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Abstract 

The thesis entitled “Regioselective synthesis of -hydroxy sulfides, spirooxindoles and 

benzylidene succinimide-tethered propanones scaffolds” is divided into three chapters, viz. (i) 

Introduction, (ii) Objectives, Results and Discussion, and (iii) Experimental. 

Chapter 1: Introduction 

Regioselective synthesis has always been the point initial concern as this affects the 

outcome of nearly all kind of reactions involving carbon–carbon and carbon–heteroatom bond 

formation formation. Consequently, it is attracting much attention since last few decades. Various 

methods have been developed for the synthesis of CC and C bonds. However, some 

protocols involve transition metals, expensive reagents or additives and therefore this area is still 

under exploration to develop environment friendly strategies for the construction of important 

scaffolds having biologically significant moieties like oxindoles, spirooxindoles and biaryls. 

There have been many synthetic protocols such as radical addition, cycloaddition, Michael 

addition and domino reactions to construct CC and CX bonds. A few of such strategies have 

been employed successfully to access useful scaffolds such as -hydroxy sulfides, benzylidene 

succinimide-tethered propanones, spirooxindoles which are having significance similarities to 

bio-active scaffolds. 

Chapter 2: Objectives, Results and Discussion 

This chapter deals with the objectives, results and discussion which are divided into four sections. 

2.1.  Synthesis of substituted -hydroxy sulfides 

 we have developed a metal-free, green and environmentally friendly, highly 

regioselective method for the synthesis of -hydroxy sulfides in good to excellent yields from 

styrenes and thiophenols using an inexpensive, nontoxic and eco-friendly iodine/DMSO system. 

The reaction involves single step CS and CO bonds construction. The results obtained from 

iodine-mediated synthesis of various sulfur containing compounds are presented here. 



 

iv 

 

 

Figure 18: Iodine-catalyzed synthesis of -hydroxy sulfides. 

2.2. Synthesis of highly substituted spirooxindolic-cyclopentanes via [3 + 2] 

cycloaddition reactions 

We have successfully demonstrated a DBU-catalyzed regioselective synthesis of a series 

of spirooxindoles via a [3 + 2] cycloaddition strategy using mild reaction conditions. The current 

rapid protocol offers valuable fully substituted cyclopentanes with five contiguous stereocenters 

in good yields with excellent diastereoselectivity in regioselective manner from easily accessible 

starting materials. Moreover, this methodology is simple and does not require purification steps 

such as recrystallization and column chromatography. 

 

Figure 19: DBU-catalyzed highly diastereoselective synthesis of substituted spirooxindoles. 

2.3. Synthesis of benzylidene succinimide-tethered propanones via Michael addition 

reactions 

We have illustrated a novel approach to access benzylidene succinimide-tethered 

propanones via an efficient, metal-free, base mediated protocol. The present work involves a 

simple Michael addition strategy of 3-benzylidene succinimides as a readily available 
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nucleophile source for chalcones through C–C bond formation. All the products were obtained 

in good yields with excellent regeo- and diastereoselectivity and the products can be obtained 

just by simple filtration followed by simple washing with ethanol.  

 

Figure 20: DBU-calalyzed highly diastereoselective synthesis of benzylidene succinimide-

tethered propanones. 

 

2.4. Synthesis of highly conjugated xanthene-tethered unsymmetrical biarylic 

spirooxindoles via domino reactions 

 We investigated Brønsted acid assisted domino ring opening cyclization between 

donoracceptor cyclopropanes and -naphthols. The protocol involves the construction of three 

CC and one CO bonds during the course of reaction in one-pot manner to furnish the highly 

conjugated biaryl-xanthene-spirooxindoles hybrid with one quaternary carbon atom 

regioselectively.  



 

vi 

 

 

Figure 21: Triflic acid mediated synthesis of xanthene-tethered biarylic spirooxindoles. 

Chapter 3: Experimental 

The third chapter provides experimental procedures in detail along with physical and 

spectroscopic data such as MP, yield, 1H and 13C NMR and mass spectral data. 
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1. Introduction 

Organic synthesis is a branch of synthetic chemistry that belongs to building of 

organic frameworks [1]. The first ever report in the history available is the synthesis of 

natural product urea from ammonium isocyanate by Wöhler in 1828, and the journey of 

never ending development of organic chemistry started. In 1856, Perkin synthesized the first 

industrial organic product i.e. mauveine (aniline purple) which replaced the natural dye, 

Tyrian purple (at the time cost more than gold) [2]. Organic chemistry connects to medicinal 

world via medicinal chemistry, also involves many important areas of research such as total 

synthesis, semisynthesis and methodology development. 

  

  

  

 

 

 

 

 

 

 

 

Figure 1: Areas of research in organic chemistry. 

Total synthesis this is one of the outstanding fields of organic synthesis which deals 

with the synthesis of targeted chemical architectures. Total synthesis may be achieved 

through linear synthesis or convergent approach in several steps to furnish the desired 

product [3]. 

Semisynthesis involves the synthesis of novel organic scaffolds with distinct 

chemical and medicinal properties from the precursors isolated from natural resources. This 

may involve the synthesis of complex structures. It is very useful in drug discovery and 

cheaper than total synthesis with less number of steps.  

 

Organic 

Synthesis 

Total synthesis 
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Methodology development is all about accomplishment of the reactions to deliver 

easy to handle protocols for the synthesis of early synthetic intermediates or some useful 

compounds with high yields and broad substrate scope after the testing of various conditions 

of temperature, solvent, reaction time [4].   

Stereoselective synthesis involves the construction of pure isomers by using 

specially designed catalysts. Historically, asymmetric synthesis was accomplished in two 

ways: synthesis followed by resolution.  This technique provides synthetic approach to 

access pure enantiomers without the need of any resolution which was a big challenge in 

early 2000s. 

Synthetic design was first reported by Elias James Corey. It is a formal approach 

about planning a synthesis before carrying it out. In this method a backward synthesis is 

planned from the product to simple precursors, using a set of rules in such a way that makes 

the synthesis achievable [5]. 

1.1.  Isatin & Oxindole 

Isatin, also known as tribulin, indoline-2,3-dione or indole-1H-2,3-dione (Figure 2), is a 

time-honored natural product found in the plants of genus Isatis, Calanthe discolor and in 

Couroupita guianensis Aubl. It was first synthesized by the oxidation of indigo dye by 

Erdman and Laurent in 1840, and its present structure was proposed by Kekule (Scheme 1). 

Isatin can be found in mammalian tissues, metabolic derivative of adrenaline [6]. It forms a 

blue dye known as blue indophenin when mixed with sulfuric acid and crude benzene [7].  

 

Figure 2: Structures of isatin and oxindole. 

One of its derivatives known as oxindole having carbonyl functionality at second position 

in the five membered cyclic system (Figure 1), found in Uncaria tomentosa and in body 

fluids [8]. Oxindoles are found as integral part in many important natural products and 

biologically privileged scaffolds [913].  
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Scheme 1: First synthesis of isatin. 

Isatin and its analogoues have become an important field of research especially in organic 

and medicinal chemistry because of interesting findings, which uncovered their potential as 

antioxidant, antitubercular, antitumor, antimicrobial, antidepressant, cytotoxic, antiviral, 

spermicidal, anticonvulsant, anti-corrosive, antiepileptic, and analgesic properties in recent 

years [14] (Figure 3). 

    

         Figure 3: Medicinally important isatin and oxindole scaffolds. 
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In 2017, our group established the synthesis of highly substituted polyheterocyclic pyrroles 

from 3-ylidene oxindoles and benzoxazines in the presence of iodine in a highly 

regioselective manner. The protocol works under mild conditions and products can be 

isolated by simple filtration in good to excellent yields, making this an environmentally 

benign methodology. This one-pot protocol is highly atom economic and involves the 

formation of contiguous CC and CN bonds through a cascade approach [28] (Scheme 2). 

 

Scheme 2: Synthesis of multisubstiuted pyrroles. 

Dai et al. introduced a novel bis-phosphoric acid catalyst for the synthesis of 3′-

pyrrolidinyldispirooxindole via 1,3-dipolar cycloadditions through dual activation strategy. 

The spirooxindole products were synthesized in a highly stereoselective fashion from isatin-

derived azomethine and methyleneindolinones in excellent enantioselectivity [29] (Scheme 

3). 

 
Scheme 3: Construction of 3,3-pyrrolidinyldispirooxindoles. 

Mitsuya and co-workers discovered oxindole derived novel HIV-1 protease inhibtors. After 

design and synthesis of spirocyclic systems with different substituents and ring sizes, they 

evaluated anti HIV-protease activity of the products. They also investigated the potency of 

spiro oxyindoles systems as P20-ligands and found that acyclic inhibitors are considerably 

more potent than their cyclic counterparts [30] (Scheme 4). 

 
Scheme 4: Synthesis of oxindole-derived protease inhibitors. 
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Jesudason and co-workers revealed a series of oxindole b3 adrenergic receptor agonists. 

They carried out multistep synthesis from 4-methoxyindolin-2-one leading to the formation 

of 3-isopropyloxindole derivatives followed by structure activity relationship studies and 

evaluated the effect of steric bulk in the 3-position of oxindole in modulating rat atrial 

tachycardia in vitro [31] (Scheme 5). 

 

Scheme 5: Synthesis of b3 adrenergic receptors agonists. 

Babu et al. explored [3 + 2] cycloaddition reactions for the synthesis of dispiro-

oxindolopyrrolidines and dispiro-pyrrolizidines in the presence of solid supported zirconium 

oxychlorideoctahydrate catalyst. The protocol delivered the products in high regio- and 

stereo-selectivity under mild set of reaction conditions from acenaphthenequinone, 

sarcosine and L-prolineand 3-ylidene oxindoles in good yields [32] (Scheme 6). 

 

Scheme 6: ZrOCl2.8H2O mediated synthesis of novel dispiroheterocycles. 

Our group demonstrated the sulfenylation of 3-hydroxy bisindoles in the presence of p-

TSA.H2O. The methodology provides an environmentally benign catalytic approach 

through SN
1 catalytic pathway regioselectively to furnish C-3 substituted oxindoles. The 

mechanism is further supported by theoretical studies. All the products were obtained in 

excellent yield [33] (Scheme 7). 
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Scheme 7: p-TSA·H2O-catalyzed C-3 functionalization of 3-hydroxy bisindoles. 

Shin and co-workers reported the total synthesis of gliocladin C starting from simple 

substrate like isatin. The protocol was designed and executed in 21 steps including 

enantioselective Mukaiyama aldol reaction with overall yield of 4% and well-established 

absolute configuration at stereogenic centers. This was the first report for the synthesis of 

this marine alkaloid derived from fungas [34] (Scheme 8). 

 

Scheme 8: Total Synthesis of (+)-gliocladin C. 

Mei et al. disclosed the synthesis of spirooxindoles from N-protected isatins and 

vinylcyclopropanes in the presence of Pd2(dba)3 and imidazoline-phosphine as a novel 

ligand to furnish the products in excellent diastereo- and enantioselectivities with good 

yields. The reaction followed [3 + 2] cycloaddition and the product was utilized further to 

carry out important conversions [35] (Scheme 9). 

 

Scheme 9: Palladium-catalyzed [3 + 2]-cycloaddition of vinyl cyclopropanes. 

1.2.  Domino reactions 

The domino reaction follows a sequence of transformations resulting in the formation of 

two or more bonds (usually CC) through the involvement of the functionalities generated 

under the reaction conditions without adding any other promoter in one-pot manner. It is 

obvious that environment friendly protocols are in great demand and hence an exponential 

increase in utilization of this concept have been observed in the last few decades [36, 37]. 
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Domino reactions are broadly divided into 5 types:  

1. Electrophilic domino reactions 

2. Nucleophilic domino reactions 

3. Radical domino reactions 

4. Pericyclic domino reactions 

5. Transition metal catalyzed domino reactions  

In 1992 Heathcock performed the total synthesis of dihydro-proto-daphniphylline using 

enamine-iminium ion chemistry [38]. In 1999 Corey revealed the total synthesis of ()-

aspidophytine utilizing the same concept [39]. Later the same group reported the total 

synthesis of glabrescol by sequential epoxide openings [40]. In 2003, Holton displayed the 

total synthesis of hemibrevetoxin B by epoxy-olefin cyclization in a domino fashion [41]. 

Qin and co-workers reported total synthesis of (+)-perophoramidine in 2010 [42]. As 

domino reactions are helpful to carry out multistep syntheses in a single pot and therefore 

directly affect the usage of solvents, reagents, energy as well as the human labour [4350]. 

Sherburn and co-workers reported the synthesis of nicandrenone, an insect repellent and 

antifeedant agent. The domino strategy involved intramolecular Diels-Alder reactions in the 

formation of four rings in a sequential manner. This Lewis acid mediated approach allowed 

creation of high molecular complexity in one single step [51] (Scheme 10). 

 

Scheme 10: Construction of tetracyclic nicandrenone scaffolds. 

Our group demonstrated Michael addition initiated domino strategy to accomplish the 

synthesis of biologically important coumarin aryl sulphides from p-benzoquinones and 

thiophenols. All the products were obtained in good to excellent yields and the observed 

regioselectivity was further supported by theoretical studies [52] (Scheme 11). 

 
Scheme 11: Synthesis of coumarin aryl sulfides through domino strategy. 
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Zhang et al. reported SnCl4 promoted domino approach for the synthesis of furoquinoline 

derivatives, a class of useful bioactive scaffolds known for their wide pharmacological 

profiles. The strategy utilized the doubly activated cyclopropanes to undergo ring-

opening/recyclization in highly chemo- and regioselective manner [53] (Scheme 12). 

 

Scheme 12: Synthesis of furo[2,3-b]quinolones. 

Wang and co-workers disclosed cobalt catalysed protocol for the highly regioselective 

synthesis of carbazole scaffolds via CH activation strategy of indoles followed by domino 

annulation reaction with diynes. This reaction displayed broad substrate scope and high 

functional group compatibility [54] (Scheme 13). 

 

Scheme 13: Co-catalyzed regioselective synthesis of cyclopenta[b]carbazoles. 

Our group reported the synthesis of highly substituted complex pyrrolobenzoxazines from 

aroylmethylidene malonates and benzoxazinones in the presence of FeCl3. The presented 

protocol showing high functional group tolerance with wide substrate scope and furnished 

the desired products in high yields with excellent regioselectivity [55] (Scheme 14). 

 

Scheme 14: FeCl3 mediated synthesis of pyrrolobenzoxazine derivatives. 

Hu et al. explored a domino strategy to accomplish the synthesis of pyrrolo[3,4-c]quinolines 

in the presence of sodium hydroxide from aminochalcones and tosylmethyl isocyanides. The 

reaction involves the formation of three bonds and two rings during the course of reaction 

with high selectivity via formal [3 + 2] cycloadditon/cyclization [56] (Scheme 15). 
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Scheme 15: NaOH promoted synthesis of pyrrolo[3,4-c]quinolones. 

Li et al. reported the syntheses of multifunctionalized cyclopentanes, cyclohexanes and 

hexahydro-1H-inden-4(2H)-ones from electron‐deficient enynes and malonate-derived ,-

unsaturated esters/ketones. The reaction involved base-catalysed stereoselective domino 

transformations [57] (Scheme 16). 

 

Scheme 16: Base-catalyzed synthesis of multi-functionalized cyclopentanes. 

Guan and co-workers established a novel biocatalytic strategy for the synthesis of 

spirocyclicoxindole systems from isatin, malononitrile and benzalacetone. The use of pepsin 

from porcine, makes the protocol environment friendly and makes the reaction to move on 

a domino path via a series of Knoevenagel/Michael/Michael reactions furnishing the 

products with yields up to 99% with excellent diastereoselectivity with a wide substrate 

scope [58] (Scheme 17). 

 

Scheme 17: Porcine pepsin catalyzed synthesis of spirooxindoles. 

Satyanarayana and co-workers introduced a metal-free strategy for internal hydrogen 

transfer for the synthesis of alkylated ketones from allylic alcohols and styrenes in the 

presence of KOtBu. The protocol utilizes domino isomerization and alkylation through in 

situ generated ketones in a domino fashion and furnished the desired products in good yields 

[59] (Scheme 18). 

 

Scheme 18: KOtBu-promoted synthesis of alkylated ketones. 
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1.3. Donor-acceptor (D-A) cyclopropanes 

Cyclopropanes are very high in energy, having ring strain of nearly 115 kJmol-1 and are 

kinetically inert. These molecules are less likely to give up their ring structures [60]. To 

utilize the ring strain of cyclopropanes in a flourishing way, electron-donating and electron-

accepting groups were attached to it, thus a new term evolved, so called donor-acceptor (D-

A) cyclopropanes. It was first introduced by Reissig in 1980s, however activated 

cyclopropanes carried only electron accepting groups were known in 1960s and 1970s [61]. 

Their high reactivity profile might be well understood in terms of 1,3-zwitterionic 

relationship. These molecules are under intense consideration to carry out various 

enantioselective transformations, domino reactions because of their key role in total 

syntheses of various natural products [6264]. 

Biju and co-workers reported the Lewis acid catalysed tunable reactivity of cyclopropanes 

while treating with 2-naphthols. The protocol leads to the formation of naphthalene-fused 

cyclopentanes when treated in the presence of Bi(OTf)3 and functionalized 2-naphthols 

when Sc(OTf)3 was used as a promoter. All the product were furnished in good to high 

yields with high regioselectivity [65] (Scheme 19). 

 

Scheme 19: Bismuth-catalyzed dehydrative [3 + 2] cyclopentannulation. 

Riahi et al. revealed the regioselective synthesis of 3-aryl-4-(chloroethyl)phenols by treating 

1,3-bis(silyloxy)-1,3-butadienes and 1-benzoyl-1-formylcyclopropane in the presence of 

TiCl4. The reaction underwent in domino fashion through regioselective [3 + 3] cyclization 

and homo-Michael reactions [66] (Scheme 20). 

 

Scheme 20: TiCl4-mediated synthesis of 6-aryl-5-(chloroethyl)salicylates. 

Ghorai and co-workers explored domino ring-opening cyclization (DROC) strategy of 

donor-acceptor cyclopropanes for the construction of carbocyclic from activated 

cyclopropanes in the presence of sodium hydride and Yb(OTf)3. The reaction produced 4,5-

dihydropyrroles as final products when the D-A cyclopropanes were treated with 
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malononitrile via DROC however, reaction followed DROC/decarboxylative 

tautomerization with 2-benzylmalononitrile  leading to the formation of enaminonitriles and 

β-enaminoesters and the authors also presented the enantioselective variants of the above 

strategies [67] (Scheme 21). 

 

Scheme 21: Syntheses of enaminonitriles and β‑enaminoesters. 

Huang et al. utilized the activating capability of Lawesson’s reagent to carry out the 

synthesis of thieno[3,2-c]pyridines derivatives. The protocol involves one-pot three-step 

synthesis via sequential reactions in presence of DDQ as oxidant from simple substrate [68] 

(Scheme 22). 

 

Scheme 22: Synthesis of thieno[3,2-c]pyridinones. 

Ivanova et al. established a novel route for the synthesis of polyoxygenated indanes and 

cyclopentannulated heteroarene derivatives and these products were revealed as good 

cytotoxic agents while being non-toxic to normal cells. Acid catalyzed protocols with easy 

handling and excellent control over chemo-, regio- and diastereoselectivity [69] (Scheme 

23). 
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Scheme 23: Synthesis of indanes and cyclopentannulated hetarenes. 

Huang et al. triflic anhydride mediated domino reaction to excess 2,3-dihydrofuro[3,2-

c]pyridin-4(5H)-ones from 1-carbamoyl-1-dimethylaminoalkenoylcyclopropanes in DMF. 

The protocol involves a sequence of formylation, intramolecular cyclization followed by 

ring-enlargement [70] (Scheme 24). 

 

Scheme 24: One-pot synthesis of 2,3-dihydrofuro[3,2-c]pyridin-4(5H)-ones. 

1.4. Synthesis of -hydroxy sulfides 

Carbonheteroatom bond formation has been a highly flourishing field in the recent time 

because of its tremendous applications in organic synthesis. A large number of reactions 

known for their construction and most of them utilize transition metal catalysis. Therefore, 

this field is under further exploration to develop green synthetic protocols [7174]. 

Synthesis of -hydroxyl sulfides most likely involves the construction of CS or CO bonds 

or both. Such scaffolds have been integral part of leukotrienes such as LTC4, LTD4 and 

LTE4, eicosanoid inflammatory mediators produced in leukocytes, which makes it more 

interesting for synthetic chemists [75, 76] (Figure 4). There have been many reports known 

in the literature for the synthesis of -hydroxy sulfides and some of them are described here. 
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Figure 4: Structures of leukotrienes LTC4, LTD4 and LTE4 having -hydroxy sulfide core. 

Vaccaro and co-workers reported the diasteroselective and regioselective synthesis of 

benzo[e]1,4-oxathiepin-5-ones under solvent-free conditions by nucleophilic ring opening 

of 1,2-epoxides with thiosalycilic acid in a one-pot manner with very good yields. 

Thiosalicylic acid itself activated the reaction with anti-stereoselectivity. Catalyst-free neat 

reaction conditions make this protocol atom-economical and environmentally benign [77] 

(Scheme 25). 

 

Scheme 25: One-pot synthesis of benzo[e]1,4-oxathiepin-5-ones. 

Surendra et al. for the first time utilized cyclodextrin (CD) to excess -hydroxysulfides 

directly from alkenes. CD being nontoxic and safe from metabolic point of view, this 

protocol is environmental friendly. Further the reaction was carried out under mild 

conditions in water as solvent with short reaction time and high selectivity. The method has 

become more economical by recycling the catalyst to generate the products in high 

efficiency [78] (Scheme 26). 
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Scheme 26: Cyclodextrin catalyzed synthesis of -hydroxy sulfides.  

Rajendar and co-workers developed the first of its kind activation of inert alkenes using an 

ionic liquid for the construction of -hydroxy sulfides from the reaction of terminal olefins 

and alkenes. These ionic liquid-catalyzed reaction makes available a green strategy by 

avoiding the use of heavy metals, Lewis acids also obviates aqueous workup for the isolation 

of the desired products with high selectivity with a recyclable catalyst [79] (Scheme 27). 

 

Scheme 27: liquid [bmim][BF4] mediated synthesis of -hydroxy sulfides. 

Navidi and co-workers used thiolate anions in the reaction with styrenes for the synthesis of 

-hydroxy sulfides. The reactions proceeded regioselectively in an anti-Markovnikov 

fashion under mild conditions leading to terminal olefin functionalization in short reaction 

time with simple precursors [80] (Scheme 28). 

 

Scheme 28: Zn/AlCl3 promoted synthesis of -hydroxy sulfides. 

Lanke et al. performed CS bond construction under metal-free conditions using Amberlyst-

15© reusable catalyst. The catalyst was reported to work up to five consecutive cycles 

effectively, without any loss in its activity, with high atom economy leading to the formation 

of diorganyl sulfides, β-hydroxy sulfides and phenyl(styryl)sulfanes in good to excellent 

yields regioselectively by anti-Markovnikov addition of thiols to alkenes and thiolysis of 

1,2-epoxides [81] (Scheme 29). 

 

Scheme 29: Amberlyst-15 mediated anti-Markovnikov addition of thiols to alkenes/alkynes. 
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Singh et al. demonstrated an efficient synthesis of β-keto sulfones and β-hydroxy sulfides 

from olefins and thiophenols using silver nitrate as catalyst in one-pot operation. The 

protocol involves formation of CO, CS and SO bonds through radical pathway followed 

by oxidation [82] (Scheme 30). 

 

Scheme 30: AgNO3 catalysed synthesis of β-hydroxy sulfides. 

Li and co-workers displayed a novel synthesis of β-alkoxy methyl sulfides via NH4I-

mediated three-component oxysulfenylation reaction. The reaction shows broad substrate 

scope with easily affordable starting materials such as styrenes, DMSO and alcohols. 

Preliminary mechanistic studies were performed using TEMPO and BHT to ensure the 

radical pathways being followed through the course of reaction [83] (Scheme 31). 

 

Scheme 31: NH4I‑promoted synthesis of β‑alkoxy methyl sulfides. 

Zou and co-workers carried out difunctionalization of alkenes by the reaction of aryl thiols 

with styrenes in presence of TBHP at room temperature without using any additive. Aerial 

oxygen was used as the only source of oxygen to afford hydroxyl sulfurization products in 

one-pot fashion in high yields [84] (Scheme 32). 

 

Scheme 32: tert-Butyl hydroperoxide mediated thiol−oxygen co-oxidation (TOCO) for 

hydroxysulfurization of styrenes. 

Yadav and co-workers have developed a rongalite promoted synthesis of -hydroxy sulfides 

from styrenes and disulfides under air at room temperature via a radical pathway leading to 

the desired product formation in good to excellent yields with high selectivity. Use of cheap 

promotor makes this protocol more economic [85] (Scheme 33). 

 

Scheme 33: Rongalite based aerobic hydroxysulfenylation of styrenes. 
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Wang et al. reported the synthesis of -oxysulfoxides and -hydroxy sulfides, the protocol 

provide switchable selectivity, scalable synthesis with a metal-free approach avoiding the 

use of any additive for the transformation. Mechanistic investigations were performed to get 

an insight of the reaction which explained the switchable selectivity of the presented work 

[86] (Scheme 34). 

 

Scheme 34: Solvent enabled selective synthesis of -oxysulfoxides and -hydroxy sulfides. 

Edrisi and co-workers studied the epoxides ring opening on treatment with aryl thiols in the 

presence of choline hydroxide, a biodegradable ionic liquid, which makes the protocol 

environmental friendly leading to the formation of -hydroxy sulfides in excellent yields 

and short reaction time [87] (Scheme 35). 

 

Scheme 35: Choline hydroxide mediated thiolysis of epoxides. 

1.5. Synthesis of spirooxindoles 

Oxindole moiety having spirocyclic system on C-3 position have a fascinating role in 

medicinal and natural products chemistry because of its presence in large number in bio-

active scaffolds [88102]. Therefore, it has been an important field of exploration in 

synthetic organic chemistry. Some of the recent examples involving construction of 

spirooxindolic systems are described here.  
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Figure 5: Some biologically important spirooxindoles.  

Trost et al. disclosed rapid synthetic routes for the synthesis of spirocyclic oxindole 

alkaloids marcfortine B and marcfortine C through cycloadditions involving intramolecular 

Michael addition followed by radical cyclization. The reaction provides the spirooxindoles 

in excellent diastereo- and enantio-selectivity. Marcfortine B was synthesized in 25 steps 

and marcfortine C in 19 steps. A novel methodology for the functionalization of exocyclic 

olefin with an oxaziridine and a triethylaluminum promoted reduction of a nitrile selectively 

[103] (Scheme 36). 

 
Scheme 36: Synthesis of marcfortine B and marcfortine C. 
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Silverman and co-workers reported [3 + 2] cycloaddition reaction for the synthesis of 

spirocyclic oxindolic cyclopentanes. The protocol works in the presence of palladium-

catalyst with cyano-substituted Pd-TMM-complexes. Remarkably, different ligands were 

suggested to provide a set of complementary cycloadducts with opposite 

diastereoselectivity. The mild reaction conditions lead to the arrays of up to three stereo-

centers in excellent diastereo- and enantio-selectivity [104] (Scheme 37). 

 

Scheme 37: Transition metal-catalyzed [3 + 2] cycloaddition to construct spirooxindoles. 

Quintavalla and co-workers discovered the first ever synthesis of five- and six-membered 

-nitro spirocarbocyclic oxindoles. Bifunctional thioureas were used to activate the reaction 

between 2-(2-oxoindolin-3-ylidene)acetic esters and nitroenoates in a Michael–Michael 

cascade fashion with a [4 + 2] or [3 + 2] spiroannulation for the formation of diversified 

polyfunctional spirocyclohexane derivatives with good yield and excellent diastereo and 

enantio-selectivity [105] (Scheme 38). 

 

Scheme 38: Spiroannulations of 2-(2-oxoindolin-3-ylidene)acetic esters. 

Shang and co-workers revealed chiral quaternary phosphonium salt as a novel catalyst to 

carry out a double Michael cascade reaction for the synthesis of spirocyclic oxindoles in 

good to excellent yields and high stereoselectivities [106] (Scheme 39). 

 

Scheme 39: Phosphonium salt catalyzed synthesis of spirooxindoles. 
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Sarpong and co-workers disclosed isolation and the total synthesis of prenylated indole 

alkaloid in their laboratory by following a disconnection approach. Starting the synthesis 

from a simple substrate i.e. D-proline and successfully accomplished the synthesis of desired 

ent-citrinalin B in 19 steps and cyclopiamine B in 21 steps. The biosynthetic consideration 

of the protocol brought highlights on the bicyclo[2.2.2]diazaoctane as an important 

precursor for the above mentioned transformation and established the structures of these 

metabolites [107] (Scheme 40). 

 

Scheme 40: Synthesis of citrinalin B intermediate. 

Williams and co-workers carried out the total synthesis of each enantiomer of versicolamide 

B by developing the first ever experimental support for the biogenetic hypothesis that 

versicolamide B possibly arisen from IMDA reaction of an oxindolic substrate [108] 

(Scheme 41).  

 

Scheme 41: Total synthesis of versicolamide B. 

Mundal et al. established a strategy to construct the core of citrinadin natural products in 

racemic form by involving a methoxy pyridine alkylation, which evolved as an opportu-nity 

for the synthesis of fully substituted pentacyclic core of citrinadin [109] (Scheme 42). 

 

Scheme 42: Synthesis of the pentacyclic carbon skeleton of the citrinadin.  
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Marinetti and co-workers investigated phosphine based organocatalysts for the [3 + 2] 

cycloaddition of 2,3-butadienoate and (E)-3-benzylideneindolin-2-ones with excellent 

stereoselectivity to furnish spiroxindolic core containing two contiguous stereocentres, 

including one quaternary centre in good yield with high enantioselectivity [110] (Scheme 

43). 

 

Scheme 43: Phosphine mediated synthesis of spirooxindoles. 

Zhao et al. successfully demonstrated bifunctional tertiary amine–squaramide catalysed 

chiral synthesis of spirooxindoles and also showcased one-pot four-component reaction. 

Reaction underwent double Michael reactions in a cascade manner and generating the 

desired products with excellent diastereoselectivity and enantioselectivity [111] (Scheme 

44). 

 

Scheme 44: Bifunctional squaramide-catalyzed synthesis of spirooxindoles. 

1.6. Michael addition in organic synthesis 

Michael reaction or Michael addition was first proposed by Arthur Michael in 1887. It is 

one of the most-frequently used methods for the construction of CC bonds in organic 

chemistry. It involves the nucleophilic addition of carbanion or another nucleophile 

(commonly known as Michael donor) to an ,-unsaturated compound [112]. There has 

been extensive use of Michael addition in carrying out important conversions. Matsunaga 

and co-workers disclosed the total synthesis of chimonanthine, folicanthine, and 

calycanthine [113]. In 2012, Liu et al. reported the total synthesis of ()-chimonanthine, and 

in 2013, Yao’s group revealed the total synthesis of lycopodium alkaloids [114,115]. 

Nagorny and co-workers displayed the total synthesis of cannogenol-3‑O‑α‑L‑rhamnoside 
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[116]. Many other reports are available in literature on the synthesis of target compounds 

that were achieved by employing Michael addition concept. 

 

Scheme 45: General Michael addition reaction. 

Jebari et al. described the synthesis of several iron oxides nanoparticles and used them as 

catalyst to access CC bond formation through Michael addition of 1,3-dicarbonyl 

compounds onto methyl vinyl ketone under neat conditions. On optimization, they found 

potential catalytic activity as 1 mol% loading was sufficient to furnish the desired products 

in good to excellent yields [117] (Scheme 46). 

 

Scheme 46: Fe2O3-catalyzed Michael addition between keto ester and vinyl ketones. 

Sala and co-workers demonstrated the first arylogous Michael addition of 3-aryl phthalides 

with chalcones in the presence of catalytic amount of KOH or K3PO4 and dibenzo-18-

crown-6. The reaction proceeds under mild conditions to generate single diastereomers 

nearly in all cases in good to high yields [118] (Scheme 47). 

 

Scheme 47: Crown ether catalysed synthesis of 3,3-disubstituted phthalides. 

Zhang et al. showcased quinine-derived bifunctional thiourea tertiary amine as a catalyst to 

carry out Michael addition of azalactones to o-hydroxychalcone derivatives. The protocol 

followed C-2 regioselectivity leading to the formation of pseudooxazol-5-one derivatives 

with all-carbon quaternary stereogenic centers in moderate to good yields with excellent 

diastereoselectivity and enantioselectivity. To understand the mechanism of the reaction and 

prediction of the transition state during the course of reaction, circular dichroism (CD) 

spectroscopy and density functional theory (DFT) were used [119] (Scheme 48). 
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Scheme 48: Stereoselective Michael addition of azalactones on chalcones. 

Najera and co-workers discovered a novel recyclable chiral 2-aminobenzimidazole catalyst 

to perform enantioselective conjugate addition of different 1,3-dicarbonyl compounds to 

maleimide and N-substituted maleimides to furnish various Michael adducts. In addition to 

the broad synthetic scope, the reaction provides excellent yields and enantioselectivity when 

executed on gram scale at room temperature [120] (Scheme 49). 

 

Scheme 49: Synthesis of -branched succinimides. 

Wennemers and co-workers displayed highly chemo-selective synthesis of -nitroaldehydes 

in the presence of peptidic catalysts from aldehydes and substituted nitrostyrenes. Low 

catalyst loading and the investigations through mechanistic studies clarify the role of peptide 

catalysis in providing the high yield with excellent stereoselectivities [121] (Scheme 50). 

 

Scheme 50: Peptide catalysed synthesis of -nitroaldehydes. 

Wang and co-workers demonstrated the synthesis of various chiral succinimide derivatives 

having adjacent quaternary and tertiary stereogenic-centers in the presence of 

organocatalyst, further transformation of the product led to the synthesis of h5-HT1d 

receptor agonist scaffolds in excellent selectivity and good to excellent yields [122] (Scheme 

51). 
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Scheme 51: Organocatalytic synthesis of chiral succinimide derivatives. 

Du and co-workers displayed asymmetric Michael addition of α-alkylidene succinimides 

with nitrostyrenes to access functionalized succinimides in good to excellent yields. 

Presence of chiral squaramide organocatalyst made the protocol highly selective leading to 

excellent diastereo- and enantio-selectivities under mild reaction conditions on gram scale 

as well [123] (Scheme 52). 

 
Scheme 52: Bifunctional squaramide-catalyzed catalysed synthesis of functionalized 

succinimides. 

Khurana and co-workers utilized active methylene compounds for double Michael addition 

of 1,5-diaryl-1,4-pentadien-3-one in ethylene glycol in catalysts-free environment to 

synthesis diazaspiro compounds. The reaction worked smoothly with N,N-dimethyl 

barbituric acid, barbituric acid, thio-barbituric acid and N,N-diphenylthiobarbituric acid at 

100 oC and provided all the products in good yields [124] (Scheme 53). 

 
Scheme 53: Catalyst-free synthesis of spiroheterocycles. 

Our group reported the enantioselective synthesis of 2,4-disubstituted 1,2,3-triazoles as 

major products through the bifunctional thiourea organocatalysis from 4-aryl-NH-1,2,3-

triazoles  and cyclic enones. The presented protocol was N2 selective and all the products 

were produced in good yields [125] (Scheme 54). 
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Scheme 54: N2-Selective aza-Michael addition for the synthesis of 2,4-disubstituted 

triazoles. 

1.7. Synthesis of biaryls 

Biaryls are the privileged class of organic scaffolds because of their presence in the 

pharmaceuticals, ligands, natural products and organic materials [126129]. It was reported 

in early 2010 that nearly 4.3% of all known drugs were found to have biaryls structure, 

which include antitumor, anti-inflammatory, antihypertensive, antifungal, and antirheumatic 

agents [130]. Furthermore, there have been reports in the literature supporting the interaction 

of drugs with the protein binding sites through the involvement of aromatic sites and 

hydrophobic residues, which makes them as important templates for the designing of new 

drugs [131133]. 

Figure 6: Structure of biaryl containing medicinally important scaffolds. 

Numerous methods are available for the construction of biaryls using transition-metal 

catalyzed cross-coupling reactions. Negishi, Suzuki and Heck were awarded Nobel Prize in 
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2010 for their well-known approaches which offer CH arylation and the branch is 

continuously blooming which makes this area as an excellent opportunity to explore new 

ideas [134]. 

In 2013, our group disclosed a raid protocol for the synthesis of unsymmetrial biaryls by 

utilizing highly reactive o-benzoquinones. The presented strategy made available an 

alternative route to biaryls without any prefunctionalization of starting materials. Lewis acid 

activated protocol worked in an anti-Michael addition manner to furnish all the products in 

good to excellent yields [135] (Scheme 55). 

Scheme 55: Construction of unsymmetrical oxygenated biaryl.  

Takasu and co-workers, in 2018, reported the synthesis of tribenzocarbazoles from 

azapropellanes. The reaction followed [2 + 2] cycloaddition pahway under the acidic 

conditions. Further the structural, electronic as well as optical properties of the products 

were analysed and the tribenzocarbazoles intermolecular packing were explained through 

X-ray crystallography [136] (Scheme 56).  

 

Scheme 56: Synthesis of tribenzocarbazoles.  

Takahashi et al. revealed the biaryls formation via elimination of SO2 from diarylsulfones. 

The protocol involves nickel-NHC catalysis through intramolecular desulfitative couplings. 

The reaction shows broad substrate scope and opens a new field for the exploration of 

sulfonyls under different catalytic systems to deliver new synthetic scaffolds [137] (Scheme 

57). 

 

Scheme 57: Synthesis of biaryls via intramolecular desulfitative route. 
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Gou et al. displayed the synthesis of symmetrical and unsymmetrical phenanthrenes by 

utilizing palladium catalysis from iodobenzenes and benzylic aldehydes. The reaction 

underwent a series of CH arylation, cyclization followed by dehydration and 

intramolecular 1,2-migration in a one-pot fashion. The reaction worked with a good 

tolerance of subsittuents and mechanistic investigation was performed to understand the 

course of reaction [138] (Scheme 58). 

 
Scheme 58: Synthesis of functionalized phenanthrenes. 

In 2017, our group disclosed the synthesis of oxygenated biaryls in a site-selective manner 

from electron-rich arenes and methoxyphenols. The reaction underwent dearomatization-

rearomatization strategy to furnish highly selective unsymmetrical biaryls via Lewis acid 

activation. The protocol shows a broad substrate scope and the structure was confirmed by 

X-ray crystallography [139] (Scheme 59).  

 
Scheme 59: Lewis acid promoted synthesis of oxygenated biaryls. 

Biju and co-workers reported metal-free protocol to access naphtha[2,1-b]benzofuran 

derivatives from -naphthols and quinone monoacetals. The reaction followed [3 + 3] 

annulation pathway to deliver the products in moderate to good yields under metal-free, 

Bronsted acid catalyzed conditions [140] (Scheme 60). 

 
Scheme 60: Metal-free synthesis of naphtha[2,1-b]benzofurans. 
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2.1. Objectives 

 Synthesis of -hydroxy sulfides has been a topic of interest in organic synthesis since 

decades. Various methods are known in literature for their synthesis by using metal catalysis 

or environmentally hazardous reagents. Our aim was to develop a protocol for easy access 

to -hydroxy sulfides through environment friendly pathway by harnessing the reactivity of 

styrenes and thiophenols.  

 

 Succinimides being important scaffolds having various applications in medicinal 

chemistry, attracted our attention to synthesis some important frameworks embraced with 

succinimide. Impressed by the structural diversity of 3-benzilidene succinimide unit as it 

can work as a donor as well as an acceptor, we were curious to explore its reactivity with 

various acceptors. 

Inspired by enormous applications of oxindole moiety in medicinal chemistry and having 

wide literature support made us curious towards its exploration and to continue our research 

in this field, to invest some of our efforts in the synthesis of spirocyclic oxindole scaffolds 

which are known for their biological activities. Our aim was to provide an easy excess to 

spirooxindolic systems via simple protocol preferably obviating purification steps such as 

work-up, column chromatography and crystallization. 
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 Another objective was to explore the reactivity of 3-benzilidene succinimide with enone 

acceptors such as chalcones and to evaluate the competitive reaction pathways, viz. Michael 

addition vs. cycloaddition. 

 

 

 Motivated by the magnificent reactivity profile of D-A cyclopropanes that have the 

potential to deliver profound scaffolds with wide biological profile, we were interested to 

utilize rarely used cyclopropanes containing multiple functional groups, which can be 

utilized through the course of reaction in a sequential manner as per their reactivity profile. 

However, it was not less than a challenge to bring this imagination down to a working 

protocol furnishing some interesting hybrid structures involving oxindoles. 
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2.2. Results and Discussion 

This chapter deals with the detailed studies of the following: 

2.2.1. Synthesis of substituted -hydroxy sulfides 

2.2.2. Synthesis of highly substituted spirooxindolic-cyclopentanes via [3 + 2]-

cycloaddition reactions 

2.2.3. Synthesis of benzylidene succinimide-tethered propanones via Michael addition 

reactions 

2.2.4. Synthesis of highly conjugated xanthene-tethered unsymmetrical biarylic 

spirooxindoles via domino reactions 

The starting materials are numbered as shown below to facilitate the discussion throughout 

the thesis: 

Styrenes (1): 

 

Thiophenols (2): 

 

3-Benzylidene succinimides (3): 
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3-Ylidene oxindoles (4): 

 

Chalcones and benzoylmethylidene malonate (5): 

 

-Naphthols (6): 

 

 



Chapter 2  Objectives, Results and Discussions 

31 
 

Spirocyclic cyclopropanes (7): 
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2.2.1. Synthesis of substituted -hydroxy sulfides 

Carbonheteroatom bond formation has a great importance in synthetic organic 

chemistry because of its presence in many natural products. Consequently, it has attracted 

much attention in recent times [141]. Various methods have been developed for the synthesis 

of CX bonds. However, some protocols involve transition metals, expensive reagents or 

additives and therefore this process is still under exploration to develop environment friendly 

and affordable strategies for the construction of these bonds [142,143].  

Over the last few years, bisfunctionalization methodologies such as alkoxythiolation, 

hydroxylthiolation, acetoxythiolation, sulfamination and disulfidation have been performed 

successfully [144157]. The generation of bisfunctionality in a single step is itself a 

challenging task in synthetic organic chemistry. Further, sulfide functionalization raises its 

importance as it is present in numerous natural compounds [158161]. Sulfur-containing 

organic compounds have various applications in the area of medicinal chemistry for their 

antibiotic, antioxidant, calcium channel antagonist, antimicrobial, anti-inflammatory, 

antitumor, and anti-HIV activities [162,163]. -Hydroxy sulfides act as precursors in the 

synthesis of compounds having biological importance such as pharmacophores including 

bexarotene, tamoxifen, iso-combretastin (iso CA-4), ratanhine, and in the synthesis of -

hydroxy sulfoxides which can be obtained by the oxidation of -hydroxy sulfides using 

conventional oxidising agents [85,164173]. -Hydroxy sulfides are important building 

blocks for the synthesis of thioketones, allylic alcohols, cyclic sulfides, benzothiazepines, 

benzoxathiepines and many other highly functionalized organic scaffolds specially in the 

synthesis of Leukoterin LTC4 and LTD4 [75,76]. 

Several reports are available in literature for the construction of -hydroxy sulfides, which 

can be divided into two categories on the basis of the reactants used: i) styrenes and 

disulfides/thiols, and ii) epoxides and disulfides/thiols. Most of them are associated with 

some drawbacks such as use of toxic metals or solvents. Movassagh et. al. synthesized -

hydroxy sulfides using styrenes and disulfides by employing zinc/aluminium chloride as a 

promoter under oxygen [80]. Singh et. al. synthesized -hydroxy sulfides using silver nitrate 

catalyst in DMF [82]. Later Chandrasekaran and co-workers reported the synthesis of -

hydroxy sulfides with rongalite, potassium carbonate in DMF and Lanke et. al. synthesized 

-hydroxy sulfides using amberlyst-15 in toluene [81,174]. Use of iodine as a catalyst in 

oxidation reactions is one of the upcoming advances of the recent time in terms of 

environmental sustainability and cost effectiveness [175178]. As iodine is environmentally 
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benign, we envisaged that it would provide us a green path towards the synthesis of -

hydroxy sulfides. 

Initially the reaction was carried out with styrene (1a) and thiophenol (2a) as model 

substrates in DMSO at room temperature and 80 oC (Table 1, entry 1). However, no reaction 

was observed under these conditions. When 1a and 2a were treated in the presence of iodine 

at room temperature the reactants were recovered (entry 2). Later the reaction was performed 

with 50 mol% of iodine in DMSO at 80 oC. To our delight -hydroxysulfide 8 was obtained 

in 51% yield (entry 3). When we performed the reaction of thiophenol with excess of styrene 

(2 equiv.), 3a was obtained in 90% yield (entry 5). After that we screened different reagents 

such as potassium iodide, diacetoxyiodobenzene (DIB), N-chlorosuccinimide and molecular 

iodine. When reaction was carried out in the presence of KI and DIB, no reaction was 

observed (entries 6 and 7), while in the presence of NCS, traces of product was observed 

(entry 8). To improve the yield of 8 further, the reaction was carried out by loading iodine 

with 1.0 and 0.25 equiv. and the product was in observed 92 and 75% yields, respectively 

(entries 9 and 10). To evaluate the effect of temperature on reaction, we carried out the  

Table 1: Optimization of reaction conditions.a  

 

      Entry Reagent (equiv.) Solvent Temp (oC) Yield b (%) 

 1 - DMSO 80 - 

 2 I2 (0.5) DMSO rt - 

 3c I2 (0.5) DMSO 80 51 

 4d I2 (0.5) DMSO 80 56 

 5 I2 (0.5) DMSO 80 90 

 6 KI (0.5) DMSO 80 nr 

 7 DIB (0.5) DMSO 80 nr 

 8 NCS (0.5) DMSO 80 traces 

 9 I2 (1.0) DMSO 80 92 

 10 I2 (0.25) DMSO 80 75 

 11 I2 (0.5) DMSO 100 58 
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 12 I2 (0.5) DMSO 60 98 

 13 I2 (0.5) DMSO 40 70 

 14 I2 (0.5) DMF 80 traces 

 15 I2 (0.5) ACN 80 traces 

 16 I2 (0.5) H2O 80 nr 

aAll reactions were performed with 1a (1.0 mmol), 2a (0.5 mmol), reagent and solvent (2 

mL) on heating. bIsolated yield. nr = no reaction. c1a (0.5 mmol) and 2a (0.5 mmol) were 

used. d1a (0.5 mmol) and 2a (1.0 mmol) were used. 

reaction at different temperatures and we observed that product was obtained in diminished 

yield of 58% at 100 oC while at 60 oC, the product was isolated in slightly increased yield 

of 98% (entries 11 and 12). Further decrease of temperature of the reaction to 40 oC did not 

provide encouraging results (entry 13). Then we screened different solvents by using 0.5 

equiv. of iodine and 1:2 equiv. of thiophenol and styrene, product was obtained in traces 

when DMF and ACN were used as solvents (entries 14 and 15). While no reaction was 

observed when H2O was used as solvent (entry 16). Best results were obtained when the 

reaction was performed in DMSO. Thus the use of iodine (0.5 equiv.) in DMSO at 60 oC 

emerged as the optimal set of conditions for subsequent studies (entry 12).  

With the optimized reaction conditions in hand, we investigated functional group 

compatibility and scope of the present iodine catalysed protocol for the synthesis of -

hydroxy sulfides using a variety of styrenes 1ae. It was noteworthy that the reaction 

demonstrated a wide tolerance for diverse substitutions like electron-withdrawing and 

electron-donating groups on styrenes. It was noticed that electronics properties on styrenes 

were less effective while influencing the productivity of the reaction. 

When the parent styrene was treated with differently substituted thiophenols 2ad, 

desired products 811 were furnished in 98, 74, 69 and 63%, respectively. The data suggests 

that electron-withdrawing groups on thiophenols facilitated the reaction, whereas electron-

donating group on para position of thiophenol provided the corresponding -hydroxy 

sulfide in 63% yield (Scheme 1). 
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Scheme 1: Reaction of styrene 1a with thiophenols 2ad. 

Next, we used styrenes having electron-withdrawing groups like chloro and fluoro 

on para position of styrene with various thiophenols 2ad. It was noticed the presence of 

EWG on styrenes affected the yields adversely. p-Chlorostyrene furnished the final products 

1215 in 75, 75, 52 and 74%; however, p-fluorostyrene provided the -hydroxy sulfides 

1619 in 70, 70, 65, 62%, respectively. It is noteworthy to observe that fluorinated styrene 

having marginal negative influence on the yield of the products (Scheme 2).  
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Scheme 2: Reaction of styrenes 1b,c with thiophenols 2ad. 

We investigated the compatibility of the reaction having bulky group like isopropyl 

on styrene with thiophenols 2ad. The reaction gave the product 20 in excellent yield of 

94% with parent thiophenol. However, the reaction of 1d with substituted thiophenols 2bd 

led to the formation of corresponding -hydroxy sulfides 2123 in substantially decreased 

yields (Scheme 3). 
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Scheme 3: Reaction of styrene 1d with thiophenols 2ad. 

To evaluate the effect of multisubstituted styrenes on the reaction, the styrene 1e was 

reacted with thiophenols 2b,d. The reaction did not show much influence as the products 24 

and 25 were furnished in 64 and 70% yields which is in good co-relation with other -

hydroxy sulfides derived from these thiophenols with other styrenes (Scheme 4). 

 

Scheme 4: Reaction of styrene 1e with thiophenols 2b,d. 

In order to understand the course of reaction, we performed the reaction in presence 

of TEMPO to have some clues about either ionic or radical mechanism was responsible for 

the reaction. It was observed that traces of products were observed on using three 

equiv.alents of TEMPO, clarifying the involvement of radical pathway (Scheme 5). 
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Scheme 5: Reaction of styrene 1a with thiophenols (2a) in presence of TEMPO. 

As none of the starting material having oxygen atom, we planned to investigate the 

source of oxygen in -hydroxy sulfides. Thus we performed the reaction of 1a and 2a in the 

presence of I2 in DMSO under nitrogen atmosphere and the -hydroxy sulfide 8 was isolated 

in 70% yield eliminating the possibility of environmental oxygen to work as a source of 

oxidation and confirming the fact that DMSO is fulfilling the role as a solvent as well as 

oxidising agent in this reaction (Scheme 6). 

 

Scheme 6: Reaction of styrene 1a with 2a thiophenols in N2 atmosphere. 

On the basis of our studies, a plausible reaction pathway for the bisfunctionalization of 

styrenes is illustrated in Scheme 7. Initially, the nucleophilic aryl thiol 2a attacks the 

electrophilic iodine centre leading to the formation of intermediate ArS–I (A). The species 

ArS–I liberates ArS., which reacts with electron-rich styrene 1a to deliver a benzylic free 

radical intermediate B and iodine free radical. The presence of iodine free radical makes 

dimethylsulfoxide susceptible to attack at benzylic position of intermediate B leading to the 

generation of intermediate C. The attack of HI on C affords the desired -hydroxy sulfide 8 

and regenerates iodine. Though there is no direct evidence for the formation of ArS–I 

species, its formation from thiophenols is suggested in the literature [161] (Scheme 7).  

 

TEMPO 

(equiv.) 

Yield 

1.0 40% 

3.0 traces 
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Scheme 7: Plausible reaction mechanism for the formation of -hydroxy sulfides. 
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2.2.2. Synthesis of highly substituted spirooxindolic-cyclopentanes via [3 + 

2] cycloaddition reactions 

Isatin and its derivatives are of great scientific interest in the family of nitrogen 

containing compounds because of their remarkable pharmacological profile [11,179181]. 

Numerous efforts have been made by the researchers from time to time to synthesize these 

moieties [182187]. In addition to this, cyclopentanes are a class of compounds endowed 

with decisive biological and pharmacological activities, such as antiviral, hepatitis B and 

significant antitumor activities [188,189]. Moreover, cyclopentane scaffolds can serve as 

intermediates in natural product synthesis and lead compound in the development of new 

drugs [190194]. Owing to their wide spectrum of biological activity, the synthesis of 

cyclopentane derivatives attracted tremendous attention in the field of organic synthesis and 

construction of highly substituted derivatives have been an important concern for organic 

chemists since decades [195198]. When the oxindole moiety is spirocyclized to 

cyclopentane, it upswings to a special class of biologically important natural alkaloids like 

notoamide A, cirinalins A, citrinadin B, cyclopiamine B, versicolamides C and could lead 

to the synthesis of highly stereocentric more fertile bioactive compounds [109,201204] 

(Figure 1). 

 

Figure 1: Biologically important spirooxindoles. 

Owing to their stupendous properties in medicinal field, a number of attempts have 

been made towards the synthesis of spirooxindoles during the last decade. Some of the 

methods often require transition-metal catalysis, lengthy synthetic routes with prolonged 

reaction time and tedious isolation processes [205,206]. As a result, there exists high demand 

for the development of alternative user friendly, simple and environmentally benign 

approaches to synthesize more functionally-rich spirooxindoles from easily accessible 

materials. Since decades the [3 + 2] cycloaddition reaction has been considered as a major 
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tool to construct C−C bonds in many bioactive molecules and cycloaddition reactions of 

various dipolar compounds with isatin and its derivatives have attracted significant attention 

in recent years [111,207215]. After literature survey we found 3-ylidine oxindoles as 

potent substrate for the reaction with 3-benzilidine N-phenylsuccinimides. However, there 

was a question about the regioselectivity of the reaction.  

As per our hypothesis the proposed reaction could be accompanied by any of the two or 

both the products 26 and 26′ shown in figure 2 (Figure 2). However, in all the cases we 

ended up with a single product i.e. 26 with high purity as well as excellent 

diastereoselectivity. Regioselective initial attack on -carbon of amide functionality in 4a 

over -position could be well explained by steric effect as the later (-position) is relatively 

more hindered.  

 

Figure 2: Working hypothesis for the synthesis of spirocyclic oxindoles. 

To establish the optimum reaction conditions, we commenced our research by 

investigating the reaction of 3-ylidine N-methyloxindole 4a and 3-benzilidine N-

phenylsuccinimide (3a) as model substrates. When the reaction was performed in the 

presence of triethylamine in DCE at room temperature, no product was observed (Table 2, 

entry 1). To check the feasibility as per the mutual reactivity of the reactants, bases such as 

DIPEA, DABCO and K2CO3 were examined and it was observed that these bases were 

unable to drive the reaction (entries 2−4) whereas the reaction involving DBU furnished 

traces of 26 (entry 5). The spirooxindole 26 was obtained via [3 + 2] cyclization of 3-ylidine 

oxindole 4a with 3-benzilidine succinimide 3a. After screening of various bases, DBU was 

found to be promising base to furnish the product 26. Subsequently, to assess the solvent 

effect, the reaction was studied by performing in different solvents (entries 6−10). EtOH 

was identified as the optimal solvent furnishing the spirooxindole 26 in 40 min in 60% yield 
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with 86:14 diastereoselectivity (entry 9). Encouraged by this promising result, we further 

varied the amount of DBU and found that on decreasing the amount of base to 50 mol% the 

product was obtained in an increased yield of 75% with very good diastereoselectivity (entry 

11). When 4a was treated with 3a in the presence of 20 mol% of DBU, the reaction afforded 

spirooxindole 26 in 80% yield with 91:09 diastereoselectivity (entry 12). However, no 

appreciable variation in the yield of the product ensued by further diminishing the base to  

Table 2: Optimization of reaction conditions.a  

 

Entry Reagent (equiv.) Solvent drb Yieldc (%) 

 1 NEt3 DCE - nr 

 2 DIPEA DCE - nr 

 3 DABCO DCE - nr 

 4 K2CO3 DCE - nr 

 5 DBU DCE - traces 

 6 DBU DCM - traces 

 7 DBU Toluene - traces 

 8 DBU MeOH 98:02 43 

 9 DBU EtOH 86:14 60 

 10 DBU IPA 93:07 28 

 11d DBU EtOH 90:10 75 

 12e DBU EtOH 91:09 80 

 13f DBU EtOH 93:07 71 

aReaction conditions: Unless otherwise specified, all reactions were carried out using 4a 

(0.1 mmol), 3a (0.1 mmol), and a reagent (0.1 mmol) in 2 mL solvent at room temperature 

for 40 min. bThe dr was determined by 1H NMR analysis of the crude product having 26 and 

its diastereomer. cIsolated yield of 26 and its diastereomer after column chromatography. nr: 

No reaction. d50 mol% of DBU was used. e20 mol% of DBU was used. f10 mol% of DBU 

was used. 
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10 mol% (entry 13). Thus, 20 mol% DBU in EtOH at room temperature was considered as 

the optimized reaction condition for the model reaction. Gratifyingly, when the crude 

reaction mixture was subjected to filtration followed by simple washing with ethanol, a 

single diastereomer 26 was isolated in 70% chemical yield. 

With the optimized reaction conditions in hand, we investigated functional group 

compatibility and scope of the present DBU catalysed protocol for the synthesis of 

spirooxindoles using a variety of 3-ylidine oxindoles 4a–c. It was noteworthy that the 

reaction demonstrated a good tolerance for electron-donating groups on 3-ylidine oxindoles. 

When the unsubstituted/parent 3-ylidine oxindoles 4a was treated with differently 

substituted 3-benzilidine succinimides 3a–d, the cyclized products 2629 were furnished in 

70, 63, 57 and 70% yield, respectively, with diastereoselectivity up to >99%. The pattern 

was showing electron-donating groups on 3-benzilidine succinimides facilitate the reaction, 

whereas electron-withdrawing group on 3-benzilidine succinimides produced the product 

28 in relatively reduced yield (Scheme 8). 

 

Scheme 8: Reaction of 3-ylidine N-methyl oxindole 4a with 3-benzilidine succinimides 

3ad. 
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Next, we carried out reaction using 3-ylidine N-methyl oxindoles having electron- 

donating groups such as methyl and methoxy on various 3-benzilidine succinimides 3ad, 

marginal decrease in the yield was noticed in the presence of EDG on 3-ylidine N-methyl 

oxindole. 4-Methyl substituted 3-ylidine N-methyl oxindole 4b furnished the corresponding 

products 3033 in 72, 69, 51 and 60% yields; however, 4-methoxy substituted 3-ylidine N-

methyl oxindole 4c provided the cycloaddition products 3437 in 61, 58, 53 and 58% yields 

with excellent diastereoselectivity (Scheme 9).  

 

Scheme 9: Reaction of 3-ylidine N-methyl oxindoles 4b,c with 3-benzilidine succinimides 

3ad. 

We tested the applicability of the present methodology for 3-ylidine oxindoles with 

bulky protecting group to ascertain its effect on stereochemical outcome of the reaction. 
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When N-benzyl protected oxindoles 4df were used in the reaction, no significant changes 

in yields and diastereoselectivity of the products were noticed. The reactions proceeded 

smoothly to furnish the desired products 38–49 in 5079% yield with excellent 

diastereoselectivity (Scheme 10). 

 

Scheme 10: Reaction of 3-ylidine N-benzyl oxindole 4df with 3-benzilidine succinimides 

3ad. 
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NMR studies of 26: 

The structures of spiroxindoles were confirmed by detailed spectral analysis obtained 

from 1H and 13C NMR, and HRMS experiments of isolated products. For instance, in the 1H 

NMR of 26, the protons Ha and Hd appear as doublets at  4.10 and 4.90 ppm, respectively, 

and the protons Hb and Hc appear as doublet of doublets at  4.21 and 5.04 ppm, respectively 

(Figure 3).  

 

 

 

Figure 3: Selected 1H NMR chemical shifts (ppm) and NOE correlations in 26. 

The connectivity of the protons that are coupled with each other and between protons 

and carbons of 26 was identified by two-dimensional 1H–1H COSY and 1H–13C COSY 

experiments, respectively (Figures 4 and 5). To gain more insight into the stereochemistry 

of these products and to understand the spatial correlation between Ha, Hd, Hc and Hd 

protons, we performed NOESY experiment on cyclized product 26. The presence of 

correlation between the protons ‘Ha and Hd’and ‘Hb and Hc’ and the absence of correlation 

between ‘Ha and Hc’, and ‘Hb and Hd’ establishes the depicted geometry (Figure 7). The 

correlation between the proton Hd and benzoyl carbonyl in HMBC spectrum ascertains their 

germinal relationship unambiguously (Figure 6, Table 3). The results obtained from NMR 

studies were further confirmed by single crystal X-ray analysis of compound 26 (Figure 8). 

Table 3: Proton–proton and proton–carbon connectivity in 26. 

 

Cycloaddition adduct 
1H-1H 

COSY 

1H-13C 

COSY 

δ (ppm) HMBC NOESY 

 

 

 

 

 

Ha - Hb Ca 59.2 Ha - Cb, Ce Ha - Hb 

Hb - Hc Cb 48.1 Hb - Ca Ha - Hd 

Hc - Hd Cc 45.3 Hc - Cd Hb - Hc 

- Cd 56.5 Hd - Cc, Ce Hc - Hd 
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Figure 4: 1H–1H COSY spectrum of 26. 

 

Figure 5: 1H–13C (HSQC) COSY spectrum of 26. 
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Figure 6: 1H–13C (HMBC) COSY spectrum of 26. 

 

Figure 7: 1H–1H NOESY spectrum of 26. 
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Figure 8: ORTEP representation of crystal structure of 26 [216]. 

Table 4: Crystallographic data for spirooxindole 26. 

Empirical formula   C35H28Cl2N2O4 

Formula weight    611.49 

Temperature    296(2) K 

Wavelength    0.71073 Å 

Crystal system    Triclinic 

Space group    P -1 

Unit cell dimensions: 

a (Å)     11.156(5)  

b (Å)     11.456(5) 

c (Å)     13.201(6) 

α (deg.)     100.51(2) 

β (deg.)     108.58(2) 

γ (deg.)     100.45(2) 

Volume (Å3)    1519.5(11) 

Z      30 

Calculated density (mg/m3)  3.735 

Absorption coefficient   2.804 mm-1 

F(000)     1680 

Theta range for data collection  1.684 to 28.697 deg. 

Reflections collected/unique  25896/7505 [R(int) = 0.0356] 

Completeness to theta = 25.242 99.0 % 

Refinement method   Full-matrix least-squares on F2 

Data / restraints / parameters  7505 / 0 / 390 

Goodness-of-fit on F2   1.474 



Chapter 2  Spirooxindolic-cyclopentanes 

50 
 

            Final R indices [I>2sigma(I)]              R1 = 0.1081, wR2 = 0.3387 

R indices (all data)   R1 = 0.1441, wR2 = 0.3861 

Largest diff. peak and hole  1.397 and -1.137e.Å-3 

The plausible mechanism for the formation of spirooxindole is depicted in Scheme 11. 

Firstly, the anion generated from 3-benzylidene N-phenylsuccinimide (3a) by the 

abstraction of proton with DBU, attacks on -carbon of amide functionality in 4a as -

position is relatively more hindered and produces anion A. The carbanion A, being benzylic 

and - to carbonyl is highly stabilized and acts as soft nucleophile. The aromatic ring of 

benzylidene moiety may participate in resonance to benzyl carbonium ion centre that 

facilitates 5-exo-trig cyclization at a soft electrophilic centre of B leading to tetracyclic 

system C. The hydroxyenamine C tautomerises to more stable imide 26. The excellent 

diastereoselectivity realised in the reactions of 3-benzilidine succinimides with the enones 

studied may be attributed to the presence of steric bulk in the vicinity of reacting sites. 

 

Scheme 11: Plausible reaction mechanism for the formation of spirooxindole 26. 
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2.2.3. Synthesis of benzylidene succinimide-tethered propanones via 

Michael addition reactions 

The functionalization of allylic center has always been an important concern to organic 

chemists as it is having a great contribution in synthesis of various biologically active molecules 

[217]. And Michael addition is an important tool to achieve CC bond formation in 

economically favourable way by using the processes that are reasonably simple [117, 118, 

221]. The use of Michael addition in organic synthesis is constantly increasing because it 

allows the chemists to synthesize a wide range of complex molecules including natural products 

and biologically active compounds such as pharmaceuticals and agrochemicals [119,225229]. 

The construction of molecules with two and more stereocenters in a steteroselective manner 

through catalysis has attracted continuous attention in recent years because of their presence in 

various natural products [230233]. 

Succinimide and derivatives are of great scientific interest in the family of nitrogen 

containing compounds because of their remarkable pharmacological profile. These compounds 

are reported to have various biological activities such as anticoagulant, insecticidal, 

anthelminthic, hypnotic, antifungal, phytoalexin, and HIV protease inhibition [234238]. 

Numerous efforts have been made by the researchers from time to time to synthesize these 

moieties. There are many reports in the literature where maleimide being used as Michael 

acceptor and brought out succinimide as a part of the final product [120,122,239242]. However 

there are just a few literature reports known when 3-benzylidene succinimides being used either 

in cycloaddtion reactions or as a Michael donor. To the best of our knowledge, there are no 

reports known so far on their reactions with chalcones [111,123,243244]. This made us curious, 

as chalcones are one of the most privileged compounds known for their unique contribution in 

organic synthesis and medicinal world [246256]. Being motivated by these inputs, we tried to 

perform addition of 3-benzylidene succinimides on chalcones. 

At the outset, we carried out the reactions of parent chalcone 5a with differentially 

substituted 3-benzilidine N-phenyl succinimides 3ad. The reaction furnished Michael 

adducts 52 and 53 in good yield when benzilidine succinimides containing electron-donating 

groups in comparison to electron-withdrawing groups (3b furnished the product 51 in 63% 

yield, Scheme 12). 
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Scheme 12: Reaction of chalcone 5a with 3-benzilidine succinimides 3ad. 

When the chalcone 5b was treated with 3-benzilidine succinimides 3ac the 

products 5456 were obtained in 70, 65 and 63%, respectively, clearly showing favourable 

electronic conditions with electron-donating groups over electron-withdrawing groups on 

succinimides (Scheme 13). 

 

Scheme 13: Reaction of chalcone 5b with 3-benzilidine succinimides 3ac. 
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To expand the scope of the reaction, chalcone 5a was treated with 3-benzylidine 

succinimides 3ad. As shown in Scheme 14. Notably, the donors 3bd bearing 4-chloro, 4-

methyl and 3-methoxy groups on the benzylidine moiety could also be well tolerated. It was 

observed that EDG on benzylidine favoured the reaction by furnishing addition products 59 

and 60 in 75 and 76% yields as compared to EWG to afford 58 in 65% yield (Scheme 14). 

 

Scheme 14: Reaction of chalcone 5c with 3-benzilidine succinimides 3ad. 

Interestingly, when dihaloginated chalcone 5d was reacted with 3-benzilidine 

succinimides 3ac under the optimized reaction conditions to provide the corresponding 

Michael adducts 6163 in 76, 52 and 75% yields, respectively (Scheme 15). 
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Scheme 15: Reaction of chalcone 5d with 3-benzilidine succinimides 3ac. 

Then we explored the scope of N-aryl benzylidine succinamide 3a with chalcone 

derivatives 5e and 5f. The reaction proceeded smoothly under the optimized reaction 

conditions to provide the corresponding Michael adducts 64 and 65 in 62 and 83% yields, 

clearly showing the presence of m-chloro substituent on 5f affected the yield significantly 

(Scheme 16). 

 

Scheme 16: Reaction of chalcone 5e,f with 3-benzilidine succinimides 3a. 
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On finding a good response of the reaction for various substrates, we thought of 

testing the presented protocol by changing the phenyl protection of succinimide with 

substituted phenyl(p-Cl) 3e and benzyl groups 3f with chalcones 5a,c. Gratifyingly both the 

variations worked good and furnished the Michael adducts 6668 in 67, 67 and 65% yields 

with excellent diastereoselectivity (Scheme 17).  

 

Scheme 17: Reaction of chalcone 5a,c with 3-benzilidine succinimides 3e,f. 

Further, we extended the scope of this protocol to benzoylmethylidene malonate 5g. 

To our delight, the reaction of 3-benzylidine succinimide 3a with 5g showed good 

compatibility and produced Michael adduct 69 in 81% yield with excellent 

diastereoselectivity (Scheme 18). 

 

Scheme 18: Reaction of benzoylmethylidene malonate 5g with 3-benzilidine succinimide 

3a. 

NMR studies of 51: 

The structure of Michael adducts were confirmed by detailed analysis obtained from 

1H and 13C NMR, and HRMS spectral data of isolated products. For instance, in the 1H NMR 

of Michael adduct 51, the protons Ha and Ha′ appear at  3.27 and 4.68 ppm, respectively, 

each as doublet of doublets and the proton Hb appears at  4.14 as doublet of triplet and the 

proton Hc appears at 4.51 ppm as doublet of doublet (Figure 9). 
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Figure 9: Selected 1H NMR chemical shifts (ppm) in 51. 

The connectivity of the protons that are coupled with each other and between protons 

and carbons of Michael adduct 51 was identified by two-dimensional 1H–1H COSY and 1H–

13C COSY experiments, respectively (Figures 10 and 11). To gain better insight on the 

stereochemistry of these products through the spatial correlation between Ha, Ha′, Hb and Hc 

protons, we performed NOESY experiment of Michael adduct 51. The presence of 

correlation between the protons ‘Ha and Hb’, ‘Ha and Ha′’, ‘Hb and Hc’ and ‘Hb and Ha′’, the 

absence of correlation between ‘Ha and Hc’ establishes the geometry depicted in Figure 9. 

The results obtained from NMR studies were further confirmed by the single crystal X-ray 

analysis of compound 57 (Figure 14). 

Table 5: Proton–proton and proton–carbon connectivity in 51. 

 

Michael adduct 
1H-1H 

COSY 

1H-13C 

COSY 

 

δ (ppm) 

 

HMBC 

 

NOESY 

 Ha - Ha′ Ca 39.9 Ha - Cb, Cc Ha - Hb 

Ha - Hb Cb 39.0 Hb - Ca, Cc Ha - Ha′ 

Hb - Hc Cc 46.1 Hc – Cb Hb - Hc 

Hb - Ha′ - - Ha′ - Cb, Cc Hb - Ha′ 

- - - - Hc - Ha′ 
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Figure 10: 1H–1H COSY spectrum of 51. 

 

Figure 11: 1H–13C (HSQC) COSY spectrum of 51. 
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Figure 12: 1H–13C (HMBC) COSY spectrum of 51. 

 

Figure 13: 1H–1H NOESY spectrum of 51. 
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Figure 14: ORTEP representation of crystal structure of 57 [257].  

Table 6: Crystallographic data for 57. 

Empirical formula   C32H24ClNO3 

Formula weight    505.97 

Temperature    296(2) K 

Wavelength    0.71073 Å 

Crystal system    Triclinic 

Space group    P-1 

Unit cell dimensions: 

a (Å)     10.6788(6) 

b (Å)     11.5046(3) 

c (Å)     12.2981(3) 

α (deg.)     114.4170(10) 

β (deg.)     103.953(2) 

γ (deg.)     96.855(2) 

Volume (Å3)    1293.50(9) 

Z      17 

Calculated density (mg/m3)  1.713 

Absorption coefficient   0.975 mm–1 

F(000)     663 

Theta range for data collection  1.92 to 28.350 deg. 

Reflections collected/unique  20574/6421 [R(int) = 0.0253] 

Completeness to theta = 28.35°  99.3 % 

Refinement method   Full-matrix least-square on F2 
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Data/ restraints/ parameters  6421/ 0/ 335 

Goodness-of-fit on F2   1.052 

Final R indices [I>2sigma(I)]  R1 = 0.0480, wR2 = 0.1407 

R indices (all data)   R1 = 0.0740, wR2 = 0.1803 

Largest diff. peak and hole  0.460 and 0.389 e.Å–3 

 

In the case of chalcone 4 or benzoylmethylidene malonate 6a, the enolate arising from 

Michael addition is relatively 'hard' (less stabilized than amide enolates formed from 3-

ylidene oxindoles) and therefore gets easily protonated (hard electrophile) rather than taking 

part in second Michael addition for the cyclization with a soft centre and Michael adduct is 

obtained as final entity.  

                 

      (Amide enolate)             (Ketone enolate)   
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2.2.4. Synthesis of highly conjugated xanthene-tethered unsymmetrical 

biarylic spirooxindoles via domino reactions 

Synthesis of biaryls has been admired as an important strategy in recent years 

because of frequent occurance of these units in many natural products and pharmaceuticals, 

further it extends the conjugation which makes them an integral part of organic conductors, 

light emitting diodes and fluorescent molecules [139,140,258265]. Coupling the aryl 

moieties enriched with specific groups have been a traditional cross-coupling strategy 

known for the synthesis of biaryls [266274]. While, CH activation provides modern 

approach to biaryls, intromolecular construction of aromatic units leading to the formation 

of unsymmetrical biaryls provides a fascinating path to access structurally important 

scaffolds [11,136,275278]. In addition to this oxindoles and spirooxindoles cores are 

privileged heterocyclic scaffolds which can be frequently found in numerous biologically 

and pharmacological active molecules and exhibit many properties including anticancer, 

anticonvulsant, anti-depressant, antibacterial, antifungal, antioxidant and antiviral 

activities. Hence, efforts have been made towards the exploration of productive 

methodologies for the synthesis of compounds having such moieties [109,201,275284]. 

Moreover, It has been observed that xanthene and its derivatives came up as interesting 

moieties to be explored recently because of their special structural features which contribute 

towards medicinal, dye industries and in catalysis [64,285293].  

Donor–acceptor (D–A) cyclopropanes have attracted considerable interest as versatile 

synthetic intermediates for useful organic transformations, including enantioselective 

catalysis and annulation reactions, which are being driven by the inherent angle strain, and 

intrinsic torsional strain reconcile in such a fashion to provide substituent-controlled C–C 

bond polarization/cleavage [60,62,69,294298]. This has provided impetus to research 

directed towards the development of practical, efficient, and convenient use of these 

reactive moieties [63,299,300]. With the wish to contribute to this continuously flourishing 

field of DA cyclopropanes, several synthetic chemists started investigating their reactions 

[6264]. In 2016, Biju and co-workers reported that Lewis acid activated D–A 

cyclopropanes react with -naphthols to form naphthalene-fused cyclopentanes via a highly 

selective dehydrative [3 + 2] cyclopentannulatio [65]. (Figure 1) Usually there are four 

types of D-A cyclopropanes reported in literature, type (i) and (ii) have been explored to a 

good extent and still under consideration [67,69], whereas type (iii) and (iv) have not been 

explored much till date (Figure 15). Keeping this thing in mind, we envisioned the reaction 
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of spirooxindoles embedded cyclopropanes [type (ii), as unique substrate] with -

naphthols. Gratifyingly, the reaction underwent in a domino ring-opening cyclization 

(DROC) pathway and delivered hybrid structure enriched with important scafolds such as 

biaryl, xanthene and spirooxindole. The beauty of the work lies in its state of art working 

pattern, as the spirocyclic-cyclopropanes irrigated with two ketonic functional groups as 

acceptors and each of them contributes selectively to make the approach realistic by 

furnishing the highly conjugated spirooxindolic-xanthenes tathered unsymmetrical biaryls 

in a one-pot manner. 

 

Figure 15: Types of donor-acceptor (D-A) cyclopropanes. 

At the outset of our studies, we chose spirocyclic cyclopropane 7a and -naphthol 

(6a) as model substrates to optimize the conditions for the anticipated domino ring opening 

cyclization. As a starting point, the reaction was carried out in dichloroethane at 80 oC for 

24 h. When most of the commonly used Lewis acids either did not work or just furnished 

small amounts of polycyclic product 70 (Table 7, entries 1–3), BF3.OEt2 delivered 

spirooxindole 70 in moderate yield (entry 4). Motivated by the outcome, we investigated 

the reaction with various reagents. The replacement of BF3.OEt2 with various Brønsted 

acids such as TFA, MeSO3H, p-TSA·H2O, 2,4-DNB, H2SO4, HCl and CF3SO3H 

demonstrated CF3SO3H as a motivating entity to move ahead (entries 5−11). We further 

checked the performance of the reaction with a series of solvents. In polar protic solvents 

like ethanol, only traces of the product were obtained whereas on using polar aprotic solvent 

such as DMF and ACN no reaction occurred (entries 12−14). When we used toluene as 

solvent, the reaction furnished 49% of spirooxindole 70 (entry 15). Notably, we concluded 

DCE as the suitable solvent for the reaction, thereafter we tried to vary the equiv.alents of 

CF3SO3H. On reducing the reagent to 0.5 equiv., the polycycle 70 was obtained in a reduced  
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Table 7: Optimization of reaction conditions.a  

 

Entry Reagent (equiv.) Solvent Temp (oC) Yield b (%) 

 1 AlCl3 (1.0) DCE 80 nr 

 2 ZnCl2 (1.0) DCE 80 nr 

 3 FeCl3 (1.0) DCE 80 10 

 4 BF3.OEt2 (1.0) DCE 80 40 

 5 TFA (1.0) DCE 80 nr 

 6 MeSO3H (1.0) DCE 80 15 

 7 PTSA.H2O (1.0) DCE 80 traces 

 8 2,4-DNB (1.0) DCE 80 nr 

 9 H2SO4 (1.0) DCE 80 traces 

10 HCl (1.0) DCE 80 tr 

11 CF3SO3H (1.0) DCE 80 52 

12 CF3SO3H (1.0) EtOH 80 traces 

13 CF3SO3H (1.0) DMF 80 nr 

14 CF3SO3H (1.0) ACN 80 nr 

15 CF3SO3H (1.0) Toluene 80 49 

16 CF3SO3H (1.0) HFIP 80 45 

17c CF3SO3H (0.5) DCE 80 38 

18d CF3SO3H (1.2) DCE 80 50 

19e CF3SO3H (1.0) DCE 60 nr 

20f CF3SO3H (1.0) DCE 90 55 

21f CF3SO3H (1.0) DCE 100 52 

aReaction conditions: Unless otherwise specified, all reactions were carried out with 7a (0.1 

mmol), 6a (0.1 mmol), and triflic acid (0.1 mmol) in 2 mL of solvent for 24 h. bIsolated 

yield of 3a. c0.5 mmol of triflic acid was used. d1.2 mmol of triflic acid was used. ereaction 

time 48 h.  freaction time 12 h. 
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yield of 38% (entry 17). No improvement was observed when 1.2 equiv. of CF3SO3H were 

used (entry 18). To know the effect of temperature, the reaction was performed at 60 oC; 

however, the starting materials were intact. On increasing the temperature to 90 oC, the 

product 70 was obtained in an increased yield of 55%; however, further increment in the 

temperature to 100 oC was not supportive (entries 20 and 21). Thus, with 1.0 equiv. of 

CF3SO3H, the reaction of spirocyclic cyclopropane 7a and -naphthol (6a) at 90 °C 

provided the polycyclic spirooxindole 70 in optimum yield of 55% in 12 h (entry 20). 

With the optimized reaction conditions in hand, we proceeded to explore the scope 

of triflic acid mediated protocol for the synthesis of xanthene-tethered biarylic spiroox-

indoles from cyclopropanes 7a–d and -naphthols 6a–d. The reaction proceeded smoothly 

in highly regioselective manner to afford the polycyclic systems 70–79 in good yield. When 

the unsubstituted/parent N-methyl spirooxindolic cyclopropane 7a was treated with various 

substituted -naphthols 6a–d, the domino adducts 70–73 were obtained in 55, 56, 63, and  

 

 
Scheme 19. Synthesis of xanthene-tethered biarylic spirooxindoles from N-methyl 

protected spirooxindolic cyclopropanes 7a,b. 
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54% yields, respectively. On performing the reaction between p-methyl substituted 

cyclopropane 7b and 2-naphthol, the product 74 was furnished in 57% yield (Scheme 19). 

We tested the applicability of the present methodology for spirooxindolic 

cyclopropanes with bulky protecting group to ascertain its effect on the feasibility of the 

reaction. When N-benzyl protected spirooxindolic cyclopropanes were used in the reaction, 

no significant changes were noticed in the reaction. The reaction proceeded smoothly and 

the desired products 75–79 were obtained in 5463% yield (Scheme 20). The structures of 

spiroxindoles hybrids obtained from spectral analysis of 1H, 13C NMR, and HRMS 

experiments of isolated products. The structure of compound 70 was further confirmed by 

its single crystal X-ray analysis (Figure 16). 

 

 
Scheme 20: Synthesis of xanthene-tethered biarylic spirooxindoles from N-benzyl 

protected spirooxindolic cyclopropanes 7c,d. 
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Figure 16: ORTEP representation of crystal structure of 70 [301]. 

Table 8: Crystallographic data for 70.  

Empirical formula   C35H23NO2 

Formula weight    489.17 

Temperature    296(2) K 

Wavelength    0.71073 Å 

Crystal system    Triclinic 

Space group    P -1 

Unit cell dimensions: 

a (Å)     10.764(3) Å alpha = 89.898(17) deg. 

b (Å)     13.718(3) 

c (Å)     18.089(5) 

α (deg.)     89.898(17) 

β (deg.)     89.092(15) 

γ (deg.)     68.084(14) 

Volume (Å3)    2477.7(12)  

Z      4 

Calculated density (Mg/m3)  1.442  

Absorption coefficient   0.081 mm-1 
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F(000)     1100 

Theta range for data collection  1.126 to 28.480 deg. 

Limiting indices    13≤h≤14, 18≤k≤18, 24≤l≤24 

Reflections collected/unique  26324/12277 [R(int) = 0.0419] 

Completeness to theta = 25.242 deg. 99.7 % 

Refinement method   Full-matrix least-squares on F2 

Data / restraints / parameters  12277 / 0 / 688 

Goodness-of-fit on F2   1.005 

Final R indices [I>2 sigma(I)]  R1 = 0.0604, wR2 = 0.1348 

R indices (all data)   R1 = 0.1379, wR2 = 0.1958 

Extinction coefficient   0.0254(18) 

Largest diff. peak and hole  0.459 and -0.489 e.Å-3 

A plausible mechanism for this transformation is illustrated in Scheme 21. Initially triflic 

acid activates the cyclopropane 7a, through polarization enhancement of CC bonds of 

cyclopropane which triggers the Friedel–Crafts reaction with -naphthol to generate the 

intermediate A, followed by an intramolcular nucleophilic attack of hydroxyl oxygen to one 

of the carbonyl groups selectively to form cyclized (six membered ring formation over 

seven membered) intermediate B. Then elimination of a water molecule from B leads to the 

formation of C. Intermediate C undergoes keto-enol tautomerization to D, which undergoes 

an intramolecular electrocyclization reaction followed by dehydration to generate the 

desired product 70. 
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Scheme 21: Plausible reaction mechanism for the formation of xanthene-tethered biarylic 

spirooxindole 70. 
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2.3. Conclusions 

We have demonstrated metal-free regioselective stratigies for the synthesis 

biologically important scaffolds containing -hydroxysulfides, highly diastereoselective 

synthesis of spirooxindoles and benzylidene succinimide-tethered propanones. 

Iodine-catalysed regioselective synthesis of -hydroxy sulfides 

A metal-free, and environment benign iodine-catalysed protocol has been described 

for the regioselective synthesis of -hydroxysulfides in good to excellent yields from easily 

accessible styrenes and thiophenols. The method involves CS and CO bonds formation 

in one-pot manner by utilizing DMSO as solvent as well as oxidant. 

 

Figure 19: Synthesis of -hydroxy sulfides from styrenes and thiophenols via free radical 

reaction. 

DBU-Catalyzed highly diastereoselective synthesis of substituted spirooxindoles via a 

formal [3 + 2] cycloaddition of 3-ylideneoxindoles with 3-benzylidene succinimides 

We have developed a metal-free, DBU catalyzed protocol for the regioselective 

synthesis of spirooxindoles incorporated with highly substituted functionally-rich 

cyclopentanes consisting of five consecutive stereocenters including one quaternary centre 

in good yield up to 79% with excellent diastereoselectivity up to >99%. The reaction 

proceeds through a formal [3 + 2] cycloaddition of 3-ylideneoxindoles with 3-benzilidine 

succinimides under mild conditions to furnish the title scaffolds by simple filtration followed 

by washing with ethanol. 
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Figure 20: Synthesis of substituted spirooxindoles from 3-ylideneoxindoles with 3-

benzylidene succinimides. 

A DBU catalysed approach to achieve highly diastereoselective Michael type allylic 

addition of 3-benzylidene succinimides on chalcones 

An efficient Michael addition approach for the synthesis of benzylidene 

succinimide-tethered propanones have been developed. The DBU-promoted strategy 

allowed us to access the title compounds in highly regeoselective pathway from easily 

accessible precursors. The products were isolated by filtration followed by simple washing 

with ethanol. The protocol displayed a good functional group tolerance. 

 

Figure 21: Synthesis of benzylidene succinimide-tethered propanones from 3-benzylidene 

succinimides and chalcones. 
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Bronsted acid mediated domino ring opening cyclization: Access to xanthene-tethered 

biarylic spirooxindoles from spirooxindolic D–A cyclopropanes 

Triflic-acid mediated reactions of less-explored spirocyclic donoracceptor (DA) 

cyclopropanes with -naphthols are demonstrated. The protocol underwent domino ring 

opening cyclization (DROC) approach involving nucleophillic ring opening/nucleophhillic 

addition/electrocyclization reactions in a sequential manner to furnish the highly conjugated 

biaryl-xanthene-spirooxindoles hybrid with one quaternary carbon atom regioselectivly. 

The presented approach involves generation of three CC and one CO bond formation in 

a single step in an atom economical way. 

 

Figure 22: Synthesis of xanthene-tethered biarylic spirooxindoles from spirooxindolic 

donor-acceptor cyclopropanes and -naphthols. 
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3.1. General Remarks 

The reactions associated with the formation of gases and applications of heat were 

performed in a well-ventilated hood for safety reasons. Moisture sensitive reactions were 

carried out by using guard tube filled with either blue silica gel or calcium chloride. Reagents 

and solvents were transferred under nitrogen using syringes. 

3.1.1. Solvents 

The solvents for anhydrous reactions were dried and purified according to standard 

methods whenever needed. 

Acetonitrile  : Distilled over P2O5 

CH2Cl2 : Distilled over P2O5 

EtOH  : Distilled from magnesium cake 

MeOH  : Distilled from magnesium cake 

3.1.2. Chemicals 

The chemicals were purchased from the companies Sigma-Aldrich, Alfa-Aesar, Avra, Hi-

media and S. D. Fine chemicals at the highest purity grade available and were used without 

further purification, unless otherwise stated. 

3.1.3. Chromatographic methods 

Thin Layer Chromatography 

Thin layer chromatography was performed on Merck pre-coated 0.25 mm silica gel plates 

(60F254) using UV light as visualizing agent and/or iodine as developing agent. 

Column Chromatography 

Purification by gravity column chromatography was carried out on glass column using silica 

gel with 100–200 mesh. 

3.1.4. Determination of the physical properties of the synthesized compounds 

Melting Points 

Melting points were measured in open glass capillaries with Perfit and OptiMelt automated 

melting point apparatus and are uncorrected. 

IR Spectroscopy 

IR Spectra were measured on a Perkin-Elmer spectrometer as KBr pellets or neat (in case of 

liquid compounds). Only characteristic absorption bands were reported. Absorptions are 

given in wavenumbers (cm–1). 
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1H NMR Spectroscopy 

1H NMR Spectra were recorded on Brüker AMX-500 instrument (500 MHz) or JEOL ECX-

400-II spectrometer (400 MHz). Chemical shifts are given in ppm relative to 

tetramethylsilane (δ 0.00 ppm). Spectra were referenced to the solvent residual peak (from 

CDCl3, δ 7.26 ppm) or with tetramethylsilane (TMS, δ 0.00 ppm) as the internal standard. 

Coupling patterns are described by the following abbreviations: s (singlet), d (doublet), t 

(triplet), q (quartet), quintet (quint), dt (doublet of triplet), td (triplet of doublet), dd (doublet 

of doublet), m (multiplet), br (broad). Coupling constants are given in Hertz (Hz). 

13C NMR Spectroscopy 

13C NMR Spectra were recorded on Brüker AMX-500 spectrometer (125 MHz) or JEOL 

ECX-400-II spectrometer (100 MHz). Chemical shifts are given in ppm units and were 

determined by comparison with solvent peaks (from CDCl3, δ 77.0 ppm). 

Mass Spectroscopy 

High resolution mass spectra (HRMS) were recorded on Brüker micrOTOF™-Q II mass 

spectrometer using electron spray ionization (ESI–MS). 

3.2. Synthetic procedures 

3.2.1 General procedure for the Synthesis of -hydroxy sulfide derivatives: 

 

Mixture of a styrene 1302 (0.6 mmol), thiophenol 2 (0.3 mmol) and iodine (0.15 mmol) in 

DMSO (2 mL) was taken in a 10 mL round bottom flask and stirred at 60 oC for 12 h. After 

completion of the reaction as judged by TLC, iodine was quenched by saturated solution of 

sodiumthiosulphate and the product was extracted with ethyl acetate (3×10 mL). The 

combined organic phase was dried over anhydrous Na2SO4, filtered and evaporated under 

reduced pressure. The resulting crude product was purified by silica gel chromatography 

using a mixture of hexanes/ethyl acetate (4:1) as eluent to afford an analytically pure 

products 8-25. 
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1-Phenyl-2-(phenylthio)ethanol (8): 

Yield:  0.068 g (98%) as yellow oil. 

IR (KBr): max 3445, 2925, 1583, 1404, 1330, 1121, 738, 700 cm-1.  

1H NMR (400 MHz, CDCl3):δ 7.38 (d, J = 7.6 Hz, 2H), 7.32−7.26 (m, 

7H), 7.22−7.20 (m, 1H), 4.68 (dd, J = 3.6, 9.2 Hz, 1H), 3.27 (dd, J = 

3.6, 13.6 Hz, 1H), 3.07 (dd, J = 9.2, 13.6 Hz, 1H), 2.98 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 142.1, 134.9, 130.1, 129.1, 128.5, 127.9, 126.7, 125.8, 

71.6, 43.9 ppm. 

2-(4-Chlorophenylthio)-1-phenylethanol (9): 

Yield: 0.059 (74%) as yellow oil.  

IR (KBr): νmax 3425, 2924, 1584, 1476, 1405, 1095, 1011, 700       

cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.35−7.25 (m, 9H), 4.71 (dd, J = 

3.2, 8.8 Hz, 1H), 3.27 (dd, J = 3.6, 13.6 Hz, 1H), 3.10 (dd, J = 9.2, 14.0 Hz, 1H), 2.80 (s, 

1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 141.9, 133.5, 132.8, 131.4, 129.2, 128.6, 128.1, 125.8, 

71.8, 44.0 ppm. 

2-(4-Bromophenylthio)-1-phenylethanol (10): 

Yield: 0.064 g (69%) as yellow oil.  

IR (KBr): νmax 3427, 2922, 1582, 1473, 1387, 1090, 1063, 699       

cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.8 Hz, 2H), 7.37−7.29 (m, 5H), 7.25 (d, J = 

8.4 Hz, 2H), 4.71 (dd, J = 3.6, 9.2 Hz, 1H), 3.26 (dd, J = 3.6, 13.6 Hz, 1H), 3.10 (dd, J = 

9.2, 13.6 Hz, 1H), 2.79 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 141.9, 132.1, 132.0, 131.6, 131.5, 128.6, 128.1, 125.8, 

120.6, 71.8, 43.8 ppm. 

1-Phenyl-2-(p-tolylthio)ethanol (11): 

Yield: 0.046 (63%) as yellow oil.  

IR (KBr): νmax 3420, 2923, 1584, 1493, 1404, 805, 700 cm-1.  
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1H NMR (400 MHz, CDCl3): δ 7.35−7.24 (m, 7H), 7.13 (d, J = 8.0 Hz, 2H), 4.66 (d, J = 

9.6 Hz, 1H), 3.27 (dd, J = 3.2, 13.6 Hz, 1H), 3.02 (dd, J = 9.6, 14.0 Hz, 1H), 2.96−2.95 (m, 

1H), 2.34 (s, 3H) ppm.  

13C NMR (100 MHz, CDCl3): δ 142.1, 137.1, 131.0, 130.8, 129.9, 128.5, 127.9, 125.8, 

71.4, 44.8, 21.0 ppm. 

1-(4-Chlorophenyl)-2-(phenylthio)ethanol (12): 

Yield: 0.59 g (75%) as yellow oil.  

IR (KBr): νmax 3430, 2923, 1583, 1487, 1405, 1090, 830, 741, 692 

cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.0 Hz, 2H), 7.337.23 

(m, 7H), 4.67 (dd, J = 3.6, 9.6 Hz, 1H), 3.27 (dd, J = 3.6, 13.6 Hz, 1H), 3.03(dd, J = 9.2, 

13.6, 1H), 2.96(s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 140.5, 134.4, 133.6, 130.4, 129.2, 128.6, 127.2, 127.0, 

70.9, 44.1 ppm. 

1-(4-Chlorophenyl)-2-(4-chlorophenylthio)ethanol (13): 

Yield: 0.067 g (75%) as yellow oil.  

IR (KBr): νmax 3423, 2923, 1593, 1477, 1406, 1094, 1012, 817, 

490 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.34−7.26 (m, 8H), 4.68 (d, J = 9.2 Hz, 1H), 3.23 (dd, J = 

3.6, 14.0 Hz, 1H), 3.05 (dd, J = 9.2, 14.0 Hz, 1H), 2.85 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 140.4, 133.8, 133.1, 133.0, 131.7, 129.3, 128.7, 127.2, 

71.0, 44.2 ppm. 

2-(4-Bromophenylthio)-1-(4-chlorophenyl)ethanol (14): 

Yield: 0.062 g (60%) as yellow oil.  

IR (KBr): νmax 3428, 2926, 1636, 1585, 1404, 1121, 697 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.42 (d, J = 8.4 Hz, 2H), 7.31 (d, 

J = 8.8 Hz, 2H), 7.27−7.23 (m, 4H), 4.68 (dd, J = 4.0, 9.2 Hz, 1H), 

3.23 (dd, J = 4.0, 14.0 Hz, 1H), 3.05 (dd, J = 9.2, 13.6 Hz, 1H), 2.91 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 140.4, 133.9, 133.7, 132.2, 131.7, 128.7, 127.2, 120.9, 

71.0, 43.9 ppm. 
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1-(4-Chlorophenyl)-2-(p-tolylthio)ethanol (15): 

Yield: 0.062 g (74%) as yellow oil.  

IR (KBr): νmax 3425, 2920, 1586, 1492, 1405, 1089, 803 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.34−7.25 (m, 6H), 7.13 (d, J = 

8.0 Hz, 2H), 4.63 (dd, J = 2.8, 9.6 Hz, 1H), 3.22 (dd, J = 3.6, 14.0 Hz, 1H), 3.0−2.94 (m, 

2H), 2.34 (s, 3H) ppm.  

13C NMR (100 MHz, CDCl3): δ 140.6, 137.4, 133.5, 131.3, 130.5, 130.0, 128.6, 127.2, 

70.7, 44.9, 21.1 ppm. 

1-(4-Fluorophenyl)-2-(phenylthio)ethanol (16): 

Yield: 0.052 g (70%) as yellow oil. 

IR (KBr): νmax3419, 3070, 2923, 1604, 1510, 1479, 1223, 1060, 742, 

692 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 7.6 Hz, 2H), 7.33−7.29 

(m, 4H), 7.26−7.22 (m, 1H), 7.03 (t, J = 8.8 Hz, 2H), 4.69 (d, J = 8.4 Hz, 1H), 3.28 (dd, J = 

4.0, 14.0 Hz, 1H), 3.05 (dd, J = 9.6, 14.0 Hz, 1H), 2.92 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 162.4(d), 137.8(d), 134.6, 129.8(d), 127.5(d), 126.9, 

115.4(d), 71.0, 44.1 ppm. 

2-(4-Chlorophenylthio)-1-(4-fluorophenyl)ethanol (17): 

Yield: 0.059 g (70%) as yellow oil.  

IR (KBr): νmax 3419, 2925, 1603, 1510, 1476, 1404, 1225, 1096, 

1011, 836 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.33−7.26 (m, 6H), 7.02 (t, J = 8.4 Hz, 2H), 4.68 (dd, J = 

3.6, 8.8 Hz, 1H), 3.23 (dd, J = 4.0, 14.0 Hz, 1H), 3.06 (dd, J = 9.2, 14.0 Hz, 1H), 2.88 (s, 

1H) ppm. 

13C NMR (100 MHz, CDCl3): δ 162.4 (d), 137.7 (d), 133.1 (d), 130.4 (d), 127.5 (d), 115.4 

(d), 71.1, 44.1 ppm. 

2-(4-Bromophenylthio)-1-(4-fluorophenyl)ethanol (18): 

Yield: 0.064 g (65%) as yellow oil. 

IR (KBr): νmax 3423, 2923, 1604, 1510, 1473, 1407, 1092, 1008, 

565 cm-1. 
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1H NMR (400 MHz, CDCl3): δ 7.42 (d, J = 8.4 Hz, 2H), 7.3 (dd, J = 6.0, 8.4 Hz, 2H), 7.25 

(d, J = 8.4 Hz, 2H), 7.02 (t, J = 8.8 Hz, 2H), 4.69 (dd, J = 4.0, 9.2 Hz, 1H), 3.23 (dd, J = 4.0, 

14.0 Hz, 1H), 3.06 (dd, J = 9.2, 14.0 Hz, 1H), 2.87 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 162.5 (d), 137.8, 134.2, 132.1 (d), 127.7 (d), 120.9, 115.6 

(d), 71.3, 44.0 ppm. 

1-(4-Fluorophenyl)-2-(p-tolylthio)ethanol (19): 

Yield: 0.049 g (62%) as yellow oil.  

IR (KBr): νmax 3424, 2923, 1604, 1510, 1224, 1157, 491 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.33−7.25 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 

8.8 Hz, 2H), 4.64 (dd, J = 2.8, 9.2 Hz, 1H), 3.22 (dd, J = 3.2, 13.6 Hz, 1H), 3.02−2.96 (m, 

2H), 2.33 (s, 3H) ppm.  

13C NMR (100 MHz, CDCl3): δ 162.3 (d), 137.9, 137.3, 131.2, 130.6, 130.0, 127.5 (d), 

115.3 (d), 70.8, 44.9, 21.0 ppm. 

1-(4-Isopropylphenyl)-2-(phenylthio)ethanol (20): 

Yield: 0.77 g (94%) as yellow oil.  

IR (KBr): νmax 3435, 2960, 1584, 1056, 741 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.40 (d, J = 7.6 Hz, 2H), 

7.31−7.19 (m, 7H), 4.70 (d, J = 9.2 Hz, 1H), 3.31 (dd, J = 3.6, 13.6 Hz, 1H), 3.11 (dd, J = 

9.6, 14.0 Hz, 1H), 2.94−2.84 (m, 2H), 1.24 (d, J = 6.8 Hz, 6H) ppm.  

13C NMR (100 MHz, CDCl3): δ 148.7, 139.5, 135.0, 130.0, 129.1, 126.6, 126.6, 125.8, 

71.5, 43.7, 33.8, 24.0 ppm. 

2-(4-Chlorophenylthio)-1-(4-isopropylphenyl)ethanol (21): 

Yield: 0.060 g (65%) as yellow oil. 

IR (KBr): νmax 3420, 2960, 2925, 1582, 1476, 1406, 1096, 

1012, 815, 564, 491 cm-1.  

1H NMR (400 MHz, CDCl3): δ 7.32−7.29 (m, 2H), 7.26−7.24 (m, 4H), 7.21−7.19 (m, 2H), 

4.70 (dd, J = 3.6, 8.8Hz, 1H), 3.26 (dd, J = 4.0, 13.6 Hz, 1H), 3.12 (dd, J = 8.8, 13.6 Hz, 

1H), 2.89 (sep, J = 6.8 Hz, 1H), 2.71 (s,1H), 1.24 (d, J = 6.8 Hz, 6H) ppm.  

13C NMR (100 MHz, CDCl3): δ 148.9, 139.3, 133.7, 132.6, 131.3, 129.2, 126.6, 125.9, 

71.8, 43.8, 33.8, 23.9 ppm. 
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2-(4-Bromophenylthio)-1-(4-isopropylphenyl)ethanol (22): 

Yield: 0.063 (60%) as yellow oil.  

IR (KBr): νmax 3420, 2960, 2925, 1583, 1472, 1091, 1065, 568 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.39 (d, J = 9.2 Hz, 2H), 

7.26−7.18 (m, 6H), 4.69 (dd, J = 4.0, 9.2 Hz, 1H), 3.25 (dd, J = 4.0, 14.0 Hz, 1H), 3.12 (dd, 

J = 8.8, 13.6 Hz, 1H), 2.89 (Sep, J = 6.8 Hz, 1H), 2.77 (s, 1H), 1.23 (d, J = 6.8 Hz, 6H) ppm.  

13C NMR (100 MHz, CDCl3): δ 148.8, 139.3, 134.5, 132.0, 131.4, 126.6, 125.8, 120.4, 

71.8, 43.5, 33.8, 23.9 ppm. 

1-(4-Isopropylphenyl)-2-(p-tolylthio)ethanol (23): 

Yield: 0.062 g (72%) as yellow oil.  

IR (KBr): νmax 3423, 2959, 2924, 1584, 1493, 11405, 836, 805 

cm-1. 

1H NMR (400 MHz, CDCl3): δ 7.32 (d, J = 8.0 Hz, 2H), 7.25 

(d, J = 8.0, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.65 (dd, J = 3.2, 9.2 Hz, 

1H), 3.26 (dd, J = 3.6, 14.0 Hz, 1H), 3.04 (dd, J = 9.6, 14.0 Hz, 1H), 2.88 (sep, J = 6.8 Hz, 

2H), 2.32 (s, 3H), 1.23 (d, J= 6.8 Hz, 6H) ppm.  

13C NMR (100 MHz, CDCl3): δ 148.6, 139.5, 136.9, 131.1, 130.9, 129.9, 126.5, 125.8, 

71.4, 44.5, 33.8, 23.9, 21.0 ppm. 

2-((4-Chlorophenyl)thio)-1-(3,4,5-trimethoxyphenyl)ethanol (24): 

Yield: 0.068 (64%) as yellow oil.  

1H NMR (400 MHz, CDCl3): δ 7.33 (d, J = 8.4 Hz, 1H), 

7.27 d, J = 8.4 Hz, 1H), 6.55 (s, 2H), 4.66 (dd, J = 3.6, 8.8 

Hz, 1H), 3.85 (s, 6H), 3.83 (s, 3H), 3.26 (dd, J = 4.0, 13.6 Hz, 

1H), 3.12 (dd, J = 8.8, 13.6 Hz, 1H), 2.83 (s, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 153.3, 137.7, 137.6, 133.5, 132.8, 131.6, 129.2, 102.8, 

72.1, 60.8, 56.1, 44.0 ppm. 

2-(p-Tolylthio)-1-(3,4,5-trimethoxyphenyl)ethanol (25):  

Yield: 0.070 g (70%) as yellow oil.  

1H NMR (400 MHz, CDCl3): δ 7.33 (d, J = 8.0 Hz, 2H), 7.13 

(d, J = 7.6 Hz, 2H), 6.55 (s, 2H), 4.62 (dd, J = 3.6, 9.2 Hz, 1H), 
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3.84 (s, 6H), 3.82 (s, 3H), 3.26 (dd, J = 3.6, 13.6 Hz, 1H), 3.05 (dd, J = 9.2, 13.6 Hz, 2H), 

2.34 (s, 3H) ppm. 

13C NMR (100 MHz, CDCl3): δ 153.2, 137.9, 137.9, 137.4, 137.1, 131.0, 129.8, 102.7, 

71.7, 60.7, 56.0, 44.6, 21.0 ppm. 

3.2.2. General procedure for the synthesis of 26-49: 

 

To a stirred solution of 3-ylidene oxindole303 derivative (4, 0.1 mmol) in 2 mL of EtOH was 

added benzylidene-1-phenylpyrrolidine-2,5-dione304 (3, 0.1 mmol). Then DBU (0.05 mmol) 

was added, and the mixture was allowed to stir at room temperature for 40 min. After 

completion of the reaction as judged by TLC, the product started to settle down on the 

basement of the round bottom flask, reaction contents were filtered off. The product was 

afforded in good yield and excellent diastereoselectivity by simply washing with EtOH 

followed by drying. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-methyl-2,6-diphenyl-3a,4,6,6a-tetrahydro-1H-

spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(26):  

Yield: 0.037 g (70%) as white solid.  

MP: 258260 oC.  

IR (KBr) νmax: 3134, 1779, 1715, 1705, 1677, 1611, 1598, 1496, 1471, 1449, 1400, 1384, 

1235, 1153, 1138, 1099, 763, 753, 717, 698, 691, 645, 617, 595, 515, 488 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.56 (s, 3H), 4.1 (d, J = 9.6 Hz, 1H), 4.21 (dd, J = 7.6, 9.6 

Hz, 1H), 4.90 (d, J = 5.2 Hz, 1H), 5.04 (dd, J = 5.6, 7.6 Hz, 1H), 6.15 (d, J = 5.6 Hz, 1H), 

6.956.97 (m, 2H), 6.107.06 (m, 5H), 7.16 (dd, J = 0.8, 5.6 Hz, 1H), 7.21 (t, J = 6.4 Hz, 

2H), 7.31 (d, J = 5.6 Hz, 2H), 7.37 (t, J = 6.0 Hz, 1H), 7.40 (d, J = 6.4 Hz, 3H), 7.49 (t, J = 

6.0 Hz, 2H) ppm.  
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13C NMR (100 MHz, CDCl3): δ 25.9, 45.3, 48.1, 56.5, 59.15, 65.8, 107.9, 122.5, 124.8, 

125.6, 126.4, 127.9, 127.9, 127.9, 128.2, 128.6, 129.0, 129.1, 131.8, 132.7, 132.9, 136.3, 

142.8, 175.0, 175.5, 177.0, 195.9 ppm.  

HRMS (ESI): m/z calcd for C34H27N2O4 [M + H]+: 527.1965; found 527.1978.  

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-methyl-2-phenyl-6-(p-tolyl)-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (27):  

Yield: 0.034 g (63%) as off white solid.   

MP: 269271 oC.  

IR (KBr) νmax: 3135, 1778, 1708, 1676, 1610, 1494, 1400, 

1384, 1190, 1137, 1112, 1097, 907, 758, 749, 728, 691, 655, 

645, 602 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.13 (s, 3H), 2.56 (s, 3H), 4.06 (d, J = 12.0 Hz, 1H), 4.17 

(dd, J = 9.2, 12.0 Hz, 1H), 5.02 (dd, J = 6.8, 9.2 Hz, 1H), 6.166.18 (m, 1H), 6.83 (q, J = 

8.4, 5.2 Hz, 4H), 7.07.08 (m, 2H), 7.157.23 (m, 3H), 7.287.30 (m, 2H), 7.357.41 (m, 

4H), 7.477.51 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.0, 25.9, 45.2, 48.3, 56.6, 58.9, 65.7, 108.0, 122.4, 124.9, 

125.6, 126.4, 127.8, 127.9, 128.1, 128.5, 128.7, 128.9, 129.1, 129.8, 131.8, 132.7, 136.3, 

137.5, 142.8, 175.0, 175.6, 177.0, 195.9 ppm.  

HRMS (ESI): m/z calcd for C35H29N2O4 [M + H]+: 541.2122; found 541.2145. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-6-(4-chlorophenyl)-1'-methyl-2-phenyl-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(28):  

Yield: 0.032 g (57%) as off white solid.  

MP: 221223 oC.  

IR (KBr) νmax: 3133, 1779, 1715, 1708, 1679, 1610, 1494, 

1470, 1451, 1400, 1384, 1289, 1257, 1191, 1138, 1094, 905, 751, 737, 730, 722, 692, 655, 

646, 614, 600 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.57 (s, 3H), 4.06 (d, J = 12.0 Hz, 1H), 4.13 (dd, J = 9.2, 

12.0 Hz, 1H), 4.87 (d, J = 6.4 Hz, 1H), 5.04 (dd, 6.8, 9.2 Hz, 1H), 6.20 (d, J = 7.6 Hz, 1H), 
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6.90 (d, J = 8.8 Hz, 2H), 6.997.04 (m, 3H), 7.08 (td, J = 1.2, 7.6 Hz, 1H), 7.15 (dd, J = 0.8, 

7.6 Hz, 1H), 7.197.23 (m, 2H), 7.277.30 (m, 2H), 7.367.43 (m, 4H), 7.50 (t, J = 7.6 Hz, 

2H) ppm. 

13C NMR (100 MHz, CDCl3): δ 25.9, 45.1, 48.2, 56.5, 58.3, 65.6, 108.2, 122.6, 124.4, 

125.4, 126.4, 128.0, 128.1, 128.2, 128.6, 129.1, 129.2, 129.3, 131.5, 131.6, 132.8, 133.8, 

136.2, 142.7, 174.8, 175.3, 176.8, 195.7 ppm.  

HRMS (ESI): m/z calcd for C34H25ClN2O4Na [M + Na]+: 583.1395; found 583.1397. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-6-(3-methoxyphenyl)-1'-methyl-2-phenyl-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(29):  

Yield: 0.039 g (70%) as white solid.  

MP: 244245 oC.  

IR (KBr) νmax: 3134, 1778, 1715, 1675, 1610, 1493, 1400, 

1385, 1190, 1137, 1101, 757, 732, 692, 655, 644, 603 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.56 (s, 3H), 3.55 (s, 3H), 4.07 (d, J = 12.0 Hz, 1H), 4.17 

(dd, J = 9.2, 11.6 Hz, 1H), 4.88 (d, J = 6.8 Hz, 1H), 5.03 (dd, J = 6.8, 9.2 Hz, 1H), 6.186.20 

(m, 1H), 6.47 (t, J = 2.0 Hz, 1H), 6.576.60 (m, 2H), 6.94 (t, J = 8.0 Hz, 1H), 7.0–7.04 (m, 

1H), 7.08 (td, J = 1.6, 7.6 Hz, 1H), 7.157.18 (m, 1H), 7.21 (t, J = 8.0 Hz, 2H), 7.297.31 

(m, 2H), 7.367.42 (m, 4H), 7.487.51 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 25.9, 45.2, 48.3, 55.0, 56.6, 59.0, 65.7, 108.1, 113.1, 113.9, 

120.6, 122.4, 124.8, 125.6, 126.4, 127.9, 128.1, 128.6, 128.9, 129.0, 129.1, 129.2, 131.7, 

132.8, 134.4, 136.3, 142.8, 159.0, 174.9, 175.5, 176.9, 195.8 ppm.  

HRMS (ESI): m/z calcd for C35H29N2O5 [M + H]+: 557.2071; found 557.2082. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Methyl-4-(4-methylbenzoyl)-2,6-diphenyl-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (30):  

Yield: 0.039 g (72%) as off white solid.  

MP: 233235 oC.  

1H NMR (400 MHz, CDCl3): δ 2.29 (s, 3H), 2.58 (s, 3H), 4.10 

(d, J = 12.0 Hz, 1H), 4.21 (dd, J = 9.6, 12.0 Hz, 1H), 4.88 (d, J 
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= 6.8 Hz, 1H), 5.04 (dd, J = 6.8, 9.2 Hz, 1H), 6.166.18(m, 1), 6.957.06 (m, 9H), 7.167.19 

(m, 1H), 7.25 (s, 1H), 7.26 (d, J = 2.4 Hz, 1H), 7.377.41 (m, 3H), 7.477.50 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.5, 25.9, 45.3, 48.1, 56.2, 59.1, 65.9, 107.9, 122.4, 124.7, 

125.6, 126.4, 127.8, 127.9, 127.9, 128.3, 128.5, 128.6, 128.9, 129.1, 131.7, 132.9, 133.6, 

142.7, 143.7, 175.1, 175.5, 177.0, 195.2 ppm.  

HRMS (ESI): m/z calcd for C35H29N2O4 [M + H]+: 541.2122, found: 541.2119. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Methyl-4-(4-methylbenzoyl)-2-phenyl-6-(p-tolyl)-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(31):   

Yield: 0.038 g (69%) as off white solid.  

MP: 263266 oC.  

IR (KBr) νmax: 3134, 1778, 1714, 1668, 1611, 1495, 1471, 

1400, 1384, 1286, 1240, 1186, 1155, 1136, 1097, 825, 725, 710, 690, 655, 617, 597, 518, 

495 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.13 (s, 3H), 2.29 (s, 3H), 2.59 (s, 3H), 4.06 (d, J = 9.6 Hz, 

1H), 4.16 (dd, J = 7.6, 9.6 Hz, 1H), 4.86 (d, J = 5.2 Hz, 1H), 5.01 (dd, J = 5.2, 7.2 Hz, 1H), 

6.20 (d, J = 6.0 Hz, 1H), 6.83 (q, J = 6.4 Hz, 4H), 6.997.07 (m, 4H), 7.17 (d, J = 5.6 Hz, 

1H), 7.24 (s, 2H), 7.387.41 (m, 3H), 7.477.50 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.0, 21.5, 25.9, 45.3, 48.3, 56.4, 59.0, 65.9, 108.0, 122.4, 

124.9, 125.7, 126.4, 127.8, 128.4, 128.5, 128.6, 128.7, 128.8, 129.1, 129.9, 131.8, 133.7, 

137.4, 142.8, 143.6, 175.1, 175.6, 177.0, 195.3 ppm.  

HRMS (ESI): m/z calcd for C36H31N2O4 [M + H]+: 555.2278, found: 555.2281. 

(3aR*,3'S*,4S*,6S*,6aS*)-4-(4-Chlorophenyl)-1'-methyl-6-(4-methylbenzoyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (32):  

Yield: 0.029 g (51%) as off white solid.  

MP: 238240 oC.  
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IR (KBr) νmax: 3133, 1778, 1716, 1703, 1679, 1609, 1494, 1470, 1400, 1384, 1290, 1256, 

1189, 1138, 1092, 909, 833, 780, 751, 740, 729, 655, 645, 616, 603, 527, 495 cm−1; 

1H NMR (400 MHz, CDCl3): δ 2.30 (s, 3H), 2.60 (s, 3H), 4.05 (d, J = 12.0 Hz, 1H), 4.13 

(dd, J = 9.2, 11.6 Hz, 1H), 4.86 (d, J = 6.8 Hz, 1H), 5.03 (dd, 6.8, 9.2 Hz, 1H), 6.23 (d, J = 

7.6 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.997.03 (m, 5H), 7.08 (td, J = 1.2, 7.6 Hz, 1H), 7.16 

(d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.397.42 (m, 3H), 7.49 (t, J = 7.6 Hz, 2H) 

ppm.  

13C NMR (100 MHz, CDCl3): δ 21.5, 26.0, 45.2, 48.2, 56.3, 58.4, 65.754, 108.2, 122.6, 

124.4, 125.5, 126.4, 128.2, 128.3, 128.6, 128.6, 129.1, 129.1, 129.3, 131.6, 133.6, 133.8, 

142.7, 143.8, 174.9, 175.3, 176.8, 195.0 ppm.  

HRMS (ESI): m/z calcd for C35H28ClN2O4 [M + H]+: 575.1732, found: 575.1731. 

(3aR*,3'S*,4S*,6S*,6aS*)-4-(3-Methoxyphenyl)-1'-methyl-6-(4-methylbenzoyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (33):  

Yield: 0.034 g (60%) as off white solid.  

MP: 250251 oC.  

IR (KBr) νmax: 3138, 1775, 1703, 1677, 1609, 1494, 1400, 

1385, 1137, 1123, 750, 689, 656, 644, 603 cm−1. 

1H NMR (400 MHz, CDCl3): δ 2.29 (s, 3H), 2.59 (s, 3H), 3.56 (s, 3H), 4.07 (d, J = 11.6 

Hz, 1H), 4.16 (dd, J = 9.2, 11.6 Hz, 1H), 4.86 (d, J = 6.8 Hz, 1H), 5.03 (dd, J = 6.8, 9.2 Hz, 

1H), 6.21 (d, J = 8.0 Hz, 1H), 6.47 (s, 1H), 6.576.59 (m, 2H), 6.94 (t, J = 8.0 Hz, 1H), 

7.07.08 (m, 5H), 7.18 (d, J = 7.2 Hz, 1H), 7.24 (s, 1H), 7.387.42 (m, 3H), 7.477.51 (m, 

2H) ppm. 

13C NMR (100 MHz, CDCl3): δ 21.5, 25.9, 45.3, 48.3, 55.0, 56.3, 59.0, 65.8, 108.0, 113.1, 

113.9, 120.6, 122.4, 124.8, 125.6, 126.4, 128.3, 128.5, 128.6, 128.9, 128.9, 129.1, 131.7, 

133.6, 134.5, 142.8, 143.7, 159.0, 175.0, 175.5, 177.0, 195.2 ppm.  

HRMS (ESI): m/z calcd for C36H31N2O5 [M + H]+: 571.2227, found: 571.2224. 
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(3aS*,3'S*,4S*,6S*,6aR*)-4-(4-Methoxybenzoyl)-1'-methyl-2,6-diphenyl-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (34):  

Yield: 0.034 g (61%) as off white solid.  

MP: 158159 oC.  

IR (KBr) νmax: 3135, 1716, 1702, 1678, 1601, 1400, 1385, 

1138, 1123, 749, 732, 656, 644, 603 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.65 (s, 3H), 3.78 (s, 3H), 4.10 (d, J = 12.0 Hz, 1H), 4.21 

(dd, J = 9.2, 12.0 Hz, 1H), 4.87 (d, J = 6.8 Hz, 1H), 5.05 (dd, J = 6.8, 9.6 Hz, 1H), 6.196.22 

(m, 1H), 6.72 (d, J = 8.8 Hz, 2H), 6.956.99 (m, 2H), 6.997.06 (m, 5H), 7.187.20 (m, 

1H), 7.337.43 (m, 5H), 7.477.53 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 26.0, 45.5, 48.1, 55.4, 55.7, 59.3, 66.1, 107.9, 113.2, 122.4, 

124.7, 125.7, 126.4, 127.9, 127.9, 128.5, 128.8, 128.9, 129.1, 130.7, 131.7, 132.9, 142.6, 

163.4, 175.1, 175.7, 177.1, 193.7 ppm.  

HRMS (ESI): m/z calcd for C35H29N2O5 [M + H]+: 557.2071, found: 557.2059. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-(4-Methoxybenzoyl)-1'-methyl-2-phenyl-6-(p-tolyl)-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(35):  

Yield: 0.33 g (58%) as off white solid.  

MP: 277279 oC.  

IR (KBr) νmax: 3133, 1779, 1716, 1670, 1599, 1574, 1494, 

1470, 1400, 1384, 1169, 1136, 1114, 750, 713, 692, 656, 604, 517 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.13 (s, 3H), 2.66 (s, 3H), 3.78 (s, 3H), 4.06 (d, J = 12.0 

Hz, 1H), 4.16 (dd, J = 9.2, 12.0 Hz, 1H), 4.85 (d, J = 6.4 Hz, 1H), 5.02 (dd, J = 6.8, 9.2 Hz, 

1H), 6.23 (d, J = 7.2 Hz, 1H), 6.72 (d, J = 8.8 Hz, 2H), 6.83 (dd, J = 8.4, 12.8 Hz, 4H), 

6.997.07 (m, 2H), 7.19 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 7.6, 1H), 7.397.42 (m, 4H), 

7.467.50 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.0, 26.0, 45.5, 48.3, 55.4, 55.9, 59.1, 66.1, 107.9, 113.2, 

122.4, 124.9, 125.7, 126.4, 127.8, 128.5, 128.6, 128.8, 129.0, 129.9, 130.7, 131.8, 137.4, 

142.7, 175.1, 175.8, 177.1, 193.7 ppm.  
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HRMS (ESI): m/z calcd for C36H31N2O5 [M + H]+: 571.2227, found: 571.2231. 

(3aR*,3'S*,4S*,6S*,6aS*)-4-(4-Chlorophenyl)-6-(4-methoxybenzoyl)-1'-methyl-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (36):  

Yield: 0.031 g (53%) as off white solid.  

MP: 293294 oC.  

1H NMR (400 MHz, CDCl3): δ 2.67 (s, 3H), 3.79 (s, 3H), 

4.05 (d, J = 12.0 Hz, 1H), 4.13 (dd, J = 9.2, 12.0 Hz, 1H), 4.85 (d, J = 6.4 Hz, 1H), 5.05 (dd, 

J = 6.8, 9.2 Hz, 1H), 6.26 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.4 Hz, 

2H), 6.997.10 (m, 4H), 7.18 (d, J = 7.2 Hz, 1H), 7.397.42 (m, 4H), 7.477.51 (m, 3H) 

ppm.  

13C NMR (100 MHz, CDCl3): δ 26.1, 45.4, 48.3, 55.4, 55.8, 58.6, 66.0, 108.2, 113.3, 122.6, 

124.4, 125.6, 126.4, 128.2, 128.6, 128.9, 129.1, 129.3, 130.7, 131.7, 133.8, 142.6, 163.5, 

174.9, 175.5, 176.9, 193.5 ppm.  

HRMS (ESI): m/z calcd for C35H28ClN2O5 [M + H]+: 591.1681, found: 591.1683. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-(4-Methoxybenzoyl)-6-(3-methoxyphenyl)-1'-methyl-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (37):  

Yield: 0.034 g (58%) as off white solid.  

MP: 201204 oC.  

IR (KBr) νmax: 3133, 1779, 1716, 1671, 1601, 1493, 1400, 

1384, 1246, 1172, 1136, 1099, 750, 712, 693, 655, 604, 486 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.66 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 4.07 (d, J = 12.0 

Hz, 1H), 4.17 (dd, J = 9.2, 12.0 Hz, 1H), 4.85 (d, J = 6.8 Hz, 1H), 5.04 (dd, J = 6.8, 9.6 Hz, 

1H), 6.24 (d, J = 7.6 Hz, 1H), 6.47 (t, J = 2.0 Hz, 1H), 6.58 (dd, J = 2.0, 8.4 Hz, 2H), 6.71 

(d, J = 8.8 Hz, 2H), 6.94 (t, J = 7.6 Hz, 1H), 6.997.08 (m, 2H), 7.19 (dd, J = 1.2, 7.2 Hz, 

1H), 7.377.43 (m, 5H), 7.477.51 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 26.0, 45.5, 48.3, 55.0, 55.4, 55.9, 59.2, 66.0, 108.0, 113.1, 

113.2, 113.9, 120.6, 122.4, 124.8, 125.7, 126.4, 128.5, 128.9, 129.1, 130.7, 131.7, 134.5, 

142.7, 159.0, 163.4, 175.0, 175.7, 177.0, 193.6 ppm.  
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HRMS (ESI): m/z calcd for C36H31N2O6 [M + H]+: 587.2177, found: 587.2194. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-benzyl-2,6-diphenyl-3a,4,6,6a-tetrahydro-1H-

spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (38):  

Yield: 0.037 g (62%) as white solid.  

MP: 247249 oC.  

IR (KBr) νmax: 3134, 1782, 1720, 1707, 1680, 1610, 1496, 

1466, 1400, 1384, 1156, 1124, 1105, 745, 716, 690, 656, 615, 

303 cm−1;  

1H NMR (400 MHz, CDCl3): δ 3.75 (d, J = 16.4 Hz, 1H), 4.114.19 (m, 2H), 4.69 (d, J = 

16.0 Hz, 1H), 4.98 (d, J = 6.8 Hz, 1H), 5.08 (dd, J = 7.2, 9.2 Hz, 1H), 5.96 (d, J = 8.0 Hz, 

1H), 6.37 (d, J = 7.6 Hz, 2H), 6.937.06 (m, 8H), 7.097.15 (m, 2H), 7.25 (s, 1H), 7.277.28 

(m, 2H), 7.397.46 (m, 6H), 7.477.52 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 43.5, 45.4, 48.7, 56.4, 59.9, 65.9, 109.4, 122.5, 124.6, 

125.8, 126.2, 126.4, 127.2, 128.1, 128.1, 128.2, 128.3, 128.5, 128.6, 129.1, 129.1, 131.7, 

132.8, 133.0, 134.2, 136.3, 142.2, 174.9, 175.5, 176.9, 195.7 ppm.  

HRMS (ESI): m/z calcd for C40H31N2O4 [M + H]+: 603.2278, found: 603.2276. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-benzyl-2-phenyl-6-(p-tolyl)-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (39):  

Yield: 0.045 g (73%) as off white solid.  

MP: 292295 oC.  

IR (KBr) νmax: 3136, 1778, 1716, 1684, 1612, 1495, 1400, 

1385, 1148, 1118, 755, 693, 656, 643, 603, 518 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.21 (s, 3H), 3.71 (d, J = 16.0 

Hz, 1H), 4.074.17 (m, 2H), 4.74 (d, J = 16.0 Hz, 1H), 4.96 (d, J = 6.8 Hz, 1H), 5.06 (dd, J 

= 6.8, 8.4 Hz, 1H), 5.97 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 7.6 Hz, 2H), 6.84 (s, 4H), 6.947.05 

(m, 5H), 7.097.12 (m, 1H), 7.24 (s, 1H), 7.27 (s, 1H), 7.387.52 (m, 8H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.1, 43.4, 45.4, 48.9, 56.5, 59.7, 65.8, 109.4, 122.5, 124.8, 

125.8, 126.2, 126.4, 127.2, 128.1, 128.3, 128.3, 128.4, 128.5, 128.9, 129.0, 129.1, 129.7, 

131.8, 132.9, 134.3, 136.3, 137.7, 142.2, 174.9, 175.5, 176.9, 195.8 ppm.  
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HRMS (ESI): m/z calcd for C41H33N2O4 [M + H]+: 617.2435, found: 617.2438. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-benzyl-6-(4-chlorophenyl)-2-phenyl-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (40):  

Yield: 0.032 g (50%) as off white solid.  

MP: 252254 oC.  

IR (KBr) νmax: 3137, 1777, 1715, 1687, 1612, 1495, 1400, 

1385, 1113, 757, 692, 656, 645, 603, 524 cm−1.  

1H NMR (400 MHz, CDCl3): δ 3.74 (d, J = 16.0 Hz, 1H), 

4.054.14 (m, 2H), 4.72 (d, J = 16.4 Hz, 1H), 4.95 (d, J = 6.8 Hz, 1H), 5.08 (t, J = 7.2 Hz, 

1H), 6.03 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 7.2 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.977.03 

(m, 3H), 7.07 (t, J = 7.2 Hz, 3H), 7.15 (t, J = 7.6 Hz, 1H), 7.24 (s, 1H), 7.28 (s, 2H), 

7.387.44 (m, 5H), 7.467.52 (m, 3H) ppm.  

13C NMR (100 MHz, CDCl3): δ 43.4, 45.3, 48.8, 56.3, 59.2, 65.7, 109.6, 122.7, 124.3, 

125.7, 126.2, 126.4, 127.4, 128.1, 128.3, 128.4, 128.5, 128.7, 129.1, 129.8, 131.4, 131.6, 

133.0, 134.1, 134.1, 136.2, 142.2, 174.7, 175.2, 176.7, 195.5 ppm.  

HRMS (ESI): m/z calcd for C40H30ClN2O4 [M + H]+: 637.1889, found: 637.1887. 

(3aS*,3'S*,4S*,6S*,6aR*)-4-Benzoyl-1'-benzyl-6-(3-methoxyphenyl)-2-phenyl-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(41):  

Yield: 0.050 g (79%) as off white solid.  

MP: 236239 oC.  

IR (KBr) νmax: 3135, 1778, 1716, 1683, 1611, 1488, 1400, 

1385, 1193, 1108, 750, 690, 655, 644, 603, 486 cm−1.  

1H NMR (400 MHz, CDCl3): δ 3.48 (d, J = 16.0 Hz, 1H), 4.10 (d, J = 12.0 Hz, 1H), 4.16 

(dd, J = 9.2, 12.4 Hz, 1H), 4.74 (d, J = 16.0 Hz, 1H), 4.97 (d, J = 6.8 Hz, 1H), 5.08 (dd, J = 

6.8, 8.8 Hz, 1H), 5.98 (d, J = 7.6 Hz, 1H), 6.37 (d, J = 7.6 Hz, 2H), 6.47 (t, J = 1.6 Hz, 1H), 

6.60 (d, J = 7.6 Hz, 1H), 6.70 (dd, J = 2.4, 8.4 Hz, 1H), 6.947.06 (m, 5H), 7.11 (t, J = 7.6 

Hz, 1H), 7.28 (d, J = 7.6 Hz, 2H), 7.397.44 (m, 5H), 7.467.52 (m, 3H) ppm.  
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13C NMR (100 MHz, CDCl3): δ 43.4, 45.3, 48.9, 54.9, 56.4, 59.8, 65.7, 109.4, 113.3, 114.4, 

121.1, 122.5, 124.7, 125.7, 126.0, 126.4, 127.2, 128.1, 128.3, 128.5, 128.6, 129.1, 129.2, 

131.7, 133.0, 134.1, 134.2, 136.2, 142.2, 159.1, 174.8, 175.4, 176.9, 195.7 ppm.  

HRMS (ESI): m/z calcd for C41H33N2O5 [M + H]+: 633.2384, found: 633.2390. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Benzyl-4-(4-methylbenzoyl)-2,6-diphenyl-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (42):  

Yield: 0.040 g (65%) as white solid.  

MP: 149151 oC.  

IR (KBr) νmax: 3134, 1717, 1673, 1637, 1400, 1385, 1192, 

1123, 750, 656, 644, 603 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.35 (s, 3H), 3.91 (d, J = 16.0 

Hz, 1H), 4.12 (d, J = 12.0 Hz, 1H), 4.19 (dd, J = 9.2, 12.4 Hz, 1H), 4.63 (d, J = 16.0 Hz, 

1H), 4.98 (d, J = 6.8 Hz, 1H), 5.07 (dd, J = 6.8, 8.8 Hz, 1H), 5.99 (d, J = 7.6 Hz, 1H), 6.39 

(d, J = 7.6 Hz, 2H), 6.937.04 (m, 7H), 7.057.15 (m, 5H), 7.28 (d, J = 7.2, 1H), 7.387.42 

(m, 5H), 7.487.52 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.6, 43.5, 45.6, 48.7, 55.9, 60.0, 66.0, 109.4, 122.5, 124.6, 

125.9, 126.2, 126.4, 127.2, 128.1, 128.1, 128.4, 128.6, 128.9, 129.1, 131.8, 132.9, 133.6, 

134.3, 142.1, 144.0, 175.0, 175.5, 176.910, 194.9 ppm.  

HRMS (ESI): m/z calcd for C41H33N2O4 [M + H]+: 617.2435, found: 617.2437. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Benzyl-4-(4-methylbenzoyl)-2-phenyl-6-(p-tolyl)-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(43):  

Yield: 0.046 g (73%) as off white solid.  

MP: 241243 oC.  

IR (KBr) νmax: 3138, 1781, 1718, 1715, 1609, 1402, 1384, 

1125, 1101, 758, 743, 722, 695, 656, 613, 598 cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.2 (s, 3H), 2.35 (s, 3H), 3.86 (d, J = 16.0 Hz, 1H), 4.09 (d, 

J = 12.0 Hz, 1H), 4.15 (dd, J = 8.8, 12.0 Hz, 1H), 4.70 (d, J = 16.0 Hz, 1H), 4.96 (d, J = 6.8 

Hz, 1H), 5.07 (dd, J = 7.2, 8.8 Hz, 1H), 5.99 (d, J = 7.6 Hz, 1H), 6.39 (d, J = 7.6 Hz, 2H), 
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6.85 (s, 4H), 6.947.03 (m, 4H), 7.057.13 (m, 3H), 7.28 (d, J = 7.2 Hz, 1H), 7.367.42 (m, 

5H), 7.477.51 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.1, 21.6, 43.4, 45.5, 48.9, 56.0, 59.8, 66.0, 109.4, 122.4, 

124.8, 125.9, 126.2, 126.4, 127.1, 128.3, 128.5, 128.6, 128.8, 128.9, 128.9, 129.1, 129.8, 

131.8, 133.6, 134.3, 137.7, 142.1, 143.9, 175.0, 175.5, 177.0, 195.0 ppm.  

HRMS (ESI): m/z calcd for C42H35N2O4 [M + H]+: 631.2591, found: 631.2614. 

(3aR*,3'S*,4S*,6S*,6aS*)-1'-Benzyl-4-(4-chlorophenyl)-6-(4-methylbenzoyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (44):  

Yield: 0.033 g (51%) as orange solid.  

MP: 239241 oC.  

IR (KBr) νmax: 3135, 1780, 1715, 1678, 1610, 1494, 1467, 

1400, 1385, 1189, 1112, 748, 656, 644, 603 cm−1. 

1H NMR (400 MHz, CDCl3): δ 2.35 (s, 3H), 3.89 (d, J = 16.0 Hz, 1H), 4.054.13 (m, 2H), 

4.68 (d, J = 16.0 Hz, 1H), 4.95 (d, J = 6.8 Hz, 1H), 5.055.09 (m, 1H), 6.05 (d, J = 7.6 Hz, 

1H), 6.40 (d, J = 7.6 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.977.09 (m, 8H), 7.15 (t, J = 7.2 

Hz, 1H), 7.27 (s, 1H), 7.367.42 (m, 5H), 7.487.52 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.6, 43.5, 45.5, 48.8, 55.9, 59.3, 65.8, 109.5, 122.6, 124.3, 

125.8, 126.2, 126.4, 127.4, 128.4, 128.5, 128.6, 128.6, 128.9, 129.1, 129.3, 129.8, 131.5, 

131.7, 133.5, 134.1, 134.1, 142.1, 144.1, 174.8, 175.2, 176.7, 194.7 ppm.  

HRMS (ESI): m/z calcd for C41H32ClN2O4 [M + H]+: 651.2045, found: 651.2063. 

(3aR*,3'S*,4S*,6S*,6aS*)-1'-Benzyl-4-(3-methoxyphenyl)-6-(4-methylbenzoyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (45):  

Yield: 0.045 g (69%) as off white solid.  

MP: 215218 oC.  

IR (KBr) νmax: 3135, 1717, 1677, 1633, 1620, 1400, 1385, 

1192, 1123, 749, 656, 644, 603 cm−1. 
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1H NMR (400 MHz, CDCl3): δ 2.35 (s, 3H), 3.49 (s, 3H), 3.87 (d, J = 16.4 Hz, 1H), 4.09 

(d, J = 12.0 Hz, 1H), 4.15 (dd, J = 8.8, 12.0 Hz, 1H), 4.68 (d, J = 16.4 Hz, 1H), 4.96 (d, J = 

6.8 Hz, 1H), 5.07 (dd, J = 6.8, 8.8 Hz, 1H), 6.01 (d, J = 7.6 Hz, 1H), 6.39 (d, J = 7.2 Hz, 

2H), 6.46 (t, J = 2.0 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.69 (dd, J = 2.4, 8.4 Hz, 1H), 

6.957.04 (m, 5H), 7.077.13 (m, 3H), 7.29 (d, J = 7.2 Hz, 1H), 7.40 (dd, J = 8.4, 16.0 Hz, 

5H), 7.487.52 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.6, 43.5, 45.5, 48.9, 55.0, 56.0, 60.0, 65.9, 109.5, 113.3, 

114.5, 121.1, 122.4, 124.8, 125.9, 126.1, 126.4, 127.2, 128.5, 128.6, 128.6, 128.9, 129.0, 

129.1, 129.1, 131.8, 133.6, 134.3, 134.4, 142.2, 144.0, 159.2, 174.9, 175.5, 176.9, 194.9 

ppm.  

HRMS (ESI): m/z calcd for C42H35N2O5 [M + H]+: 647.2540, found: 647.2544. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Benzyl-4-(4-methoxybenzoyl)-2,6-diphenyl-3a,4,6,6a-

tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione (46):  

Yield: 0.040 g (63%) as off white solid.  

MP: 241244 oC.  

IR (KBr) νmax: 3137, 1781, 1716, 1663, 1598, 1495, 1467, 

1455, 1400, 1384, 1244, 1171, 1155, 1123, 842, 749, 698, 

656, 615, 603, 582, 512 cm−1.  

1H NMR (400 MHz, CDCl3): δ 3.81 (s, 3H), 4.074.14 (m, 

2H), 4.20 (dd, J = 8.8, 12.0 Hz, 1H), 4.61 (d, J = 16.4 Hz, 

1H), 4.98 (d, J = 6.8 Hz, 1H), 5.10 (dd, J = 7.2, 8.8 Hz, 1H), 

6.01 (d, J = 8.0 Hz, 1H), 6.37 (d, J = 7.6 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.936.98 (m, 

3H), 7.07.06 (m, 5H), 7.12 (dd, J = 7.6, 16.8 Hz, 2H), 7.30 (d, J = 7.6 Hz, 1H), 7.387.42 

(m, 3H), 7.487.55 (m, 4H) ppm.  

13C NMR (100 MHz, CDCl3): δ 43.5, 45.7, 48.6, 55.3, 55.5, 60.1, 66.2, 109.3, 113.5, 122.5, 

124.5, 125.9, 126.1, 126.4, 127.2, 128.1, 128.1, 128.4, 128.5, 128.6, 128.8, 128.9, 129.1, 

130.9, 131.7, 132.8, 134.2, 141.9, 163.6, 175.0, 175.5, 177.0, 193.4 ppm.  

HRMS (ESI): m/z calcd for C41H33N2O5 [M + H]+: 633.2384, found: 633.2401. 
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(3aS*,3'S*,4S*,6S*,6aR*)-1'-Benzyl-4-(4-methoxybenzoyl)-2-phenyl-6-(p-tolyl)-

3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-trione 

(47):  

Yield: 0.042 g (65%) as off white solid.  

MP: 258260 oC.  

IR (KBr) νmax: 3136, 1779, 1716, 1669, 1597, 1489, 

1400, 1385, 1239, 1171, 1115, 831, 757, 695, 656, 603 

cm−1.  

1H NMR (400 MHz, CDCl3): δ 2.21 (s, 3H), 3.81 (s, 3H), 4.04 (d, J = 16.0 Hz, 1H), 4.09 

(s, 1H), 4.15 (dd, J = 9.2, 12.0 Hz, 1H), 4.67 (d, J = 16.0 Hz, 1H), 4.95 (d, J = 6.8 Hz, 1H), 

5.07 (dd, J = 7.2, 9.2 Hz, 1H), 6.03 (d, J = 8.0 Hz, 1H), 6.39 (d, J = 7.2 Hz, 2H), 6.76 (d, J 

= 8.8 Hz, 2H), 6.84 (s, 4H), 6.937.05(m, 4H), 7.097.13 (m, 1H), 7.29 (d, J = 7.2 Hz, 1H), 

7.387.42 (m, 3H), 7.477.54 (m, 4H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.1, 43.4, 45.6, 48.8, 55.4, 55.5, 59.9, 66.1, 109.3, 113.4, 

122.4, 124.7, 125.9, 126.2, 126.4, 127.2, 128.3, 128.3, 128.5, 128.9, 129.1, 129.7, 130.9, 

131.7, 134.3, 137.7, 142.0, 163.6, 175.0, 175.6, 177.1, 193.5 ppm.  

HRMS (ESI): m/z calcd for C42H35N2O5 [M + H]+: 647.2540, found: 647.2541. 

(3aR*,3'S*,4S*,6S*,6aS*)-1'-Benzyl-4-(4-chlorophenyl)-6-(4-methoxybenzoyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (48):  

Yield: 0.035 g (52%) as off white solid.  

MP: 240242 oC.  

IR (KBr) νmax: 3136, 1779, 1717, 1669, 1598, 1494, 

1467, 1311, 1267, 1241, 1171, 1112, 1093, 1017, 837, 

758, 694, 656, 616, 603, 590, 524 cm−1.  

1H NMR (400 MHz, CDCl3): δ 3.81 (s, 3H), 4.054.13 (m, 3H), 4.66 (d, J = 12.8 Hz, 1H), 

4.95 (d, J = 5.6, 1H), 5.09 (dd, J = 5.6, 6.8 Hz, 1H), 6.08 (d, J = 6.0 Hz, 1H), 6.4 (d, J = 6.0 

Hz, 2H), 6.77 (d, J = 6.8 Hz, 2H), 6.88 (d, J = 6.8 Hz, 2H), 6.977.01 (m, 3H), 7.05 (dd, J 

= 5.6, 11.6 Hz, 3H), 7.15 (t, J = 6.0 Hz, 1H), 7.29 (d, J = 6.0 Hz, 1H), 7.397.42 (m, 3H), 

7.487.54 (m, 4H) ppm.  
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13C NMR (100 MHz, CDCl3): δ 43.5, 45.7, 48.8, 55.4, 55.5, 59.5, 66.0, 109.5, 113.5, 122.6, 

124.3, 125.9, 126.2, 126.4, 127.4, 128.4, 128.5, 128.6, 128.8, 129.1, 129.2, 129.7, 130.9, 

131.5, 131.7, 134.1, 134.2, 142.1, 163.7, 174.8, 175.4, 176.8, 193.2 ppm.  

HRMS (ESI): m/z calcd for C41H31ClN2O5Na [M + Na]+: 689.1814, found: 689.1814. 

(3aS*,3'S*,4S*,6S*,6aR*)-1'-Benzyl-4-(4-methoxybenzoyl)-6-(3-methoxyphenyl)-2-

phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,3'-indoline]-1,2',3(2H)-

trione (49):  

Yield: 0.045 g (68%) as off white solid.  

MP: 247249 oC.  

IR (KBr) νmax: 3133, 1778, 1714, 1675, 1599, 1489, 

1467, 1400, 1384, 1243, 1172, 1119, 758, 747, 695, 656, 

604 cm−1.  

1H NMR (400 MHz, CDCl3): δ 3.49 (s, 3H), 3.81 (s, 3H), 4.034.18 (m, 3H), 4.66 (d, J = 

16.0 Hz, 1H), 4.96 (d, J = 6.8 Hz, 1H), 5.09 (dd, J = 7.2, 9.2 Hz, 1H), 6.04 (d, J = 7.6 Hz, 

1H), 6.38 (d, J = 7.2 Hz, 2H), 6.45 (t, J = 2.0 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.69 (dd, J 

= 2.4, 8.4 Hz, 1H), 6.77 (d, J = 8.8 Hz, 2H), 6.947.06 (m, 5H), 7.11 (t, J = 7.2 Hz, 1H), 

7.31 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 3H), 7.49 (d, J = 7.2 Hz, 2H), 7.54 (d, J = 9.2 

Hz, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 43.5, 45.6, 48.9, 55.0, 55.4, 55.5, 60.1, 66.1, 109.4, 113.2, 

113.5, 114.4, 121.0, 122.5, 124.7, 125.9, 126.0, 126.4, 127.2, 128.5, 128.6, 128.9, 129.0, 

129.1, 130.9, 134.2, 134.3, 142.1, 159.1, 163.6, 174.9, 175.5, 177.0, 193.4 ppm.  

HRMS (ESI): m/z calcd for C42H35N2O6 [M + H]+: 663.2490, found: 663.2489. 
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3.2.3. General procedure for the synthesis of 50-69: 

 

To a stirred solution of chalcone305 derivative 5 (0.1 mmol) in 2 mL of EtOH was added 

benzylidene-1-phenylpyrrolidine-2,5-dione 3 (0.1 mmol). Then DBU (0.02 mmol) was 

added, and the mixture was allowed to stir at room temperature for 8 h (5 h in case of 69). 

After completion of the reaction as judged by TLC, the product started to settle down in the 

round bottom flask. Then the reaction contents were filtered off, washed with EtOH and 

dried under vacuum. 

(R*,E)-3-Benzylidene-4-((S*)-3-oxo-1,3-diphenylpropyl)-1-phenylpyrrolidine-2,5-

dione (50):   

Yield: 0.030 g (64%) as off white solid. 

MP: 171174 oC.  

1H NMR (400 MHz, CDCl3): δ 3.33 (dd, J = 4.0, 18.4 Hz, 1H), 4.19 

(dt, J = 4.4, 11.2 Hz, 1H), 4.55 (dd, J = 2.0, 4.4 Hz, 1H), 4.61 (dd, J 

= 10.4, 18.0 Hz, 1H), 6.967.0 (m, 5H), 7.197.26 (m, 3H), 7.347.74 (m, 7H), 7.977.99 

(m, 2H), 8.098.12 (m, 4H) ppm.  

13C NMR (100 MHz, CDCl3): δ 39.1, 40.0, 46.3, 126.5, 126.8, 127.8, 128.2, 128.2, 128.3, 

128.5, 128.5, 128.7, 129.0, 129.3, 130.5, 131.0, 131.7, 133.3, 136.5, 137.1, 138.4, 169.4, 

175.5, 199.2 ppm.  

HRMS (ESI): m/z calcd for C32H25KNO3 [M+K]+: 510.1466, found: 510.1461. 
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(R*,E)-3-(4-Chlorobenzylidene)-4-((S*)-3-oxo-1,3-diphenylpropyl)-1-

phenylpyrrolidine-2,5-dione (51):  

Yield: 0.032 g (63%) as off white solid.  

MP: 215218 oC.  

1H NMR (400 MHz, CDCl3): δ 3.27 (dd, J = 3.6, 18.4 Hz, 1H), 

4.14 (dt, J = 3.6, 11.2 Hz, 1H), 4.51 (dd, J = 2.0, 4.0 Hz, 1H), 4.68 

(dd, J = 10.8, 18.0 Hz, 1H), 6.956.99 (m, 4H), 7.207.28 (m, 3H), 

7.347.43 (m, 3H), 7.50 (t, J = 7.6 Hz, 2H), 7.587.63 (m, 3H), 7.68 (d, J = 2.0 Hz, 1H), 

7.97 (d, J = 8.8 Hz, 2H), 8.098.12 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 39.0, 39.9, 46.1, 126.4, 127.3, 127.9, 128.2, 128.2, 128.2, 

128.3, 128.5, 128.6, 128.7, 129.0, 129.6, 131.6, 131.7, 132.2, 132.3, 132.3, 133.4, 134.9, 

135.0, 135.0, 135.1, 136.6, 137.0, 138.2, 169.3, 175.3, 199.4 ppm.  

HRMS (ESI): m/z calcd for C32H24ClNO3Na [M+Na]+: 528.1337, found: 528.1359. 

(R*,E)-3-(4-Methylbenzylidene)-4-((S*)-3-oxo-1,3-diphenylpropyl)-1-

phenylpyrrolidine-2,5-dione (52):  

Yield: 0.036 g (74%) as off white solid.  

MP: 235238 oC.  

1H NMR (500 MHz, CDCl3): δ 2.48 (s, 3H), 3.34 (dd, J = 3.5, 18.0 

Hz, 1H), 4.23 (dt, J = 4.0, 10.5 Hz, 1H), 4.51 (m, 1H), 4.62 (dd, J = 

10.5, 18.0 Hz, 1H), 6.977.0 (m, 4H), 7.217.26 (m, 3H), 7.35 (t, J 

= 7.5 Hz, 1H), 7.42 (dd, J = 8.0, 18.0 Hz, 4H), 7.49 (t, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 

1H), 7.71 (d, J = 1.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 8.12 (d, J = 7.5 Hz, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 21.6, 39.0, 40.1, 46.4, 125.7, 126.5, 127.8, 128.2, 128.4, 

128.4, 128.5, 128.7, 129.0, 130.1, 130.6, 131.1, 131.8, 133.3, 136.5, 137.3, 138.5, 141.1, 

169.6, 175.6, 199.3 ppm.  

HRMS (ESI): m/z calcd for C33H31N2O3 [M+NH4]
+: 503.2329, found: 503.2335. 

(R*,E)-3-(3-Methoxybenzylidene)-4-((S*)-3-oxo-1,3-diphenylpropyl)-1-

phenylpyrrolidine-2,5-dione (53):  

Yield: 0.037 g (74%) as white solid.  
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MP: 9598 oC.  

1H NMR (400 MHz, CDCl3): δ 3.38 (dd, J = 4.4, 18.4 Hz, 1H), 

3.99 (s, 3H), 4.19 (dt, J = 4.4, 10.0 Hz, 1H), 4.53 (dd, J = 10.4, 

18.0 Hz, 1H), 4.59 (dd, J = 2.0, 4.0 Hz, 1H), 6.987.01 (m, 4H), 

7.07 (dd, J = 1.6, 8.0 Hz, 1H), 7.207.25 (m, 3H), 7.347.44 (m, 

4H), 7.467.50 (m, 2H), 7.537.63 (m, 3H), 7.70 (d, J = 2.0 Hz, 

1H), 8.078.09 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 39.3, 40.1, 46.1, 55.6, 115.9, 

116.6, 123.0, 126.4, 127.1, 127.8, 128.2, 128.3, 128.4, 128.6, 129.0, 130.3, 131.7, 133.3, 

134.7, 136.5, 137.1, 138.4, 160.1, 169.3, 175.5, 199.0 ppm.  

HRMS (ESI): m/z calcd for C33H27NO4K [M+K]+: 540.1566, found: 540.1570. 

(R*,E)-3-Benzylidene-4-((S*)-3-(4-fluorophenyl)-3-oxo-1-(p-tolyl)propyl)-1-

phenylpyrrolidine-2,5-dione (54):  

Yield: 0.035 g (70%) as off white solid.  

MP: 163165 oC.  

1H NMR (500 MHz, CDCl3): δ 2.29 (s, 3H), 3.25 (dd, J = 4.0, 

18.0 Hz, 1H), 4.15 (dt, J = 4.0, 10.5 Hz, 1H), 4.504.57 (m, 2H), 

6.85 (d, J = 7.5 Hz, 2H), 7.01 (t, J = 5.6 Hz, 1H), 7.15 (t, J = 7.2 

Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.427.45 (m, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 

7.5 Hz, 2H), 7.73 (d, J = 1.5 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 8.14 (dd, J = 5.5, 9.0 Hz, 

2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 21.0, 38.7, 40.1, 46.2, 115.7, 115.8, 126.5, 126.9, 128.1, 

128.5, 129.0, 129.1, 129.3, 130.5, 130.9, 130.9, 131.7, 133.4, 133.6, 133.6, 135.2, 136.4, 

137.5, 164.9, 166.9, 169.5, 175.7, 197.7 ppm.  

HRMS (ESI): m/z calcd for C33H26FNO3Na [M+Na] +: 526.1789, found: 526.1807. 
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(R*,E)-3-(4-Chlorobenzylidene)-4-((S*)-3-(4-fluorophenyl)-3-oxo-1-(p-tolyl)propyl)-1-

phenylpyrrolidine-2,5-dione (55):  

Yield: 0.035 g (65%) as off white solid.  

MP: 176179 oC.  

1H NMR (400 MHz, CDCl3): δ 2.30 (s, 3H), 3.19 (dd, J = 3.2, 

18.0 Hz, 1H), 4.10 (dt, J = 3.6, 10.8 Hz, 1H), 4.48 (dd, J = 2.0, 

4.0 Hz, 1H), 4.62 (dd, J = 10.8, 18.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 

2H), 6.987.04 (m, 4H), 7.16 (t, J = 8.8 Hz, 2H), 7.357.40 (m, 1H), 7.417.46 (m, 2H), 

7.62 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 8.118.16 (m, 

2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.0, 38.6, 40.0, 45.9, 115.7, 115.9, 126.4, 127.3, 128.1, 

128.6, 129.1, 129.2, 129.6, 130.8, 130.9, 131.6, 131.7, 132.2, 133.4, 133.5, 135.0, 135.0, 

136.6, 137.7, 164.6, 167.2, 169.3, 175.5, 197.9 ppm.  

HRMS (ESI): m/z calcd for C33H25ClFNO3Na [M+Na]+: 560.1399, found: 560.1396. 

(R*,E)-3-((S*)-3-(4-Fluorophenyl)-3-oxo-1-(p-tolyl)propyl)-4-(4-methylbenzylidene)-

1-phenylpyrrolidine-2,5-dione (56):  

Yield: 0.038 g (73%) as white solid.  

MP: 195198 oC.  

1H NMR (400 MHz, CDCl3): δ 2.29 (s, 3H), 2.48 (s, 3H), 3.26 (dd, 

J = 4.0, 18.0 Hz, 1H), 4.18 (dt, J = 4.0, 10.4 Hz, 1H), 4.46 (dd, J = 

2.0, 4.0 Hz, 1H), 4.56 (dd, J = 10.4, 17.6 Hz, 1H), 6.86 (d, J = 8.0 

Hz, 2H), 6.997.03 (m, 4H), 7.16 (t, J = 8.4 Hz, 2H), 7.347.39 (m, 1H), 7.43 (t, J = 7.6 Hz, 

4H), 7.70 (d, J = 1.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 8.138.17 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.0, 21.6, 38.6, 40.1, 46.3, 115.6, 115.9, 125.7, 125.7, 

126.5, 128.2, 128.5, 129.0, 129.1, 130.0, 130.6, 130.9, 131.0, 131.0, 131.8, 133.7, 135.3, 

136.5, 137.5, 141.1, 164.6, 167.2, 169.6, 175.8, 197.8 ppm.  

HRMS (ESI): m/z calcd for C34H28FNO3K [M+K]+: 556.1685, found: 556.1687. 
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(R*,E)-3-Benzylidene-4-((S*)-1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)-1-

phenylpyrrolidine-2,5-dione (57):  

Yield: 0.038 g (75%) as off white solid.  

MP: 164167 oC.  

1H NMR (500 MHz, CDCl3): δ 3.31 (dd, J = 3.5, 18.0 Hz, 1H), 

4.174.19 (m, 1H), 4.524.58 (m, 2H), 6.91 (d, J = 8.0 Hz, 2H), 

7.01 (d, J = 7.5 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.377.65 (m, 

9H), 7.76 (s, 1H), 7.95 (d, J = 7.5 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 38.4, 40.1, 46.1, 126.3, 126.4, 128.2, 128.6, 128.6, 128.7, 

129.1, 129.4, 129.6, 130.7, 130.9, 131.6, 133.2, 133.4, 133.7, 136.8, 137.0, 137.0,169.2, 

175.4, 198.8 ppm.  

HRMS (ESI): m/z calcd for C32H24ClNO3Na [M+Na] +: 528.1337, found: 528.1339. 

(R*,E)-3-(4-Chlorobenzylidene)-4-((S*)-1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)-1-

phenylpyrrolidine-2,5-dione (58):  

Yield: 0.035 g (65%) as off white solid.  

MP: 173176 oC.  

1H NMR (400 MHz, CDCl3): δ 3.24 (dd, J = 3.6, 18.0 Hz, 1H), 4.13 

(dt, J = 4.0, 10.8 Hz, 1H), 4.51 (dd, J = 2.0, 4.0 Hz, 1H), 4.63 (dd, J 

= 10.8, 18.4 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.977.0 (m, 2H), 

7.20 (d, J = 8.8 Hz, 2H), 7.367.40 (m, 1H), 7.437.46 (m, 2H), 7.50 (t, J = 7.6 Hz, 2H), 

7.587.63 (m, 3H), 7.70 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 8.088.10 (m, 2H) 

ppm.  

13C NMR (125 MHz, CDCl3): δ 38.4, 39.9, 45.9, 126.3, 127.0, 128.2, 128.7, 128.7, 128.8, 

129.1, 129.6, 129.7, 131.5, 131.6, 132.2, 133.5, 133.9, 135.3, 136.9, 136.9, 169.1, 175.2, 

199.0 ppm.  
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(R*,E)-3-((S*)-1-(4-Chlorophenyl)-3-oxo-3-phenylpropyl)-4-(4-methylbenzylidene)-1-

phenylpyrrolidine-2,5-dione (59):  

Yield: 0.039 g (75%) as white solid.  

MP: 178181 oC.  

1H NMR (400 MHz, CDCl3): δ 2.47 (s, 3H), 3.32 (dd, J = 4.0, 

18.0 Hz, 1H), 4.21 (dt, J = 4.0, 10.4 Hz, 1H), 4.50 (dd, J = 2.0, 4.0 

Hz, 1H), 4.56 (dd, J = 10.4, 18.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 2H), 

6.987.01 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.427.46 (m, 4H), 

7.49 (t, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.73 (d, J = 2.0, 1H), 7.85 (d, J = 8.0 Hz, 

2H), 8.088.11 (m, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 21.6, 38.3, 40.0, 46.2, 125.2, 126.4, 128.2, 128.6, 128.7, 

129.1, 129.7, 130.1, 130.4, 131.0, 131.7, 133.4, 133.7, 136.8, 137.0, 141.3, 169.4, 175.4, 

198.9 ppm.  

HRMS (ESI): m/z calcd for C33H30ClN2O3 [M+NH4]
+: 537.1939, found: 537.1973. 

(R*,E)-3-((S*)-1-(4-Chlorophenyl)-3-oxo-3-phenylpropyl)-4-(3-methoxybenzylidene)-

1-phenylpyrrolidine-2,5-dione (60):  

Yield: 0.041 g (76%) as white solid.  

MP: 134137 oC.  

1H NMR (400 MHz, CDCl3): δ 3.36 (dd, J = 4.4, 18.0 Hz, 1H), 3.98 

(s, 3H), 4.15m, 1Hdd, J = 10.0, 18.0 Hz, 

1Hdd, J = 2.0, 4.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 2H), 

7.017.03 (m, 2H), 7.067.09 (m, 1H), 7.19 (d, J = 8.4 Hz, 2H), 

7.347.40 (m, 2H), 7.437.50 (m, 4H), 7.537.61 (m, 3H), 7.72 (d, J = 2.0 Hz, 1H), 

8.058.07 (m, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 38.6, 40.1, 46.0, 55.6, 115.8, 116.6, 123.0, 126.3, 126.7, 

128.2, 128.6, 128.7, 129.1, 129.6, 130.4, 131.5, 133.4, 133.7, 134.5, 136.9, 136.9, 137.0, 

160.1, 169.2, 175.4, 198.7 ppm.  

HRMS (ESI): m/z calcd for C33H26ClNO4 [M]+: 535.1545, found: 535.1559. 
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(R*,E)-3-Benzylidene-4-((S*)-3-(4-bromophenyl)-1-(4-chlorophenyl)-3-oxopropyl)-1-

phenylpyrrolidine-2,5-dione (61):  

Yield: 0.044 g (76%) as off white solid.  

MP: 98101 oC.  

1H NMR (500 MHz, CDCl3): δ 3.25 (dd, J = 4.0, 18.0 Hz, 1H), 

4.16 (dt, J = 4.0, 10.0 Hz, 1H), 4.484.54 (m, 2H), 6.88 (d, J = 8.5 

Hz, 2H), 7.01 (d, J = 7.5 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.39 (t, 

J = 7.5 Hz, 1H), 7.437.46 (m, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.627.65 (m, 4H), 7.75 (d, J 

= 1.5 Hz, 1H), 7.937.96 (m, 4H) ppm.  

13C NMR (125 MHz, CDCl3): δ 38.3, 40.0, 46.0, 126.3, 128.7, 128.7, 129.1, 129.4, 129.6, 

129.7, 130.7, 130.9, 131.5, 132.0, 133.2, 133.8, 135.7, 136.8, 136.9, 169.2, 175.4, 197.9 

ppm.  

HRMS (ESI): m/z calcd for C32H23BrClNO3Na [M+Na]+: 606.0442, found: 606.047. 

(R*,E)-3-((S*)-3-(4-Bromophenyl)-1-(4-chlorophenyl)-3-oxopropyl)-4-(4-

chlorobenzylidene)-1-phenylpyrrolidine-2,5-dione (62):  

Yield: 0.032 g (52%) as off white solid.  

MP: 173175 oC.  

1H NMR (400 MHz, CDCl3): δ 3.18 (dd, J = 3.6, 18.4 Hz, 1H), 

4.11 (dt, J = 3.6, 10.8 Hz, 1H), 4.48 (dd, J = 2.0, 4.0 Hz, 1H), 4.58 

(dd, J = 10.8, 18.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 2H), 6.987.0 (m, 

2H), 7.20 (d, J = 8.4 Hz, 2H), 7.367.41 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.63 (t, J = 8.4 

Hz, 4H), 7.69 (d, J = 2.0 Hz, 1H), 7.94 (t, J = 8.4 Hz, 4H) ppm.  

13C NMR (100 MHz, CDCl3): δ 38.3, 39.9, 45.8, 126.3, 126.8, 128.7, 128.8, 128.8, 129.2, 

129.6, 129.7, 131.4, 131.5, 132.1, 132.2, 133.9, 135.4, 135.4, 135.6, 136.6, 136.9, 169.0, 

175.2, 198.0 ppm.  

HRMS (ESI): m/z calcd for C32H22BrCl2NO3K [M+K]+: 655.9792, found: 655.9775.  
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(R*,E)-3-((S*)-3-(4-Bromophenyl)-1-(4-chlorophenyl)-3-oxopropyl)-4-(4-

methylbenzylidene)-1-phenylpyrrolidine-2,5-dione (63):  

Yield: 0.045 g (75%) as off white solid.  

MP: 177180 oC.  

1H NMR (400 MHz, CDCl3): δ 2.48 (s, 3H), 3.26 (dd, J = 4.4, 

18.0 Hz, 1H), 4.19 (dt, J = 4.0, 10.0 Hz, 1H), 4.464.55 (m, 2H), 

6.89 (d, J = 8.4 Hz, 2H), 6.997.01 (m, 2H), 7.18 (d, J = 8.8 Hz, 

2H), 7.38 (t, J = 7.6 Hz, 1H), 7.427.46 (m, 4H), 7.63 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 1.6 

Hz, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.6, 38.2, 40.0, 46.0, 125.1, 126.3, 128.6, 128.6, 128.7, 

129.1, 129.6, 129.7, 129.7, 129.8, 130.1, 130.4, 131.0, 131.0, 131.6, 132.0, 132.0, 133.8, 

135.7, 136.8, 136.9, 141.4, 169.3, 175.4, 198.0 ppm.  

HRMS (ESI): m/z calcd for C33H25BrClNO3 [M]+: 597.0701, found: 597.4141. 

(R*,E)-3-Benzylidene-4-((S*)-1-(4-chlorophenyl)-3-oxo-3-(p-tolyl)propyl)-1-

phenylpyrrolidine-2,5-dione (64):  

Yield: 0.032 g (62%) as off white solid.  

MP: 134137 oC.  

1H NMR (500 MHz, CDCl3): δ 2.42 (s, 3H), 3.28 (dd, J = 4.0, 

17.5 Hz, 1H), 4.17 (dt, J = 4.0, 10.0 Hz, 1H), 4.494.54 (m, 

2H), 6.91 (d, J = 8.5 Hz, 2H), 7.0 (d, J = 7.5 Hz, 2H), 7.19 (d, 

J = 8.5 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 7.5 Hz, 

1H), 7.437.46 (m, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 

8.0 Hz, 2H), 7.75 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 7.5 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 21.7, 38.5, 39.9, 46.2, 126.3, 126.5, 128.3, 128.6, 128.6, 

129.1, 129.3, 129.4, 129.6, 130.6, 130.9, 131.6, 133.2, 133.7, 134.5, 136.8, 137.1, 144.3, 

169.3, 175.3, 198.4 ppm.  

HRMS (ESI): m/z calcd for C33H26ClNO3Na [M+Na]+: 542.1493, found: 542.1500. 
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(R*,E)-3-Benzylidene-4-((S*)-3-(3-chlorophenyl)-1-(4-chlorophenyl)-3-oxopropyl)-1-

phenylpyrrolidine-2,5-dione (65):  

Yield: 0.045 g (83%) as off white solid.  

MP: 175178 oC.  

1H NMR (400 MHz, CDCl3): δ 3.27 (dd, J = 4.0, 18.0 Hz, 1H), 

4.16 (dt, J = 4.0, 10.0 Hz, 1H), 4.494.56 (m, 2H), 6.89 (d, J = 

8.4 Hz, 2H), 7.07.02 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 

7.377.47 (m, 4H), 7.55 (q, J = 7.6 Hz, 2H), 7.64 (t, J = 7.6 Hz, 2H), 7.76 (d, J = 2.0 Hz, 

1H), 7.947.97 (m, 3H), 8.04 (t, J = 2.0 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 38.2, 40.2, 45.9, 126.3, 126.3, 128.2, 128.3, 128.7, 128.7, 

129.1, 129.4, 129.6, 130.1, 130.7, 130.9, 131.5, 133.2, 133.4, 133.8, 135.1, 136.7, 136.9, 

138.4, 169.2, 175.4, 197.6 ppm.  

HRMS (ESI): m/z calcd for C32H27Cl2N2O3 [M+NH4]
+: 557.1393, found: 557.1395. 

(R,E*)-3-Benzylidene-1-(4-chlorophenyl)-4-((S*)-3-oxo-1,3-

diphenylpropyl)pyrrolidine-2,5-dione (66):  

Yield: 0.034 g (67%) as off white solid.  

MP: 169172 oC.  

1H NMR (400 MHz, CDCl3): δ 3.34 (dd, J = 4.0, 18.0 Hz, 1H), 4.17 

(dt, J = 3.6, 10.4 Hz, 1H), 4.534.61 (m, 2H), 6.93 (d, J = 8.8 Hz, 

2H), 6.97 (dd, J = 1.6, 8.0 Hz, 2H), 7.197.24 (m, 3H), 7.38 (d, J = 

8.4 Hz, 2H), 7.487.54 (m, 3H), 7.587.65 (m, 3H), 7.74 (d, J = 2.0 Hz, 1H), 7.98 (d, J = 

7.6 Hz, 2H), 8.098.11 (m, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 39.2, 39.9, 46.4, 126.5, 127.7, 127.9, 128.2, 128.3, 128.5, 

128.7, 129.2, 129.3, 130.1, 130.7, 131.0, 133.2, 133.4, 134.3, 136.9, 137.1, 138.3, 169.2, 

175.3, 199.2 ppm.  

HRMS (ESI): m/z calcd for C32H24ClNO3Na [M+Na]+: 528.1337, found: 528.1364. 
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(R,E*)-3-Benzylidene-1-(4-chlorophenyl)-4-((S*)-1-(4-chlorophenyl)-3-oxo-3-

phenylpropyl)pyrrolidine-2,5-dione (67):  

Yield: 0.036 g (67%) as off white solid.  

MP: 162165 oC.  

1H NMR (400 MHz, CDCl3): δ 3.32 (dd, J = 4.0, 18.0 Hz, 1H), 4.16 

(dt, J = 4.0, 10.4 Hz, 1H), 4.484.55 (m, 2H), 6.89 (d, J = 8.4 Hz, 

2H), 6.96 (d, J = 8.8 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 

8.8 Hz, 2H), 7.487.55 (m, 3H), 7.587.65 (m, 3H), 7.76 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 

7.6 Hz, 2H), 8.078.09 (m, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 38.5, 39.9, 46.2, 126.1, 127.5, 128.2, 128.6, 128.8, 129.3, 

129.4, 129.6, 130.0, 130.8, 131.0, 133.0, 133.5, 133.8, 134.1, 134.5, 136.9, 137.0, 137.2, 

169.0, 175.1, 198.8 ppm.  

HRMS (ESI): m/z calcd for C32H24Cl2NO3 [M+H]+: 540.1128, found: 540.1117. 

(R,E*)-1-Benzyl-3-benzylidene-4-((S*)-1-(4-chlorophenyl)-3-oxo-3-

phenylpropyl)pyrrolidine-2,5-dione (68):  

Yield: 0.034 g (65%) as off white solid.  

MP: 144146 oC.  

1H NMR (400 MHz, CDCl3): δ 3.24 (dd, J = 4.4, 18.4 Hz, 1H), 

4.03 (dt, J = 4.4, 10.4 Hz, 1H), 4.38 (dd, J = 2.4, 4.0 Hz, 1H), 

4.444.64 (m, 3H), 6.57 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 

2H), 7.207.22 (m, 2H), 7.297.31 (m, 3H), 7.467.52 (m, 3H), 7.577.62 (m, 3H), 7.67 

(d, J = 2.0 Hz, 1H), 7.87 (d, J = 7.2 Hz, 2H), 8.058.07 (m, 2H) ppm.  

13C NMR (125 MHz, CDCl3): δ 37.6, 40.2, 42.3, 45.7, 126.6, 127.9, 128.1, 128.4, 128.6, 

128.7, 129.0, 129.2, 129.2, 130.4, 130.7, 133.1, 133.2, 133.4, 135.4, 136.1, 136.6, 137.0, 

170.0, 176.0, 198.8 ppm.  

HRMS (ESI): m/z calcd for C33H27ClNO3 [M+H]+: 520.1674, found: 520.1701. 
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Dimethyl 2-((S*)-1-((R,E*)-4-benzylidene-2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-oxo-2-

(p-tolyl)ethyl)malonate (69):  

Yield: 0.043 g (81%) as white solid.  

MP: 197200 oC.  

1H NMR (400 MHz, CDCl3): δ 2.31 (s, 3H), 3.24 (s, 3H), 3.89 (s, 

3H), 4.55 (dd, J = 2.4, 4.8 Hz, 1H), 4.77 (d, J = 11.6 Hz, 1H), 5.05 

(dd, J = 4.8, 11.6 Hz, 1H), 6.94 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.407.44 (m, 

1H), 7.487.62 (m, 10H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.6, 41.6, 42.7, 51.7, 52.6, 53.1, 125.7, 126.8, 128.5, 

128.6, 129.1, 129.1, 129.2, 130.4, 130.6, 132.1, 133.2, 133.9, 136.9, 144.7, 168.3, 168.8, 

169.1, 174.7, 198.5 ppm.  

HRMS (ESI): m/z calcd for C31H27NO7Na [M+Na]+: 548.1680, found: 548.1696. 

3.2.4. General procedure for the synthesis of 7079: 

 

To a mixture of spirooxindolic cyclopropane298 7 (0.1 mmol) and -naphthol 6 (0.1 mmol) 

in 2 mL of DCE, was added TfOH (0.1 mmol) and the contents were stirred at 90 °C for 12 

h. The reaction was monitored by TLC. After completion of the reaction, the mixture was 

concentrated under reduced pressure, the crude product was purified by column 

chromatography on silica gel using 10−15% ethyl acetate in hexanes to afford xanthene-

tethered biarylic spirooxindole (70−79) as a solid.  
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1'-Methyl-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (70):  

Yield: 0.027 g (55%) as off white solid. 

MP: 288291 oC. 

1H NMR (400 MHz, CDCl3): δ 3.49 (s, 3H), 6.62 (s, 1H), 6.95 

(td, J = 0.8, 7.2 Hz, 1H), 6.987.03 (m, 2H), 7.09 (d, J = 8.0 Hz, 

1H), 7.177.21 (m, 1H), 7.287.32 (m, 3H), 7.34 (td, J = 1.6, 7.6 

Hz, 1H), 7.387.44 (m, 3H), 7.467.50 (m, 1H), 7.607.65 (m, 2H), 7.757.81 (m, 2H), 

7.90 (d, J = 8.8 Hz, 1H) ppm. 

13C NMR (100 MHz, CDCl3): δ 27.0, 52.44, 108.72, 110.7, 114.0, 118.5, 122.0, 122.6, 

123.4, 124.0, 124.2, 124.3, 125.1, 125.8, 126.2, 127.0, 127.1, 127.2, 128.2, 128.9, 129.2, 

130.2, 130.7, 131.4, 131.5, 131.9, 136.0, 137.8, 140.1, 142.4, 149.8, 178.8 ppm. 

HRMS (ESI): m/z calcd for C35H23NO2Na [M+Na]+: 512.1621, found: 512.1618. 

3-Bromo-1'-methyl-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (71):  

Yield: 0.032 g (56%) as off white solid. 

MP: 287289 oC.  

1H NMR (400 MHz, CDCl3): δ 3.48 (s, 3H), 6.60 (s, 1H), 6.88 

(d, J = 9.2 Hz, 1H), 6.947.0 (m, 2H), 7.09 (d, J = 8.0 Hz, 1H), 

7.267.29 (m, 3H), 7.347.44 (m, 4H), 7.467.50 (m, 1H), 

7.617.65 (m, 2H), 7.76 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 2.0 Hz, 

1H), 8.59 (d, J = 8.0 Hz, 1H) ppm. 

13C NMR (100 MHz, CDCl3): δ 27.0, 52.3, 108.8, 111.1, 113.8, 118.0, 119.7, 121.9, 123.3, 

124.2, 124.3, 124.3, 125.1, 125.8, 126.4, 127.1, 127.2, 128.2, 129.1, 130.0, 130.2, 130.2, 

130.4, 131.0, 132.0, 132.6, 136.3, 137.4, 140.0, 142.4, 143.8, 150.0, 178.5 ppm. 

HRMS (ESI): m/z calcd for C35H22BrNO2Na [M+Na]+: 590.0726, found: 590.0745. 
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3-Methoxy-1'-methyl-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (72):  

Yield: 0.033 g (63%) as off white solid. 

MP: 289291 oC.  

1H NMR (400 MHz, CDCl3): δ 3.48 (s, 3H), 3.84 (s, 3H), 

6.61 (s, 1H), 6.85-6.88 (m, 1H), 6.91 (s, 1H), 6.937.0 (m, 

3H), 7.08 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 2.8 HZ, 1H), 7.29 

(d, J = 7.6 Hz, 2H), 7.327.43 (m, 5H), 7.457.49 (m, 1H), 7.577.64 (m, 2H), 7.757.81 

(m, 2H), 8.60 (d, J = 8.4 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 26.9, 52.5, 55.2, 108.0, 108.7, 110.9, 113.9, 118.9, 119.1, 

122.0, 123.5, 124.0, 124.0, 124.3, 125.1, 125.7, 126.2, 126.4, 126.9, 127.1, 128.1, 128.9, 

129.7, 130.2, 131.9, 132.6, 135.8, 137.8, 140.2, 142.4, 144.0, 148.3, 156.1, 178.8 ppm. 

HRMS (ESI): m/z calcd for C36H26NO3 [M+H]+: 520.1907, found: 520.2231. 

2-Methoxy-1'-methyl-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (73):  

Yield: 0.028 g (54%) as brown solid. 

MP: 269271 oC.  

1H NMR (400 MHz, CDCl3): δ 3.41 (s, 3H), 3.49 (s, 3H), 6.36 

(d, J = 2.0 Hz, 1H), 6.61 (s, 1H), 6.94 (dd, J = 2.4, 9.2 Hz, 1H), 

7.0 (td, J = 0.8, 7.2 Hz, 1H), 7.047.09 (m, 2H), 7.30 (d, J = 6.0 

Hz, 2H), 7.337.44 (m, 4H), 7.467.51 (m, 2H), 7.617.65 (m, 

1H), 7.68 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.82 (d, J 

= 8.8 Hz, 1H), 8.62 (d, J = 8.0 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 26.8, 52.5, 54.7, 102.1, 108.3, 109.8, 113.8, 115.9, 115.9, 

116.5, 116.5, 122.1, 123.5, 124.2, 124.3, 124.4, 125.3, 125.7, 126.2, 126.5, 127.0, 127.1, 

128.2, 128.8, ppm.  

HRMS (ESI): m/z calcd for C36H26NO3 [M+H]+: 520.1907, found: 520.1921. 
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1',10-Dimethyl-12-(p-tolyl)spiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (74):  

Yield: 0.030 g (57%) as off white solid. 

MP: 241243 oC.  

1H NMR (400 MHz, CDCl3): δ 2.43 (d, J = 4.0 Hz, 6H), 3.48 

(s, 3H), 6.57 (s, 1H), 6.917.02 (m, 3H), 7.067.10 (m,1H), 

7.177.24 (m, 5H), 7.297.35 (m, 2H), 7.45 (d, J = 8.4 Hz, 

1H), 7.53 (s, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.8 Hz, 

1H), 8.48 (d, J = 8.4 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.2, 21.9, 52.4, 108.7, 110.8, 113.2, 118.5, 121.9, 122.5, 

122.6, 123.5, 124.0, 124.1, 124.9, 125.1, 127.2, 128.3, 128.8,128.9, 129.1, 130.1, 130.9, 

131.3, 131.6, 132.2, 135.4, 136.7, 136.7, 137.4, 137.8, 142.5, 143.8, 149.9, 178.9 ppm.  

HRMS (ESI): m/z calcd for C37H27NO2 [M]+: 517.2036, found: 517.2030. 

1'-Benzyl-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (75):  

Yield: 0.034 g (60%) as off white solid. 

MP: 208211 oC.  

1H NMR (400 MHz, CDCl3): δ 5.13 (dd, J = 14.8, 36.4 Hz, 2H), 

6.66 (s, 1H), 6.90 (t, J = 7.2 Hz, 1H), 6.977.01 (m, 3H), 7.07 (d, 

J = 8.0 Hz, 1H), 7.247.25 (m, 5H), 7.287.30 (m, 2H), 

7.397.42 (m, 3H), 7.477.51 (m, 3H), 7.63 (t, J = 8.8 Hz, 2H), 

7.79 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.8 Hz, 1H), 8.62 (d, J = 8.4 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 44.8, 52.3, 96.1, 109.6, 110.6, 114.0, 118.5, 118.5, 122.0, 

123.1, 123.6, 124.0, 124.2, 124.4, 125.2, 125.8, 126.3, 127.0,  127.1, 127.1, 128.0, 128.2, 

128.5, 128.7, 128.8, 129.1, 130.1, 131.0, 131.4, 131.5, 131.9, 135.7, 136.0, 137.8, 140.0, 

141.7, 143.8, 149.9, 178.6 ppm. 

HRMS (ESI): m/z calcd for C41H28NO2 [M+H]+: 566.2115, found: 566.2661. 
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1'-Benzyl-3-bromo-12-phenylspiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one (76):  

Yield: 0.035 g (55%) as off white solid. 

MP: 289292 oC.  

1H NMR (400 MHz, CDCl3): δ 5.11 (dd, J = 15.2, 32.4 Hz, 

2H), 6.63 (s, 1H), 6.83 (d, J = 9.2 Hz, 1H), 6.906.98 (m, 2H), 

7.04 (dd, J = 2.0, 9.2 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 

7.237.25 (m, 3H), 7.277.31 (m, 3H), 7.397.42 (m, 3H), 

7.477.51 (m, 3H), 7.627.66 (m, 2H), 7.787.82 (m, 2H), 7.94 (d, J = 2.0 Hz, 1H), 8.60 

(d, J = 8.0 Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 44.8, 52.2, 109.7, 111.0, 113.8, 118.0, 119.7, 122.0, 123.4, 

124.1, 124.3, 124.9, 125.2, 125.8, 126.4, 127.1, 128.1, 128.2, 128.5, 128.9, 129.0, 130.0, 

130.1, 130.1, 130.3, 130.9, 131.9, 132.6, 135.5, 136.2, 137.5, 139.9, 141.6, 143.7, 150.0, 

178.3 ppm. 

HRMS (ESI): m/z calcd for C41H27BrNO2 [M+H]+: 644.1220, found: 644.1767. 

1'-Benzyl-10-methyl-12-(p-tolyl)spiro[dibenzo[a,h]xanthene-14,3'-indolin]-2'-one 

(77):  

Yield: 0.036 g (61%) as pale yellow solid. 

MP: 154157 oC.  

1H NMR (400 MHz, CDCl3): δ 2.45 (s, 6H), 5.12 (s, 2H), 

6.60 (s, 1H), 6.89 (td, J = 0.8, 7.6 Hz, 1H), 6.967.01 (m, 4H), 

7.06 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.2 Hz, 2H), 7.217.23 

(m, 3H), 7.277.29 (m, 3H), 7.46 (dd, J = 1.2, 8.4 Hz, 1H), 

7.507.52 (m, 2H), 7.57 (s, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.79 

(d, J = 8.4 Hz, 1H), 7.89 (d, J = 9.2 Hz, 1H), 8.49 (d, J = 8.8 

Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.2, 21.9, 44.8, 52.3, 109.5, 110.6, 113.1, 118.5, 121.9, 

122.5, 123.2, 123.6, 123.9, 124.1, 124.9, 125.2, 127.0, 127.9, 128.3, 128.5, 128.6, 128.8, 

128.9, 129.0, 130.0, 130.9, 131.3, 131.6, 132.2, 135.3, 135.7, 136.6, 136.8, 137.3, 137.8, 

141.7, 143.7, 149.9, 178.7 ppm.  

HRMS (ESI): m/z calcd for C36H26NO3 [M+H]+: 632.1986, found: 632.2004. 
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1'-Benzyl-3-bromo-10-methyl-12-(p-tolyl)spiro[dibenzo[a,h]xanthene-14,3'-indolin]-

2'-one (78):  

Yield: 0.034 g (50%) as off white solid. 

MP: 290293 oC.  

1H NMR (400 MHz, CDCl3): δ 2.44 (s, 6H), 5.10 (s, 2H), 

6.57 (s, 1H), 6.81 (d, J = 9.2 Hz, 1H), 6.886.96 (m, 2H), 

7.02 (dd, J = 2.4, 9.2 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.13 

(d, J = 7.6 Hz, 2H), 7.217.25 (m, 3H), 7.277.34 (m, 3H), 7.457.50 (m, 3H), 7.57 (s, 1H), 

7.62 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 2.0 Hz, 1H), 8.47 (d, J = 8.8 

Hz, 1H) ppm.  

13C NMR (100 MHz, CDCl3): δ 21.2, 21.9, 44.8, 52.2, 109.6, 111.1, 113.0, 117.9, 119.7, 

121.8, 122.4, 123.5, 124.1, 124.9, 125.2, 128.1, 128.4, 128.6, 128.9, 129.9, 130.0, 130.2, 

130.9, 132.2, 132.6, 132.6, 135.6, 135.6, 136.7, 136.9, 137.2, 137.5,141.7, 143.6, 150.1, 

178.4 ppm. 

HRMS (ESI): m/z calcd for C43H30BrNO2Na [M+Na]+: 694.1352, found: 694.1444. 

1'-Benzyl-3-methoxy-10-methyl-12-(p-tolyl)spiro[dibenzo[a,h]xanthene-14,3'-

indolin]-2'-one (79):  

Yield: 0.038 g (62%) as off white solid. 

MP: 235 oC. 

1H NMR (400 MHz, CDCl3): δ 2.44 (s, 6H), 3.84 (s, 3H), 

5.11 (d, J = 3.6 Hz, 2H), 6.58 (s, 1H), 6.64 (dd, J = 2.8, 

9.2 Hz, 1H), 6.856.91 (m, 2H), 6.956.97 (m, 1H), 7.05 

(d, J = 8.0 Hz, 1H), 7.127.14 (m, 3H), 7.217.25 (m, 4H), 

7.287.31 (m, 2H), 7.45 (dd, J = 1.6, 8.4 Hz, 1H), 

7.497.51 (m, 2H), 7.567.59 (m, 2H), 7.78 (d, J = 8.8 Hz, 

1H), 8.48 (d, J = 8.4 Hz, 1H) ppm. 

13C NMR (100 MHz, CDCl3): δ 21.2, 21.9, 44.8, 52.3, 55.2, 96.1, 107.9, 109.5, 110.9, 

113.0, 118.8, 118.9, 121.9, 122.5, 123.7, 123.9, 124.6, 124.9, 125.2, 126.5, 127.9, 128.2, 

128.6, 128.6, 128.9, 129.6, 130.0, 132.2, 132.6, 135.2, 135.7, 136.6, 136.7, 137.4, 137.9, 

141.7, 143.9, 148.5, 156.1, 178.7 ppm. 
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HRMS (ESI): m/z calcd for C44H33NO3Na [M+Na]+: 646.2353, found: 646.2938. 
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Figure S-1: 1H NMR (400 MHz, CDCl3) Spectrum of 8. 
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Figure S-2: 13C NMR (100 MHz, CDCl3) Spectrum of 8. 
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Figure S-3: 1H NMR (400 MHz, CDCl3) Spectrum of 9. 
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Figure S-4: 13C NMR (100 MHz, CDCl3) Spectrum of 9. 
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Figure S-5: 1H NMR (400 MHz, CDCl3) Spectrum of 10. 
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Figure S-6: 13C NMR (100 MHz, CDCl3) Spectrum of 10. 
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Figure S-7: 1H NMR (400 MHz, CDCl3) Spectrum of 11. 
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Figure S-8: 13C NMR (100 MHz, CDCl3) Spectrum of 11. 
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Figure S-9: 1H NMR (400 MHz, CDCl3) Spectrum of 13. 
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Figure S-10: 13C NMR (100 MHz, CDCl3) Spectrum of 13. 
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Figure S-11: 1H NMR (400 MHz, CDCl3) Spectrum of 15. 
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Figure S-12: 13C NMR (100 MHz, CDCl3) Spectrum of 15. 
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Figure S-13: 1H NMR (400 MHz, CDCl3) Spectrum of 16. 
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Figure S-14: 13C NMR (100 MHz, CDCl3) Spectrum of 16. 
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Figure S-15: 1H NMR (400 MHz, CDCl3) Spectrum of 17. 
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Figure S-16: 13C NMR (100 MHz, CDCl3) Spectrum of 17. 
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Figure S-17: 1H NMR (400 MHz, CDCl3) Spectrum of 18. 
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Figure S-18: 13C NMR (100 MHz, CDCl3) Spectrum of 18. 
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Figure S-19: 1H NMR (400 MHz, CDCl3) Spectrum of 19. 
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Figure S-20: 13C NMR (100 MHz, CDCl3) Spectrum of 19. 
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Figure S-21: 1H NMR (400 MHz, CDCl3) Spectrum of 26. 
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Figure S-22: 13C NMR (100 MHz, CDCl3) Spectrum of 26. 
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Figure S-23: 1H NMR (400 MHz, CDCl3) Spectrum of 30. 
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Figure S-24: 13C NMR (100 MHz, CDCl3) Spectrum of 30. 
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Figure S-25: 1H NMR (400 MHz, CDCl3) Spectrum of 33. 
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Figure S-26: 13C NMR (100 MHz, CDCl3) Spectrum of 33. 
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Figure S-27: 1H NMR (400 MHz, CDCl3) Spectrum of 34.  

 



 
 
 

 

 
 

1
6
5 

 

Figure S-28: 13C NMR (100 MHz, CDCl3) Spectrum of 34. 
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Figure S-29: 1H NMR (400 MHz, CDCl3) Spectrum of 38. 
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Figure S-30: 13C NMR (100 MHz, CDCl3) Spectrum of 38. 
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Figure S-31: 1H NMR (400 MHz, CDCl3) Spectrum of 40. 
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Figure S-32: 13C NMR (100 MHz, CDCl3) Spectrum of 40. 
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Figure S-33: 1H NMR (400 MHz, CDCl3) Spectrum of 41. 
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Figure S-34: 13C NMR (100 MHz, CDCl3) Spectrum of 41. 
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Figure S-35: 1H NMR (400 MHz, CDCl3) Spectrum of 51. 
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Figure S-36: 13C NMR (100 MHz, CDCl3) Spectrum of 51. 
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Figure S-37: 1H NMR (500 MHz, CDCl3) Spectrum of 52. 
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Figure S-38: 13C NMR (125 MHz, CDCl3) Spectrum of 52. 
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Figure S-39: 1H NMR (400 MHz, CDCl3) Spectrum of 53. 
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Figure S-40: 13C NMR (100 MHz, CDCl3) Spectrum of 53. 
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Figure S-41: 1H NMR (500 MHz, CDCl3) Spectrum of 54. 
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Figure S-42: 13C NMR (125 MHz, CDCl3) Spectrum of 54. 
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Figure S-43: 1H NMR (400 MHz, CDCl3) Spectrum of 55. 
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Figure S-44: 13C NMR (100 MHz, CDCl3) Spectrum of 55. 
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Figure S-45: 1H NMR (500 MHz, CDCl3) Spectrum of 57. 
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Figure S-46: 13C NMR (125 MHz, CDCl3) Spectrum of 57. 
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Figure S-47: 1H NMR (400 MHz, CDCl3) Spectrum of 58. 
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Figure S-48: 13C NMR (100 MHz, CDCl3) Spectrum of 58. 
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Figure S-49: 1H NMR (400 MHz, CDCl3) Spectrum of 60. 
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Figure S-50: 13C NMR (100 MHz, CDCl3) Spectrum of 60. 
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Figure S-51: 1H NMR (500 MHz, CDCl3) Spectrum of 61. 
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Figure S-52: 13C NMR (125 MHz, CDCl3) Spectrum of 61. 
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Figure S-53: 1H NMR (400 MHz, CDCl3) Spectrum of 63. 
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Figure S-54: 13C NMR (100 MHz, CDCl3) Spectrum of 63. 
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Figure S-55: 1H NMR (400 MHz, CDCl3) Spectrum of 65. 
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Figure S-56: 13C NMR (100 MHz, CDCl3) Spectrum of 65. 
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Figure S-57: 1H NMR (400 MHz, CDCl3) Spectrum of 68. 
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Figure S-58: 13C NMR (100 MHz, CDCl3) Spectrum of 68. 
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Figure S-59: 1H NMR (400 MHz, CDCl3) Spectrum of 69. 
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Figure S-60: 13C NMR (100 MHz, CDCl3) Spectrum of 69. 
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Figure S-61: 1H NMR (400 MHz, CDCl3) Spectrum of 70. 
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Figure S-62: 13C NMR (100 MHz, CDCl3) Spectrum of 70. 
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Figure S-63: 1H NMR (400 MHz, CDCl3) Spectrum of 71. 
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Figure S-64: 13C NMR (100 MHz, CDCl3) Spectrum of 71. 
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Figure S-65: 1H NMR (400 MHz, CDCl3) Spectrum of 72. 
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Figure S-66: 13C NMR (100 MHz, CDCl3) Spectrum of 72. 
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Figure S-67: 1H NMR (400 MHz, CDCl3) Spectrum of 73. 
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Figure S-68: 13C NMR (100 MHz, CDCl3) Spectrum of 73. 
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Figure S-69: 1H NMR (400 MHz, CDCl3) Spectrum of 74. 
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Figure S-70: 13C NMR (100 MHz, CDCl3) Spectrum of 74. 
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Figure S-71: 1H NMR (400 MHz, CDCl3) Spectrum of 75. 
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Figure S-72: 13C NMR (100 MHz, CDCl3) Spectrum of 75. 
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Figure S-73: 1H NMR (400 MHz, CDCl3) Spectrum of 76. 
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Figure S-74: 13C NMR (100 MHz, CDCl3) Spectrum of 76. 
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Figure S-75: 1H NMR (400 MHz, CDCl3) Spectrum of 77. 
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Figure S-76: 13C NMR (100 MHz, CDCl3) Spectrum of 77. 
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Figure S-77: 1H NMR (400 MHz, CDCl3) Spectrum of 78. 
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Figure S-78: 13C NMR (100 MHz, CDCl3) Spectrum of 78. 
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Figure S-79: 1H NMR (400 MHz, CDCl3) Spectrum of 79. 
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    Figure S-80: 13C NMR (125 MHz, CDCl3) Spectrum of 79. 
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