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ABSTRACT 

 

Water is one of the most essential components of the environment and requires proper planning 

and management to achieve its sustainable utilization. Changes in climate and land use have 

significantly influenced the hydrological cycle and hence affect water resources. Due to 

uncertainty in climate change projection and land use change, improved knowledge of basin 

hydrology and resources availability are indispensable for policy formulation and sustainable 

development of the water sector.  

The aim of this research was to improve understanding of hydrological response for a large 

river basin under land use and climate change scenarios. This study investigates the changes in 

water balance components under different land use and climate change scenarios over Upper 

Narmada Basin (UNB), a river basin in the sub-humid area of central India. Moreover, 

identification of climate change and selection of climate models were carried out at regional 

scale as well as local scale (UNB). For regional scale studies, India has been categorized in to 

seven zones, considering the geography and homogeneous annual precipitation i.e. North 

Mountainous India (NMI), North Central India (NCI), Northwest India (NWI), East Peninsular 

India (EPI), West Peninsular India (WPI), South Peninsular India (SPI) and North East India 

(NEI). 

The comprehensive assessment of spatial and temporal variability in annual and seasonal 

precipitation and temperature was carried out at regional scale and local scale. In order to 

identify climatic variability over the region, parametric and non-parametric tests were 

performed to detect trend, periodicity and break points in long term precipitation and 

temperature data. At regional scale (seven Indian zones), regression analysis was carried out on 

long term (1851-2006) monthly precipitation. The results imply mean values of precipitation 

are decreasing in most of the zones in the last 30-year period while both positive and negative 

trends existing in each zone for the monsoon datasets. Therefore, wavelet analysis is quite 

popular tool for trend analysis and periodicity identification in hydrological time series. 

Discrete Wavelet Transform (DWT) Daubechies wavelets db6 and db10 were selected to 

decompose the annual and monthly datasets, respectively, applying criteria minimum MRE and 

the minimum criterion relative error (Er). The Z statistic was evaluated for trend analysis of the 

decomposed periodic components and the original annual and monsoon series. Application of 

DWT on annual series implied 2-, 4- and 8-year fluctuations in the NMI zone, indicating a 

positive trend in rainfall, whereas zones WPI, SPI and WPI (with 2- and 4-year fluctuations) 
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experienced a negative trend at the same periodicities, at the 0.05 (5%) significance level. In 

the monsoon series, a positive trend was found over NMI and NEI decomposed series at 2-, 4- 

and 8- year periodicity, whereas WPI, EPI and SPI indicated a negative trend at the same 

periodicity. Considering India as whole (AI), it was found a negative trend in all zones except 

NMI and NEI.  

Furthermore, at local scale analysis, trend in monthly and annual precipitation and mean 

temperature data were identified at 16 stations of UNB. However, results imply that 8% stations 

exhibit the negative trend for precipitation, while 100% stations show positive trend for mean 

temperature over 16 stations of UNB. A comparative study was carried out between three 

methods i.e. innovative trend analysis (ITA), Mann Kendall (MK) test and Sen’s slope, to check 

the suitability of ITA against nonparametric tests. In result, ITA show the strong agreement 

with both methods (MK test and Sen’s slope), 97.5% and 77.5% in ‘ITA versus MK test’ and 

‘ITA versus Sen’s slope’. Change year obtained from sequential Mann Kendall (SQMK) were 

compared with the change year of CUMSUM. Results indicated most of the stations exhibit 

significant abrupt change year is 1955 (77.78%) for precipitation, and 1960 (100%) for mean 

temperature. However, finding from this analysis has improved understanding of variability, at 

spatially and temporally, at current and future climate change. 

Evaluation of changes in land use land cover are extremely important and must be monitored 

to assess the impact on environment. In this study, mapping of LULC and change detection 

were carried out using the Landsat TM satellite image and geospatial tools. The development 

of LULC classes were evaluated from 1990 to 2000 to 2010 to 2015. The reduction in natural 

vegetation and increase in settlement as well as cropland are reflected in the analysis of LULC 

mapping. Understanding of trend patterns were demonstrated and predicated for the year 2030 

using CA-Markov model. The model were validated with simulated and actual LULC of 2015. 

The projected LULC of 2030 classes indicated the continuing of same trend of recent past. 

These future projection indicate the expected changes in near future. Therefore, the LULC 

changes in classes in near future recommend the planning and management of the study area. 

To assess the impact of climate change on hydrology, Global Climate Models (GCMs) are the 

primary data source. Therefore, performance of GCM models are required to evaluate for 

choosing the best representative GCM for the region. To identify the best representative climate 

models, performance of 24 GCMs were evaluated against reanalysis models, based on Skill 

Score (SS) and Root Mean Square Error (RMSE) of six climatic variables. After applying multi-

criteria analysis on evaluation parameters (SS and RMSE), results indicate that there is no single 
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GCM which can recommend for whole Indian regions. However, GCM models for 

representation of precipitation have been proposed as ensemble of MPI_ECHAM4.0, 

MIROC3.2_HIRES, UKMO_HADCM3.0 and INGV_ECHAM4 for Indian regions. Climate 

models of CCCMA groups are performing well for atmospheric temperature in most of the 

Indian regions. At local scale, three climate models MIROC5, CNRM-CM5 and MPI-ESR-LM 

were evaluated as best performing models for hydrological modelling of future climate change 

over UNB.  

In order to assess the hydrological response under land use and climate change, Soil and Water 

Assessment Tool (SWAT), a semi-distributed hydrological model was calibrated applying 

multi-site calibration techniques. In monthly simulation, Nash Sutcliffe Efficiency (NSE) and 

Coefficient of Determination (R2) were computed, 0.77 and 0.76 for calibration (1978-1995) 

and 0.73 and 0.70 for validation period (1996-2005), respectively, indicating good performance 

for basin. Calibrated hydrological model used to simulate the change in water balance 

components under three different land-use and two climate-change scenarios from three 

representative GCMs (MIROC5, CNRM-CM5 and MPI-ESR-LM). Hydro-meteorological 

response under land use change indicate that increase in settlement and decrease in natural 

vegetation, affect as increase in the water yield and surface runoff, but decrease in 

evapotranspiration (ET). The actual ET decreases with time due to decrease in natural 

vegetation, maximum in 1990 (460.04 mm) while projected in 2030 is lower (407.19 mm). 

Water balance components under climate change scenarios indicated annual precipitation 

decreasing from -1.65% (MPI) to -16.55 % (MIROC) during P1 (2011-2040) and P2 (2041-

2071) under RCP4.5, whereas in RCP8.5 scenarios it varies from -26.19% (CNRM) in P3 

(2071-2100) to 21.24 % (MIROC) in P3, with reference to baseline scenario. Changes in green 

and blue water varying from 16.22% (MIROC, P3) to -14.10% (CNRM, P3) under RCP4.5 and 

from 38.25%(MIROC, P3) to -22.57% (CNRM, P3) under RCP8.5 with reference to baseline 

scenario. This study established the sensitivity of UNB to future climatic changes employing 

projections from CMIP5 climate models and exhibited an approach that applied multiple 

climate model outputs to estimate potential change over the river basin. Moreover, adaptation 

strategies are proposed against climate change impact.  

In general, the study provide a scientifically important and practically relevant, to identifying 

the historical climate variability and hydrological assessment under land use and climate change 

scenarios considering representative climate models output, in contributing to water resources 

planning and management in the context of river basin. 
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CHAPTER 1  

     INTRODUCTION 

1.1 GENERAL 

In the recent past, there is remarkable change in nature of the global discussion of issues of climate 

change and land use land cover (LULC) change and its effect on water resources availability. These 

issues in particular are disturbing the sustainable development planning and management of water 

resources. Water resources are very important for agricultural sector, power generation, ecosystem 

and human health, moreover its requirement is raising day by day with population growth. However 

increasing water demand can be anticipated but changes in environment and its impacts on human 

and other ecosystems are locally unpredictable. Therefore, it is important to plan and manage the 

water resources considering anthropogenic effect and environmental changes.  

Climate projections for the 21st century indicate that rising temperatures and changing precipitation 

regimes are likely to affect the hydrological cycle and water resources availability. Assessment of 

water resources availability under climate change impact and anthropogenic activity at regional and 

global scale have been intriguing issue to hydrologic research community in recent past. It is 

important to assess the exact knowledge of water availability for policy makers to accomplish the 

sustainable development and management for providing various adaptation strategies. Global 

Climate Models (GCMs) are the basic tools and sole means to detect and evaluate the climate change 

impact. GCMs were developed to assess the current climate as well as to project the future climatic 

conditions at synoptic scale (300 to 450 km spatial resolution). Moreover, GCMs accuracy decreases 

by increasing finer resolution, which is not suitable to evaluate significant impact studies at local 

scale.  It is a complex numerical model to formulate the global climate system. However, due to 

climate change, temperature is rising and altering the frequency and intensity of precipitation 

extreme values, which advances the flood and drought events. In the recent past, many studies 

indicate that global warming has reduced the water availability in many regions. Moreover, water is 

the basic need for development at regional or local scale but its availability influenced by many 

factors including hydro-meteorological and climate variability, and anthropogenic activities. The 

aim of this study is to identify the contribution of climate change, human intervention and its 

combined effect on the future projection of water resources at basin scale. 
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1.2 BACKGROUND OF STUDY 

The impact of climate change and anthropogenic activity on climatological parameters influence the 

hydrological processes and water resources availability. Under the global warming, occurrence of 

extreme events are altered which causes water scarcity and hurdle in sustainable development. In 

the recent past, many studies indicated that global warming has altered the water availability in many 

regions of India. Many researchers and scientific community have proved that global warming is 

caused by rising greenhouse gas (GHGs) concentrations and influences the rise in temperature and 

alter the rainfall pattern.  Under projected climate change, the extreme events (flood and drought) 

normally will rise across most of the Indian River. In India, during the monsoon season floods are 

most vulnerable natural disasters and affect the settlement as well as cropland.  In the recent past, 

many researchers highlighted the climate change impact on Indian rivers (Gosain et al. 2006; Mall 

et al. 2006; Pandey et al. 2016; Revi 2008; Singh and Kumar 1997).   

1.2.1 Potential Effects of Climate Change on Water Resources  

The mean annual precipitation in India is about 1170 mm, and it varies from 100 mm (Rajasthan) to 

11000 mm (Meghalaya). Most of the rainfall occurs in monsoon season. Moreover, average surface 

runoff estimated to be about 1869 billion cubic meter from rainfall and snowmelt. It is expected that 

water demand will increase around two times (552 to 1050 billion cubic meter) by 2025 from 1997 

(Chatterjee, 2014). Climate change and climate variability are altering the intensity and frequency 

of extreme events. Instrumental and proxy observations indicate about global warming due to 

emission of greenhouse gases, particularly in last four-five decades of the 20th century. Houghton et 

al. (2001) indicated that cause of global warming, surface temperature is rising and intensification 

will occur in global hydrological cycle which will alter the frequency and intensity of annual 

precipitation and weather extreme. It is expected that change in annual precipitation will likely to 

increase flood magnitude and frequency. Moreover, change in climatic condition and land use land 

cover dynamics will affect the surface discharge, water yield and water availability, particularly on 

catchment or basin scale. Gosain et al. (2011) simulated the runoff of 12 Indian River basins under 

climatic conditions of different scenario. Authors present the worst affected two river basins 

(Krishna and Mahanadi), one is under droughts and other with respect to floods under climate change 

effect. Narsimlu et al. (2013) assessed the climate change impact on water availability of Upper Sind 

River Basin and found that mean annual runoff would increase by 94% at the end of 21st century. 
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Furthermore, many recent research indicate the availability of water resources, assessment of 

vulnerability of water infrastructure and proposed mitigation strategies to climate change, population 

growth, and industrial development.  

1.2.2 Effects of Anthropogenic Activities (Particularly Land use Change)  

Large scale deforestation, expansion of urbanization and industrialization due to increasing 

population growth contribute to global warming. Moreover, increasing urbanization and population 

alter the ecological system, environment, ground water recharge, surface water flow, water demand 

for agriculture, power generation and other purposes. The human interference and GHGs emission 

are the driving forces behind the climate change. Increasing population and their livelihood demands 

exerts the pressure on existing LULC resources. Thus, it is important to monitor the information 

about dynamics of LULC along with population growth and rising requirement. In central India, due 

to rising population there is a continuous over-exploitation of natural resources such as expansion 

of cropland at the cost of deforestation and subsequent urbanization from cropland and deforestation. 

Due to modification of LULC, many problems generated such as deficit in soil moisture, high rate 

of soil loss, depletion of ground water level and scarcity of water demand. Thus, it is crucial to assess 

the dynamics of LULC for long term land resources planning and management for decision makers. 

Currently, there are many tools such as remote sensing technologies available to assess and develop 

the land use land cover map. Jaiswal, (1999) suggested that geospatial tools and remote sensing data 

along with toposheets obtained from Survey of India are appropriate tools to analyse and mapping 

to LULC. Mondal et al. (2014) examined part of Narmada River Basin in Madhya Pradesh, India 

considering different GHGs emission scenarios and show that rise in precipitation will increase the 

soil erosion. Khare et al. (2017) investigated the effect of past, present and future LULC change on 

runoff change and evaluated the hydropower potential on Narmada river basin, Madhya Pradesh, 

India.  

1.3 PROBLEM IDENTIFICATION  

In recent times, various literature from worldwide indicate climatic change and anthropogenic 

activities are significantly affecting the water resources availability at regional and basin scale. In 

India, water resources demand has already raised manifold in field of agriculture, ecological life, 

power generation, domestic and industries due to rapid growth in population. In current scenario, 

rise in temperature, change in cropping pattern, over exploitation of groundwater and stream water 
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altering the hydrological cycle, and precipitation rate in many climatic zones and water availability 

of river basins in India. In terms of climate impact on agriculture field, many crops such as rice, 

wheat, maize and sorghum are the worst hit by extreme weather conditions. Considering the food 

security, climate change affects 4-9% per year production on different crop, and 15% to India’s 

Gross Domestic Product (GDP). Therefore, it is important to assess the water availability under the 

climate change and dynamics of land use land cover for long term strategic planning and sustainable 

development of a region or basin for country.  

1.3.1 Research Gaps 

Increased concentration of GHGs and anthropogenic activities are expected to change the climatic 

conditions causing rise in temperature and change in precipitation frequency and intensity. The 

following research gaps are summarized:  

1. In most of the studies, annual average precipitation and mean temperature were considered 

for trend detection, extreme values were not considered to measure the climate change 

impact. Additionally very few studies were focused on periodicity rather than trend and 

shifting. 

2. There are limited studies based on selection of best suitable GCMs/RCMs considering the 

six climatic variables. To project the future climate and water availability, it is important to 

identify representative climate models for the region.  

3. Due to mismatches between hydrological model requirements and GCMs ability, it is not 

suitable to couple hydrological models with crude spatial resolution GCMs output to assess 

the impact studies at local scale. To bridge the gap between GCMs output and hydrological 

model inputs, dynamic downscaling output have been attempted.  

4. There are very few studies available to project the virtual water foot print (blue and green 

water) considering the climate change, which is relatively a new concept in the field of water 

resources planning and management. 

1.3.2 Research Objectives 

In order to assess the climate change impact considering GCMs output by integrating with 

hydrological model, it is important to select suitable GCMs over the region. The general aim of this 

study is to evaluate the water availability under climate change impact and land use land cover 
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change, on Upper Narmada Basin, a river basin in the sub-humid area of central India. The following 

specific objectives are outlined for the present study:  

 To analyse the historical trends, shifting (change year) and periodicity of climatic variables 

such as precipitation, temperature and reference evapotranspiration at regional scale (seven 

zones of India) and local scale (Upper Narmada Basin).  

 To assess the pattern of land use land cover change and project the near future land use land 

cover of study area. 

  To select the best representative Global Climate Models (GCMs) considering six climatic 

variables at regional (seven zones of India) and local scale (Upper Narmada Basin). 

 To estimate the changes in hydrological response under dynamics of land use land cover, 

and projection of virtual water for three climatic periods of 21th century under climate change 

scenarios of representative GCMs. Based on the outcomes, propose subsequent adaptation 

and coping strategies. 

1.3.3 Methodologies 

In order to achieve the expected results of the above objectives the statistical analysis and 

hydrological modelling approach were considered in this study. Trend detection was carried out by 

various non-parametric and parametric test, namely Mann-Kendal test, Sen’s slope test, linear 

regression, innovative trend analysis and discrete wavelet transform (DWT) methodology, while 

identification of change year (abrupt/sudden shifting) was carried out by Pettitt’s test, Buisand’s test 

and sequential Mann Kendall (SQMK) test. Moreover, periodicity of precipitation parameters at 

regional scale were carried out by discrete wavelet transform. To select the suitable representative 

GCMs (at regional and local scale) out of 24 GCMs from Intergovernmental Panel on Climate 

Change (IPCC) Fifth Assessment Report (AR5), multi criteria approach was applied on evaluated 

parameters skill (SS) score and  root mean square (RMSE) values of six climatic variables. Land use 

land cover classification was carried out by supervised classification, whereas land use in near future 

were simulated by Markov and Cellular Automata (CA). In this research hydrological model, soil 

and water assessment tool (SWAT) was calibrated and validated by SWAT-CUP at monthly time 

step.  Based on statistical analysis (trend, shifting, and periodicity) and water balance components, 

results obtained from hydrological modelling are important to assess the effect of climate change 
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and anthropogenic activities. These results will support in long term planning and management of 

sustainable development of the study area. 

1.4 STRUCTURE OF THESIS 

The outline of the chapters and framework of objectives are as follows: 

Chapter One explains the background and importance of the subject in the context of climate 

change impact on water availability. This chapter also identifies the specific objectives considering 

the research gaps based on previous studies over the central India. 

Chapter Two presents the review on the assessment of climate change at regional and local scale, 

including the studies based on trend detection and identification of change year. Studies based on 

global climate models (GCMs) and regional climate model (RCMs) outputs were considered in this 

literature review chapter. This chapter includes the assessment of previous studies of land use/ land 

cover mapping and future projection by geospatial tools. Moreover, this chapter covers the 

hydrological modelling studies based on different hydrological model, especially Soil and Water 

Assessment Tools (SWAT). 

Chapter Three covers the information about the study area, Upper Narmada Basin (UNB) is located 

in Madhya Pradesh state, Central India. Additionally, this chapter describes the information about 

data collection such as distribution of land use land cover, soil type etc.  

Chapter Four discusses historical trend and periodicity of precipitation at regional scale (India) by 

using discrete wavelet transform, a relatively new tool in hydrology. Moreover historical trend and 

shifting year of precipitation, temperature (maximum, minimum and mean), and reference 

evapotranspiration were detected by several methodologies for 102 years (1901-2002). Spatial and 

temporal distribution of climatic parameters were also plotted using geospatial tools. 

Chapter Five describes the change in land use land cover pattern for last 25 years (1990 to 2015), 

from 1990 to 2000 to 2010 to 2015. The supervised classification technique was used to classify the 

classes. The classification were verified with ground truth data points observed during site visit. This 

chapter also discuss the projection of land use land cover map for 2030 by Markov and Cellular 

Automata (CA-Markov) approach.   

Chapter Six includes the performance evaluation of 24 GCMs by root mean square value (RMSE) 

and skill score (SS) of six climatic variables (precipitation, air temperature, mean sea level pressure, 
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outgoing solar radiation, zonal wind and meridional wind) applying Multi-Criteria Analysis (MCA) 

at regional scale (seven zones of India). Same methodology was applied to get representative (best) 

climate model at local study area (UNB), and best performing GCM outputs used for hydrological 

modelling of the basin. Moreover, outputs from climate models were bias corrected by using 

distribution mapping approach.  

Chapter Seven includes the hydrological model (SWAT) setup for UNB study area. Six discharge 

gauging sites were selected during the model calibration. Model calibration and validation were 

performed by using SWAT-CUP (SWAT Calibration and Uncertainty Programs) based on monthly 

time-setup. The sequential uncertainty fitting algorithm version 2 (SUFI-2) of SWAT-CUP was 

applied with multiple sets of SWAT parameter to assess the performance of model in terms of 

coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE). Calibrated model was used 

to simulate the response of river basin under climate change scenarios and land use land cover 

dynamics. Future projection (2011-2100) of hydro-meteorological components were assessed using 

representatives GCM outputs, under moderate and high emission scenarios (RCP4.5 and RCP8.5), 

for three climatic periods (P1: 2011-2040, P2: 2041-2070, P3: 2071-2100). Spatial and temporal 

distribution of water availability in terms of blue and green water were shown for study area. 

Chapter Eight discusses the summary and important conclusions drawn from the study. 

Additionally, the chapter also focuses on limitation and future scope of the study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 GENERAL  

Assessment of water availability in a river basin under climate change impact and land use land 

cover change is very important for the sustainable development and management of water resources 

in the near future. As indicated by Intergovernmental Panel on Climate Change Fifth Assessment 

Report (IPCC AR5), current global average temperature raised by 0.85oC from 1880 to 2012 and by 

end of 21th century it may rise by 2oC (IPCC, 2013). The increase in global temperature due to 

emission of greenhouse gases and anthropogenic activities induced higher evapotranspiration rates 

that alter the rainfall rate globally. Change in temperature influences the hydrological process and 

hydrological events such as flood and drought. In order to get better understanding of hydrological 

process, many hydrological tools were used to assess the water balance under climate change 

scenarios. 

2.2 CLIMATE CHANGE IDENTIFICATION 

In the recent past many scientific community analysed the trend of hydro-climatic variables for last 

decades. Numerous studies were carried out at regional scale and local scale to examine the trend 

periodicity and change point in climatic variables such as temperature and precipitation. The purpose 

of understanding the trend is to detect the expected changes and uncertainties. The most popular 

methods are Mann-Kendall (MK) test, Spearman Rank Correlation test, and Kendall’s Rank 

Correlation test. However, this section covers the work done on climate change assessment by 

different tools and approaches.  

2.2.1 Trend Analysis 

In recent years, many researchers were concerned about the temporal and spatial variability of 

temperature and precipitation rate cause of attention given to global warming. Trend analysis for 

rainfall distribution was carried out by scientist community from different countries using different 

methods. Most of the trend detection study were based on parametric and non-parametric test such 

as Mann-Kendall (MK test) and regression analysis. 
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Kothyari et al. (1997) identified the changes in climatological variable like rainfall and temperature 

in upper and central part of Ganga basin, North India. Data used in this study were collected from 3 

stations (Agra, Delhi and Dehradun) and non-parametric test performed to detect the trend in this 

data. The results evidence that in monsoon season the number of rainy days decreases, whereas, 

there is increase in maximum yearly temperature. Moreover, magnitude of trend were found to be 

significant at 95% of confidence level. Kunkel et al. (1999) investigated the trend in extreme 

precipitation events given a certain duration and a site- specific threshold and tested liner trend in 

the frequency of extreme precipitation events using the nonparametric Mann-Kendall test. Lal et al. 

(1999) reported that, when maximum and minimum temperatures rise by 1.0 ° C and 1.5°C and then 

the gain in the yield of the soybean crop comes down to 35%. Furthermore, the study also reported 

that, when maximum and minimum temperatures will rise by 3.0 ° C and 3.5 ° C and then soybean 

yields reduces by 5% as compared to 1998. Mirza et al. (1998) analysed trends and persistence of 

precipitation data were carried out over the three major river basins Ganges, Brahmaputra and 

Meghna (GBM) of the Himalayan region, India. Basins were examined for trends applying variety 

of trend test namely Mann-Kendall rank statistic, Student's t-test and regression analysis, whereas 

first order autocorrelation was applied for persistence.  

Ragab and Prudhomme (2002) examined the global warming effect on water resources in arid and 

semi-arid regions of the world. Study results indicate the variability in rainfall and temperature in 

most of the parts of the arid and semi-arid regions. Moreover the average annual rainfall has 

decreased by 5-25%, while average annual temperature rise is reported between 1.59oC to 2.5oC in 

winter and from 2oC to 2.5oC in summer of the Thar region (India-Pakistan-Afghanistan). The 

models and empirical considerations suggested that frequency, intensity and area of tropical 

disturbances may increase. Yue et al. (2002) examined the trend in daily maximum discharge series 

of employing two non-parametric rank-based statistical tests (Mann–Kendall test and Spearman's 

rho test) on 20 observed points in Ontario, Canada. Moreover this study analysed the power of the 

tests by Monte Carlo simulation. Simulation results suggest that their test power relies upon the 

many factors such as pre-assigned significance level, order of magnitude of trend, size of series, and 

the variability within discharge series. However test may be more robust in the case of large series 

while it may decrease by amount of variation increase within the time series. Additionally if a trend 

is detected, the power is also contingent the distribution and skewness of the series. It has also 

observed that both test have similar power in detecting the significant trend.  
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Xu et al. (2003) observed the monotonic long-term trends and step change in rainfall data time series 

over Japan, by using parametric method (student t-test) and nonparametric methods (Mann-Kendall 

and Mann-Whitney test). Limitation of study is that in this investigation only 46 rainfall gauges were 

used with long data records. Results specify that although many shift changes occurred in Japan but 

the time series did not display major evidence of monotonic trend during the previous century. 

However magnitude outcome indicate that if the step change reaches one or two times of its standard 

deviation, the previous fifty years of record together with five years or more of new data will be 

obtainable for detecting the probable trend. This decision may be helpful for the revealing step 

changes in the regions where the rainfall has near-normal distributions. 

De and Rao (2004) have assessed the rainfall trends for major Indian cities, namely, Ahmedabad, 

Bangalore, Chennai, Hyderabad, Jaipur, Kanpur, Kolkata, Lucknow, Mumbai, Nagpur, New Delhi, 

Patna, Pune and Surat, wnith more than one million population. The significant increasing trends 

were found in annual and monsoon rainfall over Chennai, New Delhi, Kolkata and Mumbai. Arora 

et al. (2005) detected the trends of temperature at annual and seasonal temporal scale using the MK 

test at the country and regional spatial scales. It has been observed that the increase in annual mean, 

mean maximum and mean minimum temperature were at a rate of 0.42, 0.92 and 0.09 ° C (100 

years)-1 respectively. On a regional basis, stations of southern and western India shows a rising trend 

of 1.06 ° C and 0.36 ° C (100 years)-1 respectively while North Indian plains stations shows a 

decreasing trend of 0.38 ° C per 100 years. The seasonal mean temperature had increased by 

0.94°C/100 year for the post-monsoon season and by 1.1°C/100 year for the winter season. 

Tebakari et al. (2005) analyzed the pan evaporation for Kingdom of Thailand .The analysis has been 

carried for the 19 years (1982-2000) for considering 27 observation stations. In the result, 19 station 

obtained as decreasing trend and 8 stations found as increasing trend and no station found as no- 

rise, no-fall trend with in significant level. Gong et al. (2006) evaluated climatic variables which 

affecting the ETo in the sensitivity analysis for Changjiang basin, China. The sensitivity of ETo were 

analysed with climatic parameters (air temperature, relative humidity, solar radiation and wind 

speed) of 41 years historical data have been used for the study from 150 observation stations. The 

results showed that relative humidity or solar radiation are sensitive parameters and quite predictable 

under with help of sensitivity coefficient.  
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Partal and Kahya (2006) studied the long term trend in average annual monthly Turkish rainfall data 

series using Mann- Kendall and Sen’s slope test. Autocorrelation method is applied to determine the 

significant level in outcome of Mann Kendall test. In this study 96 rainfall stations are used, which 

reflect the turkey regional hydro-climatic conditions. The study concludes that rainfall trend 

detection results gives some significant trend in months of September, January and February, and in 

the average annual. However outputs of trend analysis confirms the decrease in average annual 

rainfall in western and southern part of turkey and also in coasts of the black sea. Basistha et al. 

(2008) assessed the spatial trends of rainfall over Indian region over a period of 1872-2005 using 

the MMK test. The results show falling trends of rainfall in North India (except Punjab, Haryana, 

West Rajasthan and Saurashtra) and increasing trends in the south India (except Kerala and Madhya 

Maharashtra). Further, MMK test and PMW test were used to detect the shift in rainfall pattern from 

the year 1901 to 1980. The increasing trend of rainfall was found upto the year 1964 and decreasing 

trend during year 1965-1980. The year 1964 was observed as the year of most probable annual and 

seasonal change in rainfall in the region. Ezber et al. (2007) used a statistical and numerical 

modelling technique to temperature data in urban, sub-urban and rural areas to find the urbanization 

effect on climate of Istanbul. The MK test was used to determine significance of trends and the years 

in which changes were started. The effect of urbanization on climate was studied using meso-scale 

atmospheric model. Both the statistical and atmospheric models have found significant warming in 

atmosphere over urbanized area. The MK test found significant positive trend in average monthly 

minimum temperature over urban and rural areas. The seasonal analysis shows that the effect of 

urbanisation was more pronounced in summer season. The significant changes in temperature were 

observed in the year 1970 and 1980 due to dramatic increase in population.  

Gowda et al. (2008) studied the local region of Devangere district over a period of 32 years using 

statistical analysis. The climatic parameters i.e. rainfall, relative humidity, maximum temperature, 

minimum temperature, sunshine hour and wind speed were analyzed to assess the climate change. 

The mild climate change was found in and around the Devangere region in India. The statistical 

analysis showed that such a small data set may not represent the correct picture of the climate change 

and requires long term data. Similar, study was also carried out at local region of Roorkee (Tripathi 

et al. 2007). Matouq (2008) presented a case study of the impact of global warming on the 

meteorological parameters like rainfall, temperature and relative humidity. The result showed no 

changes in rainfall but, annual average temperature increases rapidly, about 1.5-2oC since 1990 at 
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Jordon. The future scenario of climate change has not considered in this study. Bandyopadhyay et 

al. (2009) carried the trend analysis of ETo using Mann-Kendall for India. 133 stations have been 

selected from the different agro-ecological regions from India and study carried out for the duration 

of 32 years. In the results, ETo is rising for the whole India during the selected 32 years of the study 

period.  Authors indicated the main cause of this raising trend is increase in relative humidity and 

decrease in wind speed for the study duration.  

Basistha et al. (2009) concluded in their study that more research is required to assess the spatial 

patterns of trends of other climatic variables i.e. minimum, average and maximum temperature, 

relative humidity, wind speed, ET, number of rainy/wet days etc., and their inter-relationship. 

Literature review shows that climate related studies are restricted to statistical analysis of few 

meteorological parameters only. The study also concluded that arid portion i.e. western part of India 

has not been investigated well. Mishra et al. (2009) analyzed the climate variability on rainfall of 

Kansabati basin, India. However trend and persistence were investigated of projected precipitation 

for annual, monsoon and pre-monsoon periods. Results implied that there will be likely an increasing 

trend based on CMIP3 scenarios A2 scenario and decreasing trend based on B2 scenario for both 

annual and monsoon periods during 2051–2100. Sahoo and Smith (2009) analysed the change in 

various hydro-climatic variables in the speedily urbanizing semi-arid San Antonio River Basin, 

particularly changes in fresh water inflows to the Guadalupe Estuary. A bigger number of significant 

trends were found in all hydro-climatic variables throughout all seasons at stations in the lower 

catchment area, and the percentage contribution of baseflow to stream flow was increased all around 

the seasons for average, high and low rainfall. Some significant positive trends of rainfall were found 

in the winter season without significant spatial pattern.  

Jhajharia and Singh (2011) observed declining trends in daily diurnal temperature range (diurnal 

temperature range (DTR) = maximum temperature – minimum temperature) at four station in 

northeast for almost all time scales. On the other hand, the DTR trends were significant increased 

mainly at annual, seasonal (pre-monsoon and monsoon), and monthly (May, June, August, 

September, and November) time scales. Significant rising trends in DTR are observed at three 

stations in the month of October and in the monsoon and post-monsoon seasons. Four sites showed 

significant increasing trends for Tmean in monsoon and post-monsoon seasons. However, post-

monsoon changes for Tmax and Tmin were more than the monsoon season, indicating an element of a 

seasonal cycle. Significant decreasing trends in the sunshine duration were noticed at annual, 
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seasonal (winter and pre-monsoon), and monthly (January–March) time scales. Kothawale et al. 

(2010) investigated from the period 1901–2007, all-India mean, maximum, and minimum 

temperatures have significantly amplified by 0.51, 0.71, and 0.27 °C per 100 years respectively. In 

addition to this from year 1971-2007 an accelerated warming was observed.  

Xu et al. (2010) carried out the study for trend detection on precipitation and runoff for Naoli River 

watershed, northeast China. Precipitation and discharge data from 160 meteorological stations were 

considered in the study. Results suggest that during 1951 to 2000 precipitation was increased in the 

south region and decreased in north region.  

Revadekar et al. (2011) studied the observational analysis by taking 121 stations spread all over 

India to examine extreme event in daily time series data of maximum and minimum temperature. 

The study found that the temperature is rising throughout the year but variation in winter season are 

probable to be conspicuous. Overall conclusion is that widespread warming through an increased in 

intensity and occurrence of warm events. Tabari and Marofi (2011) analyzed the trend for 20 

meteorological station of West Iran using Mann Kendall and regression method. Analysis has been 

carried on the basis of monthly, seasonal and annually for about 40 years. In the results, it has been 

found that 70% station showing the positive trend using Mann-Kendall where as 75% stations 

showing the positive trend using the regression method.  

Tabari et al. (2011) mentioned the temporal variability of rainfall in their study, where 41 gauge 

stations data of Iran were used for a period of 1966-2005. The statistical methods (Mann-Kendall 

test, the Sen's slope estimator and linear regression) were employed to detect the rainfall trend over 

Iran. To remove the effect of auto correlation over Mann-Kendall test the effective simple size 

method was used. Annual precipitation output shows the decline trend over 24 stations with 

significant value at 7 stations having 95% and 99% confidence level. Extent of significant decline 

trends is varied from -1.99 to -4.26 mm/year at Zanjan and Sanandaj stations. Seasonal precipitation 

output shows decline trend in spring and winter seasons while significant trend occurred in winter 

at most of stations. However, maximum and minimum positive significant value observed in summer 

is 0.110 mm/year and 0.036 mm/year over Semnan and Mashhad stations. 

Tabari and Talaee (2011) analysed the monthly, seasonal and annual maximum and minimum 

temperature for 20 stations in western part of Iran from the period of 1966-2005. Statistical methods 

(i.e. Mann-Kendall test, the Sen's slope estimator and linear regression) were employed to detect the 
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temperature trend over Iran. In monthly time series maximum number of the station in month of 

August shows the rising significant trend while the minimum number of stations showed in month 

of November and March. Seasonal output gives strong positive trend in summer seasons in 

maximum and minimum temperature time series. Annual maximum and minimum temperature 

results shows the rising trend is 85% and decline trend is 15% of the total stations. In addition, the 

highest positive value of maximum and minimum temperature at Kermanshah is 0.597 0C/decade 

and in Ahwaz is 0.911 0C/decade. Overall study concludes that the minimum temperature is 

generally rises at a higher rate as compared with maximum temperature. 

Jhajharia et al. (2012) worked on rainfall trend in North East India, highlighting shifts in the trend, 

using MK test. The Indian climate is primarily characterized by monsoon rainfall which generally 

occurs from June to September and fulfils a major part of the agricultural water needs. Patra et al. 

(2012) investigated the rainfall trends in 20th century using the parametric and non-parametric 

statistical trend analysis tests. The temporal variation in monthly, seasonal and annual rainfall was 

studied for the Orissa state using the data from 1871 to 2006. The results revealed a long term 

significant declining trend in annual and monsoon precipitation, while increasing trend in post-

monsoon season. Precipitation during winter and summer seasons showed an increasing trend. 

However, in these studies trend analysis was not performed to determine the shift in precipitation at 

annual and seasonal temporal scales. Further in different studies only trend analyses of isolated 

climatic parameters like, precipitation or temperature have been discussed with limited statistical 

trend detection tests. 

Shadmani et al. (2012) investigated the temporal trend of arid region of Iran using Mann-Kendall 

and Spearman’s Rho Tests. For the purpose of the study, 13 meteorological stations selected for the 

ET and the analysis have been carried out for the 41 year period. Trend detected on the basis of 

monthly, seasonal and annually for the duration. In the result, rising (positive) as well as decreasing 

(negative) trend have been found for some region but in the most of the region no trend found under 

the verified significance level. Some'e et al. (2012) studied the spatial temporal trends and change 

point of rainfall in Iran by employing the MK and Mann–Kendall rank statistic tests, respectively. 

In their study 28 synoptic station of Iran (1967–2006) were selected to determine spatial and 

temporal trends. They found that decreasing trends were larger in spring and winter precipitation as 

compared with other seasonal series. Their study found evident decrease in winter precipitation 

series along northern Iran and coasts of the Caspian Sea and during summer precipitation at Mashhad 
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and Torbateheydarieh stations, two significant positive trends were observed. Therefore in autumn 

precipitation, no significant positive or negative trends were detected by trend tests. 

Duhan et al. (2013) examined the climate variability and trends in annual and seasonal temperature 

variables over 45 stations of Madhya Pradesh, India. Results of the study imply that annual 

minimum, maximum and mean temperature significantly increased by 0.62°C, 0.60 °C and 0.60 °C 

in 102 years (19901-2002). Moreover maximum, minimum and mean temperature is high during 

more urbanization period than during less urbanized period which indicate ascending in 

temperatures with increment in urbanization.  

Sonali and Kumar (2013) analyzed trend of maximum and minimum temperature of annual, 

monthly, winter, pre- monsoon, monsoon and post-monsoon. The studies were carried out for three 

time slots 1901–2003, 1948–2003 and 1970–2003, for India as a whole and seven homogeneous 

regions of India. Authors assessed the trend applying MK test, Sen’s slope estimator and other non-

parametric methods. Shi et al. (2014) identified the precipitation concentration index (PCI) and the 

concentration index (CI) for measuring seasonality and daily heterogeneity using precipitation time 

series. Mann–Kendal test is used to measure the trends of PCI and CI. The linear correlation 

examines the rainiest day, which contributes the % of precipitation, CI and PCI. Results of this study 

shows increasing trend at most of the stations in CI and PCI indices but in PCI no trend is significant. 

The study concludes that the climate shift zone, the concentration of precipitation on a few rainy 

days is actually bulky in places with large amount annual precipitation. 

Adarsh and Janga Reddy (2015) investigated the rainfall trend for southern India using non-

parametric methods and wavelet transforms. Sequential Mann-Kendall test was applied to analyse 

the sequential changes in annual and seasonal trend. Rahmani et al. (2015) analyzed the daily 

precipitation of Kansas (USA) applying statistical methods and detected significant change points 

which were useful to manage the water resources system. Nam et al. (2015) showed that the climate 

variation has triggered spatial temporal changes in climatological components in North Korea. 

Statistically robust technique is used to define spatio-temporal outlines of precipitation and 

temperature in particular time phases. Thirty years period of data were collected from twenty seven 

gauge station used in the study. The results revealed that the maximum and minimum temperatures 

temporal trend were expressively unlike in the western farming areas and southwest urban areas 

during 1996 to 2010 compared with 1981 to 1995. However, in case of precipitation number of 
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events were expressively altered for portions of the northern and north-east regions. Overall in 

spatial and temporal scale significant transformations were non-uniform in each month and season.  

Numerous of studies have been carried out to investigate the trend in temperature and rainfall in 

India as well as in abroad, however the studies on trend analysis of other climatological variable 

(relative humidity, evapotranspiration and wind speed) are limited. Therefore, it was important to 

carry out the detailed analysis of changes in climatic variable and their impact on regional water 

requirement.  

2.3 ASSESMENT OF LAND USE LAND COVER  

The land use land cover (LULC) of an area is a result of natural and socioeconomic components and 

their utilization by man. Land is turning a scarce resource due to huge farming and demographic 

pressure. Hence, knowledge about land use land cover pattern and possibilities for their utilization 

is essential for the planning and execution of land use strategies to cope with raising needs for basic 

human demands and benefit. This information also helps in supervising the dynamics of land use 

resulting out of changing demands of increasing population. LULC change has become an important 

factor in present strategies for coping natural resources and supervising environmental changes.  

In last few decades the advancement in space technology and powerful computers, Remote Sensing 

(RS) and Geographic Information Systems (GIS) proved as excellent tools in the study of land use 

analysis. Satellite remote sensing data available are cost effective, reliable and timely. In the last 

decades the land use and land cover changes were detected by conventional surveying and mapping 

techniques. But these are very expensive and time consuming methods.  

In this section, literature review shows that different land use land cover mapping for watershed and 

basin level. However due to increasing human pressure in recent times land use and land cover 

changes are being significantly influenced by human activities. It is necessary to study changes in 

land use and land cover in a micro level for its effective management. Therefore, in this part the 

stress is given to review the LULC change detection studies and simulated LULC future prediction. 

2.3.1 Land Use Land Cover Mapping and Change Detection using Geospatial Tools 

Many studies were carried out to identify the change detection in LULC cover on the basis of 

remote sensing satellite data or imagery applying different classification methods.  
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Vitousek (1994) expressed that “three of the well-documented global changes are increasing 

concentrations of carbon dioxide in the atmosphere; alterations in the biochemistry of the global 

nitrogen cycle; and on-going land use and land cover change.” Globally nearly 1.2 million km² of 

forest and woodland and 5.6 million km² of grassland and pasture have been converted to other uses 

during the last three centuries.  

Ratanasermpong et al. (1995) investigated the natural resources evaluation of Phuket Island 

(Thailand) by coupling of visual and digital analysis of Landsat-TM data. Applying the method of 

overlaying, change in natural resources during 1987, 1990, 1992 and 1995 were assessed. Analysis 

revealed that during period of 8 years (1987-1995), 19% of the mangrove forest land has been 

dropped by urban expansion, on-shore mining, solid waste disposal and particularly coastal 

aquaculture called shrimp farming. The results of the study were found to be useful for natural 

resources management revolving on mangrove forest conservation and protection. 

Mendis and Wadigamangawa (1996) observed land use changes using  existing land use survey data 

of year 1983, satellite TM data of year 1992 and aerial photograph of year 1994 for Nilwala River 

Watershed in the Southern Province of Sri Lanka. TM image of band combination 3, 5, 7 was 

classified based on maximum likelihood classifier. The aim of this study was to determine the 

changes of LULC pattern due to execution of the Nilwala Ganga Flood Protection Scheme. Study 

revealed that paddy cultivation has been replaced by habitations and other plantations due to social 

economic development and topographic factors. Lwin et al. (1998) monitored forest degradation of 

lower part of Myanmar. Forest degradation have been extracted  from Landsat TM data sets of year 

1989 and 1995 and annual forest change by using AVHRR time series images (1989 to 1995).The 

satellite imageries of different sensors and spatial resolution were classified using clustering and 

supervised classification. Supervised classification uses spectral differences in classified image, 

topographic features, previous knowledge for identifying land use classes and selecting its training 

area for the maximum likelihood classifier. Changes in land cover between the two dates (i.e. 1989 

and 1995) were detected using post classification comparison algorithm. Based on detected 

deforestation changes, future deforestation risk area map was prepared. Deforestation risk map 

provided guidance or regulation against irrational use of forest resources. 

Wu et al. (2002) detected land use changes in an arid and semi-arid region North Ningxia, in 

Northwest China by utilizing the multi-temporal remotely sensed data (Landsat TM dated 1987, 
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1989 and ETM 1999). Indicator differencing technique utilizes seven bands information to transform 

into three indicators such as brightness, greenness and wetness. These three spectral properties of 

indicators have been used to observe the land use changes by visual comparison. Study revealed that 

farmland increased so as to increase agricultural output while urban extension was triggered by urban 

population growth. Rural built-up increase was attributed to agricultural output increase, food 

product increase, and rural labour force increase. Conversion of land to water-body has relation with 

agriculture output increase while conversion of water-body to land has relation with sown area 

increase. Hietel et al. (2004) described the major spatial-temporal processes of land-cover changes 

and identified the correlations between environmental attributes and land cover changes in a German 

marginal rural landscape. The role of potential environmental drivers to cause land-cover changes 

also has been identified. Land cover dynamics from 1945 to 1998 was correlated with the physical 

attributes (elevation, slope, aspect, available water capacity and soil texture) of the underlying 

landscape. Kucukmehmetoglu and Geymen (2006) analyzed the land use changes in water resources 

basins using Landsat images of year 1990 to 2005. The GIS was used for assessing the water 

resources of Istanbul city at spatial scale. The urbanization impact on water resources in Istanbul 

city was studied. While classifying the satellite images, the emphasis was given to built-up area and 

changes of respective built up areas were analyzed. This study not considered the inter–relationship 

between land use changes, precipitation and temperature of urban region to assess the water 

resources in changing climate scenario. 

Chen et al. (2006) discussed the effect of LULC change (1990-2000) on the land surface temperature 

(LST) using Landsat TM/ETM+ satellite data of Zhujiang Delta. The remote sensing and GIS 

technique used to assess the LST at spatial and temporal scale with the different LULC classes. The 

results revealed that strong and uneven urban growth cause LST to raise 4.56°C in the newly 

urbanized part of study areas. The LULC change on land surface temperature was assessed. The 

spatial and temporal behaviours of precipitation and ET along with LST with various LULC classes 

were not studied in the urban catchment. Stathopoulou and Cartalis (2007) had used the Landsat 7 

ETM+ thermal band data to identify the hottest surface within the urban settings and correlated with 

urban surface characteristics in major cities of Greece. The Corine land cover (CLC) data base was 

also used to define links between surface emissivity, land surface temperature and urban surface 

characteristics.  
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Matouq et al. (2008) had presented a case study of the impact of global warming on the 

meteorological parameters like rainfall, temperature and relative humidity with the help of GIS. The 

result showed no changes in rainfall but, annual average temperature increases rapidly about 1.5-

2°C since 1990 at Jordon. The future scenario of climate change has not considered in this study. 

The effect of global warming was assessed without considering the LULC change and, water 

resources were also not considered. Schilling et al. (2008) had quantified the impact on LULC cover 

change on the water balance of large agriculture watershed using the SWAT model. It was found 

that the future LULC will affect the seasonal and annual water balance of the watershed. The effects 

of LULC change were not quantified on evapotranspiration (ET)/precipitation (P) and 

evapotranspiration (ET)/temperature (T) for historical and future events. The impact of LULC 

change on water balance of agricultural watershed was studied without considering climate change 

scenario. Raj and Fleming (2008) have estimated the surface temperature using the landsat ETM+ 

satellite imagery for a part of Baspa basin, north-west Himalaya, India. The Top of atmospheric 

(TOA) radiance was extracted from the digital (DN) values and then surface radiance was estimated 

from TOA using reference channel emissivity method. The good correlation was found between the 

surface temperatures from surface radiance and the observed surface temperature. The emissivity of 

study area was assumed constant (0.97, the emissivity of glacier ice). The surface temperature was 

estimated without assessing the climate change due to LULC change and, the impact on water 

resources was not studied. 

Prakasam et al. (2010) detected the LULC changes in Kodaikanal, Western Ghats (Tamilnadu), India 

for noticing changes during the time period of 1969 to 2008 (40 years) by using Landsat satellite 

data and performing supervised classification techniques. 

Setiawan and Yoshino (2012) used remote sensing data and geospatial tools to detect and classifying 

changes on the land use. This study indicates the temporal vegetation changes and complexity during 

the time applying the hypothesis that land cover might be dynamics. Moreover pixels represent a 

change when the inter-annual temporal dynamics is altered. They examined the dynamics pattern of 

long-term satellite data of wavelet-filtered MODIS EVI from 2001 to 2007. The change of temporal 

natural vegetation dynamics was found by differentiating distance between two successive annual 

EVI patterns. Moreover, it was determined the type of changes applying the clustering method, 

which were then verified by ground check points and secondary data sets. Mohanty et al. (2015) 

analysed the land use and land cover changes in the coastal area of Odisha state over a period of 
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twenty four years (1990-2014) by using remotely sensed LANDSAT satellite data for the years 1990, 

1999 and 2014 and studied the different classifications of land use and land covers like built up area, 

agricultural land, forest area, water bodies for creating GIS database and concluded that industrial 

growth and built up area had increased while a decrease in forest area was observed due to the 

constructional activities. 

Khare et al. (2015) investigated the hydrological response of a river basin, Narmada, Madhya 

Pradesh, India under dynamics of LULC change. The water yield are normally altering due to 

decrease of initial abstraction that influence and enhances the runoff volume. However, it is essential 

to measure the changes in the water availability of basin that occur due to changes in LULC. The 

study was based on a physically based conceptual model, Soil Conservation Service Curve Number 

(SCS-CN) that acquired to find the surface runoff. The study includes the formulation of a LULC 

map of various years using satellite imageries, and drainage network, and preparation of a database 

by applying GIS. 

2.3.2 Land Use Land Cover Future Prediction applying various Approach 

Several empirical models were developed to predict the land use and land cover (LULC) conversion 

process. In the recent past, transition probability models and Markov model have been extensively 

used for analysis and stochastic modelling of LULC changes and prediction. These tools were used 

in several case studies to explain changes in LULC conversion under constraints. 

There are several empirical models help to build the system’s dynamic models; the necessary 

characteristic being the employ of direct observations of spatial processes. In general, modellers 

used linear statistical models, such as logistic regression and non-linear approaches, like artificial 

neural networks, because the relationships between the predictor variables and LULC change are 

not always linear (Li et al. 2015; Sayasane et al. 2016; Shalaby and Tateishi 2007; Srivastava et al. 

2012). Moreover various model are developed in last decade to predict the LULC on the basis of 

past satellite imagery by the many researchers (Abd El-Kawy et al. 2011; de Noblet-Ducoudré et al. 

2012; Gamon et al. 2013; Ghosh et al. 2014; Li et al. 2015; Meshesha et al. 2016; Mondal and 

Mujumdar 2012; Niraula et al. 2015; O’Brien et al. 2004; Olofsson et al. 2013; Pervez and Henebry 

2014; Shalaby and Tateishi 2007; Wu et al. 2006).  

Pijanowski et al. (2002) used artificial neural networks (ANN) to project the LULC change.  An 

acceptable relationship between settlement expansion and independent variables were obtained by 
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neural net training. Similar tools were also used in the study. Agrawal (2001) investigated that 

lacking of fundamental resources is the main force to drive the LULC change. This leads to enhance 

in the pressure of production on resources, and provide the changing opportunities created outside 

policy intervention, departure of adaptive capacity and enhanced vulnerability and alters in social 

organization. Pontius et al. (2001) simulated the spatial pattern of land use change for Costa Rica 

using GEOMOD 2 model. GEOMOD is a LULCC model designed to simulate a one-way transition 

from one category to one other category (Pontius et al., 2001; Pontius and Malanson 2005; Pontius 

and Spencer 2005). The model quantities factors associated with land use, and simulate the spatial 

pattern of land use forward and backward in time. Schneider and Pontius Jr. (2001) modeled the 

land use change in the Ipswich watershed, Massachusetts, USA using logistic regression, multi-

criteria analysis and spatial filters. 

Verburg et al. (2004) employed dynamic Cellular Automata (CA) model consisting of three spatial 

levels. At the country level, the model integrate the national wide economic and demographic statics, 

and disperses them at the regional scale. The regional level employs a dynamic spatial interaction 

model to evaluate the count of habitants and issue of problems over forty regions, and then continues 

to model the land use requirements. Allotment of the land use requirements on the 500 meter grid is 

fixed by a weighted sum of the maps of zoning, suitability, accessibility, and neighborhood potential. 

Koomen et al. (2005) used a GIS based model, Land Use Scanner (LUS) which employs logit model 

and technical opinion to simulate succeeding land use patterns. The anticipated amounts of 

interchanges are established on a linear extrapolation of the national trend in land use statistics from 

two time data. The regional demand for each land use is allocated to individual pixels based on 

suitability. Suitability maps are generated for all different land uses based on physical properties, 

operative policies, relations to nearby land use functions, and expert judgment.  

Verburg (2006) developed CLUE-S (2005), which is a basically revised version of the model named 

as Conversion of Land Use and its Effects (CLUE 1996). CLUE-S (2005) is a spatially-explicit, 

multi-scale model that projects land use change. CLUE (1996) is the predecessor of CLUE-S, so the 

two models contribution many common philosophical methodology and computational 

characteristics. The CLUE model structure is based on organizations theory to provide the integrated 

analysis of land use change in relation to socio-economic and biophysical driving components. 
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Clark Labs (2006) developed the Land Change Modeler (LCM) for ecological sustainability. LCM 

is a software solution designed to address the problem of accelerated land conversion and the specific 

analytical needs of biodiversity conservation. It provides tools for the assessment and projection of 

land cover change, and the implications for species habitat and biodiversity. 

Konstantinos et al. (2009) developed MABEL model which utilizes sequential decision-making 

process simulations for base agents in multi-agent based economic landscape. The sequential 

decision-making process reported that data-driven Markov-Decision Problem (MDP) coupled with 

stochastic properties. Utility acquisition attributes in our model are generated for each time step of 

the simulation. Mubea K W et al. (2010) reported that LULC change is one of the major global 

environmental issue and simulating the changes is crucial to assess the environmental impacts. In 

this study, stochastic modelling tools such as Markov Model were employed projecting the LULC 

changes. The results suggest that there has been a noteworthy and uneven settlement development, 

result of significant loss in natural vegetation. Moreover the study shows that using the satellite 

based remote sensing imaginary data and geospatial tool GIS can be an effective approach for 

examining LULC change with reference to the space and time.  

Mondal et al. (2013) employed the Cellular Automata (CA) and Markov model to simulate the 

LULC changes in the Brahmaputra River basin utilizing LULC maps derived from multi-temporal 

satellite images. Moreover likelihood map was used for basin information to likely spatial procedure 

in CA Markov model. The simulated quantity and location alteration have been examined and 

statistically measured. The validation statistics suggested the good comparison map agreed and 

disagreed with the reference map. Simulated results precision is marginally higher when compare to 

others studies of LULC change using CA Markov tools. 

Nouri J. et al. (2014) employed a CA–Markov model as one of the planning support tools for analysis 

of temporal changes and spatial distribution of urban land uses in Anzali, located in Gilan province 

in the northwest of Iran. In the first step, area changes and spatial distribution of land uses in the 

town were analyzed and calculated using geographic information systems technology for a time span 

1989–2011. In the next step, using the transition matrix, the spatial distribution of urban land uses 

in 2021 was simulated, the changes were predicted and the possible growth patterns were identified 

as well. The results showed a declining trend of 10.64 % in forest, 8.52 % in Anzali wetland and 

11.54 % in barren land during 1989–2011, and also an increasing trend of 7.1 % in urban areas for 
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a time span 1989–2021. Major expansions in urban areas were witnessed around western and eastern 

borders of the city, particularly close to the eastern border. Scattered expansions were also predicted 

in the Anzali wetlands registered in the Ramsar Convention (southern borders). This study provides 

an opportunity to define and apply better strategies for environmental management of land use to 

make an optimized balance between urban development and ecological protection of environmental 

resources. 

Within reviewed models, no single model was available, which can fulfil all needs of LULC change 

analyst community. Each and every model has some merits and demerits. Some models technical 

limitations (i.e., spatial interaction, temporal complexity etc.), some models considered limited 

human decision making or socio-economic factors, some model considered limited biophysical 

factors. It is also observed that one single model cannot be sufficient for LULC modeling that is 

suitable worldwide. It is due to regional variation of human dimension and biophysical factors. Much 

modelling work remains to be done to understand LULC changes. LULC modelling for developing 

regions with considering regional factorial specification requires to be developed in future.  

2.4 CLIMATE MODELS AND OUTPUT ASSESMENT 

In the recent past many researcher from several research community around the world have 

concluded, based on an analysis of thousands of studies, that most of the aspect of life on Earth has 

been affected by global warming. The assessment of climate change impacts on hydrology and water 

resources availability are normally evaluated by deriving the scenarios. Moreover these scenarios 

based on emission of greenhouse gases scenarios (GHGs) for changes in climatic inputs to a 

hydrological model, these scenarios of the future emissions of greenhouse gases as an input for their 

calculations. Emission scenarios are developed based on socio-economic projections for the world. 

Moreover climate models output at different emission scenarios required to assess and predict the 

future water availably. 

2.4.1 Global and Regional Climate Models  

Climate is already changing, and quite rapidly. With rare unanimity, the scientific community warns 

of more abrupt and greater change in the future. To assess the futuristic projection and impact 

scientific community and research institute develop the mathematical model named Global climate 

model (GCM). 
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Global climate models (GCMs) represent the coupling of atmosphere, oceans, sea ice and land 

surface and have substantial potential for assessment of climate change. GCMs are the models for 

evaluation of climate change based on emission of greenhouse gas concentration. GCMs grids data 

are available at coarse resolution so it is not able to predict reliably the most crucial features at local 

and regional impact analyses. Moreover, various climate change prediction models are available for 

the assessment and modelling of the climate change. The greenhouse effects are included in all of 

these models, which are based on physical laws, phenomenon of atmospheric and oceanic effect 

(WMO report survey). GCM is the global climate model, RCM the regional climate model, MHM 

the macro scale land-surface hydrological model, MWB the macro scale water balance model and 

CHM the catchment scale hydrological model (Xu and Singh, 2004). These models are useful to 

assess, model and simulate the future climate change scenarios either at global or regional level.  

In order to analyse local and regional climate impact study, it is required to downscale the GCM 

data at coarser resolution to finer resolution. To solve this problem two downscaling techniques viz., 

dynamic and statistical downscaling have been proposed.Transforming coarser scale information to 

finer scale and making it available is downscaling. Therefore, downscaling methods available in the 

literature varies from the very simple rule based method to complex modelling of the spatial 

dynamics downscaling. In general, the downscaling techniques can be classified in dynamic 

downscaling and statistical downscaling. Both techniques are complementary and have own 

weakness and strength. 

Dynamic downscaling or regional climate modeling (RCM) is the methodology to scale the coarser 

GCM data grid in to local data grid at finer resolution by applying the complex algorithms. Dynamic 

downscaling can be further subdivided into one-way nesting and two-way nesting (Anandhi et al., 

2008). RCMs represent the tropical cyclones, extreme events, etc. and very useful in study on 

regional climate change. 

Statistical downscaling techniques based on the development of statistical (linear or nonlinear) 

relationship between regional scale climate variables and local hydrologic variable. In order to 

calibrate the statistical downscaling model, observed or reanalysis climate data required. There are 

many advantage of statistical downscaling methodologies over dynamical downscaling approaches 

such as low cost, rapid assessments of regional climate change impacts. Statistical downscaling is 

the process of empirical relationship that transform large scale features of GCM (predictors) to 
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regional scale climate variable (predicted). Regression statistical model is the most popular model 

among the other statistical downscaling methods which are employed to directly estimate a linear 

and nonlinear relationship between the predictor and predicted. 

It is now widely conceived that climate change will have impacts on water resources availability and 

management across the Globe. The agriculture, urban sector and hydropower production are the 

major sectors which are affected by climate change (IPCC, 2013).  

According to Wilby (2008) the uncertainty is related to downscaling method, global climate model 

(GCM) structure and climate change scenario (which is associated with future civilization). With 

this point of view, few recent studies have been attempted to address the above mentioned 

uncertainties. McAlpine et al. (2007) reported impact of regional climate change on vegetative cover. 

They found major changes in regional climate, with a shift from humid and cooler condition to 

warmer and drier conditions, particularly in southeast Australia. These changes in Australia’s 

regional climate advocated that land cover change is probably a contribution factor to the observed 

trends in temperature and rainfall at the regional scale. Kay et al. (2009) studied the impact of climate 

change impact on flood frequency for two river basins in England. Authors used four scenarios 

(A1F1, B2, B1 and A2) of five GCMs to estimate GCM uncertainty using delta change downscaling 

approach. They reported that the majority of the uncertainty is due to climate modelling, i.e. selection 

of GCM and RCM structures. Other research studies have also investigated the different 

arrangement of above stated sources of uncertainty, the work by Wilby and Harris (2006) examined 

the climate change based on the comparison of two physically based models and one conceptual 

model. They reported that the differences in model structure complexities can play an important role 

in the assessment of model outcome. Finally, Poulin et al. (2011) presented the consequences of 

model structure and parameter equifinality associated to hydrological modelling in climate change 

impact studies. This study imply that the impact of hydrological modelling in climate change impact 

studies. This study reveals the impact of hydrological model structure uncertainty is more important 

than the effect of parameter uncertainty, under past and recent climate as well as future climate 

change scenario.  

To explore the climate change modelling and use of General Climate Models (GCMs) with different 

downscaling methods the following research have been discussed. 
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Loaiciga et al. (1996) have studied the basic process of the hydrological cycle and examined the 

current predictive capability of GCM that simulate the regional and local hydrologic regime under 

global warming. This study suggests that GCM is used for large scale. The climate change effect on 

meteorological parameters using Canadian Climate Centre General Circulation Model (CCCGCM) 

and University of British Columbia (UBC) watershed model for two hydro-meteorologically 

different watersheds were studied by Loukas and Quick (1996). Other meteorological variables (like 

cloud cover, albedo, wind speed, evaporation etc.) were also considered along with precipitation and 

temperature in hydrologic model to the study climate change. Kondratyev et al. (1998) have 

reviewed the some of the priority areas in the context of global climate change in Japan. Authors 

discussed global climate change with special emphasis on the global energy and water cycles. The 

author suggested that considerations of process, which are overcoming the current uncertainties of 

numerical climate models, climate prediction and modelling. 

Matondo and Msibi (2001) had presented a case study of assessment of water resources and 

hydrology under the changing climate in Swaziland at country level. The WatBall hydrologic model 

and General circulation model (GCM) were used to assess the water resources i.e. streamflow and 

found that WatBall model is suitable for assessing the climate change impact on water resources. 

First the climatic parameters were derived from selected GCMs (i.e. precipitation, temperature and 

potential evapotranspiration). Streamflow was predicted from WatBall model using GCMs output 

for the year 2075 under changing climate scenario. Also, streamflow was predicted considering the 

effects of population increase and agricultural activities on water resources under climate change. 

The various adaptations strategies were suggested to cope with climate change. This study did not 

considered the combined effects of population increase, expanded high growth of industries, 

commercial activities and land use change on water availability. This study assesses water resources 

on country level, which could not represent the true picture of climate change at local level. 

Xu et al. (2005) reviewed the different existing techniques for assessing the water availability in 

changing climate. Climate change impact on hydrological regimes were identified both for process 

research for water and catchment management strategies. It was concluded that climate change 

related studies includes: 1) Use of GCMs data to provide future climate scenarios under different 

GHG emission, 2) Use of downscaling techniques (both dynamic downscaling method and statistical 

methods) to downscale the GCM output to the local scales  for hydrological models, and 3) Use of 

hydrologic models to simulate the effects of climate change . The authors suggested that climate 
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change models should represent the land-surface process in the prediction of future climate change. 

They also found that results should be simulated at local sites or region using RCMs. Caramelo 

(2007) analyzed the spatial and temporal behavior of winter precipitation using principle component 

analysis (PCA). The monthly observed data from 34 weather stations and a subset of daily 

precipitation used. The first three PCs represents winter precipitation pattern clearly. So, the data of 

these three stations were further analyzed. The precipitation variability was assessed using PCA for 

winter precipitation. It is necessary to analyze the variability of precipitation across all the seasons 

and same analysis can be extended to other climatological variables to understand the spatial and 

temporal patterns. 

Ojha et al. (2010) formulated the downscaling model by using the Linear Multiple Regression 

(LMR) and Artificial Neural Networks (ANN) methods to downscale the GCM precipitation for 

Pichola lake area in Rajasthan, India. Predictor variables data are taken out from; NCEP (National 

Centers for Environmental Prediction) reanalysis dataset, 1948-2000 years, and replications from 

CGCM3 (Canadian Coupled Global Climate Model, third-generation) for scenarios A2, B1, A1B 

and COMMIT for 2001-2100 years. In this study the cross-correlations are utilized to check the 

consistency of the GCM predictor variables. Downscaling outcome demonstrate that precipitation is 

expected to rise in future for A2 and A1B situations, while, it is minimum for COMMIT and B1 

scenarios. Ghosh et al. (2010) reported that at local and regional scale hydrological parameter can 

be downscaled by using GCM (General Circulation Model) outputs. In this study SVM (Support 

Vector Machine) technique is used to downscaled the predictor variable and also develop the best 

relationship between predictor and predictand variable. During calibration and validation process in 

SVM model the values of certain parameters is need to be fix, for this purpose PGSL (Probabilistic 

Global Search Algorithm) technique, is used to give the optimum output. By this the obtained 

relationship between large scale predictor variables and local scale predictand variables is used to 

calculate the climate scenarios for multiple GCMs. This multiple GCMs provides the uncertainty 

condition and those outcome has to be further modified by averaging method. Overall, the 

performance of the model is evaluated by comparing the earlier developed SVM based downscaling 

models. 

Yang et al. (2012) evidence the potentiality in downscaling extreme precipitation, evaporation and 

temperature in South China using, SDSM (statistical downscaling method). They downscaled the 

large scale GCM output to regional scale in direction to inquire the spatial temporal changes in 
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extreme precipitation, evaporation and temperature over the Dongjiang river basin for the period of 

2010 to 2099 under H3A2 and H3B2 radiation scenarios. The consequences for downscaling 

extreme temperature events would be more substantial during the period of 2010 to 2099 for both 

scenarios. Yet, the projections of change in extremes precipitation and pan evaporation were not 

coherent. Therefore the performance evaluation of the SDSM shows the good result in case of 

extreme temperature and evaporation while in case of extreme precipitation model perform not as 

much of satisfactory. 

Hassan and Harun (2012) applied SDSM (Statistical Downscaling Model) to downscale 

precipitation from the GCMs into a fine scale. Single gauge station data of Kurau River located in 

Malaysia are used as input in SDSM model. The study evidence that SDSM model has the ability to 

perform well during calibration and validation process. For future (2010-2099), models determine 

that there is rise in sum of mean annual precipitation and the study area become drizzlier. Duhan 

and Pandey (2014) studied three downscaling methods least square support vector machine (LS-

SVM), artificial neural network (ANN) and multiple linear regression (MLR) to formulate the 

downscaling model for the future projections of average minimum and maximum air temperature 

for central region of India. The A2 emission scenario from CGCM3 (Canadian Coupled Global 

Climate Model) is used in this study during the period 2001 to 2100. Reason being, to evaluate 

Statistical performance of MLR, ANN and LS-SVM models to downscale the future temperature. 

This study revealed the calibration and verification outcome of the models are good, but the 

performance of LS-SVM is outstanding as compare to MLR and AAN model. 

2.4.2 Climate Model Selection 

Evaluation of future projection of climate change impact is very important for human and natural 

system. For future projection of climatic variables at different scenarios climate models has been 

introduced (Meehl et al. 2007). Climate models are based on numerical and physical principles 

which are capable to reproduce the present and future climatic parameters. They provide reasonable 

confidence in producing future climatic condition by using the numerically coupled Atmospheric 

Ocean General Circulation Model (AOGCM) (Moss et al. 2010; Su et al. 2012). 

For impact studies, climate models output being used. Impact of climate change on climatic variables 

has been assessed by many researchers (Camici et al. 2014; Chen et al. 2012; Haddeland et al. 2014; 

Miao et al. 2014; Mondal et al. 2014; Niraula et al. 2015; Zhu 2013). For true impact studies of 
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climate change, it is necessary to evaluate the model with observed datasets, and model output 

should perform close to the observed data. The study based on GCM climatic variables has been 

examined for future projection for 2046-2065 and 2081-2100 time slice. Model results for 

Malaprabha catchment, India indicated that there is no significant changes in rainfall for the future 

(Mehrotra et al. 2013). Climate impact on agriculture and crop production can also be carried out 

using GCM output (Mall et al. 2006).  

Several studies have been carried out to inter-comparison the model output with observation 

(Anandhi and Nanjundiah 2015; Diro et al. 2009; Errasti et al. 2011; Evan et al. 2012; Fu et al. 2013; 

KS and D 2014; Perkins et al. 2007).The output of GCMs are very uncertain so it is required to 

compare with the past data and apply bias correction (Ojha et al. 2012). The performance of 10 GCM 

models for simulating the summer monsoon rainfall variation over the Asian-western pacific region 

assessed by Kang et al. 2002. Johnson and Sharma (2009) used variable convergence score (VCS) 

methodology which is based on the coefficient of variation. The authors used this methodology to 

evaluate the eight different variables from nine GCM output for two emission scenario for Australia. 

This skill score methodology can be used to evaluate for any GCM at any region. Radić and Clarke 

(2011) evaluated 22 GCMs for North America using several statistical parameters. Evaluation has 

been carried out by comparing the model output with reanalysis data for period 1980-99. Frei et al. 

(2003) investigated daily precipitation simulation has been done for European Alpsused by using 5 

regional climate model. Model evaluation using the climatic statistics is important than mean values. 

There are number of recent studies are using climatic indices and the probability density function 

(PDF) for examine the best model (Anandhi and Nanjundiah 2015; Frei et al. 2003; McMahon et al. 

2015; Ojha et al. 2013; Parth Sarthi et al. 2015; Perkins et al. 2007; Radić and Clarke 2011). Perkins 

et al. (2007) has been carried model evaluation for 12 region of Australia using Probability density 

function (PDFs). Evaluation of model on study area have been performed considering daily 

simulation data of maximum temperature, minimum temperature and precipitation. There are many 

approaches to compare the simulated or model output with observe values or reanalysis values. Teng 

et al. (2012) analyzed the datasets from 10 GCM for Australia. After bias correction, data were used 

for runoff evaluation using hydrological model. A very popular model Taylor diagram has been used 

for several studies which based on the correlation coefficient, root mean square error (RMSE) and 

variance ratio to compare the model output with observed values (Lin et al.2014). Fennessy et al. 

(1994) conducted the sensitivity experiment of the observed seasonal Indian Monsoon with the GCM 
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model output considering the changes in vegetation, soil moisture and cloudiness. For the evaluation 

of 10 atmospheric variables over India VCS method used by Ojha (2013). VCS curve generated for 

quantify the variable performance for different GCMs (Ojha et al. 2013). Das et al. (2012) 

investigated about six common models from Intergovernmental Panel on Climate Change (IPCC), 

Second, Third and Fourth Assessment Report - SAR, TAR and AR4 respectively. These models 

have been considered for the performance evaluation of model for Gangetic West Bengal region of 

east India. In the results, it has been found that MICRO, Japanese model is the best model for the 

region. GCM ranking of India region carried out using multicriteria analysis by KS Raju et al. 

(2014). The authors used the 5 performance indicator for evaluation of eleven GCMs. The study 

carried at 73 grid points of 2.5 x2.5 resolution covering whole India. The entropy method used for 

weight the performance indicator, and for removing the systematic bias, nested bias correction has 

been used (KS Raju and D Nagesh 2014). 

In this study, Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report (AR4) 

of global climate model output datasets are evaluated using RMSE and skill score for the Indian 

region considering six climatic variables. Ranking of model has been carried out for each climatic 

variables using Akaike Information Criteria (AIC) and combined ranking using Multi-criteria 

Analysis (MCA) method. This study has been carried for monsoon (June to October), non-monsoon 

(January to May, November, December) and annual (January to December) basis. The Indian 

monsoon season has a large socioeconomic impact on the development of the country. Variation in 

monsoon rainfall affect the flood, drought, agriculture and economy of the country. There are several 

factors viz. Indian Ocean Dipole (IOD), El Ni˜no-Southern Oscillation (ENSO), and sea-surface 

temperature (SST) responsible for the interannual variation in Indian monsoon (Srinivas et al. 2013). 

2.4.3 Bias correction on climate model outputs 

The GCMs are used for the projections of future climate change caused by natural variability or 

anthropogenic activities (IPCC, 2007). Despite continuous efforts to improve GCM’s capability of 

simulating historical climates, the use of bias correction methods is essential for the impact 

assessment studies of climate change for more improved projections. The significance of bias 

correction methods has been described in the special report of IPCC (Senevirantne et al. 2012). In 

estimating probable hydrologic impacts of climate change (Arnell et al., 2004; Oki and Kanae, 

2006), a suitable bias correction has been applied to projected temperature and precipitation for error 
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free estimation of projections. Dettinger et al. (2004) carried out the climate change impact 

assessment study in the Sierra Nevada of California to study the climate change impact on river flow 

by using bias-corrected on GCM projected temperature and precipitation data. Lehner et al. (2006) 

also predicted the risk of flood and drought due to climate change by applying a hydrologic model 

embedded with the bias- corrected atmospheric data. In addition, bias correction has also been 

applied to the Regional Climate Model (RCM) simulations such as the studies conducted in four 

basins of the United States (Hay et al., 2002) and Ireland (Steele-Dunne et al., 2008).  

Number of bias correction methods have been used to improve the regional climate downscaling 

simulation. Wu and Lynch (2000) examined the impact of climate change on seasonal carbon cycle 

in Alaska through a dynamical downscaling approach in which they constructed the linear bias 

correction (LBC) of an RCM by adding projected changes of temperature and specific humidity in 

a GCM simulation to reanalysis climate. A similar technique has been applied by Sato et al. (2007) 

to examine the effect of global warming on regional rainfall over Mongolia. The bias correction has 

also been applied to correct the projected wind speed temperature, geo potential height, specific 

humidity, and sea surface temperature. The results reveal that the rainfall intensity predicted with 

new method has been closer to observations than the traditional method. The bias correction 

approach is used to eliminate the biases from the daily time series of downscaled data (Salzmann et 

al., 2007). Patricola and Cook (2010) also employed a similar method as applied by Sato et al., 

(2007). The climatological LBCs in above mentioned studies maintain deviations on the seasonal 

time scales but eliminate the diurnal and synoptic effects. Holland et al. (2010) proposed a complex 

bias correction method for hurricane simulation. The bias correction developed by Holland et al. 

(2010) maintained the diurnal, synoptic effect and the inter-annual variation in the LBC by 

correcting GCM climatological mean bias with six hourly, National center for Atmospheric research 

(NCAR) reanalysis data and GCM output. They recommended that the dynamical downscaling 

prediction with GCM bias correction can generate realistic tropical cyclone frequency because the 

bias correction reduced the impracticable high vertical wind shear over the tropical Atlantic. Jin et 

al. (2011) proposed a statistical regression model between GCM and reanalysis data to reduce the 

GCM climatological bias, and the bias corrected GCM output data have been used to force an RCM 

to predict winter precipitation over the western United States. 

Several studies are carried out worldwide to determine the changes in mainly temperature and 

rainfall and also other climatic parameters its connection with climate change.  
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2.5 CLIMATE AND LAND USE LAND COVER CHANGE IMPACT ASSESSMENT  

2.5.1 Hydrological Models 

Hydrological models are the tools which provide the understanding of active interactions between 

climatic parameters and land-surface hydrology. Moreover, available water and atmospheric 

temperature affect the hydrological cycle and water budget components. Thus, it is important to 

select the suitable hydrological model to assess the dynamic interaction between climatic parameters 

and surface hydrology. It is also help in assessing the climate change impact on regional water 

availability and cropland productivity. Various models were developed to estimate the peak flow of 

the design of several hydraulic structures, irrigation and drainage system (Table 2.1). 

Table 2.1: Description about various hydrological model and their characteristics 

Model Name Characteristics/Features 

 

Publications 

 

Stanford watershed Model 

(SWM)/Hydrologic Simulation 

Package-Fortran IV (HSPF) 

Continuous, dynamic event or 

steady-state simulator of hydrologic 

and hydraulic and water quality 

processes 

(Crawford and Linsley, 

1966; Donigan et al. 1984; 

Laroche et al. 1996; Saleh 

and Du, 2004) 

Catchment Model (CM) Lumped, event-based runoff model 

(Dawdy et al. 1965; 

Kuczera and Parent 1998; 

Van Griensven et al. 2006) 

Antecedent Precipitation Index 

(API) Model 
Lumped, river flow forecast model 

(Fedora and Beschta, 1989; 

Kralisch et al. 2005; Sittner 

et al. 1969) 

Tank Model 

Process-oriented, semi-distributed 

or lumped continuous simulation 

model 

(Lee and Singh,1999; Lee 

and Singh, 2005; 

Sugawara,1979; Sugawara, 

1995) 

Hydrologic Engineering 

Center—Hydrologic Modeling 

System (HEC-HMS) 

Physically-based, semi distributed, 

event-based, runoff model 

Streamflow Synthesis and 

Reservoir regulation (SSARR) 

(Anderson et al. 2000; 

Feldman, 1994; Feldman, 

2000; Scharffenberg et al. 

2003) 

Storm Water Management 

Model (SWMM) 

Process-oriented, semi-distributed, 

continuous stormflow model 

(Huber et al., 1988; 

Rossman, 2010; Tsihrintzis 

and Hamid, 1998) 



34 

 

Hydrological Simulation 

(HBV) Model 

Process-oriented, lumped, 

continuous streamflow simulation 

model 

(Lindström et al. 1997; 

Seibert 1997; Uhlenbrook 

et al. 1999) 

Chemicals, Runoff, and 

Erosion from Agricultural 

Management Systems 

(CREAMS) 

Process-oriented, lumped 

parameter, agricultural runoff and 

water quality model 

(Cooper et al. 1992; Knisel 

1980; Williams and Nicks, 

1981; Wu et al. 1993) 

Physically Based Runoff 

Production 

Model (TOPMODEL) 

Physically based, distributed, 

continuous hydrologic simulation 

model 

(Beven et al. 1997; Beven 

and Freer, 2001; Quinn et 

al. 1995; Saulnier et al. 

1997; Wolock and 

McCabe, 1995) 

Generalized River Modeling 

Package—Systeme 

Hydroloque Europeen (MIKE-

SHE) 

Physically based, distributed, 

continuous hydrologic and 

hydraulic simulation mode 

(Graham and Butts, 2005; 

Im et al. 2009; Sahoo et al. 

2006; Singh et al. 1999; 

Thompson et al. 2004) 

Waterloo Flood System 

(WATFLOOD) 

Process-oriented, semidistributed 

continuous flow simulation model 

(Cranmer et al. 2001; 

Kouwen and Mousavi, 

2002; Soulis et al. 2000) 

Rainfall-Runoff (R-R) Model 

Semi-distributed, process-oriented, 

continuous streamflow simulation 

model 

(Duan et al. 1992; 

Kokkonen, 2003; 

Sorooshian and Gupta, 

1983) 

Integrated Hydro-

meteorological Forecasting 

System (IHFS) 

Process-oriented, distributed, 

rainfall and flow forecasting 

system 

(Georgakakos 1987; 

Georgakakos and 

Foufoula-Georgiou, 1991; 

Georgakakos et al. 1988) 

Soil and Water Assessment 

Tool (SWAT) 

Distributed, conceptual, continuous 

simulation model 

(Arnold and Allen, 1996; 

Arnold et al. 1998; Neitsch 

et al. 2011) 

2.5.2 Impact Assessment on Water Availability employing SWAT   

Several hydrological models utilized for the computation of water availability and water deficits 

for present and future scenarios. In general, hydrological models represent the dynamic cycle of 

water balance components (precipitation, evapotranspiration, surface water, ground water recharge 

percolation and water utilizes by vegetation). 

Jha (2004) examined the climate change impact on discharge using RCMs output in the Upper 

Mississippi River Basin. A hydrological model, Soil and Water Assessment Tools (SWAT) model 
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was calibrated and validated against measured discharge utilizing observed climate data from the 

U.S. Environmental Protection Agency Better Assessment Science Integrating Point and Nonpoint 

Sources (BASINS) geographic information systems. Model outputs were evaluated based on annual 

scale considering the observed climate series as the lateral boundary condition in RCM. Impacts of 

climate change on water availability and other hydrologic components were evaluated by driving 

SWAT with current and future scenario climates. Results indicated that 21% increase in future 

precipitation simulated by the RCM produced 18%, 51%, 43% and 50% increase in snowfall, surface 

runoff, groundwater recharge and net water yield, respectively in the Upper Mississippi River Basin.  

Matondo et al. (2004) expected the increase greenhouse gas effect which raise the temperature by 1-

3.5oC, resulting change in precipitation by ±20%. The impact of anticipated global warming will 

strike nearly all the sectors of the human endeavour. However, this study was to evaluate the impact 

of climate change on water resources availability for Swaziland. The computation of the impact of 

climate change on hydrology and water resources in Swaziland were implemented in three 

watersheds namely: Mbuluzi, Komati and Ngwavuma. The gaps in discharge data has been filled 

applying rainfall-runoff modelling technique. MAGICC-model applied to simulate the climate 

parameters for Swaziland given the baseline scenarios. Moreover three GCMs were used to project 

the temperature and precipitation changes for Swaziland for year 2075. Model was calibrated and 

results indicate that there is an annual streamflow change of ±5% in the Komati watershed and ±2% 

in the Mbuluzi watershed given climate change scenarios. Projected results indicate a negative 

annual streamflow change ranging from 4% to 23% in the Ngwavuma watershed under climate 

change scenarios. 

Dibike and Coulibaly (2005) noted that global warming have significant impact on local and regional 

hydrological regimes, which will in turn affect ecological, social and economic systems. However, 

more dependable precipitation series of future climate scenarios can be derived from GCM outputs 

using downscaling techniques. The downscaled data is used as input to two different hydrologic 

models to simulate the corresponding future flow regime in the Chute-du-Diable and Saguenay 

watershed, Canada. Moreover, the water availability impact analysis were carried out with the 

downscaled precipitation and temperature time series as input to the two hydrological models advise 

an overall raising trend in average annual river flow and reservoir inflow.  
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Fischer et al. (2007) investigated the climate change impact on irrigation demand for regional and 

local scale considering with and without mitigation of greenhouse gases emission. Future regional 

and globally irrigation water demands were calculated as a function of both projected irrigated land 

and climate change and simulations were performed from 1990 to 2080. Future trends for extents of 

farmland, irrigation water use, and withdrawals were calculated, with specific care given to the 

implications of climate change mitigation. Renewable water-resource availability was calculated 

under present and future climate scenarios. Results advise that mitigation of climate change may 

have substantial convincing effects compared with unmitigated climate change. Moreover, 

mitigation measures can cut down the impacts of climate change on farmland water demands by 

about 40%, or 125–160 billion cubic meter (BCM) equated with unmitigated climate.  

Guo et al. (2008) examined the floods occurrence and damages in 1990 due to climate change in the 

Poyang Lake basin in China. In order to evaluate this issues, it was crucial to get information about 

climate variability, land-use and land-cover changes in the area impact the yearly and seasonal 

fluctuations of basin hydrology and streamflow. Moreover this study is crucial for long-term 

planning for LULC to protect water resources and to effectively handle with floods in the Poyang 

Lake basin and lower basins. Additionally it is also crucial for ecological and socioeconomic 

implications for the area.  

Franczyk and Chang (2009) investigated the climate changes effect on the hydrology of Pacific 

Northwest during the 21st century. Several GCMs were used to simulate the output, and simulated 

temperature and precipitation indicate the higher projection. In last 30 years, Due to sudden growth 

in urbanization, there is change in climate and land use land cover alter the surface runoff and water 

availability. A combining of global warming and LULC change for 2040 with the semi-distributed, 

ArcView Soil and Water Assessment Tool hydrological model was used to evaluate the changes in 

mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, 

seasonal, and annual scales. Climate model ECHAM5 outputs were downscaled for the region and 

it was noticed that the region would experience an increase of 1-2°C in the average annual 

temperature and a 2% increase in average annual precipitation from the baseline period.  

Liu et al. (2011) investigated the climate change impact on streamflow in the Yellow River Basin. 

A semi-distributed hydrological model (SWAT) is calibrated and validated with records at 

Huayuankou, Lanzhou and Huaxian hydrological stations. Outputs from climate model HadCM3 
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were downscaled with SDSM and delta statistical approach to generate the daily temperature and 

precipitation data from 1961 to 2099. In order to get the change in runoff due to climate change, 

hydrological model SWAT was used. In results, it is noticed that annual mean maximum and 

minimum temperature may rise by 5.0oC in the 2080s and annual precipitation would increase by 54 

mm to 150 mm. Additionally, raising streamflow in spring and summer can help in crop growth, and 

raising annual precipitation and runoff can facilitate water demand stress to some degree in the 

Yellow River Basin. 

Due to scarcity of observed data and heterogeneousness of the system, discharge and soil loss 

evaluation in river basin or catchment is one of the most ambitious tasks in water resources studies. 

However, Soil and Water Assessment Tools (SWAT) is a semi distributed and physical model that 

can simulate the discharge as well as soil loss for catchment. SWAT is a physically based model. It 

requires specific information about topography, vegetation, land management practices, hydro-

meteorological data (precipitation, maximum & minimum temperature, relative humidity, wind 

speed, solar radiation), soil physical properties in the catchment. The physical processes associated 

with water movement, sediment movement, crop growth, nutrient cycling, etc. are directly modelled 

by SWAT using these input data. The SWAT model is designed to assess stream flow and sediments 

from individual watershed (Table 2.2). 

Table 2.2 : Latest studies based on climate change impact on water availability and soil erosion 

using SWAT 

Authors 

(Year) 
Study Area 

Hydrological 

Model 
Major Finding /Remarks 

Murty et al. 

2014 

Ken Basin, India 

(Area 28574 km2) 
SWAT 

 SWAT applied for Ken River basin 

 Water balance components calculated 

(1985-2009) 

Gessesse et al. 

2015 

Modjo Watershed, 

Ethiopia 
SWAT 

 Climate and LULC change 

 Sediment loss and transport estimation 

 Characterization of runoff estimation 

Heo et al. 2015 

Neches River (Area: 

2221 km2), Eastern 

Texas (US) 

SWAT 
 Climate and LULC change considered 

 Water budget components evaluated 

Liu and Lu, 

2015 
Changle River basin SWAT  Nutrient and Pollution estimation 
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 Application of Best Management 

Practices (BMPs) 

Singh et al. 

2015 

Satluj River Basin 

(48598 Km2) and 

Tungbhadra River 

Basin (14429 km2), 

India 

SWAT, 

SWATCUP 

 Model uncertainties with stream flow 

(peak and low flow) 

 Separation of sequential peak and low 

flow using multicriteria evaluation 

 Temperature and snow melt identified as 

sensitive parameters in the region 

Chattopadhyay 

and Jha, 2016 

Haw river (4000 

km2), North Central 

Carolina (U.S.) 

SWAT 

 SWAT model calibrated and validated 

 Water balance components evaluated 

due to climate variability 

Pandey et al. 

2016 

Armur watershed , 

Narmada river, India 

SWAT 

 

 

 SWAT applied for Armur watershed 

 Water balance components computed for 

base line (1961-1990) and future climate 

scenarios (2071-2100) 

 Positive changes in annual average 

temperature and rainfall in future 

projection 

Marhaento et 

al. 2017 

Samin river basin 

(278 km2), Indonesia 
SWAT 

 LULC changes and climate change 

considered 

 Ratio of surface runoff to stream flow 

increase 

 Ratio of base flow to stream flow and 

lateral flow to stream flow decrease, 

Omer et al. 

2017 
Hutuo River, China SWAT 

 Integrated effect of Anthropogenic and 

climate change 

 Climate change and LULC change 

reduced the runoff 

 Proposed framework for sustainable 

development cause of runoff 

uncertainties 

Trang et al. 

2017 

3S transboundary 

River basin (Sekong, 

Sesan, Srepok), of 

countries (Laos, 

Vietnam, and 

Combodia) 

SWAT 

 Climate study under rcp4.5 and rcp8.5 

 Discharge and nutrient increase in wet 

season and decrease in dry season 
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2.6 CONCLUDING REMARKS 

In recent literature, detection of changes in time series of hydrological and climatological data has 

received a growing interest. Different aspect of climate change impact and effect of anthropogenic 

intervention on hydrology were discussed worldwide. Changes in an historical series often occur in 

the forms of shifting (change year) and trends. Moreover trend in precipitation, temperature and 

other hydro-meteorological parameters were identified applying various parametric and non-

parametric tools. Furthermore, climate variability and land use changes identified for abrupt shifts 

and trend. Therefore it was very difficult to separate and quantify the individual effects of different 

land use changes within the catchment area on the basis of observed evidences in the hydrological 

response.  

Many researchers found the reasonable uncertainty in projections of future climate change and its 

impacts on hydro-meteorological responses, particularly on regional or basin scale. The spatial 

resolution of the climate models is too coarse to simulate the impact of global change at local scale. 

Moreover, the greatest uncertainties in the effects of future projection of climate on water balance 

components arise from uncertainties in global climate models and scenarios. Based on the research 

above discussed, plenty work has been carried out to simulate the hydrological response considering 

different scenarios of General Circulation Models output, therefore, performance of GCMs is still 

required to assess for particular region. Based on the research discussed above, climate and 

hydrological model was selected to project the water balance for river basin of central India.  
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CHAPTER 3  

     STUDY AREA AND DATA COLLECTION 

3.1 GENERAL 

The basic description of study area and data collection are given in this chapter. This chapter covers 

the general aspects of location, extent, physiography, climate, drainage, soil, agriculture and 

hydrological issues over the study area. In other parts of the chapter description of data collection 

and processing are discussed. 

In this research, studies were carried out based on regional scale as well as at local scale. At regional 

scale, Indian regions were considered for trend and periodicity detection, in addition to, evaluation 

of best performing climate model. At local scale, a river basin of central India, Upper Narmada Basin 

(UNB) has been considered for trend analysis of climatic variables, change detection in land use 

land cover, and hydrological modelling to evaluate the water availability in the basin. Moreover, 

descriptions about both areas, Indian regions and Upper Narmada Basin (UNB) were mentioned in 

the given sections.  

3.2 UPPER NARMADA BASIN (UNB): LOCAL SCALE STUDY AREA 

3.2.1 Location  

Narmada River is the fifth longest river of India and known as ‘life line of Madhya Pradesh (central 

India)’. It is the longest west flowing river of India and falling into the Arabian Sea. Upper Narmada 

Basin is upstream part (upper) of the Narmada river which is one of the most important and holy 

rivers of central India (Figure 3.1). UNB starts from a small reservoir ‘Narmada Kund’ in 

Amarkantak Plateau (Madhya Pradesh) at an elevation of 1057 meters above mean sea level, spread 

over from coordinates latitude 22° 40' N and a longitude of 81° 45' E (Gupta and Chakrapani, 2005). 

The length of main stream is about 350 km. The area of UNB is about 3.27 million hectare (32750 

km2) and lies between longitudes 79° 45' E to 81° 45' E and latitudes 21° 20' N to 23° 45' N. There 

are mainly four districts that lie in the study area namely Mandla, Jabalpur, Narsingpur, and Dindori 

of Madhya Pradesh, India. Jabalpur is the largest district among all four districts, as per the graphical 

area and population. The population growth of Jabalpur district 21.67% and 14.51%, Mandla 14.73% 
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and 17.97%, Narsighpur 21.92% and 14.01% and Dindori district 18.41 % and 17.39 % were 

occurred in the periods of 1991 to 2001 and 2001 to 2011 respectively (www.citypopulation.de). 

 

Figure 3.1: Location Map of Upper Narmada Basin, India 

3.2.2 Hydraulic Structures 

To utilize the water potential of Narmada river for power generation, irrigation, and domestic 

purposes, State Government of Madhya Pradesh has proposed the about 29 major, 158 medium and 

about 3000 minor projects to be completed by 2025 

(https://en.wikipedia.org/wiki/Narmada_Valley_Development_Authority). Various types of major 

and minor hydraulic structures are built and proposed along the river basin including dam, barrage, 

weir and minor structure. However, Bargi Dam is one of the multipurpose major project along the 

Upper Narmada River, in Jabalpur district. The salient features of the dam is given below in Table 

3.1.  
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Table 3.1: Details of major multipurpose project Rani Avanti Bai Sagar (Bargi dam), Jabalpur 

Name of 

Project 
Rani Avanti Bai Sagar Project (Completed in 1990) 

Location of 

Dam 

Along the Upper Narmada River, Jabalpur district of  Madhya Pradesh state; 

Latitude and longitude are 79o 55’30’’and 22o 56’ 30’’ 

Hydrology Catchment Area up to Dam site : 14556 km2 ; average annual, maximum 

and  minimum rainfall are 1414 mm, 2311 mm and 664 mm, respectively; 

75% and 90% dependable yield 5.45 BCM and 4.10 BCM, respectively. 

Water 

Utilization 

Irrigation: 2938 MCM, Domestic Water Supply: 170 MCM, 

Storage 

Planning 

Gross storage: 3920 MCM; Live storage: 3180 MCM; Dead storage :740 

MCM 

Submergence 

Details 

Area under submergence at FRL: 27696.50 Hectare 

Dam 

Particulars 

Composite earth and masonry dam; Length (Masonry: 827 m, Earth 

Dam:4540 meter) 

Spillway Central gravity type gated spillway; Length: 385.72m, height: 69.80m, 

Designed flood : 51510 Cumecs; 21 number of radial gates; sizes of 

gates :13.716 m x15.25 m) 

Canal 

Command 

Area 

GCA (Gross Cultivable area):  2.60 Lac Ha. CCA (Cultivable Command 

area) 1.570 Lac. Ha; Annual irrigation 2.20 Lac. Ha. 

Hydropower 

details 

Installed capacity 90MW (2x45MW) +10MW (2x 5MW) =100 MW 

Note: The above data were collected during site visit of Bargi dam, Jabalpur. 

3.2.3 Physiography 

Based on physiography, basin can be divided into hilly and plain regions. Upper eastern part of the 

basin is hilly and mountainous, whereas the lower middle area is mostly covered by natural 

vegetation and forest. The plain regions in between consist of hilly tracts and in the lower reaches 

are broad and fertile areas well suited for cultivation. UNB lies in the Madhya Pradesh region, 

Deccan plateau of central India. The Malwa plateau marks the northern span of Deccan plateau. 

Satpura range located in the southern part of the state is E-W trending. It has an average elevation 

of 600 m above mean sea level (amsl) and highest elevation of 1350 m amsl. The Vindhyan ranges 
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occupies the northern and central part of the region. Moreover, Vindhyan range is extended towards 

Malwa plateau and Bundelkhand region. In general, the study area has two natural divisions, the 

valley covering the central and northern parts of the districts and the hills covering the whole of 

south. The hills in the district belongs to the Satpura range, which rise in continuous chain of forest 

covered hills. Between these hills and river lies a fertile valley which is a strip of nearly level of 

about 24 km in width, with slopes gently down towards the Narmada River.  

3.2.4 Climatology  

Tropic of Cancer crosses the Narmada drainage basin in the upper plains area. A major part of this 

basin lies just below this line. Thus, there is heavy rainfall in upper parts (hilly and mountainous 

area) of the basin. However, it decreases from east to west part of basin. Normally, at upper part of 

the basin, average rainfall is about 1400 mm (near Jabalpur) and lower part receives less than 1000 

mm. There is very little rainfall in winter season. The monsoon rainfall accounts for 80% - 85% of 

the annual rainfall. The heavy rainfall occurs in the upper hilly areas and receives nearly 94% of the 

annual rainfall in the months of June to October. The annual rainfall in the upper part of the basin is 

more than 1400 mm and in some pockets it exceeds 1,650 mm. Temperature of basin is like any 

other part of central India. In general, months of May and January record the maximum and 

minimum temperature of basin, respectively. Southern portion records higher temperature as 

compared to northern portion. (Source: Report of Irrigation Commission, 1972). 

3.2.5 Land use land cover distribution 

The major portion of basin is covered by the cropland, natural vegetation, barren land, water bodies 

and settlement. Agriculture (about 56%) is the dominant class with cultivation during kharif, rabi 

and summer (Zaid) crop. Paddy is the most common crop in northern part of the basin probably due 

to heavy rainfall and poor infiltration, whereas wheat is the main crop in lower part of the UNB. 

Natural vegetation covers about 33% of the total area. Upper part of the UNB are of tropical, moist, 

deciduous type, whereas southern part of the basins, the vegetation is of tropical dry and deciduous 

type. Water bodies covered around less than 3% of the total area, including large water bodies of 

reservoir like Bargi dam etc.. 

3.2.6 Soil type and distribution 

Soil is composition of different types of minerals and organic matters that are different from its 

parent materials in terms of its texture, structure, consistency, colour, chemical and other 
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characteristics. The knowledge about the soil profile is very helpful in modelling the hydrological 

character of the basin. The nature and characteristics of soils is dependent primarily on relief of the 

area, which influences the variation in soil formation.  

In the upper part of UNB basin, the majority of the soil are characterised by shallow black soils. 

These type of soils are erosional products to hold basalts. The black soils have intrinsic property to 

hold water and allow less drainage due to presence of smeclite clays. Presence of organic matter is 

very less in black soils about less than 5%. The black soils in the upper basin are generally in-situ 

kor collovial. These soils are often interspersed with red sandy or laterite soils. The profile is 

generally shallow and mainly covers the hilltops and plateau regions. The red soils are the result of 

intense chemical leaching of basalts whereby all the minerals in the rock are leached out except the 

oxides of silica, iron and aluminium. Due to intense leaching, these soils have a reasonably good 

drainage but lacking in nutrients essential for plant growth. Soils in Vindhyan and Satpura plateau 

region of the middle basin range from shallow black soils to medium black soils. Around 

Hoshangabad, recent alluviums with varied thickness can be witnessed. Soil erosion is fairly severe 

in the upper hilly and upper plains regions in the Narmada basin. Severe erosion also occurs 

throughout course of the river in the lower plains.  

3.3 INDIAN ZONES: REGIONAL STUDY AREA 

In this research, some studies such as trend detection and periodicity of precipitation, and selection 

of the climate model were carried out at regional scale, for seven Indian regions.  

3.3.1 Location Map 

India is located in the south of the Asian continent, bordering the Arabian Sea and the Bay of Bengal. 

The country is situated north of the equator between 8°4' and 37°6' north latitude and 68°7' and 

97°25' east longitude. It is the seventh-largest country in the world, with a total area of 3,166,414 

square kilometres. India measures 3,214 kms from north to south and 2,933 km from east to west. It 

has a land frontier of 15,200 km and a coastline of 7,517 km.  

3.3.2 Physiography  

In India, north-west to south-west direction is mountain ranges, the most renowned mountain 

Himalayan range with Kanchenjunga Peak as its highest peak. This mountain peak measures over 

8000 meters. The Himalayas are relatively young fold mountains with great magnitude of local 
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relief, very steep slopes, highly uneven surface, little levelled land and young river valleys. Three 

important rivers, the Brahmaputra River, Sutlej River and Indus River of India starts from 

Mansarovara Lake that lies in this zone. Peninsular region of India is oldest and most stable landmass 

of India and covered by tors, Block Mountains, rift valleys, spurs, bare rocky structures, series of 

hummocky hills and wall-like quartzite dykes offering natural site for water storage. However 

western and north western region has emphatic presence of black soil. In northern west part of India 

is desert (Thar) and Aravali hills. Moreover, Thar desert is 9th The Indian desert is located in the 

northwest part of Aravali hills. Most of the rivers in the region are ephemeral.  

Therefore, Indian regions have been categorized in to seven zones, considering the geography and 

homogeneous annual precipitation. These regions are North Mountainous India (NMI), North 

Central India (NCI), Northwest India (NWI), East Peninsular India (EPI), West Peninsular India 

(WPI), South Peninsular India (SPI) and North East India (NEI) as shown in Figure 3.2 (Li et al. 

2014; Sontakke et al. 2008). 

3.3.3 Climatology 

North Mountainous India (NMI) is the Great Himalayan Mountain of topography elevation more 

than 7000 m, mean annual precipitation about 1500 mm in which 72% nearly from monsoon season. 

It is the coldest region of India. Northwest India (NWI) region is arid and semi-arid climate zone of 

India. In this region, 'Thar' desert located. Mean annual precipitation of this region is 800 mm and 

88% contributed by monsoon season. Moreover it is the hottest region of India. North Central India 

(NCI) is the Indo-Gangentic plains of humid sub-tropical climatic region. The mean annual 

precipitations 1,212 mm and monsoon contributing 85% of it. The mean annual precipitation for 

WPI, EPI and SPI regions is 1103, 1162 and 1555 mm, with nearly 85%, 73% and 60 % falling in 

monsoon period, respectively (Li et al. 2014; Parth Sarthi et al. 2015). NEI is the region of eastern 

part of Himalaya and includes the mighty Brahmaputra River. It is humid sub-tropical climate 

region, humid and hot summers, mild winters and severe monsoon. NEI region receives heavy 

rainfall, however mean annual rainfall varies 1577 mm to 6002 mm that creates the problem of 

ecosystem and flooding (Jain et al. 2013). It was observed that the region receives overall average 

annual rainfall of 2156 mm, and major portion (70%) of annual rainfall occurs during the monsoon 

season.  
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Figure 3.2: Seven Indian zones for regional study (Li et al., 2013) 

3.4 DATA COLLECTION AND PROCESSING 

Hydro-meteorological and spatial data have been collected from India Meteorological Department 

(IMD) Pune, India Water Portal (Indian Meteorological Datasets) and other resources.  

3.4.1 Hydro-meteorological Data  

Mean Monthly meteorological observed datasets of temperature (maximum, minimum and mean) 

rainfall, reference evapotranspiration and cloud cover data were collected for 102 years (1901-2002) 

of basin stations UNB that are derived from India Water Portal site for trend analysis study. 

Moreover daily gridded data of rainfall and temperature (maximum and minimum) for study have 
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been collected from IMD Pune for 1971 to 2015 for hydrological modelling. The spatial resolution 

rainfall data is 0.5o x 0.5o and 0.25o x 0.25o, whereas temperature data was obtained at 1ox 1o  spatial 

resolution. Moreover, long term precipitation data series of 156 years (1871-2006) for seven Indian 

region were obtained from the Indian Institute of Tropical Meteorology (IITM), Pune website 

(http://www.tropmet.res.in/Data).  

3.4.2 Soil Map  

The Soil map of the study area presented at 1:250,000 scale has been obtained from NBSSLUP 

(National Bureau of soil survey and Land Use Planning), Nagpur. It has been carefully scanned and 

exported to ArcGIS 10.1. Different soils have been traced and the polygons representing various 

soils are filled with different colours for proper identification. The area under different soils have 

been identified. 

3.4.3 Digital Elevation Model 

The Shuttle Radar Topography Mission (SRTM) data are digital elevation on horizontal grid spacing 

of 90 m resolution. The elevation of UNB area varies from about 300 m to 1200 m from mean sea 

level (MSL) by Digital Elevation Model (DEM). On west northern and eastern, most parts of the 

catchment the lowest elevation ranges (Narmada River) and the highest range are located towards 

lower part of catchment area respectively. In study area the DEM, of 90 x 90 meter pixel size was 

loaded to the system in an Arc Info grid format. The DEM properties were set up to verify the 

projection and the horizontal and vertical units of measure were verified. The DEM is acquired to 

generate the drainage network for the study area. 

3.4.4 Observed Discharge  

Observed discharge and sediment data are necessary for evaluating the hydrological model. 

Discharge data of UNB have been collected to calibrate and validate the model. For UNB, seven 

gauging stations have been established to measure discharge by Central Water Commission (CWC). 

The seven discharge gauging stations within the basin are Mohgaon, Manot, Patan, Bamni Banjar, 

Gadarwara, Belkheri, and Sandia.  
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3.5 CONCLUDING REMARKS 

In this research, investigations on the climatic variables have been made at regional scale as well as 

at local scale to understand the relationship between spatial scale severities of climate change on 

water availability. The whole country has been divided into seven zones of Indian region to analyze 

the trend and periodicity of precipitation, and selection of climate model for hydrological studies, 

which constitute the regional scale of the study. At local scale Upper Narmada Basin (UNB) was 

selected for trend analysis of climatic variables and evaluation of water balance components at 

different emission scenarios. UNB has also been selected to describe as a prototype case study area 

to assess the climate and land use change. Furthermore, UNB is considered as study area to 

demonstrate the application of integrated hydrological modelling with changing climate scenario. 

Salient features of the selected study area are described briefly, which includes the location map, 

physiography, climatology, land use land cover distribution and soil map. The spatial, non-spatial 

and meteorological data have also been briefly described and presented in subsequent chapters.  

 

 

 

  



50 

 

 

  



51 

 

CHAPTER 4 

  IDENTIFICATION OF TREND AND PERIODICITY IN HYDRO-

METEOROLOGICAL VARIABLES 

4.1 GENERAL 

The impact of climate change and human activity on meteorological and hydro-climatological 

parameters influence the hydrological process and water resources availability. Precipitation and 

temperature are the most important governing meteorological parameters of hydrological cycle and 

contribute vital role in water availability (Bae et al. 2008; Dakhlalla and Parajuli 2016; Fennessy et 

al. 1994; Groisman et al. 1999; Pandey et al. 2016; Sethi et al. 2015; Widmann and Schär 1997; Xu 

and Zhang 2006). In recent years, many researchers have shown concern about the temporal and 

spatial variability of precipitation rate cause of attention given to global warming (Arnell 1999; 

Camici et al. 2014; Fennessy et al. 1994; Ficklin et al. 2009; Fischer et al. 2007; Holman 2005; Liu 

et al. 2015; Pachauri et al. 2014; Sneyers 1997; Ting and Wang 1997). In the context of climate 

variability, trend analysis is one of the important tools to analyze the variability in studies of 

hydrology and climatology. Trend analysis for rainfall distribution was carried out by scientist 

community from different countries using different methods (Adarsh and Janga Reddy 2015; 

Bandyopadhyay et al. 2009; Bawden et al. 2014; Jain et al. 2013; Jiang et al. 2002; Mishra et al. 

2009; Partal and Kahya 2006; Pingale et al. 2014; Shifteh Some'e et al. 2012; Widmann and Schär 

1997). The purpose of understanding the trend is to detect the expected changes and uncertainty. The 

most popular methods are Mann-Kendall test, Spearman Rank Correlation test, Kendall's Rank 

Correlation test.  

In this chapter, characteristics of hydro-climatic parameters were detected at regional scale (seven 

Indian zones) and local scale (Upper Narmada Basin) in two sections. In first section, an attempt has 

been made to determine the trends in monthly, annual and monsoon total precipitation series over 

India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform 

(DWT). The linear regression test was applied on five consecutive classical 30-year climate periods 

and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall 

(SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively 

new tool for trend analysis in hydrology. Comparative studies were carried out between decomposed 
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series by DWT and original series. Furthermore, visualization of extreme and contributing events 

was carried out using the wavelet spectrum at different threshold values. 

In the second section, Upper Narmada river Basin (UNB), a humid subtropical region of India 

considered as a study area at local scale. Spatial and temporal variation in meteorological data 

(precipitation and mean temperature) at 16 stations were analyzed based on monthly seasonal and 

annual series of 102 years (1901-2002). In recent years, there are many trend studies of hydro-

meteorological data over the basin, but there are limited studies to detect trend in extreme values. 

Therefore, a detailed trend analysis was carried out of annual extreme events of precipitation and 

temperature series applying Innovative Trend Analysis (ITA) for sustainable water management 

development in terms of climate change. Moreover, discrete wavelet transform (DWT) was applied 

to identify and for visualization of extreme events. Therefore, Sequential Mann-Kendall (SQMK) 

and cumulative sum charts (CUMSUM) were used to identify the abrupt change year in precipitation 

and temperature in 16 stations of Upper Narmada river basin.  

4.2 METHODOLOGY 

4.2.1 Serial Correlation Test 

Serial correlation is also known as Autocorrelation, in which error terms in a time series transfer 

from one period to another period. Serial correlation coefficient (r1) at lag-1 computed using 

following equation: 
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Where, 1,i i nP P P   is the time series, P  is the mean of the time series. If computed ‘r1’ is 

significant at 5% of two tailed test, ‘pre-whitened’ series should be applying in Mann-Kendall test 

and Sen’s slope method. 
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4.2.2 Mann-Kendall Test 

Mann-Kendall (MK test) is a nonparametric test for trend analysis. It is based on null hypothesis 

testing for check the existence of trend in the terms of yes or no. It is simple and strong method. In 

addition to this, it can also handle the missing values and outliers (Yue et al. 2002).  

The Kendall's test statistics is given as 
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for a time series, 𝑃𝑖 ,i=1,2,3............,n. 
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When n ≥ 10, S becomes normally distributed with zero mean and variance denoted as 𝜎𝑠
2. t is the 

extent of (number of P involved) of any given tie. If   |𝑍|  >  𝑍1-α/2 , there is no trend rejected, 

according to the null hypothesis. Z is the standard normal variate and α is the significance level for 

the test (Emori and Brown 2005).  

4.2.3 Sen's Slope Estimator 

Sen's slope is the tool to estimate the monotone trend of the equally spaced time series data. In this 

study, it is used to quantify the slope of the series. 
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Where, β is the slope between data points 𝑃𝑖 and 𝑃𝑗 (Sethi et al. 2015).  

4.2.4 Sequential Mann-Kendall Test 

To detect the nonlinear trend with time, Sneyers (1990) introduced sequential or partial values, z(t), 

from the progressive analysis of the Mann-Kendall test. Herein, z(t) is a standardized variable that 

has zero mean and unit standard deviation. The following steps are applied to calculate z(t) (Eq. 4.7 

-Eq. 4.10)  

1. The values of Pj mean time series, (j =1, . . . ,n) are compared with Pi, (i = 1, . . . , j − 1). At each 

comparison, the number of cases Pj > Pi is counted and denoted by nj . 

2. The test statistic t is then calculated by equation 
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3. The mean and variance of the test statistic are 

( 1)
( )

4
j

j j
E t


    ………… (4.8)

 

 ( 1) 2 5
( )

72
j

j j j
Var t

 
    ………… (4.9)

 

4. The sequential values or partial values of the statistic z(t) are then calculated as 
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4.2.5 Discrete Wavelet Transforms  

The hypothesis of wavelet analysis was developed based on Fourier analysis. A signal is broken up 

into smooth sinusoids of unlimited duration in Fourier analysis (Kisi and Cimen 2012). A wavelet 

is a mathematical function which can be used to localize a given function in both space and scaling 

(Labat 2005; Labat et al. 2005).Wavelets can be utilized to extract information from diverse kinds 

of data; such as seismic, finance, heartbeat, hydrological etc. (Agarwal et al. 2005; Ahmad and 

Simonovic 2005; Chakraborty and Okaya 1995; Ivanov et al. 1999; Ivanov et al. 1996; Michael P. 

Clementsa 2004; Sinha et al. 2005).Wavelet analysis is often used to learn evolutionary behavior to 

characterize fluctuated daily discharge time series (Smith et al. 1998; Wang and Ding 2003).The 
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major improvement of wavelet transforms is their capability to concurrently acquire information on 

the time, location and frequency of a signal, while the Fourier transform provides only the frequency 

information of a signal.  

The discrete wavelet transform (DWT) is defined as 
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Where, m and n are integers that govern the wavelet scale/dilation and translation, 

respectively; ao is a specified fine scale step greater than 1; and bo is the location parameter and must 

be greater than zero. The most common and simplest choice for parameters ao and bo are 2 and 1, 

respectively. This power of two logarithmic scaling of the dilations and translations is known as 

dyadic grid arrangement and is the simplest and most efficient case for practical purposes. For a 

discrete time series P(t), the DWT becomes: 
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Where, DWT (m, n) is the wavelet coefficient for the discrete wavelet of scale a = 2m and 

location b = 2m n. Q(t) is a finite precipitation time series (t = 0, 1, 2,…, N − 1), and N is an integer 

power of 2 (N = 2M); this yields the ranges of m and n as, respectively, 0 < n < 2M−m− −1 and 1 < m 

< M. 

4.2.6 Innovative Trend Analysis  

Innovative Trend Analysis (ITA) is used for trend detection proposed by Şen (2011). Traditional 

trend analysis tools such as Mann-Kendall (MK) and Spearman’s Rho (SR) tests based on restrictive 

assumptions such as independent structure of the time series, normality of the distribution, and length 

of data. In this new approach, all restrictive assumptions in the MK and SR tests are avoided. 

Innovative Trend Analysis (ITA) is a handy tool to detect the positive and negative trend.  

In ITA, whole time series was divided into two parts. Divided sub-series arranged in the ascending 

order and plotted on given time series on a Cartesian coordinate system. In this plot, trend free 

subsections of the series appear along the 45° straight-line. Data lies in the upper portion of the 45o 

straight line indicates the increasing trends and vice versa (Figure 4.1). 
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Figure 4.1: Illustration of positive, negative and no trend region in innovative trend analysis 

For better understanding of extreme value trend, data could be categories as low, medium and high 

values clusters. Low rainfall cluster in upper portion indicates the increasing trend in low rainfall. 

Medium rainfall cluster along the 1:1 straight line indicates the trend free in medium rainfall. High 

cluster data in lower portion of the plot indicates the decreasing trend in high rainfall. In order to 

compare with the MK and Sen’s, a ITA indicator (D) was proposed by Wu and Qian (2016) 

expressed as: 
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Where iX  and iY  indicate the horizontal axis (first half series) and vertical axis (second half series), 

respectively, X  indicate the mean value of horizontal series and n is the length of sub-series. 

Positive value of ITA indicator (D) indicate the positive trend and negative value indicate the 

negative trend in the series.   
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4.2.7 Cumulative Sum Charts (CUMSUM)  

This method is used for detection of abrupt change point (shifting) in the meteorological series 

(Gocic and Trajkovic 2013). Change point is computed based on the cumulative sum (So, S1, S2….Sn) 

of the time series (P1,P2….Pn),  where n is the series length (Healy 1987).  

-10  ( - )o i i tS and S S P P                ………… (4.15) 

1, 2 ,i n   

1...maxm i n iS S      ………… (4.16) 

The location of change point is defined by ‘m’. The estimated point ‘m’ show the last point of 

occurrence of shifting.  

4.2.8 Buisand’s Range Test 

This method is also known as Cumulative Deviation Test, which is based on the adjusted partial 

sums or cumulative deviation from the mean.  
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The /R n   is then compared with the critical values given by Buishand (1982) (Peterson 

et.al.1998). 

4.2.9 Pettitt’s Test 

This test is basically based on the rank of the series and ignores the normality of the series 
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 where 1,2, ..,i n  . The change years in the 𝐾𝑡ℎyear of the max 𝑋𝑘value (Bawden et al. 

2014; Costa et al. 2008). 
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4.3 REGIONAL STUDY: SEVEN ZONES OF INDIA 

In the recent past, many trend studies were based on long-term and short-term time series of different 

climatic and hydrological variables, viz. precipitation, temperature and discharge. Hydrological 

variables exhibit substantial dependence over a wide range of temporal and spatial scales. The spatial 

variability of a hydrological variable may also have an effect on hydrological modelling. Therefore, 

the aim of this study are: (a) to carry out trend analysis using climatological categorization of time 

series (30 years) data, in addition to investigating general long-term trend (156 years) over all seven 

zones of India based on annual and monsoon precipitation; (b) to study temporal change in trend for 

monthly, annual and monsoon precipitation to derive changes in climatological time zones, as well 

as spatial variability of precipitation under Indian conditions; (c) to use a combination of the MK 

test with DWT to analyse trends in Indian long-term precipitation time series, in which monthly, 

annual and monsoon precipitation series are decomposed via DWT into approximation coefficient 

and detailed series using convolution of low pass filter and high pass filter. In order to identify the 

suitable mother wavelet and decomposed level, to decompose the original series the criteria 

proposed by Nalley et al. (2012) were used; (d) to apply the SQMK test to the original series and a 

combination of approximation and detailed series in order to check the trend and periodicity of the 

series; and (e) to derive a visualization of extreme events and contributing events at different 

threshold values. 

There are three types of precipitation data used in this study: monthly, annual and monsoon data of 

156-years period (1851–2006). Monthly data were used to investigate the short-term fluctuations in 

precipitation, whereas annual data were used to identify the long-term fluctuations, and monsoon 

data were used to detect the variation in seasonality. Firstly, linear regression was applied on the 

original series to check the linear changes in precipitation per year for each zone of India. The long-

term precipitation series (156 years) was subdivided in to five climatic periods for short-term (30 

years) trend analysis, and linear trend analysis was carried out on all five short-term precipitation 

series. The SQMK test was applied on the original precipitation series to identify temporal changes 

in precipitation over India.  

In the next step, using DWT, the original precipitation series was decomposed into two series: an 

approximation and a detailed series. The first decomposed series represents the periodic component, 
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whereas the latter represents the trend of the series. The MATLAB tool box of Wavelet D-1 was 

used to decompose the series into wavelet coefficients.  

Non-parametric trend detection methods (MK) were applied on the original series and on a 

combination of the decomposed and approximation series. Additionally, the SQMK test was applied 

to the original and to a combination of the detailed and approximation components. However, the 

procedure followed is as follows: 

1. Detect linear trend by applying linear regression test on short-term (30-year) and long-term 

(156-year) precipitation based on monsoon and annual series. 

2. Apply the SQMK test to detect temporal variation for the period 1851–2006 based on 

seasonal and annual precipitation series. 

3. Identify the decomposed level of a suitable mother wavelet to decompose the original series 

using the criteria of mean relative error (MRE) of the approximation series and relative error 

(RE) of the Z value of the MK test (Nalley et al. 2012). 

4. Decompose monthly, annual and monsoon precipitation series via DWT into approximation 

coefficient and detailed series using convolution of low pass filter and high pass filter. 

5. To check the trend and periodicity of the series, apply SQMK to the original series and to 

the combination of approximation and detailed series.  

6. Visualize extreme events at different thresholds.  

4.3.1 Primary Statistics Analysis  

The primary statistical parameters such as mean, standard deviation (SD), skewness (CS), kurtosis 

(CK) and coefficient of variation (CV) of each zone of India are provided in Table 4.1, which were 

computed for annual and monsoon precipitation (1851–2006). Average annual precipitation varied 

between about 773 mm/year (NWI) and 2111 mm/year (NEI), whereas the monsoon season values 

varied from 686 mm (NWI) to 1507 mm (NEI). The SD in annual series varied between 151 and 

227 mm (NCI and NMI, respectively). Skewness parameter represents the measure of asymmetry in 

a frequency distribution around the centre point; and kurtosis indicates a measure as to whether the 

data are peaked or flat relative to a normal frequency distribution. Datasets with low kurtosis tend to 

have a flat top near the mean rather than a sharp peak; its value varies from –0.21 (NEI) to 0.57 

(WPI) for average annual rainfall and –0.01 (NEI) to 0.73 (WPI and SPI) for monsoon rainfall. The 
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CV represents the ratio of SD to the mean of the data series. The CV varies between about 8.47 % 

(NEI) and 17.54% (NWI) for annual values and from 9.28% (NEI) to 20% (NMI) for the monsoon 

season (Table 4.1). 

Table 4.1: Primary statistical parameters value of precipitation series (1851-2006) of Indian Zones 

Annual Precipitation (mm) Monsoon Precipitation (mm) 

Zones Mean SD  CV CS CK Mean SD  CV  CS CK 

NMI 1572.78 227.83 14.49 0.40 0.02 1131.12 225.50 19.94 0.10 0.01 

NWI 773.03 135.62 17.54 -0.20 0.30 686.73 128.32 18.69 -0.49 0.02 

NCI 1211.49 151.20 12.48 0.03 0.23 1026.68 131.07 12.77 -0.05 0.42 

NEI 2155.91 182.64 8.47 -0.38 -0.21 1507.34 139.87 9.28 0.09 -0.01 

WPI 1090.64 184.78 16.94 -0.01 0.47 922.59 163.23 17.69 0.07 0.73 

EPI 1147.73 155.95 13.59 0.38 0.57 840.68 111.38 13.25 -0.26 0.14 

SPI 1525.13 180.02 11.80 -0.07 0.34 906.89 139.43 15.37 0.31 0.73 

Note: All the measure in ‘mm’;SD: Standard Deviation; Cv: Coefficient of Variation (%); Cs: Skewness; Ck; Kurtosis; 

4.3.2 Trend Analysis applying Linear Regression 

 In this study, linear regression was used to detect the trend of long-term precipitation over India. 

All seven zones were selected for trend analysis with long-term precipitation data (156 years). Trend 

of precipitation was also carried out on the basis of short time series for annual and monsoon rainfall 

(June–September). 

The World Meteorological Organization (WMO) defines the classical climate period as a 30-year 

period. For the purpose of short-term trend detection, the 1851–2006 time series was subdivided in 

to five consecutive classical 30-year periods: C1 (1851–1880), C2 (1881–1910), C3 (1911–1940), 

C4 (1941–1970), C5 (1971–2006); C5 climate series contains 36 years.  

Figures 4.2 and 4.3 show the annual and monsoon precipitation trends of the seven zones of India 

based on short- and long-term time series. In Figures 4.2 and 4.3, the solid (red) line indicates the 

short-term trend (30-year period), whereas the dotted (blue) line indicates the long-term trend of the 

whole 156-year period. On the basis of long-term series of precipitation, zones NMI, NCI and NEI 
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show a negative trend line, whereas zones NWI, WPI, EPI and SPI indicate a positive trend line for 

the 156-year precipitation time series.  

In past studies, drastic changes were found in climatic parameters in the most recent 30-year climate 

period (1981-2010) (Gosain et al. 2006; Kahya and Kalaycı 2004; Mirza et al. 1998; Pandey et al. 

2016). In this study, negative trend lines were found in the last climatic period (C5) (1971–2006) for 

zones NMI, NWI, NCI and SPI. However, positive trend lines were found for zones NEI, WPI and 

EPI for the C5 period based on annual time series (Figure 4.2). Positive linear trends were found 

over zones NWI, WPI, EPI and SPI, with the other zones (NMI, NCI and NEI) indicating a negative 

trend for long-term monsoon series (Figure 4.3). For the C5 time period, most of the zones (NMI, 

NWI, NCI, NEI and SPI) indicate a negative trend line for monsoon series. 

4.3.3 Sequential Trend Analysis of Annual and Monsoon Series 

In order to examine the trend, the sequential MK test was applied on the annual and monsoon 

precipitation series. In Figure 4.4, the Z value is shown for annual and monsoon based data (spring, 

summer, monsoon and autumn) for each zone. Trends were examined at the 0.05 (5%) significance 

level of a two-tailed test. The standard value of Z at a significance level of 0.05 (5%) is ± 1.96; in 

Figure 4.4, the straight dotted lines indicate the upper bound (Z = +1.96) and lower bound (Z = –

1.96). The SQMK Z values greater than the upper bound indicate a positive trend, whereas Z values 

beyond the lower bound indicate a negative trend. In Table 4.5 it may be seen that for the monsoon 

season there is a positive trend in zones NMI (Z = +2.93) and NEI (Z = +1.53), whereas a negative 

trend was found for zones WPI (Z = –2.23) and SPI (Z = –1.11). For the annual series, zone NMI 

shows a positive trend (Z = +1.91), whereas in zones EPI (Z = –1.64), SPI (Z = –1.70) and WPI (Z 

= –2.71), a negative trend was found. The sequential MK test was applied separately to the 

decomposed series (detail and approximation components) of annual, monsoon and monthly 

precipitation series.  

Trend analysis of annual and monsoon time series shows a similar type of trend for most of the 

zones. Similarity of trend depend on the contribution of average monsoon rainfall to annual rainfall. 

For example, for zone SPI, the trend deviation for annual and monsoon series is large because the 

contribution of average monsoon rainfall is around 59.5% of the average annual rainfall. At the same 

time, the zone having a higher contribution of average monsoon rainfall with respect to average 

annual rainfall shows similar trend, for example NWI (88.8%) and NCI (84.7%). 
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Figure 4.2: Long term and short term linear trend based on annual precipitation series of each zones 

(red line indicate the short term trend of 30 years period whereas blue dotted line indicate the long 

term trend of whole period) 
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Figure 4.3: Long term and short term linear trend based on monsoon precipitation series of each 

zones (red line indicate the short term trend of 30 years period whereas blue dotted line indicate 

the long term trend of whole period) 
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Figure 4.4: Annual and monsoon Sequential MK test (Z value) plot for each zone 
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4.3.4 Trend analysis using Discrete Wavelet Transform (DWT)  

In this study, the Daubechies (db) wavelet was used because it is the most common smooth mother 

wavelet for hydro meteorological study. The relatively large number of data points used in this study 

were from the monthly, annual and seasonal datasets. Analysis was carried out for the period 1851–

2006, on annual and average monsoon data points of 156 years; there were 1872 (12  156) data 

points for the monthly sets. First, the decomposition level was determined to avoid unnecessary 

levels of data decomposition of these larger datasets. This level of decomposition is based upon the 

number of data points and the mother wavelet used Artigas et al. (2006):  

 2[ / 2 1 ]logL n v                                                      ….. (4.21) 

Where, v is the number of vanishing moments of a db wavelet, n is the number of data points, and L 

is the maximum decomposition level. The maximum level of decomposition is shown in Table 4.2 

for monthly, annual and seasonal datasets.  

Table 4. 2: Maximum level of decomposition level proposed for monthly and yearly series (1851–2006) 

Series Mother wavelet 

 db5 db6 db7 db8 db9 db10 

Monthly  7 7 7 6 6 6 

Yearly  4 3 3 3 3 3 

Seasonal  4 3 3 3 3 3 

In order to analyse the trend detection, smoother db wavelets (db5–db10) were applied on the 

monthly and annual datasets. The selection of smoother wavelets was preferred in this study because 

the trends are supposed to be gradual and represent slowly-changing processes.  

The criterion used to determine the smooth mother wavelet and the extension mode of db wavelets 

for the analysis was the mean relative error (MRE) (de Artigas et al. 2006; Joshi et al. 2016; Nalley 

et al. 2012). The mean relative error (MRE) was calculated by: 

1

1
MRE

n
j j

j j

a x

n x


                                                               ……. (4.22) 

Where, 𝑥𝑗 is the original data value, and 𝑎𝑗  is the approximation of 𝑥𝑗. In the results, it was found 

that there were no significant differences in value of MRE. The second criterion is the relative error 

(Er), proposed by (Nalley et al. 2012; Nalley et al. 2013). The lowest value of Er, based on 
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approximation of the MK test Z value, was examined for each extension mode of the smooth db 

wavelets. The relative error is calculated by: 

a o

r

o

Z Z
E

Z


                                                                      (4.23) 

Where, 𝑍𝑎 is the Z value (MK test) of the last approximation for the decomposed level used, and 𝑍𝑜 

is the MK test Z value of the original data. The results of MRE and Er calculations are given in Table 

4.3 and Table 4.4 for monthly and annual values, respectively. In the results, it was found that the 

db10 wavelet showed the lowest value of MRE and Er for monthly datasets, whereas the db6 

wavelets was found more suitable for annual data. 

Table 4.3: Mean Relative Error (MRE) and Relative Error (Er) at different decomposition level for 

AI monthly series (1851-2006) 

Wavelet db5 db6 db7 db8 db9 db10 

L 7 7 7 6 6 6 

MRE 4.1264 4.1394 4.1401 4.1379 4.1323 4.1336 

Er 14.942 14.392 11.811 11.935 13.358 10.262 

 

Table 4.4: Mean Relative Error (MRE) and Relative Error (Er) at different decomposition level for 

AI annual series (1851-2006) 

Wavelet db5 db6 db7 db8 db9 db10 

L 4 3 3 3 3 3 

MRE 0.1138 0.1095 0.1101 0.1097 0.1094 0.1100 

Er 2.154 1.525 1.727 1.584 1.777 1.605 

Figures 4.5 and 4.6 show the decomposed level for annual and monthly time series using the DWT 

method. It can be seen in Figures 4.5 and 4.6 that more detailed decomposed levels have lower 

frequencies, which shows the change in periodicity. The approximation components (a3 and a6) 

show the long-term change in trend. 

 



70 

 

 

Figure 4.5: Decomposition of original annual precipitation series of AI in to 3 levels (d1-d3) and 

approximation (a3)  

 

 
Figure 4.6: Decomposition of original monthly precipitation series of AI in to 6 levels (d1-d6) and 

approximation (a6) 
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4.3.5 Trend Analysis of Decomposed Annual, Monsoon and Monthly Series 

Each annual and seasonal time series was decomposed into three detailed components (d1–d3) and 

one approximation (a3), and the monthly series was decomposed into six components (d1–d6) and 

one approximation (a6). Each detailed component represents the 2n (dyadic translation) fluctuations, 

where n is the level of detailed components. For annual and monsoon detailed series d1, d2 and d3 

represent the 2-year, 4-year and 8-year periodicity, respectively. The approximate component of the 

wavelet transform represents the high-scale function of the time series. Moreover, it is the low 

frequency component of the time series and is used to find the key points of the time series to loose 

minimum potential information (He et al. 2016). For this study, a3 is found as the end point for 

deriving the optimal (maximum/ minimum) local points of precipitation time series of India. 

Therefore, for monthly series, detailed components d1, d2, d3, d4, d5 and d6 represent the 2-, 4-, 8-

, 16-, 32- and 64-month periodicity, respectively.   

A comparison was carried out between the original series and the combination of decomposed series. 

The values of evaluation parameters, coefficient of determination (R2) and Nash-Sutcliffe efficiency 

coefficient (NS), are given in Table 4.5. Table 4.5 indicates that only a few zones showed a 

significant trend, for example WPI for annual rainfall, and NMI for both annual and monsoon season 

rainfall. Zone WPI indicates a negative trend for annual and monsoon season, whereas a positive 

trend was detected for the NMI monsoon season. It was interesting to see the significant trend in 

decomposed components, where the original series did not show a significant trend, e.g. NMI, NEI 

(monsoon), EPI and SPI zones (Table 4.5). In general, combinations of detailed and approximation 

series indicated an increase in MK test Z value as compared to single detailed series (without 

approximation series) and original series. The results shown in Table 4.5 imply that the combination 

of detailed and approximation series mainly contributed to trend in the original series. However, all 

the decomposed components of periodicity did not have much influence on trend of the original 

series. 

While analysing the Z value of the individual detailed series and the combination of detailed and 

approximation series, it was noticed that individual detailed series did not show the closeness to the 

original series (excluding zone NCI for the d1 series) although all zones were examined for 

significant trend, which was found in WPI and NMI (monsoon). However, in all the cases, the 
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combination of d1+a3 showed the nearest Z value to the original series (annual and monsoon 

precipitation time series). 

Hence, it is clear that the approximation component carries the trend components and affects the 

trend in the original series, which is similar to the results mentioned by Nalley et al. (2012), in 

analysing the Quebec and Ontario (Canada) region. For example, for the NMI zone (Z = +1.91) the 

detailed series (d1) Z value is 0.20, whereas for the combination series (d1+a3) it is 2.68, which also 

shows a significant trend. Nalley et al. (2012) proposed a two-step method to identify the most 

effective periodic components in contributing to trend in the original series. In the first step, the 

SQMK approach is applied to check the progressive trend line of each individual detailed series and 

combinations of detailed and approximation series with respect to original time series. Thus, the 

detailed series, or combination of detailed and approximation series could be identified that follow 

the same trend as the original data. In the second step, the MK test Z value of the detailed series and 

combinations of detailed and approximation series are compared with the Z value of the original 

time series, and the closet values identified. The component(s) that satisfy these two tests are 

considered as the most dominant components that affect the trend.  

In this study, the combination of detailed components and combinations with approximations were 

evaluated to identify the most influential component of the trend (Nalley et al. 2012). While 

analysing the Z value of the different combinations, it was noticed that combination of two or more 

detailed components with the approximation component significantly increased the Z value of the 

series. However, these combinations do not play any crucial role in the decision making, as Z value 

is far away from the Z value of the original series, and at the same time the SQMK graph does not 

match.  Hence, we considered a combination of single detailed components with approximation 

series for comparison of Z values and SQMK graph (Figures 4.7–4.9, Tables 4.5–4.6).  

In this study, the most periodic component was identified as d1 that contributed a 2-year periodicity 

trend (with addition to the approximation series) for annual and monsoon series over the study area 

(Table 4.5, Figures 4.7 and 4.8). This indicates that d2 (4-year periodicity) and d3 (8-year 

periodicity) did not contribute much in the trend of the annual and monsoon season rainfall in the 

study area. 
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Figure 4.7: Changes in trend along the time for annual original series and combination of detail and 

approximation series 

-10

-5

0

5

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

AI (Annual)

Annual D1+A3
D2+A3 D3+A3

-6

-4

-2

0

2

4

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

NCI (Annual)

Annual D1+A3
D2+A3 D3+A3

-4

-2

0

2

4

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

NMI (Annual)

Annual D1+A3
D2+A3 D3+A3 -4

-2

0

2

4

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e
Year

NEI (Annual)

Annual D1+A3
D2+A3 D3+A3

-10

-5

0

5

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

WPI (Annual)

Annual D1+A3
D2+A3 D3+A3

-10

-5

0

5

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

EPI (Annual)

Annual D1+A3
D2+A3 D3+A3

-10

-5

0

5

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

NWI (Annual)

Annual D1+A3
D2+A3 D3+A3 -10

-5

0

5

1851 1876 1901 1926 1951 1976 2001

Z 
V

al
u

e

Year

SPI (Annual)

Annual D1+A3
D2+A3 D3+A3



74 

 

  

  

  

  

Figure 4.8: Changes in trend along the time for monsoon original series and combination of detail 

and approximation series 
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Figure 4.9: Changes in trend along the time for monthly series and combination of detailed and 

approximation series 
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Table 4.5: MK test (Z value) for original precipitation series (O) and combination of detailed and approximation series with coefficient 

of determination (R2) and Nash Sutcliffe (NS) value  

Region 
Annual Monsoon 

O D1 D2 D3 D1+A3 D2+A3 D3+A3 O D1 D2 D3 D1+A3 D2+A3 D3+A3 

NMI 

R2  0.00 0.10 0.00 0.02 0.12 0.17  0.00 0.10 0.00 0.59 0.54 0.54 

NS  -48.11 -48.38 -47.79 -0.82 0.03 0.16  -48.42 -48.45 -47.74 0.59 0.54 0.28 

Z 1.91 0.20 0.03 -0.10 2.68* 2.88* 3.57* 2.94* 0.01 -0.20 -0.04 3.80* 4.00* 4.50* 

NWI 

R2  0.30 0.05 0.10 0.67 0.34 0.26  0.30 0.04 0.07 0.69 0.36 0.36 

NS  -33.83 -32.51 -32.41 0.67 0.34 0.26  -32.01 -32.53 -32.41 0.69 0.36 0.24 

Z -0.82 0.21 -0.14 0.04 -1.03 -1.79 -1.83 -0.51 0.24 0.00 -0.05 -0.49 -1.01 -1.06 

NCI 

R2  0.19 0.03 0.08 0.65 0.37 0.21  0.19 0.03 0.05 0.62 0.45 0.45 

NS  -65.54 -64.46 -64.36 0.65 0.37 0.21  -63.94 -64.44 -64.36 0.62 0.45 0.24 

Z 0.28 0.20 0.12 -0.65 0.37 0.86 0.74 0.52 0.11 0.10 -0.29 0.63 0.81 0.81 

NEI 

R2  0.09 0.02 0.07 0.62 0.38 0.25  0.03 0.02 0.04 0.60 0.34 0.34 

NS  -142.54 -141.58 -141.77 0.62 0.38 0.25  -141.31 -141.49 -141.77 0.60 0.34 0.31 

Z 0.33 -0.02 -0.66 -0.19 0.40 0.17 0.20 1.53 0.02 -0.43 0.15 2.08* 2.94* 2.36* 

WPI 

R2  0.19 0.07 0.07 0.65 0.45 0.33  0.17 0.06 0.05 0.65 0.42 0.42 

NS  -36.37 -35.34 -35.33 0.65 0.45 0.33  -34.96 -35.33 -35.35 0.65 0.42 0.28 

Z -2.71* -0.19 0.19 0.12 -3.73* -4.09* -4.41* -2.23* -0.09 0.13 0.06 -3.17* -3.76* -4.29* 

EPI 

R2  0.27 0.03 0.07 0.74 0.35 0.26  0.16 0.00 0.03 0.74 0.34 0.34 

NS  -56.08 -54.89 -54.71 0.74 0.35 0.26  -54.48 -54.86 -54.77 0.74 0.34 0.32 

Z -1.64 -0.07 0.17 0.00 -1.87 -2.41* -3.29* -1.33 -0.22 0.17 -0.04 -1.58 -1.96* -2.42* 

SPI 

R2  0.16 0.09 0.06 0.64 0.38 0.31  0.07 0.04 0.02 0.69 0.32 0.32 

NS  -72.83 -71.74 -71.96 0.64 0.38 0.31  -71.63 -71.83 -71.94 0.69 0.32 0.23 

Z -1.70 -0.13 -0.31 0.03 -2.98* -3.32* -4.07* -1.11 -0.55 -0.23 0.05 -1.50 -2.17* -2.32* 

(*indicate the trend at 5% significance level, bold format indicate the most effective periodic components)
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Table 4.6: MK test (Z value) for monthly series, detailed components (D1-D6), approximation (A3) 

and combination of detailed and approximation 

Monthly Series (1851-2006) 

 NCI NWI EPI NMI SPI WPI NEI 

Original -0.70 -1.22 -0.77 -0.86 -1.37 -1.35 0.00 

D1 0.30 -0.28 -0.04 0.33 -0.16 0.11 -0.12 

D2 0.13 0.09 0.01 0.46 0.05 0.12 -0.02 

D3 -0.22 -0.03 0.01 -0.42 -0.11 0.10 -0.16 

D4 0.04 0.34 0.49 0.42 0.11 0.21 0.28 

D5 0.07 0.13 0.35 -0.52 0.42 0.23 -0.17 

D6 -0.16 -0.21 0.39 0.70 1.20 0.36 -0.55 

A6 3.65* -5.27* -11.72* 12.50* -20.85* -16.73* 2.32* 

D1+A6 0.88 -1.40 -2.56* 2.68* -3.40* -3.72* 0.95 

D2+A6 0.44 -0.59 -2.34* 1.76 -2.71* -2.77* 0.61 

D3+A6 0.03 -0.50 -0.94 0.70 -1.65 -1.39 0.12 

D4+A6 1.11 -2.62* -5.53* 5.96* -7.33* -7.70* 2.02* 

D5+A6 0.90 -2.93* -7.75* 7.52* -9.98* -12.12* 0.94 

D6+A6 2.75* -5.00* -9.52* 10.41* -11.75* -14.42* 0.64 

*values indicate the trend at 5% significance level, bold format indicate the most effective periodic component 

 

Zone-wise MK test Z values for monthly series from 1850 to 2006 (1872 data points) for the study 

area can be seen from Table 4.6. There was no significant trend in the study area for the original 

monthly time series. In general, the most dominating periodicity was d3 (with approximation series), 

except in zones NWI (d1) and NEI (d2). Hence, the 8- month periodicity was the most influencing 

parameter for estimating rainfall trends in the study area (Figure 4.9). The results also emphasize 

the usefulness of monthly trend analysis along with decomposed components using wavelet 

techniques as in the present study. Monthly analysis seems important because the periodicity was 

found less than the annual data. 
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4.3.6 Visualization and Thresholding of Precipitation Extreme Events  

In order to analyse the contributing events for extreme events the method of wavelet analysis is very 

valuable to decompose the original time series into different frequencies, retaining information in 

the time domain (Chou 2011; Labat 2005; Nalley et al. 2013). Figure 4.10 presents an example of 

normalized annual precipitation time series of zone WPI; in the bottom panel the horizontal (blue, 

red and green) lines represent the three selected thresholds for both positive and negative positions. 

These thresholds were selected based on the standard deviation (‘S’ in Figures 4.10 and 4.11) of the 

original precipitation series. Figure 4.10 clearly shows that the number of exceedance events 

decreases as the threshold increases. Figure 4.11 shows a visualization of the extreme value of 

monsoon precipitation at fixed threshold values over the WPI zone. In Figures 4.10 and 4.11, black 

represents non-exceedance properties of the series. The approach adopted in the present study is 

inspired by the work of Keylock (2007), but applies to time series of precipitation data. The method 

could be generalized to gain frequency information from the precipitation time series. An inspection 

of Figure 4.10 shows that the exceedance of 1.5S at t = 20 (negative fluctuation) is a different type 

of event to that at t = 65 (positive fluctuation). The different shades indicate the different frequency 

fluctuations. Keylock (2007) stated that “the former arises due to relatively small high frequency 

fluctuations superimposed on a large, low frequency positive departure from the mean. The latter is 

a sudden and dramatic excursion from the mean that is not superimposed on an obvious larger scale 

fluctuation”. Therefore, it helps to visualize this information in a clear manner so that the scales of 

events that actively contribute to an extreme event can be determined.  
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Figure 4.10:  Visualization of detailed 

component (D1) extreme value of annual 

precipitation at different threshold values of 

standard deviation (S) over WPI zone of India 

(red line, green line and blue line indicated the 

threshold value at 0.5,1.0 and 1.5 times of 

standard deviation of the observed series 

respectively) 

 
Figure 4.11: Visualization of extreme value of 

monsoon precipitation at fixed threshold values 

over WPI zone of India, where blue lines in D1, 

D2 and D3 indicate the threshold values 

(standard deviation of the original series) 
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4.4 LOCAL SCALE STUDY: UPPER NARMADA BASIN  

In the present study, 16 stations of Upper Narmada river Basin (UNB), a humid subtropical region 

of India considered as a local study area. Spatial and temporal variation in meteorological data 

(precipitation, mean temperature and reference evapotranspiration) at UNB stations were analysed 

based on monthly seasonal and annual series of 102 years (1901-2002). 

4.4.1 Assessment of Mean Annual Precipitation and Temperature 

In recent years, there are many trend studies of hydro-meteorological data over the basin, but there 

are very limited studies based on trend of extreme values. Therefore, a detailed trend analysis was 

carried out of annual extreme events of precipitation and temperature series applying Innovative 

Trend Analysis (ITA) for sustainable water management development in terms of climate change. 

Moreover, Discrete Wavelet Transform (DWT), a relatively new tool in hydro-climatology was 

applied to identify and visualization of extreme events. Also the, Sequential Mann-Kendall (SQMK) 

and cumulative sum charts (CUMSUM) were used to determine the year when significance variation 

occurred in precipitation and temperature at 16 stations of Upper Narmada river basin. In general, 

goal of this section are (1) trend analysis using based on monthly, seasonal and annual time series, 

(2) trend in annual extreme values (low, medium and high) applying ITA, (3) comparison of ITA 

against nonparametric tests (Mann-Kendall and Sen’s Slope estimator), (4) visualization of extreme 

events applying DWT, (5) to quantitavely detect the shift year of precipitation and temperature using 

SQMK.  

 4.4.1.1 Spatial-temporal variation  

Temporal-spatial variations of meteorological series shown in Figure 4.12 (a-b) by box-whisker plot. 

The primary statistical parameters such as mean, standard deviation (SD), coefficient of variation 

(CV), skewness (CS), and kurtosis (CK) for 16 stations of Upper Narmada river basin were computed 

for annual precipitation and annual mean temperature series of 102 years (1901-2002) (Table 4.7). 

Figure 4.12 (a) indicates the variation of the annual precipitation through box-whisker plot of the 16 

districts of UNB. Figure 4.12(a) indicates the similar precipitation variability at 25th, 50th and 75th 

percentile for northern stations (Jabalpur, Katni, Kawardha, Damoh, Seoni and Umaria). The mean 

annual precipitation is decreasing from south-east districts (Balaghat, Dindori, and Mandla) to north-

west districts (Hoshangabad, Narsimhpur, Raisen and Chhidwara). Station Bilaspur in Figure 

4.12(a) indicates the substantially lowest precipitation variation as compared to other stations 
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because of rain shadow region (leeward side) of mountain Satpura range. It can be observed from 

Figure 4.12(a) that outliers appear at the upper side in most of the stations. Table 4.7 shows the mean 

annual precipitation varied from 736 mm (Bilaspur) to 1417 mm (Mandla). Therefore standard 

deviation varied from 176.78 mm to 299.81 mm for Bilaspur and Raisen respectively. The skewness 

parameter represents the measure of asymmetry in a frequency distribution around the centre point. 

Kurtosis indicates the measure, whether the data are peaked or flat relative to a normal frequency 

distribution. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp 

peak, it varies from -0.07 (Shahdol) to 0.63 (Raisen) mean annual precipitation. The coefficient of 

variation (CV) represent the ratio of standard deviation to mean of the data series. The CV varies 

between about 15 % (Dindori) to 25% (Raisen) station for annual precipitation (Table 4.7). Figure 

4.12 (b) indicates the variation of the annual mean temperature through box-whisker plot of the 16 

districts of UNB. Mean temperature over the study area is about 25.21±0.40oC (mean ± standard 

deviation). Most of the western stations (Chhidwara, Damoh, Kawardha, Hoshangabad, Raisen) 

indicate the similar variability at 25th, 50th and 75th   percentile in Figure 4.12(b). Southern part of 

the UNB districts are covered by forest and vegetation. Therefore annual mean temperature of 

southern stations are low, in comparison to other parts of the area.  It can be observed from Figure 

4.12(b) that outliers appear at the upper and lower, both side in most of the stations. Table 4.7 show 

the highest and lowest annual mean temperature of 102 years (1901-2002) experienced in Balaghat 

(26.52oC) and Bilaspur (24.24oC), respectively. The coefficient of variation varies between 1.98% 

(Bilaspur) to 1.51% (Jabalpur) station for annual mean temperature.  

4.4.1.2 Serial autocorrelation test  

Auto serial correlation test at lag-1 was performed for annual and seasonal meteorological data 

(precipitation and mean temperature) to check the serial correlation in the series. To eliminate the 

effect of serial correlation, pre whitening could be used in the time series, before applying the MK 

test.  

Annual precipitation series of UNB indicates the positive and negative correlation coefficient within 

the critical range (Zc = ±1.96) whereas annual mean temperature indicate positive correlation 

coefficient (Figure 4.13). Therefore serial autocorrelation were obtained only for annual and autumn 

mean temperature series. Figure 4.13 indicates the strongest and weakest autocorrelation for Raisen 

and Balaghat, respectively for both annual and autumn mean temperature series. Pre-whitening was 
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applied before using the MK test. Therefore, time series used for MK test to detect the trend and 

Sen’s slope to estimate the rate of change at 16 stations of UNB. 

 

Figure 4.12: (a). Box-whisker plot of annual precipitation and, (b). Box-whisker plot of annual mean 

temperature of 16 districts of Upper Narmada river basin  

(Note: The blue boxes indicate the 25th, 50th, 75th percentiles. Whisker upper/ lower red plus sign indicate the outlier, 

and red line in box indicate the mean value) 
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Figure 4.13: Lag-1 serial autocorrelation for (a) annual precipitation and (b) annual mean 

temperature of Upper Narmada Basin stations 

 (Note: Red dotted line indicate the critical value (± 1.96) of upper and lower bound at 5 % significance level) 
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4.4.1.3 Trend detection of mean monthly series  

MK test was applied on the original meteorological series without considering the pre-whitening 

and block bootstrap process assumptions, in order to retain the originality of the monthly time series. 

Trend detection was carried out based on the null hypothesis, at 1% (α = 0.01), 5% (α = 0.05), 10 % 

(α = 0.10) of two tailed significance level. 

The trends of mean monthly long term precipitation series of the 16 stations of UNB are mentioned 

in Table 4.7. It can be seen, that most of the month such as January, February, April, June, August, 

September, October, November, and December were not indicated the significant trend for any 

stations for mean monthly precipitation series (Table 4.7). However, most of the stations (81.25%) 

exhibit the significant negative trend in the month of July for long term mean monthly precipitation 

(1901-2002). Stations Balaghat, Bilaspur and Mandla were not show trend at any significant level. 

Moreover, Bilaspur station experienced the positive trend for month of March and May. In general, 

monsoon precipitation may decrease because of decreasing trend of July, one of contributing months 

in monsoon precipitation over UNB. 

Figure 4.14 indicates the trend variability of long term mean monthly temperature (1901-2002) over 

the central India. In this context, results of the significant trend for UNB stations were summarized 

in Figure 4.14. This figure shows significant trend in the month of February, March, July, August, 

November and December as other six months (January, April, May, June, September, and October) 

seem to have no significant trend. Moreover all the stations did not exhibit trend at any significance 

level in the months of January, April, May, June, September, and October. However, all stations 

experienced the positive changes in February, March, November and December. While Bilaspur 

exhibit the negative trend for the month of July and August at 1% and 5% significance level. In 

general, rising trend in November and December indicate a warm autumn season.
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Table 4.7: MK-Z value of annual precipitation series (1901-2002) for 16 stations of UNB 

Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Balaghat 1.058 -0.555 -0.093 0.200 0.231 -1.451 -1.449 0.445 -0.700 0.844 -0.173 -0.535 

Bilaspur -0.694 1.110 2.047** 0.150 1.793* 0.312 1.070 0.243 0.341 0.821 0.541 -0.732 

Chhindwara 0.734 0.017 0.043 -0.679 1.015 -1.122 -2.059** 1.133 -0.613 0.708 -0.382 -0.373 

Damoh 0.940 -0.272 -0.116 -0.283 1.414 1.064 -2.232** 0.468 -1.018 1.151 -0.272 0.231 

Dindori 1.318 -1.272 -0.471 0.477 0.570 -0.532 -1.668* -0.434 -0.422 0.584 -0.084 -0.234 

Hoshangabad 0.873 0.252 0.278 -1.024 1.665* -0.411 -2.064** 1.573 -1.168 1.162 -0.292 -0.101 

Jabalpur 0.838 -0.301 -0.506 0.084 0.853 0.231 -1.943* 0.561 -0.867 0.674 -0.220 -0.211 

Katni 1.081 -0.382 -0.593 0.483 1.021 0.723 -2.169** -0.075 -0.677 0.610 -0.197 -0.012 

Kawardha 1.081 -0.382 -0.593 0.483 1.021 0.723 -2.169** -0.075 -0.677 0.610 -0.197 -0.012 

Mandla 1.087 -0.879 -0.448 0.379 0.289 -0.439 -1.532 0.318 -0.561 0.549 0.075 -0.249 

Narsimhapur 0.593 -0.072 -0.095 -0.862 1.050 -0.069 -2.151** 1.454 -1.139 0.798 -0.422 -0.081 

Raisen 0.833 0.121 0.506 -0.668 1.558 0.202 -1.770* 1.451 -1.290 1.229 -0.159 -0.006 

Sagar 0.685 -0.306 0.373 -0.194 1.709* 0.567 -1.816* 1.133 -1.081 1.402 -0.306 0.249 

Seoni 0.755 -0.364 -0.052 -0.171 0.390 -0.723 -1.671* 0.966 -0.613 0.691 -0.124 -0.220 

Shahdol 1.382 -0.520 -0.625 0.755 1.258 1.480 -1.885* -1.278 -0.093 0.879 -0.081 0.081 

Umaria 1.376 -0.896 -0.775 0.639 0.619 0.492 -2.076** -0.538 -0.492 0.604 0.159 -0.084 

Note: ***’, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the significance level of trend, where positive and negative 

values show the increasing and decreasing trend, respectively. 
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Figure 4.14: Monthly trend variability of annual mean temperature at 10%, 5% and 1% significance level 

 (Note: Month January, April, May, June, September and October were not included in figure, because of No significant trend at the station during these months)
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4.4.1.4 Trend detection of seasonal series 

In this section, trends in precipitation and temperature are summarized in Table 4.8 and 4.9 based on 

four seasons i.e. spring (January-March), summer (April-June), monsoon (July-September) and 

autumn (October-December). 

Precipitation is the main source of water for agriculture, river discharge, domestic purpose and 

hydropower. Flood is main natural disaster which occur in the monsoon season due to concentrated 

rainfall over the area. However, severity and frequency of flood reduced from south-east to north-

west stations of UNB. The seasonal precipitation trend over 16 stations identified by the three 

methods are given in Table 4.8. None of the stations exhibit significant trend for spring and autumn 

precipitation over UNB. However, most of stations indicate insignificant trend for monsoon and 

summer. Station Bilaspur show the increasing trend (α = 0.05) for summer season, while Balaghat, 

Dindori, Kawardha and Mandla indicate the downward trend (α = 0.01, 0.05, 0.1) for monsoon 

precipitation. Therefore decreasing trend of annual precipitation at Balaghat and Dindori stations 

(Table 4.8) is due to monsoon negative trend (Table 4.8). Moreover, Balaghat, Dindori, Jabalpur, 

Kawardha,Mandla, Seoni and Umaria indicate the negative sign by all the three methods (MK, Sen’s 

Slope and ITA) for spring, summer, and monsoon season. Stations Hosangabad, Raisen and Sagar 

exhibit the same trend sign (positive and negative) for all the seasons by all three methods. 

The mean temperature trend over the four seasons, spring (January-March), summer (April-June), 

monsoon (July-September) and autumn (October- December) were identified (Table 4.9). Spring 

mean temperature exhibits significant increasing trends (99% confidence level of two tailed test) at 

the all stations of UNB. Moreover most of stations were also exhibit the strong positive trend at 1% 

of significance level in autumn season, only at Bilaspur station indicate the positive trend at 5% of 

significance level. In summer season, five stations (Bilaspur, Chhidwara, Hoshangabad, Raisen and 

Sagar) indicate the upward trend over the region. Among all the significant stations in all the seasons, 

only Bilaspur station indicate negative trend (at 99 % confidence level) for monsoon season. 

However, Bilaspur station is the only station which shows significant trend for all the season; 

significant positive trend for spring, summer and autumn, and significant negative trend for monsoon 

season, which is opposing the overall annual trend (Table 4.9). In general, annual positive trend 

(Table 4.9) of all the significant stations are mainly influenced by spring and autumn seasonal trend.    
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Table 4.8: Mann-Kendall (MK-Z), Sen’s Slope (β) and ITA indicator (D) test results for seasonal precipitation over 1901–2002 

Stations 
Spring  Summer  Monsoon  Autumn 

β MK-Z D  β MK-Z D  β MK-Z D  β MK-Z D 

Balaghat -0.005 -0.104 -2.236  -0.032 -0.364 -0.888  -1.585 -2.238** -0.519  0.140 0.931 0.085 

Bilaspur 0.010 0.116 -0.013  0.169 2.099** 2.561  0.308 0.619 0.590  -0.018 -0.275 0.524 

Chhindwara 0.006 0.110 -1.653  0.004 0.014 -0.753  -0.971 -1.388 -0.508  -0.004 -0.012 -0.943 

Damoh 0.012 0.208 -0.371  0.020 0.439 -0.697  -0.398 -0.515 -0.388  0.104 0.729 0.950 

Dindori -0.024 -0.249 -1.933  -0.028 -0.272 -1.169  -1.339 -2.070** -0.511  0.152 0.977 0.008 

Hoshangabad 0.023 0.668 0.205  0.038 0.688 -0.394  -0.752 -0.960 -0.596  -0.023 -0.107 -0.654 

Jabalpur -0.031 -0.347 -1.666  -0.002 -0.006 -0.922  -0.533 -0.885 -0.246  0.055 0.338 -0.295 

Katni -0.015 -0.139 -1.334  0.006 0.098 -0.837  -0.606 -0.919 -0.346  0.080 0.596 0.065 

Kawardha -0.017 -0.208 -1.981  -0.022 -0.243 -0.849  -1.487 -2.868*** -0.575  0.125 0.960 -0.028 

Mandla -0.034 -0.324 -2.026  -0.032 -0.295 -1.123  -1.067 -1.770* -0.382  0.131 0.682 -0.170 

Narsimhapur 0.004 0.098 -1.245  0.013 0.220 -0.751  -0.571 -0.798 -0.286  0.003 0.017 -0.202 

Raisen 0.016 0.445 0.764  0.047 0.983 -0.382  -0.881 -0.804 -0.545  0.054 0.477 0.591 

Sagar 0.016 0.330 0.319  0.034 0.937 -0.349  -0.421 -0.463 -0.366  0.097 0.804 1.451 

Seoni -0.029 -0.359 -2.221  -0.029 -0.353 -0.958  -1.019 -1.475 -0.363  0.069 0.318 -0.437 

Shahdol 0.009 0.110 -0.450  0.020 0.376 -0.567  -0.690 -0.943 -0.513  0.131 1.104 0.745 

Umaria -0.019 -0.156 -1.491  -0.014 -0.168 -1.147  -0.680 -1.041 -0.426  0.096 0.694 0.048 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the significance level of trend, where positive and negative 

values shows the increasing and decreasing trend, respectively. 
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Table 4.9: Mann-Kendall (MK-Z), Sen’s Slope (β) and ITA indicator (D) test results for seasonal temperature over 1901–2002 

Stations 
Spring  Summer  Monsoon  Autumn 

β MK-Z D  β MK-Z D  β MK-Z D  β MK-Z D 

Balaghat -0.857 3.475*** 0.253  0.429 1.457 0.098  0.160 0.575 0.029  0.692 4.111*** 0.294 

Bilaspur -0.885 2.764*** 0.448  1.067 2.816*** 0.230  -0.753 -3.241*** -0.076  0.323 1.928* 0.116 

Chhindwara -0.787 3.204*** 0.258  0.500 1.663* 0.100  0.117 0.457 0.012  0.692 3.641*** 0.319 

Damoh -0.725 2.851*** 0.277  0.499 1.596 0.101  -0.147 -0.596 -0.030  0.687 3.835*** 0.358 

Dindori -0.840 3.626*** 0.290  0.358 1.324 0.099  0.015 0.052 0.012  0.776 4.797*** 0.357 

Hoshangabad -0.792 2.755*** 0.259  0.575 2.114** 0.107  0.083 0.309 -0.002  0.913 4.475*** 0.359 

Jabalpur -0.783 3.394*** 0.279  0.438 1.475 0.103  -0.087 -0.353 -0.013  0.712 4.170*** 0.350 

Katni -0.733 3.261*** 0.280  0.401 1.451 0.108  -0.152 -0.575 -0.021  0.696 4.193*** 0.364 

Kawardha -0.880 3.672*** 0.269  0.427 1.486 0.100  0.155 0.688 0.031  0.707 4.375*** 0.322 

Mandla -0.822 3.533*** 0.272  0.411 1.272 0.101  0.005 0.040 0.007  0.716 4.457*** 0.331 

Narsimhapur -0.847 3.227*** 0.299  0.490 1.556 0.102  0.000 0.000 -0.009  0.676 3.589*** 0.360 

Raisen -0.854 2.828*** 0.289  0.570 1.926* 0.108  0.061 0.208 -0.016  0.743 3.495*** 0.371 

Sagar -0.768 2.735*** 0.292  0.541 1.680* 0.102  -0.097 -0.330 -0.037  0.818 3.970*** 0.358 

Seoni -0.793 3.441*** 0.264  0.461 1.501 0.101  0.035 0.142 0.012  0.684 3.976*** 0.312 

Shahdol -0.800 3.536*** 0.303  0.312 1.142 0.102  -0.092 -0.344 -0.005  0.665 4.404*** 0.375 

Umaria -0.758 3.253*** 0.290  0.345 1.394 0.110  -0.150 -0.526 -0.014  0.695 4.369*** 0.372 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the significance level of trend, where positive and negative 

values shows the increasing and decreasing trend, respectively.
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4.4.1.5 Trend detection of extreme events: Application of ITA  

Precipitation series 

In order to apply the MK test, the original meteorological series were checked for serial correlation 

considering for the pre-whitening. However, there is no serial correlation observed between annual 

series (Figure 4.13) and seasonal series. Therefore MK test was applied on the original precipitation 

series without pre-whitening and trend was analysed based on the null hypothesis theory, at 1% (α 

= 0.01), 5% (α = 0.05), 10 % (α = 0.10) of two tailed significance level. 

The results of trend by three methods, MK test (MK-Z), Sen’s slope (β) and ITA (D) for annual 

precipitation series summarized in Table 4.10. As shown in table, most of the significant trend 

stations exhibits the negative trend, except Bilaspur station (positive). Based on annual series, only 

two stations, Balaghat and Dindori showed the significate negative trend at the rate of (-) 

1.61mm/year and (-) 1.230 mm/year. Autumn and spring seasonal series, neither positive nor 

negative trends were detected for any stations at given significance level (α =0.1, 0.5, 0.01). On the 

contrary, summer indicate the positive trend for single station (Bilaspur), whereas monsoon indicate 

the negative trend for four stations (Balaghat, Dindori, Kawardha and Mandla). The negative trend 

of annual precipitation at Balaghat and Dindori stations are mainly influenced by the negative trend 

of monsoon series. The decreasing trend in precipitation series have been caused by many factors 

including the deforestation, urbanization, global warming and changes in atmospheric circulation. 

The trends of annual precipitation in the three categories (low, medium and high value) identified 

by applying the ITA method.  Figure 4.15 shows the scatter plot for annual precipitation, 1:1 (45o) 

line indicate the ‘no trend’ line, upper and lower data points of ‘no trend’ line indicate the positive 

and negative trend in the series. The annual rainfall categorized in to three class:  less than 25 

percentile data as low values, between 25 and 75 percentile as medium values and greater than 75 

percentile as high values. Figures 4.15 (a-p) show the results of ITA trend applied to the 16 stations 

of UNB of annual series. Most of the stations exhibit the overall decreasing trend for annual 

precipitation (Table 4.10). The results indicate that ITA indicator (D) for unequal across different 

precipitation categories (low, medium and high), even in contrary sign. For low and medium 

precipitation values indicate the downward trend (negative sign), for all the stations (except 

Bilaspur- medium value), as most points of low extreme and medium values fall below the 1:1 line  

shown in Figure 4.15 (a-p). At the Bilaspur station (Figure 4.15 (b)), low precipitation decrease 
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slightly, while medium and high precipitation have strong incline trend and overall increasing trend. 

Figure 4.15 (d), (g), (h),(m),(o) and (p) show general decreasing trend for low and medium values, 

while trend changes gradually negative to positive for medium to high values for Damoh, Jabalpur, 

Katni, Sagar, Shahlod and Umaria, respectively. Stations Katni, Shahdol and Umaria in Figure 4.15 

(h), (o) and (p) indicate the strong decreasing trend for low extremes, while increasing trend for high 

extreme. Significant stations (Table 4.10), Balaghat and Dindori most of the points fall below the 

‘no trend line’, indicating a marked and alike decreasing trend for all the precipitation categories 

(Figure 15 (a) and (e)). However, Figure 4.15 (f), (i) and (j) indicate the steady negative trend for all 

categories of precipitation for stations Hoshangabad, Kawardha and Mandla, respectively. 

Table 4.10: Mann-Kendall (MK-Z), Sen’s Slope (β) and ITA indicator (D) test results for annual 

extreme values of precipitation over the period 1901–2002 

Stations MK-Z β 
ITA Method (D) 

Annual Low Medium High 

Balaghat -2.174** -1.610 -0.547 -0.118 -0.697 -0.573 

Bilaspur 1.012 0.686 0.669 -0.159 0.837 0.904 

Chhindwara -1.052 -0.882 -0.575 -0.079 -0.740 -0.544 

Damoh -0.434 -0.352 -0.332 -0.769 -0.488 0.423 

Dindori -1.879* -1.230 -0.564 -0.585 -0.694 -0.280 

Hoshangabad -0.717 -0.673 -0.583 -0.574 -0.636 -0.486 

Jabalpur -0.758 -0.512 -0.322 -0.687 -0.346 0.050 

Katni -0.763 -0.571 -0.379 -1.105 -0.410 0.342 

Kawardha -0.763 -0.571 -0.594 -0.342 -0.673 -0.627 

Mandla -1.463 -1.038 -0.455 -0.393 -0.556 -0.286 

Narsimhapur -0.549 -0.438 -0.319 -0.267 -0.465 -0.051 

Raisen -0.567 -0.643 -0.477 -0.739 -0.564 -0.006 

Sagar -0.173 -0.218 -0.273 -0.801 -0.420 0.474 

Seoni -1.116 -0.865 -0.452 -0.227 -0.579 -0.334 

Shahdol -0.815 -0.745 -0.461 -1.315 -0.552 0.517 

Umaria -1.099 -0.743 -0.476 -1.089 -0.514 0.194 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the 

significance level of trend, where positive and negative values shows the increasing and decreasing trend, respectively 
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Figure 4.15: The results of ITA for annual precipitation at the 16 stations in Upper Narmada Basin, India
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Temperature Series 

Summarized results of trend by three methods, MK test (MK-Z), Sen’s slope (β) and ITA (D) for 

mean annual temperature shown in Table 4.11. Before applying the MK test, the original temperature 

series were checked for serial correlation considering the pre-whitening. However, there is serial 

correlation observed between annual series, which has already been presented in Figure 4.13(b). 

Therefore MK was applied on the ‘prewhiten’ temperature series and trend was analysed based on 

the null hypothesis theory, at 1% (α = 0.01), 5% (α = 0.05), 10 % (α = 0.10) of two tailed significance 

level.  

Most of the stations suggest the strong significant positive trend at 99% confidence level at the rate 

of about 0.44oC per decade (Table 4.11). Station Bilaspur indicate relatively weak increase trend at 

the decadal rate of 0.287oC, at 90% confidence level of two tailed test. Kawardha indicates the high 

decadal rate as 0.48oC, followed by Raisen with the rate of 0.47oC (Table 4.11). Estimation of trend 

for low (less than 25 percentile), medium (25 to 75 percentile), high (greater than 75 percentile) 

values indicate the positive trend for all the stations. Moreover, annual series indicate the overall 

positive trend by ITA method. Medium and high values show the strong positive trend as compared 

to lower values. 

Figure 4.16 shows the scatter plot for annual mean temperature, 1:1 (45o) line indicate the ‘no trend’ 

line, upper and lower data points of ‘no trend’ line indicate the positive and negative trend in the 

series. The annual mean temperature categorized in to three class:  less than 25 percentile data as 

low values, between 25 and 75 percentile as medium values and greater than 75 percentile as high 

values. Figures 4.16 (a-p) show the results of ITA trend applied to the 16 stations of UNB of annual 

mean temperature series. Most of the stations exhibit the overall strong positive trend for annual 

mean temperature (Table 4.11). The results indicate that same sign of ITA indicator (D) for all 

stations, for unequal across different mean temperature categories (low, medium and high). For low 

temperature values positive trend value is relatively low as compared to medium and high. 

Therefore, trend in medium and high values mainly contributed the overall trend for the region.   
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Table 4.11 : Mann-Kendall (MK-Z), Sen’s Slope (β) (oC/10 years) and ITA indicator (D) test results 

for annual extreme values of mean annual temperature over the period 1901–2002 

Stations MK-Z β 
 ITA method (D) 

Annual Low Medium High 

Balaghat 3.565*** 0.450 0.135 0.092 0.146 0.132 

Bilaspur 1.652* 0.287 0.096 0.055 0.091 0.119 

Chhindwara 3.184*** 0.423 0.136 0.058 0.153 0.146 

Damoh 3.407*** 0.454 0.128 0.072 0.144 0.126 

Dindori 3.542*** 0.461 0.145 0.089 0.158 0.145 

Hoshangabad 3.377*** 0.462 0.141 0.065 0.159 0.149 

Jabalpur 3.436*** 0.444 0.134 0.089 0.148 0.124 

Katni 3.647*** 0.452 0.134 0.102 0.145 0.125 

Kawardha 3.542*** 0.479 0.144 0.082 0.163 0.141 

Mandla 3.559*** 0.440 0.137 0.098 0.149 0.128 

Narsimhapur 3.154*** 0.438 0.140 0.071 0.155 0.150 

Raisen 3.189*** 0.470 0.141 0.069 0.164 0.145 

Sagar 3.119*** 0.453 0.129 0.071 0.146 0.130 

Seoni 3.354*** 0.411 0.135 0.096 0.141 0.136 

Shahdol 3.512*** 0.448 0.143 0.096 0.154 0.144 

Umaria 3.571*** 0.446 0.140 0.109 0.148 0.133 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the 

significance level of trend, where positive and negative values shows the increasing and decreasing trend, respectively
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Figure 4.16: The results of ITA for annual mean temperature at the 16 stations of Upper Narmada Basin, India

25

26

27

28

25 26 27 28

(a)

Balagha

t 22

23

24

25

26

22 23 24 25 26

Bilaspur

(b)

24

25

26

24 25 26

Chhidwara

(c)

24

25

26

27

24 25 26 27

Damoh

(d)

23

24

25

26

23 24 25 26

Dindori

(e)

24

25

26

27

24 25 26 27

Hoshangabad

(f)

24

25

25

26

26

24 24.5 25 25.5 26

Jabalpur

(g)

24

25

26

24 25 26

Katni

(h)

25

26

27

25 26 27

Kawardha

(i)

24

25

26

27

24 25 26 27

Mandla

(j)

23

24

25

26

23 24 25 26

Narsimhpur

(k)

24

25

26

27

24 25 26 27

Raisen

(l)

24

25

26

27

24 25 26 27

Sagar

(m)

24

25

26

27

24 25 26 27

Seoni

(n)

23

24

25

26

23 24 25 26

Shahdol

(o)

23

24

25

26

23 24 25 26

Umaria

(p)



96 

 

4.4.1.6 Comparative studies of ‘ITA vs MK test’ and ‘ITA vs Sen’s Slope’ 

For annual and seasonal series, trend were detected over the 16 stations of UNB by three methods: 

MK-test (MK-Z score), Sen’s slope (β) and ITA (D), to compare all the results of precipitation series 

(statistically significant and insignificant) from three methods. Figure 4.17 shows the scatter plot 

between ITA versus Z score and ITA versus SS were plotted to detect the differences in terms of sign 

of annual and seasonal precipitation test results. Figure 4.17 (a-b) shows the 80 points (16 stations 

x 5 series) from annual and seasonal precipitation series. Most of the points, 78.75% in Figure 

4.17(a) for ITA versus Z score, and 65% lies in Figure 4.17(b) for ITA versus SS, in the first and 

third quadrants (same sign of X-Y coordinate), which indicate the general acceptance of all the 

methods. However, annual and monsoon points provide the 100% agreement in the trends among 

all three methods.  

Therefore annual and seasonal temperature data indicate the strong agreement in three methods, as 

97.5% for ITA versus Z score, and 77.5% for ITA versus SS lies in the first and third quadrants. 

Moreover for annual, summer and autumn season results provide the 100% acceptance among the 

three methods. In general, the wide agreement among the all tests (MK test, Sen’s Slope and ITA) 

exhibit that the ITA method is obviously a viable and good means of precipitation and temperature 

trend analysis. 

 

  

Figure 4.17: (a) A Scatter plot between ITA versus MK-Z score (b) A Scatter plot between ITA (D) 

versus Sen’s slope 
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4.4.1.7 Visualization and thresholding of meteorological extreme events  

Discrete Wavelet Transform (DWT) is very useful tool to detect the contributing events for extreme 

value, it has the advantage to avoid the effect of noise (Maheswaran and Khosa 2012; Nalley et al. 

2013; Nourani et al. 2009; Sang 2013; Sang et al. 2016). This tool can decompose the original time 

series into different frequencies, retaining information in the time domain (Adarsh and Janga Reddy 

2015; Labat 2005; Nalley et al. 2012; Yang et al. 2016). The selection of mother wavelet and choice 

of temporal scale (level of decomposition) are the most important issues in wavelet analysis (Labat 

2005; Nalley et al. 2012; Sang et al. 2016). Selection of mother wavelet is the first task in the wavelet 

analysis. There are numbers of wavelet available to analyze the time series. Torrence and Compo 

(1998) divided the wavelet in to two categories, namely, orthogonal (Haar, Daubechies (dbN), 

Coiflets (coifN), Symlets (symN), BiorSplines (biorM.N), ReverseBior (rbioM.N), and DMeyer 

(dmey)) which can be use in discrete wavlet transform, and nonorthogonal (Morlet (morl), Mexican 

hat (Marr), and Gaussian (gaus)), which can be used in discrete wavelet transform or continuous 

wavelet transform.  

Selection of mother wavelet and temporal scale was inspired by previous studies based on 

hydrological and climatological time series. Considered on the previous studies, mother wavelet, 

Daubechies (db3) and temporal scale (decomposition level) using tool log10N (N is the historical 

data) were used in this analysis (Yang et al. 2016).  

In this case, station Balaghat was analyzed for annual precipitation and temperature. Figures 4.18(d)-

4.19(d) indicate the normalized precipitation, and normalized mean temperature of  Balaghat with 

six horizontal lines (blue, red and green) representing the three selected thresholds at both positive 

(lines upper to zero) and negative  (lower to zero) positions. These thresholds were selected based 

on the standard deviation (SD) of the original precipitation and temperature series. Figures 4.18(a-

c) and 4.19(a-c) clearly indicate that the number of exceedances events decreases as the threshold 

increases. Black color (or gray) spectrum indicate the exceedance event at different intensities 

(positive or negative), white color represent the non-exceedance properties of the series in Figures 

4.18(a-c) and 4.19(a-c). It can be observed from normalized series Figures 4.18(d)-4.19(d), only five 

and four extremes (high and low) are in the annual series beyond the 1.5SD, that can be visualized 

in the Figures 4.18(a)-4.19 (a), respectively.  
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The method could be generalized to gain frequency information from the precipitation time series. 

The different color shades (black and gray) indicate the different frequency fluctuations. Keylock 

(2007) mentioned that “the former arises due to relatively small high frequency fluctuations 

superimposed on a large, low frequency positive departure from the mean. The latter is a sudden and 

dramatic excursion from the mean that is not superimposed on an obvious larger scale fluctuation”. 

Therefore, it helps to visualize this information in a clear manner so that the scales of events that 

actively contribute to an extreme event can be determined. 

 
Figure 4.18: A 3-level decomposition of 

annual precipitation (Balaghat station) for 

considering the thresholds (SD: standard 

deviation) of 0.5SD (red line), SD (green line) 

and 1.5SD (blue dotted line) in (d), solid black 

curve indicate the normalized precipitation 

series 

 
Figure 4.19: 3-level decomposition of annual 

mean temperature (Balaghat station) for 

considering the thresholds (SD: standard 

deviation) of 0.5SD (red line), SD (green line) 

and 1.5SD (blue dotted line) in (d), solid black 

curve indicate the normalized precipitation 

mean temperature 
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4.4.1.8 Abrupt Change Detection 

The Sequential Mann-Kendall test (SQMK) was applied on the original series of annual precipitation 

and annual mean temperature to detect the abrupt change points. There are many reasons in such 

abrupt change in meteorological parameters. It may be due to relocations of the stations, changes in 

instrument exposure, urban influence changes in observing schedules and practices, or abrupt 

changes in the atmosphere (Alexandersson and Moberg 1997). However, SQMK is a graphically 

method, used to plot the forward and backward sequential Z score along the time. In Figure 4.20 (a-

b) the breakup point of forward curve Z (t), and backward curve (Z’ (t)) show the abrupt change in 

precipitation (Figure 4.20(a)) and temperature (Figure 4.20(b)). The breakpoint of abrupt change lies 

outside of the red dotted line (Figure 4.20) indicate the significant abrupt change (shifting) at 5% of 

significance level. Change points obtained from SQMK compare with the results of CUMSUM test. 

(a) (b) 

(c) (d) 

Figure 4.20: Plot of forward (Z(t))and backward (Z’(t)) sequential Z score versus year (a-c) for 

annual precipitation (b-d) for annual mean temperature 
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For representation, station Dindori was shown in Figures 4.20(a-d) and results of all 16 stations were 

summarized in Table 4.12. Applying SQMK, Figures 4.20(a-b) indicate the significant (α=0.05) 

abrupt change in year 1955 and 1960 , while CUMSUM indicate the abrupt change (Figure 4.20 (c-

d)) point 1962 and 1945 for annual precipitation and mean temperature for Dindori station, 

respectively.  Most of the stations (62%) indicate the abrupt shifting year 1955 for annual 

precipitation, while 93.75% stations exhibit abrupt shifting year as 1960. However, 56.25% and 

18.75% stations show significant (α=0.05) abrupt change for annual precipitation and mean 

temperature, respectively.  

In general, 1955-1960 is the duration with abrupt decline in annual precipitation and 1960 is the year 

with sudden incline in the study area. Precipitation rate starts declining in the area began as early as 

1955 and temperature suddenly rise in the year 1960 onwards. 

Table 4.12: Abrupt change point (A.S), Start Year of trend (S.Y) and significant trend (S.T) year 

by SQMK and CUMSUM 

Stations 

Annual Precipitation  Annual Mean Temperature 

SQMK CUMSUM  SQMK CUMSUM 

A.S. S.Y. S.T. A.S.  A.S. S.Y. S.T. A.S. 

Balaghat 1958 1946 1955 1961  1960 1945 1960 1950 

Bilaspur 1960 1942 NO 1986  1952 1908 NO 1945 

Chhindwara 1955 1948 1958 1962  1960 1942 1960 1945 

Damoh 1955 1948 1942 1962  1960 1945 1960 1945 

Dindori 1958 1955 1955 1962  1960 1942 1960 1945 

Hoshangabad 1955 1948 1955 1962  1960 1945 1942 1950 

Jabalpur 1958 1955 1955 1962  1960 1942 1964 1950 

Katni 1955 1946 1955 1963  1960 1945 1962 1950 

Kawardha 1955 1948 1952 1963  1960 1942 1960 1950 

Mandla 1967 1936 1958 1963  1960 1945 1960 1950 

Narsimhapur 1955 1946 1942 1963  1960 1945 1960 1950 

Raisen 1955 1946 1942 1963  1960 1945 1942 1950 

Sagar 1955 1948 1942 1963  1960 1945 1942 1950 

Seoni 1958 1945 1965 1963  1960 1945 1960 1950 

Shahdol 1955 1948 1948 1963  1960 1942 1960 1950 

Umaria 1955 1948 1955 1963  1960 1945 1965 1950 

Note: Bold year (Abrupt shifting) indicate the significant abrupt change at 5% significance level 
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4.4.2 Assessment of Reference Evapotranspiration  

Reference evapotranspiration (ETO) is an important element of the hydrological cycle, and changes 

in ETO are of great significance for agricultural water use planning, irrigation system design and 

management. Furthermore, evaporative demand is expected to alter under climate change and affect 

the sustainable development. It is governed by several climatic parameters such as temperature, 

relative humidity, wind speed, and sunshine. 

4.4.2.1 Primary statistics of annual reference evapotranspiration 

General statistics of average annual reference evapotranspiration is given in Table 4.13 and 4.14 for 

12 stations of UNB and across the UNB. The average reference evapotranspiration in basin is 4.79 

mm. During summer, the average annual ETO is about 6.94 mm over the basin, while 3.70 mm in 

winter season. Maximum average annual value range lies between 4.97 mm (Balaghat) to 4.61 mm 

(Shahdol) over the basin. 

Table 4.13: Primary statistical of average annual ETO (mm) series of UNB stations 

Stations Mean SD CV CS Ck Max Min 

Balaghat 4.97 0.06 1.18 0.94 2.63 5.20 4.84 

Chhindwara 4.81 0.05 1.02 0.43 0.32 4.96 4.68 

Dindori 4.69 0.07 1.47 1.30 4.69 4.98 4.50 

Hoshangabad 4.89 0.05 0.99 0.04 -0.46 5.00 4.77 

Jabalpur 4.73 0.06 1.17 0.76 2.45 4.94 4.59 

Katni 4.80 0.06 1.24 0.66 2.48 5.01 4.63 

Mandla 4.82 0.06 1.28 1.10 3.77 5.08 4.65 

Narsimhapur 4.62 0.05 1.13 0.58 1.55 4.81 4.49 

Raisen 4.88 0.05 1.09 -0.03 0.18 5.02 4.73 

Sagar 4.78 0.05 1.15 0.14 0.39 4.93 4.63 

Seoni 4.82 0.05 1.11 0.72 1.84 5.02 4.69 

Shahdol 4.61 0.07 1.52 1.33 5.03 4.89 4.41 
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Table 4.14: Primary statistical parameters of average annual ETO (mm) series of UNB 

Season Mean SD Cv Cs Ck Max Min 

Annual 4.79 0.05 1.13 0.74 1.85 4.98 4.65 

Spring 4.19 0.08 1.89 0.25 0.05 4.52 4.08 

Summer 6.94 0.13 1.84 -0.01 0.74 7.30 6.56 

Autumn 4.30 0.07 1.61 1.05 3.71 4.54 4.07 

Winter 3.70 0.07 1.86 0.36 0.02 3.88 3.55 

4.4.2.2 Trend detection of reference evapotranspiration  

In this section, annual, seasonal and monthly trends in the reference evapotranspiration at 12 

meteorological stations of UNB during 1901 to 2002 were examined applying the Mann–Kendall 

test and Sen's slope estimator. Spatial variability and temporal trend of ETO were investigated over 

Narmada river basin (India).  

Results of the MK test and Sen’s slope for long term mean annual, seasonal series and monthly 

reference evapotranspiration are given in Table 4.15-4.16. Monthly analysis indicate strong trend in 

the month of October, November and December in the basin, at 1% significance level (Table 2). In 

upper part of the basin, no significant trend was found in month of January-June and August-

September. Moreover, 23% stations experienced significant negative trend for July month. 

Moreover all the station were exhibit increasing trend at 99% and 95% confidence level, for annual 

series. For summer, 40% stations exhibit decreasing trend, while no trend was observed in spring.  

In general, at the temporal scale, 100% of the stations indicate increasing trend at annual, autumn 

and winter period.  

4.4.2.3 Spatial variability of temporal changes in average annual ETO  

Spatial variability over the basin were evaluated and drawn by using a geospatial tool (ArcGIS10.2). 

Moreover, contour map of spatial variability generated using an Inverse-Distance-Weighted (IDW), 

interpolation methodology (Shifteh Some'e et al. 2012). In order to compute the annual and seasonal 

spatial variability in ETO, magnitude of Sen's slope of natural log series were used. Percent change 

in mean value of climatic parameters estimated by using equation (4.20):  

                                ( 1) x100 x P e t                                                   ……… (4.20) 
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Where, ΔP = percent change of climatic parameter over period, β = Sen's trend slope (natural 

logarithmic series), and t = total length of trend period (years).  

Spatial distribution of temporal changes in ETO for annual and seasonal period shown in Figure 4.21. 

Change in mean annual ETo series were observed from 3.52% (Shahdol) to 7.36% (Hosangabad). 

Moreover, 75% stations exhibit decreasing mean values for autumn seasonal series, while 16% 

stations (Chhidwara and Raisen) observed no change in mean values during 1901 to 2002. Maximum 

changes were observed in winter series that varies from 14.14% (Raisen) to 11.60% (Seoni) in mean 

value. Therefore it can be observed that changes in spring and winter season contributing the overall 

change in mean annual ETO. 

 

Figure 4.21: Average annual and seasonal evapotranspiration trends and percentage of change 

during 1901 to 2002 over Upper Narmada basin
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Table 4.15: Mann-Kendall (MK-Z) test results for monthly reference evapotranspiration (ETO) 

Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct*** Nov*** Dec*** 

Balaghat 1.00 1.42 1.17 0.08 0.78 -0.43 -1.60 -0.97 1.21 2.87 4.41 4.05 

Chhindwara 0.77 1.41 1.68* 0.66 0.60 -0.89 -0.34 -0.59 1.37 2.84 4.20 3.83 

Dindori 0.88 1.28 0.75 0.53 0.52 -0.29 -1.77* -1.51 -0.75 2.97 5.13 4.41 

Hoshangabad 0.77 1.33 2.26** 1.44 0.71 -0.80 0.12 -0.31 1.06 2.79 4.43 4.53 

Jabalpur 0.88 1.42 1.28 0.65 0.19 -0.73 -0.94 -0.91 -0.92 2.97 5.05 4.67 

Katni 0.74 1.18 1.33 0.88 0.22 -0.70 -1.18 -1.21 -1.59 2.70 5.44 4.86 

Mandla 0.75 1.33 0.92 0.34 0.60 -0.53 -1.80* -1.22 -0.30 2.99 5.30 4.39 

Narsimhapur 0.66 1.49 1.59 0.53 0.14 -0.94 -0.53 -0.24 0.33 2.75 4.46 4.37 

Raisen 1.14 1.29 1.97** 1.28 0.28 -0.91 -0.09 0.02 0.53 2.81 4.51 4.52 

Sagar 0.66 1.04 1.64 1.23 0.36 -0.95 -0.69 -0.42 -0.15 2.48 4.26 4.35 

Seoni 1.21 1.63 1.34 0.28 0.65 -0.71 -1.31 -0.73 1.29 2.99 4.57 3.90 

Shahdol 0.83 1.16 0.71 0.45 0.24 -0.51 -1.54 -1.90* -1.01 2.86 5.48 4.69 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the significance level of trend, respectively. Positive 

and negative values shows the increasing and decreasing trend. 
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Table 4.16: Mann-Kendall (MK-Z) and Sen’s Slope (β) (mm/decade) test results for annual and seasonal reference evapotranspiration 

(ETo) 

Stations 
Annual  Spring  Summer  Autumn  Winter 

MK-Z β  MK-Z β  MK-Z β  MK-Z β  MK-Z β 

Balaghat 3.00*** 0.0049  0.14 0.0078  -0.99 0.0006  3.46*** -0.0022  2.70*** 0.0113 

Chhindwara 3.51*** 0.0056  0.29 0.0087  -0.04 0.0010  2.83*** 0.0000  3.15*** 0.0113 

Dindori 2.30** 0.0040  0.29 0.0072  -1.99** 0.0015  4.09*** -0.0049  2.60*** 0.0126 

Hoshangabad 4.18*** 0.0071  0.81 0.0094  0.48 0.0031  2.69*** 0.0007  3.36*** 0.0125 

Jabalpur 2.95*** 0.0045  0.17 0.0083  -1.69* 0.0008  2.07** -0.0039  3.00*** 0.0128 

Katni 2.64*** 0.0045  0.15 0.0077  -2.33** 0.0006  4.12*** -0.0059  2.82*** 0.0130 

Mandla 2.61*** 0.0043  0.11 0.0080  -1.68* 0.0000  4.20*** -0.0039  2.72*** 0.0127 

Narsimhapur 3.29*** 0.0052  0.08 0.0089  -0.86 0.0000  3.02*** -0.0018  3.08*** 0.0123 

Raisen 3.82*** 0.0068  0.49 0.0106  -0.10 0.0022  2.61*** 0.0000  3.39*** 0.0135 

Sagar 3.01*** 0.0056  0.26 0.0088  -0.81 0.0013  2.48*** -0.0024  2.93*** 0.0123 

Seoni 3.31*** 0.0049  0.14 0.0086  -1.04 0.0000  3.36*** -0.0020  3.22*** 0.0111 

Shahdol 1.95* 0.0034  -0.02 0.0066  -2.21** 0.0005  4.44*** -0.0058  2.51** 0.0130 

Note: ***, ** and * values indicate 1% (Zcritical = ±2.58), 5% (Zcritical=± 1.96) and 10 % (Zcritical= ±1.65) of the significance level of trend, respectively. Positive 

and negative values show the increasing and decreasing trend.
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4.5 CONCLUDING REMARKS 

The change in meteorological distribution mainly influenced by the ecosystem and landscape 

change. However, changes in precipitation rate and temperature are main cause of climate change 

and deforestation in the upper part of river basin. For planning and management of water resources, 

it is quite important to understand the distribution and variability of meteorological parameters.  

Trend analysis is one of the most significant tools to analyse the global warming problem that 

indicate the past and future changes in meteorological, hydro-climatological parameters. In this 

chapter, trend detection has been carried out for long term precipitation data applying regression 

analysis, MK test and conjunction of DWT and sequential MK tests over India whereas trends of 

the monthly and annual precipitation and mean temperature data observed at 16 stations of UNB by 

applying three different trend tests, namely, the Mann-Kendall, Sen’s Slope and a relatively new 

methodology Innovative Trend Analysis (ITA). Regression analysis was carried out on the basis of 

the classical climate period of 30 years. 

The results of this study imply that the mean values of precipitation are decreasing in most of the 

study area in the last 30-year period. It was found that there are both positive and negative trends 

existing in each zone for the monsoon datasets. Annual and monsoon precipitation data show a 

negative trend; however, zones NMI and NEI show a positive trend for annual and monsoon datasets. 

The most suitable mother wavelet was selected using the criteria of MRE and the criterion relative 

error (Er) proposed by Nalley et al. (2012). Applying this criterion, the DWT Daubechies wavelets 

db6 and db10 were selected for annual and monthly datasets, respectively. Application of DWT on 

annual series implied 2-, 4- and 8-year fluctuations in the NMI zone, indicating a positive trend in 

rainfall, whereas zones WPI, SPI and WPI (with 2- and 4-year fluctuations) experienced a negative 

trend at the same periodicities, at the 0.05 (5%) significance level. In the monsoon series, a positive 

trend was found over NMI and NEI decomposed series at 2-, 4- and 8-year periodicity, whereas 

WPI, EPI and SPI indicated a negative trend at the same periodicity. Considering India as whole 

(AI), it was found a negative trend in all zones except NMI and NEI. Therefore, visualization of 

extreme events was examined at different threshold limits. The same intensity of positive and 

negative fluctuations indicated the same colour spectrum, which is one of the limitations of the 

visualization study and may form the subject of future work in this area.  
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 At local scale, trends of the monthly and annual precipitation and mean temperature data 

observed at 16 stations of UNB by applying three different trend tests, namely, the Mann-Kendall, 

Sen’s Slope and a relatively new methodology Innovative Trend Analysis (ITA). ITA was employed 

to detect trend in extreme values of meteorological parameters (annual precipitation and mean 

temperature). Variation on these meteorological extremes parameters influence the occurrence of 

hydrologic extremes (floods and droughts). However, results imply that very few stations exhibit the 

negative trend for precipitation, while all the stations show positive trend for mean temperature over 

16 stations of UNB. A comparative study was carried out between three methods i.e. ITA, MK-test 

and Sen’s slope, to check the suitability of ITA against nonparametric tests. In result, ITA shows the 

strong agreement with both methods (MK test and Sen’s slope), 97.5% and 77.5% in ‘ITA versus 

MK test’ and ‘ITA versus Sen’s slope’. Therefore ITA has many advantages over MK test and Sen’s 

slope estimator, as it is based on certain assumption and can be analyzed with less and all ranges of 

data. In the recent studies, wavelet analysis is considered which is a quite popular for trend analysis 

and periodicity identification in hydrological time series, but it is quite interesting to analyze and 

visualize the meteorological extreme events. In this study, meteorological extremes were identified 

based on three different threshold (0.5SD, SD and 1.5SD) values considering the Daubechies (db3) 

mother wavelet, and decomposition level as ‘log10 (N)’ (‘N’ is the length of time series) of DWT. 

Results of Balaghat station indicates that the 5 and 4 extreme events for precipitation and 

temperature series employ the 1.5SD thresholding. In addition, abrupt changes analysis were carried 

out to detect the significant shifting and start of significant change applying sequential Mann Kendall 

(SQMK) in 16 stations of study area. Further change points obtained by SQMK were compared with 

the change year of CUMSUM. Results indicate most of the significant abrupt change station indicate 

the significant change year is 1955 (77.78%) and 1960 (100%) for precipitation and temperature, 

respectively. Moreover occurrence of abrupt change point investigated as 1955-1960 by SQMK and 

1961-1963 by CUMSUM for precipitation, while change point 1960 by SQMK and 1945-1950 by 

CUMSUM for temperature over 16 stations of UNB.  

The observed historical flood Madhya Pradesh received about 362 mm of rainfall between June 1 to 

July 10 in 2016. This is a 72 per cent increase from the normal monsoon (210 mm) in the state during 

this time (2016) of the year. Moreover the 1970 flood on the river was the highest for the last 107 

years. 
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The findings in this study provide a new understanding of extreme events trend evaluation that could 

probably the cause of flood and drought in the area. This will help in short or long term planning 

and development in water resources of the region. These information can also assist to manage the 

agriculture water supply, and to update the engineer and stakeholders for decision making.  
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CHAPTER 5  

DYNAMICS OF LAND USE LAND COVER AND FUTURE PROJECTION 

5.1 GENERAL 

In the recent past, many researchers have investigated the land use land cover (LULC) changes 

measurements, and examined the reason of changes (Geng et al. 2014; Meshesha et al. 2016; Mialhe 

et al. 2015). Land cover can be defined as all physical materials at the surface of the earth such as 

water bodies, natural vegetation whereas land use is described as the land utilized by people for 

socio-economic activities (Lambin et al. 2003; Meyer and BL Turner 1994; Nagendra et al. 2004). 

Dynamic LULC changes were investigated by many researchers in recent past using remote sensing 

satellite images data and techniques and geospatial tools viz. ERDAS Imagine, Geographic 

Information Systems (GIS) (Dewan and Yamaguchi 2009; Jat et al. 2008; Li and Yeh 2004; Mondal 

et al. 2014; Mundia and Aniya 2005; Rozenstein and Karnieli 2011; Saadat et al. 2011; Shalaby and 

Tateishi 2007; Weng 2002; Xiao et al. 2006).  

Detection of LULC changes from multi-temporal satellite images is widely used, even though it is 

a challenging task (Lambin et al. 2001; Meshesha et al. 2016; Prabhakar and Tiwari 2015). These 

change detection included the monitoring of forest changes, agricultural assessment, changes in land 

cover and development in built-up area (Abd El-Kawy et al. 2011; Iqbal and Khan 2014; Jaiswal et 

al. 1999; Kabba and Li 2011; Pervez and Henebry 2015; Rao and Pant 2001; Srivastava et al. 2012). 

The main reason of changes in land-use and land-cover is governed by many environment-

development policies. Kabba and Li (2011) investigated that population and poverty are not alone 

and sole reason of LULC change, it depends upon the chances and constraints for new land uses that 

are provided by local as well as national markets and policies. Due to restriction of government 

agencies over the expansion of agricultural land, deforestation impact by settlement. Jaiswal et al. 

(1999) quantified the LULC changes by remote sensing data over a period of 30 years in a part of 

Shahdol, Madhya Pradesh (India). In the results, loss of natural vegetation was calculated to be 22% 

and 14% of the land was transformed into barren between 1967 and 1996. It was noticed that human 

settlement and economic development, impact the natural vegetation transformed in to agricultural 

land. Authors proposed historical cropland datasets might be used for the climate and ecosystem 

models to understand the climate change and impact on ecosystem.  
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Furthermore, Narmada River supports meeting agricultural water demand and requirement of people 

with distinguish culture and traditions ranging from indigenous tribal people inhabitation in the 

forest areas to the rural population. In last few decades, the LULC of Upper Narmada Basin (UNB) 

has been changed due to substantial anthropogenic interventions. Construction of hydraulic structure 

and increase settlement had opened opportunities for resource exploitation and caused rapid change 

in LULC which continued to the present. Many hill stations have come up and grown beside 

constructions of new structures and residential areas. These have significantly altered the UNB 

landscape. Increasing population, became major sources of resource extraction leaving the forest 

fragmented. Recently, LULC changes in the UNB are driven by economic gains. The “Narmada 

Bachao Andolan” a campaign initiated in Madhya Pradesh during 1985 opened up forest land for 

food crop cultivation, which ultimately affected by construction of large dams along the river. 

Probably, this is the first attempt where projection of LULC in near future is made based on previous 

decadal LULC and socio-economic datasets. 

Moreover, the objectives of this chapter is to estimate the LULC changes based on remote sensing 

data, and generate the projection of land use land cover changes in near future, using CA-Markov 

based model. Land-cover changes were investigated on the basis of temporal series of remote 

sensing multispectral satellite images of Landsat. The chapter presents the (i) identification of 

classes and distribution percentages of LULC; (ii) estimate the percentage changes in LULC of area 

between 1990 and 2000 and 2010 and 2015 and quantify the rates of change; (iii) accuracy 

assessment of classified LULC; (iv) applying CA-Markov to predict LULC allocations in the near 

future of year 2030.   

5.2 BRIEF DISCRIPTION ABOUT DEMOGRAPHY OF MAIN CITIES 

On the basis of physiography, the UNB can be divided into hilly and plain regions. Upper eastern 

part covered by hills, whereas lower middle area are covered by mixed forest. The plain regions in 

between the hilly tracts and in the lower reaches are broad and fertile areas well suited for cultivation 

(Figure 5.1). There are mainly four districts lies in the study area, Mandla, Jabalpur, Narsingpur and 

Dindori. Jabalpur is the largest district among all four the district as per area wise and population 

(Figure 5.2). The population growth of Jabalpur district 21.67% and 14.51%, Mandla 14.73% and 

17.97%, Narsighpur 21.92% and 14.01% and Dindori district 18.41 % and 17.39 % were occurred 

in the periods of 1991 to 2001 and 2001 to 2011 respectively (www.citypopulation.de). 
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Figure 5.1: Location of main cities of Upper Narmada Basin 

 

 

Figure 5.2: Population growth of main cities in UNB for 1991, 2001, and 2011 
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5.3 SITE VISIT AND DATA COLLECTION 

5.3.1 Field Data Collection 

Field visits were conducted to collect the 590 ground truth data in the study area. During the field 

visit data were collected from different locations to validate the classified image. Field data and 

locations were taken using the global positioning system (GPS) and photographs. Historic land cover 

data was collected by interviewing the senior native persons. Based on the interview and data 

collection, study area classified into five categories, viz. water bodies, natural vegetation, barren 

land, cropland and built-up area. Ground truth points were collected to improve the LULC 

classification and accuracy assessment. Toposheets from Survey of at 1:250,000 scale were used for 

ground navigation. 

5.3.2 Remote Sensing Data 

Remote sensing satellite images of Landsat were used in LULC change detection during 1990 to 

2015. Landsat Thematic Mapper and Enhanced Thematic Mapper plus (ETM) images downloaded 

from the United States Geological Survey (USGS) based website (https://earthexplorer.usgs.gov). 

The images with less than 10% of cloud cover were downloaded from the website. The study area 

occupied by the 5 satellite images (Path-Row 143-44, 143-45, 144-44, 144-45, 145-44). Total 20 

images of post monsoon (mid October to November) were downloaded for the study for 1990, 2000, 

2010 and 2015 (Table 5.1). Landsat images were atmospherically corrected to remove the cloud and 

cloud cover from all images prior to image analysis. 

Table 5.1: Description of satellite images 

Year 
Acquisition 

Month 
Satellite Sensor 

Spatial 

Resolution 

1990 Oct-Nov LANDSAT 5 Thematic Mapper 30m 

2000 Oct-Nov LANDSAT 7 Enhanced Thematic Mapper 30m 

2010 Oct-Nov LANDSAT 5 Thematic Mapper 30m 

2015 Oct-Nov LANDSAT 8 Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) 
30m 
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5.4 METHODOLGY 

Landsat satellite images are used to classify the land use. All four images (1990, 2000, 2010 and 

2015) are classified employ supervised classification algorithm in this area. It is one of the most 

popular classification method, which is usually suitable in identification of few classes. Geospatial 

tools ERDAS Imagine-2014 and ArcGIS 10.2 were used to process and prepare the LULC map. The 

overall methodology given in Figure 5.3:    

 

 

 

Figure 5.3: Flow chart of land use mapping and future projection 

 

5.4.1 LULC Class Distribution 

In order to perform the classification, supervised classification method were applied in the ERDAS 

Imagine 2014 (a geospatial data processing tool). The ambiguous area and location in classification 

were recoded by taking help from topography map, ground truth points and by google map. There 

were five types of LULC identified in the study area, as (1) Built-up area (2) Cropland (3) Natural 

Vegetation (4) Water Bodies (5) Barren Land, description of these categories are given in Table 5.2. 
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Table 5.2: Descriptions of land use land cover types 

LULC 

Classes 

Classes 

Code  

Description 

Water bodies WB River, permanent open water, lakes, ponds and reservoirs 

Built-up Area BA Residential, commercial and services, industrial, transportation, 

roads, mixed urban, and other urban 

Natural 

Vegetation 

NV Deciduous forest, mixed forest lands, open forest, scrub and others 

Cropland CL Agricultural area, crop fields, fallow lands and vegetable lands 

Barren Land BL Open soils, landfill sites, and areas of active excavation, river banks 

5.4.2 Image pre-processing 

Due to the systematic mistakes and inaccuracy of the sensing devices, the pre-processing is an 

important step in the land use mapping. In this study, the pre-processing included radiometric and 

geometric corrections of the satellite images. Radiometric correction is the process of histogram 

matching of the satellite images from different time periods, whereas geometric correction meant 

co-registration of the satellite images, so that the images could overlap in the best possible way. This 

is important because some of the essential methods are based on the comparison of the two images 

from different time periods, e.g. supervised classification. 

The data processing was carried out using ArcGIS10.2 and ERDAS IMAGINE 2014 prior to 

analysis. After the initial visual image analysis to confirm the agreement of the geo-referenced 

images, a subset of the image was extracted to include the area of interest and the surrounding areas. 

Satellite images of extracted area are required radiometric correction for gain and bias correction 

before LULC classification. In this correction, digital number (DN) derived from the images is 

converted to the spectral radiance at sensor by data calibration (Shalaby et el. 2005, Yuan et al. 

2005). 

( - )
* ( )

( - )

MAX MIN
TOA MIN MIN

MAX MIN

L L
L DN QCAL L

QCAL QCAL
           ……. (5.1) 

Where, LTOA is the solar irradiance at top of the atmosphere, LMAX and LMIN represent the maximum 

and minimum value, QCALMAX and QCALMIN are the maximum and minimum DN values (255 or 
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1) and the LMAX and LMIN are the gain and offset respectively available from the header file of the 

image.  

Precise per-pixel registration of satellite data is requisite for change detection since the possible 

exists for registration errors to be interpreted as LULC change, leading to an overestimation of actual 

change (Stow, 1999). Change detection analysis is performed on a pixel-by-pixel basis; therefore 

any mis-registration greater than one pixel will provide an anomalous result of that pixel. To 

overcome this problem, the root mean-square error (RMSE) between any two dates should not 

exceed 0.5 pixel (Lunetta and Elvidge, 1998). In this study geometric correction was carried out 

using ground control points from topographic maps with scale of 1:250,000 to geocode the image. 

The RMSE between the two images was less than 0.5 pixel which is acceptable. The RMSE could 

be defined as the deviations between GCP and GP location as predicted by the fitted-polynomial and 

their actual locations. 

5.4.3 Markov Model 

In order to predict the future land use land cover change, hybrid model of Markov and Cellular 

Automata (CA-Markov) were used in this study. Markov Chain is the tool used for modelling the 

future prediction. This model consider the past changes (conversion) and rate of changes 

(conversion) to predict the particular class. This model requires initial state and transition matrix. 

Conversion from one state to another state is called transition matrix (Halmy et al. 2015) as given in 

equation (5.2):  
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 
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 
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                 … (5.2) 

Where, 𝐿 indicates transition probability state 𝑖 to state 𝑗. Equation (1) must satisfy the next 

conditions (Equation 5.3): 

1

1
n

ij

j

L


   0  1 ijL                            …… (5.3)  

The main step of the Markov model lies in getting a primary matrix and matrix of transition 

probability (𝐿𝑖𝑗). Then the Markov forecast model mentioned as equation (5.4): 
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 1 ,0
                n

n n ij ijL L L L L      ..… (5.4) 

Where, 𝐿𝑛  stands for transition probability of any time and 𝐿0 stands for primary matrix (Fan et al. 

2008; Li et al. 2015; Singh et al. 2015). 

5.4.4 Cellular Automata 

To predict the LULC in the study area, output from Markov chain (transition area matrices) was 

used in the Cellular Automata (CA) model (Foody 2002; Yang et al. 2014; Yuan et al. 2005).  In 

this approach, Cellular automata (CA) integrates with the Markov Chain model to predict the future 

LULC (Deep and Saklani 2014; Mitsova et al. 2011; Ridd and Liu 1998). The Markov Chain 

describes the transition probability matrix that indicates the probability of LULC changes from one 

class to another class in a time interval (Halmy et al. 2015; Marshall and Randhir 2008; Yang et al. 

2014). The probability of class changes estimated by Markov model incorporated in the CA 

approach to add spatial distribution of each class in the study area. The distribution of each class 

pixel changes by the neighbouring pixel according to probability transition matrix. In CA model, a 

contiguity filter of 5x5 used to model the changes in predicted LULC.  In this study, transition 

probability matrix was developed using LULC maps from 2000 and 2010 applying Markov model. 

The transition probability matrix was used in the CA to simulate the LULC of 2015 and compare 

with the actual map of 2015. Finally, LULC map for 2030 were generated based on the CA-Markov 

model.  

5.5 LAND USE LAND COVER MAP DEVELOPMENT AND CHANGE DETECTION 

5.5.1 LULC Classification  

The distribution of LULC classes for 1990, 2000, 2010 and 2015 were carried out using Landsat 

satellite data. The satellite data were downloaded for the post monsoon (late October and November) 

of each year. Radiometric and atmospheric correction were carried out on Landsat images. Four 

bands (1-4) of the Landsat TM image, visible and near infrared ranges were selected for the 

processing. The pre-processed satellite images were classified into five land use land cover classes 

(Figure 5.4 – Figure 5.5). Ground truth data from field survey of different locations were used for 

accuracy assessment. Distribution of different classes in developed land use map of year 1990, 2000, 

2010 and 2015 were mentioned in Table 5.3 and Figure 5.4. Due to increase in cropland and built-

up area, continuously decrease in natural vegetation are observed from 49.18% (1990) to  44.49% 
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(2000) to 41.42% (2010) to 39.66% (2015). Therefore, built-up area were increasing continuously 

from 0.20% (1990) to 0.37% (2000) to 0.60% (2010) to 0.72% (2015) due to population migration, 

cropland area increased from 47.36% (1990) to 52.67% (2000) to 54.99% (2010) to 56.79% (2015). 

Table 5.3: Distribution of classes for 1990, 2000, 2010 and 2015 

 

Class 

1990  2000  2010  2015 

Area  Area  Area  Area 

sq.km %  sq.km %  sq.km %  sq.km % 

Water bodies 398.43 1.23  339.48 1.04  455.81 1.40  408.94 1.26 

Built-up Area 63.57 0.20  121.41 0.37  193.62 0.60  233.89 0.72 

Vegetation 15983.56 49.18  14460.77 44.49  13462.94 41.42  12890.64 39.66 

Cropland 15390.74 47.36  17118.35 52.67  17873.32 54.99  18458.21 56.79 

Barren Land 663.71 2.04  459.99 1.42  514.31 1.58  508.33 1.56 

 

 

Figure 5.4: Classes of LULC of year of 1990, 2000, 2010 and 2015 
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Figure 5.5: Land use land cover map for year of 2015, 2010, 2000 and 2015



119 

  

5.5.2 Accuracy Assessment  

For accuracy assessment, random points were generated across each LULC map. These points were 

cross-checked with the reference data. In this study, Google Earth integrated in ERDAS Imagine 

2014 has been used as reference data for accuracy assessment. In addition to this, ground truth 

verification was carried out using Global Positioning System (GPS) during field visit. These GPS 

points were also utilized for classification accuracy assessment. In this analysis, matching points in 

both satellite-derived LULC map and reference map were denoted by the same class number, 

otherwise it was replaced with corrected class number. Then, accuracy assessment statistics were 

generated from the population error matrix of these maps (Jaiswal et al. 1999; Rao and Pant 2001). 

This matrix included the overall accuracy, user’s accuracy and produce’s accuracy, and Kappa 

statics. The user’s accuracy is the percentage of points classified in to classes which they belong 

according to the classified points, and the producer’s accuracy is the percentage of reference points 

that belongs to the classified classes. The average overall accuracy derived based on the estimated 

user’s and producer’s accuracy. The kappa statistics is estimated by using observed accuracy  (𝜂𝑂) 

and expected accuracy(𝜂𝐸) (Myint et al. 2011). 

   
   

Kappa ( )  
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O E
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K
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





        …. (5.5)  

The accuracy of the classified LULC was evaluated using error or confusion matrix to compare with 

the ground truth data based on field survey (Geng et al. 2014; Neupane and Kumar 2015). The 

random points of 170,190 and 180 were generated for the year 1990, 2000 and 2010 respectively. 

The location points of 2015 were collected by using the geographical positioning system (GPS) tool. 

The overall accuracy and Kappa statistics are presented in Table 5.4. For each class of LULC, a 

contingency matrix was evaluated that represent the user accuracy (UA) and producer accuracy 

(PA). Table 5.4 indicates overall accuracy 89.88%, 86.11%, 86.84% and 85.88% for the 2015, 2010, 

2000 and 1990, respectively.  The Kappa statistics (Kp) for 2015, 2010, 2000, and 1990 were 0.87, 

0.82, 0.83 and 0.82 respectively. The confusion matrix of year 1990, 2000, 2010 and 2015 are 

presented in Table (5.5-5.8), respectively.  
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Table 5.4: Overall accuracy and Kappa statistics (Kp) of LULC classification 

Year Classification Accuracy (%) Kappa Statics (Kp) 

2015 89.88 0.87 

2010 86.11 0.82 

2000 86.84 0.83 

1990 85.88 0.82 

Table 5.5: Confusion matrix of LULC map of 1990 

Classified 

Data 

Water 

bodies 

Built-up 

Area 
 Vegetation Cropland 

Barren 

Land 
CT UA (%) 

Water bodies 20 1 2 0 0 23 86.96% 

Built-up Area 0 24 0 3 1 28 85.71% 

Vegetation 2 0 40 3 3 48 83.33% 

Cropland 0 2 1 40 2 45 88.89% 

Barren Land 0 1 0 3 22 26 84.62% 

RT 22 28 43 49 28 170 - 

PA (%) 90.91% 85.71% 93.02% 81.63% 78.57% - - 

Table 5.6: Confusion matrix of LULC map of 2000 

Classified Data 
Water 

bodies 

Built-up 

Area 
 Vegetation Cropland 

Barren 

Land 
CT UA (%) 

Water bodies 28 0 3 1 0 32 87.50% 

Built-up Area 0 20 2 2 0 24 83.33% 

Vegetation 0 0 44 3 1 48 91.67% 

Cropland 2 1 3 53 2 62 85.48% 

Barren Land 0 1 0 3 20 24 83.33% 

RT 30 22 52 62 23 190 - 

PA (%) 93.33% 90.91% 84.62% 85.48% 86.96% - - 

Table 5.7: Confusion matrix of LULC map of 2010 

Classified Data 
Water 

bodies 

Built-up 

Area 
 Vegetation Cropland 

Barren 

Land 
CT UA (%) 

Water bodies 27 0 3 0 0 30 90.00% 

Built-up Area 0 25 3 2 0 30 83.33% 

Vegetation 1 0 45 3 1 50 90.00% 

Cropland 0 2 4 41 3 50 82.00% 

Barren Land 1 0 0 2 17 20 85.00% 

RT 29 27 55 48 21 180 - 

PA (%) 93.10% 92.59% 81.82% 85.42% 80.95% - - 
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Table 5.8: Confusion matrix of LULC map of 2015  

Classified Data 
Water 

bodies 

Built-up 

Area 
 Vegetation Cropland 

Barren 

Land 
CT UA (%) 

Water bodies 30 0 3 2 0 35 85.71% 

Built-up Area 1 44 0 3 0 48 91.67% 

Vegetation 0 2 56 4 0 62 90.32% 

Cropland 0 3 3 79 1 86 91.86% 

Barren Land 0 3 0 1 22 26 84.62% 

RT 31 52 62 89 23 257 - 

PA (%) 96.77% 84.61% 90.32% 88.76% 95.65% - - 

Note: CT is classified totals, UA is user’s accuracy, RT is Reference Totals and PA is producer’s accuracy 

5.5.3 LULC Change detection  

The change detection in LULC were carried out and analyzed for a duration of 25 years (1990-2015) 

(Figure 5.6-5.8). Due to shifting and growth of population in the region, built-up area increased from 

0.18% (2000) to 0.52% (2015) during 25 years, with respect to the base year of 1990 (Figure 5.6). 

The rate of growth of built-up area were noticed 68126 hectares per year during 25 year of duration 

(1990-2015). In last two decades, changes were found with rate of 57831 hectare per year and 

130047 hectare per year during the period of 1990-2000 and 2001-2010, respectively. In order to 

analyses the first 10 years (i.e.1990-2000) with respect to the base year 1990, natural vegetation 

decreased by 9.53%, whereas it was decreased by 19.35% in 25 years of duration. In order to analyze 

the cropland, it was increased by 19.93% from 1990 to 2015 in 25 years.  

 
Figure 5.4: Decadal percentage changes in LULC classes from 1990 to 2015 
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Figure 5.5: Percentage Changes in LULC classes with reference to 1990 

 

 

 

Figure 5.6: Percentage Change in LULC classes with reference to 2000 
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5.6 SHORT TERM FUTURE PROJECTION OF LAND USE LAND COVER 

5.6.1 Future Projection employing CA-Markov 

In order to detect the changes in future LULC distribution, it is very important to understand the 

trend of changes in LULC of past and present. For planners and policy-makers, it is necessary to 

have information about the change pattern and driving forces responsible for changes. Utilizing the 

knowledge of past and present LULC changes, LULC change model can be developed to project the 

future map. Many literature and model are available for this. In this study, integrated model of 

Markov chain and Cellular Automata (CA-Markov) were applied which is based on transitional 

probability matrix. Markov model is one of the most popular model for future projection using 

present pattern. However, this approach does not provide the direction of change but magnitude 

only. Therefore, Cellular Automata (CA) contains the spatial component provide the direction to 

modelling (Lambin et al. 2001; Petit et al. 2001). Hence, hybrid model of Markov chain and Cellular 

Automata Markov (CA–Markov) provides any number of classes and can project the conversion 

from one class into another.  

Three transition rules were considered based on local socio-economic information, land use planning 

and related policies in Upper Narmada Basin from 2000 to 2010. These rules were used to predict 

the future land use land cover 2030. The first rule is characterized by natural development in which 

it is assumed that the factors that currently influence land use keep pace with the trend of LULC 

change from 2000 to 2010 and will not change greatly from 2010 to 2030. The second rule is 

characterized by speedy growth, in which it is assumed that areas of LULC change quickly, by 

considering the growth rate of population, urbanization level, per capita living space and the floating 

population to obtain the demand for land use in 2030. The third scenario is characterized by 

ecological and cultivated land protection. In this scenario, water bodies are designated as natural 

reserves that play an important role in ecological security and cannot change to any other land use 

categories, and the basic farmland is then taken as a restricted area in which the cultivated land 

cannot be converted into other land use types other than settlement. Initially, distribution of LULC 

of 2015 was simulated through transition probability matrix from the LULC map of period 2000-

2010 applying CA-Markov approach for validation. The transition of classes from one in to another 

classes was evaluated based on the generated transition probability matrix. Transition probability 

matrix for the future year 2015 and 2030 were generated from past actual LULC image of 2000 and 
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2010 (Table 5.9 and Table 5.10).The accuracy of simulated LULC was compared with the actual 

LULC of 2015. In the Markov model, transition probability assumed to be stationary that makes 

suitable for short term future projection. Therefore, it does not provide the spatial distribution of the 

change, due to this shortcoming it is integrated by CA approach. Applying this approach of CA-

Markov, projected LULC of study area was evaluated for year of 2030 as shown in Figure 5.10.  

Table 5.9: Transition probability matrix of 2015 derived from the LULC map of 2000 and 2010 

Early 2010 / 

Later2015 

Water 

Bodies 
Built-up 

Natural 

Vegetation 
Cropland 

Barren 

Land 

Water Bodies 0.8528 0.0003 0.1470 0.0000 0.0000 

Built-up 0.0021 0.9576 0.0062 0.0277 0.0063 

Natural Vegetation 0.0001 0.0000 0.8688 0.1098 0.0214 

Cropland 0.0039 0.0019 0.0632 0.9177 0.0133 

Barren Land 0.0000 0.0000 0.3335 0.6088 0.0577 

 

Table 5.10: Transition probability matrix of 2030 derived from the LULC map of 2000 and 2010 

Early 2010 / 

Later2030 
Water Bodies Built-up 

Natural 

Vegetation 
Cropland Barren Land 

Water Bodies 0.6168 0.0012 0.2919 0.0885 0.0017 

Built-up 0.0056 0.8490 0.0391 0.0989 0.0075 

Natural Vegetation 0.0028 0.0015 0.7026 0.2730 0.0201 

Cropland 0.0085 0.0056 0.1553 0.8161 0.0145 

Barren Land 0.0030 0.0030 0.3430 0.6170 0.0340 

5.6.2 LULC Change Detection from 1990 to 2030 

The projection of 2030 indicates the built-up area, cropland and natural vegetation area are 463.83 

km2, 19222.91 km2 and 12157.11 km2 respectively. Built-up area and cropland increased from 

0.72% (2015) to 0.98% (2030) and 56.79% (2015) to 59.15% (2030) respectively in next 15 years, 

whereas natural vegetation area found to be decreased from 39.66% (2015) to 37.41% (2030) for the 

same duration (Table 5.10). In general, the prediction of 2030 LULC classes distribution indicate 

the expansion in cropland and reduction in natural vegetation due to deforestation. It also indicate a 
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substantial growth in the built-up area. The expansion of built-up area and cropland occurring due 

to the tourist places such as Jabalpur and Amarkantak, and population growth in the region. Study 

indicates the continuous increase in population in the study area reflecting deforestation and 

expansion in cropland. 

Table 5.11: Comparison of actual and projected LULC classes  

LULC Classes 

Initial (1990) Final (2010)  Actual 2015 Simulated 2015  Projected 2030 

Area Area  Area Area  Area 

sq.km % sq.km %  sq.km % sq.km %  sq.km % 

Water Bodies 398.43 1.23 455.81 1.40  408.94 1.26 364.02 1.12  463.83 1.43 

Built-up 63.57 0.20 193.62 0.60  233.89 0.72 223.03 0.69  319.78 0.98 

Vegetation 15983.56 49.18 13462.94 41.42  12890.64 39.66 12881.86 39.64  12157.11 37.41 

Cropland 15390.74 47.36 17873.32 54.99  18458.21 56.79 18544.31 57.06  19222.91 59.15 

Barren Land 663.71 2.04 514.31 1.58  508.33 1.56 486.79 1.50  336.37 1.03 

The effect of the present trend in LULC change due to developmental process will result in 

degradation of natural vegetation. Therefore, nearby area further changes into the barren land around 

the highways of connecting cities and increase in settlement around these highways. The projected 

LULC maps provide an idea about the LULC changes in near future of year 2030.These results can 

be utilized for the future planning towards conservation of natural vegetation, and guide to decision 

makers to manage the  balance growth in all other classes. The study will help to stop expansion of 

unmannered expansion of cropland and further help in reduce pressure on the natural vegetation 

area. 
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Figure 5.7: Simulated LULC map of projected year 2030 

 

5.7 CONCLUDING REMARKS 

The understanding of LULC distribution and transition from one class to another is essential for 

robust planning, management and help in guiding the direction of development at local, state or 

national levels. This selective information not only allow to manage the land utilization but also play 

an important role in future planning and policy making for policy makers. In general, due to increase 

in population most of the cities and towns are changing their real landscape in unplanned manner 

and natural vegetation is losing their real characteristics. For securing the sustainable development, 

it is important to monitor and understand the LULC changes pattern along with time. As trend 

indicates the continuous increase in settlement, proper planning and development by planners, 

policy-makers, executives, stakeholders and by local people is required. In order to attain the 

sustainable development, it is necessary to provide planning model by concerned agencies so that 

every bit of available land can be used in a proper way without damaging the natural vegetation. 

However, this type of planning models are only possible by understanding, changes in LULC trend 

pattern with time. The mapping of LULC and change detection were studied in the Upper Narmada 
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River basin, one of the east to west flowing rivers in the central part of India. LULC mapping were 

carried out using the Landsat TM satellite image by application of geospatial tools GIS and ERDAS 

Imagine. The development in the different classes of LULC were evaluated from 1990 to 2000 to 

2010 to 2015. The reduction in natural vegetation and increase in settlement as well as cropland are 

clearly reflected in the analysis of LULC mapping. Understanding of trend patterns were predicated 

for the year 2030 using CA-Markov model. The model were validated with simulated and actual 

LULC of 2015. The projected LULC of 2030 classes indicated the continuing of same trend of recent 

past. These future projection indicate the expected changes in near future. Therefore, the LULC 

changes with respect to different classes in near future cautioned the concerned authorities for proper 

planning and management of the study area.  
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CHAPTER 6  

    REPRESENTATIVE CLIMATE MODELS AND BIAS CORRECTION 

6.1 GENERAL 

Global Climate Models (GCMs) are based on numerical and physical principles aimed at 

reproducing the present and future meteorological parameters. It provides considerable confidence 

in producing future climate condition by using the numerically coupled Atmospheric Ocean General 

Circulation Model (AOGCM) (Moss et al. 2010; Su et al. 2012). Several inter-comparison studies 

have been done between model outputs and observed data all over the world (Anandhi and 

Nanjundiah 2015; Diro et al. 2009; Errasti et al. 2011; Evan et al. 2012; Fu et al. 2013; KS and D 

2014; Perkins et al. 2007). However, the GCMs output are very uncertain due to initial condition, 

boundary condition, model structure and emission scenario (Ojha et al. 2012). The performance of 

10 GCM models for simulating the summer monsoon rainfall variation over the Asian-western 

pacific region assessed by Kang (2002). Johnson and Sharma (2009) used variable convergence 

score (VCS) methodology based on the coefficient of variation to evaluate the eight different 

variables from nine GCM outputs for two emission scenario for Australia. This skill score 

methodology can be used to evaluate for any GCM at any region. Radić and Clarke (2011), evaluated 

22 GCMs for North America using several statistical parameters. Evaluation has been carried out by 

comparing the model output with reanalysis data for the period 1980-99.  

Frei et al. (2003) investigated daily precipitation simulation for European Alps by using five regional 

climate model. There are number of recent studies based on indices and probability density function 

(PDF) to identifying the best model (Anandhi and Nanjundiah 2015; Frei et al. 2003; McMahon et 

al. 2015; Ojha et al. 2013; Parth Sarthi et al. 2015; Perkins et al. 2007; Radić and Clarke 2011). 

Perkins et al. (2007) conducted model evaluation for 12 regions in Australia using probability 

density function (PDFs). Evaluation of the model in the study area have been performed considering 

daily simulation data of maximum temperature, minimum temperature and precipitation. There are 

many approaches to compare the simulated or model output with observed values (when data is 

available) or reanalysis values (for poorly gauged regions with missing or no observed data). For 

impact studies of climate change, it is necessary to evaluate the model with observed datasets, and 
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model output should perform close to the observed data. There were many studies carried out to 

evaluate the GCMs. 

In this chapter, Coupled Model Intercomparison Project (CMIP), global climate models are 

evaluated using root mean square error (RMSE) and skill score (SS) of six meteorological variables 

for all seven zones of Indian region and Upper Narmada Basin (UNB). Ranking of model has been 

carried out applying Multi-Criteria Analysis (MCA) method. This study has been carried out for 

monsoon (June to October), non-monsoon (January to May, November, December) and annual 

basis.   

6.2 CLIMATIC DATA 

6.2.1 Global Climate Model Data  

Daily data over India have been archived by modelling group of Data Integration and Analysis 

System (DIAS) for 24 GCMs. Model outputs have been carried out from 1981–2000 for all models. 

Climate models used in this study are given in Table 6.1.  

6.2.2 Reanalysis Data  

Reanalysis data precipitation (pr), ongoing long wave radiation (olr), were obtained from Global 

Precipitation Climatology Project (GPCP) and National Oceanic and Atmospheric Administration 

(NOAA) respectively whereas, atmospheric temperature (tas) ,mean sea level pressure (ps), zonal 

wind (uas) and meridional wind (vas) were obtained from the Japanese 25-year Reanalysis model 

(JRA25) for the period 1981–2000. Annual average climatic data of 20 years (1981-2000) over India 

represented in Figure 6.1. 

Table 6.1: Global Climate Models Centre and location (Randall et al. 2007) 

S.N. GCM Acronym Centre and Location 
Resolution 

(Degree) 

1. BCCR_BCM2_0 bcr 

Bjerknes Centre for Climate 

Research (BCCR), Univ. of Bergen, 

Norway 

2.8 x 2.8 

2. CCCMA_CGCM3_1 cc4 
Canadian Centre for Climate 

Modeling and Analysis ,Canada 
3.75 x3.75 

3. CCCMA_CGCM3_1_T63 cc6 
Canadian Centre for Climate 

Modeling and Analysis ,Canada 
2.8 x 2.8 

4. CNRM_CM3 cnr 
Centre National de Recherches 

Meteorologiques, Meteo, France 
2.8 x 2.8 
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5. CSIRO_MK3_0 cs3 Atmospheric Research, Australia 1.9 x 1.9 

6. CSIRO_MK3_5 cs5 Atmospheric Research, Australia 1.9 x 1.9 

7. GFDL_CM2_0 gf0 
Geophysical Fluid Dynamics 

Laboratory, NOAA 
2.0 x 2.5 

8. GFDL_CM2_1 gf1 
Geophysical Fluid Dynamics 

Laboratory, NOAA 
2.0 x 2.5 

9. GISS_AOM gao 
NASA Goddard Institute for Space 

Studies (United States) 
3.0 x 4.0 

10. GISS_MODEL_E_H gih 
NASA Goddard Institute for Space 

Studies (United States) 
4.0 x 5.0 

11. GISS_MODEL_E_R gir 
NASA Goddard Institute for Space 

Studies (United States) 
4.0 x 5.0 

12. IAP_FGOALS1_0_G iap 
LASG/Institute of Atmospheric 

Physics (China) 
2.8 x 3.0 

13. INGV_ECHAM4 mpi4 
Max Planck Institute for 

Meteorology, Germany 
1.1 x 1.1 

14. INMCM3_0 inm 
Institute of Numerical Mathematics, 

Russian Academy of Science 
4.0 x 5.0 

15. IPSL_CM4 ips 
Institute Pierre Simon Laplace 

(IPSL), France 
2.5 x 3.75 

16. MIROC3_2_HIRES mih 

Center for Climate System 

Research (The University of 

Tokyo) 

1.1 x 1.1 

17. MIROC3_2_MEDRES mim 

National Institute for 

Environmental Studies, and 

Frontier Research Center for Global 

Change (JAMSTEC, Japan) 

2.8 x 2.8 

18. MIUB_ECHO_G miu 

Meteorological Institute of the 

University of Bonn, (Germany and 

Korea) 

3.7 x 3.7 

19. MPI_ECHAM5 mpi 
Max Planck Institute for 

Meteorology, Germany 
1.9 x 1.9 

20. MRI_CGCM2_3_2A mri 
Meteorological Research Institute, 

Japan Meteorological Agency, 
2.8 x 2.8 

21. NCAR_CCSM3_0 nca0 
National Center for Atmospheric 

Research (NCAR), 
1.4 x 1.4 

22. NCAR_PCM1 nca1 
National Center for Atmospheric 

Research (NCAR) 
2.8 x 2.8 

23. UKMO_HADCM3 had3 

Hadley Centre for Climate 

Prediction and Research, Met 

Office, UK 

2.75 x 3.75 

24. UKMO_HADGEM1 had1 

Hadley Centre for Climate 

Prediction and Research, Met 

Office, UK 

1.25 x 1.875 
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Figure 6.1: Average annual, monsoon and non-monsoon of reanalysis climate data over India  
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6.3 METHODOLOGY 

In this analysis, performance of the model has been carried on the basis of Skill Score (SS) and Root 

Mean Square Error (RMSE) between model output and reanalysis data for year 1981-2000. There 

are six meteorological parameters: precipitation (pr), outgoing long wave radiation (olr), air 

temperature (tas), mean sea level pressure (ps), zonal wind (uas) and meridional wind (vas) 

considered for the SS and RMSE evaluation. The comparison of GCM data with reference data has 

been carried out by checking their seasonal cycle and variability using probability density function 

(PDFs). Ranking of the GCMs have been evaluated based on the Total Grand Scoring (TGS) Index, 

which is dependent on the SS and RMSE assessment. The overall flow diagram illustrating the 

methodology is presented in Figure 6.2.  

 

Figure 6.2: Flow diagram illustrating the methodology to select the representative GCMs   
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6.3.1 Evaluation Parameters 

The Root Mean Square Error (RMSE) is a frequently used measure of the difference between values 

predicted by a model and the values actually observed from the environment that is being modelled. 

These individual differences are also called residuals, and the RMSE serves to aggregate them into 

a single measure of predictive power. The RMSE of a model prediction with respect to the estimated 

variable is defined as the square root of the mean squared error: 

2

1

( )
n

i i

i

f x

RMSE
n








      ……… (6.1) 

Where, xi is observed values and fi is modelled values. 

Skill is generally defined as the accuracy of forecasts of interest to the standard reference (Murphy 

et.al 1988). The basic measure of accuracy in this chapter is Mean Square Error (MSE). Let fi, xi, 

ci  can be defined as the climate model outputs and mean of the reanalysis output: 

2( , ) ( )i iMSE f x f x        ………(6.2) 

Where, angle bracket denotes the mean of nth grid at a particular time. For perfect model output 

MSE should be equal zero (i.e. fi  ≥ xi for all i ).  

2( , ) ( )i iMSE c x c x       ………(6.3) 

Here, ci is the long term meteorological variables. Then the skill score (SS) defined on the basis of 

mean square error is  

   ( , ) ( , ) ( , ) 0SS MSE c x MSE f x MSE c x       ………(6.4) 

 for perfect match, ( , ) 0MSE f x    , 

 1 ( , ) ( , )SS MSE f x MSE c x      ………(6.5) 

SS is positive when model output is greater than observed output where as it may be negative if it 

is less than the observed value (Murphy 1988; Murphy 1993).  
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6.3.2 Multi Criterial Analysis (Scoring Method) 

In order to derive the model ranking of climate models, Skill Score (SS) (Murphy 1988) and Root 

Mean Square Error (RMSE) of the each model were computed for the study area. Evaluation 

parameters, SS and RMSE are the model output and reanalysis observed data. 

a) Skill Score Index (Sindex): 

n

avg i

i

S S                                                                               ….. (6.6) 
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b) RMSE Index (Lindex):   
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c) Total Index (TI):  
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Total index (TI) calculated for each meteorological parameters based on annual. For each model, 

grand index, evaluated and corresponding to total grand index ranking has been allotted. Ranking of 

GCMs showing the top performing model to least capable model. 
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6.4 RANKING OF CMIP3 MODELS AT REGIONAL SCALE: INDIAN ZONES 

6.4.1 Evaluation Parameters of Meteorological Variables  

In the present study, the evaluation of IPCC AR4 climate models has been carried out on daily 

observations using the referenced climate results. Assessment of models based on probability density 

function (PDF) which is used for parameter evaluation considering the area about 10o x 10o. PDFs 

for pr, tas, olr, ps, uas and vas for 1981-2000. This study was based on the monsoon season (June-

Ooctober) non-monsoon (November-March) and annually (January- December). PDF has the ability 

to demonstrate the distribution value of climate model values over reference model values (Perkins 

et al. 2007). There will be shifting in distribution in the case of climate change and variation in the 

distribution of model output. For regional study, India has been divided into seven rectangular 

regions based on homogeneous physiography and precipitation zone (Figure 6.3). These regions are 

North Mountainous India (NMI), North Central India (NCI), Northwest India (NWI), East 

Peninsular India (EPI), West Peninsular India (WPI), South Peninsular India (SPI) and North East 

India (NEI). 

 

 

Figure 6.3: Seven regions of India for model ranking (Li et al. 2013) 
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Root Mean square error (RMSE) and Skill Score (SS) have been evaluated for the climate models 

with reference to the reanalysis data for each region. Zero value of RMSE and SS value of 1 

represents the perfect model. The archive of climate models ensemble by Data Integration 

Assessment Tools (DIAS) developed by The University of Tokyo, has been used to evaluate the 

RMSE and SS for each climate model for each region and season. 

 RMSE value for precipitation based on monsoon, non-monsoon and annual season for all the 

climate models are given in Table 6.2. Precipitation from different climate model compared with the 

Global Precipitation Climatology Project (GPCP) rainfall monthly datasets from 1981-2000 over 

India shown in Figure 6.4. Figure 6.5 shows the skill score of ‘pr’ for all regions. Temporal 

assessment has been carried out for each zone corresponding to the annual, monsoon and non-

monsoon season. In region 1, climate model ‘cc4’ (0.02) for annual, ‘cs5’ (-0.01) for monsoon, ‘ips’ 

(0.03) for non-monsoon are represent the minimum SS value for meteorological parameter ‘pr’. 

Minimum RMSE value obtained for GCM ‘mpi4’ (1.03 and1.22) for annual and monsoon season, 

and ‘cc6’ (0.74) for non-monsoon season. For region 2, climate model ‘gir’ represents the SS value 

0.30 and -0.07 for annual and monsoon season respectively. For non-monsoon season, ‘nca0’ 

represents the minimum SS value (0.34). GCM ‘mih’ obtained the minimum RMSE value 0.88 and 

1.61 for annual and monsoon season respectively and cc6 (0.34) for non-monsoon. In region 3, 

minimum SS value represented by climate model ‘cnr’ for annual and monsoon season (0.04 and -

0.16) whereas ‘mih’ (0.59) represents the minimum value for non-monsoon. Climate model ‘had3’ 

represents the minimum RMSE value 1.42 and 2.37 for annual and monsoon season respectively. 

Model ‘mih’ (0.59) obtained minimum RMSE value for non-monsoon season. In region 4, model 

‘gir’ represents the minimum SS value for annual and non-monsoon season (0.90 and 0.24 

respectively). GCM ‘inm’ (-0.22) represent the minimum SS value for monsoon season. Climate 

model ‘mpi’ represents the minimum RMSE value for all season. In region 5, minimum SS value 

obtained by mri (0.01), iap (-0.23) and mim (0.00) for annual, monsoon and non-monsoon season 

respectively. Climate models ‘bcr’ obtained minimum RMSE value for annual and monsoon season 

(1.10 and 1.54 respectively) and ‘mih’ (0.41) represents the non-monsoon ‘pr’. In region 6, cnr 

(0.42), iap (0.10) and nca0 (0.40) represent the minimum value of SS for annual, monsoon and non-

monsoon season respectively. Model ‘mpi’ (1.66 and 0.72) represent the minimum RMSE value for 

annual and non-monsoon season whereas ‘mpi4’ (2.46) represent the minimum value for monsoon 
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season. For region 7, climate model ‘ips’ and ‘nca1’ represent the zero SS value for annually, ‘gao’ 

(-0.44) and ‘mim’ (-0.24) represent the minimum score for monsoon and non-monsoon season 

respectively. Minimum RMSE value was obtained by ‘mim’ climate model, 2.23, 3.44 and 1.35 for 

annual, monsoon and non-monsoon respectively. 
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Figure 6.4: Precipitation variations in 24 climate models with reference to reanalysis (GPCP) 

model
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Table 6.2: RMSE value of climate models for precipitation 

Model M1 N1 A1 M2 N2 A2 M3 N3 A3 M4 N4 A4 M5 N5 A5 M6 N6 A6 M7 N7 A7 

bcr 2.25 2.96 1.74 1.14 2.13 0.42 2.71 4.13 1.70 1.19 2.16 0.49 1.10 1.54 0.79 2.12 3.27 1.29 6.21 2.09 0.72 

cc4 1.37 2.14 0.82 1.20 2.36 0.37 1.90 3.37 0.86 1.32 2.61 0.40 1.48 2.68 0.62 2.17 3.87 0.95 4.95 1.69 0.82 

cc6 1.11 1.63 0.74 1.12 2.22 0.34 2.10 3.86 0.84 1.65 3.29 0.48 1.88 3.61 0.64 2.14 3.70 1.02 5.76 1.64 0.54 

cnr 2.16 2.41 1.98 1.49 2.68 0.64 3.58 4.26 3.09 1.70 2.30 1.27 1.71 1.73 1.70 2.18 2.64 1.85 6.57 1.80 1.80 

cs3 1.72 2.19 1.38 1.36 2.68 0.41 2.09 3.83 0.85 1.46 3.11 0.27 1.80 3.34 0.70 2.19 3.41 1.32 4.83 1.64 0.60 

cs5 1.71 2.23 1.35 1.46 2.85 0.46 2.14 3.89 0.89 1.74 3.67 0.35 1.97 3.60 0.80 2.46 4.08 1.31 4.21 1.73 0.82 

gf0 1.57 1.62 1.55 1.14 2.05 0.48 1.84 2.89 1.09 1.33 2.64 0.39 1.43 2.47 0.69 1.76 2.81 1.01 5.29 2.01 0.64 

gf1 1.52 1.81 1.31 1.10 1.99 0.46 1.48 2.48 0.76 1.28 2.68 0.28 1.20 2.19 0.49 1.87 3.41 0.77 4.00 1.39 0.89 

gao 2.60 2.64 2.57 2.02 4.00 0.61 2.66 4.85 1.10 1.53 3.18 0.36 1.61 2.93 0.67 2.08 3.36 1.16 5.54 2.22 0.57 

gih 1.80 2.52 1.29 1.99 4.29 0.35 2.89 5.67 0.90 1.52 3.12 0.38 2.07 3.87 0.79 2.58 3.83 1.69 17.42 5.89 0.72 

gir 2.00 2.68 1.52 2.05 4.41 0.37 3.15 6.15 1.01 1.82 3.85 0.37 2.49 4.79 0.85 2.73 4.91 1.17 11.10 5.23 0.80 

iap 2.73 2.81 2.67 1.55 2.80 0.66 2.49 4.33 1.17 1.88 3.95 0.40 1.45 2.69 0.56 2.10 3.98 0.76 6.92 2.14 0.52 

mpi4 1.03 1.22 0.89 1.14 1.94 0.57 1.62 2.68 0.87 1.61 2.78 0.78 1.36 2.01 0.89 1.94 2.46 1.57 3.49 1.59 0.88 

inm 1.81 2.76 1.14 1.82 3.71 0.47 2.66 4.75 1.17 1.99 3.93 0.61 1.61 2.54 0.95 2.63 4.19 1.52 5.31 1.94 0.92 

ips 2.43 2.95 2.06 2.27 4.63 0.59 3.39 6.67 1.05 2.61 5.74 0.37 2.45 5.04 0.60 2.65 4.99 0.98 7.24 1.97 0.76 

mih 1.73 1.75 1.72 0.88 1.61 0.35 1.45 2.66 0.59 1.10 2.29 0.25 1.22 2.37 0.41 1.86 3.27 0.85 4.76 1.96 0.48 

mim 1.29 1.60 1.06 1.04 2.00 0.35 1.82 3.16 0.87 1.36 2.49 0.56 1.59 2.15 1.18 2.19 3.85 1.00 3.44 1.36 0.82 

miu 1.49 2.44 0.82 1.30 2.59 0.37 2.24 4.09 0.92 1.41 2.95 0.31 1.17 1.95 0.61 2.07 3.51 1.04 5.75 1.49 0.81 

mpi 2.00 2.35 1.74 1.19 2.22 0.46 1.77 3.36 0.63 0.90 1.82 0.24 1.44 2.56 0.63 1.66 2.98 0.72 5.22 1.77 0.73 

mri 1.99 2.92 1.33 1.87 3.91 0.41 2.62 4.98 0.94 1.51 3.08 0.39 1.80 3.06 0.89 2.27 3.97 1.05 6.43 1.72 0.49 

nca0 1.61 1.70 1.54 1.61 2.70 0.82 2.51 3.95 1.49 1.64 2.42 1.09 2.07 3.24 1.23 2.38 3.27 1.75 6.42 1.35 0.43 

nca1 1.69 2.35 1.22 1.93 3.68 0.67 2.58 4.81 0.99 2.20 4.12 0.84 2.05 2.76 1.55 2.52 4.37 1.20 7.44 1.74 1.53 

had3 1.44 2.01 1.02 1.27 2.56 0.35 1.42 2.37 0.75 1.59 3.25 0.41 1.68 2.99 0.75 1.92 3.01 1.14 3.68 1.44 0.78 

had1 1.37 1.80 1.06 1.81 3.82 0.38 2.51 4.64 0.98 2.42 5.27 0.38 2.52 5.14 0.64 2.85 5.19 1.18 5.30 2.15 0.66 

Note: M1, N1 and A1 indicate the monsoon, non-monsoon and annual values for zone one and similarly for other zones
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There is no single model to represent air temperature (tas) for the whole region for all seasons. In 

region 1, GCM ‘mih’ obtained the minimum SS value for all seasons viz. 0.71 (annual), 0.59 

(monsoon) and 0.80 (non-monsoon). Climate model ‘cs5’ (0.76 and 0.53) carried the minimum 

RMSE value for annual and non-monsoon season. In region 2, there were climate models ‘ips’, ‘gao’ 

represent the minimum SS (0.74 and 0.39) and minimum RMSE value (0.76 and 0.44) for annual 

and monsoon season respectively. In region 3, model ‘nac0’ represent the minimum SS value for 

annual (0.59) and monsoon (0.03) season. Minimum RMSE value was obtained for GCM ‘gao’ 0.62 

and 0.60 during annual and non-monsoon season respectively. 

Climate models ‘ips’(0.38) and ‘gao’(0.03) obtained the minimum SS for annual and monsoon 

season respectively while for non-monsoon season, model ‘nca1’(0.83) and ‘had3’ (0.83) represent 

the same value in region 4. For region 5, minimum RMSE value obtained for model ‘gih’ for annual 

(0.36) and non-monsoon season (0.33), however ‘cnr’ (0.26) represent for non-monsoon season. In 

region 6, model ‘ips’(0.11) and ‘cnr’(0.21) for annual, ‘gih’ (0.52) and ‘mpi(0.19) for monsoon, 

‘nca1’(0.01) and ‘cnr’(0.22)  represent the minimum SS and RMSE value respectively. In region 7, 

model ‘ips’ obtained the minimum SS value for annual (0.51) and monsoon (-0.16) season, whereas 

model ‘mpi’ obtained minimum RMSE value for annual (0.75) and non-monsoon (0.81). 

For ongoing long wave radiation (olr), climate model output compared with the reanalysis data of 

NOAA. In region 1, ensemble of climate models ‘miu’(0.91), ‘ips’ (0.85), ‘mim’(0.94) represent the 

minimum SS value for annual, monsoon and non-monsoon season respectively. GCMs ‘gf0’ 

represent the minimum RMSE value for annual (10.48) and monsoon season (12.73). In region 2, 

model ‘gir’(0.77) for annual, ‘ips’ (0.63) for monsoon and ‘cs5’ (0.81) were represent minimum SS 

value. Minimum RMSE value for region 2 indicated by model ‘mpi’ (11.27), ‘mpi4’ (7.36) and ‘ips’ 

(6.65) for annual , monsoon and non-monsoon respectively. Therefore, climate Models ips, gir, 

‘mpi’, ‘ips’ and ‘cs5’ represent the region 2 for all season. For region 3, ensemble of GMCs mim, 

mpi, mpi4 and gao represent the all season. Climate model ‘mim’ obtained the minimum SS value 

for annual (0.51) and monsoon (-0.06) season, whereas ‘gao’ (0.78) represent the non-monsoon. 

Model mpi4 observed the mini RMSE value for annual and non-monsoon season, and minimum SS 

value for region 5 for annual and monsoon season. For region 6, climate model mpi, mim, mih 

obtained minimum evaluation parameter for annual monsoon season. Ensemble of climate model 

gir, mim and mpi4 scored the minimum evaluation parameter for region 7. Figure 6.6, 6.7 and 6.8 
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indicated the SS value of sea level pressure, zonal wind and meridional wind respectively for all 

seven regions of India.  

 

Figure 6.5: Skill score of GCMs for precipitation over India 

 

Figure 6.6: Skill score of GCMs for sea level pressure over India 
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Figure 6.7: Skill score of GCMs for zonal wind over India 

 

 
Figure 6.8: Skill score of GCMs for meridional wind over India 
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6.4.2 Ranking of Climate Model  

There are many methods available for model ranking but identification of the ‘best’ method, is still 

under debate for climatologists. In this section, ranking of climate models have been proposed based 

on scoring index using the Multi-Criteria Analysis (MCA). 

In this present study, 24 IPCC AR4 climate models selected for ranking over India. Total score index 

evaluated for each model using the multi-criteria analysis (MCA) method were shown in Table 6.3. 

Ranking of model over India evaluated considering 6 meteorological variables pr, tas, olr, ps, uas 

and vas. In order to calculate the total scoring index, skill score and RMSE value of each model for 

all parameters used. The same index was used for each Indian region during monsoon season, non-

monsoon season and annually, Table 6.3 indicate the total scoring index of each climate model. 

‘High’ score value GCM indicates the ‘best’ performing climate model per region whereas ‘lowest’ 

score indicates the ‘poor’ performing climate model. Score scale of model lies between 6 to -6 as 

maximum and minimum score achieved by any model. It is important to note that there is no single 

GCM that can perform ‘best’ during monsoon, non-monsoon and annual for the same region. 

Ranking of 24 climate models based on monsoon, non-monsoon and annual period for each region 

is given in Annexure 1. 

Table 6.4 indicated, for annual simulation it has been found that had3 for region 1, mpi for region 2, 

mpi4 for region 3 and 7, gf1 for region 4, gf0 for region 5 and bcr for region 6, scored maximum 

total index. Ensemble of gf0, gf1 and mpi scored second highest for India for annual simulation. For 

monsoon season, climate model mpi scored maximum for region 1, cc6 scored 6 in the index scale 

for region 2. Climate model mpi4 scored maximum value 6 for region 3 and 7, whereas mih 

performed ‘best’ for region 4 and 5 during the monsoon season. Ensemble of cc6, cc4, mpi4, and 

cs3 performed better in India as whole during monsoon. It has been observed during monsoon that 

the climate model gir secured the lowest position for region 2,3,4,5 and 7. In order to analyze the 

climate model for non-monsoon season, had3, mim, mpi, gf1, ips and cc4 was the best model for 

regions 1 to 7 respectively. Ensemble of gf1, gf0, ips, mpi secured second position for the whole 

India during non-monsoon season. Climate model ‘gir’ performed very poorly and scored the lowest 

score index values for regions 1, 2 and 3. 
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Table 6.3: Total Index score of GCM Models for Annual, Monsoon, Non-Monsoon 

MODELS 
NMI NWI NCI WPI EPI SPI NEI NMI NWI NCI WPI EPI SPI NEI NMI NWI NCI WPI EPI SPI NEI 

ANNUAL MONSOON NON-MONSOON 

bcr 1 0 0 2 2 5 -3 -1 1 -2 1 2 5 -3 1 -1 -1 2 2 3 -3 

cc4 2 4 3 2 1 3 4 2 5 5 4 3 0 4 -2 0 3 2 0 5 2 

cc6 3 4 3 1 2 4 1 3 6 3 1 3 3 3 5 2 3 0 1 2 3 

cnr -2 -3 -2 0 0 0 -4 -2 -2 -3 1 1 2 -1 -1 -2 -1 0 1 -3 -1 

cs3 2 3 4 3 1 1 5 0 4 4 3 2 1 5 1 2 3 1 2 0 4 

cs5 1 3 3 0 -1 -1 4 1 3 3 1 2 -2 5 2 1 0 -1 -2 -1 3 

gf0 5 3 4 4 4 5 2 2 3 4 0 2 2 2 3 1 1 2 4 5 2 

gf1 3 5 3 5 4 1 4 3 5 3 3 5 3 4 2 4 3 5 2 3 3 

gao 0 -1 -2 1 3 1 0 0 -2 -2 2 0 -1 -1 0 2 0 3 4 3 0 

gih -3 -4 -3 -1 -3 -1 -3 -3 -4 -3 -1 -4 -2 -2 -2 -3 -2 -1 -2 1 -3 

gir -4 -6 -5 -5 -4 -2 -4 -3 -6 -5 -3 -4 -1 -4 -3 -3 -3 -2 -2 -1 -3 

iap -2 0 0 1 2 1 -2 -2 1 0 -1 -2 -1 -2 0 2 0 3 4 3 -1 

mpi4 3 5 5 1 4 1 6 3 6 6 2 4 2 6 3 1 3 -1 2 -1 3 

inm -3 -1 1 -2 1 1 -1 -3 -2 1 -2 1 -1 -2 0 3 0 2 1 1 0 

ips 0 -2 1 -1 0 -1 -3 -1 -4 0 -1 -3 -3 -1 2 3 4 4 6 5 1 

mih 2 3 4 1 3 1 2 2 2 5 5 6 3 1 2 3 2 -1 0 0 3 

mim 3 3 1 2 1 2 1 2 3 1 4 2 2 1 2 5 4 1 -1 2 3 

miu -1 1 0 2 0 -2 0 -2 1 -1 1 0 -2 0 1 2 1 3 1 0 1 

mpi 5 6 5 5 2 4 4 4 6 4 3 2 2 4 5 4 5 5 1 3 5 

mri -1 -1 2 -2 -3 -1 1 -3 -3 0 -1 -3 -1 -1 2 2 3 1 -4 0 1 

nca0 1 0 1 0 -3 -3 3 1 1 2 1 -1 2 0 2 3 3 1 0 -4 5 

nca1 -1 -1 1 -1 4 -2 0 -1 0 0 3 4 0 2 -2 -1 3 -2 1 -2 1 

had3 6 4 3 2 1 3 2 3 4 4 -1 -1 0 3 6 3 2 0 2 3 1 

had1 2 2 3 2 2 0 4 3 2 3 3 -1 0 5 0 4 1 1 4 2 2 
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Table 6.4: Top 5 GCM ranking (best to worst) Model for Indian region 

Ranking 
NMI NWI NCI WPI EPI SPI NEI 

Annual 

1 had3 mpi mpi4 gf1 gf0 bcr mpi4 

2 gf0 gf1 mpi mpi gf1 gf0 cs3 

3 mpi mpi4 cs3 gf0 mpi4 cc6 cc4 

4 cc6 cc4 gf0 cs3 nca1 mpi cs5 

5 gf1 cc6 mih bcr gao cc4 gf1 

 Monsoon 

1 mpi cc6 mpi4 mih mih bcr mpi4 

2 cc6 mpi4 cc4 cc4 gf1 cc6 cs3 

3 gf1 mpi mih mim mpi4 gf1 cs5 

4 mpi4 cc4 cs3 cs3 nca1 mih had1 

5 had3 gf1 gf0 gf1 cc4 cnr cc4 

 Non-monsoon 

1 had3 mim mpi gf1 ips cc4 mpi 

2 cc6 gf1 ips mpi gf0 gf0 nca0 

3 mpi mpi mim ips gao ips cs3 

4 gf0 had1 cc4 gao iap bcr cc6 

5 mpi4 inm cc6 iap had1 gf1 cs5 

 

6.5 SELECTION OF REPRESENTATIVE MODELS OVER UPPER NARMADA BASIN 

In order to identify the best representative climate model, 24 climate models (CMs) from CMIP5 of 

IPCC AR5 were selected for performance evaluation. In this analysis, performance of the model was 

carried based on Skill Score (SS) and Root Mean Square Error (RMSE) between climate model 

output and reanalysis data of 20 years (1981-2000) data. However, computation of RMSE and SS 

were carried out by using Data Integration and Assessment Tool (DIAS) developed by University 

of Tokyo, Japan (Kawasaki al et. 2017). There were six meteorological parameters: precipitation 

(PCP), outgoing long wave radiation (OLR), air temperature (AT), mean sea level pressure (SLP), 

zonal wind (ZW) and meridional wind (MW) considered from each model for the SS and RMSE 

assessment. The comparison of climate data with reanalysis data has been carried out by checking 

their seasonal cycle and variability using probability density function (PDFs). Ranking of the CMs 

have been evaluated based on the Total Index (TI), which depends on the SS and RMSE 
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computation. The annual SS and RMSE values of each six climatic variables are presented in Table 

6.5. 

Table 6.5: Annual skill score (SS) and root mean square error (RMSE) of six climatic variables over 

UNB 

Model 

PCP AT OLR SLP ZW MW 

SS RMSE SS RMSE SS RMSE SS RMSE SS RMSE SS RMSE 

ACCESS1.0 0.64 1.55 0.79 1.11 0.78 22.67 0.84 0.89 0.82 1.17 0.73 1.07 

BCC-CSM1.1 0.45 2.50 0.71 2.76 0.75 21.51 0.44 1.17 0.76 1.41 -0.11 1.44 

CCSM4 0.52 1.12 0.67 1.9 0.69 9.34 0.86 2.39 0.52 1.62 0.42 1.3 

CMCC-CMS 0.59 1.43 0.77 1.63 0.84 14.58 0.38 1.37 0.85 1.54 0.62 0.94 

CNRM-CM5 0.50 1.58 0.80 0.93 0.62 17.36 0.81 1.12 0.87 0.95 0.76 0.87 

CSIRO-Mk3.6.0 0.59 2.54 0.84 2.57 0.84 25.56 0.77 1.91 0.29 1.35 0.40 1.07 

CanCM4 0.42 1.44 0.75 1.74 0.86 19.64 0.36 1.13 0.88 1.80 0.32 1.57 

CanESM2 0.51 1.56 0.69 1.61 0.90 24.29 0.33 1.30 0.85 1.52 0.40 1.45 

FGOALS-g2 0.33 2.17 0.63 1.66 0.69 16.10 0.49 1.47 0.90 1.95 -0.20 1.84 

GFDL-CM3 0.69 0.85 0.70 2.02 0.63 14.18 0.73 1.36 0.84 1.49 0.48 1.31 

GFDL-ESM2G 0.57 1.13 0.76 1.97 0.48 15.37 0.60 2.66 0.87 1.66 0.51 1.29 

GISS-E2-H 0.24 3.06 0.64 4.63 0.19 32.78 0.84 2.11 0.42 1.42 0.65 1.26 

GISS-E2-R 0.24 3.00 0.67 4.04 0.24 29.56 0.79 1.62 0.62 1.02 0.71 0.93 

GISS-E2-R-CC 0.09 3.00 0.65 4.23 0.27 30.63 0.78 1.76 0.57 1.14 0.68 1.02 

HadCM3 0.66 1.41 0.74 2.51 0.72 27.23 0.75 5.51 0.87 1.94 0.63 1.13 

INM-CM4 0.56 1.41 0.50 2.20 0.73 16.52 0.54 1.56 0.61 2.02 0.26 1.37 

IPSL-CM5A-MR 0.38 1.81 0.66 4.44 0.78 22.09 0.67 0.88 0.83 1.93 0.45 1.66 

MIROC-ESM 0.03 1.40 0.29 1.66 0.15 11.10 0.14 2.62 0.77 3.36 0.02 2.32 

MIROC-ESM-CHE 0.27 1.40 0.42 1.60 0.28 10.37 0.16 2.54 0.80 3.23 0.02 2.28 

MIROC5 0.72 1.94 0.80 0.98 0.94 9.97 0.78 1.33 0.88 1.35 0.61 0.73 

MPI-ESM-LR 0.68 1.29 0.81 1.67 0.90 13.91 0.42 1.63 0.87 1.52 0.63 0.78 

MRI-CGCM3 0.65 2.68 0.82 2.63 0.84 24.93 0.78 3.34 0.82 1.18 0.53 1.55 

MRI-ESM1 0.55 2.71 0.81 2.55 0.80 24.82 0.76 3.38 0.82 1.19 0.52 1.53 

NorESM1-M 0.51 1.29 0.82 1.57 0.77 9.99 0.73 1.37 0.85 1.45 0.60 1.17 

Performance of climate models were evaluated based on the ‘Total Index’ (TI) employing the multi 

criteria analysis. In order to compute the Total Index, multi criteria were applied on the simulated 

values of SS and RMSE values (Equations 6.6-6.10). However, annual average values of SS were 

computed as 0.47, 0.74, 0.65, 0.61, 0.76 and 0.44 for PCP, AT, OLR, SLP, ZW and MW, 

respectively. Moreover, RMSE values evaluated as 1.84, 2.28, 19.35, 1.93, 1.63 and 1.33 for PCP, 

AT, OLR, SLP, ZW and MW, respectively. Applying multicriteria analysis in Sindex and RMSEindex, 
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TI value may vary in the range from +6 to -6, +6 TI value indicates all six variable are acceptable 

for particular climate model, whereas -6 exhibit none of climate variables are acceptable of particular 

model in study area. In this analysis, two climate models MIROC5 and CNRM-CM5 indicate the 

+6 TI values follow by +5 TI vales of MPI-ESM-LR, GFDL-ESM2M and IPSL-CM5A-MR (Figure 

6.9). Lowest TI values was noted -2 for GISS-E2-H and BCC-CSM1.1 (Figure 6.9).  

However, to reduce the uncertainly in climate projection, top three climate models: MIROC5, 

CNRM-CM5 and MPI-ESM-LR were selected as representative climate models for hydrological 

modelling over the study area. The dynamical downscaled data (regional climate model data) of 

these three climate models have been coupled with SWAT, hydrological model to estimate the water 

balance components. Table 6.6 indicate the selected models and description about the centre 

location. 

 

Figure 6.9: Ranking of climate models based on Total Index (TI) 

Table 6.6: Description of centre location of selected representative climate models for 

hydrological studies  

Climate model Short Name Centre and Location 

MIROC5 MIROC Center for Climate System Research (The University of Tokyo), Japan 

CNRM-CM5 CNRM Centre National de Recherches Meteorologiques, Meteo, France 

MPI-ESM-LR MPI Max Planck Institute for Meteorology, Germany 

Source: http://cmip-pcmdi.llnl.gov/cmip5/availability.html 
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6.6 BIAS CORRECTION OF RCM OUTPUT  

Bias correction process apply a transformation algorithm for correcting the RCM output. The basic 

approach is to evaluate biases in baseline (control period) RCM climate variables, by comparing the 

observed climate variables, which is also applicable for correcting the baseline and RCP scenarios 

runs. In this study, dynamical downscaled GCMs output (RCM data) of driving representative 

GCMs were selected with integration of hydrological model. The RCM data from Coordinated 

Regional Downscaling Experiment (CORDEX) was used to assess the climate projections over the 

river basin under IPCC AR5, representative concentration pathways (RCPs) 4.5 and 8.5 scenarios. 

The CORDEX-RCM outputs represent daily average at the spatial resolution of 0.44o x 0.44o  (~50 

km x 50 km) for regional climate impact studies. However, these outputs are not be used directly for 

hydrological models to assess the local scale studies because of systematic biases. These biases are 

the results of imperfect conceptualization, discretization while downscaling and spatial averaging 

within grid cells (Graham et al. 2007a). Therefore, bias correction approach, distribution mapping 

was applied on precipitation and temperature series to remove the inherent systematic biases. 

6.6.1 Distribution Mapping  

Distribution mapping method was used to correct the raw RCM output variables. The basic concept 

of distribution mapping is to adjust the distribution function of raw climate variables (RCM data) to 

fit with the observed distribution function of observed data by developing the transform function 

(Johnson and Sharma 2012; Teutschbein and Seibert 2012). In order to correct the raw simulated 

series (RCM data), Gamma distribution and Gaussian distribution often assumed best suited 

distribution for precipitation data and temperature data, respectively. 

Gamma distribution:               1 1
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 Where, α and β are shape parameter and scale parameters, respectively (Block et al., 2009; 

Ines and Hansen, 2006; Katz, 1999; Piani et al., 2010; Watterson, 2003). 

Gaussian distribution:               
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Where, σ and μ are scale parameter and location parameters, respectively (Christensen et al., 2008; 

Teutschbein and Seibert 2012). 
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Firstly, cumulative distribution function (CDFs) were developed for both observed series and 

baseline RCM output series for all days of corresponding month and baseline simulated CDF shifted 

to the observed CDF (Lafon et al., 2013; Teutschbein and Seibert, 2012). Therefore, the same CDFs 

use to correct the baseline and future projected series.  

1

, , , , ,' ( ) [ ( ( ) , ) ]bl G G bl bl m bl m obs m obs mP d F F P d                                              ….. (6.13) 

1

rcp rcp , , , , ,' ( ) [ ( ( ) , ) ]G G rcp m rcp m obs m obs mP d F F P d                                             ….. (6.14) 

For temperature, Gaussian CDFs transfer indicated as follows: 

1 2 2

, , , , ,T' ( ) [ (T ( ) , ) ]bl G G bl bl m bl m obs m obs md F F d                                               ….. (6.15) 

        1 2 2

rcp rcp , , , , ,T' ( ) [ (T ( ) , ) ]G G rcp m rcp m obs m obs md F F d                                             ….. (6.16) 

Where, F and F-1 and indicates the CDF and its invers, respectively. For precipitation, Gamma CDF 

(FG) was used, whereas Gaussian CDF (FN) suited for temperature bias correction (Teutschbein and 

Seibert 2012). 

While bias correction on series, cumulative distribution function (CDFs) were developed for both 

observed series (1971-2000) and baseline RCM output series (1971-2000) for all days of 

corresponding month and baseline simulated CDF shifted to the observed CDF. Therefore, the same 

CDFs use to correct the baseline and future projection (2011-2040, 2041-70, 2071-2100) series. It 

is an assumption that bias correction approaches are stationary, which indicate correction algorithm 

and parameterization is applicable for future scenarios as well.  

6.7 CONCLUDING REMARKS 

Global climate models (GCMs) were evaluated and the most suitable model was identified that can 

best reproduce the meteorological parameters for hydrological and impact studies for the UNB. In 

this analysis, 24 GCMs were used for assessment from Coupled Model Intercomparison Project, 

CMIP3 and CMIP5 for regional (Indian region) and local study area (UNB), respectively. Each 

GCM output was evaluated with reanalysis data, Skill Score (SS) and Root Mean Square Error 

(RMSE) are the main tools used to assess the performance for six meteorological variables 

(precipitation, outgoing long wave radiation, air temperature, mean sea level pressure, zonal wind 

and meridional wind) of GCMs. By considering the combined effect of meteorological variables, 
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GCM models ranked from 'best' to 'worst' using multi-criteria analysis (MCA). For regional study, 

the entire Indian region was divided into seven zones on the basis of homogeneous precipitation. 

These zones are North Mountainous India (NMI), North Central India (NCI), Northwest India 

(NWI), East Peninsular India (EPI), West Peninsular India (WPI), South Peninsular India (SPI) and 

North East India (NEI). The study has been carried out for monsoon season, non-monsoon season 

and for the entire year, and performance of each model was checked and ranked for each individual 

zone. Result of the study indicate, there is no single GCM which can be recommended for the whole 

Indian region. The main concluding remarks drawn from the study are: 

a) GCM model for precipitation have been proposed as ensemble of MPI_ECHAM4.0, 

MIROC3.2_HIRES, UKMO_HADCM3.0 and INGV_ECHAM4 are the best model for the 

Indian region. 

b) Climate models of CCCMA groups are performing well for atmospheric temperature in most 

of the Indian region. 

c) Climate models CCCMA, ECHAM and MIROC3.2 models have been evaluated for 

meridional wind over the Indian region.   

d) The resemblance GFDL_CM2.0, MPI_ECHAM5, INGV_ECHAM4, UKMO_HADCM3 

and BCCR_BCM2_0 GCM models are recommended for the whole India for the annual 

study. 

e) Three climate models, MIROC5, CNRM-CM5 and MPI-ESM-LR were selected as 

representative climate models for UNB. 

f) Distribution mapping (quantile-quantile) method was used to correct the raw RCM output 

climatic variables. The basic concept of distribution mapping is to adjust the distribution 

function of raw climate variables (RCM data) to fit with the observed distribution function 

of observed data (IMD data) by developing the transform function. In order to correct the 

raw simulated series (RCM data), Gamma distribution and Gaussian distribution often 

assumed best suited distribution for precipitation data and temperature data, respectively.  
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CHAPTER 7 

HYDROLOGICAL SIMULATION UNDER LAND USE LAND COVER 

DYNAMICS AND RCP SCENARIOS 

7.1 GENERAL 

To maintain the sustainable development, knowledge on water availability of a country or region, 

strategic information needed for long-term planning to fulfil the water requirement including 

agriculture and domestic purpose. In the recent past, enough evidences provided by scientific 

community that ‘Climate is changing and it is unequivocally phenomena’ (Pachauri et al. 2014). The 

influencing factors of global warming and changes in climatic system are emission of greenhouse 

gases (GHGs) and anthropogenic activities (Graham et al. 2007; Solomon, 2007; Zhu, 2013). 

Increasing concentration in greenhouse gases modifying the hydrological cycle and the frequency 

and magnitude of hydrological and climatic parameters. The projection of water availability on 

regional hydrology depends upon land use land cover and simulated climate variables (e.g., 

temperature, precipitation) from the global climate models (GCMs). It is quite common to estimate 

the water balance variations under land use land cover change and climate change from GCMs 

output coupled with hydrological model. Therefore, it is important to examine the performance of 

GCMs simulation for hydrological studies. However there are very limited studies are available on 

virtual water variability considering dynamics of land use land cover and climate change impact. In 

the recent past, water footprint concept has been introduced that is assessed in terms of consumed, 

evaporated and polluted water and categorized in blue, green and gray water footprint by the 

scientific community (Aldaya et al. 2012; Chapagain and Hoekstra 2004; Hoekstra 2008; Hoekstra 

and Hung 2002). Moreover hydrological simulation is not possible without calibrated hydrological 

model set up for the region. In order to calibrate the model, there are many hydrological parameters 

that cannot be measured directly in the field, but must be obtained through a model calibration 

process. Model calibration is thus an essential task to obtain the optimal parameter values, which 

match simulations with observations as closely as possible.  

As already have been discussed in earlier section, there are very limited studies based on assessment 

of hydrological responses under dynamics of land use land cover and climate change for UNB. 

Hence the aims of study presented in this chapter are: (1) setup the semi-distributed hydrological 
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model (SWAT) applying multi-site calibration techniques for Upper Narmada Basin, (2) 

computation of land use land cover change impact on water availability under constant climatic 

condition, (3) evaluation and assessment of hydrological components, including blue water and 

green water, under future scenarios from 2011 to 2100 under IPCC AR5 representative concentration 

pathways (RCPs), moderate emission scenario (RCP4.5) and high emission scenario (RCP8.5). 

However, overall process of impact studies is illustrated in Figure 7.1. 

 

Figure 7.1: Framework of impact assessment on water availability due to land use land cover and 

climate change  
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7.2 DATA PROCESSING 

7.2.1 Spatial data 

Different type of spatial data are required in the SWAT model for simulation.  The data required by 

SWAT for basin simulation are: 

Digital Elevation Model: Shuttle Radar Topographic Mission (SRTM) has provided digital elevation 

data (DEMs) of 90 m resolution. The downloaded digital elevation model from SRTM has projection 

system of WGS_1984_UTM, Zone_44 N at 90-meter resolution and the position of study area is 

maximum. 

Soil Map: Food and Agriculture Organization (FAO) digital soil map of the world having scale of 

1:5,000,000. 

Land Use Map: The land use land cover data is essential for hydrological modelling. The land use 

land cover of an area is one of the major factor which affect surface runoff, evapotranspiration and 

erosion in the basin. The land use land cover map of 2011-12 was procured from National Remote 

Sensing Centre (NRSC) Hyderabad, Government of India on 1:50,000 scale used in climate change 

impact study over the basin.  

The distribution of different elevation, slope, land use classes and soil map of basin are presented in 

Figure 7.2 and Annexure 2. 

7.2.2 Hydro-meteorological Data 

Discharge Data: Hydro-meteorological stations in India setup by an apex central Government body, 

Central Water commission (CWC), India. In this study, daily discharge data was downloaded from 

‘Water Resources Information System India (WRIS-India) website, managed by National Remote 

Sensing Centre- Indian Space Research Organization (NRSE-ISRO).   

Weather Data:  High resolution (1o x 1o) daily gridded temperature data set for the period 1969-2005 

and (0.5o x 0.5o latitude/longitude) gridded daily rainfall data for the period 1971-2005 over Indian 

region developed by India Meteorological Department (IMD) Pune, India. 

Regional Climatic Data: The regional climate model (RCM) data provided by Coordinated Regional 

Downscaling Experiment (CORDEX) was used in this study. Climate change simulation of RCM at 

a spatial resolution of 0.44o x 0.44o.  
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Figure 7.2: Spatial data (elevation, slope, land use and soil map) for hydrological modelling 

7.3 HYDROLOGICAL MODEL: SOIL AND WATER ASSESSMENT TOOL 

7.3.1 Introduction 

To simulate water availability, a physical based, semi-distributed hydrological model, Soil and 

Water assessment tool (SWAT) was used and operated on daily time step in this study (Arnold et al. 

1994; Neitsch et al. 2011). The model has ability to simulating various hydrological process 

including future hydro-climatic changes considering future climatic projections and land 

management practices on quantity and quality of water resources in river basin (Ullrich and Volk 

2009).  

For hydrological response, the model divides the main basin into small sub-basins and sub-basins 

into small hydrological response unit (HRU) connected through drainage network (Green et al. 

2006). HRU is the lumped unit that comprised of unique combination of land use/land cover, soils 

and slope area that allows routing of flows to the downstream sections (Neitsch et al. 2011).  
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The main climatic inputs data for hydrological model are precipitation, minimum temperature, and 

maximum temperature, solar radiation, and relative humidity (Arnold et al. 1998). The spatial data 

required for SWAT model area digital elevation model (DEM), land use/land cover map, soil map 

data (Arnold et al. 1998; Neitsch et al. 2011). Observed precipitation and temperature dataset were 

obtained from the India Meteorological Department (IMD), India. DEM data was delineate the 

watershed and to derive the basin features such as slope length and gradient, stream network 

characteristics (channel slope, length and width) were derived from the DEM using the automatic 

watershed delineation tool in the recent version of ArcSWAT, interface of ArcGIS10.2. 

7.3.2 Model Equations 

The hydrologic cycle equation in the land phase as simulated by SWAT is based on the governing 

water balance equation (Arnold et al. 1994; Pandey et al. 2016). 

1

( )
i

t o day sur seep gw

t

SW SW R Q ET W Q


                                         ….. (7.1) 

Where, SWt and SWo is the final soil water content (mm initial soil water content on day i (mm), t is 

the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface 

runoff on day i (mm), ET is the amount of evapotranspiration on day i (mm), Wseep is the amount of 

water entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of return 

flow on day i (mm) (Setegn et al. 2009). 

Surface Runoff 

Surface runoff occurs whenever the rate of water application to the ground surface exceeds the rate 

of infiltration. When water is initially applied to a dry soil, the application rate and infiltration rates 

may be similar. However, the infiltration rate will decrease as the soil becomes wetter. When the 

application rate is higher than the infiltration rate, surface depressions begin to fill. If the application 

rate continues to be higher than the infiltration rate once all surface depressions have filled, surface 

runoff will commence. SWAT provides two methods for estimating surface runoff: the SCS curve 

number procedure (SCS, 1972) and the Green & Ampt infiltration method (1911). 

The SCS runoff equation is an empirical model that came into common use in the 1950s. It was the 

product of more than 20 years of studies involving rainfall-runoff relationships from small rural 

watersheds across the U.S. The model was developed to provide a consistent basis for estimating 
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the amounts of runoff under varying land use and soil types (Rallison and Miller, 1981). The SCS 

curve number equation is (SCS, 1972): 

 
2

( )

day a

surf

day a

R I
Q

R I S




 
                                                ….. (7.2) 

Where, Qsurf  is the accumulated runoff or rainfall excess (mm), Rday is the rainfall depth for the day 

(mm), Ia is the initial abstractions which includes surface storage, interception and infiltration prior 

to runoff (mm), and S is the retention parameter (mm). The retention parameter varies spatially due 

to changes in soils, land use, management and slope and temporally due to changes in soil water 

content. The retention parameter is defined as: 

1000
25.4 10S

CN

 
  

 
                            ….. (7.3) 

Where, CN is the curve number for the day. The SCS curve number is a function of the soil’s 

permeability, land use and antecedent soil water conditions. Typical curve numbers for moisture 

condition II for various land covers and soil types is provided in standard tables (SCS Engineering 

Division, 1986).  

Potential Evapotranspiration 

Potential evapotranspiration is the rate at which evapotranspiration would occur from a large area 

completely and uniformly covered with growing vegetation which has access to an unlimited supply 

of soil water. This rate is assumed to be unaffected by micro-climatic processes such as advection 

or heat-storage effects. The model offers three options for estimating potential evapotranspiration: 

Hargreaves (Hargreaves et al. 1985), Priestley-Taylor (Priestley and Taylor, 1972), and Penman-

Monteith (Monteith, 1965). 

Lateral Subsurface Flow 

Lateral subsurface flow, or interflow, is streamflow contribution which originates below the surface 

but above the zone where rocks are saturated with water. Lateral subsurface flow in the soil profile 

(0-2m) is calculated simultaneously with redistribution. A kinematic storage model is used to predict 

lateral flow in each soil layer. The model accounts for variation in conductivity, slope and soil water 

content. 
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Peak Runoff Rate  

Predictions are made with a modification of the rational method. In brief, the rational method is 

based on the idea that if a rainfall of intensity i begins instantaneously and continues indefinitely, 

the rate of runoff will increase until the time of concentration, tc, when all of the sub-basin is 

contributing to flow at the outlet. In the modified ‘Rational Formula’, the peak runoff rate is a 

function of the proportion of daily precipitation that falls during the sub-basin tc, the daily surface 

runoff volume, and the sub-basin time of concentration. The proportion of rainfall occurring during 

the sub-basin tc is estimated as a function of total daily rainfall using a stochastic technique. The 

sub-basin time of concentration is estimated using Manning’s Formula considering both overland 

and channel flow. 

7.4 HYDROLOGICAL MODEL SETUP FOR BASIN 

The Soil and Water Assessment Tool (SWAT), a semi-distributed hydrological model was used to 

simulate the hydrological response of Upper Narmada Basin (UNB). To simulate the potential 

climate change impact on hydrology of river basin, it was important to calibrate and validate the 

hydrological model (Abbaspour et al. 2015; Green and Vangriensven 2008; Sayasane et al. 2016; 

Wu and Liu 2012). The major and wide steps of the model setup are: (i) watershed delineation and 

derive the sub-basin features (ii) HRU definition (iii) model calibration, validation and parameter 

sensitivity analysis. 

In this study, main basin divided into the 54 sub-basins (Annexure 3), and 54 sub-basin further 

subdivided in to 856 Hydrological Response Units (HRUs). Each HRU is a unique combination of 

characterized definition of land-use, soil, and slope classes. The drainage networks in the basin were 

derived by considering the threshold value of 15000 hectare. The runoff from each HRUs routed 

through the reach network to the sub-basins and sub-basins runoff routed to the river basin applying 

either the variable storage routing method or the Muskingum method (Neitsch et al. 2011). In this 

case, variable storage routing methods was opted as routing method cause less requirement of input 

variables as compared to Muskingum. Moreover, surface runoff can be computed by using either 

SCS curve number or Green Ampt Infiltration (GAI) method (Neitsch et al. 2011). In this run, SCS 

Curve Number was preferred over the Green Ampt infiltration because it needs daily precipitation, 

whereas GAI required sub-daily precipitation input. While computing the potential 

evapotranspiration (PET), Hargreaves method was applied instead of Penman-Monteith and 
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Priestley-Taylor because it requires minimum data such as daily precipitation, and maximum and 

minimum temperature. Additionally, seven G&D sites setup by Central Water Commission (CWC) 

were selected to calibrate and validate the model. Comparison of measured and simulated drainage 

area indicated in Table7.1: 

Table 7.1: Discharge gauging sites used in calibration and validation of model 

S.N. 
Gauging 

Sites 
Latitude Longitude 

CWC* 

Area(km2) 

Simulated 

Area (km2) 

Difference 

Area (%) 

1 Bamni Banjar 22.48389 80.37778 1864 1836 1.50 

2 Belkheri 22.92889 79.33944 1508 1460 3.18 

3 Gadarwara 22.92972 78.78806 2270 2190 3.52 

4 Manot 22.73583 80.51306 4667 4825 -3.39 

5 Mohgaon 22.76083 80.62361 3919 3950 -0.79 

6 Patan 23.31167 79.66361 3950 3945 0.13 

7 Sandia+ 22.91833 78.34889 33953 32795 3.41 

+ Outlet gauging site of Upper Narmada Basin;*Source: Integrated Hydrological Data Book (January, 2015), Central 

Water Commission (CWC), New Delhi 

7.4.1 Model Evaluation Parameters 

In this study, goodness of calibration and validation is evaluated based on the coefficient of 

determination (R2), and Nash-Sutcliffe efficiency (NSE). In general, model is acceptable if the 

Coefficient of determination (R2) is greater than 0.5, and calculated as: 
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Nash-Sutcliffe efficiency (NSE) ranges from -∞ to 1, where 1 indicates perfect simulation against 

observed value. It was used as objective function to identify the best simulation rages of parameters 

due to its wide applicability and reliability in hydrological modelling (Willmott et al. 2012; Willmott 

et al. 2015).  
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The ratio of root mean square error (RMSE) and standard deviation (σ) of observed value, it is 

measured as RSR: 
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Percent Bias (PBIAS) indicated the underestimated or overestimated observed variable.  
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Where, Qo and Qs represent the observed discharge and simulated discharge respectively, whereas 

oQ  is the mean observed discharge value.  

In order to evaluate the performance of calibrated and validated SWAT model, statistics of 

evaluation parameters in hydrology for monthly time steps proposed by Moriasi et al. (2007) is given 

in Table 7.2: 

Table 7.2: General rating of performance of model for recommended statistics for monthly step 

Performance Rating NSE R2 PBIAS RSR 

Poor ≤ 0.50 ≤ 0.50 ≥  ±25 0.0 – 0.5 

Satisfactory 0.5 – 0.6 0.5 – 0.6 ±15 – ±25 0.6 – 0.5 

Good 0.6 – 0.75 0.6 – 0.8 ±10 – ±15 0.7 – 0.6 

Very Good 0.75 – 1.00 0.8 – 1.0 ≤  ±15 ≥ 0.70 

7.4.2 Uncertainty and Sensitivity Analysis 

The ability of a hydrological model to sufficiently predict water balance for a particular application 

is assessed by sensitivity analysis of parameters, model calibration and model validation. Sensitivity 

is evaluated as the response of an output variable to alter in an input parameter, with the bigger 

change in output response representing to a greater sensitivity. Sensitivity analysis measures how 

different parameters influence a predicted output. Model parameters identified in sensitivity analysis 

that influence predicted outputs are often used to calibrate a model. Model calibration entails the 

modification of parameter values and comparison of predicted output of interest to measured data 
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until a defined objective function is achieved (James and Burges, 1982). After achieving the 

objective function for calibration, validation of the model. Validation procedures are similar to 

calibration procedures in that simulated and observed values are compared to determine if the 

objective function is met. However, a dataset of observed basin response selected for validation 

preferably should be different than the one used for model calibration, and the model parameters are 

not adjusted during validation. Validation provides a test of whether the model was calibrated to a 

particular dataset or the system it is to represent. If the objective function is not achieved for the 

validation dataset, calibration and/or model assumptions may be revisited. In this study, SWAT 

parameters for calibration were selected after reviewing the several publication.  

In this study, Latin hypercube one-factor-at-a-time (LHOAT) method of sensitivity analysis (Morris 

1991) was used, implemented in SWATCUP. This tools can be used to evaluate the sensitivity of a 

parameter that assess the model calibration and parameter uncertainty (Veith and Ghebremichael 

2009). This global sensitivity analysis approach has the advantage of being fast compared to similar 

procedures and, as a result, one does not obtain an absolute measure of the sensitivity but rather a 

ranked order of the parameters. Ranking of sensitive parameters and code description is given in 

Table 7.3, while best fitted value range of SWAT parameters are shown in Table 7.4.  

Table 7.3: Ranking of sensitive parameters for outlet point UNB (at Sandia) 

Ranking Parameter Name Definition 

1 CN2.mgt Curve number 

2 ALPHA_BF.gw Base flow recession constant 

3 GW_DELAY.gw Groundwater delay (days) 

4 GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 

flow to occur (mm) 

5 ESCO.bsn Soil evaporation compensation factor 

6 EPCO.bsn Plant uptake compensation factor 

7 GW_REVAP.gw Groundwater re-evaporation coefficient 

8 REVAPMN.gw 
Threshold depth of water in the shallow aquifer for re-evaporation to 

occur 

9 SOL_K(..).sol Soil hydraulic conductivity 

10 OV_N.hru Manning’s n value for the main channel 

11 SOL_AWC(..).sol Available soil water capacity 

12 CANMX.hru Maximum canopy storage 
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Table 7.4: Maximum (Max), minimum (Min) and best fitted values of parameters for calibration 

S.N Parameter 
Change 

Type 

Fitted value of calibrated sites* Max-Min 

 Range SD BB BK GD MN MG PT 

1 CN2.mgt Relative -0.05 0.01 -0.01 -0.02 0.015 0.01 -0.01 -0.1- 0.1 

2 ALPHA_BF.gw Replace 0.57 0.46 0.43 0.44 0.43 0.41 0.58 0.5 - 0.85 

3 GW_DELAY.gw Replace 367 220 230 310 240 201 351 30 - 450 

4 GWQMN.gw Replace 0.29 0.34 0.31 0.10 0.16 0.23 0.12 0.1 -1 

5 ESCO.bsn Replace 0.21 0.18 0.26 0.26 0.56 0.14 0.28 0.1 - 0.7 

6 EPCO.bsn Replace 0.11 0.12 0.23 0.19 0.23 0.15 0.14 0.1- 0.7 

7 GW_REVAP.gw Relative 0.04 0.04 0.04 0.025 0.022 0.026 0.037 0.02 - 0.2 

8 REVAPMN.gw Replace 229 182 223 196 129 223 236 120 - 250 

9 SOL_K.sol Relative -0.04 0.05 0.03 -0.05 0.015 0.02 -0.034 -0.1 - 0.2 

10 OV_N.hru Replace 0.15 0.01 0.09 0.150 0.13 0.07 0.17 0.01 - 0.2 

11 SOL_AWC.sol Replace 0.26 0.36 0.41 0.23 0.25 0.15 0.18 0.1 - 0.8 

12 CANMX.hru Replace 34 32 39 28 41 26 36 20 - 80 

Note: SD:Sandia; BB:Bamni Banjar; BK:Belkheri; GD:Gadarwara; MN:Manot; MG:Mohgaon; PT:Patan 

Sequential Uncertainty Fitting Version 2 (SUFI-2) in the SWAT-Calibration Uncertainties Program 

(SWAT-CUP) tool was used to analyze the uncertainties of model calibration and validation and 

identifying of sensitive input variables (Abbaspour et al. 2015). SUFI-2 algorithm in SWAT-CUP 

was used because of ability to tune many parameters while running the model. In this study, 12 

SWAT parameters were selected for the calibration and model simulation with 500 combination of 

3 iteration during 1978-1995. In each model run, parameters tune the values to match the simulated 

discharge with observed discharge, afterward these values used to validate the model by monthly 

discharge values from 1996 to 2005.  In general, three major sources of uncertainty observed in the 

outputs of a hydrological model: structural uncertainty, input uncertainty and parameter uncertainty. 

The structural uncertainty due to adopting a set of assumptions to simplify the modelling of the 

desired process. The uncertainty in input may be caused by the error in various climatological inputs, 

whereas model parameters uncertainty is the results of the effects of major and minor construction 

such as roads and hydraulic structure, which may produce considerable measures of sediment in 

short period. Input uncertainty is associated with spatially interpolated measurements of model input 

or initial conditions (Yang et al. 2008). The uncertainties are quantified by a measure known as the 

‘p’ factor, which is the percentage of observed data bracketed by the 95% prediction uncertainty 
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(95PPU). The 95PPU is calculated at the 2.5% and 97.5% levels of the cumulative distribution of an 

output variable obtained through Latin hypercube sampling. This is calculated by the 2.5th and 97.5th 

percentiles of the cumulative distribution of every simulated point. Another measure quantifying the 

strength of an uncertainty analysis is the r-factor, which is defined as the average thickness of the 

95PPU band divided by the standard deviation of the observed data (Abbaspour, 2008). The 

goodness of fit and the degree to which the calibrated model accounts for uncertainties are assessed 

by the above two measures. Theoretically, the value of the p-factor ranges between 0% and 100%, 

while that of the r-factor ranges between 0 and infinity. A p-factor of 1 and r- factor of zero indicates 

that a simulation exactly mimic the observation. SUFI-2 seeks to bracket most of the measured data 

(large p-factor, maximum 100%) with the smallest possible value of r-factor (minimum 0).  

7.4.3 Calibration and Validation of Multi-site SWAT Model 

Normally, most of the time single site calibration approach is adopted, in which observations (e.g., 

discharge) from a single gauging site (usually at the basin outlet) are used (Bannwarth et al. 2015; 

Shi et al. 2013). However, the applicability of this technique for complex and spatially 

heterogeneous basin is questionable because only one output information at the basin outlet is used 

for model constraint. Such type of method may yield unrealistic parameter values, which may not 

suitably of the processes within the basin. Therefore, a multisite calibration approach, in which one 

or more variables and objective functions are considered at multiple sites to appropriately represent 

the spatial variability of a given basin. This method is anticipated to better performance of spatially 

distributed hydrologic models by representing the spatial variability with different parameter values. 

In this way, multisite calibration approach may reduce the chance to optimize the model to physically 

unrealistic parameter values. Thus, multisite calibration can potentially improve the parameter 

uncertainty during the calibration process. Hence, model calibration at different locations of a basin 

is crucial for the SWAT model, particularly for a spatially heterogeneous catchment.  

The SWAT model was calibrated and validated for UNB using monthly observed discharge records 

from seven gauging sites (Figure 7.3). Table 7.2 represents the measured and simulated sub-

catchment area and location of gauging sites, whereas Figure 7.3 represents the stream network, sub-

basin and calibration locations. Figure 7.4 indicate the monthly calibration and validation result 

performed at outlet for 18 years (1978 to 1995) and 10 years (1996 to 2005), respectively, considered 

the 3 years (1975-1977) warm-up period. Moreover, Figure 7.5 shows the scatter plot of calibration 
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and validation for outlet of basin (Sandia). In this study, Nash-Sutcliffe efficiency (NSE) was used 

as objective function to identify the best simulation rages of parameters due to its wide applicability 

and reliability in hydrological modelling (Willmott et al. 2012; Willmott et al. 2015). Table 7.3 

indicates NSE value are 0.77 and 0.73 for calibration and validation, respectively at outlet point of 

basin (Sandia), however NSE values ranges varying from -∞ to 1, and close to 1 values are 

acceptable performance (Willmott et al. 2012). Figure 7.5 shows the correlation between simulated 

discharge and observed discharge exhibit 0.76 and 0.70 values for calibration and validation, which 

is good and satisfactory (Bisantino et al. 2015; Moriasi et al. 2007).  However, Table 7.5 indicates 

other evaluation parameters such as coefficient of determination (R2), r-factor (observations 

bracketed by the prediction uncertainty) and p-factor (achievement of small uncertainty band) also 

considered in model evaluation. 

Table 7.5: Model multi-calibration and validation evaluation values  

Site Evaluation Duration p-factor r-factor NSE R2 

Sandia+ 
Calibration 1978 - 1995 0.62 1.21 0.77 0.76 

Validation 1996 - 2005 0.80 0.96 0.73 0.70 

Bamni Banjar 
Calibration 2000- 2003 0.31 0.30 0.75 0.72 

Validation 2004 - 2005 0.61 0.48 0.80 0.93 

Belkheri 
Calibration 1978 - 1995 0.81 0.92 0.83 0.86 

Validation 1996 - 2005 0.36 0.72 0.72 0.91 

Gadarwara 
Calibration 1978 - 1995 0.62 0.68 0.84 0.81 

Validation 1996 - 2005 0.80 0.96 0.69 0.80 

Manot 
Calibration 1978 - 1995 0.76 0.92 0.76 0.80 

Validation 1996 - 2005 0.80 0.77 0.73 0.91 

Mohgaon 
Calibration 1978 - 1995 0.89 0.86 0.78 0.72 

Validation 1996 - 2005 0.81 0.95 0.75 0.64 

Patan 
Calibration 1985 - 1995 0.77 1.20 0.70 0.91 

Validation 1996 - 2005 0.69 1.85 0.78 0.81 

+ Outlet Point of Upper Narmada Basin; 
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Figure 7.3: Upper Narmada basin stream network, sub-basins and gauging sites used for Model 

Calibration 
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Figure 7.4: Calibration and validation plot of simulated and observed discharge at outlet (Sandia) 

of UNB 

 

  

Figure 7.5: Correlation between simulated discharge and observed discharge (a) calibration period 

(1978-1995); (b) validation period (1996-2005) at Sandia gauging site 
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Figure 7.6: Calibration and validation plot of selected sites of UNB 
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7.5. HYDROLOGICAL RESPONSE UNDER LAND USE LAND COVER CHANGE 

7.5.1 Number of SWAT Simulations under Land Use and Climate Change 

In this study, the effects of LULC and climate changes on water balance components were evaluated 

by comparing the SWAT outputs of 26 simulations. Four simulations were performed under 

dynamics of land use land cover, whereas 22 runs were conducted under different climatic conditions 

(Figure 7.7). Two GHGs scenarios (RCP4.5 and RCP8.5) from three climate models (representative 

GCMs) were selected for assess the climate change impact over study area. 

 

Figure 7.7: Flow chart illustrating 26 number of SWAT simulations under different land use and 

climate change scenarios 
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7.5.2 Impact of Land Use Land Cover Change on Water Balance Components  

The calibrated SWAT model has been used to simulate the impact of LULC change. Water balance 

components of the UNB Basin were simulated under four different land use period, 1990, 2000, 

2010 and predicted land use 2030. LULC class distribution and changes is given in Table 7.6. The 

projection of 2030 indicate the built-up area, cropland and natural vegetation area 463.83 km2, 

19222.91 km2 and 12157.11 km2 respectively. Built-up area and cropland increased from 0.72% 

(2015) to 0.98% (2030) and 56.79% (2015) to 59.15% (2030) respectively in next 15 years, whereas 

natural vegetation area found to be decreased from 39.66% (2015) to 37.41% (2030) for the same 

duration. In general, prediction of 2030 LULC classes distribution indicate the expansion in cropland 

and reduction in natural vegetation due to deforestation. It also indicate the substantial growth in the 

built-up area. The expansion of built-up area and cropland occurring due to the tourist places such 

as Jabalpur and Amarkantak, and population growth in region. Study indicate the continuous 

increase in population in the study area influence the deforestation and expansion in cropland.  

Table 7.6: Land use land cover distribution of year 1990, 2010, and 2030 

LULC Classes 

1990  2000  2010  2030 

Area 

(Ha) 

Area 

(%) 
 

Area 

(Ha) 

Area 

(%) 
 

Area 

(Ha) 

Area 

(%) 
 

Area 

(Ha) 

Area 

(%) 

Water Bodies 39843 1.23  33948 1.04  45581 1.4  46383 1.43 

Built-up 6357 0.2  12141 0.37  19362 0.6  31978 0.98 

Vegetation 1598356 49.18  1446077 44.49  1346294 41.42  1215711 37.41 

Cropland 1539074 47.36  1711835 52.67  1787332 54.99  1922291 59.15 

Barren Land 66371 2.04  45999 1.42  51431 1.58  33637 1.03 

Impact of LULC change on hydrological components has been analyzed that indicates increased 

water yield and decreased actual evapotranspiration (ET). The change in LULC influence the surface 

properties such as curve number (CN) values and evapotranspiration properties. Change in surface 

parameters values due to changed LULC is the main causes of change in water balance components. 

In order to compute the LULC change impact only, period of climate data has been fixed for the 

simulation. In this study, fixed climatic period data from 1990 to 2000 has been considered to 

simulate the impact of LULC change. The average annual value of water balance (water yield, actual 

evapotranspiration, surface water and groundwater) is given in Table 7.7. Water yield includes both 

surface runoff and groundwater. Table 7.6 indicate that increase in settlement and decrease in natural 
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vegetation, affect as increase in the water yield and increased surface runoff, but there is a decrease 

in ET. Table 7.7 shows the surface runoff and water yield of 1990 is the lowest (477.79 mm and 

699.69 mm, respectively), which increases gradually and highest increase is predicted in the future 

in 2030 (539.48 mm and 752.54 mm, respectively). The actual ET decreases with time due to 

decrease in natural vegetation and it is projected to be lower in 2030 (552.86 mm) and highest in 

1990 (605.33 mm). There is a gradual decrease in the groundwater due to land use change with time. 

The value of curve number value increases with urbanization resulting in increased surface runoff 

and decreased groundwater owing to reduced infiltration. Therefore, conversion of LULC from 1990 

to 2030 shows a gradual groundwater decrease. Changed land use and CN have caused increased 

water yield and decreased ET and groundwater. The average annual values of evapotranspiration 

and water yield of sub-basin due to LULC change are shown in Figure 7.8 and Figure 7.9, 

respectively. During last 2 decades (2010-2030), LULC changes increased surface runoff by 28.45 

mm and accounted for 5.57% of the total change (539.48 mm). Moreover, ET decreases by 4.19% 

in the same duration.  

Table 7.7: Average annual water balance components under 1990, 2000, 2010 and 2030 LULC  

Land use Condition Rainfall (mm) Surface Runoff (mm) 
ET 

(mm) 
Groundwater (mm) 

1990 1248.29 477.79 605.33 58.10 

2000 1248.29 495.73 590.06 55.47 

2010 1248.29 511.03 577.04 53.28 

2030 1248.29 539.48 552.86 49.27 
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Figure 7.8: Comparison of decadal changes in evapotranspiration due to LULC change  

 

 

Figure 7.9: Comparison of decadal changes in water yield due to LULC change 
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7.5.3 Impact of Climate Change on Water Balance Components  

7.5.3.1 Precipitation projection under RCP scenarios 

Precipitation is one of the most important components of hydrological cycle. It is the main source 

of water availability in various region. Therefore, it is very important to understand the variability 

and climate change effect on precipitation over the UNB. Climate model outputs such as 

precipitation and temperature were bias corrected by distribution mapping before considering in the 

study. The climate impact on precipitation over the UNB was evaluated by comparing the observed 

precipitation values (IMD precipitation) with simulated precipitation values from representative 

climate models. In this study, IMD precipitation (1970-2000) compared with baseline (1970-2000) 

period of climate model. Results indicate that annual average precipitation of climate models were 

1304 mm, 1061 mm and 1354 mm for MIROC, CNRM and MPI, respectively, whereas IMD 

indicate the 1247 mm. However MIROC model exhibits the closeness with IMD precipitation. The 

minimum difference was obtained for MIROC (4%) and maximum variation was found for CNRM 

(-15%) climate model with reference to the IMD precipitation (Figure 7.10).  

Climate projections under RCP4.5 and RCP8.5 for each periods P1 (2011-2040), P2 (2041-2070) 

and P3 (2071-2100) were compared with IMD and respective base line scenario (Figure 7.11). On 

comparing the results with IMD indicate minimum variation (0.41%) for MPI (1252 mm) model in 

P1 and maximum variation (-30.37%) for CNRM (868 mm) in P3 were obtained under moderate 

emission scenario (RCP4.5). Precipitation variation under severe emission scenarios (RCP8.5), 

minimum variation (4.61%) for MPI (1305 mm) in P1, and maximum variation (-37.20%) for 

CNRM (783 mm) in P3 were noticed while comparing with IMD precipitation. Figure 7.11 indicate 

projected precipitation with respective baseline scenarios, MPI P2 (1252 mm) indicate minimum 

variations (-1.65%) and CNRM P3 (868 mm) exhibit the maximum variations (-18.17%) under 

RCP4.5 scenario. Whereas MIROC P2 (1336 mm) indicates minimum variation (1.35%) and CNRM 

P3 (783 mm) indicate maximum variation (-26.19%) under RCP8.5 scenario. Moreover, comparison 

of average monthly precipitation was carried out for future period (P1, P2, and P3) under RCP4.5 

and RCP8.5 scenarios of three climate models (Figure 7.12). 
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Figure 7.10: Comparison of precipitation variation of observed (IMD) and model simulated for 

baseline scenario (1971-2000) 

 

Figure 7.11: Precipitation variations over 3 climatic periods; P1 (2011-2040), P2 (2041-2070) and 

P3 (2071-2100) in simulated scenario (a) RCP4.5, (b) RCP8.5  

(Note: Climate description in Figure as ‘ShortnameRCP_climatic period’) 
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Figure 7.12: Comparison of projected average monthly precipitation under (a) RCP4.5, and (b) 

RCP8.5 Scenarios 
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7.5.3.2 Temporal changes on water balance components 

Mean annual and monthly simulations 

Simulated water balance components considering RCP4.5 and RCP8.5 climate projections were 

compared with reference to IMD (observed climate data from 1970-2000) and baseline period 

(GCMs climate data from 1970-2000) (Figure 7.13-7.14).  

Furthermore, with reference to simulation under IMD, climate scenarios of MPI model simulations 

consistently result in an increase in most of the hydrological component (surface runoff), mainly 

because of increase of precipitation (Figure 7.14(c)). The largest increase in surface runoff (38.05%) 

is induced by increase in precipitation (22.67%) during 2071-2100 (MIROC5). Largest decrease in 

precipitation (37.20%) projected during 2071-2100 under RCP8.5 of CNRM climate model, result 

in a largest decrease in surface runoff (57.17%) and ET (34.66%). Due to consistently increase in 

temperature, simulated ET is decreasing in each period. However, largest decrease in ET (34.66%) 

is produced under RCP8.5 by CNRM. whereas the lowest is 6.35% under RCP8.5 scenario by MPI 

in during the same period 2071-2100. Inter-comparison of projected precipitation of baseline (1970-

2000) with IMD (1971-2000) indicates that climate projections are increasing by 4.60% and 8.56% 

for MIROC5 and MPI, respectively, while decreasing for CNRM by 14.91% (Table 7.8). 

Considering the increase in precipitation, simulated results indicate increase in surface runoff by 

9.78% and 13.33%, and water yield by 10.57% and 15.69% for MIROC and MPI, respectively.  

Table 7.8 : Percentage change in hydro-meteorological components of climate model baseline 

with IMD  

Climate Models PCP (%) ET (%) SurQ (%) WYLD (%) 

MIROC5 4.60 -7.55 9.78 10.57 

CNRM -14.91 -19.49 -24.82 -18.50 

MPI 8.56 -4.44 13.33 15.69 

 

Mean monthly surface runoff from different scenarios were compared in Figure 7.15. Results of 

baseline simulation indicate monsoon surface runoff decreases by 22.25% for MPI, while increase 

in MIROC5 and CNRM estimated as 29.39% and 30.58%, respectively. 
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Figure 7.13: Comparison of simulated mean annual water balance components i.e. (a) precipitation, 

(b) evapotranspiration, and (c) surface runoff, with reference to IMD data (1970-2000)  
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Figure 7.14: Comparison of simulated mean annual water balance components i.e. (a) precipitation, 

(b) evapotranspiration, and (c) surface runoff, with reference to baseline (1970-2000) 

 

-30

-20

-10

0

10

20

30

P1 P2 P3 P1 P2 P3

RCP4.5 RCP8.5

%
 C

h
an

g
e

(a) Precipitation variation with reference to baseline

PCP MIROC5 PCP CNRM PCP MPI

-50

-30

-10

10

30

P1 P2 P3 P1 P2 P3

RCP4.5 RCP8.5

%
 C

h
an

g
e

(b) Evapotranspiration variation with reference to baseline

ET MIROC5 ET CNRM ET MPI

-70

-50

-30

-10

10

30

P1 P2 P3 P1 P2 P3

RCP4.5 RCP8.5

%
 C

h
an

g
e

(c) Surface runoff variation with reference to baseline

SurQ MIROC5 SurQ CNRM SurQ MPI



180 

  

 

 

 

Figure 7.15: Comparison of mean monthly surface runoff under different scenarios 

 

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S
u

ra
fa

ce
 R

u
n

o
ff

 (
m

m
)

Month

(a) Baseline (1970-2000)

IMD MPI_BL MIROC5_BL CNRM_BL

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S
u

rf
ac

e 
R

u
n

o
ff

 (
m

m
)

Month

(b) RCP4.5 Scenarios

MPI P1 MPI P2 MPI P3 MIROC P1 MIROC P2

MIROC P3 CNRM P1 CNRM P2 CNRM P3

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S
u

rf
ac

e 
R

u
n

o
ff

 (
m

m
)

Month

(c) RCP8.5 Scenarios

MPI P1 MPI P2 MPI P3 MIROC P1 MIROC P2

MIROC P3 CNRM P1 CNRM P2 CNRM P3



181 

  

7.5.3.3 Spatial distribution of changes in Green Water and Blue Water 

Green Water 

Green water computation was carried out for three climatic periods (P1, P2 and P3) under two 

different scenarios (RCP4.5 and RCP8.5) from three different RCM climate models. 

Evapotranspiration (ET) and soil water (SW) are the main components of green water and defined 

as green water flow and green water storage, respectively (Veettil and Mishra 2016). Thus sum of 

ET and SW indicate the availability of green water. Green water components are very sensitive to 

the temperature. Table 7.9 and Figure 7.16-7.17 indicate the temporal and spatial distribution of 

simulated annual mean green water by SWAT. Simulated annual mean ET and SW were 498 mm 

and 233 mm from IMD climatic data. ET variation in model baseline scenarios were computed as -

7.55%,-19.50% and -4.44% for MIROC, CNRM and MPI climate model, respectively. 

Figure 7.16-7.17 show the spatial variation in green water over UNB, most of the run indicate 0-(-) 

10% variation for RCP4.5 and RCP8.5 because of temperature rise. Output of model run indicate 

MIROC and MPI exhibit some positive spots in the region for P3 period under RCP4.5 and RCP8.5. 

However, some upper part (eastern region) of UNB also indicates downfall in green water for same 

period P3, for same climate model MIROC and MPI.  

Blue Water 

Water yield (WYLD) and ground water storage (GWS) are the components of blue water, defined 

as blue water flow and blue water storage, respectively (Veettil and Mishra 2016). However sum of 

WYLD (surface flow+ lateral flow+ groundwater flow-loss-abstraction) and GWS (percolation –

ground water discharge) indicate the total availability of blue water in the area. Blue water 

components are very sensitive to the precipitation variability (Veettil and Mishra 2016). Table 7.9 

and Figure 7.18 -7.19 indicate the temporal and spatial distribution of simulated annual mean blue 

water by SWAT. Blue water evaluation were carried out for three climatic periods (P1, P2 and P3) 

under two different scenarios (RCP4.5 and RCP8.5) of three different climate model. 

Figure 7.18 indicates WYLD is positive for P3 under MIROC5 and MPI RCP4.5 scenarios, whereas 

during P2 (MIROC5), P1 and P3 (CNRM) show the decreasing amount with reference to the 

baseline. However, under RCP8.5 (Figure 7.19), P2 period exhibit increasing availability for most 

of the UNB region for all the climate models, whereas P1 and P3 show the positive changes for 

MIROC and MPI climate model.  



182 

  

Table 7.9: Annual average of hydrological response under climate change during base line (2071-

2000), P1 (2011-2041), P2 (2041-2070), and P3 (2071-2100) for RCP sceneries 

Climate Models Water Components (mm) 
Baseline 

(1971-

2000) 

 

RCP4.5 

 

RCP8.5 

P1 

 

P2 

 

P3 

 

P1 

 

P2 

 

P3 

 

IMD 

Green Water 
ET  498  - - -  - - - 

SW  233  - - -  - - - 

Blue Water 
WYLD  966  - - -  - - - 

GWS  56  - - -  - - - 

MIROC5 

Green Water 
ET  460  381 399 454  372 416 463 

SW  214  194 200 218  182 205 228 

Blue Water 
WYLD  1068  918 828 1105  842 1125 1351 

GWS  65  79 58 84  60 73 98 

CNRM-CM5 

Green Water 
ET  401  363 376 373  382 382 325 

SW  200  186 188 182  190 194 148 

Blue Water 
WYLD  787  694 616 541  679 727 504 

GWS  55  47 59 57  50 67 40 

MPI-ESR-LM 

Green Water 
ET  476  431 459 452  436 448 466 

SW  228  215 221 223  219 220 225 

Blue Water 
WYLD  1118  1010 1075 1040  1079 1064 1172 

GWS  58  59 74 73  61 81 82 

Note: Unit of Evapotranspiration (ET), Soil Water (SW), Water Yield (WYLD) and Ground water storage (GWS) are in 

millimetres.   
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Figure 7.16: Green Water (Evapotranspiration+ Soil Water) variations (%) at RCP4.5 scenarios with reference to the control scenarios 
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Figure 7.17: Green Water (Evapotranspiration+ Soil Water) variations (%) at RCP8.5 scenarios with reference to the baseline scenarios  
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Figure 7.18: Blue Water (Water Yield+ Ground Water Storage) variations (%) at RCP4.5 scenarios with reference to the control scenario 
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Figure 7.19: Blue Water (Water Yield+ Ground Water Storage) variations (%) at RCP8.5 scenarios with reference to the control scenario
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7.6 ADAPTATION AND COPING STRATEGIES TOWARDS CLIMATE CHANGE 

According to IPCC AR5, global climate has been changing, thus impacting on temperature, 

precipitation and altering the regional water balance. However, due to the variation in local 

circulation patterns and orography, trends may differ from region to region. Overall, the present 

study suggests that climate change is going to continue and may even accelerate in the future, 

despite differences in the underlying assumptions regarding economic development (scenario 

storylines) and model uncertainty.  

The United Nations Framework Convention on Climate Change (UNFCCC) proposed two 

options to cope against climate change. Firstly, mitigation by cutting down GHGs emissions and 

raising sinks and secondly, adaptation to deal with climate change impact. Under the banner of 

United Nations Framework Convention on Climate Change (UNFCCC), the Paris Agreement is 

an agreement addressing with GHGs emissions mitigation, adaptation and finance starting in the 

year 2020. Most of the countries have committed to establish the long-term goal of keeping the 

increase in global average surface temperature to below 2°C by 2100. Adaptation and mitigation 

strategies involve taking practical actions to manage risks from climate impacts, protect 

communities and strengthen the resilience of the economy. Due to anthropogenic activities and 

increased GHGs concentration, surface temperature of earth and rate of precipitation is fast 

changing. Adverse effect of climate change is affecting the global food security, water 

availability and ecosystem. To minimize this, it is important to reduce the emission of GHGs 

concentration in the atmosphere. Moreover, proper adaptation and coping strategies may prevent 

or reduce the adverse effect of climate change. 

In order to evaluate the climate change impact and suggest the possible adaptation strategies, it 

is important to understand the vulnerability under climate change. Vulnerability is a function of 

exposure to climate variability and change, sensitivity to climate stresses and adoptive capacity 

to manage the negative impact (IPCC, 2013). The adaptation strategies based on vulnerability 

was carried out by considering three main problems such as observations of climate change 

scenarios, impact of climate change on water balance components and climate change impact on 

extreme events. 

Furthermore, Representative Concentration Pathways (RCP), moderate (RCP4.5) and high 

(RCP8.5) were considered from latest greenhouse trajectories of IPCC AR5, to assess the 

vulnerability within basin i.e. UNB. Ensemble of global climate models of the basin indicate that 
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annual mean temperature most likely to rise 1.39oC (RCP4.5) to 3.47oC (RCP8.5) by 21st century 

(Figure 7.20 -7.21). Precipitation in the basin may increase about 15% (RCP4.5) to 35% 

(RCP8.5) in next 100 years (Figure 7.22 -7.23). Moreover, extreme events of precipitation in late 

21st century can observed from ensembles of GCMs output. There is enough evidence that the 

expected changes in climate certainly affect the water resources and agriculture. The adaptation 

and coping strategies in water resources and extreme events (flood) for the basin are need to 

propose. Moreover simulated annual extreme discharge in 2080s (2071-2100) and mid flow are 

increasing during 2060s (2041-2070), respectively (Figure-7.24).  

Therefore it can be summarized that the vulnerability considering the various sources of 

uncertainly such as RCPs and GCMs. There will certainly affect the future climate in the basin 

in following ways: 

 Temperature will increase up to 3.5oC under high GHGs concentration. 

 Increase in temperature will stimulate the evapotranspiration and contribute in 

intensification of hydrological cycle. 

 Rise in temperature will affect the food production and uncertainty in crop yield. 

 It is most likely that increase in total precipitation will continue. 

 During mid of 21st century, extreme values will occur frequently which will trigger 

flooding and soil erosion at large scale. 

According to IPCC, “Adaptation is any adjustment in natural or human systems in response to 

actual or expected climatic effects, which moderates harm or exploits beneficial opportunities” 

(IPCC, 2001). Adaptation is important factor in reducing vulnerability and cope with the impact 

of climate change. Moreover it is a responsibility, shared by Governments agencies at national, 

state and local level, business organization and households each have complementary roles to 

play. It has been observed that an early adaptation plan will definitely saves resources and 

livelihood.  
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Figure 7.20: Change in mean annual temperature of basin averaged considering GCMs output 

ensemble of RCP4.5 

 

 

Figure 7.21: Change in mean annual temperature of basin averaged considering GCMs output 

ensemble of RCP8.5 
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Figure 7.22: Change in total annual precipitation of basin averaged considering GCMs output 

ensemble of RCP4.5 

 

 

Figure 7.23: Change in total annual precipitation of basin averaged considering GCMs output 

ensemble of RCP8.5 
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Figure 7.24: Total monthly discharge of basin averaged considering GCMs output ensemble of 

RCP4.5 and RCP8.5 

 

The IPCC AR5 (2013) gives recommendations on adaptation, vulnerability and capacity 

enhancement. The main recommendation includes that reducing the vulnerability of any country 

to climate change requires an increased ability to adapt and mitigate its effects. Both mitigation 

and adaptation have become essential in reducing the risks of climate change. In order to avoid 

or reduce negative impacts of climate-driven changes in water resources on farming systems and 

to exploit potential positive effects, a range of technological and management options are 

available. The basic principles and elements of adaptation strategies are (Adger 1999; Adger et 

al. 2007; Epule et al. 2017; Nyong et al. 2007): 
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1. Assessment and development of flood management, including risk analysis and 

environmental and social impact assessment; 

2. Provide warnings of flood to the general public and civil defence in advance; 

3. Monitor the hydrologic regime and related climate factors, especially in the region most 

likely to suffer from the adverse effects of climate change  

4. Develop long-term strategies and practical implementation programmes for agricultural 

water use under scarcity conditions with competing demands for water; 

5. Land management techniques and amendment in policy to manage the natural vegetation 

and expansion of urbanization; 

6. Crop substitution to reduce dependence on irrigation or to increase water availability. 

Some crops use less water or are more resistant to heat so they cope better with dry 

conditions than others. In addition, the choice of crops may contribute to adaptation in 

terms of “evapotranspiration management”, in particular in rain-fed agriculture. In 

regions, a large proportion of the water that falls as precipitation is evaporated and 

transpired again by the vegetation. Through the appropriate selection of crop types, 

evapotranspiration from agriculture may be reduced, which could lead to increased runoff 

and a generally enhanced availability of water for other crops or purposes. 

7. Changes in farming systems to make them more resilient against higher variability in 

climatic conditions. Diversification of production may thus be a way for farmers to 

increase their management flexibility and adaptive capacity. Also, organic farming 

approaches may enhance the capacity of agricultural soils to perform under changing and 

more adverse climatic conditions. 

8. Changes in land use and landscape management may help conserve water, for instance 

replacing arable land by grassland. To reduce sensitivity of farming systems to flood 

damage, a change of land use in flood risk areas might be necessary. For instance, crop 

farming in flood risk areas may be replaced by extensive grassland management.  

9. Establish and robust the institutional capabilities of countries, including legislative and 

regulatory arrangements, that are required to ensure the adequate assessment of their 

water resources and the provision of flood and drought forecasting services; 
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10. Initiate case-studies to establish whether there are linkages between climate changes and 

the current occurrences of droughts and floods in certain regions. 

11. Furthermore, an integrated approach called Integrated Water Resources Management 

(IWRM) tool has been proposed to maximize economic and social welfare in an equitable 

manner without compromising the sustainability of vital ecosystems under climate 

change. It is defined as a process which promotes the coordinated development and 

management of water, land and related resources in order. However the potential impacts 

of climate change and increasing climate variability needs to be sufficiently incorporated 

in the IWRM plans. IWRM is an extensive tool for coping with natural climate variability 

and the prerequisite for adapting to the highly uncertain consequences of global warming 

and associated climate change. Research community needs to introduce the concept and 

basic overview of IWRM tools in adaptation of climate change impact and recommend 

as potential tool for implementation. IWRM seems to provide more flexibility and 

adaptive capacity than conventional water resources management approaches. As such, 

IWRM has to deal with all natural resources, not only water but also soils, surface water 

and groundwater, water quantity, quality as well as ecological aspects of water. 

In general, water resource management uses both an analytical framework, explicitly identifying 

the components and different steps in the analysis process, and a computational framework, 

establishing a capacity for data processing and quantitative comparison of alternatives. Based on 

scenarios for climate change, demography, economic development and spatial planning, 

projections of the water demand for irrigation, drinking water supply, industrial water supply and 

environmental requirements are made. Hydro-meteorological data are used to establish the 

availability of water as well as its spatial distribution and variation over time. Next, projected 

future demands are checked against projected available future resources with a river basin 

simulation model. In case of imbalance, water resources management strategies are designed to 

improve the situation. Finally, the performance of the strategies, in terms of impacts on the water 

resources system, the socio-economic system and the environment, is assessed. It seeks to ensure 

that water is used to advance a country’s social and economic development goals in ways that do 

not compromise the sustainability of vital ecosystems or threaten the ability of future generations 

to meet their water needs.  

Moreover, agriculture may benefit from adaptation measures taken in the water management 

sector. A need for further research exists both with respect to the integrated impacts of CO2 
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increase and climate change on farming systems, and with respect to adaptation strategies that 

can improve sustainability and resilience of farming systems under more variable climatic 

conditions. Issues for research include spatial resolution in vulnerability mapping, technological 

and management-based adaptation measures. 

7.7 CONCLUDING REMARKS 

This study investigated the land use land cover change and climate variability on water 

availability of UNB as it plays a crucial role in sustainable development of water resources 

planning and management. To mimic the basin characteristic, it was important to calibrate the 

model. Thus multi-site calibration approach has been adopted. The following conclusions can be 

drawn from the study presented in this chapter:  

1. Parameters namely CN2, ALPHA_BF, and GQ_DELAY were found to be the most 

sensitive parameters for the Upper Narmada Basin.  

2. For monthly simulations, the values of R2 and NSE were found to be 0.77 and 0.76, during 

calibration, and 0.73 and 0.70, during validation, respectively indicating satisfactory 

model performance for basin. On the basis of these results, the SWAT model can be 

successfully adopted for hydrological simulation of Upper Narmada Basin.  

3. In order to compute the hydrological components under dynamics of land use land cover, 

fixed climatic period data from 1990 to 2000 has been considered to simulate the impact 

of LULC change for 1990, 2000, 2010 and 2030. Results indicate that increase in 

settlement and decrease in natural vegetation, affect as increase in the water yield and 

increased surface runoff, but there is a decrease in ET. Moreover, surface runoff and 

water yield of 1990 is the lowest (477.79 mm and 699.69 mm, respectively) which 

increases gradually and highest increase is predicted in the future in 2030 (539.48 mm 

and 752.54 mm, respectively). The actual ET decreases with time due to decrease in 

natural vegetation and it is projected to be lower in 2030 (552.86 mm) and highest in 

1990 (605.33 mm).  

4. To project the impact of climate change on water availability, in terms of blue  and green 

water, three representative climate models (MIROC5, CNRM-CM5 and MPI-ESM-LR) 

output from three classical climatic periods, P1 (2011-2040), P2 (2041-2070) and P3 

(2071-2100) were selected under moderate (RCP4.5) and severe (RCP8.5) emission 

scenarios series (1970-2000).  The spatial and temporal variation in green and blue water 
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of futuristic scenarios were evaluated with respect to baseline scenarios. Results of the 

analysis indicate climate variability over the green (ET+SW) and blue water (WYLD + 

GWS) for P1, P2 and P3 under RCP4.5 and RCP8.5. Results indicated annual 

precipitation decreasing from ranging -1.65% (MPI) to -16.55 % (MIROC) for P1 and 

P2 under RCP4.5, whereas in RCP8.5 scenario it varies from -26.19% (CNRM, P3) to 

21.24 % (MIROC, P3) with reference to baseline scenario. Changes in green and blue 

water varying from 16.22% (MIROC,P3) to -14.10% (CNRM,P3) under RCP4.5 and 

from 38.25% (MIROC, P3) to -22.57% (CNRM,P3) under RCP8.5 with reference to 

baseline scenario.  
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CHAPTER 8 

SUMMARY AND CONCLUSIONS  

8.1 SUMMARY  

The present research has been carried out with an objective to ascertain the water availability and 

its distribution under the impact of climate change projection and anthropogenic intervention in 

Upper Narmada river basin, India. Water is the first sector to be affected by changes in climate. 

Climate change contributes to intensification of the hydrological cycle and subsequently it has 

serious effects on the frequency and intensity of extreme events. Sea level rise, increased 

evaporation, unpredictable precipitation and prolonged droughts are just a few manifestations of 

climate variability which directly impacts availability and quality of water. The change in 

meteorological distribution will influence the ecosystem and landscape change. However, 

changes in precipitation rate and temperature are main cause of climate change and deforestation 

in the upper part of river basin. For planning and management of water resources, it is important 

to understand the distribution and variability of meteorological parameters.  

8.2 CONCLUSIONS 

In the study, Upper Narmada Basin (UNB) and seven regions of India are respectively selected 

as the local and regional study area. India was categorized in seven regions, considering the 

geography and homogeneous annual precipitation. These regions are North Mountainous India 

(NMI), North Central India (NCI), Northwest India (NWI), East Peninsular India (EPI), West 

Peninsular India (WPI), South Peninsular India (SPI) and North East India (NEI). 

1) Initially, trend and break points were identified to detect the climate change. Trend detection 

was carried out for long term precipitation data applying regression analysis, MK test, 

Innovative Trend Analysis (ITA) and conjunction of DWT and sequential MK tests over 

Indian regions as well as Upper Narmada River Basin. Trends of the monthly and annual 

precipitation and mean temperature data were observed at 16 stations of UNB are as follows: 

a) During regional scale (seven Indian zones) study, regression analysis was carried out 

for 156 years (1850-2006) long precipitation series. The results indicated that the mean 

values of precipitation are decreasing in most of the study area in the last 30-year 

period. Investigation revealed that there are both positive and negative trends existing 

in each zone for the monsoon period. Annual and monsoon precipitation data show a 
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negative trend; however, zones NMI and NEI showed a positive trend for annual and 

monsoon datasets.  

b) Wavelet analysis is attempted for trend analysis and periodicity identification in 

hydrological time series in the study. The most suitable mother wavelet was selected 

using the criteria of MRE and the criterion relative error (Er). Applying this criterion, 

the DWT Daubechies wavelets db6 and db10 were selected for annual and monthly 

datasets, respectively. The Z statistic was evaluated for trend analysis of the decomposed 

periodic components and the original annual and monsoon series. Application of DWT 

on annual series implied 2-, 4- and 8-year fluctuations in the NMI zone, indicating a 

positive trend in rainfall, whereas zones WPI, SPI and WPI (with 2- and 4-year 

fluctuations) experienced a negative trend at the same periodicities, at the 0.05 (5%) 

significance level. In the monsoon series, a positive trend was found over NMI and NEI 

decomposed series at 2-, 4- and 8-year periodicity, whereas WPI, EPI and SPI indicated 

a negative trend at the same periodicity. Considering India as whole (AI), a negative 

trend in all zones except NMI and NEI was found.  

c) At local scale analysis, trends of the monthly and annual precipitation and mean 

temperature data observed at 16 stations of UNB were carried out. Results imply that 

very few stations exhibit the negative trend for precipitation, while all the stations show 

positive trends for mean temperature over 16 stations of UNB. A comparative study was 

carried out between three methods i.e. ITA, MK-test and Sen’s slope, to check the 

suitability of ITA against nonparametric tests. ITA shows strong agreement with both 

methods (MK test and Sen’s slope), 97.5% and 77.5% in ‘ITA versus MK test’ and ‘ITA 

versus Sen’s slope’. This indicate that ITA has many advantages over MK test and Sen’s 

slope estimator, as it is based on certain assumption and can be analyzed with less and 

all ranges of data. 

d) Change points were detected to find the significant shifting and start of significant 

change applying sequential Mann Kendall (SQMK) in 16 stations of study area. Further 

change points obtained by SQMK were compared with the change points by CUMSUM 

test. Results indicate that most of the stations exhibit significant abrupt change year is 

1955 (77.78%) and 1960 (100%) for precipitation and temperature, respectively. 

Moreover occurrence of abrupt change point investigated as 1955-1960 by SQMK and 

1961-1963 by CUMSUM for precipitation, while change point 1960 by SQMK and 
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1945-1950 by CUMSUM for temperature over 16 stations of UNB. The finding in this 

study provide a new understanding of extreme value trend evaluation that probably are 

the cause of flood and drought in the area. This will help in short and long term water 

resources planning and development in the region. These information will certainly 

assist to the engineer and stakeholders to manage the water resources in the region.  

2) Mapping of LULC and change detection were carried out using the Landsat TM satellite 

image utilizing the geospatial tools viz. GIS and ERDAS Imagine over UNB. The decadal 

development in the different classes of LULC were evaluated from 1990 to 2015. The 

reduction in natural vegetation and increase in settlement as well as cropland are reflected in 

the analysis of LULC mapping. Understanding of trend patterns were demonstrated and 

predicated for the year 2030 using CA-Markov model. The model were validated with the 

actual LULC of 2015. The projected LULC of 2030 classes indicate the continuing of same 

trend of recent past. These changes in the LULC in near future call for better planning and 

management of resources in the study area.  

3) In order to identify the best (representative) climate models, 24 Global Climate Models 

(GCMs) were selected for performance evaluation. Performance of different models were 

carried out based on Skill Score (SS) and Root Mean Square Error (RMSE) between climate 

model outputs and reanalysis data of 20 years (1981-2000). The computation of RMSE and 

SS were carried out by using Data Integration and Assessment Tool (DIAS) developed by 

University of Tokyo, Japan. Six meteorological parameters, precipitation (PCP), outgoing 

long wave radiation (OLR), air temperature (AT), mean sea level pressure (SLP), zonal wind 

(ZW) and meridional wind (MW) were considered from each model for the SS and RMSE 

assessment. 

a) At regional scale study, there is no single GCM which can be recommended for the whole 

Indian region. However GCM model for precipitation has been proposed as ensemble of 

MPI_ECHAM4.0, MIROC3.2_HIRES, UKMO_HADCM3.0 and INGV_ECHAM4 are 

the best model for the Indian region. Climate models of CCCMA groups are performing 

well for atmospheric temperature in most of the Indian region. Additionally, model group 

of ECHAM and CCCMA are proposed for OLR simulation over India during the annual 

and monsoon season. 
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b) MIROC5 and CNRM-CM5 are selected as best performing climate models for Upper 

Narmada Basin, followed by MPI-ESM-LR, GFDL-ESM2M and IPSL-CM5A-MR. 

c) Best three representative climate models of Upper Narmada Basin i.e. MIROC5, CNRM-

CM5 and MPI-ESR-LR were selected for hydrological modelling over the basin. 

4)  SWAT Model was calibrated applying multi-site calibration techniques. In monthly 

simulation, Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) were 

computed as 0.77 and 0.76 for calibration (1978-1995) and, 0.73 and 0.70 for validation 

period (1996-2005), respectively, indicating good model performance for the basin. 

Parameters CN2, ALPHA_BF, and GW_DELAY were found to be the most sensitive 

parameters. Calibrated hydrological model used to simulate the water balance components 

under land use land cover change and climate change. 

a. Water balance components due to land use land cover change, under constant climatic 

condition were simulated for 1990, 2000, 2010 and 2030 LULC. Results indicate that 

increase in settlement and decrease in natural vegetation, results in increased water 

yield and surface runoff, but there is a decrease in ET. Surface runoff and water yield 

of 1990 is the lowest (477.79 mm and 699.69 mm respectively), which increases 

gradually and highest increase is predicted in the future in 2030 (539.48 mm and 

752.54 mm, respectively). The actual ET decreases with time due to decrease in 

natural vegetation and it is projected to be lower in 2030 (552.86 mm) and highest in 

1990 (605.33 mm).  

b. To project the water availability under climate change condition, outputs from climate 

models (MIROC5, CNRM-CM5 and MPI-ESM-LR) were used for periods, P1 

(2011-2040), P2 (2041-2070) and P3 (2071-2100) under moderate (RCP4.5) and 

severe (RCP8.5) emission scenarios. Results of the analysis indicate climate 

variability over the green and blue water for P1, P2 and P3 under RCP4.5 and RCP8.5. 

Results indicated annual precipitation decreasing from -1.65% (MPI) to -16.55% 

(MIROC) for P1 and P2 under RCP4.5, whereas in RCP8.5 scenario it varies from -

26.19% (CNRM, P3) to 21.24% ( MIROC, P3) with reference to baseline scenario. 

Changes in green and blue water varying from 16.22% (MIROC, P3) to -14.10% 

(CNRM, P3) under RCP4.5 and from 38.25% (MIROC, P3) to -22.57% (CNRM, P3) 

under RCP8.5 with reference to baseline scenario. This study established the 
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sensitivity of UNB to future climatic changes employing projections from CMIP5 

climate models and exhibited an approach that applied multiple climate model outputs 

to estimate potential change over the river basin. 

8.3 RESEARCH CONTRIBUTIONS 

The research contribution of the present study are summarised as below: 

1. Long-term climatic trend analysis is concluded, applying parametric (linear regression) 

and non-parametric tests (Mann-Kendall, Sen’s Slope), extreme value analysis by 

Innovative Trend Analysis (ITA), periodicity using discrete wavelet transform (DWT) 

and change  year of precipitation, temperature and reference evapotranspiration at 

regional scale (seven zones of India) and local scale (Upper Narmada Basin). 

2. Land use land cover mapping were carried out using the Landsat TM satellite images 

utilizing geospatial tools viz. GIS and ERDAS Imagine. The development in the different 

classes of LULC were evaluated from 1990 to 2015. Understanding of trend patterns were 

demonstrated and predicated for the year 2030 using CA-Markov model. 

3. Ranking of global climate models (GCMs) carried out multi-criteria analysis for each 

zones of India (regional scale) and for Upper Narmada Basin (local scale). Performance 

of the model were done based on Skill Score (SS) and Root Mean Square Error (RMSE) 

between models output and reanalysis data of six meteorological parameters for the 

period 1981-2000. 

4. Development of model setup (SWAT) for Upper Narmada Basin, applying multi-site 

calibration using SWAT-CUP. Projection of water balance components (surface runoff, 

evapotranspiration, water yield, surface discharge and groundwater flow etc.) were 

investigated by integrating bias corrected climate data with calibrated model under high 

and moderate emission scenarios from 2011 to 2100.  

8.4 RESEARCH LIMITATION 

There are some limitations in the present study which are given below: 

1. There are three climate model considered in long term projection of water balance 

components for study area. 

2. No change in soil layer and land use land cover were considered over the long term 

period in projection of water availability. 
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3. Due to limitation of discharge gauging site, it was not possible to calibrate the whole 

catchment, and part of the basin i.e. Upper Narmada Basin was considered in the 

presented study. 

4. In general, adaptation provides an essential strategy to reduce negative consequences, 

therefore it does not imply that proposed adaptation can overcome all climate change 

effects. 

5. Small structure along the river has been neglected due to unavailability of proper data. 

8.5 FUTURE SCOPE 

There are few limitation in the study which can be overcome in the near future listed as: 

1. In discrete wavelet analysis (DWT), visualization of extreme events was examined at 

different threshold limits. The same intensity of positive and negative fluctuations 

indicated the same colour spectrum, which is one of the limitations of the visualization 

study and may form the subject of future work in this area. 

2. In order to compute the future projection of hydrological components, some more climate 

models and projections may be considered in the study to reduce the uncertainty. 

3. Minor hydraulic structures may also considered in the future study. 

4. Digital elevation model (DEM) of coarser resolution (90 meter) used in this study. It is 

recommended to test the applicability of the approach and replaced by finer spatial 

resolution of 30 meter or less. 

5. To setup the model, limited SWAT parameters were considered in the study that may be 

extended in future study.  
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ANNEXURE-1 (A) 

Ranking (best to poor) of Global Climate Models (GCMs) for Annual Period 

Annual 

Ranking 
North Mountainous India North West India North Central India West Penninsular India East Penninsular India South Penninsular India Northeast India 

1 ukmo_hadcm3 mpi_echam5 ingv_echam4 gfdl_cm2_1 gfdl_cm2_0 bccr_bcm2_0 ingv_echam4 

2 gfdl_cm2_0 gfdl_cm2_1 mpi_echam5 mpi_echam5 gfdl_cm2_1 gfdl_cm2_0 csiro_mk3_0 

3 mpi_echam5 ingv_echam4 csiro_mk3_0 gfdl_cm2_0 ingv_echam4 cccma_cgcm3_1_t63 cccma_cgcm3_1 

4 cccma_cgcm3_1_t63 cccma_cgcm3_1 gfdl_cm2_0 csiro_mk3_0 ncar_pcm1 mpi_echam5 csiro_mk3_5 

5 gfdl_cm2_1 cccma_cgcm3_1_t63 miroc3_2_hires bccr_bcm2_0 giss_aom cccma_cgcm3_1 gfdl_cm2_1 

6 ingv_echam4 ukmo_hadcm3 cccma_cgcm3_1 cccma_cgcm3_1 miroc3_2_hires ukmo_hadcm3 mpi_echam5 

7 miroc3_2_medres csiro_mk3_0 cccma_cgcm3_1_t63 miroc3_2_medres bccr_bcm2_0 miroc3_2_medres ukmo_hadgem1 

8 cccma_cgcm3_1 csiro_mk3_5 csiro_mk3_5 miub_echo_g cccma_cgcm3_1_t63 csiro_mk3_0 ncar_ccsm3_0 

9 csiro_mk3_0 gfdl_cm2_0 gfdl_cm2_1 ukmo_hadcm3 iap_fgoals1_0_g gfdl_cm2_1 gfdl_cm2_0 

10 miroc3_2_hires miroc3_2_hires ukmo_hadcm3 ukmo_hadgem1 mpi_echam5 giss_aom miroc3_2_hires 

11 ukmo_hadgem1 miroc3_2_medres ukmo_hadgem1 cccma_cgcm3_t63 ukmo_hadgem1 iap_fgoals1_0_g ukmo_hadcm3 

12 bccr_bcm2_0 ukmo_hadgem1 mri_cgcm2_3_2a giss_aom cccma_cgcm3_1 ingv_echam4 cccma_cgcm3_t63 

13 csiro_mk3_5 miub_echo_g inmcm3_0 iap_fgoals1_0_g csiro_mk3_0 inmcm3_0 miroc3_2_medres 

14 ncar_ccsm3_0 bccr_bcm2_0 ipsl_cm4 ingv_echam4 inmcm3_0 miroc3_2_hires mri_cgcm2_3 

15 giss_aom iap_fgoals1_0_g miroc3_2_medres miroc3_2_hires miroc3_2_medres cnrm_cm3 giss_aom 

16 ipsl_cm4 ncar_ccsm3_0 ncar_ccsm3_0 cnrm_cm3 ukmo_hadcm3 ukmo_hadgem1 miub_echo_g 

17 miub_echo_g giss_aom ncar_pcm1 csiro_mk3_5 cnrm_cm3 csiro_mk3_5 ncar_pcm1 

18 mri_cgcm2_3_2a inmcm3_0 bccr_bcm2_0 ncar_ccsm3_0 ipsl_cm4 giss_model_e_h inmcm3_0 

19 ncar_pcm1 mri_cgcm2_3_2a iap_fgoals1_0_g giss_model_e_h miub_echo_g ipsl_cm4 iap_fgoals1_0_g 

20 cnrm_cm3 ncar_pcm1 miub_echo_g ipsl_cm4 csiro_mk3_5 mri_cgcm2_3_2a bccr_bcm2_0 

21 iap_fgoals1_0_g ipsl_cm4 cnrm_cm3 ncar_pcm1 giss_model_e_h giss_model_e_r giss_model_e_h 

22 giss_model_e_h cnrm_cm3 giss_aom inmcm3_0 mri_cgcm2_3_2a miub_echo_g ipsl_cm4 

23 inmcm3_0 giss_model_e_h giss_model_e_h mri_cgcm2_3_2a ncar_ccsm3_0 ncar_pcm1 cnrm_cm3 

24 giss_model_e_r giss_model_e_r giss_model_e_r giss_model_e_r giss_model_e_r ncar_ccsm3_0 giss_model_e_r 
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ANNEXURE-1 (B) 

Ranking (best to poor) of Global Climate Models (GCMs) for Monsoon Period 

Monsoon 

Ranking 
North Mountainous India North West India North Central India West Penninsular India East Penninsular India South Penninsular India Northeast India 

1 mpi_echam5 cccma_cgcm3_1_t63 ingv_echam4 miroc3_2_hires miroc3_2_hires bccr_bcm2_0 ingv_echam4 

2 cccma_cgcm3_1_t63 ingv_echam4 cccma_cgcm3_1 cccma_cgcm3_1 gfdl_cm2_1 cccma_cgcm3_1_t63 csiro_mk3_0 

3 gfdl_cm2_1 mpi_echam5 miroc3_2_hires miroc3_2_medres ncar_pcm1 gfdl_cm2_1 csiro_mk3_5 

4 ingv_echam4 cccma_cgcm3_1 csiro_mk3_0 csiro_mk3_0 ingv_echam4 miroc3_2_hires ukmo_hadgem1 

5 ukmo_hadcm3 gfdl_cm2_1 gfdl_cm2_0 gfdl_cm2_1 cccma_cgcm3_1_t63 cnrm_cm3 cccma_cgcm3_1 

6 ukmo_hadgem1 csiro_mk3_0 mpi_echam5 mpi_echam5 cccma_cgcm3_1 gfdl_cm2_0 gfdl_cm2_1 

7 cccma_cgcm3_1 ukmo_hadcm3 ukmo_hadcm3 ncar_pcm1 mpi_echam5 ingv_echam4 mpi_echam5 

8 gfdl_cm2_0 csiro_mk3_5 cccma_cgcm3_1_t63 ukmo_hadgem1 miroc3_2_medres miroc3_2_medres cccma_cgcm3_1_t3 

9 miroc3_2_hires gfdl_cm2_0 csiro_mk3_5 giss_aom gfdl_cm2_0 mpi_echam5 ukmo_hadcm3 

10 miroc3_2_medres miroc3_2_medres gfdl_cm2_1 ingv_echam4 csiro_mk3_5 ncar_ccsm3_0 gfdl_cm2_0 

11 csiro_mk3_5 miroc3_2_hires ukmo_hadgem1 bccr_bcm2_0 csiro_mk3_0 csiro_mk3_0 ncar_pcm1 

12 ncar_ccsm3_0 ukmo_hadgem1 ncar_ccsm3_0 cccma_cgcm3_1_t63 bccr_bcm2_0 cccma_cgcm3_1 miroc3_2_hires 

13 csiro_mk3_0 bccr_bcm2_0 inmcm3_0 cnrm_cm3 inmcm3_0 ncar_pcm1 miroc3_2_medres 

14 giss_aom iap_fgoals1_0_g miroc3_2_medres csiro_mk3_5 cnrm_cm3 ukmo_hadcm3 miub_echo_g 

15 bccr_bcm2_0 miub_echo_g iap_fgoals1_0_g miub_echo_g miub_echo_g ukmo_hadgem1 ncar_ccsm3_0 

16 ipsl_cm4 ncar_ccsm3_0 ipsl_cm4 ncar_ccsm3_0 giss_aom giss_aom cnrm_cm3 

17 ncar_pcm1 ncar_pcm1 mri_cgcm2_3_2a gfdl_cm2_0 ukmo_hadgem1 giss_model_e_r giss_aom 

18 cnrm_cm3 cnrm_cm3 ncar_pcm1 giss_model_e_h ukmo_hadcm3 iap_fgoals1_0_g ipsl_cm4 

19 iap_fgoals1_0_g giss_aom miub_echo_g iap_fgoals1_0_g ncar_ccsm3_0 inmcm3_0 mri_cgcm2_3_2a 

20 miub_echo_g inmcm3_0 bccr_bcm2_0 ipsl_cm4 iap_fgoals1_0_g mri_cgcm2_3_2a giss_model_e_h 

21 giss_model_e_h mri_cgcm2_3_2a giss_aom mri_cgcm2_3_2a mri_cgcm2_3_2a csiro_mk3_5 iap_fgoals1_0_g 

22 giss_model_e_r giss_model_e_h cnrm_cm3 ukmo_hadcm3 ipsl_cm4 giss_model_e_h inmcm3_0 

23 inmcm3_0 ipsl_cm4 giss_model_e_h inmcm3_0 giss_model_e_r miub_echo_g bccr_bcm2_0 

24 mri_cgcm2_3_2a giss_model_e_r giss_model_e_r giss_model_e_r giss_model_e_h ipsl_cm4 giss_model_e_r 
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ANNEXURE-1 (C) 

Ranking (best to poor) of Global Climate Models (GCMs) for Non-monsoon Period 

Non-monsoon  

Ranking 
North Mountainous India North West India North Central India West Penninsular India East Penninsular India South Penninsular India Northeast India 

1 ukmo_hadcm3 miroc3_2_medres mpi_echam5 gfdl_cm2_1 ipsl_cm4 cccma_cgcm3_1 mpi_echam5 

2 cccma_cgcm3_1_t63 gfdl_cm2_1 ipsl_cm4 mpi_echam5 gfdl_cm2_0 gfdl_cm2_0 ncar_ccsm3_0 

3 mpi_echam5 mpi_echam5 miroc3_2_medres ipsl_cm4 giss_aom ipsl_cm4 csiro_mk3_0 

4 gfdl_cm2_0 ukmo_hadgem1 cccma_cgcm3_1 giss_aom iap_fgoals1_0_g bccr_bcm2_0 cccma_cgcm3_1_t63 

5 ingv_echam4 inmcm3_0 cccma_cgcm3_1_t63 iap_fgoals1_0_g ukmo_hadgem1 gfdl_cm2_1 csiro_mk3_5 

6 csiro_mk3_5 ipsl_cm4 csiro_mk3_0 miub_echo_g bccr_bcm2_0 giss_aom gfdl_cm2_1 

7 gfdl_cm2_1 miroc3_2_hires gfdl_cm2_1 bccr_bcm2_0 csiro_mk3_0 iap_fgoals1_0_g ingv_echam4 

8 ipsl_cm4 ncar_ccsm3_0 ingv_echam4 cccma_cgcm3_1 gfdl_cm2_1 mpi_echam5 miroc3_2_hires 

9 miroc3_2_hires ukmo_hadcm3 mri_cgcm2_3_2a gfdl_cm2_0 ingv_echam4 ukmo_hadcm3 miroc3_2_medres 

10 miroc3_2_medres cccma_cgcm3_1_t63 ncar_ccsm3_0 inmcm3_0 ukmo_hadcm3 cccma_cgcm3_1_t63 cccma_cgcm3_1 

11 mri_cgcm2_3_2a csiro_mk3_0 ncar_pcm1 csiro_mk3_0 cccma_cgcm3_1_t63 miroc3_2_medres gfdl_cm2_0 

12 ncar_ccsm3_0 giss_aom miroc3_2_hires miroc3_2_medres cnrm_cm3 ukmo_hadgem1 ukmo_hadgem1 

13 bccr_bcm2_0 iap_fgoals1_0_g ukmo_hadcm3 mri_cgcm2_3_2a inmcm3_0 giss_model_e_h ipsl_cm4 

14 csiro_mk3_0 miub_echo_g gfdl_cm2_0 ncar_ccsm3_0 miub_echo_g inmcm3_0 miub_echo_g 

15 miub_echo_g mri_cgcm2_3_2a miub_echo_g ukmo_hadgem1 mpi_echam5 csiro_mk3_0 mri_cgcm2_3_2a 

16 giss_aom csiro_mk3_5 ukmo_hadgem1 cccma_cgcm3_1_t63 ncar_pcm1 miroc3_2_hires ncar_pcm1 

17 iap_fgoals1_0_g gfdl_cm2_0 csiro_mk3_5 cnrm_cm3 cccma_cgcm3_1 miub_echo_g ukmo_hadcm3 

18 inmcm3_0 ingv_echam4 giss_aom ukmo_hadcm3 miroc3_2_hires mri_cgcm2_3_2a giss_aom 

19 ukmo_hadgem1 cccma_cgcm3_1 iap_fgoals1_0_g csiro_mk3_5 ncar_ccsm3_0 csiro_mk3_5 inmcm3_0 

20 cnrm_cm3 bccr_bcm2_0 inmcm3_0 giss_model_e_h miroc3_2_medres giss_model_e_r cnrm_cm3 

21 cccma_cgcm3_1 ncar_pcm1 bccr_bcm2_0 ingv_echam4 csiro_mk3_5 ingv_echam4 iap_fgoals1_0_g 

22 giss_model_e_h cnrm_cm3 cnrm_cm3 miroc3_2_hires giss_model_e_h ncar_pcm1 bccr_bcm2_0 

23 ncar_pcm1 giss_model_e_h giss_model_e_h giss_model_e_r giss_model_e_r cnrm_cm3 giss_model_e_h 

24 giss_model_e_r giss_model_e_r giss_model_e_r ncar_pcm1 mri_cgcm2_3_2a ncar_ccsm3_0 giss_model_e_r 
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ANNEXURE-2 

 

Detailed Land Use, Soil and Slope distribution for SWAT Model 

Detailed LAND USE  distribution for SWAT model Area [ha] % Area   

Basin 3274522   Detailed SOIL/SLOPE  distribution for SWAT Model Area [ha] % .Area 

Number of Sub-basins: 54    SOILS 

Number of HRUs: 856    1. Bv12-3b-3696 20574 0.64 

LAND USE    2. I-bc-3735 549384 17.04 

1. RESIDENTIAL-MEDIUM DENSITY --> URMD 18473 0.57  3. I-Bc-Lc-3714 31303 0.97 

2. DRYLAND CROPLAND AND PASTURE --> CRDY 41 0.00  4. Lc75-1b-3780 57812 1.79 

3. CROPLAND/GRASSLAND MOSAIC --> CRGR 701857 21.77  5. Vc21-3a-3859 15778 0.49 

4. SHRUBLAND --> SHRB 208266 6.46  6. Vc43-3ab-3861 1853718 57.49 

5. MIXED GRASSLAND/SHRUBLAND --> MIGS 33548 1.04  7. Vp20-3a-3866 695952 21.58 

6. SAVANNA --> SAVA 273962 8.50   

7. DECIDUOUS BROADLEAF FOREST --> FODB 2920 0.09  SLOPE 

8. DECIDUOUS NEEDLELEAF FOREST --> FODN 189717 5.88  1. 0-0.75 285712 8.86 

9. EVERGREEN BROADLEAF FOREST --> FOEB 293563 9.10  2. 0.75-2 790104 24.50 

10. MIXED FOREST --> FOMI 92033 2.85  3. 02-04 756871 23.47 

11. WATER BODIES --> WATB 384112 11.91  4. 04-06 392022 12.16 

12. WOODED WETLAND --> WEWO 1026028 31.82  5. 06--99 999813 31.01 
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ANNEXURE-3  

Distribution of Sub-basins area in the basin  

(Location of Sub-basins given in Figure 7.3)  

 

Sub-basin Area (ha) % Area  Sub-basin Area (ha) % Area  Sub-basin Area (ha) % Area 

1 56761.72 1.76  19 98028.65 3.04  37 200466 6.22 

2 17597.98 0.55  20 138025.2 4.28  38 51912.01 1.61 

3 116738.5 3.62  21 75200.28 2.33  39 34631.83 1.07 

4 20291.98 0.63  22 241753.6 7.5  40 28836.46 0.89 

5 51572.67 1.6  23 19863.93 0.62  41 55532.71 1.72 

6 83735.29 2.6  24 39866.53 1.24  42 82094.61 2.55 

7 49776.96 1.54  25 65836.74 2.04  43 24421.68 0.76 

8 58712.46 1.82  26 3730.09 0.12  44 74863.53 2.32 

9 29982.79 0.93  27 9643.45 0.3  45 56229.47 1.74 

10 28513.49 0.88  28 65792.82 2.04  46 52352.97 1.62 

11 25410.4 0.79  29 33029.9 1.02  47 110502.2 3.43 

12 54687.82 1.7  30 28932.06 0.9  48 57618.67 1.79 

13 90565.03 2.81  31 90972.4 2.82  49 79727.02 2.47 

14 35080.55 1.09  32 56561.91 1.75  50 32726.74 1.01 

15 5061.58 0.16  33 45978.84 1.43  51 27244.01 0.84 

16 46095.97 1.43  34 52222.06 1.62  52 57520.48 1.78 

17 71482.25 2.22  35 26103.71 0.81  53 33338.23 1.03 

18 24774.8 0.77  36 67292.26 2.09  54 138827.1 4.31 
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