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ABSTRACT OF THE THESIS 

CHAPTER-1 

Heterocycles containing N, O and S atoms in the ring, generally show promising biological 

applications. Synthesis of diversified heterocycles are in high demand due to their wide applications. 

To fulfill the ongoing demand, the main role of a chemist is to supply novel heterocycles which can 

be further screened to find out their biological and pharmaceutical applications. Multicomponent 

reactions (MCRs) are turned up to be an efficient synthetic strategy to deliver such structural diverse 

scaffolds in time and help building up chemical libraries with larger scope. MCRs are recognized as 

the chemical transformations of more than two components mainly operated in one-pot to construct 

the desired products. The MCR strategy has several advantages like operational simplicity, higher 

atom efficiency and diverse scaffolds generation in short reaction time over single step operation. 

Several tools and techniques are used to develop a MCR protocol however application of 

mechanochemical hand-grinding and microwave irradiation in developing new MCRs strategies are 

presented in this chapter to synthesize functionalized heterocycles. Amongst heterocycles, pyrans 

and spirooxindoles are worth mentioning due to their wide range of biological and medicinal 

activities. The chapter also includes a brief description of biological importance and several 

synthesis procedures of pyrans and spirooxindoles. In short, the background of the present research 

work is highlighted in this chapter. However, the previous literature survey revealed that there is still 

scope not only in synthesizing novel biologically relevant heterocycles but also in developing 

greener and efficient methodologies to access diversified scaffolds. Thus, the presented work is 

focused on developing efficient green synthetic protocols for synthesis of structurally diverse 

heterocycles like pyrans, spirooxindoles, bis(benzo[f]chromen-3-one), acridione, thioxanthendione, 

bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione derivatives. 
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CHAPTER-2 

DABCO-Catalysed Green Synthetic Protocol for Novel Pyranochromenone Derivatives 

In this chapter, DABCO-catalysed liquid-assisted grinding for the synthesis of novel 

dihydrobenzo[f]pyrano[3,2-c]chromenone derivatives has been described. The reported 

methodology is simple, facile and mild to construct such multicomponent cascade. The benefits of 

developed one-pot protocol includes diversified scope, excellent yields and high reaction throughput 

apart from excellent green matrices scores.  

 

 

CHAPTER-3 

Urea-Catalysed Microwave-Assisted Synthesis of Novel Spirooxindole Benzopyrans 

In this chapter, a urea-catalysed easy and facile microwave-assisted protocol is described to construct 

spiro-benzo[f]pyranochromenes in higher yields. The use of 1-hydroxy-3H-benzo[f]chromen-3-one 

as a key reactant in such three-component reaction is reported for the first time to provide such novel 

multicomponent cascade. The superiority of the reported methodology is the operational simplicity, 

diversified scope and gram scale synthesis along with very good green matrices scores which 

highlights the synthesis protocol for industry as well. 
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CHAPTER-4 

Diversity Oriented Synthesis of Bis(benzochromenone) Derivatives 

In this chapter, microwave-assisted DABCO-catalysed synthesis of bis(benzo[f]chromen-3-one) 

derivatives are reported.  The advantages of the methods is the column free efficient synthesis and 

mere filtration provides good to excellent yield without using any harsh reagent. 
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CHAPTER-5 

Chemistry of Vinyl Esters as Acetaldehyde Surrogates in Some Common Multicomponent 

Reactions 

In this chapter, the applications of vinyl esters as acetaldehyde surrogates in different well-known 

multicomponent reaction are reported. Use of acetaldehyde is limited in synthetic chemistry due to 

self-polymerizations or lower stability. In this report, the effective utilization of vinyl esters as 

acetaldehyde surrogates in different conditions are explored efficiently to obtain biologically potent 

scaffolds. The reported methodology is quite successful to formulate different derivatives like 

acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione in moderate 

to good yield.  
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1.1 Background 

The ongoing demand to synthesize a library of diversified heterocycles is due to their vast application 

in biological, pharmaceutical and agrochemical fields. [1-6] A heterocycle moiety contains a 

heteroatom (N/O/S) in the cyclic ring. [7-12] Various heterocycles have been found as a 

pharmacophore in several well-known marketed drugs such as penicillin (I), cloxacillin (II), 

cephalexin (III), Levaquin (IV), sulfamethoxazole (V) and 5-F uracil (VI) etc (Figure 1.1). [13-19] 

Figure 1.1 Heterocycles as marketed drugs. 

Moreover, the ambit of their activities include antibacterial, anticancer, antitumor, antifungal, anti-

mycobacterial, anti-tubercular, anti-inflammatory, antidepressant, anti-HIV and insecticidal 

activities. [20-29] Owing to the pathogenic resistance developed against many of the current drug 

molecules, a continuous haunt for new molecules remains in focus. [30-31] A good way to find a lead in 

drug discovery is to keep synthesizing novel heterocycles having potent biological action. Furthermore, 

heterocycles also act as intermediates for synthesizing various organic molecules. [32-34] Therefore, 

considering biological and industrial importance of heterocycles, development of simple, fast, effective 

and atom economical methods for the synthesis of heterocycles is in demand. At the same time, the 

developed synthetic approach should have advantages like Diversity Oriented Synthesis (DOS), avoiding 

complex intermediate separation or protection of functional groups, minimum process waste, adopting 

one-pot methods instead of step-wise synthesis and most importantly environment friendly chemicals and 

conditions instead of expensive reagents and harsh conditions. [35-39] 

 

https://pubs.rsc.org/en/content/articlelanding/2015/ob/c4ob01380h#cit1
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Several methodologies viz. Solid Phase Organic Synthesis (SPOS), Microwave-Assisted Organic 

Synthesis (MAOS), use of polymer supported reagents, click reactions and Multicomponent 

Reactions (MCRs) are some of the smart strategies to construct heterocycles. [40-46] 

Multicomponent reaction methodologies amongst them, have drawn tremendous attention of 

chemists over the last few decades for its synthetic efficiency and simple reaction design. [47] The 

merit of MCRs lie in forging multiple bond formation in a single operation. [48] In the present thesis, 

all the chapters are designed having a focal theme of developing multicomponent reactions (MCRs) 

strategies to synthesize diversified heterocycles. 

 

1.2 Multicomponent reactions: a smart and effective route for synthesis 

Multicomponent Reactions (MCRs) are a powerful, fast and effective target-guided synthetic 

approach which have the ability to construct structurally diverse moieties through a single 

transformation in a short reaction time from readily available starting materials. [49-51] MCRs are 

defined as a single step one-pot convergent transformation to design the target molecules effectively. 

A multicomponent reaction, as the name suggests, consists of more than two reactants getting 

transformed into final product. [52] MCR-chemistry has several advantages like i) operational 

simplicity, ii) high convergence efficiency, iii) facile automation, iii) one step operation to save time 

and resources, iv) large number of diversity oriented synthesis in short time, v) low E-factor and 

high atom economy and most importantly vi) formation of multiple bonds in a single step thus 

possessing high Bond-Forming-Index (BFI). [49, 53] MCRs show high synthesis impact as it 

provides higher overall formulated yields in shorter reaction time in comparison to stepwise 

synthesis and consequently the process reduces costs, time, use of solvents, purification steps, energy 

and most importantly generation of waste products. [54-56] For all the attributes as manifested 

above, development of MCRs fall in the realm of “green chemistry”. The twelve principles of “Green 

Chemistry” are sketched in Figure 1.2. [57-58] The idea of developing an ideal green synthetic 

methodology is associated with picking up appropriate reagents and proper selection of solvents and 

catalysts. [59-63] Development of environment friendly synthetic MCR approaches to construct 

biologically potent assemblies is the key point of this entire thesis work. 
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Figure 1.2 Twelve principles of green chemistry. 

 

1.3 Multicomponent reactions: a long journey over the years 

In general, multicomponent reactions are mainly classified into two distinct classes; non-isocyanide-based 

MCRs and isocyanide-based MCRs which is commonly known as IMCRs. The history of development 

of MCRs is quite vast and may not be fit the proportion of the present work for inclusion. However, a 

brief chronology of the multicomponent reactions are sketched in Figure 1.3. [42, 64-65] 
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Figure 1.3 Discovery of multicomponent reactions over the years. 

Many of the MCRs remained dormant after their discovery and over the last few decades, have gained a 

tremendous resurgence. Amongst them, Strecker (3-CR, 1850), Hantzsch (4-CR, 1881), Biginelli (3-CR, 

1891), Mannich (3-CR, 1912) and Povarov (3-CR, 1963) reactions are non-isocyanide based MCRs 

whereas Passerini (3-CR, 1921), Ugi (4-CR, 1959) and Groebke-Blackburn-Bienaymé (3-CR, 

1998) reactions are popular IMCRs (Figure 1.4). [64, 66-68] Later on, several modification and post 

effect modification have been brought about in some of these reactions by several authors. [69-72] 
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Figure 1.4 Examples of well-known multicomponent name reactions. 
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1.4 Microwave chemistry: a high rated organic synthesis approach  

Microwave-Assisted Organic Synthesis (MAOS) has emerged as an efficient approach to formulate 

diversified heterocycles in short reaction time. [73-76] The MAOS gained popularity in synthetic 

community because of its several advantages over conventional methods by overcoming problems like 

low yields, prolonged reaction time, reproducibility and formation of side products. [74, 77] In general, 

normally the chemical transformations in conventional methods occur by non-uniform conductive heating 

of the reaction mixture in which the reaction vessel is heated more than the reaction mixture. Whereas, 

due to direct electromagnetic in microwave irradiation in MAOS, the reactant molecules and most 

importantly the solvents are heated directly which result in better outcomes. Most of the microwave ovens 

operate at 2.45 GHz which is designed in this manner in order not to interfere with the wavelength 

generally used for telecommunication and radars. [78-79] In MAOS, the choice of solvents is very critical 

in deciding the fate of the reaction. The important parameters for a solvent to perform effectively in 

microwave reactors are dielectric constant (ε′), dielectric loss (ε″) and most importantly loss tangent 

(tan δ). Notably, the solvent having high loss tangent value can absorbed the microwave radiation more 

in comparison to lower one (Table 1.1). [79] 

 

Table 1.1 Solvents and their loss tangent (tan δ) values. 

Solvent tan δ Solvent tan δ 

Hexane 0.02 1,2-Dichloroethane 0.127 

Toluene 0.04 Dimethylformamide 0.161 

Dichloromethane 0.042 Acetic acid 0.174 

Tetrahydrofuran 0.047 Methanol 0.659 

Acetone 0.054 Isopropyl alcohol 0.799 

Acetonitrile 0.062 DMSO 0.825 

Chloroform 0.091 Ethanol 0.941 

Water 0.123 Ethylene glycol 1.35 
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Over the years, there are plenty of reports for microwave-assisted synthesis of different classes of 

heterocycles viz. triazoles, tetrazoles, quinolines, oxazines, benzazepines, substituted 2-

aminopyridines, spirooxindoles, pyrans and pyrroles etc. [80-85] For example, Van der Eycken and 

co-workers (2004) reported microwave-assisted synthesis of diversified 1,4-disubstituted-1,2,3-

triazoles (Figure 1.5). [86] The three-component reaction of sodium azide (21), alkyl halides (20) 

and alkynes (22) provided the desired product 23 in good to high yields (81-93 %) in microwave 

heating at 125 oC (two derivatives at 75 oC) for 10 to 15 minutes. 

 

Figure 1.5 Microwave-assisted synthesis of triazoles. 

Later on, Chebanov et al. (2007) described a one-pot three-component reaction of aromatic 

aldehydes (1), cyclic 1,3-diketones (25) and 5-aminopyrazoles (24) to synthesize diversified 5a-

hydroxy-4,5,5a,6,7,8-hexahydropyrazolo[4,3-c]quinolizin-9-ones (Figure 1.6). [87] The 

microwave-assisted condensation reaction was carried out in a strong basic condition to construct 

the final product 26 in low to good yields (32-75 %). The reaction proceeded through ring opening 

of 1,3-diketones (25) followed by cyclisation in the presence of a base to provide the desired product 

26. 

 

Figure 1.6 Microwave-assisted synthesis of quinolizinones. 
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Further, Torok et al. (2010) reported a microwave-assisted domino reaction in which aldehydes (1) 

and anilines (10) reacted first to form imines which further reacted with aryl alkynes to construct 

substituted 5-aza-7-deaza-adenine (27) (Figure 1.7). The three-component reaction was performed 

under microwave irradiation at 100 oC for 10 minutes using montmorillonite K-10 as acid catalyst to 

provide final product 27 in good to high yields (56-96 %). [88] 

 

Figure 1.7 Microwave-assisted synthesis of 5-aza-7-deaza-adenine. 

In 2017, Dolzhenko and co-worker developed a microwave-assisted three-component reaction of 

triethyl orthoformate (29), 2-aminoimidazoles (28) and cyanamide (30) to synthesize 4-

aminoimidazo[1,2-a][1,3,5]triazines (31) (Figure 1.8). The reaction mixture was microwave 

irradiated for 20 minutes at 150 oC to give final products in good to high yields (71-92 %). [89] 

 

Figure 1.8 Microwave-assisted synthesis of triazines. 
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1.5 Liquid-assisted grinding: a green approach towards sustainability 

In a pursuit towards greenness, mechanochemistry is already recognized by the scientist community as a 

tool for providing cleaner, less hazardous and sustainable chemical transformations in comparison to 

conventional synthesis. [90-91] Mechanochemistry entails mechanical energy for transformations via 

mechanical forces induced in several ways viz. impact, stretching, shearing, compression and mostly by 

grinding or milling processes. [91] The mechanical process can be manual as normally done by mortar 

and pestle or instrumental by using ball milling. From a reaction point of view, this mechanical friction 

can grind reactants into small particle sizes, generating a large surface area to force the starting materials 

come closer to each other, thereby accelerating the contact between reactants. Further, this mechanical 

transformation can be achieved by “solvent-free” strategy or by adding nominal amount of a solvent as a 

promoter. The later is known as Liquid-Assisted Grinding (LAG) in which generally small quantity of 

liquid is added to improve the synthetic efficiency by minimizing solvent waste leading to better yields.  

[92] The reason behind the yield enhancement is mainly because of better mixing of reactants leading to 

higher reaction kinetics. Normally, LAG parameter (η) has been introduced to define a liquid-assisted 

reaction for which the value lies between 0 to 1. [93] 

There are several reports of multicomponent reactions performed under liquid-assisted grinding to 

furnish diversified scaffolds. For example, Juaristi and co-workers (2016) developed a liquid-

assisted high-speed ball milling (HSBM) strategy to formulate Ugi-4CR adduct 17 from the reaction 

of aromatic aldehydes (1), isocyanides (14), amines (10) and carboxylic acids (15) (Figure 1.9). The 

four-component reaction was catalysed by indium(III) chloride (2 mol %) in an agate jar for 45-180 

minutes to provide 46-74 % of yields. [94] 

 

Figure 1.9 Liquid-assisted grinding to synthesize Ugi-4CR products. 
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Salunkhe et al. (2018) reported 2,2,2-trifluoroethanol (TFE) catalysed liquid-assisted 

mechanochemical transformation to construct diversified chromenes (Figure 1.10). [95] The three-

component cycloaddition reaction was performed for 11-14 minutes through manual grinding to 

furnish the final products in good to high yields (80-88 %). 

 

Figure 1.10 Liquid-assisted grinding to synthesize diversified chromenes. 

In 2016, Raval et al. reported the basic ionic liquid-assisted mechanochemical synthesis of 

diversified 3,4-dihydropyrano[c]chromenes (Figure 1.11). The one-pot three-component reaction of 4-

hydroxycoumarin (37), malononitrile (38) and substituted aromatic aldehydes (1) provided the desired 

product 39 in high yields (89-95 %) using hand grinding in catalytic DBU-moderated ionic liquid as a 

promoter. [96] 
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Figure 1.11 Liquid-assisted mechanochemical synthesis of chromene heterocycles. 

 

1.6 Pyran framework: biological importance and synthesis 

Pyrans are oxygenated heterocyclic scaffolds which show a wide range of biological and medicinal 

applications. [97-100] Moreover, pyran framework is the core structure of many well-known molecules 

viz. benzopyran, napthopyran, coumarin, chromone, xanthene, xanthones etc (Figure 1.12). [97] 

 

Figure 1.12 Pyran framework in heterocycles. 
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Most importantly, pyran is the basic unit of many naturally occurring flavonoids with potential 

biological activities like antioxidant, anti-inflammatory activities (Figure 1.13). [101-103] 

 

Figure 1.13 Naturally occurring biologically active pyrans. 

Similarly, pyrans fused with coumarin or naphthoquinone structures are already recognized as promising 

chemical class of compounds showing a wide range of biological activities like anticancer, antiviral, 

antimicrobial, cytotoxic, anti-inflammatory, anti-HIV, antioxidant, antigenotoxic, antibacterial and 

antirheumatic activities (Figure 1.14). [97, 99] 

 

Figure 1.14 Biologically important pyran fused heterocycles. 
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Owing to their widespread biological applications, synthesis of novel fused pyrans or developing greener 

efficient protocols for their synthesis are in demand. In the literature, several synthetic methodologies have 

been reported to access the fused pyrans using MCR reaction sequence and some of the noted ones are 

described below. 

Shaabani and co-workers (2009) described a one-pot multicomponent reaction of aldehydes (1), 

malononitrile (38) and C-H-activated acids (40 or 42) to access diversified 4H-benzo[g]chromenes 

(41) and dihydropyrano[2,3-g]chromenes (43) (Figure 1.15). The reaction was performed at room 

temperature for 24 hours using 10 mol % Et3N to provide functionalized chromenes in good to high 

yields (60-86 %). [104] 

Figure 1.15 Triethylamine-catalysed synthesis of chromenes. 

Banerjee et al. (2013) reported ZnO nanoparticle catalysed one-pot synthesis of 

tetrahydrobenzo[b]pyrans and dihydropyrimidones (Figure 1.16). [105] In this report, the three-

component reaction of aromatic aldehydes (1), 1,3-diketone (25b) and malononitrile (38) was performed 

to formulate 4H-pyrans (44) at room temperature in excellent yields (94-98 %). On the other hand, the 

synthesis of dihydropyrimidones from aldehydes (1), urea/ thio-urea (7) and ethyl acetoacetate (5b) was 

also reported at 70 oC to give the final product 45 in good to excellent yields (86-95 %). 
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Figure 1.16 ZnO nanoparticles catalysed synthesis of 4H-pyrans and dihydropyrimidones. 

In 2016, Choudhury and coworkers reported microwave-assisted synthesis of diversified fused 4H-pyrans 

using different 1,3-dicarbonyl variants, arylglyoxals (46) and malononitrile (38) as substrates (Figure 

1.17). The reported methodology provided quinolone fused pyrans (48) in good to excellent yields (79-

93 %) under microwave heating at 110 oC for 10 minutes using ethanol as a solvent. Likewise, the 

synthesis of pyrans fused with naphthoquinones, coumarins and pyrones was also mentioned in the same 

report under similar microwave irradiation condition to give the respective final product 50 in good to 

high yields (70-91 %) (Figure 1.17). [99] 

Figure 1.17 Microwave-assisted synthesis of diversified fused 4H-pyrans. 
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Brahmachari et al. (2014) described a urea-catalysed one-pot synthesis of pyran annulated 

heterocycles from reaction of C-H activated acids, aldehydes (1) and malononitrile (38) (Figure 

1.18). The reaction was reported at room temperature using catalytic loading of urea (10 mol %) in 

aqueous ethanol to provide the core structure 2-Amino-3-cyano-4H-pyrans (51/ 53) in good to 

excellent yields (80-97 %) and also pyran-fused pyrazoles (52) in good yields (84-86 %) (Figure 

1.18). [106] 

Figure 1.18 Urea-catalysed three-component reaction to access pyrans. 

The plausible mechanism for the above mentioned reaction is sketched in Figure 1.19. The urea 

catalysed Knoevenagel condensation reaction of aldehyde (1) and malononitrile (38) formed the 

adduct II which was further reacted with enolate to form of the C-H-activated acid to give 

intermediate III. The intermediate III either in presence of aqueous ethanol cyclised to give the 

product 53 or else got tautomerised to another intermediate IV which provided the final desired 

product 53 on further cyclisation.  
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Figure 1.19 Plausible mechanism for the synthesis of 2-Amino-3-cyano-4H-pyrans. 

Tu and co-workers (2014) presented the three-component reaction of C-H-activated acid, aldehydes (1) 

and 2-aminoprop-1-ene-1,1,3-tricarbonitrile (54) to furnish fused pyrano[2,3-b]pyridine derivatives (56) 

(Figure 1.20). The reaction was carried out under microwave irradiation at 80 oC for 16-20 minutes using 

triethyl amine as a base and ethanol as a solvent to access the final desired pyrano heterocycles 56 in good 

to excellent yields (74-94 %). [107] 

 

Figure 1.20 Microwave-assisted synthesis of pyrano[2,3-b]pyridine derivatives. 
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The plausible mechanism for the above described three-component reaction is outlined in Figure 

1.21. The base promoted Knoevenagel condensation reaction of aldehyde (1) and 2-aminoprop-1-

ene-1,1,3-tricarbonitrile (54) provided the intermediate I. The nucleophilic attack of C-H-activated 

acid (55) to the intermediate I formed another intermediate II which upon tautomeration followed 

by intramolecular double cyclisation formed the final pyrano heterocycles 56. 

 

Figure 1.21 Plausible mechanism for the synthesis of pyrano[2,3-b]pyridine heterocycles. 
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1.7 Spirooxindole framework: biological importance and synthesis 

Indole is the basic structural unit frequently found in heterocyclic scaffolds. Spirooxindoles are also 

brought into attention because of their unique fused structure. [108-111] Generally, spiroannulated 

ring present at the third position of indole is paid a lot of attention due to its virtue of being 

structurally rigid leading to conformational restrictions of the heterocyclic motifs. [112] 

Spirooxindoles are found in a number of bioactive natural products showing wide range of biological 

activities (Figure 1.22). [108, 109, 111] 

Figure 1.22 Naturally occurring biologically active spirooxindoles. 
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Synthesis of spirooxindoles also possess a number of biological activities viz. antimalarial, 

antitumor, inhibition activities, anticancer, anti-inflammatory, antimicrobial activities etc. (Figure 

1.23). [113-117] 

Figure 1.23 Biological applications of spirooxindoles. 

Due to their wide range of biological and pharmaceutical applications, the fused spirooxindoles have 

been recognized as attractive synthetic targets. A number of literature reports can be traced for 

developing new synthetic routes or constructing novel spiro-fused heterocycles. Some of the noted 

ones are illustrated below. 

Zhang and coworkers (2017) reported a visible light promoted one-pot three-component reaction to 

access spirooxindole-fused pyrans 58 from the reaction of C-H-activated acid, isatins (57) and 

malononitrile (38) (Figure 1.24). [118] The reaction was irradiated at room temperature for 4-6 hours 

under white visible light in water-ethyl lactate solvent mixture to form the final fused spirooxindoles 

58 in good to excellent yields (82-96 %) (Figure 1.24). 
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Figure 1.24 Visible-light induced synthesis of spirooxindole fused pyrans. 

The plausible mechanism for the three-component reaction is drawn in Figure 1.25. The 

Knoevenagel condensation reaction of isatin (57) and malononitrile (38) in the presence of visible 

light provided the intermediate I. The intermediate formed another radical intermediate III in 

presence of light which reacted with activated 2-hydroxynaphthalene-1,4-dione to give intermediate 

IV. Later on, the intermediate IV provided the final targeted product 58 followed by visible light 

promoted intramolecular cycloaddition reaction.  

 

Figure 1.25 Plausible mechanism to access spirooxindole fused pyrans. 
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Meshram et al. (2017) reported the catalyst free microwave-assisted synthesis of diversified 

spirooxindoles in good to excellent yields (70-93 %) (Figure 1.26). The three-component reaction 

of amino acids (59), isatins (57) and but-2-ynedioates (60) under microwave heating at 80 oC for 10 

minutes in aqueous medium provided tetrahydrospiro[indoline-3,3-pyrrolizine]1,2-dicarboxylate 

(61). In addition, formation of n-substituted oxindoles 63 was confirmed when the fourth component 

phenacyl bromide (62) was added to the above reaction mixture and irradiated at slightly higher 

temperature at 100 oC for 15 minutes. [119] 

 

Figure 1.26 Microwave-assisted synthesis of spirooxindoles in aqueous medium. 

The mechanism for the above described reaction is sketched in Figure 1.27. The condensation by 

reaction of isatin (57) and amino acid (59) followed decarboxylation provided the charged imine 

intermediate II. Next, the cycloaddition reaction of intermediate II with but-2-ynedioates (60) 

provided the targeted product 61 which on further reaction with phenacyl bromide (62) resulted in 

formation of n-substituted oxindoles 63.  
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Figure 1.27 Plausible mechanism for the synthesis of spirooxindole moieties. 

Esmaeili and co-workers (2018) demonstrated a 12-tungstophosphoric acid (H3PW12O40) catalysed 

domino three-component reaction to access spiro[benzo[4,5]thiazolo[3,2-a]chromeno[2,3-d]pyrimidine-

14,3′-indoline]-1,2′,13(2H)-trione (65) from isatins (57), 1,3-cyclohexanediones (25) and 2-hydroxy-4H-

benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones (64) in good to high yields (60-90 %) (Figure 1.28). [120] 

The condensation reaction was performed for 10-12 hours under reflux using 3 mol % H3PW12O40 and 

acetonitrile as a solvent. 

 

Figure 1.28 H3PW12O40-catalysed access to diversified spirooxindoles. 
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Choudhury et al. (2019) reported the microwave-assisted synthesis of two different class of fused 

spirooxindoles from similar starting materials viz. isatin (57), 4-hydroxycoumarins (37) and 

aminopyrazole (66) by changing solvent and heating condition (Figure 1.29). [114] The synthesis of 

spirooxindoles fused with pyrazolo-tetrahydropyridinones (68) was reported under microwave irradiation 

of reaction mixture at 85 oC for 25 minutes in acetonitrile medium by ring opening of 4-hydroxycoumarins 

(37). Whereas, the microwave irradiation of the same reaction mixture at 130 oC for 25 minutes in acetic 

acid  provided spirooxindole fused coumarin-dihydropyridine-pyrazole/ isooxazole tetracycles (67) in 

good to excellent yields (81- 96 %) (Figure 1.29).  

 

Figure 1.29 Microwave-assisted three-component reaction to access spirooxindoles. 
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1.8 Abstract and objective of the thesis 

Heterocycles containing N, O and S atoms in the ring, generally show promising biological 

applications. Synthesis of diversified heterocycles are in high demand due to their wide applications. 

To fulfill the ongoing demand, the main role of a chemist is to supply novel heterocycles which can 

be further screened to find out their biological and pharmaceutical applications. Multicomponent 

reactions (MCRs) are turned up to be an efficient synthetic strategy to deliver such structural diverse 

scaffolds in time and help building up chemical libraries with larger scope. MCRs are recognized as 

the chemical transformations of more than two components mainly operated in one-pot to construct 

the desired products. The MCR strategy has several advantages like operational simplicity, higher 

atom efficiency and diverse scaffolds generation in short reaction time over single step operation. 

Several tools and techniques are used to develop a MCR protocol however application of 

mechanochemical hand-grinding and microwave irradiation in developing new MCRs strategies are 

presented in this chapter to synthesize functionalized heterocycles. Amongst heterocycles, pyrans 

and spirooxindoles are worth mentioning due to their wide range of biological and medicinal 

activities. The chapter also includes a brief description of biological importance and several 

synthesis procedures of pyrans and spirooxindoles. In short, the background of the present research 

work is highlighted in this chapter. However, the previous literature survey revealed that there is still 

scope not only in synthesizing novel biologically relevant heterocycles but also in developing 

greener and efficient methodologies to access diversified scaffolds. Thus, the presented work is 

focused on developing efficient green synthetic protocols for synthesis of structurally diverse 

heterocycles like pyrans, spirooxindoles, bis(benzo[f]chromen-3-one), acridione, thioxanthendione, 

bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione derivatives. 

In the second chapter, DABCO-catalysed liquid-assisted grinding for the synthesis of novel 

dihydrobenzo[f]pyrano[3,2-c]chromenone derivatives has been described. The reported 

methodology is simple, facile and mild to construct such multicomponent cascade. The benefits of 

developed one-pot protocol includes diversified scope, excellent yields and high reaction throughput 

apart from excellent green matrices scores.  

In third chapter, a urea-catalysed easy and facile microwave-assisted protocol is described to 

construct spiro-benzo[f]pyranochromenes in higher yields. The use of 1-hydroxy-3H-

benzo[f]chromen-3-one as a key reactant in such three-component reaction is reported for the first 
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time to provide such novel multicomponent cascade. The superiority of the reported methodology is 

the operational simplicity, diversified scope and gram scale synthesis along with very good green 

matrices scores which highlights the synthesis protocol for industry as well. 

In fourth chapter, microwave-assisted DABCO-catalysed synthesis of bis(benzo[f]chromen-3-one) 

derivatives are reported.  The advantages of the methods is the column free efficient synthesis and 

mere filtration provides good to excellent yield without using any harsh reagent. 

In fifth chapter, the applications of vinyl esters as acetaldehyde surrogates in different well-known 

multicomponent reaction are reported. Use of acetaldehyde is limited in synthetic chemistry due to 

self-polymerizations or lower stability. In this report, the effective utilization of vinyl esters as 

acetaldehyde surrogates in different conditions are explored efficiently to obtain biologically potent 

scaffolds. The reported methodology is quite successful to formulate different derivatives like 

acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione in moderate 

to good yield.  

The objective of the present work is highlighted in Figure 1.30. 

 

Figure 1.30 Objective of the thesis work. 
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2.1 Introduction 

Naturally occurring coumarins are known to exhibit various biological activities such as insecticidal, 

anticoagulant, antihelminthic, antifungal, hypnotic, HIV protease inhibition activities. [1-6] In 

particular, pyranochromenone is frequently present as a basic skeleton in several naturally occuring 

molecules like isoethuliacoumarin A (I), isoethuliacoumarin B (II), ethuliacoumarin A (III), 

pterophyllin III (IV), bothrioclinin (V) and cyclocoumarol (VI) etc. (Figure 2.1). [7-9]  

 

Figure 2.1 Naturally occurring pyranochromenone. 

Similarly, pyranochromenones show a wide range of biological activities, for example, anticancer, 

anti-TB, antifungal, analgesic, anti-HIV, anti-inflammatory and cytotoxic activities (Figure 2.2). 

[10-18] 

 

Figure 2.2 Biologically active pyranochromenone. 
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2.2 Survey of existing methodologies 

Many synthetic methodologies have been reported till date in the literature for accessing 

pyranochromenone compounds which in general, involve Michael addition of 4-

hydroxychromenones to a Michael acceptor followed by nucleophilic substitution/cyclisation by the 

chromene hydroxyl function. Various reagents and substrates have been used using essentially the 

same strategy.  

Khurana et al. (2010) attempted the base catalysed protocol using 4-hydroxycoumarin (3), aldehydes 

(1) and active methylene compounds like malononitrile (2a) /ethyl cyanoacetate (2b) to construct 

pyranochromene derivatives (4). The reported reaction provided desired products (4) in good to high 

yields (81-94 %) in water under reflux conditon using 10 mol % DBU as  a basic catalyst (Figure 

2.3). [19] 

 

Figure 2.3 DBU-catalysed synthesis of pyranochromene derivatives. 

The plausible mechanism of the three-component reaction is depicted in Figure 2.4. 

Mechanistically, the reaction proceeds through a DBU catalysed formation of Knoevenagel adduct 

A. Next, Michael attack of 4-hydroxycoumarin (3) to A gives intermediate B which is further 

cyclized in the presence of DBU to give the final product 4.  
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Figure 2.4 Plausible mechanism of DBU-promoted synthesis of pyranochromenes. 

On a similar note, in 2013 Dekamin and co-workers synthesized 2-amino-4H-chromene derivatives 

(4) using potassium phthalimide-N-oxyl (POPINO) as an organocatalyst in aqueous media under 

reflux conditions (Figure 2.5). [20] 

 

Figure 2.5 Potassium phthalimide-N-oxyl (POPINO)-catalysed synthesis of pyranochromene 

derivatives. 
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Later on, Karami et al. (2015) reported nanosilica molybdic acid (nano-SMA) catalysed one-pot 

three-component condensation of 4-hydroxycoumarin (3), various aldehydes (1) and malononitrile 

(2a) to construct various pyrano[2,3-c]chromenes (4) (Figure 2.6) in good to excellent yield (70-96 

%). [21] 

 

Figure 2.6 Nanosilica molybdic acid catalysed synthesis of pyranochromene derivatives. 

Bhosle and co-workers (2018) reported β-cyclodextrin promoted synthesis of diversified 

dihydropyranochromenes (4) in aqueous media in moderate to high yields (63-93 %) (Figure 2.7). 

[22]  

 

Figure 2.7 β-Cyclodextrin promoted synthesis of diversified dihydropyranochromenes. 

In continuation, Shirini and co-workers (2018) reported the synthesis of functionalized 2-amino-3-

cyano-4H-pyrans (4) in water using piperazine as an efficient basic catalyst. Interestingly, the 

authors found that a smaller amount of catalyst (22 mol %) was required in heating of the reaction 

mixture (method A) whereas a little larger amount of catalyst (58 mol %) ensured that the reaction 

went well at room temperature (method B) (Figure 2.8). [23] Moreover, the reaction provided 
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competitively higher yields under heating (97-99 %)  than stirring at room temperature (92-98 %)  

for a longer time. 

 

Figure 2.8 Piperazine-catalysed synthesis of functionalized 2-amino-3-cyano-4H-pyrans. 

In addition to the above, there are several other important methods reported using the above 

mentioned substrates. A variety of reagents have been used in these transformations, namely, urea 

[24], Bi(OTf)3 [25],  Cu(OTf)2 [26],  Ca(OTf)2 [27], ionic liquid-coated carbon nanotubes [28] and 

(CTA)3[SiW12]-Li+-MMT [29] amongst others.  

Unfortunately, there are limited reports with 4-hydroxy-2H-benzo[h]chromen-2-one (5) istead of 4-

hydroxycoumarin in the above mentioned three-component reaction. This included a report in 2014, 

wherein Zeeb and co-workers synthesized dihyrobenzo[h]pyrano[3,2‐c]chromenes (6) at room 

temperature using triethylamine as a base using aromatic aldehydes (1), malononitrile (2a) and  4-

hydroxy-2H-benzo[h]chromen-2-one (5) as substrates in moderate to good yields (69-85 %) in 5-8 

hours (Figure 2.9). [30] 

 

Figure 2.9 Triethylamine-catalysed synthesis of dihydrobenzo[h]pyrano[3,2‐c]chromenes. 
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Later, Foroumadi et al. (2015) modified this reaction by using catalytic amount of 1,4‐

diazabicyclo[2.2.2]octane (DABCO) in ethanol at room temperature for 8-12 hours to construct 

diversified benzopyranochromenes  (6) (Figure 2.10) in comparatively higher yields (70-90 %). [31] 

 

Figure 2.10 DABCO-catalysed synthesis of diversified benzopyranochromenes. 

Although the reported reactions are meritorious in their own right, nevertheless most of them suffer 

from drawbacks such as pre-functionalised substrates, use of expensive ionic liquids, metal catalysts, 

chiral organocatalysts, nanoparticles, nanotubes, long reaction time and formation of large chemical 

waste.  Therefore, a mild, greener and more effective alternative to target novel diversified 

pyranochromenone motifs is required. 

Hence, in an extension to our ongoing interest to develop sustainable methodologies for diversified 

heterocyclic compounds [32-35], a liquid-assisted grinding, one-pot domino synthesis of novel 

dihydrobenzo[f]pyrano[3,2-c]chromenones is presented using catalytic amount of DABCO for 

effective transformation of 1-hydroxy-3H-benzo[f]chromen-3-one as a substrate. Notably, the merits 

of the developed protocol presented in this chapter are (i) operational simplicity; (ii) reaction in few 

minutes; (iii) non-tedious work up and (iv) excellent green matrices score. 
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2.3 Results and discussion 

In order to develop a green methodology, initially in a sequential reaction, 4-chlorobenzaldehyde 1a 

(1.0 equiv.) and malononitrile 2a (1.0 equiv.) were mixed together by manual grinding for 5 minutes 

followed by the addition of 1-hydroxy-3H-benzo[f]chromen-3-one 7 (1.0 equiv.) and continued 

grinding for another 10 minutes in an agate-mortar and pestle (Scheme 2.1). Unfortunately, the 

anticipated product 2-amino-4-(4-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-

c]chromene-3-carbonitrile 8a was not formed even after extended time of grinding (Table 2.1, entry 

1). 

 

Scheme 2.1 Sequential three-component reaction for the synthesis of benzo[f]pyrano[3,2-

c]chromenes. 

In continuation, anticipating base catalysed acceleration in the Knoevenagel condensation and 

subsequent Michael addition as shown in Scheme 2.1, the starting substrates 1a and 2a were mixed 

and ground for 5 minutes followed by addition of 7 and ground for another 10 minutes using 20 mol 

% DABCO. Fortunately, the desired product 8a was obtained in 57 % yield along with unreacted 

starting materials (Table 2.1, entry 2). Further, addition of 0.25 mL IPA as a promoter effectively 

increase the yield of 8a upto 73 % (Table 2.1, entry 3). In the resulted product, three new bonds 

were simultaneously formed in a sequential reaction via liquid-assisted grinding. Next, the efficiency 

of different bases like DBU, Et3N, K2CO3 and piperidine were examined in the above conversion 

but there was no further enhancement in product yield in any case (Table 2.1, entries 4-7). In 

continuation, 30 mol % DABCO turned out to be the optimized amount of catalyst for this 

transformation (Table 2.1, entries 8-10). Later, this reaction was screened for different grinding time 

(Table 2.1, entries 11-12) and with different promoters like ACN and EtOH (Table 2.1, entries 13-
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14). From these sets of reactions, it was clearly noted that 15 minutes of grinding in the presence of 

IPA as a polar protic promoter is ideal for the desired transformation. Hence, the optimum condition 

for this sequential three-component reaction was manual grinding for 15 minutes in an agate-mortar 

and pestle of each substrates benzaldehydes (1, 1.0 mmol), malononitrile (2a, 1.0 mmol) and 1-

hydroxy-3H-benzo[f]chromen-3-one (7, 1.0 mmol), in 30 mol % DABCO using 0.25 mL IPA as a 

promoter. The final pure product 8a was obtained just by mere filtration and washing with IPA: 

water (1:2) solvent mixture and no further purification process was required. 

Table 2.1 Optimization of the domino reaction between 4-chlorobenzaldehyde (1a), malononitrile 

(2a) and 1-hydroxy-3H-benzo[f]chromen-3-one (7)a. 

 

 

 

 

 

Entry Catalyst (mol %) Promoter 

(0.25 mL) 

Condition Time 

(min) 

Yield (%)b 

1 - - Grinding 

 

15 - 

2 DABCO (20 mol %) - Grinding 

 

15 57 

3 DABCO (20 mol %) IPA Grinding 

 

15 73 

4 DBU (20 mol %) IPA Grinding 15 nd 

5 Et3N (20 mol %) IPA Grinding 15 59 

6 K2CO3 (20 mol %) H2O Grinding 15 37 

7 Piperidine (20 mol %) IPA Grinding 15 nd 

8 DABCO (10 mol %) IPA Grinding 15 69 

9 DABCO (30 mol %) IPA Grinding 

 

15 87 

10 DABCO (40 mol %) IPA Grinding 15 84 

11 DABCO (30 mol %) IPA Grinding 

 

10 67 

12 DABCO (30 mol %) IPA Grinding 

 

20 88 

13 DABCO (30 mol %) ACN Grinding 

 

15 55 

14 DABCO (30 mol %) EtOH Grinding 

 

15 76 

aReaction conditions: Grinding in agate-mortar and pestle, 1a (1.0 equiv.), 2a (1.0 

equiv.), 7 (1.0 equiv.); Knoevenagel condensation :  5 min; Final conditions: (5+10) 

min sequential addition;  nd: not determined;  bIsolated yields. 
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With optimized conditions for the domino reaction in hand, next set of reactions are focused on 

finding its scope and limitations using substituted aldehydes and the corresponding results are 

presented in Scheme 2.2. All the electron-withdrawing and electron-donating substituted aromatic 

aldehydes were reacted to synthesize respective desired products 8a-p in good to high yields (72-91 

%). However, it was worth noting that product yields were higher in case of unsubstituted (83 %, 

8b) and electron deficient benzaldehydes (4-Cl (87 %, 8a); 2-Cl (81 %, 8c); 2-Br (84 %, 8d); 2-F 

(79 %, 8e); 4-NO2 (91 %, 8f); 2,3-(Cl)2 (77 %, 8g); 2,6-(Cl)2 (85 %, 8h); 4-Br (89 %, 8i); 3-Cl (85 

%, 8o) and 2,4-(Cl)2  (84 %, 8p)) as compared to other electron rich benzaldehydes (4-OEt (72 %, 

8j); 4-OMe (74 %, 8k) and 4-Me (79 %,  8m)). Unfortunately, 4-N,N-dimethyl benzaldehyde did 

not provide the requisite product 8l  and the starting material 7 remained unreacted in the reaction 

mixture. Moreover, the reaction went smoothly with 1-napthaldehyde to provide 8n in good yield 

(74 %). However, the role of steric influence on the reaction outcome was also observed while ortho-

substituted aldehydes provided lower yield of the corresponding products (2-Cl (81 %, 8c); 2-Br (84 

%, 8d)) as compared to para-substituted (4-Cl (87 %, 8a); 4-Br (89 %, 8i)). Unfortunately, the 

multicomponent transformation did not go well with ethyl cyanoacetate and ended up with multiple 

spots on TLC. This observation may be a consequence of more reactivity and lower pKa value of 

malononitrile than ethyl cyanoacetate. [36] 
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Scheme 2.2 Domino reaction between aromatic aldehydes (1), malononitrile (2a) and 1-hydroxy-

3H-benzo[f]chromen-3-one (7). aReaction conditions: Grinding in agate-mortar and pestle: 1 (1.0 

mmol), 2a (1.0 mmol), 7 (1.0 mmol), DABCO (0.30 mmol), IPA (0.25 mL), 15 min.  
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The plausible mechanism for the synthesis of 2-amino-4-(4-chlorophenyl)-5-oxo-4,5-

dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a) is outlined in Scheme 2.3. In the first 

step, DABCO-catalysed Knoevenagel condensation between 4-chlorobenzaldehyde (1a) and 

malononitrile (2a) yields intermediate I. In the following step, Michael attack of 7 on intermediate 

I provides another intermediate II. In the subsequent step, the intermediate III is formed by 

DABCO-assisted intramolecular cyclisation of intermediate II and finally the desired product 2-

amino-4-(4-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a) is 

resulted due to subsequent proton shift in intermediate III. 

 

To find out the effective “greenness” of the reported methodology, the reaction was carried out to 

calculate different green matrices for the synthesis of novel 2-amino-5-oxo-4-phenyl-4,5-

dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a).  The aim of this experiment was focused 

on calculating atom efficiency (AE), carbon efficiency (CE), reaction mass efficiency (RME), 

Sheldon environmental impact factor (E-factor) and process mass intensity (PMI) of the reaction 

protocol. Fortunately, the reaction scored well in all these green calculations with high atom 

efficiency (95.70 %), 100 % carbon efficiency, 83.10 % of RME and low E-factor (0.82) and 1.82 

PMI (Figure 2.11). Hence, the reaction methodology presented in this chapter is green based on 

rational yardsticks for greenness. 
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Scheme 2.3 Plausible mechanism for the synthesis of 2-amino-4-(4-chlorophenyl)-5-oxo-

4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a). 

 

Figure 2.11 Green matrices calculation for the synthesis of 8a. 
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2.4 Conclusions 

In short, a domino liquid-assisted hand grinding DABCO-catalysed protocol for the synthesis of 

novel dihydrobenzo[f]pyrano[3,2-c]chromenone using aromatic aldehydes, malononitrile and 1-

hydroxy-3H-benzo[f]chromen-3-one as key reactants was developed effectively. The reported 

methodology is highly efficient, atom-economical and have effective green matrices scores. Most 

interestingly, all the synthesized products were obtained by filtration only. The reaction condition 

tolerated various functional groups to derive the final pyranochromenones in good to high yields.  

 

2.5 Experimental section 

2.5.1 General information 

Except 1-hydroxy-3H-benzo[f]chromen-3-one (7), which was prepared in accordance with the 

reported literature [36], all other substrates, reagents and solvents were purchased commercially. 1H 

NMR spectra were taken by JEOL Resonance® ECX-400II (400 MHz) and Bruker Avance®  III (500 

MHz), 13C NMR spectra were respectively recorded at 100 and 125 MHz. Deuterated DMSO 

(DMSO-d6) with TMS as internal standard was used as a solvent for taking NMR analyses. In the 

evaluation of 1H NMR spectra, chemical shift has been assigned in units of parts per million (ppm), 

wherein,“s” stands for singlet, “d” for doublet, “t” for triplet, “q” for quartet, “dd” for doublet of 

doublet”, “brs” for broad singlet and “m” for multiplet.  The units of coupling constant (J) has been 

assigned in Hz. The High Resolution Mass Spectra (HRMS) of three representative compounds 8a, 

8m and 8n were recorded on Bruker daltronics microTOF-QII® spectrometer using ESI ionization. 

Functional groups were detected by Perkin Elmer® FT-IR spectrometer-Spectrum two. Elemental 

analyses were carried out on vario MICRO cube Elementar®. Melting points were obtained on 

Optimelt® automated melting point system. Analyses of reactions were done using thin layer 

chromatography (TLC), which was performed on silica gel TLC plates. 

The synthesis of pyranochromenones 8 were achieved on agate-mortar and pestle.  
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2.5.2 General procedure 

Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one (7) [36]:  

The mixture of 2-naphthol (2 mmol) and meldrum’s acid (2 mmol) was stirred at 85 °C for 9 h 

(Scheme 2.4). After that, the reaction mixture was cooled to room temperature and extracted with 

ethyl acetate followed by saturated NaHCO3 solution. The collected water extract was acidified with 

conc. HCl and further extracted with methylene dichloride (DCM) to yield the crude intermediate 

after evaporating the organic solvent. This crude intermediate (1 mmol) in 1.5 mL Eaton’s reagent 

was stirred at 60 °C for 5 h. To this resultant mixture, water was added while vigorous stirring. The 

precipitate thus obtained was filtered by suction and dried to get final product 7. 

 

Scheme 2.4 Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one. 

[36] Park, S.-J.; Lee, J.-C.; Lee, K.-I.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-

quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205. 

Synthesis of benzo[f]pyrano[3,2-c]chromenes derivatives (8a-8p):  

In an agate- mortar and pestle, 1 mmol each of aromatic aldehydes (1), malononitrile (2a) were 

ground for 5 minutes in 30 mol % DABCO and 0.25 mL IPA. To the Knoevenagel product thus 

formed, 1 mmol of 1-hydroxy-3H-benzo[f]chromen-3-one (7) was added and the resulting mixture 

was further ground for next 10 minutes. The solid hence obtained was filtered off and washed with 

isopropanol: water (1:4) to yield the desired products 8. 
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2.5.3 Characterization of the synthesized molecules 

All the products were characterized via techniques of 1H NMR, 13C NMR Spectra, FT-IR and 

elemental analyses. Further, selected HRMS of 8a, 8m and 8n compounds are reported to confirm 

the products.  

Analytical information for the synthesized molecules is given below: 

 

2-amino-4-(4-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8a): Yellow solid (87 %); mp: 288-290 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.20 (d, 1H, 

J = 8.8 Hz), 8.21 (d, 1H, J = 8.8 Hz), 8.05 (d, 1H, J = 7.6 Hz), 7.78-7.61 (m, 4H), 7.52 (d, 1H, J = 

8.8 Hz), 7.45-7.30 (m, 4H), 4.52 (s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.9, 158.4, 

157.4, 153.8, 143.2, 135.2, 132.2, 131.1, 130.1, 129.7, 129.6, 129.0, 128.2, 127.2, 126.7, 119.6, 

117.4, 106.9, 104.1, 57.9, 36.9; IR (KBr) max/cm-1: 3434, 2192, 1707, 1668, 1564, 1379; Elem. 

Anal. For C23H13ClN2O3: calcd.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 69.12; H: 3.15; N: 6.81 %; 

HRMS (ESI) m/z calcd. for C23H13ClN2O3 [M+Na]+:  423.0506, found: 423.0503.   

 

2-amino-5-oxo-4-phenyl-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8b): Pale 

yellow solid (83 %); mp: 291-292 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.25 (d, 1H, J = 

8.4 Hz), 8.25 (d, 1H, J = 8.8 Hz),  8.08 (d, 1H, J = 9.2 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.67 (t, 1H, J = 

6.8 Hz), 7.62 (brs, 2H), 7.56 (d, 1H, J = 8.8 Hz), 7.35-7.28 (m, 4H), 7.27-7.21 (m, 1H), 4.52 (s, 1H); 

13C NMR (100 MHz, DMSO-d6): C (ppm) 159.9, 158.5, 157.3, 153.8, 144.2, 135.1, 131.1, 129.7, 
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129.6, 129.1, 128.2, 128.1, 127.6, 127.2, 126.6, 119.8, 117.4, 107.0, 104.7, 58.5, 37.4; IR (KBr) 

max/cm-1: 3565, 2209, 1673, 1520, 1382; Elem. Anal. For C23H14N2O3: calcd.: C: 75.40; H: 3.85; N: 

7.65 %; found: C: 75.05; H: 3.93; N: 6.85 %.   

 

2-amino-4-(2-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8c): Yellow solid (81 %); mp: 268-270 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.25 (d, 1H, 

J = 8.4 Hz), 8.25 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 7.2 Hz), 7.74 (t, 1H, J = 6.8 Hz), 7.67 (t, 1H, 

J = 6.8 Hz), 7.61 (brs, 2H), 7.56 (d, 1H, J = 8.8 Hz), 7.44-7.39 (m, 1H), 7.38-7.33 (m, 1H), 7.30-

7.23 (m, 2H), 5.04 (s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.7, 158.5, 157.9, 153.9, 

141.2, 135.3, 132.9, 131.2, 131.1, 130.1, 129.7, 129.6, 129.3, 128.3, 128.2, 127.2, 126.7, 119.4, 

118.6, 117.4, 106.8, 103.5, 56.9, 34.8; IR (KBr) max/cm-1: 3435, 2200, 1638, 1402; Elem. Anal. For 

C23H13ClN2O3: calcd.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 68.72; H: 3.43; N: 7.28 %.   

 

2-amino-4-(2-bromophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8d): Pale yellow solid (84 %); mp: 268-270 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.25 (d, 

1H, J = 8.8 Hz), 8.25 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J = 6.8 Hz), 7.67 (t, 

1H, J = 7.6 Hz), 7.60 (brs, 2H), 7.59-7.54 (m, 2H), 7.36-7.28 (m, 2H), 7.18 (t, 1H, J = 6.8 Hz), 5.05 

(s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.7, 158.4, 157.9, 153.9, 142.9, 135.2, 133.3, 

131.1, 129.7, 129.6, 129.5, 128.9, 128.2, 127.3, 126.6, 123.4, 119.3, 118.6, 117.4, 106.8, 103.8, 57.2, 
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37.0; IR (KBr) max/cm-1: 3434, 2200, 1638, 1402; Elem. Anal. For C23H13BrN2O3: calcd.: C: 62.04; 

H: 2.94; N: 6.29 %; found: C: 62.27; H: 3.23; N: 7.28 %.   

 

2-amino-4-(2-fluorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8e): Dark yellowish solid (79 %); mp: 276-277 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.22 

(d, 1H, J = 8.4 Hz), 8.23 (d, 1H, J = 8.8 Hz), 8.07 (d, 1H, J = 8.0 Hz), 7.72 (t, 1H, J = 7.2 Hz), 7.70-

7.63 (m, 3H), 7.52 (d, 1H, J = 8.8 Hz), 7.34 (t, 1H, J = 8.0 Hz), 7.29 (t, 1H, J = 8.0 Hz ), 7.15 (d, 

2H, J = 8.0 Hz), 4.77 (s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 162.0, 159.8, 159.5, 158.7, 

157.8, 153.9, 135.3, 131.1, 130.8, 130.8, 130.7, 129.8, 129.7, 129.6, 128.2, 127.2, 126.7, 125.3, 

125.2, 119.6, 117.4, 116.2, 116.0, 106.9, 103.3, 56.8, 31.9; IR (KBr) max/cm-1: 3426, 2204, 1710, 

1638, 1402; Elem. Anal. For C23H13FN2O3: calcd.: C: 71.87; H: 3.41; N: 7.29 %; found: C: 71.63; 

H: 3.33; N: 7.03 %.   

 

2-amino-4-(4-nitrophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8f): Light brownish solid (91 %); mp: 274-276 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.24 

(d, 1H, J = 8.4 Hz), 8.26 (d, 1H, J = 9.2 Hz), 8.18 (d, 2H, J = 8.8 Hz), 8.09 (d, 1H, J = 6.8 Hz), 7.76 

(brs, 2H), 7.73 (d, 1H, J = 6.8 Hz), 7.67 (t, 1H, J = 8.0 Hz), 7.63 (d, 2H, J = 8.8 Hz), 7.57 (d, 1H, J 

= 8.8 Hz), 4.73 (s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.9, 158.5, 157.9, 154.0, 151.6, 

147.1, 135.5, 131.2, 129.8, 129.7, 128.3, 127.3, 126.7, 124.3, 119.4, 117.4, 107.0, 103.5, 57.2, 37.3; 
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IR (KBr) max/cm-1: 3460, 2209, 1705, 1640, 1402; Elem. Anal. For C23H13N3O5: calcd.: C: 67.15; 

H: 3.19; N: 10.21 %; found: C: 67.31; H: 3.02; N: 9.88 %.   

 

2-amino-4-(2,3-dichlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8g): Pale yellow solid (77 %); mp: 286-288 oC; 1H NMR (400 MHz, DMSO-d6): H 

(ppm) 9.26 (d, 1H, J = 8.4 Hz), 8.28 (d, 1H, J = 9.2 Hz), 8.10 (d, 1H, J = 8.0 Hz), 7.77-7.66 (m, 4H), 

7.60 (d, 1H, J = 8.4 Hz), 7.55 (dd, 1H, J = 8.0, 1.6 Hz ), 7.39 (dd, 1H, J = 8.0, 1.6 Hz), 7.30 (t, 1H, 

J = 8.08 Hz), 5.16 (s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.7, 158.5, 158.0, 153.9, 

144.0, 135.4, 132.4, 131.1, 131.0, 129.8, 129.7, 129.6, 129.1, 128.2, 127.2, 126.7, 119.2, 117.4, 

106.8, 103.3, 56.5, 35.5; IR (KBr) max/cm-1: 3464, 2194, 1714, 1664, 1591, 1399; Elem. Anal. For 

C23H12Cl2N2O3: calcd.: C: 63.47; H: 2.78; N: 6.44 %; found: C: 63.17; H: 3.03; N: 6.88 %.  

 

2-amino-4-(2,6-dichlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8h): Yellow solid (85 %); mp: 302-304 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

9.22 (d, 1H, J = 8.8 Hz), 8.24 (d, 1H, J = 9.2 Hz), 8.07 (d, 1H, J = 8.8 Hz), 7.75-7.69 (m, 3H), 7.66 

(t, 1H, J = 6.8 Hz), 7.54 (t, 2H, J = 6.8 Hz), 7.37 (d, 1H, J = 6.8 Hz), 7.31 (t, 1H, J = 8.0 Hz), 5.56 

(s, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.5, 159.2, 158.4, 154.0, 136.5, 136.0, 135.5, 

134.8, 131.2, 130.9, 130.2, 129.8, 129.8, 129.2, 128.2, 127.1, 126.8, 119.1, 117.4, 106.4, 101.8, 53.7, 
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33.9; IR (KBr) max/cm-1: 3437, 2201, 1639, 1402; Elem. Anal. For C23H12Cl2N2O3: calcd.: C: 63.47; 

H: 2.78; N: 6.44 %; found: C: 63.17; H: 3.03; N: 6.88 %. 

 

2-amino-4-(4-bromophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8i): Yellow solid (89 %); mp: 292-294 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.23 (d, 1H, 

J = 8.4 Hz), 8.25 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 6.8 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.69-7.63 

(m, 3H), 7.56 (d, 1H, J = 8.8 Hz), 7.50 (d, 2H, J = 8.4 Hz), 7.29 (d, 2H, J = 8.4 Hz), 4.53 (s, 1H); 

13C NMR (100 MHz, DMSO-d6): C (ppm) 159.8, 158.4, 157.4, 153.8, 143.6, 135.2, 131.9, 131.1, 

130.5, 129.7, 129.6, 128.2, 127.2, 126.6, 120.7, 119.6, 117.4, 106.9, 104.0, 57.9, 37.0; IR (KBr) 

max/cm-1: 3429, 2193, 1706, 1667, 1565, 1380; Elem. Anal. For C23H13BrN2O3: calcd.: C: 62.04; H: 

2.94; N: 6.29 %; found: C: 62.47; H: 3.15; N: 6.88 %.   

 

2-amino-4-(4-ethoxyphenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8j): Pale yellow solid (72 %); mp: 242-244 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 9.25 (d, 

1H, J = 8.8 Hz), 8.25 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.67 (t, 

1H, J = 6.8 Hz), 7.65-7.54 (m, 3H), 7.20 (d, 2H, J = 8.8 Hz), 6.85 (d, 2H, J = 8.8 Hz ), 4.46 (s, 1H), 

3.97 (q, 2H, J = 7.2 Hz), 1.29 (t, 3H, J = 6.8 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.9, 

158.4, 158.1, 157.0, 153.7, 136.1, 135.1, 131.1, 129.7, 129.6, 129.2, 128.2, 127.2, 126.7, 119.9, 

117.4, 114.8, 107.0, 105.0, 63.5, 58.6, 36.6, 15.2; IR (KBr) max/cm-1: 3417, 2199, 1717, 1670, 1587, 
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1402; Elem. Anal. For C25H18N2O4: calcd.: C: 73.16; H: 4.42; N: 6.83 %; found: C: 73.63; H: 4.67; 

N: 7.29 %.   

 

2-amino-4-(4-methoxyphenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8k): Dark yellow solid (74 %); mp: 260-261 oC; 1H NMR (400 MHz, DMSO-d6): H 

(ppm) 9.25 (d, 1H, J = 8.4 Hz), 8.24 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J = 

7.2 Hz), 7.67 (t, 1H, J = 7.2 Hz), 7.60-7.55 (m, 3H), 7.22 (d, 2H, J = 8.8 Hz), 6.87 (d, 2H, J = 8.8 

Hz ), 4.47 (s, 1H), 3.71 (s, 3H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 159.9, 158.8, 158.4, 

157.0, 153.7, 136.3, 135.1, 131.1, 129.7, 129.6, 129.3, 128.2, 127.2, 126.6, 119.9, 117.4, 114.4, 

107.0, 105.0, 58.6, 55.6, 36.6; IR (KBr) max/cm-1: 3420, 2202, 1716, 1673, 1568; Elem. Anal. For 

C24H16N2O4: calcd.: C: 72.72; H: 4.07; N: 7.07 %; found: C: 72.41; H: 3.87; N: 7.54 %.  

 

2-amino-5-oxo-4-(p-tolyl)-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8m): 

Pale yellow solid (79 %); mp: 264 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 9.24 (d, 1H, J = 

9.0 Hz), 8.24 (d, 1H, J = 8.5 Hz),  8.08 (d, 1H, J = 8.0 Hz), 7.73 (t, 1H, J = 8.5 Hz), 7.67 (t, 1H, J = 

7.5 Hz), 7.59 (brs, 2H), 7.56 (d, 1H, J = 9.0 Hz), 7.21-7.08 (m, 4H), 4.47 (s, 1H), 2.26 (s, 3H); 13C 

NMR (125 MHz, DMSO-d6): C (ppm) 159.8, 158.4, 157.1, 153.7, 141.2, 136.7, 135.0, 131.1, 129.6, 

129.6, 129.5, 128.2, 127.9, 127.1, 126.6, 119.7, 117.3, 106.9, 104.8, 58.6, 37.0, 21.1; IR (KBr) 

max/cm-1: 3424, 2194, 1709, 1670, 1566, 1380; Elem. Anal. for C24H16N2O3: calcd.: C: 75.78; H: 
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4.24; N: 7.36 %; found: C: 75.43; H: 4.27; N: 7.53 %; HRMS (ESI) m/z calcd. for C24H16N2O3 

[M+Na]+:  403.1053, found: 403.1047.    

 

2-amino-4-(naphthalen-1-yl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8n): Yellow solid (74 %); mp: 270 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 9.32 (d, 1H, J = 

8.5 Hz), 8.49 (d, 1H, J = 8.0 Hz),  8.27 (d, 1H, J = 9.0 Hz), 8.11 (d, 1H, J = 8.0 Hz), 7.96 (d, 1H, J 

= 8.0 Hz), 7.83 (d, 1H, J = 7.5 Hz), 7.77 (t, 1H, J = 8.5 Hz), 7.70 (t, 1H, J = 7.5 Hz), 7.65-7.52 (m, 

5H), 7.45-7.35 (m, 2H), 5.54 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 159.8, 158.3, 157.7, 

153.7, 141.6, 135.1, 133.8, 131.4, 131.2, 129.7, 129.6, 129.0, 128.2, 127.9, 127.2, 126.6, 126.4, 

126.3, 124.0, 119.6, 117.4, 115.0, 107.0, 105.3, 59.1, 26.0; IR (KBr) max/cm-1: 3441, 2197, 1707, 

1669, 1566, 1376; Elem. Anal. for C27H16N2O3: calcd.: C: 77.87; H: 3.87; N: 6.73 %; found: C: 

77.91; H: 3.96; N: 6.90 %; HRMS (ESI) m/z calcd. for C27H16N2O3 [M+Na]+:  439.1053, found: 

439.1037.   

 

2-amino-4-(3-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

(8o): Light brownish solid (85 %); mp: 280 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 9.25 (d, 

1H, J = 8.5 Hz), 8.26 (d, 1H, J = 9.0 Hz),  8.09 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J = 8.0 Hz), 7.70-

7.63 (m, 3H), 7.70-7.63 (m, 3H), 7.58 (d, 1H, J = 8.5 Hz), 7.40 (s, 1H), 7.38-7.28 (m, 3H), 4.58 (s, 
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1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 159.8, 158.4, 157.6, 153.8, 146.6, 135.2, 133.6, 

131.1, 130.9, 129.6, 129.5, 128.2, 128.0, 127.6, 127.2, 127.0, 126.6, 119.5, 117.3, 107.0, 103.8, 57.8, 

37.2; IR (KBr) max/cm-1: 3402, 2199, 1714, 1668, 1567, 1383; Elem. Anal. for C23H13ClN2O3: 

calcd.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 68.53; H: 3.24; N: 6.95 %.  

 

2-amino-4-(2,4-dichlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8p): Orange solid (84 %); mp: 256 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 9.24 

(d, 1H, J = 8.5 Hz), 8.26 (d, 1H, J = 9.0 Hz),  8.09 (d, 1H, J = 8.0 Hz), 7.73 (t, 1H, J = 8.5 Hz), 7.71-

7.64 (m, 3H), 7.62-7.55 (m, 2H), 7.47-7.30 (m, 2H), 5.03 (s, 1H); 13C NMR (125 MHz, DMSO-d6): 

C (ppm) 159.6, 158.5, 158.0, 153.9, 140.3, 135.3, 133.8, 132.8, 132.6, 131.1, 129.7, 129.6, 129.3, 

128.4, 128.2, 127.2, 126.6, 119.1, 117.3, 106.8, 103.1, 56.5, 34.4; IR (KBr) max/cm-1: 3419, 2197, 

1706, 1670, 1563, 1381; Elem. Anal. for C23H12Cl2N2O3: calcd.: C: 63.47; H: 2.78; N: 6.44 %; found: 

C: 63.17; H: 2.97; N: 6.57 %.  
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3.1 Introduction 

Spirooxindoles are nitrogen containing fused heterocycles which are well-known for their wide 

biological and medicinal applications. [1-4] Spirooxindole moieties have been commonly found in 

natural products like Spirotryprostatin A (I) and Spirotryprostatin B (II) which usually occur in 

Aspergillus fumigatus and act as muscarinic serotonin receptors modulators (Figure 3.1). [5-7] 

Mitraphylline (III), another natural spirooxindole shows anti-tumor activity and is isolated from 

Uncaria tomentosa. Naturally occurring Horsfiline (IV) and Elacomine (V) act as indigenous 

medicines and are isolated from Eleagnus commutate (Figure 3.1). [5-10]  

 

Figure 3.1 Some naturally occurring spirooxindoles. 

Other than that, biological applications of spirooxindole are extensive and they have been found 

active as anticancer, antimicrobial, antitumor, antiviral and anti-inflammatory agents. [11, 12] 

Moreover, some fused oxindoles act as laser dyes, pigments, optical brighteners and fluorescence 

markers (Figure 3.2). [13, 14] 
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Figure 3.2 Applications of spirooxindole in different perspectives. 

Likewise, benzochromenone containing heterocycles exhibit several biological applications. One of 

the most promising scaffolds of this class is furo-benzochromenone which possesses broad spectrum 

of biological activities, e.g. antibacterial, antitumor, antifungal, antioxidant, anti-trypanosomal and 

insecticidal. [15-19] Naturally occurring furo-benzochromenones viz. tanshinones (XIII) [20, 21], 

tanshinlactone (XII) [22] and neo-tanshinlactone (XI) [22, 23], extracted from Salvia miltiorrhiza 

are well-known anticancerous agents (Figure 3.3). 

 

Figure 3.3 Naturally occurring benzochromenones. 

Inspecting biological applications of spirooxindoles on one hand and benzochromenones on the 

other, the spirooxindole fused benzochromenones molecules might be effective from therapeutic 

point of view. Nevertheless, based on the literature reports, such hybrid molecules have not been 

studied. However, there are reports of preparation of spirooxindoles-pyran derivatives obtained by 

fusion of isatins with 4-hydroxycoumarin which can be a good starting point for the present study. 
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3.2 Survey of existing methodologies 

As mentioned, there are several literature reports for the synthesis of spirooxindole-pyran 

derivatives. The most common pathway involves Knoevenagel reaction of isatins and malononitrile 

followed by Michael addition of 4-hydroxycoumarin and cyclisation to synthesize this hybrid 

scaffold.  

For example, Kidwai et al. (2012) reported the synthesis of functionalized spirochromenes from the 

reaction of isatins (1) with malononitrile (2a)/ ethylcyanoacetate (2b) and 4-hydroxycoumarin (3) 

(Figure 3.4). [24] The reaction was carried out using catalytic amount of Gold (III) chloride 

(HAuCl4·3H2O) in PEG-400 at 70 oC to provide desired hybrid molecules (4) in 84-94 % yields. 

 

Figure 3.4 Gold(III) chloride-catalysed synthesis sprirooxindole fused pyrans. 

On a similar note, Khurana and co-workers (2013) developed a one pot methodology for the above 

mentioned three-component reaction to synthesize spiropyrans (4) using 10 mol % DBU as a catalyst 

in water under reflux conditions (Figure 3.5). [25] 

 

Figure 3.5 DBU-catalysed synthesis of spiropyrans. 
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Later on, in 2013, Zhang and co-workers reported a meglumine catalysed  one pot methodology to 

furnish 2'-amino-2,5'-dioxo-5'H-spiro[indoline-3,4'-pyrano[3,2-c]chromene]-3'-carbonitrile (4) 

using the substrates isatin (1a), malononitrile (2a) and 4-hydroxycoumarin (3) at room temperature 

(Figure 3.6). [26] 

 

Figure 3.6 Meglumine-catalysed synthesis of spiropyranochromene. 

Later, Hasaninejad et al. in 2017 discovered a DABCO-catalysed three-component reaction to 

synthesize spirooxindole fused pyrans (4) in good to high yield (84-98 %) under reflux conditions 

(Figure 3.7). [27]  

 

Figure 3.7 DABCO-catalysed synthesis of spirooxindole fused pyrans. 

Next, Xu and co-workers (2018) developed a DABCO-based ionic liquid-catalysed synthesis of 

spiro[2-amino-4H-pyrans] (4) from isatin (1a), malononitrile (2a) and 4-hydroxycoumarin (3). [28] 

The described transformation was performed using 10 mol % of [DABCO-H]Cl as a catalyst in 

acetonitrile at 50 oC to give 95 % of the final product (Figure 3.8). 
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Figure 3.8 Ionic liquid-promoted synthesis of spiro[2-amino-4H-pyrans]. 

Apart from these reports, use of other reagents like nano-crystalline MgO (2012, Banerji et al.) [29], 

N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide 

(DCDBTSD) (2015, Khazaei et al.) [30], Copper (II) acetate monohydrate (2016, Maghsoodlou et 

al.) [31] and nano-sized copper ferrite (2016, Khodabakhshi et al.) [32] are also reported for the 

above described three-component reaction to formulate diversified spiro-pyrans.  

Unfortunately, most of these methods suffer from drawbacks like expensive reagents, pre-

functionalized catalysts, long reaction time, limited diversity and complicated purification process. 

Moreover, there is no report of the three-component reaction with 1-hydroxy-3H-benzo[f]chromen-

3-one. Therefore, in continuation with the aim to develop greener and efficient methodology, a urea-

catalysed microwave irradiated synthesis of novel fused heterocycles, namely, 

spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile and spiro[benzo[f]pyrano[3,2-

c]chromene-4,3'-indoline]-3-carboxylate derivatives, is presented in this chapter. The reported 

protocol has advantages like minutes synthesis, no tedious work up, column-free purification and 

more importantly, easy scale up process. 
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3.3 Results and discussion 

According to the preliminary hypothesis based on similar reactivity of 4-hydroxycoumarin and 1-

hydroxy-3H-benzo[f]chromen-3-one, the early investigations were directed towards formation of 2-

amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile (6a) from  

standard three-component reaction of isatin (1a, 0.5 mmol), malononitrile (2a, 0.5 mmol) and 1-

hydroxy-3H-benzo[f]chromen-3-one (5, 0.5 mmol) using similar conditions which were previously 

reported for pyranochromenones synthesis. [25-27] Unfortunately, the desired product 6a was either 

not obtained or was formed in very low yields (Table 3.1, entries 1-3). The results pointed out that 

the reactivity difference may be due to an additional fused aromatic ring and decresed solubility of 

1-hydroxy-3H-benzo[f]chromen-3-one. 

Table 3.1. Exploring the reaction conditions for the synthesis of 6aa.  

 

Entry Catalyst Solvent 
Reaction 

Conditionsa 
Yield (%)b 

1 Meglumine (5 mol %)[26] 

2 mL 

EtOH:H2O rt, 30 min nd 

2 DABCO (6 mol %)[27] 5 mL EtOH reflux, 30 min 47 

3 DBU (10 mol %)[25] 5 mL H2O reflux, 30 min nd 

4 DABCO (10 mol%) 0.5 mL EtOH MW/ 130 oC/ 15 min 55 

aReaction conditions: catalyst amount, solvent and condition as per reports; nd: not 

determined; bIsolated yields. 

With the reported protocols not working, it was decided to use a one-pot microwave irradiation of 

0.5 mmol each of 1a, 2a and 5 using 10 mol % DABCO at 130 oC for 15 minutes in 0.5 mL EtOH 

to form the desired product 6a. Fortunately, the microwave-assisted protocol was found suitable as 

it provided 55 % yield of the targeted product 6a (Table 3.1, entry 4). Having these sets of results 

in hand and also from the past experience on similar substrate 5 in the three-component reaction 

[33], a sequential approach was adopted to construct final product 6a as shown in the Figure 3.9.  
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Figure 3.9 Reaction outline for sequential pathway. 

Gratifyingly, when 0.5 mmol each of 1a and 2a were irradiated under microwave using catalytic 

amount of DABCO (10 mol %) at 130 oC for 5 minutes in 0.5 mL EtOH followed by addition of 5 

(0.5 mmol) and the resulting mixture was further irradiated at 130 oC for another 10 minutes, it 

resulted in 77 % yield of the desired product 6a (Table 3.2, entry 1). Later on, DABCO in the above 

reaction was replaced with different bases like DBU, Et3N and urea (Table 3.2, entries 2-4). 

Fortunately, the reaction provided maximum yield with economical and abundantly available urea 

in which 82 % of 6a was obtained. The acidic condition (p-TSA) in this reaction was not found 

suitable for the desired conversion (Table 3.2, entry 5). Thereafter, the reaction condition was 

optimized with respect to time and temperature and it was observed that Knoevenagel condensation 

of 1a and 2a for 2 minutes at 120 oC followed by Michael addition of 5 for 8 minutes  at 120 oC was 

optimum for the desired transformation to 6a (Table 3.2, entries 6-10). In next set of reactions, 15 

mol % urea was found optimal for the transformation, providing 86 % of the product 6a (Table 3.2, 

entries 9, 11 & 12). At last, to find out the effect of solvents, the reaction was carried out in different 

solvents in which IPA was found most effective for the above mentioned convertion (92 %, 6a) 

(Table 3.2, entries 13-15).  Henceforth, the final optimum condition for the one-pot sequential three-

component reaction was the irradition of 1a (0.5 mmol) and 2a (0.5 mmol) for 2 minutes followed 

by its reaction with 5 (0.5 mmol) at 120 oC for another 8 minutes using 15 mol % urea in 0.5 mL 

IPA under microwave irradiation. It is worth mentioning that in all the cases pure solid products 

were obtained just by fitration and washing with IPA: H2O (1:2) solvent mixture and no further 

purification proceess was required. 
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Table 3.2 Optimization reaction condition for the domino reaction between isatin (1a), malononitrile 

(2a) and 1-hydroxy-3H-benzo[f]chromen-3-one (5)a. 

 

Entry Catalyst Solvent 
Reaction  

Conditions 
Yield (%)b 

1 DABCO (10 mol %) EtOH MW (130 oC, 15 min) 77 

2 DBU (10 mol %) EtOH MW (130 oC, 15 min) 73 

3 Et3N (10 mol %) EtOH MW (130 oC, 15 min) 71 

4 Urea (10 mol %) EtOH MW (130 oC, 15 min) 82 

5 p-TSA (10 mol %) EtOH MW (130 oC, 15 min) - 

6 Urea (10 mol %) 

 

EtOH MW (120 oC, 15 min) 81 

7 Urea (10 mol %) 

 

EtOH MW (140 oC, 15 min) 83 

8 Urea (10 mol %) 

 

EtOH MW (100 oC, 15 min) 66 

9 Urea (10 mol %) 

 

EtOH MW (120 oC, 10 min) 82 

10 Urea (10 mol %) 

 

EtOH MW (120 oC, 8 min) 74 

11 Urea (15 mol %) 

 

EtOH MW (120 oC, 10 min) 86 

12 Urea (20 mol %) 

 

EtOH MW (120 oC, 10 min) 87 

13 Urea (15 mol %) H2O MW (120 oC, 10 min) nd 

14 Urea (15 mol %) IPA MW (120 oC, 10 min) 92 

15 Urea (15 mol %) 

 

ACN MW (120 oC, 10 min) nd 
aReaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 5 (0.5 mmol), solvent: 0.5 mL; 

Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 oC; nd: not 

determined; Time for Knoevenagel condensation:  5 min for entries 1-8 and 2 min for 

entries 9-15; Final conditions: (2+8) min sequential addition at 120 oC. bIsolated 

yields. 
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Having established the optimized condition, the reaction was extensively explored to find out its 

scope and limitations (Scheme 3.1). It was found that the reaction worked equally well with both 

electron donating and electron withdrawing groups substituted on isatins (1a-k). The reaction also 

worked well with both malononitrile 2a and ethyl cyanoacetate 2b substrates. However minor 

improvement of yield was observed with electron withdrawing isatin moieties (5-Cl (91 %, 6c; 87 

%, 6d); 7-Cl (81 %, 6e); 5-Br (90 %, 6f); 5-F (83 %, 6g; 75 % 6h); 7-F (77 % 6i); 5-NO2 (94 %, 6j)) 

in comparison to electron donating substrates (5-Me (85 %, 6k; 82 %, 6l);  5-OMe (79 %, 6m; 75 

%, 6n)). Moreover, malonitrile 2a provided higher yield in most of the cases (92 %, 6a; 91 %, 6c; 

90 %, 6f; 83 %, 6g; 77 %, 6i; 94 %, 6j; 85 %, 6k; 79 %, 6m; 89 %, 6o; 84 %, 6q) as compared to 

ethyl cyanoacetate 2b (79 %, 6b; 87 %, 6d; 81 %, 6e; 75 %, 6h; 82 %, 6l; 75 %, 6n; 85 %, 6p; 77 

%, 6r). Moreover, 5-substituted isatins provided comparitively higher yields (91 %, 6c; 87 %, 6d; 

90 %, 6f; 83 %, 6g; 75 %, 6h; 94 %, 6j) as compared to 7-substituted isatins (81 %, 6e; 77 %, 6i). 

Overall, the electronics of the substrates had little influence on the reaction outcome as the reaction 

in general provided excellent yield with majority of the substrates. Notably, 5-nitro substituted isatin 

produced highest yield of the corresponding product (94 %, 6j). On the other hand, N-substituted 

isatins also resulted in good yield of the products under given conditions (77-89 %, 6o-6r). In 

continuation, the reaction was also performed with cyanoacetamide (2c) and 4-

cyanoacetylmorpholine (2d). Unfortunately, it resulted in unidentifiable products and the respective 

products 6s and 6t were not obtained. In nutshell, the developed methodology provided an easy 

access to diversified spiro-benzopyranochromenes in good to high yield (75-94 %, 6a-r). 
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Scheme 3.1 Scope of the reported domino multicomponent reaction. aReaction conditions: 1 (0.5 

mmol), 2 (0.5 mmol), 5 (0.5 mmol), urea (15 mol %), IPA (0.5 mL), 120 oC for (2+8) min sequential 

addition in Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 oC. 
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Later on, the reaction condition was reexamined to evaluate “greenness” of this method by 

estimating carbon efficiency (CE), atom economy (AE), reaction mass efficiency (RME), process 

mass intensity (PMI) and most importantly, Sheldon environmental impact factor (E-factor) in a 

“gram scale reaction” to construct the target molecule 6a (reaction in 5 mmol scale). Fortunately, 

the desired transformation worked effortlessly to give 84 % yield (1.710 gm) of product 6a. 

Furthermore, the high AE (95.77 %), RME (80.39 %) and CE (100 %) and low E-factor (1.19) and 

PMI (2.19) proved that the reported protocol is suitable for an up scale synthesis. 

The mechanism of this three-component reaction is sketched in Scheme 3.2. In this case, urea 

catalysed Knoevenagel condensation reaction of isatin (1a) and malanonitrile (2a) provides 

intermediate I. [34-35] Then, Michael attack of 5 on intermediate I forms intermediate II. Next, urea 

catalysed intramolecular cyclisation followed by proton shift in intermediate III provides the final 

desired product 6a.  

 

Scheme 3.2 Plausible mechanism for the synthesis of 2-amino-2',5-dioxo-5H-

spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile (6a). 
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3.4 Conclusions 

In conclusion, urea-catalysed mild and efficient methodology was developed to synthesized novel  

spiro-benzo[f]chromene derivatives under microwave irradiation. The optimised condition was 

suitable for a wide range of electronically diversified isatins to generate diversified novel scaffolds 

in good to high yields. The advantage of the present protocol includes low catalyst loading, shorter 

reaction time, no tedious work up and ease of scalibility. Overall, an ecofriendly urea-catalysed 

three-component reaction strategy is developed in this chapter. 

3.5 Experimental section 

3.5.1 General information 

All the substrates except 1-hydroxy-3H-benzo[f]chromen-3-one (5), reagents and solvents were 

purchased commercially. The synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one (5) was achieved 

in lab as directed in the literature [34]. All 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra 

were taken in deuterated DMSO (DMSO-d6) with TMS as internal standard and analyzed by JEOL 

Resonance® ECX-400II. 13C NMR (125 MHz) of compounds 6m and 6p spectra were recorded on 

a Bruker Advance® 500 (500 MHz), 13C NMR of compound 6k could not recorded even after high 

number of scans due to lower solubility in NMR solvent. In the evaluation of 1H NMR spectra, the 

unit parts per million (ppm) denotes the chemical shift, wherein “s” stands for singlet, “d” for 

doublet, “t” for triplet, “q” for quartet, “dd” for doublet of doublet”, “brs” for broad singlet and “m” 

for multiplet.  The units of coupling constant (J) is in Hz. The High-resolution mass spectra (HRMS) 

of four representative compounds 6b, 6g, 6k and 6p were recorded on Bruker daltronics microTOF-

QII® spectrometer using ESI ionization. Perkin Elmer® FT-IR spectrometer-Spectrum two has been 

used to detect the functional groups and vario MICRO cube Elementar® for elemental analyses. 

Optimelt® automated melting point system helped to get the melting points of the synthesized 

compounds. Silica gel TLC (thin layer chromatography) plates were used to analysis the progress of 

the reactions. 

The microwave-assisted synthesis of the compounds was performed in Anton Paar® Monowave 

reactor which has an operating frequency of 2.455 GHz with continuous irradiation power of 0 to 

300 W. The reactants were taken in a G-10 glass vial capped with Teflon septum and was exposed 

to microwave irradiation. 
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3.5.2 General procedures 

Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one (5) [34]: The mixture of 2-naphthol (5 mmol) 

and meldrum’s acid (5 mmol) was heated at 90 °C for 9-10 h. After that, the reaction mixture was 

cooled to room temperature and first extracted with ethyl acetate and then with saturated NaHCO3 

solution. The collected water extract was acidified with conc. HCl and additionally extracted with 

methylene dichloride (DCM) which provided the crude intermediate after evaporation of the organic 

solvent. The solid intermediate (2 mmol) in 2 mL Eaton’s reagent was stirred at 60 °C for 5 h. After 

that, cold water was added to this resultant mixture while vigorous stirring. The solid product 5 was 

obtained by filtration and dried overnight to use in the reported reaction. 

 

Scheme 3.3 Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one. 

[34] Park, S.-J.; Lee, J.-C.; Lee, K.-I.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-

quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205. 

General synthesis procedure for microwave-assisted three-component reaction (6a-6r): 

In a G-10 microwave vial, 15 mol % urea in 0.5 mL IPA were added to a mixture of isatins (1, 0.5 

mmol) and malononitrile (2a) or ethylcyanoacetate (2b) (0.5 mmol) and subjected to microwave 

irradiation at 120 oC for 2 minutes. Furthermore, 1-hydroxy-3H-benzo[f]chromen-3-one (5) was 

added to the reaction vial and again the mixture was irradiated for 8 minutes at 120 oC. The solid 

product was obtained in the reaction vial after cooling down to room temperature, which was then 

filtered off and washed with washed with isopropanol: water (1:2) to get the pure final desired 

products 6.  
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3.5.3 Characterization of the synthesized molecules 

All the products were characterized via techniques of 1H NMR, 13C NMR Spectra, FT-IR and 

elemental analyses. Further, selected HRMS of 6b, 6g, 6k and 6p compounds are reported to confirm 

the products.  

Analytical information for the synthesized molecules is given below: 

 

2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile 

(6a): Pale brown solid (92 %); mp: 314 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 10.66 (s, 1H), 

9.21 (d, 1H, J = 8.8 Hz), 8.27 (d, 1H, J = 8.8 Hz),  8.07 (d, 1H, J = 8.0 Hz), 7.84 (brs, 2H), 7.72 (t, 

1H, J = 7.2 Hz), 7.65 (t, 1H, J = 7.2 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.23-7.15 (m, 2H), 6.90 (t, 1H, J 

= 7.6 Hz), 6.83 (d, 1H, J = 7.6 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 178.0, 159.0, 158.7, 

158.6, 154.0, 142.7, 136.1, 134.1, 131.2, 129.9, 129.4, 128.1, 127.2, 126.8, 124.7, 122.6, 117.5, 

117.3, 110.0, 106.5, 102.0, 57.6, 48.3; IR (KBr) max/cm-1: 2206, 1723, 1699, 1673,1631  1563, 1340, 

1239; Elem. Anal. for C24H13N3O4: calcd.: C: 70.76; H: 3.22; N: 10.31 %; found: C: 69.60; H: 3.18; 

N: 10.15 %.    
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ethyl 2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6b): Pale yellow solid (79 %); mp: 263 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.40 (s, 1H), 9.27 (d, 1H, J = 8.8 Hz), 8.34 (brs, 2H), 8.23 (d, 1H, J = 8.8 Hz),  8.06 (d, 1H, J = 6.8 

Hz), 7.75 (t, 1H, J = 8.8 Hz), 7.65 (t, 1H, J = 8.0 Hz), 7.50 (d, 1H, J = 9.2 Hz), 7.09 (t, 1H, J = 7.6 

Hz), 7.03 (d, 1H, J = 7.2 Hz), 6.77 (t, 1H, J = 7.6 Hz), 6.72 (d, 1H, J = 7.6Hz), 3.82-3.71 (m, 2H), 

0.82 (t, 3H, J = 7.2 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 179.7, 167.8, 158.9, 158.1, 

157.7, 153.7, 144.7, 135.8, 135.5, 131.2, 129.9, 129.8, 128.4, 128.2, 127.2, 126.7, 123.8, 121.5, 

117.2, 108.9, 106.4, 104.6, 75.94, 59.8, 47.9, 13.7; IR (KBr) max/cm-1: 1725, 1698, 1647, 1568, 

1404, 1335, 1240; Elem. Anal. for C26H18N2O6: calcd.: C: 68.72; H: 3.99; N: 6.16 %; found: C: 

68.44; H: 3.99; N: 6.12 %; HRMS (ESI) m/z calcd. for C26H18N2O6 [M+Na]+:  477.1057; found: 

477.1059. 

 

2-amino-5'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6c): Brown solid (91 %); mp: 314 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 10.83 

(s, 1H), 9.25 (d, 1H, J = 8.4 Hz), 8.31 (d, 1H, J = 9.2 Hz),  8.11 (d, 1H, J = 8.0 Hz), 7.93 (brs, 2H), 

7.76 (t, 1H, J = 8.8 Hz), 7.69 (t, 1H, J = 8.0 Hz), 7.59 (d, 1H, J = 8.8 Hz), 7.49 (d, 1H, J = 2.4 Hz), 

7.27 (dd, 1H, J = 8.0 & 2.4 Hz), 6.88 (d, 1H, J = 8.4 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 
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177.8, 159.3, 158.8, 158.8, 154.1, 141.6, 136.1, 131.2, 129.9, 129.3, 128.2, 127.3, 126.8, 126.6, 

125.1, 125.1, 117.5, 117.3, 111.4, 106.7, 101.3, 56.9, 48.5; IR (KBr) max/cm-1: 2195, 1707, 1663, 

1615, 1565, 1337, 1238; Elem. Anal. for C24H12ClN3O4: calcd.: C: 65.24; H: 2.74; N: 9.51 %; found: 

C: 65.55; H: 2.97; N: 9.72 %.   

 

ethyl 2-amino-5'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6d): Gray solid (87 %); mp: 298 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 10.54 

(s, 1H), 9.28 (d, 1H, J = 8.8 Hz), 8.40 (brs, 2H), 8.25 (d, 1H, J = 8.8 Hz),  8.07 (d, 1H, J = 8.4 Hz), 

7.75 (t, 1H, J = 8.4 Hz), 7.66 (t, 1H, J = 9.2 Hz), 7.52 (d, 1H, J = 9.2 Hz), 7.22 (d, 1H, J = 2.0 Hz), 

7.13 (dd, 1H, J = 8.4 & 2.4 Hz), 6.72 (d, 1H, J = 8.4 Hz), 3.84-3.74 (m, 2H), 0.85 (t, 3H, J = 6.8 

Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 179.5, 167.7, 159.1, 158.2, 158.1, 153.8, 143.8, 

137.5, 135.9, 131.2, 129.9, 129.8, 128.3, 127.3, 126.7, 125.4, 123.2, 110.1, 106.6, 103.8, 75.4, 59.9, 

48.2, 13.7; IR (KBr) max/cm-1: 1731, 1710, 1639, 1568, 1402, 1334, 1240; Elem. Anal. for 

C26H17ClN2O6: calcd.: C: 63.88; H: 3.50; N: 5.73 %; found: C: 63.83; H: 3.57; N: 5.66 %.  

 

ethyl 2-amino-7'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6e): Pale brown solid (81 %); mp: 284 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 
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10.87 (s, 1H), 9.30 (d, 1H, J = 8.8 Hz), 8.45 (brs, 2H), 8.28 (d, 1H, J = 9.2 Hz),  8.10 (d, 1H, J = 8.0 

Hz), 7.78 (t, 1H, J = 8.4 Hz), 7.69 (t, 1H, J = 8.0 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.19 (dd, 1H, J = 8.4 

& 1.2 Hz), 7.09 (d, 1H, J = 7.2 Hz), 6.84 (dd, 1H, J = 8 & 7.6 Hz), 3.88-3.74 (m, 2H), 0.89 (t, 3H, J 

= 7.2 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 179.7, 167.7, 159.0, 158.2, 157.9, 153.8, 

142.4, 137.3, 136.0, 131.2, 129.9, 129.8, 128.4, 128.2, 127.2, 126.8, 122.8, 122.5, 117.2, 113.5, 

106.4, 104.0, 75.6, 59.9, 48.8, 13.5; IR (KBr) max/cm-1: 1717, 1696, 1621, 1570, 1406, 1238; Elem. 

Anal. for C26H17ClN2O6: calcd.: C: 63.88; H: 3.50; N: 5.73 %; found: C: 63.28; H: 3.34; N: 5.87 %. 

 

2-amino-5'-bromo-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6f): Dark brown solid (90 %); mp: 320 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.83 (s, 1H), 9.26 (d, 1H, J = 8.4 Hz), 8.32 (d, 1H, J = 8.8 Hz),  8.12 (d, 1H, J = 7.12 Hz), 7.94 

(brs, 2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 7.6 Hz), 7.63-7.58 (m, 2H), 7.40 (dd, 1H, J = 8.4 

& 2.0 Hz), 6.83 (d, 1H, J = 8.0 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 177.7, 159.3, 158.8, 

158.8, 154.1, 142.0, 136.4, 136.1, 132.1, 131.2, 129.9, 128.2, 127.8, 127.3, 126.9, 117.5, 117.4, 

114.3, 111.9, 106.7, 101.3, 56.9, 48.5; IR (KBr) max/cm-1: 2198, 1732, 1709, 1656, 1564, 1338, 

1234; Elem. Anal. for C24H12BrN3O4: calcd.: C: 59.28; H: 2.49; N: 8.64 %; found: C: 59.29; H: 2.69; 

N: 8.67 %.  
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2-amino-5'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6g): Brown solid (83 %); mp: 318 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 10.66 

(s, 1H), 9.22 (d, 1H, J = 8.8 Hz), 8.28 (d, 1H, J = 9.2 Hz),  8.08 (d, 1H, J = 8.0 Hz), 7.87 (brs, 2H), 

7.73 (t, 1H, J = 8.8 Hz), 7.66 (t, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 9.2 Hz), 7.26 (dd, 1H, J = 8.4 & 

2.4 Hz), 7.05-6.97 (m, 1H), 6.82 (dd, 1H, J = 11.6 &4.4 Hz); 13C NMR (100 MHz, DMSO-d6): C 

(ppm) 178.1, 159.2, 158.8 (d, J = 8.0 Hz), 157.7, 154.1, 138.9 (d, J = 2.0 Hz), 136.1, 135.8, 135.7, 

131.2, 129.9, 128.2, 127.3, 126.9, 117.4 (d, J = 11.0 Hz), 115.8, 115.5, 112.8, 112.6, 110.7, 106.6, 

101.4, 57.0, 48.7; IR (KBr) max/cm-1: 2199, 1697, 1667, 1630, 1403, 1338, 1239; Elem. Anal. for 

C24H12FN3O4: calcd.: C: 67.77; H: 2.84; N: 9.88 %; found: C: 67.39; H: 2.99; N: 9.83 %; HRMS 

(ESI) m/z calcd. for C24H12FN3O4 [M+Na]+:  448.0704; found: 448.0685. 

 

 

ethyl 2-amino-5'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6h): Pale brown solid (75 %); mp: 284 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.44 (s, 1H), 9.26 (d, 1H, J = 8.8 Hz), 8.39 (brs, 2H), 8.24 (d, 1H, J = 6.8 Hz),  8.06 (d, 1H, J = 6.8 

Hz), 7.75 (t, 1H, J = 8.4 Hz), 7.65 (t, 1H, J = 8.0 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.05 (dd, 1H, J = 8.4 

& 2.8 Hz), 6.95-6.87 (m, 1H), 6.69 (dd, 1H, J = 9.2 & 4.4 Hz), 3.84-3.71 (m, 2H), 0.83 (t, 3H, J = 
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7.2 Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 179.7, 167.7, 159.0, 158.1 (d, J = 10.0 Hz), 

157.3, 153.8, 141.1 (d, J = 2.0 Hz), 137.2, 137.1, 135.9, 131.2, 129.9, 129.8, 128.2, 127.3, 126.7, 

117.2, 114.5, 112.0, 109.2 (d, J = 8.0 Hz), 106.5, 104.0, 75.6, 59.8, 48.5, 13.7; IR (KBr) max/cm-1: 

1731, 1693, 1633, 1568, 1403, 1335, 1240; Elem. Anal. for C26H17FN2O6: calcd.: C: 66.10; H: 3.63; 

N: 5.93 %; found: C: 66.23; H: 3.59; N: 5.87 %.   

 

2-amino-7'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6i): Pale brown solid (77 %); mp: 322 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

11.18 (s, 1H), 9.21 (d, 1H, J = 8.8 Hz), 8.28 (d, 1H, J = 9.2 Hz),  8.08 (d, 1H, J = 8.0 Hz), 7.90 (brs, 

2H), 7.73 (t, 1H, J = 8.8 Hz), 7.66 (t, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.16-7.07 (m, 2H), 

6.97-6.87 (m, 1H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 177.8, 159.1, 158.8 (d, J = 1.0 Hz), 

154.1, 145.5, 136.8, 136.8, 136.2, 131.3, 129.9 (d, J = 3.0 Hz), 129.8, 129.7, 128.1, 127.2, 126.9, 

123.5, 123.4, 120.9, 117.4 (d, J = 8.0 Hz), 116.5, 106.5, 101.5, 56.9, 48.6; IR (KBr) max/cm-1: 2197, 

1709, 1666, 1645, 1591, 1403, 1340, 1239; Elem. Anal. for C24H12FN3O4: calcd.: C: 67.77; H: 2.84; 

N: 9.88 %; found: C: 67.84; H: 3.01; N: 9.97 %.   
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2-amino-5'-nitro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6j): Brown solid (94 %); mp: 308 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 11.44 

(s, 1H), 9.26 (d, 1H, J = 8.8 Hz), 8.41 (d, 1H, J = 2.4 Hz),  8.32 (d, 1H, J = 9.2 Hz), 8.22 (dd, 1H, J 

= 8.0 & 2.4 Hz), 8.11 (d, 1H, J = 8.4 Hz), 8.03 (brs, 2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 

8.0 Hz), 7.59 (d, 1H, J = 8.8 Hz), 7.10 (d, 1H, J = 8.8 Hz); 13C NMR (100 MHz, DMSO-d6): C 

(ppm) 178.7, 159.7, 159.1, 159.0, 154.1, 149.1, 143.3, 135.0, 131.2, 129.9, 128.2, 127.3, 126.9, 

126.9, 120.9, 117.4, 110.3, 110.1, 106.8, 100.8, 56.1, 48.5; IR (KBr) max/cm-1: 2201, 1722, 1663, 

1625, 1401, 1340, 1238; Elem. Anal. for C24H12N4O6: calcd.: C: 63.72; H: 2.67; N: 12.39 %; found: 

C: 63.53; H: 2.84; N: 12.51 %.   

 

2-amino-5'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6k): Whitish solid (85 %); mp: 305 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.57 (s, 1H), 9.26 (d, 1H, J = 8.4 Hz), 8.32 (d, 1H, J = 8.8 Hz),  8.12 (d, 1H, J = 8.0 Hz), 7.84 (brs, 

2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 7.6 Hz), 7.59 (d, 1H, J = 9.2 Hz), 7.08 (s, 1H), 7.02 (d, 

1H, J = 8.0 Hz), 6.75 (d, 1H, J = 8.0 Hz), 2.19 (s, 3H); IR (KBr) max/cm-1: 2200, 1706, 1670, 1567, 

1340, 1238; Elem. Anal. for C25H15N3O4: calcd.: C: 71.25; H: 3.59; N: 9.97 %; found: C: 71.12; H: 

3.85; N: 9.57 %; HRMS (ESI) m/z calcd. for C25H15N3O4 [M+Na]+:  444.0954; found: 444.0918.   
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ethyl 2-amino-5'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6l): Pale yellow solid (82 %); mp: 281 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.33 (s, 1H), 9.31 (d, 1H, J = 8.8 Hz), 8.37 (brs, 2H), 8.28 (d, 1H, J = 8.8 Hz),  8.10 (d, 1H, J = 8.0 

Hz), 7.79 (t, 1H, J = 8.8 Hz), 7.69 (t, 1H, J = 8.0 Hz), 7.54 (d, 1H, J = 8.8 Hz), 6.92 (d, 1H, J = 7.6 

Hz), 6.89 (s, 1H), 6.64 (d, 1H, J = 7.6 Hz), 3.81 (q, 2H, J = 6.8 Hz), 2.14 (s, 3H), 0.89 (t, 3H, J = 6.8 

Hz); 13C NMR (100 MHz, DMSO-d6): C (ppm) 179.6, 167.9, 158.9, 158.0, 157.7, 153.7, 142.3, 

135.5, 131.2, 130.2, 129.9, 129.8, 128.2, 127.2, 126.7, 124.6, 117.2, 108.6, 106.4, 104.8, 76.1, 59.8, 

48.0, 29.8, 21.1, 13.7; IR (KBr) max/cm-1: 1710, 1691, 1637, 1567, 1331, 1238; Elem. Anal. for 

C27H20N2O6: calcd.: C: 69.22; H: 4.30; N: 5.98 %; found: C: 69.32; H: 4.29; N: 5.75 %.    

 

2-amino-5'-methoxy-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6m): Green solid (79 %); mp: 293 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

10.49 (s, 1H), 9.27 (d, 1H, J = 8.8 Hz), 8.31 (d, 1H, J = 8.8 Hz),  8.11 (d, 1H, J = 8.0 Hz), 7.84 (brs, 

2H), 7.76 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 8.0 Hz), 7.60 (d, 1H, J = 8.8 Hz), 6.96 (s, 1H), 6.79-

6.76 (m, 2H), 3.65 (s, 3H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 177.3, 158.4, 158.1, 158.0, 

155.2, 153.4, 135.4, 135.3, 134.7, 130.6, 129.2, 127.6, 126.7, 126.2, 116.9, 116.7, 114.5, 113.7, 

110.8, 109.8, 106.1, 101.4, 57.2, 55.4, 48.2; IR (KBr) max/cm-1: 2203, 1721, 1705, 1658, 1631, 1566, 
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1404, 1338; Elem. Anal. for C25H15N3O5: calcd.: C: 68.65; H: 3.46; N: 9.61 %; found: C: 68.36; H: 

3.52; N: 9.49 %. 

 

ethyl 2-amino-5'-methoxy-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-

3-carboxylate (6n): Pale yellow solid (75 %); mp: 269 oC; 1H NMR (400 MHz, DMSO-d6): H 

(ppm) 10.26 (s, 1H), 9.31 (d, 1H, J = 8.8 Hz), 8.38 (brs, 2H), 8.27 (d, 1H, J = 8.8 Hz),  8.10 (d, 1H, 

J = 7.2 Hz), 7.78 (t, 1H, J = 8.4 Hz), 7.69 (t, 1H, J = 7.6 Hz), 7.55 (d, 1H, J = 8.8 Hz), 6.75 (d, 1H, 

J = 2.4 Hz), 6.72-6.63 (m, 2H), 3.81 (q, 2H, J = 6.8 Hz), 3.60 (s, 3H), 0.88 (t, 3H, J = 7.2 Hz); 13C 

NMR (100 MHz, DMSO-d6): C (ppm) 179.5, 167.9, 158.9, 158.0, 157.8, 155.1, 153.7, 138.3, 136.7, 

135.8, 131.2, 129.9, 129.7, 128.3, 127.3, 126.7, 112.9, 111.1, 109.0, 106.5, 104.5, 76.0, 59.8, 55.9, 

48.5, 13.7; IR (KBr) max/cm-1: 1731, 1693, 1633, 1568, 1403, 1335, 1240; Elem. Anal. for 

C27H20N2O7: calcd.: C: 66.94; H: 4.16; N: 5.78 %; found: C: 66.87; H: 4.17; N: 5.67 %. 

 

 

2-amino-1'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6o): Pale yellow solid (89 %); mp: 316 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

9.22 (d, 1H, J = 8.4 Hz), 8.28 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 6.8 Hz), 7.86 (brs, 2H), 7.73 (t, 
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1H, J = 8.8 Hz), 7.66 (t, 1H, J = 8.0 Hz), 7.55 (d, 1H, J = 9.2 Hz), 7.33-7.25 (m, 2H), 7.05 (d, 1H, J 

= 8.0 Hz), 6.99 (t, 1H, J = 7.6 Hz), 3.18 (s, 3H); 13C NMR (100 MHz, DMSO-d6): C (ppm) 176.5, 

159.0, 158.8, 158.6, 154.0, 144.2, 136.1, 133.2, 131.2, 129.9, 129.6, 128.1, 127.2, 126.9, 124.4, 

123.3, 117.4, 117.3, 109.0, 106.5, 101.8, 57.2, 47.9, 27.1; Elem. Anal. for C25H15N3O4: calcd.: C: 

71.25; H: 3.59; N: 9.97 %; found: C: 71.37; H: 3.66; N: 10.14 %.    

 

ethyl 2-amino-1'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6p): Pinkish white solid (85 %); mp: 294 oC; 1H NMR (400 MHz, DMSO-d6): H 

(ppm) 9.32 (d, 1H, J = 8.4 Hz), 8.44 (brs, 2H), 8.29 (d, 1H, J = 9.2 Hz),  8.11 (d, 1H, J = 8.0 Hz), 

7.80 (t, 1H, J = 7.2 Hz), 7.70 (t, 1H, J = 6.8 Hz), 7.54 (d, 1H, J = 9.2 Hz), 7.24 (t, 1H, J = 7.6 Hz), 

7.14 (d, 1H, J = 7.2 Hz), 6.95 (d, 1H, J = 7.6 Hz), 6.89 (t, 1H, J = 7.2 Hz), 3.82-3.70 (m, 2H), 3.18 

(s, 3H), 0.79 (t, 3H, J = 7.2 Hz); 13C NMR (125 MHz, DMSO-d6): C (ppm) 177.8, 158.8, 158.6, 

158.5, 153.9, 140.2, 135.9, 134.1, 131.4, 131.2, 129.8, 129.6, 128.1, 127.1, 126.8, 125.1, 117.5, 

117.2, 109.7, 106.5, 102.1, 62.5, 57.8, 48.3, 26.0, 21.0; IR (KBr) max/cm-1: 1734, 1697, 1640, 1569, 

1402, 1333, 1240; Elem. Anal. for C27H20N2O6: calcd.: C: 69.22; H: 4.30; N: 5.98 %; found: C: 

69.37; H: 4.25; N: 5.92 %; HRMS (ESI) m/z calcd. for C27H20N2O6 [M+Na]+:  491.1213; found: 

491.1229.   
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2-amino-2',5-dioxo-1'-phenyl-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6q): Pale yellow solid (84 %); mp: 308 oC; 1H NMR (400 MHz, DMSO-d6): H (ppm) 

9.28 (d, 1H, J = 8.8 Hz), 8.33 (d, 1H, J = 9.2 Hz),  8.13 (d, 1H, J = 8.4 Hz),8.01 (brs, 2H), 7.78 (t, 

1H, J = 8.4 Hz), 7.71 (t, 1H, J = 7.6 Hz), 7.68-7.58 (m, 3H), 7.52 (t, 1H, J = 7.6 Hz), 7.48-7.40 (m, 

3H), 7.27 (t, 1H, J = 7.6 Hz), 7.08 (t, 1H, J = 7.6 Hz), 6.73 (d, 1H, J = 7.6 Hz); 13C NMR (100 MHz, 

DMSO-d6): C (ppm) 176.1, 159.2, 158.9, 158.8, 154.2, 143.9, 136.2, 135.0, 132.9, 131.3, 130.4, 

129.9, 129.9, 129.7, 128.9, 128.2, 127.3, 127.2, 126.9, 125.1, 124.0, 117.4, 117.4, 109.3, 106.6, 

101.8, 57.2, 48.1; IR (KBr) max/cm-1: 2200, 1711, 1669, 1598, 1377, 1340, 1237; Elem. Anal. for 

C30H17N3O4: calcd.: C: 74.53; H: 3.54; N: 8.69 %; found: C: 74.51; H: 3.35; N: 8.62 %. 

   

ethyl 2-amino-2',5-dioxo-1'-phenyl-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carboxylate (6r): Pale yellow solid (77 %); mp: 271-272 oC; 1H NMR (400 MHz, DMSO-d6): H 

(ppm) 9.35 (d, 1H, J = 8.8 Hz), 8.50 (brs, 2H), 8.30 (d, 1H, J = 9.2 Hz),  8.12 (d, 1H, J = 8.0 Hz), 

7.81 (t, 1H, J = 7.2 Hz), 7.71 (t, 1H, J = 7.2 Hz), 7.65-7.57 (m, 2H), 7.55 (d, 1H, J = 8.8 Hz), 7.53-

7.48 (m, 2H), 7.46 (t, 1H, J = 7.2 Hz), 7.26 (d, 1H, J = 7.2 Hz), 7.19 (t, 1H, J = 7.6 Hz), 6.96 (t, 1H, 
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J = 7.6 Hz), 6.75 (d, 1H, J = 8.0 Hz), 4.06-3.80 (m, 2H), 0.75 (t, 3H, J = 7.2 Hz); 13C NMR (100 

MHz, DMSO-d6): C (ppm) 177.6, 167.6, 159.2, 158.5, 157.9, 153.8, 145.3, 136.0, 135.7, 134.3, 

131.3, 130.0, 129.9, 129.9, 128.6, 128.2, 128.1, 127.3, 126.8, 126.6, 117.2, 108.3, 106.4, 104.5, 75 .7, 

59.7, 47.7, 14.4; IR (KBr) max/cm-1: 1726, 1698, 1639, 1568, 1374, 1332, 1239; Elem. Anal. for 

C32H22N2O6: calcd.: C: 72.45; H: 4.18; N: 5.28 %; found: C: 72.17; H: 4.04; N: 5.24 %. 
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4.1 Introduction 

Six membered oxygenated heterocycles are well recognized scaffolds for their bioorganic, 

medicinal, agricultural, pharmaceutical and industrial applications. [1] Among them, biscoumarin 

derivatives are of particular interest because of their wide range of activities and applications. [2, 3] 

Till now, there are several reports of naturally occurring compounds containing basic bicoumarin 

units like Dicoumarol (I), Gerberinol (II), Ismailin (III), Bisosthenon (IV) etc (Figure 4.1). [4-5] 

Above all, Dicoumarol (I) is a well-established anticoagulant drug which operates as a vitamin K 

antagonist. [4] It is also worth mentioning that in 2004 Cullen et al. reported beneficial effects of 

Dicoumarol (I) on cancer pancreatic cells. [4] 

 

Figure 4.1 Naturally occurring biscoumarin. 

After the recognition of biscoumarin as a biological important class of compounds, scientists found 

out various activities associated with these molecules such as anticoagulant, antibacterial, urease 

inhibition activities, anti-oxidant, anti-HIV, anti-cancer, anti-bacterial and anti-coagulant activities 

(Figure 4.2). [6-10] Interestingly, despite having structural similarity with biscoumarin, the activity 

profile of bis(benzochromenone) is not well documented till now. However, in 2009, Bryce et al. 

reported the inhibition activity of such bis(benzochromenone) (VIII) against human NAD(P)H: 

quinone oxidoreductase-1 (NQO1) enzyme (Figure 4.2). [11, 12] This study raised the scope for 

exploration of bis(benzochromenone) further into the domain of medicinal chemistry. 
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Figure 4.2 Biological activities of some synthesized biscoumarin. 

 

4.2 Survey of existing methodologies 

Most of the synthetic methodologies can be traced back in the scientific reports for the synthesis of 

biscoumarin using 4-hydroxycoumarin and aldehyde as starting materials. To start with, in 2007 

Kidwai and co-workers reported the synthesis of 3,3′-arylmethylenebis-(4-hydroxycoumarin) (3) 

using molecular iodine in catalytic amount in aqueous media. The reaction involved Michael 

reaction of various substituted aldehydes (1) with 4-hydroxycoumarin (2) which resulted in 

diversified biscoumarin products (3) in good to excellent yields (91-99 %) (Figure 4.3). [13] 

 

Figure 4.3 Iodine-catalysed synthesis of 3,3′-arylmethylenebiscoumarins. 
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In continuation, Khurana et al. (2009) came out with tetrabutylammonium bromide catalysed 

Michael reaction of 4-hydroxycoumarin (2) and aldehydes (1) to construct biscoumarins (3) using 

water as solvent at 100 oC. The same reaction could also be performed successfully under neat 

condition at a slightly higher temperature (120 oC) (Figure 4.4). [14]  

 

Figure 4.4 Tetrabutylammonium bromide-catalysed synthesis of biscoumarins. 

Similarly, Shinde and his group in 2009 reported another one-pot reaction using manganese (II) 

chloride tetrahydrate as an efficient catalyst for the above mentioned conversion to yield bis-(4-

hydroxycoumarin)methanes (3, 93-99 % yield) in aqueous medium ( Figure 4.5). [15]  

 

Figure 4.5 Manganese chloride-catalysed synthesis of bis-(4-hydroxycoumarin)methanes. 
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Later on, in 2015 Wang and co-workers devised an ionic liquid tetramethylguanidium acetate 

([TMG][Ac]) assisted domino reaction of 4-hydroxycoumarin (2) with various aromatic and hetero-

aromatic aldehydes (1) to furnish biscoumarins (3, 84-99 % yield) at room temperature (Figure 4.6). 

[16] 

 

Figure 4.6 Ionic liquid-assisted synthesis of biscoumarins. 

On a similar line, Xu et al. (2016), prepared a wide variety of biscoumarin derivatives (3) using 

catalytic amount of 1,4-diazabicyclo[2.2.2]octane [DABCO]-based ionic liquid in water at 80 oC to 

get comparatively higher yields (96-99 %) of the targeted molecules (Scheme 4.7). [17] 

 

Figure 4.7 DABCO-based ionic liquid-assisted synthesis of biscoumarins. 
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Recently, Azizi et al. (2018) reported a domino Knoevenagel Michael addition reaction of 4-

hydroxycoumarin (2) and various aldehydes (1) using thiamine tagged Ni2+ immobilized on 

Fe3O4@SiO2 nanocomposite (Fe3O4@SiO2@VB1‐Ni2+) to furnish biscoumarins (3, 65-98 % yield). 

The reaction was performed for 30-50 minutes under solvent free condition at 110 oC (Figure 4.8). 

[18]  

 

Figure 4.8 Fe3O4@SiO2 nanocomposite catalysed synthesis of biscoumarins. 

Likewise, in 2018 Myrboh and co-workers synthesized biscoumarin derivatives at room temperature 

using nickel nanoparticles in aqueous medium (Figure 4.9). The designed protocol involved a three-

component condensation reaction between two equivalent of 4-hydroxycoumarin (2) and one 

equivalent of aldehydes (1) to provide the final product (3) in good to excellent yield (86-94%). [19] 

 

Figure 4.9 Nickel nanoparticles catalysed synthesis of diversified biscoumarins. 
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Apart from these, the synthesis of biscoumarins from 4-hydroxycoumarin is also reported using 

several other reagents like phosphotungstic acid (Chandra et al., 2010) [20], choline hydroxide 

(Wang et al., 2015) [21], pre-functionalised nanoparticles (Karimi et al., 2014) [22], ionic liquids 

[23, 24] and nanocrystalline MgO (Banerji et al., 2012) [25] using essentially the same strategy. 

As mentioned previously, reports for the synthesis of bis(benzochromenone) are scarce. To the best 

of our knowledge, there is only one report in which 1-Hydroxy-3H-benzo[f]chromen-3-one (4) is 

used to construct bis-benzocoumarin scaffolds. Bryce and co-workers (2009) reported the synthesis 

of bis(1-hydroxy-3H-benzo[f]chromen-3-one) derivatives (5) using ethanol as a solvent under reflux 

(Figure 4.10). [11] However, only three examples of bis-benzocoumarin moieties were reported by 

the author. 

 

Figure 4.10 Synthesis of bis-benzocoumarins under reflux condition. 

From the above described literature reports, it is clear that most of the described methodologies 

suffer from one or the other drawback like use of pre-functionalized and expensive catalysts, long 

reaction times, limited substrate scope, tedious work-up and purification processes. Having a focus 

on adopting efficient greener methodology for the synthesis of biologically relevant molecules, [26-

28] the aim of this chapter is to develop an effective methodology to construct such biologically 

important bis-benzocoumarin derivatives from 1-hydroxy-3H-benzo[f]chromen-3-one. 
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4.3 Results and discussion 

In a prototypical reaction, a liquid-assisted grinding was tried to afford 2,2'-((4-

chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5a) from the reaction of 4-

chlorobenzaldehyde (1a, 1.0 mmol) and 1-hydroxy-3H-benzo[f]chromen-3-one (4, 2.0 mmol) using 

IPA as a promoter in the presence of base as a catalyst. Unfortunately, the desired product 5a was 

not observed in the presence of either DABCO (30 mol %) or Et3N (30 mol %) (Table 4.1, entries 

1 and 2). Then, the same reaction mixture was irradiated under microwave at 130 oC for 15 minutes 

using 30 mol % of DABCO in IPA which favored the reaction to provide the desired product 5a in 

67 % yield (Table 4.1, entry 3). Next, the reaction was studied with other bases like Et3N and DBU 

(Table 4.1, entries 4, 5) but the conditions failed to give better yield of the desired product 5a. Later 

on, the reaction was further screened for optimum catalytic loading of DABCO as well as optimum 

microwave heating temperature and time (Table 4.1, entries 6-10). From this set of experiments, it 

was ascertained that 30 mol % DABCO at 140 oC for 15 minutes provided highest yield of 5a as 74 

% (Table 4.1, entry 6). Next, in order to examine the solvent effect on the reaction mixture, different 

solvents were explored in this reaction and IPA came out as an ideal solvent for the desired 

conversion (Table 4.1, entries 6, 11-12). After having all these experiments, the maximum yield (74 

%) of 5a was obtained under microwave irradiation of a reaction mixture of chlorobenzaldehyde 

(1a, 1 mmol) and 1-hydroxy-3H-benzo[f]chromen-3-one (4, 2 mmol) for 15 minutes at 140 oC using 

30 mol % DABCO in 1 mL IPA (Table 4.1, entry 6). It is worth noting that mere filtration of the 

crude product and washing with IPA (2 mL) followed by water (3 mL) provided the pure solid 

products for further data analysis. 
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Table 4.1 Optimization of the reaction between 4-chlorobenzaldehyde (1a) and 1-hydroxy-3H-

benzo[f]chromen-3-one (4) under microwave conditiona. 

 

 

 

 

 

 

 

Entry Catalyst (mol %) Solvent* 

(mL) 

Condition Yield 

(%)b 

1 DABCO (30 mol %) IPA 

 

Grindingc - 

2 Et3N (30 mol %) IPA Grindingc nd 

3 DABCO (30 mol %) IPA MW (130 oC for 15 min) 67 

4 Et3N (30 mol %) IPA MW (130 oC for 15 min) 61 

5 DBU (30 mol %) IPA MW (130 oC for 15 min) 63 

6 DABCO (30 mol %) IPA MW (140 oC for 15 min) 74 

7 DABCO (30 mol %) IPA MW (150 oC for 15 min) 73 

8 DABCO (30 mol %) IPA MW (140 oC for 12 min) 72 

9 DABCO (30 mol %) IPA MW (140 oC for 20 min) 75 

10 DABCO (20 mol %) IPA MW (140 oC for 15 min) 65 

11 DABCO (30 mol %) ACN MW (140 oC for 15 min) 41 

12 DABCO (30 mol %) EtOH MW (140 oC for 15 min) 63 
aReaction conditions: 1a (1.0 equiv.), 4 (2.0 equiv.), catalyst, solvent, Anton Paar 

Monowave 300 reactor; initial conditions: 1 min 60 oC; final conditions 15 min 140 
oC; nd: not determined; bIsolated yields; cHand grinding in agate- mortar and pestle;    

*0.25 mL IPA (entry 1-2); 1 mL of solvent (entries 3-12). 
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Having optimum conditions for the synthesis of bis(benzochromenone) 5 in hand, the reaction was 

further explored to examine the substrate scope. Most interestingly, the use of different substituted 

benzaldehydes did not affect the reaction outcomes. Notably, aromatic aldehydes having electron-

withdrawing (4-Cl; 2-Cl; 3-Cl; 4-NO2; 2-Cl-5-NO2; 2-Br; 2-Cl-5-CF3; 2,3-(Cl)2; 4-Br) and electron-

donating groups (4-Me; 4-OMe; 3,4-(OMe)2; 2,3-(OMe)2) were proved equally effective in 

providing corresponding bisbenzochromenones in good to high yields (61-77 %, 5a-5n) as shown 

in Scheme 4.1.  Nevertheless, the desired transformation was better in case of unsubstituted (71 %, 

5b) and electron deficient benzaldehydes (4-Cl (74 %, 5a); 2-Cl (69 %, 5c); 2-Br (72 %, 5d); 4-NO2 

(77 %, 5e); 2-Cl-5-CF3 (61 %, 5g); 2-Cl-5-NO2 (70 %, 5h); 3-Cl (66 %, 5i); 2,3-(Cl)2 (69 %, 5m); 

4-Br (75 %, 5n)) in comparison to electron rich benzaldehydes (4-OMe (63 %, 5f); 2,3-(OMe)2 (61 

%, 5j); 3,4-(OMe)2 (63 %, 5k); 4-Me (72 %, 5l)). In the above conversion, 4-nitro benzaldehyde 

provided the highest yield of the product 5e (77 %). 
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Scheme 4.1 Reaction between 1-hydroxy-3H-benzo[f]chromen-3-one (4) and benzaldehydes (1). 

aReaction conditions: 1 (1.0 equiv.), 4 (2.0 equiv.), DABCO (30 mol %), IPA (1 mL), 140 oC for 

15 min in Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 oC. 
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The plausible mechanism for the synthesis of 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-

benzo[f]chromen-3-one) (5a) is illustrated in Scheme 4.2. In the reaction, the base catalysed reaction 

of 1-hydroxy-3H-benzo[f]chromen-3-one (4) and 4-chlorobenzaldehyde (1a) provided intermediate 

I. The Michael addition of 4 to the intermediate I leads to intermediate II. Finally, base promoted 

proton shift provided the final desired product, 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-

benzo[f]chromen-3-one) (5a).  

 

Scheme 4.2 Mechanism for the synthesis of 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-

benzo[f]chromen-3-one) (5a). 

 

4.4 Conclusions 

In summary, the chapter illustrated a green and efficient synthesis of bis(benzo[f]chromen-3-one) 

derivatives from 1-hydroxy-3H-benzo[f]chromen-3-one and benzaldehydes under microwave 

irradiation using DABCO as organocatalyst. The key advantages of the developed strategies are 

minutes synthesis and diversified substrates. Most importantly, all the synthesized products were 

obtained by filtration only. Moreover, the column-free procedure provided diversified biologically 

relevant molecules in good to high yield which is beneficial for their future biological studies.  
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4.5 Experimental details 

4.5.1 General information 

Except 1-hydroxy-3H-benzo[f]chromen-3-one (4), which was prepared in accordance with the 

reported literature [29], all other substrates, reagents and solvents were purchased commercially. 1H 

NMR spectra were taken by Bruker Avance® III (500 MHz), 13C NMR spectra were respectively 

recorded at 125 MHz. Deuterated DMSO (DMSO-d6) with TMS as internal standard was used as a 

solvent for taking NMR analyses, 13C NMR of compound 5m could not recorded even after high 

number of scans due to lower solubility in NMR solvent. In the evaluation of 1H NMR spectra, 

chemical shift has been assigned in units of parts per million (ppm), wherein, “s” stands for singlet, 

“d” for doublet, “t” for triplet, “q” for quartet, “dd” for doublet of doublet”, “brs” for broad singlet 

and “m” for multiplet.  The units of coupling constant (J) has been assigned in Hz. Functional groups 

were detected by Perkin Elmer® FT-IR spectrometer- Spectrum two. The High-resolution mass 

spectra (HRMS) of representative compounds 5b, 5k, 5l and 5m were recorded on Bruker daltronics 

microTOF-QII® spectrometer using ESI ionization. Elemental analyses were carried out on vario 

MICRO® cube Elementar. Melting points were obtained on Optimelt® automated melting point 

system. Analyses of reactions were done using thin layer chromatography (TLC), which was 

performed on silica gel TLC plates. The microwave-assisted synthesis of the compounds was 

performed in Anton Paar® Monowave reactor which has an operating frequency of 2.455 GHz with 

continuous irradiation power of 0 to 300 W. The reactants were taken in a G-10 glass vial capped 

with Teflon septum and was exposed to microwave irradiation. 

4.5.2 General procedure 

Preparation of 1-hydroxy-3H-benzo[f]chromen-3-one (4) [29]: The mixture of 2-naphthol (2 

mmol) and meldrum’s acid (2 mmol) was stirred at 85 °C for 9 h (Scheme 4.3). After that, the 

reaction mixture was cooled to room temperature and extracted with ethyl acetate followed by 

saturated NaHCO3 solution. The collected water extract was acidified with conc. HCl and further 

extracted with methylene dichloride (DCM) to yield the crude intermediate after evaporating the 

organic solvent. This crude intermediate (1 mmol) in 1.5 mL Eaton’s reagent was stirred at 60 °C 

for 5 h. To this resultant mixture, water was added while vigorous stirring. The precipitate thus 

obtained was filtered by suction and dried to get final product 4. 
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Scheme 4.3 Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one. 

[29] Park, S.-J.; Lee, J.-C.; Lee, K.-I.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-

quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205. 

 

Synthesize of bis(1-hydroxy-3H-benzo[f]chromenones (5a-5n): 

In a G-10 microwave vial, 2 equiv. of 1-hydroxy-3H-benzo[f]chromen-3-one (4) and 1 equiv. of 

aromatic aldehydes (1) were added. To this 30 mol % DABCO and 1 mL IPA were added in 

succession.  This G-10 microwave vial was then subjected to microwave irradiation at 140 oC for 15 

minutes. The solid hence obtained was filtered off and washed with IPA followed by water to yield 

the desired pure products 5.  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 | bbbbb 

 

109 

 

4.5.3 Characterization of the synthesized molecules 

All the products were characterized via techniques of 1H NMR, 13C NMR Spectra, FT-IR and 

elemental analyses. Further, selected HRMS of 5b, 5k, 5l and 5m compounds are reported to confirm 

the products.  

Analytical Information for the synthesized molecules is given below: 

 

2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5a): White solid 

(74 %); mp: 292-293 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.96 (s, 1H), 9.72 (d, 2H, J = 

8.5 Hz), 8.07 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 7.5 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.51 (t, 2H, J = 

7.0 Hz), 7.48 (d, 2H, J = 8.5 Hz), 7.26-7.20 (m, 4H), 6.35 (s, 1H); 13C NMR (125 MHz, DMSO-d6): 

C (ppm) 172.2, 164.1, 153.3, 141.8, 132.8, 130.5, 130.5, 129.7, 128.9, 128.8, 128.0, 127.8, 127.0, 

125.2, 117.4, 112.2, 104.3, 44.4; IR (KBr) max/cm-1: 3434, 1677, 1626, 1584, 1404, 1385; Elem. 

Anal. For C33H19ClO6: calcd.: C: 72.47; H: 3.50 %; found: C: 72.13; H: 3.67 %.   

 

2,2'-(phenylmethylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5b): Pale yellow solid (71 

%); mp: 284-286 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 18.04 (s, 1H), 9.74 (d, 2H, J = 8.5 

Hz), 8.07 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.5 Hz), 7.54-7.46 (m, 4H), 
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7.24-7.17 (m, 4H), 7.10 (t, 1H, J = 7.0 Hz), 6.39 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 

172.3, 164.3, 153.4, 142.8, 132.7, 130.7, 130.6, 128.9, 128.2, 127.8, 127.2, 127.1, 125.3, 117.5, 

112.4, 104.7, 44.5; IR (KBr) max/cm-1: 3435, 1634, 1456; Elem. Anal. For C33H20O6: calcd.: C: 

77.34; H: 3.93 %; found: C: 77.09; H: 3.59 %; HRMS (ESI) m/z calcd. for C33H20O6 [M+Na]+:  

535.1152, found: 535.1176.     

 

2,2'-((2-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5c): Yellow solid 

(69 %); mp: 256-257 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.69 (s, 1H), 9.73 (d, 2H, J = 

9.0 Hz ), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 7.0 Hz), 7.54 (d, 1H, J = 

7.5 Hz), 7.51 (t, 2H, J = 7.0 Hz), 7.54 (d, 2H, J = 9.0 Hz), 7.26-7.21 (m, 2H), 7.16 (t, 1H, J = 7.5 

Hz), 6.27 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.2, 163.7, 153.2, 141.0, 133.1, 

132.7, 131.1, 130.7, 130.5, 129.8, 128.9, 127.9, 127.5, 127.1, 126.6, 125.3, 117.5, 115.0, 112.4, 

104.4, 44.5; IR (KBr) max/cm-1: 3441, 1689, 1616, 1444; Elem. Anal. For C33H19ClO6: calcd.: C: 

72.47; H: 3.50 %; found: C: 72.63; H: 3.69 %.   

 

2,2'-((2-bromophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5d): Yellow 

solid (72 %); mp: 251 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.59 (s, 1H), 9.72 (d, 2H, J = 
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8.5 Hz ), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 7.0 Hz), 7.55 (d, 1H, J = 

7.5 Hz), 7.51 (t, 2H, J = 7.0 Hz), 7.47 (d, 2H, J = 9.0 Hz), 7.44 (d, 1H, J = 9.0 Hz), 7.29 (t, 1H, J = 

8.0 Hz), 7.09 (t, 1H, J = 7.5 Hz), 6.15 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.2, 

163.7, 153.2, 142.5, 133.3, 132.6, 131.2, 130.7, 130.5, 128.9, 127.8, 127.1, 125.3, 123.6, 117.5, 

115.0, 112.4, 104.5, 44.5; IR (KBr) max/cm-1: 3428, 1688, 1622, 1452; Elem. Anal. For C33H19BrO6: 

calcd.: C: 67.02; H: 3.24 %; found: C: 67.45; H: 3.07 %.   

 

2,2'-((4-nitrophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5e): Dark yellow 

solid (77 %); mp: 265-267 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.86 (s, 1H), 9.70 (d, 2H, 

J = 8.5 Hz), 8.18-8.07 (m, 4H), 7.97 (d, 2H, J = 8.0 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.55-7.46 (m, 6H, 

J = 7.2 Hz), 6.47 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.2, 163.8, 153.2, 151.8, 

145.5, 132.7, 130.3, 130.2, 128.6, 128.0, 127.7, 126.7, 125.1, 123.3, 117.2, 114.7, 111.9, 103.7, 44.2; 

IR (KBr) max/cm-1: 3435, 1643, 1406; Elem. Anal. For C33H19NO8: calcd.: C: 71.09; H: 3.44 %; 

found: C: 71.37; H: 3.27 %.  

  

2,2'-((4-methoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5f): Yellow 

solid (63 %); mp: 262-263 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 18.05 (s, 1H), 9.75 (d, 2H, 
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J = 9.0 Hz ), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 9.0 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.51 (t, 2H, 

J = 6.5 Hz), 7.47 (d, 2H, J = 9.0 Hz), 7.11 (d, 2H, J = 9.0 Hz), 6.76 (d, 2H, J = 9.0 Hz), 6.31 (s, 1H), 

3.69 (s, 3H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.2, 164.3, 153.3, 142.2, 132.7, 130.7, 

128.9, 128.1, 127.8, 127.2, 126.9, 125.3, 117.5, 115.0, 113.6, 105.0, 55.3, 44.5; IR (KBr) max/cm-1: 

3435, 1641, 1507, 1403; Elem. Anal. For C34H22O7: calcd.: C: 75.27; H: 4.09 %; found: C: 75.23; 

H: 4.01 %.  

 

2,2'-((2-chloro-5-(trifluoromethyl)phenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-

one) (5g): Pale yellow solid (61 %); mp: 269-270 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 

17.66 (s, 1H), 9.69 (d, 2H, J = 9.0 Hz), 8.08 (d, 2H, J = 9.0 Hz),7.97  (d, 2H, J = 7.5 Hz),7.81 (s, 

1H), 7.61 (t, 2H, J = 7.0 Hz), 7.58-7.50 (m, 4H), 7.48 (d, 2H, J = 9.0 Hz), 6.34 (s, 1H); 13C NMR 

(125 MHz, DMSO-d6): C (ppm) 172.1, 163.3, 153.0, 142.3, 132.6, 130.7, 130.3, 130.1, 128.6, 

127.7, 126.7, 125.1, 117.1, 114.7, 111.9, 103.4, 44.1; IR (KBr) max/cm-1: 3442, 1666, 1556, 1406; 

Elem. Anal. For C34H18ClF3O6: calcd.: C: 66.41; H: 2.95 %; found: C: 66.53; H: 2.81 %.  

 

2,2'-((2-chloro-5-nitrophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5h): 

Dark yellow solid (70 %); mp: 264-265 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.68 (s, 1H), 
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9.69 (d, 2H, J = 8.4 Hz), 8.37 (d, 1H, J = 2.5 Hz), 8.12-8.06 (m, 3H), 7.98 (d, 2H, J = 7.5 Hz), 7.64-

7.58 (m, 3H), 7.53 (t, 2H, J = 7.0 Hz), 7.49 (d, 2H, J = 9.0 Hz), 6.38 (s, 1H); 13C NMR (125 MHz, 

DMSO-d6): C (ppm) 171.9, 163.1, 152.8, 145.8, 142.9, 139.6, 132.5, 130.8, 130.2, 129.9, 128.4, 

127.5, 126.5, 125.0, 122.2, 116.9, 111.6, 102.9, 44.0; IR (KBr) max/cm-1: 3423, 1670, 1457; Elem. 

Anal. For C33H18ClNO8: calcd.: C: 66.96; H: 3.06 %; found: C: 66.57; H: 3.39 %.  

 

2,2'-((3-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5i): Pale yellow 

solid (66 %); mp: 282 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.95 (s, 1H), 9.72 (d, 2H, J = 

8.5 Hz), 8.08 (d, 2H, J = 9.0 Hz), 7.97 (d, 2H, J = 8.0 Hz), 7.61 (t, 2H, J = 7.5 Hz), 7.54-7.47 (m, 

4H), 7.24 (t, 1H, J = 6.5 Hz), 7.21-7.16 (m, 3H), 6.38 (s, 1H); 13C NMR (125 MHz, DMSO-d6): C 

(ppm) 171.6, 163.5, 152.7, 145.0, 132.3, 132.2, 129.9, 129.8, 129.4, 128.2, 127.2, 126.3, 126.0, 

125.2, 124.7, 124.6, 116.7, 111.5, 103.4, 43.8; IR (KBr) max/cm-1: 3437, 1624, 1405; Elem. Anal. 

For C33H19ClO6: calcd.: C: 72.47; H: 3.50 %; found: C: 72.42; H: 3.58 %.  

 

2,2'-((2,3-dimethoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5j): Pale 

yellow solid (61 %); mp: 260-261 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.99 (s, 1H), 9.73 

(d, 2H, J = 8.5 Hz ), 8.05 (d, 2H, J = 9.0 Hz), 7.95 (d, 2H, J = 7.5 Hz), 7.59 (t, 2H, J = 7.0 Hz), 7.50 
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(t, 2H, J = 7.0 Hz), 7.46 (d, 2H, J = 9.0 Hz), 6.78 (d, 2H, J = 8.5 Hz), 6.74 (d, 1H, J = 8.0 Hz), 6.30 

(s, 1H), 3.69 (s, 3H), 3.48 (s, 3H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.3, 164.3, 153.3, 

148.7, 147.0, 132.6, 130.7, 128.9, 127.8, 127.1, 125.3, 119.3, 117.5, 115.0, 112.5, 112.0, 111.9, 

105.0, 55.9, 44.5; Elem. Anal. For C35H24O8: calcd.: C: 73.42; H: 4.22 %; found: C: 73.53; H: 3.93 

%. 

 

2,2'-((3,4-dimethoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5k): 

Yellow solid (63 %); mp: 248-250 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.99 (s, 1H), 9.73 

(d, 2H, J = 8.5 Hz), 8.05 (d, 2H, J = 9.0 Hz), 7.95 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.0 Hz), 7.53-

7.43 (m, 4H), 6.81-6.70 (m, 3H), 6.29 (s, 1H), 3.69 (s, 3H), 3.48 (s, 3H); 13C NMR (125 MHz, 

DMSO-d6): C (ppm) 172.3, 164.4, 153.3, 148.8, 147.1, 135.2, 132.7, 130.7, 130.7, 128.9, 127.8, 

125.3, 119.4, 117.5, 112.5, 112.1, 112.0, 105.0, 56.0, 44.5; IR (KBr) max/cm-1: 3433, 1655, 1555, 

1455; Elem. Anal. For C35H24O8: calcd.: C: 73.42; H: 4.22 %; found: C: 73.31; H: 4.17 %; HRMS 

(ESI) m/z calcd. for C35H24O8 [M+Na]+:  595.1363, found: 595.1399.   

 

2,2'-(p-tolylmethylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5l): Pale yellow solid (72 

%); mp: 286-287 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 9.72 (d, 2H, J = 9.0 Hz), 8.06 (d, 
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2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.0 Hz), 7.54-7.43 (m, 4H), 7.11-6.95 (m, 

4H), 6.33 (s, 1H), 2.24 (s, 3H); 13C NMR (125 MHz, DMSO-d6): C (ppm) 172.4, 164.5, 153.4, 

139.5, 134.0, 132.7, 130.7, 130.7, 128.9, 128.9, 127.8, 127.2, 127.1, 125.3, 117.5, 112.5, 104.9, 44.0, 

21.0; IR (KBr) max/cm-1: 3437, 1661, 1557, 1404; Elem. Anal. For C34H22O6: calcd.: C: 77.56; H: 

4.21 %; found: C: 77.37; H: 3.99 %; HRMS (ESI) m/z calcd. for C34H22O6 [M+Na]+:  549.1308, 

found: 549.1308.   

 

2,2'-((2,3-dichlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5m): Pale 

yellow solid (69 %); mp: 282-284 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.61 (s, 1H), 9.71 

(d, 2H, J = 9.0 Hz), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.5 Hz), 7.53-

7.39 (m, 6H), 7.27 (d, 1H, J = 8.0 Hz), 6.28 (s, 1H); IR (KBr) max/cm-1: 3439, 1659, 1556, 1458, 

1402; Elem. Anal. For C33H18Cl2O6: calcd.: C: 68.17; H: 3.12 %; found: C: 68.03; H: 2.93 %; HRMS 

(ESI) m/z calcd. for C33H18Cl2O6 [M+Na]+:  603.0372, found: 603.0398.   
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2,2'-((4-bromophenyl)methylene)bis(1-hydroxy-3H-benzo[f]chromen-3-one) (5n): Pale yellow 

solid (75 %); mp: 277-278 oC; 1H NMR (500 MHz, DMSO-d6): H (ppm) 17.98 (s, 1H), 9.79 (d, 2H, 

J = 9.0 Hz), 8.06 (d, 2H, J = 9.0 Hz), 7.95 (d, 2H, J = 7.5 Hz), 7.60 (t, 2H, J = 8.5 Hz), 7.53-7.45 

(m, 4H), 7.38 (d, 2H, J = 8.5 Hz), 7.19 (d, 2H, J = 8.0 Hz), 6.36 (s, 1H); 13C NMR (125 MHz, 

DMSO-d6): C (ppm) 172.4, 164.3, 153.4, 142.4, 132.9, 131.1, 130.7, 130.6, 129.5, 128.9, 127.9, 

127.1, 125.4, 118.3, 117.5, 112.4, 104.4, 44.3; IR (KBr) max/cm-1: 3442, 1648, 1549, 1412; Elem. 

Anal. For C33H19BrO6: calcd.: C: 67.02; H: 3.24 %; found: C: 66.89; H: 3.63 %.   
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5.1 Introduction 

Introduction of methyl group in a scaffold may significantly causes alteration of its biological 

activity mainly target selectivity, binding, metabolism and half-life (Figure 5.1). [1-7] In 2010, 

Njardarson et al. reported that around 67 % among the top selling marketed drugs containing methyl 

fragment in their scaffolds. [2] In short, monovalent methyl group is proven to be an important 

carbon fragment in the biological framework. [1] There are numerous reports in which replacement 

of C-H by C-Me group results in significant changes in the activity profile of drug (Figure 5.1). 

 

Figure 5.1 Effect of methyl group on drug molecules. 

For example, the Structure-Activity Relationship (SAR) studies of 2-phenylaminopyrimidines 

(PAPs) exhibit an interesting result of “flag methyl” group effect. [5] The conclusion of the report 

is that methyl substituted phenyl ring (VIII) was showing better selectivity of PAPs toward Platelet-

derived growth factor-receptor (PDGF-R) than a non-substituted one (VII) (Figure 5.2). 
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Figure 5.2 Flag methyl effect in molecular selectivity. 

The molecular behaviour of compound as agonist and antagonist can also be effected by the addition 

or removal of methyl groups depending upon their particular position replacement.  [6, 7] As a case 

in point, Abel and co-workers in 2013 reported that double methylation of MRZ-3573 caused 

molecular switch to NAM (negative allosteric modulation) (X) from PAM (positive allosteric 

modulator) (IX) on glutamate receptor (mGLuR5) (Figure 5.3). [6] Similarly, double methylation 

on 7,8-dihydroquinazoline-5-one (XI) effected to change it to PAM (XII) (Figure 5.3). [6] 

 

Figure 5.3 Molecular switch due to methyl group effect. 

In 2008, from the Quorum Sensing (QS) studies of Janda and co-workers, (S)-4,5-dihydroxy-2,3-

pentanedione (DPD) derivatives (XIV-XV) on methylation showed potential antagonist property 

(Figure 5.4). [7] 



CHAPTER 5 | bbbbb 

 

123 

 

 

Figure 5.4 Methyl group effect on molecular activity. 

The above detailed observations reflects the effect of methyl group on the biologically active 

scaffolds. In drug discovery, this effect due to introduction of methyl group is known as “magic 

methyl effect”.  

In addition to this, scaffolds like acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), 

tetrahydroquinazolindione exhibits broad spectrum of biological activities like anti-tumor, anti-viral, 

anti-cancer and anti-alzheimer activity. (Figure 5.5). [8-12] It might therefore, be equally interesting 

to observe “magic methyl effect” in these scaffolds by synthesizing scaffolds having methyl group. 

Figure 5.5 Biological activities of diversified reported scaffolds. 
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From the above discussion, having medicinal importance of methyl group on one hand and biological 

activities of acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione 

on another, the initial aim is to develop a method to incorporate methyl group in such biologically 

active scaffolds.  

5.2 Survey of existing methodologies 

From the synthesis point of view, methyl group introduction can be achieved by methylation or non-

methylation reactions. In the recent past, multicomponent reaction sequences have proven to be an 

effective tool for the synthesis of diversified scaffolds. Most commonly, acetaldehyde and other 

aliphatic aldehydes are used for methyl or other alkyl fragments introduction in a multicomponent 

reaction. 

The direct application of acetaldehyde or other aliphatic aldehydes in many MCRs is not always as 

fruitful as that of aromatic aldehydes. There are numerous MCR reports where direct use of 

acetaldehyde/aliphatic aldehydes provided lower yield of products or ended up in failure. [13-24] 

The outcomes of these results conclude that this failure may be a result of high reactivity, low 

stability and high sensitivity towards self-polymerization of the aliphatic aldehydes. 

To counter these problems, use of acetaldehyde/alkyaldehyde surrogates seems to be an impressive 

alternative to get success in MCR sequences. A detailed survey of previous reports revealed that the 

application of dihydrofuran (DHF) and other vinyl ethers [25-30], N-vinyl amides in the presence of 

water [31] and (Z)-2-(trimethylsiloxy)vinyllithium (by hydrolysis) [32] are the common 

acetaldehyde or alkyl aldehyde surrogates largely explored by synthetic community (Figure 5.6). 

 

Figure 5.6 Common aldehyde surrogates. 
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For example, in 2001, Batey and co-workers reported dysprosium(III)-catalysed access of 

substituted hexahydrofuro[3,2-c]quinolones (3) by simple Diels-Alder reaction using anilines (1) 

and dihydrofuran (2) as an alkylaldehyde surrogate (Figure 5.7). [33] The reaction proceeded 

through in situ generation of 2-azadiene which was formed in reaction between substituted amines 

(1) and one equivalent of dihydrofuran (2). 

 

Figure 5.7 Dysprosium(III)-catalysed reaction of dihydrofuran with substituted anilines. 

Likewise, in 2004, Prashad et al. designed a methodology in which the use of N-vinylacetamides (5) 

or ethyl vinyl ether (6a) are described as acetaldehyde anion equivalents (Figure 5.8). [34] The 

described method was developed for an efficient synthesis of xanthene, thioxanthene and acridine 

carboxaldehyde derivaties (7) using xanthydrol, thioxanthydrol, and 9,10-dihydro-10-methyl-9-

acridinol (4) as starting materials. 

 

Figure 5.8 Use of N-vinylacetamides and ethyl vinyl ether as acetaldehyde anion equivalents. 
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The mechanism of the reaction is sketched in Figure 5.9. The cationic intermediate A is formed due 

to dehydration of starting material in presence of acid. The nucleophilic attacked by N-acyliminium 

(5) to intermediate A led to intermediate ion B which provided C in presence of water which further 

got hydrolyzed to give final aldehyde (7). 

 

Figure 5.9 Mechanism for N-vinylacetamides acting as acetaldehyde equivalents. 

Similarly, Jia et al. (2010) investigated the stable radical cation salt tris(4-bromophenyl)aminium 

hexachloroantimonate (TBPA+.) mediated synthesis of 2-methyl-4-anilino-1,2,3,4-

tetrahydroquinolines (8) using diversified N-vinyllactams (5) as an acetaldehyde surrogates (Figure 

5.10). [35] 

 

Figure 5.10 A tandem cyclisation reaction of amines with N-vinyllactams. 
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The proposed mechanism is illustrated in Figure 5.11. N-vinylamides (5) formed intermediate cation 

A after forming an adduct with radical cation TBPA. Later, aniline (1) reacted with the intermediate 

A to give B which provided enamine D after rearrangement. The enamine D tautomerised to E which 

was oxidized to radical cation intermediate F which further reacted with another enamine D to give 

intermediate G. The intermediate G after intramolecular cyclisation in presence of acid provided 

final desired product 8.  

 

Figure 5.11 N-vinyllactams promoted synthesis of 2-methyl-4-anilino-1,2,3,4-

tetrahydroquinolines. 

Next, Matsubara et al. (2011) demonstrated an efficient strategy for PdCl2 mediated synthesis of 

quinolines (9, 10) using alkenyl ethers (6) as an efficient aldehyde surrogates while reaction with 

anilines (1) (Figure 5.12). [36]  

 

Figure 5.12 Palladium-catalysed synthesis of substituted methylquinolines. 
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The plausible mechanism for the reaction of aniline (1) with vinyl ether (6a) is outlined in Figure 

5.13. Firstly, the reaction of aniline (1) with vinyl ether (6a) in presence of palladium ion (II) formed 

intermediate cation A which further reacted with 6a and 1 to provide intermediate B. Later on, 

palladium (II) catalysed aromatization of B formed the final product methylquinoline (9). 

 

Figure 5.13 Plausible mechanism for synthesis of methylquinoline using vinyl ether. 

Similarly, Litinas and co-workers (in 2013) reported a Povarov-type three-component reaction of 

aminocoumarins (11) with two equivalents of n-butyl vinyl ether (6b) for the synthesis of 

pyridocoumarin derivatives (12) using molecular iodine as a catalyst (Figure 5.14). [37] 

 

Figure 5.14 Iodine-catalysed reaction of aminocoumarins with n-butyl vinyl ether. 
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Likewise, Sharma et al. (2015) developed a DABCO-catalysed three-component synthesis to 

construct annulated furans (16) using vinyl esters (14) as acetaldehyde surrogates. The isocyanide 

based multicomponent reaction (IMCR) was performed under microwave irradiation (typical time 

10 minutes at 120 oC) and afforded moderate to good yield of annulated furanones (16, 62-85 %) 

(Figure 5.15). [38] 

 

Figure 5.15 DABCO-catalysed synthesis of diversified methyl substituted furans. 

The plausible mechanism of the above described IMCR reaction is sketched in Figure 5.16. The 

nucleophilic attack of DABCO to vinyl ester (14) provided intermediate acylate ion A and enolate 

ion B. The acetaldehyde was formed followed by conversion of enolate B into enol C. Later on, the 

acetaldehyde reacted with corresponding 1,3-dicarbonyl systems (13) to give enone D which further 

reacted with isocyanides (15) in [4+1] cycloaddition fashion to give final desired products 16. 
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Figure 5.16 Mechanism of DABCO-catalysed vinyl ester mediated IMCR reaction. 

In short, there are plenty of reports in which chemists already explored acetaldehyde/alkyaldehyde 

surrogates to overcome the problems associated with aldehydes themselves in MCR reactions. In 

comparison to other aldehyde surrogates, vinyl esters have remained relatively less explored as 

acetaldehyde surrogates. The reasons behind choosing vinyl esters as acetaldehyde surrogates are 

because it is cheap, readily available and already explored in some common MCR sequence like 

Aldol type condensation [39], [4+1] cycloaddition and acylation reactions. [38, 40] Along with these 

advantages, they have a long shelf life and do not require pre-conditioning. The primary aim of this 

chapter is to develop methods to incorporate methyl group employing vinyl esters as acetaldehyde 

surrogates to build up a library of diversified methyl substituted molecules. More precisely, this 

work highlights the use of vinyl esters in some common multicomponent reactions to synthesize the 

scaffolds like acridione, thioxanthendione, bis(hydroxycyclohex-2-enone) and 

tetrahydroquinazolindione derivatives. 
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5.3 Results and discussion 

5.3.1 Synthesis of methyl substituted hexahydroacridine-1,8(2H,5H)-dione 

In a prototype reaction,  cyclohexane-1,3-dione (17a, 2 mmol), vinyl acetate (14a, 1.5 mmol) and 

NH4OAc (18, 1 mmol) reacted together as standard substrates in presence of 30 % of catalytic 

DABCO in IPA for the synthesis of 9-methyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 

(19a) under microwave irradiation for 10 minutes at 120 oC which resulted in 85 % yield of the 

desired product 19a (Table 5.1, entry 1). In order to optimize the reaction, it was initially decided to 

try different bases like piperidine, morpholine, DBU, DMAP and NaOH. However none of these 

bases were able to form the product in good yields (Table 5.1, entries 2-7).  Later, the reaction was 

tried in various solvents like MeOH, ACN and tolulene (Table 5.1, entries 8-10), which 

unfortunately provided relatively lower yield of the desired product (19a). Next, the temperature and 

time of the reaction mixture under microwave irradiation was varied (Table 5.1, entries 11-12). It 

was observed that lowering the time to 5 minutes brought down the yield of 19a to 79 % (Table 5.1, 

entry 12). However increasing the reaction time to 20 minutes brought about a very slight 

improvement in the yield of 19a upto to 87 % (Table 5.1, entry 13). Lastly, the catalytic loading of 

DABCO was varied in the above reaction, and 30 mol % catalytic loading of DABCO was found to 

provide maximum yield of 19a (Table 5.1, entries 13-15). So, the final optimized condition for the 

desired conversion to result in 19a was microwave radiation of the reaction mixture at 120 oC for 10 

minutes using 30 % catalytic DABCO in IPA. 
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In order to compare, the same optimized reaction was performed with acetaldehyde in place of vinyl 

acetate to synthesize respective acridine (19a). Unfortunately, the reaction profile was not clean and 

finally the chromatographic separation only resulted in 57 % yield of 19a. This is in contrast to the 

optimized protocol wherein a column-free pure solid product is obtained with 85 % yield of 19a. 

The outcome of the reactions clearly manifested the advantage of using vinyl esters over 

acetaldehyde in this MCR sequence (Figure 5.17). 

Table 5.1 Optimization of reaction conditions (synthesis of acridine-1,8(2H,5H)-dione)a 

 
Entry Catalyst (mol %) Solvent Conditions Yield (%)b 

1 DABCO (30) IPA MW (120 OC, 10 min) 85 

2 Piperidine (30) IPA MW (120 OC, 10 min) 57 

3 Morpholine (30) IPA MW (120 OC, 10 min) 59 

4 DBU (30) IPA MW (120 OC, 10 min) 68 

5 DMAP (30) IPA MW (120 OC, 10 min) 71 

6 NaOH (30) MeOH MW (120 oC, 10 min) 52 

7 NaOH (30) Water MW (120 oC, 10 min) 57 

8 DABCO (30) ACN MW (120 OC, 10 min) 81 

9 DABCO (30) Toluene MW (120 OC, 10 min) 78 

10 DABCO (30) MeOH MW (120 OC, 10 min) 83 

11 DABCO (30) IPA MW (160 OC, 10 min) 90 

12 DABCO (30) IPA MW (120 OC, 5 min) 79 

13 DABCO (30) IPA MW (120 OC, 20 min) 87 

14 DABCO (10) IPA MW (120 OC, 10 min) 71 

15 DABCO (50) IPA MW (120 OC, 10 min) 87 

aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol), 18 (1.0 mmol); Anton Paar 

Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time: 1min at 60 °C,  

bIsolated yield. 
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Figure 5.17 Comparison of vinyl ester and acetaldehyde in four-component condensation. 

Having optimized condition in hand, the reaction was explored in terms of the substrate scope and 

limitations. All the substrates such as cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-

dione (dimedone) (17b), 5-methylcyclohexane-1,3-dione (17c) and 5-phenylcyclohexane-1,3-dione 

(17d) resulted in good to high yield of the respective methyl substituted acridines (19a-19d) (Table 

5.2). The reported methodology seemed to be well tolerant to various substituted vinyl esters. 

Especially, the results were better in case of vinyl acetate (14a) and vinyl chloroacetate (14d) as 

compared to vinyl pivalate (14b) and vinyl benzoates (14c) (Table 5.2). 

 

 

 

 

 

 

 

 

 



CHAPTER 5 | bbbbb 

 

134 

 

 

 

 

Table 5.2 Scope of four-component reaction (synthesis of acridine-1,8(2H,5H)-dione)a 

 
Entry C-H acid Enol ester Product Yield (%)b 

 

1 

 

 

 

 

 

 
(17a) 

     
(14a) 

 

 

 

 

 
(19a) 

 

85 

 

2 

 (14b) 

 

83 

 

3 

 
(14c) 

 

83 

 

4 
 

(14d) 

 

91 

 

5 

 

 
(17b) 

   (14a) 

 

 
(19b) 

 

81 

 

6 

(14d) 

 

88 

 

7 

 

 
(17c) 

   (14a) 

 

 
(19c) 

 

78 

 

8 

(14c) 

 

79 

 

9 

 

 
(17d) 

   (14a) 

 

 
(19d) 

 

79 

 

10 

 (14b) 

 

76 

aGeneral condition: 17 (2.0 mmol), 14 (1.5 mmol), 18 (1.0 mmol); Anton Paar Monowave 

300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 oC. b Isolated yield. 
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5.3.2 Synthesis of methyl substituted thioxanthene-1,8(2H)-dione 

After having optimized condition to synthesize 9-methyl-3,4,6,7,9,10-hexahydroacridine-

1,8(2H,5H)-dione (19a) under microwave irradiation, a similar condition was set to construct 9-

methyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8(2H)-dione (21a) using substrates cyclohexane-

1,3-dione (17a, 2 mmol), vinyl acetate (14a, 1.5 mmol) and Lawesson’s reagent (20, 0.5 mmol). The 

reaction provided 65 % yield of 21a using 30 mol % DABCO as a catalyst in IPA (Table 5.3, entry 

1). To enhance the yield of the desired product, a number of conditions again examined by changing 

catalyst (Table 5.3, entries 1-3), catalyst loading (Table 5.3, entries 4-5) and solvents (Table 5.3, 

entries 8-9) as well. However, there were no significant enhancement in the yield was observed while 

increasing the microwave irradiation time and temperature (Table 5.3, entries 6-7). After all the 

screening experiments, the optimized condition was found out to be loading of 30 mol % DABCO 

as a catalyst in IPA and microwave irradiation at 120 oC for 10 minutes which provided optimum 

yield of 21a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 Optimization of reaction conditions (synthesis of thioxanthene-

1,8(2H)-dione)a 

 
Entry Catalyst (mol %) Solvent Conditions Yield (%)b 

1 DABCO (30) IPA MW (120 OC, 10 min) 65 

2 Morpholine (30) IPA MW (120 OC, 10 min) 59 

3 NaOH (30) MeOH MW (120 oC, 10 min) nd 

4 DABCO (10) IPA MW (120 OC, 10 min) 53 

5 DABCO (40) IPA MW (120 OC, 10 min) 66 

6 DABCO (30) IPA MW (120 OC, 15 min) 67 

7 DABCO (30) IPA MW (150 OC, 10 min) 67 

8 DABCO (30) ACN MW (120 OC, 10 min) 61 

9 DABCO (30) Toluene MW (120 OC, 10 min) 56 

aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol), 20 (0.5 mmol); Anton 

Paar Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time: 

1 min at 60 oC. nd = not determined. b Isolated yield. 
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In order to find out the substrate scopes of the reaction, the 1,3-carbonyl compound variants viz. 

cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (17b) and 5-

methylcyclohexane-1,3-dione (17c) were reacted with three different vinyl esters, vinyl acetate 

(14a), vinyl chloroacetate (14d) and vinyl benzoates (14c) to get the desired thioxanthenediones 

derivatives (21a-21c) in moderate yield (Table 5.4, entries 1-5). 

 

 

 

 

 

Table 5.4 Scope of four-component reaction (synthesis of thioxanthene-1,8(2H)-dione)a 

 

 
Entry C-H acid Enol ester Product Yield (%)b 

 

1 

 

 

 

 
(17a) 

 
(14a) 

 

 

 
(21a) 

 

65 

 

2 
 

(14d) 

 

67 

 

3 

 

 
(17b) 

 
(14a) 

 
(21b) 

 

61 

 

4 

 

 
(17c) 

 
(14a) 

 

 
(21c) 

 

68 

 

5 

 
(14c) 

 

57 

 aGeneral condition: 17 (2.0 mmol), 14 (1.5 mmol), 20 (0.5 mmol); Anton Paar Monowave 300 

Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 oC. b Isolated yield. 
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5.3.3 Synthesis of methyl substituted bis(3-hydroxycyclohex-2-enone) 

Again a similar organocatalytic condition was investigated to synthesize 2,2'-(ethane-1,1-diyl)bis(3-

hydroxycyclohex-2-enone) (22a) using cyclohexane-1,3-dione (17a, 2 mmol) and vinyl acetate 

(14a, 1.5 mmol) under microwave irradiation at 120 oC for 10 minutes (Table 5.5, entry 1). The 

desired product 22a was formed in 61 % yield whereas 9-methyl-3,4,5,6,7,8a,9,10a-octahydro-1H-

xanthene-1,8(2H)-dione (23a) was also formed as a side product. To improve the reaction outcome, 

the above reaction was tried under reflux (Table 5.5, entry 2) as well as under room temperature 

(Table 5.5, entry 3) and the reaction under room temperature provided better yield (63 %) of 22a. 

Therefore, the reaction was further investigated under room temperature using different bases (Table 

5.5, entries 4-5). Fortunately, application of potassium tert-butoxide in MeOH helped to increase the 

yield (79 %) of 22a with better reaction profile (Table 5.5, entries 6-11). Therefore, the optimized 

condition for this transformation is room temperature stirring of the reaction mixture for six hours 

using 10 mol % potassium tert-butoxide in MeOH to get the final product 22a. 

 

Table 5.5 Optimization of reaction conditions [synthesis of bis(3-hydroxycyclohex-2-

enone)]a 

 

Entry Catalyst (mol %) Solvent Conditions Yield (%) 

(22a)                (23a) 

1 DABCO (30) IPA MW (120 OC, 10 min) 61                       27 

2 DABCO (30) IPA Reflux (2 h) 59                       23 

3 DABCO (30) IPA Stirring (6h) 63                       23 

4 Piperidine (30) IPA Stirring (6h) 48                       31 

5 DBU (30) IPA Stirring (6h) 59                       24 

6 NaOH (10) MeOH Stirring (6h)  71                        - 

7 NaOH (10) MeOH Stirring (10h) 70                        - 

8 NaOH H2O Stirring (6h) 68                        - 

9 NaOMe (10) MeOH Stirring (6h) 73                        - 

10 t-BuOK (10) MeOH Stirring (6h) 79                        - 

11 t-BuOK (20) MeOH Stirring (6h) 81                        - 
aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol); Anton Paar Monowave 300 

Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 oC. 
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With the optimized condition in hand, the substrates like cyclohexane-1,3-dione (17a), 5,5-

dimethylcyclohexane-1,3-dione (17b), 5-methylcyclohexane-1,3-dione (17c) and 5-

phenylcyclohexane-1,3-dione (17d) were reacted with different vinyl esters. In all the cases, the 

desired products were obtained in good yields (67-87 %). In general, reactions seemed to be working 

well with vinyl chloroacetate (Table 5.6, entries 3 and 8). Unfortunately, substrates 4-

hydroxycoumarine (17e) and Lawsone (17f) failed to provide the respective products (Table 5.6, 

entries 11-13). 
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Table 5.6  Scope of three-component reaction [synthesis of bis(3-hydroxycyclohex-2-

enone)]a 

 
Entry C-H acid Enol ester Product Yield (%)b 

 

1 

 

 

 

 
(17a) 

        
(14a) 

 

 

 
(22a) 

79 

 

2 

 
(14c) 

75 

 

3 
 

(14d) 

87 

 

4 

 

 

 
(17b) 

     
(14a) 

 

 
(22b) 

 

81 

 

5 

  
(14b) 

 

 

79 

 

6 

 

 

 
(17c) 

   (14a) 

 

 

 
(22c) 

 

77 

 

7 

(14c) 

 

71 

8 

 
(14d) 

 

81 

 

9 

 

 
(17d) 

     
(14a) 

 

 
(22d) 

 

67 

 

10 

 
(14b) 

 

68 
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5.3.4 Synthesis of methyl substituted tetrahydroquinazoline-2,5(1H,6H)-dione 

To extend the work, a similar three-component condensation reaction was investigated to synthesize 

3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25a) using DABCO as an organocatalyst (30 mol 

%) and cyclohexane-1,3-dione (17a, 1 mmol), vinyl acetate (14a, 1.5 mmol) and urea (24, 1 mmol) 

as starting materials which provided 73 % of conversion to 25a in IPA at 120 oC for 10 minutes 

under microwave irradiation (Table 5.7, entry 1). In order to optimize, different bases were explored 

in the above reaction which did not improve yield of the desired product 25a (Table 5.7, entries 2-

4). Next, the reaction was analyzed with respect to temperature (Table 5.7, entry 5) and solvents 

(Table 5.7, entries 7-8) but no fruitful outcomes were obtained. Reaction did not work at room 

temperature (Table 5.7, entry 6) and only starting materials were recovered unreacted. Fortunately, 

the reaction provided better yield (82 %) of the desired product 25a when the mixture was irradiated 

in neat condition at 120 oC for 10 minutes using 30 mol % DABCO as a basic catalyst (Table 5.7, 

entries 9-12) and this was established as the optimized condition for the desired transformation. 

 

 

 

 

 

 

 

11 

 

 
(17e) 

 

 

 

(14a) 

 

 

 
(22e) 

 

 

 

 

nd 

12 

(14b) 

 

nd 

 

 

 

13 

 
      (17f) 

(14a) 

 
(22f) 

 

 

nd 

aGeneral condition: 17 (2.0 mmol), 14 (1.5 mmol); Anton Paar Monowave 300 

Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 oC. b Isolated yield, 

nd = not determined. b Isolated yield. 
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Having optimized the synthesis of desired quinazolines, the reaction was analyzed for its scope using 

cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (17b) and 5-

phenylcyclohexane-1,3-dione (17d) to get the corresponding products (Table 5.8, entries 1-8). The 

stable conformer of the synthesized compound 25c is explained later on with respect to 

computational study. Unfortunately, the acyclic diketones like acetyl acetone (17g), ethyl 

acetoacetate (17h) and ethyl cynoacetate (17i) did not provide the desired products at all (Table 5.8, 

entries 9-12). 

 

 

Table 5.7 Optimization of reaction conditions (synthesis of tetrahydroquinazoline-

2,5(1H,6H)-dione)a 

 
Entry Catalyst 

(mol %) 

Solvent Conditions Yield (%)b 

1 DABCO (30) IPA MW (120 OC, 10 min) 73 

2 DBU (30) IPA MW (120 OC, 10 min) 69 

3 Piperidine (30) IPA MW (120 OC, 10 min) 59 

4 NaOH (30) MeOH MW (120 OC, 10 min) 61 

5 DABCO (30) IPA MW (160  OC , 10 min) 74 

6 DABCO (30) IPA Stirring (RT) - 

7 DABCO (30) ACN MW (120 OC, 10 min) 76 

8 DABCO (30) Toluene MW (120 OC, 10 min) 61 

9 DABCO (30) Neat MW (120 OC, 10 min) 82 

10 DABCO (20) Neat MW (120 OC, 10 min) 72 

11 DABCO (40) Neat MW (120 OC, 10 min) 84 

12 DABCO (30) Neat MW (120 OC, 15 min) 83 

aGeneral condition: 17a (1.0 mmol), 14a (1.5 mmol), 24 (1.0 mmol); Anton Paar 

Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 
oC. b Isolated yield. 
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Table 5.8  Scope of three-component reaction (synthesis of tetrahydroquinazoline-2,5(1H,6H)-

dione)a 

 
Entry C-H acid Enol ester Product Yield 

(%)b 

 

1 

 

 

 

 

 
(17a) 

     (14a) 

 

 

 

 
(25a) 

 

82 

 

2 
 (14b) 

 

81 

 

3 

(14c) 

 

79 

 

4 
 (14d) 

 

87 

 

5 

 

 
(17b) 

     (14a) 

 

 
(25b) 

 

77 

 

6 
 (14b)  

 

74 

 

7 

 

 
(17d) 

    (14a) 

 

 
(25c) 

 

65 

 

8 
(14b) 

 

67 

9  

 
(17g) 

     (14a) 

 
(25d) 

nd 

10 

(14c) 

nd 

11 

 
(17h)  (14b) 

 
(25e) 

nd 



CHAPTER 5 | bbbbb 

 

143 

 

 

 

 

 

5.3.5 Mechanistic study for formation of acetaldehyde from vinyl esters 

The mechanistic study of vinyl esters as acetaldehyde equivalent is sketched in Scheme 5.1. Initial 

nucleophilic attack of a base on vinyl acetate leads to the cleavage of vinyl acetate (14a) into two 

parts where in one out as acylating half A and the other part becomes enolate B. After proton 

abstraction, the enolate B tautomerize to acetaldehyde and undergoes a subsequent multicomponent 

cascade (Scheme 5.1). 

 

Scheme 5.1 Plausible mechanism for the generation of acetaldehyde from vinyl esters. 

 

 

 

 

 

 

 

12 

 
(17i) 

      
(14a) 

 
(25f) 

nd 

aGeneral condition: 17 (1.0 mmol), 14 (1.5 mmol), 24 (1.0 mmol); Anton Paar Monowave 

300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 oC. b Isolated 

yield, nd =not determined. b Isolated yield. 
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5.4 Conclusions 

In summary, the effective use of vinyl esters as acetaldehyde surrogates have been explored on 

mainly cyclic 1,3-diketone as a substrate in different multicomponent synthesis to develop 

medicinally relevant diversified scaffolds like methyl substituted hexahydroacridione, 

thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione derivatives. In the 

present report, vinyl esters provided better results compared to the acetaldehyde in terms of reaction 

profile and yield. In short, the reaction of vinyl esters as acetaldehyde surrogates worked well with 

cyclic 1,3-diketone in four different sets of MCR sequences.  

 

5.5 Experimental section 

5.5.1 General information  

NMR spectra were recorded on a Jeol Resonance® ECX-400II. Chemical shifts are reported in parts 

per million and are referenced to TMS. Mass spectrometry (HRMS) was performed using a Bruker 

daltronics micro TOF-QII® spectrometer using ESI ionization. Analytical Thin layer 

chromatography (TLC) was performed on a silica gel plate (Merck® 60F254). Melting points were 

performed with Ambassador® and Digital Melting point apparatus (Nutronics), Popular India. All 

chemicals were purchased from sigma-Aldrich® and were used without further purification. 

Microwave Irradiation Experiment  

All microwave experiments were carried out in a dedicated Anton Paar® Monowave 300 reactor, 

operating at a frequency of 2.455 GHz with continuous irradiation power of 0 to 300 W. The 

reactions were performed in a G10 Borosilicate glass vial sealed with Teflon septum and placed in 

a microwave cavity. Initially, microwave of required power was used and temperature was being 

ramped from room temperature to a desired temperature. Once this temperature was attained, the 

process vial was held at this temperature for required time. The reactions were continuously stirred. 

Temperature was measured by an IR sensor. After the experiments a cooling jet cooled the reaction 

vessel to ambient temperature. 
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5.5.2 General procedures  

General procedure for the synthesis of 19(a-d): C-H acid (2.0 mmol), vinyl ester (1.5 mmol), 

ammonium acetate (1.0 mmol) DABCO (30 mol %) in isopropanol was taken in G10 process vial 

capped with Teflon septum. After a pre-stirring of 1 or 2 minutes, the vial was subjected to 

microwave irradiation with the initial ramp time of 1 minute at 60 °C. The temperature was then 

raised to 120 °C with the holding time of 10 minutes. The reaction mixture was cooled down to 0 -5 

°C by a cooling air jet. 

For compound 19a and 19b products directly got crystallized in the reaction vial, which was then 

filtered off and washed with ether.  

For compound 19c and 19d direct crystallization was not observed. Solvent was removed in vacuum 

and crude mixture was dissolved in DCM and washed with water and dilute acid two times. This 

extract was purified by column chromatography using DCM + Methanol. 

 

General procedure for the synthesis of 21(a-c): C-H acid (2.0 mmol), vinyl ester (1.5 mmol), 

lawesson’s reagent (0.5 mmol) DABCO (30 mol %) in isopropanol was taken in G10 process vial 

capped with Teflon septum. After a pre-stirring of 1 or 2 minutes, the vial was subjected to 

microwave irradiation with the initial ramp time of 1 minute at 60 °C. The temperature was then 

raised to 120 °C with the holding time of 10 minutes. The reaction mixture was cooled down to 0-5 

°C by a cooling air jet. Solvent was removed in vacuum and crude mixture was dissolved in DCM 

and washed with water and dilute acid two times. This extract was purified by silica column using 

DCM + Methanol as an eluant to get the final desired products. 

General procedure for the synthesis of 22(a-d): C-H acid (2.0 mmol), vinyl ester (1.5 mmol), t-

BuOK (10 mol %) in MeOH was stirred at room temperature for about 6 hours. The progress of the 

reaction was monitored by TLC. After completion of the reaction MeOH was removed in vacuum, 

and residue was dissolved in ethyl acetate and washed with water. This aqueous layer was 

neutralised by HCl solution and again washed with DCM. Removal of this organic layer under 

vacuum provided spectrally pure products 22(a-d). 
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General procedure for the synthesis of 25(a-c): C-H acid (1.0 mmol), vinyl ester (1.5 mmol), urea 

(1.0 mmol) DABCO (30 mol %) was taken in G10 process vial capped with Teflon septum. After a 

pre-stirring of 1 or 2 minutes, the vial was subjected to microwave irradiation with the initial ramp 

time of 1 minute at 60 °C. The temperature was then raised to 120 °C with the holding time of 10 

minutes. The crude mixture was dissolved in DCM and washed with brine and dilute acid solution 

2-3 times. The organic layer was removed in vacuum and subjected to column chromatography 

using DCM + Methanol as eluants to get the final desired products. 

5.5.3 Characterization of the synthesized molecules 

All the products were characterized via techniques of 1H NMR, 13C NMR Spectra and HRMS. 

Analytical information for the synthesized molecules is given below: 

 

9-methyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19a): Yield: 85 % (using vinyl 

acetate), 83 % (using vinyl pivalate), 83 % (using vinyl benzoate), 91% (using vinyl chloroacetate); 

greenish yellow solid; mp: 298-299 °C; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.17 (s, 1H), 3.71 

(q, 1H, J = 6.5 Hz), 2.34-2.45 (m, 4H), 2.12-2.28 (m, 4H), 1.75-1.94 (m, 4H), 0.76 (d, 3H, J = 6.5 

Hz); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 195.5, 151.8, 114.1, 37.3, 26.7, 22.8, 22.3, 21.5; 

HRMS (ESI) m/z calcd. for C14H17NO2 [M+Na]+:  254.1157, found: 254.1149. 

 

3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19b): Yield: 81 % 

(using vinyl acetate), 88 % (using vinyl chloroacetate); greenish yellow solid; mp: 269-271 °C; 1H 

NMR (400 MHz, DMSO-d6): δ (ppm) 9.06 (s, 1H), 3.68 (q, 1H, J = 6.4 Hz), 2.34 (d, 2H, J = 17.0 

Hz), 2.14-2.25 (m, 4H), 2.06 (d, 2H, J = 15.9 Hz), 1.00 (s, 6H), 0.98 (s, 6H), 0.78 (d, 3H, J = 6.4 
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Hz); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 195.0, 150.3, 112.5, 50.6, 32.6, 29.6, 26.9, 22.3, 

22.0; HRMS (ESI) m/z calcd. for C18H25NO2 [M+Na]+:  310.1783, found: 310.1779. 

 

3,6,9-trimethyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione  (19c): Yield: 78 % (using 

vinyl acetate), 79 % (using vinyl benzoate); greenish yellow solid; mp: 268-270 °C; 1H NMR (400 

MHz, DMSO-d6) δ 9.05 (s, 1H), 3.39 (q, 1H, J = 5.1 Hz), 2.88 (dd, 2H, J = 9.9 & 6.4 Hz), 2.39 (dd, 

2H, J = 10.0 & 6.4 Hz), 2.24 (q, 2H, J = 3.8 Hz), 1.97-2.09 (m, 4H), 1.47 (d, 3H, J = 5.1 Hz), 1.35 

(d, 6H, J = 4.9 Hz); 13C NMR (100 MHz, DMSO-d6) δ 197.1, 153.8, 114.5, 52.8, 45.3, 33.5, 29.6, 

24.2, 21.1; HRMS (ESI) m/z calcd. for C16H21NO2 [M+Na]+:  282.1470, found: 282.1467. 

 

9-methyl-3,6-diphenyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19d): Yield: 79 % 

(using vinyl acetate), 76 % (using vinyl pivalate); greenish yellow solid; mp: 328-329 °C; 1H NMR 

(400 MHz, DMSO-d6) δ 9.05 (s, 1H), 7.30-7.38 (m, 8H), 7.23-7.28 (m, 2H), 3.48 (quin, 2H, J = 2.8 

Hz), 3.34 (q, 1H, J = 5.1 Hz), 3.30 (dd, 2H, J = 10.0 & 3.3 Hz), 3.00 (dd, 2H, J = 9.9 & 2.6 Hz), 

2.69 (dd, 2H, J = 10.0 & 3.2 Hz), 2.52 (dd, 2H, J = 9.9 & 3.4 Hz), 1.46 (d, 3H, J = 5.1 Hz); 13C 

NMR (100 MHz, DMSO-d6) δ 201.3, 156.1, 149.0, 133.3, 133.0, 132.5, 121.5, 57.4, 48.1, 43.8, 

39.1, 28.9; HRMS (ESI) m/z calcd. for C26H25NO2 [M+Na]+:  406.1783, found: 406.1769. 

 

9-methyl-3,4,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione  (21a): Yield: 65 % (using vinyl 

acetate), 67 % (using vinyl chloroacetate); yellow solid; mp: 246-248 °C; 1H NMR (400 MHz, 

DMSO-d6): δ (ppm) 2.71 (q, 1H, J = 5.4 Hz), 2.43 (t, 4H, J = 5.4 Hz), 2.00 (t, 4H, J = 4.7 Hz), 1.43 
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(quin, 4H, J = 5.0 Hz), 0.87 (d, 3H, J = 5.6 Hz); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 192.2, 

133.3, 129.6, 54.1, 36.2, 28.2, 23.0, 22.1; HRMS (ESI) m/z calcd. for C14H16O2S [M+Na]+:  

271.3304, found: 271.3302. 

 

3,3,6,6,9-pentamethyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione (21b): Yield: 61 

% (using vinyl acetate); yellow solid; mp: 272 °C; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 2.69 

(q, 1H, J = 5.1 Hz), 1.98 (s, 4H), 1.81 (s, 4H), 1.14 (d, 3H, J = 5.1 Hz), 0.86 (s, 12H); 13C NMR 

(100 MHz, DMSO-d6): δ (ppm) 195.0, 141.2, 133.2, 58.0, 54.3, 39.6, 35.4, 31.6, 26.9; HRMS (ESI) 

m/z calcd. for C18H24O2S [M+Na]+:  327.4368, found: 327.4358. 

 

3,6,9-trimethyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione  (21c): Yield: 68 % 

(using vinyl acetate), 57 % (using vinyl benzoate); yellow solid; mp: 249-250 °C; 1H NMR (400 

MHz, DMSO-d6) δ 2.94 (q, 1H, J = 5.1 Hz), 2.74-2.81 (m, 2H), 2.27-2.34 (m, 2H), 2.20-2.27 (m, 

2H), 1.90-2.04 (m, 4H), 1.33 (d, 3H, J = 5.1 Hz), 1.21 (d, 6H, J = 4.9 Hz); 13C NMR (100 MHz, 

DMSO-d6) δ 194.9, 138.8, 136.4, 55.2, 45.1, 35.8, 29.8, 24.1, 21.0; HRMS (ESI) m/z calcd. for 

C16H20O2S [M+Na]+:  299.1082, found: 299.1076. 

 

2,2’-(ethane-1,1-diyl)bis(3-hydroxycyclohex-2-enone) (22a): Yield: 79 % (using vinyl acetate), 

75 % (using vinyl benzoate), 87% (using vinyl chloroacetate); white solid; mp: 128-129 °C; 1H 

NMR (400 MHz, DMSO-d6) δ  13.97 (brs, 1H), 13.08 (brs, 1H), 3.10 (q, 1H, J = 5.2 Hz), 3.02 (t, 

4H, J = 4.4 Hz), 2.32 (t, 4H, J = 4.8 Hz), 1.75 (quin, 4H, J = 4.8 Hz), 1.39 (d, 3H, J = 5.3 Hz); 13C 
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NMR (100 MHz, DMSO-d6) δ 196.4, 180.6, 117.6, 38.5, 34.4, 30.4, 26.0, 21.2; HRMS (ESI) m/z 

calcd. for C18H14O4 [M+Na]+:  273.1103, found: 273.1096. 

 

2,2’-(ethane-1,1-diyl)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (22b): Yield: 81 % (using 

vinyl acetate), 79 % (using vinyl pivalate); white-brown solid; mp: 127-129 °C; 1H NMR (400 MHz, 

DMSO-d6): δ (ppm) 13.95 (brs, 1H), 13.12 (brs, 1H), 3.1 (q, 1H, J = 5.1 Hz), 2.65 (s, 4H), 2.11 (s, 

4H), 1.40 (d, 3H, J = 5.1 Hz), 1.01 (s, 12H); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 192.7, 185.2, 

116.9, 51.5, 45.0, 33.4, 33.2, 28.8, 24.7; HRMS (ESI) m/z calcd. for C18H26O4 [M+Na]+:  329.1729, 

found: 329.1723. 

 

2,2’-(ethane-1,1-diyl)bis(3-hydroxy-5-methylcyclohex-2-enone) (22c): Yield: 77 % (using vinyl 

acetate), 71 % (using vinyl benzoate), 81 % (using vinyl chloroacetate); grey solid; mp: 111-112 °C; 

1H NMR (400 MHz, DMSO-d6) δ 13.98 (brs, 1H), 13.05 (brs, 1H), 3.22 (q, 1H, J = 5.2 Hz), 2.92 

(dd, 2H, J = 10.0 & 6.1 Hz), 2.44 (dd, 2H, J = 9.9 & 6.2 Hz), 2.25-2.32 (m, 2H), 1.87-2.01 (m, 4H), 

1.55 (d, 3H, J = 5.2 Hz), 1.26 (d, 6H, J = 4.9 Hz); 13C NMR (100 MHz, DMSO-d6): δ (ppm) 195.7, 

177.0, 115.4, 45.1, 35.5, 33.2, 30.3, 24.7, 21.0; HRMS (ESI) m/z calcd. for C16H22O4 [M+Na]+:  

301.1416, found: 301.1411. 

 

4,4’-(ethane-1,1-diyl)bis(5-hydroxy-1,6-dihydro-[1,1’-biphenyl]-3(2H)-one) (22d): Yield: 67 % 

(using vinyl acetate), 68 % (using vinyl pivalate); white solid; mp: 168-170 °C; 1H NMR (400 MHz, 

DMSO-d6) δ 13.91 (brs, 1H), 13.03 (brs, 1H), 7.23-7.29 (m, 8H), 7.13-7.20 (m, 2H), 3.36-3.47 (m, 
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2H), 3.17 (dd, 2H, J = 12.0 & 5.8 Hz), 3.10 (q, 1H, J = 5.2 Hz), 2.73 (dd, 2H, J = 8.0 & 5.7 Hz), 

2.58 (dd, 2H, J = 8.0 & 4.0 Hz), 2.31 (dd, 2H, J = 8.0 & 4.0 Hz), 1.44 (d, 3H, J = 5.2 Hz); 13C NMR 

(100 MHz, DMSO-d6): δ (ppm)  195.0, 177.3, 144.2, 128.5, 128.2, 127.6, 115.6, 43.3, 36.4, 36.1, 

33.2, 24.7; HRMS (ESI) m/z calcd. for C25H26O4 [M+Na]+:  425.1729, found: 425.1719. 

 

4-methyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25a): Yield: 82 % (using vinyl 

acetate), 81% (using vinyl pivalate), 79 % (using vinyl benzoate), 87 % (using vinyl chloroacetate); 

white solid; mp: 148-150 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.73 (s, 1H), 8.62 (s, 1H), 4.38 (q, 

1H, J = 4.8 Hz), 2.76 (t, 2H, J = 4.8 Hz), 2.66 (t, 2H, J = 4.5 Hz), 1.84 (quin, 2H, J = 4.7 Hz), 1.45 

(d, 3H, J = 4.8 Hz); 13C NMR (100 MHz, DMSO-d6) δ 191.6, 155.4, 151.4, 112.9, 47.8, 37.3, 28.5, 

20.6, 19.7; HRMS (ESI) m/z calcd. for C9H12N2O2 [M+Na]+:  203.0799, found: 203.0794. 

 

4,7,7-trimethyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione  (25b): Yield: 77 % (using 

vinyl acetate), 74 % (using vinyl pivalate); white solid; mp: 168-169 °C; 1H NMR (400 MHz, 

DMSO-d6) δ 9.63 (s, 1H), 8.60 (s, 1H), 4.35 (q, 1H, J = 4.8 Hz), 2.67 (s, 2H), 2.39 (s, 2H), 1.38 (d, 

3H, J = 4.8 Hz), 1.08 (s, 6H); 13C NMR (100 MHz, DMSO-d6) δ 191.2, 156.5, 153.1, 122.8, 52.6, 

48.9, 37.5, 33.9, 30.0, 20.9; HRMS (ESI) m/z calcd. for C11H16N2O2 [M+Na]+: 231.1110, found: 

231.1107. 

 

4-methyl-7-phenyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25c): Yield: 65 % (using 

vinyl acetate), 67 % (using vinyl pivalate); white solid; mp: 172-174 °C; 1H NMR (400 MHz, 
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DMSO-d6) δ 9.80 (s, 1H), 8.66 (s, 1H), 7.24-7.32 (m, 4H), 7.14-7.21 (m, 1H), 4.38 (q, 1H, J = 4.8 

Hz), 3.20-3.28 (m, 2H), 2.80-2.92 (m, 2H), 1.45-1.48 (m, 1H), 1.47 (d, 3H, J = 4.8 Hz); 13C NMR 

(100 MHz, DMSO-d6) δ 192.5, 155.4, 148.0, 144.2, 128.5, 128.2, 127.6, 112.7, 47.8, 43.3, 38.9, 

34.2, 19.7; HRMS (ESI) m/z calcd. for C15H16N2O2 [M+Na]+:  279.1110, found: 279.1108. 
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CONCLUSIONS & PERSPECTIVES 

 

In summary, this work is focused on developing greener and efficient methodologies to access 

diversified heterocycles through multicomponent reactions. In this work, one-pot multicomponent 

approaches have been developed using different organocatalysts like DABCO and urea to construct 

desired scaffolds. In all the chapters certain limitations of existing reports are highlighted along with 

advantages of the developed methodologies. Primarily, the present work focuses on development of 

green and efficient multicomponent approaches to synthesize scaffolds like pyranochromenone, 

bis(benzo[f]chromen-3-one), spiro-benzo[f]pyranochromenes, acridione, bis(hydroxycyclohex-2-

enone), thioxanthendione, tetrahydroquinazolindione derivatives under mild condition using 

microwave irradiation and mechanochemistry as efficient synthetic tools. In most of the cases, mere 

filtration and washing with organic solvents provided good to excellent yields of the targeted 

molecules. Additionally, the liquid-assisted synthesis protocol for accessing pyranochromenone and 

microwave-assisted synthesis for spiro-benzo[f]pyranochromenes have been accessed for green 

matrices parameters and the results proved that these methods are quite environment friendly. 

Moreover, some novel biologically relevant heterocycles are synthesized which may be potent 

biological leads.  
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Chapter 2: Green matrices calculation for 2-amino-4-(4-chlorophenyl)-5-oxo-4,5-

dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile 

 

Comparison of green matrices calculation (Previous vs. Present Report) 

Entry 

Mass of 

Product 

Total 

mass of all 

reactants AE (%) CE (%) 

RME 

(%) PMI   

E-
factor 

Work 

details 

(1 mmol 

scale) 

DABCO31 

(81 % 

Yield) 0.325 g 0.419 g 95.70 100 77.56 13.50 12.50 

Foroumadi 

et al. 2015 

DABCO 

(87 % 

Yield) 0.349 g 0.419 g 95.70 100 83.10 1.82 0.82 

Present 

work 
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Chapter 3: Green matrices calculation for 2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-

c]chromene-4,3'-indoline]-3-carbonitrile (Gram scale synthesis) 

 

Comparison of green matrices calculation (Previous vs. Present Report) 

Entry 

 

Mass of 

Product 

Total 

mass of all 

reactants AE (%) CE (%) 

RME 

(%) PMI 

E-

factor 

Work 

details 

(1 mmol 

scale) 

DABCO27 

(98 % 

Yield) 0.350 g 0.375 g 95.20 100 93.33 12.36 11.36 
Hasaninejad 
et al. 2017 

Urea 

(91 % 

Yield) 0.371 g 0.425 g 95.77 100 87.29 2.23 1.23 

Present 

work 
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Chapter 5: Computational study for preferred conformation of 4-methyl-7-phenyl-3,4,7,8-

tetrahydroquinazoline-2,5(1H,6H)-dione (25c) 

Software 

Name 

Parameters Energy 

minimized 

conformer 

Software 

Name 

Parameters Energy minimized 

conformer 

Avogadro 

 

 

 

 

 

 

 

Steepest Descent 

of MMFF94s 

force field (1000 

runs) + 

Conjugate 

gradient of 

MMFF94s 

(1000 runs) 

Anti-isomer : 

-234.34 KJ/ 

mol 

Syn-isomer : 

-236.56 KJ/ 

mol 

Chem 

Draw 3D 

Pro 

Version 

12.0.2 

MM2  Anti-isomer : 

-2.6957 Kcal/ mol 

Syn-isomer : 

-3.1204 Kcal/ mol 

                Anti-isomer:               Syn-isomer:  

Results from Avogadro 

Anti  

Results from Chem Draw 3D Pro 

Anti  

Syn  
Syn  
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Based upon the energy minimizations studies, it was found that syn-isomer of 4-methyl-7-phenyl-

3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25c) is more stable than the anti-isomer. 

Moreover, the role of amide in formation of hydrogen bonding is well established in literatures [1, 

2] and this would reinforce the syn product. However, the final determination of the structure and 

further mechanistic studies are currently underway in the laboratory.   

[1] Saha, S.; Moorthy, J. N. Enantioselective Organocatalytic Biginelli Reaction: Dependence of the 

Catalyst on Sterics, Hydrogen Bonding, and Reinforced Chirality. J. Org. Chem. 2011, 76, 396–

402. 

[2] Huang, Y.; Yang, F.; Zhu, C. Highly Enantioseletive Biginelli Reaction Using a New Chiral 

Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines. J. Am. Chem. Soc. 2005, 127, 

16386–16387.  
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Chapter 2: Spectral information for benzo[f]pyrano[3,2-c]chromenes derivatives 8 (a-k, n-p) 
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Chapter 3: Spectral information for spriro-fused benzopyrans (6a-6r) 
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Chapter 4: Spectral information for bis(1-hydroxy-3H-benzo[f]chromenones (5a-5n) 
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Chapter 5: Spectral information for
 
methyl substituted hexahydroacridine-1,8(2H,5H)-dione (19a-
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Spectral information for
 methyl substituted thioxanthene-1,8(2H)-dione (21a-21c)

 

1
H NMR of 21a 

 

13
C NMR of 21a 

 

 



218 

 

1
H NMR of 21b 

 

13
C NMR of 21b 

 

 



219 

 

1
H NMR of 21c 

 

13
C NMR of 21c 

 

 



220 

 

Spectral information for
 methyl substituted bis(3-hydroxycyclohex-2-enone) (22a-22d) 
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Spectral information for methyl substituted tetrahydroquinazoline-2,5(1H,6H)-dione (25a-25c) 
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