
PSO BASED SCHEDULING TECHNIQUES TO IMPROVE

QoS PARAMETERS IN CLOUD COMPUTING

Ph.D. THESIS

by

MOHIT KUMAR

DEPARTMENT OF PAPER TECHNOLOGY

INDIAN INSTITUTE OF TECHONOLOGY ROORKEE

ROORKEE – 247667 (INDIA)

MAY, 2018

PSO BASED SCHEDULING TECHNIQUES TO IMPROVE

QoS PARAMETERS IN CLOUD COMPUTING

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

MOHIT KUMAR

DEPARTMENT OF PAPER TECHNOLOGY

INDIAN INSTITUTE OF TECHONOLOGY ROORKEE

ROORKEE – 247667 (INDIA)

MAY, 2018

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2018

ALL RIGHTS RESERVED

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “PSO

BASED SCHEDULING TECHNIQUES TO IMPROVE QoS PARAMETERS IN

CLOUD COMPUTING” in partial fulfilment of the requirements for the award of the

Degree of Doctor of Philosophy and submitted in the Department of Paper Technology of the

Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur is an authentic

record of my own work carried out during a period from December, 2014 to May, 2018 under

the supervision of Dr. S.C. Sharma, Professor, Indian Institute of Technology Roorkee,

Saharanpur Campus,Saharanpur.

 The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other Institution.

(MOHIT KUMAR)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

 (S.C. Sharma)

 Supervisor

Dated:

I

ABSTRACT

 Cloud computing provides the services either in the form of software application or

hardware infrastructure on the basis of pay per use over the internet. There are lots of

challenges in the field of cloud computing due to improper management of cloud resources.

Scheduling challenges occurs due to dispersion, uncertainty and heterogeneity of resources that

are not resolved with traditional resource management mechanisms. Over provisioning and

under provisioning types of problem occurs in cloud environment due to which cloud resources

are not utilizing properly. One of the challenging features of cloud computing is to provide on

demand huge number of resources to the user as per their need (elasticity and scalability) and

satisfy the quality of service (QoS) parameters like reliability, elasticity, deadline, priority of

task etc. to minimizing the makespan time and task rejection ratio. Therefore we need an

efficient scheduling algorithm that utilize the cloud resources properly and improve the QoS

parameters.

Following are the major objectives of the thesis:

1. To develop a load balancing algorithm with elasticity concept that balances the

workload among the virtual machine and analyzes the QoS parameters (execution time,

makespan time, task rejection ratio) considering deadline as constraint.

2. To propose a dynamic transfer function based modified binary PSO to solve the real

world discrete problems and analyze the QoS parameters in cloud computing

3. To Develop a PSO based multi-objective scheduling algorithm to analyze the effect of

execution time, execution cost and energy consumption in the field of cloud computing.

Objective 1: Development a load balancing algorithm with elasticity

Most of the published scheduling algorithm deals with only one parameter either scheduling the

upcoming tasks to optimize the required parameter or scalability within user defined deadline

constraint. It is difficult to predict and calculate all possible task-resource mapping in cloud

environment. One of the important aspects of scheduling is to balance the workload among the

cloud resources (virtual machines) and monitors the load at each virtual machine continuously.

Contribution:

To solve the issue of load balancing with elasticity in cloud computing, we have developed a

II

dynamic scheduling algorithm that balances the workload among all the virtual machines with

elastic resource provisioning and deprovisioning based on the last optimal k-interval

considering deadline as constraint. Developed algorithm distributes the tasks and adds the

cloud resource if task rejection ratio is more than the service level agreement (SLA) defined

threshold value. The computational results proved that the developed algorithm decreases the

makespan time (up to 6% in comparison with min-min, up to 15% from shortest job first and up

to 20 % from first come first serve algorithm) and task meet with deadline ratio of developed

algorithm is up to 93% compare to other algorithm (min-min up to 80.8 %, shortest-job-first up

to 75% and first come first serve 73%) in all conditions.

Objective 2: Development of a dynamic transfer function based modified BPSO

Binary particle swarm optimization (BPSO) is used to solve discrete optimization problems but

it does not maintain the good balance between exploration and exploitation for transfer

function.

Contribution:

To overcome this problem, we have developed a dynamic transfer function (TFP-BPSO) for

BPSO which provides better exploration at the early stage by high flipping of bit of particle

position for any velocity and it has the ability to move from exploration to exploitation in the

intermediate stage of execution. It provides the stronger exploitation (less probability of

flipping of bits) in the last stage of execution. Results proved that developed TFP-BPSO

algorithm reduces the execution time (up to 10% compare with BPSO and up to 20% compare

with FCFS) makespan time (up to 15% comparison with BPSO and up to 32% comparison with

FCFS). Throughput has been increased (up to 20% compare with BPSO and up to 40%

compare with FCFS) in better way than existing algorithm like first come first serve and BPSO.

Objective 3: PSO based cost and energy efficient scheduling algorithm with deadline

constraint

The main purpose of cloud service provider is to maximize the profit and minimize the energy

consumption from cloud infrastructure while cloud users want to execute their applications in

minimum time and execution cost. There is always a conflict between execution cost and time

parameters because low cost resources are less computation oriented than expensive. So a

trade-off solution is required to optimize both the parameters at the same time. The rapid

growths in the demand of computational power tends to massive growth in cloud data centers

III

and require large amount of energy consumption in cloud data centers which has become a

serious threat to the environment. To reduce the energy consumption in cloud computing is a

challenging problem due to incompatibility between workstation (physical machine) and

unpredictable users demand.

Contribution:

We have proposed a resource allocation model for processing the applications efficiently and

particle swarm optimization based scheduling algorithm that not only optimize execution cost

and time but also reduce the energy consumption of cloud data centers considering deadline as

constraint. The developed algorithm has been simulated at cloudsim and it is observed that it

reduces the execution time (up to 8% from existing PSO, 15% honey bee, 20 % min-min

algorithms), makespan time (up to 10% from existing PSO, 20% honey bee, 18.8 % min-min

algorithms) execution cost (up to 8% from existing PSO, 12% honey bee, 15 % min-min

algorithms), task rejection ratio (up to 8% from existing PSO, 23% honey bee, 19.6 % min-min

algorithms), energy consumption (up to 7% from existing PSO, 11% honey bee, 18 % min-min

algorithms) and increase the throughput (up to 6.5% from existing PSO, 9.8% honey bee, 12.6

% min-min algorithms) in comparison to PSO, honey bee and min-min algorithm.

The thesis is organized into six chapters including the introduction.

The thesis is organized into six chapters.

CHAPTER 1: INTRODUCTION

In the introduction part, details with general concepts of cloud services, motivation, research

challenges, objectives and contributions of this thesis.

CHAPTER 2: FUNDAMENTALS AND SCHEDULING TECHNIQUES

In this chapter, we discuss the existing resource provisioning techniques, advantages of

resource provisioning in the field of cloud computing, static and dynamic scheduling algorithm,

classification of scheduling algorithms in terms of heuristic, meta-heuristic and hybrid

algorithm. Further resource allocation model and simulation tool are discussed in brief that are

used to measure the performance of the scheduling algorithm.

IV

CHAPTER 3: LOAD BALANCING WITH ELASTICITY USING HEURISTIC

TECHNIQUE

The details about the development of a cloud resource broker architecture and dynamic

scheduling algorithm that is able to automatically manage and monitor the virtual machines to

minimize the QoS parameters based on the last optimal k-interval of considering deadline as

constraint and simultaneously fulfill the objective of elasticity in cloud environment have been

discussed.

CHAPTER 4: DYNAMIC TRANSFER FUNCTION BASED MODIFIED BINARY PSO

FOR SCHEDULING THE TASKS

Development of dynamic transfer function (TFP-BPSO) based BPSO algorithm that provides

better exploration at the early stage, its move from exploration to exploitation in the

intermediate stage of execution and provides the stronger exploitation in the last stage of

execution to improve QoS parameters have been discussed.

CHAPTER 5: MULTI-OBJECTIVE SCHEDULING ALGORITHM USING PSO

Particle swarm optimization (PSO) based scheduling algorithm and resource allocation model

for improvement of QoS parameters have been discussed.

CHAPTER 6- CONCLUSIONS AND FUTURE WORK

This chapter concludes the work reported in the thesis and discusses about future research

directions

V

ACKNOWLEDGEMENTS

It is with great pleasure and felicity that I would like to express thanks to all people who have

made this thesis possible.

First of all, I would like to thank my supervisor, Dr. S. C. Sharma, Professor, Computer

Science and Engineering Discipline, Indian Institute of Technology Roorkee. I feel privileged

to express my deep sense of gratitude to my supervisor for his valuable guidance, endless

support and constant encouragement throughout the course of my research work. His truly

scientific intuition and broad vision inspired and enriched my growth as a student and

researcher. The critical comments, rendered by him during the discussions are deeply

acknowledged. I humbly acknowledge a lifetime’s gratitude to him.

I express my regards to Prof. Y.S. Negi, Head of the Department for his support and

encouragement. Special thanks to my SRC members: Dr. S. P. Singh (Professor), Dr. Dharam

Dutt (Professor) and Dr. Millie Pant (Associate Professor) for spending their valuable time

during the discussions over the seminars. I am indebted to the Department of Paper

Technology, IIT Roorkee, to all its faculty and staff for their academic support and

encouragement. I am very thankful to University Grants Commission (UGC), India, for

providing me financial assistantship during my research work at IIT Roorkee.

I would like to express my gratitude to all member of wireless and cloud computing lab.

Thanks to Mr. Akhtar Hussain, Mr. Santar Pal Singh, Mr. Tushar Bhardwaj, Mr. Ram Kumar,

Mr. Kalka Dubey, Mr. Kuldeep Tripathi, Mr. Trilok Saini, Mr. Ashish Mohan Yadav, Mr.

Sanjeev Kumar and Mr. Saureng Kumar. Apart from these, I would like to thanks Mr.

Suryakant, Ms. Neetu Kushwaha, Mr. Anubhav Goel and Mr. Manoj Bhatt for their valuable

suggestions and support that helped me a lot to accomplish my research work.

A special thanks to my family. Words cannot express my gratitude towards my parents for all

of the sacrifices that they have made. I want to thank my wife, Rubi Saini for supporting me in

everything throughout all my doctoral work and my naughty son Manan Saini for all the

happiness and love that he brings to my life.

VI

I would like to express my sincere thanks to all anonymous reviewers of the various

conferences and journals. Their constructive comments have helped me to shape the course of

my research work.

Finally, I would like to thank all the readers of this work, since any piece of academia is useful

if it is read and understood by others so that it can become a bridge for further research.

With profound gratitude, love and devotion, I dedicate this thesis to my family.

 (Mohit Kumar)

VII

TABLE OF CONTENTS

 CANDIDATE’S DECLARATION

 ABSTRACT I-IV

 ACKNOWLEDGEMENT V-VI

 TABLE OF CONTENTS VII-X

 LIST OF FIGURES XI-XIII

 LIST OF TABLES

SYMBOLS

XV-XVI

XVII

 LIST OF ACRONYMS

GLOSSARY

XIX-XX

XXI-XXII

 LIST OF PUBLICATIONS XXIII-

XXIV

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Motivation 6

 1.3 Objectives 8

 1.4 Organization and Contribution 9

 1.5 References 11

2 FUNDAMENTALS AND SCHEDULING TECHNIQUES 13

 2.1 Resource Management in cloud computing 13

 2.2 Cloud Resource provisioning 14

 2.2.1 Need of resource provisioning 14

 2.2.2

2.2.3

Advanced reservation

On demand resources allocation

14

15

VIII

2.3

2.2.4 Spot Instances

2.2.5 Advantages of cloud resource provisioning

 Scheduling

15

15

16

 2.3.1 Static Scheduling Algorithm 18

 2.3.2 Dynamic Task Scheduling Algorithm 18

 2.3.3

2.3.4

Online and offline (Batch) mode scheduling

Pre-emptive and Non-pre-emptive scheduling

19

20

 2.4 Classification of scheduling scheme in cloud computing

2.4.1 Heuristic scheduling algorithm

2.4.2 Meta-heuristic scheduling algorithm

 2.4.2.1 Particle Swarm Optimization

2.4.3 Hybrid scheduling algorithm

2.4.4 Benefit of Resource Scheduling

20

20

21

22

25

25

 2.5 Resource Allocation 26

 2.5.1 Classification of resource allocation 28

 2.6

2.7

Simulation Tool used in cloud computing

Summary

30

32

 2.8 References 32

3 LOAD BALANCING WITH ELASTICITY USING

HEURISTIC TECHNIQUE

37

 3.1 Concept of Load Balancing and Elasticity 37

 3.2 Contribution 38

 3.3 Related Work and Research Gap 38

 3.4 Problem Formulation 42

 3.5 Proposed Architecture 45

 3.6 Dynamic Load balancing algorithm with Elasticity 49

IX

 3.7 Analysis and Comparison of Results

3.7.1 Makespan Time Calculations

3.7.2 Number of Task Meets to Deadline

3.7.3 Provisioning and Deprovisioning (elasticity) of Resources

3.7.4 Scalability

54

54

56

58

60

 3.8

3.9

Summary

References

61

62

4 DYNAMIC TRANSFER BASED MODIFIED BINARY PSO

FOR SCHEDULING THE TASKS

65

 4.1

4.2

Concept of Task Scheduling and Binary PSO

Contribution

65

67

 4.3 Related Work and Research Gap 67

 4.3.1 Sigmoid transfer function 71

 4.3.2 Linear normalized transfer function 72

 4.3.3 V-Shape transfer function 72

 4.4 Problem Formulation 73

 4.5 Proposed Cloud Architecture 76

 4.6

4.7

4.8

4.9

BPSO based modified transfer function (TFP-BPSO)

Modified BPSO (Dynamic transfer based (TFP-BPSO)) based

scheduling algorithm

Analysis and comparison of simulation results

4.8.1 Execution time of tasks

4.8.2 Makespan Time of Tasks

4.8.3 Convergence rate

4.8.4 Throughput

Summary

78

80

83

83

87

89

90

91

5

4.10

References

MULTI-OBJECTIVE SHEDULING ALGORITHM USING

PSO

92

97

 5.1 Energy Consumption and Execution Cost 97

X

 5.2 Contribution 98

 5.3 Related Work and Research Gap 98

 5.4 Proposed Resource allocation model for Cloud environment 103

 5.5 Problem Statement and Formulation 105

 5.6 Particle Swarm Optimization (PSO) 112

 5.6.1 PSO working methodology 113

 5.7 Modified proposed PSO

5.7.1 Exploration and Exploitation

5.7.2 Flow chart of modified PSO algorithm

5.7.3 Proposed PSO algorithm for multi-objective scheduling

114

114

115

117

 5.8 Analysis, Comparison and Simulation Results

5.8.1 Execution Time Calculation

5.8.2 Makespan Time calculation

5.8.3 Task rejection ratio

5.8.4 Execution cost calculations

5.8.5 Throughput

5.8.6 Energy consumption

120

121

122

124

125

128

129

 5.9

5.10

Summary

References

130

131

6 CONCLUSIONS AND FUTURE WORK 135

 6.1 Conclusions 135

 6.2 Future Work 136

XI

LIST OF FIGURES

Figure 1.1. Cloud computing service layers with example 2

Figure 1.2. Cloud deployment models 3

Figure 1.3. Resource Provisioning in non-cloud computing 6

Figure 1.4. Resource Provisioning in cloud computing environment 7

Figure 1.5. Brief layout of research plan 10

Figure 2.1. Resource management in cloud computing 13

Figure 2.2. Resource provisioning plans 14

Figure 2.3. Flowchart of resource provisioning and scheduling in cloud

computing

17

Figure 2.4 Classification of scheduling scheme in cloud computing 21

Figure 2.5. Flying of a particle in the search space 23

Figure 2.6. Flow chart of PSO algorithm 24

Figure 2.7. Percentage of meta-heuristic algorithm used in scheduling

problem

25

Figure 2.8. Process of efficient resource allocation in cloud computing 27

Figure 2.9. Taxonomy of resource allocation in cloud computing 29

Figure 2.10. Tools used in cloud computing for scheduling 31

Figure 3.1. Proposed cloud resource broker architecture for load balancing

with elasticity

46

Figure 3.2. Cloud task scheduling model 49

Figure 3.3. Flow chart to determine the overloaded and underloaded virtual

machines

53

Figure 3.4. Basic architecture of cloudsim 54

Figure 3.5. Makespan time comparisons between proposed algorithms with

FCFS, SJF, dynamic min-min

55

XII

Figure 3.6. Task acceptance ratio comparison between proposed algorithm

with FCFS, SJF and dynamic min-min

57

Figure 3.7. Task acceptance ratio comparisons between proposed algorithm

with FCFS, SJF, dynamic min-min

58

Figure 3.8. Provisioning and deprovisioning of cloud resource based on

upcoming tasks

59

Figure 3.9. Provisioning and deprovisioning of cloud resource based on

upcoming tasks

59

Figure 3.10. Scale-out of cloud resource based on upcoming task 61

Figure 4.1. Sigmoid transfer functions 71

Figure 4.2. Proposed Cloud Task scheduling architecture 77

Figure 4.3. Comparison of proposed transfer function with sigmoid transfer

function

79

Figure 4.4. Proposed dynamic transfer function based algorithm for task

scheduling

82

Figure 4.5. Execution Time comparison proposed BPSO with BPSO and

FCFS at fixed Tasks

86

Figure 4.6. Execution Time comparison proposed BPSO with BPSO and

FCFS

86

Figure 4.7. Makespan time comparisons between FCFS, BPSO and proposed

BPSO

87

Figure 4.8. Makespan time comparisons between FCFS, BPSO and proposed

BPSO

88

Figure 4.9. Makespan time comparisons between FCFS, BPSO and proposed

BPSO

89

Figure 4.10. Convergence rate comparisons between BPSO and proposed

BPSO

90

XIII

Figure 4.11. Throughput comparisons between FCFS, BPSO and proposed

BPSO

91

Figure 5.1. Resource allocation model for cloud environment 104

Figure 5.2. PSO working methodology 113

Figure 5.3. Flowchart of the modified PSO (proposed) algorithm 116

Figure 5.4. Steps of proposed PSO based algorithm for scheduling algorithm 119

Figure 5.5. Execution time comparisons between Proposed PSO vs. PSO,

Honey Bee and Min-Min

122

Figure 5.6. Makespan time comparisons between proposed PSO vs. PSO,

Honey Bee and Min-Min algorithm

123

Figure 5.7. Task rejection ratio comparisons between proposed modified PSO

vs. PSO, Honey Bee and Min-Min algorithm

124

Figure 5.8. Execution cost comparison between proposed PSO vs. PSO,

Honey Bee and Min-Min algorithm

126

Figure 5.9. Results of makespan time and execution cost at 1000 tasks using

proposed PSO

127

Figure 5.10. Throughput comparisons between proposed PSO vs. PSO, Honey

Bee and Min-Min algorithm

128

Figure 5.11. Energy Consumption comparisons between proposed PSO vs.

PSO, Honey Bee and Min-Min algorithm

129

XIV

XV

LIST OF TABLES

Table 2.1. Differences between static and dynamic algorithms 19

Table 3.1. Literature review on dynamic scheduling, load balancing & elasticity

based algorithm

40

Table 3.2. Notations and their description 43

Table 3.3. VM Properties 54

Table 3.4. Task Properties 55

Table 3.5. Task with deadline 57

Table 3.6. Task with deadline 57

Table 4.1. Literature review on meta-heuristic based scheduling algorithm 69

Table 4.2. Notation and description 74

Table 4.3. Position matrix 81

Table 4.4. VM properties 84

Table 4.5. Tasks properties 84

Table 4.6. Execution time comparison between BPSO and proposed BPSO 84

Table 4.7. Execution time comparison between FCFS, BPSO and developed

BPSO

85

Table 4.8. Throughput comparison between FCFS, BPSO and developed BPSO 91

Table 5.1. Literature Review of Traditional and Meta-heuristic algorithm with

their limitations

100

Table 5.2. Notation and their description are used in problem formulation and

fitness function

107

Table 5.3. Position of the particles 118

Table 5.4. Mapping task with cloud resources 118

Table 5.5. VM properties 120

XVI

Table 5.6. Detail of task, VM, PSO parameters and calculated execution time of

algorithms

121

Table 5.7. Detail of task, VMs, PSO parameters and calculated makespan time of

algorithms

123

Table 5.8. Detail of task, VM, PSO parameters and calculated task rejection ratio

of algorithms

124

Table 5.9. Low computation-intensive virtual machine cost details 125

Table 5.10. High computation-intensive virtual machine cost details 125

Table 5.11. Simulation details of Task, VM, no. of particle, iteration and

calculated execution cost of algorithms

126

Table 5.12 Simulation details of Task, VM, calculated makespan time and

execution cost

127

Table 5.13 Simulation details to calculate throughput of the algorithms

128

XVII

SYMBOLS

 N Number of Tasks

 M Number of Virtual machines

Sp Represent the p
th

 schedule of workload

ΦTiSp Represents the number of matched resources for task 𝑇𝑖 for schedule Sp

ETTiRj €ΦTiSp Execution time of task 𝑇𝑖 on matched resource 𝑅𝑗

𝐸𝐸𝑇TiRj €ΦTiSp Excepted Execution Time of resource 𝑅𝑗 to execute the task 𝑇𝑖

𝑇𝑃𝑇𝑇𝑖
𝑅𝑗

 Total processing time of tasks 𝑇𝑖 at cloud resources 𝑅𝑗

𝑇𝐿𝑇𝑖 Length of task 𝑇𝑖 in Millions of instructions

𝐵𝑅𝑗 Bandwidth of resource 𝑅𝑗

𝜕(𝑇𝑖) Deadline of task 𝑇𝑖

𝐹𝑇𝑇𝑖 Finishing time of task 𝑇𝑖

𝑊𝑇𝑇𝑖 Waiting time of task 𝑇𝑖

𝑊𝑅𝑗 Workload available on resource 𝑅𝑗

𝑝𝑠 Processing speed of resource (𝑅𝑗)

𝜓𝑇𝑖𝑅𝑗
 Binary decision variable such that 𝜓𝑇𝑖𝑅𝑗

=1 if 𝑇𝑖 is allocated to resource 𝑅𝑗

𝑋𝑖𝑗𝑘 If task i is allocated to resource 𝑅𝑘 from 𝑅𝑗 then value is 1 otherwise 0

𝐸𝐶𝑇𝑖𝑅𝑗 Execution cost of task 𝑇𝑖at resource 𝑅𝑗

ℰ𝒞𝑇𝑖𝑅𝑗€θ𝑇𝑖𝒮𝑝 Energy consumption by resources 𝑅𝑗 for tasks 𝑇𝑖 in schedule 𝒮𝑝

ℰ𝒞ℳ𝑎𝑥 Energy consumption when resource is completely

ℰ𝒞ℳ𝑖𝑛 Energy consumed by resources when they are ideal or low utilization(0 to5 %)

tmax Maximum number of iteration

XVIII

XIX

LIST OF ACRONYMS

VM Virtual Machine

VMM VM Monitor

QoS Quality of Service

SLA Service Level Agreement

FCFS First Come First Serve

SJF Shortest Job First

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

XaaS <Something> as a Service

AWS Amazon Web Services

EC2 Elastic Compute Cloud

VCPU Virtual Central Processing Unit

PSO Particle Swarm Optimization

BPSO Binary PSO

ACO Ant Colony Optimization

ABC Artificial Bee Colony

GA Genetic Algorithm

DE Differential Evolution

HEFT Heterogeneous Earliest Finish Time

API Application Programming Interface

ARUR Average Resource Utilization Ratio

CSP Cloud Service Provider

OVM Overloaded Virtual machine

UVM Underloaded Virtual Machine

BVM Balance Virtual Machine

EC Execution Cost

MST Makespan Time

IoT Internet of Things

XX

ET Execution Time

LP Linear Programming

TTT Task Transfer Time

HPC High Performance Computing

NP Nondeterministic Polynomial Time

IBA Improving the Backfill Algorithm

BS Balanced Spiral

CRB Cloud Resource Broker

JRH Job Request Handler

MIPS Million Instructions Per Second

MI Million Instructions

CMDS Cloud Monitoring and Discovery Service

CRP Cloud Resource Provisioner

LBIMM Load Balancing Improved Min-Min algorithm

SPEC Standard Performance Evaluation Corporation

CPU Central Processing Unit

XXI

GLOSSARY

Virtual Machine: Virtual machine is a processing entity in cloud environment that is

controlled by hypervisor such as KVM, XEN etc.

Task/cloudlet: In cloud computing, cloudlet is a mini cloud set to serve a specific purpose in a

given environment on the demand of the cloud users. However, in the simulation tools, it is

known as a task to perform certain operation.

Execution Time: It is the time to execute an application at cloud resources (virtual machine). It

should be minimum for better cloud services and users satisfaction.

Makespan Time: It is the total time of applications that elapses from starting to end. The aim

of scheduling is to execute the user’s application in minimum time.

Waiting Time: Time spends by task or application in ready queue before assigned to the cpu is

called waiting time of task. Waiting time should be minimum for better performance.

Turnaround Time: Turnaround time is the combination of both execution time and waiting

time.

Response Time: It is the time to produce first response after submitting the task, when task

start their execution on virtual machine. It sends a response to the user that is called the

response time.

Execution Cost: Total cost spend to execute the upcoming task in a schedule is called

execution cost. It is measured in dollar ($) per hour basis for each schedule.

Throughput: It is the measure of the rate at which consumer requests are being processed.

Energy consumption: It represents the efficiency and effectiveness in using electrical energy

for different datacenter operations e.g., powering of servers and cooling system.

XXII

Scalability: It is the ability of a system to fit in a problem such that if scope of the problem

increases (number of request increase).

Resource utilization: It measures the degree of resource utilization of computing resources in

the cloud datacenter.

SLA: It represents the reduction in the number of SLA violations. SLA violations should be

minimized to provide consumer satisfaction.

Bandwidth: Potential capacity of a link is called bandwidth.

Memory: is a process in which the cloudlet or tasks are encoded, retrieved or stored as the

requirement of the cloud users in cloud computing.

Performance: is an amount of cloudlet or task accomplished on the demand of the cloud users.

Priority: is a cloudlet or task that has more importance than other or has right to execute or

proceed before others.

Reliability: is the ability of cloudlet or task to execute its required function within specific time

successfully. It provides the assurance of completion and avoid or reduce the failure rate in

cloud computing.

Workload: is the amount of processing to be done or handled within given time period.

Particle Swarm Optimization (PSO): It is a meta-heuristic technique that optimizes the hard

computational problem by iteratively to improve QoS parameters (candidate solutions) with

regard to a given measure of quality.

XXIII

LIST OF PUBLICATIONS

Refereed Journals

1. Mohit Kumar and S.C.Sharma, “Deadline constrained based dynamic load balancing

algorithm with elasticity in cloud environment” in journal of Computers & Electrical

Engineering (CAEE), Nov-2017 (Elsevier, IF=1.57) [SCI-E Indexed] Status:

Published. https://doi.org/10.1016/j.compeleceng.2017.11.018

2. Mohit Kumar and S.C.Sharma, “Dynamic load balancing algorithm to minimize the

makespan time and utilize the resources effectively in cloud environment” in

international journal of Computers and applications, pp. 1-10, Nov. 2017 (Taylor &

Francis, Scopus Indexed) Status: Published.

https://doi.org/10.1080/1206212X.2017.1404823

3. Mohit Kumar and S.C.Sharma, “Load balancing algorithm to minimize the makespan

time in cloud environment,” World journal of modelling and simulation (Scopus

Indexed) Status: Accepted.

4. Mohit Kumar and S.C.Sharma, “PSO-BOOST: Multi-Objective scheduling algorithm

to optimize the execution cost and time in cloud computing,” Swarm and Evolutionary

Computation (Elsevier IF=3.893) [SCI-E Indexed] Status: Under-Review. 2018

5. Mohit Kumar and S.C.Sharma, “Task scheduling in cloud environment using dynamic

transfer function based modified Binary Particle Swarm Optimization algorithm,”

Cluster Computing (Springer IF=2.04) [SCI-E Indexed] Status: Under-Review. 2017

6. Mohit Kumar and S.C.Sharma, “Modified Binary PSO based Multi-objective

scheduling in cloud computing,” Concurrency and Computation: Practice and

Experience (Wiley IF=1.133) Status [SCI-E Indexed] Status: Under-Review. 2018

https://www.sciencedirect.com/science/article/pii/S004579061731073X
https://www.sciencedirect.com/science/article/pii/S004579061731073X
https://www.sciencedirect.com/science/article/pii/S004579061731073X
https://doi.org/10.1016/j.compeleceng.2017.11.018
https://doi.org/10.1080/1206212X.2017.1404823

XXIV

7. Mohit Kumar and S.C.Sharma, “PSO-COGENT: Cost and Energy Efficient

scheduling in Cloud environment with deadline constraint,” Sustainable Computing

(Elsevier IF=1.80) [SCI-E Indexed] Status: Under-Review. 2017

International Conferences

1. Mohit Kumar and S.C. Sharma," Priority Aware Longest Job First (PA-LJF)

Algorithm for Utilization of the Resource in Cloud Environment," in 3
rd

International Conference on Computing for Sustainable Global Development

(IndiaCom), pp. 415-420, New Delhi, India, March 2016 (IEEE) [Scopus Indexed]

Status: Published.

2. Mohit Kumar, K. Dubey and S.C.Sharma, “Job Scheduling algorithm in cloud

environment considering the priority and cost of job,” in 6
th

 International

Conference on soft computing for problem solving (SocProS), Thapar, Patiyala,

India 2016 (Springer) [Scopus Indexed] Status: Published.

3. Mohit Kumar and S.C. Sharma, “Dynamic load balancing algorithm for balancing

the workload among virtual machine in cloud computing," in Procedia Computer

Science, vol. 115, pp. 322-329, 2017 (Elsevier Scopus) [Scopus Indexed] Status:

Published.

4. Mohit Kumar, K. Dubey and S.C.Sharma, “Elastic and flexible deadline constraint

load Balancing algorithm for Cloud Computing” in Procedia Computer Science,

vol. 125, pp. 717-724, 2018 (Elsevier Scopus) [Scopus Indexed] Status:

Published.

1

CHAPTER-1

INTRODUCTION

Cloud computing is emerging computing technology that is rapidly gaining popularity and

admired in IT industry as well as academic [1]. It is also known as utility based system, since

cloud computing still is in its infancy, there are many open research challenges exist in the field

of cloud computing like security, resource provisioning and scheduling. In this thesis, we

address the problem of resource provisioning and scheduling in cloud computing to optimize

QoS parameters like execution time, execution cost, task rejection ratio, throughput and energy

consumption considering deadline as constraint. In this chapter, we provide an overview of the

cloud computing that contains the cloud services model, deployment models, resource

provisioning and scheduling. Further the key motivation that guided us to research on this topic

and to formulate the objectives of the research work and original contribution of research work

is given in the last.

1.1 Overview

Cloud computing is collection of heterogeneous resources that provides the services either in

the form of software application or hardware infrastructure on the basis of pay per use over the

internet. Computing resources of cloud environment contains on demand self-service,

scalability (scale-out and scale-up), resource pooling, broad network access, rapid elasticity and

higher availability types of characteristic. Three types of basic service provided by cloud

computing namely as: Infrastructure as a service (IaaS), Platform as a service (PaaS) and

Software as a service (SaaS). These types of services are useful in scientific, business and

industrial applications. Based on the delivery model, cloud computing can broadly be divided

into three basic service models [2] as shown in Fig. 1.1.

1.1.1 Cloud services models

(i) Software as a service: Cloud consumers use the provider application from anywhere

using the web browser or a program interface in SaaS. There is no need to manage

and control the infrastructure, operating system as well as applications by cloud

consumers. Examples of SaaS are: Email, virtual desktop, facebook, YouTube etc.

2

(ii) Platform as a service: PaaS vendors offer a development environment for

application developers (consumers) where developers is free to build their own

applications as per requirement using programming languages, libraries and tools.

There is no need to manage and control the underlying infrastructure (virtual

machines, servers, operating system etc) by consumers but has to managed and

control own deployed applications. Examples of PaaS are: Window azure, Google

App Engine, Force.com etc.

(iii)Infrastructure as a service: Consumers can get on demand infrastructure (virtual

machines, servers, storage etc) from the cloud in IaaS and they are able to deploy

different types of operating systems and applications as per requirements. Cloud

consumer is responsible to manage and control the infrastructure as well as

operating system and deployed applications. Examples of IaaS are: Amazon elastic

compute cloud (EC2), virtual machines, servers, storages etc.

These types of services are useful in scientific, business and industrial applications. User

can send the request at anytime and anywhere for the cloud resources using the graphical

user interface or web browser.

Figure 1.1 Cloud computing service layers with example

3

According to Mell et al. [3], from National Institute of Standards and Technology (NIST),

cloud computing is defined as:

“a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction”.

1.1.2 Cloud deployment models

There are four deployment models of cloud are public, private, hybrid and community as

shown in Fig. 1.2. Public cloud services are available for general public over the internet.

Amazon elastic compute cloud, Google appEngine, Window azure service platform etc are

examples of public cloud those offered the services either pay per use basis or free [4].

Lightweight framework is proposed by A. Abraham et al., to monitor the public cloud [5].

Private cloud is used for personal use or provides the service to single organization. Eucalyptus,

OpenNebula, Openstack etc are example of private cloud those offered the similar advantages

to public cloud. A hybrid cloud is combination of two or more than two public and private

cloud which are bounded by service level agreement (SLA).

Figure 1.2 Cloud deployment models

4

Community cloud is multi-tenant platform that allows many companies to work at the same

platform and it is managed by one or more than one companies in the community.

The number of users and applications are increasing gradually in cloud environment and in turn

there is increase unknown mixed workloads (HPC applications, web) and traffic at the web

applications which are deployed in the virtual machine (cloud resource). Therefore resource

provisioning and scheduling of application becomes a critical problem for services provider due

to over-provisioning and under-provisioning types of problem [6]. Scheduling of application is

a NP Complete optimization problem in cloud environment due to heterogeneous nature of

cloud resources and dynamic nature of upcoming user application request. It is difficult to find

out the optimal solution for NP-complete problem but one can find the suboptimal solution for

short period of time using the metaheuristic (optimization) algorithm. The main objective of

scheduling algorithm is to assign the application (tasks) in such a manner that all tasks should

be executed in minimum time and cost considering deadline as constraint.

1.1.3 Applications of cloud computing

Some applications of cloud computing [7] as follows:

 It is easy to use the cloud services, applications and its associated data directly without

getting them installed on their machine.

 There is no need to worry about data loss or virus types of problem because cloud

service provider provides dependable and secure data storage center to cloud users.

 Data sharing is possible between different equipments by cloud computing.

 Cloud computing provides number of applications as well as services in low cost rather

than buying the infrastructure.

 Cloud computing is also useful in agriculture field and health sector. There is no need to

buy the servers, software and no need to maintain the infrastructure by the farmers.

1.1.4 Research Challenges

Research challenges of cloud computing can summarize as follows [8-17]:

1.1.4.1 Security of data

 Movement of data and application over the networks is a critical issue in the field of cloud

computing because there is possibility of loss of control on data. When data is move from one

5

organization to other organization for either processing or storage then there are maximum

chances of inherent risk and possibility of various attacks [8-13].

1.1.4.2 Reliability and Availability

Strength of technology is measured with the help of reliability and availability parameters.

Reliability denotes that cloud resources are totally free of technical errors without disruption

(loss of data, code reset during execution). Downtimes and slowdowns creates serious problem

for the reliability of cloud computing. Reliability in cloud computing can be achieved using the

redundant resources. Availability in cloud environment can be understood as the probability of

acquiring the virtual machines whenever they are needed [14-15].

1.1.4.3 Scalability and Elasticity

Most challenging features of cloud computing is to provide on demand huge number of

resources to the user as per their need (elasticity and scalability) [16]. Scalability is the ability

of a system to fit in a problem such that if scope of the problem increases such as number of

request increase, length of request vary randomly etc. The ability of auto scaling on upcoming

demands in cloud computing is biggest advantages for services provider as well as user.

Elasticity is the ability of provisioning and deprovisioning of resources as per user demand.

 1.1.4.4 Resource Management and Scheduling

To utilize the cloud resources efficiently is also a challenging issue in the field of cloud

computing. Scheduling challenges occurs due to dispersion, uncertainty and heterogeneity of

resources that are not resolved with traditional resource management mechanisms. Still over

provisioning and under provisioning types of problem occurs in cloud environment due to

which cloud resources are not utilizing properly [17]. Resource management is needed at

various levels like hardware, software, virtualization etc. Job scheduling is a type of resource

provisioning where jobs are executed in particular order to optimize the parameters like

execution time, execution cost, energy consumption, throughput etc.

1.1.4.5 Energy Consumption

Cloud data centers are increasing day by day due to huge computational demands of cloud user

which is serious threat for the environment. In 2006, United States data centers consumed more

than 1.5% of the total energy produced in that year, and this percentage is expected to increase

18% annually [18].

6

1.2 Motivation

Cloud computing is growing in popularity among computing paradigms to deliver computing

resources as a services over the internet on the basis of pay per use. There was some

shortcoming of non-cloud computing environment as shown in Fig. 1.3. It is difficult to predict

the workload and allocate on demand resources in non-cloud environment. Therefore over

provisioning and under provisioning types of problems occurs regularly due to which most of

time virtual machines either in ideals conditions (waste of capacity) or overloaded conditions.

Cloud computing environment partially solve the problem of over provisioning and under

provisioning as shown in Fig. 1.4. IaaS cloud services have provided a paradigm shift in the

way resources are provisioned and utilized. One more advantage with cloud computing is that

there is no need to invest in a huge computer system by the users to do their business; instead,

they can purchase the on demand services from the cloud anywhere and anytime. Still some

research challenges exist in cloud computing: Most of the published scheduling algorithm deals

with only one parameter either scheduling the upcoming tasks to optimize the required

parameter or scalability within user defined deadline constraint.

Figure 1.3 Resource Provisioning in non-cloud computing

The most challenging problem for a cloud service provider is maintaining the quality of service

parameters like reliability, elasticity, keeping the deadline and minimizing the makespan time

and also the task rejection ratio. Therefore, the cloud service provider needs a dynamic task

7

scheduling algorithm that reduces the makespan time while increasing the utilization ratio of

cloud resources and meeting the user defined QoS parameters [19].

Many real-world problems belong to the family of discrete optimization problems. Most of

these problems are NP-complete and difficult to solve efficiently using classical linear and

convex optimization method [20]. There is no algorithm exists to solve the NP complete

problem in polynomial time i.e., required time to solve the problem is increase exponentially

when size of problem is increased linearly. Calculating the all possible task-resource mapping

(scheduling) and selecting the optimal mapping is not feasible in cloud environment. Therefore

researchers are using the metaheuristic techniques to solve the NP Complete problems. Simple

binary particle swarm optimization (BPSO) does not provide satisfactory solution due to

inappropriate behavior (unable to maintain the good balance between exploration and

exploitation) of transfer function. To overcome this problem, we have modify the transfer

function that provides the exploration and exploitation capability in better way to solve the

problem of scheduling. The main goal of cloud service provider is to maximize the profit from

cloud infrastructure while cloud users want to execute their applications in minimum time and

cost. There is always a conflict between execution time and cost due to heterogeneous nature

of cloud resources as well as upcoming user’s application.

Figure 1.4 Resource Provisioning in cloud computing environment

To make a balance between execution time and cost, a trade-off solution is required. The rapid

growths in demand of computational power tends to massive growth in cloud data centers and

8

require large amount of energy consumption in cloud data centers which becomes a serious

threat to the environment. To reduce the energy consumption and gain the maximum profit in

cloud computing is a challenging problem due to incompatibility between workstation

(physical machine) and unpredictable users demand.

1.3 Objectives

Keeping in view the resource provisioning and scheduling problem in cloud computing, the aim

of present work is to propose a technique that can execute the tasks in minimum time,

execution cost and energy consumption while considering deadline as a constraint. The major

objectives of this thesis are summarized below:

1) Dynamic load balancing with elasticity play an important role in the field of cloud

computing. Thus, the first objective of the thesis is to developed a dynamic scheduling

algorithm that balances the work load among all the virtual machines with elastic

resource provisioning and deprovisioning based on the last optimal k-interval

considering deadline as constraint.

2) Simple BPSO unable to maintain the good balance between exploration and

exploitation. The aim of proposed dynamic transfer function based binary particle

swarm optimization (TF୔-BPSO) is to provide the exploration at the early stage by high

flipping of bits of particle position for any velocity and It has the ability to decrease the

probability of flipping of bits in intermediate stage so that it can move from exploration

to exploitation. It has been observed that in the last stage of run should provide stronger

exploitation (less probability of flipping of bits).

3) Most of the scheduling algorithm deals with only one parameter either optimize the

execution cost of running cloud resources or execution time within user defined

deadline constraint. There is always a conflict between execution time and cost.

Therefore a trade-off solution is required to solve this issue. We have formulated our

multi-objective scheduling problem in the form of mathematical model and proposed a

particle swarm optimization (PSO) based algorithm that not only minimize the

execution time but also optimize the execution cost of cloud resources.

4) To reduce the energy consumption and gain the maximum profit in cloud computing is

a challenging problem due to incompatibility between workstation (physical machine)

and unpredictable users demand. We proposed resource allocation model for processing

9

the applications efficiently and particle swarm optimization based scheduling algorithm

that not only optimize execution cost but also reduce the energy consumption of cloud

data centers considering deadline as constraint.

1.4 Organization and Contribution

The thesis is organized into six chapters including the introduction.

CHAPTER 1: INTRODUCTION

In the introduction part, details with general concepts of cloud services, motivation, research

challenges, objectives and contributions of this thesis.

CHAPTER 2: FUNDAMENTALS AND SCHEDULING TECHNIQUES

In this chapter, we discuss the existing resource provisioning techniques, advantages of

resource provisioning in the field of cloud computing, static and dynamic scheduling algorithm,

classification of scheduling algorithms in terms of heuristic, meta-heuristic and hybrid

algorithm. Further resource allocation model and simulation tool are discussed in brief that are

used to measure the performance of the scheduling algorithm.

CHAPTER 3: LOAD BALANCING WITH ELASTICITY USING HEURISTIC TECHNIQUE

The details about the development of a cloud resource broker architecture and dynamic

scheduling algorithm that is able to automatically manage and monitor the virtual machines to

minimize the QoS parameters based on the last optimal k-interval of considering deadline as

constraint and simultaneously fulfill the objective of elasticity in cloud environment have been

discussed.

CHAPTER 4: DYNAMIC TRANSFER FUNCTION BASED MODIFIED BINARY PSO FOR

SCHEDULING THE TASKS

Development of dynamic transfer function (TF୔-BPSO) based BPSO algorithm that provides

better exploration at the early stage, its move from exploration to exploitation in the

intermediate stage of execution and provides the stronger exploitation in the last stage of

execution to improve QoS parameters have been discussed.

10

CHAPTER 5: MULTI-OBJECTIVE SCHEDULING ALGORITHM USING PSO

Particle swarm optimization (PSO) based scheduling algorithm and resource allocation model for

improvement of QoS parameters have been discussed.

CHAPTER 6- CONCLUSIONS AND FUTURE WORK

This chapter concludes the work reported in the thesis and discusses about future research directions.

Thesis methodology is divided into different step in order to simplify the work. The steps are

shown in terms of flowchart as shown in Fig. 1.5

Figure 1.5 Brief layout of research plan

11

1.5 References:

[1] B. Pring, R. H. Brown, A. Frank, S. Hayward and L.Leong, “Forecast: Sizing the Cloud;

understanding the opportunities in cloud services,” Gartner, Inc., Research Report G 166525,

2009.

[2] O. Serfaoui, M. Aissaoui and M. Eleuldj , “OpenStack: Toward an Open-Source Solution

for Cloud Computing,” International Journal of Computer Applications, vol. 55, no. 03, Oct.

2012.

[3] P. Mell and T. Grance, “The NIST definition of Cloud computing: Recommendations of the

national institute of standards and technology,” Special Publication 800-145, NIST, Sep 2011.

[4] M. Kumar, K. Dubey and S. C. Sharma, “Elastic and flexible deadline constraint load

balancing algorithm for cloud computing,” in Procedia Computer Science, vol. 125, pp. 717-

724, India, 2018.

[5] K. Ma, R. Sun, and A. Abraham, “Toward a lightweight framework for monitoring public

clouds,” in 4th International Conference on Computational Aspects of Social Networks

(CASoN), pp. 361-365, 2012.

[6] S. Khatua, P. K Sur, R. K Das and N Mukherjee, “Heuristic-based resource reservation

strategies for public cloud,” IEEE Transactions on Cloud Computing, vol. 4, no. 4, pp. 392-

401, Oct. 2016.

[7] S. Zhang, S. F. Zhang, X. B. Chen, and X. Z. Huo, “Cloud Computing Research and

Development Trend,” in Second International Conference on Future Networks (ICFN '10),

IEEE Computer Society, pp. 93-97, Washington, USA, Mar. 2010.

[8] S. Kumar, S. K. Singh, A. K. Singh, S. Tiwari and R. S. Singh, “Privacy preserving security

using biometrics in cloud computing,” Multimedia Tools and Applications, PP. 1-23, 2017.

[9] A. H. Gamlo, Ning Zhang, Omaimah Bamasag , “Mobile Cloud Computing : Security

Analysis,” 5th International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud), 2017.

[10] G. Sahoo and S. Mehfuz, “Securing Software as a Service Model of Cloud Computing :

Issues and Solutions,” vol. 3, no. 4, pp. 1–11, 2013.

[11] R. Rai, G. Sahoo and S. Mehfuz, “Exploring the factors influencing the cloud computing
adoption: a systematic study on cloud migration,” SpringerPlus, vol. 4, no. 1, pp. 197-208.
2015.

12

[12] A. Naureen and N. Zhang, “A Comparative Study of Data Aggregation Approaches for

Wireless Sensor Networks,” Proceedings of the 12th ACM Symposium on QoS and Security for

Wireless and Mobile Networks, Malta, Malta, 13-17 Nov., 2016.

[13] A. Al-Riyami, N. Zhang, and J. Keane, “An Adaptive Early Node Compromise Detection

Scheme for Hierarchical WSNs,” IEEE Access, vol.4, pp.4183 - 4206, 2016.

[14] Y. Ghanam, J. Ferreira and F. Maurer, “Emerging issues &challenges in Cloud- A hybrid

approach,” Journal of software engineering and applications, vol. 5, no. 11, pp. 923-937, Nov.

2012.

[15] M. A. Vouk, “Cloud computing Issues, research and implementations,” Journal of

computing and information technology, vol. 16, no. 4, pp. 235-246, June 2008.

[16] T. Dillon, C. Wu and E. Chang, “Cloud computing: Issues and challenges,” in 24th

International Conference on Advanced Information Networking and Applications, pp. 27- 33,

June 2010.

[17] European CIO Cloud Survey, Addressing security, risk and transition, May -2011.

[18] R. Brown et al., “Report to congress on server and data center energy efficiency: Public

law 109-431,” Lawrence Berkeley National Laboratory, 2008.

[19] M. Kumar and S. C. Sharma, “Deadline constrained based dynamic load balancing

algorithm with elasticity in cloud environment” Computers and Electrical Engineering journal,

pp. 1–17, 2017.

[20] Md. J. Islam, X. Li, and Y. Mei," A Time-Varying Transfer Function for Balancing the

Exploration and Exploitation ability of a Binary PSO," Applied Soft Computing, vol. 59, pp.

182-196, 2017.

13

CHAPTER-2

FUNDAMENTALS AND SCHEDULING TECHNIQUES

In this chapter, we initially present the techniques of resource management that are used in

cloud computing. Resource management includes resource provisioning, resource mapping,

resource brokering, scheduling, resource allocation and load balancing related problems in the

field of cloud computing [1]. At the end we have discussed the existing resource provisioning,

scheduling, resource allocation and load balancing algorithm used by different researchers to

optimize the QoS parameters and addressed the shortcoming of the algorithms.

 2.1 Resource Management in cloud computing

Cloud computing offers resource provisioning and scheduling to the users as per their demand

and provides the guarantee of reliable services on the basis of pay per use. To overcome the

challenging issues the various resource provisioning and scheduling techniques are reported in

literature [2]. Resource management is divided into two basic stages in cloud computing:

resource provisioning and resource scheduling as shown in Figure 2.1. Resource scheduling

will be more beneficial for users as well as service providers, if perform after the efficient

resource provisioning.

Fig. 2.1 Resource management in cloud computing

14

2.2 Cloud Resource provisioning

Cloud resource provisioning is the technique to enable the virtualized resources for allocation

the users. When cloud service provider accepts the request for resources from the users, it

creates appropriate number of virtual machines and allocate to users as per their demand.

Resource provisioning is also responsible to fulfill the user’s need based upon the quality of

service parameters (QoS), SLA negotiations and match the resources to the upcoming

workloads.

2.2.1 Need of resource provisioning

The aim of resource provisioning is to detect and select the appropriate resources for upcoming

request, so that request (applications) can get optimal resource i.e. number of resources should

be minimum for the applications to maintain a desirable level of service quality (minimum

execution time and maximum throughput). The objective of resource provisioning is to map the

upcoming request with the running virtual machines so that user get the services in minimum

cost and time while service provider get the maximum profit [3].

There are three resources provisioning techniques available for the cloud users as shown in Fig.

2.2:

Figure 2.2 Resource provisioning plans

2.2.2 Advanced reservation

15

This is a long term plan that allows the users to reserve the resources in advances for a specific

time period. This technique is very useful in federated cloud as well as elastic compute cloud

(EC2). There are some drawbacks of this technique like it is difficult to predict the future

demand of users and prices of cloud resources. Over-provisioning and under-provisioning types

of problem also occur in this technique [4].

2.2.3 On demand resources allocation

 It is an intermediate level plan that allows users to pay per hour basis based upon the resources

has been used. If the demand for the cloud resources at a given time t exceeds the reserved

value, then additional resources are required for on-demand resource provisioning. The under-

provisioning problem can be solved by provisioning more resources at higher cost with on-

demand plan. Generally on demand additional resources are allocated to the users at higher cost

than advanced reservation resources.

2.2.4 Spot Instances

It is a short-term plan that allows customers to bid on unused resources. Spot instances are

Amazon’s third plan that offer unused resources at a much lower cost than both on-demand and

advanced reservation. Major cloud service providers (AWS, Google, and Azure) offer the

option to use Spot Instances. Spot Instances are a cost-effective technique if you can be flexible

about when your applications run and if your applications can be interrupted. The problem with

spot instances is that their price changes periodically based on supply and demand of spot

instances.

2.2.5 Advantages of cloud resource provisioning

Advantages of cloud resource provisioning are given below [5]

 Execution time as well as makespan time of upcoming workload is reduced by efficient

resource provisioning techniques.

 Better resource utilization can reduce the problem of over-provisioning and under-

provisioning.

 If virtual machine startup delays is less that provides better resource provisioning in

cloud environment.

 Effective cloud resource provisioning algorithm increases the robustness as well as fault

tolerance capability.

16

 Resource provisioning algorithm reduces the power consumption without violation of

SLA.

 Efficient load balancing algorithm distributes the workload at the virtual machines in

such a manner that no virtual machine is in overloaded or underloaded condition.

 Improve user deadline violation rate by effective resources provisioning before start the

scheduling.

 Resource provisioning also reduces waiting time in workload queue.

2.3 Scheduling

Scheduling is the way to determine, which activity should be performed based upon the

required quality of service (QoS) parameter. Scheduling is responsible to select optimal virtual

machines for execute the tasks using either heuristic or meta-heuristic algorithm and also

responsible for QoS constraints are met.

Resource scheduling can be done in two ways; first one is on demand scheduling in which

cloud service provider provides the resources quickly to random workload. This approach has a

problem of unequal distribution of workload i.e. there is possibility of executing more tasks at a

single virtual machine (VM), therefore performance start to degrade and over provisioning

types of problem can occurs. Second is long term reservation in which many number of virtual

machine are in ideal condition due to which under provisioning type of problem occurs. Over

provisioning and under provisioning types of problem increase the cost of services due to

unnecessary wastage of resources and time. To handle with these types of problems, we need

an efficient resource provisioning algorithm that analyze and schedule the upcoming workload

in efficient way. Modified flowchart of resource provisioning with scheduling is shown in Fig.

2.3 [6].

The objective of resource provisioning with scheduling (RPS) is provision the resources to

users without violation of SLA and fulfill the users’ demand [6]. Understand the expectation

and requirement of the cloud users at the starting on the basis of upcoming workload

(applications). Service level agreement (SLA) commitment is defined between users and

service provider after analyzed the upcoming workload properly. Fitness function (FFQoS) is

calculated based upon the required QoS parameters for every workload and compare it with the

value calculated without considering QoS parameters (FFnon−QoS). We check the condition if

value of FFQoS is less than the value of FFnon−QoS then it will provision; otherwise it analyses the

17

workload again after resubmission of SLA by the cloud consumer through re-negotiation. If

resource provisioning is completed successfully then choose the scheduling algorithm to

execute the tasks in specified budget and deadline with the help of scheduler.

Figure 2.3 Flowchart of resource provisioning and scheduling in cloud computing

18

Before allocation the workload or tasks at the virtual machines (resources), cloud running

resources is monitored and calculate the load at each resources. If any virtual machine is in

overloaded condition then task is not allocated to such types resources. Further upcoming

workload is map with the available resources and check the condition that running virtual

machine is enough or not to execute the workload. If running resources are not enough then

increase the resources using the horizontal scalability concept otherwise allocate the resources

to the workload and calculate the required QoS parameters. There are various types of

scheduling algorithm in cloud computing based upon: static and dynamic, online v/s batch

mode, preemptive and non-preemptive scheduling algorithm etc.

2.3.1 Static Scheduling Algorithm

 Static scheduling algorithms need the information about the task (length of task, number of

tasks, deadline of tasks) and resource (node processing capacity, processing power, memory

etc) in advance. Static algorithm work well when node has low variation in workload. These

algorithms are not suitable for cloud environment where load vary instantaneously time to time.

It is very easy to implement static algorithm but these algorithm don't optimize the quality of

service parameters and not provides the good performance in real environment. Therefore we

need dynamic task scheduling algorithm for cloud environment. Example of static algorithm

are first in first out (FIFO), round robin (RR), shortest job first (SJF), longest job first (LJF) etc.

2.3.2 Dynamic Task Scheduling Algorithm

There is no need of advance information about the task and node in dynamic algorithm but

need to monitor the node continuously. These algorithms are more efficient and accurate for

cloud environment because if any node is in overloaded condition then transfer the task from

overloaded node to under loaded node i.e., algorithm condition change frequently when load

change (increase or decrease) at a node. Example of dynamic algorithm are dynamic round

robin, heterogeneous earliest finish time (HEFT), clustering based heterogeneous with

duplication (CBHD), weighted least connection (WLC), particle swarm optimization (PSO),

ant colony optimization (ACO) etc. Both the algorithms (static and dynamic) have their

advantages and disadvantages as shown in Table 2.1.

19

Table 2.1 Differences between static and dynamic algorithms

Static algorithm Dynamic algorithm

Need the advanced information about the

upcoming jobs/requests

There is no need of advance information

about the jobs and resources

Scheduling decision is taken at compile time Scheduling decision is taken at run time

Easy to implement i.e. complexity is low It is not easy to implement, complexity is high

Static algorithms don’t gives optimal results

for large computational problem.

Dynamic algorithm is useful for large

computational problem.

Difficult to find optimal solution of NP

Complete problem

Sub optimal solution of NP complete problem

can be find by dynamic algorithm

Only traditional algorithm comes under static

algorithm

 Meta-heuristic algorithms comes under

dynamic algorithm

Static algorithms take more time to solve

computational problem.

Dynamic algorithm solves the computational

problem in less time.

It is difficult to find optimal result of multi-

objective problem by static algorithms.

We can find the optimal results of multi-

objective problem using dynamic algorithms.

Static algorithm work well when workload

does not change frequently.

Dynamic algorithms work well when

workload vary frequently

These algorithms do not monitor the node

continuously

Dynamic algorithm monitor the node

continuously either event basis or time

interval

Static algorithms do not balance the workload

properly at the running virtual machines

(node).

Dynamic algorithms balance the workload in

efficient way at the nodes.

2.3.3 Online and offline (Batch) mode scheduling

In on-line mode, a customer request is mapped with the running virtual machines when

scheduler gets the request from customer side and each task is scheduled only once, the

scheduling result remains unchanged. Some example of online modes scheduling algorithm are

20

opportunistic load balancing (OLB), minimum execution time (MET), minimum completion

time (MCT) etc.

Offline scheduling is called batch mode scheduling in which upcoming application request is

allocated to resources only at some predefined moments. It is used to calculate the processing

time of larger number of tasks. Some example of batch modes scheduling algorithm are max-

min, min-min etc.

2.3.4 Preemptive and Non-preemptive scheduling

 In preemptive scheduling algorithm tasks can be interrupted to the current execution and task

can be migrated to another resources.

 In non-preemptive scheduling algorithm, when a task is allocated to cloud resource, it will not

be free until task cannot be finished i.e. task is execute completely at the resource without

interrupted. One task is executed at one resource in cloud environment i.e. interrupted is not

allow in cloud environment during the execution of tasks.

2.4 Classification of scheduling scheme in cloud computing

The scheduling scheme is classified into three categories: Heuristic, meta-heuristic and hybrid

scheme. The detailed classifications are presented as shown in Fig. 2.4. The objective of this

study is to build the base of the scheduling algorithm used in cloud computing to carry out

research in this area [7].

2.4.1 Heuristic scheduling algorithm

Heuristic algorithms are problem dependent and give good performance for a specific domain

of problems but low performance for other domains. Normally, Heuristic algorithms give exact

solution for specific domain of problem in finite amount of time but cannot solve hard

optimization problems. There are lots of heuristic algorithms used in cloud environment like

HEFT [8], min-min [9], max-min [10], round robin [11], dynamic round robin [12], first come

first serve [13], shortest job first [14], bin-packing [15], deadline based scheduling algorithm

[16], agent based scheduling algorithm [17], best fit[18] etc. These algorithms schedule the

tasks at the virtual machine using different scheduling approach and optimize the parameters.

21

2.4.2 Meta-heuristic scheduling algorithm

Metaheuristic algorithms have gained huge popularity in the last twenty years due to its

efficiency and effectiveness to solve large and complex problems. There are some properties of

meta-heuristics algorithms like

(i) These algorithms are not problem-specific.

(ii) Meta-heuristic algorithm efficiently explores the search space to find (near) optimal

solutions or sub-optimal solution of NP Complete problems.

(iii) Meta-heuristic algorithms are approximate and usually non-deterministic.

Figure 2.4 Classification of scheduling scheme in cloud computing

22

Metaheuristic algorithms are problem independent and applicable to solve various domains of

problems with acceptable performance. Meta-heuristic methods are one of the common

strategies for solving NP-hard optimization problems.

Meta-heuristic =Heuristic + Randomization

There are various meta-heuristic algorithm exist in cloud environment to find the approximate

(suboptimal) solution of NP-Complete problem in short period of time. Scheduling of task is a

NP-Complete problem due to large solution space and takes the long time to find the optimal

solution.

The varied choice of meta-heuristic algorithms like particle swarm optimization (PSO)[19-23] ,

ant colony optimization (ACO) [24-25], artificial honey bee (ABC) [26] and genetic algorithm

(GA)[27] etc. are shown in Fig. 2.4. The correct choice of optimization algorithm may be

significantly useful in determining the precise solutions for a particular problem. We used

particle swarm optimization in our work because convergence rate and complexity of PSO

algorithm is better than the others meta-heuristic algorithms.

2.4.2.1 Particle Swarm Optimization

PSO is population based stochastic optimization algorithm which was proposed by Eberhart

and Kennedy [19] in 1995 from swarm intelligence. PSO has been applied in many research

and scientific application (model classification, function optimization, machine study, neural

network training etc.) due to distinguishing characteristics [20-21] like as (a) Consist of limited

number of parameters, there is no need to calculate the overlapping and mutation (b) simple

and easy enumeration, (c) it is attractive because there are few parameters to adjust, (d) being

free from derivation, (e) sensitivity move towards the fitness function and parameters, (f) less

dependency at initial parameter, (g) relatively faster convergence and cheaper way rather than

other meta-heuristic algorithm like GA, ABC, ACO etc. (h) high precision solutions. Particle

swarm optimization (PSO) is a nature inspired optimization technique, modeled after the

societal behavior of flocks of birds (or school of fish) i.e. how they discover and use the multi-

dimensional search space in search of food as well as shelter [22].

PSO comprised of certain quantity of particles say NP, entitled as swarm. Every particle gives a

prospective solution. A Particle Pi, 1 ≤ i ≤ NP has positions 𝑋௜,ௗ with velocity 𝑉௜,ௗ, 1 ≤ d ≤ D in

the dth dimension of the space search. The value of D is identical for the entire particles. The

fitness function is applied to estimate every particle for validating the worth of solutions. The

23

objective of PSO is to determine the position of particle those results best estimation of the

fitness function. During the initialization procedure of PSO, every particle is allotted a random

position as well as velocity to travel in the search space. In each iteration, every particle

discovers its own best, i.e., personal best (𝑃𝑏𝑒𝑠𝑡௜) and the global best (Gbest). 𝑃𝑏𝑒𝑠𝑡௜ represent

the personal best position of particle has visited and Gbest represent the global best position of

the particle and its neighbors have visited since the starting of the iteration. To attain the best

position globally, it makes use of its personal as well as global best for updating of the velocity

𝑉௜,ௗ and position 𝑋௜,ௗwith help of the following equations:

   
,1 1 2 2, ,, ,(1) ()

i dPbest i d Gbest ii d i d dV t V t c r X X c r X X          (1)

     , , ,1 1i d i d i dX t X t V t    (2)

Where value of w is between 0 to 1 denotes inertia weight, c1, c2, 0 ≤ c1, c2 ≤ 2.05 denotes

acceleration coefficients, r1, r2 are random number between 0 to 1. The updating procedure is

reiterated until and unless it’s reached to an adequate value of Gbest. After obtaining the newly

updated position, the particle estimates the fitness function as well as updates 𝑃𝑏𝑒𝑠𝑡௜ and

Gbest for the minimization problem as follows:

Figure 2.5 Flying of a particle in the search space

24

, (() ()

,
i i i

i
i

P if fitness P fitness Pbest
Pbest

Pbest Otherwise






 (3)

, (() ()

,
i i

i

P if fitness P fitness Gbest
Gbest

Gbest Otherwise






 (4)

Fig.2.5 clarifies how a particle travels around the search space to attain a best solution globally.

In the beginning a particle Pi, takes up the position 𝑋௜,ௗ(t) with velocity 𝑉௜,ௗ(t) at a point of time

and traveling in some direction. Afterward the particle adjusts the direction with the swarm’s

influence and takes up a new position , ()i d t kX  with velocity , ()i d t kV  and ultimately attains

the global best position , ()i d sX , where s > t + k and the variable s, t, and k are characterized on

a specific time. The flow chart of a PSO algorithm is shown in Fig.2.6.

PSO-based scheduling algorithm is further classifies as standard PSO [28], modified PSO [29],

binary PSO [30] etc. which have been applied to schedule the upcoming tasks or workflow at

virtual machines (cloud resources).

Figure 2.6 Flow chart of PSO algorithm [23]

25

2.4.3 Hybrid scheduling algorithm

 Hybrid scheduling algorithms are combination of meta-heuristic algorithm with heuristic

algorithm to solve the problem of task scheduling in cloud environment. Yassa et al. combine

Ant colony meta-heuristic algorithm with max-min heuristic algorithm and optimize the total

processing time and cost parameters. It helps to improve the energy consumption using hybrid

algorithm (PSO with HEFT) in this paper [31]. Delavar and Aryan proposed an algorithm that

optimizes the QoS parameters like makespan time, load balancing at virtual machines as well

as host and speed-up ratio. It combines the Genetic Algorithm with the Best Fit and Round

Robin algorithms [32]. Fig. 2.7 represent the percentage of meta-heuristic algorithm used to

solve the problem of scheduling in the field of cloud computing.

2.4.4 Benefit of Resource Scheduling

Advantages of resource scheduling in the field of cloud computing are given below:

 Effective resource scheduling reduces (optimizes) the execution time as well as

makespan time of tasks simultaneously.

.

Figure 2.7 Percentage of meta-heuristic algorithm used in scheduling problem [7]

26

 There is always conflict between execution time and execution cost but effective

resource scheduling algorithm can optimize both the parameters simultaneously.

 Efficient resource utilization under different requirements of priority and avoid the over

provisioning and under provisioning types of problem in cloud computing.

 Increases the robustness and decrease the failure rate of cloud resources by efficient

scheduling techniques.

 Power consumption is a serious issue in the field of cloud computing that is reduces

with the help of efficient resource scheduling without the violation of SLA.

 Deadline violation rate is improved by better resource scheduling techniques after

provisioning of resources in the field of cloud computing.

 Efficient Resource scheduling distributes the workload among the virtual machines in

such a manner so that no virtual machine is in overloaded or under loaded condition i.e.

reduces the chances of overloaded and underloaded problem.

2.5 Resource Allocation

Resource allocation is a challenging problem for the service provider due to resource

heterogeneity, heterogeneous application (CPU intensive, memory intensive) locality

limitations and on demand requests in cloud environment. Cloud users submit the request for

service (resources) from anywhere and anytime with the help of graphical user interface or web

interface. There are lots of data center available to process the request in cloud environment

but request is directed to nearest data center due to low latency.

If request is not directed to nearest data centers then there is possibility of high latency due to

which some of the quality of service (QoS) parameter affected, like deadline, response time,

elasticity etc. SLA violation is increased after affecting the QoS parameters. User service

request is received by job request handler or gatekeeper at the data center. Job request handler

performs the Turing test to verify that it is coming from legitimate user or attacker. If request is

coming from attacker then block the user based upon the source IP address, port address etc. If

request is coming from legitimate user then it is passed to controller node that contains the

information about all the resources. Cloud service provider contains all the resources in

resource pool and performs the resource provisioning.

27

Figure 2.8 Process of efficient resource allocation in cloud computing

Controller node check the availability of cloud resources, if resources are available then select

the resources based upon the QoS parameters, like deadline, response time etc otherwise wait

for availability of resources. The aim of cloud users is to execute their application within

budget and minimum time while cloud service provider tries to utilize the resources efficiently.

28

There is always a trade-off between execution time and cost due to heterogeneous nature of

cloud resources as well as upcoming user’s application. To make a balance between execution

time and cost, a trade-off solution is required. Fig. 2.8 represents the process of efficient

resource allocation in cloud environment to minimize the execution cost as well as time.

2.5.1 Classification of resource allocation

Resource allocation technique is divided into two group’s namely strategic based and

parametric based resources allocation. These groups are further classified into different

subgroup in Fig. 2.9. The aim of this classification is to provide the basic concept and

techniques of resource allocation that is helpful for future research in the field of cloud

computing. Strategic based resource allocation is divided into three subcategory namely

prediction based resource allocation, artificial intelligence based resource allocation and

dynamic resource allocation in cloud environment. Prediction based resource allocation

approach is necessary to predicts the future demands of upcoming request on the basis of past

history in cloud computing. Prediction based algorithm is used to assigned the virtual machines

for the future before they are needed [33]. This is an effective and necessary approach for

efficient resource allocation in infrastructure as a service cloud computing [34].

Artificial intelligence is used in cloud environment to reduce the failure rate as well as chances

of error occurrence and focus the creation of intelligent methodology that work for resource

allocation like human. It also provides better precision and greater accuracy for resource

allocation in IaaS [35-38]. To handle the fluctuating demand (request) of cloud user, we need

dynamic resource allocation technique in cloud computing. This technique is used to allocate

the resource efficiently and fulfill the unstable demands of users’ [39]. Dynamic allocation

technique also provides guaranteed quality of services for avoiding the service level agreement

(SLA) violence [40].

Parametric based allocation technique is divided into six subgroup namely utilization aware

resource allocation, execution cost based resource allocation, efficiency based resource

allocation, load balancing based resource allocation, power consumption based resource

allocation and QoS parameters based resource allocation in cloud computing [1]. The objective

of service provider is to allocate the resource in such a manner so that utilization of cloud

resource should be maximum and execution time should be minimum [41-42]. Cloud service

providers provides the services to fulfill the user’s demand, In return, they want the maximum

29

profit and revenue with extreme resource utilization, while cloud users ‘want to pay minimum

amount for high quality services [43].

Figure 2.9 Taxonomy of resource allocation in cloud computing

Therefore, efficient resource allocation algorithms play an important role in cloud environment

for cloud service provider as well as users. Workload is important parameter in load balancing

because status of the resources (overloaded or underloaded) is monitor on the basis of available

workload at particular resource. If any resource is in overloaded state then transfer the

workload from overloaded resource to underloaded resource [44].

Efficiency aware resource allocation algorithms directly affects the performance, it optimize

the different parameters like bandwidth, response time, execution time etc. for allocation the

resources efficient way [45]. The rapid growths in demand of computational power tends to

massive growth in cloud data centers and require large amount of energy consumption in cloud

data centers which becomes a serious threat to the environment. To reduce the energy

consumption in cloud computing is a challenging problem due to incompatibility between

workstation (physical machine) and unpredictable users demand. Cloud data centers should

30

manage in such a manner so that they generate less heat, due to which energy consumption and

cost can reduce [46]. QoS based scheduling is a key issue in the field of cloud computing in

which resources is distributed as per user’s demand to optimize the QoS parameters like

availability, fault tolerance, recovery time, reliability, throughput and SLA for the both cloud

providers and users [47].

2.6 Simulation Tool used in cloud computing

Experimenting new technique in real cloud environment is not possible practically because

some experiments compromise the end user quality of service. There are some prominent

simulations tools are available in cloud computing to test and analyze the new proposed

scheduling techniques in different context. The most popular simulation tool for resource

provisioning and scheduling is cloudsim toolkit to calculate the QoS parameters like execution

time, makespan time, execution cost, throughput, energy consumption etc. by extending

existing classes according to the requirements of algorithm.

2.6.1 Cloudsim

Cloudsim is an extensible simulation toolkit that is used for simulation and experimentation of

infrastructures and provides the application environments of cloud computing. Cloudsim

contain the service broker that is used for provisioning and scheduling of cloud resources. It

supports the simulation of the network connections between the simulated hosts and

virtualization engine aids in the management of multiple, independent, virtualized services on a

data center host. Cloudsim contains large number of datacenters (infinite cloud resources) and

many number of host can be created in one datacenter, depends upon the configuration and

processing capacity of datacenter. Virtual machine is a processing entity in cloud environment

that is controlled by hypervisor such as KVM, XEN etc. each host contains the number of

virtual machines depending upon the configuration of host (processing speed, number of cpu,

memory etc.). Therefore most of the researches are useing cloudsim simulator (Fig. 2.10) to

implement the new algorithm for resource provisioning and scheduling.

2.6.2 DCSim

Data Centre Simulator (DCSim) is used to provides the service into multiple tenants using data

center based resource provisioning and scheduling algorithms in virtualization environment.

31

2.6.3 Cloud Analyst

Cloud analyst extends the functionalities of cloudsim to test and analyze the behavior of large

scaled Internet application and repeat the simulation for performing the variations in the

required parameters.

2.6.4 EMUSIM

To test the performance and service behavior of new proposed algorithm, this tool (Automated

Emulation Framework based) is used emulation in cloud computing.

Figure 2.10 Tools used in cloud computing for scheduling [2]

2.6.5 SPECI

Simulation Program for Elastic Cloud Infrastructures (SPECI) is collection of two packages:

experiment execution of component and data center layout and topology is used to evaluate the

performance of large datacenters under design and size policy.

2.6.6 GroundSim

32

Infrastructure as a service based GroundSim is used to detect the events for scientific

applications based upon simulation thread. Real environment can be realized by the integration

of GroudSim into the ASKALON.

2.6.7 GreenCloud

 GreenCloud is an extension of cloudsim simulator and used to evaluate the performance of

energy efficient scheduling algorithms by calculating the parameters like energy consumption

of communication links, computing servers and network switches.

2.6.8 NetworkCloudSim

It is an extension of cloudsim toolkit to evaluate the performance of high performance

computing applications and complex workflows in real cloud environment.

2.7 Summary

In this chapter, fundamentals concepts and advantages of existing resource provisioning

techniques is discussed briefly in the field of cloud computing. The categorization of

scheduling algorithm is also discussed in terms of static and dynamic, offline and online mode,

preemptive and non-preemptive scheduling algorithm. Classification of scheduling algorithm

(heuristic, meta-heuristic and hybrid) has been described. Characteristics and basic concept of

particle swarm optimization algorithm is discussed. Further taxonomy of resource allocation

techniques based upon different parameters is also described in this chapter. Simulation tools

that are used for implementing new algorithm in the field cloud computing is also discussed

briefly.

2.8 References:

[1] S.H.H. Madni, M.S.A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Recent advancements

in resource allocation techniques for cloud computing environment: a systematic review,”

journal of Cluster Computing, vol. 20, no. 3, pp. 2489-2533, Dec. 2016.

[2] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing issues and

challenges,” Journal of Grid Computing, vol. 14, no. 2, pp. 217-264, Feb. 2016.

[3] B. Javadi, J. Abawajy and R. O. Sinnott, "Hybrid cloud resource provisioning policy in the

presence of resource failures," in 4th International Conference on Cloud Computing Technology

and Science (CloudCom), pp. 10-17, 2012.

33

[4] PK Sur, RK Das and N Mukherjee, “Heuristic-based resource reservation strategies for

public cloud,” IEEE Transactions on Cloud Computing, vol. 4, no. 4, pp. 392-401, Nov. 2014.

[5] S. Singh, I. Chana, “Cloud resource provisioning: survey, status and future research

directions,” Knowledge and Information System, vol. 49, no. 3, pp. 1005–1069, Feb. 2016.

http://dx.doi.org/10.1007/ s10115-016-0922-3.

[6] S. Singh, I. Chana, “Resource provisioning and scheduling in clouds: QoS perspective,”

Journal of Supercomputing, vol. 72, no. 3, pp. 926–960, Jan. 2016.

http://dx.doi.org/10.1007/s11227- 016-1626-x.

[7] M. Masdari, S. ValiKardan, Z. Shahi, S. I, Azar, “Towards workflow scheduling in cloud

computing: a comprehensive analysis,” Journal of Network and Computer Application, vol. 66,

pp. 64–82, May 2016.

[8] N. Chopra, S. Singh, “HEFT based workflow scheduling algorithm for cost optimization

within deadline in hybrid clouds,” in 4th international conference on computing,

communications and networking technologies (ICCCNT), India, Jan. 2014.

[9] H. Chen, F. Wang, N. Helian and G. Akanmu ,“User Priority Guided Min-Min scheduling

algorithm for cloud computing,” in national conference on Parallel Computing Technologies

(PARCOMPTECH), Bangalore, India, Oct. 2013.

[10] Y. Mao, X. Chen, and X. Li, “Max–min task scheduling algorithm for load balance in

cloud computing,” in Proceedings of International Conference on Computer Science and

Information Technology, vol. 255, pp. 457–465, Springer, New Delhi, India, 2014.

[11] S. Subramanian, G. N. Krishna, M. K. Kumar, P. Sreesh, and G. Karpagam, “An adaptive

algorithm for dynamic priority based virtual machine scheduling in cloud,” International

Journal of Computer Science Issues , vol. 9, no. 6, pp. 397-402, 2012.

[12] C.C. Lin, P. Liu, and J. J. Wu, “Energy-aware virtual machine dynamic provision and

scheduling for cloud computing,” in International Conference on Cloud Computing, pp. 736–

737, DC, USA, July 2011.

[13] W. Li , H. Shi, “Dynamic load balancing algorithm based on FCFS,” in 4th international

conference on Innovative computing, information and control (ICICIC), Kaohsiung, Taiwan,

Dec. 2009.

[14] R. K. Mondal, E. Nandi and D. Sarddar, “Load balancing scheduling with shortest load

first,” International Journal of Grid Distribution Computing, vol. 8, no. 4, pp. 171-178, Oct.

2015.

34

[15] M. Sheikhalishahi, R. M. Wallace, L. Grandinetti, J. L. V. Poletti and F. Guerriero, “A

multi-dimensional job scheduling,” Future Generation Computer System, vol. 54, pp. 123–131,

2016.

[16] R. Singh, S. Singh, “Score based deadline constrained workflow scheduling algorithm for

Cloud systems,” International Journal on Cloud Computing: Services and Architecture, vol. 3,

no. 6, pp. 31-41, Dec. 2013.

[17] J. O. G. Garcia, and A. R. Nafarrate, “Collaborative agents for distributed load

management in cloud data centers using live migration of virtual machines,” IEEE transactions

on services computing, vol. 8, no. 6, pp. 916–929, Dec. 2015.

[18] K. C. Gouda, T. V. Radhika and M. Akshatha, "Priority based resource allocation model

for cloud computing", International Journal of Science, Engineering and Technology Research

(IJSETR), vol. 2, no. 1, pp. 215-219, Jan. 2013.

[19] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in International Conference

on Neural Networks, pp. 1942–1948, Perth Australia, Dec. 1995.

[20] Q. Bai, “Analysis of particle swarm optimization algorithm,” Computer and Information

Science, vol. 3, no. 1, pp. 180–184, Feb. 2010.

[21] N. Singh, R. Arya and R.K. Agarwal, “A novel approach to combine features for salient

object detection using constrained particle swarm optimization,” Pattern Recognition, vol. 47,

no. 4, pp. 1731–1739, 2014 .

[22] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in sensor

network: A brief survey,” IEEE Transaction on systems, man, and cybernetics—part c:

applications and reviews, vol. 41, no. 2, pp.262-267, Mar. 2011.

[23] P. Kulia and P. K. Jana, “Energy efficient clustering and routing Algorithms for wireless

sensor network: particle swarm optimization approach,” Engineering Applications of Artificial

Intelligence, vol. 33, pp. 127-140, 2014.

[24] E.Pacini, C.Mateos and C.G.Garino, “Balancing throughput and response time in online

scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)”, Advances in

Engineering Software, vol. 84, pp. 31-47, June 2015.

[25] X LU, Z. Gu, “A load-adapative cloud resource scheduling model based on ant colony

algorithm,” in International conference on Cloud Computing and Intelligence Systems (CCIS),

pp. 296–300, China, Sep. 2011. http://dx.doi.org/10.1109/CCIS. 2011.6045078.

[26] D. Babu and P. Venkata, “Honey bee behavior inspired load balancing of tasks in cloud

35

computing environments,” Applied Soft Computing, vol.13, no. 5, pp. 2292–2303, May 2013.

[27] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mondal and S. Dam, "A genetic algorithm (GA)

based load balancing strategy for cloud computing," Procedia Technology , vol. 10, pp. 340-

347, 2013.

[28] L. Guo, S. Zhao, S. Shen and C. Jiang, “Task scheduling optimization in cloud computing

based on heuristic algorithm,” Journal of Network, vol. 7, no. 3, pp. 547–553, March 2012.

[29] Z. Tarek, M. Zakria, F.A. Omara, “Pso optimization algorithm for task scheduling on the

cloud computing environment,” International Journal of Computers and Technology, vol.13,

2014.

[30] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in:

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume

5, pp. 4104-4108, 1997.

[31] S. Yassa, R. Chelouah, H. Kadima and B. Granado, “Multi-objective approach for energy-

aware workflow scheduling in cloud computing environments, The Scientific World Journal,

Sep. 2013. http://dx.doi.org/ 10.1155/2013/350934.

[32] A. G. Delavar and Y. Aryan, “HSGA: a hybrid heuristic algorithm for workflow

scheduling in cloud systems,” Cluster Computing, vol. 17, no. 1, pp.129–37, March 2014.

[33] S. Islam, J. Keung, K. Lee and Liu, “Empirical prediction models for adaptive resource

provisioning in the cloud,” Future Generation Computer System, vol. 28, no. 1, pp. 155–162,

2012.

[34] R. Patel, D. Dahiya, “Aggregation of cloud providers: a review of opportunities and

challenges,” in International Conference on Computing, Communication & Automation

(ICCCA), pp. 620–626, Noida, India, 2015.

[35] S. K. Panda and P.K. Jana, “An efficient resource allocation algorithm for IaaS cloud,” in

Distributed Computing and Internet Technology, vol. 8956, pp. 351–355, New York , 2015.

[36] J. Kumar and A. K. Singh, “Workload prediction in cloud using artificial neural network

and adaptive differential evolution,” Future Generation Computer system, vol. 81, pp. 41-52,

April 2018.

[37] J. Kumar, R. Goomer and A.K. Singh, “Long Short Term Memory Recurrent Neural

Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters,”

in Procedia Computer Science, vol. 125, pp. 676-682, 2018.

36

[38] S. Mehfuz, S. Urooj, S. Sinha, “Wireless Body Area Networks: A Review with Intelligent

Sensor Network-Based Emerging Technology,” in Advances in Intelligent Systems and

Computing, vol. 339, pp. 813-821, New Delhi, 2015.

[39] R. Shelke and R. Rajani,” Dynamic resource allocation in cloud computing,” International

Journal of Engineering Research & Technology, vol. 2, no. 10, 2013.

[40] S. Jayanthi, “Literature review: dynamic resource allocation mechanism in cloud

computing environment” in International Conference on Electronics, Communication and

Computational Engineering (ICECCE), pp. 279–281, India, 2014.

[41] H. Wang, F. Wang, J. Liu, D. Wang and J. Groen, “Enabling customer-provided resources

for cloud computing: potentials, challenges, and implementation,” IEEE Transaction Parallel

and Distributed System, vol. 26, no. 7, pp. 1874–1886 , 2015.

[42] M.Kumar and S. C. Sharma, "Priority Aware Longest Job First (PA-LJF) algorithm for

utilization of the resource in cloud environment,” in International conference on Computing for

Sustainable Global Development (INDIACom), pp. 415-420, New Delhi, India, 2016.

[43] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of the-art and research

challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[44] M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for balancing the

workload among virtual machine in cloud computing,” in 7th International Conference on

Advances in Computing & Communications (ICACC), vol. 115, pp.322-329, Cochin, India,

2017.

[45] A. J. Younge, G. V. Laszewski, L. Wang, S. L. Alarcon and W. Carithers, “Efficient

resource management for cloud computing environments,” in international conference on green

computing, pp. 357–364. USA, 2010.

[46] R. Buyya, A. Beloglazov and J. Abawajy, “Energy-efficient management of data center

resources for cloud computing: a vision, architectural elements, and open challenges,” in

International Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA), Las Vegas, USA, 2010.

 [47] A. Abdelmaboud, D.N.A Jawawi, I. Ghani, A. Elsafi and B. Kitchenham,” Quality of

service approaches in cloud computing: asystematic mapping study,” Journal of System and

Software, vol. 101, pp. 159–179, 2015.

37

CHAPTER-3

LOAD BALANCING WITH ELASTICITY USING HEURISTIC TECHNIQUE

3.1Concept of Load Balancing and Elasticity

Cloud computing provides the services either in the form of software application or hardware

infrastructure on the basis of pay per use over the internet. User can send the request at any

time for the resource to cloud service provider and cloud resource broker (cloud service

provider) selects the best resource within user-defined deadline and budget. Cloud resource

broker provides the on-demand service to the user. The number of users and applications are

increasing gradually in cloud environment and in turn there is increase in the workload and

traffic at the web applications which are deployed in the virtual machine (cloud resource).

Therefore cloud resource broker needs an efficient algorithm that distributes the task fairly in

all the running virtual machines and reduces the task rejection ratio so that the entire user task

can be executed.

The main objective of the load balancing is to utilize the cloud resource in a manner that

improves the average resource utilization ratio, response time, task acceptance ratio and

scalability of the web application. Efficient load balancing gives the minimum makespan time

of tasks and balance the workload among the virtual machines. It also prevents bottleneck of

the system which may occur due to load imbalance. Load balancing is one of the challenging

research areas in the field of cloud computing. It is difficult to predict and calculate all possible

task-resource mapping in cloud environment. So we need an efficient scheduling algorithm

which can distribute the task in effective manner, so that less number of virtual machines faces

overload or under-load condition. Further need to monitor the virtual machine continuously and

perform the load balancing operation. Cloud resource broker (CRB) monitor the virtual

machine continuously in cloud environment. If any virtual machine is in overload or under-load

condition after the scheduling the tasks then cloud resource broker start the load balancing

operation at virtual machines and migrate the task from overloaded to under loaded virtual

machines.

The ability of auto scaling on upcoming demands in cloud computing is biggest advantage for

services provider as well as for user [1]. Auto scaling can reduce the risk, which is associated

with request/load overflow causing server failure. Two types of auto scaling approaches are

38

available in cloud environment i.e. reactive and proactive. In this chapter we are using

prediction based proactive approach that predicts the future demands on the basis of past

history. Scalability can be classified into two type’s horizontal scalability (scale out) and

vertical scalability (scale up). Vertical scalability can be achieved by making changes in the

existing resources such as memory, hard drives, CPU's, etc. Vertical scalability is not generally

used in cloud environment, because common operating systems don’t support these changes

without rebooting on existing resources like memory, CPU's. In adding or releasing of one or

more machine instance or computing node of same type is used horizontal scaling. Adding the

IT resource in horizontally is called scale-out and releasing the IT resource horizontally scale-

in. horizontal scaling is better than vertical scaling in cloud environment, because it is less

expensive and not limited by hardware capacity.

3.2 Contribution

Elastic resource provisioning with quality of service (QoS) parameter (deadline, high

availability, priority etc.) is one of the most challenging problem in the field of cloud

computing. Therefore cloud service provider needs an efficient load balancing algorithm that

reduces the makespan time as well as task rejection ratio within user defined deadline.

Specific contribution of this chapter includes:

 The developed algorithm distributes the task and adds the cloud resource if task

rejection ratio is more than the SLA defined threshold value.

 The developed algorithm monitors the load at each virtual machine and data centre

continuously. If any virtual machine is overloaded condition then transfer the task

from over loaded to under loaded virtual machine using the task migration policy.

 We have developed a scheduling algorithm based on the last optimal k-interval that

balances the workload among all the virtual machine with elastic resource

provisioning and deprovisioning which overcome the drawback of algorithm

proposed by Somasundaram et al [14].

3.3 Related Work and Research Gap

Several static [2, 5-6] and dynamic algorithms [7, 12-19] have been reported for load balancing

in last decade. Existing job scheduling algorithms like conservative backfill, EASY etc. are

39

unable to fill the resource gap efficiently. The work done by [2] focus on improving the backfill

algorithm (IBA), it not only improves the processing time of jobs but also provide the

guarantee of quality of services in cloud environment. Authors improve the IBA using balanced

spiral (BS) method but this algorithm does not provide better processing time when job

requests enter randomly in cloud environment. Dubey et al. [3] proposed an algorithm for

metascheduler to solve the job scheduling problem in cloud computing and removed the

limitation of IBA algorithm. Authors improved the processing time of upcoming jobs and

resource utilization ratio of cloud resources considering priority of job as quality of service

parameter. Sahoo et al. [4] proposed an algorithm based upon the greedy technique that

reduces the makespan time and execution time of the tasks without using task migration or

virtual machine migration approach for load balancing; it does not provide better results in real

environment. First come first serve (FCFS) and shortest job first (SJF) [5-6] are static

algorithms that are suitable for batch system.

Literature review on dynamic based algorithm is reported in Table 3.1. Huankai Chen et al. [7]

proposed a user guided min-min load balancing algorithm that not only minimize the execution

time of the tasks but also remove the drawback of min-min algorithm (load is not properly

balanced at each node). Proposed algorithm is simulated at matlab toolbox to reduce the

average task completion time and increase the average resource utilization ratio. There are

some dynamic algorithms which are using soft computing approach like Honey bee behavior

[8], particle swarm optimization (PSO) [9], ant colony optimization (ACO) [10], differential

evaluation algorithm [11] etc. to solve the problem of load balancing.

S. Chhabra, and A. K. Singh proposed Optimal Physical Host with effective Load Balancing

based algorithm [25] that find the optimal host using the probabilistic model and optimize the

parameters makespan time, energy consumption and throughput in cloud environment.

Bharti and K. K. Pattanaik proposed task requirement preprocessing and scheduling based

mechanism that optimizes the energy consumption a well as network output load parameters

[26]. S. Javanmardi et al., proposed hybrid job scheduling algorithm (genetic algorithm and

fuzzy logic based) for cloud environment that not only reduce the execution but also reduce the

execution cost [27]. Table 3.1 summarizes the research papers related to the present work in

terms of type of dynamic scheduling &load balancing algorithm, tool used to implement the

algorithm, performance metrics migration technique and limitation of the proposed algorithm.

40

 Table 3.1 Literature review on dynamic scheduling, load balancing & elasticity based algorithm

S. No. Year Parameters Technique Tool Limitations

1 2011
[17]

computation time
and cost with
deadline

Proposed a new QoS-based
workflow scheduling algorithm
based on Partial Critical Paths
concept.

Java based
simulator

Algorithm is implemented on Java based
simulator and does not consider elasticity
and deadline QoS parameters.

2 2013

[7]

Makespan time,
Resource utilization
ratio

Apply improved LBIMM
algorithm and reassigned the
tasks based upon load at node.

Matlab Rescheduling of task will increase
complexity and time.

3 2013
[14]

Response time,
throughput

Proposed resource broker that
provide adaptive load balancing
and elastic resource
provisioning and
deprovisioning.

Eucalyptus
cloud

Load balancer unable to maintain the
session in multi-tenant environment when
same user request the multiple VM
instances.

4 2014
[13]

Response time,
Processing time

Proposed a new cloud-
brokering architecture to
improve brokering
performance.

Cloud
Analyst

Experiment is conducted on cloudsim;
author is not ensuring that algorithm has not
been tested in real test bed environment.

5 2014
[15]

Energy
consumption, reduce
VM migration time

Proposed a VM migration
policy on a host that has the
minimum correlation
coefficient.

Cloudsim VM migration is costly and time consuming
rather than task migration. Proposed
algorithm does not consider execution time
and elasticity concept.

6 2015

[3]

Resource utilization,
processing time

Apply IBA algorithm to balance
the load considering priority as
QoS parameter of jobs.

Cloudsim Proposed algorithm does not give the
guarantee of load balancing and does not
consider elasticity concept.

7 2015
[19]

Ratio cost to budget,
ratio makespan time
to deadline

Proposed an algorithm for
efficient management of budget
with deadline constraint.

Cloudsim SPSS algorithm take lots of time for
planning (10 min or more for 100 work
flow) to distribute the work flow to virtual
machine. While proposed dynamic
algorithm have high failure rate.

41

8 2016
[12]

Execution time,
makespan time

Dynamic and automatically
provides the resources by
improving knowledge model

Openstack
and cloudsim

Some important constraint is not considered
like elasticity, scalability, execution cost,
heterogeneous virtual machine

9 2016
[16]

Profit of cloud
service provider,
resource utilization
ratio.

Proposed scheduling algorithm
based on auction mechanism

Cloudsim When number of client is increase , large
auction deadline interval will have a
negative impact on the profit of the cloud
service provider to some extent

10 2016
[18]

Resource utilization
ratio, no. of leased
scheduled, no of
leased rejected

Proposed a new algorithm to
improve the performance of
backfilling algorithm by
Analytic Hierarchy Process.

Open nebula
private cloud

Main limitation of backfilling algorithm is
estimation of program execution must be
known and it works as a static algorithm.

11 2016
[24]

Resource utilization
and total execution
cost

Autonomic resource
provisioning algorithm is
proposed based upon the
concept of MAPE.

Cloudsim It does not consider QoS parameters like
deadline, priority, elasticity etc.

12 2017
[23]

Elasticity Proposed algorithm is based
upon Live Thresholding (LT)
technique for controlling the
elasticity.

OpenNebula It focuses only static threshold based
elasticity and does not considered any load
balancing techniques.

13 2018
[25]

Makespan time,
throughput, energy
consumption

Probabilistic based model is
used to find the optimal host.

Cloudsim Proposed algorithm neither monitor the
virtual machines continuously for balancing
the workload or does not consider other
QoS parameters like elasticity, deadline.

14 Our
Algo
.

Makespan time, task
meet to deadline,
Task rejection ratio,
elasticity, scalability

Developed dynamic scheduling
algorithm that balances the
workload with elastic resource
provisioning and
deprovisioning based on the last
optimal k-interval.

Cloudsim If avgofCount become large at the first
iteration then it creates more virtual
machine than required.

42

3.4 Problem Formulation

For efficient load balancing schedule all the jobs (tasks) to cloud resource (virtual machine) in

such a ways that cloud user can execute their task in minimum time (within the deadline) with

maximum resource utilization i.e., cloud user is excepted to minimum makespan time and cost

while cloud service provider expectation is to utilize the resource maximally. Cloud resource

broker received N number of task request 𝑇ଵ, 𝑇ଶ, 𝑇ଷ …. 𝑇ே , that are independent in nature

and non priority basis. Every task has task length 𝑇𝐿்௜ which is expressed in MI (million

instructions) and deadline of each task is 𝐷்௜ . Every task requires p processing speed, q

number of cpu, r amount of main memory given in Table 3.2 notations and its descriptions

which are used in equations, bandwidth B in MBPS. Cloud resource broker have M number of

resources (virtual machine) 𝑅ଵ, 𝑅ଶ, 𝑅ଷ.. 𝑅ெ, which are heterogeneous in nature in

terms of processing speed, memory, bandwidth etc. Matchmaker try to match each task Ti to

virtual machine 𝑅௝(value of j is 0 to M-1), if a resource 𝑅௝ is match with task Ti then value of

decision variable 𝑉୘୧ୖ୨ is 1 otherwise its value is 0. Cloud resource broker contain the matched

resource list (φ) of tasks available in a schedule (Si) that may contain all the cloud resources M

or less than M.

The aim of objective function is to minimize the makespan time of scheduling algorithm

considering deadline as constraint. Our problem is based on single objective function therefore

Objective function minimize the total execution time of tasks 𝑇ଵ, 𝑇ଶ, 𝑇ଷ …. 𝑇ே submitted

in a particular schedule Sp as shown in Table 3.2

Objective function:

 Min 𝑇𝐸𝑇்௜ = 𝐸𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮ (1)

 𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮=𝑇𝐿்௜/p*q (2)

 𝑇𝑇୘୧ୖ୨€Φ୘୧ୗ୮ୀ 𝑇𝐿்௜ /𝐵ோ௝ (3)

 𝐸𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮=𝐸𝑇்௜ோ௝+𝑇𝑇்௜ோ௝ (4)

 Where |ΦTiSp|≤ M

Excepted execution time is the sum of execution time and task transfer time. Number of match

resource for task 𝑇௜ may be less than or equal to total number of available resource in cloud

environment. When user submits the task with deadline, its task execution time is depend that

how much workload is available on that resource.

43

Table 3.2 Notations and their description

Notations Description

𝑇ଵ, 𝑇ଶ , 𝑇ଷ. 𝑇௡ Task request 1 to N submitted for schedule.

𝑅ଵ, 𝑅ଶ,𝑅ଷ…...𝑅௡ Cloud computing resource 1 to M are available for execution the task

Sp Represent the pth schedule of workload (value of p is 1 to k)

Φ୘୧ୗ୮ Represents the number of matched resources for task 𝑇௜ for schedule Sp

𝑇𝑇୘୧ୖ୨€Φ୘୧ୗ୮ Transfer time for task 𝑇௜ on resource 𝑅௝ in the matched cloud resource Φ୘୧ୗ୮

𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮ Execution time of task 𝑇௜ on matched resource 𝑅௝

𝐸𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮ Excepted execution time of resource 𝑅௝ to execute the task 𝑇௜

TET(Sp) Total execution time of task in schedule Sp

𝑇𝐿்௜ Length of task 𝑇௜ in Millions of instructions

p Processing speed of resource 𝑅௝ in MIPS

𝐵ோ௝ Bandwidth of resource 𝑅௝

𝑉୘୧ୖ୨ Decision variable is used to represent weather resource 𝑅௝ is in

 matched resource list for the task 𝑇௜

𝐷்௜ Deadline of task 𝑇௜

𝐹𝑇்௜ Finishing time of task 𝑇௜

𝑊𝑇்௜ Waiting time of task 𝑇௜

𝑇𝑀ௌ௣ Number of task match with resource in schedule Sp

q Number of cpu's
MIPS Millions instruction per second

𝑊ோ௝ Workload available on resource 𝑅௝

𝑀𝐸𝑇ோ௝ Maximum execution time of resource 𝑅௝

MST makespan time

44

The time required to complete the task on available cloud resource is expressed in equation 5

and task will be assigned to that resource that satisfied the condition shown in equation 6.

 𝑅𝑇்௜ோ௝=𝐷்௜ - 𝑊ோ௝ (5)

 𝐸𝑇்௜ோ௝ ≤ 𝑅𝑇்௜ோ௝ (6)

 Here 𝑊ோ௝ represent the available workload on resource before assigned the Task 𝑇௜. Workload

on virtual machine (cloud resource) at a particular time can be calculated by equation 7 & 8 [8].

 𝐿௏,ெ௜,் = K*𝑇𝐿்௜(௧) / 𝑆(௏,ெ௜,௧) (7)

Where K= {1,2,3.................. N}

 𝑆(௏,ெ௜,௧) is defined the service rate of virtual machine at time t, that can be expressed in the

form of processing power (p) and number of cpu (q) at a time t.

Equation can be defined as 𝑆(௏,ெ௜,௧)=p*𝑥(௧) (8)

Where x ={1,2,3........q}

Load on a virtual machine at a time t can be calculated as the number of task on particular

virtual machine is divided by service rate of that virtual machine VM. Total load on all

available virtual machine can be calculated as

 L=∑ 𝐿ெ
௝ୀଵ VMj (9)

After assigning the tasks to virtual machine workload on virtual machine will be increase. We

can calculate the total workload by equation 10

 𝑊ோ௝=𝑊ோ௝+𝐸𝑇்௜ோ௝ (10)

Cloud data centre contain M number of resource and each resource contain one or more than

one task therefore we have to find the task completion time of all resource after that find the

makespan time of resource. Makespan time is the largest time of virtual machine that is

required to execute all the tasks/job.

 𝑀𝐸𝑇ோ௝ = Σ𝐸𝐸𝑇்௜ோ௝ (11)

 𝑇௜ €φ
ோ௝

 Makespan time (MST)=max(𝑀𝐸𝑇ோ௝) (12)

Subject to:

 𝐹𝑇்௜>𝑎௜+𝐸𝑇்௜ோ௝ Ɐi €N (13)

 𝐹𝑇்௜ is the finishing time of task 𝑇௜ at virtual machine 𝑉𝑀௝.

45

𝑎௜ is task arrival time, if it is known and certain then problem is static otherwise problem is

dynamic. 𝐸𝑇்௜ோ௝is the execution time of task 𝑇௜ at virtual machine 𝑉𝑀௝. Equation 13 indicates

that a task can’t be started before its time.

 𝐹𝑇௜,௝≥𝐹𝑇௜ିଵ,௝+𝐸𝑇்௜ோ௝ (14)

 Equation 14 represent that a task start to execute at a virtual machine only when previous task

has been completed its execution at that particular virtual machine.

 Find out the capacity of virtual machine (resource) to know that how many number of virtual

machine are overloaded condition and under loaded condition. If any virtual machine is

overloaded then transfer the task to under loaded virtual machine, if large number of virtual

machine are in under loaded condition then check the condition and reduce the virtual machine.

 Capacity of virtual machine 𝐶ோ௝ =p * q (15)

After that find out the average number of task unable to meet deadline in all interval because on

the basis of those task number of virtual machine can be increase or decrease if more number

of task are unable to meet deadline then create new virtual machine. Firstly we calculate

number of task unable to meet deadline in each interval with the help of count variable and add

the value of count after every interval (iteration) with the help of arraylist. Initially declare the

variable avgofCount and sumofCount and finally find the average number of task unable to

meet deadline after each interval rather than completing the entire interval.

 listAvg.add(count);

 declare avgofCount = 1, sumofCount= 0;

 for (Integer index : listAvg)

 {sumofCount = sumofCount + index; }

 avgofCount = sumofCount/listAvg.size(); (16)

3.5. Proposed Architecture

 The proposed architecture of cloud resource broker for dynamic task scheduling and load

balancing with elasticity is represented in Fig. 3.1 which is a modified architecture proposed by

Somasundaram et.al. [14]. the brief description of the proposed architecture is given below.

46

Figure 3.1Proposed cloud resource broker architecture for load balancing with elasticity

3.5.1 Job Request Handler

 Cloud user can access the cloud services (resources) from anywhere and anytime. Cloud

contains huge number of datacenters that are distributed in geographical area. When a user

submits the request for service, request goes to nearest datacenter. User submit the job

J1,J2........Jn through the graphical user interface or web interface with service requirement in

terms of quality of service (QoS), hardware, software etc. cloud user requirement vary

47

dynamically in terms of QoS (throughput, efficiency, user satisfaction, deadline, response time

etc.), hardware (number of processor required, memory required, bandwidth required etc.) and

 software (Mpich-1.2.7, FFTW-3.X etc.). When user submit the job to the cloud, it is accepted

by job request handler (gatekeeper), job request handler check the request at verify node to

know who is sending the request, a legitimate user or an attacker, if request is coming from

legitimate user then it is sent to the controller otherwise it discards the request. Cloud resource

cannot be access directly in real environment but can be accessed through RESTFUL web API

/SOAP, the main challenge is to allocate the resource to end user because user request is

unpredictable and change at run time based on their application.

3.5.2 Controller Node

This is the main component of cloud resource broker. job request handler forward the authentic

request to controller node for further processing, controller node send the all application (job)

request to matchmaker and also handles the incoming and outgoing request from other the

components like job request handler (JRH), cloud resource provisioner (CRP), dynamic task

scheduler and load balancer (DTSLB), cloud load and resource information (CLRI) aggregator.

3.5.3 Matchmaker

 It contains the information about all the virtual machines (which virtual machine is in idle

condition or which one is busy) and user job request. When matchmaker receives the request

from the controller it checks the following quality of service parameter:

 Upcoming request is priority based or non priority based

 Upcoming request has a deadline or not

User required parameter (response time, makespan time, resource utilization etc.)

Matchmaker map the user request to available running virtual machine as per application

requirement and forward the mapping list to task scheduler and load balancer component.

3.5.4 Dynamic Task Scheduler and Load Balancer

Dynamic task scheduler receives the mapping list from the matchmaker and allocates the task

(job) to the virtual machine as per scheduling algorithm. There are lot of task scheduling and

load balancing algorithms present in cloud computing that works on parameters like makespan

time, response time, throughput, resource utilization, cost etc. Task scheduler schedules the

task in such a ways that all tasks are completed in minimum time. Haizea works as resource

scheduler in private cloud OpenNebula. Cloud load balancer monitors all the virtual machine

and compute the load on all the virtual machine. If any virtual machine is in overloaded

48

condition then the task of that virtual machine is migrated to other under loaded virtual

machine. If overloaded virtual machine does not exist then task is migrated to the balance

virtual machine which can execute the task in minimum time. If load at the running virtual

machine is more than the threshold value then it invoke the CRP and create new virtual

machine. If load at the running virtual machine is below the threshold then it invoke the CRP

for destroying the virtual machine.

3.5.5 Cloud Load and Resource Information Aggregator (CLRI)

 CLRI is mainly used for aggregating the resource information like memory, processor,

bandwidth, load etc from CSP's. It continuously monitors the resource and collects the

information about the resource and interacts with Cloud Monitoring and Discovery Service

(CMDS) to retrieve the information about cloud resource. CMDS is used to monitor the virtual

machine (idle or busy state) and discover the resource information. CLRI trigger a query

(request) about the virtual machine, CMDS collect the information from available virtual

machine and reply to CLRI.

3.5.6 Resource and Load Monitor

It is mainly used to monitor the private cloud (such as open Nebula, eucalyptus etc.) resource.

Ganglia work as external information provider about the host and virtual machine in open

Nebula. It collects the information about the resources and passes to the resource and load

monitor component.

3.5.7 Cloud Resource Provisioner

The main objective of CRP is creation and deletion of virtual machine as per application (job)

requirement. It interacts with cloud middleware (OpenNebula use extended version of D-Grid

Resource centre Ruhr as middleware) for provisioning/deprovisioning of the virtual machine.

3.5.8 Virtual Instance Monitor

Monitors the load of each virtual machine continuously and forward it to load balancer that

further passes it to controller node. There are two method of monitoring the resources

 Event based: When task is removed from a virtual machine or assigned to the virtual

machine, after that monitor the status of all virtual machines. We are using event base

approach.

 Time based: continuously monitor the resource after a particular time interval.

49

3.6 Dynamic Load balancing algorithm with Elasticity

Dynamic task scheduling and load balancing algorithm with elasticity is developed and

discussed in this chapter. The developed algorithm not only minimizes the makespan time but

also increase the ratio of task meet to the deadline using elasticity concept. Cloud task

scheduling model is shown in Fig. 3.2. We model our scheduling algorithm and analyze the

performance of makespan time and number of task meet to deadline as per the parameters

given in Table 3.3 to 3.6. To develop this algorithm, we have created N number of task and

length of task is generated randomly (range of task between 20000MI to 400000 MI) and

created M number of heterogeneous virtual machine, each virtual machines have different

processing power in terms of processor speed in MIPS, RAM etc.

Figure 3.2 Cloud task scheduling model

Algorithm 3.1 sorts the task based on deadline. To test the algorithm we have taken two array,

one have task length other have deadline of task; use the sorting algorithm to sort the task. The

task which has minimum deadline value that task will be executed first because our aim is to

execute more number of tasks before deadline expires.

50

Algorithm 3.1 for task sorting based on deadline

1. deadline[i] array represent the deadline of ith task

2. Task [i] array represent the ith task

3. Sort the task based on deadline

4. For i=1 to deadline_array length

5. For j=i+1 to deadline_array length

6. if (deadline[j]<deadline[i])

7. if true then swap the content of deadline[j] with deadline[i]

8. Swap the content (Task length) of Task[j] with Task[i]

Algorithm 3.2 for task scheduling based on deadline
 # EPT[VmSize] and MET[VmSize], min and a=0 are variable
1. Generate M number of virtual machine.
2. We have to schedule N number of Task based on deadline.
3. ∀Ti€{𝑇ଵ, 𝑇ଶ, 𝑇ଷ … … . 𝑇ே}
4. At the starting number of task assigned to resource is null
5. φ

ோ௃
 ← {null}

6. ∀𝑅௝€{𝑅ଵ, 𝑅ଶ, 𝑅ଷ … … … . 𝑅ெ}
7. Find the execution time of task Ti at 𝑅௝
8. 𝐸𝑇୘୧ୖ୨€Φ୘୧ୗ୮= EPT[j]= 𝑇𝐿்௜/p*q
9. End for loop of resource 𝑅௝
10. Assigned the task 𝑇௜ to resource 𝑅௝ for minimum execution time
11. ∀𝑅௝ from 0 to M-1
12. EPT[j]=EPT[j]+MET[j];
13. End of resource 𝑅௝ loop
14. min=EPT[0];
15. ∀𝑅௝ from 0 to M-1
16. if(min>EPT[j])
17. a = j;
18. min=EPT[j]
19. if(deadline[Ti]>min)
20. assigned the task to virtual machine with index a
21. vm = getVmsCreatedList().get(a)
22. MET[a]=EPT[a];
23. End of for loop of resource 𝑅௝ ;
24. End of for loop of tasks 𝑇௜,
25. Load increase at resource 𝑅௝
26. 𝑊ோ௝= 𝑊ோ௝ + 𝐸𝑇்௜ோ௝
28. φ

ோ௝
 =𝜑ோ௝∪{Ti}

51

We proposed an efficient task scheduling algorithm that not only allocates the task to virtual

machine (cloud resource) but also decrease the makespan time of task as shown in algorithm

3.2. Matchmaker and dynamic task scheduler component participate to allocate the task in

effective way to virtual machine (shown in Fig. 3.1). Matchmaker match each task to available

running virtual machine and pass the list of match resource to task scheduler that will allocate

the task based upon scheduling algorithm. At the starting list of task assigned to resource is null

shown in step 5 of algorithm 3.2 i.e. no task is assigned to virtual machine. To assign the task

to virtual machine, we calculate the execution time of task at all the running virtual machine

and current load at all virtual machine, compare it with deadline. If deadline of task is more

than the execution time of task to virtual machine then assign the task to that virtual machine

who can execute this task in minimum time. Load at the virtual machine is increased after

assigning the task. It can be calculated by sum of previous available load and load of current

assigned task.

 This process is continued until all tasks has not finished. When dynamic task scheduler try to

allocate the task to virtual machine, there are some tasks that do not fulfill the condition of

deadline i.e., some tasks have execution time more than their deadline value therefore these

type of tasks are unable to meet their deadline. These types of tasks are discarded in cloud

environment. If large number of task is discarded then cloud service performance will degrade

and user satisfaction level will also decrease. Therefore we proposed an algorithm that balances

the load at all virtual machine and increase the ratio of task to meet with deadline using the

elasticity concept (provisioning and deprovisioning of resource at run time) as shown in

algorithm 3.3. Flow chart of algorithm 3.3 (shown in Fig. 3.3) represents the threshold

condition and virtual machine overloaded or underloaded condition briefly in well specified

way. We calculated the number of task unable to meet deadline in each interval after that find

the average of number of task that are unable to meet deadline in last k interval using the

equation 16 and applied the condition that if more than 25% average number of task are

rejected then increase the new virtual machine by 20%. If average rejected task is more than

10% then increase the virtual machine 10%. If average rejected task is less than or equal

to10% then there is no need to increase the virtual machine at current time because sometimes

instantaneous small peak load (less than 10%) can come at the virtual machine. We start to

increase the virtual machine (up to 5 % or 10 %) which leads to unnecessary overhead because

52

after sometime either I have to reduce the virtual machine or some virtual machine will be in

under loaded condition.

Algorithm 3.3 for Load Balancing decision with scalability

UVM =under loaded VM, BVM =balanced VM, OVM =overloaded VM
 count represent number of task unable to meet deadline
 avgofCount represent avg. number of task unable to meet deadline, NumberofTask=N
1. ∀Ti€{𝑇ଵ, 𝑇ଶ, 𝑇ଷ … … . 𝑇ே}
2. ∀𝑅௝€{𝑅ଵ, 𝑅ଶ, 𝑅ଷ … … … . 𝑅ெ}
 // Allocate the task 𝑇௜ to that resource 𝑅௝ who can execute in minimum time and find
 out the min value as shown in step 7 in algorithm 2
3. if (deadline[Ti]>min) then
4. Assigned the task to virtual machine with index a
5. else
6. count++;
7. find avgofCount after each interval
8. if(avgofCount>N * .25) then
9. increase 𝑅௝ by 20%.
10. else if (avgofCount> N * .1) then
11. increase 𝑅௝ by 10%.
12. else (avgofCount ≤ N * .1)
13. no need to increase the virtual machine at current time
14. end of for loop;
15. end of for loop
16. ∀𝑅௝ ∀𝑇௜, Calculate the load at each 𝑅௝
17. Calculate the capacity(𝐶ோ௝) of each 𝑅௝
18. Find the number of OVM,UVM, and BVM
19. OVM≥.9 * 𝐶ோ௝, UVM< .2* 𝐶ோ௝
20. Sort the virtual machine in OVM decreasing order
21. Sort the virtual machine in UVM in ascending order
22. Assigned the task of OVM to UVM and calculate the task transfer time.
23. Calculate the average number of UVM
24. if(avgUVM>.25*𝑅௝) then
25. reduce 𝑅௝ by 20%.
26. else if (avgUVM> .1*𝑅௝) then
27. reduce 𝑅௝ by 10%
28. else (avgUVM≤ .1*𝑅௝)
29. no need to decrease the virtual machine at current time
30. end of for loop;
31. end of loop

53

Figure 3.3Flow chart to determine the overloaded and underloaded virtual machines

We calculate the parameter avgofCount that is based upon last k interval and increase the

virtual machine based upon the defined threshold value (25 % or 10%) for next upcoming

interval. Threshold value is defined at the time of service level agreement (SLA) based upon

the parameter like upcoming number of request per minutes, workload, number of task unable

to meet deadline etc. SLA is a contract between the service provider and users in which the

Quality of Service (QoS) is defined. We have studied threshold based papers [14, 20-24]

related to our work for cloud environment and set the value of threshold based on the historical

(Past) data. For this we have carried out various experiments with different value of threshold

to find out the optimum results. Finally we have selected the threshold value that gives the

optimum result. We find the overloaded, under loaded and balanced virtual machine after

54

assigning the task to virtual machine. If any virtual machine is overloaded or under loaded

condition then Sort the OVM and UVM in decreasing and increasing order and assign the task.

The algorithm checks the condition of under loaded virtual machine if average of under loaded

virtual machine is greater than the 25% of all available virtual machine then decrease the

virtual machine by 20% for next interval. If it is more than by 10% then decrease the virtual

machine 10 % for next interval.

3.7 Analysis and Comparison of Results

The developed load balancing algorithm minimizes the makespan time and increase the ratio of

task to meet deadline using the cloudsim platform. To test the performance of the algorithm, we

choose cloudsim simulator [28] for experimental purpose (architecture is shown in Fig. 3.4).

Each virtual machine (VM) has their parameter like Id, MIPS, number of CPU etc as shown in

Table 3.3. Further we have generated cloudlet (Task) with their parameter like TaskId, length,

filesize etc as shown in Table 3.4. Cloud resource broker submit bounded task to specific

virtual machine (depends upon the policy) with the help of broker.

bindCloudletToVm(cloudlet.getCloudlet Id(),vm.getId()) method. In this chapter, we have

calculated and analyzed makespan time and task unable to meet deadline with the help of

cloudsim simulator.

3.7.1 Makespan Time Calculations

Let’s consider the example; consider 10 virtual machine of different processing power and

bandwidth of each virtual machine is 1000 MBPS, number of cpu for each virtual machine is

one as shown in Table 3.3.

Figure 3.4 Basic architecture of cloudsim Table 3.3 VM Properties

VM
Id

VM
MIPS

VM
Image
size

Memory No. Of
cpu

Hypervisor

0 500 1000 256 1 Xen
1 520 1000 512 1 Xen
2 540 1000 512 1 Xen
3 560 1000 256 1 Xen
4 580 1000 256 1 Xen
5 600 1000 512 1 Xen
6 620 1000 256 1 Xen
7 640 1000 512 1 Xen
8 660 1000 215 1 Xen
9 680 1000 512 1 Xen

55

Table 3.4 Task Properties

The range of task is 10 to 100 and length of task is varying from 20000MI to 400000 MI as

shown in Table 3.4. The numerical calculation to determine the performance of the algorithm

based upon the selecting the application (tasks) and resources instances and if application is

memory-intensive that needed high-memory VM instances for database operation tasks.

Figure 3.5 Makespan time comparisons between proposed algorithms with FCFS, SJF,
dynamic min-min

Therefore the proposed algorithm selects the length of task in a range (20000MI to 400000MI)

and creates the virtual machine instance such that they can process the task. If the range of task

Task Id Length File Size Output Size No. of cpu required

0 130795 300 300 1

1 224339 300 300 1

2 48212 300 300 1

3 330838 300 300 1

4 269322 300 300 1

5 65245 300 300 1

6 383678 300 300 1

7 263607 300 300 1

8 137286 300 300 1

9 328394 300 300 1

56

is increased or decreased then results (makespan time, number of task unable to meet deadline

and elasticity) are affected i.e. because same virtual machine instance either process the task

early (underloaded condition) or delay (overloaded condition). Simulation have been run for

more than 200 times on different number of task with random length and results are found

using the space shared policy [28] in cloudsim. Results of Table 3.3 and Table 3.4 are

graphically represented in Fig. 3.5, where x-axis represent the number of task and y-axis

represent the makespan time of task in second. The developed scheduling algorithm allocates

the task to all the virtual machines. The comparisons of makespan time with other popular

scheduling algorithms like FCFS, SJF and dynamic min-min algorithm is shown in Fig. 3.5.

Computational results shows that proposed algorithm reduces the makespan time of task

compared to existing algorithm (FCFS, SJF and dynamic min-min algorithm) as shown in Fig.

3.5

3.7.2 Number of Task Meets to Deadline

To calculate the number of task meet to deadline we have created a window of 15 tasks with

random length which is sent continuously to cloud resource broker after every 5 second

interval. Different configuration of 10 virtual is created to process the upcoming task and

deadline of task is created randomly (example shown in Table 3.5). We computed the

performance metric for analyzing the number of task completed on or before the deadline

specified by the user. Our proposed task scheduling algorithm considers the deadline as an

important factor and find out the best resource for the task so that task can be executed before

the deadline expired. Simulation has been run at different task with corresponding deadline and

calculated results shows that proposed algorithm completes more tasks before deadline

compare to FCFS, SJF and dynamic min-min as shown in Fig. 3.6. The proposed algorithm

shows approximate 90% of the task meeting with deadline compare to 78% of FCFS, 81% of

SJF and 76% of dynamic min-min algorithm. Further we have tested our algorithm increase

the number of task (15 to 20) with random length and deadline of task as shown in Table 3.6.

Consider all the virtual machine has different processing capacity. The simulation has been run

when cloud resource broker send 20 tasks at every 5 second interval. The calculated results are

shown in Fig. 3.7 which indicates that the proposed algorithm shows better results compare to

FCFS, SJF and dynamic min-min algorithm in terms of number of tasks meet to deadline.

57

 Table 3.5 Task with deadline Table 3.6 Task with deadline

Figure 3.6Task acceptance ratio comparison between proposed algorithm with FCFS, SJF and
dynamic min-min

Task
Id

Task
length

Deadline
of task

VM
MIPS

0 319775 500 500
1 43753 720 520
 2 50077 780 540
3 276496 685 560
4 133858 745 580
5 45215 620 600
6 132290 490 620
7 367951 450 640
8 291873 700 660
9 385050 660 680

10 93020 870
11 42947 850
12 30362 590
13 348858 400
14 69942 560

Task
Id

Task
length

Deadline
of task

VM
MIPS

0 381771 785 500
1 392397 745 520
2 339760 920 540
3 323461 690 560
4 272332 750 580
5 325970 700 600
6 333911 660 620
7 182561 2000 640
8 396156 1200 660
9 215744 1300 680

10 253197 1250
11 334013 450
12 344630 400
13 222784 550
14 253745 1000
15 153285 800
16 205633 600
17 98049 1050
18 107218 300
19 147281 1150

58

Figure 3.7 Task acceptance ratio comparisons proposed algorithm with FCFS, SJF, min-min

3.7.3 Provisioning and Deprovisioning (elasticity) of Resources

Elasticity is one of the important factors in cloud environment where user use the resources on

the basis of pay per use and don’t want to pay for resource which is not used by user. Elasticity

is the ability to fit the resource needed to cope with dynamically upcoming load at the virtual

machine. If load is increased at the resources then controller pass the instruction to cloud

resource provisioner to increase resource in scale out fashion. When demand wanes, resource

provisioners start to shrink back and remove unneeded resources. Let’s consider the example in

that we send continuously15 task of random length after 5 second interval (time interval will be

large in real environment) and 10 virtual machine are ready to process the task at the initial

phase. Deadline of task is given randomly. The proposed algorithm is tested with 15 number of

task and the results show that 14 number of task meet deadline in first iteration, only one task is

rejected (average is1) i.e. less than 10 % of the total task. It shows that there is no need to

increase the virtual machine.

In next iteration three tasks have been rejected because of length of task is randomly selected

(average become two) i.e. more than 10% task is rejected so cloud resource provisioner add

10% more virtual machine to process the upcoming tasks as per reported algorithm 3.3. In the

next iteration two tasks are rejected and calculated average task rejection is more than 10 % so

one more virtual machine is added. By randomly generated task, virtual machine is increases

59

from 10 to14 based upon the average number of task rejection but after some interval if

workload starts to decrease and some of the virtual machine goes to underloaded condition. The

number of virtual machine is started to decrease as per underloaded threshold condition given

in algorithm. After 10 intervals virtual machine is reduces from14 to 12 for executing the 15

random length tasks as shown in Fig. 3.8.

Figure 3.8 Provisioning and deprovisioning of cloud resource based on upcoming tasks

Figure 3.9 Provisioning and deprovisioning of cloud resource based on upcoming tasks

The algorithm is further tested with sending randomly window of 20 tasks. At the starting 10

virtual machine are ready to process the tasks. Simulation has been run for 11 intervals and it

is observed that when the workload at the virtual machine is increases then the cloud resource

60

provisioner create more virtual machines depending upon the condition given in algorithm 3.3.

If workload is decreased and virtual machine comes in under loaded condition then cloud

resource provisioner decreases the virtual machine instances. Fig. 3.9 shows that virtual

machine is increased from 10 to 13 at the time of high workload and decreased from 13 to11 at

the time of low work load after the end of 11th iteration. Most of the existing approaches

reported in the literature [20, 23-24] take only single threshold limit for elasticity but we have

considered 3 threshold limits (>25%, >10, <=10%) that gives better results than previous

approaches. We have considered the average task unable to meet deadline in last k interval,

while previous approach decide the elasticity only the basis of last interval. In the present

chapter, we have set the values for the threshold statically, however some authors set the

threshold value dynamically [20, 23-24].

3.7.4 Scalability

 Scalability is the ability of the system to accommodate more loads by adding resource either

horizontally (scale-out) or vertically (scale-up). Vertical scalability means that we are adding

the additional hardware. This type of approach is apply in web server, database servers etc but

limitation of vertical scaling is that hardware should be specific and how much memory,

processor and disk a single server support. Therefore horizontal scaling is better than vertical

scaling that add the number of node in horizontal scaling. We have tested our algorithm for

horizontal scalability with number of tasks (10 to 30) with fixed length (200000 MI) and 10

virtual machines is process to execute the task at the starting of the simulation. On the basis of

task rejection cloud resource provisioner increase the virtual machine instance and cloud

environment provides the better scalability.

The simulation has been run approximately 10 times for 10 tasks at the starting and it are

observed that all the tasks are easily executed by 10 virtual machines. If all the tasks executed

by 10 virtual machine in first iteration then results are same for next all the iteration, because

all tasks have the same length. Now simulation have been run for 15 tasks and it is observed

that only 11 tasks meet to deadline i.e. approximate 26% tasks has been rejected. So, cloud

resource provisioner added the 20 % virtual machine and it become 10 to 12 virtual machine.

For the next iteration 20% average task has been rejected and virtual machine increase 12 to 13.

This process is continuing until all the tasks have not been accepted as shown in Fig. 3.10.

Further the algorithm has been tested by increasing the tasks from 15 to 20, 25, 30 and same

procedure is repeated. It is observed that approximate 16 virtual machine is needed to execute

61

the 30 tasks of same length. Fig. 3.10 represents that number of tasks we have submitted and

number of task meet with deadline.

Figure 3.10 Scale-out of cloud resource based on upcoming task

Y axis represent the number of task, x axis represent the number of virtual machine required to

execute those task by using the proposed algorithm 3.3. The overhead of the proposed

algorithm is calculated based on the value of k which should not be more than last15 intervals.

We have analyzed the performance of the algorithm till last 30 intervals, as after 15 intervals its

performance start to degrade. We have compared overhead of developed algorithm with the

other algorithms available in literature like min-min, SJF and FCFS. It is observed that

proposed algorithm perform better than the existing algorithm because at the time of scheduling

these algorithm unable to distribute the task efficiently to existing virtual machine due to which

more tasks are rejected (unable to meet deadline). It is because more number of virtual machine

is in overloaded and underloaded conditions hence SLA violation is increased.

3.8. Summary

In this chapter, we have modified the architecture of cloud resource broker and developed an

efficient dynamic algorithm for task scheduling, which is based on the last optimal k-interval

that not only minimizes the makespan time of tasks but also increase the ratio of tasks to meet

the deadline and fulfill the objective of elasticity in cloud environment. The algorithm has been

tested at variable number of task to achieve better scalability. Further, the algorithm has also

been tested with modified architecture of cloud resource broker and a test scenario has been

62

created in cloudsim. It has been observed that the developed algorithm is helpful for making

intelligent scheduling decision for increasing (scale-out) or decreasing (scale in) the virtual

machine instance based on the upcoming workload request/application. The main idea of our

threshold-based dynamic resource allocation scheme is to monitor and predict the resources

based on the needs of the cloud applications. The performance of the reported algorithm starts

to degrade when the value of last interval ‘k’ is more than 15. Experimental results show that

under all possible conditions, the algorithm improves the makespan time and also number of

tasks to meets the deadline. The results have proved that the developed algorithm provide better

elasticity and reduce the rejection ratio of task in comparison to the existing conventional

algorithms like FCFS, SJF and min-min as shown in Figs. 3.5 to 3.10. This proposed model can

be extended to improve other QoS parameters like execution cost, energy consumption and

reliability for ensuring the high-priority requests.

3.9 References

[1] K. Hwang, Y. Shi and X. Bai, "Scale-Out vs. Scale-Up Techniques for Cloud Performance

and Productivity," in 6th International Conference on Cloud Computing Technology and

Science (CloudCom), pp. 763-768, Singapore, Dec. 2014.

[2] A. Suresh and P. Vijayakarthick, “Improving scheduling of backfill algorithms using

balanced spiral method for cloud metascheduler,” in International Conference on Recent

Trends in Information Technology, pp. 624- 627, Chennai, India, 2011,

[3] K. Dubey, M. Kumar and M. Chandra, “A Priority Based Job Scheduling Algorithm Using

IBA and EASY Algorithm for Cloud Metaschedular,” in International Conference on Advances

in Computer Engineering and Applications, pp. 66-70, Ghaziabad, India, 2015.

[4] B. Shaoo, D. Kumar and S. K. Jena, “Analyzing the Impact of Heterogeneity with Greedy

Resource Allocation Algorithms for Dynamic Load Balancing in Heterogeneous Distributed

Computing System,” International Journal of Computer Applications, vol. 62, no. 19, pp. 25-

34, Jan. 2013.

[5] W. Li, Wenzheng, and H. Shi, "Dynamic load balancing algorithm based on FCFS," in

Fourth International Conference on Innovative Computing, Information and Control

(ICICIC),pp. 1528-1531, Taiwan, Dec. 2009.

63

[6] R.K. Mondal, E. Nandi, and D. Sarddar, "Load Balancing Scheduling with Shortest Load

First" International Journal of Computer Science and Information Technology Research, Vol.

3, no. 4, pp. 162-166 , Dec. 2015.

[7] H. Chen, F. Wang, N. Helian and G. Akanmu ,“User Priority Guided Min-Min Scheduling

Algorithm For Cloud Computing,” in national conference on Parallel Computing

Technologies, pp. 1-8, Bangalore, India, Oct. 2013.

[8] D. Babu and P. Venkata, “Honey bee behavior inspired load balancing of tasks in cloud

computing environments,” Applied Soft Computing, vol.13, no. 5, pp. 2292–2303, May 2013.

[9] F. Ramezani and F. K. hussain, “Task-based System Load Balancing in cloud computing

using Particle Swarm Optimization,” International Journal of Parallel Programming, vol. 42,

no. 5, pp. 739-754, Oct. 2013.

[10] E.Pacini, C. Mateos and C. G. Garino, “Balancing throughput and response time in online

scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)”, Advances in

Engineering Software, vol. 84, pp. 31-47, June 2015.

[11] J. T. Tsai, J. C. Fang and J. H. Chou, “Optimized task scheduling and resource allocation

on cloud computing environment using improved differential evolution algorithm,” Computer

Operation Research, vol. 40, no. 12, pp.3045-3055, Dec. 2013.

 [12] E.D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez and P. Simoens, "Dynamic auto-

scaling and scheduling of deadline constrained service workloads on IaaS clouds," Journal of

Systems and Software, vol. 118, pp. 101-114, 2016.

[13] R.K. Naha and M. Othman, "Brokering and load-balancing mechanism in the cloud

Revisited," IETE Technical Review, vol. 31, no. 4, pp. 271-276, 2014.

[14] T. Somasundaram, K. Govindarajan, M. Rajagopalan and S.M. Rao, “A broker based

architecture for adaptive load balancing and elastic resource provisioning and deprovisioning in

multi-tenant based cloud environments,” in International conference at Advances in

Computing, pp. 561–573, New Delhi, India, 2013.

[15] X. Fu and Z. Chen, "Virtual machine selection and placement for dynamic consolidation in

Cloud computing environment," Frontiers of Computer Science, vol. 9, no. 2, pp. 322-330,

2015.

 [16] W. Kong, Y. Lei and J. Ma, "Virtual machine resource scheduling algorithm for cloud

computing based on auction mechanism," Optik-International Journal for Light and Electron

Optics, vol. 127, no. 12, pp. 5099-5104, 2016.

64

[17] S. Abrishami and M. Naghibzadeh, "Deadline-constrained workflow scheduling in

software as a service cloud," Scientia Iranica, vol. 19, no. 3, pp. 680-689, 2012.

[18] S.C. Nayak and C. Tripathy, "Deadline Sensitive Lease Scheduling in Cloud Computing

Environment Using AHP," Journal of King Saud University-Computer and Information

Sciences, vol. 30, no. 2, pp. 152-163, April 2018.

[19] M. Malawski, G. Juve, E. Deelman and J. Nabrzyski, "Cost-and deadline-constrained

provisioning for scientific workflow ensembles in IaaS clouds," in International Conference on

High Performance Computing, Networking, Storage and Analysis, USA, 2012.

[20] Lorido-Botran T, Miguel-Alonso J, Lozano J.A, “Comparison of Auto-scaling Techniques

for Cloud Environments,” 2013.

[21] X. Li and Z. Cai, "Elastic resource provisioning for cloud workflow applications," in IEEE

Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 1195-1210, 2017.

[22] R.N. Calheiros, R. Ranjan and R. Buyya, "Virtual machine provisioning based on

analytical performance and QoS in cloud computing environments," in International

Conference on Parallel processing (ICPP), pp. 295-304, Taiwan, Sep. 2011.

[23]R.D.R. Righi, V.F. Rodrigues, G.Rostirolla, C.A.D. Costa, E. Roloff and P.O.A.

Navaux,"A lightweight plug-and-play elasticity service for self-organizing resource

provisioning on parallel applications," Future Generation Computer Systems, vol. 78, pp. 176-

190, 2017.

[24] M. G. Arani, S. Jabbehdari and M. A. Pourmina, "An autonomic approach for resource

provisioning of cloud services," Cluster Computing, vol. 19, no. 3, pp. 1017-1036, 2 017.

[25] S. Chhabra, and A. K. Singh, "A Probabilistic Model for Finding an Optimal Host

Framework and Load Distribution in Cloud Environment," in Procedia Computer Science, vol.

125, pp. 683-690, 2018.

[26] S. Bharti and K. K. Pattanaik, "Task requirement aware pre-processing and Scheduling for

IoT sensory environments," Ad Hoc Networks, vol. 50, pp. 102-114, 2016.

[27] S. Javanmardi, M. Shojafar, D. Amendola, N. Cordeschi, H. Liu and A. Abraham, “Hybrid

Job Scheduling Algorithm for Cloud Computing Environment,” in Advances in Intelligent

Systems and Computing, vol 303, pp. 43-52, 2014.

[28] H.S. Sindhu, "Comparative analysis of scheduling algorithms of Cloudsim in cloud

computing," International Journal of Computer Applications, vol. 97, no. 16, July 2014.

65

CHAPTER-4

DYNAMIC TRANSFER BASED MODIFIED BINARY PSO FOR SCHEDULING THE
TASKS

4.1. Concept of Task Scheduling and Binary PSO

Cloud computing provides on demand resources for computation and data intensive types of

applications [1]. Number of users and heterogeneity nature of resources (different core,

memory etc) as well as application (computation intensive, data intensive or normal

application) brings challenges for scheduling of applications in cloud environment. Task

scheduling is a nondeterministic polynomial time complete (NPC) problem in the field of

computer science. There is no algorithm exists to solve the NP Complete problem in

polynomial time. It is preferable to find suboptimal solution, but in short period of time.

Calculating the all possible task-resource mapping (scheduling) and selecting the optimal

mapping is not feasible in cloud environment [2]. Therefore researcher are using the soft

computing techniques to solve the NP Complete problems like metaheuristic algorithms

(artificial honey bee [3-6], particle swarm optimization (PSO) [7], ant colony optimization

(ACO)[8], Evolutionary algorithms (differential evolution [9-10], genetic algorithm (GA) [11],

Gravitational Search Algorithm (GSA) [12]). The merits of PSO over GA include easier

implementation and less number of variable parameters has been involved in the optimization

process. PSO achieves a faster convergence rate and global optimum solution within minimal

time as compared to ACO and GA. Therefore researchers choose the PSO algorithm for job

scheduling in cloud and grid environment.

PSO is a population-based search algorithm that was developed for continuous optimization

problems in 1995 by Kennedy and Eberhart [13]. Each particle contains the position and

velocity in PSO algorithm. Velocity of each particle is updated in each time step to find out the

two best positions Pbest and Gbest. Velocity is updated by equation 1

 V୧
୩ାଵ(j)=w*V୧

୩(j) + cଵrଵ(Pbest୧
୩(j) − Z୧

୩(j)) + cଶrଶ(Gbest୧
୩(j) − Z୧

୩(j)) (1)

Where k+1 represent the current instruction, 𝑍௜
௞(j) represent the jth element of ith particle in kth

iteration of the PSO algorithm and 𝑉௜
௞ (j) represent the jth element of velocity matrix of ith

particle in kth iteration. 𝑐ଵ and 𝑐ଶ are cognitive learning factor and social interaction coefficient.

66

Cognitive factor produce the self confidence in the particle and control the influence of Pbest

(local search) on the search process. Social interaction factor 𝑐ଶ is used for Gbest (global

search). Initially 𝑐ଵ factor should be large so that particle can move with own confidence and

𝑐ଶ should be low, as search progress 𝑐ଵ factor should be decrease and 𝑐ଶ should be increase.

 cଵ(k)=2.5-2*(k/MaxIteration) (2)

 cଶ(k)=0.5+2*(k/MaxIteration) (3)

𝑟ଵand 𝑟ଶare random number in the range [0,1]. Inertia weight factor w is used to control the

momentum of velocity and acceleration i.e. maintains the balance between exploration and

exploitation. We start the value to w with large value (.9) which decrease when iteration

increase over the time to small value (.4) approximately. Value of w is decrease linearly by

given equation 4.

 w = w୫ୟ୶- {(w୫ୟ୶-w୫୧୬)*(Itr୩/𝐼𝑡𝑟௠௔௫)} (4)

Velocity 𝑉௜
௞ାଵ(j) is bounded by threshold limit shown in equation 5.

 𝑉௜
௞ାଵ(j)=ቐ

𝑉max, if ቀ𝑉௜
௞ାଵ(j)ቁ > Vmax

−Vmax, if ቀ𝑉௜
௞ାଵ(j)ቁ < Vmax

 (5)

After that particle position is updated using velocity equation.

 Z୧
୩ାଵ(j) = Z୧

୩(j) + V୧
୩ାଵ(j) (6)

Many real-world optimization problems are typically discrete problems like task scheduling, 0-

1 knapsack problem, traveling salesman problem, airline scheduling problem etc. that can be

solved by Binary PSO. Kennedy and Eberhart [14] proposed the binary version of the

algorithm in 1997 for discreet optimization problems. Each particle contain a matrix of size

m*n where m represent the number of virtual machine and n represents the number of

upcoming tasks for service. Elements of each particle matrix will be either 0 or 1 where 1

means task is selected or 0 means task is not selected. Elements of particle can be change from

0 to 1 and vice versa. Range of velocity matrix for each particle is [-Vmax, Vmax]. Velocities

are defined in terms of probabilities that a bit will be in state or the other state. Position matrix

and velocity matrix of each particle is generated randomly at the starting of the algorithm. Then

algorithm try to find out some optimal or suboptimal solution based upon the fitness function

after some iteration because fitness value of every particle is calculated using the fitness

function (objective function) so that fitness function to be improved. Firstly we transform the

67

value of velocity from continuous space to binary space using the sigmoid transfer function

shown in equation 7 that perform the calculation based upon the value of current velocity

(equation 1 & 5) and produce the value always less than 1. Finally we find out the modify

position of the particle using the equation 7, whereRand(i, j) is function that produces the value

between 0 to 1.

 Z୧
୩ାଵ(j)=ቊ

1 if Sigmoid ቀV୧
୩ାଵ(j)ቁ > 𝑅𝑎𝑛𝑑(𝑖, 𝑗)

0 otherwise
 (7)

 Where Sigmoid ቀV୧
୩ାଵ(j)ቁ =

ଵ

ଵା௘ష(౒౟
ౡశభ(ౠ))

 (8)

The major difference between BPSO and typical PSO is that the relevant variables (velocities

and positions of the particle) are defined in terms of the change in probabilities and the particles

are formed by integer in {0, 1}.

4.2 Contribution

Simple binary particle swarm optimization (BPSO) does not provide satisfactory solution due

to inappropriate behavior of transfer function. To overcome this problem, we have modified

transfer function that provides the exploration and exploitation capability in better way to solve

the problem of scheduling in the field of cloud computing.

Specific contribution of this chapter:

 We have proposed a dynamic transfer function (TF୔-BPSO) for BPSO that provides

exploration (high probability of flipping the bits) at the starting phase of the simulation.

 At the middle phase it move from exploration to exploitation due to less probability of

flipping of bits. Proposed transfer function provides the exploitation in the last phase.

 Results shows that proposed dynamic transfer function maintains the good balance

between exploration and exploitation and improve the QoS parameters (execution time,

makespan time, convergence rate, throughput) compare to existing algorithm.

4.3 Related Work and Research Gap

There are lots of traditional algorithm [15-20] have been proposed in last decade for task

scheduling in cloud environment. Suresh and Vijayakarthick [15] propose a technique of

balanced spiral (BS) method to improve the processing time of jobs. To achieve better quality

of service with high resource utilization an algorithm IBA with EASY [16] has been proposed

68

for scheduling. Chen et al.[17] proposes an improved min-min load balancing algorithm

(LBIMM) to reduce the makespan time of tasks and increase the utilization ratio of cloud

resources while considering priority as quality of service (QoS) parameter. Mao et al.[18]

proposed Max-Min scheduling algorithm to reduce the response time and improve the resource

utilization ratio of the cloud resources. Mohit Kumar and S.C.Sharma proposed an algorithm to

reduce the makespan time of tasks and improved the utilization ratio of cloud resource

considering the priority of task as quality of service parameter [19]. P.Samal and P.Mishra

proposed round robin technique considering the parameter response time and resource

utilization to solve the problem of load balancing in cloud environment [20]. The selection

process of non-PSO based resource identifier stops after a pre-defined number of iterations. But

in PSO, set a fixed number of iterations and particle rejects the new solution if it is poorer than

the current solution.

Modified PSO has been reported to optimize the parameters like makespan time, execution

cost, energy consumption etc while considering deadline and budget as constraint [21-24, 29]

but these algorithms is used to solve the continuous optimization problem. Binary PSO and its

variant has been used to solve the discrete optimization problems but unable to provide

satisfactory results due to inappropriate transfer function. Therefore Islam et al.[25] proposed a

new time varying transfer function for balancing the better exploration and exploitation and

provide the satisfactory solution. The main aim of proposed time varying transfer function is to

generate the value of velocity nearby 0.5 at the early stage of the simulation run so that BPSO

can provide stronger exploration due to high probability of flipping the bits. BPSO should start

to shift exploration to exploitation in the intermediate stage and in the last stage transfer

function provides the stronger exploitation due to low probability of flipping all the bits i.e. it

generate the value of velocity either nearby 1 or nearby 0. K. Suresh and N. Kumarappan

proposed a hybrid improve BPSO algorithm to reduce the loss of load probability and minimize

the annual supply reserve ratio deviation for power system [26]. Chen et al.[27] proposed the

improve PSO algorithm to solve the resource-constrained scheduling problem to minimize the

makespan time using the two rules delay local search and bidirectional scheduling rule. Cho et

al.[28] proposed a hybrid metaheuristic algorithm for virtual machine scheduling that reduce

the makespan time, execution time and average number of request is rejected or accepted.

69

 Table 4.1 Literature review on meta-heuristic based scheduling algorithm

S. No. Year Technique Parameters Tool Limitations

1 1997
[33]

Meta-heuristic
(BPSO based)

Robustness of
optimization functions

Personal
computer

Sigmoid transfer function does not make a
good balance between exploration and
exploitation.

2 2009
[37]

Meta-heuristic
(BPSO based)

Makespan time and flow
time

Personal
computer

Pentium IV,
3.2 GHz

Algorithm does not consider any QoS
constraint like deadline, priority,
scalability. Exploration and exploitation of
proposed algorithm transfer function is
poor.

3 2012
[26]

Meta-heuristic (Hybrid
improved BPSO based)

Load probability, annual
supply reserve ratio

Matlab

Hybrid algorithm has slow convergence
rate.

4 2012
[30]

Meta-heuristic
(BPSO based)

Fitness value of function Personal
computer

Sigmoid-kind function does not make a
good balance between exploration and
exploitation.

5 2012
[34]

Meta-heuristic
(modified BPSO based)

0-1 knapsack problem Personal
computer

Transfer function provides better
exploration but does not provide better
exploitation at the last phase of iteration.

6 2013
[5]

Meta-heuristic (Modify
ABC)

Reliability, efficiency
and accuracy

Personal
computer

Proposed algorithm is used for continuous
optimization problems.

7 2014

[21]

Meta-heuristic (Self
adaptive learning PSO

based)

Profit and execution cost Matlab Does not provide better exploration and
exploitations. Algorithm does not
considered important QoS parameters like
makespan time, throughput etc.

8 2014
[28]

Meta-heuristic (Hybrid
PSO based)

Execution time,
makespan time, task

rejection ratio

Personal
system with
core i7 and

3.4 GHz

Pre-reject operator degrades the
performance when more tasks are rejected,
it is better to use scalability concept when
size of requests is larger than the available

70

resources like cpu, memory.

9 2016
[23]

Meta-heuristic
(Improved PSO based)

makespan time, energy
consumption

Personal
computer that

have 1GM
RAM

Real relative data of production scheduling
is limited and more evaluation of the
energy saving model by specifying the
given parameters in factory applications
needs to be performed.

10 2016
[31]

Meta-heuristic (BPSO
based)

High-utility item set
mining

PC Core2 i3-
4160 CPU and
4GB of RAM

Sigmoid function does not provide the
exploitation at the last phase of execution
for better results of parameters.

11 2016
[35]

Meta-heuristic
(s shaped versus v

shaped BPSO based)

Global minima of
benchmark function

Personal
computer

V shaped transfer function perform better
than s shaped transfer function. Proposed v
shaped transfer function does not provide
the exploitation in efficient way.

12 2017

[22]

Meta-heuristic (Hybrid
PSO based)

Makespan time,
Execution cost

Cloudsim Does not provide better exploitation at the
last phase of execution and algorithm
perform well for workflow scheduling and
there is no guarantee of good performance
at independent tasks.

13 2017
[25]

Meta-
heuristic(Dynamic

transfer function based
BPSO)

Exploration and
exploitation

NA Time varying transfer function is work well
for at 0-1 knapsack problem but does not
improve the parameters of scheduling
algorithm at large scale.

14 2018
[12]

Meta-heuristic
(Gravitational search

algorithm)

Convergence rate,
reliability, accuracy

NA Proposed algorithm is used for continuous
optimization problems.

15 Our
algo.

Meta-heuristic
(dynamic transfer

function based BPSO)

Execution time,
makespan time,

Throughput

Cloudsim Algorithm does not consider other QoS
parameters like deadline, elasticity etc.

71

Binary PSO is used to solve various types of discrete problems [30-32] but it has been observed

that BSPO unable to maintain the good balance between exploration and exploitation. The

binary PSO has good capability of convergence but it suffers the demerit of premature

convergence due to the loss of diversity. Improving the exploration and exploitation ability of

PSO is an active research topic. To overcome the problem of exploration and exploitation of

binary PSO, sigmoid transfer function, a linear transfer function and two different V-Shaped

transfer function were proposed in literature [33-36].

4.3.1 Sigmoid transfer function

The main aim of sigmoid transfer function (shown in Fig. 4.1) is to map a calculated or given

velocity 𝑉௜
௞ାଵ to a probability value which have the range [0,1] for changing the binary particle

position using the equations 7 & 8. If value of velocity is higher either positive or negative (4

or -4) then probability of flipping of bit is lower [33]. Transfer function provides the higher

probability of flipping the bit when velocity value is low i.e. nearby zero. As per the transfer

function output if velocity value is close to zero then maximum chance for better exploration. If

value of velocity is high then chance for exploitation. Sigmoid transfer function is not able to

maintain the sequence of velocity from near to zero to higher velocity range hence transfer

function is facing the problem to maintain the good balance between exploration and

exploitation.

Figure 4.1 Sigmoid transfer functions

72

4.3.2 Linear normalized transfer function

 It is used to improve the exploration ability of sigmoid function [34]. Linear normalized

transfer function is work based on defined mathematical equations 9 & 10.

 L୘(Z୧
୩, V୧

୩ାଵ) = (Z୧
୩ + V୧

୩ାଵ +V୫ୟ୶)/1+2V୫ୟ୶ (9)

 Z୧
୩ାଵ=൜1 if L୘(Z୧

୩, V୧
୩ାଵ) > 𝑅𝑎𝑛𝑑()

0 otherwise
 (10)

It is observed that 𝐿்-BPSO face the same challenge as sigmoid function but it provides better

exploration than sigmoid function.

4.3.3 V-Shape transfer function

Two different V-shaped transfer function V୘ଵ and V୘ଶ are reported in literature [35-36].

Transfer function V୘ଵtransforms the particle velocity to binary position using the equation 11 &

12.

 V୘ଵ(V୧
୩ାଵ) = ቐ

1 −
ଶ

ଵାୣ^ି(୚౟
ౡశభ)

 if V୧
୩ାଵ ≤ 0

ଶ

ଵାୣ^ି(୚౟
ౡశభ)

− 1 otherwise
 (11)

 Z୧
୩ାଵ = ൞

0 if rand() ≤ V୘ଵ൫V୧
୩ାଵ൯and V୧

୩ାଵ ≤ 0

1 if rand() ≤ V୘ଵ൫V୧
୩ାଵ൯and V୧

୩ାଵ > 0

Z୧
୩ if rand() > V୘ଵ൫V୧

୩ାଵ൯

 (12)

 Like sigmoid and linear transfer function V୘ଵ − BPSO is unable to maintain good balance

between exploration and exploitation.

 V୘ଶ is a tangent hyperbolic function which is used to transform real value of velocity into

probability value.

 V୘ଶ(V୧
୩ାଵ) = ቚ

ଶ

஠
∗ arctan (

஠

ଶ
∗ V୧

୩ାଵ)ቚ (13)

 Z୧
୩ାଵ=ቊ

൫Z୧
୩൯

ିଵ
 if Rand() < V୘ଶ൫V୧

୩ାଵ൯

Z୧
୩ otherwise

 (14)

It is seen that V୘ଶ improve the exploration and exploitation ability of the PSO particle and

provide the better results than V୘ଵ, sigmoid function and linear function but it cannot provide

better exploration at the early stage of run and exploitation in the last stage of the run. To

overcome this problem, we proposed dynamic transfer function based binary particle swarm

73

optimization algorithm (TF୔-BPSO) that maintains the good balance between exploration and

exploitation.

4.4 Problem Formulation

Cloud resource broker (CRB) is responsible for scheduling the tasks (job/applications) in such

a way that all tasks complete their execution in minimum time i.e., CRB choose the best virtual

machine among all the available virtual machine for every upcoming tasks. Users excepted to

complete their tasks in minimum time therefore cloud service provider need high end

workstation. Suppose after a time interval a task window is submitted to CRB that contain the n

tasks 𝑇ଵ, 𝑇ଶ, 𝑇ଷ… 𝑇௡ . Each task is independent in nature and pre-emption is not allow at the

time of execution i.e., if a task is executing then other task has to until first one complete his

execution. Every task has the task length 𝑇𝐿௜ that is expressed in million instructions (MI) as

per the Standard Performance Evaluation Corporation (SPEC) benchmark. Every task required

p number of processor, s is the speed of processor, required amount of RAM is M, S is for

secondary storage required and B is for bandwidth of nodes. Cloud service provider contains m

number of heterogeneous and dynamic resources 𝑅ଵ , 𝑅ଶ , 𝑅ଷ … 𝑅௠ . Cloud resources are

heterogeneous in terms of RAM memory, processor speed, number of processor, secondary

memory and bandwidth etc. The processing speed of the resources is measured in MIPS as per

standard SPEC benchmark. If any resource 𝑅௝ is matched with the upcoming task 𝑇௜ then value

of decision variable Φ୘୧ୖ୨ is 1 otherwise its value is 0.

The main objective of the proposed algorithm is to minimize the total execution time using the

dynamic transfer function based binary particle swarm optimization algorithm (TF୔-BPSO).

The notations and their description are shown in Table 4.2 which we are used for formulation

in objective function. Suppose n tasks 𝑇ଵ, 𝑇ଶ, 𝑇ଷ… 𝑇௡ are sending by user in a particular task

window 𝑤௣ for services and its total execution time can be find out using the equation 15 to 19.

We define the objective function that aim is to minimize the total execution time

 Objective: Min TET୘୧=EET୘౟ୖౠ€ஜ౐౟౭౦ (15)

 ET୘౟ୖౠ€ஜ౐౟౭౦ =TL୧/PCୖ୨ (16)

 PCୖ୨ = p*s (17)

 TT୘౟ୖౠ€ஜ౐౟౭౦ =TL୧/Bୖ୨ (18)

74

 EET୘౟ୖౠ€ஜ౐౟౭౦ = ET୘౟ୖౠ + TT୘౟ୖౠ (19)

 Where ቚμ்೔௪೛
ቚ≤ m

Table 4.2 Notation and description

Notations Description

𝑤ଵ, 𝑤ଶ, 𝑤ଷ, …. 𝑤௞ Represent the task window from 1 to k

𝑤௣ Represent the pth task window

𝑇ଵ, 𝑇ଶ, 𝑇ଷ… 𝑇௡ Task request 1 to n

𝑇𝐿௜ Length of the tasks 𝑇௜ in MI

𝑅ଵ, 𝑅ଶ, 𝑅ଷ … 𝑅௠ Available cloud resources for executing the tasks

𝑃𝐶ோ௝ Processing capacity of resource 𝑅௝ in MIPS

 p Number of processor

 s Speed of processor

 𝐵ோ௝ Bandwidth of resource 𝑅௝

μ்೔௪೛
 Represent the matched resource for task 𝑇௜ in task window w୮

𝐿ோ௝ Load at the resource R୨

𝐷ோ௝ Delay of resource R୨

𝑊𝑇்௜ Waiting time of task 𝑇௜

𝑇𝑇்೔ோೕ€ஜ೅೔ೢ೛ Task transfer time on resource 𝑅௝ to other resource in the match list μ୘౟୵౦

𝐸𝑇்೔ோೕ€ஜ೅೔ೢ೛ Execution time of task 𝑇௜ on resource 𝑅௝ in the match cloud resource μ୘౟୵౦

𝐸𝐸𝑇்೔ோೕ€ஜ೅೔ೢ೛ Expected execution time of resources 𝑅௝ to process the tasks 𝑇௜

 TET(𝑤௣) Total execution time for the tasks available in task window 𝑤௣

 𝑛௞ Represent the number of task submit by user k

𝑊𝑇்௜ Waiting time of task 𝑇௜

 𝐹𝑇்௜ Finishing time of task 𝑇௜

𝛷்௜ோ௝ Decision variable contain the value either 1 or 0 depends upon the resource

𝑅௝ meet to task 𝑇௜

Excepted execution time is the sum of execution time and task transfer time. We are not

considering booting time of virtual machine in total execution time of tasks. Fitness function to

minimize the execution time is defined in equation 20

 Min f(𝑅௝)=𝛷்௜ோ௝ * 𝐸𝐸𝑇்೔ோೕ (20)

75

Constraints:

 ቚμ்೔௪೛
ቚ≤ m

 𝑅௝€μ்೔௪೛
, 𝛷்௜ோ௝=1 (21)

 𝑅௝ ∉ μ்೔௪೛
, 𝛷்௜ோ௝=0 (22)

 Once task is allocated to cloud resources (virtual machine) then load at the resource can be

calculated using the equation 23.

 𝐿ோ௝=𝐿ோ௝+𝐸𝑇்೔ோೕ (23)

 𝐹𝑇்௜>𝑎௜+𝐸𝑇்௜ோ௝ Ɐi €n (24)

 𝐹𝑇்௜ is the finishing time of task Ti at virtual machine 𝑉𝑀௝. 𝑎௜ is task arrival time, if it is

known and certain then problem is static otherwise problem is dynamic. 𝐸𝑇்௜ோ௝is the execution

time of task Ti at virtual machine 𝑉𝑀௝. Equation 24 indicates that a task can’t be started before

its time.

 𝐹𝑇௜,௝≥𝐹𝑇௜ିଵ,௝+𝐸𝑇்௜ோ௝ (25)

Equation 25 represent that a task start to execute at a virtual machine only when previous task

has been completed its execution at that particular virtual machine.

Makespan time or total time taken by cloud resource to execute all the tasks can be calculated

using the equations 26 and 27.

 Makespan time (MST) =max {𝐹𝑇ோ௝} (26)

 𝐹𝑇ோ௝ = ∑ 𝐸𝐸𝑇்೔ோೕ
௠
௝ୀଵ (27)

 Throughput of the system is calculated using the equation 28

 Throughput (Γ) =
୬୳୫ୠୣ୰ ୭୤ ୲ୟୱ୩ୱ ୡ୭୫୮୪ୣ୲ୣୢ ୱ୳ୡୡୣୱୱ୤୳୪୪୷

்௢௧௔௟ ௣௥௢௖௘௦௦௜௡௚ ௧௜௠௘
 (28)

Main objective of proposed dynamic transfer function based binary particle swarm

optimization algorithm (TF୔-BPSO) algorithm is to execute the task in minimum time with

maximum throughput i.e. execution time as well as makespan time should be minimum.

76

4. 5 Proposed Cloud Architecture

The proposed architecture shown in Fig. 4.2 contains three major parts: User level phase, Cloud

resource broker phase or scheduling phase and Cloud level phase or infrastructure level phase.

4.5.1 User level phase

 First phase is situated at the top of cloud architecture as shown in Fig. 4.2 cloud users submit

job/task/applications request𝑇ଵ , 𝑇ଶ , 𝑇ଷ… 𝑇௡ through the user interface either graphical user

interface or command line and specifying the requirement of service in terms of software,

hardware and quality of services (QoS). Hardware requirement in terms of number of cpu

required, amount of main memory required, amount of secondary memory required, bandwidth

etc. and software requirement Mpich-1.2.7, Charm++ etc and QoS (deadline, throughput,

priority, execution time, response time etc) to process the user request. The entire upcoming

requests authentication is checked by gatekeeper or job request handler to identify that request

is coming from legitimate user or an attacker using the turing test types of approach. If request

is coming from legitimate user, it is send to the next phase for further processing otherwise

request is rejected.

4.5.2 Cloud resource broker (CRB) phase

 The request accepted by user level phase is send to cloud resource broker phase. CRB contain

many component like controller node, matchmaker or task scheduling, workload monitor etc.

each component working is useful for task scheduling in cloud environment. Controller node

accepts the entire authentic tasks request which is coming from job request handler. Controller

node contains all the information about the virtual machine (busy, ideal, underloaded or

overloaded) and sends all these information (upcoming tasks and current virtual machine

status) to matchmaker node. Matchmaker node map all the tasks request with available cloud

resources. Matchmaking strategy is mainly depends upon the user estimated task execution

time of a task. It firstly check the quality of service parameter i.e. request contain any priority

or deadline, if yes, and then allocate the virtual machine based upon the QoS parameter using

the scheduling algorithm otherwise allocate the task based upon the scheduling algorithm.

There are lots of heuristic and meta-heuristic scheduling algorithm has been proposed for cloud

environment like Min-Min, Max-Min, artificial bee colony, particle swarm optimization, ant

colony optimization, shortest job first, first come first serve etc.

77

In this chapter, we are using dynamic transfer function based binary particle swarm

optimization (TF୔-BPSO) metaheuristic algorithm for scheduling the tasks. The main objective

of scheduling algorithm is to optimize (minimize or maximize) the parameter (makespan time,

execution time, response time, cost etc.). The entire process of task-resource mapping is control

by cloud task scheduler phase. CRB component scheduling parameter shows that we optimize

the parameter makespan time, total execution time and utilization of resource using the modify

BPSO algorithm. The main aim of workload component is to monitor all the virtual machine

continuously and pass the status of virtual machine to schedulers that pass it further to

controller node.

Figure 4.2 Proposed Cloud Task scheduling architecture

78

4.5.3 Cloud level phase

It is also called the infrastructure level phase because all the cloud infrastructure (datacenter,

hosts, workstation, nodes etc) are exist in this phase. Cloud is collection of heterogeneous

resources in terms of computational resources, storages resources etc. each node contain the

number of virtual machine for processing the task depends upon the configuration of node.

Number of virtual machine can be increase or decrease (elasticity) at the run time depends

upon the upcoming request. Generally a task is allocated to one virtual machine if task is highly

computation oriented then CRB allocate the high end virtual machine for the task so that it can

execute easily otherwise task takes more time to execute due to which response time is increase

and user satisfaction is decrease. Therefore all the virtual machine is in heterogeneous nature in

cloud environment.

4.6 BPSO based modified transfer function (𝐓𝐅𝐏-BPSO)

Binary particle swarm optimization algorithm is focus at exploration at the early stage of the

run to avoid the condition of trapped in local optima, but when iteration increase, algorithm

start to move from exploration to exploitation and more emphasizing on exploitation at the last

stage of run. We proposed a dynamic transfer function (TF୔-BPSO) with some consideration

 Modify transfer function TF୔-BPSO should provide the exploration at the early stage

by high flipping of bits of particle position Z୧
୩ for any velocity V୧

୩ .

 TF୔-BPSO should have the ability to decrease the probability of flipping of bits in

intermediate stage for particle position Z୧
୩ at any velocity V୧

୩ so that it can move from

exploration to exploitation.

 Last stage of run should provide stronger exploitation i.e., there should be very less

probability of flipping of bits for position Z୧
୩ at any velocity V୧

୩.

We proposed a new dynamic transfer function representing in equation 29 that consider the

above concept

 TF୔(V୧
୩ାଵ, λ)=

ଵ

ଵା௘ష(౒౟
ౡశభ)/𝛌

 (29)

λ is control parameter in equation 29 that start with the high value and randomly decrease

within a interval after each iteration when run is in progresses. If we provide a fix value to

control parameter λ it will not shift from exploration to exploitation as run progress therefore

value of λ is decided based upon the given equation 30

79

 λ= λ௠௔௫ – Itr୩ାଵ(
஛೘ೌೣ

୍୲୰೘ೌೣ
)* T୯/(𝑇௤ + 𝑎௤) (30)

Where T€ (3 to11) and value of a is always 1. Value of q is 3 to 11 but it gives good results at

value 7. λ௠௔௫ is maximum value of λ =4 (equal to maximum value of velocity V=4) is used to

bound the control parameter. Itr୩ାଵ represent the current iteration and Itr௠௔௫ represent the

maximum iteration. Proposed transfer function TF୔(V୧
୩, λ௠௜௡) represent the final shape of the

curve with value λ=.05. The proposed transfer function change the position of the ith particle

instead of sigmoid function as shown in equation 31.

 Z୧
୩ାଵ=൜

1 if Rand() < TF୔൫V୧
୩ାଵ, λ൯

0 otherwise
 (31)

Proposed transfer function (TF୔) shape changes over the time depending upon the value of λ.

Value of λ will be high at the starting phase that divides the value of velocity. Suppose initial

random velocity value is {3.8, -3, 1, 2.5} and calculated probability of flipping of bits using the

Figure 4.3 Comparison of proposed transfer function with sigmoid transfer function

proposed transfer function is {.71, .32, .574, .64} that is much better than sigmoid function

{.99, .0476, .735, .9259}. Let’s consider one more example of random velocity set with values

{-4, -3, -2, -1, 0, 1, 2, 3, 4}in the range -4 to 4. Calculated probability of flipping of bits using

80

the proposed transfer function is {.2728, .3174, .3759, .4366, .5, .5636, .625, .6849, .7254} that

is better than the sigmoid function {.0179, .0474, .1194, .2689, .5, .7299, .881, .9532, .9823}.

Results shown in Fig. 4.3 prove that proposed transfer function provides the better exploration

(maximum probability of flipping the bits) in comparison of sigmoid transfer function because

its values is nearby .5.

We can further change the proposed transfer function (TF୔(V୧
୩,λ௠௔௫ − .5),TF୔(V୧

୩,λ௠௔௫ − 1)

to TF୔(V୧
୩, λ௠௔௫ ± 3)) for better exploration and exploitation results in binary PSO. Curve of

modified transfer function TF୔(V୧
୩ ,λ௠௔௫) is closest to probability value 0.5 i.e. it gives the

highest possibility of flipping the bit than any other curve. TF୔(V୧
୩,λ௠௜௡) provide the lowest

probability of flipping the bit therefore it provides the stronger exploitation at the final stage of

run.

4.7. Modified BPSO (Dynamic transfer based (𝐓𝐅𝐏-BPSO)) based scheduling algorithm

We have modified BPSO algorithm for scheduling in cloud computing using the dynamic

transfer function based binary particle swarm optimization algorithm (TF୔-BPSO) algorithm.

Each particle contains a position matrix of size m*n, where m represent the number of virtual

machine and n represent the number of tasks. Each particle’s position matrix has two

properties:

(i) All the elements of the matrix are either 0 or 1. If 𝑍௞ is position matrix of kth particle then

 𝑍௞(i, j) €{0,1} (∀i,j) where i€ {1,2,…m}and j€{1,2,…n} (32)

(ii) Each column contains only one element value is 1 other element should be 0 because a task

is allocated to only one virtual machine. We can represent this condition by equation 33

 𝑍௞(i, j) =1 if 𝑇௝ 𝑉𝑀௜ (33)

 Otherwise 𝑍௞(i, L) =0 L≠j ∀€L{1 to n} and ∀€i{1 to m}

If 𝑍௞(i, j) =1 then jth task is executed by ith virtual machine for any kth particle. In the position

matrix row represent the task allocated to virtual machine and column represent the task

allocation. Tables 4.3 represent the position matrix that contains six tasks and three virtual

machines. Task are allocated randomly at the starting, position matrix represent that task

Tଶ,Tସ,Tହ, T଺ are allocated to resource Rଵ, task Tଵ is allocated to Rଶ task Tଷ is allocated to Rସ

and no task is allocated to resource Rଷ.

81

 Table 4.3 Position matrix

Task/VM Tଵ Tଶ Tଷ Tସ Tହ T଺

Rଵ 0 1 0 1 1 1

Rଶ 1 0 0 0 0 0

Rଷ 0 0 0 0 0 0

Rସ 0 0 1 0 0 0

Particle velocity: Particle velocity is represented in m*n matrix form whose range is

[-V୫ୟ୶, V୫ୟ୶].

𝑉௞(i, j) €{-V୫ୟ୶, V୫ୟ୶} (∀i, j) where i€ {1,2,…m}and j€{1,2,…n} (34)

Where 𝑉௞ represent the velocity matrix of kth particle.

Pbest and Gbest represent the position matrix of m*n size with their elements either 0 or 1.

Pbest୩ is the best position of individual particle (kth particle) has visited from the starting of the

algorithm and Gbest୩ is the best position of the kth particle and its neighbor has visited from

starting of the iteration. Pbest୩ and Gbest୩ are updated based upon the fitness function

(objective function) in each iteration. Fitness value of each particle Z୩ is calculated if it is

current calculated value is smaller (minimizing the execution time based upon the objective

function) than the Pbest୩ then replace it withZ୩. To update the value of Gbest୩ its fitness value

is compared with all the neighborhood Pbest୩ value. If neighborhood Pbest୩ fitness value is

smaller than the Gbest୩ then replace it with neighborhood Pbest୩.

Particle updating equation: Particle updating velocity matrix is represented in equation 35 and

updating position matrix of each particle with the help of modified transfer function in BPSO is

represented in equation 36.

V୩
୲ାଵ(i, j)=w*V୩

୲(i, j) + cଵrଵ(Pbest୩
୲ (i, j) − Z୩

୲ (i, j)) + cଶrଶ(Gbest୩
୲ (i, j) − Z୩

୲ (i, j)) (35)

After calculating the real velocity value by equation 34, transform the value of velocity from

continuous space to binary space by the proposed dynamic transfer function using the equation

29 & 30.

 Z୩
୲ାଵ(i, j)= Z୩

୲ (i, j) + V୩
୲(i, j) (36)

Sometimes calculated value of V୩
୲(i, j) and Z୩

୲ (i, j) comes 1 and total sum of both the value is 2

for Z୩
୲ାଵ(i, j) but in BPSO value should be either 0 or 1. Therefore we use the mod function to

82

convert the value only 0 or 1 form. Proposed algorithm for task scheduling dynamic transfer

function based modified BPSO algorithm is shown in Fig. 4.4.

1. Input: Number of tasks and number of virtual machine
2. Output: Calculate the minimum execution time of tasks at running virtual machine
 by fitness function
3. Start the iteration Itr
4. Sୗ=Swarm Size , Vୖ =Random Velocity, 𝑉௞(i, j) =Velocity of Particle,
 𝑍௞(i, j)=Position of Particle, 𝑃ோ=Random position
5. Pbest=Local best, Gbest=Global best
 // Pbest and Gbest are position matrix of size m*n where m is no. of resource
 and n is no. of tasks
6. For i=1 to Sୗ do
 // randomly initialize the velocity and position matrix at the starting
7. 𝑉௞(i, j) Vୖ ()€{-𝑉௠௔௫, 𝑉௠௔௫}
8. 𝑍௞(i, j) 𝑃ோ€{0,1}
9. Evaluate the fitness function f(𝑍௜);
10. If f(𝑍௜)<f(Pbest)
11. Then Pbest 𝑍௜
12. End if loop
13. If f(𝑍௜)<f(Gbest)
14. Then Gbest 𝑍௜; f(Gbest) f(𝑍௜);
15. End if
16. End for loop of Sୗ
17. While Itr<𝐼𝑡𝑟௠௔௫
18. For loop of Sୗ
19. Update the value of velocity using the equation 34 & 35
20. Calculate the proposed λ using equation 30

21. Calculate modified transfer function TF୔(V୧
୩ାଵ, λ) using the equation 29

22. Update the position matrix Z୩
୲ାଵ(i, j) of particle using the equation 36

23. If fitness function f(𝑍௜)<f(Pbest)
24. Then Pbest 𝑍௜
25. End if loop
26. If f(𝑍௜)<f(Gbest)
27. Then
28. Gbest 𝑍௜;
29. f(Gbest) f(𝑍௜);
30. End if
31 .End for of Sୗ
32. Itr=Itr+1;

Figure 4.4 Proposed dynamic transfer function based (TF୔-BPSO) algorithm for task
scheduling

83

4.8 Analysis and comparison of simulation results

Modified transfer function based proposed TF୔-BPSO algorithm minimizes the execution time

as well as makespan time of tasks in cloud environment using the cloudsim platform. We

choose cloudsim simulator for experimental purpose because to implement the work in real

environment is costly (need to established cloud infrastructure). To test the proposed algorithm

we have created a datacenter that contains number of host and each host contains the number of

heterogeneous virtual machine depends upon the configuration of host (processing speed,

number of cpu, memory etc.). Each virtual machine (VM) has the parameter like Id, MIPS,

number of cpu etc as shown in Table 4.4. After that we have generated cloudlet (Task) with

their parameter like TaskID, Length etc. as shown in Table 4.5. Cloud resource broker allocate

the tasks to virtual machine based upon the proposed BPSO algorithm. In this chapter, we have

calculated and analyzed the execution time, makespan time and resource utilization ratio with

the help of cloudsim simulator.

4.8.1 Execution time of tasks:

Let’s consider the example to solve the problem of task scheduling in cloud environment by

proposed binary particle swarm optimization algorithm based on dynamic transfer function.

Each particle is represented by matrix of size m*n where m is number of virtual machine and n

is number of upcoming tasks at run time (swarm size is 10 in this example i.e. 10 matrix is

generated by the entire 10 particle). Particle position matrix elements are in [0, 1] interval and

sum of the elements of each column should be 1 i.e. there is only single entry of 1 in each

column rest of element should be 0. Consider four heterogeneous virtual machine (different

processing speed and memory) and six tasks with different length. Apply the algorithm shown

in Fig.4.4. All the tasks are allocated randomly to virtual machine at the first iteration as shown

in Table 4.3 by particle position matrix. Velocity matrix is also allocated randomly at the

starting phase. After that calculate the Pbest and Gbest of each particle based upon the fitness

function (execution time). If value of a particle current position matrix is smaller than the Pbest

then assigned the current position matrix to Pbest.

If fitness value of any neighborhood Pbest is smaller than the Gbest then replace Gbest with

Pbest. Start for loop of iteration until the end of simulation or end of iteration to find out the

results. Calculate the velocity and position matrix based upon the modified transfer function

and find the new optimize values of Gbest that represent the value of optimize position matrix

84

i.e. execution time of tasks. To find out the value of execution time of tasks, range of BPSO

parameter is set in first experiment as

 Table 4.4 VM properties Table 4.5 Task properties

 Table 4.6 Execution time comparison between BPSO and proposed BPSO

First case: w€{.9 to .4}, c1 and c2€{.5 to 2.5}, velocity of particle€{-4 to 4}, number of task

and number of VM are shown in Table 4. and Table 4.5. Value of λ€{4 to .05}, number of

iteration is 200 and number of particle is 10. We run the simulation 10 times for both the

approaches existing BPSO [37] and developed BPSO to calculate the execution time.

Calculated execution time of tasks from the proposed MBPSO algorithm and existing BPSO

algorithm can be change in each simulation at low number of iteration because randomization

is exist in both the algorithm (particle velocity, position is initialized randomly at the starting,

r1 and r2 also random etc.). If number of iteration and number of particle is increased then

proposed MBPSO algorithm results is not be fluctuate because it easily converge to the

solution.

VM
Id

VM
MIPS

Memory No.
Of
cpu

0 40 256 1

1 50 512 1

2 100 512 1

3 80 256 1

Task Id Length No. of cpu
required

0 1000 1

1 1500 1

2 2000 1

3 1200 1

4 2400 1

5 1800 1

Case study BPSO Developed Modified
BPSO

1 114 108
2 125 101
3 120 109
4 113 99
5 123 104
6 124 108
7 119 112
8 109 101
9 115 99

10 116 104

85

Table 4.7 Execution time comparison between FCFS, BPSO and developed BPSO

Calculated results shows (shown in Table 4.6) that the proposed MBPSO perform better than

existing BSPO algorithm i.e. developed MBPSO maintain the better ratio of exploration and

exploitation during the execution of iteration.

Second case: Dynamic transfer function based proposed BPSO algorithm is further tested at

different number of tasks with random length and number of virtual machine with different

processing power. Range of tasks is extended from 6 to 50 and virtual machine range is

extended from 4 to 20. To calculate the execution time of tasks, range of the proposed BSPO

algorithm parameter (w, c1&c2 etc.) is same as in first case. First result is calculated at 4 VM

that process 6 tasks in 100 iteration considering 10 as swarm size. We compare proposed

algorithm result with other existing algorithm like first come first serve (FCFS)[38] and simple

BPSO. Calculated results shows that dynamic transfer function based proposed BPSO

algorithm perform better than the existing algorithm in literature. In next iteration, result is

calculated at 8 numbers of tasks and 4 number of VM. This process is continue up to the 50

number of tasks, 20 number of virtual machine using 100 to 500 iteration and swarm size

(number of particle) is increased from 10 to 50 to calculated the execution time. Calculated

results is shown in Table 4.7 prove that dynamic transfer function based proposed BPSO

algorithm performs better than the existing algorithm in all the conditions. Table 4.7 results

represent that proposed dynamic transfer function provides the good balance between

exploration and exploitation therefore algorithm converge easily in less step and gives the

minimum execution time.

Case
study

No. of
Task

No. of
VM

No. of
Iteration

No. of
particle

FCFS
[38]

BPSO
[37]

Developed
Modified

BPSO
1 6 4 100 10 186 121 102
2 8 4 100 10 262 146 123
3 10 6 100 10 223 137 112
4 15 6 200 20 394 257 192
5 15 8 200 20 332 223 162
6 15 10 200 20 287 204 138
7 20 10 300 20 367 241 173
8 30 15 300 30 388 247 178
9 40 20 400 40 356 234 157

10 50 20 500 50 436 298 203

86

Third case: Further we tested dynamic transfer function based proposed BPSO algorithm at

large number of request because huge number of request comes at cloud after a time interval.

Figure 4.5 Execution Time comparison proposed BPSO with BPSO and FCFS at fixed Tasks

Figure 4.6 Execution Time comparison proposed BPSO with BPSO and FCFS

We have taken fixed 500 numbers of tasks with random length (1000MI to 5000MI) to test the

proposed BPSO algorithm but number of virtual machines is vary from 20 to 100 with length

100 to 500 MIPS. Firstly all the tasks are allocated to 20 virtual machines by proposed BPSO

87

algorithm and all the tasks are executed in 3543 seconds while others algorithm take more time

as shown in Fig. 4.5. After that we increase the number of virtual machines from 20, 40 up to

100 and execute all the tasks at virtual machines. Fig. 4.5 results represent that proposed

dynamic transfer function based BPSO algorithm perform better than other algorithm.

Fourth case: We also tested our proposed BPSO algorithm at variable number of tasks from

100, 200 up to 500 which are running at 50 fixed number of virtual machines. Computational

results shown in Fig. 4.6 proved developed BPSO reduce the execution time up to 10% in

comparison with BPSO and up to 20% comparison with FCFS algorithm.

4.8.2 Makespan Time of Tasks

Makespan time is the completion time of tasks at resource (virtual machine) which has the

maximum execution time after completion of all the tasks. The main aim of task scheduling is

to minimize the makespan time so that user's applications can execute minimum time. Consider

4 virtual machine of different processing power and 6 task of different length at the starting to

test the proposed algorithm as shown in Table 4.3 & 4.4. Apply the proposed algorithm and

Figure 4.7 Makespan time comparisons between FCFS, BPSO and proposed BPSO

calculate the makespan time as shown in case study I. Calculated more results (case study II to

V) in different scenario (different task and VM) to test the correctness of the algorithm. The

88

range of task is extended from 6 to 50 and length of task is varying from 500MI to 2500 MI.

Range of virtual machine is extended from 4 to 20 and MIPS range of VM is 40 to 300. The

numerical calculation to determine the performance of the algorithm based upon the selecting

the application (tasks) and resources instances and if application is memory-intensive that

needed high-memory VM instances for database operation tasks. Therefore the proposed

algorithm selects the length of task in a range (500MI to 2500MI) and created the virtual

machine instance such that they can process the task.

Figure 4.8 Makespan time comparisons between FCFS, BPSO and proposed BPSO

If the range of task is increase or decrease then results (makespan time) is affected. Calculated

results of extended task and VM are shown in case study II to V in Figure 4.7. Calculated

results prove that dynamic transfer function based proposed BPSO algorithm performs better

than the other existing algorithm

We have extended number of tasks to test the performance of the proposed BPSO algorithm at

large number of request because huge number of request comes at cloud after a time interval.

We increase number of requests/tasks number from 100, 200 up to 500 which are running at 50

fixed number of virtual machines and calculate the makespan time. Computational results

shown in Fig. 4.8 proved that execution time of proposed BPSO is better than the existing

89

BPSO and FCFS algorithm. Further we test the performance of the algorithm at fixed number

of tasks while number of virtual machine is variable. We have taken fixed 500 numbers of tasks

with random length (1000MI to 5000MI) and allocated to 20 virtual machines by proposed

BPSO algorithm and calculate the makespan time which is better than the other algorithms like

FCFS and existing BPSO. After that we increase the number of virtual machines from 20, 40

up to 100 and execute all the tasks at running virtual machines as shown in Fig. 4.9. Calculated

results proved that developed dynamic transfer function based BPSO algorithm reduce the

makespan time up to 15% comparison with BPSO and up to 32% comparison with FCFS

algorithm.

Figure 4.9 Makespan time comparisons between FCFS, BPSO and proposed BPSO

4.8.3 Convergence rate

Convergence rate of algorithms represents that after how much iteration algorithm is

converging to final solution (minimum execution time or makespan time) i.e. how much time

algorithm is taken to optimize the fitness function. To check the convergence rate of both the

algorithm (BPSO and proposed BPSO) simulation environment is created in which 500

iteration is run with swarm size 20. Number of tasks and number of VM is considering 20, 10.

Rest of the BPSO parameter value is considering same as taken section 4.9.1 during the

calculation of execution time. Run the simulation and calculated results shows (Fig. 4.10) that

90

proposed BPSO algorithm is converge in less iteration (early) as compare to general BPSO

algorithm because proposed BPSO algorithm use dynamic transfer function that provide the

good balance between exploration and exploitation.

Figure 4.10 Convergence rate comparisons between BPSO and proposed BPSO

4.8.4 Throughput

 This experiment analyzes the performance of the algorithms regarding the parameter

throughput. It is calculated using the equation 28. Ten different schedules are generated to test

the throughput of the developed algorithm. Range of the tasks is extended from six to 50 and

range of virtual machine is extended from four to twenty in the generated schedule. Length of

the task is generated randomly in each schedule. Calculate the results of the developed

algorithm with BPSO parameter like number of iteration and number of particle is shown in

Table 4.8. Calculated results represents that when number of task is increase then throughput of

the algorithm is decrease due to different type of delay like waiting time of task, buffer delay,

task transfer time etc. Developed BPSO based algorithm execute more task in a minute rather

than others algorithm because it has the lowest processing time. FCFS [38] algorithm average

throughput is 1.19 and BPSO [37] algorithm average throughput is 1.85 per minute which is

lower than the developed BPSO algorithm (2.045. Fig. 4.11 represent that developed modified

BPSO algorithm has better throughput than other existing algorithm in the entire schedule and

all the condition.

91

Table 4.8 Throughput comparison between FCFS, BPSO and developed BPSO
Schedule Task Resource Iteration No. of

particle
Throughput

of FCFS
[38]

Throughput
of BPSO

[37]

Throughput of
developed Modified

BPSO

𝑆ଵ 6 4 100 10 1.93548 2.975206 3.5294117

𝑆ଶ 8 4 100 10 1.374045 2.465753 2.9268292

𝑆ଷ 10 6 100 10 1.614349 2.627737 3.2142857

𝑆ସ 15 6 200 20 .9137055 1.400778 1.875000

𝑆ହ 15 8 200 20 1.084337 1.614349 2.222222

𝑆଺ 15 10 200 20 1.254355 1.764705 2.608695

𝑆଻ 20 10 300 20 .9809264 1.4937759 2.0809248

𝑆଼ 30 15 300 30 .92783505 1.4574898 2.0224719

𝑆ଽ 40 20 400 40 1.01123595 1.5384615 2.2929936

𝑆ଵ଴ 50 20 500 50 .825688073 1.2080536 1.77339901

Figure 4.11 Throughput comparisons between FCFS, BPSO and proposed BPSO

4.9. Summary

We have developed a TF୔-BPSO algorithm in which modified transfer function remove the

shortcoming of existing BPSO and maintain the good balance between exploration and

exploitation in this paper. We have study different transfer function in the literature but all the

existing transfer functions have some limitation i.e. some transfer function provides good

92

exploration but exploitation and some provide better exploitation not exploration. Further we

proposed a cloud task scheduling architecture and component of architecture like job request

handler, controller node, matchmaker etc. with working principle. The main aim of dynamic

transfer function based BPSO algorithm for task scheduling is to complete the tasks in

minimum time. Cloudsim simulator has been used for the analysis the performance of the

dynamic transfer function based modify BPSO. Simulation results show (Table 4.5 to 4.7,

Figs. 4.5 to 4.11) that proposed MBPSO algorithm gives minimum execution time of task

comparison to other existing algorithm in all the condition.

4.10 References:

[1] R. Gupta, "Review on existing load balancing techniques of cloud computing,"

International Journal of Advanced Research in Computer Science and Software Engineering,

vol. 4, no. 2, pp. 168-71, Feb. 2014.

[2] M. E. Frîncu, “Scheduling highly available applications on cloud environments,” Future

 Generation Computer System, vol. 32, no. 6, pp. 138–153, May 2012.

[3] D. Babu and P. Venkata, “Honey bee behavior inspired load balancing of tasks in cloud

 computing environments,” Applied Soft Computing, vol.13, no. 5, pp. 2292–2303, May

2013.

[4] D. P. Mahato, and R. S. Singh, "Load balanced transaction scheduling using Honey Bee

Optimization considering performability in on‐demand computing system," Concurrency and

Computation: Practice and Experience, vol.29, no. 21, 2017.

[5] J. C. Bansal, H. Sharma, K. V. Arya, and Atulya Nagar, "Memetic search in artificial bee

colony algorithm," Soft Computing , vol. 17, no. 10, pp. 1911-1928, 2013.

[6] J.C. Bansal, A. Gopal and A. K. Nagar, "Stability analysis of Artificial Bee Colony

optimization algorithm"Swarm and Evolutionary Computation .

 DOI: 10.1016/j.swevo.2018.01.003.

[7] F. Ramezani and F.K. hussain, “Task-based System Load Balancing in cloud computing

 using Particle Swarm Optimization,” International Journal of Parallel Programming, vol.

42, no. 5, pp. 739-754, Oct. 2013.

[8] E.Pacini, C. Mateos and C. G. Garino, “Balancing throughput and response time in online

 scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)”, Advances in

 Engineering Software, vol. 84, pp. 31-47, June 2015.

93

[9] J. T. Tsai, J. C. Fang and J. H. Chou, “Optimized task scheduling and resource allocation on

cloud computing environment using improved differential evolution algorithm,” Computer

Operation Research, vol. 40, no. 12, pp.3045-3055, Dec. 2013.

[10] S. Roy, S. M. Islam, S. Ghosh, S. Das, and A. Abraham, “An Adaptive Differential

Evolution Algorithm For Autonomous Deployment and Localization of Sensor Nodes,”

Electromagnetic Research, vol.29, pp.289-309, 2011.

[11] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mondal and S. Dam, "A genetic algorithm (GA)

based load balancing strategy for cloud computing," Procedia Technology, vol. 10, pp. 340-

347, 2013.

[12] J.C. Bansal, S. K. Joshi and A. K. Nagar, "Fitness Varying Gravitational Constant in

GSA," Applied Intelligence (APIN) (2017).

[13] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” in International Conference on

Neural Networks, pp. 1942–1948, 1995.

[14] J. Kennedy, R.C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in

 International conference on Systems, Man, and Cybernetics, pp. 4104 – 4108, 1997.

[15] A. Suresh and P. Vijayakarthick, “Improving scheduling of backfill algorithms using

balanced spiral method for cloud metascheduler,” in International Conference on Recent

Trends in Information Technology, pp. 624- 627, Chennai, India, 2011,

[16] K. Dubey, M. Kumar and M. Chandra, “A Priority Based Job Scheduling Algorithm Using

IBA and EASY Algorithm for Cloud Metaschedular,” in International Conference on Advances

in Computer Engineering and Applications, pp. 66-70, Ghaziabad, India, 2015.

[17] H. Chen, F. Wang, N. Helian and G. Akanmu ,“User Priority Guided Min-Min Scheduling

Algorithm For Cloud Computing,” in national conference on Parallel Computing

Technologies (PARCOMPTECH), pp. 1-8, Bangalore, India, Oct. 2013.

[18] Y. Mao, X, Chen and X. Li, "Max–min task scheduling algorithm for load balance in

cloud computing," in International Conference on Computer Science and Information

Technology, vol. 255, pp. 457-465, New Delhi, India, 2014.

[19] M. Kumar and S.C.Sharma, "Priority Aware Longest Job First (PA-LJF) algorithm for

utilization of the resource in cloud environment," in 3rd International Conference on

Computing for Sustainable Global Development (INDIACom), pp. 415-420, New Delhi, India,

2016.

94

[20] P. Samal and P. Mishra “Analysis of variants in Round Robin Algorithms for load

balancing in Cloud Computing,” International Journal of Computer Science and Information

Technologies, vol. 4, no. 3, pp. 416-419, 2013.

[21] X. Zuo, G. Zhang and W. Tan,"Self-adaptive learning PSO-based deadline constrained

task scheduling for hybrid IaaS cloud," IEEE Transactions on Automation Science and

Engineering, vol. 11, no. 2, pp. 564-573, April 2014.

[22]A. Verma and S. Kaushal, "A hybrid multi-objective Particle Swarm Optimization for

scientific workflow scheduling," Parallel Computing, vol. 62, pp. 1-19, 2017.

[23] D. Tang, M. Dai, M. A. Salido and A. Giret, "Energy-efficient dynamic scheduling for a

flexible flow shop using an improved particle swarm optimization." Computers in Industry, vol.

81, pp. 82-95, Sep. 2016.

[24] Y. Wang, L. Bin, T. Weise, J. Wang, B. Yuan and Q. Tian, "Self-adaptive learning based

particle swarm optimization," Information Sciences, vol. 181, no. 20, pp. 4515-4538, Oct.

2011.

[25] Md. J. Islam, X. Li, and Y. Mei, "A Time-Varying Transfer Function for Balancing the

Exploration and Exploitation ability of a Binary PSO," Applied Soft Computing, vol. 59, pp.

182-196, 2017.

[26] K. Suresh and N. Kumarappan, "Hybrid improved binary particle swarm optimization

approach for generation maintenance scheduling problem," Swarm and Evolutionary

Computation, vol. 9, pp.69-89, 2013.

[27] Chen, Ruey-Maw, et al. "Using novel particle swarm optimization scheme to solve

resource-constrained scheduling problem in PSPLIB." Expert systems with applications 37.3

(2010): 1899-1910.

[28] K. M. Cho, P. W. Tsai, C. W. Tsai and C. S. Ynag, "A hybrid meta-heuristic algorithm for

VM scheduling with load balancing in cloud computing." Neural Computing and Applications,

vol. 26, no. 6, pp. 1297-1309, 2015.

[29] T. S. Somasundaram, and K. Govindarajan, "CLOUDRB: A framework for scheduling and

managing High-Performance Computing (HPC) applications in science cloud," Future

Generation Computer Systems, vol. 34, pp. 47-65, 2014.

[30] M. Naeem, U. Pareek and D. C. Lee, “Swarm intelligence for sensor selection problems, “

IEEE Sensors Journal, vol. 12, pp. 2577-2585, 2012.

95

[31] J. C.W. Lin, L. Yang, P. F. Viger, T. P. Hong and M. Voznak, “A binary pso approach to

mine high-utility itemsets,” Soft Computing, vol. 21, no. 17, pp. 1-19, Mar 2016.

[32] L. Han, C. Huang, S. Zheng, Z. Zhang and L. Xu, “Vanishing point detection and line

classification with bpso,” Signal, Image and Video Processing, vol. 11, pp. 17-24, 2017.

[33] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in

International Conference on Systems, Man, and Cybernetics, volume 5, pp. 4104-4108, 1997.

[34] J. C. Bansal and K. Deep, “A modified binary particle swarm optimization for knapsack

problems,” Applied Mathematics and Computation, vol. 218, no. 22, pp. 11042-11061,July

2012.

[35] S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer functions for binary particle

swarm optimization,” Swarm and Evolutionary Computation, vol. 9, pp. 1-14, 2013.

[36] L. Jian-Hua, Y. Rong-Hua, S. Shui-Hua, The analysis of binary particle swarm

optimization, Journal of Nanjing University (Natural Sciences), vol. 47, pp. 504-514, 2011.

[37] H. Izakian, B. T. Ladani, K. Zamanifar and A. Abraham, "A novel particle swarm

optimization approach for grid job scheduling," in International Conference on Information

Systems, Technology and Management, pp. 100-109, Berlin, Heidelberg, 2009.

[38] W. Li, Wenzheng, and H. Shi, "Dynamic load balancing algorithm based on FCFS," In

Fourth International Conference on Innovative Computing, Information and Control (ICICIC),

Taiwan, 2009.

96

97

CHAPTER 5

MULTI-OBJECTIVE SHEDULING ALGORITHM USING PSO

 The main objective of scheduling algorithm is allocation of applications to cloud resource in

such a manner that cloud user complete their tasks in minimum time and cost before

the deadline expires. Efficient resources allocation becomes a critical problem for cloud service

provider which needs to be resolved because it can greatly reduce the energy consumption in

cloud data center.

5.1 Energy Consumption and Execution Cost

Cloud service provider provides the elastic and flexible services to the user [1] due to which

rapid growth in demand of computational power and number of users is increasing day by day

in cloud environment. Therefore large scale data centers (group of computers) demand is

increased and more data centers are adding to the cloud server for better services but these

servers consumes huge amount of electric energy. As per the survey, IT infrastructures in USA

consumes approximately 61 billion kWh whose cost was 4.5 billion $ in 2006 [2]. This

electricity consumption was the double of electricity consumed in 2000 by IT infrastructure and

it is also predicted [3] that cloud data centers consumed .5% of world electricity and it could be

four times by 2020 if the same trend continues. However, utilization of cloud data center is

approximately 20% to30% [4] only, i.e., a large amount of energy will be wasted.

There are two main reason of day by day increasing the energy consumption in cloud data

center: first one is rapid increase in cloud server as well as customers due to which energy

consumption has been increased approximately 56% from 2005 to 2010. To minimize the total

energy consumption, the number of active nodes should be reduced and the idle nodes (host)

should be turned off. Second reason is that resource is not allocated properly in cloud

environment due to which energy consumption has been increased.

There are two main entity works in cloud environment one is cloud services provider and other

is customer or user [5]. Cloud service provider contains the huge number of computational

resources that are provided to the users to maximize the profit by achieving high resource

utilization. On the other hand cloud user want to execute their dynamic applications in

minimum time and execution cost. From a provider’s perspective, the key issue is to maximize

98

profits by minimizing the energy consumption and execution costs considering deadline as

constraint. There is always trade-off between profit and energy consumption, so trade-off

solution is required to solve the problem. Therefore we have developed a scheduling algorithm

that optimize the parameters (makespan time, execution cost, task rejection ratio, throughput,

energy consumption etc.) based upon the defined fitness function considering deadline as

constraint. We are discussing PSO based metaheuristic scheduling algorithm in this chapter.

5.2 Contribution

The goal of cloud service provider is to maximize the profit from cloud infrastructure while

cloud users want to execute their applications in minimum time and cost. The rapid growths in

demand of computational power tends to massive growth in cloud data centers and require

large amount of energy consumption in cloud data centers which becomes a serious threat to

the environment. To reduce the energy consumption and gain the maximum profit in cloud

computing is a challenging problem.

Special contribution of this chapter:

 We have formulated our multi-objective scheduling problem in the form of

mathematical model and defined the objective function & fitness function.

 Resource allocation model has been designed for processing the applications/tasks in

efficient way.

 We have modified PSO algorithm that optimizes the parameters (execution time,

makespan time, execution cost, energy consumption, task rejection ratio and

throughput) based upon the defined fitness function using independent random tasks

while considering deadline as constraint. Cloudsim demonstrated that whatever

simulation condition is near to the real environment developed algorithm performs

better than existing PSO, Honey Bee and Min-Min.

5.3 Related Work and Research Gap

Traditional algorithm in cloud computing mainly focuses on the optimization constrained by

time or cost without paying attention to energy consumption. Lots of algorithms have been

proposed for resource scheduling in cloud environment. M Kumar and SC Sharma [6-7]

proposed algorithms that balance the workload to enhance the utilization of cloud resources and

99

reduce the makespan time of upcoming task. K. Dubey et al. [8] proposed priority based job

scheduling algorithm using the IBA & EASY for cloud metascheduler that reduce the time of

job and improve the utilization ratio of cloud resources. M. Malawski et al. [9] developed an

algorithm for IaaS cloud to optimize the cost and time considering deadline as constraint. Some

more traditional algorithms have been proposed [10-13] but none of the algorithm optimizes

time, cost and energy simultaneously in cloud environment as shown in Table 5.1.

Traditional algorithms are not good for finding the optimal solution of the complex problem.

Therefore, authors are using metaheuristic algorithms to find out the sub optimal solution

(approximate solution) of NP Complete problem in short period of time. L.D Babu and P.V

Krishna have proposed an algorithm that reduces the response time and makespan time with

considering the priority of tasks as quality of service parameter [14]. E.Pacini et al. [15]

proposed cloud scheduler based ant colony optimization (ACO) algorithm to optimize the

throughput and response time in cloud environment. Tsai has proposed improved differential

evolution algorithm to optimize the execution cost and makespan time parameter [16].

PSO algorithm is used to solve single objective, multi-objective and bi-objective problem [17].

R.Fahimeh et al. [18] have developed task based system for load balancing using particle

swarm optimization (TBSLBPSO) algorithm to optimize the execution time and task transfer

time considering task migration approach. T.S Somasundaram and K Govindarajan have

developed PSO based scheduling algorithm that optimize execution cost, job rejection ratio and

time considering deadline as quality of service parameter [19]. A.Verma and S. Kaushal have

proposed Bi-Criteria Priority based PSO algorithm that optimize the execution time and

execution cost parameter consider deadline as constraint [20]. Netjinda et al. [21] have

proposed PSO with variable neighborhood search based algorithm that improve only execution.

Yassa et al. [22] have proposed Dynamic Voltage and Frequency Scaling (DVFS) and PSO

based scheduling policy (PSO-DVFS) to optimize the energy consumption and execution cost.

Best of the author knowledge none of the above papers have considered all three parameters

like execution time, energy and execution cost simultaneously in existing literature review as

per my knowledge. The work reported in this chapter, considered all three parameter

simultaneously and used PSO algorithm to optimize the parameters considering deadline as

constraint.

100

 Table 5.1 Literature Review of Traditional and Meta-heuristic algorithm with their limitations

S N. Year Technique Parameters Tool Limitations

1 2012
[10]

After predicting the load at node,
VM migration technique is used

 Time of user request,
Resource Utilization,
Throughput

Eucalyptus
cloud

It is very difficult to predict the future load on the
basis of history of load. Energy and execution time is
not considered.

2 2012
[11]

Continuously monitor the load at
each server

Memory, Response Time Openstack It did not consider user priority and Load on a
specific server. Execution cost and energy is not
considered.

3 2013
[12]

Task migration approach is used
after scheduling

 Time, Ordinary and VIP
resource utilization

Matlab Rescheduling of task will increase complexity and
time. Cost and energy is not considered.

4 2015
[13]

Interval number theory is used to
describe uncertainty in cloud

 Resource utilization, energy
consumption

Cloudsim Execution cost and time is not considered.

5 2013
[14]

ABC algorithm is used for
balancing the workload among the
virtual machines.

Execution time, Throughput
Response Time

Cloudsim Algorithm does not work for other QoS parameters
like Cost and energy.

6 2015
[15]

ACO is used for scheduling and
VM migration approach is used for
load balancing.

Throughput, Response time Cloudsim ACO is used indirect communication mechanism for
information exchange between entities (pheromone),
energy and cost is not considered.

101

7 2013
[16]

Improved DEA algorithm for better
exploration and exploitation

Makespan time, execution
cost

Cloudsim

Energy consumption is not considered and does not
provides satisfactory solution for scalable complex
problems

8 2013
[18]

PSO based algorithm is used for
multi-objective scheduling using
task migration approach.

Task execution time, task
transfer time

Cloudsim Execution Cost and energy consumption is not
considered.

9 2014
[19]

Task migration technique is used Execution time and
execution Cost, task
rejection ratio

Matlab,
Eucalyptus

PSO easily drop in local minima or regional
optimum and energy consumption is not considered.

10 2014
[20]

Bi-criteria priority based PSO Execution cost and
execution time

cloudsim Energy consumption parameter is not considered.

11 2014
[21]

PSO with variable neighborhood
search technique

Execution cost cloudsim Execution Time and energy consumption
parameters are not considered.

12 2013
[22]

Hybrid PSO algorithm with DVFS Energy consumption and
execution cost

cloudsim Execution time and cost parameters are not
considered.

13 2016
[23]

Self-Optimization of Cloud
Computing Energy-efficient
Resources allocation technique is
used

Energy Consumption Cloudsim Execution time and execution cost is not considered.

Proposed algorithm used heuristic technique to
optimize the parameters.

102

14 2017
[24]

Configuring, Healing, Optimizing
and Protecting technique is used for
Efficient Resource allocation

Execution cost, time and
SLA violation

Cloudsim Some important QoS parameters Energy
Consumption, task rejection ratio and deadline of
tasks is not considered in proposed algorithm.

15 2017
[25]

Measure the size of the file and
decision is taken based upon
threshold values.

Energy Consumption and
process time

CPN Proposed algorithm does not consider execution
cost, makespan time and task rejection ratio types of
QoS parameters.

16 2017
[26]

Two novel adaptive energy-aware
algorithms have been proposed.

Energy consumption and
SLA violation

Cloudsim Execution time, execution cost, task rejection ratio
and deadline constraint does not consider in
proposed algorithm.

17 2016
[27]

MMGreen framework is proposed
for exploiting virtualization
technologies

Energy consumption and
communication cost

Cloudsim Execution time, throughput, execution cost etc. QoS
parameters are not considered by proposed
algorithm.

18 2018
[28]

Adaptive task allocation algorithm
is proposed

Energy consumption and
makespan time

Cloudsim Execution cost is not considered and traditional
technique is used to optimize the energy and time
parameters.

19 2018
[29]

Complete mapping (VM to tasks)
algorithm is proposed

Energy consumption and
resource utilization

Cloudsim Execution cost, task rejection ratio, throughput etc.
QoS parameters are not considered by proposed
algorithm.

20 Our
Algo

.

PSO based approach Time, cost, energy
consumption, throughput,
and task rejection ratio.

cloudsim Algorithm is tested for independent task only.

103

5.4 Proposed Resource allocation model for Cloud environment

Cloud computing resource allocation model is depicted in Fig. 5.1. This model contains the six

components but three are main components: controller node, task scheduler and resource

monitoring node. Cloud user submits the applications/jobs (tasks) request 𝒯 in cloud

environment and specify the requirement of software (Mpich-1.2.7 etc), hardware (memory,

CPU etc) and quality of service parameter (deadline, priority, elasticity etc). Each task request

contain the deadline 𝜕(𝒯௜) that are assigned to them. Each task 𝒯௜ is executed with in defined

deadline. If large number of tasks exceeds the deadline then task rejection ratio is increased due

to increased SLA violation. Therefore we need an algorithm that execute maximum tasks

before their deadline i.e. task rejection ratio should be low and throughput of the algorithm

should be high. Working of each component of the resource allocation model is given below.

5.4.1Controller Node

Controller node controls (continuously monitor or interact) all the components of the model

like scheduler, resource monitor, performance metrics task model, and programming model. It

contains the information about the entire upcoming authentic tasks or applications request that

needs cloud resources (virtual machine). Controller node forwards the details of tasks model

(no. of required CPU, amount of memory required, bandwidth etc.) and virtual machine (idle,

overloaded, under load) to scheduler for scheduling the upcoming requests.

5.4.2 Task Scheduler

Scheduler is responsible for mapping the upcoming tasks (request) with suitable cloud

resources (virtual machine). When scheduler receives the details of tasks from task model and

resources details from controller node, it starts to map the cloud resource with tasks based upon

the following quality of service parameters. Scheduler checks how much total number of tasks

are coming in a schedule. After that QoS parameter (priority and deadline) of the upcoming

task is checked if upcoming tasks in a schedule contain the deadline then main objective of the

scheduler is to schedule all the task in such a manner that maximum task completed their

execution before the deadline expired i.e. task rejection ratio should be low so that SLA

violation is not increased. If tasks are priority based, executes those tasks at the starting that

have high priority and lower priority task is executed at the last. Scheduler use the scheduling

algorithm to optimize the parameters like makespan time, execution time, cost, task rejection

ratio, throughput, energy consumption based upon the fitness function. Scheduler sent the

mapping list (match task with cloud resource) to controller node so that it can update its

104

information. We have proposed scheduling algorithm in this chapter that assigned the task to

virtual machine in effective way and optimize the parameters considering deadline as QoS

parameter.

Figure 5.1 Resource allocation model for cloud environment

5.4.3 Resource Monitoring Node

After the allocation of tasks to virtual machine, this node start to monitor the status of each

virtual machine either periodically (particular time interval) or event basis and pass to the

controller node. If any of the virtual machines hold the load above their threshold limit

(threshold limit is defined at the time of SLA) then virtual machine is in overloaded condition.

If virtual machine holds the load below the threshold limit then virtual machine is in

underloaded condition otherwise virtual machine is in balance condition. Resource monitor

node contain all information about the each virtual machine i.e. VM Id, VM processing speed,

hypervisor, primary as well as secondary storage memory etc. When task is allocated to a

virtual machine, workload at the virtual machine is increased and resource monitoring node

update the status of that virtual machine i.e. this virtual machine is able to process more task or

105

not at that particular moment and forward the complete details to controller node because

controller should know the capacity of all virtual machines. On the basis of capacity and

current load at the virtual machine it calculates overloaded, underloaded and balanced virtual

machine. If large number of virtual machine are in overloaded and underloaded condition or

task rejection ratio is high then controller node reschedule the tasks (if enough deadline is

available) otherwise calculate the optimize parameter based upon the fitness function.

5.4.4 Performance metrics

It is used to calculate the performance improvements that are gained by proposed resource

allocation model in Fig. 5.1. In this chapter, we have evaluated the various performance

metrics such as execution time, execution cost, task rejection ratio, energy consumption,

throughput consider deadline as constraint.

5.4.5 Programming model

The programming model is helpful for providing the interface to the controller node. Web

services based programming model is used for interfacing the controller node with other

components of the proposed model.

5.4.6 Task model

It contain the information about the tasks/applications and their requirements. The requirements

are in terms of hardware resources and software resources. The upcoming request/ applications

can be of many types such as memory intensive, CPU intensive, workflow tasks etc. The Tasks

are modeled as

<TaskID, Task length, InputFileID, OutputFileID, required resource by task, QoS

ParametersID>

5.5 Problem Statement and Formulation

The aim of PSO based scheduling algorithm is to schedule the upcoming applications/tasks to

running resource (virtual machine) in such a manner that cloud user’s complete their

applications in minimum time (execution as well as makespan time) with minimum energy

consumption and reduced execution cost considering deadline as constraint. As per cloud

customer’s expectation throughput should be high so that maximum task is executed in unit

time due to which task rejection ratio will be low i.e. maximum task should execute before the

deadline expires. The objective of completing the tasks in minimum time, minimum execution

cost and minimum energy consumption becomes a multi-objective and complex problem in

106

cloud environment. There is always a trade-off between time, cost and energy consumption. To

make a balance between execution time, execution cost and energy consumption, a trade-off

solution is required. We formulate this multi-objective problem into mathematical form and

defined the fitness function as well as objective function for it. Controller node accept n

number of tasks request 𝒯ଵ, 𝒯ଶ, 𝒯ଷ …𝒯௡ which are independent in nature. Each task has the task

length ℒ(𝒯௜) and deadline 𝜕(𝒯௜) that are assigned to them. Length of the task is expressed in MI.

Every task required 𝓅௦ processing speed, 𝜂 is the number of required processor, ℳ௠௘௠

amount of main memory, 𝓈௖ storage capacity and ℬ amount of bandwidth to process the

upcoming task. Controller node contain the m number of cloud resource 𝓇ଵ, 𝓇ଶ, 𝓇ଷ…𝓇௠ that

are heterogeneous in nature in terms of processing speed, number of core, memory, hypervisor

etc. If tasks 𝒯௜ meet their requirement with resources 𝓇௝ within defined deadline then value of

decision variable 𝜓𝒯೔𝓇ೕ
 is 1 otherwise value is 0. Symbol notation and its related description are

shown in Table 5.2.

5.5.1 Objective function

The main aim of objective function is to maximize or minimize the parameter (Execution cost,

energy efficiency, makespan time, task rejection ratio, throughput etc). Cloud service provider

wants to minimize time (execution time as well as makespan time) and energy consumption

while cloud user needs the services in minimum cost. Therefore, we defined the fitness function

whose objective is minimizing the time, execution cost and reducing the energy consumption

considering deadline as QoS parameter.

Fitness function f (𝓇௝) = 𝛼* 𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ + 𝛽* 𝐸𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ + 𝛾 * ℰ𝒞𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ (1)

 𝛼+ 𝛽+ 𝛾 =1 (2)

Where the value of α, β, and γ is lies between 0 to 1 i.e. 0<𝛼<1, 0< 𝛽 <1, 0< 𝛾<1 and

represent the weight assigned to execution time, execution cost and energy consumption.

(a)Execution Time

Our problem is based upon the multi-objective function therefore first objective is defined to
minimize the total processing time of tasks 𝒯ଵ, 𝒯ଶ, 𝒯ଷ, …𝒯௡ at virtual machine 𝓇ଵ, 𝓇ଶ, 𝓇ଷ…𝓇௠
in a schedule 𝒮௣. First objective function is defined as

 Total processing time (𝑇𝑃𝑇𝒯೔

𝓇ೕ) =𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ (3)

 Formula to calculate the Execution time (ET) for task is =
ℒ(𝒯)

𝓅ೞ∗ఎ
 (4)

107

Notation and their description are used in problem formulation and fitness function is shown in
Table 5.2.

Notations Description

𝒯ଵ, 𝒯ଶ, 𝒯ଷ, …𝒯௡, Set of task request in a schedule 𝒮

𝓇ଵ, 𝓇ଶ, 𝓇ଷ…𝓇௠ Available cloud resources (number of virtual machine)

𝜕(𝒯௜) Deadline of the Task

𝑤𝒯 Window of tasks (number of task in a schedule)

𝒮௣ pth schedule of upcoming workload

θ𝒯೔𝓇ೕ
 Matched resources list of tasks 𝒯௜ in schedule 𝒮௣ (i =1 to n)

𝑇𝑃𝑇𝒯೔

𝓇ೕ Total processing time of tasks 𝒯௜ at cloud resources 𝓇௝

𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ Execution time of task 𝒯௜ on matched resources 𝓇௝

𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ Excepted execution of task 𝒯௜ at cloud resources 𝓇௝

𝑇𝑇𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ Task Transfer time of task 𝒯௜ on resource 𝓇௝ in the matched cloud resource

𝒯೔𝒮೛𝜓𝒯೔𝓇ೕ
 Binary decision variable such that 𝜓𝒯೔𝓇ೕ

=1 if 𝒯௜ is allocated to resource 𝓇௝

𝑋௜௝௞ If task i is allocated to resource 𝓇௞ from 𝓇௝ then value is 1 otherwise 0

𝑊𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛
 Time spend by task 𝒯௜ in job queue before assigned to resource 𝓇௝in schedule

𝑇𝐸𝐶𝒯೔

𝓇ೕ Total cost of tasks 𝒯ଵ, 𝒯ଶ, 𝒯ଷ…𝒯௡ at cloud resources 𝓇ଵ, 𝓇ଶ, 𝓇ଷ…..𝓇௠

𝐶𝓇ೕ
 Cost of virtual machine 𝓇௝ per hour basis

𝐸𝐶𝒯೔𝓇ೕ Execution cost of task 𝒯௜ at resource 𝓇௝

𝑇𝑇𝐶𝒯೔𝓇ೕ Task transfer cost from one resource to other resource

𝐸𝐸𝐶𝒯೔𝓇ೕ Excepted execution cost of tasks at resources

 𝑃𝑇𝒯೔

ఘೕ Processing time of task 𝒯௜at virtual machine 𝜌௝

𝑀௜ Memory required by task 𝒯௜𝓇௝

𝑊𝓇ೕ
 Workload at resource 𝓇௝

ℰ𝒞𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ Energy consumption by resources 𝓇௝ for tasks 𝒯௜ in schedule 𝒮௣

ℰ𝒞ℳ௔௫ Energy consumption when resource is completely utilized (approximately 100%)

ℰ𝒞ℳ௜௡ Energy consumed by resources when they are ideal or low utilization(0 to5 %
only)

108

There are many task in a schedule 𝒮௣ so calculate the execution time of tasks (𝒯௜) at virtual

machine 𝓇௝ in cloud environment using the equation 5.

 Execution time 𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ =∑ 𝜓𝒯೔𝓇ೕ
 ௡

௜ୀଵ *
ℒ(𝒯೔)

𝓅ೞ𝓇ೕ
∗ఎ

 (5)

Task is allocated based upon the scheduling algorithm but there are two problems can occur

after scheduling: one is scheduling algorithm can allocate more task to some virtual machine

and less task to other virtual machine i.e. some virtual machine may be in overloaded or

underloaded condition, depends upon the capacity of the virtual machine. Second one is, if

scheduling algorithm allocate same number of task to all the running virtual machine but

upcoming tasks or applications are in heterogeneous nature so it may be possible that all the

high computation-intensive tasks is allocated to some virtual machine and low intensive tasks is

allocated to other machine i.e. again there is possibility of overload and underloaded of virtual

machine in cloud environment. Therefore to solve such types of problem, transfer the task from

overloaded to underloaded virtual machine. Task transfer time and capacity of virtual machine

is calculated using the equation 6 & 7.

 𝑇𝑇𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ = ∑ ∑ ∑ 𝑋௜௝௞
௠
௞ୀଵ ௠

௝ୀଵ ௡
௜ୀଵ *

୚ୈ୉ೕೖ

ℬೕೖ
 (6)

 𝐶𝑎𝑝𝓇ೕ
 = 𝑝௦ ∗ 𝜂+ℬ𝓇ೕ

 (7)

Where VDE௝௞ represent the volume of data (may be more than one task) exchange between

virtual machine 𝓇௝ & 𝓇௞ and can be calculate using the formula

 VDE௝௞= ∑ ∑ ∑ 𝑋௜௝௞
௠
௞ୀଵ ௠

௝ୀଵ ௡
௜ୀଵ *ℒ(𝒯௜) (8)

 Where 𝐶𝑎𝑝𝓇ೕ
 represent the capacity of virtual machine and 𝑊𝓇ೕ

 represent the available

workload at virtual machine. Equation 9 ensures that total load assigned at virtual machine

should not be more than the capacity of virtual machine. Constraint (10) ensures that 𝜓௜௝ is a

binary variable it has the value either 0 or 1.

 ∑ 𝜓௜௝
௡
௜ୀଵ 𝑊𝓇ೕ

≤ 𝐶𝑎𝑝𝓇ೕ
, Ɐi €n &Ɐj €m (9)

 𝜓௜௝ €[0,1] Ɐi, j (10)

 Waiting time (𝑊𝑇ఘ) = 𝑆𝑇௜ - 𝑇𝐴௜ (11)

109

 Where ቚθ𝒯೔𝒮೛
 ቚ≤ m (12)

𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ is the sum of execution time (𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛) task transfer time (𝑇𝑇𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛) and

waiting time (𝑊𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛) where 𝑊𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ is the time wait by the processor in job queue

before assigned the task 𝒯௜ to resource 𝓇௝ in schedule 𝒮௣ as shown in equation 11. Waiting time

should be minimum for better performance. Where 𝒯𝐴௜ task arrival time and 𝑆𝒯௜ is the start

execution time of task 𝒯௜ at VM. We have assumed that all virtual machine are in

running/active state. Matched resource list generated by scheduler (in equation 12) for each

task 𝒯௜ consist of less than or equal to total number of running virtual machine (available cloud

resources).

(b)Execution Cost

The goal of second objective function is to optimize the total execution cost (𝑇𝐸𝐶𝒯೔

𝓇ೕ
) of tasks

𝒯௜ at resources 𝓇௝ in particular schedule 𝒮௣ . We defined the second objective function in

equation 13 that reduce the execution cost

 Min 𝑇𝐸𝐶𝒯೔

𝓇ೕ
=𝐸𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ (13)

 𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ =𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ * 𝐶𝓇ೕ
 (14)

 𝑇𝑇𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ = 𝑇𝑇𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ *𝐶𝓇ೕ
 (15)

 𝐸𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ =𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ + 𝑇𝑇𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ (16)

Where 𝐶𝓇ೕ
 represent the execution cost of cloud resources per hour basis. Resource may be

memory intensive or CPU computation intensive. Here we are using two types of CPU

intensive resources one is high computation intensive other is low computation intensive.

(c)Energy consumption

The objective of the cloud service provider is to reduce the energy consumption. Energy model

is presumed on the basis that resource utilization has a linear relationship with energy

consumption [23]. Energy consumption is represented by the equation 17.

 ℰ𝒞𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ =ℰ𝒞𝒟𝒞 + ℰ𝒞𝒯୰ୟ୬ୱୡୣ୧୴ୣ୰ୱ + ℰ𝒞ℳ௘௠௢௥௬ + ℰ𝒞ℰ୶୲୰ୟ (17)

 Where ℰ𝒞𝒟𝒞 represents energy consumption by datacenters, energy consumption by switching

equipment is represented by ℰ𝒞𝒯୰ୟ୬ୱୡୣ୧୴ୣ୰ୱ, energy consumption by memory (primary as well

as secondary) is represented by ℰ𝒞ℳ௘௠௢௥௬ and energy consumption by other devices like fans,

110

current conversion loss etc. is represented by ℰ𝒞ℰ୶୲୰ୟ. Maximum energy (approximately 90%)

is consumed by the computing devices specially CPU. ℰ𝒞௧,௜ (𝓇) represents the energy

consumption at given time t as shown in equation 18.

 ℰ𝒞௧,௜ (𝓇) = 𝓆 * ℰ𝒞ℳ௔௫+ (1- 𝓆) * ℰ𝒞ℳ௔௫ * ℛ𝒰 (18)

ℰ𝒞ℳ௔௫ represent the maximum energy consumption when cloud resources is 100% utilized

(fully utilized), if resource is in idle condition then it consumed fraction of energy that is

represented by 𝓆. Completely idle servers consumed approximately 70% of their peak power.

ℛ𝒰 represent utilization of cloud resources. Therefore we need an efficient scheduling

algorithm that distributes the tasks in effective way so that resource utilization should be

maximum. ℛ𝒰 Change over the time when task is allocated to virtual machine or de-allocated

from virtual machine. For any resource 𝓇௝ at a given time t, resource utilization (ℛℯ𝓈𝒰௧) is

defined in equation 19.

 ℛℯ𝓈𝒰௧ = ∑ ℰ𝒞௧,௜ (ℛ𝒰(t))dt ௡
௜ୀଵ (19)

Where n is the total number of tasks running at time t in a schedule. Actual energy consumption

is calculated by equation 20.

 ℰ𝒞ୟୡ୲୳ୟ୪ = (ℰ𝒞୫ୟ୶-ℰ𝒞୫୧୬) * ℛℯ𝓈𝒰௧+ℰ𝒞୫୧୬ (20)

Where ℰ𝒞୫ୟ୶ is energy consumption when resource is 100% utilized. ℰ𝒞୫୧୬ is minimum

energy consumption when resource is in ideal condition or low utilized.

Subject to:

 𝓇௝€θ𝒯೔𝒮೛
, 𝜓𝒯೔𝓇ೕ

=1 (21)

 𝓇௝ ∉ θ𝒯೔𝒮೛
, 𝜓𝒯೔𝓇ೕ

=0 (22)

 𝑃𝑇𝒯೔

𝓇ೕ >𝑇𝐴௜ +𝐸𝑇𝒯೔𝓇ೕ Ɐi €n &Ɐj €m (23)

 𝑃𝑇𝒯೔
 is the processing time of task 𝒯௜ at cloud resource 𝓇௝ . 𝑇𝐴௜ is task arrival time, if it is

known and certain then problem is static otherwise problem is dynamic. 𝐸𝑇𝒯೔𝓇ೕ is the

execution time of task 𝒯௜at resource 𝓇௝. Equation 23 indicates that a task can’t be started before

its time.

 𝑃𝑇௜,௝≥𝑃𝑇௜ିଵ,௝+𝐸𝑇𝒯೔𝓇ೕ (24)

 Equation 24 represent that a task start to execute at a resource only if when previous task has

been completed on that particular resource.

 ∑ 𝜓௜,௝
௠
௝ୀଵ =1, Ɐi €n &Ɐj €m (25)

111

Equation 25 represent that a task is allocated to only one virtual machine.

 ∑ 𝜓௜,௝
௡
௜ୀଵ 𝑅𝑀௜ ≤ ℳ௠௘௠௝, Ɐi €n &Ɐj €m (26)

𝑅𝑀௜ represent the memory required by task 𝒯௜ at virtual machine 𝓇௝ and equation 26 state that

available memory of virtual machine should be larger than the memory requested by tasks.

User submits the tasks with their deadline in cloud environment. Goal of service provider is to

execute maximum tasks before the deadline so that task rejection ratio as well as SLA violation

remains minimum. The time required to complete the task on available cloud resource is

expressed in equation 27 and task will be assigned to resource that satisfied the condition

shown in equation 28. Initial workload 𝑊ଵ, 𝑊ଶ, 𝑊ଷ… 𝑊௠ at virtual machine is 0 i.e. 𝑊ఘೕ
is 0 at

the starting.

 ℛ𝑇𝒯೔𝓇ೕ
= 𝜕(𝒯௜) - 𝑊𝓇ೕ

 (27)

 𝐸𝑇𝒯೔𝓇ೕ
 ≤ 𝑅𝑇𝒯೔𝓇ೕ

 (28)

Here 𝑊𝓇ೕ
 represent the available workload at virtual machine before assigned the task 𝒯௜ .

Workload 𝑊௝ at virtual machine 𝓇௝ is calculated by equation 29 [14].

 𝑊𝒯೔.=
୒୳୫ୠୣ୰ ୭୤ ୲ୟୱ୩ 𝒯೔. ୟ୲ 𝓇ೕ

ௌ௘௥௩௜௖௘ ௥௔௧௘ ௢௙ 𝓇ೕ
 (29)

 Service rate of virtual machine 𝒯௜. can be defined in equation 30

 S=𝓅௦ ∗ 𝜂 (30)

 Total load (L) at all available virtual machine can be calculated by equation 31

 L=∑ 𝑊𝓇ೕ

௠
௝ୀଵ (31)

After allocate the tasks to virtual machine workload at virtual machine is increased and

calculate it by equation 32.

 𝑊𝓇ೕ
= 𝑊𝓇ೕ

+𝐸𝑇𝒯೔𝓇ೕ (32)

Throughput of the system is calculated using the equation 33

 Throughput (Γ) =
୬୳୫ୠୣ୰ ୭୤ ୲ୟୱ୩ୱ ୡ୭୫୮୪ୣ୲ୣୢ ୱ୳ୡୡୣୱୱ୤୳୪୪୷

்௢௧௔௟ ௣௥௢௖௘௦௦௜௡௚ ௧௜௠௘
 (33)

Suppose 100 tasks are completed in 80sec then throughput of the system is 100/40=2.5

Task unable to meet deadline (Task rejection ratio) is also measure the performance of the

algorithm. It is calculated by equation 34

 Task rejection ratio (𝒯௜) =
୒୭.୭୤ ୰ୣ୨ୣୡ୲ୣୢ ୲ୟୱ୩ୱ

்௢௧௔ ௡௨௠௕௘௥ ௢௙ ௧௔௦௞௦
*100 (34)

112

Total time taken by a virtual machine 𝓇௝ to complete the entire assigned task is calculated using

the equation 35

 𝑀𝑆𝑇𝓇ೕ
 =∑ 𝐸𝐸𝑇𝒯೔𝓇ೕ 𝒯೔€θ𝓇ೕ

 (35)

Makespan time or total time to complete all the tasks are successfully in a schedule is

represented by equation 36. To calculate the makespan time select the resource (virtual

machine) among all the running virtual machine that has the maximum execution time after the

completion of all tasks

 Makespan=max {𝑀𝑆𝑇𝓇ೕ
} (36)

5.6 Particle Swarm Optimization (PSO)

PSO is population based optimization algorithm which was proposed by Eberhart and Kennedy

[30] in 1995 that mimic the behavior of animal swarm, such as bird flock and fish school which

each member in a swarm is called a particle. PSO have been applied in many research and

scientific application (model classification, function optimization, machine study, neural

network training etc.) due to distinguishing characteristics [31-32] like as (i) Consist of limited

number of parameters, there is no need to calculate the overlapping and mutation (ii) simple

and easy enumeration, (iii) it is attractive because there are few parameters to adjust, (iv) being

free from derivation, (v) sensitivity move towards the fitness function and parameters, (vi) less

dependency at initial parameter, (vii) relatively faster convergence and cheaper way rather than

other meta-heuristic algorithm like GA, ABC, ACO etc. (h) high precision solutions.

Population in PSO algorithm is defined as the total number of particles in a problem space D

and population is initialized randomly. Position of each particle represents a possible solution.

Every particle is associated with corresponding velocity that helps the particle to move on to

best position based upon the own experience and experience of its neighbors. Velocity of each

particle is updated in each time step to find out the two best positions personal best 𝑝஻௘௦௧ and

global best 𝑔஻௘௦௧. PSO equation (37) represents that particle movement for each iteration t

 𝑉௜ௗ
௧ାଵ=w*𝑉௜ௗ

௧ + 𝑐ଵ𝑟ଵ(𝑝஻௘௦௧
௜ௗ

௧
− 𝑋௜ௗ

௧)) + 𝑐ଶ𝑟ଶ(𝑔஻௘௦௧
௜ௗ

௧
− 𝑋௜ௗ

௧)) (37)

Where t+1 represent the current instruction, i represent the number of particles and d denotes

the dimension of the particle in PSO algorithm. 𝑐ଵ is cognitive learning factor and 𝑐ଶ is social

interaction coefficient. 𝑟ଵand 𝑟ଶare random number in the range between 0 to 1 in tth iteration. w

is Inertia factor that is used to maintains the balance between exploration and exploitation.

113

Velocity 𝑉௜
௧ାଵ(j) is bounded by threshold limit (velocity range should not be outside the search

space) shown in equation 38.

 V୧ୢ
୲ାଵ=ቊ

V୫ୟ୶, if ൫V୧ୢ
୲ାଵ൯ > V୫ୟ୶

V୫୧୬, if ൫V୧ୢ
୲ାଵ൯ < V୫୧୬

 (38)

 After updating the velocity, particle position is updated using velocity equation and each value

of new position should not exceed the range of [𝑋௠௔௫ , 𝑋௠௜௡]

 X୧ୢ
୲ାଵ = X୧ୢ

୲ + V୧ୢ
୲ାଵ (39)

𝑝஻௘௦௧ of the particle is updated using the equation 40.

 𝑝஻௘௦௧
௜ௗ

௧ାଵ
= ቊ

X୧ୢ
୲ାଵ, if 𝑓 ൫X୧ୢ

୲ାଵ൯ < 𝑝஻௘௦௧
௜ௗ

௧

𝑝஻௘௦௧ ௜ௗ
௧ , otherwise

 (40)

Fitness function f returns the optimal 𝑔஻௘௦௧ fitness value. After finding the 𝑝஻௘௦௧
௜ௗ

௧ାଵ
 of each

particle, we find 𝑔஻௘௦௧
௜ௗ

௧ାଵ
 by comparing all the calculated value of 𝑝஻௘௦௧

௜ௗ

௧ାଵ
.

5.6.1 PSO working methodology

PSO working principle is divided into four steps: initialization, update the particle velocity and

position, fitness function calculation and optimal solution as shown in Fig. 5.2 [21]. Firstly

Figure 5.2 PSO working methodology

particle is designed to represent all constraints that are used to calculate the value of fitness

function. After that velocity and position of the particle is initialized randomly. Velocity and

114

position of the particle is updated in each iteration based upon the value of fitness function and

comparing with their neighbor. Tasks are schedule by PSO algorithm and calculate the value of

fitness function is calculated based upon the number of upcoming task in a schedule and

available cloud resources. Tasks are independent in nature. Last process is to select the optimal

solution of the problem using PSO algorithm. Each particle has contained 𝑝஻௘௦௧ but aim of the

algorithm is to find the global or optimal solution 𝑔஻௘௦௧. Therefore variable neighbor search

(VNS) approach is used to find the optimal solution. VNS process improve the fitness function

through flow back of algorithm goes to second step and this process is continue until given

number of iteration has been finished.

5.7 Modified proposed PSO

To find the optimal solution of NP-Complete problem (like task scheduling, 0-1 knapsack,

airplane scheduling, travelling salesman etc.) using the PSO algorithm required two factor in

efficient way that affect the performance of the algorithm, one is to maintain the proper balance

between exploration and exploitation for finding the optimal solution rapidly. Another one is

jump out of local optima in case of premature convergence.

5.7.1Exploration and Exploitation

Exploration mechanism searches the whole space rather than specific regions and help the

algorithm to find out the optimal solution. Exploitation focuses on retrieving the best solution

from a specific area of the search space. The traditional inertia weight adaptation mechanism

does not provide a good balance between exploration and exploitation. To improve the search

capability, velocity updation strategy is used in this chapter. Hence we created the velocity

randomly in the range 𝑉௠௜௡ to 𝑉௠௔௫ at the starting. Time should be longer for stronger search

capability at the early stage when particle keep high velocity and time should be also longer at

the latter stage when particle keep smaller velocity. Search capability is improved (better

exploration) when particles keep high velocity at the early stage and the search accuracy is also

improved (stronger exploitation) while particles keep smaller velocity at the latter stage. This

approach avoids the prematurity and divergence types of problems from PSO to a large extent.

We are using APSO-VI algorithm to modify the PSO that provides nonlinear ideal average

velocity to control the search process [33]. Firstly we calculate average absolute velocity of

particle using equation 41

115

 𝑉௔௩௚(t)=
ଵ

௡.ௗ
 ∑ ∑ ௗ

௝ୀଵ ௡
௜ୀଵ 𝑉௜ௗ

௧ (41)

Where 𝑉௜ௗ

௧ represents the velocity of ith particle and 𝑉௔௩௚ is average absolute velocity. Size of

the particle search space is reflected by the size of average velocity. A high velocity of particle

implies larger search space of population and possibility of strong exploration ability to keep

high diversity and avoid the local optimal trap while low velocity of particle implies smaller

search space of population and strong exploitation ability to improve the accuracy of the

solution. Ideal average velocity is defined in equation 42

 𝑉௜ௗ௘௔௟(t)=𝑉௦௧௔௥௧*
ଵାୡ୭ୱ(௧గ/்೐೙೏)

ଶ
 (42)

Where 𝑉௦௧௔௥௧ represents the starting ideal velocity of particle and we calculate using the
equation 43
 𝑉௦௧௔௥௧= (𝑋௠௔௫-𝑋௠௜௡)/2 (43)

𝑋௠௔௫ and 𝑋௠௜௡ represent the maximum and minimum value of search space. 𝑉௜ௗ௘௔௟ is ideal

average velocity of particle.

 𝑇௘௡ௗ =.95* 𝑡௠௔௫ (44)

Where 𝑡௠௔௫ represents the maximum number of iterations.

Value of w is depend upon the values of 𝑉௔௩௚and 𝑉௜ௗ௘௔௟. If value of 𝑉௔௩௚ is greater than or equal

to the value of 𝑉௜ௗ௘௔௟ then w switches to low value otherwise w switches to higher value.

If 𝑉௔௩௚(t)>= 𝑉௜ௗ௘௔௟(t+1) then w(t+1)=maximum(w(t)- δw, 𝑤௠௜௡) (45)

 𝑉௔௩௚(t)< 𝑉௜ௗ௘௔௟(t+1) then w(t+1)=minimum(w(t)+ δw, 𝑤௠௔௫) (46)

Where 𝑤௠௔௫=0.9, 𝑤௠௜௡=0.3 and δw is 0.1.

5.7.2 Flow chart of modified PSO algorithm

We have added constraint in proposed PSO based algorithm keeping in mind that if position of

the particle is exceed the defined boundary. Further one more constraint is added in this

proposed PSO algorithm, task should be assigned to each virtual machines from the entire task

window (schedule) i.e. virtual machine should not be in ideal condition like existing PSO based

algorithm [18] in Table 4 where vm2 is in ideal mode. Flowchart of the modified PSO

algorithm is shown in Fig. 5.3. The steps of modified PSO algorithm are as follows.

116

Figure 5.3 Flowchart of the modified PSO (proposed) algorithm

a. Generate the initial population

b. Position and velocity of each particle is generated randomly.

c. For i=1 to population size

d. Calculate the 𝑝஻௘௦௧ and 𝑔஻௘௦௧ based upon fitness function where 𝑝஻௘௦௧represent the best

position of the particle achieve by itself and 𝑔஻௘௦௧ denote the global best (optimal value)

among all the particles.

e. For t=1 to 𝑡௠௔௫ (maximum iteration)

f. For i=1 to population size

g. Calculate 𝑉௔௩௚ and 𝑉ூௗ௘௔௟ using the equation 41 & 42

117

h. Calculate the value of inertia weight w using the equation 45 & 46.

i. Update the velocity of particle (𝑉௜ௗ
௧ାଵ) using (𝑉௜ௗ

௧ , 𝑝஻௘௦௧ , 𝑔஻௘௦௧)

j. Update the position X୧ୢ
୲ାଵ = X୧ୢ

୲ + V୧ୢ
୲ାଵ

k. If current fitness value is less than (𝑓 ൫X୧ୢ
୲ାଵ൯ < 𝑝஻௘௦௧

௜ௗ

௧
) the particles best previous

fitness value then update 𝑝஻௘௦௧
௜ௗ

௧ାଵ
= X୧ୢ

୲ାଵ

l. If current fitness value (𝑔஻௘௦௧) of the particle is better than all its neighborhood fitness

function value then update the 𝑔஻௘௦௧. 𝑔஻௘௦௧ is final optimal solution of the problem.

5.7.3 Proposed PSO algorithm for multi-objective scheduling

Standard encoding scheme of PSO cannot be applied in scheduling problem directly. Therefore

we need to find suitable mapping between scheduling problem and positions of particles. There

are some key steps to model our problem with PSO: first one is how to relate (encoded) or map

the problem of scheduling (NP Complete problem) with meta-heuristic optimal searching

algorithm like PSO. Particle is generated randomly in PSO but question is that what a particle

represents in optimal task scheduling problem and how it map with the problem. Last one is

how it optimizes the defined fitness function and objective function.

Therefore we are relating our problem with the PSO algorithm and defining the meaning and

dimension of the particles. Each particle is representing the window of task (collection of tasks

or workflow) and dimension of the particle is represented by total number of tasks in a window.

Position of the particle is defined by coordinate system that is determined by particle

dimension. The dimension of a particle will determine the coordinate system used to define its

position in space. Position of the 1 D particle is specified by 1 coordinate, 2D particle is

specified by 2 coordinate, 5D particle is specified by 5 coordinate and so on. A particle

contains the 10 tasks shown in Table 5.3 i.e. particles is 10 D and position of the particle is

determined by ten coordinates. Cloud resources (VM) are available to process the tasks and

determine the range of particle movement in search space. Particle coordinate range value is

equal to number of available cloud resource in the pool. Example of particle position encoding

and mapping tasks with available recourses is shown in Table 5.3 & Table 5.4. The value of

each coordinate denotes the resource index in particle position Table 5.3 and represent the

cloud resource is assigned to the tasks by that particular coordinate. Hence Table 5.3 provide

118

the encode mechanism to map the upcoming tasks with cloud resources. This mapping (tasks

with resources) is shown in Table 5.4.

Table 5.3 Position of the particles

𝐶ଵ 𝐶ଶ 𝐶ଷ 𝐶ସ 𝐶ହ 𝐶଺ 𝐶଻ 𝐶଼ 𝐶ଽ 𝐶ଵ଴
2 3 4 2 2 1 3 0 4 0

Table 5.4 Mapping task with cloud resources

𝒯ଵ 𝓇ଶ 𝒯ଶ 𝓇ଷ 𝒯ଷ 𝓇ସ 𝒯ସ 𝓇ଶ 𝒯ହ 𝓇ଶ 𝒯଺ 𝓇ଵ 𝒯଻ 𝓇ଷ 𝒯 𝓇଴ 𝒯ଽ 𝓇ସ 𝒯ଵ଴ 𝓇଴

We have created 5VM which have the coordinate value from 0 to 4 and particle coordinate

represent the corresponding index of the tasks. Coordinate 𝐶ଵ represent the task 1 and value of

the coordinate 𝐶ଵ is 2 indicate that task 𝒯ଵ is allocated to resource 𝓇ଶ Coordinate 𝐶ଶ represent

the task 2 and value of the coordinate 𝐶ଶ is 3 indicate that task 𝒯ଶ is allocated to resource 𝓇ଷ.

Coordinate 𝐶ଷ represent the task 3 and value of the coordinate 𝐶ଷ is 4 indicate that task 𝒯ଷ is

allocated to resource 𝓇ସ. On the same way process is continues until the entire coordinate has

not been finished. The main objective of proposed PSO algorithm is to find the best mapping

between task and resource that can optimize the defined fitness function and produce the

optimal solution of scheduling problem. Particle try to find out new solution at each iteration

(based upon new velocity and position) if previous is poor (not optimal) than new solution.

Proposed PSO algorithm is shown in Fig. 5.4.

Brief explanation of the proposed PSO algorithm is follows:

 Particles position and velocity are initialized randomly with in defined range.

 Generated workload for each schedule 𝒮୮

 Generated virtual machine with different processing capability.

 Once controller node obtained the information about tasks and resources, proposed

algorithm schedule the tasks based upon the fitness function.

 Calculate the value of 𝑝஻௘௦௧ based upon fitness function, if calculated value of 𝑝஻௘௦௧ is

optimal then replace new calculated value of 𝑝஻௘௦௧ with previous value of 𝑝஻௘௦௧.

119

Proposed PSO based multi-objective scheduling algorithm
1. Input: Number of tasks in a schedule 𝒮௣ and available cloud resources (virtual machine)
2. Output: Optimize the parameters time, cost and energy based upon the defined fitness & objective function
3. Start
4. Sୗ=Swarm Size (number of particle in population)
5. Number of iteration is represented by t
6. Vୖ=Range of Random Velocity
7. 𝑉௜ௗ

௧ represents the Particle velocity
8. X୧ୢ

୲ Represent the Position of Particle
9. 𝑃ோ=Random position of the particle
10. 𝑝஻௘௦௧ represents the personal best or local best of the particle
11. 𝑔஻௘௦௧ represents the global best of the particle among all the particle
12. For i=1 to Sୗ //initialize the particle of the swarm
13. do
14. 𝑉௜ௗ

௧ Vୖ (randomly initialize the velocity of particles)
15. X୧ୢ

୲ 𝑃ோ (randomly initialize the position of particles)
16. Generate the schedule 𝒮௣ that contain the tasks 𝒯ଵ, 𝒯ଶ, 𝒯ଷ .…𝒯௡of random length with

 defined range and deadline of the tasks 𝜕(𝒯௜) is also generated.
17. Generate the cloud resources 𝓇ଵ, 𝓇ଶ, 𝓇ଷ…𝓇௠ that contain different MIPS.
18. Schedule the task 𝒯ଵ to resources 𝓇௝

19. θ𝒯భ𝒮೛
 (𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ , 𝐸𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ , ℰ𝒞𝒯౟𝓇ౠ€஘𝒯౟𝒮౦)

20. Check thecondition, task is allocated to all the virtual machine or not,
21. If any virtual machine 𝓇௝ is ideal then reschedule the task, otherwise go to step 23

22. Calculate 𝑝஻௘௦௧ based upon fitness function using the equation 1
23. f (𝓇௝ ∈ θ𝒯భ𝒮೛

) 𝛼* 𝐸𝐸𝑇𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ + 𝛽* 𝐸𝐸𝐶𝒯೔𝓇ೕ€஘𝒯೔𝒮೛ + 𝛾 * ℰ𝒞𝒯೔𝓇ೕ€஘𝒯೔𝒮೛

24. 𝑝஻௘௦௧ X୧ୢ
୲

25. Repeat the while loop until maximum iteration (t୫ୟ୶ ≠ ∅)
26. do
27. For i=1 to population size
28. Calculate 𝑉௔௩௚ and 𝑉ூௗ௘௔௟ based upon the formula given in equation 41 & 42

29. Calculate the value of inertia weight w using the equation 45 & 46 based upon the value
 of 𝑉௔௩௚ and 𝑉ூௗ௘௔௟

30. 𝑝஻௘௦௧
௜ௗ

௧ାଵ
∈ 𝓇௝ min(𝑓 (X୧ୢ

୲ାଵ), 𝑝஻௘௦௧
௜ௗ

௧
)

31. Calculate ℛ𝑇𝒯೔𝓇ೕ
= 𝜕(𝒯௜) - 𝑊𝓇ೕ

32. if 𝐸𝑇𝒯೔𝓇ೕ€θ𝒯೔𝒮೛
 ≤ 𝑅𝑇𝒯೔𝓇ೕ€θ𝒯೔𝒮೛

 then

33. Assigned the task 𝒯௜ to resources 𝓇௝ in schedule 𝒮௣ and workload at the virtual machine increase

34. 𝑊𝓇ೕ
= 𝑊𝓇ೕ

+𝐸𝑇𝒯೔𝓇ೕ

35. if
36. f (𝑔஻௘௦௧)≥ f (𝑝஻௘௦௧)
37. then
38. 𝑔஻௘௦௧ 𝑝஻௘௦௧
39. Return the value of 𝑔஻௘௦௧
40. Velocity of the particle is updated using equation 37

41. 𝑉௜ௗ
௧ାଵ=w*𝑉௜ௗ

௧ + 𝑐ଵ𝑟ଵ(𝑝஻௘௦௧
௜ௗ

௧
− 𝑋௜ௗ

௧)) + 𝑐ଶ𝑟ଶ(𝑔஻௘௦௧
௜ௗ

௧
− 𝑋௜ௗ

௧))

42. 𝑋௜ௗ
௧ (k+1) Update the particles position from (𝑉௜ௗ

௧ , 𝑋௜ௗ
௧))

43. Repeat the step until all the task has not been finished in schedule
44. End

Figure 5.4 Steps of proposed PSO based algorithm for scheduling algorithm

120

 Resource monitor node monitor the status of the virtual machine continuously and

forward the information to controller node that decide task would be allocated to

resource or not.

 Calculate the value of 𝑉௔௩௚ and 𝑉ூௗ௘௔௟ using the equation and define the new value of w

for better exploration and exploitation.

 If execution time of the task is less than defined deadline then controller node allocates

the task to resources.

 Our aim is to find out optimal 𝑔஻௘௦௧ based upon the defined fitness function. Compare

the fitness value of 𝑝஻௘௦௧ with 𝑔஻௘௦௧. If fitness value of 𝑝஻௘௦௧ is better than 𝑔஻௘௦௧ then

assigned it to 𝑔஻௘௦௧.

 This process is continuing until all tasks have not been schedule to available virtual

machine in optimal way or terminates the loop of max iteration.

 Proposed PSO scheduling algorithm optimize the parameters execution time, makespan

time, task rejection ratio, execution cost, energy consumption and throughput while

considering deadline as constraint.

5.8 Analysis, Comparison and Simulation Results

We choose cloudsim simulator to test the performance of the developed PSO based algorithm.

There are some feathers provided by cloudsim like as, it provides modeling and simulation

environment for large scale cloud computing including datacenters, host and virtual machines

of different configuration etc. cloudsim contains the service broker that is used for provisioning

and de-provisioning of cloud resources.

Table 5.5 VM properties

Virtual machine is a processing entity in cloud environment that is controlled by hypervisor

such as KVM, XEN etc. Each virtual machine (VM) contains the parameter like VM Id, CPU

VM Id VM MIPS VM Image size Memory No. Of cpu Hypervisor

0 280 1000 512 1 kvm
1 230 1000 1024 1 kvm
2 200 1000 512 1 kvm
3 300 1000 1024 1 kvm
4 250 1000 1024 1 kvm

121

speed in MIPS, and number of core per CPU, image size of virtual memory, main memory and

hypervisor as shown in Table 5.5. Further we have generated cloudlet (Task) with their

parameters like Task Id, Length (random task length of range 100000 MI to 300000 MI).

5.8.1 Execution Time Calculation

One aim of the developed PSO based algorithm is to minimize the execution time of tasks

submitted to the cloud resource allocation model. We have analyzed and investigated the

performance of the developed algorithm by varying the number of tasks and virtual machines in

each schedule, range of the virtual machine MIPS is 200 to 300. Further generated 10 tasks

randomly of length range 100000 MI to 300000 MI and all the tasks are independent in nature.

Range of the tasks is extended from 10 to 100 and virtual machines are extended from 5 to 50

to analysis (test) the performance of the developed algorithm. Simulation has been run for more

than 200 times at different number of task with random length and results are found using the

space shared policy [34] in cloudsim. A task of window is sending continuously after a time

interval for analysis and test the performance of the developed algorithm. Simulation details of

task, virtual machine, PSO parameters and calculated execution time is shown in Table 5.6.

Table 5.6 Detail of task, VM, PSO parameters and calculated execution time of algorithms

Schedule VM Task No. of
Particle

Iteration Exe_Time
Proposed PSO

Exe_Time
PSO[18]

Exe_Time
HoneyBee[14]

Exe_Time
Min-Min[12]

𝑆ଵ 5 10 50 100 111.19045 115.3014 123.5464 129.15554

𝑆ଶ 5 20 50 500 234.6504 242.9382 254.26564 269.75087

𝑆ଷ 10 20 100 500 236.6916 251.14016 268.12436 279.80435

𝑆ସ 10 30 100 500 356.3048 372.7792 390.3942 413.10694

𝑆ହ 10 50 100 500 527.5738 555.5568 567.73287 594.95942

𝑆଺ 20 50 100 500 528.3474 557.1864 566.51344 593.55664

𝑆଻ 50 100 100 500 1149.1836 1196.3745 1295.7964 1308.3122

𝑆଼ 100 200 100 500 2417.9718 2492.6994 2566.4415 2581.6713

𝑆ଽ 200 500 200 500 6297.8423 6428.9696 6548.7741 6629.79664

𝑆ଵ଴ 400 1000 200 500 12821.208 12972.158 13294.727 13322.452

Execution time is increased as number of task is increased in cloud environment. Calculated

execution time shown in Fig. 5.5 is the average execution time of 10 schedules. To test the

122

performance of the developed algorithm it is compare with meta-heuristic algorithm PSO [18],

honey bee [14], traditional algorithm min-min [12] and it is observed that calculated execution

time by developed modified PSO based algorithm is approximately less than 4% from PSO

[18] algorithm, approximately less than 10% from honey bee and approximately 20% less than

from min-min algorithm for 10 tasks. Same procedure is repeated for all the tasks and observed

that PSO [18] algorithm take approximately 4% to 6% more time, honey bee [14] take

approximately 10% to 15% more time and min-min[12] algorithm take approximately 14% to

20% more time to execute the tasks rather than developed modified PSO based algorithm.

Figure 5.5 Execution time comparisons proposed PSO vs. PSO, Honey Bee and Min-Min

5.8.2 Makespan Time calculation

We have generated fourteen different schedules to analysis the performance of the developed

PSO based algorithm. Number of virtual machine range is extended from 10 to 500 and task

range is extended from 50 to 1000 in generated schedules. Different value of PSO parameters

(like swarm size and iteration) is taken for each schedule as shown in Table 5.7. When number

of tasks is increase at the virtual machines then makespan time is also increase. Fig. 5.6

represents the makespan time comparison between developed PSO based algorithm and other

algorithms like PSO [18], Honey Bee [14] and min-min [12] for fourteen schedules.

Computational results proved that developed algorithm reduce the makespan time of tasks up to

10% from existing PSO, 20% honey bee, 18.8 % min-min algorithms.

123

 Table 5.7 Detail of task, VMs, PSO parameters and calculated makespan time of algorithms

VM VM Task No. of
Particle

Iteration Proposed
 PSO

PSO[17] Honey
Bee[16]

 Min-Min[7]

𝑆ଵ 10 50 50 100 71.0964 74.2468 78.1547 82.3564

𝑆ଶ 20 50 50 100 45.96 47.7966 51.17904 54.1328

𝑆ଷ 50 100 50 500 48.5857 50.2848 55.9772 56.8553

𝑆ସ 50 200 50 500 83.5127 86.85174 92.1375 94.1355

𝑆ହ 50 500 50 500 186.2388 192.10043 206.8644 211.9728

𝑆଺ 50 1000 50 500 350.627 356.122 372.446 378.921

𝑆଻ 100 200 50 500 56.7412 58.70482 64.0732 68.4352

𝑆଼ 100 500 100 500 119.427 123.142 132.7132 136.779

𝑆ଽ 100 1000 100 500 203.529 208.762 222.852 220.117

𝑆ଵ଴ 200 500 100 500 79.7782 81.778 88.9321 87.5852

𝑆ଵଵ 200 1000 100 1000 129.6398 132.6382 139.924 144.462

𝑆ଵଶ 300 1000 100 1000 102.2971 104.9928 112.2031 118.6642
𝑆ଵଷ 400 1000 100 1000 86.994 89.741 96.0332 99.8841
𝑆ଵସ 500 1000 100 1000 78.886 80.470 87.298 93.207

Figure 5.6 Makespan time comparisons between proposed PSO vs. PSO, Honey Bee and Min-
Min algorithm

124

5.8.3 Task rejection ratio

Task rejection ratio is calculated using the equation 34. It is the ratio of number of task getting

rejected versus total number of tasks submitted to the controller node per schedule. If a task is

spending more time in waiting queue than its deadline then task is rejected and task rejection

ratio is increased i.e. SLA violation is increase. Waiting time of the task should not be more

than its deadline hence it decrease the SLA violation. Waiting time of the task is calculated

using the equation 11.

Table 5.8 Detail of task, VM, PSO parameters and calculated task rejection ratio of algorithms
Schedule VM Task No. of

Particle
Iteratio

n
Proposed

PSO
PSO[18] Honey

Bee[14]
Min-

Min[12]

𝑆ଵ 20 100 100 100 10.600 11.00 12.80 12.40

𝑆ଶ 100 500 100 300 17.799 18.528 20.04 21.86

𝑆ଷ 200 1000 200 500 18.700 19.799 21.928 23.453

𝑆ସ 300 1000 200 500 7.5999 8.1923 9.887 9.4862

𝑆ହ 400 1000 200 500 3.2996 3.600 4.8829 5.0470

𝑆଺ 500 1000 200 500 1.29942 1.6749 1.8742 1.8711

Figure 5.7 Task rejection ratio comparisons between proposed modified PSO vs. PSO, Honey
Bee and Min-Min algorithm

125

 Task rejection ratio is calculated with the help of equation 27 & 28. We have generated six

different schedules to calculate the task rejection ratio and analyze the performance of the

algorithm. Deadline of the tasks is generated randomly within the range 3000 to 5000 second.

Table 5.8 represent the parameters taken in each schedule to test the performance of the

developed modified PSO algorithm and comparison the performance of the algorithm with

other existing algorithms. As number of tasks is increases at the virtual machine task rejection

ratio is also increase because possibility of occurring of overloaded or underloaded of virtual

machine is increased. Task processing time of overloaded machine is more than the balanced

virtual machine because task transfer time is also added in processing time of overloaded

machine. Therefore processing time becomes more than the deadline value and task rejection

ratio is increases. Calculated results shown in Fig. 5.7 prove that developed modified PSO

based algorithm has lowest task rejection ratio compare to others algorithms ((up to 8% from

existing PSO, 23% honey bee, 19.6 % min-min algorithms)) in all the schedules.

5.8.4 Execution cost calculations

The objective of modified PSO based algorithm is to schedule the tasks at cloud resource in

such a manner that execution cost is minimum. There is always a conflict between time and

cost. Our proposed research work solves the trade-off issue between time and cost by assigning

an appropriate weighting to 𝛼, 𝛽 and 𝛾.

Table 5.9 Low computation-intensive virtual machine cost details

VM MIPS CPU RAM Storage Cost

200-250 1 vCPU 1 GB 2 GB .25$/hour

Table 5.10 High computation-intensive virtual machine cost details

VM MIPS CPU RAM Storage Cost
250-300 1 vCPU 4 GB 10 GB .5$/hour

Divided the virtual machines instance in two groups (low computational and high

computational) based upon the configuration of virtual machines as shown in Table 5.9 and

Table 5.10. Fourteen different schedule are generated to analyzed and test the performance of

the developed algorithm in cloud environment shown in Table 5.11. It has been observed that

developed PSO based algorithm execute the task of each schedule in lowest cost compare to

126

other existing algorithm [12] [14][18] (up to 8% from existing PSO, 20% honey bee, 25% min-

min algorithms) as shown in Fig. 5.8. PSO based algorithm [18] allocates the task to the

resources but don’t given the guarantee of optimal task allocation.

Table 5.11 Simulation details of Task, VM, no. of particle, iteration and calculated execution
 cost of algorithms
Schedule VM Task No. of

Particle
Iteration Proposed

 PSO
PSO[17] Honey

Bee[16]
Min-Min
[7]

𝑆ଵ 10 50 50 100 4.25 4.50 5.00 5.25
𝑆ଶ 20 50 50 100 5.25 5.75 6.50 7.25
𝑆ଷ 50 100 50 500 12.50 13.50 14.75 16.50
𝑆ସ 50 200 50 500 20.00 21.25 24.50 25.25
𝑆ହ 50 500 50 500 40.75 41.50 46.75 48.50
𝑆଺ 50 1000 50 500 77.50 80.75 87.25 89.50

𝑆଻ 100 200 50 500 28.75 30.25 33.25 36.75

𝑆଼ 100 500 100 500 51.50 53.75 57.75 56.25

𝑆ଽ 100 1000 100 500 89.50 92.25 98.75 101.25

𝑆ଵ଴ 200 500 100 500 69.0 72.25 78.75 81.25

𝑆ଵଵ 200 1000 100 1000 105.50 108.75 114.50 118.00

𝑆ଵଶ 300 1000 100 1000 125.50 128.50 136.0 135.75

𝑆ଵଷ 400 1000 100 1000 143.75 147.25 158.25 162.50

𝑆ଵସ 500 1000 100 1000 157.75 163.25 172.25 177.50

Figure 5.8 Execution cost comparison between proposed PSO vs. PSO, Honey Bee and Min-
Min algorithm

There are some virtual machines which are in ideal condition (vm2 in Table 4) due to which

127

execution cost is increased. Further we have created six different schedules to solve the trade-

off issue between time and cost as shown in Table 5.12. Makespan time and execution cost is

calculated at fixed number of tasks (1000 tasks) using proposed modified PSO algorithm where

range of virtual machines is vary from 50 to 500. It is observed from Fig. 5.9 proved that with

the increase number of virtual machines makespan time is decreasing but execution cost is

increasing. Therefore trade-off is required between both the parameters i.e. 250 numbers of

virtual machines is required to execute the 1000 tasks.

Table 5.12 Simulation details of Task, VM, calculated makespan time and execution cost

Schedule Virtual Machines Number of Tasks Makespan Time Execution Cost

𝑆ଵ 50 1000 350.627 77.5

𝑆ଶ 100 1000 203.529 89.5

𝑆ଷ 200 1000 129.6398 105.5

𝑆ସ 300 1000 102.2971 125.5

𝑆ହ 400 1000 86.994 143.75

𝑆଺ 500 1000 78.886 157.75

 Figure 5.9 Results of makespan time and execution cost at 1000 tasks using proposed PSO

128

5.8.5 Throughput

 We have analyzed and investigated the performance of the developed PSO based algorithm for

the parameter throughput. It is calculated using the equation 33. Ten different schedules are

generated to test the task execution rate per hour of the algorithms as shown in Table 5.13.

Calculated results (shown in Fig. 5.10) proved that developed modified PSO based algorithm

outperforms than other existing algorithm in the paper [12][14][18].

Table 5.13 Simulation details to calculate throughput of the algorithms

Schedule VM Task No. of
Particle

Iteration Throughput
Proposed PSO

Throughput
PSO[18]

Throughput
Honey Bee

[14]

Throughput
Min-

Min[12]

𝑆ଵ 5 10 50 100 5.40549 5.21739 4.85672 4.64558
𝑆ଶ 5 20 50 500 5.11399 4.93694 4.72440 4.44856
𝑆ଷ 10 20 100 500 5.08472 4.77897 4.48776 4.28944
𝑆ସ 10 30 100 500 5.05617 4.82871 4.61438 4.35729

𝑆ହ 10 50 100 500 5.69259 5.40540 5.29100 5.05050
𝑆଺ 20 50 100 500 5.67294 5.38212 5.30147 5.06829

𝑆଻ 50 100 100 500 5.22193 5.01672 4.63320 4.58715

𝑆଼ 100 200 100 500 4.96483 4.81540 4.67653 4.64936

𝑆ଽ 200 500 200 500 4.76417 4.66708 4.58774 4.52556
𝑆ଵ଴ 400 1000 200 500 4.67982 4.62534 4.51331 4.50382

Figure 5.10 Throughput comparisons between proposed PSO vs. PSO, Honey Bee and Min-
Min algorithm

129

Each schedule contains the number of task and range of task is extended from 10 to1000.

Developed PSO based algorithm executes more tasks in an hour’s (average 5.4 task per hour)

compare to others algorithm PSO [18] execute 5.21 tasks per hour, honey bee execute 4.85

tasks per hour and min-min execute 4.64 tasks per hour for the workload 10 tasks. We have

calculated throughput for all the tasks and found that developed PSO based algorithm execute

approximately 5.2 tasks per hours while PSO [18] execute 4.9 tasks per hours, honey bee

execute approximately 4.7 tasks per hour and min-min execute 4.6 tasks per hour. When

number of tasks is increase in cloud environment throughput is slightly decrease because

processing time is increase. Table 5.13 and Fig. 5.10 results prove that developed PSO based

algorithm has better throughput than other existing algorithm in the entire schedule and all the

condition.

5.8.6 Energy consumption

Cloud computing data centers consume huge amount of electrical energy due to which cost and

𝐶𝑜ଶ emissions is increasing day by day. Energy consumption is a challenging research problem

in the field of cloud environment. To reduce the energy consumption, we choose the

workstation (server) configuration from Table 1[35] HP ProLiant G4 and HP ProLiant G5 and

create the 4 virtual machine in each workstation.

Figure 5.11 Energy Consumption comparisons between proposed PSO vs. PSO, Honey Bee
and Min-Min algorithm

130

Resource utilization based energy consumption description is taken from Table2 [35]. There is

always trade-off between profit and energy consumption therefore trade-off solution is required

to solve this issue. Resource utilization should be maximum to reduce the energy consumption

in cloud environment because ideal resource consumes approximately 70% energy of total

utilization of resources.

 We have calculated execution time of each virtual machine, after that we find the makespan

time of each virtual machine. Resource utilization of each virtual machine is calculated with the

help of makespan time. Further to calculate the energy consumption 5000 tasks of random

length between 100000MI to 300000MI are generated and 500 virtual machines of different

configuration are generated to process the tasks in cloud environment with the help of PSO

parameters (number of particle is 100 and number of iteration is 1000). Energy consumption is

increased with the increase in number of virtual machine as shown in Fig. 5.11. Number of

virtual machine is increased from 500 to 1500 to analyze the performance of the developed

PSO based algorithm in five different schedules. Calculated results (shown in Fig. 5.11) proved

that developed modified PSO algorithm utilize the cloud resource maximum and reduce the

energy consumption in comparison to existing algorithm PSO [18] (up to 7%), Honey Bee [14]

(up to 12 %), min-min [18] (up to 18%).

5.9 Summary

There are a few task scheduling algorithms in cloud environment that considered either

execution cost or execution time or both the parameters but none of the algorithm considered

time, cost and energy simultaneously. In this chapter, we proposed an efficient scheduling

technique which play an important role in minimizing the energy consumption and optimize the

others parameters like execution cost and time. There is always a trade-off between profit and

energy consumption, so a trade-off solution is required. We have designed and discussed the

resource allocation model with its components for cloud environment. We developed modified

PSO based scheduling algorithm that schedule the tasks at cloud resources in efficient way and

optimize the parameters (execution time, makespan time, task rejection ratio, throughput,

execution cost and energy consumption) based upon fitness function considering deadline of

tasks as quality of service parameter. Modified PSO based algorithm is tested at cloudsim

simulator and experimental results shown in Figs. 5.5 to Fig. 5.11 which proved that developed

algorithm decrease the execution time, optimize the execution cost and minimize the energy

131

consumption in efficient way rather than existing PSO, Honey Bee, min-min algorithm in all

the conditions. The proposed algorithm can also be tested in future by using a private cloud like

OpenNebula.

5.10 References:

[1] M. Kumar, K. Dubey and S.C. Sharma, “Elastic and flexible deadline constraint load

Balancing algorithm for Cloud Computing,” in Procedia Computer Science, vol. 125, pp. 717-

724, India, 2018.

[2] US EPA ENERGY STAR Program, Report to congress on server and data center energy

efficiency, Public law, pp. 109–431, 2007.

[3] W. Forrest, How to cut data centre carbon emissions? Website, December 2008. Available:

 http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-

carbon-emissions.htm.

[4] L. Barroso and U. Holzle, “The case for energy proportional computing,” Computer, vol.

40, no. 12, pp. 33–37, 2007.

[5] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Recent

advancements in resource allocation techniques for cloud computing environment: a systematic

review,” journal of Cluster Computing, vol. 20, no. 3, pp. 2489-2533, Dec. 2016.

[6] M.Kumar and S. C. Sharma, "Priority Aware Longest Job First (PA-LJF) algorithm for

utilization of the resource in cloud environment,” in International conference on Computing for

Sustainable Global Development (INDIACom), pp. 415-420, New Delhi, India, 2016.

[7] M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for balancing the

workload among virtual machine in cloud computing,” in Procedia Computer Science, vol.

115, pp.322-329, Cochin, India, 2017.

[8] K. Dubey, M. Kumar and M. Chandra, “A Priority Based Job Scheduling Algorithm Using

IBA and EASY Algorithm for Cloud Metaschedular,” in International Conference on Advances

in Computer Engineering and Applications, pp. 66-70, Ghaziabad, India, 2015.

[9] M. Malawski, G. Juve, E. Deelman and J. Nabrzyski,"Cost-and deadline-constrained

provisioning for scientific workflow ensembles in IaaS clouds," in International Conference on

High Performance Computing, Networking, Storage and Analysis, USA, Nov. 2012.

132

[10]. H. Ren, Y. Lan and C. Yin, “The load balancing algorithm in cloud computing

environment,” in International Conference on Computer Science and Network Technology, pp.

925-928, Changchun, China, Dec. 2012.

[11]. J. Bhatia, T. Patel, H. Trivedi and V. Majmudar, “HTV Dynamic Load Balancing

Algorithm for Virtual Machine Instances in Cloud,” in International Symposium on Cloud and

Services Computing, pp. 15-20, Mangalore, KA, 2012,.

[12]. H. Chen, F. Wang, N. Helian and G. Akanmu ,“User Priority Guided Min-Min

Scheduling Algorithm For Cloud Computing,” in national conference on Parallel

Computing Technologies (PARCOMPTECH), pp. 1-8, Bangalore, India, Oct. 2013.

[13]. H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin and J. Wu, “Towards energy-efficient

scheduling for real-time tasks under uncertain cloud computing environment,” Journal of

System Software, vol. 99, pp. 20–35, Jan. 2015.

[14]. D. Babu and P. Venkata, “Honey bee behavior inspired load balancing of tasks in cloud

computing environments,” Applied Soft Computing, vol.13, no. 5, pp. 2292–2303, May 2013.

[15]. E.Pacini, C. Mateos and C. G. Garino, “Balancing throughput and response time in online

scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)”, Advances in

Engineering Software, vol. 84, pp. 31-47, June 2015.

[16]. J. T. Tsai, J. C. Fang and J. H. Chou, “Optimized task scheduling and resource allocation

on cloud computing environment using improved differential evolution algorithm,” Computer

Operation Research, vol. 40, no. 12, pp.3045-3055, Dec. 2013.

[17]. M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, ‘‘A survey of PSO based scheduling

algorithms in cloud computing,’’ Journal of Network and System Management, vol. 25, no. 1,

pp. 122–158, Jan. 2016.

[18]. F. Ramezani and F. K. hussain, “Task-based System Load Balancing in cloud computing

using Particle Swarm Optimization,” International Journal of Parallel Programming, vol. 42,

no. 5, pp. 739-754, Oct. 2013.

[19] T. Somasundaram and K. Govindarajan, "CLOUDRB: A framework for scheduling and

managing High-Performance Computing (HPC) applications in science cloud," Future

Generation Computer System, vol. 34, pp. 47-65, Oct. 2014.

[20]. A. Verma, S. Kaushal, “ Bi-Criteria Priority based Particle Swarm Optimization workflow

scheduling algorithm for cloud,” in Recent Advances in Engineering and Computational

Sciences (RAECS), pp. 1–6, Mar. 2014.

133

[21]. N. Netjinda, B. Sirinaovakul and T. Achalakul, “Cost optimal scheduling in IaaS for

dependent workload with particle swarm optimization,” Journal of Supercomputing, vol. 68,

no. 3, pp. 1579–1603, 2014.

[22]. S. Yassa, R. Chelouah, H. Kadima and B. Granado, “Multi-objective approach for energy-

aware workflow scheduling in cloud computing environments,” The Scientific World Journal,

2013. doi:10.1155/2013/350934.

[23] S. Singh, I. Chana, M. Singh and R. Buyya, “SOCCER: self-optimization of energy-

efficient cloud resources,” Cluster Computing, vol. 19, no.4, pp. 1787–1800, 2016.

[24] S. S. Gill, I. Chana, M. Singh and R. Buyya, "CHOPPER: an intelligent QoS-aware

autonomic resource management approach for cloud computing," Cluster Computing, pp. 1-39,

2017.

[25] R. Aldmour, S. Yousef, M. Yaghi, S. Tapaswi, K. K. Pattanaik, and M. Cole, "New cloud

offloading algorithm for better energy consumption and process time," International Journal of

System Assurance Engineering and Management, vol. 8, no. 2, pp. 730-733, 2017.

[26] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A. Alelaiwi and F. Li,

"Minimizing SLA violation and power consumption in Cloud data centers using adaptive

energy-aware algorithms," Future Generation Computer Systems, 2017.

https://doi.org/10.1016/j.future.2017.07.048.

[27] M. Shojafar, C. Canali, R. Lancellotti, and J. Abawajy, "Adaptive computing-plus-

communication optimization framework for multimedia processing in cloud systems." IEEE

Transactions on Cloud Computing, 2016.

[28] S. K. Mishra, D. Puthal, B. Sahoo, S. K. Jena, and M. S. Obaidat, "An adaptive task

allocation technique for green cloud computing," The Journal of Supercomputing, 1-16, 2018.

[29] S. K. Mishra, D. Puthal, B. Sahoo, P. P. Jayaraman, S. Jun, A. Y. Zomaya, and R. Ranjan,

"Energy-Efficient VM-Placement in Cloud Data Center," Sustainable Computing: Informatics

and Systems, 2018.https://doi.org/doi:10.1016/j.suscom.2018.01.002

[30] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” in International Conference on

Neural Networks, pp. 1942–1948, Perth, Australia, 1995.

[31] Q. Bai, “Analysis of particle swarm optimization algorithm,” Computer and Information

Science, vol. 3, no. 1, pp. 180–184, Feb. 2010.

134

[32] N. Singh and R. Arya, “A novel approach to combine features for salient object detection

using constrained particle swarm optimization,” Pattern Recognition, vol. 47, no. 4, pp.1731–

1739, April 2014.

[33] G. Xu, "An adaptive parameter tuning of particle swarm optimization algorithm," Applied

Mathematics and Computation, vol. 219, no. 9, pp. 4560-4569, 2013.

[34] Sindhu HS, "Comparative analysis of scheduling algorithms of Cloudsim in cloud

computing," International Journal of Computer Applications, vol. 97, no. 16, 2014.

[35] A. Horri, M. Mozafazi and G. Dastghaibyfard, “Novel resource allocation algorithms to

performance and energy efficiency in cloud computing,” The journal of Supercomputing, vol.

69, no.3, pp. 1445-1461, june 2014.

135

CHAPTER-6

CONCLUSIONS AND FUTURE WORK

This chapter is dedicated to provide conclusive remarks on overall work done under this study.

It also provides a quick review of the results obtained in this study as well as we discuss some

of the future directions for cloud services in better way. The research work presented in this

thesis has broadly focused on improving the services of cloud computing by using heuristic and

meta-heuristic algorithm.

6.1 Conclusions

In this thesis, we monitored the computing resources continuously to tackle the problem of

scheduling, load balancing, elasticity, scalability and optimize the QoS parameters like

execution time, makespan time, throughput, task rejection ratio, cost optimization and energy

consumption for better cloud services using PSO based algorithm considering deadline as

constraints. The objective of cloud service provider is to maximize its profit and revenues with

extreme resource utilization, while cloud users want to pay minimum amount for services by

minimizing the SLA violations. Energy consumption is also play an important role in the field

of cloud computing, because there is conflict between energy consumption and time. So we

need a trade-off solution that optimizes both the parameters simultaneously by providing

appropriate weight. We used modified PSO based algorithm (binary PSO as well as continuous

PSO) to solve the discrete as well as continuous problem in the field of cloud computing and

used the heuristic algorithm to provide the load balancing with elasticity.

The results obtained in various studies as reported in chapter 3 to 5 of the thesis along with the

prominent features of the algorithms are summarized below:

 We have proposed an algorithm that monitored the virtual machines continuously and

provides the load balancing with elasticity (resource provisioning and deprovisioning)

based upon last optimal k-interval. The computational results proved that the developed

algorithm optimize the parameters like makespan time, execution time, task meet with

deadline ratio considering deadline as constraint in better way than min-min, SJF, FCFS

algorithms.

136

 Secondly we have proposed dynamic transfer function based modified binary PSO

(TF୔-BPSO) algorithm to solve the discrete problem by providing better exploration in

the starting phase and exploitation in the last phase. Computational results proved that

developed algorithm reduce the execution time, makespan time and increase the

throughput in better way than existing algorithm like first come first serve and BPSO.

 Lastly we have proposed resource allocation model for processing the applications

efficiently optimize execution cost, time and reduce the energy consumption of cloud

data centers considering deadline as constraint using PSO based scheduling algorithm.

It has been observed that developed algorithm reduces the execution time, execution

cost, task rejection ratio, energy consumption and increase the throughput in

comparison to PSO, honey bee and min-min algorithm.

 Analyses of above algorithms have been tested using cloudsim simulator.

6.2 Future Work

The present study can be extended in future in the following directions as mentioned below:

 Dynamic threshold value may be used for load balancing and elasticity decision.

 Machine learning algorithm can be used to predict the upcoming data rate or

application requests for better scalability in cloud computing.

 The present study has mainly focused at deadline as constraint but in future we

recommended for further research in the prioritization of resource allocation in

relation to the finite available resources.

 The developed algorithm can be modified to improve the others QoS parameters

like reliability, availability, mean time to failure, degree of imbalance, performance,

SLA violation and response time for better cloud services.

 Developed PSO based algorithm can be tested in future at Montage, EpiGenomics,

CyberShake, LIGO, SIPHT realistic workflows that are used for diverse scientific

applications in cloud computing.

 Virtual machines migration techniques can be used in future for reducing the

energy consumption of cloud datacenters.

 Hybrid meta-heuristic algorithm can be used in future to optimize the QoS

parameters in better way.

