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ABSTRACT
 

 In this thesis, advanced machine learning algorithms are used to develop predictive 

models for forecasting ground motion parameters. The machine learning algorithms used are 

extreme learning machines (ELM), support vector regression (SVR) and its three variations, 

namely ε-SVR, ν-SVR and Ls-SVR, decision trees and hybrid algorithm ANFIS (adaptive neuro 

fuzzy inference system).  In this thesis, a novel neuro fuzzy algorithm, RANFIS (randomized 

ANFIS) is also proposed for forecasting ground motion parameters. This advanced learning 

machine integrates the explicit knowledge of the fuzzy systems with the learning capabilities of 

neural networks, as in the case of conventional adaptive neuro fuzzy inference system (ANFIS). 

In RANFIS, to accelerate the learning speed without compromising the generalization capability, 

the fuzzy layer parameters are not tuned.  

 The three time domain ground motion parameters which are predicted by the developed 

predictive models are peak ground acceleration (PGA), peak ground velocity (PGV) and peak 

ground displacement (PGD). Each ground motion parameter is related to mainly to four seismic 

parameters, namely earthquake magnitude, faulting mechanism, source to site distance and 

average soil shear wave velocity. The model is developed using real earthquake records obtained 

from the database released by PEER (Pacific Earthquake Engineering Research Center) 

 Conventionally, the ground motion parameters are estimated using strong ground motion 

prediction equations which are also known as attenuation equations. Ground motion prediction 

equations (GMPEs) are equations that related the ground motion parameter PGA, PGV, PGD to 

independent parameters like earthquake magnitude, source to site distance and site conditions. 

They are developed using the traditional regression analysis method. The development of 

GMPEs involves highly complex computation because of the high nonlinearity and 

inhomogeneous dependencies among the parameters.  The regression analysis is applied for the 

computation after reducing the complexities by including assumptions. Incorporating the 

simplified assumptions into modelling leads to very large errors. Thus, there is a huge need for 

the modelling of ground motion parameters using newer techniques so as to reduce the existing 

complexities. These overheads are minimized by using advanced learning machines.  
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 The predictive models for forecasting ground motion parameter, developed using 

advanced learning machines have many advantages. For modelling using machine learning, it is 

not required to assume linear dependencies among the variables.  Thus, there are no assumptions 

made and no irrelevant coefficients are required. This makes the predictive models developed 

using advanced machine learning computationally faster. Moreover, using the advanced learning 

machines, efficient predictive models with higher precision and lesser error measure is obtained. 

In this study, all the developed prediction models based on advanced machine learning, are 

compared to the existing GMPEs as well as the existing benchmark models. The existing GMPE 

models are Ambraseys et al model [6], Campbell and Bozorgnia model [29] and Smit et al model 

[142]. The existing benchmark models are ANN/SA model by Alavi and Gandomi, GP/OLS 

model by Gandomi et al, MEP model by Alavi et al [5] and GP/SA model by Mohammadnejad 

et al [100]. The quantitative and the qualitative analysis of all the proposed prediction models 

based on advanced machine learning algorithm shows that the developed prediction models have 

a good prediction accuracy for the forecasting of ground motion parameter. 

 The significance of the proposed work in this thesis is the application of advance machine 

learning for faster and easy prediction of the ground motion parameters. The ground motion 

parameters are the most relevant criteria required for designing any earthquake resistant 

infrastructure. With growing urbanization, there is tremendous increase in the population density 

in earthquake prone areas, which in turn is increasing the demand for earthquake resistant 

structure.  

 All the developed models are tested on the real earthquake data. The database used for 

modelling is the database known as NGA WEST 1 compiled and systematized by Pacific 

Earthquake Engineering Research Center (PEER) in 2003 as a part of a project named PEER-

NGA project. The database file is termed as NGA flatfile V 7.3.  The predictive models are 

trained on 2252 earthquake records and tested on 563 earthquake records. To further validate the 

efficacy of the proposed models, the models are tested on another set of 140 earthquake records.  

 In this study, the different types of learning methods used are namely neural network 

learning, kernel method learning, hybrid models and decision tree learning. The hybrid models 

used in this study are neuro fuzzy techniques which combine the fuzzy logic and neural 

networks.   
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 In this study, six different prediction models are proposed. The ground motion parameter 

prediction model developed based on neural network learning are ANN model, and ELM 

(extreme learning machines) model. The ground motion parameter prediction model developed 

based on kernel method learning are ε-support vector regression model, ν-support vector 

regression and Ls-SVR (least square support vector regression) model. The ground motion 

parameter prediction model developed based on hybrid models are ANFIS (adaptive neuro fuzzy 

inference system) model and the novel neuro fuzzy technique, RANFIS (randomized ANFIS) 

model. The ground motion parameter prediction model developed based decision tree learning is 

a regression tree model.  

 In this study, a further comparative study of all the developed models is done to deduce 

the best prediction model. Furthermore a comparative study of the learning effectiveness of each 

algorithm is done in terms of measure of ‘overfitness’. The overfitness measure is a comparison 

of the training error with the testing error. This comparative analysis further highlights the 

advantages and drawbacks of each advanced machine learning algorithm.   

 In this study all the comparisons and conclusions are well validated, as the models are 

based on real earthquake data, rather than the synthetic data. Furthermore, it is observed that the 

proposed novel neuro fuzzy technique RANFIS proves to be promising prediction algorithm for 

forecasting ground motion parameters and hence could be applied to other prediction problem in 

various domains.  
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Chapter 1 

INTRODUCTION  
 

1.1 OVERVIEW 

  In this thesis, advanced machine learning algorithms are used to develop predictive 

models for forecasting ground motion parameters associated with seismic signals. The ground 

motion parameter predicted are  peak ground acceleration (PGA), peak ground velocity (PGV) 

and peak ground displacement (PGD). These parameters are in time domain.  

 The term seismic denotes the shaking or  vibration of the earth `s crust due to an 

earthquake or to an artificial explosion. Hence the signals generated during an seismic activity is 

termed as seismic signals.  The seismic signal processing is a subfield of the digital signal 

processing (DSP). The processing of seismic signal mainly focuses on processing of seismic data 

by removing noise and enhancing the weaker signals to locate the seismic events on the 

subsurface of the earth`s crust. The information obtained from the seismic signals assists the 

geologist for better understanding and  interpretation of the structure of the earth`s subsurface. 

The  seismic signals are mainly used in broad fields such as microseismic data processing, 

reservoir characterization and seismic data compression. The processing of seismic signals in the 

field of microseismic data processing is for the analysis and prediction of earthquakes. The 

seismic signal processing relating to reservoir characterization mainly deals with the exploration 

of oil fields.   

 The signals generated during an earthquake are recorded by an instrument named 

‘seismograph’ and the records are termed as ground motion records. During an earthquake, the 

rupture of the earth`s crust begins at point, termed as the focus.  A seismogram is the recording of 

the seismic signal as a function of time, at the particular recording station.  It is recorded in 3 co-

ordinate space (x, y and z) with x-and y- planes parallel to earth`s surface and z-plane 

perpendicular to the earth`s surface. Thus, a seismogram records the displacement of ground or  
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earth`s crust during an earthquake. The seismograph can record the shaking of the earth`s crust, 

due to an earthquake or due to a heavy explosion.  A seismograph can record any range of 

disturbance  ranging from, very small waves, such as due to a heavy wind and strong ground 

motion due to a powerful earthquake. The recording of the acceleration of the earth`s crust or 

ground during an earthquake is called accelerogram. The recording of the velocity of the earth`s 

crust or ground during an earthquake is called velocigram.  The Fig. 1.1 shows a sample seismic 

recording. 

 

Fig. 1.1: A sample seismic recording (a) seismogram (b) velocigram (c) accelerogram 

 

The few basic terminologies associated with an earthquake process are as follows. The 

pictorial representation of the terminologies is shown in Fig. 1.2 for better understanding.  

i. Focus: The point at which earthquake originates within the earth. It is also called 

hypocenter. 

ii. Epicenter: The point on the earth`s surface which is directly above the focus. 
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iii.  Focal depth: It is the depth of earthquake focus, or in other words, it is the distance 

between the focus and the epicenter. 

iv. Epicentral distance: It is the distance of site from the epicentre of an earthquake. 

v. Hypocentral distance: It is the distance of site from the focus of an earthquake. 

 

 

Fig. 1.2: Pictorial representation of earthquake process  

vi. Earthquake magnitude: Earthquake magnitude  is a number that characterizes the relative 

size of an earthquake. 

vii. Peak ground acceleration (PGA) : it is the maximum value, (positive or negative)  of the 

ground acceleration that appears in the accelerogram.  

viii.  Peak ground velocity (PGV) : It is the maximum value of the ground velocity (positive or 

negative) that appears in the velocigram.  

ix. Peak ground displacement (PGD): It is the maximum value of the ground displacement 

(positive or negative) that appears in the seismogram. 
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   The earthquake originates at focus, within the earth generating seismic waves. A seismic 

wave is an elastic wave generated by the impulse of an earthquake. The seismic signals travel in 

all directions from the focus and reach the site, where it is recorded with the help of 

seismographs. The path by which the wave would travel would dependant on the local geology 

and soil conditions.  During an earthquake, damage is usually maximum at the epicentral region, 

where strong motion is maximum. Ground motion records from the epicentral region can be of 

great help in understanding the earthquake process at the source as effects of transmission paths 

are minimal. In the epicentral region near the source, accelerograms or strong motion records 

may be used to provide useful insight into the earthquake process. Analysis and interpretation of 

observed and simulated strong motion records holds promise for an enhanced understanding of 

the earthquake process 

 Natural calamities, which causes immense loss to the society cannot be prevented or 

controlled.  The destruction and loss caused by the calamities are immense. Although the loss of 

lives during calamities can never be predicted or prevented, an attempt could be done to reduce 

the casualties occurring during any natural calamity. Among the various natural calamities, 

earthquakes are considered to be more destructive in nature. The main reason for considering 

earthquake as most devastating natural calamity is the human and economic losses occurring 

during an earthquake. The human loss is mainly due to destruction of the man made structures 

such as bridges, buildings etc. With the advancement in science and technology, an attempt is 

being made to construct infrastructures that are tolerant to seismic activity.  Hence developed the 

concept of designing earthquake resistant structures. The most crucial parameters (Sehhati et al 

[131], Giacinto [46]), considered for designing earthquake resistant infrastructure are the peak 

ground acceleration (PGA), the peak ground velocity (PGV) and the peak ground displacement 

(PGD).  These parameters are collectively termed as ground motion parameters.  

 Conventionally, the ground motion parameters are estimated using strong ground motion 

predictive equations. Ground motion prediction equations (GMPEs) are equations that related the 

ground motion parameter PGA, PGV, PGD to independent parameters like earthquake 

magnitude, source to site distance and site conditions. They are developed using the traditional 

regression analysis method. The major drawback of using conventional method is that applying  
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regression analysis for the development of attenuation relationships is complex because of the 

high nonlinearity and inhomogeneity among the parameters. Hence, there is a huge need for the 

modelling of ground motion parameters using newer techniques so as to reduce the existing 

complexities.   

1.2 ADVANCED LEARNING MACHINES 

 Artificial Intelligence (AI) is the branch of computer science that deals with computer 

programs that can solve a class of problems such as pattern recognition, decision making and 

learning. The term ‘Artificial Intelligence’, was first coined by John McCarthy in 1955. The 

term is defined as the discipline of developing computational agents that can act intelligently. 

An agent is anything that acts when subjected to an environment or situation. The agent is 

said to have acted intelligently if agent`s actions are in accordance with the goal required by 

the environment, or if the agent is flexible when subjected to changes in its environment or if 

the agent willingly learns or adapts itself to the environment or if the agent is capable of 

taking appropriate decisions when subjected to choices or options.  

 An agent is termed as a computational agent when the actions or decisions made by 

the agent could be expressed in terms of computation. Hence the decision or action is 

furcated into a primitive operation that could be implemented on a physical device. For an 

instance, if the agent is a computer, the primitive operation will be carried out in hardware. 

There are some agents on the contrary, that cannot be computational, say rain or wind 

causing erosion to landscape. Hence, it is an arguable declaration if all intelligent agents are 

computational. The main goal of artificial intelligence is to design intelligent agents. Hence it 

works on the principle of understanding the fundamentals that make intelligent behavior 

possible. It is done by formulating a hypothesis that could make an agent act intelligently, 

after analyzing the agent and then proving the hypothesis by testing.  

 Computational intelligence (CI) is the study of nature inspired computational methods 

that could be applied to real world complex problems where traditional mathematical 

modelling fail. Computational intelligence is applied to problems such as a complex process 

too complex for mathematical reasoning, or the process consists of lots of uncertainties or 
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when the process is stochastic in nature. The CI uses the combination of 5 complementary 

techniques as fuzzy logic, artificial neural networks, evolutionary computing, learning theory 

and the probabilistic methods. 

 Although computational intelligence and artificial intelligence, both work on 

achieving long term goal of acquiring intelligence so that a machine could perform a  task 

intellectually, there exist a key difference between computational intelligence and artificial 

intelligence. Computational intelligence is a subset of artificial intelligence. The artificial 

machine intelligence works on hard computing techniques and the computational machine 

intelligence works on soft computing techniques. The concept of binary logic, consisting of 

boolean 0 and 1, based on which modern computer works, is followed in hard computing 

techniques. The drawback of this concept is that not all problems could be expressed in 

absolute terms of 0 and 1. Hence, in this scenario, soft computing techniques come into 

picture. The fuzzy systems which helps in better representation of the problem, by expressing 

it in a range of value ranging from 0 to 1.  

 Machine learning (Bishop [24]) is an emerging field, that evolved from the theory of 

computational learning and pattern recognition, in the domain of artificial intelligence.  Machine 

learning was defined by Arthur Samuel in 1959 as that field of study that gives machines or 

computers, ability to learn without being explicitly trained or programmed. Thus, it deals with 

the development and construction of algorithms that can learn from the data.  The algorithms 

,thus developed operate by building a model, from the sample data provided for training the 

model and hence making predictions.  Machine learning has its application in a wide range of 

fields such as computing task where explicit designing of algorithms is not feasible, in the 

discipline of computational statistics, which focuses on computer based predictions  etc. Machine 

learning and pattern recognition are facets of the same field.  Based on the type of learning 

machine learning could be broadly classified as supervised learning, unsupervised learning and 

reinforcement learning.  Machine learning could also be categorized as classification, regression, 

clustering and dimensionality reduction based on the desired output of the machine. The 

supervised learning algorithm has the ability to analyze the training data and to draw conclusions 

as either classification for discrete data or as a regression for continuous data.  The generalization 

is the ability of any learning method to predict the exact output for every valid input.  
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 The goal of machine learning, shifted from focusing to achieve intelligence as in the field 

of AI,  to solving practical problems using methods from statistics and probability theory, rather 

than using symbolic approaches used in AI. Although machine learning employs methods used in 

data mining, there exists a difference. The machine learning concept focuses on learning a 

machine for prediction based on some properties of the training data, whereas the data mining 

aims to discover unknown properties of the data. The various approaches in machine learning are 

decision tree learning, association rule learning, artificial neural network learning,  inductive 

logic programming, support vector machines (SVM), clustering, bayesian network, 

reinforcement learning, representation learning, symmetry learning, sparse dictionary learning, 

genetic algorithms etc. Machine learning methods are also referred as predictive modelling. 

Machine learning is gaining popularity and is applied in almost all fields of pattern recognition 

problems.   

 The topics relating to advanced machine learning include the application of kernel 

methods, graphical models, tensor approach, semi-supervised and active learning, boosting, 

bagging etc, to data analysis.  For modelling of sophisticated and advanced machine learning 

models for  complex real world problem, the relevant paradigms are kernel methods and 

graphical models.   

 The basic principle of kernel methods is to create a framework, so that the approaches 

designed for linear relations and patterns could be extended to nonlinear cases. In the kernel 

method approach, the data are first mapped onto a high dimensional feature space, and then 

various algorithms are applied to this feature space to find patterns or relations in the data. The 

mapping is done using functions named kernel functions. Since the mapping could be done 

without any constraints such like linear mapping, the relations developed in the data could be 

linear or nonlinear. This is the major advantage of  using kernel methods. The few algorithms 

operating with kernels are Gaussian processes, principal components analysis (PCA), Fisher’s 

linear discriminant analysis (LDA), spectral clustering, support vector machine (SVM), relevance 

vector machine (RVM), etc. The kernel functions are selected based on the problem. The 

commonly used kernel functions are Linear Kernel, Gaussian Kernel, Polynomial Kernel, Bessel 

Kernel, Bayesian Kernel, Circular Kernel, Wavelet Kernel etc. The popular kernel methods based 

approach is support vector machines (SVM) and relevance vector machine (RVM).  
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 Graphical models work on developing a framework for providing solutions to complex 

real world problems consisting of huge datasets with a very large number of features or attributes 

defining the data. Graphical models are generally applied to find intelligent conclusions using 

local information or knowledge for such datasets. Hence a graphical model is nothing but a 

probabilistic model in which the structure representing the conditional dependencies between 

attributes or variables could be represented by a graph. 

 The various algorithms based on graphical models help in drawing intelligent 

conclusions, learning and decision making for a variety of problems such as statistics, artificial 

intelligence, natural language processing, computational biology, etc. The further advances in 

machine learning are the development of hybrid models such as ANFIS, which combines two 

approaches such as fuzzy logic and ANN. Furthermore, attempts are being done to improve the 

existing approaches. One such attempt is the development of extreme learning machines (ELM). 

The extreme learning machine is a generalized single layer feedforward network (SLFN) in 

which the hidden layer parameters are not tuned. 

  In this study, the problem statement is a prediction problem. The aim of the study is to 

develop predictive models based on advanced machine learning. The approaches used in this 

study are neural network base learning, kernel methods based learning and tree based learning. 

The advance machine learning algorithms used in this study for the development of predictive 

models for forecasting ground motion parameters are ELM, SVM, decision tree, and hybrid 

architecture ANFIS. The three time domain ground motion parameters which are predicted by the 

model are peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground 

displacement (PGD). The model is developed using the database released by PEER (Pacific 

Earthquake Engineering Research Center) [111]. Each ground motion parameter is related to 

mainly to four seismic parameters, namely earthquake magnitude, faulting mechanism, source to 

site distance and average soil shear wave velocity.  

  Moreover, in this study, a novel neuro fuzzy technique, RANFIS is also proposed 

for forecasting ground motion parameters. The proposed RANFIS model is an improvement of 

the conventional ANFIS model. This advanced learning machine integrates the explicit 

knowledge of the fuzzy systems with the learning capabilities of neural networks, as in the case 
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of conventional adaptive neuro-fuzzy inference system (ANFIS). In RANFIS, to accelerate the 

learning speed without compromising the generalization capability, the fuzzy layer parameters 

are not tuned.  

 The experimental results obtained from all the proposed predictive models validate the 

improved performance of the developed predictive models for forecasting ground motion 

parameter, with lesser computation time compared to prior studies. 

1.3 RESEARCH GAP  

 The ground motion parameters are estimated conventionally, using strong ground motion 

predictive equations, which are developed using traditional regression analysis. The application 

of the regression method, in the development of the ground motion prediction equations 

(GMPEs) equations can produce some problems due to inhomogeneities in terms of independent 

parameters.  

  

 Ground motion prediction equations are equations that relate the ground motion 

parameter PGA, PGV, PGD to independent parameters such as earthquake magnitude, source to 

site distance and site conditions. These parameters are highly dependant on each other. Hence the 

modelling of GMPEs is highly complex  due to multivariable dependencies. For applying 

regression analysis for modelling the GMPEs, the complexities are reduced by assuming linear 

dependencies among the variables. Hence a number of assumptions are included in the 

modelling. Thus the inclusion of assumptions increases higher measure of error percentages in 

the predictive equation  because, for a highly non-linear form of the regression, a small change in 

one coefficient strongly affects another coefficient's value. Thus, there is a huge need for special 

techniques to be employed for the modelling of ground motion parameters. The advanced 

learning machines can overcome these drawbacks. The predictive model developed using 

advanced learning machines has many advantages.  For modelling using machine learning, it is 

not required to assume linear dependencies among the variables.  Thus, there are no assumptions 

made and no irrelevant coefficients are included.  
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 The modelling is for function � → �(����ℎ
����	���������, ��������, ����	���������) , 

where Y represents the ground motion parameter. Y is PGA, PGV and PGD.  Hence, in the 

development of predictive models using machine learning, the interdependencies of the 

parameters are considered, as there is no constrain that the parameters should be linearly 

dependent.  Another advantage of using advanced machine learning is that the predictive models 

developed using machine learning gives better prediction accuracy in lesser computational time 

compared to GMPEs. In the GMPEs, since linear modelling is considered, each parameter used 

for modelling such as earthquake magnitude, distance and site conditions includes a very large 

number of coefficients. Thus the computational time for solving an GMPE equation would be 

very high.  

 

 As an example, a GMPE, named ‘Campbell and Bozorgnia’ [29] is shown in appendix A. 

The  ‘Campbell and Bozorgnia’ ground motion prediction equation is given along with the table 

showing the values of the coefficients.  The equation is modelled as a function of  six variables 

and consists of 16 coefficients. Hence, for solving the equation, the corresponding values have to 

be substituted. Thus, it is clearly observed that solving a GMPE is cumbersome, time consuming 

and involves a lot of computational complexity. Moreover the results obtained by solving a 

GMPE consist of a very high percentage of error. It is observed that ‘Campbell and Bozorgnia’ 

ground motion prediction equation give an error measure of 0.93, measured as mean absolute 

percentage error (MAPE) [4,5,45,100] on an earthquake database of PEER [111]. Hence it is 

clearly observed that the GMPE models do not give accurate results.  

 

 Furthermore, from the literature survey as detailed in chapter 2 of the thesis, it is observed 

that there is limited application of soft computing techniques for prediction of ground motion 

parameters. There exist only 4 models based on soft computing techniques, as shown in Table 

3.1. All  these existing models are based on neural network learning. The neural network based 

learning such as artificial neural networks have many drawbacks such as poor generalization 

ability, overfitting of data and the algorithm getting stuck at the local minima. Hence it is 

observed that more accurate and efficient prediction models could be developed. 
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 The advanced learning machines have proved its efficiency in many pattern recognition 

problems. The application of advanced machine learning for prediction of ground motion 

parameter should also be possible. In this study, this presupposition is analyzed and validated.  

1.4 OBJECTIVE 

 In this thesis, advanced machine learning algorithms are used to develop predictive 

models for forecasting ground motion parameters. The prediction models are developed on 

basically 4 types of learning, namely neural network learning, kernel based methods learning, 

hybrid models and decision tree learning. The three ground motion parameters in time domain 

which are predicted are peak ground acceleration (PGA), peak ground velocity (PGV) and peak 

ground displacement (PGD). Each ground motion parameter is related to four seismic 

parameters, namely earthquake magnitude, source to site distance, average soil shear wave 

velocity and faulting mechanism. The model is developed using real earthquake records obtained 

from the database released by PEER (Pacific Earthquake Engineering Research Center) [111]. 

 The machine learning algorithms used are extreme learning machines (ELM), support 

vector regression (SVR) and its three variations, namely ε-SVR, ν-SVR and LS-SVR, hybrid 

algorithm ANFIS (adaptive neuro fuzzy inference system) and regression tree learning.  A single 

layer feedforward network (SLFN) is also used for modelling. The ground motion prediction 

model based on SLFN is developed so as to compare it with the other developed prediction 

models based on advanced machine learning. Thus, this comparison helps in highlighting the 

advantages of advanced learning machines over artificial neural networks.  

  In this thesis, a novel neuro-fuzzy learning machine called randomized adaptive neuro-

fuzzy inference system (RANFIS) is also proposed for prediction of ground motion parameters. 

The RANFIS algorithm integrates the explicit knowledge of the fuzzy systems with the learning 

capabilities of neural networks, as in the conventional ANFIS system, but with the difference 

that, the fuzzy layer parameters in RANFIS are not tuned. This improvement  in the architecture 

of ANFIS structure helps to accelerate the learning speed without compromising the 

generalization capability.  
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 In this study, the advanced machine learning algorithms are used to develop the predictive 

model in an attempt to develop efficient ground motion prediction model compared to GMPEs. 

The major drawback of GMPE models is the higher measure of error in the results. The 

quantitative and the qualitative analysis of all the proposed prediction models based on advanced 

machine learning algorithm, shows that the developed prediction models have a good prediction 

accuracy for the forecasting of ground motion parameter. The analysis also shows that error 

measure in the predictive models based on advanced machine learning algorithm is very less 

compared to the existing predictive models as shown in Table 3.1 and GMPEs.  

 The study of the ground motion parameter is highly significant in the field of earthquake 

engineering as ground motion parameter is a vital parameter for constructing earthquake resistant 

structures.  Hence the development of high precision predictive models for forecasting ground 

motion parameter prediction will be a significant contribution to the domain. 

1.5 AUTHORS CONTRIBUTIONS 

The following are the significant contributions drawn on the results obtained in this study: 

a. In this work, six different prediction models are proposed using advanced machine 

learning technique for the prediction of ground motion parameters. The ground motion 

parameter prediction model is developed based on neural network learning (ANN, ELM), 

kernel method learning (ε-support vector regression, ν-support vector regression and LS-

SVR (least square support vector regression)), hybrid models (ANFIS, RANFIS) and 

decision tree learning. The overall performance of all the developed model is better 

compared to the existing benchmark models in the same database.  

b. All the proposed models are developed and tested on the real earthquake data [23,111]. 

The database used for modelling is the database compiled and systematized by Pacific 

Earthquake Engineering Research Center (PEER) in 2003 as a part of a project named 

PEER-NGA project. The database file is termed as NGA flatfile V 7.3. 
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c. All the developed prediction models are tested on 563 earthquake data records [111] and 

further tested, as an external validation, on another set of 140 earthquake data records 

[23]. Hence the predictive model is tested for 703 events. This validates the precision of 

the proposed model.  

d. All the proposed prediction model is compared to 4 existing models on the same 

database.  The benchmark models existing in the same database are ANN/SA model by 

Alavi and Gandomi [4], GP/OLS model by Gandomi et al [45], MEP model by Alavi et al 

[5] and GP/SA model by Mohammadnejad et al [100]. It is clearly observed that the all 

the proposed prediction model has better precision compared to all these benchmark 

models. 

e. The efficacy of all the proposed prediction model is further validated by comparing it to 

existing GMPE model such as Ambraseys et al. [6], Campbell and Bozorgnia [29] and 

Smit et al. [142].  

f. The proposed prediction model based on advance machine learning overcomes the 

existing uncertainties due to the regression analysis method of the GMPEs as well the 

computational complexities of solving complex GMPEs. The existing GMPEs uses 

equations developed based on regression analysis and consists of many geophysical 

parameters. The proposed prediction models in this study use only 4 geophysical 

parameters, namely  earthquake magnitude, source to site distance, average soil shear 

wave velocity and faulting mechanism, for the forecasting of ground motion parameter.   

g. The proposed prediction model based on advanced machine learning could be used as a 

tool for faster and accurate prediction of the ground motion parameter with lesser 

calculation overhead (comparatively with GMPEs), in all areas such seismic risk 

assessment, seismic hazard analysis, earthquake resistant structural engineering etc., 

where the principal ground motion parameters are used as a vital input parameter.  
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h. In this work, a comparative study of the all the algorithm used for developing the 

predictive models is done in terms of the learning effectiveness of each algorithm. The 

learning effectiveness is measured in terms of a measure of ‘overfitness’.  This 

comparative analysis further highlights the advantages and drawbacks of each advanced 

machine learning algorithm.   

i. In this thesis, a novel neuro-fuzzy learning machine called randomized adaptive neuro-

fuzzy inference system (RANFIS) is proposed for predicting the parameters of ground 

motion parameters. 

1.6     ORGANIZATION OF THE THESIS 

The thesis is organized into ten chapters. A brief summary of each chapter is given below. 

 Chapter 1  gives an overview of the thesis. It gives an introduction to the problem 

statement by briefly explaining ground motion parameters and machine learning. The research 

gap is also highlighted which substantiate the author’s contribution. The organization of the 

thesis is also explained in this chapter. 

 Chapter 2 details the literature survey of the ground motion parameters and the existing 

advanced machine learning algorithms. The chapter is organized such as it first gives an 

introduction of the various advanced machine learning algorithms and its application is various 

domains. The next section explains the existing application of the advanced machine learning 

algorithms in the field of earthquake engineering and geosciences.  The chapter is concluded by 

the section which details the existing work done in the domain of ground motion parameter 

prediction.  

 Chapter 3 explains the database used in this study and the explains the various modelling 

parameters.  The chapter is organized such that it gives all the information relating to the 

modelling such as data preprocessing, input parameters, modelling function, training and testing 

datasets, etc.  Furthermore, the chapter also mentions the various criteria based on which the 

performance of the developed prediction models is compared. The chapter also lists the 

benchmark prediction models and GMPEs existing in this same database.  All the proposed 
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prediction models in this study are compared to these benchmark models mentioned in this 

chapter.  

 Chapter 4 details the prediction model based on neural network based learning. The 

chapter meticulously describes a prediction model based on extreme learning machines (ELM). 

The chapter also describes a very simple ANN model, a prediction model based on single layer 

feed forward neural network (SLFN). The SLFN model is developed so that it could be compared 

with the ELM based prediction model. This comparison helps in validating and substantiating the 

advantages of the novel algorithm, extreme learning machines, based on neural network learning.  

  Chapter 5 explains the prediction model developed on kernel method based learning.  The 

algorithm used is support vector regression (SVR).  This chapter details the three variations of 

SVR algorithm used in modelling, namely ε-Support Vector Regression, ν-Support Vector 

regression and LS-SVR (least square Support Vector Regression). The chapter also details the 

modelling parameters such as the kernel functions used and other relevant parameters. All the 

three prediction models developed on these 3 algorithms are compared to obtain the best 

prediction model based on support vector regression.  

 Chapter 6 describes the prediction model based on decision tree learning. A Decision tree 

is a predictive learning method to develop a tree like model used to predict a target, based on a 

set of input features. The model developed is termed as regression tree, when the predicted target 

values take real continuous values. This chapter details the modeling using regression tree 

learning. 

 Chapter 7 consists of the prediction model based on a hybrid model, adaptive neuro fuzzy 

inference system (ANFIS). The chapter details the architecture and the modelling parameters. 

  Chapter 8 details the prediction model based on the novel neuro fuzzy algorithm 

RANFIS. The chapter first details the architecture of the novel algorithm RANFIS and compares 

it with the conventional ANFIS model for a benchmark problem. This comparison validates the 

advantages of the novel algorithm. The following sections of the chapter describe the application 

of this novel technique for forecasting ground motion parameter. 
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 Chapter 9 compares all the developed prediction models. In the chapters 4-8, the 

respective developed prediction models are compared to existing benchmark models and the 

GMPEs. In this chapter, all the developed predictive models in this study, for forecasting ground 

motion parameter are compared in terms of prediction accuracy and error measure. Hence this 

chapter concludes the best prediction model among all the developed prediction models in this 

study. Futhermore, the prediction models are compared for ‘learning effectiveness’ of the 

algorithm. This section of the chapter helps in analyzing the learning ability of the algorithms. 

The learning ability of the existing benchmark models is also analyzed.  

 

 Chapter 10 concludes the thesis by highlighting the significant contribution of the thesis 

with the scope for further research in the area. 
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Chapter 2 

LITERATURE SURVEY 
 

 In this chapter, a comprehensive survey of the domain of the study is done. The chapter is 

organized as follows, the popular advanced machine learning algorithms are briefly explained in 

section 2.1. The section 2.2 details the study of existing machine learning algorithms 

implemented in the field of earthquake engineering and geosciences. The existing soft computing 

techniques in the domain of ground motion parameter prediction are explained in section 2.3 

2.1   ADVANCED LEARNING MACHINES 

 It has been observed that in the recent years, there has been a tremendous increase of 

application of soft computing techniques and machine learning in almost all fields of engineering 

and sciences.  The most popular soft computing technique is artificial neural networks (ANN) 

(Haykin [60]), because of the ease of implementation.  ANN are models based on the neural or 

nervous systems of brains.  As the brain learns from experience, this biological inspired method 

of computing, also learning from the experimental training data.  In simple words, ANN consists 

of group of processing elements called neurons, which are interconnected to form a structure.  

The strength of the connection between neurons is symbolized by weights, which are optimized 

during training of the model.  The commonly used algorithm used for training weights is 

backpropagation. The neurons consist of activation functions which decide output of the neuron. 

The basic structure of ANN consists of an input layer, an output layer, and one or more layers of 

hidden neurons.  The input layer consists of the input parameters, the output layer consists of 

single or multi neurons depending whether its single output or multi output problem.  The layer 

between the input and output layer is called the hidden layer and it consists of hidden neurons. 

The ANN structure depending on the number of hidden layers is termed as a single layer or multi 

layer neural networks (Hornik [62]).  The artificial neural networks are the most popular 

technique in the domain of neural network based learning.  
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 ANN has gained popularity in almost all fields with diverse domains such as prediction 

problems (Adomaitis et al [3] , Keskin et al [78], Spandana et al [144], Thakur et al [151] ), 

control system (Arslan et al [11], Badlani and Bhanot [14], Keskin and Goker [79], Keskin [80], 

Kiran and Rajput [84] , Metin et al [97,98] ), brightness controller (Khan et al [81,82]) 

biomedical signal and image processing (ManjulaSri and Rao [92,93], ManjulaSri et al [94], Rao 

[120],  Zuhair et al [163]), fuzzy systems (Nagaria and Saini [101], Nagaria and Singh [102]), 

decision systems ( Ozkan and Inal [104]) and so on. 

 Though artificial neural networks are popular due to its ease of implementation, it suffers 

a major drawback which prevents it from being an efficient algorithm. Artificial neural network 

works on the principle of empirical risk minimization and hence the best ANN architecture is the 

one having minimum training error. This leads to two major issues of overfitting and local 

minima. ANN also has an overhead as its computational complexities are dependent on the 

dimension of the input space. Conventional neural networks have always been a popular machine 

learning technique widely used over the decades, and many researchers are constantly working 

for the advancement in the architecture and training speed of neural networks. One major 

improvement in the existing neural net architecture was the claim that the weights of the output 

layer are more relevant than the weights of the hidden layer by Schmidt et al [128]. This claim 

was well justified with feedforward network with a single hidden layer, where the weights of the 

hidden layer were randomly assigned and only the weights of the output layer were calculated 

using the pseudo inverse technique.  

 The same concept of random weight vector assignment was further extended into the 

implementation of functional link (FL) neural networks by Pao et al [108]. The random vector FL 

nets are similar to backpropogation (BP) or generalized delta rule (GDR) net with the difference 

that in FL nets the weight vectors are not learned but assumed randomly.  In this architecture, the 

hidden layer neurons are randomly assumed, with direct links from input to output neurons and 

the output layer weight vector are obtained using pseudo inverse. A similar architecture of single 

hidden layer neural network is presented in Chen [33] uses an instant learning algorithm that 

rapidly decides the weights of the neural network. The paper also provides the upper bound of 

the number of the hidden nodes to be able to solve the output layer weight matrix exactly.  
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Related works on radial basis function (RBF) networks with randomly selected RBF centers 

and suitably selected RBF width were presented by Lowe [90] and Park et al [110]. Once the 

centers had been chosen, the adjustable weights of the output layer were determined by linear 

least-square optimization.  

 The recently proposed extreme learning machines (ELM) by Huang et al [65,66] are 

analogous to the above discussed architectures with minor variations mentioned by Wang and 

Wan [155]. The extreme learning machine is generalized single layer feedforward network 

(SLFN) in which the hidden layer parameters are not tuned. The weights of the nodes in the 

hidden layer in an ELM are randomly assumed, thus enabling the ELM architecture to be 

independent of the training data set. Hence the extreme learning machine is said to be highly 

scalable with lesser computational complexity. This architecture is being applied to various 

domains such as power systems (Huang et al [64]), forecasting (Han and Liu [59], Kaya and 

Uyar [72], Sun et al [149]), pattern recognition (Karpagachelvi et al [71]), biomedical signal 

processing (Song and Lio [147]) and so on.  The extreme learning machine evolved in many 

stages as mentioned by Huang et al [65].  

 ELM uses sigmoid activation functions in the hidden layer or radial basis functions. In 

ELM, the bias of the output neuron is set to zero, while the bias of the output neuron in Schmidt 

et al [128] could be any value. Comparing ELM further with Chen [33] and Pao et al [108], it is 

observed that the only difference in the ELM architecture is that there is no direct link from input 

to output neurons. The direct link from input to output neurons was designed to deal with the 

linear components existing in the data. The effect on the performance of the machine by this 

minor variation has not been shown. This minor variation of removal of direct links in the ELM 

architecture could have an adverse effect on the performance if there exist linear components in 

the data. The ELM-RBF architecture is a slight variation of the RBF net by Lowe [90] such that 

RBF neurons widths are also randomized for all RBF neurons along with the RBF neuron 

centers. But this variation could not be seen as an improved architecture because it has been 

proved that RBF networks are universal approximators irrespective of having same or different 

RBF neuron width. In fact, it was shown that SLFN with arbitrary bounded and non constant 

activation function are universal approximators. 

   



 

20 

 

 Kernel techniques are a group of novel methods for pattern analysis where support vector 

machines are vital elements. Kernel methods find the solution after explicitly mapping the data 

into the new high dimensional kernel Hilbert space.  The number of coordinates is decided by the 

number of features of the data. Kernel trick uses kernel function  for relating feature space by 

computing the inner product of data pairs.  Support vector machine (Brereton and Lloyd [25]) is 

the most popular algorithm operating with kernels. Support vector machine algorithms are 

gaining much popularity compared to other soft computing techniques such as artificial neural 

networks.  Though artificial neural networks are popular due to its ease of implementation, it 

suffers a major drawback which prevents it from being an efficient algorithm. Artificial neural 

network works on the principle of empirical risk minimization and hence the best ANN 

architecture is the one having minimum training error. This leads to two major issues of 

overfitting and local minima. ANN also has an overhead as its computational complexities are 

dependent on the dimension of the input space. Overcoming all these drawbacks, SVM provides 

global, unique and sparse solution to problems. It is also less prone to problem of overfitting as it 

works on structural risk minimization.   

 Therefore, this architecture is being applied to diverse domains such as credit scoring 

(Zhong et al [161]), prediction problems (Acir and Guzelis [1], Li-Xia et al [89], Patil et al [112], 

Samui and Kurup [126], Yan and Chowdhury [158], Zhou et al [162]), pattern recognition (Wang 

et al [156], Zhang et al [160], Samui et al 2012 ), control and power system (Eris et al [40], 

Ranaee et al [119], Xanthopoulos and Razzaghi [157]), signal processing ( Rojo-Alvarez et al 

[124] ), geotechnical engineering (Pal [105-107], Goh and Goh [49], Samui [125]), and so on. 

Although Support Vector Machines were initially used as a tool for pattern classification, it is 

gaining popularity in function estimation problem too. Chorowski et al [36] reviews a 

comparison between ELM and SVM as classifier. This study analyzes both learning machines as 

classifiers for its performance and computational time.  

  

 Decision Tree learning, a popular tool used in data mining is gaining popularity as 

predictive tool for supervised learning in various fields such as in medicine, used as a predictive 

tool for diagnosis of diseases (Lemon et al [87], Stothers et al [145]), used as a forecasting tool 

(Gokhale and Lyu [48]). Learning by decision trees has an overhead over other learning 

techniques because of the representation ability of the model which makes it intuitive and 
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adaptable. The interpreting of the results becomes easier in a tree representation. Moreover, since 

the tree representation is hierarchical in nature, the modelling is relatively easier compared to 

linear modelling in case of a large number of input features.  

  

 Adaptive neuro fuzzy inference system (ANFIS) is yet another soft computing technique 

which is gaining popularity as a computational intelligent system. ANFIS is an integrated hybrid 

architecture of fuzzy logic with neural networks, such that the knowledge gained by the fuzzy 

logic is used by the learning algorithm of the neural network. The initial fuzzy model is derived 

with the rules from the data, and the neural network learns and trains the rules to get the final 

model. The hybrid learning algorithm used in ANFIS consists of gradient descent for the fuzzy 

layer and least square estimate (LSE) for the linear output layer. This architecture has been 

implemented in various domains such as geotechnical engineering (Asadi et al [12], Azamathulla 

et al [13], Cabalar et al [28]), prediction problems (Bagheri et al [15], Bektas Ekici and Aksoy 

[16],  Boyacioglu and Avci [21], Melin et al [99], Singh et al [136], Singh et al [137], Tien Bui et 

al [149]), image processing (Singh et al [134], Singh and Barada [135]), modelling systems ( 

Hosoz et al [63], control systems (Khuntia and Panda [83], kurtulus and Flipo [86], Singh and 

Barada [133])  and so on. Although ANFIS architectures are widely used, it has a major 

drawback of high computational complexities, which makes the algorithm slow, with higher 

number of membership functions.     

 

  In artificial intelligence, there exists a domain of problems, known as search problems, 

that work on the principle of optimization. The popularly used algorithms for optimization 

problem are genetic algorithms (GA) and particle swarm optimization (PSO). Genetic algorithm 

belongs to the class of evolutionary algorithms, and the optimization is done by selecting the best 

solution from a set of candidate solutions by testing its fitness on a function termed as objective 

function. Particle swarm optimization is a computational method which works on optimizing the 

problem by repeatedly improving the candidate solution by improving the quality. Both GA and 

PSO are heuristic search algorithms. These algorithms are also being used in various domain 

such as pattern recognition (Anzar et al [8], Anzar and Sathidevi [9], Quaranta et al [116]), 

optimization in control system (Bhateshvar and Mathur [17], Raviprasad and Singh [138]), 

prediction using hybrid model (Patil et al [112]), optimization in signal processing (Rajavel and 
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Sathidevi [118]), improving architecture of existing learning machines such as SVM (Amari and 

Wu [7],Ardjani et al [10], Chou et al [38] , Sanchez [127]), and so on. 

2.2   MACHINE LEARNING IN EARTHQUAKE ENGINEERING     
 AND GEOSCIENCES 

  Among all the natural calamities earthquakes are the most threatening natural 

calamity, due its tremendous destructive property. Seismic hazard is anything associated with an 

earthquake like strong ground shaking, landslides, liquefaction, faulting etc. that may affect the 

normal activities of the people. The modelling of ground motion signal for assessment of seismic 

hazard such as Goda et al [47] and Sokolov and Wenzel [146] is important to evaluate the 

damage of an earthquake to the environment. Due to growing urbanization, there is tremendous 

increase in the population density in earthquake prone areas, which in turn is increasing the 

demand for earthquake resistant structures.   

 With the recent advances in the field of artificial intelligence and soft computing 

techniques, the traditional mathematical functions used for big data analyses and other complex 

analyses are replaced by them. Many researchers recently are working to merge these advanced 

techniques of AI with the field of earthquake engineering and geosciences.  

 Gandomi and Alavi [44] used a new method, multi-gene genetic programming (MGGP) 

method for the analysis of earthquake engineering and geotechnical systems. MGGP is a 

modified GP approach for selection of model structure combining traditional regression 

technique for parameter estimation. This study clearly highlights the drawback of traditional 

regression technique for the domain, such as geotechnical engineering which involves complex 

processes depending on multivariables. Complexity of geotechnical behavior is due to 

multivariable dependencies of responses of soil and rock. The traditional forms of engineering 

design solutions are implemented after simplifying the complexities with assumptions. 

Incorporating these simplified assumptions into modelling leads to very large errors. These 

overheads are minimized by using advance learning machines. 

  Bose et al [19] used ANN for earthquake early warning for finite faults.  Erol and Erol 

[41] used machine learning for geoid modelling. The algorithms used are ANN, ANFIS and 
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wavelet neural networks. In this study, the models developed using machine learning are 

compared to the multivariable polynomial regression equations and thus the study validates the 

advantages of using machine learning over regression analysis.  

 Goyal et al [50] merged machine learning in the field of climatology. In this paper, a 

comparative study of learning machines such as ANN, LS-SVR, ANFIS for modelling 

evaporation system for the tropical climate environment. This study clearly proves that the 

machine learning outperforms the traditional empirical equations of this field, such as empirical 

Hargreaves and Samani method (HGS), and the Stephens-Stewart (SS) method.  

 Gullu [53] used genetic expression programming (GEP) for estimating the strength and 

elasticity of soil. The ground motion parameters are significant for the damage potential of 

structures. For designing a good structure, the site conditions and structure ability are equally 

relevant as ground motion parameters [53,54,57]. Chen et al [32] used support vector machines 

for assessing the seismic hazard for school building. Shinozuka et al [139] made the attempt of 

modelling the earthquake wave motion with synthetic data by using computer algorithms. This 

study was an attempt to merge the recently advancing computer applications  to the domain of 

geosciences and earthquake engineering. Segou and Voulgaris [130] used the standard available 

software, MATLAB for processing the ground motion signals and hence estimating the ground 

motion parameters.  Jafarian et al [68], Kermani et al [76] used genetic programming for 

modelling the ratio of PGV to PGA. In this study the AI technique GP has been used to develop a 

new parameter, the ratio of PGV to PGA. The study also validates well the significance of the 

new parameter for understanding the ground motion.  

 Chakraverty [30] used neural network for simulating the response of a two storey 

building subjected to earthquake. Gullu [51] used AI for prediction of shear wave velocity. Park 

et al [109] used ANFIS for mapping of ground subsidence hazard. Shiri et al [140] made a 

comparative study of soft computing for predicting fluctuation in the level ground water. The 

machine learning algorithms used in the study are ANN, ANFIS, SVM and GEP.  Pardhan [115]  

used the soft computing techniques in geotechnical domain, such as predicting the landslide 

susceptibility. The techniques such as  decision trees, SVM and neuro fuzzy model ANFIS were 

used and a comparative study was done. Oho and Pardhan [103] used ANFIS for mapping 

shallow landslides in the tropical hilly area to landslide susceptibility. Furthermore, Tien Bui et al 
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[150] used ANFIS for prediction of landslide susceptibility for a province in Vietnam. Seyedpoor 

et al [132] used soft computing for design optimal arch dam subjecting to earthquake loading. 

The optimization algorithm PSO was used for stochastic optimization.  

 Hence, from this study it is observed that the advanced machine learning has gained 

popularity in prediction problems relating to earthquake engineering and that it could be 

extended to prediction of ground motion parameters. 

2.3   SOFT COMPUTING FOR PREDICTION OF GROUND MOTION  

 PARAMETERS 

  Ground motion parameters are vital for designing earthquake resistant structures and 

seismic hazard analysis (Sehhati et al [131], Giacinto [46]). Conventionally, the ground motion 

parameters are estimated based on ground motion prediction equations (GMPEs) which are 

developed using the traditional regression analysis method. These predictive equations relate the 

ground motion parameter in terms of independent variables such as earthquake magnitude, 

source to site distance, site conditions, seismic wave propagation and earthquake source 

characteristics. These independent variables are described in terms of many other geophysical 

parameters. Geophysical parameters (Douglas [39]) which describe earthquake source 

characteristics are earthquake magnitude, seismic moment, fault direction, faulting mechanism 

based on strike, dip and rake angles, stress drop, etc. The parameters like focal depth, epicentral 

distance, hypocentral distance, representing the distances travelled by the seismic waves etc. 

constitute the path effects.   

 The site conditions and seismic wave propagation properties include the soil type at the 

recording site and propagating velocity of seismic waves as seismic waves travel with different 

velocity while propagating through soil and rock. The study of the faults and its offsets and slip 

rates by  Ren et al [121,122,123] points out the uncertainties involved. Thus, the drawbacks of 

using regression analysis for the development of predictive equations is that, the high 

nonlinearity and inhomogeneity among the independent variables directly affect the coefficients 

of the independent variables in the developed regression equation. Moreover, in regression 

analysis the model is developed based on a predefined linear or nonlinear equation, with the 
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hypothesis of normality of residuals for testing the developed model. Hence the developed 

predictive equation based on regression analysis is highly uncertain due to both computational 

uncertainties and the uncertainties of independent variables. Thus, there is a huge need for the 

modelling of ground motion parameters using newer techniques so as to reduce the existing 

errors in the ground motion parameter estimation. 

  A new method called CAE (conditional average estimator) was applied to the attenuation 

relationship by Fajfar and Perus [42]. CAE is non parametric multi dimensional regression 

approach having a structure similar to neural networks. In this paper horizontal component of 

PGA is predicted as a function of two parameters namely earthquake magnitude and distance. 

The Ground motion parameters predicted using CAE method are compared to the existing 

Ground motion prediction equations (GMPE`s) models (Boore and Atkinson [18], Campbell and 

Bozorgnia [29], Abrahamson and Silva [2], Chiou and Youngs [35], Idriss [67]) by Fajfar and 

Perus [43] and Perus and Fajfar [113]. The major drawback of using conventional method is that 

applying regression analysis for the development of attenuation relationships is a lot more 

complex because of the high nonlinearity and inhomogeneity among the parameters. Thus, there 

is a huge need for the modelling of ground motion parameters using newer techniques so as to 

reduce the existing complexities. 

 Kerh and Chu [73] introduced the application of neural networks for estimating ground 

motion parameter, PGA. Although the prediction accuracy of the model was not very high, the 

study validated that soft computing could be applied in the prediction of ground motion 

parameter. This later lead to studies such as, Kerh et al [74] and Gunaydm and Gunaydm [58]. 

Kerh et al [74]   applied artificial neural networks for predicting PGA using microtremor 

measurement. Gunaydm and Gunaydm [58] applied ANN in northwestern Turkey region for 

PGA prediction. Kerh and Ting [75] used back propagation neural networks for predicting the 

PGA in three different directions (vertical, east-west, and north-south) at stations along the high 

speed railway line in Taiwan using the seismic parameters and the historical earthquake data. The 

estimated values were compared with the microtremor measurement of the respective station.  

 Gullu and Ercelebi [55] made a remarkable effort to develop an attenuation relationship 

based on strong motion data on turkey region using artificial neural networks.  Though the 
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correlation between the observed and predicted PGA raised many questions (Gullu and Ercelebi 

[56]), the attempt made indicated that neural networks could be applied in the field of 

seismology. An equation discovery approach was used by Markic and Stankovski [95] for 

modelling PGA. The equation discovery is a machine learning technique which uses context free 

grammar (CFG) for generating equation structures which best describes the given data. In the 

study, Lagramge equation discovery system is used to obtain equations for predicting PGA. The 

system gives a fair correlation between the observed and the predicted PGA values. The 

equations obtained by Lagramge equation discovery system, for estimation of PGA have lesser 

complexities compared to the existing GMPEs. Cabalar and Cevik [27] developed an attenuation 

relationship for the Turkey region using genetic programming (GP) for the prediction of the 

PGA. The developed model when compared to the other existing models gives better correlation. 

The advantage of using GP for modelling PGA is that the functions are not predefined as in the 

case of the traditional regression analysis. 

  Gandomi et al [45] developed a new GMPE model using a hybrid model of genetic 

programming (GP) and orthogonal least squares for prediction of PGA, PGV, and PGD. The 

model gives a fair correlation value with lower MSE values. The model developed is 

advantageous as the equations developed by this hybrid model for the prediction of ground 

motion parameters are comprehensible compared to the equations of GMPE models. Alavi and 

Gandomi [4] used a hybrid model ANN/SA (coupling of ANN with simulated annealing) to 

predict the principal ground motion parameters PGA, PGV and PGD. The model is better than 

the GMPEs for the same database as it gives good correlation value. The disadvantage of the 

model is the time taken to achieve acceptable MSE due to the introduction of simulated 

annealing. Alavi et al [4] developed a variant GMPE model for prediction of ground motion 

parameters using multi expression programming (MEP). This model gives comparatively  

reasonable prediction accuracy and validates the advantage of MEP over the traditional GMPE 

equations developed using regression analysis. Although this model develops the ground motion 

prediction equation considering the complex nature of the ground motion parameters, the model 

suffers the drawbacks of genetic programming (GP) based models as the functions are formed 

randomly and not on the physical process. 
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 Gullu [52] made an attempt to predict Peak ground acceleration for the turkey region 

using a new approach called Gene Expression Programming (GEP) and conventional regression 

method. GEP`s are an extension to Genetic Programming. The best model is selected by ranking 

the models using likelihood based estimation. The model is said to have a fair validation when 

compared to the existing attenuation relationship for the region. Mohammadnejad et al [100] 

developed a novel GMPE model using the  hybrid model of genetic programming (GP) and 

simulated annealing (SA). Although the prediction accuracy of the developed model is not very 

high, the developed model is advantageous as it  gives a lesser complex prediction equation for 

prediction of principal ground motion parameters PGA, PGV and PGD. 

 It is observed from the study that the existing soft computing technique for the prediction 

of ground motion parameter is mainly neural networks and its hybrid models. Thus, there is a 

scope for modelling efficient predictive models.  
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Chapter 3 

DATABASE AND DATA PREPROCESSING
 

3.1 INTRODUCTION 

 In this chapter, the database used for this study is explained. Real earthquake records are 

used for modelling.  In order to have a common platform for comparison of the models, the 

database consisting of real earthquake data, available globally is considered. In this chapter the 

entire data preprocessing and modelling parameters are detailed.  Section 3.2 details the database 

used for modelling. The existing models in the same database are detailed in section 3.3. Section 

3.4 explains about the modelling parameters. The various steps in data preprocessing is explained 

in section 3.5 such as selection of input parameters, normalization of the database, splitting of the 

database into training and testing data sets. The chapter is concluded by section 3.6 which 

detailed the various criteria based on which the developed prediction models are evaluated for its 

efficacy and validity. 

3.2 DATABASE 

 Pacific Earthquake Engineering Research Center (PEER) systematized and compiled a 

database [111] popularly known as NGA WEST 1, in 2003 as a part of a project named PEER-

NGA project. The database file is termed as NGA flatfile V 7.3. The database includes a very 

large set of ground motion recordings recorded worldwide. A part of the database is shown in 

appendix B. It consists of shallow crustal earthquakes recorded in active tectonic regimes. The 

database is comprehensive having sets of meta-data, including around 116 geophysical 

parameters such as different distance measure (column 48 to column 53 of NGA flatfile V 7.3), 

various site characterizations, earthquake source data, etc. The database consist of 3351 

earthquake records and has been used to develop few worldwide ground motion prediction 

equations (GMPE) models. The few GMPE models developed in this database are Abrahamson 

and Silva model [2], Idriss model [67], Boore and Atkinson model [18], Campbell and Bozorgnia 
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model [29] and Chiou and Youngs model [35]. The database used in this study is a subset of 

NGA flatfile V 7.3. The sample database is shown in appendix C. The data sets in this study 

consist of 2252 earthquake records, which is further split into training and testing data consisting 

of 2815 and 563 earthquake records respectively. The section 3.5 in this chapter clearly details 

the various steps of data preprocessing. 

3.3  EXISITING MODELS IN THIS DATABASE  

 The Table 3.1 shows the existing prediction models based on soft computing techniques. 

These models are considered as benchmark models for comparison of all the proposed prediction 

models in this thesis.  From the literature survey, it is observed that these are the only existing 

prediction models in this database [111] based on soft computing for prediction of ground motion 

parameter. 

Table 3.1 Existing soft computing  ground motion prediction models  

Model Approach Authors 

ANN/SA model Artificial neural network/ simulated 
annealing 

Alavi and Gandomi  2011 [4] 

MEP model Multi Expression Programming Alavi  et al 2011 [5] 

GP/OLS model 
 

Genetic Programming/Orthogonal least 
squares 

Gandomi et al  2011 [45] 

GP/SA Genetic Programming/ simulated 
annealing 

(Mohammadnejad et al 2012) 
[100] 

 

Hence the efficacy of all the proposed ground motion prediction models is marked by 

comparing it with the above mentioned benchmark models and with the existing GMPE models 

on the same database. 

3.4 MODELLING PARAMETERS 

In this study an attempt is made to model the principal ground motion parameters (Y) as in 

Eq. 3.1 
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��(�) = �(�, �, �, ��	(�))                        (3.1) 

 

where, Y is PGA (g), PGV (cm/s) and PGD (cm), M is Earthquake magnitude, F is the style 

of faulting, V is the average shear wave velocity and D is the distance.  The modelling equation 

is formulated based on the information gained from the literature survey.  

 

 The Table 3.2 shows the existing modelling equations for the prediction of ground motion 

parameter.  It is observed that in all the studies, the ground motion parameter is expressed in 

terms of earthquake magnitude, faulting style, the average shear wave velocity and source to site 

distance. In the database there are six different measures of source to site distance.  In this study 

closest distance measure is selected in consistency with the benchmark models.  

 

Table 3.2 Existing ground motion prediction models  

Model Approach Database Authors Modelling Equation Distance 
measure 

ANN/SA 
model 

Artificial neural 
network/ simulated 

annealing 

PEER 
[111] 

Alavi and 
Gandomi  
2011 [4] 

��( !") = #($,%, &, '()*) Closet 
distance 

MEP 
model 

Multi Expression 
Programming 

PEER 
[111] 

Alavi  et 
al 2011 

[5] 

 )+( !")= #(,-�(.),%, &, '()*) 
Closet 

distance, 
rake 
angle 

GP/OLS 
model 

 

Genetic 
Programming/Ortho
gonal least squares 

PEER 
[111] 

Gandomi 
et al  2011 

[45] 

��( !") = #($,%, &, '/0) Joyner–
Boore 

distance 

Lagramge 
system 

Equation Discovery 
approach ,CFG 

 

Perus and 
Fajfar 

2009 [42] 

Markic 
and 

Stankovs
ki 2013 

[95] 

��( !") = #($,%, &, '/0) Joyner–
Boore 

distance 

GP/SA 
 

Genetic 
Programming/ 

simulated annealing 

PEER 
[111] 

Mohamm
adnejad 

et al 2012 
[100] 

��( !") = #($,%, &, '()*) Closet 
distance 
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3.5 DATA PREPROCESSING 

  In this section, the entire data preprocessing steps are explained. The database used in this 

study is a subset of PEER database [111]. 

3.5.1 INPUT PARAMETERS 

The NGA flatfile [111] consists of 116 columns, each representing a particular geophysical 

parameter. The sample data records are shown in appendix B with the various 116 geophysical 

parameter. In this study only four geophysical parameters are considered. The input parameters 

chosen are earthquake magnitude, faulting mechanism, shear wave velocity and source to site 

distance.   

The detailed description of the input parameters is as follows:  

a. Earthquake magnitude (M): In this study the moment magnitude (M0) of the earthquake is 

represented by this variable. The moment magnitude of the earthquake best represents the 

energy released during the earthquake. 

 

b. Faulting Mechanism (F): This variable is used to represent the basic three types of 

faulting which occur during the earthquake rupture process. The values are taken based 

on the 11th column of the NGA flatfile database which represent the mechanism based on 

rake angle. Rake angle is the angle measured in anticlockwise direction on the fault plane, 

from strike direction to average slip direction.  Fig. 3.1 shows the rake angle as pictorial 

representation. 

The type of faulting basically denotes the direction of the movement of the fault plane 

which is decided based on the values of the rake angle. Table 3.3 details the faulting 

mechanism given in the database based on the rake angle. Table 3.4 represents the values 

for F used in this study. 
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Fig. 3.1: Pictorial representation of Faulting mechanism [111]  

 

 

 

Table 3.3: Faulting Mechanism based on Rake Angle as mentioned in PEER database 

Faulting type Mechanism Class Rake Angle (in degrees) 

Strike slip 00 -180 <Rake< -150, 
-30 <Rake< 30, 
150 <Rake< 180 

Normal 01 -120<Rake< -60 

Reverse 02 60 <Rake< 120 

Reverse- Oblique 03 30 <Rake< 60, 
120 <Rake< 150 

Normal-Oblique 04 -150 <Rake< -120, 
-60 <Rake< -30 
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Table 3.4: Description for input variable F used in this study 

Values of F Value in NGA Flatfile Faulting style 

1 02,03 Reverse 
2 01,04 Normal 
3 00 Strike slip 

 

c. Velocity (V): In this study this variable represents the average shear wave velocity in the 

top 30 m layers at the site. This geophysical parameter is highly significant as it 

represents the site influence on the seismic signal.  

 

d. Distance (D): In this study, this variable is used to represent source to site distance. Table 

3.5 represents 6 different types of measured distances as given in the NGA flatfile. From 

the literature survey, it is observed that each of the distance measures as in Table 3 has its 

own significance.  It is observed from Table 3.2 that Epicentral distance, Joyner-Boore 

distance and closest distance are relatively more significant The distance measure used in 

this paper is closest distance which has also been used in [4,5,100].  Fig. 3.2 gives the 

pictorial representation for various measures of distances. 

Table 3.5: Various measures of distances in PEER-NGA database 

Measured distance Description 

Epicentral distance Distance from the recording site to epicenter 

Hypocentral distance Distance from the recording site to hypocenter. 

Joyner-Boore 
distance 

Shortest horizontal distance from the recording site to the vertical 
projection of the rupture 

Campbell distance Shortest distance from the recording site to the seismogenic portion of 
the ruptured area (Campbell, 1997). 

Root mean square 
distance 

Root-mean-squared distance 

Closest distance Closest distance from the recording site to the ruptured area 
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Fig. 3.2 Pictorial representation of distance measures [111] 

 

3.5.2 DATA NORMALIZATION 

  

 The data sets used for the analysis in this study are normalized. There are several methods 

for the normalization of the data. The Eqs.3.2-3.4 represent the method of normalization used in 

this study.  Let Z be the variable and Zmax, Zmin represent the maximum and minimum values of 

the variable respectively. Let the range within which the variables is to be normalized be [P, Q].  

The range of normalized data is chosen as in the existing benchmark prediction models 

mentioned in Table 3.1 and is set as (0.05, 0.95). Let Zn be the normalized value for variable and 

it is defined as follows 

 d+cZ=Zn                                     (3.2) 

where, 

                 ) Z-(ZP)/ -(Q =c minmax        (3.3) 

 )  Z*(c-Q =d max                                 (3.4) 
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3.5.3  TRAINING AND TESTING DATASETS 

The NGA flatfile V7.3 database consist of 3551 records, including the 116 geophysical 

parameters. Considering the four geophysical parameters used for modelling, the database is 

narrowed down. From this minimized database, the earthquake records having incomplete 

attribute value are deleted. Furthermore, the database is critically analyzed and the duplicate 

records are also removed. Thus, the corrected database has 2815 records.  Hence, in this study the 

prediction model is developed in this database of 2815 records. The sample data used in this 

study is shown in appendix C. The following Table 3.6 shows the statistical parameters of the 

variables used in this study. 

 

The  database consisting of 2815 records is divided into training and testing data sets. 

These two datasets are extracted from the database such that they are in the ratio of 4:1. The 

segregation of entire 2815 records into these two data sets should be such that the statistical 

parameters of the variables used in the analysis are consistent with both sets. Thus the training 

data set has 2252 records and testing data set has 563 records.  

 

Table 3.6: Statistical parameters of variables used in this study 

Statistics Maximum Minimum Median 
Standard 
Deviation 

Sample 
Variance Range Skewness 

M 7.9 5.2 6.3 0.59 0.35 2.7 0.81 

F 3 1 1 0.85 0.72 2 1.19 

V(cm/s) 2016.13 116.35 345.42 175.09 30654.89 1899.78 2.28 

D (km) 366.03 0.07 63.79 50 2524.41 365.96 1.39 

PGA (g) 1.66 0.01 0.04 0.13 1.53 1.65 4.19 

PGV (cm/s) 169.96 0.10 5.01 14.46 209.02 169.86 3.59 

PGD (cm) 232.39 0.01 1.48 11.21 125.67 232.38 7.91 

 

 

The range of normalization used in the section 3.5.2 and the segregation of the dataset 

into training and testing datasets is in accordance to the existing benchmark models mentioned in 

Table 3.1. The flowchart detailing the entire steps of data preprocessing is shown in Fig.3.3. 
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 To further validate the developed model, other than the testing data set of 563 records, 

another testing data set is also considered. PEER has updated the database and termed it as NGA 

WEST 2. NGA WEST 2 [23] is an extension of NGA WEST 1 database, and it consists of 

21,539 events, whereas the latter had 3551 events. Thus, out of 17988 events which are not 

included in the NGA WEST 1 database, 140 events are selected, and is named as NGA WEST 2 

testing data set.  

  

Hence all the developed prediction models are modelled on 2252 records of the training data 

and tested on 563 records of the testing dataset as well as on another 140 records of NGA WEST 

2 dataset.  Thus, the efficacy of the developed models is very well validated. 
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Figure 3.3: Flowchart for the Data preprocessing 
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3.5.4  EXPERIMENTAL ENVIRONMENT 

 In this thesis, all the algorithms are implemented and tested on C and MATLAB R2012 b 

platform with processor Intel(R) core(TM) i3-3220 and 4GB RAM. Thus the comparison of the 

algorithms in terms of computational time could also be justified as they are run on the common 

platform. 

 

3.6 CRITERIA FOR PERFORMANCE MEASURE 

 There are various standard methods used for measuring the performance of the developed 

model. This section explains the various criteria used in this study, which acts like a yardstick for 

analyzing the performance measure of the developed model. The criteria chosen are inconsistent 

with the studies mention in Table 3.1. The criteria are valid for both training and testing data sets. 

The prediction accuracy of the models is measured in terms of correlation coefficient (R) and the 

error measure. There exists a well reasoned presumption [143] that if the correlation coefficient 

(R), |R|>0.8 and error percentage is minimum; there is a high correlation between the predicted 

and the observed values.  

 In this study, four different measures of error, namely mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE) and root mean square error 

(RMSE) are used. These measures of error are explained as follows. 

Let the total number of records be k. Let  ai denoted the observed or the real output  and  pi 

denote the predicted value.  The average value of the observed output be represented as avg (ai) 

and the average value of the predicted output be represented as avg (pi).   
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The equations representing  the measures of errors are as follows.  

 

i. Correlation Coefficient (R)  
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ii. Mean Absolute Error (MAE) 

∑ =
k

1i /k|ip-ia| =MAE  

 

 

iii.  Mean Absolute Percentage Error (MAPE) 

 

 k
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iv. Mean Squared Error (MSE) 

 k
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v.  

Root Mean Squared Error (RMSE) 
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 All the developed models are analyzed in terms of the above mentioned criteria. The 

scrutiny of the developed predictive models is done in terms of four different measures of error.  

For an efficient predictive model, the error measure should be less.  The correlation coefficient 

(R) gives the linear relation between the observed and the predicted values.  The higher value for 

R signifies that the relationship between the predicted and observed is linear. Hence the predicted 

value is comparable to the observed value.  If the model has high R value, generally |R|>0.8, it is 

concluded that the prediction accuracy of the model is good.  

 

 There are cases such that although the model gives high R value, the error measure is also 

high. This signifies that the model is over trained and that overfitting of the data has occurred. 

Hence , in this study the various measure of error is considered so that the developed predictive 

models are critically analyzed for overfitting.  
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Chapter 4 

PREDICTION MODEL BASED ON NEURAL 
NETWORK LEARNING  

 

 In this chapter a prediction model is developed based on neural network based learning. 

The two architectures used are single layer feedforward neural network (SLFN) and Extreme 

learning machine (ELM). The chapter is organized as follows. Section 4.1 gives the introduction 

to neural network based learning. The prediction model based on SLFN is explained in section 

4.2. The prediction model based on ELM is detailed in section 4.3. Section 4.4 compares the 

SLFN prediction model with the ELM prediction model. The chapter is concluded in section 4.5 

which further analyzes the models developed based on neural network based learning. 

4.1 INTRODUCTION  

 The basic of any neural network architecture (Haykin [60,61]) is perceptrons. Thus in this 

section, the learning of perceptron is explained. A single perceptron equation is given as,  ��� = ∑ 23 ∗ 53 +7389 : , where 53 is the ith input with 23 the corresponding weight. Hence single 

layer perceptron model, is all about training the weight vector to get the desired output.  

The perceptron learning algorithm could be defined as follows: 

Let  53  be the input,  23 be the weight between input and perceptron. Let  ���3 Be the output 

given by the perceptron and ������3 be the actual required output. The idea of the perceptron 

learning algorithm is to obtain the best weight vector 23 such that ������3 − ���3 = 0. The 

perceptron learning rule could be defined as 23(� + 1) = 23(�) + ?23(�). Hence aim is to find ?23. Let @ be the learning rate.  

Case 1: when  ������3 − ���3 < 0, it implies that ∑2353 is too large and hence 23 should be 

modified as   ��2_2���ℎ�3 = ���_2���ℎ�3 − @.  
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Therefore reframing the equation we obtain, 

 ��2_23 = ���_23 − (@ ∗ 53)                           (4.1) 

Case 2: when  ������3 − ���3 > 0, it implies that ∑2353 is too small and hence 23 should be 

modified as   ��2_2���ℎ�3 = ���_2���ℎ�3 + @. Therefore reframing the equation we obtain, 

��2_23 = ���_23 + (@ ∗ 53)                         (4.2) 

Combining Eq.(4.1-4.2), it could be written as ��2_23 = ���_23 + @(������3 − ���3) ∗ 53  .  
Thus  ?23 = @(������3 − ���3) ∗ 53 , is called the perceptron learning rule and @ is called 

the learning rate. 

4.2  PREDICTION MODEL BASED ON SINGLE LAYER    

 FEEDFORWARD NETWORK (SLFN) 

  

 A prediction model using artificial neural network is developed for forecasting PGA. The 

simplest ANN structure is considered for modelling.  It is clearly observed that the existing 

benchmark models for forecasting ground motion parameter are based on ANN structure. In this 

study, a prediction model based on ANN structure is developed so that it could be used as a base 

model for comparing it with the advanced learning algorithm (ELM) based on which prediction 

model is proposed.  Furthermore the comparative study between the two models helps in 

validating the advantages of the ELM. 

  

 A single layer feedforward network (SLFN) is considered in this study. It consists of one 

input layer having four input features, one output layer which denotes the ground motion 

parameter to be predicted and one hidden layer. The hidden layer consists of 20.  The activation 

function for hidden layer is TANSIG and the weights and bias values of the network are updated 

according to Levenberg-Marquardt optimization using training function TRAINLM. Adaptation 

function is LEARNGDM. It is the gradient descent with momentum weight and bias learning 

function. 
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4.2.1 RESULTS ANALYSIS AND DISCUSSIONS 

 In this section, the prediction model developed using SLFN for forecasting PGA is 

analyzed and compared with the existing benchmark models.  Fig. 4.1 shows the results obtained 

by the proposed model. Table 4.1 tabulates the results obtained by the proposed model in 

comparison with other models. It is observed that the efficacy of the model is very less compared 

to the existing models.  Table 4.2 compares the proposed model with the existing GMPEs. It is 

observed that the proposed model is better than the existing GMPEs. Thus, it substantiates that 

neural based modelling is better than the traditional regression analysis method used by GMPEs. 

 

Fig. 4.1:SLFN prediction model  

Table 4.1: Comparison of SLFN prediction model with  existing models 

Criteria  SLFN ANN/SA [4] GP/OLS [45] MEP [5] 
 

GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R 0.8073 0.8188 0.869 0.855 0.836 0.811 0.842 0.834 0.833 0.839 

MAE 0.0214 0.0397 0.30 0.46 0.478 0.488 0.363 0.697 n/a n/a 

MAPE 0.2196 0.2650 0.14 0.13 n/a n/a n/a n/a 0.158 0.144 

MSE 0.002 0.005 n/a n/a 0.358 0.406 0.362 0.389 0.381 0.380 

RMSE 0.040 0.070 n/a n/a 0.836 0.637 0.602 0.624 0.617 0.616 
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Table 4.2: Comparison of SLFN prediction model with  GMPEs models 

Model  Criteria MAPE  

SLFN model 0.265  

Campbell and Bozorgnia [29]  0.93  

Least Square regression analysis [96] 0.16  

Ambraseys et al [6]  0.95  

Smit et al [142]  14.58  

 

 The major drawback of neural network based modelling is that the learning is dependant 

on the database used for training and generalization is very poor. Table 4.3 shows the results 

obtained by the SLFN prediction model for NGA WEST 2 dataset. It is clearly observed that 

generalization is poor. 

Table 4.3:SLFN prediction model for NGA WEST2 data 

Criteria SLFN 

R 0.4242 

MAE 0.0147 

MAPE 0.2171 

RMSE 0.024 

 

  From the above analysis of the results obtained it is clear that although neural 

network based modelling is advantageous, the use of neural network has lots of disadvantages.  
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Hence the new architecture based on neural network learning, extreme learning machine 

(ELM) was used for modelling. In this study the prediction model based on the single 

feedforward neural network was developed just as a case study to show the drawbacks of neural 

networks and to highlight the advantages and need of using ELM for modelling. 

4.3 PREDICTION MODEL BASED ON EXTREME LEARNING MACH INE  

 (ELM)  

 

4.3.1 ELM ALGORITHM 

 The extreme learning machine [66] is generalized single layer feedforward network 

(SLFN) in which the hidden layer parameters are not tuned. The weights of the nodes in the 

hidden layer in an ELM are randomly assumed, thus enabling the ELM architecture to be 

independent of the training data set. Hence the extreme learning machine is said to be highly 

scalable with lesser computational complexity.  

 A neural network is said to have a good generalization capability if the training error as 

well as the norm of the weights is minimum. In ELM since there is no tuning of the hidden layer, 

it aims to get a minimum norm of the weights of output node for better generalization 

characteristic. In other words, ELM architecture is analogous to a single layer feedforward neural 

network in which the input weights and the hidden layer bias are fixed. The basic architecture is 

explained as follows: 

 

 Consider a training dataset with N samples (D3, E3)  where T
iniii xxxX ],....,,[ 21=  and 

.],....,,[ 21
T

imiii tttT = To solve this classification problem, consider a conventional SLFN with 

FG	hidden nodes and activation function g(x). The output nodes are assumed to be linear. Let H3 
be the weight vector between the input nodes and the jth hidden node. Let I3 be the weight vector 

for the linear output nodes and bi be the threshold of the ith hidden node.  
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Then the output of the linear layer	JK can be obtained  as 

 

JK = ∑ I3�3(DK)LG38M = ∑ I3�(H3DK + :3)LG38M 	 , N = 1… .F        (4.3) 

where, 

T
iniii wwwW ],....,,[ 21=      (4.4) 

],...,[ 11 imiii ββββ =           (4.5) 

 

This network can approximate the given problem with N samples with zero error. Thus, there 

exist parameters	I3 ,H3 and ib  such that 

 

∑ I3�(H3DK + :3)LG38M = EK 							N = 1… . . F                 (4.6)
 

 

The above equations may be written as  PI = Q       (4.7)                                                                               

where,     
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     I = RIMS⋮ILGSU mN ×~

                   (4.9) 

 

 

Q = REMS⋮ELGSUL × V
               (4.10) 
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Algorithm  for basic architecture of extreme learning machine, given the number of hidden 

nodes and hidden node activation functions 

 Step 1: Randomly assign  WX	 , the weights between the hidden nodes and the input  

             nodes and :3, the threshold of hidden layer 

Step 2:  Calculate the hidden layer output matrix H. 

Step 3:  Calculate the output linear layer weights using  I = PYMQ  where,  

             
1−H  is the Moore–Penrose generalized inverse of the matrix  H.  Thus the               

            smallest norm least-squares solution of the above linear system is obtained  and         

           this  solution  is unique. 

 

4.3.2 MODELLING 

The following algorithm explains the procedure for development of prediction model for 

forecasting ground motion parameter using ELM. 

 

ALGORITHM: 

For each of the ground motion parameter (Y), with input F, V, M, D perform the following 

steps:  

Step 1: Assign the hidden nodes with sigmoidal activation function		�(5) = 1 (1 + �YZ[)\  

Step 2: randomly assign an initial value (i) for the number of hidden neurons 

Step 3: assign random weights for hidden neurons and threshold 

Step 4: the hidden layer output matrix H, is calculated as explained in section 4.3.1. 

Step 5: the output layer weights are calculated using Moore-Penrose generalization.  
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Step 6: iterate steps 3 to 5 for about 20-40 times, to obtain the best ELM prediction model.  

       The best prediction model is the one having the highest correlation coefficient (R)  

            with minimum MSE. 

Step 7: increment the number of hidden neurons (i) by 1 

Step 8: Repeat Steps 3 to 7 until MSE becomes approximately constant.  

Step 9: the best prediction model based on ELM for forecasting parameter Y has ‘i’ number   

         of hidden nodes. 

 

The following flowchart explaining the above algorithm is given in Fig. 4.2. 
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Fig. 4.2 Flowchart for ELM prediction model  
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4.3.3 RESULTS ANALYSIS 

4.3.3.1 RESUTLS OBTAINED BY THE PROPOSED ELM MODEL 

Figs. 4.3-4.5 shows the results obtained by the proposed prediction model based on ELM for 

forecasting PGA, PGV and PGD respectively. The results are tabulated in Table 4.7. It is 

observed that as the numbers of hidden nodes are increased, the error percentage decreases, 

hence the prediction accuracy of the model increases. It is also observed that for higher number 

of hidden nodes (>50), there is only a slight change in the accuracy. The best prediction model is 

the one having the least error percentage with fair correlation coefficient (R). Hence, from Table 

4.4 is concluded that the PGA prediction model based on ELM has 80 hidden nodes. Similarly, 

justifying results in Table 4.5, it could be said that for the PGV prediction model based on ELM 

has 80 hidden nodes. Analyzing Table 4.6, it is observed that the error percentage remains 

constant irrespective of varying the number of hidden nodes. Thus PGD prediction model based 

on ELM has 50 hidden nodes. 

 

 

 

Fig. 4.3:Predicted Vs Observed value of PGA (Training Data and Testing Data) 

 

 

 



 

53 

 

 

 

 

Fig. 4.4: Predicted Vs Observed value of PGV (Training Data and Testing Data) 

 

 

Fig. 4.5: Predicted Vs Observed value of PGD (Training Data and Testing Data) 
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Table 4.4:  PGA prediction model with different number of hidden nodes 

 

Criteria Hidden 
nodes=20 

Hidden 
nodes=30 

Hidden 
nodes=40 

Hidden 
nodes=50 

Hidden 
nodes=60 

Hidden 
nodes=80 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.7484 0.7815 0.7811 0.8005 0.8025 0.8183 0.8243 0.8351 0.8321 0.8387 0.8444 0.8486 

MAE 0.0251 0.0434 0.0230 0.0414 0.0217 0.0389 0.0200 0.0368 0.0194 0.0366 0.0183 0.0351 

MAPE 0.2671 0.2857 0.2390 0.2725 0.2239 0.2497 0.2026 0.2403 0.1961 0.2379 0.1824 0.2290 

MSE 0.0021 0.0062 0.0018 0.0056 0.0017 0.0051 0.0015 0.0046 0.0014 0.0045 0.0014 0.0043 

 

 

 

Table 4.5: PGV prediction model with different number of hidden nodes 

 

 

 

 

 

 

 

 

Criteria Hidden 
nodes=20 

Hidden 
nodes=30 

Hidden 
nodes=40 

Hidden 
nodes=50 

Hidden 
nodes=60 

Hidden 
nodes=80 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.8019 0.8459 0.8417 0.8652 0.8682 0.8776 0.8770 0.8854 0.8882 0.8900 0.8974 0.9003 

MAE 0.0265 0.0453 0.0253 0.0417 0.0216 0.0396 0.0212 0.0394 0.0201 0.0384 0.0369 0.0184 

MAPE 0.2727 0.2647 0.2662 0.2483 0.2126 0.2226 0.2112 0.2320 0.1991 0.2223 0.2170 0.1791 

MSE 0.0024 0.0063 0.0019 0.0054 0.0016 0.0048 0.0015 0.0045 0.0014 0.0043 0.0013 0.0040 
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Table 4.6: PGD prediction model with different number of hidden nodes 

 

Criteria Hidden nodes=20 Hidden nodes=30 Hidden nodes=40 Hidden nodes=50 Hidden nodes=60 

 Train Test Train Test Train Test Train Test Train Test 

R 0.7507 0.7688 0.7858 0.7772 0.7951 0.7838 0.8064 0.7899 0.8095 0.7893 

MAE 0.0127 0.0227 0.0101 0.0205 0.0100 0.0205 0.0096 0.0204 0.0091 0.0207 

MAPE 0.1650 0.1871 0.1216 0.1557 0.1209 0.1576 0.1139 0.1582 0.1050 0.1568 

MSE 0.0009 0.0030 0.0008 0.0028 0.0007 0.0028 0.0007 0.0027 0.0007 0.0027 

 

 

 

Table 4.7: Developed prediction model based on ELM 

 

Criteria 
 

PGA 
 

PGV 
 

PGD 

 Training Testing Training Testing Training Testing 

R 0.8444 0.8486 0.8974 0.9003 0.8295 0.8193 

MAE 0.0183 0.0351 0.0369 0.0184 0.0091 0.0207 

MAPE 0.1824 0.2290 0.2170 0.1791 0.1050 0.1568 

MSE 0.0014 0.0043 0.0013 0.0040 0.0007 0.0027 

 

 

4.3.3.2 COMPARISON WITH EXISTING MODELS 

 Tables 4.8-4.12 shows the comparison of the proposed ELM based prediction model for 

forecasting ground motion parameter with the existing benchmark models mentioned in Table 

3.1 and the existing GMPEs on the database. 

 In Table 4.8 the developed prediction model based on ELM is compared with the GP / 

OLS model proposed by Gandomi et al [45]. It is observed that prediction model based on ELM 
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is better than the GP/OLS model. The accuracy is comparatively better with lesser RMSE, MAE 

and MAPE. In the table, where the values are not mentioned, it is denoted by n/a.  

 In Table 4.9, the ANN/SA model proposed by Alavi and Gandomi [4] is compared with 

the developed prediction model. Although, the prediction accuracy of the developed model is 

comparable to that of the ANN / SA model, the developed ELM based prediction model could be 

considered comparatively a better model due to much lower MAE and MAPE values. Moreover, 

it is observed that the developed prediction model is computationally faster as it gives the result 

with minimum MSE in 30 epochs with 108.12 seconds, whereas the ANN/SA model requires 

364 epochs with 240 seconds to attain the minimum MSE value. The ANN/ SA architecture has a 

single hidden layer with 8 nodes and is implemented using Neural-Lab program version 3.1. The 

major drawback of this ANN/SA model is the high computational time due to simulated 

annealing. 

 The developed model is compared with the MEP model proposed by Alavi et al [5] in 

Table 4.10. The precision of the ELM based prediction model is higher than MEP model. In 

Table 4.11, the developed ELM model is compared to the GP/SA model proposed by 

Mohammadnejad et al [100]. It is observed that the GP/SA model has high error percentage, 

although the precision accuracy is comparable. Thus the ELM model could be considered better. 

 

Table 4.8: Comparison of ELM prediction model with GP/OLS model [45] 

 PGA PGV PGD 

Criteria ELM GP/OLS ELM GP/OLS ELM GP/OLS 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.845 0.848 0.836 0.811 0.897 0.900 0.822 0.813 0.829 0.819 0.836 0.811 

MAE 0.018 0.035 0.478 0.488 0.037 0.018 n/a 0.506                                                                                                                        0.009 0.020 n/a n/a 

MAPE 0.182 0.229 n/a n/a 0.217 0.179 0.512 n/a 0.114 0.158 0.660 0.681 

RMSE 0.037 0.065 0.836  0.637 0.063 0.036 0.649  0.637 0.026 0.052 0.850  0.901 
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Table 4.9: Comparison of ELM prediction model with ANN/SA model [4] 

 PGA PGV PGD 

Criteria ELM ANN/SA ELM ANN/SA ELM ANN/SA 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.845 0.848 0.869 0.855 0.897 0.900 0.867 0.874 0.829 0.819 0.870 0.869 

MAE 0.018 0.035 0.30 0.46 0.037 0.018 0.34 0.45 0.009 0.020 0.62 0.62 

MAPE 0.182 0.229 0.14 0.13 0.217 0.179 1.06 2.17 0.114 0.158 1.74 1.66 

 

 

 

Table 4.10: Comparison of ELM prediction model with MEP model [5] 

 PGA PGV PGD 

Criteria ELM MEP ELM MEP ELM MEP 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.845 0.848 0.842 0.834 0.897 0.900 0.837 0.828 0.829 0.819 0.846 0.840 

MAE 0.018 0.035 0.363 0.697 0.037 0.018 0.402 0.726 0.009 0.020 0.733 0.829 

RMSE 0.037 0.065 0.602 0.624 0.063 0.036 0.634 0.671 0.026 0.052 0.856 0.899 
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Table 4.11: Comparison of ELM prediction model with GP/SA model [100] 

 PGA PGV PGD 

Criteria ELM GP/SA ELM GP/SA ELM GP/SA 

 Train Test Train Test Train Test Train Test Train Test Train Test 

R 0.845 0.848 0.833 0.839 0.897 0.900 0.833 0.837 0.829 0.819 0.847 0.854 

MAPE 0.182 0.229 0.158 0.143 0.217 0.179 1.27 2.35 0.114 0.158 1.61 1.68 

RMSE 0.037 0.065 0.617 0.616 0.063 0.036 0.645 0.648 0.026 0.052 0.845 0.846 

 

 

The developed model is further compared  with three other GMPE  models, namely 

Ambraseys et al model [6], Campbell-Bozorgnia model [29] and Smit et al model [142] in Table 

4.12. From Table 4.12, it is clearly observed that the developed ELM based prediction model is 

better than the existing GMPE models due to lower percentage of the mean absolute error.  

 

Table 4.12: Comparison of ELM prediction model with GMPEs  

Model Mean absolute 
error percentage 

 PGA PGV PGD 

ELM based prediction model 0.229 0.018 0.158 

Campbell and Bozorgnia  [29] 0.93 0.78 5.73 

Ambraseys et al  [6] 0.95 n/a n/a 

Smit et al  [142] 14.58 n/a n/a 
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4.4 COMPARISON OF ELM WITH SLFN 

 In this section, the developed neural network based prediction models are further 

explored in terms of computational time.  In this section, the ELM is compared with SLFN, 

which validates the claim of preferring ELM over ANN. 

 To the ELM based prediction model is compared with different training algorithms of 

single hidden layer feedforward neural network (SLFN), having the same number of hidden 

nodes as that of the ELM prediction model. Table 4.13 represents the computational time taken 

by the different training algorithms for the prediction of ground motion parameter. It is observed 

that the maximum computational time is taken by gradient descent backpropagation (traingd) 

training algorithm (105.01 seconds) followed by Levenberg-Marquardt backpropagation 

(trainlm) (72.71 seconds) and BFGS quasi-Newtonbackpropagation (trainbfg) (62.35 seconds) 

whereas ELM takes the least time (3.6 seconds).  

 Table 4.14 compares the prediction accuracy of the ELM model with the different 

training algorithms for SFLN. It is observed that the trainlm and trainbfg training algorithm of 

SLFN gives satisfactory prediction accuracy from among the other training algorithms, but the 

overall performance of trainlm and trainbfg are inferior compared to ELM in terms of prediction 

accuracy as well as computational time. Hence it is clearly proved that the ELM prediction model 

gives faster and better prediction accuracy. 
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Table 4.13: Comparison of computational time of different training algorithm 

Learning Algorithm Learning Time 

(seconds) 

ELM Extreme learning machine 3.6 

trainbfg BFGS quasi-Newton backpropagation 62.35 

traincgb Powell -Beale conjugate gradient 

backpropagation 

31.24 

traincgf Fletcher-Powell conjugate gradient 

backpropagation 

49.14 

traincgp Polak-Ribiere conjugate gradient 

backpropagation 

50.32 

traingd Gradient descent backpropagation 105.01 

trainlm Levenberg-Marquardt backpropagation 72.71 

trainrp Resilient backpropagation (Rprop) 12.98 

trainscg Scaled conjugate gradient backpropagation 28.17 

 

 

Table 4.14: Comparison of different training algorithm of SLFN with ELM 

 

 PGA PGV PGD 

Function Name Training R  Testing R Training R  Testing R Training R  Testing R 

ELM 0.8444 0.8486 0.8974 0.9003 0.8295 0.8193 

trainbfg 0.838 0.748 0.814 0.806 0.779 0.838 

traincgb 0.554 0.569 0.851 0.813 0.724 0.668 

traincgf 0.71 0.726 0.854 0.799 0.593 0.621 

traincgp 0.712 0.597 0.661 0.727 0.769 0.795 

traingd 0.1752 0.0812 0.241 0.23 0.092 0.045 

trainlm 0.816 0.834 0.904 0.826 0.795 0.867 

trainrp 0.699 0.529 0.858 0.769 0.569 0.649 

trainscg 0.735 0.73 0.724 0.673 0.741 0.863 
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4.5 CONCLUSION 

 In this chapter, a prediction model is proposed for the forecasting of  ground motion 

parameter based on  neural network based learning. The algorithm used is ELM, which has many 

advantages over ANN, the most popular neural network based learning model.  The comparison 

of the developed ELM prediction model with the existing models and the traditional training 

algorithm of neural networks validates the higher generalization ability and faster prediction 

speed of the ELM model. Moreover, the architecture and training of the proposed model is much 

simpler as the only computational overhead is in the determination of pseudo inverse matrix for 

calculating the weights of the output layer. The developed ELM based prediction model 

overcomes the drawback of ANN and the existing benchmark prediction models in this domain, 

such as extensive computational time. Thus, ELM provides better precision accuracy in lesser 

computational time. 

 Like all other algorithm, ELM also has few drawbacks. Though neural network based 

learning methods such as ANN are popular due to its ease of implementation, it suffers a major 

drawback which prevents it from being an efficient algorithm. Artificial neural network works on 

the principle of empirical risk minimization and hence the best ANN architecture is the one 

having minimum training error. This leads to two major issues of overfitting and local minima. 

ANN also has an overhead as its computational complexities are dependent on the dimension of 

the input space. Overcoming all these drawbacks, a new learning method, support vector 

machines (SVM) based on kernel method is gaining popularity. SVM provides global, unique 

and sparse solution to problems. It is also less prone to problem of overfitting as it works on 

structural risk minimization. The next chapter details a prediction model proposed based on 

SVM. 
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CHAPTER 5 

PREDICTION MODEL BASED ON KERNEL 
METHODS LEARNING  

 

5.1  INTRODUCTION 

 In machine learning, support vector machines (SVM) are the most popular algorithm 

based on kernel methods. SVM is gaining popularity compared to other soft computing 

techniques such as artificial neural networks (ANN) as it overcomes the bottleneck issues of 

ANN such as overfitting and local minima. SVM is generally applied for classification problems.  

When applied for regression problem, (Burges [26] , Smola and Scholkopf [141] )  it is termed as 

support vector regression (SVR).  

 In this chapter, prediction models are developed using three variations of SVR learning 

algorithms, namely ε-SVR, ν-SVR and LS-SVR for forecasting peak ground acceleration (PGA).  

Using three kernel functions, namely linear kernel, polynomial kernel and RBF kernel for each of 

the three learning algorithms, 7 prediction models are developed. All the 7 models are compared 

in terms of prediction accuracy, error percentage and overfitness to obtain the best prediction 

model. The chapter is organized as follows. Section 5.2 explains the basics of the three learning 

algorithms ε-SVR, ν-SVR and LS-SVR. The experimental environment used for the modelling is 

detailed in section 5.3. Section 5.4 analyzes the results obtained and validates the efficacy of the 

model by comparing it with existing benchmark models. The chapter is concluded by section 5.5 

which further explores the significance of the proposed prediction model. 

5.2    SUPPORT VECTOR REGRESSION (SVR) Learning Algorithm 

 Support Vector Machine (SVM) works on principle of VC theory by Vapnik and 

Chervonenkis [152], which is purely based on statistical learning. The problem is solved by 

equating it to a quadratic programming problem with inequality constraint.  The least squares 
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support vector machine (LS-SVM) is a variation of SVM, which uses equality constraint. When 

SVM is applied to a regression problem, it is termed as support vector regression (SVR).  

The SVR algorithm is explained as follows:  

Consider a given set of training data {(x1,y1),(x2,y2)….(xn,yn)}, where	xi ∈ ^d, yi ∈ ^, i 
=1….n. The training data xi from the input space X is mapped onto a feature space Q, using 

kernel function k, such as �(53 , 5́3) = 〈a(53), a(5́3)〉 . For simplicity, we begin with linear 

functions.  Let f be the linear function having the form as in Eq. 5.1 

�(5) = 2c5 + : = d2, 5e + :, 2ℎ���	2 ∈ D, :	 ∈ ^, d. , . e	denote		dot	product      (5.1) 

 

The following subsections explain about the three variations of SVR algorithm used in this 

study. 

 

5.2.1 ε- SUPPORT VECTOR REGRESSION (ε-SVR) 

  

  In ε- SV regression by Vapnik [153], the function f(x) is calculated such that it is flat, but 

at the same time has a maximum deviation of ε. Hence the permissible error band for the function 

is    [-ε, ε].  The function f(x) attains flatness when the value of w is small and to obtain the 

minimum value for w is to obtain the minimum norm solution which is ‖2‖p = d2,2e.  Hence 

reformulating the problem as a feasible convex optimization problem we obtain Eq.5.2  

 

minimize :  
Mp ‖2‖p subject to qr3 − d2, 53e − : ≤ td2, 53e + : − r3 ≤ tu                                          (5.2) 

 

The above equation could be again reformulated to include infeasible constraints of the 

problem by introducing slack variables.  

minimize :  
Mp ‖2‖p + v ∑ (w3738M + w3∗)   subject to xr3 − d2, 53e − : ≤ t + w3d2, 53e + : − r3 ≤ t + w3∗w3 , w3∗ 	≥ 0 u         (5.3) 

where, C is the tradeoff between permissible error	t and ‖2‖.  
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The aim is to minimize the empirical risk value given as z = ML∑ |r3 − ŕ3||L38M  where 

|r3 − ŕ3||  is t -insensitive loss function as shown in Fig. 5.1, such that 

|r3 − ŕ3|| = q 0, |r3 − ŕ3| ≤ t|r3 − ŕ3| − t, 	��ℎ��2��� u  where r3 and ŕ3  are target and predicted value 

respectively. This formulation is also known as linear t-insensitive loss regression. (Cortes and 

Vapnik [37], Vapnik [154]). 

  

 

 

 

Fig. 5.1: Support Vector Regression with ε insensitive loss function  

  

 Eq.(5.3) could be solved using dual formulation involving Lagrange multipliers. Hence 

the objective function of Eq.(5.3) is replaced by corresponding Lagrange function. Let L be the 

Lagrangian function and  }3 , }3∗, I3 , I3∗  be the corresponding Lagrange multipliers or dual 

variables. Hence the Eq.(5.3) is replaced as follows: 

 

~ = Mp ‖2‖p + v ∑ (w3738M + w3∗) − ∑ (}3w3 + }3∗w3∗)738M − � − 
                (5.4) 

where, � = ∑ I3738M (t + w3 − r3 + d2, 53e + :),  
 = ∑ I3∗(t + w3∗738M + r3 − d2, 53e − :),      
 }3, }3∗, I3, I3∗ ≥ 0.   

 For all feasible solution of the primal and dual variables for the convex optimization 

objective function, there exist a saddle point. (Mangasarian [91]). At optimality, the gap between 

the primal and dual objective function decreases ( strong duality theorem (Theorem 

6.4.3,Bazaraa et al [22]).  
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Taking the partial derivative of Lagrangian function L with respect to the primal variables (2, :, w3 , w3∗) we obtain Eq.(5.5).  

���� = 2 − ∑ (I3738M − I3∗)53 ,   ���� = ∑ (I3∗ − I3738M ) ,  ����� = v − I3 − }3		 ,  �����∗ = v − I3∗ − }3∗     
(5.5) 

Hence, at optimality by theory, 
���� = 0  ,

���� = 0  ,
����� = 0 ,

�����∗ = 0 . Thus eliminating dual 

variables, we obtain }3 = v − I3, }3∗ = v − I3∗  (5.6) 

 

Substituting Eq.(5.5,5.60) in Eq. (5.4), the dual optimization problem is formulated as 

follows. 

                Maximize : �− Mp∑ ∑ (I3−	I3∗)(IK−	IK∗)�53,5K�7K8M7383−t∑ (I3+	I3∗) + ∑ r3738M738M (I3−	I3∗) u            (5.7) 

 

subject to ∑ (I3−	I3∗)738M 	and I3,I3∗ ∈ �0, v�. 
 

Rewriting Eq.(5.5) we obtain,         

     2 = ∑ (I3738M − I3∗)53                    (5.8) 

 

Substituting in Eq.(5.8) in Eq.(5.1) we obtain the solution to the function f(x) as shown in Fig. 

5.2. �(5) = ∑ (I3738M − I3∗)d53, 5e + :                    (5.9) 

 

w is linear combination of training inputs xi in the input space X. Hence this is called the 

support vector expansion, where the function complexity is dependent on the number of support 

vectors rather than the dimensionalities of the input space X. b is computed using KKT 

conditions (Kuhn and Tucker [85]).  
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At KKT optimality condition	(����������. ����	�����:�� = 0). Thus we obtain  (v − I3)w3 = 0,(v − I3∗)w3∗ = 0,	I3(t + w3 − r3 + d2, 53e + :) = 0, 	I3(t + w3 − r3 + d2, 53e + :) = 0                                    (5.10) 

From Eq. (10), ∀(53, r3)	2��ℎ	I3, I3∗ = v, there exists points in space X, that lie outside the [-

ε, ε] band and there can never be a condition such that the set of dual variables �I3, I3∗�  is 

simultaneous zero as I3I3∗ = 0.  

 

Hence the solution for ‘b’(Keerthi et al [77]) is as follows.  : = r3 − d2, 53e − t,				∀	I3 ∈ (0, v)                                 (5.11) : = r3 − d2, 53e + t,				∀	I3∗ ∈ (0, v)                                (5.12) 

 

Thus the function estimation for ε-SVR model for is 

 �(5) = ∑ (I3738M − I3∗)d53, 5e + : , with  : = q r3 − d2, 53e − t,				∀	I3 ∈ (0, v)r3 − d2, 53e + t,				∀	I3∗ ∈ (0, v)u       (5.13) 

 

 

Fig. 5.2: Support vector regression architecture 
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5.2.2  ν- SUPPORT VECTOR REGRESSION (ν-SVR) 

 

 Another version of SVR, ν-SVR was proposed by (Scholkopf et al [129]) which uses 

parameter ν of range (0, 1]. It is similar to ε-SVR with ε itself considered as a parameter to have a 

control on the count of support vector. The formulation for ν-SVR is similar to ε-SVR, with a 

slight change. Thus Eq.(5.3) is reformulated for ν-SVR as  

minimize :  
Mp ‖2‖p + v�t + v ∑ (w3738M + w3∗)   subject to xr3 − d2, 53e − : ≤ t + w3d2, 53e + : − r3 ≤ t + w3∗w3 , w3∗ 	≥ 0, t ≥ 0	 u  (5.14) 

The dual formulation of ν-SVR is similar to ε-SVR, as given in Eq.(5.7), with only change in 

the constraint. The new constraint for ν-SVR is I3,I3∗ ∈ �0, v��. 
 

5.2.3  LEAST SQUARE SUPPORT VECTOR REGRESSION (LS-SVR) 

  

 The function estimation problem using least squares support vector is formulated in this 

section. The linear model of LS-SVR is similar to Eq.(5.1) (Ye and Xiong [159]). Consider a 

given set of training data {(x1,y1),(x2,y2)….(xn,yn)}, where	xi ∈ ^d, yi ∈ ^, i =1….n. Let f be the 

linear function, by Eq. (5.1) we have �(5) = 2c5 + :	.Let ?, � denote the error vector and the 

column vector respectively. Keeping all the notations in the above section, the regression 

estimation problem is formulated as 

minimize:		Mp2cP2 + Mp ?c?  subject to �(53,53)2 + �: + ? − r3 = 0                     (5.15) 

The Lagrange multipliers method used in section 3.1.1 is used to solve convex optimization 

problem Eq.(5.15).  

 Let L be the Lagrangian function and  I3 be the corresponding Lagrange multiplier. Let xi 

and yi be denoted as x,y, Hence the corresponding Lagrangian function for Eq.(5.15) is as 

follows: 

~ = Mp2cP2 + Mp ?c? − Ic�	�(5,x)2 + �: + ? − r�							(?, }) ∈ ^�                       (5.16) 
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As per the theory explained above section, at optimality the constraints are as follows: 

u ����� = P2 − �cI = 0, ���� = �cI = 0	, ���� = ? − I = 0, ����� = �2 + �: + ? − r = 0�(5.17) 

 

Solving we get, 

     2 = �cPYMI ,  ? = I                   (5.18) 

Combining Eq.(5.16) – Eq.(5.18) we obtain, 

     �0 �c� �PYM�c + �� �:I� = �0r�         (5.19) 

Let H=K, assuming that the kernel K being symmetric positive definite, Eq.(5.19) reduces  as 

      �0 �c� � + �� �:I� = �0r�                     (5.20) 

Eq.(5.20) is analogous to standard LS-SVM (Sukyens et al [148] ). 

For solving K, the assumption is H=I. Hence the restrictions of symmetry, positive 

definiteness, semi definiteness, and continuity on K is removed.  

Hence we obtain, 

2 = �cI		,  �0 �c� ��c + �� �:}� = �0r�                    (5.21) 

In Eq.(5.21) ��c is positive semi definite, with no restrictions on K thus making Eq.(5.22) 

linearally solvable.  

The LS-SVR model for function estimation is				�(5) = ��cI + �:    (5.22)  

 

5.3 MODELLING 

 The SVR algorithm is used to develop a predictive model for forecasting ground motion 

parameter, peak ground acceleration (PGA). The algorithms are implemented and tested on C 

and MATLAB R2012 b platform on a PC with processor Intel(R) core(TM) i3-3220 and 4GB 

RAM. The Libsvm package (Chang [31]) is used to implement ε-SVR and ν-SVR. LS-SVR is 
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implemented using ls-svmlab version 1.8 (Brabanter [20]). The principle for parameter selection 

for SVR is given by Cherkassy and Ma [34]. In this study, the following kernel function and 

parameters are selected. 

The kernel function ��53, 5K� defined in libsvm package is as follow: 

Linear kernel :        				��53 , 5K� = 53S5K                                               (5.23) 

Polynomial Kernel:    ��53 , 5K� = (����� ∗ 53S ∗ 5K + �)������      (5.24) 

RBF Kernel:       ��53 , 5K� = �Y��VV�∗ [�Y[¡ ¢ 	                                  (5.25) 

The kernel function ��53, 5K�defined in ls-svmlab package is as follow: 

Linear kernel:  			��53, 5K� = 53S5K                                                        (5.26) 

RBF Kernel:      ��53 , 5K� = 	 �Y£¤�¥¤¡£¢¢¦¢                                                (5.27) 

 

• ε-SVR uses parameters C [0, ∞) and ε [0, inf) to apply a penalty to the optimization for 

points which were not correctly predicted. There is no penalty associated with points 

which are predicted within distance ε from the actual value. By decreasing ε , closer 

fitting to the data is obtained. 

• ν-SVR uses parameters C [0, ∞) and ν [0,1]. The ε penalty parameter was replaced by ν. 

ν represents an upper bound on the fraction of training samples which are errors poorly 

predicted and a lower bound on the fraction of samples which are support vectors. ε and  

ν are versions of the penalty parameter. 

• The other two parameters used are C (cost) and gamma. The cost represents the penalty 

associated with errors larger than epsilon. Increasing cost value gives closer fitting to 

data. Parameter gamma controls the shape of the separating hyperplane. Increasing 

gamma usually increases number of support vectors. 
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5.3.1 ε-SVR PARAMETERS 

 The ε-SVR algorithm is implemented with linear and RBF kernels. The tolerance error 

for termination criteria is set at 0.1. A Grid search algorithm with cross validation is used to find 

the parameters of RBF kernel. Hence the value of C thus obtained is 128. The value of gamma is 

set as 0.25(1/number of features) and ε as 0.1. 

5.3.2 ν-SVR PARAMETERS 

 The ν-SVR algorithm is implemented with linear, polynomial and RBF kernels. The 

parameters such as tolerance error for termination criteria, gamma and C are same to that of ε-

SVR algorithm.  The value for ν is set as 0.5. The degree is set as 3 for polynomial kernel.  

5.3.3 LS-SVR PARAMETERS 

 The LS-SVR algorithm is implemented with linear and RBF kernels. The parameter 

gamma here is called a regularization parameter, which determines the tradeoff between the 

minimization of training error and the smoothness of the estimated function. The simulated 

coupling method is used to obtain the best value for gamma. For linear kernel the value obtained 

is 1.52 and for RBF kernel gamma is 2.321. For RBF kernel sig2 is additional parameter which 

represents the variance of the kernel function. The value obtained is 0.19. 

5.4 RESULTS ANALYSIS AND DISCUSSION 

 This section evaluates the results obtained. For the better justification of the obtained 

results, this section, is further divided into subsections. The subsection 5.4.1 describes the result 

obtained by developed model. The subsection 5.4.2 compares the developed model with other 

existing models on the same database. The subsection 5.4.3 further evaluates the learning 

effectiveness of the algorithms. 

5.4.1  RESULTS OBTAINED FROM ε-SVR, ν-SVR and LS-SVR PREDICTION MODELS. 

 Tables 5.1-5.3 shows the result obtained from ε-SVR, ν-SVR and LS-SVR PGA 

Prediction model for both training and testing data. Table 5.4 shows the result obtained from the 

developed models for NGA WEST 2 data.  
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Table 5.1:  ε-SVR Prediction Model for PGA 

 

 ε-SVR 

Kernel Linear RBF 

 Train Test Train Test 

R 0.4836 0.5932 0.6958 0.7643 

MAE 0.0625 0.0733 0.0531 0.0580 

MAPE 0.8223 0.7117 0.7160 0.5581 

MSE 0.0057 0.0102 0.0044 0.0064 

 

 

 

 It is observed from Table 5.1-5.3 that the best prediction model for forecasting PGA is 

LS-SVR RBF kernel prediction model followed by ν-SVR RBF kernel prediction model and ε 

SVR RBF kernel prediction model.  Though the accuracy of the other models is not in the 

acceptable range [143], it is observed that the error percentages are low. The best prediction 

model is LS-SVR RBF kernel prediction model as it gives good prediction accuracy with low 

error percentage and also gives a fair correlation for NGA WEST 2 data, which is a dataset 

outside the training database.  
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Table 5.2:  ν-SVR  Prediction Model for PGA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: LS-SVR Prediction model for PGA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ν-SVR 

Kernel Linear Polynomial RBF 

 Train Test Train Test Train Test 

R 0.5058 0.5515 0.5364 0.5312 0.7313 0.7629 

MAE 0.0246 0.0622 0.0247 0.0622 0.0239 0.0460 

MAPE 0.1956 0.2931 0.1934 0.2978 0.2460 0.2765 

MSE 0.0040 0.0151 0.0040 0.0150 0.0023 0.0079 

 LS-SVR 

Kernel Linear RBF 

 Train Test Train Test 

R 0.5194 0.5946 0.8719 0.8700 

MAE 0.0315 0.0578 0.0149 0.0316 

MAPE 0.3424 0.3651 0.1367 0.1899 

MSE 0.0034 0.0113 0.0011 0.0037 
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Table 5.4: Prediction model for Testing NGA West 2 data 

 

 ε-SVR ν-SVR LS-SVR 

Kernel Linear RBF Linear Polynomial RBF Linear RBF 

R 0.5715 0.6585 0.7061 0.5737 0.7171 0.6803 0.8140 

MAE 0.0393 0.0537 0.0073 0.0076 0.0148 0.0160 0.0060 

MAPE 0.5867 0.8308 0.1059 0.1056 0.2180 0.2461 0.0853 

MSE 0.0022 0.0036 0.0001 0.0001 0.0003 0.0004 0.0001 

 

 

5.4.2 COMPARISON WITH EXISTING MODELS 

 Table 5.5 gives the comparison of the best developed PGA prediction model with other 

existing models on the same database. The LS-SVR RBF kernel prediction model is compared to 

four models, namely ANN/SA (a hybrid model of artificial neural network coupled with 

simulated annealing (Alavi and  Gandomi 2011 [4])), GP/OLS (a hybrid model of genetic 

programming coupled with orthogonal least squares (Gandomi et al. 2011 [45])), MEP (multi 

expression programming) Alavi et al 2011 [5])) and GP/SA (a hybrid model of genetic 

programming coupled with simulated annealing (Mohammadnejad et al 2012  [100])). In Table 

5.5 where the corresponding values is missing is denoted by symbol n/a. It is observed that the 

prediction accuracy of the developed model is better compared to other existing models. Another 

important observation is that the error percentage of the developed model is much less compared 

to all the existing benchmark models.  
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Table 5.5: LS-SVR prediction model with different existing model (n/a denote value not mentioned) 

 

   

Table 5.6: Comparison of developed prediction model with GMPEs  

Model Criteria 

MAPE 

LS-SVR model (RBF 

kernel) 

0.18 

Campbell and Bozorgnia 

[29] 

0.93 

Ambraseys et al [6] 0.95 

Smith et al  [142] 14.58 

 

 In Table 5.6, the LS-SVR RBF kernel prediction model is compared with existing 

GMPEs. The comparison is done for the testing data based on the criteria MAPE. It is observed 

that the LS-SVR RBF kernel prediction model gives the least error percentage, compared to the 

existing GMPEs. The developed model has comparatively lesser computational overhead with 

better precision.  

Criteria LS-SVR model 
(RBF kernel) 

ANN/SA [4] GP/OLS [45] MEP [5] 
 

GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R 0.8719 0.8700 0.869 0.855 0.836 0.811 0.842 0.834 0.833 0.839 

MAE 0.0149 0.0316 0.30 0.46 0.478 0.488 0.363 0.697 n/a n/a 

MAPE 0.1367 0.1899 0.14 0.13 n/a n/a n/a n/a 0.158 0.144 

MSE 0.0011 0.0037 n/a n/a 0.358 0.406 0.362 0.389 0.381 0.380 
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5.4.3 COMPARING THE LEARNING EFFECTIVENESS OF THE SVR ALGORITHM 

 Tables 5.1-5.6 shows the results and the comparison between the prediction models. The 

comparison is done based on the criteria as given in section 3.6. Table 5.7 compares all the 

developed models along with the existing benchmark models in terms of accuracy, testing error 

and overfitness (Zhong et al  [161]). The testing error is indicator of overfitness. The measure of 

overfitness is calculated as in Eq. (5.28). Thus the overall authenticity of prediction precision of 

the model is collectively given by the accuracy, testing error and the Overfitness measure. 

over¨itness	 = 	
‖«¬¬¬�®«,®-�¯�Y«¬¬¬�®¬°-�-�¯�‖

«¬¬¬�®¬°-�-�¯�
               (5.28) 

  

From Table 5.7, it is observed that the best prediction model is LS-SVR RBF kernel model as 

it gives a high prediction accuracy with lesser overfitness measure.  

 It is observed that the ANN/SA model [4], though having slightly higher precision than 

GP/OLS [45] and GP/SA model [100] in terms of accuracy (correlation coefficient), the testing 

error is comparable and the overfitness measure is better for GP based hybrid models. Thus the 

performances of the three existing models are comparable. The MEP model [5] clearly shows 

that the overfitness measure is very high. Similarly, though the precision accuracy of ν-SVR RBF 

kernel model in terms of correlation coefficient (R) is slightly less, the testing error is comparable 

to the 3 existing models ANN/SA, GP/OLS and GP/SA, with much lesser overfitness measure. 

Thus the overall performance of ν-SVR RBF kernel prediction model could be assumed to be 

satisfactory. Similarly the overall performance of ε-SVR RBF kernel prediction model could also 

be satisfactory.  

  Another important inference from Table 5.7 is that it is observed that the measure of 

overfitness for all models of SVR is much lesser than the hybrid model of artificial neural 

network coupled with simulated annealing [4] and MEP model [5]. Hence it further validates the 

claim of support vector machines being less prone to overfitting than an artificial neural network 

with better generalization. 
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Table 5.7: Comparison of models for overall performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Kernel Accuracy Testing Error Overfitness 

ε-SVR 
 

linear 0.593 0.0733 0.173 

RBF 0.764 0.058 0.092 

ν-SVR linear 0.551 0.0622 0.49 

Polynomial 0.531 0.0622 0.54 

RBF 0.763 0.046 0.12 

LS-SVR linear 0.595 0.0578 0.067 

RBF 0.870 0.0316 0.38 

GP/SA 0.839 0.144 0.21 

GP/OLS 0.811 0.49 0.24 

MEP 0.834 0.69 0.92 

ANN/SA 0.855 0.46 0.53 
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5.5 CONCLUSION 

 In this chapter, a kernel based learning method is used to develop a predictive model for 

forecasting PGA, a ground motion parameter. The results obtained are analyzed meticulously to 

validate the efficacy of the developed learning machine using SVR. The study shows that the 

predictive model developed using kernel methods based learning is efficient compared to existing 

benchmark models in this domain.   

 Among the 7 developed models, the LS-SVR model with RBF kernel is precise and has a 

better generalization with lesser measure of overfitting. Hence it is also proved that SVR has 

better generalization than neural networks. In the following chapter another learning method is 

introduced to develop a predictive model for forecasting ground motion parameter. 
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CHAPTER 6 

PREDICTION MODEL BASED ON TREE 
BASED LEARNING  

 

6.1 INTRODUCTION 

 In this chapter, a prediction model for forecasting ground motion parameter is developed 

using decision tree. Decision Tree learning, a popular tool used in data mining is gaining 

popularity a predictive tool for supervised learning in various fields. A Decision tree is a 

predictive learning method to develop a tree like model used to predict a target, based on set of 

input features. The model developed is termed as regression tree, when the predicted target 

values take real continuous values. Learning by decision trees has an overhead over other 

learning techniques because of the representation ability of the model which makes it intuitive 

and adaptable. The interpreting of the results becomes easy in tree representation. Moreover, 

since tree representation is hierarchical in nature, the modelling is relatively easier compared to 

linear modelling in case of a large number of input features. The chapter is organized as follows. 

Section 6.2 explains the algorithm for developing regression tree. The experimental environment 

used for the modelling is detailed in section 6.3. Section 6.4 analyzes the results obtained and 

validates the efficacy of the model by comparing it with existing benchmark models. The chapter 

is concluded by section 6.5 which further explores the significance of the proposed prediction 

model. 

6.2  REGRESSION TREE LEARNING ALGORITHM 

 Linear regression has a major drawback, of not being able to obtain a single predictive 

equation for modelling systems for data, having many input features with high non linearity 

among features.  Alternative approach would be non linear regression modelling regression tree, 

where the entire dataset is partitioned or divided into subsets in a structure similar to that of a tree 

using divide and conquer greedy algorithm. The subsets are again divided as recursive partition, 

until the smallest subset could be easily represented. A tree is a collection of nodes and branches.  
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The start node is termed as root and the terminal node is termed as leaf node. A parent node 

will have two child nodes, left node and right node. The size of the tree is the number of terminal 

nodes.  

The three main steps involved in the development of a regression tree [88] are the split 

process, partition process and the pruning process. 

i. Split Process:  the choice for the splitting variable and the splitting points is done such 

that, for any node n and split s, there should be gain for some measuring criteria	a(�, �). 
ii. Partition Process: this process includes the binary partition of dataset to further recursive 

partitioning, including setting of the termination criteria, to decide when a node to be a 

terminal node. 

iii.  Pruning Process: this process includes combining the internal nodes of Tree, so as to get 

optimal tree length. Very large tree might lead to overfitting of data. 

Splitting Criteria: Suppose the regression tree (T) is to be modelled for Y having dataset 

{( x1,y1),(x2,y2)….(xn,yn)}. Let p be the leaf node and the data points belonging to leaf node p be 

{( xi,yi),(x2,y2)….(xc,yc)}. The model for leaf node p is   	r± = M² ∑ r3²38M  , the mean of dependent 

variables belonging to node p. Let S (sum of squared errors) be the splitting criteria, then ³́ = ∑ ∑ (r3 − rµ)p.3|¶¶|·��¸7¹��º(S) Let P is the number of leaf nodes for T, then ³́ =
∑ »�¶¶|·��¸7¹��º(S) , where �¶is the within-leave variance of leaf p. The splitting for each node is 

done so as to minimize the S.  

Hence the algorithm  for Regression Tree could be summarized as follows: 

Step 1: start with a single node with entire data points. For this node calculate 	r±  and ³́. 

Step 2: split the dataset belonging to the node into two half planes	^M, ^p such that, for 

splitting variable j and for split s, ^M(N, �) = {D|DK 	≤ �} and ̂ p�N, �� = {D|DK 	 > �}. For this 

node calculate 	r±  and ³́. 

Step 3: repeat step 2 for all independent variables and the pair of �N, �� having minimum	³́, is 

selected as best pair for split. 



 

 

Step 4: Repeat step 2 and 3 for growing tree, until termination criteria is met or when all 

independent variables at a particular node gives same value.

Step 5 : termination criteria is set such as, 

the data points belonging to particular node p is less than q points. 

Step 6: to obtain the optimal tree length, pruning is done using cross

Step 6 (a): Let EM be

parent node as leaf node. If 

node. 

6.3 MODELLING

 The prediction model is developed based on decision tree learning using the algorithm 

explained in section 6.2. 

PGD respectively.  The algorithm is implemented on C and MATLAB. The best tree model will 

have optimal tree length. Pruning is a technique in machine learning which is used to reduce the 

length of decision tree by removing irrelevant branching. In this study, 10

technique is used to prune the tree, so as to obtain the optimal regression tree prediction model. 

It is observed from Figs. 6.1

number of leaf nodes 20, 10, 10 respectively for forecasting PGA, PGV and PGD.

prediction model for forecasting PGA, PGV and PGD has length 20,10,10 respectively. 
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Step 4: Repeat step 2 and 3 for growing tree, until termination criteria is met or when all 

independent variables at a particular node gives same value. 

Step 5 : termination criteria is set such as, ³́ falls beyond a particular set threshol

the data points belonging to particular node p is less than q points.  

Step 6: to obtain the optimal tree length, pruning is done using cross

be	³́ for all leaf nodes of a common parent. Let 

parent node as leaf node. If Ep < EM, then leaf nodes are pruned and the parent node becomes leaf 

6.3 MODELLING 

The prediction model is developed based on decision tree learning using the algorithm 

explained in section 6.2. Three different models are developed for forecasting PGA, PGV and 

The algorithm is implemented on C and MATLAB. The best tree model will 

have optimal tree length. Pruning is a technique in machine learning which is used to reduce the 

tree by removing irrelevant branching. In this study, 10

technique is used to prune the tree, so as to obtain the optimal regression tree prediction model. 

It is observed from Figs. 6.1-6.3 that by cross validation the minimum MSE i

number of leaf nodes 20, 10, 10 respectively for forecasting PGA, PGV and PGD.

prediction model for forecasting PGA, PGV and PGD has length 20,10,10 respectively. 

Fig. 6.1: Pruning of Regression Tree model for PGA

Step 4: Repeat step 2 and 3 for growing tree, until termination criteria is met or when all 

falls beyond a particular set threshold ? or when 

Step 6: to obtain the optimal tree length, pruning is done using cross-validation. 

for all leaf nodes of a common parent. Let Ep be	³́, by considering the 

, then leaf nodes are pruned and the parent node becomes leaf 

The prediction model is developed based on decision tree learning using the algorithm 

models are developed for forecasting PGA, PGV and 

The algorithm is implemented on C and MATLAB. The best tree model will 

have optimal tree length. Pruning is a technique in machine learning which is used to reduce the 

tree by removing irrelevant branching. In this study, 10 fold cross validation 

technique is used to prune the tree, so as to obtain the optimal regression tree prediction model.  

the minimum MSE is obtained for 

number of leaf nodes 20, 10, 10 respectively for forecasting PGA, PGV and PGD. Hence the tree 

prediction model for forecasting PGA, PGV and PGD has length 20,10,10 respectively.  

 

: Pruning of Regression Tree model for PGA 
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Fig. 6.2: Pruning of Regression Tree model for PGV 

 

Fig.6.3: Pruning of Regression Tree model for PGD 

 

6.4 RESULT ANALYSIS AND DISCUSSION 

 The results obtained from the PGA prediction model is shown in Fig. 6.4. The 

comparison of the developed PGA prediction model with the existing benchmark models is 

tabulated in Table 6.1. It is observed that the proposed prediction model has good precision with 

much lesser error percentage, for forecasting all the ground motion parameter.  Although the 

precision accuracy is comparable with the existing benchmark models, it is clearly observed from 
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the Table 6.1 that the percentage error is much lesser for the proposed model. Thus, it validates 

that overfitting of data is comparatively lesser in the proposed model.  

 

Fig. 6.4: Predicted Vs Observed value of PGA for developed prediction model. 

 

 

Table 6.1: Comparison of developed prediction model for PGA with existing models 

 

  

 

Criteria Decision Tree ANN/SA [4] GP/OLS [45] 
 

MEP [5] 
 

GP/SA [100] 
 

 Train Test Train Test Train Test Train Test Train Test 

R 0.8528 0.840 0.869 0.855 0.836 0.811 0.842 0.834 0.833 0.839 

MAE 0.0149 0.033 0.30 0.46 0.478 0.488 0.363 0.697 n/a n/a 

MAPE 0.1314 0.192 0.14 0.13 n/a n/a n/a n/a 0.158 0.144 

MSE 0.001 0.004 n/a n/a 0.358 0.406 0.362 0.389 0.381 0.380 

RMSE 0.036 0.065 n/a n/a 0.836 0.637 0.602 0.624 0.617 0.616 
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The Fig.6.5 shows the results obtained from the PGV prediction model. The 

comparison of the developed PGV prediction model with the existing benchmark models 

is tabulated in Table 6.2. It is observed that the proposed prediction model has good 

precision with much lesser error percentage, for forecasting all the ground motion 

parameter  compared with the existing benchmark models. 

 

Fig. 6.5: Predicted Vs Observed value of PGV for developed prediction model. 

 

Table 6.2: Comparison of developed prediction model for PGV with existing models 

Criteria Decision Tree ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R  0.9280 0.9234 0.867  0.874  0.822  0.813  0.837  0.828  0.833  0.837  

MAE  0.0130 0.0292 0.34  0.45  n/a  0.506                                                                                                                        0.402  0.726  n/a  n/a  

MAPE  0.1140 0.1502 1.06  2.17  0.512  n/a  n/a  n/a  1.27  2.35  

MSE  0.0009 0.0029 n/a  n/a  0.421  0.405  n/a  n/a  n/a  n/a  

RMSE  0.030 0.054 n/a  n/a  0.649  0.637  0.634  0.671  0.645  0.648  
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 The results obtained from the PGD prediction model is shown in Fig. 6.6. The 

comparison of the developed PGA prediction model with the existing benchmark models is 

tabulated in Table 6.3. Although the precision accuracy is comparable with the existing 

benchmark models, it is clearly observed from the Table 6.3 that the percentage error is much 

lesser for the proposed model.  

 

 

Fig.6.6: Predicted Vs Observed value of PGD for developed prediction model. 

 

Table 6.3: Comparison of developed prediction model for PGD with existing models 

Criteria  Decision Tree ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R  0.8652 0.8460 0.870  0.869  0.836  0.811  0.846  0.840  0.847  0.854  

MAE  0.0066 0.0175 0.62  0.62  n/a  n/a  0.733  0.829  n/a  n/a  

MAPE  0.0655 0.1177 1.74  1.66  0.660  0.681  n/a  n/a  1.61  1.68  

RMSE  0.022 0.045 n/a  n/a  0.850  0.901  0.856  0.899  0.845  0.846  
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The table 6.4 tabulates the results obtained by the proposed model for NGA West data. The 

results show that the proposed model gives a fair generalization, although results are not in the 

acceptable range [143]. 

Table 6.4: Comparison of developed prediction model for NGAWest data 

Criteria PGA PGV PGV 

R 0.7004 0.7417 0.7492 

MAE 0.0065 0.0058 0.0048 

MAPE 0.0876 0.0884 0.0715 

RMSE 0.01 0.022 0.022 

  

The proposed prediction models are further compared to existing GMPEs in Table 6.5. It is 

clearly observed that proposed models are better than existing GMPEs which validates the 

drawback of linear regression. 

Table 6.5: Comparison of developed prediction model with GMPEs (n/a denote value not mentioned) 

Model Mean absolute  
error percentage 

 PGA PGV PGD 

Tree based prediction model 0.192 0.15 0.12 

Campbell and Bozorgnia 
[29] 

0.93 0.78 5.73 

Ambraseys et al [6] 0.95 n/a n/a 

Smit et al [142] 14.58 n/a n/a 
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6.5 CONCLUSION 

 In this study, simple regression tree learning is used to develop the predictive model for 

forecasting ground motion parameters. Tree based regression models are at advantage due to the 

faster prediction as the interpretation from tree structure is easier. It is clearly observed from the 

results that the proposed prediction model is efficient compared to the existing benchmark 

models in the domain.  Now there is major difference between clustering and regression tree. In 

clustering, we try to cluster in such a way so as to maximize the information gained by the cluster 

for the independent variable X. In regression trees, the branching or dividing is done in such a 

manner that the leaf node gives maximum information about the dependent variable Y. Hence the 

branching starts at a root node in a greedy search manner, with binary splitting the root node into 

two daughter nodes. The daughter nodes are further split in a binary fashion. At each split there is 

gain in information about Y.  

 Although the growing of tree structure is simple, it has a major drawback such as the tree 

structure is purely dependant on the training data and hence a small change in the training data 

would result in obtained a different tree structure. Moreover a conflict arises in choosing the 

independent variables for node, when multiple independent variables stand equally good and the 

selection is by mere chance. Thus, it also affects the structure of the tree.  

 Hence it could be concluded that although the proposed model is efficient compared to 

the existing models, more efficious models could be developed. In the next chapter, an hybrid 

architecture of neuro fuzzy system is used to develop predictive model. 
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CHAPTER 7 

PREDICTION MODEL BASED ON  ADAPTIVE 
NEURO FUZZY INFERENCE SYSTEM (ANFIS)  

 

7.1 INTRODUCTION 

 In this chapter, adaptive network based fuzzy interference system (ANFIS) is used to 

model a prediction system for forecasting peak ground acceleration (PGA). It is an integrated 

hybrid architecture of fuzzy logic with neural networks such that the knowledge gained by the 

fuzzy logic is used by the learning algorithm of neural network. The initial fuzzy model is 

derived with the rules from the data, and the neural network learns and trains the rules to get the 

final model. The hybrid learning algorithm used in ANFIS consists of gradient descent and LSE 

(least square estimate).  The chapter is organized as follows. Section 7.2 details the architecture 

and the learning algorithms of the hybrid ANFIS model. Section 7.3 analyzes the results obtained 

and the efficacy of the model is validated by comparing it with existing benchmark models. The 

chapter is concluded by section 7.4 which discusses the advantages and disadvantages of the 

proposed ANFIS prediction model.  

7.2 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

 An adaptive neuro fuzzy inference system (ANFIS) is a hybrid architecture of adaptive 

networks and fuzzy inference system, with a hybrid learning algorithm (HLA). This section is 

further divided into two subsections to clearly comprehend this hybrid system. The subsection 

7.2.1 explains the architecture of the hybrid ANFIS system and the subsection 7.2.2 explains the 

learning algorithm.   

7.2.1 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM ARCHITECTURE 

 The basic architecture of adaptive network based fuzzy inference system (ANFIS) is 

shown in Fig.7.1. It is a hybrid architecture of Takagi and Sugeno`s Fuzzy inference system [Fig. 

7.2] with adaptive network. Let Eqs. (7.1-7.2) represent the two rules of Takagi and Sugeno`s 
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type representing  fuzzy inference system, such that x, y are the crisp set inputs and the Ai, Bi are 

the corresponding linguistic variables. 

111111:1 ryqxpfTHENBisyandAisxIfRULE ++=                 (7.1) 

222222:2 ryqxpfTHENBisyandAisxIfRULE ++=                 (7.2) 
 

 

 

 

 

 

Fig. 7.1: ANFIS architecture 

 

 

 

 

 

Fig. 7.2: First order Sugeno Fuzzy inference model 

 The Figure 7.1 shows the ANFIS architecture [70] and the figure 7.2 shows the inference 

mechanism and the defuzzification (�) of Takagi and Sugeno`s type fuzzy inference systems. An 

adaptive network is a multi layer feedforward network in which each node performs the 

designated node function. It basically consists of two types of nodes, namely adaptive node 

(represented by square) and fixed node (represented by a circle). An adaptive node has 
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parameters and the set of parameters for an adaptive network consist of all parameters of all 

adaptive nodes in the network. These parameters are updated based on gradient based learning 

algorithm during the training. Fixed nodes do not have any parameters. The entire ANFIS 

architecture consists of 5 layers and each layer is explained as follows: 

i. Layer 1: All nodes in this layer are adaptive nodes, with the node function as given in 

Eq.(7.3). J3M = @¾�(5)                                    (7.3) 

 where x is the crisp input, Ai is the corresponding linguistic variable and i is the 

number of nodes in the layer. J3M represents fuzzy membership value for Ai. Generally 

Bell shaped membership functions are used to provide smoothness in membership grade 

and flexibility in the core of membership functions. The mathematical representation of 

bell shape membership function is given in Eq. (7.4). 
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                            (7.4) 

where ai, bi, and ci are position and shape deciding parameters respectively and are 

also called premise parameters. 

 

ii. Layer 2: All nodes in this layer are fixed nodes. Hence all nodes perform the fixed 

operation of multiplying all the respective node inputs. The output of each node iw  in 

this layer represents the firing strength of the fuzzy rule [Eq. 7.5].  

2,1),()( == iyxw
ii BAi µµ                     (7.5) 

 

iii.  Layer 3: All nodes in this layer are fixed nodes. Hence all nodes perform the fixed 

operation as given in Eq. 7.6. The output of this layer iw  is called normalized firing 

strength. 

2,1,
21

=
+

= i
ww

w
w i

i                                 (7.6) 
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iv. Layer 4: All nodes in this layer are adaptive nodes, with the node function as given in 

Eq.(7.7).  

J3¿ = )( iiiiii ryqxpwfw ++=                                         (7.7) 

 

where  J3¿ is the output of the layer, iw is the layer 3 output, and pi, qi, ri are called the 

consequent parameters.    
 

v. Layer 5: This layer consists of single fixed node whose output out is calculated as in Eq. 

(7.8). out is the overall output of the architecture,which is the summation of all incoming 

signals.  ��� = � = )()( 22221111 ryqxpwryqxpwfw
i

ii +++++=∑      (7.8) 

 

    7.2.2   ADAPTIVE NEURO FUZZY INFERENCE SYSTEM LEARNING      

       ALGORITHM 

 In this section the algorithm used for training the premise and consequent parameters is 

discussed. A hybrid learning algorithm, comprising of gradient descent and LSE (least square 

estimate) is used in ANFIS. The hybrid learning algorithm overcomes the drawbacks of 

traditional learning algorithm gradient method such as slow learning rate and local minima. The 

hybrid algorithm is a two pass algorithm in which the consequent parameters are determined 

using LSE in the first pass and in latter pass the premise parameters are determined using 

gradient descent. Table 7.1 shows the the two passes of the algorithm and the parameters that are 

trained during each pass. 

 

Table 7.1: Description for 2 pass Hybrid Algorithm 

Pass Premise Parameters Consequent Parameters Value considered 

Forward   Pass Fixed LSE Output of Nodes 

Backward  Pass Gradient Descent Fixed Error measure 
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1. PASS 1 FORWARD PASS:  

 During this pass, the initial value for premise is assumed. Now keeping premise 

parameters as fixed, the consequent parameters are calculated using least square estimate. It is 

done so by allowing the input data and the node functional signals pass forward all nodes till the 

layer 4. Thus the output f [Fig. 7.1] could be equated as a linear combination of consequent 

parameters. Hence, by rearranging the terms in Eq. (7.8), we get Eq.(7.9). 

� = (2ÀM5)�M + (2ÀMr)
M + (2ÀM)�M + (2Àp5)�p + (2Àpr)
p + (2Àp)�p    (7.9) 

 
Eq. (7.9) could further be written as  � = �Á      (7.10) where, Z is an unknown vector whose 

value is to be calculated.  Thus, if Y is invertible matrix Eq. (7.10) could be written as   Á = �YM�      

(7.11). Another alternative solution for Eq. (10) is by considering the Pseudo inverse of Z. Hence 

we obtain the solution as 

Á = (�S�)YM�S�         (7.12) 

2. PASS 2 BACKWARD PASS:  

 During this pass, the error measure is propagated backwards to update the premise 

parameters, keeping the consequent parameters constant. The updating of the premise parameters 

is based on the gradient descent method. Let training data has n values. Hence the overall error 

measure E is defined as z7 = ∑ zÂ7Â8M   (7.13). Let Ã be the parameter, β be the learning rate for 

the parameter. The Eq. (7.14) represents the overall error measure for the parameter. The 

parameter is updated as shown in Eq. (7.15). Thus the new update parameter value would be as 

shown in Eq. (7.16).  

�Ä�Å = ∑ �ÄÆ�Å7Â8M            (7.14) 

 

∆Ã = −I �Ä�Å              (7.15) 

 

Ã7�� = Ã + ∆Ã       (7.16) 
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7.3 RESULT ANALYSES AND DISCUSSION 

In this section, the overall performance of the developed model is analyzed. The subsection 

7.3.1 details the results obtained by the developed ANFIS prediction model. The comparison of 

the  developed model with the existing benchmark models is discussed in the subsection 7.3.2.  

7.3.1  ANFIS PREDICTION MODEL  

 Table 7.2 shows the results obtained for the ANFIS prediction model for membership 

function value 2. It is observed that the optimum results is obtained at epoch 50 because beyond 

this epoch the error percentage becomes a constant. The results obtained for ANFIS prediction 

model for membership function value 3 is given in Table 7.3. The best model is obtained for 

epoch 15 because with further increase in the number of epochs, there is no considerable change 

in the MAE, MAPE, MSE values as well as the R value. The value of membership function is not 

further incremented because further increase of the value of the membership function increases 

the computational complexities of the algorithm leading to a drastic increase of the learning time 

of the algorithm, hence making it slower.  

 

Thus the ANFIS prediction model for forecasting the peak ground acceleration has 

membership function value 3 and the best MSE is obtained at epoch 15 in 60.25 seconds. The 

initial and final membership function of the four input variables of the developed prediction 

model is shown in Figs. 7.3 and 7.4 respectively. The Fig. 7.5 shows the correlation coefficient 

(R) and the error measure of the developed prediction model for PGA, separately for training and 

testing data sets. The Fig. 7.6 shows the results for NGA WEST 2 dataset. 
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Table 7.2: Comparison of results of ANFIS model with membership function =2 

Criteria Epoch =10 Epoch =20 Epoch =50 Epoch =100 

Run 
Time 

1.6 s 3.01 s 7.30 s 14.49 s 

 Train Test Train Test Train Test Train Test 

R 0.841 0.844 0.855 0.854 0.8604 0.859 0.864 0.860 

MAE 0.019 0.035 0.017 0.034 0.0164 0.0328 0.016 0.0327 

MAPE 0.183 0.226 0.164 0.214 0.1573 0.2064 0.1522 0.2029 

MSE 0.0014 0.0043 0.0013 0.0040 0.0012 0.0039 0.0012 0.0038 

RMSE 0.037 0.066 0.036 0.063 0.035 0.062 0.035 0.061 

 

 

Table 7.3: Comparison of results of ANFIS model with membership function =3 

Criteria Epoch =10 Epoch =15 Epoch =16 Epoch =20 

Run 
Time 

44.8 s 60.25 s 65.9 s 83.35 s 

 Train Test Train Test Train Test Train Test 

R 0.883 0.878 0.887 0.884 0.889 0.885 0.892 0.889 

MAE 0.0146 0.029 0.0144 0.0292 0.0144 0.029 0.0143 0.0287 

MAPE 0.139 0.185 0.1372 0.1861 0.1367 0.187 0.136 0.1829 

MSE 0.0010 0.0034 0.0009 0.0032 0.0009 0.0032 0.0009 0.0031 

RMSE 0.032 0.058 0.032 0.057 0.030 0.056 0.039 0.056 

 

 



 

96 

 

 

Fig. 7.3: Initial Membership function for ANFIS prediction model: (a) input1M (b) input2 F (c) input 3 D 
(d) input 4 V 

 

Fig. 7.4: Final Membership function for ANFIS prediction model: (a) input1M (b) input2 F (c) input 3 D 
(d) input 4 V 



 

97 

 

 

Figure 7.5: Predicted Vs Observed value of PGA (a) Training Data (b) Testing Data 

 

 

Figure 7.6: Predicted Vs Observed value of PGA 
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7.3.2 COMPARISON WITH EXISTING MODELS 

 Table 7.4 shows the comparison of the developed ANFIS prediction model with 4 other 

existing models in the same database, namely GP/OLS model [45], ANN/SA model [4], MEP 

model [5] and GP/SA model [100]. In the Table 7.4, the symbol n/a is used to denote the missing 

values. It is clearly observed that developed prediction model has better precision compared to 

the existing models. It is also observed that the developed prediction model is faster. The 

ANN/SA model [4] requires 364 epochs with 240 seconds to attain the minimum MSE value, 

whereas the developed prediction model attains best MSE in 60.25 seconds.  

Table 7.4: Comparison of PGA with different existing models 

Criteria ANFIS Model 
mem_fn=3 Epoch=15 

GP/OLS model [45] 
 

ANN/SA model [4] MEP model [5] GP/SA [100] 
 

 Train Test Train Test Train Test Train Test Train Test 

R 0.88 0.88 0.836 0.811 0.869 0.855 0.842 0.834 0.833 0.839 

MAE 0.01 0.03 0.48 0.48 0.30 0.46 0.363 0.697 n/a n/a 

MAPE 0.14 0.18 n/a n/a 0.14 0.13 n/a n/a 0.158 0.144 

RMSE 0.032 0.057 0.836 0.637 n/a n/a 0.602 0.624 0.617 0.616 

  

To further validate the efficacy of the developed prediction model, it is compared to few 

existing GMPE models. There are numerous attenuation relationships for the prediction of 

principal ground motion parameter PGA and comparing with all of them is not feasible. Table 9 

shows the comparison of the developed model with fewer GMPEs developed in the same 

database. The developed model is also compared  with three other GMPE  models, namely 

Campbell-Bozorgnia model [29], Ambraseys et al model [6] and Smit et al model [142]. The 

criterion for comparison is the error percentage in the prediction of the principal ground motion 

parameter PGA for the testing dataset (563 records). The result in Table 7.5 clearly approves the 

efficiency of the ANFIS prediction model. 
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Table 7.5: Comparison of PGA model with GMPEs 

Model Criteria MAPE 

ANFIS prediction model 0.14 

Campbell and Bozorgnia (2007) 0.93 

Ambraseys et al (1996) 0.95 

Smit et al (2000) 14.58 

 

 

7.4  CONCLUSION 

 The results obtained show that proposed ANFIS prediction model is efficient compared to 

all existing hybrid models in the same database as well as the existing GMPE models.  Although 

the precision of the developed model is good, it still could be improved. ANFIS architectures has  

a major drawback of high computational complexities with higher number of membership 

functions, which makes the algorithm slow. Hence a new novel neuro fuzzy technique, RANFIS 

(randomized ANFIS) is proposed and is explained in the next chapter.  
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CHAPTER 8 

PREDICTION MODEL BASED ON NOVEL NEURO 
FUZZY LEARNING MACHINE,  RANDOMIZED 

ANFIS (RANFIS)  

 

8.1 INTRODUCTION 

 In this chapter, a new learning algorithm called RANFIS is used to develop a prediction 

model for forecasting the parameters of ground motion. RANFIS is an improved conventional 

ANFIS, overcoming the computational overhead of the hybrid learning algorithm (HLA) 

algorithm used for the learning in ANFIS. RANFIS is a hybrid algorithm combining the 

advantages of random assumption of the weight vector for the hidden layer in feedforward nets 

and the adaptive network based fuzzy inference system (ANFIS). The proposed RANFIS 

algorithm is simpler and faster than the conventional ANFIS [69,114,115]. 

 The chapter is organized as follows. Section 8.2 details the architecture and the learning 

algorithms of the RANFIS model. The modelling parameters are detailed in section 8.3. Section 

8.4 analyzes the results obtained and the efficacy of the model is validated by comparing it with 

existing benchmark models. The chapter is concluded by section 8.5 which discusses the 

advantages and disadvantages of the proposed ANFIS prediction model.  

8.2 RANDOMIZED ANFIS 

 In randomized single layer feedforward neural network (SLFN), hidden layer weights and 

biases are randomly chosen. The linear output layer weights are determined analytically, 

reducing the computational cost. To solve this classification problem, consider a conventional 

SLFN with hidden nodes and activation function g(x). Consider a training dataset with N samples 

),( ii tx where T
iniii xxxx ],....,,[ 21=  and T

imiii tttt ],....,,[ 21= .  

 

 



 

102 

 

The output of the linear layer jo can be obtained  as 
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linear output nodes and ib is the threshold of the ith hidden node. This network can approximate 
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Given a training set, the number of hidden nodes and hidden node activation functions, the 

algorithm for a single layer feedforward network with random hidden weights is given as follows: 

Step 1: The weights between hidden nodes and input nodes iw  and the threshold of the hidden 

nodes ib  are randomly assigned. 

Step 2:  Calculate the hidden layer output matrix H. 

Step 3:  Calculate the output linear layer weights using      

          TH 1−=β                           (8.2) 

where 1−H  is the Moore–Penrose generalized inverse of matrix H.  This gives the smallest 

norm least-squares solution of the above linear system and this solution is unique. 
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8.2.1 RANDOMIZED ANFIS (RANFIS) ARCHITECTURE 

The structure of randomized ANFIS is same as that of conventional ANFIS [70] and is shown 

in Fig 1. The architecture uses Sugeno type fuzzy inference rules. It is assumed that two rules are 

used for the knowledge representation. A two rule Sugeno ANFIS network has rules of the form: 

111111 ryqxpfTHENBisyandAisxIf ++=  

222222 ryqxpfTHENBisyandAisxIf ++=  

where, x and y are crisp inputs, Ai, Bi are linguistic variables. 

 

 

Fig 8.1: Architecture of RANFIS [114] 
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 The top part of Fig. 8.1 has three layers and represents the premise part of the fuzzy rules 

and the bottom part has two layers and represents the consequent part.  In the top part, the nodes 

in the first layer represent the fuzzy membership functions. The output of each node is 

@¾�(5)���	� = 1,2 and @É�¥¢(r)���	� = 3,4    where )(xµ is the membership grade for input 

x  and )( yµ  is the membership grade for input y. Fixed nodes are used in the second layer. The 

product t-norm is used to ‘and’ the membership grades of premise parameters, as it gives a 

smoothing effect. Firing strengths iw of the fuzzy rules are calculated as  

2,1),()( =⋅= iyxw
iBiAi µµ                                   (8.3) 

Normalized firing strengths iw  are calculated in the third layer which also consists of fixed 

nodes. 

21 ww

w
w i

i +
=                                                  (8.4) 

The first layer in the bottom part of Fig. 8.1 represents a linear neural network withip , iq and 

ir as weight parameters. These weight parameters are adaptive and are learned using least square 

estimation method. Assuming normalized firing strengths of fuzzy rules and weight parameters 

are known, the output of this is given as  

)( iiiiii ryqxpwfw ++=                                               (8.5) 

 The second layer in the bottom part computes the overall output as: 

)()( 22221111 ryqxpwryqxpwfwt
i

ii +++++==∑        (8.6) 

Bell shaped membership functions are used in the premise part, to provide smoothness in 

membership grade and flexibility in the core of membership functions. The Eq. 8.7 gives the 

mathematical representation of bell shape membership function. 

jb

ja

jcx
xA 2

1

1
)(

−
+

=µ                                                    (8.7) 

where, the premise parameters aj, bj, and cj are position and shape deciding parameters. 
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If the sample size of the two dimensional (x and y) data in Fig. 1 is N, the targets t1, t2…tN  

can be found out using (8.6). The N linear equations can be expressed in matrix form as  
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The above matrix equation completely describes the two-rule RANFIS structure shown in 

Fig. 8.1. The premise parameters aj, bj and cj and the consequent parametersip , iq and ir are to be 

evaluated using the RANFIS algorithm which is explained in the next subsection. 

     In the general case, if there are N training data pairs, the N linear equations can be 

represented in matrix form as  

1)1()1(1 ×++×
=× nnmnnmN

HNT β
                   (8.8) 

where, m is the number of membership functions, n is the dimension of input data  and mn is 

the maximum number of rules used. 

8.2.2 RANFIS ALGORITHM 

    In the conventional ANFIS, the premise parameters are determined using gradient descent 

methods like backpropagation algorithm. Consequent parameters are learned using linear 

network’s training methods like least mean squares estimation [69]. In this type of hybrid 

learning algorithm (HLA), in the forward pass, the input patterns are applied, assuming fixed 

premise parameters, the optimal consequent parameters are calculated by an iterative least mean 

square procedure. In the second pass called as backward pass the patterns are propagated again, 

and in this epoch, back propagation is used to change the premise parameters to reduce the 

training error, while the consequent parameters remain fixed. This procedure is continued until 

the training error is minimized.  

In RANFIS, the strategy of random assumption of weights is applied to tune the premise 

parameters of the fuzzy rules. These parameters (aj, bj, and cj) are randomly selected with some 
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constraints on the ranges of these parameters. The randomness is controlled in RANFIS due to 

the explicit knowledge embedded in the linguistic variables in the premise part of the fuzzy rules. 

Once the premise parameters for all the inputs are selected, the H matrix in (8.8) can be easily 

determined. Then the unknown linear network parameters can be determined as     

TH 1−=β                                                            (8.9) 

Consider the training data, with n dimensional inputs and one dimensional target as 

[ ]TXXX n ;..21  

For input membership functions, the range of each input function is defined as  

{ } { }iii XXrange minmax −=  for i = 1,2,….n         (8.10) 

If there are m uniformly distributed membership functions, then the default parameters (aj
*, 

bj
*, cj

*) of the jth membership function are given by  

22
*

−
=

m

range
a j

j                                                   (8.11) 

The default value of bj
* is 2 and cj

* is the center of uniformly distributed membership 

function.   

With these details, the RANFIS algorithm  can be summarized in the following steps: 

Step1: Randomly assign the premise parameters (aj, bj, cj) within the following ranges.  
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where dcc is the distance between two consecutive 

centers and bj  is selected from the range 1.9 to 2.1. 

 Step2: Calculate the premise layer output matrix H in (8.8). 

 Step3: Calculate the linear network parameter matrix β using (8.9). 

Step 4: Training runs are repeated for 50-70 times to select the best model. 
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8.2.3  COMPARISON OF RANFIS WITH ANFIS 

 The following example would substantiate the advantage of RANFIS over the 

conventional ANFIS [70].   

 Let Z be 2 input (x,y) sinc function given in (8.12). Let the range of x and y be [-10, 10]. 

RANFIS and conventional ANFIS algorithm are used for modeling the function. For training and 

testing the algorithm, 121 and 100 equally spaced pairs are chosen respectively from this range. 

Four membership functions and hence 16 rules are used for adapting the parameters of both 

algorithms. It is implemented and tested on C and MATLAB R2012 b platform with processor 

Intel(R) core(TM) i3-3220 and 4GB RAM. 

Á = ����	(5, r) = ÌXÍ	([)[ ∗ ÌXÍ	(Î)Î         (8.12) 

              

 Fig. 8.2 and Fig. 8.3 show the final membership functions of x and y obtained after 

training the conventional ANFIS and RANFIS respectively.  

 

 

Fig 8.2: Final membership functions after training for conventional ANFIS 
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Fig. 8. 3: Final membership functions after training for RANFIS 

 

Table 8.1: Comparison of conventional ANFIS (HLA) and RANFIS algorithm 

Membership 
function 

 Conventional ANFIS  
(HLA) 

RANFIS algorithm 

4 Training Time (sec) 23.607 3.072 
RMSE Training 3.5e-4 0.0023 
RMSE Testing 2.1263 0.4825 

5 Training Time (sec) 97.064 5.112 
RMSE Training 7.9e-5 1.78e-4 
RMSE Testing 4.5413 1.4510 

 

 

 From Table 8.1, it is clearly observed that the proposed RANFIS algorithm is faster with 

better testing accuracy compared to the hybrid learning algorithm of conventional ANFIS. It is 

also observed that with the increase in the number of membership functions, there is a drastic 

increase in the training time for conventional ANFIS whereas for RANFIS, the training time is 

comparatively much lesser. Hence the proposed RANFIS algorithm is simple compared to the 

computation involving HLA in conventional ANFIS and is faster and efficient. The qualitative 

knowledge embedded in the premise part of the fuzzy rules reduces the randomness of the first 

layer parameters. 
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8.3 MODELLING  

 

 

 

 

 

Fig 8.4: Model for prediction of principal Ground motion parameters. 

 

 The three ground motion parameters that are modelled are peak ground acceleration 

(PGA), peak ground velocity (PGV) and peak ground displacement (PGD). The developed 

ground motion parameter prediction model as shown in Fig.8.4, is expressed in terms of 

earthquake magnitude, faulting mechanism, site conditions and source to site distance. The 

number of membership functions is taken as 3. The input parameters to the model are earthquake 

magnitude, faulting mechanism, average shear wave velocity and closest distance. The output is 

principal ground motion parameter (Y), Y being PGA, PGV and PGD respectively. Hence the 

model is executed three times independently for PGA, PGV and PGD respectively.  The model is 

analyzed based on two sets of data, namely training data set and testing data set. 

 The modelling parameters of the developed RANFIS prediction model are given in the 

Tables 8.2 and 8.3. The Table 8.2 lists the values of the premise parameters (a, b, c) for each of 

the four input variables of PGA, PGV and PGD prediction models. The consequent parameter 

matrix is of the order 81x5 and hence in the Table 8.3 only the maximum and minimum value is 

listed. 
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Table 8.2: The modelling parameters (premise) of RANFIS Prediction Model. 

 PGA PGV PGD 

Input Mem.Fun a b c a b c a b c 

1 1 0.3358 1.9333 0.0616 0.3025 2.0353 -0.0182 0.2889 1.9413 0.0724 

2 0.3965 2.0299 0.3371 0.1710 1.9622 0.7169 0.1538 2.0617 0.6738 
3 0.1483 2.0491 1.1707 0.1264 1.9471 1.1347 0.2915 1.9095 0.7428 

2 1 0.3472 2.0293 0.2557 0.2221 2.0733 0.2069 0.0149 1.9185 0.2210 

2 0.3736 2.0181 0.4969 0.4162 1.9017 0.5032 0.3027 2.0956 0.5739 
3 0.3595 1.9334 0.8502 0.3578 2.0162 0.7432 0.2764 2.0090 0.7515 

3 1 0.0020 1.9906 -0.0037 0.0185 1.9880 0.0084 0.0083 2.0181 -0.0454 

2 0.0575 1.9421 0.7205 0.3377 1.9028 0.4125 0.1951 1.9187 0.3217 
3 0.3711 2.0866 0.9116 0.0645 2.0594 1.0502 0.3544 2.0584 1.1501 

4 1 0.1266 1.9821 -0.0450 0.2089 1.9788 0.1247 0.0459 1.9048 0.2661 

2 0.2179 1.9943 0.6440 0.0540 1.9780 0.6198 0.1318 2.0554 0.4705 
3 0.2815 1.9116 0.8781 0.3124 1.9489 0.8227 0.3238 2.0785 0.9371 

 

 

Table 8.3: The modelling parameters (consequent) RANFIS Prediction Model. 

 Consequent parameters (81x5) 

 PGA PGV PGD 

minimum -1.55 -4.55 -6.25 

maximum 1.61 4.07 5.61 

 

 

8.4 RESULT ANALYSES AND DISCUSSION 

 In this section, the overall performance of the developed model is analyzed. The 

subsection 8.4.1 details the results obtained by the developed RANFIS prediction model. The 

subsection 8.4.2 compares the developed model with the existing benchmark models. 
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8.4.1 RESULTS OBTAINED BY THE DEVELOPED RANFIS MODEL. 

The best result is obtained for 100 epochs with number of membership functions equal to 

3, and the developed prediction model takes 183 seconds to attain the best MSE value. The 

performance of the developed RANFIS prediction model is gauged in terms of prediction 

accuracy and the error percentage. The performance of the developed model is described in the 

Figs.8.5-8.7 for both training and testing datasets. The Fig. 8.5 shows the results obtained for the 

prediction of peak ground acceleration. The Figs. 8.6 and 8.7 represent the results obtained for 

the prediction of peak ground velocity and peak ground displacement respectively. It is observed 

from the Figs 8.5-8.7 that the developed prediction model, for the prediction of PGA, PGV and 

PGD respectively, is efficacious as the models gives high prediction accuracy with lesser error 

percentage.  

 
 

Fig 8.5: Predicted Vs Observed value of PGA (Training Data and Testing Data) 

  

Fig 8.6: Predicted Vs Observed value of PGV (Training Data and Testing Data) 
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Fig 8.7: Predicted Vs Observed value of PGD (Training Data and Testing Data) 

To further validate the potential of the developed RANFIS model, it is tested further on NGA 

WEST 2 dataset. Figs 8.8-8.10 shows the results obtained.  The model gives good accuracy 

which supports the claim that the developed prediction model has good generalization capability. 

 

 

 

 

Fig 8.8: Predicted Vs Observed value of PGA 
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Fig. 8.9: Predicted Vs Observed value of PGV 

 

Fig 8.10: Predicted Vs Observed value of PGD 

 

8.4.2   COMPARISON WITH EXISTING MODELS 

 The developed RANFIS prediction model is compared with 4 other existing models in the 

same database, namely GP/OLS model [45],ANN/SA model [4], MEP model [5] and GP/SA 

model [100] developed in the same database. The experimental results are tabulated in Tables 

8.4-8.6.  In the tables, where the corresponding values are missing, it is denoted by the symbol 
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n/a. The Table 8.4 represents the comparison of the developed RANFIS model with the existing 

models for the prediction of peak ground acceleration. The Tables 8.5 and 8.6 shows the 

comparison between the developed model and the existing models, for the prediction of PGV and 

PGD respectively. It is observed from the Tables 8.4-8.6, that the RANFIS model gives 

comparatively higher prediction accuracy with extremely small error percentage. Furthermore, it 

is observed that the RANFIS model is faster. The RANFIS model takes 183 seconds with 100 

epochs to attain the best MSE value, whereas the ANN/SA prediction model [4] takes 364 epochs 

with 240 seconds to attain the minimum MSE value.  

 

 

Table  8.4: Comparison of RANFIS prediction model for PGA with existing models 

 

Criteria  RANFIS ANN/SA [4]  GP/OLS [45] MEP [5]  GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R  0.902  0.900  0.869  0.855  0.836  0.811  0.842  0.834  0.833  0.839  

MAE  0.013  0.026  0.30  0.46  0.478  0.488  0.363  0.697  n/a  n/a  

MAPE  0.130  0.176  0.14  0.13  n/a  n/a  n/a  n/a  0.158  0.144  

MSE  0.001  0.003  n/a  n/a  0.358  0.406  0.362  0.389  0.381  0.380  

RMSE  0.029  0.052  n/a  n/a  0.836  0.637  0.602  0.624  0.617  0.616  
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Table 8.5: Comparison of RANFIS prediction model for PGV with existing models 

Criteria RANFIS ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R 0.901 0.904 0.867 0.874 0.822 0.813 0.837 0.828 0.833 0.837 

MAE 0.013 0.025 0.34 0.45 n/a 0.506 0.402 0.726 n/a n/a 

MAPE 0.130 0.155 1.06 2.17 0.512 n/a n/a n/a 1.27 2.35 

MSE 0.001 0.002 n/a n/a 0.421 0.405 n/a n/a n/a n/a 

RMSE 0.026 0.045 n/a n/a 0.649 0.637 0.634 0.671 0.645 0.648 

 

 

Table 8.6: Comparison of RANFIS prediction model for PGD with existing models 

 

Criteria  RANFIS ANN/SA [4] GP/OLS [45] MEP [5] GP/SA [100] 

 Train Test Train Test Train Test Train Test Train Test 

R 0.909 0.906 0.870 0.869 0.836 0.811 0.846 0.840 0.847 0.854 

MAE 0.008 0.016 0.62 0.62 n/a n/a 0.733 0.829 n/a n/a 

MAPE 0.099 0.129 1.74 1.66 0.660 0.681 n/a n/a 1.61 1.68 

RMSE 0.019 0.035 n/a n/a 0.850 0.901 0.856 0.899 0.845 0.846 
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 It is clearly observed from the Tables 8.4-8.6, that the RANFIS model is efficient 

compared to other existing models. The developed RANFIS model is further compared with few 

existing GMPEs to prove the efficacy of the RANFIS model. There are numerous attenuation 

relationships for the prediction of principal ground motion parameter and comparing with all of 

them is not feasible. Hence the developed RANFIS model is compared with the few GMPEs 

developed in the same database. The criterion for comparison is the error percentage in the 

prediction of each of the principal ground motion parameters (PGA, PGV, and PGD) for the 

testing dataset (563 records). It is observed from the Table 8.7, that the developed RANFIS 

model gives better precision as the error percentage is extremely less. Another advantage of the 

developed RANFIS model is that it is much simpler as compared to GMPEs as the RANFIS 

prediction model includes only 4 geophysical parameters as input, whereas GMPEs include many 

geophysical parameters. 

Table 8.7: Comparison of model with GMPEs (n/a denote value not mentioned) 

Model Criteria MAPE 

 PGA PGV PGD 

RANFIS 0.175 0.158 0.108 

Campbell and Bozorgnia [29] 0.93 0.78 5.73 

Least Square regression analysis  [96] 0.16 2.47 1.70 

Ambraseys et al [6] 0.95 n/a n/a 

Smit et al [142] 14.58 n/a n/a 
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8.5  CONCLUSION 

  In this study, a new and faster hybrid machine learning algorithm, RANFIS is used to 

predict the three principal ground motion parameters PGA, PGV and PGD. The hybrid network 

used in modelling also avoids the randomness of the results inherent in randomized SLFN 

networks by incorporating explicit knowledge representation using fuzzy membership functions. 

The results obtained show that the developed prediction model is efficient as it gives better 

precision results in lesser computational time compared to the existing GMPEs models and soft 

computing models. Moreover, the simulation studies show that the RANFIS algorithm is faster 

than the conventional adaptive neural fuzzy inference system learning algorithm. 

 In the next chapter, all the developed prediction models are compared for concluding the 

best prediction model for forecasting ground motion parameter, proposed in this study.    
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CHAPTER 9 
COMPARISON OF  ALL PROPOSED PREDICTION 

MODELS  

 

9.1 INTRODUCTION 

 In this chapter all the developed predictive models for forecasting the ground motion 

parameters are compared and the learning effectiveness of each algorithm is further explored.  In 

chapters 4-8 of this study, the respective developed prediction models are compared to existing 

benchmark models and the GMPEs. In this chapter, all the predictive models proposed in this 

study, for forecasting ground motion parameters are compared in terms of prediction accuracy 

and error measure. Hence this chapter concludes the best prediction model among all the 

developed prediction models in this study. Futhermore, the prediction models are compared for 

‘learning effectiveness’ of the algorithm which analyzes the learning ability of the algorithms.  In 

this chapter for the comparative analyzes of the developed ground motion parameter prediction 

models, the predictive model for forecasting peak ground acceleration is considered. The chapter 

is organized as follows. Section 9.2 details the comparison of all the 6 developed predictive 

models with respect to the training data. The predictive models are further compared in terms of 

testing data in section 9.3. The learning effectiveness of all the predictive models is analyzed in 

section 9.4. The discussion on the comparison of predictive models is concluded in section 9.5. 

9.2 COMPARISON OF TRAINING DATA 

 In this section, the all the developed peak ground acceleration predictive model is 

compared for training data consisting of 2252 earthquake records. Table 9.1 tabulates the 

performance during training of the developed models. The models are tabulated in the order of 

their performance.  It is observed that the novel neuro fuzzy technique (RANFIS) is the best 

predictive model as it gives high prediction accuracy. It is also observed that the prediction 

accuracy for prediction model based on hybrid architecture ANFIS is comparable with prediction 

model based on kernel method learning (LS-SVR model).  Similarly, the  ELM based prediction 

model performs better than the decision tree and SLFN based prediction model.  
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Fig 9.1 shows the correlation coefficient (R) of all the developed prediction models with 

various measures of training error.  Fig. 9.2 shows the comparison of the correlation coefficient 

(R) with training error measured in terms of mean absolute percentage error (MAPE), for all the 

developed prediction models. 

Table 9.1: Comparison of all developed models for training data (PGA) 

Criteria RANFIS ANFIS LS-SVR 
(RBF 

kernel) 

ELM Decision 
tree 

SLFN ν –SVR 
(RBF 

kernel) 

ε –SVR 
(RBF 

kernel) 
R 0.902 0.88 0.872 0.845 0.852 0.807 0.731 0.696 

MAE 0.013 0.010 0.014 0.018 0.015 0.021 0.024 0.053 

MAPE 0.130 0.140 0.137 0.182 0.131 0.219 0.246 0.716 

RMSE 0.029 0.032 0.033 0.037 0.036 0.040 0.048 0.066 

 

 

 

 

Fig. 9.1 Comparison of all developed predictive models for train data 
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Fig. 9.2: Comparison of R with MAPE for all developed predictive models for train data 

 

9.3 COMPARISON OF TESTING DATA 

 In this section, the developed peak ground acceleration predictive models are compared 

for testing data consisting of 563 earthquake records as well as for the NGA WEST 2 dataset 

consisting of 140 earthquake records.  For any developed predictive model, the efficacy of the 

predictive model depends on the performance of the predictive model on the testing data sets. In 

this work, the models are tested for 703 earthquake records.  

The Table 9.2 represents the comparison of the developed models for the test data of 563 

records. The models are tabulated in the order of the performance of the models. Fig. 9.3 

represents the correlation coefficient (R) along with four measures of testing error, for all the 

developed predictive models for the test data of 563 records.  It is observed that the best 

prediction algorithm is the novel neuro fuzzy technique, RANFIS. It outperforms the existing 

ANFIS architecture.  It is also observed that the kernel based model (LS-SVR model) 

outperforms the neural based model (ELM model).  The performance of the LS-SVR based 

prediction model is comparable to ANFIS based prediction model. The Fig 9.4 shows the 
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comparison of correlation coefficient (R) with testing error MAPE for all developed predictive 

models for the test data of 563 records. 

 

Table 9.2: Comparison of all developed model for testing data (PGA) 

Criteria RANFIS ANFIS LS-SVR 
(RBF 

kernel) 

ELM Decision 
tree 

SLFN ν –SVR 
(RBF 

kernel) 

ε –SVR 
(RBF 

kernel) 

R 0.900 0.88 0.870 0.849 0.840 0.819 0.763 0.764 

MAE 0.026 0.030 0.032 0.035 0.033 0.039 0.046 0.058 

MAPE 0.176 0.180 0.189 0.229 0.192 0.266 0.277 0.558 

RMSE 0.052 0.057 0.061 0.066 0.065 0.070 0.088 0.080 

  

 

 

Fig 9.3 Comparison of all developed predictive models for test data 
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Fig. 9.4: Comparison of R with MAPE for all developed predictive models for test data 

  The developed prediction models are further tested on NGA WEST 2 dataset 

consisting of 140 earthquake records. The Table 9.3 tabulates the performance of the developed 

predictive models on NGA WEST 2 dataset. The further evaluation of performance of the 

developed prediction models on this dataset validates the efficacy of the model. The results show 

that the developed models are independent of the database on which the model is trained and 

works well for any set of data, which matches the statistical parameters of the training data set. 

All the developed prediction model is trained for earthquake magnitude ranging from 5.2 to 7.9. 

The NGA WEST 2 dataset consists of 140 earthquake records, outside the training database but 

within this range of magnitude.  

  Table 9.3: Comparison of all developed Prediction models for NGAWest 2 data (PGA)  

Criteria RANFIS ANFIS LS-SVR 
(RBF 

kernel) 

ν –SVR 
(RBF 

kernel) 

Decision 
Tree 

model 

ε –SVR 
(RBF 

kernel) 

ELM SLFN 
model 

R 0.885 0.820 0.8140 0.7171 0.7004 0.6585 0.542 0.4242 

MAE 0.004 0.006 0.0060 0.0148 0.0065 0.0537 0.046 0.0147 

MAPE 0.072 0.089 0.0853 0.2180 0.0876 0.8308 0.291 0.2171 

RMSE 0.010 0.008 0.010 0.017 0.010 0.060 0.031 0.024 

 



 

124 

 

 

 It is clearly observed that the novel neuro fuzzy algorithm RANFIS outperforms all the 

other developed models. Another interesting observation from Table 9.3 is that it clearly shows 

that the generalization of kernel method (SVR) based model is much better than the neural based 

learning (ELM, ANN). Furthermore, it is also observed that the generalization is better for ELM 

compared to SLFN, which substantiates the advantage of ELM over ANN. Fig. 9.5 represents the 

correlation coefficient (R) along with four measures of testing error, for all the developed models 

for the NGA WEST 2 dataset. Fig. 9.6 shows the comparison of R, the correlation coefficient for 

the NGA WEST 2 dataset with testing error MAPE. It is observed that the RANFIS algorithm 

has the least testing error with highest accuracy.  

  

 

Fig. 9.5: Comparison of all developed predictive models for NGA WEST 2 dataset 
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Fig. 9.6: Comparison of R with MAPE for all developed predictive models for NGA WEST 2 dataset 

 

9.4 OVERFITNESS MEASURE OF LEARNING ALGORITHMS 

 In this section, a comparative study is done based on the learning ability of the prediction 

algorithms used in the study, along with the existing benchmark models, as mentioned in Table 

3.1. The efficacy of the learning capability of the algorithms is based on the measure of 

‘overfitness’. All the models considered in this section are the developed predictive models, as 

well existing benchmark models, for forecasting PGA.  

 The efficacy of any model is analyzed on the testing error. The overfitness measure  [161] 

is a comparison between training and testing error. The measure of overfitness is calculated as 

given in  Eq. 5.28, mentioned in section 5.4.3 in chapter 5. The measure of error considered is 

mean absolute error percentage (MAPE), detailed in section 3.6 of chapter 3. The testing data 

considered in evaluating the overfitness measure consists of 563 earthquake records. The 

comparative results obtained on testing data from all the developed predictive models are 

tabulated in Table 9.2.  

 Higher measure of overfitness shows that the algorithm has a drawback of overfitting the 

data.  Hence it is used as a criteria to compare models having comparable prediction accuracy. 
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Table 9.4 tabulates the measure of overfitness for each algorithm. The model having a 

comparatively lesser measure of overfitness is said to have better generalization.   

 From the results shown in Tables 9.1-9.3, it is concluded that the RANFIS prediction 

model is the best developed predictive algorithm. The learning algorithm proposed in the 

RANFIS model, a novel neuro fuzzy technique, has high prediction accuracy with lesser error 

measure and overfitness measure. It is observed that RANFIS model gives the least testing error 

measure among all the developed models. The measure of overfitness is acceptable as the 

RANFIS model gives good precision (as shown in Table 9.3), for the NGA WEST 2 dataset, 

consisting of 140 earthquake records, which is a set of earthquake data outside the database used 

for modelling.  Thus, the novel neuro fuzzy technique is efficacious as it gives remarkable 

precision accuracy, with much lesser error percentage and without overfitting the data during 

modelling.   

Table 9.4: Comparison of all Prediction models for overfitness 
Model Accuracy Testing Error Overfitness 

RANFIS 0.90 0.176 0.34 

ANFIS 0.88 0.180 0.29 

ELM 0.85 0.229 0.26 

ε-SVR (RBF kernel) 0.76 0.558 0.22 

ν-SVR (RBF kernel) 0.76 0.277 0.13 

LS-SVR (RBF kernel) 0.87 0.189 0.38 

Decision Tree 0.84 0.192 0.47 

SLFN 0.82 0.266 0.28 

GP/SA 0.839 0.144 0.21 

GP/OLS 0.811 0.49 0.24 

MEP 0.834 0.69 0.92 

ANN/SA 0.855 0.46 0.53 

  

  



 

127 

 

Further comparing the developed predictive models, it is observed from Tables 9.1-9.3,  that 

ANFIS predictive model and LS-SVR prediction model have commensurate performance. The 

prediction accuracy and the error measure are comparable. It is observed from Table 9.4, that the 

overfitness measure for the 2 pass hybrid learning algorithm (HLA) of ANFIS model is 

comparatively lesser than the kernel method based learning algorithm, LS-SVR. Hence, 

comparatively it could be said that ANFIS based prediction model for forecasting ground motion 

parameter is better than LS-SVR based prediction model. Although ANFIS model has 

advantages, it has few bottleneck issues. In this study, the ANFIS model with membership 

function 3 was considered. ANFIS architecture has the drawback of higher computational time 

and complexities with higher membership function.  

 It is further observed from Tables 9.1-9.3, that the performance of decision tree based 

prediction model is comparable with the ELM based prediction model. From the Table 9.4 it is 

clearly observed that decision tree based model has a higher measure of overfitness. This 

substantiates the major drawback of decision tree modelling.  The key issue of decision tree 

modelling is that the tree structure obtained after modelling is highly dependant on the dataset. 

Any variation in the dataset results in a different tree structure. Thus, there is overfitting of the 

data. The results in Table 9.4 proves this issue of decision trees. Hence the ELM based prediction 

model is comparatively better than a  decision tree based model.  

 The further vital observation from the Table 9.4 is that the overfitness for SVR based 

models is less compared to SLFN model, as well the ANN/SA model. Thus, it validates the claim 

by the kernel based learning method (SVR) that it overcomes the major drawback of overfitting 

of data, as in the case of neural network based methods. Hence it is validated that SVR has a 

better generalization than ANN. Moreover, it is concluded from the Table 9.4, that ELM has a 

better generalization than ANN, as overfitness measure is less for ELM compared to SLFN, as 

well as ANN/SA models.  
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9.5 CONCLUSION 

 In this chapter, all the developed predictive models in this study, for forecasting ground 

motion parameters are compared. It is clearly observed from the result analysis in chapters 4-8, 

that all the developed prediction models for forecasting ground motion parameter outperforms 

the existing benchmark models as well as the existing conventional GMPEs. All the developed 

predictive models based on advanced machine learning have better accuracy and lesser measure 

of the error percentage compared to the existing models. In this chapter, all the proposed 

predictive models are compared in terms of prediction accuracy and the different measure of 

error percentages. Furthermore, the prediction algorithms are analyzed for their learning 

capability. The learning ability of the algorithms is expressed in terms of a measure termed 

‘overfitness’, which defines overfitting, the bottleneck issue of any leaning machine.  An 

efficient learning machine should be one which does not overfit the data.   

 From the results tabulated in Tables 9.1-9.4, it is concluded that from among all the 

proposed predictive models in this study, the best prediction model for forecasting ground motion 

parameter is RANFIS model, the improved conventional ANFIS. It is followed by the ANFIS 

model, the hybrid neuro fuzzy architecture, followed by the LS-SVR model, followed by the 

ELM based prediction model. Hence it is concluded that the hybrid neuro fuzzy architecture 

outperforms the kernel based learning method, SVR.  

 The major drawback of the hybrid learning algorithm (HLA) of the ANFIS model is the 

computational time due to the  complexities which arises at the higher membership function.  It is 

observed from Table 8.1 that the RANFIS algorithm overcomes this drawback of ANFIS.  

 It is also observed from Table 9.4 that the SVR algorithm has a lesser measure of 

overfitness. The ε-SVR model and ν- SVR models have the least measure of overfitness measure. 

Among the kernel method based learning, the LS-SVR model gives the best result. The results 

show that the LS-SVR model has a slightly higher measure of overfitness. It is because for 

obtaining the optimal value of gamma for LS-SVR algorithm, simulated coupling method is 

used. The simulated annealing (SA) is a probabilistic optimization algorithm and has its own 

drawbacks.   
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The results also show that kernel based learning has lesser measure of overfitness compared 

to ELM. Hence it is concluded that support vector regression has definitely a better 

generalization compared to neural networks. 

 The ELM based model outperforms the decision tree based modelling as well as the 

neural based models such as the SLFN and the benchmark model ANN/SA. This further supports 

the claim that ELM has a better generalization than ANN.  

  It is further observed that the highest value for overfitness measure is for tree based 

modelling.  Thus, the major drawback of the tree based modelling which is data dependency is 

clearly highlighted.  The existing benchmark models such as GP/OLS, GP/SA and MEP models 

could be considered as an attempt to develop efficient tree like structures. The genetic 

programming (GP) is an evolutionary algorithm similar to genetic algorithms (GA). The multi 

expression programming (MEP) model is again a variant of GP model. The final output of the 

GP model is a tree like structure. It is observed from Table 9.4 that GP/OLS and GP/SA models 

have a lesser measure of overfitness. The MEP model is highly dependant on the data as, in MEP 

a linear representation is used. The  measure of overfitness for the MEP model as in Table 9.4 

clearly validates this drawback.  

  It is also observed that developed models have better precision compared to genetic 

programming as well as its existing hybrid architectures (GP/SA). The next chapter concludes the 

study by highlighting the significance of the work done in this thesis.  
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Chapter 10 

CONCLUSION AND FUTURE SCOPE 
 

10.1 CONCLUSION 

 In this study, predictive models based on advanced machine learning are developed for 

forecasting ground motion parameters.  The advanced machine learning algorithms used are 

extreme learning machines (ELM) which is based on neural network learning, three variations of 

support vector regression (SVR) which is based on kernel methods learning,  decision tree, and 

two hybrid architecture ANFIS and RANFIS (randomized ANFIS). ANFIS is an integrated 

hybrid architecture of fuzzy logic with neural networks such that the knowledge gained by the 

fuzzy logic is used by the learning algorithm of neural network. RANFIS is the new learning 

algorithm proposed for predictive models in this study. The RANFIS algorithm integrates the 

explicit knowledge of the fuzzy systems with the learning capabilities of neural networks, as in 

the conventional ANFIS system, but with the difference that, the fuzzy layer parameters in 

RANFIS are not tuned. This improvement in the architecture of ANFIS structure helps to 

accelerate the learning speed without compromising the generalization capability. 

 All the machine learning algorithms used in this study are novel in this domain.  All the 

developed predictive models are meticulously analyzed and the results are well validated. It is 

clearly observed that the developed predictive models in this study are advantageous when 

compared to the existing benchmark models in this domain as shown in Table 3.1, as well as with 

the traditional ground motion parameter equations (GMPEs). The existing benchmark models are 

ANN/SA model by Alavi and Gandomi [4], GP/OLS model by Gandomi et al [45], MEP model 

by Alavi et al [5] and GP/SA model by Mohammadnejad et al [100] and the existing GMPE 

models are Ambraseys et al. [6], Smit et al. [142], and Campbell and Bozorgnia [29]. The chapter 

9 further details the comparative study among all the developed ground motion parameter 

prediction models. In this comparative study of the various proposed algorithms, the learning 

effectiveness of each algorithm is analyzed, which further highlights the advantages and 

drawbacks of each advanced machine learning algorithm.  
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Furthermore, the proposed novel neuro fuzzy technique, ‘RANFIS’ proves to be promising 

prediction algorithm for forecasting ground motion parameters.  

  This study manifests that advanced learning machines could be effectively used as 

a predictive tool in this domain. In this study, the database used is real earthquake data recorded 

worldwide. The predictive models developed in this study are not data dependant. In this study, 

the models are developed for earthquake magnitude ranging from 5.2 to 7.9, in the scale of 

moment magnitude. The models could be trained for any range of earthquake magnitude, as per 

the user requirement.  

 All the developed predictive models were trained and tested on earthquake records 

obtained from PEER database [111]. The developed models were further tested on another 

dataset NGA WEST 2 [23] consisting of 140 earthquake records. Hence it is validated that the 

developed predictive models are not constrained on the data.  

  The study also brings out the drawbacks of linear regression analysis, which is used for 

the generation of GMPEs. It is observed from the results obtained in this study, that the 

developed predictive models for forecasting ground motion parameter, not only gives faster and 

more accurate ground motion parameter prediction but also the drawbacks of linear regression 

modelling is overcomed. The key issues of the ground motion prediction equations (GMPEs) 

developed using regression analysis is that the results have a higher measure of error as well the 

overhead of solving the equation as it consist of a large number of coefficients.  All the proposed 

prediction models in this study use only 4 geophysical parameters for the forecasting of ground 

motion parameter. The results obtained show that the developed prediction models are efficient 

as it gives better precision results in lesser computational time compared to the existing GMPEs 

models and soft computing models. Moreover, in this study all the developed models are 

analyzed on 4 different measures of error.  The detailed analysis of the advanced machine 

learning algorithms is done in chapter 9.  

 The vital application of the proposed model is that it could be used as tool for faster 

prediction of the ground motion parameter with lesser calculation overhead, in all areas such 

seismic risk assessment, seismic hazard analysis, earthquake resistant structural engineering, etc. 

where the principal ground motion parameters are used as a vital input.  
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10.2 FUTURE SCOPE 

 Although it is well validated that the proposed predictive models in this study are 

efficacious, there are some aspects of this study that could be considered as the future scope of  

the work. 

  A further extension of this study is to identify newer and  relevant geophysical 

parameters, which could replace the currently used four input parameters.  The four geophysical 

parameters considered in this study are believed to be the most prominent attribute relating to an 

earthquake process and ground motion parameter.  From the study of seismology, it is observed 

that, the signal generated during an earthquake process, is dependant on many features.  From the 

literature survey, (Douglas [39]), it is perceived that other important features are the energy 

released during an earthquake, the depth of an earthquake (focal depth), the soil properties, the 

path travelled by the signal and so on.  

 Furthermore, the distance measure considered for modelling is the closest distance, which 

is defined as the closest distance of the ruptured area to the recording site. A further study could 

be done so as to deduce the influence of different measures of distances on the ground motion 

parameter.  

 In this study, the novel neuro fuzzy technique ‘RANFIS’, was applied to forecast ground 

motion parameters.  The proposed prediction algorithm could be applied to various complex real 

world problems such as in biomedical signal processing, or image processing or a stock market 

prediction, or  prediction of other natural calamities such as landslide prediction etc.  

 The proposed RANFIS model is an improved conventional ANFIS. Although this 

proposed algorithm is efficient, it could be improved in terms of computational time. In RANFIS, 

the maximum number of rules used is mn , for n dimensional input and m number of membership 

functions. The computational time of the algorithm could be improved if the number of rules is 

reduced. Hence the optimization for the reduction of the number of rules, could be a further 

extension of the work.  
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 Furthermore, the efficacy of RANFIS could be tested on data, having large number of 

input attributes with huge number of instances. In this study, the dimensionality of the database is 

2815 numbers of earthquake records with 4 input features. The study of the behavior of the 

RANFIS prediction algorithm for datasets having more than 10 input features with large number 

of records ( number of records >5000), would be interesting.  To improve the computational time 

and the efficacy of the model for such huge datasets would be a real challenge.  
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