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ABSTRACT 

Series compensation is an attractive option for maximizing power transfer through 

existing power transmission networks. Series compensation offers considerable technical 

and economic advantages in long Extra-High Voltage (EHV) transmission systems. In view of 

the benefits offered by the series compensators, they find increasing applications. It is 

therefore, imperative that relevant existing transmission line protection approaches are 

investigated and modified in series compensated environment along with the primary system 

developments. 

Although series compensation is effective in increasing the transient stability and 

optimizing the power flow in the system, the protection of series compensated line is more 

complex than that of the uncompensated transmission lines. Series compensation can 

significantly modify the apparent impedance presented to the impedance based relays. In 

this respect, the transmission line protection in series compensated environment needs a 

significant modification for reliability of the power supply.  

The work presented in this thesis addresses the problems encountered by distance 

relaying scheme, when employed in series compensated transmission line. Besides fault 

detection, fault classification, fault zone identification and fault location estimation are main 

relaying tasks. An attempt has been made in this thesis to improve the performance of 

distance relaying scheme through improvement in all these aspects separately.   

A detailed analysis of the impact of series compensation on the transmission line 

protection has been carried out in the initial part of the thesis with up to date bibliographical 

survey. Based on this survey, a requirement of accurate, reliable and fast protection 

algorithms for the series-compensated transmission lines has thus been identified. 

The work presented in this thesis mainly deals with problems and their solutions for the 

protection of the transmission lines with mid-line series compensation. Both variants of series 

compensation, fixed and controllable (thyristor controlled series compensator, TCSC) are 

considered for this study. On the basis of the requirements identified from available literature, 

various techniques for fault detection, classification, fault zone identification and estimation of 

the fault location on the series compensated transmission line are reported in this work. All 

the methods developed in this thesis are single-end algorithms (based on the measurements 

taken at the relaying end only) without the need for data communication between two line 

ends.  

Further, in this work, a versatile and new protection algorithm is developed that can 

provide effective protection to uncompensated and series compensated transmission line 

without any modification in the methodology.  
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All these algorithms were tested on a mid-line series compensated transmission line 

connecting a two-area system. The system model is developed using Power System 

Computer Aided Design (PSCAD) and measured fault data from these simulations are 

imported into the MATLAB platform to implement the algorithms. Upon testing, the obtained 

results show improvement in performance of all fault classification, fault zone identification 

and fault location algorithms as compared to those reported in the literature. 

In addition, fault classification and fault zone identification algorithms are further 

modified and improved for application to a TCSC compensated transmission line. 
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CHAPTER 1: INTRODUCTION 

This chapter gives an introduction to the research work. It starts with a brief background on 

transmission line protection and requirement of changes in the protection schemes with installation of 

the series compensation in a transmission line. Moreover, this chapter concisely introduces the scope 

and methodology of the work along with the contribution made in this thesis. 

1.1 GENERAL BACKGROUND 

Development of any society is measured in terms of per capita electric power 

consumption. As the society is continuously developing, power consumption is also 

continuing to increase rapidly. Due to this fact, power networks are getting more and more 

complex and stressed. Because of this stressed operation, abnormal conditions in the 

system occur frequently which may cause very heavy damage to the system. As large capital 

investment is made for development of a power system right from generation to transmission 

and distribution, this heavy damage involves a huge cost to the successful operation of the 

system and thus, proper protection system is a must for every power apparatus [1, 2]. 

Continuously growing demand has resulted in increasing load on the transmission 

system. This increase has resulted into the requirement of enhancing the power transfer in 

any line up to the corresponding thermal limit of the line. To realise this goal, installation of 

series compensation on long extra-high voltage (EHV) transmission lines is a preferred 

option. Series compensation reduces the effective reactance of the transmission line by 

cancelling a part of the inductive reactance. This results in an increase of power transfer 

capability. Besides increasing the power transfer capacity, series compensation also 

improves system transient stability, voltage control and power flow control. Further, series 

compensation helps to control distribution of power flow in an inter-connected network such 

that, overall transmission line losses are reduced for the network. Series compensation can 

be provided either by fixed or controllable capacitor, each with their own advantages [3]. The 

detailed analysis of overall impact of series compensation on transmission line is 

summarized in the next chapter.  

To take full advantage of the series compensation in an utility network, it is necessary 

to understand the impact of series compensation on the transmission line protection system. 

The work presented in this thesis investigates the important issues in transmission line 

protection system due to the presence of series compensation and their effective solutions. 

1.2 OUTLINE OF TRANSMISSION LINE PROTECTION 

It is expected that the demanded electrical energy be made available to the consumers 

with appropriate quality. These requirements could be met through proper planning, design 
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and operation of the large scale interconnected power system. Owing to the large capital 

investment involved, it is important to operate it at peak efficiency and protect it from faults. 

Despite best efforts made, power system components do suffer from faults, which are 

unpredictable and random in nature. 

Faults are basically the phenomena of insulation breakdown due to electrical or 

mechanical reasons.  Major causes of these faults are lightning surges, natural calamities, 

power swings or exposure of external bodies in the transmission system, switching 

overvoltage, insulation failure due to aging or contamination, faulty design, lower quality 

components or lack of maintenance, etc. Transmission line faults can be broadly classified 

based on their physical nature as: 

• Symmetrical Faults 
A fault that involves all the three phases equally and effectively is called a symmetrical 

fault. A triple line fault (L-L-L) or a triple line to ground (L-L-L-g) fault is of symmetrical nature. 

However, possibilities of this type of fault are least in the power system [4]. 

• Unsymmetrical Faults 
An unsymmetrical fault does not affect each of the three phases equally. Single line to 

ground (L-g), double line (L-L), double line to ground (L-L-g) are these types of faults.  

Therefore, for a three-phase transmission system (with phases A, B, and C), ten 

possible types of faults can occur. These are: A-g, B-g, C-g, A-B, A-C, B-C, A-B-g, A-C-g, B-

C-g, A-B-C-g/A-B-C. Fault currents are generally of very high amplitude and liable to 

be very harmful for the power system devices because of the involvement of the 

tremendous amount of energy. Therefore, as mentioned earlier, these faults have very 

adverse effects on power system stability, security, reliability, continuity and economics. 

To avoid such losses, instruments are integrated into the system to identify the faulty 

condition and to isolate the faulty part of the system to protect the entire system against fault. 

Such instruments are known as relays, Current Transformers (CT), Voltage Transformer (VT) 

and Circuit Breakers (CB), which together perform as the protection system. 

Among the above components, circuit breaker interrupts the high fault currents in 

compliance to the fault detection signal provided by the relay. Thus, relay is the most 

important element of the protection system. The relay, after processing its inputs, produces 

an output signal depending on its preset threshold values. Relays are usually designed to 

respond to abnormal conditions such as faults, while they remain unresponsive in normal 

operating conditions. For successful operation, the relays continuously monitor various 

quantities of the system. These quantities are voltage, current, phase-angle and frequency. 

Upon occurrence of a fault, these quantities change abruptly from their corresponding steady 

state values and based on these abrupt changes, the relays take appropriate decision. 
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Transmission line protection 
Transmission lines are used to transmit bulk power from generating sources to load 

areas or to adjacent power systems. Factors such as de-regulated market environment, 

economics, right of way clearance and environmental concerns have pushed utilities to 

operate transmission lines close to their operating limits [5].   

Most faults experienced in a power system occur on the transmission lines. Since 

transmission circuits vary widely in their characteristics, configurations, length, and relative 

importance, their protection techniques also vary accordingly. The protective relays 

commonly employed for transmission line protection are:  

• Overcurrent relay 

• Differential relay 

• Pilot wire relays 

• Impedance based relay 

Impedance based distance protection scheme is most widely used transmission line 

protection scheme. Thus, the work presented in this thesis is focused to identify problems 

due to introduction of series compensation in a transmission line on impedance based 

protection schemes. Solutions to these problems are also proposed.  

The impedance of a transmission line measured from one end of the line is proportional 

to its length. Therefore, for measuring the fault distance, a relay is used which is capable of 

measuring the impedance of the line. Owing to this fact the relay is known as an impedance 

relay and since the impedance of the line is proportional to its length, it is also called a 

distance relay.  

1.3 RESEARCH MOTIVATION AND OBJECTIVE OF RESEARCH 

As mentioned earlier, series compensation is normally introduced in high-power EHV 

transmission lines, which usually employ impedance based protection schemes. With the 

incorporation of series compensation, the impedance based protection system fails to 

provide appropriate protection due to variations in system parameters introduced by inclusion 

of series compensation in the fault circuit. An overall summary of impact of series 

compensation on transmission line protection system is presented in the following chapter. 

As the inclusion of series compensation in the transmission line alters the impedance 

of the line, the transmission line impedance relay experiences problems. Moreover, to 

minimize damage to the system, fast operation of the protection system is required. 

Therefore, design of an accurate and fast relaying system for series compensated 

transmission line is a prime requirement for successful integration of series compensation in 

the transmission line. 

  3 

 
 



 
 

Several protection algorithms for series compensated transmission lines are reported in 

the literature. Detailed reviews of these techniques with their relative merits and demerits are 

presented in the following chapters. Most of these methods suffer from limited accuracy 

and/or slower operating time. On the other hand, many algorithms for estimating the fault 

locations are reported in the literature which uses measurements from both the ends of the 

transmission line. These algorithms require dedicated communication channel and/or 

synchronization of measurements at both the ends. The requirement of communication 

channel makes the overall protection system more complex as well as prone to error and 

delay in the communication link. On the other hand, single end algorithms lack in overall 

accuracies. This necessitates the requirement of a single-ended fault location estimation 

algorithm having higher accuracy. Further, the operating time of the single-ended algorithm 

should also be as low as possible. Moreover, as all the transmission lines are not provided 

with series compensation, any protection algorithm which can work with same accuracy for 

both compensated and uncompensated transmission line will be quite useful.  

From the discussion it is clear that there is need of a distance protection scheme for 

transmission lines with the following characteristics:  

• The protection scheme should be robust, accurate, fast acting and able to provide 

effective protection under different operating conditions of the series compensated 

transmission lines. 

• The protection scheme should be able to detect topological changes as a result of over-

voltage protection of the series compensator. 

• The protection scheme should be capable of taking into account the effect of resonance, 

voltage inversion and current inversion occurring in a series compensated transmission 

line. 

• The protection scheme should be able to estimate the location of the fault in series 

compensated transmission line with single-ended measurements. 

• In order to reduce processing requirements and thereby reducing the operating time, the 

scheme should require minimum number of measurements.  

• The scheme should remain unaffected with application of series compensation. 

1.4 RESEARCH CONTRIBUTION 

A distance protection scheme for series compensated transmission line is expected to 

deliver the following characteristics: 

• It should be able to discriminate between fault and no-fault condition. 

• In fault condition, it should be able to identify the type of fault. 

• It should be able to detect the fault zone 
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• It should be able to estimate the location of the fault accurately. 

On the basis of protection needs identified in the previous section, each of this 

impedance based relay algorithms is developed in this work. For this purpose, an advanced 

signal processing tool, namely, discrete wavelet transform (DWT) and an improved artificial 

intelligence (AI) classifier, namely Chebyshev neural network (ChNN) have been utilized to 

develop fault detection, classification, zone identification and fault location algorithms. With 

these developed algorithms, improvements in terms of accuracy and speed have been 

achieved vis-a-vis the methods reported in the literature. 

To enhance the speed of the protection scheme, direct pattern recognition method for 

fault classification and fault zone identification has been employed. This approach not only 

reduces the time of operation but also has been proved to be accurate as well. Applications 

of modified and advanced signal processing tools, namely, undecimated discrete wavelet 

transform (UDWT) and discrete wavelet packet entropy measure (DWPEM) are found to 

enhance classification capabilities resulting in improved accuracy. Moreover, to establish the 

superiority of ChNN, the results obtained by the ChNN based scheme have been compared 

with those obtained by two different schemes in which ChNN has been replaced by support 

vector machine (SVM) and multi layer perceptron neural network (MLPNN) respectively. 

To meet the need of the time, a versatile fault detection and fault classification 

algorithm has been developed which provides comparable accuracy for uncompensated and 

series compensated transmission line, that too for various levels of compensation. The 

algorithm does not require any modification in the basic technique to take care of series 

compensation. Therefore, it can be applied universally to any transmission line (either 

uncompensated or series compensated). 

Lastly, fault classification and fault zone identification algorithms developed in this work 

have been further modified to accommodate the changes that occur in a thyristor 

compensated series capacitor (TCSC) compensated transmission line. This has been 

achieved by increasing the levels of decomposition, making improvement in the classifiers or 

by introduction of wavelet packet entropy. 

1.5 THESIS ORGANIZATION 

Based on the identified research objectives, the thesis consists of the following 

chapters.  

Chapter 2 provides the necessary background on application of series compensation 

on transmission line. Influence of series compensation on impedance based transmission 

line protection system is discussed in detail. A state of the art of historical developments in 
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series compensated transmission line protection is presented with discussion of relative 

merits and demerits. 

Ready references about Digital Signal Processing (DSP) and Artificial Intelligence (AI) 

techniques used in this work are provided in the third chapter of this thesis. Advanced time-

frequency extraction tools such as DWT, Discrete Wavelet Packet Transform (DWPT) and 

UDWT are represented in detail. DWT energy and DWPT entropy measures are introduced 

as information enhancing mechanism for protection application. Moreover, AI classifier such 

as MLPNN is described along with SVM and ChNN. 

Chapter 4 focuses on development of fault type identification algorithms for series 

compensated transmission line. A new digital fault classification scheme employing both 

DWT and ChNN is presented. Further, an improved scheme is presented in which a pattern 

recognition based approach using ChNN is used. Moreover, the performances of two 

learning algorithms of ChNN, namely, Least Square Levenberg-Marquardt (LSLM) and 

Recursive Least Square algorithm with Forgetting Factor (RLSFF) have been compared for 

protection application. Lastly relay performance under CT saturation and the effects of the 

untransposed transmission line are also investigated. 

New fault zone identification schemes for series compensated transmission line are 

developed and described in Chapter 5. A new high speed scheme is presented with 

application of ChNN along with DWT for fault zone identification. Moreover, a comparative 

study of SVM, MLPNN and ChNN schemes (along with DWT feature extraction) for fault 

zone identification in series compensated transmission line. To avoid the problem of aliasing 

and loss of information due to downsampling operation in DWT, a new and more accurate 

fault zone identification scheme has been proposed using UDWT and ChNN. 

The issue of estimation of fault location in series compensated transmission line is 

addressed in Chapter 6. Performances of phasor estimation based approaches have been 

investigated for one-end fault location estimation. These are: Discrete Fourier Transform 

(DFT), DWT and Least Square Estimation (LSE). However, each of these methods has 

notable problems in estimating the fault location due to errors in phasor estimation. To 

overcome these problems, a fault location approach based on DWT and ChNN is proposed. 

The scheme proved to be highly accurate and fast for estimating the fault location in series 

compensated transmission line. 

A versatile fault detection and classification algorithm for a transmission line is 

developed in Chapter 7 utilising DWT energy and ChNN. This algorithm has been found to 

be highly accurate for both uncompensated and series compensated transmission line (even 

at different levels of compensation).  
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Chapter 8 addresses some of the issues of a distance protection scheme for a TCSC 

compensated transmission line. In this chapter, fault classification and fault zone 

identification schemes developed in the previous chapters are modified and enhanced to 

take care of the presence of TCSC in a transmission line. Application of ChNN for fault 

classification and fault zone identification approaches with and without the help of DWT are 

developed. The DWT based scheme has further been improved for fault classification with 

application of DWPT entropy.  

The last chapter presents comprehensive summary and conclusions of the work 

carried out in this thesis. Some suggestions for carrying out further work in the area of series 

compensated transmission line protection scheme have also been given. 
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CHAPTER 2: LITERATURE SURVEY ON PROTECTION OF SERIES-
COMPENSATED TRANSMISSION LINES 

This chapter describes the need and application of series compensation in long EHV 

transmission lines. The effect of series compensation on transmission line protection is discussed and 

a bibliographical survey for protection solutions of fixed series compensated transmission line is 

presented to identify the research gaps in this area. 

2.1 INTRODUCTION  

Due to environmental concerns and economic constraints, option of building new 

transmission corridor is limited. Therefore, the power engineers are required to utilize the 

existing transmission system in a better way to cater to ever increasing demand of electricity.  

To achieve this goal, the series capacitive compensation technique is increasingly being 

used with the existing transmission lines. The series capacitive compensator (henceforth 

written in short as “Series Compensator (SC)”) compensates the inductive reactance of the 

long transmission lines to increase their power transfer capacity. It also improves the 

transient stability, reduces losses and improves the voltage profile of the system [3]. It can 

also increase the utilization index of the transmission system by optimizing the sharing of real 

power between alternate paths originating from the same bus-bars [4]. More and more series 

compensators are nowadays being inducted into the power system with sustainable growth 

of the power market. With increased applications, the series compensators also make 

advancements because of the improvement in capacitor technology and compensator 

protection system that improves the reliability of the overall system. 

The series compensators are of two types, fixed series capacitor compensator and 

controllable capacitor compensator (Advance Series Compensator (ASC)), with their own 

advantages and limitations [3]. The average compensation provided by the series 

compensator normally ranges from 20% to 70% of the total inductive reactance of the 

transmission line. Further, there are two possible types of arrangements according to the 

position of the compensator on the transmission lines. Usually, the compensator is placed at 

the middle of the line (mid-line compensation). This arrangement is the most effective for 

reactive power control [5]. Compensating devices provide stabilized voltage support when 

placed at the center of the line [5, 6]. In another arrangement, the series compensators are 

placed on either ends of the transmission line (end-line compensation). In this arrangement, 

half of the total compensation is provided at either side of the line. However, the mid-line 

arrangement has been found to be more advantageous [4]. 
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2.2 TRANSMISSION LINE WITH SERIES COMPENSATION 

As discussed earlier, the series compensation in a transmission line increases the 

system stability, power transfer capability and can also optimize the sharing of real power 

between parallel lines. The series capacitors compensate the inductive reactance of the line 

so as to maximize the power transfer capability of a long transmission line.  

Arrangements for uncompensated and compensated Extra High Voltage (EHV) long 

transmission line are shown in Figure 2.1. In this figure, XL represents the total inductive 

reactance of the transmission line while XS and XR denote the source inductance of the 

sending end and the receiving end respectively. With mid-line series compensator with a 

capacitive reactance of XC, the transmission line reactance splits into two equal parts of XL1 

and XL2. 

A B

P

XLXs XR

ES ER

A B

XL1Xs XR

ES ER

XL2

P

VA VB

VA VB
XC

 
Figure 2.1: EHV transmission line without and with series compensation 

The real power flowing towards bus bar B in the uncompensated line AB is: 

 
δ= ×Re

( * ) sinA B
al

L

V VP
X

 (2.1)  

Here, VA and VB are voltage magnitudes at bus A and B respectively while δ is the 

phase angle difference (loading angle) between the voltages of bus A and bus B. With series 

compensation (XC) added to the transmission line, the real power flow from bus A to bus B 

becomes, 

 
δ= ×

−Re
( * ) sin

( )
A B

al
L C

V VP
X X

 (2.2)  

 It is evident from equations (2.1) and (2.2) that, the added series capacitance in the 

transmission line increases the real power transfer capability through the line. On the other 

hand, the difference in phase angle between the voltages VA and VB can be reduced by 

keeping the real power transferred fixed which, in turn, will increase the transient stability of 

the system. 

Moreover, in a condition when a transmission line with lowest power transfer capacity 

reaches its limit, this bottleneck may be reached for other unsaturated lines as well. The 
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power transfer capacity of the complete system can be increased by rearranging the 

distribution of line impedances with series compensation. Furthermore, the overall system 

losses can be minimized by appropriately sharing the power flow between parallel paths with 

the help of series capacitance.  

2.3 OVERVOLTAGE PROTECTION OF SERIES CAPACITOR AND ITS OPERATING 
PRINCIPLE 

With application of series compensation, as described by equation (2.2), the power and 

hence the current carrying capacity of the line increases without expensive up gradation of 

the line. A problem with this scheme of operation is that a fault on the transmission system 

can cause the capacitors to be overloaded. In order to protect the capacitor against damage, 

suitable protection scheme for the capacitor bank is needed. The capacitor bank protection 

scheme requires that the series capacitor is bypassed during fault. However, after the fault is 

cleared, the compensating capacitor is needed to be reinserted into the circuit as it was 

before the fault. Normally, single-gap, double-gap and Metal Oxide Varistor (MOV) are used 

for overvoltage protection of the series compensator. 

Figure 2.2 [6] shows a single-gap capacitor overvoltage protection arrangement. An air-

gap and a bypass breaker are connected in parallel with the series capacitor bank. The 

protection level (spark-gap flash overvoltage level) is usually chosen to be two to three times 

the rated voltage of the capacitor bank [7, 8]. The rated voltage of the capacitor bank is 

normally defined as the voltage drop across the capacitor bank at maximum load current. In 

fault condition, the ignition of the air-gap takes place when the capacitor voltage exceeds the 

air-gap design voltage limit. The air-gap itself cannot usually carry the fault current for a long 

time. This will close the contacts of bypass circuit breaker, which operates more slowly than 

the air-gap thereby extinguishing the spark in the air-gap consequently. After the fault is 

cleared, the bypass breaker opens and the voltage of the compensator reaches its pre-fault 

level. The scheme operates little slowly during reinsertion of the capacitor as the air-gap 

requires cooling. Therefore, the air-gap & breaker based overvoltage protection scheme is 

used as a back-up protection in recent installations. 

AIR GAP

CIRCUIT BREAKER

BYPASS 
INDUCTOR

SERIES CAPACITOR

 
Figure 2.2: Single-gap capacitor overvoltage protection 
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A dual-gap capacitor overvoltage protection scheme is shown in Figure 2.3 [6]. As 

compared to the scheme shown in Figure 2.2, this scheme has an additional air-gap (air-gap 

2) with a lower setting (as compared to the other air-gap). This air-gap can be isolated from 

the circuit by the accompanying circuit breaker (CB2). The other air-gap (with a higher 

setting) acts as a backup protection during reinsertion of the capacitor.  

In the event of a fault, air-gap 2 ignites first and bypasses the current with CB2 is in 

close position. With appropriate settings, CB2 will open only after the bypass circuit breaker 

is closed. After the fault is cleared, the circuit breaker will open giving air-gap 2 sufficient time 

to cool down. As the overall operation does not require cooling down time for air-gap 2, the 

overall reinsertion time of the scheme is lower than that obtained by the single air-gap 

scheme. However, with the present day availability of MOV based over-voltage protection 

schemes, the applications of double-gap schemes are nowadays limited.   

AIR GAP

CIRCUIT BREAKER

BYPASS 
INDUCTOR

SERIES CAPACITOR

AIR GAP 2CB 2

 
Figure 2.3: Double-gap capacitor overvoltage protection scheme 

Figure 2.4 [6] shows a typical series compensator arrangement for any one of the 

phases with MOV for overvoltage protection of the series capacitance. The MOV is a non-

linear variable resistor. Under normal operating conditions, the MOV presents a very high 

resistance til the voltage across the capacitor is below the threshold level. When the voltage 

across the capacitor becomes more than the threshold level, the MOV conducts and offers a 

very low resistance thereby diverting a part of the fault current away from the capacitor. 

Since there is an upper limit for energy dissipation in the MOV, a backup arrangement 

is always provided with the help of an air-gap and a circuit breaker as shown in Figure 2.4. If 

the MOV remains in conduction long enough to let its temperature (energy) rise to a 

dangerous level, the air-gap is triggered to bypass both the MOV and the capacitor thereby 

changing the fault loop impedance. 
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Figure 2.4: MOV for overvoltage protection for series compensation 

The voltage-current characteristic of a MOV can be given by [9]: 

 = ×0 [ / ]q
MOV REFI I V V  (2.3)  

Where, IMOV = Current passing through the MOV 

  V   = Voltage across the MOV 

  I0   = Maximum permissible reference current 

  VREF = Knee-point voltage for the MOV 

  q   = Exponent of the characteristic (normally 1 < q < 1.1) 

During an event of fault that triggers the MOV conduction, the line current splits into 

two parts. The first part flows through the series compensator and other flows through the 

MOV. As the fault current is also of alternating nature, the MOV conduction takes place in the 

form of short pulses (as the conduction of MOV depends on dV/dt) [10] during both positive 

and negative half  cycle of the fault current. Normally, the MOV operates in the first-half cycle 

after fault inception and continues conduction depending on the severity of the fault and 

operation of the air-gap. 

The MOV keeps the capacitor continuously in the circuit. Therefore, the reinsertion time 

is nearly zero at the end of fault instance. In other words, the MOV improves the system 

stability. 

2.4 EFFECT OF SERIES COMPENSATION ON IMPEDANCE BASED PROTECTION 
SCHEME FOR TRANSMISSION LINE 

Inclusion of the series compensator in the transmission line makes the protection 

procedure complex due to the abrupt changes in line parameters at the point of series 

compensation. As a result, the protection and control of a transmission line need to be 

adapted to the variations introduced by the series compensator. 
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To take full advantage of the series capacitor installation in a utility network, it is 

necessary to understand the impact of series compensation on protection system and 

implement appropriate remedial measures. Various impacts of series compensation on 

distance protection of transmission line are discussed below. 

2.4.1 Change in Line Impedance Seen by Relay 
The distance relay computes the line impedance from instantaneous measurements of 

the voltages and currents obtained at the relaying point. The apparent impedance seen by 

the distance relay (at the relaying end) for an uncompensated line is shown by a dashed line 

in Figure 2.5 (a) and on a R-X plane in Figure 2.5 (b). With inclusion of series compensation 

at the middle of the line, the impedance characteristic is modified at the point of 

compensation, as shown by solid lines in Figure 2.5 (a) and Figure 2.5 (b) [11]. It is evident 

from Figure 2.5 (b) that, the distance relay overreaches if the SC is included within the fault 

circuit [12, 13]. Moreover, if the SC is located near bus A, a fault just after the series 

compensator will lead the line impedance vector to the third quadrant so as to perceive the 

fault in the reverse direction as shown in Figure 2.6 [11]. 
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Figure 2.5 (a) 
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Figure 2.5: Change in impedance as seen from relay 
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Figure 2.6: Loss of directional integrity in case of end line compensation 

2.4.2 Voltage Inversion 
Voltage inversion is the change of voltage phase angle by more than 90˚. This type of 

condition occurs for a fault after compensator in the case where the source impedance (ZS) is 

much higher than XC. One such typical condition is shown in Figure 2.7 [14]. In this case, the 

current supplied by the source at the left hand side would be predominantly inductive and as 

a result, the fault voltage at bus C would be reversed with respect to the source voltage at 

the left hand side. 

BA

ZL

C D
FaultZS ZF  

Figure 2.7: Case of voltage inversion 

For a transmission line protected with self-polarized mho relay, the mho circle crosses 

the origin. The relay utilizes local voltage measurement as the polarizing quantity. For close-
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in faults, measured voltages are of very small amplitude that create problem for detecting the 

falt with mho characteristic. Because of voltage inversion, the measured conductance shifts 

to the third quadrant on R-X plane. This makes the relay to under-reach which may result in 

loss of directional integrity. 

2.4.3 Current Inversion 
Current inversion is a phenomenon in which the phase angle of current gets shifted by 

more than 90˚. This happens for a series compensated transmission line in which the source 

impedance is much less than XC. For example, in Fig. 2.8, if XC is much greater than the 

inductive line impedance from the left hand source to the fault point (m*XL), then the current 

supplied from the left hand side would lead the left hand source while the current supplied 

from the right hand side would lag the right hand source. Clearly, these two currents are out 

of phase with each other. It is worth noticing here that, the current inversion and the voltage 

inversion occur at opposite system conditions. Therefore, the voltage and current inversion 

cannot occur simultaneously. Either of this inversion makes the protective relay to see the 

fault in the reverse direction [7-10].   
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Figure 2.8: The case of current inversion [10] 

2.4.4 Effect of Capacitor Over-voltage Protection on Impedance Based Protection 
Scheme 

As mentioned in Section 2.3, a MOV based overvoltage protection not only provides 

necessary protection to the series capacitor, but also improves reinsertion time and hence 

improves the system stability. However, inclusion of the MOV in the power circuit creates 

difficulties for the impedance based transmission line protection schemes. This is due to the 
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fact that, the conduction of the MOV depends upon the severity of the fault current. This 

leads to two different impedance conditions during fault: 

1) In a fault with a higher value of fault currents, the MOV conducts to reduce the 

potential stress on the series compensator. As mentioned earlier, the fault current 

splits between the SC and the MOV. The equivalent impedance is dependent upon in 

the sharing of current between these parallel paths. Moreover, the MOV conducts for 

a portion of the half-cycle only in every half cycle. This makes prediction of the 

equivalent impedance of the SC-MOV combination difficult during fault conditions. 

This necessitates the requirement of an algorithm for estimating the voltage across 

the SC-MOV combination. 

2) In a fault with low value of fault currents, the voltage drop across the series capacitor 

may not increase up to the critical level for the MOV. In this condition, the MOV 

sustains its high impedance state. The series capacitance will be part of the circuit for 

the entire period of the fault. The equivalent impedance of the SC-MOV combination 

is reactance of the series capacitor only.  

The above two facts compound the difficulty of relay setting more. A setting of the relay 

made without consideration of MOV conduction can make the relay to overreach and loose 

its directional integrity. If the settings are made with assumptions of continuous presence of 

MOV, the relay may under-reach for fault with low value of fault currents. 

2.4.5 Transient Issues 
A transient associated with the fault on an uncompensated transmission line normally 

carries a decaying Direct Current (DC) component (along with the other harmonic 

components). However, the transients generated for faults on a series compensated line 

carry an Alternating Current (AC) decaying component the frequency of which is defined by a 

combination of the system inductive reactance and the capacitive reactance of the 

compensator. Addition of these AC components adversely affects the estimation of current 

and voltage phasor and overall impedance based protection algorithm.  

2.4.5.1 Subsynchronous Frequencies 
The series capacitance of the compensated transmission line introduces a sub- 

synchronous frequency in the system. The frequency depends on the parameters of the 

series capacitor and the line. The natural frequency is proportional to the degree of 

compensation and is inversely proportional to the impedance from source to the fault 

location. 

The series combination of the capacitor and the inductance of the system sets up a 

series resonant circuit, the natural frequency of which (neglecting resistance) can be 

calculated by:  
  17 
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In the above equation XC is the reactance of the compensator, XL is the line reactance 

up to the fault point and f represents the nominal power frequency. For faults just after the 

series compensator, the natural frequency is normally of a higher-frequency range. These 

frequencies are not much critical as the MOV will typically short the capacitor in these cases. 

However, for far end line faults, the natural frequency will be of lower orders. If this transient 

frequency is less than the fundamental frequency, the voltage drop in the line inductance 

dominant system would be much lower than that in the normal operating condition. 

Conversely, the transient voltage drop across the capacitor will be much larger due to the 

lower frequency of the transient current. Thus, for the low frequency transient component, 

the line would appear to have a much higher percent compensation.  

If the voltage drops across the series compensation due to the load current are small 

compared to the voltage drop due to the fault current, then in the first half cycle of voltage 

after the fault inception, the voltage drop across the inductor is essentially of the same 

polarity as the voltage drop in the capacitor [14] as shown in Figure 2.9. Therefore, the 

capacitor initially tends to reduce the fault current. Now when the capacitor voltage shifts out 

of phase with the inductor voltage, the current would be larger than the current that would 

occur if the capacitor is bypassed. This results in inappropriate impedance measurements for 

the distance based protection algorithms. 

 
Figure 2.9: Effect of capacitor on fault current frequency 

With decay in transient, the impedance will approach its actual steady-state value for 

the corresponding fault condition. This forces the protection engineers to reduce the 

impedance settings to prevent zone 1 operation during the period in which sub harmonic-

frequency transients are present in the system. 

2.4.6 Other Factors 

2.4.6.1 Unbalanced Line Impedance 
A non-transposed or partially transposed transmission line offers unbalanced 

impedance. This unbalance is significantly magnified with inclusion of series compensation. 
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This amplification is largely measured in terms of percentage of the total impedance of the 

line under fault. This in turn, increases the zero and negative sequence components of the 

currents thereby necessitating change in protection algorithms, especially for earth sensing 

relays. 

2.4.6.2 Parallel Lines 
Problems with protection of the series compensated lines amplify with the parallel line 

configuration. The series compensator cancels the self-impedance of the transmission line 

partially. However, it makes no effect on the mutual impedance between the parallel lines. 

Moreover, the outage of any line and grounding on either end change the impedance seen 

by the relay. Therefore, all these conditions should also be considered during the design of 

parallel transmission line protection scheme with series compensation. 

2.4.6.3 Faults in Capacitor Bank 
The series compensators are normally installed as a bank on a platform. As discussed 

earlier, an internal overvoltage protection is provided for this bank of capacitors. The 

compensator protection system bypasses the whole capacitor bank in case of overvoltage 

(for example, group overvoltage because of fuse blowing). For a single-phase fault, capacitor 

bank protection system needs to bypass other two-phase capacitor bank also to nullify any 

possibility of unbalance and consequent instability. A delay in bypassing the other two 

capacitor banks in the other two phases provides a window of opportunity for a high speed 

sensitive ground directional comparison schemes to operate, as this capacitor unbalances 

appears as an internal fault to the protection system [15]. 

2.5 SERIES COMPENSATED TRANSMISSION LINE PROTECTION APPROACHES 

Addition of series compensation forces changes into the design of the transmission line 

protection system. These changes are made according to the changes in system parameters 

according to the size, location and overvoltage protection of the compensator as discussed 

earlier. Besides the detection of faulty condition, fault type classification is an essential 

protective relaying aspect for transmission line protection. Now, in any transmission line, the 

fault currents for faults occurring at the end of the line may be of the same order as that of 

the load currents. However, for a series compensated line, because of the modified 

impedance locus owing to the presence of the compensator, the reach of the relay needs to 

be evaluated properly. Moreover, identical impedance conditions may exist on either side of 

the series compensator (Figure 2.5 (a)). This necessitates the information about location of 

fault with respect to the compensator (fault zone). Therefore, the final impedance 

calculations of the distance relay always use the information of fault type and fault zone. 
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Reviews for fault analysis (fault zone and type identification) methods with fault location 

methods are presented in this section. 

In recent times, considerable efforts have been made for development of protective 

relaying schemes for series compensated transmission lines. The available approaches can 

broadly be classified in following categories: 

1) Application of multiple/ dynamic impedance characteristics according to the presence 

of the series compensator in the fault circuit [16], or use of memory polarization to 

eliminate the effect of change in voltage (both in magnitude and phase) due to the 

presence of compensator [17, 18]. 

2) Development of a mathematical model of the compensator to estimate its impedance 

during a fault. The voltage across the compensator is estimated to correct the 

measured voltage [9, 19, 20]. 

3) Protection of the series compensated line with a digital protection system that 

employs an advanced digital signal processing tool and/or AI technique [21-23]. 

Normally, these schemes operate in two stages as shown in Figure 2.10 [11]: 

 

Digital Signal 
Processing

Input Feature Extraction 
and Enhancement

Real- Time 
Measured 

Input

Artificial 
Intelligence

Classification and 
Regression Fault Type/Zone 

Classification and 
Fault Location 

Estimation
 

Figure 2.10: Basic structure of DSP and AI based protection schemes 

i) Signal Pre-processing and Feature extraction 

In this stage, features of the measured electrical quantities are extracted and 

enhanced for further analysis. Signal processing tools such as Fourier Transform 

(FT), Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), Wavelet 

Transform (WT), and Discrete Wavelet Transform (DWT) are normally used for 

this purpose. 

ii) Artificial Intelligence 

In the second stage, the extracted features are used by AI techniques for decision 

making. Normally used classifiers are Artificial Neural Network (ANN), Fuzzy Set 

Theory, Support Vector Machine (SVM), Extreme Learning Machine (ELM), etc. 

In recent times, researchers made efforts for direct implementation of the AI techniques 

as pattern recognition tools for fault analysis also [22, 24, 25]. 

In elementary implementation of the distance relay for series compensated 

transmission line protection, the settings of the reach of the relay have been reduced to 
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accommodate effects of series compensation. The first zone used to be set far below its 

factual reach; around 30% of the line length instead of 80% to 90% [10]. This cautious 

approach takes care of the disproportionality between actual and measured fault 

impedances. However, during a high-current fault, conduction of MOV bypasses the 

capacitor that makes the relay to under-reach during MOV operation. One more solution to 

avoid over reaching of the relay is to use line side voltage measurement with respect to the 

compensator (Figure 2.11(b)) instead of normally used bus side voltage (Figure 2.11(a)) [11]. 

With line side measurement of voltage, the effect of compensator on this voltage can be 

eliminated. However, this solution can be applied easily in case of end line compensation, 

where the compensator is available inside the sub-station only [18, 26]. This solution is 

impractical for a mid-line compensation scheme.   
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Figure 2.11 (a) 
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Figure 2.11 (b) 

Figure 2.11 :(a) Bus side measurement 
Figure 2.11 :(b) Line side measurement 

2.5.1 Multiple Relay Characteristics 
An algorithm for detection fault zone is a prime requirement in this type of relaying, 

which determines the presence of series compensation in the fault circuit. The relay alters 

the impedance characteristic according to the size, shape and reactance of the compensator. 

In an initial approach for adapting the distance relay characteristic to series compensation, 

utilizeed the existence of sub-harmonic components in the fault current to determine the 

participation of the compensator in the fault circuit [27]. Based on the determined fault zone, 

appropriate impedance characteristic is chosen for the relay. However, the compensator 

model employed in this work utilizes spark-gap for capacitor overvoltage protection. In 

another work, presented an algorithm for generation of multiple characteristics of the relay 

(according to the level of fixed compensation) is presented in [16]. This charectaristic is 

shown in Figure 2.12. The dynamic characteristic has been developed using offline network 

details. However, requirement of more than one cycle of post fault data proved this approach 

to be slow as compared to recent requirements. A protective algorithm proposed in [28] 
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divides the transmission line into two sub-systems of linear and nonlinear components to 

modify the characteristics according to the compensation level. 

 

Figure 2.12: Relay multiple characteristics 

The prime advantage gained through this type of schemes is that the relay 

characteristics gets modified /selected adaptively according to the level of the compensation. 

However, these algorithms usually proved to be slower as modification / adoption 

necessitates the knowledge of the fault zone before proceeding to the final characteristics.  

2.5.2 Compensator Modeling 
As already mentioned, the distance protection scheme for transmission line protection 

might calculate the fault impedance fallaciously due to the voltage drop across the 

compensator. This problem can be eliminated by calculating this voltage drop with real-time 

measured quantities. One of the methods is to develop an equivalent impedance model of 

the compensator for calculations. A linearized equivalent impedance model of the SC-MOV 

combination, as shown in Figure 2.13, has been presented in [19]. This model provides only 

an approximate behavior of the SC-MOV combination. However, this model has been 

preferred by many researchers as it is fairly simple in application. Based on the model 

presented in [19], a quasi-linear model of the SC-MOV combination has been reported in [9] 

which can be used in simulation studies. These models have been used by several 

researchers for protection studies of series compensated lines. These models are found to 

be fairly useful for calculating the impedance of the SC-MOV combination and hence for 

estimating voltage across the compensator [10, 16, 20, 28-34].  
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Figure 2.13: Equivalent impedance model of the SC-MOV combination [24] 

A more recent non-linear model of parallel combination of SC and MOV has been 

developed in [20]. The model utilizes measured value of compensator current as an input 

parameter. This necessitates a dedicated communication channel with real-time 

measurements in case of mid-line compensation. Use of interpolation technique for the 

calculation of the parameters of this model reduces the prediction accuracy. Moreover, 

increased computational complexity of this model encourages the researchers to use the 

linear models proposed earlier. An algorithm for predicting the impedance of the SC-MOV 

combination by calculating two different impedances across the compensator has been 

presented in [31]. The first impedance is realized with measured voltage and current and the 

other one is realized with measured current and calculated compensation voltage with the 

help of 2nd order Gear Differentiation rule. In this method, the final impedance is estimated by 

checking the position of these two calculated impedances on three specially shaped regions 

on the impedance plane. 

The compensator modeling approach provides a great advantage for the protection of 

compensated lines, as the voltage across the compensator can be estimated. However, it is 

difficult to replicate the exact non-linearity of the compensator in mathematical modeling and 

as a result, the values predicted by these models differ from the actual measured values. 

This indicates the requirement of more sustained efforts in the development of equivalent 

model. 

2.5.3 Travelling Wave Based Approaches 
A travelling wave is a multi-frequency transient wave generated from the fault point due 

to sudden change in system parameters with the inception of fault. These travelling waves 

propagate on either side of the line and are reflected back continuously until they die down. 

This is shown in Figure 2.14. Travelling wave equations are sufficient for development of a 

transmission line protection system. However, with inclusion of the non-linear component of 
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the series compensator in the system, these equations need modification to incorporate 

these non-linearities. A modified travelling wave equation, which includes the non-linearity of 

the compensator has been developed in [35]. This equation was further improved in [33]. The 

algorithm estimates the voltage on either side of the compensator instead of modeling the 

compensator device. This makes the algorithm independent of compensator type, mode of 

operation and its parameters. However, this two-ended scheme requires a dedicated 

communication channel and a high amount of calculations to compute the final result which 

make it slow. 
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Figure 2.14: Travelling wave (Bewley-Lattice diagram) [35] 

It is worth to note that, travelling wave is almost absent when the fault inception angle 

is near to zero. Moreover, involvement of the series compensator can produce frequencies in 

a very high range. These frequencies can be too high for a Capacitive Voltage Transformer 

(CVT) for a close-in fault after compensating device, as it can be out of its measureable 

bandwidth [13]. 

2.5.4 Signal Processing Tool and Artificial Intelligence 
DSP is the method to describe a signal into another form that makes certain features of 

the original signal more amenable for study. DSP is able to describe the electrical signal 

more completely for power system stability and protection analysis. 
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2.5.5 Advancement in Filtering  
The basic signal processing tool, namely DFT, decomposes a periodic continuous time 

signal into an infinite sum of sinusoids of different frequencies. The FT, in other words, is 

based on the principle of resolving the original waveform into reference sinusoidal waves. 

Therefore, DFT separates out all spectral details of the original time domain signal in the 

frequency domain. In [36] and [37], DFT based algorithms have been proposed for non-

compensated transmission line which completely remove the decaying DC component of 

fault currents. Based on these works, a Fourier filter based protection scheme for series 

compensated transmission line is presented in [38] for simultaneous removal of the 

subsynchronous frequency components along with the decaying dc to compute the 

fundamental frequency component quickly. With series compensation, this process can take 

a long time to extract the features due to the presence of sub-harmonic components having 

large time constants. 

The DFT is one of the most preferred tools for protection system. The computational 

cost of the recursive DFT filter is lower than many other signal processing tools. Moreover, a 

very good harmonic immunity can be achieved by DFT filtering process, which improves the 

calculation of fault parameters. However, during approximation of a discontinuous function 

(fault inducd current / voltage), the function is defined in the whole interval of interest by a 

global basis set. Therefore, Gibb’s phenomenon will restrict the final resolution [39, 40]. With 

the availability of recent signal processing tools such as Gabor Transform (GT) and Wavelet 

transforms (WT), the interest in DFT has reduced drastically, as GT and WT can provide 

more meaningful information for protection requirements. 

2.5.6 Higher Order Statistic 
Spectral analysis produces a good measure for judgment concerning the predictability 

of the signal. Second order measures produced by tools like DFT generate non-zero values 

in its output due to the presence of Gaussian noise in the signal. Higher-Order Statistic 

(HOS) eliminates this Gaussian noise and can produce more accurate spectrum of higher 

frequency, which is advantageous for fault analysis with series compensation. The use of 

HOS with fuzzy classifier was investigated in [41] for fault classification. However, this 

method involves a heavy computation burden that makes the implementation sluggish. 

2.5.7 Wavelet Transform  
Both time and frequency resolution of a given signal is achieved by time localization of 

different frequency components using WT [42]. In WT, the inputs are manipulated through a 

process of translation (i.e. movements along the time axis) and dilation (i.e. spreading out of 

the wavelet) to transform the signal into another form which ‘unfolds’ the given signal in time 
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and scale. WT measures the correlation between the input signal and scaled and translated 

version of the ‘Mother Wavelet’ which is of limited duration and has zero average value. Two 

application of WT for series compensated lines have been proposed in [35]; i) for fault-zone 

identification using ‘db4’ mother wavelet and ii) for fault classification with ‘Haar’ mother 

wavelet. In this work, the use of sampling frequency of 240 kHz is quite high for practical 

implementation and requires a large amount of calculations. An algorithm for fault type 

identification and zone classification using WT analysis for a controllable compensated 

transmission line is presented in [43]. The same authors again proposed fault type 

identification and zone identification scheme with Wavelet Packet Transform (WPT) in [37]. 

In another work, wavelet entropy based fault classification, zone identification and location 

schemes have been proposed in [44]. An approach based on s-transform and probabilistic 

neural network for phase selection and fault section identification has been presented in [45]. 

The s-transform is an extension of Gabor transform and wavelet transform, and is based on 

moving and scalable localizing Gaussian window. However, application of the Probabilistic 

Neural Network (PNN) in this work requires an extensive training and memory as PNN stores 

all the training information within its network. Another application of s-transform in unit type 

Thyristor Controlled Series Compensator (TCSC) compensated transmission line protection 

is described in [46]. The scheme in this work utilizes the differential energy which has been 

defined as the difference of spectral energy content (calculated by s-transform) of the current 

signals at the sending and receiving ends. The scheme requires synchronization of the 

measurements at the relay end with the data from the remote end. Therefore, it requires 

dedicated communication channel between the line ends. Moreover, necessity of two-cycle 

post fault data makes this technique to be slower in comparison with the recently available 

techniques. An advancement in s-transform, known as hyperbolic s-transform, has been 

applied for fault classification, zone identification and fault location estimation with Support 

Vector Machine (SVM), Support Vector Classifiers (SVCs), and Support Vector Regressions 

(SVRs) respectively in [47]. However, choice of the support vector parameters is a major 

concern for the scheme. Moreover, requirement and selection of a large input vector make it 

slow in implementation. 

In recent developments the ability of WT has been widely appreciated for transmission 

line protection. As the fault generated signals are non-stationary, the information about 

particular spectral components occurring at the time of fault is very important for protection 

schemes. As WT expands a signal in terms of a wavelet, generated using translation and 

dilation of a fixed wavelet function, it extracts time and frequency features simultaneously. 

With the help of WT, the changes introduced by the compensating device can be identified 

clearly. However, most of the wavelet based techniques use multi-level decomposition that 
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requires multi-level filtering and a higher amount of calculations. Therefore, it would be 

beneficial if reduction in filtering requirement and calculations can be achieved by improving 

the methodology. 

2.5.8 Artificial Intelligence Techniques with/without Digital Signal Processing Tools 
(A) Artificial Neural Network 

An ANN is a computational model based on the structure and functions of biological 

neurons. The ANN helps to estimate the underlying function in a set of input-output data in 

the most efficient way. Thus, ANN is a very good function approximation tool. Many 

contributions have been reported in the literature for fault analysis with ANN in a series 

compensated line with or without help of a signal-processing tool. The ANN is considered as 

one of the better methods for voltage and current pattern classification as compared to other 

artificial intelligence techniques [48, 49]. By comparing its performance with that obtained by 

Deterministic Differential Approach (DDA) and Linear Model (LM) methods for on-line 

calculation of the voltage across a non-linear SC-MOV model [9, 19], it is found that the 

performance of ANN is superior to than obtained with DDA and LM. 

In [50], ANN has been applied for pattern recognition based adaptive relaying for a 

series compensated transmission line. The delta-bar-delta (DBD) training algorithm used in 

this work improves the training of the ANN by accelerating the convergence. However, the 

performance of this method has been investigated only for first zone protection and that is 

also with fixed series compensation with end-line configuration (compensator on both ends of 

the line) only.  An approach for protection of a controllable compensated transmission line 

has been developed with use of Radial Base Function based Neural Network (RBFNN) in 

[51].  A RBFNN is a three-layer NN with the middle layer carrying radial basis as activation 

functions. However, to fit in today’s protection requirement, the protection scheme should not 

only be accurate, but fast also. RBFNN requires comparatively large processing time as its 

activation function is non-monotonic as compared to back-propagation multi-layer ANN. 

However, there are few bottlenecks for AI techniques. They require extensive training 

for pattern recognition that requires generation of large numbers of fault cases. Moreover, AI 

techniques are sensitive to classification parameters and may require change in classification 

parameters with variations in system parameters. These limitations can be overcome by 

inclusion of a pre-processing signal analysis tool. Different protection schemes with two 

stages, i.e i) signal processing and ii) pattern recognition are available in the literature. A 

combination of DFT as and ANN has been proposed in [21], with special emphasis on the 

zone-1 protection scheme. However, a two-cycle window after fault inception required in this 

scheme is not very acceptable in today’s requirement of fast protection scheme.  Moreover, 

this scheme claims to achieve improvement in fault classification accuracies produced with 
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data obtained from four-cycle window.  In the first stage of a two-stage algorithm presented in  

[52], the modal information from the measured signal has been extracted by the Total Least 

Square Estimation of Signal Parameters via Rotational Invariance Technique (TLS-ESPRIT) 

with non-fundamental portion of the measured transient signal (extracted by a suitable 

filtering process). This modal information is used for high-resolution signal parameter 

estimation. In the second stage, an ANN is designed to estimate the faulted phase based 

upon the features extracted from the first stage. The TLS-ESPRIT requires a very high 

amount of calculations. The performance of this method has been validated with fault studies 

under variation of system parameters. In another approach, the use of a modal transform 

techniques along with ANN for fault detection and for fault classification on a series 

compensated transmission line has been proposed [53]. In this work, the authors have used 

‘Wedepohl’ transformation for fault detection and ‘Karrenbauer’ transformation for fault 

classification. Extreme Learning Machine (ELM) is a learning algorithm for ANN proposed in 

[54]. The ELM provides faster training speed by eliminating issues like local minima, 

improper learning rate and over-fitting. The ELM trained ANN has been used with DWT in 

[55] for fault classification and fault zone identification in a series compensated transmission 

line. 

The ANN has been proved to be a simple, robust and efficient classifier for protection 

applications. Significant efforts have also been made towards making the ANN scheme more 

practicable by increasing its training speed and accuracy with various training methods.  

Following advantages of ANN can be separated out over other classifiers:  

• It is able to acquire complex, non-linear relationships. 

• Its generalization capabilities are good and as a result, it can be used for different 

applications. 

• It is quick in response. 

• It is very easy to implement in a digital system. 

However, it requires an extensive training stage that necessitates a large training data 

set and time. This leads to generation of a large number of example simulations. Further, the 

ANN needs to be trained afresh for every line where the relay is to be used. Further, the ANN 

is also sensitive to variation in system parameters such as frequency. 

(B) Support Vector Machine  
Support Vector Machine is a computational learning method based on statistical 

learning theory. In recent years, SVM has emerged as a powerful tool for classification and 

regression problems. In SVM, the input features are mapped into a higher dimensional space 

for better classification. This high-dimensional space is created by the dot product of the 

inputs and is called the feature space. In this feature space, the SVM finds out separating 
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hyperplane according to the training data that contains ‘target value’ (class type) and 

‘attributes’ (features). The training is carried out to find out the ‘support vectors’ on and 

around this hyper plane in a way such that the separation between the classes is maximum. 

This optimal hyper plane is found by applying a suitable optimization technique along with 

application of the statistical learning theory.   

An algorithm developed in [56] utilizes RBF kernel based SVM for fault zone 

identification in a series compensated transmission line. The DWT has been implemented as 

a pre-processing tool in this method. After successful development of fault zone detection 

algorithm, SVMs have been used in [22] for fault type classification using non-linear SVMs. 

An application of the SVM as a classifier to classify fault type and fault section for 

controllable series compensation was shown in [25]. In a fault classification scheme 

proposed in [57], ‘db1’ has been implemented as mother wavelet for first level of 

decomposition to generate a feature vector to be further classified by SVMs. 

In all these applications, SVMs have been used as a potential tool for classification 

tasks in protection application. The SVM has a capability to handle very large feature spaces, 

so it is very efficient to handle classification problems with large data set. Moreover, by 

defining the support vectors, it is possible to separate classes which are very close to each 

other. However, SVMs are very sensitive to their classification parameters. In the absence of 

this parameter selection mechanism, the SVM parameters such as cost (C), gamma (γ) and 

kernel function have been chosen by trial-and-error methods in all these schemes.  

To address the above limitation, application of Genetic Algorithm (GA) for deciding the 

parameters of the SVM for TCSC compensated transmission line protection is proposed in 

[58]. However, the choice of the Kernel function is still an issue and 5-fold cross-validation 

based parameter estimation by GA exhibits higher computation burden. Moreover, 

requirement of determining a new set of classification parameters for SVM for each new 

protection application is a major concern for practical implementatio. A comprehensive 

methodology for parameter identification of SVM methodology for protection applications is 

still needed. 

(C) Fuzzy Logic Based Schemes 
A fuzzy logic system represents a nonlinear data mapping of input quantity into a scalar 

value between zero and unity. A fuzzy logic based system aided with pre-processing of the 

signal by DWT for fault classification and fault zone identification has been presented in [23]. 

The scheme applies fourteen rule based ‘min-max’ type fuzzy system for fault classification. 

The fault zone identification scheme is presented by a nine rule based fuzzy system in which 

two separate ratios generated from DWT are given as inputs. The fuzzy output is highly 

sensitive to input parameters and fuzzy rules adopted in the scheme. The spectral pattern of 
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inputs varies significantly with variation in fault system parameters such as fault inception 

angle, fault resistance, etc. Therefore, fuzzy rules are required to be modified to 

accommodate these changes. Thus, this approach cannot guarantee same level of accuracy 

always as input to the fuzzy system varies with variation in system and fault parameters.  

The application of fuzzy logic for series compensated line protection is limited due to 

large variation in system parameters. The formation of fuzzy rules under such variation 

makes it difficult and slow in nature. However, other classifier along with the help of a fuzzy 

system can make the protection system more accurate and simple. 

2.6 SUMMARY 

Table 2.1 gives a summary of the problems faced by the distance protection scheme, 

when subjected to protect a transmission line with series compensation. 

Table 2.1: Summary of series compensation effects on distance relay 

Effect of Series 
Compensation Consequences Problem with Distance Relay 

Abrupt change in line 
impedance at the point of 
series compensation 

 • Relay overreach 
• In a close in fault after 

compensation, relay can 
see fault in reverse 
direction. 

Capacitor bypassed by gap 
for overvoltage protection 

• Produces low frequency 
transients. 

• Capacitor will be bypassed 
before its voltage limit 

• Relay overreach 

Capacitor is bypassed by 
series reactor for overvoltage 
protection of capacitor 

• Will produce high frequency 
transients 

• Relay underreach 

MOV is used for overvoltage 
protection of capacitor  

• Low fault current: impedance 
= capacitive reactance 

• High fault current: impedance 
= combination of SC 
reactance and MOV 
resistance 

• Change of impedance with 
MOV conduction. 

• Overreach of relay. 

Voltage inversion • Voltage phase angle shifts 
more than 90˚ 

• Overreach if fault include 
capacitor 

• A potential underreach if 
fault occurs just after 
capacitor (reverse 
direction). 

Current inversion • Current phase angle shifts 
more than 90˚. 

• Relay fails to operate for 
some portion of line. 

Sub harmonic frequency • Produced due to combination 
of SC and line inductive 
reactance 

• Can conduct MOV at low 
fault currents. 

• Relay overreach. 
Unbalanced line impedance • Increase in imbalance due to 

unblanaced loading or lack of 
transposition 

• Affect the ground relay. 

Faults in capacitor bank • Will produce imbalance in the 
system 

• Affect the ground relay. 
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Based on the literature review presented above, following gaps in the protection of 

series compensated transmission lines have been identified which have been addressed in 

this thesis: 

1. The AI techniques, such as ANN are fast but lack in accuracy and take more efforts 

for training. On the other side, the fuzzy systems are difficult to design to 

accommodate variations. Moreover, their size increases exponentially with an 

increase in the dimension of input feature space. Their ability to separate two classes 

which are very close to each other is limited. Although SVMs can overcome these 

problems, they are sensitive to their classification parameters. Therefore, these 

require experimental investigation for determining proper values in the absence of 

proper parameter adjustment mechanism. This indicates a need to identify a faster 

and accurate artificial intelligence technique that can handle more nonlinearity and a 

large feature space with reduced computational burden.  

2. In the literature, usually one or two aspects of the protection scheme (i.e. fault 

classification and/or fault zone identification) of a series compensated transmission 

line have been addressed. However, for an effective distance protection scheme, all 

the aspects, i.e. fault detection, fault classification, fault zone identification and 

impedance calculation need to be properly studied.  

3. For modern applications, the speed of operation of a protective scheme becomes an 

important aspect. This indicates the requirement to explore the newly developed data 

processing tools to develop fast and accurate protection algorithms.  

4. A comprehensive protection algorithm is desirable, which can work with 

uncompensated and series compensated transmission line without any functional 

modification. 

5. Many compensator equivalent impedance models have been proposed in the 

literature. The equivalent impedance leads to estimation of the voltage drop across 

the series compensator. However, the equivalent impedance does not replicate the 

non-linearity of the compensator in mathematical modeling. An accurate compensator 

model that takes care of entire non-linearity of the compensator is still required. 

Alternately, a method to remove/compensate the effect of voltage drop across the 

compensator needs to be developed.   
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CHAPTER 3: TIME-FREQUENCY ANALYSIS AND ARTIFICIAL 
INTELLIGENCE TECHNIQUES  

This chapter presents a ready reference to Digital Signal Processing (DSP) and Artificial 

Intelligence (AI) methods used in this research work. The requirement, application and advantage of 

the DWT are presented in initial sections of this chapter. The usefulness of the DWPT with entropy 

measures for protection application is described in the next section. A more efficient signal information 

extraction tool, namely, Discrete Undecimatted Wavelet Transform (UDWT) is introduced thereafter for 

power system protection applications. Classifiers based on ANN and SVM are discussed and 

subsequently Chebyshev Neural Network (ChNN) technique is presented.  

3.1 INTRODUCTION 

Digital Signal Processing describes a signal in some other form that makes certain 

features of the original signal more amenable for study. DSP tools can describe the electrical 

signal more completely for power system stability and protection analysis. 

The basic signal processing tool, namely, Fourier Transform, decomposes the 

continuous time signal into a sum of infinite number of sinusoids having different amplitudes 

and frequencies. The FT, in other words, is based on the principle of dilation of reference 

sinusoidal waves. The FT separates out all spectral details of the processed time domain 

signal in the frequency domain. However, the main disadvantage of the FT is that, during 

approximation of a discontinuous function that is defined in the whole interval of interest by a 

global basis set, Gibb’s phenomenon will restrict the final resolution. According to Gibb’s 

phenomenon, when approximation of a function is performed with discontinuity (as the case 

of FT), an anomaly appears near discontinuity. The values of the partial sums near the 

discontinuity overshoot or undershoot the function value [59, 60]. Therefore, when the 

Fourier Transform is applied, information in the time domain, while not lost, cannot be 

observed in case of the non-stationary phenomenon. The spectral information obtained from 

FT may not be sufficient for protection applications.  This is due to the fact that the fault 

signal is dynamic in nature and FT provides the magnitude and phase angle content of the 

signal without any information regarding the time instant at which the signal occurs.  

In order to compensate these shortcomings of the FT, several efforts have been made.  

One such initial method is Short Time Fourier Transform (STFT) which utilizes sliding time 

windows to incorporate the time information with the frequency. In this method, the size of 

the window plays a significant role in final frequency resolution. Choice of very small window 

provides better high-frequency information; however, this leads towards reduction of lower 

frequency resolution. Moreover, longer window makes the higher frequency resolution poor. 

This leads towards variable width window analysis: small windows to capture the high-

frequency information and large windows to capture the low-frequency information. As 
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wavelet transform is based on this philosophy, it is well suited for such applications. In WT, 

the inputs are manipulated through a process of translation (i.e. movements along the time 

axis) and dilation (i.e. spreading out of the wavelet) to transform the signal into another form 

which ‘unfolds’ it in time and scale. 

3.2 THE WAVELET TRANSFORM AND ITS IMPLEMENTATION 

The WT is an efficient signal processing tool for power system protection applications. 

As any fault is a non-stationary phenomenon, during fault analysis, the information about 

particular spectral components occurring at the time of fault is very important.  Using WT, 

both time and frequency resolution of a given signal is achieved by time localization of 

different frequency components [42]. 

The wavelet transform measures the correlation between the input signal and scaled 

and translated version of the ‘Mother Wavelet’ which is of limited duration and has zero 

average value as shown in equation (3.1) [61]. 

 
( ) 0t dtψ

+∞

−∞

=∫  (3.1)  

and can be defined as: 

 
,

1( )a b
t bt

aa
ψ ψ − =  
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 (3.2)  

Where, ‘a’ represents the scale, ‘b’ represents a position along the time axis (translation). A 

large library of mother wavelet exists with variable shapes. Figure 3.1 (generated with 

Wavelet Toolbox of MATLAB [62]) shows few of the basic wavelet functions for the analysis.  

 
Figure 3.1 (a) : ‘haar’ 

 
Figure 3.1 (b) : ‘db4’ 
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Figure 3.1 (c) : ‘Coeiflet 1.3’ 

 
Figure 3.1 (d) : ‘sym13’ 

Figure 3.1: Mother wavelets: (a) Haar, (b) db4, (c) Coiflet 1.3, (d) sym13 

The shape of the mother wavelet for any particular analysis has to be chosen upon the 

similarity of the input signal and the mother wavelet. A rapidly changing signal is best 

analyzed using a mother wavelet having sharp crests and troughs similar to the input signal. 

A slow changing signal is best analyzed with a wavelet with slow transients. 

3.2.1 Discrete Wavelet Transform 
The discrete wavelet transform is best explained by initially considering continuous 

wavelet transform (CWT). The continuous wavelet transform is defined as the sum over all 

time of the signal multiplied by scaled and shifted versions of the wavelet function Ψ as [5]: 

 1( , ) ( ) t bC a b x t dt
aa

ψ
+∞

−∞

− =  
 ∫  (3.3)  

where, ‘x(t)’ is the signal function, and ‘C(a,b)’ is a vector of wavelet coefficients. The 

coefficients are functions of scale and time. Each coefficient denotes the amplitude ‘C’ of the 

scale ‘a’ at time ‘b’. Therefore, if the x-axis represents the time ‘b*t’, y-axis represents the 

scale ‘a’, then the z-axis represents the amplitude ‘C’ of the specified coefficient. CWT is 

continuous in the sense that ‘a’ and ‘b’ can be varied continuously in their respective 

domains. The scaling factor controls the width of the wavelet. A high value of scale 

corresponds to a longer wavelet and low frequency content and vice versa. 

Since each of the scaled wavelets corresponds to a bandpass filter, a peak in the 

continuous wavelet transform coefficients, for a particular  input, would indicate the presence 

of a specific frequency content (corresponding to scale ‘a’) in a specific time interval. Thus, a 

wavelet transform provides time-frequency localization of a signal.  

Figure 3.2 (a) and (b) show fault current signals for an identical fault with same system 

and fault parameters, but at different times of inception. The FT of these current waveforms 

shows a negligible change in the amplitude only as shown in Figure 3.2 (c) and (d). However, 
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no information about the time of fault inception could be derived from it. The WT of these 

signals in Figure 3.2 (e) and (f) reveals an advantage of WT compare to FT as WT is also 

able to include time base for frequency analysis. 

 
Figure 3.2 (a) 

 
Figure 3.2 (b) 

 

Figure 3.2 (c) 

 

Figure 3.2 (d) 

Figure 3.2 (e) 
 

Figure 3.2 (f) 

Figure 3.2: Comparison of WT and FT 
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With DWT, the mother wavelet is dilated and translated discretely by selecting 0

ma a=  

and 0 0
mb nb a=  where 0a  and 0b  are fixed constants with 0 1a > , 0 1b > , m and n ∈ Z , and Z the 

set of positive integers. The discretized mother wavelet can be given as [5],  

 /2 0 0
, 0

0

( )
m

m
m n m

t nb a
t a

a
ψ ψ−  −

=  
 

 (3.4)  

and the corresponding discrete wavelet transform for a discrete sequence x(t) becomes [5]; 
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As the purpose of the discretization is to eliminate the redundancy of the continuous 

form, proper choice of 0a  and 0b must be made so that mother wavelets form an orthonormal 

basis. For a value of 0 2a =  and 0 1b =  this condition is satisfied.  Consequently, DWT can be 

expressed as: 
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3.2.2 DWT Implementation  
DWT can be easily implemented by filter bank techniques if the coefficients are thought 

of as a filter as suggested in [63]. The method is based on the classical two-channel sub-

band coder and yields a fast wavelet transform. In this method, the DWT is obtained by using 

a multistage filter with the mother wavelet as the low-pass filter g(n) and its dual as the high-

pass filter h(n).This enables the technique to decompose the original signal into the 

approximation (low frequency-A) and detail (high frequency-D) components using low-pass 

and high-pass filters. At the next stage, the low-pass output is again decomposed using a 

low-pass and a high-pass filter. So, the overall technique can be represented by a multi-

stage filter bank implementation as shown in Figure 3.3 [63], where x(n) is the original signal, 

h(n) and g(n) are high-pass and low-pass filters, respectively. Further, (2↓) represents down 

sampling of the input signal. 
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Figure 3.3: Wavelet tree representation 
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3.3 WAVELET ENERGY 

In case when wavelets form an orthogonal basis, according to Parseval’s theorem, the 

energy of each expansion component is related to its wavelet coefficients. In other words, the 

energy of the signal f(t) can be separated in terms of the expansion coefficients as, 

 2 22

0
( ) ( ) ( )j

k j k
f t dt s k w k

∞ ∞

=∞ = =−∞

= +∑ ∑ ∑∫  (3.7)  

Here, s and w are expansion coefficients of the transform. The energy contained within the 

transform vector at all stages of the multi-resolution decomposition remains constant. 

Therefore, in general the energy can be expressed as: 

 1
2

0
( )

N
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i
i

E W
−

=

= ∑  (3.8)  

In equation (3.8), Wi
m are the individual components of the wavelet transform vector, where, 

m is level of decomposition. 

3.4 WAVELET PACKET TRANSFORM AND ITS IMPLEMENTATION 

Wavelet analysis provides improved signal processing for transient signal analysis. It 

results in better time localization in higher frequencies in return of poorer frequency 

resolution. In many protection applications, simultaneous exploration of higher frequency 

components and lower frequency components are required. To improve the frequency 

resolution at higher frequencies, wavelet packet transform was introduced in [64]. In wavelet 

packet transform, a new and more informative link is generated between each level of 

multiresolution approximation. Wavelet packet analysis offers a more efficient decomposition 

for a signal containing both transient and stationary components.  

3.4.1 Discrete Wavelet Packet Transform – Decomposition of All Frequencies 
DWPT is an extension of Discrete DWT whereby all nodes in the tree structure are 

allowed to split further at each level of decomposition. With DWPT, both the approximation 

and detail coefficients are decomposed into approximation and detail components, in 

comparison to DWT that decomposes only the approximation coefficients of the signal. 

Therefore, it provides more information on different decomposition levels. The DWPT of a 

signal f(t) can be  defined as [61]: 

 , /22 ( ) (2 )n a a a
nbW f t t b dtψ −= −∫  (3.9)  

Where, a is the wavelet scale and b is the wavelet position parameter while ψn represents 

the mother wavelet.  After decomposing signal f(t) by WPT, sequences can be produced up 

to the Dth level. The recursive relations between the n level and the n+1 level are [66]; 
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 2 1, 1 ,( 2 )n a n a
k bW g b k W+ + = −∑  (3.11)  

Where, h(n) and g(n) are wavelet quadrature mirror filter coefficients (Figure 3.4 [61]). In this 

manner, each signal can be represented by a selected set of wavelet packet components for 

required level of resolution.  Figure 3.4 shows 2nd level of WPT decomposition that produces 

four decomposed components namely HDD, HDA, HAD and HAA.. 
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Figure 3.4: Discrete Wavelet Packet Transform 

3.4.2 Advantages of Using WPT with Respect to DWT 
The resolution of the wavelet transform is not uniform in time-frequency plane.  Figure 

3.5 shows graphically the frequency allocation of a signal being decomposed up to second 

wavelet level [65]. With expansion of the scale of decomposition, the frequency expansion 

takes place with contraction in time.  
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Figure 3.5: Frequency allocation for second level of decomposition 

  The WPT is performed in a similar manner as the multiresolution DWT explained 

earlier. As mentioned in the previous sub-section, the WPT decomposes both the 

approximate and detail resolutions further into approximate and detail resolutions. This leads 

towards a decomposition structure shown in Figure 3.4. In comparison to DWT 

decomposition shown in Figure 3.3, the WPT splits the time-frequency plane into constant 
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aspect ratios. The decomposition becomes wider (in time) and narrower (in frequency) as the 

decomposition proceeds as shown in Figure 3.6 [65].  
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Figure 3.6: Frequency allocation at various resolutions for DWPT 

The DWPT produces same numbers of decomposition coefficients irrespective of type 

and level of resolutions. This gives an edge to DWPT to utilize specific frequency range for 

further processing. 

The wavelet transform are normally computed by fast filter algorithms. However, this 

results in separation of the subjected waveform into various frequency bands. These 

frequency bands are further sub-divided into uni-directional frequency spaces due to 

successive application of filters. This results in less information on time-based features which 

generally exhibit aliasing artefacts, and could disappear in some cases after thresholding. 

With equal time-frequency localization throughout the spectrum directional selectivity can be 

improved with WPT [66]. 

3.5 WAVELET PACKET ENTROPY MEASURES 

There are many useful cost functions associated with wavelet analysis that gives 

quantitative measures for wavelet decomposition. One of them is Shannon entropy. Entropy 

was, firstly, introduced by Clausius in 1872 for thermodynamic applications. In 1948, 

Shannon introduces the entropy in information theory [67] as an extension of the uncertainty 

measures in the information. 

The wavelet entropy combines the wavelet analysis with information entropy. For 

dynamic/non-stationary signals, wavelet entropy enhances the time-frequency resolution of 

the signal. Consequently, more amount of information can be retrieved from the signal by 

wavelet entropy. As in contrast to the WT, the WPT analysis decomposes the signal evenly 

in the entire spectral range, the time-frequency resolution is improved. Therefore, the WPT 

based entropy provides more information than the WT entropy for same level of 

decomposition.    
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Because of its ability to analyse a non-stationary signal, the WPT entropy measure is a 

potential tool for fault analysis [68]. Different types of entropy such as log, norm, Shannon, 

sure, and threshold can be used to characterize the current signals. However, in this thesis, 

the Shannon entropy has been utilized.  

The wavelet packet Shannon entropy [69] can be defined as: 

 ln[ ]wp l lS p p= −∑  (3.12)  

Where, pl, represents relative wavelet packet energy [9] at frequency band I. The total 

numbers of frequency bands are defined by the maximum order of wavelet decomposition. 

Entropy is a description of uncertainty in the entire duration of a signal. The signal is 

divided into K non-overlapping windows each having a time length of M each (total length of 

signal N = K*M). Wavelet packet entropy computation is performed in each time window.  As 

the entropy is a function of the discrete wavelet packet energy, let the mean discrete wavelet 

packet energy at frequency band l for the time window k be defined as [68]: 
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where, NI is the number of points at the frequency band l for the time window k. The relative 

mean wavelet packet energy in the window k can be given as [10]: 
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Following equation (3.12), the average wavelet packet entropy which can reflect the 

complexity of whole signal is given as: 

 ( )( ) ( ) ln[ ]k
l

k k
wp lP PS = −∑  (3.15)  

3.6 UNDECIMATED DISCRETE WAVELET TRANSFORM 

The DWT and DWPT already discussed within this chapter down-sample the 

coefficients after each level of filtering process. This down-sampling of the coefficients allows 

usage of the same pair of filter at different levels of decompositions. Due to down-sampling 

at each level of decomposition, these transforms suffer from the lack of shift invariance. This 

means that a small shift in the input signal can cause major variation on the distribution of the 

energy between the coefficients at different levels. That can create errors in the information 

for further processing. The solution to this problem is carried out by eliminating the down 

sampling step at each level in UDWT [70]. By eliminating down sampling, the number of 

coefficients at each level remains the same. 
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3.6.1 UDWT Implementation 
The UDWT can be implemented through a filter bank series as described with DWT 

with a variation. After each level of filtering process, the output is not down-sampled by two 

as in case of DWT, but filters are altered to accommodate the outputs of the previous level. 

The UDWT technique up-samples the filter coefficients of the low-pass and high-pass filters 

at each level of decomposition (Figure 3.7) [71, 72]. This property is known as redundancy of 

the UDWT. The up-sampling operation is equivalent to dilation of the wavelets. Therefore, 

the approximation and detail coefficients are of same length at each level of resolutions.  

The UDWT of a signal using the filter bank (h – high pass, g – low pass) of a signal x(t) 

leads to a set W=[w1, ……, wj,cj], where wj are the wavelet coefficients at the scale j and cj 

are the coefficients at the coarsest resolution. The traversal from one resolution to the next 

one is obtained using the “à trous” algorithm [73],  

 ( )
1[ ] ( * )[ ] [ ] [ 2 ]j j

j j j
k

C l h c l h k c l k+ = = +∑  (3.16)  

 ( )
1[ ] ( * )[ ] [ ] [ 2 ]j j

j j j
k

w l g c l g k c l k+ = = +∑  (3.17)  

where, ( ) [ ] ( )jh l h l= if  / 2 jl is an integer and otherwise ‘0’. 
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Figure 3.7: Undecimated wavelet transform 

Therefore, the UDWT carries a similar wavelet tree structure as shown for DWT in 

Figure 3.3 without any decimation/down-sampling step (Figure 3.7). However, a level 

dependent zero-padding  interpolation [73] to the low-pass and high-pass filters is performed. 

This preserves the time-frequency relationship at each level of decomposition. DWT of such 

a kind is based on the ‘à trous’ algorithm, which modifies the filters through insertion of holes.  

  42 

 
 



 
 

However, in absence of down-sampling and time-invariance property, the memory 

requirement of the UDWT is more as compared to that required by DWT.  

3.6.2 Comparison Between DWT and UDWT 
The UWT does not decimate/down-sample the input vector by two at each level of 

decomposition as in the DWT. Therefore, UDWT and DWT do not generate the same results 

in output. UDWT gives the same number of detail coefficients at the output as the number of 

the input coefficients at each level, while in the DWT, 50% of the coefficients at each 

successive level are "lost" from output. Both involve convolving the input with low-pass and 

high-pass filters, but the decimated version down-samples the filter outputs while the other 

doesn't. Thus, UDWT provides a larger amount of information about the transformed signal 

as compared to DWT. The amount of information is important when statistical approaches 

are used for analyzing the wavelet coefficients. Therefore, the shift-invariant property is 

important in feature extraction applications for power system protection and analysis. 

The wavelet coefficients, generated at each level of the DWT, are mainly signal 

components with frequencies located in the band-pass of the equivalent filter sequence. 

Since downsampling contracts time, it is natural that frequency expands accordingly. This 

leads towards a perceptually disturbing effect known as aliasing. In aliasing, the frequencies 

will appear across the frequency spectrum of the wavelet coefficients as aliases where a 

significant band of the spectrum has been lost. The complexity of UDWT is increased by an 

increase of level of decomposition with respect to that of DWT. 

3.6.3 Advantages of UDWT Compared to DWT 
There are some advantages and disadvantages of the undecimated version of the WT. 

The summary of advantages gained by UDWT over DWT is as follows: 

• With expansion of natural frequency in DWT, an overlapping of frequency (aliasing) 

occurs in the output. With implementation of UDWT this problem is eliminated.  

• With better time-frequency resolution, UDWT provides a larger amount of information 

about input signal. 

•  UDWT is shift-invariance and therefore, can be implemented in the real time system 

more accurately such as for power system protection application. 

However, the absence of inverse transform capability of UDWT,  increased 

mathematical complexity and requirement of the higher storage space for same level of 

decomposition must be considered before implementation [74]. 
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3.7 NEURAL NETWORK 

Artificial Neural Networks (ANNs) have evolved considerably from a linear single 

perceptron to higher-order networks. Complex input and output mapping capability of ANN to 

produce arbitrary nonlinear decision boundaries, a higher amount of parallelism and inherent 

approximation capability make it popular among protection engineers. 

The concept of ANN is inspired by the biological nervous system. It was first introduced 

in early 1940’s as a simple computational model [75]. This neural model was exposed to 

training with introduction of Hebbian learning rule and rapidly gained linear learning 

capabilities with back-propagation learning method. A multi-layer structure of the ANN can 

efficiently represent non-linear relations between inputs and outputs. Presently the 

feedforward network with a back propagation learning algorithm [76] is widely used in static 

information processing, pattern recognition, and function approximation problems with finite 

inputs under the universal approximation capabilities. Another neural network structure, 

namely, the recurrent neural networks is much more suitable when the length of data is 

infinite, and hence not considered in this work. Figure 3.8 shows a simplified model of a 

neuron characterized by a input vector X=[x1, x2,…xn], connection weights of [w1,w2,…wn] 

and a bias ‘b’ with activation function F(•). The inputs are multiplied by synaptic weights and 

then added up to form the input to the activation function. The activation function transforms 

its input into an output expressed by the equation: 

 

1

n

k k
k

y F w x b
=

 
 
  

= −∑  (3.18)  

The use of synaptic weights is to adjust the relative importance of connections to input 

vector elements. Activation function is a vital parameter in the perceptron. It represents the 

output from the neuron in terms of the activity level at its input. Mainly used activation 

functions are threshold function, piecewise-linear function and widely used sigmoidal 

function. 
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Figure 3.8: Perceptron model 
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3.7.1 Multi-Layer Perceptron 
Basic single layer perceptron resolves the linearization problem with minimization of a 

mean square error by adjusting the neuron weights. However, their classification and 

regressing capability is limited to linearly separable problems only. The classification 

performance for linearly separable data also reduces drastically with the increase in input 

dimension [77]. This necessitates a more complex structure of Multi-Layer Perceptron (MLP) 

that can handle large feature space and able to produce non-linear classification. 

Addition of a hidden layer between the input and output layer improves the boundary 

mapping dramatically. With sufficient number of hidden units, ANN is capable of 

approximating any measurable function from one finite dimensional space to another space 

upto any desired degree of accuracy [78]. An ANN with one or more hidden layer is known 

as MLP and has been successfully applied in this work for fault analysis with series 

compensated transmission lines. 

Figure 3.9 shows a simplified MLP model with a single hidden layer. The network is 

made for n number of input units with input vector X=[x1, x2,…xn], a set of m output units with 

output vector  Y=[y1, y2,…ym] and a set of p number of hidden units. Let, the hidden layer unit 

Hi receives a net input and produces the output: 

 
(1) 1 1

1

n

i ij i i
j

h F w I b
=

 
 
  

= +∑  (3.19)  

The output from the jth neuron of the output layer will be given as: 

 
(2) 2 2
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o F w h b
=

 
 
  

= +∑  (3.20)  

   Where, F1(•) and F2(•) are activation functions of hidden layer and output layer 

respectively. 
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Figure 3.9: Multi-layer perceptron model 
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The MLP has found many applications due to its learning ability. The Back-Propagation 

(BP) learning technique is the most successfully utilized learning method for the MLP [75] 

with a supervised trend. The BP technique adjusts the connection weights to minimize the 

objective function that is the sum of the squared errors between the desired and the actual 

outputs. The BP algorithm works in two separate phases: the forward pass and the backward 

pass. In the forward pass, the inputs are presented to the network, and an output pattern is 

retrieved. During this phase, the weights and biases are fixed at their initial values. In the 

backward phase, the weights and biases are updated according to the error between the 

actual and target outputs. The use of bias is optional. This updating of the weights continues 

until the prescribed goal of reduction in error is achieved. A cross-validation during training 

can also be opted to increase the speed of the training. The cross-validation not only helps to 

reduce the size of the network but significantly improves the generalization performance of 

the network.  

However, it is very difficult to design correct architecture of the MLP with a proper 

number of hidden layers and the number of neurons in each hidden layer. This is because 

when the size of the MLP becomes large, it faces a problem of reduction in generalization 

ability and over-fitting thereby requiring more computational time. On the other hand, a 

smaller network is inadequate to achieve the targeted precision. Due to this, the design of 

the MLP is performed in following steps as described in Figure 3.10. 

1) Data Preparation: In the first stage for deciding the architecture of the MLP, the entire 

set of the training data has been selected for the procession.  

2) Design of basic ANN topology and activation and learning function: In this stage, a 

basic MLP topology with estimated hidden layers and number of neurons are 

assumed with suitable activation function and learning algorithm.  

3) Training: The chosen structure of the MLP is subjected to learning using the training 

data to adjust weights and biases (if used) to achieve the least squared error.  

4) Performance Evaluation: In this final phase of MLP structure design, a set of data is 

presented to the network for checking the performance. This testing data should be 

different than that used for the training. The performance, if acceptable, will finalize 

the network architecture or the network structure is customized to evaluate again until 

acceptable performance is obtained.  
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Figure 3.10: MLP architecture selection process 

3.7.2 Functional Link Neural Network  
Besides the problem of designing the architecture as discusses in previous section, the 

MLPs are much slower in training than the single-layer structures. This is due to the 

propagation of the error back in different levels of neural layers from output to input. 

Moreover, the MLP training procedure suffers from the problems such as local minima 

trapping, saturation, dependence on initial weight and over fitting to the training data. 

An introduction of additional higher-order  units in the inputs can avoid these problems 

[79]. This higher-order network can perform non-linear mapping with a single layer of units 

without giving up nonlinearity. This can be proved by Hornik’s theorems [80]. These higher-

order  inputs can be supplied by the functional expansion of the input and as a result, the 
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type of ANN which uses these higher order inputs is known as Functional Link Neural 

Networks (FLNN) [81]. For an example, a feature of input x, say xi, can be enhanced as [xixj, 

xixjxk,….], where i<j<k. These expansions can be made with different functions. 

This technique has shown its capability to improve the learning rate of the ANN 

dramatically for same applications. There are two different methods for creating additional 

input nodes. In the first method, the cross-product of the input terms is added into the input 

model (also known as combine convolution) [81]. In this method, each of the inputs multiplies 

with the entire input vector. For example, for a ANN with three inputs of (P, Q and R), their 

cross products PP, QQ, RR, PQ, PR and RQ can be used as an enhanced input pattern. In 

this case, second-order terms are added to the ANN input structure. In the same way, as per 

requirement, higher-order terms could also be added. 

Another method for providing higher dimensions to the input is to use functional 

expansion of the original inputs. Normally used functional expansions are sine, cosine, 

logarithmic functions, max function, etc. For the same ANN given above with inputs P, Q and 

R, the higher-order inputs might be (P, Q ,R, max(P, Q, R), sin(P), sin(PQ), log(Q)…..). In 

this model, input variables are individually acted upon by appropriate functions. Applications 

of polynomial function for input enhancement are also suggested in the literature. Widely 

used polynomial expansions in FLNN are Chebyshev, Legendre and power series 

expansions. It is important to choose suitable expansion function for an FLNN according to 

the application requirements. Principally, the simple expansion will be adopted if the 

accuracy is enough for the application in hand [79]. The following section discusses the 

chebyshev polynomial expanded FLNN for the protection applications which has been used 

in this thesis. 

3.7.3 Chebyshev Neural Network  
Chebyshev Neural Network (ChNN) is a type of FLNN. It has a single-layer flat 

structure where the hidden layers of MLP are eliminated by transforming the input pattern to 

a higher-dimensional space. It uses Chebyshev polynomials as functional expansion. The 

Chebyshev polynomials are sets of orthogonal polynomials defined as the solution to the 

Chebyshev differential equation [82]. Due to the absence of hidden layer, ChNN provides 

computational advantages over the MLP [83]. It is well known that non-linear approximation 

capacity of the Chebyshev orthogonal polynomial is very powerful by the best approximation 

theory [82]. 

3.7.3.1 Chebyshev Polynomials 
Chebyshev polynomials arise as the solution to the Chebyshev differential equation: 
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Solution of this equation can be given by [84], 
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 (3.22)  

Where, Tn(x) and Un(x) are defined as Chebyshev polynomials of the first and second kind 

respectively with degree n. Both Chebyshev polynomials are in the domain [−1; 1] and have 

their degree n ∈ Z. The first type of the Chebyshev expansion is more important for 

approximation and hence explored with ANN in this work.  

The Chebyshev polynomial can be generated by the following recurrence relation [84]: 
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 (3.23)  

A plot for first four Chebyshev polynomials is given in Figure 3.11 [84] 

 
Figure 3.11: Chebyshev polynomial plots for level 1-4 

These Chebyshev polynomials can be given as: 
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By using the Chebyshev functional expansion, an n-dimensional input pattern of X=[x1, 

x2,…xn], will be expanded to a [(m X n) + 1]- dimensional pattern, that can be applied to a 
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neural structure with [(m X n) + 1] inputs as shown in Figure 3.12. The weighted sum of the 

components of the expanded inputs is then passed through an activation function to produce 

an output. The ChNN is normally trained with the BP training algorithm for adjustment of the 

weights to obtained the desired output. 

 

Figure 3.12: Flow diagram of Chebyshev Neural Network 

With an increase in the order of Chebyshev expansion, the nonlinear processing 

capability of the ChNN will be stronger. However, this would result in the increase in the 

computational burden. Therefore, for digital applications, due to finite processing time of 

computers, it is important that the inputs are not expanded more than the required for 

obtaining the solution with sufficient accuracy. 

The overall computational complexity for training the ChNN is quite less as compared 

to that required for the MLP [83]. 

3.8 SUPPORT VECTOR MACHINE  

Support Vector Machine is a computational learning method based on statistical 

learning theory. In recent years, SVM has emerged as a powerful tool for classification and 

regression problems. In SVM, the input features are mapped into higher dimensional dot 

product space for better classification. This high-dimensional space is called the feature 

space. In this feature space, the SVM finds separating hyperplane according to the training 

data that contains ‘target value’ (class type) and ‘attributes’ (features). The training is made 
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to find out the ‘support vectors’ on and around this hyper plane in a way that the separation 

between the classes is maximum. This optimal hyper plane is found by utilizing the 

optimization theory with application of the statistical learning theory. 

3.8.1 Linear Classification with SVM 

Consider a two-class training data set , 1
{ }N

i i i
x y

=  consisting of N data points. i
x  is ith real 

valued input vector, and i
y is the corresponding class of i

x  with value of either +1 or -1. A 

hyper-plane, separating these points according to their classes, can be given by equation:  

0T
iw x b+ =  as shown in Figure 3.13 [85]. ‘w’ and ‘b’ represents the weight vector and bias 

term (vector)  respectively and determines the position of the separating hyperplane. The 

training is performed to find out the value of ‘w’ and ‘b’ such that the separation between the 

classes is maximum. It can be shown that the separation margin (m) is given by [75]: 

 2m =
w

 (3.25)  

WTXi + b = 1

WTXi + b = -1
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w
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Figure 3.13: Support vector machine hyper plane 

For better separation, the value of ‘m’ should be increased with training with reducing 

the value of 2w  to its minimum value. Hence, for linearly separable data, the SVM can be 

constructed by minimization of v( w)where 

 1
2=V(w) Tw w  (3.26)  

Subject to, 

 ( ) 1i iy x b+ ≥Tw  (3.27)  
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3.8.2 Non-linear Classification with SVM 
The non-linear classification problem can also be dealt with SVMs. This can be done 

by mapping the classified data onto a high-dimensional feature space where the linear 

classification is possible using nonlinear vector function,  

 
1 2{ ( ), ( )........... ( )mx x x= Φ Φ ΦΦ(x)  (3.28)  

Expansion of the non-linear function, the non-linear function can make it seperable. In 

practice, the nonlinear data transformation is accomplished indirectly by using the so called 

kernel functions [56], which is defined by  

 ( , )i jK x x = T
i jΦ(x ) Φ(x )  (3.29)  

This expansion generates a higher dimensional space; the SVM can be trained to find 

out the maximum margin between the classes by equation (3.26).  However, there is a 

possibility that, the expanded data is still not linearly separable. In that case it will be 

impossible to separate out the data and satisfy condition of equation (3.25). Hence, instead 

of the function ( )v w ,  a new function v(w,ε) can be used, and given by [85]: 

 
1

1v(w,ε)
2

N

i
i

C ε
=

= + ∑Tw w  (3.30)  

Subject to,  

 { } 1T
i iy w b ε+ ≥ −iΦ(x )  ; where, 0iε >  (3.31)  

Where, iε = 1, 2, …..N are slack variables and N represents the total data points for 

classification. C > 0 and known as regularization parameter. The vectors v(w,ε) are known 

as support vectors and are used to determine the decision surface of the classifier. The 

classification accuracy largely depends on selection of Kernel function and value of C for 

classification. 

3.9 SUMMARY 

WT gains advantage over FT as signal processing tool due to its time-frequency 

localization capability. The most common form of WT, namely DWT, has been preferred in 

many protection applications, due to its flexibility of the application with filter-bank 

implementation and wide variety of mother wavelets. However, in spite of all the advantages 

of WT, it has limitations such as shift-sensitivity and directional selectivity.  

Directional selectivity of the DWT can be improved by application of DWPT. The UDWT 

has been introduced as a better variant of the DWT. UDWT is linear [86, 87], shift-invariant, 

redundant and undecimated. The drawbacks are lack of orthogonality, increased 

computational complexity and increased size of output.  
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Moreover, this chapter discusses different AI techniques used in this thesis with their 

basic operation and implementation. Specifically, the FLNN (ChNN) and SVM have been 

presented.  The applications and detail analysis of these signal processing and AI tools are 

presented in the following chapters in details. 
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CHAPTER 4: IMPROVED FAULT CLASSIFICATION SCHEMES FOR 
SERIES COMPENSATED TRANSMISSION LINES 

This chapter presents the development of two schemes for classifying faults on a series 

compensated transmission line. The term fault classification is often used synonymously to 

identification of faulty phase. The first scheme proposed in this chapter makes use of ChNN along with 

DWT to accomplish the objectives. The second scheme applies ChNN for direct fault classification 

(based on the patterns of the fault currents in all three phases) without any help of signal processing 

tool. The scheme also examines performance of two ChNN learning algorithms for fault classification 

in a series compensated transmission line. These training approaches are Least Square Levenberg-

Marquardt (LSLM) and Recursive Least Square Algorithm with Forgetting Factor (RLSFF). The 

performances of these algorithms have been evaluated based on their generalization capability in 

relating the fault current parameters with a fault in any particular phase. After being trained for only a 

small set of generated fault data, the developed paradigms have been tested over a large number of 

fault cases with wide variation of system and fault parameters. Lastly, the performances of the 

algorithms under current transformer (CT) saturation and for untransposed transmission lines are also 

investigated.  

4.1 INTRODUCTION 

An important objective of the power system is to maintain the quality and continuity of 

the supply in the most economical way through the transmission networks. However, it is 

practically impossible to avoid natural calamities, physical accidents, component failure or 

human errors that can result in faults on the transmission system. Most of the faults due to 

natural events or equipment failure are single-phase to ground in nature. Normally, the faults 

that occur in the transmission lines can be categorized as given in Table 4.1, with their 

probability of occurrence in percentage of the total observed faults [88]. 

Table 4.1: Type of transmission line faults with their probable occurrence values 

Type of Fault Fault Percentage of 
Occurrence 

Single Line-to-Ground Fault A-g, B-g, C-g 70-80% 

Double Line-to-Ground Faults A-B-g, A-C-g, B-C-g 10-17% 

Double Line Faults A-B, A-C, B-C 8-10% 

Three Phase Faults A-B-C/ A-B-C-g 2-3% 

  

The series compensation is usually employed on EHV long transmission lines which 

are normally protected by impedance based distance relaying schemes. The purpose of 

distance protection scheme is to ensure tripping of the line for faults within its protected zone 

only. To achieve this goal, the distance protection system involves fault detection, fault 

classification and estimation of fault distance as measured from the relay [89]. With inclusion 
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of the series compensation, the protection system also requires dentification of the fault 

location with respect to the compensator as well (fault zone identification). The post-fault 

analysis is important for the protection engineers for system restoration and to get specific 

information for operation of the protection system. 

Fault classification plays an important role for an impedance based relaying system. 

The knowledge of the fault type is required to improve the accuracy of estimation of fault 

distance as measured from the relay. As a result, the risk of unwanted over-reach/under-

reach is reduced. The fault classification algorithm should be capable of classifying all 

possible types of faults of Table 4.1 to enable single-pole tripping and auto-reclosing. 

Fault classification algorithms for series compensated transmission line are presented 

in this chapter.  These algorithms utilize the changes in current waveforms (due to 

occurrence of a fault) for identifying the fault type. The initial approach employs WT to 

identify the spectral changes in the fault current and subsequently, these spectral changes 

are used by a ChNN to identify the type of the fault. Subsequently, application of a ChNN for 

direct pattern recognition based fault classification was found to be superior to the combined 

WT-ChNN scheme. Moreover, performances of two ChNN training algorithms have been 

compared for direct pattern recognition based fault classification scheme. 

4.2 SYSTEM SIMULATION AND ANALYSIS 

A single-line diagram of the transmission system used for evaluation of the developed 

fault classification algorithms is shown in Figure 4.1. The system shown in Figure 4.1 is a 

400 kV, 300 km line connected between two sides with mid line fixed series compensation 

and the two external systems at the two sides have been represented by corresponding 

Thevenin equivalent sources in series with the corresponding Thevenin’s equivalent 

impedance. The series compensator is provided with a MOV for overvoltage protection. The 

MOV characteristic is given as [56]: 

 i Kvα=  (4.1)  

In eqn. (4.1), ‘i’ and ‘v’ represent the instantaneous MOV current and voltage 

respectively. Constant ‘K’ can be given by [19, 48, 90] 

 max

max( )
IK

V α=  (4.2)  

Where, ‘Imax’ and ‘Vmax’ are maximum permissible MOV current and peak capacitor 

voltage respectively. The typical value of α is chosen between 30 to 50 [48, 90, 91] such that 

the MOV conducts only after the current exceeds 2.5 times the rated value. The MOV is 

protected against its dissipation capacity by a circuit breaker (CB) as shown in Figure 4.1. 
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The parameters of the transmission line and the generator equivalent sources (henceforth 

termed as ‘generator’ in this thesis) are given in appendix-A.  

AG

CB

MOV Ld

G1 G2A B

SC
RELAY

 
Figure 4.1: Test system for study 

To evaluate the effectiveness of the developed algorithm it needs to be tested on large 

number of data sets encompassing different variety of fault case and conditions. Towards 

this goal, a model for the study system of Figure 4.1 has been developed in PSCAD/EMTDC 

[92] and a large number of fault cases have been generated by varying the system and the 

fault parameters. The details of these variations are presented in the next sub-section. The 

transmission line has been simulated using the distributed parameter line model in PSCAD. 

4.3 APPLICATION OF DWT AND ChNN FOR FAULT CLASSIFICATION  

Response of the protection system to the fault condition primarily depends on 

identifiable changes in fault current and voltage signals. Therefore, the development of an 

accurate fault classification system can be treated as a problem of identification of these 

variations (manifested in magnitude, phase and frequency of the signals). The proposed 

algorithm in this section utilizes DWT of the measured current signal as a feature extraction 

tool along with a ChNN as a classifier. For this purpose, the samples of the post fault 

currents (measured at the relaying end) obtained during half-cycle period (after the 

occurrence of the fault) have been utilized. It is to be noted that, a sampling frequency of 4 

kHz. has been chosen in this work. It is further to be noted that instead of ChNN, other 

classifiers such as SVM or MLPNN could also have been chosen. However, as already 

discussed in Chapter 3, it is a non-trivial task to determine the appropriate configuration of 

MLPNN while for SVM, determination of appropriate kernel function and proper value of 

regularization parameter is not at all straightforward. To avoid these limitations of SVM and 

MLPNN, in this work ChNN has been chosen as a classifier and subsequently as a pattern 

recognition tool.    
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4.3.1 DWT Feature Extraction 
The feature extraction is a procedure for determining the relevant shape information 

contained in an input pattern. The goal of feature extraction is to find as the least number of 

features as possible that adequately differentiate any pattern from other patterns.  

Every fault pattern is characterized by a set of features such as frequency, phase and 

magnitude. DWT is capable of providing the time and frequency information simultaneously 

for any given signal thereby giving a time-frequency representation of the signal. Detail 

descriptions about WT and DWT can be found in Chapter 3, Section 3.2. The DWT has been 

applied to all the three phase currents after the occurrence of a fault to extract the pertinent 

features. In this scheme, wavelet decomposition up to 4th level has been found to be 

necessary and sufficient for fault classification. Figure 4.2 shows the wavelet decomposition 

of all the three phase half cycle current waveforms for an A-g fault. The fault has been 

assumed to be occurred at a distance of 60 km from the relaying end with 0 Ω fault 

resistance, 45˚ fault inception angle and line loading angle of 10˚. The line loading angle is 

the angle between the sending and receiving end voltages of the transmission line [92, 93]. 

The differences in the coefficients at various levels of decomposition for the faulted and 

unfaulted phase currents are clearly evident in this figure.  
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Figure 4.2 (b): B-Phase 

 
Figure 4.2 (c): C-Phase 

Figure 4.2: Extracted features by DWT for an A-g fault up to 4th level of decomposition  

4.3.2 Fault Classification Scheme 
The response of the digital protection system to the fault condition primarily depends 

on the distinctive changes in fault current and voltage signals. Therefore, the development of 

an accurate protection system can be treated as the problem of identifying these changes. 

As discussed in the previous chapter, the ChNN has exceptional capability of classifying 

these changes in the patterns into required output classes through learning from training 

examples. 

The schematic flow diagram of Figure 4.3 shows the fault classification scheme based 

on DWT and ChNN for series compensated transmission line. A ChNN is used for each 

phase to identify the involvement of that phase in the fault. A separate ChNN is further used 

which takes at its input the outputs of DWT of zero sequence current for determining the 

involvement of the ground in the fault. The ChNN is expected to generate ‘1’ if the 

corresponding phase/ ground is involved in the fault, otherwise it should give an output of ‘0’. 

Therefore, a cluster of four ChNNs, generates four outputs, each to identify the involvement 

of phase or ground associated with it, in the event of a fault. The basic flowchart for training 

of the DWT-ChNN scheme used in this work for fault classification is shown in Figure 4.4. 
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Figure 4.3: DWT and ChNN based fault classification scheme block-diagram 

To facilitate fault classification using DWT, the mother wavelet is first to be selected. 

This step is very important in the fault classification process, as the mother wavelet presents 

an important role on the performance of the algorithm. Therefore, the mother wavelet that 

provides significant difference in various coefficients for faulted and non-faulted phase should 

be selected [94]. The mother wavelet for this scheme was selected based on repeated 

simulation studies. Several studies were conducted with different mother wavelets under 

different fault conditions. It was found that the difference between the faulted and the healthy 

phase was substantial when ‘db1’ (Daubechies) was selected as the mother wavelet and as 

a result, ‘db1’ has been selected as the mother wavelet in this work. 
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Figure 4.4 : Fault classification with DWT and ChNN 
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In the scheme of Figure 4.3, DWT up to 4th level of resolution is performed on the half 

cycle post fault current signal for each phase up to 4th level of resolution is performed (as 

shown in Figure 4.5).   
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Figure 4.5 : Discrete wavelet decomposition of the half cycle waveform up to 4th level of 

decomposition 

Out of total 5 sub bands (4 wavelet sub-band (D1 to D4) and one approximation sub-

band (A4)) shown in Figure 4.5, 4 detail sub-bands have been used for further pattern 

recognition analysis for fault classification. The ith element of the feature pattern vector can 

be expressed as: 

 2
,

1

1 in

i j
ji

b
n =

= ∑dwt
iv  (4.3)  
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where, 1,2,3,4i = , ni is the number of samples in an individual sub band and ,i jb  is the jth 

coefficient of the ith sub band.  

Thereafter, the DWT feature vector for any phase p is formed and is given by: 

   
dwt dwt dwt dwt dwt
p 1 2 3 4V = v ,v , v , v  (4.4)  

With half cycle input per phase, a total of 40 samples per phase are subjected to the 

DWT. Therefore, as shown in Figure 4.5, a total of 37 DWT resolutions per phase are 

generated for further processing with ChNN for fault classification. The total feature vector 

can be given as: 

   
dwt dwt dwt dwt

A B CV = V , V , V  (4.5)  

4.3.3 ChNN for Classification Application 
ANN is considered to be a powerful pattern recognition tool for classification. 

Therefore, many applications of ANN can be found in the literature for development of 

relaying algorithms for power system protection. However, the size of the ANN increases 

with an increase of number and complexity of inputs. As mentioned previously in Section 3.7, 

the ChNN provides computational, learning and designing advantages over MLPNN. 

Inclusion of the functional expansion increases the generalization ability of the network for 

any given problem.  With addition of the higher dimensions in the input space, basically no 

information is added, but the input representation is enhanced for the purpose of 

classification. The higher-order representation of the input data can make the network easier 

to get trained. Figure 4.6 to Figure 4.9 demonstrate these capabilities of the Chebyshev 

expansion for ANN. 

Figure 4.6  and Figure 4.7 show the wavelet coefficients generated for an A-B-g fault 

and A-B fault respectively for the system of Figure 4.1. Figure 4.6 shows the DWT feature 

vector Vdwt (as given in Equation (4.5)) for an A-B-g fault occurring at a distance of 51% of 

the total line length (measured from the location of the relay), with 5 Ω fault resistance and 

fault inception angle (FIA) of 45˚ for a line loading angle (δ) is of to 10˚. Figure 4.7 shows the 

feature vector Vdwt for an A-B fault with the same fault conditions of Figure 4.6. It is clear from 

these figures that, a very small difference exists in terms of patterns between the feature 

vectors of A-B-g fault and A-B fault. With similarity in the inputs, size, design and learning for 

the classifier become difficult and tedious.  
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Figure 4.6: DWT feature vector for an A-B-g fault 

 
Figure 4.7: DWT feature vector for an A-B fault 

However, application of Chebyshev functional expansion generates higher 

dimensional feature vector patterns. These generated higher dimensional feature vector 

patterns are more clearly classifiable as shown in Figure 4.8 and Figure 4.9. Figure 4.8 

shows the Chebyshev functional expansion of the ChNN input patterns of Figure 4.6 in the 

three-dimensional higher-order classification plane. The fourth order Chebyshev expansion 

of the DWT feature vector of Figure 4.7 is shown in Figure 4.9. It is evident from Figure 4.8 

and Figure 4.9 that, a considerable difference exists for classification in this higher-

dimensional plane. Therefore, design and learning of the classifier become simplified, which 

enhances the overall classification performance of the classifier. 

4.3.4 System and Fault Parameter Variations in PSCAD Simulation 
In order to test the performance of the proposed scheme for different fault conditions, a 

large fault data set has been generated with variations in the fault parameters such as fault 

resistance (Rf), fault inception angle (FIA), location of the fault (expressed as the distance of 

the fault from the relay end) and type of fault. These fault parameters have been varied 

under different system conditions. These different system conditions have been created with 

variation in compensation level, generator impedances and line loading angle. Considering 
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Figure 4.8: Chebyshev functional expansion of the DWT vector in Figure 4.6 

  

 

 

Figure 4.9: Chebyshev functional expansion of the DWT vector in Figure 4.7 

the generator impedance values (given in Appendix-A) as the base value (Generator Base 

Impedance (GBI)), the variations considered in the system parameters are:  

i) Compensation level (XC) : 25%, 50%, 75% of the total line reactance 

ii) Source impedances  : Five combinations of generator impedances ZSG1 and   

ZSG2 (75%-100%, 125%-100%, 100%-100%, 100%-125% and 100%-75% of GBI) 

(ZSG1 is impedance of generator G1 and ZSG2 is of generator G2 of Figure 4.1) 

iii) Line loading angles (δ) : 10˚, 20˚, 30˚. 
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A total of 45 distinct system conditions are thus considered for this study as given in Table 

4.2. 

Table 4.2: System conditions for testing of the developed algorithm 

Compensation level 
(Xc) 

 In % of Total Line 
Reactance 

Load Angle 
(δ) 

ZSG1 
In % of 

GBI 

ZSG2 
In % of 

GBI 
System 

Conditions 

25, 50, 75 10, 20, 30 100 100 1-9 
25, 50, 75 10, 20, 30 100 125, 75 10-27 
25, 50, 75 10, 20, 30 125, 75 100 28-45 

 

For all of these 45 different system conditions, various fault cases have been simulated 

by varying the fault parameters. The fault parameters considered for this study are: 

i) Fault resistance (Rf)  : 0 Ω, 5 Ω, 25 Ω, 50 Ω; 

ii) Fault inception angle (FIA) : 0˚, 45˚, 80˚, 115˚ 

iii) Fault distance (L)   : 60 km, 120 km, 138 km, 147 km, 153 km, 162 km, 180 

km and 240 km on the 300 km line 

iv) Fault type    : All ten types (L-g, L-L-g, L-L, L-L-L-g) 

Thus, a total of 1280 fault combination have been generated for a specific system 

condition [(4(Rf) * 4(FIA) * 8(L) * 10(fault type) = 1280]. With 45 system conditions, a total of 

57600 fault cases thus have been generated for this study.  

4.3.5 Chebyshev Neural Network Training 
The ChNN training is similar to the MLPNN learning and can be divided into two 

classes, supervised learning and unsupervised learning. In supervised training the network is 

provided with the desired output along with the inputs while in unsupervised learning, the 

network has to discover the inherent patterns in the inputs without any outside help. Normally 

the unsupervised self-learning is impractical for protection applications. Therefore, the 

supervised back-propagation learning with Least Square Levenberg-Marquardt (LSLM) 

algorithm is used for ChNN training in present work. 

Let, X is the input pattern with n components; X=[x1,x2,……., xn]; 

Therefore, Ø represents its Chebyshev expansion vector (Section 3.7.3) as 

 Ø=[1,T1(x1), T2(x1),…….. Tm(x1), T1(x2), T2(x2),….., Tm(x2),……….. Tm(xn)]  (4.6)  

Where, ‘m’ represents order of Chebyshev expansion and Ø carries (m*n)+1 (=z) 

components (Section 3.7.3). Therefore,  

 Ø=[t1, t2,……….tz]; (4.7)  

Let, the output (Ŷ ) of the single layer neural network for input vector (Φ ) is given by: 
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 ˆ ˆ TY W φ=  (4.8)  

Where, Ŵ is the weight vector of the single layer neural network given as: 

 
1 2

ˆ [ , ,...... ]Tzw w w=W  (4.9)  

In equation 4.7, and ‘w1’, ‘w2’,….wz’ represent the weights (multiplication factor) of the 

individual interconnection between the input and output layer neurons and ‘z’ represents the 

total number of interconnections.  

 Therefore, the error (e) in the network at the output node can be defined as the 

difference between the desired output (Y ) and generated output (Ŷ ): 

 ˆe Y Y= −  (4.10)  

The aim of the learning procedure is to find an appropriate set of values for the weight 

vectors to minimize the error between the actual and the desired output. With this objective 

the global sum of the squared errors between the actual output, and the desired output is 

minimized over the entire training set and all the output nodes. The weights have been found 

out by following the LSLM learning algorithm [75]. 

4.3.5.1 ChNN Training with Back Propagation Least Square Levenberg-Marquardt 
algorithm 

Let,  

• p is the index of input patterns, from 1 to P, where P is the number of patterns used for 

training. 

• z is the index of weights, from 1 to Z, where Z is the number of weights. 

• k is the index of iterations. 

Considering the ChNN of Section 3.7.3, Figure 3.12, the task considered with the 

network training is to learn the associations between a specified set of input-output pairs 

1 1 2 2[( , ),( , ),.........,( , )]P PX Y X Y X Y .  

For any iteration ‘k’, with the input as Chebyshev vector Øn for single layer neural 

structure of Figure 3.12, output is given by, 

 
, ,,

1

ˆ ( ( )k p

Z

p zk z k
z

tY f w b
=

 
  
 

= +∑  (4.11)  

Where, ‘wk,z’ represent the zth weight of the single layer neural structure, and ‘tp,z’ is the 

corresponding component of expanded Chebyshev vector of pth pattern as input to the ANN; 

‘bk’ is the value of bias at kth iteration. The goal of the learning algorithm is to minimize error 

(ek), the cost function (performance index) at kth instant, which can be given by 
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ˆ P

k k p
p

eV
=

= ∑  (4.12)  

Where, ek,p = , ,k̂ p k pY Y− and 

,k pY = Desired output for pth input 

 ,k̂ pY  = Generated output of the network for pth instance 

By applying approximate steepest (gradient) descent algorithm [75], one can get, 

 
kV̂= -α ∂

kΔW
k∂W  (4.13)  

 Where, ,1 ,2 ,[ , ,......., ]Tk k k zw w w=kW  represents weight vector of the neural network for 

kth iteration, and 

 
,k̂

k
k

Vb bα ∂∆ = −
∂  (4.14)  

where ‘α’ is the fixed learning rate. 

Levenberg-Marquardt is a modification of Newton’s method for function optimization 

with respect to a variable. With this method, the change in weight vector can be given as 

 T T
k k k k k

-1Δw =[J J +μI] J e  (4.15)  

Where, ‘W’ is a weight vector, ‘I’ is the identity matrix and ‘Jk’ is Jacobean matrix and can be 

given as, 
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∂ ∂ ∂

=

∂ ∂ ∂
∂ ∂ ∂

kJ  (4.16)  

‘ek’ is error vector for the network for the ‘kth’ iteration and given as: 

 
,1

,2

,

.

.

k

k

k P

e
e

e

 
 
 
 =  
 
 
  

ke  (4.17)  
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 The parameter µ is multiplied by some factor (β) whenever a step would result in an 

increased k̂V  [95]. When a step reduces k̂V , µ is divided by β (0.001 in this work). When µ is 

large the algorithm becomes steepest descent (with step up), while for small µ the algorithm 

becomes Gauss-Newton. For this updation, the input pattern vector is subjected to inputs of 

the network to generate corresponding output. The weights and bias are updated as:  

 
1k k kW W W+ = + ∆  and 1k k kb b b+ = + ∆  (4.18)  

to minimize the cost function, that can be calculated with updated weights and bias.  

Out of total 57600 fault cases generated with PSCAD, a set of 3600 fault patterns 

(6.27% of total fault patterns) had been considered for ChNN training. Remaining 54000 fault 

patterns have been used for evaluation of the DWT and ChNN based fault classification 

scheme. All 3600 training fault patterns have been generated at 50% compensation level and 

other relevant system and fault parameters for these 3600 fault cases are given in Table 4.3.  

Table 4.3: Fault data for ChNN training 

Parameters Number 
of Fault 
Cases Xc 

ZSG1 
In % of 

GBI 

ZSG2 
In % of 

GBI 
δ Rf 

(Ω) FIA L 
(km) 

50% 100 100 

10˚ & 30˚ 0, 5   & 50 
0, 45 & 

115 

60, 138, 

162, 240 

 

720 
50% 100 75 720 
50% 100 125 720 
50% 125 100 720 
50% 75 100 720 

Total Fault Cases 3600 

4.3.6 Results and Discussion 
Once the ChNN was trained, it was subjected to testing and evaluation. All 54000 fault 

cases were subjected to the DWT to generate the feature vector using equation (4.3). The 

resultant feature vector is then applied to the ChNN for classifying the fault and generated 

outputs are compared with the desired outputs for computing the classification accuracy.  

The performance of the DWT-ChNN based fault classification scheme has been 

investigated for different orders of Chebyshev expansions to determine the preferred level of 

expansion. The accuracy obtained for various levels of expansions is given in Table 4.4. 

From this table it is observed that the performance of the DWT-ChNN based scheme is best 

for fourth order of Chebyshev expansion and as a result, the fourth order Chebyshev 

expansion has been selected in this work. 
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Table 4.4: Performance of the DWT-ChNN based scheme with different levels of Chebyshev 
expansions 

Sr. 
No. Order of ChNN 

Overall 
Accuracy 
Obtained 

1 Third Order 97.07 % 
2 Fourth Order 99.33 % 
3 Fifth Order 99.14 % 

 

Table 4.5 and Table 4.6 provide the summary of the fault classification performance for 

the system shown in Figure 4.1. Table 4.5 gives the fault classification accuracy for 25%, 

50% and 75% compensation level. From this table it is observed that, out of total 54000 test 

cases, a misclassification rate of just 0.67% was detected. Table 4.6 tabulates the 

performance of the developed fault classification method for faults at various locations of the 

line. 

Table 4.5: Performance of the developed algorithm for different compensation levels 

Compensation 
Level 

Numbers 
of Test 
Cases 

Fault Type 
Detection 

Errors 
Accuracy 

25% 19200 128 99.33 % 
50% 15600 60 99.62 % 
75% 19200 174 99.09 % 

Total 54000 362 99.33 % 
 

Table 4.6: Performance of the DWT and ChNN based algorithm at various fault locations 

Fault 
distance in 
% of Total 

Line 
Length 

Number of 
Test Fault 
Patterns 

Number of 
Misclassification Accuracy 

20% 6300 64 98.98 % 
40% 7200 38 99.47 % 
46% 7200 34 99.46 % 
49% 6300 35 99.51 % 
51% 6300 57 99.20 % 
54% 7200 41 99.43 % 
60% 7200 41 99.43 % 
80% 6300 52 99.17 % 

Total 54000 362 99.33 % 

A close scrutiny of Table 4.5 reveals that the level of accuracy reduces slightly 

corresponding to a compensation level of 75%. This is due to the fact that, the ChNN has 

been trained at 50% compensation level only. At 75% compensation level, capacitive 
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reactance included in the circuit is higher. Higher value of capacitance in series with the line 

inductance produces higher frequency components and more severe ac transients. 

Therefore, higher spectral deviations in the signals (from the non-faulty, sinusoidal signals) 

are observed at 75% compensation level than at 50% compensation level. Moreover, from 

Table 4.6 it is observed that the performance of the scheme is slightly poorer for close in 

faults and for the faults at the end of the line. Changes in current magnitude and frequency 

spectrum for a close in fault are very severe and are less for faults at the end of the line. 

However, the performances at these levels are also comparable or better than those 

reported in the literature i.e. 97.45% in [96] and 97.95% in [97]. It is further to be noted that in 

[12] and [13], samples of post fault currents corresponding to full cycle period have been 

used in contrast to the samples corresponding to the half cycle period used in this work. 

Figure 4.10 shows the fault classification accuracy for the developed algorithm 

corresponding to all possible type of faults with 5400 fault patterns for each type of fault. As 

can be seen from this figure, the performance of the DWT-ChNN based scheme is slightly 

poor for ABC fault. However, possibility of such fault is least in actual practice. 

 
Figure 4.10: Fault classification accuracy for different types of faults 

4.4 PATTERN RECOGNITION APPLICATION OF CHNN FOR FAULT CLASSIFICATION 
WITH SERIES COMPENSATED TRANSMISSION LINE 

4.4.1 Motivation to Adopt Pattern Recognition 
The signal processing tools applied at the first-stage of the two-stage algorithms as 

described in previous section enhances the fault features which in turn is expected to 

improve the fault classification capability. However, it also increases the overall detection 

time due to enhanced computational complexity. 
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The longer any algorithm takes to identify and clear the fault, more will be the damage 

to the grid. This can have serious effects on the continuity and economic operation of the 

power networks. A timely and accurate fault analysis reduces the system down time and 

timely restoration of the supply. This leads towards single-stage application of AI techniques 

for fault classification.  

Towards this goal, in this work a single-stage fault classification scheme is proposed in 

which a ChNN is used as a classifier. Since ChNN is a computational model comprising a 

number of neurons interconnected to solve a designated task, the computational effort 

mainly depends on the size of the ChNN and the learning algorithm used for its training. The 

size of the ChNN has been chosen on the basis of the degree of Chebyshev expansion. 

However, a detailed study on the learning algorithm for ChNN in fault classification problem 

is quite limited. Therefore, in this work, a detailed study has been conducted to investigate 

the performance of two different ChNN learning algorithms for fault classification in a series 

compensated transmission line. These algorithms are compared on the basis of their 

generalization capability, prediction performances and noise immunity during training and 

testing. 

4.4.2 Fault Classification Scheme 
A change in the magnitude and frequency of the three phase currents can be observed 

during fault. The fault classification algorithm proposed in this section captures this change in 

the post-fault currents immediately after the occurrence of the fault. In this scheme, half cycle 

three-phase current samples after fault inception are utilized with a group of four ChNNs and 

the outputs identify the fault type. The proposed scheme is shown in Figure 4.11. 

In this scheme, three of the four ChNNs determine the involvement of the 

corresponding phase in the fault. The fourth one is used to detect the involvement of the 

ground in the fault. Three ChNNs designed to identify the involvement of the phases in fault 

use 40 samples (number of samples corresponding to half cycle duration at 4 kHz sampling 

frequency) of fault current from each phase measured at the location of the relay. Each 

ChNN therefore is supplied with a total of 40 samples of fault currents. From Section 3.7.3, 

for 40 input samples (m=40), the ChNN input patterns for any phase can be given as: 

 
1 2 40[ , ,......, ]Tn x x x=P  (4.19)  

In equation (4.19), n = [phase-A, phase-B, Phase-C]. These inputs are expanded by 

Chebyshev expansion up to ‘R’th order. The expanded pattern consists of (R*40+1) 

components and can be given as: 

 [ ]{ }1 1 2 1 3 1 1 1 2 401; ( ); ( ); ( );.... ( ); ( )....... ( )n R RT S x S x S x S x S x S x=  (4.20)  
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Figure 4.11: Pattern recognition based fault classification with ChNN  

Chebyshev expanded patterns for each phase are added together to increase the 

classification performance. Therefore, the total pattern subjected to the single layer neural 

network is given as: 

 { }, ,A B CT T T T=  (4.21)  

The pattern T for each neuron consists of 3*(R*40+1) components (Chapter 3, section 

3.7.3). This expanded higher order pattern is capable to map the output more efficiently. A 

detailed investigation to identify the appropriate order of the Chebyshev expansion is given in 

Section 4.4.3. A sum of all the three phase currents (40 samples) is supplied to the ChNN 

designated to identify the involvement of ground. After training, the ChNN produces ‘1(0)’ to 

indicate the involvement (non-involvement) of the corresponding phase or ground in the fault. 

For the task of fault classification with ChNN only, the performance of two training algorithms, 

namely, LSLM and RLSFF have been investigated. As the details of the LM algorithm have 

already been described earlier in Subsection 4.3.5, in the next subsection the RLSFF 

algorithm is discussed in detail. 

As already discussed for DWT based feature vector in Section 4.3.2, for direct current 

pattern recognition also, Chebyshev expansion increases the generalization capability of the 

neural network. With addition of the higher dimensions in the input space, basically no 

information is added. However, due to the addition of higher dimensions, the information

 contained in the input gets more prominent. The higher order representation of the input 

data can make the network easier to train as well. Figure 4.12 and Figure 4.13 show ChNN 
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input patterns for A-B-g (P1) and A-B (P2) fault at a distance of 0.6L (L being the length of 

the transmission line) that is compensated with a capacitor providing 75% of compensation 

at the middle of the line length and with Rf = 5 Ω, FIA = 45° and δ = 20°. The input patterns 

are of identical nature and require a complex interconnected neural structure for an ANN for 

classification. However, a certain classifiable pattern can be seen for fourth order Chebyshev 

functional expansion (T1 and T2) with the same ChNN input patterns P1 and P2 respectively 

as shown in Figure 4.14 and Figure 4.15. 

 
Figure 4.12: ChNN input vector  for an A-B-g fault 

 
Figure 4.13: ChNN input vector  for an A-B fault 
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Due to the absence of hidden layer, ChNN provides computational advantage over the 

MLP [83]. It is well known that non-linear approximation capability of Chebyshev orthogonal 

polynomial is very powerful as per the ‘Best Approximation Theory’ [82]. This makes the 

proposed algorithm more accurate and fast as well. Because of these advantages of ChNN, 

the proposed method is easy to implement in practical large power systems. 

 
Figure 4.14: Chebyshev expanded feature space for fault A-B-g (of pattern P1 from Figure 

4.12) 

 

 
Figure 4.15: Chebyshev expanded feature space for fault A-B (of pattern P2 from Figure 

4.13) 
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4.4.3 Recursive Least Squares Learning Method with Forgetting Factor 
In this method, the forgetting factor is included to give the present input data higher 

weightage than the past ones. Therefore, the classification characteristic of the ANN gets 

modified for each training pattern independently. This makes the algorithm capable of 

identifying the fault current variation more efficiently in fault condition. Thus, this method has 

faster training and stronger time-vary tracking capacity [98]. In this method, the performance 

function to be minimized is given by:  

 2

1

P
p i

p
p

E eλ −

=

= ∑  (4.22)  

In equation (4.22), ‘λ’ represents the forgetting factor of the algorithm. The algorithm for 

the discrete time model is given by: 

 ˆ ˆ
p p-1 p pW =W +K e  (4.23)  

Where,  

 
p-1 p

p
p-1 p

-1

-1 T
R

R
λ f

K =
1+ λ f f

 (4.24)  

 ˆ
p p pe = Y - Y   (4.25)  

 T
p p-1 p p p-1

-1 -1R K RR = λ - λ f  (4.26)  

In the above equations, ˆ( )Y n  is the desired output and Y(n) gives the generated 

output. ‘Φ’ is the basis function formed by the functional expansion of the input and R0 = C*I, 

C is a positive constant, ||R0|| < Q0, where Q0 is a constant that serves as an upper bound for 

||R0||. All matrix and vectors are of compatible dimension for the purpose of computation. 

The choice of the forgetting factor often affects the convergence rate and the 

classification capability of the algorithm. Studies show that the classifier has better 

performance with value of λ ≈1 (0 > λ <1) [99-101]. 

The algorithm, which does not require the storage of all the data and matrix inversion 

operation, is suitable for online applications. 

4.4.4 Performance Evaluation of Two Learning Methods for Fault Classification 
For performance evaluation, the ChNN has been trained with the same training set 

given in Table 4.3. The same set of 3600 fault cases (given in Table 4.3) had been 

considered to train the ChNN for both the training methods.  

(A) Performance of ChNN trained with LSLM 

The first step of the application of the ChNN after obtaining the training samples is to 

determine the optimal order of the input Chebyshev expansion. An application based 

performance evaluation has been carried out to identify the appropriate level of expansion. 
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All four ChNNs have been trained with 3600 fault patterns of Table 4.3 with various orders of 

Chebyshev expansions. Subsequently, all the 54000 test patterns described earlier have 

been used to test the performance of the ChNNs with various orders of Chebyshev 

expansions. The overall accuracy obtained for various order of ChNNs is shown in Table 4.7.  

Table 4.7: Fault classification accuracies for various order ChNN trained with LSLM 

Sr. 
No. Order of ChNN 

Overall 
Accuracy 
Obtained 
(LSLM) 

1 Third Order 93.91% 
2 Fourth Order 99.44% 
3 Fifth Order 99.46% 
4 Sixth Order 98.69% 

It is evident from Table 4.7 that the performances of the third and fourth order of 

Chebyshev expansions are on higher side than those obtained by other orders of expansion. 

If higher order of Chebyshev expansion is taken, the non-linear processing capability of 

ChNN would be stronger. However, this would result in heavier computational burden [82] 

and problem of over fitting.  Overfitting reduces the classification capability and results in 

poorer accuracy. This fact is evident in Table 4.7 corresponding to sixth order ChNN.  

Moreover, the fourth and fifth order ChNN gives almost identical level of accuracies for 

fault classification in series compensated transmission lines. However, higher order 

expansion requires more input nodes to be processed for transformation of the original 

inputs. For power system protection applications, because of the limited processing time, it is 

important that the inputs are not expanded unnecessarily to get an accurate solution. Thus, 

the fourth order ChNN, being the best choice, has been chosen as classifier for this method. 

Table 4.8 shows the accuracy of the LSLM algorithm at different levels of 

compensations with fourth order of ChNN. The results indicate the ability of ChNN to acquire 

quite a necessary shape of the classification boundary for fault current pattern recognition to 

generate a higher level of accuracy for various levels of compensation (more than 99% for all 

three levels), while it is trained for 50% compensation level only. 

Table 4.8: Fault classification accuracy at different compensation levels for ChNN trained 
with LSLM 

Compensation 
Level 

Numbers 
of Test 
Cases 

ChNN Trained with LSLM 
algorithm 

Fault Type 
Detection Errors Accuracy 

25% 19200 103 99.46 % 
50% 15600 22 99.86 % 
75% 19200 175 99.08 % 

Total 54000 300 99.44 % 
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 The breakup of the accuracy according to the type of faults is given in Table 4.9. The 

ChNN trained with LSLM algorithm produces adequate level of accuracies for all possible 

types of the faults. An inferior performance can be observed for L-L-L-g fault. However, the 

L-L-L-g fault is the least possible type of fault in the power system [88].  

Table 4.9: Accuracy for different fault types with ChNN trained with LSLM training algorithm 

Type of 
Fault 

Numbers 
of Test 
Cases 

ChNN Trained with LSLM 
algorithm 

Fault 
Classification 

Errors 
Accuracy 

L-g 16200 21 99.87 % 
L-L-g 16200 69 99.57 % 
L-L 16200 88 99.46 % 
L-L-L-g 5400 122 97.74 % 

 Total 54000 300 99.44 % 
A detail breakup of the fault classification performance of LSLM learning based ChNN 

for faults at different line lengths corresponding to 25%, 50% and 75% compensation levels 

are given in Table 4.10. Classification accuracies for various fault distances are quite close to 

each other. The developed scheme in this work yields a slightly lower accuracy at a fault 

distance of 60 km (20% of the total line length). The change in fault pattern is comparatively 

prominent for close in faults (i.e. for 20% fault distance), that makes them different than fault 

patterns at other fault distances. Therefore, the pattern recognition based ChNN gives a 

poorer fault classification accuracy at this fault length.   

Table 4.10: Detailed break-up of fault classification accuracy for ChNN trained with LSLM 
algorithm 

Fault 
Distance 

 In Km 

25% Series 
Compensation 

50% Series 
Compensation 

75% Series 
Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 15 99.37% 1500 10 99.33% 2400 64 97.33% 

120 2400 00 100.0% 2400 00 100.0% 2400 00 100.0% 

138 2400 19 99.20% 1500 11 99.26% 2400 17 99.29% 

147 2400 24 99.00% 2400 00 100.0% 2400 14 99.41% 

After Compensator 

153 2400 15 99.37% 2400 01 99.95% 2400 22 99.08% 

162 2400 15 99.37% 1500 00 100.0% 2400 23 99.04% 

180 2400 10 99.58% 2400 00 100.0% 2400 35 98.54% 

240 2400 5 99.79% 1500 00 100.0% 2400 00 100.0% 

TOTAL 19200 103 99.46% 15600 22 99.86% 19200 175 99.08% 
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(B) Performance of the ChNN trained with RLSFF method  
The results for this case are shown in Table 4.11 to Table 4.14. The ChNN has been 

trained and tested with identical fault cases as in the previous section.  

It is apparent from Table 4.11 that the ChNN with RLSFF learning generates the 

highest level of accuracy with third order of Chebyshev expansion. Therefore, the third order 

of Chebyshev functional expansion has been considered in this work for ChNN with RLSFF 

training. The following parameters have been used for the RLSFF training algorithm: 

forgetting factor λ = 0.80 and P = diag(0.1)  (Equation (4.22), (4.24) and  (4.26)). The values 

for P and λ have been chosen using trial-and-error method. 

Table 4.11: Fault classification accuracies for various order ChNN trained with RLSFF 

Sr. 
No. Order of ChNN 

Overall 
Accuracy 
Obtained 
(RLSFF) 

1 Third Order 98.81% 
2 Fourth Order 96.83% 
3 Fifth Order 96.37% 
4 Sixth Order 95.64% 

 

The learning algorithm with RLSFF produces the necessary changes in weight vector 

of the ChNN in proportional to the error between the generated and the desired output with 

the Chebyshev polynomial expanded input pattern (Equation (4.22)). As these changes are 

proportional to the input patterns, the required modification in neural weights will be achieved 

rapidly. Therefore, the training with RLSFF method converges with fewer numbers of epochs. 

However, it is achieved with increased computational burden during training as weight 

modification calculation involves (n x n) matrix for P. Therefore, the ChNN learning with 

RLSFF is sluggish as compared to LSLM algorithm. But, due to preferred changes in 

training, the level of accuracy achieved with 3rd order expansion only compares well to that 

obtained with 4th order expansion in LSLM method.     

It can be seen from Table 4.12 and Table 4.14 that, the ChNN has been trained very 

efficiently for the fault cases corresponding to 50% compensation levels. The weight vector 

takes a necessary shape in third-order ChNN with RLSFF method as compared to fourth 

order ChNN with LSLM method. However, the performance deteriorates with change in input 

space. This can be explained as over fitting of the ChNN to the data with 50% compensation. 

The same can be noticed in Table 4.13 that shows the performance of the ChNN with RLSFF 

learning algorithm for different types of faults. A considerable variation in the accuracy is 

noticed as compared to LSLM trained ChNN with change in fault types, compensation level 

and fault distances. Therefore, a reduction in fault classification accuracy can be noticed in 

RLSFF trained ChNN. 
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Table 4.12: Fault classification accuracy at different compensation levels for ChNN trained 
with RLSFF 

Compensation 
Level 

Numbers 
of Test 
Cases 

ChNN Trained with RLSFF 
algorithm 

Fault Type 
Detection Errors Accuracy 

25% 19200 187 99.02% 
50% 15600 15 99.90% 
75% 19200 431 97.75% 

Total 54000 633 98.82% 
  

Table 4.13: Accuracy for different fault types with ChNN trained with RLSFF training 
algorithm 

Type of 
Fault 

Numbers 
of Test 
Cases 

ChNN Trained with RLSFF 
algorithm 

Fault 
Classification 

Errors 
Accuracy 

L-g 16200 136 99.16% 
L-L-g 16200 223 98.62% 
L-L 16200 226 98.60% 
L-L-L-g 5400 48 99.11% 
 Total 54000 633 98.82% 

 

Table 4.14: Detailed break-up of fault classification accuracy for ChNN trained with RLSFF 
algorithm 

Fault 
Distance 

 In Km 

25% Series 
Compensation 

50% Series 
Compensation 

75% Series 
Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 28 98.83% 1500 04 99.73% 2400 47 98.04% 

120 2400 15 99.37% 2400 00 100.0% 2400 33 98.62% 

138 2400 17 99.29% 1500 07 99.53% 2400 31 98.70% 

147 2400 19 99.20% 2400 00 100.0% 2400 24 99.00% 

After Compensator 

153 2400 37 98.45% 2400 02 99.91% 2400 96 96.00% 

162 2400 22 99.08% 1500 00 100.0% 2400 74 96.91% 

180 2400 12 99.50% 2400 00 100.0% 2400 37 98.45% 

240 2400 37 98.45% 1500 02 99.86% 2400 89 96.29% 

TOTAL 19200 187 99.02% 15600 15 99.90% 19200 431 97.75% 
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4.4.5 Comparative Analysis of LSLM and RLSFF Learning Methods for ChNN 
Training 

4.4.5.1 Learning Speed 
Due to involvement of higher order matrix multiplication, the RLSFF training algorithm 

is much more computationally intensive. For a single update of the network weights, the 

RLSFF algorithm requires exactly the same calculations of response and back propagated 

errors as normal gradient descent. In addition, the RLSFF algorithm requires the calculation 

and storage of a P-matrix for each neuron in the network. The LSLM learning technique 

requires equivalent subroutine of the normal gradient descent. Therefore, the RLSFF 

learning is slower compared to LSLM training for the ChNN. Although these calculations are 

computationally intensive, an important point to note is that they can be done independently. 

Table 4.15 compares these two ChNN learning algorithms in terms of the training 

parameters. Either of the learning method can be utilized for on-line applications and can be 

trained off-line or on-line as per requirement. 

Table 4.15: Learning performance comparison for LSLM and RLSFF 

Parameter LSLM RLSFF 
Number of Epoch for Training About 120-140 About 30-40 

Learning Computation Less Higher 

Comparative Accuracy Reached with Chebyshev 
Expansion Order 

4 3 

 

4.4.5.2 Performance 
The performance of pattern recognition based fault classification scheme using ChNN 

for series compensated transmission line can be compared from Table 4.8 and Table 4.12 

for different compensation levels. The training for the ChNN has been carried out with few of 

the fault cases generated at 50% compensation level. Therefore, highest order of accuracy 

can be observed at this compensation level for either learning method. The RLSFF exhibits 

superior performance at this level due to preferred changes made during the training 

process. However, at other unseen compensation levels, the performance of the RLSFF 

method varies more as compared to LSLM method. Variation in performance hints over-

fitting of the ChNN weight matrix during training to the learning cases. The LSLM exhibits a 

consistent performance for various levels of the compensation levels. However, it is worth to 

note here that the performance of the ChNN with either learning method is better than most 

of the cited methods in the literature.  
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A clear variation in performance accuracy can also be seen for different types of faults 

from Table 4.9 and Table 4.13. Performance of the LSLM trained ChNN is superior for all 

types of faults except L-L-L-g fault. However, the possibility of the three phase fault is least in 

the power transmission system and therefore, the LSLM method found to be better over 

RLSFF in this analysis. 

4.5 APPLICATION OF MLPNN FOR PATTERN RECOGNITION BASED FAULT 
CLASSIFICATION 

MLPNN is one of the preferred AI tool for classification tasks in recent years. It is well 

known that, MLPNN are capable of extract features from the line current and voltage 

waveforms, that helps in fault classification [102]. Therefore, the MLPNN has been applied 

for fault classification in this work to evaluate its performance with respect to the ChNN. 

A three-layer structure (one hidden layer) of the MLPNN has been chosen for this non-

linear task. Involvement of the phase in fault is identified by a MLPNN for each phase (Figure 

4.16). A separate MLPNN is employed to investigate the involvement of the ground with zero 

sequence current as input as shown in Figure 4.16. Identical training and testing cases have 

been applied for MLPNN based classification as was used with ChNN. 
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Figure 4.16: Pattern recognition based fault classification scheme by application of MLPNN 

The number of neurons in the hidden layer largely affects the non-linear mapping and 

classification capability of the MLPNN. Therefore, investigations have been made to find out 

the most suitable architecture of MLPNN to be used in this work. Table 4.16 describes the 

performance of the scheme with various numbers of neurons in the hidden layer. With 40 
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input and single output node (for each MLPNN), the investigation has been made by varying 

the number of neurons in the hidden layer from 8 to 24. Overall accuracy is found to be 

superior with 17 hidden layer neurons as shown in Table 4.16.  

Table 4.16 : Performance of MLPNN with different architecture 

No. of Neurons in 
hidden layer Accuracy 

8 95.34885 % 
12 94.1588 % 
16 96.95184 % 
17 97.34185 % 
18 97.05783 % 
19 96.66667 % 
20 96.18245 % 
24 95.67566 % 

 

Overall performance of the MLPNN based scheme at different compensation level is 

shown in Table 4.17. It can be seen from this table that, the performance of the MLPNN for 

fault classification is lower than that of ChNN for all levels of compensations. However, 

MLPNN exerts good performance for 50% compensation at which it is trained. Performance 

at lower compensation of 25% is also comparable with 50%. A large reduction in the 

performance can be observed for higher compensation level of 75%. This is due to the fact 

that a large variation in wave shape is observed at this compensation level due to inclusion 

of high-frequency oscillations. 

Table 4.17: Fault classification accuracy with MLPNN for direct pattern recognition scheme  

Compensation 
Level 

Numbers 
of Test 
Cases 

Fault Type 
Detection 

Errors 
Accuracy 

25% 19200 352 98.17% 
50% 15600 214 98.63% 
75% 19200 868 95.48% 

Total 54000 1434 97.34% 
 

Table 4.18 gives the performance accuracy for different types of faults. Performance of 

the scheme can be considered to be relatively poor for single line to ground fault and triple 

line to ground fault. Moreover, the performance is inferior for all types of faults compared to 

that obtained with ChNN based scheme. Table 4.19 gives the performance of the scheme for 

different fault distanes at different compensation levels.   
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 Table 4.18: Performance of the MLPNN based fault classification scheme for different types 
of faults 

Type of 
Fault 

Numbers 
of Test 
Cases 

Fault 
Classification 

Errors 
Accuracy 

L-g 16200 428 96.17% 
L-L-g 16200 400 97.53% 
L-L 16200 457 97.18% 

L-L-L-g 5400 149 94.48% 

Total 54000 1434 97.34% 
 

Table 4.19: Performance of the MLPNN based fault classification scheme at various fault 
location  

Fault 
Distance 

In Km 

25% Series 
Compensation 

50% Series 
Compensation 

75% Series 
Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 54 97.75 1500 17 98.87 2400 75 96.88 

120 2400 75 96.88 2400 34 97.73 2400 25 98.96 

138 2400 33 98.63 1500 17 99.29 2400 26 98.92 

147 2400 32 98.67 2400 14 99.42 2400 21 99.13 

After Compensator 

153 2400 11 99.54 2400 22 99.08 2400 155 93.54 

162 2400 12 99.50 1500 24 99.00 2400 177 92.63 

180 2400 50 97.92 2400 40 97.33 2400 210 91.25 

240 2400 85 96.46 1500 46 96.93 2400 179 92.54 

TOTAL 19200 352 98.17% 15600 214 98.63% 19200 868 95.48% 

4.6 APPLICATION OF SVM FOR PATTERN RECOGNITION BASED FAULT 
CLASSIFICATION 

SVMs are binary classifier based on statistical learning theory resulting from the 

development of ANN and its combination with the optimization, kernel theory and 

generalization theories [85]. The SVM maps its input space into a high-dimensional dot 

product space called the feature space for classification. An optimal hyper plane is 

determined by using a suitable optimization theory in the feature space to maximize the 

generalization ability of the classifier. The basic SVM operation can be found as ready 

reference in Section 3.8 of the thesis.   
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In this work, the classification task is highly non-linear in nature due to the presence of 

series compensation and the kernel based SVM has been applied for the classification task. 

The classified data is mapped onto a high-dimensional feature space with the help of ‘kernel 

function’ [103] where the linear classification is possible. Specifically, in this work RBF kernel 

has been used. The RBF has is comparatively less sensitive to classification parameters 

which influence the complexity of the SVM model. Furthermore, reduction in numerical 

computation makes RBF a better choice than the other kernel functions [99]. 

The fault classification scheme shown in Figure 4.17 uses a cluster of four SVMs (one 

each for phase and ground) as described in the MLPNN based fault classification scheme in 

the previous section. The SVMs used for this method has been trained with the identical fault 

data set as given in Table 4.3. The identical test set of 54000 fault cases have also been 

applied for performance investigation of this scheme.   
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Figure 4.17: SVM pattern recognition based fault classification scheme 

When a RBF is selected as kernel function, two parameters (the error penalization 

constant C and the kernel parameter (γ) have to be set to tune the classification algorithm. 

The classification accuracy largely depends on selection of the value of C and γ for 

classification. It is not known beforehand, which values for them are the best choices for the 

problem at hand. So some ‘parameter search’ must be required to identify the optimal values 

for these parameters. Those are the optimal values of these parameters for which the 

classifier can accurately predict the output for unknown data after training, i.e. testing data. A 

common way to ensure acceptable performance is to separate the training data into two 

parts of which one part is considered to be unknown in training the classifier. Then the 

prediction accuracy on this set can more precisely reflect the performance of classifying the 
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unknown data. By this method, higher level of accuracies can be achieved without sacrificing 

the generalization ability. This method is called ‘cross-validation’.   

The SVM in this method has been implemented with Lib-SVM [104] in windows 

environment. The cross validation performance for a data set of 1000 fault cases is shown in 

Table 4.20. These 1000 fault cases have been arbitrarily chosen from 3720 fault cases for 

50% compensation level with 5 Ω fault resistances. Identical values of these parameters 

have been used for all four SVMs used in this method. From Table 4.20 it is seen that by 

using ‘C=100’ and ‘γ=0.00045’, the best performance is obtained and these parameters have 

been used in this work.  

Table 4.20: ‘Cross validation’ performance investigation for different values of 'C' and "γ" 

C γ Accuracy 
10 0.1 94.37% 
50 0.01 95.23% 

100 0.001 96.63% 
500 0.001 95.08% 
100 0.1 96.02% 
100 0.001 96.93% 
100 0.00045 98.13% 

 

A half cycle post fault data (40 samples at sampling frequency of 4 kHz) of three phase 

currents have been taken for the analysis. A SVM input vector has been derived from these 

samples as in equation (4.5). This feature vector is then subjected to the cluster of SVMs for 

classification as shown in Figure 4.17. The performance of the SVM based method has been 

extensively tested with the 54000 test cases. Table 4.21 shows the performance of the SVM 

based scheme. In the case of SVM also, the performance for the compensation level of 50%, 

for which the SVMs are trained is found to be better than those obtained at other 

compensation levels. 

 Table 4.21: Fault classification accuracy with SVM for direct pattern recognition scheme  

Compensation 
Level 

Numbers 
of Test 
Cases 

Fault Type 
Detection 

Errors 
Accuracy 

25% 19200 419 97.85% 
50% 15600 257 98.35% 
75% 19200 614 96.80% 

Total 54000 1290 97.61% 

Performance of the SVM based scheme for different types of faults is shown in Table 

4.22. Table 4.23 shows the performance of the scheme at different fault distances 
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corresponding to 25%, 50% and 75% compensation levels. A detail analysis and comparison 

of these results are provided below. 

Table 4.22: Performance of the SVM based fault classification scheme for different types of 
faults 

Type of 
Fault 

Numbers 
of Test 
Cases 

Fault 
Classification 

Errors 
Accuracy 

L-g 16200 268 98.35% 
L-L-g 16200 412 97.46% 
L-L 16200 312 98.07% 

L-L-L-g 5400 298 94.48% 

Total 54000 1290 97.61% 
 

Table 4.23: Performance evaluation of the SVM based pattern recognition based fault 
classification scheme at various fault location with different levels of compensation 

Fault 
Distance 

 In Km 

25% Series 
Compensation 

50% Series 
Compensation 

75% Series 
Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 74 96.91% 1500 38 97.47% 2400 118 95.08% 

120 2400 57 97.62% 2400 41 98.29% 2400 83 96.54% 

138 2400 43 98.25% 1500 28 98.13% 2400 68 97.16% 

147 2400 42 98.28% 2400 31 98.71% 2400 58 97.58% 

After Compensator 

153 2400 39 98.38% 2400 23 99.04% 2400 56 97.66% 

162 2400 47 98.04% 1500 39 97.40% 2400 68 97.16% 

180 2400 48 98.00% 2400 29 98.79% 2400 72 97.00% 

240 2400 69 97.12% 1500 28 98.13% 2400 91 96.20% 

TOTAL 19200 419 97.61% 15600 257 98.35% 19200 614 96.80% 

4.6.1 Comparison of ChNN, MLPNN and SVM for Pattern Recognition Based Fault 
Classification of Series Compensated Transmission Lines 

A comparative plot for obtained accuracies at different fault length for ChNN, MLPNN 

and SVM based schemes is shown in Figure 4.18. As mentioned in Section 4.4, performance 

of the ChNN with LSLM algorithm learning is preferable over RLSFF, and as a result, for 

comparison of ChNN with MLPNN and SVM, the ChNN with LSLM learning has been used.   

In case of linearly non-separable classes i.e. the problem considered in this chapter, 

both SVMs and ChNN apply non-linear projection into higher-dimensional space. In case of 

ChNN, Chebyshev functional expansion serves the purpose while, a kernel function is used 
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for the same purpose with SVM. MLPNN produces non-linear classification boundary by 

addition of hidden layers in the structure. However, inclusion of hidden layers will increase 

training and classification complexity, computation burden and time required for training.  

 
Figure 4.18: Comparison of ChNN, MLPNN and SVM for series compensated transmission 

line fault classification at different fault locations 

The main difference to notice between SVM, MLPNN and the ChNN is the different 

optimization criterion. For ChNN, MLPNN and SVM, the form of the functions learned by 

them are typically the same. For example, a single hidden layer neural network uses exactly 

the same form of model as an SVM. That is: 

 
1

( ) ( ) * ( )
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n
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Out x W x i f i
=

= ∑  (4.27)  

Where, the x = input vector and f = non-linear function. 

The nonlinear functions will also have some parameters. By learning, the classifier 

defines number of non-linear functions, parameters for these functions and weights. The 

difference between SVM and ANN lies in deciding these parameters. The SVM tries to 

achieve this goal by defining the optimal separating hyperplane which maximizes the margin 
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(in the feature space), while the ChNN usually tries to minimize the empirical risk associated 

with some loss function, typically the mean squared error. 

In ChNN, the patterns are linearly separable in projected higher dimensional space due 

to Chebyshev expansion. This eliminates the possibility of theoretical weakness of ‘local 

minima’ of the classical MLPNN system. This gives advantage to the ChNN over MLPNN. 

SVM training requires the solution of the Lagrangian dual problem. This is a quadratic 

optimization problem, in which the number of variables is very large, i.e., equal to the number 

of training samples. On the other hand, the ChNN is a single layer structure and requires 

calculations corresponding to basic expansions only. This reduces the computational time 

during learning process. Therefore, the training of the SVM is more complex than ChNN. 

Another important factor should be noted here. The classification performance of the 

SVM largely depends on the selection of the kernel function and its associated parameters 

(in our application ‘RBF’ kernel and ‘C’ and ‘γ’). A preferred combination of the parameters is 

essential for every new application of the SVM. These parameters are quite often unknown 

and mostly found only by a severe exercise with experiments and/or prior knowledge. The 

MLPNN is highly sensitive to its structure. Overall non-linear processing capability of the 

MLPNN is largely dependent on number of hidden layer and numbers of neurons in these 

layers. Being a single layer neural network, ChNN is free from design concerns. Moreover, 

the only classification variable that affects the performance of the ChNN is the order of 

Chebyshev expansion. That can be found easily with performance investigation with sample 

fault cases. Therefore, from this discussion, ChNN can be considered as preferable classifier 

for protection requirements.  

4.7 EFFECT OF CURRENT TRANSFORMER SATURATION  

In all the above studies, it has been assumed that the faulted current waveform is 

exactly reproduced at the relay terminal (i.e. the effect of the CT was neglected). However, 

under fault condition, it is possible that the CT of the protective relay may saturate and can 

no longer reproduce the faulted current waveform at the relay terminal exactly. Therefore, it 

is necessary to assess the performance(s) of the algorithm(s) under CT saturation. Now, in 

the above results, the performance of the ChNN based direct pattern recognition scheme 

with LSLM training algorithm was found to be the best (without considering the effect of CT 

saturation). Hence, in this section, the performance of this algorithm under CT saturation is 

investigated.  

Now, the saturation of the CT is avoided by properly selecting the turns ratio, burden, 

and CT accuracy class. As long as the product of the secondary current and burden 

impedance does not exceed the saturation or knee point voltage of the CT, the CT will 
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operate in the unsaturated region and its performance will be satisfactory for the AC 

component. 

For this study, all 54000 fault cases used for testing the algorithm (Section 4.4.4) are 

re-simulated in PSCAD with current transformer. The CT has been modelled in PSCAD with 

Jiles-Atherton (JA) model [105, 106]. The JA-type simulation provides flexibility to make 

cross-sectional area of the coil relatively large, that facilitate a relatively large current. The 

CT is simulated as per following parameters [107] [108]: 

i) CT Type: C Type 

ii) CT Ratio: 2000/5 A 

iii) CT selected: 5P20 

iv) CT saturation voltage: 60 V 

The performance of the algorithm (ChNN based direct pattern recognition scheme with 

LSLM training) with consideration of CT saturation for all 54000 fault cases (described in 

Section 4.4.4) is shown in Table 4.24. 

Table 4.24: Fault classification accuracy of the developed algorithm with inclusion of CT in 
measurement circuit 

Compensation 
Level 

Numbers 
of Test 
Cases 

Fault Type 
Detection Errors Accuracy 

25% 19200 106 99.45 % 
50% 15600 29 99.81 % 
75% 19200 186 99.03 % 

Total 54000 321 99.41 % 

It is evident from Table 4.8 and Table 4.24 that, the effect of CT saturation is very 

nominal (99.41 compare to 99.44) for fault classification application. As per the IEEE 

Standard C37.110 – 1996, the value of current for saturating CT has to be somewhere 

between 6 to 20 times that of rated current. In case of line protection, the chances of 

obtaining such a high current can only be for solid faults close to the relay location or just 

after the compensator. Therefore, for all practical purposes the CT saturation is not an issue 

of concern. Owing to this, no further investigation has been made in this thesis regarding the 

impact of CT saturation. 

Furthermore, it is worth to note here that with recent trends in current sensing 

technology being adopted in power system i.e. use of Optical Current Transformer (OCT), 

CT saturation issue will not be there. 

4.8 EFFECT OF TRANSPOSITON ON THE DEVELOPED ALGORITHM 

To check effect of the transposition to the developed algorithm, a fault data set has 

been simulated on the same system of Figure 4.1 without transposition of the transmission 
90 

 

 



 
 

line. This line has been simulated in PSCAD with Frequency Dependent Phase model with 

identical transmission line parameters given in Appenix – A (converted for the model). 

Typical steady state current waveform corresponding to line loading angle of 20° for 

untransposed and transposed transmission line are shown in Figure 4.19 (a) and (c). Figure 

4.19 (b) and (d) show three phase current waveforms for the same A-g fault at 80% of the 

total transmission line length for untransposed and transposed lines. A visible difference can 

be seen from these figures. 

Untransposed Transposed 

  

Figure 4.19 (a) Figure 4.19 (c) 

 
Figure 4.19 (b) 

Figure 4.19: (a) and (b) Typical three phase 
waveform and fault current waveform without 

transmission line transposition. 

 
Figure 4.19 (d) 

Figure 4.19: (c) and (d) Typical three 
phase waveform and fault current waveform 

without transmission line transposition. 

The performance of the fault classification algorithm (ChNN based direct pattern 

recognition scheme with LSLM training) for untrasnposed line has been investigated on a 

fault data set of 19200 fault patterns corresponding to 25% compensation level (as described 

in Table 4.8). The results obtained are compared with already available results with 
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consideration of fully transposed transmission line and the results are shown in Error! Not a 
valid bookmark self-reference.. 
Table 4.25 : Comparison of results with properly transposed and untransposed transmission 

line fault data 

Fault 
Distance in % 

of total line 
length 

Number of 
Test Cases 

Untransposed Transmission 
Line 

Transposed Transmission 
Line 

Fault Type 
detection 

Error 
Accuracy 

Fault Type 
detection 

Error 
Accuracy 

Fault at 20% 2400 15 99.37% 15 99.37% 
Fault at 40% 2400 1 99.95% 0 100.0% 
Fault at 46% 2400 20 99.54% 19 99.20% 
Fault at 49% 2400 24 99.50% 24 99.00% 
Fault at 51% 2400 17 99.16% 15 99.37% 
Fault at 54% 2400 17 98.95% 15 99.37% 
Fault at 60% 2400 11 99.29% 10 99.58% 
Fault at 80% 2400 12 99.25% 5 99.79% 

Total 19200 117 99.37% 103 99.46% 

From Table 4.25 it is observed that with untransposed transmission line, the 

performance of the algorithm degraded marginally. This can be improved with inclusion of 

some of these cases during ChNN learning. Therefore, it can be concluded that; the effect of 

untransposed line on developed algorithm is negligible and no further investigation has been 

made for untransposed transmission line in this thesis. Further, the performance of the 

algorithm can be improved further for untransposed lines by including appropriate number of 

fault patterns during the traning process. However, this option has not been pursued in this 

thesis. 

4.8.1 FURTHER INVESTIGATION 
For investigating the performance of the ChNN based algorithm further, a second test 

system as shown in Figure 4.20 has been considered [[109, 110]].The system consists of 

three transmission lines and two generators. The middle 100 km transmission line (between 

bus X and bus Y) carries a fixed series compensator at the center of the line. The 

transmission line is protected by a relay at bus X. The system data is given in Table 4.26.  

MOV

G1 G2X Y

SC
RELAY

BA

F=60 Hz500 kv

 
Figure 4.20: Three line transmission system 
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Table 4.26: System parameters 

Transmission Line (Each line) 
Length 100 Km 
Voltage 500  kv 
Frequency 60 Hz 
Positive sequence impedance 0.0185 + j0.3766 Ω/km 
Zero-sequence impedance 0.3618 + j1.2277 Ω/km 
Positive-sequence capacitance 0.22789 MΩ*km 

Sources 
Frequency 60 Hz 
Positive sequence impedance 1.43 + j 16.21  Ω 
Zero-sequence impedance 3.068 +j 28.746 Ω/km 

 

Initially, the required test cases were generated covering various system and fault 

conditions. For this system, the variations considered in the system parameters are:  

i) Compensation level (XC) : 25%, 50%, 75% of the total line reactance 

ii) Source impedances  : Three combinations of generator impedances ZSG1 and   

ZSG2 (100%-100%, 125%-75% and 75%-125% of GBI) (ZSG1 is impedance of 

generator G1 and ZSG2 is of generator G2 of Figure 4.1) 

iii) Line loading angles (δ) : 10˚, 20˚, 30˚. 

For each of these 27 system conditions, following fault parameter variations are 

considered.  

i)   Fault resistance (Rf) : 0 Ω, 5 Ω, 25 Ω, 50 Ω;  

ii)  Fault inception angle (FIA) : 0˚, 45˚, 80˚, 115˚  

iii) Fault distance (L) : 10 km, 25 km, 45 km, 55 km, 75 km, 90 km 

iv)  Fault type : All ten types (L-g, L-L-g, L-L, L-L-L-g) 

Thus, a total of 1280 fault combination have been generated for a specific system 

condition [(4(Rf) * 4(FIA) * 6(L) * 10(fault type) = 960]. With 27 system conditions, a total of 

25920 fault cases thus have been generated for this study. Out of these 25920 fault cases, 

only 3240 (only 12.5%) fault cases have been used for training the ChNN. The details of the 

training cases are shown in Table 4.27.  

Table 4.27: Fault and system parameters considered for training 
Parameters Number 

of Fault 
Cases Xc 

ZSG1 
In % of 

GBI 

ZSG2 
In % of 

GBI 
δ Rf 

(Ω) FIA L 
(km) 

Fault Type 

50% 100 100 10˚,20° & 

30˚ 

0, 5   & 

50 

0, 45 & 

115 

10, 45, 

55, 90 

All ten types 
of fault 

considered  

1080 
50% 125 75 1080 
50% 75 125 1080 

Total Fault Cases 3240 
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The performance of the developed algorithm has been investigated on the remaining 

22680 cases. The results are shown in Table 4.28, Table 4.29 and Table 4.30. From these 

tables again it is observed that for this second test system also, the developed algorithm 

attains quite a high level of accuracy. Table 4.28 gives the performance of the developed 

scheme corresponding to different compensation levels. Accuracies at all the levels of 

compensation are above 99% and comparable with accuracies obtained for the previous  

Table 4.28: Fault classification accuracy at different compensation levels for the second 
system 

Compensation 
Level 

Numbers 
of Test 
Cases 

ChNN Trained with LSLM 
algorithm 

Fault Type 
Detection Errors Accuracy 

25% 8640 37 99.57 % 
50% 5400 14 99.74 % 
75% 8640 70 99.19 % 

Total 22680 121 99.46 % 

Table 4.29: Accuracy for different fault types for the second system 

Type of 
Fault 

Numbers 
of Test 
Cases 

ChNN Trained with LSLM 
algorithm 

Fault 
Classification 

Errors 
Accuracy 

L-g 6804 10 99.85 % 
L-L-g 6804 35 99.48 % 
L-L 6804 38 99.44 % 
L-L-L-g 2268 38 98.32 % 

 Total 22680 121 99.46 % 

Table 4.30: Detailed break-up of fault classification accuracy for the second system 

Fault 
Distance 

 In Km 

25% Series Compensation 50% Series Compensation 75% Series Compensation 
Test 

cases Errors Accuracy Test 
cases Errors Accuracy Test cases Errors Accuracy 

Before Compensator 

10 1440 7 99.51 % 630 2 99.68 % 1440 17 98.82 % 

25 1440 2 99.86 % 1440 3 99.79 % 1440 2 99.86 % 

45 1440 6 99.58 % 630 0 100.00 % 1440 9 99.38 % 

After Compensator 

55 1440 12 99.17 % 630 4 99.37 % 1440 21 98.54 % 

75 1440 7 99.51 % 1440 3 99.79 % 1440 13 99.10 % 

90 1440 3 99.79 % 630 2 99.68 % 1440 8 99.44 % 

TOTAL 8640 37 99.57% 5400 14 99.74% 8640 70 99.19% 
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system (Table 4.8). Similarly, comparison of Table 4.29 (4.30) with Table 4.9 (4.10) shows 

that the performance of the developed algorithm is almost at the same level for both these 

test systems. Further, the fault classification for the second system has also been carried out 

with SVM and an overall accuracy of 97.32% has been obtained. Therefore, for this system 

also, the ChNN bases scheme outperforms the SVM. 

As the performance of the ChNN based scheme is found to be almost at the same level 

for different test systems, in the subsequent chapters, the performances are investigated 

only on one test system. 

4.9 COMPARISON WITH OTHER METHODS IN THE LITERATURE 

A comparison of the performance obtained by ChNN (trained with LSLM technique) 

with some of the other reported methods in the literature are shown in Table 4.31. As can be 

seen from this table, the developed method gives a better accuracy than those obtained by 

the other methods mentioned in Table 4.31 even with a larger testing data set. Moreover, 

ChNN is easy to design as compared to fuzzy set [96], neuro-fuzzy system [111] or SVM [22] 

[25]. Absence of classification parameters makes it superior than other classifiers.  

Moreover, the developed scheme gives a similar level of accuracy with variation in 

system and fault parameter. Therefore, it can be considered to be immune to these 

variations.  

Table 4.31 : Performance comparison with some other methods given in the literature 

Reference Description Method Number of 
Test Cases Accuracy 

[96] for Uncompensated 
Line Fuzzy Logic 2400 98.75% 

[112] for Uncompensated 
Line 

Wavelet Transform 
and ANN 276 99.26% 

[22] 
for fixed series 
compensated 

transmission line 

Support Vector 
Machine 25200 

98.70% (Full 
Cycle sample) 

98.186 (Half cycle 
sample) 

[25] 
for Controllable 
compensated 

Transmission Line 
SVM 200 (500 

training) 
95-to-97%  (Half 
Cycle Samples) 

[111] 
for fixed series 
compensated 

transmission line 

Wavelet Transform 
and Fuzzy-Neuro 

System 
21036 99.30 (One cycle 

Samples) 

Proposed ChNN 
based Pattern 
Recognition 

algorithm 

for fixed series 
compensated 

transmission line 
ChNN with LSLM 

training 54000 99.44% (Half 
cycle samples) 
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4.10 CONCLUSION 

In the present chapter, two different fault classification schemes have been presented. 

The first one utilizes Discrete Wavelet Transform (DWT) as signal pre-processor along with 

ChNN used as a classifier. The second scheme applies ChNN as direct pattern recognition 

tool. Moreover, two different ChNN learning algorithms have been compared on the basis of 

the application performance. 

The central theme of all these algorithms is to identify the spectral and amplitude 

changes in the fault currents. In the first method, this objective is accomplished by time-

frequency investigation of current waveforms with help of DWT. The ChNN has been 

presented as an advanced classifier for DWT induced features. 

However, the fact that the complexity of the two-stage fault classifier increases the 

operational time leads towards development of absolute pattern recognition based fault 

classification scheme using ChNN. The performance comparison of ChNN based fault 

classification scheme has been presented for two ChNN training algorithms, namely RLSFF 

and LSLM.  

The RLSFF technique has been found to have faster convergence during training and 

takes necessary shape quickly, but, over-fitting to the training patterns makes it less 

effective. However, the ChNN with LSLM learning method was found to be better than the 

ChNN with RLSFF method for series compensated line fault classification application without 

considering the effect of CT. Further, even in the presence of an appropriately designed CT, 

the performance of the ChNN with LSLM learning method degrades very marginally. Lastly, 

the performance of this algorithm has also been investigated for untransposed line and in this 

case also, the performance of the algorithm has been found to be almost at the same level.  
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CHAPTER 5: IMPROVED FAULT ZONE IDENTIFICATION SCHEMES FOR 
SERIES COMPENSATED TRANSMISSION LINE  

Fault detection, fault classification and fault location are three main components of any 

transmission line protection scheme. Inclusion of the compensator in the fault circuit alters system 

parameters and hence the impedance measurement subroutine of the distance based relaying 

scheme. Therefore, the effect of the compensator needs to be considered when included in the fault 

circuit. Hence, identification of fault point with respect to the compensator (fault zone identification) 

becomes pre-requisite for fault impedance calculations. This chapter presents improved fault zone 

identification schemes for series compensated transmission line in terms of accuracy and speed. 

5.1 INTRODUCTION 

Inclusion of SC in a transmission line improves power transfer capability, increases 

accuracy in regulation, damp inter-area power oscillation and moderate sub-synchronous 

resonance to improve transient stability. However, in the eventuality of fault circuit 

encompassing the series compensator, operating conditions for the protective relay become 

unfavorable as discussed in Chapter 2. Therefore, the positive sequence impedance 

measured by the traditional distance relay no longer is the genuine indicator of the fault 

location. The impedance calculation needs to be changed according to the series 

compensator equivalent operating impedance in the case when the compensator is part of 

the fault circuit. This necessitates the knowledge of the inclusion of the compensator in the 

fault circuit (fault zone identification) for faithful fault impedance calculation [5-8].  

As being an important aspect of series compensated transmission line protection, 

efforts have been made in the literature on the fault section identification. A travelling wave 

based algorithm using wave equation, including non-linearity of compensation was 

developed in [35]. A decision tree based approach for fault zone identification scheme for 

fixed series compensated transmission line is presented in [113]. 

Many recent developments in the field of series compensated transmission line 

protection consider fault zone identification as a problem of pattern recognition, with the help 

of a signal-processing tool. Use of SVM as a pattern recognition tool for fault classification 

and fault zone identification has been utilized by authors of [25].  

Use of WT for fault-zone identification is proposed in [114]. An algorithm developed in 

[56] for the fault zone detection uses DWT and SVM.  

From these available literatures, it can be noticed that most of the available algorithms 

require at least one cycle of data after fault inception for proper zone identification. All 

developed algorithms in this chapter utilize only half cycle post fault data for zone 

identification. In fault condition, it is fairly possible that proper voltage signal may not be 
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available. Thus all developed algorithms use three phase measured currents only at the 

relaying point. This in turn reduces the voltage related measurements and computations. 

5.2 APPLICATION OF DISCRETE WAVELET TRANSFORM AND CHEBYSHEV 
NEURAL NETWORK FOR FAULT ZONE IDENTIFICATION 

In this work, fault zone identification algorithm has been developed with DWT as 

feature extraction tool and ChNN as a classifier. The developed fault section identification 

algorithm has been tested on a two area transmission system with mid-line fixed capacitor 

compensation (shown in Figure 4.1) with a large number of test set of 54000 cases as 

described in Section 4.3.4.  

5.2.1 Fault Zone Identification  
The identification of fault zone and classification of faulted phases on a transmission 

line are essential for relaying decisions. It is well established that for a series compensated 

transmission line, the magnitude and spectral components of the fault current as seen by the 

relay get changed following inclusion or exclusion of the series compensator in the fault 

circuit. These changes are observed as the compensator impedance interferes with the 

spectra of the fault-induced transient.  

As an example, the three phase current waveforms for an AB-g fault at 49% and 51% 

of the total line length (i.e. fault at either side of the compensator) with identical fault and 

system parameters are shown in Figure 5.1 and Figure 5.2 respectively. The following 

parameters have been chosen for both these faults: fault inception angle (FIA) = 45˚; fault 

resistance (Rf) = 5 Ω and line loading angle (δ) = 30˚.  

 
Figure 5.1: Fault currents for an A-B-g  fault 

at 49% of the line length 

 
Figure 5.2: Fault currents for an A-B-g  fault 

at 51% of the line length 

It is observed from Figure 5.1 and Figure 5.2 that, both the amplitude and frequency 

characteristics of the fault current change with the position of the fault vis-à-vis the series 
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capacitor. The proposed methodology in this section is based on the detection of these 

changes to identify the participation of the SC in the fault circuit. In this scheme, half cycle 

post fault current signals measured at the relaying end are first subjected to a DSP tool to 

generate the feature vector that enhances the pattern for classification. The feature vectors 

for all three phases are then subjected to a classifier to determine the position of the fault 

with respect to the compensating device. 

The schematic block diagram of the proposed two-stage scheme is shown in Figure 

5.3. The technique consists of two stages. In the first stage a suitable DWT technique is 

applied to extract the attributes from the three line currents. In the second stage, the 

extracted features are expanded with Chebyshev expansion and then passed through a 

ChNN to decide the fault zone. The ChNN gives an output close to ‘0’ for a fault in the first 

segment of the line (before the compensating capacitor) and ‘1’ for a fault in the line segment 

after the compensating capacitor.  
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Figure 5.3: DWT and ChNN based fault zone identification scheme 

As a fault is a non-stationary phenomenon, the WT is quite suitable for analyzing the 

faulted signals. A considerable amount of change can be noticed in the amplitude and phase 

of the fault current as analyzed by the WT. Figure 5.4 and Figure 5.5 show the wavelet 

coefficients for detail bands on first and second level of decomposition for the waveforms of 

Figure 5.1 and Figure 5.2 respectively. It can be inferred from these two figures that, the WT 

enhances the features of the measured waveforms to make the fault zone identification 

process easier. 
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Figure 5.4: First and second level WT details of the measured waveforms for the faulted 

waveform given in Figure 5.1 

 

 
Figure 5.5: First and second level WT details of the measured waveforms for the faulted 

waveform given in Figure 5.2 

5.2.2 ChNN Based Classification 
The schematic diagram of the proposed algorithm for fault zone identification with the 

help of DWT and ChNN is shown in  

Figure 5.3. As already described in Chapter 4, a sampling frequency of 4 kHz has been 

used in this work. Further, for fault zone identification application, the mother wavelet ‘db1’ 

has been found to be best suitable and hence has been used in the present work. Also, 

different levels of the wavelet decomposition provide information about various signal 
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frequency components. The minimum number of scaling has an effect on the computations 

required to decompose the signal. In the present work, the second level decomposition 

details have been found to be necessary and sufficient for proper classification application.  

The decomposed components are expanded with Chebyshev expansion and 

subsequently fed to a single layer ChNN with single output indicating the involvement/non-

involvement of the compensating capacitor in the fault circuit. Numbers of input to the ChNN 

depend on the degree of Chebyshev expansion. The neural network is trained with a 

supervised back-propagation learning algorithm with LSLM optimization.  

Fault zone identification logic 
 Initially, discrete wavelet decomposition on the current signals with “db1” mother 

wavelet with second level of resolution is performed.  The produced wavelet decomposition 

vector ‘C’ which carries total 2 sub bands (one wavelet sub band and one approximation sub 

band) is then used as a feature vector for classification with ChNN. The ith element of this 

decomposition vector can be given as  

 2
,

1

1 in
dwt
p i j

ji

C w
n =

= ∑  (5.1)  

In equation (5.1), p denotes particular phase, in is the number of samples in an 

individual sub band and 2
,i jw   is the jth coefficient of the ith sub band. The feature vectors for 

all the three phases (A,B,C) are calculated and are then subjected to ChNN. This DWT 

feature vector is given by, 

 [ , , ]dwt dwt dwt
A B CC C C=dwtV  (5.2)  

This feature vector is then expanded with Chebyshev functions for generating the Chebyshev 

vector as,  

 
n n-1= 2xT (x) - T (x)n+1T (x)  (5.3)  

where, n = degree of expansion and x=Vdwt. 

This Chebyshev Vector is then subjected to pre-trained ANN. The ANN identifies the 

involvement/non-involvement of the compensating device in the fault circuit and accordingly 

gives the output (0 for fault before capacitor and 1 for fault after capacitor).  

5.2.3 Results and Discussion 
To decide the appropriate level of Chebyshev expansion for fault zone identification, 

the proposed scheme has been tested for various levels of Chebyshev expansions. The 

ChNN has been trained with 5400 fault patterns generated on the system shown in Figure 

4.1. The details of these fault patterns are given in  Table 5.1. It is to be noted that the 

number of training patterns shown in Table 5.1 is more than that shown in Table 4.3 (used in 
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fault classification task). This is due to the fact that the discriminative variation in fault 

currents between a low impedance fault just before compensator and a high impedance fault 

after the compensator is marginal. Therefore, the ChNN is required to develop classification 

plane which are adjacent to each other. Thus the number of training cases is higher for fault 

zone identification problem than that used for fault classification problem. The proposed 

algorithm is tested over remaining 52200 fault cases out of 57600 fault patterns generated 

and described in Section 4.3.4. Therefore, none of the fault pattern used during training has 

been considered for testing. 

 Table 5.1: System and fault variable used for training patterns 

Case 
Parameters Number 

of Test 
Cases 

ZG1 

% 
ZG2 

% 
xc 

% 
Rf 
Ω 

FIA δ L 
(%) 

1 100 100 50 

0, 5 
& 
50 

0, 
45 
& 

115 

10 
& 
30 

20%, 
40%, 
49%, 
51%, 
60%  

& 80% 

1080 

2 100 75 50 1080 

3 100 125 50 1080 

4 125 100 50 1080 

5 75 100 50 1080 

Total Training Cases  5400 

To identify the suitable level of Chebyshev expansion for fault zone identification, the 

training and testing has been performed with identical fault data sets for various levels of 

Chebyshev expansions. Table 5.2 shows the accuracy of the proposed methodology for fault 

zone identification for different degrees of Chebyshev expansion in ChNN. The inputs to the 

ChNN are DWT feature vector generated with equation (5.2). It is evident from the results 

that, the developed methodology provides highest level of accuracy at 5th order of 

Chebyshev expansion. Therefore, the fifth order of functional expansion has been utilized in 

this work. However, overall accuracies at other levels are also comparable with those 

obtained with other methods reported in the literature [25, 56, 113]. 

Table 5.2: Accuracy of the DWT and ChNN based scheme for different order of Chebyshev 
expansions 

Order of 
ChNN 

Accuracy Level Observed at 
% Level of Compensation 

Total 
Accuracy 
Obtained 25% 50% 75% 

Third 93.53 98.30 96.79 95.90 % 
Fourth 93.48 96.66 98.00 96.51 % 
Fifth 96.51 98.99 98.17 97.78 % 
Sixth 94.64 98.78 97.85 96.86 % 
Seventh 95.20 99.76 92.61 95.30 % 
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As can be seen from the above table, overall fault zone identification accuracy obtained 

with 5th degree of Chebyshev expansion is 97.78%. The details of accuracies for different 

levels of compensation and fault types are given in Table 5.3 and Table 5.4 respectively. 

Table 5.3: Fault zone identification accuracy at different compensation levels 

Level of 
compensation 

Numbers 
of Test 
Cases 

Fault Zone 
Identification 

Errors 
Accuracy 

25% 19200 670 96.56 % 
50% 13800 139 99.90 % 
75% 19200 350 98.09 % 

Total 52200 1159 97.77 % 
 

From Table 5.3, it can be observed that, the proposed scheme provides excellent 

results at different levels of compensations. The ChNN acquires quite a necessary 

characteristic in the classification plane to give excellent results for 50% compensation level, 

as the ChNN training patterns are obtained at this compensation level. However, a dip in the 

performance is observed with 25% compensation level. This is due to the fact that, the 

parameter changes introduced by the compensator at 25% compensation level is of lower 

order than those at 50% compensation level, for which the ChNN training has been 

performed. This drawback can be eliminated by introducing few of the training cases 

corresponding to this compensation level. However, it is worth to notice here that, the 

accuracy at 25% compensation level is still higher than those obtained by other methods 

reported in the literature [25, 56, 113]. 

The breakup of the accuracy according to the type of faults is given in Table 5.4. From 

this table, the accuracy for LLL-g fault can be observed to be little less as compared to those 

obtained for other types of faults. However, probability of LLL-g fault is least in the system 

[20] and the overall accuracy of the proposed system is better than those obtained by other 

methods reported in the literature [25, 56, 113]. 

Table 5.4: Fault zone identification accuracy for all possible types of faults 

Type of 
Fault 

Numbers of 
Test Cases 

Fault 
Classification 

Errors 
Accuracy 

L-g 15660 229 98.54% 
LL-g 15660 312 98.01% 
L-L 15660 376 97.60% 

LLL-g 5220 242 95.36% 

Total 52200 1159 97.77% 
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Fault zone identification accuracies for faults at various fault distances on a series 

compensated transmission line are presented in Table 5.5. From this table it can be 

observed that the minimum level of accuracy is always more than 95% and as a result, the 

performance of the proposed scheme can be considered to be reasonably satisfactory.  

Table 5.5: Fault zone identification accuracies at various fault distances 

Fault 
Distance 

 In Km 

25% Series 
Compensation 

50% Series 
Compensation 75% Series Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 94 96.08 % 1500 23 98.47 % 2400 49 97.96 % 

120 2400 78 96.75 % 2400 17 98.87 % 2400 46 98.08 % 

138 2400 87 96.38 % 1500 19 99.21 % 2400 42 98.25 % 

147 2400 64 97.33 % 2400 12 99.20 % 2400 36 98.50 % 

After Compensator 

153 2400 69 97.13 % 2400 14 99.07 % 2400 35 98.54 % 

162 2400 82 96.58 % 1500 19 99.21 % 2400 41 98.29 % 

180 2400 94 96.08 % 2400 15 99.00 % 2400 52 97.83 % 

240 2400 102 95.75 % 1500 20 98.67 % 2400 49 97.96 % 

TOTAL 19200 670 96.51 % 15600 139 98.99 % 19200 350 98.18 % 

5.3 DWT AND SVM BASED SCHEME  

The basic arrangement of this scheme is same as that shown in Figure 5.3 with the 

only difference is that the ChNN is replaced with SVM. The scheme applies identical 

procedure for fault zone identification as that with DWT and ChNN based scheme. The 

feature vector identical to that used in previous scheme (given in equation (5.2)) is used for 

fault zone identification for each fault with the help of SVM. The same set of training and 

testing fault cases has been employed for the performance evaluation. 

The SVM has been implemented with Lib-SVM [104] software under windows 

environment. The classification process with SVM is sensitive to classification parameters. 

Proper selection of parameters is necessary for successful application of SVM. In the 

absence of the parameter selection procedure in the literature, the kernel function and values 

of C and γ are decided by cross-validation process as already discussed in Section 4.6. A 

sample data set of 1000 fault cases has been considered for identification of proper values. It 

has been found that for ‘C=1000’ and ‘γ=0.0000025’, the performance of the SVMs is best 

and therefore, these values have been used for fault zone identification.  Identical values of 

these parameters have been used for all four SVMs used in this method. 
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Table 5.6 describes the performance of the DWT and SVM based scheme at various 

levels of compensation. For better comparison of the performances of the ChNN and SVM 

based schemes, the results given in Tables 5.3 and 5.6 are shown as bar charts in Figure 

5.6. From this figure it is observed that, the performance of the ChNN based scheme is 

superior than that obtained by the SVM based scheme at all compensation levels.  

Table 5.6: Performance of the DWT and SVM based scheme for fault zone identification 

Level of 
compensation 

Numbers of 
Test Cases 

Fault Zone 
Identification 

Errors 
Accuracy 

25% 19200 848 95.58 % 
50% 13800 213 98.43 % 
75% 19200 560 97.08 % 

Total 52200 1159 96.89 % 

 
Figure 5.6: Comparison of SVM and ChNN for fault zone identification with help of DWT 

 

Table 5.7 shows the performance of the DWT and ChNN based scheme for different 

types of faults. Performance of SVM is normally found superior than that of conventional 

ANN classifiers. However, due to Chebyshev functional expansion, the generalisation ability 

of the neural network increases manifold and provides substantially higher fault zone 

prediction accuracy compared to SVM for all possible type of faults. Again, for better 

comparison of the performances of the ChNN and SVM based schemes, the results given in 

Tables 5.4 and 5.7 are shown as bar charts in Figure 5.7. From this figure it is observed that, 

the performance of the ChNN based scheme is superior than the SVM based scheme for all 

types of faults. 
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Table 5.7: Fault zone identification accuracy for possible types of faults for DWT and SVM 
based system 

Type of 
Fault 

Numbers of 
Test Cases 

Fault 
Classification 

Errors 
Accuracy 

L-g 15660 336 97.85% 
LL-g 15660 488 98.01% 
L-L 15660 502 96.88% 

LLL-g 5220 295 94.35% 

Total 52200 1621 96.89% 
 

 
Figure 5.7:Misclassification comparison of SVM and ChNN based schemes for all possible 

types of faults 

Table 5.8 presents the accuracies of the proposed scheme for faults at different points 

on the transmission line. The fault generated spectrum is quite different for faults at line ends 

than the faults occurring near the compensating capacitor. Therefore, accuracies towards the 

end of the line are slightly lower, and are almost same for both classifiers (please refer Table 

5.5 and Table 5.8). The ChNN proved to be more suitable at every fault location than SVM 

due to its higher adaptability to the variation in the training samples.  
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Table 5.8: Accuracies of fault zone identification schemes at different fault length 

Fault 
Distance 

 In Km 

25% Series 
Compensation 

50% Series 
Compensation 75% Series Compensation 

Test 
cases Errors Accuracy Test 

cases Errors Accuracy Test 
cases Errors Accuracy 

Before Compensator 

60 2400 88 96.33 % 1500 18 98.80 % 2400 61 97.46 % 

120 2400 103 95.71 % 2400 29 98.07 % 2400 78 96.75 % 

138 2400 128 94.67 % 1500 32 98.67 % 2400 84 96.50 % 

147 2400 107 95.54 % 2400 37 97.53 % 2400 82 96.58 % 

After Compensator 

153 2400 98 95.92 % 2400 19 98.73 % 2400 52 97.83 % 

162 2400 137 94.29 % 1500 27 98.88 % 2400 77 96.79 % 

180 2400 101 95.79 % 2400 31 97.93 % 2400 68 97.17 % 

240 2400 86 96.42 % 1500 20 98.67 % 2400 58 97.58 % 

Total 19200 848 95.58 % 15600 213 98.46 % 19200 560 97.08 % 

5.4 APPLICATION OF UDWT FOR FAULT ZONE IDENTIFICATION 

The Undecimated Discrete Wavelet Transform (UDWT) is a type of the wavelet 

transform that is both linear and time-invariant. The transform is said to be linear if the sum of 

two signals is sum of transform of individual signal.  

The fault-induced transients may have wide frequency bandwidth with inclusion of 

series compensator in the fault circuit. For analyzing a signal within a specific bandwidth, the 

DWT has been proved to be quite efficient tool as discussed in the previous sections. 

However, as discussed in Chapter 3,  the major drawback of the DWT technique is its non-

invariance in time and space [70]. The time-invariance property is important in statistical 

signal processing applications such as variation detection and parameter estimation with 

unknown inception time as encountered in case of a fault [115]. In this regard, the UDWT 

provides a better approximation property as compared to DWT. This is due to the fact that, 

the UDWT is a redundant, shift invariant and linear transformation method. The UDWT gives 

denser approximation to the continuous wavelet transform than the approximation provided 

by the orthonormal DWT [116, 117]. 

Therefore, using the advantages of UDWT, the ChNN based fault zone identification 

scheme is proposed in this section. The basic arrangement of this scheme is same as that 

shown in Figure 5.3 with the only difference is that the DWT is replaced with UDWT.  With 

identical training and testing cases, a detailed comparison between DWT and UDWT based 

scheme is presented in this section.  
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5.4.1 Fault Zone Identification Scheme 
As already described in Section 3.6, the original signal is not decimated after each level 

of decomposition with UDWT. Instead, UDWT modifies the filters at each level, by padding 

them out with zeroes [70]. Essentially the UDWT technique upsamples the coefficients of the 

low-pass and high-pass filters at each level of decomposition (Figure 3.7). The upsampling 

operation is equivalent to dilation of the wavelets. Therefore, the approximation and detail 

coefficients are of same length at each level of resolutions. Details about UDWT can be 

found in Section 3.6.  

The samples of fault current signals for half-cycle duration (after the fault inception) 

have been taken as input to the developed system. The sampling frequency for this work is 

same as 4 kHz as that used earlier. The same half cycle duration post fault samples are 

processed using UDWT with the same ‘db1’ mother wavelet.  

The detail sub-bands generated after UDWT of the current signal for phase ‘p’ are used 

for calculating the representative feature of phase ‘p’ (p = a, b, c) as: 

 2
2

1

1 n
UDWT
p j

j
C w

n =

= ∑  (5.4)  

In the above equation, UDWT

p
C is the representative feature of phase ‘p’, ‘n’ is the number of 

samples in the wavelet sub-bands and j
w is the jth co-efficient of the wavelet sub-band.  

The first level of decomposition has been found to be sufficient with UDWT for fault 

zone identification in this work. The first level decomposition with UDWT generates detailed 

sub-band CD1 of the same length as that of the input vector (i.e. 40). The D1 coefficients of 

a-phase current for an A-G fault at four different locations (20%, 49%, 51%, 80%) of the line 

are shown in Figure 5.8. These faults have been created with the following fault parameters: 

FIA = 45˚, Rf = 5 Ω, and loading angle (δ) = 20˚. Figure 5.9 zooms on the last ten coefficients 

of the UDWT. As observed from Figure 5.9, the last 10 co-efficients are sufficient to clearly 

classify the position of the fault vis-à-vis the SC. Therefore, this set of last 10 co-efficients 

only has been used for further processing with ChNN. As only 10 co-efficients are used, both 

memory requirement and computational burden of ChNN would be reduced for real time 

implementation as compared to that required for DWT.  
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Figure 5.8: First level UDWT decomposition coefficients 

 

 
Figure 5.9: Last ten coefficients of first level UDWT decomposition 

For comparison with UDWT, a second order DWT decomposition of A-phase half cycle 

post fault current for the same A-g faults considered in Figure 5.8 are presented in Figure 

5.10. From this figure it is observed that these coefficients also indicate the fault position vis-

à-vis the SC. However, DWT requires 30 coefficients (as opposed to 10 coefficients for 

UDWT) for proper discrimination. More exhaustive performance comparison of UDWT and 

DWT schemes is given in the next section.   

Once the representative features for all the three phases are calculated, the feature 

vectors of UDWT are formed as  

 { , , }UDWT UDWT UDWT
A B CC C C=UDWTV  (5.5)  
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With 10 co-efficients of D1 per phase, the vector VUDWT consists of total 30 coefficients. 

On the other hand, with 30 coefficients per phase, the feature vector of DWT consists of 90 

components.  

 

 
Figure 5.10: First and second level DWT decomposition coefficients 

Using the identical procedure as used in the DWT based scheme, the extracted feature 

vector obtained with UDWT has been given to a ChNN. In this case, the third order 

Chebyshev expansion has been found to be sufficient for proper zone identification. Once 

the ChNN is well trained, it is expected to produce an output of ‘1’ if the compensator is 

included in the fault circuit and ‘0’ for otherwise. 

5.4.2 Results and Comparison with DWT Based Scheme 
Table 5.9 summaries the results for performance testing with UDWT and ChNN based 

schemes for fault zone identification. The performance of the DWT with ChNN based 

scheme has been found to be superior than that obtained by the SVM based scheme. 

Hence, the performance of the DWT+ChNN based scheme has been compared with UDWT 

and ChNN based scheme in this section. From Table 5.3 and Table 5.9, it can be observed 

that the performance of the UDWT scheme is better than that obtained by DWT based 

scheme. This is due to the absence of down-sampling operation in UDWT. Further, the 

overall accuracy of UDWT is quite satisfactory (98.62%) also. From these two tables, it can 

also be observed that the highest level of accuracy is obtained at 50% compensation level. 

This is due to the fact that the ChNN has been trained with fault cases from this 

compensation level (refer  Table 5.1). However, at other compensation levels also, the 

accuracy is reasonably acceptable. 
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Table 5.9: Fault zone identification accuracy for UDWT and ChNN based scheme 

Level of 
compensation 

Numbers 
of Test 
Cases 

Fault Zone 
Identification 

Errors 
Accuracy 

25% 19200 411 97.86 % 

50% 13800 85 99.38 % 

75% 19200 187 99.02 % 

Total 37800 521 98.69 % 

 

To further analyze the performance of this scheme, the detailed breakup of the 

accuracies for different fault locations corresponding to different compensation levels are 

shown in Table 5.10. From this table, it is observed that for each fault location at any 

compensation level, the performance of the UDWT based scheme varies marginally and 

provides almost equal level of accuracies. 

Table 5.10: Fault zone identification accuracies for UDWT and ChNN based scheme for 
different fault length for different compensation levels 

Fault 
Length 
(% of L) 

25% Compensation 50% Compensation 75% Compensation 
Number 
of Test 
Cases 

Error Accuracy 
Number 
of Test 
Cases Error Accuracy 

Number 
of Test 
Cases Error Accuracy 

20% 2400 65 97.29% 1500 12 99.20% 2400 28 98.88% 

40% 2400 50 97.91% 1500 11 99.26% 2400 27 98.87% 

46% 2400 43 98.20% 1500 14 99.41% 2400 25 98.95% 

49% 2400 46 98.08% 1500 10 99.33% 2400 26 98.91% 

50% Compensator 

51% 2400 33 98.62% 1500 7 99.53% 2400 12 99.50% 

54% 2400 48 98.00% 1500 12 99.50% 2400 20 99.16% 

60% 2400 57 97.62% 1500 8 99.46% 2400 21 99.12% 

80% 2400 69 97.12% 1500 11 99.26% 2400 28 98.83% 

 

The breakup of the accuracy according to the type of faults is given in Table 5.11. From 

this table it is observed that for any type of fault, the performance of UDWT based scheme is 

better than that obtained by DWT based scheme. Further, it is observed that the accuracy of 

the algorithm marginally reduces for three-phase to ground faults. However, as the possibility 

of this type of fault in the system is least, this marginal reduction is of very little consequence. 
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Table 5.11: Accuracies according to type of faults 

Type of 
Fault 

Numbers 
 of Test 
 Cases 

DWT and ChNN UDWT and ChNN 
Fault Zone 
Detection 

Errors 
Accuracy 

Fault Zone 
Detection 

Errors 
Accuracy 

L-g 15660 229 98.54% 138 99.11% 
L-L-g 15660 312 98.00% 246 98.43% 
L-L 15660 376 97.60% 172 98.90% 
L-L-L-g 5220 242 95.36% 127 97.56% 
Total 52200 1159 97.77% 683 98.69% 

 

An overall comparison of the performances of all three proposed schemes at different 

fault distances for the mid-point series compensated transmission line is presented in Figure 

5.11. All three methods indicate improvement in fault zone identification as compared to the 

techniques reported in the literature [25, 56]. Further, a higher level of accuracy is noted just 

after the series compensator. This is due to the fact that, highest spectral and magnitude 

variations are observed for the faults just after the compensator. During training, the ChNN 

adjusts its weights properly to work with lower order variations in frequency and magnitude to 

classify the fault zone accurately for line end faults. This enables higher degree of 

classification accuracy for higher variations in input parameters on either side of the 

compensator. 

 

Figure 5.11: Fault zone identification performance with different schemes 

It is to be noted that, the ChNN took 150 epochs to converge (during training) with the 

features extracted by UDWT. On the other hand, when DWT is used to extract the features, 

the training of ChNN require about 270 epochs to converge. 
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From the above results, it is found that the UDWT based scheme outperforms the DWT 

based scheme in every aspect. In fact even for practical application, the UDWT based 

scheme is advantageous as compared to the DWT based scheme as can be seen from 

Table 5.12. This is due to the fact that while UDWT based scheme requires 30 coefficients 

(10 from each phase), the DWT based scheme requires 90 coefficients to be processed by 

ChNN. Therefore, the memory requirement of the UDWT based scheme is certainly less than 

that of the DWT based scheme. Simultaneously, for UDWT based scheme, the co-efficients 

obtained after first level of decomposition are found to be sufficient. On the other hand, in the 

DWT based scheme, the co-efficients obtained after second level of decomposition are also 

necessary for proper zone identification. Thus, the execution time for UDWT based scheme 

is also less than that required by the DWT based scheme. 

Table 5.12: Comparison of implementation parameters for fault zone identification schemes  

 DWT+SVM DWT + ChNN UDWT+ChNN 
Epoch for learning 

convergence 
-- About 270 About 150 

Classifier inputs 90 90 30 

Level of 
decomposition 

Second Second First 

Training Complex Back-propagation Back-propagation 

Accuracy 96.89 % 97.77 % 98.69 % 

 

The above comparison clearly establishes the superiority of UDWT and ChNN based 

scheme over the other schemes. Therefore, the performance of this scheme has also been 

compared to those obtained by two recent methods reported in [56] and [25]. Both of these 

methods have been chosen as the investigation of the performances of the algorithms 

proposed in these works had been carried out with reasonably higher numbers of fault cases 

as compared to the other methods reported in the literature. The comparison is shown in 

Table 5.13. From this table, it is observed that the performance of the proposed UDWT 

based method is clearly superior to those described in [56] and [25]. Further, it is to be noted 

that the 52200 fault test cases used in this work also include the 25200 test cases used in 

[56]. 

Table 5.13: Performance comparison with previously reported methods 

 
UDWT + 
ChNN 

method 
Method 
of [56] 

Method 
of [25] 

Post Fault Data 
Requirement Half cycle Full cycle Half cycle 

Testing Cases 52200 25200 200 
Fault Zone Identification 

Accuracy 98.69% 93.917% 95.09% 
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5.5 CONCLUSION 

In this chapter, three methods are proposed for fault zone identification in a series 

compensated transmission line. The first two methods employ DWT with AI classifiers of 

ChNN and SVM. The third scheme involves application of UDWT along with ChNN.  

Based on large number of fault simulation studies under wide variation in different 

parameters, the following conclusions can be drawn. 

• Accuracies of all three demonstrated schemes in this chapter are higher than those 

obtained by the existing methods in the literature. 

• The methods proposed in this chapter use samples for only half cycle duration for 

fault zone identification. Therefore, they are quite suitable for digital protection 

application. 

• All three methods presented in this chapter work on current measurement only 

thereby reducing the measurement and computational burden. 

• As compared to the DWT based method, the UDWT based scheme has less memory 

requirement and more execution speed for practical implementation. 

• As compared to other recent methods proposed in the literature, the UDWT-ChNN 

based method is faster and more accurate simultaneously.  
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CHAPTER 6: FAULT LOCATION ESTIMATION ON SERIES 
COMPENSATED TRANSMISSION LINES 

In this chapter development and evolution of the fault location schemes for protecting the EHV 

transmission line with series compensation is reported. The chapter starts with the review of fault 

location process in transmission line in literature. These concepts leads towards requirements and 

concepts for fault locations on series compensated transmission lines. Phasor estimation techniques 

and compensator modeling procedures are presented in brief for fault location calculations. Fault 

location processes based on these techniques are presented with description and comparative 

studies. Finally, an artificial intelligence and signal processing technique based fault location scheme 

is presented as further improvement in fault location studies. In addition, the scheme reveals several 

key advantages offered by ChNN such as: ability to learn from a set of examples and the robustness 

in approximating any complex function using a set of learning data sets. 

6.1 INTRODUCTION 

In the absence of accurate fault distance measurements, many research efforts were 

directed to develop dedicated fault location schemes based on impedance/ reactance 

measurements from the relaying end. Introduction of series compensation makes fault 

location estimation still more difficult due to change in system parameters. Normally, the fault 

location algorithm is developed assuming the line to be properly transposed. Thus any 

unbalance or unsymmetry in line parameters and measurements amplify with inclusion of 

series compensation thereby making the estimate erroneous. Most of the fault locator 

algorithms consider lumped parameter model of the line. However, in reality, line parameters 

are distributed so this assumption also introduces error in the fault distance calculation.   

6.2 OVERVIEW OF FAULT LOCATION TECHNIQUES IN SERIES COMPENSATED 
TRANSMISSION LINE 

Depending on the locations of the measurements, fault location techniques can broadly 

be classified as: 

1) One-end measurement algorithms [48, 118, 119] 

2) Two-end measurement algorithms [32, 33] 

3) Multi-end measurement algorithms [120, 121] 

The single end algorithm has an advantage as it calculates the fault distance based on 

the measurements taken on the relaying end only.  Two end and multi end algorithms need 

measurements from each end of line. Moreover, these algorithms require a communication 

channel for data transmission between the ends for calculating the fault distance. Therefore, 

the single end measurement algorithms are the most convenient methods and lead to 

reduced computational burden. However, it lacks in accuracy. Two and multi end algorithms 
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gain an advantage as measurements from either side of the fault eliminate the effect of fault 

impedance and compensation voltage drop on distance calculations. 

Another classification of fault location techniques for series compensated transmission 

line in literature can be made based on their working methodology as: 

• Phasor based approaches 

• Differential equation based models 

• Travelling wave based method to solve faulted network equations 

• Signal processing based methods on the basis of the high-frequency  transients 

generated by the faults 

• Other specially developed methods 

Phasor based approach is the most fundamental method for estimating the location of 

fault in a transmission line [32, 118]. However, during the period of fault, the voltage and 

current signal are not purely sinusoidal; and therefore, the fault location accuracy gets 

affected. This problem gets aggravated with the introduction of non-linear series 

compensating devices. Time-domain algorithms have been developed with single-circuit 

networks to overcome the problems in phasor estimation based schemes [33]. Time duration 

between two successive thigh frequency travelling waves is indication of the fault distance.  

The travelling wave equations can be modified to include series compensation as well. 

Accurate and faithful measurement of time domain signal is prime requirement for this 

method. Use of modern analysis and classification tool such as ANN [48], SVM [122-124], 

etc. are also reported in the literature. 

A single ended fault location algorithm using phasor coordinates has been proposed in 

[118]. The method calculates two different synchronized voltages from either ends of the line 

with the help of a distributed time model. An approach to estimate the voltage across 

compensation devices for estimating the fault location with the help of this voltage has been 

developed in [32]. However, in these methods, shunt and mutual capacitances of the line are 

ignored. This limits the accuracy of final distance calculations. In [125] a high speed 

numerical method is proposed on directional comparison principle. The method uses a 

dedicated communication channel and measurements from either side of the line to estimate 

the fault location. 

Application of modern single processing techniques and artificial intelligence for fault 

location are reported in the literature. Use of ANN for fault location has been explored for 

fixed capacitor compensated line in [48] and for controllable compensated line in [126]. In 

[122] wavelet packet decomposition and support vector regression based fault location 

algorithm using half cycle post fault data is presented. However, use of sampling frequency 

of 12.8 kHz is considered to be too high for practical implementation. Moreover, it should be 
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noted that training and testing is done for same fault data set. Thus the accuracy cannot be 

guaranteed for other systems. In [33] a fault locator algorithm by dividing the transmission 

line in three separate circuits is developed. The authors presented the fault resistance 

calculation by LSE [127]. This scheme works on data measurements obtained from both 

ends of the line. This makes the algorithm independent of compensator type and its mode of 

operation. However, it also requires a dedicated communication channel and results in heavy 

computational burden.   

6.3 INTRODUCTION TO PHASOR ESTIMATION 

A fast, reliable and automatic fault location is prime requirement in transmission line 

protection. The correct operation of the modern day numerical relays depends on the correct 

estimation of the location of the fault.  

Fault location techniques normally process the power frequency components of the 

fault signals to calculate the position of the fault on a transmission line [4, 6]. The main 

advantage of this method is that, it can be applied using actual power network 

measurements. However, in the event of a fault, the voltage and current signals are severely 

distorted. The fault signal may contain harmonics, decaying dc and decaying ac components 

besides the power frequency components. This increases the difficulty in fast and accurate 

phasor estimation required for estimating the fault location. 

6.4 PHASOR ESTIMATION TECHNIQUES 

The phasor estimation algorithm estimates the amplitude and phase of the desired 

frequency component of the measured signal being fed to the numerical relay. The phasor 

estimation makes use of the sampled values over a specified data window. The continuous 

sliding data window technique is used to carry out continuously updated phasor estimation 

[128]. This process is called estimation because the true value of the desired component is 

not known upfront. The quality of the estimated phasor largely depends upon the method 

used. 

The phasor estimation techniques can broadly be divided into following categories:   

i) Non recursive short window algorithms: (Miki and Mikano, Mann and Morrison [129], 

Rockfeller and Udren, Golbert and Shivelin, etc. [130, 131]). 

ii) Non-recursive long window algorithms: (DFT, LSE, etc.). 

iii) Recursive algorithms: (Kalman filtering, recursive least square error, etc.) 

The non-recursive long window algorithms are most widely used for phasor estimation. 

This section describes some of the phasor estimation techniques used in this work for 

finding the location of the fault. In this work, three phasor estimation methods have been 
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used for finding the location of the fault. These three methods are: DFT, DWT and LSE 

based technique. All these three methods have been implemented using 80 samples of 

measurement data (i.e. number of samples in a one cycle window with measurement 

frequency of 4 kHz for 50 Hz system). 

6.4.1 DFT Based Phasor Estimation 
The DFT uses Fourier series to represent a given set of the measurement samples in 

terms of sine and cosine components for the desired range of the frequency.  Basically, DFT 

is a transform that converts a sequence of time samples to another sequence of frequency 

samples. Let us consider ‘N’ discrete samples obtained with sampling frequency of ‘fs’. With 

sampling window length of ‘n*Δt’ (‘Δt’= sampling time on the time axis = ‘1/fs’), the FFT of the 

acquired time samples x(n),n=0,1,2,….N-1, (where N is an even quantity) can be given as:
  

 21
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N j kn
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X k x n e
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= ∑          Where, k = 0,1,…,N-1 (6.1) 

The number of frequency samples X(k) are same as that of time samples x(n). 

However, only half of the frequency samples are relevant. The index k indicates the multiple 

of fundamental frequency, also called harmonic number, from zero up to N/2. The remaining 

index values above N/2 have the following relationship [132], 
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 (6.2) 

In equation (6.2), X(k)* is the complex conjugate of X(k). This indicates that any half of 

the total outputs is significant for the phasor estimation and the outputs in the other half are 

complex conjugate of the respective outputs in the first-half.  

Fundamental frequency phasor estimation consists of first calculating the DFT 

components. For any specific frequency, the real and imaginary components can be 

calculated separately by calculating the cosine and sine components. By using the Fourier 

series expansion method, the cosine component for any harmonic order k (= 1,..., N/2-1) of 

interest can be obtained through the definition of the DFT elements. 

The sine component gives the imaginary part of the estimation and is given as [133]: 
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The magnitude of the estimated phasor will be equal to the peak value of the 

fundamental frequency component of the signal analyzed. For the number of samples to be 

an integer number (say N samples per cycle), a sample synchronization process is required, 

which keeps track of the changes in the frequency of the power system and adjusts the 

sampling rate accordingly.  

6.4.2 Fault Location Estimation with Reactance Method 
Normally, any fault location technique measures the apparent impedance up to the 

fault point. In reactance based method, the fault locator estimates the fault location with the 

help of the ratio of the measured reactance to the reactance of the entire line. The same 

system as shown in Figure 4.1 has also been used in this chapter. To introduce some extra 

variables used in connection with estimation of fault location, this system is again shown in  

Figure 6.1.  As shown in this figure, a fault is simulated at distance ‘m’ from the relaying 

end.  

AG

CB

MOV Ld

G1 G2A B

SC

RELAY

V δ∠ 0V∠Fault

m 1-m

 

Figure 6.1: Single line diagram of the considered system with fault before compensator 

Figure 6.2 represents the equivalent circuit of the considered transmission system in 

this study. In this figure ZG1 and ZG2 represent the generator impedances. Further, ZL is the 

line impedance between terminals A and B, IG1 is the line current at terminal A, RF is the fault 

resistance and IF is the total fault current. 
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Figure 6.2: Equivalent circuit for fault on the system of Figure 6.1 

 

The per unit distance to a three phase fault can be given as: 

 1 1Im( / )
Im( )

G G

L

V I
m

Z
=  (6.4)  

For a line-to-ground (a-g) fault, the calculation would be as: 
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 (6.5)  

In equation (6.5), 1LZ is the positive sequence impedance of the line and 

0 0 1 1( ) / 3L L Lk Z Z Z= −  . Further, 0LZ is the zero sequence impedance of the line. Moreover, 

the residual current is defined as 03RI I=  [134].  

Based on the above fundamental concept of fault location estimation, a single ended 

impedance based fault location technique has been implemented with the help of phasors 

computed by DFT. With the computation of fundamental phasors of current and voltage from 

one cycle post fault measurements, the locations for all types of faults can be estimated as 

the ratio of the imaginary part of the calculated impedance (shown in Table 6.1) to the total 

reactance of the line [13].  
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Table 6.1: Calculated positive sequence impedance for various types of fault 

Fault type Imaginary part of the impedance equation 

A-g 
0

a

a

V
I k IR+

 

B–g 
0

b

b

V
I k IR+

 

C–g 
0

c

c

V
I k IR+

 

AB or AB-g ab

ab

V
I

 

BC or BC-g bc

bc

V
I

 

CA or CA-g ca

ca

V
I

 

ABC-g Any of the following: ab

ab

V
I

, bc

bc

V
I

, ca

ca

V
I

 

6.4.2.1 Fault location estimation before compensator 
As shown in Figure 6.1, the series compensator is installed at the middle of the 

transmission line. The series compensation device divides the transmission line into two 

equal sections. The compensator is equipped with highly non-linear over-voltage protection 

device and hence, adversely affects the fault location estimation as discussed earlier. 

Therefore, the fault location estimation task has been divided in two sub-routines in this work 

according to the inclusion/non-inclusion of the compensator in the fault circuit. 

Location of any fault before the compensator can be estimated with the help of DFT 

based phasor estimation discussed earlier. The calculations for estimating the locations of 

the faults have been implemented with MATLAB software in this work.  Further, as the fault 

resistance plays significant role on the accuracy of the fault location algorithms [135-138], its 

variation has also been considered in this study.  

Fault location errors have been calculated as a percentage of the fault distance of the 

line, and are given as: 

 % *100Actual Fault Location Measured Fault Locationerror
Actual Fault Location

−
=  (6.6)  

It is worth noticing here that, most of the available literature represents the percentage 

error in fault location as measured against the total length of the transmission line, i.e. 

 % *100Actual Fault Location Measured Fault Locationerror
Total LineLength

−
=  (6.7)  
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This approach effectively reduces the value of percentage fault location errors at any 

point on the transmission line. Therefore, it gives an over-optimistic value of the error and 

hence the fault location errors have been calculated against the actual fault location in this 

work. 

6.4.2.2 Fault location estimation after compensator 
The non-linear impedance of the compensator creates problem for fault location 

estimation when it is included in the fault circuit. Due to the presence of the compensator in 

the fault circuit, the estimated voltage magnitude and phase differ from their respective actual 

values. The highly non-linear nature of the compensator is mainly due to the presence of 

MOV. The MOV is normally applied for overvoltage protection of the series compensator. A 

highly non-linear resistive characteristic of the MOV provides effective protection to the 

capacitor against overvoltage. The MOV also facilitates quick insertion of the SC in the line 

with higher reliability and lower maintenance requirements. 

As already mentioned, the distance protection scheme for transmission line protection 

calculates the fault impedance inaccurately due to the voltage drop across the compensator. 

This problem can be addressed by calculating this voltage drop with measured quantities. 

One of the methods is to develop an equivalent compensator model for calculations.   

The MOV modeling is normally considered as a non-trivial task as the device conducts 

the current only for a part of each half cycle. Therefore, the SC is neither in the circuit 

continuously, nor is entirely bypassed during fault. Thus, development of an accurate SC-

MOV model is quite difficult.  In [19] a practical linearized SC-MOV model for calculating the 

system parameters in fault conditions is presented. This model provides an approximation of 

the actual value only. However, this model is widely used by the researchers as it is fairly 

simple in application. Based on [19], in [9] a quasi-linear model of SC-MOV combination to 

be used in simulation studies is reported. These models are used widely by various 

researchers for series compensated line protection and have been found to be very useful in 

calculating the SC-MOV impedance and hence for voltage estimation [10, 16, 20, 28-34].  

A non-linear model of parallel combination of SC and MOV has been developed in [20]. 

The model utilizes the compensator current as an input parameter. This necessitates a 

dedicated communication channel with real-time measurements in case of mid-line 

compensation. Further, the model uses interpolation technique during final calculations, 

which reduces the prediction accuracy. In [31] an algorithm for estimating the SC-MOV 

impedance by calculating two different impedances across the compensator is presented. 

The first impedance is calculated with the measured voltage and current while the second 
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impedance is calculated with measured current and calculated compensation voltage by 

using 2nd order Gear Differentiation Rule (GDR).  

However, as already discussed, the model developed by Goldsworthy is fairly simple in 

application. For the same reason, this model has also been used in this work.  

According to this model, the approximate compensator impedance is given as: 

 
c c cZ R X= +  (6.8)  

where,  

 0.243 0.8566 1.4(0.0745 0.49 35 0.6 )pu pu puI I I
c coR X e e e− − −= + − −  (6.9)  

and 

 0.8566(0.1010 0.005749 2.088 )puI
c co puX X I e−= − +  (6.10)  

In the above equations, Xco is the nominal value of reactance of the capacitor bank. 

Further, equations (6.9) and (6.10) are applicable for Ipu > 0.98 where Ipu is per unit value of 

the compensator current Ic with respect to the capacitor protective level current (Ipr) as given 

below. Ipr is considered as twice the rated current of the SC.  

 c
pu

pr

I
I

I
=  (6.11)  

For all other values of the fault current, the reactance of capacitor is taken as the 

overall impedance of the compensator. Finally, the estimated fault location is corrected with 

this impedance.  

6.4.2.3 Performance evaluation of the DFT based method 
The performance of the DFT based method has been evaluated with all the 57600 fault 

cases simulated with PSCAD/EMTDC as described in Section 4.2. Sampled values of the 

voltages and currents measured for one cycle duration after fault inception are provided to 

the algorithm to estimate the fault location. The accuracy of the fault location has been 

calculated as a percentage of the actual fault distance as shown in equation (6.6). The 

overall fault location estimation performance at different compensation levels for all 

considered fault cases is shown in Table 6.2. 

From Table 6.2, it can be observed that comparatively large errors are present in the 

estimations of the fault locations. Decaying dc component and harmonics present in the 

system at the time of fault are major factors for these errors. Fault estimation errors (in 

absolute values) are higher for faults occurring after the compensator (as observed from the 

relay); however, due to higher distance from the relay, the percentage error is less as the 

denominator is relatively large in equation (6.6). Erroneous estimation of the compensator 

impedance is a major source of errors after the compensator. 
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Table 6.2: Performance of DFT based method for fault location estimation 

Type of 
Fault 

25% Compensation 50% Compensation 75% Compensation 
Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

 Before Compensator 

A-g 3.5479 5.2963 3.8148 6.3605 4.5918 5.5989 

B-g 3.1827 6.2792 2.4928 5.5593 3.4874 7.1086 

C-g 3.8197 4.2590 4.8248 6.1827 4.9780 5.6855 

AB-g 2.1548 4.6426 2.9715 3.9824 3.5855 4.8955 

AC-g 2.5140 7.5001 2.9370 5.8743 3.8815 12.1590 

BC-g 3.1579 6.6896 3.5479 5.8015 3.9960 9.5628 

ABC 4.0246 4.1856 4.2146 8.2537 4.2480 18.3259 

AB 2.4559 5.2979 3.5798 6.6879 4.0583 7.2568 

AC 2.4190 4.8256 3.4365 6.0146 4.1250 9.6487 

BC 2.1796 4.1897 3.8151 3.8593 3.8715 4.6850 

 After Compensator 

A-g 4.2489 5.9359 4.7259 6.8826 4.7950 6.4549 

B-g 3.5110 8.2196 3.6827 7.0006 3.8110 7.0543 

C-g 4.0579 6.2875 4.2893 6.9596 4.8330 6.0744 

AB-g 2.9252 5.1199 3.8830 5.1684 4.0487 6.4821 

AC-g 3.2489 7.7326 3.5595 8.2860 4.1790 7.6985 

BC-g 3.6130 5.9358 3.4498 7.7144 4.4359 8.1795 

ABC 4.1962 8.5971 4.8630 9.5880 4.6773 6.2598 

AB 3.1143 5.0598 3.4585 6.9673 3.8465 7.2658 

AC 3.1920 5.7157 3.3740 6.2899 3.9173 8.5874 

BC 3.0498 5.3236 3.2759 4.3594 4.1688 5.2977 
 

Figure 6.3 shows the absolute average errors calculated for all types of faults at 

different fault distance on the 300 km transmission line considered in this study. The absolute 

average error is the absolute value of the average error for 960 fault cases for each fault type 

at every level of compensation [i.e. there are 57600/2 = 28800 fault cases before/after 

compensator; with 10 fault types, there are 2880 cases for each fault type and finally there 

are 2880/3 = 960 fault cases for each level of compensation corresponding to any particular 

type of fault]. The average errors have been calculated with all types of fault with different 

fault and system parameters. It can be observed from this figure that, the average error is on 
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the higher side for faults after the compensator (as observed from the relay). This is mainly 

due to the errors introduced by the imperfect compensator modeling as described earlier. 

Moreover, the absolute average error reduces with increase in the fault distance because of 

relatively large denominator (actual fault distance) in equation (6.6). 

 

 

Figure 6.3: Absolute average error obtained with DFT based fault location technique 

The corresponding maximum fault location errors at different fault distances are shown 

in Figure 6.4. Higher fault location errors are observed for faults closer to the relaying end. 

This is due to the fact that, errors have been calculated against actual fault location (equation 

(6.6)). As the actual fault distances are on lower side for faults closer to the relaying end, the 

percentage errors are higher for these faults. 

 

 
Figure 6.4: Maximum fault location error with DFT based fault location technique 

6.4.3 Wavelet Based Phasor Estimation 
Fourier analysis of any waveform relies on a single basis function. However, with wide 

functional forms of the WT, many researchers anticipated application of WT for phasor 

calculations [139]. As discussed in Section 3.2 of this thesis, this analysis is based upon the 
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selection of an appropriate ‘mother wavelet’ and performing analysis using shifted and 

dilated versions of this wavelet. In contrast to the FT, in WT, the wavelet can be chosen with 

very desirable frequency and time characteristics. With variable windowing analysis, the WT 

is capable of providing more information than FT.  

As explained in Section 3.2.2, the WT can be implemented with wavelet tree structure 

as shown in Figure 3.3. Table 6.3 gives the frequency range of the decomposed signal at 4 

kHz sampling frequency, used throughout in this thesis. 

Table 6.3: Frequency band for different levels of wavelet decomposition for sampling 
frequency of 4 kHz. 

Level Detail 
coefficients 

Frequency 
Band (Hz) 

(HP) 
Approx. 

coefficients 
Frequency 

Band (Hz) (LP) 

1 D1 1000-2000 A1 0-1000 

2 D2 500-1000 A2 0-500 

3 D3 250-500 A3 0-250 

4 D4 125-250 A4 0-125 

5 D5 62.5-125 A5 0-62.5 

The decomposition vector A5 contains the fundamental frequency component (50 Hz) 

of the signal. Therefore, theoretically the current and voltage phasors should be estimated 

from A5 only. However, the WT filter does not involve ideal cutoff frequencies. Therefore, a 

margin on either side of the desired frequency is essential in case of WT. Moreover, to 

reduce the effect of ‘aliasing’ in WT, an identical spectral margin on either side of the desired 

frequency should be maintained. For this reason, a down-sampling by 5 has been performed 

on the measured data before being processed through the WT. The down-sampling 

operation effectively reduces the measurement frequency to 800 Hz. Detailed frequency 

segmentation at various levels of decomposition for this sampling frequency is shown in 

Table 6.4. 

Table 6.4: Frequency band for different levels of wavelet decomposition for sampling 
frequency of 800 Hz. 

Level Detail 
coefficients 

Frequency 
Band (Hz) 

(HP) 
Approx. 

coefficients 
Frequency 

Band (Hz) (LP) 

1 D1 200-400 A1 0-200 

2 D2 100-200 A2 0-100 
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With 800 Hz sampling frequency, the second-level decomposition vector A2 provides a 

resolution corresponding to 0 to 100 Hz. The fundamental frequency of the considered 

system (50 Hz) lies at the middle of the approximation output of this second-level 

decomposition. Therefore, the phasor (magnitude and angle) of each measurement signal 

can be estimated using approximate coefficient vector A2 as discussed below.  

Phasor estimation for voltage and current signals at any specific frequency can be 

made by using unity amplitude sinusoidal reference signal. In this work, a signal with unity 

magnitude at power frequency (50 Hz) has been utilized as the reference signal (Runity) as 

shown in Figure 6.5. The reference signal is also sampled at the same sampling frequency of 

800 Hz as used for the measured signal. For each data window, the sinusoidal reference 

signal and the measured signals are decomposed into two levels of decomposition using 

“db1” mother wavelet.  

 

 
Figure 6.5: Unity reference signal (Runity) for wavelet based phasor estimation 

Let, A2m and A2r be the vectors that present the approximation coefficients of the 

measured signal and the reference signal respectively. If the mother wavelet function forms 

an orthogonal basis, then the angle between A2m and A2r is the angle between the 

fundamental component of the measured signal and reference (Figure 6.6). The angle 

between them can be obtained by inner product as given below:  

 ( )1 2 , 2
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2 2
r m
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A A
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θ −=  (6.12)  
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A2m

A2r  
Figure 6.6: The DWT representation of the measured and reference signal 

In the above equation, ( )2 , 2r mA A denotes the dot product of these vectors and, 

2 2r mA and A are their magnitudes respectively. In order to compute the magnitude, a new 

sine function with unity magnitude is constructed with a phase shift equal to the measured 

angle ‘θ’ as shown below: 

 
2( ) sin(2 * * 50 * )R t tπ θ= +  (6.13)  

The new reference signal R2 is sampled at the previously used sampling frequency of 

800 Hz and is decomposed up to 2nd level of decomposition with the same mother wavelet to 

generate A2r2. Using A2r2 and A2m, the magnitude of the measured signal can be estimated 

as:  

 

2

2
2

m

r

A
x

A
=  (6.14)  

The same procedure can be repeated for all the other measured signals to estimate their 

phasors. 

6.4.3.1 Performance of Wavelet based fault location estimation 
Table 6.5 shows the average and maximum fault location errors at different level of 

compensations for various types of faults. The performance has been evaluated for all the 

fault cases described in Section 4.3.4. The compensator modeling as discussed in the 

previous section has been used in this case also. 

Figure 6.7 shows the absolute average fault location errors (in % of fault distance) with 

respect to the fault distance with wavelet phasor estimation based fault location method. 

From this figure it is observed that the maximum value of the absolute average error is 

roughly equal to 5%. Figure 6.8 shows the maximum absolute fault estimation error 

computed through wavelet based phasor estimation approach for various fault distances. 

From this figure it is observed that the maximum absolute error is almost 12% by this WT 

based method. 
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Table 6.5: Performance evaluation of the wavelet phasor estimation based fault location 
estimation algorithm 

Type of 
Fault 

25% Compensation 50% Compensation 75% Compensation 
Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

 Before Compensator 

A-g 2.0498 5.1007 2.2730 5.3475 4.1700 6.0479 

B-g 1.0800 5.1480 0.5400 6.2880 0.4700 6.8147 

C-g 3.8190 5.5655 4.1700 6.4725 3.4920 7.2174 

AB-g 0.7100 3.2871 2.0430 3.4441 1.7580 3.9859 

AC-g 1.4900 5.4936 4.9200 5.9748 4.8790 6.5790 

BC-g 0.4700 6.6048 1.6600 5.9715 2.1800 6.8173 

ABC 3.9100 6.7379 3.6100 7.7359 4.1850 11.8725 

AB 1.0500 5.0048 0.8260 6.1875 1.2500 6.5479 

AC 1.9400 5.0514 2.8900 5.9957 3.1200 6.1792 

BC 2.8900 6.7958 4.0100 6.6895 3.9540 7.2279 

 After Compensator 

A-g 2.1900 4.8257 3.1478 6.5738 3.9100 7.0191 

B-g 3.8700 5.3591 3.4600 6.1143 2.1500 6.4357 

C-g 4.5600 6.4798 4.5900 7.0180 5.2300 8.1497 

AB-g 2.8700 3.1498 3.8120 3.8957 3.8450 4.2059 

AC-g 3.9400 6.2799 3.9900 6.1796 4.2890 7.0249 

BC-g 2.8900 4.2791 3.1950 5.8459 4.1700 6.2179 

ABC 2.2700 7.1774 3.4700 7.7543 4.4500 8.9143 

AB 3.7200 5.4787 3.4900 6.7255 3.9250 6.8478 

AC 1.5800 5.5549 2.0010 5.3799 2.4900 6.8547 

BC 2.4250 4.1798 2.6210 5.4798 4.1800 7.1254 
 

 
Figure 6.7: Absolute average error for wavelet based fault location technique 
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Figure 6.8: Absolute maximum error for wavelet based fault location technique 

6.4.4 The Least Square Error Solution 
The Least Square Error (LSE) phasor measurement is based on the fitting of a pre-

selected curve to a set of measurements as close as possible. As mentioned in Section 

6.4.1, by considering ‘N’ sample points with sampling frequency of ‘fs’, the samples will be 

given as x(n), n=0,1,2,….N-1. The fitting process consists of finding the value of the 

parameters of the curve that minimize the sum of squares of the differences between the 

measurements and the fitted curve. 

6.4.4.1 Curve fitting 
In this work, the sine function with fundamental frequency of the system (50 Hz) has 

been chosen as the pre-selected curve. The difference between the curve selected and the 

measurements is assumed to be the noise ε as shown below. 

 ( ) sin( ) ( )ox t Y t tω θ ε= + +  (6.15)  

Equation (6.15) can be represented as the combination of a sine and cosine signal as: 

 ( ) cos( )sin( ) sin( )cos( ) ( )
sin( ) cos( ) ( )

o o

R o I o

x t Y t Y t t
Y t Y t t

θ ω θ ω ε
ω ω ε

= + +

= + +
 (6.16)  

Hence, the reference sine curve is decomposed into two orthogonal sine and cosine 

functions of unknown amplitudes YR and YI . These amplitudes also represent the real and 

imaginary part of the desired estimated phasor [140].  

Equation (6.16) is applied to each of the N discrete measurement individually to find 

out the least square solution for measured signal. This results in a set of linear equations, 

which can be arranged in a matrix form as shown below:  
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0 0 0 0

0 0 0 0

0 0 0 0

( 0 ) sin( 0 ) cos( 0 ) ( 0 )

( 1 ) sin( 1 ) cos( 1 ) ( 1 )

. . .

. . .

( [ 1] ) sin( [ 1] ) cos( [ 1] ) ( [ 1] )

R

I

x t t t t t t

x t t t t t t
Y

Y

x t N t N t N t t N t

ω ω ε

ω ω ε

ω ω ε

+ ∆ ∆ ∆ + ∆

+ ∆ ∆ ∆ + ∆

= +

+ − ∆ − ∆ − ∆ + − ∆

     
     
                  
     
          

 (6.17)  

 The left side of the equation represents the vector of N measurements (vector b) as a 

function of the sampling time. The right-hand side of the equation contains a summation of 

two terms. The first term represents a matrix with sine and cosine coefficients multiplied with 

vector of unknown magnitudes of YR and YI (matrix Y). The second term represents the 

vector of errors (vector ε ). Therefore, equation (6.17) can be represented as: 

 [ ] [ ][ ] [ ]b A Y ε= +  (6.18)  

The least squares solution for this equation that minimizes the sum [ ] [ ]Tε ε    is obtained 

using the left pseudo-inverse of [A] as: 

 1
[ ] [ ] [ ] [ ] [ ]T TY A A A b

−
 =    (6.19)  

The solution provides the real and imaginary part of the considered signal at 

fundamental power frequency.  

6.4.4.2 Performance evaluation of LSE based fault locator 
A major advantage gained by the least square method over DFT and WT based 

methods is that, the LSE does not need to evaluate (curve fit) the considered signal with 

respect to sine function only. In this regard, the least square method is more general and 

accurate for phasor estimation. Moreover, LSE method takes care of DC offset and 

harmonics to provide more accurate fault location estimation.  

The performance of the LSE method for estimating the fault locations is shown in Table 

6.6. Table 6.5 and Table 6.6 show that a considerable improvement in average as well as 

maximum fault location errors is achieved in LSE method as compared to wavelet based 

method for all types of faults. 

The performance enhancement is also evident in average and maximum errors for 

different fault distances as shown in Figure 6.9 and Figure 6.10 respectively.  Moreover, the 

LSE method does not impose the necessity of integer number of samples per cycle as 

compared to the other signal processing tools. This advantage gives an edge to LSE for 

phasor estimation based fault location estimation method.   
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Table 6.6: Performance evaluation of the least square estimation based fault location 
estimation algorithm 

Type of 
Fault 

25% Compensation 50% Compensation 75% Compensation 
Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

 Before Compensator 
A-g 1.4285 2.4590 1.5478 3.3874 1.7925 4.1583 

B-g 0.8410 3.2483 1.1525 3.6626 1.6201 4.2487 

C-g 1.7572 4.1162 1.8610 5.4932 2.1500 4.2473 

AB-g 0.5820 1.2512 0.9577 2.0651 1.1183 2.6147 

AC-g 0.7748 4.8215 0.8360 5.4789 1.5850 5.9725 

BC-g 1.0440 2.9446 1.4743 3.2498 1.5147 3.5912 

ABC 1.4749 5.2872 1.5300 5.5540 2.4713 6.0821 

AB 0.6140 4.0178 0.8860 5.2120 0.9473 5.7468 

AC 0.7718 3.5715 0.8019 3.9326 1.5257 4.5236 

BC 1.8652 2.5193 1.3540 2.9957 1.4844 3.5859 

 After Compensator 
A-g 1.4890 3.5489 1.6869 3.1498 1.9270 4.1498 

B-g 1.1028 4.0146 1.3470 4.2512 1.8663 4.3582 

C-g 1.8245 2.6748 1.9920 2.5478 2.1281 2.9835 

AB-g 0.5538 4.0105 0.9680 5.1895 1.6000 5.7814 

AC-g 0.9420 4.4478 1.1352 4.8480 1.3383 5.2725 

BC-g 1.5279 4.1790 1.2052 4.2478 1.8472 4.8975 

ABC 1.7330 5.1489 1.9551 3.2145 2.3352 7.0245 

AB 0.4193 3.8598 0.9440 4.2234 1.0388 4.5400 

AC 0.8677 4.9715 1.0493 5.5529 1.2491 6.4158 

BC 1.4524 4.5553 1.2018 4.7486 1.6229 5.0478 
 

 
Figure 6.9: Absolute average error for LSE based fault location scheme 
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Figure 6.10: Maximum errors for LSE based fault location scheme with respect to fault 
distance 

6.4.5 Comparison of the Phasor Estimation Based Fault Location Schemes 
Fourier, Wavelet and LSE phasor estimation based one-ended fault location algorithms 

for series compensated transmission line have been described in the previous sub-sections. 

All these algorithms have been implemented in MATLAB for evaluating the accuracy of fault 

estimation with a large fault data set of 57600 fault cases dynamically generated with 

PSCAD/EMTDC.  

A comparative performance of these algorithms is shown in Figure 6.11 and Figure 

6.12. From these two figures, the performance of the LSE method is found to be superior to 

that of the other two methods for faults at different locations and for various compensation 

levels as well. 

 

 
Figure 6.11: Absolute average error for various fault loation schemes  
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Figure 6.12: Average absolute error for various fault location schemes  

6.5 APPLICATION OF DSP AND AI FOR FAULT LOCATION ESTIMATION 

As discussed in the previous sections, the compensator exhibits highly non-linear 

behavior during fault. This non-linearity presents difficulty in formulation of the accurate and 

practical mathematical model for estimating the location of the fault as large number of 

variables are involved. Therefore, the models so far reported in the literature for compensator 

modeling are too complex and/or are less accurate to represent compensator impedance.  

This fact can be verified with conventional phasor estimation based methods presented 

above. These methods are although designed with some good attributes for estimating the 

fault distances, they have not performed well overall. The performance of these methods 

lacks in accuracy for some specific fault type or ranges of fault parameters due to inadequate 

models.  

However, it is well-known that the faulted voltage and current waveforms contain the 

required information for fault location which is difficult to extract otherwise. Thus an algorithm 

needs to be developed that can learn from the supplied examples, contains non-linear 

regression capability, can accommodate system parameter variations and is fast as well. 

Such a technique, combining DWT and ChNN, is described in the next subsection. 

6.6 WAVELET AND CHNN BASED FAULT DISTANCE ESTIMATION SCHEME 

Basically, in this method, DWT is used to extract the features from the post fault current 

and voltage waveforms which are subsequently used by the ChNN for estimating the fault 

distance. To deciding the appropriate architecture of the scheme, the change in current and 

voltage patterns for an A-g fault at different fault distances are shown in Figure 6.13 and 

Figure 6.14. All these faults have been simulated with fault resistance of 5 Ω, FIA of 0° and 

line loading angle of 10˚. From these figures, following points can be observed: 
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• A considerable difference exists between the fault current patterns on different sides of 

the compensator and the same can be observed from Figure 6.13 (a) and (d). 

• Fault current and voltage patterns for faults before the compensator carry similar patterns 

as can be seen in Figure 6.13 (a), (b), (c) and Figure 6.14 (a), (b), (c). These matching 

patterns differ in amplitudes according to the fault distances.  

 

(a) : 49% of line length 

 

(d) : 51% of line length 

 

(b) : 40% of line length 
 

(e) : 60% of line length 

 

(c): 20% of line length 

 

(f) : 80% of line length 

Figure 6.13: Changes observed in current waveforms for an A-g fault at various fault 
distances 
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• Moreover, current and voltage patterns for faults after the compensator also carry 

resembling wave shapes with discriminatory amplitude changes according to fault 

distance (Figure 6.13 (d), (e), (f) and Figure 6.14 (d), (e), (f)). 

From this discussion it is clear that, separate identifiers are required for faults on either 

side of the compensator. 

 

(a) : 49% of line length 

 

(d) : 51% of line length 

 

(b) : 40% of line length 

 

(e) : 60% of line length 

 

(c): 20% of line length 

 

(f) : 80% of line length 
Figure 6.14: Changes observed in voltage waveforms for an A-g fault at various fault 

distances 
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Since each of the ten possible fault types have their own distinct fault pattern, a 

separate ChNN was found to be necessary to be employed for each type of fault under 

consideration. Therefore, a total of 20 ChNNs have been used for fault distance estimation in 

this work. ChNNs are divided in two distinct groups according to the position of fault relative 

to the compensator as given in Table 6.7. With the knowledge of the fault type and zone, the 

required DWT feature information is passed to the appropriate network to achieve correct 

estimation of the location of the fault.  

Table 6.7: ChNN fault zone identification groups 

Group 1 
Fault Before Compensator 

Group 2 
Fault After Compensator 

1-ChNN-A-g 2-ChNN-A-g 

1-ChNN-B-g 2-ChNN-B-g 

1-ChNN-C-g 2-ChNN-C-g 

1-ChNN-AB-g 2-ChNN-AB-g 

1-ChNN-AC-g 2-ChNN-AC-g 

1-ChNN-BC-g 2-ChNN-BC-g 

1-ChNN-ABC-g 2-ChNN-ABC-g 

1-ChNN-AB 2-ChNN-AB 

1-ChNN-AC 2-ChNN-AC 

1-ChNN-BC 2-ChNN-BC 

 

The identical feature vector calculated in Section 4.3 for fault classification is used in 

this work for fault location estimation. However, an additional DWT voltage vector is also 

included in estimating the location of the fault. The identical wavelet function ‘db1’ has been 

used for feature extraction at fourth level of decomposition as described in Section 4.3. The 

generated DWT vectors for voltage and currents for all three phases Vdwt (as in equation 

(4.3)) have been used in this work. The detailed diagram of the proposed scheme is shown 

in Figure 6.15. 

6.6.1 Implementation 
The developed algorithm uses transient voltage and current data at the relaying end 

(Bus-A) of the system considered (Figure 6.1). Any fault in the network produces transients 

in the currents and voltages. The distortions change with the type of fault, inclusion of the 

series compensator in the fault circuit, distance of the fault to the system, etc. Therefore, 
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knowledge of the phases involved in the event of fault and the position of the fault with 

respect to the compensator are pre-requisites for the developed algorithm. 
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Figure 6.15: Modular structure of DWT and ChNN based ‘fault location estimation’ scheme 

6.6.2 Input Selection - Feature Extraction 
Being a single-layer structure, the ChNN is capable to generate output in a short span 

of time. However, the ChNN implementation necessitates Chebyshev functional expansion. 

Complexity of the computation and computational time largely depends on the length of input 

vector and the order of functional expansion. This demands that the input vector should 

contain relevant and discriminatory information only. This information should help the ChNN 

to understand the regression requirement as a whole. Therefore, feature extraction forms an 

integral part of the fault location estimation strategy. 

Being a better signal feature extraction tool, the time-frequency analysis of the fault 

current and voltage with help of DWT has been employed in this work. Since the fault 

location task is based on offline post-fault analysis, one cycle post fault data with a sampling 

frequency of 4 kHz has been used in this work.  The samples of three phase currents and 

voltages have been decomposed with DWT for fault distance estimation. 

Figure 6.16 shows all four DWT decomposition vectors of A-phase current and voltage 

for an A-g fault at 40% of the line length with fault resistance of 5Ω, FIA of 45° and line 

loading angle of 10°. Figure 6.17 shows the DWT vectors of A-phase for AB-g fault for 

identical fault location and conditions of fault of Figure 6.16. A detailed investigation of these 
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figures shows that, even when the A-phase quantities (current and voltage) only are 

decomposed in either case, the resulting vectors are quite different for two types of faults. 

 

(a): A-Phase Current 

 

(b): A-Phase Voltage 
Figure 6.16: DWT decomposition vectors for A-g fault up to 4th level of resolutions  

 

(a): A-Phase Current 

 

(b): A-Phase Voltage 

Figure 6.17: DWT decomposition vectors for AB-g fault up to 4th level of resolutions 

With the shown input vector dimensions in Figure 6.16 and Figure 6.17, the dimension 

of the input vector comprising of the decomposed vectors of all the three phase currents and 

voltage is rather large. With Chebyshev expansion, the size of single layer input increases as 

well. To make the ChNN fast and effective with acceptable accuracy, only a smaller portion 

of interest with high frequency band are found to be appropriate as features of the fault to be 

applied to ChNN. Detailed investigation reveals that, third and fourth order wavelet 

resolutions (D3 and D4) can be used to represent the whole of the feature space. 

Furthermore, assuming that the type of fault is readily available, only those phase(s) / ground 

involved in the fault need to be evaluated with DWT and ChNN. Hence, every ChNN will 

receive inputs according to the type of fault identified. The details about inputs to the ChNN 

are presented in Table 6.8. 
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Table 6.8: Input selection for ChNN with DWT 

FAULT 
TYPE 

BEFORE 
COMPENSATOR 

AFTER 
COMPENSATOR 

Current Voltage 

IA IB IC VA VB VC 

A-g 1-ChNN-A-g 2-ChNN-A-g       

B-g 1-ChNN-B-g 2-ChNN-B-g       

C-g 1-ChNN-C-g 2-ChNN-C-g       

AB-g 1-ChNN-AB-g 2-ChNN-AB-g       

AC-g 1-ChNN-AC-g 2-ChNN-AC-g       

BC-g 1-ChNN-BC-g 2-ChNN-BC-g       

ABC-g 1-ChNN-ABC-g 2-ChNN-ABC-g       

AB 1-ChNN-AB 2-ChNN-AB       

AC 1-ChNN-AC 2-ChNN-AC       

BC 1-ChNN-BC 2-ChNN-BC       

 

Therefore, the complete fault location estimation system proposed in this work can be 

expressed in the form of flow chart as shown in Figure 6.18. 

The order of Chebyshev expansion for solving the pattern recognition problem largely 

affects the decision boundary developed by ChNN. The process to determine the optimum 

number of Chebyshev expansion is largely experimental, involving training and testing 

different order network configurations. With consideration of generalization capability and 

computational complexity, third order expansion has been found to be sufficiently effective 

for fault location application. 

6.6.2.1 Training and testing of ChNN 
The same set of 57600 fault cases generated in Section 4.3.4 has been used for 

training and testing of the ChNN based fault location scheme. As described earlier, dedicated 

pair of ChNNs is provided for each fault type. One is used for faults before the compensator 

and another for fault after the compensator. Therefore, a set of 2880 fault pattern are 

available for every fault type (on either side of the compensator) for training and testing of the 

ChNNs. A set of 270 (less than 10%) fault pattern for each type of fault has been used for 

training. Therefore, a total of 270*20 = 5400 fault cases have been used for training the 

group of 20 ChNNs. Remaining 52200 (57600 – 5400) patterns have been used for testing of 

the ChNN. Details of the training data for each ChNN is given in Table 6.9. It is worth noting 
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here that, the testing patterns do carry many parameters that were not used by ChNNs 

during learning.   
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Figure 6.18: Flow chart of fault distance estimation  

 

Table 6.9: Training data used for each ChNN 

Parameters Number 
of Fault 
Cases Xc 

ZSG1 
In % of 

GBI 

ZSG2 
In % of 

GBI 
δ Rf 

(Ω) FIA L 
(km) 

Fault 
Type 

50% 100 100 
10˚ & 

30˚ 

0, 5   & 

50 

0, 45 & 

115 

60, 120, 

147 

 

Associated 
with ChNN 

54 
50% 100 75 54 
50% 100 125 54 
50% 125 100 54 
50% 75 100 54 

Total Fault Cases  270 
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Neural Network Toolbox in Matlab Environment [141] has been used to implement the 

ChNNs. For fault location estimation, the ChNN would generate a large range of outputs to 

represent the predicted fault location. This variation is possible in regression mode of ChNN. 

In the regression mode of ChNNs, outputs are normalized to facilitate quick and easy 

training.  Therefore, in training mode, outputs of the fault location system have been 

normalized. However, the input vector set has been kept to be the same to increase the 

sensitivity of the ChNN. During testing, ChNN generated outputs are in normalized form 

which is subsequently converted into total fault distances.  

The ChNNs have been trained by using back-propagation LSLM learning algorithm. 

The training is repeated until the squared error is reduced up to the predefined threshold of 

1×10-25.  

6.6.3 Performance Evaluation of DWT and Chnn Based Scheme 
In order to examine the performance of the DWT and ChNN based fault location 

estimation algorithm, the trained set of ChNNs are tested with remaining 52200 distinct fault 

patterns. Each of the ChNN has been tested with 2610 distinct fault patterns, which are 

different from those patterns used during training. 

Traditional ANN based approaches suffer large errors in fault location estimation due to 

the presence of DC offsets which occur with variation in fault inception angles [49, 119, 142]. 

However, due to selection of only higher frequency components as inputs, the proposed 

scheme proved to be immune to any fault or system parameter variation as shown in Figure 

6.19. This figure shows the fault location errors as a function of fault distance for A-g fault 

corresponding to all 2610 test fault cases. It is worth to note here that, the maximum 

difference between the actual fault location and predicted fault location is around 4 km. 

However, it is less than 1 km for majority of the fault cases. Similar fault location error has 

been observed for all other considered fault types also. 

 
Figure 6.19: Fault location errors in km for A-g type of faults 
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  The absolute maximum and absolute average fault location errors for all considered 

fault types at various fault locations are shown in Figure 6.20 and Figure 6.21.  The 

maximum error observed during testing is 2.5%. This error has been observed for a fault 

located just after the compensator. This is due to the fact that the variation in frequency 

spectrum is maximum for a fault just after the compensator. For most of the fault distances, 

maximum error is less than 1%. Moreover, from Fig. 6.21, an average error of less than 0.2% 

has been observed (corresponding to all 52200 fault patterns). Thus, the suggested 

technique has been proven to be insensitive to the fault inception time, compensation level, 

fault resistances and pre-fault power flow level. Figure 6.22 and Figure 6.23 show the 

absolute average errors for each type of fault.  

 
Figure 6.20: Absolute maximum fault location errors with DWT-ChNN approach 

  
Figure 6.21: Absolute average fault location errors with DWT-ChNN approach 

Error! Not a valid bookmark self-reference. shows the detailed break-up of average 

and maximum errors for 2610 fault cases for each considered fault type at various levels of 

compensations. 
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Table 6.10: Performance Evaluation of the DWT and ChNN based fault location algorithm 

Type of 
Fault 

25% Compensation 50% Compensation 75% Compensation 
Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

Absolute 
Average 
Error (%) 

Absolute 
Maximum 
Error (%) 

 Before Compensator 

A-g 0.0231 0.4393 0.0308 1.3756 0.0449 0.7956 

B-g 0.0089 2.8067 0.0060 0.1865 0.0083 0.1355 

C-g 0.0445 0.7833 0.0438 0.7068 0.0472 0.8208 

AB-g 0.0065 0.1949 0.0129 0.8250 0.0167 1.0176 

AC-g 0.0361 0.3967 0.0552 1.2493 0.0625 1.7058 

BC-g 0.0061 1.0633 0.0164 1.2920 0.0223 1.1667 

ABC-g 0.0145 0.8956 0.0212 0.7535 0.0258 0.9793 

AB 0.0066 0.2088 0.0113 0.3723 0.0136 0.3746 

AC 0.0806 0.8105 0.1117 1.4491 0.1130 1.7462 

BC 0.0404 2.2826 0.0335 0.7360 0.0403 1.8633 

 After Compensator 

A-g 0.1559 2.1239 0.2020 2.3300 0.2214 3.4549 

B-g 0.0140 0.7174 0.0135 0.1768 0.0251 0.7054 

C-g 0.1381 2.1773 0.1544 2.4889 0.1845 3.0944 

AB-g 0.0133 0.6767 0.0134 0.6725 0.0252 1.1415 

AC-g 0.0123 0.4806 0.0165 1.4164 0.0296 1.9000 

BC-g 0.0397 0.5481 0.0437 0.7237 0.0559 1.5749 

ABC-g 0.0216 2.1628 0.0406 2.1796 0.0446 3.8206 

AB 0.0449 0.5650 0.0425 0.4563 0.0468 0.4100 

AC 0.0236 1.4283 0.0389 1.7003 0.0536 1.3373 

BC 0.4643 2.8733 0.6704 3.5459 0.5204 3.1089 
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Figure 6.22: Absolute average fault location error corresponding to each fault type with DWT-

ChNN approach 

 

 
Figure 6.23: Average error for each type of fault 

6.7 PERFORMANCE COMPARISON WITH PHASOR ESTIMATION BASED FAULT 
LOCATION METHOD  

Four different fault location approaches for series compensated transmission lines 

have been described and implemented in this chapter. Initial three approaches used phasor 

estimation method for fault location calculations, while, the fourth one applies DWT and 

ChNN based approach. 
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The results obtained from the DWT and ChNN based algorithm have been compared 

with those obtained by the other three fault location schemes. The comparative results are 

summarized in Figure 6.24. From this figure it is observed that the DWT and ChNN based 

algorithm is best in comparison to the phasor estimation based methods. Further, the 

comparative performances of the DWT and ChNN based method and the LSE based method 

for all types of faults are shown in Fig. 6.25. From this figure it is again observed that 

irrespective of the type of fault, the DWT and ChNN based scheme always outperforms the 

LSE based scheme. Further, the DWT and ChNN based approach is more robust to provide 

almost equal level of accuracies for all considered fault types. 

The ChNN method with DWT applies single layer neural structure only, which is simple 

in design and training. Moreover, a well-trained ChNN eliminates the requirement of online 

computation necessary for phasor estimation approaches.  

 

 
Figure 6.24: Average fault location errors at various fault distances for different fault location 

estimation methods 

 

 
Figure 6.25: Comparison of LSE and DWT+ChNN based schemes for absolute average fault 

location errors  
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6.8 EFFECT OF INACCURACIES OF FAULT TYPE AND ZONE IDENTIFICATION ON 
FAULT LOCATION 

The accuracy of fault location estimation is largely dependent on correctly identified 

fault type and zone in this scheme. An error in fault zone identification results in wrong 

selection of the ChNN group, which ultimately results in a huge error. Further, because of 

erroneous fault classification, an improper ChNN in a particular group would be selected.. It 

is observed from Table 4.8 that, the maximum fault classification accuracy obtained with 

ChNN based pattern recognition scheme is 99.44%. A total of 300 fault cases are incorrectly 

classified in this method. On the other hand, for 683 fault cases, incorrect fault zones have 

been determined (Table 5.11). Further, for few fault cases, both the fault zone and the fault 

type have been identified incorrectly. Table 6.11 shows average and maximum fault location 

estimation errors obtained for three cases: i) erroneous fault type, ii) erroneous fault zone 

and iii) erroneous fault type and zone. The level of inaccuracy is very high in all these cases. 

Therefore, an accurate fault type and fault zone identification scheme is a pre-requisite for 

correct estimation of the location of the fault. 

Table 6.11: Errors in fault location estimation with erroneous fault type and zone identification  

 Number of fault 
cases 

Average Fault 
location error 

Maximum fault 
location error 

Error in fault classification 
only 187 8.5273% 17.1348% 

Error in fault zone 
identification only 570 17.5795% 38.1682% 

Error in both fault type and 
zone identification 113 22.1057% 41.1859% 

6.9 CONCLUSION  

Three phasor based fault location estimation methods on series-compensated 

transmission line have been studied and evaluated. All considered methods utilize voltage 

and current phasors from relaying end only. However, results reveal many drawbacks of 

phasor estimation for fault location.  

A large amount of harmonics and exponentially decaying DC component in fault 

generated transient affects phasor estimation adversely. With quarter cycle delay, DWT 

produces better results for fault location estimation than DFT. However, LSE based fault 

location method performs best among all the phasor based approaches. However, overall 

accuracy reveals requirement of a more accurate fault location estimator.  

A new artificial intelligence based fault location estimation method has been proposed 

in this chapter.  The method integrates DWT and ChNN for fault location estimation. Two 

sets of ChNN subroutines are developed to predict the possible locations of the fault on 
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either sides of the series compensator. Evaluation studies for a large fault data set have 

demonstrated that the proposed fault location algorithm is highly accurate.  

However, for all fault location algorithms for series compensated transmission line, 

prior knowledge of fault type and fault zone are essential. Any error related to them results in 

higher error in fault location estimation.  
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CHAPTER 7: VERSATILE RELAYING ALGORITHM FOR DETECTION AND 
CLASSIFICATION OF FAULTS ON UNCOMPENSATED AND SERIES 

COMPENSATED TRANSMISSION LINES 

Inclusion of series compensation in transmission line necessitates significant change in 

protection methodology. Therefore, the practical transmission line protection domain is presently 

divided into two distinct areas; protection of uncompensated transmission line and protection of series 

compensated transmission lines. At least, a new relay setting is always required to accommodate 

addition of the series compensator in a transmission line. Conversely, protection system designed for 

series compensated transmission line faces difficulty during the maintenance or bypass operation of 

the compensator. This necessitates the requirement of a transmission line protection algorithm that 

can provide effective protection for a transmission line irrespective of the presence or absence of 

series compensation, without any change in the methodology. A new, fast and versatile real time 

transmission line protection algorithm is presented in this chapter. The proposed method is capable of 

providing fault detection and classification for uncompensated as well as fixed series compensated 

transmission line with different levels of series compensations; without any functional customization 

and with the same level of accuracy. The algorithm has been developed with three-phase current 

measurements only that eliminates the requirement of voltage measurement and reduces the 

computational burden. 

7.1 INTRODUCTION  

Transmission line protection with series compensation is considered to be one of the 

difficult tasks for protection engineers. Protection and control of the transmission line need to 

be adapted to the alteration introduced by these devices. 

As already discussed in Chapter 2, inclusion of series compensation increases power 

transfer capacity of the transmission line and helps to improve the transient stability of the 

system. In addition, it improves the voltage control, power flow control and reduces the line 

losses. The integration of the series capacitor into the transmission line makes the line 

protection more complex due to the changes in line parameters as described in Chapter 2.  

Over the years, considerable efforts have been devoted for the development of 

transmission line protection. With development of digital processing techniques and Artificial 

Intelligence (AI), the protection system has become faster and accurate. The modern 

protection schemes utilize fault information to aid the calculations of impedance by the 

impedance relays. In an initial approach for application of AI technique for fault classification, 

Dalstein et al. [24] and Aggarwal et al. [143] established the use of multilayer ANN. The fuzzy 

logic based scheme has been explored in [96]. Potential of WT for application in protection 

system has been established in [42, 144]. Applications of WT with AI techniques for fault 
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analysis have been demonstrated in the literature, such as with WT and ANN [145], WT and 

SVM [124], WT and fuzzy in [146].  

In an early approach for protection of series compensated line, developed a protection 

algorithm based on travelling waves has been developed in [35]. Use of WT for fault analysis 

has been proposed in [114] and [97]. An application of ANN for adaptive protection scheme 

(for determining the fault type and estimating the distance) of series compensated 

transmission line has been made in [50]. Application of WT along with various AI techniques 

for protection of series compensated transmission line has also been proposed in the 

literature. WT with SVM has been applied for fault classification in series compensated 

transmission line in [22]. In yet another implementation of WT, fuzzy logic has been applied 

for fault type identification in [23].   

7.2 MOTIVATION FOR DEVELOPMENT 

The problem of fault detection, classification and fault distance calculation on a 

transmission line has been investigated for a very long time. It has been one of the major 

concerns of the power industry, and a systematic development pattern can be noticed in the 

literature. As discussed in the previous section, a significant improvement in terms of 

accuracy and speed in transmission line protection has been obtained with development of 

digital processing techniques and AI.  

However, it is noticeable from the literature review that, the development efforts for 

protection of a transmission line so far, are normally split into two domains,  

i) Protection of a normal two terminal transmission line. 

ii) Protection of series compensated transmission line.  

In this scenario, it is evident that a new setting is required for a relay on 

uncompensated transmission line with introduction of series compensation. On the other 

hand, during maintenance or bypass operation of the compensator the settings of the relay 

need to be changed. This necessitates the development of a protection scheme which is 

capable of providing protection to both types of transmission lines without changing the relay 

settings. The proposed algorithm of this chapter works efficiently for normal two terminal 

uncompensated overhead EHV line and needs no alteration in methodology, when this line is 

subjected to different levels of fixed series compensations.  

Being a non-stationary phenomenon, the information about particular spectral 

components in the currents and voltages at the time of fault is very important. An ability to 

analyze the signal in time and frequency domain simultaneously makes DWT a better 

processing tool (as discussed in Chapter 3) and is used in this method. The spectral energy 
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(at different frequency band) of the windowed current signals obtained with the help of DWT 

is utilized for fault detection and classification. 

Being a shift variant transform, most implementations of the DWT works on sampling 

and analysis of a full cycle data [42, 147]. The use of a full cycle data for fault detection 

makes the protection system slower. This indicates the necessity of a fault detection system 

which requires reduced amount of data. 

During the last decade, digital relaying scheme has been greatly benefited from the 

development of AI techniques. The application of classifier is continuously increasing for 

solving classification problems. The fuzzy classifiers have been proven to be efficient for 

protection purpose [23, 96, 111]. However, introduction of the non-linear components with 

inclusion of the series compensation makes the fuzzy system difficult to design. In the 

absence of an appropriate mechanism for deciding the classification parameters, the SVM is 

also difficult to apply. In this scenario, the generalization and fault tolerance capability makes 

the ANN a potential classifier for protection requirements. However, in the absence of an 

appropriate methodology for designing the ANN, the performance of ANN cannot be 

guaranteed. This indicates the requirement of a classifier that is independent of the topology 

of the ANN and also insensitive to the parameter variation. 

The above discussion indicates the requirement of a transmission line protection 

system with the following characteristics: 

1. The protection system should be able to provide effective protection when series 

compensation is introduced in the line.  

2. The relaying mechanism for series compensated transmission line should not get 

affected by fault or bypass operation of the capacitor bank. 

3. The protective relay should be fast enough to clear the fault at the earliest. Therefore, it 

should require minimum amount of post fault data. 

7.3 PROPOSED FAULT DETECTION AND CLASSIFICATION SCHEME    

The proposed algorithm has been developed with an objective to make it work for 

both uncompensated and series compensated transmission lines without any change in the 

methodology. The literature suggests that lower frequency components of fault current 

transients are least affected, when series compensation is introduced into the transmission 

line [114]. Therefore, in this algorithm, lower frequency components of the three-phase fault 

currents at the relaying end are captured and processed to generate a wavelet energy factor. 

This energy factor is utilized for fault detection and fault type identification.  

Most implementations of the DWT work on sampling and analysis of a full cycle data as 

discrete wavelet transform is shift variant [42, 147]. To accelerate the fault detection process, 
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the proposed algorithm has been developed with sliding window method for data processing 

and a data hold circuit that stores results for most recent processed data. A sliding window of 

one cycle (20 ms for 50 Hz supply frequency) and slide size of 1 ms per sweep has been 

chosen for the implementation. Therefore, data corresponding to 1 ms of new measurement 

is included in the current iteration while data corresponding to oldest 1 ms of the just finished 

sweep is removed. Figure 7.1 (a) shows this sliding window concept. Since the comparison 

of energy is made with respect to the previous cycle, the previous cycle is shown in Figure 

7.1 (b). 

Figure 7.1 (a) 

Figure 7.1 (b) 
 

Figure 7.1: (a) Fault instance (FI) waveforms of current for fault inception 

Figure 7.1: (b) Pre-fault current waveforms corresponding to identical phase angles 

The schematic block diagram of the proposed scheme for fault detection is shown in 

Figure 7.2. The three phase current signals (corresponding to a given window) measured at 

the relaying end are passed through a low-pass filter to eliminate the higher-frequency 

components from the waveforms. A suitable DWT technique decomposes these filtered 

current signals to analyze it in a time-frequency domain. For this purpose, the ‘db4’ mother 
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wavelet has been used in this work. The spectral wavelet energy at each level of the 

decomposition is then extracted to derive the sum of spectral energy. The overall energy 

derived from the decomposition is used as a measure for fault detection. Details are provided 

in the next section.  
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Figure 7.2: Versatile fault detection scheme 

When the signal energies are computed for two consecutive cycles with current 

samples corresponding to identical phase angles (in both the cycles), in normal operating 

condition, energy extracted in the current cycle matches the energy calculated in the 

previous cycle. Any major deviation in their energies indicates the presence of a non-healthy 

condition. However, this may be due to transitory situations, as fresh data corresponding to 

only 1 ms period are included. To avoid erroneous tripping under such momentary transients, 

trip decision is taken only if such abnormality is detected in three consecutive comparative 

assessments of the signal energy. Figure 7.3 (a) shows a fault case with three consecutive 

windows showing change in normal values and Figure 7.3 (b) shows the signal in the 

previous cycle corresponding to the same phase angles as of current cycle, which will be 

used as base value for comparison purpose.  

Moreover, the energy sum of these three consecutive mismatches for each phase 

forms the base scalar value to be used for fault type classification. A major deviation in the 

spectral energy value for any phase indicates a probability of the fault in the corresponding 

phase. As the sum of all three phase currents represents the zero sequenc current, higher 

value of summation of three phase wavelet energies suggests the involvement of the ground 

in the fault. The Chebyshev neural network has been trained in this case for automatic 

identification of the phases/ground involved in the fault. 
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Figure 7.3 (a) : Three-phase current waveforms at the instant of the fault 

 

Figure 7.3: (b) Pre-fault three-phase current waveforms corresponding to identical phase 
angles 

7.3.1 Fault Detection 
The schematic flow chart of fault detection logic of the developed algorithm that works 

for both uncompensated and series compensated line with same accuracy without any 

functional modification is given in Figure 7.4. The fault detection logic has been developed 

using a sampling frequency of 5 kHz. The fault detection logic developed in this work 

operates with sliding window of one cycle (100 samples at 5 kHz sampling frequency); with 1 

ms (5 samples) sliding size for each sweep as described in the previous section. Therefore, 

each new window carries 95 latest samples of the previous window along with 5 samples of 

most recent measurements. This windowed full cycle signal is then subjected to a low pass 

butterwort digital filter that eliminates any higher-frequency components above 250 Hz (5th 

harmonic). As mentioned earlier, higher-frequency components of fault signal are more 

affected by inclusion of series compensation and therefore, only lower frequency 

components (up to 5th harmonics) are utilized in this method. DWT on reconstructed three 

phase signals up to fourth level of resolution is performed with ‘db4’ as mother wavelet to 

extract the spectral components for further analysis. 
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Figure 7.4: Flow chart of fault detection logic 
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In a case when wavelets form an orthogonal basis, according to Parseval’s theorem, 

the energy of the each expansion components are related to their wavelet coefficients. The 

energy contained within the transform vector at all stages of the multi-resolution 

decomposition remains constant and can be given by equation (3.8). For ready reference it is 

reproduced here as equation (7.1). 

 1
2

0
( )

N
m

i
i

E W
−

=

= ∑  (7.1) 

An average energy content of the coefficients given by equation (7.1) at each resolution is 

computed. A feature vector ,( )dwt
i nk  is proposed with four wavelet (detailed) sub bands as the 

approximate sub-bands do not give distinguishable change. The ith element of the feature 

vector for nth window is given by:  

 
2

, ,
1

1  
ic

dwt
i n i j

jic
wk

=
= ∑           Where, i=1,2,3,4 (7.2) 

Here, ic represents the number of samples in an individual sub band and 2
,i jw  is the jth 

coefficient of the ith sub band. As a result, a DWT feature vector for each phase ‘p’ is formed 

and given by, 

 
4,1, 2, 3,{ k , , , }dwt dwt dwt dwt

nn n nk k k=dwt
p,nK  (7.3) 

As discussed previously, the generated feature vector is compared with a feature 

vector generated from the samples (corresponding to the same phase angle) of the last full 

cycle window. This feature vector ( ), 1
dwt
p nK − is stored in the memory. A ratio of these two energy 

vectors forms “Energy Feature Ratio (EFR)” for each phase:  
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∑
 (7.4) 

The EFR is a numeric value and represents ratio of wavelet energy content for each 

phase. In normal operating condition, this ratio should be unity. A sum of EFRs for all three 

phases and ground gives the “Fault Detection Ratio” (FDR) for present window (‘n’) as: 

 
=

= ∑ ,
, , ,

p g
p A B C N

gFDR EFR  (7.5) 

In the steady state, the value of FDRn should be 4. A major deviation in FDR from this 

value indicates a probability of fault in the system. After several studies using the proposed 

algorithm, it was concluded that a fault condition in the series compensated transmission line 

can be detected in a reliable way when the value of FDR deviates from 4. To eliminate the 
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possibility of erroneous fault detection in case of switching or any other transient, the 

succeeding formations of FDRs ( )1 2,n nFDR FDR+ +  are continued for next two measurements 

(1/20th of the cycle each) after the first detection. Deviations of FDR for three consecutive 

measurements confirm the presence of a fault condition in the system, and algorithm issues 

signal for fault detection (Figure 7.4). The fault detection has been performed with 

summation of these three consecutive values of FDRs. 

 
,3 1 2n n n nFDR FDR FDR FDR+ ++ +=  (7.6) 

Here, ,3nFDR represents summation of FDR for three consecutive windows from the nth 

window (when first variation in FDR is detected). Third measurement after fault inception 

(FDRn+2,3 =18.0624) 

Figure 7.5 shows the waveforms of an A-g fault with 0 Ω fault resistance, fault inception 

angle = 45˚, line loading angle (δ) = 10˚ occurring at 180 km distance of the 300 km mid-point 

compensated transmission line given in Figure 4.1. The compensation level has been set at 

50% of the total line inductive reactance. Figure 7.5(a) shows a healthy condition in the 

power system. The waveforms corresponding to the current window and those 

corresponding to the previous window almost match each other thereby giving a value of 

FDR equal to 12 in steady state. Figure 7.5(b) includes the last measurement that carries a 

fault condition with it. A clear deviation in the current signal can be identified due to an A-g 

fault. In this and subsequent figures, the acronym ‘FI’ denotes the fault instant. This deviation 

takes the FDRs to a higher value of FDR1,3 = 12.5472 for three consecutive windows (window 

1,2,3), starting from window 1, when first deviation in FDR is detected. As mentioned earlier, 

the process continues for next two measurements that give FDR values of FDR2,3 = 15.6173 

and FDR3,3 = 18.0624 (FDR2,3 and FDR3,3  represents summations of FDRs for windows 2,3,4 

and 3,4,5 respectively). Three successive FDR variations confirm the presence of a fault in 

the system. In this case, the fault detection has been made with three successive 

measurements that take 1 ms each. Therefore, the fault is detected after minimum time of 3 

ms only.  
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Figure 7.5 (a) Healthy condition, measurements match with stored waveform in memory 
(FDR=12) 

 
Figure 7.5 (b) First measurement after fault inception (FDRn,3 = 12.5472) 

 
Figure 7.5 (c) Second measurement after fault inception (FDRn+1,3 = 15.6173) 

 
Figure 7.5 (d) Third measurement after fault inception (FDRn+2,3 =18.0624) 

Figure 7.5: Fault Detection process for a A-g Fault 

 The FDR for three consecutive detections for different type of faults at different fault 

locations, with different fault resistances, fault inception angle and line loading angle  are 

shown in Table 7.1. 
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Table 7.1: Variation of FDR and detection time for compensation levels  

Fault 
Type cX  

Fault 
Resistance 

(Ω) 
FIA (δ) 

Value of FDR Fault 
Detection 
Time (ms) FDR1,3 FDR2,3 FDR3,3 

 
Fault at 60 km from relaying end and 90 km before compensator 

 
A-g No 25 45 10 12.4069 13.4938 17.5480 4 
A-g 25% 25 45 10 12.3277 13.4418 16.8643 4 
A-g 50% 50 45 10 13.3923 16.2873 18.7667 5 
B-g 75% 50 45 20 12.8171 14.4775 15.5191 3 
C-g 50% 50 80 30 12.5248 13.5974 15.2629 7 

AB-g No 150 135 20 13.2625 16.1081 15.9130 6 
AC-g 75% 100 10 20 12.9174 13.9432 15.3826 4 
BC 50% 150 10 10 12.3365 14.7105 19.1366 7 

ABC-g 50% 25 45 10 12.7243 13.7919 20.7401 4 
AB 50% 25 80 20 12.3019 14.3512 18.2197 6 

 
Fault at 120 km from relaying end and 30 km before compensator 

 
A-g No 25 10 10 12.6289 14.0213 16.5299 3 
C-g No 50 10 20 12.5577 12.8242 12.4674 4 

BC-g 25% 100 45 30 12.8332 13.7009 14.5703 7 
BC-g 25% 150 45 10 12.454 12.3338 14.1951 5 
AC-g 50% 0 45 20 13.1975 15.6019 19.4325 5 
AC 50% 25 80 30 13.2904 15.5719 18.1961 7 
AB 75% 25 80 10 14.5554 19.0199 19.8769 7 

AB-g 75% 50 80 20 13.0012 14.4520 14.2988 7 
BC 25% 50 135 30 13.1572 15.3655 18.9933 8 
BC No 100 135 10 12.4368 12.6634 12.3029 6 

 
Fault at 180 km from relaying end and 30 km after compensator 

 
A-g No 25 10 10 12.4464 13.5838 15.8508 3 
C-g No 50 10 20 12.4408 12.6542 12.4012 4 

BC-g 25% 100 45 30 12.6057 13.1660 13.9127 7 
BC-g 25% 150 45 10 13.4574 15.0117 15.5033 7 
AC-g 50% 0 45 20 12.6490 14.1470 15.7812 7 
AC 50% 25 80 30 12.9764 14.6314 15.9101 7 
AB 75% 25 80 10 13.4006 15.9946 16.5818 7 

AB-g 75% 50 80 20 12.4975 13.0433 12.6490 7 
BC 25% 50 135 30 12.9497 14.5655 16.8538 8 
BC No 100 135 10 12.3501 12.6318 12.1697 6 
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Fault at 240 km from relaying end and 90 km after compensator 

 
A-g 25% 0 10 10 13.1944 15.1014 18.2646 4 
B-g 50% 25 10 20 12.4358 13.1739 13.5517 3 
C-g 75% 50 45 30 12.5080 12.6836 12.6072 8 

AB-g No 100 45 10 12.9799 15.4409 17.9015 5 
AC-g 25% 150 80 20 12.7396 13.6050 13.4699 7 
BC-g 50% 0 80 30 12.7934 14.1663 16.2288 8 

ABC-g 75% 25 135 10 12.6877 15.4320 18.9825 6 
AB No 50 135 20 12.7994 15.3911 17.9155 6 
AC 25% 100 45 30 13.3256 14.4900 14.6479 6 
BC 50% 150 45 10 12.5511 12.8075 12.8453 5 

As mentioned earlier, three consecutive detections are found necessary and sufficient 

for fault detection to avoid mal-operation during transient conditions. For some faults, 

detection of three consecutive mismatches over threshold value takes more window sweeps 

(Table 7.1) and therefore more detection time is necessary. The time of operation depends 

on fault current variation from its base value. This deviation largely depends on type, 

location, severity, fault resistance and inception angle of the fault. 

7.3.2 Fault Classification 
As discussed earlier, the developed algorithm does not require any further 

measurement or data other than those used during the fault detection process. Figure 7.6 

shows the schematic flow-chart of the fault classification scheme. During fault detection 

process, aggregation of three consecutive EFRs for each phase is performed to generate a 

“Fault Classification Ratio” (FCR) to identify the involvement of phases in the fault as shown 

in equation (7.6). 

 
, , 1 , 2p n p n p npFCR EFR EFR EFR+ ++ +=  (7.7) 

The FCR represents the total wavelet energy in the specific phase. A deviation in 

energy from its normal value of 12 (4*unity*(3 consecutive detection) = 12) indicates the 

presence of fault in the specific phase. Therefore, FCR is calculated as variation from its 

normal value of 12 : 

 
, , 1 , 2 ) 12( p n p n p npFCR EFR EFR EFR+ ++ + −=  (7.8) 

It is worth to note here that the FCR is a scalar value. To identify the involvement of 

ground in the fault, the FCR for ground is calculated in the same way as for other phases, 

except that the input to the DWT is zero sequence current given in equation (7.9). 
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Figure 7.6: Flow chart for fault classification  

The zero sequence current is subjected to DWT energy analysis and the FCR for 

ground is calculated as in equation (7.7). Any higher positive value of FCRN indicates the 

involvement of ground in the fault circuit. Figure 7.6 shows the schematic flow chart for fault 

classification in the developed algorithm. 

Figure 7.7 (a) shows the waveforms for an A-g fault occurring at 180 km from the 

relaying end, with a fault resistance of 50 Ω and fault inception angle of 45˚ at line loading 

angle of 10°. The fault provides FDR values of 12.4412, 13.4200 and 15.0518 for three 

consecutive windows. Fault detection is achieved here at 3 ms after fault inception. The 
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FCRs generated for this fault are: 4.57166 (A-phase), -0.18129 (B-phase), -0.2142 (C-phase) 

and 21.6059 (ground). This clearly indicates that, the FCR of the faulty phase is quiet higher 

as compared to those of the other two healthy phases. 

Similar observation is noticed with an B-C-g fault occurring at 120 km from the relaying 

end with line loading angle of 20o, fault resistance of 25 Ω and same fault inception angle of 

45o as shown in Figure 7.7 (b). FDRs for this fault for consecutive detections are 14.1462, 

18.8493 and 20.7251. The FCR for A, B and C phases are (-0.157), (9.811) and (7.3167) 

respectively while that for the ground is 20.0547. It is again clear that phase-B and Phase-C 

are involved in the fault as their indices are higher than that for phase-A which is near to its 

nominal value. 

Table 7.2 gives some representative FCR values for the same faults used for fault 

detection in Table 7.1. 

 
Figure 7.7 (a): Three phase current waveforms for A-

g fault at 60% of the line with 50Ω fault resistance 
and 45 degrees of fault inception angle. 

 
Figure 7.7 (b): Three phase current waveforms 
for B-C-g fault at 40% of the line with 25Ω fault 

resistance and 45 degrees of fault inception 
angle. 

Table 7.2: Variation of FCR at various compensation levels and system conditions 

Fault 
Type cX  

Fault 
Resistance 

(Ω) 
FIA (δ) 

FCR for Classification 

FCRA FCRB FCRC FCRN 
 

Fault at 60 km from relaying end and 90 km before compensator 
 

A-g No 25 45 10 6.9134 -0.1327 -0.0819 711.8089 
A-g 25% 25 45 10 6.1716 -0.1674 -0.1204 60.8618 
A-g 50% 50 45 10 11.9706 -0.1751 -0.0989 5.29950 
B-g 75% 50 45 20 -0.1579 6.4544 -0.2327 251.7145 
C-g 50% 50 80 30 -0.1955 -0.2086 5.0394 127.2183 

AB-g No 150 135 20 7.2687 1.4682 -0.2033 1251.2520 
AC-g 75% 100 10 20 5.3714 -0.1952 0.3170 276.0343 
BC 50% 150 10 10 -0.2410 6.3150 3.3597 -10.6628 
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ABC-g 50% 25 45 10 6.6115 3.6926 0.2022 -10.7121 
AB 50% 25 80 20 4.7163 3.6492 -0.2428 -10.3935 

 
Fault at 120 km from relaying end and 30 km before compensator 

 
A-g No 25 10 10 6.6433 -0.0489 -0.1641 891.8113 
C-g No 50 10 20 -0.1004 -0.1448 1.3447 122.55331 

BC-g 25% 100 45 30 -0.1708 0.3649 4.1604 607.2173 
BC-g 25% 150 45 10 -0.0754 1.5586 0.7506 76.8194 
AC-g 50% 0 45 20 11.2818 0.4199 -0.2197 184.7421 
AC 50% 25 80 30 3.7795 -0.2296 6.7584 -10.4673 
AB 75% 25 80 10 7.3647 9.5277 -0.1902 -3.1538 

AB-g 75% 50 80 20 3.4082 1.8152 -0.2213 987.3954 
BC 25% 50 135 30 -0.2360 3.1583 7.8437 -0.5739 
BC No 100 135 10 -0.2484 0.1170 0.7845 1.4956 

 
 

Fault at 180 km from relaying end and 30 km after compensator 
 

A-g No 25 10 10 5.4372 -0.0872 -0.2188 1225.0966 
C-g No 50 10 20 -0.1475 -0.1803 1.0742 101.6720 

BC-g 25% 100 45 30 -0.1739 0.1614 2.9470 349.8913 
BC-g 25% 150 45 10 -0.0833 2.1567 5.1491 36.9716 
AC-g 50% 0 45 20 -0.1827 1.2065 4.8035 613.7088 
AC 50% 25 80 30 2.3361 -0.2303 4.6621 -7.9056 
AB 75% 25 80 10 4.0274 5.3909 -0.1911 -6.5913 

AB-g 75% 50 80 20 1.3198 0.2765 -0.1565 526.6582 
BC 25% 50 135 30 -0.2355 2.3822 5.4724 -5.0225 
BC No 100 135 10 -0.2482 0.0419 0.6079 -4.7320 

 
Fault at 240 km from relaying end and 90 km after compensator 

 
A-g 25% 0 10 10 10.1106 -0.1380 -0.1620 46.2006 
B-g 50% 25 10 20 -0.1786 2.8145 -0.2244 31.7543 
C-g 75% 50 45 30 -0.2183 -0.1727 1.4400 1802.8994 

AB-g No 100 45 10 8.2433 1.5262 -0.1972 422.7778 
AC-g 25% 150 80 20 1.4225 -0.2165 1.8588 14.6599 
BC-g 50% 0 80 30 -0.2092 0.9689 5.6789 112.2757 

ABC-g 75% 25 135 10 6.3835 1.5520 2.4168 -11.0501 
AB No 50 135 20 6.4499 3.1531 -0.2469 -3.9495 
AC 25% 100 45 30 3.4902 -0.2401 2.4636 -6.1034 
BC 50% 150 45 10 -0.2065 0.2392 1.4213 -10.7178 

7.3.3 Application of Artificial Intelligence Classifier for Fault Type Identification 
Fault classification is an on-line procedure, in which the faulty phase identification must 

be performed in a very short time span at the beginning of the fault. This leads towards the 
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requirement of an online classification system that can identify the involvement of particular 

phase or ground in the fault. 

Machine Learning (ML) is well-suited to deal with this type of task in an efficient way, 

as they can be trained off line and used on-line to classify fault types due to their 

generalization capabilities. Therefore, the task is to design a decision rule that is easy to 

compute which will also minimize the probability of misclassification. This leads to an artificial 

intelligence classifier. In a classifier, with the help of already classified examples, the optimal 

decision rule is formed for proper classification of the unseen pattern. 

ANN, SVM and Fuzzy system have shown great promise as a classifier in the area of 

power system protection [23, 41, 49, 56, 96, 126]. However, single-layer Chebyshev 

functional expansion has the advantages of structural simplicity, faster speed of execution 

and insensitivity towards the classification variables. Therefore, ChNN has been used for the 

classification task in this work. The detail of ChNN is already given in Chapter 3, Section 

3.7.3. The LSLM training method has been used for training in this work. The ChNN has 

been trained with less than 10% of the total number of generated fault data. The details of 

training and testing data sets are given in the following section. 

7.4 DETAILS OF DATA GENERATION 

To generate the fault data for training and testing of the ChNN, the system shown in 

Figure 4.1 has again been considered. By considering variations of different system and fault 

parameters, a total of 23400 fault cases have been generated. The details of these fault 

cases are given in Table 7.3.  

Table 7.3: Details of the generated fault data 

Level of 
Compensation 

Fault 
Resistance 

(Ω) 

Load 
Angle 

(Degree) 
Type of Fault 

FIA 
(Degree

) 

Fault Location 
(% of total line 

length) 

Total 
Fault 
Cases 

25% 0,25,50, 
100,150 

10,20, 
30 

A-g, B-g, C-g, A-B, A-
C, B-C, AB-g, AC-g, 

BC-g, ABC-g (All ten) 

0,45, 
80, 
115 

10, 20, 30, 40, 
49, 51, 60, 70, 

80, 90 
6000 

50% 0,25,50, 
100,150 

10,20, 
30 

A-g, B-g, C-g, A-B, A-
C, B-C, AB-g, AC-g, 

BC-g, ABC-g (All ten) 

0,45, 
80,115 

10, 20, 30, 40, 
49, 51, 60, 70, 

80, 90 
6000 

75% 0,25,50, 
100,150 

10,20, 
30 

A-g, B-g, C-g, A-B, A-
C, B-C, AB-g, AC-g, 

BC-g, ABC-g (All ten) 

0,45, 
80,115 

10, 20, 30, 40, 
49, 51, 60, 70, 

80, 90 
6000 

0% 0,25,50, 
100,150 

10,20, 
30 

A-g, B-g, C-g, A-B, A-
C, B-C, AB-g, AC-g, 

BC-g, ABC-g (All ten) 

0,45, 
80,115 

10, 20, 30, 40, 
50, 60, 70, 80, 

90 
5400 

Total 23400 

Out of these total 23400 fault cases, a set of 2280 fault patterns shown in Table 7.4 

have been used for ChNN training. All remaining cases have been used for testing of the 
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developed algorithm.  It is clear from Table 7.3 and Table 7.4 that, the system parameters 

used for testing are different than those used for training. 

Table 7.4: Details of training data set 

Level of 
Compensation 

Fault 
Resistance 

Load 
Angle Type of Fault FIA 

Fault Location 
(% of total line 

length) 

Total 
Fault 
Cases 

50% 0,50,150 10,30 

A-g, B-g, C-g, 
A-B, A-C, B-C, 

AB-g, AC-g, 
BC-g, ABC-g 
(All ten types) 

0,80 

10%, 20%, 30%, 
40%, 49%, 51%, 
60%, 70%, 80%, 

90% 

1200 

0% 0,50,150 10,30 

A-g, B-g, C-g, 
A-B, A-C, B-C, 

AB-g, AC-g, 
BC-g, ABC-g 
(All ten types) 

0,80 
10%, 20%, 30%, 
40%, 50%, 60%, 
70%, 80%, 90% 

1080 

Total 2280 

7.5 CHEBYSHEV NEURAL NETWORK IMPLEMENTATION 

For AI based classification, as mentioned in Section 7.3.2, the ChNN has been 

implemented. The generated FCR for any fault pattern is subjected to a cluster of four pre-

trained ChNN for fault classification; three ChNNs for each phase and fourth one for the 

ground. The overall fault detection and classification scheme is shown in Figure 7.8.  
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Figure 7.8 : Wavelet energy- ChNN based fault detection and classification scheme  

A well-trained ChNN generates ‘1’ as the output if the phase is involved in the fault, 

else generates ‘0’. A minor rounding off may be require in the final output. The sum of three 

phase currents is given as an input to the fourth ChNN to detect involvement of ground in 

fault. The ChNNs have been trained with 2280 training patterns as described in Table 7.4. 
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The training has been completed with default learning parameters and LM back propagation 

algorithm with Neural Network toolbox in MATLAB environment. 

To decide the order of Chebyshev expansion in the neural network input, performance 

of the ChNN has been checked for various orders of expansion. If the order of Chebyshev 

expansion is higher, the nonlinear processing capability is stronger. However, this would 

result in heavy computational burdens [148, 149]. The level of accuracies for various levels 

of the Chebyshev expansion is given in Table 7.5. Maximum accuracy is observed at fourth 

level Chebyshev expansion. Therefore, the order of the Chebyshev functional expansion has 

been chosen to be 4 [148, 149]. 

Table 7.5: Performance of the ChNN based scheme for various levels of expansions 

Level of 
Chebyshev 
Expansion 

Numbers 
of Test 
Cases 

Fault 
Classificati
on Errors 

Accuracy 

Level Two 21120 425 97.98 % 
Level Three 21120 402 98.09 % 
Level Four 21120 351 98.33 % 
Level Five 21120 359 96.30 % 
Level Six 21120 401 98.10% 

 

Therefore, the three dimensional input pattern of FCR ,[ , ]A B CFCR FCR FCR  (m=3, 

Chapter 3, Section 3.7.3) has been expanded up to fourth order of Chebyshev expansion to 

generate [(m*n +1) = 13] dimensional feature space (Figure 3.12).  

Figure 7.9 shows the ChNN inputs (3 for each fault) for 20 arbitrary selected faults. 

This input is subjected to the Chebyshev expansion and the reusting expanded inputs are 

supplied to the single-layer neural network. The 2nd order Chebyshev expansion of the same 

20 fault patterns of Figure 7.9 are shown in Figure 7.10. It can be seen from these two 

figures that, the Chebyshev expanded inputs provide more discrimination in input values for 

phases with faults. This distinction ability of the Chebyshev expansion helps in classification 

and improves the accuracy.   

7.6 SIGNIFICANCE OF THE LOW-PASS FILTER 

The method proposed in this work uses a low-pass filter as a signal pre-conditioning 

measure before applying the WT to extract the energy measures. This is due to the fact that, 

the effect of the introduction of the series compensation is least with lower frequency 

components of fault current transient signals [114]. 

Figure 7.11 (a) represents the three-phase current waveforms for an A-g fault created 

at 49% of the total line length (147 km from the relaying end and 3 km before compensator), 
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with 25 Ω fault resistance, fault inception angle of 45˚ at the line loading angle of 10˚. Figure 

7.11 (b) gives the value of the FCR of the fault currents of Figure 7.11(a) for all three phases. 

Figure 7.12 (a) shows the three-phase current waveforms at 51% of the total line length (153 

km from the relaying end and 3 km after compensator) with identical system and fault 

parameters of the Figure 7.11 (a). Figure 7.12 (b) represents the values of FCR for the 

waveforms of Figure 7.12 (a). 

 
Figure 7.9: Chebyshev neural network inputs 

 

 
Figure 7.10: Chebyshev expanded inputs 
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It is evident from Figure 7.11 (a) and Figure 7.12 (a) that, a considerable difference 

exists in the fault current(s) with inclusion of the series compensation in the fault circuit. The 

capacitive reactance of the compensator reduces the line impedance that boosts the fault 

current magnitude and includes few more frequency components in the fault currents. 

However, addition of the filter in the signal-processing circuit eliminates the higher-frequency 

components. As a result, almost same values of FCR for faults are generated just before and 

after the capacitors as given in Figure 7.11 (b) and Figure 7.12 (b). 

 

 
Figure: 7.11 (a): Three phase current 

waveforms for an A-g fault just before the 
compensator 

 
Figure 7.11 (b): FCR for an A-g fault of 

Figure 7.11 (a) 

 
Figure 7.12 (a): Three phase current 

waveforms for an A-g fault just after the 
compensator 

 
Figure 7.12 (b): FCR for an A-g fault of 

Figure 7.12 (a) 

Figure 7.13 shows the variation in the values of FCR for all possible ten types of the 

faults occurring at 60% of the line length of the series compensated transmission line of 

Figure 4.1. For the results shown in this figure, the low pass filter has not been included in 

the calculation. All of these faults have been created with fault resistance of 5 Ω, fault 

inception angle of 0˚, and line loading angle of 20˚. An abrupt variation can be seen in the 

values of FCR in Figure 7.13. On the other hand, the values of FCR for the same faults have 
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also been computed by including the low pass filter in the calculation and are shown in 

Figure 7.14. It is observed that the abrupt variations present in Fig. 7.13 are absent in Fig. 

7.14 and as a result, the data represented in Figure 7.14 are more suitable for fault 

classification application than those in Figure 7.13. 

 
Figure 7.13: Variation in FCR for all possible type of faults without low pass filter 

 
Figure 7.14: Variation in FCR for all possible type of faults with low pass filter 
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7.7 RESULTS AND DISCUSSION 

The effectiveness of the proposed algorithm has been tested on 21120 distinct fault 

cases (Table 7.3 and Table 7.4). The algorithm is successful to detect fault in about half 

cycle duration. The overall fault classification accuracy obtained is 98.33%. 

Figure 7.15 (a) and Figure 7.15 (b) show the plots for FCR at different fault resistances 

for A-g fault and A-B fault with 45˚ FIA, created at 60% of the total line length at line loading 

angle of 10°. It is clear from these plots that, as fault resistance increases, value of FCR 

decreases continuously. The FCR also decreases for an increase in length of the fault circuit, 

as shown in Figure 7.16. The faults shown in this figure have been simulated with 0 Ω fault 

resistance, 45° fault inception angle at line loading angle of 10°. This will help the algorithm 

to restrict its operation speed for far end fault or for a fault on the next line.  

 

 
Figure 7.15 (a): Change in FCR with fault 

resistance for an A-g fault 

 
Figure 7.15 (b): Change in FCR with fault 

resistance for a A-B fault 

 
Figure 7.16: Variation in FCR with respect to fault distance for an A-g fault 
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Figure 7.17 (a) and Figure 7.17 (b) show the plots for FCR at different fault inception 

angles considered in this study for A-g and A-C-g fault. Both of these faults have been 

simulated at 51% of the total line length with 25 Ω fault resistance and line loading angle of 

10°. It is clear from these graphs that the value of FCR varies with change in FIA. However, 

the variation is sufficient to allow proper fault classification.  

 
Figure 7.17 (a): Change in FCR with inception 

angle for a A-g fault 

 
Figure 7.17 (b): Change in FCR with fault 

inception angle for a A-C-g fault 

The effect of loading on the transmission line can also be observed on fault induced 

transients. A variation in FCR for all three-phase currents at line loading angle of 10˚, 20˚ and 

30˚ is shown in Figure 7.18 for a B-C-g fault. The fault has been simulated at 40% line length 

with no fault resistance and at fault inception angle of 45°. It is clear from the plot that, the 

FCR changes with change in line loading angle. However, the values of FCR remain well in a 

range at which these are classifiable for all line loading conditions. 

 
Figure 7.18: Variation of FCR for a B-C-g fault with different line loading angles 

Table 7.6 provides the results for fault detection and classification for different levels of 

compensations. Table 7.7 gives the detailed break-up of fault classification accuracy for 
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classification errors” denotes the number of testing cases (patterns) for which the fault has 

been classified incorrectly. The accuracy has been computed for any case as: 

 Number of correct detections *100
Number of total considered test cases

η =  (7.10) 

  Table 7.6: Fault Detection and Classification Accuracy 

Level of 
compensation 

Numbers 
of Test 
Cases 

Fault 
Classification 

Errors 

Fault 
Classification 

Accuracy 

Fault 
Detection 

Errors 

Fault 
Detection 
Accuracy 

25% 6000 63 98.95% 0 100% 
50% 4800 70 98.54% 0 100% 
75% 6000 162 97.30% 0 100% 
0% 4320 56 98.73% 0 100% 

Total 21120 351 98.33% 0 100% 

Performance of the proposed scheme can be considered to be suitable for protection 

requirement for uncompensated line as given in Table 7.6. Moreover, it provides same level 

of accuracies for different compensation levels also. Fault classification accuracies at 

different compensation levels are of same order which indicates the capability of ChNN to 

achieve acceptable level of classification accuracy irrespective of the compensation levels. 

However, slightly inferior performance is observed at 75% compensation level. This is due to 

the fact that, the algorithm is trained for 50% and 0% compensation levels only. Accuracy at 

75% compensation can be enhanced by including some fault cases for 75% compensation 

level in the training set.  However, this option has not been pursued in this work further.        
 

Table 7.7: Fault type detection accuracy for different types of faults 

Type of Fault Numbers of 
Test Cases 

Fault 
Classification 

Errors 
Accuracy 

L-g 6336 113 98.21 % 
L-L-g 6336 60 99.05 % 
L-L 6336 61 99.03 % 

L-L-L-g 2112 117 96.36 % 
Total 21120 351 98.33 % 

 
From Table 7.7, accuracy for LLL-g fault can be considered a bit on the lower side. 

However, probability of LLL-g fault is least in the system and the overall accuracy of the 

proposed algorithm is better than those reported in the literature [22, 57, 96]. Table 7.8 

represents the overall breakup of the fault classification accuracy with respect to the various 

fault distance considered in this study. Figure 7.19 shows the graphical representation of the 

percentage accuracy of fault classification for various fault distances at different 

compensation levels.  
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Figure 7.19: Fault classification accuracy at different fault distances 

 

Table 7.9 shows the average time required in ms for the proposed algorithm to 

converge on the fault detection for various fault locations at different fault resistances. Figure 

7.20 and Table 7.9 present average time required by the developed algorithm to detect the 

fault for various fault distances. It can be observed from the table that, average time required 

for final decision is half cycle (10 ms) or less in most of the cases. It is also evident from this 

table that the fault detection time of the relay is less for the faults closer to the relay (high 

current fault); the fault detection time increases for remote fault from the relay location (as 

observed in the columns of Table 7.9). It can also be observed that, at any fault location, the 

operating time increases with increase in fault resistance (rows of Table 7.9). This can be 

related to the fault current, which reduces with either increase in fault resistance or fault 

distance. Normally, the transmission line protection schemes are expected to operate quickly 

for close-in high current faults and can allow more time for remote low current faults. The 

fault detection time in the developed algorithm increases with increase of fault distance from 

the relay and with fault resistance; as required for a transmission line protection system. 

 

 
Figure 7.20: Average time for fault detection for developed algorithm 
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Table 7.8: Fault classification accuracy for various fault distances 

Fault 
Distance 
(% of 

Total Line 
Length) 

25% Series Compensation 50% Series Compensation 75% Series Compensation No Compensation 

Test 
cases 

Errors Accuracy 
Test 
cases 

Errors Accuracy 
Test 
cases 

Errors Accuracy 
Test 
cases 

Errors Accuracy 

Before Compensator    
10 600 12 98.00% 480 11 97.70% 600 31 94.83% 480 10 97.91% 
20 600 10 98.33% 480 11 97.70% 600 23 96.16% 480 9 98.12% 
30 600 4 99.33% 480 6 98.75% 600 12 98.00% 480 4 99.16% 
40 600 4 99.33% 480 3 99.37% 600 8 98.66% 480 3 99.37% 
49 600 3 99.50% 480 3 99.37% 600 6 99.00% 480 4 99.16% 

After Compensator    
51 600 6 99.00% 480 5 98.95% 600 15 97.50%    
60 600 7 99.33% 480 5 99.95% 600 8 98.66% 480 5 98.95% 
70 600 5 99.16% 480 7 98.54% 600 14 97.66% 480 6 98.75% 
80 600 7 98.83% 480 9 98.12% 600 22 96.33% 480 6 98.75% 
90 600 8 98.66% 480 10 97.79% 600 23 96.16% 480 9 98.12% 

TOTAL 6000 63 98.95% 4800 70 98.54% 6000 162 97.30% 4320 56 98.70% 
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Table 7.9: Average Time in ms for fault detection at various line lengths for different fault 
resistances 

Fault 
Distance (in 
% of Total 

Line Length) 

Fault Resistance 

10 Ω 25 Ω 50 Ω 100 Ω  150 Ω 
 

10% 6.945833 7.1125 7.304167 7.595833 7.954167 

20% 7.279167 7.445833 7.604167 8.045833 8.3625 

30% 7.4875 7.620833 7.8875 8.204167 8.654167 

40% 7.745833 8.004167 8.1875 8.529167 8.820833 

49% 7.895833 8.0625 8.3125 8.5875 9.120833 

51% 8.304167 8.5125 8.720833 9.095833 9.470833 

60% 8.495833 8.6625 9.004167 9.254167 9.779167 

70% 8.704167 8.9625 9.254167 9.620833 10.04583 

80% 8.779167 9.129167 9.529167 10.02917 10.79583 

90% 9.095833 9.5625 9.8875 11.2625 13.75417 

7.8 PERFORMANCE IN TRANSIENT CONDITION 

To demonstrate the stability (non-operation) of the algorithm for different switching 

transient conditions, following transient models have been created on the system of Figure 

4.1.   

7.8.1 Capacitor Switching 
A 10 MVAR capacitor is switched ‘ON’ at bus B at 3.025 sec on phase A in the 

presence of an active load of 20 MW as shown in Figure 7.21, which generates switching 

transient. Three different capacitor switching transients have been generated at line loading 

angles of 10˚, 20˚ and 30˚. Three-phase currents measured at the relaying end (Bus- A) due 

to the switching of the capacitor at line loading angle of 10˚ are shown in Figure 7.22. 
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Figure 7.21: Capacitor switching to study effect of transients 

 

 
Figure 7.22: Three phase capacitor switching current at line loading angle of 10° 

7.8.2 Reactive Compensation Switching With a Teed Line 
A 20 MVAR capacitive compensator is switched ‘ON’ at 0.3025 sec to the system with 

active load of 45 MW on a teed line as shown in Figure 7.23. The teed line carries identical 

parameters of the transmission line as given in Appendix-A. The load point has been 

considered at 15 km from the tee point. A capacitor at the point of loading is switched ‘ON’ 

with help of the circuit breaker. The transients in the three-phase currents measured at the 

relaying end during switching can be seen clearly in Figure 7.24.  
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Figure 7.23: Reactive compensation switching with a teed line 

 

 
Figure 7.24: Three Phase waveform of reactive compensation switching with teed line at line 

loading angle of 10˚ 

7.8.3 Switching Of Active and Reactive Load 
A load comprising of active and reactive component is switched ‘ON’ at two different 

locations to generate 12 different switching transients as shown in Figure 7.25. A continuous 

load of 110 MW + 30 MVAR has been considered on bus B during these switching 

operations. Particulars of the load are as follows: 

Load Locations   : i) Bus B and ii) Teed Line 

Loading      : i) 10 MW and 10 MVAR inductive and  

       ii) 10 MW and 10 MVAR capacitive 

Generator Loading Angles : i) 10°, ii) 20° and iii) 30° (In degrees) 
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Figure 7.26 shows the measured three phase current waveforms at the relaying end for 

switching of 10 MW active load along with 10 MVAR inductive load at busbar B at generator 

loading angle of 20 degrees.   
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Figure 7.25: Connection of load to generate switching transients 

 
Figure 7.26: Three phase currents at connection of load at generator load angle of 20˚ 

The algorithm has been tested with these 18 different transient cases. During this 

testing phase, the algorithm never converged to detect the fault and proved to be immune to 

these transients. In many out of these cases, an initial detection is observed, but three 

consecutive detections (hysteresis) required for establishing final fault detection have never 

been achieved. 
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7.9 PERFORMANCE COMPARISON 

Normally available transmission line protection algorithm in literature, are either 

intended for uncompensated transmission line or for series compensated transmission lines. 

The presented algorithm performs fault detection and classification task for series 

compensated line and for uncompensated line also with the same level of accuracy. 

Therefore, it is first of its kind that can be used for either type of line without any functional 

modification. In the absence of any method providing protection to both uncompensated and 

series compensated transmission lines, the performance of the developed methodology has 

been compared (Table 7.10) with those obtained by recent methods for only uncompensated 

or only series compensated line with an adequate number of test cases (2400 for [96],  1080 

for [57]) for comparison with this method. 

Table 7.10: Performance comparison 

 Developed 
Algorithm Reference [57] Reference [96] 

Objective  
Fault Detection 

and 
Classification 

Fault 
Classification 

Fault 
Classification 

Number of Test 
Cases 21120 1080 2400 

Post Fault Data 
Requirement 

Half Cycle or 
Less One Cycle Half Cycle 

Level of 
compensation Fault Classification Accuracy 

25% 98.95% ------ 97.68% 
50% 98.54% ------ 98.75% 
75% 97.30% ------ 93.66% 
0% 98.73% 94.72% ------- 

 

The work described in [57] represents fault classification with WT-SVM based 

approach for uncompensated transmission line. As mentioned in the Table 7.10, the 

developed methodology performs better fault classification and that is also with higher 

number of test patterns. The developed method uses only half cycle post fault data, 

compared to the full cycle data required in [57]. 

Further, in contrast to the fuzzy based scheme [96] for fault classification, in which the 

accuracy variation is observed with change in compensation levels, the generalization 

capability of the ChNN is quite sufficient to produce same level of accuracies for different 

compensation levels. The proposed scheme works on only three phase current 

measurement, that reduces computational and measurement burdens. 
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7.10 CONCLUSION 

A new versatile algorithm for fault detection and classification with DWT energy and a 

two-stage algorithm with DWT and ChNN for fault type identification has been suggested in 

this chapter. The algorithm is first of its kind that gives identical performance for 

uncompensated overhead transmission line and for series compensated line as well. 

Moreover, it provides a comparable level of fault detection and classification accuracy at 

various levels of compensations. The algorithm in this chapter does not require any 

functional modification during fault detection and classification process for various levels of 

compensation. The effectiveness of the algorithm has been established by testing over 

21200 fault cases with distinct system conditions; the algorithm provides 100% fault 

detection accuracy with 98.33% fault type identification precision. Moreover, the algorithm 

has been proven to be immune to the switching transients generated by various switching 

phenomena.  

  From testing over a large fault data cases, following salient points can be brought out 

for this algorithm:  

1. The use of the lower frequency components of fault transient for protection of a 

transmission line has been explored in this method. From the results, it is observed 

that the proposed technique is un-affected by the presence of the series compensator.    

2. As the algorithm uses only 1/20th of fresh cycle data for analysis, three consecutive 

fault detections are found necessary and sufficient to remove the possibility of fault 

detection in transient conditions. 

The required data for fault classification has been generated during the fault detection 

algorithm only. This removes the need of any additional data after fault detection. This 

enables employment of the fast digital protection schemes. 
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CHAPTER 8: TCSC COMPENSATED TRANSMISSION LINE PROTECTION  

The Thyristor Controlled Series Capacitor (TCSC) are the most widely used FACTS devices 

today. The initial part of this chapter introduces the TCSC. The subsequent part of this chapter 

addresses the issues related to the protection of line containing it. The problems faced by the 

impedance based protection scheme have been discussed in detail with basic modelling using the 

dynamic power system simulator PSCAD. Improved fault classification and fault zone identification 

schemes are presented with their relative merits and demerits. 

8.1 INTRODUCTION 

In recent times, transmission systems worldwide are undergoing continuous 

restructuring due to increasing stress of power demand. For economic and regularity 

constraints, the developments of transmission networks are restricted. The development of 

the Flexible AC Transmission Systems (FACTS) offers an effective means to meet the 

requirements of the ever-growing power market. 

Different FACTS devices are available with their relative merits and limitations. There 

are series and shunt power compensators [3]. Thyristor Controlled Series Compensator 

(TCSC) is a series compensation device that provides a fast control of the active power 

through a transmission line. The TCSC provides this control by effectively inserting the 

inductive or capacitive reactance in series with a transmission line.  

In view of the benefits offered by TCSC, they have found increasing applications. It is 

therefore, imperative that relevant protection approaches be developed along with the 

primary system developments. 

To understand the impact of TCSC in various operating conditions effectively, an 

appropriate model is a prerequisite. In this respect, time domain simulations render a means 

of analyzing the dynamic behavior of the TCSC especially when investigating the impact of 

these devices on a system under different fault conditions. The next section presents a brief 

discussion of the theoretical aspects of the TCSC as well as the TCSC modeling 

considerations that will serve as the platform for the fault study. 

8.2 TCSC OPERATION 

The TCSC utilizes power electronic devices to control the effective impedance of the 

transmission line. In a way, the TCSC is an efficient device for controlling the power network 

by continuous variation of the transmission line impedance. The TCSC uses thyristors that 

switch successively in every half cycle to provide impedance variation. As a result, it exhibits 

a non-linear impedance characteristic. 
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The concept and control strategies of TCSC have been significantly developed in the 

recent years. Various models for the TCSC are presented by different researchers in [128, 

132, 133, 139, 140]. These models have been developed for various applications and 

therefore, carry different levels of complexity and details. In practice, simplified linear models 

incorporating the necessary transition characteristics are found sufficient with minimal 

simulation time and reasonable complexity of the model. 

A basic TCSC module consists of a fixed capacitor in series with the line and a bi-

directional thyristor pair in series with an inductor (Thyristor Controlled Reactor (TCR)) 

connected in parallel to the capacitor as shown in Figure 8.1. A MOV is also provided for 

over-voltage protection of the capacitor along with a back up protection in the form of air-gap 

surge protector and circuit breaker. The TCSC module typically comprises of an array of the 

arrangement shown in Figure 8.1. Moreover, the inductor can also be split into two halves to 

avoid thyristor damage in the case of short-circuit.   
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Figure 8.1: Basic TCSC configuration 

The TCSC can be visualized as a variable reactance series compensator during 

operation. The TCSC works on the principle of charge injection. According to the conduction 

of the thyristors, an injected current ITCR is added to the line current as shown in the Figure 

8.1. This current modifies the voltage across the series capacitor. The voltage developed 

across the capacitor is in quadrature with the line current and could be inductive or capacitive 

depending upon the conduction of TCR. 

The equivalent reactance offered by the TCR for a firing angle α can be given as [3]: 
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( )

2 sin2L LX X πα
π α α

=
− −

 (8.1)  

Therefore, the operating mode of the TCSC can be described according to the firing 

angle α, or thyristor conduction angle σ, where, 2π α σ= + . Therefore, an appropriate 

current and hence voltage across the series capacitor can be achieved through the variation 

of the firing angle α. The overall equivalent impedance at fundamental frequency can be 

given by: 
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2 2
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 (8.2)  

Where, 

C

L

X
X

λ =   

In the above equation, XC and XL denote the reactances of the capacitor and the 

inductor respectively.  

8.2.1 Modes Of Operation 
As mentioned in the previous section, the equivalent impedance of the TCSC depends 

on the thyristor firing angle. According to the conduction, the TCSC operation can be 

classified in following basic modes [3] : 

1) Capacitive boost ( limα α π> >c ) 

2) Inductive boost ( lim2
π α α> > L ) 

3) Bypass (α π= ) 

4) Blocking (α=π/2) 

8.3 SIMULATION OF THE TCSC 

The TCSC operation and its equivalent reactance largely depend on thyristor firing 

angle α. Therefore, the TCSC design necessitates a means to control and synchronize the 

thyristor firing. The TCSC control system plays a crucial role in providing trigger control 

signals to the thyristors to obtain the desired compensation levels. Control strategies used 

with TCSC can broadly be divided into open loop and close loop strategies. 

A number of works have been reported in the literature for modeling of TCSC for power 

system studies [128, 150, 151]. Many of these models presented are of discretized natures. 

Discretize models involve complicated design and more computational burden [150]. Few 
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other models are designed to reduce the overall complexity. Therefore, a TCSC model with 

phase locked loop (PLL) control is used in this work. This closed loop control model has a 

reasonable accuracy for dynamic study and can be used with any normal ac system [151]. 

The model is utilized with a SVC modeling as a subsystem of the TCSC module [152].  

The steady-state model parameters are initiated for TCSC with its fundamental 

frequency model. With assumption of the constant fundamental frequency current through 

the TCSC, the voltage across the capacitor ‘VC’ carries controlled and uncontrolled 

components [3]. With a controlled and uncontrolled components the TCSC control has been 

designed as shown in Figure 8.2 [151]. 

TCR

-jXC

jXL
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CONTROLLER

PLL

PIVC

τ θ 

Φ 
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VREF

 

Figure 8.2: TCSC close loop control strategy 

The voltage developed across the series capacitor (‘VC’) has been used as reference to 

estimate the current passing through the TCSC and is supplied to the control circuit for 

synchronization and control reference. The voltage PI controller (‘PI’ in Figure 8.2) calculates 

the required firing angle ‘Φ’ for the thyristor circuit. With TCSC current phase angle ‘𝜏’, the 

PLL provides a ramp output to generate the reference angle ‘θ’ for the TCSC firing. The PLL 

uses the trigonometric multiplication identities to form an error signal that tracks the variation 

in phase-locked oscillator, to match the phase of the input. The actual thyristor firing angle ‘α’ 

is provided by considering the reference angle provided by the PLL with calculated firing 

angle Φ’ from the PI voltage controller as shown in Figure 8.2.   

The embedded power electronic switches and the associated TCSC control system 

have been modeled in PSCAD/EMTDC [153]. The TCSC is assumed to operate with the 

open loop control system with constant impedance configuration as shown in Figure 8.2. The 

control system has been designed as a sub-model of the TCSC module.  
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8.4 SYSTEM UNDER CONSIDERATION 

This section describes the simulation study used to generate the fault data for 

development of fault classification and zone identification algorithms for a TCSC 

compensated transmission line. The simulation study of the power system with TCSC has 

been performed using PSCAD environment [153]. A sampling frequency of 4 kHz has been 

used in this work. 

The transmission line is equipped with a TCSC at the middle of the line as shown in 

Figure 8.3. The TCSC is aided with a fixed series compensator (Cf1). The TCSC and the 

fixed series compensator are protected against overvoltage by MOV as shown in Figure 8.3. 

The transmission line parameters are identical as used in the previous chapters and given in 

Appendix-B. Overvoltage protection is provided with MOV to the compensators with 

maximum permissible current rating of 2.5 times rated current (Chapter 4).The fixed series 

compensator (Cf1) is providing 30% compensation to the total line length. The TCSC 

provides variable capacitive compensation with variation of the firing angle (α) form 153˚ to 

180˚.  
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Figure 8.3: System used for simulation 

For training and evaluation of the developed algorithms in this chapter, a large data set 

of faults with wide variation of system and fault parameters have been generated. These 

variations in system conditions are created by varying the system parameters such as source 

impedances (ZSG1 and ZSG2), TCSC firing angle (α) and line loading angle (δ) as given in 

Table 8.1. 
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Table 8.1: Different system conditions considered for TCSC bulk data generation 

Source Impedance 
Variation 

TCSC firing 
angle (α) 

Line Loading 
Angle (δ) 

System 
Conditions 

(ZSG1-ZSG2) 180˚,160˚,144˚ 10˚,20˚,30˚ 1-9 
(0.75ZSG1-ZSG2) 180˚,160˚,144˚ 10˚,20˚,30˚ 10-18 
(1.25ZSG1-ZSG2) 180˚,160˚,144˚ 10˚,20˚,30˚ 19-27 
(ZSG1-0.75ZSG2) 180˚,160˚,144˚ 10˚,20˚,30˚ 28-36 
(ZSG1-1.25ZSG2) 180˚,160˚,144˚ 10˚,20˚,30˚ 37-45 

As mentioned in Table 8.1, combination of these variations creates 45 system 

conditions. Furthermore, with variation in different fault parameters, a number of fault cases 

have been created under each of these system conditions. The considered variations in 

these parameters are: 

i) Fault Inception Angle (FIA) : 0˚, 45˚, 115˚. 

ii) Fault Resistance (Rf)  : 0 Ω, 5 Ω, 25 Ω, 50 Ω.  

iii) Fault Distance   : 60 km, 120 km, 138 km, 162 km, 180 km, 240 km. 

iv) Type of faults   : L-g, L-L-g, L-L, L-L-L. (All ten types of faults). 

For every specific system condition, combination of these fault parameters creates 720 

[3 (FIA) * 4 (Rf) * 6 (Line Distance) * 10 (Fault Types)] distinct fault cases. Therefore, for 45 

system conditions, a sum total of 32400 fault cases have been generated with PSCAD.  

8.5 WT AND CHNN BASED FAULT TYPE CLASSIFICATION SCHEME 

8.5.1 WT Feature Extraction and Quantification 
To identify the type of fault effectively, the changes in spectral components of the 

measured voltage and currents can be used effectively as shown in Chapter 4. The faulted 

signal carries non-fundamental decaying frequency components, odd harmonics due to 

conduction of MOV and high-frequency components caused by resonance between line 

capacitance and line inductance. The algorithm in this section utilizes these spectral changes 

to identify the faulted phase with the help of DWT and ChNN. 

Figure 8.4(a) represents the current waveforms for all three phases for A-g fault 

occurring at 60% of total line length. This fault has been simulated with fault resistance of 5 

Ω, fault inception angle of 135˚ and line loading angle of 20˚. The coefficients of first-order 

WT of half cycle duration of these waveforms are represented in Figure 8.4(b). Figure 8.4(c) 

represents the three-phase current waveforms for a A-C-g fault occurring at 40% of the line 

length. The fault has been simulated with fault resistance of 25 Ω, fault inception angle of 45˚ 

and line loading angle of 10˚. The WT decomposition vector for this fault is shown in Figure 

8.4(d).  It is clear from these figures that, a significant amplitude and spectral difference exist 

between faulted and healthy phase which can be used for fault classification. The schematic 
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block diagram of the proposed scheme is shown in Figure 8.5. Samples of three phase post 

fault currents of half cycle duration are subjected to WT for feature extraction and generated 

wavelet coefficients are subjected to a cluster of four ChNNs for fault type classification. 

 
Figure 8.4(a) 

 
Figure 8.4(b) 

 
Figure 8.4(c) 

 
Figure 8.4(d) 

Figure 8.4 : Current waveforms and wavelet transform coefficients for A-g and A-C-g fault 

8.5.2 Fault Type Identification Logic and Computation 
The three-phase post fault currents measured at Bus-A (Figure 8.3) with a sampling 

frequency of 4 kHz gives 40 samples per phase for half cycle duration. Discrete wavelet 

decomposition is performed on these samples with “db1” as mother wavelet (as described in 

Section 4.3.2) at first level of resolution. The resulting decomposition vector P for each phase 

carries two sub-bands, detail and approximation, each with 20 resolutions. The detail wavelet 

sub-band carrying 20 resolutions per phase is used for further processing. The 

decomposition vector for any phase can be given as: 

 2
,

1

1 in
dwt
p i j

ji

v b
n =

= ∑  (8.3)  

Where, i = level of decomposition, in this work, i=1 
     p shows phase, A, B or C, and 
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           ni = the number of samples in an individual sub band and 2
,i jb  is the jth coefficient of 

the ith sub band. Thereafter, the wavelet feature vector dwtQ  is generated with decomposition 

vector of all three phases ,dwt dwt dwt
A B Cv v and v . This vector dwtQ  has 60 coefficients which in turn 

is processed with a set of three ChNNs (ChNN-A, ChNN-B, ChNN-C of Figure 8.5). 

 { , , }dwt dwt dwt
A B Cv v v=dwtQ  (8.4)  

To evaluate the participation of ground in the fault, the WT of half cycle zero sequence 

post fault current (40 samples) is performed and the generated wavelet feature vector for 

ground = { }dwt dwt
G GQ v is subjected to ChNN-N assigned to identify the participation of ground 

in the fault. It is to be noted that the dwt
GQ vector has a total of 20 co-efficients. 
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Figure 8.5: DWT and ChNN based fault classification scheme block diagram 

The ChNN requires learning for the classification task. Moreover, for establishing its 

robustness the ChNN should be tested with fault cases which are different from the training 

cases. With this objective, a set of 2400 fault patterns as given in Table 8.2 are used for 

training of the ChNN (which are not used during testing of the ChNN). 

Table 8.2 : - Parameters used for training fault data generation 

Fault/System Parameter Value used for training 
Source Impedance Variation All five considered 
TCSC Firing Angle (α) 160˚ 
Fault Resistance (Rf) 0Ω, 5Ω, 50Ω 
Load Angle (δ) 10˚, 30˚ 
Fault Inception Angle 0˚, 45˚ 
Fault Location 60 km, 120 km, 180 km, 240 km 
Total Test Cases 2400 
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The DWT resolution vector of dwtQ (60 coefficients as per (equation 8.4)) is processed 

through the pre-trained bunch of three ChNNs meant to identify the involvement of the 

corresponding phase in fault (Figure 8.5). The vector dwt
GQ is supplied to the fourth ChNN. 

The ChNN generates ‘1’ as output( , , )nA B Cy y y or y , if the respective phase/ground are 

involved in fault, otherwise the output is ‘0’.  

The non-linear classification capability of the ChNN increases with an increase in order 

of Chebyshev polynomial expansion. However, higher-order expansion results in larger size 

of the network and results in increased computational burden. The third-order expansion has 

been found to be sufficient in this work for fault classification with acceptable accuracy and 

moderate computational burden. Therefore, the Chebyshev expansion is limited to third order 

for fault classification in this work. With third order Chebyshev expansion, the vector dwtQ  is 

expanded to FΦ  (181 expanded NN inputs) for processing through ChNN-A, ChNN-B, 

ChNN-C, ChNN-N (Figure 8.5) to identify the involvement of each phase.  

 
1 1 2 1 60 3 , ,( ) ([1, ( ), ( ),........ ( )] )T
i i i i A B Cx v x v x v x ==FΦ  (8.5)  

In the above equation ‘x’ denotes specific input sample. [vi1,vi2,…vi60] are wavelet 

coefficients for the current samples as defined in equation (8.3). The ChNN designated to 

find out involvement of the ground during fault, expands the ground vector dwt
GQ to GΦ  (61 

samples for third order Chebyshev expansion) as: 

 = 1 1 2 1 20 3( ) ([1, ( ), ( ),........ ( )] )T
g g gx v x v x v xGΦ  (8.6)  

[vN1,vN2,…vN20] are wavelet coefficients for the zero sequence current samples as 

defined in equation (8.3). All four ChNN have been trained with 2400 fault patterns described 

in Table 8.2 in Matlab environment using Neural Network Toolbox [141]. The training 

accomplishes in [40, 43, 139 and 62] iterations for the respective ChNNs for Phase-A, 

Phase-B, Phase-C and Ground. The testing of this scheme is described in the following 

section. 

8.5.3 Performance Evaluation of The DWT and Chnn Based Scheme 
The fault classification method proposed for TCSC compensated transmission line in 

this work has been evaluated using 30000 fault patterns. As mentioned in Section 8.4, these 

testing fault patterns are distinct from the fault cases used for training. The WT and ChNN 

based method gives significantly improved performance in terms of accuracy, similar level of 

performance for various levels of compensation and robustness to accommodate parameter 

variations than those reported in the literature [58, 154].The fault classification performance 

of the proposed algorithm for different firing angles are given in Table 8.3. 
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Table 8.3: Fault classification performance of DWT and ChNN based scheme at different 
TCSC firing angles 

TCSC Fining 
Angle (α) 

No of 
test 

cases 
Misclassification Successful 

classification Accuracy 

153˚ 10800 53 10747 99.51% 

160˚ 8400 39 8361 99.54% 

180˚ 10800 49 10751 99.55% 

Total 30000 141 29859 99.53% 

The accuracy of the proposed method is almost same for different TCSC firing angles 

although, it has been trained with a firing angle of 160˚ only. A higher level of accuracy is 

obtained at a TCSC firing angle of 180˚. At any other firing angle than 180˚, due to partial 

conduction in a cycle, the change in spectral components at the time of fault is higher. The 

separation plane of the ChNN has been created with 160˚ firing angle (for higher amount of 

spectral change). With reduced amount of spectral changes at 180˚, the ChNN performs 

better classification. The overall accuracy obtained in this method shows marked 

improvement as compared to other methods reported in the literature [43, 46, 51, 155]. 

Table 8.4 shows the fault classification accuracy for various fault distances at different 

TCSC firing angles. It is observed from these results that, the algorithm proved to be 

consistent for various fault distances on transmission line. It is worth noticing here that fault 

cases with different system operating parameters occurring at 46% of line length (138 km 

from relaying end) and 54% of line length (162 km from relaying end) are never used during 

training. However, accuracy observed for these faults are also quite similar with those 

obtained at other fault locations. This proves the robustness of ChNN for fault classification. 

Table 8.4: Distribution of fault classification accuracy for DWT and ChNN based scheme 

Fault 
Distance 

(% of 
Total Line 
Length) 

TCSC Firing Angle = 153˚ TCSC Firing Angle = 160˚ TCSC Firing Angle = 180˚ 

No of 
test 

cases 
Errors Accuracy 

No of 
test 

cases 
Errors Accuracy 

No of 
test 

cases 
Errors Accuracy 

Before TCSC 
20 1800 11 99.39% 1200 6 99.50% 1800 12 99.33% 
40 1800 7 99.61% 1200 5 99.72% 1800 6 99.67% 
46 1800 6 99.67% 1800 2 99.83% 1800 5 99.72% 

After TCSC 
54 1800 10 99.44% 1800 9 99.25% 1800 9 99.50% 
60 1800 7 99.61% 1200 8 99.56% 1800 6 99.67% 
80 1800 12 99.33% 1200 9 99.25% 1800 11 99.39% 

TOTAL 10800 53 99.51% 8400 39 99.54% 10800 49 99.55% 
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Table 8.5 summarize the test results corresponding to the type of faults considered in 

this study. Accuracy obtained for each fault type in Table 8.5 is on higher side as compared 

to those obtained by other methods in literature [43, 155] and indicates the usefulness of the 

ChNN for fault classification application. The moderate reduction in performance is observed 

for L-L-L-g fault as fault energy is distributed in all the three phases. However, the possibility 

of this fault is least in the power system and accuracy is above 99% in these cases also 

[156]. 

Table 8.5: Fault classification for different types of fault  

Type of 
Fault 

Numbers 
of Test 
Cases 

Fault Type 
Detection 

Errors 
Accuracy 

L-g 9000 37 99.58% 
L-L-g 9000 52 99.42% 
L-L 9000 23 99.87% 

L-L-L-g 3000 29 99.03% 

TOTAL 30000 141 99.53% 

8.5.4 Comparison of Chnn Based Algorithm with MLPNN and SVM Based Methods 
Using DWT 

To demonstrate the superiority of ChNN + DWT based fault classification performance 

for TCSC compensated line, fault classification task has also been carried out with DWT + 

SVM and DWT + MLPNN based schemes. Both of these schemes are implemented 

identically as DWT and ChNN based scheme, except the fact that the ChNN is replaced with 

SVM/MLPNN. The schematic diagram of the fault type identification schemes either with 

SVM or MLPNN is shown in Figure 8.6. Identical feature vectors described in the previous 

sub-sections have also been used for these schemes. These decomposed components 

(equation (8.4)) are then subjected to i) the SVM) or ii) MLPNN for classification. 
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Figure 8.6: SVM/MLPNN based classification scheme 
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8.6 FAULT TYPE IDENTIFICATION WITH DWT + MLPNN AND DWT + SVM 

For comparison, identical set of fault cases that has been used for ChNN based 

scheme is also used for these two schemes. The generated feature vector vdwt is subjected 

to pre-trained bunch of MLPNNs and SVMs. The classifier for each phase identifies the 

involvement of the corresponding phase in the fault. Fourth classifier identifies the 

involvement of the ground in the fault circuit with ground feature vector dwt
gv  as its input. The 

MLPNN/SVM gives ‘+1’ as output if the associated phase or ground is involved in the event 

of fault, else ‘-1’. 

The MLPNN is trained with the back-propagation algorithm with LSLM approach. After 

checking performance with different architecture of neural nets, a structure with 20 hidden 

layer neurons has been chosen because of its higher accuracy. The LibSVM 3.11 package 

[157] has been used in this work for training and testing of the SVM. Due to its better 

performance, Gaussian Kernel has been used with values of C=100000 and γ=0.0000045 for 

all four SVMs. 

8.6.1 Performance Comparison 
After decomposition with first level of wavelet transform, the clusters of SVM and 

MLPNN are trained with the data set of 2400 fault cases described in Table 8.2. Fault type 

identification accuracy for SVM and MLPNN based schemes are given in Table 8.6. As can 

be seen in Table 8.6, the accuracies of the both these methods are inferior to that obtained 

by ChNN based method at various levels of compensation with different firing angles.  

Table 8.6: Performance of MLPNN and SVM based scheme for fault classification task on 
TCSC compensated transmission line 

  SVM MLPNN 
Fining 
Angle 

(α) 

No of 
test 

cases 

No of fault 
cases 

misclassified 
Accuracy 

No of fault 
cases 

misclassified 
Accuracy 

153˚ 10800 287 97.34% 119 98.90% 
160˚ 8400 88 98.95% 54 99.36% 
180˚ 10800 175 98.38% 87 99.19% 
Total 30000 550 98.17% 260 99.13% 

Figure 8.7 shows the comparison of classification accuracies at different TCSC firing 

angles.  It is worth to notice here that, ChNN provides equal level of accuracies at all firing 

angles considered in this work. However, a considerable amount of performance variation 

can be noticed for MLPNN and SVM based schemes. This indicates over fitting of MLPNN 

and SVM to the training cases. The ChNN has taken quite a necessary shape in the 

classification plane such that it gives identical accuracy for all TCSC firing angles. This is 
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because of the fact that ChNN has the potential to handle very large feature spaces. The 

training of ChNN has been carried out so that the dimension of classified vectors does not 

have distinct influence on the performance of ChNN. This makes ChNN efficient in large 

classification problems. From this discussion, it can easily be noticed that, non-linear 

capability of the ChNN is higher than that of MLPNN and SVM, which gives advantage to 

ChNN over MLPNN and SVM for fault type classification in controllable compensated 

environment. 

 
Figure 8.7 : Performance comparison of MLPNN, SVM and ChNN with DWT at various 

TCSC firing angles 

 
Figure 8.8: Comparison of MLPNN, SVM, ChNN for fault classification for different types of 

faults 
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Figure 8.8 compares all three considered classifiers for different type of faults. The 

result establishes ChNN as a better classifier which is able to produce the same level of 

accuracy for various types of faults. This is due to the better generalization capacity of ChNN 

compared to conventional classifiers such as SVM and MLPNN. 

Table 8.7 shows other parameters to be considered for MLPNN, SVM and ChNN for 

practical implementation. Hidden layer in MLPNN increases the number of inter connection 

weights in the structure. With 60 inputs (20 detailed sub-bands for each phase) the total 

interconnection weights is 1220 [60*20 = 1200 (between input and hidden layer) + 20 

(between hidden to output layer)]. These interconnections are bound to increase with either 

increase in hidden layer neurons or number of hidden layers. Thus use of MLPNN requires a 

significantly large amount of memory and calculations. This large structure makes back-

propagation learning a very heavy computational task with high number or training cycles 

and computational time. In contrast to this, the SVM uses kernel based expansion for the 

classification task.  The final vector structures (support vector) are very less compared to 

MLPNN and are obtained within very few numbers of training cycles. This improves the 

response time in real time. However, the performance of the SVM largely depends on the 

choice of Kernel function and classification parameters. A change in the classification 

parameter results in a major variation in classification boundary and hence the accuracy. 

With higher generalization capability, ChNN outperforms MLPNN and SVM for fault 

classification task. 
 

Table 8.7: Comparison of application parameters for MLPNN, SVM and ChNN 

 Neural Nets 
(Matlab Platform) 

SVM 
(LibSVM 
platform) 

ChNN 
(Matlab platform) 

Training 
(2400 fault 
cases) 

About 3 minutes About 20 
seconds 

About 30 seconds 

Testing (For 
any fault 
case) 

Average 0.1 Sec Average 0.1 
Sec 

Average 0.1 Sec 

Classifier 
Structure 

Nos. of NN weights 
A- Phase=1220, 
B- Phase=1220, 
C- Phase=1220, 
Ground =60 

Nos. of Support 
vector 
A-Phase=52, 
B-Phase=38, 
C-Phase=14, 
Ground=6 

Nos. of Weights  
A-Phase=60, 
B-Phase=60, 
C-Phase=60, 
Ground=20 

8.7 APPLICATION OF DWPTE AND CHNN FOR FAULT TYPE CLASSIFICATION 

DWPTE stands for Discrete Wavelet Packet Transform Entropy. As the name itself 

suggests, it involves entropy after DWPT decomposition. DWPT is an extension of DWT in 

which all nodes in the tree structure are allowed to split further at each level of decomposition 
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(Section 3.4, Chapter 3). The DWPT can describe the signal under consideration more 

efficiently than DWT [66].  

The entropy is one of the quantitative measures associated with digital signal 

processing. The entropy provides valuable information for analysis of the time-varying 

signals, i.e. fault signals when associated with wavelet analysis. Different types of entropy 

such as log, norm, Shannon, sure, and threshold can be used to characterize the current 

signals. Shannon’s entropy equation enables searching for the smallest entropy expansion of 

a signal [158]. Therefore, Shannon entropy has been utilized for this study (Section 3.5, 

Chapter 3). Entropy analysis of a signal with DWPT is capable of providing more valuable 

information than DWT.  

The measured half cycle post-fault current signals (40 samples at 4 kHz) at the relaying 

end are preprocessed through DWPT. Second level of decomposition has been found 

necessary and sufficient for proper classification. The DWPT generates identical frequency 

resolutions for any level of decomposition. The decomposition frequency band generated by 

DWPT is shown in in Table 8.8. 

The entropy value for each of the three phases are then calculated (equation (3.15)). 

This generates an entropy vector Gp (equation (8.7)) for all four decompositions 

corresponding to every phase p at sample ‘k’ as: 

 ( ) ( ) ( ) ( )[ , , , ];k k k k
DA DD AA ADS S S S=pG  (8.7)  

Table 8.8:  Frequency resolution of DWPT 

Decomposition 
Level 

Number of 
Coefficients in 

the level 

Detail 
Coefficients 

Approximate 
Coefficient 

Frequency 
Resolution 

First 40 0-1 kHz 1-2 kHz 25 Hz 

Second 20 0-500 Hz 500-1000 Hz 25 Hz 

Each of the entropy is represented by a scalar value; therefore, the vector GP is of 

length 4. A combination of entropy vector Gp for all the three phases generates the 

classification vector V for the specific fault case: 

 A B CV = [G ,G ,G ]  (8.8)  

With four entropy elements in the component vector of every phase, the length of the 

vector V is 12. The DWPE vector V is processed using AI techniques for training and testing 

of the algorithm to classify fault. The overall scheme is shown in Figure 8.9. 
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Figure 8.9 : DWPETE based fault classification scheme 

Figure 8.10(a) represents variation in DWP entropy (SDD) of the ‘Detail’ coefficient of 

the ‘Detail’ sub-band on first level decomposition for an A-g fault with change in fault 

resistances. The energies are represented for an A-g fault occurring at a distance of 120 km 

for loading angle of 10˚, fault inception angle of 45˚ and source impedance values of ZSG1 

and ZSG2 tiven in Appendix – B respectively. It is clear from the plot that, a significant 

difference in DWP entropy exists to identify the faulty phase. The difference in entropy 

reduces with increase in fault resistance, which may lead to errors in classification. To 

eliminate these errors of classification wavelet packet entropy of other sub-bands can be 

utilized. Figure 8.10(b) represents the variation in DWP entropy of ‘Approximate’ sub-band 

(HAA of Figure 3.4). It is basically derived from decomposition of ‘Approximate’ sub-band of 

first level decomposition for same fault conditions of Figure 8.10(a).   

 
Figure 8.10 (a) 

 
Figure 8.10 (b) 

Figure 8.10 (a): Change in DWPE of SDD with fault resistance, Figure 8.10 (b): Variation in 
DWPE for SAA with fault resistances at FIA of 45 degrees, line loading angle of 10 degrees 

Figure 8.11(a) represents the variation in SDD with fault resistance for an A-B-g fault 

with same system condition as that of Figure 8.10(a). Figure 8.11 illustrates the changes in 
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SDD due to variation in fault distance for an A-B-g fault with fault resistance of 25Ω, FIA = 85˚ 

and line loading angle of 30˚. 

The DWPE feature vector ‘V’ (having 12 components, equation 8.8) is supplied to 

ChNN. For comparison, identical training and testing has also been performed with SVM and 

MLPNN . In the case of ChNN, the input vector ‘V’ having 12 components is enhanced to an 

enhanced vector having 37 inputs with third level Chebyshev expansion. 

 
Figure 8.11 (a) 

 
Figure 8.11 (b) 

Figure 8.11 (a): Variation in DWPE of SDD with fault resistance for A-B-g fault,  
Figure 8. 11 (b): Variation in SDD with change in fault distance 

All three classifiers have been trained with identical 2400 fault patterns (as mentioned 

in Table 8.2) and testing has been performed with the same 30000 fault patterns. The 

optimal structure of the MLPNN, with 16 hidden layer nodes, has been chosen based on trial 

and error procedure. The DWPE, MLPNN, and ChNN have been implemented in Matlab 

[159] environment. The SVMs for all the three phases and ground have been designed with 

Radial Basis kernel function having C = 10000000, and gamma (γ) = 0.0000045. These 

parameters have also been chosen based on trial and error procedure. The SVM has been 

implemented in this study with support vector calculator of LibSVM [157].  

8.7.1 Results and Discussion 
In this study, ability of the ChNN for fault classification is compared with those of 

MLPNN and SVM. The DWPT entropy resolutions of half cycle post fault currents have 

been used for this purpose. After decomposition by WPT up to second level of resolution, 

Shannon entropy corresponding to each decomposition has been acquired and used by 

classifier for fault type identification. Table 8.9 shows the comparative performances of 

MLPNN and ChNN. From this table it is observed that the ChNN with third level of 

expansion gives the best accuracy. In this table, the term “fault classification errors” 

denotes the number of testing cases (patterns) for which the fault has been classified 

incorrectly. The “fault classification accuracy” has been computed as: 
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 Number of Correct Detection x100
Total number of Test Cases Connsidered

η =   

Table 8.9 : Accuracy with TCSC firing angle variation for MLPNN and ChNN with 2nd and 
3rd level of expansion 

  
Number 

of 
samples 

MLPNN ChNN with 2nd order 
expansion 

ChNN with 3rd order 
expansion 

Fault 
Classification 

errors 

Fault 
Classification 

Accuracy 

Fault 
Classification 

errors 

Fault 
Classification 

Accuracy 
Classification 

errors Accuracy 

153˚ 10,800 287 97.34% 157 98.54% 53 99.51% 
160˚ 8,400 88 98.95% 64 99.23% 39 99.54% 
180˚ 10,800 175 98.38% 124 98.85% 49 99.55% 
Total 30,000 550 98.17% 345 98.85% 141 99.53 % 

 

Table 8.10 shows structural and other parameters to be considered for comparison of 

MLPNN with ChNN. With 12 inputs (4 sub-band entropies for each phase) the total number 

of interconnection weights for MLPNN is 208 [= (12*16 (between input and hidden layer) + 

16 (between hidden to output layer)]. Thus, this MLPNN structure requires large amount of 

memory and computational time for both training and detection stage. In the absence of 

hidden layer, the ChNN inputs are directly connected to the output, which reduces 

computational and memory burden. Moreover, large structure of MLP makes back-

propagation learning a very heavy computational task that increases the number of training 

cycles and training time as compared to the ChNN that trains efficiently and faster with 

back-propagation algorithm due to the absence of hidden layer as given in Table 8.10. The 

increase in Chebyshev expansion level increases the ability of the classifier as shown in 

Table 8.9, however, it increases the computation burden as well. In view of these issues, 

the order of Chebyshev expansion has been limited to three in this work.  

Table 8.10: Structural comparison of MLPNN and ChNN 

 Neural Nets ChNN 2nd Order ChNN 3rd Order 
Hidden Layer  1 0 0 
Hidden Layer Neurons 16 0 0 
Classifier Structure Nos. of NN weights 

A-Phase=208, 
B-Phase=208, 
C-Phase=208, 
Ground=208, 

Nos. of NN weights 
A-Phase=36, 
B-Phase=36, 
C-Phase=36, 
Ground=36, 

Nos. of NN weights 
A-Phase=48, 
B-Phase=48, 
C-Phase=48, 
Ground=48, 

Training (2400 fault 
cases) 

About 3 minutes About 1 minute About 1 minute 

Comparative performances of SVM and ChNN are shown in Table 8.11 for various 

TCSC firing angles. As is evident from Table 8.11, the accuracies of both the methods are 

quite satisfactory at various levels of compensation with different firing angles. A higher 

level of accuracy is observed at 160˚ firing angle, as the SVM and ChNN are trained with 
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data generated corresponding to this firing angle. The accuracy levels of both classifiers at 

other firing angles are almost same and satisfactory. This indicates the ability of ChNN to 

take required shape in the classification plane that gives identical accuracy for all TCSC 

firing angles. Like SVM, the training of ChNN has been carried out in such a way that, the 

classification weights do not have significant effect on the performance of classifier. 

Table 8.11: Performance comparison of SVM and ChNN 

TCSC Firing 
Angle 

Number 
of 

samples 

Support Vector Machine ChNN with 3rd order expansion 
Fault 

Classification 
errors 

Fault 
Classification 

Accuracy 

Fault 
Classification 

errors 

Fault 
Classification 

Accuracy 
180˚ 10,800 119 98.90% 53 99.51% 
160˚ 8,400 54 99.36% 39 99.54% 
153˚ 10,800 87 99.19% 49 99.55% 
Total 30,000 260 99.13% 141 99.53 % 

Table 8.12 provides a comparison of the performances of MLPNN, SVM and ChNN 

with respect to faults occurring at various distances. The results show the adaptability of the 

ChNN to produce a similar level of accuracy for all fault distance, including those for which 

it is not trained.  

Figure 8.12 compares the accuracies of the classifiers for different types of faults. 

Again from this figure it is observed that the accuracies obtained by ChNN remain almost 

same for all the fault types while the accuracies obtained by SVM and MLPNN reduce for 

some fault types.  

Table 8.12: Performance evaluation at different fault Distance 

Fault 
Distance 

Number 
of 

samples 

MLPNN Support Vector 
Machine 

ChNN with 3rd  order 
expansion 

Classification 
errors Accuracy Classification 

errors Accuracy Classification 
errors Accuracy 

60 km 4800 79 98.35 % 35 99.27 % 29 99.40 % 
120 km 5400 83 98.27 % 55 98.85 % 18 99.67 % 
138 km 4800 92 98.30 % 39 99.28 % 13 99.73 % 
162 km 4800 91 98.31 % 44 99.19 % 28 99.42 % 
180 km 5400 109 97.73 % 40 99.17 % 21 99.61 % 
240 km 4800 96 98.00 % 47 99.02 % 32 99.33 % 
Total 30000 550 98.17 % 260 99.13 % 141 99.53 % 

8.8 PATTERN RECOGNITION BASED FAULT CLASSIFICATION FOR TCSC 
COMPENSATED TRANSMISSION LINE 

As discussed in previous chapter, a scheme using DSP for feature extraction requires 

a numbers of filters for relaying applications that makes it slow for implementation. The two-

staged DSP and AI based scheme require additional implementation of AI classifier after 
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Figure 8.12 : Performance comparison of MLPNN, SVM and ChNN for TCSC compensated 

line fault classification with DWPE  

DSP. In this scenario, the AI based pattern recognition techniques hold an edge for 

development. This section presents ChNN as a better pattern recognition tool for fault 

classification of the transmission line equipped with TCSC. Performance comparisons with 

MLPNN and SVM for identical fault cases are also presented. The proposed algorithm 

utilizes only half cycle post fault data at relaying end to determine the fault type. This makes 

the algorithm fast and practical. 

The magnitude and spectra of the measured current change with inception of fault in a 

transmission line. The algorithm proposed in this section is based on recognition of these 

changes with ChNN used as a pattern recognition tool. The algorithm has been developed 

with measurements at relaying end (bus-A) of the considered system shown in Figure 8.3. 

The three-phase currents measured at this end are considered for pattern recognition with a 

cluster of four ChNNs. 

Figure 8.13 (a) shows the current waveforms for all three phase for an A-g fault 

occurring at 180 km fault distance with 5 Ω fault resistance and 45˚ fault inception angle. The 

fault has been simulated with line loading angle of 20˚ with TCSC operating at firing angle (α) 

= 160˚. Figure 8.13 (b) shows the three phase currents for an A-B-g fault with same system 

and fault conditions as in Figure 8.13 (a). 
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(a)                                                                                 (b) 

Figure 8.13: ChNN inputs for (a) A-g fault and (b) A-B-g fault 

The pattern recognition based fault classification scheme is shown in Figure 8.14. The 

three-phase currents measured at the relaying end are sampled with sampling frequency of 4 

kHz. A half cycle post fault data (40 samples) from each phase is supplied to three ChNNs 

responsible for identifying the involvement of corresponding phase in the fault.  With these 

samples from all the three phases, a classification vector is formed as given in equation 

(8.9). 

 p h a s e A B cV =[ C ,C ,C ]  (8.9)  

Where, Cp (p = A, B, C) is a vecor of 40 samples corresponding to phase p. To 

recognize the involvement of ground in fault, the fourth ChNN is supplied with a vector 

(Vground) representing summation of all three current samples (40 samples).  

 ( )n e u t r a l A B cV = C +C +C  (8.10)  

The input vectors are given to the ChNNs which give an output ‘+1’, if the respective 

phase/ground is involved in the fault, otherwise the output is ‘-1’. The training of each ChNN 

has been performed with same data set of 2400 cases presented in Table 8.2. With higher 

amount of accuracies (99.59%), fourth order Chebyshev expansion is chosen for this work. 

The ChNN gives 98.98%, and 99.14% accuracies for second and third order of Chebyshev 

expansions. Moreover, higher level of expansion does not show a considerable improvement 

in accuracy. Therefore, fourth order ChNN is chosen in this work.  
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Figure 8.14: Direct pattern recognition application block diagram 

To demonstrate the ability of the ChNN as a classifier, a comparative study has been 

conducted with MLPNN and SVM with identical fault cases. A typical feed-forward neural 

network with a single hidden layer has been considered for this evaluation. The number of 

hidden layer neurons, in the absence of any decisive algorithm for the architecture, has been 

chosen based on application performance. After checking the performance with different 

architecture of MLPNN, a structure of [(40-14-1) for A-Phase MLPNN, (40-18-1) for B-Phase 

MLPNN, (40-20-1) for C-Phase MLPNN and (40-4-1) for ground MLPNN have been chosen. 

For SVM implementation, the Gaussian kernel has been found to be suitable for all four 

SVMs in this work. The literature reveals that in the absence of classification parameters 

(cost function ‘C’ and ‘γ’) governing mechanism, they are supposed to be finely adjusted for 

each SVM separately for appropriate classification. In this work, common values of these 

parameters are determined from implementation experiences for all four SVMs for fault type 

classification. The value of C=10000 and γ=0.0000042 have been chosen for all four SVMs. 

The trained SVM with these variables and Gaussian kernel carries 10, 47, 39, and 09 

support vectors for Phase-A, Phase-B, Phase-C and ground respectively. The LibSVM 3.11 

software has been used for implementation of SVMs [104, 160]. 

The identical classification vectors of Vphase and Vground generated in equations (8.9) and 

(8.10) are used for classification with MLPNN and SVM. Both are trained with same training 

set of Table 8.2, which has been used for training of the ChNN. 

8.8.1 Performance Evaluation for Direct Pattern Recognition Scheme 
The direct pattern recognition algorithm has been tested with the same data set of 

30000 fault cases used earlier in this chapter. Fault type identification accuracies for ChNN, 

SVM and MLPNN based schemes at different TCSC firing angles are given in Table 8.13. As 
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can be seen in Table 8.13, accuracy of all these methods is quite satisfactory at various 

levels of compensation with different firing angles.  

Table 8.13 : Accuracy with TCSC firing angle variation for MLPNN, SVM and ChNN 

  
Number 

of 
samples 

MLPNN Support Vector Machine Chebyshev Neural 
Network 

Fault 
Classification 

errors 

Fault 
Classification 

Accuracy 

Fault 
Classification 

errors 

Fault 
Classification 

Accuracy 
Classification 

errors Accuracy 

153˚ 10,800 442 95.91% 169 98.44% 58 99.46% 
160˚ 8,400 25 99.70% 32 99.62% 30 99.64% 
180˚ 10,800 30 99.72% 34 98.69% 35 99.68% 

Total 30,000 497 98.34% 235 99.22% 123 99.59 % 

The accuracy of the proposed method with ChNN is almost same for different firing 

angles (level of compensations). However, a considerable variation in accuracy with TCSC 

firing angle can be seen with MLPNN. This indicates over-fitting of the training to the training 

cases. Moreover, performance of SVM and ChNN are almost same at various firing angles. It 

proves the abilities of SVM and ChNN to take intuitive shape in the multi-dimensional 

classification plane to give same level of accuracy for various TCSC firing angles; however 

these have been trained with TCSC angle of 160˚ only. Training of ChNN and SVM are 

carried out so that the dimension of classified vectors does not have distinct influence on the 

performance. This makes them efficient in large classification problems. The fault waveforms 

carry number of features that can be used for fault classification, and use of ChNN and SVM 

in this case becomes advantageous. 

Table 8.14 shows the level of accuracies for different fault distances on the 

transmission line. The results establish ChNN as a better trained classifier which is able to 

produce same level of accuracy for various fault distances. This is due to the better 

generalization capacity of ChNN. 

Table 8.14: Performance evaluation of at different fault distance 

Fault 
Distance 

Number 
of 

samples 

MLPNN Support Vector 
Machine 

ChNN with 3rd  order 
expansion 

Classification 
errors Accuracy Classification 

errors Accuracy Classification 
errors Accuracy 

60 km 4800 92 98.08 % 37 99.23 % 21 99.56 % 
120 km 5400 86 98.41 % 34 99.37 % 13 99.76 % 
138 km 4800 74 98.46 % 37 99.23 % 14 99.71 % 
162 km 4800 61 98.73 % 33 99.31 % 26 99.46 % 
180 km 5400 88 98.37 % 40 99.26  % 18 99.67 % 
240 km 4800 96 98.00 % 54 98.88 % 31 99.35 % 

 

Figure 8.15 shows the performance of all three methods with all three Artificial 

Intelligence classifiers. Performance of the SVM is almost same as that obtained with ChNN 

based schemes and for all types of faults. However, SVM is sensitive to its classification 
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parameters. This necessitates heuristic approach to identify classification parameters for 

each change in line configuration. In this scenario, the ChNN has been found to be a 

potential AI technique that is robust and free of classification variables.   

 
Figure 8.15: Comparison of classifier performance with DWT, DWPTE and pattern 

recognition application 

Figure 8.16 shows the performances of pattern recognition based fault classification 

schemes for TCSC compensated transmission line for different types of faults. Superiority of 

ChNN can be seen in this figure also. 

 
Figure 8.16: Comparison of fault classification accuracy for various fault types 
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8.9 DWT AND CHNN BASED FAULT ZONE IDENTIFICATION SCHEME 

Spectral characteristics of fault current get modified with the inclusion of the TCSC in 

the fault circuit. This is due to the inclusion of equivalent TCSC impedance in the circuit. The 

fault zone identification in this work depends on the detection of this spectral change in the 

fault induced currents with the help of the DWT and ChNN. 

Figure 8.17(a) and (b) show the current waveforms for all three phases for A-B-g fault 

at 40% and 60% of the line lengths respectively. Both of these faults have been simulated 

with fault resistance of 5 Ω, fault inception angle of 45˚ and line loading of 10˚ with generator 

impedances of ZSG1 and ZSG2 (given in Appendix – B). Figure 8.17(c) and (d) represent the 

first-level decomposition values of detail coefficients for fault currents represented in Figure 

8.17(a) and (b) respectively. It is evident from the Figure 8.17(c) and (d) that, the presence of 

TCSC makes a considerable change in the pattern of wavelet detail coefficients. 

Fig. 8.17(a) 
 

Fig. 8.17(b) 

 
Figure 8.17(c) 

 
Figure 8.17(d) 

Figure 8.17 (a):A-B-g fault at 40% of the line length    
Figure 8.17 (b): A-B-g fault and 60% of the line length  

Figure 8.17 (c): Detail coefficients for DWT for waveforms in Figure 8.16 (a) 
Figure 8.17 (d): Detail coefficients for DWT for waveforms in Figure 8.16 (b) 

 

Figure 8.18 represents the schematic diagram of fault zone identification scheme for 

TCSC compensated transmission line with DWT and ChNN. The vector dwtQ  (equation (8.4)) 
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has been utilized for fault zone identification process. Due to highly non-linear nature of 

TCSC because of its control circuitry, a higher-order Chebyshev expansion is needed for 

successful classification. During implementation process, fifth order Chebyshev functional 

expansion has been found to be necessary for significantly accurate classification in this 

work.  
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Figure 8.18: Block diagram of fault zone identification scheme 

The fault zone classification vector dwtQ consists of 60 detail resolutions per fault 

pattern (20 coefficients per phase). This extracted fault feature pattern is then subjected 

through a well-trained ChNN for fault zone identification. The fault zone classification vector  
dwtQ  (60 resolutions) is expanded to ZΦ  (301 samples) as: 

 
1 1 2 1 60 5 , ,( ) ([1, ( ), ( ),........ ( )] )T

i i i i A B Cx v x v x v x ==ZΦ  (8.11)  

The same training set of 2400 fault cases (Table 8.2) has been used for training of 

ChNN-Z. This ChNN yields ‘0’ for fault before the TCSC and ‘1’ if the fault circuit includes the 

TCSC. The detailed results for fault zone identification with 30000 fault cases are given in the 

following section.  

8.9.1 Performance Evaluation 
The ChNN-Z used in this method has been trained with identical 2400 fault cases used 

for training the ChNNs used for fault classification. Table 8.15 shows the results for fault 

zone identification at various firing angles and faults at different locations. From Table 8.15 

one can observe that the fault zone identification accuracy is almost same for all fault 

distances except for faults at 20% distance. This can be attributed to the fact that at this 

distance, the fault is quite close to the relay and therefore, fault current is of larger 

magnitude. A larger fault current means larger amplitude and spectral changes at the time of 

fault. As these significantly larger variations in magnitude and frequency are not presented to 

the classifier during training periods, it experiences some difficulty in the presence of large 

spectral changes during classification. 
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Table 8.15: Distribution of fault zone accuracy 

Fault 
Distance 

(% of Total 
Line Length) 

TCSC Firing Angle = 153˚ TCSC Firing Angle = 160˚ TCSC Firing Angle = 180˚ 
No of 
test 

cases 
Classification 

Errors Accuracy 
No of 
test 

cases 
Classification 

Errors Accuracy 
No of 
test 

cases 
Classification 

Errors Accuracy 

Before TCSC 
20 1800 92 94.88% 1200 56 95.33% 1800 87 95.16% 
40 1800 18 99.00% 1200 6 99.55% 1800 4 99.77% 
46 1800 32 98.22% 1800 13 99.38% 1800 12 99.33% 

After TCSC 
54 1800 37 97.94% 1800 17 99.05% 1800 14 99.22% 
60 1800 35 98.05% 1200 3 99.77% 1800 3 99.83% 
80 1800 3 99.83% 1200 0 100.00% 1800 2 99.88% 

TOTAL 10800 217 97.99% 8400 95 98.94% 10800 122 98.87% 
 

However, overall fault zone identification accuracy is on the higher side than that 

reported in the literature  [43, 154]. The accuracy for fault zone identification in the line length 

between 40 to 60% (for mid-point compensation) is considered as a critical region for series 

compensated line protection scheme. The fault zone identification accuracy of the proposed 

algorithm is acceptably good in this zone as well and comparable to the accuracy obtained 

for other fault distances. This is despite the fact that samples corresponding to this zone are 

not used in training. However, a dip in accuracy is observed for firing angle of 153˚ as higher 

amount of spectral variations are observed compared to 160˚, at which the training has been 

performed. Fault zone detection results for all types of transmission line faults are presented 

in Figure 8.19. From this table, it can be inferred that the accuracies for all fault types are 

higher than that is  reported in the literature.  

 
Figure 8.19: Fault zone detection accuracies for various types of faults 

8.10 COMBINED FAULT TYPE AND FAULT ZONE IDENTIFICATION SCHEME WITH 
DWT AND CHNN 

A fast, advanced and successful application of ChNN with DWT feature extraction has 

been described in Section 8.5 for fault type identification for TCSC compensated 

transmission line. A fault zone identification scheme based on the same DWT feature vector 
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has been discussed in Section 8.9 of this chapter. As both schemes utilizes identical post 

fault DWT analyzed data, they can be represented as two-subroutines of a combined 

system. Figure 8.20 shows the flow diagram of the combined system for fault classification 

and fault zone identification.  
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Figure 8.20: DWT and ChNN based combined fault classification and fault zone identification 
scheme 
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A typical fault pattern of three phase currents for an A-g fault occurring at 60% of the 

line length (fault after compensator) with fault resistance of 5 Ω, FIA of 45° and line loading 

angle of 10° is shown in Figure 8.21(a). The output of the all of ChNNs of the fault 

classification scheme are shown in Figure 8.21(b) while the output of the ChNN of the zone 

identification scheme is also seen in Figure 8.21(c) are also presented for the same time 

period for illustration. 

 
Figure 8.21 (a) 

 
Figure 8.21 (b) 

 
Figure 8.21 (c) 

Figure 8.21: Three phase TCSC current and corresponding ChNN outputs for a A-g fault at 
60% of the series compensated transmission line. 

8.11 CONCLUSION 

Fault classification and fault zone identification schemes for TCSC compensated 

transmission line have been presented in this chapter. The investigations made in this 
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chapter infer that ChNN is a better classifier for protection analysis in controlled 

compensation environment.  

Out of three schemes presented for fault classification, first two are of two-stage. First 

uses DWT and second uses DWPT for fault feature extraction. However, the third applies 

ChNN as direct pattern recognition tool. All three methodologies utilizes only half cycle post 

fault current data. Testing of the developed algorithm for different fault and system conditions 

has been carried out with a large set of simulated fault data obtained by simulation the 

system on a dynamic power system simulator PSCAD/ EMTDC. 

Proposed methods are found to be capable to classify the fault and identify the fault 

zone with better accuracy and speed for wide system parameter variations. The results 

clearly establish the ability of Chebyshev Neural Network for non-linear regression and to 

take intuitive shape in the classification plane to provide improved results.  
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CHAPTER 9: CONCLUSION AND FUTURE WORK 

9.1 CONCLUSION 

Long EHV transmission lines have a very important function in modern power systems. 

With inclusion of series compensation, their protection represents a critical task to maintain 

both stability and reliability of the power system.  

This work has focused on fundamental issues in the protection of series compensated 

transmission lines, namely, fault detection, fault classification, fault zone identification and 

estimation of fault location. Although solutions do exists for these problems, new approaches 

have been proposed in this work which have been found to be advantageous over the 

existing methods reported in the literature. 

Fault signals on series compensated transmission line are arbitrary in nature and 

carries variations in their time-frequency structures. Such signals are produced from highly 

non-linear components such as compensator on the line. Capability of the wavelet to 

approximate the piecewise signal effectively made it the first choice in this work. To capture 

these time-frequency variations, wavelets and their variants have been used for all the four 

problems considered in this work. 

Being free from structural constraints and insensitive to parameter variations, the 

ChNN possess several advantages over existing artificial intelligence techniques used in 

protection system. Therefore, the ChNN has been used for all the four tasks in this work and 

the performance of the ChNN based scheme has been found to be better than the 

performances obtained by other existing techniques in the literature. A comparative study of 

ChNN based scheme with MLPNN and SVM based schemes has also been made for many 

applications for identical fault cases. The ChNN proved to be better in all of these 

investigations. Considerable improvement in term of accuracy and time of operation has 

been achieved with newly developed fault type identification algorithms. Spectral 

components of the fault generated transients on time-scale are extracted to generate the 

feature pattern for classification with the help of DWT. Application of ChNN to recognize 

these pattern shows considerable improvements in accuracies than those reported in the 

literature. Moreover, direct application of ChNN for recognizing the fault current pattern 

improves the performance further. Also, it was observed that the performance of the DWT-

ChNN scheme is better than those obtained by DWT-SVM and DWT-MLPNN schemes.  

Training is a very important aspect of ChNN implementation. The success of the recall 

process relies on the ability of the training set to reflect the characteristic features of each 

specific separable category. Therefore, two ChNN learning algorithms, namely, RLSFF and 

LSLM have been compared for fault classification performance. However, when the ChNN is 
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trained with limited number of training patterns, the performance of the RLSFF method has 

been found to deteriorate with variation in system and fault parameters. Therefore, the ChNN 

with LSLM learning has been found to be more suitable over the ChNN with RLSFF method 

for series compensated line fault classification application. 

An accurate fault zone identification algorithm of series compensated transmission line 

is developed in this work. This is achieved by integrating UDWT and ChNN. It shows an 

improvement in performance as compared to another developed method using DWT along 

with ChNN. However, performance of DWT and ChNN based method also shows 

improvement in terms of accuracy and execution time as compared to the other methods 

already available in literature. 

In the later stage of this work, fault classification and fault zone identification algorithms 

developed for fixed series compensated line are improved to address the changes which 

occur due to the presence of TCSC instead of fixed series capacitor. Application of ChNN 

proved to be superior for fault classification and fault zone identification as compared to SVM 

and MLPNN based methods which utilize enhanced DWT feature vector. Extraction of 

DWPEM further enhances the fault classification accuracies.    

All the above fault location and fault zone identification algorithms have been 

implemented with local (relaying end) current measurements of half cycle duration (post 

fault) only. Requirement of only half cycle post fault measurements makes all the developed 

algorithms quite fast in response. Moreover, application of three phase current 

measurements only eliminates the voltage measurements and related computations. 

With contineous development in power networks, any transmission line stretches for 

hundreds of kilometers over complex geographic terrain. Precise and timely fault location 

information speeds up the restoration of the line which, in turn, and reduces the revenue 

losses. In this thesis some of the phasor estimation based fault location approaches are 

investigated for their accuracies. However, due to errors in phasor estimation procedure, 

they give larger fault location errors. The fault location estimation scheme presented in this 

thesis overcome the shortcoming of the phasor estimation and other existing methods by 

introducing a novel AI based regression method using ChNN along with  DWT feature vector 

extraction. It was observed that the developed methodology is robust and immune to fault 

and system parameter variations.  

One major advantage of the newly developed technique over existing methods is its 

ability to work without any communication channel for estimating the location of the fault. 

This enables considerable cost saving in capital and operating cost of the protection system.  
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9.2 THESIS OUTCOME 

After investigation of all the developed algorithms with a large number of fault cases 

with all possible types of faults, faults parameters and system parameters variations, 

following outcomes of this work can be listed: 

• The fault classification, fault zone identification and fault location algorithms developed in 

this work show considerable improvement in terms of accuracy compared to the methods 

available in the literature. 

• All algorithms in this work are developed for single end measurement only. This 

eliminates the requirement of measurements from other end, communication channel and 

synchronization. 

• All fault classification and fault zone identification algorithms are developed to work with 

measurements of three phase currents only. This eliminates the requirement of voltage 

related measurements and computation.  

• All fault classification and fault zone identification algorithms designed in this work are 

developed to work with half cycle post fault measurements only. This reduces the 

processing time of the algorithms thereby making them quite fast for practical  

implementation. 

• Among SVM, MLPNN and ChNN, ChNN has been found to be most accurate and fast 

classifier for protection application. 

• UDWT and DWPEM have been found to be quite effective and useful time-frequency 

analysis tools that improve accuracies of the protection scheme. 

• DWT and ChNN based fault location estimation scheme proposed in this work provides 

highly accurate scheme for estimating the fault location. It shows a considerable 

improvement in performance as compared to the fault location estimation accuracies 

reported in the literature. 

• Application of lower frequency components of fault generated transients proved to be 

immune to the effect of series compensator, even at various compensation levels. The 

fault detection and classification algorithm developed with lower frequency components 

have been found to give very high level of accuracies for both uncompensated and series 

compensated transmission lines. 

• Fault classification and fault zone identification algorithms have been modified and 

improved to take into account the TCSC related changes thereby providing higher level of 

accuracies than those reported in the literature. 
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9.3 FUTURE SCOPE 

Some of the suggestions for the future work in this research area are as follows:  

• An accurate model of the compensator provides a great advantage in designing the 

protection system for series compensated transmission line, as voltage across the 

compensator can be estimated by the model. However, most widely used compensator 

model does not replicate the non-linearity of the compensator accurately. This indicates 

the requirement of more sustained efforts in this direction. 

• Few of phasor based fault location approaches are considered in this work. However, 

more accurate one-ended phasor estimation can improve the fault location estimation. 

Further, development of an effective fault location scheme for TCSC compensated line 

also needs to be investigated. 

• A novel protection algorithm for fault detection and classification has been developed in 

this work using lower frequency transient components. This algorithm is equally capable 

to provide wqually effective fault detection and classification to both uncompensated and 

series compensated transmission line. However, an integrated algorithm including fault 

detection, classification, zone identification and location will be a welcome step in this 

direction. 

It would be quite useful to design protection systems for other series compensating 

devices such as SSSC, TSSC and GCSC.  
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Figure A.1: Transmission line system model single line diagram with SC at mid of the line 

Source Data at both Sending and Receiving Ends: 

Positive sequence impedance : 1.31 + j 15.0 Ω . 

Zero sequence impedance  : 2.33 + j26.6 Ω 

Frequency    : 50 Hz. 

Transmission-Line Data: 

Length     : 300 km. 

Voltage    : 400 kV. 

Positive-sequence impedance : 8.25 + j94.5 Ω 

Zero-sequence impedance  : 82.5 + j308 Ω 

Positive-sequence capacitance : 13 nF/ km. 

Zero sequence capacitance  : 8.5 nF/ km. 
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APPENDIX – B 

 
Figure B.1: Transmission line system model single line diagram with TCSC and fixed SC 

1XCf  = 112.27 µf = 30% compensation to the overall line inductance 

TCSCX = 0 % – 10 % compensation to the overall line inductance for firing angle of 180° to 

153°  

Source Data at both Sending and Receiving Ends: 

Positive sequence Resistance  : 1.31 Ω 

Positive sequence Reactance  : 15.0 Ω 

Zero sequence Resistance  : 2.33 Ω 

Zero sequence Reactance  : 26.6 Ω  

Frequency    : 50 Hz. 

Transmission-Line Data: 

Length     : 300 km. 

Voltage    : 400 kV. 

Positive sequence Resistance  : 8.25 Ω 

Positive sequence Reactance  : j94.5 Ω 

Positive-sequence capacitance : 13 nF/ km. 

Zero-sequence Resistance   : 82.5 Ω 

Zero-sequence Reactance  : j308 

Zero sequence capacitance  : 8.5 nF/ km. 

High Voltage Protection: 
MOV current voltage relationship : α=i Kv  

Where, i and v represent instantaneous compensator current and voltage 

respectively. The constant K is given by: max

max

.
( )α

=
IK

V
 

MOV

G1 G2A B

XCRELAY

MOV

XCf1

XL

231 

 

 


	Chapter 1: INTRODUCTION
	1.1 GENERAL BACKGROUND
	1.2 OUTLINE OF TRANSMISSION LINE PROTECTION
	1.3 RESEARCH MOTIVATION AND OBJECTIVE OF RESEARCH
	1.4 RESEARCH CONTRIBUTION
	1.5 THESIS ORGANIZATION

	Chapter 2: LITERATURE SURVEY ON PROTECTION OF SERIES-COMPENSATED TRANSMISSION LINES
	2.1 INTRODUCTION 
	2.2 TRANSMISSION LINE WITH SERIES COMPENSATION
	2.3 OVERVOLTAGE PROTECTION OF SERIES CAPACITOR AND ITS OPERATING PRINCIPLE
	2.4 EFFECT OF SERIES COMPENSATION ON IMPEDANCE BASED PROTECTION SCHEME FOR TRANSMISSION LINE
	2.4.1 Change in Line Impedance Seen by Relay
	2.4.2 Voltage Inversion
	2.4.3 Current Inversion
	2.4.4 Effect of Capacitor Over-voltage Protection on Impedance Based Protection Scheme
	2.4.5 Transient Issues
	2.4.5.1 Subsynchronous Frequencies

	2.4.6 Other Factors
	2.4.6.1 Unbalanced Line Impedance
	2.4.6.2 Parallel Lines
	2.4.6.3 Faults in Capacitor Bank


	2.5 SERIES COMPENSATED TRANSMISSION LINE PROTECTION APPROACHES
	2.5.1 Multiple Relay Characteristics
	2.5.2 Compensator Modeling
	2.5.3 Travelling Wave Based Approaches
	2.5.4 Signal Processing Tool and Artificial Intelligence
	2.5.5 Advancement in Filtering 
	2.5.6 Higher Order Statistic
	2.5.7 Wavelet Transform 
	2.5.8 Artificial Intelligence Techniques with/without Digital Signal Processing Tools

	2.6 SUMMARY

	Chapter 3: TIME-FREQUENCY ANALYSIS AND ARTIFICIAL INTELLIGENCE TECHNIQUES 
	3.1 INTRODUCTION
	3.2 THE WAVELET TRANSFORM AND ITS IMPLEMENTATION
	3.2.1 Discrete Wavelet Transform
	3.2.2 DWT Implementation 

	3.3 WAVELET ENERGY
	3.4 WAVELET PACKET TRANSFORM AND ITS IMPLEMENTATION
	3.4.1 Discrete Wavelet Packet Transform – Decomposition of All Frequencies
	3.4.2 Advantages of Using WPT with Respect to DWT

	3.5 WAVELET PACKET ENTROPY MEASURES
	3.6 UNDECIMATED DISCRETE WAVELET TRANSFORM
	3.6.1 UDWT Implementation
	3.6.2 Comparison Between DWT and UDWT
	3.6.3 Advantages of UDWT Compared to DWT

	3.7 NEURAL NETWORK
	3.7.1 Multi-Layer Perceptron
	3.7.2 Functional Link Neural Network 
	3.7.3 Chebyshev Neural Network 
	3.7.3.1 Chebyshev Polynomials


	3.8 SUPPORT VECTOR MACHINE 
	3.8.1 Linear Classification with SVM
	3.8.2 Non-linear Classification with SVM

	3.9 SUMMARY

	Chapter 4: IMPROVED FAULT CLASSIFICATION SCHEMES FOR SERIES COMPENSATED TRANSMISSION LINES
	4.1 INTRODUCTION
	4.2 SYSTEM SIMULATION AND ANALYSIS
	4.3 APPLICATION OF DWT AND ChNN FOR FAULT CLASSIFICATION 
	4.3.1 DWT Feature Extraction
	4.3.2 Fault Classification Scheme
	4.3.3 ChNN for Classification Application
	4.3.4 System and Fault Parameter Variations in PSCAD Simulation
	4.3.5 Chebyshev Neural Network Training
	4.3.5.1 ChNN Training with Back Propagation Least Square Levenberg-Marquardt algorithm

	4.3.6 Results and Discussion

	4.4 PATTERN RECOGNITION APPLICATION OF CHNN FOR FAULT CLASSIFICATION WITH SERIES COMPENSATED TRANSMISSION LINE
	4.4.1 Motivation to Adopt Pattern Recognition
	4.4.2 Fault Classification Scheme
	4.4.3 Recursive Least Squares Learning Method with Forgetting Factor
	4.4.4 Performance Evaluation of Two Learning Methods for Fault Classification
	4.4.5 Comparative Analysis of LSLM and RLSFF Learning Methods for ChNN Training
	4.4.5.1 Learning Speed
	4.4.5.2 Performance


	4.5 APPLICATION OF MLPNN FOR PATTERN RECOGNITION BASED FAULT CLASSIFICATION
	4.6 APPLICATION OF SVM FOR PATTERN RECOGNITION BASED FAULT CLASSIFICATION
	4.6.1 Comparison of ChNN, MLPNN and SVM for Pattern Recognition Based Fault Classification of Series Compensated Transmission Lines

	4.7 EFFECT OF CURRENT TRANSFORMER SATURATION 
	4.8 EFFECT OF TRANSPOSITON ON THE DEVELOPED ALGORITHM
	4.8.1 FURTHER INVESTIGATION

	4.9 COMPARISON WITH OTHER METHODS IN THE LITERATURE
	4.10 CONCLUSION

	Chapter 5: IMPROVED FAULT ZONE IDENTIFICATION SCHEMES FOR SERIES COMPENSATED TRANSMISSION LINE 
	5.1 INTRODUCTION
	5.2 APPLICATION OF DISCRETE WAVELET TRANSFORM AND CHEBYSHEV NEURAL NETWORK FOR FAULT ZONE IDENTIFICATION
	5.2.1 Fault Zone Identification 
	5.2.2 ChNN Based Classification
	5.2.3 Results and Discussion

	5.3 DWT AND SVM BASED SCHEME 
	5.4 APPLICATION OF UDWT FOR FAULT ZONE IDENTIFICATION
	5.4.1 Fault Zone Identification Scheme
	5.4.2 Results and Comparison with DWT Based Scheme

	5.5 CONCLUSION

	Chapter 6: FAULT LOCATION ESTIMATION ON SERIES COMPENSATED TRANSMISSION LINES
	6.1 INTRODUCTION
	6.2 OVERVIEW OF FAULT LOCATION TECHNIQUES IN SERIES COMPENSATED TRANSMISSION LINE
	6.3 INTRODUCTION TO PHASOR ESTIMATION
	6.4 PHASOR ESTIMATION TECHNIQUES
	6.4.1 DFT Based Phasor Estimation
	6.4.2 Fault Location Estimation with Reactance Method
	6.4.2.1 Fault location estimation before compensator
	6.4.2.2 Fault location estimation after compensator
	6.4.2.3 Performance evaluation of the DFT based method

	6.4.3 Wavelet Based Phasor Estimation
	6.4.3.1 Performance of Wavelet based fault location estimation

	6.4.4 The Least Square Error Solution
	6.4.4.1 Curve fitting
	6.4.4.2 Performance evaluation of LSE based fault locator

	6.4.5 Comparison of the Phasor Estimation Based Fault Location Schemes

	6.5 APPLICATION OF DSP AND AI FOR FAULT LOCATION ESTIMATION
	6.6 WAVELET AND CHNN BASED FAULT DISTANCE ESTIMATION SCHEME
	6.6.1 Implementation
	6.6.2 Input Selection - Feature Extraction
	6.6.2.1 Training and testing of ChNN

	6.6.3 Performance Evaluation of DWT and Chnn Based Scheme

	6.7 PERFORMANCE COMPARISON WITH PHASOR ESTIMATION BASED FAULT LOCATION METHOD 
	6.8 EFFECT OF INACCURACIES OF FAULT TYPE AND ZONE IDENTIFICATION ON FAULT LOCATION
	6.9 CONCLUSION 

	Chapter 7: VERSATILE RELAYING ALGORITHM FOR DETECTION AND CLASSIFICATION OF FAULTS ON UNCOMPENSATED AND SERIES COMPENSATED TRANSMISSION LINES
	7.1 INTRODUCTION 
	7.2 MOTIVATION FOR DEVELOPMENT
	7.3 PROPOSED FAULT DETECTION AND CLASSIFICATION SCHEME   
	7.3.1 Fault Detection
	7.3.2 Fault Classification
	7.3.3 Application of Artificial Intelligence Classifier for Fault Type Identification

	7.4 DETAILS OF DATA GENERATION
	7.5 CHEBYSHEV NEURAL NETWORK IMPLEMENTATION
	7.6 SIGNIFICANCE OF THE LOW-PASS FILTER
	7.7 RESULTS AND DISCUSSION
	7.8 PERFORMANCE IN TRANSIENT CONDITION
	7.8.1 Capacitor Switching
	7.8.2 Reactive Compensation Switching With a Teed Line
	7.8.3 Switching Of Active and Reactive Load

	7.9 PERFORMANCE COMPARISON
	7.10 CONCLUSION

	Chapter 8: TCSC COMPENSATED TRANSMISSION LINE PROTECTION 
	8.1 INTRODUCTION
	8.2 TCSC OPERATION
	8.2.1 Modes Of Operation

	8.3 SIMULATION OF THE TCSC
	8.4 SYSTEM UNDER CONSIDERATION
	8.5 WT AND CHNN BASED FAULT TYPE CLASSIFICATION SCHEME
	8.5.1 WT Feature Extraction and Quantification
	8.5.2 Fault Type Identification Logic and Computation
	8.5.3 Performance Evaluation of The DWT and Chnn Based Scheme
	8.5.4 Comparison of Chnn Based Algorithm with MLPNN and SVM Based Methods Using DWT

	8.6 FAULT TYPE IDENTIFICATION WITH DWT + MLPNN AND DWT + SVM
	8.6.1 Performance Comparison

	8.7 APPLICATION OF DWPTE AND CHNN FOR FAULT TYPE CLASSIFICATION
	8.7.1 Results and Discussion

	8.8 PATTERN RECOGNITION BASED FAULT CLASSIFICATION FOR TCSC COMPENSATED TRANSMISSION LINE
	8.8.1 Performance Evaluation for Direct Pattern Recognition Scheme

	8.9 DWT AND CHNN BASED FAULT ZONE IDENTIFICATION SCHEME
	8.9.1 Performance Evaluation

	8.10 COMBINED FAULT TYPE AND FAULT ZONE IDENTIFICATION SCHEME WITH DWT AND CHNN
	8.11 CONCLUSION

	Chapter 9: CONCLUSION AND FUTURE WORK
	9.1 CONCLUSION
	9.2 THESIS OUTCOME
	9.3 FUTURE SCOPE
	PUBLICATIONS FROM THE WORK
	BIBLIOGRAPHY
	 APPENDIX – A
	APPENDIX – B



