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ABSTRACT

Over the past decades, mesh reducing techniques (meshfree or meshless) have considered

as effective numerical techniques for solving engineering problems. Meshing difficulties

and consumption of more time for specific engineering problems, in the existing numerical

methods (FDM,FEM,FVM), which produces serious numerical errors, were the initial

thrust for the development of the meshfree methods.

The predefined numerical methods(FDM, FEM, FVM) is not well suited to those problems

which having complex geometries, large deformation of the materials, encountering moving

discontinuities such as crack propagation along arbitrary and complex paths, involving

meshing or remeshing in structural optimization problems and moving material interfaces

etc (Liu, 2003a). Therefor it is impossible to completely overcome to these difficulties by a

well known mesh-based method.

Due to overcome the above mentioned difficulties by the mesh reducing techniques, the

meshfree or meshless methods achieved great attentions from past few decade. There are

several meshfree techniques have been developed by the previous researchers, in which

main attentions achieved by Lucy (1977) and Gingold and Monaghan (1977) by his first

developed meshfree technique to solve the astrophysical phenomena, which is well known

as SPH method now these days.

Due to inaccurate or having large numerical errors at the boundary in the SPH method,

further various types of meshfree techniques have been developed such as diffuse element

method(DEM), element free Galerkin(EGG), hp Cloud method, reproducing kernal particle

method, finite point method (FPM), partition of unity method (PUM), boundary node

method (BNM), local boundary integral equation (LBIE) method, meshless local Petrov-

Galerkin method (MLPG) etc.

Between these meshfree techniques having there advantages and disadvantages, not consid-

ered as complete meshfree technique because to need a background mesh for integration

iii



ABSTRACT iv

purpose of the computational domain except LBIE and MLPG method. The MLPG

and LBIE is the only complete meshfree methods which acts as a locally and does not

need any background mesh for integration. Atluri and Zhu (1998a) were the first who

developed the MLPG method for solid mechanics problems. But for the time being MLPG

achieved great attentions to solve structural mechanics, fluid flow (convection-diffusion)

phenomena and other engineering field problems successfully. Hence Meshless Local-Petrov

Galerkin (MLPG) is selected as a numerical tool for our objectives because of its truly

meshfree characteristics for the various types of bench mark engineering problems having

one dimensional and two dimensional space, including diffusion problems and fluid flow

examples to check its efficiency and accuracy. Indeed non-Newtonian fluid flow behavior is

encountered in almost all the chemical as well as allied processing industries. Therefor

this method is extended for the one dimensional and two dimensional complex fluid flow

simulations, because of all the natural rehology follows the non-Newtonian behaviors and

are very useful such as sewage industries, paint industry, water treatment plants and

other process industries etc. Due to very limited or negligible research has been done

in the complex fluid flow simulations by using this method. Therefor In this study, a

numerical investigation is done to observe the complex fluid flow behavior and characterize

the non-Newtonian fluid properties.

Based on considering available literature in chapter 2, the essential features and its numer-

ical formulation of MLPG method, basic numerical techniques to impose the boundary

conditions are explained in chapter 3. According to study the MLPG needs three basic

steps to formulate on a local sub-domain Ωs in to entire computational domain Ω, as

(1) a weight function w(x), to convert the PDE in to weaker consistency, (2) a basis

function P (x) and (3) a shape function, which is formulated with the help of basis function

P (x) by using non-element interpolation technique such as moving least square (MLS)

approximations (Lancaster and Salkauskas, 1986). It is clearly distinguished between

support domain ΩJ
tr and test domain ΩI

te, and to select the suitable domain sizes for

multidimensional spaces. The types of MLPG and their applications are explained for

different field problems as given in Atluri and Shen (2005). Due to the complex nature of

MLPG integrational technique described in Atluri et al. (1999b), the Gauss integration

technique for quadrature domain Ωq are considered, which is well explained in the book

”Meshfree Methods, moving beyond the finite element method” (Liu, 2003a).

A computational tool (C++) for MLPG has been developed to validate the basic bench

mark CFD problems for 1D space diffusion problems given in the text book Versteeg

and Malalasekera (2007) and 2D diffusion problems. For one dimensional problem the
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numerical solutions are validated with exact solution, and for 2D space the numerical

solution are validated with commercial CFD package FLUENT 6.3. The results shows very

close agreement, thus it is expected that MLPG method (which is a truly meshless) is very

promising in solving engineering heat conduction problems in a great extent. Afterwords

1D convection-diffusion problems (Lin and Atluri, 2000) at high Peclet number by using

suitable upwind scheme to avoid its wiggle nature at high Pe, is validated, and found very

good agreement for convection dominated problems, which is discussed in detailed as in

chapter 4.

In the first attempts to validate and verify the use of proposed in-house MLPG based

solver for complex fluid flow simulations for multidimensional space. In order to fulfill this

objective, the one-dimensional incompressible steady flow of non-Newtonian power-law

fluids through rectangular channel flow problem has been considered. It is governed

by the mass continuity and Navier-Stokes equations. The fluid rheology is governed by

the non-Newtonian power-law fluid viscosity model. The computational solutions using

in-house solver has been compared and validated with the exact solution. The influence

of computational nodes, N=21, 41 and 51 is also analyzed. In particular, the velocity

profile, shear-stress profile and the values of pressure drop have been obtained a compared

for a range of power-law index (0.4 ≤ n ≤ 1.8). Since the shear-dependent viscosity,

special attempts was required to handle the oscillations in numerical solutions due to

shear-dependent nature of viscosity and shear-stress. The present results are corresponding

well with the exact solution over the ranges of conditions considered herein. Hence, the

present work builds up a new numerical algorithm for their reliable use in the understanding

of complex fluid flow phenomena and lastly summarizes the present work and opens up

the scope of future work.

Subsequently, the two dimensional incompressible steady flow of non-Newtonian power-law

fluids through square channel flow problem has been considered at different Reynolds

number(Re). In the non-Newtonian fluid rheology is also governed by the power-law

fluid viscosity model which is governed by continuity and momentum equations in both

the directions. The space domain for N=11×11 and 21×21 is chosen. The numerical

solutions has been compared with exact solution. The power law index between 0.6 ≤
n≤1.4 is varied at different Re. Since due to shear-dependent viscosity, special attempts

was required to handle the oscillations in numerical solutions. A good agreement has been

observed for different power-law index (n) at Re = 1 and 20. But at high Reynolds number

Re≤1, the well established upwind scheme for Newtonian flow is not enough to avoid its

wiggle nature due to shear-dependent nature of viscosity and shear-stress. Therefore, more
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investigation is needed for non-Newtonian fluid rheology at higher Reynolds number flow

of shear-dependent viscous flow.

Finally, the last chapter summarizes the findings of the present thesis and provides the

possibilities of future scope of the research.
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Chapter 1

Introduction

General transport processes occurring on natural and industrial scale levels such as

biological, mechanical, geological, electrical, chemical, electronic, etc., are widely referred

to under the umbrella of transport phenomena. Due to the simultaneous occurrence of

these processes, such problems are generally quite complex in nature. These transport

phenomena problems are often governed by the set of differential or integral equations

in terms of the rate of change of fluxes of transport quantities. The governing field

equations are coupled together due to simultaneous occurrence of the processes. Additional

complexities arise from the initial and boundary conditions of practical problems. It, in

turn, yields inherent complex dependencies of the solution variables on each other, in

conjunction to the processing parameters. Unfortunately, exact solutions of such problems

can only be obtained for the limiting processing conditions. The numerical procedures

are, therefore, adopted to obtain approximate solutions to the general practical problems

which strongly depend on advances in numerical analysis and mathematical modeling.

The birth certificate of numerical analysis is given by Neumann and Goldstine (1947)

through his first paper on “numerical inverting of matrices of high order” for modern

algebraic problems. Their work was focused on the rounding-off errors in processing of

higher order matrices, which is considered as the basis the modern scientific computing.

The present thesis aims toward the enrichment of the scientific computing of fluid flow
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and heat transfer in complex fluids, which is commonly categorized under the umbrella of

computational fluid dynamics (CFD).

CFD problems are physically governed by the conservation principles of mass, momentum

and thermal energy. These principles are generally expressed in the form of ordinary

differential equations (ODE), partial differential equations (PDE) and integro-differential

equations (IDE). They are further subjected to a set of physically realistic initial and

boundary conditions. Due to the inherent complexities associated with the governing

physics, a numerical analysis of such problems, first, requires a suitable technique to

transform ODE/PDE/IDE into a set of algebraic equations. Then, a solution of the set of

algebraic equations can be obtained by using a direct or iterative numerical techniques. A

mathematical process of transforming ODE/PDE/IDE into a set of algebraic equations is

termed as discretization, which forms one of the major steps of CFD cycle.

Over the decades, numerous CFD techniques have evolved in the scientific literature for the

efficient discretization of ODE/PDE/IDE. These techniques may broadly be categorized

into two major groups, namely, conventional or traditional and advanced discretization

approaches. Traditionally used methods are finite difference method (FDM), finite element

method (FEM) and finite volume method (FVM). These well known classical methods are

completely mesh-based methods which have been employed as very powerful numerical

tools for solving various engineering problems. Advanced techniques amongst others

include lattice Boltzmann method (LBM), boundary element method (BEM), spectral

element method (SEM), direct numerical simulations (DNS) and meshless methods, etc.

The framework of some of these advanced methods is widely different from that of the

classical techniques. While the present thesis is focused on one of the advanced methods

viz meshless methods, classical approaches are also briefly discussed subsequently.

1.1 Classical CFD approaches

Classical CFD approaches viz finite difference, finite element and finite volume methods

are apprised herein.
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1.1.1 Finite difference method (FDM)

The advent of most commonly and useful method to solve the differential equations

(ODE/PDE) in a bounded area, i.e., finite difference method (FDM), began in the early

1950’s. It was probably brought into the numerical picture by Euler in the year of 1968

(Blazek, 2001). The basic idea of FDM is transformation of continuous derivatives in

differential equations into the discrete functions of dependent variables. The region, over

which the independent variables in PDE’s are defined, is replaced by a grid (or mesh) of

finite points. PDE’s at each grid point are approximated from their neighboring values

by using an expansion of Taylor’s theorem. This process yields a set of n×m algebraic

equations for n grid points and m dependent variables.

FDM has been widely used in the past decades to characterize the fluid dynamics and

heat transfer of both Newtonian and non-Newtonian flow behavior for wide ranging flow

geometries. For instance, oscillating flow past a cylinder (Wang and Dalton, 1991), shear

flow over a circular cylinder (Lei et al., 2000), steady flow of a power-law fluid past a

square cylinder (Gupta et al., 2003; Paliwal et al., 2003), simulation of moving particles

(Perrin and Hu, 2006), natural convection around a square, horizontal, heated cylinder

placed in an enclosure (De and Dalal, 2006), fluid structure interaction (FSI) modeling

with the deforming-spatial domain(DSD)/stabilized-space-time(SST) method for the fluid

and finite difference method for the structure (Tain, 2014), etc. In addition to simplicity,

the advantage of FDM lies in the possibility to achieve higher-order accuracy of the spatial

discretization and easy to implement. However, the range of application is clearly restricted

(Anderson, 1995; Blazek, 2001; Sharma, 2016) due to its requirement of structure grid.

1.1.2 Finite element method (FEM)

Finite element method or analysis (FEM or FEA) was originally introduced and employed

for structural analysis by Turner et al. (1956). In this method, an arbitrary computational

domain is divided into smaller, simpler and regular parts called ‘elements’, and the

equations formulated for every element are then assembled into a large system of equations
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that model the entire domain/problem. Depending on the element type and required

accuracy, a certain number of Gauss points at the boundaries and/or inside an element

are specified, where the solution of flow problem has to be found. Furthermore, the

approximated shape functions for the solution variables have to be defined for interpolation

of dependent variables inside the element. This process yields a set of algebraic equations,

which are numerically solved to obtain the field variables. In the early 1990’s, FEM gained

its popularity in the solution of the Euler’s and the Navier-Stokes equations. Price et al.

(1968) reported that FEM requires fewer nodes and less computational time than FDM

to achieve comparable accuracy in solving one-dimensional convection-diffusion equation

with a trapezoidal-rule scheme. However, advantages of computational time in FEM

are usually lost with higher dimensional problems due to the relatively more complex

matrices generated by FEM than those in FDM or FVM as the number of dimensions

increases. Nevertheless, FEM is attractive because of its integral formulation and the use of

unstructured grids, which are preferable for complex flow geometries. Over the time, it has

been widely used in the computational analysis of complex fluid flow such as vortex-induced

cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers (Mittal and

Kumar, 1999), lift on a slightly deformable and freely rotating and translating cylinder in

two-dimensional (2-D) channel flow (Zhao and Sharp, 1999), stability of elliptical cylinders

in 2-D channel flow (Zhao and Sharp, 2000), flow simulation of injection pultrusion (Liu,

2003b), solid-liquid two phase flows (Wan and Turek, 2007), simulation of a pulsatile

non-Newtonian flow past a stenosed 2-D artery with atherosclerosis (Tian et al., 2013),

and deforming-spatial-domain/stabilized-space-time (DSD/SST) method in computation

of non-Newtonian fluid flow and heat transfer with moving boundaries (Tian et al., 2014b),

etc.

1.1.3 Finite volume method (FVM)

It was first employed by McDonald (1971) for the simulation of 2-D inviscid flows. In FVM,

computational domain is discretized into small control volumes (CV). The flow variables

may be defined either on the cell center or node center of CV. Accordingly, the fluxes of
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variable are defined either on the cell centroid or face centroid (Anderson, 1995; Blazek,

2001; Sharma, 2016). The volume integrals appearing in a IDE that contain a divergence

term are converted into the surface integrals by divergence theorem. It allows for the strict

conservation of physical quantities in local CV as well as in global computational domain.

The main advantages of FVM is that the spatial discretization is carried out directly in

the computational space. FVM takes the advantages of both FDM and FEM to become

the robust method in computational flow simulations. Nowadays, it is frequently used in

fluid dynamics and other related potential problems. FVM is efficiently implements on

both structured as well as unstructured mesh using Navier-Stokes equation (Dalal et al.,

2008; Sharma, 2016). It has been used in wide ranging applications including inclined

complicated cavity with spatially variable wall temperature (Dalal and Das, 2005), fluid

flow and heat transfer from a triangular cylinder placed in a channel (De and Dalal, 2007),

fluid flow and heat transfer around a square cylinder at incidence using unstructured grid

(Ranjan et al., 2008), flow around a row of square cylinders (Kumar et al., 2008), complex

flows involving moving boundaries and irregular geometries (Wang and Tian, 2017), and

periodically fully developed heat and fluid flow characteristics in a furrowed wavy channel

(Sarkar et al., 2017), etc. Its application in computations of non-Newtonian fluid flow such

as power law fluids across a circular and square cylinders (Bharti et al., 2006; Sahu et al.,

2010), heat transfer from a sphere to non-Newtonian power law fluids (Dhole et al., 2006),

immersed boundary model for simulations of complex flow Wang et al. (2017) suggest wide

applications of FVM in process industries.

The above discussed conventional numerical methods (FDM, FEM, FVM) are based on

pre-defined grid or mess structure to discretize the differential equations. In such a mesh,

each data point has a fixed number of predefined neighbors. The connectivity between these

neighbors is defined by some mathematical operators to construct the system equations

and to know the domain properties. These grid points are used to evaluate the discrete

quantities of physics such as velocity, pressure and viscosity, etc. The accuracy of the

classical CFD approaches depends on the number of grid points. Therefore, large number of

grid points are required to find the best possible numerical results. This improved accuracy,
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in turn, enhances the computational efforts. Large deformation of the material or sharper

changes in the gradients are generally observed in the flow simulations, the connectivity

of the mesh can be difficult to maintain without introducing an error in the simulation.

Therefore, these numerical approaches faces difficulty in application to the complex flow

problems such as large element deformation, projectile impact, fluid interaction, complex

free surface flows, where the mesh generation imposes great challenges and time consuming

phenomena. Significant efforts are being made, over the years, to reduce the computational

efforts in obtaining the most accurate results. One alternate outcome is meshless methods.

A brief discussion of these approaches is made in the subsequent section.

1.2 Meshfree method

Meshfree (or meshless) methods, as an alternative numerical techniques to eliminate the

drawbacks of conventional mesh-based methods (FDM, FVM & FEM), proposed initially as

smooth particle hydrodynamics (SPH) method for modeling in an astrophysical phenomena

(Lucy, 1977; Gingold and Monaghan, 1977). SPH, one of the oldest meshfree method,

treats data points as physical particles having finite mass and density. These particles can

move around over the time and transport required information with them. SPH was first

applied in solid mechanics by Libersky et al. (1993). The main drawbacks of SPH are

inaccurate results near the boundaries and tension instability (Swegle et al., 1995).

Over the decades, many meshfree method have been developed based on global/local

and strong/weak forms of descretization of PDEs, such as diffuse element method (DEM)

(Nayroles et al., 1992), element free Galerkin (EFG) method (Belytschko et al., 1994),

reproducing kernal particle method (RKPM) (Liu and Jun, 1995; Liu et al., 1995b),

hp-cloud method (Duarte and Oden, 1996a,b), finite point method (FPM) (Onate et al.,

1996a), partition of unity method (PUM) (Babuska and Melenk, 1997), boundary node

method (BNM) (Mukherjee and Mukherjee, 1997a), local boundary integral equation

(LBIE) method (Zhu et al., 1998a,b), meshless local Petrov Galerkin method (MLPG)

(Atluri and Zhu, 1998a,b), etc. A progress of meshfree methods over the last two decades
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have been thoroughly reviewed by Chen et al. (2017a). Meshless methods are based on

either global weak forms or local weak forms of conservation equations, namely, PDE. The

major challenge with meshless methods based on the global weak forms revolves around

the effective evaluation of the integrals in the weak form. Most of the above noted meshfree

methods, except LBIE and MLPG, needs background mesh for numerical integration of the

weak form. The background cell integration does not lead to be truly meshless. Therefore,

these methods are not truly meshless method. The construction of background mesh is

also associated with additional cost. In order to develop a truly meshless method, the

local weak forms must be used to avoid the need of background meshing. Use of local

weak forms is the main point of the departure of LBIE and MLPG methods.

Both MLPG and LBIE use a weak form of PDE for a local sub-domain, and use numerical

integration in thier local sub-domain of arbitrary shapes such as circle, ellipse, rectangle

and parallelopiped for 2-D space, and sphere and cube for 3-D space. Due to this natural

approach, these methods are considered as truly meshless methods.

The main objective of truly meshless methods is to get rid of, or at least alleviate the

difficulty of meshing and re-meshing the entire structure by only adding or deleting nodes

in the entire computational domain/structure. Moreover, as in the FEM, the construction

of even a C1 trial function approximation is difficult, and has been unsatisfactory so

far. However, the trial functions commonly employed in the MLPG method, can achieve

high-order continuous approximations (even Co approximations) in a very straightforward

manner. This is because MLPG methods are expected to excel over FEM (Atluri and

Shen, 2005).

The MLPG concept provides a rational basis for constructing a variety of meshless methods,

i.e., MLPG-n for 1 ≤ n ≤ 6 (Atluri and Shen, 2005). In MLPG category, MLPG1, MLPG5

and MLPG6 are based on local symmetric weak form (LSWF) whereas MLPG2, MLPG3

and MLPG4 are based on local unsymmetric weak form (LUSWF). A comprehensive

summary of all types of MLPG methods is given by Atluri and Shen (2002a). Various

researchers have analyzed various numerical problems using MLPG, and found that both
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MLPG1 and MLPG5 methods are highly effective and accurate (Gu and Liu, 2001b). Due

to the distinct advantages of truly meshless MLPG methods, amongst other they have

been efficiently utilized to solve elasto-static problems (Han and Atluri, 2004b; Atluri and

Zhu, 2000), energy problems (Wang et al., 2005), elasto-dynamics (Han and Atluri, 2004a),

thermoelasticity (Atluri et al., 2000), and plate bending problems (Long and Atluri, 2002),

and fluid mechanics using the upwinding concept to simulate the convective-diffusive

transport and the incompressible Navier-Stokes equations (Lin and Atluri, 2000, 2001)etc.

In the category of MLPG, numerical results show that both MLPG1 and MLPG5 methods

are very much effective and accurate. Although there are still many challenges remaining,

such as an adequate numerical integration scheme, and its applications in complex fluid

flow simulations etc. But a fast, accurate, cheap, and robust MLPG method is still on the

way Atluri and Shen (2005). Prior efforts suggest that the meshless methods, in particular,

MLPG method, have been successful in obtaining an accurate solutions of solid mechanics

problems. Fluid mechanics problems have also been solved within the greater ease and

accuracy. However, these methods have not been used in obtaining a solution of complex

fluid flow problems.

The present work has aimed to explore the effectiveness and ease of MLPG method for

complex fluid flow problems. In particular, non-Newtonian fluid flow simulation using

MLPG methods has been the focus of this work. This objective has been achieved by

developing a MLPG complex fluid flow solver using C++ programming language. The

detailed algorithm has also been developed herein, due to the lack of information for

such applications. The solver, first, has been validated and verified by using varieties

of standard benchmark problems of CFD. Non-Newtonian fluids are being processed in

many chemical and process industries associated with varieties of transport phenomena.

Therefore, the approach developed in MLPG complex fluid flow solver will be very useful

in analyzing and designing such applications at greater ease.
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1.3 Organization of thesis

This dissertation has been divided into 6 chapters as follows. Chapter 2 presents the critical

review of literature related to the Meshless Local Petrov Galerkin MLPG) methods and

its applications. In chapter 3, the mathematical formulation and numerical methodology

has been discussed. Non-element interpolation tools such as moving least square (MLS) is

used to form the shape functions approximations. The suitable weight function w(x) are

considered for present work. The numerical integration technique using Gauss points have

also been discussed in detailed. Suitable techniques are presented in detail to impose the

boundary conditions such as essential boundary condition. The MLPG methods are also

comprehended in this chapter. The detailed algorithm has been developed herein. It is

used to develop an in-house MLPG complex fluid flow solver using C++ programming

language,

The validation of the in-house MLPG solver with various diffusion problems is discussed in

chapter 4 using different boundary conditions. Further, the Navier-Stokes flow problems

such as convection dominant flow problem, convection-diffusion flow problems have been

used to validate the solver. In chapter 5, complex fluid flow solver is validated on 1-D fully

developed channel flow problem by using non-Newtonian power-law fluids. Further it has

extended the implementation and validation of complex fluid flow solver for 2-D space using

Navier-Stokes equations. 2-D channel flow problems by using non-Newtonian power-law

fluids have been validated herein. Last chapter concludes the work presented in this

dissertation and discussed the challenges with MLPG for complex fluid flow simulations.

The limitation of the present dissertation have also been pointed out herein. Finally, the

dissertation has been closed up by presenting the future scope of work.





Chapter 2

Literature review

A detailed review of the literature on meshless methods is presented herein this chapter.

Particular focus has been on MLPG methods. Prior to the review of meshless methods, a

need of them is also highlighted in subsequent section.

2.1 Need of Mesh Free Methods

The following limitations of the traditional CFD methods such as FDM, FEM and FVM

are evident in particular book (Liu, 2003a).

• Meshing of complex geometries is very tedious and expensive in terms of times and

manpower, efficient current generation computing facilities may reduces the time

and manpower in the meshing process.

• Stress calculations are less accurate.

• Accuracy is lost due to the mesh distortion in large deformation problems.

• Difficult to simulate crack growth with arbitrary and complex paths and face trans-

formations due to the discontinuities that do not coincide with the original nodal

lines.

11
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• Re-meshing approaches needed for some moving materials can be difficult to maintain

accuracy without introducing an error into simulation.

The meshless methods, as an alternative numerical techniques to eliminate the above

drawbacks, have attracted much attention and achieved remarkable applications. Meshless

methods are techniques to form a system of algebraic equation for the complete computa-

tional domain without the use of a predefined meshing in the field variable interpolation

or approximation. Over the years, a number of meshless methods have been developed

by different researchers. Detailed information on a variety of meshless methods can be

found elsewhere (Belytschko et al., 1996b; Nguyen et al., 2008; Fries and Matthies, 2004).

A progress of meshfree methods over the last two decades have been thoroughly reviewed

elsewhere (Chen et al., 2017a). Subsequent sections present a literature review of the

meshless methods.

2.2 Meshless methods

The meshless or meshfree methods are usually categorized as follows: (i) strong form

based (ii) weak form based and (iii) combination of weak and strong form based method.

Strong form methods are ideal in obtaining the exact solution of system equations, but

unfortunately it is quite difficult for practical engineering problems which are usually

complex in nature. In comparison to the weak-form methods, strong-form methods have

the following attractiveness:

1. Simple algorithms.

2. Computationally efficient.

3. Truly meshless methods for both field variable approximation and integration schemes.

Due to these advantages, strong-form methods have been successfully used in variety of

fluid mechanics and other engineering phenomena. They are, however, often unstable and

less accurate for problems governed by PDEs subjected to Neumann boundary conditions

(BCs), especially with stress (natural) BCs. In the direct meshfree collocation methods,

Neumann BCs are implemented using a series of separate equations, which are different
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from the governing equations. The error induced from the boundaries, therefore, cannot

be efficiently controlled (Zahiri, 2011).

Weak forms, in contrast to strong forms, require a weaker consistency on the approximate

function. It provides a number of ways to formulate methods for approximate solutions

for complex systems. Formulation based on weak form can usually produce a very stable

set of discretized system equations which produces more accurate results. An excellent

comparison between local weak and strong forms methods is noted elsewhere (Trobec

et al., 2012). There are two major categories for constructing weak form of PDE, namely,

variational method and weighted residual methods. The Galerkin and Petrov-Galerkin

weak forms are the most widely used approaches for constructing system equations. The

weighted residual method, a powerful mathematical tool, is used widely for constructing

system equations for many engineering fields problems.

2.2.1 Strong form based meshless method

In the strong form meshfree methods, the strong form of governing equations and boundary

conditions is directly discretized at the field nodes using simple collocation techniques

(Slater, 1934) to obtain a set of algebraic system of equations. The strong form meshfree

method such as smooth particle hydrodynamics (SPH) was used for modeling in astro-

physical phenomena (Lucy, 1977; Gingold and Monaghan, 1977) and in solid mechanics

(Libersky et al., 1993). SPH is reported to produce inaccurate results near boundaries and

tension instability (Swegle et al., 1995). A new meshfree technique, finite point method

(FPM) was developed by Onate et al. (1996a,b) to solve the convection-diffusion and

fluid flow type problems. It is based on the use of a weighted least-square interpolation

procedure together with point collocation for evaluating the approximation integrals.

Special attention is given on the stabilization of the convective terms and the Neumann

BC which are essential to obtain accurate results. A residual stabilization technique which

seems very adequate for FPM has also been proposed and results show that the fixed

least-square (FLS) interpolation combined with a point collocation technique is a promising
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FPM for the solution of fluid mechanics problems. Furthermore, the meshless collocation

method (Kansa, 1990a,b) is a global collocation method that uses all the grids in the

problem domain, which leads to fully populated system matrix. A more stable symmetric

formulation has also been proposed (Wu, 1992) by using Radial basis function (RBF) to

avoid the singularity of moment matrix. Overall, limited research efforts are devoted on

the strong form based meshless methods because of less robust than the method based on

weak form.

2.2.2 Weak-strong form based meshless method

The key idea of meshless weak-strong (MWS) form method developed by (Liu and Gu,

2002b) is that in establishing the discretized system of equations, the local weak form is

used for all boundary nodes (and their nearby nodes) imposed with Neumann BCs and

strong form is used for rest of the nodes, including nodes imposed with Dirichilet BCs,

in the problem domain. Due to the use of least background cells (quadratic domain) for

integration, it is considered as closely ideal meshless method that can provide stable and

accurate solutions for many types of PDEs. This method has been successfully used in

time-dependent problems of both solid and fluid mechanics (Liu and Gu, 2003b; Liu et al.,

2004).

2.2.3 Weak form based meshless method

In weak form based meshfree methods, the governing PDEs with Neumann BCs are first

transformed into a set of so called weak form integral equations using various interpolation

techniques. These equations are then used to derive a set of algebraic equations through

a numerical integration process using sets of background cells that may be constructed

globally or locally in the problem domain. Meshfree weak form method based on the

global and local weak forms are called Mfree global weak-form methods, and Mfree locally

weak-form methods, respectively.
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Many methods have been developed under the category of Mfree global weak-form methods.

For instance, Nayroles et al. (1992) proposed a diffuse element method (DEM). In this

method, only boundary description and mesh of nodes are needed to solve PDE using

non-element interpolation technique such as moving least square (MLS) interpolants in

curve and surface fitting. Lancaster and Salkauskas (1981, 1986) used all available data

points for the particular case of a global approximation. The concept was quite similar to

SPH method. The advantages over FEM are that DEM does not rely on a grid, and is

more precise in the evaluation of the derivatives of the reconstructed functions. Element

free Galerkin (EFG) method is another important method introduced by Belytschko et al.

(1994), in which they have included certain terms in the derivatives of the interpolants and

used a large number of quadrature points arranged in a cell structure, which were absent

in DEM (Nayroles et al., 1992), for better accuracy. Local weak form is constructed for

Galerkin equations by using MLS approximation for the shape function construction based

on nodal positions only in the local sub-domain and found that the performance of this

method was dependent on the weight function. To preserve the continuity and consistency

on the interface elements, a coupling procedure is also developed by combining EFG and

FEM to solve the problems of elasticity and crack propagation (Belytschko et al., 1995).

Afterwards, a new procedure has been developed for shape functions in the EFG method

so that the functions are continuous in domains with concave corners (Belytschko et al.,

1996a). They found that the major disadvantages of the meshless methods, and EFG

method in particular, is the increased computational cost.

Liu and co-researchers (Liu and Jun, 1995; Liu et al., 1995b) developed a new class

of meshless method based on wavelet analysis and reproducing kernel. It is termed as

reproducing kernel particle method (RKPM). It allows us to develop a new class of shape

function approximation using an integral window transformation. This window function

can be translated and diluted around the domain, and thus, replacing the need to define

elements and providing refinement (Onate et al., 1996a).

Similarly, Duarte and Oden (1996a,b) have shown that the moving least squares functions

(MLSF) (Lancaster and Salkauskas, 1981) constitutes a partition of unity and have
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developed a new meshless method called h−p cloud method. The basic idea of the method

is to multiply a partition of unity, i.e., MLSF, by polynomials or other appropriate class of

functions. The resulting functions, called h− p clouds, retain good properties of MLSF,

such as high regularity and compactness, and linear combination of these functions can

represent polynomials of any degree. This property allows the implementation of p and

h− p adaptivity in the h− p clouds with the same striking features of h− p FEM, which

is a general form of FEM. Here, h− p indicates that the mesh is refined using a suitable

combination of h refinements (sequential reduction of element size) and p refinements

(increasing the accuracy of approximation by raising the degree of polynomial).

Subsequently, point interpolation methods (PIM), an another global weak form based

meshfree method, was proposed (Liu and Gu, 1999, 2001a) based on the Galerkin weak

form. PIM constructs the shape functions based on only a group of arbitrarily distributed

nodes in a local domain. Galerkin weak-forms requires a global background cell structure

for the evaluation of integrals. The main feature of PIM is Kronecker delta property of their

shape functions. Since the moment matrix can be singular in polynomial PIM, a two-stage

matrix triangularization algorithm (MTA) is proposed to overcome this problem. It is a

novel approach to solve the problem of the singular moment matrix in the construction

of PIM shape functions. MTA automatically excludes the nodes and the terms of the

polynomial basis used in the formation of the moment matrix (Liu and Gu, 2003a).

The radial point interpolation method (RPIM) (Wang and Liu, 2000, 2002), a typical

global weak form based meshfree method, uses radial basis functions (RBF) to overcome

the matrix singularity issues. Due to its stability and robustness for arbitrary nodal

distributions, RPIM is much widely used than the polynomial PIM. The partition of unity

Methods (PUM) and partition of unity FEM (PUFEM) are considered to be essentially

identical methods developed by Melenk and Babuska (1996). PUFEM offers an easy

way to include analytical information about the problems being solved in FE space. The

PUM allows an easier construction of ansatz spaces of any desired regularity, therefore,

trial spaces for the use in variational formulations of higher-order differential equations

(Babuska and Melenk, 1997). A boundary type meshless method such as boundary node
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method (BNM) (Mukherjee and Mukherjee, 1997a) is also a class of meshfree method.

It is a combination of MLS approximation scheme and the standard boundary integral

equation (BIE) method. Detailed information on a variety of meshless methods based on

both strong and weak forms based can be found elsewhere (Belytschko et al., 1996b; Fries

and Matthies, 2004; Nguyen et al., 2008).

All the above explored methods requires a background mesh for the numerical integration.

Global weak forms (GWF) involve integrals over the global domain including boundary,

hence they are not purely meshless methods. Counterpart of global weak form, i.e., the

local weak forms (LWF), are defined over local sub domains Ωs with local boundaries.

They do not require any background mesh for either interpolation or integration purpose,

hence, they are truly meshfree method (Atluri and Zhu, 1998a,b). The global compatibility

is also not required in a local weak form method. These methods include the meshless

local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998a,b; Atluri and Shen, 2002b),

the local boundary integral equation (LBIE) method (Zhu et al., 1998b), the finite spheres

method (De and Bathe, 2000, 2001a), and the local radial point interpolation method

(LRPIM) (Liu and Gu, 2001a), etc.

Based on the general concept of MLPG method, due to the formulation of weak form

in MLPG over all local sub domains Ωi, use of different types of meshless trial and test

functions leads to a large variety of MLPG methods (Atluri and Shen, 2002a,b). They

can easily be distinguished by the appropriate selection of the trial and test functions and

the integration methods. Based on MLPG concept, the test functions over each local sub

domain Ωs can be selected through various ways (Atluri et al., 1999b; Atluri and Shen,

2005) as follows.

1. weight function in the MLS approximation

2. collocation Diracs Delta function

3. error function in differential equation, using discrete least squares

4. modified fundamental solution to differential equation

5. constant for 2nd order PDE (or linear function for 4th order PDE)

6. identical to trial function
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Any other convenient functions may also be chosen as test functions. The above choice

of test functions also differs in the type of integrals in weak form, and MPLG methods

are characterized by (Atluri and Shen, 2002a, 2005) as shown in Table 2.1. In MLPG-1,

Table 2.1: MLPG methods
Method Test function Integral type in weak form
MLPG-1 MLS weight function domain integral
MLPG-2 Dirac delta function none
MLPG-3 Discrete least-squares domain integral
MLPG-4 Fundamental solution singular boundary integral
MLPG-5 Heaviside unit step function regular boundary integral
MLPG-6 same as the trial function domain integral

the test function is bell shaped and zero on the local boundary, as long as Ωi does not

intersect with the global boundary of Ω. MLPG-2 yields collocation method and integrals

of LWF vanish, i.e., no integration required, and therefore strong form of the PDE is

discretized. It is the simplest meshless method. MLPG-3 and MLPG-4 are analogous to

the least-squares meshfree method (LSMM) and local boundary integral equation (LBIE),

respectively. In MLPG-5, the test function is the characteristic function and thus constant

over each local sub domain Ωi. The volume integral are avoided from the stiffness matrix.

MLPG-6 possesses an special case of a Bubnov-Galerkin method due to identical test and

trial functions. The resulting method is similar to EFG and DEM but the latter work

with GWF instead of LWF. If spheres are used for the sub domains, the method has also

been referred to as the method of finite spheres (MFS) (De and Bathe, 2000).

Subsequently, LPIM (Liu and Gu, 2001a) was extended by Liu and Gu (2002a) and

proposed a local radial point interpolation method (LRPIM). LPIM is, a truly meshless

method, based on non-element interpolation and non-mesh integration. It construct poly-

nomial interpolation function with delta function property using a group of arbitrarily

distributed points. Due to property, essential boundary conditions can easily be imple-

mented. Inappropriate choice of polynomial basis results in a badly conditioned matrix,

which may be even invertible (Liu and Gu, 2001b). For alleviating this problem, LRPIM

constructs shape functions using radial function basis is proposed. The shape functions so

formulated possess delta function property. In this technique, the interpolation using radial

function basis is stable and flexible. Similarly, Zhu et al. (1998b) developed a new class
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of meshfree method, namely, local boundary integral equations (LBIE), which combines

the features of three methods such as Galerkin finite element method (GFEM), boundary

element method(BEM) and element free Galerkin methods (EFGM). It is illustrated to

solve boundary value problems (BVP). Subsequently, it is included under MLPG category

and termed as MLPG-6, which is based on the local symmetric weak form (LSWF) wherein

test and trial functions are defined from the same space. Boundary integrals with strongly

singular kernels require special attention in implementations of LBIE, for known boundary

densities in case of MLS approximation (Sladeka et al., 2000). LBIE possesses a tremendous

potential for solving nonlinear problems and/or problems with discontinuities (Zhu et al.,

1998a). It is a promising method for solving BVP in solid mechanics (Atluri et al., 2000;

Zhu, 2010).

Further, Atluri and Zhu (1998a) illustrated a MLPG method to solve the linear problems

using Laplace and Poisson equations on patch test and potential flow problems. Conven-

tional moving least squares (MLS) scheme has been used in meshless interpolation. They

also solved nonlinear problems to ensure its truly meshless characteristics. They observed

that both linear and quadratic bases P (x), as well as spline and Gaussian weight functions

wi(x) in the approximation/trial function yielded quite accurate numerical results. In

most cases Gaussian weights functions with the quadratic basis produced better results,

but quadratic basis may increases the computational cost (Atluri and Zhu, 1998b).

This MLPG method is further extended (Atluri et al., 1999a) to illustrate 4th order bound-

ary problems for thin beams. A generalized moving least squares (GMLS) interpolation

scheme was proposed by introduction of an independent variable in MLS scheme. A new

numerical algorithm was also proposed for non-element local integration schemes such as

MLS, PU and Shepard interpolations (Atluri et al., 1999a,b). They clearly distinguished

between symmetric and unsymmetric matrices formed due to the varying sizes of test and

trial domains of computing point I and influence point J to form the stiffness matrix KIJ .

They derived the transformation technique between the fictitious and actual nodal values

(ûI and ũI) for direct imposition of the essential BCs (Cai and Zhu, 2004). A new method

to integrate within each sub-domain or over intersections of sub-domains has also been
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presented. MLPG is successfully used to solve the applied mechanics problems such as

2-D elasto-statics, cantilever beam, plate with a hole, long beam, etc (Atluri et al., 1999b).

Interrelation of the various meshless approaches has been briefly presented by Atluri and

Shen (2005). They summarized a variety of typical local interpolation schemes and MLS

approximation. It was noted that the basis functions can be other than monomial. Local

(truncated) least square (LSQ) scheme from the MLS have been pointed out by using

heavy-side weight functions. The usual “element assembly” process, as in the conventional

FEM is needed but the global stiffness matrix formation is not required in MLPG Atluri

and Shen (2005).

In spite of the great success of the classical numerical approaches in both solid and fluid

mechanics problems, meshfree methods is still a growing interest in development of new

advanced numerical method due to their high adaptivity and low cost to prepare input

data for numerical analysis. MLPG is effectively and efficiently applied in heat transfer

problems with great extent.

2.3 MLPG application in diffusion problems

The variety of heat transfer problems have been solved by using MLPG methods such

as heat conduction problem in an an-isotropic medium (Sladeka et al., 2004; Mazzia

et al., 2014), 3-D transient heat conduction in a functionally graded thick plate (Qian and

Batra, 2005). Stationary and transient heat conduction inverse problems in 2-D and 3-D

axisymmetric bodies wherein singular value decomposition (SVD) is applied to solve ill-

conditioned linear system of algebraic equations obtained from MLS approximation of the

local integral equations (LIE) (Sladeka et al., 2006), local weak-forms for steady-state heat

conduction problems (Hong and Quan, 2008), transient heat conduction problems (Sladeka

et al., 2008; Slater, 2008; Chen and Liew, 2011; Slater, 2008), nonlinear heat conduction

problems (Thakur et al., 2009). The diffusion equation with an integral condition in which

a new approach based on MLPG and collocation methods has been used to treat the
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parabolic PDEs with non-classical BCs (Abbasbandy and Shirzadi, 2010), steady-state

heat conduction in heterogeneous materials (Ahmadi et al., 2010) and 3-D heat transfer

analysis (Tian and Rao, 2012). The types of non-element interpolation techniques used in

MLPG method and variety of linear and non-linear problems have been explained in the

book (Liu and Gu, 2005).

2.4 MLPG application in convection-diffusion prob-

lems

Numerical simulation of convection-diffusion such as Navier-Stokes equation using MLPG in

the fluid flow phenomena has been explored by numerous researchers. To avoid oscillatory

behavior and numerical diffusion encountered in convection dominant flows, upwind

techniques have been widely applied in the conventional CFD techniques viz FEM, FDM,

FVM (Zienkiewicz and Taylor, 2000). Upwinding concept is used to stabiliz the convection-

dominated flow problems. Hughes and Brooks (1979) introduced the ‘streamline upwind

(SU) method’, where the artificial diffusion operator is constructed to act only in the flow

direction, and thereby, a-priori elimination of the possibility of any crosswind diffusion. It

was observed that better solutions for the crosswind problem can be obtained by using the

streamline upwind method, but several deficiencies remained Brooks and Hughes (1982).

Most popular among such methods is the streamline upwind Petrov-Galerkin method

(SUPG) Brooks and Hughes (1982) which consistently introduces an additional stability

term in the upwind direction. This method has better stability and accuracy properties

than the standard Galerkin formulation for convection-dominated flows.

In the Mfree approach first upwind scheme introduced by Gingold and Monaghan (1977)

using SPH method which has been widely applied in incompressible flow and free surface

flow problems. Onate and co-researchers (Onate et al., 1996a,b) solved flow problems

using FPM, in conjunction with the finite increment calculus (FIC) method to handle

the nonlinear convection term. Sadat and co-authors (Sadat and Prax, 1996; Sadat and
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Couturier, 2000) employed DEM to solve fluid flow problems. Wu and Liu (2003) applied

the local radial point interpolation method (LRPIM) to solve 2-D natural convection heat

transfer in a square cavity and in a concentric circular annulus for Rayleigh numbers up

to 105 and 104, respectively.

Subsequently, Fries and Matthies (2006b,a) developed the coupled method of EFG and

FEM to compute incompressible fluid flow. Gunther et al. (2000) carried out multi-scale

meshfree parallel computations of viscous compressible flows using RKPM method. Least-

squares meshfree method (LSMFM) based on the first-order velocity-pressure-vorticity

formulation for 2-D steady state incompressible viscous flow has been presented by Zhang

et al. (2005). For solving the unsteady convectiondiffusion equation, Chinchapatnam et al.

(2006) used unsymmetric and symmetric meshless collocation techniques with radial basis

functions. They suggested that the symmetric collocation is marginally better than the

unsymmetric approach. Both collocation techniques required a very dense set of collocation

points in order to achieve accurate results for high Peclet numbers.

The choice of the related parameters is still not so straight forward, because the MLPG

method is based on a local weak form over a local sub-domain, there is a very convenient way

to construct upwind scheme. The pioneering work proposed two kinds of upwind schemes

of MLPG method to solve convection-diffusion (Lin and Atluri, 2000) and incompressible

flow problems (Lin and Atluri, 2001), namely “MLPG Upwinding Scheme I (MLPG-

US1)” and “MLPG Upwinding Scheme II (MLPG-US2). These techniques were applied

upwinding in the streamline direction with skewing of the test function opposite to the

streamline direction at very high Peclet numbers, Pe = 1, 10, 100 and 1000. MLPG-US2

produced very good solutions when Pe is very large. In the MLPG2, larger size of support

domain yields more accurate solutions and smaller size of support produces more spurious

crosswind diffusion effect (Lin and Atluri, 2000). Further, they solved the incompressible

Navier-Stokes (N-S) equations by MLPG method with addition of a “perturbation” term

based on residual forms of the Euler-Lagrange equations in modified LWF of continuity

equation (Lin and Atluri, 2001).
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Subsequently, Mohammadi (2008) developed a new upwind scheme based on the meshless

FVM to calculate incompressible flow problems with a vorticity-stream function formulation

of NS equations. The heaviside step function was used as test function. Due to its simple

implementation, it can be very conveniently extended in different meshless methods as an

upwind scheme. MLPG method with some modifications is adopted by Wu et al. (2005) to

simulate steady incompressible flow problems for a scattered nodal distribution. They solved

vorticity-stream function equation to simulate natural convection in concentric annuli with

different geometries at high Reynolds number (104 < Re < 106). Wu et al. (2010) further

extended the MLPG method to solve the incompressible fluid flow problems. To overcome

the oscillations behavior, the streamline upwind Petrov-Galerkin (SUPG) method was

applied in convection-dominated flows. The pressure-stabilizing Petrov-Galerkin (PSPG)

method is applied to satisfy the Babuka-Brezzi condition. A stabilization parameter

τ(τSUPG = τPSPG) is used. For lid-driven square cavity flow and natural convection at

Re = 100, 400, 1000, 4000 and 5000, they found that upwind scheme suggested by Lin

and Atluri (2000, 2001) could not obtain convergent solutions to at the high Re. Wu

et al. (2012) used SUPG scheme to eliminate over- and under-shoots produced by the

convection term, they analyzed the convection dominated problems. SUPG method is

strongly dependent on the stability parameter, although it is more stable than MLPG-US1

and MLPG-US2.

Lid-driven cavity flow, backward-facing step flow and transient flow past a circular cylinder

governed by 2-D Navier-Stokes equations in terms of the primitive variables at various

Reynolds numbers (Re) has been solved by MLPG method (Najafi et al., 2012; Najafi and

Enjilela, 2014). Further, MLPG primitive variable-based method using CBS scheme was

used to solve the laminar fluid flow and natural, forced and mixed convection heat transfer

at higher Rayleigh, Reynolds, Peclet and Grashof numbers. Natural convection within a

square cavity, forced convection flow over a tube bundle, and mixed convection within a

lid-driven square cavity were also solved by their proposed method (Najafi et al., 2013).

Further, Sataprahma and Luadsong (2014) used MLPG (LSWF1) to solve unsteady

incompressible fluid flow problem governed by Navier-Stokes equations at Re = 102, and
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concluded that a classical Gaussian weight function of order 2 gives the most accurate

results. Afterwards, problems such as flow between parallel plates, lid-driven cavity flow,

Couette flow between two eccentric cylinders at high Peclet (Pe) and Reynolds (Re)

numbers using Navier-Stokes equations were solved by using a stabilized two-step Taylor-

characteristic-based MLPG (2S-TCB-MLPG) method (Enjilela and Arefmanesh, 2015).

Recently, a two-level variational multi-scale MLPG (VMS-MLPG) method is proposed by

Zheng et al. (2009). They obtained the stable and accurate solutions of convection-diffusion

problems with large Peclet numbers. They also observed that the convection term may

cause oscillation solutions at Pe = 106 and 108 (Chen et al., 2017b).

The present work has explored the effectiveness and ease of MLPG method for complex

fluid flow problems. In particular, non-Newtonian fluid flow simulation using MLPG

methods has been the focus of this work. This objective has been achieved by developing

a MLPG based Complex fluid flow solver in C++ programming language. Due to the lack

of information for such applications. The solver, first, has been validated and verified by

using varieties of standard benchmark problems of CFD using MLPG method.

2.5 Conventional approaches in analysis of complex

fluid flow

Non-Newtonian fluids are being processed in many chemical and process industries as-

sociated with varieties of transport phenomena. Voluminous literature is available on

the non-Newtonian rheology and its applications in allied industries, e.g., (Chhabra and

Richardson, 2008), etc. Conventional numerical and experimental approaches has been

used on the novel work in the field of complex fluid rheology such as laminar flow of

power law fluids in concentric annuli (Gupta and Chhabra, 1996), co-current flow of shear

thinning liquids and air in horizontal and vertical pipes (Chhabra et al., 1982), prediction

of flow pattern of non-Newtonian liquid in horizontal pipes (Chhabra and Richardson,

1984), particles velocity calculation (Chhabra, 1995), complex fluid flow in curve ducts
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(Jayanti et al., 1990; Jayanti and Hewitt, 1992) and power law rheology in convection

diffusion problems (Paliwal et al., 2003; Verma and Eswaran, 1996, 1997).

Recently, a numerical approach has been developed (Tian et al., 2014a; Tian, 2014) for

complex non-Newtonian fluid flow and heat transfer phenomena involving moving bound-

aries and complex geometries, deforming-spatial-domain/stabilized space-time (DSD/SST)

method. They observed that the flow and heat transfer characteristics are quite different

if the moving boundaries are taken into account. More recently, a flow solver based

on the fractional step implicit immersed boundary (IB) method is used to simulate the

complex flows involving moving boundaries and complex geometries are having body force

caused by the immersed body (Wang and Tian, 2017). The lid-driven cavity flow of a

purely-viscous non-Newtonian fluid obeying CarreauYasuda rheological model by using

the PIM meshfree method combined with characteristic-based split (CBS) algorithm has

been numerically studied by Shamekhi and Sadeghy (2009). Their Results, in terms of

velocity and pressure profiles at Reynolds numbers as high as 103, revealed the strong

effect of the shear-thinning behavior of a fluid on its flow kinematics within the cavity.

They observed that results obtained using meshless methods are in close agreement with

the conventional CFD approaches.

Therefore, having the added advantages of meshless methods over conventional CFD

methods, MLPG based complex fluid flow solver will be very useful in analyzing and

designing such applications at greater ease.

2.6 Summary of literature review

Based on the aforementioned discussion of the available literature, following remarks can

be drawn:

1. To overcome the drawbacks of the classical methods (FDM, FEM and FVM), MLPG

is the new numerical approach in the computational methods, and widely used in

the different engineering problems.



Chapter 2. 26

2. Amongst the various meshfree approaches available in the literature, MLPG follow

the truly meshless characteristics and gives liberty to avoid the mesh generation.

3. Due to the truly meshless characteristics, MLPG methods are widely adopted as

an efficient computational technique to solve applied mechanics problems, heat

transfer phenomena, fluid mechanics using the upwinding concept, to simulate the

convective-diffusive transport and the incompressible Navier-Stokes equations, etc.

4. MLPG produces more accurate results due the truly meshless nature. Re-meshing

approaches needed for some moving materials in the predefined numerical techniques

and difficult to maintain accuracy without introducing an error into simulation.

5. MLPG is highly suitable for complex geometries than the classical methods (FDM,

FEM and FVM) or

6. While having a number of advantages of MLPG methods, none of the efforts have

been devoted to its application in complex fluid flows simulations.

7. Due to efficient and accurate PDE solver, MLPG method will be very useful to

simulate the complex fluid rehology which is widely used in chemical and process

industries.

8. While the meshless methods are advantageous in many aspect, there are certain

notable problems due which, probably, these methods have grown up slowly. For

instance, complexities in defining the shape function and their derivative at the

boundary surfaces, the numerical stability issues at higher Reynolds number, etc.

2.7 Objectives

Based on the above analysis of the existing literature on meshless methods and their

applications, the present work aims to explore the effectiveness and ease of MLPG method

for complex fluid flow problems. This thesis particularly focuses on non-Newtonian fluid
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flow simulation using MLPG methods. Based on the review of available MLPG and

complex fluid flow literature, the following objectives are set up for the present research

work.

1. The development of the general purpose CFD solved based on of the meshfree methods,

namely, meshless local Petrov-Galerkin method (MLPG) in C++ programming

language.

2. Validation and application of the solver for basic Newtonian fluid flow and heat

transfer problems such as 1-D and 2-D space diffusion problems, convection problems,

convection-diffusion problems and incompressible flow problems based on Navier-

Stokes equations, etc.

3. Extension of developed MLPG solver to include non-Newtonian fluid rheology.

4. Validation and application of MLPG code to solve the non-Newtonian power-law

fluid flow problems in 1-D and 2-D space.

The next chapter discusses the mathematical formulations for MLPG approach, suitable

numerical integration technique using the standard PDEs to fulfill the objectives setup in

the present work.





Chapter 3

Mathematical formulation and

numerical methodology

This chapter presents the general idea about MLPG method, formation of local sub-domain,

technique about imposition of essential and natural BCs with appropriate assumptions.

Moving least square (MLS) formulations to construct the shape function approximation for

data interpolation. A brief description about weight functions calculation at the computing

points and Gauss point integration technique of quadrature domain is also presented herein.

3.1 Meshless local Petrov Galerkin (MLPG) method

The generalized form of the present numerical method such as meshless local Petrov

Galerkin method (MLPG) is developed by Atluri and Zhu (1998a,b), which is one of the

truly ‘mesh-free’ method, since it does not require any background cells for interpolation

and integration purpose. Flexibility present by choosing between test and trial functions,

the original formulation of the MLPG has subsequently been divided into various forms,

namely, MLPG-1, MLPG-2, MLPG-3, MLPG-4, MLPG-5, and MLPG-6. Amongst them,

29
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MLPG-1 is the original version. Both MLPG-1 and MLPG-5 seem to be the most promising

formulations (Atluri and Shen, 2005). See subsection 2.2.3 and Table 2.1 for more details.

3.2 Concept of support and influence domains

The concept of the support domain/local sub-domain is used to interpolate the value at

any point (or node) within the computational domain. A local domain includes many

nodes inside it. These points, except the point of interest, are called as influencing points

and the small local domain is often called as support domain/local sub-domain. Such

influencing nodes come inside the support domain of a point x to be used to support or

approximate the function value at x. It can have different shapes and sizes for different

points of interest x. The support and problem domains are usually mentioned as ΩI and

Ω, respectively. Depicted in Figure 3.1 are the various types of influence and support

domains. The most often used shapes, however, are circular or rectangular in 2-D space.

The concept of support domain is always used to select the nodes for constructing the

shape functions.

In the present work, a circular domain is used because (i) circle has no bias on direction and

(ii) very easy to formulate the weight function, as depicted in Figure 3.1. The approximate

Figure 3.1: Types of support domain used

function calculated for any computing point x is often called as test function φIte. In

meshless methods, both support and influence domains can be clearly distinguished. A
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influence domain is defined as a domain of neighboring nodes that a node exerts an

influence upon (Liu, 2003a). Use of an influence domain is an alternative way to select

nodes for interpolation. It works well for domains with highly non-regularly distributed

nodes, but for the uniformly distributed nodes the domains are same having equal radius

(ri).

Figure 3.2 shows that the domains for nodes 1 to 5, when approximating the field variable

at point x. Each domain is having different radius as r1, r2, · · · , r5, respectively. Nodes 2,

3, and 5 are within the support domain of computing point x. These circles represent the

influence domain for the corresponding nodes. Note that the domains of points 1 and 4 are

not the influence domain of point x. It can also be seen that node 4 is closer, in comparison

Figure 3.2: Influence domain of a point x

to node 3, to the point x but it does not have any influence on point x. These influence

domains are usually represented as ΩJ and approximate function for these domains are

called as trial function φItr. Here, I and J refer to the computing and influencing points,

respectively.

3.3 Determination of dimension of a support domain

The accuracy of interpolation function depends on the nodes inside the support domain of

computing point (which is often a quadrature point x or the center of integration cell).

Therefore, a suitable choice of support domain is must to ensure a proper area of coverage
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having sufficient number of nodes for interpolation. The dimension of the support domain

(e.g., radius ds) for a point x is determined by

ds = α× dc (3.1)

where α and dc are the dimensionless parameter of the support domain and a characteristic

length relating to the nodal spacing near the point x. In general, dc can be defined as an

average nodal spacing in the support domain of point x. It is simply the distance between

two neighboring points for uniformly distributed points. Hence, the size of support domain

may differ for each non-uniformly distributed computing point. The importance of α

is in determining the size of local support domain such that the maximum number of

nodes are selected for accurate interpolation at interpolation point with respect to nodal

distance. Scaling parameter (α) are chosen in a way that yields non-singular matrix at

every point inside the domain. Generally, good results are obtained for 2 ≤ α ≤ 3 (Liu,

2003a). However, it need to be predetermined by the analyst, usually, through numerical

experimentation for the same class of problems having known solutions. The actual number

of nodes (n) can be determined by counting all the nodes in the support domain.

An average nodel spacing for randomly distributed nodes can be determined as follows:

dc =



Ds

nds − 1
for 1-D space (3.2)

√
Asd√

nAsd − 1
for 2-D space (3.3)

3
√
Vsd

3
√
nVsd − 1

for 3-D space (3.4)

where Ds and nds are the estimated ds and the number of nodes covered by a known

domain of dimension Ds. Asd and nAsd are the estimated area covered by the support

domain of dimension ds and the number of nodes covered by the estimated domain of area

Asd. Vsd and nVsd are the estimated volume covered by the support domain of dimension

ds and the number of nodes covered by the support domain of volume Vsd. An estimate of

ds need not to be very accurate but a reasonably good. The dimension ds of the local

sub-domain Ωs for a interpolating point x in the physical domain Ω with non-uniformly
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distributed nodes can easily be determined (Liu, 2003a), for instance by using Eq. (3.2)

for 1-D space, as follows.

1. Estimate of ds with the help of dc gives Ds.

2. Count total number of nodes covered by Ds.

3. Calculate dc by using Eq. (3.2).

4. Finally, determine size of support domain (ds) by using Eq. (3.1) for optimally

selected α.

Similar procedure can be used to determine ds in 2- and 3-D spaces by using Eqs. (3.3)

and (3.4).

3.4 MLPG formulations

Prior to the constructions of MLPG methodology to calculate the approximate function

to local interpolation, the following three basic formulations/steps are required.

• Basis function

• Weight function

• Shape function approximation using non-element interpolation technique such as

MLS, PIM, RBS, etc.

MLS is categorized as a method of series representation of functions. It is popular technique

due to the following two main features:

• Approximated field function in MLS is continuous and smooth in problem domain

• It can produce an approximation having desired order of consistency

MLS technique is, therefore, widely used as an alternative method for constructing functions

approximation than any other interpolation technique. It is however very complex in

nature (Lancaster and Salkauskas, 1986; Cleveland, 1993).
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3.4.1 Basis function approximation

A predefined interpolation scheme, i.e., use of polynomials as basis function in the interpo-

lation, has been widely used in FEM. In Mfree methods, basis functions play crucial role in

defining the accuracy of numerical computations because shape functions approximation

depend on them.

In MLPG formulations, the linear and quadratic basis functions for 1- and 2-D spaces are

chosen as follow:

P T (x) =



{1 x} p=1 for 1-D space (3.5)

{1 x y} p=1 for 2-D space (3.6)

{1 x x2} p=2 for 1-D space (3.7)

{1 x y x2 xy y2} p=2 for 2-D space (3.8)

Here p is the order of polynomial. In general, the choice of basis function can be described

as Pascal triangle for multi-dimensional space as shown in Figure 3.3. The general form of

Figure 3.3: Pascal triangle for general selection of basis function (Liu and Gu, 2005).

polynomial basis function of order p can be written as follows.

P T (x) =

{ {1 x x2 · · · xp−1 xp} for 1-D space (3.9)

{1 x y x2 xy y2 · · · xp yp} for 2-D space (3.10)
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3.4.2 Choice of weight functions

The weight functions are used to perform a sum, integral, or average in order to give some

elements more weightage or influence on the result than other elements in the same set.

They can be employed in both discrete and continuous manner. The performance of the

MLS approximation is strongly dependent on weight functions. In general, it should be

nonzero over a small neighborhood of a node xI . It must also have compact support called

as the support of node I. It is desirable that w(x − xI) be smooth. If w(x − xI) is C1

continuous then the shape function φI(x) will also C1 continuous for a polynomial basis

(Lancaster and Salkauskas, 1981, 1986). Further, w(x− xI) should be large for smaller

values of (xI − x) and relatively small for the larger distant xI . The weight function

Figure 3.4: Weightage of influencing points in subdomain.

w(x−xI), hence, affects the resulting approximation function in MLPG and other meshless

formulations. The major properties of weight function w(x− xI) are summarized (Liu and

Gu, 2005) as follows.
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• It should be finite (> 0) within support domain, Ωs.

• It should be zero (= 0) outside support domain.

• It should monotonically decreases from the point of interest (x), and must have

compact support, i.e. the 1st and 2nd derivative are all completely zero at the

boundary of the support domain where ri = 1.

• It must be sufficiently smooth, especially on the boundary of Ωs.

The compact support is most important characteristic of the selection of weight function.

The above properties are completely fulfilled in Figure 3.4, which is constructed using

quadratic weight function for point of interest as x = 11 and xI = 1, 2, 3, · · · 21. A symbolic

representation of weight function, which depends only on the distance between two points

(d = x− xI), can be given as follows.

w(x− xI) = wI(d) (3.11)

The most commonly used weight functions in literature (Belytschko et al., 1996b) can be

written as functions of normalized radius/distance (rd = |d|/ds) as follow. Irrespective of

the type of weight function, wI(d) = 0 for rd ≥ 1.

1. Cubic spline weight function

wI(d) =


2
3
− 4r2

d + 4r3
d for rd ≤ 1

2

4
3
− 4rd + 4r2

d − 4
3
r3
d for 1

2
≤ rd ≤ 1

(3.12)

2. Quartic spline weight function

wI(d) = 1− 6r2
d + 8r3

d − 3r4
d for rd ≤ 1 (3.13)

3. The exponential weight function (search)

wI(d) = exp

(
−rd
αo

)2

for rd ≤ 1 (3.14)
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where αo is constant parameter. Generally, αo = 0.3 (Liu, 2003a).

Singh (2004) has extended the definition of weight function for multi-dimensional systems

by defining the normalized distance (rd) as follows.

rd =
||x− xI ||

ds
where x = {x, y, z} and ds (Eq. 3.1) (3.15)

The weight function at any given point in multi-dimensional systems is than calculated as

follows.

wI(d) =


wx for 1-D space

wx × wy for 2-D space

wx × wy × wz for 3-D space

(3.16)

The formulation of shape functions (see Section 3.4.3.1) results in matrices A and B. To

compute the spatial derivatives of these matrices, it is necessary to compute the spatial

derivative of the weight function. The derivative of weight function for three dimensional

space is represented as below.

w′I,x(d) = w′(rx).w(ry).w(rz) (3.17)

w′I,y(d) = w(rx).w
′(ry).w(rz) (3.18)

w′I,z(d) = w(rx).w(ry).w
′(rz) (3.19)

The x−derivative of cubic spline weight function (Dolbow and Belytschko, 1998) is evaluated

as follows.

w′(rx) =
dwI
dx

=
dwI
drx

drx
dx

=


(−8rx + 12r2

x)sign(x− xI) for rx ≤ 1
2

(−4 + 8rx − 4r2
x)sign(x− xI) for 1

2
< rx ≤ 1

0 for rx > 1

(3.20)

Figure 3.5 illustrates an example of the quadratic weight function and its first derivatives

in 1-D space Ω having 21 uniformly distributed nodes. The general idea of three types of
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(a) weight function (b) derivative of weight function

Figure 3.5: Weight function and its 1st derivatives

weight functions and their first derivatives is illustrated (Liu and Gu, 2005) in Figure 3.6.

MLS approximation for the trial function at every sample point must ensure to have

(a) weight function (b) derivative of weight function

Figure 3.6: Weight function and their derivatives (W1: cubic spline; W2: quartic
spline: W3: exponential)(Liu and Gu, 2005).

the non-singular matrix A. It can be achieved by suitable selection of weight function

wi associated with node i in such a way that the size of support domain ds for wi

should be optimally large enough having sufficient nodes to cover the domain of the MLS

approximation. A very small ds may yield relatively large numerical errors to construct

the system matrix. On the other hand, ds should be also small enough to maintain the

local character for MLS approximation. As discussed earlier, the weight function affects
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the resulting MLS approximation, if weight functions (w) are continuous then the shape

functions (φ) are also continuous.

3.4.3 Moving least square (MLS) approximation

MLS approximation was developed for the data fitting and surface construction by Lancaster

and Salkauskas (1986, 1981) and Cleveland (1993). An excellent description of MLS can be

found elsewhere(Lancaster and Salkauskas, 1981). In MLS, the dependence of coefficient a

on x makes continuous movement of weighted least squares approximation. Due to which,

weighted least square (WLS) interpolation is termed as moving least square (MLS). Hence,

MLS shape functions remain continuous in the entire global domain, as long as the weight

functions are chosen properly (Liu and Gu, 2005). MLS approximation is widely used

in meshfree methods for construction of shape functions for local sub domain. Nayroles

et al. (1992) first constructed shape functions using MLS approximation for their diffuse

element method (DEM) for mechanics problems. MLS approximation is popular due to

two major features (see section 3.4). The procedure of constructing shape functions for

MFree methods using MLS approximation is detailed in subsequent section.

3.4.3.1 Formulation of MLS shape functions

Meshless method, in general, is required to preserve the local character of the numerical

implementation by using a local interpolation or approximation to represent the trial

function with actual (or fictitious) values of unknown variables at randomly located nodes.

Generalization of the meshless formulation needs a relatively direct local interpolation

or approximation scheme with reasonably high accuracy and with an easy extension to

n−dimensional problems. MLS approximation can be considered one of such schemes

(Atluri et al., 1999b).

Let approximation uh(x) for any function u(x) is posed as a mth order polynomial having

arbitrary coefficients. The order of polynomial is defined as the order of basis. In 1-D
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space, a linear or quadratic basis uh(x) can be written as below.

uh(x) =

{
ao(x) + a1(x)x (linear basis) (3.21)

ao(x) + a1(x)x+ a2(x)x2 (quadratic basis) (3.22)

where unknown coefficients aj(x) vary with x. These approximations are called as moving

least square (MLS) interpolants in curve and surface fitting (Lancaster and Salkauskas,

1981).

Let an unknown scalar function of defined field variable u(x) in problem domain Ω, the

neighborhood of point x is located in {xI} where Ω is divided in I = 1, 2, 3...n nodes. The

MLS approximation of an unknown variable uh(x) of u can be defined by

uh(x) =
m∑
j=1

pj(x)aj(x) = PT (x)a(x) ∀x ∈ Ωs (3.23)

where the vector of basis function, P(x), is chosen according to the problem space, which

consists lowest order of monomials to ensure minimum completeness, and m is the number

of terms in the monomials. The vector of nodal coefficients, a(x), is given by

aT (x) = {a1(x) a2(x) a3(x) · · · · · am(x)} (3.24)

It can be obtained by minimizing the following weighted discrete L2 norm (Marosevic,

1996).

J =
n∑
I=1

w(x− xI)[uh(x, xI)− uI ]2 =
n∑
I=1

w(x− xI)[PT (xI)a(x)− uI ]2 (3.25)

where n is the number of nodes in the test domain of x for which w(x − xI) 6= 0, and

uI is the nodal value of u at x = xI . The above functional equation, i.e., a weighted

residual, is constructed using the approximated values and nodal parameters of unknown

field function. Since the nodes (n) used in MLS approximation is usually much larger than

the number of basis function (m), the approximated function (uh) does not pass through

the nodal positions, as shown in Figure 3.7.
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Figure 3.7: The appropriate function uh(x) and the nodal parameter ui in the MLS
approximation (Atluri and Zhu, 1998a).

Eq. (3.25) can be rewritten in the following form

J = (P a-u)Tw(x)(P a-u) (3.26)

here uT = {u1, u2, u3, · · · un} (3.27)

P =


p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)


and (3.28)

w(x) =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0

...
...

. . .
...

0 0 · · · w(x− xn)


(3.29)

The function J can be minimized by its first derivative of J with respect to a, i.e.,

∂J

∂a
= 0 (3.30)

It results in the following system of m equations.

∂J

∂ak
= 0 ⇒

n∑
I=1

w(x−xI)2pk(xI)[pT (xI)a(x)−uI ] = 0 1 ≤ k ≤ m (3.31)
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Eq. (3.31) in vector notation,

n∑
I=1

w(x− xI)2p(xI)[p
T (xI)a(x)− uI ] = 0 (3.32)

On simplification of Eq. (3.32), we have

n∑
I=1

w(x− xI)p(xI)p
T (xI)a(x) =

n∑
I=1

w(x− xI)p(xI)uI (3.33)

It leads to the following set of system matrices.

A(x)a(x) = B(x)us (3.34)

where us, vector of nodal parameters of field function in support domain Ωs, is given as

us = {u1 u2 · · · · un}T (3.35)

and A(x), weighted moment matrix, is defined by

A(x) =
n∑

I=1

w(x− xI)p(xI)pT (xI) (3.36)

For a 1-D space with the linear basis (m = 2), A is a 2× 2 symmetric matrix that can

explicitly be written as

A2×2(x) =
n∑
I=1

wI(x)p(xI)p
T (xI) =

n∑
I=1

w(x− xI)

 1 xI

xI x2
I

 (3.37)

Similarly, for 2-D space problems

A3×3(x) =
n∑
I=1

wI(x)p(xI)p
T (xI) =

n∑
I=1

w(x− xI)


1 xI yI

xI x2
I xIyI

yI xIyI y2
I

 (3.38)
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In a well defined MLS approximation, matrix A must be non-singular. The matrix B is

defined as

B(x) =
[
w1(x)p(x1) w2(x)p(x2) · · · wn(x)p(xn)

]
(3.39)

which is (3× n) matrix for 2-D space and can be expressed as

B3×n(x) =

w(x− x1)


1

x1

y1

 w(x− x2)


1

x2

y2

 · · · w(x− xn)


1

xn

yn




=


w1 w2 · · · wn

x1w1 x2w2 · · · xnwn

y1w1 y2w2 · · · ynwn


3×n

(3.40)

By solving Eq. (3.34) for a(x), we have

a(x) = A−1(x)B(x)us (3.41)

By substituting Eq. (3.41) into Eq. (3.23), we obtain

uh(x) =
n∑
i=1

φi(x)ui = ΦT (x)us (3.42)

where Φ(x) is the matrix obtained by MLS shape functions approximation corresponding

to the influencing nodes present in support domain of the points x. It can be expressed as

ΦT (x) = pT (x)︸ ︷︷ ︸
1×3

A−1(x)︸ ︷︷ ︸
3×3

B(x)︸ ︷︷ ︸
3×n

=
{
φ1(x) φ2(x) · · · φn(x)

}
1×n

(3.43)

The shape function φi(x) for ith node is defined by

φi(x) = [φ1(x) φ2(x) φ3(x) · · ·φn(x)]

=
m∑
j=1

pj(x)(A−1(x)B(x))ji = (pT(x)(A−1B)i (3.44)
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To obtain the partial derivatives of the shape functions (Belytschko et al., 1996b), Eq. (3.43)

is re-written as follow.

ΦT (x) = γT (x)B(x) where γT = pTA−1 (3.45)

Since A is symmetric matrix, γ(x) can be obtained from above Eq. (3.45).

Aγ = p (3.46)

The partial derivatives of γ can than be obtained by solving the following equations.

Aγ,i = p,j −A,iγ (3.47)

Aγ,ij = p,ij − (A,iγ,j +A,jγ,i +A,ijγ) (3.48)

Aγ,ijk =
p,ijk − (A,iγ,jk +A,jγ,ik +A,kγ,ij +A,ijγ,k

+A,ikγ,j +A,jkγ,i +A,ijkγ)
(3.49)

where i, j and k denotes the x, y, z coordinates and a ‘comma’ indicates a partial

derivatives with respect to the indicated coordinate that follows. Then, the partial

derivatives of the shape function can be obtain using the following expressions.

Φ,Ti = γ,Ti B + γTB,i (3.50)

ΦT ,ij = γT ,ij B + γT ,i B,j +γT ,j B,i +γ
TB,ij (3.51)

ΦT ,ijk =
γT ,ijk B + γT ,ij B,k +γT ,ik B,j +γT ,jk B,i +γ

T ,i B,jk

+γT ,j B,ik +γT ,k B,ij +γTB,ijk

(3.52)

All the field nodes covered by the support domain are used to perform the MLS approxi-

mation for the unknown function at point x. The number of nodes n should be sufficient

to avoid the singularity of the moment matrix A, which is invertible, and to provide the

interpolation stability. In order to ensure the existence of A−1 as well as conditioned A, we

usually take n >> m. Here n is determined through trial and error method by adjusting
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the dimensionless parameter α. There is no theoretically best value of n present yet (Liu

and Gu, 2005). The representative shape function and its first derivative constructed by

using quadratic weight function at computational point x = 11 for 21 nodes is shown in

Figures 3.8 and 3.9.

(a) shape function

(b) derivative of shape function

Figure 3.8: Shape function and its first derivative at point of interest x = 11 and xI =
(1, 2, 3, · · · , 21)
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(a) shape function (b) derivative of shape function

Figure 3.9: Shape function and its first derivative in 3-D space by using cubic spline
weight function (Liu and Gu, 2005).

3.4.3.2 Properties of MLS shape functions

MLS shape functions have the following four characteristics.

1. Consistency: The consistency of MLS approximation depends on the complete

order of the monomial used as the polynomial basis. The shape function possess Cq

consistency for the qth complete order of monomial (Krongauz and Belytschko, 1996;

Liu, 2003a).

2. Partition of unity: The shape function φi(x) must have the partition of unity if

any constant term is included in the basis, i.e.,

n∑
i=1

φi(x) = 1 (3.53)

3. Delta function property: Since the function obtained by MLS approximation

does not pass through the nodal values, hence shape functions do not satisfy the

Kronecker delta condition, as in FEM. Thus

φi(xj) 6= δij =


1 i = j

0 i 6= j

(3.54)
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This property makes the imposition of essential boundary conditions more compli-

cated than that in FEM.

4. Reproducibility: The different types of basis functions can be used to construct

the shape function. These basis functions used to construct the shape function can

be reproduced(Liu, 2003a).

3.4.4 Flowchart of the shape function calculation

The flowchart for the calculation of the shape function by using the MLS approximation is

presented in Figure 3.10.

Figure 3.10: Flowchart for computation of MLS shape functions.
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3.4.5 Imposition of boundary conditions

It is evident from the the existing literature that some of Mfree methods still have the

difficulty in imposition of the Dirichlet BCs. It is because most of the Mfree shape functions

are constructed by using MLS approximation. An implementation of the essential BCs

becomes difficult due to use of such trial functions which do not satisfy the Kronecker

delta function property.

Various numerical techniques have been proposed to enforce the essential BCs by previous

researchers, such as the Lagrange multiplier method (Belytschko et al., 1994). The

Lagrange multipliers λ can be viewed as smart forces constraining T − T̄ = 0. In order to

obtain the discretized system of equations, the Lagrange multipliers λ, which are unknown

functions of the coordinates, need to be interpolated by using their nodal values and shape

functions for nodes on the essential boundaries.

λhT = [φ1 φ2 . . . φnλ ]


λT1

λT2

...

λTnλ


= φI(s)(1×nλ).λ(n×1) (3.55)

where nλ is the number of nodes used for the interpolation. φI is the shape function for the

I th node on essential boundary, s is the arc length along the essential boundary and λ is

the vector of the nodal Lagrange multipliers of field nodes on the same essential boundary.

The penalty parameter approach (Gu and Liu, 2001a) is a convenient and alternative way

for enforcing the essential BCs. In this approach, the diagonal elements of the stiffness

matrix (K) are modified as follow.

Kii = α.Kii (3.56)
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where α, the penalty factor, is much larger number (Gu and Liu, 2001a), i.e.,

α = 104 − 1013 × (Kii)max (3.57)

Such a modification may lead to ill-conditioned stiffness matrix. Zhu (2010) noted that

the penalty parameter can be chosen in between 1010 to 1015.

The direct interpolation method (Liu and Gu, 2004) and the transformation method (Atluri

et al., 1999b; Atluri and Shen, 2002a) in which, as in the MLPG, the fictitious nodal values

do not pass through the nodal data points, as depicted in Figure 3.7. However, meshless

approximation can be re-interpreted from the point of view of an interpolation, which

passes through the actual node values as uh(x) = ui (Figure 3.11). Various possibilities

Figure 3.11: uhI is the fititious nodal data at node I and uI is the exact nodal value at
node I for interpolation

have been explored in the literature for the correct implementation of boundary conditions

in meshless methods. For instance, imposition of boundary conditions (Belytschko et al.,

1996b; Fries and Matthies, 2004), enforcement of essential boundary conditions in meshless

methods using finite elements (Krongauz and Belytschko, 1996), boundary conditions in

the EFG method (Mukherjee and Mukherjee, 1997b), boundary conditions implementation

in meshless methods (Gunther and Liu, 1998), implementation of essential boundary

conditions (Gavete et al., 2000; Mendez and Huerta, 2004), and comparison between

Lagrange multiplier and penalty methods for setting boundary conditions in Mfree methods

(Ramirez et al., 2011), etc. are reported in literature.
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In the present work, direct interpolation technique is used for essential boundary conditions

due to its simplicity and easy to implementations. In the MLPG method, the weak form

of a PDE facilitates to impose the Neumann and Robin BCs directly, but impositions of

essential BC is very complex. To impose the essential BCs by direct interpolation method,

consider the following simple diffusion equation in 2-D space,

k

(
∂2T

∂x2
+
∂2T

∂y2

)
= q̂ in Ω (3.58)

subjected to the following essential BC

T = T1 on Γu (3.59)

The weighted integral form of above equation in Ωx can be written as

∫
Ωs

[
k

(
∂2T

∂x2
+
∂2T

∂y2

)
− q̂
]
w∂Ω = 0 (3.60)

where q̂, T , k and w represent the heat source per unit volume, temperature, thermal

conductivity and weight function, respectively.

To reduce this high-order differentiability requirement on T , Eq. (3.60) can be integrated

by parts. By using ‘Gauss divergence theorem’, the following local weak formulation

equation is obtained.

∫
Ωs

(
k
∂T

∂x

∂w

∂x
+ k

∂T

∂y

∂w

∂y
+ q̂w

]
∂Ω −

∫
Γsi

(
∂T

∂x
+
∂T

∂y

)
njw∂Γ (3.61)

−
∫

Γsu

(
∂T

∂x
+
∂T

∂y

)
njw∂Γ −

∫
Γst

(
∂T

∂x
+
∂T

∂y

)
njw∂Γ = 0 (3.62)

where nj the outward unit vector to Γs(= Γsi ∪ Γsu ∪ Γst). Γsi represents the internal

boundary of the quadrature domain where as Γsu and Γst are the part of essential and

natural BCs that intersect with the quadrature domain. Both Γsu and Γst vanish when

the local sub-domain is located entirely within the global domain (see Figure 3.12) and

Γs = Γsi. Unlike the Galerkin method, the Petrov-Galerkin method chooses the trial and
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Figure 3.12: Schematics of the MLPG method and the boundary intersection domain
Atluri et al. (1999b)

test functions from different spaces ΩJ
tr and ΩI

te, respectively. The weight function w is

purposely selected in such a way that it vanishes on Γsi. By using this selected weight

function w, Eq. (3.62) transforms as follow.

∫
Ωs

(
k
∂T

∂x

∂w

∂x
+ k

∂T

∂y

∂w

∂y
+ q̂w

]
∂Ω−

∫
Γu

(
∂T

∂x
+
∂T

∂y

)
njw∂Γ

−
∫

Γt

(
∂T

∂x
+
∂T

∂y

)
njw∂Γ = 0

(3.63)

If the quadrature domain is located entirely in the global domain, the integral parts related

to Γsu and Γst vanish, and Petrov-Galerkin form (Eq. 3.63) can be simplified as

∫
Ωs

(
k
∂T

∂x

∂w

∂x
+ k

∂T

∂y

∂w

∂y
+ q̂w

]
∂Ω = 0 (3.64)

Eq. (3.64) is used to establish the discrete algebraic equations for those nodes whose

quadrature domains falls entirely within the global domain Ω. Further, Eq. (3.62) is used

to create the discrete algebraic equations for those nodes whose quadrature domain are

intersects with the problem domain boundary.

Based on the concept of MLPG, the test functions over each local sub domain Ωs can be

chosen in a variety of ways (Atluri and Shen, 2002a,b), as summarized in Table 3.1.
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Table 3.1: MLPG types and their characteristics
Methods Test function

w in Ωte

local weak form
over each Ωs

Relation between
Ωte and Ωtr

Integral to evalu-
ate the weak form

MLPG-1 MLS weight
function

LSWF Ωte <Ωtr domain itegral

MLPG-2 Kronecker
delta δ(x,xI)

LUSWF1 Ωte can be arbitrary none

MLPG-3 least square
φIii(x)(w3)

LUSWF1 Ωte= Ωtr domain integral

MLPG-4 fundamental
solution
u∗(w4)

LUSWF2 Ωte <Ωtr singular boundary
integral

MLPG-5 Constant (w5) LSWF Ωte <Ωtr regualr boundary in-
tegral

MLPG-6 Same as trial
function

LSWF Ωte = Ωtr domain integral

LSWF: local symmetric weak form; LUSWF1: local unsymmetric weak form; LUSWF2: local
unsymmetric weak form with twice use of divergence theorem;

3.4.6 Direct interpolation method

In MLPG, the system equations are constructed node by node. Each row of the global

stiffness matrix (K) and the global force vector (F) refers to each field node. With this

structural feature of the system equation of MLPG, the direct interpolation method is

used to enforce essential BCs as follow.

Assume the temperature (T ) at I th field node on the essential boundary is prescribed as

below.

T hI = T̄ (3.65)

A linear equation for I th node can, therefore, be written as

φ1T1 + φ2T2 + ...............+ φnTn = T̄I (3.66)

It represents for all those nodes where the essential BCs are applicable but similar algebraic

equations for other nodes should still be obtained from weighted residual form of PDE

(Liu and Gu, 2004, 2005). Eq. (3.65) is assembled (stacked) into the system equation

directly for all field nodes to obtain the global system equations given as below.

Kn×nTn×1 = Fn×1 (3.67)



Chapter 3 53

Where K, F and T refer to the global stiffness matrix, global force vector and the required

variable parameter, respectively.

3.5 Integration techniques in MLPG

Integration techniques are frequently used in engineering computations, solid and fluid

mechanics problems, etc. to evaluate integration of a function over in a certain domain.

CFD techniques such as FEM, FVM require exact evaluation of integration to obtain the

global (stiffness) matrix K according to the following general formulation.

K =

∫
Ω

f(x)∂Ω (3.68)

where Ω represents a domain of integration. To calculate the area or volume of the

quadrature domain, various integration techniques have been developed by previous

researchers. Most commonly used numerical integration techniques are not effective in

meshfree method due to its complex nature. In the meshfree methods, numerical integration

is performed by using Gauss quadrature rule consisting of quadrature points and weights,

which are specifically generated for certain function and/or in domain. These integration

points and weights are obtained by solving a set of functions within certain intervals. Such

set of functions could be polynomials, trigonometric and basis functions of a particular

space which define the particular domain (Mousavi et al., 2010).

The numerical integration in meshfree methods using the Galerkin weak form formulation

is very complex and exhibits major computational cost. In FEM, numerical integration or

numerical quadrature, of an element, involves approximation of integrand by a polynomial

of sufficient degree, because the integral of a polynomial can be evaluated exactly. Hence,

some researchers have reverted back to developing FE techniques incorporating certain

aspects (basically integration) of the meshless methods. Although the integration by using

background cell in other meshless methods such as EFG, PU and RKPM methods preserve

symmetry of the sampling points, accurate solutions may not be achieved with too much

of an under integration (Atluri et al., 1999b). It should be noted that well known meshfree
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methods have utilized precious numerical integration (Belytschko et al., 1994; Liu and

Jun, 1995; Beissel and Belytschko, 1996; Duarte and Oden, 1996a; Oden et al., 1998), but

it requires a background mesh for integration. Hence, these are not the truly meshfree

methods.

In the prospects of truly meshfree methods, Atluri et al. (1999a,b) presented a mapping

technique in which intersecting region (ΩJ
tr∩ΩI

te) is transformed into unit circle to calculate

the area using simple Gaussian quadrature To obtain each KIJ for each value of J , ΩJ
tr

intersects only partially with ΩI
te. Their numerical experimentation suggested that number

of small partitions in a domain of integration, such as a sub-domain ΩI
te, or ΩJ

tr ∩ ΩI
te, give

better solutions, in comparison to the integrating over a whole domain with a large number

of integration points (Atluri et al., 1999a,b). Further, numerical integration is performed

without a mesh using Gauss quadrature rule termed as ‘method of finite square’ (De and

Bathe, 2000, 2001a,b) a truly meshless technique by using MLS approximation. A good

comparison of numerical integration rules for MLPG methods to preserve the solution

accuracy in conjunction with reduced computational cost can be found elsewhere (Mazzia

et al., 2007).

To avoid the use of global background cell for integration purpose, a so called local weak

form (LWF) is used to develop the MLPG method. Some other variations of MLPG

proposed based on LWFs are called meshfree LWFs methods. When LWF can be used

for a field node, the numerical integration is carried out over a local quadrature domain

defined for node xI , which can also be the local domain where the test functions is defined.

All the sub-domains are schematically drawn in Figure 3.13. For instance, Ωw is the

domain of non-zero weight (test) function, i.e. wi(x) 6= 0 and quadrature domain Ωq of

node I is a domain for the integration in Eq. (3.62). Although both Ωw and Ωq do not

have to be same, we have to choose a regular and simple shape for local domain (such as

circle, sphere, rectangle, squares, ellipsoids, etc.) for all nodes, as shown in Figure 3.13,

and the integration can be done numerically within the local domain. Therefore, a global

background mesh is not required in MLPG for either function approximation or integration.

The procedure is quite similar to numerical methods based on the strong form formulation,
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Figure 3.13: An integration domain modeled using the MFree local weak-form. Ωq

and Ωw for field nodes, and the support domain Ωs for a Gauss quadrature point xq (Liu
and Gu, 2005).

such as FDM. However, because MLS approximation is used in MLPG, special treatment

is needed to enforce the essential BCs (Liu and Gu, 2005). For the local integration in Ωq,

the sample points or nodes are needed to employ the Gaussian quadrature scheme. For

each quadrature points xq situated in a local domain, MLS approximation is performed to

compute the shape function and to obtain the integrand. Polar coordinate system is used

to generate the sample points in the quadrature domain Ωq and divided into 4 equal parts

to integrate separately, as discussed in subsequent section.

3.5.1 Gaussian quadrature

The n-points Gaussian quadrature rule, is a quadrature rule constructed to yield an exact

result for polynomials of degree (2n− 1) or less by a suitable choice of the points xi and

weights wi for i = 1, 2, · · · , n. The domain of integration for such a rule is conventionally

taken as [−1, 1], and the rule is stated as:∫ 1

−1

f(x)dx =
n∑
i=1

wif(xi) (3.69)

where f(x) is the integrand of integral term. Gaussian quadrature as above will only

produce good results if the function f(x) is well approximated by a polynomial function
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within the range [−1, 1]. The method is not suitable for functions with singularities.

However, if the integrated function can be written as f(x) = w(x)g(x), where g(x) is

approximated polynomial and w(x) is known, then alternative weights w′i and points x′i

that depend on the weighting function w(x) may give better results. It can be written as∫ 1

−1

f(x)dx =

∫ 1

−1

w(x)g(x) ≈
n∑
i=1

w′ig(x′i) (3.70)

The method of subdivision of quadrature domains works well when the number of subdivi-

sions is sufficiently large (Atluri et al., 1999b).

In Present work, the method proposed by Liu (2003a) for complex domains is used. They

used the coordinate transform to transfer non-rectangular quadrature domain (or sectors)

into standard squares for the Gauss quadrature scheme, as shown in Figure 3.14. The

Figure 3.14: Transformation of first quarter of a circle into a standard square (Liu,
2003a)

Present work uses circles centered at the node as our integration cell. The following effective

procedure for an accurate integration over circular quadrature domains by introducing a

number of quadrature points xQ in integration domain is adopted. The polar coordinate

system is used to generate points (xq) in quadrature domain. A circular quadrature domain

Ωq, either located entirely within the global domain Ω or intersecting with global domain

boundary Γ, the transformation for the first quarter of a circle (Figure 3.14) consists of

the following steps.

First, map the quarter r − θ plane into x− y plane (rectangle region) by using
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x = r cos θ r = aξ + b;

y = r sin θ θ = Aη +B

(3.71)

where r and θ varies in the ranges of [−1, 1] and [0, 2π], respectively. On solving for r

and θ, we get

r =
Rq

2
(ξ + 1) and θ =

π

4
(η + 1) (3.72)

where Rq being the radius of the quadrature domain. Substitution of (Eq. 3.72) in Eq. (3.71)

results

x =
Rq

2
(ξ + 1) cos

[π
4

(η + 1)
]

and y =
Rq

2
(ξ + 1) sin

[π
4

(η + 1)
]

(3.73)

Eq. (3.73) will transform the circular quarter directly into standard square in a single

operation. The general formulation for all four quadrants (k = 1, 2, 3 and 4) of the

subdomain can be written concisely as follows.

x =
Rq

2
(ξ+1) cos

[π
4

(η + 2k − 1)
]

and y =
Rq

2
(ξ+1) sin

[π
4

(η + 2k − 1)
]

(3.74)

The Jacobian, similar for all four quarters, resulting from this transformation can be

expressed in a simpler form as follows.

|J | =

∂x∂η ∂y
∂η

∂x
∂ξ

∂y
∂ξ

 (3.75)

The double integral of a function can than be performed using the Gauss quadrature

scheme over the square domain∫ ∫
ΩQ

f(x, y)dxdy =

∫ 1

−1

∫ 1

−1

f(η, ξ)dηdξ =

ng∑
1

ng∑
1

wiwjf(ηi, ξj) (3.76)

where wi are the Gauss weights at Gauss points (i = 1, 2, · · · , ng) and

f(η, ξ) = f(x(η, ξ), y(η, ξ))|J | (3.77)
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(a) 16× 4 Gauss points in quadrature domain for i = 120th node (b) 4× 4 Gauss points in quadrature domain for i = 120th node

(c)16 Gauss points for node i = 2 in the 1st quarter

Figure 3.15: The sample of Gauss points in circular domain presented for i = 2 and
i = 120th nodes in 156 uniformly distributed nodes in rectangle domain.

where J is the Jacobin corresponding to the coordinate transformation. The numerical

integration will than becomes∫
ΩQ

f(x)dΩ =
M∑
k=1

(
ng∑
l=1

AIJIF
∗
I

)
k

(3.78)

where AI(= wiwj) is the weight for the numerical integration and M denotes the total

number of partitions for integration.

3.6 MLPG algorithm

In general, flow and thermal problems can be categorized into (a) convection-diffusion

problems and (b) Navier-Stokes equations based problems. In first case, the pressure does
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not affect the flow field, while in second case, pressure is coupled with the velocity field.

The solution algorithms using MLPG method for both the cases are outlined below.

3.6.1 Solution of convection-diffusion problems

The following sequential steps can be utilized to implement the MLPG method (Atluri

and Zhu, 1998a).

1. Choose the total number of nodes in the global domain Ω including global boundaries.

2. Choose the basis function and suitable weight function according to problem domain

such that MLS approximation is well defined.

3. Determine the local sub-domains (Ωs) and their corresponding local boundaries (∂Ωs)

for each nodes.

4. Make a loop over all nodes located inside the global domain.

(a) Assuming the local domain represents for a quadrature domain, i.e., Ωq ≡ Ωs

for each node

(b) Determine Gaussian quadrature points xq for each Ωs and ∂Ωs

(c) Loop over quadrature points xq in each quarter of Ωq and on their ∂Ωq

i. Determine the nodes xi located in the domain of definition of the MLS

approximation for the trial function at point xq, i.e., those nodes with

wi (xq) > 0

ii. For each xq, Calculate shape functions and their derivatives, i.e., φi(xq)

and φ′i(xq).

iii. Evaluate numerical integrals of discretized partial differential equations

(Eq. 3.78).

iv. Assemble contributions of each computing node to the linear system, i.e.,

formation of global stiffness and global vector matrices (K and F).
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5. Solve the linear system for the fictitious nodal values (Eq. 3.67).

A flow chart of MLPG algorithm is depicted in Figure 3.16 and 3.17.

Figure 3.16: MLPG flow chart for any convection-diffusion problems.

3.6.2 Solution of Navier-Stokes equations

MLPG algorithm for solution of Navier-Stokes equations for Newtonian and non-Newtonian

fluids can be written as follows.
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Figure 3.17: MLPG flow chart for any Navier-Stokes equations.

1. Steps 1 to 4 of MLPG algorithm for convection-diffusion problems.

2. Assume the initial values of u, v, P and fix the boundary conditions.

3. Make a loop over all nodes located inside the global domain.

(a) First solve the linear system for fictitious nodal value u and v.

(b) Compute pressure P

(c) Compute εij and viscosity µ from calculated u and v

(d) Correction step for flow parameter, and set new value to old value till conver-

gence.
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These algorithms have been used in the present work to develop the in-house computational

solver based on MLPG method in C++ programming language. The detailed validation

and applications of in-house developed MLPG solver has been presented in the subsequent

chapters. Prior to moving ahead, dimensionless parameters used herein are briefly discussed

in next section.

3.7 Dimensionless parameters used

In the present work, various dimensional parameters have been used to characterize the

flow and thermal behavior of the hydrodynamics problems. Prior to moving forward to

discuss the validation of present MLPG solver, these dimensionless parameters are briefly

defined below.

3.7.1 Reynolds Number (Re):

The Reynolds number is generally defined as follow.

Re =
Inertial force

Viscous force
=
ρUD

µ
(3.79)

where, D, U , ρ and µ are the characteristic length, characteristic velocity and density and

viscosity of fluid, respectively. Based on the values of Reynolds number, the flow behavior

can be categorized as laminar and turbulent flows. In case of laminar flow, viscous forces

dominate over the inertial ones. They are also characterized by smooth constant fluid

motion. In case of turbulent flow, inertial forces dominate over the viscous forces and the

flow streams tend to develop eddies, vortices and other flow instabilities.

3.7.2 Prandtl Number (Pr):

The Prandtl Number is defined as

Pr =
Momentum diffusivity

thermal diffusion
=
ν

α
=

µ/ρ

k/cpρ
=
cpµ

k
(3.80)
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where µ, α, cp, ρ, ν = (µ
ρ
) and k are considered as dynamic viscosity, thermal diffusivity, heat

capacity, density, momentum diffusivity or kinematic viscosity, and thermal conductivity.

The thermal diffusivity dominates at Pr << 1, but in reverse when Pr >> 1, the

momentum diffusivity dominates the behavior.

3.7.3 Peclet Number (Pe):

It is used to study transport phenomena in a continuum and it is defined as.

Pe =
Advective transport

Diffusive transport
=RePr= LU

α
(3.81)

where L, U, α, is the characteristic length, local flow velocity , thermal diffusivity, which

is written as α = k
ρCp

, where k ,ρ and cp is the thermal conductivity, density and heat

capacity.





Chapter 4

Application of MLPG solver in

diffusion and convection-diffusion

problems

MLPG methods have been successfully used to obtain the numerical solutions of different

engineering problems governed by various kind of PDE, such as linear and nonlinear PDE,

Navier-Stokes, Poisson and Laplace equations, etc. This chapter presents the validation

of our in-house developed solver based on MLPG method with standard benchmark

CFD problems. In particular, the simplest benchmark problem using diffusion equation

constrained to various types of boundary conditions has first been validated to ascertain

the accuracy and applicability of the present in-house solver. The essential boundary

condition is enforced by the direct interpolation method, and MLS approximation is used

as interpolation scheme. For all problems considered herein, quartic spline weight function

has been chosen to select the nearest weighting nodes. Gaussian quadrature scheme is

used for quadrature domain integration with suitable Gauss points selection.

Over the decades, various steady and transient heat conduction problems are well stated

as benchmark problems by the previous researchers, e.g., heat conduction in an isotropic

and inhomogeneous media (Sladeka et al., 2004; Wang et al., 2005; Ahmadi et al., 2010),

65
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multi-dimensional transient heat conduction phenomena (Qian and Batra, 2005; Sladeka

et al., 2006, 2008), steady-state heat conduction in 2-D irregular complex domain (Hong

and Quan, 2008), and nonlinear heat conduction phenomena (Thakur et al., 2009; Tian

and Rao, 2012). Various kinds of weight functions are used (Singh, 2004) such as cubic

spline, quartic spline, Gaussian function, hyperbolic function, exponential, rational, and

cosine type of functions to compute the shape function approximations in heat conduction

phenomena. Abbasbandy and Shirzadi (2010) have presented new approach based on

MLPG and collocation methods to treat the parabolic PDEs with non-classical boundary

conditions and Chen and Liew (2011) used MLPG approach based on the moving Kriging

interpolation for solving PDEs for heat flow in 2- and 3-D spaces.

The present solver has been validated by comparing the numerical solution for temperature

distribution in steady-state heat conduction in 1-D and 2-D spaces with the corresponding

analytical/experimental results available in the literature.

4.1 Solution of diffusion equation

Numerical solution of diffusion equation subjected to different BCs is obtained by using

in-house MLPG solver and discussed in this section.

4.1.1 Steady state heat conduction

Consider a steady state heat conduction in an infinitely long uniform rod, whose both

the ends are maintained at constant temperature (Figure 4.1). The length (L) of rod

Figure 4.1: Heat conduction in a bar of length L.
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is very large in comparison to both width (W ) and height (H) of rod, i.e., L >> W and

L >> H. One of the boundary is exposed to higher temperature in comparison to the

other boundary. Therefore, it can be considered as 1-D space heat transfer problem. In

absence of all other phenomena like convection and radiation, the thermal conduction

problem is governed by the following diffusion equation.

kc
d2T

dx2
= 0 (4.1)

subjected to the essential BCs noted below.

T =


T1 at x = 0

Tn at x = L

(4.2)

where kc and T are the thermal conductivity and temperature, respectively. The above

equations (Eqs. 4.1 and 4.2) represent the simplest set of equations, whose analytical (and

exact) solution can easily be obtained. The exact solution is a linear distribution between

the specified boundary temperature computed as T = Tnx + T1 . It, therefore, can be

considered as best choice to validate the newly developed computation flow physics solver.

The local weak form (LWF) of Eq. (4.1), with application of Gauss divergence theorem,

can be written as∫
Ωs

(
kc
dw

dx

dφ

dx

)
dΩ−

∫
Γsu

kcw
dφ

dx
.ndΓ−

∫
Γst

kcw
dφ

dx
.ndΓ−

∫
Γsl

kcw
dφ

dx
.ndΓ = 0 (4.3)

where Γsu,Γst and Γsl belongs to essential, Neumann and internal surface BCs, as mentioned

in Figure 3.12. If quadrature domains are completely inside the global boundary (Ω),

then all the surface integral terms will vanish. The reduced form of Eq. (4.3) can than be

expressed as below.∫
Ωs

(
kc
dw

dx

dφ

dx

)
dΩ = 0 (4.4)

The complete equation (Eq. 4.3) will be used for those nodes which lie on the surface of

global domain. The reduced form (Eq. 4.4) is used for internal nodes whose quadrature

Ωq does not intersect the global domain.
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In-house MLPG solver has been used to solve this 1-D heat diffusion problem by using

L = 1 for n = 11 and 22 nodes. The boundary values are randomly selected as T1 = 100 and

(a) n = 11 nodes

(b) n = 21 nodes

Figure 4.2: Comparison of numerical results with analytical solution for n = 11 and
22 nodes.

Tn = 500. Both linear and quadratic basis functions, p(X) = [1 x] and p(X) = [1 x x2],
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are used for MLS shape function approximation. The quartic spline weight function is used

for test domain. Four Gauss quadrature points are used in each quadrature sub-domain

(Ωq) for integration. The appropriate values of dimensionless parameter αs and αq are

taken as 2.4 and 0.99, respectively. The convergence criteria for the solution variable is

taken as 10−5.

The nodal temperatures values calculated by the MLPG are compared in Figure 4.2 with

the exact nodal temperature (T = Tnx + T1) values for 11 and 22 nodes in the global

domain. Both numerical and exact values are overlapping to each other. Qualitatively,

numerical solution are as good as exact solution. Further attempts are made in Tables 4.1

and 4.2 to quantitatively analyse the relative deviation in the computed and exact values

of nodal temperatures for two different basis functions. The percent relative deviation of

the computed values with respect to the exact nodal values (Tables 4.1 and 4.2) is defined

as

εr =

√
(T

i,cal − Ti,exact)2

(Ti,exact)2
(4.5)

here T
i,cal and Ti,exact are the numerical (using MLPG solver) and exact values of

temperature at ith node, respectively. Table 4.1 shows that both exact and numerical

Table 4.1: Temperature distribution in a rod calculated for n = 11 nodes by using
linear (Lin) and Quadratic (Quad) basis functions.

n Texact Tcal,Lin Tcal,Quad %εr (Lin) %εr (Quad)

1 100 100 100 0 0
2 140 139.999 140.023 7.1e-04 1.6e-02
3 180 179.999 180.035 5.5e-04 1.9e-02
4 220 219.999 220.064 4.5e-04 2.9e-02
5 260 259.999 260.101 3.8e-04 3.8e-02
6 300 299.999 300.102 3.3e-04 3.4e-02
7 340 339.999 340.094 2.9e-04 2.7e-02
8 380 379.999 380.099 2.6e-04 2.6e-02
9 420 419.999 420.090 2.3e-04 2.1e-02
10 460 459.999 460.051 2.1e-04 1.1e-02
11 500 500 500 0 0

values are very close (εr ≈ 10−4%) to each other for all the computing nodes (n). It
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is further observed that the linear basis function yields better results than those with

quadratic basis function for the problem under consideration. It indicates that the linear

Table 4.2: Temperature distribution in a rod calculated for n = 21 nodes by using
linear (Lin) basis function.

n Texact Tcal,Lin %εr (Lin)

1 100 100 0
2 120 119.9998 1.4e-04
3 140 139.9997 2.4e-04
5 180 179.9982 0.001
7 220 219.9976 0.001091
9 260 259.9972 0.00108
11 300 299.9972 0.000933
13 340 339.9974 0.00076
15 380 379.9979 0.0006
17 420 419.9985 0.00036
19 460 459.9992 0.00017
20 480 479.9996 8.33-005
21 500 500 0

basis function is more suitable than the quadratic basis function for the linear distribution

of solution variable. In CFD studies, number of nodes also influences the computed

solution. The influence of larger nodes (n = 21) on the numerical solution by using the

linear basis function based in-house MLPG solver is investigated and reported in Table 4.2.

As expected, the numerical solution has improved with increasing number of computational

nodes. For example, εr at x = 0.1 has reduced from 7.1×10−4 to 1.4×10−4 with increasing

nodes from 11 to 21, respectively. Both the exact and numerical values at each nodes are

in very close agreement to each other. Such a close correspondance between the computed

and exact values boosts us to further validate the present in-house MLPG solver with

broader range of problems to ascertain its wider applicability. Subsequent section extends

this 1-D heat conduction problem to little more realistic problem by including the heat

source.
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4.1.2 Steady state heat conduction with uniform heat genera-

tion

The in-house MLPG solver has been used to determine the solution of the previous problem

(Section 4.1.1) in-conjunction with heat source. Consider a steady state heat transfer in

an infinitely thick plate having uniform heat generation (q). The two ends of the plate is

exposed to the isothermal conditions (Figure 4.3). Assuming that the dimensions in the

Figure 4.3: Heat conduction in large plate.

y− and z− directions are extremely large in comparison to dimension in x− direction, i.e.,

temperature gradients are significant in the x− direction only. The problem therefore can

be considered as 1-D heat conduction with heating source. The governing equation can

than be written as

kc
d

dx

(
dT

dx

)
+ q = 0 (4.6)

The essential BCs are

T =


T1 at x = 0

Tn at x = L

(4.7)

The exact solution of the above set of equations (Eqs. 4.6 and 4.7) is a quadratic distribution

according to the Eqs. (4.8) between the specified boundary temperature as following

(Versteeg and Malalasekera, 2007)
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T = T1 +

[
Tn − T1

L
+

q

2kc
(L− x)

]
x (4.8)

Eq. (4.6) in local weak form becomes,

∫
Ωs

(
kc
dw

dx

dφ

dx

)
dΩ−

∫
Γs

kcw
dφ

dx
.ndΓ +

∫
Ωs

qwdΩ = 0 (4.9)

The surface integrals term will vanish when quadrature domains are completely inside the

global boundary. The Dirichlet BCs can be imposed by direct method. Eq. (4.9) than

becomes

∫
Ωs

(
kc
dw

dx

dφ

dx

)
dΩ +

∫
Ωs

qwdΩ = 0 (4.10)

Based on our experience with the previous problem, a linear basis function p(x) = [1 x] is

used for MLS approximation and quartic spline weight function is used for shape function

approximation. Direct interpolation method is used for essential BCs. The plate of unity

length (L = 1) has been uniformly divided in two separate cases as n = 11 and n = 21

nodes, respectively. The optimized values of αs and αq are obtained as 2.295 and 0.98 to

define the local sub-domain and quadrature domain for the best temperature distribution

using n = 11 nodes. For n = 21 nodes, αs and αq are set as 2.2 and 0.99, respectively. The

resulting matrix system is solved using the iterative procedure having the convergence

criteria of 10−5. The numerical results have been obtained for fixed thermal conductivity

(kc = 0.5 W/m.K) and uniform heat generation (q = 1000 kW/m3). The two ends of plate

are maintained at T1 = 100 K and Tn = 200 K, respectively.

Figure 4.4 compares the numerical results obtained using in-house MLPG solver with ana-

lytical solution for temperature distribution in a plate. Qualitatively, the numerical results

are in close agreement with the exact solution of the considered problem. Quantification of

closeness is analyzed in Tables 4.3 and 4.4 for 11 and 21 nodes, respectively. We can see

from the Table 4.3 that both numerical and analytical results are close to each other for
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(a) n = 11 nodes

(b) n = 21 nodes

Figure 4.4: Comparison of numerical MLPG results with analytical solution for
temperature distribution in a plate.
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Table 4.3: Temperature distribution
in a plate calculated by using n = 11
nodes and linear (Lin) basis function.

n Texact Tcal,Lin %εr (Lin)

1 100.00 100 0
2 200.00 203.971 1.985
3 280.00 279.598 0.143
4 340.00 338.094 0.560
5 380.00 376.873 0.822
6 400.00 396.527 0.868
7 400.00 396.884 0.779
8 380.00 378.112 0.496
9 340.00 339.582 0.122
10 280.00 283.944 1.408
11 200.00 200 0

Table 4.4: Temperature distribution
in a plate calculated by using n = 21
nodes and linear (Lin) basis function.

n Texact Tcal,Lin %εr (Lin)

1 100.000 100.000 0
3 200.000 200.442 0.221
5 280.000 279.989 0.004
7 340.000 339.753 0.073
9 380.000 379.662 0.089
11 400.000 399.740 0.065
13 400.000 399.956 0.011
15 380.000 380.265 0.070
17 340.000 340.618 0.182
19 280.000 280.887 0.317
21 200.000 200.000 0

all other nodes, except n = 2 and 10. The possible reason behind it may be significantly

higher, i.e., 2 to 4 folds, temperature in central region in comparison to BCs. Such larger

gradients may not be correctly resolved due to small number of uniformly distributed

computational nodes. The possible step may be taken to correct this erroneous solution

by crowding of nodes in the global computational domain or in the local domain near the

boundary surfaces. The number of uniformly distributed nodes in the global domain has

therefore been increased to n = 21 in place of n = 11 to find out the improvement in the

result on the questionable nodes of Table 4.3. The new results have been compared in

analytical results in Table 4.4 for n = 21 nodes. To facilitate the comparison of values in

Tables 4.3 and 4.4, alternate node values are listed in Table 4.4. We can observed that

by increasing the number of nodes in computational domain, the numerical results are

extremely close the analytical values. At distance x = 0.1, εr has reduced from 1.985 to

0.221 with increment in nodes from n = 11 to 21, respectively. Other corresponding error

values have also improved. This validation further gives us confidence in our in-house

MLPG solver.
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4.1.3 Convective cooling of a circular fin

In-house MLPG solver has further been validated on the modified version of previous

problem (see Section 4.1.2). Consider that a fin, of length (L) and uniform cross-sectional

area (A), is exposed to the surrounding ambient (temperature T∞). The base end of

fin is maintained isothermally (temperature TB) while the other end is insulated. The

cooling of a fin is, therefore, achieved by means of convective heat transfer along the length

(Figure 4.5). During this process, convective mode of heat transfer gives rise to heat source

Figure 4.5: Convective cooling of a fin.

or sink, depending on the operating parameters. Under the above noted approximations,

1-D steady state heat transfer problem considered herein is governed by the following

equation.

kcA
d2T

dx2
− hP (T − T∞) = 0 (4.11)

where h, P and kc are the convective heat transfer coefficient, perimeter of fin and

the thermal conductivity of the fin material, respectively. The analytical solution of

Eq. (4.11)(Versteeg and Malalasekera, 2007) is given by

T − T∞
TB − T∞

=
cosh[q(L− x)]

cosh(nL)
where q =

√
hP

kcA
(4.12)

The discretize form of Eq. (4.11) can be written as follow.∫
Ωs

(
dw

dx

dφ

dx

)
dΩ−

∫
Γu

w
dφ

dx
.ηdΓ−

∫
Γt

w
dφ

dx
.ηdΓ

+

∫
Ωs

n2φwdΩ =

∫
Ωs

n2T∞wdΩ

(4.13)
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Since boundary node at the end of fin is insulated, surface term will not vanish in the

above equation. The physically realistic BCs are given as follow.

T = TB on Γu (Dirichlet BC) (4.14)

dT

dn
= t on Γt (Neumann BC) (4.15)

The discretised form of the governing equation in conjunction of boundary conditions has

been solved by using in-house MLPG solver. Similar to previous problem, a linear basis

function p(x) = [1 x] is used for MLS approximation and quartic spline weight function

is used for shape function approximation. The computational domain has been divided

to 11 uniformly distributed nodes. Due to the lack of cronikar delta function property,

Figure 4.6: Temperature distribution along the length of fin.

the direct interpolation method is used to impose the essential BC. Each quadrature

sub-domain Ωq for integration has been populated with four Gauss quadrature points. The

appropriate values of dimensionless parameters αs and αq are taken as 2 and 1.05 for best

temperature distribution. The numerical and analytical results have been obtained for

L = 1, T∞ = 20oC, TB = 100oC, t = 0 and q2 = 25.
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Table 4.5: Temperature distribution along the length of fin calculated by using n = 11
nodes and linear (Lin) basis function.

n Texact Tcal,Lin %εr (Lin)

1 100 100 0
2 68.52 68.452 0.099
3 49.43 49.3622 0.137
4 37.86 37.7993 0.160
5 30.85 30.8011 0.158
6 26.61 26.5726 0.140
7 24.056 24.0292 0.111
8 22.54 22.5212 0.083
9 21.66 21.6589 0.005
10 21.21 21.2193 0.043
11 21.07 21.1394 0.329

The temperature is reduced, as expected, from base end to outer end of a fin. Qualitatively,

both numerical and analytical temperature distributions are overlapping to each other (see

Figure 4.6). Table 4.5 compares the MLPG solution with analytical solution (Eq. 4.12)

to observe the quantitative performance of in-house MLPG solver. The insignificant

deviations (εr < 0.5%) are obtained between the two resuls. The maximum deviation

(εr ≈ 0.33%)) is seen to be at outer insulated end. It is certainly due the Neumann type

of BC imposed at that end. This error can be minimize by increasing the number of nodes

in the computational domain and, in particular, near the insulated end of fin.

In general, the in-house MLPG solver so far has produced accurate results of one-

dimensional (1-D) conduction problems, with and without heat source/sink of fixed

as well as variable magnitudes, subjected to both Dirichlet and Neumann type of boundary

conditions. This reliable validation gives us confidence on present in-house solver to be

tested on higher dimensional problems.

4.1.4 Heat conduction in a square slab

Consider the steady state heat conduction in an infinitely long sqaure (side L) slab, as

depicted in Figure 4.7. MLPG methodology used in deriving discretized equations in 1-D

heat conduction case (see Section 4.1.1) can be easily extended to heat conduction in
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Figure 4.7: Square slab exposed to isothermal conditions.

two-dimensional square slab. In absence of any source/sink, the thermal field equation for

the given problem, i.e., 2-D steady state heat conduction, is given by

kc
d2T

dx2
+ kc

d2T

dy2
= 0 (4.16)

The slab is subjected to isothermal conditions, as follow

T =


T1 = 100 at x = 0 and L; 0 ≤ y ≤ L

T2 = 25 at y = 0 and L; 0 ≤ x ≤ L

(4.17)

The descrtized local weak from of PDE (Eq. 4.16) is written as follow.∫
Ωs

kc

(
dw

dx

dφ

dx

)
dΩ +

∫
Ωs

kc

(
dw

dy

dφ

dy

)
dΩ−

∫
Γu

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ−∫

Γt

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ−

∫
Γl

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ = 0

(4.18)

It is subjected to the Dirichlet BCs Ti = φ̂i on Γu.

The temperature distribution in 2-D square slab has been investigated by using quartic

spline weight function to calculate weightage of neighboring nodes. Quadratic basis

function p(x) = [1 x y x2 xy y2] is used to calculate shape function using MLS

approximation.
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Table 4.6: Temperature distribution
in square slab calculated by using n =

25 nodes.
n TFLUENT TMLPG %εr
1 62.50 64.199 2.718
2 100.00 100.00 0
3 100.00 100.00 0
4 100.00 100.00 0
5 62.50 62.54 0.065
6 25.00 25.00 0
7 62.50 62.77 0.435
8 71.87 72.16 0.397
9 62.50 62.541 0.066
10 25.00 25.00 0
11 25.00 25.00 0
12 53.13 52.75 0.702
13 62.50 62.89 0.621
14 53.13 52.88 0.466
15 25.00 25.00 0
16 25.00 25.00 0
17 62.50 62.543 0.069
18 71.88 72.29 0.574
19 62.50 62.43 0.1069
20 25.00 25.00 0
21 62.50 62.54 0.0696
22 100.00 100.00 0
23 100.00 100.00 0
24 100.00 100.00 0
25 62.50 62.461 0.063

Table 4.7: Temperature distribution
in square slab calculated by using n =

121 nodes.
n TFLUENT TMLPG %εr
1 62.50 62.508 0.013
2 100.00 100.000 0.000
6 100.00 100.000 0.000
10 100.00 100.000 0.000
11 62.50 62.499 0.000
12 25.00 25.000 0.000
13 62.50 62.499 0.000
17 87.57 87.787 0.251
21 62.50 62.498 0.002
22 25.00 25.000 0.000
67 25.00 25.000 0.000
68 37.43 37.016 1.106
72 62.50 63.108 0.974
76 37.43 37.015 1.108
77 25.00 25.000 0.000
100 25.00 25.000 0.000
101 62.50 62.497 0.004
105 87.57 87.780 0.243
109 62.50 62.497 0.004
110 25.00 25.000 0.000
111 62.50 62.499 0.001
112 100.00 100.000 0.000
116 100.00 100.000 0.000
120 100.00 100.000 0.000
121 62.50 62.499 0.000

The computational domain of area L2 = 1 has been populated with total 25 (i.e., 5× 5)

uniformly distributed nodes. The support and quadrature domains are set as αs = 2.2 and

αq = 0.95. Four partitions have been considered for minimum error in quadrature domain

integration such as volume and surface integrals. Each quadrature domain is populated

with 4× 4 Gauss points. The numerical results have been obtained by considering kc = 1.0

with convergence criteria of δ = 10−5.

Table 4.6 lists the nodal temperature distributions calculated numerically by using MLPG

method. To validate the present solver in 2-D space problems, the problem under considera-

tion has also been solved by using a reliable commercial CFD solver (ANSYS FLUENT) for

similar set of physical and geometrical parameters. The resulting temperature distribution

(TFLUENT) is also included in Table 4.6. Their relative deviations between the two results
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(εr) have been calculated to analyze the validity of present in-house solver. Evidently, all

nodal temperature values, except at one corner node 1, are extremely close (εr < 1%) to

each other. The corner node (n = 1) shows largest deviation (εr ≈ 2.7%), possibly due to

the insufficient Gauss integration points. It accuracy of the present results can further be

enhanced by increasing the number of nodes in global domain and/or by increasing Gauss

points for the evaluation of integral quantities. To observe this possibility of improvement

in the numerical results, the computational domain has been uniformly divided into 121

(11× 11) nodes. The calculated results using 121 nodes are reported in Table 4.7, where it

can clearly be seen the near boundary values have been to the greater extent. However,

central nodes are yielding little higher deviations, which is within the acceptable range.

Based on the above validations with various problems, the in-house solver can be considered

to working efficiently. Its validity is further being scrutinize in the subsequent sections.

4.1.5 Heat conduction in rectangular slab

The problem of steady heat conduction in square slab exposed to isothermal conditions

(section 4.1.4) has been generalized herein as follows. Consider the steady state heat

conduction in an infinitely long rectangular slab exposed to both isothermal and insulated

conditions, as shown in Figure 4.8.

Figure 4.8: Rectangular slab exposed to both isothermal and insulated conditions.

The problem under consideration can mathematically be illustrated by the following 2-D

steady state heat diffusion equation.

d

dx

(
kc
dT

dx

)
+

d

dy

(
kc
dT

dy

)
= 0 (4.19)
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The descrtized local weak from of PDE (Eq. 4.19) is written as follow.∫
Ωs

kc

(
dw

dx

dφ

dx

)
dΩ +

∫
Ωs

kc

(
dw

dy

dφ

dy

)
dΩ−

∫
Γu

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ−∫

Γt

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ−

∫
Γl

w

(
dφ

dx
+
dφ

dy

)
.ηdΓ = 0

(4.20)

The physically realistic BCs are given as follow.

φi = φ̂ on Γu (Dirichlet BC) (4.21)

dφi
dnj

= t̄ on Γt (Neumann BC) (4.22)

where Γs(= Γl ∪ Γu ∪ Γt) includes three parts of the local sub domain, i.e., Γu for the

essential BCs, Γt for natural BCs and Γl for internal BCs of quadrature domain. When the

quadrature domain is located entirely within the global domain, and the weight function

is monotonically decreasing at the boundary of support domain equal to zero. If there is

no BC specified on internal surfaces, then all the terms Γu, Γt and Γl vanish and for the

boundary nodes Γl will also vanish.

The numerical solution using in-house MLPG solver is obtained by considering the compu-

tational domain as x = [0, 5] and y = [0, 1]. The temperature is maintained as T = 100 and

500 at x = 0 and 5, respectively. The horizontal boundaries (y = 0 and 1) are insulated and

the thermal conductivity is taken as kc = 1. The whole computational domain is populated

with 256 uniformly distributed nodes. Each quadrature sub-domain Ωq is considered as

circular with radius rq = ∆x× 0.7, in which ∆x = ∆y is the nodal distance. The support

sub-domain Ωs is also chosen as a circle, having αs = 2.3 for both x and y directions. The

rate and accuracy of convergence are related to the dimensionless size parameter, i.e.,

the support sub-domain Ωs. The value αq = 0.7 was verified to be good by conducting a

comparative analysis. A convergence criteria of δ = 10−5 is taken for the iterative process.

For the comparison and validation purpose of the present in-house MLPG solver, a finite

volume based commercial CFD solver (ANSYS FLUENT) has also been used to simulate

the problem under consideration for similar set of conditions. Figure 4.9 compares both
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MLPG and FLUENT solutions for the nodel temperature distribution in a rectangular

slab. Both results have shown good correspondence to each other within the acceptable

order of deviations. The small differences observed in the nodal temperatures can further

Figure 4.9: Temperature distribution in a rectangular plate

be reduced by increasing the number of nodes and the reducing/alternate the size of the

sub-domains in MLPG method.

Based on the above applications of in-house MLPG solver for the solutions of 1-D and

2-D diffusion equations subjected to various types of BCs (Section 4.1.1 to 4.1.5), it can

be concluded that promising in-house MLPG solver can efficiently be utilized in solving

various engineering problems such heat conduction, mass diffusion controlled by the BCs

of either or both Dirichlet and Neumann type. Having gained this confidence, further

applications of the present solver in convection-diffusion is explored in subsequent section.

4.2 Solution of convection-diffusion equation

Numerical solution of convection-diffusion equation subjected to different BCs is obtained

by using in-house MLPG solver and discussed in this section.

Traditional CFD methods, like FDM, FEM and FVM, have encountered many difficulties

when dealing with some special problems such as large distortions, deformable boundaries,

moving materials, and free surfaces, etc. To deal with such issues, MLPG numerical
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technique has been used by Lin and Atluri (2000) to deal the basic convection dominated

flow problems governed by Navier-Stokes equations at different Peclet numbers (Pe) and

Reynolds number’s (Re). They used a stabilization technique to deal the stabilization

issues with the dominated convective terms at high Peclet numbers. Their results have

shown good correspondence with the standard benchmarking problems. Meshless methods

have been recorded by researchers as promising alternate tools in solving such special

problems without appearance of difficulties faced by traditional techniques.

It is evident from the existing literature that the convection dominated flows are some

of the most difficult problems to solve numerically. The non-linearities associated with

convection term cause serious numerical difficulties which appear in the form of “wiggles”

(oscillatory solutions). Various upwinding schemes have been proposed for traditional CFD

techniques to overcome such instability problems. A review of such upwinding schemes can

be found elsewhere (Zienkiewicz and Taylor, 2000). The exiting literature also suggests

that optimal upwinding schemes may be designed to find the exact nodal solution in

1-D problems. However, in case of the multi-dimensional problems, generalizations of

traditional upwinding schemes were unsuccessful due to the crosswind diffusion problem

(see Figure 4.10). Prior to attempting the solution of convection dominated problems with

Figure 4.10: Illustration of the crosswind diffusion problem with Pe = 100 ((Leonard,
1979)). Exact (left) and optimal upwinding (right) solutions.

in-house MLPG solver, upwinding schemes proposed for meshless methods, in particular

for MLPG methods, are briefed as follows.
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4.2.1 Meshless upwind schemes

The streamline upwind (SU) method has first been introduced (Hughes and Brooks, 1979)

to a-priori elimination of the possibility of any crosswind diffusion by constructing an

artificial diffusion operator which acts only in the direction of flow. Most popular among

such methods is the streamline upwind Petrov-Galerkin (SUPG) method (Brooks and

Hughes, 1982) which consistently introduces an additional stability term in the upwind

direction. While having some drawbacks, this method has better stability and accuracy

properties than the standard Galerkin formulation for convection dominated flows. It is

apparent that the upwind effects, arrived by whatever means, are significant only in the

direction of flow.

In truly meshless methods, two upwinding schemes (US-I and US-II) for MLPG method

were proposed (Lin and Atluri, 2000) by taking the similar kind of considerations to deal

with convection dominated convection-diffusion problems at high Peclet numbers (Pe).

The very general nature of truly meshless methods makes it easier to introduce the upwind

concept more clearly and effectively. Amongst them, US-II is a very good scheme, not

only because it always gives good solution, but also due to its very general nature. The

desirable features of good upwinding scheme are (a) upwinding effect should be applied

only in the streamline direction and (b) consistency for every term should be conserved.

US-II also possesses these desirable features to be a good up-winding scheme (Lin and

Atluri, 2000).

MLPG methods can easily handle the upwinding effects because they are based on a local

weak form over a local sub-domain. MLPG method, in general, is based on Petrov-Galerkin

weighting procedures. Different spaces for the test and trial functions can be used. One

simple way to treat the upwinding effects is shifting of the local sub-domain opposite to

the streamline direction. The same spaces for the trial and test functions are used, i.e., the

same support and the same interpolation scheme (MLS) for the trial and test functions

are employed. There is no need to modify the local weak form but have to shift the local
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sub-domain when integration is implemented. Both US-I and US-II are briefly discussed

herein for MLPG methods.

4.2.1.1 MLPG Upwinding Scheme I (US-I)

In MLPG method, different spaces for the test and trial functions can be used (see

Figure 4.11). In order to apply upwinding in the stream line direction, skew the test

Figure 4.11: MLPG method without upwinding(Lin and Atluri, 2000).

Figure 4.12: MLPG upwinding scheme I (US-I) (Lin and Atluri, 2000).

function opposite to the flow direction (Figure 4.12). It can be illustrated as follows:

choose a skewed weight function as the test function. For the skewed weight function, the

same weight function which is chosen for problem domain, shift the position of maximum
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of wi from xi to (xi − ∆), as shown in Figure 4.13. Here, ∆ = (γri)si is the shifting

distance. Here, si and ri are the unit vector of the streamline direction, and the radius of

Figure 4.13: US-I illustration (Lin and Atluri, 2000).

the support for the test function, respectively, at xi. The γ is given by

γ =
1

2
coth

(
Pe

2

)
− 1

Pe
where Pe =

uri
K

(4.23)

Here Pe is the local Peclet number. The size of the support for the trial function and local

sub-domain at xi is same as ri and coincide with the support for the test function at xi.

4.2.1.2 MLPG Upwinding Scheme II (US-II)

As MLPG methods are based on a local weak form over a local sub-domain, there is another

very convenient way to design upwinding schemes. According to the Bubnov-Galerkin

procedure to discretize the local weak form, shift the local sub-domain opposite to the

streamline direction, as shown in Figure 4.14. The direction of the shifting is opposite to

Figure 4.14: MLPG upwinding scheme II (US-II) (Lin and Atluri, 2000).

the streamline direction si at xi (Figure 4.15). The shifting distance of the local sub-domain
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can be specified as γri, where ri is the size of the support for the test functions, which is

equal to the size of the local domain at xi and γ is given by

γ = coth

(
Pe

2

)
− 2

Pe
where Pe =

2uri
K

(4.24)

Here, same space for the test and trial functions are used. Also, same support and

interpolation scheme (MLS) for the test and trial functions are employed. The local

Figure 4.15: US-II illustration (Lin and Atluri, 2000).

sub-domain at xi is no longer coinciding with the support for the test function at xi, but

the size is same. While MLPG chooses the test function such that the integration term

along the boundary Γsl equals to zero, this is generally not true for the MLPG with US-II.

Therefore, local weak form must include the integration term along the boundary Γsl.

The in-house MLPG solver has been equipped with both US-I and US-II. The subsequent

sections validate the accuracy of the present solver with various convection-diffusion

problems.

4.2.2 Steady state convection-diffusion

The steady state convection-diffusion problem in Ω is governed by the following equation.

vj
∂φ

∂xj
=

∂

∂xj

(
Kd

∂φ

∂xj

)
+ f (4.25)

where vj is the flow velocity, Kd is the diffusivity coefficient, f is a source term. It is

subjected to the following boundary conditions.
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φ = φ̂ on Γu (Essential BC) (4.26)

Kd
∂φ

∂xj
nj = t̄ on Γt (Natural BC) (4.27)

Here, φ̂ and t̄ are known values, nj is the unit vector normal to Γl, and Γu and Γt are the

subset of Γs. The local weighted residual form of Eq. (4.25) can be written as follows.∫
Ωs

[
vj
∂φ

∂xj
− ∂

∂xj

(
Kd

∂φ

∂xj

)
− f

]
w∂Ω = 0 (4.28)

for all w. By using integration by parts, the local weak form of above equation becomes as∫
Ωs

[
vj
∂φ

∂xj
+Kd

∂φ

∂xj

∂w

∂xj
− fw

]
∂Ω−

∫
Γs

Kd
∂φ

∂xj
njw∂Γ = 0 (4.29)

for all continuous test and trial functions (w and φ) in Ω. The boundary Γs of the local

sub-domain Ωs may intersect with the global domain Ω, therefore, Γs = Γsl ∪ Γsu ∪ Γst.

Here, Γsl is a part of Γs, which is inside the global domain, Γsu=Γs ∩ Γu, and Γst=Γs ∩ Γt.

Now, consider the 1-D convection-diffusion flow problem (Figure 4.16) subjected to the

essential BCs at both ends.

Figure 4.16: 1-D convection-diffusion flow domain of length L.

The governing equation (Eq. 4.25) for the considered case can be simplified as

u
∂φ

∂x
− ∂

∂x

(
Kd

∂φ

∂x

)
− f = 0 (4.30)

The local Peclet number can be defined as Pe = (uL)/Kd, where L is the length of

computational domain, u may be evaluated for given Kd for different Pe. The flow

problem has been solved by using in-house MLPG, with and without upwinding, solver for

the following two cases (Lin and Atluri, 2000):

• Case 1: Kd = 1, f = 0, φx=0 = 0 and φx=L = 1

• Case 2: Kd = 1, f = 100, φx=0 = 0 and φx=L = 0
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The computational domain (L = 1) has been populated by n = 11 uniformly distributed

nodes. The radius of support domains ( ri) is chosen as 2.3 times nodal distance (2.3∆x)

to solve these problems. Quartic spline weight function is used for MLS shape function

approximation. Direct interpolation method is used to impose the essential BCs.

Figure 4.17 depicts the numerical solutions of considered problems with Case-1 conditions

by using MLPG, MLPG-US-I and MLPG-US-II methods for the wide range of Peclet

number (1 ≤ Pe ≤ 1000). These results clearly show that MLPG is well accurate for

low Pe but at high Pe oscillatory behavior appears in the solution. The upwind scheme

is required at this stage to prevent the oscillations in the numerical solution. MLPG

stabilized with both US-I and US-II produces very good results for overall range of Pe

considered herein. While MLPG-US-I is very flexible, it is observed that results obtained

from MLPG-US-II are superior in comparison with those obtained using MLPG-US-I.

Figure 4.17: Results of Case 1 using MLPG, MLPG-US-I and MLPG-US-II for 1 ≤
Pe ≤ 1000.
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Figure 4.18: Results of Case 2 using MLPG, MLPG-US-I and MLPG-US-II for 1 ≤
Pe ≤ 1000.

These observations are further strenghtend with the help of case 2 conditions which is

having finite source in addition to convection-diffusion process. The numerical results for

case 2 are reported in Figure 4.18 using both MLPG and MLPG with upwinding methods.

Similar to case predictions, the numerical schemes (MLPG, MLPG-US-I and MLPG-US-II)

records stability and stabilization issues for case 2 at higher Pe. Both cases show that the

MLPG-US-II is very successfully in dealing with convection-dominated flows. The size of

support is observed plays a significant role in MLPG-US-II. Similar observations are also

reported elsewhere (Lin and Atluri, 2000) for both cases considered herein.

4.2.3 Steady state convection-diffusion without source

Consider a property φ is transported by means of convection and diffusion through the

one-dimensional space of length L. The problem is governed by Eq. (4.30) with source term
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f = 0. The essential BCs are just reverse of case 1 of previous problem, i.e., φx=0 = 1 and

φx=L = 0. To validate their FVM solver, Versteeg and Malalasekera (2007) compared the

distributions of φ(x) computed numerically and analytically by using FVM and Eq. (4.31),

respectively, for u = 0.1 m/s (case A) and u = 2.5 m/s (case B).

φ− φ0

φL − φ0

=
exp(ρux/Kd)− 1

exp(ρuL/Kd)− 1
(4.31)

An in-house MLPG solver has been used herein to find out the distribution of φ(x). The

numerical solution has been compared with analytical solution to present the accuracy

and acceptability of the present solver. The global computational domain of unit length

(L = 1) has been populated with n = 11 uniformly distributed nodes. The quadratic

p(x) = [1 x x2] and quartic spline weight w(x) functions are used for MLS shape

function approximation for both the cases. A value of δ = 10−5 is used for the convergence

of the iterative process. Four Gauss quadrature points are used in each quadrature sub-

domain Ωq. The appropriate optimized values of αs are determined for both MLPG and

MLPG-US-II methods, to match the results with exact solution. The value of αs = 2.0

and αq = 0.64 is used for MLPG-US-II.

Figure 4.19: Distribution of φ(x) for
case A.

Figure 4.20: Distribution of φ(x) for
case B.

Consider the density and thermal diffusivity as ρ = 1.0 kg/m3 and Kd = 0.1 m2/s,

respectively. Figures 4.19 and 4.20 depicts the values of φ(x) computed using MLPG
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and MLPG-US-II schemes for cases A and B, respectively. As seen earlier (section 4.2.2),

MLPG results are qualitatively close to exact solution for case A but they are oscillating

and far away from exact solution in case B. In both cases, MLPG-US-II results are, however,

showing excellent correspondence with the exact solution.

Tables 4.8 and 4.9 show the numerical values of φ(x) for cases A and B, respectively, with

their error quantification with results. The percent relative errors (εr) with respect to

exact solution are also recorded in these tables. In both cases, the numerical results of

Table 4.8: Distribution of φ(x) for case A of convection-diffusion process using n = 11
computational nodes.

n φExact φMLPG εr(MLPG) φMLPG-US-II εr(MLPG-US-II)

1 1.0000 1.0000 0.0000 1.0000 0.0000
2 0.9388 0.9332 0.5931 0.9339 0.5221
3 0.8711 0.8602 1.2576 0.8717 0.0662
4 0.7964 0.7819 1.8191 0.7930 0.4224
5 0.7138 0.6970 2.3554 0.7176 0.5308
6 0.6225 0.6035 3.0508 0.6247 0.3584
7 0.5215 0.5017 3.8031 0.5232 0.3194
8 0.4100 0.3922 4.3464 0.4129 0.6909
9 0.2868 0.2730 4.8102 0.2832 1.2488
10 0.1505 0.1420 5.6435 0.1528 1.5065
11 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.9: Distribution of φ(x) for case B of convection-diffusion process using n = 11
computational nodes.

n φExact φMLPG εr(MLPG) φMLPG-US-II εr(MLPG-US-II)

1 1.0000 1.0000 0.000 1.0000 0.0000
2 1.0000 1.0351 -3.510 0.9974 0.2612
3 1.0000 0.8026 19.738 0.9987 0.1261
4 1.0000 0.8776 12.239 0.9981 0.1913
5 1.0000 1.0090 -0.903 0.9984 0.1613
6 1.0000 0.8976 10.235 0.9982 0.1748
7 1.0000 0.8531 14.690 0.9983 0.1654
8 0.9994 0.9505 4.901 0.9978 0.1613
9 0.9933 0.9282 6.546 0.9922 0.1077
10 0.9179 0.7818 14.828 0.9144 0.3873
11 0.0000 0.0000 0.000 0.0000 0.0000

the given probems are poorly predicted by MLPG method, maximum deviations being

εr ≈ 5.6% and 19.7% for cases A and B, respectively. The maximum deviations with
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MLPG-US-II are εr ≈ 1.5% and 0.4% for cases A and B, respectively. The superiorness of

MLPG-US-II is, therefore, clearly reflected over MLPG scheme.

Due to dominant convection part, MLPG yields oscillatory behavior in the numerical

solution of case B (see Figure 4.20 and Table 4.9). Upwinding scheme, as expected,

have controlled the oscillations and yielded correct solution. It can, therefore, be safely

concluded that both MLPG-US-I and MLPG-US-II are correctly implemented in the

in-house MLPG solver. Based on the above validation of convection-diffusion problems,

present solver with MLPG-US-II can accurately be used to solve the convection dominating

flow problems, governed by Navier-Stokes equations, at large magnitudes of velocity.

Based on the confidence gained on the present in-house MLPG solver with the help of

various diffusion and convection-diffusion problems subjected to varying set of boundary

conditions in 1- and 2-D spaces, the next chapter attempts to verify the suitability of

present solver for the flow problem coupled with pressure governing by Navier-Stokes

equations.





Chapter 5

Application of MLPG solver in

Navier-Stokes problems with

Newtonian and non-Newtonian fluids

5.1 Introduction

This chapter explores the efficacy and suitability of the in-house MLPG solver for uniformly

distributed nodes in the simulation of Navier-Stokes equations. In particular, the continuity

and momentum equations in 1-D and 2-D spaces have been solved for the benchmarking

problems. An adequate information is now available on most aspects of flow and heat

transfer for Newtonian fluid flow using MLPG method. On the other hand, many industrial

materials exhibit a range of non-Newtonian fluid behavior. For instance, most polymeric

systems and slurry suspensions exhibit shear dependent viscosity, and thereby, display

shear-thinning or shear-thickening, or both, under appropriate shear conditions. Despite

of their wide occurrence in many industrial applications such as fiber reinforced resin

processing, handling of pulp suspensions, fluidization of fibrous materials etc., none of

the literature so far have used MLPG methods in computation of such non-Newtonian

flows. Numerous investigations are reported in the literature on the flow of shear-thinning
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and shear-thickening fluids, frequently modeled by the simple power-law model by using

convention CFD methods, such as FDM, FEM, and FVM, e.g., non-Newtonian flow and

applied rheology (Chhabra and Richardson, 2008), power law fluids flow across a circular

and rectangular cylinders (Gupta et al., 2003; Bharti et al., 2006; Sahu et al., 2010), the

cocurrent flow of shear thinning liquids and air in horizontal and vertical pipes (Chhabra

et al., 1982), forced convection heat transfer from a sphere to non- Newtonian power law

fluids (Dhole et al., 2006), laminar flow of power law fluids in concentric annuli (Gupta and

Chhabra, 1996), etc. This chapter has also made the efforts to investigate non-Newtonian

flow through a channel using in-house MLPG solver.

The main challenges in the development of a successful solver for non-Newtonian fluid

rheology having shear dependent viscosity are: (a) effectively treatment of the nonlin-

earty of the dominant convection term at high Reynolds number and (b) treatment of

incompressbility. In case of Newtonian fluids, the incompressible Navier-Stokes equations

have been successfully solved by MLPG methods (Lin and Atluri, 2000, 2001; Wu et al.,

2010; Sataprahma and Luadsong, 2014, etc.). None of the efforts are recording the ap-

plicability of MLPG in non-Newtonian fluid flow simulations. However, only effort was

made by Shamekhi and Sadeghy (2009) using meshfree PIM method to investigate the

non-Newtonian flow.

Shamekhi and Sadeghy (2009) have investigated lid-driven cavity flow of a purely viscous

non-Newtonian fluid obeying Carreau-Yasuda rheological model by using the point inter-

polation method (PIM) meshfree method combined with the Characteristic-Based Split-A

algorithm. They reported for the velocity and pressure profiles at Reynolds numbers Re

=1000.

Prior to the application of MLPG solver, the dimensionless form of 2-D flow governing

equations in cartesian coordinates are introduced herein as follows.
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Eq. (5.1) and Eqs. (5.2 - 5.3) are referred as continuity and momentum equations, respec-

tively. All variables in Eqs. (5.1 - 5.3) are dimensionless. The length and velocity variables

are made dimensionless by using the reference length (Lr) and reference velocity (Vr).

Here u and v are the x− and y−components of the velocity, p and µ are the dimensionless

pressure and viscosity, t is time. The Reynolds number (Re) and rate of strain tensor (εij)

are defined as follow.

Re =
LrVrρ

η
and εij =

1

2

(
∂ui
∂j

+
∂uj
∂i

)
(i, j) ≡ (x, y) (5.4)

where ρ is the density of fluid. The fluid viscosity (η) is related to shear stress and shear

rate as follow:

τij = 2ηεij

The rheology of the fluids is governed by the commonly used power-law rheological model

(Bird et al., 2002; Chhabra and Richardson, 2008) as follow:

µ = m(I2/2)(n−1)/2 where I2 = (1/2)(ε : ε) = (1/2)
∑
i,j

ε2ij (5.5)

All variables in Eq. (5.5) are dimensional. Here m and n are the flow consistency index

and flow behavior index, respectively. The value of power-law index, n < 1, n = 1 and

n > 1 represent the shear-thinning, Newtonian and shear-thickening fluids, respectively.

I2 is the second invariant of the rate of strain tensor whose components are available in

the standard text book (Bird et al., 2002). The dimensionless viscosity (µ) is represented

by the following relation:
µ = (I2/2)(n−1)/2

Eqs. (5.1 -5.5) are numerically solved by using MLPG solver for two flow problems in

subsequent sections.
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5.2 1-D fully developed flow of Newtonian and non-

Newtonian fluids through a channel

Consider the steady fully developed flow of incompressible Newtonian and non-Newtonian

fluids through a rectangular channel. The assumptions of the steady and fully developed

nature simplifies the flow to be one-dimensional (1-D). Mathematically, it can be expressed

as ∂(u)/∂x = 0 ⇒ u = u(y) and v ≈ 0. Under these considerations, Eqs. (5.1 -5.3) can

be simplified as follows.

∂u

∂x
= 0 ⇒ u = u(y) (5.6)

0 = −∂p
∂x

+
µ

Re

(
∂2u

∂y2

)
+

2

Re

(
εyx

∂µ

∂y

)
(5.7)

0 = −∂p
∂y

⇒ p = p(x) (5.8)

All equation variables are dimensionless. Considering that the above dimensionless equa-

tions have used height of channel (H) and average flow velocity (uavg) as reference length

and velocity, respectively. Therefore, 0 ≤ y ≤ 1 and uavg = 1.

Evidently, Continuity equation (Eq. 5.6) itself satisfies. Therefore, Eq. (5.7) needs to be

solved to determine the flow field. The following essential BCs are imposed to determine

the flow field.

ui = ūi on Γ (5.9)

By introduction of α = (∂p/∂x) and up = (u/α), Eq. (5.7) can be transformed as follow.

µ

Re

(
∂2up
∂y2

)
+

2

Re

(
εxx

∂µp
∂x

)
− 1 = 0 (5.10)

Here, µp is determined by using the modified velocity up. By using the definition of average

velocity (uavg), the pressure gradient term (α) can be determined as follow.

α =

[∫ 1

0

updy

]−1

(5.11)
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To obtain local weak-forms of the momentum equation, Eq. (5.10) is weighted by test

function w and integrated over local sub-domain Ωs. The following integration system

equation has been evolved.∫
Ωs

[
µ

Re

(
∂2up
∂y2

)
+

2

Re

(
εxx

∂µp
∂x

)
− 1

]
w∂Ω = 0 (5.12)

By using integration by parts, Eq. (5.12) can be rewritten as∫
Ωs
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∫
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w∂Ω = 0 (5.13)

Using direct interpolation scheme for the essential BCs, Eq. (5.13) for internal nodes can

be written in a system of algebric equations as

∫
Ωs

µ

Re

(
∂up
∂y

∂w

∂y

)
∂Ω =

2

Re

∫
Ωs

(
εxx

∂µ

∂x

)
w∂Ω−

∫
Ωs

w∂Ω (5.14)

The above set of equations have been solved by using the following algorithm in MLPG

solver for the given values of Re and n.

1. Assume u and up.

2. Calculate α by using the definition of average velocity.

3. Calculate µ, µp and εxx.

4. Determine up from Eq. (5.14).

5. Determine u from up.

6. Repeat steps 2 to 5 till convergence of u.

A linear basis function p(x) = [1 x] with quartic spline weight function w(x) is used for

MLS shape function approximation in the in-house MLPG solver. Quadrature domain

(Ωq) integration has been performed by using 4 Gauss points in each part of Ωq. For 1-D

support sub-domain Ωs, an appropriate value of αs and αq is selected from a numerical

study using several trial experimentations. The local sub-domain and quadrature domain

size parameters αs and αq are varying according to the power-law index value (n). Direct
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interpolation method is used to impose Dirichlet BCs u = 0 at the channel walls (y = 0

and 1). A convergence criteria of δ = 10−5 is used to obtain the computational results.

Extensive numerical results have been obtained by systematic variation of the value of

the power-law index in the range as 0.4 ≤ n ≤ 1.8 for a fixed value of Reynolds number

(Re = 1) in the steady laminar flow regime. The computational domain has been uniformly

discretized with N = 21, 41 and 51 nodes. The accuracy and applicability of the in-house

MLPG solver has been assessed by comparing the numerical solution with analytical

solution (Eq. 5.15) of the problem under consideration.

u(y) = umax

[
1−

(∣∣∣∣1− 2y

h

∣∣∣∣)(n+1)/n
]

and umax =
2n+ 1

n+ 1
(5.15)

where y and umax are the dimensionless vertical distance (0 ≤ y ≤ 1) and dimensional

maximum velocity, respectively. The dimensionless height of channel is unity (h = 1) in

present case.

Figure 5.1 shows the comparisons of numerical and analytical results for two values of

power-law index (n= 0.8 and 0.4) by using N = 21 computational nodes. The analytical

(a) Power-law index, n = 0.8. (b) Power-law index, n = 0.4.

Figure 5.1: Velocity profiles for n= 0.8 and 0.4 by using 21 uniformly distributed
computational nodes.

and numerical results for similar conditions are clearly not matching. It appears that

the numerical velocity profiles are shifting to left side for selected values of power-law
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index (n < 1) irrespective of sizes of the support and quadrature domains. It is known

that the correctness of the velocity field depends the correctness of pressure field, i.e.,

pressure gradient in the present problem. It has been reported in the literature (Pierre,

1988; Franca and Frey, 1992, etc.) that conventional CFD approach like FEM also yields

such erroneous results, even for Newtonian fluids (n = 1), due to the unstable pressure

field evaluation. A perturbation term has been used (Pierre, 1988; Franca and Frey, 1992)

to obtain the stabilized pressure field in FEM simulations.

The present MLPG approach also seems to require stabilization of pressure field by suitable

means. The pressure gradient fluctuations to the neighboring nodes cause the maximum

errors in solution. To overcome this situation, the pressure gradient term (α) herein is

stabilized by using a correction factor (τp) as follow.

α =

[∫ 1

0

updy

]−1

× τp where τp =
β

r2
s × n

(5.16)

where rs and n are the radius of support for the weight function, power-law fluid behavior

index. The dimensionless parameter β depends on the number of computational nodes (N)

and the power-law index (n). It reduces with increasing N and/or decreasing n, and/or

both.

Figures 5.2 and 5.3 show the computed velocity profiles for shear-thinning (0.2 ≤ n ≤ 1)

and shear-thickening (1 ≤ n ≤ 1.8) fluids, respectively, by using N = 21 computational

nodes. These MLPG results have been obtained with the optimized value of dimensionless

domain parameters αs and αq selected in between 2− 2.1 and 0.9− 1, respectively. These

results have also been compared with the analytical results. It can clearly be seen that the

introduction of correction factor (τp) improves the accuracy of MLPG solver in application

of non-Newtonian fluid flow. The results shown are the best possible results with optimized

value of β. For the given computational nodes (N = 21), the value of β is seen to increase

(0.5 < β < 4.5) with increasing value of flow behavior index (0.2 ≤ n ≤ 1.8). It obviously

suggests that the correction factor (τp) is one of possible solution to control the erroneous

oscillation in the pressure field. A strong need of correction in the pressure field is also

observed with the increasing tendencies of both shear-thinning and shear-thickening fluid
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(a) n=0.2 with β = 0.5. (b) n=0.4 with β = 1.

(c) n=0.6 with β = 1.5. (d) n=0.8 with β = 2. (e) n=1 with β = 2.5.

Figure 5.2: Velocity profiles for shear-thinning (0.2 ≤ n ≤ 1) fluids by using N = 21
computational nodes

behaviors. While MLPG results are well posed with analytical results for 0.4 ≤ n ≤ 1.6,

they are still showing larger extent of deviation at extremes of shear-thinning (n < 0.4,

Figure 5.2) and shear-thickening (n > 1.6, Figure 5.3). These conditions requires resolution

of sharper gradients during the computations. Due to the lesser N , distribution of the

pressure gradient is highly influenced to the neighboring nodes. These deviations may, thus,

be attributed to lesser number of computational nodes (N) in a given problem domain.

Figures 5.4 and 5.5 have explored the influence of nodal points (N) and requirement of

the pressure correction factor (τp) in simulation of non-Newtonian fluid flow problem

by using in-house MLPG solver. The values of αs and αq are selected in the range as

2.0− 2.3 and 0.9− 0.95, respectively, for both N =41 and 51 computational nodes. The

numerical results are observed to be very close to the analytical solutions for N = 41 nodes.

The correspondence between the two results has further improved for N = 51 nodes. As

expected, an increasing nodal points have reduced the value of β, under otherwise identical
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(a) n = 1.0 with β = 2.5 (b) n=1.2 with β = 3.0

(c) n=1.4 with β = 3.5 (d) n=1.6 with β = 4.0 (e) n=1.8 with β = 4.5

Figure 5.3: Velocity profiles for shear-thickening (1 ≤ n ≤ 1.8) fluids by using N = 21
computational nodes

flow conditions. For instance, β is seen to increase as 0.4 < β < 1.31 and 0.16 < β < 0.64

with increasing value of flow behavior index (0.2 ≤ n ≤ 1.8) for nodal points of N = 41 and

51, respectively. Further, it is noted that the requirement of β diminish with increasing

number of computational nodes (N) (see Table 5.1). With increasing number of nodes

(N), β values have been reduced which suggests that the effect of pressure gradient to the

neighboring nodes are minimized. The minimal fluctuations in pressure thereby yields

correct velocity field for non-Newtonian fluid flow. It can, therefore, be concluded that

while larger N enhances the computational cost, it is beneficial to obtain the accurate

results with smooth convergence of MLPG solver.

Qualitative comparisons of the velocity fields computed by using MLPG solver with

analytical solution (Figures 5.2 to 5.5) for power-law index ranging from shear-thinning to

shear-thickening (0.2 ≤ n ≤ 1.8) suggests that the present in-house solver can successfully

be utilized in simulation of non-Newtonian fluid flow. A representative quantitative
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(a) n=0.4 with β = 0.4. (b) n=0.6 with β = 0.3.

(c) n=0.8 with β = 0.5. (d) n=1 with β = 0.83.

(e) n=1.2 with β = 0.99 (f) n=1.4 with β = 1.15 (g) n=1.6 with β = 1.31

Figure 5.4: Velocity profiles for power-law fluids (0.4 ≤ n ≤ 1.6) fluids by using
N = 41 computational nodes

comparison of the velocity, viscosity and shear-stress fields is also reported in Table 5.2

for power-law index of n = 0.4 and for 41 nodes in the computational domain. The

numerical results are seen to well posed with analytical values within the acceptable degree

of deviations. Table 5.2 shows core region have large deviations in comparison to near

boundary region. Since the fluid viscosity is a function of shear rate, which is varying

at each node and plug-like velocity profile of considered case, requires closer nodes for
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Table 5.1: Optimized values of β for a range of power-law index (n) and computational
nodes (N).

n β
N = 21 N = 41 N = 51

0.2 0.5 – –
0.4 1.0 0.40 0.16
0.6 1.5 0.30 0.24
0.8 2.0 0.50 0.32
1.0 2.5 0.83 0.40
1.2 3.0 0.99 0.48
1.4 3.5 1.15 0.56
1.6 4.0 1.31 0.64
1.8 4.5 – –

Table 5.2: Velocity, viscosity and stress fields for shear-thinning (n = 0.4) fluid by
using N = 41 nodes.

N uExact uMLPG %εr µExact µMLPG τExact τMLPG

1 0.000 0.000 0.000 0.289 0.295 7.931 7.646
2 0.211 0.204 3.473 0.289 0.295 7.931 7.646
3 0.396 0.382 3.589 0.313 0.319 6.929 6.690
4 0.557 0.538 3.453 0.341 0.346 6.007 5.841
6 0.815 0.791 2.961 0.411 0.413 4.396 4.361
8 1.001 0.977 2.318 0.509 0.501 3.077 3.157
10 1.127 1.110 1.477 0.653 0.625 2.029 2.185
12 1.207 1.198 0.674 0.882 0.812 1.232 1.413
14 1.253 1.254 0.083 1.282 1.117 0.660 0.830
16 1.275 1.284 0.685 2.109 1.683 0.288 0.419
18 1.284 1.298 1.088 4.424 2.949 0.083 0.164
20 1.285 1.302 1.282 17.943 7.858 0.008 0.032
22 1.285 1.302 1.307 17.943 15.742 0.008 0.010
24 1.284 1.300 1.270 4.424 3.876 0.083 0.104
26 1.275 1.290 1.146 2.109 1.925 0.288 0.335
28 1.253 1.264 0.931 1.282 1.208 0.660 0.729
30 1.207 1.214 0.634 0.882 0.846 1.232 1.319
32 1.127 1.131 0.384 0.653 0.642 2.029 2.089
34 1.001 1.003 0.166 0.509 0.504 3.077 3.124
36 0.815 0.816 0.004 0.411 0.409 4.396 4.420
38 0.557 0.557 0.052 0.341 0.341 6.007 6.002
39 0.396 0.395 0.179 0.313 0.313 6.929 6.904
40 0.211 0.212 0.457 0.288 0.288 7.930 7.916
41 0.000 0.000 0.000 0.288 0.288 7.930 7.916
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(a) n=0.4 with β = 0.16. (b) n=0.6 with β = 0.24.

(c) n=0.8 with β = 0.32. (d) n=1 with β = 0.4.

(e) n=1.2 with β = 0.48 (f) n=1.4 with β = 0.56 (g) n=1.6 with β = 0.64

Figure 5.5: Velocity profiles for power-law fluids (0.4 ≤ n ≤ 1.6) fluids by using
N = 51 computational nodes

correct resolution of shear rate. In addition to nodal distribution, the size of support and

quadrature domains also plays an important role in MLPG methods.

Furthermore, pressure gradient as a function of power-law index has also be explored

for two nodal distributions (N = 41 and 51) in Figure 5.6. The non-linear variation of

pressure gradient with power-law index seems to smoothen with increasing N . While the



Chapter 5 107

Figure 5.6: Pressure gradient as a function of power-law index (0.2 ≤ n ≤ 1.8) and
computational nodes (N= 41 nad 51)

.

pressure gradient in shear-thickening (n > 1) fluids shows smooth variation with power-law

index (n), shear-thinning (n < 1) fluids shows strong fluctuations. These fluctuations are

certainly due to lower viscosity of shear-thinning fluids in comparison to shear-thickening

fluids. Further refinement of the nodal distribution is needed to obtain the correct and

smooth field.

Having gained the confidence on MLPG solver to simulate the non-Newtonian flows,

subsequent section attempts to explores the efficacy of present in-house MLPG solver in

2-D Newtonian/non-Newtonian fluid flows.

5.3 2-D flow of Newtonian and non-Newtonian fluids

through a channel

Consider the physical model of a two-dimensional (2-D), steady, laminar, incompressible

non-Newtonian fluid in a channel (length L and width H) shown in Figure 5.7. The

uniform flow stream is approaching through a sufficient long confined channel due to which

it becomes fully developed at the exit. Both top and bottom walls of the channel are solid

and impermeable. Since the flow field varies along the length and height of the channel,



Chapter 5 108

Figure 5.7: Flow through a channel.

the flow can be approximated as 2-D. Under the above noted approximations, the flow

governing equations (Eqs. 5.1 - 5.3) can be simplified by eliminating the transient term

∂( )/∂t = 0. The conservative form of the simplified governing equations can be written

as follows.

∂ui
∂xi

= 0 (5.17)

uj
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∂xj

+
∂p

∂xi
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Re
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∂2ui
∂x2
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− 2

Re
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∂xj

)
− fi = 0 (5.18)

where fi represents for the extra body force term in ith direction. The flow is subjected to

the following Dirichlet and Neumann BCs

ui = ūi on Γu (5.19)[
µ

Re

(
∂ui
∂xj

)
nj − p

]
nj = t̄j on Γt (5.20)

where ūi and t̄i are fixed and nj is outward unit vector normal at the surface. The local

weak form of governing equations (Eqs. 5.17 and 5.18) is obtained by weighting them by a

test function wi and integrated over a local sub-domain Ωs, as follows.∫
Ωs

(
∂ui
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)
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)
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By using the integration by parts and applying the Gauss divergence theorem, Eq. (5.22)

can be reformed in to local weak form for all the continuous test w and trial functions ui

as below.∫
Ωs
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(5.23)

By imposing all BCs on a local weak form, Eq. (5.23) can be recasted as follow.∫
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∂Ω

−
∫

Γsl

(
µ

Re

∂ui
∂xj
− p
)
winj∂Γ−

∫
Γsu

(
µ

Re

∂ui
∂xj
− p
)
winj∂

−
∫

Γst

(
µ

Re

∂ui
∂xj
− p
)
winj∂Γ = 0

(5.24)

where, Γsl is the part of local sub-domain situated inside the global domain. As MLPG

is based on a local weak form over a local sub domain in which the test and the trial

functions come from the different space, the Bubnov-Galerkin procedure is used herein

to discretize the local weak form (Lin and Atluri, 2000, 2001; Wu et al., 2010). It needs

to compute the internal surface integral term Γsl of inner boundary of local sub domain

Ωs, which is inside the global domain Ω at boundary. MLPG methods usually choose the

test function such that the integration term along the boundary Γsl is zero, whereas this

term should not vanished or should be retained in the local weak form of MLPG-US-II.

In the Bubnov-Galerkin discretization procedure, the same spaces for the test and trial

functions are used for MLS (Lin and Atluri, 2000) and termed as MLPG-6 (see Chapter

3). Such formulations are based on mixed form. The essential BCs are imposed herein

by using direct interpolation method, which is very easy to implement and effective. For

pressure calculations at each points, the most popular Babuska-Brezzi(B-B) condition

(Babuska, 1971; Brezzi, 1974) is used, which is based on the mixed formulations and a

special condition is added to overcome the spurious pressure solutions. This Babuska-

Brezzi(B-B) stability condition must be satisfied to obtain the effective solutions (Atluri

and Shen, 2002b).
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Furthermore, an approximate ‘perturbation’ term based on residual forms of the Euler-

Lagrange equations is added. It is a straightforward approach to modify the standard

mixed formulations. Eq. (5.21) can be reformed by applying this approach as follows.∫
Ωs

∂ui
∂xi

w∂Ω + τ

∫
Ωs

(
uj
∂ui
∂xj

+
∂p

∂xi
− µ

Re

(
∂2ui
∂x2

j

)
− 2

Re

(
εij
∂µi
∂xj

)
− fi

)
× ∂w
∂xi

∂Ω = 0

(5.25)

Here, τ is the stability parameter for pressure calculation. The optimized value of τ can

solve the pressure stability issues without upsetting the consistency. Similar to stabilized

FEM (Pierre, 1988; Franca and Frey, 1992, etc.), the stability parameter (τ) may be

defined as

τ =


βD2 ReL < 1

D
2||u|| ReL ≥ 1

(5.26)

where, D is the diameter of the support domain for the weight function. The local Reynolds

number (ReL = D||u||Re) is related to local domain and velocity ||u|| = √uiui. According

to Eq. (5.26), τ may depend on global Re and the size of local sub-domain (Lin and Atluri,

2001). The best choice of parameter β = 0.01 is found for a particular problem (Lin

and Atluri, 2001), but it may vary and independently be chosen for considered problems.

Further, due to increasing cost of computations and irrelevant to calculate the 2nd order

derivatives of the shape function, 2nd order derivative terms in Eq. (5.25) are ignored

in present in-house solver. Similar strategy has been used in the existing literature on

solution of Navier-Stokes equation for Newtonian fluid flow (Nayroles et al., 1992; Lin and

Atluri, 2001; Wu et al., 2010; Tezduyar and Osawa, 2000)

For the formation of algebraic equation, MLS scheme is applied as field approximation

and discretization technique. The field variables can be approximated using the following

MLS approximation functions.
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uh(x) = φT (x).û =
N∑
I=1

φ(x)· ûI for x ∈ Ωs (5.27)

vh(x) = φT (x).v̂ =
N∑
I=1

φ(x)· v̂I for x ∈ Ωs (5.28)

ph(x) = φT (x).p̂ =
N∑
I=1

φ(x)· p̂I for x ∈ Ωs (5.29)

where φ(x) is the shape function for the local sub-domain Ωs for the computations of field

variables approximations. On substitution of Eqs. (5.27 - 5.29) into Eqs. (5.24 - 5.25) for

all the nodes, the following system of matrices can be obtained.

K ûj = F (5.30)

Where, ûj is the vector of the unknown fictitious nodal values, ûj = {û1
j , û

2
j , .......û

N
j }.

The global stiffness matrix (K) and the global vector (F) are defined as follow.

KIJ =

∫
Ωs

(
uj
∂ui
∂xj

wi +
µ

Re

(
∂ui
∂xj

∂wi
∂xj

))
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∫
Γsl

(
µ

Re

∂ui
∂xj

)
winj∂Γ

−
∫

Γsu

(
µ

Re

∂ui
∂xj

)
winj∂Γ−

∫
Γst

(
µ

Re

∂ui
∂xj

)
winj∂Γ

(5.31)

FI =

∫
Ωs

(
p
∂wi
∂xi

+
2

Re

(
εij
∂µi
∂xj

)
wi + fiwi

)
∂Ω−

∫
Γsl

pwi∂Γ−
∫

Γsu

pwi∂Γ

−
∫

Γst

pwi∂Γ

(5.32)

The corresponding matrices components for pressure are evaluated as,

KIJ = τ

∫
Ωs

(
∂p

∂xi

∂w

∂xi

)
∂Ω (5.33)

FI = τ

∫
Ωs

(
εij

∂µ

∂xj
− uj

∂ui
∂xj

)
∂w

∂xi
∂Ω−

∫
Ωs

∂ui
∂xi

w∂Ω (5.34)

The above set of equations have been solved by considering a square channel of (0 ≤

x, y ≤ 1) populated with N = 11 × 11 and 21 × 21 with uniformly distributed nodes.

The uniform stream (u∞ = 1) of non-Newtonian power-law (0.6 ≤ n ≤ 1.4) fluids is
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approaching the channel entrance. The exit velocity profile is fully developed. A quadratic

basis function P T (x) = [1 x y x2 xy y2] with quartic spline weight function w(x)

is used for MLS shape function approximation. Each quarter of quadrature domain Ωq is

uniformly populated with 4 Gauss points for integration purpose. For the circular local

support domain Ωs, an appropriate value of αs and αq is selected from a numerical study

using several trial tests. The sizes of both local sub domain rs and quadrature domain

rq depends on the value of power-law index (n). A criteria of δ = 105 is used for the

convergence of the iterative process.

Extensive numerical results have been obtained by systematic variation of the power-law

index in the range as 0.6 ≤ n ≤ 1.4 for two value of Reynolds number (Re = 1 and 20).

The results computed using in-house MLPG solver has been compared with the exact fully

developed flow solution (Eq. 5.15) to ascertain the reliability and accuracy of the present

methodology.

Figures 5.8 - 5.10 compare the exact and computational solutions for fully developed

velocity, viscosity and strain tensor profiles at the outlet of channel for different n by

using N=121 (i.e., 11 × 11) uniformly distributed nodes at Re = 1. Different values

of both β and radius of support domain (rs) are used for different n to obtain the best

possible computational results by using MLPG and MLPG-US-II with 121 uniformly

distributed nodal points. It is also observed that the smaller values of β(< 1) produces

better computational results. It is obsereved that, at the large value of β, the boundary

behavior comes in to effect, due to which it may deteriorates the pressure at near the

boundary in the mixed formulation system.

The fully developed velocity patterns (Figure 5.8) obtained using both MLPG and MLPG-

US-II are seen to be qualitatively similar to the analytical solutions over the range of

power-law index (0.2 ≤ n ≤ 1) at Re = 1. The Results obtained from MLPG method on

viscosity and strain tensor have also been analyzed in Figures 5.9 and 5.10 to understand

the issues pointed in viscosity profiles. The analysis of the profiles shows that the numerical

results are not exact for smaller value of n < 1 (shear thinning) and higher value of n > 1
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Figure 5.8: Fully developed velocity profile at the outlet of channel for different n
at fixed Re. Comparison of exact solution with numerical (MLPG and MLPG-US-II)

solutions for N=121 nodes.

(shear thickening) due to (i) insufficient nodal points (ii) effect of parameter such as pressure

and viscosity gradient and (iii) inaccuracy of upwinding scheme used to prevent the wiggle

nature of flow. In general, the complexities in numerical solution of such complex flows

appears due to shear-dependent viscosity. It requires sufficient number of nodes for correct

resolution of both sharp as well as steep gradients of flow variables. Similar to velocity

patterns, both local viscosity and strain patterns show excellent correspondence between

the MLPG and exacts results for n = 1 (Newtonian flow). The maximum deviations

between the present and exact results appeared for both small as well as large values

of n, i.e., under extremes of shear-thinning (n << 1) and shear-thickening (n >> 1)

fluid behaviors. One possible reason behind this deviation is that the viscosity becomes

extremely large, say infinity, for small shearing rate in extreme shear-thinning fluids and

vice versa, say zero, in shear-thickening fluids. Such situations are major challenges to

handle in computations of non-Newtonian fluid flows. As discussed earlier, refinement in
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Figure 5.9: Viscosity profiles at the outlet of channel for different n at fixed Re.
Comparison of exact solution with numerical (MLPG and MLPG-US-II) solutions for

N=121 nodes.

the nodes is one solution to control this errors. In addition to enhancement of the nodal

points, these errors can also be reduced through refined optimized selection of β, radius

of support and quadrature domains, etc. At β = 0 (i.e. no modification in the mixed

formulation), the pressure shows an oscillatory nature. At larger β the boundary comes in

to effect which suppresses the oscillation and yields smooth convergence.

Further, the computational nodes are doubled and N = 441 (i.e., 21 × 21) nodes are

selected to analyze their influence on the flow patterns of power-law fluids (0.6 ≤ n ≤ 1.4)

at Re = 1. The value of β is suitably adjusted for better stability parameter τ in the

mixed formulation to control the non-linearity. Table 5.3 has summarized the optimized

values of β, radius of support domain Ωs and shifting distance of test domain ∆ = γri for

upwinding schemes for different values of n at Re = 1 for N =121 and 441 nodes. The

velocity, viscosity and strain rate profiles are depicted in Figures 5.11 - 5.13, respectively.

Similar to the case of N =121 nodes, the numerical results obtained using both MLPG and
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Figure 5.10: Strain tensor profiles at the outlet of channel for different n at Re = 1.
Comparison of exact with numerical solutions for N=121 nodes.

Table 5.3: Optimized value of β and radius of support domains at Re = 1 for a range
of power-law index (0.6 ≤ n ≤ 1.4). Here ∆ is the shifting of test domain.

MLPG MLPG-US-II
n N rs β rs β ∆

0.6 121 2.21×h 0.019 2.20×h 0.01 0.08
0.8 121 2.29×h 0.02 2.30×h 0.02 0.10
1.0 121 2.10×h 0.03 2.25×h 0.5 0.06
1.2 121 2.15×h 0.01 2.31×h 0.01 0.04
1.4 121 2.18×h 0.01 2.30×h 0.02 0.02
0.6 441 2.30×h 0.10 2.15×h 0.4 0.04
0.8 441 2.22×h 0.03 2.15×h 0.15 0.06
1.0 441 2.16×h 0.03 2.15×h 0.15 0.06
1.2 441 2.10×h 0.01 2.15×h 0.15 0.06
1.4 441 2.10×h 0.10 2.25×h 0.10 0.06
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Figure 5.11: Fully developed velocity profile at the outlet of channel for different n at
Re = 1. Comparison of exact with numerical solutions for N=(441) nodes.

MLPG-US-II are compared with exact ones to discuss the suitability of present numerical

solver in computation of complex fluids flow. The flow profiles clearly seem to be matching

with the exact profiles. Based on the results of N = 121 and 441 nodes, it can also be

summarized that the dense distribution of nodal points yield more accurate results in

comparison to the sparse distribution. The maximum deviation in numerical and exact

results appear near the boundary nodes, and it can be minimize on the best selection

of radius of quadrature domain Ωq, radius of support domain Ωs and β. Further, the

inaccuracies observed in the results of 121 nodes have also diminished with increasing

nodal point in the computational domain. While both MLPG and MLPG-US-II works

better in computation of non-Newtonian flow, the results of MLPG are much accurate.

The effect of nodal points (N = 11× 11 and 21× 21 nodes) on the optimized value of β is

shown in Table 5.3 at Re = 1 and 0.6 ≤ n ≤ 1.4. It is noted that the radius of support

domain may not be fixed for both MLPG and MLPG-US-II at different n as in Figure 5.13.
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Figure 5.12: Viscosity profiles at the outlet of channel for different n at fixed Re.
Comparison of exact solution with numerical (MLPG and MLPG-US-II) solutions for

N=(21× 21) nodes.

It is also not straightforward to say that larger radius of support is best or small radius

support for β. The maximum errors may occur from the corner nodes, because less points

are covered by a support domain. But the results are very much satisfactory for 21× 21

nodes. Hence, we can say that dense nodal distribution with refinement of corner points

will produce excellent results.

At Re=1, MLPG yielded better results without any oscillations in comparison of MLPG-

US-II. However, the effect of advective term is dominant with increasing Re, and more

oscillatory nature appears in the solution. To stabilize, it is necessary to use the upwinding

scheme to control the oscillatory behavior.

The standard upwind scheme in which Pe = ReL, described by Lin and Atluri (2000) is

not well imposed for the non-Newtonian fluid rheology in which viscosity and pressure

plays an important role. Due to shear dependency of viscosity, the insignificant oscillatory
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Figure 5.13: Strain tensor profiles at the outlet of channel for different n at fixed Re.
Comparison of exact solution with numerical (MLPG and MLPG-US-II) solutions for

N=(21× 21) nodes.

nature appears at low Re. However, a suitable upwind scheme is necessary to control the

oscillatory nature at sufficiently large Re. Subsequently, it was observe that at Re = 20,

there is no existence of oscillatory nature, hence, only MLPG method is used to strengthen

the applicability of our solver. The numerical solutions are validated with exact solutions.

Again different values of β are chosen for our computations using MLPG method with

mixed formulation system to get satisfactory results. Different value of correction factors

f ranges between 0.8 to 1 are sufficient for better observations which are summarized

in Table 5.4 at different power law index. Figures 5.14, 5.15, and 5.16 reports the fully

developed velocity, viscosity and strain rate profiles at the outlet of channel for Re = 20

and 0.6 ≤ n ≤ 1.8 by using 441 computational nodes. In general, the observations are

similar to the case of Re = 1. At the lower value of n, the viscosity tends to ∝, which

is very important to control the appearance of spurious results, as dipcted at n = 0.6

and 1.8 in Figures 5.15 and 5.16. As seen these figures, the numerical results seem to
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Table 5.4: Optimized value of β, radius of support domains (rs) and correction factor
(f) for different n at Re = 20 by using MLPG with N = 441 computational nodes.

n rs β f
0.6 2.13×h 0.20 0.8
0.8 2.25×h 0.20 0.8
1.0 2.11×h 0.01 1.0
1.2 2.23×h 0.01 0.8
1.4 2.30×h 0.05 0.8
1.6 2.30×h 0.10 0.8
1.8 2.30×h 0.40 0.85

correspond excellently with the exact results. The treatment of corner points requires

special attention to obtain the correct results in neighborhood of these points.

In the mixed formulation system, the pressure solution is depend on choice of β. Lin and

Atluri (2001) suggested that at low values of β, the pressure solution appears more precise

and smooth, and should always be ≤ 1. In the figure 5.17 the pressure contours are shown

on behalf of velocity accuracy at the outlet of channel at the several trial values of β. From

the computational results, it is found that correction factor f is decreases from 10 to < 1

by increasing Re from 1 to 20, see table 5.4, which is always < 1.
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Figure 5.14: Fully developed velocity profile at the outlet of channel for different n
at fixed Re = 20. Comparison of exact with MLPG solutions.
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Figure 5.15: Viscosity profiles at the outlet of channel for different n at fixed Re = 20.
Comparison of exact solution with MLPG solutions.
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Figure 5.16: Viscosity profiles at the outlet of channel for different n at fixed Re = 20
with 21× 21 nodes. Comparison of exact solution with MLPG solutions.
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Figure 5.17: Pressure contour at different n by using MLPG with N = (21×21) nodes
at Re = 20
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Table 5.5: Comparison of local velocity and viscosity values with exact solution nodes at Re = 1 by using for 11× 11 computational

nodes. (Here A, B and C represents for exact, MLPG and MLPG-US-II solutions).
Node n=0.6 n=0.8 n=1.0 n=1.2 n=1.4
no. uA uB uC uA uB uC uA uB uC uA uB uC uA uB uC
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.616 0.621 0.602 0.570 0.520 0.576 0.540 0.552 0.549 0.518 0.512 0.488 0.503 0.488 0.462
3 1.022 1.037 1.046 0.986 0.983 1.007 0.960 0.959 0.977 0.939 0.926 0.913 0.923 0.900 0.870
4 1.255 1.257 1.283 1.260 1.264 1.271 1.260 1.250 1.268 1.257 1.241 1.227 1.254 1.224 1.187
5 1.356 1.334 1.367 1.405 1.415 1.406 1.440 1.426 1.444 1.464 1.458 1.445 1.483 1.464 1.422
6 1.375 1.333 1.377 1.444 1.436 1.423 1.500 1.485 1.501 1.545 1.560 1.572 1.583 1.612 1.604
7 1.356 1.330 1.373 1.405 1.415 1.406 1.440 1.427 1.443 1.464 1.479 1.472 1.483 1.489 1.456
8 1.255 1.250 1.310 1.260 1.264 1.270 1.260 1.251 1.267 1.257 1.275 1.269 1.254 1.259 1.230
9 1.022 1.033 1.096 0.986 0.982 1.006 0.960 0.960 0.976 0.939 0.968 0.964 0.923 0.941 0.920
10 0.616 0.620 0.664 0.570 0.519 0.575 0.540 0.552 0.548 0.518 0.562 0.544 0.503 0.536 0.516
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
no. ηA ηB ηC ηA ηB ηC ηA ηB ηC ηA ηB ηC ηA ηB ηC
1 0.828 0.826 0.825 0.913 0.913 0.911 1 1 1 1.089 1.087 1.086 1.182 1.176 1.168
2 0.828 0.826 0.825 0.913 0.913 0.911 1 1 1 1.089 1.087 1.086 1.182 1.176 1.168
3 0.910 0.911 0.899 0.946 0.939 0.946 1 1 1 1.063 1.061 1.063 1.134 1.129 1.126
4 1.037 1.061 1.044 0.995 0.992 1.000 1 1 1 1.027 1.029 1.028 1.069 1.070 1.066
5 1.273 1.392 1.336 1.080 1.088 1.101 1 1 1 0.967 0.977 0.985 0.961 0.994 1.008
6 2.459 2.382 2.256 1.964 1 1 1 1 0.742 0.766 0 0.574 0.611
7 1.273 1.369 1.426 1.080 1.087 1.100 1 1 1 0.967 0.966 0.972 0.961 0.975 0.986
8 1.037 1.061 1.076 0.995 0.992 1.000 1 1 1 1.027 1.024 1.024 1.069 1.064 1.060
9 0.910 0.913 0.908 0.946 0.939 0.946 1 1 1 1.063 1.059 1.061 1.134 1.125 1.122
10 0.828 0.827 0.817 0.913 0.914 0.911 1 1 1 1.089 1.092 1.092 1.182 1.186 1.181
11 0.828 0.827 0.817 0.913 0.914 0.911 1 1 1 1.089 1.092 1.092 1.182 1.186 1.181
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Table 5.6: Comparison of local velocity and viscosity values with exact solution nodes at Re = 1 by using for 21× 21 computational

nodes. (Here A, B and C represents for exact, MLPG and MLPG-US-II solutions).
Node n=0.6 n=0.8 n=1.0 n=1.2 n=1.4
no. uA uB uC uA uB uC uA uB uC uA uB uC uA uB uC
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.617 0.629 0.636 0.570 0.579 0.594 0.540 0.548 0.554 0.519 0.533 0.522 0.503 0.489 0.504
5 1.023 1.019 1.025 0.987 0.984 1.006 0.960 0.962 0.961 0.940 0.959 0.936 0.924 0.918 0.936
7 1.256 1.248 1.246 1.261 1.252 1.273 1.260 1.258 1.248 1.257 1.276 1.250 1.254 1.253 1.277
9 1.356 1.353 1.342 1.406 1.394 1.413 1.440 1.435 1.416 1.465 1.475 1.460 1.483 1.482 1.519
11 1.375 1.376 1.361 1.444 1.433 1.447 1.500 1.493 1.470 1.545 1.544 1.550 1.583 1.577 1.633
13 1.356 1.356 1.344 1.406 1.395 1.412 1.440 1.432 1.411 1.465 1.464 1.461 1.483 1.482 1.519
15 1.256 1.253 1.249 1.261 1.254 1.272 1.260 1.253 1.239 1.257 1.260 1.253 1.254 1.254 1.276
17 1.023 1.025 1.028 0.987 0.988 1.006 0.960 0.957 0.951 0.940 0.944 0.940 0.924 0.919 0.936
19 0.617 0.634 0.638 0.570 0.583 0.593 0.540 0.546 0.547 0.519 0.525 0.525 0.503 0.489 0.504
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
no. ηA ηB ηC ηA ηB ηC ηA ηB ηC ηA ηB ηC ηA ηB ηC
1 0.798 0.795 0.793 0.900 0.899 0.896 1 1 1 1.100 1.103 1.100 1.202 1.195 1.202
3 0.830 0.835 0.833 0.913 0.915 0.912 1 1 1 1.089 1.091 1.089 1.182 1.194 1.195
5 0.913 0.918 0.921 0.947 0.949 0.948 1 1 1 1.063 1.064 1.062 1.134 1.139 1.142
7 1.044 1.042 1.054 0.996 0.998 0.999 1 1 1 1.028 1.026 1.028 1.070 1.073 1.078
9 1.306 1.283 1.315 1.085 1.086 1.091 1 1 1 0.969 0.962 0.973 0.968 0.969 0.978
11 2.946 2.914 2.033 1.736 1 1 1 1 0.697 0.506 0 0.234 0.318
13 1.306 1.296 1.326 1.085 1.087 1.091 1 1 1 0.969 0.969 0.972 0.968 0.968 0.979
15 1.044 1.045 1.055 0.996 0.999 0.999 1 1 1 1.028 1.026 1.027 1.070 1.072 1.078
17 0.913 0.918 0.920 0.947 0.949 0.948 1 1 1 1.063 1.063 1.061 1.134 1.139 1.141
19 0.830 0.834 0.833 0.913 0.915 0.912 1 1 1 1.089 1.089 1.089 1.182 1.195 1.195
21 0.798 0.794 0.792 0.900 0.898 0.897 1 1 1 1.100 1.101 1.101 1.202 1.195 1.202
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Table 5.7: Comparison of local velocity and viscosity values with exact solution nodes at Re = 20 by using for 21× 21 computational

nodes. (Here A, and B represents for exact, and MLPG solutions).
Node n=0.6 n=0.8 n=1.0 n=1.2 n=1.4 n=1.6 n=1.8
no. uA uB uA uB uA uB uA uB uA uB uA uB uA uB
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.617 0.613 0.570 0.576 0.540 0.558 0.519 0.549 0.503 0.533 0.491 0.516 0.482 0.486
5 1.023 1.013 0.987 0.988 0.960 0.976 0.940 0.968 0.924 0.957 0.911 0.936 0.901 0.901
7 1.256 1.239 1.261 1.250 1.260 1.263 1.257 1.276 1.254 1.280 1.251 1.270 1.248 1.249
9 1.356 1.348 1.406 1.393 1.440 1.431 1.465 1.471 1.483 1.500 1.497 1.515 1.508 1.507
11 1.375 1.378 1.444 1.440 1.500 1.487 1.545 1.540 1.583 1.583 1.615 1.608 1.643 1.631
13 1.356 1.342 1.406 1.391 1.440 1.433 1.465 1.479 1.483 1.503 1.497 1.515 1.508 1.537
15 1.256 1.230 1.261 1.249 1.260 1.266 1.257 1.281 1.254 1.278 1.251 1.268 1.248 1.265
17 1.023 1.005 0.987 0.989 0.960 0.980 0.940 0.971 0.924 0.952 0.911 0.930 0.901 0.912
19 0.617 0.610 0.570 0.579 0.540 0.552 0.519 0.549 0.503 0.529 0.491 0.510 0.482 0.489
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
no. ηA ηB ηA ηB ηA ηB ηA ηB ηA ηB ηA ηB ηA ηB
1 0.798 0.799 0.901 0.900 1.000 1.000 1.100 1.106 1.203 1.217 1.309 1.329 1.421 1.427
3 0.830 0.828 0.914 0.912 1.000 1.000 1.089 1.092 1.183 1.189 1.281 1.285 1.385 1.381
5 0.913 0.919 0.947 0.950 1.000 1.000 1.063 1.061 1.135 1.132 1.213 1.207 1.299 1.289
7 1.044 1.044 0.996 1.000 1.000 1.000 1.028 1.023 1.071 1.060 1.124 1.112 1.186 1.167
9 1.307 1.245 1.085 1.080 1.000 1.000 0.970 0.959 0.969 0.925 0.985 0.960 1.013 0.963
11 2.351 1.599 1.000 1.000 1.000 0.742 0.000 0.286 0.000 0.277 000 0.316
13 1.307 1.226 1.085 1.079 1.000 1.000 0.970 0.947 0.969 0.925 0.985 0.958 1.013 0.971
15 1.044 1.042 0.996 1.001 1.000 1.000 1.028 1.023 1.071 1.063 1.124 1.121 1.186 1.164
17 0.913 0.922 0.947 0.951 1.000 1.000 1.063 1.062 1.135 1.132 1.213 1.209 1.299 1.294
19 0.830 0.829 0.914 0.912 1.000 1.000 1.089 1.092 1.183 1.188 1.281 1.282 1.385 1.385
21 0.798 0.800 0.901 0.899 1.000 1.000 1.100 1.106 1.203 1.215 1.309 1.324 1.421 1.430
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Finally, quantitative comparisons of the local velocity and viscosity values with the exact

values, under identical conditions are also shown in Tables 5.5 to 5.7 for Re = 1 and 20

and for a broad range of power-law index (0.6 ≤≤ 1.8) by using the 11× 11 and 21× 21

uniformly distributed computational nodes. The comparisons have shown that MLPG

method yields better results in comparison of MLPG-US-II method. The density of the

nodal distribution also influences the solutions. The sufficiently refined nodal distribution

is needed to obtain the correct results.

In summary, several incompressible N-S equations are solved before switching to non-

Newtonian complex fluid flow simulations in which shear dependent viscosity and pressure

plays an important role in fluid flow mechanism. The Babuska-Breezi condition is used for

the MLPG method. The second order derivatives in the mixed formulation is vanished due

to expensive computations. In the mixed formulation system, for pressure calculations,

one stability parameter is included without upsetting consistency and to satisfy the mass

continuity equation.

The numerical results suggested that the predefined upwinding scheme termed as MLPG-

US-II is not suitable in the simultation of non-Newtonian viscous fluid flow. While the

MLPG method is well established to solve the general fluid dynamics problems, but in

the field of shear dependence viscous flow mechanism, further improvement is required for

the precision computations of non-Newtonian fluid rheology at higher Reynolds number

because of its non-linearity nature. Further study for higher Reynolds number is necessary

to check the upwind schemes before any final conclusion, which will precise the way to

investigate a better upwind scheme for a better results in non-Newtonian complex fluid

flow simulations.





Chapter 6

Conclusions and future directions

This chapter concludes the work presented in this thesis. The recapitulation of purpose

and findings have been summarized, followed by future possibilities of expansion of the

work.

6.1 Recapitulation of purpose and findings

The development of the meshfree or meshless method is one of the exciting topics in

computational mechanics in numerical methods. Several meshfree techniques have been

developed by previous researchers, in which meshless local Petrov-Galerkin (MLPG) and

linear boundary integral equation (LBIE) serves as a truly meshfree method amongst all

other methods which required background mesh for integration purposes. Due to the truly

meshfree characteristics, MLPG is an attractive computational method for the researchers,

and widely applied in solid mechanics and fluid dynamics problems. It is proven to be

an cost effective tool, as an alternative of convection CFD methods. It is often possible

to find a numerical or approximate solution for a complex problem efficiently for the

space/domain according to our interest.

129
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Existing literature also suggested that the meshless methods, in particular, MLPG methods,

have been successful in obtaining an accurate solutions of solid mechanics problems. Fluid

mechanics problems have also been solved within the greater ease and accuracy. However,

these meshless methods have not been used in obtaining a solution of complex fluid

flow problems. It should, however, be noted here that non-Newtonian fluids are being

processed in many chemical and process industries associated with varieties of transport

phenomena in which flow properties differ in many ways from those of Newtonian fluids.

The shear-dependent viscosity of non-Newtonian fluid is non-linear, in contrast to the

Newtonian fluid where shear stress varies linearly with shear rate, passing through the

origin and the proportionality constant being the coefficient of viscosity.

Due to lack of literature of application of MLPG in non-Newtonian fluid flow rheology,

the present work aimed at exploration of applicability, effectiveness and ease of MLPG

method in computational of complex fluid flow problems. This objective has been achieved

by developing a MLPG complex fluid flow solver based on C++ programming language.

The approach developed in MLPG complex fluid flow in-house solver will be very useful in

analyzing and designing such applications at greater ease.

The solver, first, has been validated and verified by using various standard benchmark

CFD problems based on the diffusion, convection and convection-diffusion equations. The

excellent correspondence between the MLPG results and exact/literature results have

motivated us to extend the development of solver for non-Newtonian flow computations.

The detailed algorithm has also been developed herein, due to the lack of information for

such applications. First, MLPG methods are used to solve one dimensional non-Newtonian

flow problem with some mathematical modification to check its efficiency and accuracy.

The results obtained using MLPG were quite smooth and accurate for different nodal

distribution in computational domain. It further encouraged to apply for multi-dimensional

space.

Subsequently, two-dimensional channel flow problem has been considered for assurance of

MLPG in complex fluid flow simulations in which shear dependent viscosity and pressure
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plays an important role on natural fluid dynamics phenomena. The channel flow problem

is a standard bench mark problems in CFD and easy to analyze the effectiveness of

variable parameters. The numerical results in terms of velocity, viscosity and strain rate

are obtained for broader range of power-law index, including both shear-thinning as well

shear-thickening fluid behaviors. The MLPG and MLPG with upwinding methods are

used at fixed Re for initial observation using Ostwald-de waele power-law equation, which

is used to describe the behavior of non-Newtonian fluid. MLPG with upwinding scheme is

used to overcome the oscillatory behavior due to non-linearity at high Reynolds number is

not well imposed at Re > 1. The results highlighted that the significant non-linear effects

appear in the power-law fluids, particularly for extremely conditions of shear-thinning

(n < 1) and shear-thickening (n > 1) fluid behaviors. Hence, it is necessary to improve the

efficiency and accuracy for MLPG and MLPG with upwinding scheme to overcome the

effect of non-linearity at corner nodes where more deviation occurred. It was also observed

that MLPG is more accurate than the MLPG with upwinding, under otherwise identical

conditions considered herein.

Having gained the excellent results at low Re, higher value of Re = 20 is also considered

to present the robustness and applicability of in-house MLPG solver. The results found

that MLPG is very promising and effective numerical approach for a complex fluid flow

simulations under the laminar regime. It is further observed that irrespective of simulation

conditions, sufficiently refined nodal distribution is required to obtain the correct results.

A particular attention is required to resolve the gradients near the corner boundaries.

Finally, it can be concluded that the meshfree MLPG method have shown great potential

to become a new generation numerical analysis tool for problems in complex fluid flow

simulations. However, still many technical issues and challenges are need to be resolved.

Further research is necessary to improve this meshfree method at higher Reynolds number

where the fluid behavior posses the great challenges for the cases where local velocity

may reach to zero or infinity, depending on the shear-thinning or shear-thickening fluid

behaviors..
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6.2 Recommendations for future research directions

Based on the work presented in this thesis, the following recommendation for future

research directions are made:

• Extension of MLPG method in simulation of complex fluids under laminar regime.

• Extension to three-dimensional flow simulation of complex fluids

• Applicability of method in turbulent flow regime of non-Newtonian flow.

• Exploration of suitably convective upwinding scheme to resolve the non-linear con-

vection terms.
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