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ABSTRACT |

ABSTRACT OF THE THESIS

CHAPTER-1

Heterocycles containing N, O and S atoms in the ring, generally show promising biological
applications. Synthesis of diversified heterocycles are in high demand due to their wide applications.
To fulfill the ongoing demand, the main role of a chemist is to supply novel heterocycles which can
be further screened to find out their biological and pharmaceutical applications. Multicomponent
reactions (MCRs) are turned up to be an efficient synthetic strategy to deliver such structural diverse
scaffolds in time and help building up chemical libraries with larger scope. MCRs are recognized as
the chemical transformations of more than two components mainly operated in one-pot to construct
the desired products. The MCR strategy has several advantages like operational simplicity, higher
atom efficiency and diverse scaffolds generation in short reaction time over single step operation.
Several tools and techniques are used to develop a MCR protocol however application of
mechanochemical hand-grinding and microwave irradiation in developing new MCRs strategies are
presented in this chapter to synthesize functionalized heterocycles. Amongst heterocycles, pyrans
and spirooxindoles are worth mentioning due to their wide range of biological and medicinal
activities. The chapter also includes a brief description of biological importance and several
synthesis procedures of pyrans and spirooxindoles. In short, the background of the present research
work is highlighted in this chapter. However, the previous literature survey revealed that there is still
scope not only in synthesizing novel biologically relevant heterocycles but also in developing
greener and efficient methodologies to access diversified scaffolds. Thus, the presented work is
focused on developing efficient green synthetic protocols for synthesis of structurally diverse
heterocycles like pyrans, spirooxindoles, bis(benzo[flchromen-3-one), acridione, thioxanthendione,

bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione derivatives.
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CHAPTER-2

DABCO-Catalysed Green Synthetic Protocol for Novel Pyranochromenone Derivatives

In this chapter, DABCO-catalysed liquid-assisted grinding for the synthesis of novel
dihydrobenzo[f]pyrano[3,2-c]Jchromenone derivatives has been described. The reported
methodology is simple, facile and mild to construct such multicomponent cascade. The benefits of
developed one-pot protocol includes diversified scope, excellent yields and high reaction throughput

apart from excellent green matrices scores.
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OxH = DABCO (30 mol %)

0.25 mL IPA
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R—|/ CN Grinding, 15 min

R =4-Cl, H, 2-Cl, 2-Br, 2-F, 4-NO,, 4-Br, 2,3-(Cl),, 2,6-(Cl),,
4-OCH,CHs, 4-OCH3, 4-N(CHs),, 4-CHa3, 2,3-C4H,, 2,4-(Cl),, 3-Cl

Yield = 72-91%

CHAPTER-3

Urea-Catalysed Microwave-Assisted Synthesis of Novel Spirooxindole Benzopyrans

In this chapter, a urea-catalysed easy and facile microwave-assisted protocol is described to construct
spiro-benzo[f]pyranochromenes in higher yields. The use of 1-hydroxy-3H-benzo[f]chromen-3-one
as a key reactant in such three-component reaction is reported for the first time to provide such novel
multicomponent cascade. The superiority of the reported methodology is the operational simplicity,
diversified scope and gram scale synthesis along with very good green matrices scores which

highlights the synthesis protocol for industry as well.
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CHAPTER-4

Diversity Oriented Synthesis of Bis(benzochromenone) Derivatives

In this chapter, microwave-assisted DABCO-catalysed synthesis of bis(benzo[flchromen-3-one)
derivatives are reported. The advantages of the methods is the column free efficient synthesis and
mere filtration provides good to excellent yield without using any harsh reagent.

5 . DABCO (30 mol %)_
' MW, 140 °C, 15 min

mL IPA

R=4-Cl, H, 2-Cl, 2-Br, 4-NOy, 4-OCHj, 2-CI-5-CF,
2-CI-5-NO,, 3-Cl, 2,3-(OCHj),, 3,4-(OCHy),, 4-CHj, 4-Br, 2,3-(Cl); Vield = 61-77%
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CHAPTER-5

Chemistry of Vinyl Esters as Acetaldehyde Surrogates in Some Common Multicomponent

Reactions

In this chapter, the applications of vinyl esters as acetaldehyde surrogates in different well-known
multicomponent reaction are reported. Use of acetaldehyde is limited in synthetic chemistry due to
self-polymerizations or lower stability. In this report, the effective utilization of vinyl esters as
acetaldehyde surrogates in different conditions are explored efficiently to obtain biologically potent
scaffolds. The reported methodology is quite successful to formulate different derivatives like
acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione in moderate

to good yield.
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1.1 Background

The ongoing demand to synthesize a library of diversified heterocycles is due to their vast application
in biological, pharmaceutical and agrochemical fields. [1-6] A heterocycle moiety contains a
heteroatom (N/O/S) in the cyclic ring. [7-12] Various heterocycles have been found as a
pharmacophore in several well-known marketed drugs such as penicillin (1), cloxacillin (1),
cephalexin (111), Levaquin (1V), sulfamethoxazole (V) and 5-F uracil (V1) etc (Figure 1.1). [13-19]

CH,
H H O HN H H's
Ne = H H
5 S C:H3 N - N
I X Vi N/ CHs
O N~/ "CH, N 0
7 y 0 . 5" Cephalexi @
Penicilli ~~0H e ephailexin 0]
o e JIO . Cloxacillin  7~OH i
o) I 0
F COOH F
0-N Osy HN
| N S |
N N H3CJ\/¥H PN |
N\) 0] Sulfamethoxazole NH, H 5-Fluorouracil
4 Levaquin CHs \Y} Vi
v

Figure 1.1 Heterocycles as marketed drugs.

Moreover, the ambit of their activities include antibacterial, anticancer, antitumor, antifungal, anti-
mycobacterial, anti-tubercular, anti-inflammatory, antidepressant, anti-HIV and insecticidal
activities. [20-29] Owing to the pathogenic resistance developed against many of the current drug
molecules, a continuous haunt for new molecules remains in focus. [30-31] A good way to find a lead in
drug discovery is to keep synthesizing novel heterocycles having potent biological action. Furthermore,
heterocycles also act as intermediates for synthesizing various organic molecules. [32-34] Therefore,
considering biological and industrial importance of heterocycles, development of simple, fast, effective
and atom economical methods for the synthesis of heterocycles is in demand. At the same time, the
developed synthetic approach should have advantages like Diversity Oriented Synthesis (DOS), avoiding
complex intermediate separation or protection of functional groups, minimum process waste, adopting
one-pot methods instead of step-wise synthesis and most importantly environment friendly chemicals and

conditions instead of expensive reagents and harsh conditions. [35-39]


https://pubs.rsc.org/en/content/articlelanding/2015/ob/c4ob01380h#cit1
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Several methodologies viz. Solid Phase Organic Synthesis (SPOS), Microwave-Assisted Organic
Synthesis (MAOQOS), use of polymer supported reagents, click reactions and Multicomponent
Reactions (MCRs) are some of the smart strategies to construct heterocycles. [40-46]
Multicomponent reaction methodologies amongst them, have drawn tremendous attention of
chemists over the last few decades for its synthetic efficiency and simple reaction design. [47] The
merit of MCRs lie in forging multiple bond formation in a single operation. [48] In the present thesis,
all the chapters are designed having a focal theme of developing multicomponent reactions (MCRs)

strategies to synthesize diversified heterocycles.

1.2 Multicomponent reactions: a smart and effective route for synthesis

Multicomponent Reactions (MCRs) are a powerful, fast and effective target-guided synthetic
approach which have the ability to construct structurally diverse moieties through a single
transformation in a short reaction time from readily available starting materials. [49-51] MCRs are
defined as a single step one-pot convergent transformation to design the target molecules effectively.
A multicomponent reaction, as the name suggests, consists of more than two reactants getting
transformed into final product. [52] MCR-chemistry has several advantages like i) operational
simplicity, ii) high convergence efficiency, iii) facile automation, iii) one step operation to save time
and resources, iv) large number of diversity oriented synthesis in short time, v) low E-factor and
high atom economy and most importantly vi) formation of multiple bonds in a single step thus
possessing high Bond-Forming-Index (BFI). [49, 53] MCRs show high synthesis impact as it
provides higher overall formulated yields in shorter reaction time in comparison to stepwise
synthesis and consequently the process reduces costs, time, use of solvents, purification steps, energy
and most importantly generation of waste products. [54-56] For all the attributes as manifested
above, development of MCRs fall in the realm of “green chemistry”. The twelve principles of “Green
Chemistry” are sketched in Figure 1.2. [57-58] The idea of developing an ideal green synthetic
methodology is associated with picking up appropriate reagents and proper selection of solvents and
catalysts. [59-63] Development of environment friendly synthetic MCR approaches to construct

biologically potent assemblies is the key point of this entire thesis work.
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Figure 1.2 Twelve principles of green chemistry.

1.3 Multicomponent reactions: a long journey over the years

In general, multicomponent reactions are mainly classified into two distinct classes; non-isocyanide-based
MCRs and isocyanide-based MCRs which is commonly known as IMCRs. The history of development
of MCRs is quite vast and may not be fit the proportion of the present work for inclusion. However, a

brief chronology of the multicomponent reactions are sketched in Figure 1.3. [42, 64-65]
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MULTICOMPONENT REACTIONS

Petasis Reaction
Groebke-Blackburn?® 1993
Bienayme Reaction _

1998

Povarov Reaction
e 1963

Passerini Reaction Ugi Reaction

—~—

1959

Mannich Reaction

1912
Kabachnik-Fields

Reaction

Biginelli Reaction
1952

1891

Hantzsch Reaction
1881

Strecker Reaction ‘
1850

Figure 1.3 Discovery of multicomponent reactions over the years.

Many of the MCRs remained dormant after their discovery and over the last few decades, have gained a
tremendous resurgence. Amongst them, Strecker (3-CR, 1850), Hantzsch (4-CR, 1881), Biginelli (3-CR,
1891), Mannich (3-CR, 1912) and Povarov (3-CR, 1963) reactions are non-isocyanide based MCRs
whereas Passerini (3-CR, 1921), Ugi (4-CR, 1959) and Groebke-Blackburn-Bienaymé (3-CR,
1998) reactions are popular IMCRs (Figure 1.4). [64, 66-68] Later on, several modification and post

effect modification have been brought about in some of these reactions by several authors. [69-72]
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(General reaction diagram J
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Figure 1.4 Examples of well-known multicomponent name reactions.
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1.4 Microwave chemistry: a high rated organic synthesis approach

Microwave-Assisted Organic Synthesis (MAQOS) has emerged as an efficient approach to formulate
diversified heterocycles in short reaction time. [73-76] The MAOS gained popularity in synthetic
community because of its several advantages over conventional methods by overcoming problems like
low yields, prolonged reaction time, reproducibility and formation of side products. [74, 77] In general,
normally the chemical transformations in conventional methods occur by non-uniform conductive heating
of the reaction mixture in which the reaction vessel is heated more than the reaction mixture. Whereas,
due to direct electromagnetic in microwave irradiation in MAOS, the reactant molecules and most
importantly the solvents are heated directly which result in better outcomes. Most of the microwave ovens
operate at 2.45 GHz which is designed in this manner in order not to interfere with the wavelength
generally used for telecommunication and radars. [78-79] In MAQS, the choice of solvents is very critical
in deciding the fate of the reaction. The important parameters for a solvent to perform effectively in
microwave reactors are dielectric constant (¢'), dielectric loss (¢”) and most importantly loss tangent
(tan 0). Notably, the solvent having high loss tangent value can absorbed the microwave radiation more

in comparison to lower one (Table 1.1). [79]

Table 1.1 Solvents and their loss tangent (tan &) values.
Solvent tan o Solvent tan o
Hexane 0.02 1,2-Dichloroethane | 0.127
Toluene 0.04 Dimethylformamide | 0.161
Dichloromethane | 0.042 | Acetic acid 0.174
Tetrahydrofuran | 0.047 | Methanol 0.659
Acetone 0.054 Isopropyl alcohol 0.799
Acetonitrile 0.062 | DMSO 0.825
Chloroform 0.091 Ethanol 0.941
Water 0.123 | Ethylene glycol 1.35
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Over the years, there are plenty of reports for microwave-assisted synthesis of different classes of
heterocycles viz. triazoles, tetrazoles, quinolines, oxazines, benzazepines, substituted 2-
aminopyridines, spirooxindoles, pyrans and pyrroles etc. [80-85] For example, Van der Eycken and
co-workers (2004) reported microwave-assisted synthesis of diversified 1,4-disubstituted-1,2,3-
triazoles (Figure 1.5). [86] The three-component reaction of sodium azide (21), alkyl halides (20)
and alkynes (22) provided the desired product 23 in good to high yields (81-93 %) in microwave
heating at 125 °C (two derivatives at 75 °C) for 10 to 15 minutes.

R 4
Cu(0), CuSOy,, MW >:{
R X + NaNg + =—R? > N. R’
20 o ‘N o t-BuOH:H,O (1:1), N\N/N\/
- 75-125 °C, 10-15 min 23
X =Erig,! Yield = 81-93 %
R =H, CgHs, 4-NO,C¢Hy, 2-NO,CgHy, 14 examples
3,4,5-(CH30)3C¢Hs, 4-CNCgHy, 3-Cl-4-CH30CgH,, Benzyl
R2 = HO(CH,), , (CH3),HOC, CsH15(HO)CH, C,Hs0(CO),
(CH3)sSi

Figure 1.5 Microwave-assisted synthesis of triazoles.

Later on, Chebanov et al. (2007) described a one-pot three-component reaction of aromatic
aldehydes (1), cyclic 1,3-diketones (25) and 5-aminopyrazoles (24) to synthesize diversified 5a-
hydroxy-4,5,5a,6,7,8-hexahydropyrazolo[4,3-c]quinolizin-9-ones  (Figure 1.6). [87] The
microwave-assisted condensation reaction was carried out in a strong basic condition to construct
the final product 26 in low to good yields (32-75 %). The reaction proceeded through ring opening
of 1,3-diketones (25) followed by cyclisation in the presence of a base to provide the desired product
26.

o R? o 0
N\ EtOH, KOH/EtONa
o+ NH> + >

R' H N~N MW, 100-150 °C,

! H 24 SR WR3 20-30 min -
3
R" = CgHs, 4-FCqHy, 4-BrCqHy, 4-CHaCoHy, 4-CH30C4H, vielg =28 5
R2 = CHj, CgHs 11 examples
R3=H, CH,

Figure 1.6 Microwave-assisted synthesis of quinolizinones.
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Further, Torok et al. (2010) reported a microwave-assisted domino reaction in which aldehydes (1)

and anilines (10) reacted first to form imines which further reacted with aryl alkynes to construct
substituted 5-aza-7-deaza-adenine (27) (Figure 1.7). The three-component reaction was performed

under microwave irradiation at 100 °C for 10 minutes using montmorillonite K-10 as acid catalyst to

provide final product 27 in good to high yields (56-96 %). [88]

R3
NH, | \
JOL L X . K-10, MW x
R!™ “Hela "~ 2 100 °C, 10 min R2 TN
R i
1 10 R3 22 " .
R" = 2-BrCgH,4, 4-CH;3CgH,, 4-CNCgHy, 4-NO,CgH,,4-FCgH,, 27
3,4-(Cl)2,CeH3, 2-Naphthyl, C¢HsCO, Cyclohexyl; Yield = 56-96 %
R? = 4-CH,, 4-Cl, 4-Br, 4-CF3, 4-CN, 4-NO,, 4-CH,CH,, 2-F; 27 examples
R3 = H, 4-CHj, 4-F, 4-OCH,4

Figure 1.7 Microwave-assisted synthesis of 5-aza-7-deaza-adenine.

In 2017, Dolzhenko and co-worker developed a microwave-assisted three-component reaction of
triethyl orthoformate (29), 2-aminoimidazoles (28) and cyanamide (30) to synthesize 4-
aminoimidazo[1,2-a][1,3,5]triazines (31) (Figure 1.8). The reaction mixture was microwave

irradiated for 20 minutes at 150 °C to give final products in good to high yields (71-92 %). [89]

28 H

R1
3
/1 + HC(OEt); + NC—NH -
HZN/QN 8 AcOEt

) &

R1 / N™ =N

L
31

Yield = 71-92 %

MW

29 30

150 °C, 20 min

R! = 4-CICgH,, CgHs, 4-BrCgH,, 4-CH;CgH,, 4-CH;0CgHy,

13 examples

4-CgHsCgHy, 4-OH-3-CH30CgH3, 4-1CgH,, 4-FCgH,, 2-CICgH,,
3-NO,CgHj, 3,4-(CH30),CgHs, 2-Naphthyl

Figure 1.8 Microwave-assisted synthesis of triazines.
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1.5 Liquid-assisted grinding: a green approach towards sustainability

In a pursuit towards greenness, mechanochemistry is already recognized by the scientist community as a
tool for providing cleaner, less hazardous and sustainable chemical transformations in comparison to
conventional synthesis. [90-91] Mechanochemistry entails mechanical energy for transformations via
mechanical forces induced in several ways viz. impact, stretching, shearing, compression and mostly by
grinding or milling processes. [91] The mechanical process can be manual as normally done by mortar
and pestle or instrumental by using ball milling. From a reaction point of view, this mechanical friction
can grind reactants into small particle sizes, generating a large surface area to force the starting materials
come closer to each other, thereby accelerating the contact between reactants. Further, this mechanical
transformation can be achieved by “solvent-free” strategy or by adding nominal amount of a solvent as a
promoter. The later is known as Liquid-Assisted Grinding (LAG) in which generally small quantity of
liquid is added to improve the synthetic efficiency by minimizing solvent waste leading to better yields.
[92] The reason behind the yield enhancement is mainly because of better mixing of reactants leading to
higher reaction kinetics. Normally, LAG parameter () has been introduced to define a liquid-assisted

reaction for which the value lies between 0 to 1. [93]

There are several reports of multicomponent reactions performed under liquid-assisted grinding to
furnish diversified scaffolds. For example, Juaristi and co-workers (2016) developed a liquid-
assisted high-speed ball milling (HSBM) strategy to formulate Ugi-4CR adduct 17 from the reaction
of aromatic aldehydes (1), isocyanides (14), amines (10) and carboxylic acids (15) (Figure 1.9). The
four-component reaction was catalysed by indium(l1) chloride (2 mol %) in an agate jar for 45-180
minutes to provide 46-74 % of yields. [94]

-

HSBM, 25 Hz,
MeOH (LAG), R' O
i .\ R2\NC RS JOJ\ InCly (2mol %) Rz_H\{H\ J,
R SH + NHz 4 pa ol 45 min - 3 h N™ R
1 14 10 15 o R?
R1 = CGHS’ 4-C|C6H4, 4—BrC6H4, 4-CF3C6H4, 4-N02C6H4, 4-CH3OC6H4, 17
4-CH3CGH4, 4-(CH3)2N06H4, 2—Br—4,5—(O-CH2—O)CGH2, 4-PhC6H4, Yield = 46-74 %
2,3-(C4H,4)CgH3,1H-pyrrole-2-yl,Cyclohexyl 16 examples
R? = tert-Butyl, Cyclohexyl; R® = Propagyl, Benzyl
|R* = CICH,, CgH;

Figure 1.9 Liquid-assisted grinding to synthesize Ugi-4CR products.
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Salunkhe et al. (2018) reported 2,2,2-trifluoroethanol (TFE) catalysed liquid-assisted
mechanochemical transformation to construct diversified chromenes (Figure 1.10). [95] The three-

component cycloaddition reaction was performed for 11-14 minutes through manual grinding to

furnish the final products in good to high yields (80-88 %).

0]

o)
R“_‘i\jj\H TFE, 11-14 min
ZS0oH Liquid-Assisted
1 Hand Grinding
Yield = 80-88 %
12 examples

)

2 NH
O N/gO

H 35a

R' = H, 5-Cl, 5-OCHjs, 5-CHj3, 5-OH, 3-OH,
5-Br, 3-OCH,CH3

Figure 1.10 Liquid-assisted grinding to synthesize diversified chromenes.

In 2016, Raval et al. reported the basic ionic liquid-assisted mechanochemical synthesis of
diversified 3,4-dihydropyrano[c]chromenes (Figure 1.11). The one-pot three-component reaction of 4-
hydroxycoumarin (37), malononitrile (38) and substituted aromatic aldehydes (1) provided the desired
product 39 in high yields (89-95 %) using hand grinding in catalytic DBU-moderated ionic liquid as a

promoter. [96]

11



CHAPTER1 |

N

NH,
OH CN
o CN [DBUJ[ACc] o X
X N J\ . < (3.03 mol %) S ]
1 -
oo R"H TN grinding, 2-13 min R
37 1 38 o o 39
R = 4-CICgH,, CgHs, 4-FCgHa, 4-CHaCgHg, 4-CH50CgH.,
4-NO,CgH., 3-NO,CqHy, 2-CICH Yield = 89-95 %
2LeMa, 2L6Ms, 64, 11 examples
3,4'(CH30)2C6H3, 4-(CH3)2NC6H4, 2-Furany|

Figure 1.11 Liquid-assisted mechanochemical synthesis of chromene heterocycles.

1.6 Pyran framework: biological importance and synthesis

Pyrans are oxygenated heterocyclic scaffolds which show a wide range of biological and medicinal
applications. [97-100] Moreover, pyran framework is the core structure of many well-known molecules

viz. benzopyran, napthopyran, coumarin, chromone, xanthene, xanthones etc (Figure 1.12). [97]

2H- Pyran O 2H-1- Benzopyran 2H- Naphtho[1 2-bJpyran
VIl 4H-Pyran 4H-1- Benzopyran
ﬁOﬁ Viil Ofl
2 Coumarm Dlhydrocoumarln Chromone
Pyran-4-one Pyran 2 -one XVI
Xl X
Chroman- 4 -one 3H- Benzo[f]chromen -3-one Xanthene Xanthone
XVl Xviil XIX XX

Figure 1.12 Pyran framework in heterocycles.
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Most importantly, pyran is the basic unit of many naturally occurring flavonoids with potential

biological activities like antioxidant, anti-inflammatory activities (Figure 1.13). [101-103]

Myricetin

Ellagic acid Kaempferol XX
XXIV

XXI XXl

Chrysin Quercetin Luteolin
XXV SLEEC] oA OH O “xxwil

Figure 1.13 Naturally occurring biologically active pyrans.

Similarly, pyrans fused with coumarin or naphthoquinone structures are already recognized as promising
chemical class of compounds showing a wide range of biological activities like anticancer, antiviral,
antimicrobial, cytotoxic, anti-inflammatory, anti-HIV, antioxidant, antigenotoxic, antibacterial and
antirheumatic activities (Figure 1.14).[97, 99]

MeO
) (@)
N >
Seselin
0" "0 0" "0
Cyclocoumarol Beta-lapachone Pterophyllin Il
XXIX XXX XXXI
OH O Me |
CURSL F
)
O 0]
Kalafungin O  Alpha-lapachone Orixalone D

Figure 1.14 Biologically important pyran fused heterocycles.
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Owing to their widespread biological applications, synthesis of novel fused pyrans or developing greener
efficient protocols for their synthesis are in demand. In the literature, several synthetic methodologies have
been reported to access the fused pyrans using MCR reaction sequence and some of the noted ones are

described below.

Shaabani and co-workers (2009) described a one-pot multicomponent reaction of aldehydes (1),
malononitrile (38) and C-H-activated acids (40 or 42) to access diversified 4H-benzo[g]chromenes
(41) and dihydropyrano[2,3-g]chromenes (43) (Figure 1.15). The reaction was performed at room
temperature for 24 hours using 10 mol % EtsN to provide functionalized chromenes in good to high
yields (60-86 %). [104]

R1 (@)

7S OH 0
OH
¢ (A ol
NC H
R2 40 (6]
H,N BN CN >
R2 n=2 n |/ w + n n=1
Et;N (10 mol %)| R 1 380N EtsN (10 mol %)
CH4CN, rt, 24 h CH4CN, rt, 24 h
. R R' = H, 4-CHj, 4-Cl, 3-OCHg, 4-Br, 3-Br, 2-Cl, 4-OH,
Y'g'd = 60-|73 % 3-NO,, 4-NO,, 4-OCH3,2-CHg, 2-OCH3, 5-Br, 5-OCH, Yield = 65-86 %
examples R2=H, OH 14 examples

Figure 1.15 Triethylamine-catalysed synthesis of chromenes.

Banerjee et al. (2013) reported ZnO nanoparticle catalysed one-pot synthesis of
tetrahydrobenzo[b]pyrans and dihydropyrimidones (Figure 1.16). [105] In this report, the three-
component reaction of aromatic aldehydes (1), 1,3-diketone (25b) and malononitrile (38) was performed
to formulate 4H-pyrans (44) at room temperature in excellent yields (94-98 %). On the other hand, the
synthesis of dihydropyrimidones from aldehydes (1), urea/ thio-urea (7) and ethyl acetoacetate (5b) was
also reported at 70 °C to give the final product 45 in good to excellent yields (86-95 %).

14
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0O R )XL o R
CN
EtO e 7 N il . ]
ka R? 0~ "NH,
¥ e M M 44
Tetrahydrobenzo[b]pyrans
Dihydropyrimidones Z”O NPs y [blpy
X=0. S ZnO NPs (10 mol %) Yield = 94-98 %
O (10 mol %) EtOH:H,0 (1:1) 10 examples
Yield = 86-95 % EtOH, 70 OC, 1h rt. 3-5 min
6 examples -
= 4-CICgHy, CgH5, 4-NO,CgH,, 4-OHCgH,4, 3-OHCgH,, 4-FCgH,, 2-CICgH,4, 3-CICgH,,
3,4-(CH30),CgH3,3-OCH3-4-HOCgH4 )

Figure 1.16 ZnO nanoparticles catalysed synthesis of 4H-pyrans and dihydropyrimidones.

In 2016, Choudhury and coworkers reported microwave-assisted synthesis of diversified fused 4H-pyrans

using different 1,3-dicarbonyl variants, arylglyoxals (46) and malononitrile (38) as substrates (Figure

1.17). The reported methodology provided quinolone fused pyrans (48) in good to excellent yields (79-

93 %) under microwave heating at 110 °C for 10 minutes using ethanol as a solvent. Likewise, the

synthesis of pyrans fused with naphthoquinones, coumarins and pyrones was also mentioned in the same

report under similar microwave irradiation condition to give the respective final product 50 in good to

high yields (70-91 %) (Figure 1.17). [99]

OH
NH, OH S
0 NN KL T N
iy i OH
I//—\ R1 el - \O R1 3 CN 47a |
' MW, OH CN MW
R, XA O )
=P 110 °C, 10 min 46 38 | 110°C, 10 min 48
Yield = 70-91 % oy EtOH Yield = 79-93 %
10 examples 6 examples
) OH C6H5, 4- FCGH4 4- CH3OCGH4, 4- N02C6H4,
,” \ dl 3 4- (O CH2 )C6H3, 6- CH3O -2- Naphthyl

Figure 1.17 Microwave-assisted synthesis of diversified fused 4H-pyrans.
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Brahmachari et al. (2014) described a urea-catalysed one-pot synthesis of pyran annulated
heterocycles from reaction of C-H activated acids, aldehydes (1) and malononitrile (38) (Figure
1.18). The reaction was reported at room temperature using catalytic loading of urea (10 mol %) in
aqueous ethanol to provide the core structure 2-Amino-3-cyano-4H-pyrans (51/ 53) in good to
excellent yields (80-97 %) and also pyran-fused pyrazoles (52) in good yields (84-86 %) (Figure
1.18). [106]

0O R
OH N
M N 5
" N ‘ ﬂ g o K OJYI
O eN : N ) CN MORQ O~ "NH,
-0 L+ < 5 51
/r- \ u 1 i - -
: R' Urea (10mal%) | R¥ M N | Urea (10 mol %) Y.Zkixazr;ne %2 0%
I \o 53 EtOHHzo (11), rt 38 EtOHHZO (11)’ p
3-22h [
Yield = 80-97 % 5-12h

2_
45 examples R = CHjs, C;Hs, C(CH3)s
R! = 4-CICgHy, 2-CICgHa, CgHs, 3-BrCgHy, 4-CHyCgHy, 4-CF3CoHa, 4-CNCgHa,  NH,- NH2 “NHpNH,.H,0 N

4-CH30CgHy4, 3,4-(0-CH,-O)CgH3, 3,4,5-(CH30)3CgH,, 4-CHOCgH,, 4-NO,CgHy,
3-NO,CgHy, 2-NO,CgHy, 4-OHCgH,4, 4-FCgHy, 4-OH-3-CH30CgH3, 2,4-(Cl),CgH3,
4-Pyridyl, 2-Furfuryl, (CH3),CH, CH3(CH),

OH o £
/,_\\L OH Uﬁm SN J\ -
e OO m £ e
-0 40 o Y 35b

Yield = 84 86 %
2 examples

25b

Figure 1.18 Urea-catalysed three-component reaction to access pyrans.

The plausible mechanism for the above mentioned reaction is sketched in Figure 1.19. The urea
catalysed Knoevenagel condensation reaction of aldehyde (1) and malononitrile (38) formed the
adduct Il which was further reacted with enolate to form of the C-H-activated acid to give
intermediate I11. The intermediate 111 either in presence of aqueous ethanol cyclised to give the
product 53 or else got tautomerised to another intermediate 1V which provided the final desired

product 53 on further cyclisation.
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07 CN
aq EtOH O H
R
oWV 1

©
0 NC\/(;BN 0 NH
; — 38 . CN K
R 1 H aq. EtOH o CN
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N CN ,”
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A EtOH A R’
.’ aq. Et '\ urea .I EtOH
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Figure 1.19 Plausible mechanism for the synthesis of 2-Amino-3-cyano-4H-pyrans.

Tu and co-workers (2014) presented the three-component reaction of C-H-activated acid, aldehydes (1)
and 2-aminoprop-1-ene-1,1,3-tricarbonitrile (54) to furnish fused pyrano[2,3-b]pyridine derivatives (56)
(Figure 1.20). The reaction was carried out under microwave irradiation at 80 °C for 16-20 minutes using

triethyl amine as a base and ethanol as a solvent to access the final desired pyrano heterocycles 56 in good

to excellent yields (74-94 %). [107]

47b H
= CgHs, 4-CICgH,, 2-CICgH,, 2,4~(Cl),CgHs, 3,4-(Cl),CgHa, 4-BrCgHy, 4-CH3CgH,, 4-CH30CgH,,
2-CH30CgH,, 2,3-(CH30),C¢H3, 3,4-(CH30),CgHs, 3,4,5-(CH30)3CsH,, 3-CHOCgH,, 4-NO,CgH,,
4-(CH3),NCgHy, 3,4-(OH),CgHs, 4-FCgH,, 4-OH-3-NO,CgH3, 5-CI-2-BrCgHs, 5-OH-4-CH30-2-BrCgH,,

(0]

H

25b 25a

OH . NH, R" ©
Et3N (1 equiv.) |
NC._ _CN 3 NC ¥
X H\[(R1 | MW, EtOH  _ = 2 )
= PN i CN  gooc, 16-20 min S o
g O 4 HyN : i H,NT N7 Y07 -
OH 56

Yield = 74-94 %

(0]
ij Q 50 examples
, O 0}

3,4-(CH3),CgHs, Benzyl, 2-Pyridyl, 2-Thiophenyl, 3-Br-2-Thiophenyl, 4-(benzo[d]oxazol-2-yl), CH3(CH,), |

Figure 1.20 Microwave-assisted synthesis of pyrano[2,3-b]pyridine derivatives.
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The plausible mechanism for the above described three-component reaction is outlined in Figure
1.21. The base promoted Knoevenagel condensation reaction of aldehyde (1) and 2-aminoprop-1-
ene-1,1,3-tricarbonitrile (54) provided the intermediate I. The nucleophilic attack of C-H-activated
acid (55) to the intermediate | formed another intermediate 11 which upon tautomeration followed

by intramolecular double cyclisation formed the final pyrano heterocycles 56.

Figure 1.21 Plausible mechanism for the synthesis of pyrano[2,3-b]pyridine heterocycles.
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1.7 Spirooxindole framework: biological importance and synthesis

Indole is the basic structural unit frequently found in heterocyclic scaffolds. Spirooxindoles are also
brought into attention because of their unique fused structure. [108-111] Generally, spiroannulated
ring present at the third position of indole is paid a lot of attention due to its virtue of being
structurally rigid leading to conformational restrictions of the heterocyclic motifs. [112]
Spirooxindoles are found in a number of bioactive natural products showing wide range of biological
activities (Figure 1.22). [108, 109, 111]

' i . ] Pteropodine Isopteropodine
Spirotryprostatin A Spirotryprostatin B XXXVIII XXXIX
XXXVI XXXVII SCH
E N 3
“= OMe e
% S
W
N y STes H N N Sp?irobrassinin
i H
H XXXX H Elacomine XXXXII

XXXXI

Rhynchophylline

Figure 1.22 Naturally occurring biologically active spirooxindoles.
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Synthesis of spirooxindoles also possess a number of biological activities viz. antimalarial,

antitumor, inhibition activities, anticancer, anti-inflammatory, antimicrobial activities etc. (Figure

1.23). [113-117]

Cl

HN

Cl
T o O
N

Antimalarial H
XXXXIH

XXXXVII

Anticancer

Antitumor
XXXXIV

XXXXVII

HO

p38a inhibitor
XXXXV

Anti-inflammatory
XXXXIX

(O

CB2 receptor
agonist

XXXXVI

N
N\
Antimicrobial
XXXXX

Figure 1.23 Biological applications of spirooxindoles.

Due to their wide range of biological and pharmaceutical applications, the fused spirooxindoles have

been recognized as attractive synthetic targets. A number of literature reports can be traced for

developing new synthetic routes or constructing novel spiro-fused heterocycles. Some of the noted

ones are illustrated below.

Zhang and coworkers (2017) reported a visible light promoted one-pot three-component reaction to

access spirooxindole-fused pyrans 58 from the reaction of C-H-activated acid, isatins (57) and

malononitrile (38) (Figure 1.24). [118] The reaction was irradiated at room temperature for 4-6 hours

under white visible light in water-ethyl lactate solvent mixture to form the final fused spirooxindoles
58 in good to excellent yields (82-96 %) (Figure 1.24).
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Figure 1.24 Visible-light induced synthesis of spirooxindole fused pyrans.

The plausible mechanism for the three-component reaction is drawn in Figure 1.25. The
Knoevenagel condensation reaction of isatin (57) and malononitrile (38) in the presence of visible
light provided the intermediate 1. The intermediate formed another radical intermediate 111 in
presence of light which reacted with activated 2-hydroxynaphthalene-1,4-dione to give intermediate

IV. Later on, the intermediate 1V provided the final targeted product 58 followed by visible light

promoted intramolecular cycloaddition reaction.

photochemical
cyclisation

white
Ilght

photochemlcal photochemlcal NC
condensation

activation
57 reaction

Figure 1.25 Plausible mechanism to access spirooxindole fused pyrans.
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Meshram et al. (2017) reported the catalyst free microwave-assisted synthesis of diversified
spirooxindoles in good to excellent yields (70-93 %) (Figure 1.26). The three-component reaction
of amino acids (59), isatins (57) and but-2-ynedioates (60) under microwave heating at 80 °C for 10
minutes in aqueous medium provided tetrahydrospiro[indoline-3,3-pyrrolizine]1,2-dicarboxylate
(61). Inaddition, formation of n-substituted oxindoles 63 was confirmed when the fourth component
phenacyl bromide (62) was added to the above reaction mixture and irradiated at slightly higher
temperature at 100 °C for 15 minutes. [119]

0 o)
R4
OR3 (0] o R%OH R4 )
3
HNC L ors RSJK/Br N NH, 59 MW, 80 °C HN it
N 62 RIL o o Mug MV OO I or3
| .
R 00 " mw, 100°C Z N * H,0, 10 min gl ™ 0
N H.0. 15 mi 57 R? _j =~ TOR® o, o
63 20, min R30 = N
oﬁ) R2=H 60 Rz 61
RS g Yield = 70-93 %
Yield = 70-91 % R'=H, 5-Cl, 5-F, 5,7-(CHg),, 5-OCH3, 5-NO,; R? = H, C¢Hs; 28 examples
29 examples  R3 = OCHj, OCH,CH3. R* = H, (CH3),CH, Benzyl, (CH3),CHCHy;
R5 . CGH5| 4-PhC6H4, 4-Naphthy|-C6H5, 4-C|CGH4, 4-CH3OC6H4, 4-CH3C6H4

Figure 1.26 Microwave-assisted synthesis of spirooxindoles in aqueous medium.

The mechanism for the above described reaction is sketched in Figure 1.27. The condensation by
reaction of isatin (57) and amino acid (59) followed decarboxylation provided the charged imine
intermediate 1l. Next, the cycloaddition reaction of intermediate Il with but-2-ynedioates (60)
provided the targeted product 61 which on further reaction with phenacyl bromide (62) resulted in

formation of n-substituted oxindoles 63.
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Esmaeili and co-workers (2018) demonstrated a 12-tungstophosphoric acid (HsPW12040) catalysed
domino three-component reaction to access spiro[benzo[4,5]thiazolo[3,2-a]Jchromeno[2,3-d]pyrimidine-
14,3'-indoline]-1,2’,13(2H)-trione (65) from isatins (57), 1,3-cyclohexanediones (25) and 2-hydroxy-4H-
benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones (64) in good to high yields (60-90 %) (Figure 1.28). [120]

The condensation reaction was performed for 10-12 hours under reflux using 3 mol % HzPW1,040and

CHAPTER 1 |

OR3

HN | OR3
(=00
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Figure 1.27 Plausible mechanism for the synthesis of spirooxindole moieties.

acetonitrile as a solvent.

S
n N O + ’ \?\l/ + ii\l\ >
Z N R3 o o CH3CN, reflux

R" = H, 5-Cl, 5-Br, 5-CH3, 7-CHj
R?=H, CHz; R*=H, Br; R* = H, CH,

R2
57 R O 64 25 10-12 h

Yield = 60-90 %
10 examples

Figure 1.28 H3PW12040-catalysed access to diversified spirooxindoles.
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Choudhury et al. (2019) reported the microwave-assisted synthesis of two different class of fused
spirooxindoles from similar starting materials viz. isatin (57), 4-hydroxycoumarins (37) and
aminopyrazole (66) by changing solvent and heating condition (Figure 1.29). [114] The synthesis of
spirooxindoles fused with pyrazolo-tetrahydropyridinones (68) was reported under microwave irradiation
of reaction mixture at 85 °C for 25 minutes in acetonitrile medium by ring opening of 4-hydroxycoumarins
(37). Whereas, the microwave irradiation of the same reaction mixture at 130 °C for 25 minutes in acetic
acid provided spirooxindole fused coumarin-dihydropyridine-pyrazole/ isooxazole tetracycles (67) in
good to excellent yields (81- 96 %) (Figure 1.29).

N-X
|
ri-L A nh, R
0 66
o, + OH | cHycooH
N MV;/585. °C |R' =) 0 TN MW, 130 °C
min 1 Nz R3// s 25 min N f
R 37 X=NH, O x
Yield = 82-89 % R'=H, 5-Cl, 5-F, 7-Cl, 5-NO,, 5-OCH3, 5-Br; Yi?id 3 81-9:6 %
10 examples R2 = H, CH3, CgHs; R® = H, 6-CHj, 6-Cl; examples
R* = CHj, CgHs, 4-BrCgH,

Figure 1.29 Microwave-assisted three-component reaction to access spirooxindoles.
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1.8 Abstract and objective of the thesis

Heterocycles containing N, O and S atoms in the ring, generally show promising biological
applications. Synthesis of diversified heterocycles are in high demand due to their wide applications.
To fulfill the ongoing demand, the main role of a chemist is to supply novel heterocycles which can
be further screened to find out their biological and pharmaceutical applications. Multicomponent
reactions (MCRs) are turned up to be an efficient synthetic strategy to deliver such structural diverse
scaffolds in time and help building up chemical libraries with larger scope. MCRs are recognized as
the chemical transformations of more than two components mainly operated in one-pot to construct
the desired products. The MCR strategy has several advantages like operational simplicity, higher
atom efficiency and diverse scaffolds generation in short reaction time over single step operation.
Several tools and techniques are used to develop a MCR. protocol however application of
mechanochemical hand-grinding and microwave irradiation in developing new MCRs strategies are
presented in this chapter to synthesize functionalized heterocycles. Amongst heterocycles, pyrans
and spirooxindoles are worth mentioning due to their wide range of biological and medicinal
activities. The chapter also includes a brief description of biological importance and several
synthesis procedures of pyrans and spirooxindoles. In short, the background of the present research
work is highlighted in this chapter. However, the previous literature survey revealed that there is still
scope not only in synthesizing novel biologically relevant heterocycles but also in developing
greener and efficient methodologies to access diversified scaffolds. Thus, the presented work is
focused on developing efficient green synthetic protocols for synthesis of structurally diverse
heterocycles like pyrans, spirooxindoles, bis(benzo[flchromen-3-one), acridione, thioxanthendione,

bis(hydroxycyclohex-2-enone), tetrahydroguinazolindione derivatives.

In the second chapter, DABCO-catalysed liquid-assisted grinding for the synthesis of novel
dihydrobenzo[f]pyrano[3,2-c]chromenone derivatives has been described. The reported
methodology is simple, facile and mild to construct such multicomponent cascade. The benefits of
developed one-pot protocol includes diversified scope, excellent yields and high reaction throughput

apart from excellent green matrices scores.

In third chapter, a urea-catalysed easy and facile microwave-assisted protocol is described to
construct  spiro-benzo[f]pyranochromenes in higher vyields. The use of 1-hydroxy-3H-

benzo[f]chromen-3-one as a key reactant in such three-component reaction is reported for the first
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time to provide such novel multicomponent cascade. The superiority of the reported methodology is
the operational simplicity, diversified scope and gram scale synthesis along with very good green

matrices scores which highlights the synthesis protocol for industry as well.

In fourth chapter, microwave-assisted DABCO-catalysed synthesis of bis(benzo[f]lchromen-3-one)
derivatives are reported. The advantages of the methods is the column free efficient synthesis and

mere filtration provides good to excellent yield without using any harsh reagent.

In fifth chapter, the applications of vinyl esters as acetaldehyde surrogates in different well-known
multicomponent reaction are reported. Use of acetaldehyde is limited in synthetic chemistry due to
self-polymerizations or lower stability. In this report, the effective utilization of vinyl esters as
acetaldehyde surrogates in different conditions are explored efficiently to obtain biologically potent
scaffolds. The reported methodology is quite successful to formulate different derivatives like
acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione in moderate
to good yield.

The objective of the present work is highlighted in Figure 1.30.

v LAG-synthesis

v Novel heterocycles
v DABCO-catalysed
v Column-free =

| )
OBJECTIVES " U r

MCRs

% Green Protocols

MW-synthesis
Novel heterocycles
Urea-catalysed
Column-free

Gram scale
synthesis

" MW-synthesis
DABCO-catalysed
Column-free
Diversified scope

Figure 1.30 Objective of the thesis work.
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2.1 Introduction

Naturally occurring coumarins are known to exhibit various biological activities such as insecticidal,
anticoagulant, antihelminthic, antifungal, hypnotic, HIV protease inhibition activities. [1-6] In
particular, pyranochromenone is frequently present as a basic skeleton in several naturally occuring
molecules like isoethuliacoumarin A (1), isoethuliacoumarin B (1), ethuliacoumarin A (I11),

pterophyllin 111 (1V), bothrioclinin (V) and cyclocoumarol (V1) etc. (Figure 2.1). [7-9]

Isoethuliacoumarin A Isoethuliacoumarin B Ethuliacoumarin A
HO
) (@) | o
X X
ULy 0T
(0) 19 o” "0 o Ov|
Pterophyllin Il Bothrioclinin

Cyclocoumarol

Figure 2.1 Naturally occurring pyranochromenone.

Similarly, pyranochromenones show a wide range of biological activities, for example, anticancer,
anti-TB, antifungal, analgesic, anti-HIV, anti-inflammatory and cytotoxic activities (Figure 2.2).
[10-18]

(0]
8 s A
(0] Vil ¥ Decursinol angelate

e) Antifungal Anti-inflammatory

© wi Suksdorfin Anticancer
Dicamphanoyl khellactone Anti-HIV
Anti-HIV

Figure 2.2 Biologically active pyranochromenone.

40



CHAPTER 2 |

2.2 Survey of existing methodologies

Many synthetic methodologies have been reported till date in the literature for accessing
pyranochromenone compounds which in general, involve Michael addition of 4-
hydroxychromenones to a Michael acceptor followed by nucleophilic substitution/cyclisation by the
chromene hydroxyl function. Various reagents and substrates have been used using essentially the

same strategy.

Khurana et al. (2010) attempted the base catalysed protocol using 4-hydroxycoumarin (3), aldehydes
(1) and active methylene compounds like malononitrile (2a) /ethyl cyanoacetate (2b) to construct
pyranochromene derivatives (4). The reported reaction provided desired products (4) in good to high

yields (81-94 %) in water under reflux conditon using 10 mol % DBU as a basic catalyst (Figure

2.3). [19]

NH,
R2

1 OH  pBBU (10 mol %) oS
j\ <R Ej\)\l H,0, reflux XN RS

+ + ll
R H CN 5-20 min
oo o Yo 4
2 3

1
Yield = 81-94 %
16 examples

R? = CN, COOEt
R' = 4-CIC4H,, CgHs, 4-BrCgH,, 4-CH;CgH,, 4-CH30CgH,,
4-NO,CgHy, 4-OHCgH,, 4-FCgHy, 3-CICgH,, 2,4-(Cl),CgH3,
4-(CH3),NCgHy4, 2-Furanyl, (CH3),CH, CH3(CH,),

Figure 2.3 DBU-catalysed synthesis of pyranochromene derivatives.

The plausible mechanism of the three-component reaction is depicted in Figure 2.4.
Mechanistically, the reaction proceeds through a DBU catalysed formation of Knoevenagel adduct
A. Next, Michael attack of 4-hydroxycoumarin (3) to A gives intermediate B which is further

cyclized in the presence of DBU to give the final product 4.
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o” ~0
Knoevenagel Catalysed

1
+
2
/\ condensation R
2
R1
NQ
/

Michael
attack

Figure 2.4 Plausible mechanism of DBU-promoted synthesis of pyranochromenes.

On a similar note, in 2013 Dekamin and co-workers synthesized 2-amino-4H-chromene derivatives
(4) using potassium phthalimide-N-oxyl (POPINO) as an organocatalyst in aqueous media under
reflux conditions (Figure 2.5). [20]

NH,
R2
" POPINO (5 mol %) 07 ™S
) R2 B H,0, reflux ] A R
RJLH i <CN . o g 10-35 min NG 4
1 2 3 Yield = 86-98 %
R? = CN, COOEt 14 examples
R' = 4-CICgH,, 4-NO,CgHj, 3-NO,CgHy, CgHs, 4-CH3CgH,,
4-CH30CgH,, 4-OHCgHy, 3-CH30-4-OH-CgHa, 2-Furanyl,
| 2-CICgH,

Figure 2.5 Potassium phthalimide-N-oxyl (POPINO)-catalysed synthesis of pyranochromene

derivatives.
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Later on, Karami et al. (2015) reported nanosilica molybdic acid (nano-SMA) catalysed one-pot
three-component condensation of 4-hydroxycoumarin (3), various aldehydes (1) and malononitrile
(2a) to construct various pyrano[2,3-c]chromenes (4) (Figure 2.6) in good to excellent yield (70-96

%). [21]

NH,
OH  SMA-NPs (5 mol %) o NN
JOL - \\  EtOH:H,0, reflux N
RS~ oN * 18 min- 7.5 h
. A 0”0 o o 4
3 Yield = 70-96 %
R' = 4-CICgH,, 2-CICgHy4, CgHs, 4-CH30CgH,, 3-NO,CeHy, 14 examples
3-BrCSH4, 4-CH3CSH4, 2-C|-6-FCGH3, Thiophene-2-y|,
4-Benzyloxy-CgHy, 4-iso-propyl-CgHy4, 1-Naphthyl, Cyclohexyl

Figure 2.6 Nanosilica molybdic acid catalysed synthesis of pyranochromene derivatives.

Bhosle and co-workers (2018) reported f-cyclodextrin promoted synthesis of diversified
dihydropyranochromenes (4) in agueous media in moderate to high yields (63-93 %) (Figure 2.7).
[22]

NH.,

OH o Cl

JOL <c:N . ©\)1 $-CD (10 mol %) N R
1 & w o r

R' "H CN 0 g H20,60-65°C 0 Np 4

1 2a 3 B0 min Yield = 61-93 %
R" = 4-CICgH,, CoHs, 4-BrCgHy, 4-CHyCoHy, 4-CH3OCeHs 15 examples
4-NO,CqHy, 2-NO,CgHy, 4-OHCgH,, 4-CICgH,, 2-OHCgH,,
3-CHz0-4-OH-CgHg, 3,4-(CH30),CeHs, 4-(CHa),NCgH,

Benzyl, CH5(CH>),

Figure 2.7 p-Cyclodextrin promoted synthesis of diversified dihydropyranochromenes.

In continuation, Shirini and co-workers (2018) reported the synthesis of functionalized 2-amino-3-
cyano-4H-pyrans (4) in water using piperazine as an efficient basic catalyst. Interestingly, the
authors found that a smaller amount of catalyst (22 mol %) was required in heating of the reaction
mixture (method A) whereas a little larger amount of catalyst (58 mol %) ensured that the reaction

went well at room temperature (method B) (Figure 2.8). [23] Moreover, the reaction provided
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competitively higher yields under heating (97-99 %) than stirring at room temperature (92-98 %)

for a longer time.

NH,
Method A: piperazine (22 mol %) 0 X CN
OH H,0, 90 °C «
i <CN ©\/i 15-25 min N R
+ +
R H CN 0" X Method B: piperazine (58 mol %) o Yo 4
1 2a 3 H,0, rt Method A: 97-99 %
60-90 min Method B: 92-98 %
R' = 4-CICgH,, 3-CICgHy, 2-CICgH,, CeHs, 4-BrCgH,, 4-CH3CgHy, 15 examples
4-CH30CgH,, 3-CH30CgH,, 2-CHsOCsH,, 4-NO,CgHa, 3-NO,CgHs,
L 4-OHC6H4, 4-FC6H4, 3-C|C6H4, 4-CNC6H4, 4-Pyrldy|

Figure 2.8 Piperazine-catalysed synthesis of functionalized 2-amino-3-cyano-4H-pyrans.

In addition to the above, there are several other important methods reported using the above
mentioned substrates. A variety of reagents have been used in these transformations, namely, urea
[24], Bi(OTf)3 [25], Cu(OTf)2[26], Ca(OTf),[27], ionic liquid-coated carbon nanotubes [28] and
(CTA)3[SiW12]-Li*-MMT [29] amongst others.

Unfortunately, there are limited reports with 4-hydroxy-2H-benzo[h]chromen-2-one (5) istead of 4-
hydroxycoumarin in the above mentioned three-component reaction. This included a report in 2014,
wherein Zeeb and co-workers synthesized dihyrobenzo[h]pyrano[3,2-c]Jchromenes (6) at room
temperature using triethylamine as a base using aromatic aldehydes (1), malononitrile (2a) and 4-
hydroxy-2H-benzo[h]chromen-2-one (5) as substrates in moderate to good yields (69-85 %) in 5-8
hours (Figure 2.9). [30]

0
0 CN = ]
EtsN

JJ\ + < + OH
R'“™H ©CN 5-10 h, rt

1 2a 5 Yield = 69-85 %
R' = 4-CICgH,, 2-CICgH,, CgHs, 2-CH30CgH,, 4-CH30CgH,, 8 examples
4-NO,CgHy, 2-NO,CgHy, 3,4,5-(CH30)3CgH,

Figure 2.9 Triethylamine-catalysed synthesis of dihydrobenzo[h]pyrano[3,2-c]chromenes.
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Later, Foroumadi et al. (2015) modified this reaction by using catalytic amount of 1,4-
diazabicyclo[2.2.2]octane (DABCO) in ethanol at room temperature for 8-12 hours to construct

diversified benzopyranochromenes (6) (Figure 2.10) in comparatively higher yields (70-90 %). [31]

O CN
DABCO (20 mol %), 0 I
CN o)

JOL + < ot | P, | 0" “NH,
R”™H CN OO OH  g-12h,rt 6
1 2a 5 Yield = 70-90 %

R' = 2-CIC4H,, 3-CIC4Hy, 4-CICgHy, 2,3-(Cl),CeHs, CeHs, 18 examples
2-CH30CH4, 3-CH0CsH,, 4-CH30CeH,, 2,3-(CH30),CeHs,
3,5-(CH30),CcHa, 3,4,5-(CH30)5CqHp, 2-NO,CoHa,

3-NO,CgH,, 4-NO,CqHy, 2,4-(CHa),CeHa

Figure 2.10 DABCO-catalysed synthesis of diversified benzopyranochromenes.

Although the reported reactions are meritorious in their own right, nevertheless most of them suffer
from drawbacks such as pre-functionalised substrates, use of expensive ionic liquids, metal catalysts,
chiral organocatalysts, nanoparticles, nanotubes, long reaction time and formation of large chemical
waste. Therefore, a mild, greener and more effective alternative to target novel diversified

pyranochromenone motifs is required.

Hence, in an extension to our ongoing interest to develop sustainable methodologies for diversified
heterocyclic compounds [32-35], a liquid-assisted grinding, one-pot domino synthesis of novel
dihydrobenzo[f]pyrano[3,2-c]chromenones is presented using catalytic amount of DABCO for
effective transformation of 1-hydroxy-3H-benzo[flchromen-3-one as a substrate. Notably, the merits
of the developed protocol presented in this chapter are (i) operational simplicity; (ii) reaction in few

minutes; (iii) non-tedious work up and (iv) excellent green matrices score.
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2.3 Results and discussion

In order to develop a green methodology, initially in a sequential reaction, 4-chlorobenzaldehyde 1a
(1.0 equiv.) and malononitrile 2a (1.0 equiv.) were mixed together by manual grinding for 5 minutes
followed by the addition of 1-hydroxy-3H-benzo[f]lchromen-3-one 7 (1.0 equiv.) and continued
grinding for another 10 minutes in an agate-mortar and pestle (Scheme 2.1). Unfortunately, the
anticipated product 2-amino-4-(4-chlorophenyl)-5-0x0-4,5-dihydrobenzo[f]pyrano[3,2-
c]Jchromene-3-carbonitrile 8a was not formed even after extended time of grinding (Table 2.1, entry
1).

OH
NC DABCO (30 mol %)

o+ O N 0.5 mL IPA
NC (0, 0] Grinding, 15 min

e ’
e

7 0”0
Grinding, 10 min

Michael
Addition

DABCO (30 mol %)
0.5 mL IPA

Grinding, 5 min
Knoevenagel
L Condensation

Scheme 2.1 Sequential three-component reaction for the synthesis of benzo[f]pyrano[3,2-

c]chromenes.

In continuation, anticipating base catalysed acceleration in the Knoevenagel condensation and
subsequent Michael addition as shown in Scheme 2.1, the starting substrates 1a and 2a were mixed
and ground for 5 minutes followed by addition of 7 and ground for another 10 minutes using 20 mol
% DABCO. Fortunately, the desired product 8a was obtained in 57 % yield along with unreacted
starting materials (Table 2.1, entry 2). Further, addition of 0.25 mL IPA as a promoter effectively
increase the yield of 8a upto 73 % (Table 2.1, entry 3). In the resulted product, three new bonds
were simultaneously formed in a sequential reaction via liquid-assisted grinding. Next, the efficiency
of different bases like DBU, EtsN, KoCO3 and piperidine were examined in the above conversion
but there was no further enhancement in product yield in any case (Table 2.1, entries 4-7). In
continuation, 30 mol % DABCO turned out to be the optimized amount of catalyst for this
transformation (Table 2.1, entries 8-10). Later, this reaction was screened for different grinding time
(Table 2.1, entries 11-12) and with different promoters like ACN and EtOH (Table 2.1, entries 13-
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14). From these sets of reactions, it was clearly noted that 15 minutes of grinding in the presence of
IPA as a polar protic promoter is ideal for the desired transformation. Hence, the optimum condition
for this sequential three-component reaction was manual grinding for 15 minutes in an agate-mortar
and pestle of each substrates benzaldehydes (1, 1.0 mmol), malononitrile (2a, 1.0 mmol) and 1-
hydroxy-3H-benzo[f]chromen-3-one (7, 1.0 mmol), in 30 mol % DABCO using 0.25 mL IPA asa
promoter. The final pure product 8a was obtained just by mere filtration and washing with IPA:

water (1:2) solvent mixture and no further purification process was required.

Table 2.1 Optimization of the domino reaction between 4-chlorobenzaldehyde (1a), malononitrile
(2a) and 1-hydroxy-3H-benzo[flchromen-3-one (7)2.

O H
Eé - HO.__~_0
+ <y O _ catalyst, additive _
CN Grinding, time (min)
1a Cl 2a O g O
Entry Catalyst (mol %) Promoter | Condition Time Yield (%)°
(0.25 mL) (min)
1 - - Grinding 15 -
2 DABCO (20 mol %) - Grinding 15 57
3 DABCO (20 mol %) IPA Grinding 15 73
4 DBU (20 mol %) IPA Grinding 15 nd
5 EtsN (20 mol %) IPA Grinding 15 59
6 K2CO3 (20 mol %) H.O Grinding 15 37
7 Piperidine (20 mol %) IPA Grinding 15 nd
8 DABCO (10 mol %) IPA Grinding 15 69
9 DABCO (30 mol %) IPA Grinding 15 87
10 | DABCO (40 mol %) IPA Grinding 15 84
11 | DABCO (30 mol %) IPA Grinding 10 67
12 | DABCO (30 mol %) IPA Grinding 20 88
13 | DABCO (30 mol %) ACN Grinding 15 55
14 | DABCO (30 mol %) EtOH Grinding 15 76
4Reaction conditions: Grinding in agate-mortar and pestle, 1a (1.0 equiv.), 2a (1.0
equiv.), 7 (1.0 equiv.); Knoevenagel condensation : 5 min; Final conditions: (5+10)
min sequential addition; nd: not determined; Plsolated yields.
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With optimized conditions for the domino reaction in hand, next set of reactions are focused on
finding its scope and limitations using substituted aldehydes and the corresponding results are
presented in Scheme 2.2. All the electron-withdrawing and electron-donating substituted aromatic
aldehydes were reacted to synthesize respective desired products 8a-p in good to high yields (72-91
%). However, it was worth noting that product yields were higher in case of unsubstituted (83 %,
8b) and electron deficient benzaldehydes (4-ClI (87 %, 8a); 2-Cl (81 %, 8c); 2-Br (84 %, 8d); 2-F
(79 %, 8e); 4-NO2 (91 %, 8f); 2,3-(Cl)2 (77 %, 89); 2,6-(Cl)2 (85 %, 8h); 4-Br (89 %, 8i); 3-Cl (85
%, 80) and 2,4-(Cl). (84 %, 8p)) as compared to other electron rich benzaldehydes (4-OEt (72 %,
8)); 4-OMe (74 %, 8k) and 4-Me (79 %, 8m)). Unfortunately, 4-N,N-dimethyl benzaldehyde did
not provide the requisite product 81 and the starting material 7 remained unreacted in the reaction
mixture. Moreover, the reaction went smoothly with 1-napthaldehyde to provide 8n in good yield
(74 %). However, the role of steric influence on the reaction outcome was also observed while ortho-
substituted aldehydes provided lower yield of the corresponding products (2-Cl (81 %, 8c); 2-Br (84
%, 8d)) as compared to para-substituted (4-Cl (87 %, 8a); 4-Br (89 %, 8i)). Unfortunately, the
multicomponent transformation did not go well with ethyl cyanoacetate and ended up with multiple
spots on TLC. This observation may be a consequence of more reactivity and lower pKa value of

malononitrile than ethyl cyanoacetate. [36]
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O _H H
DABCO
O (30 mol %),
| N+ 0.25 mL IPA
= Grinding, 15 min
1a-p

R = 4-Cl; H; 2-Cl; 2-Br; 2-F; 4-NOy; 4-Br; 2,3-(Cl),; 2,6-(Cl),; 4-OEt;
4-0Me; 4-N(CH3)2, 4-CH3, 2,3-C4H4; 3-C|, 2,4-(C|)2

cl Cl

Scheme 2.2 Domino reaction between aromatic aldehydes (1), malononitrile (2a) and 1-hydroxy-
3H-benzo[f]lchromen-3-one (7). ®Reaction conditions: Grinding in agate-mortar and pestle: 1 (1.0
mmol), 2a (1.0 mmol), 7 (1.0 mmol), DABCO (0.30 mmol), IPA (0.25 mL), 15 min.
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The plausible mechanism for the synthesis of 2-amino-4-(4-chlorophenyl)-5-o0x0-4,5-
dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a) is outlined in Scheme 2.3. In the first
step, DABCO-catalysed Knoevenagel condensation between 4-chlorobenzaldehyde (1a) and
malononitrile (2a) yields intermediate 1. In the following step, Michael attack of 7 on intermediate
I provides another intermediate Il. In the subsequent step, the intermediate 111 is formed by
DABCO-assisted intramolecular cyclisation of intermediate 11 and finally the desired product 2-
amino-4-(4-chlorophenyl)-5-oxo0-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a) is

resulted due to subsequent proton shift in intermediate I11.

To find out the effective “greenness” of the reported methodology, the reaction was carried out to
calculate different green matrices for the synthesis of novel 2-amino-5-oxo-4-phenyl-4,5-
dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a). The aim of this experiment was focused
on calculating atom efficiency (AE), carbon efficiency (CE), reaction mass efficiency (RME),
Sheldon environmental impact factor (E-factor) and process mass intensity (PMI) of the reaction
protocol. Fortunately, the reaction scored well in all these green calculations with high atom
efficiency (95.70 %), 100 % carbon efficiency, 83.10 % of RME and low E-factor (0.82) and 1.82
PMI (Figure 2.11). Hence, the reaction methodology presented in this chapter is green based on

rational yardsticks for greenness.
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Scheme 2.3 Plausible mechanism for the synthesis of 2-amino-4-(4-chlorophenyl)-5-o0xo-

4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-carbonitrile (8a).

DABCO
(0.3 mmol, 0.034g)

0.25 mL IPA

e

v AE=95.70%
v__E-factor=

2
PMI=182

% LAG-MCR
+ Column free

(0.349 g)
Yield= 87%

RME = 83.10%

J

Figure 2.11 Green matrices calculation for the synthesis of 8a.
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2.4 Conclusions

In short, a domino liquid-assisted hand grinding DABCO-catalysed protocol for the synthesis of
novel dihydrobenzo[f]pyrano[3,2-c]lchromenone using aromatic aldehydes, malononitrile and 1-
hydroxy-3H-benzo[flchromen-3-one as key reactants was developed effectively. The reported
methodology is highly efficient, atom-economical and have effective green matrices scores. Most
interestingly, all the synthesized products were obtained by filtration only. The reaction condition

tolerated various functional groups to derive the final pyranochromenones in good to high yields.

2.5 Experimental section
2.5.1 General information

Except 1-hydroxy-3H-benzo[flchromen-3-one (7), which was prepared in accordance with the
reported literature [36], all other substrates, reagents and solvents were purchased commercially. *H
NMR spectra were taken by JEOL Resonance® ECX-40011 (400 MHZz) and Bruker Avance® 111 (500
MHz), ¥C NMR spectra were respectively recorded at 100 and 125 MHz. Deuterated DMSO
(DMSO-ds) with TMS as internal standard was used as a solvent for taking NMR analyses. In the
evaluation of *H NMR spectra, chemical shift has been assigned in units of parts per million (ppm),
wherein,s” stands for singlet, “d” for doublet, “t” for triplet, “q” for quartet, “dd” for doublet of
doublet”, “brs” for broad singlet and “m” for multiplet. The units of coupling constant (J) has been
assigned in Hz. The High Resolution Mass Spectra (HRMS) of three representative compounds 8a,
8m and 8n were recorded on Bruker daltronics microTOF-QII® spectrometer using ESI ionization.
Functional groups were detected by Perkin Elmer® FT-IR spectrometer-Spectrum two. Elemental
analyses were carried out on vario MICRO cube Elementar®. Melting points were obtained on
Optimelt® automated melting point system. Analyses of reactions were done using thin layer

chromatography (TLC), which was performed on silica gel TLC plates.

The synthesis of pyranochromenones 8 were achieved on agate-mortar and pestle.
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2.5.2 General procedure
Synthesis of 1-hydroxy-3H-benzo[flchromen-3-one (7) [36]:

The mixture of 2-naphthol (2 mmol) and meldrum’s acid (2 mmol) was stirred at 85 °C for 9 h
(Scheme 2.4). After that, the reaction mixture was cooled to room temperature and extracted with
ethyl acetate followed by saturated NaHCOs3 solution. The collected water extract was acidified with
conc. HCI and further extracted with methylene dichloride (DCM) to yield the crude intermediate
after evaporating the organic solvent. This crude intermediate (1 mmol) in 1.5 mL Eaton’s reagent
was stirred at 60 °C for 5 h. To this resultant mixture, water was added while vigorous stirring. The

precipitate thus obtained was filtered by suction and dried to get final product 7.

HO = O

OH =<3 ) o OH Eaton's
TR ety
* o o neat O (@) 60°C, 5 h

7

Scheme 2.4 Synthesis of 1-hydroxy-3H-benzo[f]lchromen-3-one.

[36] Park, S.-J.; Lee, J.-C.; Lee, K.-1.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-
quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205.

Synthesis of benzo[f]pyrano[3,2-c]Jchromenes derivatives (8a-8p):

In an agate- mortar and pestle, 1 mmol each of aromatic aldehydes (1), malononitrile (2a) were
ground for 5 minutes in 30 mol % DABCO and 0.25 mL IPA. To the Knoevenagel product thus
formed, 1 mmol of 1-hydroxy-3H-benzo[flchromen-3-one (7) was added and the resulting mixture
was further ground for next 10 minutes. The solid hence obtained was filtered off and washed with

isopropanol: water (1:4).to yield the desired products 8.
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2.5.3 Characterization of the synthesized molecules

All the products were characterized via techniques of *H NMR, ¥C NMR Spectra, FT-IR and
elemental analyses. Further, selected HRMS of 8a, 8m and 8n compounds are reported to confirm

the products.

Analytical information for the synthesized molecules is given below:

Cl

2-amino-4-(4-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile
(8a): Yellow solid (87 %); mp: 288-290 °C; *H NMR (400 MHz, DMSO-dg): &1 (ppm) 9.20 (d, 1H,
J=8.8 Hz), 8.21 (d, 1H, J = 8.8 Hz), 8.05 (d, 1H, J = 7.6 Hz), 7.78-7.61 (m, 4H), 7.52 (d, 1H, J =
8.8 Hz), 7.45-7.30 (m, 4H), 4.52 (s, 1H); 13C NMR (100 MHz, DMSO-de): 8¢ (ppm) 159.9, 158.4,
157.4, 153.8, 143.2, 135.2, 132.2, 131.1, 130.1, 129.7, 129.6, 129.0, 128.2, 127.2, 126.7, 119.6,
117.4, 106.9, 104.1, 57.9, 36.9; IR (KBr) vmaxcm™: 3434, 2192, 1707, 1668, 1564, 1379; Elem.
Anal. For C23H13CIN203: calced.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 69.12; H: 3.15; N: 6.81 %;
HRMS (ESI) m/z calcd. for C23H13CIN2.O3 [M+Na]*: 423.0506, found: 423.05083.

2-amino-5-0xo-4-phenyl-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile (8b): Pale
yellow solid (83 %); mp: 291-292 °C; *H NMR (400 MHz, DMSO-dg): 1 (ppm) 9.25 (d, 1H, J =
8.4 Hz), 8.25 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 9.2 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.67 (t, 1H, J =
6.8 Hz), 7.62 (brs, 2H), 7.56 (d, 1H, J = 8.8 Hz), 7.35-7.28 (m, 4H), 7.27-7.21 (m, 1H), 4.52 (s, 1H);

13C NMR (100 MHz, DMSO-de): 8¢ (ppm) 159.9, 158.5, 157.3, 153.8, 144.2, 135.1, 131.1, 129.7,
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129.6, 129.1, 128.2, 128.1, 127.6, 127.2, 126.6, 119.8, 117.4, 107.0, 104.7, 58.5, 37.4; IR (KBr)
vmaxcm™: 3565 2209, 1673, 1520, 1382; Elem. Anal. For C23H14N20s3: calcd.: C: 75.40; H: 3.85; N:
7.65 %; found: C: 75.05; H: 3.93; N: 6.85 %.

Cl

2-amino-4-(2-chlorophenyl)-5-o0x0-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile
(8c): Yellow solid (81 %); mp: 268-270 °C; *H NMR (400 MHz, DMSO-dg): 81 (ppm) 9.25 (d, 1H,
J=8.4Hz),8.25(d, 1H,J =9.2 Hz),8.08 (d, 1H, J =7.2 Hz), 7.74 (t, 1H, J = 6.8 Hz), 7.67 (t, 1H,
J=6.8 Hz), 7.61 (brs, 2H), 7.56 (d, 1H, J = 8.8 Hz), 7.44-7.39 (m, 1H), 7.38-7.33 (m, 1H), 7.30-
7.23 (m, 2H), 5.04 (s, 1H); *C NMR (100 MHz, DMSO-dg): 8¢ (ppm) 159.7, 158.5, 157.9, 153.9,
141.2, 135.3, 132.9, 131.2, 131.1, 130.1, 129.7, 129.6, 129.3, 128.3, 128.2, 127.2, 126.7, 119.4,
118.6,117.4,106.8,103.5, 56.9, 34.8; IR (KBr) vmaxwcm: 3435, 2200, 1638, 1402; Elem. Anal. For
C23H13CIN203: caled.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 68.72; H: 3.43; N: 7.28 %.

Br

2-amino-4-(2-bromophenyl)-5-oxo-4,5-dihydrobenzo[flpyrano[3,2-clchromene-3-carbonitrile
(8d): Pale yellow solid (84 %); mp: 268-270 °C; *H NMR (400 MHz, DMSO-ds): 8n (ppm) 9.25 (d,
1H, J = 8.8 Hz), 8.25 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J = 6.8 Hz), 7.67 (t,
1H, J = 7.6 Hz), 7.60 (brs, 2H), 7.59-7.54 (m, 2H), 7.36-7.28 (m, 2H), 7.18 (t, 1H, J = 6.8 Hz), 5.05
(s, 1H); 13C NMR (100 MHz, DMSO-de): 8¢ (ppm) 159.7, 158.4, 157.9, 153.9, 142.9, 135.2, 133.3,
131.1,129.7,129.6,129.5,128.9,128.2,127.3,126.6, 123.4,119.3, 118.6, 117.4,106.8, 103.8, 57.2,
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37.0; IR (KBr) vmaxcm™: 3434, 2200, 1638, 1402; Elem. Anal. For C23H13BrN2Os: calcd.: C: 62.04;
H: 2.94; N: 6.29 %; found: C: 62.27; H: 3.23; N: 7.28 %.

2-amino-4-(2-fluorophenyl)-5-ox0-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile
(8e): Dark yellowish solid (79 %); mp: 276-277 °C; *H NMR (400 MHz, DMSO-de): &1 (ppm) 9.22
(d, 1H, J = 8.4 Hz), 8.23 (d, 1H, J = 8.8 Hz), 8.07 (d, 1H, J = 8.0 Hz), 7.72 (t, 1H, J = 7.2 Hz), 7.70-
7.63 (m, 3H), 7.52 (d, 1H, J = 8.8 Hz), 7.34 (t, 1H, J = 8.0 Hz), 7.29 (t, 1H, J = 8.0 Hz ), 7.15 (d,
2H,J = 8.0 Hz), 4.77 (s, 1H); 3C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 162.0, 159.8, 159.5, 158.7,
157.8, 153.9, 135.3, 131.1, 130.8, 130.8, 130.7, 129.8, 129.7, 129.6, 128.2, 127.2, 126.7, 125.3,
125.2, 119.6, 117.4, 116.2, 116.0, 106.9, 103.3, 56.8, 31.9; IR (KBr) vmaxcm™: 3426, 2204, 1710,
1638, 1402; Elem. Anal. For C23sH13FN2Og: calcd.: C: 71.87; H: 3.41; N: 7.29 %; found: C: 71.63,;
H: 3.33; N: 7.03 %.

2-amino-4-(4-nitrophenyl)-5-ox0-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile

(8f): Light brownish solid (91 %); mp: 274-276 °C; *H NMR (400 MHz, DMSO-ds): 61 (ppm) 9.24
(d, 1H, J = 8.4 Hz), 8.26 (d, 1H, J = 9.2 Hz), 8.18 (d, 2H, J = 8.8 Hz), 8.09 (d, 1H, J = 6.8 Hz), 7.76
(brs, 2H), 7.73 (d, 1H, J = 6.8 Hz), 7.67 (t, 1H, J = 8.0 Hz), 7.63 (d, 2H, J = 8.8 Hz), 7.57 (d, 1H, J
= 8.8 Hz), 4.73 (s, 1H); 13C NMR (100 MHz, DMSO-ds): ¢ (ppm) 159.9, 158.5, 157.9, 154.0, 151.6,
147.1,135.5,131.2,129.8,129.7,128.3,127.3, 126.7,124.3,119.4,117.4, 107.0, 103.5, 57.2, 37.3;
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IR (KBr) vmaycm™: 3460, 2209, 1705, 1640, 1402; Elem. Anal. For C23H13N3Os: caled.: C: 67.15;
H: 3.19; N: 10.21 %; found: C: 67.31; H: 3.02; N: 9.88 %.

2-amino-4-(2,3-dichlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8g): Pale yellow solid (77 %); mp: 286-288 °C; *H NMR (400 MHz, DMSO-dg): &1
(ppm) 9.26 (d, 1H, J =8.4 Hz), 8.28 (d, 1H, J = 9.2 Hz), 8.10 (d, 1H, J = 8.0 Hz), 7.77-7.66 (m, 4H),
7.60 (d, 1H, J = 8.4 Hz), 7.55 (dd, 1H, J = 8.0, 1.6 Hz), 7.39 (dd, 1H, J = 8.0, 1.6 Hz), 7.30 (t, 1H,
J =8.08 Hz), 5.16 (s, 1H); $*C NMR (100 MHz, DMSO-dg): 8¢ (ppm) 159.7, 158.5, 158.0, 153.9,
144.0, 1354, 132.4, 131.1, 131.0, 129.8, 129.7, 129.6, 129.1, 128.2, 127.2, 126.7, 119.2, 117.4,
106.8, 103.3, 56.5, 35.5; IR (KBr) vmawcm™: 3464, 2194, 1714, 1664, 1591, 1399; Elem. Anal. For
C23H12CIoN203: caled.: C: 63.47; H: 2.78; N: 6.44 %; found: C: 63.17; H: 3.03; N: 6.88 %.

2-amino-4-(2,6-dichlorophenyl)-5-ox0-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8h): Yellow solid (85 %); mp: 302-304 °C; *H NMR (400 MHz, DMSO-ds): 81 (ppm)
9.22 (d, 1H, J = 8.8 Hz), 8.24 (d, 1H, J = 9.2 Hz), 8.07 (d, 1H, J = 8.8 Hz), 7.75-7.69 (m, 3H), 7.66
(t, 1H, J = 6.8 Hz), 7.54 (t, 2H, J = 6.8 Hz), 7.37 (d, 1H, J = 6.8 Hz), 7.31 (t, 1H, J = 8.0 Hz), 5.56
(s, 1H); 3C NMR (100 MHz, DMSO-de): 8¢ (ppm) 159.5, 159.2, 158.4, 154.0, 136.5, 136.0, 135.5,
134.8,131.2,130.9,130.2,129.8,129.8,129.2,128.2,127.1,126.8,119.1,117.4,106.4, 101.8, 53.7,

57



CHAPTER 2 |

33.9; IR (KBr) vmaxycm™: 3437, 2201, 1639, 1402; Elem. Anal. For C23H12CI2N2O3: calcd.: C: 63.47;
H: 2.78; N: 6.44 %; found: C: 63.17; H: 3.03; N: 6.88 %.

2-amino-4-(4-bromophenyl)-5-ox0-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile
(8i): Yellow solid (89 %); mp: 292-294 °C; 'H NMR (400 MHz, DMSO-ds): 61 (ppm) 9.23 (d, 1H,
J=8.4 Hz), 8.25 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 6.8 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.69-7.63
(m, 3H), 7.56 (d, 1H, J = 8.8 Hz), 7.50 (d, 2H, J = 8.4 Hz), 7.29 (d, 2H, J = 8.4 Hz), 4.53 (s, 1H);
13C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 159.8, 158.4, 157.4, 153.8, 143.6, 135.2, 131.9, 131.1,
130.5, 129.7, 129.6, 128.2, 127.2, 126.6, 120.7, 119.6, 117.4, 106.9, 104.0, 57.9, 37.0; IR (KBr)
vmaxcm™: 3429,2193, 1706, 1667, 1565, 1380; Elem. Anal. For C23H13BrN2Os: calcd.: C: 62.04; H:
2.94; N: 6.29 %; found: C: 62.47; H: 3.15; N: 6.88 %.

OEt

2-amino-4-(4-ethoxyphenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-clchromene-3-carbonitrile
(8j): Pale yellow solid (72 %); mp: 242-244 °C; *H NMR (400 MHz, DMSQO-ds): 6+ (ppm) 9.25 (d,
1H, J = 8.8 Hz), 8.25 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.73 (t, 1H, J = 6.8 Hz), 7.67 (t,
1H, J = 6.8 Hz), 7.65-7.54 (m, 3H), 7.20 (d, 2H, J = 8.8 Hz), 6.85 (d, 2H, J = 8.8 Hz), 4.46 (s, 1H),
3.97 (q, 2H, J = 7.2 Hz), 1.29 (t, 3H, J = 6.8 Hz); 23C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 159.9,
158.4, 158.1, 157.0, 153.7, 136.1, 135.1, 131.1, 129.7, 129.6, 129.2, 128.2, 127.2, 126.7, 119.9,
117.4,114.8,107.0, 105.0, 63.5, 58.6, 36.6, 15.2; IR (KBr) vmaxwcm: 3417,2199, 1717, 1670, 1587,

58



CHAPTER 2 |

1402; Elem. Anal. For CosH1gN2Og4: calcd.: C: 73.16; H: 4.42; N: 6.83 %; found: C: 73.63; H: 4.67;
N: 7.29 %.

2-amino-4-(4-methoxyphenyl)-5-ox0-4,5-dihydrobenzo[f]pyrano[3,2-c]chromene-3-

carbonitrile (8k): Dark yellow solid (74 %); mp: 260-261 °C; 'H NMR (400 MHz, DMSO-ds): &1
(ppm) 9.25 (d, 1H, J = 8.4 Hz), 8.24 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J =
7.2 Hz), 7.67 (t, 1H, J = 7.2 Hz), 7.60-7.55 (m, 3H), 7.22 (d, 2H, J = 8.8 Hz), 6.87 (d, 2H, J = 8.8
Hz ), 4.47 (s, 1H), 3.71 (s, 3H); *C NMR (100 MHz, DMSO-de): 8¢ (ppm) 159.9, 158.8, 158.4,
157.0, 153.7, 136.3, 135.1, 131.1, 129.7, 129.6, 129.3, 128.2, 127.2, 126.6, 119.9, 117.4, 114 4,
107.0, 105.0, 58.6, 55.6, 36.6; IR (KBr) vmaycm™: 3420, 2202, 1716, 1673, 1568; Elem. Anal. For
Ca4H16N204: calcd.: C: 72.72; H: 4.07; N: 7.07 %; found: C: 72.41; H: 3.87; N: 7.54 %.

Me

2-amino-5-0xo0-4-(p-tolyl)-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile (8m):
Pale yellow solid (79 %); mp: 264 °C; *H NMR (500 MHz, DMSO-dg): 81 (ppm) 9.24 (d, 1H, J =
9.0 Hz), 8.24 (d, 1H, J = 8.5 Hz), 8.08 (d, 1H, J = 8.0 HZ), 7.73 (t, 1H, J = 8.5 Hz), 7.67 (t, 1H, J =
7.5 Hz), 7.59 (brs, 2H), 7.56 (d, 1H, J = 9.0 Hz), 7.21-7.08 (m, 4H), 4.47 (s, 1H), 2.26 (s, 3H); 13C
NMR (125 MHz, DMSO-de): 8¢ (ppm) 159.8, 158.4, 157.1, 153.7, 141.2, 136.7,135.0, 131.1, 129.6,
129.6, 129.5, 128.2, 127.9, 127.1, 126.6, 119.7, 117.3, 106.9, 104.8, 58.6, 37.0, 21.1; IR (KBr)
vmaxcm™: 3424, 2194, 1709, 1670, 1566, 1380; Elem. Anal. for C24H1sN2O3: calcd.: C: 75.78; H:
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4.24; N: 7.36 %; found: C: 75.43; H: 4.27; N: 7.53 %; HRMS (ESI) m/z calcd. for C24H1sN203
[M+Na]*: 403.1053, found: 403.1047.

2-amino-4-(naphthalen-1-yl)-5-0xo0-4,5-dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile
(8n): Yellow solid (74 %); mp: 270 °C; *H NMR (500 MHz, DMSO-de): 81 (ppm) 9.32 (d, 1H, J =
8.5 Hz), 8.49 (d, 1H, J = 8.0 Hz), 8.27 (d, 1H, J = 9.0 Hz), 8.11 (d, 1H, J = 8.0 Hz), 7.96 (d, 1H, J
=8.0Hz),7.83 (d, 1H,J =7.5Hz), 7.77 (t, 1H, J = 8.5 Hz), 7.70 (t, 1H, J = 7.5 HZ), 7.65-7.52 (m,
5H), 7.45-7.35 (m, 2H), 5.54 (s, 1H); 3C NMR (125 MHz, DMSO-ds): 8¢ (ppm) 159.8, 158.3, 157.7,
153.7, 141.6, 135.1, 133.8, 131.4, 131.2, 129.7, 129.6, 129.0, 128.2, 127.9, 127.2, 126.6, 126.4,
126.3, 124.0, 119.6, 117.4, 115.0, 107.0, 105.3, 59.1, 26.0; IR (KBr) vmaycm: 3441, 2197, 1707,
1669, 1566, 1376; Elem. Anal. for C27H16N20O3: calcd.: C: 77.87; H: 3.87; N: 6.73 %; found: C:
77.91; H: 3.96; N: 6.90 %; HRMS (ESI) m/z calcd. for Co7H16N203 [M+Na]*: 439.1053, found:
439.1037.

2-amino-4-(3-chlorophenyl)-5-oxo-4,5-dihydrobenzo[f]pyrano[3,2-clchromene-3-carbonitrile
(80): Light brownish solid (85 %); mp: 280 °C; *H NMR (500 MHz, DMSO-ds): 8+ (ppm) 9.25 (d,
1H, J = 8.5 Hz), 8.26 (d, 1H, J = 9.0 Hz), 8.09 (d, 1H, J = 8.0 Hz), 7.74 (t, 1H, J = 8.0 Hz), 7.70-
7.63 (m, 3H), 7.70-7.63 (m, 3H), 7.58 (d, 1H, J = 8.5 Hz), 7.40 (s, 1H), 7.38-7.28 (m, 3H), 4.58 (s,
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1H); C NMR (125 MHz, DMSO-de): 5¢c (ppm) 159.8, 158.4, 157.6, 153.8, 146.6, 135.2, 133.6,
131.1,130.9,129.6,129.5,128.2,128.0,127.6,127.2,127.0,126.6,119.5,117.3,107.0, 103.8,57.8,
37.2; IR (KBr) vmawcm: 3402, 2199, 1714, 1668, 1567, 1383; Elem. Anal. for C23H13CIN2Os:
calcd.: C: 68.92; H: 3.27; N: 6.99 %; found: C: 68.53; H: 3.24; N: 6.95 %.

2-amino-4-(2,4-dichlorophenyl)-5-o0x0-4,5-dihydrobenzo[f]pyrano|[3,2-c]Jchromene-3-
carbonitrile (8p): Orange solid (84 %); mp: 256 °C; *H NMR (500 MHz, DMSO-de): 51 (ppm) 9.24
(d, 1H, J =8.5 Hz), 8.26 (d, 1H, J= 9.0 Hz), 8.09 (d, 1H, J = 8.0 Hz), 7.73 (t, 1H, 3= 8.5 Hz), 7.71-
7.64 (m, 3H), 7.62-7.55 (m, 2H), 7.47-7.30 (m, 2H), 5.03 (s, 1H); 13C NMR (125 MHz, DMSO-ds):
dc (ppm) 159.6, 158.5, 158.0, 153.9, 140.3, 135.3, 133.8, 132.8, 132.6, 131.1, 129.7, 129.6, 129.3,
128.4,128.2,127.2,126.6, 119.1, 117.3, 106.8, 103.1, 56.5, 34.4; IR (KBr) vmaxcm*: 3419, 2197,
1706, 1670, 1563, 1381; Elem. Anal. for C23H12CIloN203: caled.: C: 63.47; H: 2.78; N: 6.44 %; found:
C:63.17; H: 2.97; N: 6.57 %.
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3.1 Introduction

Spirooxindoles are nitrogen containing fused heterocycles which are well-known for their wide
biological and medicinal applications. [1-4] Spirooxindole moieties have been commonly found in
natural products like Spirotryprostatin A (1) and Spirotryprostatin B (11) which usually occur in
Aspergillus fumigatus and act as muscarinic serotonin receptors modulators (Figure 3.1). [5-7]
Mitraphylline (111), another natural spirooxindole shows anti-tumor activity and is isolated from
Uncaria tomentosa. Naturally occurring Horsfiline (IVV) and Elacomine (V) act as indigenous

medicines and are isolated from Eleagnus commutate (Figure 3.1). [5-10]

N

o)

Me
H |
CO,Me
N H

0]
NH
]

Spirotryprostatin A Spirotryprostatin B Mitraphylline
HsC
H,CO \
O v
O N

HO H Elacomine

W 1 Horsfiline

Figure 3.1 Some naturally occurring spirooxindoles.

Other than that, biological applications of spirooxindole are extensive and they have been found
active as anticancer, antimicrobial, antitumor, antiviral and anti-inflammatory agents. [11, 12]
Moreover, some fused oxindoles act as laser dyes, pigments, optical brighteners and fluorescence
markers (Figure 3.2). [13, 14]
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/N/_\\O Ph Luminescent
Boc IX

Pigment

Figure 3.2 Applications of spirooxindole in different perspectives.

Likewise, benzochromenone containing heterocycles exhibit several biological applications. One of
the most promising scaffolds of this class is furo-benzochromenone which possesses broad spectrum
of biological activities, e.g. antibacterial, antitumor, antifungal, antioxidant, anti-trypanosomal and
insecticidal. [15-19] Naturally occurring furo-benzochromenones viz. tanshinones (XI11) [20, 21],
tanshinlactone (XI1) [22] and neo-tanshinlactone (XI) [22, 23], extracted from Salvia miltiorrhiza

are well-known anticancerous agents (Figure 3.3).

Tanshinone | Dihydrotanshinone |

Neo-tanshinlactone  Tanshinlactone

Figure 3.3 Naturally occurring benzochromenones.

Inspecting biological applications of spirooxindoles on one hand and benzochromenones on the
other, the spirooxindole fused benzochromenones molecules might be effective from therapeutic
point of view. Nevertheless, based on the literature reports, such hybrid molecules have not been
studied. However, there are reports of preparation of spirooxindoles-pyran derivatives obtained by

fusion of isatins with 4-hydroxycoumarin which can be a good starting point for the present study.
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3.2 Survey of existing methodologies

As mentioned, there are several literature reports for the synthesis of spirooxindole-pyran
derivatives. The most common pathway involves Knoevenagel reaction of isatins and malononitrile
followed by Michael addition of 4-hydroxycoumarin and cyclisation to synthesize this hybrid

scaffold.

For example, Kidwai et al. (2012) reported the synthesis of functionalized spirochromenes from the
reaction of isatins (1) with malononitrile (2a)/ ethylcyanoacetate (2b) and 4-hydroxycoumarin (3)
(Figure 3.4). [24] The reaction was carried out using catalytic amount of Gold (I11) chloride
(HAuCl4-3H20) in PEG-400 at 70 °C to provide desired hybrid molecules (4) in 84-94 % yields.

O 5 OH
R 0,
R1!—<\>r[$:0 N o | HAUCI;3H,0 (5 mol A;)
% N CN PEG-400, 70 °C
R2 0" "0 30 min
1 2 3
8. _
R'=H,5-c1 R’=CN,COOEt Yield = 84-94 %
R?=H, CHg 4 examples

Figure 3.4 Gold(I11) chloride-catalysed synthesis sprirooxindole fused pyrans.

On a similar note, Khurana and co-workers (2013) developed a one pot methodology for the above
mentioned three-component reaction to synthesize spiropyrans (4) using 10 mol % DBU as a catalyst

in water under reflux conditions (Figure 3.5). [25]

OH

O
R3
O+
N <CN
H

2
R3 = CN, COOEt

1a 3

N
+©51
O BO

DBU (10 mol %)

H>0, reflux
10-15 min

Yield = 82-88 %
2 examples
(only two examples)

Figure 3.5 DBU-catalysed synthesis of spiropyrans.
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Later on, in 2013, Zhang and co-workers reported a meglumine catalysed one pot methodology to
furnish ~ 2'-amino-2,5'-dioxo-5'H-spiro[indoline-3,4'-pyrano[3,2-c]chromene]-3'-carbonitrile  (4)
using the substrates isatin (1a), malononitrile (2a) and 4-hydroxycoumarin (3) at room temperature

(Figure 3.6). [26]

CN X Meglumine (5 mol %)
0+ <+ EtOH:H,0 (1:1), 2mL
N CN 'e) o) NH
’ H 2a 3 20 min, rt O 2
¥ ., OH OH 4
N B R Yield = 95 %
| 3 OH
. e (only one example)
Meglumine OH OH

Figure 3.6 Meglumine-catalysed synthesis of spiropyranochromene.

Later, Hasaninejad et al. in 2017 discovered a DABCO-catalysed three-component reaction to
synthesize spirooxindole fused pyrans (4) in good to high yield (84-98 %) under reflux conditions

(Figure 3.7). [27]

R2
1R
o) OH
X R3 DABCO (6 mol %), reflux
R1%O +wpell T %
Z~N CN 8= Method A: EtOH
, R? 2 0" O Method B: EtOH/ H,0 NH;
3 (1:1)
: 4
N 12min-5h R* " Yield = 84-98 %
R'=H, 5-NO,, 5-Br, 5-CH3 15 examples

R? = H, Benzyl; R = H, 7-CI; R® = CN, COOMe, COOEt

Figure 3.7 DABCO-catalysed synthesis of spirooxindole fused pyrans.

Next, Xu and co-workers (2018) developed a DABCO-based ionic liquid-catalysed synthesis of
spiro[2-amino-4H-pyrans] (4) from isatin (1a), malononitrile (2a) and 4-hydroxycoumarin (3). [28]
The described transformation was performed using 10 mol % of [DABCO-H]CI as a catalyst in

acetonitrile at 50 °C to give 95 % of the final product (Figure 3.8).
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O] OH
CN [DABCO-HICI (10 mol %)
O+ < + N 0= (e)
N CN ACN (1 mL)
H oo NH
1a 2a 3 50 °C, 45 min 2

Yield = 95 %
(only one example)

Figure 3.8 lonic liquid-promoted synthesis of spiro[2-amino-4H-pyrans].

Apart from these reports, use of other reagents like nano-crystalline MgO (2012, Banerji et al.) [29],
N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide
(DCDBTSD) (2015, Khazaei et al.) [30], Copper (I1) acetate monohydrate (2016, Maghsoodlou et
al.) [31] and nano-sized copper ferrite (2016, Khodabakhshi et al.) [32] are also reported for the

above described three-component reaction to formulate diversified spiro-pyrans.

Unfortunately, most of these methods suffer from drawbacks like expensive reagents, pre-
functionalized catalysts, long reaction time, limited diversity and complicated purification process.
Moreover, there is no report of the three-component reaction with 1-hydroxy-3H-benzo[f]chromen-
3-one. Therefore, in continuation with the aim to develop greener and efficient methodology, a urea-
catalysed microwave irradiated synthesis of novel fused heterocycles, namely,
spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile and spiro[benzo[f]pyrano[3,2-
c]chromene-4,3'-indoline]-3-carboxylate derivatives, is presented in this chapter. The reported
protocol has advantages like minutes synthesis, no tedious work up, column-free purification and

more importantly, easy scale up process.
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3.3 Results and discussion

According to the preliminary hypothesis based on similar reactivity of 4-hydroxycoumarin and 1-
hydroxy-3H-benzo[f]lchromen-3-one, the early investigations were directed towards formation of 2-
amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile (6a) from
standard three-component reaction of isatin (1a, 0.5 mmol), malononitrile (2a, 0.5 mmol) and 1-
hydroxy-3H-benzo[f]lchromen-3-one (5, 0.5 mmol) using similar conditions which were previously
reported for pyranochromenones synthesis. [25-27] Unfortunately, the desired product 6a was either
not obtained or was formed in very low yields (Table 3.1, entries 1-3). The results pointed out that
the reactivity difference may be due to an additional fused aromatic ring and decresed solubility of

1-hydroxy-3H-benzo[f]chromen-3-one.

Table 3.1. Exploring the reaction conditions for the synthesis of 6a°.

HoN
NC
0 O OH Z>0
NC conditions

CLmor' Y ) e J
N NC

H 0 o HN—\ 070

1a 2a 5 (6] 6a

Reaction .
E | | Yield (%)°
ntry Catalyst Solvent Conditions® ield (%)
2 mL
1 | Meglumine (5 mol %)[?¢! | EtOH:H,O rt, 30 min nd
2 DABCO (6 mol %)?"] 5 mL EtOH reflux, 30 min 47
3 DBU (10 mol %) 5 mL H,0 reflux, 30 min nd
4 DABCO (10 mol%) 0.5mL EtOH | MW/ 130 °C/ 15 min 55

4Reaction conditions: catalyst amount, solvent and condition as per reports; nd: not
determined; PIsolated yields.

With the reported protocols not working, it was decided to use a one-pot microwave irradiation of
0.5 mmol each of 1a, 2a and 5 using 10 mol % DABCO at 130 °C for 15 minutes in 0.5 mL EtOH
to form the desired product 6a. Fortunately, the microwave-assisted protocol was found suitable as
it provided 55 % vyield of the targeted product 6a (Table 3.1, entry 4). Having these sets of results
in hand and also from the past experience on similar substrate 5 in the three-component reaction

[33], a sequential approach was adopted to construct final product 6a as shown in the Figure 3.9.
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Figure 3.9 Reaction outline for sequential pathway.

Gratifyingly, when 0.5 mmol each of 1a and 2a were irradiated under microwave using catalytic
amount of DABCO (10 mol %) at 130 °C for 5 minutes in 0.5 mL EtOH followed by addition of 5
(0.5 mmol) and the resulting mixture was further irradiated at 130 °C for another 10 minutes, it
resulted in 77 % yield of the desired product 6a (Table 3.2, entry 1). Later on, DABCO in the above
reaction was replaced with different bases like DBU, EtsN and urea (Table 3.2, entries 2-4).
Fortunately, the reaction provided maximum yield with economical and abundantly available urea
in which 82 % of 6a was obtained. The acidic condition (p-TSA) in this reaction was not found
suitable for the desired conversion (Table 3.2, entry 5). Thereafter, the reaction condition was
optimized with respect to time and temperature and it was observed that Knoevenagel condensation
of 1a and 2a for 2 minutes at 120 °C followed by Michael addition of 5 for 8 minutes at 120 °C was
optimum for the desired transformation to 6a (Table 3.2, entries 6-10). In next set of reactions, 15
mol % urea was found optimal for the transformation, providing 86 % of the product 6a (Table 3.2,
entries 9, 11 & 12). At last, to find out the effect of solvents, the reaction was carried out in different
solvents in which IPA was found most effective for the above mentioned convertion (92 %, 6a)
(Table 3.2, entries 13-15). Henceforth, the final optimum condition for the one-pot sequential three-
component reaction was the irradition of 1a (0.5 mmol) and 2a (0.5 mmaol) for 2 minutes followed
by its reaction with 5 (0.5 mmol) at 120 °C for another 8 minutes using 15 mol % urea in 0.5 mL
IPA under microwave irradiation. It is worth mentioning that in all the cases pure solid products
were obtained just by fitration and washing with IPA: H>O (1:2) solvent mixture and no further

purification proceess was required.
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Table 3.2 Optimization reaction condition for the domino reaction between isatin (1a), malononitrile
(2a) and 1-hydroxy-3H-benzo[f]chromen-3-one (5)2.

1

HoN
NC
0 O OH 20
NC conditions

O o Sy e 2
N NC

H 0 Yo HN—\ 070

2 d 5 o 6a

Reaction .

E I I " Yield (%)°
ntry Catalyst Solvent i ield (%)
1 | DABCO (10 mol %) | EtOH MW (130 °C, 15 min) 77
2 DBU (10 mol %) EtOH MW (130 °C, 15 min) 73
3 EtsN (10 mol %) EtOH MW (130 °C, 15 min) 71
4 Urea (10 mol %) EtOH MW (130 °C, 15 min) 82
5 p-TSA (10 mol %) | EtOH MW (130 °C, 15 min) -

6 Urea (10 mol %) EtOH MW (120 °C, 15 min) 81
7 Urea (10 mol %) EtOH MW (140 °C, 15 min) 83
8 Urea (10 mol %) EtOH MW (100 °C, 15 min) 66
9 Urea (10 mol %) EtOH MW (120 °C, 10 min) 82
10 Urea (10 mol %) EtOH MW (120 °C, 8 min) 74
11 Urea (15 mol %) EtOH MW (120 °C, 10 min) 86
12 Urea (20 mol %) EtOH MW (120 °C, 10 min) 87
13 Urea (15 mol %) H20 MW (120 °C, 10 min) nd
14 Urea (15 mol %) IPA MW (120 °C, 10 min) 92
15 Urea (15 mol %) ACN MW (120 °C, 10 min) nd

4Reaction conditions: 1a (0.5 mmoaol), 2a (0.5 mmol), 5 (0.5 mmol), solvent: 0.5 mL,;

Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 °C; nd: not

determined; Time for Knoevenagel condensation: 5 min for entries 1-8 and 2 min for

entries 9-15; Final conditions: (2+8) min sequential addition at 120 °C. "lsolated
yields.
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Having established the optimized condition, the reaction was extensively explored to find out its
scope and limitations (Scheme 3.1). It was found that the reaction worked equally well with both
electron donating and electron withdrawing groups substituted on isatins (1a-k). The reaction also
worked well with both malononitrile 2a and ethyl cyanoacetate 2b substrates. However minor
improvement of yield was observed with electron withdrawing isatin moieties (5-Cl (91 %, 6c; 87
%, 6d); 7-Cl (81 %, 6e); 5-Br (90 %, 6f); 5-F (83 %, 6g; 75 % 6h); 7-F (77 % 6i); 5-NO2 (94 %, 6j))
in comparison to electron donating substrates (5-Me (85 %, 6k; 82 %, 6l); 5-OMe (79 %, 6m; 75
%, 6n)). Moreover, malonitrile 2a provided higher yield in most of the cases (92 %, 6a; 91 %, 6c;
90 %, 6f; 83 %, 69; 77 %, 6i; 94 %, 6); 85 %, 6k; 79 %, 6m; 89 %, 60; 84 %, 6q) as compared to
ethyl cyanoacetate 2b (79 %, 6b; 87 %, 6d; 81 %, 6e; 75 %, 6h; 82 %, 61; 75 %, 6n; 85 %, 6p; 77
%, 6r). Moreover, 5-substituted isatins provided comparitively higher yields (91 %, 6c; 87 %, 6d;
90 %, 6f; 83 %, 6g; 75 %, 6h; 94 %, 6j) as compared to 7-substituted isatins (81 %, 6e; 77 %, 6i).
Overall, the electronics of the substrates had little influence on the reaction outcome as the reaction
in general provided excellent yield with majority of the substrates. Notably, 5-nitro substituted isatin
produced highest yield of the corresponding product (94 %, 6j). On the other hand, N-substituted
isatins also resulted in good yield of the products under given conditions (77-89 %, 60-6r). In
continuation, the reaction was also performed with cyanoacetamide (2c) and 4-
cyanoacetylmorpholine (2d). Unfortunately, it resulted in unidentifiable products and the respective
products 6s and 6t were not obtained. In nutshell, the developed methodology provided an easy

access to diversified spiro-benzopyranochromenes in good to high yield (75-94 %, 6a-r).
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R4
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(P CN 120 C/10m| o
R 15 mol % Urea

1a-k R 2a-d 0.5 mL IPA NH,
R = H; 5-ClI; 7-Cl; 5-Br; 5-F; 7-F;

6a-t

5-NOy; 5-Me; 5-OMe;

Ry = H; Me; Ph; ?L S\
R, = CN, 2a; COEt, 2b, CONHp, 2¢; 2 N

Yield = 75-94 %

Scheme 3.1 Scope of the reported domino multicomponent reaction. ®Reaction conditions: 1 (0.5
mmol), 2 (0.5 mmol), 5 (0.5 mmol), urea (15 mol %), IPA (0.5 mL), 120 °C for (2+8) min sequential
addition in Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 °C.
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Later on, the reaction condition was reexamined to evaluate “greenness” of this method by
estimating carbon efficiency (CE), atom economy (AE), reaction mass efficiency (RME), process
mass intensity (PMI) and most importantly, Sheldon environmental impact factor (E-factor) in a
“gram scale reaction” to construct the target molecule 6a (reaction in 5 mmol scale). Fortunately,
the desired transformation worked effortlessly to give 84 % vyield (1.710 gm) of product 6a.
Furthermore, the high AE (95.77 %), RME (80.39 %) and CE (100 %) and low E-factor (1.19) and
PMI (2.19) proved that the reported protocol is suitable for an up scale synthesis.

The mechanism of this three-component reaction is sketched in Scheme 3.2. In this case, urea
catalysed Knoevenagel condensation reaction of isatin (1a) and malanonitrile (2a) provides
intermediate 1. [34-35] Then, Michael attack of 5 on intermediate | forms intermediate I'l. Next, urea
catalysed intramolecular cyclisation followed by proton shift in intermediate 111 provides the final

desired product 6a.

Scheme 3.2 Plausible mechanism for the synthesis of 2-amino-2',5-dioxo-5H-

spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-carbonitrile (6a).
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3.4 Conclusions

In conclusion, urea-catalysed mild and efficient methodology was developed to synthesized novel
spiro-benzo[f]lchromene derivatives under microwave irradiation. The optimised condition was
suitable for a wide range of electronically diversified isatins to generate diversified novel scaffolds
in good to high yields. The advantage of the present protocol includes low catalyst loading, shorter
reaction time, no tedious work up and ease of scalibility. Overall, an ecofriendly urea-catalysed

three-component reaction strategy is developed in this chapter.
3.5 Experimental section

3.5.1 General information

All the substrates except 1-hydroxy-3H-benzo[f]lchromen-3-one (5), reagents and solvents were
purchased commercially. The synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one (5) was achieved
in lab as directed in the literature [34]. All 'TH NMR (400 MHz) and *C NMR (100 MHz) spectra
were taken in deuterated DMSO (DMSO-de) with TMS as internal standard and analyzed by JEOL
Resonance® ECX-40011. *C NMR (125 MHz) of compounds 6m and 6p spectra were recorded on
a Bruker Advance® 500 (500 MHz), *3C NMR of compound 6k could not recorded even after high
number of scans due to lower solubility in NMR solvent. In the evaluation of *H NMR spectra, the
unit parts per million (ppm) denotes the chemical shift, wherein “s” stands for singlet, “d” for
doublet, “t” for triplet, “q” for quartet, “dd” for doublet of doublet”, “brs” for broad singlet and “m”
for multiplet. The units of coupling constant (J) is in Hz. The High-resolution mass spectra (HRMS)
of four representative compounds 6b, 6g, 6k and 6p were recorded on Bruker daltronics microT OF-
QII®spectrometer using ESI ionization. Perkin Elmer® FT-IR spectrometer-Spectrum two has been
used to detect the functional groups and vario MICRO cube Elementar® for elemental analyses.
Optimelt® automated melting point system helped to get the melting points of the synthesized
compounds. Silica gel TLC (thin layer chromatography) plates were used to analysis the progress of

the reactions.

The microwave-assisted synthesis of the compounds was performed in Anton Paar® Monowave
reactor which has an operating frequency of 2.455 GHz with continuous irradiation power of 0 to
300 W. The reactants were taken in a G-10 glass vial capped with Teflon septum and was exposed

to microwave irradiation.
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3.5.2 General procedures

Synthesis of 1-hydroxy-3H-benzo[flchromen-3-one (5) [34]: The mixture of 2-naphthol (5 mmol)
and meldrum’s acid (5 mmol) was heated at 90 °C for 9-10 h. After that, the reaction mixture was
cooled to room temperature and first extracted with ethyl acetate and then with saturated NaHCO3
solution. The collected water extract was acidified with conc. HCI and additionally extracted with
methylene dichloride (DCM) which provided the crude intermediate after evaporation of the organic
solvent. The solid intermediate (2 mmol) in 2 mL Eaton’s reagent was stirred at 60 °C for 5 h. After
that, cold water was added to this resultant mixture while vigorous stirring. The solid product 5 was

obtained by filtration and dried overnight to use in the reported reaction.

HO Z 0]

Eaton's
“/OH o o 8°C,9h “/ WOH - i 0
M negt 60°C, 5 h OO -

Scheme 3.3 Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one.

[34] Park, S.-J.; Lee, J.-C.; Lee, K.-1.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-
quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205.

General synthesis procedure for microwave-assisted three-component reaction (6a-6r):

In a G-10 microwave vial, 15 mol % urea in 0.5 mL IPA were added to a mixture of isatins (1, 0.5
mmol) and malononitrile (2a) or ethylcyanoacetate (2b) (0.5 mmol) and subjected to microwave
irradiation at 120 °C for 2 minutes. Furthermore, 1-hydroxy-3H-benzo[f]chromen-3-one (5) was
added to the reaction vial and again the mixture was irradiated for 8 minutes at 120 °C. The solid
product was obtained in the reaction vial after cooling down to room temperature, which was then
filtered off and washed with washed with isopropanol: water (1:2) to get the pure final desired

products 6.
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3.5.3 Characterization of the synthesized molecules

All the products were characterized via techniques of 'H NMR, 3C NMR Spectra, FT-IR and
elemental analyses. Further, selected HRMS of 6b, 6g, 6k and 6p compounds are reported to confirm

the products.

Analytical information for the synthesized molecules is given below:

2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-carbonitrile
(6a): Pale brown solid (92 %); mp: 314 °C; *H NMR (400 MHz, DMSO-ds): &1 (ppm) 10.66 (s, 1H),
9.21 (d, 1H, J = 8.8 Hz), 8.27 (d, 1H, J = 8.8 Hz), 8.07 (d, 1H, J = 8.0 Hz), 7.84 (brs, 2H), 7.72 (¢,
1H,J =7.2 Hz), 7.65 (t, 1H, J = 7.2 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.23-7.15 (m, 2H), 6.90 (t, 1H, J
=7.6 Hz), 6.83 (d, 1H, J = 7.6 Hz); 13C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 178.0, 159.0, 158.7,
158.6, 154.0, 142.7, 136.1, 134.1, 131.2, 129.9, 1294, 128.1, 127.2, 126.8, 124.7, 122.6, 117.5,
117.3,110.0,106.5, 102.0, 57.6, 48.3; IR (KBr) vmaxycm: 2206, 1723, 1699, 1673,1631 1563, 1340,
1239; Elem. Anal. for C24H13N304: calcd.: C: 70.76; H: 3.22; N: 10.31 %; found: C: 69.60; H: 3.18;
N: 10.15 %.
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ethyl 2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-clchromene-4,3'-indoline]-3-
carboxylate (6b): Pale yellow solid (79 %); mp: 263 °C; *H NMR (400 MHz, DMSO-de): 51 (ppm)
10.40 (s, 1H), 9.27 (d, 1H, J = 8.8 Hz), 8.34 (brs, 2H), 8.23 (d, 1H, J =8.8 Hz), 8.06 (d,1H,J =6.8
Hz), 7.75 (t, 1H, J = 8.8 Hz), 7.65 (t, 1H, J = 8.0 Hz), 7.50 (d, 1H, J = 9.2 Hz), 7.09 (t, 1H, J = 7.6
Hz), 7.03 (d, 1H, J = 7.2 Hz), 6.77 (t, 1H, J = 7.6 HZ), 6.72 (d, 1H, J = 7.6Hz), 3.82-3.71 (m, 2H),
0.82 (t, 3H, J = 7.2 Hz); *C NMR (100 MHz, DMSO-de): 8¢ (ppm) 179.7, 167.8, 158.9, 158.1,
157.7, 153.7, 144.7, 135.8, 135.5, 131.2, 129.9, 129.8, 128.4, 128.2, 127.2, 126.7, 123.8, 121.5,
117.2, 108.9, 106.4, 104.6, 75.94, 59.8, 47.9, 13.7; IR (KBr) vmaxycm™: 1725, 1698, 1647, 1568,
1404, 1335, 1240; Elem. Anal. for C2sH1sN20e: calcd.: C: 68.72; H: 3.99; N: 6.16 %; found: C:
68.44; H: 3.99; N: 6.12 %; HRMS (ESI) m/z calcd. for C2sH1sN20s [M+Na]*: 477.1057; found:
477.1059.

2-amino-5'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]chromene-4,3'-indoline]-3-

carbonitrile (6c): Brown solid (91 %); mp: 314 °C; *H NMR (400 MHz, DMSO-ds): 8+ (ppm) 10.83
(s, 1H), 9.25 (d, 1H, J = 8.4 Hz), 8.31 (d, 1H, J = 9.2 Hz), 8.11(d, 1H, J = 8.0 Hz), 7.93 (brs, 2H),
7.76 (t, 1H, J=8.8 Hz), 7.69 (t, 1H, J = 8.0 Hz), 7.59 (d, 1H, J = 8.8 Hz), 7.49 (d, 1H, J = 2.4 Hz),
7.27 (dd, 1H, J = 8.0 & 2.4 Hz), 6.88 (d, 1H, J = 8.4 Hz); 3C NMR (100 MHz, DMSO-ds): 8¢ (ppm)
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177.8, 159.3, 158.8, 158.8, 154.1, 141.6, 136.1, 131.2, 129.9, 129.3, 128.2, 127.3, 126.8, 126.6,
125.1, 125.1, 117.5, 117.3, 111.4, 106.7, 101.3, 56.9, 48.5; IR (KBr) vmaxcm™: 2195, 1707, 1663,
1615, 1565, 1337, 1238; Elem. Anal. for C2sH12CIN3O4: calcd.: C: 65.24; H: 2.74; N: 9.51 %; found:
C:65.55; H: 2.97; N: 9.72 %.

ethyl 2-amino-5'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carboxylate (6d): Gray solid (87 %); mp: 298 °C; 'H NMR (400 MHz, DMSO-ds): 81 (ppm) 10.54
(s, 1H), 9.28 (d, 1H, J = 8.8 Hz), 8.40 (brs, 2H), 8.25 (d, 1H, J = 8.8 Hz), 8.07 (d, 1H, J = 8.4 Hz),
7.75 (t, 1H, J = 8.4 HZ), 7.66 (t, 1H, J = 9.2 HZ), 7.52 (d, 1H, J = 9.2 HZ), 7.22 (d, 1H, J = 2.0 HZ),
7.13 (dd, 1H, J = 8.4 & 2.4 HZ), 6.72 (d, 1H, J = 8.4 Hz), 3.84-3.74 (m, 2H), 0.85 (t, 3H, J = 6.8
Hz); 3C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 179.5, 167.7, 159.1, 158.2, 158.1, 153.8, 143.8,
137.5,135.9,131.2,129.9,129.8, 128.3,127.3,126.7, 125.4,123.2,110.1, 106.6, 103.8, 75.4, 59.9,
48.2, 13.7; IR (KBr) vmaycm™: 1731, 1710, 1639, 1568, 1402, 1334, 1240; Elem. Anal. for
C26H17CIN20g: calcd.: C: 63.88; H: 3.50; N: 5.73 %; found: C: 63.83; H: 3.57; N: 5.66 %.

ethyl 2-amino-7'-chloro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-

carboxylate (6e): Pale brown solid (81 %); mp: 284 °C; *H NMR (400 MHz, DMSO-de): 8 (ppm)
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10.87 (s, 1H), 9.30 (d, 1H, J = 8.8 Hz), 8.45 (brs, 2H), 8.28 (d, 1H, J = 9.2 Hz), 8.10 (d, 1H, J = 8.0
Hz), 7.78 (t, 1H, J = 8.4 Hz), 7.69 (t, 1H, J = 8.0 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.19 (dd, 1H, J = 8.4
& 1.2 Hz),7.09 (d, 1H,J=7.2 Hz),6.84 (dd, 1H, J =8 & 7.6 Hz), 3.88-3.74 (m, 2H), 0.89 (t, 3H, J
= 7.2 Hz); BC NMR (100 MHz, DMSO-dg): 8¢ (ppm) 179.7, 167.7, 159.0, 158.2, 157.9, 153.8,
142.4, 137.3, 136.0, 131.2, 129.9, 129.8, 128.4, 128.2, 127.2, 126.8, 122.8, 122.5, 117.2, 1135,
106.4, 104.0, 75.6, 59.9, 48.8, 13.5; IR (KBr) vmaycm™: 1717, 1696, 1621, 1570, 1406, 1238; Elem.
Anal. for C26H17CIN20s: calcd.: C: 63.88; H: 3.50; N: 5.73 %; found: C: 63.28; H: 3.34; N: 5.87 %.

2-amino-5'-bromo-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carbonitrile (6f): Dark brown solid (90 %); mp: 320 °C; *H NMR (400 MHz, DMSO-ds): &1 (ppm)
10.83 (s, 1H), 9.26 (d, 1H, J = 8.4 Hz), 8.32 (d, 1H, J = 8.8 Hz), 8.12 (d, 1H, J = 7.12 Hz), 7.94
(brs, 2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 7.6 Hz), 7.63-7.58 (m, 2H), 7.40 (dd, 1H, J = 8.4
& 2.0 Hz), 6.83 (d, 1H, J = 8.0 Hz); 13C NMR (100 MHz, DMSO-ds): 8¢ (ppm) 177.7, 159.3, 158.8,
158.8, 154.1, 142.0, 136.4, 136.1, 132.1, 131.2, 129.9, 128.2, 127.8, 127.3, 126.9, 117.5, 117.4,
114.3, 111.9, 106.7, 101.3, 56.9, 48.5; IR (KBr) vmaxcm™: 2198, 1732, 1709, 1656, 1564, 1338,
1234; Elem. Anal. for C24H12BrN3O4: calcd.: C: 59.28; H: 2.49; N: 8.64 %; found: C: 59.29; H: 2.69;
N: 8.67 %.
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2-amino-5'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-clchromene-4,3'-indoline]-3-
carbonitrile (6g): Brown solid (83 %); mp: 318 °C; 'H NMR (400 MHz, DMSO-ds): 51 (ppm) 10.66
(s, 1H), 9.22 (d, 1H, J = 8.8 Hz), 8.28 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.87 (brs, 2H),
7.73 (t,1H, J = 8.8 Hz), 7.66 (t, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 9.2 Hz), 7.26 (dd, 1H,J =84 &
2.4 Hz), 7.05-6.97 (m, 1H), 6.82 (dd, 1H, J = 11.6 &4.4 Hz); 3C NMR (100 MHz, DMSO-ds): 8¢
(ppm) 178.1, 159.2, 158.8 (d, J = 8.0 Hz), 157.7, 154.1, 138.9 (d, J = 2.0 Hz), 136.1, 135.8, 135.7,
131.2,129.9, 128.2, 127.3, 126.9, 117.4 (d, J = 11.0 Hz), 115.8, 115.5, 112.8, 112.6, 110.7, 106.6,
101.4, 57.0, 48.7; IR (KBr) vmaycm: 2199, 1697, 1667, 1630, 1403, 1338, 1239; Elem. Anal. for
Co4H12FN304: caled.: C: 67.77; H: 2.84; N: 9.88 %; found: C: 67.39; H: 2.99; N: 9.83 %; HRMS
(ESI) m/z calcd. for C2saH12FN3O4 [M+Na]*: 448.0704; found: 448.0685.

ethyl 2-amino-5'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-clchromene-4,3'-indoline]-3-
carboxylate (6h): Pale brown solid (75 %); mp: 284 °C; *H NMR (400 MHz, DMSO-ds): 1 (ppm)
10.44 (s, 1H), 9.26 (d, 1H, J = 8.8 Hz), 8.39 (brs, 2H), 8.24 (d, 1H, J = 6.8 Hz), 8.06 (d, 1H, J=6.8
Hz), 7.75 (t, 1H, J = 8.4 Hz), 7.65 (t, 1H, J = 8.0 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.05 (dd, 1H, J = 8.4

& 2.8 Hz), 6.95-6.87 (m, 1H), 6.69 (dd, 1H, J = 9.2 & 4.4 Hz), 3.84-3.71 (m, 2H), 0.83 (t, 3H, J =
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7.2 Hz); 13C NMR (100 MHz, DMSO-dg): &¢ (ppm) 179.7, 167.7, 159.0, 158.1 (d, J = 10.0 Hz),
157.3, 153.8, 141.1 (d, J = 2.0 Hz), 137.2, 137.1, 135.9, 131.2, 129.9, 129.8, 128.2, 127.3, 126.7,
117.2,114.5, 112.0, 109.2 (d, J = 8.0 Hz), 106.5, 104.0, 75.6, 59.8, 48.5, 13.7; IR (KBr) vmaxcm™:
1731, 1693, 1633, 1568, 1403, 1335, 1240; Elem. Anal. for C2sH17FN2Os: calcd.: C: 66.10; H: 3.63;
N: 5.93 %; found: C: 66.23; H: 3.59; N: 5.87 %.

2-amino-7'-fluoro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-clchromene-4,3'-indoline]-3-
carbonitrile (6i): Pale brown solid (77 %); mp: 322 °C; *H NMR (400 MHz, DMSO-ds): 8+ (ppm)
11.18 (s, 1H), 9.21 (d, 1H, J = 8.8 Hz), 8.28 (d, 1H, J = 9.2 Hz), 8.08 (d, 1H, J = 8.0 Hz), 7.90 (brs,
2H), 7.73 (t, 1H, J = 8.8 Hz), 7.66 (t, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.16-7.07 (m, 2H),
6.97-6.87 (m, 1H); 3C NMR (100 MHz, DMSO-de): &¢ (ppm) 177.8, 159.1, 158.8 (d, J = 1.0 Hz),
154.1, 145.5, 136.8, 136.8, 136.2, 131.3, 129.9 (d, J = 3.0 Hz), 129.8, 129.7, 128.1, 127.2, 126.9,
123.5,123.4,120.9,117.4 (d, J =8.0 Hz), 116.5, 106.5, 101.5, 56.9, 48.6; IR (KBr) vmaycm™:2197,
1709, 1666, 1645, 1591, 1403, 1340, 1239; Elem. Anal. for C24H12FN3O4: calcd.: C: 67.77; H: 2.84;
N: 9.88 %; found: C: 67.84; H: 3.01; N: 9.97 %.
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2-amino-5'-nitro-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carbonitrile (6j): Brown solid (94 %); mp: 308 °C; 'H NMR (400 MHz, DMSO-ds): 61 (ppm) 11.44
(s, 1H), 9.26 (d, 1H, J = 8.8 Hz), 8.41 (d, 1H, J = 2.4 Hz), 8.32 (d, 1H, J = 9.2 Hz), 8.22 (dd, 1H, J
= 8.0 & 2.4 Hz), 8.11 (d, 1H, J = 8.4 Hz), 8.03 (brs, 2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J =
8.0 Hz), 7.59 (d, 1H, J = 8.8 Hz), 7.10 (d, 1H, J = 8.8 Hz); 3C NMR (100 MHz, DMSO-ds): 8¢
(ppm) 178.7, 159.7, 159.1, 159.0, 154.1, 149.1, 143.3, 135.0, 131.2, 129.9, 128.2, 127.3, 126.9,
126.9, 120.9, 117.4, 110.3, 110.1, 106.8, 100.8, 56.1, 48.5; IR (KBr) vmaxcm™: 2201, 1722, 1663,
1625, 1401, 1340, 1238; Elem. Anal. for C24H12N4Os: calcd.: C: 63.72; H: 2.67; N: 12.39 %; found:
C:63.53; H: 2.84; N: 12.51 %.

2-amino-5'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carbonitrile (6k): Whitish solid (85 %); mp: 305 °C; 'H NMR (400 MHz, DMSO-dg): 1 (ppm)
10.57 (s, 1H), 9.26 (d, 1H, J=8.4 Hz), 8.32 (d, 1H, J = 8.8 Hz), 8.12 (d, 1H, J = 8.0 Hz), 7.84 (brs,
2H), 7.77 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 7.6 Hz), 7.59 (d, 1H, J = 9.2 HZz), 7.08 (s, 1H), 7.02 (d,
1H,J=8.0 Hz), 6.75 (d, 1H, J = 8.0 Hz), 2.19 (s, 3H); IR (KBr) vmaxycm: 2200, 1706, 1670, 1567,
1340, 1238; Elem. Anal. for C2sH15N304: caled.: C: 71.25; H: 3.59; N: 9.97 %; found: C: 71.12; H:
3.85; N: 9.57 %; HRMS (ESI) m/z calcd. for C2sH1sN304 [M+Na]*: 444.0954; found: 444.0918.
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ethyl 2-amino-5'-methyl-2*,5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carboxylate (6l): Pale yellow solid (82 %); mp: 281 °C; *H NMR (400 MHz, DMSO-ds): 1 (ppm)
10.33 (s, 1H), 9.31 (d, 1H, J = 8.8 Hz), 8.37 (brs, 2H), 8.28 (d, 1H, J = 8.8 Hz), 8.10 (d, 1H, J = 8.0
Hz), 7.79 (t, 1H, J = 8.8 Hz), 7.69 (t, 1H, J = 8.0 HZz), 7.54 (d, 1H, J = 8.8 Hz), 6.92 (d, 1H,J =7.6
Hz), 6.89 (s, 1H), 6.64 (d, 1H, J = 7.6 Hz), 3.81 (g, 2H, J = 6.8 Hz), 2.14 (s, 3H), 0.89 (t,3H, J = 6.8
Hz); 3C NMR (100 MHz, DMSO-ds): 8c (ppm) 179.6, 167.9, 158.9, 158.0, 157.7, 153.7, 142.3,
135.5,131.2,130.2,129.9,129.8, 128.2,127.2, 126.7, 124.6, 117.2,108.6, 106.4, 104.8, 76.1, 59.8,
48.0, 29.8, 21.1, 13.7; IR (KBr) vmaxycm: 1710, 1691, 1637, 1567, 1331, 1238; Elem. Anal. for
Ca7H20N206: calcd.: C: 69.22; H: 4.30; N: 5.98 %; found: C: 69.32; H: 4.29; N: 5.75 %.

2-amino-5'-methoxy-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-

carbonitrile (6m): Green solid (79 %); mp: 293 °C; 'H NMR (400 MHz, DMSO-dg): 8n (ppm)
10.49 (s, 1H), 9.27 (d, 1H, J = 8.8 Hz), 8.31 (d, 1H, J = 8.8 Hz), 8.11 (d, 1H, J = 8.0 Hz), 7.84 (brs,
2H), 7.76 (t, 1H, J = 8.8 Hz), 7.70 (t, 1H, J = 8.0 Hz), 7.60 (d, 1H, J = 8.8 Hz), 6.96 (s, 1H), 6.79-
6.76 (M, 2H), 3.65 (s, 3H); 2*C NMR (125 MHz, DMSO-de): ¢ (ppm) 177.3, 158.4, 158.1, 158.0,
155.2, 1534, 135.4, 135.3, 134.7, 130.6, 129.2, 127.6, 126.7, 126.2, 116.9, 116.7, 114.5, 113.7,
110.8,109.8,106.1,101.4,57.2,55.4, 48.2; IR (KBr) vmaxycm™: 2203, 1721, 1705, 1658, 1631, 1566,
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1404, 1338; Elem. Anal. for C25H15N30s: calcd.: C: 68.65; H: 3.46; N: 9.61 %; found: C: 68.36; H:
3.52; N: 9.49 %.

ethyl 2-amino-5'-methoxy-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-
3-carboxylate (6n): Pale yellow solid (75 %); mp: 269 °C; 'H NMR (400 MHz, DMSO-ds): 8H
(ppm) 10.26 (s, 1H), 9.31 (d, 1H, J = 8.8 Hz), 8.38 (brs, 2H), 8.27 (d, 1H, J = 8.8 Hz), 8.10 (d, 1H,
J=7.2Hz),7.78 (t, 1H, J = 8.4 Hz), 7.69 (t, 1H, J = 7.6 HZ), 7.55 (d, 1H, J = 8.8 Hz), 6.75 (d, 1H,
J =24 Hz),6.72-6.63 (m, 2H), 3.81 (q, 2H, J = 6.8 Hz), 3.60 (s, 3H), 0.88 (t, 3H, J = 7.2 Hz); C
NMR (100 MHz, DMSO-ds): 6¢c (ppm) 179.5, 167.9, 158.9, 158.0, 157.8, 155.1, 153.7, 138.3, 136.7,
135.8, 131.2, 129.9, 129.7, 128.3, 127.3, 126.7, 112.9, 111.1, 109.0, 106.5, 104.5, 76.0, 59.8, 55.9,
48.5, 13.7; IR (KBr) vmaxycm™: 1731, 1693, 1633, 1568, 1403, 1335, 1240; Elem. Anal. for
Co7H20N207: caled.: C: 66.94; H: 4.16; N: 5.78 %, found: C: 66.87; H: 4.17; N: 5.67 %.

2-amino-1'-methyl-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carbonitrile (60): Pale yellow solid (89 %); mp: 316 °C; *H NMR (400 MHz, DMSO-dg): 81 (ppm)
9.22 (d, 1H, J=8.4 Hz), 8.28 (d, 1H, J = 8.8 Hz), 8.08 (d, 1H, J = 6.8 HZz), 7.86 (brs, 2H), 7.73 (t,
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1H,J=8.8 Hz), 7.66 (t, 1H, J = 8.0 HZz), 7.55 (d, 1H, J = 9.2 Hz), 7.33-7.25 (m, 2H), 7.05 (d, 1H, J
=8.0 Hz), 6.99 (t, 1H, J = 7.6 Hz), 3.18 (s, 3H); *C NMR (100 MHz, DMSO-ds): 5¢c (ppm) 176.5,
159.0, 158.8, 158.6, 154.0, 144.2, 136.1, 133.2, 131.2, 129.9, 129.6, 128.1, 127.2, 126.9, 124.4,
123.3, 117.4, 117.3, 109.0, 106.5, 101.8, 57.2, 47.9, 27.1; Elem. Anal. for C2sH1sN3Oa: calcd.: C:
71.25; H: 3.59; N: 9.97 %; found: C: 71.37; H: 3.66; N: 10.14 %.

ethyl 2-amino-1'-methyl-2*,5-dioxo-5H-spiro[benzo[f]pyrano[3,2-c]Jchromene-4,3'-indoline]-3-
carboxylate (6p): Pinkish white solid (85 %); mp: 294 °C; 'H NMR (400 MHz, DMSO-ds): 6n
(ppm) 9.32 (d, 1H, J = 8.4 Hz), 8.44 (brs, 2H), 8.29 (d, 1H, J = 9.2 Hz), 8.11 (d, 1H, J = 8.0 H2),
7.80 (t, 1H, J = 7.2 Hz), 7.70 (t, 1H, J = 6.8 Hz), 7.54 (d, 1H, J = 9.2 Hz), 7.24 (t, 1H, J = 7.6 H2),
7.14 (d, 1H, J = 7.2 Hz), 6.95 (d, 1H, J = 7.6 Hz), 6.89 (t, 1H, J = 7.2 Hz), 3.82-3.70 (m, 2H), 3.18
(s, 3H), 0.79 (t, 3H, J = 7.2 Hz); 3C NMR (125 MHz, DMSO-de): 8¢ (ppm) 177.8, 158.8, 158.6,
158.5, 153.9, 140.2, 135.9, 134.1, 131.4, 131.2, 129.8, 129.6, 128.1, 127.1, 126.8, 125.1, 117.5,
117.2,109.7,106.5,102.1, 62.5, 57.8, 48.3, 26.0, 21.0; IR (KBr) vmaxwcm™: 1734, 1697, 1640, 1569,
1402, 1333, 1240; Elem. Anal. for C27H20N20e: calcd.: C: 69.22; H: 4.30; N: 5.98 %; found: C:
69.37; H: 4.25; N: 5.92 %; HRMS (ESI) m/z calcd. for C27H20N206 [M+Na]™: 491.1213; found:
491.1229.
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2-amino-2',5-dioxo-1"-phenyl-5H-spiro[benzo[f]pyrano[3,2-clchromene-4,3'-indoline]-3-
carbonitrile (6q): Pale yellow solid (84 %); mp: 308 °C; *H NMR (400 MHz, DMSO-ds): 81 (ppm)
9.28 (d, 1H, J = 8.8 Hz), 8.33 (d, 1H, J = 9.2 Hz), 8.13 (d, 1H, J = 8.4 Hz),8.01 (brs, 2H), 7.78 (t,
1H, J = 8.4 Hz), 7.71 (t, 1H, J = 7.6 Hz), 7.68-7.58 (m, 3H), 7.52 (t, 1H, J = 7.6 Hz), 7.48-7.40 (m,
3H), 7.27 (t, 1H, J = 7.6 Hz), 7.08 (t, 1H, J = 7.6 Hz), 6.73 (d, 1H, J = 7.6 Hz); 3C NMR (100 MHz,
DMSO-ds): &c (ppm) 176.1, 159.2, 158.9, 158.8, 154.2, 143.9, 136.2, 135.0, 132.9, 131.3, 130.4,
129.9, 129.9, 129.7, 128.9, 128.2, 127.3, 127.2, 126.9, 125.1, 124.0, 117.4, 117.4, 109.3, 106.6,
101.8,57.2,48.1; IR (KBr) vmaxcm™: 2200, 1711, 1669, 1598, 1377, 1340, 1237; Elem. Anal. for
CaoH17N304: calcd.: C: 74.53; H: 3.54; N: 8.69 %; found: C: 74.51; H: 3.35; N: 8.62 %.

ethyl 2-amino-2',5-dioxo-1'-phenyl-5H-spiro[benzo[f]pyrano[3,2-cJchromene-4,3'-indoline]-3-
carboxylate (6r): Pale yellow solid (77 %); mp: 271-272 °C; *H NMR (400 MHz, DMSO-ds): 6H
(ppm) 9.35 (d, 1H, J = 8.8 Hz), 8.50 (brs, 2H), 8.30 (d, 1H, J = 9.2 Hz), 8.12 (d, 1H, J = 8.0 H2),
7.81 (t, 1H, J= 7.2 HZ), 7.71 (t, 1H, J = 7.2 HZ), 7.65-7.57 (m, 2H), 7.55 (d, 1H, J = 8.8 Hz), 7.53-

7.48 (M, 2H), 7.46 (t, 1H, J = 7.2 Hz), 7.26 (d, 1H, J = 7.2 Hz), 7.19 (t, 1H, J = 7.6 Hz), 6.96 (t, 1H,
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J=7.6 Hz), 6.75 (d, 1H, J = 8.0 Hz), 4.06-3.80 (m, 2H), 0.75 (t, 3H, J = 7.2 Hz); 13C NMR (100
MHz, DMSO-dg): o¢ (ppm) 177.6, 167.6, 159.2, 158.5, 157.9, 153.8, 145.3, 136.0, 135.7, 134.3,
131.3,130.0,129.9,129.9,128.6,128.2,128.1,127.3,126.8, 126.6,117.2,108.3,106.4, 104.5, 75 .7,
59.7, 47.7, 14.4; IR (KBr) vmaycm™: 1726, 1698, 1639, 1568, 1374, 1332, 1239; Elem. Anal. for
C32H22N20g: caled.: C: 72.45; H: 4.18; N: 5.28 %; found: C: 72.17; H: 4.04; N: 5.24 %.
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4.1 Introduction

Six membered oxygenated heterocycles are well recognized scaffolds for their bioorganic,
medicinal, agricultural, pharmaceutical and industrial applications. [1] Among them, biscoumarin
derivatives are of particular interest because of their wide range of activities and applications. [2, 3]
Till now, there are several reports of naturally occurring compounds containing basic bicoumarin
units like Dicoumarol (1), Gerberinol (1), Ismailin (111), Bisosthenon (1V) etc (Figure 4.1). [4-5]
Above all, Dicoumarol (1) is a well-established anticoagulant drug which operates as a vitamin K
antagonist. [4] It is also worth mentioning that in 2004 Cullen et al. reported beneficial effects of

Dicoumarol (I) on cancer pancreatic cells. [4]

OH OH OH OH
G L
O O
Yo okg QO iy
Dicoumarol | Gerberinol

(Gerbera lanuginose)

(Melilotus alba)

Bisosthenon

O (Diospyros ismaili) (Citrus funadokoao)

Figure 4.1 Naturally occurring biscoumarin.

After the recognition of biscoumarin as a biological important class of compounds, scientists found
out various activities associated with these molecules such as anticoagulant, antibacterial, urease
inhibition activities, anti-oxidant, anti-HIV, anti-cancer, anti-bacterial and anti-coagulant activities
(Figure 4.2). [6-10] Interestingly, despite having structural similarity with biscoumarin, the activity
profile of bis(benzochromenone) is not well documented till now. However, in 2009, Bryce et al.
reported the inhibition activity of such bis(benzochromenone) (VIII) against human NAD(P)H:
quinone oxidoreductase-1 (NQO1) enzyme (Figure 4.2). [11, 12] This study raised the scope for

exploration of bis(benzochromenone) further into the domain of medicinal chemistry.
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0o
_ C \Y/|
e o Nure amcosguiant_RESAERCaHs R 4N(CHI) Ot
' g Antiproliferative activity Non-competitive
phosphodiesterase-1 enzyme

inhibitor

R= 1-Naphthyl, 2-Naphthyl, Phenyl
NQO1 inhibitors

0o Vil

Figure 4.2 Biological activities of some synthesized biscoumarin.

4.2 Survey of existing methodologies

Most of the synthetic methodologies can be traced back in the scientific reports for the synthesis of
biscoumarin using 4-hydroxycoumarin and aldehyde as starting materials. To start with, in 2007
Kidwai and co-workers reported the synthesis of 3,3’-arylmethylenebis-(4-hydroxycoumarin) (3)
using molecular iodine in catalytic amount in agueous media. The reaction involved Michael
reaction of various substituted aldehydes (1) with 4-hydroxycoumarin (2) which resulted in

diversified biscoumarin products (3) in good to excellent yields (91-99 %) (Figure 4.3). [13]

OH OH R OH
+2 >
H,0, 100 °C,
R H o o 2 (@] o O (@)
1 2 3

1 atm
20-34 min Yield = 91-99 %

R = 4-CICgH,, CoHs, 4-CHyCeHy, 4-NO,CoHy, 3-NO,CgH,, 2 SXamPles

4-OHCgHy4, 2-OHCgHy4, 2-Furanyl, -CH=CH-CgHs,
3,4-Piperonyl, 3-Indolyl, 2-Thiophenyl

Figure 4.3 lodine-catalysed synthesis of 3,3'-arylmethylenebiscoumarins.
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In continuation, Khurana et al. (2009) came out with tetrabutylammonium bromide catalysed
Michael reaction of 4-hydroxycoumarin (2) and aldehydes (1) to construct biscoumarins (3) using
water as solvent at 100 °C. The same reaction could also be performed successfully under neat

condition at a slightly higher temperature (120 °C) (Figure 4.4). [14]

OH OH R OH
)OL N TBAB (10 mol%) AN =
R™HT?2 Methhod A: H,0, 100 © O o o O
1 2 25-40 min 3
Methhod B: Neat, 120 °C  Method A: Yield = 82-95 %
20 min 15 examples
R = 4-C|C6H4, 3-C|C6H4, 4-BrC6H4, C6H5, 4-CH3C6H4, Method B: Yield = 75-91 %
4-N0206H4, 4-CH3OCGH4, 3,4-(CH30)206H3, 14 examples
3,4,5-(CH30)3CgH,, 4-(CH3),CHCgH,, 2-Furanyl,
-CH=CH-CgHs, Piperonyl, 2-Pyridyl, CH(CH3),

Figure 4.4 Tetrabutylammonium bromide-catalysed synthesis of biscoumarins.

Similarly, Shinde and his group in 2009 reported another one-pot reaction using manganese (I1)
chloride tetrahydrate as an efficient catalyst for the above mentioned conversion to yield bis-(4-

hydroxycoumarin)methanes (3, 93-99 % yield) in aqueous medium ( Figure 4.5). [15]

OH OH R OH
e) MnC|24H20
P] = (10 mol %) N %!
RY, H H,0,100°C
2%
1 A ar O Ogit

20-40 min
R =4-CICgH,, CgHs, 4-NO,CgHy, 4-CH3CgHy, Yield = 93-99 %
4-OHCgHy4, 2-OHCgHy, 2-Furanyl, -CH=CH-CHj, 10 examples

2-Indolyl, 2-Thiophenyl

Figure 4.5 Manganese chloride-catalysed synthesis of bis-(4-hydroxycoumarin)methanes.
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Later on, in 2015 Wang and co-workers devised an ionic liquid tetramethylguanidium acetate
([TMG][ACc]) assisted domino reaction of 4-hydroxycoumarin (2) with various aromatic and hetero-
aromatic aldehydes (1) to furnish biscoumarins (3, 84-99 % yield) at room temperature (Figure 4.6).

OH
(0] [TMG][Ac]
)J\ + 9 ©\)1 (1.5 equiv.)
R H ]
1 % o” 0O 30-270 min, rt

R = 4-C|CGH4, 4-B|"CGH4, 4-F06H4, CGH51 4-CH3CGH4, 4-CF3CGH4, Yield = 84-99 %
4-NO,CgHy, 4-CH30CgH,, 3-NO5,CgHy, 2-NO,CgHy4, 4-OHCgH,, 16 examples
2-OHCgHy, 3-CH30-4-OH-CgH3, 2-Furanyl, Piperonyl, 4-Pyridinyl

[16]

Figure 4.6 lonic liquid-assisted synthesis of biscoumarins.

Ona similar line, Xu et al. (2016), prepared a wide variety of biscoumarin derivatives (3) using
catalytic amount of 1,4-diazabicyclo[2.2.2]octane [DABCO]-based ionic liquid in water at 80 °C to
get comparatively higher yields (96-99 %) of the targeted molecules (Scheme 4.7). [17]

OH
0 [DABCO-H][AcO]
)j\ " N (10 mol %)
R%"|{ g -
o X H,0, 80 °C
1 2 .
2-15 min

R = 4-CICgH,, 4-BrCgH,4,3-BrCgH,, 2-BrCgH,, CgHs, 4-CH3CgH,,  Yield = 96-99 %
4-NO,CgHy, 4-CH30CgHy, 2,4-(Cl),CgH3, 2-Naphthalenyl, 14 examples
2-Furanyl, 2-Thiophenyl, n-Propyl

Figure 4.7 DABCO-based ionic liquid-assisted synthesis of biscoumarins.
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Recently, Azizi et al. (2018) reported a domino Knoevenagel Michael addition reaction of 4-

hydroxycoumarin (2) and various aldehydes (1) using thiamine tagged Ni?* immobilized on
FesO4@SiO2 nanocomposite (FesO.@Si0.@VB1-Ni?*) to furnish biscoumarins (3, 65-98 % yield).

The reaction was performed for 30-50 minutes under solvent free condition at 110 °C (Figure 4.8).

[18]

OH

1 2 30-50 min
R = 4-CICgHy4, 3-CICgHy, 4-BrCgHy, CeHs, 4-CH3CgHy,
4-NO,CgHy,, 3-NO,CgH,, 4-OHCgH,, 4-CH30CgHy,,
3-CH30CgH,, 2-Furanyl, 4-Pyridyl

0) Fe3O4@Si02@VB1—Ni
P A (20 mg/ mmol) O
R™ 'H o0 o 110 °C

Yield = 65-98 %
12 examples

Figure 4.8 Fe304@SiO2 nanocomposite catalysed synthesis of biscoumarins.

Likewise, in 2018 Myrboh and co-workers synthesized biscoumarin derivatives at room temperature

using nickel nanoparticles in aqueous medium (Figure 4.9). The designed protocol involved a three-

component condensation reaction between two equivalent of 4-hydroxycoumarin (2) and one

equivalent of aldehydes (1) to provide the final product (3) in good to excellent yield (86-94%). [19]

o e Ni-NP
)J\ (ji (25 mg/ mmol)
R” e =
e} 0 H20, 3 h, rt

. 2
R = 4-CICgH,, 4-BrCgHy, 2-CICgH,, CgHs, 4-CH3CgHy,
4-NO,CgHy, 4-OHCgH,, 4-CH3CH,OCgH,, 3-FCgHy,
3,4-(CH30),CgH3, 2-Furanyl

Yield = 86-94 %
12 examples

Figure 4.9 Nickel nanoparticles catalysed synthesis of diversified biscoumarins.

100



CHAPTER 4 |

Apart from these, the synthesis of biscoumarins from 4-hydroxycoumarin is also reported using
several other reagents like phosphotungstic acid (Chandra et al., 2010) [20], choline hydroxide
(Wang et al., 2015) [21], pre-functionalised nanoparticles (Karimi et al., 2014) [22], ionic liquids
[23, 24] and nanocrystalline MgO (Banerji et al., 2012) [25] using essentially the same strategy.

As mentioned previously, reports for the synthesis of bis(benzochromenone) are scarce. To the best
of our knowledge, there is only one report in which 1-Hydroxy-3H-benzo[flchromen-3-one (4) is
used to construct bis-benzocoumarin scaffolds. Bryce and co-workers (2009) reported the synthesis
of bis(1-hydroxy-3H-benzo[flchromen-3-one) derivatives (5) using ethanol as a solvent under reflux
(Figure 4.10). [11] However, only three examples of bis-benzocoumarin moieties were reported by

the author.

)1
N

0
gy | O EtOH, reflux
+
R™ H 24 h
0”0 0 o)
Yield = 51-53 %
R = CgHs, 1-Naphthyl, 2-Naphthyl 3 examples

(only three examples)

Figure 4.10 Synthesis of bis-benzocoumarins under reflux condition.

From the above described literature reports, it is clear that most of the described methodologies
suffer from one or the other drawback like use of pre-functionalized and expensive catalysts, long
reaction times, limited substrate scope, tedious work-up and purification processes. Having a focus
on adopting efficient greener methodology for the synthesis of biologically relevant molecules, [26-
28] the aim of this chapter is to develop an effective methodology to construct such biologically

important bis-benzocoumarin derivatives from 1-hydroxy-3H-benzo[flchromen-3-one.
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4.3 Results and discussion

In a prototypical reaction, a liquid-assisted grinding was tried to afford 2,2'-((4-
chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]lchromen-3-one) (5a) from the reaction of 4-
chlorobenzaldehyde (1a, 1.0 mmol) and 1-hydroxy-3H-benzo[f]chromen-3-one (4, 2.0 mmol) using
IPA as a promoter in the presence of base as a catalyst. Unfortunately, the desired product 5a was
not observed in the presence of either DABCO (30 mol %) or EtzN (30 mol %) (Table 4.1, entries
1 and 2). Then, the same reaction mixture was irradiated under microwave at 130 °C for 15 minutes
using 30 mol % of DABCO in IPA which favored the reaction to provide the desired product 5a in
67 % yield (Table 4.1, entry 3). Next, the reaction was studied with other bases like EtsN and DBU
(Table 4.1, entries 4, 5) but the conditions failed to give better yield of the desired product 5a. Later
on, the reaction was further screened for optimum catalytic loading of DABCO as well as optimum
microwave heating temperature and time (Table 4.1, entries 6-10). From this set of experiments, it
was ascertained that 30 mol % DABCO at 140 °C for 15 minutes provided highest yield of 5a as 74
% (Table 4.1, entry 6). Next, in order to examine the solvent effect on the reaction mixture, different
solvents were explored in this reaction and IPA came out as an ideal solvent for the desired
conversion (Table 4.1, entries 6, 11-12). After having all these experiments, the maximum yield (74
%) of 5a was obtained under microwave irradiation of a reaction mixture of chlorobenzaldehyde
(1a, 1 mmol) and 1-hydroxy-3H-benzo[flchromen-3-one (4, 2 mmol) for 15 minutes at 140 °C using
30 mol % DABCO in 1 mL IPA (Table 4.1, entry 6). It is worth noting that mere filtration of the
crude product and washing with IPA (2 mL) followed by water (3 mL) provided the pure solid

products for further data analysis.
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Table 4.1 Optimization of the reaction between 4-chlorobenzaldehyde (1a) and 1-hydroxy-3H-

benzo[f]chromen-3-one (4) under microwave condition?.

e) H HO = (0]
0 catalyst, solvent
+ 9 OO temp °C, time (min)
1aCI 4
Entry | Catalyst (mol %) Solvent* Condition Yield
(mL) (%)°

1 DABCO (30 mol %) IPA Grinding® -

2 EtsN (30 mol %) IPA Grinding® nd

3 DABCO (30 mol %) IPA MW (130 °C for 15 min) 67

4 EtsN (30 mol %) IPA MW (130 °C for 15 min) 61

5 DBU (30 mol %) IPA MW (130 °C for 15 min) 63

6 DABCO (30 mol %) IPA MW (140 °C for 15 min) 74

7 DABCO (30 mol %) IPA MW (150 °C for 15 min) 73

8 DABCO (30 mol %) IPA MW (140 °C for 12 min) 72

9 DABCO (30 mol %) IPA MW (140 °C for 20 min) 75

10 | DABCO (20 mol %) IPA MW (140 °C for 15 min) 65

11 | DABCO (30 mol %) ACN MW (140 °C for 15 min) 41

12 | DABCO (30 mol %) EtOH MW (140 °C for 15 min) 63
4Reaction conditions: 1a (1.0 equiv.), 4 (2.0 equiv.), catalyst, solvent, Anton Paar
Monowave 300 reactor; initial conditions: 1 min 60 °C; final conditions 15 min 140
°C; nd: not determined; PIsolated yields; °Hand grinding in agate- mortar and pestle;
*0.25 mL IPA (entry 1-2); 1 mL of solvent (entries 3-12).
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Having optimum conditions for the synthesis of bis(benzochromenone) 5 in hand, the reaction was
further explored to examine the substrate scope. Most interestingly, the use of different substituted
benzaldehydes did not affect the reaction outcomes. Notably, aromatic aldehydes having electron-
withdrawing (4-Cl; 2-Cl; 3-Cl; 4-NO; 2-CI-5-NOy; 2-Br; 2-CI-5-CFs3; 2,3-(Cl)2; 4-Br) and electron-
donating groups (4-Me; 4-OMe; 3,4-(OMe),; 2,3-(OMe),) were proved equally effective in
providing corresponding bisbenzochromenones in good to high yields (61-77 %, 5a-5n) as shown
in Scheme 4.1. Nevertheless, the desired transformation was better in case of unsubstituted (71 %,
5b) and electron deficient benzaldehydes (4-Cl (74 %, 5a); 2-Cl (69 %, 5c¢); 2-Br (72 %, 5d); 4-NO>
(77 %, 5e); 2-CI-5-CF3 (61 %, 5g); 2-CI-5-NO; (70 %, 5h); 3-Cl (66 %, 5i); 2,3-(Cl)2 (69 %, 5m);
4-Br (75 %, 5n)) in comparison to electron rich benzaldehydes (4-OMe (63 %, 5f); 2,3-(OMe), (61
%, 5j); 3,4-(OMe)2 (63 %, 5k); 4-Me (72 %, 5I)). In the above conversion, 4-nitro benzaldehyde
provided the highest yield of the product 5e (77 %).
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5n, 75%

Scheme 4.1 Reaction between 1-hydroxy-3H-benzo[f]lchromen-3-one (4) and benzaldehydes (1).
aReaction conditions: 1 (1.0 equiv.), 4 (2.0 equiv.), DABCO (30 mol %), IPA (1 mL), 140 °C for

15 min in Anton Paar Monowave 300 reactor; initial conditions: 1 min 60 °C.
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The plausible mechanism for the synthesis of 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-
benzo[flchromen-3-one) (5a) is illustrated in Scheme 4.2. In the reaction, the base catalysed reaction
of 1-hydroxy-3H-benzo[f]chromen-3-one (4) and 4-chlorobenzaldehyde (1a) provided intermediate
I. The Michael addition of 4 to the intermediate | leads to intermediate I1. Finally, base promoted
proton shift provided the final desired product, 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-
benzo[flchromen-3-one) (5a).

J

Scheme 4.2 Mechanism for the synthesis of 2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-

benzo[flchromen-3-one) (5a).

4.4 Conclusions

In summary, the chapter illustrated a green and efficient synthesis of bis(benzo[f]Jchromen-3-one)
derivatives from 1-hydroxy-3H-benzo[flchromen-3-one and benzaldehydes under microwave
irradiation using DABCO as organocatalyst. The key advantages of the developed strategies are
minutes synthesis and diversified substrates. Most importantly, all the synthesized products were
obtained by filtration only. Moreover, the column-free procedure provided diversified biologically

relevant molecules in good to high yield which is beneficial for their future biological studies.
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4.5 Experimental details
4.5.1 General information

Except 1-hydroxy-3H-benzo[flchromen-3-one (4), which was prepared in accordance with the
reported literature [29], all other substrates, reagents and solvents were purchased commercially. *H
NMR spectra were taken by Bruker Avance® Il (500 MHz), 13C NMR spectra were respectively
recorded at 125 MHz. Deuterated DMSQ (DMSO-dg) with TMS as internal standard was used as a
solvent for taking NMR analyses, **C NMR of compound 5m could not recorded even after high
number of scans due to lower solubility in NMR solvent. In the evaluation of 'H NMR spectra,
chemical shift has been assigned in units of parts per million (ppm), wherein, “s” stands for singlet,
“d” for doublet, “t” for triplet, “q” for quartet, “dd” for doublet of doublet”, “brs” for broad singlet
and “m” for multiplet. The units of coupling constant (J) has been assigned in Hz. Functional groups
were detected by Perkin Elmer® FT-IR spectrometer- Spectrum two. The High-resolution mass
spectra (HRMS) of representative compounds 5b, 5k, 51 and 5m were recorded on Bruker daltronics
microTOF-QII® spectrometer using ESI ionization. Elemental analyses were carried out on vario
MICRO® cube Elementar. Melting points were obtained on Optimelt® automated melting point
system. Analyses of reactions were done using thin layer chromatography (TLC), which was
performed on silica gel TLC plates. The microwave-assisted synthesis of the compounds was
performed in Anton Paar® Monowave reactor which has an operating frequency of 2.455 GHz with
continuous irradiation power of 0 to 300 W. The reactants were taken in a G-10 glass vial capped

with Teflon septum and was exposed to microwave irradiation.
4.5.2 General procedure

Preparation of 1-hydroxy-3H-benzo[flchromen-3-one (4) [29]: The mixture of 2-naphthol (2
mmol) and meldrum’s acid (2 mmol) was stirred at 85 °C for 9 h (Scheme 4.3). After that, the
reaction mixture was cooled to room temperature and extracted with ethyl acetate followed by
saturated NaHCO3 solution. The collected water extract was acidified with conc. HCI and further
extracted with methylene dichloride (DCM) to yield the crude intermediate after evaporating the
organic solvent. This crude intermediate (1 mmol) in 1.5 mL Eaton’s reagent was stirred at 60 °C
for 5 h. To this resultant mixture, water was added while vigorous stirring. The precipitate thus

obtained was filtered by suction and dried to get final product 4.
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HO Z O

OH 85°C,9h “/ \n/\ﬂ/ OH iaatggnst 0
“/ M neat 60°C, 5 h OO

4

Scheme 4.3 Synthesis of 1-hydroxy-3H-benzo[f]chromen-3-one.

[29] Park, S.-J.; Lee, J.-C.; Lee, K.-1.; A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-
quinolone Derivatives. Bull. Korean Chem. Soc. 2007, 28, 1203-1205.

Synthesize of bis(1-hydroxy-3H-benzo[flchromenones (5a-5n):

In a G-10 microwave vial, 2 equiv. of 1-hydroxy-3H-benzo[flchromen-3-one (4) and 1 equiv. of
aromatic aldehydes (1) were added. To this 30 mol % DABCO and 1 mL IPA were added in
succession. This G-10 microwave vial was then subjected to microwave irradiation at 140 °C for 15
minutes. The solid hence obtained was filtered off and washed with IPA followed by water to yield

the desired pure products 5.
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4.5.3 Characterization of the synthesized molecules

All the products were characterized via techniques of 'H NMR, *C NMR Spectra, FT-IR and
elemental analyses. Further, selected HRMS of 5b, 5k, 51 and 5m compounds are reported to confirm

the products.

Analytical Information for the synthesized molecules is given below:

2,2'-((4-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5a): White solid
(74 %); mp: 292-293 °C; 'H NMR (500 MHz, DMSO-ds): 81 (ppm) 17.96 (s, 1H), 9.72 (d, 2H, J =
8.5 Hz), 8.07 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 7.5 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.51 (t, 2H, J =
7.0 Hz), 7.48 (d, 2H, J = 8.5 Hz), 7.26-7.20 (m, 4H), 6.35 (s, 1H); 13C NMR (125 MHz, DMSO-de):
Sc (ppm) 172.2, 164.1, 153.3, 141.8, 132.8, 130.5, 130.5, 129.7, 128.9, 128.8, 128.0, 127.8, 127.0,
125.2, 117.4, 112.2, 104.3, 44.4; IR (KBr) vmaxycm™: 3434, 1677, 1626, 1584, 1404, 1385; Elem.
Anal. For C33H19CIOe: calcd.: C: 72.47; H: 3.50 %,; found: C: 72.13; H: 3.67 %.

2,2'-(phenylmethylene)bis(1-hydroxy-3H-benzo[f]lchromen-3-one) (5b): Pale yellow solid (71
%); mp: 284-286 °C; *H NMR (500 MHz, DMSO-ds): 81 (ppm) 18.04 (s, 1H), 9.74 (d, 2H, J = 8.5

Hz), 8.07 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.5 Hz), 7.54-7.46 (m, 4H),
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7.24-7.17 (m, 4H), 7.10 (t, 1H, J = 7.0 Hz), 6.39 (s, 1H); 13C NMR (125 MHz, DMSO-de): 8¢ (ppm)
172.3, 164.3, 153.4, 142.8, 132.7, 130.7, 130.6, 128.9, 128.2, 127.8, 127.2, 127.1, 125.3, 117.5,
112.4, 104.7, 44.5; IR (KBr) vmaxcm™: 3435, 1634, 1456; Elem. Anal. For C33H200s: calcd.: C:
77.34; H: 3.93 %,; found: C: 77.09; H: 3.59 %; HRMS (ESI) m/z calcd. for C3s3H200s [M+Na]*:
535.1152, found: 535.1176.

2,2'-((2-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[f]lchromen-3-one) (5¢): Yellow solid
(69 %); mp: 256-257 °C; *H NMR (500 MHz, DMSO-ds): 8w (ppm) 17.69 (s, 1H), 9.73 (d, 2H, J =
9.0 Hz), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 7.0 Hz), 7.54 (d, 1H, J =
7.5 Hz), 7.51 (t, 2H, J = 7.0 Hz), 7.54 (d, 2H, J = 9.0 Hz), 7.26-7.21 (m, 2H), 7.16 (t, 1H, J= 7.5
Hz), 6.27 (s, 1H); 13C NMR (125 MHz, DMSO-ds): 8¢ (ppm) 172.2, 163.7, 153.2, 141.0, 133.1,
132.7, 131.1, 130.7, 130.5, 129.8, 128.9, 127.9, 127.5, 127.1, 126.6, 125.3, 117.5, 115.0, 112.4,
104.4, 44.5; IR (KBr) vmaxcm™: 3441, 1689, 1616, 1444; Elem. Anal. For C33H19ClOg: calcd.: C:
72.47; H: 3.50 %,; found: C: 72.63; H: 3.69 %.

2,2'-((2-bromophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one)  (5d):  Yellow
solid (72 %); mp: 251 °C; *H NMR (500 MHz, DMSO-dg): 8w (ppm) 17.59 (s, 1H), 9.72 (d, 2H, J =
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8.5 Hz ), 8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 7.0 Hz), 7.55 (d, 1H, J =
7.5 Hz), 7.51 (t, 2H, J = 7.0 Hz), 7.47 (d, 2H, J = 9.0 Hz), 7.44 (d, 1H, J = 9.0 Hz), 7.29 (t, 1H, J =
8.0 Hz), 7.09 (t, 1H, J = 7.5 Hz), 6.15 (s, 1H); 3C NMR (125 MHz, DMSO-ds): 8¢ (ppm) 172.2,
163.7, 153.2, 142.5, 133.3, 132.6, 131.2, 130.7, 130.5, 128.9, 127.8, 127.1, 125.3, 123.6, 117.5,

115.0,112.4,104.5, 44.5; IR (KBr) vmaycm=: 3428, 1688, 1622, 1452; Elem. Anal. For C33H19BrOs:
calcd.: C: 67.02; H: 3.24 %:; found: C: 67.45; H: 3.07 %.

2,2'-((4-nitrophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5e): Dark yellow
solid (77 %); mp: 265-267 °C; *H NMR (500 MHz, DMSO-dg): 8w (ppm) 17.86 (s, 1H), 9.70 (d, 2H,
J=8.5Hz), 8.18-8.07 (m, 4H), 7.97 (d, 2H, J = 8.0 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.55-7.46 (m, 6H,
J = 7.2 Hz), 6.47 (s, 1H); 13C NMR (125 MHz, DMSO-ds): 8¢ (ppm) 172.2, 163.8, 153.2, 151.8,
145.5,132.7,130.3, 130.2,128.6,128.0,127.7,126.7,125.1,123.3,117.2,114.7,111.9,103.7, 44.2,

IR (KBr) vmaxwcm™: 3435, 1643, 1406; Elem. Anal. For C33sH19NQOs: calcd.: C: 71.09; H: 3.44 %;
found: C: 71.37; H: 3.27 %.

2,2'-((4-methoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5f): Yellow
solid (63 %); mp: 262-263 °C; *H NMR (500 MHz, DMSO-ds): 1 (ppm) 18.05 (s, 1H), 9.75 (d, 2H,
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J=9.0Hz),8.06 (d, 2H, J = 9.0 Hz), 7.96 (d, 2H, J=9.0 Hz), 7.60 (t, 2H, J = 7.0 Hz), 7.51 (t, 2H,
J=6.5Hz), 7.47 (d, 2H, J = 9.0 Hz), 7.11 (d, 2H, J = 9.0 Hz), 6.76 (d, 2H, J = 9.0 Hz), 6.31 (s, 1H),
3.69 (s, 3H); °C NMR (125 MHz, DMSO-dg): 8¢ (ppm) 172.2, 164.3, 153.3, 142.2, 132.7, 130.7,
128.9,128.1,127.8,127.2,126.9, 125.3, 117.5, 115.0, 113.6, 105.0, 55.3, 44.5; IR (KBr) vmaxcm™:
3435, 1641, 1507, 1403; Elem. Anal. For C34H2207: calcd.: C: 75.27; H: 4.09 %; found: C: 75.23;
H: 4.01 %.

2,2'-((2-chloro-5-(trifluoromethyl) phenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-
one) (59): Pale yellow solid (61 %); mp: 269-270 °C; *H NMR (500 MHz, DMSO-ds): 8+ (ppm)
17.66 (s, 1H), 9.69 (d, 2H, J = 9.0 Hz), 8.08 (d, 2H, J = 9.0 Hz),7.97 (d, 2H, J = 7.5 Hz),7.81 (s,
1H), 7.61 (t, 2H, J = 7.0 Hz), 7.58-7.50 (m, 4H), 7.48 (d, 2H, J = 9.0 Hz), 6.34 (s, 1H); 3C NMR
(125 MHz, DMSO-ds): &c (ppm) 172.1, 163.3, 153.0, 142.3, 132.6, 130.7, 130.3, 130.1, 128.6,
127.7,126.7,125.1, 117.1, 114.7, 111.9, 103.4, 44.1; IR (KBr) vmaxcm™: 3442,1666, 1556, 1406;
Elem. Anal. For C3sH1sCIF30e: calcd.: C: 66.41; H: 2.95 %; found: C: 66.53; H: 2.81 %.

2,2'-((2-chloro-5-nitrophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5h):

Dark yellow solid (70 %); mp: 264-265 °C; 'H NMR (500 MHz, DMSO-ds): 81 (ppm) 17.68 (s, 1H),
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9.69 (d, 2H, J = 8.4 Hz), 8.37 (d, 1H, J = 2.5 Hz), 8.12-8.06 (m, 3H), 7.98 (d, 2H, J = 7.5 Hz), 7.64-
7.58 (m, 3H), 7.53 (t, 2H, J = 7.0 Hz), 7.49 (d, 2H, J = 9.0 Hz), 6.38 (5, 1H); 13C NMR (125 MHz,
DMSO-ds): 8¢ (ppm) 171.9, 163.1, 152.8, 145.8, 142.9, 139.6, 132.5, 130.8, 130.2, 129.9, 128.4,
127.5,126.5, 125.0, 122.2, 116.9, 111.6, 102.9, 44.0; IR (KBr) vmaxcm: 3423, 1670, 1457; Elem.
Anal. For C33H18CINOg: calcd.: C: 66.96; H: 3.06 %; found: C: 66.57; H: 3.39 %.

Cl

2,2'-((3-chlorophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5i): Pale yellow
solid (66 %); mp: 282 °C; *H NMR (500 MHz, DMSO-ds): 8+ (ppm) 17.95 (s, 1H), 9.72 (d, 2H, J =
8.5 Hz), 8.08 (d, 2H, J = 9.0 Hz), 7.97 (d, 2H, J = 8.0 Hz), 7.61 (t, 2H, J = 7.5 HZz), 7.54-7.47 (m,
4H), 7.24 (t, 1H, J = 6.5 Hz), 7.21-7.16 (m, 3H), 6.38 (s, 1H); 3C NMR (125 MHz, DMSO-ds): ¢
(ppm) 171.6, 163.5, 152.7, 145.0, 132.3, 132.2, 129.9, 129.8, 129.4, 128.2, 127.2, 126.3, 126.0,
125.2,124.7,124.6, 116.7, 111.5, 103.4, 43.8; IR (KBr) vmaxwcm™: 3437, 1624, 1405; Elem. Anal.
For Ca3H19ClOs: calcd.: C: 72.47; H: 3.50 %; found: C: 72.42; H: 3.58 %.

2,2'-((2,3-dimethoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5j): Pale
yellow solid (61 %); mp: 260-261 °C; *H NMR (500 MHz, DMSO-dg): 81 (ppm) 17.99 (s, 1H), 9.73
(d,2H,J=8.5Hz), 8.05 (d, 2H, J =9.0 Hz), 7.95 (d, 2H, J = 7.5 HZz), 7.59 (t, 2H, J = 7.0 Hz), 7.50
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(t,2H,J = 7.0 HZ), 7.46 (d, 2H, J = 9.0 Hz), 6.78 (d, 2H, J = 8.5 Hz), 6.74 (d, 1H, J = 8.0 Hz), 6.30
(s, 1H), 3.69 (s, 3H), 3.48 (s, 3H); 13C NMR (125 MHz, DMSO-de): 8¢ (ppm) 172.3, 164.3, 153.3,
148.7, 147.0, 132.6, 130.7, 128.9, 127.8, 127.1, 125.3, 119.3, 117.5, 1150, 112.5, 112.0, 111.9,
105.0, 55.9, 44.5; Elem. Anal. For C3sH240g: calcd.: C: 73.42; H: 4.22 %; found: C: 73.53; H: 3.93
%.

2,2'-((3,4-dimethoxyphenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5k):
Yellow solid (63 %); mp: 248-250 °C; *H NMR (500 MHz, DMSO-ds): 81 (ppm) 17.99 (s, 1H), 9.73
(d, 2H, J = 8.5 Hz), 8.05 (d, 2H, J = 9.0 Hz), 7.95 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.0 Hz), 7.53-
7.43 (m, 4H), 6.81-6.70 (m, 3H), 6.29 (s, 1H), 3.69 (s, 3H), 3.48 (s, 3H); 3C NMR (125 MHz,
DMSO-de): dc (ppm) 172.3, 164.4, 153.3, 148.8, 147.1, 135.2, 132.7, 130.7, 130.7, 128.9, 127.8,
125.3, 119.4, 117.5, 1125, 112.1, 112.0, 105.0, 56.0, 44.5; IR (KBr) vmaxycm™: 3433, 1655, 1555,
1455; Elem. Anal. For C3sH240s: calcd.: C: 73.42; H: 4.22 %; found: C: 73.31; H: 4.17 %; HRMS
(ESI) m/z calcd. for CasH240g [M+Na]*: 595.1363, found: 595.1399.

2,2'-(p-tolylmethylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (51): Pale yellow solid (72
%); mp: 286-287 °C; *H NMR (500 MHz, DMSO-de): &1 (ppm) 9.72 (d, 2H, J = 9.0 Hz), 8.06 (d,
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2H,J = 9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.0 Hz), 7.54-7.43 (m, 4H), 7.11-6.95 (m,
4H), 6.33 (s, 1H), 2.24 (s, 3H); 3C NMR (125 MHz, DMSO-ds): 5¢c (ppm) 172.4, 164.5, 153.4,
139.5,134.0,132.7,130.7,130.7,128.9,128.9, 127.8,127.2,127.1,125.3,117.5,112.5, 104.9, 44.0,
21.0; IR (KBr) vmaxwcm™: 3437, 1661, 1557, 1404; Elem. Anal. For C34H220s: calcd.: C: 77.56; H:
4.21 %; found: C: 77.37; H: 3.99 %; HRMS (ESI) m/z calcd. for CasH2206 [M+Na]*: 549.1308,
found: 549.1308.

2,2'-((2,3-dichlorophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5m): Pale
yellow solid (69 %); mp: 282-284 °C; *H NMR (500 MHz, DMSO-ds): 8n (ppm) 17.61 (s, 1H), 9.71
(d, 2H, J =9.0 Hz), 8.06 (d, 2H, J =9.0 Hz), 7.96 (d, 2H, J = 8.0 Hz), 7.59 (t, 2H, J = 8.5 Hz), 7.53-
7.39 (m, 6H), 7.27 (d, 1H, J = 8.0 Hz), 6.28 (s, 1H); IR (KBr) vmaxwcm: 3439, 1659, 1556, 1458,
1402; Elem. Anal. For C33H1s8Cl206: calcd.: C: 68.17; H: 3.12 %; found: C: 68.03; H: 2.93 %; HRMS
(ESI) m/z calcd. for Ca3sH1sCl.06 [M+Na]*: 603.0372, found: 603.0398.
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2,2'-((4-bromophenyl)methylene)bis(1-hydroxy-3H-benzo[flchromen-3-one) (5n): Pale yellow
solid (75 %); mp: 277-278 °C; *H NMR (500 MHz, DMSO-ds): 81 (ppm) 17.98 (s, 1H), 9.79 (d, 2H,
J =9.0 Hz), 8.06 (d, 2H, J = 9.0 Hz), 7.95 (d, 2H, J = 7.5 Hz), 7.60 (t, 2H, J = 8.5 Hz), 7.53-7.45
(m, 4H), 7.38 (d, 2H, J = 8.5 Hz), 7.19 (d, 2H, J = 8.0 Hz), 6.36 (s, 1H); 13C NMR (125 MHz,
DMSO-ds): 8¢ (ppm) 172.4, 164.3, 153.4, 142.4, 132.9, 131.1, 130.7, 130.6, 129.5, 128.9, 127.9,
127.1,125.4,118.3, 117.5, 112.4, 104.4, 44.3; IR (KBr) vmawcm®; 3442, 1648, 1549, 1412; Elem.
Anal. For C33H19BrOg: calcd.: C: 67.02; H: 3.24 %, found: C: 66.89; H: 3.63 %.
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5.1 Introduction

Introduction of methyl group in a scaffold may significantly causes alteration of its biological
activity mainly target selectivity, binding, metabolism and half-life (Figure 5.1). [1-7] In 2010,
Njardarson et al. reported that around 67 % among the top selling marketed drugs containing methyl
fragment in their scaffolds. [2] In short, monovalent methyl group is proven to be an important
carbon fragment in the biological framework. [1] There are numerous reports in which replacement

of C-H by C-Me group results in significant changes in the activity profile of drug (Figure 5.1).
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Figure 5.1 Effect of methyl group on drug molecules.

For example, the Structure-Activity Relationship (SAR) studies of 2-phenylaminopyrimidines
(PAPSs) exhibit an interesting result of “flag methyl” group effect. [5] The conclusion of the report
is that methyl substituted phenyl ring (VI11) was showing better selectivity of PAPs toward Platelet-
derived growth factor-receptor (PDGF-R) than a non-substituted one (VII1) (Figure 5.2).
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Flag methyl group:
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Figure 5.2 Flag methyl effect in molecular selectivity.

The molecular behaviour of compound as agonist and antagonist can also be effected by the addition

or removal of methyl groups depending upon their particular position replacement. [6, 7] As a case

in point, Abel and co-workers in 2013 reported that double methylation of MRZ-3573 caused

molecular switch to NAM (negative allosteric modulation) (X) from PAM (positive allosteric

modulator) (1X) on glutamate receptor (MGLUR5) (Figure 5.3). [6] Similarly, double methylation
on 7,8-dihydroquinazoline-5-one (XI1) effected to change it to PAM (XI1) (Figure 5.3). [6]

Molecular switch:

IX
MRZ-3573 (PAM)
hEC5, = 0.0500 M

o]

(NAM)
hiCs, = 0.496 pM

MRZ-8676 (NAM)
hiC5, = 0.0232 uM

Xii
(PAM)
hECs, = 0.694 M

Figure 5.3 Molecular switch due to methyl group effect.

In 2008, from the Quorum Sensing (QS) studies of Janda and co-workers, (S)-4,5-dihydroxy-2,3-

pentanedione (DPD) derivatives (XIV-XV) on methylation showed potential antagonist property

(Figure 5.4). [7]
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Effect on activity:
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Figure 5.4 Methyl group effect on molecular activity.

The above detailed observations reflects the effect of methyl group on the biologically active

scaffolds. In drug discovery, this effect due to introduction of methyl group is known as “magic
methyl effect”.

In addition to this, scaffolds like acridione, thioxanthendione, bis(hydroxycyclohex-2-enone),
tetrahydroquinazolindione exhibits broad spectrum of biological activities like anti-tumor, anti-viral,
anti-cancer and anti-alzheimer activity. (Figure 5.5). [8-12] It might therefore, be equally interesting

to observe “magic methyl effect” in these scaffolds by synthesizing scaffolds having methyl group.
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Figure 5.5 Biological activities of diversified reported scaffolds.
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From the above discussion, having medicinal importance of methyl group on one hand and biological
activities of acridione, thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione
on another, the initial aim is to develop a method to incorporate methyl group in such biologically

active scaffolds.
5.2 Survey of existing methodologies

From the synthesis point of view, methyl group introduction can be achieved by methylation or non-
methylation reactions. In the recent past, multicomponent reaction sequences have proven to be an
effective tool for the synthesis of diversified scaffolds. Most commonly, acetaldehyde and other
aliphatic aldehydes are used for methyl or other alkyl fragments introduction in a multicomponent

reaction.

The direct application of acetaldehyde or other aliphatic aldehydes in many MCRs is not always as
fruitful as that of aromatic aldehydes. There are numerous MCR reports where direct use of
acetaldehyde/aliphatic aldehydes provided lower yield of products or ended up in failure. [13-24]
The outcomes of these results conclude that this failure may be a result of high reactivity, low

stability and high sensitivity towards self-polymerization of the aliphatic aldehydes.

To counter these problems, use of acetaldehyde/alkyaldehyde surrogates seems to be an impressive
alternative to get success in MCR sequences. A detailed survey of previous reports revealed that the
application of dihydrofuran (DHF) and other vinyl ethers [25-30], N-vinyl amides in the presence of
water [31] and (2)-2-(trimethylsiloxy)vinyllithium (by hydrolysis) [32] are the common
acetaldehyde or alkyl aldehyde surrogates largely explored by synthetic community (Figure 5.6).

/
Iy Z>0SiMey
T OH

Figure 5.6 Common aldehyde surrogates.
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For example, in 2001, Batey and co-workers reported dysprosium(lil)-catalysed access of
substituted hexahydrofuro[3,2-c]quinolones (3) by simple Diels-Alder reaction using anilines (1)
and dihydrofuran (2) as an alkylaldehyde surrogate (Figure 5.7). [33] The reaction proceeded
through in situ generation of 2-azadiene which was formed in reaction between substituted amines

(1) and one equivalent of dihydrofuran (2).

y(OTf)3 (5 mol%
@ _on

MeCN, 4 °C
48 hr Yleld 76 90 %
, 6 examples
R' = 4-Cl, 4-Br, 4-1, 4-NO,, 4-OCHj, (Fhdo &exo)

4-COOMe

Figure 5.7 Dysprosium(I11)-catalysed reaction of dihydrofuran with substituted anilines.

Likewise, in 2004, Prashad et al. designed a methodology in which the use of N-vinylacetamides (5)
or ethyl vinyl ether (6a) are described as acetaldehyde anion equivalents (Figure 5.8). [34] The
described method was developed for an efficient synthesis of xanthene, thioxanthene and acridine
carboxaldehyde derivaties (7) using xanthydrol, thioxanthydrol, and 9,10-dihydro-10-methyl-9-

acridinol (4) as starting materials.

(0]
o,
R 5
X X
A T8
/\Or C,H
N\~ -Lols 7
4 OH O 6a CHO
X=0,8,N-CHs 1. CH3COOH, 1 h, rt Yield = 65-95 %
2.H,0,1h,rt 3 derivatives
(only three examples)

Figure 5.8 Use of N-vinylacetamides and ethyl vinyl ether as acetaldehyde anion equivalents.
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The mechanism of the reaction is sketched in Figure 5.9. The cationic intermediate A is formed due
to dehydration of starting material in presence of acid. The nucleophilic attacked by N-acyliminium
(5) to intermediate A led to intermediate ion B which provided C in presence of water which further

got hydrolyzed to give final aldehyde (7).

5 X
X X
OSEICH e
EE—" —_—
CL | (A
OH AL B |
&~ _COCH, N
: ZON d R“® COCHs
R X
X H,0
-
X =0, S, N-CH 7 +
R=H cH, | °HC F oy
. B3 R™ “COCHs

Figure 5.9 Mechanism for N-vinylacetamides acting as acetaldehyde equivalents.

Similarly, Jia et al. (2010) investigated the stable radical cation salt tris(4-bromophenyl)aminium
hexachloroantimonate  (TBPA*)  mediated synthesis of  2-methyl-4-anilino-1,2,3,4-
tetrahydroquinolines (8) using diversified N-vinyllactams (5) as an acetaldehyde surrogates (Figure
5.10). [35]

Z2n §
AN I_R
NH, © HN
R M, " N
| X N~ R TBPA (5 mol%) |
TF i \ anhydrous DCM, R1/ Z SN
R H
1 5 reflux, 0.5-1 h 8
R' = H, 4-Cl, 2-Cl, 4-Br, 4-CH,, 4-F, 4-COOMe Yield = 25-98 %
cis and trans
0 7 examples
R2, R3®=H, CH,, N : o}
\§ \§

Figure 5.10 A tandem cyclisation reaction of amines with N-vinyllactams.
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The proposed mechanism isillustrated in Figure 5.11. N-vinylamides (5) formed intermediate cation
A after forming an adduct with radical cation TBPA. Later, aniline (1) reacted with the intermediate
Ato give B which provided enamine D after rearrangement. The enamine D tautomerised to E which
was oxidized to radical cation intermediate F which further reacted with another enamine D to give

intermediate G. The intermediate G after intramolecular cyclisation in presence of acid provided
final desired product 8.

o)
S e O Y
R~ g2 JIBPA_ —,©\ /K
§ H*
5 ! 0
TBPA TBPA l\J
TBPA ©\
@i @ Ik
H
N/\ E
+H+
) _Ph
H+N’Ph E F HN
@51 |
N
H H g H

Figure 5.11 N-vinyllactams promoted synthesis of 2-methyl-4-anilino-1,2,3,4-

tetrahydroquinolines.

Next, Matsubara et al. (2011) demonstrated an efficient strategy for PdCl, mediated synthesis of

quinolines (9, 10) using alkenyl ethers (6) as an efficient aldehyde surrogates while reaction with
anilines (1) (Figure 5.12). [36]

n-Bu0” e NH, 2 OEt 6a
@(X/ PdCl, (10 mol%) @ PdCl; (5 mol%) (] NN
- > L, —
i /10 N7 MeCN,80°C ~gi"”  MeCN,80°C RT™ "N
. 1 Yield = 62-86 %
Ylt;ld = 29'|73 % R'=H, 4-CHj, 3-CHj, 2-CHs, 4-F, 10 examples ’
examples 4-OCHg, 3-OCHg, 2-OCHj

Figure 5.12 Palladium-catalysed synthesis of substituted methylquinolines.
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The plausible mechanism for the reaction of aniline (1) with vinyl ether (6a) is outlined in Figure

5.13. Firstly, the reaction of aniline (1) with vinyl ether (6a) in presence of palladium ion (1) formed

intermediate cation A which further reacted with 6a and 1 to provide intermediate B. Later on,

palladium (1) catalysed aromatization of B formed the final product methylquinoline (9).

NH,

Q

1

CHj 1
W2 O
| ()=
—_—— —_—
:\ prm—
6a OEt 6a OEt N
A B H
H™ donar

Et
o

(side product)

Figure 5.13 Plausible mechanism for synthesis of methylquinoline using vinyl ether.

Similarly, Litinas and co-workers (in 2013) reported a Povarov-type three-component reaction of

aminocoumarins (11) with two equivalents of n-butyl vinyl ether (6b) for the synthesis of

pyridocoumarin derivatives (12) using molecular iodine as a catalyst (Figure 5.14). [37]

R3
;
H,N n-BuO
3 - 6b
R! o0~ o I, (10 mol%)
R2 1 MeCN, 1 h,
reflux

R'=H, CH;; R?=H; R®=H, COOMe
R'-R? = (CH,),, CH=CH-CH=CH, CH=CH-CH=N

R2
Yield = 45-87 %
6 examples

12

Figure 5.14 lodine-catalysed reaction of aminocoumarins with n-butyl vinyl ether.
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Likewise, Sharma et al. (2015) developed a DABCO-catalysed three-component synthesis to
construct annulated furans (16) using vinyl esters (14) as acetaldehyde surrogates. The isocyanide
based multicomponent reaction (IMCR) was performed under microwave irradiation (typical time
10 minutes at 120 °C) and afforded moderate to good yield of annulated furanones (16, 62-85 %)
(Figure 5.15). [38]

2
HN-R
OH
o)
Y )k - DABCO (30 mol%)
! 1+ R2-NC >
S 20 R MW/ 120 °C/ 10 min o16
~a - 1 NS _—/
13 ¢ S IPR Yield = 62-85 %
R" = CHg, tert-butyl, CgHs, CH,CI 25 examples
R? = tert-butyl, Cyclohexyl, Benzyl, 2-ethyl acetayl,
1,1,3,3-tetramethylbutyl, 2,6-(CH3),CgH3 Sharma et al., 2015

Figure 5.15 DABCO-catalysed synthesis of diversified methyl substituted furans.

The plausible mechanism of the above described IMCR reaction is sketched in Figure 5.16. The
nucleophilic attack of DABCO to vinyl ester (14) provided intermediate acylate ion A and enolate
ion B. The acetaldehyde was formed followed by conversion of enolate B into enol C. Later on, the
acetaldehyde reacted with corresponding 1,3-dicarbonyl systems (13) to give enone D which further

reacted with isocyanides (15) in [4+1] cycloaddition fashion to give final desired products 16.
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\ I ~ H
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.0
Iminolactone E

Proton Shift
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Figure 5.16 Mechanism of DABCO-catalysed vinyl ester mediated IMCR reaction.

In short, there are plenty of reports in which chemists already explored acetaldehyde/alkyaldehyde
surrogates to overcome the problems associated with aldehydes themselves in MCR reactions. In
comparison to other aldehyde surrogates, vinyl esters have remained relatively less explored as
acetaldehyde surrogates. The reasons behind choosing vinyl esters as acetaldehyde surrogates are
because it is cheap, readily available and already explored in some common MCR sequence like
Aldol type condensation [39], [4+1] cycloaddition and acylation reactions. [38, 40] Along with these
advantages, they have a long shelf life and do not require pre-conditioning. The primary aim of this
chapter is to develop methods to incorporate methyl group employing vinyl esters as acetaldehyde
surrogates to build up a library of diversified methyl substituted molecules. More precisely, this
work highlights the use of vinyl esters in some common multicomponent reactions to synthesize the
scaffolds like acridione, thioxanthendione, bis(hydroxycyclohex-2-enone) and

tetrahydroquinazolindione derivatives.
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5.3 Results and discussion
5.3.1 Synthesis of methyl substituted hexahydroacridine-1,8(2H,5H)-dione

In a prototype reaction, cyclohexane-1,3-dione (17a, 2 mmol), vinyl acetate (14a, 1.5 mmol) and
NH4OAc (18, 1 mmol) reacted together as standard substrates in presence of 30 % of catalytic
DABCO in IPA for the synthesis of 9-methyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione
(19a) under microwave irradiation for 10 minutes at 120 °C which resulted in 85 % yield of the
desired product 19a (Table 5.1, entry 1). In order to optimize the reaction, it was initially decided to
try different bases like piperidine, morpholine, DBU, DMAP and NaOH. However none of these
bases were able to form the product in good yields (Table 5.1, entries 2-7). Later, the reaction was
tried in various solvents like MeOH, ACN and tolulene (Table 5.1, entries 8-10), which
unfortunately provided relatively lower yield of the desired product (19a). Next, the temperature and
time of the reaction mixture under microwave irradiation was varied (Table 5.1, entries 11-12). It
was observed that lowering the time to 5 minutes brought down the yield of 19ato 79 % (Table 5.1,
entry 12). However increasing the reaction time to 20 minutes brought about a very slight
improvement in the yield of 19a upto to 87 % (Table 5.1, entry 13). Lastly, the catalytic loading of
DABCO was varied in the above reaction, and 30 mol % catalytic loading of DABCO was found to
provide maximum yield of 19a (Table 5.1, entries 13-15). So, the final optimized condition for the
desired conversion to result in 19a was microwave radiation of the reaction mixture at 120 °C for 10
minutes using 30 % catalytic DABCO in IPA.

131



CHAPTERS |

Table 5.1 Optimization of reaction conditions (synthesis of acridine-1,8(2H,5H)-dione)?
O CH; O
o) @) 0 .
Conditions, Catalyst
N
(17a) (14a) (18) H
(19a)
Entry | Catalyst (mol %) Solvent Conditions Yield (%)®

1 DABCO (30) IPA MW (120 ©C, 10 min) 85

2 Piperidine (30) IPA MW (120 °C, 10 min) 57

3 Morpholine (30) IPA MW (120 °C, 10 min) 59

4 DBU (30) IPA MW (120 °C, 10 min) 68

5 DMAP (30) IPA MW (120 °C, 10 min) 71

6 NaOH (30) MeOH MW (120 °C, 10 min) 52

7 NaOH (30) Water MW (120 °C, 10 min) 57

8 DABCO (30) ACN MW (120 °C, 10 min) 81

9 DABCO (30) Toluene MW (120 °C, 10 min) 78

10 DABCO (30) MeOH MW (120 °C, 10 min) 83

11 DABCO (30) IPA MW (160 °C, 10 min) 90

12 DABCO (30) IPA MW (120 °C, 5 min) 79

13 DABCO (30) IPA MW (120 ©C, 20 min) 87

14 DABCO (10) IPA MW (120 °C, 10 min) 71

15 DABCO (50) IPA MW (120 °C, 10 min) 87
aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol), 18 (1.0 mmol); Anton Paar
Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time: 1min at 60 °C,
b[solated yield.

In order to compare, the same optimized reaction was performed with acetaldehyde in place of vinyl
acetate to synthesize respective acridine (19a). Unfortunately, the reaction profile was not clean and
finally the chromatographic separation only resulted in 57 % yield of 19a. This is in contrast to the
optimized protocol wherein a column-free pure solid product is obtained with 85 % yield of 19a.
The outcome of the reactions clearly manifested the advantage of using vinyl esters over

acetaldehyde in this MCR sequence (Figure 5.17).
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Multiple Products Solid Product

Yield =57 % Yield = 85%

Figure 5.17 Comparison of vinyl ester and acetaldehyde in four-component condensation.

Having optimized condition in hand, the reaction was explored in terms of the substrate scope and
limitations. All the substrates such as cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-
dione (dimedone) (17b), 5-methylcyclohexane-1,3-dione (17c) and 5-phenylcyclohexane-1,3-dione
(17d) resulted in good to high yield of the respective methyl substituted acridines (19a-19d) (Table
5.2). The reported methodology seemed to be well tolerant to various substituted vinyl esters.
Especially, the results were better in case of vinyl acetate (14a) and vinyl chloroacetate (14d) as

compared to vinyl pivalate (14b) and vinyl benzoates (14c) (Table 5.2).
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Table 5.2 Scope of four-component reaction (synthesis of acridine-1,8(2H,5H)-dione)?

DABCO (30 mol %) O CH30
© © lo . sopropanol ) R, R2= H, Me, Ph
2 ' s NHiOAe MW/ 120 °C/ R L R' R®= CHg, t-Bu, Ph, CH,Cl
Rz O R (19 10 min R? N R®
(17a-17d) (14a-14d) (19a-19d)
Entry C-H acid Enol ester Product Yield (%)P
o)
1 PN 85
(14a)
(@)
O CH;0
2 |, . /ﬁo)* 3 83
LI O8S
0 N
3 = l 83
(17a) = o)b (19a)
(14c)
(0]
4 o NGl 91
(14d)
0
5 |fo 0 | o\ (14a) O CHy0 81
; 2o F)
6 (17b) 0 N 88
(14d) (195)
0
7 ® 0 | o~ (143) O CH;0 78
= "N
8 Z>0 N 79
(17c) H
(14c) (19¢)
0
0
10 /\O)H< 76
(14b)
(17d) (19d)

aGeneral condition: 17 (2.0 mmol), 14 (1.5 mmol), 18 (1.0 mmol); Anton Paar Monowave
300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 °C. P Isolated yield.
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5.3.2 Synthesis of methyl substituted thioxanthene-1,8(2H)-dione

After

1,8(2H,5H)-dione (19a) under microwave irradiation, a similar condition was set to construct 9-

having optimized condition to synthesize 9-methyl-3,4,6,7,9,10-hexahydroacridine-

methyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8(2H)-dione (21a) using substrates cyclohexane-
1,3-dione (17a, 2 mmol), vinyl acetate (14a, 1.5 mmol) and Lawesson’s reagent (20, 0.5 mmol). The
reaction provided 65 % yield of 21a using 30 mol % DABCO as a catalyst in IPA (Table 5.3, entry
1). To enhance the yield of the desired product, a number of conditions again examined by changing
catalyst (Table 5.3, entries 1-3), catalyst loading (Table 5.3, entries 4-5) and solvents (Table 5.3,
entries 8-9) as well. However, there were no significant enhancement in the yield was observed while
increasing the microwave irradiation time and temperature (Table 5.3, entries 6-7). After all the
screening experiments, the optimized condition was found out to be loading of 30 mol % DABCO
as a catalyst in IPA and microwave irradiation at 120 °C for 10 minutes which provided optimum
yield of 21a.

Table 5.3 Optimization of reaction conditions (synthesis of thioxanthene-
1,8(2H)-dione)?
_0 ] CH3?
\ iti
O2 O+ LO | \©\§\S Conditions, B
i O)‘\ S<p Catalyst S
(17a) (14a) (20) s = (21a) 4B

Entry | Catalyst (mol %) | Solvent Conditions Yield (%)P

1 DABCO (30) IPA MW (120 ©C, 10 min) 65

2 Morpholine (30) | IPA MW (120 °C, 10 min) 59

3 NaOH (30) MeOH | MW (120 °C, 10 min) nd

4 DABCO (10) IPA MW (120 °C, 10 min) 53

5 DABCO (40) IPA MW (120 °C, 10 min) 66

6 DABCO (30) IPA MW (120 °C, 15 min) 67

7 DABCO (30) IPA MW (150 °C, 10 min) 67

8 DABCO (30) ACN MW (120 °C, 10 min) 61

9 DABCO (30) Toluene | MW (120 ©C, 10 min) 56
aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol), 20 (0.5 mmol); Anton
Paar Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time:
1 min at 60 °C. nd = not determined. ° Isolated yield.
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In order to find out the substrate scopes of the reaction, the 1,3-carbonyl compound variants viz.
cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (17b) and 5-
methylcyclohexane-1,3-dione (17c) were reacted with three different vinyl esters, vinyl acetate
(14a), vinyl chloroacetate (14d) and vinyl benzoates (14c) to get the desired thioxanthenediones

derivatives (21a-21c) in moderate yield (Table 5.4, entries 1-5).

Table 5.4 Scope of four-component reaction (synthesis of thioxanthene-1,8(2H)-dione)?

DABCO (30 mol %) O CH;0

o o 1 m2e
s Isopropanol R', R*=H, Me
;(j+ O + o \\P‘S O/ 0 m 3_
R1 R2 OJ\R3 / O' \S/P\\g@ M\A:/O1ri(|)n £ R1R2 S R§1 EHzng?ﬂ Ph‘
(17a-17¢c) (14a,14c,14d) (20) (21a-21c)
Entry | C-H acid Enol ester Product Yield (%)°
(0]
1 PN 65
(143_) O CH;0
o) o)
< - ; G0
2 /\on\/CI S 67
{43 (14d) (21a)
o) O CH;0
3 0] O %\Ok i 61
E j (14a) 3
(17b) (21b)
(0]
4 0 0 PN O CH;0 68
S 4t L I
0]
S
5 (17¢) /ﬁok@ (210) 57
(14¢)

aGeneral condition: 17 (2.0 mmol), 14 (1.5 mmol), 20 (0.5 mmol); Anton Paar Monowave 300
Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 °C. ° Isolated yield.
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5.3.3 Synthesis of methyl substituted bis(3-hydroxycyclohex-2-enone)

Again a similar organocatalytic condition was investigated to synthesize 2,2'-(ethane-1,1-diyl)bis(3-
hydroxycyclohex-2-enone) (22a) using cyclohexane-1,3-dione (17a, 2 mmol) and vinyl acetate
(14a, 1.5 mmol) under microwave irradiation at 120 °C for 10 minutes (Table 5.5, entry 1). The
desired product 22a was formed in 61 % yield whereas 9-methyl-3,4,5,6,7,8a,9,10a-octahydro-1H-
xanthene-1,8(2H)-dione (23a) was also formed as a side product. To improve the reaction outcome,
the above reaction was tried under reflux (Table 5.5, entry 2) as well as under room temperature
(Table 5.5, entry 3) and the reaction under room temperature provided better yield (63 %) of 22a.
Therefore, the reaction was further investigated under room temperature using different bases (Table
5.5, entries 4-5). Fortunately, application of potassium tert-butoxide in MeOH helped to increase the
yield (79 %) of 22a with better reaction profile (Table 5.5, entries 6-11). Therefore, the optimized
condition for this transformation is room temperature stirring of the reaction mixture for six hours

using 10 mol % potassium tert-butoxide in MeOH to get the final product 22a.

Table 5.5 Optimization of reaction conditions [synthesis of bis(3-hydroxycyclohex-2-
enone)]?
O CH; O (0] CH; O
z\l\ij? /\oi Conditions, Catalyst m 4 | r |
OH OH
(17a) (14a) (22a) (23a)
Entry | Catalyst (mol %) .| Solvent Conditions Yield (%)
(22a) (23a)
1 DABCO (30) IPA MW (120 °C, 10 min) | 61 27
2 DABCO (30) IPA Reflux (2 h) 59 23
3 DABCO (30) IPA Stirring (6h) 63 23
4 Piperidine (30) IPA Stirring (6h) 48 31
5 DBU (30) IPA Stirring (6h) 59 24
6 NaOH (10) MeOH Stirring (6h) 71 -
7 NaOH (10) MeOH Stirring (10h) 70 -
8 NaOH H.O Stirring (6h) 68 -
9 NaOMe (10) MeOH Stirring (6h) 73 -
10 | t-BuOK (10) MeOH Stirring (6h) 79 -
11 | t-BuOK (20) MeOH Stirring (6h) 81 -
aGeneral condition: 17a (2.0 mmol), 14a (1.5 mmol); Anton Paar Monowave 300
Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 °C.
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With the optimized condition in hand, the substrates like cyclohexane-1,3-dione (17a), 5,5-
dimethylcyclohexane-1,3-dione  (17b),  5-methylcyclohexane-1,3-dione  (17¢) and 5-
phenylcyclohexane-1,3-dione (17d) were reacted with different vinyl esters. In all the cases, the
desired products were obtained in good yields (67-87 %). In general, reactions seemed to be working
well with vinyl chloroacetate (Table 5.6, entries 3 and 8). Unfortunately, substrates 4-
hydroxycoumarine (17e) and Lawsone (17f) failed to provide the respective products (Table 5.6,
entries 11-13).
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Table 5.6 Scope of three-component reaction [synthesis of bis(3-hydroxycyclohex-2-

enone)]?
o o | t-BuUOK (10 mol %) Q CH0
9 N LO MeOH
A Stirring/ rt/ 6 h R’ R!
RIR2 O7°R? R®> “OH OH R? R' R2%=H, Me, Ph
(17a-17d) (14a-14d) (22a-22d)  R3= CHg, t-Bu, Ph, CH,CI
Entry | C-H acid Enol ester Product Yield (%)°
0 79
1 /\OJJ\
(14a) O CH;0
2 0
(17a) OH OH
(14¢) (22a)
0 87
(14d)
o)
4 /\OJK O CH30 81
Otg/ro (14a)
O
5 o~ OH OH 79
(17b) ) (22b)
(14b)
o)
o) 0 5 O CH;0
7 r;/r p&&@ 71
(17¢c) 1de OH OH
- ( O) (22¢)
/\OJ\/CI 81
(14d)
o)
9 o 0 P O CH;0 67
3 T
0
10 0 O OH OH 68
(17d) (14b) (22d)
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OH
m O CH;0
%° | o CLT T
- (17e) | 70"~ (14a) O &P -
12 0
(14b)
13 0] (0] O CH30
TR O |
I OH 3 OHO I
(17) (22f)

aGeneral - condition: 17 (2.0 mmol), 14 (1.5 mmol); Anton Paar Monowave 300
Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 °C. ® Isolated yield,
nd = not determined. ® Isolated yield.

5.3.4 Synthesis of methyl substituted tetrahydroquinazoline-2,5(1H,6H)-dione

To extend the work, a similar three-component condensation reaction was investigated to synthesize
3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25a) using DABCO as an organocatalyst (30 mol
%) and cyclohexane-1,3-dione (17a, 1 mmol), vinyl acetate (14a, 1.5 mmol) and urea (24, 1 mmol)
as starting materials which provided 73 % of conversion to 25a in IPA at 120 °C for 10 minutes
under microwave irradiation (Table 5.7, entry 1). In order to optimize, different bases were explored
in the above reaction which did not improve yield of the desired product 25a (Table 5.7, entries 2-
4). Next, the reaction was analyzed with respect to temperature (Table 5.7, entry 5) and solvents
(Table 5.7, entries 7-8) but no fruitful outcomes were obtained. Reaction did not work at room
temperature (Table 5.7, entry 6) and only starting materials were recovered unreacted. Fortunately,
the reaction provided better yield (82 %) of the desired product 25a when the mixture was irradiated
in neat condition at 120 °C for 10 minutes using 30 mol % DABCO as a basic catalyst (Table 5.7,

entries 9-12) and this was established as the optimized condition for the desired transformation.
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Table 5.7 Optimization of reaction conditions (synthesis of tetrahydroquinazoline-
2,5(1H,6H)-dione)?
O CH,
OU(E /\oj\+ N )OLNH Conditions, Catalyst _ éﬁ;ﬁo
2 2 H
(17a) (14a) (24) (25a)
Entry | Catalyst Solvent Conditions Yield (%)°
(mol %)

1 DABCO (30) IPA MW (120 °C, 10 min) 73

2 DBU (30) IPA MW (120 ©C, 10 min) 69

3 Piperidine (30) IPA MW (120 °C, 10 min) 59

4 NaOH (30) MeOH MW (120 °C, 10 min) 61

5 DABCO (30) IPA MW (160 °C, 10 min) 74

6 DABCO (30) IPA Stirring (RT) -

7 DABCO (30) ACN MW (120 °C, 10 min) 76

8 DABCO (30) Toluene | MW (120 ©C, 10 min) 61

9 DABCO (30) Neat MW (120 ©C, 10 min) 82

10 | DABCO (20) Neat MW (120 °C, 10 min) 72

11 | DABCO (40) Neat MW (120 °C, 10 min) 84

12 | DABCO (30) Neat MW (120 °C, 15 min) 83
aGeneral condition: 17a (1.0 mmol), 14a (1.5 mmol), 24 (1.0 mmol); Anton Paar
Monowave 300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60
°C. " Isolated yield.

Having optimized the synthesis of desired quinazolines, the reaction was analyzed for its scope using
cyclohexane-1,3-dione (17a), 5,5-dimethylcyclohexane-1,3-dione (dimedone) (17b) and 5-
phenylcyclohexane-1,3-dione (17d) to get the corresponding products (Table 5.8, entries 1-8). The
stable conformer of the synthesized compound 25c is explained later on with respect to
computational study. Unfortunately, the acyclic diketones like acetyl acetone (17g), ethyl
acetoacetate (17h) and ethyl cynoacetate (17i) did not provide the desired products at all (Table 5.8,
entries 9-12).
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Table 5.8 Scope of three-component reaction (synthesis of tetrahydroquinazoline-2,5(1H,6H)-

dione)?
O CH
o) o) lLo JOL Neat /DABCO _ er .
U+ 7 HNTONH; MW/ 120°C/ i J. R,R=HMePn
RiRe 0° R ” 10 min 2 N"S0  R°= CHy, ¢-Bu, Ph, CH,Cl
(17a, 17b, 17d) (14a-14d) (252-250)
Entry C-H acid Enol ester Product Yield
(%)°
0
L oS (14a) 82
o)
2 A L /\o)* 0 GHs 81
U (14b) NH
(17a) i ﬁko
3 N 79
) (14c) (%82)
o)
cl
0
5 o g (142) O CH, 77
/NC
0
6 (17b) %O)H< N © 74
(14b) (25b)
0
7 o) 0 | o'~ (14a) O CH, 65
2 e
8 %o)* O H < 67
(14b)
(17d) (25¢)
9 0 O CH, nd
(@] (0] %\ok (14a) NH
|
10 AN 0] N/go nd
(179) 1. H
] (14c) (259)
11 0 o o O CH;, nd
A om | 0)H< E107 ) NH
(17h) (14b) N0
H
(25¢)
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12 0 o} O CH; nd
NC\)J\OEt %\ok EtO | NH
(a7i) (14a) NG ONTYO
H
(25f)

aGeneral condition: 17 (1.0 mmol), 14 (1.5 mmol), 24 (1.0 mmol); Anton Paar Monowave
300 Microwave reactor, irradiation power: 850 W, ramp time: 1 min at 60 °C. ° Isolated
yield, nd =not determined. ° Isolated yield.

5.3.5 Mechanistic study for formation of acetaldehyde from vinyl esters

The mechanistic study of vinyl esters as acetaldehyde equivalent is sketched in Scheme 5.1. Initial
nucleophilic attack of a base on vinyl acetate leads to the cleavage of vinyl acetate (14a) into two
parts where in one out as acylating half A and the other part becomes enolate B. After proton
abstraction, the enolate B tautomerize to acetaldehyde and undergoes a subsequent multicomponent

cascade (Scheme 5.1).

(@]
)L Y
B
= A
'@, o) 't
v 0% -1 B
/ 14a /
B: [/\ 0"
(B)
Proton
Source
Participation in next event )k
e ool i S ool - Z > 0H
acetaldehyde Vinyl Alcohol

Scheme 5.1 Plausible mechanism for the generation of acetaldehyde from vinyl esters.
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5.4 Conclusions

In summary, the effective use of vinyl esters as acetaldehyde surrogates have been explored on
mainly cyclic 1,3-diketone as a substrate in different multicomponent synthesis to develop
medicinally relevant diversified scaffolds like methyl substituted hexahydroacridione,
thioxanthendione, bis(hydroxycyclohex-2-enone), tetrahydroquinazolindione derivatives. In the
present report, vinyl esters provided better results compared to the acetaldehyde in terms of reaction
profile and yield. In short, the reaction of vinyl esters as acetaldehyde surrogates worked well with

cyclic 1,3-diketone in four different sets of MCR sequences.

5.5 Experimental section
5.5.1 General information

NMR spectra were recorded on a Jeol Resonance® ECX-40011. Chemical shifts are reported in parts
per million and are referenced to TMS. Mass spectrometry (HRMS) was performed using a Bruker
daltronics micro TOF-QI® spectrometer using ESI ionization. Analytical Thin layer
chromatography (TLC) was performed on a silica gel plate (Merck® 60F2s4). Melting points were
performed with Ambassador® and Digital Melting point apparatus (Nutronics), Popular India. All

chemicals were purchased from sigma-Aldrich® and were used without further purification.
Microwave Irradiation Experiment

All microwave experiments were carried out in a dedicated Anton Paar® Monowave 300 reactor,
operating at a frequency of 2.455 GHz with continuous irradiation power of 0 to 300 W. The
reactions were performed in a G10 Borosilicate glass vial sealed with Teflon septum and placed in
a microwave cavity. Initially, microwave of required power was used and temperature was being
ramped from room temperature to a desired temperature. Once this temperature was attained, the
process vial was held at this temperature for required time. The reactions were continuously stirred.
Temperature was measured by an IR sensor. After the experiments a cooling jet cooled the reaction

vessel to ambient temperature.
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5.5.2 General procedures

General procedure for the synthesis of 19(a-d): C-H acid (2.0 mmol), vinyl ester (1.5 mmol),
ammonium acetate (1.0 mmol) DABCO (30 mol %) in isopropanol was taken in G10 process vial
capped with Teflon septum. After a pre-stirring of 1 or 2 minutes, the vial was subjected to
microwave irradiation with the initial ramp time of 1 minute at 60 °C. The temperature was then
raised to 120 °C with the holding time of 10 minutes. The reaction mixture was cooled down to 0-5

°C by a cooling air jet.

For compound 19a and 19b products directly got crystallized in the reaction vial, which was then

filtered off and washed with ether.

For compound 19c¢ and 19d direct crystallization was not observed. Solvent was removed in vacuum
and crude mixture was dissolved in DCM and washed with water and dilute acid two times. This

extract was purified by column chromatography using DCM + Methanol.

General procedure for the synthesis of 21(a-c): C-H acid (2.0 mmol), vinyl ester (1.5 mmol),
lawesson’s reagent (0.5 mmol) DABCO (30 mol %) in isopropanol was taken in G10 process vial
capped with Teflon septum. After a pre-stirring of 1 or 2 minutes, the vial was subjected to
microwave irradiation with the initial ramp time of 1 minute at 60 °C. The temperature was then
raised to 120 °C with the holding time of 10 minutes. The reaction mixture was cooled down to 0-5
°C by a cooling air jet. Solvent was removed in vacuum and crude mixture was dissolved in DCM
and washed with water and dilute acid two times. This extract was purified by silica column using

DCM + Methanol as an eluant to get the final desired products.

General procedure for the synthesis of 22(a-d): C-H acid (2.0 mmol), vinyl ester (1.5 mmol), t-
BuOK (10 mol %) in MeOH was stirred at room temperature for about 6 hours. The progress of the
reaction was monitored by TLC. After completion of the reaction MeOH was removed in vacuum,
and residue was dissolved in ethyl acetate and washed with water. This aqueous layer was
neutralised by HCI solution and again washed with DCM. Removal of this organic layer under

vacuum provided spectrally pure products 22(a-d).
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General procedure for the synthesis of 25(a-c): C-H acid (1.0 mmol), vinyl ester (1.5 mmol), urea
(1.0 mmol) DABCO (30 mol %) was taken in G10 process vial capped with Teflon septum. After a
pre-stirring of 1 or 2 minutes, the vial was subjected to microwave irradiation with the initial ramp
time of 1 minute at 60 °C. The temperature was then raised to 120 °C with the holding time of 10
minutes. The crude mixture was dissolved in DCM and washed with brine and dilute acid solution
2-3 times. The organic layer was removed in vacuum and subjected to column chromatography

using DCM + Methanol as eluants to get the final desired products.
5.5.3 Characterization of the synthesized molecules
All the products were characterized via techniques of *H NMR, *C NMR Spectra and HRMS.

Analytical information for the synthesized molecules is given below:

O CH;0

|
N
H

9-methyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19a): Yield: 85 % (using vinyl
acetate), 83 % (using vinyl pivalate), 83 % (using vinyl benzoate), 91% (using vinyl chloroacetate);
greenish yellow solid; mp: 298-299 °C; *H NMR (400 MHz, DMSO-de): & (ppm) 9.17 (s, 1H), 3.71
(9, 1H, J = 6.5 Hz), 2.34-2.45 (m, 4H), 2.12-2.28 (m, 4H), 1.75-1.94 (m, 4H), 0.76 (d, 3H, J = 6.5
Hz); 13C NMR (100 MHz, DMSO-dg): & (ppm) 195.5, 151.8, 114.1, 37.3, 26.7, 22.8, 22.3, 21.5;
HRMS (ESI) m/z calcd. for C14H17NO> [M+Na]*: 254.1157, found: 254.1149.

O CH;0

|
N
H

3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19b): Yield: 81 %
(using vinyl acetate), 88 % (using vinyl chloroacetate); greenish yellow solid; mp: 269-271 °C; *H
NMR (400 MHz, DMSO-de): & (ppm) 9.06 (s, 1H), 3.68 (q, 1H, J = 6.4 Hz), 2.34 (d, 2H, J = 17.0
Hz), 2.14-2.25 (m, 4H), 2.06 (d, 2H, J = 15.9 Hz), 1.00 (s, 6H), 0.98 (s, 6H), 0.78 (d, 3H, J = 6.4
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Hz); 3C NMR (100 MHz, DMSO-de): & (ppm) 195.0, 150.3, 112.5, 50.6, 32.6, 29.6, 26.9, 22.3,
22.0; HRMS (ESI) m/z calcd. for C1gH2sNO2 [M+Na]*: 310.1783, found: 310.1779.

O CH;0

|
N
H

3,6,9-trimethyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19c): Yield: 78 % (using
vinyl acetate), 79 % (using vinyl benzoate); greenish yellow solid; mp: 268-270 °C; *H NMR (400
MHz, DMSO-dg) 6 9.05 (s, 1H), 3.39 (q, 1H, J = 5.1 Hz), 2.88 (dd, 2H, J = 9.9 & 6.4 Hz), 2.39 (dd,
2H,J = 10.0 & 6.4 Hz), 2.24 (q, 2H, J = 3.8 Hz), 1.97-2.09 (m, 4H), 1.47 (d, 3H, J = 5.1 Hz), 1.35
(d, 6H, J = 4.9 Hz); 3C NMR (100 MHz, DMSO-de) 6 197.1, 153.8, 114.5, 52.8, 45.3, 33.5, 29.6,
24.2,21.1; HRMS (ESI) m/z calcd. for C16H21NO2 [M+Na]*: 282.1470, found: 282.1467.

9-methyl-3,6-diphenyl-3,4,6,7,9,10-hexahydroacridine-1,8-(2H,5H)-dione (19d): Yield: 79 %
(using vinyl acetate), 76 % (using vinyl pivalate); greenish yellow solid; mp: 328-329 °C; 'H NMR
(400 MHz, DMSO-ds) & 9.05 (s, 1H), 7.30-7.38 (m, 8H), 7.23-7.28 (m, 2H), 3.48 (quin, 2H, J = 2.8
Hz), 3.34 (g, 1H, J = 5.1 Hz), 3.30 (dd, 2H, J = 10.0 & 3.3 Hz), 3.00 (dd, 2H, J = 9.9 & 2.6 Hz),
2.69 (dd, 2H, J = 10.0 & 3.2 Hz), 2.52 (dd, 2H, J = 9.9 & 3.4 Hz), 1.46 (d, 3H, J = 5.1 HZ); 13C
NMR (100 MHz, DMSO-dg) 6 201.3, 156.1, 149.0, 133.3, 133.0, 132.5, 121.5, 57.4, 48.1, 43.8,
39.1, 28.9; HRMS (ESI) m/z calcd. for C2sH2sNO2 [M+Na]*: 406.1783, found: 406.1769.

9-methyl-3,4,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione (21a): Yield: 65 % (using vinyl
acetate), 67 % (using vinyl chloroacetate); yellow solid; mp: 246-248 °C; *H NMR (400 MHz,
DMSO-de): 8 (ppm) 2.71 (9, 1H, J =5.4 Hz), 2.43 (t, 4H, J = 5.4 Hz), 2.00 (t, 4H, J = 4.7 Hz), 1.43
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(quin, 4H, J = 5.0 Hz), 0.87 (d, 3H, J = 5.6 Hz); 3C NMR (100 MHz, DMSO-de): & (ppm) 192.2,
133.3, 129.6, 54.1, 36.2, 28.2, 23.0, 22.1; HRMS (ESI) m/z calcd. for CiHis02S [M+Na]*:
271.3304, found: 271.3302.

O CH;0

|
S

3,3,6,6,9-pentamethyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione (21b): Yield: 61
% (using vinyl acetate); yellow solid; mp: 272 °C; *H NMR (400 MHz, DMSO-ds): & (ppm) 2.69
(9, 1H, J = 5.1 Hz), 1.98 (s, 4H), 1.81 (s, 4H), 1.14 (d, 3H, J = 5.1 Hz), 0.86 (s, 12H); 3C NMR
(100 MHz, DMSO-dg): 6 (ppm) 195.0, 141.2,133.2, 58.0, 54.3, 39.6, 35.4, 31.6, 26.9; HRMS (ESI)
m/z calcd. for C1gH240,S [M+Na]*: 327.4368, found: 327.4358.

O CH;0

| |
S

3,6,9-trimethyl-3,4,5,6,7,9-hexahydro-1H-thioxanthene-1,8-(2H)-dione  (21c): Yield: 68 %
(using vinyl acetate), 57 % (using vinyl benzoate); yellow solid; mp: 249-250 °C; ‘H NMR (400
MHz, DMSO-ds) 5 2.94 (q, 1H, J = 5.1 Hz), 2.74-2.81 (m, 2H), 2.27-2.34 (m, 2H), 2.20-2.27 (m,
2H), 1.90-2.04 (m, 4H), 1.33 (d, 3H, J = 5.1 Hz), 1.21 (d, 6H, J = 4.9 Hz); *C NMR (100 MHz,
DMSO-ds) 6 194.9, 138.8, 136.4, 55.2, 45.1, 35.8, 29.8, 24.1, 21.0; HRMS (ESI) m/z calcd. for
C16H2002S [M+Na]*: 299.1082, found: 299.1076.

O CH;0

OH OH

2,2’-(ethane-1,1-diyl)bis(3-hydroxycyclohex-2-enone) (22a): Yield: 79 % (using vinyl acetate),
75 % (using vinyl benzoate), 87% (using vinyl chloroacetate); white solid; mp: 128-129 °C; *H
NMR (400 MHz, DMSO-ds) 5 13.97 (brs, 1H), 13.08 (brs, 1H), 3.10 (q, 1H, J = 5.2 Hz), 3.02 (t,
4H,J = 4.4 Hz), 2.32 (t, 4H, J = 4.8 Hz), 1.75 (quin, 4H, J = 4.8 Hz), 1.39 (d, 3H, J = 5.3 Hz); 13C
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NMR (100 MHz, DMSO-de) & 196.4, 180.6, 117.6, 38.5, 34.4, 30.4, 26.0, 21.2; HRMS (ESI) m/z
calcd. for C1gH1404 [M+Na]*: 273.1103, found: 273.1096.

O CH;0

OH OH

2,2’-(ethane-1,1-diyl)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (22b): Yield: 81 % (using
vinyl acetate), 79 % (using vinyl pivalate); white-brown solid; mp: 127-129 °C; *H NMR (400 MHz,
DMSO-de): & (ppm) 13.95 (brs, 1H), 13.12 (brs, 1H), 3.1 (g, 1H, J = 5.1 Hz), 2.65 (s, 4H), 2.11 (s,
4H), 1.40 (d, 3H, J=5.1 Hz), 1.01 (s, 12H); *3C NMR (100 MHz, DMSO-d¢): & (ppm) 192.7,185.2,
116.9,51.5,45.0, 33.4, 33.2, 28.8, 24.7; HRMS (ESI) m/z calcd. for C1gH260s [M+Na]*: 329.1729,
found: 329.1723.

O CH;0

OH OH

2,2°-(ethane-1,1-diyl)bis(3-hydroxy-5-methylcyclohex-2-enone) (22c): Yield: 77 % (using vinyl
acetate), 71 % (using vinyl benzoate), 81 % (using vinyl chloroacetate); grey solid; mp: 111-112 °C;
IH NMR (400 MHz, DMSO-ds) & 13.98 (brs, 1H), 13.05 (brs, 1H), 3.22 (q, 1H, J = 5.2 Hz), 2.92
(dd, 2H,J=10.0 & 6.1 Hz), 2.44 (dd, 2H, J = 9.9 & 6.2 Hz), 2.25-2.32 (m, 2H), 1.87-2.01 (m, 4H),
1.55 (d, 3H, J = 5.2 Hz), 1.26 (d, 6H, J = 4.9 Hz); 1*C NMR (100 MHz, DMSO-ds): & (ppm) 195.7,
177.0, 115.4, 45.1, 35.5, 33.2, 30.3, 24.7, 21.0; HRMS (ESI) m/z calcd. for C16H2204 [M+Na]*:
301.1416, found: 301.1411.

O OH OH O

4,4’-(ethane-1,1-diyl)bis(5-hydroxy-1,6-dihydro-[1,1’-biphenyl]-3(2H)-one) (22d): Yield: 67 %

(using vinyl acetate), 68 % (using vinyl pivalate); white solid; mp: 168-170 °C; *H NMR (400 MHz,

DMSO-dg) 6 13.91 (brs, 1H), 13.03 (brs, 1H), 7.23-7.29 (m, 8H), 7.13-7.20 (m, 2H), 3.36-3.47 (m,
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2H), 3.17 (dd, 2H, J = 12.0 & 5.8 Hz), 3.10 (q, 1H, J = 5.2 Hz), 2.73 (dd, 2H, J = 8.0 & 5.7 Hz),
2.58 (dd, 2H, J = 8.0 & 4.0 Hz), 2.31 (dd, 2H, J = 8.0 & 4.0 Hz), 1.44 (d, 3H, J = 5.2 Hz); 3C NMR
(100 MHz, DMSO-ds): 6 (ppm) 195.0, 177.3, 144.2, 128.5, 128.2, 127.6, 115.6, 43.3, 36.4, 36.1,
33.2,24.7; HRMS (ESI) m/z calcd. for CasH2604 [M+Na]*: 425.1729, found: 425.1719.

O CH,
NH

Nko
H
4-methyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25a): Yield: 82 % (using vinyl
acetate), 81% (using vinyl pivalate), 79 % (using vinyl benzoate), 87 % (using vinyl chloroacetate);
white solid; mp: 148-150 °C; 'H NMR (400 MHz, DMSO-ds) 8 9.73 (s, 1H), 8.62 (s, 1H), 4.38 (q,
1H,J=4.8 Hz), 2.76 (t, 2H, J = 4.8 HZz), 2.66 (t, 2H, J = 4.5 HZz), 1.84 (quin, 2H, J = 4.7 Hz), 1.45
(d, 3H, J = 4.8 Hz); 3C NMR (100 MHz, DMSO-ds) 6 191.6, 155.4, 151.4, 112.9, 47.8, 37.3, 28.5,
20.6, 19.7; HRMS (ESI) m/z calcd. for CgH12N202 [M+Na]*: 203.0799, found: 203.0794.

O CH;,
NH

”&

)

4,7,7-trimethyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione  (25b): Yield: 77 % (using
vinyl acetate), 74 % (using vinyl pivalate); white solid; mp: 168-169 °C; ‘H NMR (400 MHz,
DMSO-ds) 5 9.63 (s, 1H), 8.60 (s, 1H), 4.35 (q, 1H, J = 4.8 Hz), 2.67 (s, 2H), 2.39 (s, 2H), 1.38 (d,
3H, J = 4.8 Hz), 1.08 (s, 6H); 3C NMR (100 MHz, DMSO-de) 6 191.2, 156.5, 153.1, 122.8, 52.6,
48.9, 37.5, 33.9, 30.0, 20.9; HRMS (ESI) m/z calcd. for C11H16N202 [M+Na]*: 231.1110, found:
231.1107.

O CH,

I

4-methyl-7-phenyl-3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25c): Yield: 65 % (using
vinyl acetate), 67 % (using vinyl pivalate); white solid; mp: 172-174 °C; *H NMR (400 MHz,
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DMSO-ds)  9.80 (s, 1H), 8.66 (s, 1H), 7.24-7.32 (m, 4H), 7.14-7.21 (m, 1H), 4.38 (q, 1H, J = 4.8
Hz), 3.20-3.28 (m, 2H), 2.80-2.92 (m, 2H), 1.45-1.48 (m, 1H), 1.47 (d, 3H, J = 4.8 Hz); 3C NMR
(100 MHz, DMSO-de) 6 192.5, 155.4, 148.0, 144.2, 128.5, 128.2, 127.6, 112.7, 47.8, 43.3, 38.9,
34.2,19.7; HRMS (ESI) m/z calcd. for C1sH1sN202 [M+Na]*: 279.1110, found: 279.1108.
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CONCLUSIONS & PERSPECTIVES

SYNTHESIS OF POTENT ORGANIC ASSEMBLIES THROUGH
MULTICOMPONENT REACTIONS

CH-3
p— Spiro-benzo[f]
pyranochromenes CH-5
C(\"\’ c‘\o“ CH-2 Synthesis Potential Use of
S s Vinyl Esters
e “ {
4 Vs
2P s D
i CH-5 |
y Bis(benzo[f]

CH-2

Pyranochmmencne B CH4 * \_R - chromen-3- one)
Synthesis 4 Bis(benzo[f]
\Q- chromen-3-one) o CH3
Synthesis f ! I f !

_One- pot Green Multlcomponent Strategles

Spiro-benzo[f] O CH;0 Acrldlone
pyranochromenes O CH; O CH;
v (e d’\b
‘ H‘bo Thloxanthendlone OH OH
Tetrahydroquinazolindione Bis(hydroxycyclohex-2-enone)
LS ¢

In summary, this work is focused on developing greener and efficient methodologies to access
diversified heterocycles through multicomponent reactions. In this work, one-pot multicomponent
approaches have been developed using different organocatalysts like DABCO and urea to construct
desired scaffolds. In all the chapters certain limitations of existing reports are highlighted along with
advantages of the developed methodologies. Primarily, the present work focuses on development of
green and efficient multicomponent approaches to synthesize scaffolds like pyranochromenone,
bis(benzo[flchromen-3-one), spiro-benzo[f]pyranochromenes, acridione, bis(hydroxycyclohex-2-
enone), thioxanthendione, tetrahydroquinazolindione derivatives under mild condition using
microwave irradiation and mechanochemistry as efficient synthetic tools. In most of the cases, mere
filtration and washing with organic solvents provided good to excellent yields of the targeted
molecules. Additionally, the liquid-assisted synthesis protocol for accessing pyranochromenone and
microwave-assisted synthesis for spiro-benzo[f]pyranochromenes have been accessed for green
matrices parameters and the results proved that these methods are quite environment friendly.
Moreover, some novel biologically relevant heterocycles are synthesized which may be potent

biological leads.
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Chapter 2: Green matrices calculation for 2-amino-4-(4-chlorophenyl)-5-0x0-4,5-

dihydrobenzo[f]pyrano[3,2-c]Jchromene-3-carbonitrile

CHAPTER 2: cl
HO _~_O DABCO (30 mol %) HoN
o H MW= 112.17g/mol
OO 0 <CN (0.3 mmol, 0.034g)
+ +
CN Grinding, 15 min.
/ 0.25 mL IPA

MW= 212.20g/mol MW= 66.06g/mol (0.786g/ mL) Yield = 879
(1 mmol, 0.2129) Cl (1 mmol, 0.067g) iy 87%

MW= 400.81g/mol

MW= 140 g/ mg Final Wt. of Product= 0.349g

(1 mmol, 0.1419)

ivla -

Gret [ n

(Mol Wt. of desired product)
¥ (Mol Wt. of all reagents)

x 100 = 95.70%

% Atom Efficency =

(Mass of carbon in desired product)

: x 100 = 100%
(Total mass of carbon in key reactants)

% Carbon Efficency =

(Mass of Isolated product)

(Total mass of reactants used in the reaction)

x 100

% Reaction Mass Efficency =
=83.10%

(Mass of total waste)

0.82

E-Factor = =
(Mass of crude product)

(Total mass used in the process)
=1.82

Process Mass Intensity (PMI) =

(Mass of product)

Comparison of green matrices calculation (Previous vs. Present Report)

Work
Total details
Mass of | mass of all RME E- (1 mmol
Entry Product | reactants | AE (%) | CE (%) | (%) | PMI |factor | scale)
DABCO%!
(81 % Foroumadi
Yield) 0325g | 0.419¢g 95.70 100 7756 | 13.50 | 12.50 | etal. 2015
DABCO
(87 % Present
Yield) 0.349g | 0.419¢g 95.70 100 83.10| 1.82| 0.82 work
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Chapter 3: Green matrices calculation for 2-amino-2',5-dioxo-5H-spiro[benzo[f]pyrano[3,2-

c]chromene-4,3'-indoline]-3-carbonitrile (Gram scale synthesis)

CHAPTER 3: HN

N

0 Urea (15 mol %)

NC OH  Mw=60.06 g/mol
Q#O . ) \ _(0:75 mmol, 0.045g)
N NG 0 2 mL IPA

MW= 66.06 g/mol
(5 mmol, 0.330g)

MW= 147.13 g/mol MW= 212.20 g/mol
(5 mmol, 0.736 g) (5 mmol, 1.061g)

H

0" 0  (0.786g/ mL)

MW, 120 °C, 10 min

MW= 407.38 g/mol

Yield = 84%

Final Wt. of Product=1.710 g

aL a9

A ¥

(Mol Wt. of desired product)

> (Mol Wt. of all reactants)
(Mass of carbon in desired product)

x 100 =95.77%

% Atom Efficency =

% Carbon Efficency = x 100 =100%

(Total mass of carbon in key reactants)
(Mass of Isolated product)

(Total mass of reactants used in the reaction)

% Reaction Mass Efficency = X

= 80.39%
(Mass of total waste)

E-Factor = 1.19

(Mass of crude product) -

(Total mass used in the process)
=219

Process Mass Intensity (PMI) =
(Mass of product)

100

Comparison of green matrices calculation (Previous vs. Present Report)

Work
Total details
Entry Mass of | mass of all RME E- (2 mmol
Product | reactants | AE (%) | CE (%) | (%) | PMI | factor scale)
DABCO?
(98 % Hasaninejad
Yield) 0.350 ¢ 0.375¢ 95.20 100 93.33 | 12.36 | 11.36 | etal. 2017
Urea
(91 % Present
Yield) 0.371g 0.425¢g 95.77 100 87.29 | 223| 1.23 work
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Chapter 5: Computational study for preferred conformation of 4-methyl-7-phenyl-3,4,7,8-
tetrahydroquinazoline-2,5(1H,6H)-dione (25c¢)

Software Parameters Energy Software | Parameters Energy minimized
minimized conformer
Name Name
conformer
Avogadro | Steepest Descent | Anti-isomer : Chem MM2 Anti-isomer :
of MMFF94s Draw 3D
force field (1000 -234§;1I KJ/ PrO -2.6957 Kcal/ mol
runs) + : Syn-isomer :
Conjugate Syn-isomer : kG v
gradient of 12.0.2 -3.1204 Kcal/ mol
(1000 runs) mo

H
///’//, N \KO oy, n,

Anti-isomer: o Syn-isomer: o S
Results from Avogadro Results from Chem Draw 3D Pro
‘ Q 9 }
29 @ \
*'_* o I‘ & ® .
P @
*‘4 4,0‘0
J Jd 9 |
’ o2’
J
a0 P2 JJQJJ
59 9 9
90 o o
J
9 J“J ? 9
Syn Syn |
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Based upon the energy minimizations studies, it was found that syn-isomer of 4-methyl-7-phenyl-
3,4,7,8-tetrahydroquinazoline-2,5(1H,6H)-dione (25c) is more stable than the anti-isomer.
Moreover, the role of amide in formation of hydrogen bonding is well established in literatures [1,
2] and this would reinforce the syn product. However, the final determination of the structure and

further mechanistic studies are currently underway in the laboratory.

[1] Saha, S.; Moorthy, J. N. Enantioselective Organocatalytic Biginelli Reaction: Dependence of the
Catalyst on Sterics, Hydrogen Bonding, and Reinforced Chirality. J. Org. Chem. 2011, 76, 396—
402.

[2] Huang, Y.; Yang, F.; Zhu, C. Highly Enantioseletive Biginelli Reaction Using a New Chiral
Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines. J. Am. Chem. Soc. 2005, 127,
16386-16387.
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'H NMR of 8f
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'H NMR of 8g
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'H NMR of 8h
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'H NMR of 8i
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'H NMR of 8k
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'H NMR of 8m
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'H NMR of 8n
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'H NMR of 80
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'H NMR of 8p
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'H NMR of 6a
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'H NMR of 6b
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'H NMR of 6d
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'H NMR of 6e
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'H NMR of 6f
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'"H NMR of 6g
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'H NMR of 6h
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'H NMR of 6j
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'H NMR of 6k
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'H NMR of 61
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'H NMR of 6m
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'H NMR of 6n
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'H NMR of 60
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'H NMR of 6p
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'H NMR of 6q
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'H NMR of 6r
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IH NMR of 6f in D20
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'H NMR of 5b
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'H NMR of 5¢c
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'H NMR of 5d
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'H NMR of 5e
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'H NMR of 5f
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'H NMR of 59
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'H NMR of 5i
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'H NMR of 5j
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'H NMR of 5k
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'H NMR of 5l
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'H NMR of 5m
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'H NMR of 5n
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'H NMR of 19b
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'H NMR of 19¢
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'H NMR of 19d
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13C NMR of 19d
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Spectral information for methyl substituted thioxanthene-1,8(2H)-dione (212-21¢)

'H NMR of 21a
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'H NMR of 21c
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Spectral information for methyl substituted bis(3-hydroxycyclohex-2-enone) (22a-22d)

'H NMR of 22a
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'H NMR of 22b
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'H NMR of 22¢
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'H NMR of 22d
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13C NMR of 22d
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Spectral information for methyl substituted tetrahydroquinazoline-2,5(1H,6H)-dione_(25a:25¢)

!H NMR of 25a
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'H NMR of 25b
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'H NMR of 25¢
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