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ABSTRACT

In this study, I present the development of a MATLAB based computer code, AP3DMT, for

modeling and inversion of 3D Magnetotelluric (MT) and Direct Current Resistivity (DCR)

data. This code can be used to invert just the MT data or the DCR, or invert both data sets

simultaneously.

A 3D MT forward modeling code based on finite difference (FD) method for solving

the vector Helmholtz equation, expressed in electrical field, is developed. The staggered

grid is used for accurate simulation of nodal electric fields. The electric fields can be

computed either using total field or primary/secondary approach. For efficiency, in terms

of memory and computation time, the matrix equation is solved using iterative solver with

incomplete LU decomposition as pre-conditioner. The convergence of iterative solver is

further improved by using the static divergence correction.

The developed code, AP3DMT, comprises two independent components: grid generator

code and modeling/inversion code. The grid generator code performs model discretization

and acts as an interface by generating various I/O files. The inversion code performs

core computations in modular form − forward modeling, data functionals, sensitivity

computations and regularization. These modules can be readily extended to other similar

inverse problems like Controlled-Source EM (CSEM), DCR (implemented by the author).

The modular structure of the code provides a framework useful for implementation of new

applications and inversion algorithms. The use of MATLAB and its libraries makes it more

compact and user friendly.

The inversion code includes Gauss-Newton optimization (model space as well as data

space) and non-linear inversion using conjugate gradient. In both these schemes, Jacobian

is not computed explicitly, rather product of Jacobian (or its transpose) with a vector

is computed. Special emphasis is given on the block representation of Jacobian for a

multi-frequency, multi-component data set and its product with a vector using its three

components. It is shown how, for Jacobian, the matrix formed by differentiation of system

matrix is made independent of frequency to optimize the operations. A coarse grained

parallelization is implemented over number of frequencies for both forward modeling and

sensitivity computations.

iii



The code developed in this study, has been tested on several published models. To

demonstrate the versatility of the code, the accuracy of the simulated responses is verified

by comparing the responses obtained using a different code and inversion was performed

for two complex synthetic models. Further, the code was tested on field data. The data

set was acquired over the past decade using Broadband MT survey by our group along the

Roorkee-Gangotri profile in the Indo-Gangetic plain, Sub Himalayan and Lesser Himalayan

region. The dataset was inverted using ModEM and using AP3DMT by the author. For

comparison a 3D diagram of the ratio of inverted cell conductivities in two cases is presented.

During the development of divergence correction routine, we observed that this module

can be extended to DCR modeling. The developed 3D DCR forward modeling code is based

on FD method. The nodal potential are simulated on a normal grids. To strike a balance

between computational time and accurate solutions two nodes are used between adjacent

electrodes. For removal of singularity due to a point source primary/secondary approach

is used. The primary potentials are computed analytically for half space. For secondary

potentials, the matrix equation is solved using iterative solver or direct solver depending on

the size of the matrix and available resources. The accuracy of the simulated response is

verified by comparing the responses with published results. The relevant portions of original

AP3DMT code was modified to incorporate DCR inversion. Since, AP3DMT had a modular

structure, new modification were made only in forward problem and Jacobian with other

portions unchanged. The product of Jacobian with a vector is efficiently managed. The

versatility and capabilities of the inversion code was tested against two different models.

To make further progress in data interpretation, 3D joint inversion of MT and DCR is

developed. The modular structure of AP3DMT code proves to be very useful in performing

this task. Since, both these methods has different depth of penetrations model discretization

is very crucial. For the joint inversion with each set having different number of data points,

data weights needs to be re-calculated, if not then the more numerous data set of one type can

cause the influence of another data on the imaging outcome to become insignificant. Two

different schemes based on number of data points and gradient are tested. The joint inversion

resolves the model better as compared to inversion of individual data sets. The importance

of joint inversion is further demonstrated through a synthetic model. Also, both schemes of

data weights re-computations is compared on the same model.
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Chapter 1

INTRODUCTION

1.1 Preamble

The geoelectromagnetic method is an important branch of geophysics, in addition to seismic,

gravity, magnetic etc. This method is used to recover a conductivity distribution of the

earth’s interior thus adding a third dimension to geological maps. The electrical conductivity

distribution is translated in terms of geological formulation. This requires understanding

of the link between the physical properties, conductivity and lithology, alteration and other

petrophysical properties[99].

The conductivity of a rocks affect the geoelectromagnetic response to artificially

or naturally stimulated static or time varying electromagnetic fields. The artificially

stimulated source field methods are Controlled Source Electromagnetic (CSEM), Direct

Current Resistivity (DCR) and Induced Polarization (IP), etc. whereas the naturally

simulated methods are Magnetotelluric (MT), Telluric, Geomagnetic Depth Sounding and

Self Potential (SP).

The source of MT method are the natural electromagnetic (EM) waves in the frequency

range 10−5− 105 Hz. These fields are mainly associated with thunderstorm (> 1 Hz) and

interaction of solar wind with the earth’s magnetosphere (< 1 Hz)[68]. The orthogonal

component of time varying electric and magnetic field are measured in the form of time

series. The electric field components are linearly related to magnetic field through transfer

function [16, 179].

The DCR method is one of the oldest and simplest method to investigate shallow

subsurface structures. An electric field is set up by putting steady current into the ground

1



through a pair of electrodes. Another pair of electrodes is used to measure the field in the

form of the electrical potential differences. When an electric current field is introduced into

the earth, it sets up a distribution of accumulated electric charges both on and beneath the

earth’s surface. These charges exist in the region where there is a gradient of conductivity

and a non-zero field crossing the electric boundaries. It is these accumulated charges that

give rise to the electric potential that is measured. Many different electrode configuration

can be used for field measurement.

1.2 Brief review of MT and DCR Literature

The available literature on MT and DCR is very vast and it is impossible to review all the

works hence, I have reviewed only selected works. For theory, data acquisition, processing

and interpretations one can refer various textbooks [9, 10, 21, 69, 107, 189, 207, 208] written

on this subject. First, I will give a very brief literature review of techniques essential for

interpretation of recorded data (modeling and data inversion) and later selected case studies.

For obtaining resistivity distribution of the earth’s interior, the MT transfer function in the

form of impedances tensor or apparent resistivity and phase and vertical magnetic field

transfer function (VTFs) and DCR apparent resistivity response are inverted individually

or jointly using well defined mathematical techniques. This requires efficient and accurate

modeling and inversion computer codes. The development of efficient, robust, versatile

and user friendly computer code for modeling and inversion of 3D MT and DCR data is

a subject matter of present thesis. The main focus is on the MT methods however, DCR is

also included within MT, as one of the sub-program of the developed 3D MT inversion code

was extended for DCR data.

1.2.1 3D MT and DCR Forward Modeling

The computation of responses of a model (forward modeling) is essential for the

interpretation of the data. The analytic solutions are only available for a selected class of

3D models. However, for a general conductivity distribution, as encountered in nature, one

has to used numerical techniques. The commonly employed numerical techniques for 3D

MT and DCR forward modeling are:

1. Integral Equation Method (IEM)
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In IEM, the Maxwell’s equations are first reduced to second-kind Fredholm’s integral

equation with respect to electric field. This is known as the scattering equation. The

Green’s function technique is generally used to derive the scattering equation. In

IEM only the target body is discretised, hence, the resulting system matrix is small

but dense. Therefore, IEM are better suited for computing responses of confined

targets such as conductive bodies in a half space or horizontally layered earth. Several

developers have used the IEM for MT modeling [e.g. 49, 60, 190, 197, 209] and for

DCR modeling [e.g. 35, 82, 116, 198] However, for a general conductivity structure,

the Differential Equation Methods (DEM) are preferred.

2. Finite Element Method (FEM)

In FEM, which is still not widely used, the fields are expressed as a superposition

of some basic (generally, edge and nodal) functions. The main advantage of FEM

is the efficient and accurate handling of curved boundaries (e.g., topography, shapes

of ore-bodies etc.). However, this advantage is counterbalanced by the tedious and

time consuming process of construction of the finite elements. Several workers have

implemented the FEM technique for MT modeling [e.g. 42, 104, 108, 132, 134] and

for DCR modeling [e.g. 12, 23, 52, 128, 139, 203].

3. Finite Difference Method (FDM)

FDM is one of the most commonly used approach. For accurate solution of Maxwell’s

equation, the staggered grid is used [201]. If the PDE is formulated in terms of electric

field components, these are defined on cell edges and the magnetic field components

are defined on center of the cell faces and vice-versa. The matrix formed using

staggered grid is sparse (13 non-zero elements per row), symmetric and non-hermitian

having complex diagonal elements. Various forward modeling algorithms using FDM

for solving MT problem have been developed [e.g. 43, 63, 89–91, 110, 140, 158, 164,

165, 200]. For DCR problem, normal grid is used. Dey and Morrison [33] developed

a 3D FD algorithm to evaluate the potential for a point current source. Since then

various algorithms have been developed [e.g. 87, 88, 166, 168, 205].

Other approaches such as mesh-free modeling [195], have also been implemented for MT

fields computations.
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Solution of System Matrix

Regardless of which numerical scheme is employed for solving the MT and DCR forward

problem, the formulation is reduced to a system of linear equations that can be solved by an

appropriate matrix solver. For FEM and FDM, the size of the system matrix is large hence,

the iterative solvers are preferred over direct solvers as these solvers need less memory and

computation time. Direct solvers may be efficient if solutions for multiple right-hand side

vectors are needed for same system matrix for example in CSEM [169] or in DCR problem.

The large memory requirement for direct solvers is still a challenge, particularly in case of

large survey size. Therefore, the semi-iterative solvers based on Krylov subspace method are

widely used in forward modelling. These solvers only require matrix-vector multiplication.

Since, the system matrix is highly sparse, 13 non-zeros elements per row for MT and 7 for

DCR, matrix-vector multiplication is easy to compute. The MT system matrix is generally

complex and non-hermitian. For solving such a linear system, some of the popular iterative

solvers are the generalised minimal residual (GMRES) [137], quasi-minimal residual (QMR)

[44] and biconjugate gradient stabilised (BiCGSTAB) [186].

These solvers differ in both memory requirement, number of computations in each

iteration and robustness. GMRES is a well-known Arnoldi-based method proposed by Saad

and Schultz [137]. The GMRES leads to a non-increasing sequence of residual norms and,

therefore, it always guarantees smooth and monotonically decreasing convergence, which

may not necessarily be fast enough. The GMRES requires one matrix-vector multiplication

per iteration. The main disadvantage of GMRES is its large storage requirement because

the solver stores all previously-generated Arnoldi vectors. To over come this issue some

modification has been proposed as restarted-GMRES and hybrid GMRES. QMR [44] and

BiCGSTAB [186] are two Lanczos-based methods. These methods require relatively less

memory which does not vary during iterations. The QMR and BiCGSTAB methods may

produce oscillatory behavior as far as residual norm is concerned. For more details about

these methods readers can refer the textbook by Saad [136]. Another important issue

regarding the iterative solver is the condition number of system matrix which could be of

the order of 109 to 1012 [4]. In case of FDM and FEM, the most popular preconditioners

are Jacobi, SSOR, incomplete LU decomposition and multigrid. The right choice of

preconditioner is very crucial for efficient computation. In fact, the choice of preconditioner

is more critical than the iterative solver. The literature survey suggests that the incomplete
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LU preconditioner is the most preferred one in MT modeling and is widely used by

developers [4].

1.2.2 3D MT and DCR Inversion

All the inversion algorithms, including MT and DCR inversion, aim at finding a meaningful

model, while fitting the data to an acceptable level in a stable manner. These inversion

algorithm has to deal with some inherent complexities related to non-linearity and ill-posed

nature of the problem. Further, due to the noisy and limited data, the inverse solution is

non-unique hence, a priori information is provided to constrain the model. The constraints

are applied in the form of a regularization functional. Regularization process also stabilizes

the inverse problem which is unstable due to the ill-posed nature of the problem. The

regularization of the objective functional [97] of the inverse problem is an important

task. The common practice is to seek smooth model parameters. In many algorithms

[e.g. 25, 110, 135], it is achieved by constructing the model covariance matrix using the

finite difference approximation to the Laplacian (52) operator or formulating regularization

directly in terms of a smoothing operator [36, 155, 70]. The prior information such as faults

or oceans can also be included in the regularization functional [155].

MT data acquisitions in field have usually been conducted along a profile or several

profiles parallel to each other [e.g., 112, 182]. Dimensionality analyses of the data are

applied in order to validate the 2D assumptions. These include skew analysis [170, 187],

phase-sensitive skew analysis [6], the Groom and Bailey decomposition [50], tensor

decomposition [22], rotational invariant analysis [193], strike decomposition [98], the phase

tensor [17] and the Mohr circle [85]. For a review of 2D techniques including modeling,

dimensional analysis and interpretation one can refer Ogawa [115]. Afterwards, 2D inversion

is used to yield 2D cross-sectional models for profile interpretation. However, the 2D

inversions are influenced by the 3D structure. Such effect has been demonstrated through

synthetic data [80, 160] as well as real data [113, 149]. These studies indicate that if

the data contains significant 3D effects, 2D inversion can mislead an interpretation. The

ambiguity of the data can be overcome by using 3D inversion as it is not necessary to make an

assumption about the strike direction although recommended. Instead of using 2D inversion,

3D inversion can also be performed for the 2D profile acquired previously as demonstrated

by Siripunvaraporn et al. [160] for synthetic data and by Xiao et al. [196] for real data. Such
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inversion can recover anomalies correctly as demonstrated by Newman et al. [113]. With 3D

inversion, structures may be put outside the profile where they belong although their size,

shape, depth and location cannot be determined exactly. This is in contrast to 2D inversion

where structures are inserted beneath the profiles which could lead to misinterpretation [160].

Station locations need not be projected on the profile line for 3D inversion and hence a 3D

model geometry is likely to be more reliable. For more advantages of 3D over 2D inversion

readers can refer to Siripunvaraporn [154].

The disadvantage of 3D inversion is the large computational cost in terms of both

computation time and memory. In 3D inversion the number of model parameters increases

exponentially and are of the order of hundred-thousand to million, hence, the inherent

complexities associated with large number of model parameters become more challenging.

In spite of these challenges, several 3D inversion algorithms have been developed and used

to accurately account for 3D nature of the model.

Many MT inversion algorithms have been developed in the past few decades. These

algorithms, iterative in nature, includes the Occam’s inversion [e.g. 25, 28, 159, 157, 161],

the Gauss–Newton (GN) method [e.g. 54, 141, 142], the Gauss–Newton with the conjugate

gradient (GN-CG) method [89, 109, 156], the quasi-Newton (QN) method [53, 5], and

the non-linear conjugate gradient (NLCG) method [e.g. 24, 39, 70, 110, 135, 92]. These

algorithms, except NLCG, uses some sort of variant of the Newton optimization method.

The Newton type methods require computation of the Jacobian (sensitivity) matrix and

Hessian (or its approximation) at each inversion iteration. However, for a 3D case, explicit

computation of Jacobian or Hessian is computationally very expensive. The alternative

approach is to bypass the formation of Jacobian by using memory efficient iterative

Krylov-space solver such as conjugate gradients [e.g. 55, 56, 89, 109, 135, 156]. In CG

method the product of Jacobian (or its transpose) and a vector is computed. Mackie and

Madden [89] used this approach to solve for 3D MT inverse problem. In NLCG method,

the gradient of the penalty functional is computed rather than the Jacobian matrix. NLCG

requires only two forward and one gradient computation per source per inversion iteration.

However, the less computation time per iteration is offset by slow convergence as compared

to GN methods. Through 2D MT data inversion experiment, Rodi and Mackie [135] showed,

that the NLCG takes more time than GN method and that preconditioned NLCG is equivalent

to GN in terms of computation time. Pre-conditioned NLCG has also been implemented to
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improve the convergence [110, 111, 135] but it increases the cost per iteration. Kelbert et al.

[70] has solved the inverse problem using NLCG in model transform domain and observed

that the convergence is similar to preconditioned NLCG. For detailed review on different 3D

MT inversion algorithms readers can refer to Avdeev [4] and Siripunvaraporn [154]. Even

with all these advancements, the solution of 3D MT problem will remain a very challenging

and efforts are being focused on minimising these challenges.

Various techniques have been presented for 3D DCR data inversion over the last three

decades. Petrick Jr et al. [125] determines the positions of conductive anomalies using the

concept of alpha centers. Rijo [133] performed inversion by using data bank of forward

solutions for a certain 3D models while inversion based on the Born approximation was

illustrated by Li and Oldenburg [84]. Shima [148] used FEM to improve the result obtained

using alpha centre method. Park and Van [118] published the 3D inversion scheme using FD

and least square inversion. Since then various authors have presented inversion algorithms

[e.g. 40, 52, 87, 139, 204]. In these algorithms, the forward solutions are generally obtained

by FDM or FEM and inversion are based on Gauss–Newton (or its variant) technique. For

the 3D case the problem is large hence, explicit computation and storage of the Jacobian

(sensitivity) matrix is avoided [e.g. 204].

The inversion methods discussed above are fraught with the problem of non-uniqueness

[100]. Data acquired in surveys is usually restricted to the surface of the Earth or the shallow

subsurface, often with relatively large spacing between measurement sites, and affected by

noise. In such a situation different models can explain the observed data, creating ambiguity

in their interpretation [174]. Applying regularization stabilizes the inversion and creates

a model with certain characteristics but does not alleviate the underlying problem [119].

Joint inversion approaches promise to reduce the set of acceptable models by combining

several geophysical methods in a single inversion scheme and requiring the resulting model

to explain all data simultaneously [188]. First, different methods have different resolving

kernels and the null space for one type of data can be resolved by the other [65]; second,

the sources of noise and its impact on the data often differ so that adding another method

can improve the results more than adding more data of the same type. Consequently joint

inversion approaches have gained some attention recently.

After a brief discussion modeling and inversion of MT and DCR data, I shall discuss

their applications. MT and DCR methods are used in solving variety of real world problems
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related with deep, intermediate and shallow depth in the earth’s interior. Some of these are

mentioned in the following.

1.2.3 Literature in Case Studies

As the depth of investigation of MT class of methods depends on the frequency band as well

as the resistivity distribution in the earth’s interior. By choosing appropriate frequency band,

MT method can be used for variety of applications.

Through the preliminary inversion of USArray transportable array MT data, Patro

and Egbert [123] observed extensive areas of high conductivity in the lower crust

beneath all of southeastern Oregon, and beneath the Cascade Mountains, USA along with

significant variations in the upper mantle conductivity. Ernst et al. [41] and Habibian

et al. [57] carried out survey to study the deep structure of the Trans-European Suture

Zone (under international EMTESZ-Pomerania Project) and observed highly conductive

Cenozoic-Mesozoic sedimentary cover reaching depths up to 3 km. Smirnov and Pedersen

[163] conducted MT experiments across the Sorgenfrei-Tornquist-Zone(STZ) (northwestern

part of Baltic shield), a major branch of the TESZ and observed zone of enhanced

conductivity in the lower crust and uppermost mantle (position coincides with STZ). Korja

et al. [76] conducted broad-band MT along a 180 km long profile in Jämtland, Sweden. Their

2D inversion shows an electrically highly conducting layer beneath the Caledonides images

alum shales over Precambrian basement. The INDEPTH (InterNational DEep Profiling

of Tibet and the Himalaya) project provides insight of structure and evolution of Tibetan

Plateau. Wei et al. [194] observed wide spread presence of high conductivity fluid at a depth

15-20 km in southern Tibet and at a depth of 30-40 km in the northern Tibet. Bai et al. [7]

observed two major zones or channels of high electrical conductivity at a depth of 20-40

km and these channels extend horizontally more than 800 km from the Tibetan plateau into

southwest China. Unsworth et al. [183] also observed crustal melting in Himalayas from

northern Tibet side.

In India, The Main Frontal Thrust (MFT), the Main Boundary Thrust (MBT) and the

Main Central Thrust (MCT) has been delineated in Gharwal Himalayas by Israil et al.

[62], Miglani et al. [103] and Rawat et al. [131] and in Sikkim Himalayas by Patro and

Harinarayana [124]. In these studies the nature of the low resistivity associated with the

Main Himalayan Thrust in the higher Himalayas (north of the MCT) might indicate presence
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of metamorphic fluids released due to under thrusting of the Indian plate. In Eastern Indian

Craton, Bhattacharya and Shalivahan [11], Shalivahan and Bhattacharya [144] conducted

MT study and were able to resolve the lower crust and upper mantle boundary. Such an

identification of crust-mantle boundary was possible due to the absence of a conducting

lower crust. In literature there are many other references available where MT method has

been used for studying the crustal structure of earth Brasse et al. [14], Brasse and Soyer

[15], Korja et al. [76], Patro et al. [122], Shalivahan and Bhattacharya [145] and Smirnov

and Pedersen [163].

In Eastern India, geothermal study was carried out in the Bakreswar Hot Spring

by Sinharay and Bhattacharya [152] and Sinharay et al. [153]. They reported that the

north-south fault close to Bakreswar is a shallow feature and thus cannot act as a heat source.

MT results indicate that the location of the geothermal reservoir is deep. Yamaya et al. [199]

performed geothermal investigations in the crater area of Tarumai volcano, northeastern

Japan. Their survey brought out two conductive structures beneath the lava dome of Tarumai

volcano. The deeper and extremely conductive body corresponded to a convecting zone

containing rising hydrothermal fluid while the shallow conductor was interpreted as an

aquifer. This study provides an insight that the aquifer plays a significant role controlling

the temperature and chemical components of erupting fluids. Komori et al. [75] has also

documented the effect of the hydrothermal alteration on the surface conductivity of rock

matrix. Various other researchers e.g., Cumming and Mackie [27], Jones et al. [64], Heise

et al. [58, 59], Oskooi et al. [117], Takasugi et al. [173] have also used MT for geothermal

studies.

Tezkan et al. [176] used the radio MT and transient EM to study the waste deposit site

in Cologne (Germany) and observed that due to the highly conducting waste deposit only

the top of the waste site and the lateral boundary of it could be resolved. Tezkan et al. [177]

showed that the radiomagnetotelluric technique is a powerful tool for waste site exploration.

The DCR method have variety of application, mainly related with shallow subsurface

investigations. DCR method has been extensively used for hydro-geophysical applications

such as groundwater exploration, environmental. geotechnical, archaeological studies, etc.

Coscia et al. [26] used 3D crosshole ERT for investigated of the hydrogeological

properties and responses of a productive aquifer in northeastern Switzerland. Pidlisecky

et al. [127] determined the subsurface distribution of saltwater- and freshwater-saturated
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sediments and the geologic controls on fluid distributions along the coast of Monterey Bay

(6.8-km)

Ramirez et al. [130] used this technique for detection of leaks in underground storage

tanks. The investigation of an abandoned mining dump which contains slag material

originating from steel production were done by Günther et al. [52]. DCR studies has been

successful used for the prediction of the location of future rupture surfaces of a slowly

moving loess landslide along the River Danube in South Hungary [171, 172].

Resistivity prospecting was employed to detect the remnants of wall foundations in the

place where the main urban complex of the ancient city of Europos, northern Greece once

stood [181]. Argote-Espino et al. [3] used 3D ERT and identified four anomalous areas

of interest at archaeological structures site of Teteles de Ocotitla, Tlaxcala, Mexico. The

archaeological excavations confirmed the results obtained using the geophysical method.

To further improve interpretation, the MT data has been analyzed in combination of other

geophysical methods like seismic. Through a synthetic data synthetic data Manglik and

Verma [94] showed that the joint inversion yields better layer parameters, than the individual

MT or seismic inversions. Sharma et al. [147] delineated sediments below flood basalts by

using seismic and MT and later to delineate a four-layered crustal structure in the Southern

Granulite Terrain, India [95]. Moorkamp et al. [106] presented joint inversion of MT, gravity

and seismic refraction data and through a synthetic example demonstrated its usefulness.

Vozoff and Jupp [188] combined MT and Schlumberger soundings and inverting the data

sets simultaneously for 1D structures. Other examples of lD joint inversion were presented

by Gomez-Trevino and Edwards [48] for CSEM and Schlumberger sounding and by Raiche

et al. [129] for coincident loop transient EM with Schlumberger sounding. 2D joint inversion

were performed by various workers [e.g. 2, 20, 138]. Seher and Tezkan [143] used RMT and

DCR measurements for the characterization of conducting soils. Yogeshwar et al. [202]

studied the impact of sewage irrigation and groundwater contamination near Roorkee in

north India using the RMT and DCR method. Tezkan et al. [176] has used RMT and transient

EM for investigation of industrial and domestic waste sites in Germany.
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1.3 Definition of Problem

The objective of this study is to develop an efficient, accurate and user friendly 3D forward

modeling and inversion algorithm for MT data. The development of an accurate and efficient

3D MT inversion code is an active area of research and the forward modeling is an integral

part of any inversion code. Literature survey reveals that there are possibilities of further

development on following aspects (i) parallel implementation, (ii) efficient computation

of sensitivity matrix, (iii) reduction in number of forward solver calls, (iv) generalized

anisotropic model, and (v) joint inversion.

The present thesis focuses on development of MATLAB based code for 3D MT inversion

and extension of the same code to DCR data and finally to joint inversion of MT and DCR

data. A brief summary of the work done is presented below.

1.4 Thesis Layout

The thesis is organized into seven chapters briefly summarized below.

The first chapter is an introduction to the thesis. It carries a detailed literature review and

it defines the problem.

In chapter 2, the mathematical formulation of forward and inverse problem, including a

brief description of EM theory, is presented. It also formulates a boundary value problem

comprising the governing partial differential equation and requisite boundary conditions.

The finite difference method to solve the forward problem is presented along with a

discussion on matrix solver. The expression for data sensitivities is presented and the

Jacobian (or its transpose) matrix-vector multiplication is discussed in detail where the

Jacobian is represented using block matrices.

Third chapter explains the salient features of the developed 3D inversion MATLAB

code, AP3DMT, for MT data. The main emphasis is on modular implementation of the

basic components of inversion - forward modeling, model regularization, data functionals,

and sensitivity computation - which are reusable and readily extensible. The code has two

components. This first component is a standalone grid generator. The main feature of

grid generator is its robustness in handling complex geological features needed to simulate

responses for complex 3D structures. The second component is the inversion algorithm.
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It includes GN with conjugate gradients (data and model space) and NLCG optimization

technique. The detailed description and implementation of forward modeling, inversion,

sensitivity computations and other components are discussed here. The efficiency of

inversion algorithm in the code is enhanced by representing the differentiated system matrix

in a frequency independent mode. The product of Jacobain (or its transpose) with a vector

is implemented through components of Jacobian. The coarse level parallel computing over

frequency is implemented. The code’s versatility for grid generation is demonstrated.

In fourth chapter inversion of two synthetic examples and field MT data is presented.

Over the past decade Broadband MT survey was conducted by our group along the

Roorkee-Gangotri profile in the Indo-Gangetic plain, Sub Himalayan and Lesser Himalayan

region. The MT system used in this survey was Metronix, MT system. This dataset was

inverted using ModEM [39] by Devi et al. [32] and using AP3DMT by the author. For

comparison a 3D diagram of the ratio of inverted cell conductivities in two cases is presented.

Fifth chapter deals with the extension of divergence correction sub-program of AP3DMT

to full fledged 3D DCR modeling and inversion algorithm. Since AP3DMT code was in

modular form, only the necessary changes were made in forward modeling and Jacobian

routines. The forward modeling utilizes finite difference scheme for solving the governing

partial differential equation. The source singularity is overcome using the primary/secondary

approach [88]. The primary potentials are computed analytically for half space. To solve

the system matrix for secondary potential, either a preconditioned iterative solver or a direct

solver (depending on the number of sources and size of system matrix) is used. The accuracy

of the simulated response is tested using the responses from published papers. The inversion

scheme is similar to that used in AP3DMT. The inversion is demonstrated with the help of

two synthetic examples, one representing a complex model.

Sixth chapter deals with the integration of MT and DCR codes into a joint inversion

code. Since, both these methods sense the sub-surface resistivity of earth differently they

are employed together to constrain the interpretation. For joint inversion, crucial aspects like

model discretization, data scaling, error floor etc. are discussed. The joint inversion results

of one synthetic test model are discussed.

Seventh chapter summarizes the work and lists some of the possible future directions of

research.
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Chapter 2

3D MT FORWARD AND INVERSE

MODELING

2.1 Preamble

The Magnetotelluric (MT) techniques belong to the class of geophysical methods that

helps in deciphering subsurface conductivity distribution. This conductivity distribution

is obtained by performing inversion of the recorded data. Over the decades considerable

efforts have been invested in the development of accurate and computationally efficient

inversion algorithms. The developed algorithms includes Gauss–Newton (variant of Newton

method) schemes [e.g. 89, 141, 161], and direct gradient-based minimization schemes such

as non-linear conjugate gradients (NLCG) [e.g. 70, 110] or quasi-Newton schemes [e.g.

5, 111].

The Newton method although converges quadratically has not been implemented widely

because the computation of second order derivative of the predicted response (Hessian)

needed in this method is considered prohibitively expensive [54]. The Gauss–Newton (GN)

provides a good compromise between computational cost and performance as in this method

only the first derivative of the predicted response with respect to model parameter (Jacobian)

is required. The convergence rate of the GN is far better than the gradient-based methods.

In a gradient-based method such as (NLCG) the gradient is computed and used to find

a new conjugate direction for model update and the step length is estimated using line

search methods. As compared to GN, NLCG required less forward calls per iteration but

this efficiency is off-set by larger number of inversion iterations required to converge to

a desired level of accuracy. Due to large number of parameters in 3D, explicit formation
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of the Jacobian is avoided. For efficiency, in terms of memory and time, it is avoided

through Krylov subspace based iterative solver like conjugate gradient (CG) [e.g. 90, 109]

or computing product of Jacobian transpose with a vector as required in NLCG. However,

for computationally efficient inversion algorithm, an accurate forward modeling algorithm is

essential as it is used to compute the model responses and is heavily called while computing

product of Jacobian with a vector.

Various numerical schemes have been implemented for modeling of MT data. These

approaches are based on finite difference [1, 43, 39, 90, 164, 165, 192], finite elements

[104, 132] and integral equation [180, 190] schemes. Each of these techniques has certain

advantages e.g., integral equation methods are efficient in case of compact model, finite

element is better suited for complex model geometry whereas finite difference (FD) is

simpler in concept. Irrespective of which technique in employed, these schemes lead to a

linear system of equations. The system of equations, generally ill-conditioned, is solved

using a preconditioned iterative solver because these require less memory and computation

time. Even with the use of an efficient preconditioner like incomplete LU, the convergence

is very slow especially at low frequencies. This is due to the fact that the divergence

of numerically calculated electric field is non-zero. To overcome this issue, Smith [165]

proposed a static divergence correction which dramatically improves the convergence of the

iterative solver thus reducing the computation time.

In this chapter, I will first briefly discuss the MT theory and the governing partial

differential equation. Various aspect of forward modeling like model discretization,

boundary conditions, matrix solver, pre-conditioner and static divergence correction are

discussed in detail. Next, the formulation of the inverse problem and different inversion

schemes are discussed. A detailed description of computations based on the sensitivity

matrix (Jacobian) such as its multiplication with a vector is given in this chapter.

2.2 Electromagnetic Theory

The Maxwell’s equations describes the propagation of the electromagnetic (EM) fields. The

equations describe the relation between time varying electric and magnetic fields. The first
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two equation in their differential form are,

∇×E =−∂B
∂ t

, (2.2.1)

∇×H =
∂D
∂ t

+J, (2.2.2)

where, E is the electric field (V/m), B is the magnetic flux density (Wb/m2), H is the magnetic

field (A/m), D is the electric displacement current (C/m2), and J is the current density (A/m2).

Two more equations can be derived from eq 2.2.1 and eq 2.2.2 by taking the divergence,

∇ ·B = 0, (2.2.3)

∇ ·D = q. (2.2.4)

The eq 2.2.3 simply denies the existence of magnetic monopoles (Gauss’s law for

magnetism) and eq 2.2.4 shows that the electric field is the result of the distribution of

electric charge (Gauss’s law for electricity). The above are the fundamental equations in

electromagnetism in five vector fields (E, D, B, H and J) [191].

The constitutive relations can be used to eliminates three of these and Maxwell’s

equations can be expressed using two vector fields only. For linear, isotropic media of

electric conductivity, σ , magnetic permeability, µ and electric permittivity, ε , three further

relationships have been shown to hold,

B = µH, (2.2.5)

D = εE, (2.2.6)

J = σE. (2.2.7)

Since the variations of the dielectric permittivity ε and the magnetic permeability µ for

most rocks are very small in comparison to the variations of the electric conductivity σ , we

can use the free-space values for both ε and µ and set µ = µo = 1.25566× 10−6 H/m and

ε = εo = 8.85×10−12 F/m. Using eq 2.2.5− 2.2.7 the Maxwell’s equations can be rewritten

as,

∇×E =−∂B
∂ t

, (2.2.8)
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∇×B = µ0ε
∂E
∂ t

+µ0σE. (2.2.9)

2.3 Governing Equation

Substituting eq 2.2.9 in eq 2.2.8 and assuming eiωt time dependence and ignoring

displacement current we get,

∇×∇×E + iωµσE = 0, (2.3.1)

where i =
√
−1. Alternatively, the problem can also be formulated for magnetic fields as,

∇×ρ∇×H + iωµH = 0, (2.3.2)

where ρ is the electrical resistivity. Siripunvaraporn et al. [158] showed that at fine grid,

the EM problem can be solved either using vector partial differential equation (PDE) for

E (eq 2.3.1) or H (eq 2.3.2) with same level of numerical accuracy. However, for a coarser

grid, solutions obtained from the formulation in E are more accurate. Therefore, in this study

eq 2.3.1 is solved for modeling of MT data.

2.4 Forward Modeling Scheme

This section describes how the numerical solution of the governing equation eq 2.3.1 are

computed.

2.4.1 Finite Difference Formulation

The electric field E are simulated by solving the vector Helmholtz equation (eq 2.3.1) using

FD method. The first step is discretization of model using grid lines parallel to x, y, and z

co-ordinate axes. For more accurate solution eq 2.3.1 is approximated on a staggered-grid

[201], as shown in Fig. 2.1. Since the PDE is formulated in terms of electric field components

(Ex, Ey and Ez), these are defined on cell edges and the magnetic field components (Hx,

Hy and Hz) are defined on center of the cell faces. The discrete finite difference equations

using staggered grid are given in Appendix A. After discretization, each cell is assigned a

constant conductivity value. To accommodate this change in conductivity at the interface
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of a cell, volume weighted average of the conductivity is computed and assigned to each

interface. Now, the forward problem is solved using appropriate boundary condition. At the

boundary faces the field is assumed to be due to 2D resistivity distributions. To simulate this

condition, several sparsely spaced grid lines are added on all side of the modeling domain.

The collection of all the discrete FD equations for all nodes, for a frequency, f , results in a

matrix equation represented as,

Ame = s, (2.4.1)

where Am is a frequency dependent Ne ×Ne sparse symmetric complex matrix with 13

non-zero elements per row; s is the Ne dimensional source vector and e is the Ne dimensional

vector representing electric fields at the Ne internal nodes. The system matrix is transformed

to a symmetric form by pre-multiplying it with a diagonal matrix whose elements depend on

cell volume [43].

Figure 2.1: Staggered finite difference grid for the 3D MT forward problem. Since the PDE
is formulated in terms of electric field components, these are defined on cell edges and the
magnetic field components are defined on center of the cell faces.

The three components of the electric field are calculated for a current system which flows

in N-S (a mode polarization) or in E-W (b mode polarization) direction. To obtain the same

electric field components, however, for another orientation of the current system, we can

rotate the model by 90◦ and form eq 2.4.1 again and solve for e [192]. The need for the three

electric field components using from two orientations of the current system is based on the

fact that the model responses in 3D MT are the full impedance tensor and the VTFs. Thus,

to construct the full impedance tensor we need two orientations of the current system.
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The right hand side vector, s in eq 2.4.1 contains the values of the boundary conditions

(BCs). For 3D MT forward modeling the boundary values are those which correspond to the

all six faces (north, south, east, west, top and bottom) of the model. To formulate BCs at four

vertical faces, the conductivity reaches its 2D distribution at these faces and 1D distribution

at the edges of these faces. Hence, we need to compute both 1D and 2D solutions and

assign the computed values to the grid node at these four vertical faces. For solving the

2D problem at the end faces we have to distinguish between solving the TE- or TM- modes

problems depending on the current system which flows in the 3D grid. For example, if the

current system flows in E-W direction then we have to solve the 2D TE- mode problem

at the easternmost and westernmost faces and TM- mode problem at the northernmost and

southernmost faces.

Alternatively, one can use the concept of partitioning of field. In this approach the total

electric field, E, is considered as a superposition of primary electric field, Ep, and secondary

electric field, Es, as,

E = Ep +Es. (2.4.2)

Ep is a field simulated for simple background model like half space or layered earth model

having conductivity σp. If σa represents residual conductivity of the medium such that the

total conductivity, σ , of medium can be express as,

σ = σp +σa. (2.4.3)

Substituting eq 2.4.2 and 2.4.3 into eq 2.3.1 leads to decomposition of eq 2.3.1 into two

equations as,

5×5×Ep + iωµσpEp = 0, (2.4.4)

5×5×Es + iωµσEs =−iωµσaEp. (2.4.5)

Now, the forward problem can be solved in two steps. In the first step, eq 2.4.4 is solved

to get the value of primary fields, Ep, for background model. Once the primary fields are

available, eq 2.4.5 is solved to compute the secondary field, Es, due to scattered source. The

total fields are computed from the primary and secondary fields using eq 2.4.2. In this study

we have used the first approach for computing the fields.

18



2.4.2 Matrix Equation Solver

The system matrix Am is a very sparse matrix and can be very large in size, for example,

million by million (depending on total number of nodes). The structure of matrix A for

a 4× 4× 3 grid is shown in Fig. 2.2. For solving such sparse matrix iterative solvers are

better suited as compared to a direct solver due to small memory requirement. Also, in

terms of computation time iterative solvers are better. This sparse linear system is solved

iteratively using bi-conjugate gradient stabilized (BiCGSTAB) scheme which belongs to a

class of Krylov subspace techniques. The system matrix is, in general, ill-conditioned and the

convergence rate is very slow. The incomplete LU decomposition of the diagonal sub-block

matrix for preconditioning is quite effective [89]. Still at very low frequency, as in case

of MT, converge is very slow. In this case, we need static divergence correction which is

discussed in the next section.

Figure 2.2: Structure of system matrix A for 4× 4× 3 grid lines, where only 691 elements
are non-zero.
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2.4.3 Static Divergence Correction

Even with the benefits of a staggered grid, in the limit ω −→ 0, the geometric term ∇×∇×E

in eq 2.3.1 dominates over the term iωµσE in low conductivity region such as air σ −→ 0,

making the solution inaccurate. To overcome this issue, a static correction, first proposed

by Smith [165], is periodically applied. Mathematically static divergence correction can be

derived by taking the divergence of eq. eq 2.3.1 as,

5·(σE) = 0. (2.4.6)

The solution at low frequencies do not satisfy the continuity equation (eq 2.4.6) hence, a

correction is made to E. This is achieved by adding the gradient of an unknown scaler, φ , to

En (the solution at the nth iteration of the BiCGSTAB solver). Now, the task is to estimate φ

such that the corrected field Ec(= En +5φ) satisfy eq 2.4.6. Using the definition of Ec and

eq 2.4.6, the scaler, φ , is calculated from,

5·σ(5φ) =−5·(σEn). (2.4.7)

eq 2.4.7 is Poisson-like equation and solved using FD method. The symmetric system matrix

formed in this case is solved using Conjugate Gradient (CG) iterative solver (tolerance 10−4

in this study). The divergence correction is applied after a certain number (40 in this study)

of BiCGSTAB iterations. The convergence is improved by applying divergence correction

and it thereby significantly reduces the computational time needed for solution of eq 2.3.1.

To demonstrate the efficiency achieved through divergence correction, the forward

problem is solved for period values of 100 s. The convergence plots of these tests are

shown in Fig. 2.3 for both source polarizations. The convergence curve for the case without

divergence correction reaches the desired tolerance (set at 10−7) is reached in 942 and

1087 iterations for a and b polarization respectively. In case of divergence correction,

the convergence threshold is reached in 140 and 171 iterations for a and b polarization

respectively.
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Figure 2.3: Iterative solver convergence plots to show the comparison of with and without
divergence correction for (left) a polarization, and (right) for b polarization for 100 s.

2.4.4 MT Response Computation

Once the electric field are computed, they are interpolated to the observation sites. The

magnetic field, H, corresponding to an electric field solution E can be expressed as

H = (−iωµ)−1
∇×E. The computation of H at the observation sites requires a simple

transformation (including interpolation) matrix which is a discrete approximation of scaled

curl operator where the scaling factor is reciprocal of −iωµ . From these electric and

magnetic field the impedance tensor, Z, and vertical magnetic field transfer functions (VTFs)

are computed at the observation sites. In the 3D MT case, the impedance is a 2× 2 tensor,

which requires two independent electric field solutions computed for two different source

polarizations [37, 159, 192]. Thus impedance tensor and VTFs can be written as,


Zxx Zxy

Zyx Zyy


=


Ea

x Eb
x

Ea
y Eb

y




Ha

x Hb
x

Ha
y Hb

y



−1

, (2.4.8)


Tx

Ty


=

(
Ha

z Hb
z

)

Ha

x Hb
x

Ha
y Hb

y



−1

, (2.4.9)
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where, indices a and b represents two different source polarizations. The components of the

impedance tensor and VTFs [110] can be rewritten as,

Zxx =
Ea

x Hb
y −Eb

x Ha
y

D
, Zxy =

Eb
x Ha

x −Ea
x Hb

x
D

,

Zyx =
Ea

y Hb
y −Eb

y Ha
y

D
, Zyy =

Eb
y Ha

x −Ea
y Hb

x

D
,

(2.4.10)

Tx =
Ha

z Hb
y −Hb

z Ha
y

D
, Ty =

Hb
z Ha

x −Ha
z Hb

x

D
, (2.4.11)

where, D = Ea
x Hb

y −Eb
x Ha

y . Once impedance tensor and VTFs are computed, other derived

responses can be easily computed.

2.5 Inversion

All the inversion algorithms aim at finding a meaningful model m̃, a M- dimensional model

parameter vector, while fitting the data d̃obs of dimension Nd to an acceptable level in a stable

manner. We consider minimization of the penalty functional defined as,

Φ(m̃, d̃obs) = (dobs− F̃(m̃))T C−1
d (dobs− F̃(m̃))+λ (m̃−m0)

T C−1
m (m̃−m0), (2.5.1)

where F̃(m̃) is the forward mapping, Cd is the data covariance matrix, m0 is the apriori

model, Cm is the model covariance matrix or regularization term and λ is the trade-off

parameter. Cd is generally diagonal hence, it can be eliminated from definition of penalty

functional by simply rescaling of data and forward mapping. Both m0 and Cm can also

be eliminated from eq 2.5.1 by setting m = C−1/2
m (m̃−m0). This transformation reduces

eq 2.5.1 to,

φ(m,dobs) = (dobs−F(m))T (dobs−F(m))+λmT m, (2.5.2)

where, F(m) = F̃(C1/2
m m+m0). After minimizing eq 2.5.2 in transform domain the

model parameters are transformed back into the space of the original model parameter

m̃ = C1/2
m m+m0. For details one can refer to Kelbert et al. [70]. In this study, we have

implemented both quasi-linear inversion and non-linear inversion using conjugate gradient

for the minimization of eq 2.5.2.
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2.5.1 Quasi-linear Inversion

In this approach, the objective functional is first approximated by a Taylor series expansion.

The quadratic approximation of the objective functional is then minimized to produce a series

of the updated models iteratively. In the Gauss Newton (GN) method only the first derivative

in the Hessian matrix of Newton’s method is retained but the second-order derivative is

discarded. This leads to an iterative sequence of approximate solutions as,

(JT J+λ I)δmn = JT r−λmn, (2.5.3)

where mn are the model parameters at the nth iteration, J is Jacobian and r = dobs−F(mn)

is the residual. eq 2.5.3 is solved for δmn and the new updated model parameter vector is

obtained as mn+1 = mn +δmn. For stability this linearized scheme generally requires some

form of step length damping [96, 135]. Alternatively, instead of solving for δmn one can

solve for mn+1 using Occam approach [25, 120]. In Occam’s algorithm eq 2.5.3 is written

as,

(JT J+λ I)mn+1 = JT d̂, (2.5.4)

where d̂ = dobs−F(m)+ Jmn. In data space [155, 159] the solution of eq 2.5.4 is written

as,

mn+1 = JT bn; (JJT +λ I)bn = d̂. (2.5.5)

To avoid explicit computation and storage of J, eq 2.5.4 and eq 2.5.5 are solved with a

memory efficient Krylov subspace iterative solver such as conjugate gradients (CG). In this

approach, the product of matrix and an arbitrary vector such as (JT J+λ I)m is computed

and this can be performed at the cost of just two forward problems. Following Newman and

Alumbaugh [109], at the nth inversion iteration, the regularization parameter λ for GN is

determined as λ = rsum/2n−1 where, rsum is the largest row sum of real(JT J).

2.5.2 Non-linear inversion using conjugate gradient

In this approach, eq 2.5.2 is directly minimized using a gradient based optimization technique

like non-linear conjugate gradient (NLCG) [71, 111, 135]. Here, the gradient of eq 2.5.2 with
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respect to the variation in model parameter, m, is computed as,

∂Φ

∂m

∣∣∣∣
mn

=−2JT r+2λmn, (2.5.6)

and it is used to a compute new ‘conjugate’ search direction. The ‘line search’ is used to

minimize the penalty functional along this direction and it requires solving forward problem

few times and the gradient is recomputed. Basic computational steps for NLCG include

solving forward problem for model parameter, mn, and multiplication of JT by the residual,

r. However, for the regularization parameter approach described above, this scheme does not

work because varying the regularization parameter would compromise the orthogonality of

search directions [38]. Following Kelbert et al. [70] NLCG iterations are performed for fixed

value of λ and when misfit stalls i.e. difference between misfits of two previous iterations

is less than a predefined threshold, λ is reduced by a predetermined factor (10 in present

study).

The schemes for minimizing eq 2.5.2, as discussed above, are expressed in terms of

data and model parameter vectors dobs and m, forward mapping F(m), Jacobian J (or

JT ), data and model covariance matrices Cd and Cm. The modular implementation of any

inversion algorithm can be readily carried out using these components. In the next section

we briefly discuss and provide formulation of Jacobian J in terms of the forward solver,

model parameterization and the numerical simulation of the necessary observation operator

as implemented in a MATLAB based code, named as AP3DMT in this thesis.

2.5.3 Data Sensitivities

The computation of predicted data d f (forward mapping Ff (m)), for a single frequency f ,

involves two steps; (i) solving the vector Helmholtz equation for electric field E and, (ii)

computing the predicted data like impedance tensor at observation sites using these fields.

After using FD approximation, the PDE (eq 2.3.1) is transformed into the matrix equation

eq 2.4.1. The predicted data set is obtained at the observation points via,

d j
f = F j

f (m) = ψ j(e(m),m), j = 1, . . . ,nobs. (2.5.7)

where, ψ j is generally a non-linear function of e (and possibly m). Using chain rule, the

expression for the Jacobian matrix of the forward mapping Ff (m), is given as,
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Jik
f = ∂kF i

f (m) = ∑
j

∂ jψ
i(e) ∂ke j(m)+∂kψ

i(m), (2.5.8)

where, ∂k signifies partial differentiation with respect to the kth argument of a function

[reading ψ(m) as ψ(m1,m2, ...,mM)]. Let G f , L f and Q f , the partial derivative matrices, for

the frequency f , be defined as,

Li j
f = ∂ jψ

i(e)
∣∣
en,mn

G jk
f = ∂ke j(m)

∣∣
mn

, Qik
f = ∂kψ

i(m)
∣∣
en,mn

. (2.5.9)

here, en is the solution of eq 2.4.1 for model parameter mn. Hence, the Jacobian at mn can

be written in matrix notation as,

J f = L f G f +Q f . (2.5.10)

Now, differentiating eq 2.4.1 with respect to model parameter we obtain,

Am, f

[
∂e
∂m

∣∣∣∣
m=mn

]
=− ∂

∂m
(Am, f en)

∣∣∣∣
mn

, (2.5.11)

or,

Am, f G f = P f . (2.5.12)

Here en is considered independent from the parameter vector m. Combining eq 2.5.10 and

eq 2.5.12 and noting the fact that for 3D MT data Q f = 0, we get Jacobian in a matrix form

as,

J f = L f A−1
m, f P f , (2.5.13)

where, (i) the solver sensitivity P f , defines the product of sensitivity of the coefficient

matrix (with respect to the model parameter) and electric field; (ii) the forward solver, A−1
m, f

(maps P f to ∂e
∂m ); (iii) sensitivity functional, L f (maps perturbation in the EM solution to

perturbation in the predicted data i.e. ∂e
∂m to

∂dpred
f

∂m ).

To evaluate the impedance tensor and the VTFs, the EM field solutions for two source

polarizations are required (e = (ea,eb)). Thus, the rows of Jacobian are formed from the

components of these two source polarizations.

The columns of solver sensitivity Pa
f , for single frequency index, f , and for the a

polarization, are defined as αA′mi, f ea for (i = 1, ... , M). Here, A′mi, f is the Ne×Ne diagonal

matrix obtained after the differentiation of the coefficient matrix with respect to model
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parameter mi with each element scaled by (−iωµ)−1, α being the scalar −iωµ , ea is the

electric field for a polarization. Performing such operation for all the model parameters

results in a Ne×M matrix. However, columns of Pa
f can also be written as αĒA′mi, f where,

Ē is the Ne×Ne diagonal matrix and A′mi, f is now a column vector of length Ne. Hence, Pa
f

can be written as αĒA′m, f with A′m, f being a Ne×M matrix. Thus P f can be written for both

the polarizations as,

P f = α


Ēa 0

0 Ēb




P̄

P̄


=


Pa

f

Pb
f


 . (2.5.14)

The components Ēa and Ēb are diagonal matrices with electric fields corresponding to the

two source polarizations, a and b, as their elements and P̄ represents A′m, f . The elements of

real and frequency independent solver sensitivity P̄ depend on the numerical grid and model

parameter and these are inexpensive to compute.

The matrix L f is defined as,

L f =
[
La

f Lb
f

]
. (2.5.15)

A row of matrix L f has two blocks, each of length Ne, which multiply to the perturbations

in electric field for the two polarizations and sums together to yield the total perturbation in

the data. The detailed expression of L f for impedance tensor and VTFs and other derived

responses are given in Appendix B. Thus, J f can be expressed in the matrix form as,

J f =
[
La

f Lb
f

]

A−1

m, f 0

0 A−1
m, f




Pa

f

Pa
f


= La

f A−1
m, f Pa

f +Lb
f A−1

m, f Pb
f . (2.5.16)

Generally, the data set is obtained for a range of frequencies. Thus, both the vectors,

observed and predicted, can be decomposed into (f = 1, . . . ,Nf ) independent blocks,

corresponding to each frequency as,

d =




d1
...

dN f


=




F1(m)
...

FN f (m)


 ; dobs =




dobs
1
...

dobs
N f


 . (2.5.17)
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Similarly, the full Jacobain J can be decomposed using its components as,

J =




L1 0 0

0 . . . 0

0 0 LN f







A−1
m,1 0 0

0 . . . 0

0 0 A−1
m,Nf







P1
...

PN f


=




L1A−1
m,1P1
...

LNf A
−1
m,Nf

PNf


 , (2.5.18)

and its transpose as,

JT =
[
PT

1 A−1
m,1LT

1 . . . PT
Nf

A−1
m,Nf

LT
Nf

]
, (2.5.19)

here, AT
m, f = Am, f (symmetric matrix).

Further, the model parameter m is real but all the computations are efficiently performed

using complex arithmetic. Data may be real (e.g., phase) or complex (e.g., impedance tensor,

VTFs). For the penalty functional eq 2.5.2, we have assumed that the data set is real, that is,

both real and imaginary parts of a complex observation are treated as independent elements

of the data set d, and the operator J has been recast as real mapping from model parameter

to data vector (refer Egbert and Kelbert [39]).

2.6 Summary

A 3D forward modeling algorithm for MT data is developed. The electric fields are simulated

on staggered grid using finite difference scheme. For efficiency, in terms of memory and

computation time, the matrix equation is solved using iterative solver with incomplete LU

decomposition of the diagonal sub-block matrix as preconditioner. The convergence of

iterative solver is further improved by using the static divergence correction.

The basic theory of inversion is discussed. The detailed expressions for data sensitivities

for multi-frequency, multi-component data are presented. Further, representation of Jacobian

matrix in block form using its three components for easy implementation is discussed.
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Chapter 3

OVERVIEW OF 3D MT CODE : AP3DMT

3.1 Preamble

Several 3D electromagnetic data inversion algorithms were developed and implemented

in various computer codes during the first decade (notably, [5, 55, 110, 111, 157, 206],

etc.). Most of these codes were focused on inversion with a particular computational

approach. Recently, Egbert and Kelbert [39] and Kelbert et al. [71] presented a Fortran

code, ModEM, with its emphasis on modular implementation of the basic components of

inversion - forward modeling, model parametrization and regularization, data functionals,

sensitivity computation and inversion algorithms which are reusable and readily extensible.

This and most of the previous codes are written in FORTRAN programming language.

Many of these algorithms permit interchangeability and re-usability of various sub-programs

thereby providing a base code for further development of new inversion schemes. However,

it is difficult for a new researcher to make desired changes for experimentation or further

development. MATLAB provides a solution to this problem. It has a powerful computation

environment with extensive numerical libraries; data visualization capabilities, and easier

high-level programming language grammar, resulting from simple vector and matrix

multiplication based on arrays that need no memory dimensioning. Also, it provides a

mixed language environment, which is useful for bottleneck computations that do not run

fast enough in MATLAB.

In 2014 when we initiated present thesis work 1 only 2D MT codes [81] were available

in MATLAB. Keeping the advantages of MATLAB in mind we have developed a versatile

1Before working on 3D, the author has developed 2D block inversion algorithm [150] for MT data in
MATLAB as a part of master’s dissertation (July, 2013 to July, 2014).
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3D code which can be used for inversion of various combinations of MT data jointly

or individually. The code is named as AP3DMT in the thesis and is published [151].

AP3DMT provides a basic framework for 3D modeling and inversion of MT data which

is flexible for further development and experimentation with different schemes of inversion,

parametrization and regularization. This code will provide a basic framework to researchers

who are conversant with MATLAB and willing to use or develop its capabilities for future

applications.

In the present chapter, the main focus is on program structure with some basic

mathematical formulae required for implementation. The main body of the code is divided

into two parts. The first part includes grid generator and I/O sub-programs while the second

part deals with modeling and inversion. An overview of the program including grid generator

for common models with cuboids and/or polyhedron shaped target bodies and forward

and inverse modeling is discussed. The main feature of grid generator is its robustness

in handling complex geological features needed to simulate responses for complex 3D

structures. Such an efficient grid generator is useful when performing block inversion [150].

Later detailed description and implementation of forward modeling, inversion and sensitivity

computations, along with a coarse grained parallelization over frequency is discussed.

AP3DMT code can be easily modified to accommodate modifications in the forward problem

(e.g., different forward solver, different types of responses, model parameters, etc.) without

any modifications in other sub-programs like, inversion sub-program. Finally, I will

demonstrate the code versatility for grid generation.

3.2 Code Structure

The AP3DMT program is developed over last three and half year. The first version of this

code was tested in January 2016. Since then, new features have been added (to be discussed

in the chapter 5 and 6). In the current stage it has 2 scripts 2 and 114 functions 3. Out of

these 114 functions, 8 were taken/adapted from other sources. Apart from these scripts and

functions, additional scripts are also written for conversion of model and data to different

formats (e.g., edi files to our format) and for plotting of model and data. Structurally, the

AP3DMT program is divided into two independent parts as shown in Fig. 3.1. The first part

2equivalent to program in FORTRAN
3equivalent to subroutines in FORTRAN
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consists of 1 script and 28 functions and creates control file and other necessary files (e.g.,

model file etc.). This part also includes a graphic user interface (GUI) and grid generator.

The second part with 1 script and 86 functions, uses previously generated files and performs

the modeling and/or inversion computations. Details of these two independent parts follows.
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Figure 3.1: Schematic representation of AP3DMT showing two independent parts, file
making and modeling/inversion part.

3.3 Preparation of Files

This code generates four files to be subsequently used in modeling/inversion code. Fig. 3.2

outlines the various steps used for file preparation and grid generation. The program starts

by running the main script, ProgramRun which invokes the GUI (Fig. 3.3). In the GUI user

has to fill the necessary details like, dimension, type of grid (manual or generated), data

units, field variation, frequencies, solver details, inversion parameters, etc. The user must

provide an input model file (*.xls file) which contains observation sites co-ordinates, manual

grids (if any) and model description (synthetic and/or initial guess) on different sheets. In

this file, the model is described in terms of layers, target bodies and modeling domain. The

cuboid shaped target bodies are defined using seven parameters (six for location and one for

resistivity) whereas, the polyhedron shaped bodies are defined using three times the total

number of vertices for location description and one parameter for resistivity. The program

uses information from GUI and the *.xls file and generates following four files,

(i) parameter file,

(ii) data file (data corresponding to all data types and for all stations and periods),

(iii) model file (synthetic and/or apriori model), and

(iv) covariance file (optional).
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The parameter file contains the information about forward solver (e.g., tolerance, number of

iterations, number of divergence correction), inversion parameter (e.g., inversion iterations,

misfit tolerance, inversion domain) etc. The data file has data corresponding to all data types

and for all stations and periods. Information about field variations, units of data are written in

the header. In the model (synthetic and/or initial guess) files, grid information and resistivity

of each cell is written either in linear or log scale. The model covariance file allows the

user to turn off the smoothening across the domain boundaries, and also allows the model

parameters within a domain to be frozen (e.g., for water bodies resistivity, air resistivity in

case of topography, etc.).

In this code, the main component is a grid generation program which efficiently handles

arbitrarily shaped target bodies along with topography (or bathymetry). The detailed

description of grid generation for some selected target bodies (varying shapes) is given in

the next section.
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Figure 3.2: Schematic representation of file making code with grid generation.

32



Figure 3.3: Figure showing Graphic User Interface (GUI) for providing user input.

3.4 Grid Generation Code

The grid generation code is used for model discretization. The code efficiently handles both

cuboid and arbitrarily shaped target bodies (represented by polyhedrons). Table 3.1 gives

the description of the major functions used in this code. The discretization for cuboid and

arbitrarily shaped target bodies is discussed separately.
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Table 3.1: Main functions used in AP3DMT for preparation of files and grid generation. (∗

downloaded from MATLAB file exchange)

Functions Description
DialogBox∗ Calls GUI and reads filled information [72]
inputsdlg∗ Enhanced input dialog box supporting multiple data types [72]
NormalBodies3D Grid making for model with cuboids shaped target bodies
ArbitraryBodies3D Grid making for model with polyhedron shaped target bodies
ZGrids Generate grids in z- direction
YXGrids Generate grids in x- and y- direction
gridfit∗ Models a surface on a 2D grid from scattered or semi-scattered z(x,y) [30]
inhull∗ Tests if a set of points are inside a convex hull [31]
ResistivityArray Construct 3D resistivity array
WriteModel Write Model in a .dat file
WriteData Write Data in a .dat file

3.4.1 Cuboid Bodies

For cuboid shaped target bodies, the grids are generated on the basis of skin depths across

an interface. First, the domain of modeling is divided into regions on the basis of target

bodies and a resistivity matrix is constructed in ResistivityArray. For example, let us consider

two blocks of resistivities ρa and ρb (1 and 100 Ω-m respectively with each of dimensions

40×20×10 km) placed adjacent to each other and in a half space of resistivity ρh (10 Ω-m)

( Fig. 3.4a). At an interface (say vertical interface number ‘2’, Fig. 3.4b), the minimum

skin depth, δ , among the two different regions, is computed (columns between interface 1-2

and interface 2-3) and then two grid lines are generated on either side of the interface with

spacing equal to δ/4 and then δ/3 and so on (task performed in YXGrids). This approach

ensures fine grids near the conductivity contrast to obtain accurate results in these areas.

The coarseness of the grid, increases as one moves away from the interface (Fig. 3.5a). The

coarseness of the grid can be easily increased by preserving the overall pattern but changing

period used for skin depth computation. Once the grids are generated, final resistivity matrix

is created (in ResistivityArray) where each element represents a discretized cell of constant

resistivity. Alternatively, manual grids can also be provided in the input file but one must

ensure that a grid line passes through each interface for true representation of the desired

anomaly. This feature makes the code more user friendly as the user can assign desired grids

as per the requirement.
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3.4.2 Polyhedron Bodies

To represent the complex geological features and structures, polyhedrons are best suited.

For example, consider a body of resistivity ρa (5 Ω-m with dimensions 80× 28× 16 km

with top at 4 km depth), with its major axis making an angle of 45◦ with respect to vertical

line, embedded in half space a of resistivity ρh (100 Ω-m) ( Fig. 3.4c). This polyhedron

body (oblique block) is initially approximated by a cuboid abcd (length and breadth along

cartesian coordinate system) which encapsulates the whole target body (Fig. 3.4c) and a

resistivity matrix is created. Uniform grids of specified size (2 km) are generated for this

region as a stair case model which is better suited for such bodies. In other regions of

the model, the grids are generated on the basis of skin depth criteria, as discussed above

( Fig. 3.5b). After grids generation, construction of the resistivity matrix begins. All the

cell centers of the cuboid (encapsulating all the polyhedron bodies) are checked using the

MATLAB function, inhull, which tests whether a point is inside a convex hull or not. If the

cell center lies inside a convex hull then the cell is assigned of the target body resistivity else

that of the background.

3.4.3 Topography

To incorporate topography (and/or bathymetry), we first model, in the form of z(x,y), a

surface from the scattered or semi-scattered data using the MATLAB function, gridfit.

Although gridfit is not an interpolant, it builds a surface over a complete lattice (models grids

in xy plane), extrapolating smoothly into the corners. Once the surface has been modeled, a

uniform grid in the vertical direction is generated till the maximum elevation (depression) is

reached. Later, based on these surface values the resistivity matrix is modified.

To demonstrate the robustness of grid generator, we demonstrate the construction of

resistivity matrix, a spiral like conductor of 10 Ω-m embedded in a half-space of resistivity

100 Ω-m, is considered. The spiral is of constant diameter, 10 km, with its center at origin

(coordinate system). The spiral is always confined between −30 km to +30 km in both x-

and y- directions (Fig. 3.6). Uniform grids with 1.5 km spacing in x− and y− directions

were made. Fig. 3.7 represents the discretized model with this spiral like conductor on xy

planes at different depths planes.
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Figure 3.6: Mesh model of a spiral conductor (10 Ω-m) embedded in a half space (100 Ω-m).
The spiral is always confined between −30 km to +30 km in both x- and y- directions.

Figure 3.7: Model after grid discretization at various depth, (Clockwise from top left) at z =
7 km, 15 km, 20 km and 28 km.
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3.5 Forward and Inverse Modeling

In this section, we describe the implementation of forward and inverse modeling code in

detail. For efficient memory usage, a sparse storage is used where ever necessary like,

storage of coefficient matrix, interpolation matrices, etc. MATLAB’s inbuilt functions for

dot-product, norm, Hadamard product, etc. are used for basic manipulation of various arrays.

Each time a function is called, the required space is allocated for various temporary working

arrays. Once the job is completed, all the temporary arrays are cleared and just the requisite

solution is returned.

Before proceeding further, we give a brief discussion on the MT data. For the 3D

MT problem, the complete data set (dobs) is multi-frequency, multi-observation site and

multi-component. For example, there are set of periods, each requiring separate solutions

for the two independent source polarizations. For each frequency, there will be number of

observation sites and for each site there will be multi-component data, e.g., there are four

complex components of impedance tensor and two in VTFs.

The data set is organized according to three attributes which are referred to as transmitter,

datatype and receiver (observation sites). These three attributes are read from the data file

and are stored as fields of a structured array defined as CData in the code. This structure

array also stores other parameters like solver information (from parameter file), etc. The

attribute transmitter consists of a list of frequencies to setup and solve the forward problem.

Fields in attribute data type define the data functionals such as impedance tensor, VTFs,

phase tensor, etc. and are accessed by name. The attribute receiver provides information

about all the unique observation sites (Cartesian co-ordinate system). Thus, the full data

vector (dobs) is an array corresponding to different frequencies. Each, in turn, stores all the

components corresponding to all the data types for all the active receivers. A binary array is

used to keep track of certain missing components, if any, in the data set.

The data vector structure allows for mixing of different data types and simplifies addition

of new data types by adding new fields corresponding to the new data type. Addition of new

data type simultaneously allows computing predicted data and/or sensitivity calculations for

all the observation sites by solving the forward problem only once.
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3.5.1 Forward Modeling

An accurate forward modeling code forms the core of inversion code. Apart from computing

model responses it is heavily used for Jacobian based computations. Fig. 3.8 gives the

flowchart of various steps involved in evaluation of responses at observation sites for a given

set of frequencies. In these steps one deals with basic numerical grid, model parameters,

boundary conditions, forward solver and interpolation functional. Table 3.2 list all the

functions and their description used in the code. In AP3DMT, small functions deals with

each of these components and they have no direct interaction with the inversion and Jacobian

functions. Hence, new forward modeling scheme like Direct Current Resistivity (DCR),

CSEM, etc. can be implemented with appropriate modifications. Such a modification was

made while extending divergence correction to implement inversion of 3D DCR data.
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Figure 3.8: Schematic representation of AP3DMT for forward modeling. Frequency
Parallelization is implemented for computing forward responses.

For 3D MT, the forward modeling is performed by the function, ForwardResp. This

function computes the predicted data, d, and returns an array of EM solutions, e, (optional)

corresponding to all the frequencies. These solutions can be saved and used for subsequent

sensitivity calculations (e.g., gradient of the penalty functional). The major forward

modeling function are,

(i) AverageSigma - conductivity mapping to edges,

(ii) BoundCond - setting up boundary conditions,

(iii) DiscreteSolver - computing EM field at grid nodes, and

(iv) OutInterp - predicted data at observation sites.

The detailed description of these functions follows.
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AverageSigma maps the model parameters to the edges of numerical grid. Currently,

the model parameters, σ , are defined as log conductivity. For each grid node the average

conductivity, σ̄ , is defined as weighted average of exp(σ) of four surrounding cells to each

edge. If any other mapping scheme is used, like harmonic mean instead of arithmetic mean,

then only changes in this function are required with other portions remaining unchanged.

Once, model parameters are mapped to the edges, BoundCond is called where right

hand side vector, s, is formed and stored as a column vector depending on the application.

The array, s, is a matrix with two columns corresponding to the two source polarizations.

Either the total field or the scattered field solution can be computed (the details are given in

subsection 2.4.1 ). Arbitrary sources and the boundary data can be easily incorporated for

another technique like CSEM.

In DiscreteSolver the coefficient matrix, with boundary conditions enforced, is formed

and stored in a sparse format. The coefficient matrix is made symmetric simply by

multiplying each row by integration volume elements and the implementation of the

transposed solver is straightforward. The matrix equation solver, bicgstab, is called and

the field solutions are obtained. This function includes divergence correction subroutines

also.

The OutInterp uses the previously computed interpolation functional (discussed in the

next paragraph) and electric fields to evaluate the desired data at all observation sites. For

computation of sensitivity, additional components may be returned (e.g., all elements of

impedance tensor) for some data types like apparent resistivity and phase and phase tensor.

The whole process from BoundCond to OutInterp is looped over number of frequencies and

all the data and solutions are assembled together in ForwardResp. To accommodate new data

from new sources (for e.g., CSEM, DCR, etc.), the structure array may be used 4.

The data functionals F(m) can be expressed in terms of (i) electric field; (ii) magnetic

field (mapped from electric field); (iii) interpolation operator for electric and magnetic fields

and (iv) functionals of the measured responses, e.g., impedance tensor and/or VTFs, phase

tensor, etc. To evaluate this data functional, appropriate interpolation functional on the basis

of observation sites are designed. The function interpcoeff is simple and it computes the

basic interpolation functionals (λex, λey, λbx, etc. in sparse storage) required to evaluate

Ex, Ey, Hx, Hy and Hz at the observation site and applies these to solutions for both

4d can be made as d.MT, d.DCR, etc
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polarizations. For computation of magnetic field from electric field, the transformation

h = Te (T is a transformation matrix) has been incorporated in the interpolation coefficients

so that this functional can be applied directly to the field vector. The transformation matrix,

T, is scaled by (−iωµ)−1 to keep it real and frequency independent. After computing

h fields, they are multiplied by (−iωµ)−1 to take care of the scaling factor. Once

the field components are computed, the impedance tensor and/or the VTFs or any other

transformations required for a particular data type (e.g., apparent resistivity or phase) can be

computed. Multiple data types are supported with appropriate selection. The interpolation

implemented in the current version is based on tri-linear interpolation coefficients. Since

these interpolation coefficients are stored in a sparse format and do not affect other modules,

other functions would remain unchanged (e.g., calculation of impedance). Further, addition

of new data types or their combinations will not demand any changes to interpolation aspect.

For a different numerical discretization like, finite element method with a non-structured

grid, changes in the construction of coefficient matrix and boundary conditions (if any)

are required. Since the system matrix is explicitly formed and stored, any change in its

structure will not affect the matrix solver which is not the case when the forward operator is

implemented using a matrix-free approach [39, 71].

Table 3.2: Main functions used in AP3DMT for forward modeling. (∗ MATLAB’s inbuilt
function)

Functions Description
FwdResponse Compute predicted data and field solutions (optional)
Intercoeff Compute interpolation coefficients i.e. transformation matrix
AverageSigma Average volume weighted conductivity on the internal nodes
BoundCond Set source and boundary conditions
DiscreteSolver Forward solver A−1 with inbuilt divergence correction
divcorrection Perform divergence correction, called by DiscreteSolver
bicgstab∗ BiCGSTAB: matrix equation solver, called by DiscreteSolver
pcg∗ Conjugate Gradient: matrix equation solver, called by divcorrection
ilu∗ Perform Incomplete LU decomposition, called by DiscreteSolver
OutInterp Compute predicted response
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3.5.2 Inversion

In the inversion schemes, as discussed in section 2.5, the basic working vectors are: data,

dobs; forward mapping, F(m); model parameter vector, m; MT field solution, e; Jacobian, J

and the model and data covariance matrices, Cm and Cd respectively. During the inversion,

various operations are performed like, multiplication of data by C−1/2
d , multiplication of

model parameters by Cm, C1/2
m or C−1/2

m , multiplication of J with arbitrary model space

vector and JT with arbitrary data space vector. In AP3DMT, these are standalone operators

with no direct interaction with the inversion function, hence, these can easily be used in any

other new inversion algorithm. Symmetric covariance operators, both data and model, are

standalone with input and output being the data vector or model parameter vector. For data

covariances, full matrix can be provided. However, for our inversion tests, we have used

diagonal error covariances into error functional for noisy measurements; these are generally

based on the standard deviations of the measurements. The model covariances are much

more complicated, like C−1
m can be represented by DT D, where D is a finite difference

approximation of the gradient or the Laplacian (∇2) operator, as in Occam inversion [25], or

as defined by Kelbert et al. [70]. Since this function is completely independent of other

functions, various covariance operators can be easily be designed and implemented and

tested for 3D MT problems. Thus the code is flexible and adoptable for the new development.

Among all the operations involving forward mapping, Jacobian, data and model

covariances, Jacobian is the most time consuming. Explicit formation of the Jacobian is

avoided by computing its product with a vector. Since, the Jacobian is represented as product

of three components as J = LA−1P (as explained in subsection 2.5.3), the multiplication

is performed using these three components. Fig. 3.9 gives the flowchart of various steps

involved and Table 3.3 gives the list of main functions used in inversion. The interaction

among various components of Jacobian is efficiently and smoothly managed in sensitivity

function JacobJob. Details of how these components are formed for a single frequency, f ,

are given below.

3.5.2.1 Sensitivity functional L

The function, LpJobs, implements the sensitivity functionals for use in sensitivity

computations. This function performs the linearization of the data functional with respect

to variations in the EM solution e. Here, the L f matrix is not explicitly formed, rather the
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Figure 3.9: Schematic representation of AP3DMT for inverse modeling. Frequency
Parallelization is implemented for multiplication of J and JT with model and data space
vectors respectively.

product of L f and vector ve f or of LT
f and vector vd f is computed using the components of

L f . If the measured component is EM field itself, then L f simply computes the interpolated

values of the fields (using Ex, Ey, etc.) at the observation sites and stores them in a vector.

For datatype like impedance tensor or VTFs the components of L f include the interpolation

and transformation matrices (λex, λey, λbx etc.), the magnetic field and the impedance values

at the observation sites (Appendix B for detailed expression of L f ). For other datatype

viz. apparent resistivity and phase or phase tensor, first the perturbations in impedance are

computed and therefrom the perturbations in the desired datatype are computed. LpJobs

performs the product of L f with ve f to form vd f = L f ve f . LTpJobs multiplies this vector by

the appropriate data components to form LT
f vd f . Here, instead of implementing LT

f vd f , we

have implemented (vd
T
f L f )

T . This does away with the need to implement LT
f .

For the addition of new data type or mixing different data types, appropriate changes

are required in OutInterp, LpJobs and LTpJobs for computing the predicted data and the

sensitivity calculations.
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3.5.2.2 Forward Solver A−1
m

The function DiscreteSolver is common to the forward modeling, and sensitivity

computations. This function includes the standard BiCGSTAB iterative solver (MATLAB

library) for solving eq 2.4.1 with the incomplete LU decomposition for pre-conditioning

and the pre-conditioned conjugate gradients for divergence correction. For each frequency,

the output vector, ve, consists of two sets of solutions corresponding to the two source

polarizations, requiring two solver calls with different right hand side vectors (boundary

conditions) for each frequency. The DiscreteSolver implements the general solver, allowing

for boundary conditions and solution for both the forward problem and its transpose.

Addition of new sources can be easily incorporated by appropriate boundary conditions and

additional solver calls for new solutions. Also, it is very easy to replace one solver with

another like replacing BiCGSTAB with QMR (Quasi-Minimal Residual). With MATLAB

inbuilt solvers and preconditioners (like incomplete Cholesky decomposition, Incomplete

LU decomposition, Modified Incomplete LU decomposition etc.), one can test various

numerical schemes easily.

3.5.2.3 Solver Sensitivity P

One of the main components of Jacobian is P f , which defines the product of the sensitivity

of the coefficient matrix Am, f to the model parameters (log conductivity) with the electric

field. eq 2.5.11 provides the derivative of the field with respect to the parameters. This

derivative can be interpreted as the field due to a collection of sources described as the

product of derivatives of Am, f and the field vector e. As discussed in previous chapter,

the solver sensitivity P f consists of two components. The first part provides the scaled

derivative of the coefficient matrix with respect to the model parameters (see eq 2.5.11). For

a FD approximation, only the diagonal elements of the matrix Am, f depend on conductivity

elements in the form of iωµσ̄ . Here, σ̄ is the volume average of the conductivity of

nearby cells. Hence, each parameter contributes to twelve internal nodes. This results in

a maximum of twelve non-zero elements per parameter. The derivatives of Am, f are made

real and frequency independent by simply scaling these with the factor (iωµ)−1. Once these

derivatives are obtained, these are multiplied with the model parameter vector to perform the

operation P̄vm. This product can be viewed as
M
∑

i=1
miA′mi, f where A′mi, f is a column vector of

length Ne with only 12 non-zero elements with their indices defined by the mapping. These
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non-zero elements are −Viexp(mi) where, Vi is the integration volume for the ith cell having

parameter mi defined as log conductivity. Afterwards, this vector is multiplied element by

element with the electric field solution, e, corresponding to frequency, f , and finally by the

factor iωµ to obtain the final solution P f vm in PpJob. For the transpose case, these steps

are reversed in PTpJob. In this function, first the input vector ve f is multiplied element

by element with the electric field en resulting in ve f = (ve
a
f ,ve

b
f ) (solutions for two source

polarizations). Finally, the operation iωµ[P̄T (ve
a
f +ve

b
f )] is performed resulting in a model

parameter vector vm f .

Once the necessary product of Jacobian (or its transpose) with vector is computed the

updated model is computed (using the eq 2.5.4 or 2.5.5 or 2.5.6) and next inversion iterations

begin. This process continues till one of the condition is satisfied,

(i) desired data misfit is reached,

(ii) local minima in case of NLCG,

(iii) data misfit starts to increase (in case of GN),

(iv) data misfit change is less than the threshold (in case of GN),

(v) maximum inversion iteration reached.

Table 3.3: Main functions used in AP3DMT for inverse modeling.

Functions Description
NlcgSolver non-linear conjugate gradient after Kelbert et al. [71]
lineSearch perform line search
FullPenality computes full penality functional
GradientCal computes gradient of penality functional
CG Data Space data space conjugate gradient
CG Model Space model space conjugate gradient
JacobJob multiply Jacobian or its transpose by vector
LpJob multiply Data Sensitivity, L by vector
LTpJob multiply L transpose by vector
PpJob multiply Solver Sensitivity P, by vector
PTpJob multiply P transpose by vector
MatrixOccam Occam matric (first or second order), Model Regularisation
CmFormulate Model regularisation after Kelbert et al. [70]
FormCdInv Data regularisation matrix (diagonal matrix)
Residual Compute misfit between observed and predicted data
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The task of multiplication of Jacobian (or its transpose) with a vector or computation of

responses for a single frequency is independent of other frequencies hence, this task can be

performed in parallel. We have implemented a coarse grain parallelization over frequency

similar to that of Siripunvaraporn and Egbert [157]. This scheme is discuss in the following

section.

3.6 Parallelization over Frequency

AP3DMT implements a coarse grained parallelization over forward problem.

Implementation of parallelization over number of frequencies is quite simple. Fig. 3.10

explains the basic scheme of implementation. MATLAB’s inbuilt function parfor is used

which executes loop iterations in parallel. The command matlabpool (parpool in 2015a

version) starts a pool, with the pool size specified by parallel preferences in the default

setting or one can manually start a pool with desired number of workers. After initialization,

one processor acts as the master, and the others act as workers. The master performs the

main job of the code until a step requiring parallel computations (like forward problem

or multiplication of Jacobian with a vector) is reached i.e. parfor loop over number of

frequencies. At this point the master sends a message indicating nature of the task and the

necessary input data to all the active workers. The worker performs the task for a single

frequency by calling appropriate functions like ForwardResp or multiplication of Jacobian

with a vector. When the task has been performed, it returns the solution to master. These

functions are same as called in the sequential version 5. We describe the multiplication of

Jacobian (or its transpose) with a vector as this is the major task while performing inversion.

For the multiplication of J with the model parameter vector vm, master sends a copy

of vm and other necessary information to each worker. Each worker computes vd f =

L f A−1
m, f P f vm. The product vs f = P f vm results in a matrix with two columns for the

two source polarizations. Hence, for ve f = A−1
m, f vs f , the matrix solver is called twice for

different right hand side vectors. Finally, the product vd f = L f ve f is obtained using the

linear combination of product of each block of L f matrix and column of ve f (eq 2.5.16).

If the operation JT
f vd f is required (like JT J in GN-CG) then the same worker performs the

operation vm f = PT
f A−1

m, f LT
f vd f . If only the gradient is required, like in NLCG, then the

5Note, that in absence of any pool parfor is equivalent to for with the difference that last frequency will be
solved first
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master sends the residual vector r f , corresponding to each frequency, to each worker and

the workers compute the gradient. Once the gradient is computed for each frequency, the

linear sum is computed and final JT vd is formed. JacobJob implements all these three tasks

viz. Jvm, JT vd and JT Jvm computations depending on the call. JJT vd is computed using

the combination of JT vd and Jvm. Hence, for JJT vd two parallel loops are required, one

for computing JT vd and another for Jvm. This is in contrast to JT J where the product is

computed in a single parallel loop. Fig. 3.11 gives the details for these computations.

The communication between master and worker can be minimized by transferring some

fixed components or data which are used very frequently to all the active workers using

WorkerObjWrapper. It manage persistent state on all active matlabpool workers thus avoids

transfer of data from master to worker during each parallel call.

Master:
...

Parfor over number of frequencies
1. Send : Copy of model parameters
2. Send : Frequency index number
3. Receive : Solution from workers after completion of the task

end
...

Worker:
1. Receive copy of model parameters
2. Receive the frequency
2. Used previously stored information (optional)
3. Perform necessary task like, F (m), JT r, etc.
4. Send solution to master.

Serial/Parallel version Inversion Algorithm
...

If parallel
Compute penality functional or gradient over frequency

else
parfor loop just acts as for loop over frequency

end
...

Parallel

Figure 3.10: Pseudo-code for the parallelization over frequencies of a task like forward
response.
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Master (Computation of JTvd):
Send : data space vector, vdf , and frequency index, f

Parfor over number of frequencies (N f )
Receive : data space vector, vdf , and frequency index, f
Compute : vmf = JT

f vdf

Send : send moddel space vector, vmf , to master
end

Receive : all the solution vectors vmf

Compute : JTvd = vm =
Nf∑
f=1

vmf

Master (Computation of JTJvm):
Send : model space vector, vm, and frequency index, f

Parfor over number of frequencies (Nf )
Receive : model space vector, vm, and frequency index, f
Compute : vdf = Jfvm

Compute : vdf = JT
f vdf

Send : send data space vector, vdf , to master
end

Receive : all the solution vectors vdf

Compute : JTJvm = vm =
Nf∑
f=1

vdf

Master (Computation of JJTvd):
Send : data space vector, vdf , and frequency index, f

Parfor over number of frequencies (Nf )
Receive : data space vector, vdf , and frequency index, f
Compute : vmf = JT

f vdf

Send : send model space vector, vmf , to master
end

Receive : all the solution vectors vmf

Compute : JTvd = vm =
Nf∑
f=1

vmf

Send : model space vector, vm, and frequency index, f
Parfor over number of frequencies (Nf )

Receive : model space vector, vm, and frequency index, f
Compute : vdf = Jfvm

Send : send data space vector, vdf , to master
end

Receive : all the solution vectors vdf

Parallel for computations of JTvd; J
TJvm and JJTvd

Figure 3.11: Pseudo-code showing the multiplication of Jacobian (and/or its transpose) with
a vector in parallelization over frequencies as implemented in GN-CG (model space and data
space) and NLCG.
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3.7 Summary

We have presented the development of a MATLAB based code, AP3DMT, for modeling

and inversion of 3D MT data. The capability of this program for performing inversion is

demonstrated through two synthetic test models. The key feature is its compactness and

simplicity and its potential as a tool for rapid development and testing of new applications.

Basic functions are simple and readily available. Thus, it would be easy to replace one

scheme with another one like replacing NLCG with quasi-Newton [e.g. 111, 114] or one

iterative solver with another one. AP3DMT provides a natural platform for development and

comparison of not only inversion search algorithms but also various modeling schemes or its

components like iterative solvers, preconditioners and modified finite differences schemes.

Use of MATLAB platform and its in-built functions such as BiCGSTAB, incomplete

LU, etc. may be considered both as its strength and weakness. Use of these global functions

make the code more versatile, compact and user friendly which will open opportunities for

development and experimentation. It may be mentioned that the MATLAB functions have

multiple checks and are therefore slower than the corresponding routines of a Fortran code.

However, in a MATLAB code the implementation, parallelization etc. are much easier and

one can use a mixed language environment for bottleneck computations.
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Chapter 4

NUMERICAL EXPERIMENTS WITH CODE :

AP3DMT

4.1 Preamble

The performance of the code must be verified for its accuracy, efficiency and robustness

and versatility over a variety of standard models. A rigorous testing should include

different synthetic models from literature as well as real field data case study to demonstrate

robustness of the algorithm for real field scenario. For this purpose, we present here two

synthetic models from literature [39, 102] and a real field data inversion. The field data

set was acquired over the past decade using Broadband MT survey by our group along

the Roorkee-Gangotri profile. The 2D inversion of this dataset has been performed earlier

[62, 103]. This dataset was inverted using ModEM [39] by Devi et al. [32] and we have used

AP3DMT to invert the same dataset and compared the results with ModEM inverted model.

4.2 Validation of Forward Modeling Code

The forward modeling has been tested and validated over a variety of 3D standard models

available in literature. For demonstration, we have selected one synthetic test model [210].

The test model is the 3d2 model from Comparison of Modeling in Electromagnetic Induction

(COMMEMI) project [210]. The model consists of three layers with resistivities of 10, 100,

and 0.1 Ω-m. The upper two layers are 10 and 20 km thick, respectively. Two adjacent

blocks of dimension X : 40×Y : 20×Z : 10 km are embedded in the top layer (Fig. 4.1).

The resistivity contrast ratio in this model is up to 1000 which is the main difficulty for
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the calculations is the presence of a strong resistivity contrast at the surface. The irregular

grids were designed and used for this model. The smaller cells were taken to be near the

adjacent planes and the cell sizes extended to large distances from the blocks boundaries.

The model was composed of 54×48×34 cells. The observation sites were taken along the

central profile x = 0 (north) for y (east) between±60 km. These sites coincides with the grid

nodes. Fig. 4.2 shows the comparison of numerical results from ModEM [39] and our code

AP3DMT in terms of apparent resistivities and phases and Fig. 4.3 shows relative error and

Fig. 4.4 shows absolute error among the solutions. There is an excellent overall agreement

between responses computed using ModEM and AP3DMT. The maximum absolute relative

error in amplitude, Zxy, is less than 4% while maximum absolute difference are below 1 Ω-m

while the corresponding values for amplitude, Zyx, are 2.5 % and 1 Ω-m respectively. The

absolute relative error in phase, Zxy, is below 2% and the absolute differences are under 1

degree. The absolute relative error and absolute differences in phase, Zyx, are below 1.5%

and below 0.75 degree. The misfit mainly occur at the resistivity contrast and over resistivity

body. Table 4.1 summaries the results.
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Figure 4.1: The 3d2 COMMEMI model [210]. (left) cross-section, and (right) plan view.
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Figure 4.2: The 3d2 COMMEMI model simulation at 100 sec. (Top clockwise) Panels are
apparent resistivities Zxy and Zyx, phases of impedances Zyx and Zxy. The comparison are
between results from ModEM and our code AP3DMT.

Figure 4.3: (Top clockwise) Absolute relative deviation between the numerical results of
ModEM and AP3DMT for apparent resistivities Zxy and Zyx, phases of impedances Zyx and
Zxy.
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Figure 4.4: (Top clockwise) Absolute deviation between the numerical results of ModEM
and AP3DMT for apparent resistivities Zxy and Zyx, phases of impedances Zyx and Zxy.

Table 4.1: Table showing information about absolute and relative absolute error in amplitude
and phase among the solution obtained using ModEM and AP3DMT.

Error amplitude phase amplitude phase
(Zxy) (Zxy) (Zyx) (Zyx)

Abs. Error (max) 0.88 1.02 3.40 3.40
Abs. Error (min) 0.00 0.01 0.00 0.00
Rel. Abs. Error, % (max) 3.69 2.23 2.47 2.47
Rel. Abs. Error, % (min) 0.02 0.01 1.01 1.01

4.3 Validation of Inverse Modeling Code

4.3.1 Comparison of three Different Inversion Algorithms

To demonstrate the working of the three developed algorithms, we consider a two block

model [101]. The model consists of 10 and 1000 Ω-m blocks in a homogeneous 100 Ω-m

half-space (left panel of Fig. 4.6 - 4.8). Each block has the dimension X : 13×Y : 7×Z : 2

km. The top of the blocks is located at the earth’s surface (z = 0). There are 81 sites

distributed on a regular 2D array with 3 by 3 km spacing in x− and y− directions respectively

(marked as black dots on the first panel). The model was discretized into 39 × 39 × 30 cells

(plus 7 air layers above the earth surface), with nominal resolution of 1 km horizontally. The
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thickness of first layer is 50 m and increases vertically with depth by a factor of 1.3. The data

set for inversion consists of full impedance tensor computed for 19 periods, logarithmically

spaced between 0.001 − 1000 s using ModEM. We have added 2% error to the computed

responses to simulate real data. An error floor of 2% of |ZxyZyx|1/2 is assigned to the

impedance tensor. For inversion, homogeneous 50 Ω-m half-space discretized into same

number of cells, is used as apriori and initial model. Constant smoothing of 0.3 was used in

x−, y− and z− directions for all the models.

Before performing GN inversion, we have tested the effect of number of iterations in CG.

All the inversions were run on HP Z620, Intel Xeon E2643 3.30 GHz, 32 GB with 8 cores

for parallelization and the starting normalized root-mean-square (nRMS) error was 15.34.

The starting regularisation parameter, λ was calculated on the basis of largest row sum of

real(JT J) during first iteration and decreased by a factor of 2 in subsequent iterations. A

total of four inversion runs were performed. In the first, second and third run 3, 6 and 9 CG

iterations were used respectively. For the fourth run varying CG iterations (increase with

inversion iteration) were used. Fig. 4.5 shows the convergence plot for these four runs. It

is observed that when the CG iterations were 3 and 6, the inversion stalls after 6 inversion

iterations with nRMS error 1.50 and 1.27 respectively. The nRMS error reaches to desired

level after 4 inversion iterations when 9 iterations were used for CG. It was observed that in

the first 2 or 3 inversion iterations less CG iterations can be used and later more number of CG

iterations. In the fourth run such approach was used. The nRMS error reaches desired level

after 6 iterations. In these fours runs, Jacobian calls 1 were 47, 83, 79 and 71 respectively.

Hence, less number of Jacobian calls were used in fourth run as compared to third run (one

with 9 CG iterations) with the condition that nRMS error reached desired level. Table 4.2

summaries the results. Hence, for the next runs of GN we follow the fourth approach.

1total calls for one inversion iteration are twice of CG iterations plus two calls for forming right hand side
vector plus one call second inversion iteration onwards (as we are using the result of previous iteration as initial
guess)
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Table 4.2: List of inversion results. Beside the run name, information about CG iterations,
number of inversion iterations, nRMS error (∗ target reached), Jacobian calls are given.

Inversion CG calls Iterations nRMS Error Jacobian Calls
Run 1 3 6 1.50 47
Run 2 6 6 1.27 83
Run 3 9 4 0.93∗ 79
Run 4 varying 6 0.99∗ 71

Figure 4.5: Convergence plot for GN-MS inversion algorithm for different number of
iteration in CG routine. CG-3: three iterations for CG; CG-6: iterations for CG; CG-9: nine
iterations for CG ; CG-V: varying iterations for CG such that they increase with inversion
iteration.

First, inversion was performed using NLCG. In 47 iteration nRMS error reduced from

15.34 to 0.99. The inverted model (plane view slices) is shown in the second panel of Fig. 4.6

- 4.8. For GN-MS the nRMS error reduced to 1 in 6 iterations resulting in inverted model

shown in the third panel of the same figures. Finally, using GN-DS the nRMS error reached

1.1 in 9 iterations. The model obtained is shown in fourth panel of the same figures. For all

the three runs, same model regularisation parameters were used. All the three inversion runs

gives similar results.

The result shows that in contrast to the conductive block, the top and the bottom of the

resistive block are not well resolved. Furthermore, the result also shows that the bottom
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of the conductive block smears to a depth of ∼3 km. While performing inversion using,

WS3DMTINV 2 [159], for the same model Meqbel [101] observed four conductive blobs in

the model at depths greater than 4 km located at the western and the eastern corners of the

conductive and the resistive blocks, respectively. However, no such spurious features appears

in our results. Table 4.3 gives the details of comparison of the three inversion runs.

Fig. 4.9 shows the convergence plot for all the three inversion. In general, a comparison

between inversion result reveals that the GN requires less iterations due to its quadratic

behaviour to converge to the desired error level. The quadratic behaviour, however, implies

longer total run time because of the time consuming mathematical operations used in this

algorithm. Further, GN-MS requires less iteration as compared to GN-DS. On the contrary,

the NLCG algorithm requires more iterations to reach the global minimum, however, less

total run time. Hence, for the subsequent inversion runs in this thesis we have used NLCG.

Table 4.3: List of inversion results. Beside the inversion algorithm, information about
number of iterations, nRMS error, target tolerance (TT) and run time is given. These three
inversions were run on HP Z620, Intel Xeon E2643 3.30 GHz, 32 GB with 8 cores for
parallelization.

Inversion NLCG GN-MS GN-DS
iterations 47 6 9
nRMS Error 0.99 1.00 1.1
TT (forward) 10−6 10−6 10−6

TT (sensitivity) 10−6 10−5 10−5

Time (hrs) 5:10 6:02 9:26

2inversion based on data-space variant of the Occam approach
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Figure 4.6: A 3D model (left panel) used to test the developed inversion schemes. The 3D
inversion results, as a plane view slices (for depth 0 to 0.87 km), for NLCG, GN-MS and
GN-DS are shown in second, third and fourth panels. The rectangles indicate the position
of the original conductive and resistive blocks to generate the synthetic data. Black dots
represents the observations sites.
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Figure 4.7: The 3D inversion results, as a plane view slices (for depth 0.87 to 6.39 km), for
NLCG, GN-MS and GN-DS are shown in second, third and fourth panels. The rectangles
indicate the position of the original conductive and resistive blocks to generate the synthetic
data.

59



Figure 4.8: The 3D inversion results, as a plane view slices (for depth 6.39 to 53.36 km),
for NLCG, GN-MS and GN-DS are shown in second, third and fourth panels. The rectangles
indicate the position of the original conductive and resistive blocks. The last row of images
shows the cross-section of the model at x = 0 profile.
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Figure 4.9: Convergence plot for all the three inversion algorithms. The GN requires less
iterations due to its quadratic behaviour to converge to the desired error level. However,
GN-MS requires less iterations as compared to GN-DS.

4.3.2 Synthetic Models

The AP3DMT code has been tested and validated over a variety of 3D standard models

available in literature. For demonstration, we have selected two synthetic test models. The

first test model is a ‘checkerboard’ conductivity distribution, Rubick Model [39] and the

second is Dublin Test Model 2 (DTM2) [51, 102]. These two data sets, generated for these

models were inverted using NLCG algorithm on HP Z620, Intel Xeon E2643, 32 GB RAM

with 8 cores for parallelization. Other inversion details for each model is discussed in the the

following.

Model 1

The model 1 consists of 10 and 1000 Ω-m blocks in a homogeneous 100 Ω-m half-space

(Fig. 4.10a). These blocks are placed in a checkerboard pattern (alternate resistive and

conductive). There are three layers of blocks termed as L1, L2 and L3 in the depth range

0−10, 18−50 and 58−106 km respectively. Each layer has nine blocks. For comparison

of inversion results, the synthetic data is taken from the test files provided along with the

ModEM code [39]. This data set includes full impedance (all four complex components),
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plus VTFs sampled at 225 sites distributed on a regular 2D array with 40 and 80 km spacing

in x− and y− directions respectively for 12 periods, logarithmically spaced between 10 −

10000 s. The data has 3% noise added to it and error floor set as 3% of |ZxyZyx|1/2 for

impedance tensor and 0.03 for VTFs. The data was computed by discretized the model into

67 × 67 × 60 cells (excluding cells in air), with nominal resolution of 20 km horizontally.

For inversion a homogeneous model of 100 Ω-m, discretized into same number of cells, is

used as apriori and initial model. In 58 NLCG iterations the nRMS error reduced from 12.38

to 1.06. The inverted model thus obtained is shown in Fig. 4.10b. All the conductive features

are resolved. To analyse and study the inversion result ratio between model parameters 3of

the inverted models as obtained by AP3DMT and ModEM is shown in Fig. 4.11. Table 4.4

shows the ratio of model parameters in terms of percentage in various ratio range. Further,

two set of 1D sections are drawn and compared with the true model. One set is along

z− direction (at three different (x, y) points) while another is along x− direction (at three

different (x, z) points) (Fig. 4.12 and 4.13). Also a histogram of inverted resistivity values for

all model parameters lying in the volume occupied by all the resistive and conductive blocks

in L1, L2 and L3 is drawn separately and shown in Fig. 4.14 and 4.15. Table 4.5 shows the

information about resistivity values for true and inverted model along with minimum and

maximum resistivity for the model parameters belonging to the volume occupied by each

block. From Fig. 4.11 − 4.15 and Table 4.5 following is inferred.

The inverted model obtained using AP3DMT is similar to that obtained using ModEM.

Approximately 95% of the model parameters lies between 0.7 − 1.3 ratio (ratio ri =

mi
a/mi

d, i = 1, 2, ... Np, where mi
a and mi

d is the ith model parameters of the inverted

model obtained using AP3DMT and using ModEM respectively and Np are the total number

of model parameter inverted). The resistivity range reaches their true value for all the

conductive blocks in L1, L2 and L3. From the histogram, (Fig. 4.14) it is clear that the

resistive values for the cells corresponding to the conductive blocks cluster around their

mean value. The top of all the conductive blocks in L1 and L2 are well defined however,

this is not the case for blocks in layer L3. The MT data like all inductive EM techniques,

is more sensitive to conductive structures than to resistive bodies and therefore, while the

top of a conductor is well defined, its base is usually smeared out as seen for the blocks

in L2 and L3. Among all the resistive blocks, only outcropping blocks are resolved. For

3model parameter in the code are defined as log of conductivity however, here and in subsequent discussion
of results, model parameter is defined as resistivity of a cell of the model (either synthetic or inverted).
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majority of model parameters corresponding to resistive blocks of L1, the resistivity lies in

the range 350− 450 Ω-m. For model parameters corresponding to resistive blocks of L2

and L3, the resistivity hardly exceeds 200 Ω-m (Fig. 4.15). This is also corroborated by the

1D sections (Fig. 4.12 and 4.13). As seen from the histogram in Fig. 4.15 the resistivity

of the model parameters for the blocks in L2 and L3 cluster around 100 Ω-m (background

resistivity value).

The main model features present in the test model are recovered. As expected, there is

degradation in the features below the conductive structures. To study the misfit, component

and period wise misfits of the data and the predicted data (off diagonal impedances) for the

inverse model is shown in Fig. 4.16 and 4.17. For the sites that lies on the edge (along y−

direction) of the conductive block (Fig. 4.16) there is mismatch between the observed and

the computed responses especially in the phase Zyx. There is good agreement between the

responses for the sites that lies within the boundary of the block under consideration. For the

sites that lies within the boundary of the resistive block, there is mismatch in phases, both

Zxy and Zyx for period less than 100 s.
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Figure 4.11: Ratio between model parameters of the inverse models as obtained by AP3DMT
and ModEM.

Table 4.4: Table showing information about ratio between model parameters (resistivity
value) of the inverted models as obtained by AP3DMT and ModEM.

Ratio Range Model Parameter (%)
< 0.7 0.94
0.7−0.9 10.95
0.9−1.1 67.84
1.1−1.3 17.02
1.3−1.5 1.74
> 1.5 1.51
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Figure 4.12: 1D section of True Model (black), and inverted model (red) at three different
(x, y) points.
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Figure 4.13: 1D section of True Model (black), and inverted model (red) at three different
(x, z) points. This section passes through all the three different layers of anomalies
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Figure 4.14: Histogram of model parameters lying in the volume occupied by all the
conductive blocks in (a) L1, (b) L2 and (c) L3.

Figure 4.15: Histogram of model parameters lying in the volume occupied by all the resistive
blocks in (a) L1, (b) L2 and (c) L3.
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Table 4.5: Table showing information about resistivity values for true and inverted model.
For each block minimum and maximum resistivity value is given along with the percentage
of model parameters that lies less than 30 Ω-m for conductive blocks and greater than 400
Ω-m for the resistive blocks. Block no. 1−9 lies in L1, 10−18 lies in L2 and 19−27 lies in
L3.

Block No True Model Inverted Model Minimum Maximum No. of Cells
Avg. Res. (Ω-m) Avg. Res.(Ω-m) (Ω-m) (Ω-m) (%)

Block 1 1000.0 382.2 120.2 753.7 46.3
Block 2 10.0 35.6 1.3 309.1 50.5
Block 3 1000.0 379.6 121.2 692.6 48.8
Block 4 10.0 40.5 1.1 305.8 49.5
Block 5 1000.0 344.4 114.5 623.2 26.3
Block 6 10.0 40.2 1.1 287.4 49.9
Block 7 1000.0 376.1 115.4 699.9 45.8
Block 8 10.0 37.8 1.3 307.3 48.5
Block 9 1000.0 374.1 119.1 729.6 43.6
Block 10 10.0 24.8 3.1 132.3 73.0
Block 11 1000.0 118.5 30.1 236.6 −
Block 12 10.0 25.1 3.2 136.7 72.5
Block 13 1000.0 117.8 24.0 236.1 −
Block 14 10.0 29.2 3.5 144.5 65.5
Block 15 1000.0 114.9 24.5 241.4 −
Block 16 10.0 24.9 3.4 135.5 71.9
Block 17 1000.0 115.2 27.3 227.7 −
Block 18 10.0 25.0 3.6 149.7 72.3
Block 19 1000.0 76.6 29.1 139.6 −
Block 20 10.0 37.0 8.8 122.0 42.6
Block 21 1000.0 76.3 32.0 147.6 −
Block 22 10.0 39.0 4.5 130.1 42.0
Block 23 1000.0 59.7 30.0 123.6 −
Block 24 10.0 39.7 5.2 113.4 39.9
Block 25 1000.0 73.5 35.6 144.8 −
Block 26 10.0 37.0 8.9 115.1 40.6
Block 27 1000.0 75.5 30.4 166.0 −
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Figure 4.16: Comparison of forward versus inversion responses (apparent resistivity and
phases). For the example sites (marked in red colour), the data of the inversion (lines) are
shown in comparison to the forward responses (circles). The sites lies inside and on the edge
of the conductive block and the site name are formed by the combination of indexes in x−
and y− direction.
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Figure 4.17: Comparison of forward versus inversion responses (apparent resistivity and
phases). For the example sites (marked in red colour), the data of the inversion (lines) are
shown in comparison to the forward responses (circles). The sites lies inside and on the edge
of the resistive block and the site name are formed by the combination of indexes in x− and
y− direction.
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Model 2

The second model DTM2, Fig. 4.18 (left panel), consists of a hemisphere of 10 Ω-m and

radius of 5 km directly beneath the surface of a homogeneous 300 Ω-m half space. The

origin of the coordinate system has been taken as the center of the hemisphere. For proper

representation of the target body, the model is discretized into 76 × 76 × 39 cells with

horizontal cell dimensions of 250 m. Cell thicknesses are 50, 100 and 250 m in the upper 5

km of the model and then increase logarithmically downwards. ModEM is used to compute

the impedance tensor for 11 periods logarithmically spaced between 0.01 − 1000 s at 49

sites, located on circles of different radii from the center of the hemisphere except one at

the center. 5% gaussian noise was added to the data. An error floor of 5% of |ZxyZyx|1/2 is

assigned to the impedance tensor. For inversion, again a homogeneous model of 100 Ω-m,

discretized into 54 × 54 × 37 cells (500 m × 500 m × 50 m, vertical extent increasing with

depth) is used as apriori and initial model. In 47 NLCG iterations the nRMS error reduced

from 20.03 to 0.98. The inverted model thus obtained is shown in Fig. 4.18 (right panel). The

circular shape of the hemisphere and the correct order of resistivity were recovered however,

the deeper part of the structure is not delineated properly as it is shielded by the shallower

conductive structure. The correct representation of the circular body is limited due to the use

of rectangular meshing. The nRMS error reaches less than 1 however, it will be more useful

to study the fit of responses for different sites and different periods. Fig. 4.19 illustrate the

misfits of the observed data and the predicted data for the inverse model shown in Fig. 4.18

(right panel). These misfits are for the sites lying on the line x = y. Site number 000 lies at

the center of the body and sites 002, 010, 018, 026 and 034 in the first quadrant (increasing

towards positive y) while other sites are in the third quadrant. For sites that lie away from

the edge of the hemisphere, there is an excellent agreement between the observed and the

computed responses (for e.g., 046, 038, 000 etc.). For sites that are close to the edge of the

hemisphere (for e.g., 010 and 014) there is mismatch in the responses (Fig. 4.19). The reason

why the responses differ is the different meshes used for computing synthetic data and for

inversion. In general, the data of site 18 (outside the hemisphere) is fit better than for site

10 (inside the hemisphere) particularly phases (Fig. 4.20). The results fit the longer periods

well and have a shortcoming on the shorter periods. This also suggest that a single nRMS

value is not a satisfying way to represent data fit. For more discussion on this model, one

can refer Miensopust et al. [102].
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Table 4.6 summarizes the results of these two models along with the run time and other

details. For both these models and for the other models tested, the edges of the target bodies

are not represented by a sharp boundary as in the true model. The resistivity gradually

changes across the boundary of a structure resulting in smearing out of structures. This is so

because the current code is based on smooth model approach.

Figure 4.18: A plan view of true model (left panel) and the inverted model (right panel). The
black dots represent the used sites.
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Figure 4.19: DTM2 comparison of forward versus inversion responses (apparent resistivity
and phases). For the 12 sites (x= y), the data of the inversion (lines) are shown in comparison
to the forward responses (circles).
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Figure 4.20: DTM2 comparison of forward versus inversion responses (apparent resistivity
and phases). For the example sites 010 (left) and 018 (right), the data of the inversion (red)
are shown in comparison to the forward responses (blue).
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4.3.3 Validation on Field Data from Garhwal Himalaya

4.3.3.1 Regional Geology

The Himalaya is one of the youngest and highest mountain range, which originated from

continental collision tectonics and underthrusting of the Indian Plate beneath the Eurasian

Plate. Regional N-S compression, resulting from horizontal movement of rock masses

along the north dipping thrust planes, caused crustal shortening, horizontal extrusion and

lithospheric delamination [79, 105]. In this process, leading upper brittle portion of the

subducting Indian crust has been sliced and stacked up southwards to form the Himalayan

mountain belt. The Main Frontal Thrust (MFT) is the southernmost thrust in the study area,

to its north is the Main Boundary Thrust (MBT) which hades northwards [74, 73] at 30◦

to 40◦. In the study area, the MCT zone is bounded by the Munsiari Thrust (MT) in the

south and Vaikrita Thrust (VT) in the north [18, 19, 93, 184]. The northernmost region of

the profile is the Higher Himalayan (HH) crystalline zone containing most of the famous

peaks of the mountain range and it has an average elevation of 4500 m. In addition to these

major Himalayan thrusts, a number of faults, ridges and other structural features having

strike oblique and transverse to the main Himalayan thrusts are mentioned in the literature

[46, 74, 184]. To map the geometry of various faults and thrusts system magnetotelluric

method has been used along a few transects Himalayan collision zone [47, 61, 83]. These

studies are mainly based on 1D or 2D inversion approximation of realistic 3D complex

geological model. In presence of strong 3D features, 1D/2D inversion may add significant

error in realistic 3D model. At the same time for conducting 2D inversion, locations of MT

sites need be projected along a profile line. To overcome this approximation and error, 3D

inversion must be performed.

4.3.3.2 Description of MT data

Broadband MT survey was conducted in the Garhwal Himalayan Corridor along

Roorkee-Gangotri (RG) profile passing through the major Himalayan thrusts zones. The

MT system used in this survey was Metronix system, with ADU-06 data logger, MFS-06

induction coil and EFP-06 electrodes. The recorded time domain data were transformed

to the frequency domain impedance tensor using the magnetotelluric processing code,

MAPROS [45]. Subsequently, the data were reprocessed using a robust noise-suppressing
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code [162]. The stable impedance tensor was thus estimated for 35 sites in the period

range of 0.01 to 2048 s. Since the induction coil for vertical magnetic field component

couldn’t be buried in rocky sites in tough Himalayan terrain, the estimated tipper values

were noisy at such MT sites, and reliable tipper responses were available only at 19 sites

in the period range from 22 − 2048 s. Locations of impedance and tipper sites are shown

in Fig. 4.21. However, for demonstrating the performance of ur code, we have inverted

full impedance only. Topography variations are not taken into consideration as Kumar

and Manglik [78] demonstrated through a 2D study that there is no effect of Himalayan

topography on interpretation of MT data.

Figure 4.21: Simplified tectonic map of the study area and MT sites locations (compiled
from Mahesh et al. [93] and Valdiya [185]).

4.3.3.3 Inversion of MT data

For the 35 sites of full impedance tensor (Zxx, Zxy, Zyx, Zyy) data, the 16 periods, lying in the

period range of 0.015 to 512 s, were selected. The data error floor was set to 10% of |Zxy|

for |Zxx| and |Zxy| and 10% of |Zyx| for |Zyx| and |Zyy| respectively.

The 3D guess model, a homogeneous half space of 100 Ω-m, was discretized into 83 ×

90 × 42 cells (with 10 cells in air). Below the surface, the top layer thickness was 50 m

and the thickness of each subsequent layer increased by a factor of 1.2, extending up to 500
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km. Horizontal grid spacing in x− and y− direction was 3 km and 3 km respectively in the

central zone of the model domain. Total of 24 cells were padded around the central region,

six in each horizontal direction with increasing distance. With this grid, the dimension of the

model domain has become 800×800×500 km in x−, y− and z− directions, respectively.

From the starting misfit of 7.21 the nRMS error reduced to 1.79 in 117 NLCG iterations

using ModEM whereas it reduced from 7.21 to 1.78 in 120 iterations using AP3DMT.

Fig. 4.22 and 4.23 depicts the inversion results obtained using two different inversion codes

(ModEM and AP3DMT) at different depth planes. Fig. 4.24 shows the ratio between model

parameters of the inverted models as obtained by these inversion codes. Fig. 4.25 shows the

comparison of apparent resistivity and phase of inverted models for representative sites in

different lithotectonic domain along the profile. From the Fig. 4.22 − 4.25 it is observed

that the inverted model obtained using AP3DMT closely matches the model obtained using

ModEM.
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Figure 4.22: Depth plane slices of 3D inverted model obtained using full impedance using
ModEM and AP3DMT.
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Figure 4.23: Depth plane slices of 3D inverted model obtained using full impedance using
ModEM and AP3DMT.
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Figure 4.24: Ratio between model parameters (resistivity of cells) of the inverse models as
obtained by AP3DMT and ModEM.
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Figure 4.25: Comparison of apparent resistivity and phase of inverted models obtained using
by AP3DMT and ModEM for representative sites in different lithotectonic domain along the
profile. Red and blue circles represents the data for ModEM whereas red and blue lines
represents the data for AP3DMT.
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4.4 Summary

The accuracy and versatility of the developed inversion algorithm is demonstrated through

two synthetic models. The inverted models obtained using AP3DMT closely matches the

inverted models published in the literature. For these and others models (not discussed here)

it is difficult to reproduce the resistivity contrasts of the true model as the code is based on

the smooth inversion approach. Also, the nRMS value reaches close to 1 but some periods

and components are fitted better than others (for e.g., site 010 and 018 for DTM2). This is

further evident from the misfit of site no 032 and 036 for real data. Thus, one should not just

rely on single nRMS value but more carefully examine the misfit over all data space.

The 3D inversion of Roorkee-Gangotri field MT data is performed and comparison of

inverted model with the model obtained using ModEM is presented. From the inverted

models and comparison of apparent resistivity and phase for the inverted models we

demonstrate robustness of the algorithm for real field data.
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Chapter 5

3D DCR INVERSION

5.1 Preamble

Normally the Direct Current Resistivity (DCR) field data are interpreted using the

assumption of simple models such as 1D or 2D structures. However, in the presence of

3D structures, 1D or 2D approaches are not correct near the boundaries of 3D bodies.

Thus, the use of 3D model is essential for meaningful and comprehensive interpretation

for complex geological situations which are truly 3D in nature. Resistivity data were

interpreted using 3D modeling and inversion techniques developed by various authors [e.g.

40, 52, 87, 118, 126, 139, 148]. In these studies, the forward solutions are generally obtained

by IEM, FDM or FEM and inversion are based on Gauss–Newton (or its variant) technique.

For the 3D case the problem is large hence, explicit computation and storage of the Jacobian

(sensitivity) matrix is avoided [e.g. 204].

In this chapter, first I will briefly discuss 3D DCR theory and the governing

partial differential equation (PDE). Next, various aspect of forward modeling like model

discretization, boundary conditions, matrix solver (both iterative and direct) will be discussed

in detail. The necessary modifications made in AP3DMT, to incorporate DCR inversion will

be discussed in the detail. Finally validation of the code for DCR case, both forward and

inverse modeling will be demonstrated over two synthetic models.
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5.2 Formulation of 3D DCR problem

Let us consider a half space with arbitrary conductivity σ(x,y,z) distribution. The electric

field, E, can be written as,

E =−∇φ , (5.2.1)

where, φ is the electric potential. For current density, j, and source term, Q, the equation of

continuity is defined as,

∇ · j = Q, (5.2.2)

with the source term,

Q = Iδ (x− xq)δ (y− yq)δ (z− zq) (5.2.3)

with I as the current and δ is the Dirac delta function. Using j = σE, we get,

∇ · [σ(x,y,z)∇φ(x,y,z)] =−Iδ (x− xq)δ (y− yq)δ (z− zq). (5.2.4)

The eq 5.2.4 is the governing differential equation and relates the potential field to the input

current source. The analytical solutions for the above equation are available for selected

class of simple models. Hence, for a general conductivity distribution the equation is solved

numerically, using FD, FE or FV approximation.

5.3 Forward Modeling Scheme

This section describes how the numerical solutions of the governing PDE (eq 5.2.4) are

computed using FD method using primary and secondary field formulation.

5.3.1 Primary and Secondary Field Formulation

In the vicinity of source or at source, numerical approximations using eq 5.2.4 typically give

poor results because of steep gradient of field. The popular approach is to remove the effect

of the singular potential by using primary/secondary field formulation [88]. In this approach,

the potential φ in eq 5.2.4 is considered as the superposition of the primary potential, φp, and
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secondary potential, φs, as,

φ(x,y,z) = φp(x,y,z)+φs(x,y,z). (5.3.1)

The primary potential are caused by the current source for simple model like half space or

layered model having conductivity σp. If σa represents residual conductivity of the medium

such that the total conductivity, σ , can be written as,

σ = σp +σa. (5.3.2)

Using eq 5.3.1 and 5.3.2 the eq 5.2.4 is decomposed into two equations as,

∇ · [σp(x,y,z)∇φp(x,y,z)] =−Iδ (x− xq)δ (y− yq)δ (z− zq). (5.3.3)

∇ · [σ(x,y,z)∇φs(x,y,z)]+∇ · [σa(x,y,z)∇φp(x,y,z)] = 0. (5.3.4)

Now, the forward problem is to be solved in two steps. First eq 5.3.3 is solved for primary

potentials and later eq 5.3.4 is solved to compute the secondary potentials due to scattered

source. Finally, total potentials are computed as superposition of primary and secondary

potentials.

Primary Potential

The primary model should be chosen such that the simulation of primary potential is easy and

straightforward and the secondary (scattered) source vanishes in close proximity of primary

source. The eq 5.3.3 is sloved for primary potentail for a background model such that σp at

the source position is same as σ . This means σa should be zero around the source point. For

a uniform half-space and a current source located at (xq, yq, 0), the potential at (x, y, z) is

given as,

φp =
I

2πσp
√

(x− xq)2 +(y− yq)2 + z2
, (5.3.5)

where, while σp is the conductivity of the media at the source point [205] and not the mean

conductivity as suggested by Lowry et al. [88]. If the background model is layered earth

then, the primary potential is assumed to be caused by the current source in a layered earth.

The potential of a vertical contact can be calculated very easily using the method of images.
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The recurrence formulae for all kernel functions for a layered earth are given by Yuguo and

Spitzer [203]. In the following, we shall discuss numerical solutions of eq 5.3.4.

5.3.2 Numerical Solution of Secondary Potentials

To obtain the numerical solution for arbitrarily shaped 3D structures using FD method

first step is discretization of model. For accurate solutions this a very crucial step. Dey

and Morrison [33] used four nodes between two adjacent electrodes, while Park and Van

[118] used only one node. To strike a balance between number of nodes and errors in the

calculated potentials Loke and Barker [87] used two nodes. In this study, we have used two

nodes between adjacent electrodes however, this choice will depend on the availability of

computational resources. For vertical discretization, the first vertical layer thickness is fixed

at around one-fourth of the minimum electrode spacing. The thickness of the subsequent

layers is then increased at a rate 1.2–1.5 times that of the previous one. Towards the side and

bottom of the mesh, the spacing between two grids is progressively increased to simulate

the ‘infinitely distance’ edges of the model. After model discretization, unknown potential

are assigned on a normal grid. The discrete FD equations using normal grid are given in

Appendix C.

The forward problem is solved using the appropriate boundary conditions. The total

potential φ and the normal component of the current density jn = σ∂φ/∂n must be

continuous at boundaries. At the air-earth interface there is no current flow hence,

∂φs

∂n
= 0. (5.3.6)

On the outside boundaries, mixed boundary conditions [33] are applied,

∂φs

∂n
+

cos(r,n)
r

φs = 0, (5.3.7)

where r denotes the radial distance from the source location to the boundary.

Now, after collecting all the discrete FD equations for all nodes and applying BCs, for a

current source, f , a matrix equation is formed as,

Amφa = s, (5.3.8)

88



where Am is a source independent Nv×Nv sparse matrix with seven non-zero elements per

row (Fig. 5.1); s is the Nv dimensional source vector and φa is the Nv dimensional vector

representing secondary potential at the Nv internal nodes. This sparse linear system is solved

iteratively using BiCGSTAB. The incomplete LU decomposition of the matrix is used for

preconditioning. However, for a large number of right hand side vector, the system matrix

can be solved using direct solver. The LU decomposition of the matrix is done along with

a row permutation matrix and a column reordering matrix and a diagonal scaling matrix.

Once the decomposition is complete the solutions are obtained simply by backward and

forward substitution and multiplication. Such an strategy is quite useful for large number

of electrodes, which is commonly used for multi-electrode system for data acquisition.

However, if the system matrix is large then LU decomposition is time consuming and storage

of decomposed matrices requires large memory space. Once the eq 5.3.8 is solved for the

secondary potentials these are added to primary potentials and the responses are computed

for arbitrary electrode array/geometry.

Figure 5.1: Coefficient matrix Am for 3×3×4 grid.

5.3.3 Response Computation

Once the eq 5.3.8 is solved and secondary potentials are computed, the total nodal potentials

are computed as sum of primary and secondary potentials. Since the computed potentials

are for a single source, they are superimposed to form the potentials due to a dipole. Such
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approach is very efficient as individual electrodes are used more than once. For e.g., consider

a 48 electrode system. For Dipole-Dipole configuration there are 168 dipoles corresponding

to 7 dipole lengths but only 48 current sources.

The computation of apparent resistivity from potentials is straight forward, which

requires a simple transformation matrix. The transformation matrix interpolates the nodal

potential to the potential electrode location and then computes the potential difference

between the measuring pair of electrodes. To compute the responses from the nodal potential

φ , a transformation matrix, T, is used to get the predicted response dpred as:

dpred = Tφ . (5.3.9)

Generally, the observed field data is potential difference. From these apparent resistivity can

be computed as:

ρa = K× δφ

I
, (5.3.10)

where, K is the geometric factor that depends only on the position of current and potential

electrodes.

5.4 Numerical Implementation

In inversion algorithm the main operators are forward operator, data and model covariance

matrices and Jacobian. As mentioned earlier in subsection 3.5.2, these are standalone

operators in AP3DMT code with no direct interaction with the inversion function, hence it is

very easy to incorporate necessary changes in the corresponding sub-programs or functions

without disturbing basic structure of code. To include 3D DCR inversion into AP3DMT

code, necessary modification were made in forward operator and Jacobian. Therefore, in

the following we will only discuss the modifications in forward modeling, Jacobian and its

various components.

5.4.1 Forward Modeling

The forward modeling function, ForwardResp DC, a standalone function, includes

(i) parameter mapping to edges, AverageSigma, (ii) setting up boundary conditions,

BoundCond DC, (iii) computing potentials at grid nodes, DiscreteSolver DC and (iv)
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the predicted data at observation points, OutInterp DC. These functions were added in

AP3DMT. Similar to MT problem, parallelization is implemented over number of current

electrodes.

Since, the coefficient matrix Am is independent of the source (current electrode) the

construction of coefficient matrix, with boundary conditions enforced, is formed only

once and stored in a sparse format in ConstructMatrix. The ILU or LU decomposition

(depending on the type of matrix solver used) is also performed only once in the

same function. To avoid overhead, while transferring matrices from master to workers

during parallel implementation, these matrices are transferred to all active workers using

WorkerObjWrapper which manage persistent state on matlabpool workers by avoiding

re-transfer of arrays which are used very frequently. Such an approach is beneficial when the

problem is solved for large number of current sources.

For a specific source, BoundCond DC is called right hand side vector, s, is formed

and stored as a column vector. BoundCond DC includes analytic computation of primary

potential for the primary model. Once primary potential are computed, vector, s is

forming by computing −∇ · (σa(x, y, z)∇φp(x, y, z)) (eq 5.3.4). The matrix solver, in

DiscreteSolver DC, is called and the secondary potential solutions are obtained. These

potentials are superimposed to compute the potentials according to the array configuration.

The OutInterp DC uses the previously computed interpolation functional (discussed in next

section) and potential difference to evaluate the response (data) at all desired measuring pair

of electrodes. For computation of sensitivity, potential solutions are also returned. The whole

process from BoundCond DC to OutInterp DC is looped over number of sources and all the

data and solutions are assembled together in ForwardResp DC.

5.4.2 Jacobian Computations

In general, there are three ways to compute the sensitivity for the DC resistivity [167],

(i) the perturbation method, (ii) the sensitivity forward calculation and (iii) the potential

approximation. We have used sensitivity forward calculation. Similar to MT, computation

of predicted data d f (forward mapping Ff (m)), for a source f , involves two steps; (i) solving

the governing PDE (eq 5.2.4) for potentials φ and, (ii) computing the predicted data like

apparent resistivity at observation sites using these potentials. The predicted data set at the
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observation points can be written as,

d j
f = F j

f (m) = ψ j(v(m),m) j = 1, . . . ,nobs. (5.4.1)

where, ψ j is generally a non-linear function of φ (and possibly m). The expression for the

Jacobian matrix of the forward mapping Ff (m), in the block form is written as,

J f = L f A−1
m P f , (5.4.2)

where, symbols has the same notation as before (Section 2.5.3).

In the DCR problem, the dataset is real hence, all the computations of Jacobian are

efficiently performed using real arithmetic unlike MT where complex arithmetic was used.

As discussed earlier, the Jacobian is not formed explicitly rather product of Jacobian (ot

its transpose) with an arbitrary vector is performed using its three components as shown in

eq 5.4.2. The details of these components are discussed in the following.

5.4.2.1 Sensitivity functional

The function LpJobs DC performs the linearization of the data functional with respect to

variations in the potential solution φ . The L matrix of dimension Nobs×Nv is explicitly

formed and stored in sparse storage. The rows of L matrix interpolates the potential at

electrode locations and compute the potential difference. If the measured component is

resistance, then L simply computes the interpolated values at the electrode locations. For

datatype apparent resistivity the product Lvφ is multiplied element by element by another

vector whose elements are the geometric factors. LTpJobs DC multiplies this vector by the

appropriate data components to form LT vd f . Here, instead of implementing LT vd f , we have

implemented (vd
T
f L f )

T . This does away with the need to implement LT .

5.4.2.2 Forward Solver

The function DiscreteSolver DC includes two types of solvers, (i) the standard BiCGSTAB

iterative solver for solving eq 5.3.4 with the incomplete LU decomposition for

preconditioning, and (ii) direct solver using LU decomposition along with a row permutation

matrix, a column reordering matrix and a diagonal scaling matrix. For each source, the output

vector, ve consists of a set of solution corresponding a right hand side vector for each source.

92



5.4.2.3 Solver Sensitivity

The third component of Jacobian is P f , which defines the product of the sensitivity of the

coefficient matrix, Am, to the model parameters (log conductivity) with the potential field.

The derivative of the field with respect to the parameters is similar to MT case. As discussed

earlier, the operator P f consists of two components. The first part provides the derivative of

the coefficient matrix with respect to the model parameters. For a FD approximation, all the

seven elements of a row of the matrix, Am, depend on conductivity elements in the form of σ̄

(volume weighted average of four nearby cells). Hence, each parameter contributes to eight

internal nodes. This results in a maximum of thirty-two non-zero elements per parameter (for

each node three off diagonal elements and a diagonal element). These non-zero elements are

−Viexp(mi) where, Vi is the integration volume for the ith cell having parameter mi defined

as log conductivity. Once these derivatives are obtained, these are multiplied with potential

solution vector φ , corresponding to a source f . Afterwards, this vector is multiplied element

by element with the arbitrary vector and all such vectors are summed together. For the

transpose case, these steps are reversed in PTpJob DC.

5.5 Validation of Forward Modeling

The developed forward modeling code is tested over a variety of models. For demonstration

we have selected two models from literature. First model is a vertical dike model [166] and

the second is a two-layer model with an embedded cube [166].

Model 1

In this model the vertical dike, 5 m wide, extends to infinity in±x and +z direction. The dike

is at 20 m offset from the origin of the model. The resistivity of the dike and the half-space

are 10 Ω m and 100 Ω m, respectively (Fig. 5.2). The Schlumberger soundings, with two

current sources at (0,−1, 0) m and (0,+1, 0) m are carried out over the structure along

the y axis. The grid information was taken from the Spitzer [166]. Accordingly, the model

was discretized into 72× 72× 39 irregular cells and the modeling domain boundaries are

located at X :±5500, Y :±5500 and Z : 5500 m. The system of equations was solved using

iterative solver with a tolerance of 10−7. Fig. 5.3 shows the variation of apparent resistivity

and absolute relative error in apparent resistivity versus half current electrode spacing for
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Schlumberger configuration along the y− axis i.e. perpendicular to the dike. The absolute

relative error in the apparent resistivity is less than 1%.
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Figure 5.2: A vertical dike model [166].

Figure 5.3: (top) Comparison of the apparent resistivity obtained from analytic solution and
FD method AP3DMT versus half current electrode along the +y axis perpendicular to the
dike, and (bottom) absolute relative error in apparent resistivity versus half current electrode.

94



Model 2

The second synthetic model consists of a cube embedded in a two layer earth [166]. The

first layer with resistivity 100 Ω-m extends upto 3 m while the resistivity of the underlying

half-space is 10 Ω-m. A cube of resistivity 10 Ω-m and side length 2 m is embedded in

the first layer with its centre at (x, y, z) = (0, 2, 1.5) m (Fig. 5.4). The Schlumberger

soundings with two current sources at (0,−0.1, 0) m and (0,+0.1, 0) m are carried out

over the structure along the y− axis. Fig. 5.5 shows the variation of apparent resistivity and

relative error in apparent resistivity versus half current electrode spacing for Schlumberger

configuration along the y axis. For majority of the points the absolute relative error in the

apparent resistivity is less than 3% and it reaches 4% at large distance.
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Figure 5.4: A buried cube in a two layer earth model [166].
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Figure 5.5: (top) Comparison of the apparent resistivity obtained from FD Spitzer [166] and
AP3DMT versus half current electrode spacing for Schlumberger configuration along the +y
axis, and (bottom) absolute relative error in apparent resistivity versus half current electrode.
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5.6 Validation of Inverse Modeling

The developed code has been tested and validated over a variety of 3D standard models

available in literature. For demonstration, we have selected two synthetic test model. Further,

versatility and robustness of the code will again be demonstrated in next chapter. The first

test model is a two block model with a contrast resistivity model (modified after Boonchaisuk

et al. [13]). The second model is a representation of a mine dump model (similar to Günther

et al. [52]). These synthetic data sets were inverted using NLCG algorithm on HP Z620, Intel

Xeon E2643, 32 GB with 8 cores for parallelization.

Model 1

The model consists of two blocks, one conductive (1 Ω-m) and one resistive (100 Ω-m).

Each block has a dimension 60× 20× 12.5 m and are next to each other. These blocks

are embedded in half-space of resistivity 10 Ω-m. The top of the blocks is 2.5 m below

the surface. Three data sets, of the apparent resistivity, using wenner, Schlumberger and

Dipole–Dipole configurations are computed along 5 profile, with inter profile spacing of 20

m. Each profile has 31 electrodes with an inter electrode spacing of 5 m and a separation

factor of n = 1−10 for Wenner, n = 1−14 for Schlumberger and n = 1−15 for Dipole–Dipole

( Fig. 5.6). This results in total of 725, 1050 and 1575 data points for Wenner, Schlumberger

and Dipole–Dipole respectively. For computing accurate synthetic data the model was

discretized into 78× 132 × 22 cells with horizontal cell dimensions of 1.25 m. Five percent

Gaussian noise was added to the data. Errors floor is set as 5% of the apparent resistivity to

accommodate the discretization errors from using different meshes for the inversion and the

forward modeling. For inversion, a homogeneous model of 9.5, 9.7 and 9.8 Ω-m for Wenner,

Schlumberger and Dipole–Dipole data set respectively (based on the average of observed

apparent resistivities) was used as an initial guess model. The model was discretized into

45× 71 × 22 cells with horizontal cell dimensions of 2.5 m. For the three datasets GN-MS

was used for inversion. The LU of the coefficient matrix (along with permutation matrix,

column reordering matrix and a diagonal scaling matrix) was performed only once and the

matrix equation is solved simply by backward and forward substitution and multiplication. In

9 iterations the nRMS error reduced from 10.7 to 0.90 using Wenner data. For Schlumberger

array data, nRMS error reduced from 33.5 to 0.95 in 12 iterations while for Dipole–Dipole
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array it reduced from 52.1 to 0.95 in 13 iteration.

The inverted models, for three different datasets, thus obtained are shown in Fig. 5.7

(second, third and last panel). In all the three inverted models, shape of the blocks were

successfully recovered. Also, the top surfaces of the two blocks are clearly seen at a depth

around 2.5 m. However, the bottom of both the blocks are poorly resolved for the Wenner

data as compared to Schlumberger and Dipole-Dipole data. Fig. 5.8 − Fig. 5.10 shows

comparison of observed and predicted data for a profile at x = 0 in pseudosection. Fig. 5.11

shows the convergence plot of the three datasets.

Figure 5.6: (Top) A plan view of true model with electrodes positions, and (below) cross
section at x = 0 m with circles representing the electrodes (modified after Boonchaisuk et al.
[13]).
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Figure 5.8: (top) Synthetic Wenner array data shown in pseudosection, and (below) Predicted
Wenner array data of the inverse model for x = 0 profile.

Figure 5.9: (top) Synthetic Schlumberger array data shown in pseudosection, and (below)
Predicted Schlumberger array data of the inverse model for x = 0 profile.
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Figure 5.10: (top) Synthetic Dipole–Dipole array data shown in pseudosection, and (below)
Predicted Dipole–Dipole array data of the inverse model for x = 0 profile.

Figure 5.11: Convergence plot for all the three datasets.
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Model 2

This model represents a complex geology, similar to a mine dump [52]. The model consists

of a half ellipsoid with center at the centre of the model and semi-axis lengths 125, 40 and 25

m along x−, y−, and z− direction respectively. The resistivity of the body was set at 15 Ω-m

against the half space resistivity of 100 Ω-m. Four hardpans structures of arbitrary shape and

varying depth (2−3 m) and resistivities (400−800 Ω-m) were generated (Fig. 5.12).

The DC resistivity measurements were made for Dipole–Dipole array with 13 profiles.

Each profiles have electrode separations of 5 m. The inter profile distance is 20 m, which is

four times the minimum electrode separation, thus, sufficient for 3-D reconstruction of the

model. Two dipoles of length 5 and 10 m were used with a separation factor of n = 1−8.

With this electrode configuration 1800 data points were generated.

For the accurate representation of the anomalies, synthetic model was discretized into

62 × 62 × 42 cells with horizontal cell dimensions of 5 and 2.5 m in x− and y− direction

respectively. Five percent Gaussian noises were added to the synthetic data. Errors floor is set

as 5% of the apparent resistivity. For inversion, a homogeneous model of 65 Ω-m (average of

observed apparent resistivities) with 62 × 62 × 18 cells was used as a guess model (5 m ×

2.5 m × 1 m, vertical extent increasing with depth by a factor of 1.2). Fig. 5.13 shows

the inversion result obtained after 13 iterations using GN-MS with nRMS error reduced

from 52.01 to 0.96. The shape and the resistivity of the conductive dump material is very

well delineated. The dimensions of the four hardpan were resolved with correct order of

resistivities.
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Figure 5.12: Dump model showing anomaly along with four hard-pan structures of varying
depth and resistivities: (a) Slices parallel to profiles, (b) Slices perpendicular to profile; black
circles represents the electrode position, and (c) Slices at z = 1 and z = 15 m depth.
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Figure 5.13: Inverse model after 40 iterations: (a) Slices parallel to profiles, (b) Slices
perpendicular to profile, and (c) Slices at z = 1 and z = 15 m depth. Four harpan structures
of 400, 500, 600 and 800 Ω-m are imaged.
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5.7 Summary

The inversion of DCR data is successfully incorporated in AP3DMT code. In this chapter

3D DCR forward and inverse modeling algorithm are developed and tested over complex 3D

geological models. The concept of partitioning of potentials is used to remove singularity

at source. The primary potential are computed analytically for simple models like, uniform

half-space. A efficient preconditioned iterative solver is used to solve the system matrix for

secondary potentials. Further, the accuracy of the simulated responses are compared with

published results.

Similar to MT case, instead of forming Jacobian explicitly, the multiplication of Jacobian

(and its transpose) with an arbitrary vector is performed more efficiently by using the parts of

Jacobian. Parallelization over number of sources is implemented for both forward modeling

and Jacobian−vector product computations which helps in accelerating the computations for

large data set. Inversion test over synthetic model demonstrates the versatility of the code.
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Chapter 6

MT − DCR JOINT INVERSION

6.1 Preamble

The all types of the MT and DCR surveys yield cross-sections of resistivity from which the

physical structure may be determined. They are used worldwide for many different purposes.

In contrast to DCR surveys which use man-made sources, an audio -magnetotelluric (AMT)

and MT surveys use natural EM signals for sensing from shallow to mid-crust and to deeper

Earth (discussed in chapter 1). For very shallow surveys, remote radio transmitters operating

in the VLF and LF replaced the natural EM signals of the Earth for the radio-magnetotelluric

(RMT) method [e.g. 86, 175, 178].

Both MT and DCR data is sensitive to the same physical parameters resistivity, however,

they differ in physical concept by which they are governed. MT is mainly governed by

induction phenomena whereas in DCR current is injected in the zone of interest galvonically.

Thus the sensitivity of these two methods (MT and DCR) for resistive and conductive

structures may vary. It would be interesting to study performance of joint inversion of MT

and DCR data set. There are two different approach for performing joint inversion. First, the

two different data sets are inverted independently to produce 3D image of survey area and

results are manually combined to produce a compatible interpretation [34, 146]. In second

approach, the two different data sets are inverted together to constrain the interpretation

[8, 20, 66, 143, 176, 138]. The advantages of using joint inversion is that the strength of

one technique can help mitigate a drawback of the other technique. For example, MT data

is sensitive to conductive structures while DCR data is sensitive to both conductive and

resistive structures. Hence, joint inversion often results in better inverse models as compared

107



to individual inversion. Although, the joint inversion of the MT and DCR data yields better

results, the joint (MT and DCR) survey is still not conducted regularly. One of the main

reasons is the non-availability of joint inversion codes in public domain. 2D joint inversion

were performed by Sasaki [138] followed by various authors [e.g. 20, 143, 146, 176].

Recently, Amatyakul et al. [2] presented WSJointInv2D-MT-DCR a joint inversion program

for 2D MT and DCR data based on Occam’s data space technique. However, in the presence

of 3D bodies, 2D inversion algorithm may not be an accurate choice [138]. Keeping this is

mind, we extended our code to implement 3D joint inversion of MT and DCR data.

In this chapter, we will discuss the additional features needed for implementation of joint

inversion of MT and DCR data in AP3DMT code. The assemblage of data sets of MT and

DCR and Jacobian are discussed. In addition, three crucial aspects, model discretization,

data scaling and error floor, as used in joint inversion are also discussed. Finally individual

and joint inversion of one synthetic test example is presented.

6.2 Joint Inversion of MT and DCR Data

In the following discussion, we will use the same notation as described earlier chapters. The

penalty function for the joint inversion of MT and DCR data after transformation (see 2.5.1)

is written as,

φ(m,dobs) = (dobs−F(m))T (dobs−F(m))+λmT m (6.2.1)

For implementation of joint inversion, different data sets of MT and DCR must be combined

as,

d =


dMT

dDCR


=


FMT (m)

FDCR(m)


 ; dobs =


dobs

MT

dobs
DCR


 . (6.2.2)

The data vector dobs
DCR = [ρa] is the NDCR dimension DCR data set obtained for a number of

sources. The MT data vector dobs
MT of dimension NMT is obtained for a range of frequencies

and can be represented as,

dobs
MT =




Zxx

Zxy

Zyx

Zyy




or




ρa
xy

φxy

ρa
yx

φyx




(6.2.3)
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As in case of MT different data types may be combined like Impedance and VTFs or Phase

Tensor and VTFs, etc. Similarly, the total number of the data Nd for the joint inversion is

the sum of the number of both data types, Nd = NMT +NDCR. The data covariance matrix,

diagonal matrix in this case is also written such that its size is same as the number of both

data types as,

Cd =


Cd

MT 0

0 Cd
DCR


 . (6.2.4)

A brief discussion on the other aspects like, model discretization, data scaling, error floor

etc., as implemented in the joint inversion are given in the following.

6.2.1 Model Discretization

Since, both data types corresponds to the same sub-surface resistivity structure, the same

model m can be used for joint inversion. Both techniques sense resistivity structures at

different depth (DCR shallow depth while MT deeper depth) hence grid discretization should

be such that it can accommodate both techniques. This is also necessary for high accuracy

of solutions for the forward problem. For DCR method the grids are designed on the basis

of the DCR configuration as discussed earlier. Since, MT may probe to greater depths,

the grid discretization is vertically extended to greater depths. The grids are also extended

horizontally on all four sides using larger grid spacing. This is to satisfy the boundary

conditions and to ensure high accuracy for the MT forward problem. However, such grid

discretization results in large number of model parameters. This increase in m will lead to a

longer computational time for solving the forward problems for both types of data.

6.2.2 Data Scaling

In joint inversion, the two different data sets, corresponding to MT and DCR are combined

together. Assuming other parameters being constant, like similar noise levels, the data set

with more number of independent data points can have significant influence on the imaging.

For example, consider a model with resistive subsurface features. Since, DCR method is

more sensitive to resistive features as compared to MT, the DCR data set might bias the joint

inverse model towards the DCR inverse model (obtained by DCR inversion only). To resolve

this crucial issue two different approaches can be used. A trade-off parameter between the

two data sets similar to the model regularization parameter λ may be considered. However,

109



instead of using additional parameter one can modify error bars and directly manipulate the

influence of each data set or its subset thus reducing biasness of any data type. Following

Commer and Newman [24] two different schemes are implemented.

In the first scheme, balancing is done solely on the basis of number of data points in each

data set. Let us consider MT and DCR data set and call them as data set 1 and 2 respectively.

Both of these set contain N1 and N2 data points, and assume N1 > N2. Then the set 2 is

up-weighted by applying a factor gw,

w̃n = wngw; gw =

√
N1
N2

, (6.2.5)

where wn are the inverse of the variances of the measurements. Since, data misfit φd depends

quadratically on wn hence, the square root. This scheme is likely to reduce the biasness

of data set with more number of data points if both data sets are characterized by similar

intrinsic sensitivities. If that is not the case then further up-weighting of a data set is required.

In second scheme, the re-weighting is done using the norms of the gradients of the data

misfit of both data sets computed individually. Here, the up-weighting factor gw for the data

set 2 is computed as,

gw =

√
‖∇φ1‖
‖∇φ2‖

. (6.2.6)

The gradient are computed using the initial guess model and provides an estimate of the

intrinsic data sensitivities. This scheme incorporates both the quantity (in terms of number

of data points) and resolution capacity in a joint data set.

6.2.3 Error Floor

If the data errors contained in the matrices Cd
MT and Cd

DCR are close to the true ones, there

is a certain danger of obtaining either a badly resolved model or an unstable model when

iterating to an nRMS of one for the re-weighted system. Hence, the desired nRMS should

be adopted according to the chosen weighting factors [67].

Let total number of data be Nd = NMT +NDCR. Assume the weights of DCR data are

re-weighted by a constant factor gw while MT data weights are unchanged. The nRMS takes

the following form,
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nRMS =

√
1

NMT +NDCR

{
NMT
∑

i=1

(
dobs

i −Fi(m)
σi

)2
+

NDCR

∑
i=1

(
gw

dobs
i −Fi(m)

σi

)2
}
,

nRMS =

√
1

NMT +NDCR
{Q1

MT +QDCR},

nRMS =

√
1

NMT +NDCR

{
Q1

MT +g2
wQ1

DCR

}
. (6.2.7)

If the data standard errors, σi, are correctly estimated, a reasonable fit to the data is obtained

for Q1
MT > NMT and Q1

DCR > NDCR. Hence, the desired nRMS should be chosen as,

nRMSopt =

√
1

NMT +NDCR

{
NMT +g2

wNDCR

}
. (6.2.8)

6.3 Example of Joint RMT and DCR Inversion

A modified version of 3D checkerboard pattern model [39], used for 3D MT in chapter 4, is

selected for demonstrating the joint inversion. The top layer is 100 m thick of resistivity 100

Ω-m while the substratum has resistivity of 10 Ω-m. The top layer, Fig. 6.1, consists of nine

conductive and nine resistive blocks (10 and 1000 Ω-m respectively). The top nine blocks

are at a depth of 0−20 m while lower 9 blocks are between 40−70 m. These two sections

(0−20 m and 40−70 m) are referred as L1 and L2 and are sensed by both the data (RMT

and DCR). For synthetic data, the model was discretized into 61 × 71 × 23 cells (excluding

cells in air for RMT case), with resolution of 10 m in horizontal direction. For the DCR

data, 10 profiles were placed, with inter-profile spacing 50−60 m, covering a length of 480

m (Fig. 6.1). In each profile there were 31 electrodes with a spacing of 20 m. Apparent

resistivity were computed for dipole-dipole configurations, with dipole length of 20 m and

separation factor n = 1−10. For RMT data, stations were placed 40 m apart between ±240

m on each profile(130 total stations). Data (off diagonal impedance tensor) was generated

for 10 periods, logarithmically spaced between 10−5−10−1 s. The combined data set has

5200 and 2350 data points for RMT and DCR respectively. Two percent random noise was

added to both data. The error floor for RMT was set at 2% of |ZxyZyx|1/2 for off-diagonal

impedance elements and for DCR at 2% of apparent resistivity. For all the inversion runs, a

homogeneous model of 100 Ω-m, was used as apriori and initial model. The initial model
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was discretized into same number of cells as the synthetic model.

Three inversion were performed. First we invert the RMT data only. In 31 NLCG

iterations the nRMS error reduced from 58.4 to 1.55. The inverted model thus obtained

is shown in Fig. 6.2b. Next, we invert the DCR data only. In 34 NLCG iterations the nRMS

error reduced from 101.5 to 1.82 resulting in inverted model shown in Fig. 6.3a. Finally,

RMT and DCR data set were inverted simultaneously. Before inversion, the DCR data set

was up-weighted based on the number of data points in each set (scheme 1 as discussed

above). In 52 NLCG iterations the nRMS error reduced from 97.2 to 2.45 . The inverted

model thus obtained is shown in Fig. 6.3b. The inverted model for RMT inversion, DCR

inversion and RMT−DCR joint inversion will be referred as M1, M2 and M3 respectively in

the following discussion.

For comparison of the M1, M2 and M3 we have focused on the model parameters

(resistivity of cells) occupied by resistive and conductive blocks. Four such regions are the

volume occupied by conductive blocks in L1, resistive blocks in L1, conductive blocks in L2

and resistive blocks in L2. For detailed comparison between three models, we have drawn 1D

sections, along z− and y− direction (Fig. 6.4 and 6.5) similar to those drawn for ‘Rubick’

model (chapter 4). Also number of model parameters, in percentage, (ratio of cells in

particular resistivity range to total number of cells in a volume), in various resistivity ranges

are computed. For example, consider all the cells in the volume occupied by 4 conductive

blocks in L1. The percentage of these cells are computed for different resistivity ranges.

Such a task is performed for all the four regions and represented in stem plot (Fig. 6.6) as

well as in tabular form (Table 6.1).

In models M1, M2 and M3 all the conductive and the resistive blocks in L1 are recovered

very well. The lateral dimensions of these blocks are well demarcated. Approximately 31%

of the cells of M1 belonging to conductive blocks lies in the range 5− 15 Ω-m while this

is approximately 50% for both M2 and M3. For M1, the resistivity of conductive blocks

is more spread as compared to M2 and M3. For resistive blocks there is a difference in

models M1, M2 and M3. In M1 the resistivity of the resistive blocks in L2 hardly exceeds

600 Ω-m while for M2 and M3 it even exceeds 1000 Ω-m. Thus in M1 resistivity values

are under-estimated, as expected, while for M2 and M3 they are over-estimated. Almost

30% of the parameters, in M2 and M3, have resistivity more than 1000 Ω-m. In terms of

imaging capability for shallow conductive features RMT and DCR gives same results while
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for resistive features DCR gives better result as compared to RMT. For the shallow features

there seems to be no superiority of joint inversion over individual inversion as DCR inversion

alone gives result similar to RMT-DCR inversion.

There is a marked difference in the imaging of conductive and the resistive blocks in L2

region in these three models. The base of conductive blocks is smeared more in M1 and M2

as compared to M3. Also the top of these blocks is at shallow depth in M2 as compared

to M1 and M3. Only 5% of the cells in the volume occupied by conductive blocks in L2

lies between 5− 10 Ω-m in M1 while 13% and 19% for M2 and M3 respectively. Also, as

evident from the stem plot in terms of imaging of conductive features at intermediate depth,

RMT−DCR joint inversion gives better result as compared to RMT or DCR inversion only.

There is a striking difference in the resolution of resistive blocks in L2. In M1, they are not

recovered. Almost 86% of the cells in this volume lies between 50− 150 Ω-m. This can

cause a misinterpretation if this data set was from a field survey. In M2, these features are

better recovered as compared to M1. These resistivity reaches upto 350 Ω-m. However, in

M3 these blocks are very well recovered. Also the resistivity reaches upto 550 Ω-m. From

Fig. 6.4 and 6.5, it is observed that resistive features are better resolved in M3 as compared

to M2 and M1. The same is evident from Fig. 6.6d.

In M1, the substratum is recovered but the conductive structures of L2 and substratum

are not resolved. This may be due to the less number of periods per decade. For M2, the

substratum was not resolved at all. From this inversion result one can infer that joint inversion

results in better inverse models as compared to individual inversion.
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Figure 6.1: (top) Plan view of resistivity model for 3D test, with circles (red) representing
electrodes and circles (blue) representing RMT station, and (bottom) Cross-section view of
the model at x = 0 profile.
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Figure 6.4: 1D section of true model (black), inverted model using RMT data only (red),
inverted model using DCR data (blue), and RMT-DCR joint inversion (green) at three
different (x, y) points.
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Figure 6.5: 1D section of true model (black), inverted model using RMT data only (red),
inverted model using DCR data (blue), and RMT−DCR joint inversion (green) at three
different (x, z) points. This section passes through all the three different anomalies
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Figure 6.6: Stem plot showing percentage of cell in various resistivity ranges for (a) volume
occupied by conductive blocks in L1, (b) resistive blocks in L1, (c) conductive blocks in L2,
and (d) resistive blocks in L2.
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Table 6.1: Table showing information about number of model parameters and resistivity
range for inversion of MT, DCR and MT-DCR joint inversion. These model parameters
corresponds to the cell of resistive and conductive blocks only.

Res. Range MT Inv. DCR Inv. MT−DCR Inv.
(Ω-m) (%) (%) (%)

Cells for Conductive Blocks in L1
< 5 − 2.29 0.67
5−15 31.44 49.48 51.81
15−25 32.78 28.01 29.44
25−35 19.70 12.50 9.40
35−45 10.64 5.82 5.82
45−55 4.15 1.62 1.67
> 55 1.29 0.29 1.19

Cells for Resistive Blocks in L1
100−300 24.08 15.33 14.93
300−500 54.98 18.62 17.54
500−700 13.88 24.88 19.10
700−900 5.78 12.20 13.76
900−1100 1.28 6.22 10.19
1100−1300 − 6.66 7.74
1300−1500 − 4.98 4.82
1500−1700 − 6.94 2.89
1700−1900 − 3.77 2.25
> 1900 − 0.40 6.78

Cells for Conductive Blocks in L2
5−15 5.50 13.24 19.34
15−25 16.25 26.32 25.16
25−35 18.34 22.19 18.58
35−45 17.17 21.43 13.92
45−55 14.81 10.35 10.39
55−65 10.71 4.65 5.70
65−75 7.70 1.36 3.49
75−85 4.33 0.36 1.97
85−95 2.85 0.08 0.84
> 95 2.33 − 0.60

Cells for Resistive Blocks in L2
50−150 86.12 4.53 1.81
150−250 13.88 62.45 15.55
250−350 − 31.11 32.40
350−450 − 1.91 25.38
450−550 − − 16.17
> 550 − − 8.68
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In the present model large number of RMT sites are used. Although additions of

additional sites does not add much computational burden if the new sites are within the

modeling domain (as in the present case). However, acquisition of additional sites will be

time consuming and costly. Keeping this in mind, RMT stations were reduced from 130 to

just 15 (inter station spacing 100 − 150 m) thus representing a more realistic field scenario.

Out of these 15 sites 9 are over the blocks and rest 6 are over the halfspace. The total number

of RMT data points were reduced to 600 only. For the combined data set three inversion runs

were performed: (i) Run 1, without data re-weighting, (ii) Run 2, with data re-weighting

based on number of data points in the individual data sets, and (iii) Run 3, data re-weighting

based on norms of gradient of each data set computed individually.

Run 1

For this run no data scaling was used. In 72 NLCG iterations the nRMS error reduced from

95.3 to 2.3. In the inverted model, Fig. 6.7a, all the main features are recovered. However,

visually the quality of inverted model is poor as compared to inverse result obtained with

data re-weighting (cf Fig. 6.7b-c). The resistivity of substratum is less than that obtained in

Run 2 & 3. This is due to the fact that DCR data was more as compared to RMT, hence, it

overshadowed RMT data set.

Run 2

As DCR data was more in number, RMT data weights were up-weighted by a factor of 1.97

(see Section 6.2.2 for the definition of factor) and the desired error floor was modified to

1.09 from 1. In 62 NLCG iterations the nRMS error reduced from 107.9 to 2.9. In the

inverted model, Fig. 6.7b, all the main features are recovered. The obtained resistivity of the

substratum is more as compared to that obtained in Run 1. This is due to the fact that more

weight was given to the RMT data as compared to in Run 1 hence, the overshadowing of

DCR data over RMT data is reduced.

Run 3

For data scaling, norm of gradient for individual data set were computed and RMT data

weights were up-weighted by a factor of 1.42 and the desired error floor was modified to 1

from 1.04. In 72 NLCG iterations the nRMS error reduced from 100.5 to 2.4. In the inverted
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model, Fig. 6.7c, all the main features are recovered. The obtained inverse model is similar

to that in Run 2. However, resistivity of the substratum is more as compared to that obtained

in Run 2. This is due to the fact that weight was given to the RMT data is less than those

given in Run 2.

Fig. 6.8 − 6.9 (only for 12 sites, 9 sites over blocks and 3 over half space) gives the

misfit plot of apparent resistivity and phase for Zxy and Zyx for Run 1, Run 2 and Run 3.

From these figures it is evident that data scaling gives better inversion result as compared to

no data scaling. For example, the sites that are over the resistive blocks (site number 002,

004, 008, 012 and 014) misfit is phases is less for Run 2 and Run 3 as compared to Run 1

for intermediate period. For the sites that are over the conductive blocks (site number 003,

007, 009, 013) misfit is phases is less for Run 2 and Run 3 as compared to Run 1 for periods

less than 10−2 s. Fig. 6.10 shows comparison of observed and predicted data for a profile

at x = +30 in pseudosection for the three runs. No remarkable differences are seen in the

pseudosection. This maybe due to the fact that the top features are imaged similarly in the

three runs. In the present case, the DCR data is not sensitive to the substratum (due to limited

depth of investigations) hence, the indifference.

In the three runs, visually the quality of inverted models is inferior as compared to one

with 130 RMT stations (Fig. 6.3b). This is due to the fact that inter-station spacing plays

a crucial role in the reconstruction of the model. But, with only few RMT stations one can

improve the inversion results and also recover deeper features.
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Figure 6.7: (from top) Inverted model for Run 1, 2 and 3. Note that in the cut-away view the
upper surface shown is at 10 m depth, but the structures shown extend to the surface.
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Figure 6.8: Misfit plot of apparent resistivity and phase for Run 1, Run 2 and Run 3
for Zxy elements. Red circles represents the observed data whereas lines (red, blue and
green) represents computed data for the inverse models (Run 1, Run 2 and Run 3). The
suffix in parenthesis after the sites name indicate the location of the site over type of zone;
‘b’-background, ‘c’-conductive, and ‘r’-resistive.
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Figure 6.9: Misfit plot of apparent resistivity and phase for Run 1, Run 2 and Run 3
for Zyx elements. Red circles represents the observed data whereas lines (red, blue and
green) represents computed data for the inverse models (Run 1, Run 2 and Run 3). The
suffix in parenthesis after the sites name indicate the location of the site over type of zone;
‘b’-background, ‘c’-conductive, and ‘r’-resistive.
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Figure 6.10: (a) Synthetic Dipole-Dipole array data shown in pseudosection, and predicted
Dipole-Dipole array data of the inverse model for (b) Run 1, (c) Run 2, and (d) Run 3 for
x =+30 m profile.
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6.4 Summary

AP3DMT code is extended to AP3DMT-DC in which the individual or joint inversion of

MT and DCR data is included. Through synthetic experiment it is demonstrated that joint

inversion results in a better inverse models as compared to individual inversion. It is observed

that data scaling proves to be very crucial. Data re-weighting based solely on the number of

data points in each dataset will give more contribution to the data set with less data points.

Data re-weighting is trival to compute but it does not give any weightage to the sensitivity

of data weight. Here, we have presented sythetic examples only. Test on field data will be

conducted in the future work.
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Chapter 7

SUMMARY AND CONCLUSION

3D inversion of Magnetotelluric (MT) data is a very large scale and computationally

intensive task. The mandate of this study was to develop an accurate, efficient and user

friendly, MATLAB based 3D forward modeling and inversion algorithm for MT data. The

developed code, AP3DMT, is in modular form where, the basic components of inversion −

forward modeling, model regularization, data functionals, and sensitivity computation are

standalone thus making the code easy to modify as per the requirement. A brief summary of

developed algorithms is as follows.

A 3D forward modeling algorithm for MT based on finite difference method is developed.

The accuracy of the developed forward modeling algorithm is rigorously tested and verified.

In the first phase of development of inversion algorithm, a 3D inversion algorithms based

on Non-Linear Conjugate Gradient and Gauss-Newton optimization technique (model space

and data space) were developed for 3D MT data. The algorithms were rigorously tested on

several synthetic and a real field data set.

During the development of divergence correction sub-program, we identified that it can

be developed into a full fledged 3D DCR inversion code. Taking the advantage of the

modular form of AP3DMT, we modified only the forward modeling and Jacobian part

to accommodate the DCR inversion in the original code. The DCR forward modeling

is based on finite difference method. For removal of singularity due to a point source

primary/secondary approach is used. For solving the system matrix, pre-conditioned iterative

solver or direct solver can be used, depending on the size of the matrix and number of

sources. The inversion scheme is similar to MT, where sensitivity forward calculation are

used for the sensitivity matrix. Both forward and inverse modeling is tested rigorously on
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different models.

Once we have developed inversion codes for MT and DCR inversion, we implemented

joint inversion of MT and DCR data to improve the interpretation. Through a synthetic

example it is demonstrated that the joint inversion results in a better model than inversion of

individual dataset. Two different data weighting schemes for joint inversion are tested.

The conclusions drawn from this study are given in next section.

7.1 Conclusion

The new developed code, AP3DMT on MATLAB platform is versatile, robust, flexible and

user friendly. It can be used to invert just the MT data or the DCR data, or invert both data

sets simultaneously. The MATLAB platform provides a powerful computation environment

along with extensive numerical libraries; data visualization capabilities.

The versatility of the grid generator is demonstrated for a two different type of models

(target bodies represented using cuboids and polyhedrons) and construction of resistivity

matrix is presented for a spiral body embedded in a half space.

The forward modeling responses for 3d2 model computed using AP3DMT are in

good agreement with the responses obtained using ModEM. The absolute relative error in

amplitude of off-diagonal impedance is less than 2% while for phases it is less than 1.5%.

Through synthetic experiment on a two block model it is demonstrated that all three

inversion (NLCG, CG-MS and CG-DS) results in the similar inverse model. The difference is

the convergence rate and computation time. For the test model, it was found that convergence

of CG-DS (9 iterations) is slow as compared to CG-MS (6 iterations) for same parameters.

Further this convergence rate depends on the number of iterations used in the CG routine. If

the matrix equations (inversion) is not solved to an appropriate accuracy, the inversion does

not converge to a desired level (nRMS value = 1). If the matrix equation is solved at higher

tolerance (by calling more CG iterations), it will increase the computation time although

the desired misfit may reach in less number of inversion iterations. To strike a balance, we

found after initial 3-4 inversion iterations, CG iterations should be increased in order to reach

desired misfit level. As compared to GN, NLCG requires more number of iterations (47 in

total) but less computation time.

Further, the inversion of two different synthetic data sets (computed using ModEM)
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demonstrates the accuracy of the developed code AP3DMT. For the Rubick model, main

features were recovered. For the DTM2 model, the circular shape of the hemisphere was

recovered although the correct representation of the circular body is limited due to the use

of rectangular meshing. However, the deeper part of the structure is not delineated. In

this model, the nRMS value reaches the desired value, but a fit of responses for different

sites and different periods reveals the fact that for sites that lie away from the edge of

the hemisphere, there is an excellent agreement between the observed and the computed

responses as compared to sites that are close to the edge of the hemisphere. Further, fit of

longer periods is better as compared to shorter periods. This indicates that one should not

rely on a single nRMS value but more carefully examine the misfit over all data space. It

was observed that the inverted model, using Roorkee-Gangotri field data, obtained using

AP3DMT closely matches the model obtained using ModEM for the same data set.

For DCR inversion, GN-MS proves to be robust. For the test model, similar to a mine

dump, we were able to recover the shape and size of the anomaly.

The joint inversion results in better inverse model as compared to individual inversion.

For the test model, there is marked improvement in the resolution of the resistive features in

the second layer. It is observed that data scaling proves to be very crucial else the influence

of more numerous data set of one type will become significant and it will overshadow data

set of second type. Data re-weighting, based solely on the number of data points in each

dataset or norms of the gradients of the data misfit will give more contribution to the data set

with less data points thus reducing biasness of data set with more number of data point.

7.2 Scope for Further Research

This study has produced efficient, reliable and robust algorithms for analysis and

interpretation of MT and DCR data. There are several possibilities of further extension of

the work done in this study on the following lines:

Present algorithms work for isotropic medium and these can be modified for anisotropic

medium.

The algorithm can compute responses using partitioning of fields, hence forward

modeling of controlled source EM methods can be added simply by adding primary field

response computation subprogram for the given EM source.
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Present algorithms for MT [151] and CSEM [29] are standalone and these can be

combined together for joint inversion of CSEM-MT data.
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Appendix A

Finite difference approximation of Governing equation For MT

Governing equation of EM modeling is given as,

5×5×E+ iωµ0σE = 0, (A-1)

This vector PDE can be decomposed into three scaler PDEs and these equations are

written as,

− ∂ 2Ex

∂y2 −
∂ 2Ex

∂ z2 +
∂ 2Ey

∂x∂y
+

∂ 2Ez

∂x∂ z
+ k2Ex = 0, (A-2)

−
∂ 2Ey

∂x2 −
∂ 2Ey

∂ z2 +
∂ 2Ex

∂x∂y
+

∂ 2Ez

∂y∂ z
+ k2Ey = 0, (A-3)

− ∂ 2Ez

∂x2 −
∂ 2Ez

∂y2 +
∂ 2Ex

∂x∂ z
+

∂ 2Ey

∂y∂ z
+ k2Ez = 0, (A-4)

where k2(= iωµ0σ) denotes wavenumber, subscripts x, y, z denote the components of

electric field in x, y, z directions respectively. Using the central difference formula on

staggered grid, eq A-2, A-3 and A-4 for i, j,k node can be approximated as:
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[
2

4y j−14 y j
+

2
4zk−14 zk

+ k2(i+
1
2
, j,k)

]
Ex(i+

1
2
, j,k)

−

[
1

4y j−14 y j+ 1
2

]
Ex(i+

1
2
, j−1,k)−

[
1

4y j4 y j+ 1
2

]
Ex(i+

1
2
, j+1,k)

−

[
1

4zk−14 zk+ 1
2

]
Ex(i+

1
2
, j,k−1)−

[
1

4zk4 zk+ 1
2

]
Ex(i+

1
2
, j,k+1)

+

[
1

4xi4 y j+ 1
2

]
Ey(i, j− 1

2
,k)−

[
1

4xi4 y j+ 1
2

]
Ey(i, j+

1
2
,k)

−

[
1

4xi4 y j+ 1
2

]
Ey(i+1, j− 1

2
,k)+

[
1

4xi4 y j+ 1
2

]
Ey(i+1, j+

1
2
,k)

+

[
1

4xi4 zk+ 1
2

]
Ez(i, j,k− 1

2
)−

[
1

4xi4 zk+ 1
2

]
Ez(i, j,k+

1
2
)

−

[
1

4xi4 zk+ 1
2

]
Ez(i+1, j,k− 1

2
)+

[
1

4xi4 zk+ 1
2

]
Ez(i+1, j,k+

1
2
) = 0,

[
2

4xi−14 xi
+

2
4zk−14 zk

+ k2(i, j+
1
2
,k)
]

Ey(i, j+
1
2
,k)

−

[
1

4xi−14 xi+ 1
2

]
Ey(i−1, j+

1
2
,k)−

[
1

4xi4 xi+ 1
2

]
Ey(i−1, j+

1
2
,k)

−

[
1

4zk−14 zk+ 1
2

]
Ey(i, j+

1
2
,k−1)−

[
1

4zk4 zk+ 1
2

]
Ey(i, j+

1
2
,k+1)

+

[
1

4y j4 x1+ 1
2

]
Ex(i−

1
2
, j,k)−

[
1

4y j4 x1+ 1
2

]
Ex(i+

1
2
, j,k)

−

[
1

4y j4 x1+ 1
2

]
Ex(i−

1
2
, j+1,k)+

[
1

4y j4 x1+ 1
2

]
Ex(i+

1
2
, j+1,k)

+

[
1

4y j4 zk+ 1
2

]
Ez(i, j,k− 1

2
)−

[
1

4y j4 zk+ 1
2

]
Ez(i, j,k+

1
2
)

−

[
1

4y j4 zk+ 1
2

]
Ez(i, j+1,k− 1

2
)+

[
1

4y j4 zk+ 1
2

]
Ez(i, j+1,k+

1
2
) = 0,
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[
2

4xi−14 xi
+

2
4y j−14 y j

+ k2(i, j,k+
1
2
)

]
Ez(i, j,k+

1
2
)

−

[
1

4xi−14 xi+ 1
2

]
Ez(i−1, j,k+

1
2
)−

[
1

4xi4 xi+ 1
2

]
Ez(i+1, j,k+

1
2
)

−

[
1

4y j−14 y j+ 1
2

]
Ez(i, j−1,k+

1
2
)−

[
1

4y j4 y j+ 1
2

]
Ez(i, j+1,k+

1
2
)

+

[
1

4zk4 xi+ 1
2

]
Ex(i−

1
2
, j,k)−

[
1

4zk4 xi+ 1
2

]
Ex(i+

1
2
, j,k)

−

[
1

4zk4 xi+ 1
2

]
Ex(i−

1
2
, j,k+1)+

[
1

4zk4 xi+ 1
2

]
Ex(i+

1
2
, j,k+1)

+

[
1

4zk4 y j+ 1
2

]
Ey(i, j− 1

2
,k)−

[
1

4zk4 y j+ 1
2

]
Ey(i, j+

1
2
,k)

−

[
1

4zk4 y j+ 1
2

]
Ey(i, j− 1

2
,k+1)+

[
1

4zk4 y j+ 1
2

]
Ey(i, j+

1
2
,k+1) = 0.
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Appendix B

Expression of L for MT
In this section first we will discuss L matrix for Impedance, apparent resistivity and phase

and phase tensor.

L for Impedance

Let Z be a 2×2 impedance tensor with its elements defined as Zxx, Zxy, Zyx and Zyy. For a

single frequency, the data d can be written as,

d =




Zxx

Zxy

Zyx

Zyy




(B-5)

where, each block (i = 1,2 ; j = 1,2) is a complex column vector (of length equal to number

of sites) with elements representing the corresponding components of impedance values at

the observation sites.

The matrix L (complex) takes the form as,

L =




∂Zxx
∂e

∂Zxy
∂e

∂Zyx
∂e

∂Zyy
∂e



=




Ha
x(λex− Z̄xxλbx− Z̄xyλby) Ha

y(λex− Z̄xxλbx− Z̄xyλby)

Hb
x(λex− Z̄xxλbx− Z̄xyλby) Hb

y(λex− Z̄xxλbx− Z̄xyλby)

Ha
x(λey− Z̄yxλbx− Z̄yyλby) Ha

y(λey− Z̄yxλbx− Z̄yyλby)

Hb
x(λey− Z̄yxλbx− Z̄yyλby) Hb

y(λey− Z̄yxλbx− Z̄yyλby)




(B-6)

with each block of size nobs×Ne. In eq B-6, Hk
x and Hk

y (k = a,b) are diagonal matrices

with elements as inverse of magnetic fields at local sites, Z̄ik (i = x,y; j = x,y) represents the

diagonal matrices with elements as impedance values at local sites and λex,λey and λbx,λby

are interpolation and transformation matrices respectively. Note that the transformation

matrices λbx,λby are real and frequency independent, hence care must be taken while

performing any operation involving these matrices. For example Z̄xxλbx will become

αZ̄xxλbx where α is (−iωµ)−1.
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L for VTFs

For VTFs only first 2 rows in eq B-6 exists with λex replaced by λbz and impedance matrices

with VTFs matrices by hence, the expression becomes,

L =




∂Tx
∂e

∂Ty
∂e


=


Ha

x(λbz− T̄xλbx− T̄yλby) Ha
y(λbz− T̄xλbx− T̄yλby)

Hb
x(λbz− T̄xλbx− T̄yλby) Hb

y(λbz− T̄xλbx− T̄yλby)


 . (B-7)

Expression of L for Apparent resistivity and Phase

Apparent resistivity and phase provide examples of observations that are intrinsically real.

In terms of the impedance, the apparent resistivity is defined as,

ρa = (ωµ)−1 |Z|2 = (ωµ)−1
[
Z2

r +Z2
i

]
, (B-8)

where Zr and Zi are real and imaginary parts of the impedance Z and ω is angular frequency.

Applying the chain rule,

∂ρa

∂m
=

∂ρa

∂Zr

∂Zr

∂m
+

∂ρa

∂Zi

∂Zi

∂m
=

2
ωµ

[
Zr

∂Zr
∂m +Zi

∂Zi
∂m

]
(B-9)

=
2

ωµ

[
Zrℜ

∂Z
∂m +Ziℑ

∂Z
∂m

]
= ℜ

[
2Z∗
ωµ

∂Z
∂m

]
= ℜ

[
2Z∗IT

Z
ωµ

∂Z
∂m

]
. (B-10)

Thus, Iρ = 2Z∗IT
Z/ωµ gives the (complex) row of L for an apparent resistivity, again with the

convention that the real part of the product in equation is taken taken for the corresponding

row of the real Jacobian. Similarly for the phase φ = tan−1(Zr/Zi) , we find that the row of

L takes the form Iφ = iZ∗IT
Z/|Z|

2.

Expression of L for Phase Tensor

Caldwell et al. [17] introduced the concept of a ‘phase tensor’ (PT) and demonstrated that

regional phase information can be recovered directly from the observed impedance tensor,

where in, both the near-surface inhomogeneity and the regional conductivity structures can

be 3-D. Hence, elements of PT can be inverted directly. Following Caldwell et al. [17], PT
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is defined as,

Φ = X−1Y =
1

det X


X22Y11−X12Y21 X22Y12−X12Y22

X11Y21−X21Y11 X11Y22−X21Y12


 , (B-11)

where det X = X11X22− X21X12 and X and Y are the real and imaginary part of the MT

impedance Z = X + iY . We invert the phase tensor in term of its 4 real-valued components

Φi j. Following the chain rule the sensitivity of the phase tensor Φ with respect to the solution

of the electric fields e is,

∂Φ

∂e
=

∂Φ

∂Z
∂Z
∂e

=
∂Φ

∂X
∂X
∂e

+
∂Φ

∂Y
∂Y
∂e

. (B-12)

eq B-12 means that sensitivities for phase tensor components can be obtained by a linear

combination of the impedance sensitivities weighted by the derivatives of the phase tensor

elements with respect to the (real and imaginary parts of the) impedance tensor elements

[77, 121].

∂Φi j

∂e
=

∂Φi j

∂Z
∂Z
∂e

=




∂Φi j
∂X11
∂Φi j
∂X12

...
∂Φi j
∂Y22



.




∂X11
∂e

∂X12
∂e
...

∂Y22
∂e



. (B-13)

The derivatives of Φ11 with respect to the eight components of X and Y are,

Φ11 =
X22Y11−X12Y21

det X
=

X22Y11−X12Y21

X11X22−X21X12
, (B-14)

∂Φ11

∂X11
=

1
(det X)2

[
X22(X22Y11−X12Y21)

]
=

1
det X

X22Φ11, (B-15)

∂Φ11

∂X12
=

1
(det X)2

[
−Y21det X−X21(X22Y11−X12Y21)

]
=− 1

det X
(Y21 +X21Φ11), (B-16)

∂Φ11

∂X21
=

1
(det X)2

[
−X12(X22Y11−X12Y21)

]
=− 1

det X
X12Φ11, (B-17)

∂Φ11

∂X22
=

1
(det X)2

[
Y11det X+X11(X22Y11−X12Y21)

]
=

1
det X

(Y11 +X11Φ11), (B-18)

∂Φ11

∂Y11
=

1
(det X)2 (X22det X) =

1
det X

X22, (B-19)

∂Φ11

∂Y12
= 0, (B-20)
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∂Φ11

∂Y21
=

1
(det X)2 (−X12det X) =

1
det X

X12, (B-21)

∂Φ11

∂Y22
= 0. (B-22)

Similarly, derivatives for the other elements of the phase tensor can be derived.
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Appendix C

Finite difference approximation of Governing equation For DC
Governing equation of DCR modelling is given as,

∇ · [σ(x,y,z)∇v(x,y,z)] = Iδ (x− xq)δ (y− yq)δ (z− zq). (C-1)

This vector PDE can be decomposed into primary and secondary and the equation for

secondary potentials is written as,

∇ · [σ(x,y,z)∇va(x,y,z)] =−∇ · [σa(x,y,z)∇vn(x,y,z)], (C-2)

where σa denotes conductivity, subscript a represents anomalous media and subscripts n

normal respectively. Using the central difference formula on normal grid, eq C-2 for i, j,k

node can be approximated as,

[
σ(i, j− 1

2 ,k)
4y j−14 y j+ 1

2

+
σ(i, j+ 1

2 ,k)
4y j4 y j+ 1

2

+
σ(i− 1

2 , j,k)
4xi−14 xi+ 1

2

+
σ(i+ 1

2 , j,k)
4xi4 xi+ 1

2

+
σ(i, j,k− 1

2)

4zi4 zk+ 1
2

+
σ(i, j,k− 1

2)

4zk4 zk+ 1
2

]
vs(i, j,k)

−

[
σ(i, j− 1

2 ,k)
4y j−14 y j+ 1

2

]
vs(i, j−1,k)−

[
σ(i, j+ 1

2 ,k)
4y j4 y j+ 1

2

]
vs(i, j+1,k)

−

[
σ(i− 1

2 , j,k)
4xi−14 xi+ 1

2

]
vs(i−1, j,k)−

[
σ(i+ 1

2 , j,k)
4xi4 xi+ 1

2

]
vs(i+1, j,k)

+

[
σ(i, j,k− 1

2)

4zi4 zk+ 1
2

]
vs(i, j,k+1)−

[
σ(i, j,k− 1

2)

4zk4 zk+ 1
2

]
vs(i, j,k+1) = RHS, (C-3)

where, RHS is computed using the central difference formula as given above.
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[52] Günther, T., Rücker, C., and Spitzer, K. (2006). Three-dimensional modelling and

inversion of DC resistivity data incorporating topography-II. Inversion. Geophysical

Journal International, 166(2):506–517.

145



[53] Haber, E. (2005). Quasi-Newton methods for large scale electromagnetic inverse

problem. Inverse Problem, 21:305–317.

[54] Haber, E., Ascher, U. M., Aruliah, D. A., and Oldenburg, D. W. (2000). Fast Simulation

of 3D Electromagnetic Problems Using Potentials. Journal of Computational Physics.,

163:150–171.

[55] Haber, E., Ascher, U. M., and Oldenburg, D. W. (2004). Inversion of 3D

electromagnetic data in frequency and time domain using an inexact all-at-once approach.

Geophysics, 69:1216–1228.

[56] Haber, E., Oldenburg, D. W., and Shekhtman, R. (2007). Inversion of time

domain three-dimensional electromagnetic data. Geophysical Journal International,

171:550–564.

[57] Habibian, B. D., Brasse, H., Oskooi, B., Ernst, T., Sokolova, E., Varentsov, I., EMTESZ

Working Group, et al. (2010). The conductivity structure across the Trans-European

Suture Zone from magnetotelluric and magnetovariational data modeling. Physics of the

Earth and Planetary Interiors, 183(3):377–386.

[58] Heise, W., Caldwell, T. G., Bibby, H. M., and Bannister, S. C. (2008).

Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal

field, Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 173:740–750.

[59] Heise, W., Caldwell, T. G., Bibby, H. M., and Bennie, S. L. (2010). Three-dimensional

electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic

Zone, New Zealand. Geophysical Research Letters, 37 (10):art. no. L10301.

[60] Hohmann, G. W. (1975). Three dimensional induced polarization and EM modeling.

Geophysics, 40:309–324.

[61] Israil, M., Mamoriya, P., Gupta, P. K., and Varshney, S. K. (2016). Transverse tectonics

feature delineated by modelling of magnetotelluric data from Garhwal Himalaya corridor.

Current Science, 111(5).

[62] Israil, M., Tyagi, D., Gupta, P. K., and Niwas, S. (2008). Investigations for imaging

electrical structure of Garhwal Himalaya corridor, Uttarakhand, India. Journal of Earth

System Sciences, 117:189–200.

146



[63] Jones, F. and Pascoe, L. (1972). The perturbation of alternating geomagnetic fields

by three-dimensional conductivity inhomogeneities. Geophysical Journal International,

27(5):479–485.

[64] Jones, K. A., Ingham, M. R., and Bibby, H. M. (2008). The hydrothermal vent system

of Mount Ruapehu, New Zealand– a high frequency MT survey of the summit plateau.

Journal of Volcanology and Geothermal Research, 176:591–600.

[65] Julia, J., Ammon, C., Herrmann, R., and Correig, A. M. (2000). Joint inversion

of receiver function and surface wave dispersion observations. Geophysical Journal

International, 143(1):99–112.

[66] Kalscheuer, T., Bastani, M., Donohue, S., Persson, L., Pfaffhuber, A. A., Reiser,

F., and Ren, Z. (2013). Delineation of a quick clay zone at Smørgrav, Norway, with

electromagnetic methods under geotechnical constraints. Journal of Applied Geophysics,

92:121–136.
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