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ABSTRACT

In this thesis, advanced machine learning algmsthare used to develop predictive
models for forecasting ground motion parameterse wachine learning algorithms used are
extreme learning machines (ELM), support vectoresgion (SVR) and its three variations,
namelys-SVR,v-SVR and Ls-SVR, decision trees and hybrid algarithNFIS (adaptive neuro
fuzzy inference system). In this thesis, a nowalro fuzzy algorithm, RANFIS (randomized
ANFIS) is also proposed for forecasting ground omtparameters. This advanced learning
machine integrates the explicit knowledge of thezfusystems with the learning capabilities of
neural networks, as in the case of conventiongb@daneuro fuzzy inference system (ANFIS).
In RANFIS, to accelerate the learning speed witlommpromising the generalization capability,

the fuzzy layer parameters are not tuned.

The three time domain ground motion parametershvhre predicted by the developed
predictive models are peak ground acceleration (P@&ak ground velocity (PGV) and peak
ground displacement (PGD). Each ground motion patams related to mainly to four seismic
parameters, namely earthquake magnitude, faultieghanism, source to site distance and
average soil shear wave velocity. The model is ldgeel using real earthquake records obtained
from the database released by PEER (Pacific EaalegEngineering Research Center)

Conventionally, the ground motion parameters atenated using strong ground motion
prediction equations which are also known as a#teon equations. Ground motion prediction
equations (GMPES) are equations that related thengr motion parameter PGA, PGV, PGD to
independent parameters like earthquake magnituwdece to site distance and site conditions.
They are developed using the traditional regressinalysis method. The development of
GMPEs involves highly complex computation becaude tloe high nonlinearity and
inhomogeneous dependencies among the parametkesredression analysis is applied for the
computation after reducing the complexities by ukdahg assumptions. Incorporating the
simplified assumptions into modelling leads to viamge errors. Thus, there is a huge need for
the modelling of ground motion parameters usingare@chniques so as to reduce the existing

complexities. These overheads are minimized bygustivanced learning machines.



The predictive models for forecasting ground muotiparameter, developed using
advanced learning machines have many advantagesdstelling using machine learning, it is
not required to assume linear dependencies amengtiables. Thus, there are no assumptions
made and no irrelevant coefficients are requirduds Thakes the predictive models developed
using advanced machine learning computationallefadoreover, using the advanced learning
machines, efficient predictive models with higheegision and lesser error measure is obtained.
In this study, all the developed prediction modeésed on advanced machine learning, are
compared to the existing GMPEs as well as theiagistenchmark models. The existing GMPE
models are Ambraseys et al model [6], CampbellBozbrgnia model [29] and Smit et al model
[142]. The existing benchmark models are ANN/SA glody Alavi and Gandomi, GP/OLS
model by Gandomi et al, MEP model by Alavi et gl #ad GP/SA model by Mohammadnejad
et al [100]. The quantitative and the qualitativelgsis of all the proposed prediction models
based on advanced machine learning algorithm shimatshe developed prediction models have

a good prediction accuracy for the forecastingrofigd motion parameter.

The significance of the proposed work in this thésthe application of advance machine
learning for faster and easy prediction of the gobmotion parameters. The ground motion
parameters are the most relevant criteria requfoeddesigning any earthquake resistant
infrastructure. With growing urbanization, therdrismendous increase in the population density
in earthquake prone areas, which in turn is inengashe demand for earthquake resistant

structure.

All the developed models are tested on the redh@aake data. The database used for
modelling is the database known as NGA WEST 1 ctadpand systematized by Pacific
Earthquake Engineering Research Center (PEER) (3 28 a part of a project named PEER-
NGA project. The database file is termed as NGAfigaV 7.3. The predictive models are
trained on 2252 earthquake records and tested ®e&6hquake records. To further validate the

efficacy of the proposed models, the models atedesn another set of 140 earthquake records.

In this study, the different types of learning heets used are namely neural network
learning, kernel method learning, hybrid models dadision tree learning. The hybrid models
used in this study are neuro fuzzy techniques wliombine the fuzzy logic and neural

networks.



In this study, six different prediction models @reposed. The ground motion parameter
prediction model developed based on neural netweakning are ANN model, and ELM
(extreme learning machines) model. The ground mgbarameter prediction model developed
based on kernel method learning arsupport vector regression modeksupport vector
regression and Ls-SVR (least square support veemression) model. The ground motion
parameter prediction model developed based on dhyboidels are ANFIS (adaptive neuro fuzzy
inference system) model and the novel neuro fueefrtique, RANFIS (randomized ANFIS)
model. The ground motion parameter prediction maéskloped based decision tree learning is

a regression tree model.

In this study, a further comparative study ofthlt developed models is done to deduce
the best prediction model. Furthermore a compagatiudy of the learning effectiveness of each
algorithm is done in terms of measure of ‘overféisie The overfitness measure is a comparison
of the training error with the testing error. Thiemparative analysis further highlights the

advantages and drawbacks of each advanced maehménlg algorithm.

In this study all the comparisons and conclusiares well validated, as the models are
based on real earthquake data, rather than thbedimtata. Furthermore, it is observed that the
proposed novel neuro fuzzy technique RANFIS prdedse promising prediction algorithm for
forecasting ground motion parameters and henceldmibpplied to other prediction problem in

various domains.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

In this thesis, advanced machine learning algost are used to develop predictive
models for forecasting ground motion parametersaated with seismic signals. The ground
motion parameter predicted are peak ground aataar(PGA), peak ground velocity (PGV)
and peak ground displacement (PGD). These parasratein time domain.

The term seismic denotes the shaking or vibratbrthe earth 's crust due to an
earthquake or to an artificial explosion. Hencedigmals generated during an seismic activity is
termed as seismic signals. The seismic signalegsiceg is a subfield of the digital signal
processing (DSP). The processing of seismic sigraahly focuses on processing of seismic data
by removing noise and enhancing the weaker sigt@mltocate the seismic events on the
subsurface of the earth's crust. The informatiotaiokd from the seismic signals assists the
geologist for better understanding and interpi@tadf the structure of the earth’s subsurface.
The seismic signals are mainly used in broad dieddch as microseismic data processing,
reservoir characterization and seismic data corspmesThe processing of seismic signals in the
field of microseismic data processing is for thalgsis and prediction of earthquakes. The
seismic signal processing relating to reservoirattarization mainly deals with the exploration

of oil fields.

The signals generated during an earthquake aredextoby an instrument named
‘seismograph’ and the records are termed as growsttbn records. During an earthquake, the
rupture of the earth’s crust begins at point, terathe focus. A seismogram is the recording of
the seismic signal as a function of time, at thei@aar recording station. It is recorded in 3 co
ordinate space (x, y and z) with x-and y- planesalpd to earth’s surface and z-plane

perpendicular to the earth’s surface. Thus, a sgjsam records the displacement of ground or



earth’s crust during an earthquake. The seismographrecord the shaking of the earth's crust,
due to an earthquake or due to a heavy explosianseismograph can record any range of
disturbance ranging from, very small waves, sueld@e to a heavy wind and strong ground
motion due to a powerful earthquake. The recordihthe acceleration of the earth’s crust or
ground during an earthquake is called accelerogfdra.recording of the velocity of the earth’s

crust or ground during an earthquake is calledargtam. The Fig. 1.1 shows a sample seismic

recording.
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Fig. 1.1: A sample seismic recording (a) seismogra(h) velocigram (c) accelerogram

The few basic terminologies associated with anhegagke process are as follows. The

pictorial representation of the terminologies iswh in Fig. 1.2 for better understanding.

i. Focus: The point at which earthquake originateshiwitthe earth. It is also called
hypocenter.

ii.  Epicenter: The point on the earth's surface wisdtirectly above the focus.



iii.  Focal depth: It is the depth of earthquake focusinoother words, it is the distance

between the focus and the epicenter.
iv.  Epicentral distance: It is the distance of sitarfrine epicentre of an earthquake.

v. Hypocentral distance: It is the distance of sitarfrthe focus of an earthquake.

Epicenter

Epicentral Distance
Earth*s surface

Focal depth

Hypocentral Distance

Focus

Fig. 1.2: Pictorial representation of earthquake pocess

vi.  Earthquake magnitude: Earthquake magnitude isr@ruthat characterizes the relative

size of an earthquake.

vii.  Peak ground acceleration (PGA) : it is the maxinuaiue, (positive or negative) of the

ground acceleration that appears in the accelemgra

viii.  Peak ground velocity (PGV) : It is the maximum \&abf the ground velocity (positive or

negative) that appears in the velocigram.

ix. Peak ground displacement (PGD): It is the maximaines of the ground displacement

(positive or negative) that appears in the seisarogr



The earthquake originates at focus, within thehegenerating seismic waves. A seismic
wave is an elastic wave generated by the impulssaarthquake. The seismic signals travel in
all directions from the focus and reach the sitdeng it is recorded with the help of
seismographs. The path by which the wave wouldetramould dependant on the local geology
and soil conditions. During an earthquake, damsgesually maximum at the epicentral region,
where strong motion is maximum. Ground motion rdsdrom the epicentral region can be of
great help in understanding the earthquake proated®e source as effects of transmission paths
are minimal. In the epicentral region near the seuaccelerograms or strong motion records
may be used to provide useful insight into theheprake process. Analysis and interpretation of
observed and simulated strong motion records hmidsiise for an enhanced understanding of
the earthquake process

Natural calamities, which causes immense losshéosbciety cannot be prevented or
controlled. The destruction and loss caused by#tmities are immense. Although the loss of
lives during calamities can never be predictedrev@nted, an attempt could be done to reduce
the casualties occurring during any natural cakwmitmong the various natural calamities,
earthquakes are considered to be more destructiveature. The main reason for considering
earthquake as most devastating natural calamitheshuman and economic losses occurring
during an earthquake. The human loss is mainlytdu#estruction of the man made structures
such as bridges, buildings etc. With the advancénmescience and technology, an attempt is
being made to construct infrastructures that dexdat to seismic activity. Hence developed the
concept of designing earthquake resistant strugtdiiee most crucial parameters (Sehhati et al
[131], Giacinto [46]), considered for designingtiguake resistant infrastructure are the peak
ground acceleration (PGA), the peak ground velo@§V) and the peak ground displacement
(PGD). These parameters are collectively termegt@snd motion parameters.

Conventionally, the ground motion parameters atemated using strong ground motion
predictive equations. Ground motion prediction ¢igus (GMPES) are equations that related the
ground motion parameter PGA, PGV, PGD to independmrameters like earthquake
magnitude, source to site distance and site camditiThey are developed using the traditional

regression analysis method. The major drawbaclsioiguconventional method is that applying



regression analysis for the development of attémwiaelationships is complex because of the
high nonlinearity and inhomogeneity among the patans. Hence, there is a huge need for the
modelling of ground motion parameters using neveehniques so as to reduce the existing

complexities.

1.2 ADVANCED LEARNING MACHINES

Artificial Intelligence (Al) is the branch of comper science that deals with computer
programs that can solve a class of problems sugiatisrn recognition, decision making and
learning. The term ‘Artificial Intelligence’, wasrét coined by John McCarthy in 1955. The
term is defined as the discipline of developing pomational agents that can act intelligently.
An agent is anything that acts when subjected temrironment or situation. The agent is
said to have acted intelligently if agent’s actiane in accordance with the goal required by
the environment, or if the agent is flexible wherbjgected to changes in its environment or if
the agent willingly learns or adapts itself to thevironment or if the agent is capable of

taking appropriate decisions when subjected toadsor options.

An agent is termed as a computational agent whemattions or decisions made by
the agent could be expressed in terms of computatitence the decision or action is
furcated into a primitive operation that could meplemented on a physical device. For an
instance, if the agent is a computer, the primityperation will be carried out in hardware.
There are some agents on the contrary, that cabeotomputational, say rain or wind
causing erosion to landscape. Hence, it is an aigudeclaration if all intelligent agents are
computational. The main goal of artificial intekigce is to design intelligent agents. Hence it
works on the principle of understanding the fundataks that make intelligent behavior
possible. It is done by formulating a hypothesiattbould make an agent act intelligently,

after analyzing the agent and then proving the bygsis by testing.

Computational intelligence (Cl) is the study otura inspired computational methods
that could be applied to real world complex probdemnvhere traditional mathematical
modelling fail. Computational intelligence is apmito problems such as a complex process

too complex for mathematical reasoning, or the psscconsists of lots of uncertainties or
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when the process is stochastic in nature. The €$ ulse combination of 5 complementary
techniques as fuzzy logic, artificial neural netlgyrevolutionary computing, learning theory
and the probabilistic methods.

Although computational intelligence and artificiahtelligence, both work on
achieving long term goal of acquiring intelligense that a machine could perform a task
intellectually, there exist a key difference betwammputational intelligence and artificial
intelligence. Computational intelligence is a subst artificial intelligence. The atrtificial
machine intelligence works on hard computing teqghes and the computational machine
intelligence works on soft computing techniquese ™oncept of binary logic, consisting of
boolean 0 and 1, based on which modern computeksyas followed in hard computing
techniques. The drawback of this concept is thdt alb problems could be expressed in
absolute terms of 0 and 1. Hence, in this scenadt, computing techniques come into
picture. The fuzzy systems which helps in bettpresentation of the problem, by expressing
it in a range of value ranging from 0 to 1.

Machine learning (Bishop [24]) is an emerging diethat evolved from the theory of
computational learning and pattern recognitiorthe domain of artificial intelligence. Machine
learning was defined by Arthur Samuel in 1959 & freld of study that gives machines or
computers, ability to learn without being expligitrained or programmed. Thus, it deals with
the development and construction of algorithms taat learn from the data. The algorithms
,thus developed operate by building a model, frbmn sample data provided for training the
model and hence making predictions. Machine learhias its application in a wide range of
fields such as computing task where explicit dasigrof algorithms is not feasible, in the
discipline of computational statistics, which foesa®n computer based predictions etc. Machine
learning and pattern recognition are facets of dame field. Based on the type of learning
machine learning could be broadly classified asstped learning, unsupervised learning and
reinforcement learning. Machine learning coulddle categorized as classification, regression,
clustering and dimensionality reduction based oae tlesired output of the machine. The
supervised learning algorithm has the ability talgre the training data and to draw conclusions
as either classification for discrete data or esgaession for continuous data. The generalization

is the ability of any learning method to predict #xact output for every valid input.
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The goal of machine learning, shifted from focgsio achieve intelligence as in the field
of Al, to solving practical problems using methddsn statistics and probability theory, rather
than using symbolic approaches used in Al. Althoomgithine learning employs methods used in
data mining, there exists a difference. The mach&aening concept focuses on learning a
machine for prediction based on some propertietheftraining data, whereas the data mining
aims to discover unknown properties of the data VJdrious approaches in machine learning are
decision tree learning, association rule learnigificial neural network learning, inductive
logic programming, support vector machines (SVM)lustering, bayesian network,
reinforcement learning, representation learningnragtry learning, sparse dictionary learning,
genetic algorithms etc. Machine learning methods a@so referred as predictive modelling.
Machine learning is gaining popularity and is apglin almost all fields of pattern recognition

problems.

The topics relating to advanced machine learningude the application of kernel
methods, graphical models, tensor approach, sepergised and active learning, boosting,
bagging etc, to data analysis. For modelling gihssticated and advanced machine learning
models for complex real world problem, the releav@aradigms are kernel methods and

graphical models.

The basic principle of kernel methods is to creattamework, so that the approaches
designed for linear relations and patterns coultextended to nonlinear cases. In the kernel
method approach, the data are first mapped ontmla dimensional feature space, and then
various algorithms are applied to this feature epacfind patterns or relations in the data. The
mapping is done using functions named kernel fonsti Since the mapping could be done
without any constraints such like linear mappirtg telations developed in the data could be
linear or nonlinear. This is the major advantageusing kernel methods. The few algorithms
operating with kernels are Gaussian processesgipaincomponents analysis (PCA), Fisher’s
linear discriminant analysis (LDA), spectral clugtg, support vector machine (SVM), relevance
vector machine (RVM), etc. The kernel functions aedected based on the problem. The
commonly used kernel functions are Linear Kernelussian Kernel, Polynomial Kernel, Bessel
Kernel, Bayesian Kernel, Circular Kernel, Wavelerifel etc. The popular kernel methods based

approach is support vector machines (SVM) and agle® vector machine (RVM).
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Graphical models work on developing a framewonk gooviding solutions to complex
real world problems consisting of huge dataseth wivery large number of features or attributes
defining the data. Graphical models are generglyliad to find intelligent conclusions using
local information or knowledge for such datasetenée a graphical model is nothing but a
probabilistic model in which the structure reprasenthe conditional dependencies between

attributes or variables could be represented napig

The various algorithms based on graphical modedp hn drawing intelligent
conclusions, learning and decision making for daefgrof problems such as statistics, artificial
intelligence, natural language processing, computak biology, etc. The further advances in
machine learning are the development of hybrid rsodach as ANFIS, which combines two
approaches such as fuzzy logic and ANN. Furtherpattempts are being done to improve the
existing approaches. One such attempt is the deneot of extreme learning machines (ELM).
The extreme learning machine is a generalized esifeyer feedforward network (SLFN) in

which the hidden layer parameters are not tuned.

In this study, the problem statement is a premhcproblem. The aim of the study is to
develop predictive models based on advanced madbaraing. The approaches used in this
study are neural network base learning, kernel aasttbased learning and tree based learning.
The advance machine learning algorithms used B ghidy for the development of predictive
models for forecasting ground motion parametersErkl, SVM, decision tree, and hybrid
architecture ANFIS. The three time domain groundiomoparameters which are predicted by the
model are peak ground acceleration (PGA), peak ngtoeelocity (PGV) and peak ground
displacement (PGD). The model is developed usimgdatabase released by PEER (Pacific
Earthquake Engineering Research Center) [111]. Egobnd motion parameter is related to
mainly to four seismic parameters, namely earthguakgnitude, faulting mechanism, source to

site distance and average soil shear wave velocity.

Moreover, in this study, a novel neuro fuzzy t@ghe, RANFIS is also proposed
for forecasting ground motion parameters. The pgeddRANFIS model is an improvement of
the conventional ANFIS model. This advanced leagrnmachine integrates the explicit

knowledge of the fuzzy systems with the learningadslities of neural networks, as in the case



of conventional adaptive neuro-fuzzy inference eys{ANFIS). In RANFIS, to accelerate the
learning speed without compromising the generatmatapability, the fuzzy layer parameters

are not tuned.

The experimental results obtained from all thepps®d predictive models validate the
improved performance of the developed predictivede® for forecasting ground motion

parameter, with lesser computation time comparquity studies.

1.3 RESEARCH GAP

The ground motion parameters are estimated coiovedly, using strong ground motion
predictive equations, which are developed usinditicamal regression analysis. The application
of the regression method, in the development of gheund motion prediction equations
(GMPESs) equations can produce some problems dumadonogeneities in terms of independent

parameters.

Ground motion prediction equations are equationat trelate the ground motion
parameter PGA, PGV, PGD to independent parametiets & earthquake magnitude, source to
site distance and site conditions. These paramaterSighly dependant on each other. Hence the
modelling of GMPEs is highly complex due to mudtiable dependencies. For applying
regression analysis for modelling the GMPEs, themexities are reduced by assuming linear
dependencies among the variables. Hence a numbessaimptions are included in the
modelling. Thus the inclusion of assumptions insesahigher measure of error percentages in
the predictive equation because, for a highly nogar form of the regression, a small change in
one coefficient strongly affects another coeffitiewalue. Thus, there is a huge need for special
techniques to be employed for the modelling of gobumotion parameters. The advanced
learning machines can overcome these drawbacks. pféeictive model developed using
advanced learning machines has many advantagesmdéaelling using machine learning, it is
not required to assume linear dependencies amengatiiebles. Thus, there are no assumptions

made and no irrelevant coefficients are included.



The modelling is for functiort — f(earthquake magnitude, distance, site condition) ,
where Y represents the ground motion parameters PGA, PGV and PGD. Hence, in the
development of predictive models using machine nieg; the interdependencies of the
parameters are considered, as there is no congtrainthe parameters should be linearly
dependent. Another advantage of using advanceflinetearning is that the predictive models
developed using machine learning gives better ptiedi accuracy in lesser computational time
compared to GMPEs. In the GMPEs, since linear nliodeils considered, each parameter used
for modelling such as earthquake magnitude, distamd site conditions includes a very large
number of coefficients. Thus the computational tifoe solving an GMPE equation would be

very high.

As an example, a GMPE, named ‘Campbell and Bozarf20] is shown in appendix A.

The ‘Campbell and Bozorgnia’ ground motion predictequation is given along with the table
showing the values of the coefficients. The equeis modelled as a function of six variables
and consists of 16 coefficients. Hence, for solimgequation, the corresponding values have to
be substituted. Thus, it is clearly observed tbatisg a GMPE is cumbersome, time consuming
and involves a lot of computational complexity. Mover the results obtained by solving a
GMPE consist of a very high percentage of errois hbserved that ‘Campbell and Bozorgnia’
ground motion prediction equation give an error soea of 0.93, measured as mean absolute
percentage error (MAPE) [4,5,45,100] on an eartkgudatabase of PEER [111]. Hence it is
clearly observed that the GMPE models do not goseiaate results.

Furthermore, from the literature survey as dedaitechapter 2 of the thesis, it is observed
that there is limited application of soft computiteghniques for prediction of ground motion
parameters. There exist only 4 models based onceafiputing techniques, as shown in Table
3.1. All these existing models are based on newetbork learning. The neural network based
learning such as artificial neural networks havenyndrawbacks such as poor generalization
ability, overfitting of data and the algorithm gef stuck at the local minima. Hence it is

observed that more accurate and efficient predigtiodels could be developed.
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The advanced learning machines have proved itsieef€y in many pattern recognition
problems. The application of advanced machine legrriior prediction of ground motion

parameter should also be possible. In this sty presupposition is analyzed and validated.

1.4 OBJECTIVE

In this thesis, advanced machine learning algosthare used to develop predictive
models for forecasting ground motion parameterse Phediction models are developed on
basically 4 types of learning, namely neural netw@arning, kernel based methods learning,
hybrid models and decision tree learning. The tlye@ind motion parameters in time domain
which are predicted are peak ground accelerati@AjPpeak ground velocity (PGV) and peak
ground displacement (PGD). Each ground motion pat@amis related to four seismic
parameters, namely earthquake magnitude, sourcgteodistance, average soil shear wave
velocity and faulting mechanism. The model is depel using real earthquake records obtained

from the database released by PEER (Pacific EaaltegEngineering Research Center) [111].

The machine learning algorithms used are extrezaening machines (ELM), support
vector regression (SVR) and its three variatiormnely e-SVR, v-SVR and LS-SVR, hybrid
algorithm ANFIS (adaptive neuro fuzzy inferencetegs) and regression tree learning. A single
layer feedforward network (SLFN) is also used fasdelling. The ground motion prediction
model based on SLFN is developed so as to compaxgh the other developed prediction
models based on advanced machine learning. Thisscdmparison helps in highlighting the

advantages of advanced learning machines oveicattifieural networks.

In this thesis, a novel neuro-fuzzy learning niaelcalled randomized adaptive neuro-
fuzzy inference system (RANFIS) is also proposedpfediction of ground motion parameters.
The RANFIS algorithm integrates the explicit knogde of the fuzzy systems with the learning
capabilities of neural networks, as in the conwardl ANFIS system, but with the difference
that, the fuzzy layer parameters in RANFIS aretaoed. This improvement in the architecture
of ANFIS structure helps to accelerate the learnsmgeed without compromising the

generalization capability.
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In this study, the advanced machine learning #dlyos are used to develop the predictive
model in an attempt to develop efficient ground iomofprediction model compared to GMPEs.
The major drawback of GMPE models is the higher suea of error in the results. The
guantitative and the qualitative analysis of al gfroposed prediction models based on advanced
machine learning algorithm, shows that the develgmediction models have a good prediction
accuracy for the forecasting of ground motion pat®m The analysis also shows that error
measure in the predictive models based on advamathine learning algorithm is very less

compared to the existing predictive models as shiowrable 3.1 and GMPEs.

The study of the ground motion parameter is higidyificant in the field of earthquake
engineering as ground motion parameter is a véaedpeter for constructing earthquake resistant
structures. Hence the development of high pretigiedictive models for forecasting ground

motion parameter prediction will be a significanhtribution to the domain.
1.5 AUTHORS CONTRIBUTIONS

The following are the significant contributions @raon the results obtained in this study:

a. In this work, six different prediction models areoposed using advanced machine
learning technique for the prediction of ground imotparameters. The ground motion
parameter prediction model is developed based oraheetwork learning (ANN, ELM),
kernel method learning{support vector regressiomsupport vector regression and LS-
SVR (least square support vector regression)), ithyimodels (ANFIS, RANFIS) and
decision tree learning. The overall performancealbfthe developed model is better

compared to the existing benchmark models in theesdatabase.

b. All the proposed models are developed and testeth@meal earthquake data [23,111].
The database used for modelling is the databaseitEmimand systematized by Pacific
Earthquake Engineering Research Center (PEER) O3 28 a part of a project named
PEER-NGA project. The database file is termed ag\Né&ifile V 7.3.
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. All the developed prediction models are tested 88 @arthquake data records [111] and
further tested, as an external validation, on agro#iet of 140 earthquake data records
[23]. Hence the predictive model is tested for 898nts. This validates the precision of

the proposed model.

. All the proposed prediction model is compared texsting models on the same
database. The benchmark models existing in thes statabase are ANN/SA model by
Alavi and Gandomi [4], GP/OLS model by Gandomild#&], MEP model by Alavi et al

[5] and GP/SA model by Mohammadnejad et al [100is Iclearly observed that the all
the proposed prediction model has better precismmpared to all these benchmark

models.

. The efficacy of all the proposed prediction modgefurther validated by comparing it to
existing GMPE model such as Ambraseys et al. [@nfbell and Bozorgnia [29] and
Smit et al. [142].

The proposed prediction model based on advance ineadbarning overcomes the
existing uncertainties due to the regression arsalyethod of the GMPEs as well the
computational complexities of solving complex GMPH$e existing GMPEs uses
equations developed based on regression analydiscamsists of many geophysical
parameters. The proposed prediction models in shigly use only 4 geophysical
parameters, namely earthquake magnitude, sours#tetalistance, average soil shear

wave velocity and faulting mechanism, for the fasiong of ground motion parameter.

. The proposed prediction model based on advancet@iineatearning could be used as a
tool for faster and accurate prediction of the gebumotion parameter with lesser
calculation overhead (comparatively with GMPES), alf areas such seismic risk
assessment, seismic hazard analysis, earthqualganesstructural engineering etc.,

where the principal ground motion parameters aeel as a vital input parameter.
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h. In this work, a comparative study of the all thgoalthm used for developing the
predictive models is done in terms of the learrgfigctiveness of each algorithm. The
learning effectiveness is measured in terms of asome of ‘overfitness’. This
comparative analysis further highlights the advgesaand drawbacks of each advanced

machine learning algorithm.

i. In this thesis, a novel neuro-fuzzy learning maehialled randomized adaptive neuro-
fuzzy inference system (RANFIS) is proposed fordpréng the parameters of ground

motion parameters.
1.6 ORGANIZATION OF THE THESIS

The thesis is organized into ten chapters. A sishmary of each chapter is given below.

Chapter 1 gives an overview of the thesis. Iltegi\an introduction to the problem
statement by briefly explaining ground motion pagsens and machine learning. The research
gap is also highlighted which substantiate the @tghcontribution. The organization of the

thesis is also explained in this chapter.

Chapter 2 details the literature survey of theugtbmotion parameters and the existing
advanced machine learning algorithms. The chageorganized such as it first gives an
introduction of the various advanced machine lemyralgorithms and its application is various
domains. The next section explains the existindiegmn of the advanced machine learning
algorithms in the field of earthquake engineering geosciences. The chapter is concluded by
the section which details the existing work donethe domain of ground motion parameter

prediction.

Chapter 3 explains the database used in this stndythe explains the various modelling
parameters. The chapter is organized such thgivés all the information relating to the
modelling such as data preprocessing, input paes)anodelling function, training and testing
datasets, etc. Furthermore, the chapter also amnthe various criteria based on which the
performance of the developed prediction models asmgared. The chapter also lists the

benchmark prediction models and GMPEs existinghis same database. All the proposed
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prediction models in this study are compared tesehbenchmark models mentioned in this

chapter.

Chapter 4 details the prediction model based amahenetwork based learning. The
chapter meticulously describes a prediction modeakeld on extreme learning machines (ELM).
The chapter also describes a very simple ANN madekediction model based on single layer
feed forward neural network (SLFN). The SLFN madealeveloped so that it could be compared
with the ELM based prediction model. This compariselps in validating and substantiating the

advantages of the novel algorithm, extreme learmiaghines, based on neural network learning.

Chapter 5 explains the prediction model develape#&ernel method based learning. The
algorithm used is support vector regression (SVRNs chapter details the three variations of
SVR algorithm used in modelling, nametySupport Vector Regression;Support Vector
regression and LS-SVR (least square Support Vé&Regression). The chapter also details the
modelling parameters such as the kernel functieesl land other relevant parameters. All the
three prediction models developed on these 3 a&lgos are compared to obtain the best

prediction model based on support vector regression

Chapter 6 describes the prediction model basedeoision tree learning. A Decision tree
is a predictive learning method to develop a tike mnodel used to predict a target, based on a
set of input features. The model developed is tdrageregression tree, when the predicted target
values take real continuous values. This chaptéaildethe modeling using regression tree

learning.

Chapter 7 consists of the prediction model based bybrid model, adaptive neuro fuzzy

inference system (ANFIS). The chapter details tiehitecture and the modelling parameters.

Chapter 8 details the prediction model based len novel neuro fuzzy algorithm
RANFIS. The chapter first details the architectof¢he novel algorithm RANFIS and compares
it with the conventional ANFIS model for a benchkaroblem. This comparison validates the
advantages of the novel algorithm. The followingtgms of the chapter describe the application

of this novel technique for forecasting ground ootparameter.
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Chapter 9 compares all the developed predictiordeatso In the chapters 4-8, the
respective developed prediction models are comptreekisting benchmark models and the
GMPEs. In this chapter, all the developed predectivodels in this study, for forecasting ground
motion parameter are compared in terms of prediciiccuracy and error measure. Hence this
chapter concludes the best prediction model amdinipeadeveloped prediction models in this
study. Futhermore, the prediction models are coetpdor ‘learning effectiveness’ of the
algorithm. This section of the chapter helps inlyiag the learning ability of the algorithms.

The learning ability of the existing benchmark meds also analyzed.

Chapter 10 concludes the thesis by highlightiregstgnificant contribution of the thesis

with the scope for further research in the area.
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Chapter 2

LITERATURE SURVEY

In this chapter, a comprehensive survey of theadomf the study is done. The chapter is
organized as follows, the popular advanced madeiaing algorithms are briefly explained in
section 2.1. The section 2.2 details the study wit@ag machine learning algorithms
implemented in the field of earthquake engineeand geosciences. The existing soft computing

techniques in the domain of ground motion param@atediction are explained in section 2.3

2.1 ADVANCED LEARNING MACHINES

It has been observed that in the recent yearse thas been a tremendous increase of
application of soft computing techniques and maeh@&arning in almost all fields of engineering
and sciences. The most popular soft computingnigale is artificial neural networks (ANN)
(Haykin [60]), because of the ease of implementatidNN are models based on the neural or
nervous systems of brains. As the brain learns fe@perience, this biological inspired method
of computing, also learning from the experimentaining data. In simple words, ANN consists
of group of processing elements called neuronschviare interconnected to form a structure.
The strength of the connection between neurongnslized by weights, which are optimized
during training of the model. The commonly usedoathm used for training weights is
backpropagation. The neurons consist of activdtimetions which decide output of the neuron.
The basic structure of ANN consists of an inputelayn output layer, and one or more layers of
hidden neurons. The input layer consists of thptirparameters, the output layer consists of
single or multi neurons depending whether its grgitput or multi output problem. The layer
between the input and output layer is called tlieldnm layer and it consists of hidden neurons.
The ANN structure depending on the number of hiddgars is termed as a single layer or multi
layer neural networks (Hornik [62]). The artificiaeural networks are the most popular

technique in the domain of neural network basexhleg.
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ANN has gained popularity in almost all fields kidiverse domains such as prediction
problems (Adomaitis et al [3] , Keskin et al [7§pandana et al [144], Thakur et al [151] ),
control system (Arslan et al [11], Badlani and Bbiaji4], Keskin and Goker [79], Keskin [80],
Kiran and Rajput [84] , Metin et al [97,98] ), bntpess controller (Khan et al [81,82])
biomedical signal and image processing (ManjulaBd Rao [92,93], ManjulaSri et al [94], Rao
[120], Zuhair et al [163]), fuzzy systems (Nagaaiad Saini [101], Nagaria and Singh [102]),

decision systems ( Ozkan and Inal [104]) and so on.

Though artificial neural networks are popular doiéts ease of implementation, it suffers
a major drawback which prevents it from being dicieit algorithm. Artificial neural network
works on the principle of empirical risk minimizati and hence the best ANN architecture is the
one having minimum training error. This leads tatwajor issues of overfitting and local
minima. ANN also has an overhead as its computaticomplexities are dependent on the
dimension of the input space. Conventional neuelvarks have always been a popular machine
learning technique widely used over the decadeas,naany researchers are constantly working
for the advancement in the architecture and trgirspeed of neural networks. One major
improvement in the existing neural net architectues the claim that the weights of the output
layer are more relevant than the weights of theldndlayer by Schmidt et al [128]. This claim
was well justified with feedforward network withsangle hidden layer, where the weights of the
hidden layer were randomly assigned and only thight® of the output layer were calculated

using the pseudo inverse technique.

The same concept of random weight vector assighmvas further extended into the
implementation of functional link (FL) neural netiks by Pao et al [108]. The random vector FL
nets are similar to backpropogation (BP) or gemegdldelta rule (GDR) net with the difference
that in FL nets the weight vectors are not leatmadassumed randomly. In this architecture, the
hidden layer neurons are randomly assumed, wittcdimks from input to output neurons and
the output layer weight vector are obtained usisgugdo inverse. A similar architecture of single
hidden layer neural network is presented in Che&j {Bes an instant learning algorithm that
rapidly decides the weights of the neural netwditke paper also provides the upper bound of

the number of the hidden nodes to be able to shleutput layer weight matrix exactly.
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Related works on radial basis function (RBF) netsawith randomly selected RBF centers
and suitably selected RBF width were presented doyd_[90] and Park et al [110]. Once the
centers had been chosen, the adjustable weightseddutput layer were determined by linear

least-square optimization.

The recently proposed extreme learning machinédMjBoy Huang et al [65,66] are
analogous to the above discussed architecturesmiitbr variations mentioned by Wang and
Wan [155]. The extreme learning machine is germzdlisingle layer feedforward network
(SLFN) in which the hidden layer parameters aretooed. The weights of the nodes in the
hidden layer in an ELM are randomly assumed, thusbkng the ELM architecture to be
independent of the training data set. Hence theeed learning machine is said to be highly
scalable with lesser computational complexity. Tarshitecture is being applied to various
domains such as power systems (Huang et al [6di@¢césting (Han and Liu [59], Kaya and
Uyar [72], Sun et al [149]), pattern recognitionafi§agachelvi et al [71]), biomedical signal
processing (Song and Lio [147]) and so on. Theeext learning machine evolved in many

stages as mentioned by Huang et al [65].

ELM uses sigmoid activation functions in the hiddayer or radial basis functions. In
ELM, the bias of the output neuron is set to zerolJe the bias of the output neuron in Schmidt
et al [128] could be any value. Comparing ELM ferthvith Chen [33] and Pao et al [108], it is
observed that the only difference in the ELM arettiaire is that there is no direct link from input
to output neurons. The direct link from input totgut neurons was designed to deal with the
linear components existing in the data. The eftectthe performance of the machine by this
minor variation has not been shown. This minoratash of removal of direct links in the ELM
architecture could have an adverse effect on thi@meance if there exist linear components in
the data. The ELM-RBF architecture is a slight adon of the RBF net by Lowe [90] such that
RBF neurons widths are also randomized for all Rifarons along with the RBF neuron
centers. But this variation could not be seen asmgroved architecture because it has been
proved that RBF networks are universal approxinsaboespective of having same or different
RBF neuron width. In fact, it was shown that SLFMNmwarbitrary bounded and non constant

activation function are universal approximators.
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Kernel techniques are a group of novel methodpéttern analysis where support vector
machines are vital elements. Kernel methods firrdstblution after explicitly mapping the data
into the new high dimensional kernel Hilbert spatée number of coordinates is decided by the
number of features of the data. Kernel trick useshdé function for relating feature space by
computing the inner product of data pairs. Suppector machine (Brereton and Lloyd [25]) is
the most popular algorithm operating with kernebsipport vector machine algorithms are
gaining much popularity compared to other soft cotimg techniques such as artificial neural
networks. Though artificial neural networks arepplar due to its ease of implementation, it
suffers a major drawback which prevents it fromnigean efficient algorithm. Artificial neural
network works on the principle of empirical risk mmization and hence the best ANN
architecture is the one having minimum trainingoerrThis leads to two major issues of
overfitting and local minima. ANN also has an owatl as its computational complexities are
dependent on the dimension of the input space.dwang all these drawbacks, SVM provides
global, unique and sparse solution to problems. dtso less prone to problem of overfitting as it

works on structural risk minimization.

Therefore, this architecture is being applied ieexde domains such as credit scoring
(Zhong et al [161]), prediction problems (Acir aBdzelis [1], Li-Xia et al [89], Patil et al [112],
Samui and Kurup [126], Yan and Chowdhury [158], dleb al [162]), pattern recognition (Wang
et al [156], Zhang et al [160], Samui et al 201Zgntrol and power system (Eris et al [40],
Ranaee et al [119], Xanthopoulos and Razzaghi )15ignal processing ( Rojo-Alvarez et al
[124] ), geotechnical engineering (Pal [105-1074hGand Goh [49], Samui [125]), and so on.
Although Support Vector Machines were initially dsas a tool for pattern classification, it is
gaining popularity in function estimation problemot Chorowski et al [36] reviews a
comparison between ELM and SVM as classifier. Bhugly analyzes both learning machines as

classifiers for its performance and computatiomaét

Decision Tree learning, a popular tool used inadatining is gaining popularity as
predictive tool for supervised learning in varidigdds such as in medicine, used as a predictive
tool for diagnosis of diseases (Lemon et al [8Tti®ers et al [145]), used as a forecasting tool
(Gokhale and Lyu [48]). Learning by decision trdess an overhead over other learning

techniqgues because of the representation abilityghef model which makes it intuitive and
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adaptable. The interpreting of the results becosasger in a tree representation. Moreover, since
the tree representation is hierarchical in natthre, modelling is relatively easier compared to

linear modelling in case of a large number of infeatures.

Adaptive neuro fuzzy inference system (ANFIS) & gnother soft computing technique
which is gaining popularity as a computational lilgent system. ANFIS is an integrated hybrid
architecture of fuzzy logic with neural networksick that the knowledge gained by the fuzzy
logic is used by the learning algorithm of the muretwork. The initial fuzzy model is derived
with the rules from the data, and the neural netwearns and trains the rules to get the final
model. The hybrid learning algorithm used in ANFEI@sists of gradient descent for the fuzzy
layer and least square estimate (LSE) for the tiredput layer. This architecture has been
implemented in various domains such as geotecheiggiheering (Asadi et al [12], Azamathulla
et al [13], Cabalar et al [28]), prediction probkifBagheri et al [15], Bektas Ekici and Aksoy
[16], Boyacioglu and Avci [21], Melin et al [995ingh et al [136], Singh et al [137], Tien Bui et
al [149]), image processing (Singh et al [134],dBirand Barada [135]), modelling systems (
Hosoz et al [63], control systems (Khuntia and Raf88], kurtulus and Flipo [86], Singh and
Barada [133]) and so on. Although ANFIS architeetuare widely used, it has a major
drawback of high computational complexities, whitiakes the algorithm slow, with higher

number of membership functions.

In artificial intelligence, there exists a domahproblems, known as search problems,
that work on the principle of optimization. The pigrly used algorithms for optimization
problem are genetic algorithms (GA) and particlesw optimization (PSO). Genetic algorithm
belongs to the class of evolutionary algorithmsl #re optimization is done by selecting the best
solution from a set of candidate solutions by tegtts fitness on a function termed as objective
function. Particle swarm optimization is a compuatal method which works on optimizing the
problem by repeatedly improving the candidate smuby improving the quality. Both GA and
PSO are heuristic search algorithms. These algositare also being used in various domain
such as pattern recognition (Anzar et al [8], Anaad Sathidevi [9], Quaranta et al [116]),
optimization in control system (Bhateshvar and Matfl7], Raviprasad and Singh [138]),

prediction using hybrid model (Patil et al [11A)ptimization in signal processing (Rajavel and
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Sathidevi [118]), improving architecture of exigfitearning machines such as SVM (Amari and
Wu [7],Ardjani et al [10], Chou et al [38] , Sana{d27]), and so on.

2.2 MACHINE LEARNING IN EARTHQUAKE ENGINEERING
AND GEOSCIENCES

Among all the natural calamities earthquakes thee most threatening natural
calamity, due its tremendous destructive prop&gismic hazard is anything associated with an
earthquake like strong ground shaking, landslitigaefaction, faulting etc. that may affect the
normal activities of the people. The modelling afgnd motion signal for assessment of seismic
hazard such as Goda et al [47] and Sokolov and Wdi46] is important to evaluate the
damage of an earthquake to the environment. D@gawing urbanization, there is tremendous
increase in the population density in earthqualen@rareas, which in turn is increasing the
demand for earthquake resistant structures.

With the recent advances in the field of artificiatelligence and soft computing
techniques, the traditional mathematical functioeed for big data analyses and other complex
analyses are replaced by them. Many researchezathg@re working to merge these advanced

techniques of Al with the field of earthquake ergginng and geosciences.

Gandomi and Alavi [44] used a new method, multigggenetic programming (MGGP)
method for the analysis of earthquake engineering geotechnical systems. MGGP is a
modified GP approach for selection of model strreetwombining traditional regression
technique for parameter estimation. This study rbjehighlights the drawback of traditional
regression technique for the domain, such as dewied engineering which involves complex
processes depending on multivariables. Complexity geotechnical behavior is due to
multivariable dependencies of responses of soil rac#t. The traditional forms of engineering
design solutions are implemented after simplifyitfge complexities with assumptions.
Incorporating these simplified assumptions into eiliwlg leads to very large errors. These

overheads are minimized by using advance learnachimes.

Bose et al [19] used ANN for earthquake earlyniray for finite faults. Erol and Erol
[41] used machine learning for geoid modelling. Tdigorithms used are ANN, ANFIS and
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wavelet neural networks. In this study, the modddveloped using machine learning are
compared to the multivariable polynomial regressguations and thus the study validates the

advantages of using machine learning over regnessialysis.

Goyal et al [50] merged machine learning in treddfiof climatology. In this paper, a
comparative study of learning machines such as AMN;SVR, ANFIS for modelling
evaporation system for the tropical climate envinent. This study clearly proves that the
machine learning outperforms the traditional engpiriequations of this field, such as empirical
Hargreaves and Samani method (HGS), and the Stey8tewart (SS) method.

Gullu [53] used genetic expression programming RBr estimating the strength and
elasticity of soil. The ground motion parameters aignificant for the damage potential of
structures. For designing a good structure, the @inditions and structure ability are equally
relevant as ground motion parameters [53,54,57¢nG#t al [32] used support vector machines
for assessing the seismic hazard for school byldghinozuka et al [139] made the attempt of
modelling the earthquake wave motion with synthdata by using computer algorithms. This
study was an attempt to merge the recently advgnmmputer applications to the domain of
geosciences and earthquake engineering. Segou @ndavis [130] used the standard available
software, MATLAB for processing the ground motiagnals and hence estimating the ground
motion parameters. Jafarian et al [68], Kermaniak{76] used genetic programming for
modelling the ratio of PGV to PGA. In this studgtAl technique GP has been used to develop a
new parameter, the ratio of PGV to PGA. The studg aalidates well the significance of the

new parameter for understanding the ground motion.

Chakraverty [30] used neural network for simulgtithe response of a two storey
building subjected to earthquake. Gullu [51] usédok prediction of shear wave velocity. Park
et al [109] used ANFIS for mapping of ground subsick hazard. Shiri et al [140] made a
comparative study of soft computing for predictithgctuation in the level ground water. The
machine learning algorithms used in the study &M&AANFIS, SVM and GEP. Pardhan [115]
used the soft computing techniques in geotechrdoahain, such as predicting the landslide
susceptibility. The techniques such as decisieestr SVM and neuro fuzzy model ANFIS were
used and a comparative study was done. Oho anchdafd 03] used ANFIS for mapping

shallow landslides in the tropical hilly area tadalide susceptibility. Furthermore, Tien Bui et al
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[150] used ANFIS for prediction of landslide susitgipity for a province in Vietnam. Seyedpoor
et al [132] used soft computing for design optiraeth dam subjecting to earthquake loading.

The optimization algorithm PSO was used for stobbagptimization.

Hence, from this study it is observed that theaaded machine learning has gained
popularity in prediction problems relating to egubke engineering and that it could be

extended to prediction of ground motion parameters.

2.3 SOFT COMPUTING FOR PREDICTION OF GROUND MO'NO
PARAMETERS

Ground motion parameters are vital for designé@gthquake resistant structures and
seismic hazard analysis (Sehhati et al [131], @iacj46]). Conventionally, the ground motion
parameters are estimated based on ground motiaficpoa equations (GMPES) which are
developed using the traditional regression analysithod. These predictive equations relate the
ground motion parameter in terms of independentabbes such as earthquake magnitude,
source to site distance, site conditions, seismavewpropagation and earthquake source
characteristics. These independent variables ageribed in terms of many other geophysical
parameters. Geophysical parameters (Douglas [39)jchw describe earthquake source
characteristics are earthquake magnitude, seismimant, fault direction, faulting mechanism
based on strike, dip and rake angles, stress dtopThe parameters like focal depth, epicentral
distance, hypocentral distance, representing tetamtes travelled by the seismic waves etc.

constitute the path effects.

The site conditions and seismic wave propagatiopegrties include the soil type at the
recording site and propagating velocity of seismaves as seismic waves travel with different
velocity while propagating through soil and rockeTstudy of the faults and its offsets and slip
rates by Ren et al [121,122,123] points out theetminties involved. Thus, the drawbacks of
using regression analysis for the development daddiptive equations is that, the high
nonlinearity and inhomogeneity among the independanables directly affect the coefficients
of the independent variables in the developed ssgga equation. Moreover, in regression

analysis the model is developed based on a predefinear or nonlinear equation, with the
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hypothesis of normality of residuals for testing teveloped model. Hence the developed
predictive equation based on regression analydmsgisly uncertain due to both computational

uncertainties and the uncertainties of indepengariaibles. Thus, there is a huge need for the
modelling of ground motion parameters using neveehniques so as to reduce the existing

errors in the ground motion parameter estimation.

A new method called CAE (conditional averageneator) was applied to the attenuation
relationship by Fajfar and Perus [42]. CAE is nargmetric multi dimensional regression
approach having a structure similar to neural néteoln this paper horizontal component of
PGA is predicted as a function of two parametersetg earthquake magnitude and distance.
The Ground motion parameters predicted using CAEhote are compared to the existing
Ground motion prediction equations (GMPE's) modBlsore and Atkinson [18], Campbell and
Bozorgnia [29], Abrahamson and Silva [2], Chiou afmungs [35], Idriss [67]) by Fajfar and
Perus [43] and Perus and Fajfar [113]. The majawback of using conventional method is that
applying regression analysis for the developmen@ténuation relationships is a lot more
complex because of the high nonlinearity and inhgeneity among the parameters. Thus, there
is a huge need for the modelling of ground motianameters using newer techniques so as to

reduce the existing complexities.

Kerh and Chu [73] introduced the application otira¢ networks for estimating ground
motion parameter, PGA. Although the prediction aacy of the model was not very high, the
study validated that soft computing could be applia the prediction of ground motion
parameter. This later lead to studies such as, Kedi [74] and Gunaydm and Gunaydm [58].
Kerh et al [74] applied artificial neural netwsrkor predicting PGA using microtremor
measurement. Gunaydm and Gunaydm [58] applied ANNMarthwestern Turkey region for
PGA prediction. Kerh and Ting [75] used back pragamn neural networks for predicting the
PGA in three different directions (vertical, eaststy and north-south) at stations along the high
speed railway line in Taiwan using the seismic peaters and the historical earthquake data. The

estimated values were compared with the microtremeasurement of the respective station.

Gullu and Ercelebi [55] made a remarkable effortévelop an attenuation relationship

based on strong motion data on turkey region usirificial neural networks. Though the
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correlation between the observed and predicted R®&®d many questions (Gullu and Ercelebi
[56]), the attempt made indicated that neural nétaocould be applied in the field of

seismology. An equation discovery approach was usedMarkic and Stankovski [95] for

modelling PGA. The equation discovery is a mach#aening technique which uses context free
grammar (CFG) for generating equation structureghvbest describes the given data. In the
study, Lagramge equation discovery system is usedbtain equations for predicting PGA. The
system gives a fair correlation between the obskeraed the predicted PGA values. The
equations obtained by Lagramge equation discowstem, for estimation of PGA have lesser
complexities compared to the existing GMPEs. Calmia Cevik [27] developed an attenuation
relationship for the Turkey region using genetioggamming (GP) for the prediction of the

PGA. The developed model when compared to the @tkisting models gives better correlation.
The advantage of using GP for modelling PGA is thatfunctions are not predefined as in the

case of the traditional regression analysis.

Gandomi et al [45] developed a new GMPE modehgigi hybrid model of genetic
programming (GP) and orthogonal least squares ffedigtion of PGA, PGV, and PGD. The
model gives a fair correlation value with lower MSHlues. The model developed is
advantageous as the equations developed by thisdhgindel for the prediction of ground
motion parameters are comprehensible comparedetedhations of GMPE models. Alavi and
Gandomi [4] used a hybrid model ANN/SA (coupling ARN with simulated annealing) to
predict the principal ground motion parameters P8&Y and PGD. The model is better than
the GMPEs for the same database as it gives gowdlaiion value. The disadvantage of the
model is the time taken to achieve acceptable M8E t the introduction of simulated
annealing. Alavi et al [4] developed a variant GMRi&del for prediction of ground motion
parameters using multi expression programming (MER)is model gives comparatively
reasonable prediction accuracy and validates thrarddge of MEP over the traditional GMPE
equations developed using regression analysiso@dth this model develops the ground motion
prediction equation considering the complex natfrthe ground motion parameters, the model
suffers the drawbacks of genetic programming (G&et models as the functions are formed

randomly and not on the physical process.

26



Gullu [52] made an attempt to predict Peak groandeleration for the turkey region
using a new approach called Gene Expression Progiragn(GEP) and conventional regression
method. GEP's are an extension to Genetic Prograginiihe best model is selected by ranking
the models using likelihood based estimation. Tiuelehis said to have a fair validation when
compared to the existing attenuation relationsloipthe region. Mohammadnejad et al [100]
developed a novel GMPE model using the hybrid rhefleggenetic programming (GP) and
simulated annealing (SA). Although the predicti@cwacy of the developed model is not very
high, the developed model is advantageous asviés@ lesser complex prediction equation for
prediction of principal ground motion parametersAP8GV and PGD.

It is observed from the study that the existinf§ somputing technique for the prediction
of ground motion parameter is mainly neural netwoakd its hybrid models. Thus, there is a

scope for modelling efficient predictive models.
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Chapter 3

DATABASE AND DATA PREPROCESSING

3.1 INTRODUCTION

In this chapter, the database used for this stuéyplained. Real earthquake records are
used for modelling. In order to have a commonfptat for comparison of the models, the
database consisting of real earthquake data, alaitdobally is considered. In this chapter the
entire data preprocessing and modelling paramaterdetailed. Section 3.2 details the database
used for modelling. The existing models in the saa@base are detailed in section 3.3. Section
3.4 explains about the modelling parameters. Thiews steps in data preprocessing is explained
in section 3.5 such as selection of input parareetermalization of the database, splitting of the
database into training and testing data sets. Tapter is concluded by section 3.6 which
detailed the various criteria based on which the=ldped prediction models are evaluated for its

efficacy and validity.

3.2 DATABASE

Pacific Earthquake Engineering Research CenteEREystematized and compiled a
database [111] popularly known as NGA WEST 1, i628@s a part of a project named PEER-
NGA project. The database file is termed as NGAfiigaV 7.3. The database includes a very
large set of ground motion recordings recorded dwaide. A part of the database is shown in
appendix B. It consists of shallow crustal earthkgsarecorded in active tectonic regimes. The
database is comprehensive having sets of meta-dlatbyding around 116 geophysical
parameters such as different distance measurenfoodi8 to column 53 of NGA flatfile V 7.3),
various site characterizations, earthquake soum®@, detc. The database consist of 3351
earthquake records and has been used to develovéeldwide ground motion prediction
equations (GMPE) models. The few GMPE models dg@esldn this database are Abrahamson

and Silva model [2], Idriss model [67], Boore antkiAson model [18], Campbell and Bozorgnia
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model [29] and Chiou and Youngs model [35]. Theaase used in this study is a subset of
NGA flatfile V 7.3. The sample database is showrappendix C. The data sets in this study
consist of 2252 earthquake records, which is fursipdit into training and testing data consisting
of 2815 and 563 earthquake records respectivelg. sHttion 3.5 in this chapter clearly details

the various steps of data preprocessing.

3.3 EXISITING MODELS IN THIS DATABASE

The Table 3.1 shows the existing prediction modelsed on soft computing techniques.
These models are considered as benchmark modederfgrarison of all the proposed prediction
models in this thesis. From the literature surveis observed that these are the only existing

prediction models in this database [111] basedofincemputing for prediction of ground motion

parameter.
Table 3.1 Existing soft computing ground motion pediction models
Model Approach Authors
ANN/SA model Artificial neural network/ simulated Alavi and Gandomi 2011 [4]
annealing
MEP model Multi Expression Programming Alavi et al2011 [5]
GP/OLS model | Genetic Programming/Orthogonal least Gandomi et al 2011 [45]
squares
GP/SA Genetic Programming/ simulated (Mohammadnejad et al 2012)
annealing [100]

Hence the efficacy of all the proposed ground mmotprediction models is marked by
comparing it with the above mentioned benchmark eteodnd with the existing GMPE models

on the same database.

3.4 MODELLING PARAMETERS

In this study an attempt is made to model the jgadground motion parameters (Y) as in

Eq. 3.1
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In(Y) = f(M,F,V,In (D)) (3.1)

where, Y is PGA (g), PGV (cm/s) and PGD (cm), MEmthquake magnitude, F is the style
of faulting, V is the average shear wave velocig ® is the distance. The modelling equation

is formulated based on the information gained fthenliterature survey.

The Table 3.2 shows the existing modelling equatir the prediction of ground motion
parameter. It is observed that in all the studiles,ground motion parameter is expressed in
terms of earthquake magnitude, faulting style,aherage shear wave velocity and source to site
distance. In the database there are six differe@sores of source to site distance. In this study

closest distance measure is selected in consisteitityhe benchmark models.

Table 3.2 Existing ground motion prediction models

Model Approach Database| Authors Modelling Equation Distance
measure

ANN/SA Artificial neural PEER Alaviand | In(PGA) = f(F,M,V,R.;) Closet
model network/ simulated [111] Gandomi distance

annealing 2011 [4]

MEP Multi Expression PEER Alavi et Closet
model Programming [111] al 2011 In(PGA) distance,

[5] = f(sin(4),M,V,R.q) rake

angle
GP/OLS Genetic PEER Gandomi | In(PGA) = f(F,M,V, R;p) Joyner—

model Programming/Ortho [111] etal 2011 Boore
gonal least squares [45] distance

Lagramge | Equation Discovery | Perus and | Markic In(PGA) = f(F,M,V,R;;,) Joyner—

system approach ,CFG Fajfar and Boore
2009 [42] | Stankovs distance
ki 2013
[95]
GP/SA Genetic PEER Mohamm | In(PGA) = f(F,M,V,R.4) Closet
Programming/ [111] adnejad distance
simulated annealing et al 2012
[100]
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3.5 DATA PREPROCESSING

In this section, the entire data preprocessiegssare explained. The database used in this
study is a subset of PEER database [111].

3.5.1 INPUT PARAMETERS

The NGA flatfile [111] consists of 116 columns, baepresenting a particular geophysical
parameter. The sample data records are shown endppB with the various 116 geophysical
parameter. In this study only four geophysical peeters are considered. The input parameters
chosen are earthquake magnitude, faulting mecharsbgar wave velocity and source to site

distance.
The detailed description of the input parameteesifollows:

a. Earthquake magnitude (M): In this study the monmeagnitude (M) of the earthquake is
represented by this variable. The moment magnitdidiee earthquake best represents the

energy released during the earthquake.

b. Faulting Mechanism (F): This variable is used tpresent the basic three types of
faulting which occur during the earthquake ruptprecess. The values are taken based
on the 1Y column of the NGA flatfile database which represtie mechanism based on
rake angle. Rake angle is the angle measured iciakwise direction on the fault plane,
from strike direction to average slip directionig.R3.1 shows the rake angle as pictorial
representation.

The type of faulting basically denotes the dirattd the movement of the fault plane
which is decided based on the values of the rakgeaable 3.3 details the faulting
mechanism given in the database based on the ngjke. Zable 3.4 represents the values

for F used in this study.
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Fig. 3.1: Pictorial representation of Faulting meclnism [111]

Table 3.3: Faulting Mechanism based on Rake Anglesanentioned in PEER database

Faulting type Mechanism Class Rake Angle (in degreg

Strike slip 00 -180 <Rake< -150,
-30 <Rakex< 30,
150 <Rake< 180

Normal 01 -120<Rake< -60
Reverse 02 60 <Rake< 120
Reverse- Oblique 03 30 <Rake< 60,
120 <Rake< 150
Normal-Oblique 04 -150 <Rake< -120,

-60 <Rake< -30
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Table 3.4: Description for input variable F used inthis study

Values of F Value in NGA Flatfile Faulting style
1 02,03 Reverse
2 01,04 Normal
3 00 Strike slip

c. Velocity (V): In this study this variable represgtihe average shear wave velocity in the
top 30 m layers at the site. This geophysical patamis highly significant as it

represents the site influence on the seismic signal

d. Distance (D): In this study, this variable is usedepresent source to site distance. Table
3.5 represents 6 different types of measured distgas given in the NGA flatfile. From
the literature survey, it is observed that eacthefdistance measures as in Table 3 has its
own significance. It is observed from Table 3.attEpicentral distance, Joyner-Boore
distance and closest distance are relatively mgreficant The distance measure used in
this paper is closest distance which has also beed in [4,5,100]. Fig. 3.2 gives the

pictorial representation for various measures stagices.

Table 3.5: Various measures of distances in PEER-NGdatabase

Measured distance Description
Epicentral distance Distance from the recording sé to epicenter
Hypocentral distance Distance from the recording $& to hypocenter.
Joyner-Boore Shortest horizontal distance from the recording si¢ to the vertical
distance projection of the rupture

Campbell distance Shortest distance from the recoidg site to the seismogenic portion of
the ruptured area (Campbell, 1997).

Root mean square Root-mean-squared distance
distance
Closest distance Closest distance from the recordjrsite to the ruptured area
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Fig. 3.2 Pictorial representation of distance measas [111]

3.5.2 DATA NORMALIZATION

The data sets used for the analysis in this stweéyormalized. There are several methods
for the normalization of the data. The Eqs.3.2+8pgresent the method of normalization used in
this study. Let Z be the variable anglaZ Zmin represent the maximum and minimum values of
the variable respectively. Let the range withinebhihe variables is to be normalized be [P, Q].

The range of normalized data is chosen as in th&timy benchmark prediction models
mentioned in Table 3.1 and is set as (0.05, 0198)Z, be the normalized value for variable and

it is defined as follows

Z =cZ+d (3.2)
where,

C=(Q-P)(Za~ Zyin) (3.3)

d=Q-(c*Z,,) (3.4)
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3.5.3 TRAINING AND TESTING DATASETS

The NGA flatfile V7.3 database consist of 3551 resp including the 116 geophysical
parameters. Considering the four geophysical paemeised for modelling, the database is
narrowed down. From this minimized database, theh@aake records having incomplete
attribute value are deleted. Furthermore, the @ds&bs critically analyzed and the duplicate
records are also removed. Thus, the corrected aseaims 2815 records. Hence, in this study the
prediction model is developed in this database &ff52records. The sample data used in this
study is shown in appendix C. The following Tablé 8hows the statistical parameters of the

variables used in this study.

The database consisting of 2815 records is divided training and testing data sets.
These two datasets are extracted from the datahasdethat they are in the ratio of 4:1. The
segregation of entire 2815 records into these tata dets should be such that the statistical
parameters of the variables used in the analysicansistent with both sets. Thus the training

data set has 2252 records and testing data sé6Bagcords.

Table 3.6: Statistical parameters of variables usenh this study

Statistics Maximum | Minimum Median Standgrd Sa_mple Range Skewness
Deviation Variance
M 7.9 5.2 6.3 0.59 0.35 2.7 0.81
F 3 1 1 0.85 0.72 2 1.19
V(cm/s) 2016.13 116.35 345.42 175.09 30654.89 TaD9. 2.28
D (km) 366.03 0.07 63.79 50 2524.41 365.96 1.39
PGA (g) 1.66 0.01 0.04 0.13 1.53 1.65 4.19
PGV (cm/s) 169.96 0.10 5.01 14.46 209.02 169.86 935
PGD (cm) 232.39 0.01 1.48 11.21 125.67 232.38 7.91

The range of normalization used in the section23ahd the segregation of the dataset
into training and testing datasets is in accorddadhle existing benchmark models mentioned in

Table 3.1. The flowchart detailing the entire stepdata preprocessing is shown in Fig.3.3.
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To further validate the developed model, othenttiee testing data set of 563 records,
another testing data set is also considered. PESRipdated the database and termed it as NGA
WEST 2. NGA WEST 2 [23] is an extension of NGA WE3Tdatabase, and it consists of
21,539 events, whereas the latter had 3551 evéhtss, out of 17988 events which are not
included in the NGA WEST 1 database, 140 eventselexted, and is named as NGA WEST 2
testing data set.

Hence all the developed prediction models are nedi@n 2252 records of the training data

and tested on 563 records of the testing dataseethsis on another 140 records of NGA WEST
2 dataset. Thus, the efficacy of the developedaisad very well validated.
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Figure 3.3: Flowchart for the Data preprocessing
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3.5.4 EXPERIMENTAL ENVIRONMENT

In this thesis, all the algorithms are implemerded tested on C and MATLAB R2012 b
platform with processor Intel(R) core(TM) i3-3220d4GB RAM. Thus the comparison of the
algorithms in terms of computational time couldodt® justified as they are run on the common

platform.

3.6 CRITERIA FOR PERFORMANCE MEASURE

There are various standard methods used for meggte performance of the developed
model. This section explains the various critesadiin this study, which acts like a yardstick for
analyzing the performance measure of the developmtkl. The criteria chosen are inconsistent
with the studies mention in Table 3.1. The critenia valid for both training and testing data sets.
The prediction accuracy of the models is measuradrms of correlation coefficient (R) and the
error measure. There exists a well reasoned prasammi43] that if the correlation coefficient
(R), |IR|>0.8 and error percentage is minimum; tliei@ high correlation between the predicted

and the observed values.

In this study, four different measures of erramely mean absolute error (MAE), mean
absolute percentage error (MAPE), mean square €M&@E) and root mean square error

(RMSE) are used. These measures of error are arglais follows.

Let the total number of records be k. Lgtdanoted the observed or the real output and p
denote the predicted value. The average valubeobbserved output be represented as ayg (a

and the average value of the predicted output ixesented as avgilp
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The equations representing the measures of areras follows.

i.  Correlation Coefficient (R)

k
R= Y (aj-avg(g))(p; -ava(p)))/
i=1

JE (@ -ava(@)r2 K o -ava(y )12

ii.  Mean Absolute Error (MAE)

MAE =3K_, |a; -p; Ik

iii.  Mean Absolute Percentage Error (MAPE)

MAPE= (LKEK_, I(a -pj)/4 |

iv.  Mean Squared Error (MSE)

MSE = X K_(aj -pj )2k

Root Mean Squared Error (RMSE)

RMSE= \/zik: 1@ P Y 2)/K)
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All the developed models are analyzed in termshef above mentioned criteria. The
scrutiny of the developed predictive models is doneerms of four different measures of error.
For an efficient predictive model, the error meassinould be less. The correlation coefficient
(R) gives the linear relation between the obserastithe predicted values. The higher value for
R signifies that the relationship between the mtedi and observed is linear. Hence the predicted
value is comparable to the observed value. lintleeel has high R value, generally |R|>0.8, it is

concluded that the prediction accuracy of the maxdgbod.

There are cases such that although the model bighsR value, the error measure is also
high. This signifies that the model is over traireedl that overfitting of the data has occurred.
Hence , in this study the various measure of @sraonsidered so that the developed predictive

models are critically analyzed for overfitting.
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Chapter 4

PREDICTION MODEL BASED ON NEURAL
NETWORK LEARNING

In this chapter a prediction model is developesedaon neural network based learning.
The two architectures used are single layer feadfalt neural network (SLFN) and Extreme
learning machine (ELM). The chapter is organizefibdews. Section 4.1 gives the introduction
to neural network based learning. The predictiord@hdased on SLFN is explained in section
4.2. The prediction model based on ELM is detaitedection 4.3. Section 4.4 compares the
SLFN prediction model with the ELM prediction mod€&he chapter is concluded in section 4.5

which further analyzes the models developed basatkaral network based learning.

4.1 INTRODUCTION

The basic of any neural network architecture (Hay&0,61]) is perceptrons. Thus in this
section, the learning of perceptron is explainedsiAgle perceptron equation is given as,
net = Y- w; * x; + b , wherey; is the " input withw; the corresponding weight. Hence single

layer perceptron model, is all about training thedght vector to get the desired output.
The perceptron learning algorithm could be defiagdollows:

Let x; be the inputw; be the weight between input and perceptron.e; Be the output
given by the perceptron amdrget; be the actual required output. The idea of theggeron
learning algorithm is to obtain the best weightteee/; such thatarget; — net; = 0. The
perceptron learning rule could be definedva& + 1) = w;(t) + Sw;(t). Hence aim is to find
Sw;. Letu be the learning rate.

Case 1: whertarget; — net; < 0, it implies tha); w;x; is too large and heneg should be

modified as new_weight; = old_weight; — p.
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Therefore reframing the equation we obtain,

new_w; = old_w; — (u * x;) 4.1)

Case 2: whertarget; — net; > 0, it implies tha); w;x; is too small and henae; should be

modified as new_weight; = old_weight; + u. Therefore reframing the equation we obtain,
new_w; = old_w; + (U * x;) (4.2)
Combining Eq.(4.1-4.2), it could be written@ayv_w; = old_w; + u(target; — net;) » x; .

Thus §w; = u(target; — net;) * x; , is called the perceptron learning rule and called

the learning rate.

4.2 PREDICTION MODEL BASED ON SINGLE LAYER
FEEDFORWARD NETWORK (SLFN)

A prediction model using artificial neural netwaskdeveloped for forecasting PGA. The
simplest ANN structure is considered for modelling. is clearly observed that the existing
benchmark models for forecasting ground motion rpatar are based on ANN structure. In this
study, a prediction model based on ANN structurdeigeloped so that it could be used as a base
model for comparing it with the advanced learnitgpathm (ELM) based on which prediction
model is proposed. Furthermore the comparativeystietween the two models helps in
validating the advantages of the ELM.

A single layer feedforward network (SLFN) is catesied in this study. It consists of one
input layer having four input features, one outfagjer which denotes the ground motion
parameter to be predicted and one hidden layer.hidden layer consists of 20. The activation
function for hidden layer is TANSIG and the weightsl bias values of the network are updated
according to Levenberg-Marquardt optimization udiragning function TRAINLM.Adaptation
function is LEARNGDM. ltis the gradient descentthvimomentum weight and bias learning
function.
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4.2.1 RESULTS ANALYSIS AND DISCUSSIONS

In this section, the prediction model developedhgsSLFN for forecasting PGA is
analyzed and compared with the existing benchmattets. Fig. 4.1 shows the results obtained
by the proposed model. Table 4.1 tabulates theltsesbtained by the proposed model in
comparison with other models. It is observed thatdfficacy of the model is very less compared
to the existing models. Table 4.2 compares th@gesed model with the existing GMPEs. It is
observed that the proposed model is better thamxttsting GMPESs. Thus, it substantiates that
neural based modelling is better than the tradiioegression analysis method used by GMPEs.

Training R=0.807 Testing R=0.81

T Y=T
o o) Data
& o8 § 0.8 Fit
o | | = Data
T o6 E 06
o
T @
2 04 T 04
.2 L :E o
5 HIAE-0.0214 2 o, HIAE - 0 039
e 02 MAPE -0.219 |1 a 9 FIAPE -0.265 |]
o RMSE-0 040 i RMSE:0.07
02 04 06 08 02 04 06 08
Observed In(PGA) Observed In(PGA)

Fig. 4.1:SLFN prediction model

Table 4.1: Comparison of SLFN prediction model with existing models

Criteria SLFN ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100]
Train Test Train [ Test Train | Test Train [ Test Train Test
R 0.8073 0.8188 0.869 0.85% 0.83p 0.811 0.8¢2 0.834.833 0.839
MAE 0.0214 0.0397 0.30 0.46 0.47% 0.488 0.363 0.497 n/a n/a
MAPE 0.2196 0.2650 0.14 0.13 n/a n/a n/a n/g| 0.1598 0.144
MSE 0.002 0.005 n/a n/a 0.358 0.406 0.362 0.389 80.3 0.380
RMSE 0.040 0.070 n/a n/a 0.836 0.63f 0.602 0.6P4 610.| 0.616
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Table 4.2: Comparison of SLFN prediction model with GMPEs models

Model Criteria MAPE
SLFN model 0.265
Campbell and Bozorgnia [29] 0.93
Least Square regression analys [96] 0.1€
Ambraseys et al [6] 0.95
14.58

Smit et al [142]

The major drawback of neural network based mauglb that the learning is dependant
on the database used for training and generaliz&ivery poor. Table 4.3 shows the results
obtained by the SLFN prediction model for NGA WESdataset. It is clearly observed that

generalization is poor.

Table 4.3:SLFN prediction model for NGA WEST2 data

Criteria SLFN
R 0.4242
MAE 0.0147
MAPE 0.2171
RMSE 0.024

From the above analysis of the results obtainad clear that although neural

network based modelling is advantageous, the usewfl network has lots of disadvantages.
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Hence the new architecture based on neural netVeanking, extreme learning machine
(ELM) was used for modelling. In this study the gioction model based on the single
feedforward neural network was developed just esse study to show the drawbacks of neural

networks and to highlight the advantages and néading ELM for modelling.

4.3 PREDICTION MODEL BASED ON EXTREME LEARNING MACH INE
(ELM)

4.3.1 ELM ALGORITHM

The extreme learning machine [66] is generalized)ls layer feedforward network
(SLFN) in which the hidden layer parameters aretoaed. The weights of the nodes in the
hidden layer in an ELM are randomly assumed, thusbkng the ELM architecture to be
independent of the training data set. Hence theee learning machine is said to be highly

scalable with lesser computational complexity.

A neural network is said to have a good genertadizacapability if the training error as
well as the norm of the weights is minimum. In ElsMce there is no tuning of the hidden layer,
it aims to get a minimum norm of the weights of puit node for better generalization
characteristic. In other words, ELM architecturamalogous to a single layer feedforward neural
network in which the input weights and the hiddayel bias are fixed. The basic architecture is

explained as follows:

Consider a training dataset with N samp(es, T;) where X, =[x,,X,,....x,]" and
T, =[t, t,,.... t,]7. TO solve this classification problem, consider avamtional SLFN with

N hidden nodes and activation function g(x). The atitppdes are assumed to be linear. Wet
be the weight vector between the input nodes amgthidden node. Leg; be the weight vector

for the linear output nodes abgbe the threshold of tH& hidden node.
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Then the output of the linear lay@y can be obtained as

0; =Y. Bigi(X) =Y BigWiX; +b) ,j=1...N  (4.3)
where,

W, =[w,, Wy, W, 1" (4.4)
B =181, B Bim] (4.5)

This network can approximate the given problem Wtkamples with zero error. Thus, there

exist parameterg; , W; andb; such that
Y BgWX;+b)=T; j=1...N (4.6)

The above equations may be written/d8 = T (4.3

where,

gW. X, +b) ... g(Wg.X, +bg)

H= : . .
WXy +b) o gWg. X +bg) |« (4.8)

T
1

ﬁ£ N xm

T

r=|: (4.10)
T8 Ly x m

48



Algorithm for basic architecture of extreme learning machgieen the number of hidden

nodes and hidden node activation functions

Step 1: Randomly assigw; , the weights between the hidden nodes and thé inp
nodes ang, the threshold of hidden layer

Step 2: Calculate the hidden layer output matrix H

Step 3: Calculate the output linear layer weigisisg § = H~'T where,

H™! is the Moore—Penrose generalized inverse of th&ixnaH. Thus the
smallest norm least-squares solutioth@fabove linear system is obtained and

this solution is unique.

4.3.2 MODELLING

The following algorithm explains the procedure figvelopment of prediction model for

forecasting ground motion parameter using ELM.

ALGORITHM:

For each of the ground motion parameter (Y), withuit F, V, M, D perform the following

steps:

Step 1: Assign the hidden nodes with sigmoidaVatitin functiong(x) = 1/(1 + )

Step 2: randomly assign an initial value (i) foethumber of hidden neurons
Step 3: assign random weights for hidden neuromsstareshold
Step 4: the hidden layer output matrix H, is caddet as explained in section 4.3.1.

Step 5: the output layer weights are calculatechgdloore-Penrose generalization.
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Step 6: iterate steps 3 to 5 for about 20-40 tinesptain the best ELM prediction model
The best prediction model is the one having thadsgcorrelation coefficient (R)

with minimum MSE.
Step 7: increment the number of hidden neuronsy(i)
Step 8: Repeat Steps 3 to 7 until MSE becomes dpmately constant.

Step 9: the best prediction model based on ELMdi@casting parameter Y has ‘i’ number

of hidden nodes.

The following flowchart explaining the above aldbm is given in Fig. 4.2.
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Fig. 4.2 Flowchart for ELM prediction model
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4.3.3 RESULTS ANALYSIS
4.3.3.1 RESUTLS OBTAINED BY THE PROPOSED ELM MODEL

Figs. 4.3-4.5 shows the results obtained by thegsed prediction model based on ELM for
forecasting PGA, PGV and PGD respectively. The ltesare tabulated in Table 4.7. It is
observed that as the numbers of hidden nodes areased, the error percentage decreases,
hence the prediction accuracy of the model incredsés also observed that for higher number
of hidden nodes (>50), there is only a slight cleaimgthe accuracy. The best prediction model is
the one having the least error percentage withcfairelation coefficient (R). Hence, from Table
4.4 is concluded that the PGA prediction model dase ELM has 80 hidden nodes. Similarly,
justifying results in Table 4.5, it could be samt for the PGV prediction model based on ELM
has 80 hidden nodes. Analyzing Table 4.6, it iseol=d that the error percentage remains
constant irrespective of varying the number of brddiodes. Thus PGD prediction model based

on ELM has 50 hidden nodes.

Training R=0.844 Testing R=0.848
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® ©  Daa g
& o6 . 06
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a MSE: 0.001 o > o | MSE 000
T 02 04 06 08 " 02 04 06 08
Observed In(PGA) (g) Observed In(PGA) (g)

Fig. 4.3:Predicted Vs Observed value of PGA (Traimg Data and Testing Data)
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Table 4.4: PGA prediction model with different nunber of hidden nodes

Criteria Hidden Hidden Hidden Hidden Hidden Hidden
nodes=20 nodes=30 nodes=40 nodes=50 nodes=60 nodes=80
Train | Test Train | Test Train | Test Train | Test Train | Test Train | Test
R 0.7484| 0.7815 0.7811 0.8005 0.8025 0.8183 0.8228351| 0.8321 0.838F 0.8444 0.8486
MAE |[0.0251| 0.0434] 0.0230 0.0414 0.02[l7 0.0389 (0020.0368| 0.0194 0.0366 0.0183 0.0351
MAPE | 0.2671| 0.2857, 0.2390 0.2725 0.2239 0.2497 26200.2403| 0.1961 0.2379 0.1824 0.2290
MSE 0.0021| 0.0062 0.001B 0.00%6 0.0017 0.0051 ®QA0Q.0046| 0.0014 0.0045 0.0014 0.0043
Table 4.5: PGV prediction model with different numkber of hidden nodes
Criteria Hidden Hidden Hidden Hidden Hidden Hidden
nodes=20 nodes=30 nodes=40 nodes=50 nodes=60 nodes=80
Train Test Train Test Train Test Train Test Train Test Train Test
R 0.8019 | 0.8459| 0.8417 0.8652 0.8682 0.8476 0.87718854 | 0.8882| 0.8900 0.8974 0.9003
MAE 0.0265 | 0.0453| 0.0253| 0.041Fy 0.0216 0.0396 (0210.0394| 0.0201| 0.0384 0.036Pp 0.0184
MAPE | 0.2727 | 0.2647| 0.2662| 0.2483 0.2126 0.2226 121 0.2320| 0.1991] 0.2228 0.2170 0.17P1
MSE 0.0024 | 0.0063] 0.0019 0.0054 0.0016 0.0048 @&0010.0045| 0.0014| 0.0043 0.0018 0.0040
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Table 4.6: PGD prediction model with different numker of hidden nodes

Criteria | Hidden nodes=20 | Hidden nodes=30| Hidden nas=40 | Hidden nodes=50 Hidden nodes=60

Train Test Train Test Train Test Train Test Train Test

R 0.7507 0.7688| 0.7858 0.7772 0.7951 0.7838 0.8064.7899 | 0.8095 0.7893

MAE |0.0127 0.0227| 0.0101 0.020%5 0.0100 0.0205 (0009 0.0204 | 0.0091 0.0207

MAPE | 0.1650 0.1871| 0.1216 0.155y  0.1209 0.15/6 ®911| 0.1582| 0.1050 0.1568

MSE | 0.0009 0.0030{ 0.0008 0.0028 0.0007 0.0028 (@000 0.0027 | 0.0007 0.0027

Table 4.7: Developed prediction model based on ELM

Criteria PGA PGV PGD

Training Testing Training Testing Training Testing
R 0.8444 0.8486 0.8974 0.9003 0.8291 0.8193
MAE 0.0183 0.0351 0.0369 0.0184 0.0091 0.0207
MAPE 0.1824 0.2290 0.2170 0.1791 0.105d 0.1568
MSE 0.0014 0.0043 0.0013 0.004¢ 0.0007 0.0027

4.3.3.2 COMPARISON WITH EXISTING MODELS

Tables 4.8-4.12 shows the comparison of the prap&ié based prediction model for
forecasting ground motion parameter with the exgstbenchmark models mentioned in Table
3.1 and the existing GMPEs on the database.

In Table 4.8 the developed prediction model basedLM is compared with the GP /
OLS model proposed by Gandomi et al [45]. It isevleed that prediction model based on ELM
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is better than the GP/OLS model. The accuracy nispewatively better with lesser RMSE, MAE
and MAPE. In the table, where the values are nattimieed, it is denoted by n/a.

In Table 4.9, the ANN/SA model proposed by Alavdaaandomi [4] is compared with
the developed prediction model. Although, the pmoin accuracy of the developed model is
comparable to that of the ANN / SA model, the depedd ELM based prediction model could be
considered comparatively a better model due to nhmeler MAE and MAPE values. Moreover,
it is observed that the developed prediction maglebmputationally faster as it gives the result
with minimum MSE in 30 epochs with 108.12 secondkereas the ANN/SA model requires
364 epochs with 240 seconds to attain the minimuskEMalue. The ANN/ SA architecture has a
single hidden layer with 8 nodes and is implemenigidg Neural-Lab program version 3.1. The
major drawback of this ANN/SA model is the high qartational time due to simulated

annealing.

The developed model is compared with the MEP medaposed by Alavi et al [5] in
Table 4.10. The precision of the ELM based predictnodel is higher than MEP model. In
Table 4.11, the developed ELM model is comparedti® GP/SA model proposed by
Mohammadnejad et al [100]. It is observed that @ SA model has high error percentage,

although the precision accuracy is comparable. Tii&LM model could be considered better.

Table 4.8: Comparison of ELM prediction model withGP/OLS model [45]

PGA PGV PGD
Criteria ELM GP/OLS ELM GP/OLS ELM GP/OLS

Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test

R 0.845| 0.848 0.83¢ 0.811 0.897 0.900 0.822 0/813290| 0.819, 0.836 0.811

MAE |0.018 | 0.035| 0.478 0.488 0.037 0.018 n/a] 0.506| 0.009 | 0.020 n/a n/a

MAPE | 0.182 | 0.229| n/a n/a 0.217 0.179 0.512 n/g @L110.158| 0.660[ 0.681

RMSE | 0.037 | 0.06% | 0.836 | 0.63% | 0.065 | 0.03¢ | 0.649 | 0.637 | 0.02¢ | 0.05Z | 0.850 | 0.901

56



Table 4.9: Comparison of ELM prediction model withANN/SA model [4]

PGA PGV PGD
Criteria ELM ANN/SA ELM ANN/SA ELM ANN/SA
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
R 0.845 | 0.848 0.869| 0.855 0.89y 0.900 0.867 0.878290 | 0.819 0.870| 0.86
MAE 0.018 | 0.035| 0.30 0.46| 0.037 0.018 0.34 0.45 09.0 0.020| 0.62 0.62
MAPE |0.182 | 0.229| 0.14 0.13| 0.217 0.179 1.06 2.17 110.| 0.158| 1.74 1.66
Table 4.10: Comparison of ELM prediction model withMEP model [5]
PGA PGV PGD
Criteria ELM MEP ELM MEP ELM MEP
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
R 0.845 | 0.848| 0.842| 0.83% 0.89F 0.900 0.837 0.82829 | 0.819| 0.846| 0.84
MAE 0.018 | 0.035| 0.363| 0.697 0.037 0.018 0.402 0.Y2BOO9 | 0.020; 0.733| 0.82
RMSE | 0.037 | 0.065 0.602] 0.624 0.068 0.086 0.684 D.6D.026 | 0.052] 0.856] 0.89
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Table 4.11: Comparison of ELM prediction model withGP/SA model [100]

PGA PGV PGD

Criteria ELM GP/SA ELM GP/SA ELM GP/SA

Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test

R 0.845 | 0.848 0.833 0.839 0.897 0.900 0.833 0/83B29D| 0.819| 0.847| 0.854

MAPE | 0.182 | 0.229] 0.158, 0.143 0.21f 0.1y9 1.2f 2.39.114 | 0.158 1.61 1.68

RMSE | 0.037 | 0.065 0.617, 0.616 0.063 0.036 0.645 &.,68.026 | 0.052 0.845 0.84‘6

The developed model is further compared with thoteer GMPE models, namely
Ambraseys et al model [6], Campbell-Bozorgnia mgée] and Smit et al model [142] in Table
4.12. From Table 4.12, it is clearly observed thatdeveloped ELM based prediction model is

better than the existing GMPE models due to lovezcgntage of the mean absolute error.

Table 4.12: Comparison of ELM prediction model withGMPEs

Model Mean absolute
error percentage

PGA PGV PGD
ELM based prediction model 0.229 0.018 0.158
Campbell and Bozorgnia [29] 0.93 0.78 5.73
Ambraseys et al [6] 0.95 n/a n/a
Smit et al [142] 14.58 n/a n/a
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4.4 COMPARISON OF ELM WITH SLFN

In this section, the developed neural network thapesdiction models are further
explored in terms of computational time. In thecton, the ELM is compared with SLFN,

which validates the claim of preferring ELM over AN

To the ELM based prediction model is compared wiiffierent training algorithms of
single hidden layer feedforward neural network (S),Fhaving the same number of hidden
nodes as that of the ELM prediction model. TablEB4epresents the computational time taken
by the different training algorithms for the pre@ha of ground motion parameter. It is observed
that the maximum computational time is taken bydgmat descent backpropagation (traingd)
training algorithm (105.01 seconds) followed by eéelkierg-Marquardt backpropagation
(trainlm) (72.71 seconds) and BFGS quasi-Newtonpagagation (trainbfg) (62.35 seconds)

whereas ELM takes the least time (3.6 seconds).

Table 4.14 compares the prediction accuracy of Eh& model with the different
training algorithms for SFLN. It is observed thhe ttrainlm and trainbfg training algorithm of
SLFN gives satisfactory prediction accuracy fromoamthe other training algorithms, but the
overall performance of trainim and trainbfg areeimdr compared to ELM in terms of prediction
accuracy as well as computational time. Hencedtdarly proved that the ELM prediction model

gives faster and better prediction accuracy.
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Table 4.13: Comparison of computational time of dfierent training algorithm

Learning Algorithm Learning Time
(seconds)
ELM Extreme learning machine 3.6
trainbfg BFGS quasi-Newton backpropagation 62.35
traincgb Powell -Beale conjugate gradient 31.24
backpropagation
traincgf Fletcher-Powell conjugate gradient 49.14
backpropagation
traincgp Polak-Ribiere conjugate gradient 50.32
backpropagation
traingd Gradient descent backpropagation 105.01
trainlm Levenberg-Marquardt backpropagation 72.71
trainrp Resilient backpropagation (Rprop) 12.98
trainscg Scaled conjugate gradient backpropagation 28.17

Table 4.14: Comparison of different training algorthm of SLFN with ELM

PGA PGV PGD
Function Name | Training R | Testing R | Training R | Testing R | Training R | Testing R

ELM 0.8444 0.8486 0.8974 0.9003 0.8295 0.819
trainbfg 0.838 0.748 0.814 0.806 0.779 0.838
traincgb 0.554 0.569 0.851 0.813 0.724 0.668
traincgf 0.71 0.726 0.854 0.799 0.593 0.621
traincgp 0.712 0.597 0.661 0.727 0.769 0.795
traingd 0.1752 0.0812 0.241 0.23 0.092 0.045
trainim 0.816 0.834 0.904 0.826 0.795 0.867
trainrp 0.699 0.529 0.858 0.769 0.569 0.649
trainscg 0.735 0.73 0.724 0.673 0.741 0.863
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4.5 CONCLUSION

In this chapter, a prediction model is proposedth® forecasting of ground motion
parameter based on neural network based learfireggalgorithm used is ELM, which has many
advantages over ANN, the most popular neural nétwased learning model. The comparison
of the developed ELM prediction model with the ¢éxig models and the traditional training
algorithm of neural networks validates the higheneyalization ability and faster prediction
speed of the ELM model. Moreover, the architecand training of the proposed model is much
simpler as the only computational overhead is endbtermination of pseudo inverse matrix for
calculating the weights of the output layer. Thevaleped ELM based prediction model
overcomes the drawback of ANN and the existing bherark prediction models in this domain,
such as extensive computational time. Thus, ELMides better precision accuracy in lesser

computational time.

Like all other algorithm, ELM also has few drawkscThough neural network based
learning methods such as ANN are popular due tease of implementation, it suffers a major
drawback which prevents it from being an efficialgorithm. Artificial neural network works on
the principle of empirical risk minimization andrfee the best ANN architecture is the one
having minimum training error. This leads to twojondssues of overfitting and local minima.
ANN also has an overhead as its computational cexitgs are dependent on the dimension of
the input space. Overcoming all these drawbacksew learning method, support vector
machines (SVM) based on kernel method is gainingufaoity. SVM provides global, unique
and sparse solution to problems. It is also lessigito problem of overfitting as it works on
structural risk minimization. The next chapter dsta prediction model proposed based on
SVM.

61



62



CHAPTER 5

PREDICTION MODEL BASED ON KERNEL
METHODS LEARNING

5.1 INTRODUCTION

In machine learning, support vector machines (S\@w® the most popular algorithm
based on kernel methods. SVM is gaining populadbmpared to other soft computing
techniques such as artificial neural networks (ANdY)it overcomes the bottleneck issues of
ANN such as overfitting and local minima. SVM isngeally applied for classification problems.
When applied for regression problem, (Burges [Z&inola and Scholkopf [141] ) it is termed as

support vector regression (SVR).

In this chapter, prediction models are developgidgithree variations of SVR learning
algorithms, namely-SVR, v-SVR and LS-SVR for forecasting peak ground acedi@n (PGA).
Using three kernel functions, namely linear kerpelynomial kernel and RBF kernel for each of
the three learning algorithms, 7 prediction modets developed. All the 7 models are compared
in terms of prediction accuracy, error percentage averfitness to obtain the best prediction
model. The chapter is organized as follows. Sedii@explains the basics of the three learning
algorithmse-SVR, v-SVR and LS-SVR. The experimental environment dsethe modelling is
detailed in section 5.3. Section 5.4 analyzes ¢iselts obtained and validates the efficacy of the
model by comparing it with existing benchmark maeddlhe chapter is concluded by section 5.5

which further explores the significance of the megd prediction model.
5.2 SUPPORT VECTOR REGRESSION (SVR) Learningofithm

Support Vector Machine (SVM) works on principle ®C theory by Vapnik and
Chervonenkis [152], which is purely based on diatis learning. The problem is solved by

equating it to a quadratic programming problem witbquality constraint. The least squares

63



support vector machine (LS-SVM) is a variation d\§ which uses equality constraint. When

SVM is applied to a regression problem, it is tedlme support vector regression (SVR).
The SVR algorithm is explained as follows:

Consider a given set of training data {{),(X2,Y2)....(X,,Yn)}, Wherex; € R%, yi € R, i
=1....n. The training data; Xrom the input spac& is mapped onto a feature space Q, using
kernel function k, such ak(x;, x;) = (p(x;), @ (%;)). For simplicity, we begin with linear

functions. Lef be the linear function having the form as in EQ4. 5

f(x) =wix+b=(w,x)+b, wherew € X,b €R, (.,.)denote dotproduct (5.1)

The following subsections explain about the thragations of SVR algorithm used in this

study.
5.2.1¢- SUPPORT VECTOR REGRESSIOB$VR)

In e- SV regression by Vapnik [153], the functiffx) is calculated such that it is flat, but
at the same time has a maximum deviatioa éfence the permissible error band for the function
is [=, €. The functionf(x) attains flatness when the valuewfis small and to obtain the
minimum value for w is to obtain the minimum noroiwion which is||w||? = (w,w). Hence

reformulating the problem as a feasible convexmigation problem we obtain Eq.5.2

—wx)—b<e¢

) +b—y <e (-2)

minimize : = ||lw]||? subject to{yi
2 (w
The above equation could be again reformulatednttude infeasible constraints of the

problem by introducing slack variables.

v, —(w,x;) —b < e+e¢
minimize : = [wll? + C Z7y(e; + €)  subject td (w,x;) +b —y; <& +¢f (5.3)

where, C is the tradeoff between permissible eramd||w||.
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The aim is to minimize the empirical risk value ajiv ask =%2{V=1|yi—yi|g where
ly; —yile is € -insensitive loss function as shown in Fig. 5.1, chsu that

ly; — ¥l ={ O byi=dil<e ore y; and y; are target and predicted value
' e ly; — yil — €, otherwise i i

respectively. This formulation is also known aséns-insensitive loss regression. (Cortes and

Vapnik [37], Vapnik [154]).

j:
e —~ & I — Wil
e
>
1] ‘\ _E_I.!
- I #
3 -
T # Y
=£
® | [
g
3 ‘: r =¥ =) - & 0 £ in-#)

Fig. 5.1: Support Vector Regression witle insensitive loss function

Eq.(5.3) could be solved using dual formulatiomoining Lagrange multipliers. Hence
the objective function of Eq.(5.3) is replaced loyresponding Lagrange function. Let L be the

Lagrangian function anda;, af,S;, ;i be the corresponding Lagrange multipliers or dual

variables. Hence the Eq.(5.3) is replaced as falow

L=lwl? +C XLy +€) — Ziy(aie; + aje) —p —q (5.4)
wherep = Y=, Bi (e + 6 —y; +{w,x;) + b), q =YL, B (e + € +y; —(w,x;) — b),
a, a;, B, Bi = 0.
For all feasible solution of the primal and dualrigbles for the convex optimization
objective function, there exist a saddle point. (gasarian [91]). At optimality, the gap between

the primal and dual objective function decreasesstrfong duality theorem (Theorem

6.4.3,Bazaraa et al [22]).
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Taking the partial derivative of Lagrangian funatib with respect to the primal variables

(w, b, €;,€;) we obtain Eq.(5.5).

oL oL oL oL
=W =X Bi =B, =R B =B o =C—Bi—a , o=C— B —a;
l i

ow
(5.5)
Hence, at optimality by theor%‘%z 0 ,Z—z =0 ,% = 0,%= 0. Thus eliminating dual

i

variables, we obtain; = C — S, a; = C — f; (5.6)

Substituting Eqg.(5.5,5.60) in Eqg. (5.4), the dugtimization problem is formulated as

follows.
1

Maximize {_5 =21 (Bi= PO By= i) (5.7)

—e X (Bt B + X1y (Bi— B)
subject toy;iL (B;— B;) andB; B; € [0, C].

Rewriting Eq.(5.5) we obtain,
w =X (Bi — Bxi (5.8)

Substituting in Eqg.(5.8) in Eqg.(5.1) we obtain gwdution to the functiof(x) as shown in Fig.
5.2.
fC) =Zia(Bi — B )xi,x) + b (5.9)

w is linear combination of training inputs in the input spac&. Hence this is called the
support vector expansion, where the function coritfés dependent on the number of support
vectors rather than the dimensionalities of theuinppace X.b is computed using KKT
conditions (Kuhn and Tucker [85]).
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At KKT optimality condition(constraint. dual variable = 0). Thus we obtain
(C—PBe =0,(C—Be; =0,Bi(e+ & —y; +(w,x;) +b) =0,
Bie+e—y,+(w,x;))+b)=0 (5.10)
From Eq. (10)¥(x;, y;) with B;, B; = C, there exists points in spaXethat lie outside the [-
g, €] band and there can never be a condition suchtheatset of dual variabldg;, ;] is

simultaneous zero g&p;" = 0.

Hence the solution for ‘b’(Keerthi et al [77]) is &ollows.
b=y, —(w,x;)—¢ VB €(0,C) (5.11)
b=y —(wx)+e VB €(0,C) (5.12)

Thus the function estimation fe¥rSVR model for is

yi—{w,x))—¢, Vi €(0,C)

fG) = Eima(Bi = Bi)Cxp x) + b, with b = {yi —(wx) e VB €E(0,0)

(5.13)

X1

K(x1.,x)
X2

K(x2,x)
X3

K(x3,x)
X[l

K(x,.X)

Fig. 5.2: Support vector regression architecture
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5.2.2 v- SUPPORT VECTOR REGRESSIOM-$VR)

Another version of SVRy-SVR was proposed by (Scholkopf et al [129]) whiges
parametew of range (0, 1]. It is similar to-SVR with¢ itself considered as a parameter to have a
control on the count of support vector. The forrtiola for v-SVR is similar toe-SVR, with a
slight change. Thus Eq.(5.3) is reformulated#&VR as

yi—<W,xi>—bS€+6i
minimize : %llwll2 + Cve+ CYi-,(e; + €) subjectta(w,x;) +b—y; < e+¢€ (5.14)

The dual formulation 0f-SVR is similar tee-SVR, as given in Eq.(5.7), with only change in
the constraint. The new constraint feBVR ispg; 5; € [0, Cv].

5.2.3 LEAST SQUARE SUPPORT VECTOR REGRESSION (MR

The function estimation problem using least sgaiagport vector is formulated in this
section. The linear model of LS-SVR is similar tq.(.1) (Ye and Xiong [159]). Consider a
given set of training data {{x1),(X2,y2)....(Xn,yn)}, Wherex; € R%, yi € R, i =1....n. Letf be the
linear function, by Eq. (5.1) we hayéx) = w'x + b .Let §,y denote the error vector and the
column vector respectively. Keeping all the notagion the above section, the regression

estimation problem is formulated as

minimize: %thw + %5’56 subject taK (x;, x)w+yb+ 86—y, =0 (5.15)

The Lagrange multipliers method used in section13d used to solve convex optimization
problem Eq.(5.15).

Let L be the Lagrangian function arg] be the corresponding Lagrange multiplier. Let x
and y be denoted as x,y, Hence the corresponding Lagumarfgnction for Eq.(5.15) is as

follows:
L=>w'Hw +6% — B [K(xX)w +yb+5—y]  (5,a) € R (5.16)
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As per the theory explained above section, at aggiiynthe constraints are as follows:

Ol g _gtp=0%_ytp—g L_s_p=0ol_ =
S =HW-K'B=05=yF=0,2=6-F=0=Kw+yb+6—y=0}517)

Solving we get,

w=KH1p, 5§= (5.18)
Combining Eq.(5.16) — Eq.(5.18) we obtain,

e )6 =)

[y KH'k +11(8] " by (5.19)

Let H=K, assuming that the kernel K being symmatositive definite, Eq.(5.19) reduces as

v sz =0 (520

Eq.(5.20) is analogous to standard LS-SVM (Sukrad [148] ).

For solving K, the assumption is H=l. Hence thetrieions of symmetry, positive
definiteness, semi definiteness, and continuityKas removed.

Hence we obtain,

w=Kp [)(2 KK]’/f+ 1] [2]:[2] (-21)

In Eq.(5.21)KK! is positive semi definite, with no restrictions Knthus making Eq.(5.22)
linearally solvable.

TheLS-SVR model for function estimation isf(x) = KK‘f + yb  (5.22)

5.3 MODELLING

The SVR algorithm is used to develop a predicthvadel for forecasting ground motion
parameter, peak ground acceleration (PGA). Theri#thgos are implemented and tested on C
and MATLAB R2012 b platform on a PC with processael(R) core(TM) i3-3220 and 4GB

RAM. The Libsvm package (Chang [31]) is used tolemente-SVR andv-SVR. LS-SVR is
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implemented using Is-svmlab version 1.8 (Brabaj#@}]). The principle for parameter selection

for SVR is given by Cherkassy and Ma [34]. In thtady, the following kernel function and

parameters are selected.

The kernel functiork (x;, x;) defined in libsvm package is as follow:

Linear kernel : k(x,x) = x!'x; (8)2

Polynomial Kernel: k(x;,x;) = (gamma * x! * x; + r)de9me¢  (5.24)

2
RBF Kernel:  k(x;, %) = e~9emmas|xi=xjl (5.25)

The kernel functiork (x;, x; )defined in Is-svmlab package is as follow:

Linear kernel: k(x;,x;) = x[ x; (5.26)

[

RBF Kernel:  k(x;,x;) = e~ 2% (B)2

e-SVR uses parameters C [0) ande [0, inf) to apply a penalty to the optimizatiorr fo
points which were not correctly predicted. Therends penalty associated with points
which are predicted within distaneefrom the actual value. By decreasiag closer
fitting to the data is obtained.

v-SVR uses parameters C [0) andv [0,1]. Thee penalty parameter was replacedvby
v represents an upper bound on the fraction ofitrgisamples which are errors poorly
predicted and a lower bound on the fraction of damphich are support vectogsand

v are versions of the penalty parameter.

The other two parameters used are C (cost) and gafine cost represents the penalty
associated with errors larger than epsilon. Iningasost value gives closer fitting to
data. Parameter gamma controls the shape of therateyyg hyperplane. Increasing

gamma usually increases number of support vectors.
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5.3.1e-SVR PARAMETERS

The e-SVR algorithm is implemented with linear and RB&rels. The tolerance error
for termination criteria is set at 0.1. A Grid sgraalgorithm with cross validation is used to find
the parameters of RBF kernel. Hence the value WiuS obtained is 128. The value of gamma is
set as 0.25(1/number of features) aras 0.1.

5.3.2v-SVR PARAMETERS

The v-SVR algorithm is implemented with linear, polyn@niand RBF kernels. The
parameters such as tolerance error for terminatiteria, gamma and C are same to that-of
SVR algorithm. The value foris set as 0.5. The degree is set as 3 for polyaidamrnel.

5.3.3 LS-SVR PARAMETERS

The LS-SVR algorithm is implemented with lineardaRBF kernels. The parameter
gamma here is called a regularization parameterchwllietermines the tradeoff between the
minimization of training error and the smoothnegsthee estimated function. The simulated
coupling method is used to obtain the best valugdmma. For linear kernel the value obtained
is 1.52 and for RBF kernel gamma is 2.321. For RBfel sig2 is additional parameter which

represents the variance of the kernel function. vdiee obtained is 0.19.
5.4 RESULTS ANALYSIS AND DISCUSSION

This section evaluates the results obtained. Rerbeetter justification of the obtained
results, this section, is further divided into seti®ns. The subsection 5.4.1 describes the result
obtained by developed model. The subsection 5dm@pares the developed model with other
existing models on the same database. The subsestib3 further evaluates the learning
effectiveness of the algorithms.

5.4.1 RESULTS OBTAINED FROM-SVR,v-SVR and LS-SVR PREDICTION MODELS.

Tables 5.1-5.3 shows the result obtained fret8VR, v-SVR and LS-SVR PGA
Prediction model for both training and testing ddtable 5.4 shows the result obtained from the
developed models for NGA WEST 2 data.
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Table 5.1: ¢-SVR Prediction Model for PGA

e-SVR
Kernel Linear RBF
Train Test Train Test
R 0.4836 0.5932 0.6958 0.7643
MAE 0.0625 0.0733 0.0531 0.0580
MAPE 0.8223 0.7117 0.7160 0.5581
MSE 0.0057 0.0102 0.0044 0.0064

It is observed from Table 5.1-5.3 that the besdmtion model for forecasting PGA is

LS-SVR RBF kernel prediction model followed ©B¥SVR RBF kernel prediction model amad

SVR RBF kernel prediction model. Though the accyraf the other models is not in the
acceptable range [143], it is observed that theregsercentages are low. The best prediction
model is LS-SVR RBF kernel prediction model asiiteg good prediction accuracy with low
error percentage and also gives a fair correlaitonNGA WEST 2 data, which is a dataset

outside the training database.
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Table 5.2: v-SVR Prediction Model for PGA

v-SVR
Kernel Linear Polynomial RBF
Train Test Train Test Train Test
R 0.5058 0.5515 0.5364 0.5312 0.7313 0.762D
MAE 0.0246 0.0622 0.0247 0.0622 0.0239 0.0460
MAPE 0.1956 0.2931 0.1934 0.2978 0.2460 0.2765
MSE 0.0040 0.0151 0.0040 0.0150 0.0023 0.0079
Table 5.3: LS-SVR Prediction model for PGA
LS-SVR
Kernel Linear RBF
Train Test Train Test
R 0.5194 0.5946 0.8719 0.8700
MAE 0.0315 0.0578 0.0149 0.0316
MAPE 0.3424 0.3651 0.1367 0.1899
MSE 0.0034 0.0113 0.0011 0.0037

73



Table 5.4: Prediction model for Testing NGA West 2lata

&-SVR v-SVR LS-SVR
Kernel Linear RBF Linear | Polynomial RBF Linear RBF
R 0.5715 0.6585 0.7061 0.5737 0.7171 0.6803  0.8140
MAE 0.0393 0.0537 0.0073 0.0076 0.0148 0.0160  (QOO06
MAPE 0.5867 0.8308 0.1059 0.1056 0.2180 0.24p1  BB0§
MSE 0.0022 0.0036 0.0001 0.0001 0.0003 0.0004 @000

5.4.2 COMPARISON WITH EXISTING MODELS

Table 5.5 gives the comparison of the best deeeldpGA prediction model with other
existing models on the same database. The LS-SVIRKBel prediction model is compared to
four models, namely ANN/SA (a hybrid model of adi&l neural network coupled with
simulated annealing (Alavi and Gandomi 2011 [4[pP/OLS (a hybrid model of genetic
programming coupled with orthogonal least squatsnfiomi et al. 2011 [45])), MEP (multi
expression programming) Alavi et al 2011 [5])) a@P/SA (a hybrid model of genetic
programming coupled with simulated annealing (Mohmdnejad et al 2012 [100])). In Table
5.5 where the corresponding values is missing e by symbol n/a. It is observed that the
prediction accuracy of the developed model is betenpared to other existing models. Another

important observation is that the error percentasigbe developed model is much less compared

to all the existing benchmark models.
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Table 5.5: LS-SVR prediction model with different eisting model (n/a denote value not mentioned)

Criteria | LS-SVR model ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100]
(RBF kernel)

Train Test Train | Test Train | Test Train | Test Train | Test

R 0.8719 | 0.8700] 0.869 0.855 0.836 0.811 0.842 0.88433 | 0.839

MAE 0.0149 | 0.0316| 0.30 0.46 0.478 0.488 0.363 0.697a n/a

MAPE 0.1367 | 0.1899| 0.14 0.13 n/a n/a n/a n/a 0.1580.144

MSE 0.0011 | 0.0037| n/a n/a 0.358 0.406 0.362 0.389380 | 0.380

Table 5.6: Comparison of developed prediction modetith GMPEs

Model Criteria
MAPE
LS-SVR model (RBF 0.18
kernel)
Campbell and Bozorgnia 0.93
[29]

Ambraseys et al [6] 0.95
Smith et al [142] 14.58

In Table 5.6, the LS-SVR RBF kernel prediction mlods compared with existing
GMPEs. The comparison is done for the testing dated on the criteria MAPE. It is observed
that the LS-SVR RBF kernel prediction model givies keast error percentage, compared to the
existing GMPEs. The developed model has compatgtiesser computational overhead with

better precision.
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5.4.3 COMPARING THE LEARNING EFFECTIVENESS OF THB ALGORITHM

Tables 5.1-5.6 shows the results and the compalistween the prediction models. The
comparison is done based on the criteria as gimesection 3.6. Table 5.7 compares all the
developed models along with the existing benchnmaoklels in terms of accuracy, testing error
and overfitness (Zhong et al [161]). The testingreis indicator of overfitness. The measure of
overfitness is calculated as in Eq. (5.28). Thesdbherall authenticity of prediction precision of

the model is collectively given by the accuracwgtiteg error and the Overfithess measure.

|lerror(testing)—error(training)||

overfitness = (5.28)

error(training)

From Table 5.7, it is observed that the best ptextianodel is LS-SVR RBF kernel model as
it gives a high prediction accuracy with lesserrtreess measure.

It is observed that the ANN/SA model [4], thougdvimg slightly higher precision than
GP/OLS [45] and GP/SA model [100] in terms of aecyr (correlation coefficient), the testing
error is comparable and the overfitness measubetter for GP based hybrid models. Thus the
performances of the three existing models are coaly@m The MEP model [5] clearly shows
that the overfitness measure is very high. SinyilaHough the precision accuracyva6VR RBF
kernel model in terms of correlation coefficien) (Rslightly less, the testing error is comparable
to the 3 existing models ANN/SA, GP/OLS and GP/8#&h much lesser overfitness measure.
Thus the overall performance ofSVR RBF kernel prediction model could be assunmedd
satisfactory. Similarly the overall performancese8VR RBF kernel prediction model could also

be satisfactory.

Another important inference from Table 5.7 isttitais observed that the measure of
overfitness for all models of SVR is much lessanthithe hybrid model of artificial neural
network coupled with simulated annealing [4] andMiEodel [5]. Hence it further validates the
claim of support vector machines being less pronaverfitting than an artificial neural network

with better generalization.
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Table 5.7: Comparison of models for overall performance

Model Kernel Accuracy Testing Error Overfitness
e-SVR linear 0.593 0.0733 0.173
RBF 0.764 0.058 0.092

v-SVR linear 0.551 0.0622 0.49
Polynomial 0.531 0.0622 0.54

RBF 0.763 0.046 0.12
LS-SVR linear 0.595 0.0578 0.067
RBF 0.870 0.0316 0.38

GP/SA 0.839 0.144 0.21
GP/OLS 0.811 0.49 0.24

MEP 0.834 0.69 0.92

ANN/SA 0.855 0.46 0.53




5.5 CONCLUSION

In this chapter, a kernel based learning methadeésl to develop a predictive model for
forecasting PGA, a ground motion parameter. Theltesbtained are analyzed meticulously to
validate the efficacy of the developed learning niae using SVR. The study shows that the

predictive model developed using kernel methodsdbésarning is efficient compared to existing
benchmark models in this domain.

Among the 7 developed models, the LS-SVR modéi WiBF kernel is precise and has a
better generalization with lesser measure of otiexdl. Hence it is also proved that SVR has
better generalization than neural networks. Infdll®ewing chapter another learning method is

introduced to develop a predictive model for fostizay ground motion parameter.
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CHAPTER 6

PREDICTION MODEL BASED ON TREE
BASED LEARNING

6.1 INTRODUCTION

In this chapter, a prediction model for forecagtground motion parameter is developed
using decision tree. Decision Tree learning, a faptool used in data mining is gaining
popularity a predictive tool for supervised leagim various fields. A Decision tree is a
predictive learning method to develop a tree likedel used to predict a target, based on set of
input features. The model developed is termed geession tree, when the predicted target
values take real continuous values. Learning byisaet trees has an overhead over other
learning techniques because of the representakibity aof the model which makes it intuitive
and adaptable. The interpreting of the results Imesoeasy in tree representation. Moreover,
since tree representation is hierarchical in natilme modelling is relatively easier compared to
linear modelling in case of a large number of infeattures. The chapter is organized as follows.
Section 6.2 explains the algorithm for developiagression tree. The experimental environment
used for the modelling is detailed in section &8ction 6.4 analyzes the results obtained and
validates the efficacy of the model by comparingith existing benchmark models. The chapter
is concluded by section 6.5 which further explattes significance of the proposed prediction
model.

6.2 REGRESSION TREE LEARNING ALGORITHM

Linear regression has a major drawback, of natgable to obtain a single predictive
equation for modelling systems for data, having ynamput features with high non linearity
among features. Alternative approach would be limegar regression modelling regression tree,
where the entire dataset is partitioned or divightd subsets in a structure similar to that ofeg tr
using divide and conquer greedy algorithm. The stghare again divided as recursive partition,

until the smallest subset could be easily represkm tree is a collection of nodes and branches.
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The start node is termed as root and the termiodé s termed as leaf node. A parent node
will have two child nodes, left node and right no@ike size of the tree is the number of terminal

nodes.

The three main steps involved in the developmen& aégression tree [88] are the split

process, partition process and the pruning process.

i.  Split Process: the choice for the splitting valéabnd the splitting points is done such
that, for any node n and split s, there should@e fipr some measuring criteggn, s).

ii.  Partition Process: this process includes the bipartition of dataset to further recursive
partitioning, including setting of the terminatienteria, to decide when a node to be a
terminal node.

iii.  Pruning Process: this process includes combiniagrternal nodes of Tree, so as to get
optimal tree length. Very large tree might leadverfitting of data.

Splitting Criteria: Suppose the regression tree i§Tjo be modelled fol¥ having dataset
{(x1,y1),(%2,¥2)....(Xn,Yn)}. Let p be the leaf node and the data points belongingabnodep be
{(%,¥1),(X2,¥2)....(X,Yo)}. The model for leaf nodp is ¥y = %Zleyi , the mean of dependent
variables belonging to node p. L8t(sum of squared errors) be the splitting critetl®en
S = Ypeteafnodes) Liepi —$)?. Let P is the number of leaf nodes for T, thér=
Ypeleafnodes(r) PVp, Whereu,is the within-leave variance of leaf p. The spiigtifor each node is

done so as to minimize the S.
Hence thalgorithm for Regression Tree could be summarized as follows

Step 1: start with a single node with entire datiam{s. For this node calculafe ands.

Step 2: split the dataset belonging to the node tato half plane®,, R, such that, for
splitting variable j and for split R,(j,s) = {X|X; < s} andR,(j,s) = {X|X; > s}. For this
node calculatéy andS.

Step 3: repeat step 2 for all independent variadhesthe pair ofj, s) having minimuns, is

selected as best pair for split.
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Step 4: Repeat step 2 and 3 for growing tree, tetrhination criteria is met or when
independent variables at a particular node givesesalue

Step 5 : termination criteria is set suchs$ falls beyond a particular set thresd § or when
the data points belonging to particular node p$s lthan q point:

Step 6: to obtain the optimal tree length, prungndone using cro-validation.

Step 6 (a): LeT; be S for all leaf nodes of a common parent. T, beS, by considering the
parent node as leaf nodeT, < T, then leaf nodes are pruned and the parent nanteries lea

node.

6.3 MODELLING

The prediction model is developed based on decisim learning using the algoritr
explained in section 6.:Three differentmodels are developed for forecasting PGA, PGV
PGD respectively.The algorithm is implemented on C and MATLAB. Thesbtree model wil
have optimal tree length. Pruning is a techniqumathine learning which is used to reduce
length of decisioriree by removing irrelevant branching. In this stutiC fold cross validation
technique is used to prune the tree, so as torobitai optimal regression tree prediction mo
It is observed from Figs. €-6.3 that by cross validatiothe minimum MSE s obtained for
number of leaf nodes 20, 10, 10 respectively foedasting PGA, PGV and PC Hence the tree
prediction model for forecasting PGA, PGV and PG tength 20,10,10 respective

3
x10

cross-validated error

10 20 30 40 50 60 70 80 90 100
Min Leaf Size

Fig. 6.2 Pruning of Regression Tree model for PG,
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Fig. 6.2: Pruning of Regression Tree model for PGV
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Fig.6.3: Pruning of Regression Tree model for PGD

6.4 RESULT ANALYSIS AND DISCUSSION

The results obtained from the PGA prediction modelshown in Fig. 6.4. The
comparison of the developed PGA prediction modehwie existing benchmark models is
tabulated in Table 6.1. It is observed that theopsed prediction model has good precision with
much lesser error percentage, for forecastinghal ground motion parameter. Although the

precision accuracy is comparable with the existiagchmark models, it is clearly observed from
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the Table 6.1 that the percentage error is mudete®r the proposed model. Thus, it validates

that overfitting of data is comparatively lessethia proposed model.

Training R=0.852 Testing R=0.84
— 5w | = ([ Y=T
o o Data
o 08 & 08 :
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Fig. 6.4: Predicted Vs Observed value of PGA for desloped prediction model.

Table 6.1: Comparison of developed prediction moddbr PGA with existing models

Criteria Decision Tree ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100]

Train Test Train Test Train Test Train Test Train Test

R 0.8528 | 0.840, 0.869 0.85p 0.836 0.801 0.842 0.83@.833 | 0.839
MAE 0.0149 | 0.033 0.30 0.46 0.478 0.488 0.363 0.697n/a n/a

MAPE 0.1314 | 0.192 0.14 0.13 n/a n/a n/a n/g 0.138 .14%

MSE 0.001 | 0.004 n/a n/a 0.358§ 0.406 0.362 0.389 80.3 0.380

RMSE 0.036 | 0.065 n/a n/a 0.83¢ 0.637 0.602 0.6P4 610.| 0.616
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The Fig.6.5 shows the results obtained from the P@w¥diction model. The
comparison of the developed PGV prediction modéhwhie existing benchmark models
is tabulated in Table 6.2. It is observed that pheposed prediction model has good
precision with much lesser error percentage, faedasting all the ground motion

parameter compared with the existing benchmarketsod

Training R=0.93 Testing R=0.923
— em| = |[— Y=T
oy o Data
& 08 & 08 .
o
m --------- —
<€ 06 £ 06
o
K 2
3 04 : 8 04
2 T
S IAE-0.013 ® ,l° #AE - 0.029
L 02 MAPE -0.114 [] o RIAPE -0 15
o : RMSE-0.030 ’ RMSE.0.054
T 02 04 D6 08 02 04 06 08
Observed In(PGV) Observed In(PGV)

Fig. 6.5: Predicted Vs Observed value of PGV for desloped prediction model.

Table 6.2: Comparison of developed prediction moddbr PGV with existing models

Criteria | Decision Tree ANN/SA [4] GP/OLS [45] MEP pB] GP/SA [100]
Train Test Train | Test Train | Test Train | Test Train Test
R 0.9280 | 0.9234| 0.867 0.874 0.82p 0.813 0.88D.828 | 0.833 0.837

MAE 0.0130 | 0.0292 | 0.34 0.45 n/a | 0.506 | 0.402 | 0.726| nl/a n/a

MAPE 0.1140 | 0.1502 | 1.06 2.17 0.517 n/a n/a an/ | 1.27 2.35

MSE 0.0009 | 0.0029| nl/a n/a 0.421 0.405 nl/a n/al n/a n/a

RMSE 0.030 0.054 n/a n/a 0.649 0.63f 0.634 670. | 0.645 | 0.648
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The results obtained from the PGD prediction moelshown in Fig. 6.6. The
comparison of the developed PGA prediction modeghwihe existing benchmark models is
tabulated in Table 6.3. Although the precision aacy is comparable with the existing
benchmark models, it is clearly observed from tlabl& 6.3 that the percentage error is much

lesser for the proposed model.

Training R=0.865 Testing R=0.846
o sl o Data l a osll " Y_: T
o0 o
S I P e
T 06 £ 06
3 E:
% 0.4 ° 0.4
° o T
5 &MAE:0.007 ® o, N $AE - 0.017
@ 02 MAPE:0.065 | a ¢ fIAPE :0.118 ||
o RMSE:0.022 RMSE-0.045
> 02 02 06 0B 702 04 06 08
Observed In(PGD) Observed In(PGD)

Fig.6.6: Predicted Vs Observed value of PGD for dedoped prediction model.

Table 6.3: Comparison of developed prediction moddbr PGD with existing models

Criteria | Decision Tree ANN/SA [4] | GP/OLS [45]| MEP [5] GP/SA100]

Train | Test Train [Test | Train | Test | Train | Test | Train | Test

R 0.8652| 0.84640 0.87¢ 0.8§9.836 | 0.811 0.846 | 0.840| 0.847 | 0.854

MAE 0.0066 | 0.0175( 0.62 0.62 n/a n/a 0.733.829 | n/a n/a

MAPE |[0.0655| 0.1177] 1.74 1.66f 0.660 0.68d/a n/a 1.61 1.68

RMSE [ 0.022 | 0.045| n/a n/a 0.850 O.9TZD.856 0.899| 0.845 | 0.846
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The table 6.4 tabulates the results obtained bytbposed model for NGA West data. The
results show that the proposed model gives a fmerlization, although results are not in the

acceptable range [143].

Table 6.4: Comparison of developed prediction moddbr NGAWest data

Criteria PGA PGV PGV

R 0.7004 | 0.7417| 0.7497

MAE 0.0065 | 0.0058| 0.0048

MAPE 0.0876 | 0.0884| 0.0715

0.01 0.022 0.022

RMSE

The proposed prediction models are further comptyezkisting GMPESs in Table 6.5. It is
clearly observed that proposed models are betem #xisting GMPEs which validates the

drawback of linear regression.

Table 6.5: Comparison of developed prediction modelith GMPEs (n/a denote value not mentioned)

Mean absolute
error percentage
PGA | PGV | PGD

Model

Tree based prediction model| 0.192| 0.15 0.12

Campbell and Bozorgnia | 0.93 0.78 5.73

(29]

Ambraseys et al [6] 0.95 n/a n/a

1458 | nl/a n/a

Smit et al [142]
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6.5 CONCLUSION

In this study, simple regression tree learningssd to develop the predictive model for
forecasting ground motion parameters. Tree bagp@ssion models are at advantage due to the
faster prediction as the interpretation from treeacdure is easier. It is clearly observed from the
results that the proposed prediction model is ieffic compared to the existing benchmark
models in the domain. Now there is major diffeeebetween clustering and regression tree. In
clustering, we try to cluster in such a way socasidximize the information gained by the cluster
for the independent variable X. In regression tréles branching or dividing is done in such a
manner that the leaf node gives maximum informadibbout the dependent variable Y. Hence the
branching starts at a root node in a greedy seassiner, with binary splitting the root node into
two daughter nodes. The daughter nodes are fusghieiin a binary fashion. At each split there is
gain in information about Y.

Although the growing of tree structure is simptdyas a major drawback such as the tree
structure is purely dependant on the training @i hence a small change in the training data
would result in obtained a different tree structuvoreover a conflict arises in choosing the
independent variables for node, when multiple imehejent variables stand equally good and the

selection is by mere chance. Thus, it also afféesstructure of the tree.

Hence it could be concluded that although the @sed model is efficient compared to
the existing models, more efficious models coulddbgeloped. In the next chapter, an hybrid
architecture of neuro fuzzy system is used to agvptedictive model.
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CHAPTER 7

PREDICTION MODEL BASED ON ADAPTIVE
NEURO FUZZY INFERENCE SYSTEM (ANFIS)

7.1 INTRODUCTION

In this chapter, adaptive network based fuzzyriatence system (ANFIS) is used to
model a prediction system for forecasting peak gdoacceleration (PGA). It is an integrated
hybrid architecture of fuzzy logic with neural netiks such that the knowledge gained by the
fuzzy logic is used by the learning algorithm ofured network. The initial fuzzy model is
derived with the rules from the data, and the nengtwork learns and trains the rules to get the
final model. The hybrid learning algorithm usedANFIS consists of gradient descent and LSE
(least square estimate). The chapter is orgarasdollows. Section 7.2 details the architecture
and the learning algorithms of the hybrid ANFIS mbd&ection 7.3 analyzes the results obtained
and the efficacy of the model is validated by cormggit with existing benchmark models. The
chapter is concluded by section 7.4 which discusisesadvantages and disadvantages of the
proposed ANFIS prediction model.

7.2 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

An adaptive neuro fuzzy inference system (ANFESaihybrid architecture of adaptive
networks and fuzzy inference system, with a hylemining algorithm (HLA). This section is
further divided into two subsections to clearly gwehend this hybrid system. The subsection
7.2.1 explains the architecture of the hybrid ANB{Stem and the subsection 7.2.2 explains the
learning algorithm.

7.2.1 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM ARCHITETURE

The basic architecture of adaptive network baseyf inference system (ANFIS) is
shown in Fig.7.1. It is a hybrid architecture ok@gi and Sugeno's Fuzzy inference system [Fig.

7.2] with adaptive network. Let Eqgs. (7.1-7.2) esant the two rules of Takagi and Sugeno's
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type representing fuzzy inference system, suchxthyare the crisp set inputs and theB\are

the corresponding linguistic variables.

RULEL: If xisA andyisB; THENf; = px+qy+n (7.1)
RULR: If xisA, andyisB, THENTf, = p,x+q,y+r, (7.2)
layer 1 fayer 4

b layer2  layer3 v

Fig. 7.1: ANFIS architecture

/F\_w’ Ty = PX QY+,
: : :VT\ Wy Ty+ W
A o Bz : hﬁ
ﬂ\. F\ Wy Tp=pX+gy +h AN

Fig. 7.2: First order Sugeno Fuzzy inference model

The Figure 7.1 shows the ANFIS architecture [#@] the figure 7.2 shows the inference
mechanism and the defuzzificati¢fi) of Takagi and Sugeno's type fuzzy inference systén
adaptive network is a multi layer feedforward netwan which each node performs the
designated node function. It basically consistdvad types of nodes, namely adaptive node
(represented by square) and fixed node (represeoyec circle). An adaptive node has
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parameters and the set of parameters for an adapétwork consist of all parameters of all
adaptive nodes in the network. These parametersptated based on gradient based learning
algorithm during the training. Fixed nodes do nelvédn any parameters. The entire ANFIS

architecture consists of 5 layers and each layexpéained as follows:

i. Layer 1: All nodes in this layer are adaptive ngdesh the node function as given in
Eq.(7.3).
0} = py, (%) (7.3)
wherex is the crisp input4; is the corresponding linguistic variable ang the
number of nodes in the layal} represents fuzzy membership value for Generally
Bell shaped membership functions are used to pecstdoothness in membership grade
and flexibility in the core of membership functioithe mathematical representation of

bell shape membership function is given in Eq.X7.4

HAG) = ———-

(7.4)
where @ by, and ¢ are position and shape deciding parameters regplgcand are

also called premise parameters.

ii. Layer 2: All nodes in this layer are fixed nodesnide all nodes perform the fixed
operation of multiplying all the respective nod@uis. The output of each nod¢ in

this layer represents the firing strength of trezfurule [Eq. 7.5].
W =y (g (y), =12 (7.5)

lii.  Layer 3: All nodes in this layer are fixed nodesnide all nodes perform the fixed

operation as given in Eq. 7.6. The output of tlagel w is called normalized firing

strength.

i=12 (7.6)
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iv.  Layer 4: All nodes in this layer are adaptive nodegh the node function as given in
Eq.(7.7).
Of = Wfi =W (px+qy+r) (7.7)

where 0} is the output of the layefy is the layer 3 output, and, g, r; are called the

consequent parameters.

v. Layer 5: This layer consists of single fixed nodeoge outpubutis calculated as in Eq.
(7.8).outis the overall output of the architecture,whiclthe summation of all incoming
signals.

out = f = YW f =W, (px+aqy+n)+W,(px+qy+r,) (7.8)

—h

7.2.2 ADAPTIVE NEURO FUZZY INFERENCE SYSTENMHARNING
ALGORITHM

In this section the algorithm used for training foremise and consequent parameters is
discussed. A hybrid learning algorithm, comprisofggradient descent and LSE (least square
estimate) is used in ANFIS. The hybrid learningoaltpm overcomes the drawbacks of
traditional learning algorithm gradient method sashslow learning rate and local minima. The
hybrid algorithm is a two pass algorithm in whidfe tconsequent parameters are determined
using LSE in the first pass and in latter pass ghemise parameters are determined using
gradient descent. Table 7.1 shows the the two paddbe algorithm and the parameters that are

trained during each pass.

Table 7.1: Description for 2 pass Hybrid Algorithm

Pass Premise Parameters Consequent Parameters Vakmnsidered
Forward Pass Fixed LSE Output of Nodes
Backward Pass Gradient Descent Fixed Error measure
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1. PASS 1 FORWARD PASS:

During this pass, the initial value for premise assumed. Now keeping premise
parameters as fixed, the consequent parametersabngdated using least square estimate. It is
done so by allowing the input data and the nodetional signals pass forward all nodes till the
layer 4. Thus the outpdt[Fig. 7.1] could be equated as a linear combimatb consequent

parameters. Hence, by rearranging the terms irf{728), we get Eq.(7.9).
f=Wx)p + Wy)q, + Wr + (Wx)p, + (Wy)q, + (W), (7.9)

Eq. (7.9) could further be written g&=YZ  (7.10) whereZ is an unknown vector whose
value is to be calculated. ThusyYifs invertible matrix Eq. (7.10) could be writtes & = Y~1f
(7.11). Another alternative solution for Eq. (18)ay considering the Pseudo invers&ofience

we obtain the solution as

Z=TY)"YTf  (7.12)
2. PASS 2 BACKWARD PASS:

During this pass, the error measure is propaghsekwards to update the premise
parameters, keeping the consequent parametersantnbhe updating of the premise parameters
is based on the gradient descent method. Let tigiidata has n values. Hence the overall error
measureE is defined a%,, = Y-, Ex (7.13). Letw be the parametep, be the learning rate for
the parameter. The Eqg. (7.14) represents the dveradr measure for the parameter. The
parameter is updated as shown in Eq. (7.15). Tieiséw update parameter value would be as
shown in Eq. (7.16).

0E 0E

b0 = Zk=1g,  (1114)

Aw=—B%£ (7.15)
w = ’Baw .

Wpew = 0 + Aw (7.16)
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7.3 RESULT ANALYSES AND DISCUSSION

In this section, the overall performance of theaedeped model is analyzed. The subsection
7.3.1 details the results obtained by the develdje8IS prediction model. The comparison of

the developed model with the existing benchmarklei®is discussed in the subsection 7.3.2.
7.3.1 ANFIS PREDICTION MODEL

Table 7.2 shows the results obtained for the ANBi#&diction model for membership
function value 2. It is observed that the optimwesuits is obtained at epoch 50 because beyond
this epoch the error percentage becomes a con3tamatresults obtained for ANFIS prediction
model for membership function value 3 is given @ble 7.3. The best model is obtained for
epoch 15 because with further increase in the nuwibepochs, there is no considerable change
in the MAE, MAPE, MSE values as well as the R valliee value of membership function is not
further incremented because further increase ofvéihge of the membership function increases
the computational complexities of the algorithmdieg to a drastic increase of the learning time
of the algorithm, hence making it slower.

Thus the ANFIS prediction model for forecasting theak ground acceleration has
membership function value 3 and the best MSE iginbtl at epoch 15 in 60.25 seconds. The
initial and final membership function of the fourput variables of the developed prediction
model is shown in Figs. 7.3 and 7.4 respectivehe Fig. 7.5 shows the correlation coefficient
(R) and the error measure of the developed predictiodel for PGA, separately for training and
testing data sets. The Fig. 7.6 shows the rexuitSGA WEST 2 dataset.
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Table 7.2: Comparison of results of ANFIS model wh membership function =2

Criteria Epoch =10 Epoch =20 Epoch =50 Epoch =100
Run 16s 3.01s 7.30s 14.49 s
Time

Train Test Train Test Train Test Train Test
R 0.841 0.84¢ 0.85¢ 0.85¢ 0.860: 0.85¢ 0.86¢ 0.86(
MAE 0.019 0.035 0.017 0.034 0.0164 0.0328 0.01¢ 320
MAPE 0.183 0.226 0.164 0.214 0.1573 0.2064 0.1522 .2029
MSE 0.0014 0.0043 0.0013 0.0040 0.0012 0.0089 (2001 0.0038
RMSE 0.037 0.066 0.036 0.063 0.035 0.062 0.03b D.06
Table 7.3: Comparison of results of ANFIS model wh membership function =3
Criteria Epoch =10 Epoch =15 Epoch =16 Epoch =20
Run 448s 60.25 s 65.9s 83.35s
Time
Train Test Train Test Train Test Train Test
R 0.883 0.878 0.887 0.884 0.889 0.88b 0.89p 0.8B9
MAE 0.0146 0.029 0.0144 0.0292 0.0144 0.029 0.01430.0287
MAPE 0.139 0.185 0.1372 0.1861 0.1367 0.187 0.136 .1829
MSE 0.0010 0.0034 0.0009 0.0032 0.00089 0.00B2 @000 0.0031
RMSE 0.032 0.058 0.032 0.057 0.030 0.05p 0.039 ®.0p
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7.3.2 COMPARISON WITH EXISTING MODELS

Table 7.4 shows the comparison of the develope&l&Nbrediction model with 4 other
existing models in the same database, namely GPtoadel [45], ANN/SA model [4], MEP
model [5] and GP/SA model [100]. In the Table T symbol n/a is used to denote the missing
values. It is clearly observed that developed ptexh model has better precision compared to
the existing models. It is also observed that tlegetbped prediction model is faster. The
ANN/SA model [4] requires 364 epochs with 240 selsto attain the minimum MSE value,

whereas the developed prediction model attainsN&&t in 60.25 seconds.

Table 7.4: Comparison of PGA with different existing models

Criteria ANFIS Model GP/OLS model [45] | ANN/SA model [4] | MEP model [5] | GP/SA [100]
mem_fn=3 Epoch=15
Train Test Train Test Train Test Train Test | Train | Test
R 0.88 0.88 0.836 0.811 0.869 0.85b 0.842 0.834 33.80.839
MAE 0.01 0.03 0.48 0.48 0.30 0.46 0.363 0.697 nfa /an
MAPE 0.14 0.18 n/a n/a 0.14 0.13 n/a n/a 0.138 ™1
RMSE 0.032 0.057 0.836 0.637 n/a n/a 0.602 0.6P4 618@.| 0.616

To further validate the efficacy of the developeddiction model, it is compared to few
existing GMPE models. There are numerous attenuatationships for the prediction of
principal ground motion parameter PGA and compawith all of them is not feasible. Table 9
shows the comparison of the developed model withefeGMPEs developed in the same
database. The developed model is also comparedh tthiiee other GMPE models, namely
Campbell-Bozorgnia model [29], Ambraseys et al nhgdgand Smit et al model [142]. The
criterion for comparison is the error percentagéhim prediction of the principal ground motion
parameter PGA for the testing dataset (563 recofid® result in Table 7.5 clearly approves the
efficiency of the ANFIS prediction model.
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Table 7.5: Comparison of PGA model with GMPEs

Model Criteria MAPE
ANFIS prediction model 0.14
Campbell and Bozorgnia (2007) 0.93
Ambraseys et al (1996) 0.95
Smit et al (2000) 14.58

7.4 CONCLUSION

The results obtained show that proposed ANFISigtied model is efficient compared to
all existing hybrid models in the same databaseeadkas the existing GMPE models. Although
the precision of the developed model is good,litiuld be improved. ANFIS architectures has
a major drawback of high computational complexitiegh higher number of membership
functions, which makes the algorithm slow. Henceew novel neuro fuzzy technique, RANFIS

(randomized ANFIS) is proposed and is explaineithénext chapter.
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CHAPTER 8

PREDICTION MODEL BASED ON NOVEL NEURO
FUZZY LEARNING MACHINE, RANDOMIZED
ANFIS (RANFIS)

8.1 INTRODUCTION

In this chapter, a new learning algorithm calle8iNFIS is used to develop a prediction
model for forecasting the parameters of ground omotRANFIS is an improved conventional
ANFIS, overcoming the computational overhead of thgrid learning algorithm (HLA)
algorithm used for the learning in ANFIS. RANFIS as hybrid algorithm combining the
advantages of random assumption of the weight vdotahe hidden layer in feedforward nets
and the adaptive network based fuzzy inferenceesystANFIS). The proposed RANFIS
algorithm is simpler and faster than the converatidksNFIS [69,114,115].

The chapter is organized as follows. Section &Rits the architecture and the learning
algorithms of the RANFIS model. The modelling paedens are detailed in section 8.3. Section
8.4 analyzes the results obtained and the effichdlge model is validated by comparing it with
existing benchmark models. The chapter is conclubgdsection 8.5 which discusses the
advantages and disadvantages of the proposed AdtEtiEction model.

8.2 RANDOMIZED ANFIS

In randomized single layer feedforward neural nekw(&LFN), hidden layer weights and
biases are randomly chosen. The linear output layeights are determined analytically,
reducing the computational cost. To solve this sifetion problem, consider a conventional

SLFN with hidden nodes and activation function gG&nsider a training dataset with N samples

(%.t)where x; =[Xi;,Xip,....Xin]” @Ndt, =[t;,tiy,..tin]" -
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The output of the linear layey; can be obtained as

ZN:;;;gi(xj)zzN:[;ig(wxj +h)=o; for j=1..N wherew. =[w.,,W,,.....w,,]" is the weight vector
i=1 i=1

between the input nodes and thdjdden node3 =[4,,/,...8..] is the weight vector for the

linear output nodes arlg is the threshold of thid' hidden node. This network can approximate

the given problem witiN samples with zero error. That means there exisinpetergs, , w, and

may be written as

HE=T (8.1)
where

gwex +by) ... 9wy +bg)
H=| :
giwxy +B) o gy Xy +bg) |

T
t
and T_{ : ]
T
~ t
Nxm N Nxm

Given a training set, the number of hidden nodes lddden node activation functions, the

algorithm for a single layer feedforward networkiwiandom hidden weights is given as follows:
Step 1 The weights between hidden nodes and input neglemd the threshold of the hidden
nodesb; are randomly assigned.

Step 2 Calculate the hidden layer output matrix H.
Step 3 Calculate the output linear layer weights using

B=HIT (8.2)
where H 7! is the Moore—Penrose generalized inverse of méatrix This gives the smallest

norm least-squares solution of the above lineaeaysind this solution is unique.
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8.2.1 RANDOMIZED ANFIS (RANFIS) ARCHITECTURE

The structure of randomized ANFIS is same as thapwventional ANFIS [70] and is shown
in Fig 1. The architecture uses Sugeno type fuzfgreénce rules. It is assumed that two rules are
used for the knowledge representation. A two rulgedo ANFIS network has rules of the form:

If xisA andyisB; THENf; = ppx+quy+rn;
If xis Ay andyisB, THEN f, = pox+qoy+rs

where,x andy are crisp inputsd;, B are linguistic variables.

Fuzzy Membership
Al

Multiplication yormalization

Bl

B2 2

wifit Wb

T

Inputs —* Output

fi=pixtqiy+n

Bias 1
f=paxtqaytr:

Fig 8.1: Architecture of RANFIS [114]
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The top part of Fig. 8.1 has three layers andessgrts the premise part of the fuzzy rules
and the bottom part has two layers and represkatsdnsequent part. In the top part, the nodes
in the first layer represent the fuzzy membershigtions. The output of each node is

pa,(x)for i = 1,2 andug, ,(y)for i = 3,4 where u(x)is the membership grade for input
x and u(y) is the membership grade for input y. Fixed nodesuaed in the second layer. The
product t-norm is used tand the membership grades of premise parameterst gves a

smoothing effect. Firing strength of the fuzzy rules are calculated as

W=, (X)L, (y), 1=12 (8.3)

Normalized firing strength8 are calculated in the third layer which also cstssof fixed

nodes.

Wi
W, + W,

4B

Wi:

The first layer in the bottom part of Fig. 8.1 repents a linear neural network wigh ¢ and
r.as weight parameters. These weight parameterdapgize and are learned using least square

estimation method. Assuming normalized firing sgtas of fuzzy rules and weight parameters
are known, the output of this is given as
W i =W (px+qy+rn) (8.5)

The second layer in the bottom part computes vieeadl output as:

U= W =W (P cuy+ 1) +Wo(pox+ oy 1) (8.6)

Bell shaped membership functions are used in teenige part, to provide smoothness in
membership grade and flexibility in the core of nbemship functions. The Eq. 8.7 gives the

mathematical representation of bell shape membhefshction.

,uA(x) :;Zb (8-7)

where, the premise parameteydy;, andc; are position and shape deciding parameters.
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If the sample size of the two dimensional (x andafa in Fig. 1 i, the targets$, t...ty
can be found out using (8.6). The N linear equatican be expressed in matrix form as

t (WX Wy W Wox Wy W, Py
ty . L . o
_ r
P2
a2

It L L el "2 Jea

The above matrix equation completely describedwvtioerule RANFIS structure shown in

Fig. 8.1. The premise parametey,s; andcjand the consequent parametgrsg andr,are to be

evaluated using the RANFIS algorithm which is expd in the next subsection.

In the general case, if there &r&raining data pairs, thie linear equations can be

represented in matrix form as

_ (8.8)
TN x1=H N xm" (n+1) ’an(n+1)><1
where,mis the number of membership functionss the dimension of input data amis

the maximum number of rules used.

8.2.2 RANFIS ALGORITHM

In the conventional ANFIS, the premise paramseee determined using gradient descent
methods like backpropagation algorithm. Consequesrameters are learned using linear
network’s training methods like least mean squagstmation [69]. In this type of hybrid
learning algorithm (HLA), in the forward pass, timput patterns are applied, assuming fixed
premise parameters, the optimal consequent paresraate calculated by an iterative least mean
square procedure. In the second pass called asvhatlpass the patterns are propagated again,
and in this epoch, back propagation is used to gdahe premise parameters to reduce the
training error, while the consequent parametersanerfixed. This procedure is continued until

the training error is minimized.

In RANFIS, the strategy of random assumption ofghts is applied to tune the premise

parameters of the fuzzy rules. These parameterb;,(andc)) are randomly selected with some
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constraints on the ranges of these parametersrarttmmness is controlled in RANFIS due to
the explicit knowledge embedded in the linguistciables in the premise part of the fuzzy rules.
Once the premise parameters for all the inputssalected, the H matrix in (8.8) can be easily

determined. Then the unknown linear network paramsetan be determined as
-l
B=H T (8.9)
Consider the training data, withdimensional inputs and one dimensional target as
X, X, . . X,;T]
For input membership functions, the range of eaphti function is defined as
range =maxX;} -mir{X;} fori =1,2,....n (8.10)

If there arem uniformly distributed membership functions, thae tlefault parameters;{,

b, ¢') of thejth membership function are given by

_range
aj* = =
2m-2

8.11)

The default value df; is 2 andg’ is the center of uniformly distributed membership
function.

With these details, thRANFIS algorithm can be summarized in the following steps:

Stepl: Randomly assign the premise parametardy( ¢;) within the following ranges.

a?jDSa <3%JD (c?—%jqj <(ch+"—;¢) whered. is the distance between two consecutive
centers andh is selected from the range 1.9 to 2.1.

Step2: Calculate the premise layer output matrix H ir8}8

Step3: Calculate the linear network parameter magrusing (8.9).

Step 4: Training runs are repeated for 50-70 times tecte¢he best model.
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8.2.3 COMPARISON OF RANFIS WITH ANFIS

The following example would substantiate the adwge of RANFIS over the
conventional ANFIS [70].

Let Z be 2 input (x,y) sinc function given in (8)1Let the range of x and y be [-10, 10].
RANFIS and conventional ANFIS algorithm are usednfimdeling the function. For training and
testing the algorithm, 121 and 100 equally spaceds @mre chosen respectively from this range.
Four membership functions and hence 16 rules agd @@ adapting the parameters of both
algorithms.It is implemented and tested on C and MATLAB R2@®lplatform with processor
Intel(R) core(TM) i3-3220 and 4GB RAM.

Z = sinc (x,y) = RLIC Slnyﬁ (8.12)

X

Fig. 8.2 and Fig. 8.3 show the final membershipfions of x and y obtained after
training the conventional ANFIS and RANFIS respesy.

Final MFs on X Final MFs on Y

2 2
% \\ /[ 1 % \ Y n
2 o8 1 8 os /
uE_} 0.61 I\ 1 E 0.6 N
E /) =
w5 041 \ v 04 [
o 02f @ 02}
8 of 3 0
(=) (=]

-10 -5 0 5 10 -10 -5 0 5 10

input1 input2

Fig 8.2: Final membership functions after trainingfor conventional ANFIS
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Fig. 8. 3: Final membership functions after trainirg for RANFIS
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Table 8.1: Comparison of conventional ANFIS (HLA) ad RANFIS algorithm

Membership Conventional ANFIS RANFIS algorithm
function (HLA)
4 Training Time (sec) 23.607 3.072
RMSE Training 3.5e-4 0.0023
RMSE Testing 2.1263 0.4825
5 Training Time (sec) 97.064 5.112
RMSE Training 7.9e-5 1.78e-4
RMSE Testing 4.5413 1.4510

From Table 8.1, it is clearly observed that theposed RANFIS algorithm is faster with

better testing accuracy compared to the hybrichlegralgorithm of conventional ANFIS. It is

also observed that with the increase in the nunabenembership functions, there is a drastic
increase in the training time for conventional ASRNMhereas for RANFIS, the training time is
comparatively much lesser. Hence the proposed RBN#gorithm is simple compared to the
computation involving HLA in conventional ANFIS arisl faster and efficient. The qualitative
knowledge embedded in the premise part of the fuals reduces the randomness of the first

layer parameters.

108



8.3 MODELLING

Input Variables Output In(Y)

RANFIS Prediction where Y is PGA,

M,F,V,D Model PGV, PGD

Fig 8.4: Model for prediction of principal Ground motion parameters.

The three ground motion parameters that are netiedre peak ground acceleration
(PGA), peak ground velocity (PGV) and peak grounsbldcement (PGD). The developed
ground motion parameter prediction model as showrFig.8.4, is expressed in terms of
earthquake magnitude, faulting mechanism, site iiond and source to site distance. The
number of membership functions is taken as 3. hpatiparameters to the model are earthquake
magnitude, faulting mechanism, average shear walaeity and closest distance. The output is
principal ground motion parameter (Y), Y being PGXGV and PGD respectively. Hence the
model is executed three times independently for PIBAV and PGD respectively. The model is

analyzed based on two sets of data, namely traotatg set and testing data set.

The modelling parameters of the developed RANFR&ligtion model are given in the
Tables 8.2 and 8.3. The Table 8.2 lists the vatiidbe premise parameters (a, b, c) for each of
the four input variables of PGA, PGV and PGD predit models. The consequent parameter
matrix is of the order 81x5 and hence in the T&Bonly the maximum and minimum value is
listed.
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Table 8.2: The modelling parameters (premise) of RWFIS Prediction Model.

PGA PGV PGD
Input | Mem.Fun a b c a b c a b c
1 1 0.3358| 1.9333 0.061¢4 0.3025 2.0353 -0.0182 89281.9413| 0.0724
2 0.3965| 2.0299 0.3371 0.1710 1.96p2 0.7169 0.15280617 | 0.6738
3 0.1483| 2.0491] 1.1707 0.1264 1.94f1 1.1347 0.29159095| 0.7428
2 1 0.3472| 2.0293 0.2557 0.2221 2.0733 0.2069 0.014.9185| 0.2210
2 0.3736| 2.0181] 0.4969 0.4162 1.901.7 0.5032 0.30270956 | 0.5739
3 0.3595| 1.9334 0.8502 0.3578 2.01p2 0.7432 0.27@40090 | 0.7515
3 1 0.0020| 1.9904 -0.003F 0.0185 1.9880 0.0084 83002.0181| -0.0454
2 0.0575| 1.9421 0.7203 0.3377 1.90p8 0.4125 0.19919187 | 0.3217
3 0.3711| 2.0866( 0.9116 0.0645 2.05p4 1.0502 0.35240584 | 1.1501
4 1 0.1266| 1.9821 -0.0450 0.2089 1.9788 0.1247 59.041.9048| 0.2661
2 0.2179| 1.9943 0.6440 0.0540 1.9780 0.6198 0.13P80554 | 0.4705
3 0.2815| 1.9116/ 0.8781 0.3124 1.9489 0.8227 0.32280785| 0.9371

Table 8.3: The modelling parameters (consequent) RMFIS Prediction Model.

Consequent parameters (81x5)

PGA PGV PGD
minimum -1.55 -4.55 -6.25
maximum 1.61 4.07 5.61

8.4 RESULT ANALYSES AND DISCUSSION

In this section, the overall performance of thevalieped model is analyzed. The
subsection 8.4.1 details the results obtained bydiéveloped RANFIS prediction model. The

subsection 8.4.2 compares the developed modeltietexisting benchmark models.
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8.4.1 RESULTS OBTAINED BY THE DEVELOPED RANFIS MODRE

The best result is obtained for 100 epochs with lmemof membership functions equal to
3, and the developed prediction model takes 188mskcto attain the best MSE value. The
performance of the developed RANFIS prediction nhddegauged in terms of prediction
accuracy and the error percentage. The performaihttee developed model is described in the
Figs.8.5-8.7 for both training and testing datasete Fig. 8.5 shows the results obtained for the
prediction of peak ground acceleration. The Fig6.ahd 8.7 represent the results obtained for
the prediction of peak ground velocity and peakugrbdisplacement respectively. It is observed
from the Figs 8.5-8.7 that the developed predictiwodel, for the prediction of PGA, PGV and

PGD respectively, is efficacious as the models gyivigh prediction accuracy with lesser error

percentage.
Training R=0.902 Testing R=0.900
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< T Fit
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D o2 AT, 02 MAPE: 0.176 |
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Fig 8.5: Predicted Vs Observed value of PGA (Traimig Data and Testing Data)
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Fig 8.6: Predicted Vs Observed value of PGV (Traimig Data and Testing Data)
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Fig 8.7: Predicted Vs Observed value of PGD (Traimig Data and Testing Data)

To further validate the potential of the develop&NFIS model, it is tested further on NGA
WEST 2 dataset. Figs 8.8-8.10 shows the resultsiredit. The model gives good accuracy
which supports the claim that the developed premianodel has good generalization capability.
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Fig 8.8: Predicted Vs Observed value of PGA
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Fig 8.10: Predicted Vs Observed value of PGD

8.4.2 COMPARISON WITH EXISTING MODELS

The developed RANFIS prediction model is compavét 4 other existing models in the
same database, namely GP/OLS model [45],ANN/SA inptje MEP model [5] and GP/SA
model [100] developed in the same database. Theriexgntal results are tabulated in Tables

8.4-8.6. In the tables, where the correspondirilgegaare missing, it is denoted by the symbol
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n/a. The Table 8.4 represents the comparison ofieleloped RANFIS model with the existing
models for the prediction of peak ground acceleratiThe Tables 8.5 and 8.6 shows the
comparison between the developed model and théreximodels, for the prediction of PGV and
PGD respectively. It is observed from the Table4-86, that the RANFIS model gives
comparatively higher prediction accuracy with extedy small error percentage. Furthermore, it
is observed that the RANFIS model is faster. TheNRFS model takes 183 seconds with 100
epochs to attain the best MSE value, whereas th¥/8N prediction model [4] takes 364 epochs
with 240 seconds to attain the minimum MSE value.

Table 8.4: Comparison of RANFIS prediction model ér PGA with existing models

Criteria | RANFIS ANN/SA[4] [GP/OLS[45] [ MEP [5] GP/SA [100]

Train | Test Train | Test Train | Test Train | Test Train | Test

R 0.902 | 0.900( 0.869] 0.85p 0.83p 0.811 0.840.834  0.833| 0.839

MAE 0.013 | 0.026( 0.30 0.46 0.478 0.488 0.363.697 | nl/a n/a

MAPE 0.13C [ 0.17¢ | 0.14 0.1z n/a n/a n/a n/a 0.15¢ | 0.14¢

MSE 0.001 | 0.003| n/a n/a 0.354§ 0.4d6 0.362.389 | 0.381 | 0.380

RMSE 0.029 | 0.052 n/a n/a 0.83¢ 0.637 0.600.624 | 0.617| 0.616
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Table 8.5: Comparison of RANFIS prediction model fo PGV with existing models

Criteria RANFIS ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100]
Train Test Train Test Train Test Train Test Train Test
R 0.901 0.904 0.867 0.874 0.822 0.813 0.8B7 0.§28 .83 | 0.837
MAE 0.013 0.025 0.34 0.45 n/a 0.50¢4 0.40p 0.726 n/a nla
MAPE 0.130 0.155 1.06 2.17 0.5172 n/a n/a n/a 1.2y 3%
MSE 0.001 0.002 n/a n/a 0.421 0.40% n/a n/a n/ag n/a
RMSE 0.026 0.045 n/a n/a 0.649 0.637 0.634 0.6Y1 646. 0.648
Table 8.6: Comparison of RANFIS prediction model fo PGD with existing models
Criteria RANFIS ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100]
Train Test Train Test Train Test Train Test Train Test
R 0.909 0.906 0.870 0.864 0.834 0.811 0.846 0.840 .847 0.854
MAE 0.008 0.016 0.62 0.62 n/a n/a 0.733 0.829 n/a lan
MAPE 0.099 0.129 1.74 1.66 0.660 0.68[1 n/a n/a 1.61 1.68
RMSE 0.019 0.035 n/a n/a 0.850 0.901L 0.856 0.899 848. 0.846
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It is clearly observed from the Tables 8.4-8.Gattthe RANFIS model is efficient
compared to other existing models. The developelIRS& model is further compared with few
existing GMPEs to prove the efficacy of the RANF®del. There are numerous attenuation
relationships for the prediction of principal graumotion parameter and comparing with all of
them is not feasible. Hence the developed RANFISlehds compared with the few GMPEs
developed in the same database. The criterion damparison is the error percentage in the
prediction of each of the principal ground moticarameters (PGA, PGV, and PGD) for the
testing dataset (563 records). It is observed ftben Table 8.7, that the developed RANFIS
model gives better precision as the error percentagxtremely less. Another advantage of the
developed RANFIS model is that it is much simplsrcampared to GMPEs as the RANFIS
prediction model includes only 4 geophysical par@nseas input, whereas GMPESs include many
geophysical parameters.

Table 8.7: Comparison of model with GMPEs (n/a derte value not mentioned)

Model Criteria MAPE

PGA | PGV | PGD

RANFIS 0.175| 0.158| 0.108

Campbell and Bozorgnia [29] 0.93 0.78 5.73

Least Square regression analysis [96] 0.16 2.4 7Q.

Ambraseys et al [6] 0.95 n/a n/a

Smit et al [142] 14.58 n/a n/a
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8.5 CONCLUSION

In this study, a new and faster hybrid machirerimg algorithm, RANFIS is used to
predict the three principal ground motion paranefGA, PGV and PGD. The hybrid network
used in modelling also avoids the randomness ofrésalts inherent in randomized SLFN
networks by incorporating explicit knowledge regmestion using fuzzy membership functions.
The results obtained show that the developed predienodel is efficient as it gives better
precision results in lesser computational time carag to the existing GMPEs models and soft
computing models. Moreover, the simulation studiesw that the RANFIS algorithm is faster

than the conventional adaptive neural fuzzy infeeesystem learning algorithm.

In the next chapter, all the developed predictimdels are compared for concluding the

best prediction model for forecasting ground mopanameter, proposed in this study.
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CHAPTER 9
COMPARISON OF ALL PROPOSED PREDICTION
MODELS

9.1 INTRODUCTION

In this chapter all the developed predictive medelr forecasting the ground motion
parameters are compared and the learning effeetbseof each algorithm is further explored. In
chapters 4-8 of this study, the respective develgpediction models are compared to existing
benchmark models and the GMPEs. In this chaptethalpredictive models proposed in this
study, for forecasting ground motion parameterscamapared in terms of prediction accuracy
and error measure. Hence this chapter concludeshélke prediction model among all the
developed prediction models in this study. Futheemthe prediction models are compared for
‘learning effectiveness’ of the algorithm which &za&s the learning ability of the algorithms. In
this chapter for the comparative analyzes of theeldped ground motion parameter prediction
models, the predictive model for forecasting peadugd acceleration is considered. The chapter
is organized as follows. Section 9.2 details themgarison of all the 6 developed predictive
models with respect to the training data. The mtedi models are further compared in terms of
testing data in section 9.3. The learning effectess of all the predictive models is analyzed in

section 9.4. The discussion on the comparisonediptive models is concluded in section 9.5.

9.2 COMPARISON OF TRAINING DATA

In this section, the all the developed peak groawdeleration predictive model is
compared for training data consisting of 2252 epréike records. Table 9.1 tabulates the
performance during training of the developed madéle models are tabulated in the order of
their performance. It is observed that the nowalra fuzzy technique (RANFIS) is the best
predictive model as it gives high prediction accyralt is also observed that the prediction
accuracy for prediction model based on hybrid aectire ANFIS is comparable with prediction
model based on kernel method learning (LS-SVR m)od®imilarly, the ELM based prediction

model performs better than the decision tree arfeNShased prediction model.
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Fig 9.1 shows the correlation coefficient (R) of #le developed prediction models with
various measures of training error. Fig. 9.2 shidvescomparison of the correlation coefficient
(R) with training error measured in terms of mebaddute percentage error (MAPE), for all the

developed prediction models.

Table 9.1: Comparison of all developed models fordining data (PGA)

Criteria RANFIS | ANFIS |LS-SVR | ELM Decision | SLFN | v-SVR | ¢-SVR
(RBF tree (RBF (RBF
kernel) kernel) kernel)

R 0.902 0.88 0.872 0.841 0.852 0.807 0.731 0.696
MAE 0.013 0.010 0.014 0.018§ 0.015 0.0211 0.024 0.053
MAPE 0.130 0.140 0.137 0.182 0.131 0.219 0.246 6.71
RMSE 0.029 0.032 0.033 0.037 0.036 0.040 0.048 ®.06
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Fig. 9.1 Comparison of all developed predictive maals for train data
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Fig. 9.2: Comparison of R with MAPE for all develogd predictive models for train data

9.3 COMPARISON OF TESTING DATA

In this section, the developed peak ground acatter predictive models are compared
for testing data consisting of 563 earthquake @x@s well as for the NGA WEST 2 dataset
consisting of 140 earthquake records. For anyldped predictive model, the efficacy of the
predictive model depends on the performance optkdictive model on the testing data sets. In
this work, the models are tested for 703 earthqueg&erds.

The Table 9.2 represents the comparison of thelalee® models for the test data of 563
records. The models are tabulated in the orderhefpgerformance of the models. Fig. 9.3
represents the correlation coefficient (R) alonghviour measures of testing error, for all the
developed predictive models for the test data d3 ®cords. It is observed that the best
prediction algorithm is the novel neuro fuzzy teidue, RANFIS. It outperforms the existing
ANFIS architecture. It is also observed that thernkl based model (LS-SVR model)
outperforms the neural based model (ELM model).e Performance of the LS-SVR based

prediction model is comparable to ANFIS based ptexh model. The Fig 9.4 shows the
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comparison of correlation coefficient (R) with tegt error MAPE for all developed predictive

models for the test data of 563 records.

Table 9.2: Comparison of all developed model for &ing data (PGA)

Fig 9.3 Comparison of all developed predictive mode for test data

122

Criteria | RANFIS | ANFIS LS-SVR ELM | Decision | SLFN v-SVR € -SVR
(RBF tree (RBF (RBF
kernel) kernel) kernel)

R 0.900 0.88 0.870 0.849 0.840 0.819 0.763 0.764
MAE 0.026 0.030 0.032 0.035 0.033 0.039 0.046 0.058
MAPE 0.176 0.180 0.189 0.229 0.192 0.266 0.277 8.55
RMSE 0.052 0.057 0.061 0.066 0.065 0.070 0.088 ®.08
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Fig. 9.4: Comparison of R with MAPE for all developed predictive models for test data

The developed prediction models are further teste NGA WEST 2 dataset
consisting of 140 earthquake records. The Tablgdh@lates the performance of the developed
predictive models on NGA WEST 2 dataset. The furtbealuation of performance of the
developed prediction models on this dataset vasgitie efficacy of the model. The results show
that the developed models are independent of ttebdse on which the model is trained and
works well for any set of data, which matches ttatistical parameters of the training data set.
All the developed prediction model is trained fartaquake magnitude ranging from 5.2 to 7.9.
The NGA WEST 2 dataset consists of 140 earthquekerds, outside the training database but

within this range of magnitude.

Table 9.3: Comparison of all developed Prediction wdels for NGAWest 2 data (PGA)

Criteria | RANFIS | ANFIS LS-SVR v -SVR Decision | &-SVR ELM SLFEN
(RBF (RBF Tree (RBF model
kernel) kernel) model kernel)
R 0.885 0.820 0.8140 0.7171 0.7004 0.6585 0.54p 2424
MAE 0.004 0.006 0.0060 0.0148 0.0065 0.0537 0.046 .0147
MAPE 0.072 0.089 0.0853 0.2180 0.0876 0.8308 0.291 0.2171
RMSE 0.010 0.008 0.010 0.017 0.010 0.060 0.031 9.0
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It is clearly observed that the novel neuro fuakyorithm RANFIS outperforms all the
other developed models. Another interesting obsienvdrom Table 9.3 is that it clearly shows
that the generalization of kernel method (SVR) Hasedel is much better than the neural based
learning (ELM, ANN). Furthermore, it is also obsedvthat the generalization is better for ELM
compared to SLFN, which substantiates the advardag&M over ANN. Fig. 9.5 represents the
correlation coefficient (R) along with four meassid testing error, for all the developed models
for the NGA WEST 2 dataset. Fig. 9.6 shows the ammspn of R, the correlation coefficient for
the NGA WEST 2 dataset with testing error MAPEislbbserved that the RANFIS algorithm

has the least testing error with highest accuracy.
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Fig. 9.5: Comparison of all developed predictive miels for NGA WEST 2 dataset
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Fig. 9.6: Comparison of R with MAPE for all develoged predictive models for NGA WEST 2 dataset

9.4 OVERFITNESS MEASURE OF LEARNING ALGORITHMS

In this section, a comparative study is done basethe learning ability of the prediction
algorithms used in the study, along with the emgstoenchmark models, as mentioned in Table
3.1. The efficacy of the learning capability of tlégorithms is based on the measure of
‘overfitness’. All the models considered in thicsen are the developed predictive models, as

well existing benchmark models, for forecasting PGA

The efficacy of any model is analyzed on the tgsérror. The overfitness measure [161]
is a comparison between training and testing effbe measure of overfitness is calculated as
given in Eqg. 5.28, mentioned in section 5.4.3 hiapgter 5. The measure of error considered is
mean absolute error percentage (MAPE), detailesestion 3.6 of chapter 3. The testing data
considered in evaluating the overfitness measuresists of 563 earthquake records. The
comparative results obtained on testing data frdimthe developed predictive models are
tabulated in Table 9.2.

Higher measure of overfitness shows that the algorhas a drawback of overfitting the

data. Hence it is used as a criteria to compardeiachaving comparable prediction accuracy.
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Table 9.4 tabulates the measure of overfitness efch algorithm. The model having a

comparatively lesser measure of overfitness is tediihve better generalization.

From the results shown in Tables 9.1-9.3, it incteded that the RANFIS prediction
model is the best developed predictive algorithrhe Tearning algorithm proposed in the
RANFIS model, a novel neuro fuzzy technique, hag lprediction accuracy with lesser error
measure and overfitness measure. It is observédRiNEFIS model gives the least testing error
measure among all the developed models. The meaduowerfitness is acceptable as the
RANFIS model gives good precision (as shown in &&hl3), for the NGA WEST 2 dataset,
consisting of 140 earthquake records, which ist@fsearthquake data outside the database used
for modelling. Thus, the novel neuro fuzzy teclugigs efficacious as it gives remarkable
precision accuracy, with much lesser error pergentand without overfitting the data during
modelling.

Table 9.4: Comparison of all Prediction models fooverfitness

Model Accuracy Testing Error Overfitness
RANFIS 0.90 0.176 0.34
ANFIS 0.88 0.180 0.29
ELM 0.85 0.229 0.26
&-SVR (RBF kernel) 0.76 0.558 0.22
v-SVR (RBF kernel) 0.76 0.277 0.13
LS-SVR (RBF kernel) 0.87 0.189 0.38
Decision Tree 0.84 0.192 0.47
SLFN 0.82 0.266 0.28
GP/SA 0.839 0.144 0.21
GP/OLS 0.811 0.49 0.24
MEP 0.834 0.69 0.92
ANN/SA 0.855 0.46 0.53
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Further comparing the developed predictive models,observed from Tables 9.1-9.3, that
ANFIS predictive model and LS-SVR prediction motiee commensurate performance. The
prediction accuracy and the error measure are o@hblea It is observed from Table 9.4, that the
overfitness measure for the 2 pass hybrid learrlgprithm (HLA) of ANFIS model is
comparatively lesser than the kernel method baseadning algorithm, LS-SVR. Hence,
comparatively it could be said that ANFIS basedijmt@n model for forecasting ground motion
parameter is better than LS-SVR based predictiordemoAlthough ANFIS model has
advantages, it has few bottleneck issues. In thidys the ANFIS model with membership
function 3 was considered. ANFIS architecture lesdrawback of higher computational time

and complexities with higher membership function.

It is further observed from Tables 9.1-9.3, tHa performance of decision tree based
prediction model is comparable with the ELM baseeddjction model. From the Table 9.4 it is
clearly observed that decision tree based model ehdmgher measure of overfitness. This
substantiates the major drawback of decision tredetling. The key issue of decision tree
modelling is that the tree structure obtained aftedelling is highly dependant on the dataset.
Any variation in the dataset results in a differeee structure. Thus, there is overfitting of the
data. The results in Table 9.4 proves this issweofsion trees. Hence the ELM based prediction

model is comparatively better than a decision b&sed model.

The further vital observation from the Table 9s4that the overfitness for SVR based
models is less compared to SLFN model, as welAtkB/SA model. Thus, it validates the claim
by the kernel based learning method (SVR) thavé@rcomes the major drawback of overfitting
of data, as in the case of neural network basedhodst Hence it is validated that SVR has a
better generalization than ANN. Moreover, it is cloided from the Table 9.4, that ELM has a
better generalization than ANN, as overfitness meas less for ELM compared to SLFN, as
well as ANN/SA models.
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9.5 CONCLUSION

In this chapter, all the developed predictive ntedie this study, for forecasting ground
motion parameters are compared. It is clearly oleskefrom the result analysis in chapters 4-8,
that all the developed prediction models for fosticey ground motion parameter outperforms
the existing benchmark models as well as the egstonventional GMPEs. All the developed
predictive models based on advanced machine lgahdme better accuracy and lesser measure
of the error percentage compared to the existinglaetso In this chapter, all the proposed
predictive models are compared in terms of premliciccuracy and the different measure of
error percentages. Furthermore, the prediction rillgns are analyzed for their learning
capability. The learning ability of the algorithns expressed in terms of a measure termed
‘overfitness’, which defines overfitting, the bettleck issue of any leaning machine. An
efficient learning machine should be one which dussoverfit the data.

From the results tabulated in Tables 9.1-9.4sitoncluded that from among all the
proposed predictive models in this study, the pestiction model for forecasting ground motion
parameter is RANFIS model, the improved conventigkidFIS. It is followed by the ANFIS
model, the hybrid neuro fuzzy architecture, followey the LS-SVR model, followed by the
ELM based prediction model. Hence it is concludealt the hybrid neuro fuzzy architecture

outperforms the kernel based learning method, SVR.

The major drawback of the hybrid learning algant(HLA) of the ANFIS model is the
computational time due to the complexities whidkes at the higher membership function. It is
observed from Table 8.1 that the RANFIS algorithrarcomes this drawback of ANFIS.

It is also observed from Table 9.4 that the SVBoathm has a lesser measure of
overfitness. The-SVR model and- SVR models have the least measure of overfitmesssure.
Among the kernel method based learning, the LS-®uilel gives the best result. The results
show that the LS-SVR model has a slightly higherasuee of overfitness. It is because for
obtaining the optimal value of gamma for LS-SVRaaithm, simulated coupling method is
used. The simulated annealing (SA) is a probalailigptimization algorithm and has its own

drawbacks.
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The results also show that kernel based learnisgdsser measure of overfitness compared
to ELM. Hence it is concluded that support vectegression has definitely a better

generalization compared to neural networks.

The ELM based model outperforms the decision trased modelling as well as the
neural based models such as the SLFN and the bankimodel ANN/SA. This further supports
the claim that ELM has a better generalization tABIN.

It is further observed that the highest value doerfitness measure is for tree based
modelling. Thus, the major drawback of the tresedlamodelling which is data dependency is
clearly highlighted. The existing benchmark modrlsh as GP/OLS, GP/SA and MEP models
could be considered as an attempt to develop efiiciree like structures. The genetic
programming (GP) is an evolutionary algorithm sanito genetic algorithms (GA). The multi
expression programming (MEP) model is again a wammdé GP model. The final output of the
GP model is a tree like structure. It is observednfTable 9.4 that GP/OLS and GP/SA models
have a lesser measure of overfitness. The MEP n®&ejhly dependant on the data as, in MEP
a linear representation is used. The measure efithess for the MEP model as in Table 9.4

clearly validates this drawback.

It is also observed that developed models haveerbprecision compared to genetic
programming as well as its existing hybrid architees (GP/SA). The next chapter concludes the

study by highlighting the significance of the waléne in this thesis.
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Chapter 10
CONCLUSION AND FUTURE SCOPE

10.1 CONCLUSION

In this study, predictive models based on advamoadhine learning are developed for
forecasting ground motion parameters. The advamsadhine learning algorithms used are
extreme learning machines (ELM) which is based eura network learning, three variations of
support vector regression (SVR) which is based emdé! methods learning, decision tree, and
two hybrid architecture ANFIS and RANFIS (randondzANFIS). ANFIS is an integrated
hybrid architecture of fuzzy logic with neural netks such that the knowledge gained by the
fuzzy logic is used by the learning algorithm ofuras network. RANFIS is the new learning
algorithm proposed for predictive models in thisdst The RANFIS algorithm integrates the
explicit knowledge of the fuzzy systems with tharfeéng capabilities of neural networks, as in
the conventional ANFIS system, but with the diffese that, the fuzzy layer parameters in
RANFIS are not tuned. This improvement in the assdture of ANFIS structure helps to
accelerate the learning speed without compromigiaggeneralization capability.

All the machine learning algorithms used in thisdy are novel in this domain. All the
developed predictive models are meticulously arelyand the results are well validated. It is
clearly observed that the developed predictive nsode this study are advantageous when
compared to the existing benchmark models in tbisain as shown in Table 3.1, as well as with
the traditional ground motion parameter equati@isIPEs). The existing benchmark models are
ANN/SA model by Alavi and Gandomi [4], GP/OLS modgl Gandomi et al [45], MEP model
by Alavi et al [5] and GP/SA model by Mohammadnegidal [100] and the existing GMPE
models are Ambraseys et al. [6], Smit et al. [142[] Campbell and Bozorgnia [29]. The chapter
9 further details the comparative study among lal tleveloped ground motion parameter
prediction models. In this comparative study of #aious proposed algorithms, the learning
effectiveness of each algorithm is analyzed, whigtther highlights the advantages and
drawbacks of each advanced machine learning ahgorit
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Furthermore, the proposed novel neuro fuzzy tect&)i¢RANFIS’ proves to be promising

prediction algorithm for forecasting ground motjoarameters.

This study manifests that advanced learning nmashcould be effectively used as
a predictive tool in this domain. In this studye ttlatabase used is real earthquake data recorded
worldwide. The predictive models developed in ttisdy are not data dependant. In this study,
the models are developed for earthquake magnitadgirrg from 5.2 to 7.9, in the scale of
moment magnitude. The models could be trainedrigrrange of earthquake magnitude, as per

the user requirement.

All the developed predictive models were trainew dested on earthquake records
obtained from PEER database [111]. The developedetaowere further tested on another
dataset NGA WEST 2 [23] consisting of 140 earthguedcords. Hence it is validated that the

developed predictive models are not constrainethemlata.

The study also brings out the drawbacks of liregression analysis, which is used for
the generation of GMPEs. It is observed from thsults obtained in this study, that the
developed predictive models for forecasting groomaion parameter, not only gives faster and
more accurate ground motion parameter predictidnatao the drawbacks of linear regression
modelling is overcomed. The key issues of the gdomotion prediction equations (GMPES)
developed using regression analysis is that thdtsesave a higher measure of error as well the
overhead of solving the equation as it consist laifge number of coefficients. All the proposed
prediction models in this study use only 4 geoptalsparameters for the forecasting of ground
motion parameter. The results obtained show treat#veloped prediction models are efficient
as it gives better precision results in lesser agatpnal time compared to the existing GMPEs
models and soft computing models. Moreover, in ttisdy all the developed models are
analyzed on 4 different measures of error. Theildet analysis of the advanced machine

learning algorithms is done in chapter 9.

The vital application of the proposed model ist thacould be used as tool for faster
prediction of the ground motion parameter with éessalculation overhead, in all areas such
seismic risk assessment, seismic hazard analgsibgeiake resistant structural engineering, etc.
where the principal ground motion parameters aeel as a vital input.
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10.2 FUTURE SCOPE

Although it is well validated that the proposecegictive models in this study are
efficacious, there are some aspects of this stdiydould be considered as the future scope of

the work.

A further extension of this study is to identiffewer and relevant geophysical
parameters, which could replace the currently deaedinput parameters. The four geophysical
parameters considered in this study are believdxgktithe most prominent attribute relating to an
earthquake process and ground motion parametem Hre study of seismology, it is observed
that, the signal generated during an earthquakeepsy is dependant on many features. From the
literature survey, (Douglas [39]), it is perceivetht other important features are the energy
released during an earthquake, the depth of ahqeeke (focal depth), the soil properties, the
path travelled by the signal and so on.

Furthermore, the distance measure consideredddehing is the closest distance, which
is defined as the closest distance of the ruptared to the recording site. A further study could
be done so as to deduce the influence of diffemegrisures of distances on the ground motion

parameter.

In this study, the novel neuro fuzzy technique NRAS’, was applied to forecast ground
motion parameters. The proposed prediction algoritould be applied to various complex real
world problems such as in biomedical signal praogsr image processing or a stock market

prediction, or prediction of other natural caldestsuch as landslide prediction etc.

The proposed RANFIS model is an improved convealioANFIS. Although this
proposed algorithm is efficient, it could be impeavin terms of computational time. In RANFIS,
the maximum number of rules usedis, for n dimensional input and m number of membgrshi
functions. The computational time of the algoritbould be improved if the number of rules is
reduced. Hence the optimization for the reductibrthe number of rules, could be a further

extension of the work.
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Furthermore, the efficacy of RANFIS could be tdsten data, having large number of
input attributes with huge number of instanceghls study, the dimensionality of the database is
2815 numbers of earthquake records with 4 inputufea. The study of the behavior of the
RANFIS prediction algorithm for datasets having entivan 10 input features with large number
of records ( number of records >5000), would berggting. To improve the computational time

and the efficacy of the model for such huge dasaseuld be a real challenge.
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APPENDIX A

The CB-NGA median ground motion model is given by the general equation

]ll I= f;:mg + fdr': +‘fﬂr + ‘fhng + f;rte +1f;ed

where the magnitude term is given by
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the distance term is given by
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the style-of-faulting term is given by
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the shallow site response term is given by
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and the deep site response term 1s given by
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Table 3.1 Coefficients for CB-NGA median ground motion model.

T €y G [ G €, Cs G [ G G iy o Cia i k, k,

0.010 | -1.715| 0500 | -0.330 [ -0.262 | -2.118 | 0170 | 560 | 0280 |-0.120 | 0480 | 1.038 | 0.040 | 0.610 865 | -1.186 | 1839

0.020 | -1.680| 0500 | -0.330 [ -0.262 | -2.123 | 0170 | 560 | 0280 |-0.120 | 0480 | 1102 | 0.040 | 0.610 865 | -1.219 | 1.340

0.030 | -1.552| 0500 | -0.330 [ -0.262 | -2.145 | 0170 | 560 | 0280 |-0.120 | 0480 | 1174 | 0.040 | 0.610 908 |-1.273 | 1841

0.050 | -1.209| 0500 | -0.330 [ -0.267 | -2.19% | 0170 [ 574 | 0280 | -0.120 | 0.4%0 | 1272 | 0.040 | 0610 | 1054 |-1346 | 1.843

0.075 | -0.657| 0.500 | -0.530 [ -0.302 | -2.277 | 0170 | 709 | 0280 [-0.120 | 0480 | 1438 | 0.040 | 0610 | 1086 |-1.471 | 1845

0.10 | -0.314| 0500 | -0.530 | -0324 | -2318 | 0170 [ 805 | 0280 | -0.099 | 0.4%0 | 1604 | 0.040 | 0610 | 1032 | -1624 | 1347

015 | -0.133| 0500 | -0.530 | -0.339 | -230% | 0.170 | 8.7% | 0280 | -0.048 | 0450 | 1928 | 0.040 | 0.610 §78 | -1931 | 1332

020 | -0.486| 0.500 | -0.446 | -0.398 | -2.220 [ 0170 | 7.60 | 0.280 |-0.012 | 0490 [ 2.1%4 | 0.040 | 0610 748 | -2.188 | 1.836

025 | -0.890| 0500 | -0.362 | -0.458 | -2.146 | 0170 | 638 | 0.280 | 0.000 | 0490 [ 2351 | 0.040 | 0700 654 |-2381 | 1.361

030 | -1.171) 0500 | -0.2%4 | -0.511 | -2.085 | 0170 | 6.04 | 0.280 | 0.000 | 0490 | 2460 | 0.040 | 0.750 587 |-2.518 | 1.863

040 [ -1.466| 0500 | -0.186 | -0.582 | -2.066 [ 0.170 | 530 | 0.280 | 0.000 | 0490 | 2587 | 0.040 | 0.850 303 |-2637 | 1874

050 | -2.569| 0.656 | -0.304 | -0.536 | -2.041 | 0170 [ 475 | 0280 | 0.000 | 0.4%0 | 2544 | 0.040 | 0.883 457 |-2.669 | 1.883

0.75 | -4.844| 0872 | -0.578 | -0.406 | -2.000 [ 0.170 | 4.00 | 0.280 | 0.000 | 0490 | 2133 | 0077 | 1.000 410 | -2401 | 1506

1.0 -6.406| 1196 | -0.772 | -0.314 | -2.000 | 0070 | 4.00 | 0235 | 0000 | 0.4%0 [ 1571 | 0.150 | 1.000 400 |-1.835 | 1529

1.3 -5.692| 1513 | -1.046 | -0.185 | -2.000 | 0170 | 4.00 | 0.161 | 0.000 | 0.4%0 | 0406 | 0253 | 1.000 400 (-1.025 | 1974

20 2.701| 1600 | -0.978 | -0.236 | -2.000 | 00170 | 4.00 | 0.094 | 0000 | 0371 [-0436 | 0.300 | 1.000 400 | 0299 | 2019

30 |-10.556| 1600 | -0.638 [ -0.451 | -2.000 | 0170 [ 400 | 0000 | 0.000 | 0.154 | -0.820 | 0.300 | 1.000 400 | 0000 | 2.110

40 |-11.212| 1600 | -0316 | -0.770 | -2.000 | 0170 [ 400 | 0000 | 0.000 | 0.000 | -0.820 ( 0.300 | 1.000 400 | 0.000 | 2200

50 |-11.684| 1600 | -0.070 | -0.986 | -2.000 | 0.170 [ 400 | 0.000 | 0.000 | 0.000 | -0.820 ( 0.300 | 1.000 400 | 0.000 | 2281

7.5 |-12.505| 1600 | -0.070 [ -0.656 | -2.000 | 0170 | 400 | 0.000 | 0.000 | 0.000 | -0.820 ( 0.300 | 1.000 400 | 0.000 | 2317

10.0 [-13.087| 1.600 | -0.070 | -0.422 | -2.000 | 0.170 | 4.00 | 0.000 | 0.000 | 0000 |-0.820 | 0.300 | 1.000 400 | 0000 | 2744

PGA | -L715| 03500 | -0.530 ( -0.262 | -2.118 | 0170 [ 560 | 0280 |-0.120 | 0480 | 1.058 | 0.040 | 0.610 865 | -1.186 | 1839

PGV | 0934 0696 | -0.308 [ -0.019 | -2.016 | 0170 [ 400 | 0245 | 0.000 | 0358 | 1654 | 0.092 | 1.000 400 |-1.835 | 1529

PGD | -5270( 1.600 | -0.070 ( 0.000 | -2.000 | 0170 ( 400 | 0000 | 0.000 | 0.000 | -0.820 ( 0.300 | 1.000 400 | 0000 | 2744

Note: ¢ =188 and n=1.18 for all periods; PGA and PSA have units of g; PGV and PGD have unifs of cm/s and cm. respectively.
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