et al., 1995; Talwar and Khomami, 1995; Khomami 

and Moreno, 1997; Alcocer and Singh, 2002; Arora et al., 2002; Abrate 2007; Tamayol and 

Bahrami, 2009; Geoffrey and Jonathan, 2010; Yazdchi et al., 2011; James et al., 2012a; Nguyen 

et al., 2013; Gillissen, 2013). 

 Notwithstanding, in the literature, there are two distinct approaches/schemes available to 

investigate the flow and thermal problems. In the first scheme, the field equations have been 

solved for the different geometrical arrangements of a periodic array of cylinders, whereas, in 

the second scheme, the assemblage of cylinders is modeled by using the approximate cell models 

where the modeling depends upon the cylinder-cylinder interactions. For instance, the various 

cell models (zero vorticity or free surface cell models) have been used to approximate the 

transport properties across an array of cylinders (Happel, 1959; Kuwabara, 1959; Sparrow and 

Loeffler, 1959; Hashimoto, 1959). These models have returned the satisfactory characteristics of 

both Newtonian as well as non-Newtonian fluids flow over the collections of spherical, 

cylindrical and fibrous media. In fact, in either of the cases, whether cell model approximations 

or the periodic array of cylinders (in-line or staggered), the transport properties of the fluids have 

been of continuous interest to the researchers over the years. As far as known to us, firstly, 

Emersleben (1925) investigated the longitudinal flow across the square array of cylinders by 

using an intricate zeta-function, which yields a good solution for the fluid volume fractions (or 

porosities) of around 0.8. Further, Launder and Massey (1978) presented the limited analysis of 

pressure loss and heat transfer for a staggered square array of circular cylinders for the Reynolds 

number of 50-75 at fixed value of Prandtl number (Pr = 20). A satisfactory agreement with the 

experimental results of Bergelin et al. (1952) were found. Also, this problem was re-investigated 

(Wung and Chen, 1989; Chen and Wung, 1989) by solving the steady incompressible form of 

governing equations for convective flow over staggered and in-line arrangement of cylinders 

having the pitch (longitudinal/transverse) ratio of 2, Reynolds numbers of 40-800 and Prandtl 

number of 0.1-10. However, the main emphasis of this study was on the interpretation of the flow 

fields (streamlines, secondary flow, etc.) with the increasing Reynolds number. They also 

presented scant results on the mean Nusselt number as a function of the Reynolds number and 

Prandtl number. Similarly, Edwards et al. (1990) calculated the flow field within spatially 
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periodic arrays of cylinders arranged in square and hexagonal lattices at higher Reynolds 

numbers (0 to 200). However, this study was emphasized in the limit of low fluid volume 

fractions of f ≤ 0.80. Further, Hendricks et al. (1991) experimentally investigated the use of 

brush inserts which can be represented as the cylinder arrays within the complex cooling passage 

for the mitigation of flow separation and augmentation of local heat transfer. Johnson et al. (1993) 

examined the unsteady incompressible flow problems consisting periodic arrays of staggered 

cylinders for the Re = 100. The extensive flow data for drag and lift coefficients etc. were 

calculated for the uni-periodic and bi-periodic periodicity arising out from such a geometry. 

Subsequently, Fowler and Bejan (1994) investigated the pressure drop and heat transfer features 

from the bundles of parallel cylinders for the ranges of Reynolds number; 1 ≤ Re ≤ 30; Prandtl 

number 0.72 ≤ Re ≤ 100 and fluid volume fractions; 0.6 ≤
f ≤ 0.95. The study has pointed out 

the possible errors occurred during the investigation with low Reynolds number, fully developed 

flow and the cylinders inclinations relative to the flow directions. Im and Ahluwalia (1994) 

examined highly porous fiber arrays to enhance internal heat transfer. The study suggests that 

the high porosities are desirable in order to minimize frictional losses. As these situations feature 

developing or recirculating flows and so there is a need to understand the flow resistance offered 

by sparse cylinder arrays in the transverse direction. Further, Amiri and Vafai (1994) presented 

the numerical simulations of forced convective incompressible flow through porous media to 

investigate the associated transport properties.  In all of the above applications, high porosities 

are desirable in order to minimize frictional losses.    

Koch and Ladd (1997) investigated the effect of fluid inertia on the pressure drop required 

to drive fluid flow through periodic and random arrays of aligned cylinders for the fluid volume 

fraction of 0.3-0.985 at Re < 180. Their results for creeping flow are consistent with Sangani and 

Acrivos (1982). The next few studies are either focused on flow and/or heat transfer 

characteristics in the limited ranges. For instance, Martin et al. (1998) presented numerical 

analysis of the frictional losses and averaged Nusselt number for convective cross-flow of air 

over the sparse (square and triangular) periodic arrays (
f  > 0.8) of cylinders in the laminar 

regime (Re = 3 to 160) and reported the influence of thermal boundary conditions over the 

averaged Nusselt number. Subsequently, Beale and Spalding (1998) investigated the fluid flow 

and heat transfer in tube banks with stream-wise periodic boundary conditions for the in-line 

square, rotated square and equilateral triangle geometries for the range of 10 ≤ Re ≤1000; 1 ≤ Pe 

≤ 100 and pitch to diameter ratio of 1.25-2. The results were compared and found to be 

satisfactory with the empirical and experimental data within the ranges of conditions covered. 
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Similarly, Wilson and Bassiouny (2000) numerically explored the heat transfer features for air 

flow (Re  50,000) over staggered and the in-line collection of cylinders. A mathematical model 

was developed to assess the laminar and turbulent flow fields inside tube banks. The governing 

equations were also solved using finite volume method and observed that the pressure drop and 

friction factor increased with longitudinal pitches. So, a longitudinal pitch ratio of ɑ ≤ 3 was 

recommended to obtain the better performance and to attain a high degree of compactness in an 

in-line arrangement, whereas ɑ ≤ 1.5 was required to diminish friction and augment the Nusselt 

number in the staggered arrangement. Further, Kuwahara et al. (2001) performed the numerical 

experiment to determine the interfacial convective heat transfer coefficient in porous media. A 

universal correlation for the Nusselt number was given for the wide ranges of fluid volume 

fractions, Prandtl and Reynolds numbers. Mandhani et al. (2002) have used stress-free surface 

cell model for the forced convection characteristics of Newtonian fluids over tube bank within 

the following ranges of conditions; Reynolds number of 1-500, Prandtl number of 0.71 and 7.7 

and fluid volume fractions of 0.4-0.99. The Nusselt number is shown to be strongly dependent 

on the above dimensionless parameters. An increase in Nusselt number with the increasing value 

of Reynolds and Prandtl numbers was reported along with the decrease with fluid volume 

fractions. Their result was found in satisfactory agreement with the previous available numerical 

and experimental results. Next, Alam and Ghoshdastidar (2002) examined the heat transfer in 

circular tubes fitted with longitudinal fins for the Re ≤ 1500. The study displays the velocity 

profile, friction factor and fin effectiveness under various combinations of parameters for the 

constant heat flux conditions. 

In further works, Hovart et al. (2006) have given an insight into the local flow field and 

thermal characteristics of cylindrical, ellipsoidal and wing shaped tubes in staggered 

arrangements by analyzing 100 cases of each tube type. Khan et al. (2006a) presented an 

analytical study over the tube banks for the heat transfer characteristics in cross-flow. An integral 

method for boundary layer has been applied for the calculation of average heat transfer from the 

tube banks. Likewise, Gamrat et al. (2008) numerically examined the thermal equilibrium in a 

porous medium over an array of square rods in the following ranges: fluid volume fraction from 

0.44 to 0.88 and Re from 0.05 to 40 and concluded the insensitiveness of heat transfer for the 

highest values of Re and Pr. Also, Hantsch et al. (2010) presented an experimental study of fiber 

array inserts for heat transfer augmentation in an extremely heated duct for the fluid volume 

fractions up to 0.98 and for very high Reynolds number ranging from 1.75104 to 11.25104. 

They reported that the array causes a significant pressure drop whereas heat transfer coefficient 

was also enhanced by 100%.  
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In the recent studies, Tahseen et al. (2013) used the staggered geometry of circular tube 

banks to present the heat transfer characteristics for 25 ≤ Re ≤ 250, pitch to diameter ratio of 

1.25, 1.5, 2 and at a fixed value of Prandtl number (Pr = 0.71). The velocity and temperature 

fields, Nusselt numbers, etc. have been calculated and compared with the experimental and 

numerical results displaying good agreement. Fornarelli et al. (2015)  used six in-line circular 

cylinders to examine the flow and heat transfer features at a fixed values of Reynolds and Prandtl 

numbers of 100 and 0.7(air), respectively and two values of cylinder spacing (L = 3.6D and 4D). 

A transition was identified for the flow as well as heat both. The stable shear level and shear-

level secondary vortices (L = 3.6D) have also been noticed. Subsequently, Crowdy (2016) have 

studied the uniform flow past a periodic array of cylinders. The problem was solved by a new 

transform technique and solutions have been given as a set of coefficients of suitable linear 

systems. A new explicit approximation formula has also been proposed for the blockage 

coefficients. Afterward, Mangrulkar et al. (2017) have investigated the flow and heat transfer 

characteristics for cross-flow in the tube banks using splitter plate in the staggered arrangement 

for the high Reynolds numbers ranging 5500 ≤ Re ≤ 14500), splitter plate length to tube diameter 

ratio of 1 and longitudinal and transverse tube pitch to diameter ratios of 1.75 and 2, respectively. 

The use of splitter plate enhances the rate of heat transfer and reduces the pressure drop as 

compared to those of the bare cylinders. The overall increase of 60-82% of heat transfer 

enhancement has been reported. Additionally, Kumar and Jayadev (2017) have presented the 

influence of flow shedding frequency on the flow and thermal characteristics over circular tubes 

under cross-flow. In this investigation, three different flow shedding nature has been observed 

with the variations in flow inertia and blockage ratios. In the low inertial region, the heat transfer 

is increased due to the attached flow, whereas increased inertia leads to laminar to turbulent 

transition causing the heat dissipation.  

Besides, past few studies have been reported on developing the various correlations for 

heat transfer features. For instance, Colburn (1933) proposed an empirical correlation for the 

Nusselt number for flow through banks of staggered tubes as:  

316.0 PrRe33.0Nu          (2.12) 

This correlation is valid for 10 or more row of tubes in the staggered arrangement and for Re in 

the range of 10 < Re < 4104. Further, the experimental data of Huge (1937) and Pierson (1937) 

were correlated by Grimison (1937) for both of the in-line and staggered arrangement of 

cylinders and proposed the following correlation for Nusselt number:   
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                nReCNu                (2.13)         

where, C and n are the correlation constants. This simple correlation relates to tube banks 

containing ten or more numbers of rows of tubes. Grimison (1937) also correlated the test 

measurements of Pierson (1937) and Huge (1937) and derived the following correlation: 

31.061.0

a PrReF32.0Nu         (2.14) 

where, the arrangement factor Fa has been determined graphically for the different values of 

Reynolds number based on the transverse and longitudinal pitches. Additionally, Zukauskas 

(1972) have also developed the following experimental correlation for the average Nusselt 

number of a tube bank consisting of 16 or more rows:  

mn PrReFCNu        (2.15) 

Where the coefficients C, m and n are given elsewhere (Kreith and Bohn, 1993) along 

with the correction factor parameter F that accounts for lower than 16 rows in the tube bank. 

Therefore, on the basis of above literature review, the following have been observed and noticed:  

(i) Many studies/investigations have used the periodic array of cylinder in the different 

geometries to determine permeability, stability analysis, viscosity and elasticity 

effects, etc. and these parameters are not being covered in present studies and so are 

less significant in context of this dissertation  

(ii) The studies/investigations which are emphasized on the local and global flow and 

heat transfer characteristics to reveal the streamlines and isotherms, individual and 

total drag coefficients, local and average Nusselt numbers, etc. using a periodic array 

and/or tube banks are the main concern of the present work. These studies are 

summarized in Table 2.2. 
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Table 2.2: Summary of literature review for Newtonian fluids  

S. 

No. 

Authors/References Parametric conditions and 

geometries 

Remarks 

1 Wung and Chen 

(1989) 

40 ≤ Re ≤ 800; 

 0.1 ≤ Pr ≤10 

Geometry: Staggered and in-line 

array of circular cylinders 

Convective flow for pitch 

(longitudinal/transverse) ratio of 2 has been 

presented. The main objective of this study was 

the evolution of flow field with increasing 

Reynolds number. 

2 Edwards et al. (1990) 
f  ≤0.80; 0 ≤ Re ≤ 200 

Geometry: Square and 

Hexagonal lattices 

The flow fields were calculated within spatially 

periodic arrays of cylinders arranged in square 

and hexagonal lattices. This study is emphasized 

on low porosity cases less than 0.80.  

3 Koch and Ladd 

(1997) 
Re ≤180;  

0.38 ≤ f  ≤ 0.985 

Geometry: Square array of 

cylinders in periodic and random 

arrangements 

The magnitude of CD is evaluated over the 

ranges of Reynolds number and fluid volume 

fractions through periodic and random arrays of 

aligned cylinders. The result for Re ≪ 1 is 

consistent with Sangani & Acrivos (1982) for 

the creeping region.  

4 Martin et al. (1998) 0.80 ≤ f  ≤ 0.99 

3 ≤ Re ≤ 160; Pr = 0.71 

Geometry: square and triangular 

array of cylinders 

 Frictional losses, permeability and convective 

heat transfer in terms of the Nusselt number have 

been determined at a fixed value of Prandtl 

number (i.e. for air).  

5 Wilson and 

Bassiouny (2000) 
Re  50,000 

Geometry: in-line and staggered 

arrays of cylinders 

Heat transfer in air flow over a staggered and in-

line collection of cylinders has been determined 

in the fully turbulent regime. 

6 Mandhani et al. 

(2002) 
1 ≤ Re ≤ 500;  

0.40 ≤ f  ≤0.99; 

Pr = 0.71 and 7 

Geometry: bundle of circular 

cylinders 

Forced convection heat transfer characteristics 

of cross-flow over tube bank by using the stress-

free surface cell model has been determined for 

air and water. 

7 Khan et al. (2006a) 500 ≤Re ≤ 10000; 
Pr = 0.71; L/D = 1.25,2.0,3.0 

Geometry: in-line and staggered 

arrangement of circular cylinders 

An analytical study of the tube banks for heat 

transfer characteristics in cross-flow. An integral 

method for boundary layer has been applied for 

the calculation of average heat transfer from the 

tube banks. 

8 Hovart et al. (2006) Re = 0-5000; L/D = 1.125-2.0 

Geometry: cylindrical, 

ellipsoidal and wing shaped 

tubes in staggered arrangements 

Numerical analysis for heat transfer features 

have been presented. The detailed insight of 

local heat transfer and fluid flow conditions in a 

heat exchanger has been obtained.  

9 Tahseen et al. (2013) 25 ≤ Re ≤ 250; 

L/D = 1.25, 1.5 and 2 

 Pr = 0.71 

Geometry: circular tubes in 

staggered arrangements 

The velocity and temperature fields, Nusselt 

numbers, etc. have been presented and compared 

with the experimental and numerical results 

which show the good agreement. 

10 Fornarelli et al. 

(2015) 

Re = 100; Pr = 0.7;  

L = 3.6D and 4D 

Geometry: six in-line circular 

cylinders 

The flow and heat transfer features have been 

examined. A transition was identified for the 

flow as well as heat both. The stable shear level 

and shear level secondary vortices for s= 3.6 

have also been noticed. 

11 Mangrulkar et al. 

(2017) 

5500 ≤ Re ≤ 14500; L/D= 1;   

LL/D = 1.75;  

and LT/D = 2 

The flow and heat transfer characteristics for 

cross flow in tube banks using splitter plate in 

the staggered arrangement. The use of splitter 

plate enhances the rate of heat transfer and 

reduces the pressure drop as compared to those 

of the bare cylinders. The overall increase of 60-

82% of heat transfer enhancement has been 

reported. 



 

22 
 

2.5.2 Forced convection features of non-Newtonian fluids   

   

As mentioned in the previous section 2.6.1 that the significant literature is available on 

the flow and heat transfer characteristics of Newtonian fluids across periodic array of cylinders 

(Launder and Massey, 1978; Wung and Chen, 1989; Chen and Wung, 1989; Martin et al., 1998; 

Roychowdhury et al., 2002, etc.). In contrast, scant literature is available to reveal the flow and 

heat transfer features of non-Newtonian fluids. For instance, the slow and inertial flow of non-

Newtonian fluids (Tripathi and Chhabra, 1992, 1996) employed a most common velocity and 

stress-variational principle (Slattery, 1972) to get frictional pressure gradient over a roll of long 

circular cylinders. Subsequently, Bruschke and Advani (1993) reported analogous results for  

hexagonal array of cylinders for the fluid volume fractions of 0.3-0.9 and power-law index; 0.5≤ 

n ≤1. They employed the lubrication flow approximation for concentrated (strong interactions of 

cylinders) systems, and the zero vorticity cell model for dilute (weak interactions of cylinders) 

systems, the intermediate region of concentration was patched up by the weighted average of 

these two limiting conditions. Similarly, Vijaysri et al. (1999) used the zero vorticity cell models 

of Kuwabara (1959) to discuss fluid dynamic parameters in terms of drag coefficients in the range 

of 0.01≤ Re ≤10; 1≥ n ≥ 0.54 and maximum fluid volume fractions of 0.95. It is shown that the 

overall drag for pseudo plastic media is seen to decrease below its value for Newtonian fluids. 

Further, the detailed comparisons between various predictions and limited experimental data 

reveal that the free surface cell model underpredicts the experimental results whereas the zero 

vorticity cell-model over-predicts the experimental results, in both cases the discrepancy being 

of the order of 25-30%. Subsequently, Dhotkar et al. (2000) solved the governing equations for 

the flow of power-law liquids for the values of Reynolds number up to 10 and for the different 

values of the voidages. In further works, Shibu et al. (2001) reported the extensive theoretical 

estimates of pressure, friction and total drag coefficients for the cross-flow of power-law fluids 

normal to an array of long circular cylinders. The equations of continuity and momentum have 

been solved numerically for the unknown velocities and pressures. The ranges of parameters 

studied are; power-law index; 1≥ n ≥ 0.5; Reynolds number; 1≤ Re ≤ 500 and fluid volume 

fractions of 0.4 and 0.5. In general, the lower the value of the flow behaviour index, greater is 

the divergence between these theoretical predictions and the available experimental results 

(Chhabra et al., 2000; Prasad and Chhabra, 2001; Malleswara Rao and Chhabra, 2003). In 

addition to the aforementioned studies based on cell models, Skartsis et al. (1992b) numerically 

solved for the two-dimensional axisymmetric flow of power-law liquids over a staggered array 

of cylinders. Similar works used free surface cell models over the range of Re 1-500, porosity 

0.4-0.99 and two values of Pr of 0.71 and 7.7 (Mandhani et al., 2002). In subsequent work 
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(Mangadoddy et al., 2004), the forced convection was investigated across a bundle of circular 

cylinders in the range of Peclet number 1 to 5000, Re = 1-500 and n = 0.5-1 and fluid volume 

fractions of 0.4-0.6.  The results show that the average Nusselt number displays a strong 

dependence on these parameters. In fact, the above few studies have been used for the thermal 

features of non-Newtonian fluids over a bundle of cylinders in which the local or average Nusselt 

number has been estimated in inertial regions along with the slow flow regime of Ferreira and 

Chhabra (2004). Further, an experimental study such as Adams and Bell (1968) describes the 

heat transfer phenomena such as heating and cooling of non-Newtonian kind of fluids using three 

tube banks for the wide ranges of Re and Pr.  

In the recent studies, investigations have been made for the drag coefficients in creeping 

flow (Spelt et al., 2005a) and inertial flow (Spelt et al., 2005b) regime of non-Newtonian fluids. 

For creeping flow, the numerical results have been presented along with the lubrication theories 

for the flow of truncated power-law fluids across square and hexagonal array of cylinders. They 

suggested that the choice of velocity and length scale in the definition of the drag coefficient is 

useful, however, in the case of inertial flow, the drag coefficient increases with Reynolds 

numbers up to 100. In the unsteady state regime, the drag is dominated by the form drag. In the 

parallel study, the creeping flow of Bingham fluids through periodic square arrays cylinders was 

also investigated by Spelt et al. (2005c) with the objective to quantify the dependence of the drag 

coefficient on the Bingham number and the results are further used as a criterion for critical 

pressure gradient. Subsequently, Soares et al. (2005a) numerically investigated the steady flow 

of power-law fluids across a bank of long cylinders to determine the drag coefficient in the range 

of power-law index; 0.3 ≤ n ≤ 2, porosity; 0.4 ≤ f  ≤ 0.9 and Reynolds number; 0.01 ≤ Re 500. 

It has been reported that as the power-law index moves from shear-thinning to shear-thickening, 

the resulting increase in drag coefficients becomes less pronounced at high porosity values. 

Further, Khan et al. (2006b) presented the analytical study for the modeling of fluid and heat 

transfer from infinite circular cylinders to power-law fluids. They have developed closed form 

solutions for the drag and heat transfer coefficients in terms of generalized Reynolds and Prandtl 

numbers. Next, Wang and Shao (2012) presented the flow characteristics for time averaged drag 

coefficient using Lattice Boltzmann Method (LBM) through an infinite array of circular cylinders 

for the power-law index; 0.4 ≤ n ≤ 1.8 and Reynolds number; 50 ≤ Re ≤ 140. Subsequently, Singh 

et al. (2012) have investigated the flow of power-law fluid in fixed beds of cylinders or spheres 

and solved the ensemble-averaged momentum equation and shown that the drag force acting on 

the particle/periodic array is a function of the particle-concentration-dependent length scale. 

Additionally, Quesada and Ellero (2012) have numerically analyzed the viscoelastic fluids 
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around an array of cylinders confined in a channel for closely as well as widely placed cylinders 

with fluid volume fractions of 0.68 and 0.86, respectively. The cylinder drag coefficient was 

observed for the Weissenberg number of ~1.5.  

 

Table 2.3: Summary of literature review for non-Newtonian fluids 

S. 

No. 

Authors/References Parametric conditions 

and geometries 

Remarks 

1 Vijaysri et al. 

(1999) 
0.01≤ Re ≤10;  

1≥n≥ 0.5; 

 0.95≤
f ≤ 0.4 

Geometry: array of long 

circular cylinders 

Individual and total drag coefficients have been 

calculated across an array of the long circular cylinder 

using zero vorticity cell model for the ranges of 

parameters mentioned. 

2 Dhotkar et al. 

(2000) 
0.01≤ Re≤ 10; 

0.4≤ n≤ 1; 

0.40 ≤ f  ≤ 0.95 

Geometry: assemblage 

of long circular 

cylinders 

Drag coefficients are reported for the flow of power-law 

liquids across an assemblage of long cylinders using 

concentric cylinder cell models. The flow fields in terms 

of surface vorticity distribution, streamlines, etc. over 

the surface of cylinders have been presented. 

 

3 Shibu et al. (2001) 1≤ Re≤ 500;  

1≥n≥ 0.5;  

f = 0.4, 0.5 

Geometry: array of long 

circular cylinders 

Predictions of drag on the cylinder are predicted over an 

array of long circular cylinders using both of the zero 

vorticity and free surface cell models. 

  

4 Mangadoddy et al. 

(2004) 
1≤ Pe≤ 5000; 
1≤ Re≤ 500; 
0.5≤ n≤ 1; 

0.40 ≤ f  ≤ 0.60 

Geometry: bundle of 

long circular cylinders 

Forced convection was investigated across a bundle of 

circular cylinders in the ranges mentioned herein and 

conveyed that the average Nusselt number displays a 

strong dependence on these parameters. 

5 Prasad and Chhabra 

(2001) 
0.01≤ Re≤ 1200; 

0.38 ≤ 𝑛 ≤ 1; 

f = 0.74, 0.78, 0.87; 

Geometry: array of long 

circular cylinders 

Steady flow of power-law polymer solutions normal to 

the array of cylinders and in a bed of screens 

investigated experimentally. Extensive pressure drop 

measurements have been done and the drags are 

reported in terms of loss coefficients. 

6 Spelt et al. (2005b) 0≤ Re≤ 200; 
0.5 ≤ 𝑛 ≤ 1.5; 

0.40 ≤ f  ≤ 0.99 

Geometry: square array 

of circular cylinders 

 Drag coefficients have been determined. At larger Re, 

the CD increases with Re at a lower than quadratic rate 

which is approximately linear for the off axis flow and 

up to the critical Re. Beyond which, no stable steady 

state solution is found. In the unsteady state regime, the 

drag is dominated by form drag.  

7 Soares et al. 

(2005a) 

0.3 ≤ n ≤ 2; 

0.4 ≤ f  ≤ 0.9; 

0.01 ≤ Re 500 

Geometry: bank of long 

circular cylinders. 

Drag coefficients have been determined across a bank of 

long cylinders for power-law fluids displaying shear-

thinning and shear-thickening behavior. 

8 Wang and Shao 

(2012) 

0.4 ≤ n ≤ 1.8; 

50 ≤ Re ≤ 140 

Geometry: an infinite 

array of circular 

cylinders. 

Flow characteristics in terms of time averaged drag 

coefficient are presented using Lattice Boltzmann 

Method (LBM) through an infinite array of circular 

cylinders.   
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Subsequently, no other studies concerned with periodic array of circular cylinders or over 

tube banks have been reported which could reveal the non-Newtonian characteristics. Besides, 

many studies are also available on forced convection problem on a single and/or double cylinders 

to reveal the momentum and thermal features under various ranges of governing parameters 

(Eckert and Soehngen, 1952; Lange et al., 1998; Soares et al., 2005a, b, 2010; Sharma and 

Eswaran, 2005a; Dhiman et al., 2006; Sivakumar et al., 2006, 2007; Bharti et al., 2006, 2007a, 

b, 2008; Patil et al., 2008). 

 

What clearly emerges from the above studies is that there is scant literature available as far as 

flow and thermal features are concerned across periodic array of cylinders for the non-Newtonian 

fluids as compared to Newtonian fluids. Further, the flow features have been studied more 

extensively in contrast to heat transfer characteristics. Based on above discussion, the studies 

which are mainly concerned with present dissertation are summarized above in Table 2.3. 

  

2.5.3 Mixed convection features of Newtonian and non-Newtonian fluids  
 

As far as the mixed convection flow and heat transfer characteristics of Newtonian and 

non-Newtonian fluids across periodic array of cylinders and/or over tube banks are concerned, 

prior works suggest that the mixed convection from these geometries have not been studied 

extensively. In contrast, numerous studies on forced convection features from such geometries 

are available as discussed previously (Sections 2.6.1 & 2.6.2). Consequently, the available 

literature on mixed convection suggest that the most of the works are mainly concentrated on a 

single cylinder (Sparrow and Lee, 1976; Merkin, 1977; Badr, 1982; Chang and Sa, 1989; Patnaik 

et al., 1999; Sharma and Eswaran, 2004, 2005b; Sharma et al., 2012; De and Dalal, 2006a, b, 

2007; Dhiman et al., 2007, 2008; Soares et al., 2009; Srinivas et al., 2009; Chandra and Chhabra, 

2012; Sarkar et al., 2011; Bhowmick et al., 2014, etc.).  

So far, scant investigations concerned with mixed convection across a periodic array of 

cylinders have been reported. For instance, Duli et al. (1995) studied the aiding buoyancy mixed 

convection over tube banks between two vertical plates for the ranges of Reynolds number (Re 

≤ 500), Grashof number (Gr ≤ 5300) and pitch to diameter ratio (L/D) of 2 and 3 for both of the 

longitudinal and transverse directions. The result reveals that the flow separation zone is a 

function of cylinder spacing and so the values of Nusselt numbers are strongly influenced by the 

interaction between the cylinders. Further, Gowda et al. (1998) examined aiding and opposing 

mixed convection over tube bundles using finite element method for the range of Reynolds 

numbers; 50 ≤ Re ≤150; Richardson number; -1≤Ri ≤+1 and at a fixed value of Prandtl number 
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of 0.71 (air). They presented a solution for the 2-D, unsteady Navier-Stokes and thermal 

equations using an explicit and semi-implicit algorithms for the ranges of parameters studied. 

The influences of these dimensionless parameters on drag coefficients, Nusselt number, pressure 

distribution around cylinders, etc. were examined and reported. A significant influence of 

buoyancy parameter over tube bundles was noticed. An additional study by Haldar (2000) is 

focused on the combined convection through seven-rod bundles in a circular shell arranged 

horizontally. The flow and temperature fields were reported and the highest temperature was 

found at the top of the central rod. The increased buoyancy decreases the flow rate and increases 

friction and rate of heat transfer. The result has further been compared with the experiments 

consist of the three identical test sections and found to be satisfactory. Recently, Fornarelli et al. 

(2016) numerically examined the flow and heat transfer features across an array of six circular 

cylinders under the aiding and opposing buoyancy conditions (-1 ≤ Ri ≤ 1) at a fixed value of 

Reynolds and Prandtl number of 100 and 0.7, respectively and for the two values of tube pitches 

(L =3.6D and 4D). Many transitions in the flow fields have been found and dependence of force 

coefficient and the Nusselt number is reported within the ranges of parameters considered in this 

study. Further, it is emphasized that the transition occurs due to the rearrangements of the near 

field flow in a more ordered wake pattern. The above studies are however concerned with the 

tube bundles but are very limited to particular sets of parameters. In fact, these are the only 

evidence as far as mixed convection across a periodic array of cylinders and/or over tube banks 

are concerned.  

Scant mixed convection studies are also devoted to double cylinders with the various 

arrangements such as tandem or pair of side by side cylinder etc. For instance, Chatterjee (2010) 

investigated the mixed convection across two square cylinders in a tandem arrangement for the 

Reynolds number; 1≤Re≤30. The influence of buoyancy over flow and heat transfer 

characteristics was reported. Further, Sarkar et al. (2010) have examined the mixed convection 

problem from two square cylinders in the tandem arrangement at a fixed value of Pr = 0.7, Re = 

100 and buoyancy in the range of -1≤ Ri ≤ +1. They observed the vortex shedding for Ri = 0.25 

for a given cylinder spacing. Similarly, Daniel and Dhiman (2013) investigated the mixed 

convection from a pair of circular cylinders in the side by side arrangement for the ranges of 

parameters: Reynolds number; 1 ≤ Re ≤ 40 and Richardson number; 0 ≤ Ri ≤1, flow behaviour 

index; 0.2 ≤ n ≤ 1 and at Pr = 50. They concluded that the drag coefficients reduce with decreasing 

inertial forces and rise with increasing buoyancy effects. The thermal features were noticed to be 

enhanced with an upturn in both of the inertial and buoyancy forces. Recently, Salcedo et al. 

(2016) have also examined the mixed convection problem from two isothermal cylinders in a 
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tandem arrangement for the fixed value of Reynolds and Prandtl numbers of 200 and 7, 

respectively and blockage ratio of 0.2 along with the range of  Richardson number; -1 ≤ Ri ≤ 4. 

The result reveals how the buoyancy, spacing ratio and wall confinement influences the wakes, 

vortex dynamics and local and average heat transfer characteristics. Further study is reported by 

Chatterjee and Raja (2013) for the mixed convection heat transfer past five in-line square 

cylinders periodically arranged in a vertical duct. The study is focused on a fixed value of Prandtl 

number of 0.7 and Reynolds number of 100 for both of the confined and unconfined domains 

with the varying blockage ratios of 0%, 10%, 25% and 50%. The influence of buoyancy 

parameter has been presented in the range of -1≤ Ri ≤ 1. The results have been reported for the 

individual and total drag coefficients and average Nusselt number, etc. 

 

Table 2.4: Summary of literature review for mixed convection Newtonian and non-

Newtonian fluids  

S. 

No. 

Authors/References Parametric conditions 

and geometries 

Remarks 

1. Duli et al. (1995) Re ≤ 500;  

Gr ≤ 5300  

 (L/D) = 2 and 3. 

Geometry: tube banks 

between two vertical 

plates 

Aiding buoyancy mixed convection over tube 

banks between two vertical plates for both of the 

longitudinal and transverse directions have been 

studied. The flow separation zone has been shown 

to be the function of cylinder spacing. The Nusselt 

numbers are strongly influenced by the interaction 

between the cylinders. 

2. Gowda et al. (1998) 50 ≤ Re ≤150; 

-1≤Ri ≤+1; 

Pr = 0.71 

Geometry: in-line  

circular cylinder 

Drag coefficients, Nusselt number and pressure 

distribution around in-line cylinder were 

examined. The Strong influence of buoyancy 

parameter over tube bundles was noticed. 

3. Haldar (2000) 0 ≤ Gr ≤106; 

Pr = 0.71 

Geometry: Combined 

convection through 

seven-rod bundles in a 

circular shell arranged 

horizontally  

The flow and temperature field was reported and 

the highest temperature was found at the top of the 

central rod. The increased buoyancy decreases the 

flow rate and increases friction and rate of heat 

transfer. The result has been further compared 

with the experiments and found to be satisfactory. 

4. Fornarelli et al. (2016) -1 ≤ Ri ≤ 1; 

Re = 100, Pr = 0.7; 

L = 3.6D and 4D 

Geometry: An array 

of six circular 

cylinders  

 

Numerically examined the flow and heat transfer 

features. Many transitions in the flow field are 

found and dependence of force coefficient and the 

Nusselt number has been reported. It is 

emphasized that the transition occurs due to the 

rearrangements of the near field flow in a more 

ordered wake pattern. 

 

Overall, the available literature recommends that the mixed convection flow and heat transfer 

features over a single and/or double cylinders have been studied widely. In contrast, negligible 

literature is available for mixed convection problems across the periodic array of circular 

cylinders even with simple Newtonian fluids. The scant mixed convection studies which are 
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available across a periodic array of circular cylinder and/or over tube banks are summarized 

above in Table 2.4. 

 

2.6 Summary of literature review 

 

The critical review of  available literature on the periodic flow across an array of cylinder and/or 

over tube banks for Newtonian and non-Newtonian fluids suggests an adequate insights for the 

global engineering parameters (e.g. drag coefficients, pressure loss, permeability, Nusselt 

numbers, etc.) mostly by using various cell models. But, these are limited to creeping flow, 

laminar flow and low porosity or fluid volume fractions of the cylinders. In fact, limited literature 

is available to reveal the flow and thermal features by using the direct periodic array of cylinders. 

Additionally, in the case of mixed convection problems, negligible literature/studies are available 

to these flow geometries. These gaps in the literature motivated us to investigate the problems of 

forced and mixed convection across an array of circular cylinders to reveal the features of 

Newtonian and non-Newtonian power-law fluids from such an industrially important flow 

geometry. So, based on the preceded discussion, the followings are summarized: 

1. Scant studies are available by using direct periodic array of cylinders to explore the flow 

and thermal features.  

(e.g. Koch and Ladd, (1997), Martin et al. (1998), Spelt et al., (2005b)). 

 

2. Very limited is known about the individual components of flow and thermal features such 

as pressure and friction drag coefficients and local Nusselt numbers, etc.  

(e.g. scant studies using cell models by Vijaysri et al. (1999), Shibu et al. (2001)and 

Soares et al. (2005a) have explored the individual drag coefficients; whereas Mandhani 

et al. (2002) have explored the local Nusselt number and Tahseen et al. (2013) explored 

both the features in the limited ranges). 

 

3. The heat transfer characteristics have been studied less in contrast to flow characteristics. 

(e.g., few heat transfer studies in Newtonian flow regime: Chen and Wung (1989), Martin 

et al. (1998), Wilson and Bassiouny (2000), Mandhani et al. (2002). 

4. The flow and heat transfer characteristics of the power-law fluid are starving as compared 

to Newtonian fluids.  

(e.g. few studies for power-law fluids (i) flow features: Vijaysri et al. (1999), Dhotkar et 

al. (2000), Shibu et al. (2001), Soares et al. (2005a), Spelt et al. (2005b) and (ii) thermal 

features: Mangaddody et al. (2004) in the limited ranges. 

 

5. Scant experimental and analytical studied are available for limited ranges of parameters.         

(Experimental: Prasad and Chhabra (2001) and analytical: Khan et al., (2006a, b)). 

 

6. Very few studies are available for mixed convection even with simple Newtonian fluids. 

 (e.g. Duli et al. (1995); Gowda et al. (1998), Haldar, (2000) and Fornarelli et al. 

(2016)). 
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7. No study is available for mixed convection features to explore the non-Newtonian fluids 

across periodic array of cylinders.  

 

2.7 Objectives of dissertation 

Based on the gap found in the literature review (Sections 2.61-2.6.3), following objectives are 

set for this dissertation as mentioned in Table 2.5 

 

Table 2.5: Problems studied in this dissertation 

 

S. 

No. 

Problems Studied  Ranges of Physical Parameters 

1. Forced convection flow and heat transfer 

characteristics of Newtonian fluids  across 

periodic array of circular cylinders 

 

0.70 ≤ f  ≤ 0.99; 1 ≤ Re ≤ 40; 

0.70 ≤ Pr ≤ 100 

2. Forced convection momemtum transfer 

characteristics of power-law fluids across 

periodic array of circular cylinders 

 

0.70 ≤ f  ≤ 0.99; 1 ≤ Re ≤ 40;  

1 ≤ Pr ≤ 100; 0.4 ≤ n ≤ 1.8 

3. Forced convection heat transfer 

characteristics of power-law fluids across 

periodic array of circular cylinders 

 

0.70 ≤ f  ≤ 0.99; 1 ≤ Re ≤ 40; 

1 ≤ Pr ≤ 100; 0.4 ≤ n ≤ 1.8 

4. Aiding buoyancy mixed convection 

characteristics of Newtonian fluids across 

periodic array of circular cylinders 

 

0.70 ≤ f  ≤ 0.99; 1 ≤ Re ≤ 40; 

0.70 ≤ Pr ≤ 50; 0 ≤ Ri ≤ 2 

5. Aiding buoyancy mixed convection 

characteristics of power-law fluids across 

periodic array of circular cylinders 

0.70 ≤ f  ≤ 0.99; 1 ≤ Re ≤ 40; 

1 ≤ Pr ≤ 50;  0.4 ≤ n ≤ 1.8; 0 ≤ Ri ≤ 2 

 

( f : fluid volume fraction, Pr: Prandtl number, Re: Reynolds number, Ri: Richardson number and n: power-

law index) 

  

Therefore, the aim of this dissertation is to supplement the available knowledge through a CFD 

investigation for the wide ranges of above pertinent dimensionless parameters to explore the 

momentum and heat transfer features across the periodic array of circular cylinders in a square 

configuration. Particularly, this study is focused on both of the forced and mixed (aiding 

buoyancy) convection features of Newtonian and non-Newtonian power-law fluids for ranges of 

governing parameters as mentioned in Table 2.5. The dependence of local and global 

characteristics such as streamline profiles, isotherm contours, pressure coefficient, individual 

(pressure and friction) and total drag coefficients, local and average Nusselt numbers, etc. over 

the aforementioned flow governing parameters ( f , n, Re, Pr and Ri) has been investigated and 
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explored. In the case of power-law fluids, the shear-thinning and shear-thickening features have 

been revealed across the periodic array of cylinders. Not to be mentioned, all the above 

parameters (fluid volume fraction ( f ), inertial (Re), viscous (Pr), buoyancy (Ri) and flow 

behavior (n) parameters) have shown the strong dependence on the above qualitative and 

quantitative features. Additionally, the statistical correlations for the drag coefficients and 

average Nusselt numbers have been developed to gain the further physical insight of the results. 

Lastly, the present numerical results have been compared with available literature where an 

excellent agreement was found to exist. 
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Chapter 3 

  

PHYSICAL AND MATHEMATICAL MODELING 

 
This chapter deals with the problem formulation, details of geometry for the periodic array of 

circular cylinders in a square arrangement, governing equations and appropriate boundary 

conditions, etc. Prior to defining the problem formulations and other things, it is appropriate to 

mention the general assumptions which have been made in this study herein first. 

 

3.1 General assumptions  

 

The following general assumptions have been considered in this work: 

1. Two dimensional (2-D) flow 

2. Incompressible flow 

3. Steady state flow 

4. Laminar flow 

5. Small temperature difference (∆T=Tw-
T )  

6. In the case of forced convection, the thermophysical properties of the fluids namely 

density, viscosity, heat capacity and thermal conductivity are assumed to be temperature 

independent. 

7. Boussinesq approximation (for mixed convection problems): For small to moderate 

variations in the density with temperature, it is sufficient and common to use the well-

known Boussinesq approximation to express its dependence on the temperature as 

 ]TT1[ 00  , where β is the coefficient of volume expansion and T0 is the reference 

temperature. This approximation is customarily used to maintain the level of complexity 

at a tractable level in most of the natural/mixed convection studies (Srinivas et al., 2009). 

Further, the Boussinesq approximation evidently couples the Navier–Stokes equations 

with the thermal energy equation. Therefore the simultaneous solution of these governing 

equations is required. 

8. Furthermore, viscous heat dissipation, radiation heat transfer and compression work done 

by pressure are neglected. This approximation restricts the applicability of the present 

results to the situations where the temperature difference (∆T) is not too large and/or for 

moderate viscosity so that the viscous dissipation effects are negligible. Keeping in mind 
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of Boussinesq approximation, the temperature difference (∆T) is maintain to be small 

such that it justifies the unaccountability of the variation of the fluid viscosity with 

temperature. 

In view of all the above assumptions and approximations, the problem statement is now described 

in the next section. 

 
3.2  Problem formulation  

 

The steady, laminar and incompressible flow of fluids across an array of circular cylinders 

in the square geometrical arrangement is considered to examine the forced and mixed convection 

flow and heat transfer features of Newtonian and non-Newtonian power-law fluids. The 

schematic flow diagram of the problem considered herein is shown in Fig. 3.1(a). The transverse 

flow of the fluids is occurring in the y-coordinate direction, whereas, the gravity forces are acting 

in the opposite direction of the flow (i.e., negative y-direction). Further, the variations in fluid 

density with the temperature yield the buoyancy forces which are acting parallel (vertically 

upward) to the flow direction and therefore the aiding buoyancy conditions prevail. The end 

effects (entrance and exit) are neglected due to the assumption that the sufficiently long 

cylinder’s arrays have a large number of rows and this assumption is also sufficient to occur the 

periodicity across the periodic boundaries. The above square configuration contains equal sized 

cylinders of diameter D and spacing L which is center to center distance between the two 

cylinders in proximity and called the tube pitch also. The cylinder spacing is determined using 

either fluid volume fractions ( f ) and/or solid volume fractions ( s = 1- f ) depending upon 

what kind of array is used in the investigation. For the case of square array of circular cylinders, 

it is defined as;
 

                  

2

f
D

L

4

π
1=











           (3.1)  

and hydraulic diameter (Dh,i) is defined as flow area (Ai) per wetted perimeter (Pw,i) and given 

by:  

                  Dh, i = 4Ai/Pw, i = D. (
f / s )         where, Ai= L2-πD2/4 and Pw, i = πD      (3.2)   

The numerical computations have been simplified by considering a representative elementary 

volume as displayed by the solid lines in Fig. 3.1(a). Fig. 3.1(b) represents half of the 

computational domain due to symmetry conditions for the fluid volume fractions of f = 0.70. 

The temperatures of flowing fluid and cylinder surfaces are maintained at 
T  and Tw, 
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respectively, where Tw > T . Here, the constant wall temperature (CWT) condition has been 

considered.  

 

 

 

(a) 
 

 

                                                                (b)              

                                                                      

Figure 3.1: Schematic representation of periodic flow across an array of circular cylinders in a 

square configuration (a) complete flow domain; here, the points A and B on the surface of the 

cylinders represent for θ = 0o and θ = 90o, respectively and (b) half of the computational domain  
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3.3  Governing equations 

For an incompressible, 2-D, steady and laminar flow conditions, the flow governing 

equations and boundary conditions in the Cartesian co-ordinate system are given as follows: 

 

Continuity equation:    

                             

0
y

V

x

V yx 









   

(3.3) 

x- Component of momentum equation:

  

              
x

yxxxx
y

x
x g

yxx

p

y

V
V

x

V
V 










































    (3.4) 

y- Component of momentum equation: 
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where, gx and gy are x and y components of gravity forces. For the present case of problem, gx = 

0 and since gravity acts in the negative y-direction (Fig. 3.1a), the y-component of gravity (gy) is 

taken as (-g). By using the Boussinesq approximation for density (ρ) in the body force term, Eq. 

(3.5) is rewritten as  
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In the above equations, Vx and Vy  are the x and y components of the velocity vector, ρ and ρ0 are 

the fluid densities at temperatures T and T0, respectively.  

 

 Thermal energy equation: The thermal energy equation in terms of the constant transport 

properties and in the absence of viscous dissipation can be written as   
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  )     (3.7) 

where, ρ, cp and k are fluid density, the specific heat and thermal conductivity, respectively and 

α is the thermal diffusivity.  

 

If the flow of fluids is non-Newtonian, the rheological equation of state for power-law 

fluids depends on the rate of stress and rate of strain tensors as  

   ijij 2            where;   i, j = x, y    (3.8) 
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where, ij  are the components of the rate of strain tensor and are related to velocity field as 

follows:                                   

    

















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                                    (3.9) 

and the viscosity () of power-law fluids is defined as  

              2

1n

2 )2/I(m



      (3.10) 

where, m is the power-law consistency index, n is the power-law index (n <1: shear-thinning; n 

= 1: Newtonian and n >1: shear-thickening fluids) and I2 is the second invariant of rate of strain 

tensor whose components are given by (Bird et al., 2002): 
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In the case of a Newtonian fluids, Eq. (3.10) reduces to  m  and gives the viscosity of 

Newtonian fluids. 

           

3.4  Boundary conditions  

 

The physically consistent boundary conditions for the problems considered herein across the 

periodic array of circular cylinders (Patankar et al., 1977) are described as follows:   

 On the cylinder’s surface: The standard no slip boundary conditions are applied and the 

cylinders are maintained at constant temperature (Tw) i.e.   

  
Vx = 0,   Vy = 0 and   T = Tw (>T0)      (3.12) 

 

  At the plane of symmetry:  There is no flow in the x-direction and the normal gradients 

of major velocity component and temperature are zero. Therefore; 

Vx = 0, 0=
x

Vy




 and 0=

x

T




     (3.13) 

 At inlet and outlet boundaries: The periodically fully developed flow and thermal fields 

are applied through the periodicity of velocity (i.e. average flow velocity, V) and 

temperature (bulk fluid temperature,
T ) at these boundaries; 

 

 i.e.    Vx, i = Vx, o=0    ;   Vy = V    and   Ti = To = T                      (3.14) 
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However, the periodic flow conditions in the ANSYS Fluent solver can be imposed in 

terms of either pressure gradient or the mass flow rate. The present study has used 

periodic mass flow rate ( m ) condition. For a given geometry and fluid, the mass flow 

rate, in turn, leads to the periodic average velocity. Therefore, the following periodic 

condition (which are consistent with Eq. 3.14) is imposed at inlet and outlet boundaries, 

                                  oi mm              (3.15) 

The numerical simulation of the governing Eqs. (3.3-3.7) along with the above-noted 

boundary conditions Eqs. (3.12-3.15) maps the flow domain in terms of basic variables i.e. 

velocity components (Vx and Vy), temperature (T) and pressure fields. These, in turn, are further 

used to calculate the local and global momentum and heat transport characteristics such as drag 

coefficients and Nusselt numbers (Bharti et al., 2007a, b; Sivakumar et al., 2006, 2007; Patil et 

al., 2008), etc., and defined as below: 

 Total drag coefficient (CD): The total drag coefficient (CD) on the surfaces of the 

cylinder is defined as: 
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and the individual drag coefficients such as pressure drag coefficient (CDP) and friction drag 

coefficient (CDF) are defined as: 
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For Newtonian fluids, Eq. (3.18) and (3.19) reduces to Eq. (3.20) and (3.21), respectively: 
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where, FDP and FDF are the pressure and frictional components of the drag force per unit 

length of the cylinder, S is the surface area and ns are unit vector normal to the cylinder 

surfaces and defined as: 
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where, ex and ey are the x and y components of the unit vectors, respectively and τ the 

dimensionless shear stress expressed as  
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For Newtonian fluids, Eq. (3.23) reduces to Eq. (3.24) with  , 
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  where, i, j = x, y    (3.24) 

where,   and I2 are the dynamic viscosity and second invariant of the rate of strain tensor, 

respectively.  

 Further, the stream function ѱ(x, y) is a convenient parameter by which one can represent 

two-dimensional, steady, incompressible flow. The stream function, ѱ in m2/s, is related to 

velocity components Vx and Vy as follows:   
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   and  
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       (3.25) 

These definition of Vx and Vy can be used in the x and y components of momentum Eqs. (3.4-

3.5) to obtain a differential equation for ѱ which is equivalent to Navier-Stokes equation. The 

stream function is very useful because its physical significance is that in steady flow lines defined 

by ѱ = constant, are streamlines which are the actual curves traced out by the particles of the 

fluid. A stream function exists for all two-dimensional, steady and incompressible flows whether 

viscous or inviscid, rotational or irrotational (Geankpolis, 1993). 

As far as the heat transfer characteristics are concerned, the local Nusselt number is 

defined as (Bharti et al., 2007a, b):      
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The local Nusselt number is further averaged over the surfaces of periodic cylinders to obtain the 

surface average Nusselt number as follows:    
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The average Nusselt number is used in the process engineering design calculations to estimate 

the rate of heat transfer from isothermal cylinders. Now, after defining the problem statement, 



 

38 
 

governing equations and boundary conditions, etc., the solution methodology and choices of 

numerical parameters etc. are described in Chapter 4. 
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Chapter 4 

 

SOLUTION METHODOLOGY AND CHOICES OF 

NUMERICAL PARAMETERS 

 
This chapter deals with the solution methodology and choices of numerical parameters 

for the modeling and simulation of periodic flow problems considered herein this work. The 

numerical solutions in this work have been obtained by using a computational fluid dynamics 

(CFD) solver ANSYS FLUENT (2009).  

4.1 Solution procedure of periodic problems  

The following necessary steps are employed in the modeling and simulation of periodic flow and 

thermal problems: 

(i) CAD modeling using GAMBIT 

 creation of computational geometry 

 grid generation 

 Assignment of boundaries 

(ii) CFD modeling using ANSYS Fluent  

 Import of the grids/mesh geometry from GAMBIT to ANSYS Fluent 

 Defining boundary conditions 

 Selection of a solver   

(iii) Solution Methodology  

 Discretization method 

 Pressure velocity coupling 

 Relaxation factor 

 Solution initialization 

 Convergence and analysis of results 

 

All the above steps have been described briefly herein for an overview of solving the periodic 

flow problems numerically by using the commercial CFD solvers GAMBIT and ANSYS Fluent 

(2009).  
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4.2 CAD modeling using GAMBIT 

 

The creation of computational geometry, grid generation and assignment of boundaries, etc. have 

been done by CAD modeling using GAMBIT. The creation of computational geometry is a two-

step process which involves the identification of computational domain and creation of mesh 

geometry. Once the computational domain has been identified, the mesh geometry can be created 

by generating the grid points first on the surfaces of solids/cylinders boundaries. Grid generation 

is a very important step in the solutions of the flow and/or heat transfer problems because the 

system of grid points used determines the accuracy, efficiency and ease with which these methods 

generate solutions. This is an essential aspect of computational fluid dynamics that employ finite 

difference method (FDM), finite volume method (FVM) and finite element method (FEM) for 

the solution of partial differential equations (PDE). Among these methods, the finite volume 

method (FVM) is very powerful for obtaining the solutions to PDE’s that govern fluid flow and 

heat transfer problems. However, to use these methods, it is necessary to replace the spatial 

domain of the problem by a finite number of discrete points or elemental volumes (cells) known 

as grid points. The process of replacing a spatial domain by a system of grid points is referred as 

grid generation. In the present work, the grids and mesh geometry have been generated using 

CFD software called GAMBIT as shown in Figs. 3.1(b).  

  

After creation of mesh geometries, the next step is to define boundary conditions. As 

mentioned earlier (Chapter 2; Section 2.1.1), there are two types of periodic boundary conditions 

available in ANSYS Fluent, i.e. rotational and translational. The current problem is concerned 

with translational periodic boundaries for the fully developed periodic flow. In such a case the 

pressure drop occurs through the periodic boundary. The periodic boundary conditions are used 

when the flow across the two opposite planes in the computational domain are identical. Further, 

the different boundaries of the computational domain is assigned their identity for example in 

Fig 3.1(b), velocity inlet and outlet, cylinder walls and symmetry conditions have been shown.  

 

4.3 CFD modeling using ANSYS Fluent  

 

Here, after completing mesh generation and assignment of boundaries, the problem is 

imported in the ANSYS Fluent from the GAMBIT. Further, the grid check and scaling are done 

along with the creation of periodic zone. Next, the flow and thermal boundary conditions are set 

up depending upon the problems studied. For instance, the periodic flow condition in ANSYS 
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Fluent solver can be imposed in terms of either pressure gradient or the mass flow rate. The 

present study has used periodic mass flow rate conditions. For a given geometry and fluid, the 

mass flow rate, in turn, leads to the periodic average velocity. Further, for the thermal condition, 

as the fluid flow through the periodic domain, its temperature approaches that of the wall 

boundaries. Though, the temperature can be set up in such a way that it behaves periodically. 

After setting up the flow and thermal conditions, the solver ANSYS Fluent uses the finite volume 

method (FVM) technique to discretize the governing equations. In this method, the 

flow/computational domains are distributed into a finite number of control volumes/cells (CVs) 

of a grid, so that the overlapping of these cells could not happen. The boundaries of the control 

volumes are defined by the grids, however, the computational nodes are present at the center of 

the control volumes. The differential equations for mass, momentum and energy, etc., along with 

the boundary conditions are integrated over these control volumes (CV), each and then the 

divergence theorem is applied. As a result, a linear algebraic equation, one for each control 

volume is obtained. This linear algebraic equations set is then computed simultaneously or 

iteratively. In particular, the 2-D, segregated solver is used to resolve the incompressible laminar 

flow and heat transfer of the fluid on the non-staggered grid arrangement.  

Further, there are two types of solvers found in ANSYS Fluent namely: the density-based 

solver and the pressure-based solver. The pressure-based solver has been selected as the preferred 

solver in this thesis. In both the solvers, continuity and momentum equations are used to derive 

a pressure equation which further is used to deduce the velocity field. For the selected pressure-

based coupled algorithm, the continuity and momentum equations are simultaneously solved. 

The iterations continue until the solution converged. Further, these solvers have three formulation 

schemes which are coupled-explicit, coupled-implicit and segregated (implicit). Density-based 

solver works on coupled-explicit or coupled-implicit formulation scheme, whereas the pressure-

based solver works on the segregated (implicit) formulation scheme. The segregated (implicit) 

solver is preferred as it requires less memory than the coupled-implicit solver and flexibility in 

solution procedure is also provided by the segregated scheme.   

4.4 Solution Methodology  

 

This section explains the various steps involved in the simulation of problems such as 

discretization method, pressure-velocity coupling, relaxation factor, solution initialization, 

convergence and analysis of results. 
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4.4.1 Discretization method 

 

The number of different interpolation/discretization schemes are offered by the ANSYS Fluent, 

which are as follows: 

 

 First-order upwind scheme  

 Second-order upwind scheme  

 Power-law scheme 

 QUICK scheme and others 

The present study has used the second order upwind scheme for the discretization of 

partial differential equations. The second order upwind scheme uses constants and first order 

derivative but ignores the second order derivative. Moreover, this scheme is necessary when the 

flow is not aligned to the grid and has a slower convergence. This scheme is more accurate than 

the first order upwind scheme and having a higher order of stability also.   

 

4.4.2 Pressure-velocity coupling 

 

A pressure-velocity coupling method is used to define the segregated algorithm used by 

ANSYS Fluent during its calculations. All the momentum equations contain a pressure term in 

it and the continuity equation has to be satisfied by the velocity field. Therefore, a set of these 

equations, each for an unknown variable is obtained. Thus, the derivation of the pressure equation 

from the continuity and momentum equations are possible because of such pressure-velocity 

coupling algorithms. SIMPLE is the most commonly used algorithm and is used in the present 

thesis. SIMPLE is based on the presumption that the fluid flows from the region of high pressure 

to the region of low pressure. There are other improved versions of SIMPLE are also available 

such as SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations Consistent), SIMPLER 

(Semi-Implicit Method for Pressure-Linked Equations Revised) and PISO (Pressure Implicit 

with Splitting of Operators). Although all the above algorithms will converge to the same 

solution, the use of high under-relaxation factors than SIMPLE accelerates the convergence in 

the above-improved algorithms. The discrepancy lies in stability and speed. The speed of the 

functionality of the above algorithms depends on the flow and no single algorithm is said to be 

faster than other, always. 

 

4.4.3 Relaxation factor 

Relaxation factor is introduced to the segregated solver for the stabilization of the iterative 

process. 



 

43 
 

 Under-relaxation occurs when relaxation factor < 1. The speed of the convergence may 

be retarded by the under-relaxation, whereas, an increase in the calculation stability is 

seen, as the chance of oscillations or divergence in the solutions is decreased. 

 No relaxation occurs when relaxation factor = 1. In this, the estimated value of the 

variable is used. 

 Over-relaxation occurs when relaxation factor > 1. The speed of the convergence may be 

accelerated by the over-relaxation. But it decreases the stability of the calculation. 

Further, the numerical errors result in oscillations in the flow solution which are suppressed by 

the under-relaxation factors. The convergence is significantly retarded by the very small value of 

under-relaxation factors, even sometimes to the extent that the solution appears to be converged 

but it actually is not. Hence, it is recommended always to use a high value of under-relaxation 

factors such that it must not result in divergence or oscillations.  Therefore, the default factors in 

the solver should be used. Also, the momentum and pressure factors can be reduced if the solution 

is seen to be converged, but the pressure residual is still relatively high as it further refines the 

solution. 

 

4.4.4 Solution initialization  

 

Solution initialization is vital in ensuring that the initial conditions are similar to the 

values produced in the converged results. Solution initialization allows a definition of flow 

variables and therefore the software initializes the flow field to these values. Initial values are the 

values that are set for the beginning of the flow from that boundary. ‘Compute from’ allows the 

user to compute values from a particular zone, in terms of the current project all variables will 

be calculated from a velocity set at the velocity inlet. A time-step is used to simulate the full flow 

cycle in the model. Once these settings have been customized, the simulation can begin. After 

each iteration, ANSYS Fluent reports residuals which are the sum of conserved quantities, back 

to the user on a window which can also be used to view the convergence history of the model. 

The graphs can be used to predict how the simulation is converging (or diverging) and can be 

used to observe initial values of the models. 

 

4.4.5 Convergence of results 

 

A solution is considered to be converged until the change in the value of the variable from 

one iteration to the next becomes negligible. At convergence, all the distinct conservation 
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equations such as energy, momentum, etc. are executed in all the CVs to a particularized 

tolerance and no more change in the solution is observed with further iterations. The error in 

conservation equations is measured by the residual. Thus, the balances for momentum, energy, 

mass and scalar are obtained and the solutions are said to be converged when there is no change 

in the scalar fields and the flow field. A qualitative convergence is generally indicated by the 

reduction in the residuals by three orders of magnitude. For instance, in this study, the absolute 

residuals of the continuity, x- and y- velocities and energy are used in the order of 10-10, 10-10 and 

10-14, respectively. Also, the imbalance in the conservation equations is measured by the 

residuals. The solution may not be converged if the residuals are still decreasing even if the 

specified convergence criterion is reached. While, the solution may be converged if the residuals 

are no longer decreasing, neither there is any change in the other solution monitors, even if the 

convergence criterion is never met. Lower or higher residuals do not automatically mean a correct 

or an incorrect solution, respectively. The residuals can also be monitored graphically. 

 

4.5 Choices of numerical parameters 

It is well known that the choice of grid sizes exert varying levels of influence on the numerical 

results. In this work, since the periodic flow has been simulated for the varying level of fluid 

volume fractions (or porosity) across the periodic array of circular cylinders, therefore, it is 

necessary to obtain the grids, which on further refinement do not change the numerical results. 

Further, the numerical parameters which have been used in this dissertation are described briefly 

herein in terms of their suitability before giving the description of grids and their specifications, 

etc.   

 Reynolds number (Re): In this dissertation, the minimum and maximum value of 

Reynolds number were taken to be Re = 1 and 40, respectively. Over the range Reynolds 

number being considered herein, the flow is known to be steady, laminar and two-

dimensional. It is also well known that the two-dimensional flow around a single circular 

cylinder is stable in this low range of Re (Gamrat et al., 2008). Further, it is most likely 

that the case of an array of cylinders is more stable than an isolated single cylinder. Dybbs 

and Edwards (1984) investigated the flow through the packing of spheres and for complex 

arrangements of cylinders. They observed the onset instabilities for Re > 150, where, the 

Reynolds number Re is based on the average pore velocity and an average characteristics 

length scale for the pores. This critical value corresponds to Re much larger than 40 for 

the low range of porosity. It was then assumed that instabilities did not occur for the 
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present low value of Re and that the flow around the solid elements was symmetrical with 

respect to the x-direction.  

Further, in this dissertation, an unsteady behavior was found with Re = 40 for 

mixed convection Newtonian flow and even with Re = 20 also for non-Newtonian fluid 

at the higher values of fluid volume fractions of f = 0.96, 0.98 and 0.99. Therefore, it 

is expected that the value of Re above 40 will also display an unsteady behavior. Since, 

this study is concerned with 2-D, steady and laminar flow, hence the present range of Re 

was found to be suitable for such an investigation. 

 

 Prandtl number (Pr): The range of Prandtl number was taken to be Pr = 0.7 to 100. This 

range covers the behavior of Newtonian and non-Newtonian fluids both. This range of 

Prandtl number is very common in chemical, petroleum and oil related engineering 

applications. Further, the range of Prandtl number for different fluids such as 0.7-1.0 for 

air; 7-10 for water/water suspensions and 50-2000 for heavy oils. So, a small value Pr = 

0.7 of air which exhibits Newtonian behaviour also suggest that the heat conduction is 

more significant compared to convection and so the thermal diffusivity is dominating. 

Further, as the Pr increases, the behaviour is correspondingly reversed. For instance, Pr 

= 7 (water; Newtonian fluid) means the heat transfer by convection is dominating over 

conduction i. e. as Pr increases the momentum diffusivity dominates. For example, with 

butanol (Pr = 50; non-Newtonian fluids), convection dominates. Similarly for engine oils 

( 100Pr  ; non-Newtonian fluids), convection is very effective in transferring 

energy from an area in comparison to pure conduction, so in this case, the momentum 

diffusivity is dominating. So by fixing the above range of Prandtl number, it is possible 

to display the behaviour of both Newtonian and non-Newtonian fluids. 

  

 Richardson number (Ri): The range for the buoyancy parameter or the Richardson 

number is 0 ≤ Ri ≤ 2, where, Ri = 0 is the case of forced convection whereas Ri→∞ is 

the case of free convection. In between 0 to ∞; there is an intermediate region when both 

of the free and forced convection contributes to the heat transfer. The +ve value of Ri 

suggests the case of aiding buoyancy mixed convection. In the present investigation, it is 

found that the increased value of Richardson number causes more turbulence and 

behavior gradually shifts from steady to unsteady. Due to this reason, an unsteady 

behavior has been found for Ri = 2 at f = 0.96, 0.98, 0.99 and expected to move towards 

lower fluid volume fractions with further increase in Ri >2. So, for the 2-D, steady and 
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laminar flow investigation, the maximum value of Ri = 2 was found to be appropriate for 

most of the results generated in this study except the aforementioned limits. 

  

 Power-law index (n): The range of power-law index has been taken to be 0.4 ≤ n ≤ 1.8.  

Further, the non-Newtonian fluids such as dilute polymer solutions with smaller 

molecules, foams, syrups, starch solutions, high molecular weight polymeric systems 

(i.e., blends, solutions, melts), emulsions and pulp and paper suspensions, which come 

across in chemical and related process industries exhibit either shear-thinning (i.e., 

pseudo-plastic fluids, n < 1) and/or shear-thickening (i.e., dilatant fluids, n > 1) behavior 

under suitable flow conditions. The reason behind setting up this range is that it covers a 

wide range of the shear-thinning, Newtonian and shear-thickening fluid behaviors. In the 

context of present dissertation, negligible studies are available using a periodic array of 

circular cylinder to reveal the forced and mixed convection features of the fluids. So the 

above range of power-law index has been found suitable for present investigation.  

 

 Fluid volume fraction (
f ): The range of fluid volume fractions ( f ) has been taken to 

be 0.70 ≤ f  ≤ 0.99. The reason behind setting up this range is that it covers a wide range 

of the porosity of the cylinder arrays. Further, in the context of present dissertation, 

negligible studies are available with the direct use of periodic array of circular cylinders. 

The above range of fluid volume fractions is frequently encountered in industrial 

applications which cover sparse ( f = 0.99) to dense ( f = 0.70) geometry of cylinder 

arrangements.  

In view of the aforementioned numerical parameters, the grid sensitivity is checked now within 

the ranges covered herein. 

  

4.5.1 Specification of grids used in grid independence study   

 

The grid independence study has been carried out by using four different kinds of non-

uniform unstructured grids represented as G1, G2, G3 and G4 for the lowest fluid volume 

fractions ( f  = 0.70) and three different grids G1, G2 and G3 for the highest fluid volume 

fractions ( f  = 0.99) with the details given in Table 4.1. Further, in Table 4.1, Nc represents the 

number of grid points on the quarter surface of the cylinders. A total of 45 grid points has been 

taken on the quarter surface of the cylinders for each of the grids G1, G2 and G3, whereas 60 
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grid points were taken for the grid G4. Next, the δ and are the minimum and maximum grid 

spacing per unit length on the computational boundaries, respectively. In Table 4.1, it can be seen 

that the maximum grid spacing () has been fixed to be 0.03 for all the grid types, whereas the 

minimum spacing is varying from 0.005-0.02. So, the grid refinement from G1 (δ = 0.02) to G2 

(δ = 0.01); from G2 to G3 (δ = 0.005); and from G3 to G4 (δ = 0.005), yields the finer grids, 

respectively. Accordingly, it can be seen that the maximum number of nodes (N = 7715) in 

computational domain is present for G4 of f = 0.70 and N = 146131 for G3 of f = 0.99. The 

influences of these grid sizes on the forced and mixed convection flow and heat transfer 

characteristics has been examined for the different problems studied as described in the next 

sections. 

 

Table 4.1: Specifications of grids used for the grid independence study 

 

 Grid specifications  

f  Grid Nc δ  N 

  

0.70 

  

G1 45 0.02 0.03 2238 

G2 45 0.01 0.03 3218 

G3 45 0.005 0.03 6620 

G4 60 0.005 0.03 7715 

  

0.99 

G1 45 0.02 0.03 61028 

G2 45 0.01 0.03 86714 

G3 45 0.005 0.03 146131 

 Nc (number of grid points on the quarter surface of the cylinder), δ and (minimum and maximum grid 

spacing per unit length on the computational boundaries respectively) and N (total number of nodes in 

the computational domain). 

 

4.5.2 Grid independence study for the forced convection characteristics of Newtonian and 

non-Newtonian power-law fluids 

 

The grid independence test was carried out by using above grids (Table 4.1) for the extreme 

values of flow conditions ( f = 0.70 and 0.99; Re =1 and 40; Pr = 0.70 and 100; n = 0.4 and 1.8) 

for Newtonian and non-Newtonian power-law fluids which exhibit shear-thinning and shear-

thickening behaviours also. The values of drag coefficient (CD) and average Nusselt numbers 

(Nu) for the above grids have been compared in Table 4.2. For Newtonian fluids, it can be seen 

that the refinement in the grids from G1 to G4 for f  = 0.70 shows the maximum relative 

differences in the CD values of about 0.30%, while it is about 0.11% for f  = 0.99 in moving 

from G1 to G3. Similarly, the average Nusselt number was compared in each respective grids, 
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which shows the maximum relative difference of about 0.23% for 
f  = 0.70 and about 0.22% 

for f  = 0.99.   

 

Table 4.2: Grid independence test for the total drag coefficient (CD) and average Nusselt 

number (Nu) for the forced convection characteristics of Newtonian and power-law fluids 

f  Grid 

n = 0.4 n = 1 n = 1.8 

CD r (CD) CD r (CD) CD r (CD) 

Re→ 1 40 1 40 1 40 1 40 1 40 1 40 

 

0.70 
 

 

G1 31.7872 0.7609 - - 144.1932 4.1588 - - 260.6559 7.7086 - - 

G2 31.8558 0.7625 0.22 0.21 144.2868 4.1605 0.06 0.04 261.0992 7.7192 0.17 0.14 

G3 31.9253 0.7640 0.22 0.20 144.7263 4.1673 0.30 0.16 261.5043 7.7242 0.16 0.06 

G4 31.9052 0.7635 0.06 0.07 144.7793 4.1682 0.04 0.02 261.2898 7.7193 0.08 0.06 

 

0.99 
 

G1 9.5145 0.3035 - - 4.6942 0.1805 - - 1.6748 0.0699 - - 

G2 9.5319 0.3041 0.18 0.20 4.6985 0.1807 0.09 0.11 1.6768 0.0700 0.12 0.14 

G3 9.5401 0.3044 0.09 0.10 4.7025 0.1809 0.09 0.11 1.6776 0.0701 0.05 0.14 

Nu 

n 
f  Grid 

Pr = 1 Pr = 100 r (Pr = 1) r (Pr =100) 

Re → 1 40 1 40 1 40 1 40 

0.4 

 

0.70 
 

 

G1 2.2018 4.2192 4.2795 6.1551 - - - - 

G2 2.2079 4.2287 4.2884 6.1612 0.28 0.22 0.22 0.10 

G3 2.2128 4.2372 4.2920 6.1657 0.22 0.20 0.20 0.07 

G4 2.2164 4.2324 4.2915 6.1637 0.16 0.11 0.01 0.03 

 

0.99 

 

G1 1.3196 2.1107 2.1698 2.6542 - - - - 

G2 1.3234 2.1165 2.1741 2.6595 0.28 0.27 0.19 0.20 

G3 1.3256 2.1198 2.1768 2.6606 0.16 0.15 0.12 0.04 

1* 

 

0.70 

 
 

G1 1.9412 3.5714 4.1513 5.2570 - - - - 

G2 1.9456 3.5758 4.1545 5.2710 0.23 0.12 0.08 0.27 

G3 1.9498 3.5824 4.1578 5.2823 0.22 0.18 0.08 0.21 

G4 1.9490 3.5806 4.1527 5.2768 0.04 0.05 0.12 0.10 

 
0.99 

 

G1 1.1683 1.7812 1.9518 2.4112 - - - - 

G2 1.1679 1.7852 1.9509 2.4126 0.03 0.22 0.05 0.06 

G3 1.1683 1.7892 1.9506 2.4144 0.03 0.22 0.02 0.07 

1.8 

 

0.70 
 

 

G1 1.0918 3.7316 2.7021 4.5014 - - - - 

G2 1.0931 3.7357 2.7048 4.5051 0.12 0.11 0.10 0.08 

G3 1.0941 3.7374 2.7069 4.5061 0.09 0.05 0.07 0.02 

G4 1.0944 3.7462 2.7054 4.5065 0.03 0.07 0.05 0.01 

 

0.99 
 

G1 0.7162 1.2198 1.4751 1.9945 - - - - 

G2 0.7182 1.2225 1.4789 1.9987 0.27 0.22 0.25 0.21 

G3 0.7195 1.2240 1.4820 2.0012 0.18 0.12 0.20 0.12 

 Percent relative change, r(X) = 100|(Xi-Xi+1)/Xi| %; where X = CD or Nu. * For n = 1, Pr = 0.7 instead of Pr = 1 

 

 

For shear-thinning fluids (n = 0.4) and f  = 0.70, the grids refinement from G1 to G4, 

yields a maximum relative differences of about 0.22% and 0.21% at Re = 1 and 40, respectively 
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in the values of CD. Further, for 
f  = 0.99, the grids refinement from G1 to G3 yields a maximum 

relative differences of about 0.18% and 0.20% at Re = 1 and 40, respectively. Similarly, for 

shear-thickening fluid (n = 1.8) at 
f  = 0.70, the grid refinement from G1 to G4 yielded the 

maximum relative differences of 0.17% and 0.14% at Re = 1 and 40, respectively, whereas for 

f  = 0.99, grid refinement yielded the maximum relative differences of about 0.12% and 0.14% 

at Re = 1 and 40, respectively. 

The values of average Nusselt number (Nu) has also been compared in Table 4.2 for the 

power-law fluids. In the shear-thinning region (n = 0.4), when moving from G1 to G4 for f  = 

0.70 and Pr = 1, it was seen that the maximum relative differences in values of Nu are about 

0.28% and 0.22% at Re = 1 and 40, respectively. The corresponding maximum differences at Pr 

= 100 were altered from 0.28 % to 0.22% and 0.22% to 0.10 %, respectively. Under the similar 

conditions, but for f = 0.99 (G1 to G3), the maximum differences in values of Nu were about 

0.28% and 0.27% at Re = 1 and 40, respectively and these differences at Pr = 100 were further 

altered from 0.28 % to 0.19% and 0.27% to 0.20 %, respectively. Likewise, in the shear-

thickening region (n = 1.8), at f  = 0.70 and Pr = 1, the maximum relative differences were 

about 0.12% and 0.11% at Re = 1 and 40, respectively. At Pr = 100, these differences were 

changed slightly and altered from 0.12% to 0.10% and 0.11% to 0.08% at Re = 1 and 40, 

respectively. Similarly, for f  = 0.99 and Pr = 1, the maximum differences were about 0.27% 

and 0.22% at Re = 1 and 40, respectively, which again at Pr = 100, altered from 0.27% to 0.25 

% and about 0.22% to 0.21%, respectively. The above comparisons suggest that the relative 

change in the values of CD and Nu is < 0.5%. Thus, the grid G3 is supposed to be adequately 

refined to solve the forced convection flow and heat transfer phenomena for Newtonian and 

power-law fluids and hence was utilized in this study. 

4.5.3 Grid independence study  for the mixed convection characteristics of Newtonian and 

non-Newtonian power-law fluids  

 

Here, the grid sensitivity was examined for the mixed convection Newtonian flow for the 

extreme values of f  (0.70, 0.99), Re (1, 40), Pr (0.70, 50) at Ri = 2. Table 4.3 compares the 

value of total drag coefficient (CD) and average Nusselt number (Nu) obtained for the extreme 

conditions on the different grid structures. In Table 4.3, it can be seen that the grid refinement 

from G1 to G4 for f = 0.70 and Pr = 0.70 yields the maximum relative differences of about 

0.18 % and 0.34% at Re = 1 and Re = 40, respectively. Further, at Pr = 50, the above maximum 

relative differences were altered from 0.18 % to 0.11% and 0.34% to 0.24 %, respectively. 
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Similarly, for 
f = 0.70 and Pr = 0.70, the maximum relative differences in the average Nusselt 

number (Nu) were about 0.21%  and 0.19% at Re = 1 and 40, respectively, which were again 

altered at Pr = 50, from 0.21 % to 0.17% and 0.19% to 0.11 %, respectively. Similarly, for f

= 0.99 and Pr = 0.70, in the overall grid refinement from G1 to G3, the maximum relative 

differences in drag coefficient values were found to be 0.30 % and 0.21% at Re = 1 and Re = 40, 

respectively. Further, at Pr = 50, the above maximum relative differences were altered from 0.30 

% to 0.18% and 0.21% to 0.14 %, respectively. Also, at f = 0.99 and Pr = 0.70, the grid 

refinement from G1 to G3 yields the maximum relative differences in average Nusselt number 

values of about 0.30% and 0.28% at Re = 1 and 40, respectively. These maximum relative 

differences were further altered from 0.30 % to 0.14% and 0.28% to 0.10 % at Pr=50, 

respectively.  

 

  The grid sensitivity was also examined for the power-law fluids at the extreme values of 

f  (0.70, 0.99), Re (1, 40), Pr (1, 50) and fixed values of n = 0.4 and Ri = 2. In Table 4.3, it can 

be seen that the overall grid refinement from G1 to G4 for f = 0.70, yields a maximum relative 

differences of about 0.43% and 0.24%, in values of drag coefficient, whereas, from G1 to G3 for 

f = 0.99, the maximum relative differences are about 0.49% and 0.27% in the values of drag 

coefficient at Re = 1 and 40, respectively. Further, the overall grid refinement from G1 to G4 for 

f = 0.70 yields a maximum relative difference of about 0.28% and 0.19% in the values of the 

average Nusselt number at Re = 1 and 40, respectively. Similarly, the overall grid refinement 

from G1 to G3 for 
f = 0.99, yields maximum relative differences of about 0.18% and 0.11% in 

the values of the average Nusselt number at Re = 1 and 40, respectively. Based on the above 

grids analysis, a relative change in the values of drag coefficient and average Nusselt number 

(Nu) was found to be < 0.5%. Therefore, the grid G3 was believed to be sufficiently refined in 

the case of mixed convection to resolve the flow and heat transfer phenomena and hence was 

utilized in this study. 
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Table 4.3: Grid independence test for total drag coefficient (CD) and average Nusselt 

number (Nu) for the mixed convection flow and thermal features of Newtonian and power-

law fluids 

 n = 1, Ri = 2 

 

 f   Grid 
Pr  = 0.7 Pr  = 50 

r(X) 

Pr  = 0.7 Pr  = 50 

Re Re Re Re 

1 40 1 40 1 40 1 40 

  G1 293.1899 20.4258 319.1044 21.5086 -  -  -  -  

 

CD 0.70  

G2 293.7213 20.4954 319.4837 21.5617 0.1812 0.3407 0.1189 0.2469 

G3 293.9354 20.5273 319.6446 21.5914 0.0729 0.1556 0.0504 0.1377 

G4 293.9314 20.5357 319.6561 21.5999 0.0014 0.0409 0.0036 0.0394 

  G1 33.6479 3.5618 39.8972 3.8725 - - - - 

0.99 G2 33.7487 3.5692 39.9694 3.8781 0.2996 0.2078 0.1810 0.1446 

   G3 33.8036 3.5730 40.0085 3.8827 0.1627 0.1065 0.0978 0.1186 

 

0.70  

  

G1 0.8883 4.0785 2.7051 10.1608 -  -  -  -  

 

Nu 

G2 0.8902 4.0862 2.7096 10.1725 0.2139 0.1888 0.1664 0.1151 

G3 0.8915 4.089 2.7122 10.1772 0.1460 0.0685 0.0960 0.0462 

G4 0.8918 4.0902 2.7128 10.1776 0.0337 0.0293 0.0221 0.0039 

0.99 

G1 1.0972 6.178 3.2283 16.1659 - - - - 

G2 1.1005 6.1958 3.2327 16.1822 0.3008 0.2881 0.1363 0.1008 

 G3 1.1008 6.2059 3.235 16.1826 0.0273 0.1630 0.0711 0.0025 

*n=0.4, Ri=2 

 

 

 

CD 

 

 
0.70  

G1 138.6923 7.9856 148.6314 9.2073  - -  -  -  

G2 139.2941 8.0045 148.9862 9.2182 0.43 0.24 0.24 0.12 

G3 139.5918 8.0199 149.3305 9.2283 0.21 0.19 0.23 0.11 

G4 139.4711 8.0114 149.3705 9.2289 0.09 0.11 0.03 0.01 

  
0.99 

  

G1 21.7768 2.4048 24.1591 2.7459 -  -  -  -  

G2 21.8846 2.4112 24.2086 2.7498 0.49 0.27 0.20 0.14 

G3 21.9291 2.4153 24.2349 2.7519 0.20 0.17 0.11 0.08 

 

 

Nu 

 

0.70  

  

G1 0.9921 6.4803 3.2062 22.3992 -  -  -  -  

G2 0.9949 6.4928 3.2098 22.4194 0.28 0.19 0.11 0.09 

G3 0.9972 6.5001 3.2122 22.4355 0.23 0.11 0.07 0.07 

G4 0.9975 6.5015 3.2125 22.4495 0.03 0.02 0.01 0.06 

0.99 

G1 1.2496 10.5875 3.9638 26.0542 -  -  -  -  

G2 1.2519 10.5994 3.9687 26.0787 0.18 0.11 0.12 0.09 

G3 1.2528 10.6007 3.9710 26.1003 0.07 0.01 0.06 0.08 

 Percent relative change, r(X) = 100|(Xi-Xi+1)/Xi| % ; where X =  CD or Nu. * For n = 0.4, Pr = 1 

instead of Pr = 0.7 
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Chapter 5 

 

FORCED CONVECTION FLOW AND HEAT TRANSFER 

CHARACTERISTICS OF NEWTONIAN FLUIDS ACROSS 

PERIODIC ARRAY OF CIRCULAR CYLINDERS 

 
The problem considered herein is the forced convection flow and heat transfer characteristics of 

Newtonian fluid across a periodic array of circular cylinders in a square configuration. The 

schematic is shown in Fig. 3.1a. However, for the case of forced convection problem, the 

buoyancy parameter is Ri = 0 and therefore in Fig. 3.1a, the buoyancy and gravity forces are 

assumed to be negligible. The problem is well-defined in Chapter-3 and the computational 

domain for one of the fluid volume fractions (
f  = 0.70) have also been shown in Fig. 3.1b. In 

this investigation, extensive numerical results have been obtained by systematic variations of 

Reynolds number as 1, 2, 5, 10, 20 and 40; Prandtl number as 0.7, 1, 5, 10, 20, 50 and 100; and 

fluid volume fraction as 0.70, 0.75, 0.80,  0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98 and 0.99 

(Table 2.5). For the present case, the governing Eqs. (3.3-3.7) with the negligible effect of gravity 

as mentioned in the y-component of momentum equations (Eqs. 3.5-3.6) and boundary 

conditions (i.e. Eqs. (3.12-3.15)) have been used. Detailed results highlighting the influence of 

the dimensionless flow governing parameters on the streamlines, pressure and isotherm patterns, 

individual and total drag coefficients and averaged Nusselt numbers are presented and discussed 

herein to gain physical insight into the nature of flow and thermal characteristics in this system.  

5.1 Validation of numerical solution procedure 

 Prior to the presentation of new results, the numerical solution procedure used in this work was 

validated thoroughly against the available literature results. Table 5.1 shows the comparison of 

the present results of total drag coefficient with the available literature (Singh et al., 1989; Koch 

and Ladd, 1997; Spelt et al., 2005b) for the extreme values of Reynolds number (Re = 1, 40) and 

three values of fluid volume fractions (
f = 0.70, 0.80 and 0.99). The maximum relative 

deviation (δmax) of present values with literature data has also been included in Table 5.1. An 

examination of these results shows an excellent agreement (i.e., within ± 2%) with the previous 

results. Further, the present values of averaged Nusselt number (Nu) have been compared with 

available literature (Martin et al., 1998; Mangadoddy et al., 2004; Gamrat et al., 2008) in Table 
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5.1. They also show the excellent agreement of ± 2% with the literature values. The above 

validations confirm the reliability and accuracy of the numerical solution procedure used herein 

to obtain the new results. The ensuing sections present the dependence of flow and thermal 

characteristics on the dimensionless governing parameters. 

 

Table 5.1: Comparison of present values of total drag coefficient (CD) and average Nusselt 

number (Nu) with available literature  
 

 
 

Source 
CD 

f  = 0.99 
f  = 0.80 

f  = 0.70 

Re = 1 Re = 40 Re = 1 Re = 1 Re = 40 

Present Results 4.7025 0.1809 52.3347 144.7263 4.1673 

Singh et al. (1989) - - 51.0700 - - 

Koch and Ladd (1997) 4.5645 0.1815 51.2550 - - 

Spelt et al. (2005b) 4.5884 0.1845 50.9551 142.1367 4.2529  

δmax (%) 2.7220 1.9900 2.0631 1.7893 2.0541 

 Nu 

f  = 0.99 
f  = 0.86 

f  = 0.70 

 (Re =5, Pr = 

0.7) 

(Re = 40, Pr = 0.7)  (Re = 1, Pr = 5)  (Re = 1, Pr = 100) (Re = 1, Pr = 5) 

Present Results 1.3675 1.7892 1.4217 2.8832 2.5295 

Martin et al. (1998) 1.3404 1.7933 - - - 

Mangadoddy et al. (2004) - - 1.4015 - 2.6057 

Gamrat et al. (2008) - - - 2.8925 - 

δmax (%) 1.9817 0.2292 1.4208 0.3226 3.0125 

  

5.2 Fluid flow characteristics  

 

 The physical insight into the nature of flow field of the problem under consideration is gained 

through the streamline and pressure profiles, individual and total drag coefficients and their 

functional dependence on the dimensionless parameters. 

 

5.2.1 Streamline patterns  
 

The qualitative dependence of the normalized streamline (ѱ*= (ѱ-ѱmin)/(ѱmax-ѱmin)) patterns on 

Reynolds number and fluid volume fraction is shown in Fig.5.1 for the ranges of conditions 

employed. Qualitatively, the features of the figure reveal a strong dependence of wake size on 

the fluid volume fraction as well as on the fluid inertia (Re).  
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Figure 5.1: Representative variations of normalized streamlines with Reynolds numbers (i) Re = 

1 (ii) Re = 10 (iii) Re = 40 and fluid volume fractions (a) 
f  = 0.70 (b) 

f  = 0.80 (c) 
f  = 

0.90 (d) 
f  = 0.99 

 

The maximum and minimum values of streamlines (ѱmax and ѱmin) are also shown in Fig. 5.1 for 

the purposes of comparison. At the lowest value of Reynolds number (Re = 1), flow separation 

behind the cylinders is not observed over the range of fluid volume fraction 0.70 ≤ 
f  ≤ 0.99. 

However, the stationary flow (or vacuum) region created in between the cylinders reduces with 

increasing value of the fluid volume fraction at the lowest Reynolds number. The fluid circulation 

behind the cylinders is seen to increase with increasing value of the Reynolds number irrespective 

of the value of the fluid volume fraction. The maximum size of the vortex behind the cylinders 
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(at 
f  = 0.70) gradually decreased with increasing fluid volume fraction over the range of 

Reynolds number 1 ≤ Re ≤ 40. The streamline patterns also show strong interference from the 

two cylinders at the lower values of 
f which diminishes with increasing value of 

f  for all 

values of Re. The two cylinders act almost like isolated cylinders at the largest value of 
f for 

all Re. The maximum value of streamline function (ѱmax) is observed to be the greatest (ѱmax = 

314.812) at the greatest values of both Re and 
f  (i.e., Re = 40 and 

f  = 0.99). The value of 

streamline function (ѱmax) shows a proportional decrease with decreasing values of both Re and

f . These results clearly indicate that discharges between two consecutive streamlines decrease 

as the fluid volume fractions and Reynolds number decrease. The streamline pattern is similar to 

those reported in literature (Edwards et al., 1990; Koch and Ladd, 1997; Spelt et al., 2005b) for 

square arrays of cylinders and for a single cylinder (Bharti et al., 2006; Soares et al., 2005b), 

within the ranges covered herein. However, compared to the literature, present flow pattern 

analysis suggests there is a stronger dependence of flow pattern on the governing parameters than 

previously thought. The analysis of the pressure profiles in the next section reveals a similar 

trend.  

 

5.2.2 Pressure profiles  

 

Fig. 5.2 shows the representative variation of the normalized pressure (p* = (p-pmin)/(pmax-pmin)) 

with the fluid volume fraction (0.70 ≤ 
f  ≤ 0.99) and Reynolds number (1 ≤ Re ≤ 40). The dense 

contours of static pressure seen at the lowest volume fractions (
f = 0.70), getting sparse with 

increasing fluid volume fractions. At lower values of fluid volume fraction and Reynolds number, 

the pressure contours are periodically symmetric in the vicinity of the cylinders. Such feature is 

clearly due to the no-flow separation under these flow conditions. An increasing value of the 

Reynolds number or fluid volume fraction shifts the pressure contours away from the cylinders 

surfaces. The increasing gap between the pressure contours clearly suggests a stronger variation 

in pressure gradient within the computational domain. For instance, the minimum and maximum 

values of pressure difference (∆pmin = 9.5566 Pa and ∆pmax = 3270.72 Pa) are observed at Re =1 

and 
f = 0.99 and at Re = 40 and 

f  = 0.70, respectively.  
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Figure 5.2: Representative variations of normalized static pressure with Reynolds numbers (i) Re 

= 1 (ii) Re = 10 (iii) Re = 40 and fluid volume fractions (a) 
f  = 0.70 (b) 

f  = 0.80 (c) 
f  = 

0.90 (d) 
f  = 0.99. (∆pmin =   9.5566 Pa at Re = 1 and 

f  = 0.99, ∆pmax = 3278.72 Pa at Re = 

40 and 
f  = 0.70) 

 

The above noted stronger dependence on flow parameters (
f , Re) of the local flow 

patterns (streamline and pressure profiles, for instance), is in turn, expected to alter the global 

flow and heat transfer characteristics of the problem considered. In the next section, the 

functional dependence of the global flow characteristics (i.e. individual and total drag 

coefficients) on Reynolds number and fluid volume fraction have been examined.  

 

0
.1 0.2

0.3

0
.3

0.4

0.4

0.4

0.5

0.6

0.6

0
.7

0.7

0
.8

0.1

0.2

0
.3

0
.4

0
.4

0.5

0.5

0
.6

0.6

0
.7

0
.8

(c
)

=
0
.9

0


f

0.1
0.2 0

.3

0.4

0.4

0
.4

0.5

0.6

0.6

0.7

0
.7

0.8

(b
)

=
0
.8

0


f

0.
1

0.3
0.4

0.4

0.5

0.6

0.7

0.7

0.8

0.9

(iii) Re=40

0
.1

0
.2

0.2

0.3

0.3
0.4

0.4

0.5

0.5

0.6 0.6

0.6

0.7

0.7

0.8

0
.8

0.9

(ii) Re=10

0.1
0.2

0.3

0.
3

0.4

0.4

0.5

0.6
0.7

0.7

0
.7

0.8
0.9

(i) Re=1

(a
)

=
0
.7

0


f

0.15

0
.2

5
0

.3

0.35

0.35

0.4

0.4

0.4

0.45

0.4
5

0.5

0.55

0
.6 0

.6
50
.8

5

(d
)

=
0
.9

9


f

0.2

0
.3

0.4

0.4

0.5

0.5

0
.6

0.2

0.3
0.4

0.4

0
.5

0.5

0.5

0.6

0.7

0.70.8

0.8

0
.9

0.3

0.
4

0.5

0.5

0.5

0.6

0.6

0.7

0.7

0.
8

0
.1

0.2
0.3

0.4

0.4

0.5 0.5

0.5

0.6 0.6

0.6

0.7

0.7

0
.80

.9

0
.2

0.3

0
.3

0.4

0
.4

0.4

0.5

0.5

0.6

0.6 0.6

0.7

0.7

0.8

0.8

0
.9



 

58 
 

5.2.3 Individual and total drag coefficients 

 

Table 5.2 presents the functional dependence of individual and total drag coefficients (CDP, CDF 

and CD) on Reynolds number and fluid volume fraction for the range of conditions studied. 

Irrespective of the fluid volume fraction (
f ), as expected, the pressure drag coefficient (CDP) 

was seen to decrease with increasing value of the Reynolds number. As observed in Fig. 5.2, the 

clustering of pressure contours is dense in the whole computational domain at lower values of 

Reynolds number and fluid volume fraction. The pressure drag coefficient was consequently 

large under these conditions. It was also seen to decrease with increasing value of the fluid 

volume fraction for all values of Reynolds number. An increasing value of the fluid volume 

fraction allows the fluid to occupy most of the region in between the cylinders due to the 

sufficiently large gap between the cylinders. The minimum interference effects observed in local 

flow field (Figs. 5.1 and 5.2) at large values of Reynolds number and/or fluid volume fractions, 

in turn, yield the minimum value of pressure drag coefficient. For instance, as the Reynolds 

number is increased from 1 to 40, CDP values reduced from 73.0562 to 2.4904 and from 2.3332 

to 0.1148 at fluid volume fractions of 0.70 and 0.99, respectively.  

Table 5.2 also depicts the dependence of the friction drag coefficient (CDF) on Reynolds 

number and fluid volume fraction. Qualitatively similar to CDP (Re, 
f ), friction drag coefficient 

also reduced with increasing values of Reynolds number and/or fluid volume fraction. At low 

values of Re, viscous effects dominate over the inertial effects which result in a large value of 

friction drag coefficient, under otherwise identical conditions. The viscous effects weaken with 

increasing Re and thus CDF values are also reduced. On the other hand, the smallest fluid volume 

fraction provides minimum flow area for the fluid to penetrate through the arrays of cylinders, 

and therefore the friction effects become stronger under such conditions, as observed through the 

dense clustering of streamline and pressure contours (Figs.5.1 and 5.2). The minimum value of 

CDF was observed at the largest values of both Re and
f . For instance, as Re increased from 1 

to 40, CDF values altered from 71.670 to 1.6769 and from 2.3693 to 0.0661 at 
f of 0.70 and 

0.99, respectively.  

The total drag coefficient (CD = CDP + CDF) was seen to have qualitatively similar 

dependence as that of CDP and CDF on Reynolds number and fluid volume fraction. The total drag 

coefficient decreases with increasing values of both Reynolds number and/or fluid volume 

fraction over the ranges of conditions explored (see Table 5.2). For instance, as the fluid volume 

fraction increased from 0.70 to 0.99, CD changed from 144.7263 to 4.7025 and from 4.1673 to 

0.1809 at Reynolds numbers of 1 and 40, respectively. 
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Table 5.2: Variations of individual (CDP and CDF) and total drag (CD) coefficients with fluid volume 

fractions and Reynolds number  

 

Re f  = 0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 

 CDP 

1 71.0562 43.4821 25.5881 16.4529 12.9038 9.9281 7.5446 5.7412 4.8105 3.8755 2.8971 2.3332 

2 35.6386 22.0360 13.0071 8.2438 6.5553 5.0672 3.8252 2.9731 2.5163 2.0616 1.5693 1.2822 

5 14.9532 9.1417 5.4966 3.5525 2.8293 2.2097 1.6854 1.3250 1.1358 0.9375 0.7261 0.6015 

10 7.9041 4.9473 3.0451 2.0541 1.5790 1.2363 0.9459 0.7546 0.6408 0.5334 0.4136 0.3453 

20 4.3985 2.7792 1.7264 1.1188 0.8918 0.7009 0.5383 0.4257 0.3665 0.3068 0.2407 0.1995 

40 2.4904 1.5468 0.9533 0.6284 0.4990 0.3924 0.3020 0.2398 0.2019 0.1747 0.1380 0.1148 

 CDF 

1 73.6701 44.1688 26.4367 17.0605 13.3938 10.3209 7.7389 5.9606 4.9723 3.9821 2.9296 2.3693 

2 36.8435 22.0939 13.2774 8.5102 6.7195 5.1871 3.8983 3.0134 2.5195 2.0448 1.5168 1.2428 

5 14.3575 8.8812 5.3578 3.4527 2.7270 2.1132 1.5945 1.2392 1.0447 0.8498 0.6407 0.5298 

10 7.1772 4.4665 2.7085 1.7745 1.3787 1.0685 0.8067 0.6272 0.5297 0.4329 0.3277 0.2726 

20 3.5236 2.1309 1.3348 0.8569 0.6758 0.5251 0.3972 0.3094 0.2615 0.2148 0.1652 0.1365 

40 1.6769 1.0309 0.6241 0.4045 0.3182 0.2472 0.1874 0.1463 0.1244 0.1025 0.0792 0.0661 

 CD 

1 144.7263 87.6509 52.0248 33.5134 26.2976 20.2490 15.2835 11.7018 9.7828 7.8576 5.8267 4.7025 

2 72.4821 44.1299 26.2845 16.7540 13.2748 10.2543 7.7235 5.9865 5.0358 4.1064 3.0861 2.5250 

5 29.3107 18.0229 10.8544 7.0052 5.5563 4.3229 3.2799 2.5642 2.1805 1.7873 1.3668 1.1313 

10 15.0813 9.4138 5.7536 3.8286 2.9577 2.3048 1.7526 1.3818 1.1705 0.9663 0.7413 0.6179 

20 7.9221 4.9101 3.0612 1.9757 1.5676 1.2260 0.9355 0.7351 0.6280 0.5216 0.4059 0.3360 

40 4.1673 2.5777 1.5774 1.0329 0.8172 0.6396 0.4894 0.3861 0.3263 0.2772 0.2172 0.1809 

 CDR=CDP/CDF 

1 1.0193 0.9845 0.9679 0.9644 0.9634 0.9619 0.9749 0.9632 0.9675 0.9732 0.9889 0.9899 

2 1.0222 0.9974 0.9796 0.9687 0.9756 0.9769 0.9812 0.9866 0.9987 1.0082 1.0346 1.0317 

5 1.0415 1.0293 1.0259 1.0289 1.0375 1.0457 1.0570 1.0692 1.0872 1.1032 1.1333 1.1353 

10 1.1013 1.1076 1.1243 1.1576 1.1453 1.1570 1.1726 1.2031 1.2097 1.2322 1.2621 1.2667 

20 1.2483 1.3042 1.2934 1.3056 1.3196 1.3348 1.3552 1.3759 1.4015 1.4283 1.4570 1.4615 

40 1.4851 1.5004 1.5275 1.5535 1.5682 1.5874 1.6115 1.6391 1.6230 1.7044 1.7424 1.7368 

 

The role of fluid volume fraction on the global flow characteristics was examined by 

normalizing the drag coefficients as XN = X (Re, f )/X(Re, max,f ), where X represents the 

individual and total drag coefficients (CDP, CDF and CD), under otherwise identical conditions. In 

the present work, max,f = 0.99. Fig. 5.3 presents the dependence of normalized drag coefficients 

(
N

DPC , 
N

DFC  and 
N

DC ) on fluid volume fraction and Reynolds number. The normalized values are 

always seen to be greater than one over the ranges of conditions, which indicates a significant 

role of the fluid volume fraction on the drag characteristics. This figure clearly shows that the 

normalized drag values increase when the cylinders are brought closer together. For a fixed value 

of Re, the normalized drag values are seen to decrease monotonically with increasing value of 

fluid volume fraction. For a fixed value of f , the normalized drag values decrease as Re 
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increases. However, this dependence is more significant at lower Re which diminishes at higher 

Re. Overall, over the ranges of conditions examined, the drag coefficients were observed to vary 

by as much as  30-fold.  

 

Figure 5.3: Dependence of normalized drag coefficients on fluid volume fractions ( f ) and 

Reynolds number (Re) (a) pressure drag coefficient (b) friction drag coefficient (c) total drag 

coefficient and (d) drag ratio (CDR = CDP/CDF) 

To understand the relative contribution of pressure force over the viscous force, the drag 

ratio (CDR) was examined, defined as CDR = CDP/CDF, under otherwise identical conditions. Fig. 

5.3(d) shows the complex dependence of drag ratio on both Reynolds number and fluid volume 

fraction. A CDR > 1 suggests the dominance of pressure force over viscous force. A CDR value 

increases with increasing value of Reynolds number (Re ≥ 5) for all values of fluid volume 

fractions.  However, for the lower values of Reynolds number (Re < 5), CDR values show complex 

variation with both Reynolds number and fluid volume fraction. Such complexities are inherent 

due to varying influence of periodic boundary conditions on the flow field. For instance, at low 

Re, the fluid is not stratified in the whole computational domain due to small (or negligible) 

pressure in the vicinity of cylinders (see Figs. 5.2 and 5.3) and correspondingly, the friction drag 

dominates over the pressure drag under these conditions. However, more resistance to flow is 
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observed due to the pressure than due to friction at large values of Re. The maximum CDR 

obtained is equal to 1.7368 at Re = 40 for f  = 0.99. 

Additionally, statistical analysis of the present numerical values of individual and total 

drag coefficients has been carried out to develop an empirical relation which gives the functional 

dependence of drag coefficients (CDP, CDF, CD) on Reynolds number and fluid volume fraction. 

This functional dependence is expressed by Eq. (5.1) as  

      X = αReβ         where      c+ba=α f

2

f     and ged=β f

2

f                     (5.1) 

Here, X is CDP, CDF or CD. The best fit correlation coefficients of Eq. (5.1) along with 

their statistical analysis (based on 72 data points for each CDP, CDF and CD) are shown in Table 

5.3. The present numerical values show an excellent correspondence with the values predicted 

(using Eq. 5.1) in Fig. 5.4. For instance, this correlation for CD has average and maximum 

deviations of ~1.5 % and ~3%, respectively. The predictions of Eq. 5.1 was compared with the 

different cell models available in the literature (Bruschke and Advani, 1993; Vijaysri et al., 1999 

and Tripathi and Chhabra, 1992, 1996). For instance, Bruschke and Advani (1993) presented a 

numerical solution for the creeping flow of power law fluids over an array of cylinders, modeled 

via the use of zero vorticity cell models. They presented their results in terms of mobility factor 

M’ which can be shown to be equal to (ϕmax/ ϕ)1+n/CD. For Newtonian fluids, their results are in 

good agreement with present results e.g. at f = 0.70, Re = 1; their CD = 194.10 against the 

present value of 144.7263. Similarly, Tripathi and Chhabra (1992, 1996) applied the well-known 

concentric cylinders free surface cell models (Happel, 1959) to approximate the porosity among 

the cylinder. The drag on the cylinder was reported to decrease below the corresponding value 

of Newtonian fluids. In this investigation also, an excellent agreement was found for the drag 

values i.e. CD = 136.19 at f  = 0.70, Re = 1 while the corresponding present value of CD = 

144.7263. Further, Vijaysri et al. (1999) used zero vorticity cell models of Kuwabara (1959) to 

discuss fluid dynamic parameters in terms of drag coefficients. Again, in the case of Newtonian 

fluids an excellent correspondence was found (CD = 193.99 against the present value of CD = 

144.7263). Among all the above comparisons, the maximum discrepancies were of the order of 

6-25%. 

The preceding discussion has shown the pronounced effect of Reynolds number and fluid 

volume fraction on the qualitative and quantitative nature of periodic flow across a bank of tubes. 

By analogy, these governing parameters would be expected to strongly influence heat transfer 

characteristics.  
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Table 5.3: Correlation coefficients appearing in the functional dependence of drag 

coefficients (δ: relative r.m.s deviations from the numerical data; Total # of data points: 72 

for each of the CDP, CDF and CD) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Best fit comparisons of present numerical versus predicted values of (a) pressure drag 

coefficient (b) friction drag coefficient and (c) total drag coefficient 

 

5.3 Heat transfer characteristics 

The dependence of forced convection heat transfer characteristics (i.e., isotherm patterns and 

average Nusselt number) on Reynolds number (1≤ Re ≤ 40), Prandtl number (0.7 ≤ Pr ≤ 100) 

and fluid volume fraction (0.70 ≤ 
f  

≤ 0.99) is presented and discussed in the ensuing section. 
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Correlation 

Constants 

CDP CDF CD 

a 980.23 990.58 1965.2 

b 1872 1902.6 3763.3 

c 896.82 916.94 1808 

d 0.6999 1.0348 0.8676 

e 0.8585 1.6045 1.2201 

g 0.6552 0.3962 0.5293 

R2 0.9988 0.9996 0.9998 

δmax (%) 4.9636 4.6498 3.0548 

δavg (%) 2.4851 2.3989 1.5359 
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An empirical relation which gives the functional dependence of average Nusselt number (Nu) on 

Re, Pr and 
f is also obtained. 

5.3.1 Isotherm patterns 

Figs. 5.5 and 5.6 show the variation of isotherms with Reynolds number and fluid volume 

fraction for two values of Prandtl number (Pr=1 and 100), respectively. Specifically, Figs. 5.5 

and 5.6 plot normalized values of temperature (T* = (T-Tmin)/(Tmax-Tmin)), which allows easier 

comparison of the different plots. The maximum temperatures are seen on the surfaces of the 

cylinders, which are isothermally heated. As expected, the isotherm patterns show a strong 

dependence on the governing parameters (Re, Pr and
f ) over the ranges examined. For a fixed 

value of fluid volume fraction, the crowding of isotherms in the flow direction (bottom to top) 

increases with increasing value of Reynolds number, irrespective of the value of Prandtl number. 

At high Reynolds number, isotherms were seen to cluster in the vicinity of cylinders as well as 

in the core region of the computational domain. An increasing value of fluid volume fraction also 

shows similar influences on the heat transfer patterns, i.e., clustering of isotherms was more 

pronounced when cylinders were brought closer together. At large values of 
f , the downstream 

cylinder displays very dense clustering in comparison of the upstream cylinder. This suggests 

that, at this spacing, cylinders are largely independent and that much of the heat transfer is from 

the forward face of the cylinder. It can also be observed that the symmetric isotherm patterns for 

the low Reynolds number flows suggest the dominance of conduction over convection; however, 

at high Reynolds numbers, isotherms in open flow areas are aligned parallel to the y-axis and 

more complicated patterns appear in the wake. Also, much sharper temperature gradients appear 

closer to the cylinders as the Reynolds number increases. Thus, the resulting temperature 

gradients, and hence the heat transfer rate increases with increasing Re and/or Pr. The influence 

of the volume fraction on isotherm patterns is, however, seen to be more pronounced at high 

Reynolds and/or Prandtl numbers. It can also be seen in Figs. 5.5 and 5.6, as the Reynolds number 

increases, the clustering of the isotherms became dense and confined in the vicinity of the 

cylinders. The density of isotherm lines indicates the magnitude of the thermal gradients; that is, 

clustered lines indicate a steep gradient, while sparse lines indicate a weak gradient. Thermal 

gradients, in turn, indicate the magnitude of heat transfer rates. The above qualitative feature is 

similar to Martin et al. (1998) for the square array of cylinder at Pr = 0.7. These patterns are also 

consistent with the single cylinder (Bharti et al., 2007b, 2008) under the limiting conditions. This 

complex dependence of local heat transfer (Figs. 5.5 and 5.6) on the pertinent dimensionless 

parameters (Re, Pr and
f ) is expected to alter the global heat transfer characteristics. The 
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ensuing section explores the functional dependence of average Nusselt number on dimensionless 

flow governing parameters. 

 

 

Figure 5.5: Representative variations of normalized isotherms at Pr = 1 with Reynolds numbers 

(i) Re = 1 (ii) Re = 10 (iii) Re = 40 and fluid volume fractions (a) 
f  = 0.70 (b) 

f  = 0.80 (c) 

f  = 0.90 (d) 
f  = 0.99 
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Figure 5.6: Representative variations of normalized isotherms at Pr = 100 with Reynolds numbers 

(i) Re = 1 (ii) Re = 10 (iii) Re = 40 and fluid volume fractions (a) 
f  = 0.70 (b) 

f  = 0.80 (c) 

f  = 0.90 (d) 
f  = 0.99   

  

5.3.2 Average Nusselt number  

 

 Table 5.4 presents the functional dependence of average Nusselt number (Nu) on the governing 

dimensionless parameter (Re, Pr,
f ). As expected, for a fixed value of fluid volume fraction, 
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number. However, an opposite dependence of Nu on 
f  was observed; i.e., Nu decreases with 

increasing
f , irrespective of the values of Re and Pr. In other words, heat transfer improved 

when the cylinders were brought closer together. In fact, the effect of con Nu is more pronounced 

than either of Re or Pr. The maximum value of the average Nusselt number was found to be about 

5.2823 for 
f  = 0.70 at Re = 40 and Pr = 100, whereas the minimum value was about 1.1683 

for 
f = 0.99 at Re = 1 and Pr = 0.7.      

 

Table 5.4: Variation of surface average Nusselt number (Nu) with fluid volume fractions (

f ), Reynolds (Re) and Prandtl (Pr) numbers 

  
Pr Re 

f  

0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 
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2.6241 

2.8722 

1.6065 

1.7319 

2.0838 
2.2584 

2.5326 

2.7534 

1.5562 

1.6623 

1.9524 
2.1964 

2.4302 

2.6250 

1.5295 

1.5909 

1.8820 
2.1205 

2.3191 

2.4904 

1.4596 

1.4836 

1.8178 
2.0363 

2.2032 

2.3512 

1.3926 

1.4124 

1.7367 
1.9171 

2.0612 

2.1912 

1.2542 

1.3927 

1.6331 
1.7812 

1.9073 

2.0222 

1.2272 

1.3598 

1.4740 
1.6010 

1.7185 

1.8738 

1.1683 

1.2998 

1.3675 
1.5878 

1.6992 

1.7892 

1 1 

2 

5 
10 

20 

40 

2.1025 

2.3845 

2.6714 
2.8668 

3.3300 

3.8215 

1.9249 

2.1856 

2.4398 
2.6735 

3.1680 

3.5363 

1.8572 

1.9183 

2.3477 
2.5987 

2.9609 

3.2362 

1.7764 

1.8852 

2.2812 
2.4868 

2.7535 

2.9778 

1.6768 

1.8126 

2.2129 
2.4138 

2.6457 

2.8490 

1.6635 

1.7558 

2.1567 
2.3282 

2.5283 

2.7107 

1.6131 

1.6982 

2.0048 
2.2316 

2.4049 

2.5675 

1.5537 

1.6241 

1.9326 
2.1222 

2.2728 

2.4142 

1.4656 

1.5490 

1.8384 
1.9972 

2.1295 

2.2558 

1.4008 

1.4858 

1.7152 
1.8511 

1.9703 

2.0830 

1.3610 

1.4560 

1.5423 
1.6650 

1.7795 

1.9028 

1.2346 

1.3637 

1.4331 
1.6520 

1.7607 

1.8404 

5 1 
2 

5 

10 
20 

40 

2.5295 
2.7727 

3.5332 

3.8257 
4.1817 

4.4702 

2.3372 
2.6829 

3.3109 

3.5797 
3.7879 

4.0475 

2.2162 
2.6106 

3.0433 

3.2378 
3.4287 

3.6459 

2.1118 
2.4953 

2.8092 

2.9570 
3.1156 

3.3356 

2.0940 
2.4285 

2.6883 

2.8199 
2.9673 

3.1825 

2.0579 
2.3348 

2.5612 

2.6808 
2.8184 

3.0218 

2.0048 
2.2357 

2.4322 

2.5409 
2.6691 

2.8577 

1.9320 
2.1237 

2.2951 

2.3977 
2.5160 

2.6840 

1.8361 
1.9960 

2.1494 

2.2487 
2.3574 

2.5040 

1.7085 
1.8481 

1.9954 

2.0901 
2.1883 

2.3148 

1.5333 
1.6612 

1.8098 

1.9118 
2.0022 

2.1043 

1.4217 
1.5476 

1.7047 

1.8067 
1.8974 

1.9878 

10 1 

2 

5 
10 

20 

40 

2.8626 

3.3595 

3.9332 
4.1530 

4.3382 

4.6298 

2.6827 

3.1912 

3.5822 
3.7382 

3.9128 

4.1817 

2.6100 

2.9640 

3.2250 
3.3435 

3.5131 

3.7648 

2.4963 

2.7499 

2.9440 
3.0490 

3.2063 

3.4474 

2.4225 

2.6394 

2.8052 
2.9016 

3.0563 

3.2935 

2.3342 

2.5180 

2.6650 
2.7563 

2.9020 

3.1284 

2.2345 

2.3920 

2.5269 
2.6121 

2.7482 

2.9607 

2.1220 

2.2586 

2.3827 
2.4663 

2.5903 

2.7792 

1.9935 

2.1159 

2.2354 
2.3178 

2.4286 

2.5926 

1.8463 

1.9608 

2.0812 
2.1634 

2.2579 

2.3958 

1.6510 

1.7720 

1.9095 
1.9960 

2.0786 

2.1840 

1.5440 

1.6657 

1.8122 
1.9032 

1.9848 

2.0730 

20 1 

2 
5 

10 

20 
40 

3.3597 

3.8308 
4.1545 

4.2770 

4.4495 
4.7707 

3.1914 

3.4143 
3.7302 

3.8287 

4.0086 
4.3012 

2.9634 

3.1794 
3.3286 

3.4148 

3.5977 
3.8712 

2.7523 

2.9072 
3.0242 

3.1082 

3.2846 
3.5469 

2.6395 

2.7754 
2.8787 

2.9587 

3.1342 
3.3962 

2.5181 

2.6374 
2.7335 

2.8106 

2.9751 
3.2248 

2.3915 

2.4988 
2.5911 

2.6654 

2.8185 
3.0554 

2.2583 

2.3579 
2.4490 

2.5201 

2.6548 
2.8658 

2.1154 

2.2123 
2.3053 

2.3754 

2.4942 
2.6712 

1.9610 

2.0590 
2.1600 

2.2277 

2.3207 
2.4670 

1.7658 

1.8861 
1.9993 

2.0747 

2.1536 
2.2562 

1.6671 

1.7826 
1.9160 

1.9944 

2.0699 
2.1550 

50 1 

2 

5 
10 

20 

40 

3.9370 

4.0574 

4.2964 
4.3750 

4.6867 

5.1021 

3.5856 

3.7320 

3.8275 
3.9021 

4.2228 

4.4846 

3.2269 

3.3265 

3.4052 
3.4782 

3.6982 

4.0178 

2.9460 

3.0230 

3.0878 
3.1686 

3.3790 

3.6980 

2.8078 

2.8812 

2.9428 
3.0194 

3.2336 

3.5521 

2.6677 

2.7375 

2.7977 
2.8687 

3.0644 

3.3650 

2.5284 

2.5967 

2.6579 
2.7245 

2.9047 

3.1921 

2.3883 

2.4578 

2.5210 
2.5820 

2.7420 

2.9819 

2.2440 

2.3190 

2.3880 
2.4452 

2.5771 

2.7780 

2.0958 

2.1765 

2.2518 
2.3061 

2.3969 

2.5534 

1.9299 

2.0224 

2.1139 
2.1738 

2.2506 

2.3520 

1.8295 

1.9336 

2.0492 
2.1172 

2.1926 

2.2710 

100 1 

2 

5 

10 
20 

40 

4.1578 

4.2733 

4.3582 

4.6912 
4.9966 

5.2823 

3.7324 

3.8095 

3.8710 

4.1535 
4.4325 

4.6884 

3.3287 

3.3842 

3.4452 

3.5262 
3.7848 

4.1682 

3.0272 

3.0766 

3.1267 

3.2051 
3.4583 

3.8283 

2.8832 

2.9345 

2.9839 

3.0684 
3.3268 

3.7270 

2.7404 

2.7925 

2.8399 

2.9140 
3.1409 

3.5160 

2.6014 

2.6556 

2.7050 

2.7721 
2.9776 

3.3557 

2.4645 

2.5220 

2.5719 

2.6299 
2.7978 

3.0934 

2.3284 

2.3913 

2.4462 

2.4997 
2.6408 

2.8840 

2.1890 

2.2595 

2.3212 

2.3649 
2.4695 

2.6428 

2.0388 

2.1195 

2.1999 

2.2527 
2.3324 

2.4318 

1.9506 

2.0479 

2.1506 

2.2157 
2.2914 

2.4144 

 

Further efforts were made to present the functional dependence of average Nusselt 

number on Re, Pr, 
f  as a closure relationship. The statistical analysis (based on 504 data points) 

of the present numerical values (Table 5.4) yielded the following correlation;  



 

67 
 

     cbPrReα=Nu    where     ]RePrd+[a=α
ge

f             (5.2) 

The best-fit correlation coefficients (a, b, c, d, e and g) appearing in Eq. (5.2) along with their 

minimum, maximum and average deviations are summarized in Table 5.5. An excellent 

agreement can be seen in Fig. 5.7(a) between the present numerical data and the predictions of 

Eq. (5.2). The average and maximum deviations are within 2% and 5% respectively for 97% of 

the data points. Only 3% of data points have deviations >5% with a maximum deviation of 

11.36%.  Notwithstanding numerous analytical studies based on periodic arrays are available in 

the literature, out of these studies, no one is the same, which could be compared directly with the 

present study, for instance, Sangani and Acrivos (1982) relate to low Reynolds number and Peclet 

number, while in many other cases, different geometrical configuration and different parameters 

are employed (e.g. Launder and Massey, 1978; Wilson and Bassiouny, 2000, etc.). However, it 

is possible to contrast the present predictions with the results of Chen and Wung (1989); Martin 

et al. (1998); Gamrat et al. (2008); Mangadoddy et al. (2004); Mandhani et al. (2002), etc. For 

instance, Chen and Wung (1989) have presented the mean values of Nusselt number for one 

value of fluid volume fraction, namely, 
f  = 0.8; Re = 40, 120, 400 and 800 and for Pr = 0.1, 1 

and 10. They correlated their results using the following empirical expression  

                        For in-line arrays:       Nu = 0.8Re
0.4

Pr
0.37                                                                                                              

(5.3) 
 

Table 5.5: Correlation coefficients appearing in the functional dependence of Nusselt number 

and jH factor (δ: relative r.m.s deviations from the numerical data; Total # of data points: 

504 for each of the Nu and jH) 
  

 

Correlation 

Constants 
a b c d e g R2 δmax (%) δavg (%) 

Nu 17.1857 0.1608 0.1599 -15.7552 0.1669 0.0061 0.9665 11.3671 5.6958 

jH 1.279 0.6703 1.2718 -0.2178 0.0304 -2.1283 0.9937 5.3272 2.7014 

 

 

The above correlation (Eq. 5.3) is similar to the present correlation (Eq.5.2) for the 

average Nusselt number. Using the above correlation (Eq. 5.3), a value of Nu = 3.4987 at 
f  = 

0.8, Pr = 1 and Re = 40 was obtained against the present value of Nu = 3.2362 under the identical 

conditions. An inspection of these results shows that while the present result is slightly lower 

than the predictions of Eq. (5.3), generally by 7.5%, still, a good correspondence is seen to exist 

with the predictions. Similarly, a good correspondence was seen between the present and power-

law correlation of Martin et al. (1998) for the average Nusselt number which compares well for 

Prandtl number. 
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Figure 5.7: The best fit analysis of present numerical values versus predicted values of (a) average 

Nusselt number and (b) the Colburn jH factor  
 

(Pr = 0.70) and fluid volume fraction (0.80 ≤ f  ≤ 0.99) with maximum discrepancies within 

2% (Table 5.1). Next, correspondence was found with results of Gamrat et al. (2008) as shown 

in Table 5.1 at f  = 0.86, Re = 1, Pr = 100. As compared to  Nu = 2.8925 of Gamrat et al. (2008), 

the present value was found to be Nu = 2.8832 which shows an excellent agreement with a 

deviation of only 0.32 %. However, not listed in Table 5.1, but an agreement at higher fluid 

volume fraction of f  = 0.98 was also seen with the results of Gamrat et al. (2008), e.g. at f  

= 0.98, Pr = 100 and Re = 40, there is a deviation of only 5.45 % in the present (Nu = 2.4318) 

and their result (Nu = 2.5722). Analogously, the results of Mangadoddy et al. (2004) as shown 

in Table 5.1 show an excellent agreement at Pr = 5 and Re = 1 with two extremes of fluid volume 
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fractions. These values of Nu show a deviations of 3.01% and 1.42% for 
f  = 0.70 and 0.99, 

respectively. After above comparisons, an endeavor was further made to compare with the 

experimental results of literature. However, there is no direct experimental study on heat transfer 

for periodic flow across tube bank is available, albeit, very few experimental studies are 

available.  

 

 

Figure 5.8: Comparison of local Nusselt number with present, free surface cell model of 

Mandhani et al. (2002) and experimental results of Eckert and Soehngen (1952) at f  = 0.99, 

0.999 and 1, respectively   
 

For instance, Eckert and Soehngen (1952) reported the values of the local Nusselt number for the 

flow of air over a heated cylinder. A comparison between the present values, free surface cell 

model of Mandhani et al. (2002) and experimental study of Eckert and Soehngen (1952) is shown 

in Fig. 5.8, where a good agreement can be seen to exist. The discrepancy seen in Fig. 5.8 can be 

attributed in part at least to the finite values of L/D ratio and the wall effects encountered in such 

experimental studies and to the fact that the predictions relate to f  = 0.99, f  = 0.999 and f  

= 1, respectively.   

Furthermore, to delineate the role of Reynolds and Prandtl numbers, the average Nusselt 

number is generally presented in terms of the Colburn heat transfer factor (or 
Hj factor) defined 

as  

                                    
3/1H

RePr

Nu
=j                                                                                        (5.4) 
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The 
Hj  factors have a feature to accord the results of various Reynolds number and Prandtl 

number on a single curve. The variation of the Colburn factor with fluid volume fraction, 

Reynolds number and Prandtl number is shown in Fig. 5.9. This Figure shows that the Colburn 

factor has a linear dependence on the flow governing parameters. The
Hj factor decreases with 

increasing Re and/or Pr for a given fluid volume fraction. A proportional decrease in 
Hj factor 

was also seen with increasing value of f , irrespective of the values of Re and Pr. 

 

Figure 5.9: The Colburn 
Hj factor variation with Reynolds number and fluid volume fraction for 

(a) Pr = 1 (b) Pr = 10 (c) Pr = 50 and (d) Pr = 100 

 

The 
Hj factor is a maximum for the smallest values of f , Re and Pr examined and a minimum 

for the largest values examined. A statistical analysis of the present data yielded the following 

correlation 

                                  
g

H )Reα(=j    where e]+PrRe[a=α dcb

f         (5.5) 

The values of empirically fitted constants (a, b, c, d, e and g) appearing in Eq. (5.5) along with 

the minimum, maximum and average deviations are also summarized in Table 5.5. An excellent 
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agreement can be seen in Fig. 5.7(b) between the present numerical data and the predictions of 

Eq. (5.5). The average and maximum deviations are within 2% and 5% respectively for the entire 

range of data points. The predictions of above correlation were also compared with the literature 

(Mandhani et al., 2002), again an excellent correspondence was seen. Fig. 5.10 shows a 

comparison between the predictions of Eq. (5.5) and that of free surface cell model of Mandhani 

et al. (2002) at Pr = 0.7 and f  = 0.70-0.99. It can be clearly seen that the agreement is consistent 

with maximum discrepancies of 3-10%.  

 

Figure 5.10: Comparison of average Nusselt number with free surface cell models of Mandhani 

et al. (2002)   

   

In summary, the momentum and heat transfer characteristics of periodic flow across an array of 

circular cylinders are significantly varied over the ranges of governing parameters. Most 

significant was the effect of fluid volume fraction: as cylinders were brought closer together, 

drag increased and Nusselt number significantly improved; between f  = 0.99 and 0.70, Nusselt 

number roughly doubled, irrespective of Re and Pr. Notwithstanding, the forced convection 

feature of Newtonian fluid has been described herein, on the contrary, the non-Newtonian 

behavior for the same has been described in the next Chapter 6.  
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Chapter 6 

 

FORCED CONVECTION MOMENTUM TRANSFER 

CHARACTERISTICS OF POWER-LAW FLUIDS ACROSS 

PERIODIC ARRAY OF CIRCULAR CYLINDERS 

 

 
The forced convection flow characteristics of non-Newtonian power-law fluids across the 

periodic array of circular cylinders have been investigated and presented in this chapter. 

Extensive study on the flow characteristics of power-law fluids have been carried out for the 

following range of pertinent dimensionless parameters: Reynolds number (Re) = 1, 2, 5, 10, 20 

and 40; power-law indices (n) = 0.4, 0.6, 0.8, 1, 1.4 and 1.8 and an extensive variations of fluid 

volume fractions of f  = 0.70, 0.75, 0.80, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98 and 0.99. 

The governing equations (as described in chapter 3) i. e. Eqs. (3.3)-(3.11) (except the energy Eq. 

3.7) are applied with the negligible effect of gravity as mentioned in the y-component of 

momentum equations (Eqs. 3.5-3.6) and boundary conditions, i. e. Eqs. (3.12)- (3.15) have been 

used. Within the ranges above, extensive numerical results have been obtained by systematic 

variations of above flow governing parameters and the influences of these parameters over the 

streamlines, pressure coefficients, individual (pressure and friction) and total drag coefficients 

are presented and discussed in the following sections. Particularly, the shear-thinning and shear-

thickening behavior across a periodic array of cylinder have been explored. Before the 

presentation and discussion of the new results, the present numerical approach has been validated 

with the available literature in the next section. 

 

6.1 Validation of numerical solution procedure 

 

The numerical solution procedure was validated by comparing the present results of CD with the 

available literature as shown in Table 6.1. For instance, at f = 0.70 and Re = 1, the value of CD 

for shear-thinning (n = 0.6) and shear-thickening (n = 1.4) fluids, display an excellent agreement 

with the results of Vijaysri et al. (1999) and Spelt et al. (2005b) showing a maximum deviations 

of 1.63% and 1.5%, respectively. Likewise, at f  = 0.70, the value of CD for Newtonian fluids 

(n = 1), display a good correspondence with the results of Vijaysri et al. (1999), Spelt et al. 

(2005b) and Soares et al. (2005a) with a maximum deviation of 5.90% for Re = 1 and 2.05% for 
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Re = 40 with the results of Spelt et al. (2005b). Further, at 
f  = 0.99, a deviation of 2.42% and 

1.99% was found between the present results and Spelt et al. (2005b) for Re = 1 and 40, 

respectively.   

 

Further, for Re = 0.01 (creeping flow) and 
f  = 0.80 and 0.99, the present results of 

shear-thinning (n=0.5) and shear-thickening (n = 1.5) fluids were found to be in excellent 

agreement with the results of Spelt et al. (2005a) and Bruschke and Advani (1993), showing a 

maximum deviation of 2.31%. Also, for Newtonian fluids, the present results were in excellent 

agreement (maximum discrepancy 2.70%) with the numerical results of Spelt et al. (2005a), 

Bruschke and Advani (1993) and Edwards et al. (1990). In view of above comparisons with 

literature, the current findings are believed to be correct within ±1-3%. After gaining the 

confidence over the numerical solution approach, the new results of flow characteristics are 

presented and discussed in the next section.  

   

Table 6.1: Comparison of present values of total drag coefficient (CD) with literature values 

 

 

C
D
 

 

Source 

n = 0.6 n = 1  n = 1.4 

f  = 0.70 f  = 0.99 f  = 0.70 f  = 0.70  

 Re = 1 Re = 1  Re = 40  Re = 1 Re = 40  Re = 1  

Present Results 61.7689 4.7025 0.1809 144.7263 4.1673 202.8281 

Vijaysri et al. (1999) 60.7600 - - 136.1900 - - 

Spelt et al. (2005b) - 4.5884 0.1845 142.1367 4.2529  205.8700 

Soares et al. (2005a) - -  136.1800 - - 

δmax (%) 1.63 2.42 1.99 5.90 2.05 1.50 

C
D
 

(C
re

ep
in

g
 f

lo
w

) 

 

 f  = 0.99 f  = 0.80 

n = 0.5 n = 1 n = 1.5 n = 0.5 n = 1 n = 1.5 

Present  Results 17.1810 8.6094 3.9798 29.8023 50.8600 84.5617 

Edwards et al. (1990) - - - - 51.7343 - 

Bruschke and Advani (1993) - - - 29.2504 52.177 - 

Spelt et al. (2005a) 17.0125 8.3767 4.0600 30.4920 50.4051 82.8614 

δmax (%) 0.98 2.70 2.02 2.31 2.52 2.01 

 

 

6.2 Fluid flow characteristics 

 

The qualitative (streamline profiles) and quantitative (pressure coefficient, pressure, friction and 

total drag coefficients, etc.) feature of power-law fluid flow has been presented and discussed in 

this section. 
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6.2.1 Streamline profiles 

 

The dependence of the normalized streamline (as defined in Chapter 5, Section 5.2.1) patterns 

has been shown in Figs. 6.1-6.3 with the systematic variations of dimensionless parameters such 

as Reynolds number (Re), power-law index (n) and fluid volume fractions ( f ). An inspection 

of these plots (Figs. 6.1-6.3) reveals a strong dependence of normalized streamlines over the 

above parameters (Re, n and f ). For instance, at lowest value of fluid volume fraction and 

Reynolds number ( f = 0.70 and Re = 1), a curved streamlines can be seen nearer to the cylinders 

for all of the shear-thinning (n < 1), Newtonian (n = 1) and shear-thickening (n >1) fluids (Fig. 

6.1). Such streamlines were appeared because of the strong interference between the two periodic 

cylinders at the lowest value of fluid volume fraction ( f = 0.70). Further, dense streamlines can 

be seen for shear-thinning fluids over the surface of cylinders in contrast to Newtonian and shear-

thickening fluid (Fig. 6.1). Moreover, as the fluid behavior changes from shear-thinning to 

Newtonian and Newtonian to shear-thickening, a small wake can also be seen in the vicinity of 

two cylinders at n = 1 and 1.8 (Fig. 6.1). The impact of increased fluid volume fractions is also 

displayed in Fig. 6.1. As the fluid volume fractions increase from f = 0.70 to 0.90 and 0.90 to 

0.99, the interference between the two cylinders is getting weak, resulting, the streamlines are 

less curved and dense for f = 0.90 and 0.99 as compared to f = 0.70. However, straight 

streamlines can also be seen in the core region of computational domain in Fig. 6.1 for all of the 

fluid volume fractions ( f  = 0.70, 0.90 and 0.99) and fluid behavior index (n = 0.4, 1 and 1.8). 

The influence of increased Reynolds number is revealed in Figs. 6.2-6.3 at Re = 10 and 40, 

respectively. The fluid circulation behind the cylinder is seen to increase with increasing values 

of Reynolds number for both of the power-law index (n) and fluid volume fractions ( f ) (Figs. 

6.2-6.3). For instance, at Re = 10 (Fig. 6.2), the streamlines are observed to be denser and less 

swirled as compared to Re = 1 (Fig. 6.2) for all the values of fluid volume fractions ( f ) and 

power-law index (n). Further, due to the increased fluid inertia, the wakes can be seen for f = 

0.90 along with f = 0.70 in Fig. 6.2, but it doesn’t appear for f = 0.99, except a very small 

traces of wakes at n = 1.8 (Figs. 6.2-6.3). Similarly, at Re = 40 (Fig. 6.3), a strong influence of 

increased Reynolds number yields almost denser and straight streamlines in the vicinity of two 

cylinders for all the value of f and n along with the vortex formation for f = 0.70 and 0.90.   
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Figure 6.1: Normalized streamline profile at Re = 1 with systematic variation of power-law index 

n = 0.4, 1 and 1.8 and fluid volume fractions (a) f  = 0.70 (b) f  = 0.90 and (c) f  = 0.99 

 

Moreover, the denser streamlines for Re=10 and 40 (Figs 6.2-6.3) suggest that the discharges 

between the two consecutive streamlines are increasing with the increasing value of Reynolds 

number irrespective of the value of the power-law index and fluid volume fraction. Additionally, 

the density of streamlines and vortex is more prominent for f = 0.70 as compared to f = 0.90 

and 0.99 (Fig. 6.3). This again indicates the stronger interference between the two cylinders at 

f = 0.70, which diminishes with the increasing value of fluid volume fractions. As a 

consequence, at the maximum value of fluid volume fraction ( f = 0.99), the interference 

between the two cylinders is nearly negligible, and both the cylinders behave almost like a single 

isolated cylinders. Next, the influences of the power-law index can also be seen clearly over the 

streamline patterns in Figs. 6.2-6.3. For instance, as the fluid behavior changes from Newtonian 

to shear-thinning and shear-thickening, the density of streamlines increases and decreases, 
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respectively for all the value of 
f and Re. So, a stronger dependence of streamline patterns was 

seen for shear-thinning fluids in contrast to shear-thickening fluids for all of the n, f and Re in 

Figs. 6.1-6.3.  

 

 

 

Figure 6.2: Normalized streamline profile at Re=10 with systematic variation of power-law index 

n= 0.4, 1 and 1.8 and fluid volume fractions (a) f  = 0.70 (b) f  = 0.90 and (c) f  = 0.99  

 

Overall, a complex streamline pattern has been observed for the power-law fluids owing to shear-

thinning and shear-thickening fluids behavior across the periodic array of cylinders. These 

qualitative features were found to be the similar with literature for the square array of cylinders 

(Edwards et al., 1990; Koch and Ladd, 1997, Spelt et al., 2005b) and in the limit of single 

cylinders (Bharti et al., 2006; Soares et al., 2005a) within the ranges of conditions covered herein. 
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The dependence of normalized streamline patterns explained above are however further 

examined in terms of the pressure coefficient as discussed in the subsequent section.   

 

 

 

 

Figure 6.3: Normalized streamline profile at Re = 40 with systematic variations of power-law 

index (n) = 0.4, 1 and 1.8 and fluid volume fractions (a) f  = 0.70 (b) f  = 0.90 and (c) f  = 

0.99   

 

6.2.2 Distribution of the pressure coefficient (CP) on the surfaces of the cylinders 

 

The distribution of pressure coefficient over the surface of periodic cylinders (C1 and C2) is 

shown in Fig. 6.4 with the systematic variations of Reynolds number (Re = 1 and 40), power-

law index (n = 0.4, 1 and 1.8) and fluid volume fraction ( f = 0.70, 0.90 and 0.99). At Re = 1 

and f = 0.70 (Fig.6.4a (i)), the pressure coefficient for upstream cylinder C1 is seen to decrease 

from its maximum value at the front stagnation point (θ = 0°) along the surface towards the rear 
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followed by an increase due to the recirculation of the fluid in the rear side of the cylinder C1. 

For instance, the minimum value of CP occurs at θ = 45° and then it starts increasing and 

converging till θ = 90°. The above behavior has been observed for all the values of the power-

law index. The pressure coefficient over the surface of the cylinder C1 is seen to be higher for 

shear-thinning fluids than Newtonian and shear-thickening fluids in the upstream side of the 

cylinder C1. 

  For downstream cylinder C2 and at Re = 1 and f =0.70 (Fig. 6.4 a(i)), the behavior is 

seen to flip over to the downstream side of the cylinder C2. For instance, the pressure coefficient 

is seen to increase from its minimum value at θ = 0° for along the surface towards the rear 

followed by an increase due to the recirculation of the fluid in the rear side of the C2. The 

maximum value of CP occurs at θ = 45° and then there is a gradual decrease till θ = 90°. The 

above behavior has been observed for all of the shear-thinning, Newtonian and shear-thickening 

fluids. Further, as contrast to cylinder C1, the pressure coefficient over the surface of the cylinder 

C2 is higher for shear-thickening fluids than the Newtonian and shear-thinning fluids.  

The influence of increasing fluid volume fractions ( f ) over the pressure coefficient is displayed 

in Figs. 6.4(b-c) at f = 0.90 and 0.99, respectively. It can be observed that as the fluid volume 

fraction is increased from f = 0.70 to f = 0.90 and from f = 0.90 to f = 0.99, a 

corresponding decrease in pressure coefficient is seen for both the value of Reynolds number 1 

and 40. So, the minimum value of pressure coefficient is seen at f = 0.99 in Figs. 6.4(c). Further, 

an opposite trend is seen herein as compared to f = 0.70 (Fig. 6.4(a-i)). For instance, the 

maximum value of Cp shifts from shear-thinning to shear-thickening for upstream cylinder C1 

and from shear-thickening to shear-thinning fluids for downstream cylinder C2. Moreover, the 

maximum and minimum CP in these fluid volume fractions ( f = 0.90 and 0.99) occur at θ = 90° 

(Fig. 6.4b-c (i)) in contrast to θ = 45° in lower fluid volume fraction of f = 0.70.    

Further, a strong dependence of pressure coefficient is seen with the increase in Reynolds number 

(Fig 6.4(ii)). For instance, at higher Reynolds number and lower fluid volume fraction (Re = 40 

and f = 0.70), the point of minimum CP on the surface of the cylinder C1 shifts towards the 

front stagnation point in the range of θ = 0°-150 (Fig. 6.4 a (ii)) irrespective of fluid behavior. 

Out of these, the lowest CP is observed for shear-thickening fluid at about θ = 150 and then there 

is a recovery due to better circulation in the rear side of the cylinder C2 and approaches the 

maximum CP at θ = 90°. Similarly, the maximum CP for the shear-thinning and Newtonian fluids 
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is observed at θ = 90°. Further, for downstream cylinder C2, at Re = 40, 
f = 0.70, the behavior 

is almost consistent to that of Re = 1, and therefore, the maximum CP can be observed at θ = 45°. 

 

Figure 6.4: Effect of Re and n with the variation of pressure coefficient (Cp) on the surfaces of 

cylinders C1 and C2 for (a) f  = 0.70 (b) f  = 0.90 and (c) f  = 0.99 

 

 

The dependence of CP with increased fluid volume fraction can be observed in Figs. (6.4b (ii)-

6.4c (ii)). For instance, at Re = 40 and f = 0.90 and 0.99, similar to Re = 1, the maximum value 

of CP shifts from shear-thickening to shear-thinning fluids for both of the cylinder C1 and C2 

which is observed at θ = 90°. In fact, the effect of increased inertia in terms of Reynolds number 

has the reduced pressure coefficients across all the fluid volume fractions and therefore, the 

difference between the maximum and minimum CP is also lowest at Re = 40 (Fig. 6.4(ii)) as 

compared to Re = 1 (Fig. 6.4(i)). Overall, the pressure coefficient on the surface of the cylinder 

C2 was observed to be higher for shear-thickening fluids in lower fluid volume fraction ( f = 

0.70) for the extreme values of Reynolds number (Re = 1 and 40), whereas a reverse trend was 
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observed for higher fluid volume fractions (
f = 0.90 and 0.99) in which higher values of 

pressure coefficient for shear-thinning fluids were observed. The above trend is similar to 

Vijaysri et al.  (1999) and Shibu et al. (2001) for the flow over tube banks and also found similar 

to a single cylinder of Bharti et al. (2006). 

 

6.3 Drag coefficients  

 

In this section, the dependence of individual (pressure and friction) and overall drag coefficients 

over the governing parameters ( f , Re and n) is discussed for the entire ranges of conditions 

covered herein.  

 

6.3.1 Dependence of pressure drag coefficient (CDP) on f , Re and n 

 

The dependence of individual and total drag coefficients (CDP, CDF and CD) on the fluid 

volume fraction ( f ), Reynolds number (Re) and power-law index (n) and is shown in Table 

A1 (Appendix-A). The pressure drag coefficient (CDP) is seen to decrease with increasing value 

of the Reynolds number irrespective of the fluid volume fraction ( f ) and power-law index (n). 

However, for a fixed value of Re, the value of CDP increases and/or decreases significantly as the 

fluid behaviour changes from shear-thinning to shear-thickening. This behavior can be clearly 

seen in Table A1. For instance, at f = 0.70 and Re = 1, the values of CDP are 19. 1597, 71.0562 

and 116.8942 for n= 0.4, 1 and 1.8, respectively. Similarly, at f = 0.70 and Re = 40, the values 

of CDP are 0.5122, 2.4904 and 3.9972 for n = 0.4, 1 and 1.8, respectively. The above changes in 

CD value occur primarily because of the dominance of viscous forces at the lower values of 

Reynolds number in contrast to the dominance of pressure forces at higher Reynolds number. 

Further, the strong influence of fluid volume fraction ( f ) over the pressure drag coefficient can 

be seen in Table A1. For instance, it is observed that the value of CDP is increasing for the fluid 

volume fractions in the range of 0.70 ≤ f  ≤ 0.90 for all the values of power-law index and 

Reynolds number, whereas, a reverse trend is seen in the range of 0.92 ≤ f  ≤ 0.99 under the 

identical conditions of Re and n. Therefore, for the range of fluid volume fraction 0.70 ≤ f  ≤ 

0.90, the values of CDP drop below Newtonian in the shear thinning region (n < 1), while it grows 

up above the Newtonian in the shear-thickening region (n > 1). However, these behaviors are 

opposite over the ranges of fluid volume fraction 0.92 ≤ f  ≤ 0.99. For instance, at f = 0.75 

and Re = 1, the values of CDP are 13.8266, 43.4821 and 57.1925 for n = 0.4, 1 and 1.8, 
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respectively, whereas, at 
f = 0.99 and Re = 1, the values of CDP are 5.7355, 2.3435 and 0.7267 

for n = 0.4, 1 and 1.8, respectively (Table A1). In fact, these behaviors are the consequences of 

the stronger and lower velocity gradients in the lower and higher fluid volume fractions 

respectively and as a result, the interference between the two cylinders is stronger at lower values 

of
f , which diminishes with the increasing value of 

f  and the two cylinders approach almost 

the single cylinder limit. Additionally, the changes in the pressure drag coefficient with the 

power-law index is linked with the varying levels of viscosity as encountered by the periodic 

cylinders in the shear-thinning and shear-thickening fluids region. Overall, a non-monotonous 

behavior of pressure drag coefficient was observed with the f , n and Re. The flow dynamics 

described herein are further described in terms of friction drag coefficient in the following 

section. 

 

6.3.2 Dependence of friction drag coefficient (CDF) on f , Re and n 

 

Table A1 (Appendix-A) also represents the dependence of the friction drag coefficient (CDF) on 

Reynolds number, power-law index and the fluid volume fraction. Qualitatively, similar to CDP 

( f , Re and n), the CDF reduces with increasing values of Reynolds number and/or fluid volume 

fractions irrespective of the values of the power-law index (Table A1). On the other hand, the 

smallest fluid volume fraction provides minimum flow area for the fluids to penetrate through 

the arrays of cylinders and, therefore, the friction effects become stronger under such conditions, 

as observed through the dense clustering of streamlines (Figs. 6.2-6.3) and higher values of CDF 

in Table A1. The dependence of CDF on power-law index shows a complex behaviour in both of 

the shear-thinning and shear-thickening fluids. For instance, the pressure drag coefficient (CDP) 

is dominating over friction drag coefficient (CDF) for the shear-thinning fluids, whereas, an 

opposite behaviour can be seen for the shear-thickening fluids except at Re = 40. These trends 

can be observed across all the values of fluid volume fractions. The minimum value of CDF is 

observed at the largest values of both Re as well as f  and the smallest value of n. For instance, 

at n = 0.4, as Re increased from 1 to 40, CDF values altered from 12.7656 to 0.2518 and from 

3.8046 to 0.0944 at f  = 0.70 and 0.99, respectively (Table A1). In contrast, the maximum value 

of CDF is observed at the smallest values of both Re as well as f  and the largest value of n. The 

above decrease or increase in CDP or CDF value is, however, small for the range 20 ≤ Re ≤ 40. 

Therefore, small values of Re and increasing level of shear thickening behaviour always yield 

the higher values of friction drag coefficients as compared to pressure drag coefficients.  
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6.3.3   Dependence of total drag coefficient (CD) on
f , Re and n 

 

The dependence of total drag coefficient over the governing parameters ( f , Re and n) 

has been shown in Fig. 6.5 and the results are also summarized in Table A1. The total drag 

coefficient has virtually similar dependence of CDP and CDF on fluid volume fractions, power-

law index and Reynolds number. In Fig. 6.5, it can be observed that as the fluid behavior changes 

from shear-thinning to shear-thickening, the total drag coefficient increases for the fluid volume 

fraction in the ranges of 0.70 ≤ f  ≤ 0.90 and decreases for the ranges of 0.92 ≤ f n ≤ 0.99. 

This behavior is caused due to the varying fluid volume fractions or the porosity of the cylinders. 

Further, the role of power-law index diminishes with the increasing value of fluid volume 

fractions and thereby a shift in the behaviour of the shear-thinning and shear-thickening fluids is 

observed. Thus, in Fig. 6.5 and Table A1, adequate changes in the values of total drag coefficient 

can be seen among the shear-thinning, Newtonian and shear-thickening fluids. These trends are 

consistent with the results of Spelt et al. (2005b) and Soares et al. (2005a).   

 

 

Figure 6.5: Power-law index (n) vs. log CD with the systematic variation of fluid volume fractions 

( f  = 0.70-0.99) 
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The above flow characteristics are further analyzed by normalizing the drag coefficient 

with the maximum fluid volume fractions ( max,f ) as follows, XN = X (Re, f )/X (Re, max,f ), 

where X represents the individual and total drag coefficients (CDP, CDF and CD), and max,f = 0.99. 

Figs. 6.6-6.8 present the dependence of normalized drag coefficients (
N

DPC ,
N

DFC  and 
N

DC ) over the 

fluid volume fraction (0.70 ≤ 
f  ≤ 0.90), power-law index (0.40 ≤ n ≤ 1.8) and Reynolds number 

(1 ≤ Re ≤ 40). As expected, the normalized values of drag coefficients are seen to be always 

greater than 1, i.e., XN > 1 in Figs. 6.6-6.8. Further, the values of normalized drag values are 

found to be the largest at the smallest value of fluid volume fraction ( f = 0.70) for all of the Re 

and n. For a fixed value of Re, the normalized drag values are seen to decrease monotonically 

with increasing value of fluid volume fraction. For a fixed value of f , the normalized drag 

values are decreasing with increasing Re which can be seen in Fig. 6.6a-6.6d for 
N

DPC  or Fig. 

6.7a-6.7d for 
N

DFC  and Fig. 6.8a-6.8d for 
N

DC . In these figures, it can also be observed that the 

normalized drag coefficients (
N

DPC , 
N

DFC  and 
N

DC ) of shear-thickening fluids are dominating over 

shear-thickening fluids for all the values of Re. However, significant dependence of normalized 

drag values is observed at lower Re which reduces correspondingly at higher Re.  

 

Figure 6.6: Variation of normalized pressure drag coefficient (CDP
N) with fluid volume fraction 

( f ) and power-law index (n) for (a) Re = 1 (b) Re = 5 (c) Re = 10 and (d) Re = 40 
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Figure 6.7: Variation of normalized friction drag coefficient (CDF
N) with fluid volume fraction (

f ) and power-law index (n) for (a) Re = 1 (b) Re = 5 (c) Re = 10 and (d) Re = 40  

 

 

Figure 6.8: Variation of normalized total drag coefficient (CD
N) with fluid volume fraction ( f

) and power-law index (n) for (a) Re = 1 (b) Re = 5 (c) Re = 10 and (d) Re = 40  
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To understand the relative contribution of pressure drag coefficient and the friction drag 

coefficient, the drag ratio (CDR) has been defined as CDR = CDP/CDF and shown in Fig. 6.9 for the 

extreme values of Reynolds number (Re = 1 and 40). Fig. 6.9 shows the complex dependence of 

drag ratio on both Reynolds number and fluid volume fraction over the ranges of the power-law 

index (0.40 ≤ n ≤ 1.8) studied herein. For instance, in Fig. 6.9(a), the CDR > 1 suggests the 

dominance of pressure forces over the viscous component of forces.  Further, this ratio is seen to 

be < 1 for shear-thickening fluids (n > 1) in Fig. 6.9(a), which suggests that the flow is dominated 

by the viscous forces rather than the pressure forces in this region at low Reynolds number. 

However, at high Reynolds number (Re = 40), the CDR always seems to be the greater than one 

in Fig. 6.9(b), and therefore the pressure force is always dominating over viscous forces 

irrespective of the shear-thinning and/or shear-thickening fluid behavior. Additionally, the CDR 

is increasing correspondingly with the increasing value of fluid volume fractions in Fig. 6.9(b), 

which once again indicates that the pressure forces are dominating at higher Re with the 

increasing value of fluid volume fractions. These typical behaviors are due to the influence of 

varying periodic boundary conditions over the flow field. For instance, at low Re, the fluid is not 

stratified in the whole computational domain due to small (or negligible) pressure in the vicinity 

of the cylinder (see Figs. 6.1 and 6.2) and correspondingly, the friction drag is dominating over 

the pressure drag under these conditions. However, more resistance to flow is observed due to 

the pressure in comparison of the friction at large values of Re.  

 

Figure 6.9: Dependence of drag ratio (CDR = CDP/CDF) on Reynolds number (Re), power-law 

index (n) and fluid volume fraction ( f ) for (a) Re = 1 and (b) Re = 40  
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points for each of the CDP, CDF and CD) over the power-law index (n), Reynolds number (Re) and 

the fluid volume fraction ( f ): 

gdc

f

b Re)n(eReanX                                                                          (6.1) 

Here, X being CDP, CDF and CD. The empirically fitted constants (a, b, c, d, e and g) appeared in 

Eq. (6.1) along with their statistical parameters are listed in Table 6.2. The present numerical 

values show an excellent correspondence with the values predicted using Eq. (6.1) as shown in 

Fig. 6.10. For instance, the above correlation for CD has the average and maximum deviations of 

~3.29 % and ~8.48% for the 90 % of data points, respectively. Other deviations lie within 9-20% 

for 6 % of the data points and only 4% of the data points show a deviation within 21-35%. 

Further, the present results were compared with the available literature for the shear-thinning and 

Newtonian fluids as shown in Fig. 6.11. For instance, a good correspondence can be seen in Fig. 

6.11 of the present results with the predictions of zero vorticity cell model of Vijaysri et al. 

(1999), free surface cell model of Tripathi and Chhabra (1992) and approximation of the 

Bruschke and Advani (1993). The minimum discrepancies in the above comparison are within 

1.64-11.12%. Additionally, the present results have been compared with the experimental results 

of Prasad and Chhabra (2001) within the ranges of parameters studied herein. For instance, they 

have presented their experimental results in terms of loss coefficients ( ) defined as
pD ReC

, where CD is the total drag coefficient and Rep is the modified Reynolds number. They have used 

Rep = 1 as the limiting value for the creeping flow region and also pointed out that in the 

concentrated systems, i.e., the low value of fluid volume fractions, the creeping flow occurs up 

to about Rep 5-10. So for Rep = 1, the loss coefficient is equal to drag coefficient (  = CD). In 

the view of these, the present result shows a good contrast with this experimental results. For 

instance, at Re = 1, the present value of CD is 14.30 (n = 0.4, f = 0.88) against the experimental 

result of 12.37 (n = 0.38, f = 0.87) with a discrepancy of 13.65%. Similarly, at f = 0.88, the 

present value of CD is 15.6917 (n = 0.6) against the experimental value of 14.84 (n = 0.62) with 

a discrepancy of 5.43%. Notwithstanding, these comparisons are not at the exact values of 

parameters, perhaps, a good correspondence is seen to exist between the present numerical and 

the experimental results. However, this level of discrepancies is acceptable between the 

numerical and experimental comparison. Overall, the detailed flow dynamics across the periodic 

array of cylinders are influenced intricately by the values of the Reynolds number, fluid volume 

fraction and the power-law index. 
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Table 6.2: Functional parameters for the dependence of the individual (CDP and CDF) and 

total drag (CD) coefficients on power-law index, Reynolds number and fluid volume fractions   
  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Best fit of present numerical results vs. correlation values of (a) CDP (b) CDF and (c) 
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Correlation 

Constants 
CDP CDF  CD 

a 2.0284 2.4374 4.3362 

b 0.9731 1.2960 1.1712 

c -9.7203 -9.2856 -9.5368 

d -0.9730 -0.9943 -0.9736 

e 2.2382 1.3414 4.2218 

f -0.9332 -0.9903 -1.2954 

R2 0.9738 0.9824 0.9617 

*%δmax 7.2439 5.4483 8.4785 

*% δavg 5.5674 3.2963 4.3215 

* 90% of data points have the above deviations are within 3-8%;   6% of 

data points have deviations within 9-20% and remaining 4% have 

deviations within 21-35%. 
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Figure 6.11: Comparison between present results of total drag coefficient (CD) and that of 

literature for the shear-thinning and Newtonian fluids 
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Chapter 7 

 

 

FORCED CONVECTION HEAT TRANSFER 

CHARACTERISTICS OF POWER-LAW FLUIDS ACROSS 

PERIODIC ARRAY OF CIRCULAR CYLINDERS 

 
The forced convection heat transfer characteristics of non-Newtonian power-law fluids have been 

investigated herein across the periodic array of circular cylinders. The local and global 

characteristics of heat transfer have been examined for the following ranges of governing 

parameters: Re = 1, 2, 5, 10, 20 and 40; Pr = 1, 5, 10, 20, 50 and 100; n = 0.4, 0.6, 0.8, 1, 1.4 and 

1.8 and f  = 0.70, 0.75, 0.80, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98 and 0.99. The 

governing equations (as described in Chapter 3), i. e. Eqs. (3.3)-(3.11) are applied with the 

negligible effect of gravity as mentioned in the y-component of momentum equations (Eqs. 3.5-

3.6) and boundary conditions, i. e. Eqs. (3.12)-(3.15) have been used. Within the ranges above, 

extensive numerical results have been obtained by systematic variations of above flow governing 

parameters and the influences of these parameters over the isotherm patterns, local and averaged 

Nusselt numbers, the Colburn 
Hj  factor, etc. are presented and discussed to explore the shear-

thinning and shear-thickening behaviors across the periodic array of cylinders. Though, before 

presenting and discussing the new results, the present numerical approach has been validated 

with the available literature. 

 

7.1 Validation of numerical solution procedure 

The relevant comparison of present numerical results and that of literature is shown in 

Table 7.1. It is also essential to point out the fact that there are scant studies available for the 

forced convection heat transfer across the periodic array of cylinders even with the simple 

Newtonian fluids. However, negligible literature is available for the direct comparison of the 

present results within the ranges of parameters studied herein. Perhaps, an endeavor was made 

to validate the results within the framework of the available literature. Also, in the case of higher 

fluid volume fraction such as f  = 0.99, the periodic cylinders behave as an isolated single 

cylinders and so it is comparable with a single cylinder (Bharti et al., 2007a). Similarly, a good 

comparison could be made with the tandem arrangements of cylinders with different gap ratio 

(Patil et al., 2008). In view of these, the current numerical solution procedure has been validated. 

So, for Newtonian fluids, the current results obtained for the average Nusselt number under 
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steady flow conditions, show a good correspondence with the results of Gamrat et al. (2008) for 

f  = 0.86, Pr = 100 and Re = 1 with a maximum deviation of about 0.3%. Similarly, at Pr = 5, 

Re = 1 and the extreme fluid volume fractions of 0.70 and 0.99, the results display the good 

correspondence with the results of Mangadoddy et al. (2004) showing a maximum deviation of 

about 3%.  

 

Table 7.1: Comparison of present numerical results of average Nusselt number (Nu) with 

available literature  

 
 

Source 

n = 1 

Nu ( f  = 0.70) Nu ( f = 0.86) Nu ( f  = 0.99) 

Re = 1, Pr = 5 Re = 1, Pr = 100 Re = 1, Pr = 5 

Present results 2.5295 2.8832 1.4217 

Gamrat et al. (2008)# - 2.8925 - 

Mangadoddy et al. 

(2004)## 

2.6057 - 1.4015 

δmax (%) 3.01 0.32 1.42 

 n ≠ 1 

 

 

Source 

Nu ( f  = 0.99) Nu ( f = 0.80) 

n = 0.4  

(Pr = 1, 

 Re = 5) 

n = 1.8 

(Pr = 1, Re 

= 1) 

n = 1.4 

(Pr = 100, 

Re = 5) 

n = 0.4 

( Pr = 100, 

Re = 1) 

n = 1.8 

( Pr = 100, 

Re = 1) 

n = 1.8 

( Pr = 1, Re 

= 40) 

Present results 1.6454 0.7195 1.7188 3.3138 2.2825 2.0769 

Soares et al. (2005b)* 1.6210 - 1.7542 - - - 

Patil et al. (2008)**  0.7314  3.2230 2.2174 2.0456 

Bharti et al. (2007a)* 1.6840 - -    

δmax (%) 2.30 1.65 2.05 2.74 2.85 1.51 

# periodic array of cylinders, ## free surface cell model   * single cylinder; ** two tandem cylinders  

 

For power-law fluids, the current results of Nu were compared with the prior studies 

(Soares et al., 2005b; Patil et al., 2008; Bharti et al., 2007a) in the range of 0.4 ≤ n ≤ 1.8; 0.70 ≤ 

f  ≤ 0.99 and 1 ≤ Re ≤ 40. Within the ranges mentioned herein, the current numerical results of 

shear-thinning and shear-thickening fluids are in good agreement with previous results of Soares 

et al. (2005b), Patil et al. (2008) and Bharti et al. (2007a), showing a maximum deviation of less 

than 3%. For instance, at f  = 0.99, Pr = 1 and Re = 5, the shear-thinning fluid (n = 0.4) shows 

the maximum discrepancy within 2.3% with Soares et al. (2005b) and Bharti et al. (2007a). 

Likewise, for the same fluid volume fraction of 0.99, but in the region of shear-thickening flow 

(n = 1.4 and 1.8), the agreement was again found good with the Soares et al. (2005b) and Patil et 

al. (2008) at Pr = 100, Re = 5 and  Pr = 1, Re = 1, respectively, with a maximum  discrepancy of 

about 2.1%. Further, for f  = 0.80 (Pr = 100, Re = 1 and Pr = 1, Re = 40), the numerical results 

were found to be the consistent (maximum discrepancy of less than 3%) with the results of Patil 
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et al. (2008) for both of the shear-thinning as well as shear-thickening fluids. In view of above 

comparisons with literature, the current findings are believed to be the correct within ±2-3%. 

After gaining the confidence over the numerical solution approach, the new results of heat 

transfer characteristics are presented and discussed in the next section.  

 

7.2 Thermal patterns 

 

Representative isotherm patterns are shown in Figs. 7.1-7.4 with the systematic variations 

of Re, Pr, n, and f . Specifically, Figs 7.1-7.4 display the normalized values of temperature (as 

defined in Chapter 5, Section 5.3.1). As anticipated, the isotherm patterns were found to be 

strongly dependent on the ranges of engineering parameters (Re, Pr, n and f ) studied herein. 

For a given fluid volume fraction ( f ), the clustering of isotherms in the flow domain is growing 

up with the increased inertial and/or viscous diffusion rate. It can be seen that as the viscous 

diffusivity increases (increased Prandtl number), more dense streamlines appear in the vicinity 

of periodic cylinders (Figs. 7.1b-7.4b), which qualitatively enhances the rate of heat transfer. An 

increasing value of f  shows somewhat slightly different behavior on the isotherm patterns. The 

clustering of isotherms is more prominent (Fig. 7.1) when cylinders come closer to each other (e. 

g. f  = 0.70). Further, as the fluid volume fractions increase, the isotherms are getting closer to 

cylinders and straighter streamlines appear in the wake (Figs. 7.2-7.3). At the maximum value of 

fluid volume fraction ( f  = 0.99), the upstream cylinder displays strongly sharper gradients in 

comparison of downstream cylinder (Fig. 7.4) and therefore in such a case ( f  = 0.99), the 

cylinders are generally independent and most of the heat transfer is due to the upstream cylinder 

(Fig. 7.4). Overall, the impact of fluid volume fraction on isotherm is appreciated to be more 

prominent at higher Re and/or Pr. For instance, at high Re, isotherms were seen to be denser in 

the neighborhood of cylinders and also in the whole computational domain for all the values of 

the n, f and Pr. In such a case of high Re, isotherms in open flow regions are observed to be 

parallel to flow direction and added intricate patterns display in the wake (Figs. 7.1-7.4). Further, 

much steeper temperature gradients are seen nearer to cylinders as Re increases. A steep or weak 

temperature gradient accounts a rise or fall in the rate of heat transfer, respectively. These 

behaviors are observed in Figs. 7.1-7.4 for Re = 10, 20 and particularly at Re = 40 for both of the 

shear-thinning as well as shear-thickening fluids. Indeed, this is because in such a case, the heat 

transfer takes place primarily by convection with the increasing values of Re. However, it can 
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also be observed that the symmetrical isotherm patterns at the small Re indicate that the 

conduction is dominating over convection.   

   

 

    (a)                                                                            (b) 

Figure 7.1: Typical variations of normalized isotherms with n=0.4, 1, 1.8 and Re = 1, 10, 20, 40 

at f  = 0.70 (a) Pr = 1 and (b) Pr =100 

The impact of flow behavior index (n) on isotherms is observed to be additionally 

noticeable at higher Re and/or Pr, irrespective of fluid volume fraction ( f ). Moreover, when 

the fluid flow nature shifts from shear-thickening to shear-thinning, a growing density of 

isotherms gives a complete upturn in the temperature gradients. This behavior can be clearly 

observed in Figs. 7.1 and 7.2 for f = 0.70 and 0.99, respectively. This happens because of the 

occurrence of the thinner thermal boundary layer in shear-thinning fluids as compared to 

corresponding Newtonian or shear-thickening fluids. A similar qualitative feature has been 

reported for the single cylinder (Patil et al., 2008; Bharti et al., 2007a). This intricate behavior of 
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isotherms on Re, Pr, n and 
f  is further investigated by means of local Nusselt number as 

described in the subsequent Section 7.2.1.  

 

      (a)                                                                            (b) 

Figure 7.2: Typical variations of normalized isotherms with n = 0.4, 1, 1.8 and Re = 1, 10, 20, 

40 at f  = 0.80 (a) Pr = 1 and (b) Pr = 100 
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        (a)                                                                            (b) 

Figure 7.3: Typical variations of normalized isotherms with n = 0.4, 1, 1.8 and Re = 1, 10, 20, 

40 at f  = 0.90 (a) Pr = 1 and (b) Pr =100 
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(a)                                                          (b)  

Figure 7.4: Representative variations of normalized isotherms with n = 0.4, 1, 1.8 and Re = 1, 

10, 20, 40 at f  = 0.99 (a) Pr = 1and (b) Pr = 100  

7.3 Local Nusselt number  

 

The local Nusselt number (NuL) for upstream cylinder (C1) is shown in Figs. 7.5 and 7.6 with the 

systematic variations of n, f  and Pr at Re = 1 and 40, respectively. The corresponding NuL for 

the downstream cylinder (C2) is displayed in Figs. 7.7 and 7.8 under the identical conditions. The 

NuL values for cylinder C1 are greater than that for cylinder C2, i.e., NuL(C1) > NuL(C2), although 

both of these values are lower than that of a single cylinder (Bharti et al., 2007a) under otherwise 

similar conditions. Further, the changes in NuL for the cylinder C1 are qualitatively identical to a 

single cylinder (Bharti et al., 2007a). For a given Re and Pr (e.g. at Re = 1 and Pr = 1), it can be 

seen in Figs. 7.5-7.6 that the values of local Nusselt numbers are maximum at lower fluid volume 

fraction ( f = 0.70) at θ = 0o. In contrast, with an increase in fluid volume fractions from 0.70 
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to 0.99, a corresponding decrease in NuL was noticed at θ= 90o. Also, at small values of Re or 

Pr, as expected, the value of NuL shows virtually no changes as the surfaces of the cylinder is 

transverse from the front (θ = 0o) to the rear (θ = 90o) stagnation points (Figs. 7.5a and 7.6a). 

This is because, at a low value of Re and/or Pr, heat transfer occurs mainly by conduction as 

compared to convection. Further, there is an increase in NuL with increased value of Re and/or Pr 

across all the fluid volume fractions. The maximum value of NuL can be seen in Fig. 7.5 at Pr = 

100, Re = 40 and f  = 0.70.  The above local thermal features from the downstream cylinder 

(C2) (Figs. 7.7 and 7.8) are prejudiced with Re or Pr in a manner analogous to that of the upstream 

cylinder (C1) except at Re = 1, Pr = 1 for 
f  = 0.70, where heat transfer happens mostly by 

conduction as compared to convection. 

The power-law index also displays a great impact on the values of NuL. For the shear-thinning 

fluids with a given values of Re, Pr and f , both cylinders show an improvement of heat transfer 

for the reducing value of n (or rising shear-thinning behavior) and as a result, an increasing value 

of  NuL can be seen in Figs. 7.5-7.8. However, the shear-thickening fluids display the reverse 

trend in contrast to shear-thinning fluids, i.e., the NuL reduces with an increasing value of n. This 

examination also reveals that the influence of flow behavior index is greater in the shear-thinning 

as contrast to shear-thickening fluids. Such features are also noted on a single cylinder (Bharti et 

al., 2007a). 

Moreover, the NuL for the periodic cylinders (C1 and C2) strongly depends on fluid 

volume fractions and displays the subsequent special characteristics. The opposite behavior can 

be seen in Figs. 7.6 and 7.8 at the maximum fluid volume fractions of 0.99 for Re = 40 with 

respect to the lower fluid volume fractions and lower Reynolds numbers. Such a feature once 

again reveals that both cylinders act as an isolated cylinder under the maximum fluid volume 

fractions and high Re and/or Pr. The above typical variations of isotherm pattern and local 

Nusselt number with the Re, Pr and f observed herein, in turn, will alter with average or overall 

heat transfer. It is explored in subsequent sections with the help of global behaviours such as the 

average Nusselt number and the Colburn 
Hj  factor and their dependence on the flow governing 

parameters (n, Re, Pr and f ).  
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Figure 7.5: Dependence of local Nusselt number (NuL) on fluid volume fraction and power-law 

index at Re = 1 and Pr = 1, 10 and 100 over the surfaces of upstream cylinder 1 (C1) 
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Figure 7.6: Dependence of local Nusselt number (NuL) on fluid volume fraction and power-law 

index at Re = 40 and Pr = 1, 10 and 100 over the surfaces of upstream cylinder 1 (C1) 
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Figure 7.7: Dependence of local Nusselt number (NuL) on fluid volume fraction and power-law 

index at Re = 1 and Pr = 1, 10 and 100 over the surfaces of downstream cylinder 2 (C2) 
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Figure 7.8: Dependence of local Nusselt number (NuL) on fluid volume fraction and power-law 

index at Re = 40 and Pr = 1, 10 and 100 over the surfaces of downstream cylinder 2 (C2)  
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The average Nusselt number reduces gradually with the rise in
f ,

 
which reveals the 

point that the resultant velocity and temperature gradients reduce with a rise in fluid volume 

fractions. This is linked to the strong dependence of Nu on
f , which yields sparse and steeper 

velocity and temperature gradients in smaller and higher fluid volume fractions, respectively. For 

instance, at Re = 1, Pr = 100, n = 0.4, f  = 0.70, the Nu value is 4.2920 which altered to a value 

of 2.7015 for f  =0.90 and to 2.1768 for f  = 0.99 (Table B3). Thus, an enhancement in the 

Nu is found to be approximately 97% in the shear-thinning region between the minimum (
f  = 

0.70) and maximum ( f  = 0.99) values of fluid volume fractions for the highest value of Pr and 

the lowest values of Re and n. The corresponding Nu values for Re = 40 are 6.1657, 3.4670 and 

2.6606 at f  = 0.70, 0.90 and 0.99, respectively. Here, an enhancement of 131% is observed 

under the identical conditions. This again suggests a stronger influence of Re in a dense medium 

than that in a sparse medium.  

 However, the reverse patterns are obtained for the shear-thickening fluids (increasing 

value of n). The increasing level of shear-thickening behavior decreases the average Nusselt 

number and showing a varying diminishment in heat transfer. For example, at Re = 1, Pr = 100, 

n = 1.8, f  = 0.70, the Nu value is 2.7069 which altered to a value of 2.1854 for f  = 0.90 and 

to 1.4820 for f  = 0.99 (Table B3).  Again, an enhancement of about 83% has been observed in 

the shear-thickening region. The corresponding Nu values for Re = 40 are 4.5061, 2.9828 and 

2.0012 at f  = 0.70, 0.90 and 0.99, respectively. In general, a different level of variations in 

average Nusselt number has been seen owing to shear-thinning and shear-thickening behaviors.  

Further, at low Re, the change in Nu is small as compared to high Re and it is related to the point 

that in such situations the heat transfer is mostly by conduction and it is free of the fluid viscosity. 

It, therefore, does not matter whether the type of fluid is Newtonian or non-Newtonian 

(Mangadoddy et al., 2004). This again is similar with the features found in the mass transfer in 

non-Newtonian fluids for the spherical particles (Chhabra et al., 2001) and a bundle of cylinders 

(Ferreira and Chhabra, 2004). Yet, with a gradual increase in Re, the Nu starts to increase 

steadily. For instance, at Re = 1, Pr = 10, n = 0.4 and f = 0.70, the Nu value is 3.1265, while 

the corresponding values of Nu are 4.6045 and 5.2934 at Re = 10 and 40, respectively (Table 

B2). Similarly, for Re = 1, Pr = 10, n = 1.8 and f = 0.70, the Nu value is 1.5951, while the 

corresponding values of Nu are 2.7817 and 3.7374 at Re = 10 and 40, respectively (Table B2). 

The above rise in Nu occurs because of the higher fluid velocity with increasing value of Re, 
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which eventually provides quick movement of the fluids and increased rate of convection and 

thus leads to improved heat transfer from the cylinder surfaces. 

Further, for a given Re, n and f , the Nu increases with an increase in Pr, but at different rates 

subject to the various values of Re, n and f . As an illustration, in the shear-thinning region (n 

= 0.4), at f = 0.70, Re = 1, the values of Nu are 2.2128 and 4.2920 corresponding to Pr = 1 and 

100, respectively. Almost similar behavior can be observed for Newtonian as well as shear-

thickening fluids for the analogous conditions. It is convenient to mention herein that the 

aforesaid inter-dependencies of n, 
f , Re and Pr are very similar and consistent with the results 

reported in the literature (Kawase and Ulbrecht, 1981a, b; Zhu, 1995; Satish and Zhu, 1992).  

 

 

Figure 7.9: Dependence of normalized average Nusselt number (NuN) vs. power-law index (n) 

on fluid volume fraction, Reynolds number and Prandtl numbers (Nu is normalized with 

Newtonian value) 
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The above thermal characteristics were further examined by normalizing the Nu with different 

parameters. For instance, the influence of flow behavior index on thermal features was examined 

by normalizing the averaged Nusselt numbers with their corresponding Newtonian values: 

)1n(X

)n(X
XN


 ;       where,   X=Nu        (7.1) 

Fig. 7.9 depicts the variations of normalized averaged Nusselt number (NuN) over the Re, Pr, n 

and f . For a fixed Re, Pr and f , an improvement of heat transfer with the reducing n can be 

seen; so the normalized Nusselt numbers XN are observed to be greater than 1 for shear-thinning 

nature; whereas, a reverse trend has been seen to the shear-thickening nature, i.e., XN < 1. Thus, 

the effect of n is greater in shear-thinning nature than the shear-thickening nature.  

 

 

 

Figure 7.10: Dependence of normalized average Nusselt number (NuN) vs. power-law index (n) 

on fluid volume fraction, Reynolds and Prandtl numbers (Nu is normalized with maximum fluid 

volume fraction f ,max = 0.99) 
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Moreover, to measure the level of interaction between both of periodic cylinders, the Nu 

values were further normalized using the maximum fluid volume fraction ( f ,max = 0.99) as:  

)(X

)(X
X

max,f

f
N




                         (7.2) 

Fig. 7.10 displays the variations of NuN with Re, Pr, n and
f . As the fluid volume fraction 

increases, the NuN decreases and approaches unity and thereby both cylinders display the feature 

of an isolated single cylinder. For example, at Re = Pr = 1, as the fluid volume fraction increases 

from 0.70 to 0.99, the normalized value of average Nusselt number changes from 1.6 to 1, 1.7 to 

1, and 2 to 1 at n = 0.4, 1, and 1.8, respectively. At smaller fluid volume fractions and Re, greater 

values of Nu at f  = 0.70 in contrast to f  = 0.99, specify a substantial influence in the Nu for 

the upstream cylinder (C1) because of the existence of the downstream cylinder (C2). An 

increasing Re and/or Pr increases the NuN under similar situations. It happens apparently because 

of the growing wake region in the vicinity of cylinders.    

Additional endeavor has been done to represent the functional dependence of Nu over the 

parameters above (Re, Pr, f  and n) in terms of suitable correlations. The statistical analysis 

(based on 432 data points for each n) of the current numerical results conceded the following 

correlations:   

           Nu = anb c

f RedPre +f exp (
f )                           for n < 1 and n > 1 (7.3a) 

         
cbPrReα=Nu    where,     ]RePrd+[a=α

fe

f      for n = 1  (7.3b) 

 

The correlation coefficients and exponents (a, b, c, d, e and f) along with their statistical 

parameters have been given in Table 7.2. These correlations have been developed by the non-

linear regression of the numerical data. The best fit for the extreme values of n between present 

numerical data and the predictions of Eq. 7.3(a) is displayed in Fig. 7.11, where an excellent 

correspondence can be observed. An average deviation within 2% was noticed for the 97% data 

points, whereas the maximum deviation was within the 5% under the identical conditions. The 

above deviations are lie within 5-12% for the 3% of data points. Notwithstanding, many studies 

across periodic array of circular cylinders and/or over tube banks are reported in the literature 

(Spelt et al., 2005a, b; Dhotkar et al., 2000; Vijaysri et al., 1999; Shibu et al., 2001; Malleswara 

Rao and Chhabra, 2003; Chhabra et al., 2000; Ferreira and Chhabra, 2004). Among these studies, 

no one is exactly the same which could be compared directly with the present study of power-

law fluids. 
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Table 7.2: Correlation constants yielded in functional dependence of average Nusselt 

number (Nu) (Eq. 7.3) and the Colburn jH factor (Eq. 7.4) (δ: relative r.m.s deviations from 

the numerical data; number of data points: 432 for each of Nu and
Hj ) 

 

 

 For instance, Spelt et al. (2005a, b) are concerned with flow characteristics of power-law 

fluids such as drag coefficients, velocity variances, etc. Similarly, Dhotkar et al. (2000), Vijaysri 

et al. (1999) and Shibu et al. (2001) have explored the flow features of non-Newtonian fluids for 

various porosities of cylinders using different cell models, etc. However, a good correspondence 

has been found with the Newtonian fluids (Gamrat et al., 2008; Chen and Wung, 1989; Martin 

et al., 1998; Mandhani et al., 2002; Mangododdy et al., 2004) within the ranges of conditions 

covered herein. For instance, Martin et al. (1998) examined the averaged Nusselt number for 

convective cross-flow of air (Pr = 0.7) across the sparse periodic arrays ( f  > 0.8) of cylinders 

in laminar region. A good agreement can be seen in Figure 7.12(a) between the present results 

and that of Martin et al. (1998), where an improved convergence can be seen with increasing 

values of fluid volume fractions ( f ) with maximum deviations of 6.5%. Further, Gamrat et al. 

(2008) presented the thermal features across an array of square rods for the fluid volume fractions 

of 0.44 to 0.88 and inertial effects (Re) up to 40. Their result for Nu is 2.8925 against the present 

results of 2.8832 at f = 0.86, Pr = 100 and Re = 1, shows an excellent agreement in Fig. 7.12(b) 

with a variance of 0.32 % only. Additional consistency was found with the free surface cell model 

of Mangadoddy et al. (2004). A good analogy can also be seen in Fig. 7.12(b) for Pr = 5 and Re 

= 1 at the extreme conditions of fluid volume fractions. It can be seen that the convergence is 

again improving as the fluid volume fraction is increasing from f = 0.70 to 0.99. The maximum 

deviation was found to be in the order of 3%. In spite of the above good agreement, the additional 

endeavor has been made to delimit the role of governing parameters (n, f , Re, Pr) by expressing 

the Nu in terms of the Colburn heat transfer factor (
Hj ) as described in the next section.    

Correlation 

constants 

Nu 
Hj  

 n → 0.4  0.6  0.8  1  1.4  1.8  0.4  0.6  0.8  1  1.4  1.8 

a 1.1845 0.8432 0.7965 17.1857 0.8278 0.5346 -0.5026 -0.1171 -1.8530 1.2790 -0.6092 -0.9784 

b -0.7083 -2.1270 -5.1552 0.1608 5.3894 2.2251 -3.3772 -8.7029 -7.5658 1 4.6437 2.2272 

c -1.3918 -1.2290 -1.2138 0.1599 -0.4722 -0.9767 -0.7595 -0.7384 -0.7247 0.6703 -0.4701 -0.5312 

d 0.0725 0.0603 0.0594 -15.7552 0.03679 0.0892 -0.8123 -0.7983 -0.7878 1.2718 -0.7020 -0.6072 

e 0.0573 0.0526 0.0522 0.1669 0.03282 0.0829 0.0193 0.0203 0.0192 -0.2178 0.0495 0.0212 

f -0.3164 -0.431 -0.459 0.0061 -1.5470 -0.5197 5.9188 7.5264 9.5056 0.0304 5.1440 6.2874 

g - - - - - - -0.8179 -0.8057 -0.7959 -2.1283 -0.7335 -0.6281 

R2 0.9374 0.9480 0.9469 0.9665 0.9085 0.9112 0.99 0.9920 0.9928 0.9937 0.9845 0.9865 

δmax (%) 12.58 11.87 11.97 11.37 12.98 12.97 5.37 5.33 5.33 5.33 5.86 5.68 

δavg (%) 5.70 5.06 5.10 5.69 5.88 5.84 2.75 2.70 2.70 2.70 2.89 2.86 
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Figure 7.11: Best fit of present numerical vs. correlation values of Nu and 

Hj for the extreme 

values of power-law index (a, c) n = 0.4 and (b, d) n = 1.8 

 

 

 

Figure 7.12: Contrast between present results of the average Nusselt number (Nu) with (a) 

periodic array of circular cylinders of Martin et al. (1998) and (b) free surface cell models of 

Mangadoddy et al. (2004) and with the results of Gamrat et al. (2008) in the Newtonian flow 

regime 
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7.5 The Colburn heat transfer factor (
Hj )  

The functional dependence of current numerical results on Re, Pr, n and f using the 
Hj factor 

(as defined in chapter 5, Eq. 5.4) is best represented by a correlation given by Eq. (7.4):  

    
Hj  = anb c

f RedPre + f (n f Re)g          (7.4) 

The correlation coefficients and exponents (a, b, c, d, e and g) along with their statistical 

parameters to the current data are also included in Table 7.2. This correlation has been developed 

by the non-linear regression of the data. The best fit for the extreme values of flow behavior 

index between current numerical data and the predictions of Eq. (7.4) is also displayed in Fig. 

7.11 where a good agreement is seen to exist. The average and maximum deviations are within 

2% and 5%, respectively for complete ranges of data points. Although this method not only 

merges data for a broad range of Pr, but the causing deviations are too rather lower as compared 

to Eq. (7.3).  

 

Overall, the heat transfer and/or thermal features of power-law fluids across a periodic array of 

cylinders in cross-flow are observed to be prejudiced in a complicated manner with the Re, Pr, n 

and
f . At high Re, the wake interventions are more noticeable when the fluid volume fractions 

are lower. Additionally, while the cylinders are far away as in the case of maximum fluid volume 

fraction ( f  = 0.99), no wake interference happens and both cylinders behave as a single isolated 

cylinder. Further, the shear-thinning and shear-thickening fluid behaviors which have been 

elucidated from present periodic geometry have also displayed the distinguished thermal features 

with the varying porosity and/or fluid volume fractions of the cylinders.  It is assumed that the 

addictions above on the power-law index and porosity are accountable too for the non-

monotonous behavior as appreciated in this investigation. Lastly, it is essential to point out that 

the forced convection features of Newtonian fluids (Chapter 5) and non-Newtonian fluids 

(Chapters 6 and 7) have been elaborated widely, but the mixed convection features of these fluids 

are also equally important and therefore are discussed in next two Chapters 8 and 9 to know the 

more physical insights of these fluids.  
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Chapter 8 

 

AIDING BUOYANCY MIXED CONVECTION 

CHARACTERISTICS OF NEWTONIAN FLUIDS ACROSS 

PERIODIC ARRAY OF CIRCULAR CYLINDERS 

 
 
This chapter deals with the mixed-convection flow across a periodic array of circular cylinders 

to reveal the flow and heat transfer features of Newtonian fluids under the aiding buoyancy 

condition. The schematic and mess geometries are shown in Figs. 3a and 3b of Chapter-3. The 

governing equations (as mentioned in Chapter-3) are applied with the n = 1 for the case of 

Newtonian fluids. The study examines the dependence of local and global characteristics for the 

following ranges of governing parameters: Re = 1, 2, 5, 10, 20, 40; Pr = 0.7, 1, 10, 50 and Ri = 

0, 1and 2 and with a wide variation of fluid volume fractions of f = 0.70, 0.75, 0.80, 0.84, 0.86, 

0.88, 0.90, 0.92, 0.94, 0.96, 0.98 and 0.99. In the mixed convection problem, the gravity and 

buoyancy forces are acting in opposite directions of each other which can be seen in Fig. 3(a) 

and so the role of buoyancy parameter in terms of Richardson number (Ri) has been investigated 

within the ranges of conditions. The influences of these dimensionless flow governing parameters 

on the streamlines and isotherm patterns, pressure coefficient, individual and total drag 

coefficients and local and averaged Nusselt numbers are presented and discussed to gain physical 

insights from such an industrially important system. However, prior to presenting the detailed 

new results, the numerical solution procedure has been validated first in the next section. 

 

8.1 Validation of numerical solution procedure 

  

It is to be imperative to point out the fact that there is no direct study available to contrast 

the mixed convection flow and heat transfer of Newtonian fluids across the periodic array of 

cylinders. Perhaps, an endeavor has been made to contrast the present results with the available 

literature on single cylinder because at the maximum fluid volume fraction of f = 0.99 both the 

periodic cylinders acts as a single isolated cylinders. For instance, in the case of forced 

convection (Ri = 0), Mandhani et al. (2002) compared the heat transfer (local Nusselt number) 

for f = 0.99 with a single cylinder of Eckert and Soehngen (1952) and Lange et al. (1998). A 

good agreement was found. Similarly, the flow and heat transfer characteristics of  Soares et al. 
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(2005b) and Bharti et al. (2007a) the single circular cylinder was found to be consistent with the 

maximum fluid volume fraction of f = 0.99 for the forced convection cases. 

In view of above, the relevant comparison for mixed convection has been summarized in 

Table 8.1. The present numerical results obtained for drag coefficient (CD) under steady flow 

conditions (Pr = 1, Ri = 2), were found to be consistent with the numerical results of Srinivas et 

al. (2009) at Re = 1, showing a maximum discrepancy of 2.82%. Further, under the identical 

conditions, a good agreement (maximum discrepancy of 3.36%) was found with the results of 

Srinivas et al. (2009) and Chandra and Chhabra (2012) at Re = 40. Likewise, at Pr = 1 and Ri = 

1, the values of drag coefficient again display a good correspondence with the results of Srinivas 

et al. (2009) at Re = 1 and 40, showing maximum discrepancies of 2.29% and 0.76%, 

respectively.  

 

Table 8.1: Comparison of present results of total drag coefficient (CD) and average Nusselt 

number (Nu) with literature values for the mixed convection Newtonian flows across the 

periodic array of cylinders at the maximum fluid volume fractions of f = 0.99 

  
Source  Ri=2,  Pr=1 Ri=1, Pr=1 

CD 

(Re=1) 

CD 

(Re=40) 

CD 

(Re=1) 

CD 

(Re=40) 

Present Results 37.8053 3.6980 27.9522 2.9814 

Srinivas et al. (2009)*  38.8716 3.8225 28.5949 2.9586 

Chandra and Chhabra**  

(2012) 

- 3.796 - - 

% deviations 2.82 3.36 2.30 0.76 

 Ri=2  Ri=1 

Pr=1 Pr=50  Pr=1 Pr=50 

Nu 

(Re=1) 

Nu 

(Re=1) 

Nu 

(Re=40) 

Nu 

(Re=1) 

Nu 

(Re=1) 

Nu 

(Re=40) 

Present Results 1.2108 3.2350 16.1826 1.0504 3.0529 14.8162 

 Srinivas et al. (2009)*  1.1816 3.1662 16.1785  2.9976 15.1594 

Soares et al. (2009)* - - - 1.0300 - - 

Daniel and Dhiman 

(2013)*** 

- - - - 2.9978 15.1479 

% deviations 2.41 2.12 0.03 1.94 1.81 2.31 

 Single cylinder;    ** semi-circular cylinder;     *** two tandem cylinders  

 

Moreover, an excellent agreement was found for the average Nusselt number with the results of 

Srinivas et al. (2009), Soares et al. (2009) and Daniel and Dhiman (2013) in Table 8.1. For 

instance, at Pr = 1 and Ri = 2, the present result was in good agreement with Srinivas et al. (2009) 

with a maximum deviation of 2.41%. Next, at Pr = 50 and Ri = 2, these deviations were found to 

be 2.12% and 0.025% at Re = 1 and 40, respectively. Similarly, at Pr = 1, Ri = 1, an excellent 

agreement was found with the result of Soares et al. (2009) with a maximum discrepancy of 

1.94% at Re = 1. For Pr = 50 and Ri = 1, a very good agreement was seen with the results of 
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Srinivas et al. (2009) and Daniel and Dhiman (2013) with maximum deviations of 1.81% and 

2.31% at Re = 1 and 40, respectively. Given above excellent agreement with the literature, the 

present results were generated for the complete range of parameters studied herein.  

 

8.2 Fluid flow and heat transfer characteristics 

The microscopic features of flow and heat transfer for the mixed convection under aiding 

buoyancy conditions have been discussed in this section.   

 

8.2.1 Streamline profiles   

The qualitative dependence of normalized streamline (as defined in Chapter 5, Section 5.2.1) 

patterns have been shown in Figs. 8.1-8.3 at Pr = 1, 10 and 50, respectively with the systematic 

variations of fluid volume fractions ( f = 0.70, 0.90 and 0.99), Reynolds (Re = 1, 10 and 40) 

and Richardson (Ri = 1 and 2) numbers. The wake size displays a complex behavior over the 

above governing parameters ( f , Re and Ri). It can be seen in Figs. 8.1-8.3, as the fluid volume 

fraction increases from f = 0.70 to 0.99, the recirculation zone also increases correspondingly, 

results in the streamlines gradually shift towards the surface of the cylinders.  

 

Figure 8.1: Representative variations of normalized streamlines at Pr = 1, Reynolds number (Re = 1 and 40), 

Richardson number (Ri = 1 and 2) and fluid volume fractions of (i) f = 0.70 (ii) f = 0.90 and (iii) f = 0.99  
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For instance, at f = 0.70 and Re = 1(Fig 8.1(i)), the streamlines are far from the cylinders, but 

as 
f  increases from

f = 0.70 to 0.90 and 0.90 to 0.99, a corresponding shift in streamlines 

towards cylinders can be seen clearly irrespective of Prandtl number. So, the crowding of 

isotherms is seen to be more over the surface of the cylinders for f = 0.99 in Fig. 8.1(iii) for all 

the values of Reynolds and Richardson numbers. The same feature is observed at Pr = 10 and 50 

in Figs. 8.2 and 8.3 respectively under the identical conditions.  

 

 

Figure 8.2: Representative variations of normalized streamlines at Pr = 10, Reynolds number (Re 

= 1 and 40), Richardson number (Ri = 1 and 2) and fluid volume fractions of (i) f = 0.70 (ii) 

f = 0.90 and (iii) f = 0.99   

 

The impact of increased Reynolds number can be appreciated over the streamlines. As the 

Reynolds number increases from Re = 1 to 10 or 10 to 40 (Figs. 8.2-8.3), the fluid circulation in 

the vicinity of cylinders is seen to increase which further shifts the streamlines towards cylinders 

and therefore, more curved and dense streamlines can be seen in the vicinity of periodic cylinders. 

This behavior reflects that the discharges between two consecutive streamlines increase as the 
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Reynolds number and fluid volume fractions increase. An influence of buoyancy parameter (Ri) 

was also observed strongly over the streamlines. In Figs. 8.1-8.3, more pronounced streamlines 

can be seen at Ri = 2 in contrast to Ri = 1, for all the values of fluid volume fraction ( f ). Hence, 

an increase in Ri yields denser and swirled streamlines which indicate the magnitude of increased 

buoyancy/mixing in Figs. 8.1-8.3. Further, for a given value of Ri, as Reynolds number increases, 

the recirculation improves in size and so the streamlines are clustered over the surface of the 

cylinders. Almost analogous patterns have been observed for all the fluid volume fractions, but 

the influence and visibility are more prominent at higher fluid volume fractions and Reynolds 

numbers. As opposed to the forced convection, the influence of Prandtl number over the flow 

field is also significant in mixed convection because of the linkage between flow and energy 

equations. As the Prandtl number increases from Pr = 1 to 10 and 10 to 50 (Figs. 8.2 and 8.3), 

the size of wake decreases which gives rise to more swirl and vortex formation. These effects 

can be visualized more at higher fluid volume fractions and Reynolds numbers in Fig. 8.3 at Re 

= 40 and f = 0.90 and 0.99.   

 

Figure 8.3: Representative variations of normalized streamlines at Pr = 50, Reynolds number (Re 

= 1 and 40), Richardson number (Ri = 1 and 2) and fluid volume fractions of (i) f = 0.70 (ii) 

f = 0.90 and (iii) f = 0.99   
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Moreover, the streamlines display strong dependence at the low values of
f , as compared to the 

high value of f . These streamline patterns are similar for mixed convection across a single 

cylinder and/or tandem cylinders (Badr, 1982, 1984; Soares et al., 2009; Daniel and Dhiman, 

2013) or periodic array of cylinders (Gowda et al., 1998). Further, the above strong dependence 

of streamline patterns over f , Re, Pr and Ri is additionally examined in terms of isotherm 

patterns over the surfaces of cylinders as described in the next Section. 

 

8.2.2 Isotherm profiles     

 

Figs. 8.4-8.6 illustrate the representative variations of the normalized isotherm patterns 

over the fluid volume fraction ( f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers. 

In facts, these plots are the normalized values of temperature (as defined in Chapter 5, section 

5.3.1). An examination of Figs. 8.4-8.6, clearly display a complex dependence of isotherm 

patterns over the above governing parameters. For a fixed value of f (Figs. 8.4-8.6), the 

gathering of isotherms in the transverse direction has been grown up with an increase in Re and/or 

Pr. An increase in f  yields more clustered isotherms over the surfaces of the cylinders. 

However, the influence of the fluid volume fractions on isotherms is seen to be more prominent 

at higher Re and/or Pr. Further, the symmetric isotherm patterns at the low Re (e.g., Re = 1 in 

Figs. 8.4-8.6) suggest that the heat transfer is mainly by conduction in contrast to convection. At 

high Re (e.g., Re = 10 and 40) for f = 0.70 and 0.90, isotherms are still symmetric, but these 

are denser and clustered as compared to Re=1. Moreover, the different behavior of isotherms are 

seen at Re = 40 and f = 0.99 for both of the Pr and Ri. Also, steeper temperature gradients 

appear nearer to cylinders as Re increases. Furthermore, the impact of Richardson number (Ri) 

on the isotherm patterns is appreciable. It can be seen in Figs. 8.4-8.6, more pronounced 

isotherms appear for Ri=2 in contrast to Ri = 1, because as the Richardson number increases the 

level of buoyancy/mixing increases due to the more interactions among the fluid particle at the 

molecular level which results in an improvement in heat transfer. This effect is less visible at Re 

= 1 and Pr = 1, but as the Re and Pr increase, the influence of Ri is visible in the above figures. 

The above qualitative feature is similar to those found in the literature for mixed convection 

(Gowda et al., 1998) and under the limiting cases of a single cylinder (Soares et al., 2009; Daniel 

and Dhiman, 2013). This complex dependence of isotherm patterns has been further elaborated 

using pressure coefficient over the surfaces of periodic cylinders as described in the following 

section.  
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Figure 8.4: Representative variations of normalized isotherms at Pr = 1; Re = 1, 10 and 40; Ri = 

1 and 2 and fluid volume fractions of (i) f = 0.70 (ii) f = 0.90 and (iii) f = 0.99  
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Figure 8.5: Representative variations of normalized isotherms at Pr = 10; Re = 1, 10 and 40; Ri 

= 1 and 2 and fluid volume fractions of (i) f = 0.70 (ii) f = 0.90 and (iii) f = 0.99 

 

Figure 8.6: Representative variations of normalized isotherms at Pr = 50; Re = 1, 10 and 40; Ri 

= 1 and 2 and fluid volume fractions of (i) f = 0.70 (ii) f = 0.90 and (iii) f = 0.99  
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8.2.3 Pressure coefficient (CP) on the surfaces of the cylinders   

The distribution of pressure coefficient over the periodic cylinders is displayed in Figs. 8.7 and 

8.8 at Pr = 1 and 50, respectively with the systematic variations of Reynolds number (Re = 1 and 

40), fluid volume fraction (
f = 0.70, 0.90 and 0.99) and buoyancy parameter (Ri = 1 and 2). At 

Pr = 1, Ri = 1, Re = 1 and f = 0.70 (Fig. 8.7a (i)), the CP for upstream cylinder (C1) is observed 

to be dropped rapidly from its maximum value at the front stagnation point (θ = 5-10°) for along 

the surfaces followed by an increase due to the recirculation of the fluid in the rear side of the 

cylinder C1  

 

Figure 8.7: Dependence of pressure coefficient (CP) over the surfaces of cylinders (C1 and C2) at 

Pr = 1 with the systematic variations of Richardson number (Ri = 1 and 2), fluid volume fractions 

(
f = 0.70, 0.90 and 0.99) and Reynolds number (Re = 1 and 40)  

For instance, the minimum value of CP occurs between θ = 350 to 45°, afterward, it starts 

increasing till θ = 90°. The above behavior was observed for both the value of Re 1 and 40, but 

the change in Re = 40 is very gradual as compared to Re = 1. Also, an increase in the Re tends 

to decrease the CP over the surface of both the cylinders. Therefore, the minimum and maximum 

CP were seen at Re = 1 for upstream cylinder (C1) and downstream cylinder (C2), respectively 

for both of the Ri = 1 and 2 (Figs. 8.7i a-b). Next, the effect of buoyancy parameter (Ri) was 
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observed in Figs. 8.7i-iii (a and b). An increased value of CP was observed for Ri = 2 in contrast 

to Ri = 1 for all the value of fluid volume fractions and Reynolds numbers. The reason behind 

such behavior is that in the case of increased buoyancy, the magnitude of inertial effects increases 

which gives rise to pressure coefficient whereas the potential energy of the molecules also 

increases which again exerts more pressure over the surface of cylinders.  

 

 

Figure 8.8: Dependence of pressure coefficient (CP) over the surfaces of cylinders (C1 and C2) at 

Pr = 50 with the systematic variations of Richardson number (Ri = 1 and 2), fluid volume 

fractions (
f = 0.70, 0.90 and 0.99) and Reynolds number (Re = 1 and 40) 
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number as shown in Fig. 8.8. Almost similar behaviors were seen with increased Prandtl number 

(Pr=50) under the ranges of identical conditions. As expected, an increase in pressure coefficient 

with an increase in Prandtl number was seen across all the fluid volume fractions. Further, the 

pressure coefficient was observed to be greatly influenced by the Richardson number at lower 

Re as compared to higher Re. This is primarily because of the point that the impact of free 

convection weakens with the increasing inertial forces at higher Re. The above dependence of 

pressure coefficient (Cp) is identical to that mentioned for the limiting cases of single cylinders 

(Srinivas et al., 2009; Chandra and Chhabra, 2012).  

 

8.2.4 Local Nusselt number (NuL) 

 

Typical variations of local Nusselt number (NuL) over the periodic cylinders (C1 and C2) are 

presented in Figs. 8.9-8.12. Fig. 8.9 displays the changes of local Nusselt number (NuL1) over 

the surface of periodic cylinder (C1) for Ri = 1 and 2, 
f = 0.70, 0.90, 0.99, Re = 1, 10, 40 and 

at a fixed value of Pr = 1. The local Nusselt number (NuL1) decreases as the fluid volume fraction 

(
f ) increases from 

f  = 0.70-0.99 for all the values of Ri = 1, 2 and Re = 1, 10, 40.  Further, 

for 
f  = 0.70 and 0.90, the maximum value of local Nusselt number was observed at the θ = 0o 

(front of the cylinder C1) for all of the Ri = 1, 2 and Re = 1, 10, 40. The local Nusselt number 

starts gradually decreasing as the θ increases from θ = 00 to 900. Therefore, the minimum value 

was seen at θ = 900 (rear of the cylinder C1) under the identical conditions. The above behavior 

is slightly changed in maximum fluid volume fraction (
f = 0.99). Notwithstanding, for Re = 1 

and 10, the behavior is similar to 
f = 0.70 and 0.90, but a different trend was observed at Re = 

40 for both of the Ri = 1 and 2. In Fig. 8.9 a(iii), the maximum value of NuL1 is again seen at θ 

= 0o, but the minimum value occurred between θ = 30o to 450 for Re = 40 in contrast to θ = 90o 

for Re = 1 and 10. From θ = 45o onward, a recovery was seen till θ = 90o. Similarly, in Fig. 8.9 b 

(iii), for Re = 40, all else remaining same except the minimum NuL1 occurred between θ = 60o to 

750 and then recovery takes place till θ = 90o. Additionally, a significant influence of the 

buoyancy parameter (Ri) was seen over the local Nusselt numbers. In Fig. 8.9, an increased value 

of NuL1 can be seen for Ri = 2 in contrast to Ri = 1 under the range of conditions covered herein. 

Because of the more distortion with increased buoyancy, the steep thermal gradients appear 

nearer to the periodic cylinders with an increase in Ri and therefore heat transfer rises.   
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Figure 8.9: Representative variations of local Nusselt number (NuL1) over the surface of upstream 

cylinder (C1) at Prandtl number (Pr = 1) and Richardson number (Ri = 1 and 2), fluid volume 

fractions (
f = 0.70, 0.90 and 0.99) and Reynolds number (Re = 1, 10 and 40)  

On the other hand, Fig. 8.10 depicts the dependence of local Nusselt number (NuL2) over 

the surface of the periodic cylinder (C2) under the identical conditions of the cylinder (C1). As 

expected, the variation in local Nusselt number (NuL2) is quite different as compared to the local 
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f = 0.70 and Pr = 1, Ri = 1, (Fig. 
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Reynolds number. Similarly, for Pr = 1, Ri = 2 (Fig. 8.10 b (i)), the variations are identical except 
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Pr, the local Nusselt number display virtually little variations because in this case, the heat 

transfer takes place mainly by conduction in contrast to convection. Further, for the fluid volume 

fraction of 
f  = 0.90 and 0.99 (Figs. 8.10(ii-iii)), an opposite trend is seen in contrast to the 
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influence of buoyancy parameter (Ri) can be observed herein again, and so an increased value of 

NuL2 can be seen for Ri = 2 in contrast to Ri = 1 across all the fluid volume fractions (
f ).    

 

Figure 8.10: Representative variations of local Nusselt number (NuL2) over the surface of 

downstream cylinder (C2) at Prandtl number (Pr = 1) and Richardson number (Ri = 1 and 2), 

fluid volume fractions (
f = 0.70, 0.90 and 0.99) and Reynolds number (Re = 1, 10 and 40)  

Further, as expected, an increase in local Nusselt numbers (NuL1 and NuL2) can be seen with 

increasing value of Reynolds number (Figs. 8.9-8.10). Thus, the maximum value of NuL2 can be 

seen at 
f  = 0.99, Pr = 1, Ri = 2 and Re = 40 in contrast to NuL1 at 

f  = 0.70, Pr = 1, Ri = 2 and 

Re = 40 (Figs. 8.9(b-i)).   
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(C1 and C2) strongly dependent on fluid volume fractions and shows the following peculiar 

features. The opposite behavior can be seen at a maximum fluid volume fraction of 
f =0.99 at 

Re = 40. Such a feature, reveal that both cylinders act as an isolated cylinder under the maximum 

fluid volume fraction and high Reynolds and/or Prandtl numbers. The aforementioned local flow 

and heat transfer features are however further examined in terms of global characteristics (drag 

coefficients and average Nusselt number) in the subsequent sections.    

 

 

Figure 8.11: Representative variations of local Nusselt number (NuL1) over the surface of cylinder 

(C1) at Prandtl number (Pr = 50), Richardson number (Ri = 1 and 2), fluid volume fractions (
f

= 0.70, 0.90 and 0.99) and Reynolds number (Re = 1, 10 and 40)  
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Figure 8.12: Representative variation of local Nusselt number (NuL2) over the surface of cylinder 

(C2) at Prandtl number (Pr = 50), Richardson number (Ri = 1 and 2), fluid volume fractions (
f

= 0.70, 0.90 and 0.99) and Reynolds number (Re = 1, 10 and 40)  
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of lower fluid volume fraction as compared to higher fluid volume fraction. For instance, for a 

fixed value of Re = 1, Pr = 0.7 and Ri = 1, the CDP value is 147.0031 for 
f  = 0.70 against the 

CDP value of 88.3842 of 
f  = 0.75 and 11.7483 of 

f  = 0.99, etc. (Table C1).   

Further, an increase in CDP can be observed with increasing value of Ri. Also, at higher 

Prandtl number, the effect of buoyancy parameter is found to be more prominent. For instance, 

for a fixed value of Pr = 0.70, 
f = 0.70 and Re = 1, the CDP value is 147.0031 for Ri = 1 and 

150.6507 for Ri = 2 (Table C1). These CDP values were seen to be improved at higher Prandtl 

number such as at Pr = 50; the above CDP value is altered from 147.0031 to 154.7525 for Ri = 1 

and 150.6507 to 166.0560 for Ri = 2. Similarly, at maximum fluid volume fraction of 
f  = 0.99 

and at Pr = 0.70, Re = 1, the CDP value is 11.7483 for Ri = 1 and 17.5621 for Ri = 2. These value 

again altered at higher Prandtl number of Pr = 50, as such, the CDP value is altered from 11.7483 

to 13.9318 for Ri = 1 and from 17.5621 to 20.5888 for Ri = 2 under the identical conditions. The 

above enhancement in CDP value revealed that as the buoyancy parameter increases, the more 

mixing takes place in the vicinity of periodic cylinders which further improves with the increased 

Prandtl number. Additionally, when compared with forced convection (Ri = 0), the mixed 

convection provides more distortion to flow and therefore a sharper velocity gradient appears 

which gives rise to pressure drag coefficient (CDP).  

 

The impact of Reynolds and Prandtl numbers on CDP is also revealed in Table C1. As the 

Reynolds number increases, the pressure drag coefficient (CDP) correspondingly decreases, 

irrespective of the other parameters (
f , Pr and Ri). A higher value of CDP can be seen at lower 

Reynolds number for any of the fluid volume fractions for a given Pr and Ri. For instance, for a 

fixed value of 
f  = 0.70, Pr = 0.7 and Ri = 1, the CDP value is 147.0031 for Re = 1 and 75.5807 

and 33.3814 for Re = 2 and 5, respectively. This feature reveals that as the Reynolds number 

increases, the inertial forces are dominating over friction forces and so the pressure drag 

coefficient reduces. Further, in contrast to forced convection (Ri = 0), where Prandtl number does 

not influence the drag coefficients, a significant influence of Prandtl number is observed in the 

mixed convection case (Ri >0). It can be seen that the value of CDP varies with the variations in 

Prandtl number (Table C1). For instance, for a fixed value of 
f  = 0.70, Re = 1 and Ri = 1, the 

CDP value is 147.0720 for Pr = 1, 149.9247 for Pr = 10 and 154.7525 for Pr = 50, etc. Noticeably, 

the influence of Prandtl number is found to be lesser as compared to the fluid volume fraction, 

Reynolds and/or Richardson numbers. Overall, an intricate pattern of governing parameters was 
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seen on pressure drag coefficient (CDP) and expected to contrast well with friction drag 

coefficient (CDF) also as described in the next section.   

  

8.3.2 Friction drag coefficient (CDF) 

 

Typical variations of friction drag coefficient (CDF) with the dimensionless parameters (
f , Re, 

Pr and Ri) are listed in Table C2 (Appendix C). Similar to CDP, the CDF displays a strong 

dependence on above parameters. Again, the dependence on fluid volume fraction is more 

prominent as compared to the Reynolds, Prandtl and or Richardson numbers. Thus, at a fixed 

values of Re, Pr and Ri, the CDF values always decrease as the value of fluid volume fraction is 

progressively increase from 
f  = 0.70 to 0.99. As a consequence, the influences are greater in 

the region of lower fluid volume fraction as compared to higher fluid volume fraction. Further, 

a significant role of buoyancy effect in terms of Richardson number is seen here in the case of 

friction drag coefficient (CDF). An increasing value of CDF can be observed in Table C2 as the 

Richardson number is increasing. Further, at higher Prandtl number, the impact of Richardson 

number is more prominent, e.g., for a fixed value of Pr = 0.70, 
f = 0.70 and Re = 1, the CDF 

value is 142.1439 for Ri = 1 and 143.2847 for Ri = 2. These CDF values are improved at higher 

Prandtl number as such for instance, at Pr = 50, the above CDF value is altered from 142.1439 to 

147.2794 for Ri = 1 and from 143.2847 to 153.5886 for Ri = 2 under the identical conditions. 

Additionally, the dependence of CDF on Re and Pr have been shown in Table C2. Analogous to 

CDP, the CDF is decreasing as the Reynolds number is increasing. Thus, a higher value of CDF can 

be seen at lower Reynolds number in any of the fluid volume fractions for a given Pr and Ri. As 

far as the influence of Prandtl number is concerned, a similar trend to pressure drag coefficient 

(CDP) can be seen in Table C2. Further, as can be observed in Tables C1 and C2, the pressure 

drag coefficient is always dominating over friction drag coefficient within the ranges of 

conditions studied herein. In fact, a complex dependence of pressure drag coefficient (CDP) and 

friction drag coefficient (CDF) was seen over the governing parameters (n, 
f , Re and Ri). The 

influences of these parameters are further examined over the total drag coefficient (CD).   

  

8.3.3 Total drag coefficient (CD) 

 

Typical variations of total drag coefficient (CD) on governing parameters (
f , Re, Pr and Ri) are 

displayed in Table C3 of Appendix-C. As can be observed in Table C3, the CD discloses the 

similar kind of dependence as that of CDP and CDF. So, a strong dependence of CD on above 
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dimensionless parameters can be seen in Table C3. Further, as discussed earlier, the dependence 

on fluid volume fraction ( f ) is more prominent than the other parameters.  

The additional endeavor was made to develop a simple statistical correlation of the total 

drag coefficient (CD) in terms of governing parameters (
f , Re, Pr, Ri). The developed 

correlation was expressed by Eq. (8.1) as follows: 

             )Riexp(RiPrReaC 1111 edcb

f1D                                             (8.1) 

The correlation coefficients and exponents appeared in the Eq. (8.1) are listed in Table 8.2. The 

above correlation is developed by the linear regression based on 576 data points having a 

regression coefficient of R2 = 0.9936. The best fit of the present numerical values versus the 

correlation values of Eq. (8.1) has been shown in Fig. 8.13(a). An excellent agreement was found 

between the present results and predictions of Eq. (8.1). For instance, Eq. (8.1) has an average 

and maximum deviations of ~3.75 % and ~9.15%, respectively for the 91% of the data points 

whereas the 6% of the data points have the average and maximum deviations of ~10.61 % and 

~20.15%, respectively, only 3% of the data points have the discrepancies within 20 to 30%. The 

behavior above is once again well described by Eq. (8.1). For instance, a strong dependence of 

CD on 
f can be seen in Table C3, and therefore as the 

f increases, the CD decreases rapidly 

since f is raised by a power of 7.4970. Similarly, an increase in Re tend to decrease CD 

significantly, but as compared to
f , the influence is less pronounced because Re is raised to the 

power of 0.8564. Besides, an increase in Pr and Ri accounts an increase in CD. It can also be seen 

that the exponents of Pr and Ri are 0.0271 and 0.0539, respectively, i.e. the influence of Ri is 

more pronounced than Pr on CD. An exponential increase in the CD value with Ri can also be 

seen in above correlation.    

Table 8.2: Correlation coefficients and exponents appeared in Eq. (8.1) and Eq. (8.3) for the 

total drag coefficient (CD) and average Nusselt number (Nu), respectively  
 

CD Nu 

- - α  αi  αj  αk  

a1 18.8790 a 7.0377 -20.6330 17.1860 

b1 7.4970 b -0.1279 0.4398 0.1608 

c1 0.8564 c -0.0750 0.2716 0.1599 

d1 0.0271 d -6.8756 20.1450 -15.7550 

e1 0.0539 e -0.1329 0.4560 0.1669 

- - g -0.0929 0.3227 0.1660 

- - h 0.2322 -0.6101 0.1669 

R2 0.9936 R2 0.9954 



 

129 
 

 

Figure 8.13: Best fit of present numerical vs. correlation values of (a) total drag coefficient (CD) 

and (b) average Nusselt number (Nu) 

 

As mentioned earlier, many studies are available related to mixed convection over single and/or 

two tandem cylinders, in contrast, only a few studies (Duli et al., 1995; Gowda et al., 1998) are 

available for mixed convection across an array of cylinders over the limited ranges of parameters. 

Therefore, the direct comparison of the present result is not possible, however within the limit of 

a single cylinder, a good agreement can be seen in Fig. 8.14 between the present results and that 

of Srinivas et al. (2009) and Chandra and Chhabra (2012) with an average and maximum 

deviations of 1-4%, respectively. The flow characteristics described above are further delineated 

in terms of normalized parameters in the following section.  

 

Figure 8.14: Comparison of total drag coefficient (CD) for maximum fluid volume fraction of 
f

= 0.99 with the single cylinder of Srinivas et al. (2009), Chandra and Chhabra (2012) at Pr = 1 

and Ri = 1 and 2  
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8.3.4 Influence of buoyancy parameter (Ri)  

 

Notwithstanding, the influence of buoyancy parameter (Ri) on the drag coefficients has 

been discussed briefly earlier, perhaps, it is also useful to describe the influence of this parameter 

over the individual and total drag coefficients in terms of normalized parameters. In view of 

above, the mixed convection values of drag coefficients were normalized using their 

corresponding forced convection values (Ri = 0) as follows: 

                             
)0Ri(Y

)Ri(Y
YN


 ;      where Y =  CDP, CDF, CD and/or Nu   (8.2) 

The normalized plots of pressure, friction and total drag coefficients vs. fluid volume fractions 

are shown in Figs. 8.15(I-II) and 8.16 (I), respectively with the variations of Reynolds, Prandtl 

and Richardson numbers. An inspection of these plots reveals that the similar pattern is being 

followed by each of the 
N

DPC , 
N

DFC  and/or 
N

DC . As expected, an opposite trend is seen in these 

plots in contrast to the aforementioned behavior of CDP, CDF and/or CD. i. e. the normalized values 

(YN) go up with the increase in the fluid volume fractions (
f ). The above upturn is more 

significant at Re = 10 and 40 as compared to Re = 1 (Figs. 8.15 (I & II) and Fig 8.16(I)). 

Furthermore, the influence of buoyancy parameter is clearly visible in these plots. The solid and 

dashed lines represent the behavior at Ri = 1and 2, respectively. A higher normalized values (YN) 

can be seen at Ri = 2 as compared to Ri = 1 for all the values of Reynolds as well as Prandtl 

numbers. This behavior can generally be attributed to higher stresses owing to aiding buoyancy. 

Additional information includes the unsteady behavior at a higher fluid volume fraction of 
f = 

0.99. For instance, the behavior was observed to be unsteady at Re = 20 and 40 at 
f = 0.99 for 

all the values of Prandtl number and Richardson number (Figs. 8.15 I-II (a & b)). Further, the 

unsteady behavior was seen to be increased with the Prandtl number. For instance, at Pr = 50, 

Figs. 8.15 (I-II(c)), an unsteady behavior at 
f = 0.98 was also observed for Re = 40 along with 

f = 0.99. Overall, the normalized values of drag coefficients have shown the non-monotonous 

behavior with the fluid volume fraction, Reynolds, Prandtl and Richardson numbers.    
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Figure 8.15: Dependence of normalized pressure and friction drag coefficients on fluid volume 

fractions (
f ), Reynolds number (Re) and Richardson number (Ri) for (a) Pr = 1; (b) Pr = 10 

and (c) Pr = 50 (normalized with Ri = 0)  
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Figure 8.16: Dependence of normalized drag coefficients and average Nusselt number on fluid 

volume fractions (
f ), Reynolds number (Re) and Richardson number (Ri) for (a) Pr = 1; (b) Pr 

= 10 and (c) Pr = 50 (normalized with Ri=0)  
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that as the Ri rises, the potential energy of the molecules increases which gives rise to more 

mixing and returns the improved heat transfer. This can be observed in isotherms also where the 

sharp and dense thermal gradients appear with increased Ri. Thus, the maximum value of the Nu 

obtained is 16.1826 for 
f = 0.99 at Pr = 50, Re = 40 and Ri = 2, while the minimum value is 

0.8862 for 
f = 0.70 at Pr = 0.7, Re = 1 and Ri = 1.    

The normalized value of average Nusselt number (Nu) is plotted in Fig 8.16(II) versus 

the fluid volume fractions (
f ). The Nu values have also been normalized similar to drag 

coefficients as defined in Eq. (8.2) corresponding to their forced convection values (Ri = 0). An 

examination of these plots (Figs. 8.16(IIa-c)) discloses that the normalized values (NuN) are 

increasing as the fluid volume fractions (
f ) are increasing. The above increase is more 

significant for Re = 10 and 40 as compared to Re = 1. Additionally, the effect of Ri is clearly 

visible in these plots.  The solid and dashed lines represent the behavior at Ri = 1 and 2, 

respectively. A greater normalized value (NuN) can be seen at Ri = 2 in contrast to Ri = 1 for all 

the values of Re and/or Pr. Furthermore, for 
f = 0.99, an unsteady behavior was observed at Re 

= 40, Pr = 50 and Ri = 1 and 2. This behavior can generally be ascribed to higher stresses owing 

to aiding buoyancy and/or mixing.  

 Additional efforts were made to develop a correlation for the average Nusselt 

number in terms of governing parameters (Re, Pr, 
f and Ri). The statistical analysis of the 

results returned the following correlations for Nu:   

h

f

gecb PrRedPrReaNu         (8.3) 

 

where, the correlation constants a, b, c, d, e, g and h are related as 

 

             
kj

2

i RiRi     (where  3,2,1k,j,i   ; h,g,e,d,c,b,a )             (8.4) 

 

The correlation coefficients and exponents (a, b, c, d, e, g and h) together with their statistical 

parameters are also summarized in Table 8.2. The best fit of the present numerical versus the 

correlation values of Eqs. (8.3-8.4) has also been shown in Fig. 8.13(b). An excellent agreement 

was found between the present numerical results and the predictions of Eqs. (8.3-8.4). For 

instance, these correlations have shown the average and maximum deviations of 2% and 5% 

respectively for 96% of the data points, whereas the deviations were within 5-15% for rest 4% 

of the data points. As mentioned above (Section 8.3.3) that the direct contrast of present findings 

is not possible due to the negligible literature. Moreover, other mixed convection studies are 

either focused on single or double cylinders (Chatterjee and Raja, 2013; Sparrow and Lee, 1976; 

Badr, 1982; Srinivas et al., 2009; Daniel and Dhiman, 2013). Though, within the single cylinder 
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limit, the present results have been compared with the available literature for the maximum fluid 

volume fraction (
f  = 0.99) in Fig. 8.17. A good agreement can be seen for both of the Ri =1 

and 2 in Figs. (8.17a and 8.17b), respectively at Pr = 1, 10 and 50. The average and maximum 

deviations lie within 1-2%, respectively.   

Broadly speaking, an enhancement in Prandtl and/or Reynolds numbers enhances the rate 

of heat transfer as reported by many researchers. The scant available study by Duli et al. 1995 

and Gowda et al. (1998) for mixed convection over in line tube bundles affirms the above 

characteristics. Further, for the forced convection across a periodic array of cylinders, the above 

features are reported (Mandhani et al., 2002; Zukauskas 1972; Martin et al., 1998; Gamrat et al., 

2008, etc.). Also, some different characteristics which were found in this investigation are the 

influence of fluid volume fractions (
f ) and Prandtl number over the Nusselt numbers and drag 

coefficients. Firstly, as discussed above, an increase in Nusselt number was observed with the 

increasing values of fluid volume fractions ( f ) for the case of mixed convection. This is in 

contrast to forced convection where the opposite trend has been found. This might be happening 

because as the fluid volume fractions ( f ) increases, the fluids get more time to distort and swirl 

in the increased vicinity of periodic cylinders due to buoyancy effects, results the more heat 

transfer takes place. Secondly, an increase in individual and total drag coefficients was also 

observed with increased Prandtl number. This is again opposite to forced convection where the 

Prandtl number does not influence the flow characteristics.   
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Figure 8.17: Comparison of average Nusselt number (Nu) for the maximum fluid volume fraction 

of 
f = 0.99 with the single cylinder of Srinivas et al. (2009), Soares et al. (2009), Chandra and 

Chhabra (2012) and tandem cylinder of Daniel and Dhiman (2013) for (a) Ri = 1 and (b) Ri = 2  
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Chapter 9 

 

 

 

AIDING BUOYANCY MIXED CONVECTION 

CHARACTERISTICS OF POWER-LAW FLUIDS ACROSS 

PERIODIC ARRAY OF CIRCULAR CYLINDERS 

 
Mixed-convection flow and thermal features across the periodic array of circular 

cylinders with aiding buoyancy conditions have been studied for non-Newtonian power-law 

fluids. The problem is well-described in Chapter 3 and the schematics and computational domain 

for one of the fluid volume fraction (
f  = 0.70) are also shown in Figs. 3a and 3b, respectively. 

The study examines the dependence of local and global characteristics of mixed convection for 

the following ranges of governing parameters: Re = 1, 2, 5, 10, 20 and 40; Pr = 1, 10 and 50; Ri 

= 0, 1 and 2; n = 0.4, 0.6, 0.8, 1, 1.4 and 1.8 and 
f = 0.70, 0.75, 0.80, 0.84, 0.86, 0.88, 0.90, 

0.92, 0.94, 0.96, 0.98 and 0.99. For the mixed convection of non-Newtonian fluids, the governing 

equations (Eqs. 3.3-3.11) are applied with the buoyancy and gravity effect as mentioned in the 

y-component of momentum equations (Eqs. 3.6-3.7) and boundary conditions, i. e. Eqs. (3.12) - 

(3.15) have been used. The systematic variations of the above parameters yielded the numerical 

results which are explained in the following sections. However, prior to presenting and discussing 

the new results, the present numerical approach has been validated with the available literature 

in the subsequent section.   

 

9.1 Validation of numerical solution procedure 

 

For mixed convection of non-Newtonian fluids, the present results have been compared in Table 

9.1 with the available literature. For instance, at n = 0.4, Pr = 50, Ri = 1, the value of CD, shows 

a good agreement with the result of Daniel and Dhiman (2013) with a relative difference of 

1.36%. Likewise, at n = 0.6, Pr =1 and Ri = 2, the CD values again display a good correspondence 

with the result of Srinivas et al. (2009) with relative discrepancies of 0.71% and 0.74%, at Re = 

1 and 40, respectively and also with Chandra and Chhabra (2012) at Re = 40 with relative 

deviations of 1.23%. Moreover, an excellent agreement was found for the average Nusselt 

number (Nu) with the results of Srinivas et al. (2009) and Daniel and Dhiman (2013) in Table 

9.1.  For instance, at n = 0.4, Pr = 50 and Ri = 1, the maximum deviations were found to be 1.03% 

and 0.48% in the values of Nu at Re = 1 and 40, respectively with results of Daniel and Dhiman 
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(2013). Next, at n = 0.4, Pr = 50, Ri = 2 and Re = 40, the present result was in good agreement 

with Srinivas et al. (2009) with relative deviations of 2.27%. Further, at n = 0.6, Pr = 1 and Ri = 

2, the maximum deviations were found to be 0.24% in the value of Nu at Re = 1 with results of 

Srinivas et al. (2009). In view of the above excellent agreement with the available literature, the 

present results was believed to be the accurate and hence generated for the complete range of 

parameters studied herein.  

 

Table 9.1: Comparison of present values of total drag coefficient (CD) and average Nusselt 

number (Nu) with available literature for non-Newtonian mixed convection flow at 
f = 

0.99  

 n Pr Ri Re Present work Literature value % deviation 

 

 

CD 

 

0.4 

1 2 40 2.4153 2.4200a 0.19 

50 1 1 23.2447 23.5660b 1.36 

 

0.6 

1 2 1 36.8176 37.0797a 0.71 

1 2 40 2.9145 2.893a 0.74 

1 2 40 2.9145 2.879c 1.23 

 

Nu 

 

0.4 

50 1 1 3.0710 3.0397b 1.03 

50 1 40 22.6795 22.7901b 0.48 

50 2 40 26.1003 25.5206a 2.27 

0.6 1 2 1 1.2382 1.2340a 0.24 

a; Srinivas et al. 2009 (single cylinder), b; Daniel and Dhiman, 2013(two tandem cylinders), c; Chandra and 

Chhabra, 2012 (semi-circular cylinder) 

 

9.2 Fluid flow and heat transfer characteristics 

 

In this section, the influence of governing parameters (n,
f , Re, Pr and Ri) on the streamline 

profiles, isotherm patterns and pressure coefficients, etc. have been presented and discussed.  

 

9.2.1 Streamline profiles 

The qualitative dependence of the normalized streamline (as defined in Chapter 5; Section 5.2.1) 

patterns are shown in Figs. 9.1-9.6 with the systematic variations of power-law index (0.4, 1 and 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90 and 0.99), Richardson numbers (1 and 2) and 

at extreme values of Reynolds number (1 and 40) and Prandtl number (1 and 50). The contours 

and wake sizes display a complex dependence on the above pertinent dimensionless parameters 



 

139 
 

(n,
f , Re, Pr and Ri) for the ranges of conditions covered herein. It can be seen in Figs. 9.1-9.6 

that as the fluid volume fraction (
f ) increases from 

f = 0.70 to 0.99, the recirculation zone 

increases in size, both in terms of the length and width of the wakes, results in streamlines 

gradually shift towards the surfaces of the cylinders for all of the shear-thinning (n <1), 

Newtonian (n = 1) and shear-thickening (n 1) fluids. For instance, at 
f  = 0.70, Pr = 1 and Re 

= 1 (Fig 9.1a (i)), the streamlines are far from the cylinders, but as 
f increases from 

f = 0.70 

to 0.80, 0.80 to 0.90 and 0.90 to 0.99 (Fig. 9.1), a corresponding shift in streamlines towards 

cylinders is seen and particularly at 
f = 0.99, where these are gathered over the surfaces of 

cylinders. Further, as the fluid behavior changes from Newtonian to shear-thinning and/or shear-

thickening, the re-circulatory region shrinks and/or expands, respectively due to the density 

changes, result in the straight and dense streamlines are seen for the shear-thinning (Figs. 9.1 a(i-

iv)) as compared to shear-thickening fluids (Figs. 9.1 c (i-iv)).   

 Further, the strong influence of increased Reynolds number from Re=1 to 10 and 10 to 40 can 

be seen in Figs. 9.2-9.3 for Pr = 1 and Figs. 9.5-9.6 for Pr = 50, respectively over the streamlines. 

As the Reynolds number increases from Re = 1 to 10 and 10 to 40, the fluid circulation behind 

the cylinders is seen to increased due to the increasing inertial effects, and therefore, more curved, 

swirled and clustered streamlines can be seen in the vicinity of periodic cylinders. The inertial 

effects are more pronounced for the shear-thinning fluids as compared to shear-thickening fluids 

(Figs. 9.2-9.3, 9.5-9.6) and especially at the maximum fluid volume fractions of 
f = 0.99. For 

instance, the wakes and vortex formations are seen for all the fluid volume fractions in shear-

thinning region (Fig. 9.3a (i-iv)), whereas only one wake is seen in the Newtonian region (Fig. 

9.3b (ii)) at 
f = 0.80 and Ri = 2 and in shear-thickening region at 

f = 0.90 and Ri = 2 (Fig. 

9.3c (iii)), except at 
f = 0.99. This is because as the fluid volume fraction increases, the role of 

power-law index diminishes correspondingly and therefore, at the maximum fluid volume 

fractions of
f = 0.99, the vortex formation and wakes can be seen in Fig. 9.3 (iv) for all of the 

shear-thinning, Newtonian and shear-thickening fluids.   

A significant influence of buoyancy parameter (Ri) is also observed over the streamline profiles 

in Figs. 9.1-9.6. In fact, Ri affects the size of the recirculatory region between the cylinders. More 

pronounced streamlines can be seen aft the cylinders at Ri = 2 in contrast to Ri = 1, irrespective 

of the other parameters (
f , n, Re, Pr). Hence, an increasing value of the Ri reflects the 

magnitude of increased buoyancy/mixing, results more clustered, swirled streamlines and vortex 

formations in the vicinity of periodic cylinders. Qualitatively, similar patterns are seen 

throughout all the fluid volume fractions from 
f = 0.70 to 0.99, but the influence and visibility 
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are more pronounced at higher values of fluid volume fractions and Reynolds numbers. 

Moreover, in contrast to forced convection, due to the linkage between the flow and thermal 

equations via the body force term, the flow field is greatly influenced by Prandtl number (Pr) too 

in the case of mixed convection. The influences of increased Prandtl number (Pr = 50) can be 

seen in Figs. 9.4-9.6 at Re = 1, 10 and 40, respectively. At Pr = 50, the patterns are almost similar 

to Pr = 1 for all of the Re = 1, 10  and 40, but due to the decrease in wake sizes, more swirled, 

clustered streamlines, wakes and vortexes are seen in the domain of the periodic cylinders. These 

effects can be visualized more at higher fluid volume fractions and Reynolds numbers for both 

of the shear-thinning as well as shear-thickening fluids.  Moreover, the streamline patterns also 

show strong interference from the two cylinders at the lower values of 
f which diminishes with 

increasing value of 
f  for all values of Re. The two cylinders act almost like isolated single 

cylinders at the largest value of 
f  for all of the Re, Pr, Ri and n. The above streamline patterns 

are similar to those reported in the literature for mixed convection across a single cylinder and 

or periodic array of cylinders (Badr, 1982, 1984; Gowda et al., 1998; Soares et al., 2009; Daniel 

and Dhiman, 2013, etc.). The wake patterns described herein are also consistent with the 

literature in the limit of forced convection across a periodic array of cylinder (Martin et al., 1998).  
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Figure 9.1: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed values of Pr = 1 and Re = 1   
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Figure 9.2: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed values of Pr =1 and Re = 10  
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Figure 9.3: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed value of Pr = 1 and Re = 40  
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Figure 9.4: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed value of Pr = 50 and Re = 1 
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Figure 9.5: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed values of Pr = 50 and Re = 10  
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Figure 9.6: Dependence of normalized streamlines over the power-law index (n = 0.4, 1, 1.8), 

fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) at a 

fixed values of Pr = 50 and Re = 40 
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and far from the surfaces of the cylinders at 
f = 0.70, irrespective of the power-law index (n) 

Richardson number (Ri), but, as 
f increases from 0.70 to 0.80, 0.80 to 0.90 and 0.90 to 0.99 

(Figs. 9.7ii-iv), the recirculation/flow domain improves and therefore, a corresponding shifts of 

isotherms towards cylinder surfaces is seen and more pronounced isotherms in the vicinity of 

cylinders. Further, at large values of fluid volume fraction (
f = 0.99), the dense clustering is 

seen over the surfaces of periodic cylinders (Figs. 9.7-9.12). In fact, at maximum fluid volume 

fraction (
f = 0.99) and/or porosity, the cylinders interactions are almost negligible and most of 

the heat transfer is due to the upstream cylinder. Further, the symmetric isotherm patterns for the 

low Reynolds number flows (Re=1) suggest the dominance of conduction over convection.  

As the fluid behaviour altered from shear-thickening to shear-thinning, an enhancement 

in the compactness of the isotherms results in an overall increase in the temperature gradients. 

This happens because of the thinner thermal boundary layer in shear-thinning fluids than that of 

Newtonian and shear-thickening fluids under otherwise identical conditions. Further, for a fixed 

value of fluid volume fraction, the crowding of isotherms in the flow direction rises with an 

upturn in Reynolds and Prandtl numbers (Figs. 9.8-9.12). With increasing inertial effects i.e. as 

the Reynolds number increases, the clustering of the isotherms became dense and confined in the 

vicinity of the cylinders. The density of isotherm lines indicates the magnitude of the thermal 

gradients; that is, clustered lines indicate a steep gradient, while sparse lines indicate a weak 

gradient. Thermal gradients, in turn, indicate the magnitude of heat transfer rates. Further, the 

influence of buoyancy parameter on the isotherm patterns is appreciable. It can be seen in Figs. 

9.7-9.12, more pronounced isotherms appear for Ri = 2 in contrast to Ri = 1 because as the 

Richardson number increases, the level of buoyancy in terms of mixing increases and hence an 

enhancement in heat transfer takes place. This effect is less visible at low Re and Pr = 1 (Fig. 

9.7), but as the Reynolds number and Prandtl number increase, the influences of Ri is clearly 

visible in the Figs. 9.8-9.12. The above qualitative feature is similar to those found in the 

literature for mixed convection (Gowda et al., 1998) and under the limiting cases of a single 

cylinder (Soares et al., 2009; Daniel and Dhiman, 2013, etc.). These patterns are also consistent 

within the range of forced convection (Martin et al., 1998; Mandhani et al., 2002, etc.). This 

complex dependence of isotherm patterns on the pertinent dimensionless parameters (n, Re, Pr, 

Ri and
f ) is further examined in terms of pressure coefficients over the cylinder surfaces as 

described in the next section. 
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Figure 9.7: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 1) and Reynolds number (Re = 1) 
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Figure 9.8: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 1) and Reynolds number (Re = 10) 
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Figure 9.9: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 1) and Reynolds number (Re = 40)  
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Figure 9.10: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 50) and Reynolds number (Re = 1)  
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Figure 9.11: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 50) and Reynolds number (Re = 10)  

0
.1

0
.2

0.
2

0
.3

0.
3

0.4

0.
4

0
.5

0
.5

0
.5

0
.6

0.6

0
.7

0
.7

0
.7

0.8

0.8

0.9

0.9

(i
)

=
0

.7
0

 f

Flow

1 0

Ri=1

0.
1

0.1
0
.2

0.2

0.3

0
.30
.4

0
.4

0
.5

0
.5

0.6

0.6

0.7

0.
7

0
.8

0.
8

0.9

0.9

(i
i)

=
0

.8
0

f

0
.1

0
.1

0
.2

0
.2

0
.3

0.
3

0
.4

0.4

0
.5

0
.5

0
.6

0
.7

0
.7

0.8

0
.8

0
.9

(i
ii

)
=

0
.9

0


f

0
.1

0
. 1

0
.1

0.2

0.2

0.3

0.3

0.4

0
.4

0
.4

0.5

0.5

0
.6

0
.6

0
.6

0.7

0.7

0
.8

0
.8

0
.9

0.9

Ri=2

0
.1

0.
1

0
.2

0
.2

0
.3

0
.3

0
.4

0
.4

0.5

0.5

0
.6

0.
6

0.7

0.7

0.8

0.8

0
.9

0.
1

0
.1

0
.1

0
.2

0.
2

0
.3

0
.3

0
.40

.5
0

.6

0
.6

0
.7

0.8

0.8

0
.9

0
.9

0
.1

0
.1

0.
1

0.1

0
.2

0
.2

0
.3

0
.3

0
. 4

0
.5

0
.5

0
.6

0
.6

0.7

0
.8

0
.1

0
.1

0
.2

0
.2

0
.3

0.
3

0.4

0.
4

0
.5

0
.5

0.
6

0.6

0.7

0.70.8

0
.8

0.9

0.9

Ri=2

0
.1

0
.2

0
.3

0
.3

0
.4

0
.5

0.
6

0
.6

0
.7

0
.7

0.8

0.8

0.9

0.9

Ri=1

0
.1

0
.1

0
.2

0
.2

0
.3

0
.3

0
.4

0.5

0
.5

0
.6

0
.6

0
.7

0
.7

0
.8

0
.8

0.8

0.9

0.9

Ri=2

0
.1

0
.2

0
.3

0
.3

0.4

0
.4

0
.5

0
.5

0.6

0
.6

0
.7

0
.7

0.8

0.8

0.9

0
.9

0
.1

0
.1

0
.2

0
.3

0
.3

0
.4

0.
4

0
.5

0
.5

0
.6

0
.6

0.
7

0
.7

0
.8

0.8

0.9

0.9

0
.1

0
.1

0
.2

0
.2

0
.3

0
.40

.5

0.6

0
.6

0
.7

0
.7

0.8

0.
8

0.9

0.
1

0
.1

0.
2

0
.2

0.
3

0.3

0.
4

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0
.7

0
.8

0.8
0.9

0
.1

0
.1

0.
2

0
.2

0
.3

0.
4

0.4

0
.5

0.
6

0.6

0.7

0.7

0
.8

0
.9

0
.0

5

0
.0

5

0
.1

5

0
.1

5

0
.2

5

0
.3

5

0
.3

5

0.4
5

0.45

0
.5

5

0
.5

5

0
.6

5

0
.6

5

0.7
5

0.95

0.
05

0
.0

5

0.
1
5

0.15

0
.2

5
0.

35

0
.3

5

0.4
5

0.45

0.5
5

0.55

0.65

0.6
5

0
.7

5

0.85

0.95

0
.1

0
.1

0
.2

0
.2

0.
3

0
.3

0
.4

0
.4

0
.5

0
.6

0.7

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0.8

0.9

0
.0

5

0
.0

5

0
.0

5

0.05

0
.0

5

0.05

0
.1

4

0
.1

4

0
.1

4

0
.2

3

0
.2

3

0
.3

2
0
.4

1

0
.4

1

0
. 5

0
. 5

0
.6

80.77

0
.1

0
.2

0
.2

0
.3

0
.4

0.5

0
.5

0
.6

0.7

0.7

0.8

0.8

0.9

0.9

Ri=1

0
.1

0.1

0.
2

0.2

0
.3

0
.3

0
.4

0.
4

0.5
0.5

0.6

0.6

0.7

0
.7

0.8

0
.8

0.9

0.9

Pr=50, Re=10
(a) n=0.4 (b) n=1 (c) n=1.8

0
.1

0
.1

0
.1

0
.1

0
.1

0
.2

0
.2

0
.3

0
.4

0
.5

0
.5

0
.6

0
.7

0.8

0
.1

0
.1

0
.2

0
. 3

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0
.7

0.8

0
.8

0
.9

(i
v

)
=

0
.9

9
f




 

153 
 

 

Figure 9.12: Dependence of normalized isotherm patterns over the power-law index (n = 0.4, 1, 

1.8), fluid volume fractions (
f = 0.70, 0.80, 0.90, 0.99) and Richardson number (Ri = 1 and 2) 

at a fixed values of Prandtl number (Pr = 50) and Reynolds number (Re = 40)  

  

9.2.3  Pressure coefficient (CP) on the surfaces of the cylinders  

The distribution of pressure coefficient over the surfaces of the periodic cylinders is shown in 

Figs. 9.13 and 9.14 with the systematic variations of fluid volume fractions (
f = 0.70, 0.90, 

0.99), power-law index (n = 0.4, 1, 1.8), Reynolds (Re = 1, 10, 40) and Prandtl (Pr = 1 and 50) 

numbers and at the maximum values of Richardson number (Ri = 2). For shear-thinning fluids 

(n = 0.4) at Pr = 1, Re = 40 and 
f = 0.70 (Fig. 9.13 a(i)), the pressure coefficient (CP) for 

upstream cylinder (C1) is seen to decrease gradually from its maximum value at the front 

stagnation point (θ = 5°) for along the surface of the cylinder (C1). For instance, the minimum 

value of CP occurs at θ = 900. The above behavior was observed to be slightly different for Re = 
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1 and 10 under the similar conditions. The pressure coefficient for upstream cylinder (C1) is seen 

to decrease gradually from its maximum value at the front stagnation point (θ = 0°) for along the 

surface of the cylinder (C1) followed by an increase between the θ = 400 to 600. For instance, the 

minimum value of CP occurs at θ = 500 and afterward, it starts increasing gradually till θ = 900. 

Also, an increase in the Reynolds number tends to increase the pressure coefficient over the 

surface of the cylinder (C1). Therefore, the larger interval was seen at Re = 40 for the minimum 

and maximum CP for upstream cylinder (C1) and downstream cylinder (C2), respectively. 

However, the behavior of downstream cylinder (C2) was observed to be quite different in contrast 

to the upstream cylinder (C1). For instance, for the above shear-thinning fluid (n = 0.4) and at Pr 

= 1, Re = 40 and 
f  = 0.70 (Fig. 9.13a (i)), the pressure coefficient was seen to rise from its 

minimum value at θ = 5° for along the surface towards the rear and reaches it’s maximum at θ = 

90°. Further, a gradual decrease in the CP value was observed which starts from θ = 00 for Re = 

1 and 10 till θ = 450 and then starts recovery and reaches it’s maximum at θ = 90°. The above 

increase is more prominent at Re = 40 as can be seen clearly whose maximum value was again 

at θ = 90°. Moreover, as compared to cylinder C1, the pressure coefficient over the surface of the 

cylinder C2 was noticed higher for all the values of fluid volume fractions and Reynolds numbers.  

Also, as the fluid behaviour changes from shear-thinning to Newtonian and Newtonian to shear-

thickening, the pressure coefficient was seen to be increasing (Fig. 9.13i (a-c)). For instance, the 

pressure coefficient of Newtonian fluid was observed to be higher than shear-thinning and lower 

than the shear-thickening fluids. Furthermore, the above behaviour is quite different for the 

maximum fluid volume fractions (
f = 0.99). An opposite trend was observed for 

f =0.99 as 

compared to 
f =0.70 and   0.90. The pressure coefficient is seen to be higher in shear-thinning 

fluids than that for Newtonian and shear-thickening fluids. This is because, at higher fluid volume 

fractions (
f = 0.99), the two cylinders act almost like isolated single cylinders (Figs. 9.13 and 

9.14). These figures show a stronger influence of the power-law index (n) on the pressure 

coefficient for both of the shear-thinning as well as shear-thickening fluids. Other influence 

includes the impact of increased Prandtl number (Pr) as shown in Fig. 9.14. Almost similar 

behavior was seen with increased Prandtl number (Pr=50) under the ranges of identical 

conditions. As expected, an increase in pressure coefficient with increasing value of Prandtl 

number was seen across all the fluid volume fractions. Further, the value of pressure coefficient 

at the front and rear stagnation points was seen to be more strongly influenced by the value of 

the Richardson number (Ri) at low Reynolds numbers than that at higher values of Reynolds 

numbers. This was simply because the role of free convection diminishes with increasing 

Reynolds number. The variation of the pressure coefficient described above is similar to those 
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reported in the literature (Srinivas et al., 2009; Chandra and Chhabra, 2012) for the limiting cases 

of single cylinders. The other local behaviors have been examined in terms of heat transfer 

parameter (local Nusselt number) as discussed in the subsequent section. 

 

Figure 9.13: Distribution of pressure coefficient (CP) over the surfaces of cylinders (C1and C2) 

with the systematic variations of power-law index (n = 0.4, 1and 1.8), fluid volume fractions (

f = 0.70, 0.90 and 0.99), Reynolds number (Re = 1, 10 and 40) at a fixed values of Pr =1 and 

Ri = 2  
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Figure 9.14: Distribution of pressure coefficient (CP) over the surfaces of cylinders (C1and C2) 

with the systemic variations of power-law index (n = 0.4, 1and 1.8), fluid volume fractions (
f

= 0.70, 0.90 and 0.99) and Reynolds number (Re = 1, 10 and 40) at a fixed values of Pr = 50 and 

Ri = 2 
 

9.2.4 Local Nusselt number (NuL) 

Representative variations of the local Nusselt number (NuL) over the upstream cylinder (C1) and 

downstream cylinder (C2) with the power-law index(n), fluid volume fraction (
f ), Reynolds 

number (Re), Prandtl number (Pr) and Richardson number (Ri) are shown in Figs. 9.15-9.18. 

Broadly, an examination of these plots (Figs. 9.15-9.18) reveals that the local Nusselt number is 
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shows the variation of local Nusselt number (NuL1) over the surface of cylinder C1 for the range 

of Richardson number (Ri = 1 and 2), fluid volume fraction (
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from 0.70 to 0.90 for all the values of Richardson and Reynolds numbers. The same pattern is 

followed in maximum fluid volume fraction of 
f = 0.99 except Re = 40 (Fig. 9.15(iii a-b)).  

Further, it can be seen that the maximum local Nusselt number (NuL1) was observed at the θ = 0o 

(front of the cylinder C1) for all of the dimensionless parameters (n,
f , Re and Ri) at Pr = 1 (Fig. 

9.15). The local Nusselt number (NuL1) starts gradually decreasing as the θ increasing from 00 to 

900. Therefore, the minimum value was seen at θ = 900 (rear of the cylinder C1) under the identical 

conditions. The above behavior is slightly changed in maximum fluid volume fraction (
f = 

0.99). Notwithstanding, for Re = 1 and 10, the behavior is similar to 
f  = 0.70 and 0.90, but a 

different trend was observed at Re = 40 for shear-thinning and Newtonian fluids for both of the 

Ri = 1 and 2. In Fig. 9.15(a-iii), the maximum value of NuL1 is again seen at θ = 0o, but the 

minimum value occurred between θ = 45o to 600 for Re = 40 in contrast to θ = 90o for Re = 1 and 

10. From θ = 60o onward, a recovery was seen till θ = 90o. Similarly, in Fig. 8.15(b-iii), for Re = 

40, all else remaining same except the minimum NuL1 occurred between θ = 30o to 450 for Ri = 

1 and θ = 60o to 750 for Ri = 2, then recovery takes place till θ = 90o. Additionally, a significant 

influence of the Ri was seen over the local Nusselt numbers. In Fig. 9.11, an increased value of 

NuL1 can be seen for Ri = 2 in contrast to Ri = 1 under the range of conditions covered herein. 

Because of the more distortion with increased buoyancy, the steep thermal gradients appear in 

the vicinity of cylinders and hence heat transfer enhances with increasing Ri. 

Fig. 9.16 depicts the variation of local Nusselt number (NuL2) over the surface of the 

downstream cylinder (C2) under the identical conditions to the upstream cylinder (C1). As 

expected, the variation in local Nusselt number (NuL2) is quite different herein as compared to 

the local Nusselt number (NuL1) i.e. almost an opposite trend is seen. Thus, at the lower Reynolds 

number (Re = 1), for any of the fluid volume fraction (
f ) and at Pr = 1, Ri = 1 and 2, a very 

gradual change is occurring for all of the shear-thinning, Newtonian and shear-thickening fluids. 

The maximum value of local Nusselt number (NuL2) was seen between θ = 400 to 500 and 

minimum at θ = 900 for 
f  = 70. Similarly, for 

f = 0.90 and 0.99, the minimum and maximum 

NuL2 was seen at θ = 00 and θ = 900, respectively under the identical conditions. Further, at higher 

Reynolds numbers (Re = 10 and 40), the minimum and maximum NuL2 was seen at θ = 00 and 

900, respectively for all the values of n, 
f and Ri except n = 1.8 (Fig 9.16c (i)), where the 

maximum and minimum NuL2 occurs at θ = 00 and θ = 900 for Re = 40 and at θ = 250 to 350 and 

θ = 00 for Re = 10. Thus, the maximum value of NuL2 can be seen at 
f  = 0.99, n = 0.4, Pr = 1, 

Ri = 2 and Re = 40 and minimum at 
f  = 0.70, n = 1.8, Pr = 1, Ri = 1 and Re = 1 (Figs. 9.16(a-

iii and c-i)). The above changes in the local Nusselt number happen because, at small value of 
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Re or Pr, one would intuitively expect the value of NuL to show virtually no or small variations 

due to the fact that at low value of Re and/or Pr, heat transfer occurs primarily by conduction 

with a very small contribution from convection. Next, the influence of Ri can also be observed 

herein once again and thereby an increased value of NuL2 can be seen for Ri=2 in contrast to Ri=1 

for all the values of fluid volume fractions, power-law index and Reynolds numbers.  

The influence of increased Prandtl number on local Nusselt numbers is shown in Figs. 

9.17 and 9.18 for upstream cylinder (C1) and downstream cylinder (C2), respectively at Pr = 50. 

As expected, an increase in local Nusselt number with increasing value of Prandtl number is seen 

for all the value of the power-law index (n) and fluid volume fractions (
f ). Further, the variation 

in local Nusselt numbers (NuL3 and NuL4) at Pr = 50 was found to be almost similar to Pr = 1, 

except few cases. The main discrepancies were noticed for the value of higher Reynolds number 

(Re = 40) and fluid volume fraction (
f = 0.99) for all of the shear-thinning, Newtonian and 

shear-thickening fluids (Figs. 9.17-9.18). Also, both of the periodic cylinders (C1 and C2) 

strongly dependent on fluid volume fractions and show the following peculiar features. The 

opposite behavior can be seen at maximum fluid volume fractions of 
f = 0.99 and Re = 40. 

Such a feature reveals that both cylinders act as an isolated cylinder under the maximum fluid 

volume fractions and high Reynolds number and/or Prandtl number. Because of the wake 

interference, the local Nusselt number at the front stagnation point of the downstream cylinder is 

quite different from that seen for the upstream cylinder in a periodic arrangement. The behavior 

above is similar to Gowda et al. (1998) for mixed convection and under the limiting cases of a 

single cylinder (Soares et al., 2009; Daniel and Dhiman et al., 2013). The above typical variations 

of streamlines, isotherm pattern, pressure coefficients and local Nusselt number with Re, Pr, Ri, 

n and 
f observed herein, in turn, will alter with drag coefficients and average or overall heat 

transfer. It is explored in subsequent sections with the help of global behavior such as individual 

and total drag coefficients and average Nusselt number. 
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Figure 9.15: Variation of local Nusselt number (NuL1) over the surface of upstream cylinder (C1) 

for power-law index (n = 0.4, 1 and 1.8), fluid volume fractions (
f = 0.70, 0.90 and 0.99), 

Reynolds number (Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) at a fixed Prandtl 

number (Pr = 1)  
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Figure 9.16: Variation of local Nusselt number (NuL2) over the surface of downstream cylinder 

(C2) for power-law index (n = 0.4, 1and 1.8), fluid volume fractions (
f = 0.70, 0.90 and 0.99), 

Reynolds number (Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) at a fixed Prandtl 

number (Pr = 1) 
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Figure 9.17: Variation of local Nusselt number (NuL3) over the surface of cylinder (C1) for power-

law index (n = 0.4, 1and 1.8), fluid volume fractions (
f = 0.70, 0.90 and 0.99), Reynolds number 

(Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) at a fixed Prandtl number (Pr = 50) 
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Figure 9.18: Variation of local Nusselt number (NuL4) over the surface of cylinder (C2) for power-

law index (n = 0.4, 1and 1.8), fluid volume fractions (
f = 0.70, 0.90 and 0.99), Reynolds number 

(Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) at a fixed Prandtl number (Pr = 50) 
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D5, the pressure drag coefficient (CDP) has a strong dependence on aforementioned 

dimensionless parameters, but the dependence on flow behavior index (n), fluid volume fraction 

(
f ) and Reynolds number (Re) are more prominent than the other parameters (Pr and Ri). For 

a fixed value of fluid volume fraction (
f ), Reynolds number (Re), the Richardson number (Ri) 

and Prandtl number (Pr), the pressure drag coefficient (CDP) increases as the value of the power-

law index (n) gradually increases. For instance, an opposite trend can be seen in Table D1-D5 

for both of the shear-thinning as well as shear-thickening fluids when compared with Newtonian 

fluids. The pressure drag coefficient (CDP) of shear-thickening fluid is greater than the 

corresponding Newtonian fluid, whereas it is lower for the shear-thinning fluids; both these 

interpretations are directly associated with the nature of the surface pressure (Cp) profiles 

presented in the previous section. Further, the pressure drag coefficient (CDP) shows a strong 

dependence on fluid volume fraction (
f ), but an opposite trend was observed herein as 

compared to the dependence of power-law index (n). Thus, for a fixed value of Reynolds (Re), 

Prandtl (Pr) and Richardson (Ri) numbers, the pressure drag coefficient (CDP) decreases as the 

value of fluid volume fraction (
f ) gradually increases from 

f = 0.70 to 0.99, irrespective of 

the value of the power-law index (n). As a consequence, the influences are greater in the region 

of lower fluid volume fraction (
f ) as compared to higher fluid volume fraction (

f ). For 

instance, for a fixed value of n = 0.4, Re = 1, Pr = 1 and Ri = 1, the CDP value is 80.3642 for 
f  

= 0.70 against the CDP value of 31.0422 of 
f = 0.80 and 10.2817 of 

f = 0.99, etc. (Table D1). 

The influence of Richardson number (Ri) on pressure drag coefficient (CDP) is also more 

stimulating and especially in the case of non-Newtonian mixed convection flow with the periodic 

geometry which consists a lot of complexity due to the varying fluid volume fraction (
f ). Due 

to the buoyancy effect, the pressure drag coefficient (CDP) varied significantly with the increased 

value of Richardson number. An increasing value of CDP can be observed with the increased 

value of Richardson number in Tables D1-D5. Further, at higher Prandtl number, the influence 

of Richardson number was found to be more prominent. For instance, for a fixed value of n = 

0.4, Pr = 1, 
f  = 0.70 and Re = 1, the CDP value is 80.3642 for Ri = 1 and 85.8542 for Ri = 2 

(Table D1). These CDP values were improved at higher Prandtl number. For instance, at n = 0.4, 

Pr = 50, the above CDP value was altered from 80.3642 to 89.6320 for Ri = 1 and 85.8542 to 

92.8105 for Ri = 2 (Table D1). Similarly, at maximum fluid volume fraction of 
f = 0.99 and at 

n = 0.4, Pr = 1, Re = 1, the CDP value was 10.2817 for Ri = 1 and 10.5701 for Ri = 2. These value 

again altered at higher Prandtl number of n = 0.4, Pr = 50. For instance, the CDP value is altered 

from 10.2817 to 15.3532 for Ri = 1 and from 10.5701 to 16.2882 for Ri = 2 under the identical 
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conditions. The above increase can be observed for all the values of n, Pr, Re and 
f  in Table 

D1-D5. This enhancement in CDP value revealed that as the Richardson number increases, the 

more mixing (buoyancy) takes place in the vicinity of periodic cylinders which further improves 

with the increased Prandtl number. Additionally, when compared with forced convection (Ri=0), 

the mixed convection provides more distortion in the vicinity of flow and therefore a sharper 

velocity gradient appears which gives rise to pressure drag coefficient (CDP).  

Additionally, the influence of Reynolds number and Prandtl number have play an 

important role in such a complex system. It can be seen in Table D1-D5, as the Reynolds number 

is increasing, the pressure drag coefficient (CDP) is decreasing accordingly irrespective of the 

other pertinent dimensionless parameters (n, 
f , Pr and Ri). Thus, a higher value of CDP can be 

seen at lower Reynolds number for any of the power law index (n), fluid volume fractions (
f ), 

Prandtl (Pr) and Richardson (Ri) numbers. For instance, for a fixed value of n = 0.4, 
f = 0.70, 

Pr = 1 and Ri = 1, the CDP value is 80.3642 for Re = 1, 44.2844 for Re = 2 and 20.8522 for Re = 

5, etc. This feature reveals that as the Reynolds number increases, the inertial forces are 

dominating over viscous forces and so the pressure drag coefficient (CDP) getting reduced. 

Further, in contrast to forced convection, where Prandtl number does not influence the drag 

coefficients, there is a significant influence of Prandtl number in the case of mixed convection 

(Ri>0). In Tables D1-D5, it can be seen that the value of pressure drag coefficient (CDP) increases 

as the Prandtl number increases. For instance, for a fixed value of n = 0.4, 
f = 0.70, Re = 1 and 

Ri = 1, the CDP value is 80.3642 for Pr = 1, 83.2135 for Pr = 10 and 89.6320 for Pr = 50, etc. 

Noticeably, the influence of Prandtl number (Pr) is seen to be less significant than that of the 

fluid volume fraction (
f ), Reynolds number (Re) or Richardson number (Ri).  

 

9.3.2 Friction drag coefficient (CDF) 

 

The dependence of friction drag coefficient (CDF) on dimensionless parameters (n,
f , 

Re, Pr and Ri) is also displayed in Table D1-D5. Similar to pressure drag coefficient (CDP), the 

friction drag coefficient (CDF) has shown a strong dependence on dimensionless parameters such 

as power-law index (n), fluid volume fraction (
f ), Reynolds number (Re), Prandtl number (Pr) 

and Richardson number (Ri). Here, again the dependence on the power-law index (n), fluid 

volume fraction (
f ) and Reynolds number (Re) is more prominent as compared to the Prandtl 

number (Pr) and or Richardson number (Ri). For a fixed value of fluid volume fraction (
f ), 

Reynolds number (Re), the Richardson number (Ri) and Prandtl number (Pr), the friction drag 
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coefficient (CDF) increases as the value of the power-law index (n) is slowly increased. For 

instance, an opposite trend can be seen in Table D1-D5 for both of the shear-thinning as well as 

shear-thickening fluids when compared with Newtonian fluids. The friction drag coefficient 

(CDF) of shear-thickening fluid is greater than the corresponding Newtonian value, whereas it is 

lower for the shear-thinning fluid. Similarly, for a fixed value of the power-law index (n), 

Reynolds number (Re), Prandtl number (Pr) and Richardson number (Ri), the friction drag 

coefficient (CDF) always decreases as the value of fluid volume fraction (
f ) is progressively 

increase from 
f = 0.70 to 0.99. As a consequence, the influences are greater in the region of 

lower fluid volume fraction (
f ) as compared to higher fluid volume fraction (

f ). Further, a 

significant role of buoyancy effect in terms of Richardson is seen here in the case of friction drag 

coefficient (CDF). An increasing value of CDF can be observed in Table D1-D5 as the Richardson 

number is increasing. Further, at higher Prandtl number, the influence of Richardson number is 

more prominent. For instance, for a fixed value of n = 0.4, Pr = 1, 
f = 0.70 and Re = 1, the CDF 

value is 44.8675 for Ri = 1 and 53.7376 for Ri = 2 (Table D1). These CDF values are improved 

at higher Prandtl number as such for instance, at Pr = 50, the above CDF value is altered from 

44.8675 to 49.1211 for Ri = 1 and from 53.7376 to 59.5200 for Ri = 2 under the identical 

conditions. Additionally, the dependence of friction drag coefficient (CDF) on Reynolds number 

and Prandtl number have been shown in Table D1-D5. Analogous to pressure drag coefficient 

(CDP), the friction drag coefficient (CDF) is decreasing as the Reynolds number is increasing. 

Thus a higher value of friction drag coefficient (CDF) can be seen at lower Reynolds number in 

any of the fluid volume fractions for a given n, Pr and Ri. As far as the influence of Prandtl 

number is concerned, a similar trend to pressure drag coefficient (CDP) can be seen in Table D1-

D5.  

 

9.3.3 Total drag coefficient (CD) 

 

Table D1-D5 shows the variations of total drag coefficient (CD) also on the pertinent 

dimensionless parameters (n,
f , Re, Pr and Ri). As can be observed in these tables, the total 

drag coefficient (CD) also exhibits the similar kind of dependence as that of pressure drag 

coefficient (CDP) and friction drag coefficient (CDF). So a strong dependence of total drag 

coefficient (CD) on above dimensionless parameters can be seen in Tables D1-D5. Further, as 

discussed earlier, the dependence on the power-law index (n) and fluid volume fraction (
f ) is 

more prominent than the other parameters. Additional efforts are made to develop a simple 

statistical correlation for the functional dependence of total drag coefficient over the governing 
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parameters (n, 
f , Pr, Re and Ri) based on the 432 data points for each of the n. The correlation 

is expressed by Eq. (9.1) as follows:  

                                        )Riexp(ReRiPranC ge

f

dcb

D   ;               (0.4 ≤ n ≤1.8)         (9.1) 

                                      and       
 




5

1i

i5

in , where α = a, b, c, d, e, g                  (9.2)                    

    

 The correlation coefficients and exponents (a, b, c, d, e and g) together with their statistical 

parameters are summarized in Table 9.2. The above correlation is developed by non-linear 

regression of the numerical data. The best fit of the current numerical data versus the correlation 

values of Eq. (9.1) is shown in Figs. 9.19 (a-b). The present numerical values show an excellent 

correspondence with the values predicted using Eq. 9.1. For instance, the above correlation has 

the average and maximum deviations of ~3.5% and ~8.25%, respectively for the 92% of the data 

points whereas the 5% of the data points have the average and maximum deviations of ~10.25 % 

and ~20.35%, respectively. Only 2% of the data points have the deviations within the 20 to 30%.  

 

Table 9.2: Correlation coefficients and exponents for total drag coefficient (CD) of Eq. (9.1)  

 CD 

α α1 α2 α3 α4 α5 

a 215.92 -930.82 1371.7 -799.28 158.42 

b -10.065 5.4714 62.159 -80.565 21.137 

c 0 0.0241 -0.0746 0.0454 0.0319 

d 0 0 -0.1052 0.1715 -0.0054 

e 0 0 1.2912 -0.2076 -5.9963 

g 0 0.1373 -0.6821 0.9191 -1.2128 

R2 0.9844 

 

 

Figure 9.19: Best fit of present numerical vs. correlation values for total drag coefficient (CD) (a) 

n = 0.4 and (b) n = 1.8 
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9.3.4 Influence of buoyancy parameter (Ri) 

 

Although, the influence of buoyancy parameter (Ri) on the drag coefficients has been discussed 

briefly earlier, perhaps, it is beneficial to delineate the influence of Ri on the individual and total 

drag coefficients. In view of above, Newtonian and non-Newtonian mixed convection values of 

drag coefficients have been normalized using the corresponding forced convection values (Ri = 

0) in the manner as defined in Chapter 8 (Section 8.3.4).  The normalized plots of pressure drag 

coefficient (CDP), friction drag coefficient (CDF) and total drag coefficient (CDP)  vs. fluid volume 

fraction (
f ) are shown in Figs. 9.20-9.22, respectively with the systematic variations of the 

power-law index (n), Reynolds number (Re),  Prandtl number (Pr) and Richardson number (Ri). 

An examination of these plots discloses that the similar pattern is being followed for each of the 

normalized values of CDP, CDF and/or CD. As expected, an opposite trend is seen for shear-

thinning fluids in contrast to the Newtonian as well as shear-thickening fluids. For shear-thinning 

fluids, the normalized values (XN) are decreased as the fluid volume fraction (
f ) is increased 

for all values of Pr, Re and Ri.  Further, these values are lower than Newtonian as well as shear-

thickening fluids. The above decrease is more significant for Re= 10 and 40 as compared to Re 

= 1 (Figs. 9.20-9.22). On the contrary, the normalized value (XN = CDP, CDF and/or CD) for 

Newtonian as well as shear-thickening fluids are increasing as the fluid volume fractions and the 

power-law index is increasing. So the lowest and the highest normalized values (XN) are observed 

in shear-thinning fluids and shear-thickening fluids, respectively (Figs. 9.20-9.22).  Furthermore, 

the influence of Ri is clearly visible in these plots. The solid and dashed lines represent the 

behavior at Ri = 1 and 2, respectively. A higher normalized value (XN) can be seen at Ri = 2 as 

compared to Ri = 1 for all the values of the power-law index, Reynolds number and Prandtl 

number. Additional information includes the unsteady behavior at a higher fluid volume fraction 

of 
f = 0.99. For instance, the behavior was observed to be unsteady for shear-thinning and 

Newtonian fluids at Re = 40 and 
f = 0.99 for all the values of Prandtl number (Pr = 1, 10 and 

50) and Richardson number (1 and 2) (Figs. 9.20-9.21). However, under the similar conditions, 

the behavior is steady for Re = 1 and 10. The unsteady behavior was found to be increased with 

an increase in Prandtl number. For instance, at Pr = 50, an unsteady behavior at 
f  = 0.96 and 

0.98 was also noticed for Re = 40. Moreover, Fig. 9.22 shows the normalized plot for total drag 

coefficients (CD) which includes the complete ranges of parameters studied herein. Both of the 

steady as well unsteady behaviors are exhibited for the total drag coefficients (CD) in a different 

way. Here, the influence of power-law index (n) and buoyancy parameter (Ri) is shown in the 
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plot which displays the dependence of normalized parameters. In summary, the normalized 

values of drag coefficients increase consistently for Newtonian as well as shear thickening fluids 

whereas decreases for shear-thinning fluids as the value of fluid volume fraction (
f ) increases 

irrespective of the values of Reynolds number (Re), Prandtl number (Pr) and Richardson number 

(Ri). Also, under the identical conditions, drag coefficients (CD, CDP and CDF) increase with 

increasing Richardson number (Ri). This behavior can generally be attributed to higher stresses 

owing to aiding buoyancy. Finally, qualitatively similar behavior has been observed for both of 

the individual and total drag coefficients. 

 

 

Figure 9.20: Dependence of normalized pressure drag coefficient (
N

DPC ) over the fluid volume 

fractions (
f = 0.70-0.99), power-law index (n = 0.4, 1and 1.8), Reynolds number (Re = 1, 10 

and 40), Richardson number (Ri = 1 and 2) and Prandtl number (Pr = 1, 10 and 50) 
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Figure 9.21: Variation of normalized friction drag coefficient (
N

DFC ) versus fluid volume 

fractions (
f ) over the surface of cylinders (C1 and C2) for power-law index (n = 0.4, 1and 1.8), 

Reynolds number (Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) and Prandtl number 

(Pr = 1, 10 and 50) 
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Figure 9.22: Variation of normalized total drag coefficient (
N

DC ) versus fluid volume fractions (

f ) over the surface of cylinders (C1 and C2) for power-law index (n = 0.4, 1 and 1.8), Reynolds 

number (Re = 1, 10 and 40), Richardson number (Ri = 1 and 2) and Prandtl number (Pr = 1, 10 

and 50) 

9.3.5 Average Nusselt number  
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shear-thickening fluids. The value of average Nusselt number is seen to be higher and lower for 

shear-thinning and shear thickening fluids, respectively than the corresponding Newtonian 

values. For instance, at a given value of 
f  = 0.70, Re = 1, Pr = 1 and Ri = 1, the average Nusselt 
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number was found to be 1.0110 for shear-thinning (n = 0.4) (Table E1) and 0.9255 for shear-

thickening (n = 1.8) fluids (Table E5). Of course, Newtonian value (Nu = 0.9518) lies in between 

these fluids under the identical conditions. The dependence of Nu on fluid volume fraction is 

also much interesting. For mixed convection of non-Newtonian case, an opposite dependence of 

Nu on 
f  was observed in contrast to forced convection, i.e., Nu increases with increasing

f , 

irrespective of the values of n, Re, Pr and Ri. In other words, heat transfer improved when the 

cylinders were gone away. This is exactly the opposite of forced convection case where the heat 

transfer improves when the cylinders come closer (Martin et al., 1998). Further, for a fixed value 

of the power-law index (n), the average Nusselt number (Nu) increases with increasing value of 

fluid volume fraction, Reynolds number, Prandtl number and buoyancy parameter (Ri). 

Additionally, the effect of n and 
f on Nu is more pronounced than either of Re, Pr or Ri. 

Additional improvement in heat transfer was observed due to the buoyancy parameter (Ri). An 

increased value of the average Nusselt number can be observed in Table E1-E5 for Ri = 2 as 

compared to Ri = 1. The reason for above enhancement is that as the buoyancy parameter (Ri) 

increases, the potential energy of the molecules increases which gives rise to mixing and finally 

heat transfer improves. This can be observed in isotherms also where the sharp and dense thermal 

gradients appear with the increase in Ri. Thus, the maximum value of the average Nusselt number 

was found to be about 26.9526 for n = 0.4, 
f  = 0.99 at Pr = 50, Re = 40 and Ri = 2, whereas 

the minimum value was about 0.9255 for n = 1.8, 
f  = 0.70 at Pr = 1, Re = 1and Ri = 1.    

The aforementioned behavior is further delineated by normalizing the average Nusselt number 

as shown in Fig. 9.23. It has also been normalized in a similar way as defined in Chapter 8 

(Section 8.3.4) corresponding to their forced convection values (Ri = 0). An examination of these 

plots (Fig. 9.23) discloses that the normalized values (NuN) are increasing with the corresponding 

increase in fluid volume fractions (
f ). This increase is more significant for Re= 10 and 40 as 

compared to Re = 1 for all the values of n,
f , Pr and Ri. Here, again the higher value of 

normalized Nu is seen for shear-thinning fluids than the corresponding Newtonian fluids, 

however, an opposite trend is seen for shear-thickening fluids. Additionally, the effect of 

buoyancy parameter (Ri) is clearly visible in the plots.  The solid and dashed lines represent the 

behavior at Ri = 1 and 2, respectively. A greater normalized value (NuN) can be seen at Ri = 2 as 

compared to Ri = 1 for all the values of Reynolds number as well as Prandtl number. Further 

information includes the unsteady behavior at a higher fluid volume fraction of 
f = 0.99. For 

f = 0.99, an unsteady behavior was observed above Re = 10 (i.e. at Re = 20 and 40) for the Pr 

= 1, 10 and Ri = 1, 2. Further, with the increased Pr, the unsteady behavior was found to be 
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increased. For instance, at Pr = 50, an unsteady behavior at 
f = 0.96 and 0.98 was also noticed. 

This behavior can generally be ascribed to higher stresses owing to aiding buoyancy and/or 

mixing.  

  

 

Figure 9.23: Variation of normalized average Nusselt number ( NNu ) vs. fluid volume fractions 

(
f ) for power-law index (n = 0.4, 1and 1.8), Reynolds number (Re = 1, 10 and 40), Richardson 

number (Ri = 1 and 2) and Prandtl number (Pr = 1, 10 and 50) 

 

Additional efforts have been made to develop a correlation for the average Nusselt number in 

terms of governing parameters (n,
f , Ri, Pr and Re). The statistical analysis of the results based 

on the 432 data points for each of the n, returned the following correlation for Nu:   
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The correlation coefficients and exponents (a, b, c, d, e, g and h) together with their statistical 

parameters are listed in Table 9.3. The best fit of the present numerical vs. the correlation values 

of Eq. (9.3) is shown in Fig. 9.24. An excellent agreement was found between the present 

numerical results and the predictions of Eq. (9.3) in Fig 9.24. For instance, this correlation has 

shown the average and maximum deviations within 2% and 6% respectively for 95% of the data 

points, whereas the deviations were within 7-16% for rest 4% of the data points.  

Table 9.3: Correlation coefficients and exponents for average Nusselt number (Nu) of Eq. 

(9.3) 

 Nu 

α α1 α2 α3 α4 α5 

a 11.2030 -49.5090 76.0990 -48.2481 11.9282 

b -8.8544 24.5430 -10.8830 -9.4621 4.0725 

c 0 0 0.0337 -0.1208 0.2503 

d -0.7516 3.0398 -4.1457 2.1912 0.0309 

e 1.3092 -5.6994 8.5555 -5.2031 2.1063 

g 0 0.1172 -0.3999 0.2914 0.3437 

h 0 1.5202 -6.0266 7.7396 -3.2833 

R2 0.9953 

 

Broadly speaking, in the case of mixed convection, an increase in Prandtl number, Reynolds 

number, shear-thinning behavior and fluid volume fractions enhances the rate of heat transfer 

and reduces the drag except Prandtl number as reported by many researchers (Duli et al., 1995; 

Gowda et al., 1998; Haldar, 2000; Fornarelli et al., 2016). Further, in the case of forced 

convection across periodic array of cylinders, the above feature has been reported (Zukauskas, 

1972, 1987a; Martin et al., 1998; Mandhani et al., 2002; Gamrat et al., 2008, etc.). In addition, 

some different characteristics which were found in this investigation are the influence of fluid 

volume fraction (
f ) and Prandtl number over the Nusselt numbers and drag coefficients, 

respectively. Firstly, as discussed above, an increase in Nusselt number was observed with the 

increasing value of fluid volume fractions (
f ) in the case of mixed convection. This is in 

contrast to forced convection where the opposite trend has been observed. This might happen 

because as the fluid volume fractions (
f ) increases, the fluids gets more time to distort and 

swirl in the increased vicinity of periodic cylinders, results the more heat transfer takes place. 

Secondly, an increase in individual and total drag coefficients was observed with the increase in 

Prandtl number. This is again in contrast to forced convection where the Prandtl number does 

not influence the flow characteristics such as individual and total drag coefficients.  
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Figure 9.24: Best fit of present numerical vs. correlation values for average Nusselt number (Nu) 

of (a) n=0.4 and (b) n=1.8 

 

In summary, the flow and heat transfer characteristics of non-Newtonian fluids across a 

periodic array of cylinders in cross-flow are seen to be influenced in an intricate manner with the 

power-law index (n), fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson 

(Ri) numbers. At high values of Re, the wake interferences are more prominent when the fluid 

volume fraction (
f ) is high. On the other hand, when the cylinders are sufficiently far away 

from each other i.e. maximum fluid volume fraction (
f = 0.99 ), no wake interference 

phenomena will occur and both cylinders would act individually as a single cylinder. Finally, it 

needs to be emphasized here that, while the periodic array of cylinders in square geometry has 

been considered, the interactions in the other types of arrangements, e.g., triangular, rectangular, 

hexagonal are also equally important depending upon the fluid volume fraction or porosity of the 

cylinders. Indeed, a satisfactory understanding of both types of interactions (in line or staggered) 

is desirable to develop sound design strategies for shell-and-tube heat exchangers, tubular 

modules of membranes, etc. Further, the idealized flow geometry considered can serve us a 

launching pad to undertake the modeling of multi-cylinder arrays as encountered in process 

equipment. 
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Chapter 10 

 

CONCLUSIONS AND SCOPE FOR FUTURE WORKS 

The forced and mixed convection flow and heat transfer characteristics of Newtonian and non-

Newtonian power-law fluids across the periodic array of circular cylinders have been 

investigated in a square geometrical configuration. Extensive numerical results have been 

obtained and presented with the systematic variations of pertinent dimensionless parameters (n,

f , Re, Pr and Ri). The impact of these parameters on the pressure coefficient, individual and 

total drag coefficients, local and average Nusselt numbers and the Colburn heat transfer factors, 

etc. have been examined and communicated. The qualitative features of flow and the thermal 

fields have been represented by the streamlines and isotherm profiles, respectively. The key 

findings of the various problems investigated herein are as follows: 

 

10.1 Forced convection flow and heat transfer characteristics of Newtonian fluids across 

periodic array of circular cylinders 

 

Fluid flow and heat transfer characteristics across the periodic array of circular cylinders have 

been examined to explore the influences of flow governing parameters (Re, Pr and
f ) on the 

local and global characteristics of flow and thermal parameters. The local flow phenomenon 

describes that the dense arrays offer high resistances to flow of fluids and hence sparse array is 

required to minimize the flow resistances. A strong dependence of drag coefficients on Reynolds 

number and fluid volume fraction was observed. The drag coefficients decrease gradually with 

increasing Re for all the value of fluid volume fractions. Further, a drastic reduction in drag 

coefficient was observed with increasing value of fluid volume fractions. Also, in the region of 

higher inertial flow, the pressure forces are dominating over friction forces. The isotherm patterns 

reveal that the increasing inertial effects enhance the rate of heat transfer due to the dense 

clustering of the isotherms near the cylinder surfaces. The dependence of fluid volume fractions 

on the average Nusselt number is more prominent than the Reynolds number. The relative heat 

transfer enhancement was approximately 47% between the minimum and maximum fluid 

volume fractions. Additionally, a statistical correlations for the drag coefficients as well as 

Nusselt number have been presented for the best utilization of the results in the design and 
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engineering analysis. Finally, the present results of drag coefficient and Nusselt number have 

been compared with available literature which displayed an excellent agreement.  

10.2 Forced convection momentum transfer characteristics of power-law fluids across   

periodic array of circular cylinders 

The steady flow of power-law fluids has been examined across the periodic array of 

circular cylinders to explore the momentum transfer characteristics. The effects of Reynolds 

number, fluid volume fractions and power-law index on the local and global characteristics of 

momentum transfer has been elaborated. The drag coefficient was always seen to increase with 

increase in power-law index over the range of 0.40 ≤ n ≤ 1.8 (i.e. decreasing shear-thinning or 

increasing shear-thickening behaviours). Further, with the increasing fluid volume fractions, the 

drag coefficients decreases rapidly, whereas, a gradual decrease was observed with the increasing 

value of Reynolds number. Also, in the region of higher inertial flow, the pressure forces are 

dominating over friction forces. The variation of the pressure coefficient on the surfaces of the 

cylinders with Reynolds number, fluid volume fraction and the power-law index has also been 

explained. Additionally, the results were used to develop the statistical correlations for the 

individual and total drag coefficients to give a further physical insight of the fluid behaviors. 

Finally, findings have been compared with scant available literature which displayed the 

excellent agreement  

 

10.3 Forced convection heat transfer characteristics of power-law fluids across periodic 

array of circular cylinders 
 

The flow and thermal energy equations have been solved to inculcate the dependence of 

heat transfer characteristics over the power-law index, fluid volume fraction, Reynolds and 

Prandtl numbers for the flow of power-law fluids across the periodic array of circular cylinders. 

The implications of frequently used constant temperature boundary condition on the thermal 

features have been investigated. The Nusselt number is greatly influenced by Re, Pr, n and
f . 

Particularly, the shear-thinning behavior improves the rate of heat transfer and the magnitude of 

improvement augments with the increasing value of Re and/or Pr and decreasing fluid volume 

fraction and the power-law index. In contrast, a reverse trend was observed for shear-thickening 

fluids under the alike situations. An enhancement of about 97% was noticed in the shear-thinning 

region between the extreme fluid volume fractions for the highest value of Pr and the lowest 

values of Re and n. Under the identical conditions, the enhancement was about 83% in the shear-

thickening region. However, in many cases, the enhancement was noticed even more than 100%. 

Overall, different levels of improvement in local and average Nusselt numbers were noticed 
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because of the shear-thinning and shear-thickening natures of the fluids. The results have been 

further used to develop the statistical correlations for average Nusselt number and the Colburn 

heat transfer factor to give additional physical insight of the fluid behaviors. Moreover the 

findings have been shown the good contrast with scant available literature. 

 

10.4 Aiding buoyancy mixed convection characteristics of Newtonian fluids across periodic 

array of circular cylinders 
 

 

The aiding buoyancy mixed convection features of Newtonian fluids have been examined across 

periodic array of circular cylinders. The flow and thermal characteristics have shown the strong 

dependence over the governing parameters (
f , Re, Pr and Ri). The streamline patterns have 

shown the non-monotonous behavior. Further, the pressure drag coefficient was dominating over 

friction drag coefficient for both of Richardson (Ri) as well as Prandtl (Pr) numbers, but the 

influences were found to be more prominent at lower Reynolds numbers and higher buoyancy 

parameter. The total drag coefficient was also seen to decrease with increase in Reynolds number 

and fluid volume fraction for the given value of Prandtl and Richardson numbers. The additional 

feature was found with the influence of Prandtl number on drag coefficient. Here, an increase in 

the drag coefficients was observed with the increasing value of Prandtl numbers for the case 

mixed convection (Ri > 0) which is opposite to forced convection (Ri = 0) where Prandtl number 

does not influence the drag coefficient. The denser isotherm patterns at higher Reynolds and 

Prandtl numbers suggested an improvement in the rate of heat transfer. The average Nusselt 

number was observed to be increased with the increasing value of
f , Re, Pr and Ri. 

Additionally, aiding buoyancy enhances both of the flow and thermal parameters in the vicinity 

of periodic cylinders. An unsteady behavior was also observed at higher Re and 
f for all the 

values of Pr. Moreover, a statistical correlation for the drag coefficients and average Nusselt 

numbers was developed for gaining the more physical insights of the results. Lastly, the findings 

were compared with the scant available literature which displayed a good agreement with the 

present results. 

 

10.5 Aiding buoyancy mixed convection characteristics of power-law fluids across periodic 

array of circular cylinders 

  

The mixed convection flow and heat transfer characteristics of power-law fluids have been 

investigated across the periodic array of circular cylinders numerically for a wide range of 

governing parameters (n, 
f , Re, Pr and Ri) under the aiding buoyancy conditions. The 

influences of these parameters over the streamlines, pressure coefficient, isotherm patterns and 
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individual and total drag coefficients, local and average Nusselt number were explored and 

presented. The local flow phenomenon (streamlines, pressure coefficient and isotherm patterns) 

describes that the dense arrays offer higher resistances to flow of fluids and hence sparse array 

is required to minimize the flow resistances. Further, the drag coefficients decrease gradually 

with increasing value of Re for all the values of fluid volume fractions and power-law index. 

However, an increase in drag coefficients was observed with increasing value of Prandtl number 

in the mixed convection (Ri > 0) case as opposed to forced convection cases (Ri = 0).  

The isotherm patterns reveal that the increasing inertial effects enhance the rate of heat transfer 

due to the dense clustering of the isotherms near the cylinder surfaces. The average Nusselt 

number was observed to be increased with the increasing values of
f , Re, Pr and Ri and 

decreasing value of n (i.e., increasing shear-thinning behavior). A transient behavior was 

observed for both of the drag coefficients as well as average Nusselt number at higher fluid 

volume fractions and Reynolds numbers. Additionally, aiding buoyancy, enhances both of the 

flow and thermal parameters in the vicinity of periodic cylinders. Moreover, a statistical 

correlations for the drag coefficients and average Nusselt numbers are developed for gaining the 

more physical insights of the results.  

 

10.6  Scope for future works   

 

The present work has contributed to the numerical understanding of the two-dimensional laminar 

flow and thermal characteristics of incompressible Newtonian and non-Newtonian fluids across 

a periodic array of circular cylinders in a square geometry for a wide ranges of engineering 

parameters and specially the fluid volume fraction and/or porosity of the cylinders. To gain more 

physical insights in different aspects of the present area, the following suggestions and 

recommendations are made for the future course of work; 

 It needs to be emphasized here that, while the periodic array of cylinders in square 

geometry has been considered here, the interactions in the other types of arrangements 

such as triangular, rectangular, hexagonal etc. can be studied. 

 In present studies, only in-line arrangements have been considered. The staggered 

configurations are also equally important and can be studied separately for the different 

aspects of the flow and heat transfer parameters.  

 The non-Newtonian mixed convection flow and heat transfer characteristics across a 

periodic array of circular cylinders and/or over tube banks are almost negligible and can 

be studied extensively. 
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 The present work is limited to 2-D flow of Newtonian and power-law fluids. This study 

can be extended for 3-D flow also. Further, the other non-Newtonian models such as 

Carreau and Ellis models can be used to explore the different behaviors. 
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APPENDIX-A 

Non-Newtonian Forced Convection Data for Drag Coefficients  

 

Table A1: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fractions (
f ), power-law index (n) and Reynolds number (Re) 
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14.7258 

7.4402 

3.1247 

1.6975 

1.1012 

0.6134 

11.9795 

6.0589 

2.5624 

1.6029 

0.3963 

0.4996 

9.5731 

4.8620 

2.0705 

1.2794 

0.7177 

0.4007 

8.4567 

4.3188 

1.7102 

0.9817 

0.5674 

0.3020 

5.9120 

3.3795 

1.4651 

0.8091 

0.4566 

0.2590 

5.7344 

2.9474 

1.2927 

0.7182 

0.4065 

0.2300 

4.4852 

2.5039 

1.1148 

0.6243 

0.3549 

0.2017 

3.8192 

2.0254 

0.9250 

0.5216 

0.2983 

0.1710 

3.1713 

1.7035 

0.7876 

0.4529 

0.2648 

0.1519 

1.0 

1 

2 

5 

10 

20 

40 

71.0562 

35.6386 

14.9532 

7.9041 

4.3985 

2.4904 

43.4821 

22.0360 

9.1417 

4.9473 

2.7792 

1.5468 

25.5881 

13.0071 

5.4966 

3.0451 

1.7264 

0.9533 

16.4529 

8.2438 

3.5525 

2.0541 

1.1188 

0.6284 

12.9038 

6.5553 

2.8293 

1.5790 

0.8918 

0.4990 

9.9281 

5.0672 

2.2097 

1.2363 

0.7009 

0.3924 

7.5446 

3.8252 

1.6854 

0.9459 

0.5383 

0.3020 

5.7412 

2.9731 

1.3250 

0.7546 

0.4257 

0.2398 

4.8105 

2.5163 

1.1358 

0.6408 

0.3665 

0.2019 

3.8755 

2.0616 

0.9375 

0.5334 

0.3068 

0.1747 

2.8971 

1.5693 

0.7261 

0.4136 

0.2407 

0.1380 

2.3332 

1.2822 

0.6015 

0.3453 

0.1995 

0.1148 

1.4 

1 

2 

5 

10 

20 

40 

92.9915 

45.6162 

18.5012 

9.7825 

5.4712 

3.1556 

49.5865 

24.9236 

10.3218 

5.6266 

3.2134 

1.8423 

26.4478 

13.3640 

5.6962 

3.2334 

1.8510 

1.0514 

19.7852 

10.1816 

4.7223 

2.9130 

1.6948 

0.9576 

13.9975 

7.2024 

3.2902 

1.9460 

1.1326 

0.6466 

10.2226 

5.3146 

2.4816 

1.4678 

0.8562 

0.4884 

7.2736 

3.8240 

1.8170 

1.0720 

0.6290 

0.3372 

4.3948 

2.3414 

1.1048 

0.6406 

0.3704 

0.2098 

3.4628 

1.8812 

0.8921 

0.5175 

0.3002 

0.1702 

2.5980 

1.4402 

0.6845 

0.3915 

0.2308 

0.1308 

1.7720 

0.9867 

0.4708 

0.2729 

0.1586 

0.0914 

1.2814 

0.7109 

0.3403 

0.1982 

0.1143 

0.0669 

1.8 

1 

2 

5 

10 

20 

40 

116.8942 

58.5698 

23.7590 

12.3700 

6.8431 

3.9972 

57.1925 

28.7997 

11.9145 

6.4280 

3.7524 

2.1978 

27.5807 

13.9414 

5.9912 

3.4614 

2.0330 

1.3118 

21.1817 

10.9712 

5.2855 

3.3554 

1.9634 

1.1734 

15.3020 

7.5436 

3.6046 

2.2015 

1.2968 

0.7478 

11.8107 

5.6758 

2.5670 

1.4026 

0.8248 

0.5744 

7.6601 

3.8012 

1.6560 

0.9989 

0.5875 

0.3586 

3.4426 

1.9124 

0.9497 

0.5614 

0.3264 

0.1855 

2.5789 

1.4670 

0.7243 

0.4275 

0.2492 

0.1418 

1.8289 

1.0468 

0.5140 

0.3026 

0.1769 

0.1010 

1.1142 

0.6362 

0.3109 

0.1825 

0.1067 

0.0618 

0.7267 

0.4091 

0.1993 

0.1167 

0.0657 

0.0454 

C
D

F
 

                             

0.4 

1 

2 

5 

10 

20 

40 

12.7656 

6.3573 

2.2901 

1.3606 

0.5680 

0.2518 

10.0034 

5.1368 

1.9905 

1.0232 

0.4876 

0.2130 

8.7959 

4.3611 

1.7535 

0.8812 

0.4443 

0.1851 

7.7818 

3.7590 

1.5599 

0.7801 

0.3531 

0.1598 

7.1438 

3.5899 

1.3314 

0.6230 

0.3510 

0.1680 

6.0411 

3.3689 

1.1970 

0.6205 

0.3182 

0.1105 

5.8575 

2.8874 

1.0923 

0.6203 

0.3176 

0.1255 

5.6696 

2.7696 

1.2383 

0.6098 

0.2918 

0.1254 

5.2976 

2.7298 

1.1382 

0.5790 

0.2826 

0.1279 

4.5073 

2.2892 

1.1964 

0.5775 

0.2551 

0.1119 

3.7170 

2.0998 

0.8754 

0.4392 

0.2241 

0.1022 

3.8046 

1.9892 

0.8595 

0.4112 

0.2153 

0.0944 

0.6 

1 

2 

5 

10 

20 

40 

27.7404 

13.8791 

5.5687 

2.7948 

1.3730 

0.6282 

22.9263 

11.4782 

4.6248 

2.3384 

1.1548 

0.5247 

18.5592 

9.3084 

3.7702 

1.9208 

0.9532 

0.4366 

11.1030 

5.5812 

1.6822 

1.0795 

0.5198 

0.2388 

9.6102 

4.8061 

1.9965 

0.9772 

0.4767 

0.2221 

7.4833 

3.6368 

1.5091 

0.7419 

0.4367 

0.2049 

6.4515 

3.4138 

1.2806 

0.6746 

0.3262 

0.1566 

6.1570 

3.0418 

1.2871 

0.6122 

0.3168 

0.1388 

5.2592 

2.7099 

1.1064 

0.5492 

0.2671 

0.1267 

4.3124 

2.2102 

0.9742 

0.4864 

0.2381 

0.1089 

3.4791 

2.0190 

0.8260 

0.4189 

0.2063 

0.0989 

3.8047 

1.9733 

0.8097 

0.4088 

0.1971 

0.0928 

0.8 

1 

2 

5 

10 

20 

40 

48.4987 

24.2452 

9.6890 

4.8161 

2.3395 

1.0914 

38.2438 

19.1239 

7.6462 

3.8062 

1.8435 

0.8564 

23.9502 

11.9751 

4.7910 

2.3882 

1.1572 

0.5368 

13.6871 

6.8556 

2.7476 

1.3704 

0.7761 

0.3604 

11.1529 

5.5823 

2.2406 

1.2819 

0.6245 

0.2904 

8.9106 

4.4702 

1.7975 

1.0132 

0.4944 

0.2307 

6.5006 

3.4960 

1.4090 

0.7043 

0.3443 

0.1614 

6.2330 

3.0788 

1.3152 

0.6435 

0.3053 

0.1440 

5.2011 

2.6434 

1.0825 

0.5432 

0.2667 

0.1256 

4.0356 

1.9127 

0.9189 

0.4033 

0.2284 

0.1014 

3.4019 

1.7787 

0.7429 

0.3764 

0.1070 

0.0901 

2.8712 

1.4857 

0.6252 

0.3237 

0.1644 

0.0797 

1.0 

1 

2 

5 

10 

20 

40 

73.6701 

36.8435 

14.3575 

7.1772 

3.5236 

1.6769 

44.1688 

22.0939 

8.8812 

4.4665 

2.1309 

1.0309 

26.4367 

13.2774 

5.3578 

2.7085 

1.3348 

0.6241 

17.0605 

8.5102 

3.4527 

1.7745 

0.8569 

0.4045 

13.3938 

6.7195 

2.7270 

1.3787 

0.6758 

0.3182 

10.3209 

5.1871 

2.1132 

1.0685 

0.5251 

0.2472 

7.7389 

3.8983 

1.5945 

0.8067 

0.3972 

0.1874 

5.9606 

3.0134 

1.2392 

0.6272 

0.3094 

0.1463 

4.9723 

2.5195 

1.0447 

0.5297 

0.2615 

0.1244 

3.9821 

2.0448 

0.8498 

0.4329 

0.2148 

0.1025 

2.9296 

1.5168 

0.6407 

0.3277 

0.1652 

0.0792 

2.3693 

1.2428 

0.5298 

0.2726 

0.1365 

0.0661 

1.4 

1 

2 

5 

10 

20 

40 

101.8366 

50.9518 

20.4624 

10.3063 

5.1556 

2.5308 

58.1354 

29.1088 

11.7492 

5.9651 

2.9782 

1.4544 

32.0279 

16.0638 

6.5430 

3.3620 

1.6720 

0.8115 

24.5932 

12.5005 

5.4238 

2.9867 

1.5044 

0.7244 

17.4674 

8.8446 

3.7380 

1.9683 

0.9904 

0.4814 

12.8097 

6.5232 

2.7878 

1.4658 

0.7374 

0.3574 

9.1298 

4.6742 

2.0156 

1.0558 

0.5295 

0.2562 

5.5020 

2.8354 

1.2075 

0.6204 

0.3075 

0.1468 

4.3057 

2.2484 

0.9594 

0.4916 

0.2437 

0.1156 

3.1832 

1.6894 

0.7214 

0.3620 

0.1828 

0.0859 

2.1044 

1.1188 

0.4782 

0.2445 

0.1210 

0.0577 

1.5229 

0.8033 

0.3448 

0.1774 

0.0871 

0.0423 

1.8 

1 

2 

5 

10 

20 

40 

144.6101 

72.3536 

29.0660 

14.6734 

7.4273 

3.7270 

75.2704 

37.7886 

15.3359 

7.8472 

3.9897 

1.9994 

38.1029 

19.1198 

7.8534 

4.0930 

2.0810 

1.0350 

30.3448 

15.4974 

6.9156 

3.8706 

1.9770 

1.1258 

22.0489 

10.6630 

4.6398 

2.4916 

1.2695 

0.6288 

17.1148 

8.0096 

3.2475 

1.5598 

0.7908 

0.3900 

11.1138 

5.3224 

2.0574 

1.0902 

0.5504 

0.2702 

4.9665 

2.6360 

1.1569 

0.5988 

0.2974 

0.1440 

3.6749 

1.9830 

0.8632 

0.4442 

0.2198 

0.1056 

2.5512 

1.3814 

0.5952 

0.3044 

0.1499 

0.0714 

1.4902 

0.8012 

0.3424 

0.1738 

0.0850 

0.0403 

0.9509 

0.5091 

0.2165 

0.1096 

0.0512 

0.0247 
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Table A1 ( Continued) 
 

 n f  0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 

C
D
 

                   c 

0.4 

1 

2 

5 

10 

20 

40 

31.9253 

15.8474 

5.4310 

3.5768 

1.5534 

0.7640 

23.8300 

12.1795 

4.7156 

2.5537 

1.3436 

0.6682 

21.3715 

10.4701 

4.3251 

2.2788 

1.2268 

0.6158 

18.7602 

8.9222 

3.8355 

2.0696 

1.0699 

0.5612 

17.1680 

8.6604 

3.3979 

1.8528 

1.0003 

0.5086 

14.3249 

7.9593 

2.9942 

1.6721 

0.9055 

0.4388 

13.9556 

6.8657 

2.7131 

1.6548 

0.8984 

0.4163 

13.0198 

6.7386 

3.3828 

1.5501 

0.7921 

0.3975 

12.6776 

6.5626 

2.9488 

1.5100 

0.7722 

0.3895 

11.3378 

5.7507 

3.4424 

1.4384 

0.7328 

0.3707 

10.2188 

5.4193 

2.3797 

1.2716 

0.6966 

0.3421 

9.5401 

5.1865 

2.3083 

1.2345 

0.6254 

0.3044 

0.6 

1 

2 

5 

10 

20 

40 

61.7689 

30.9534 

12.5613 

6.5116 

3.4478 

1.7918 

61.7689 

30.9534 

12.5613 

6.5116 

3.4478 

1.7918 

41.2035 

20.7102 

8.545 

4.5266 

2.4240 

1.2596 

24.7902 

12.5584 

4.6303 

2.5559 

1.3295 

0.693 

21.5600 

10.8410 

4.0360 

2.3332 

1.2331 

0.6483 

16.6917 

8.4390 

3.4614 

1.8459 

1.1364 

0.5514 

14.7249 

7.6510 

2.9558 

1.6347 

0.8880 

0.4538 

12.7662 

6.6988 

2.9229 

1.4965 

0.7885 

0.4146 

11.8521 

6.1985 

2.5939 

1.3601 

0.7202 

0.3816 

9.7321 

5.0898 

2.3079 

1.2216 

0.6523 

0.343 

8.8224 

4.6662 

2.0574 

1.0791 

0.5803 

0.3121 

7.0941 

4.5897 

2.0096 

1.0578 

0.5999 

0.2985 

0.8 

1 

2 

5 

10 

20 

40 

102.2655 

51.1954 

20.6806 

10.6087 

5.5363 

2.8876 

79.9318 

40.0626 

16.2570 

8.4037 

4.3851 

2.2780 

49.8091 

24.9935 

10.1981 

5.3086 

2.7756 

1.4391 

28.4129 

14.2958 

5.8723 

3.0679 

1.8773 

0.9738 

23.1324 

11.6412 

4.8030 

2.8848 

1.0208 

0.7900 

18.4837 

9.3322 

3.8680 

2.2926 

1.2121 

0.6314 

14.9573 

7.8148 

3.1192 

1.6860 

0.9117 

0.4634 

12.1450 

6.4583 

2.7803 

1.4526 

0.7619 

0.4030 

10.9355 

5.5908 

2.3752 

1.2614 

0.6732 

0.3556 

8.5208 

4.4166 

2.0337 

1.0276 

0.5833 

0.3031 

7.2211 

3.8041 

1.6679 

0.8980 

0.4053 

0.2611 

6.0425 

3.1892 

1.4128 

0.7766 

0.4292 

0.2316 

1.0 

1 

2 

5 

10 

20 

40 

144.7263 

72.4821 

29.3107 

15.0813 

7.9221 

4.1673 

87.6509 

44.1299 

18.0229 

9.4138 

4.9101 

2.5777 

52.0248 

26.2845 

10.8544 

5.7536 

3.0612 

1.5774 

33.5134 

16.7540 

7.0052 

3.8286 

1.9757 

1.0329 

26.2976 

13.2748 

5.5563 

2.9577 

1.5676 

0.8172 

20.2490 

10.2543 

4.3229 

2.3048 

1.2260 

0.6396 

15.2835 

7.7235 

3.2799 

1.7526 

0.9355 

0.4894 

11.7018 

5.9865 

2.5642 

1.3818 

0.7351 

0.3861 

9.7828 

5.0358 

2.1805 

1.1705 

0.6280 

0.3263 

7.8576 

4.1064 

1.7873 

0.9663 

0.5216 

0.2772 

5.8267 

3.0861 

1.3668 

0.7413 

0.4059 

0.2172 

4.7025 

2.5250 

1.1313 

0.6179 

0.3360 

0.1809 

1.4 

1 

2 

5 

10 

20 

40 

194.8281 

96.5680 

38.9636 

20.0888 

10.6268 

5.6864 

107.7219 

54.0324 

22.0710 

11.5917 

6.1916 

3.2967 

58.4757 

29.4278 

12.2392 

6.5954 

3.5230 

1.8629 

44.3784 

22.6821 

10.1461 

5.8997 

3.1992 

1.6820 

31.4649 

16.0470 

7.0282 

3.9143 

2.1230 

1.1280 

23.0323 

11.8378 

5.2694 

2.9336 

1.5936 

0.8458 

16.4034 

8.4982 

3.8326 

2.1278 

1.1585 

0.5934 

9.8968 

5.1768 

2.3123 

1.2610 

0.6779 

0.3566 

7.7685 

4.1296 

1.8515 

1.0091 

0.5439 

0.2858 

5.7812 

3.1296 

1.4059 

0.7535 

0.4136 

0.2167 

3.8764 

2.1055 

0.9490 

0.5174 

0.2796 

0.1491 

2.8043 

1.5142 

0.6851 

0.3756 

0.2014 

0.1092 

1.8 

1 

2 

5 

10 

20 

40 

261.5043 

130.9234 

52.8250 

27.0434 

14.2704 

7.7242 

132.4629 

66.5883 

27.2504 

14.2752 

7.7421 

4.1972 

65.6836 

33.0612 

13.8446 

7.5544 

4.1140 

2.3468 

51.5265 

26.4686 

12.2011 

7.2260 

3.9404 

2.2992 

37.3509 

18.2066 

8.2444 

4.6931 

2.5663 

1.3766 

28.9255 

13.6854 

5.8145 

2.9624 

1.6156 

0.9644 

18.7739 

9.1236 

3.7134 

2.0891 

1.1379 

0.6288 

8.4091 

4.5484 

2.1066 

1.1602 

0.6238 

0.3295 

6.2538 

3.4500 

1.5875 

0.8717 

0.4690 

0.2474 

4.3801 

2.4282 

1.1092 

0.6070 

0.3268 

0.1724 

2.6044 

1.4374 

0.6533 

0.3563 

0.1917 

0.1021 

1.6776 

0.9182 

0.4158 

0.2263 

0.1169 

0.0701 
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APPENDIX-B 
Non-Newtonian Forced Convection Data for Average Nusselt Number (Nu) 

Table B1: Dependence of average Nusselt number (Nu) on the power-law index (n), fluid 

volume fractions (
f ) and Reynolds number (Re) at Pr = 1 and 5   

 

Pr n 
f  0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 

1 

0.4 

Re↓ 

1 

2 

5 

10 

20 

40 

 

2.2128 

2.4294 

2.8137 

3.1591 

3.6028 

4.2372 

 

2.1276 

2.3884 

2.6132 

2.8076 

3.4055 

3.9223 

 

1.9814 

2.1526 

2.5684 

2.7617 

3.2606 

3.7193 

 

1.9506 

2.1036 

2.4732 

2.7161 

2.9870 

3.2398 

 

1.9117 

2.0577 

2.4232 

2.6363 

2.9213 

3.0497 

 

1.8919 

1.9622 

2.3842 

2.5131 

2.8836 

2.9824 

 

1.8161 

1.8924 

2.2020 

2.4094 

2.5846 

2.8295 

 

1.7767 

1.8605 

2.1652 

2.3218 

2.5221 

2.7750 

 

1.6257 

1.7832 

1.9824 

2.2094 

2.4382 

2.6148 

 

1.5448 

1.6221 

1.8432 

1.9875 

2.1244 

2.2774 

 

1.4804 

1.5834 

1.6938 

1.8626 

2.0082 

2.1628 

1.3256 

1.4781 

1.6454 

1.7846 

1.9416 

2.1198 

0.6 

1 

2 

5 

10 

20 

40 

2.1644 

2.3328 

2.7787 

3.0248 

3.3986 

3.9206 

1.9985 

2.3062 

2.5691 

2.7519 

3.2450 

3.6342 

1.9492 

2.0965 

2.4908 

2.6524 

3.0343 

3.3254 

1.8642 

2.0548 

2.4163 

2.5748 

2.8350 

3.1667 

1.8045 

1.9452 

2.3738 

2.4748 

2.7257 

2.9334 

1.7552 

1.8597 

2.2991 

2.4712 

2.6086 

2.8794 

1.6946 

1.8016 

2.1002 

2.3272 

2.4862 

2.6578 

1.6482 

1.7586 

2.0531 

2.2512 

2.4264 

2.5432 

1.5631 

1.6541 

1.8954 

2.0724 

2.2181 

2.3482 

1.5092 

1.5692 

1.7836 

1.9378 

2.0697 

2.1860 

1.4487 

1.5243 

1.6357 

1.7824 

1.9020 

2.0070 

1.3045 

1.4269 

1.6054 

1.7148 

1.8245 

1.9194 

0.8 

1 

2 

5 

10 

20 

40 

2.1281 

2.2861 

2.7328 

2.9625 

3.3584 

3.8620 

1.9539 

2.2484 

2.4818 

2.7123 

3.2002 

3.5770 

1.9076 

1.9782 

2.4217 

2.6215 

2.9876 

3.2705 

1.8079 

1.9574 

2.3273 

2.5110 

2.7877 

3.0144 

1.7488 

1.8441 

2.3096 

2.4398 

2.6788 

2.8823 

1.7091 

1.8195 

2.2046 

2.3850 

2.5695 

2.7732 

1.6419 

1.7561 

2.0240 

2.2597 

2.4385 

2.6002 

1.6088 

1.6869 

1.9743 

2.1817 

2.3573 

2.4803 

1.5237 

1.5864 

1.8634 

2.0295 

2.1664 

2.2928 

1.4518 

1.5070 

1.7460 

1.8889 

2.0114 

2.1244 

1.3985 

1.4932 

1.5901 

1.7161 

1.8298 

1.9344 

1.2769 

1.3848 

1.5678 

1.6972 

1.7998 

1.8876 

1 

1 

2 

5 

10 

20 

40 

2.1025 

2.3845 

2.6714 

2.8668 

3.3300 

3.8215 

1.9249 

2.1856 

2.4398 

2.6735 

3.1680 

3.5363 

1.8572 

1.9183 

2.3477 

2.5987 

2.9609 

3.2362 

1.7764 

1.8852 

2.2812 

2.4868 

2.7535 

2.9778 

1.6768 

1.8126 

2.2129 

2.4138 

2.6457 

2.8490 

1.6635 

1.7558 

2.1567 

2.3282 

2.5283 

2.7107 

1.6131 

1.6982 

2.0048 

2.2316 

2.4049 

2.5675 

1.5537 

1.6241 

1.9326 

2.1222 

2.2728 

2.4142 

1.4656 

1.5490 

1.8384 

1.9972 

2.1295 

2.2558 

1.4008 

1.4858 

1.7152 

1.8511 

1.9703 

2.0830 

1.3610 

1.4560 

1.5423 

1.6650 

1.7795 

1.9028 

1.2346 

1.3637 

1.4331 

1.6520 

1.7607 

1.8404 

1.4 

1 

2 

5 

10 

20 

40 

1.7028 

1.7597 

2.2574 

2.7474 

3.2956 

3.7696 

1.6561 

1.7319 

2.2022 

2.6474 

3.1276 

3.4870 

1.6083 

1.6933 

2.1504 

2.5622 

2.9164 

3.1879 

1.5298 

1.6433 

2.0915 

2.4514 

2.7127 

2.9406 

1.4419 

1.5973 

2.0687 

2.3773 

2.6030 

2.7809 

1.3976 

1.5424 

2.0302 

2.2902 

2.4857 

2.6747 

1.3472 

1.6074 

1.9559 

2.1921 

2.3615 

2.5024 

1.3037 

1.5562 

1.9006 

2.0807 

2.2277 

2.3802 

1.2614 

1.5096 

1.8035 

1.9530 

2.0817 

2.2137 

1.2411 

1.4622 

1.6780 

1.7906 

1.9183 

2.0265 

1.1949 

1.3371 

1.5021 

1.6121 

1.7171 

1.8188 

0.7667 

0.9270 

0.9978 

1.1021 

1.1792 

1.2822 

1.8 

1 

2 

5 

10 

20 

40 

1.0941 

1.2505 

1.8974 

2.6378 

3.2792 

3.7374 

1.0034 

1.2087 

1.4016 

2.1920 

2.6412 

3.6046 

0.9858 

1.1631 

1.3788 

1.5038 

1.9426 

2.0769 

0.9552 

1.1254 

1.3304 

1.4723 

1.6587 

1.9871 

0.9212 

1.1055 

1.2013 

1.2648 

1.6227 

1.9096 

0.8911 

1.0537 

1.1688 

1.3419 

1.5902 

1.8663 

0.8576 

0.9992 

1.1887 

1.3055 

1.5574 

1.8269 

0.8139 

0.9669 

1.1152 

1.2744 

1.5176 

1.7677 

0.7786 

0.9323 

1.0820 

1.2459 

1.4831 

1.6828 

0.7563 

0.9099 

1.0309 

1.2289 

1.4115 

1.5629 

0.7236 

0.8725 

1.0115 

1.1514 

1.2749 

1.3840 

0.7195 

0.8484 

0.9622 

1.0683 

1.1268 

1.2240 

 

0.4 

1 

2 

5 

10 

20 

40 

2.5921 

2.8772 

3.6638 

4.2923 

4.6895 

5.0703 

2.5034 

2.8065 

3.3981 

3.7783 

4.1236 

4.2715 

2.4107 

2.7645 

3.1507 

3.4257 

3.8589 

3.8224 

2.3568 

2.6582 

2.9435 

3.1621 

3.4222 

3.5152 

2.3115 

2.6016 

2.9182 

3.0300 

3.3742 

3.4579 

2.2587 

2.5194 

2.9539 

3.1264 

3.2852 

3.2765 

2.2001 

2.3694 

2.5913 

2.8001 

2.9319 

2.9914 

2.1566 

2.2764 

2.5315 

2.5919 

2.7067 

2.8953 

2.0544 

2.1220 

2.3761 

2.5134 

2.6243 

2.8195 

1.9051 

1.9878 

2.1202 

2.2527 

2.3139 

2.4914 

1.6617 

1.7976 

2.0230 

2.1868 

2.2646 

2.3765 

1.5055 

1.6597 

1.9598 

2.1546 

2.2260 

2.3295 

0.6 

1 

2 

5 

10 

20 

40 

2.5272 

2.8181 

3.5958 

4.0220 

4.3043 

4.5939 

2.4673 

2.7628 

3.3789 

3.6798 

3.8948 

4.1499 

2.3382 

2.7042 

3.1159 

3.3297 

3.5027 

3.7265 

2.2489 

2.5812 

2.8975 

3.0474 

3.1905 

3.4322 

2.2042 

2.5436 

2.7709 

2.9093 

3.0502 

3.3452 

2.1816 

2.4388 

2.6357 

2.7674 

2.8991 

3.1543 

2.1059 

2.2895 

2.5065 

2.6262 

2.7489 

2.9129 

1.9960 

2.1724 

2.3729 

2.4835 

2.5968 

2.7944 

1.9878 

2.0638 

2.2343 

2.3394 

2.4435 

2.6717 

1.8703 

1.9365 

2.0900 

2.1940 

2.2899 

2.3943 

1.6179 

1.7630 

1.9357 

2.0505 

2.1376 

2.2182 

1.4743 

1.6182 

1.8513 

1.9663 

2.0712 

2.1559 

0.8 

1 

2 

5 

10 

20 

40 

2.4507 

2.7871 

3.5576 

3.9633 

4.2302 

4.5196 

2.4095 

2.7298 

3.3372 

3.6198 

3.8300 

4.0878 

2.2712 

2.6660 

3.0722 

3.2634 

3.4434 

3.6764 

2.1648 

2.5156 

2.8395 

2.9938 

3.1440 

3.3988 

2.1492 

2.4732 

2.7187 

2.8557 

2.9966 

3.2523 

2.0944 

2.3764 

2.5920 

2.7156 

2.8471 

3.1088 

2.0231 

2.2590 

2.4624 

2.5755 

2.6977 

2.8731 

1.9525 

2.1491 

2.3277 

2.4328 

2.5452 

2.7515 

1.8597 

2.0247 

2.1864 

2.2860 

2.3891 

2.5772 

1.7819 

1.8816 

2.0354 

2.1328 

2.2266 

2.3418 

1.5742 

1.7078 

1.8686 

1.9567 

2.0549 

2.1467 

1.4519 

1.5875 

1.7547 

1.8672 

1.9671 

2.0489 

1 

1 

2 

5 

10 

20 

40 

2.4095 

2.7427 

3.5332 

3.8257 

4.1817 

4.4702 

2.3372 

2.6829 

3.3109 

3.5797 

3.7879 

4.0475 

2.2162 

2.6106 

3.0433 

3.2378 

3.4287 

3.6459 

2.1118 

2.4953 

2.8092 

2.9570 

3.1156 

3.3356 

2.0940 

2.4285 

2.6883 

2.8199 

2.9673 

3.1825 

2.0579 

2.3348 

2.5612 

2.6808 

2.8184 

3.0218 

2.0048 

2.2357 

2.4322 

2.5409 

2.6691 

2.8577 

1.9320 

2.1237 

2.2951 

2.3977 

2.5160 

2.6840 

1.7085 

1.8481 

1.9954 

2.0901 

2.1883 

2.3148 

1.8361 

1.9960 

2.1494 

2.2487 

2.3574 

2.5040 

1.5333 

1.6612 

1.8098 

1.9118 

2.0022 

2.1043 

1.4217 

1.5476 

1.7047 

1.8067 

1.8974 

1.9878 

1.4 

1 

2 

5 

10 

20 

40 

2.2052 

2.6952 

3.5054 

3.7884 

4.1206 

4.4047 

2.1221 

2.6626 

3.2791 

3.5337 

3.7373 

3.9973 

2.0877 

2.5879 

3.0076 

3.1847 

3.3708 

3.6118 

2.0008 

2.4660 

2.7697 

2.9132 

3.0891 

3.3043 

1.9938 

2.3956 

2.6483 

2.7783 

2.9038 

3.1183 

1.9562 

2.3045 

2.5200 

2.6405 

2.7967 

3.0016 

1.8812 

2.2036 

2.3887 

2.5012 

2.6167 

2.8045 

1.8106 

2.0883 

2.2512 

2.3574 

2.4915 

2.6152 

1.7807 

1.9579 

2.1050 

2.2060 

2.3295 

2.4978 

1.6768 

1.8056 

1.9439 

2.0344 

2.1536 

2.2803 

1.5007 

1.6146 

1.7516 

1.8475 

1.9487 

2.0666 

1.0724 

1.1160 

1.2848 

1.3563 

1.4635 

1.5642 

1.8 

1 

2 

5 

10 

20 

40 

1.5002 

1.6457 

2.4203 

2.5897 

2.6368 

3.2537 

1.4607 

1.5939 

2.2442 

2.5086 

2.6127 

3.0920 

1.4247 

1.5407 

2.1134 

2.4671 

2.5696 

2.8839 

1.3952 

1.5009 

2.0610 

2.4136 

2.5172 

2.6905 

1.3534 

1.4446 

1.7442 

2.0379 

2.3422 

2.5853 

1.3004 

1.3813 

1.6956 

1.9976 

2.2563 

2.4699 

1.2745 

1.3316 

1.6536 

1.9412 

2.1586 

2.3460 

1.2474 

1.3052 

1.6304 

1.8655 

2.0462 

2.2096 

1.2162 

1.2757 

1.5799 

1.7665 

1.9154 

2.0565 

1.1833 

1.2454 

1.4920 

1.6362 

1.7592 

1.8792 

1.1215 

1.1730 

1.3419 

1.4524 

1.5560 

1.6599 

1.0486 

1.0799 

1.2142 

1.3125 

1.4025 

1.5087 
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Table B2: Dependence of average Nusselt number (Nu) on the power-law index (n), fluid 

volume fractions (
f ) and Reynolds number (Re) at Pr = 10 and 20   

 

Pr n 
f  0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 

10 

0.4 

Re↓ 

1 

2 

5 

10 

20 
40 

 

3.1265 

3.4398 

4.1021 

4.6045 

4.9203 
5.2934 

 

2.8231 

3.2904 

3.7113 

3.9732 

4.2728 
4.4080 

 

2.7465 

3.1253 

3.3767 

3.5075 

3.9822 
3.9311 

 

2.6604 

2.9316 

3.1655 

3.3026 

3.5327 
3.6714 

 

2.6123 

2.7889 

3.1203 

3.2690 

3.4698 
3.5923 

 

2.5399 

2.7294 

3.0325 

3.1915 

3.3873 
3.4323 

 

2.4102 

2.5323 

2.6922 

2.8903 

3.0407 
3.1696 

 

2.2562 

2.3625 

2.6031 

2.6744 

2.7758 
2.9834 

 

2.1971 

2.2726 

2.4776 

2.5948 

2.7151 
2.8981 

1.9636 

2.1014 

2.2525 

2.3582 

2.4127 
2.5524 

1.7915 

1.9276 

2.1425 

2.2593 

2.3500 
2.4593 

 

1.6488 

1.7945 

2.0917 

2.2305 

2.2615 
2.4185 

0.6 

1 
2 

5 

10 

20 

40 

3.0181 
3.4129 

4.0197 

4.2712 

4.4653 

4.7555 

2.7866 
3.2491 

3.6712 

3.8528 

4.0126 

4.2823 

2.6946 
3.1054 

3.3140 

3.4514 

3.5951 

3.8390 

2.5469 
2.8211 

3.0716 

3.2074 

3.4195 

3.5038 

2.5056 
2.7041 

2.8947 

2.9945 

3.1243 

3.4417 

2.4653 
2.6228 

2.7471 

2.8447 

3.0275 

3.2426 

2.3754 
2.4956 

2.6566 

2.7281 

2.8429 

3.1014 

2.1781 
2.3152 

2.4661 

2.5532 

2.6576 

2.8824 

2.1224 
2.1934 

2.3261 

2.4113 

2.5041 

2.7427 

1.9224 
2.0234 

2.1867 

2.2737 

2.3553 

2.5184 

1.7558 
1.8918 

2.0465 

2.1459 

2.2174 

2.2875 

1.5823 
1.7473 

1.9761 

2.0418 

2.1668 

2.2318 

0.8 

1 

2 

5 
10 

20 

40 

2.9068 

3.3805 

3.9661 
4.1986 

4.3873 

4.6800 

2.7485 

3.2136 

3.6163 
3.7827 

3.9512 

4.2207 

2.6581 

3.0582 

3.2598 
3.3838 

3.5406 

3.7944 

2.5160 

2.7773 

2.9784 
3.0842 

3.2279 

3.4659 

2.4727 

2.6645 

2.8391 
2.9374 

3.0964 

3.3585 

2.3958 

2.5841 

2.6985 
2.7906 

2.9518 

3.2090 

2.2782 

2.4593 

2.5987 
2.6759 

2.7874 

3.0012 

2.1479 

2.2881 

2.4175 
2.5011 

2.6112 

2.8176 

2.0228 

2.1487 

2.2744 
2.3556 

2.4530 

2.6681 

1.8926 

1.9982 

2.1268 
2.2082 

2.2917 

2.4540 

1.7030 

1.8277 

1.9719 
2.0561 

2.1311 

2.2182 

1.5482 

1.7197 

1.8739 
1.9768 

2.0573 

2.1341 

1 

1 

2 

5 

10 

20 

40 

2.8626 

3.3595 

3.8332 

4.1530 

4.3382 

4.6298 

2.6827 

3.1912 

3.5822 

3.7382 

3.9128 

4.1817 

2.6100 

2.9640 

3.2250 

3.3435 

3.5131 

3.7648 

2.4963 

2.7499 

2.9440 

3.0490 

3.2063 

3.4474 

2.4225 

2.6394 

2.8052 

2.9016 

3.0563 

3.2935 

2.3342 

2.5180 

2.6650 

2.7563 

2.9020 

3.1284 

2.2345 

2.3920 

2.5269 

2.6121 

2.7482 

2.9607 

2.1220 

2.2586 

2.3827 

2.4663 

2.5903 

2.7792 

1.9935 

2.1159 

2.2354 

2.3178 

2.4286 

2.5926 

1.8463 

1.9608 

2.0812 

2.1634 

2.2579 

2.3958 

1.6510 

1.7720 

1.9095 

1.9960 

2.0786 

2.1840 

1.5440 

1.6657 

1.8122 

1.9032 

1.9848 

2.0730 

1.4 

1 

2 
5 

10 

20 

40 

2.7147 

3.3350 
3.8078 

4.1035 

4.2757 

4.5626 

2.6625 

3.1647 
3.5435 

3.6863 

3.8688 

4.1346 

2.5880 

2.9356 
3.1839 

3.2971 

3.4878 

3.7365 

2.4222 

2.6914 
2.9012 

2.9808 

3.1439 

3.4033 

2.3967 

2.6068 
2.7621 

2.8664 

3.0007 

3.1873 

2.3060 

2.4834 
2.6215 

2.7235 

2.8584 

3.0886 

2.1848 

2.3446 
2.4808 

2.5602 

2.6744 

2.9274 

2.0894 

2.2183 
2.3370 

2.4035 

2.5142 

2.6951 

1.9575 

2.0718 
2.1877 

2.2814 

2.3886 

2.5205 

1.8024 

1.9097 
2.0272 

2.1003 

2.2386 

2.3759 

1.6116 

1.7174 
1.8414 

1.9302 

2.0330 

2.1581 

1.1447 

1.2188 
1.3528 

1.4792 

1.5809 

1.6933 

1.8 

1 

2 

5 

10 

20 
40 

1.5951 

2.2303 

2.5874 

2.7817 

3.2796 
3.7374 

1.4946 

2.1081 

2.5112 

2.7443 

3.1042 
3.4561 

1.4666 

2.0209 

2.4755 

2.7174 

2.9549 
3.2113 

1.4499 

1.9832 

2.4280 

2.6849 

2.9172 
3.1689 

1.4019 

1.7572 

2.0518 

2.3529 

2.5773 
2.7912 

1.3792 

1.7022 

2.0111 

2.2647 

2.4606 
2.6571 

1.3263 

1.6625 

1.9540 

2.1031 

2.3211 
2.5170 

1.2979 

1.5440 

1.8774 

2.0529 

2.2019 
2.3660 

1.2527 

1.5148 

1.7778 

1.9234 

2.0527 
2.1988 

1.2067 

1.4463 

1.6478 

1.7699 

1.8833 
2.0076 

1.1782 

1.3126 

1.4657 

1.5712 

1.6735 
1.7789 

1.1102 

1.1924 

1.3209 

1.4291 

1.5180 
1.6264 

20 

0.4 

1 
2 

5 

10 

20 

40 

3.4991 

3.9405 

4.3154 

4.7794 
5.0864 

5.4921 

3.2882 

3.6600 

3.8966 

4.0851 
4.3791 

4.5272 

3.1063 

3.2914 

3.5395 

3.6364 
3.9347 

4.0249 

2.9367 

3.1119 

3.3445 

3.4555 
3.6344 

3.8058 

2.8416 

3.0141 

3.2010 

3.3422 
3.5668 

3.7157 

2.7317 

3.0252 

3.2555 

3.3927 
3.4708 

3.5935 

2.5684 

2.6212 

2.7668 

2.9543 
3.0858 

3.2410 

2.3974 

2.4740 

2.6562 

2.7278 
2.8217 

3.0518 

2.3025 

2.3612 

2.5534 

2.6628 
2.7341 

2.9465 

2.0726 
2.2057 

2.3797 

2.4013 

2.4829 

2.6057 

1.9870 
2.0912 

2.2510 

2.3516 

2.4565 

2.4823 

1.7918 
2.0384 

2.2130 

2.3315 

2.4031 

2.4563 

0.6 

1 

2 

5 

10 
20 

40 

3.4131 

3.9064 

4.2613 

4.4084 
4.5694 

4.8965 

3.2487 

3.5917 

3.8354 

3.9494 
4.0926 

4.3965 

3.0249 

3.2569 

3.4264 

3.5230 
3.6632 

3.9357 

2.8164 

2.9884 

3.1408 

3.2948 
3.4778 

3.7499 

2.7052 

2.8623 

2.9732 

3.0502 
3.2230 

3.5347 

2.6051 

2.6924 

2.8188 

2.8971 
3.1208 

3.3230 

2.5091 

2.5679 

2.6754 

2.7498 
2.9640 

3.2082 

2.3221 

2.4180 

2.5359 

2.6067 
2.7849 

2.9512 

2.2434 

2.2955 

2.4014 

2.4713 
2.5852 

2.8061 

2.0217 

2.1570 

2.2724 

2.3435 
2.4131 

2.5755 

1.8862 

2.0129 

2.1497 

2.2334 
2.2904 

2.3517 

1.7635 

1.9279 

2.0924 

2.1404 
2.2442 

2.3080 

0.8 

1 

2 

5 

10 

20 

40 

3.3805 

3.8596 

4.1947 

4.3269 

4.4951 

4.8197 

3.2137 

3.5436 

3.7700 

3.8728 

4.0386 

4.3364 

2.9878 

3.2093 

3.3658 

3.4458 

3.6176 

3.8942 

2.7877 

2.9399 

3.0606 

3.1415 

3.3470 

3.5960 

2.6642 

2.8036 

2.9139 

2.9922 

3.1947 

3.4562 

2.5438 

2.6660 

2.7682 

2.8427 

3.0485 

3.2902 

2.4590 

2.5426 

2.6260 

2.7012 

2.9258 

3.1560 

2.2878 

2.3897 

2.4855 

2.5547 

2.6962 

2.8987 

2.1481 

2.2476 

2.3468 

2.4133 

2.5407 

2.7790 

1.9825 

2.1005 

2.2080 

2.2747 

2.3494 

2.5165 

1.8262 

1.9417 

2.0689 

2.1385 

2.2032 

2.3033 

1.7364 

1.8379 

1.9800 

2.0655 

2.1442 

2.2249 

1 

1 

2 
5 

10 

20 

40 

3.3597 

3.7308 
4.1545 

4.2770 

4.4495 

4.7707 

3.1914 

3.4143 
3.7302 

3.8287 

4.0086 

4.3012 

2.9634 

3.1794 
3.3286 

3.4148 

3.5977 

3.8712 

2.7523 

2.9072 
3.0242 

3.1082 

3.2846 

3.5469 

2.6395 

2.7754 
2.8787 

2.9587 

3.1342 

3.3962 

2.5181 

2.6374 
2.7335 

2.8106 

2.9751 

3.2248 

2.3915 

2.4988 
2.5911 

2.6654 

2.8185 

3.0554 

2.2583 

2.3579 
2.4490 

2.5201 

2.6548 

2.8658 

2.1154 

2.2123 
2.3053 

2.3754 

2.4942 

2.6712 

1.9310 

2.0590 
2.1600 

2.2277 

2.3207 

2.4670 

1.7658 

1.8861 
1.9993 

2.0747 

2.1536 

2.2562 

1.6671 

1.7826 
1.9160 

1.9944 

2.0699 

2.1550 

1.4 

1 

2 

5 

10 

20 
40 

3.3354 

3.7097 

4.1132 

4.2235 

4.3885 
4.7063 

3.1652 

3.3819 

3.6869 

3.7745 

3.9708 
4.2599 

2.9358 

3.1469 

3.2829 

3.3713 

3.5836 
3.8497 

2.7234 

2.8755 

2.9799 

3.0766 

3.2173 
3.4927 

2.6091 

2.7396 

2.8346 

2.9051 

3.0835 
3.3001 

2.4861 

2.6000 

2.6897 

2.7602 

2.9087 
3.1853 

2.3275 

2.4115 

2.5465 

2.5959 

2.7515 
3.0019 

2.2012 

2.2843 

2.4024 

2.4980 

2.5701 
2.8124 

2.0743 

2.1926 

2.2550 

2.3369 

2.4145 
2.6022 

1.9101 

2.0006 

2.0995 

2.1774 

2.3144 
2.4599 

1.7176 

1.8145 

1.9252 

2.0059 

2.1101 
2.2409 

1.2545 

1.3269 

1.4633 

1.5919 

1.7062 
1.8137 

1.8 

1 

2 

5 

10 

20 

40 

1.7549 

2.7884 

2.8134 

3.3057 

3.7403 

4.0667 

1.7132 

2.7079 

2.7473 

3.1256 

3.4372 

3.7189 

1.6882 

2.6509 

2.7164 

2.9117 

3.1307 

3.3765 

1.6466 

2.6008 

2.6819 

2.8812 

3.1055 

3.4055 

1.6144 

2.0341 

2.3659 

2.5712 

2.7540 

2.9687 

1.5811 

1.9941 

2.2747 

2.4524 

2.6204 

2.8248 

1.5428 

1.9714 

2.1733 

2.3245 

2.4169 

2.6760 

1.5457 

1.8156 

2.0951 

2.1954 

2.3343 

2.5166 

1.5149 

1.7279 

1.9290 

2.0502 

2.1748 

2.3413 

1.4492 

1.6106 

1.7762 

1.8862 

1.9983 

2.1388 

1.3171 

1.4370 

1.5799 

1.6821 

1.7852 

1.8979 

1.2283 

1.2898 

1.4354 

1.5430 

1.6305 

1.7412 
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Table B3: Dependence of average Nusselt number (Nu) on the power-law index (n), fluid 

volume fractions (
f ) and Reynolds number (Re) at Pr = 50 and 100   

  

Pr n 
f  0.70 0.75 0.80 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99 

50 

0.4 

Re↓ 

1 

2 

5 

10 

20 
40 

 

4.0528 

4.2953 

4.4472 

4.9093 

5.2848 
5.8002 

 

3.7038 

3.9307 

4.0979 

4.1760 

4.5053 
4.7020 

 

3.2321 

3.4459 

3.6091 

3.6741 

4.0777 
4.2553 

 

3.1955 

3.2586 

3.4628 

3.5256 

3.7289 
3.9486 

 

3.1106 

3.2132 

3.2728 

3.4056 

3.6856 
3.8446 

 

2.8162 

3.2034 

3.3712 

3.4512 

3.5733 
3.7269 

 

2.6515 

2.7289 

2.7967 

3.0194 

3.1568 
3.3882 

 

2.5027 

2.5554 

2.7195 

2.7805 

2.9114 
3.1607 

 

2.2643 

2.4983 

2.6332 

2.7445 

2.8715 
3.0210 

2.1924 

2.3582 

2.4269 

2.4969 

2.5543 
2.6979 

2.0937 

2.3212 

2.3785 

2.4622 

2.5231 
2.5819 

1.9495 

2.2103 

2.3037 

2.4153 

2.4884 
2.4823 

0.6 

1 
2 

5 

10 

20 

40 

4.0193 
4.2588 

4.4198 

4.5133 

4.7952 

5.2219 

3.6677 
3.8296 

3.9437 

4.0255 

4.3888 

4.5668 

3.3073 
3.4182 

3.5051 

3.5825 

3.7426 

4.1689 

3.0215 
3.1156 

3.2080 

3.3529 

3.6086 

3.8021 

2.8949 
2.9798 

3.0852 

3.1451 

3.3594 

3.6758 

2.7575 
2.8135 

2.8832 

2.9499 

3.2063 

3.4423 

2.6171 
2.6966 

2.7435 

2.9062 

3.0566 

3.3294 

2.4541 
2.5172 

2.6111 

2.6686 

2.7650 

3.0727 

2.1931 
2.4231 

2.4886 

2.5624 

2.6512 

2.8913 

2.2021 
2.2796 

2.3748 

2.4296 

2.4861 

2.6591 

2.0493 
2.1617 

2.2744 

2.3401 

2.3817 

2.4855 

1.8944 
2.0938 

2.2322 

2.2601 

2.3514 

2.4280 

0.8 

1 

2 

5 
10 

20 

40 

3.9680 

4.1951 

4.3419 
4.4261 

4.7283 

5.1467 

3.6163 

3.7682 

3.8701 
3.9466 

4.3147 

4.5126 

3.2580 

3.3615 

3.4398 
3.4996 

3.7080 

4.0914 

2.9751 

3.0565 

3.1241 
3.1932 

3.4092 

3.7493 

2.8358 

2.9109 

2.9782 
3.0476 

3.2928 

3.6043 

2.6956 

2.7666 

2.8324 
2.8960 

3.1646 

3.4252 

2.5871 

2.6514 

2.7036 
2.8525 

2.9817 

3.2841 

2.4185 

2.4906 

2.5593 
2.6154 

2.7925 

3.0271 

2.2789 

2.3561 

2.4315 
2.4837 

2.6276 

2.8761 

2.1574 

2.2260 

2.3064 
2.3567 

2.4227 

2.5937 

1.9823 

2.0844 

2.1887 
2.2427 

2.2900 

2.4148 

1.8668 

1.9957 

2.1292 
2.1847 

2.2566 

2.3651 

1 

1 

2 

5 

10 

20 

40 

3.9370 

4.0574 

4.2964 

4.3750 

4.6867 

5.1021 

3.5856 

3.7320 

3.8275 

3.9021 

4.2228 

4.4846 

3.2269 

3.3265 

3.4052 

3.4782 

3.6982 

4.0178 

2.9460 

3.0230 

3.0878 

3.1686 

3.3790 

3.6980 

2.8078 

2.8812 

2.9428 

3.0194 

3.2336 

3.5521 

2.6677 

2.7375 

2.7977 

2.8687 

3.0644 

3.3650 

2.5284 

2.5967 

2.6579 

2.7245 

2.9047 

3.1921 

2.3883 

2.4578 

2.5210 

2.5820 

2.7420 

2.9819 

2.2440 

2.3190 

2.3880 

2.4452 

2.5771 

2.7780 

2.0958 

2.1765 

2.2518 

2.3061 

2.3969 

2.5534 

1.9299 

2.0224 

2.1139 

2.1738 

2.2506 

2.3520 

1.8295 

1.9336 

2.0492 

2.1172 

2.1926 

2.2710 

1.4 

1 

2 
5 

10 

20 

40 

3.9042 

4.0188 
4.2506 

4.3219 

4.5286 

4.9438 

3.5521 

3.6943 
3.7802 

3.8548 

4.0946 

4.4530 

3.1954 

3.2926 
3.3549 

3.4463 

3.6974 

4.0106 

2.9140 

2.9914 
3.0452 

3.1028 

3.3190 

3.6184 

2.7749 

2.8454 
2.8999 

2.9747 

3.2025 

3.4720 

2.6336 

2.7000 
2.7547 

2.8172 

3.0004 

3.3016 

2.4921 

2.5514 
2.6134 

2.6526 

2.8012 

3.1246 

2.2982 

2.3420 
2.3925 

2.4775 

2.6658 

2.9229 

2.1988 

2.2236 
2.3317 

2.3936 

2.5009 

2.7295 

2.0371 

2.1096 
2.1856 

2.2598 

2.3194 

2.5085 

1.8542 

1.9376 
2.0273 

2.1010 

2.1991 

2.3257 

1.3916 

1.4708 
1.6001 

1.7218 

1.8223 

1.9426 

1.8 

1 

2 

5 

10 

20 
40 

2.2175 

2.7841 

3.4914 

3.8659 

4.0841 
4.3529 

2.1814 

2.7515 

3.2638 

3.5100 

3.7047 
3.9644 

2.1542 

2.7148 

2.9982 

3.1590 

3.3513 
3.5938 

2.1079 

2.6591 

2.9857 

3.0574 

3.2164 
3.5513 

2.0608 

2.3790 

2.6232 

2.7571 

2.9384 
3.1663 

2.0239 

2.2869 

2.4941 

2.6206 

2.7955 
3.0164 

1.9650 

2.1694 

2.3624 

2.4258 

2.6665 
2.8620 

1.8914 

2.0653 

2.2246 

2.3384 

2.4925 
2.6983 

1.7878 

1.9322 

2.0772 

2.1855 

2.3248 
2.5198 

1.6566 

1.7774 

1.9133 

2.0168 

2.1412 
2.3106 

1.4741 

1.5812 

1.7137 

1.8142 

1.9247 
2.0538 

1.3755 

1.4409 

1.5758 

1.6770 

1.7702 
1.8954 

100 

0.4 

1 

2 
5 

10 

20 

40 

4.2920 

4.4210 

4.5273 

4.9987 

5.4765 
6.1657 

3.8858 

4.0358 

4.0890 

4.3372 

4.6230 
4.8991 

3.3138 

3.5535 

3.6422 

3.7241 

4.2690 
4.4894 

3.2536 

3.3786 

3.5824 

3.6256 

3.8558 
4.1123 

3.1987 

3.2715 

3.3071 

3.4455 

3.8014 
3.9710 

2.9045 

3.1654 

3.4645 

3.5817 

3.6670 
3.8192 

2.7015 

2.7626 

2.8924 

3.0667 

3.3618 
3.4670 

2.5614 

2.6298 

2.7672 

2.8332 

2.9882 
3.2740 

2.4490 

2.5595 

2.6884 

2.8071 

2.9381 
3.1110 

2.3474 

2.4483 
2.5213 

2.5985 

2.7291 

2.9484 

2.2059 

2.3843 
2.4617 

2.5672 

2.6922 

2.8091 

2.1768 

2.3382 
2.4161 

2.5398 

2.5982 

2.6606 

0.6 

1 

2 

5 

10 

20 
40 

4.2336 

4.3870 

4.4887 

4.7884 

5.1504 
5.3987 

3.8288 

3.9159 

3.9923 

4.2798 

4.5859 
4.7606 

3.4163 

3.4801 

3.5419 

3.6230 

3.8955 
4.2869 

3.1081 

3.2014 

3.2512 

3.3518 

3.6386 
3.8923 

2.9708 

3.0444 

3.0940 

3.1488 

3.4352 
3.7362 

2.8191 

2.8602 

2.9248 

3.1014 

3.3251 
3.6263 

2.6848 

2.7233 

2.8523 

2.9959 

3.1781 
3.3841 

2.5287 

2.5790 

2.6645 

2.7181 

2.8192 
3.1797 

2.4065 

2.4810 

2.5512 

2.6625 

2.7621 
2.9766 

2.2946 

2.3631 

2.4473 

2.4932 

2.5454 
2.7558 

2.1637 

2.2652 

2.3619 

2.4174 

2.4925 
2.5820 

2.0914 

2.2160 

2.3060 

2.3881 

2.4604 
2.5087 

0.8 

1 

2 

5 

10 

20 

40 

4.1952 

4.3147 

4.4060 

4.7297 

5.0554 

5.3233 

3.7681 

3.8484 

3.9151 

4.2096 

4.4701 

4.7113 

3.3612 

3.4208 

3.4759 

3.5873 

3.8482 

4.2076 

3.0566 

3.1078 

3.1589 

3.2295 

3.5091 

3.8253 

2.9112 

2.9632 

3.0190 

3.0918 

3.3948 

3.8019 

2.7678 

2.8240 

2.8740 

2.9980 

3.1917 

3.5841 

2.6593 

2.6814 

2.7397 

2.9415 

3.1017 

3.3225 

2.4944 

2.5552 

2.6118 

2.6596 

2.7901 

3.1218 

2.3625 

2.4295 

2.4924 

2.5383 

2.6869 

2.9392 

2.2493 

2.3075 

2.3765 

2.4172 

2.4824 

2.6902 

2.1053 

2.1855 

2.2747 

2.3546 

2.4266 

2.5390 

2.0086 

2.1083 

2.2185 

2.3054 

2.3589 

2.4946 

1 

1 

2 

5 
10 

20 

40 

4.1578 

4.2733 

4.3582 
4.6912 

4.9966 

5.2823 

3.7324 

3.8095 

3.8710 
4.1535 

4.4325 

4.6884 

3.3287 

3.3842 

3.4452 
3.5262 

3.7848 

4.1682 

3.0272 

3.0766 

3.1267 
3.2051 

3.4583 

3.8283 

2.8832 

2.9345 

2.9839 
3.0684 

3.3268 

3.7270 

2.7404 

2.7925 

2.8399 
2.9140 

3.1409 

3.5160 

2.6014 

2.6556 

2.7050 
2.7721 

2.9776 

3.3557 

2.4645 

2.5220 

2.5719 
2.6299 

2.7978 

3.0934 

2.3284 

2.3913 

2.4462 
2.4997 

2.6408 

2.8840 

2.1890 

2.2595 

2.3212 
2.3649 

2.4695 

2.6428 

2.0388 

2.1195 

2.1999 
2.2527 

2.3324 

2.4318 

1.9506 

2.0479 

2.1506 
2.2157 

2.2914 

2.4144 

1.4 

1 

2 

5 

10 

20 

40 

4.1199 

4.2311 

4.3121 

4.3999 

4.6714 

5.2301 

3.6957 

3.7700 

3.8237 

3.9177 

4.2114 

4.6674 

3.2953 

3.3513 

3.3924 

3.5017 

3.7955 

4.1722 

2.9949 

3.0439 

3.1013 

3.1754 

3.3910 

3.7859 

2.8510 

2.9004 

2.9424 

3.0052 

3.2795 

3.6563 

2.7073 

2.7561 

2.7978 

2.8726 

3.0852 

3.4560 

2.5659 

2.6085 

2.6592 

2.7121 

2.9014 

3.2886 

2.3247 

2.3750 

2.4216 

2.5283 

2.7423 

3.0475 

2.2806 

2.3412 

2.3891 

2.4154 

2.5771 

2.8116 

2.1265 

2.1865 

2.2479 

2.3186 

2.4110 

2.6093 

1.9559 

2.0282 

2.1029 

2.1714 

2.2607 

2.3989 

1.5077 

1.5759 

1.7188 

1.8130 

1.9051 

2.0212 

1.8 

1 
2 

5 

10 

20 

40 

2.7069 
3.3215 

3.8817 

4.0818 

4.2319 

4.5061 

2.6613 
3.1522 

3.5260 

3.6599 

3.8369 

4.1031 

2.2825 
3.0515 

3.1623 

3.2742 

3.4756 

3.7234 

2.2548 
2.9922 

3.0152 

3.1033 

3.2714 

3.6748 

2.2212 
2.5876 

2.7366 

2.8549 

3.0566 

3.2922 

2.1707 
2.4620 

2.5963 

2.7147 

2.9113 

3.1386 

2.1854 
2.3541 

2.5461 

2.6514 

2.8756 

2.9828 

2.0699 
2.1914 

2.3125 

2.4270 

2.6024 

2.8147 

1.9335 
2.0224 

2.1620 

2.2728 

2.4314 

2.6359 

1.7769 
1.8776 

1.9778 

2.1035 

2.2427 

2.4262 

1.5789 
1.6784 

1.8026 

1.9035 

2.0237 

2.1609 

1.4820 
1.5421 

1.6726 

1.7712 

1.8687 

2.0012 
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APPENDIX-C 

Mixed Convection Newtonian Data for Drag Coefficients  

Table C1: Dependence of pressure drag coefficients (CDP) on the fluid volume fractions (

f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers (NC-results not converged 

possibly due to unsteadiness in the flow) 

 

CDP 

Pr 
f  

Ri=1 Ri=2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

0.7 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

147.0031 

88.3842 

54.7158 

35.0610 

27.2972 

21.8412 

16.9482 

15.4000 

14.8847 

13.8116 

12.8521 

11.7483 

75.5807 

46.1470 

29.0938 

19.2133 

15.4650 

13.4336 

12.9345 

11.3270 

10.8862 

10.0900 

9.7958 

9.4171 

33.3814 

21.3492 

14.0014 

10.2804 

9.6340 

8.1158 

7.3576 

6.8971 

5.7666 

5.4184 

5.2610 

4.8018 

19.5496 

13.9754 

9.6534 

7.3504 

6.2940 

5.4528 

5.4439 

4.7480 

4.6848 

4.4444 

4.3092 

3.9875 

13.6948 

10.1050 

7.0938 

5.5640 

4.7786 

4.2670 

4.2064 

3.7530 

3.7080 

3.4728 

3.1841 

NC 

9.6724 

7.0398 

5.1062 

4.0892 

3.7371 

3.4622 

3.2405 

3.1320 

3.0324 

2.5897 

2.3248 

NC 

150.6507 

91.7965 

57.7034 

37.6176 

30.3709 

24.3004 

22.2699 

21.7204 

20.0118 

19.5582 

18.9590 

17.5621 

79.4862 

49.8001 

32.4001 

22.2051 

18.3048 

15.1394 

14.1824 

13.6620 

12.8321 

11.6421 

10.4420 

10.8311 

37.9541 

25.5492 

17.886 

13.0991 

11.3470 

9.6678 

9.3162 

8.3863 

7.5989 

7.5666 

7.3825 

6.9651 

24.9215 

17.7810 

13.0311 

9.7420 

8.5989 

7.4465 

7.3679 

6.1360 

5.8521 

5.5502 

5.5087 

5.4902 

18.1371 

12.9337 

9.1227 

7.7582 

6.9495 

6.0341 

5.6368 

5.2723 

4.8072 

4.7309 

4.3760 

NC 

11.9476 

8.5964 

6.6462 

5.4514 

4.8878 

4.6475 

4.5169 

4.1282 

4.0455 

3.8745 

3.2137 

NC 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

147.0720 

88.3984 

54.7572 

35.1782 

27.9064 

23.5877 

20.0606 

18.9265 

17.1325 

16.9904 

15.2744 

14.8390 

75.7800 

46.2145 

29.3480 

19.4165 

15.6800 

13.6549 

12.9584 

11.4088 

10.9704 

10.3521 

9.8702 

9.6897 

33.7804 

21.7974 

14.4756 

10.3605 

9.7699 

8.4680 

7.5788 

6.9135 

6.0261 

5.6940 

5.5364 

5.4568 

21.0280 

14.1482 

9.8458 

7.7096 

6.5340 

5.5795 

5.3735 

5.1755 

4.9988 

4.8174 

4.7244 

4.2514 

13.9044 

10.2040 

8.2031 

6.1859 

5.6016 

4.9532 

4.3948 

4.3054 

3.8882 

3.8455 

3.6036 

NC 

10.0503 

7.1178 

5.1860 

4.2227 

3.8781 

3.5914 

3.4278 

3.2501 

3.1418 

3.0512 

2.4739 
NC 

150.8284 

91.8472 

57.7399 

38.0156 

30.5900 

24.5247 

22.5106 

21.9625 

20.8752 

19.8506 

19.4710 

18.9554 

79.8615 

49.8631 

32.839 

22.599 

18.7322 

15.6229 

14.5984 

13.832 

12.336 

11.92 

10.907 

10.688 

38.8658 

26.4070 

18.162 

13.749 

11.6451 

10.2054 

9.6842 

8.7451 

8.0518 

7.9558 

7.6216 

7.4546 

26.2950 

18.7805 

13.291 

10.114 

9.6864 

8.3088 

7.9628 

7.0594 

6.7624 

6.1326 

5.813 

5.4568 

18.2362 

13.8653 

10.161 

8.9092 

7.0884 

6.9196 

5.8392 

5.5837 

5.0243 

4.9014 

4.4824 

NC 

11.7180 

9.4860 

8.7708 

7.5771 

5.1287 

6.0000 

4.9538 

4.1691 

4.0453 

4.1588 

3.267 

NC 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

149.9247 

90.9954 

55.7632 

37.7528 

30.1698 

24.0910 

20.5571 

18.4708 

16.0847 

15.8075 

14.9148 

14.6174 

80.4692 

50.3572 

31.8966 

22.2644 

18.37 

15.0756 

13.1039 

12.216 

11.1444 

10.7940 

9.9465 

10.0790 

38.4434 

25.5312 

17.3050 

12.5462 

10.688 

8.8846 

8.4066 

8.0408 

7.8519 

7.1532 

6.9652 

6.7225 

24.4748 

16.9632 

11.7518 

8.6648 

7.3418 

7.0477 

6.4148 

5.4777 

5.3595 

5.1888 

4.9958 

4.8526 

15.5376 

11.0178 

8.3006 

6.8676 

6.2478 

5.3923 

5.0674 

4.8278 

4.1648 

4.0993 

3.8706 

NC 

10.3667 

7.6115 

5.4438 

4.4886 

3.896 

3.7409 

3.5228 

3.3453 
3.2319 

3.1127 
3.0914 

NC 

156.5641 

97.2448 

61.2281 

42.5985 

35.0626 

28.7095 

26.8088 

24.2421 

22.5296 

21.2845 

20.9751 

19.7894 

89.1109 

57.9001 

38.378 

27.289 

22.4638 

18.9851 

15.6065 

13.603 

13.134 

13.001 

12.723 

11.2472 

46.4445 

32.3365 

22.277 

16.263 

13.6672 

11.5008 

9.6687 

8.9009 

8.4263 

8.2628 

8.1938 

7.8808 

30.5454 

20.7573 

14.38 

10.823 

9.2703 

8.8715 

7.7980 

6.7325 

6.5939 

5.9624 

5.938 

5.6223 

18.7453 

13.3023 

10.404 

9.4748 

8.5864 

6.9726 

6.1790 

5.9502 

5.4075 

4.9268 

4.5823 

NC 

12.562 

11.985 

10.5387 

8.4323 

8.239 
6.2055 

4.7924 

4.5354 

4.4453 

4.3588 

4.267 

NC 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

154.7525 

94.7092 

58.1935 

39.5272 

33.7925 

28.7660 

24.2318 

20.0534 

18.8350 

16.0604 

15.6622 

14.9318 

84.3262 

52.9922 

33.6878 

22.9955 

18.927 

15.5788 

12.4562 

10.928 

10.736 

10.5910 

10.5836 

10.349 

40.2992 

26.7860 

18.1930 

12.8686 

10.999 

9.4447 

8.9195 

8.5662 

7.9825 

7.6049 

6.9978 

6.5398 

25.2065 

17.6452 

13.9256 

10.1132 

8.748 

7.307 

6.9674 

5.8401 

5.4298 

5.2246 

5.1095 

4.7316 

16.5286 

11.3905 

8.5868 

6.9741 

6.5182 

5.9774 

5.3627 

4.8756 

4.3775 

4.1693 

3.9742 

NC 

10.6354 

7.6302 

5.4964 

4.5012 

4.4443 

4.3127 

3.832 

3.4098 

3.2952 

3.1921 

NC 

NC  

166.0560 

104.2015 

66.1757 

45.0899 

37.0932 

30.4716 

28.6136 

26.0734 

24.8253 

22.4848 

21.4195 

20.5888 

96.3839 

62.8126 

44.44 

32.8982 

28.3830 

24.0680 

20.5378 

18.74 

16.46 

15.04 

14.644 

13.8665 

49.5430 

33.4135 

23.103 

18.0642 

14.2815 

13.034 

12.0729 

9.9732 

8.5775 

8.4054 

8.2229 

7.9791 

31.0704 

21.2345 

14.826 

10.9745 

9.726 

9.2113 

7.8854 

7.2805 

6.8635 

6.1174 

5.9796 

5.7154 

18.9970 

13.7118 

10.587 

9.8866 

8.7075 

7.1512 

6.2015 

5.9918 

5.5208 

5.0481 

4.8338 

NC 

14.451 

12.6362 

11.2989 

9.2083 

8.6633 

6.3195 

5.1664 

4.8106 

4.5485 

4.4112 

NC 

 NC  
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Table C2:  Dependence of friction drag coefficients (CDF) on the fluid volume fractions (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers (NC-results not converged 

possibly due to unsteadiness in the flow) 

 

CDF 

Pr 
f  

Ri=1 Ri=2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

0.7 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

142.1439 

87.3522 

54.5746 

34.9566 

27.8020 

21.7975 

16.8632 

14.2875 

12.7520 

11.7095 

12.0929 

11.7226 

71.7954 

44.5387 

28.1622 

18.5058 

14.8666 

13.9104 

12.1848 

12.6654 

10.1584 

9.9280 

9.5138 

9.0371 

30.0058 

19.1642 

12.4698 

9.0651 

6.6262 

5.2946 

5.4277 

5.0269 

5.3665 

5.5711 

5.0394 

5.1700 

16.1454 

11.4124 

7.8620 

6.0384 

5.4863 

6.0827 

4.6116 

4.8405 

4.0387 

4.2404 

3.9564 

4.0459 

10.1483 

7.5964 

5.5510 

6.7784 

5.2984 

4.4625 

3.6250 

3.4600 

3.4360 

3.3950 

3.6837 
NC 

7.2560 

5.4290 

4.1176 

3.3001 

2.9887 

2.7005 

2.2230 

2.1412 

2.1505 

2.4865 

2.093 

NC 

143.2847 

88.8520 

55.8994 

36.1945 

29.2216 

23.2718 

19.3644 

17.9328 

17.3634 

15.7590 

15.5642 

16.2415 

73.1094 

46.1688 

29.7539 

20.1904 

16.5516 

13.6378 

8.9596 

8.8622 

8.7670 

9.2278 

9.8159 

9.1277 

31.8105 

21.1322 

14.5982 

10.6602 

9.3055 

8.0099 

8.0547 

8.6534 

7.8258 

6.5550 

6.7118 

6.8996 

18.6238 

13.1988 

9.8465 

7.5838 

7.8862 

7.9881 

6.1123 

6.8515 

5.3317 

5.1627 

4.7107 

4.6343 

12.4870 

9.3180 

6.9297 

4.7746 

5.4550 

6.3473 

5.2217 

4.4969 

4.7428 

3.8500 

4.1978 

NC 

8.5797 

6.4218 

5.1399 

4.2854 

3.8690 

3.4238 

2.7669 

2.9045 

1.9085 

1.2214 
1.2024 

NC 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

142.1961 

87.1802 

54.6332 

35.1414 

27.9095 

21.5470 

16.9838 

15.525 

15.0457 

14.0751 

13.9824 

13.1132 

71.9289 

44.4843 

28.3610 

18.6758 

15.0758 

14.1308 

12.3742 

13.3484 

10.5505 

10.3923 

10.0062 

9.2476 

26.4940 

19.5155 

12.8520 

9.1486 

6.7600 

5.6252 

5.9725 

5.4171 

5.7202 

5.7880 

5.2918 

5.0466 

17.2995 

11.5422 

8.0504 

6.3890 

6.0369 

6.4535 

4.9629 

4.8507 

4.6325 

4.0164 

3.8371 

4.1163 

10.3958 

7.8060 

6.7148 

4.0347 

3.9014 

4.3282 

4.7156 

3.6360 

3.6104 

3.2875 

3.1949 

NC 

7.2994 

5.4580 

4.2510 

4.4330 

3.1112 

2.7976 

2.5289 

2.3772 

2.2009 

2.2762 

2.0937 

NC 

143.4064 

88.3732 

56.0098 

36.6498 

29.4367 

29.5030 

25.6229 

23.1996 

22.1684 

20.3996 

19.4111 

18.8500 

73.3662 

46.0230 

28.1884 

20.5176 

16.9644 

14.0600 

9.3840 

8.9998 

9.6396 

9.9319 

10.0106 

10.1251 

32.4677 

21.8110 

14.8456 

11.2795 

9.6645 

8.5734 

7.9275 

7.3337 

7.0906 

6.4925 

6.7286 

6.6938 

19.6862 

14.1054 

10.2748 

8.1047 

7.7818 

7.5008 

5.7530 

6.3439 

4.5972 

5.1080 

4.8534 

4.9596 

13.0455 

8.7084 

6.0788 

4.0710 

5.4687 

5.6010 

5.2777 

4.6191 

5.0929 

4.0642 

4.3701 

NC 

8.9218 

5.6470 

3.4198 

2.4806 

4.8300 

2.9424 

2.5678 

3.0785 

3.1311 

0.8996 

1.2291 

NC 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

144.2265 

89.2110 

55.0953 

37.2525 

29.8594 

23.7875 

16.2518 

16.1490 

15.9723 

14.5118 

14.1914 

13.7087 

75.1820 

47.4896 

30.1521 

20.9910 

20.2865 

18.1468 

16.1241 

13.8420 

12.5526 

10.8216 

10.9725 

9.2022 

33.2798 

22.1198 

15.0146 

10.8984 

9.3422 

7.7970 

7.3217 

5.8838 

5.5095 

5.7115 

5.6089 

5.6547 

19.7906 

13.8094 

9.7063 

7.2500 

8.2104 

6.5139 

5.5661 

6.4135 

4.7978 

4.4052 

4.5052 

4.4040 

12.0862 

8.7718 

6.7656 

4.5618 

4.4372 

4.5055 

3.7784 

3.6172 

3.2461 

3.2206 

3.3406 

NC 

8.2281 

6.2001 

4.4845 

4.4274 

3.0993 

2.8959 

2.7051 

2.3761 

2.3960 

2.4278 

1.5768 

NC 

147.4697 

92.6315 

58.5038 

40.6970 

33.3514 

34.2326 

27.5603 

26.1540 

25.4510 

21.7200 

19.6594 

18.5610 

79.8507 

51.9885 

34.4485 

24.4482 

20.1735 

17.0929 

14.0956 

12.3788 

12.0304 

12.0262 

10.6326 

10.0682 

37.9274 

26.6502 

18.7161 

13.9232 

11.8844 

10.1115 

10.2588 

9.3188 

7.7362 

7.6523 

7.3598 

7.4462 

24.2338 

16.9692 

12.1682 

9.6254 

10.8549 

8.4446 

7.2396 

7.8453 

5.6974 

6.0871 

5.1020 

4.9208 

15.4558 

11.2368 

7.8311 

8.0835 

7.0847 

6.1492 

5.2878 

5.2970 

5.0106 

4.5694 

4.4605 

NC 

8.8301 

3.6390 

2.9767 

3.4232 

2.7366 

3.7540 

4.0900 

3.2889 

2.0468 

1.3674 

0.5609 

NC 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

147.2794 

91.5578 

56.7190 

34.4738 

28.9658 

20.0549 

17.5676 

16.4642 

15.4690 

14.9896 

14.3744 

13.9747 

77.5338 

49.1322 

31.3026 

21.2786 

17.5258 

14.3924 

11.4712 

9.9897 

9.7467 

9.7480 

9.7264 

9.5522 

34.4648 

22.9390 

15.6100 

11.0525 

9.5071 

8.1978 

7.2295 

6.2455 

6.0909 

5.6634 

6.1442 

6.3972 

20.2764 

14.2780 

7.7816 

6.5690 

6.5644 

6.9567 

5.3435 

6.4017 

5.3545 

4.2962 

4.3720 

4.6927 

12.8259 

9.0375 

6.8526 

4.6592 

3.5899 

3.6328 

3.2627 

3.5045 

3.2028 

3.4026 

3.5419 

NC 

8.4057 

6.1951 

4.5306 

5.3090 

3.4515 

2.6335 

3.0715 

2.4308 

2.3953 

2.3966 

NC 

NC 

153.5886 

97.2510 

61.9147 

42.0324 

34.5968 

35.3652 

31.8570 

28.5702 

24.4148 

23.2310 

21.1936 

19.4197 

84.5818 

55.3175 

35.6927 

21.4996 

17.6284 

13.8595 

10.7676 

11.1434 

12.2247 

12.4325 

12.0977 

12.2068 

40.3038 

27.4452 

19.3217 

15.4416 

12.3226 

10.4079 

10.5156 

11.7190 

10.1094 

7.6959 

7.4005 

7.3978 

24.7221 

17.3473 

12.4830 

9.9744 

10.6053 

8.2250 

8.4330 

7.6173 

6.0834 

6.2893 

5.9622 

5.6771 

15.6375 

12.6220 

9.9720 

8.4750 

7.7090 

7.7218 

6.3957 

5.4083 

5.0725 

4.3344 

4.5332 

NC 

7.1402 

3.2773 

2.2584 

2.7610 

1.4959 

2.7187 

3.3250 

3.3939 

2.4419 

2.1133 

NC 

NC 
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Table C3: Dependence of total drag coefficients (CD) on the fluid volume fractions (
f ), 

Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers  

 

CD 

Pr 
f  

Ri=1 Ri=2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 
 

 

 
0.7 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

289.1470 

175.7364 

109.2904 

70.0176 

55.0992 

43.6387 

33.8114 

29.6875 

27.6367 

25.5211 

24.9450 

23.4709 

147.3761 

90.6857 

57.2560 

37.7191 

30.3316 

27.3440 

25.1193 

23.9924 

21.0446 

20.0180 

19.3096 

18.4542 

63.3872 

40.5134 

26.4712 

19.3455 

16.2602 

13.4104 

12.7853 

11.9240 

11.1331 

10.9895 

10.3004 

9.9718 

35.6950 

25.3878 

17.5154 

13.3888 

11.7803 

11.5355 

10.0555 

9.5885 

8.7235 

8.6848 

8.2656 

8.0334 

23.8431 

17.7014 

12.6448 

12.3424 

10.0770 

8.7295 

7.8314 

7.2130 

7.1440 

6.8678 

6.5752 

6.3037 

16.9284 

12.4688 

9.2238 

7.3893 

6.7258 

6.1627 

5.4635 

5.2732 

5.1829 

5.0762 

4.4178 

1.9725 

293.9354 

180.6485 

113.6028 

73.8121 

59.5925 

47.5722 

41.6343 

39.6532 

37.3752 

35.3172 

34.5232 

33.8036 

152.5956 

95.9689 

62.1537 

42.3958 

34.8564 

28.7772 

23.1420 

22.5242 

21.5994 

20.8700 

20.2576 

19.9585 

69.7646 

46.6814 

32.4844 

23.7591 

20.6525 

17.6777 

17.3709 

17.0397 

15.4247 

14.1216 

14.0943 

13.8647 

43.5453 

30.9798 

22.8779 

17.3258 

16.4851 

15.4346 

13.4802 

12.9875 

11.1837 

10.7129 

10.2194 

10.1245 

30.6241 

22.2517 

16.0524 

12.5328 

12.4045 

12.3814 

10.8585 

9.7692 

9.5500 

8.5809 

8.5738 

7.9336 

20.5273 

15.0182 

11.7861 

9.7368 

8.7568 

8.0713 

7.2838 

7.0327 

5.9540 

5.0959 

4.4461 

3.5730 

 
 

 

 
1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

289.2681 

175.5786 

109.3904 

70.3196 

55.8159 

45.1347 

37.0444 

34.4515 

32.1782 

31.0655 

29.2568 

27.9522 

147.7089 

90.6988 

57.7090 

38.0923 

30.7553 

27.7857 

25.3326 

24.7572 

21.5209 

20.7441 

19.8764 

18.9373 

60.2744 

41.3129 

27.3276 

19.5091 

16.5299 

14.0932 

13.5513 

12.3306 

11.7463 

11.4820 

10.8282 

10.5034 

38.3275 

25.6904 

17.8962 

14.0986 

12.5709 

12.0330 

10.3364 

10.0262 

9.6313 

8.8338 

8.5615 

8.3677 

24.3002 

18.0100 

14.9179 

10.2206 

9.5030 

9.2814 

9.1104 

7.9414 

7.4986 

7.1330 

6.7985 

6.5348 

17.3497 

12.5758 

9.4370 

8.6557 

6.9893 

6.3890 

5.9567 

5.6273 

5.3427 

5.3274 

4.5676 

2.9814 

294.2348 

180.2204 

113.7497 

74.6654 

60.0267 

54.0277 

48.1335 

45.1621 

43.0436 

40.2502 

38.8821 

37.8054 

153.2277 

95.8861 

61.0270 

43.1170 

35.6966 

29.6829 

23.9824 

22.8318 

21.9756 

21.8522 

20.9177 

20.8134 

71.3335 

48.2180 

33.0078 

25.0286 

21.3096 

18.7788 

17.6117 

16.0788 

15.1424 

14.4483 

14.3502 

14.1484 

45.9812 

32.8859 

23.5654 

18.2189 

17.4682 

15.8096 

13.7158 

13.4033 

11.3596 

11.2406 

10.6664 

10.4164 

31.2817 

22.5737 

16.2400 

12.9802 

12.5571 

12.5206 

11.1169 

10.2028 

10.1172 

8.9656 

8.8525 

8.3443 

20.6398 

15.1330 

12.1906 

10.0577 

9.9587 

8.9424 

7.5216 

7.2476 

7.1764 

5.0584 

4.4961 

3.6980 

 

 
 

 

 
10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

294.1512 

180.2064 

110.8585 

75.0053 

60.0292 

47.8785 

36.8089 

34.6198 

32.0570 

30.3193 

29.1062 

28.3261 

155.6512 

97.8468 

62.0487 

43.2554 

38.6561 

33.2224 

29.2280 

26.0581 

23.6970 

21.6156 

20.9190 

19.2815 

71.7232 

47.6510 

32.3196 

23.4446 

20.0304 

16.6816 

15.7283 

13.9246 

13.3614 

12.8647 

12.5741 

12.3772 

44.2654 

30.7726 

21.4581 

15.9148 

15.5522 

13.5616 

11.9809 

11.8912 

10.1573 

9.5940 

9.5010 

9.2566 

27.6238 

19.7896 

15.0662 

11.4294 

10.6850 

9.8978 

8.8458 

8.4450 

7.4109 

7.3199 

7.2112 

6.7351 

18.5948 

13.8116 

9.9283 

8.9160 

6.9953 

6.6368 

6.2279 

5.7214 

5.6279 

5.5405 

4.6682 

3.0688 

304.0338 

189.8763 

119.7319 

83.2955 

68.4140 

62.9421 

54.3691 

50.3961 

47.9806 

43.0045 

40.6345 

38.3504 

168.9616 

109.8886 

72.8260 

51.7369 

42.6373 

36.0780 

29.7021 

25.9817 

25.1648 

25.0276 

23.3554 

21.3154 

84.3719 

58.9867 

40.9931 

30.1862 

25.5516 

21.6123 

19.9275 

18.2197 

16.1625 

15.9151 

15.5536 

15.3270 

54.7792 

37.7265 

26.5478 

20.4480 

20.1252 

17.3161 

15.0376 

14.5778 

12.2913 

12.0495 

11.0400 

10.5431 

34.2011 

24.5391 

18.2348 

17.5583 

15.6711 

13.1218 

11.4668 

11.2472 

10.4181 

9.4962 

9.0428 

8.7522 

21.3919 

15.6235 

13.5154 

11.8555 

10.9756 

9.9595 

8.8824 

7.8243 

6.4921 

5.7262 

4.8279 

3.7328 

 

 

 
 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

302.0319 

186.2670 

114.9125 

74.0010 

62.7583 

48.8209 

41.7994 

36.5176 

34.3040 

31.0500 

30.0366 

28.9065 

161.8600 

102.1244 

64.9904 

44.2741 

36.4532 

29.9712 

23.9274 

20.9178 

20.4822 

20.3390 

20.3100 

19.9014 

74.7640 

49.7250 

33.8030 

23.9211 

20.5058 

17.6425 

16.1490 

14.8117 

14.0734 

13.2683 

13.1420 

12.9370 

45.4829 

31.9232 

21.7072 

16.6822 

15.3124 

14.2637 

12.3109 

12.2418 

10.7843 

9.5208 

9.4815 

9.4243 

29.3545 

20.4280 

15.4394 

11.6333 

10.1081 

9.6102 

8.6254 

8.3801 

7.5803 

7.5719 

7.5161 

6.9619 

19.0411 

13.8253 

10.0270 

9.8102 

7.8958 

6.9462 

6.9035 

5.8406 

5.6905 

5.5887 

4.7273 

3.1526 

319.6446 

201.4525 

128.0904 

87.1223 

71.6900 

65.8368 

60.4706 

54.6436 

49.2401 

45.7158 

42.6131 

40.0085 

180.9657 

118.1301 

80.1329 

54.3978 

46.0114 

37.9275 

31.3054 

29.8832 

28.6848 

27.4721 

26.7417 

26.0733 

89.8468 

60.8587 

42.4243 

33.5058 

26.6041 

23.4419 

22.5885 

21.6922 

18.6869 

16.1013 

15.6234 

15.3769 

55.7925 

38.5818 

27.3091 

20.9489 

20.3313 

17.4363 

16.3184 

14.8978 

12.9469 

12.4067 

11.9418 

11.3925 

34.6345 

26.3338 

20.5591 

18.3616 

16.4165 

14.8730 

12.5972 

11.4001 

10.5933 

9.3825 

9.3670 

8.9737 

21.5914 

15.9135 

13.5573 

11.9693 

10.1592 

9.0382 

8.4914 

8.2045 

6.9904 

6.5245 

4.9564 

3.8827 
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Table C4: Dependence of average Nusselt number (Nu) on the fluid volume fractions (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers  

 

Nu (n = 1) 

Pr 
f  

Ri=1 Ri=2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

0.7 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.8862 

0.9199 

0.9228 

0.9300 

0.9360 

0.9486 

0.9660 

0.9818 

1.0138 

1.0267 

1.0394 

1.0415 

1.0128 

1.0154 

1.0638 

1.0819 

1.0881 

1.1086 

1.1100 

1.1539 

1.1952 

1.2390 

1.3518 

1.4841 

1.2401 

1.292 

1.369 

1.4575 

1.4944 

1.5446 

1.603 

1.6912 

1.7879 

1.9205 

2.1408 

2.2511 

1.638 

1.7758 

1.9248 

2.058 

2.1081 

2.1948 

2.3046 

2.4691 

2.6345 

2.7871 

2.9328 

3.1351 

2.409 

2.611 

2.8354 

3.0632 

3.1586 

3.3015 

3.455 

3.6419 

3.7314 

3.8074 

3.9556 

3.8516 

3.6596 

3.983 

4.3305 

4.5658 

4.6136 

4.7102 

4.837 

4.8804 

4.885 

4.9793 

5.0831 

5.2886 

0.8915 

0.924 

0.9259 

0.9359 

0.9379 

0.9574 

0.9802 

1.0084 

1.0544 

1.0915 

1.1001 

1.1008 

1.0159 

1.0161 

1.0712 

1.092 

1.0966 

1.1027 

1.1251 

1.178 

1.2328 

1.3175 

1.4973 

1.6314 

1.2435 

1.299 

1.3813 

1.4847 

1.5315 

1.6001 

1.6882 

1.8248 

1.9781 

2.1523 

2.3483 

2.4908 

1.6492 

1.805 

1.9955 

2.1932 

2.2825 

2.4175 

2.5755 

2.7882 

2.9817 

3.0789 

3.3005 

3.5398 

2.5031 

2.8038 

3.1514 

3.4648 

3.5873 

3.7657 

3.9523 

4.0954 

4.2131 

4.3709 

4.682 

4.6673 

4.089 

4.5335 

4.9846 

5.3534 

5.4184 

5.4941 

5.6112 

5.818 

6.005 

6.1128 

5.8026 

6.2059 

 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.9518 

0.972 

0.9801 

0.9865 

1.004 

1.0052 

1.0058 

1.0082 

1.0105 

1.0204 

1.0382 

1.0504 

1.0994 

1.1184 

1.1394 

1.1712 

1.1856 

1.2146 

1.2508 

1.2904 

1.334 

1.3898 

1.5109 

1.6487 

1.3838 

1.476 

1.5878 

1.688 

1.7404 

1.7905 

1.847 

1.9165 

2.0176 

2.1744 

2.3856 

2.5021 

1.9448 

2.1 

2.2478 

2.374 

2.4484 

2.5367 

2.6489 

2.785 

2.9422 

3.0976 

3.2492 

3.483 

2.8602 

3.049 

3.2662 

3.4864 

3.6114 

3.7428 

3.882 

4.0201 

4.0768 

4.1891 

4.2911 

4.2814 

4.2534 

4.5545 

4.8653 

5.1135 

5.1922 

5.2357 

5.3225 

5.3414 

5.3922 

5.464 

5.5332 

5.7172 

0.9534 

0.979 

0.9835 

0.991 

1.0104 

1.0352 

1.067 

1.1019 

1.1132 

1.1516 

1.1731 

1.2108 

1.103 

1.1197 

1.1312 

1.1481 

1.1943 

1.2272 

1.2701 

1.3223 

1.3899 

1.4948 

1.6839 

1.8173 

1.3877 

1.4847 

1.6078 

1.7308 

1.8049 

1.885 

1.9848 

2.1112 

2.2693 

2.4609 

2.6322 

2.7905 

1.9671 

2.1578 

2.3764 

2.5992 

2.7285 

2.868 

3.0233 

3.1914 

3.3634 

3.4603 

3.697 

3.9662 

3.0449 

3.3744 

3.7308 

4.0308 

4.1886 

4.3497 

4.5026 

4.5641 

4.6722 

4.8757 

4.918 

5.2032 

4.8885 

5.3094 

5.7192 

6.0392 

6.0926 

6.1424 

6.2476 

6.3975 

6.4627 

6.5246 

6.8276 

6.904 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.9215 

1.9269 

1.9467 

1.985 

2.0183 

2.0426 

2.0659 

2.1022 

2.1202 

2.1266 

2.1374 

2.1582 

2.3982 

2.4042 

2.4428 

2.472 

2.4923 

2.5457 

2.5916 

2.673 

2.6913 

2.7184 

2.7215 

2.9671 

3.234 

3.2342 

3.2562 

3.2748 

3.3568 

3.366 

3.52 

3.5206 

3.6738 

3.7547 

4.0051 

4.3377 

4.1008 

4.134 

4.1966 

4.201 

4.2971 

4.3757 

4.4284 

4.5903 

4.7944 

4.8874 

5.2726 

5.9464 

5.2868 

5.3272 

5.3834 

5.557 

5.6689 

5.7999 

5.9552 

5.9907 

6.0438 

6.1576 

6.2758 

6.3538 

6.9085 

7.0278 

7.2074 

7.4036 

7.4078 

7.4138 

7.423 

7.4867 

7.5208 

7.8232 

9.9651 

10.115 

1.924 

2.0486 

2.1098 

2.1145 

2.1327 

2.1334 

2.15 

2.155 

2.1608 

2.1616 

2.3154 

2.5008 

2.677 

2.6838 

2.6884 

2.7008 

2.7104 

2.7234 

2.7398 

2.7553 

2.8108 

2.9616 

3.2188 

3.362 

3.7423 

3.771 

3.791 

3.8358 

3.8545 

3.9355 

4.0402 

4.1654 

4.3262 

4.5044 

4.6206 

5.0345 

4.9264 

4.9505 

5.0663 

5.2207 

5.3149 

5.4228 

5.557 

5.6877 

5.7163 

6.266 

7.0541 

8.128 

6.6408 

6.7694 

6.9286 

7.1094 

7.1459 

7.1822 

7.216 

7.2886 

7.3016 

7.7208 

8.6239 

9.5411 

8.9938 

9.0098 

9.0444 

9.139 

9.1657 

9.194 

9.3097 

9.3207 

9.7906 

10.2437 

10.4801 

13.0918 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.4228 

2.4264 

2.4858 

2.5752 

2.6624 

2.6751 

2.7814 

2.8878 

2.9029 

2.9398 

2.9608 

3.0529 

2.8974 

2.9115 

2.959 

2.967 

3.0488 

3.1444 

3.1764 

3.3692 

3.685 

3.6952 

4.0106 

4.115 

3.7348 

3.7365 

3.7844 

3.8434 

3.9011 

4.1023 

4.1078 

4.4 

4.4586 

4.823 

5.2034 

6.033 

4.6018 

4.6754 

4.723 

4.8668 

4.9268 

5.0469 

5.2768 

5.5637 

5.8992 

6.0306 

6.8727 

8.8066 

5.8164 

5.8234 

6.0214 

6.3269 

6.5675 

6.7766 

7.0316 

7.0796 

7.2274 

7.8585 

9.2825 

11.0577 

7.496 

7.7316 

8.075 

8.4224 

8.5912 

8.6057 

8.6505 

8.7084 

8.9728 

11.2707 

13.7561 

14.8162 

2.7122 

2.7449 

2.7885 

2.8068 

2.8843 

2.8868 

2.9722 

3.0592 

3.1037 

3.1535 

3.2039 

3.235 

3.3406 

3.3521 

3.3792 

3.3933 

3.4872 

3.5422 

3.686 

3.8041 

3.9956 

4.0963 

4.4864 

4.7695 

4.5701 

4.7178 

4.7983 

4.8735 

4.9938 

5.0694 

5.3194 

5.6276 

5.8812 

6.1452 

7.3598 

4..4952 

5.774 

5.7825 

5.9804 

6.2562 

6.4491 

6.6457 

6.8893 

7.1054 

7.147 

7.2325 

8.5354 

10.9318 

7.5572 

7.7757 

8.0784 

8.4135 

8.6152 

8.6364 

8.7208 

8.7659 

9.0148 

9.3762 

11.2497 

12.484 

10.1772 

10.3412 

10.4647 

10.622 

10.6928 

10.7428 

10.8263 

10.9224 

11.6788 

11.6939 

14.7376 

16.1826 
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  APPENDIX-D  

Mixed Convection Non-Newtonian Data for Drag Coefficients 

Table D1: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers 

for the power-law index of n = 0.4 (NC-results not converged possibly due to unsteadiness in 

the flow) 

 

CDP (n = 0.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re →1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

80.3642 

41.3430 

31.0422 

27.1999 

21.6634 

18.1389 

14.6143 

13.4864 

12.7507 

12.6517 

11.1186 

10.2817 

44.2844 

24.5261 

17.2410 

15.6991 

12.4158 

10.8990 

9.3821 

8.9561 

7.7525 

7.2213 

6.8195 

6.3824 

20.8522 

14.5874 

9.4890 

8.1924 

7.4319 

6.6396 

6.5653 

5.6987 

5.3640 

5.0154 

4.5519 

4.0884 

11.5064 

8.1220 

6.3052 

5.4926 

5.1239 

4.6554 

4.5115 

4.1868 

3.8594 

3.0474 

2.9473 

2.8472 

7.1398 

6.9441 

5.3432 

4.1931 

3.9670 

3.0575 

2.8554 

2.6522 

2.4416 

2.1235 

1.9435 

NC 

5.0104 

4.1314 

3.4564 

2.9417 

2.6017 

2.4680 

2.3766 

2.3126 

1.9735 

1.8572 

1.7909 

NC 

85.8542 

45.6910 

36.1139 

30.9743 

24.6022 

20.0697 

17.5371 

15.6411 

14.9243 

13.6056 

12.2075 

10.5701 

48.7929 

27.4203 

20.3418 

17.4402 

14.3850 

12.1489 

11.9127 

10.7413 

10.0429 

9.1895 

8.9654 

8.6162 

21.9393 

16.2912 

12.4244 

10.3836 

9.5526 

9.3251 

8.0194 

7.4861 

6.2285 

5.7072 

5.4195 

5.1318 

12.8166 

9.8093 

8.4296 

7.2875 

6.1854 

5.0478 

4.7345 

4.3682 

4.0018 

3.9101 

3.3772 

2.7526 

8.4622 

7.2792 

6.0385 

4.0151 

3.7063 

3.3864 

3.2838 

3.2332 

2.9441 

2.7600 

2.5018 

NC 

5.6636 

5.5372 

3.7534 

3.2084 

2.9756 

2.7964 

2.5845 

2.2725 

2.1524 

2.0914 

 NC 

NC 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

83.2125 

46.5124 

30.4561 

26.7291 

22.5627 

20.6096 

18.6565 

15.7554 

14.4785 

13.4785 

12.2015 

10.1864 

36.5814 

29.9032 

18.3978 

15.6650 

12.2596 

11.6258 

10.6500 

9.9920 

8.6569 

7.5499 

6.5499 

5.4428 

21.3488 

15.9240 

9.6217 

9.3674 

8.9044 

8.0124 

7.3362 

6.6599 

5.7832 

5.5755 

5.2469 

4.5677 

12.9540 

8.4664 

8.0460 

7.2983 

5.6915 

5.2403 

5.1595 

4.7797 

4.6274 

4.3932 

4.2934 

3.6071 

7.4968 

7.2913 

5.6104 

4.4028 

4.1654 

3.1254 

3.0684 

2.9557 

2.8198 

2.4787 

2.2297 

NC 

5.4490 

4.3868 

3.6292 

3.0888 

2.7318 

2.5914 

2.4954 

2.4282 

2.0722 

1.9501 

1.8804 

NC 

88.7534 

47.5507 

37.8369 

32.4524 

26.4512 

23.7417 

21.0321 

17.2641 

17.1188 

16.8687 

15.8687 

14.8732 

52.0622 

30.2598 

25.0585 

21.9553 

15.9843 

13.3886 

12.9183 

11.7928 

10.8315 

10.3686 

9.3867 

7.9057 

22.9962 

16.8924 

12.9144 

10.7561 

10.5236 

8.3632 

7.0038 

6.8322 

6.3668 

6.3668 

6.2027 

5.9014 

13.7569 

10.2154 

9.9010 

8.5254 

7.8639 

6.5177 

6.3019 

5.6793 

5.0745 

5.0745 

4.4948 

3.6312 

9.0546 

7.7887 

6.4612 

4.2962 

3.9657 

3.6234 

3.5137 

3.4595 

3.1502 

2.9532 

2.6769 

NC 

5.9961 

5.8141 

3.9411 

3.3688 

3.1244 

2.9362 

2.7137 

2.3861 

2.26 

2.196 

NC 

NC 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

89.6320 

51.1994 

41.1663 

27.5633 

23.5434 

21.5031 

19.4628 

18.6981 

17.3495 

16.7501 

15.8771 

15.3532 

38.9342 

30.3310 

21.7478 

17.6153 

12.5929 

11.9479 

11.3028 

10.6791 

9.8886 

8.8567 

7.2274 

7.0980 

25.4850 

16.4925 

10.8046 

10.4841 

8.5747 

8.1560 

8.1287 

7.8660 

7.5760 

5.7238 

5.5883 

5.4528 

14.7668 

8.6324 

6.8429 

6.7822 

6.1866 

5.2525 

4.9320 

4.4324 

3.9751 

3.9108 

3.3892 

3.0181 

9.3296 

8.0253 

6.6574 

4.4266 

4.0862 

3.7335 

3.6204 

3.5646 

3.2459 

3.0429 

NC 

NC 

6.2664 

4.6061 

3.8107 

3.2432 

2.8684 

2.721 

2.6202 

2.5496 

2.1758 

NC 

NC 

NC 

92.8105 

55.8154 

47.2513 

41.3958 

28.2745 

25.3006 

22.3266 

20.6885 

18.8998 

17.1111 

16.9497 

16.2882 

54.7344 

31.4542 

25.8511 

22.7096 

16.3724 

15.1928 

14.2773 

12.1822 

11.9018 

10.9818 

9.7963 

8.9107 

25.0708 

17.2151 

17.1528 

12.5227 

11.8335 

11.2137 

9.3859 

7.4681 

6.4518 

6.4205 

6.3891 

5.5502 

15.4447 

10.7262 

10.4961 

8.9517 

8.2571 

6.8436 

6.6170 

5.9633 

5.3282 

5.3282 

4.7195 

3.8128 

10.0796 

8.1781 

6.7843 

4.511 

4.164 

3.8046 

3.6894 

3.6325 

3.3077 

NC 

NC 

NC 

 

6.2959 

6.1048 

4.1382 

3.5372 

3.2806 

3.083 

2.8494 

2.5054 

2.373 

NC 

NC 

NC 

 CDF (n = 0.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re →1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

 

44.8675 

37.1842 

21.7618 

17.8385 

15.4988 

12.6931 

9.8874 

8.6797 

8.3186 

7.9575 

7.7573 

6.2557 

24.5128 

16.9324 

14.3658 

10.6856 

9.4535 

7.4564 

5.4592 

4.8802 

4.8073 

4.7441 

3.9577 

3.7080 

9.7304 

8.6252 

7.1292 

4.8697 

3.9355 

3.4139 

2.8923 

2.3805 

2.3134 

2.1941 

2.1606 

2.0077 

7.2134 

5.2601 

3.4476 

2.8446 

2.3388 

2.0767 

1.8146 

1.4666 

1.3486 

1.2716 

1.2306 

1.0766 

4.1370 

3.2504 

2.4602 

1.4428 

1.2102 

1.1378 

1.0653 

0.9245 

0.6896 

0.5408 

0.4546 

NC 

2.2930 

1.7250 

1.1344 

0.8033 

0.6319 

0.6280 

0.6241 

0.5334 

0.4571 

0.3945 

0.2807 

NC 

53.7376 

41.0983 

24.3894 

19.9803 

17.4042 

13.2259 

11.0476 

10.1285 

8.3590 

8.1214 

7.2366 

6.8142 

24.9449 

21.7077 

14.5337 

10.6132 

9.5788 

8.0651 

6.5513 

5.2521 

5.1638 

4.6851 

4.6409 

4.1180 

13.0186 

9.6174 

6.8995 

5.3997 

4.7331 

4.1404 

3.5476 

2.9626 

2.7112 

2.6503 

2.5246 

2.3380 

6.8588 

5.2423 

3.8804 

3.1516 

2.9725 

2.4058 

1.8390 

1.5288 

1.5090 

1.4891 

1.4513 

1.4134 

3.8972 

3.0366 

2.2268 

1.7909 

1.7395 

0.8698 

0.6529 

0.3999 

0.2400 

0.2113 

0.1913 

NC 

2.3563 

1.3238 

1.1994 

1.1225 

0.9670 

0.6187 

0.5946 

0.5613 

0.4828 

0.4218 

NC 

NC 
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Table D1 (Contd.)  

Pr 
f  

Ri = 1 Ri = 2 

Re →1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

46.8898 

38.1742 

25.0492 

18.0624 

16.7918 

13.9412 

11.0906 

10.1655 

9.3962 

8.6268 

8.4972 

7.3675 

29.4452 

20.1420 

12.7234 

11.2660 

9.9504 

7.8255 

6.7006 

5.3430 

5.2541 

5.1652 

5.1589 

5.1525 

11.2206 

9.4715 

5.7560 

5.1494 

4.1994 

3.4684 

2.7374 

2.7333 

2.5926 

2.5807 

2.4518 

2.4281 

7.7922 

6.0848 

4.1858 

3.0750 

2.6508 

2.2889 

1.9270 

1.8723 

1.7136 

1.5548 

1.2297 

0.9045 

4.3708 

3.0105 

2.2718 

1.7545 

1.4155 

1.2528 

1.0900 

0.8665 

0.7006 

0.5347 

0.5142 

NC 

2.4455 

1.6184 

0.8795 

0.7940 

0.7092 

0.5970 

0.4847 

0.3773 

0.3685 

0.3597 

0.3377 

NC 

56.3616 

42.9954 

27.8225 

21.3067 

20.5497 

16.5611 

12.5724 

11.3595 

10.6604 

9.9613 

8.5125 

7.6586 

25.7480 

15.9173 

15.1318 

12.2581 

10.6535 

8.9197 

7.1858 

6.7797 

6.3555 

6.0782 

6.0047 

5.9312 

13.1003 

8.3422 

7.3604 

6.2861 

5.7701 

4.7461 

3.7220 

3.2957 

3.0706 

2.8455 

2.2612 

1.2266 

8.4468 

6.6520 

4.4441 

3.4119 

3.0596 

2.7218 

2.3839 

2.0535 

1.9025 

1.7514 

1.4030 

1.0546 

4.8878 

3.1884 

2.3381 

1.8804 

1.8265 

0.9133 

0.6855 

0.4199 

0.2520 

0.2219 

0.2009 

NC 

2.7888 

1.3900 

1.2594 

1.1786 

1.0154 

0.6496 

0.6243 

0.5894 

0.5069 

0.4429 

NC 

NC 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

49.1211 

39.8736 

26.8040 

18.0391 

17.4988 

14.2971 

11.0954 

10.8166 

9.8185 

9.1192 

8.9655 

8.8915 

32.0889 

21.4082 

13.4410 

11.5414 

10.9453 

8.2547 

6.5640 

5.7525 

5.5712 

4.7899 

4.2149 

3.9398 

13.0777 

9.0126 

6.6232 

5.9350 

4.4570 

3.8920 

3.3270 

3.1805 

2.8752 

2.5699 

2.4655 

2.3610 

7.8381 

4.9554 

3.8842 

3.3389 

2.7794 

2.2795 

1.9796 

1.6423 

1.5658 

1.4893 

1.3863 

1.2833 

4.2292 

2.6258 

1.8214 

1.9636 

1.5025 

1.5114 

1.5202 

1.3665 

1.0420 

0.7175 

NC 

NC 

 

2.1538 

1.4178 

1.1703 

0.9382 

0.8129 

0.8365 

0.8601 

0.6324 

0.5421 

NC 

NC 

NC 

59.5200 

44.0482 

29.0747 

23.2270 

21.8042 

17.4629 

13.1215 

12.3595 

11.4044 

10.4492 

9.8499 

8.9506 

29.0195 

25.0708 

15.5910 

12.7439 

10.9788 

9.2269 

7.4750 

7.1794 

6.2324 

6.1082 

5.6347 

5.0370 

16.9588 

10.6310 

7.7687 

6.6413 

6.0131 

4.6825 

3.3519 

3.0655 

3.0271 

2.9887 

2.8618 

2.7349 

8.2094 

5.5722 

3.9490 

3.6592 

3.1725 

2.4522 

1.7318 

1.4538 

1.4238 

1.3938 

1.5010 

1.6081 

4.9370 

2.9620 

2.2443 

1.5500 

1.4016 

1.3837 

1.3658 

1.2705 

1.1165 

NC 

NC 

NC 

2.9324 

1.3352 

1.5518 

1.1124 

1.0118 

0.9622 

0.9126 

0.7381 

0.6214 

NC 

NC 

NC 

CD (n = 0.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re →1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

125.2317 

78.5272 

52.8040 

45.0384 

37.1622 

30.8320 

24.5017 

22.1661 

21.0693 

20.6092 

18.8759 

16.5374 

68.7972 

41.4585 

31.6068 

26.3847 

21.8693 

18.3554 

14.8413 

13.8363 

12.5598 

11.9654 

10.7772 

10.0904 

30.5826 

23.2126 

16.6182 

13.0621 

11.3674 

10.0535 

9.4576 

8.0792 

7.6774 

7.2095 

6.7125 

6.0961 

18.7198 

13.3821 

9.7528 

8.3372 

7.4627 

6.7321 

6.3261 

5.6534 

5.2080 

4.3190 

4.1779 

3.9238 

11.2768 

10.1945 

7.8034 

5.6359 

5.1772 

4.1953 

3.9207 

3.5767 

3.1312 

2.6643 

2.3981 

2.3051 

7.3034 

5.8564 

4.5908 

3.7450 

3.2336 

3.0960 

3.0007 

2.8460 

2.4306 

2.3945 

2.3516 

2.2051 

139.5918 

86.7893 

60.5033 

50.9546 

42.0064 

33.2956 

28.5847 

25.7696 

23.2833 

21.7270 

19.4441 

17.3843 

73.7378 

49.1280 

34.8755 

28.0534 

23.9638 

20.2140 

18.4640 

15.9934 

15.2067 

13.8746 

13.6063 

12.7342 

34.9579 

25.9086 

19.3239 

15.7833 

14.2857 

13.4655 

11.5670 

10.4487 

8.9397 

8.3575 

7.9441 

7.4698 

19.6754 

15.0516 

12.3100 

10.4391 

9.1579 

7.4536 

6.5735 

5.8970 

5.5108 

5.3992 

4.8285 

4.1660 

12.3594 

10.3158 

8.2653 

5.8060 

5.4458 

4.2562 

3.9367 

3.6331 

3.1841 

2.9713 

2.6931 

2.1054 

8.0199 

6.8610 

4.9528 

4.3309 

3.9426 

3.4151 

3.1791 

2.8338 

2.6352 

2.5132 

2.4856 

2.4153 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

130.1023 

84.6866 

55.5053 

44.7915 

39.3545 

34.5508 

29.7471 

25.9209 

23.8747 

22.1053 

20.6987 

17.5539 

66.0266 

50.0452 

31.1212 

26.9310 

22.2100 

19.4513 

17.3506 

15.3350 

13.9110 

12.7151 

11.7088 

10.5953 

32.5694 

25.3955 

15.3777 

14.5168 

13.1038 

11.4808 

10.0736 

9.3932 

8.3758 

8.1562 

7.6987 

6.9958 

20.7462 

14.5512 

12.2318 

10.3733 

8.3423 

7.5292 

7.0865 

6.6520 

6.3410 

5.9480 

5.5231 

4.5116 

11.8676 

10.3018 

7.8822 

6.1573 

5.5809 

4.3782 

4.1584 

3.8222 

3.3240 

3.0134 

2.7439 

2.5138 

7.8945 

6.0052 

4.5087 

3.8828 

3.4410 

3.1884 

2.9801 

2.8055 

2.4407 

2.3098 

2.2181 

2.4035 

145.1150 

90.5461 

65.6594 

53.7591 

47.0009 

40.3028 

33.6045 

28.6236 

27.7792 

26.8300 

24.3812 

22.5318 

77.8102 

46.1771 

40.1903 

34.2134 

26.6378 

22.3083 

20.1041 

18.5725 

17.1870 

16.4468 

15.3914 

13.8369 

36.0965 

25.2346 

20.2748 

17.0422 

16.2937 

13.1093 

10.7258 

10.1279 

9.4374 

9.2123 

8.4639 

7.1280 

22.2037 

16.8674 

14.3451 

11.9373 

10.9235 

9.2395 

8.6858 

7.7328 

6.9770 

6.8259 

5.8978 

4.6858 

13.9424 

10.9771 

8.7993 

6.1766 

5.7922 

4.5367 

4.1992 

3.8794 

3.4022 

3.1751 

2.8778 

2.7546 

8.7849 

7.2041 

5.2005 

4.5474 

4.1398 

3.5858 

3.3380 

2.9755 

2.7669 

2.6389 

2.5514 

2.5198 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

138.7531 

91.0730 

67.9703 

45.6024 

41.0422 

35.8002 

30.5582 

29.5147 

27.1680 

25.8693 

24.8426 

24.2447 

71.0231 

51.7392 

35.1888 

29.1567 

23.5382 

20.2026 

17.8668 

16.4316 

15.4598 

13.6466 

11.4423 

11.0378 

38.5627 

25.5051 

17.4278 

16.4191 

13.0317 

12.0480 

11.4557 

11.0465 

10.4512 

8.2937 

8.0538 

7.8138 

22.6049 

13.5878 

10.7271 

10.1211 

8.9660 

7.5320 

6.9116 

6.0747 

5.5409 

5.4001 

4.7755 

4.3014 

13.5588 

10.6511 

8.4788 

6.3902 

5.5887 

5.2449 

5.1406 

4.9311 

4.2879 

3.7604 

3.5148 

3.1267 

8.4202 

6.0239 

4.9810 

4.1814 

3.6813 

3.5575 

3.4803 

3.1820 

2.7179 

2.6047 

2.5535 

2.4838 

152.3305 

99.8636 

76.3260 

64.6228 

50.0787 

42.7635 

35.4481 

33.0480 

30.3042 

27.5603 

26.7996 

25.2388 

83.7539 

56.5250 

41.4421 

35.4535 

27.3512 

24.4197 

21.7523 

19.3616 

18.1342 

17.0900 

15.4310 

13.9477 

42.0296 

27.8461 

24.9215 

19.1640 

17.8466 

15.8962 

12.7378 

10.5336 

9.4789 

9.4092 

9.2509 

8.2851 

23.6541 

16.2984 

14.4451 

12.6109 

11.4296 

9.2958 

8.3488 

7.4171 

6.7520 

6.7220 

6.2205 

5.4209 

15.0166 

11.1401 

9.0286 

6.0610 

5.5656 

5.1883 

5.0552 

4.9030 

4.4242 

3.8546 

3.3015 

3.0158 

9.2283 

7.4400 

5.6900 

4.6496 

4.2924 

4.0452 

3.7620 

3.2435 

2.9944 

2.7418 

2.6879 

2.6145 
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Table D2: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers 

for the power-law index of n = 0.6 (NC-results not converged possibly due to unsteadiness in 

the flow) 

 
CDP (n = 0.6) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

95.0724 

62.6768 

42.2041 

29.5580 

23.5627 

19.7163 

16.8698 

14.5898 

13.5630 

12.5361 

11.3579 

10.8797 

49.8600 

34.1838 

23.2160 

16.3644 

13.2596 

11.3082 

9.3567 

9.2568 

9.0991 

8.6804 

7.6016 

6.1041 

23.4960 

17.3012 

11.3335 

9.2276 

8.0124 

6.8845 

6.8681 

6.1458 

5.7238 

5.4070 

4.4025 

3.3935 

15.2668 

11.4270 

8.3068 

6.2445 

5.6915 

5.0815 

4.8548 

4.6780 

4.6291 

4.4273 

4.1766 

3.8581 

10.5716 

7.4145 

5.2778 

4.1488 

3.9842 

2.9771 

2.3478 

2.1269 
2.0198 

1.8286 

1.7544 

NC 

6.1484 

4.7124 

3.8105 

3.2562 

3.1259 

2.9772 

2.7284 

2.5992 

2.4528 

2.3171 

2.1814 

NC 

108.4204 

68.0317 

43.1164 

30.7622 

28.4512 

24.5699 

22.6885 

16.8659 
15.8330 

14.6485 

13.8321 

13.4311 

57.3998 

37.9020 

32.4571 

19.1250 

14.9843 

12.9831 

11.1017 
10.9818 

10.6100 

9.3104 

9.0645 

7.5190 

28.9872 

19.6894 

14.8976 

11.5961 

10.5236 

8.9563 

7.7535 
7.3890 

6.6554 

5.5573 

5.0423 

4.5272 

18.3498 

15.2948 

10.0156 

7.4103 

6.0264 

4.7967 

4.7304 

4.5213 

4.4632 

4.3121 
4.1960 

3.9567 

11.7675 

10.1898 

8.3081 

6.8413 

5.6987 

4.3048 

3.9109 

3.7748 
3.5147 

2.9118 

2.5525 

NC 

7.6078 

6.3549 

5.0000 

4.6461 

3.9541 

3.8253 

3.5631 

3.1721 

3.1721 

3.0933 

NC 

NC 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

98.4196 

66.7765 

47.9690 

32.1668 

26.3259 

22.1841 

18.0423 

14.1915 

13.9664 

12.9817 

11.8692 

10.7719 

54.5488 

37.1972 

25.1707 

19.1304 

14.3923 

13.1476 

11.9028 

10.4428 

9.1812 

8.1753 

7.1945 

6.5077 

24.6224 

17.5103 

12.3108 

10.3699 

9.1832 

8.6824 

7.5932 

7.4690 

7.0154 

6.2556 

6.2204 

4.8476 

15.8538 

12.2098 

8.6216 

7.4911 

6.3475 

5.8070 

5.4134 

5.0474 

4.4793 

4.2878 

4.1712 

4.0545 

10.8051 

7.7239 

6.3832 

5.3444 

4.8760 

4.6018 

4.0380 

3.9666 

3.7067 

3.1572 

2.1053 

NC 

6.6982 

5.5580 

3.9524 

3.9114 

3.8090 

3.4985 

3.4377 

3.1575 

2.5336 

2.3625 

2.2194 

NC 

110.5231 

71.4390 

45.5993 

32.4487 

29.3594 

26.6558 

23.9521 

19.5824 
17.3774 

15.9233 

14.4208 

13.2641 

62.2424 

39.5317 

33.7065 

23.8292 

16.2583 

14.9295 

13.6008 

12.8315 

11.5861 
10.7413 

10.1186 

8.6511 

29.6557 

20.5395 

15.9718 

12.9014 

12.0362 

11.0522 

9.7072 

9.1298 

7.2074 

6.5130 

6.4694 

5.4257 

18.8407 

16.0329 

11.3102 

8.2670 

7.7312 

7.6265 

6.7526 

6.2976 

5.7740 

5.2769 

4.9687 

4.7797 

12.0966 

11.1069 

9.0558 

7.4575 

6.2116 

4.6922 

4.2629 

4.1523 

3.8662 

3.203 

2.8078 

NC 

8.3686 

6.9904 

5.5112 

5.1107 

4.6495 

4.0165 

3.7413 

3.3307 

3.3307 

3.2479 

NC 

NC 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

101.3789 

70.0496 

49.0528 

36.7870 

32.2456 

28.5531 

22.8606 

20.4032 

18.2936 

17.8214 

16.2666 

15.2396 

58.1366 

39.0511 

30.8292 

21.6162 

16.2574 

15.0963 

11.9351 

10.6405 

9.8925 

8.8330 

8.4590 

7.0254 

25.9095 

20.5880 

14.5764 

10.7322 

10.4671 

9.2135 

8.5056 

7.8621 

7.7976 

6.7808 

6.0189 

5.2570 

18.4738 

13.3783 

8.7405 

8.5384 

7.7184 

6.5944 

6.5921 

5.5134 

4.6458 

4.4324 

4.3472 

4.0487 

11.1125 

8.6585 

7.1556 

5.9911 

5.4660 

5.1586 

4.5266 

4.4466 

4.1552 

3.9876 

3.7837 

NC 

7.4350 

6.8694 

5.3872 

4.7417 

4.5228 

3.8833 

3.8158 

3.5048 

2.8122 

2.6224 

NC 

NC 

115.4975 

76.5772 

59.0499 

47.5497 

37.9279 

29.0257 

26.5733 
24.9262 

21.8383 

20.5147 

18.8234 

16.5032 

69.4954 

52.7858 

31.2814 

24.0112 

23.5850 

18.8513 

15.1794 

13.6914 

12.3499 

11.9212 
10.7208 

9.5204 

31.2803 

25.6724 

15.9198 

14.6738 

12.7330 

12.5894 

10.8655 

9.5981 

7.0572 

6.6068 

6.5570 

6.2567 

19.7827 

16.8345 

11.8757 

8.6803 

8.1178 

8.0078 

7.0902 

6.6125 

6.0627 

5.5407 

5.2171 

5.0187 

13.7014 

11.6622 

9.5086 

7.8304 

6.5222 

4.9268 

4.4760 

4.0913 

3.6792 

2.9892 

2.4635 

NC 

9.7870 

7.3399 

5.7868 

5.3662 

4.5670 

3.4385 

2.7117 

2.6566 

2.5484 

2.1121 

NC 

NC 

CDF (n = 0.6) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

75.5052 

50.1918 

33.1554 

22.9434 

18.8259 

15.4988 

12.1716 

10.8699 

10.0779 

9.4100 

8.3480 

7.8859 

38.4615 

25.4930 

17.4745 

12.4999 

11.3651 

8.9454 

6.5256 

6.4720 

6.3996 

6.1569 

6.1207 

5.8418 

16.6068 

11.8045 

7.9762 

6.8392 

6.1560 

5.9351 

3.8938 

3.6525 

3.6416 

3.6332 

3.4255 

3.2178 

10.4190 

7.3545 

5.1784 

4.4324 

4.0045 

3.3389 

2.6732 

2.4003 

2.1712 

1.9422 

1.7363 

1.5303 

6.1436 

4.5370 

3.3871 

3.0215 

2.6470 

2.2103 

1.7735 

1.7735 

1.6844 

1.5953 

1.4455 

NC 

3.8290 

2.9058 

2.2528 

2.2081 

1.8064 

1.2241 

0.6897 

0.6418 

0.6262 

0.5628 

0.5231 

NC 

79.4662 

50.7518 

33.5282 

22.7450 

14.4850 

13.8042 

13.1234 

12.6981 
9.9846 

7.7397 

6.4948 

5.7474 

41.1628 

27.0945 

25.5745 

13.6914 

13.3724 

10.5788 

7.4662 

6.9365 

6.1345 

5.7552 

5.5439 

5.3326 

18.5704 

12.7174 

9.4786 

7.3859 

6.6068 

5.7331 

4.8594 

4.0250 
3.8129 

3.6009 

2.9232 

2.2455 

11.3961 

8.7382 

5.9482 

4.5455 

4.4440 

3.3973 

2.7046 
2.6571 

2.6097 

2.2490 

1.9391 

1.5685 

7.4638 

5.3904 

3.8148 

3.6605 

3.0112 

2.7395 

1.8622 

1.8622 

1.7686 

1.6751 

1.3078 

NC 

3.8952 

3.4036 

2.7444 

2.2929 

2.1514 

2.0050 

1.7242 

1.4739 

1.3576 

1.1909 

NC 

NC 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

77.5135 

52.2722 

31.8807 

24.6050 

20.5518 

16.6918 

14.8318 

13.1382 

12.4718 

11.6302 

10.7976 

9.1222 

41.0117 

29.0862 

16.7722 

12.8974 

11.7564 

9.5004 

7.2444 

7.0267 

6.8985 

5.8714 

5.8073 

4.7161 

17.2910 

11.2125 

9.3282 

7.2518 

6.0044 

5.1994 

4.3944 

4.2384 

3.9444 

3.6805 

3.5335 

3.6226 

11.1794 

7.9740 

6.8426 

5.8504 

4.4964 

3.6508 

2.8052 

2.5988 

2.4040 

2.2092 

1.8306 

1.7452 

6.8182 

5.0477 

4.9129 

3.7201 

2.8602 

2.3155 

1.7708 

1.6159 

1.4015 

1.1872 

1.0615 

NC 

4.1903 

3.5788 

3.0544 

2.1970 

1.7282 

1.1592 

0.9562 

0.7902 

0.7528 

0.7154 

0.5334 

NC 

80.3512 

53.4588 

35.0127 

31.1070 

24.0904 

20.4970 

16.9036 

13.4437 
12.6270 

11.2212 

10.8129 

9.9987 

45.6058 

34.1224 

22.1075 

17.3353 

14.2368 

11.9653 

9.6939 

8.4325 
8.1782 

7.3792 

7.2521 

6.3260 

21.3882 

16.1798 

10.9212 

8.5581 

7.3316 

6.7701 

5.5526 

5.2086 

4.8626 

4.5828 
4.3777 

3.1726 

12.6070 

9.6924 

6.7378 

6.5428 

5.2636 

5.0596 

3.3814 

3.1270 
3.0659 

3.0049 

2.3288 

1.6527 

7.5065 

5.5759 

4.2303 

4.0386 

3.3239 

2.3921 

1.8593 

1.6967 

1.4716 

1.2466 

1.1145 

NC 

3.3253 

2.8915 

2.8590 

2.2351 

1.7532 

1.7499 

1.1040 

0.8297 

0.7904 

0.7512 

NC 

NC 
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Table D2 (Contd.)  

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

80.3789 

53.8005 

37.9270 

26.1470 

22.6915 

20.7761 

18.8606 

15.5987 

13.2197 

12.0166 

11.2157 

10.4344 

44.1366 

28.3904 

20.5003 

15.3218 

13.9351 

11.1945 

9.4539 

7.2425 

6.7767 

6.1525 

5.3675 

5.0625 

23.9095 

13.0488 

9.6925 

8.7976 

7.3014 

7.0352 

5.7808 

5.5529 

4.4951 

4.4281 

3.3927 

3.3032 

11.3783 

8.5654 

6.9435 

5.5494 

4.7765 

4.6045 

3.8874 

3.4324 

2.8723 

2.4168 

2.3122 

2.1145 

10.0976 

5.4604 

3.6485 

2.9615 

2.9415 

2.8998 

2.7390 

2.2558 

1.8665 

1.4772 

1.1124 

NC 

5.7770 

2.9099 

2.0149 

2.0146 

1.8670 

1.7190 

1.5983 

1.5739 

0.8130 

0.7726 

NC 

NC 

83.9794 

56.1188 

41.1698 

34.4065 

26.6225 

20.8410 
18.0075 

14.3924 

12.7130 

12.0360 

9.9542 

9.6795 

47.9480 

32.9109 

21.9098 

17.6628 

14.8645 

12.3565 

10.8485 

9.2292 

8.7202 
7.7797 

6.8757 

5.8392 

21.1500 

16.7642 

11.2292 

9.0632 

8.1577 

7.4479 

6.7380 

5.6738 

5.2868 
4.8455 

4.4042 

3.6388 

13.2374 

10.1770 

7.0747 

6.8699 

5.5268 

5.3126 

3.5505 

3.2834 

3.2192 

3.1551 

2.4452 

1.7353 

7.8818 

5.8547 

4.4418 

4.2405 

3.4901 

2.5117 

1.9523 

1.7815 

1.5452 

1.3089 

1.1702 

NC 

4.0415 

2.9508 

2.7207 

2.3698 

1.7884 

1.1259 

1.0928 

1.0528 

0.9385 

0.8243 

NC 

NC 

CD (n = 0.6) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

170.5776 

112.8686 

75.3595 

52.5014 

42.3886 

35.2150 

29.0414 

25.4597 

23.6409 

21.9461 

19.7059 

18.7656 

88.3215 

59.6768 

40.6905 

28.8643 

24.6247 

20.2535 

15.8823 

15.7288 

15.4987 

14.8373 

13.7223 

11.9459 

40.1028 

29.1057 

19.3097 

16.0668 

14.1684 

12.8196 

10.7619 

9.7983 

9.3654 

9.0402 

7.8280 

6.6113 

25.6858 

18.7815 

13.4852 

10.6769 

9.6960 

8.4204 

7.5280 

7.0783 

6.8003 

6.3695 

5.9129 

5.3884 

16.7152 

11.9515 

8.6649 

7.1703 

6.6312 

5.1874 

4.1213 

3.9004 

3.7042 

3.4239 

3.1999 

3.1245 

9.9774 

7.6182 

6.0633 

5.4643 

4.9323 

4.2013 

3.4181 

3.2410 

3.0790 

2.8799 

2.7045 

2.6128 

187.8866 

118.7835 

76.6446 

53.5072 

42.9362 

38.3741 

35.8119 

29.5640 

25.8176 

22.3882 

20.3269 

19.1785 

98.5626 

64.9965 

58.0316 

32.8164 

28.3567 

23.5619 

18.5679 

17.9183 

16.7445 

15.0656 

14.6084 

12.8516 

47.5576 

32.4068 

24.3762 

18.9820 

17.1304 

14.6894 

12.6129 

11.4140 

10.4683 

9.1582 

7.9655 

6.7727 

29.7459 

24.0330 

15.9638 

11.9558 

10.4704 

8.1939 

7.4350 

7.1784 

7.0729 

6.5611 

6.1351 

5.5252 

19.2313 

15.5802 

12.1229 

10.5018 

8.7099 

7.0443 

5.7731 

5.6370 

5.2833 

4.5869 

3.8603 

3.3529 

11.5030 

9.7585 

7.7444 

6.9390 

6.1055 

5.8303 

5.2873 

4.6460 

4.5297 

3.2439 

3.0645 

2.9145 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

175.9331 

119.0487 

79.8497 

56.7718 

46.8777 

38.8759 

32.8741 

27.3297 

26.4382 

24.6119 

22.6668 

19.8941 

95.5605 

66.2834 

41.9429 

32.0278 

26.1487 

22.6480 

19.1472 

17.4695 

16.0797 

14.0467 

13.0018 

11.2238 

41.9134 

28.7228 

21.6390 

17.6217 

15.1876 

13.8818 

11.9876 

11.7074 

10.9598 

9.9361 

9.7539 

8.4702 

27.0332 

20.1838 

15.4642 

13.3415 

10.8439 

9.4578 

8.2186 

7.6462 

6.8833 

6.4970 

6.0018 

5.7997 

17.6233 

12.7716 

11.2961 

9.0645 

7.7362 

6.9173 

5.8088 

5.5825 

5.1082 

4.3444 

3.2668 

3.1807 

10.8885 

9.1368 

7.0068 

6.1084 

5.5372 

4.6577 

4.3939 

3.9477 

3.2864 

3.0779 

2.7528 

2.6434 

190.8743 

124.8978 

80.6120 

63.5557 

53.4498 

47.1528 

40.8557 

33.0261 

30.0044 

27.1445 

25.2336 

23.2628 

107.8482 

73.6541 

55.8140 

41.1645 

30.4951 

26.8948 

23.2947 

21.2640 

19.7643 

18.1205 

17.3707 

14.9771 

51.0439 

36.7193 

26.8930 

21.4595 

19.3678 

17.8223 

15.2598 

14.3384 

12.0700 

11.0958 

10.8471 

8.5983 

31.4477 

25.7253 

18.0480 

14.8098 

12.9948 

12.6861 

10.1340 

9.4246 

8.8399 

8.2818 

7.2975 

6.4324 

19.6031 

16.6828 

13.2861 

11.4961 

9.5355 

7.0843 

6.1222 

5.8490 

5.3378 

4.4496 

3.9223 

3.4155 

11.6939 

9.8819 

8.3702 

7.3458 

6.4027 

5.7664 

4.8453 

4.1604 

4.1211 

3.9991 

3.1542 

2.9824 

 

 

 

 

 

50 

 

 

 

 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

181.7578 

123.8501 

86.9798 

62.9340 

54.9371 

49.3292 

41.7212 

36.0019 

31.5133 

29.8380 

27.4823 

25.6740 

102.2732 

67.4415 

51.3295 

36.9380 

30.1925 

26.2908 

21.3890 

17.8830 

16.6692 

14.9855 

13.8265 

12.0879 

49.8190 

33.6368 

24.2689 

19.5298 

17.7685 

16.2487 

14.2864 

13.4150 

12.2927 

11.2089 

9.4116 

8.5602 

29.8521 

21.9437 

15.6840 

14.0878 

12.4949 

11.1989 

10.4795 

8.9458 

7.5181 

6.8492 

6.6594 

6.1632 

21.2101 

14.1189 

10.8041 

8.9526 

8.4075 

8.0584 

7.2656 

6.7024 

6.0217 

5.4648 

4.8961 

4.1528 

13.2120 

9.7793 

7.4021 

6.7563 

6.3898 

5.6023 

5.4141 

5.0787 

3.6252 

3.3950 

2.8305 

2.7546 

199.4769 

132.6960 

100.2197 

81.9562 

64.5504 

49.8667 

44.5808 

39.3186 

34.5513 

32.5507 

28.7776 

26.1827 

117.4434 

85.6967 

53.1912 

41.6740 

38.4495 

31.2078 

26.0279 

22.9206 

21.0701 

19.7009 

17.5965 

15.3596 

52.4303 

42.4366 

27.1490 

23.7370 

20.8907 

20.0373 

17.6035 

15.2719 

12.3440 

11.4523 

10.9612 

9.8955 

33.0201 

27.0115 

18.9504 

15.5502 

13.6446 

13.3204 

10.6407 

9.8959 

9.2819 

8.6958 

7.6623 

6.7540 

21.5832 

17.5169 

13.9504 

12.0709 

10.0123 

7.4385 

6.4283 

5.8728 

5.2244 

4.2981 

3.6337 

3.4813 

13.8285 

10.2907 

8.5075 

7.7360 

6.3554 

4.5644 

3.8045 

3.7094 

3.4869 

3.4129 

3.3119 

3.1415 
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Table D3: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers 

for the power-law index of n = 0.8 (NC-results not converged possibly due to unsteadiness in 

the flow) 

 
CDP (n = 0.8) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

118.8887 

75.9348 

47.9470 

32.1150 

26.7911 

21.7664 

18.7416 

15.5314 

14.6471 

13.6262 

12.1840 

11.7209 

61.7618 

40.0039 

25.9790 

17.9225 

14.9023 

12.6416 

10.3808 

9.8432 

9.3786 

8.7253 

7.9665 

7.4073 

28.1522 

19.2030 

13.1860 

9.7772 

8.6248 

7.3198 

7.1563 

6.4494 

6.0148 

5.4425 

5.3644 

4.9862 

17.7324 

12.8123 

9.1092 

6.9912 

6.3475 

5.3458 

5.2475 

5.0385 

4.5475 

4.4638 

4.3158 

4.0841 

12.4590 

8.8834 

6.2155 

5.1868 

4.8760 

4.7063 

4.2258 

4.2026 

3.8752 

3.7418 

3.5477 

NC 

7.9581 

5.7474 

4.4142 

3.7626 

3.4985 

3.4968 

3.4339 

3.2364 

2.9760 

2.7493 

2.7170 

NC 

122.9529 

79.5292 

51.0995 

34.5796 

28.3594 

24.5603 

20.7611 

18.4164 

16.6490 

16.1095 

15.4955 

14.8815 

65.9728 

43.7255 

29.2666 

21.0080 

16.2583 

14.3850 

14.3333 

12.7043 

12.4083 

11.0236 

10.7812 

10.5388 

32.9248 

23.4607 

16.8303 

12.8158 

11.0522 

9.9556 

9.5309 

8.3976 

8.0095 

7.1068 

6.9732 

5.8395 

22.7191 

16.5148 

12.8032 

9.7414 

9.2670 

8.7854 

7.1694 

6.5152 

5.7307 

5.4866 

5.3330 

4.9353 

15.0756 

10.5512 

9.1840 

7.5412 

6.7869 

5.9670 

5.1443 

4.7343 

4.3898 

4.3243 

3.2704 

NC 

9.4716 

7.2796 

5.8312 

4.1409 

4.0018 

3.4084 

3.2151 

3.0231 

2.8512 

2.3554 

2.1016 

NC 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

121.4910 

79.0140 

50.5903 

34.6480 

28.2456 

23.8987 

19.5518 

15.6286 

14.6843 

14.2772 

14.0086 

13.7399 

65.9998 

43.9646 

29.1194 

20.7182 

16.2574 

14.0069 

11.7564 

10.5940 

10.0653 

9.9913 

9.7270 

9.3886 

33.1318 

22.9575 

15.8018 

11.5082 

10.2135 

9.3886 

9.3281 

9.2674 

8.5723 

7.7605 

6.9311 

5.1324 

21.1260 

14.7920 

10.2954 

9.6312 

7.7184 

7.4020 

6.8426 

5.9483 

5.1728 

5.0539 

4.8693 

4.1659 

13.2244 

9.3360 

7.1975 

6.7165 

6.0459 

5.2258 

4.9129 

4.8943 

4.2620 

4.1504 

3.6110 

NC 

8.1019 

5.9695 

5.9616 

4.9565 

4.5067 

3.9514 

3.5788 

3.2247 

3.0774 

2.9301 

2.5336 

NC 

128.4055 

84.3154 

55.6427 

41.1540 

33.2790 

28.1847 

23.0904 

20.6520 

19.2845 

19.1844 

18.5006 

17.7167 

74.0232 

50.8121 

34.7915 

26.9399 

20.0112 

17.4174 

14.8236 

13.5634 

12.7811 

12.7628 

12.3808 

11.9988 

40.2723 

28.0632 

19.1294 

15.3047 

12.5894 

11.4530 

10.484 

9.2373 

8.8105 

7.8175 

7.4437 

7.3611 

24.5506 

16.8092 

11.9818 

10.8012 

9.4129 

8.2635 

7.9737 

6.8782 

6.1567 

6.0282 

5.7198 

4.1828 

15.1210 

10.2144 

9.1398 

7.6736 

6.8708 

5.9520 

5.6303 

4.8967 

4.4666 

4.4142 

4.3618 

NC 

10.4188 

8.0076 

6.4143 

4.555 

4.4021 

3.7492 

3.5366 

3.3254 

3.1363 

3.0115 

2.9218 

NC 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

124.4021 

82.0672 

51.8303 

36.6590 

30.2215 

25.2546 

20.2878 

16.5006 

15.5048 

15.4198 

14.9644 

14.5091 

69.3558 

46.3122 

30.6065 

21.6620 

17.3361 

15.8402 

13.3442 

11.9794 

10.5056 

10.2502 

10.1681 

10.0306 

34.7160 

23.9244 

16.3510 

12.1388 

10.9284 

10.0458 

9.9811 

9.9161 

9.1724 

8.3037 

7.4163 

5.4971 

21.6544 

15.1299 

11.0161 

10.3054 

8.2587 

7.9201 

7.3216 

6.3646 

5.5349 

5.4077 

5.2102 

4.5421 

13.4690 

9.5307 

7.7733 

7.2538 

6.5296 

5.6439 

5.3059 

5.2858 

4.6029 

4.4824 

3.8999 

NC 

8.6582 

6.3874 

6.3789 

5.3035 

4.8222 

4.2280 

3.8293 

3.4504 

3.2928 

3.1352 

NC 

NC 

136.9560 

90.7915 

59.9937 

42.5017 

34.2651 

29.0670 

23.8688 

23.1495 

20.9817 

20.5654 

19.6897 

18.8139 

80.1064 

54.8534 

37.2056 

31.1966 

27.4576 

21.5050 

15.9437 

15.5524 

14.1496 

13.3915 

12.8735 

11.3540 

41.9346 

29.8217 

19.7107 

16.0280 

15.0874 

13.9826 

11.4090 

11.1824 

8.3822 

7.7305 

7.5116 

7.2926 

25.0250 

17.2324 

12.6590 

11.4338 

9.1332 

8.1769 

7.9686 

7.7937 

7.5188 

6.8686 

5.8905 

4.9584 

16.0331 

10.2411 

7.0855 

6.8098 

6.1660 

5.9221 

5.3942 

5.2878 

4.8743 

4.8662 

4.4965 

NC 

11.5589 

8.8842 

7.0614 

6.2534 

5.8469 

4.7548 

4.5113 

4.2678 

3.6261 

3.2899 

NC 

NC 

CDF (n = 0.8) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

105.2510 

67.8338 

42.9122 

28.6298 

23.8987 

19.3636 

14.8284 

11.2777 

11.1584 

10.7674 

10.7077 

10.2570 

53.4154 

34.6808 

22.4154 

15.3299 

14.0069 

9.4287 

7.9044 

7.3450 

7.0293 

6.9074 

6.7855 

4.8505 

22.6924 

15.3012 

10.3664 

8.5723 

7.6188 

6.6636 

4.9395 

4.7655 

4.7548 

4.5915 

3.9839 

3.3762 

12.9412 

9.2354 

6.5944 

5.9483 

5.1572 

4.6996 

3.6282 

3.4511 

3.4237 

3.2192 

3.1918 

3.1644 

8.3014 

6.1275 

4.5262 

4.2620 

3.6506 

3.3823 

2.5028 

2.3785 

2.3709 

2.3201 

2.2617 

NC 

5.5874 

4.2108 

3.2299 

3.0774 

2.6328 

2.4390 

1.8005 

1.1999 

0.9864 

0.9721 

0.7443 

NC 

106.4659 

69.1062 

44.2294 

29.2072 

28.1847 

22.7091 

17.2334 

15.9496 

14.2752 

13.5238 

13.0623 

12.6007 

54.7895 

36.0520 

23.8031 

17.4174 

16.9174 

13.6557 

11.7754 

10.4369 

9.8940 

9.0984 

8.5401 

7.9818 

24.4209 

17.0766 

12.1192 

10.4530 

9.2792 

8.2736 

6.7601 

6.0942 

6.0465 

5.5041 

5.4185 

5.3328 

14.9786 

10.9633 

8.1018 

6.9164 

6.2972 

5.5679 

5.3183 

5.0791 

4.5903 

3.7565 

3.2802 

2.7731 

9.6922 

7.1250 

5.2974 

4.4142 

4.2856 

3.7663 

3.6491 

3.6360 

3.2837 

3.1183 

2.9182 

NC 

6.3108 

4.9764 

4.0698 

3.1744 

3.1128 

2.8562 

2.4429 

2.1943 

1.8756 

1.5422 

1.1267 

NC 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

106.8300 

69.9118 

44.7909 

30.5184 

26.8095 

22.6692 

17.5288 

13.5570 

12.6722 

12.3698 

12.0786 

11.7874 

55.9448 

37.2001 

24.5025 

17.2877 

15.1758 

12.4539 

9.7320 

8.4925 

8.3304 

8.1764 

8.0954 

7.8603 

25.6720 

17.6958 

12.1834 

8.9028 

7.8603 

6.8529 

6.7619 

6.3864 

6.1332 

5.8455 

5.5045 

4.9125 

15.3190 

10.8314 

7.7158 

5.9014 

5.2369 

4.5777 

4.4397 

3.9374 

3.9184 

3.4778 

3.4564 

3.4350 

9.5254 

6.9544 

5.1454 

3.9880 

3.3282 

2.9418 

2.5621 

2.5553 

2.4208 

2.2795 

2.2056 

NC 

6.1943 

4.5859 

3.3822 

3.1112 

2.5520 

2.1492 

1.7464 

1.1108 

1.0280 

1.0004 

0.9452 

NC 

109.9412 

72.1858 

47.4326 

34.4446 

29.5030 

24.4122 

19.3214 

17.6496 

16.3362 

16.1085 

15.5656 

15.0227 

59.6856 

40.6414 

27.6864 

22.6984 

16.9644 

14.4865 

12.0085 

10.4966 

10.2778 

10.0590 

9.6306 

8.2022 

29.5254 

20.8392 

14.5368 

12.1574 

9.6645 

8.2158 

6.7670 

5.9788 

5.8783 

5.7777 

5.0993 

4.4209 

18.1312 

12.9415 

9.0852 

7.7818 

7.0229 

6.1394 

5.4970 

4.7234 

4.3099 

3.9964 

3.2776 

2.8318 

11.2047 

8.1438 

5.5282 

5.4687 

4.6046 

4.3542 

3.2430 

3.2397 

3.2144 

3.1858 

1.9431 

NC 

7.0729 

5.2120 

3.8228 

3.3014 

3.1311 

2.9547 

2.4435 

2.1229 

1.9245 

1.2574 

0.4128 

NC 
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Table D3 (Contd.)  

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

107.8395 

71.4356 

45.1110 

31.7176 

27.9095 

22.6692 

17.5580 

14.0798 

13.2030 

12.6722 

12.3300 

12.0786 

57.5886 

38.3882 

25.2625 

17.7564 

15.0758 

12.4539 

10.0807 

8.9860 

8.3213 

8.2186 

8.1764 

8.0954 

26.5255 

18.2221 

12.4820 

9.3099 

7.8776 

6.8529 

6.3864 

6.1332 

6.0432 

5.7124 

5.1583 

5.0226 

15.6392 

11.0382 

7.8968 

6.0190 

5.9622 

4.5777 

3.9374 

3.9292 

3.6618 

3.4564 

3.4252 

3.3289 

9.7020 

7.0889 

5.2042 

3.9920 

3.0288 

2.9418 

2.4208 

2.2174 

2.2056 

2.1667 

2.0020 

NC 

6.2258 

4.5527 

3.2226 

2.4319 

2.1492 

2.1112 

1.5138 

1.1589 

1.0280 

1.0004 

NC 

NC 

114.5890 

75.8422 

49.9007 

35.8325 

30.7503 

24.4122 

19.6684 

19.4497 

16.9948 

16.3362 

15.8854 

15.5656 

63.0170 

42.9965 

29.1738 

24.4675 

16.4144 

14.4865 

12.5540 

12.0914 

10.9725 

10.2778 

10.2046 

9.6306 

30.7556 

22.3778 

15.2018 

12.6500 

10.2531 

8.7408 

8.2158 

6.7435 

5.8783 

5.8520 

5.8354 

5.0993 

18.6554 

13.3171 

9.2748 

8.6530 

8.1206 

6.1394 

4.5768 

4.1102 

4.1099 

3.6318 

3.2776 

2.6340 

11.3744 

8.4456 

5.6916 

5.5299 

4.6587 

4.4042 

3.9958 

3.3053 

3.2347 

3.2168 

2.1531 

NC 

7.8934 

5.8166 

4.2662 

3.6844 

3.4943 

3.2974 

2.7269 

2.3692 

2.1477 

1.4033 

NC 

NC 

CD (n = 0.8) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

224.1397 

143.7686 

90.8592 

60.7448 

50.6898 

41.1299 

33.5700 

26.8091 

25.8055 

24.3935 

22.8917 

21.9779 

115.1772 

74.6847 

48.3944 

33.2524 

28.9092 

22.0703 

18.2852 

17.1882 

16.4079 

15.6327 

14.7520 

12.2578 

50.8446 

34.5042 

23.5524 

18.3495 

16.2436 

13.9834 

12.0958 

11.2149 

10.7696 

10.0340 

9.3482 

8.3624 

30.6736 

22.0477 

15.7036 

12.9395 

11.5047 

10.0454 

8.8757 

8.4896 

7.9712 

7.6830 

7.5076 

7.2485 

20.7604 

15.0109 

10.7417 

9.4488 

8.5266 

8.0886 

6.7286 

6.5811 

6.2460 

6.0619 

5.8094 

4.3551 

13.5455 

9.9582 

7.6441 

6.8400 

6.1313 

5.9358 

5.2344 

4.4363 

3.9624 

3.7214 

3.4613 

2.9551 

229.4188 

148.6354 

95.3289 

63.7868 

56.5441 

47.2693 

37.9945 

34.3660 

30.9241 

29.6333 

28.5578 

27.4822 

120.7623 

79.7775 

53.0697 

38.4254 

33.1757 

28.0407 

26.1087 

23.1412 

22.3023 

20.1220 

19.3213 

18.5206 

57.3457 

40.5373 

28.9495 

23.2688 

20.3314 

18.2292 

16.2910 

14.4918 

14.0560 

12.6109 

12.3916 

11.1723 

37.6977 

27.4781 

20.9050 

16.6578 

15.5642 

14.3533 

12.4877 

11.5943 

10.3210 

9.2431 

8.6132 

7.7084 

24.7678 

17.6762 

14.4814 

11.9554 

11.0725 

9.7333 

8.7934 

8.3703 

7.6735 

7.4426 

6.1886 

5.2536 

15.7824 

12.2560 

9.9010 

7.3153 

7.1146 

6.2646 

5.6580 

5.2174 

4.7268 

4.1439 

3.2283 

3.1142 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

228.3210 

148.9258 

95.3812 

65.1664 

55.0551 

46.5679 

37.0806 

29.1856 

27.3565 

26.6470 

26.0872 

25.5273 

121.9446 

81.1647 

53.6219 

38.0059 

31.4332 

26.4608 

21.4884 

19.0865 

18.3957 

18.1677 

17.8223 

17.2489 

58.8038 

40.6533 

27.9852 

20.4110 

18.0738 

16.2415 

16.0900 

15.6538 

14.7055 

13.6060 

12.4356 

10.0449 

36.4450 

25.6234 

18.0112 

15.5326 

12.9553 

11.9797 

11.2823 

9.8856 

9.0912 

8.5317 

8.3257 

7.6009 

22.7498 

16.2904 

12.3429 

10.7045 

9.3741 

8.1676 

7.4750 

7.4496 

6.6828 

6.4299 

5.8166 

4.6856 

14.2962 

10.5554 

9.3438 

8.0677 

7.0587 

6.1006 

5.3252 

4.3355 

4.1054 

3.9305 

3.6024 

3.0112 

238.3467 

156.5012 

103.0753 

75.5986 

62.7820 

52.5969 

42.4118 

38.3016 

35.6207 

35.2929 

34.0662 

32.7394 

133.7088 

91.4535 

62.4779 

49.6383 

36.9756 

31.9039 

26.8321 

24.0600 

23.0589 

22.8218 

22.0114 

20.2010 

69.7977 

48.9024 

33.6662 

27.4621 

22.2539 

19.6687 

17.2509 

15.2161 

14.6888 

13.5952 

12.5430 

11.7820 

42.6818 

29.7507 

21.0670 

18.5830 

16.4358 

14.4029 

13.4707 

11.6016 

10.4666 

10.0246 

8.9974 

7.0146 

26.3257 

18.3582 

14.6680 

13.1423 

11.4754 

10.3062 

8.8733 

8.1364 

7.6810 

7.6000 

6.3049 

5.9125 

17.4917 

13.2196 

10.2371 

7.8564 

7.5331 

6.7039 

6.7701 

5.4483 

5.0608 

4.2689 

3.3346 

3.1526 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

232.2416 

153.5028 

96.9413 

68.3766 

58.1310 

47.9238 

37.8458 

30.5804 

28.7078 

28.0920 

27.2944 

26.5877 

126.9444 

84.7004 

55.8690 

39.4184 

32.4119 

28.2941 

23.4249 

20.9654 

18.8269 

18.4688 

18.3445 

18.1260 

61.2415 

42.1465 

28.8330 

21.4487 

18.8060 

16.8987 

16.3675 

16.0493 

15.2156 

14.0161 

12.5746 

10.5197 

37.2936 

26.1681 

18.9129 

16.3244 

14.2209 

12.4978 

11.2590 

10.2938 

9.1967 

8.8641 

8.6354 

7.8710 

23.1710 

16.6196 

12.9775 

11.2458 

9.5584 

8.5857 

7.7267 

7.5032 

6.8085 

6.6491 

5.9019 

4.7225 

14.8840 

10.9401 

9.6015 

7.7354 

6.9714 

6.3392 

5.3431 

4.6093 

4.3208 

4.1356 

3.8566 

3.2018 

251.5450 

166.6337 

109.8944 

78.3342 

65.0154 

53.4792 

43.5372 

42.5992 

37.9765 

36.9016 

35.5751 

34.3795 

143.1234 

97.8499 

66.3794 

55.6641 

43.8720 

35.9915 

28.4977 

27.6438 

25.1221 

23.6693 

23.0781 

20.9846 

72.6902 

52.1995 

34.9125 

28.6780 

25.3405 

22.7234 

19.6247 

17.9259 

14.2605 

13.5825 

13.3470 

12.3919 

43.6804 

30.5495 

21.9338 

20.0868 

17.2538 

14.3163 

12.5454 

11.9039 

11.6287 

10.5004 

9.1681 

7.5924 

27.4075 

18.6867 

12.7771 

12.3397 

10.8247 

10.3263 

9.3900 

8.5931 

8.1090 

8.0830 

6.6496 

6.1241 

19.4523 

14.7008 

11.3276 

9.9378 

9.3412 

8.0522 

7.2382 

6.6370 

5.7738 

5.3129 

4.0522 

3.3569 
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Table D4: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers 

for the power-law index of n = 1.4  

 

CDP (n = 1.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

242.973 

133.2575 

72.1900 

42.9121 

36.2548 

27.0853 

23.9159 

21.1252 

19.0120 

17.7945 

16.2978 

15.8901 

123.6595 

68.6748 

37.8904 

23.2256 

18.2456 

16.3571 

14.4686 

12.8448 

11.7591 

11.3998 

10.6908 

10.1863 

52.6738 

30.4922 

17.9788 

11.9198 

10.2645 

9.9052 

8.5951 

7.0317 

6.5459 

6.3748 

5.9205 

5.7884 

29.9175 

18.5425 

11.9401 

8.5989 

7.4869 

7.3885 

6.4561 

6.0533 

5.4365 

5.4254 

5.1414 

4.9581 

19.2694 

12.9125 

8.9536 

7.8820 

6.8115 

5.8594 

5.7832 

5.1625 

4.8108 

4.5418 

4.4231 

4.0928 

13.6061 

9.6148 

6.9624 

5.4166 

5.2795 

4.5067 

4.4867 

3.8955 

3.7168 

3.6224 

3.4420 

3.2168 

246.7329 

136.5896 

75.0983 

45.6638 

39.5582 

29.8974 

26.2367 

24.5348 

22.9047 

20.5571 

20.4106 

19.5944 

127.5285 

72.1624 

41.0438 

26.1146 

21.3574 

17.2150 

15.0726 

14.9348 

13.3296 

12.6811 

11.0092 

10.9871 

57.2654 

34.7224 

21.8393 

15.4790 

12.3125 

10.9574 

10.1637 

9.6024 

9.0222 

9.0041 

8.8948 

8.7595 

35.3555 

23.3974 

16.0844 

12.1842 

10.2587 

10.2189 

9.0592 

8.2251 

7.8597 

7.1220 

6.9481 

6.9051 

24.6619 

17.2030 

12.2611 

10.9132 

9.3820 

8.4561 

8.0826 

7.2482 

6.3011 

5.9932 

5.5628 

5.5412 

17.3011 

12.4124 

9.0638 

7.1879 

6.9046 

6.8512 

6.4997 

6.0948 

5.8491 

4.9203 

4.4599 

4.2450 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

245.7450 

135.7400 

74.3875 

45.2093 

38.2694 

30.7851 

25.3009 

21.5016 

19.9377 

18.5084 

17.0119 

16.9457 

127.3743 

72.0600 

40.7922 

25.6772 

20.3656 

17.1653 

13.9649 

12.2676 

11.8772 

11.7677 

10.9651 

10.6199 

57.3844 

34.2303 

20.8016 

14.1294 

11.3845 

9.9000 

8.4310 

8.4155 

7.9693 

7.7654 

7.4540 

7.4184 

33.8631 

21.4039 

13.9658 

10.1872 

9.6069 

7.9730 

7.3294 

6.6174 

6.3392 

6.0011 

5.8345 

5.7332 

21.6220 

14.5846 

10.1899 

7.9032 

7.7480 

6.4167 

6.3765 

5.1806 

4.8498 

4.5118 

4.4161 

4.386 

14.8172 

10.5543 

7.6890 

6.6067 

6.0706 

5.9557 

5.1145 

4.1992 

3.9282 

3.9118 

3.7505 

3.6468 

251.2515 

141.2912 

79.4533 

49.6684 

41.6782 

32.6864 

30.6947 

27.5273 

25.1681 

23.9818 

21.3864 

20.2871 

134.7828 

78.7656 

46.6711 

30.9408 

23.4774 

20.1339 

16.7904 

14.5648 

14.5322 

14.4138 

14.3170 

13.4232 

65.8922 

41.3610 

26.7549 

19.2634 

14.4325 

13.1341 

12.2215 

11.8357 

10.5021 

10.2575 

9.9196 

9.3562 

41.6692 

27.3610 

19.1245 

14.3353 

12.3787 

11.2850 

10.6304 

8.8821 

7.8404 

7.7412 

7.5608 

7.4991 

27.8485 

19.4796 

13.8190 

10.5761 

10.4236 

9.0084 

8.8042 

7.3198 

6.8631 

6.1222 

5.8846 

5.7005 

18.9868 

13.5304 

9.6730 

8.9712 

7.3158 

7.1204 

6.7155 

6.4847 

5.9109 

5.4669 

5.3222 

4.8894 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

249.1978 

138.6408 

76.4681 

46.6701 

39.3904 

30.0298 

26.6692 

24.3041 

20.6462 

19.4872 

18.3450 

17.5161 

130.3943 

74.1481 

42.2290 

26.7226 

21.4866 

17.2975 

13.1084 

12.6353 

11.9707 

11.8406 

10.7886 

10.6512 

58.9099 

35.2341 

21.5229 

14.7842 

12.5055 

10.5555 

9.6054 

8.9282 

8.0877 

8.0175 

7.8456 

7.6725 

34.4995 

21.936 

14.4123 

10.7279 

10.586 

8.7625 

7.9824 

6.7972 

6.5172 

6.2355 

6.2102 

6.1693 

21.9608 

14.8955 

10.481 

9.0242 

8.0564 

7.2214 

7.1481 

5.2721 

5.0884 

4.7827 

4.7395 

4.5127 

14.991 

10.7406 

7.8746 

7.7394 

7.7277 

6.0857 

5.8490 

5.0819 

5.0814 

4.0081 

3.9703 

3.7595 

258.7355 

146.9085 

83.4761 

52.9192 

42.7992 

34.1941 

30.5891 

28.2842 

26.0074 

23.1920 

22.1460 

21.7586 

140.5376 

82.6624 

49.3109 

39.8718 

34.5984 

29.3627 

25.1270 

21.8554 

18.8115 

15.7912 

15.2460 

14.7858 

68.3697 

43.1055 

28.0709 

20.3981 

15.5535 

14.0951 

13.2372 

12.6368 

11.2152 

10.7360 

10.0195 

9.8652 

42.8854 

28.7758 

19.9247 

15.0104 

13.4997 

11.3286 

10.1576 

9.0332 

8.9970 

8.5604 

7.8542 

7.6552 

28.5038 

20.0336 

14.2645 

11.6971 

10.6647 

10.0231 

8.4728 

8.0081 

7.3696 

6.4404 

6.0808 

5.8797 

19.4244 

13.7862 

10.0922 

9.7591 

7.2880 

7.2805 

7.1571 

6.5994 

6.0019 

5.7245 

5.5526 

4.9835 

CDF (n = 1.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

269.6539 

153.8682 

85.6822 

51.5308 

42.1537 

31.8136 

21.4736 

17.1005 

16.0152 

15.6464 

14.7754 

13.7691 

135.6860 

77.9512 

43.8599 

26.9932 

20.1526 

16.1049 

14.0572 

13.1795 

12.8886 

11.6456 

10.8262 

9.7052 

55.7131 

32.8198 

19.3842 

12.7767 

10.2584 

8.6407 

8.0135 

7.4791 

7.0230 

6.8163 

6.6234 

6.3430 

29.7384 

18.4336 

11.8407 

8.5792 

7.5214 

6.9510 

6.5153 

5.9347 

5.5366 

5.5092 

5.2398 

5.0544 

17.4496 

11.7823 

8.3693 

6.5058 

6.2662 

5.4565 

5.0193 

4.9492 

4.4712 

4.4420 

4.2637 

4.0104 

11.6266 

8.5302 

6.4117 

5.0889 

4.3462 

4.1596 

3.9035 

3.6465 

3.6402 

3.3816 

3.3092 

2.6161 

270.9850 

155.3009 

87.1234 

53.2242 

44.2687 

33.7801 

28.2916 

25.2338 

23.2085 

21.7698 

20.4718 

19.6150 

137.0398 

79.4796 

45.5704 

28.8234 

22.2676 

18.2648 

14.2621 

14.1958 

13.7945 

12.8292 

12.0552 

12.0402 

57.6444 

35.0045 

21.8164 

15.4236 

12.3734 

11.0557 

10.6765 

9.7381 

9.4623 

9.2184 

9.2183 

8.9348 

32.4522 

21.3755 

14.8838 

11.5394 

9.6434 

9.6364 

8.6682 

8.0658 

7.7001 

7.1674 

6.8832 

6.8748 

20.8448 

15.0580 

11.2315 

8.8339 

8.7626 

7.5715 

7.0262 

6.7038 

5.9115 

5.8362 

5.6742 

5.4220 

14.9310 

11.2004 

8.4044 

6.7382 

5.2458 

5.2625 

4.7179 

4.1872 

4.1794 

4.1733 

3.8717 

3.0580 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

271.8534 

155.9091 

87.6258 

53.7542 

44.2987 

33.7998 

23.3009 

16.0121 

15.7945 

15.4157 

14.8568 

14.2978 

138.3523 

80.5656 

46.3332 

29.2064 

25.2976 

21.1313 

18.9649 

14.2676 

13.4605 

11.7677 

10.9651 

10.2603 

59.0644 

35.7260 

21.8051 

14.7854 

12.4034 

10.4095 

8.4310 

8.4155 

8.1072 

7.7654 

7.4540 

7.1592 

32.7644 

20.8652 

13.7061 

10.0335 

9.6664 

8.0028 

7.3294 

6.3392 

6.1745 

6.0011 

5.8345 

 5.8166 

19.6571 

13.4230 

9.5172 

7.6015 

7.2976 

6.2256 

5.2254 

5.1806 

4.8498 

4.6336 

4.5118 

4.4161 

12.9704 

9.4387 

7.0195 

6.3046 

5.4890 

4.9635 

3.9599 

3.8955 

3.7168 

3.6242 

3.6224 

3.4421 

274.2866 

159.0796 

90.9984 

57.0374 

46.4137 

36.6787 

26.9438 

22.0893 

21.0283 

20.9610 

20.6258 

20.2668 

142.2938 

84.6694 

50.4972 

33.4144 

24.4126 

21.2281 

18.0434 

15.4944 

15.3610 

15.2960 

15.1451 

14.4324 

64.2448 

40.6959 

26.5794 

19.2710 

14.5184 

13.2054 

12.1376 

11.8925 

10.5540 

10.2906 

9.9941 

9.4017 

38.3378 

26.0082 

18.2427 

13.8220 

11.7814 

10.2071 

9.9854 

8.6328 

7.5375 

7.3342 

7.2805 

7.264 

25.0038 

17.9184 

12.9846 

9.8605 

8.7165 

7.6675 

7.38245 

6.5193 

6.0484 

5.9712 

5.7289 

5.5894 

17.2564 

12.5109 

9.0165 

6.8355 

5.3164 

5.0932 

5.0896 

5.0860 

5.0371 

4.8282 

4.6304 

4.4524 
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Table D4 (Contd.)  

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

273.9433 

157.908 

89.1482 

54.8070 

45.8587 

34.9631 

24.0676 

18.8416 

17.3435 

16.5682 

15.7866 

15.2544 

140.2389 

81.9504 

47.3371 

29.9504 

23.8576 

19.1818 

14.5060 

12.3600 

12.3524 

12.0278 

11.5440 

11.4616 

60.0818 

36.4054 

22.3113 

15.2830 

13.9634 

11.3927 

8.8220 

8.3680 

8.1804 

8.0644 

7.9340 

7.8228 

33.2006 

21.2372 

14.0206 

10.3178 

9.7825 

8.2011 

6.6198 

6.3798 

6.1250 

6.0252 

6.0138 

6.0101 

19.8939 

13.6342 

9.7224 

8.5324 

7.1615 

6.5638 

5.9662 

5.7196 

5.2058 

4.9602 

4.7186 

4.5772 

13.0743 

9.5654 

7.9575 

6.587 

5.2566 

4.1769 

4.0954 

3.9891 

3.9142 

3.8894 

3.7632 

3.5527 

279.2325 

163.042 

94.0544 

59.6807 

47.9737 

38.2500 

33.5263 

30.5851 

26.5283 

24.0923 

21.8482 

21.5346 

146.1418 

87.4766 

52.5305 

34.9512 

25.9726 

22.5515 

19.1305 

16.5938 

16.4292 

16.4009 

16.172 

15.3758 

66.1994 

42.1125 

27.6412 

20.1631 

16.0784 

14.2861 

12.9708 

12.4938 

11.0868 

10.5935 

10.1144 

10.0083 

39.3985 

26.798 

18.8473 

14.3204 

13.3414 

11.0650 

10.7887 

9.6932 

9.1615 

8.2926 

7.6924 

7.4692 

25.5265 

18.3292 

13.2979 

10.0033 

9.2765 

7.62005 

6.9636 

6.7125 

6.3032 

6.0926 

5.9728 

5.8675 

17.556 

12.6804 

9.0549 

6.9796 

6.4545 

6.1274 

5.8956 

5.3669 

5.1667 

4.9296 

4.5868 

4.5565 

CD (n = 1.4) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

512.6269 

287.1257 

157.8722 

94.4429 

78.4085 

58.8990 

45.3895 

38.2257 

35.0272 

33.4409 

31.0732 

29.6591 

259.3455 

146.6260 

81.7503 

50.2188 

38.3982 

32.4620 

28.5258 

26.0243 

24.6477 

23.0454 

21.5170 

19.8915 

108.3869 

63.3120 

37.3630 

24.6965 

20.5229 

18.5459 

16.6085 

14.5107 

13.5689 

13.1911 

12.5439 

12.1314 

59.6559 

36.9761 

23.7808 

17.1781 

15.0083 

14.3395 

12.9715 

11.9880 

10.9731 

10.9346 

10.3812 

10.0125 

36.7190 

24.6948 

17.3229 

14.3878 

13.0777 

11.3159 

10.8025 

10.1118 

9.2820 

8.9838 

8.6867 

8.1032 

25.2327 

18.1450 

13.3741 

10.5055 

9.6257 

8.6663 

8.3898 

7.5420 

7.3570 

7.0040 

6.7512 

5.8329 

517.7179 

291.8905 

162.2217 

98.8880 

83.8269 

63.6776 

54.5283 

49.7686 

46.1132 

42.3269 

40.8824 

39.2094 

264.5683 

151.6420 

86.6142 

54.9380 

43.6250 

35.4799 

29.3347 

29.1306 

27.1241 

25.5102 

23.0644 

23.0272 

114.9098 

69.7269 

43.6557 

30.9026 

24.6859 

22.0132 

20.8402 

19.3405 

18.4845 

18.2224 

18.1131 

17.6943 

67.8077 

44.7729 

30.9682 

23.7236 

19.9021 

19.8553 

17.7275 

16.2909 

15.5598 

14.2894 

13.8312 

13.7799 

45.5067 

32.2610 

23.4926 

19.7471 

18.1446 

16.0276 

15.1088 

13.9521 

12.2125 

11.8294 

11.2370 

10.9632 

32.2321 

23.6128 

17.4682 

13.9261 

12.1504 

12.1137 

11.2176 

10.2820 

10.0285 

9.0936 

8.3316 

7.3030 

 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

517.5984 

291.6491 

162.0133 

98.9635 

82.5681 

64.5850 

48.6018 

37.5136 

35.7322 

33.9241 

31.8687 

31.2435 

265.7266 

152.6256 

87.1254 

54.8836 

45.6632 

38.2966 

32.9298 

26.5352 

25.3377 

23.5354 

21.9302 

20.8802 

116.4488 

69.9563 

42.6067 

28.9148 

23.7879 

20.3095 

16.8620 

16.8310 

16.0765 

15.5308 

14.9080 

14.5776 

66.6275 

42.2691 

27.6719 

20.2207 

19.2733 

15.9759 

14.6588 

12.9566 

12.5137 

12.0022 

11.6690 

11.5498 

41.2791 

28.0076 

19.7071 

15.5047 

15.0456 

12.6424 

11.6019 

10.3612 

9.6996 

9.1454 

8.9279 

8.8021 

27.7876 

19.9930 

14.7085 

12.9113 

11.5596 

10.9192 

9.0745 

8.0948 

7.6450 

7.5360 

7.3729 

7.0888 

525.5381 

300.3708 

170.4517 

106.7058 

88.0919 

69.3652 

57.6385 

49.6166 

46.1964 

44.9428 

42.0122 

40.5539 

277.0766 

163.4350 

97.1683 

64.3552 

47.8900 

41.3619 

34.8338 

30.0592 

29.8932 

29.7098 

29.4620 

27.8556 

130.1370 

82.0569 

53.3343 

38.5344 

28.9509 

26.3396 

24.3591 

23.7282 

21.0560 

20.5481 

19.9136 

18.7579 

80.0070 

53.3692 

37.3672 

28.1573 

24.1601 

21.4921 

20.6158 

17.5149 

15.3779 

15.0754 

14.8413 

14.7630 

52.8523 

37.3980 

26.8036 

20.4366 

19.1401 

16.6760 

16.1867 

13.8392 

12.9115 

12.0934 

11.6135 

11.2899 

36.2432 

26.0413 

18.6895 

15.8067 

12.6322 

12.2136 

11.8052 

11.5708 

10.9479 

10.2951 

9.9526 

9.3418 

 

 

 

 

 

50 

 

 

 

 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

523.1411 

296.5488 

165.6162 

101.4771 

85.2491 

64.9930 

50.7368 

43.1457 

37.9897 

36.0554 

34.1316 

32.7705 

270.6332 

156.0985 

89.5661 

56.6730 

45.3442 

36.4793 

27.6144 

24.9953 

24.3231 

23.8684 

22.3326 

22.1128 

118.9917 

71.6395 

43.8342 

30.0672 

26.4689 

21.9482 

18.4274 

17.2962 

16.2681 

16.0819 

15.7796 

15.4953 

67.7001 

43.1732 

28.4329 

21.0457 

20.3685 

16.9637 

14.6022 

13.1770 

12.5422 

12.2605 

12.2240 

12.1794 

41.8547 

28.5297 

20.2034 

17.5566 

15.2179 

13.7853 

13.1144 

10.9917 

10.2942 

9.7429 

9.4581 

9.0899 

28.0653 

20.3060 

15.8321 

14.3264 

12.9843 

10.2626 

9.9444 

9.0710 

8.9956 

7.8974 

7.7335 

7.3122 

537.9680 

309.9505 

177.5305 

112.5997 

90.7729 

72.4442 

64.1154 

58.8692 

52.5357 

47.2843 

43.9942 

43.2932 

286.6794 

170.1390 

101.8414 

74.8230 

60.5710 

51.9143 

44.2575 

38.4492 

35.2407 

32.1921 

31.4180 

30.1616 

134.5691 

85.2175 

55.7121 

40.5610 

31.6319 

28.3813 

26.2080 

25.1306 

22.3020 

21.3295 

20.1339 

19.8735 

82.2839 

55.5738 

38.7720 

29.3308 

26.8411 

22.3937 

20.9463 

18.7264 

18.1585 

16.8530 

15.5466 

15.1244 

54.0303 

38.3628 

27.5624 

21.7004 

19.9412 

17.6432 

15.4365 

14.7207 

13.6728 

12.5331 

12.0536 

11.7472 

36.9804 

26.4666 

19.1471 

16.7387 

13.7425 

13.4079 

13.0527 

11.9664 

11.1686 

10.6541 

10.1394 

9.5400 
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Table D5: Dependence of pressure (CDP), friction (CDF) and total (CD) drag coefficients on 

the fluid volume fraction (
f ), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers 

for the power-law index of n = 1.8  

 

CDP (n = 1.8) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

409.514 

202.072 

97.9808 

53.2618 

40.3425 

29.6830 

25.0234 

23.6246 

21.9814 

19.9898 

18.5513 

17.1211 

206.4924 

102.9064 

50.7202 

28.2452 

25.3578 

23.1868 

20.0157 

18.1100 

16.7255 

14.4342 

12.4818 

11.3411 

85.6915 

44.0734 

23.0419 

13.9062 

10.2642 

9.5450 

8.8953 

7.3410 

6.8258 

6.5868 

6.0128 

5.8930 

46.2554 

25.2843 

14.5032 

9.6785 

8.4881 

7.4418 

6.6770 

6.6395 

5.9122 

5.7909 

5.5541 

5.3001 

27.4649 

16.4745 

10.2936 

7.7435 

7.4745 

6.8429 

6.4050 

5.9768 

5.3355 

5.1108 

4.8618 

4.7104 

18.2363 

11.9945 

8.4096 

6.5158 

5.4355 

5.3400 

5.0184 

4.9254 

4.6968 

4.4154 

4.1930 

4.0567 

412.2945 

205.6135 

100.8199 

55.8801 

45.6652 

33.4677 

29.2702 

27.8585 

25.9804 

23.4248 

21.7836 

20.9911 

210.2921 

106.3368 

53.8375 

31.1564 

24.3696 

21.9953 

19.6210 

17.3711 

15.6012 

14.8312 

13.1080 

11.9372 

90.1615 

48.2475 

26.9109 

17.5488 

13.9553 

12.0820 

10.7204 

10.4264 

10.2087 

10.1324 

9.7846 

9.3310 

51.7221 

30.3345 

19.0371 

13.8443 

10.8462 

10.2661 

9.9416 

9.2758 

9.0370 

8.2855 

8.2160 

8.2104 

33.6471 

21.7845 

15.0232 

11.5154 

10.4431 

9.1555 

8.7710 

8.3038 

7.4522 

7.0990 

6.7383 

6.7285 

23.7631 

16.5634 

11.9912 

10.7862 

9.2549 

8.4728 

6.2262 

5.4174 

5.3654 

5.1738 

4.8915 

4.6176 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

411.0128 

204.2072 

100.0518 

55.2526 

42.4625 

35.6173 

30.7721 

25.5105 

23.3828 

20.0987 

19.0792 

18.8146 

209.9234 

106.0626 

53.4868 

30.6701 

25.4778 

23.2070 

20.9361 

18.7698 

16.7608 

14.8292 

12.7518 

11.6386 

90.0535 

47.6698 

25.8304 

16.1699 

12.3842 

10.4392 

8.6812 

8.4942 

8.3986 

8.1160 

7.6064 

7.5648 

50.2064 

28.2044 

16.6102 

11.4017 

9.6081 

8.2995 

7.6292 

7.2552 

6.9910 

6.8812 

6.6124 

6.3944 

30.0125 

18.3082 

11.9527 

8.9629 

8.9045 

8.5321 

7.4423 

7.0626 

5.9218 

5.5932 

5.5174 

5.3976 

19.6183 

13.1282 

9.3267 

7.5555 

7.1795 

5.8936 

4.8071 

4.5666 

4.4128 

4.3720 

4.3262 

4.2318 

416.6803 

209.5072 

104.9587 

59.8066 

47.7852 

36.2804 

34.7757 

31.1011 

28.6628 

25.1793 

23.2575 

21.1430 

216.9906 

112.5970 

59.2962 

35.8926 

26.4896 

21.9763 

17.4630 

15.5667 

15.1889 

15.0494 

14.9791 

14.8110 

98.5935 

55.0559 

32.1882 

21.8276 

16.0753 

14.6018 

13.1283 

11.9608 

11.7705 

11.6758 

11.0083 

10.2460 

58.6857 

35.4330 

22.8366 

16.8336 

12.9662 

11.8863 

10.8064 

9.6154 

9.3920 

9.2435 

9.0716 

8.8997 

37.7845 

24.9554 

17.4397 

13.3502 

11.2755 

11.0139 

9.8370 

8.6229 

8.3985 

7.3262 

7.0158 

6.8232 

26.2628 

18.5552 

13.3839 

10.3464 

10.0284 

8.2863 

8.2264 

7.1992 

6.1721 

6.1594 

5.8486 

5.7290 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

414.4440 

206.8540 

101.9810 

56.7276 

43.5835 

32.6546 

29.7256 

26.3818 

23.3101 

20.6579 

19.7368 

18.9057 

212.6355 

108.0059 

54.8367 

31.6380 

26.5988 

24.1245 

22.6501 

20.8118 

18.8742 

16.4082 

14.8366 

12.7021 

91.2812 

48.628 

26.5401 

16.7758 

13.5052 

11.2708 

10.0364 

9.8897 

8.7421 

8.5946 

8.3464 

8.0092 

50.8668 

28.7276 

17.0867 

11.7662 

10.7291 

9.0846 

8.5942 

7.4401 

7.4262 

7.2582 

7.0992 

6.9648 

30.3395 

18.6284 

12.2844 

10.0839 

9.1719 

8.1441 

7.7575 

7.4543 

6.2044 

5.7305 

5.6794 

5.6512 

19.7771 

12.0165 

9.5733 

8.6765 

7.5196 

6.8325 

4.9886 

4.7657 

4.6595 

4.5534 

4.4436 

4.4165 

423.5432 

214.7476 

108.7558 

62.6996 

48.9062 

37.7647 

32.6232 

30.4504 

28.0951 

26.7945 

24.4940 

22.0257 

222.3190 

116.3200 

61.8692 

47.9148 

37.6106 

31.2705 

28.9303 

25.3695 

22.5296 

19.4293 

17.8847 

15.3999 

101.4110 

56.7962 

33.4954 

23.0247 

17.1963 

15.6673 

14.1382 

12.9885 

12.8519 

12.4288 

11.9924 

10.5560 

59.8884 

36.4527 

23.7731 

17.7093 

14.0872 

12.7729 

11.4586 

10.2981 

9.6368 

9.5713 

9.2514 

8.9316 

38.4437 

25.6234 

18.0859 

13.9558 

12.3965 

11.5513 

10.7061 

9.4921 

9.0418 

8.4072 

7.3911 

7.0175 

26.6318 

18.9978 

13.7995 

11.4674 

10.4822 

8.9716 

8.2771 

7.9973 

6.9966 

6.4758 

6.4312 

5.8652 

CDF (n = 1.8) 

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

504.3750 

263.7368 

133.5404 

74.1272 

52.3648 

39.4020 

26.4392 

21.7451 

18.5014 

16.8975 

15.8346 

14.1678 

252.5900 

132.7994 

67.8205 

38.2664 

30.2695 

22.4755 

18.6815 

14.6705 

13.8118 

12.0770 

11.7645 

10.4834 

102.4524 

54.7666 

29.0481 

17.4388 

14.2564 

11.3344 

9.6882 

8.7747 

8.4124 

7.8612 

7.2925 

7.2324 

53.0468 

29.4898 

16.8450 

11.1109 

9.2551 

8.3288 

7.9704 

7.5148 

6.7009 

6.6858 

6.3091 

6.0821 

29.1635 

17.5267 

11.0315 

8.3978 

7.5695 

7.3695 

6.6608 

6.4632 

5.7522 

5.5570 

5.2554 

5.1144 

17.8206 

11.9528 

8.5943 

6.7468 

5.9606 

5.2968 

4.8786 

4.6164 

4.4052 

4.3832 

3.9999 

3.5835 

504.6128 

135.0345 

132.5412 

75.8778 

54.9068 

41.6426 

34.3784 

29.7835 

25.0638 

23.7860 

21.9254 

20.7886 

253.9480 

134.3524 

69.6054 

40.2758 

32.8115 

24.9742 

17.1368 

16.5194 

15.5621 

14.6046 

13.8922 

13.6244 

104.3444 

57.0101 

31.6491 

20.3965 

16.7984 

14.3125 

12.7202 

12.1448 

11.8265 

11.5694 

11.1979 

10.7766 

55.8188 

32.6554 

20.4007 

14.9904 

11.7971 

11.4622 

10.8385 

10.3014 

9.8798 

9.1405 

8.9701 

8.9544 

33.0176 

21.6362 

15.3687 

12.0162 

10.6090 

9.9115 

9.0877 

8.8797 

7.8479 

7.5665 

7.1367 

7.1082 

22.4064 

16.2499 

12.1184 

9.686 

9.4584 

7.8992 

6.2327 

5.2368 

5.1827 

4.4516 

4.3573 

3.8778 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

505.2063 

265.5582 

135.5073 

76.1990 

54.5098 

41.4732 

28.4365 

20.9533 

17.4818 

17.3168 

16.3430 

15.2042 

255.1061 

135.3440 

70.3486 

40.6494 

32.4145 

24.5885 

16.7625 

14.0021 

13.1932 

12.9241 

12.0586 

11.8458 

105.5985 

57.6801 

31.5908 

19.6667 

16.4014 

13.2447 

10.0880 

9.9354 

9.5486 

9.1618 

8.7178 

8.6212 

56.0774 

32.0066 

18.8910 

12.9062 

11.4001 

9.5742 

8.1944 

7.8229 

7.7484 

7.4514 

7.1635 

7.0090 

31.4692 

19.3330 

12.6870 

9.5145 

9.4491 

8.2597 

7.8601 

7.0327 

6.2057 

5.8058 

5.7323 

5.6380 

19.3087 

13.0846 

9.3993 

7.3994 

7.2669 

6.1390 

5.2544 

4.9244 

4.6330 

4.5945 

4.2660 

4.2060 

507.9882 

268.6840 

138.9855 

79.9195 

57.0518 

44.7542 

32.4566 

25.4061 

24.0360 

23.2557 

22.9936 

22.4754 

258.8853 

139.5024 

74.7165 

45.1252 

34.9565 

28.2009 

21.4452 

18.2380 

17.9957 

17.7538 

17.6741 

16.3525 

110.7864 

62.9428 

36.8896 

25.0042 

18.9434 

16.8436 

14.7438 

13.0624 

12.9402 

12.8355 

12.2172 

11.5988 

61.9751 

37.8287 

24.5933 

18.1490 

13.9421 

12.7018 

11.4614 

10.1360 

9.8580 

9.8538 

9.6393 

9.4248 

37.7765 

25.3442 

17.9282 

13.7564 

12.0565 

10.7108 

10.3182 

8.7780 

8.5799 

7.8872 

7.4768 

7.1852 

28.5188 

18.3640 

13.3966 

10.0534 

9.6414 

8.0870 

7.7964 

7.0628 

6.3292 

6.1124 

5.9414 

5.8795 

 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

507.4500 

267.4950 

137.0470 

77.4232 

56.0698 

42.6624 

29.2549 

21.7145 

19.4879 

18.1866 

17.9081 

16.3282 

256.8337 

136.7208 

71.3704 

41.3708 

33.9745 

25.6779 

17.3812 

14.4588 

13.8080 

13.6595 

12.8601 

12.8588 

106.3378 

58.3628 

32.1165 

30.1504 

17.9614 

14.2601 

10.5588 

9.8604 

9.8145 

9.7687 

9.3833 

9.2084 

56.5525 

32.3826 

19.2296 

13.1760 

12.9601 

10.5445 

8.1288 

8.1025 

7.9339 

7.7654 

7.5799 

7.5214 

31.7021 

19.5585 

12.9401 

9.6462 

8.2546 

7.3447 

6.4348 

6.0769 

5.9558 

5.9023 

5.8732 

5.8348 

19.3978 

14.9196 

9.5939 

7.5657 

6.9594 

5.9847 

5.4101 

4.9686 

4.8343 

4.6597 

4.4917 

4.3148 

512.5971 

272.6008 

142.1074 

82.4188 

58.6118 

46.3713 

34.1308 

27.0706 

25.7629 

24.6928 

24.6175 

23.4722 

262.519 

142.314 

76.8271 

46.8900 

36.5165 

29.6496 

22.7826 

19.5867 

19.4550 

19.0898 

18.1066 

16.6265 

113.113 

64.4018 

38.0490 

26.0373 

20.5034 

18.0432 

15.5829 

13.9634 

13.9110 

13.3221 

12.3851 

11.7257 

63.0381 

38.6888 

25.3657 

18.8630 

15.5021 

13.7368 

11.9714 

10.6966 

10.1268 

9.9738 

9.7374 

9.5481 

38.3195 

25.8696 

18.4380 

14.2451 

13.6165 

11.2094 

10.8022 

9.5838 

8.8147 

7.9802 

7.6828 

7.3754 

28.7768 

18.6990 

13.7207 

10.4364 

9.7014 

8.4325 

7.8295 

7.7172 

6.9181 

6.7851 

6.1218 

6.0055 



 

209 
 

Table D5 (Contd.)  

Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

1 

 

 

 

 

 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

913.8887 

465.8084 

231.5212 

127.3890 

92.7073 

69.0850 

51.4626 

45.3697 

40.4828 

36.8873 

34.3859 

31.2889 

459.0824 

235.7058 

118.5407 

66.5116 

55.6273 

45.6623 

38.6972 

32.7805 

30.5374 

26.5112 

24.2463 

21.8245 

188.1439 

98.8400 

52.0900 

31.3450 

24.5206 

20.8794 

18.5835 

16.1158 

15.2382 

14.4480 

13.3053 

13.1254 

99.3022 

54.7741 

31.3482 

20.7894 

17.7432 

15.7706 

14.6475 

14.1544 

12.6131 

12.4767 

11.8632 

11.3822 

56.6284 

34.0012 

21.3251 

16.1413 

15.0440 

14.2124 

13.0659 

12.4401 

11.0877 

10.6678 

10.1172 

9.8248 

36.0569 

23.9473 

17.0039 

13.2626 

11.3961 

10.6368 

9.8970 

9.5419 

9.1020 

8.7986 

8.1930 

7.6402 

916.9073 

340.6480 

233.3611 

131.7579 

100.5720 

75.1103 

63.6486 

57.6420 

51.0442 

47.2109 

43.7090 

41.7797 

464.2401 

240.6892 

123.4429 

71.4322 

57.1811 

46.9695 

36.7578 

33.8905 

31.1632 

29.4358 

27.0002 

25.5616 

194.5059 

105.2576 

58.5600 

37.9453 

30.7537 

26.3945 

23.4406 

22.5712 

22.0352 

21.7018 

20.9825 

20.1076 

107.5409 

62.9899 

39.4378 

28.8347 

22.6433 

21.7283 

20.7801 

19.5772 

18.9168 

17.4260 

17.1861 

17.1648 

66.6647 

43.4207 

30.3919 

23.5316 

21.0521 

19.0670 

17.8588 

17.1836 

15.3001 

14.6655 

13.8750 

13.8367 

46.1695 

32.8133 

24.1096 

20.4722 

18.7133 

16.3720 

12.4589 

10.6542 

10.5481 

9.6254 

9.2488 

8.4954 

 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

916.2191 

469.7654 

235.5591 

131.4516 

96.9723 

77.0905 

59.2086 

46.4638 

40.8646 

37.4155 

35.4222 

34.0188 

465.0295 

241.4066 

123.8354 

71.3195 

57.8923 

47.7955 

37.6986 

32.7719 

29.9540 

27.7532 

24.8104 

23.4844 

195.6520 

105.3499 

57.4212 

35.8366 

28.7856 

23.6839 

18.7692 

18.4296 

17.9472 

17.2778 

16.3242 

16.1860 

106.2838 

60.2110 

35.5012 

24.3079 

21.0082 

17.8738 

15.8236 

15.0781 

14.7394 

14.3326 

13.7759 

13.4034 

61.4817 

37.6412 

24.6397 

18.4774 

18.3536 

16.7918 

15.3025 

14.0954 

12.1275 

11.3990 

11.2497 

11.0356 

38.9270 

26.2128 

18.7260 

14.9549 

14.4464 

12.0327 

10.0615 

9.4911 

9.0458 

8.9665 

8.5922 

8.4378 

924.6685 

478.1912 

243.9442 

139.7261 

104.8370 

81.0347 

67.2323 

56.5072 

52.6988 

48.4350 

46.2511 

43.6184 

475.8759 

252.0994 

134.0127 

81.0178 

61.4461 

50.1772 

38.9082 

33.8047 

33.1846 

32.8032 

32.6532 

31.1635 

209.3799 

117.9987 

69.0778 

46.8318 

35.0187 

31.4454 

27.8721 

25.0232 

24.7107 

24.5113 

23.2254 

21.8448 

120.6608 

73.2617 

47.4299 

34.9826 

26.9083 

24.5881 

22.2678 

19.7514 

19.2500 

19.0973 

18.7109 

18.3245 

75.5610 

50.2996 

35.3679 

27.1066 

23.3320 

21.7247 

20.1552 

17.4010 

16.9784 

15.2134 

14.4926 

14.0084 

54.7816 

36.9192 

26.7805 

20.3998 

19.6698 

16.3734 

16.0228 

14.2621 

12.5013 

12.2718 

11.7900 

11.6085 

 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

921.8946 

474.3490 

239.0279 

134.1508 

99.6533 

75.3169 

58.9805 

48.0963 

42.7980 

38.8445 

37.6449 

35.2339 

469.4692 

244.7267 

126.2071 

73.0088 

60.5733 

49.8024 

40.0313 

35.2706 

32.6822 

30.0677 

27.6967 

25.5609 

197.6190 

106.9908 

58.6566 

46.9262 

31.4666 

25.5309 

20.5952 

19.7501 

18.5567 

18.3633 

17.7297 

17.2176 

107.4193 

61.1102 

36.3163 

24.9422 

23.6892 

19.6291 

16.7230 

15.5426 

15.3602 

15.0236 

14.6791 

14.4862 

62.0416 

38.1869 

25.2245 

19.7301 

17.4265 

15.4889 

14.1923 

13.5313 

12.1603 

11.6328 

11.5526 

11.4860 

39.1749 

26.9361 

19.1672 

16.2422 

14.4790 

12.8173 

10.3987 

9.7343 

9.4939 

9.2131 

8.9353 

8.7313 

936.1403 

487.3484 

250.8632 

145.1184 

107.5180 

84.1360 

66.7540 

57.5210 

53.8580 

51.4874 

49.1116 

45.4979 

484.8379 

258.6333 

138.6963 

94.8048 

74.1271 

60.9201 

51.7129 

44.9562 

41.9846 

38.5191 

35.9913 

32.0264 

214.5239 

121.1980 

71.5444 

49.0620 

37.6997 

33.7104 

29.7211 

26.9519 

26.7629 

25.7508 

24.3775 

22.2817 

122.9265 

75.1415 

49.1388 

36.5723 

29.5893 

26.5097 

23.4300 

20.9947 

19.7636 

19.5451 

18.9889 

18.4797 

76.7632 

51.4930 

36.5239 

28.2009 

26.0130 

22.7607 

21.5083 

19.0759 

17.8565 

16.3874 

15.0739 

14.3929 

55.4086 

37.6968 

27.5202 

21.9038 

20.1836 

17.4041 

16.1066 

15.7145 

13.9147 

13.2609 

12.5531 

11.8707 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

210 
 

APPENDIX-E 

Mixed Convection Non-Newtonian Data for Average Nusselt Number 

TABLE E1: Dependence of average Nusselt number (Nu) on the fluid volume fraction (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers for power-law index of n = 0.4 

 

 

Nu 

n Pr f  
Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.0110 

1.0160 

1.1062 

1.1128 

1.1170 

1.1237 

1.1345 

1.1613 

1.2443 

1.3116 

1.3540 

1.5152 

1.1535 

1.1591 

1.1891 

1.2025 

1.2045 

1.2090 

1.2134 

1.2856 

1.3826 

1.4796 

1.6940 

1.9084 

1.4462 

1.4690 

1.6046 

1.7214 

1.7930 

1.8645 

1.9325 

1.9735 

2.0816 

2.2306 

2.7919 

3.3532 

2.0696 

2.2250 

2.2595 

2.8881 

2.9469 

3.0056 

3.1944 

3.5689 

3.9202 

4.2714 

4.4094 

4.5474 

3.2404 

3.3868 

3.4215 

5.3069 

5.4053 

5.5037 

5.5419 

5.5622 

5.5719 

5.5816 

5.6110 

5.7769 

5.8762 

6.1182 

6.6728 

6.7230 

6.8153 

7.5124 

7.6764 

7.9080 

8.0924 

8.2086 

8.3247 

9.2345 

0.9972 

1.0756 

1.0811 

1.0866 

1.0943 

1.1125 

1.1365 

1.1459 

1.1465 

1.1804 

1.2166 

1.2528 

1.1652 

1.1892 

1.2097 

1.2248 

1.2635 

1.3034 

1.3433 

1.5283 

1.6596 

1.7908 

2.0072 

2.2236 

1.4782 

1.5547 

1.6795 

1.8440 

2.1162 

2.2496 

2.3829 

2.4261 

2.4516 

2.4770 

3.2177 

3.9584 

2.1585 

2.2526 

2.7340 

3.0579 

3.4625 

3.7791 

4.0956 

4.4674 

4.5768 

4.7508 

4.8055 

5.0342 

3.5918 

3.9875 

5.0415 

5.5904 

5.8562 

5.9308 

5.9332 

6.0053 

6.5112 

6.7595 

7.0485 

7.5857 

6.5001 

6.7225 

6.8567 

7.9145 

8.6321 

8.7287 

8.8565 

8.9746 

9.0927 

9.6527 

10.1267 

10.6007 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.8944 

2.0166 

2.0568 

2.0818 

2.0850 

2.1068 

2.1124 

2.1534 

2.1718 

2.2934 

2.3278 

2.5488 

2.3294 

2.4288 

2.5256 

2.5281 

2.6725 

2.7994 

2.8232 

2.8345 

2.9725 

3.0731 

3.5989 

4.1247 

2.7050 

3.1211 

3.5134 

3.6527 

3.7264 

4.1552 

4.1994 

4.3218 

4.7370 

5.8212 

6.5968 

7.3724 

4.1092 

4.7074 

5.5501 

5.6830 

5.6953 

6.0920 

6.9198 

7.2207 

7.2568 

8.7460 

9.3625 

9.9790 

9.2706 

9.3085 

10.3889 

10.6360 

10.8459 

10.8745 

10.9660 

11.0650 

11.0855 

11.2546 

11.5760 

12.2770 

11.2780 

12.5870 

13.5245 

13.8963 

13.9042 

14.1390 

14.1548 

14.2430 

14.4470 

15.3692 

16.6232 

16.9995 

1.8220 

1.9881 

2.1132 

2.1715 

2.2200 

2.2706 

2.3256 

2.3483 

2.3710 

2.4562 

2.4886 

2.5210 

2.6304 

2.8034 

2.8786 

2.9027 

3.1259 

3.2361 

3.3462 

3.7558 

3.9455 

4.1352 

4.6537 

5.1721 

3.4874 

5.2874 

5.3036 

5.4105 

5.7565 

6.1475 

6.5385 

6.8957 

7.2597 

7.6236 

8.1788 

8.7340 

8.0408 

8.1396 

8.5242 

8.6388 

9.1558 

9.6748 

10.1938 

10.3982 

10.4858 

10.5734 

11.4432 

12.3130 

12.2372 

12.6459 

13.0228 

13.0960 

13.5460 

13.6815 

13.8812 

13.9875 

14.2800 

14.5720 

16.5880 

18.6030 

15.7582 

16.0186 

16.3641 

16.7096 

17.1591 

17.6462 

18.1270 

18.1332 

18.5515 

19.6671 

22.1386 

26.1439 

  

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.6016 

2.6215 

2.6571 

2.6729 

2.7125 

2.7243 

2.8730 

2.8977 

3.0710 

3.6198 

3.9779 

4.2158 

3.1228 

3.2587 

3.3628 

3.4668 

3.8621 

4.1131 

4.3495 

4.3640 

4.9898 

5.0059 

5.2340 

6.1040 

3.3726 

3.8745 

4.1180 

4.3614 

4.9818 

5.6329 

6.1776 

6.4748 

6.6861 

7.7392 

9.3419 

10.9446 

6.9477 

8.6139 

8.8951 

9.1126 

9.2820 

9.3066 

9.5006 

10.1256 

10.9218 

11.7180 

12.3388 

12.9596 

11.6190 

11.6834 

12.5698 

12.9590 

12.9692 

13.0239 

14.2346 

14.7780 

15.5348 

16.9861 

17.3150 

17.6442 

15.5850 

17.0712 

17.7090 

17.7802 

18.0170 

18.1745 

18.2547 

18.2941 

18.3468 

19.7962 

20.2300 

22.6795 

3.2122 

3.2343 

3.2564 

3.3025 

3.4527 

3.5826 

3.7124 

3.7254 

3.8294 

3.8417 

3.9710 

4.6665 

3.9302 

4.2467 

4.2622 

4.4862 

4.7256 

4.9724 

5.2518 

5.3816 

5.7248 

6.1978 

7.1348 

8.0718 

5.3082 

7.1526 

7.1344 

6.9418 

7.5634 

8.3061 

9.0488 

9.4584 

10.0780 

10.6976 

12.8040 

14.9108 

10.5494 

10.7943 

11.4968 

11.5022 

12.1108 

12.3873 

13.2723 

13.9456 

14.7516 

15.5576 

17.7013 

19.8449 

15.1174 

15.6843 

15.9740 

16.2632 

16.9916 

17.1524 

17.5612 

18.1490 

18.5853 

19.1450 

22.0440 

24.9435 

22.4355 

22.8561 

23.7283 

24.3306 

24.6004 

25.4590 

25.4989 

25.6677 

25.8896 

26.2256 

26.5515 

26.9526 
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TABLE E2: Dependence of average Nusselt number (Nu) on the fluid volume fraction (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers for power-law index of n = 0.6 

 

Nu 

n Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.9814 

1.0148 

1.0169 

1.0187 

1.0204 

1.0371 

1.0371 

1.0739 

1.1107 

1.1268 

1.1668 

1.2229 

1.1318 

1.1477 

1.1528 

1.1634 

1.1956 

1.2099 

1.2242 

1.3295 

1.3852 

1.4409 

1.6149 

1.7888 

1.4174 

1.5045 

1.6834 

1.7395 

1.8219 

1.8786 

1.8925 

1.9630 

2.1831 

2.4875 

2.7320 

2.9764 

2.0808 

2.1764 

2.3750 

2.5928 

2.9467 

3.0299 

3.1130 

3.3307 

3.5339 

3.7371 

4.0166 

4.2961 

3.0558 

3.4119 

3.8721 

4.2890 

4.5026 

4.6967 

4.8907 

4.9315 

4.9840 

5.0364 

5.1292 

5.3269 

5.1528 

5.6115 

5.7722 

5.9332 

6.2548 

6.3784 

6.5702 

6.7152 

6.7280 

6.7307 

6.7462 

7.5288 

0.9667 

0.9898 

1.0156 

1.0832 

1.1220 

1.1443 

1.1507 

1.2014 

1.2195 

1.2882 

1.3218 

1.5466 

1.1530 

1.1706 

1.1714 

1.2158 

1.2637 

1.3115 

1.4115 

1.4476 

1.5086 

1.6056 

1.6521 

1.6985 

1.4280 

1.5385 

1.6508 

1.7882 

1.9842 

2.0876 

2.1910 

2.3958 

2.6224 

2.6394 

2.7527 

2.8830 

2.0025 

2.1998 

2.5942 

2.8819 

3.1121 

3.3707 

3.6292 

3.9547 

4.1544 

4.3540 

4.6359 

4.9177 

3.2144 

3.6988 

4.4577 

5.1224 

5.2264 

5.4428 

5.6592 

5.7214 

5.7774 

5.8334 

6.0763 

6.3191 

5.7906 

6.7027 

7.3787 

7.9280 

8.1684 

8.3284 

8.4884 

8.1665 

8.0791 

7.9917 

8.3691 

8.7464 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.9518 

1.9860 

1.9996 

2.0132 

2.0181 

2.0244 

2.0306 

2.0781 

2.1594 

2.1865 

2.1945 

2.3584 

2.2678 

2.5103 

2.5946 

2.6805 

2.6820 

2.7417 

2.7468 

2.7528 

2.7694 

2.7712 

3.1517 

3.5340 

3.6420 

3.6898 

3.8015 

3.8876 

3.9736 

3.9905 

4.0556 

4.1872 

4.4837 

4.7802 

5.3091 

5.8380 

4.9359 

5.1528 

5.3308 

5.3644 

5.4296 

5.5102 

5.6895 

6.2082 

6.4456 

6.6830 

7.4573 

8.2316 

7.0129 

7.3830 

7.7590 

8.0931 

8.1726 

8.1832 

8.2646 

8.3326 

8.3460 

8.4925 

8.9561 

9.7395 

9.7200 

9.8895 

10.0150 

10.1400 

10.1860 

10.5834 

10.6525 

10.9606 

10.9825 

11.0003 

11.9250 

13.7095 

1.9524 

2.0694 

2.2080 

2.5832 

2.4126 

2.3599 

2.3072 

2.3816 

2.3632 

2.3448 

2.6114 

2.8779 

2.7862 

2.8192 

3.0232 

3.1265 

3.2144 

3.2245 

3.3354 

3.4257 

3.4828 

3.5443 

3.8857 

4.2270 

4.2562 

4.5132 

4.7692 

4.7802 

4.9659 

5.1082 

5.2504 

5.3982 

5.6383 

5.8784 

6.5601 

7.2418 

6.2080 

6.2647 

6.7962 

7.2599 

7.4052 

7.5175 

7.6298 

8.1121 

8.3597 

8.6072 

9.2434 

9.8795 

9.6986 

9.8971 

9.9754 

10.1292 

10.1574 

10.4165 

10.5110 

10.6470 

10.8782 

11.1254 

11.8870 

13.8778 

13.4758 

13.5670 

13.6582 

13.8882 

13.9082 

14.2450 

14.3262 

14.6983 

14.9610 

15.2244 

15.5400 

15.8552 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.4418 

2.5031 

2.5465 

2.5517 

2.6002 

2.6512 

2.9862 

2.9994 

3.0408 

3.4814 

3.5758 

3.6400 

3.0108 

3.1112 

3.1517 

3.2115 

3.2355 

3.3844 

3.4877 

3.7398 

3.8829 

4.1435 

4.3835 

5.0272 

3.5393 

3.8121 

3.8331 

4.1268 

4.3654 

4.4534 

4.5624 

5.3406 

5.7479 

6.1552 

7.3833 

8.6114 

5.3280 

6.1354 

6.5335 

6.8945 

7.0702 

7.2458 

7.5637 

7.6132 

7.9791 

8.3944 

10.5130 

12.6308 

7.6070 

8.1304 

9.1194 

9.5571 

9.7658 

10.1320 

10.1344 

10.4982 

11.5305 

12.9265 

13.5980 

14.2695 

12.2982 

12.6535 

12.7462 

12.7850 

12.7922 

12.8234 

12.8340 

13.2248 

14.0100 

14.7946 

17.0050 

19.2148 

3.0124 

3.1582 

3.2403 

3.3223 

3.4126 

3.5626 

3.6534 

3.8323 

4.1128 

4.3422 

4.4288 

4.4325 

4.0832 

4.0842 

4.2526 

4.3678 

4.5126 

4.6524 

4.7830 

4.9284 

5.0500 

5.0534 

5.6350 

6.2166 

5.2308 

5.9409 

6.0543 

6.3515 

6.6759 

6.9008 

7.0002 

7.2154 

7.5010 

7.7865 

9.5962 

11.4058 

7.7503 

8.1124 

8.2356 

8.3142 

8.5927 

8.8066 

9.4660 

9.5008 

9.5893 

9.7125 

11.3630 

13.2598 

12.2642 

12.4316 

12.4362 

12.6587 

12.8021 

12.9684 

13.1020 

13.3320 

13.5452 

13.6958 

14.5460 

16.1243 

15.8185 

15.9690 

16.1195 

16.2162 

16.5642 

17.1196 

17.2880 

17.5032 

18.5090 

20.4541 

21.7600 

23.0661 
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TABLE E3: Dependence of average Nusselt number (Nu) on the fluid volume fraction (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers for power-law index of n = 0.8 

 

 

Nu 

n Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

 

 

 

 

 

0.8 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.9641 

0.9904 

1.0047 

1.0136 

1.0150 

1.0162 

1.0500 

1.0946 

1.1117 

1.1520 

1.1882 

1.2101 

1.1128 

1.1304 

1.1435 

1.1565 

1.1968 

1.2273 

1.2578 

1.2940 

1.3532 

1.4124 

1.5600 

1.7076 

1.3975 

1.4921 

1.6064 

1.7136 

1.7614 

1.8024 

1.8467 

1.8909 

2.7025 

4.6473 

5.1179 

7.5332 

1.9650 

2.1318 

2.3018 

2.4621 

2.5021 

2.6676 

2.8330 

3.0104 

3.1858 

3.3612 

3.6008 

3.8404 

2.9402 

3.1922 

3.5078 

3.8262 

4.0129 

4.1680 

4.3232 

4.4417 

4.5810 

4.7201 

4.8330 

4.9466 

4.6220 

5.0596 

5.5007 

5.8058 

5.8302 

5.8728 

5.9397 

5.9631 

6.0362 

6.1093 

6.2276 

6.5155 

0.9665 

1.0061 

1.0476 

1.0880 

1.1125 

1.1288 

1.1945 

1.2100 

1.2470 

1.3650 

1.4129 

1.5680 

1.1187 

1.1324 

1.1484 

1.1632 

1.2135 

1.2511 

1.2886 

1.3132 

1.3364 

1.3595 

1.6345 

1.9095 

1.4034 

1.5043 

1.6312 

1.7610 

1.8529 

1.9606 

2.0683 

2.2230 

2.4327 

2.6423 

2.8690 

3.0957 

1.9950 

2.2070 

2.4698 

2.7428 

2.8254 

3.0500 

3.2745 

3.4850 

3.6565 

3.8280 

4.0696 

4.3112 

3.1772 

3.5860 

4.0362 

4.4345 

4.6221 

4.7951 

4.9680 

5.1273 

5.3816 

5.6358 

5.7878 

5.9398 

5.3209 

5.9004 

6.4915 

6.7584 

6.7718 

6.8988 

6.9714 

7.0391 

7.0932 

7.2150 

7.5660 

8.0929 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.9339 

1.9716 

2.0120 

2.0522 

2.0575 

2.1060 

2.1301 

2.1360 

2.1374 

2.1415 

2.1575 

2.2404 

2.4829 

2.5075 

2.5301 

2.5375 

2.5526 

2.5920 

2.6340 

2.7084 

2.7120 

2.7446 

2.8919 

3.1917 

3.4240 

3.4728 

3.4796 

3.5100 

3.5472 

3.6109 

3.6829 

3.7432 

3.9241 

4.1652 

4.5454 

4.9255 

4.4662 

4.4768 

4.5762 

4.6192 

4.8978 

4.9653 

5.0327 

5.2315 

5.3918 

5.5520 

6.2798 

7.0075 

5.9130 

6.0411 

6.2703 

6.5116 

6.6166 

6.7211 

6.8261 

6.8869 

7.1885 

7.4898 

7.9480 

8.4054 

8.2326 

8.4784 

8.6889 

8.7405 

8.7768 

8.7925 

8.8041 

8.8156 

8.8209 

8.9529 

9.9051 

10.8572 

1.9370 

2.0652 

2.1544 

2.1662 

2.2000 

2.2338 

2.3419 

2.3490 

2.3554 

2.3662 

2.4440 

2.6536 

2.7376 

2.7954 

2.7988 

2.8224 

2.8886 

2.9725 

3.0414 

3.1225 

3.1942 

3.2522 

3.3102 

3.3372 

3.9708 

3.9730 

4.0961 

4.5127 

4.5227 

4.5326 

4.5935 

4.6740 

4.8298 

4.9855 

5.1163 

5.2470 

5.4038 

5.5782 

5.8448 

6.0046 

6.2540 

6.3468 

6.4265 

6.5395 

6.6203 

6.8141 

6.9832 

7.1522 

7.7602 

7.9932 

8.2278 

8.4145 

8.4253 

8.4361 

8.4624 

8.6457 

9.1109 

9.5761 

10.0651 

10.5540 

10.5125 

10.9586 

10.9877 

10.9994 

11.0001 

11.0125 

11.1313 

11.2460 

11.2501 

11.4628 

13.4351 

15.4074 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.5050 

2.5250 

2.5458 

2.6663 

2.7260 

2.7851 

2.8650 

2.9292 

3.1380 

3.2248 

3.3863 

3.5927 

3.0244 

3.0345 

3.0675 

3.1106 

3.2154 

3.2214 

3.3962 

3.4345 

3.7422 

3.9291 

4.0630 

4.4619 

3.9993 

4.0375 

4.1566 

4.2425 

4.2575 

4.3284 

4.5793 

4.5832 

4.9802 

5.3810 

6.1857 

6.9903 

5.0684 

5.1392 

5.2258 

5.3950 

5.6862 

5.8803 

6.0743 

6.3999 

6.6375 

6.8750 

8.4505 

10.0259 

6.5945 

6.7942 

7.1482 

7.5245 

7.5788 

7.5960 

7.6126 

8.1216 

9.1450 

10.1675 

13.0500 

15.9354 

9.1534 

9.4744 

9.5467 

9.5494 

9.6163 

9.7581 

9.9824 

9.9922 

11.0290 

12.5092 

15.5340 

18.5587 

2.8276 

2.8405 

2.9430 

3.0584 

3.2030 

3.2144 

3.4362 

3.4870 

3.5662 

3.6236 

3.6274 

3.9150 

3.6552 

3.6738 

3.8065 

3.8853 

3.9052 

4.1084 

4.1154 

4.1788 

4.4102 

4.6885 

4.8449 

5.2795 

5.0015 

5.0842 

5.1524 

5.7182 

5.7952 

5.8046 

5.8140 

6.0974 

6.2987 

6.5000 

7.6322 

8.7644 

6.5592 

6.7614 

7.1478 

7.2490 

7.4586 

7.7292 

7.9605 

7.9998 

8.3417 

8.7229 

9.3642 

10.0055 

9.1716 

9.4895 

9.8586 

10.0560 

10.0810 

10.1015 

10.1055 

10.6805 

11.0830 

11.4864 

15.4480 

19.4090 

12.7035 

12.8935 

12.9289 

13.2585 

13.2816 

13.4665 

13.7585 

14.2585 

14.7119 

15.9572 

19.8701 

23.7829 
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TABLE E4: Dependence of average Nusselt number (Nu) on the fluid volume fraction (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers for power-law index of n = 1.4 

 

 

Nu 

n Pr 
f  

Ri = 1 Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.9356 

0.9454 

0.9538 

0.9707 

0.9875 

1.0087 

1.0328 

1.0634 

1.0884 

1.1181 

1.1474 

1.1849 

1.0815 

1.1034 

1.1073 

1.1238 

1.1626 

1.1959 

1.2292 

1.2666 

1.3077 

1.3587 

1.4598 

1.5675 

1.3666 

1.4547 

1.5624 

1.6548 

1.7029 

1.7442 

1.7854 

1.8347 

1.9024 

2.0089 

2.1745 

2.2382 

1.9194 

2.0585 

2.1780 

2.2637 

2.3157 

2.3683 

2.4208 

2.5032 

2.6081 

2.7355 

2.8168 

2.9713 

2.7627 

2.8784 

2.9832 

3.0881 

3.1834 

3.2504 

3.3173 

3.4115 

3.5128 

3.5300 

3.6943 

3.9162 

3.8303 

3.9452 

4.0847 

4.2152 

4.3658 

4.4016 

4.4374 

4.4429 

4.4660 

4.5404 

4.5920 

4.7104 

0.9364 

0.9503 

0.9635 

0.9776 

0.9916 

1.0154 

1.0465 

1.0886 

1.0918 

1.1484 

1.1750 

1.2790 

1.0834 

1.1040 

1.1089 

1.1274 

1.1753 

1.2094 

1.2434 

1.2915 

1.3517 

1.4374 

1.5867 

1.6944 

1.3684 

1.4592 

1.5745 

1.6835 

1.7429 

1.8122 

1.8814 

1.9703 

2.0828 

2.2228 

2.3630 

2.4370 

1.9318 

2.0929 

2.2615 

2.4130 

2.5231 

2.6108 

2.6984 

2.8124 

2.9338 

3.0441 

3.1104 

3.2929 

2.8706 

3.0845 

3.3107 

3.5020 

3.6233 

3.7112 

3.7990 

3.9023 

3.9406 

3.9544 

4.1705 

4.4096 

4.2770 

4.5244 

4.7421 

4.9077 

4.9821 

5.0475 

5.1128 

5.0586 

5.0821 

5.2335 

5.4529 

5.7228 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.8660 

1.9061 

1.9120 

1.9134 

1.9715 

2.0241 

2.0250 

2.0480 

2.0605 

2.0729 

2.0975 

2.1087 

2.2738 

2.3018 

2.3122 

2.3550 

2.4593 

2.4948 

2.5360 

2.5635 

2.6288 

2.6660 

2.6849 

2.6890 

2.9604 

2.9916 

2.9924 

3.0228 

3.0641 

3.0878 

3.2101 

3.2645 

3.4116 

3.5147 

3.5916 

3.6760 

3.6246 

3.6521 

3.6883 

3.7056 

3.7244 

3.8422 

3.9044 

4.0052 

4.1544 

4.2204 

4.3468 

4.8032 

4.4504 

4.4937 

4.5405 

4.6028 

4.6923 

4.7482 

4.7818 

4.9375 

5.0750 

5.0902 

5.5394 

5.7046 

5.5132 

5.5595 

5.5909 

5.6974 

5.9567 

6.0114 

6.0418 

6.0420 

6.0660 

6.3024 

6.8220 

7.1484 

1.9074 

2.0243 

2.0277 

2.0441 

2.0457 

2.0732 

2.1060 

2.1084 

2.1254 

2.1435 

2.1683 

2.3054 

2.5168 

2.5177 

2.5352 

2.5536 

2.5614 

2.6069 

2.6690 

2.6708 

2.6772 

2.7072 

2.8648 

2.9830 

3.3714 

3.4129 

3.4258 

3.4338 

3.4546 

3.5480 

3.5499 

3.6712 

3.6799 

3.8444 

3.9555 

4.1232 

4.2391 

4.2817 

4.2971 

4.3962 

4.4361 

4.4574 

4.5186 

4.6427 

4.8014 

4.8451 

4.9358 

5.5238 

5.3764 

5.4201 

5.4209 

5.5362 

5.6521 

5.7523 

5.8524 

5.8626 

5.8927 

5.9844 

6.5269 

7.7058 

6.8195 

6.8426 

6.9406 

6.9542 

7.0625 

7.0827 

7.0991 

7.1126 

7.1778 

7.2429 

7.7925 

9.3284 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.3194 

2.3308 

2.4055 

2.5035 

2.5200 

2.6163 

2.7125 

2.8328 

2.8384 

3.0543 

3.3109 

3.5259 

2.7270 

2.7471 

2.7686 

2.8432 

2.9016 

2.9178 

3.0481 

3.2895 

3.3206 

3.6174 

3.7008 

3.9505 

3.4290 

3.4342 

3.4394 

3.4480 

3.5444 

3.6223 

3.7681 

3.9369 

4.1271 

4.3173 

4.5809 

5.0254 

4.0280 

4.0648 

4.1164 

4.2268 

4.2758 

4.3371 

4.5760 

4.6135 

4.8926 

5.2570 

5.5439 

7.1154 

4.8535 

4.8809 

5.0001 

5.0963 

5.2966 

5.4432 

5.5897 

5.8935 

6.1296 

6.2024 

6.6722 

8.8902 

5.9223 

5.9509 

6.0850 

6.3646 

6.5875 

6.8703 

7.1530 

7.1747 

7.2810 

7.2834 

8.8313 

9.2517 

2.5608 

2.5680 

2.6221 

2.6604 

2.6942 

2.7663 

2.8898 

2.9686 

3.0919 

3.2852 

3.3353 

3.5420 

3.0646 

3.0902 

3.1059 

3.1158 

3.2001 

3.2370 

3.3944 

3.4900 

3.6884 

3.9336 

4.0005 

4.1995 

3.9217 

3.9720 

3.9859 

4.0788 

4.1716 

4.1829 

4.3758 

4.4980 

4.6438 

5.0212 

5.2754 

5.8216 

4.7965 

4.8276 

4.9286 

5.0291 

5.1147 

5.2834 

5.4521 

5.7218 

6.0644 

6.1720 

6.4760 

7.6846 

5.9314 

5.9426 

6.0920 

6.3635 

6.6984 

6.8889 

7.0794 

7.3152 

7.3220 

7.3512 

8.3367 

11.9814 

7.3978 

7.5398 

7.8234 

8.1696 

8.4452 

8.5493 

8.6369 

8.6963 

8.8285 

10.0382 

12.3659 

15.3005 
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TABLE E5: Dependence of average Nusselt number (Nu) on the fluid volume fraction (
f

), Reynolds (Re), Prandtl (Pr) and Richardson (Ri) numbers for power-law index of n = 1.8 

 

 

Nu 

n Pr 
f  

 Ri = 1  Ri = 2 

Re→1 2 5 10 20 40 1 2 5 10 20 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8 

 

 

 

 

1 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

0.9255 

0.9278 

0.9411 

0.9590 

0.9769 

0.9972 

1.0214 

1.0520 

1.0807 

1.1130 

1.1318 

1.1740 

1.0709 

1.0943 

1.0945 

1.1145 

1.1553 

1.1853 

1.2152 

1.2508 

1.2897 

1.3385 

1.4263 

1.5140 

1.3567 

1.4421 

1.5477 

1.6341 

1.6828 

1.7138 

1.7447 

1.7826 

1.8316 

1.9084 

1.9939 

2.0793 

1.9050 

2.0343 

2.1363 

2.1966 

2.2216 

2.2557 

2.2898 

2.3398 

2.4095 

2.5035 

2.5811 

2.6586 

2.7101 

2.7848 

2.8288 

2.8702 

2.9027 

2.9470 

2.9906 

3.0536 

3.1281 

3.1932 

3.3060 

3.4178 

3.6201 

3.6294 

3.6580 

3.7115 

3.7628 

3.8050 

3.8471 

3.9030 

3.9080 

3.9384 

4.0829 

4.2627 

0.9259 

0.9309 

0.9498 

0.9650 

0.9799 

1.0026 

1.0330 

1.0778 

1.0808 

1.1323 

1.1630 

1.2490 

1.0715 

1.0948 

1.0952 

1.1147 

1.1662 

1.1958 

1.2254 

1.2705 

1.3265 

1.4016 

1.5091 

1.6165 

1.3576 

1.4446 

1.5545 

1.6531 

1.7156 

1.7666 

1.8175 

1.8854 

1.9697 

2.0770 

2.1544 

2.2318 

1.9121 

2.0550 

2.1894 

2.3002 

2.4235 

2.4607 

2.4978 

2.5805 

2.6708 

2.7692 

2.8314 

2.8935 

2.7733 

2.9123 

3.0515 

3.1715 

3.2598 

3.3170 

3.3741 

3.4454 

3.5202 

3.5154 

3.6390 

3.7625 

3.8997 

4.0312 

4.1550 

4.2507 

4.3124 

4.3611 

4.4097 

4.8685 

4.3978 

4.3597 

4.5963 

4.8328 

 

 

 

 

10 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

1.8268 

1.8762 

1.8972 

1.9020 

1.9407 

1.9766 

1.9991 

2.0130 

2.0260 

2.0525 

2.0840 

2.0921 

2.1958 

2.2118 

2.2364 

2.2997 

2.3512 

2.3675 

2.4026 

2.5031 

2.5231 

2.6027 

2.6519 

2.6657 

2.7874 

2.7887 

2.8157 

2.8403 

2.8426 

2.9568 

2.9792 

3.1295 

3.1581 

3.3369 

3.3532 

3.5480 

3.3473 

3.3497 

3.3521 

3.3683 

3.4208 

3.5058 

3.5548 

3.7580 

3.7618 

3.9664 

4.0436 

4.1710 

3.9603 

4.0068 

4.0115 

4.0690 

4.1274 

4.1950 

4.2650 

4.4488 

4.4829 

4.5819 

4.9860 

5.3897 

4.7340 

4.7927 

4.8048 

4.9006 

5.0080 

5.0131 

5.1153 

5.2897 

5.3660 

5.3662 

5.7583 

6.1503 

1.8979 

1.9690 

1.9748 

1.9980 

2.0152 

2.0350 

2.0480 

2.0612 

2.0800 

2.0893 

2.1035 

2.1855 

2.3980 

2.4125 

2.4178 

2.4604 

2.4894 

2.5029 

2.5495 

2.6282 

2.6296 

2.6586 

2.6796 

2.7670 

3.1290 

3.1358 

3.1426 

3.1548 

3.1836 

3.2616 

3.2854 

3.4360 

3.6002 

3.6885 

3.7137 

3.7388 

3.7899 

3.8322 

3.8328 

3.8754 

3.9186 

3.9868 

4.0277 

4.1720 

4.2056 

4.3646 

4.5197 

4.6748 

4.6224 

4.6670 

4.6895 

4.8036 

4.8621 

4.8680 

4.9324 

5.0806 

5.2270 

5.2602 

5.7300 

6.2330 

5.6547 

5.6744 

5.7356 

5.7920 

5.9515 

6.0618 

6.1432 

6.1721 

6.2237 

6.3179 

6.6193 

7.0954 

 

 

 

 

50 

0.70 

0.75 

0.80 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0.99 

2.2520 

2.2718 

2.3540 

2.4551 

2.4780 

2.4800 

2.5012 

2.7072 

2.8035 

3.0286 

3.2895 

3.5073 

2.6226 

2.6252 

2.6826 

2.7046 

2.7265 

2.7340 

2.9929 

3.0953 

3.2450 

3.4565 

3.5812 

3.9195 

3.1832 

3.1994 

3.2156 

3.2448 

3.2960 

3.5056 

3.7149 

3.8475 

4.1398 

4.2446 

4.2587 

4.5647 

3.6005 

3.6922 

3.7131 

3.8045 

3.8257 

4.0038 

4.0815 

4.2844 

4.4606 

4.6967 

5.2552 

5.8137 

4.3107 

4.3346 

4.4016 

4.4612 

4.5770 

4.7530 

4.7738 

5.0308 

5.3961 

5.6474 

6.1490 

6.6508 

5.1024 

5.1084 

5.2721 

5.2966 

5.4156 

5.6980 

5.9804 

6.3427 

6.5338 

6.5407 

7.8847 

9.2355 

2.4546 

2.4796 

2.5205 

2.5471 

2.6310 

2.7145 

2.7960 

2.8418 

3.0535 

3.0723 

3.3051 

3.5174 

2.8940 

2.8992 

2.9264 

2.9587 

2.9782 

3.0932 

3.1852 

3.3122 

3.5305 

3.6260 

3.8757 

3.9504 

3.5969 

3.6251 

3.6523 

3.6795 

3.7191 

3.8270 

3.9948 

4.0642 

4.3520 

4.4128 

4.8106 

5.2084 

4.2454 

4.2560 

4.3855 

4.4002 

4.4997 

4.6138 

4.6994 

4.8580 

5.1801 

5.5788 

6.1976 

6.8164 

5.0711 

5.0767 

5.2318 

5.2448 

5.5126 

5.6775 

5.8424 

6.1834 

6.5747 

6.6270 

7.4866 

8.3462 

6.0978 

6.1248 

6.2464 

6.5282 

6.8659 

7.1817 

7.4975 

7.8039 

7.8429 

7.8848 

9.9365 

12.0691 

 


