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Abstract

Liquid film flows with free-surface occurs in a wide variety of technological appli-

cations such as coating flows, falling film reactors, absorption column etc. These

film flows fall prey to free-surface instability due to jump in fluid properties (like

viscosity, elasticity etc.) across the gas-liquid interface. Such interfacial instabil-

ities are desirable in some applications while undesirable in others. For example,

instabilities are detrimental to product quality in coating flows as they result in

non-uniform film thickness. On the other hand these instabilities are useful for

heat and mass transfer applications, or for patterning applications (Bandyopadhyay

et al. 2008; Mukherjee & Sharma 2015). Thus, it is frequently required to control

and manipulate instabilities observed in liquid film flows with free surface. In the

present thesis, we explore ways to manipulate and control the interfacial instabili-

ties observed for the single liquid film with free surface flowing down an inclined

plane. For single liquid film flow down an inclined plane, only a gas-liquid interface

is present. Further, these film flows are often accompanied by surface active agents

or surfactants in several technological and physiological flow systems. It is well

known that the presence of surfactant have significant effect on the stability of dif-

ferent interfaces present in a particular flow configuration. Thus, we also consider

the presence of surfactant at gas-liquid interface in the present thesis. In view of

the above discussion, we explore the use of a passive deformable solid coating as

a means to manipulate and control the interfacial instabilities for single liquid film

flow down an inclined plane when the gas-liquid interface is contaminated with a

mono-layer of insoluble surfactant.

We investigate the linear stability of a surfactant-laden single liquid film with

free surface flowing down an inclined plane under the action of gravity when the

inclined plane is coated with a deformable solid layer. We first examine the stabil-

ity of flow configuration in creeping flow (or Re = 0) limit. In this zero Reynolds

number limit, the surfactant covered liquid film flowing down a rigid inclined wall

admits two normal eigenmodes: (i) a gas-liquid (GL) interfacial or free surface

mode, and (ii) a surfactant-induced Marangoni mode. The GL free surface mode
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is the usual Yih (1963, 1967) type mode which is present because of jump in vis-

cosity across the gas-liquid interface. This GL interfacial mode remains stable in

creeping flow limit. The Marangoni mode arise because of the convective motion of

surfactant along the gas-liquid interface and this mode also remains stable for liquid

film flow down a rigid inclined wall. We examine how the stability characteristics

change when the surfactant-laden liquid film flow occurs down a flexible inclined

wall instead of a rigid inclined wall. The effect of presence of deformable wall or

soft solid coating on GL mode has already been discussed by Shankar and cowork-

ers (Gaurav & Shankar 2007; Sahu & Shankar 2016; Shankar & Sahu 2006). The

primary aim of this study is to explore the role of wall deformability on the sta-

bility characteristics of Marangoni mode. Two parameters, namely, shear modulus

and thickness of deformable solid layer appear in presence of a deformable solid

coating in addition to the parameters which were present for flow down a rigid in-

clined wall. We performed a long-wave asymptotic analysis and observed that the

Marangoni mode becomes unstable in presence of deformable solid coating. This

long wave instability was further continued to finite wavelength perturbations us-

ing a numerical shooting procedure. Specifically, we have shown that for a given

solid thickness, the Marangoni mode becomes unstable when the shear modulus

of solid layer decreases below a critical value (i.e. the solid layer becomes suffi-

ciently soft). The effect of increasing solid thickness is found to be destabilizing.

The liquid-solid (LS) interfacial mode also becomes unstable at high wave num-

bers below a threshold value of shear modulus, however, this value is much smaller

than that required to trigger Marangoni mode instability. This implies that as the

solid coating becomes more and more deformable, the Marangoni mode becomes

unstable first followed by the LS interfacial mode. The GL mode was always found

to be stable in creeping flow limit. Further, our long-wave analysis shows that the

solid deformability has an additional stabilizing effect on GL mode. We defined a

non-dimensional solid deformability parameter as G = µV/EsR, where µ is the vis-

cosity of the liquid, V is the characteristic velocity, R is the liquid layer thickness,

and Es is the shear modulus of solid layer. Note that higher value of G implies lower

Es value, and hence, more soft (deformable) solid layer. We plotted neutral stability

diagram in terms of this non-dimensional parameter G (or equivalently shear mod-

ulus) vs. wavenumber for all the unstable modes, and these diagrams clearly show
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that the Marangoni mode is the dominant mode of instability in creeping flow limit.

This observation related to destabilization of Marangoni mode due to the presence

of deformable wall for free surface liquid film flow is important because we believe

that this is the first example of the case where the instability of the Marangoni mode

is observed when the fluid-fluid interface (here, GL interface) remains stress-free in

the basic state.

We further investigated the linear stability of the surfactant-loaded liquid film

flowing down a flexible inclined plane in presence of inertia (Re 6= 0). For non-zero

Reynolds number, it is well known that the GL interfacial mode becomes unsta-

ble for a clean liquid film flowing down a rigid inclined plane when Re increases

above a critical value. The presence of surfactant at GL interface is known to sup-

press this GL mode instability when the Marangoni number (Ma) increases above

a threshold value (Blyth & Pozrikidis 2004a). The Marangoni number is defined as

Ma = EΓ0/σ0, where E refers to surface elasticity, Γ0 denotes the surfactant con-

centration at GL interface in steady base state configuration, and σ0 represents the

corresponding unperturbed GL interfacial tension. Recall that we have shown that

when the rigid wall is replaced by a deformable wall, the Marangoni mode becomes

unstable in creeping flow limit. We first continue this Marangoni mode instability

to finite Reynolds number, and observed that this Marangoni instability persists at

non-zero values of Reynolds number. The GL interfacial mode can also become un-

stable as Reynolds number increases above the critical value for (clean or surfactant-

covered) film flow down an inclined (flexible or rigid) plane. We observed that as

Reynolds number is increased above zero, the Marangoni mode remains the domi-

nant mode of instability for small Reynolds number until the GL mode also becomes

unstable with increase in Reynolds number. Once, the GL mode becomes unstable,

it dominates the stability of falling film configuration. Thus, there is an exchange

in the dominant mode of instability with the increase in Reynolds number. Previous

works have also demonstrated the potential of using a deformable solid coating in

suppressing the interfacial instabilities for a wide variety of configurations (Gau-

rav & Shankar 2015; Shankar 2015). The presence of surfactant also suppresses

GL interfacial instability when the Ma increases above the critical value. We ex-

plore whether it is possible to use a deformable solid coating to achieve stable flow

configuration for surfactant-loaded film when the stabilizing contribution from sur-
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factant is not sufficient to suppress the GL instability (i.e. when Ma remains below

the threshold value to stabilize the GL mode for a given Reynolds number). This

question becomes important in view of the recently observed Marangoni mode in-

stability solely induced due to the presence of the deformable wall (Tomar et al.

2017). We show in the present thesis that for such cases as well, a deformable solid

coating could be employed to suppress free surface instability without triggering

Marangoni or liquid-solid interfacial modes. Specifically, we have shown that for a

given solid thickness, as the shear modulus of the solid layer decreases (i.e. the solid

becomes more deformable) the GL mode instability is suppressed. With further de-

crease in shear modulus, the Marangoni and liquid-solid interfacial modes become

unstable. Thus, there exists a stability window in terms of shear modulus where

the surfactant-laden film flow remains stable even when the Marangoni number is

below the critical value required for free surface instability suppression. Based on

our numerical results (primarily G vs. wavenumber neutral stability curves), we

estimated that typical values of shear modulus of elasticity for the deformable solid

layer is of the order of 104 Pa to obtain stable flow of surfactant-laden liquid film

down a flexible inclined plane. Further, when the Marangoni number is greater

than the critical value so that the GL mode remains stable in the rigid limit or with

the deformable wall, the increase in wall deformability or solid thickness triggers

Marangoni mode instability and thus, renders a stable flow configuration into an

unstable one. Thus, we show that the soft solid layer can be used to manipulate and

control the stability of surfactant-laden film flows.
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Chapter 1

Introduction

1.1 Motivation

Flows which involve more than one immiscible liquid layers (or phases) with one or

more fluid-fluid interfaces are known as multilayer/interfacial flow. The fluid-fluid

interface could be either a liquid-liquid interface or a gas-liquid interface. Exam-

ples include gravity-driven free surface flow of one or more liquid layers (present in

coating applications), flow in channel or tube involving more than one liquid layers

(core-annular flow in lubricated pipe lining, liquid-liquid extraction, co-extrusion

of polymers etc.). Multilayer flows are presents in many technological applications

like coating, co-extrusion, and lubricated pipelining etc. These flows are suscepti-

ble to interfacial instabilities at the distinct interfaces due to jump in fluid properties

like viscosity, density, and elasticity (in case of polymeric liquids) across the inter-

face. Such interfacial instabilities could be desirable or undesirable depending on

the objectives or final product requirements. For example, instabilities are desirable

when the objective is to achieve high heat and mass transfer rates in heat exchang-

ers, distillation units (Craster & Matar 2009), and falling film evaporator/reactor.

Instabilities, if present, in such cases could lead to secondary flows or turbulence

which in turn enhances heat and mass transfer rates. The examples where inter-

facial instabilities are undesirable include manufacturing of photographic film and

coating processes (Wenstein & Ruschak 2004), and biological flows (Grotberg &

Jensen 2004; Halpern & Grotberg 1993, 1992).

A process by which a thin liquid-layer is made and applied to a surface of a solid

1
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is called a coating process. Coating flows are the flows employed in coating tech-

nique and also include the secondary flows that occur after coating of a solid surface

and before immobilization of the same solid surface. The applications of the coating

flows are in manufacturing of photographic film, wire coating etc. In manufacturing

of photographic films, flow of multiple liquid layers down an inclined plane is a ba-

sic configuration. The liquid layers flow through an inclined surface of coating die

distributor and stacked on the top of each other in development for simultaneous

coating film on a moving solid surface. A major requirement in coating applica-

tions is that the final product must be superior quality and free from all the defects.

In such type of flows, the fluid-fluid interface becomes unstable (Chen 1993; Yih

1963) above a critical value of Reynolds number or equivalently by variation in fluid

properties, fluid thickness and fluid velocity. These instabilities are detrimental to

the required product quality as they result in discontinuous film thickness. Con-

trol and suppression of these instabilities remains a crucial aspect to ensure smooth

process and to maintain the higher-grade quality of product. We explore ways to

control such interfacial instabilities. Specifically, we consider gravity-driven free

surface flow of a single liquid film flowing down an inclined plane. A soft solid

coating is attached on to the inclined plane and the gas-liquid interface is loaded

with a monolayer of surfactant. We examine the effect of simultaneous presence of

deformable solid layer and surfactant layer on the stability of gas-liquid interface.

The surfactant is present in several coating applications and is known to have

a stabilizing effect on the gas-liquid interfacial instability. Recently, the use of a

soft solid coating is proposed as a means to suppress fluid-fluid interfacial insta-

bilities for variety of fluid rheology and for a wide class of flow settings (e.g. see

review by Gaurav & Shankar (2015)). Moreover, for multiple liquid layers flow-

ing down an inclined plane during coating process, there is a possibility that one

of the (bottom) layer solidifies before the other layer. In such cases as well, a de-

formable liquid-solid interface will be present in addition to the presence of other

fluid-fluid interfaces and surfactant layer at different fluid-fluid interfaces. Thus, it

is of interest to know the effect of presence of a soft solid layer on fluid-fluid in-

terfacial instabilities when the fluid-fluid interface is contaminated with surfactant

monolayer.

Another interesting area is biological flows where liquid soft solid interaction
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occurs. For example, in blood vessels where blood flows through an arteries and

veins whose walls are made of soft tissues, and air flow in lung-airways where air

flows through a small flexible capillaries. In lung airways, the cell walls are coated

with a liquid lining and air flows in the lumen as core fluid. A monolayer of sur-

factant is also present at air-liquid interface. The interaction between the air-liquid

interface, flexible wall and surfactant forms an important aspect of pulmonary fluid

mechanics. The presence of capillary instability at air-liquid interface is considered

to be the primary mechanism for several respiratory distress syndrome. The liquid

film forms the plug and blocks the airway as a result of the capillary instability.

Presence of natural surfactant is known to delay or avoid the closure. However, a

dificiency in surfactant may lead to early closure of pulmonary airways and hence,

a clear understanding of the role of surfactant on the film dynamics and in presence

compliant surface will help in better design of treatment of various respiratory dis-

eases. The work presented in this thesis deals with such kind of interaction between

surfactant, air-liquid interface and flexible wall. We show that the wall flexibility

significantly change the stability characteristics of the system.

In this thesis, at the beginning, we studied the stability analysis of surfactant-

laden Newtonian liquid layer flowing down an inclined rigid surface which generate

two stable mode, namely GL and Marangoni (Blyth & Pozrikidis 2004a).The gas-

liquid interfacial mode destabilizes above a critical Reynolds number and Marangoni

mode remains stable for all Reynolds number. If rigid surface of this configuration

is coated with deformable solid in presence of insoluble surfactant then Marangoni

mode destabilizes for low and finite wavenumbers at any Re. The destabilization

of Marangoni mode in presence of deformable solid for creeping and inertial flows

is a new finding or which was not discussed in previous studies. This instability

has a wide applications where high heat and mass transfer rates are required. We

discussed extensively these problems in chapter 2 for creeping flow and in chapter

3 for inertial flow.

1.2 Literature review

The stability of gravity-driven fluid flow down a rigid vertical/inclined plane has

wide variety of applications in engineering such as distillation columns, condensers,

heat exchangers (Craster & Matar 2009), coating processes (Wenstein & Ruschak
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2004) and biological applications in pulmonary fluid flows in lung airways (Grot-

berg & Jensen 2004; Halpern & Grotberg 1993, 1992). In all of these technological

and natural settings, the film flow of a liquid layer with free surface is encountered.

It is well known that these liquid film flows are prone to a free surface gas-liquid

interfacial instability which leads to undulations in free surface, and hence, the film

thickness becomes non-uniform. While these instabilities are undesirable in appli-

cations like coating process, they are advantageous for achieving high heat & mass

transfer rates. The interfacial instabilities are widely useful in patterning applica-

tions as well (Bandyopadhyay et al. 2008; Mukherjee & Sharma 2015). The early

studies related to stability of liquid film flow past rigid incline surface was con-

ducted by Benjamin (1957), and Yih (1963) for a Newtonian liquid film flow down

a rigid incline. Benjamin (1957) detected a category of undamped surface waves

which exists for all finite values of Reynolds number for which flow remains always

unstable. However, the rate of amplification of unstable surface waves becomes very

small for low wavenumber (or long wavelenghts) when Reynolds number is fairly

small. Yih (1963) demonstrated that the liquid film becomes unstable for long-wave

perturbations when the Reynolds number increases above a critical value. This long

wavelength (or low wavenumber) instability is referred as Yih mode or GL mode

or free surface mode instability in literature. Yih (1963) observed that his results

for small wave number and low Reynolds number matched with Benjamin’s results.

However, Yih’s results for high wavenumbers and vertical configuration were found

to contradict with the results predicted by Benjamin (1957). The Benjamin’s work

was extended by Whitaker (1964) for studying the effect of surface active agents

(surface tension, surface viscosity, and surface elasticity) on the vertical film flows

for low Reynolds number. Whitaker (1964) observed that the surfactant has low

stabilizing effect on the free-surface instability of vertical falling film. The effect

of surface active agents (soluble and insoluble) was re-examined by Lin (1970) and

observed that the effect of both soluble and insoluble surfactants is stabilizing on the

flow. It was found that the stabilizing effect of soluble surfactant is comparatively

strong than the insoluble one. The stability of inclined falling film was also inves-

tigated in several previous studies (Anshus & Acrivos 1967; Lin 1967; Whitaker &

Jones 1966). Whitaker & Jones (1966) predicted, when the interfacial mass trans-

fer and the elasticity of interface is considered as compositional, the existence of
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critical Reynolds number is prohibited. The results show that both the magnitude

and mechanism of mass transfer affect the stability of the liquid film. Anshus &

Acrivos (1967) used the asymptotic analysis which depends on the assumption of

a large elasticity parameter. They found enormous increase in the wave length and

enormous decrease in the growth rate of the most quickly amplified perturbations.

Lin (1967) studied the mechanism of the instability of a single liquid layer flow-

ing down an inclined plane. In his study, Lin (1967) found the existence of critical

wavelength of the surface wave formation for a given angle of inclination of a plane.

It was also found that the film can become unstable due to shear waves before it be-

comes unstable with respect to surface waves when the wavelengths of a free surface

disturbance is smaller than the critical wavelength. Furthermore, the film always be-

comes unstable due to free-surface disturbance when the wavelength of free-surface

disturbance higher than its critical value. Ji & Setterwall (1994) studied the config-

uration of vertical falling film with soluble and volatile interfacial surfactant. They

studied the desorption and adsorption of solute at gas-liquid interface for both sur-

face wave mode and a new wave mode, and finally predicted that the desorption is

responsible for Marangoni instability of the new mode. There are several more re-

cent studies related to the stability of surfactant loaded liquid film flowing down an

inclined plane (Anjalaiah et al. 2013; Blyth & Pozrikidis 2004a,b; Samanta 2014;

Wei 2005a), however, we discuss them a little later. The central conclusions from

the above cited studies were: (i) the insoluble surfactant layer has a stabilizing ef-

fect on the gas-liquid interfacial (or surface) mode, and (ii) there exists an additional

mode purely due to disturbances in surfactant concentration which remains stable

for surfactant-laden falling film down an inclined plane. This mode is referred to as

Marangoni mode and this mode remains stable as long as the gas-liquid interface

remains stress free in basic state (Wei 2005a).

The stability and dynamics of cylindrical viscous film has also been extensively

investigated by several researchers. Goren (1961) theoretically analyzed the stabil-

ity of a Newtonian liquid film inside and outside of a circular tube and observed that

the free surface is susceptible to a Yih type gas-liquid interfacial instability at any

non-zero Reynolds number. This cylindrical liquid film configuration also exhibits

a capillary instability due to the presence of cylindrical fluid-fluid interface for any

non-zero value of gas-liquid interfacial tension. Goren (1961) also performed exper-
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iments for annular liquid film lining a tube for a range of film thickness and demon-

strated that plug formation occurs at multiple spatial locations in a periodic manner

(which is related to a critical wavenumber) and this plug formation was shown to

weakly depend on the film thickness. Cassidy et al. (1999) examined the effect of

surfactant on the growth rates of capillary instability and plug formation, both by

experiments and theory, for a liquid film lining the interior of a tube. The liquid film

was static and the linear stability results demonstrated that the presence of surfac-

tant enhances stability. The linear stability results demonstrated that the presence of

surfactant decreases the growth rates by a factor of four compared to its surfactant

free value. The experiments were performed by infusing water into an initially oil

filled tube. The experiments suggested a decrease in initial growth rate by 20% and

a decrease in time of formation of plug by a factor of about 3.8. Hammond (1983)

and Gauglitz & Radke (1988) derived the non-linear evolution equation for surfac-

tant free film using lubrication approximation and when Reynolds number remains

O(1). These one-dimensional film evolution equations were derived using lubrica-

tion approximation and were used to predict the conditions for the formation of col-

lars, or plugs or liquid bridges. Halpern & Grotberg (1992) analyzed the liquid film

flow inside of a flexible tube with the motivation to understand lung airway closure

phenomena. They proposed that the airway closure occurs either by formation of

liquid plug, collapse of compliant airway wall, or a combination of both the mech-

anisms. The liquid plug formation occurs due to capillary destabilization of liquid

film, and there exists a critical film thickness beyond which the unstable waves grow

to form liquid bridges. The critical film thickness is strongly dependent on fluid and

wall properties. Halpern & Grotberg (1992) have particularly demonstrated that the

wall flexibility significantly effects the value of critical film thickness. Halpern &

Grotberg (1993) examined the same problem as analyzed by Halpern & Grotberg

(1992) in presence of an insoluble surfactant adsorbed at air-liquid interface. They

demonstrated that the presence of surfactant delayed the instability process and the

time required for airway closure could be four to five times longer than the case of

surfactant free film. They also showed that the value critical film thickness was not

affected by the presence of monolayer of surfactant at air-liquid interface. Similar

conclusions were made by Kwak & Pozrikidis (2001) for the rod-annular type of

configuration. By taking appropriate limits, they were able to obtain either an an-
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nular layer coated on the interior or exterior of a rigid tube, or an infinite thread

suspended in an infinite ambient fluid. Their linear stability analysis showed that

the growth rate of interfacial instabilities decreases in presence of insoluble surfac-

tant layer at fluid-fluid interface. Their non-linear results demonstrated that while

the presence of surfactant do not alter the final shapes taken by interface, surfactant

does delay the process by decreasing the growth of interfacial waves. In a slightly

different context, Quere et al. (1997) studied the effect of surfactant on the forma-

tion of liquid layer on the solid surface. They first drawn the solid from pure wetting

liquid and found a coated solid surface with layer of liquid, and the thickness of this

liquid layer is given by the Landau eqation for small coating liquid velocities. In

another case they drawn the solid from a solution containing surfactant. They found

that the thickness of the coated liquid layer is higher when the solid is withdrawn

from a surfactant solution as compared to the case when the solid was withdrawn

from a liquid which do not contain surfactant. This observation again shows that

the presence of surfactant causes significant changes in final coating properties.

All the studies mentioned above related to the stability of surfactant-laden liq-

uid film flow down a rigid inclined plane or film flow on the inside/outside of a

tube demonstrated that while the effect of presence of surfactant monolayer is sta-

bilizing on the interfacial mode, the presence of surfactant do not introduce any

additional unstable mode. Frenkel & Halpern (2002) first discovered the presence

of a surfactant-induced unstable mode for the case of two-layer channel flow when

the fluid-fluid interface is covered with a monolayer of surfactant. They examined

the linear stability of combined Couette-Poiseuille flow of two immiscible fluid

layers in a channel when the fluid-fluid interface was loaded with a monolayer of

surfactant. They considered creeping flow and examined the problem in the limit of

long-wave disturbances. They observed that there are two eigen modes: the usual

Yih type mode which exist due to jump in viscosity across the fluid-fluid interface,

and a surfactant mode which exists solely due to presence perturbation in concen-

tration of surfactant. They observed that while the fluid-fluid Yih type interfacial

mode remains stable for long wave perturbations, the surfactant mode could become

unstable for certain values of viscosity ratio and fluid thickness ratio of two fluids

even in Stoke’s flow limit. They concluded that this mode becomes unstable even

in absence of any interfacial deflection and becomes unstable due to fluctuations
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in surfactant concentration. The fluctuations in surfactant concentration results in

surface tension gradients which generates Marangoni stresses and these Marangoni

stresses in turn introduces Marangoni flow which induces an instability. This sur-

factant induced instability is termed as Marangoni instability in literature. Halpern

& Frenkel (2003) examined the same problem as studied by Frenkel & Halpern

(2002) by including arbitrary wavelength perturbations, entire range of Marangoni

number, viscosity ratio, interfacial shear, and fluid-thickness ratio. They observed

that the Marangoni instability is not necessarily a long-wave instability in the sense

that the unstable waves may not be much longer than the depth of thinner fluid

layer. Further, for several parametric regimes, this surfactant-induced instability

has a mid-wave character while the long-wave and short wave perturbations remain

stable.

The linear stability of surfactant-laden Newtonian liquid film flowing down an

inclined plane was examined by Pozrikidis (2003) in the limit of vanishing Reynolds

number. Pozrikidis (2003) observed the occurrence of two normal modes. The first

one is the classical free-surface Yih’s mode and the second is the surfactant induced

Marangoni mode. The solutions reveal that while both the modes remain stable in

this vanishing Reynolds number limit, the decay rate of Marangoni mode is lower

than that of free-surface gas-liquid interfacial mode. The effect of surfactant was

also examined for liquid film flow down a wavy inclined wall in the same study

(Pozrikidis 2003). Blyth & Pozrikidis (2004a) analyzed the effect of surfactant on

the stability of liquid film flow down an inclined plane in presence of inertia using

the Orr-Sommerfeld formulation. For non-zero Reynolds number, they observed

that the Yih’s mode and the Marangoni mode remain the two most (least) unstable

(stable) mode. In creeping flow limit, the decay rate of Marangoni mode remains

lower than that of gas-liquid interfacial mode. As Reynolds number increases above

zero, while the decay rate of Marangoni mode remains almost unaffected, the de-

cay rate of gas-liquid interfacial mode decreases and it eventually becomes unstable

showing positive growth rates above a critical Reynolds number. Thus, it is con-

cluded that for zero and low Reynolds numbers, the Marangoni mode remains the

least stable mode (or dominant mode) and for sufficiently large Reynolds number,

the gas-liquid interfacial mode becomes the dominant mode of instability. They also

showed that the presence of surfactant have a stabilizing effect on interfacial mode
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and the critical Reynolds number is higher for film contaminated with surfactant

as compared to the case of clean film. Blyth & Pozrikidis (2004b) investigated the

influence of surfactant on the stability of two fluid flow in an inclined channel to in-

clude the effect of gravity, and surfactant diffusivity (both of which were excluded

by Frenkel & Halpern (2002) and Halpern & Frenkel (2003)). They confirmed

the findings of Frenkel & Halpern (2002) and Halpern & Frenkel (2003) that the

presence of an insoluble surfactant at fluid-fluid interface introduces a Marangoni

instability depending on the values of viscosity and thickness ratios of two fluid

layers.

The dynamics of liquid film in presence of an insoluble interfacial surfactant

flowing down a rigid inclined plane was also investigated by Pereira & Kalliadasis

(2008). Their linear stability results reveal a similar stabilizing effect on free-surface

interfacial mode as observed in previous studies (for example, Blyth & Pozrikidis

(2004a)). However, they remarked that (stable) Marangoni mode as observed in

previous study by Blyth & Pozrikidis (2004a) is, to be precise, a diffusional mode

which would be present even if the species present at the gas-liquid interface is not

a surfactant species. They argued that the decay rate of this mode is proportional

to Peclet number (which is related to diffusional properties of any species) and not

to Marangoni number which captures the effect of surface tension changes with re-

spect to variations in concentration. Off course, the stabilizing effect on gas-liquid

interfacial mode is due to the presence of surfactant species. They also examined

the evolution of free surface height and surfactant concentration. In the non-linear

regime, they observed that solitary wave pulses for both clean and contaminated

film. The presence of surfactant reduces the amplitude and velocity of these pulses.

All these studies which examined the stability of surfactant loaded liquid film con-

cluded that the surfactant or Marangoni mode do not become unstable in contrast

to finding of Halpern & Frenkel (2003) or Blyth & Pozrikidis (2004b). It is impor-

tant to point out here that Halpern & Frenkel (2003) and Frenkel & Halpern (2002)

demonstrated that both the presence of surfactant and a basic interfacial shear is re-

quired in order to cause destabilization of Marangoni mode. Since, the basic shear

stress at gas-liquid interface for the liquid film flowing down an inclined plane in

above mentioned studies was absent, this was suggested as the reason for Marangoni

mode remaining stable for liquid film flows (planar and cylindrical). In order to in-
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vestigate this aspect, Wei (2005a) performed a long wave asymptotic analysis to

examine the stability of surfactant covered liquid film flow down an inclined plane

in presence of an imposed shear stress on the air-liquid interface. It was clearly

shown that the Marangoni mode becomes unstable depending on the direction and

magnitude of the applied shear stress. Similar conclusion was also made for a vis-

coelastic liquid film flowing down a rigid inclined plane (Wei 2005b), and for a

viscoelastic liquid film coating the inside of a tube (Zhou et al. 2014). Wei (2007)

investigated the role of basic flow on such surfactant-induced instabilities for a vari-

ety of configurations and demonstrated that the base flow plays a dual role in mod-

ifying the stability characteristics. These studies reconsolidated the idea that base

state interfacial shear is always required to cause the destabilization of Marangoni

mode. In the present work, we analyzed the stability of surfactant-laden liquid film

flowing down an inclined plane when the plane is coated with a deformable solid

layer. We explore the effect of adding a flexible or compliant wall on the stability

of both interfacial and Marangoni modes. We show that the presence of deformable

wall dramatically changes the stability characteristics of the surfactant-covered film

flow down an inclined plane. When the fluid flows past a soft, deformable wall,

the moderate fluid stresses are sufficient to cause deformations in the solid layer

and these deformations in turn can alter the fluid flow. The velocity field in fluid

layer and the displacement field in solid layer are related via boundary conditions at

fluid-solid interface. Thus, mathematically speaking, the presence of a deformable

wall amounts to change in boundary conditions at fluid-solid interface from no-slip

to continuity of velocities and stresses in solid and fluid layers. There are few stud-

ies which analyzed the effect of change of type of substrate/wall (or equivalently

changing the fluid-solid conditions) on the stability of surfactant-laden liquid film

flow down an inclined plane. For example, Anjalaiah et al. (2013) analyzed the sta-

bility of a liquid film flow down a porous inclined wall in presence of an insoluble

surfactant at gas-liquid interface. For the case of porous wall as well, they observed

the presence of two dominant modes: gas-liquid interfacial (or Yih’s) mode, and

the Marangoni mode. The effect of surfactant on interfacial mode was found to be

stabilizing while porosity has a destabilizing effect on the overall stability of the sys-

tem. The Marangoni mode was always found to be stable and dominates the Yih’s

mode at smaller Reynolds number. However, with increase in Reynolds number,
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an exchange of dominant mode of instability occurs and interfacial (Yih’s) mode

becomes the critical mode of instability. This interfacial mode becomes unstable

above a critical Reynolds number and the presence of surfactant increases this crit-

ical Reynolds number as compared to the clean film case. It was demonstrated that

it is possible to modify the stability characteristics of the system by changing the

properties (like porosity, permeability, and thickness) of wall. A similar conclusion

was made in Chattopadhyay & Usha (2016) for pressure driven flow two fluid layers

in presence of an interfacial surfactant. The effect of having hydrophobic channel

walls was investigated and it was demonstrated that it is possible to manipulate

Yih-Marangoni type instabilities in by making walls rough/hydrophobic/porous.

The effect of adding interfacial surfactant at fluid-fluid interface has also been

investigated for the case of two liquid layers falling down an inclined wall (Anjala-

iah & Usha 2015; Chattopadhyay & Usha 2016; Gao & Lu 2007; Samanta 2014).

The linear stability analysis of two liquid layers flowing down an inclined plane in

Stoke’s flow limit and in presence of an insoluble interfacial and surface surfactant

is carried out by Gao & Lu (2007). In this inertialess limit, they observed occurrence

of four normal modes and found that only one of them exhibits instability. When

the upper layer is more viscous than the lower layer, this two-layered configuration

remains unstable due to inertialess instability of liquid-liquid interface in absence

of surfactant. The effect of adding a surface surfactant is found to be stabilizing as

it decreases the growth rate of this inertialess instability. For highly viscous upper

layer in comparison to the lower layer, the growth rate of inertialess unstable mode

increases due to the presence of surface surfactant. The effect of interfacial surfac-

tant was observed to be destabilizing in the sense that it enhances the growth rate of

inertialess instability for more viscous upper layer. For less viscous upper layer, the

interfacial surfactant induces a new mode of instability. We believe that this mode

is the (interfacial) surfactant induced Marangoni mode similar to the unstable mode

observed by Halpern & Frenkel (2003). The effect of surface surfactant was found

to be stabilizing for this mode. Samanta (2014) extended the work by Gao & Lu

(2007) by including the effect of inertia. It was observed that the maximum growth

rate decreases for both interface and surface modes due to the presence of surface

surfactant when the less viscous layer is adjacent to the inclined plane. When the

more viscous liquid is adjacent to the inclined plane, inertial effects induces a new
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instability. The presence of interfacial surfactant have a stabilizing effect on this in-

ertial instability. In this study (Samanta 2014), only interface and surface modes out

of the four dominant normal modes were analyzed in detail. Thus, no information

is clearly available regarding the stability of characteristics of Marangoni modes for

free surface and liquid-liquid interface. In the present work, we examine the effect

of surface surfactant on the stability of free-surface mode and the Marangoni mode

when the lower liquid layer is replaced by a soft, deformable elastic solid layer. We

show that the Marangoni mode can also become unstable due to presence of a de-

formable liquid-solid interface. The effect of change of substrate or wall properties

for the case of two layer surfactant-laden film flow on interface and surface modes

instabilities has been addressed by Anjalaiah & Usha (2015). They examined the

linear stability of two liquid film flow in presence of either an interfacial surfactant

or surface surfactant or both when the film flow occurs past a slippery inclined wall.

The presence of velocity slip at fluid-solid boundary resulted in decrease of growth

rates for the parameter regimes where instabilities occur. The range of unstable

wavenumbers also shrinks showing the stabilizing effect of slip for this flow con-

figuration. It was suggested that slip could be used to control instabilities for such

two-layer flows.

Thus far, we have discussed studies related to single or two liquid film flow

down a rigid inclined plane when the fluid-fluid interface remains populated with

a monolayer of insoluble surfactant. In the present work, we analyze the stabil-

ity of a surfactant-laden liquid film flowing down a inclined plane when the plane

is coated with a soft, deformable solid layer. When a fluid flows past a soft solid

with relatively smaller shear modulus, the moderate fluid stresses at fluid-solid in-

terface are sufficient to cause deformations in solid layer. These deformations in

turn can alter the fluid flow. Thus, a flow configuration with deformable fluid-solid

interface is expected to be qualitatively very different than the same flow configura-

tion with rigid fluid-solid interface. Indeed the early theoretical works by Kumaran

and coworkers suggested the same (see for example, Kumaran (2000)). Thus, we

may expect that the presence of deformable liquid-solid interface could effect the

stability characteristics of both Yih’s type of free-surface gas-liquid mode and the

surfactant induced Marangoni mode. In the following, we review the studies which

focuses on the effect of compliant/deformable wall on the stability of fluid flow.
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Kumaran et al. (1994) analyzed the stability of Couette flow of a Newtonian

fluid past a flexible gel surface. The Couette flow configuration with rigid walls re-

mains linearly stable at any Reynolds number, while experimentally, it is known to

exhibit a transition from laminar flow profile above Reynolds number of O(1000).

Kumaran et al. (1994) analyzed the linear stability of a fluid flowing between two

plates where top plate was moving with a specified speed and the bottom stationary

plate was coated with a deformable solid layer. They analyzed the stability of the

system in creeping flow limit and observed that the flow is linearly unstable even

in the absence of inertia when the soft solid layer becomes sufficiently deformable.

They introduced a dimensionless deformability parameter G = µV/ER, where µ is

viscosity of fluid, V is the characteristic velocity, R is the thickness of fluid layer,

and E is the shear modulus of deformable solid layer. This parameter G can be

interpreted as ratio of viscous shear stresses in fluid layer to the elastic stresses in

solid layer. As G → 0, one obtains the rigid solid limit. The other important non-

dimensional parameter was solid to fluid thickness ratio H or non-dimensional solid

thickness. It was demonstrated that for a given solid thickness, the flow becomes

unstable when the wall deformability parameter increases above a critical value and

this critical value of G was shown to decrease with increase in solid thickness. They

used a linear elastic solid model to represent the dynamics of soft solid layer. The

stability of Hagen-Poiseuille flow in a flexible tube in creeping flow limit was ex-

amined by Kumaran (1995) using a linear elastic solid model for the flexible wall.

The pressure-driven flow in a flexible tube was also found to become unstable in

creeping flow limit when the tube becomes sufficiently soft, or equivalently, the

dimensionless wall deformability parameter increases above a critical value. How-

ever, unlike the case of Couette flow, it was observed that the critical value of wall

deformability parameter G asymptotes to a constant value as the solid layer thick-

ness is increased. The instability observed in these two cases exists purely due to

the presence of a deformable fluid-solid interface. There are several other stud-

ies by Kumaran and coworkers (Shankar & Kumaran 1999, 2000, 2001a,b, 2002)

which analyzed the linear and non-linear stability of flow in flexible tube examin-

ing the entire range of Reynolds number from zero to infinity. All of these studies

employed a linear viscoelastic solid model to represent the deformable wall. An

excellent summary of findings in the above mentioned papers are given in a review
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by Kumaran (2003). Broadly, there are multiple modes which exist due to the pres-

ence of a deformable solid coating and these modes could become unstable as wall

deformability is increased. These modes are classified into two types: viscous wall

modes and inviscid modes. The instability mode observed in creeping flow limit for

flow in a flexible tube when continued to finite and high Reynolds number, forms

the most dominant viscous wall mode. Other modes emerge for non-zero values

of Reynolds number. The central conclusion from these studies is that the transi-

tion in flexible tubes or channels can occur at Reynolds number much lower than

the corresponding transition Reynolds number in rigid configuration and that this

transition occurs due to the deformability of the wall. In the present work, since we

focus on small Reynolds number, the continuation of creeping flow viscous mode

to small and finite Reynolds number is expected to be important in context of the

work presented in this thesis.

Kumaran & Muralikrishnan (2000) and Eggert & Kumar (2004) performed ex-

periments in parallel plate geometry when the bottom plate was coated with a de-

formable solid layer and the top plate was set in motion. These experiments were

performed at slow plate speeds such that low Reynolds number prevails during ex-

periments. These experiments confirmed the findings related to creeping flow in-

stability induced due to flexible wall as predicted in Kumaran et al. (1994). Ex-

periments performed by Verma & Kumaran (2012b, 2013a) examined the tran-

sition Reynolds number as a function of shear modulus for flow of water type

fluid in flexible tubes and channels. Verma & Kumaran (2012b) fabricated tubes

in poly-dimethyl siloxane (PDMS) blocks using the technique described in Verma

& Ghatak (2006) and Majumder & Ghatak (2010). It was observed that the laminar

flow undergoes a transition to a more complex flow profile for Reynolds number

as low as 500 for the softest gels used in this study. Similarly, Verma & Kumaran

(2013a) demonstrated transition Reynolds number to be as low as 200 for the softest

micro-channel fabricated in their work. These flow instabilities arising due to fluid-

structure interactions have been a subject of numerous studies and are reviewed in

Gad-el hak (2003); Kumaran (2015); Shankar (2015). The central conclusions from

these investigations were that the stability characteristics get significantly affected

by the presence of a deformable wall, and new unstable modes proliferate for flow

past deformable solid surface. While all of these studies focused on new instabilities
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that arise due to the presence of compliant/soft wall, Shankar and coworkers (see

for example, a recent review by Gaurav & Shankar (2015) investigated the effect

of including a soft solid coating on flow configurations which involves one or more

fluid-fluid interfaces. The work presented in this thesis also involves presence of a

deformable fluid-solid interface and a fluid-fluid interface. Thus, in the following,

we review the studies which explored the effect of deformable wall on fluid-fluid

interfacial instabilities which are known to exist in the rigid configuration.

Shankar & Kumar (2004) analyzed the linear stability of two-layer Couette flow

past a deformable solid surface using an Orr-Sommerfeld type analysis, and solved

the resulting linear stability problem by using an asymptotic long wave technique

for low wavenumbers and a shooting method for arbitrary wavenumbers. This prob-

lem configuration involved a fluid-fluid interface and a deformable fluid-solid inter-

face. The fluid-fluid interface becomes unstable when the more viscous layer occu-

pies the lesser space for non-zero Reynolds number, however small it may be Yih

(1967). This fluid-fluid instability occurs due to a viscosity jump across the fluid-

fluid interface. The configuration also admits a fluid-solid mode similar to that

observed by Kumaran et al. (1994). The long wave asymptotic analysis demon-

strated that when the more viscous fluid layer is thinner than the less viscous layer

(a configuration which remains unstable in rigid limit for any non-zero Reynolds

number), the soft solid layer could completely suppress the fluid-fluid interfacial

instability when the dimensionless wall deformability parameter increases beyond

a critical value. For the other case i.e. when the more viscous layer occupies more

space, the solid layer effect could be stabilizing or destabilizing depending on the

solid thickness. Whenever the effect of solid layer is stabilizing, the continuation of

long wave results for arbitrary wavelength disturbances show that the suppression

continues to finite and high wavenumbers as well. As the wall deformability param-

eter is increased to sufficiently high values, the fluid-solid interfacial mode becomes

unstable. It was further demonstrated that it is possible to obtain a completely sta-

ble flow configuration using a deformable solid layer for those sets of parameters

where the flow otherwise remains unstable in the rigid limit. A similar manipula-

tion and control of instabilities for two-layer viscoelastic plane Couette flow using

deformable solid coating was demonstrated by Adepu & Shankar (2007); Shankar

(2004, 2005).
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The stability of gravity driven free surface flow of a Newtonian liquid film

falling down an inclined plane coated with a deformable solid layer was analyzed

by Shankar & Sahu (2006). They used a linear viscoelastic model for soft solid

layer. As mentioned earlier, the Newtonian liquid film flowing down an inclined

plane falls prey to a free surface instability for a given angle of inclination, when

the Reynolds number number increases above a critical value. Shankar & Sahu

(2006) analyzed the effect of presence of a deformable solid coating by carrying

out a low wavenumber analysis and demonstrated that the long wavelength per-

turbations can be completely suppressed by using a deformable solid layer. Their

numerical results demonstrated that the suppression continues to finite and high

wavenumbers as well. Neutral stability curves constructed in wall deformability

parameter G vs. wavenumber plane demonstrated that the film remains unstable

because of free-surface instability in rigid limit (G → 0) and as G increases, the

free-surface instability is suppressed. As wall becomes more and more softer (i.e.

higher G values), the gas-liquid free-surface and the deformable gas-liquid interface

becomes unstable due to wall deformability. Thus, there exist a window in terms of

wall deformability parameter (or equivalently, in terms of shear modulus of solid)

where the falling film can be made stable where it otherwise remains unstable in the

rigid limit.

While the above mentioned studies by Shankar and coworkers (Adepu & Shankar

2007; Shankar 2004, 2005; Shankar & Kumar 2004; Shankar & Sahu 2006), used

a linear elastic solid model to represent the deformations in soft solid layer, Gka-

nis & Kumar (2003, 2005, 2006) highlighted the importance of using a nonlinear

solid model even for linear stability analysis to accurately capture the stability be-

havior of the composite fluid-solid configurations.For example, Gkanis & Kumar

(2003) analyzed the linear stability of Couette flow of a single Newtonian fluid

past a deformable solid surface when the soft solid layer is modeled using a simple

non-linear neo-Hookean solid model. They examined this problem in creeping flow

limit and the stability was governed by three dimensionless parameters namely: im-

posed strain (which is nothing but the wall deformability parameter defined above),

solid to fluid thickness ratio or dimensionless solid thickness, and a dimensionless

fluid-solid interfacial tension parameter. The neo-Hookean solid exhibits a non-

zero first normal stress difference which is zero for a linear elastic solid model.
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This non-zero first normal stress difference in base state causes significant changes

in stability characteristics for Couette flow past a flexible surface when a non-linear

neo-Hookean solid model is used instead of a linear elastic constitutive relation. A

short wave instability was observed for flow past neo-Hookean solid which remains

absent for flow past linear elastic solid. Also, finite wavelength perturbations be-

come unstable in a similar fashion as observed for linear elastic solid (Kumaran

et al. 1994). Thus, with neo-Hookean solid model, both finite wavenumber and

high wavenumber perturbations can become unstable with increase in deformabil-

ity parameter while only finite wavenumber instability is observed for Couette flow

past linear elastic solid model. It was shown that for sufficiently thin solid layer,

the short wave mode becomes unstable first as G is increased, and thus, dominates

the stability behavior. However, for thick solid, the finite wavenumber perturba-

tions remain the most dominant mode of instability. The presence of interfacial

tension have a strong stabilizing effect on the short wave mode instability. Simi-

lar conclusion were made for pressure-driven flow in a neo-Hookean deformable

channel (Gkanis & Kumar 2006) and for gravity driven flow of a Newtonian liquid

film flowing past a neo-Hookean solid (Gkanis & Kumar 2006). Motivated by these

observations, Gaurav & Shankar (2007) re-examined the stability of a Newtonian

liquid film falling down an inclined plane when the inclined plane is coated with

a neo-Hookean deformable solid layer. They re-examined this problem in order to

find out whether the stabilization predicted by Shankar & Sahu (2006) using a lin-

ear elastic solid layer holds with a neo-Hookean solid as well. They first carried out

a low wavenumber analysis and observed that in this long wave perturbation limit,

the governing equations for a neo-Hookean solid model reduces to that of linear

elastic model, and hence, the suppression predicted using linear elastic solid holds

well in this low wavenumber limit. The low wavenumber results with neo-Hookean

solid were found to be exactly identical to results obtained using linear elastic solid.

Their results at finite and high wavenumbers show that while the neutral curves cor-

responding to suppression of free-surface instability remains unaffected, the neutral

curves corresponding to destabilization of gas-liquid free-surface and liquid-solid

interface get modified on using a neo-Hookean solid model. They observed the

existence of short wave mode instability as predicted by Gkanis & Kumar (2003,

2005, 2006) and this becomes important in determining the width of stability win-
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dow (predicted by Shankar & Sahu (2006)) for thinner solid layers. The critical

value of G required for destabilization of gas-liquid interface do not change much,

however, the band of unstable wavenumbers increases. Thus, in this sense, the ef-

fect of neo-Hookean solid was observed to be more destabilizing. However, the

width of stability window remains almost same for both solid models. Shankar and

coworkers (Gaurav & Shankar 2013; Jain & Shankar 2007, 2008) further analyzed

the stability of different flow configurations with the motivation of manipulation

and control of fluid-fluid interfacial velocities using a deformable solid layer. For

example, Jain & Shankar (2007) analyzed the stability of a viscoelastic liquid film

flowing down an inclined plane coated with a neo-Hookean deformable solid layer.

They observed that the stability suppression holds well with neo-Hookean solid.

More importantly, in this study, they demonstrated that it is possible to use a de-

formable solid layer to suppress free-surface instabilities for a viscoelastic liquid

film as well. Jain & Shankar (2008) analyzed the stability of cylindrical Newto-

nian liquid film flowing inside/outside of tube which is coated with a neo-Hookean

deformable solid layer and Gaurav & Shankar (2013) analyzed the stability of core-

annular flow in a flexible tube. For both of these configurations, the fluid-fluid

interface was cylindrical and hence can also become unstable due to capillary insta-

bility in additional to interfacial instability caused due to jump in viscosity across

the fluid-fluid interface. It was again demonstrated that it is possible to obtain sta-

ble configuration for those parameter sets for which the flow remains unstable in

rigid limit. The stability of two liquid layers flowing down an inclined plane was

also analyzed (Gaurav & Shankar 2010a). This flow configuration involves the

presence of three interfacial modes: a gas-liquid mode, a liquid-liquid mode, and

a deformable liquid solid mode. The effect of soft solid layer was found to be sta-

bilizing for gas-liquid mode while the effect of solid layer on liquid-liquid mode

depends on whether the more viscous or less viscous liquid is adjacent to the soft

solid surface. When more viscous liquid is adjacent to the deformable wall, the wall

deformability has a stabilizing effect on liquid-liquid (and gas-liquid) interface. In

this case, it is possible to obtain stable flow configurations for those cases where the

two interfaces otherwise remain unstable for flow past a rigid incline surface. On

the other hand, when less viscous liquid is near the wall, the wall deformability has

a destabilizing effect on liquid-liquid interface and stabilizing effect on gas-liquid
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interface. As a result, it is not possible to stabilize both the interfaces simultane-

ously. It was also shown that it is possible to select wall properties (solid thickness

and shear modulus) to selectively destabilize one of the interfaces while keeping

the other two as stable. In a related fashion, it was shown to selectively destabilize

a finite band of wavenumbers for core-annular flow in a flexible tube by appropri-

ately choosing the soft solid parameters. Thus, these studies demonstrates that the

presence of deformable solid surface could significantly affect the stability behavior

of fluid-fluid interface. In the present work, we focus on whether the presence of

deformable solid layer could affect the stability of surfactant-induced Marangoni

mode for liquid film flow down a flexible inclined plane.

1.3 Structure of the thesis

Above, we have discussed the literature based on our objective and the scope of

the work, the research work presented in this thesis are categorized into two parts,

one is based on the stability analysis of gravity-driven surfactant-laden liquid film

flowing down an inclined plane for creeping flow limit and another is based on

the manipulation and control of instabilities for surfactant-laden liquid film flowing

down an inclined plane using a deformable solid layer for finite Reynolds number.

The above discussed first part is presented in chapter 2 and second in chapter 3. In

chapter 2, we explore the effect of various parameters (importantly soft solid) on

the unstable Marangoni mode which was absent in single contaminated liquid layer

flowing down an inclined plane studied by Blyth & Pozrikidis (2004a). In chapter

3, we focus the effect of various parameters mainly on the stability window where

flow remains completely stable. In both the parts (or problems), we also focus on

the dynamics of deformable solid layer as well as insoluble surfactant.

All the chapter contains abstract, introduction (consist of motivation and litera-

ture review which presents the insight of previous works concerning to our research

studies), problem formulation (consists of governing equations, linearised govering

equations and boundary conditions), results and discussion and conclusion of the

chapter. We presented abstract of thesis at the beginning of thesis, list of tables, list

of figures. Finally, we presnted conclusion of thesis separately in chapter 4.





Chapter 2

Stability of gravity-driven free
surface flow of surfactant-laden
liquid film flowing down a flexible
inclined plane

Abstract

We examined the linear stability of gravity-driven creeping flow of a liquid

film flowing down an inclined plane when the inclined plane is coated with

a deformable solid layer and the gas-liquid interface is contaminated with

a monolayer of insoluble surfactant. The contaminated liquid film flowing

down a rigid incline admits gas-liquid (GL) interfacial mode and surfactant-

induced Marangoni mode, both of which remain stable in the creeping flow

limit. The primary aim of this study is to explore the effect of the presence of

a deformable wall, in place of a rigid inclined wall, on the stability behavior

of Marangoni mode which originates because of the transport of surfactant

at the GL interface. In presence of a deformable solid layer, two additional

parameters namely, shear modulus and thickness of deformable solid layer

also affects the stability behavior of falling film configuration. Our long-wave

asymptotic analysis and results at finite and arbitrary wavenumbers demon-

strated the destabilization of Marangoni mode solely due to the presence of

deformable solid layer. Specifically, we have shown that for a given solid

21
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thickness, the Marangoni mode becomes unstable when the shear modulus

of solid layer decreases below a critical value (i.e. the solid layer becomes

sufficiently soft). The effect of increasing solid thickness is found to be desta-

bilizing. The LS interfacial mode also becomes unstable at high wavenumbers

below a threshold value of shear modulus, however, this value is much smaller

than that required to trigger Marangoni mode instability. This implies that as

the solid coating becomes more and more deformable, the Marangoni mode

becomes unstable first followed by the LS interfacial mode. The GL mode

was always found to be stable in creeping flow limit. Further, our long-wave

analysis shows that the solid deformability has an additional stabilizing effect

on GL mode. The neutral stability curves in nondimensional solid deformabil-

ity parameter (or equivalently shear modulus) vs. wavenumber plane clearly

depicts that the Marangoni mode is the dominant unstable mode in the creep-

ing flow limit. Thus, the present study shows the destabilization of Marangoni

mode solely due to presence of deformable solid layer and this we believe is

the first example of the case where the instability of the Marangoni mode is

observed when the fluid-fluid interface (here, GL interface) remains stress-free

in the basic state.

2.1 Introduction

The stability of gravity-driven liquid film flow with free surface is an extensively

studied problem because of its relevance in many engineering applications such

as coating processes (Wenstein & Ruschak 2004), distillation units, condensers,

heat exchangers (Craster & Matar 2009), as well as in biological systems such as

pulmonary fluid mechanics (Grotberg & Jensen 2004; Halpern & Grotberg 1993).

Beginning from the pioneering investigations by Benjamin (1957) and Yih (1963),

there have been a large number of studies exploring the onset of instability of a

falling liquid film and subsequent non-linear evolution of surface waves at gas-

liquid interface. A comprehensive summary of the work done in the field is given in

Chang & Demekhin (2002) and Craster & Matar (2009). Further, many interfacial

flow systems, including the falling film configuration, contain surface active agents

or surfactants which play a critical role in different applications (Goerke 1998; Mor-

row & Mason 2001; Quere et al. 1997). The surfactant present at the fluid-fluid in-

terface not only significantly affects the stability behavior of the existing fluid-fluid
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interfacial mode (Blyth & Pozrikidis 2004a; Samanta 2014) but also introduces a

new additional normal mode originating from the transport of surfactant at the inter-

face (Frenkel & Halpern 2002). A large number of papers concerning the effect of

insoluble or soluble surfactant on the stability of different interfacial flow systems

have appeared in the last decade (Bassom et al. 2012; Blyth & Bassom 2013; Blyth

& Pozrikidis 2004a; Gao & Lu 2007; Halpern & Frenkel 2003; Karapetsas & Bon-

tozoglou 2013; Peng & Zhu 2010; Picardo et al. 2016; Pozrikidis 2003; Samanta

2014). However, a majority of the studies considered interfacial flows over a rigid

wall. Flow past soft, deformable solid surface occurs in a wide variety of settings;

for example, in microfluidic devices made of soft elastomers, flow in lung airways

(Halpern & Grotberg 1992), use of rubber-covered rolls to reduce defects in coat-

ing processes Carvalho & Scriven (1997), potential use of soft walls in instability

suppression (Shankar & Sahu 2006), inducing ultra-fast mixing and enhancement

of mass transfer in microfluidic channels Bandaru & Kumaran (2016); Shrivastava

et al. (2008). There are several studies which examined the stability and evolution

of (clean) liquid film flow down a flexible inclined wall. However, very few studies

investigated the stability of surfactant-laden film flow down a flexible incline Matar

& Kumar (2004); Peng et al. (2016). In this paper, we attempt to fill this gap and

examine the linear stability of liquid film falling down an inclined plane when the

plane is coated with a soft, deformable solid layer and the free surface is contami-

nated with a monolayer of insoluble surfactant. In the following, we briefly review

the literature and motivate the context of the present study.

Yih (1963) analyzed the linear stability of liquid film flow down an inclined

plane for long-wave perturbations and Lin (1967) extended this analysis to finite and

arbitrary wavenumbers. It was demonstrated that the liquid film becomes unstable

in presence of inertia when the Reynolds number increases above a critical value.

This long-wave instability is referred as Yih mode or GL mode or free surface mode

in the present work. The dynamics of the falling film is affected by the presence of

surface active agents or surfactants. The surface tension depends on the concentra-

tion of surfactants and any gradient in surfactant concentration causes a gradient in

surface tension which results in the generation of stress known as Marangoni stress.

These Marangoni stresses, in turn, could alter the stability behavior of GL interfacial

mode. Indeed, earlier works by Whitaker (1964), Whitaker & Jones (1966), Anshus
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& Acrivos (1967), and Lin (1970) all predicted that the presence of insoluble surfac-

tant at free surface has a stabilizing effect on this GL mode and the critical Reynolds

number increases for liquid film contaminated with surfactant in comparison to the

clean film. The effect of soluble surfactant was also investigated by Ji & Setter-

wall (1994) and they observed the occurrence of an unstable surfactant mode for a

vertical falling film. Blyth & Pozrikidis (2004a) presented the numerical solution

of Orr-Sommerfeld eigenvalue problem for the gravity-driven flow of a liquid film

loaded with insoluble surfactant for both zero and finite Reynolds number. They

observed the existence of two normal modes in Stokes flow limit. The first is the

usual Yih mode and the second is identified as Marangoni mode which occurs due to

the spatial variations in surfactant concentration. Both modes remain stable in zero

Reynolds number limit with the decay rate of Marangoni mode being significantly

lower than the Yih (or GL) mode. Thus, Marangoni mode is the least stable mode

in creeping flow limit (and at low Reynolds number). The Marangoni mode re-

mains unaffected as Reynolds number increases above zero while the growth rate of

Yih mode increases with Reynolds number and eventually Yih mode overtakes the

Marangoni mode at low Reynolds number. The Yih mode finally becomes unstable

beyond a critical Reynolds number and a low-wavenumber asymptotic analysis for

Yih mode demonstrated that the presence of surfactant raises the critical Reynolds

number for the onset of GL mode instability. The second mode, i.e. the Marangoni

mode, was never found to be unstable and hence, the overall effect of surfactant

was said to be stabilizing. In a related study, Pereira & Kalliadasis (2008) inves-

tigated the same problem in both linear and non-linear regime. The linear regime

is examined in the framework of Orr-Sommerfeld formulation using both analyti-

cal solution in the limit of low wavenumbers and numerical solution for arbitrary

wavenumbers. Their low-wavenumber analysis also revealed the existence of a sec-

ond normal mode in addition to the usual Yih mode. This second mode originates

from the surfactant transport equation and it is this mode which was referred as

Marangoni mode in Blyth & Pozrikidis (2004a). However, they argued that this

additional mode is simply a diffusional mode which would be present even in ab-

sence of Marangoni effect- i.e. for any species on GL interface and not necessarily

a surfactant. The basis of their argument was that the growth rate was found to

be proportional to surfactant diffusivity rather than Marangoni number. This mode
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will continue to exist even for zero Marangoni number and it is the Marangoni

number which characterizes the rate of change of surface tension with respect to

concentration. They referred this mode as diffusional/concentration mode and ob-

served that this second mode always remains stable. The characteristics of GL

mode was found to be in agreement with the results of Blyth & Pozrikidis (2004a).

The Marangoni/concentration mode was overlooked in several previous studies in

context of film flows possibly because of stable behavior of this mode.

Frenkel & Halpern (2002) and Halpern & Frenkel (2003) were the first to dis-

cover the presence of a surfactant-induced unstable mode for the case of two-layer

channel flow when the fluid-fluid interface is covered with a monolayer of surfac-

tant. They demonstrated that in creeping flow limit, the usual fluid-fluid Yih type

interfacial mode remains stable, while, an additional mode (called as Marangoni

mode) originating due to the presence of surface tension gradients becomes unsta-

ble in Stokes flow limit. They showed that the simultaneous presence of surfactant

and basic interfacial shear is sufficient to cause Marangoni mode instability even at

zero Reynolds number. They suggested the absence of shear stress at GL interface

as the reason for not observing the Marangoni mode instability for falling film con-

figuration. Blyth & Pozrikidis (2004b) analyzed the stability of two-layer inclined

channel flow in presence of an insoluble surfactant using a lubrication approxima-

tion and derived nonlinear evolution equations for interface position and surfactant

concentration. Their linear stability results from lubrication flow model and Stoke’s

flow approximation confirmed the results of Frenkel & Halpern (2002) and Halpern

& Frenkel (2003) that the presence of interfacial surfactant introduces a Marangoni

mode instability for certain values of viscosity and thickness ratio of two fluid lay-

ers. Motivated by these observations, Wei analyzed the linear stability of surfactant-

laden falling (Newtonian Wei (2005a) and viscoelastic Wei (2005b)) film down an

inclined wall with shear imposed on the GL interface. He clearly demonstrated that

depending on the direction of imposed shear, the Marangoni mode could be stable

or unstable. The effect of imposed shear on GL mode was also discussed. Similar

observations were made by Zhou et al. (2014) who investigated the role of imposed

shear on the stability of viscoelastic contaminated film falling on the inner surface

of a cylindrical tube. These studies re-consolidate the idea that the interfacial shear

in the basic state must be non-zero for rendering Marangoni mode unstable. In
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the present work, we focus on the effect of wall deformability on the stability of

Marangoni mode and show that the Marangoni mode becomes unstable for suffi-

ciently deformable wall even when the GL interface remains stress-free in the basic

state. Mathematically, change of the type of substrate/wall (such as a deformable

solid coating) leads to changes in boundary conditions at liquid-solid interface. A

recent work related to examining the effect of change of type of substrate/wall has

been reported by Anjalaiah et al. (2013). They carried out the stability analysis

for surfactant laden film flow down a porous substrate and systematically examined

the effect of porous wall characteristics on both GL and Marangoni modes. They

proposed a strategy for stabilizing/destabilizing the GL interfacial mode by appro-

priately selecting porous wall characteristics, however, the Marangoni mode was

always stable and no qualitative changes are observed for Marangoni mode because

of variations in the properties of porous wall.

All the work cited in the brief review above is related to the stability of surfac-

tant loaded liquid film falling down a rigid inclined wall. In the present work, we

analyze the linear stability of a surfactant laden falling film but the film flows down

a flexible inclined wall instead of a rigid inclined wall. When a fluid flows past a

soft solid surface, the stresses exerted by the fluid create deformations in the solid

layer and these deformations, in turn, could affect the fluid flow. This coupling

between fluid and solid is known to cause an instability of liquid-solid (LS) inter-

face in creeping flow limit (Eggert & Kumar 2004; Kumaran et al. 1994; Kumaran

& Muralikrishnan 2000) as well as at finite Reynolds number (Gaurav & Shankar

2010b; Kumaran 2000; Neelamegam & Shankar 2015; Verma & Kumaran 2012a,

2013b). The physical configurations considered in these studies are Couette flow of

a Newtonian liquid past a flexible surface (Eggert & Kumar 2004; Gkanis & Kumar

2003; Kumaran et al. 1994; Kumaran & Muralikrishnan 2000; Neelamegam et al.

2014) and pressure driven flow of a Newtonian fluid in a deformable channel or tube

(Gaurav & Shankar 2009, 2010b; Gkanis & Kumar 2005; Neelamegam & Shankar

2015; Verma & Kumaran 2012a, 2013b). Note that all the configurations mentioned

above involved a single fluid and a soft solid layer, and hence, the only deformable

interface was LS interface which undergoes an instability when the solid layer be-

comes sufficiently soft. A very recent review of all these works related to instability

of LS interface is presented by Shankar (2015) and Kumaran (2015). In contrast to



2.1 Introduction 27

these studies, Shankar and co-workers (Adepu & Shankar 2007; Gaurav & Shankar

2007, 2010a, 2013; Jain & Shankar 2007, 2008; Shankar & Kumar 2004) examined

the stability of various flow configurations past a soft solid layer which involved the

presence of a fluid-fluid interface in addition to the deformable LS interface. For

example, Shankar & Kumar (2004) analyzed the stability of two-layer Newtonian

Couette flow past a deformable solid surface to investigate the effect of presence

of deformable solid layer on fluid-fluid interfacial mode. It is well known that the

fluid-fluid interface undergoes a long-wave instability due to jump in properties

(like viscosity) across the interface (Joseph & Renardy 1993a,b). Shankar & Ku-

mar (2004) demonstrated that it is possible to completely suppress this fluid-fluid

interfacial mode without triggering the liquid-solid interfacial mode instability. A

similar suppression of fluid-fluid interfacial mode using a deformable solid layer

was shown to exist for several other configurations such as: free-surface flow of

a single (Jain & Shankar 2007; Shankar & Sahu 2006) and two liquid layer film

(Gaurav & Shankar 2010a) flowing down a flexible inclined plane, cylindrical liq-

uid film flowing inside and outside of a tube coated with soft solid layer (Jain &

Shankar 2008), core-annular flow in a flexible tube (Gaurav & Shankar 2013) etc.

In all these studies, it was demonstrated that the fluid-fluid interfacial instability is

suppressed when the solid becomes sufficiently soft (i.e as shear modulus of solid is

decreased). As the solid becomes more and more deformable, both fluid-fluid and

liquid-solid interface becomes unstable. Thus, there exists a window of stability

in terms of shear modulus of solid where fluid-fluid interfacial mode is stabilized

without exciting the LS interfacial mode. All these studies are summarized in a

recent review by Gaurav & Shankar (2015). The central idea presented by works of

Shankar and co-workers is that the fluid-fluid interfacial mode gets affected by the

presence of deformable solid layer.

In direct relevance to the present work, there are few studies examining the

linear stability of gravity-driven free surface (clean) film flows past a deformable

solid surface (Gaurav & Shankar 2007; Gkanis & Kumar 2006; Shankar & Sahu

2006). The deformations in the solid layer are described by using a simple non-

linear neo-Hookean solid model (Gaurav & Shankar 2007; Gkanis & Kumar 2006).

In the creeping flow limit, the Yih type GL mode remains suppressed, however,

the liquid-solid interface becomes unstable at high wavenumbers for sufficiently
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deformable solid layer (Gaurav & Shankar 2007; Gkanis & Kumar 2006). The Yih

type GL mode becomes unstable above a critical Reynolds number for film flow

down a rigid incline. Gaurav & Shankar (2007) demonstrated that the GL mode

instability is suppressed for all wavenumbers for liquid film flow past a sufficiently

flexible inclined wall for the parameters where the GL mode otherwise remains

unstable in the rigid limit. They showed that there exists a wide window in terms

of shear modulus of the solid layer where both GL and LS modes remain stable

at all wavenumbers. Thus, the GL mode stability behavior is significantly altered

by the presence of a deformable solid layer. It is expected that the presence of a

deformable LS interface could also have a profound effect on Marangoni mode and

this forms the subject of present investigation. The nonlinear stability and dynamics

of falling liquid films over flexible inclined wall have also been investigated by

using Benny-type coupled equations for film thickness and wall deflection (Matar

et al. 2007; Peng et al. 2014). They used a simple forced membrane type equation

which relates the restoring force with the normal force imposed by the fluid and

the wall was restricted to move only in normal direction. Very recently, the effect

of the presence of insoluble surfactant for a film falling down a flexible incline

has been investigated (Peng et al. 2016) following the work of Matar et al. (2007).

An integral method was used to derive a set of evolution equations for the film

thickness, wall position, and surfactant concentration. A normal mode analysis of

these equations revealed the dual role played by the flexible wall. A flexible wall

with weak damping has a stabilizing effect while wall tension destabilizes flow.

Further, the effect of surfactant was found to be stabilizing which is in agreement

with previous studies (Blyth & Pozrikidis 2004a). However, they focused on the

stability of Yih mode while the effect of flexible wall on Marangoni mode was not

examined in the above-mentioned study (Peng et al. 2016).

The above discussion shows that most of the studies focused on the effect of

surfactant or wall deformability on film flows with an objective to control GL inter-

facial mode instability. In case of contaminated film flows down a flexible inclined

wall, the Marangoni mode could also get affected due to wall deformability and

this aspect is not investigated in any of the previous studies. Thus, we examine the

stability of a surfactant laden falling film down an incline which is coated with a

deformable solid layer. Since, the focus is on the effect of wall deformability on
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Figure 2.1: Schematic of the configuration considered in the present work:

Surfactant-laden Newtonian liquid film falling down an inclined plane coated with

a soft, deformable neo-Hookean solid layer.

Marangoni mode, we analyze the problem in creeping flow limit, thus, suppressing

the Yih type GL mode instability. The rest of the chapter is arranged as follows:

the problem description including the governing equations, linear stability analysis

is given in Section 2.2. In Section 2.3, a low-wavenumber analysis is carried out

to show the effect of the deformable solid layer on both GL and Marangoni modes

with more attention on Marangoni mode. The low-wavenumber results are contin-

ued to finite and arbitrary wavenumbers in Section 2.4 and finally, key points are

summarized in Section 2.5.

2.2 Problem formulation

2.2.1 Governing equations for fluid and solid

We consider the gravity-driven flow of a surfactant-laden Newtonian liquid layer

(or film) down an inclined plane which is coated with an incompressible and im-

permeable deformable solid layer and is inclined at an angle θ with the horizontal

surface (refer Figure 2.1). The solid (thickness HR, shear modulus Es, and density

ρ) is strongly attached to the rigid inclined plane at z∗ = (1+H)R. The liquid layer

(viscosity µ , and density ρ) is in contact with a passive gas and occupies a region
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0 ≤ z∗ ≤ R in the undisturbed basic state.

The free surface of the film (exposed to a passive gas) is contaminated with a

monolayer of insoluble surfactant with surface concentration Γ∗(x∗, t∗). The sur-

factant molecules get convected and diffused over the free-surface but not into the

bulk of the fluid, to locally alter the surface tension γ∗. We assume the densities

of solid and liquid layers to be equal because the densities of commonly used elas-

tomers are usually similar to those of common liquids. In the undisturbed steady

state configuration, the gas-liquid (GL) interface remains flat with uniform surfac-

tant concentration equal to Γ∗
0 and a corresponding unperturbed surface tension as

γ∗0 . The liquid layer is governed by conservation of mass (continuity) and momen-

tum (Navier–Stokes) equations:

∇∇∇∗ ·v∗ = 0 , (2.1)

ρ[∂ ∗
t v∗+v∗ ·∇∇∇∗v∗] = ∇∇∇∗ ·T∗+ρg . (2.2)

where, v∗ and p∗ are the velocity and pressure fields in the liquid layer; T∗=−p∗I+
µ[∇∇∇∗v∗+(∇∇∇∗v∗)T ] is the total stress tensor for the liquid layer.

In perturbed state, at GL interface z∗ = h∗(x∗, t∗), the Marangoni stress induced

by transportation of surfactant is balanced by hydrodynamic stress of the liquid

layer and is given as:

n ·T∗ = ∇∇∇s
∗γ∗− γ∗n(∇∇∇∗ ·n) (2.3)

where, n is the unit normal vector,and ∇∇∇s
∗ = ∇∇∇∗−n(n ·∇∇∇∗) is the component of

gradient operator in the local plane of the interface. The convection-diffusion equa-

tion for surfactant transport Halpern & Frenkel (2003); Stone (1990) at GL interface

is given as:

∂Γ∗

∂ t∗
+∇∇∇s

∗ · (Γ∗vs
∗)+Γ∗(∇∇∇s

∗ ·n)(v∗ ·n) = Ds∇∇∇2
s
∗
Γ∗ (2.4)

where, vs
∗ is the component of velocity vector in the interface defined as: v∗ =

vs
∗+(v∗ ·n)n, and Ds is the surface diffusivity of surfactant. For small changes in

surfactant concentration about the mean value Γ∗
0, the surface tension, and surfac-

tant concentration are related as: γ∗ = γ∗0 −E(Γ∗−Γ∗
0), where, E refers to surface

elasticity defined as E = −(∂σ∗/∂Γ∗)Γ0 > 0. Finally, the kinematic condition at

GL interface is: ∂ ∗
t h∗+ v∗x∂ ∗

x h∗ = v∗z
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We have used Eulerian (spatial) coordinates (x∗ = x∗,y∗,z∗) to describe the fluid

model. Unlike the velocity distribution in case of liquid layer, the spatial variations

of material points are of more importance in solid, and therefore, it is convenient

to employ the Lagrangian approach to define the solid model and state the cor-

responding governing equations. The position vectors of material particles in the

reference (or undeformed) state, X∗ = (X∗,Y ∗,Z∗) are considered the independent

variables. Thus, the spatial coordinates (x∗,y∗,z∗) used for liquid coincides with

the reference coordinates (X∗,Y ∗,Z∗) in the unstressed configuration for the de-

formable solid. In the deformed state of solid, the spatial positions of the material

particles w∗ = (w∗
X ,w

∗
Y ,w

∗
Z), are expressed in this study as a function of those of the

reference configuration: w∗(X∗). The deformable solid layer is modeled as an in-

compressible neo-Hookean elastic solid and the mass and momentum conservation

equations for the solid layer are given as (Holzapfel 2000; Malvern 1969):

det(F) = 1 , (2.5)

ρ
[

∂ 2w∗

∂ t∗2

]
X∗

= ∇∗
X∗ ·P∗+ρg . (2.6)

In the above equations, F = ∇∗
X∗w∗ is the deformation gradient tensor, and P∗ is

the first Piola-Kirchhoff stress tensor. Here, the subscript X∗ indicates the gradient

with respect to the reference coordinates. The first Piola-Kirchhoff stress tensor is

related to Cauchy stress tensor by P∗ = F−1 ·σ∗. The Cauchy stress tensor, σσσ∗, for

the neo-Hookean elastic solid is (Beatty & Zhou 1991; Destrade & Saccocmandi

2004; Fosdick & Yu 1996; Hayes & Saccocmandi 2002):

σσσ∗ =−p∗s I+Es(F ·FT − I) (2.7)

where, Es is the shear modulus of deformable solid layer and p∗s is the pressure in

the neo-Hookean solid.

At the liquid-solid (LS) interface, the velocities and stresses in liquid and the

solid layer are continuous.

v∗ =

(
∂w∗

∂ t∗

)
X∗

, (2.8)

n ·T∗+ γ∗lsn(∇∇∇
∗ ·n) = n ·σσσ∗ , (2.9)

where, γ∗ls is the LS interfacial tension. A dot product of stress balance equation

(2.9) with normal vector n gives normal stress balance and dot product with tangent
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vector t gives tangential stress balance. Zero deformation conditions prevail at z∗ =

(1+H)R, as the flexible solid is strongly bonded to the rigid inclined plane: w∗ =

X∗.

The above system of equations is non-dimensionalized by using the following

scales: R for lengths and displacements, unperturbed free surface velocity V =
ρgR2 sinθ

2µ for velocities, µV/R for stresses and pressure, Γ∗
0 for surfactant concen-

tration, and γ∗0 for surface tension. In the unperturbed steady state, the GL and LS

interfaces remain flat. The non-dimensional velocity profile and pressure distribu-

tion in the liquid layer are given as:

vx(z) =
(
1− z2) , vz = 0, p(z) = (2cotθ)z , (2.10)

where, overbar denotes various base-state physical quantities. The fluid base flow

exerts shear stresses at the LS interface resulting in an unidirectional deformation

in the solid layer, thereby creating a non-zero displacement in x-direction. The

deformation and pressure fields for solid layer are given by:

wX = X +G[(1+H)2 −Z2], wZ = Z, ps = (2cotθ)Z . (2.11)

In above equations, G = µV/EsR is the non-dimensional solid deformability pa-

rameter representing the ratio of viscous shear stresses in liquid to elastic stresses

in the solid layer. G → 0 represents the limit of a rigid surface.

2.2.2 Linear stability governing equations

A standard temporal linear stability analysis is performed in order to determine

the stability of the present two layered configuration. All the dynamical quanti-

ties (velocities, displacement, pressure etc.) are perturbed about the base-state and

are substituted in the governing equations and interfacial conditions. The resulting

equations are then linearized to obtain a set of equations in terms of perturbation

quantities. We consider two-dimensional perturbations (in the x and z directions)

which are expanded in the form of Fourier modes,

f
′
= f̃ (z)exp[ik(x− ct)] , (2.12)

where, f
′

is the small perturbation of any dynamical variable from its mean basic

value, k is the wavenumber of perturbations, c is the complex wave speed and f̃ (z) is
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the complex amplitude function of the disturbance. For the deformable solid, x and

z are replaced by X and Z, respectively. If ci > 0 (or ci < 0), flow will be unstable

(or stable). When the above form of perturbations is substituted in linearized gov-

erning equations and interfacial conditions, a set of equations is obtained in terms

of amplitude functions and wave speed, c, that govern the stability of the system.

The non-dimensional governing stability equations for liquid layer are:

dṽz

dz
+ ikṽx = 0 , (2.13)

Re [ik(vx − c)ṽx +(dzvx)ṽz] = −ikp̃+
[

d2

dz2 − k2
]

ṽx , (2.14)

Re [ik(vx − c)ṽz] = −dp̃
dz

+

[
d2

dz2 − k2
]

ṽz . (2.15)

The linearized equations for the neo-Hookean elastic solid are:

dw̃Z

dZ
+ ikw̃X − (dZwX) ikw̃Z = 0 , (2.16)

−ikp̃s +(2cotθ)ikw̃Z +
1
G

[
−k2 +

d2

dZ2

]
w̃X =−k2c2Rew̃X , (2.17)

(dZwX) ikp̃s − (2cotθ)ikw̃X − d p̃s

dZ
+

1
G

[
−k2 +

d2

dZ2

]
w̃Z =−k2c2Rew̃Z . (2.18)

In above equations, Re = ρV R
µ is the Reynolds number, and G = µV/EsR is the

non-dimensional solid deformability parameter defined above.

The interfacial conditions at GL interface are obtained by Taylor-expanding the

fluid dynamical variables about the base state. The linearized kinematic condition,

surfactant transport equation and the stress balances at GL interface are:

ik[vx(z = 0)− c]h̃ = ṽz(z = 0) , (2.19)

[vx(z = 0)− c− ikPeinv]Γ̃ = −ṽx(z = 0) , (2.20)

−2h̃+dzṽx + ikṽz = ikMaΣglΓ̃, (2.21)

−p̃− (2cotθ)h̃+2
dṽz

dz
= k2Σgl h̃. (2.22)

where Γ̃ is the amplitude of disturbance of surfactant concentration, Ma = EΓ∗
0/γ∗0

is the Marangoni number, Peinv = Ds/V R is the inverse of Peclet number, and Σgl =

γ∗0/µV is the nondimensional free-surface tension parameter.
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While the Eulerian description is used for the liquid layer, a Lagrangian frame-

work is used for expressing the dynamical variables in the solid layer. Thus, the

treatment of interfacial conditions at perturbed LS interface will be slightly differ-

ent compared to conditions at GL interface. The conditions at LS interface involve

both Eulerian (in liquid layer) and Lagrangian (in solid layer) variables in contrast

to conditions at GL interface where we have to deal only with Eulerian variables (in

liquids). In Lagrangian description, a material particle in deformed state is identi-

fied on the basis of its position in unstressed reference configuration. This is also

mentioned above in Section 2.2.1 where we said that the independent variables for

the solid are the coordinates X = (X ,Y,Z) of material particles in the reference (i.e.

unstressed) configuration. Thus, a material point P0 in solid layer at LS interface

in unstressed configuration has a Lagrangian label as (X ,Z = 1). The label for this

material point remains unchanged in stressed base state configuration or perturbed

state configuration. Since, the independent variable labels are not changed, a Taylor

series expansion about the unperturbed interface is not required for solid variables.

On the other hand, Taylor expansion about the mean interface position is used for

the Eulerian liquid variables in a similar fashion as followed at GL interface. The

fundamental and mathematical details of the above process is explained in Gaurav

& Shankar (2010b). The linearized conditions at LS interface are:

ṽz = −ikcw̃Z , (2.23)

ṽx +(dzvx)z=1w̃Z = −ikcw̃X , (2.24)

dṽx

dz
+ ikṽz +(d2

z vx)w̃Z =
1
G

{
(dZwX)

dw̃Z

dZ
+

dw̃X

dZ
+ ikw̃Z − (dZwX)

2ikw̃Z

}
,(2.25)

−p̃+2
dṽz

dz
+ k2Σlsw̃Z = −p̃s +

2
G

dw̃Z

dZ
+(2cotθ)w̃Z . (2.26)

where, Σls = γ∗ls/µV is the nondimensional LS interfacial tension parameter. Fi-

nally, the boundary conditions at the rigid surface (z = 1+H) are:

w̃Z = 0, w̃X = 0. (2.27)

Equations (2.13)-(2.27) govern the linear stability of the two-layered system un-

der consideration. A pseudo-spectral collocation method (Boyd 1999; Weideman
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& Reddy 2000) and a numerical shooting procedure (Drazin & Reid 1981) is em-

ployed to evaluate the eigenvalues and neutral stability boundaries numerically. The

numerical shooting procedure consists of determining linearly independent solu-

tions of governing differential equations in liquid and solid layers by using a Runge-

Kutta integrator. The numerical representation of the linearly independent solutions

thus obtained are substituted in interfacial and boundary conditions to set up the

characteristic matrix. The determinant of this matrix was set to zero to find out the

complex wavespeed c. The characteristic equation is a nonlinear equation in c and a

Newton-Raphson iterative procedure is used to solve the characteristic equation for

c. More details of the exact procedure are explained in Shankar & Kumar (2004).

Since, a Newton-Raphson method is used in numerical shooting procedure, it re-

quires a good initial guess for converging to desired eigenvalue. The initial guess

is determined using the pseudo-spectral collocation method. Briefly, the unknown

variables (ṽz, ṽx, w̃X etc.) are represented as a truncated series of N Chebyshev poly-

nomials and these expansions are substituted in the linearized governing equations

for liquid and solid layer. The resulting equations are arranged on N − 8 Gauss-

Lobatto grid points and set to zero. The remaining 8 equations are generated using

the linearized boundary and interfacial conditions. This yields a matrix eigen-value

problem for eigenvalue c, which are obtained using the “polyeig” eigen-value solver

in MATLAB. The details of implementation procedure are given in Weideman &

Reddy (2000). We have verified that the eigenvalue c obtained from the spectral

collocation method and numerical shooting procedure matches very well with the

asymptotic solutions given in Section 2.3. To further check the validity of our nu-

merical procedure, we have reproduced the results for stability of a clean film flow-

ing down a neo-Hookean flexible inclined surface (Gaurav & Shankar 2007) and

for stability of contaminated liquid film flowing down a rigid inclined plane (Blyth

& Pozrikidis 2004a).

The linear stability of the flow configuration under consideration is governed by

eight nondimensional parameters, namely, Re,Ma,θ ,Σgl,Peinv,H,G and Σls. Note

that solid thickness H, wall deformability parameter G, and liquid-solid interfacial

tension Σls are the additional nondimensional parameters that appear in the problem

because of the presence of the soft solid layer. We fix Σls = 0 in this work because

its effect on LS and GL modes is known (Gaurav & Shankar 2007; Gkanis & Kumar
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2006) and our results indicate that it does not affect the stability of Marangoni mode.

As mentioned in Section 2.1, we investigate results in creeping flow limit (Re →
0) to suppress GL mode instability and focus on the effect of deformable solid

coating (i.e effect of variation of G and H) on the stability of Marangoni mode. We

fix Re identically equal to zero to recover creeping flow limit. In the scheme of

nondimensionalization used in the present work, Re is identically equal to zero only

when the bulk flow or the base velocity is zero. However, in this no flow situation,

the Marangoni effect will be absent because a redistribution of surfactant will not

be possible in absence of bulk fluid velocity. Thus, when we fix Re = 0 in this work,

it simply refers to low-Re number creeping flow limit where the the inertial terms in

the governing equations remain negligible in comparison to the contribution made

by viscous and pressure terms. This does not necessarily means that the bulk flow

velocity is identically zero, but it is sufficiently small such that the Re remains

small. As an example, for flow of a viscous liquid film (with µ ∼ 1Pa s and ρ ∼
103kg/m3) of thickness R ∼ 1mm, the free surface velocity (characteristic velocity

used for nondimensionalization) V ∼ ρgR2/µ ∼ 0.01m/s. This corresponds to a

Re ∼ 0.01 and for such small values of Re, the contribution of inertial terms will

be negligible in comparison with the viscous terms and we expect to recover these

results in the limit of low Re by putting Re identically equal to zero. We have

indeed verified this by generating results at Re = 0.01 and 0.1 and found that the

results for Re = 0 are indistinguishable from results at Re = 0.01 or 0.1 (results not

shown). The characteristic equation is quartic in c for Re = 0. Out of the four roots

of this quartic characteristic equation, one corresponds to the GL interfacial mode,

one to surfactant-induced Marangoni mode, and remaining two roots correspond

to LS interfacial modes. Using our spectral code in low wavenumber limit (k ∼
0.01− 0.1), we observed that the root corresponding to Marangoni mode remains

stable in the rigid limit (G → 0) and for low values of solid deformability parameter.

However, it becomes unstable when nondimensional wall deformability parameter

G increases above a critical value. The imaginary part of wave speed varies with k as

ci ∝ k3 for k < 0.1. This prompted us to investigate the effect of wall deformability

on Marangoni mode in low wavenumber limit and hence, we present the low-k

asymptotic analysis in the following section.
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2.3 Low Wavenumber analysis

The long-wave analysis will be valid, in general, for k � 1/(1+H), and this implies

k � 1 for H ∼ O(1). All the nondimensional parameters are assumed to be O(1)

quantities which imply that they do not scale in any fashion with k. In the low-

wavenumber limit, the complex wave speed is expanded in an asymptotic series in

k: c = c(0)+kc(1)+k2c(2)+k3c(3)+ · · · , and the low-k scaling of different variables

are determined. For example, if we set ṽz ∼ O(1) then continuity equation (Eq.

(2.13)) and x-momentum (Eq. (2.14)), respectively, imply that ṽx ∼ O(1/k) and

p̃ ∼ O(1/k2). Thus, the velocities and the pressure in the liquid layer are expanded

as:

ṽz = ṽ(0)z + kṽ(1)z + k2ṽ(2)z + k3ṽ(3)z + · · · , (2.28a)

ṽx =
1
k
(ṽ(0)x + kṽ(1)x + k2ṽ(2)z + k3ṽ(3)z + · · ·), (2.28b)

p̃ =
1
k2 (p̃(0)+ kp̃(1)+ k2 p̃(2)+ k3 p̃(3)+ · · ·). (2.28c)

Similarly, the Fourier coefficient of the GL interface deflection h̃ ∼ O(1/k)

(from Eq. (2.19)), surfactant surface concentration Γ̃ ∼ O(1/k) (from Eq. (2.20)),

and for solid layer: if w̃Z ∼ O(1) this gives w̃X ∼ O(1/k), p̃s ∼ O(1/k2) from

governing equations (Eqs. (2.16) and (2.18)), respectively. All these variables are

expanded according to their respective scalings and these expanded variables are

substituted in the governing equations (Eqs. (2.13)-(2.18) ) and boundary condi-

tions (Eqs. (2.19)-(2.27)). The resulting equations are solved at each order in k. At

leading order (i.e. O(1)), the governing equation for the liquid layer is:

d4
z ṽ(0)z = 0 . (2.29)

and for solid layer is:

d4
Zw̃(0)

Z = 0 . (2.30)

The conditions at GL interface (z = 0) are:

dzṽ
(0)
x −2h̃(0) = 0, p̃(0) = 0. (2.31a)

i[vx − c(0)]h̃(0) = ṽ(0)z , [vx − c(0)]Γ̃(0) =−ṽ(0)x . (2.31b)
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where, Eqs. (2.31a) represent tangential and normal stress balances, respectively,

and Eqs. (2.31b) refer to kinematic condition and surfactant transport equation. The

leading order conditions at LS interface (z = 1) are:

ṽ(0)z = 0, ṽ(0)x = 0, (2.32a)

dzṽ
(0)
x =

1
G

dZw̃(0)
X , p̃(0) = p̃s

(0). (2.32b)

Eqs. (2.32a) represent velocity continuity conditions, and Eqs. (2.32b) represent

stress continuity at LS interface. Finally, the conditions at rigid surface (z = 1+H)

are: w̃(0)
Z = 0, w̃(0)

X = 0. The velocity field for the liquid layer at leading order can

be obtained by integrating Eq. (2.29) and using conditions (2.31a), and (2.32a):

ṽ(0)z =−i(z−1)2h̃(0). (2.33)

The leading order liquid velocity field in the above Eq. (2.33) is substituted in

kinematic condition and surfactant transport equation (Eqs. (2.31b)) to obtain the

leading order wave speed for GL mode, c(0)gl , and Γ̃(0):

c(0)gl = 2, Γ̃(0) =−2h̃(0) . (2.34)

Note that the GL mode is induced by interface fluctuation, h̃(0), which in turn causes

a perturbation in surfactant concentration at this order as shown in Eq. (2.34) Wei

(2005a). In addition to the GL interfacial mode, there exists another mode which is

triggered by perturbation in surfactant concentration (Γ̃(0) 6= 0) without necessarily

having an interfacial deflection (h̃(0) = 0). The leading order wave speed for this

mode is determined by the leading order surfactant transport (second equation of

Eq. (2.31b)) and by fixing h̃(0) = 0:

c(0)Ma = vx |z=0= 1. (2.35)

This mode is referred as Marangoni mode and our objective is to investigate the ef-

fect of the presence of deformable solid layer on this surfactant-induced Marangoni

mode. Note that the leading order wave speed for both GL and Marangoni modes

are obtained by using the governing equations for liquid layer, stress conditions at

GL interface, kinematic condition (for GL mode), surfactant transport equation (for

Marangoni mode), and leading order velocity continuity conditions at deformable
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LS interface. However, the velocities at LS interface satisfies no slip conditions as

in the case of rigid solid (refer Eqs. (2.32a)). Thus, solid deformations do not enter

into the calculations of c(0) and hence, the leading order wave speed for both the

modes remain identical to the case of flow past rigid incline. Further, as c(0) is real,

we cannot determine the stability of the system at this order and it is required to per-

form calculations for next order in k. The leading order deformation field for solid

layer can be obtained by integrating governing equation (2.30) along with stress

continuity conditions Eq. (2.32b) and no deformation conditions at rigid surface

(w̃(0)
Z = 0, w̃(0)

X = 0):

w̃(0)
Z =−iG(Z −1−H)2h̃(0). (2.36)

It is important to note that h̃(0) 6= 0 for GL mode, thus, Eq. (2.36) shows that

leading order deformation field is generated in solid layer due to liquid velocity field

at this order. This is better understood if we refer to leading order stress continuity

conditions at LS interface (Eq. (2.32b)). The stress conditions show that the leading

order velocity field exerts a shear stress on solid layer at this order which in turn

creates leading order deformations in the solid layer. Our subsequent analysis shows

that these leading order solid deformations affect the first correction to velocity field

through velocity continuity conditions at O(k). Hence, we expect the effect of solid

layer to appear at O(k) for GL interfacial mode. In contrast to this, h̃(0) = 0, and

Γ̃(0) 6= 0 for Marangoni mode. Thus, Eqs. (2.33) and (2.36), respectively show the

absence of velocity field in liquid layer and deformation field in the solid layer. In

the following, we show calculations at higher orders to determine stability of both

GL and Marangoni modes.

At O(k), the governing equations for liquid and solid layers are:

d4
z ṽ(1)z = iRe[(vx − c(0))d2

z ṽ(0)z − (d2
z vx)ṽ

(0)
z ] , (2.37a)

d4
Zw̃(1)

Z + iG(4Zd3
Zw̃(0)

Z +6d2
Zw̃(0)

Z ) = 0 . (2.37b)

The kinematic condition, surfactant transport equation, and stress conditions at GL



40 Surfactant-laden film flow down a flexible inclined plane in creeping flow limit

interface are:

i(vx − c(0))h̃(1)− ic(1)h̃(0) = ṽ(1)z , (2.38a)

(vx − c(0))Γ̃(1) = (c(1)+ iPeinv)Γ̃(0)− ṽ(1)x , (2.38b)

dzṽ
(1)
x −2h̃(1) = iMaΣglΓ̃(0) , (2.38c)

p̃(1)+(2cotθ)h̃(0) = 0 . (2.38d)

and the conditions at LS interface at O(k) are:

ṽ(1)z = −ic(0)w̃(0)
Z , (2.39a)

ṽ(1)x = 2w̃(0)
Z − ic(0)w̃(0)

X , , (2.39b)

dzṽ
(1)
x =

1
G

dZw̃(1)
X −2dZw̃(0)

Z +2w̃(0)
Z , (2.39c)

p̃(1) = p̃(1)s . (2.39d)

The boundary conditions at z = 1 + H are: w̃(1)
Z = 0, w̃(1)

X = 0. The solution to

Eq.(2.37a) for ṽ(1)z can be obtained by using Eqs. (2.38c) - (2.39b):

ṽ(1)z = (z−1)
[

Re
60

(
z3 −3z2 +3z+9

)
−2GH2 − cotθ

3
(
z2 + z−2

)]
h̃(0)

−c(0)
[

Re
12

(
z4 −4z3 +8z−5

)
+GH (2+H −2z)

]
h̃(0)

+
1
2
(z−1)2

(
MaΣglΓ̃(0)−2ih̃(1)

)
. (2.40)

2.3.1 The gas-liquid mode

The first correction to the complex wave speed for GL mode, c(1)gl is calculated

from O(k) kinematic condition Eq.(2.38a) and is given as:

c(1)gl = i
[

8
15

Re− 2
3

cotθ −4GH −MaΣgl

]
. (2.41)

The effect of presence of deformable solid layer on a clean GL interface in low-

k limit has been discussed in detail by Shankar & Sahu (2006) and the underlined

terms in the expression of c(1)gl are identical to the result obtained by them. The term

proportional to GH represents the soft solid contribution and the above expression

for c(1)gl shows that the effect of deformable solid layer is stabilizing for GL mode.

The effect of presence of surfactant on GL interface stability in long-wave limit has
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been studied by Blyth & Pozrikidis (2004a). In the above expression of c(1)gl , the last

term proportional to Ma shows that the effect of adding a monolayer of surfactant

is stabilizing for GL interfacial mode in agreement with previous studies (Blyth &

Pozrikidis 2004a; Wei 2005a). While these results were already reported in separate

studies, we present it here for the sake of completeness of the problem.

2.3.2 The surfactant/Marangoni mode

The interface deflection at leading order h̃(0) = 0 and the leading order wave

speed c(0)Ma = vx |z=0= 1 for Marangoni mode. Thus, Eq. (2.38a) implies that

ṽ(1)z |z=0= 0. Substituting this condition in the expression of ṽ(1)z given in Eq. (2.40)

yields:

MaΣglΓ̃(0) = 2ih̃(1). (2.42)

The above condition implies that velocity field is zero at this order for Marangoni

mode and the leading order concentration fluctuation has created a nonzero surface

deflection h̃(1) at O(k). Under this no flow situation at O(k), the surfactant transport

equation (2.38b) gives the first correction to wave speed as:

c(1)Ma =−iPeinv. (2.43)

The first correction to wave speed shows that the surfactant diffusivity has a sta-

bilizing effect on Marangoni mode. However, the effect of surfactant diffusion is

usually neglected because of low values of diffusivity coefficient. Thus, Peinv is

taken as zero in several earlier studies (Gao & Lu 2007; Halpern & Frenkel 2003;

Samanta 2014; Wei 2005a), and the Marangoni mode remains neutrally stable at

this order. While we do not take Peinv = 0 in presenting the analysis, we will show

it later that for realistic estimates of Peinv, the effect of surfactant diffusivity usually

remains insignificant.

More importantly, we carry out further calculations at higher orders in k to inves-

tigate the destabilization of Marangoni mode due to wall deformability as reported

in previous section. Since flow in liquid layer is absent at this order (ṽ(1)z = 0, ṽ(1)x =

0, p̃(1)= 0), the governing equation for solid (Eq. (2.37b)), and boundary conditions

(Eq. (2.32b)) and no deformation conditions at rigid surface are all homogeneous,

thus leading to no deformations in the solid layer (w̃(1)
Z = w̃(1)

X = 0). Considering no
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deformations in solid and no flow in liquid until O(k), the governing equations for

liquid and solid layer at O(k2) are:

d4
z ṽ(2)z = 0, d4

z w̃(2)
Z = 0. (2.44)

The conditions at GL interface are:

i(vx − c(0)Ma )h̃(2)− ic(1)Ma h̃(1) = ṽ(2)z , (2.45a)

(vx − c(0)Ma )Γ̃(2)− (c(1)Ma + iPeinv)Γ̃(1)− c(2)Ma Γ̃(0) = −ṽ(2)x , (2.45b)

dzṽ
(2)
x −2h̃(2) = iMaΣglΓ̃(1) , (2.45c)

p̃(2)+(2cotθ)h̃(1) = 0 . (2.45d)

At LS interface, we have:

ṽ(2)z = 0 , (2.46a)

ṽ(2)x = 0 , (2.46b)

dzṽ
(2)
x =

1
G

dZw̃(2)
X , (2.46c)

p̃(2) = p̃s
(2) . (2.46d)

and finally no deformation conditions at rigid surface:

w̃(2)
Z = 0, w̃(2)

X = 0. (2.47)

The second correction to the liquid velocity field is obtained by integrating the first

equation in (2.44) and using interfacial conditions (2.45c)-(2.46b), along with kine-

matic condition (2.45a) to give:

ṽ(2)z =
i
6

MaΣgl(z−1)2(3Peinv + zcotθ)Γ̃(0). (2.48)

The second correction to the wave speed c(2) is calculated using Eq. (2.45b),

c(2)Ma = MaΣgl

(
Peinv −

1
6

cotθ
)
, (2.49)

The above expression shows that c(2)Ma is real and does not contribute in determining

the stability of Marangoni mode. Further, the effect of solid layer does not appear

in the expression of c(2)Ma which is expected as no solid deformations exist up to O(k)

for Marangoni mode. However, since velocity field exists at O(k2), it will exert
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stresses at LS interface (refer Eqs. (2.46c) and (2.46d)) which in turn will cause

deformations in the solid layer. Thus, we expect the solid contribution to occur in

next order calculations. The governing equation for solid (second Eq. in (2.44)) is

solved using Eqs. (2.46c)-(2.47) and is given as:

w̃(2)
Z =

i
6

GMaΣgl(Z −1−H)2 [3Peinv +(Z +2H)cotθ ] Γ̃(0). (2.50)

The liquid governing equation at next higher order is:

d4
z ṽ(3)z = iRe[−(d2

z vx)ṽ
(2)
z ] . (2.51)

The conditions at GL interface are:

i[(vx − c(0)Ma )h̃(3)− c(1)Ma h̃(2)− c(2)Ma h̃(1)] = ṽ(3)z , (2.52a)

(vx − c(0)Ma )Γ̃(3)− (c(1)Ma + iPeinv)Γ̃(2)− c(2)Ma Γ̃(1)− c(3)Ma Γ̃(0) = −ṽ(3)x , (2.52b)

dzṽ
(3)
x −2h̃(3) = iMaΣglΓ̃(2) , (2.52c)

p̃(3)+(2cotθ)h̃(2) = 0 . (2.52d)

and at liquid-solid interface, z = 1:

ṽ(3)z = −ic(0)Ma w̃(2)
Z , (2.53a)

ṽ(3)x = 2w̃(2)
Z − ic(0)Ma w̃(2)

X . (2.53b)

The governing equation for liquid layer Eq. (2.51) is solved along with interfa-

cial conditions at GL interface, (2.52c) and (2.52d), and conditions at LS interface,

(2.53a) and (2.53b). Note that the solid contribution enters into the velocity field

via the velocity continuity conditions at LS interface (Eqs. (2.53a) and (2.53b)). On

using the kinematic condition (Eq. (2.52a)), the third correction to velocity in liquid

layer is given as:

ṽ(3)z = f1 + f2 + f3. (2.54)

where

f1 =
ReMaΣgl

2520

[(
2z6 −7z4 +16z−11

)
cotθ +21Peinv

(
2z4 −5z3 +7z−4

)]
zΓ̃(0) ,

f2 =
MaΣglGH

6
{[

2(H2 −H −1)z+3H +2
]

cotθ +3Peinv(Hz−2z+2)
}

zΓ̃(0) ,

f3 =
MaΣgl(z−1)2

6

[
izΓ̃(1)+

(
1
2

MaΣgl +Peinv(z−2)− 2
3

zcotθ
)]

Γ̃(0) cotθ

+
MaΣgl(z−1)2Peinv

2

[
iΓ̃(1)+(Peinv −MaΣgl)Γ̃(0)

]
.
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Note that both solid thickness (H) and solid deformability parameter (G) occur in

the liquid velocity field at this order which implies that the velocity perturbations get

altered due to the presence of solid layer at this order. Thus, we expect that the c(3)Ma

will also get affected by the wall deformability at this order. The third correction

to wave speed is again determined from surfactant transport equation, Eq. (2.52b),

and is given as:

c(3)Ma = i
MaΣgl

30
{[5(3H +2)cotθ +Peinv]GH +[25cotθ −Re−30(Peinv −MaΣgl)]Peinv}

−i
MaΣgl cotθ

2520
(11Re+420MaΣgl +280cotθ) . (2.55)

The above expression shows that c(3)Ma is purely imaginary and hence contribute in

determining the stability of the system. The solid contribution is represented by

the terms proportional to GH and it is clear from the above equation that these

terms occur with a positive sign which implies that the soft solid has a destabiliz-

ing contribution for Marangoni mode. We set Peinv = 0 in order to suppress the

stabilizing contribution occurring at O(k) (recall c(1)Ma = −iPeinv) and hence, stabil-

ity of Marangoni mode is completely determined by c(3)Ma . If we further set Re =

0,θ = π/4, the expression for c(3)Ma =
iMaΣgl

9

[
−1−1.5MaΣgl +(3GH +4.5GH2)

]
.

This expression clearly shows that the Marangoni mode remains stable for H = 0

and could become unstable by appropriately choosing values of solid thickness H

and solid deformability parameter G. For example, if we set Ma = 1,Σgl = 0.5

and H = 10, Marangoni mode becomes unstable to long-wave perturbations for

G & 0.003, while for H = 5, the value of G above which stable to unstable tran-

sition of Marangoni mode occurs decreases and it becomes unstable for G & 0.01.

Note that c(3)Ma ∝ Ma =
Γ∗

0
σ∗

0

(
−∂σ∗

∂Γ∗

)
Γ∗

0

and we have set Peinv = 0 in writing down the

expression given above. This implies that the instability will be present only if the

species present at the interface is a surfactant whose spatial variations in concen-

tration will cause a gradient in surface tension and hence results in the generation

of Marangoni stresses. This is in contrast to the observation made by Pereira &

Kalliadasis (2008) for liquid film flow down a rigid inclined wall. They pointed

out the existence of an additional normal mode due to the presence of any species

at the interface and not necessarily a surfactant. They put forward this argument

because the growth rate was found to be proportional to Peinv at O(k) and was not

related to Ma at this order. Recall c(1)Ma = −iPeinv in our analysis as well, however,
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for Peinv = 0, while this contribution at O(k) is absent, a contribution at higher order

in k is present which is proportional to Ma and could become unstable because of

the presence of a deformable liquid-solid interface.

The above analysis clearly shows that the instability of Marangoni mode due to

wall deformability occurs at O(k3) and thus growth rate ∼ kci ∼O(k4). On the other

hand, the stabilizing contribution proportional to Peinv occurs at O(k) with decay

rates ∼ O(k2). We fix Peinv = 0 to suppress this stabilizing contribution and focus on

the estimates of growth rate of Marangoni mode instability triggered because of the

presence of soft solid layer. If we take H = 5,G = 0.05,Re = 0,θ = π/4,Ma = 1,

and Σgl = 0.5, the above equation gives c(3)Ma = 0.25i ∼ O(0.1). The non-dimensional

growth rate kci ∼ k4c(3)Ma ∼ 10−9 for k = 0.01 and this contribution is destabilizing

due to presence of soft solid layer. Note that if H = 0 and/or G = 0 with all other

parameters kept at the same value, c(3)Ma = −0.09i which is negative and hence sta-

bilizing in the rigid limit. The unstable growth rates obtained here in low-k limit

are significantly smaller than the unstable growth rates observed for Yih type free-

surface mode for which the low-k instability is typically observed at O(k) (with

growth rate ∼ O(k2)) (Yih 1963, 1967). However, note that inertia is always re-

quired to excite Yih’s interfacial mode. In contrast, the Marangoni mode becomes

unstable due to presence of deformable wall at Re = 0. Further, it is the maximum

growth rate that will ultimately dominate the stability of the system. Our numerical

results in Section 2.4 show that the growth rates increase by at least three to four

order of magnitudes depending on the solid thickness and deformability.

Let us now focus our attention on the comparison of stabilizing contribution

of Peinv occurring at O(k) and destabilizing contribution of soft solid at O(k3) for

Marangoni mode. The inverse of Peclet number for film flow considered here

can be estimated as follows: Peinv = Ds/V R ∼ Dsµ
ρgR3 . The typical value of diffu-

sion coefficient lies between Ds ∼ 10−8 − 10−10m2/s depending on the surfactant

molecule and the liquid. If we set ρ ∼ 103kg/m3, g ∼ 10m/s2, R ∼ 10−3m, and

Ds ∼ 10−9m2/s, this gives Peinv ∼ 10−4µ . Thus, Peinv can vary from 10−7 for water

type liquid (µ ∼ 10−3Pa-s) to Peinv ∼ 10−4 for a very viscous liquid of µ ∼ 1Pa-s

(assuming Ds = 10−9 m2/s, even though we expect Ds to decrease with increase in

µ). As noted above, the non-dimensional growth rate corresponding to the destabi-

lizing contribution of the soft solid layer is kci ∼ k4c(3)Ma ∼ 10−9 for k = 0.01 for
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H = 5,G = 0.05,Re = 0,θ = π/4,Ma = 1, and Σgl = 0.5. On the other hand,

the order of decay rate obtained at O(k) calculations due to diffusive effect of

surfactant molecules is ∼ k2Peinv ∼ 10−4Peinv for k ∼ 0.01. Thus, the decay rates

could vary from 10−11 − 10−8 depending on the value of inverse of Peclet num-

ber. This implies that for relatively lower values of Peinv, we expect that the desta-

bilizing contribution due to the presence of soft solid will dominate the stability

of Marangoni mode. On the other hand, for Peinv & 10−4, the destabilizing con-

tribution obtained at O(k3) due to wall deformability could be comparable to the

stabilizing contribution at O(k) and either of the two contributions could dominate

the stability of Marangoni mode depending on the relative magnitudes of Peinv and

soft solid variables (H and G). This will become more clear if we write down the

expression for imaginary part of wave speed in low-k regime: c(i)Ma = kc(1)Ma +k3c(3)Ma =

−ikPeinv +
k3i

2520(−245+420GH +630GH2 +1680Peinv +1260GHPeinv −1260Pe2
inv)

keeping Re = 0,θ = π/4,Ma = 1,Σgl = 0.5. If Peinv = 10−7,H = 5,G = 0.05, and

k = 0.01 this gives c(i)Ma = 2.55×10−7. On the other hand, if Peinv = 10−4 and keep-

ing all other parameters same as above, c(i)Ma = −7.43× 10−7 which implies that

stabilizing contribution due to surfactant diffusivity dominates the destabilization

due to solid layer deformability and hence Marangoni mode remains stable. How-

ever, if we increase solid thickness from H = 5 to H = 10 for Peinv = 10−4, we find

that c(i)Ma = 2.36×10−7 which implies that the soft solid contribution dominates and

Marangoni mode is rendered unstable by wall deformability.

2.4 Results and discussion

The results presented in Section 2.3 demonstrated that the Marangoni mode be-

comes unstable for long-wave perturbations when solid deformability parameter

increases beyond a critical value. Further, inertia is not required to trigger this sur-

factant mode instability. The low-k results for Marangoni mode presented in Sec-

tion 2.3 are continued numerically to finite and arbitrary wavenumbers. Figure 2.2

shows growth rate versus wavenumber plot depicting the effect of increasing solid

deformability parameter (G) on Marangoni mode for Re = 0,H = 5, and Ma = 1.

The Marangoni mode remains stable for all wavenumbers in the rigid limit (G → 0)

and for sufficiently low values of wall deformability parameter. However, when

G increases beyond a critical value, the Marangoni mode becomes unstable in the
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Figure 2.2: Effect of solid layer deformability on Marangoni mode illustrating

destabilization of Marangoni mode on increasing the values of G. Growth-rate vs.

k for Re = 0,H = 5,Ma = 1,Peinv = 0,Σgl = 0.5,Σls = 0,θ = 45◦

low-wavenumber limit and positive growth rates are obtained up to k ∼ O(0.1). The

range of unstable wavenumbers increases with increase in solid deformability pa-

rameter. As noted in Section 2.3, the growth rates remain significantly low (∼ 10−9)

in low-k limit, but are three to four order of magnitudes higher for k ∼ 0.1. Figure

2.2 shows that the maximum growth rate for Marangoni mode is obtained for k∼ 0.1

and this maximum value increases with increase in solid deformability parameter.

The maximum nondimensional growth rate obtained for G ∼ 0.01 is ∼ 10−5 at

k ∼ 0.1. This is still smaller by at least two order of magnitudes, as compared to

the unstable growth rate obtained for Yih’s free surface GL mode. However, the GL

free surface mode becomes unstable in presence of inertia when Reynolds number

increases above a critical value. On the other hand, the Marangoni instability trig-

gered due to wall deformability is present even in the creeping flow limit (Re = 0).

Thus, we expect Marangoni mode to dominate the stability of the system at lower

values of Re for which the GL mode remains stable. We also investigated the effect

of varying wall deformability parameter G on GL interfacial mode and observed

that the GL mode does not become unstable for any value of G. Further, increas-

ing Ma has a stabilizing effect on this GL interfacial mode (numerical results not

shown) which is in agreement with previous studies Blyth & Pozrikidis (2004a).

One of the root corresponding to LS mode becomes unstable in high wavenumber
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Figure 2.3: Neutral stability curves for Re= 0,H = 5,Peinv = 0,Σgl = 0.5,Σls = 0,θ =

45◦

limit for higher values of G ∼ O(1) as has also been observed in previous studies

(Gaurav & Shankar 2007, 2010a). Thus, the flow remains stable in rigid limit and

for lower values of G. However, with an increase in G, the Marangoni mode be-

comes unstable first followed by short wave instability of LS interface at sufficiently

higher values of G.

Figure 2.3 shows the neutral stability diagram demarcating stable and unstable

regions in G vs. k plane for Re = 0, and H = 5 for different values of Marangoni

number. This figure clearly depicts that all three modes (GL, Marangoni, and LS)

remain stable for lower values of G. For Ma = 1, as G increases above the neutral

curve shown by solid line, the perturbations corresponding to Marangoni mode be-

comes unstable in low-k limit and the unstable region extends up to finite wavenum-

bers whose exact value depends on G. The effect of increasing Ma is stabilizing as

shown by shifting of neutral curves upward for values of Ma = 5 and 10. Figure 2.3

also shows the neutral curves corresponding to short-wave instability of LS interface

which occurs due to jump in normal stress in the base state across the liquid-solid

interface (Gkanis & Kumar 2003). We extensively searched the parameter space

(H,G,Ma etc.) and never observed a GL mode instability in creeping flow limit.

The new feature that evolved out of Figure 2.2 and Figure 2.3 is the destabiliza-

tion of Marangoni mode solely due to the presence of deformable solid layer. This

is different from the destabilization of liquid-liquid interface for the case of planar
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two layer channel flow, as observed by Halpern & Frenkel (2003), where a non-zero

interfacial shear in base state must be present to cause destabilization of Marangoni

mode. Halpern & Frenkel (2003) pointed out that the Marangoni mode does not

become unstable for the case of falling film configuration because the GL interface

remains stress-free in the basic state. In this context, Wei (2005a) analyzed the ef-

fect of imposed shear on GL interface and demonstrated that stability of Marangoni

mode for film flows is determined by the direction of imposed shear relative to

the direction in which gravity acts. Marangoni mode becomes unstable when the

imposed shear assists gravity while it remains stable when imposed shear opposes

gravity. In contrast to these studies, the stresses at GL interface in the base state

remain zero in the present work which suggests that the destabilization is triggered

solely due to the alteration of boundary conditions at LS interface.

It is worth to comment at this point regarding the choice of solid model and the

extent to which the above observed destabilization of Marangoni mode due to wall

deformability will depend on the solid model. In the present work, we have used

a neo-Hookean constitutive relation for representing the dynamics of deformable

solid layer. Several earlier studies related to stability of flow past deformable sur-

faces have modeled the soft solid layer using a linear elastic constitutive relation

(Kumaran 2000; Shankar & Kumar 2004; Shankar & Sahu 2006). We have also
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performed some preliminary calculations for a simple linear elastic model which

can be recovered as a special case of neo-Hookean solid model in the limit of

small deformation gradients (Macosko 1994; Malvern 1969). We have observed

that the qualitative prediction of destabilization of Marangoni mode due to wall de-

formability holds for linear elastic solid as well. While there are some quantitative

differences in the predictions based on the two solid models, the critical value of

wall deformability parameter G still remains almost identical for both solid mod-

els. This is shown in Figure 2.4 which presents the neutral stability diagram for

Marangoni mode for both solid models. The neutral curves for two solid models

differ at finite wavenumbers for which the nondimensional wall deformability pa-

rameter G ∼ O(1) or higher. Higher values of G implies more soft solid which

in turn implies that solid can undergo large and finite deformations, and defor-

mation gradients due to the stress exerted by liquid layer. However, linear elastic

model is strictly valid only for small displacement gradients and it is necessary to

use a nonlinear constitutive stress-strain relationship to get an accurate picture of

stability of the system (Gaurav & Shankar 2007, 2010b; Gkanis & Kumar 2003,

2006). The neo-Hookean solid model is a generalization of Hooke’s law valid for

finite displacement gradients, and this generalization results in a nonlinear stress-

deformation relationship (Macosko 1994). This nonlinearity in the constitutive rela-

tion results in several additional coupling terms between the base state deformation

and the perturbation quantities and these additional terms are present in the gov-

erning equations of solid when a neo-Hookean model is used but remain absent

for a linear elastic model (Gaurav & Shankar 2007, 2009, 2010b; Gkanis & Kumar

2003, 2005). These terms become important for higher values of G (for which we

expect large and finite deformation gradients) and thus, we observe the differences

between the solid models at k ∼ O(1) when G becomes an O(1) quantity. Fur-

ther, the neo-Hookean model exhibits a first normal stress difference in base state

which is known to cause a short wave instability of liquid-solid interfacial mode

(Gkanis & Kumar 2003) (Refer the LS mode curves on the top Right side of Figure

2.3). This normal stress difference is absent for linear elastic solid and hence, the

short wave liquid-solid unstable mode is not captured using linear model. Due to

these reasons,we expect the results obtained using neo-Hookean solid model to be

more accurate than predicted using linear model. Other complex nonlinear constitu-
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Re = 0,Peinv = 0,Ma = 1,Σgl = 0.5,Σls = 0,θ = 45◦

tive relations like Mooney Rivlin model are also available for soft solids and these

can also be reduced to the neo-Hookean or linear elastic solid model. We expect

to observe similar destabilization of Marangoni mode using these models as well.

The neo-Hookean model is one of the simplest model which accounts for constitu-

tive nonlinearities and is also shown to a provide a good (if not perfect) fit to the

experimental data on real rubber samples Macosko (1994). Further, recent stud-

ies conducted by Verma & Kumaran (2013b) on flow in flexible microchannel, and

Neelamegam et al. (2014) on viscous flow past soft gels in a parallel plate rheometer

compared experimental results for flow transition with the linear stability calcula-

tions made using neo-Hookean solid model. Both these studies found a reasonably

good agreement between experimental observations and theoretical predictions. In

light of these experimental observation, we believe that neo-Hookean model is an

appropriate and simple to use solid model for capturing the essential physics related

to flow transitions.

Figure 2.5 shows the neutral stability curves for both Marangoni and LS modes

for different values of solid thickness. The short wave LS mode neutral curves

remain unaffected by variation of H which is in agreement with several previous

studies (Gaurav & Shankar 2007; Gkanis & Kumar 2003). In contrast, the neu-

tral curves corresponding to Marangoni mode shifts downwards with increase in

solid thickness. This illustrates that the critical value of G required for triggering
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Marangoni mode instability decreases with increasing H. We further investigated

the effect of variation of solid thickness on the growth rate of unstable Marangoni

mode for a given value of solid deformability parameter. Note that the expres-

sion of c(3)Ma given in Section 2.3 shows that the magnitude of c(3)Ma increases with

increase in both G and H. For example, the expression for third correction to

wave speed when parameter values are set as in Figure 2.5 (except H and G) is

c(3)Ma = i(−0.0972222+ 0.166667GH + 0.25GH2). This expression clearly shows

that the growth rate increases monotonically with increase in H for long-wave per-

turbations. However, the trend for variation of growth rate with solid thickness

is not monotonous when these low-k results are continued to finite wavenumbers.

For example, Figure 2.6(a) shows growth rate vs. wavenumber plot for G = 0.05

for different values of H. If we focus on the maximum growth rate (or most un-

stable mode), we observe that the maximum growth rate first increases when H is

increased from H = 3 to H = 8 and then decreases as solid thickness increases from

H = 10 to H = 20. These data suggest that for a given G, there will be an optimum

solid thickness for which the growth rate for Marangoni mode will be maximum.

In order to further verify this, we constructed several growth rate vs. wavenumber

plots for different values of G and varied solid thickness for each G. The maximum

growth rate, obtained at a given G for different values of H, is plotted against H

as shown in Figure 2.6(b). This figure clearly shows that for a given G, maximum

growth rate first increases to a maximum value with increase in H, then decreases

and finally approaches to a constant value at sufficiently large H. Both the value

of H at which growth rate becomes maximum and H at which it becomes constant

increases with decrease in solid deformability parameter G.

Figure 2.7 shows the effect of inverse of Peclet number (or equivalently, sur-

factant diffusivity) on Marangoni and LS mode neutral stability curves. Recall

that the effect of surfactant diffusivity was found to be stabilizing in low-k limit

(c(1)Ma = −iPeinv). Figure 2.7 demonstrates that the neutral stability curves corre-

sponding to Marangoni mode at Peinv = 0 and Peinv = 10−6 almost overlap each

other for all wavenumbers. As Peinv is increased to 10−5 and 10−4, the Marangoni

mode neutral curves start turning upward showing a strong stabilizing effect on

low-wavenumber perturbations. However, still, the effect on critical value of G re-

quired to cause destabilization of Marangoni mode is marginal. For example, the
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Figure 2.6: Data showing the effect of solid layer thickness on growth rate of

Marangoni mode: Data for G = 0.05,Re = 0,Ma = 1,Peinv = 0,Σgl = 0.5,Σls = 0,
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Figure 2.8: Effect of surface tension (Σgl) on the growth rate of Marangoni mode.

Data for Re = 0,H = 5,G = 0.05,Peinv = 0,Ma = 1,Σls = 0,θ = 45◦

critical G ≈ 0.013 for Peinv = 0 while critical G increases marginally to 0.02 for

Peinv = 10−4. As Peinv is further increased to 10−3, the neutral stability curve forms

a loop and Marangoni mode is unstable with in the region enclosed by this loop.

The area enclosed by such loops decrease with increase in Peinv and finally vanishes

for Peinv & 0.01. Thus, the Marangoni instability induced by solid deformability is

suppressed by strong surfactant diffusion. However, it is important to note that the

results presented for Peinv > 10−4 are certainly not relevant to the case of insoluble

surfactant, in which case, the surfactant diffusivity values are usually small. Higher

values of Peinv could be observed for the case of soluble surfactant (for example refer

Karapetsas & Bontozoglou (2013)) but this is beyond the scope of the present work.

Figure 2.8 shows the growth rate versus wavenumber plot depicting the effect

of increasing surface tension (Σgl) on the Marangoni mode for the parameters Re =

0,H = 5,G = 0.05,Peinv = 0,Ma = 1,Σls = 0,θ = 45◦. The growth rate of unstable

Marangoni mode remains significantly low (∼ 10−9) for low-wavenumber but it

is two to three times higher at order of k(∼ 0.1). The maximum growth rate of

unstable Marangoni mode increases while corresponding wavenumber decreases

with increasing the value of surface tension (Σgl).

Figure 2.9 is plotted between growth rate of Marangoni mode and wavenumber

which shows the effect of angle (θ ) on the stability of Marangoni mode for the data
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Figure 2.9: Effect of inclination of a plane (θ ) on the growth rate of Marangoni

mode. Data for Re = 0,H = 5,G = 0.05,Peinv = 0,Ma = 1,Σgl = 0.5,Σls = 0

Re = 0,H = 5,G = 0.05,Peinv = 0,Ma = 1,Σgl = 0.5,Σls = 0. The growth rate of

unstable Marangoni mode is significantly low for low-wavenumber but it increases

and becomes maximum at order of wavenumber (k ∼ 0.1). The effect of angle (θ )

on the Marangoni mode is stabilizing for low-wavenumber and destabilizing for

finite wavenumber. The maximum positive growth rate of Marangoni mode at or-

der of k(∼ 0.1) increases with increasing the value of angle (θ ) but it decreases

with increasing the angle (θ ) above a critical value. At angle (θ = 90◦), the un-

stable growth rate of Marangoni mode becomes very weak or negligible (≈ 0) for

low-wavenumber but it increases significantly very low in finite wave limit. With

increasing the value of angle (θ ), the value of critical wavenumber at which unstable

Marangoni mode becomes stable also increases.

Figure 2.10 is a neutral stability curve which shows the effect of surface tension

(Σgl) on the Marangoni mode for the data Re = 0,H = 5,Peinv = 0,Ma = 1,Σls =

0,θ = 45◦. The effect of Σgl on the LS mode is not shown here because it has been

investigated in previous studies (Gaurav & Shankar 2007, 2010a). The Marangoni

mode is stable in longwave for a low values of G but transition from stable to unsta-

ble occurs when the values of G increases above a critical value (Gc = 0.009,0.011,

and 0.013 corresponding Σgl = 0.1,0.3, and 0.5). Here, the analytical solution and

numerical solution both produces similar values of critical G for corresponding val-

ues of surface tension (Σgl). The values of critical G increases with increasing the
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Figure 2.10: Neutral stability curves for different values of surface tension (Σgl)solid

thickness. Data for Re = 0,H = 5,Peinv = 0,Ma = 1,Σls = 0,θ = 45◦

values of surface tension at GL interface. If longwave results extend upto finite wave

by using numerical solution then also we find equivalent results and effects. Thus,

the effect of surface tension (Σgl) on the Marangoni mode is stabilizing because crit-

ical value of G increases and unstable G− k region decreases simultaneously with

increasing the values of Σgl.

Figure 2.11 shows effect of angle (θ ) on the the neutral stability curves of

Marangoni mode for the data Re = 0,H = 5,Peinv = 0,Ma = 1,Σgl = 0.5,Σls = 0.

The flow system is stable (or Marangoni mode) for lower values of deformabil-

ity parameter G but becomes unstable at higher values of G. Next, The effect

of angle (θ ) on the Marangoni mode is destabilizing because the critical value

of G decreases with increasing the angle, as a results unstable G − k region in-

creases. This Marangoni mode instability can also be shown by the analytical ex-

pression for low-wavenumber, Gc = (21+28Cotθ)/3570 which gives the value of

Gc = 0.0194,0.0104, and 0.0058 corresponding to the value of θ = 30◦,60◦, and

90◦. Here, it clear that the critical values of deformability parameters decreases

as increasing in angle of inclination of a deformable surface in longwave. If these

longwave results extend upto finite wave numerically then we also find the destabi-

lizing effect of angle but also observe the small increment in the value of Gc. The

results at higher values of wavenumber and G are equivalent to the discussion given

for previous neutral stability curves or figures.
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Figure 2.11: Neutral stability curves for different values of inclination of plane (θ ).

Data for Re = 0,H = 5,Peinv = 0,Ma = 1,Σgl = 0.5,Σls = 0

2.5 Conclusions

The linear stability of a surfactant-laden liquid film flowing down a flexible in-

clined wall is analyzed in the creeping flow limit with a major focus on the role of

wall deformability on the stability behavior of surfactant-induced Marangoni mode.

Both the surfactant-induced Marangoni mode and the gas-liquid interfacial mode

remain stable for film flowing down a rigid inclined wall in the zero Reynolds num-

ber limit. We have demonstrated that the Marangoni mode becomes unstable when

the nondimensional wall deformability parameter G = µV/EsR increases above a

critical value. The critical value of G required for triggering Marangoni mode insta-

bility decreases with increase in solid thickness, while for a given G, there exist an

optimum solid thickness for which the growth rate for unstable Marangoni mode is

maximum. The deformability of solid layer has an additional stabilizing effect on

already stable GL interfacial mode in creeping flow limit. The liquid-solid interface

also becomes unstable for high wavenumber perturbations, but at higher values of G

as compared to the G values required for destabilization of Marangoni mode. Thus,

the Marangoni mode is the most unstable mode in creeping flow limit for a contam-

inated liquid film flowing down a deformable inclined wall. As shown by Blyth &

Pozrikidis (2004a), even though the Marangoni mode remains the dominant mode

for film flow down a rigid inclined wall in zero and low Reynolds number limit,

but it was never observed to become unstable. On the other hand, this mode does
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become unstable on imposing a shear stress at GL interface (Wei 2005a). In con-

trast to these studies, the Marangoni mode instability is observed here solely due to

the presence of a sufficiently deformable wall even when the GL interface remains

stress-free in its basic state.

Finally, we provide some dimensional estimates of parameters for which the

Marangoni instability observed here can be realized in experiments. Since the sur-

factant diffusivity is usually small, we set Peinv = 0. The Marangoni number varies

between O(0.01− 1) for low to moderate values of surfactant concentration and

hence, we fix Ma = 1. For H ∼ 10, G & 0.001 for triggering the Marangoni mode

instability. If we set ρ ∼ 103kg/m3,R ∼ 10−3m and µ ∼ 1 Pa-s, then G & 0.001 im-

plies that shear modulus of solid layer Es . 104 Pa for observing soft solid induced

Marangoni mode instability for surfactant laden film flows down a deformable in-

clined wall.



Chapter 3

Manipulation and control of
instabilities for surfactant-laden
liquid film flowing down an inclined
plane using a deformable solid layer

Abstract

We analyzed the linear stability of surfactant-laden liquid film with free sur-

face flowing down an inclined plane under the action of gravity when the in-

clined plane is coated with a deformable solid layer. For flow past a rigid in-

cline and in presence of inertia, the gas- liquid (GL) interface is prone to a free

surface instability and the presence of surfactant is known to stabilize the free

surface mode when Marangoni number increases above a critical value. The

rigid surface configuration also admits a surfactant induced Marangoni mode

which remains stable for film flows with the free surface. This Marangoni

mode was observed to become unstable for surfactant covered film flow past

flexible inclined plane in creeping flow limit when the wall is made sufficiently

deformable. In view of these observations, we investigate the following two

aspects. First, what is the effect of inertia on Marangoni mode instability in-

duced by wall deformability? Second, and more importantly, whether it is

possible to use a deformable solid coating to obtain stable flow for surfactant

covered film for cases when the Marangoni number is below the critical value

59
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required for stabilization of free surface instability. In order to explore the

first question, we continued the growth rates for Marangoni mode from creep-

ing flow limit to finite Reynolds numbers (Re) and observed that while the

increase in Reynolds number has a small stabilizing effect on growth rates,

the Marangoni mode still remains unstable for finite Reynolds numbers as

long as the wall is sufficiently deformable. The Marangoni mode remains

the dominant mode for zero and small Reynolds numbers until the GL mode

also becomes unstable with an increase in Re. Thus, for a given set of pa-

rameters and beyond a critical Re, there is an exchange of dominant mode

of instability from Marangoni to free surface GL mode. With respect to the

second important aspect, our results clearly demonstrate that for cases when

the stabilizing contribution of surfactant is not sufficient for suppressing GL

mode instability, a deformable solid coating could be employed to suppress

free surface instability without triggering Marangoni or liquid-solid interfa-

cial modes. Specifically, we have shown that for a given solid thickness, as

the shear modulus of the solid layer decreases (i.e. the solid becomes more

deformable) the GL mode instability is suppressed. With further decrease in

shear modulus, the Marangoni and liquid-solid interfacial modes become un-

stable. Thus, there exists a stability window in terms of shear modulus where

the surfactant-laden film flow remains stable even when the Marangoni num-

ber is below the critical value required for free surface instability suppression.

Further, when the Marangoni number is greater than the critical value so that

the GL mode remains stable in rigid limit or with the deformable wall, the

increase in wall deformability or solid thickness triggers Marangoni mode in-

stability and thus, renders a stable flow configuration into an unstable one.

Thus, we show that the soft solid layer can be used to manipulate and control

the stability of surfactant-laden film flows.

3.1 Introduction

Liquid film flow with free surface occurs in various engineering applications such

as coating flows (Wenstein & Ruschak 2004), distillation units, condensers, falling

film reactors, microfluidics etc.(Craster & Matar 2009; Squires & Quake 2005),

as well as in biological systems such as pulmonary fluid mechanics (Grotberg &

Jensen 2004; Halpern & Grotberg 1993). It is well known that the liquid film
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flowing down a rigid inclined plane undergoes a free surface instability, and sub-

sequently displays a variety of complex spatiotemporal wave patterns (Chang &

Demekhin 2002). The occurrence of waves is desirable in heat and mass transfer

applications, while, in other instances such as coating flows, surface waves are un-

desirable as they lead to non-uniform coating thickness. Thus, manipulation and

control of free surface instability (and interfacial instabilities, in general) remains a

crucial aspect for several technological applications. The liquid film flow is usually

accompanied by surface active agents or surfactants which play a critical role in

different applications (Goerke 1998; Morrow & Mason 2001; Quere et al. 1997).

Previous studies have demonstrated the suppression of free surface instability for

liquid film flowing down a rigid inclined plane using a monolayer of an insoluble

surfactant at gas-liquid (GL) interface (Blyth & Pozrikidis 2004a; Pereira & Kalli-

adasis 2008; Wei 2005a). An additional stable normal mode also appears due to

transport of surfactant species along the GL interface and this additional mode is

referred as surfactant/Marangoni mode in literature. These observations suggest

that the surfactants can be used to suppress/control the free surface instability. In

relation to suppression of free surface instability, Shankar and coworkers (Gaurav

& Shankar 2007; Jain & Shankar 2007; Sahu & Shankar 2016; Shankar & Sahu

2006) have shown the possibility of using a deformable wall to obtain a stable flow

of clean (i.e. devoid of surfactant layer) liquid film when the liquid film otherwise

remains unstable for flow past a rigid inclined wall. Very recently, we analyzed the

stability of surfactant-laden liquid film flowing down an inclined plane when the

inclined plane is coated with a soft solid layer. The stability of the system was in-

vestigated in creeping flow limit (i.e., Reynolds number Re = 0) and in this Re = 0

limit, the free surface or GL mode instability remains absent. We demonstrated that

the additional surfactant mode which remains stable for flow past rigid inclined wall

becomes unstable when the wall is made sufficiently deformable. In view of this

wall deformability induced destabilization of Marangoni mode, we re-examine the

stability of surfactant covered liquid film flow down an inclined plane coated with

a soft solid layer in presence of inertia (Re = 0) to investigate whether the suppres-

sion predicted by Shankar and coworkers for a clean film holds for surfactant-laden

liquid film as well or not? In the following, we briefly discuss relevant literature

and motivate the context of the present study.
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Earlier theoretical studies on the linear stability of clean liquid film flowing

down a rigid inclined plane demonstrated that the free surface or GL interface be-

comes unstable for longwave perturbations when Reynolds number increases above

a critical value (Benjamin 1957; Lin 1967; Yih 1963). This instability is referred

as free surface or GL mode instability in the present work. In presence of surfac-

tant at an interface, the interfacial tension depends on the surface concentration of

surfactant and the convective motion of surfactant results in non-uniform distribu-

tion of surfactant at the interface. This non-uniform distribution leads to surfactant

concentration gradient which, in turn, results in variation of surface tension along

the interface. As a consequence, the additional term corresponding to Marangoni

stress appears in tangential stress balance and this could have a stabilizing or desta-

bilizing effect on an interfacial mode. For the case of a single liquid film with free

surface falling down a rigid inclined plane, this additional Marangoni stress has

a stabilizing influence on GL interfacial mode (Anshus & Acrivos 1967; Blyth &

Pozrikidis 2004a; Pereira & Kalliadasis 2008; Whitaker 1964; Whitaker & Jones

1966). Blyth & Pozrikidis (2004a)(also see, Pereira & Kalliadasis (2008)) analyzed

the stability of surfactant covered liquid film flowing down a rigid inclined plane

by using an Orr-Sommerfeld formulation. They clearly demonstrated the presence

of two normal modes in creeping flow limit: the usual GL interfacial mode and the

Marangoni mode which originates due to the convective motion of surfactant along

with the interface. The Marangoni mode remains the least stable mode for zero and

low Reynolds numbers. With an increase in Reynolds number, the growth rate of

GL mode increases while the growth rate of Marangoni mode remains unaffected.

The GL mode eventually overtakes Marangoni mode and finally becomes unstable.

Thus, an exchange of dominant mode of instability from Marangoni mode at low

Reynolds number to GL mode above a critical Reynolds number is observed by

Blyth & Pozrikidis (2004a). We show the subtle differences that occur in change of

dominant mode with change in Reynolds number for surfactant-contaminated liq-

uid film flowing down a deformable inclined wall instead of a rigid inclined plane.

More importantly, in relation to the effect of surfactant on free surface instability,

the neutral curves presented by Blyth & Pozrikidis (2004a) in Reynolds number vs.

wavenumber plane clearly demonstrate that the presence of surfactant increases the

critical Reynolds number for the onset of GL mode instability as compared to the
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critical Reynolds number observed for a clean film. In other words, there exists a

critical Marangoni number above which the free surface instability is suppressed.

In the context of effect of surfactant on the stability of interfacial flow systems,

it is important to mention the work of Frenkel & Halpern (2002) and Halpern &

Frenkel (2003) who first uncovered the instability of Marangoni/surfactant mode

for an interfacial flow system. They analyzed the linear stability of two-layer chan-

nel flow in creeping flow limit with surfactant monolayer present at the fluid-fluid

interface. The usual Yih type (Yih 1967) interfacial mode remains stable in creeping

flow limit while the additional Marangoni mode becomes unstable for certain values

of viscosity and thickness ratio of two fluid layers. They demonstrated that basic in-

terfacial shear is necessary to destabilize the Marangoni mode. Blyth & Pozrikidis

(2004b) investigated the stability of inclined two-layer channel flow in presence of

interfacial surfactant and derived non-linear evolution equations for interface loca-

tion and surfactant concentration using lubrication approximation. They confirmed

the results of Frenkel & Halpern (2002) and Halpern & Frenkel (2003) related to

Marangoni mode instability. Halpern & Frenkel (2003) suggested the absence of

interfacial shear as the reason for not observing the Marangoni mode instability for

a free surface flow of liquid film down an inclined plane. Wei examined the sta-

bility of surfactant-laden (Newtonian (Wei 2005a) and viscoelastic (Wei 2005b))

liquid film flow down an inclined plane with an imposed shear applied at GL inter-

face. Their results clearly demonstrated that the Marangoni mode can be rendered

unstable for non-zero values of imposed shear at GL interface, and thus, supporting

the idea that basic interfacial shear must be present for triggering Marangoni mode

instability.

Several strategies have been explored by different authors to control and sup-

press free surface instabilities. For example, imposing in-plane horizontal oscilla-

tions for single (Lin & Chen 1997; Lin et al. 1996) and two-liquid film with free

surface (Jiang & Lin 2005), and heating of the inclined wall to impose a linear

temperature gradient (Demekhin et al. 2006) have been explored in the context of

controlling free surface and interfacial instabilities. While these studies suggested

active methodologies (e.g. imposing external oscillations or heating) for control-

ling instabilities, Shankar and coworkers explored the possibility of using a passive

deformable solid layer to suppress and manipulate interfacial instabilities for a di-
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verse class of flow configurations (for example, see a recent review by Gaurav &

Shankar (2015)). When a fluid flows past a soft, deformable solid surface, the stress

exerted by fluid creates deformations in the solid layer and these deformations in

turn could alter the fluid flow. This coupling between the fluid and solid layer can

have a profound impact on the stability of a composite fluid-solid system. For ex-

ample, Shankar & Kumar (2004) analyzed the stability of two layer plane Couette

flow past a linear elastic solid layer, and showed for the first time that the presence

of solid layer can stabilize the fluid-fluid interfacial instability caused due to jump

in viscosity across the interface. However, an additional liquid-solid (LS) interface

that can deform is also present for such composite fluid-solid systems. It is well

established, both by theory and experiments, that this deformable LS interface be-

comes unstable in creeping flow limit (Eggert & Kumar 2004; Kumaran et al. 1994;

Kumaran & Muralikrishnan 2000) as well as at finite Reynolds number (Gaurav &

Shankar 2010b; Kumaran 2000; Neelamegam & Shankar 2015; Verma & Kumaran

2012a, 2013b). This instability of liquid-solid interface is referred as LS mode in

the present work.

In direct relevance to the present work, Shankar & Sahu (2006) analyzed the

stability of a clean Newtonian liquid film falling down an inclined plane coated

with a soft solid layer. They defined a deformability parameter for the soft solid

layer as G = µV/EsR, where µ is the viscosity of a fluid, V is the free surface

velocity, R is the thickness of a liquid film, and Es is the shear modulus of the soft

solid layer. The rigid solid limit is recovered by fixing G = 0, and higher values of

G correspond to more soft solid layer. Their results clearly demonstrated that for a

given solid thickness, when the deformability parameter G increases above a critical

value, the free surface instability is suppressed for those values of Reynolds number

for which the GL mode otherwise remains unstable when the liquid film flows past

a rigid incline. With further increase in G, the liquid-solid (LS) interface as well

as the GL interface become unstable. Thus, there exists a stable gap in terms of

parameter G where all modes remain stable. A similar suppression of free surface

instability was also shown by Jain & Shankar (2007) for a visco-elastic liquid film.

While the works of both Shankar & Sahu (2006) and Jain & Shankar (2007) used

a simple linear elastic constitutive relation for modeling the deformable solid layer,

Gaurav & Shankar (2007) used a non-linear neo-Hookean solid model for the soft
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solid layer and demonstrated the presence of stability window in a manner similar

to the work of Shankar & Sahu (2006). The importance of using a non-linear neo-

Hookean solid model over a linear elastic model to accurately capture the stability

characteristics for composite fluid-solid systems has been highlighted in several

previous studies (Gaurav & Shankar 2007, 2009, 2010b; Gkanis & Kumar 2003,

2005, 2006). Based on these observations, we have used a neo-Hookean constitutive

relation to represent the dynamics of deformable solid layer in the present work.

The stability of a surfactant-covered liquid film flowing past an inclined plane

which is lined with a deformable solid layer is examined recently by Tomar et al.

(2017) in creeping flow limit (Re = 0). Since, a free surface, a surfactant mono-

layer, and a deformable LS interface are present, there is a possibility of any of the

three modes (GL, Marangoni, and/or LS) becoming unstable for this system. The

GL or free surface mode was never observed to become unstable in creeping flow

limit irrespective of whether the wall is rigid or deformable. For a given solid thick-

ness, the Marangoni mode remains stable in rigid limit G → 0 in agreement with

previous studies (Blyth & Pozrikidis 2004a; Pereira & Kalliadasis 2008), and for

lower values of G. As this deformability parameter G increases beyond a thresh-

old value, the Marangoni mode becomes unstable first, and with further increase

in G, the LS interface also becomes unstable. Thus, the Marangoni mode remains

the dominant mode of instability for creeping flow of surfactant loaded liquid film

past a deformable inclined wall. In this chapter, we examine the same problem in

presence of inertia as we examined in chapter 2 for creeping flow limit. As men-

tioned earlier that in presence of inertia, the GL mode can also become unstable

above a critical Reynolds number. The presence of surfactant is known to suppress

the free surface instability when Marangoni number is above a critical value, and

the deformable solid layer also has a stabilizing effect on this GL mode instabil-

ity. Thus, we intuitively expect that the liquid film in presence of deformable solid

layer and surfactant monolayer will be a more stable system in comparison to either

of (i) a clean liquid film flowing past a rigid incline, or (ii) a contaminated liquid

film past a rigid incline, or (iii) a clean liquid film flowing past an inclined wall

coated with deformable solid layer. This is indeed true for GL interfacial mode

as will be demonstrated in the present work. The deformable solid layer (together

with the surfactant layer) suppresses the GL mode instability when G increases
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Figure 3.1: Sketch of gravity-driven surfactant-laden liquid film flowing down an

inclined neo-Hookean solid surface.

above a critical value. However, with further increase in deformability parameter,

the Marangoni mode can also become unstable. Thus, in light of this new obser-

vation related to wall induced instability of Marangoni mode, a pertinent question

is whether it is possible to obtain stable film flow using a deformable solid coating

particularly when the surfactant contribution is not sufficient enough to completely

suppress the GL mode instability? We examine the stability characteristics of the

composite system (contaminated liquid film flow past an inclined wall coated with

deformable solid layer) to answer the above-posed questions. The description of

the flow configuration and governing equations are given in Section 3.2, results are

discussed in Section 3.3, and the findings are finally summarized in Section 3.4.

3.2 Problem Formulation

3.2.1 Governing equations for fluid and solid

The system under consideration (Figure 3.1) consists of a Newtonian liquid

film (thickness R, viscosity µ , and density ρ) falling freely due to gravity down

a soft/deformable solid layer. The flexible wall (thickness HR, shear modulus Es ,

and density ρ) is firmly fixed to an inclined plane at z∗ = (1+H)R which makes an

angle θ with the horizontal. Note that the densities of both solid and liquid layers
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are assumed to be identical for simplicity. The free surface is exposed to a passive

gas and wrapped by a monolayer of insoluble surfactant with surface concentration

Γ∗(x∗, t∗). The gas-liquid (GL) interface remains flat in base state with a constant

surfactant concentration Γ∗
0, and a corresponding base state surface tension as γ∗0 .

The governing equations for the liquid are Navier-Stokes continuity and momentum

balance:

∇∇∇∗ ·v∗ = 0 , (3.1)

ρ[∂ ∗
t v∗+v∗ ·∇∇∇∗v∗] = ∇∇∇∗ ·T∗+ρg . (3.2)

where, v∗ and p∗ are the velocity and pressure fields in the liquid layer; T∗=−p∗I+
µ[∇∇∇∗v∗+(∇∇∇∗v∗)T ] is the total stress tensor for the liquid layer.

The stress balance at GL interface, in presence of surfactant layer, is given as:

n ·T∗ = ∇∇∇s
∗γ∗− γ∗n(∇∇∇∗ ·n) (3.3)

where, n is the unit normal vector,and ∇∇∇s
∗ = ∇∇∇∗−n(n ·∇∇∇∗) is the component of a

gradient operator in the local plane of the interface. The convection-diffusion equa-

tion for surfactant transport (Halpern & Frenkel 2003; Stone 1990) at GL interface

is given as:

∂Γ∗

∂ t∗
+∇∇∇s

∗ · (Γ∗vs
∗)+Γ∗(∇∇∇s

∗ ·n)(v∗ ·n) = Ds∇∇∇2
s
∗
Γ∗ (3.4)

where, vs
∗ is the component of the velocity vector in the interface defined as:

v∗= vs
∗+(v∗ ·n)n, and Ds is the surface diffusivity of surfactant. For small changes

in surfactant concentration about the mean value Γ∗
0, the surface tension, and surfac-

tant concentration are related as: γ∗ = γ∗0 −E(Γ∗−Γ∗
0), where, E refers to surface

elasticity defined as E = −(∂σ∗/∂Γ∗)Γ0 > 0. Finally, the kinematic condition at

GL interface is: ∂ ∗
t h∗+ v∗x∂ ∗

x h∗ = v∗z
Unlike the flow patterns in liquid, the behaviour of deformable solid is analyzed

by studying the spatial movements of material points. Therefore, it is convenient

(following Gkanis & Kumar (2003)) to use the Lagrangian coordinates to describe

governing equations for the solid layer. The undeformed configuration is consid-

ered the reference state and hence, the position vector of material points in this un-

stressed reference state X∗ = (X∗,Y ∗,Z∗) are treated as the independent variables.

In the deformed state of the solid, the spatial position vector of the material particles
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w∗ = (w∗
X ,w

∗
Y ,w

∗
Z) can be expressed as a function of reference coordinates: w∗(X∗).

The deformable solid layer is modeled as an impermeable and incompressible neo-

Hookean elastic solid, and the mass and momentum conservation equations for the

neo-Hookean solid layer are given as (Holzapfel 2000; Malvern 1969):

det(F) = 1 , (3.5)

ρ
[

∂ 2w∗

∂ t∗2

]
X∗

= ∇∗
X∗ ·P∗+ρg . (3.6)

In the above equations, F is the deformation gradient tensor defined as F = ∇∗
X∗w∗

and P∗ is the first Piola-Kirchhoff stress tensor, related to Cauchy stress tensor by

P∗ = F−1 ·σ∗. The Cauchy stress tensor, σσσ∗, for the neo-Hookean elastic solid is

(Beatty & Zhou 1991; Destrade & Saccocmandi 2004; Fosdick & Yu 1996; Hayes

& Saccocmandi 2002):

σσσ∗ =−p̂∗s I+Es(F ·FT) (3.7)

where, Es is the shear modulus of deformable solid layer and p̂s is the pressure-like

function related to actual pressure in the neo-Hookean solid as p̂s = ps +Es.

At the liquid-solid (LS) interface, the velocities and stresses in liquid and the

solid layer are continuous.

v∗ =

(
∂w∗

∂ t∗

)
X∗

, (3.8)

n ·T∗+ γ∗lsn(∇∇∇
∗ ·n) = n ·σσσ∗ , (3.9)

where, γ∗ls is the LS interfacial tension and n is the unit normal vector to LS inter-

face. As the deformable solid is firmly adhered to a rigid surface, zero deformation

conditions prevail at z∗ = (1+H)R: w∗ = X∗.

The above system of equations is nondimensionalized by using the following

scales: R for lengths and displacements, unperturbed free surface velocity V =
ρgR2 sinθ

2µ for velocities, µV/R for stresses and pressure, Γ∗
0 for surfactant concen-

tration, and γ∗0 for surface tension. In the unperturbed steady state, the GL and LS

interfaces remain flat. The non-dimensional velocity profile and pressure distribu-

tion in the liquid layer are given as:

vx(z) =
(
1− z2) , vz = 0, p(z) = (2cotθ)z , (3.10)



3.2 Problem Formulation 69

Various base-state physical quantities are denoted by an overbar. The fluid base

velocity exerts shear stress at the LS interface, thereby creating unidirectional de-

formations in the solid layer with a non-zero displacement in x-direction. The de-

formation and pressure fields for solid layer are given as:

wX = X +G[(1+H)2 −Z2], wZ = Z, ps = (2cotθ)Z . (3.11)

3.2.2 Linearised governing equations

We perform a standard temporal linear stability analysis in which infinitesimally

small perturbations are imposed over the base state for all the dynamical variables

in fluid and solid layers. These perturbed variables are substituted in governing

equations and boundary conditions, and the resulting equations are then linearized

to obtain a set of equations in terms of perturbation variables. The perturbations are

assumed to be two-dimensional and are expanded in the form of Fourier modes:

f
′
= f̃ (z)exp[ik(x− ct)] , (3.12)

where, f
′
is the small perturbation of any dynamical variable, k is the (real) wavenum-

ber of perturbations, c is the complex wave speed and f̃ (z) is the complex amplitude

function of the disturbance. For the deformable solid, x and z are replaced by X and

Z, respectively. If ci > 0 (or ci < 0), flow will be unstable (or stable). On the

substitution of above form of perturbations in linearized governing equations and

boundary conditions, we obtain a set of equations in terms of amplitude functions

and wave speed, c, which govern the stability of the composite system. The non-

dimensional governing stability equations for the liquid layer are:

dṽz

dz
+ ikṽx = 0 , (3.13)

Re [ik(vx − c)ṽx +(dzvx)ṽz] = −ikp̃+
[

d2

dz2 − k2
]

ṽx , (3.14)

Re [ik(vx − c)ṽz] = −dp̃
dz

+

[
d2

dz2 − k2
]

ṽz . (3.15)
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The linearized equations for the neo-Hookean elastic solid are:

dw̃Z

dZ
+ ikw̃X − (dZwX) ikw̃Z = 0 , (3.16)

−ikp̃s +(2cotθ)ikw̃Z +
1
G

[
−k2 +

d2

dZ2

]
w̃X =−k2c2Rew̃X , (3.17)

(dZwX) ikp̃s − (2cotθ)ikw̃X − d p̃s

dZ
+

1
G

[
−k2 +

d2

dZ2

]
w̃Z =−k2c2Rew̃Z . (3.18)

Where, Re = ρV R
µ is the Reynolds number, and G = µV/EsR is the non-dimensional

solid deformability parameter representing the ratio of viscous shear stress in liquid

to elastic stress in solid layer. G → 0 represents the limit of a rigid solid.

The interfacial conditions at GL interface are obtained by Taylor-expanding the

fluid dynamical variables about the base state. The linearized kinematic condition,

surfactant transport equation and the stress balances at GL interface are:

ik[vx(z = 0)− c]h̃ = ṽz(z = 0) , (3.19)

[vx(z = 0)− c− ikPeinv]Γ̃ = −ṽx(z = 0) , (3.20)

−2h̃+dzṽx + ikṽz = ikMaΣglΓ̃, (3.21)

−p̃− (2cotθ)h̃+2
dṽz

dz
= k2Σgl h̃. (3.22)

where Γ̃ is the amplitude of disturbance of surfactant concentration, Ma = EΓ∗
0/γ∗0

is the Marangoni number, Peinv = Ds/V R is the inverse of Peclet number, and Σgl =

γ∗0/µV is the nondimensional free-surface tension parameter.

The treatment of interfacial conditions at LS interface which involves both Eule-

rian and Lagrangian variables will be slightly different as compared to the treatment

of interfacial conditions at GL interface where only Eulerian variables are involved.

Gaurav & Shankar (2010b) suggested that a Taylor series expansion is not required

for solid (Lagrangian) variables because a material particle’s Lagrangian label do

not change in deformed state (pre-stressed base state or perturbed state). The inde-

pendent variables used to label/identify a material particle always remain the coor-

dinates in unstressed configuration (i.e. X = (X ,Y,Z)). On the other hand, the fluid

variables were Taylor expanded about the base state in Gaurav & Shankar (2010b).

However, the Taylor series expansion of fluid quantities were carried out only in the

direction normal to the flow. Very recently, Patne et al. (2017) suggested that the

Taylor expansion of fluid variables must be carried out in both flow and normal to
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flow directions to make the Lagrangian formulation of Gaurav & Shankar (2010b)

consistent. They referred the Lagrangian formulation of Gaurav & Shankar (2010b)

as old L2 formulation, and the modified consistent formulation (with Taylor expan-

sion of fluid variables at LS interface in both flow and cross-flow directions) as

proposed consistent L2 formulation or simply L2 formulation. They have also pro-

posed another consistent Lagrangian formulation and referred it as L3 formulation.

The undeformed state, deformed base state, and perturbed state are the three states

that remain important in L3 formulation, and the deformed base state is used as

the reference state in L3 formulation. Note that the unstressed or undeformed state

remains the reference configuration in L2 formulation. Patne et al. (2017) used

specific cases of plane-Couette flow past neo-Hookean solid and Hagen-Poiseuille

flow through a neo-Hookean tube to demonstrate the consistency between L3 and

modified L2 (or simply L2) formulations. They have shown that the L3 formulation

gives the same results as obtained by using L2 formulation which confirms the con-

sistency of two Lagrangian formulations. In the present work, we have used an L2

formulation (as proposed in Patne et al. (2017)) where the two states that are impor-

tant in formulating the problem are undeformed state and the perturbed state with

undeformed state being the reference configuration. It is important to remark here

that for the flow configuration considered in the present work, the fluid base state

remains independent of flow (x -) direction (refer Eq. (3.10)). Hence, no additional

terms are expected due to Taylor expansion of fluid variables in x - direction in addi-

tion to Taylor expansion in normal (z -) direction. This implies that the modified L2

and old L2 formulations remain identical for the problem considered in the present

work. However, for general class of problems related to flow past deformable solid

surfaces, the correct way to write down LS interfacial conditions is the L2 (or L3)

approach as discussed in Patne et al. (2017). Following the procedure outlined in

Patne et al. (2017) for L2 formulation, the linearized conditions at LS interface are

given as:

ṽz =−ikcw̃Z ,(3.23)

ṽx +(dzvx)z=1w̃Z =−ikcw̃X ,(3.24)
dṽx

dz
+ ikṽz +(d2

z vx)w̃Z =
1
G

{
(dZwX)

dw̃Z

dZ
+

dw̃X

dZ
+ ikw̃Z − (dZwX)

2ikw̃Z

}
,(3.25)

−p̃+2
dṽz

dz
+ k2Σlsw̃Z =−p̃s +

2
G

dw̃Z

dZ
+(2cotθ)w̃Z .(3.26)
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where, Σls = γ∗ls/µV is the nondimensional LS interfacial tension parameter.

Finally, the boundary conditions at the rigid surface (z = 1+H) are:

w̃Z = 0, w̃X = 0. (3.27)

Equations (3.13)-(3.27) govern the linear stability equations for a composite liquid-

solid system. We used a pseudo-spectral collocation method and a numerical shoot-

ing procedure as we have discussed in chapter 2 to numerically evaluate the eigen-

values and neutral stability boundaries.

3.3 Results and discussion

As mentioned in introduction that for a given solid thickness, the Marangoni mode

becomes unstable in creeping flow limit when the wall deformability parameter in-

creases above a critical value. One of the objectives of the work presented in this

chapter is to examine the effect of variation of Reynolds number on the growth rate

of the Marangoni mode instability. Further, for a given solid thickness and wall

deformability parameter, the GL mode can also become unstable with increase in

Reynolds number. Thus, it is of interest to know which mode remains the critical

mode of instability as Reynolds number increases from zero to finite values. The

other more important aspect we examine is the following. It is known that for film

flow past a rigid incline, the presence of surfactant suppresses the GL mode insta-

bility when Marangoni number increases above a critical value. However, when

Marangoni number remains below this threshold value, is it possible to use a de-

formable solid layer to obtain stable flow configuration? We first briefly discuss the

effect of deformable solid layer on GL and Marangoni modes in long-wavelength

limit. The long-wave analysis has been discussed in detail in chapter 2, however, we

briefly present long wave results for the sake of completeness and this discussion of

low-k results sets the context of presenting numerical results in a clear manner.

3.3.1 Long-wave results

The results of long wavelength asymptotic analysis remains valid for k� 1/(1+

H) in general, and for k � 1 for H ∼ O(1). The wave speed c is expanded in an

asymptotic series in k: c = c(0)+ kc(1)+ k2c(2)+ k3c(3)+ · · · . All the dynamical



3.3 Results and discussion 73

variables are expanded according to their respective scalings and the expanded vari-

ables are substituted in governing equations and boundary conditions. The resulting

equations are solved at each order in k to determine the effect of deformable solid

layer for both GL and Marangoni mode. For GL or free surface mode, calcula-

tions up to an O(k) are sufficient to determine the stability of the composite system.

The leading order wave speed c(0) and first correction to wave speed c(1) for GL

interfacial mode are given as:

c(0)gl = 2, c(1)gl = i
[

8
15

Re− 2
3

cotθ −4GH −MaΣgl

]
. (3.28)

The leading order wave speed is real and the first correction to wave speed is purely

imaginary. Hence, the stability of GL interfacial mode is determined by c(1)gl . The

underlined terms in the expression of c(1)gl would be present for a clean liquid film,

the term proportional to Ma appears because of the presence of surfactant mono-

layer, and the term proportional to GH represents the soft solid contribution. The

expression of c(1)gl clearly shows that soft solid layer has a stabilizing contribution

(term proportional to GH) in addition to the stabilizing contribution of surfactant

layer (term proportional to Ma). The leading order wave speed for Marangoni

mode is also real (c(0)Ma = 1), and hence, the Marangoni mode is neutrally stable

at this order. The first correction to wave speed is c(1)Ma = −iPeinv. c(1)Ma is purely

imaginary, proportional to Peinv , and occurs with a negative sign which implies that

this contribution is stabilizing. However, as noted in several previous studies (Blyth

& Pozrikidis 2004a; Halpern & Frenkel 2003; Samanta 2014) the value of Peinv is

usually negligible, and hence, we set Peinv = 0. Subsequent analysis reveals that the

third correction to wave speed determines the stability of Marangoni mode. The

c(2)Ma is also found to be real, and the expression for c(3)Ma (with Peinv = 0) is given as:

c(3)Ma = i
MaΣgl cotθ

2520
[420(3H +2)GH − (11Re+420MaΣgl +280cotθ) . (3.29)

The above expression of c(3)Ma clearly shows that the term proportional to GH is

destabilizing while all other terms are stabilizing at this order. This implies that for

a given inclination, Re, Ma, and Σgl; this surfactant mode could be rendered unstable

by manipulating the properties of soft solid layer (G and H). The above discussion

suggests that the stability of contaminated liquid film flowing past a deformable

inclined wall will be governed by the competition between the GL and Marangoni
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mode instability. At this point, it is worth to comment about the appearance of any

additional non-trivial contribution due to the use of non-linear neo-Hookean solid

model as compared to the simple linear elastic solid model which is used in several

previous studies related to the effect of deformable wall on the stability of fluid-

fluid interfaces (Gaurav & Shankar 2007; Sahu & Shankar 2016; Shankar & Kumar

2004; Shankar & Sahu 2006). This issue is important because it is known that up to

O(k), the linearized neo-Hookean solid equations reduce to those for a linear elastic

solid in low-wavenumber limit (Gaurav & Shankar 2007). However, the Marangoni

mode instability is captured at O(k3) calculations, and thus, several additional con-

tributions from neo-Hookean solid could be expected to be present in the low-k

analysis. We have performed the low-k analysis using both neo-Hookean and lin-

ear elastic solid models, and observed that the low-k analysis remains identical for

both the solid models for Marangoni mode up to O(k3). The exact details of the

low-k analysis which show how the two solid models remain identical up to O(k3)

calculations are presented in previous chapter. The numerical results presented in

previous chapter using the two solid models also confirm the same. Briefly, the

low-k analysis reveals that the velocity field in the fluid and the deformation field

in the solid remain absent up to O(k). The additional terms that appear at O(k2) or

O(k3) due to the use of neo-Hookean constitutive relation involve solid variables at

O(1) or O(k), and hence, these additional terms remain absent.

3.3.2 Numerical results

The expression of c(3)Ma given in Eq. (3.29) clearly shows that for a given solid

thickness H, the Marangoni mode becomes unstable when deformability param-

eter G increases above a critical value. The growth rate characteristics of this

wall deformability induced Marangoni mode instability were presented in chap-

ter 2 for Re = 0. We start by investigating the effect of Reynolds number on this

Marangoni mode instability. Figure 3.2(a) shows the growth rate vs. wavenum-

ber data as a function of Reynolds number for H = 5,G = 0.05,Ma = 1,θ = 45◦

and Σgl = 0.5. For these values of parameters, the critical value of G above which

the Marangoni mode becomes unstable is given by c(3)Ma = 0, which yields Gcrit =

0.01372+0.0003Re. This implies that for Re ∼ O(1), the change in Gcrit with vari-

ations in Re will be negligible. Thus, we set G = 0.05 in Figure 3.2(a) and varied
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Figure 3.2: Growth rate vs. wavenumber data for different values of Reynolds

number for (a) Marangoni mode and (b) GL mode. Data for H = 5,G = 0.05,Ma =

1,Peinv = 0,Σgl = 0.5,Σls = 0, and θ = 45◦.

Re from 0 to 10. Similar conclusion regarding the negligible change in growth rates

of Marangoni mode with variations in Re can be drawn from the expression of c(3)Ma

in low-k limit for a given value of H and G. Figure 3.2(a) depicts the continuation

of growth rates from low wavenumber values to finite and arbitrary wavenumbers

as a function of Re. While there is visibly no significant variations in growth rates

at low wavenumbers, the maximum growth rate that occurs at k ∼ O(0.1) decreases

with increase in Re from 0 to 10. However, the more important observation is that

the Marangoni mode still remains unstable at finite Re ∼ O(1−10). Figure 3.2(b)

shows the growth rate for GL mode for different values of Re for the same set of pa-

rameters as taken for Figure 3.2(a). For these values of parameters, the expression

of c(1)gl in Eq. (3.28) shows that the GL mode becomes unstable when Re > 4.06

in low-k limit. Figure 3.2(b) clearly demonstrates that the GL mode remains stable

for all wavenumbers from Re = 0 to 4. With further increase in Re, for example Re

= 4.1 or higher, the GL mode becomes unstable and the maximum growth occurs

at finite wavenumber. Thus, for Re ≥ 4.06, both GL and Marangoni modes remain

unstable. When both modes remain unstable, a comparison of growth rates of both

GL and Marangoni mode reveals that the maximum growth rate of GL mode is two

to three orders of magnitude larger than the Marangoni mode. Thus, for sufficiently

higher values of Re, GL mode remains the most unstable mode. On the other hand,

for lower values of Re in presence of soft solid layer and surfactant, the Marangoni
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mode is the critical mode of instability. It is important to point out that the LS inter-

facial modes can also become unstable, however, the LS mode instability is usually

observed at higher values of G(≥ 0.1). We have verified using our spectral code,

which resolves the complete spectrum of eigenvalues for a given number of Cheby-

shev polynomials, that for the range of parameters considered in Figure 3.2, GL and

Marangoni mode are the two least stable or most unstable modes.

Figure 3.2 depicts the situation when either one or both the modes (GL and

Marangoni) remain unstable. We next try to explore the parameter sets where all

the modes remain stable. Let us focus our attention for the moment on the ex-

pression of c(1)gl . For θ = π/4,Σgl = 0.5,Re = 1.5 and H and/or G = 0 (i.e. in

absence of deformable solid layer), the expression of c(1)gl gives the critical value

of Ma = 0.27 above which the GL mode can be made stable (solely) due to the

presence of surfactant layer. Thus, if we set Marangoni number below 0.27, the

stabilizing effect due to surfactant is not sufficient enough to suppress GL mode

instability. However, the expression of c(1)gl shows that the presence of deformable

solid layer provides an additional stabilizing contribution for GL interfacial mode.

This expression shows that for given parameters and solid thickness, the GL mode

instability is suppressed in low-k limit when G increases above a critical value. On

the other hand, the low-k results for Marangoni mode shows that the Marangoni

mode becomes unstable when G is sufficiently increased for a given solid thick-

ness. Thus, a pertinent question is whether there exists a window in terms of

parameter G where the system remains stable? The long-wave results suggest

that it is indeed possible to choose appropriate values of H and G such that both

Marangoni and GL mode simultaneously remain stable. For example, if we set

Re = 1.5,Ma = 0.25(< Macrit |H=0 = 0.27),Σgl = 0.5,θ = π/4, and H = 0; the first

correction to wave-speed is positive (c(1)gl = 0.00833), which implies that GL mode

remains unstable for H = 0.

In presence of deformable solid layer with nondimensional thickness H = 2, the

expression of c(1)gl shows that the GL mode instability can be suppressed in low-k

limit for G > 0.00104. Further, the expression of c(3)Ma shows that the Marangoni

mode becomes unstable when G > 0.05. This value of G above which Marangoni

mode becomes unstable due to wall deformability is at least an order of magnitude

higher than G value above which GL mode perturbations are stabilized in low-k
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Figure 3.3: Neutral stability curves for showing stability window for H = 2,Re =

1.5,Ma = 0.25,Peinv = 0,Σgl = 0.5,Σls = 0,θ = 45◦.

limit. Thus, for low wavenumber disturbances, there exists a sufficient gap in terms

of parameter G where GL mode perturbations are suppressed without exciting the

Marangoni mode instability. Further, the LS interface can also become unstable

for finite wavenumber perturbations with increase in wall deformability parameter.

Keeping in view of all the above aspects (i.e. GL, Marangoni, and LS modes in-

stabilities), we construct the neutral stability curves in G vs. k plane to explore the

regions where the film flow configuration remains stable.

Figure 3.3 presents the neutral stability diagram for H = 2,Re = 1.5, and Ma =

0.25. In agreement with the discussion above, the GL interface remains unstable

for Ma = 0.25 in the rigid wall limit (G → 0). As wall deformability parameter G

increases above the lower neutral curve, there is a transition from unstable GL mode

perturbations to stable GL perturbations. With further increase in G, we encounter

a second neutral curve corresponding to the destabilization of Marangoni mode due

to the presence of soft solid layer. There exist two more neutral curves above this

Marangoni mode curve showing the destabilization of GL and LS interfaces at suf-

ficiently higher values of G. The destabilization of GL mode (or interfacial mode in

general) at higher values of G had been reported in several previous studies (Gau-

rav & Shankar 2007, 2010a; Jiang & Lin 2005; Shankar & Kumar 2004; Shankar &

Sahu 2006). The destabilization of LS interface when the solid becomes sufficiently

soft had also been investigated extensively in last two decades, see, for example,
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two recent reviews by Kumaran (2015) and Shankar (2015) . More importantly, this

figure shows that there exists a sufficient gap between the lower GL mode neutral

curve and the Marangoni mode neutral curve where all interfacial modes (GL and

LS), and Marangoni mode remain stable. Thus, Figure 3.3 demonstrates that it is

possible to achieve a stable flow configuration by suitably selecting wall deforma-

bility parameter G when the surfactant layer does not provide sufficient stabilizing

contribution. We have ensured by using our spectral code that all the eigenvalues

remain stable with in the stability window observed in Figure 3.3.

Figure 3.4(a) shows the effect of varying solid thickness on the width of stable

gap for the same set of parameters as used in Figure 3.3. Our results in terms of

G vs. k neutral curves for a wide variety of parameters suggest that the width of

stable region is determined by the lower GL and Marangoni mode neutral curves.

Hence, we have not presented neutral curves corresponding to destabilization of

GL and LS modes in Figure 3.4 (as well in all the figures given later in this work).

Figure 3.4(a) demonstrates that the stable gap is present for higher values of H as

well. A comparison of the data presented in Figure 3.3 and Figure 3.4(a) shows

that the width of stable region decreases with increase in value of solid thickness.

For example, the critical value of G above which GL mode becomes stable (while

all other modes remain stable) is 0.00104 for H = 2 (See Figure 3.3). The critical

value of G for Marangoni mode neutral curve is 0.052 and we have already shown

that all modes remain stable in between these two values (i.e., Gcrit for GL mode

stability and Gcrit for the Marangoni mode destabilization). Thus, the gap ratio for

which the system remains stable for H = 2 from Figure 3.3 is 0.052/0.00104 ≈ 50.

This gap ratio reduces to around 23 for H = 5 and to approximately 12 for H = 10

(refer Figure 3.4(a)). This implies that the width of stability window decreases on

increasing the solid thickness.

Figure 3.4(b) shows the neutral curves for two values of solid thickness when

Ma is decreased from 0.25 (in Figure 3.4(a) or Figure 3.3) to 0.2. A comparison

of gap ratios for H = 2 and H = 5 again verifies that the width of stability window

decreases with increase in solid thickness. Further, the stable region for Ma = 0.2

is smaller than for Ma = 0.25 for the same value of solid thickness. For example,

as mentioned above in reference to Figure 3.3, the stable gap ratio for H = 2 and

Ma = 0.25 is approximately 50. On the other hand, when Ma = 0.2 and H = 2,
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Figure 3.4: Neutral stability curves for for Re = 1.5,Peinv = 0,Σgl = 0.5,Σls = 0, and

θ = 45◦.

Figure 3.4(b) shows that the gap ratio is reduced to 12. The significant reduction in

width of stable region occurs mainly because of smaller stabilizing contribution of

surfactant at lower values of Marangoni number. This results in increase of critical

value of G required to stabilize GL interface while the critical G required to desta-

bilize Marangoni mode is marginally affected. This can be verified from Figure 3.4

which shows that for H = 5, the Gcrit ≈ 0.0017 for stabilizing GL interface with

Ma = 0.2, and Gcrit ≈ 0.00042 for Ma = 0.25. Thus, there is a substantial increase

in the critical value of deformability parameter for lower GL mode neutral curve

with decrease in Marangoni number. On the other hand, the Gcrit for Marangoni

mode neutral curve is only slightly altered from 0.0095 for Ma = 0.2 to 0.0098 for

Ma = 0.25. It is worth to point out that both Figure 3.3 and Figure 3.4 demonstrate

that the critical values of G for lower GL mode neutral curve and Marangoni mode

neutral curve (both of which collectively determine the stability window) can be

obtained from the low-k expressions of c(1)gl and c(3)Ma, respectively. Thus, we can

comment about the stability window for a given set of parameter values by simply

examining low-wavenumber results.

For further decrease in the value of Marangoni number to 0.1 with same param-

eters as in Figure 3.4, the critical value of G for lower GL and Marangoni mode

neutral curves are reported in Table 3.1 for different values of solid thickness. Table

3.1 clearly shows that the width of stability window is relatively small for H = 2 (as

compared to width of stable gap for H = 2, and Ma = 0.2 or 0.25), and decreases
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Table 3.1: Critical value of G for lower GL mode and Marangoni mode neutral

curves for Re = 1.5,Ma = 0.1,Peinv = 0,Σgl = 0.5,Σls = 0 and θ = 45◦.

H Gcrit for GL mode Gcrit for Marangoni mode Gap ratio = (GMa/GGL)crit

2 0.0104 0.0472 4.53

5 0.0042 0.0089 2.12

10 0.00208 0.00236 1.13

15 0.00139 0.00107 0.77

with increase in solid thickness. In fact, for H = 10, the two critical values which

determine the stable gap are very close to each other and for H = 15, the stabil-

ity window vanishes as evident by gap ratio value less than unity. Recall that for

parameters used in above figures and Table 3.1, the critical Marangoni number in

absence of deformable solid layer (H = 0 and/or G = 0) for making GL mode sta-

ble is given as Macrit |H=0 = 0.27. The results presented above in terms of neutral

stability diagrams and Table 3.1 demonstrate the potential of deformable solid layer

in obtaining stable flow configuration for values of Ma < Macrit |H=0 . However, as

Marangoni number decreases sufficiently below Macrit |H=0, the stability window

becomes smaller and finally vanishes for higher values of solid thickness.

The results presented above demonstrated the possibility of using a soft solid

layer to obtain stable flow configuration when the stabilizing effect of surfactant is

not sufficient enough in rigid limit. Next, we present results when Ma > Macrit |H=0

for which the liquid film falling down a rigid incline remains stable due to sufficient

stabilizing contribution of surfactant monolayer. Figure 3.5 presents neutral stabil-

ity curves for Ma = 1(> Macrit |H=0) for three different values of solid thickness to

elucidate the role of wall deformability in this case. The neutral curves correspond-

ing to all the modes are shown for H = 2, while for H = 5 and 10, only the most

unstable Marangoni mode is depicted in Figure 3.5. Since, the GL interface remains

stable at first place in rigid limit for Ma = 1, the lower GL mode neutral curve re-

mains absent for any value of solid thickness. As the value of G increases, the

Marangoni mode becomes unstable first followed by destabilization of GL and LS
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Figure 3.5: Neutral stability curves for the case when surfactant contribution is

sufficient for suppressing GL mode instability. Data for three different values of

Re = 1.5,Ma = 1,Peinv = 0,Σgl = 0.5,Σls = 0, and θ = 45◦.

modes at sufficiently higher values of wall deformability parameter G. As expected,

the critical value of G above which Marangoni mode becomes unstable decreases

with increase in solid thickness. Thus, the system which remains stable in rigid limit

can be rendered unstable by using a deformable solid layer. Such a feature could be

possibly utilized in applications which demand high heat and mass transfer rates.

Figure 3.6 shows the effect of surface tension (Σgl) on the neutral stability curves

for the data Re = 1.5,H = 2,Ma = 1,Peinv = 0,Σls = 0, and θ = 45◦. The surface

tension (Σgl) shows the stabilizing effect on both, gas-liquid and Marangoni mode in

longwave which can be shown by the analytical expression Gc = 0.01667−0.125Σgl

for GL mode and Gc = 0.04412+ 0.0625Σgl for Marangoni mode respectively for

above given data (in figure 3.6). If this longwave results are extended numerically

upto finite wave then we also find a stabilizing effect of Σgl on both mode. Our

results form analytical solution are equivalent to the results which we obtained from

numerical solution (see figure 3.6) that is why it is clear from both the analysis that

the critical value of G is increased for the Marangoni mode and is decreased for

the GL mode (see table 3.2 for analytical and figure 3.6 for numerical solutions),

as a result, stable gap or window exist between them. The stable gap (stability

window) or gap ratio is increased with increasing the value of Σgl (see table 3.2)

and lower neutral curve of GL mode fade out at Σgl = 0.5 so the system becomes
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Figure 3.6: Neutral stability curves for the data: Re = 1.5,H = 2,Ma = 1,Peinv =

0,Σls = 0, and θ = 45◦.

Table 3.2: Critical value of G for lower GL mode and Marangoni mode neutral

curves for Re = 1.5,H = 2,Ma = 1,Peinv = 0,Σls = 0 and θ = 45◦.

Σgl Gcrit for GL mode Gcrit for Marangoni mode Gap ratio = (GMa/GGL)crit

0.01 0.014434 0.04405 3.0518

0.1 0.00418 0.049731 11.869

0.5 disappear finite —-

completely stable for Gc < 0.05. Here, it is predicted that the surface tension (Σgl)

shows a stabilizing effect on both the mode (GL and Marangoni) but LS mode

remains unaltered.

Figure 3.7 shows the effect of inverse of Peclet number on the neutral stability

curves for the data Re = 1.5,H = 2,Ma = 1,Σgl = 0.1,Σls = 0. The neutral stabil-

ity curves of GL and LS mode remains unaltered by varying the value of inverse

of Peclet number. On the other hand, if we increase the value of Peinv then the

value of deformability parameter G is increased and Marangoni mode curve shifts

upward, as a result, unstable G− k region is decreased. At a certain value of Peinv

Marangoni mode curve forms a loop and the unstable region reduces drastically, if

we further increase the value of Peinv then above a certain value (or critical value),
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Figure 3.7: Neutral stability curves data for different values of Peinv : Re = 1.5,H =

2,Ma = 1,Σgl = 0.1,Σls = 0.

the Marangoni mode curve is disappeared. As a result, the stability window is in-

creases where the flow system becomes completely stable with increasing the value

of Pinv. Note that the higher values of Peinv are not useful for experimental purpose.

Figure 3.8(a) shows the effect of angle of inclination (θ ) on the GL mode for the

data Re= 1.5,H = 2,Peinv = 0,Σgl = 0.1,Σls = 0. For the low values of deformability

parameter (G), the GL mode is unstable for all the angles of inclination (θ ) which

are given in the figure in long and finite wave limit but it (GL mode) is completely

stable for the low value of angle of inclination (θ = 30◦). For θ = 45◦ and 60◦, the

transition from unstable to stable flow occurs at Gc = 0.004 and 0.038 respectively

for GL mode. Here, it is clear that the critical G is increased with the angle of incli-

nation of the plane (θ ), as a result, destabilization of GL mode occurs. Figure 3.8(b)

shows the effect of angle (θ ) on the neutral stability curves of Marangoni mode for

the same datas as given in Figure 3.8(a). The Marangoni mode is completely stable

at low values of deformability parameter but the destabilization occurs when the

value of angle (θ ) is increased (critical value of G is decreased with increasing the

agnle (θ ), as a result, unstable G− k region is decreased) for low and finite wave

number. At θ = 45◦, the critical value of deformability parameter (Gc) for GL and

Marangoni mode is 0.004 and 0.05 respectively then the gap ratio will be ≈12.5. At

θ = 60◦, the Gc for GL and Marangoni mode is 0.0388 and 0.0322 then the gap ra-

tio will be ≈ 0.83. Here, it is clear that the value of gap ratio (∼ stability window) is
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Figure 3.8: Neutral stability curves for the data: Re = 1.5,H = 2,Peinv = 0,Σgl =

0.1,Σls = 0.

decreased with increasing the angle (θ ) and this window is disappeared completely

with further increasing the angle of inclination of a plane. Thus the angle (θ ) shows

the destabilizing effect on both the modes (GL and Marangoni), as a results, stabil-

ity window is decreased. Here, it can be predicted that the decreasing the angle of

inclination of a plane (θ ) is in favour to achieve a stable flow configuration where

the flow remains completely stable.

3.4 Conclusions

The linear stability of surfactant-laden liquid film flowing down an inclined plane

coated with a deformable solid layer is analyzed using an Orr-Sommerfeld type for-

mulation. Previous studies have demonstrated the suppression of free surface insta-

bility for the flow of a clean liquid film by employing a soft solid layer. The primary

aim of the work of this chapter is to re-examine the potential of soft solid layer in

suppressing the free surface instability for a surfactant loaded liquid film without

triggering any other modes of instabilities. The concern regarding the excitation of

other modes of instabilities arise mainly because of recently observed destabiliza-

tion of Marangoni mode due to wall deformability for the same flow configuration

as considered in the chapter 2. Further, the liquid-solid interface can also become

unstable on increasing wall deformability parameter for a diverse class of flow con-
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figurations (Shankar 2015). In addition to all the above mentioned aspects, it is well

known that the presence of surfactant suppresses the free surface instability when

Marangoni number increases above a critical value for film flow past a rigid in-

cline (Blyth & Pozrikidis 2004a). However, in several physical situations, it is quite

possible that the Marangoni number remains below this critical value and hence, a

complete suppression of free surface instability is not possible for flow past rigid

inclined surfaces. For such cases (i.e .when Ma < Macrit ), we have demonstrated

that it is indeed possible to obtain stable flow by employing a soft solid layer. The

neutral stability curves in G vs. k plane demonstrate that for a given solid thickness,

there exists a sufficient window in terms of wall deformability parameter G where

the free surface instability is suppressed without triggering any other mode of in-

stability. The width of stability window decreases with increase in solid thickness

primarily due to destabilization of Marangoni mode at lower values of G. For a

given Reynolds number, the width of stability window also decreases with decrease

in Marangoni number and when the Marangoni number is sufficiently decreased be-

low the critical value, the stable gap vanishes. For cases when Marangoni number

is above the critical value required for stabilization of gas-liquid mode in rigid limit

(i.e. the GL mode remains stable in first place), the deformable solid coating can

render the flow unstable when G increases above a threshold value to destabilize the

Marangoni mode. This feature could be potentially useful for increasing heat and

mass transfer rates by manipulating the solid coating properties without changing

any other parameter like Reynolds number.

Finally, we provide some typical estimates for the physical parameters where

the predicted suppression can be observed in experiments. The Marangoni number

varies between O ∼ (0.01− 10) for low to sufficiently high values of surfactant

concentration. We set Ma ∼ O(0.1) as most of our results concerning instability

suppression are presented for this range of Marangoni numbers. Figure 3.4 shows

the neutral stability data for Re∼O(1), and G remains ∼O(0.001) within the stable

gap. If we set ρ ∼ 103kg/m3 , R ∼ 10−3m, µ ∼ 0.01 Pa-s and σ ∼ 0.01 N/m, then

Re ∼ O(1) and Σgl ∼ O(1). For these values, G ∼ 0.001 implies that the shear

modulus of solid layer Es ∼ 104 Pa to obtain stable flow of surfactant-laden liquid

film down a flexible inclined plane.





Chapter 4

Conclusion

We examined the linear stability of liquid film flowing down an inclined plane in

presence of monolayer of insoluble surfactant at free surface when the inclined

plane is coated with an incompressible and impermeable deformable neo-Hookean

solid layer for creeping flow and finite Re limit. In this analysis, we assumed that

the (i) base flow is steady state, fully developed and unidirectional (ii) fluid is New-

tonian and incompressible. In creeping flow limit, we focus on the effect of var-

ious parameters (soft solid thickness as well as deformability of a solid) on the

surfactant-induced Marangoni mode. The Marangoni and GL mode remain stable

for the gravity-driven contaminated liquid film flowing down an inclined rigid plane

in creeping (or Re ∼ 0) flow limit (Blyth & Pozrikidis 2004a). If the rigid plane is

coated with a neo-Hookean solid layer then Marangoni mode is destabilized when

the deformability parameter increases above its critical value for a fixed value of

soft solid thickness. In context of soft solid, we find that the critical value of de-

formability parameter G required for triggering the Marangoni mode instability is

decreased with increasing in soft solid thickness. There is also an existence of an

optimum solid thickness for fixed value of G for which unstable growth rate of sur-

factant (or Marangoni) mode is obtained maximum. Here, deformability parameter

G shows an additional stabilizing effect on the GL mode perturbations in the creep-

ing flow (Re ∼ 0) limit. LS mode also becomes unstable above a critical value of

G(at high wavenumber) which is higher than a critical values of G required for trig-

gering Marangoni mode instability. In this case, we find that the Marangoni mode

is a dominating mode for a surfactant-laden liquid layer flowing down an inclined

87
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plane in creeping flow limit. Here, Marangoni mode becomes unstable due to suf-

ficiently increase in deformability of a solid even when gas-liquid mode remians

stable.

We extended our above discussed creeping flow problem to finite Re and ob-

served the tremendous effect of various parameters on the flow system (importantly

on the stability window where flow remains completely stable). For creeping flow,

we have investigated that the Marangoni mode is destabilized when rigid plane is

coated with a soft solid and such type of Marangoni mode instabilities are sup-

pressed upto an optimum value by increasing the Marangoni number (see chapter

2). In this study, We re-investigated the potential of deformable solid layer to sup-

press the free surface instabilities for insoluble surfactant loaded liquid film flowing

down an inclined deformable solid surface without triggering any other modes of

instabilities. In this study , LS mode also remains unstable at higher value of G for

high wavenumber but the stability of GL and Marangoni modes are affected greatly

by altering the various parameters. The free surface instabilities can be suppressed

by increasing the Marangoni number beyond a critical values as it is shown in previ-

ous studies (Blyth & Pozrikidis 2004a). On the other hand, in many physical cases,

when the Marangoni number remains below its critical value then it is not possible

to suppress the free surface instabilities completely for the contaminated Newtonian

liquid layer (film) flowing down an inclined rigid plane. For this type of case, we

used a soft solid and have shown the stabilizing effect of soft solid layer on the free

surface instabilities to a sets of parameters where flow remains completely stable.

We have demonstrated stabilizing effect of soft solid on the free surface instabili-

ties by using a new parameter that is known as gap ratio (GMa/GGL)crit . Here, we

find that the gap ratio is decreased with increasing in solid thickness H (see G vs.

k curves) however stability window exist. This stability gap also shows that the

critical value of G for both, Marangoni and GL modes is decreased. As a result,

Marangoni mode is destabilized but free surafce (or GL) mode is stabilized. This

stability window (or gap ratio) is also decreased with decreasing the Marangoni

number but it is vanished when the Marangoni number is decreased below its crit-

ical value. The destabilization of Marangoni mode due to presence of soft solid

coating can be used to enhance heat and mass transfer rate without changing many

parameters except soft solid properties like deformability, thickness etc.



References

ADEPU, J. & SHANKAR, V. 2007 Suppression or enhancement of interfacial in-

stability in two-layer plane couette flow of fene-p fluids past a deformable solid

layer. J. Non-Newtonian Fluid Mech. 141, 43–58.

ANJALAIAH & USHA, R. 2015 Effects of velocity slip on the inertialess instability

of a contaminated two-layer film flow. Acta Mechanica 226 (9), 3111–3132.

ANJALAIAH, USHA, R. & MILLET, S. 2013 Thin film flow down a porous sub-

strate in the presence of an insoluble surfactant: Stability analysis. Phy. Fluids

25 (2), 022101 (1–26).

ANSHUS, BRYON. E. & ACRIVOS, A. 1967 The effect of surface active agents on

the stability characteristics of falling liquid films. Chem. Eng. Sci. 22 (3), 389–

393.

BANDARU, P. & KUMARAN, V. 2016 Ultra-fast microfluidic mixing by soft-wall

turbulence. Chem. Eng. Sci. 149, 156–168.

BANDYOPADHYAY, D., SHARMA, A. & SHANKAR, V. 2008 Instabilities and pat-

tern miniaturization in confined and free elastic-viscous bilayers. J. Chem. Phys.

128, 154909.

BASSOM, A. P., BLYTH, M. G. & PAPAGEORGIOU, D. T. 2012 Using surfactants

to stabilize two-phase pipe flows of core-annular type. J. Fluid Mech. 704, 333–

359.

BEATTY, M. F. & ZHOU, Z. 1991 Universal motion for a class of viscoelastic

materials of differential type. Continuum Mech. Thermodyn. 3, 169–191.

89



90 References

BENJAMIN, T. B. 1957 Wave formation in laminar flow down an inclined plane. J.

Fluid Mech. 2, 554–574.

BLYTH, M. G. & BASSOM, A. P. 2013 Stability of surfactant-laden core-annular

flow and rod-annular flow to non-axisymmetric modes. J. Fluid Mech. 716, 716

R13–12.

BLYTH, M. G. & POZRIKIDIS, C. 2004a Effect of surfactant on the stability of

flow down an inclined plane. J. Fluid Mech. 521, 241–250.

BLYTH, M. G. & POZRIKIDIS, C. 2004b Effect of surfactants on the stability of

two-layer channel flow. J. Fluid Mech. 505, 59–86.

BOYD, J. P. 1999 Chebyshev and Fourier Spectral Methods, 2nd edn. Springer-

Verlag.

CARVALHO, M. S. & SCRIVEN, L. E. 1997 Deformable roll coating flows: steady

state and linear perturbation analysis. J. Fluid Mech. 339, 143–172.

CASSIDY, K. J., HALPERN, D., RESSLER, B. G. & GROTBERG, J. B. 1999 Sur-

factant effects in model airway closure experiments. Journal of Applied Physiol-

ogy 87, 415–427.

CHANG, H.-C. & DEMEKHIN, E. A. 2002 Complex Wave Dynamics on Thin

Films. Amsterdam: Elsevier.

CHATTOPADHYAY, GEETANJALI & USHA, R. 2016 On the yih–marangoni insta-

bility of a two-phase plane poiseuille flow in a hydrophobic channel. Chem. Engg.

Sc. 145, 214–232.

CHEN, K. P. 1993 Wave formation in the gravity-driven low-Reynolds number flow

of two liquid films down an inclined plane. Phys. Fluids A 5 (12), 3038–3048.

CRASTER, R. V. & MATAR, O. K. 2009 Dynamics and stability of thin liquid

films. Rev. Mod. Phys. 81, 1131–1198.

DEMEKHIN, E. A., KALLIADASIS, S. & VELARDE, M. G. 2006 Suppressing

falling film instabilities by Marangoni forces. Phys. Fluids 18, 042111 (1–16).



References 91

DESTRADE, M. & SACCOCMANDI, G. 2004 Finite–amplitude inhomogeneous

waves in Mooney–Rivlin viscoelastic solids. Wave Motion 40, 251–262.

DRAZIN, P.G. & REID, W.H. 1981 Hydrodynamic Stability. Cambridge: Cam-

bridge University Press.

EGGERT, M. D. & KUMAR, S. 2004 Observations of instability, hysterisis, and

oscillation in low-Reynolds number flow past polymer gels. J. Colloid Interface

Sci. 274, 234–242.

FOSDICK, R. L. & YU, J. H. 1996 Thermodynamics, stability and non–linear

oscillations of viscoelastic solids – I. Differential type solids of second grade.

Int. J. Non–Linear Mech. 31, 495–516.

FRENKEL, A. L. & HALPERN, D. 2002 Stokes-flow instability due to interfacial

surfactant. Phys. Fluids 14, L45–L48.

GAO, P. & LU, X. 2007 Effect of surfactants on the inertialess instability of a two-

layer film flow. J. Fluid Mech. 591, 495–507.

GAUGLITZ, P.A & RADKE, C .J. 1988 An extended evolution equation for liquid

film breakup in cylindrical cappilaries. Chemical Engineering Science 43, 1457–

1465.

GAURAV & SHANKAR, V. 2007 Stability of gravity-driven free-surface flow past

a deformable solid layer at zero and finite Reynolds number. Phys. Fluids 19,

024105.

GAURAV & SHANKAR, V. 2009 Stability of fluid flow through deformable neo-

Hookean tubes. J. Fluid Mech. 627, 291–322.

GAURAV & SHANKAR, V. 2010a Role of wall deformability on interfacial instabil-

ities in gravity-driven two-layer flow with a free surface. Phys. Fluids 22, 094103.

GAURAV & SHANKAR, V. 2010b Stability of pressure-driven flow in a deformable

neo-Hookean channel. J. Fluid Mech. 659, 318–350.

GAURAV & SHANKAR, V. 2013 Manipulation of instabilities in core-annular flows

using a deformable solid layer. Phys. Fluids 25, 014104.



92 References

GAURAV & SHANKAR, V. 2015 Manipulation of interfacial instabilities by using a

soft, deformable solid layer. Sadhana 40 (3), 1033–1048.

GKANIS, V. & KUMAR, S. 2003 Instability of creeping Couette flow past a neo-

Hookean solid. Phys. Fluids 15, 2864–2471.

GKANIS, V. & KUMAR, S. 2005 Stabilty of pressure-driven creeping flows in chan-

nels lined with a nonlinear elastic solid. J. Fluid Mech. 524, 357–375.

GKANIS, V. & KUMAR, S. 2006 Instability of gravity-driven free-surface flow past

a deformable elastic solid. Phys. Fluids 18, 044103.

GOERKE, J. 1998 Pulmonary surfactant: functions and molecular composition.

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1408 (23),

79 – 89.

GOREN, S. L. 1961 The instability of an annular liquid thread. J. Fluid Mech. 12,

309–319.

GROTBERG, J. B. & JENSEN, O. E. 2004 Biofluid mechanics in flexible tubes.

Ann. Rev. Fluid Mech. 36, 121–147.

GAD-EL HAK, M. 2003 Drag reduction using compliant walls. In IUTAM sym-

posium on flow past highly compliant boundaries and in collapsible tubes (ed.

P. W. Carpenter & T. J. Pedley), chap. 9, pp. 191–229. The Netherlands: Kluwer

Academic.

HALPERN, DAVID & FRENKEL, ALEXANDER L 2003 Destabilization of a creep-

ing flow by interfacial surfactant: linear theory extended to all wavenumbers.

Journal of Fluid Mechanics 485, 191–220.

HALPERN, D & GROTBERG, JB 1993 Surfactant effects on fluid-elastic instabil-

ities of liquid-lined flexible tubes: a model of airway closure. J. Biomech Eng.

115 (3), 271–277.

HALPERN, D. & GROTBERG, J. B. 1992 Fluid-elastic instabilities of liquid-lined

flexible tubes. J. Fluid Mech. 244, 615–632.



References 93

HAMMOND, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid

surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech.

137, 363–384.

HAYES, M. A. & SACCOCMANDI, G. 2002 Finite–amplitude waves superimposed

on pseudoplanar motions for Mooney–Rivlin viscoelastic solids. Non Linear Me-

chanics 37, 1139–1146.

HOLZAPFEL, G. A. 2000 Nonlinear Solid Mechanics. Chichester, UK: John Wiley.

JAIN, A. & SHANKAR, V. 2007 Instability suppression in viscoelastic film flows

down an inclined plane lined with a deformable solid layer. Phys. Rev. E 76,

046314 (1–14).

JAIN, A. & SHANKAR, V. 2008 Elastohydrodynamic suppression of free-surface

instabilities in annular liquid film flow outside wires and inside tubes,. Ind. Engg.

Chem. Res. 47, 6473–6485.

JI, WEI & SETTERWALL, FREDRIK 1994 On the instabilities of vertical falling

liquid films in the presence of surface-active solute. J. Fluid Mech. 278, 297–

323.

JIANG, W. Y. & LIN, S. P. 2005 Enhancement or suppression of instability in a

two-layered liquid film flow. Phys. Fluids 17, 054105.

JOSEPH, D.D. & RENARDY, Y.Y. 1993a Fundamentals of Two-Fluid Dynamics :

Part 1, Mathematical Theory and Applications. New York: Springer-Verlag.

JOSEPH, D.D. & RENARDY, Y.Y. 1993b Fundamentals of Two-Fluid Dynamics :

Part 2, Lubricated Transport, Drops and Miscible Liquids. New York: Springer-

Verlag.

KARAPETSAS, G. & BONTOZOGLOU, V. 2013 The primary instability of falling

films in the presence of soluble surfactants. J. Fluid Mech. 729, 123–150.

KUMARAN, V. 1995 Stability of the viscous flow of a fluid through a flexible tube.

J. Fluid Mech. 294, 259–281.



94 References

KUMARAN, V. 2000 Classification of instabilities in flow past flexible surfaces.

Current Sci. 79, 766–773.

KUMARAN, V. 2003 Hydrodynamic stability of flow through compliant channels

and tubes. In IUTAM symposium on flow past highly compliant boundaries and

in collapsible tubes (ed. P. W. Carpenter & T. J. Pedley), chap. 5, pp. 95–118. The

Netherlands: Kluwer Academic.

KUMARAN, V. 2015 Experimental studies on the flow through soft tubes and chan-

nels. Sadhana 40 (3), 911–923.

KUMARAN, V., FREDRICKSON, G. H. & PINCUS, P. 1994 Flow induced instabil-

ity of the interface between a fluid and a gel at low Reynolds number. J. Phys. II

France. 4, 893–904.

KUMARAN, V. & MURALIKRISHNAN, R. 2000 Spontaneous growth of fluctua-

tions in the viscous flow of a fluid past a soft interface. Phys. Rev. Lett. 84, 3310–

3313.

KWAK, S. & POZRIKIDIS, C. 2001 Effect of surfactants on the instability of a

liquid thread or annular layer part i: Quiescent fluids. Int. J. of Multiphase Flow

27, 1–37.

LIN, S. P. 1967 Instability of liquid film flowing down an inclined plane. Phys.

Fluids 10, 308.

LIN, S. P. 1970 Stabilizing effects of surface-active agents on a film flow. AIChE

16 (3), 375–379.

LIN, S. P. & CHEN, J. N. 1997 Elimination of three-dimensional waves in a film

flow. Phys. Fluids 9, 3926–3928.

LIN, S. P., CHEN, J. N. & WOODS, D. R. 1996 Suppression of instability in a

liquid film flow. Phys. Fluids 8, 3247–3252.

MACOSKO, C.W. 1994 Rheology: Principles, Measurements, and Applications.

New York: VCH.



References 95

MAJUMDER, A., TIWARI A.K. KORADA K. & GHATAK, A. 2010 Microchannel

induced surface bulging of a soft elastomeric layer. Journal of Adhesion Science

and Technology 24, 26812692.

MALVERN, L. E. 1969 Introduction to the Mechanics of a Continuous Medium.

Englewood Cliffs, NJ: Prentice-Hall.

MATAR, O. K., CRASTER, R. V. & KUMAR, S. 2007 Falling films on flexible

inclines. Phys. Rev. E 76, 056301 (1–17).

MATAR, O. K. & KUMAR, S. 2004 Rupture of a surfactant-sovered thin liquid film

on a flexible wall. SIAM J. Appl. Math. 64 (6), 2144–2166.

MORROW, N. R. & MASON, G. 2001 Recovery of oil by spontaneous imbibition.

Current Opinion in Colloid and Interface Science 6, 321 – 337.

MUKHERJEE, R & SHARMA, A. 2015 Instability, self-organization and pattern

formation in thin soft films. Soft Matter 11, 8717–8740.

NEELAMEGAM, R., GIRIBABU, D. & SHANKAR, V. 2014 Instability of viscous

flow over a deformable two-layered gel: Experiments and theory. Phys. Rev. E

90, 043004 (1–13).

NEELAMEGAM, R. & SHANKAR, V. 2015 Experimental study of the instability of

laminar flow in a tube with deformable walls. Phys. Fluids 27, 024102 (1–18).

PATNE, R., GIRIBABU, D. & SHANKAR, V. 2017 Consistent formulations for sta-

bility of fluid flow through deformable channels and tubes. J. Fluid Mech. 827,

31–66.

PENG, J., JIANG, L. Y., ZHUGE, W. L. & ZHANG, Y. J. 2016 Falling film on a

flexible wall in the presence of insoluble surfactant. J. Eng. Math. 97, 33–48.

PENG, JIE, ZHANG, YANG-JUN & ZHUGE, WEI-LIN 2014 Falling film on flexible

wall in the limit of weak viscoelasticity. J. Non-Newtonian Fluid Mech. 210, 85

– 95.

PENG, J. & ZHU, K. 2010 Linear instability of two-fluid Taylor-Couette flow in

the presence of surfactant. J. Fluid Mech. 651, 357–385.



96 References

PEREIRA, ANTONIO & KALLIADASIS, SERAFIM 2008 Dynamics of a falling film

with solutal marangoni effect. Phys. Rev. E 78, 036312.

PICARDO, JASON R., RADHAKRISHNA, T. G. & PUSHPAVANAM, S. 2016 Solutal

marangoni instability in layered two-phase flows. J. Fluid Mech. 793, 280–315.

POZRIKIDIS, C. 2003 Effect of surfactants on film flow down a periodic wall. J.

Fluid Mech. 496, 105–127.

QUERE, D., DE RYCK, A. & RAMDANE, O. O. 1997 Liquid coating from a sur-

factant solution. Europhys. Lett. 37 (4), 305.

SAHU, S. & SHANKAR, V. 2016 Passive manipulation of free-surface instability

by deformable solid bilayers. Phys. Rev. E 94, 013111 (1–14).

SAMANTA, ARGHYA 2014 Effect of surfactants on the instability of a two-layer

film flow down an inclined plane. Phys. Fluids 26 (9), 094105.

SHANKAR, V. 2004 Stability of two-layer viscoelastic plane Couette flow past a

deformable solid layer. J. Non-Newtonian Fluid Mech. 117, 163–182.

SHANKAR, V. 2005 Stability of two-layer viscoelastic plane Couette flow past a

deformable solid layer: Implications of fluid viscoscity stratification. J. Non-

Newtonian Fluid Mech. 125, 143–158.

SHANKAR, V. 2015 Stability of fluid flow through deformable tubes and channels:

An overview. Sadhana 40 (3), 925–943.

SHANKAR, V. & KUMAR, L 2004 Stability of two-layer Newtonian plane Couette

flow past a deformable solid layer. Phys. Fluids 16, 4426–4442.

SHANKAR, V. & KUMARAN, V. 1999 Stability of non-parabolic flow in a flexible

tube. J. Fluid Mech. 395, 211–236.

SHANKAR, V. & KUMARAN, V. 2000 Stability of fluid flow in a flexible tube to

non-axisymmetric disturbances. J. Fluid Mech. 408, 291–314.

SHANKAR, V. & KUMARAN, V. 2001a Asymptotic analysis of wall modes in a

flexible tube revisited. Euro. Phys. J. B. 19, 607–622.



References 97

SHANKAR, V. & KUMARAN, V. 2001b Weakly nonlinear stability of viscous flow

past a flexible surface. J. Fluid Mech. 434, 337–354.

SHANKAR, V. & KUMARAN, V. 2002 Stability of wall modes in fluid flow past a

flexible surface. Phys. Fluids 14, 2324–2338.

SHANKAR, V. & SAHU, A. K. 2006 Suppression of instability in liquid flow down

an inclined plane by a deformable solid layer. Phys. Rev. E 73, 016301 (1–12).

SHRIVASTAVA, A., CUSSLER, E. L. & KUMAR, S. 2008 Mass transfer enhance-

ment due to a soft elastic boundary. Chem. Engg. Sc. 63, 4302–4305.

SQUIRES, T. M. & QUAKE, S. R. 2005 Microfluidics: Fluid physics at the nano-

liter scale. Rev. Mod. Phys. 77, 977–1026.

STONE, H. A. 1990 A simple derivation of the time-dependent convective-diffusion

equation for surfactant transport along a deforming interface. Phys. Fluids A:

Fluid Dynamics 2 (1), 111–112.

TOMAR, DHARMENDRA S., BAINGNE, MAHENDRA & SHARMA, GAURAV 2017

Stability of gravity-driven free surface flow of surfactant-laden liquid film flowing

down a flexible inclined plane. Chemical Engineering Science 165, 216 – 228.

VERMA, M.K.S., MAJUMDER A. & GHATAK, A. 2006 2006 Embedded

template-assisted fabrication of complex microchannels in pdms and design of

a microfluidic adhesive. Langmuir 22, 10291–10295.

VERMA, M. K. S. & KUMARAN, V. 2012a A dynamical instability due to fluid-

wall coupling lowers the transition Reynolds number in flow through flexible

tube. J. Fluid Mech. 705, 322–347.

VERMA, M. K. S. & KUMARAN, V. 2012b A dynamical instability due to fluid-

wall coupling lowers the transition Reynolds number in the flow through a flexi-

ble tube. J. Fluid Mech. 705, 322–347.

VERMA, M. K. S. & KUMARAN, V. 2013a A multifold reduction in the transition

Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical

instability induced by a soft wall. J. Fluid Mech. 727, 407–455.



98 References

VERMA, M. K. S. & KUMARAN, V. 2013b A multifold reduction in transition

Reynolds number, and ultra fast mixing, in a micro-channel due to dynamical

instability induced by soft wall. J. Fluid Mech. 727, 407–455.

WEI, H., H. 2007 Role of base flows on surfactant-driven interfacial instabilities.

Phys. Rev. E 75, 036306.

WEI, H-H 2005a Effect of surfactant on the long-wave instability of a shear-

imposed liquid flow down an inclined plane. Phys. Fluids 17, 012103.

WEI, H-H 2005b Stability of a viscoelastic falling film with surfactant subjected to

interfacial shear. Phys Rev E 71, 066306.

WEIDEMAN, J. A. & REDDY, S. C. 2000 A Matlab differentiation matrix suite.

ACM Trans. Math. Software 26, 465–519.

WENSTEIN, S. J. & RUSCHAK, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech.

36, 29–53.

WHITAKER, STEPHEN 1964 Effect of surface active agents on the stability of

falling liquid films. Ind. Eng. Chem. Fun. 3 (2), 132–142.

WHITAKER, STEPHEN & JONES, L. O. 1966 Stability of falling liquid films. effect

of interface and interfacial mass transport. AIChE 12 (3), 421–431.

YIH, C.-S 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6,

321–334.

YIH, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337–

350.

ZHOU, ZHI-QIANG, PENG, JIE, ZHANG, YANG-JUN & ZHUGE, WEI-LIN 2014

Instabilities of viscoelastic liquid film coating tube in the presence of surfactant.

J. Non-Newtonian Fluid Mech. 204, 94 – 103.


