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ABSTRACT 
  

In the present digital world, the advancement of modern day technology towards 

miniaturization associated is with societal and environmental processes which are 

contributing to the soaring system complexities, thereby resulting in outsized systems. It's a 

known fact, that the behavioral study of any system starts with building up of a mathematical 

model based on theoretical considerations. Accordingly, a set of ordinary differential 

equations (ODE) or partial differential equations (PDE) are derived by applying physical 

laws, signifying a mathematical model. In nature and industry, most of these mathematical 

models turn out to be of higher order, hereafter called as "original model". The direct 

simulation or design of such models is neither computationally desirable nor physically 

convenient to handle. Additionally, such models pose difficulty during analysis, control, 

synthesis and identification as the said tasks are not so easy as they seem to be. It is really 

grueling, sometimes not feasible and also prove to be a costly affair because of what it may be 

called as "the curse of dimensionality". In engineering and science, it is often desirable to use 

the simplest mathematical model that “does the job”. Hence a systematic approximation of the 

original model is very much in need which results in a reduced order model. The systematic 

procedure that ends up in reduced order model is called Model Order Reduction (MOR). 

Hence MOR has born out of the necessity to provide simplified/reduced models, that address 

the ill effects of higher dimensional models.  

 The order reduction phase consists of reducing the number of ODE's appropriately, 

using model reduction technique, to form a reduced model. But, the derived reduced model 

should provide a good approximation for the original model by preserving some vital features 

viz. stability, realizibility, good time/frequency response matching etc. It is therefore desirable 

that the original model can be replaced by the reduced model enabling easy analysis, design, 

simulation, control and cost effective on line implementation, apart from ensuring the 

following qualities  

(a) Simplify the understanding of the system. 

(b) Reduction of computational and hardware complexity. 

(c) Reduction of storage requirements. 

(d) Ease of efficient controller design and implementation.  

(e) Cost effectiveness.  
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Consequently, order reduction ends up as a necessary procedure for simulating large complex 

systems; the same is generally practiced in systems and control engineering in spite of having 

high speed processors and is active area of research.   

 In the existing literature, abundant order reduction methods have been developed by 

several authors and are mainly categorized as time and frequency domain reduction methods. 

Normally, the time domain methods start with a state space description whereas the latter rely 

on the transfer function model. However, the reduced models obtained from different 

reduction techniques are unique and the quality is ultimately judged by the way it is utilized. 

But, none can be judged as the universally best reduction method as these methods depend 

upon various reason. The best method is one, which shields the vital dynamics of the system 

under consideration; how well it satisfies the application specifications with reasonable 

error/computational efforts, in addition to storage. Consequently, the need for better 

approximation techniques persist. An effort is being made in the present research work to 

address this issue.  

  The initial objective of this thesis is to recapitulate most of the model reduction 

methods available in the research literature. This is succeeded by the purpose to promote 

some new model order reduction methods applicable to SISO/MIMO time-invariant 

continuous time systems. The work presented here is confined to linear systems/models and 

the examples therein. The task mentioned involves the use of both conventional and 

evolutionary strategies. The considered systems may be  represented in frequency domain or 

time domain. In addition, the other objective is to ensure the superiority of the new reduction 

methods by comparing with other well known methods, beside checking its validity for LTI 

discrete system. Lastly, to solve the problem of designing a suitable PID controller for the 

higher ordered model, utilizing the newly developed method is being considered. In addition, 

direct and indirect approaches of controller design are dealt with apart from alternative 

approach to check its applicability for the original model. 

 At the outset, introduction followed by importance and applications of MOR is 

presented, subsequently followed by statement of MOR problem in both time and frequency 

domain for continuous time systems (SISO and MIMO). Besides brief overview about the 

developments that have taken place in the area of MOR, various existing reduction methods 

and their associated qualities/drawbacks are also reflected. Composite reduction methods are 

developed for reduction of higher ordered LTI continuous systems. Stability Equation (SE), 

Eigen Spectrum Analysis (ESA), Dominant Pole (DP), Modified Pole Clustering (MPC) are 
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employed to propose composite methods. These methods are applicable for SISO/MIMO 

systems taken from the available literature and are comparable to the available reduced 

models. The same proposed methods are also extended for SISO/MIMO discrete systems. 

Comparison of responses to step input and their associated performance indices justifies the 

proposed methods. 

 Evolutionary schemes including the recently introduced Big Bang Big Crunch(BBBC) 

optimization technique are adopted to float new reduction methods. Mixed methods using 

BBBC in combination with Routh Approximation (RA) and Stability Equation (SE) method 

yield good results. In addition, BBBC also plays an important role in optimizing the linear 

shift point 'a' for order reduction in least square sense. Further, systems of higher order 

represented in both time and frequency domain are considered for reduction using BBBC and 

the same is extended for discrete systems as well.  Original models having the order upto 200, 

are considered for reduction. The proposed methods are applied on SISO/MIMO systems and 

are justified by considering the available bench mark examples.  

 The TMS320C54X processor, grouped under a fixed point DSP is a low-cost, 

comprehensive development tool that allows new DSP designers to explore the 

TMS320C5000 DSP architecture and begin developing DSP based applications. It has 

functional adaptability to a great extent and processing speed. BBBC is roped in to do the 

required task. The order of Butterworth and Chebyshev filters are designed, and their order is 

reduced and implemented on TMS320C54x processor. Simulations are carried out in 

MATLAB and Code Composer Studio (CCS). The input/output waveforms obtained are 

compared and substantiated. In addition, the frequency response and FFT power spectrum of 

the input/ output signals are also plotted.  

  The design of controller for the original models representing practical systems are 

also dealt to ensure the suitability of developed MOR methods. Further, fractional order PID 

controller is discussed and shown to perform better than the integer order PID controller using 

an example. Both direct and indirect approach of controller design are employed in addition to 

an alternative approach for controller design. The design examples are confined to frequency 

domain. The unit step response of closed loop transfer functions obtained from the original 

and reduced plant transfer function are compared with the unit step response of the reference 

model.  

 Overall the viability/validity and use of the MOR techniques developed are 

conclusively established through several numerical examples.  
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CHAPTER - 1 
 

INTRODUCTION  
 

Presently, the world is witnessing great changes in almost all areas including system 

engineering arena, with steeply growing system complexities, thereby resulting in an outsized 

systems. Generally these systems are best described by large number of differential or 

difference equations, to form a mathematical model and ease the purpose of analysis, 

simulation, design and control. However, the said task is not so easy as it seems to be. It is 

really grueling, sometimes not feasible and also proves to be a costly affair because of what 

may be called as "the curse of dimensionality". Hence model order reduction (MOR) was 

born out of the necessity to provide simplified models, thereby addressing the effects of 

higher dimensional models and continue to rule, in spite of the emergence of present day 

technology.  

 

1.1 THE IMPORTANCE OF MODEL ORDER REDUCTION 

Today, variety of systems appear from diverse areas such as microgrid, mechanical, 

hydraulic, thermal, space exploration, space communication, global earth observation, 

robotics, refineries, transport, security, aerospace, manufacturing, molecular systems, Micro-

Electro-Mechanical systems (MEMS), electrical power, environmental, urban traffic 

network, control systems including cruise control etc. Most of these systems, in turn 

comprises of many subsystems, sharing some common characteristics such as structure, 

behavior and interconnectivity. These interconnected subsystems themselves being complex, 

helps to escalate the size and complexity of the overall system, thereby posing difficulty in 

understanding the system behavior appropriately. 

  The outlook of this discussion is depicted in fig. 1. At the outset, a complex physical 

system or data of large dimension is considered. It's a known fact, that the behavioral study of 

any system, starts with building up of a mathematical model based on theoretical 

considerations. Accordingly, a set of ordinary differential equations (ODE) or partial 

differential equations (PDE) are derived by applying physical laws, signifying a 

mathematical model. In the latter case, the equations are further discretized to obtain large set 

of ODE's. The mathematical models obtained are quite simpler and understandable than the 

system it represents. In other words, a good model is a judicious tradeoff between realism and 

simplicity. Currently, as most of the systems existing in nature/industry turns out to be higher 

http://en.wikipedia.org/wiki/Cruise_control�
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order models, also called as "original model", the direct simulation or design is neither 

computationally desirable nor physically convenient to be handled. Additionally, such 

models pose difficulties during its analysis, control, synthesis and identification. Thus, an 

increasing need exists for a systematic procedure to derive a lower order model, which may 

be called as "reduced model" from the original model. The subsequent phase consists of 

reducing the number of ODE's (order of the system) appropriately, using model reduction 

technique, to form a reduced model. But, the derived reduced model should provide a good 

approximation for the original model, by preserving some vital features viz. stability, 

realizibility, good time/frequency response matching. It is therefore desirable that the original 

model can be replaced by the reduced model enabling easier to analyze, design, simulate, 

control and cost effective for on line implementation apart from ensuring the following 

qualities 

(a) Simplify the understanding of the system. 

(b) Reduction of computational and hardware complexity. 

(c) Reduction of storage requirements. 

(d) Ease of efficient controller design and implementation.  

(e) Cost effectiveness.  

Realizing a common goal of reducing higher order models has become the focus of the 

following areas. 

(a) Industrial applications viz structural mechanics, thermal modelling, diffusion, 

acoustics, MEMS etc [1].  

(b) Parameter optimization of large scale dynamical systems [2]. 

(c) Transient electromagnetic phenomena, Power system, Electrical machines [3]. 

(d) Transient response sensitivity of large dimensional systems [4].  

(e) VLSI design[5] 

(f) Predicting the dynamic errors of large dimensional models using reduced order model 

[6]. 

(g) Design of suboptimal control by simplified models [7, 8]. 

(h) Design of control system [9-12].  

(i) Adaptive control [13, 14].  

(j) Design of reduced order estimators [15]. 

(k) Intelligent controller [10, 16]. 

(l) Aircraft maneuver- control dynamics [17]. 
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(m) Controlling thin film growth in a High Pressure Chemical Vapor Deposition reactor 

[18]. 

(n) Circuit simulation [19]. 

(o) A flat-plate solar collector system [20]. 
(p) IC modelling [21].  

Large no. of
Ordinary Differential

Equations

Large no. of 
Partial Differential

Equations

Modelling

Model
 Reduction

Discretisation

Modelling

Reduced no. of ODEs
(Reduced Model)

Simulation

Design

Control

Large 
Data set

Model
 Reduction

Physcial System 
(Original Model)

 
Fig. 1 The outlook 

 

1.2 MODEL REDUCTION PROBLEM FORMULATION 

There are enormous of MOR techniques capable of approximating original model in the 

form of differential or difference equations, resulting in lower order reduced model. 

Unfortunately, none of these techniques can be termed as universal best in an overall sense, 

since the system characteristics strongly influence the reliability, performance and adequacy 

of the reduced system. Although most of the available techniques succeed in preserving the 

adequate response characteristics and unsolved problems need to be addressed. Hence, an 

unsurpassed reduction technique has been sought, instead of the available model reduction 

technique, which will approximate the original model to a reduced model that will take a 

closer look efficiently. On the other hand, it is observed that in spite of having high 

computing power and advanced algorithms, there is a need for model order reduction to 

cope up with even more complex problems. This is due to the fact that, increase in 

computational power seems to go hand-in-hand with more complicated systems in this fast 

changing real world.  

 The present research work is devoted to the category of time-invariant systems 

operating in continuous time, discrete time domain and the examples therein. Time invariant 

models are very useful, especially if the time scale of the model is small compared to the life 

span of the modeled process. Further, many nonlinear models can be approximated by a 

linear one. The work presented here is confined to linear systems only. During modelling 
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and analysis process of such linear systems, the mathematical model takes either of the 

following forms/representations  

(a) State space form or Time domain representation. 

(b) Transfer function form or Frequency domain representation. 

The reduction method accept the original model in state space form are called as time domain 

reduction methods; in transfer function form are called as frequency domain reduction 

methods. As mentioned earlier/above, the main objective is to obtain a reduced order model 

from a given original higher order model. Nevertheless, the reduced model should pose all the 

imperative features of the given higher order model.  

1.2.1Time Domain Representation 

In this approach, mathematical model of the original system is represented by a set of first 

order differential equations called state space representation of the system.  

Assume an nth order linear time invariant system be expressed in state space form as  

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= + 
= 



                                                    (1.1) 

 ( ) 1x t n= × state vector,     ( ) 1u t p= × input vector, 

          ( ) 1y t m= × output vector, A n n= × system matrix, 

          B n p= × input matrix and C m n= × output matrix 

The problem of order reduction is to derive a reduced model of order ' r ' (r < n) described by

    
( ) ( ) ( )
( ) ( )

r r r r

r r r

x t A x t B u t
y t C x t

= + 
= 



                                                                    (1.2) 

where ( ) 1rx t r= × state vector,    ( ) 1ry t m= × output vector, 

          rA r r= × system matrix,     rB r p= × input matrix and 

          rC m r= × output matrix  

such that the reduced rth order model retains the salient characteristics of the original nth  

order system for a given set of inputs and yr(t) is a close approximation of original output 

y(t). 

1.2.2 Frequency Domain Representation 

Here, a generalized nth order SISO system is reprsented in the form of transfer function given 

by 

( ) 1
2

1 2

( ) ...
 ;

( ) ...

m
n o m

n n
n o n

N s a a s a sG s m n
D s b b s b s b s

+ + +
= = <

+ + + +
                                                   (1.3) 
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The equation (1.3) is to be approximated to reduced order model of order ' r ' represented by 

( ) 1
2

1 2

...( ) ;
( ) ...

p
o pr

r r
r o r

d d s d sN sG s p r n
D s e e s e s e s

+ + +
= = ≤ <

+ + + +
                                    (1.4) 

It is required to determine the unknown coefficients  e0,e1, ... er  and d0,d1 ... dp such that 

Gr(s) is a close approximation of Gn(s) and the response of Gn(s) and Gr(s) matches as 

closely as possible and behave identically for a given set of inputs. 

The equivalent of (1.3) in terms of MIMO system is given by 

[ ]( ) ( ) ( )n n nN s G s D s=                               (1.5) 

where the nth order transfer function matrix [Gn(s)] is given by  

[ ] 1( ) ( )nG s C sI A B−= −                                                                                                 (1.6) 

                              
1

1 1

1

...
...

n
o n

n
o n

A A s A s
b b s b s

−
−+ + +

=
+ + +

                                  (1.7) 

and a reduced transfer function matrix is given by  
1

1 1

1

...
[ ( )]

...

r
o r

r
o r

D D s D sR s
e e s e s

−
−+ + +

=
+ + +

                                  (1.8) 

where An-1 and Dr-1 are matrices of appropriate dimension and bn and er are scalar constants. A reduced 

order model is sought in the form (1.8) such that the responses of system described by (1.7) and (1.8) 

closely match in some sense as much as possible for a given set of inputs. 

 

1.3 OVERVIEW OF ORDER REDUCTION METHODS 

Till date, various authors have introduced numerous MOR techniques and are broadly 

categorized as frequency domain and time domain reduction methods. A substantial coverage 

of these reduction techniques have been given in [3, 22-33] respectively. However, the 

reduced models obtained from different reduction techniques are unique in itself and the 

quality is ultimately judged by the way it is utilized.  

1.3.1 Frequency Domain Order Reduction Methods 

The order reduction methods falling under frequency domain are further classified into three 

groups namely [34-36]  

(i)    Classical Reduction Methods (CRM)  

(ii)   Stability Preservation Methods (SPM) 

(iii)  Stability Criterion Methods (SCM) 
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 The CRM are algebraic in nature and based on the classical theories of mathematical 

approximation or mathematical concepts such as continued fraction expansion and truncation, 

Pade approximation etc. [16, 37-44]. In this group of reduction methods, situations may arise 

where stable original model results in unstable reduced model and vice versa. Further, non-

minimum phase behavior, low accuracy in the mid and high frequency ranges are other 

disadvantages of this group. 

 The Stability Preservation Methods (SPM), retains the stability of the original model. 

However, the main disadvantage of SPM is lack of flexibility, especially when the reduced 

model doesn't provide good approximation. Methods such as Routh approximation, reduction 

using Mihailov criterion, Hurwitz polynomial approximation, differentiation method, Routh-

Hurwitz array method, stability equation, dominant pole retention, factor division method etc 

fall under the category of SPM [35, 45-52].  

 SCM form the third group which includes mixed methods. These mixed methods are 

derived by the combination of CRM and SPM. SPM is used to find the reduced denominator 

while numerator terms are obtained by using one of the CRM. Resultantly this ensures less 

error during low frequency range but the stability of SCM is achieved at the price of loss of 

accuracy [35, 53-58].  

 Some notable order reduction methods under frequency domain are discussed as 

follows 

1.3.1.1 Continued Fraction Expansion Method 

This method was introduced by Chen and Shieh [59] for approximating linear time invariant 

SISO system. Later, the same technique was extended to MIMO systems [38, 60], mixed 

with other methods and modified in [40, 42, 53, 61, 62].The main highlight of this method is 

that, the reduced model obtained  possess the vital features of the original model and avoids 

the need of calculating the eigen values or eigen vectors. Apart from this, steady state 

response matching, computational simplicity, fitting of time moments are some added 

features. Bosley et. al.[37] have shown that this method is a special case of Pade 

approximation, which is equivalent to the time moment matching method for asymptotically 

stable systems. However, this method, doesn't yield stable system even though the original 

model is stable and lacks in approximating the transient response. Later, Chuang [39] 

proposed a modified continued fraction expansion method which ensures the stability of the 

reduced order model and improves the initial transient response by combining expansions 

about s = 0 and  s = ∞ alternately. Poor response under steady state is one of the 
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disadvantages of this method. This method came to be known as modified Cauer continued 

fraction method. Khatwani et. al.[42] shown that this method is similar to the mixed complete 

Pade approximation about s  = 0 and s = ∞. However this modified method still lacks in 

providing guaranteed stability and this is overcome by Lucas [63].The Cauer third form was 

later on proposed by Shieh and Goldman [64] combining the advantages of Cauer first and 

Cauer second form. 

 Further, it can be deduced that the first Cauer form gives good matching in the 

transient region only, Cauer second form provides excellent matching in steady state region 

and finally the third grasps the advantage of the former and the latter. CFE has also been 

useful in reducing the original model represented in discrete form [65, 66]. Likewise various 

authors have proposed modifications and extensions for better performance. Davidson and 

Lucas [40] showed system reduction using CFE about a general point. CFE was combined 

with stability equation by Chen et. al.[53]; Routh Hurwitz array by Pal [67]; Mihailov 

criterion and evolutionary technique based on PSO by Panda et. al.[68]; ESA by Parmar et. 

al.[69], Parmar and Bhandari [70]; dominant pole retention by Parmar et. al.[71] and so on. 

1.3.1.2 Time Moment Matching Method 

Paynter and Takahashi [72] initially introduced time moment matching method of model 

reduction, based on finding a initial set of time moments of original model and matching 

them with those for the reduced model. Initial time-moments are matched to obtain good 

approximations at low frequencies whereas initial Markov parameters matching ensures good 

approximation at higher frequencies. The remaining time/Markov parameters are not of 

considerable interest. However, it is observed that stability and the response matching during 

the transient period cannot be guaranteed and may not be up to the expected level. 

Additionally, the problem of computations creeps in as the number of constants to be 

evaluated in the reduced model are very large. In this regard, a new computer oriented 

algorithm for evaluating the time moments was proposed by Lal and Mitra [73] to overcome 

these disadvantages. 

 The reduction of SISO systems are implemented by Gibilaro and Lees [44] and  

Zakian [74]. The same method was further applied on multivariable systems by Shih and 

Shieh [75] successfully by matching the coefficients of power series expansion about s = 0 

and s =∞, where s is the Laplace transform variable. Later, the moment matching technique 

was shown to be applicable to discrete systems by Hwang and Shih [76], multirate linear 

systems by Williamson et al. [77]. Shamash [78] used the moments concept in composite 
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systems. Parthasarathy and Singh [79] proposed minimal realization of symmetric transfer 

function matrices using time moments and Markov parameters. Jonckheere and Ma [80], 

Krajewski et al. [81] proposed reduction methods by using impulse response energies, 

matching both Markov parameters and time moments. Later, a novel method to find out the 

reduced order model in comparatively lesser time period with good accuracy was intorduced 

by Salimbahrami and Lohmann [82]. This technique uses Krylov subspace method based on 

moment matching. Another feature of this method is that, it can be extended to multivariable 

cases also by using Arnoldi or Lanczos algorithm [83, 84]. Recently Parmar [85] suggested a 

reduction method, where the concept of shifted time moment proportional's matched in least-

square sense is applicable to LTI systems. 

1.3.1.3 Pade Approximation Method 

One of the powerful reduction method and computationally simpler in the category of 

frequency domain is Pade approximation method. Pade is the name of the person who 

introduced this method to the world in 1892 [86] and hence the name Pade approximation. 

The main features of this method are, good approximation during the steady state period 

between the responses of the original and reduced models; fitting of time moments. Hence, 

many researchers have used this method to devise new stable reduction methods [28, 63, 87-

91]. Basically, the method is based on matching the 2r-1 coefficients of the power series 

expansion, about s = 0 of the original model with that of the reduced model. But, the 

limitation is that reduced model may turn out to be unstable for a given stable original model 

and vice versa. This is due to the approximation of non-dominant poles. Shamash [91, 92] 

showed another way of approximating the original model by retaining the dominant poles of 

the original model in the reduced model thus preserving stability. Similarly, there are 

suggestions from several authors about devising mixed methods for reduction like Bistritz 

and Shaked [93], Pal [56, 57, 67], Shamash [94], Singh [95], Wan [35] and so on. A new way 

of formulating a multipoint Pade approximant of a linear system transfer function was 

suggested by Lucas [96] where, the expansion points can be a mixture of one or more real, 

complex and purely imaginary points. The work was modified to generalize the method by 

extending to expansion points at infinity. Further, Aguirre [97, 98] introduced a new method 

of model order reduction named Least square Pade method. Prasad et.al [99-101] 

successfully applied pade approximation for reducing multivariable systems. The reduced 

model so obtained is in the time domain irrespective of the domain of the original model. The 

same reduction method is also carried out on discrete systems by Hwang and Chow [102], 
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Prasad and Devi [103] etc. Recently it is shown that mixed reduction methods are also 

possible using spectrum analysis by Parmar et al. [104, 105], differentiation and Pole 

clustering method by Vishwakarma and Prasad [106-108]. 

1.3.1.4 Routh Approximation Method 

In 1975 Hutton and Friedland [45] devised a new reduction technique from a given higher 

order transfer function. To begin with, reciprocal transformation is applied on the given 

transfer function and then the denominator/numerator polynomials of the reduced model is 

obtained from the α-β table. The denominator coefficients of the reciprocated original 

transfer function are used in preparing the α table. Likewise, the β table is formed using the 

numerator coefficients in which β coefficients are determined by using the α table and 

successive elements of β table [22]. The resultant model is reciprocated back again to get the 

final reduced model. This method also turns out to be computer oriented, simple algebraic 

calculations, guaranteed stability along with good steady state matching. However, the task of 

reciprocating the transfer function twice; during the initial step and at the last step seems to 

be an disadvantage. Krishnamurthy and Seshadri [49] suggested regrouping of entries of α 

table thus avoiding reciprocal transformation, similar to direct Routh approximation method 

(DRAM). This method sometimes proves to be fruitless due to the approximation of non 

dominant poles of the original model [109].  

 Shamash [58] used this method for generating stable biased reduced order models. 

Further, it is shown that unstable models can also be simplified by modifying the said method 

according to Rao et al. [110]. Original models represented in z- domain can also be reduced 

as suggested by Therapos [111], Choo [112], Hwang and Hsieh [113] proved via bilinear 

transformation. Reduced models was obtained for interval systems by Bandyopadhyay et al. 

[114, 115], Sastry et. al.[116]; interval systems using mixed methods by Dolgin and Zeheb 

[117]. Hwang et al.[118] proposed multi-frequency Routh approximation for stable reduced 

models. Singh et. al.[119] derived a reduced SISO model by combining with improved Pade 

approximants- a computer based approach. Later, Panda et al. [120] optimized the reduced 

model by combining with PSO. 

1.3.1.5 Routh Hurwitz Array Method 

This simple method of deriving a lower order model was proposed by Krishnamurthy and 

Seshadri [48, 49]. This method is based on Routh Hurwitz stability criterion, where the 

numerator and denominator coefficients of the derived reduced transfer function is obtained 

from the numerator and denominator coefficients of the original transfer function. According 
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to the Routh stability array, for a given Nth  degree numerator polynomial, a polynomial of (n-

1)th order can be constructed using the second and third rows of Routh array. Likewise, a 

polynomial of (n-2)th order can be constructed from the third and fourth row of the array 

respectively. The denominator coefficients of the reduced transfer function is obtained in a 

similar way. The main attraction of this method is that the reduced transfer function is stable 

for a given stable original transfer function. Singh [121] commented that a high degree of 

nonuniqueness exists in this method. Mixed methods using factor division method was 

proposed by Singh et al.[122], Pade approximation by Pal [57], balanced realizations and 

Pade approximation by Singh et al.[123], spectrum analysis by Parmar et. al.[124], error 

minimization method by Mittal et. al.[125], continued fraction expansion by Pal [67] etc. 

1.3.1.6 Stability Equation Method 

This method is one of the popular reduction method commonly used in frequency domain. 

Chen et. al.[50] initially proposed the concept of stability equations, by separating the 

numerator and denominator polynomials of the original model into their even and odd parts. 

The factors with large of zi and pi magnitudes are discarded successively in the reduction 

process. The roots which are closer to the origin after factorization, are considered in the 

formation of reduced model. The important feature of this particular method is that, stability 

of the original model is protected while deriving the reduced model. Moreover, the first two 

time moments are also retained, thus providing good matching during steady state response 

for a given step, impulse and ramp type of inputs. Lucas [126] simplified the method further, 

by suggesting the tabular approach for reducing the degree of the stability equations. With 

this, the problem of calculating the roots/factors became a procedure of the past. As time 

passed, various authors proposed different mixed reduction methods by combining this 

method with continued fraction expansion [53], Pade approximation [56, 127], complex 

curve fitting [128] etc. Prasad et al. [129] used this method in combination with Pade 

approximation, Mittal et al. [130] with error minimization for reducing MIMO systems. 

Therapos applied this method for deriving reduced models in discrete domain [131, 132] and 

from fast oscillating systems [133]. Later, Lucas [89] showed that this method is a two stage 

multipoint Pade approximation. Tsay and Han [134] concluded that the method can also be 

applied for analysis and design of models with several adjustable and variable parameters. In 

recent times, Parmar et al. [135] introduced a composite method by combining with Genetic 

Algorithm for devising the reduced model.  
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1.3.1.7 Differentiation Method 

Gutman et al.[47] differentiated the reciprocated numerator and denominator polynomials of 

original model represented in transfer function form, for n times till the desired order of the 

reduced model is reached. Then the reduced model is normalized and reciprocated back to 

give the final lower order model. Gutman et al.[47] concluded that the method is simple, 

applicable to unstable  non-minimum phase models. Apart from these advantages, the method 

suffers from a drawback of steady state matching. As this reduction method is based on 

differentiating the polynomials, hence the name.  Later Lucas [136] showed that this method 

[47] is equal to forming successive ratios of multipoint Taylor polynomial approximations of 

numerator, denominator polynomials respectively. It is concluded that the method is 

computationally easy because of the Routh array structure being formulated. Prasad et. al. 

[137] extended the benefits of this method to MIMO systems also. Several authors have 

formed mixed methods by combining this method with continued fraction expansion by Pal 

and Prasad [138, 139], Pade approximations by Lepschy and Viaro [140], factor division 

method by Vishwakarma and Prasad [141]. using PSO by Tomar et. al.[142]. 

1.3.1.8 Truncation Method 

Gustafson [143] showed that a new simple reduction method can be developed by gradually 

neglecting the terms of higher order, present in the numerator and denominator polynomial of 

the original transfer function. Later, Shamash [144] applied on MIMO models successfully 

and concluded that this method is also comparable. Prasad et al. [145] suggested a 

modification of the truncation method. The main advantage is that, the stability is guaranteed 

provided that, the poles of the higher order transfer function is well damped [146]. 

1.3.1.9 Dominant Pole Retention Method 

This method is one among the stable reduction methods introduced by Davison [51], which 

always results in stable reduced model (provided original model is stable) while retaining the 

dominant behavior of the original model. Always, poles located far from origin are discarded, 

since they have lesser effect on the response of the model. The disadvantage of this method 

lies, when difficulty arises while deciding the most dominant pole among the multiple poles 

present near the imaginary axis. Moreover, when the original model is represented in state 

space form, the reduction process becomes computationally tedious. This is due to 

computation of eigen values and vectors of large dimensional space matrix, linear 

transformations and matrix diagonalization. 
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 Till date, several authors have reaped the benefits of this method and have suggested 

their own mixed reduction methods both in continuous and discrete domain. The denominator 

polynomial is formed by retaining the dominant poles of the original model while, numerator 

polynomial is found out by some other technique. Shamash [92], Mukherjee and Mishra 

[147], Sinha and Pal [148], Pal [149], Parmar et al.[71, 150, 151] are some authors to name a 

few. Shieh and Wei [152], Lamba et al. [153], Prasad et al.[101] extended the application of 

this method to MIMO models.  

1.3.1.10 Factor Division Method 

This method of order reduction was introduced by Lucas [52]. This method is simple to 

compute, helps in retaining dominant modes and preserve initial time moments in the reduced 

model by itself. Thus, eliminating the need to calculate moments beforehand and solve Pade 

equations [92, 154]. Further, this method was extended to find biased reduced order models 

by Lucas [155]. This was possible by retaining the initial time moments and Markov 

parameters. Later, modification to the existing factor division method [52, 155] was 

suggested by Lucas [156]. The modified factor division method guaranteed stable reduced 

models (provided original model is stable). Also, this method has the ability to formulate the 

reduced models of varying orders by simply varying a single parameter in the denominator of 

the modified transfer function. Several authors have obtained reduced models for 

SISO/MIMO system, in combination with Mihailov criterion by Prasad et al. In recent times, 

composite reduction method was suggested by Parmar et al.[157] using ESA and Singh et 

al.[122] using Routh-Hurwitz array, Vishwakarma et al. using differentiation method [141] 

and pole clustering [158]. 

1.3.1.11 Mihailov Stability Criterion 

Wan [35] suggested a new method of order reduction by using Mihailov criterion and Pade 

approximation method. The main feature of this method is stability preservation in the 

reduced model, simple to compute, spared from determining the initial Markov parameters 

and time moments. This method in combination with factor division method was shown to be 

applicable by Prasad et al.[159] for SISO systems. Vishwakarma and Prasad [160]  used the 

combination of this method with GA whereas Panda et al. [68] mixed with PSO to generate 

the stable reduced order model recently.  

1.3.1.12 Error Minimization Technique 

The name itself indicates the concept involved in this type of order reduction method. The 

reduced model is formulated by reducing the difference occurring between the responses of 
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the original and the reduced model. There are variety of error criteria to choose namely ISE, 

ITSE, IAE, ITAE. But, ISE is the one most commonly used, for reducing the error between 

the responses of the original and reduced model. These responses may be either in time 

domain or frequency domain. Consequently, error minimization can be carried out by 

(a) Time response matching 

(b) Frequency response matching 

(a)  Time response matching 

 Some authors like Mukherjee and Mishra [147, 161], Hwang [162], Puri and Lan 

[90], Lamba et al. [153], Howitt and Luus [163] have reduced the ISE between the step 

(impulse) responses of the original and reduced model for devising the reduced models. 

Hwang [162] made use of Routh approximation; matrix formula to calculate ISE from the 

coefficients of the error transfer function. Matrix formula was used to avoid actual evaluation 

of the time response. Mukherjee and Mishra reduced a linear SISO system [147] having 

distinct real poles using dominant pole retention and then extended to MIMO system [161]. 

Puri and Lan [90] introduced a another stable reduction method based on reducing impulse 

response error using stability and Pade approximation approach. Lamba et al. [153] 

combined retention of dominant pole/Routh approximation along with reducing step response 

error. Reduction of SISO models were carried out by Howitt and Luus [163], where zeros and 

poles are considered to be free parameters and are chosen to minimize ISE. Later, Singh et 

al.[164] introduced a computer aided order reduction approach using ISE minimization 

technique. Mittal et al. [125, 130, 165] proposed several order reduction methods, where the 

denominator are reduced using Routh-Hurwitz array, stability equation, dominant pole  

retention etc. The numerator polynomial are obtained by error minimization of step response.  

 Hwang et al. [166] suggested a new reduction method for discrete systems which 

employs methods belonging to both time and frequency domain. Later, higher order discrete 

models are also reduced by Puri and Lim [167]. Recently, Mukherjee et al.[168] introduced a 

new concept of using secant method for minimizing the ISE between the transient parts of the 

original and reduced models subjected to step/impulse input. Parmar et al. [135, 150, 169] 

proposed several methods for reducing a given higher order SISO/MIMO model using error 

minimization approach and GA, PSO, stability equation.  

(b)  Frequency response matching 

 As the name says it all, this technique is based on matching the frequency response of 

the original and the reduced model. Levy [170] minimized an error function spread over a 
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interested frequency range in Least square sense. Reduction method based on complex curve 

fitting was also suggested by Rao and Lamba[171]. Discrete system reduction via frequency 

response matching was proposed by Sahani and Nagar [172], Nagar and Singh [173]. The 

denominator is obtained based on the concept of power decomposition by preserving the 

poles of large dispersion and numerator polynomial are found out by frequency response 

matching technique. 

1.3.1.13 Least Square Method  

Initially, Shoji et al. [174] used least square matching of time moments of the original model 

to obtain a reduced lower order model. This method was introduced to overcome the 

drawback of Pade approximation and provide the user an extra degree of freedom in the 

design of the simplified model. Modification to this method was proposed by Lucas and Beat 

[175]. These methods [174] [175] are referred as partial least squares method since only the 

denominator polynomials are formed in least square sense. Aguirre [97] extended it to 

include the use of Markov parameters; the method came to be known as full least squares 

method since both the numerator and denominator polynomials are formed in a single 

generalized inverse operation. Lalonde [176] generated reduced models in discrete domain 

using Markov parameters only. Lucas et al. [177] suggested a stability preserving least 

squares Pade method for discrete system and modified [178] it after few years. 

 Aguirre [179] proposed a method, retaining the exact poles and zeros in a reduced 

model. The remaining coefficients of the reduced model are calculated, by means of  least 

squares matching of Pade coefficients and Markov parameters. Later, an extended least 

squares model reduction was proposed by Aguirre [180]. The convenience provided here is 

that, numerator polynomial of the reduced model are formed by means of least square method 

while the denominator polynomial is previously determined by any suitable method. In the 

recent times, Parmar [85] simplified a given higher order model using least squares moment 

matching about 'a' and generalized least squares method about 'a', where the value of 'a' may 

be arithmetic, geometric or harmonic mean. 

1.3.2 Time Domain Order Reduction Methods 

Time domain order reduction methods, deals with original/reduced model represented in state 

space form; require information regarding the eigen values and eigen vectors or overall 

characteristic of the original model. Consequently, this will help in ensuring close matching 

between the time responses of the original and reduced model. The below section briefly 

describes some vital time domain order reduction methods. 
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1.3.2.1 Aggregation Method 

This method being the most general projective reduction method, was brought to light by 

Aoki [181] from his pioneering work. It is shown that, the simplified model can be derived 

by aggregating the original state vector into a lower dimensional vector. Further, the internal 

structural properties (dominant eigen values) of the original model are considered for 

retaining in the reduced model, so as to match the responses of both original and reduced 

model. This further results in analysis and deriving state feedback suboptimal controllers 

[181]. Later, Hickin and Sinha [182] compared this method with singular perturbation 

method [183] and showed that aggregation is a generalization of projection method.  

1.3.2.2 Singular Perturbation Method 

Kokotovic et al. [184] proposed this method as a tool to reduce the original model having 

two-scale property i.e. the eigen values can be divided into two modes viz. 'fast' and 'slow' 

modes. Initially the order of the original model is reduced by neglecting fast phenomena. 

Later on, approximation is improved by re-introducing their effect as a boundary layer. 

Fernando and Nicholson [185] concluded that this method is compatible with the balanced 

realization method. Further, the same author [186] tried singular perturbation reduction 

method for both continuous and discrete time models. Resultantly, the technique guaranteed 

the preservation of dominant eigen values of the original model but unable to handle large 

scale models. This is due to the non availability of slow and fast subsystems. 

1.3.2.3 Modal Analysis 

This approach is based on retaining the dominant eigen values of the original model initially 

and then computing the remaining parameters of the reduced model. The parameters 

computed are such that, the response of the original and reduced model closely matches as 

much as possible for a given set of inputs. Authors like Aoki [181], Davison [51], Marshall 

[187] proposed reduction methods belongs to this category. Aoki [181] method was based on 

aggregation having a more general approach. The Davidson method assumes that all the 

eigen values are distinct neglecting large eigen values and the input is of unit step. Hickin 

[188] showed that these three methods [51, 181, 187] can be regarded as special cases of 

aggregation method proposed by Aoki [181]. Gruca [189] introduced delay in the output 

vector of aggregated model thereby, leading to the improvement equality of simplified 

aggregated model of the system without increasing the order of the state differential 

equations.  
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1.3.2.4 Optimal Order Reduction 

This category of reduction technique, generates a simplified model of specific order, so as to 

closely match the response of the original and reduced model in an optimum way. However 

there is no limitation on the location of eigen values. The reduced model is obtained based on 

minimizing some performance criterion such as ISE. An orthogonal projection based 

geometric approach is employed to obtain the reduced model by Anderson [190]. Another 

method of optimal order reduction was proposed by Sinha and Bereznai [191] using the 

pattern search method [192]. Wilson and Mishra [193] studied the approximations for step 

and impulse responses in his optimal order reduction method.  Further, reduced models are 

devised in frequency domain using optimal order reduction methods by Langholz and Bistritz 

[194]. The advantage of this method is that it requires lesser computational time provided the 

gradient of the objective function is evaluated. Pseudo inverse of a matrix is used for least 

square fit by Sinha and Pille [195]. 

1.3.2.5 Minimal Realization Algorithm 

This algorithm is utilized to obtain state variable model from a system represented in 

frequency domain. Several authors have used various forms of Hankel matrices for minimal 

realization. A linear state model was realized in its minimal form by an algorithm suggested 

by Ho and Kalman [196]. The same author also obtained a non-minimal realization in the 

form of a block companion matrix. Another method was introduced by Tether [197], which 

provides good approximation in transient response by retaining few initial Markov 

parameters of the original model. An internally balanced minimal realization of a stable SISO 

model was computed in the method suggested by Therapos [198]. An efficient algorithm for 

minimal order realization of a given system model was suggested by Rozsa and Sinha [199]. 

Later, Shamash [200] in his proposed method for multivariable  system, showed that the 

reduced model obtained by minimal realization approach is equivalent to the one derived by 

time moments and continued fraction methods. Parthasarathy and Singh disclosed minimal 

realization of symmetric transfer function matrix by utilizing moments and Markov 

parameters in [79]. Minimal realization linear time varying systems was proposed by Lal and 

Singh [201]. A new method based on generation of successive partial realization of large 

dimensional system (MIMO) represented in state space is given by Hickin and Sinha [202]. A 

comparative study in terms of computational efficiency and suitability for practical 

implementation, for obtaining minimal-order realizations of MIMO systems was also carried 

out.  
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1.3.2.6 Balanced Realization Approach 

The concept of balancing is first encountered in the work of Mullis and Roberts [203]. Later, 

Moore [204] used appropriate similarity transformations to introduce this reduction technique 

in systems and control literature. Basically, this approach is based on simultaneous 

diagonalization of observability grammian (Wo) and controllability grammian (Wc) matrices. 

Lyapunov equations are solved to obtain Wo and Wc either in semi positive definite or semi-

definite matrix form. Further, these matrices are used to define the measures of controllability 

and observability. In this reduction procedure, the insignificant states are directly eliminated 

to form a lower dimensional model. These insignificant states are least controllable and least 

observable. Hence, they have less/no influence on the impulse response of the system and can 

be discarded.   

 Several authors have used this method to realize reduced models viz. Yang et al.[205] 

for unstable systems, Sandberg and Rontzer [206] for linear time varying systems, Nagar and 

Singh proposed a two step procedure for discrete system [173]; algorithmic approach for 

system decomposition [207] and controller reduction using balanced realization [208] , 

Meyer [209] applied to fractional balanced reduction, Perev and Shafai [210] for reduction of 

singular systems, Kenny and Hewer [211] for balancing unstable minimal MIMO systems, 

Therapos for unstable nonminimal linear systems [212] and discrete SISO system [213]. 

Pernebo and Silverman [214] extended this method to obtain lower dimensional models. Chin 

[215] contributed by reducing unstable higher order models using low frequency 

approximation balancing technique. Lastman and Sinha [216] compared with the aggregation 

method. Al-Saggaf and Franklin [217] uses a new frequency weighing technique for 

approximating large scale discrete and continuous time models. A reduction technique in 

frequency domain, based on the impulse response grammian applicable for linear continuous 

models was introduced by Agathoklis and Sreeram [218]. Gugercin and Antoulas [219] 

surveyed different model order reduction by balanced truncation. 

1.3.2.7 Hankel Norm Approximation  

Today, Hankel norm reductions are mostly sought order reduction technique in literature of 

system theory. This method constitutes a beautiful theory associated with the names of Arov-

Adamjan-Krein [220]. Glover [221] introduced state space ideas and characterized all stable 

approximations of a linear time-variant stable system. Kung and Lin [222] extended for 

MIMO systems. A program for solving the L2 reduced-order problem while the denominator 

is fixed was contributed by Krajewski et al. [223] while, Kemin [224] proposed a new 
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approximating technique by using frequency-weighted balanced realization. Gao et al.[225] 

examined the problem of H∞ model reduction for discrete time-delay systems while Wang et 

al.[226] obtained reduced model for fast subsystems. Ferrante et al. [227]proposed an 

algorithm using the bounds on the eigenvalues of the Jacobian of the associated transition 

function. This is an alternate to the one proposed recently [223]. HNA method belongs to the 

class absolute (or additive) error model order reduction methods and relies on a guarantee 

error bound. 

1.4 OBJECTIVE OF THE THESIS 

 The initial objective of this thesis is to recapitulate most of the model reduction methods 

available in the research literature, succeeded by the purpose to promote some new model 

order reduction methods applicable to SISO/MIMO linear time-invariant continuous time 

systems. The task mentioned involves the use of both conventional and evolutionary 

strategies. The systems considered may be  represented in frequency domain (preferable) or 

time domain. In addition, the superiority of the new reduction methods can be ensured, by 

comparing with other well known methods, besides checking its validity for LTI discrete 

systems. Moreover, reduction methods are also proposed for reducing the order of digital 

filters. Lastly, to solve the problem of designing a suitable PID controller for the higher 

ordered model, utilizing the newly developed method. Both, direct and indirect approaches of 

controller design, are planned to check its applicability for the original model. 

1.5 ORGANISATION OF THE THESIS 

The entire research work is structured through seven chapters in this thesis, with the 

introduction to model order reduction at the outset. Subsequently followed by importance and 

applications of model order reduction, statement of model order reduction problem in both 

time and frequency domain for continuous time systems (SISO and MIMO). Besides brief 

overview about the developments that have taken place in the area of model order reduction, 

various existing reduction methods and their associated qualities/drawbacks are also 

reflected. 

 The second chapter encompasses the reduction of higher order LTI continuous 

systems using the developed composite reduction methods. Stability Equation (SE), Eigen 

Spectrum Analysis (ESA), Dominant Pole (DP), Modified Pole Clustering (MPC) are 

employed to propose composite methods which are comparable to available reduced systems. 

Further, the application of these methods are extended to include linear multivariable 
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systems. Comparison of reaction curves (unit step response) and their associated performance 

indices justifies the proposed methods. 

 The proposed reduction of higher ordered LTI discrete models are dealt in chapter 

three. The composite methods proposed in the previous chapter are applied on systems 

having higher order and discrete in nature. The qualities of the proposed methods are judged 

by comparing the results obtained and is seen to be comparable. Later, MIMO systems are 

also reduced to lower order successfully to confirm the worthiness of the proposed methods. 

 Evolutionary schemes including the recently introduced Big Bang Big Crunch 

optimization technique are adopted in the chapter four to float new reduction methods. Mixed 

methods using BBBC in combination with Routh Approximation (RA) and Stability Equation 

(SE) method yields good results. In addition, BBBC plays important role in optimizing the 

linear shift point 'a' for order reduction in least square sense. Further, systems of higher order 

represented in both time and frequency domain are considered for reduction using BBBC and 

the same is extended for discrete systems as well. The proposed methods are applied on 

SISO/MIMO systems and is justified by considering the available higher order systems.  

 In chapter five, approximation of filters having higher dimensions are reduced and 

implemented on TMS320C5402 processor. This chapter provides a concise view of 

TMS320C5402 - a fixed point DSP and its application to model reduction. Simulations are 

carried out in MATLAB, Code Composer Studio (CCS) and input/output waveforms 

obtained are compared. In addition, the frequency response and FFT power spectrum of the 

input/ output signals are also plotted for clarity.  

  The design of controller for the original higher order models are dealt in chapter six 

to ensure the suitability of developed model order reduction methods. Further, fractional 

order PID controller are shown to perform better than the integer order PID controller. Both 

direct and indirect approach of controller design are employed for controller design. 

Illustrative examples available in the literature are solved to substantiate the methods. The 

reaction curves of closed loop transfer functions, obtained from the original and reduced 

plant, are compared with the reaction curves of the reference model. This ensures the 

suitability of the method. It is seen that the responses are in close agreement with that of the 

reference model. 

 The conclusions of the thesis, suggestions for future scope on the research work are 

mentioned in the last chapter. 
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CHAPTER - 2 
 

REDUCTION OF CONTINUOUS TIME SYSTEMS USING 

NEW COMPOSITE METHODS 
 

In the previous chapter, various frequency and time domain reduction methods were 

discussed. The stability preservation in the reduced system was noticed as a major issue in 

some reduction techniques [94]. Apart from this, lower accuracy in the mid, high frequency 

ranges and exhibiting non minimum phase characteristics are additional. The popular Routh 

algorithm cannot be used for simplification in the continued fraction expansion or matching of 

time-moments, if the order of the given original system is very high. Pade approximation 

method yields good steady-state approximation to the system response. However, the only 

drawback is that unstable reduced model may arise from a stable full system [228]. As a 

remedy for this situation, several variants were suggested and one such suggestion is that a 

new order reduction method based on least square fitting of time moments of the given higher 

order system with singularity was proposed [174]. The highlight of this technique is that it 

facilitates an extra degree of freedom in the design of the stable reduced system. Later, 

Aguirre [180] suggested a procedure where, the poles are retained in a reduced model while 

the numerator terms are computed by means of least squares matching. 

 In this chapter, new composite methods are proposed for reduction of continuous LTI 

systems represented in frequency domain. The advantages of ESA [157, 229], stability 

equation [50], dominant pole [51, 165] and modified pole clustering techniques [230] are 

reaped in combination with least squares method [174, 180]. The mixed methods presented 

are devoid of instability issues (except for unstable system) and provides good accuracy while 

retaining most of the key characteristics of the original system. One common philosophy used 

in the suggested methods is that, the denominator polynomial is computed initially, using the 

stability preserving methods. Further, the numerator polynomial is found out using the least 

squares method. Numerical examples of LTI continuous system from the available literature 

are solved using the suggested technique and the results obtained are found to be comparable. 

 

2.1 PROBLEM STATEMENT 

Consider the nth order original system represented in the transfer function form as 
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The objective is to compute rth (r < n) order reduced system Gr(s) from (2.1) in the form of  
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 am, bn, dp and er's are the scalar constants.  

 

2.2 LEAST SQUARES MOMENT MATCHING METHOD OF ORDER REDUCTION 

Consider the nth order transfer function of the form (2.1), the time moment proportional's ci 

are obtained by expanding Gn(s) about s = 0 as 
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Similarly the Markov parameters, mj are obtained by expanding Gn(s) about s = ∞ as 
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The  rth order reduced system derived by Pade approximation method [174] has a denominator 

polynomial ( )rD s  

 
0

;( 1( ) )
r

i
i rr

i

e s eD s
=

= =∑ , given by the solution of the linear set 

              

1 1 0 0

1 2 1 1

2 1 2 2 1 1

r r

r r

r r r r r

c c c e c
c c c e c

c c c e c

−

+

− − − −

−     
     −     =
     
     −     





     



                                                                        (2.5) 

where ei coefficients constitute the denominator of the reduced system. If the solution of (2.5) 

do not yield a stable denominator, then another equation is added to this set [174], such that 

the system assumes a fitting of the next time moment from the original system.    

              

1 1 00

1 2 11

2 1 2 2 1

12 2 1 1

r r

r r

r r r r

rr r r r

c c c ce
c c c ce

c c c c
ec c c c

−

+

− − −

−− +

−    
     −    
    =
     −    
     −    





    





                                                                      (2.6) 

In matrix vector form, (2.6) will be [H][e] = [c]. 
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The denominator vector estimate 'e' can be obtained by solving in the least squares sense by 

means of generalized inverse method given by 

           ( ) 1
 T Te H H H c

−
=                                                                                                        (2.7) 

If the reduced denominator is not stable, then H and c in (2.7) are extended by another row. 

The elements of the next row will be the next time moments from the original system in a 

least squares match. 

2.3 GENERALIZED LEAST SQUARES METHOD OF ORDER REDUCTION 

According to [231] the generalized least-squares method is illustrated below.Let the rth order 

reduced system of Gr(s) be in the form of (2.2) obtained by retaining (r + t) time moments 

and (r - t) Markov parameters  (0 ≤ t ≤ r). The ek , dk  coefficients are derived by solving the 

following set of equations  

 

0 0 0

1 1 0 0 1

1 1 0 0 1

1 1 0

1 2 0 1

1 0 1

0
0

0

r r r

r r

r r

r t r t

d e c
d e c e c

d e c e c

e c e c
e c e c

e c e c

− − −

−

− +

− + −

= 
= + 

= + + 
= + + 
= + +


= + + 

  







  



                                                           (2.8) 

and 

 

1 1

2 1 1 2

1 1 2 2

r

r r

t t t r t

d m

d m e m

d m e m e m

−

− −

+ + −

= 
= + 


= + + + 

  



                                                           (2.9) 

where, ci and mj are the time moment proportionals and Markov parameters of the system. By 

substituting (2.9) in (2.8) and discarding the dj (j=t, t+1, ..., r-1)in (2.9) results  

 

1 2 0

2 3 1 11

1 2 1 0 1

2 3 0 1 2

3 4 0 1 2 3

1 0 1 1 1

0r t r t t

r t r t t t

r r

r r

r r

t t r t r

c c c e
c c c c ee

c c c c m
c c c m m
c c c m m m

c c c m m me

+ − + −

+ − + − −

− −

− −

− −

− − − −

   
   
   
   
   
    =
   −
   

− −   
   
   

− −      

   

  

       

   

   

  

       

  r t−

 
 
 
 
 
 
 
 
 
 
 
  

                               (2.10) 
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In matrix vector form, (2.10) will be [H][e] =[m]. 

If the denominator vector estimate 'e' due to (2.10) is unstable, then the next Markov 

parameter m(r-t+1) can be assumed to be matched by extending (2.9) with  

 1 1 2 2 1 1t t t r td m e m e m− + + − += + +…+                                                                               (2.11) 

This results in additional row to the H matrix and the m vector in (2.10) given by 

1 2 0 1 2[ ]t t r tc c c m m m− − −− − −  and 1[ ]r tm − +− . Similar to (2.6) using least-squares 

the value of 'e' is calculated from this non-square matrix by 

 ( ) 1
 T Te H H H m

−
=                                                                                                (2.12) 

Further, the H matrix and the m vector can be extended by assuming a matching of the next 

Markov parameter if the denominator value is unstable. Later, (2.12) is solved to obtain 

another value of' 'e'.  

2.3.1 Eigen Spectrum Analysis and Least Squares Method 

The composite reduction method presented here, is a combination of ESA [157] and least 

squares method [174]. The ESA is used for finding new poles, whereas least squares method 

is used for deriving the numerator polynomials. The concept of ESA is based on the 

following criteria [157]. 

1) Centroid (arithmetic mean of real parts of the poles) of both original and reduced system 

must be equal. 

2) Stiffness (ratio of real part of nearest to farthest pole) of both original and reduced system 

must be equal. 

3) The steady state response of both original and reduced system must match when subjected 

to step input. 

The procedure for obtaining the reduced system using the proposed method is as follows. 

Step 1:Considering Dn(s) of Gn(s) in (2.1) and rearranging in the form of  

 1 2( ) ( )( )...( )n nD s s p s p s p= + + +                                                                              (2.13) 

 such that  -p1 < -p2  < ... < -pn are the poles of the higher order original system Gn(s). 

Step 2:Locate the poles (Eigen Spectrum Points (ESP)) of Gn(s) in (2.13) on the negative 

real axis of the ‘s’ plane as shown in Fig. 2.1. 

Step 3:Calculate the pole centroid σp given by 

 1

|Re |
n

j
j

p

p
absolute value of real part of poles

number of poles n
σ == =

∑∑                                  (2.14)                                                                    
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Step 4: Determine the system stiffness k using the formula 

 1
1 2

|Re | ; | Re | | Re | ... | Re |
| Re | n

n

pk p p p
p

= < < <                                                               (2.15) 

Step 5:Computation of Rep'r, M. 

Let σ`p , k` be the pole centroid and system stiffness of Gr(s). If  p pσ` σ=  and k`= k, then 

             
'
1
'

Re
Re

'

r

| p |k = = k
| p |

and 

'

1

|Re |
`

r

j
j

p p

p

r
σ σ== =

∑
                                                              (2.16)

 

 Rep`j are the real parts of poles of Gr(s). σp  can rewritten as 

 
' ' ' ' '
1 2 3 1Re Re Re ... Re Rer r

p
p p p p p

r
σ −+ + + + +

=  

       

' ' ' ' '
1 1 1 1

' ''
11

Re (Re ) (Re 2 ) ... (Re ( 2) ) Re

Re ( 2) ( 2 ... ( 2) Re )Re

r

r

p p M p M p r M p
r

p r M M r M pp

+ + + + + + + − +
=

= + − + + + + − +
 

 
` `

1Re Re ,
( 1)

rp pM
r
−

=
−

              

replacing Re p`1 =  k Re p`r , 

 ' '( 1) Re Rer rM r p k p− = −                                                                                         (2.17)  

We have,  

            pN rσ=                                                                                                                    (2.18)  

             ( 2 ... ( 2) )QM M M r M= + + + −  

Substituting the values of  σp, QM , (2.18) will be 

             ' 'Re ( 1) Rer rN k p r p QM= − + +                                                                              (2.19) 

(2.17) and (2.19) in matrix form is given by 

 
'( 1) 1 Re

(1 ) (1 ) 0
rk r Q Np

k r M
− +     

=    − −    
                                                                          (2.20) 

The value of Repr`, M is obtained by solving (2.20). 

Step 6:Calculate ESP from Repr`, M and form the denominator polynomial Dr(s) of Gr(s). Let 

these denominator coefficients be ‘ei’, i = 0,1, 2 , ... ∞. 

Step 7:Determination of numerator polynomial Nr(s) of Gr(s). 
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Compute the time moment proportional’s ‘ci’ by expanding Gn(s) about s=0 using (2.3). 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 8:The ratio of the numerator ‘Nr(s)’ and denominator polynomial ‘Dr(s)’ gives the 

reduced order stable LTI continuous system Gr(s). 

 

2.3.1.1 Illustrative examples 

The proposed method is applied on six numerical examples successfully chosen from the 

available literature. One example is solved in detail while the results obtained are mentioned 

directly for the other remaining examples. The performance of the reduced system is 

measured in terms of an error indices such as Integral Square Error (ISE) ‘I’ and Impulse 

Response Energy (IRE) ‘J’. A smaller value of ISE is expected which is a measure of the 

closeness between Gn(s) and Gr(s). The ISE [119] and IRE [45, 94] values are calculated by 

using the formula  

              2

0

[ ( ) ( )]rI y t y t dt
∞

= −∫                                                                                             (2.21)  

             2

0

( )J g t dt
∞

= ∫                                                                                                           (2.22) 

 y(t), yr(t) are the unit step responses of Gn(s) and Gr(s) respectively. 

g(t) is the impulse response of the system under consideration.  

Example 2.1: Consider a sixth order original system taken from Jamshidi [22] 

           3 2

3 2

4

4

5

6 5

( )( )
( )

2 16     20     8    1 
2 33.6 155.94    209.46   1  02.42    1  8.3    1 

3

n
n

n

N sG s
D s

s s s s s
s s s s s s

=

+ + +
=

+ + + ++ +
+ +

  

A second order reduced system is to be synthesized and the steps followed are as below. 

Step 1:The Dn(s) of Gn(s) is rearranged in the form of (2.13) as 

 ( ) ( 0.1) ( 0.2)( 0.5)( 1)( 5)( 10)nD s s s s s s s= + + + + + +  

and the ESP/poles are Rep1 = -0.1, Rep2 = -0.2, Rep3 = -0.5, Rep4 = -1, Rep5 = -5, Rep6 = -10. 

These ESP's are located on the negative real axis of the ‘s’ plane as shown in Fig. 2.1. 



Reduction of Continuous Time Systems using New Composite Methods 
                                                                                                                                                                                                                                                                    

27 
 

jω

σ
Rep5

Rep6 Rep4

Rep3

Rep2

Rep1

M M M M M

 
Fig. 2.1 ESP of original system Gn(s) of example 2.1 

Step 2:Pole centroid is calculated using (2.14) and is given by 

             
| 0.1 | | 0.2 | | 0.5 | | 1 | | 5 | | 10 | 2.8

6pσ − + − + − + − + − + −
= =   

Step 3: System stiffness using (2.15) will be 

             '0.1 0.01
10

k k= = =  

Step 4:Substituting the values of k, r = 2 (order of the reduced system), N =(σp * r) = (2.8*2) 

=5.6  in (2.20)  

           

'

'

' '
1 2

0.01(2 1) 0 5.6Re
(1 0.01) (1 2) 0

5.5446Re
5.4891

0.055446, 5.5446

r

r

p
M

p
or

M

or p p

−     
=    − −    

   
=   
  

=− =−

  

Step 5:Then, the denominator polynomial of Gr(s) will be  

            

' '
1 2

2

( ) ( Re )( Re )
( 0.055446)( 5.5446)

5.6 0.3074

rD s s p s p
s s

s s

= + +
= + +

= + +
                                                                                        

Step 6:The first five time moment proportional’s ci are obtained using (2.2) and is given in 

Table 2.1 

Table 2.1 Time moment proportionals obtained for example 2.1 
i ci 
0 1.0000 
1 -10.300 
2 106.070 
3 -1079.615 
4 10897.7631 
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Step 7:The numerator coefficients of Gr(s) are computed by substituting coefficients of 

‘Dr(s)’ and ci’s in (2.8) resulting in 

             ( ) 2.433 0.3072rN s s= +  
The reduced second order system ‘Gr(s)’ after matching the steady state errors will be 

            2

( ) 2.4333 0.3074( )
( ) 5.6 0.3074

r
r

r

N s sG s
D s s s

+
= =

+ +
      

The unit step responses of the original and reduced system are shown in Fig. 2.2. The table 

2.2 compares the results for example 2.1 in terms of 'I' and 'J' with other available methods 

and are comparable. The 'J' value of original system 'Jorg' is 88.73. 

Table 2.2 Comparison of reduced order systems for example 2.1 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

2.4333 0.3074
5.6 0.3074

s
s s

+
+ +

 0.3896 87.881 

Jamshidi [22] 2

13.06 s + 1
8.75 18 s + 1s +

 1.230 68.695 

Mahmoud and Singh [23] 2

6.5 s + 5
 4 s + 5s +

 4.329 824.52 

Singh et. al. [232] 2

1.987s + 154.044
1.987 33.58s + 154.0s +

 2.882 223.18 

 

 
Fig. 2.2 Comparison of step responses for example 2.1 

Example 2.2: Consider a fourth order system taken from Mittal et. al.[165] and Mukherjee 

and Mishra [147] 
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3 2

4 3 2
   7     24    24( )

  1  0    35     50     24n
s s sG s

s s s s
+ + +

=
+ + + +

 

The ESP of Dn(s) are found out to be Rep1 = -1, Rep2 = -2, Rep3 = -3, Rep4 = -4 and all the 

poles lie on the negative real axis of 's' plane. A second order reduced system is desired and 

the steps described in 2.3.1 are followed to obtain 

           2

( ) 0.677 4( )
( ) 5 4

r
r

r

N s sG s
D s s s

+
= =

+ +
  

Table 2.3 Comparison of reduced order systems for example 2.2 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.677 4
5 4

s
s s

+
+ +

 0.265 x 10-3  27.96 

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4  

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7 

Phillip and Pal [233] 2

0.9315s + 1.609
2.756s + 1.609s +

 1.719 x 10-3 29.65 

Krishnamurthy and Seshadri 

[49] 
2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8 

Lucas [52] 2

0.833 s + 2
3 s + 2s +

 0.328 x 10-3 48.4 

Mittal et. al.[165] 2

0.799 s + 2
3 s + 2s +

 0.267 x 10-3 47.2 

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0  

Mukherjee and Mishra [147] 2

0.800000033 s + 2
3 s + 2s +

 0.237 x 10-3 47.2 

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1 

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6  

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1  

Safonov et. al.[236] 2

0.7431 s + 1.057
1.879 s + 1.084s +

 0.622 x 10-3 47.3 



Reduction of Continuous Time Systems using New Composite Methods 
                                                                                                                                                                                                                                                                    

30 
 

   
Fig. 2.3  Comparison of step responses for example 2.2 

The unit step responses of the original and reduced system are compared in Fig. 2.3. The 

results are compared with other methods in terms of 'I' and 'J' in Table 2.3. 

Example 2.3: Consider a sixth order system taken from Mukherjee et. al. [168] and Philip 

and Pal [233] 

            
35 4

6 5

2

4 3 6 2 6
14069     69140    1  40100    1  000000( )

2 222 14541    248420   1  .454
101

10    2.22 10     1  0000
4

00n
s s s s sG s
s s s s s

+ + +
=

+ + + × + × +
+ +
+

 

A second order reduced system is desired and the steps described in 2.3.1 are followed to 

obtain 

           2

( ) 0.03796 0.7913596( )
( ) 1.6843 0.7913596

r
r

r

N s sG s
D s s s

+
= =

+ +
  

 
Fig. 2.4  Comparison of step responses for example 2.3 
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The original, second order reduced system are subjected to a unit step input and their 

responses obtained are as shown in Fig. 2.4. The results are compared with other methods in 

terms of 'I' and 'J' in Table 2.4. (Jorg is 19.89). 

 

Table 2.4 Comparison of reduced order systems for example 2.3 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.03796 0.7913596
1.6843 0.7913596

s
s s

+
+ +

 1.139  14.11 

Mukherjee et. al. [168] 

(impulse response matching) 

2 4 4

3 2 4 4

9.71 +1.256 10 s + 9.189 10
252.8 +1.67 10 s + 9.189 10

s
s s

× ×
+ × ×

 2.9423 569.38 

Mukherjee et. al. [168] 

(step response matching) 

2

3 2

46.63 +271.48s + 509.6
55.35 +692.5s + 509.6

s
s s+

 1.9196 13107.1 

Lee et. al.[237] 

(impulse response matching) 

2

3 2

13.09 +922s + 4855
205.9 +10681s + 4855

s
s s+

 2.6861 1028.7 

Lee et. al.[237] 

(step response matching) 

2

3 2

34.09 +797.3s + 683.5
41.982 +1504s + 683.5

s
s s+  

1.995 7078.7 

Shamash [91] 

(step response matching) 

2

3 2

53.67 +152.8s + 196.8
103.1 +314s + 196.8

s
s s+

 1.895 17289 

Shamash [91] 

(second order) 
2

37.55 s + 77.25
100.8s + 77.25s +

 1.8245 8468.8 

Philip and Pal [233] 
2

3 2

43.64 +310.8s + 490.8
56.55 +736.8s + 490.8

s
s s+

 1.9158 11467.1 

 

Example 2.4: An eighth order system investigated by Shamash [92] is considered for 

obtaining a second order reduced system. The original system is given by 

 
2

8

7 6

7

5 4

6 5 4 3 2

3

( )( )
( )

where,

( ) 18 222088 185760 40320 

( ) 36 546

+514 +5982 36380 +12

4536 22449 67284 118124 109584 4032

2664 +

0

n
n

n

n

n

N sG s
D s

N s s s s s s s s

D s s s s s s s s s

=

= + +

= + + + + +

+

+ + +

Applying the proposed method, Gn(s) is reduced to second order and is given by 

 2

( ) 24.22 8( )
( ) 9 8

r
r

r

N s sG s
D s s s

+
= =

+ +
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 Table 2.5 Comparison of reduced order systems for example 2.4 

Order Reduction Method 
Reduced System 

Gr(s) 
ISE 
‘I’ 

IRE 
‘J’ 

Proposed Method 2

24.22 8
9 8

s
s s

+
+ +

 0.050  4228.5 

Chen et. al.[238] 2

0.72058 s + 0.3669
0.02768s + 0.3669s +

 7.2067 161.23 

Gutmen et. al.[47]  
8 8

7 2 8 8

5.35 10  s + 8.129 10
8.505 10 5.523 10 s + 8.129 10s

× ×
× + × ×

 1.376 365.05 

Hutton and Friedland [45] 2

1.99 s + 0.4318
1.174s + 0.4318s +

 1.917 124.08 

Krishnamurthy and Seshadri 
[49] 

5

2

1.557 10  s + 40320
65520 75600s + 40320s

×
+  

1.6532 180.05 

Lucas [52] 2

6.779 s + 2
3s + 2s +

 0.27973 629.72 

Mittal et. al.[165] 2

7.12 s + 2
3s + 2s +

 0.27205 693.82 

Mukherjee et. al.[168] 2

11.39 s +4.436
4.212s + 4.436s +

 0.0578 1394.2 

Pal [57] 
5

2

1.518 10  s +40320
65520 75600s + 40320s

×
+

 1.6509 171.97 

Prasad and Pal [234] 2

17.99 s +500
13.25s + 500s +

 1.4585 2279.1 

Safonov et. al. [236] 2

16.96 s +5.011
7.028s + 5.011s +

 0.0173 2581.1 

Shamash [92] 2

6.779 s +2
3s + 2s +

 0.27923 629.72 

 
Fig. 2.5  Comparison of step responses for example 2.4 
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The results obtained by proposed method is compared with other methods in terms of 'I' and 

'J', are according to Table 2.5. The value of Jorg is 2509.2. The unit step responses of Gn(s) 

and Gr(s) for example 2.4 are depicted in Fig. 2.5. 

2.3.1.2 Extension to Multivariable Systems 

The proposed method is extended to MIMO systems which is a direct application of the 

SISO method on the elements of the transfer function matrix of MIMO system as discussed 

below. 

 Let the nth order MIMO system having 'p' inputs and 'm' outputs be described as 

 

11 12 13 1

21 22 23 2

1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1[ ( )]

( )
( ) ( ) ( ) ( )

p

p
n

n

m m m mp

A s A s A s A s
A s A s A s A s

G s
D s

A s A s A s A s

 
 
 =
 
 
 





    



 

or, [Gn(s)] = [gij(s)] ,  i=1,2,…m; j=1,2,…p                                                                        (2.23) 

 is a m × p transfer matrix. 

The general form of gij(s) of [Gn(s)] in (2.23) will be 

 2 1
0 1 2 1

2 1
0 1 2 1

( )
( )

( )

...
...

ij
ij

n
n

n
n n

n n

A s
g s

D s

A A s A s A s
b b s b s b s b s

−
−
−

−

=

+ + + +
=

+ + + + +
                                                              (2.24) 

where Ai , bi  (i = 0,1,2…n-1) are scalar constants. 

The objective is to find the rth (r<n) order reduced system [R(s)] having ‘p’ inputs and ‘m’ 

outputs described by 

            

11 12 13 1

21 22 23 2

1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1[ ( )]

( )
( ) ( ) ( ) ( )

p

p

r

m m m mp

B s B s B s B s
B s B s B s B s

R s
D s

B s B s B s B s

 
 
 =
 
 
 





    



                                        (2.25) 

or,  [R(s)] = [rij(s)], i=1,2,…m; j=1,2,…p                   

is a m x p transfer matrix. 

The general form of rij(s) of [R(s)] in (2.25) is taken as 

              2 1
0 1 2 1

2 1
0 1 2 1

( )
( )

( )

...
...

ij
ij

r
r

r
r r

r r

B s
r s

D s

B B s B s B s
d d s d s d s d s

−
−
−

−

=

+ + + +
=

+ + + + +

                                                           (2.26) 
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where Bi , di   (i = 0,1,2…r-1) are scalar constants. 

The proposed method is applied to (2.26) by following the steps described in 2.3.1. Initially 

the denominator Dn(s) is reduced using ESA, followed by the determination of the 

coefficients of the numerator polynomials of each element of [R(s)] by least squares method. 

The method proposed is verified by solving two numerical examples as given below. 

 

2.3.1.2.1 Illustrative Examples 

Example 2.5: Consider an aircraft gas turbine [239] represented by linearised perturbation 

model (A,B,C) in state space form  

           

1.268 0.04528 1.498 951.5 0.0 0.0
1.002 1.957 8.52 1240 0.0 0.0

;
0.0 0.0 10 0.0 10.0 0.0
0.0 0.0 0.0 100 0.0 100.0

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0

A B

C

− −   
   −   = =
   −
   −   
 

=  
 

 

where the state variables are  

x1 = y1= high pressure spool speed 

x2 = y2= low pressure spool speed 

x3 = jet pipe nozzle area 

x4 = fuel flow rate 

y1 and y2 are the outputs, the control inputs are: 

u1= demanded jet pipe nozzle area 

u2= demanded fuel flow rate 

The plant transfer function according to (2.23)  

              11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n
A s A s

G s
A s A sD s
 

=  
 

 

             

2
11

2
12

2
21

2
22

( ) 14.96 1521.432 2543.2

( ) 95150 1132094.7 1805947.0

( ) 85.2 8642.688 12268.8

( ) 124000 1492588 2525880.0

A s s s

A s s s

A s s s

A s s s

= + +

= + +

= + +

= + +

  

    4 3 2

and

( ) +113.225  +1357.275 +3502.75s+2525 nD s s s s=
 

It is desired to reduce [Gn(s)] to a second order system represented in the form 
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           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B s B s
R s

B s B sD s
 

=  
 

 

The ESP/poles of D(s) are Rep1 = -0.13384, Rep2 = -0.1.8866, Rep3 = -10, Rep4 = -100. By 

following the description in 2.3.1.2.1, 

          2( ) 56.16 41.73 rD s s s= + +   

and   11( ) 23.84 42.03B s s= + , 4 4
12 ( ) 1.78 10 2.985 10B s s= × + ×   

        21( ) 136.6 202.8B s s= + , 4
22

4( ) 2.339 10 4.179 10B s s= × + ×  

Table 2.6   Comparison of ISE and IRE for example 2.5 

rij 
(i,j=1,2) 

Proposed Method Prasad [240] 
ISE 
‘I’ 

IRE 
‘J’ 

ISE 
‘I’ 

IRE 
‘J’ 

r11 0.112 57.43 0.1660 38.497 
r12 0.008 3.1744 x108 0.0068 3.18 x107 
r21 0.020 18.68 x104 0.0478 1216.3 
r22 0.007 5.48 x108 0.0119 1.26 x108 

 
Fig. 2.6 (a)-(d) Comparison of step responses for example 2.5 

 The results obtained by the proposed method is compared with other method in terms 

of 'I' and 'J' for each element of transfer function matrix are tabulated in Table 2.6. The value 

Jorg of each element of plant transfer function matrix are 64.526, 3.054 X 107,1735.7 and 5.7 

X 107 respectively. The unit step responses of [Gn(s)] and [R(s)] are depicted in Fig. 2.6 (a)-

(d). 
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Example 2.6: Consider a sixth-order two input two output system [33] described by the 

transfer function matrix 

           

11 12

21 22

2( 5) ( 4)
( 1)( 10) ( 2)( 5)

[ ( )]
( 10) ( 6)

( 1)( 20) ( 2)( 3)

( ) ( )1
( ) ( )( )n

A A
A

s s
s s

A

s s
G s

s s
s s s s

s s
s sD s

 
 

+ +
+ + + +

=
+ +

+ + +

 
 
  

 
 


=


+  

The denominator Dn(s) is given by 

          6 5 4 3 2

( ) ( 1)( 2)( 3)( 5)( 10)( 20)

41 571 3491 10060 13100 6000
nD s s s s s s s

s s s s s s

= + + + + + +

= + ++ + + +

  and 

           

5 4 3 2
11

5 4 3 2
12

5 4 3 2
21

5 4 3 2
22

( ) 2 70 762 3610 7700 6000

( ) 38 459 2182 4160 2400

( ) 30 331 1650 3700 3000

( ) 42 601 3660 9100 6000

A

A

A

A

s s s s s s

s s s s s s

s s s s s s

s s s s s s

= +

= +

= +

= + +

+ + + +

+ + + +

+ +

+

+

+

+

+

  

By following the steps described in 2.3.1.2.1, 

           2( ) 13.66 8.457 rD s s s= + +   
and      11( ) 6.0498 8.457B s s= + , 12 ( ) 3.94 3.4B s s= +   
           21( ) 2.813 4.3B s s= + , 22 ( ) 8.02 8.457B s s= +  
 

 
Fig. 2.7 (a)-(d) Comparison of step responses for example 2.6 
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Table 2.7 Comparison of reduced order systems for example 2.6 

Order Reduction Method 
ISE ‘I’  for rij ( i, j = 1,2) 

r11 r12 r21 r22 

Proposed Method 0.0227 0.00691 0.0024 0.066 

Parmar et. al.[71] 0.0525 0.0020 0.0168 0.033 

Nahid and Prasad [139] 0.0658 0.1645 0.0066 0.157 

Parmar et. al.[135] 0.0145 0.00874 0.00254 0.0157 

Prasad and Pal [241]
 

0.1365 0.00245 0.04029 0.0679 

Safanov and Chiang [242]
 

0.5906 0.03713 0.00733 1.0661 

Prasad et. al. [137] 0.0307 0.00026 0.26197 0.0217 

Parmar et. al. [157] 0.0266 0.0069 0.0061 0.0683 

Parmar et. al. [70] 0.0449 0.0344 0.0088 0.1577 

 

Table 2.7 shows a comparison with the available existing reduced second order models in 

terms of ISE values. Further, the step responses are compared in Fig. 2.7(a)-(d). It is seen that 

the proposed method is comparable with other existing methods. 

2.3.2 Stability Equation and Least Squares Method 

In the proposed method, a stability criteria based reduction technique named SE method [50]  

is used in combination with least squares method [174, 175, 231], to obtain the reduced order  

system. The denominator and numerator polynomial of the higher order continuous time 

system are reduced using SE and least squares method.The results obtained are comparable as 

shown in the examples solved below. The same method is also extended for multivariable 

systems successfully. The method comprise of the following steps. 

Step 1:Let an nth order original system be Gn(s) as in (2.1). Consider Dn(s) and bifurcate into 

odd and even parts to obtain the following stability equations. 

            ( ) ( ) ( )n e oD s D s D s= +                                                                                              (2.27) 

              

1

2

2 2
11

1

2 2
12

1

( ) (1 / )

( ) (1 / )

k

e i
i

k

o i
i

D s a s z

D s a s s p

=

=

=





+

= + 


∏

∏
                                                                     (2.28) 
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where k1 and k2 are the integer part of n/2 and  (n-1)/2 respectively and z1
2 < p1

2 < z2
2 < p2

2 ...  

Step 2:Discard the factors with larger magnitudes of zi ,pi, and find the reduced stability 

equations of the desired order ‘r’ become [56]  

            

1

2

2 2
11

1

2 2
12

1

( ) (1 / )

( ) (1 / )

r

re i
i

r

ro i
i

D s a s z

D s a s s p

=

=

=


+

= +








∏

∏
                                                                   (2.29)

 
where r1 and r2  are the integer parts of r/2 and (r-1)/2. 

Step 3:Thus the reduced denominator is constructed as  

               
1
( ) ( ) ( )r re roD s D s D s= +   

Step 4:Now, apply the reciprocal transformation to D(s) resulting in 

            
1( ) ( ) ( ) ( )n

e oD s s D D s D s
s

= = +     

Step 5:Reducing the denominator further  

           
2
( ) ( ) ( )r re roD s D s D s= +    

Step 6:Compute Dr(s) for various combinations of r1 and r2  

           1 2

2
11 12 13 1 1

( ) ( ). ( )

 

r r r

r
r

D s D s D s

e e s e s e s+

=

= + + +…+
  

with ((r = r1 + r2) < n), where 𝐷𝑟2(𝑠) is reciprocal of 𝐷�𝑟2(𝑠) 

The reduced denominator Dr(s) is taken as  

            2
1 2

( ) ( ) ( )

...
r re ro

r
o

D s D s D s

e e s e s s

= +

= + + + +
                                                                              (2.30) 

Step 7:Determine numerator polynomial Nr(s) of Gr(s): 

Compute the time moment proportional’s ‘ci’ by expanding G(s) about s=0 using (2.2). 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 8:The ratio of the numerator ‘Nr(s)’ and denominator polynomial ‘Dr(s)’ gives the 

reduced order stable LTI continuous system Gr(s). 

2.3.2.1 Illustrative examples 

 Numerical examples from the available literature, are chosen for applying the 

proposed reduction method and the results are compared with other methods. The 

comparison is done in terms of ISE, IRE values calculated using (2.21) and (2.22) 
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respectively. The first example is solved in detail while the transfer function of the reduced 

systems are mentioned directly for the other examples. 

Example 2.7: Consider a fourth order system taken from Mittal et. al.[165] and Mukherjee 

and Mishra [147] 

            
3 2

4 3 2
( )    7     24    24( )
( )   1  0    35     50     24

n

n

N s s s sG s
D s s s s s

+ + +
=

+ + + +
 

A second order reduced system is desired. 

Step 1:The denominator polynomial of Gn(s) is bifurcated into odd and even terms as 

2 4

2 2

( ) 24 35

( ) 24 1 1
0.6858 34

( ) (

.

)

1

)

7

(n e o

e

e

D s s s

s sD s

D s D s D s

= + +

 

=

 
= + + 



+

 
  

 

           
2

3( ) 50 10 50 1
5o
sD s s s s

 
= + = + 

 
  

Step 2:Neglecting the factors with larger magnitudes of zi
2 and pi

2  successively in De(s) and 

Do(s) the reduced second order equation will be 

              
1
( ) ( ) ( )r re roD s D s D s= +   

            
2

( ) 24 1
0.6858re

sD s
 

= + 
 

  

            ( ) 50roD s s= ( ) 50roD s s=   

            
1

2
2( ) 24(1 ) 50 1.48 0.699

0.6858r
sD s s s s= + + = + +   

Step 3:For r1=0, r2=2; the reciprocal transformed 𝐷�(𝑠) is expressed into the following 

stability equations 

               


4 3 2

4 2

3

( ) 24 50 35 10 1

( ) ( )

( ) 24 35 1

( ) 50 10

oe

e

o

D s s s s s

D s D s

D s s s

D s s s

= + + + +

= +

= + +

= +









  

Step 4:Neglecting the factors with larger magnitudes of zi
2 and pi

2 in 𝐷𝑒�(𝑠) and 𝐷𝑜�(𝑠) the 

reduced second order equation will be 

              2

2

( ) ( ) ( )

34.3 10 1

r re roD s D s D s

s s

= +

= + +

  

  

   
2

2( ) 10 34.3rD s s s= + +  
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Step 5:Thus the three second order reduced denominators which are properly normalized are 

given as  

             

1 2

2
1 2

2
1 2

2
1 2

( ) ( ). ( )

( ) 1.428 0.6858 ; 2, 0

( ) 10 34.3 ; 0, 2

( ) 3.913 1.6464 ; 1, 1

r r r

r

r

r

D s D s D s

D s s s r r

D s s s r r

D s s s r r

=

= + + = =

= + + = =

= + + = =

  

Step 6:The first five time moment proportional’s ci are obtained using (2.2) and is given in 

Table 2.8 

Table 2.8 Time moment proportionals obtained for example 2.7 
i ci 
0 1.0000 
1 -1.0833 
2 1.0903 
3 -1.0666 
4 1.0417 

 

Step 7:The numerator coefficients of Gr(s) are computed by substituting coefficients of 

‘Dr(s)’ and ci’s in (2.8) resulting in 

               ( ) 0.7008 0.69rN s s= +  
The reduced second order system ‘Gr(s)’ for r1=2, r2= 0, after matching the steady state errors 

will be 

             2

( ) 0.7008 0.69( )
( ) 1.48 0.69

r
r

r

N s sG s
D s s s

+
= =

+ +
        

 
Fig. 2.8  Comparison of step responses for example 2.7 
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Table 2.9 Comparison of reduced order systems for example 2.7 
Order Reduction Method Reduced System Gr(s) ISE ‘I’ IRE ‘J’ 

Proposed Method 2

0.7008 0.69
1.48 0.69

s
s s

+
+ +

 2.63 x 10-3  25.9  

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4 

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7  

Krishnamurthy and Seshadri 
[49] 2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8  

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0 

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1  

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6 

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1 

Safonov and Chang [242] 2

 s + 5.403
8.431 s + 4.513s +

 60.9 x 10-3 34.7 

The unit step responses of the original and reduced system are shown in Fig. 2.8. Table 2.9 

compares the results in terms of 'I' and 'J' with other available methods (Jorg is 29.86) and are 

comparable. 

Example 2.8: Consider a sixth order original system mentioned in example 2.1 in 2.3.1.1. 

Following the steps described in 2.3.2,  the second order reduced system for r1=2, r2= 0 as 

            2

0.07933 0.009916( )
0.1815 0.009916r

sG s
s s

+
=

+ +
 

 
Fig. 2.9  Comparison of step responses for example 2.8 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Time (sec)

A
m

pl
itu

de

6th order- Orginal System
2nd order- Reduced System(By Proposed method)



Reduction of Continuous Time Systems using New Composite Methods 
                                                                                                                                                                                                                                                                    

42 
 

Table 2.10 Comparison of reduced order systems for example 2.8 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.07933 0.009916
0.1815 0.009916

s
s s

+
+ +

 0.00933 87.31 

Jamshidi [22] 2

13.06 s + 1
8.75 18 s + 1s +

 1.230 68.695 

Mahmoud and Singh [23] 2

6.5 s + 5
 4 s + 5s +

 4.329 824.52 

Singh et. al. [232] 2

1.987s + 154.044
1.987 33.58s + 154.044s +

 2.882 223.18 

Singh [243] 2

5.99 s + 1
87.97  15.96 s + 1s +

 0.02 1.4365 

 The unit step responses of the original and reduced system are shown in Fig. 2.9. 

Table 2.10 compares the results in terms of 'I', 'J' with other available methods and are 

comparable, Jorg being 88.73. 

Example 2.9:Revisiting a sixth order system mentioned in example 2.3 in 2.3.1.1, we have            

 
35 4

6 5

2

4 3 6 2 6
14069     69140    1  40100    1  000000( )

2 222 14541    248420   1  .454
101

10    2.22 10     1  0000
4

00n
s s s s sG s
s s s s s

+ + +
=

+ + + × + × +
+ +
+

 

 
Fig. 2.10  Comparison of step responses for example 2.9 
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            2

( ) 0.09563 0.693( )
( ) 1.537 0.693

r
r

r

N s sG s
D s s s

+
= =

+ +
 for r1=2, r2= 0 

Table 2.11 Comparison of reduced order systems for example 2.9 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.09563 0.693
1.537 0.693

s
s s

+
+ +

 1.15  13.718 

Mukherjee et. al. [168] 

(impulse response matching) 

2 4 4

3 2 4 4

9.71 +1.256 10 s + 9.189 10
252.8 +1.67 10 s + 9.189 10

s
s s

× ×
+ × ×

 2.9423 569.38 

Mukherjee et. al. [168] 

(step response matching) 

2

3 2

46.63 +271.48s + 509.6
55.35 +692.5s + 509.6

s
s s+

 1.9196 13107.1 

Lee et. al.[237] 

(impulse response matching) 

2

3 2

13.09 +922s + 4855
205.9 +10681s + 4855

s
s s+

 2.6861 1028.7 

Lee et. al.[237] 

(step response matching) 

2

3 2

34.09 +797.3s + 683.5
41.982 +1504s + 683.5

s
s s+  

1.995 7078.7 

Shamash [91] 

(step response matching) 

2

3 2

53.67 +152.8s + 196.8
103.1 +314s + 196.8

s
s s+

 1.895 17289 

Shamash [91] 

(second order) 
2

37.55 s + 77.25
100.8s + 77.25s +

 1.8245 8468.8 

Philip and Pal [233] 
2

3 2

43.64 +310.8s + 490.8
56.55 +736.8s + 490.8

s
s s+

 1.9158 11467.1 

 

 The original, second order reduced system are subjected to a unit step input and their 

responses obtained are as shown in Fig. 2.10. The goodness/quality of the results are 

compared with other methods (Jorg = 19.89) in terms of 'I' and 'J' in Table 2.11. 

 

Example 2.10: An eighth order system investigated by Shamash [92] is considered for 

obtaining a second order reduced system. The original system is given by 

             
( )( )
( )

n
n

n

N sG s
D s

=   

            
2

8

7 6 5 4

7 6 5

3

4 3 2

( ) 18 222088 185760 40320 

(

+51

) 36 546 4536 22449 67284 118124 109584

4 +5982 36380 +122664

403

+

20
n

n

N s s s s s s s s

D s s s s s s s s s

= + +

= + + + + + + +

+

+
 

Applying the proposed method, Gn(s) is reduced to second order and is given by 
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             2

( ) 61.39 13.248( )
( ) 36.36 13.248

r
r

r

N s sG s
D s s s

+
= =

+ +
for  r1=1, r2= 1 

 
Fig. 2.11  Comparison of step responses for example 2.10 

 

Table 2.12 Comparison of reduced order systems for example 2.10 

Order Reduction 

Method 

Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

61.39 13.248
36.36 13.248

s
s s

+
+ +

 0.3257  22629.0 

Chen et. al.[238] 2

0.72058 s + 0.3669
0.02768s + 0.3669s +

 7.2067 161.23 

Gutmen et. al.[47]  
8 8

7 2 8 8

5.35 10  s + 8.129 10
8.505 10 5.523 10 s + 8.129 10s

× ×
× + × ×

 1.376 365.05 

Hutton and Friedland 

[45] 
2

1.99 s + 0.4318
1.174s + 0.4318s +

 1.917 124.08 

Krishnamurthy and 

Seshadri [49] 

5

2

1.557 10  s + 40320
65520 75600s + 40320s

×
+  

1.6532 180.05 

Lucas [52] 2

6.779 s + 2
3s + 2s +

 0.27973 629.72 

Pal [57] 
5

2

1.518 10  s +40320
65520 75600s + 40320s

×
+

 1.6509 171.97 

Prasad and Pal [234] 2

17.99 s +500
13.25s + 500s +

 1.4585 2279.1 
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 The results obtained by proposed method is compared with other methods in terms of 

'I' and 'J', are according to Table 2.12 (Jorg = 2509.2). The unit step responses of Gn(s) and 

Gr(s) are depicted in Fig. 2.11. 

Example 2.11: An ninth order system investigated by Mukherjee et. al.[168] is considered 

for obtaining a second order reduced system. The original system is given by 

 

             
4 3 2

9 8 7 6 5 4 3 2
35 291 1093 1700

9 66 294 1029 2541 4684 5856
( )

4620 1700n
s s s s

s s s s s s s s
s

s
G + + + +

+ + + + + + + + +
=   

Following the steps described in 2.3.2, for  r1=2, r2= 0 a second and third order reduced 

system will be 

           2
2

( ) 61.39 13.248( )
( ) 36.36 13.248

r
r

r

N s sG s
D s s s

+
= =

+ +
  and 

            
2

3
3 2

( ) 0.3309 0.3252 0.493( )
( ) 1.3 1.348 0.493

r
r

r

N s s sG s
D s s s s

− + +
= =

+ + +
   for  r1=3, r2= 0  respectively        

 
Table 2.13 Comparison of reduced order systems for example 2.11 

Order Reduction 
Method 

Reduced System 
Gr(s) 

ISE 
‘I’ 

IRE 
‘J’ 

Proposed Method 
(second order) 2

61.39 13.248
36.36 13.248

s
s s

+
+ +

  0.0012 x10-

2 
12.784 

Proposed Method 
(third order) 

2

3 2

0.3309 0.3252 0.493
1.3 1.348 0.493

s s
s s s

− + +
+ + +

  2.857x10-2 29.103 

Phillip and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +   
2.87x10-2 29.42 

Mukherjee et. al. [168] 
(impulse response 

matching) 

2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 8.77x10-2 51.01 

Mukherjee et. al. [168] 
(step response 

matching) 

2

3 2

3.49 4.14 2.078
3.828 4.884 2.078

s s
s s s
− − +
+ + +

 72.6 x10-2 364.36 

Chen et. al.[50]  
2

3 2

285 1093 1700
3408 5031 4620 1700

s s
s s s

+ +
+ + +

 29.6 x10-2 25.43 

George and Rein  
Method I [163] 2

  0.29913    0.73912
 0.95727    0.73912

s
s s
− +
+ +

 4.23x10-2 26.03 

George and Rein  
Method II [163] 2

  0.57072    0.98330
1  .42381    0.98330

s
s s
− +
+ +

 1.87x10-2 28.636 
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 The responses of Gn(s) and Gr(s) for a unit step input are shown in Fig. 2.12. Table 

2.13 compares the results obtained by proposed method in terms of 'I' and 'J' with other 

methods (Jorg = 28.23). 

 
Fig. 2.12  Comparison of step responses for example 2.11 

2.3.2.2 Extension to Multivariable systems 

The proposed method can be applied on multivariable system to obtain the reduced system. 

The extension to MIMO systems is a direct application of the SISO method on the elements 

of the transfer function matrix of MIMO system as discussed below. 

 Consider a nth order MIMO system having 'p' inputs and 'm' outputs as described in 

(2.23). The proposed method is applied to (2.24), by initially reducing the denominator 

polynomial using SE method (following the steps described in 2.3.2). The numerator 

coefficients of the numerator polynomials of each element of [R(s)] is then found out using 

least squares method. The method proposed is justified by solving two numerical examples as 

given below. 

2.3.2.2.1 Illustrative Examples 

Example 2.12: Consider an aircraft gas turbine [239] taken from example 2.5 in 2.3.1.2.1 is 

given by 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n
A s A s

G s
A s A sD s
 

=  
 

 

 

2
11

2
12

2
21

( ) 14.96 1521.432 2543.2

( ) 95150 1132094.7 1805947.0

( ) 85.2 8642.688 12268.8 

A s s s

A s s s

A s s s

= + +

= + +

= + +
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2
22

4 3 2

( ) 124000 1492588 2525880.0
and

( ) +113.225  +1357.275 +3502.75s+2525 n

A s s s

D s s s s

= + +

=

 

It is desired to reduce [Gn(s)] to a second order system represented in the form 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B s B s
R s

B s B sD s
 

=  
 

 

Following the steps described in 2.3.2.2, for  r1=2, r2= 0, 

           2( ) 2.58 1.863 rD s s s= + +   

and      11( ) 1.118 1.876B s s= +   12 ( ) 832.4 1332B s s= +   
           21( ) 6.355 9.052B s s= +  22 ( ) 1097 1864B s s= +  

Table 2.14  Comparison of ISE and IRE for example 2.12 

rij 

(i,j=1,2) 

Proposed Method Prasad [240] 

ISE 

‘I’ 

IRE 

‘J’ 

ISE 

‘I’ 

IRE 

‘J’ 

r11 0.00124 40.376 0.0028 46.426 

r12 256.74 21.29 x106 1064.8 3.47 x107 

r21 0.037 1106.9 0.086 1080 

r22 413.87 39.38 x108 27821 6.799 x107 

 

 
Fig. 2.13 (a)-(d)  Comparison of step responses for example 2.12 

The results obtained by proposed method, is compared with other method in terms of 'I' and 

'J', for each element of transfer function matrix are according to Table 2.14. The value Jorg of 
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each element of plant transfer function matrix are 64.526, 3.054 X 107,1735.7 and 5.7 X 107 

respectively. The unit step responses of [Gn(s)] and [R(s)] are depicted in Fig. 2.13 (a)-(d). 

 

Example 2.13: Consider a sixth-order two input two output system [33] described by the 

transfer function matrix and taken in example 2.6 in 2.3.1.2.1 given by 

              11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n

s s
G s

s sD
A

As
A

A


=


 
 

 

           6 5 4 3 2( ) 41 571 3491 10060 13100 6000nD s s s s s s s+ + ++ + +=

  
and 

           

5 4 3 2
11

5 4 3 2
12

5 4 3 2
21

5 4 3 2
22

( ) 2 70 762 3610 7700 6000

( ) 38 459 2182 4160 2400

( ) 30 331 1650 3700 3000

( ) 42 601 3660 9100 6000

A

A

A

A

s s s s s s

s s s s s s

s s s s s s

s s s s s s

= +

= +

= +

= + +

+ + + +

+ + + +

+ +

+

+

+

+

+

  

By following the steps described in 2.3.2.2, 

           2( ) 1.349 0.6181 rD s s s= + +  for r1=2, r2=0. 

and     11( ) 0.79328 0.6181B s s= + , 12 ( ) 0.4288 0.242B s s= +   

          21( ) 0.3814 0.309B s s= + , 22 ( ) 0.9379 0.6181B s s= +  

 

Table 2.15 Comparison of ISE for example 2.13 

Order Reduction Method  
ISE ‘I’  for rij ( i, j = 1,2) 

r11 r12 r21 r22 

Proposed Method 0.0165 0.0095 0.003 0.0194 

Parmar et. al.  [71] 0.0525 0.0020 0.0168 0.033 

Nahid and Prasad [139] 0.0658 0.1645 0.0066 0.157 

Parmar et. al.  [135] 0.0145 0.00874 0.00254 0.0157 

Prasad and Pal [241]
 

0.1365 0.00245 0.04029 0.0679 

Safanov and Chiang [242]
 

0.5906 0.03713 0.00733 1.0661 

Prasad et. al. [137] 0.0307 0.00026 0.26197 0.0217 

Parmar et. al. [157] 0.0266 0.0069 0.0061 0.0683 

Parmar et. al. [70] 0.0449 0.0344 0.0088 0.1577 

Saraswathi [244] 0.084 0.08 0.305 0.346 
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 Table 2.15 shows a comparison with the available existing reduced second order 

models in terms of ISE values. Further, the waveforms are compared in Fig. 2.14(a)-(d). It is 

seen that the proposed method is comparable with other existing methods. 

 
Fig. 2.14 (a)-(d)  Comparison of step responses for example 2.13 

 

2.3.3 Dominant Pole and Least Squares Method 

In the proposed method, the concept of dominant pole retention [51, 147, 161, 165] is 

combined with least squares method [174, 175, 231], to generate the reduced order stable 

system. The process of obtaining the denominator coefficients of the reduced system, 

comprises of retaining the dominant poles of the original system. Whereas, the numerator 

coefficients are found out using the least square sense. Further the same method is also 

extended for multivariable systems. The proposed procedure for deriving the reduced system 

are as follows. 

Step 1:Let an nth order original system be Gn(s) as in (2.1). The denominator polynomial 

Dn(s) is represented in the form  

           1 2( ) ( ) ( ) ... ( )n nD s s p s p s p= + + +                                                                         (2.31) 

 where  -p1 < -p2  < ... < -pn are the poles of the higher order original system Gn(s). 

Step 2:Selection and retention of dominant pole of Gn(s): 

The number of dominant pole to be retained, is directly based on the desired order of the 

reduced system. The poles nearest to the origin are selected and retained to maintain the 

overall behavior of the reduced system, similar to that of the original system. On the other 
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hand, the non-dominant poles being responsible during the transient period are neglected. 

Now, the denominator Dn(s) is reduced to rth order and is given by 

            1
2

1 2

2( ) ( ) ( ) ...

...

( )
r

r r

oe e s e s s
D s s p s p s p= + + +

+ + + +=
                                                                      (2.32) 

Step 3:Determination of numerator polynomial Nr(s) of Gr(s): 

Compute the time moment proportional’s ‘ci’ by expanding G(s) about s=0 using (2.2). 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 4: The ratio of the numerator ‘Nr(s)’ and denominator polynomial ‘Dr(s)’ gives the 

reduced order stable LTI continuous system Gr(s). 

2.3.3.1 Illustrative examples 

The above mentioned steps are applied on numerical examples and the results are compared 

with other methods available in the literature. The ISE, IRE values are calculated using 

(2.21) and (2.22) for each reduced system and are tabulated. The step by step procedure to 

obtain the reduced system is described in detail only for the following example. However, in 

case of the remaining examples, only the results are mentioned directly, though the 

procedure adopted remains the same. 

Example 2.14: Consider a sixth order original system taken from Jamshidi [22] and 

mentioned in example 2.1 in 2.3.1.1. 

 

           
5 4

6 45

3 2

3 2
( ) 2 16     20     8    1 ( )
( ) 2 33.6 15

3
5.94    209.46   1  02.42    1  8.3    1 

n
n

n

N s s s s s sG s
D s s s s s s s

+ + +
= =

+ + + ++ +
+ +

  

A second order reduced system is desired and the procedure adopted are as follows. 

Step 1:The denominator polynomial Dn(s) is represented in the form  

            ( ) ( 0.1) ( 0.2)( 0.5)( 1)( 5)( 10)nD s s s s s s s= + + + + + +        

The poles of Dn(s) are p1 = -0.1, p2 = -0.2, p3 = -0.5, p4 = -1, p5 = -5, p6 = -10 respectively 

Step 2:Since the order of the reduced system is equal to two, only two poles that are nearest 

to the origin (dominant poles) are selected for retaining in the reduced system. Therefore the 

reduced denominator will be 

            2( ) ( 0.1) ( 0.2) 0.3 0.02rD s s s s s= + + = + +        

Step 3:According to (2.2) the first few time moment proportionals obtained are given in 

Table 2.16 
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Table 2.16 Time moment proportionals obtained for example 2.14 

i ci 

0 1.0000 

1 -10.300 

2 106.070 

3 -1079.615 

4 10897.7631 

 

Step 4:The coefficients of the numerator polynomial of Gr(s) are then computed by 

substituting coefficients of ‘Dr(s)’ and ci’s in (2.8) resulting in 

              ( ) 0.094 0.02rN s s= +   
Therefore the desired reduced system ‘Gr(s)’ will be 

             2

( ) 0.094 0.02( )
( ) 0.3 0.02

r
r

r

N s sG s
D s s s

+
= =

+ +
          

The original and reduced system are then subjected to unit step input and their responses are 

plotted in Fig. 2.15. Further, the ISE, IRE  values (Jorg being 88.73) are also calculated and 

compared with other available methods  in Table 2.17. 

 

Table 2.17 Comparison of reduced order systems for example 2.14 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2
0.094 0.02

0.3 0.02
s

s s
+

+ +
  0.0010 81.99 

Jamshidi [22] 2

13.06 s + 1
8.75 18 s + 1s +

 1.230 68.69 

Mahmoud and Singh [23] 2

6.5 s + 5
 4 s + 5s +

 4.329 824.52 

Singh et. al. [232] 2

1.987s + 154.044
1.987 33.58s + 154.0s +

 2.882 223.18 

Singh [243] 2

5.997 s + 1
87.97  15.96 s + 1s +

 0.02 1.4365 
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Fig. 2.15  Comparison of step responses for example 2.14 

Example 2.15: Revisiting a sixth order system mentioned in example 2.3 in 2.3.1.1 

The steps described in 2.3.3 are followed to obtain the desired system as 

            2

( ) 0.0691 0.99( )
( ) 1.99 0.99

r
r

r

N s sG s
D s s s

− +
= =

+ +
  

 
Table 2.18 Comparison of reduced order systems for example 2.15 

Order Reduction Method 
Reduced System 

Gr(s) 
ISE 
‘I’ 

IRE 
‘J’ 

Proposed Method 2
0.0691 0.99

1.99 0.99
s

s s
− +
+ +

  1.229  15.01 

Mukherjee et. al. [168] 
(impulse response matching) 

2 4 4

3 2 4 4

9.71 +1.256 10 s + 9.189 10
252.8 +1.67 10 s + 9.189 10

s
s s

× ×
+ × ×

 2.9423 569.38 

Mukherjee et. al. [168] 
(step response matching) 

2

3 2

46.63 +271.48s + 509.6
55.35 +692.5s + 509.6

s
s s+

 1.9196 13107.1 

Lee et. al.[237] 
(impulse response matching) 

2

3 2

13.09 +922s + 4855
205.9 +10681s + 4855

s
s s+

 2.6861 1028.7 

Lee et. al.[237] 
(step response matching) 

2

3 2

34.09 +797.3s + 683.5
41.982 +1504s + 683.5

s
s s+  

1.995 7078.7 

Shamash [91] 
(step response matching) 

2

3 2

53.67 +152.8s + 196.8
103.1 +314s + 196.8

s
s s+

 1.895 17289 

Shamash [91] 
(second order) 2

37.55s + 77.25
100.8s + 77.25s +

 1.8245 8468.8 

Philip and Pal [233] 
2

3 2

43.64 +310.8s + 490.8
56.55 +736.8s + 490.8

s
s s+

 1.9158 11467.1 
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The responses of original, second order reduced system when subjected to a unit step input 

are plotted in Fig. 2.16. The goodness/quality of the results are compared with other methods 

in terms of 'I' and 'J' (Jorg is 19.89) in Table 2.18. 

 
Fig. 2.16  Comparison of step responses for example 2.15 

Example 2.16:An eighth order system investigated by Shamash [92] and mentioned in 

example 2.10 in 2.3.2.1 is considered for order reduction. 

     The poles of Gn(s) are found to be -1, -2.99, -3.99, -5, -6, -7, -8 respectively. Since a 

second order system is desired two dominant poles located at -1 and -2.99 are considered. 

Following the steps mentioned in 2.3.3,  

             2

( ) 6.75 1.99( )
( ) 2.99 1.99

r
r

r

N s sG s
D s s s

+
= =

+ +
   

 
Fig. 2.17  Comparison of step responses for example 2.16 
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Table 2.19  Comparison of reduced order systems for example 2.16 

Order Reduction 

Method 

Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2
6.75 1.99

2.99 1.99
s

s s
+

+ +
  0.2823  625.97 

Chen et. al.[238] 2

0.72058 s + 0.3669
0.02768s + 0.3669s +

 7.2067 161.23 

Gutmen et. al.[47]  
8 8

7 2 8 8

5.35 10  s + 8.129 10
8.505 10 5.523 10 s + 8.129 10s

× ×
× + × ×

 1.376 365.05 

Hutton and Friedland 

[45] 
2

1.99 s + 0.4318
1.174s + 0.4318s +

 1.917 124.08 

Krishnamurthy and 

Seshadri [49] 

5

2

1.557 10  s + 40320
65520 75600s + 40320s

×
+  

1.6532 180.05 

Lucas [52] 2

6.779 s + 2
3s + 2s +

 0.27973 629.72 

Pal [57] 
5

2

1.518 10  s +40320
65520 75600s + 40320s

×
+

 1.6509 171.97 

Prasad and Pal [234] 2

17.99 s +500
13.25s + 500s +

 1.4585 2279.1 

 

The results of other methods are compared with the proposed method in terms of 'I' and 'J' 

and are according to Table 2.19 (Jorg = 2509.2). The unit step responses of Gn(s) and Gr(s) are 

also depicted in Fig. 2.17. 

 

Example 2.17: Consider a fourth order system as mentioned in example 2.7 in 2.3.2.1 

The reduced system ‘Gr(s)’ obtained is given by 

             2

( ) 0.833 0.2( )
( ) 3 0.2

r
r

r

N s sG s
D s s s

+
= =

+ +
                                                                                      

The unit step responses of the original and reduced system are shown in Fig. 2.18. Table 2.20 

compares the results in terms of 'I', 'J' (Jorg is 2.986 x 101) with other available methods and 

are found to be comparable. 
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Table 2.20 Comparison of reduced order systems for example 2.17 
Order Reduction Method Reduced System Gr(s) ISE ‘I’ IRE ‘J’ 

Proposed Method 2

0.833 0.2
3 0.2

s
s s

+
+ +

 0.327 x 10-3  29.87  

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4  

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7 

Phillip and Pal [233] 2

0.9315s + 1.609
2.756s + 1.609s +

 1.719 x 10-3 29.65 

Krishnamurthy and Seshadri 
[49] 2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8 

Lucas [52] 2

0.833 s + 2
3 s + 2s +

 0.328 x 10-3 48.4 

Mittal et. al.[165] 2

0.799 s + 2
3 s + 2s +

 0.267 x 10-3 47.2 

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0  

Mukherjee and Mishra [147] 2

0.800000033 s + 2
3 s + 2s +

 0.237 x 10-3 47.2 

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1 

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6  

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1  

Safonov et. al.[236] 2

0.7431 s + 1.057
1.879 s + 1.084s +

 0.622 x 10-3 47.3 

 
Fig. 2.18  Comparison of step responses for example 2.17 
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2.3.3.2 Extension to Multivariable systems 

The proposed method described in 2.3.3.1is extended for multivariable systems. The 

procedure involves the direct application of the SISO method on the elements of the transfer 

function matrix of MIMO system. The same is mentioned as follows. 

 MIMO system of nth order having 'p' inputs and 'm' outputs is assumed to be in the 

form (2.23). The proposed method is applied to (2.24) by initially reducing the denominator 

polynomial using DP method by following the steps described in 2.3.3. Later, the numerator 

coefficients of each element of [R(s)] is then found out using least squares method. The 

applicability of the proposed method is justified by solving two numerical examples. 

2.3.3.2.1 Illustrative Examples 

Example 2.18: Consider an aircraft gas turbine [239] taken from example 2.5 in 2.3.1.2.1 is 

given by  11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n
A s A s

G s
A s A sD s
 

=  
 

 

 

            

2
11

2
12

2
21

2
22

4 3 2

( ) 14.96 1521.432 2543.2

( ) 95150 1132094.7 1805947.0

( ) 85.2 8642.688 12268.8

( ) 124000 1492588 2525880.0
and

( ) +113.225  +1357.275 +3502.75s+2525 n

A s s s

A s s s

A s s s

A s s s

D s s s s

= + +

= + +

= + +

= + +

=

  

It is desired to reduce Gn(s) to a second order system represented in the form 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B s B s
R s

B s B sD s
 

=  
 

 

By following the steps described in 2.3.3.2, 

          2( ) 3.225 2.525 rD s s s= + +   

and    11( ) 1.242 2.543B s s= + , 12 ( ) 933.4 1806B s s= +   

         21( ) 7.2933 12.27B s s= + , 22 ( ) 1215 2526B s s= +  

The results obtained by proposed are method is compared with other method in terms of 'I' 

and 'J' for each element of transfer function matrix are according to Table 2.21. The value Jorg 

of each element of plant transfer function matrix are 64.526, 3.054 X 107,1735.7 and 5.7 X 

107 respectively. The unit step responses of [Gn(s)] and [R(s)] are depicted in Fig. 2.19 (a)-(d). 
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Table 2.21  Comparison of ISE and IRE for example 2.18 

rij 
(i,j=1,2) 

Proposed Method Prasad [240] 
ISE 
‘I’ 

IRE 
‘J’ 

ISE 
‘I’ 

IRE 
‘J’ 

r11 0.0017 42.977 0.0028 46.426 

r12 13.083 22.85 x106 1064.8 3.47 x107 

r21 0.0612 1217.1 0.086 1080 

r22 22.157 41.83 x106 27821 6.799 x107 

 

 
Fig. 2.19 (a)- (d)  Comparison of step responses for example 2.18 

 

Example 2.19: Consider a sixth-order two input two output system [33] described by the 

transfer function matrix and taken in example 6 in 2.3.1.2.1. 

By following the steps described in 2.3.3.2 , 

           2( ) 3 2 rD s s s= + +   
and     11( ) 1.2 2B s s= + , 12 ( ) 0.84 0.8B s s= +   
          21( ) 0.5 1B s s= + , 22 ( ) 1.667 2B s s= +  
          Table 2.22 shows a comparison with the available existing reduced second order 

models in terms of ISE values. Further, the responses for a given step input are compared in 

Fig. 2.20(a)-(d). It is observed that the proposed method is comparable with other existing 

methods. 

 

0 2 4 6
 

 
(a)

Time (sec)

A
m

pl
itu

de

0 1 2 3 4
 

 
(b)

Time (sec)

A
m

pl
itu

de

0 1 2 3 4
 

 
(c)

Time (sec)

A
m

pl
itu

de

0 2 4 6
 

 
(d)

Time (sec)

A
m

pl
itu

de

g12 (s)
r12 (s)

g11 (s)
r11 (s)

g21 (s)
r21 (s)

g22 (s)
r22 (s)



Reduction of Continuous Time Systems using New Composite Methods 
                                                                                                                                                                                                                                                                    

58 
 

Table 2.22 Comparison of reduced order systems for example 2.19 

Order Reduction Method 
ISE ‘I’  for rij ( i, j = 1,2) 

r11 r12 r21 r22 

Proposed 0.0008 0.0001 0.000073 0.0037 

Parmar et. al.  [71] 0.0525 0.0020 0.0168 0.033 

Nahid and Prasad [139] 0.0658 0.1645 0.0066 0.157 

Parmar et. al.  [135] 0.0145 0.00874 0.00254 0.0157 

Prasad and Pal [241]
 

0.1365 0.00245 0.04029 0.0679 

Safanov and Chiang 

[242]
 

0.5906 0.03713 0.00733 1.0661 

Prasad et. al. [137] 0.0307 0.00026 0.26197 0.0217 

Parmar et. al. [157] 0.0266 0.0069 0.0061 0.0683 

Parmar et. al. [70] 0.0449 0.0344 0.0088 0.1577 

Saraswathi [244] 0.084 0.08 0.305 0.346 

 

 
Fig. 2.20 (a)- (d)  Comparison of step responses for example 2.19 
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method are more dominant than that obtained by pole clustering method. Added to this, the 

proposed method is computer oriented. The steps to compute the coefficients of the reduced 

system are mentioned below. 

Step 1:Let an nth order original system be Gn(s) as in (2.1).The denominator polynomial 

Dn(s) is represented in the form  

            1 2( ) ( ) ( ) ... ( )n nD s s p s p s p= + + +                                                                        (2.33) 

 where  |-p1| < |-p2|  < ... < |-pn| are the poles of the higher order original system Gn(s). 

Step 2:Form the clusters, depending upon the order of the reduced system desired and then 

compute the modified pole cluster centre for each cluster. 

Step 3:Computation of modified pole cluster centre Pei : 

An algorithm for finding the modified pole cluster centre is as follows [230]. 

(1) consider a cluster having 'x' no of poles with  |-p1| < |-p2|  < ... < |-px| 

(2) set m =1, 

(3) the pole cluster centre is found out by using 
1

1

1
| |

x

kk
m

p
x

σ

−

=

  −
  

  =  
 
  

∑
                                                                                                 (2.34) 

(4) increment m 

(5) compute modified cluster centre using the formula  
1

1

1 1
| | | |

2
k m

m
p σ

σ

−

−

    − −
+    

    =  
 
  

                                                                                     (2.35) 

(6) check if  m =x ?, if No, then go to step (4)  

(7) the modified pole cluster centre of the ith cluster is pei = σm. 

Step 4:Determination of denominator polynomial Dr(s) 

 The denominator polynomial is constructed using the modified pole cluster centre 

using 

             1 2( ) ( ) ( ) ... ( )r e e erD s s p s p s p= − − −  

The following cases may occur during the formation of the reduced denominator polynomial. 
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            Case 1: If the modified cluster centre's are real, then the rth order reduced denominator 

will be given by 

          
2

2
1 2

1( ) ( ) ( )...( )

... r
o

r e e er

re e s e s e s

D s s p s p s p= − − −

+ + + +=
                                                               (2.36) 

            Case 2:If the modified cluster centre's are complex conjugate, then the rth order 

reduced denominator will be given by 

            
* *

1 2 /2

1 2

/2
2

( ) ( |( )...( )( )

...
r e e er er

r
o re e s e s e

s

s

D s s s sφ φ φ φ
° °

= − − − −

= + + + +
                                                (2.37) 

                          eii eie A jBφ = ±   

             Case 3:If some of the modified cluster centre's are real (assume (r-2)) and others are 

complex conjugate, then   the rth order reduced denominator will be given by 

             
*

1 2 ( 2) 2

2
2

1

1

( ) ( ) ( |...( ) (

.

)

.

)

.

(r e

r

r

o

e e e e

r

D s s p s p s p s

e e s e s e s

sφ φ
°

−= − − −

+ + +

− −

= +
                                (2.38) 

                           eii eie A jBφ = ±  

Step 5:Determination of numerator polynomial Nr(s) of Gr(s): 

Compute the time moment proportional’s ‘ci’ by expanding G(s) about s=0 using (2.2). 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, ...(r-1). 

Step 6:The ratio of the numerator ‘Nr(s)’ and denominator polynomial ‘Dr(s)’ gives the 

reduced order stable LTI continuous system Gr(s). 

2.3.4.1 Illustrative examples 

The above mentioned steps are followed for reducing higher order systems taken from the 

literature. The results obtained are then compared with other available methods. ISE and IRE 

values are calculated using (2.21), (2.22) for each reduced system and are tabulated. The 

following example is solved in depth while, only the results are mentioned directly for the 

remaining examples. 

Example 2.20: Consider a sixth order original system taken from Jamshidi [22] and 

mentioned in example 2.1 in 2.3.1.1 with Jorg= 8.09. 

           
3 2

4 3 2

5 4

6 5
( ) 2 16     20     8    1 ( )
( ) 2 33.6 155.94    209.46   1  02.42    1  8.3    1 

3n

n

N s s s s s sG s
D s s s s s s s

+ + +
= =

+ + + ++ +
+ +

  

A second order reduced system is desired and the procedure described in 2.3.4 are as follows. 

Step 1:The roots of the denominator polynomial Dn(s) are (-0.1,-0.2 -0.5 -1, -5, -10) 
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Step 2:Since a second order is desired, two clusters are formed with (-0.1, -0.2) and (-0.5 -1, 

-5, -10) 

Step 3:The modified pole cluster centre Pei are computed. Considering the cluster with (-0.1, 

-0.2) , the value of x=2.For m=1, using (2.34), the value of σm will be -0.1333   

Step 4:Now, m is incremented to 2 and is equal to the value of x.  

Step 5:Using (2.35) the value of σm=-0.1143  Therefore the pole centre of cluster (-0.1,-0.2) 

is pe1= 0.1143. 

Step 6:Similarly, for the next cluster with (-0.5 -1, -5, -10), m=1, σm=-1.212 and m is 

incremented to 2 . 

Step 7:Follow step 4 - 6 as in 2.3.4 till the value of m and x are same. Then  σm=-0.5395 or 

pole centre of cluster (-0.5 -1, -5, -10) is pe2= -0.5395. 

Step 8:As the both the pole centers are real using (2.36),  

            
2

2

1( ) ( )( )
( 0.114)( 0.5395)

0.6539 0.0617

r e eD s s p s p
s s

s s

= − −
= + +

= + +

 

Step 9:Compute the time moment proportional’s ‘ci’ by expanding G(s) about s=0 using 

(2.2). Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the 

coefficients ‘di’, i = 0,1, 2 , ...(r-1). 

Step 10:The numerator polynomial of Gr(s) are then given as 

  ( ) 0.01839 0.0617rN s s= +  

Step 11:The ratio of the numerator ‘Nr(s)’ and denominator polynomial ‘Dr(s)’ gives the 

reduced order stable LTI continuous system Gr(s) as 

             2

( ) 0.01839 0.0617( )
( ) 0.6539 0.0617

r
r

r

N s sG s
D s s s

+
= =

+ +
 

 The unit step responses(reaction curves) of the original and reduced system are shown 

in Fig. 2.21. Table 2.23 compares the proposed reduced order model with other available 

reduced models obtained by different methods in terms of 'I' and 'J'. It is seen that the values 

of of 'I' and 'J'  for the proposed reduced model are comparable. 
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Fig. 2.21  Comparison of step responses for example 2.20 

  

Table 2.23 Comparison of reduced order systems for example 2.20 

Order Reduction Method Reduced System Gr(s) ISE ‘I’ IRE ‘J’ 

Proposed Method 2

0.01839 0.0617
0.6539 0.0617

s
s s

+
+ +

 0.0298 1.6141 

Jamshidi [22] 2

13.06 s + 1
8.75 18 s + 1s +

 1.230 68.695 

Mahmoud and Singh [23] 2

6.5 s + 5
 4 s + 5s +

 4.329 824.52 

Singh et. al. [232] 2

1.987s + 154.044
1.987 33.58s + 154.044s +

 2.882 223.18 

Singh [243] 2

5.99 s + 1
87.97  15.96 s + 1s +

 0.02 1.4365 

 

Example 2.21: Revisiting a fourth order system in example 2.7 in 2.3.2.1 with Jorg= 29.86 .            

The roots of Dr(s) are (-1,-2,-3,-4). Two clusters (-1,-2) and (-3,-4) are formed and following 

the steps described in 2.3.4  the modified pole cluster centers as pe1 = -1.33, pe2=-3.4236 

The reduced second order system ‘Gr(s)’ obtained will be 

             2

( ) 0.3806 3.658( )
( ) 4.343 3.658

r
r

r

N s sG s
D s s s

+
= =

+ +
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Table 2.24 Comparison of reduced order systems for example 2.21 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.3806 3.658
4.343 3.658

s
s s

+
+ +

 1.4 x 10-3  26.6  

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4  

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7 

Krishnamurthy and Seshadri 

[49] 
2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8 

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0 

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1 

Phillip and Pal [233] 2

0.9315s + 1.609
2.756s + 1.609s +

 1.71 x 10-3 29.7 

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6 

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1 

Safonov and Chang [242] 2

 s + 5.403
8.431 s + 4.513s +

 60.9 x 10-3 34.7 

 
Fig. 2.22  Comparison of step responses for example 2.21 
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The unit step responses of the original and reduced system are shown in Fig. 2.22. Table 2.24 

compares the results in terms of 'I' and 'J' with other available methods and are found to be 

comparable. 

 

Example 2.22: Revisiting example 3 in 2.3.2.1, the roots of Dr(s) are (-1,-1,-10,-10,-100,-

100). Two clusters containing the poles (-1) and (,-1,-10,-10,-100,-100) are formed. The steps 

described in 2.3.4 are followed to get the modified pole cluster centers as 

              pe1  = -1 , pe2  = -1.0496 

The reduced second order system ‘Gr(s)’ is then obtained as 

            2

( ) 0.1335 1.05( )
( ) 2.058 1.05

r
r

r

N s sG s
D s s s

+
= =

+ +
          

           

Table 2.25 Comparison of reduced order systems for example 2.22 

Order Reduction Method 
Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

0.1335 1.05
2.058 1.05

s
s s

+
+ +

 1.1139  15.691 

Mukherjee et. al. [168] 

(impulse response matching) 

2 4 4

3 2 4 4

9.71 +1.256 10 s + 9.189 10
252.8 +1.67 10 s + 9.189 10

s
s s

× ×
+ × ×

 2.9423 569.38 

Mukherjee et. al. [168] 

(step response matching) 

2

3 2

46.63 +271.48s + 509.6
55.35 +692.5s + 509.6

s
s s+

 1.9196 13107.1 

Lee et. al.[237] 

(impulse response matching) 

2

3 2

13.09 +922s + 4855
205.9 +10681s + 4855

s
s s+

 2.6861 1028.7 

Lee et. al.[237] 

(step response matching) 

2

3 2

34.09 +797.3s + 683.5
41.982 +1504s + 683.5

s
s s+  

1.995 7078.7 

Shamash [91] 

(step response matching) 

2

3 2

53.67 +152.8s + 196.8
103.1 +314s + 196.8

s
s s+

 1.895 17289 

Shamash [91] 

(second order) 
2

37.55 s + 77.25
100.8s + 77.25s +

 1.8245 8468.8 

Philip and Pal [233] 
2

3 2

43.64 +310.8s + 490.8
56.55 +736.8s + 490.8

s
s s+

 1.9158 11467.1 
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Fig. 2.23  Comparison of step responses for example 2.22 

The original, second order reduced systems are subjected to a unit step input and their 

responses obtained are as shown in Fig. 2.23. The results are compared with other methods in 

terms of 'I' and 'J' (Jorg= 19.89) in Table 2.25. 

 

Example 2.23: An eighth order system investigated by Shamash [92] as mentioned in 

example 2.4 in 2.3.1.1 is considered. 

The poles of Gn(s) are computed and are grouped into two clusters containing the poles (-1,-

2,-3,-4) and  (-5,-6,-7,-8). The steps described in 2.3.4 are followed to get the modified pole 

cluster centers as 

            pe1  = -1.0637 , pe2= -5.1327 

The reduced second order system ‘Gr(s)’ is then obtained as 

            2

( ) 16.51 5.46( )
( ) 6.1964 5.4597

r
r

r

N s sG s
D s s s

+
= =

+ +
  

 

The results obtained by proposed method is compared with other methods in terms of 'I' and 

'J' (Jorg= 2509.2) are according to Table 2.26. The unit step responses of Gn(s) and Gr(s) are 

depicted in Fig. 2.24. 
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Table 2.26 Comparison of reduced order systems for example 2.23 

Order Reduction 

Method 

Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 2

16.51 5.46
6.1964 5.4597

s
s s

+
+ +

 0.014  2321 

Chen et. al.[238] 2

0.72058 s + 0.3669
0.02768s + 0.3669s +

 7.2067 161.23 

Gutmen et. al.[47]  
8 8

7 2 8 8

5.35 10  s + 8.129 10
8.505 10 5.523 10 s + 8.129 10s

× ×
× + × ×

 1.376 365.05 

Hutton and Friedland 

[45] 
2

1.99 s + 0.4318
1.174s + 0.4318s +

 1.917 124.08 

Krishnamurthy and 

Seshadri [49] 

5

2

1.557 10  s + 40320
65520 75600s + 40320s

×
+  

1.6532 180.05 

Lucas [52] 2

6.779 s + 2
3s + 2s +

 0.27973 629.72 

Pal [57] 
5

2

1.518 10  s +40320
65520 75600s + 40320s

×
+

 1.6509 171.97 

Prasad and Pal [234] 2

17.99 s +500
13.25s + 500s +

 1.4585 2279.1 

 

            
Fig. 2.24  Comparison of step responses for example 2.23 
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Example 2.24: An ninth order system investigated by Mukherjee et. al.[168] is considered 

for obtaining a second order reduced system. The original system with Jorg= 28.23 is given 

by 

             
4 3 2

9 8 7 6 5 4 3 2

( ) 35 291 1093 1700
9 66 294 1029 2541 4684 5856 4620 1700

nG s s s s s
s s s s s s s s s

= + + + +
+ + + + + + + + +

  

The poles of Gn(s) are (-1,-1±j, -1±j2, -1±j3, -1±j4). These poles are grouped into two clusters 

containing the poles (-1) in the first and remaining poles in the second cluster.. The procedure 

as in 2.3.4 are followed to get the modified pole cluster centers as 

              pe1  = -1,  pe2,3 = -1±j1.0637 

Since the modified pole cluster comprises of real and complex conjugates case 3 (2.38) is 

followed to obtain the reduced denominator. The reduced second order system ‘Gr(s)’ is then 

obtained as 

             
2

3 2

( ) 0.05311 0.2907 2.132( )
( ) 3 4.132 2.132

r
r

r

N s s sG s
D s s s s

− − +
= =

+ + +
                   

  The responses of Gn(s) and Gr(s) for a unit step input are shown in Fig. 2.25. Table 

2.27 compares the results obtained by proposed method in terms of 'I' and 'J' with other 

methods. 

 
Fig. 2.25  Comparison of step responses for example 2.24 
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Table 2.27 Comparison of reduced order systems for example 2.24 

Order Reduction 

Method 

Reduced System 

Gr(s) 

ISE 

‘I’ 

IRE 

‘J’ 

Proposed Method 
(second order) 

2

3 2

0.05311 0.2907 2.132
3 4.132 2.132

s s
s s s

− − +
+ + +

  0.0151 19.645 

Mukherjee et. al. [168] 
(impulse response 

matching) 

2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 0.0877 51.01 

Mukherjee et. al. [168] 
(step response 

matching) 

2

3 2

3.49 4.14 2.078
3.828 4.884 2.078

s s
s s s
− − +
+ + +

 0.726 364.36 

Chen et. al.[50]  
2

3 2

285 1093 1700
3408 5031 4620 1700

s s
s s s

+ +
+ + +

 0.296 25.43 

Phillip and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +   
0.0282 29.42 

George and Rein  
Method I [163] 

2
  0.29913    0.73912

 0.95727    0.73912
s

s s
− +
+ +

 0.0423 26.03 

George and Rein  
Method II [163] 

2
  0.57072    0.98330

1  .42381    0.98330
s

s s
− +
+ +

 0.0187 28.636 

 

2.3.4.2 Extension to Multivariable systems 

The proposed method described in 2.3.4.1 can also be extended for multivariable system 

according to the procedure mentioned below. The procedure is rather simple and involves 

direct application of the SISO method on the elements of the transfer function matrix of 

MIMO system. Consider a system of nth order represented in the form of (2.23) having 'p' 

inputs and 'm' outputs. The proposed reduction procedure is applied to (2.24) by following the 

steps in 2.3.4. The justification of the proposed method  is provided by solving two numerical 

examples. 

 

2.3.4.2.1 Illustrative Examples 

Example 2.25: Consider an aircraft gas turbine [239] taken from example 2.5 in 2.3.1.2.1 is 

given by 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n
A s A s

G s
A s A sD s
 

=  
 
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2
11

2
12

2
21

2
22

4 3 2

( ) 14.96 1521.432 2543.2

( ) 95150 1132094.7 1805947.0

( ) 85.2 8642.688 12268.8

( ) 124000 1492588 2525880.0
and

( ) +113.225  +1357.275 +3502.75s+2525 n

A s s s

A s s s

A s s s

A s s s

D s s s s

= + +

= + +

= + +

= + +

=

  

It is desired to reduce [Gn(s)] to a second order system represented in the form 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B s B s
R s

B s B sD s
 

=  
 

 

The poles of the original system are found to be (-1.338 ,-1.887, -10, -100) respectively. 

Forming two clusters having poles (-1.338) and (-1.887, -10, -100) will give  

            pe1 = -1.338,  pe2 = -2.218 

by following the steps in 2.3.4, the reduced denominator will be, 

          2( ) 3.56 2.9748 rD s s s= + +   

and 11( ) 1.222 2.996B s s= + , 12 ( ) 928.4 2128B s s= + , 21( ) 7.429 14.45B s s= +  22 ( ) 1192 2976B s s= +  

 
Fig. 2.26 (a)-(d)  Comparison of step responses for example 2.25 

The results are compared with other method in terms of 'I' and 'J' for each element of transfer 

function matrix are according to Table 2.28. The value Jorg of each element of plant transfer 

function matrix are 64.526, 3.054 X 107,1735.7 and 5.7 X 107 respectively). The unit step 

responses of [Gn(s)] and [R(s)] are depicted in Fig. 2.26 (a)-(d). 
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Table 2.28  Comparison of ISE and IRE for example 2.25 

rij 

(i,j=1,2) 

Proposed Method Prasad [240] 

ISE 

‘I’ 

IRE 

‘J’ 

ISE 

‘I’ 

IRE 

‘J’ 

r11 0.00163 42.65 0.0028 46.426 

r12 11.064 22.78 x106 1064.8 3.47 x107 

r21 0.0670 1231.1 0.086 1080 

r22 13.98 41.47 x106 27821 6.799 x107 

 

2.4 CONCLUSION 

In this chapter four mixed/composite methods of order reduction have been proposed for 

reducing higher order LTI continuous time systems. These methods are based on least squares 

method in combination of spectrum analysis, stability equation, dominant pole and modified 

pole clustering technique. The responses of the reduced systems indicate that the key qualities 

of the original system are retained and show overall better performance. The methods are 

simple, rugged and computer viable. Added to this, a stable original system results in stable 

reduced system. Further these methods are also extended for MIMO systems successfully. 

The results obtained are compared with other available methods in terms of ISE and IRE. It is 

observed that the proposed methods are comparable in quality with the other known existing 

methods.  
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Shri 

CHAPTER - 3 
 

REDUCTION OF DISCRETE TIME SYSTEMS USING NEW 

COMPOSITE METHODS 
 

The world has seen tremendous development in the area of approximation algorithms and 

metaheuristics during the past decades. Today, metaheuristics is being recognized as an 

essential research field [245]. However, efforts are on to cope up with problems arising from 

the fast advancing world. Order reduction is one such field, which seeks for more efficient 

lower order approximation algorithm, so as to satisfy the need of the hour. Moreover, in this 

digital era, usage of digital processors in the design and implementation of control systems 

has become inevitable and can be termed of paramount importance. Also, there is a strong 

belief that there is an enormous potential and future for their use. Thus, resulting in the need 

for more model order reduction methods in discrete domain. In the preceeding chapter, 

systems in continues time were considered and some new order reduction methods were also 

discussed. In the present chapter, higher order systems represented in discrete domain are 

taken up for order reduction.  

 The order reduction methods proposed in chapter 2 are valid for continuous time 

systems represented in frequency domain. Here, the same methods are extended for order 

reduction of discrete time systems. In order to do so, initially the original system in z-domain 

has to be transformed to w-domain. Then the reduction technique is applied and finally 

converted back into z-domain. Many continuous time reduction methods have been 

successfully extended, to reduce discrete systems either by using bilinear transformation 

(z=(1+w)/(1-w)), where 'w' is a new variable or linear transformation (z = p+1),  where 'p' is a 

new variable or homographic transformation (z= p/(A+Bp)), where A,B are constants [246-

248]. In the proposed methods, both bilinear transformation as well as linear transformation 

are used to meet the objective. Numerical examples belonging to SISO, are taken up for 

reduction initially and are later extended for MIMO systems. 

  

3.1 PROBLEM STATEMENT 

Let the nth order discrete-time system be represented in the frequency domain as 

         ( ) 1
2

1 2

( ) ...
 ;

( ) ...

m
n o m

n n
n o n

N z a a z a zG z m n
D z b b z b z b z

+ + +
= = <

+ + + +
                                                   (3.1) 
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where ai's and bi's are the scalar constants. The rth order (r < n) reduced system is to be derived 

from (3.1) comprising of scalar constants dj's and ej's represented in the form of  

         ( ) 1
2

1 2

...( ) ;
( ) ...

p
o pr

r r
r o r

d d z d zN zG z p r
D z e e z e z e z

+ + +
= = <

+ + + +
                                                     (3.2) 

provided that the reduced system (3.2) also exhibit almost the same characteristics as that of 

(3.1) on the application of the same input. 

 As mentioned earlier, the proposed mixed methods for reducing discrete systems 

consists of converting a given system in z- domain (3.1) either to w-domain or p-domain and 

vice-versa.This issue is resolved by using bilinear or linear transformation. 

Bilinear transformation method converts a given system in z-domain to w-domain. This is 

achieved by substituting  z=(1+w)/(1-w), both in the numerator and denominator polynomial 

separately using synthetic division [249] to obtain 

 
1(1 )/(1 )

(1 )/(1 )

( )( ) ( ) 0
(1 )

( )( ) ( ) 0
(1 )

n
n n nz w w

n
n n nz w w

N wN w N z
w

D wD w D z
w

−= + −

= + −

= = = − 

= = =
− 

                                                       (3.3) 

thus 

 1
10 11 1 1

2
10 11 12 1

( )
(

.

) 

.

)

.

(

.
..

n
n

n

n
n

n

n

a a w a w
b b w b w b w

N wG w
D w

−
−

=

+ + +
+ + + +

=
                                                                      (3.4) 

The rank in (3.4) remains the same as that of (3.1), hence matching the response of the 

reduced system (3.2) with that of (3.1) for a given step input at t =0. Further, Gn(w) can be 

reduced using the proposed reduction methods and can be converted back to the form (3.2), 

using inverse bilinear transformation. This transformation comprises of substituting w=(z-

1)/(z+1), separately for numerator and denominator polynomials as given below. 

 
1( 1)/( 1)

( 1)/( 1)

( )( ) ( ) 0
( 1)

( )( ) ( ) 0
( 1)

r
r r rw z z

r
r r rw z z

N zN z N w
z
D zD z D w
z

−= − +

= − +

= = = + 

= = =
+ 

                                                         (3.5) 

 ( ) ( ) 
( )

r
r

r

N zG z
D z

=                                                                                                          (3.6) 

However, some continuous time reduction methods via bilinear transformation may 

sometimes yield poor approximations in case of discrete time systems [247, 250]. This kind of 
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unwanted quality of approximation is due to the deformation taking place during bilinear 

transformations. This can be reduced by using linear transformation where the system (3.1) is 

converted to p-domain by substituting z=p+1 resulting in 

 
1

1 11 1 1
2

1 11 1

1

2

...
..

( ) ( )( ) 
( ) ( )

.

n n
n

n n z p

n
o n

n
o

a a p a p
b b p

N p N zG p
D p D z

b p p

=

−
−

+

+ + +
+ +

= =

+ +
=

                                                                             (3.7) 

The reduced system in the form (3.2) is obtained by reducing (3.7) using reduction 

techniques. The reduced system in p-domain is converted to z-domain by substituting p=z-1  

 
1

( ) ( )( ) 
( ) ( )

r r
r

r r p z

N z N pG z
D z D p

= −

= =                                                                    (3.8) 

  

3.2 EIGEN SPECTRUM ANALYSIS AND LEAST SQUARES METHOD 

The composite reduction method presented here, is a combination of ESA [157] and least 

squares method [174]. ESA is used for finding the new poles, whereas least squares method 

is used for deriving the numerator polynomials. The procedure for obtaining the reduced 

system using the proposed method is as follows. 

Step 1:Consider Gn(z) (3.1) and convert using linear transformation using (3.7). Find roots 

of the denominator polynomial Dn(p) such that  -p'1 < -p'2  < ... < -p'n . 

Step 2:Locate the Eigen Spectrum Points (ESP) of Gn(p).  

Step 3:Follow the steps 3 to 5 of section 2.3.1. 

Step 4:Calculate ESP from Repr', M and form the denominator polynomial Dr(p) of Gr(p). Let 

these denominator coefficients be ‘ei’, i = 0,1, 2 , ... ∞. 

Step 5:Determine of numerator polynomial Nr(p) of Gr(p) 

Compute the time moment proportional’s ‘ci’ by expanding Gn(p) about p=0 using  

 
0

( ) i
n i

i
G p c p

∞

=

= ∑                                                                                                        (3.9) 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 6:Then numerator ‘Nr(p)’ and denominator polynomial ‘Dr(p)’ is substituted in (3.8) 

and Gr(z) is obtained by substituting p=z-1. 
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3.2.1 Illustrative examples 

The proposed method is justified by solving the following numerical examples choosen from 

the literature. The first example is solved in detail according to the steps described in 3.2. In 

the remaining examples the reduced system is mentioned directly. The goodness/quality of 

the reduced system is judged by measuring Summation Square Error  SSE [251]. The SSE 

value is a measure of the closeness between Gn(z) and Gr(z). The SSE value is calculated by 

using the formula  

            2

0

[ ( ) ( )]
N

r
k

SSE y k y k
=

= −∑                                                                                        (3.10)  

          where y(k), yr(k) are the outputs of Gn(z) and Gr(z) respectively at the kth sampling 

instant tk. N is the number of sampling instances. 

 

Example 3.1: A supersonic inlet model transfer function from Lalonde et. al.[176]  

  ( )
6 5 4 3 2

7 6 5 4 3 2
( ) 2.0434 4.982 6.57 5.819 3.636 1.41 0.2997 
( ) 2.46 3.433 3.33 2.546 1.584 0.7478 0.252

n
n

n

N z z z z z z zG z
D z z z z z z z z

− + − + − +
= =

− + − + − + −
 

Step 1:Consider Gn(z) and convert to p-domain using (3.7) resulting in  

( )
6 5 4 3 2

7 6 5 4 3 2
20430 72760 123055 115011 64240 20330 3377

10000 45400 96730 119355 93560 45040 1302

( ) 

8 0

)

10

(

8

n
n

n

p p p p p p
p p p

N pG

p

p
D p

p p p
+ + + + + +

+ + + + + + +

=

=
 

Step 2:The ESP of Gn(p) are p'1 = -0.1119, p'2,3 = -0.3132 ±j0.5843, p'4,5 = -0.7024±j0.7559 

and  p'6,7 = -1.1984±j0.6989.  

Step 3:The pole centroid is calculated using (2.14) as 

.3132 0.3132 0.7024 0.7024| 0.1119 | | 0 | | | | | | | 1.1984| | | |

0.6486

1.1984
7pσ − + − + − + − + − + − + −

=

=
  

Step 4:The system stiffness is 

             '0.1119 0.0933
1.1984

k k= = =   

Step 5:For a second order reduced system, we have r =2, Q=0 ; N =(σp r) = (0.6486×2) 

=1.2972. 

Now, substitute the values of k, r, N, Q in (2.20)  

            
'0.0933(2 1) 0 1.2972Re

(1 0.0933) (1 2) 0
rp

M
−     

=    − −    
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'

' '
1 2

1.1864Re
1.2983

1.1864 0.1109

rp
or

M

or andp p

   
=   
  

=− =−

 

Step 6:Then, the denominator polynomial of Gr(p) will be  

              
' '
1 2

2

( ) ( )( )

1.297 0.1314
rD p p p p p

p p
= + +

= + +
                                                                                        

Step 7:The first five time moment proportional’s ci are obtained using (3.9) and is given in 

Table 3.1 

 Table 3.1 Time moment proportionals obtained for example 3.1 

i ci 

0 3.35019841269841 

1 -23.1313342466616 

2 212.99810124759 

3 -1916.20786912305 

4 17121.3108524937 

 

Step 8:The numerator coefficients of Gr(p) are computed by substituting coefficients of 

‘Dr(p)’ and ci in (2.8) resulting in 

               ( ) 1.306 0.4402rN p p= +  
The second order reduced system in p-domain is 

             2
2

( ) 1.306 0.4402( )
( ) 1.297 0.1314

r
r

r

N p pG p
D p p p

+
= =

+ +
                                          

Step 9:Convert the reduced system Gr(p) to Gr(z) by substituting p=(z-1) to give 

 

2
2

2

( ) 6530 4329( ) 
( ) 5000 3515 828

1.306( 0.663)
0.703 0.1656

r

r

r

N z zG z
D z z z

z
z z

−
= =

− −
−

=
− −

 

Similarly, third and fifth reduced order systems thus obtained are 

 

2
3

3 2

2

3 2

21850 30840 11848( ) 
10000 10540 808 585

2.1850( 1.4114 0.5422)
1.0540 0.0808 0.0585

r
z zG z

z z z
z z

z z z

− +
=

− + +
− +

=
− + +
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4 3 2
5

5 4 3 2

4 3 2

5 4 3 2

4227 31602 93338 82951 24497( ) 
10000 17570 8730 520 375 32

0.4227 3.157 9.33 8.29 2.447
1.76 0.87 0.05 0.037 0.0032

r
z z z zG z
z z z z z

z z z z
z z z z z

+ − − −
=

− + − − +
+ − − −

=
− + − − +

 

 

 
Fig. 3.1(a) Comparison of step responses for example 3.1 

 
Fig. 3.1(b) Comparison of impulse responses for example 3.1 

  

 The original and reduced systems are subjected to step, impulse input and their 

corresponding responses are shown in Fig. 3.1(a)-(b). These responses are compared in Table 

3.2 with respect to SSE given by (3.10) with other available methods. 
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Table 3.2  Comparison of reduced order systems for example 3.1 

Order Reduction 
Method 

Reduced System 
Gr(z) 

SSE 

Proposed Method 
(second order) 2

1.306 0.866
0.703 0.1656

z
z z

−
− −

  0.2039 

Proposed Method 
(third order) 

2

3 2
2.1850 3.083 1.1847

1.0540 0.0808 0.0585
z z

z z z
− +

− + +
 0.1594 

Proposed Method 
(fifth order) 

4 3 2

5 4 3 2
0.4227 3.157 9.33 8.29 2.447

1.76 0.87 0.05 0.037 0.0032
z z z z

z z z z z
+ − − −

− + − − +
  0.14662 

Lalonde et. 
al.[176] 

(third order) 

2

3 2

30.0627 2.106 1.569 0.0371
0.8204 0.1697 0.1648
z z z

z z z
− + +

− + −
 0.55879 

Lalonde et. 
al.[176] 

(fifth order) 

4 5 4 3 2

5 4 3 2
1.72 10 2.1 2.9 2.15 1.5 0.66

1.488 1.231 0.96 0.6693 0.3247
z z z z z

z z z z z

−× − + − −
+ − −
+

− −
 0.17453 

 

Example 3.2: An eighth order discrete time system is considered in this exapmle .[252].  

 
( )

7 6 5 4 3 2

8 7 6 5 4 3 2
280.3 186 35 25.33 86 43.66 7.33 1

666.7 280.3 186

( ) 
(

35 25.33 86 43.66 7.33 1

)
n

n
n

N

z z z z z z z
z z z z z

zG z

z

z

z z

D

+ − + − − + −
=

− − − + + −

=

+ +

 

Converting Gn(z) to p-domain using (3.7)   

 ( ) ( ) 
( )

n
n

n

N pG p
D p

=   

 

7 6 5 6 4 6 3

2

8 7 6 6 6 5 6 4

6 3 6 2

28030 214811 696733 1.245 10 1.32 10

817666 266644 33330
66670 505333 1.652 10 3.037 10 3.422 10

2.414 10 1.049 10 266722 33340

p p p p p

p p
p p p p p

p p p

+ + + × + ×

+ + +
=

+ + × + × + × +

× + × + +

 

The ESP of Gn(p) are p'1,2 = -0.2491±j0.3068,  p'3,4 = -0.9072±j 0.1248,  p'5,6 = -1.0577 ±j 

0.6323 and  p'7,8 = -1.5758 ±j 0.1758. A second order reduced system is desired and the steps 

described in 3.2 are followed to obtain 

            2

( ) 1.889 0.4199( )
( ) 1.89 0.42

r
r

r

N p pG p
D p p p

+
= =

+ +
 

or         2
2

( ) 1.889 1.469( ) 
( ) 0.11 0.47

r
r

r

N z zG z
D z z z

−
= =

− −
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Similarly, the third order reduced system obtained is 

 

3

2

3 2

( )( ) 
( )

0.06217 2.094 1.755
0.158 0.466 0.0249

r
r

r

N zG z
D z

z z
z z z

=

+ −
=

− − +

 

The step and impulse responses of the original and reduced system are shown in Fig. 3.2(a)-

(b). These responses are compared in Table 3.3 in terms of SSE with other available methods. 

 

 
Fig. 3.2 (a) Comparison of step responses for example 3.2 

 
Fig. 3.2 (b) Comparison of impulse responses for example 3.2 
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Table 3.3  Comparison of reduced order systems for example 3.2 

Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 
(second order) 2

1.889 1.469
0.11 0.47

z
z z

−
− −

  0.232 

Proposed Method 
(third order) 

2

3 2
0.06217 2.094 1.755

0.158 0.466 0.0249
z z

z z z
+ −

− − +
  0.195 

Chung et. al.[252]  2
0.3975 0.318

1.6025 0.682
z

z z
−

− +
 1.336 

Satakshi et. al.[251] 2
0.463 0.30172

1.5312 0.6868
z

z z
+

− +
 0.1466 

Prasad [240] 
(using 2 TM) 2

0.5282 0.4225
1.472 0.577

z
z z

−
− +

 1.176 

Prasad [240] 
(using one TM and MP) 2

0.420499 0.31486
1.472 0.577

z
z z

−
− +

 0.4238 

 

Example 3.3:  A discrete time system of fifth order [50] is considered 

  ( )
4 3 2

5 4 3 2
3 8.886 10.0221 5.091975 0.9811125

3.7 5.47 4.037 1.4856 0.21 3
 

7n
z z z z
z z z z z

G z − + − +
− + − + −

=  

Converting Gn(z) to p-domain using (3.7)   

( )
4 3 2

5 4 3 2
30000 31140 13620 2900 231

10000 13000 6700

(

1730 220 1

) 
(

7

)
n

n
n

N pG p

p p p p
p p p p p

D p

+ + + +
=

+ + + + +

=

  

It is desired to have a reduced system of second order. The steps described in 3.2 are followed 

resulting in 

           2

( ) 6.909 0.4076( )
( ) 0.5201 0.03

r
r

r

N p pG p
D p p p

+
= =

+ +
  

or        

5
2

2

5

2

1.167 10 1.098 1( )( ) 
( ) 10000 5

0

0
14799 099

11.67  10.98
1.4799 5099.

r
r

r

N z zG z
D z z z

z
z z

−
= =

−

=
+

×

−

×
+

−
  

The step and impulse responses of the original and reduced system are shown in Fig. 3.3(a)-

(b). These responses are compared in Table 3.4 in terms of SSE with other available methods. 
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Table 3.4  Comparison of reduced order systems for example 3.3 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 2
11.67  10.98

1.4799 5090. 9
z

z z
−

− −
 109.69 

Chen et. al. [50] 20.6636
0.008634 0.003272

1.265 60 6 6. 0
z

z z
−

− +
 109.79 

Prasad [240] 

(using stability equation and 

continued fraction) 
2
1.68157 1.587947

1.8542 0.86384
z

z z
−

− −
 178.11 

 

 
Fig. 3.3 (a) Comparison of step responses for example 3.3 

 
Fig. 3.3 (b) Comparison of impulse responses for example 3.3 
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Example 3.4:  Consider eighth order discrete transfer function taken from Bistritz [253] 

  
( )

7 6 5 4 3 2

8 7 6 5 4 3 2
1.68 1.116 0.21 0.152 0.516 0.262 0.044 0.006

8 5.046 3.348 0.63 0.456 1.548 0.786

( ) 

0.132 0.018

( )
n

n
n

N zG z
D z

z z z z z z z
z z z z z z z z

+ − + − − + −
=

− − + − + + − +

=

 

using (3.7)   

( ) ( ) 
( )

n
n

n

N pG p
D p

=   

7 6 5 4 3 2

8 7 6 5 4 3 2

840 6438 20883 37321 39556 24773
8517 1261

4000 29477 92665 161299 167933 105233 38404
8000 1000

p p p p p p
p

p p p p p p p
p

+ + + + + +
+

=
+ + + + + +

+ +

 

following the steps in 3.1 are  

            2

( ) 1.139 0.9483( )
( ) 1.84 0.752

r
r

r

N p pG p
D p p p

+
= =

+ +
 

or         2
2

0.3731 0.29( ) 85
1.626

( ) 
( ) 0.78 02

r
r

r

N z zG z
D z z z

−
= =

− −
 

Table 3.5  Comparison of reduced order systems for example 3.4 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 2
0.3731  0.2985

1.6268 0.702
z

z z
−

− −
  0.032 

Hwang et. al. [254] 2
0.316331 0.262395

1.73034 0.784276
z

z z
−

− −
 0.062 

Bistritz [253] 2
0.2696 0.2157

1.73 0.7842
z

z z
−

− −
 0.052 

Bistritz [132] 2
0.37131242 0.298

1.626873 0.701497
z

z z
−

− −
 0.057 

Hwang et. al. [254] 2
0.3664429 0.28918

1.626873 0.701497
z

z z
−

− −
 0.065 

Hwang and Shih [248] 
2

2
0.2018 0.156

1.2
0.04484

1.955 0.843
z z
z z− +

+ −  0.0791 

 The reaction curves and impulse responses of the original, reduced system are shown 

in Fig. 3.4(a)-(b). The results obtained are compared in terms of SSE with other available 

methods in Table 3.5 and is comparable. 
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Fig. 3.4 (a) Comparison of step responses for example 3.4 

 
Fig. 3.4 (b) Comparison of impulse responses for example 3.4 

 In this proposed method of reducing discrete time systems, the overall performance of 

the reduced system is comparable with other methods of reduction. The comparison tables, 

step and impulse responses mentioned justifies the same. In example 3.1, the proposed fifth 

order reduced system performs better as compared to its counterparts.  

 

3.3 STABILITY EQUATION AND LEAST SQUARES METHOD 

The advantages of stability equation (SE) method [50] is reaped, in combination with least 

squares method [174, 175, 231], to obtain the reduced order discrete system. Initially, the 

denominator polynomial of the higher order system in z-domain, is converted to p-domain 

and is then reduced using SE. Similarly, the numerator terms are obtained using least squares 
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method. The procedural steps to be followed are similar to (2.27) to (2.30). The results 

obtained using the proposed mixed method are as shown in the following solved examples. 

Further, the method is also extended for the order reduction of discrete time systems having 

multiple inputs and multiple outputs.  

3.3.1    Illustrative examples 

The detailed reduction procedure using the proposed mixed method is described in example 

1, where as in the later consecutive examples the reduced system are mentioned directly. SSE 

[251] using (3.10) is calculated to measure the goodness/quality of the reduced system. 

Example 3.5: Consider a discrete system taken from example 3 in 3.2.1  

  ( )
4 3 2

5 4 3 2
3 8.886 10.0221 5.091975 0.9811125

3.7 5.47 4.037 1.4856 0.21 3
 

7n
z z z z
z z z z z

G z − + − +
− + − + −

=  

Step 1:The fifth order discrete system Gn(z) is converted using bilinear transformation by 

substituting  z=(1+w)/(1-w) both in the numerator and denominator polynomial according to 

(3.3) 

 
(1 )/(1 )

4 3 2
(1 )/(1 )

4 3 2

4 3 2

( ) ( )|

3 8.886 10.0221 5.091975 0.9811125 |

(1 ) (1 ) (1 ) (1 )3 8.886 10.0221 5.091975 0.9811125
(1 ) (1 ) (1 ) (1 )

n n z w w

z w w

N w N z

z z z z

w w w w
w w w w

= + −

= + −

=

= − + − +

+ + + +
= − + − +

− − − −

  

 

4 3 2 2

3 4

4

4 3 2

3 8.886 10.0221

5.091975 0

(1 ) (1 ) (1 ) (1 ) (1 )

(1 )(1 ) (1 )( ) 0
(1

.9811125

27.

)

9791 15.6636( 3.8466 0.4876 0) 0. 231

n

n

N

N w w w

w w w

w

w w

w w ww
w

w

− +

−
=

+ + + +

+ + − + −

+ − + −
=

−

=

                                                 

 

(1 )/(1 )

5 4 3 2
(1 )/(1 )

4 3 2

5 4 3 2

4 3

5

5

( ) ( )|

3.7 5.47 4.037 1.4856 0.2173

(1 ) (1 ) (1 ) (1 ) (1 )3.7 5.47 4.037 1.4856 0.2173
(1 ) (1 ) (1 ) (1 ) (1 )

(1 ) 3.7(1 ) (1 ) 5.47(1 ) (1

n n z w w

z w w

D w D z

z z z z z

w w w w w
w w w w w
w w w w

= + −

= + −

=

= − + − + −

+ + + + +
= − + − + −

− − − − −

+ + +

=

+ − − 2 3

4 5

5

2) 4.037(1 ) (1 )

1.4856(1 ) (1 ) 0.2173(1 )
(1

0
)

w w w

w w w
w

− − + −

+ + − − −
=

−

 

 5 4 3 2( ) 15.9103 11.9885 3.531 0.533 0.0355 0.0017nD w w w w w w= + + + + +   

Step 2:using (3.4)  

 
4 3 2

5 4 3 2
( ) 27.9791 15.6636 3.8466 0.4876 0.0231( ) 
( ) 15.9103 11.9885 3.531 0.533 0.0355 0.0017

n
n

n

N w w w w wG w
D w w w w w w

+ + + +
= =

+ + + + +
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Step 3: Bifurcate Dn(w) into odd and even parts  

 5 3

4 2

( ) ( ) ( )

( ) 15.9103 3.531 0.0355

( ) 11.9885 0.533 0.0017

n o e

o

e

D w D w D w

D w w w w

D w w w

+ +

= +

=

= + + + +

 

Step 4:From De(w) and Do(w), following the tabular approach [126], the Dre(w) and Dro(w) 

are computed as shown in the Table 3.6 and 3.7. Let Qm be the ratio of the successive 

elements in the first columns of the following Table 3.6 and 3.7 respectively.  

Table 3.6  Even degree alternates  

Qm Even degree alternates 

 11.9885 0.533 0.0017 

0.044 0.533 0.0017  

0.041 0.4947 0.0017  

0.041 0.4918 0.0017 (2nd) 

 

 

Table 3.7 Odd degree alternates 

Qm Odd degree alternates 

 15.9103 3.531 0.0355 

0.221 3.531 0.0355  

0.211 3.371 0.0355  

0.211 3.363 0.0355 (2nd) 

Therefore Dr(w) are 

 

2

2

2

3

( ) 0.4918 0.0017

( ) 3.363 0.0355
( ) ( ) ( )

0.4918 0.0355 0.0017

( ) 0.072 0.00346

re

ro

r r

r

roe

D w w

D w w w
D w D w D w

w w

D w w w

+

+

= +

=
= +

+

= +

= +

 

Step 5:In order to find the numerator terms of Nr(w), the time moment proportional’s ‘ci’ are 

computed by expanding Gn(w) about w=0 by using  

 
0

( ) i
n i

i
G w c w

∞

=

= ∑                                                                                                       (3.11) 



Reduction of Discrete Time Systems using New Composite Methods 
                                                                                                                                                                                                                                                               

85 
 

The first five time moment proportionals of Gn(w) are tabulated in Table 3.8 

 

Table 3.8 Time moment proportionals obtained for example 3.5 

i ci 

0 13.5882352941176 

1 3.06920415224912 

2 -2061.69774068797 

3 23081.1324457322 

4 78672.8678106316 

 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 6:Nr(w) is  

 ( ) 0.989 0.04702r w wN = +  

Step 7:The ratio of Nr(w), Dr(w) is Gr(w).  

 2
( ) 0.989 0.04702( )
( ) 0.072 0.00346

r
r

r

w ww
w w

NG
wD +
+

= =
+

 

Step 8:Applying inverse bilinear transformation using (3.3), the reduced order discrete time 

system Gr(z) is obtained as (3.4). 

 
( 1)/( 1)

( 1)/( 1)

( ) ( )|

0.989 0.04702 |

( 1)0.989 0.04702 0
( 1)

w

w

r z z

z z

rN z N w
w

z
z

= − +

= − +

=

= +

−
= + =

+

 

 ( ) 0.989( 1) 0.04702( 1)rN z z z= − + +  

 

2

2

2

( 1)/( 1)

( 1)/( 1)

2 2

( ) ( )|

0.072 0.00346

( 1) ( 1)0.072 0.003 046
( 1)( 1)

( ) ( 1) 0.072( 1)( 1) 0.00346( 1)

r r w z

r

z

w z z

D z D w

w w

z z
zz

D z z z z z

= − +

= − +

=

= +

− −
= + +

++

− −+ +

+

+

=

= +

 

the second order reduced discrete system is  
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5 5

2

2

2

1.474 10 1.344 10
53773 99654 46573

3.156 2.858
1.853 0

( )( ) 
( )

.866

r

r
r

N zG z
D z

z
z z

z
z z

× − ×
− +
−

=
− +

=

=                                                                  

 
Fig. 3.5 (a) Comparison of step responses for example 3.5 

 

 
Fig. 3.5 (b) Comparison of impulse responses for example3.5 

 

 The step and impulse responses of the original and reduced system are shown in Fig. 

3.5 (a)-(b). These responses are compared in Table 3.9 in terms of SSE with other available 

methods. 
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Table 3.9  Comparison of reduced order systems for example 3.5 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 2
3.156 2.858

1.853 0.866
z

z z
−

− +
  93.12 

Chen et. al. [50] 20.6636
0.008634 0.003272

1.265 60 6 6. 0
z

z z
−

− +
 109.79 

Prasad [240] 
(using stability equation and 

continued fraction) 
2
1.68157 1.587947

1.8542 0.86384
z

z z
−

− −
 178.11 

 

Example 3.6:  Consider eightth order higher order discrete transfer function [253] taken 

from example 3.4 in 3.2.1. The equivalent Gn(w) is 

 

7 6 5 4 3

2

8 7 6 5 4

3 2

0.002 4.866 27.814 54.058 62.106

( ) 46.214 17.986 1.998( ) 
( ) 8 78.64 292.928 526.816 584.144

400.24 139.232 16 2

n
n

n

w w w w w
N w w wG w
D w w w w w w

w w w

− + + + +

+ + +
= =

+ + + + +

+ + +

 

following steps 3-8 in 3.3.1 in example 3.5, the reduced system obtained is 

 2
2 2

152.8 122.9 0.269 0.216
9

( )( ) 
( ) 569 446 0.85 1 3 4.7 71 8

r
r

r

N z z zG z
D z z z z z

− −
= = =

− + − +
 

 

Table 3.10  Comparison of reduced order systems for example 3.6 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 2
0.269  0.216

1.731 0.784
z

z z
−

− +
  0.032 

Hwang et. al. [254] 2
0.316331 0.262395

1.73034 0.784276
z

z z
−

− −
 0.062 

Bistritz [253] 2
0.2696 0.2157

1.73 0.7842
z

z z
−

− −
 0.052 

Bistritz [132] 2
0.37131242 0.298

1.626873 0.701497
z

z z
−

− −
 0.057 

Hwang et. al. [254] 2
0.3664429 0.28918

1.626873 0.701497
z

z z
−

− −
 0.065 

Hwang and Shih [248] 
2

2
0.2018 0.156

1.2
0.04484

1.955 0.843
z z
z z− +

+ −  0.0791 
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The responses of the original and reduced system are shown in Fig. 3.6 (a)-(b). The results 

obtained are compared in terms of SSE with other available methods in Table 3.10 

 
Fig. 3.6 (a) Comparison of step responses for example 3.6 

 
Fig. 3.6 (b) Comparison of impulse responses for example 3.6 

 

Example 3.7:  Consider eightth order discrete time system from example 3.2 in 3.2.1.  

Using bilinear transformation, Gn(w)  

  ( )

7 6 5 4 3

2

8 7 6 5 4

3 2

0.04 813.14 4641.9 9020.1 10362

7708.6 2999.8 333.3
666.66 6146.8 22496 41713 48010

34682 13959 2667.1 333.4

 n

w w w w w

w w
w w w w w

w

w

w w

G

− + + + +

+ + +
+ + +

+ + +

=
+ +
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using the proposed mixed method as in example 3.5 in 3.3.1, the second order reduced 

system is obtained as 

 

2
2

2

131 105
48

( )( ) 
( ) 309 2047
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r

N z zG z
D z z z

z
z z
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− +
−

=
− +

 

 
Fig. 3.7 (a) Comparison of step responses for example 3.7 

 
Fig. 3.7 (b) Comparison of impulse responses for example 3.7 

 

 The reaction curves (unit step responses) of the original system 'Gn(z)' and reduced 

system 'Gr(z)' are shown in Fig. 3.7 (a). Similarly, Fig. 3.7 (b) depicts the impulse responses 
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r(z)'. The results obtained by the proposed reduction method, are compared 
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with other reduction methods proposed by several authors in Table 3.11. SSE is taken as the 

base for comparison. 

 

Table 3.11  Comparison of reduced order systems for example 3.7 
Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 
(second order) 2

0.424  0.339
1.576 0.66

z
z z

−
− +

  0.022 

Satakshi et. al.[251] 2
0.625 0.5443

1.4323 0.5129
z

z z
−

− +
 0.0245 

Chung et. al.[252]  2
0.3975 0.318

1.6025 0.682
z

z z
−

− +
 1.336 

Satakshi et. al.[251] 2
0.7769 0.694

1.4248 0.5075
z

z z
−

− +
 0.0486 

Satakshi et. al.[251] 2
0.463 0.30172

1.5312 0.6868
z

z z
+

− +
 0.1466 

Prasad [240] 
(using two TM) 2

0.5282 0.4225
1.472 0.577

z
z z

−
− +

 1.176 

Prasad  [240] 
(using one TM/ MP) 2

0.420499 0.31486
1.472 0.577

z
z z

−
− +

 0.4238 

 

Example 3.8:  A supersonic inlet model transfer function in example 3.1 in 3.2.1. 

Gn(w) is obtained by substituting z=(1+w)/(1-w) in Gn(z) 

( )
6 5 4 3 2

7 6 5 4 3 2
24.76 30.616 39.438 23.13 10.432 2.0398 0.3377

15.353 20.128 42.551 23.144 20.324 4.4992 1.9 0.1008
 n

w w w w w w
w w w w w

G
w w

w + + + + + +
+ + + + +

=
+ +

 

 

Table 3.12  Comparison of reduced order systems for example 3.8 

Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 

(second order) 2
0.789  0.559

1.289 0.358
z

z z
−

− +
  0.3269 

Proposed Method 

(third order) 

2

3 2
1.014 1.515  0.627

2.245 1.906 0.622
z z

z z z
− +

− + −
  0.2896 

Lalonde et. al.[176] 

(third order) 

2

3 2

30.0627 2.106 1.569 0.0371
0.8204 0.1697 0.1648
z z z

z z z
− + +

− + −
 0.55879 

Lalonde et. al.[176] 

(fifth order) 

4 5 4 3 2

5 4 3 2

1.72 10 2.1 2.9 2.15 1.5 0.66
1.488 1.231 0.96 0.6693 0.3247

z z z z z
z z z z z

−× − + − −
+ − −
+

− −
 0.17453 
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The reduced system obtained using steps 3-8 of 3.3.1 obtained is 
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r

r
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z z z z
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− −
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= =
− + − − + −

 

 
Fig. 3.8 (a) Comparison of step responses for example 3.8 

 
Fig. 3.8 (b) Comparison of impulse responses for example 3.8 

 The original, reduced system are subjected are to step and impulse input. Their 

corresponding responses are shown in Fig. 3.8 (a)-(b). These responses are compared in Table 

3.12 with respect to SSE given by (3.10) with other available methods. 
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3.3.2 Extension to Multivariable systems 

The proposed method described in 3.3 is extended for discrete systems having multiple input 

and multiple output. The procedure comprises of direct application of the SISO method on 

the elements of the transfer function matrix of MIMO system. The steps to be followed are 

simple and is clear in the following example 3.9. 

 

3.3.2.1 Illustrative Examples 

Example 3.9: A multivariable system of dimension (m×l) with m=3 , l=2 taken from [250] is 

given by 

 1311 12

2321 22

( )( ) ( )1[ ( )]
( )( ) ( )( )n

n
A zA z A z

G z
A zA z A zD z

 
=  

 
 

 

             

11

12

13

7 6 5 4 3 2

7 6 5 4 3 2

7 6 5 4 3

21

2

7

1.3 0.02 0.042 0.181 0.007 0.024 0.0033

0.082 0.095 0.14 0.01 0.13 0.2 0.017 0.0015

0.3 0.021 0.05 0.1 0.205 0.055 0.003 0.0012

1.08

( )

( )

( )

( ) 1

z z z z z z z

z z z z z z z

z z

A z

A z

A z z z zz z

zA z

+ − + − − + −

+ −

=

=

=

=

+ − − + −

+ − − − − + −
6 5 4 3 2

7 6 5 4 3 2

7
22

23
5 4 3

8

6 2

7

0.3 0.286 0.092 0.113 0.08 0.0354 0.004

0.3 0.621 0.253 0.116 0.247 0.26 0.212 0.004

1.05

( )

( )

( ) 8 5.046 3.34

0.13 0.27 0.043 0.071 0.17 0.085 0.003

n

z z z z z z

z z z z z zA z

A z

D z z

z

z z z z

z

z z z

+

=

=

= −

− − + − − −

+ − − + − − −

+ + − + − − −

− 6 5 4 3 28 0.63 0.456 1.548 0.786 0.132 0.018z z z z z z+ − + + − +

  

It is desired to reduce [Gn(z)] to a reduced order system represented in the form 

           12 1311

22 2321

( ) ( )( )1[ ( )]
( ) ( )( )( )r

B z B zB z
R z

B z B zB zD z
 

=  
 

                                                                 (3.12) 

Step 1:Gn(z) is converted using bilinear transformation by substituting  z=(1+w)/(1-w) both 

in the numerator and denominator of each Aij(z) according to (3.3),  

 1311 12

2321 22

( )( ) ( )1[ ( )]
( )( ) ( )( )n

n
A wA w A w

G w
A wA w A wD w

 
=  

 
 

7 6 5 4 3 2

7 6 5 4 3 2

7 6 5
12

13
4

11 0.0913 4.0149 19.241 39.982 49.891 36.837 14.187 2.1547

0.0745 0.8965 1.5315 3.5975 2.5925 2.7185 1.2945 0.2675

0.1832 1.9616 6.4832 9.948 10.29

( )

( )

( 2)

w w w w w w w

w w w w w w

A w

A w w

w w wA w ww

+ + + + + + +

− − + + + + + −

+ += + +

=

=

21

22

3 2

7 6 5 4 3 2

23

7 6 5 4 3 2

7 6 5

7.3008 2.3184 0.0872

0.7486 5.097 18.945 38.265 41.297 24.569 8.449 0.9966

0.159 1.643 2.195 11.273 15.859 8.991 5.951 0.323

1.392 7.376 20.27

( )

( )

) 6(

A w

A w

w w

w w w w w w w

w w w w w w w

w w wA w

+ + −

+ + + + + + +

− − −

=

=

=

+ + + + +

+ + + 4 3 2

8 7 6 5 4 3 2( )

36.004 36.072 22.408 9.652 1.22

8 78.64 292.93 526.82 584.14 400.24 139.23 16 2n

w w w w

w ww w w w w wD w=

+ + + +

+ + + + + + + +
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Step 2:Consider Dn(w) and following step 3,4 in example 1 in 3.3.1,  

 2( ) 0.123 0.0153rD w w w= + +   

Step 3:Computation of the elements of transfer function matrix [R(w)]: 

By following the steps 5-6 of example 3.5 in 3.3.1 and applying on each element of [Gn(w)], 

results in 

 
11 12

13 21

22 23

( ) ( ) 0.009307 0.002006
( ) 0.01726 0.000654 ( ) 0.06486 0.007475
( ) 0.04512 0.002423 ( ) 0.07422 0.00

0.1096 0.01 1

9

6

15

6B w B w w
B w w B w w
B w

w

w w B w

= = −
= − = +
= +

+

+ =
 

substitute the values of Bij, Dr  (w-domain) in [R(w)]  

 12 1311

22 2321

( ) ( )( )1[ ( )]
( ) ( )( )( )r

B w B wB w
R w

B w B wB wD w
 

=  
 

 

Step 4:Convert Bij in w-domain to z-domain using inverse bilinear transformation using 

(3.5). Similarly convert Dr(w) to Dr(z). Substituting the Bij in z-domain and Dr(z) in (3.12) ,  

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B z B z
R z

B z B zD z
 

=  
 

 

 

11 12

13 2

2

1

22 23

( ) 0.221 ( ) 0.0128 0.0198
( ) 0.0291 0.0314 ( ) 0.127 0.1008
( ) 0.0835 0.075 ( )

0.164

1.731 0

0.146 0.1139

.7 4( ) 8r

B z z B z z
B z z B z z
B z z B z z

D zz z

= − = −
= − = −
= − =

− +

+

=

 

 

Table 3.13 Comparison of SSE for example 3.9 

rij (i,j=1-3) Proposed Method Prasad [240] 

r11 0.02610 0.04475 

r12 0.00175 0.00203 

r13 0.00189 3.5437 

r21 0.00631 0.01026 

r22 0.00516 0.006618 

r23 0.01160 0.01747 

 

 The results obtained by proposed method is compared with other method in terms of 

SSE for each element of transfer function matrix are according to Table 3.13. The unit step 

and impulse responses of [Gn(z)] and [R(z)] are depicted in Fig. 3.9 (a)-(b). 
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Fig. 3.9 (a) Comparison of step responses for example 3.9 

 
Fig. 3.9 (b) Comparison of impulse responses for example 3.9 

 

Example 3.10: Given a z-transfer function matrix by 
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Applying bilinear transformation according to (3.3),  
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5 4 3 2

5 4 3 2

5 4 3 2

5 4

11
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2
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1

22

22.976 31.208 14.7 2.872 0.238 0.0064

13.861 20.652 10.908 2.388 0.188 0.0032

13.861 20.652 10.908 2.388 0.188 0.0032

11.313 13.
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( )

(

765 5.

)

( 8 1) 80 8 .0

w w w w w

w w w w w

A w

A w

A w w w w w w

wA w w w

+ + + + +

+ + + + +

+ + + + +

=

+ + +

=

=

= 2

6 5 4 3 2

368 0.0748 0.0016

17.068 26.872 15.55 4.03 0.461 0.0198 0.00( 08)n

w w

w w w wD w ww

+ +

+ + + + −= +

 

following the steps 2-4 of example 5 in 3.3.2.1, the reduced discrete system obtained is 

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B z B z
R z

B z B zD z
 

=  
 

 

 
11 12

2
2

1 22

( ) 2.606 2.469 ( ) 2.231 4.809
( ) 1.132 1.21 (

1.733

) 0.713

0.7395

0.683

( )r

B z z B z z
B z z B z z

w wD z − +

= − = −
= − = −

=

 

Table 3.14 gives the SSE values obtained for rij. Fig. 3.10 (a)-(b) depicts the step and impulse 

responses of Gn(z) and R(z) respectively. 

 

Table 3.14 SSE values for example 3.10 

rij (i,j=1-3) Proposed Method 

r11 0.02610 

r12 0.00175 

r13 0.00189 

r21 0.00631 

r22 0.00516 

r23 0.01160 

 

In this proposed method, the z-domain is transformed to w-domain unlike to the method 

discussed in section 3.2. The method is applied on SISO systems initially and then extended 

to MIMO systems. In example 3.8 the third order proposed system gives much lower SSE as 

compared to Lalonde et. al.[176] of the same order. Error analysis is carried out on all 

examples considered in this section, to establish the validity of the introduced method. 
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Fig. 3.10 (a) Comparison of step responses for example 3.10 

 
Fig. 3.10 (b) Comparison of impulse responses for example 3.10 

 

3.4 DOMINANT POLE AND LEAST SQUARES METHOD 

As discussed in 2.3.3 the proposed method combines the concept of dominant pole retention 

[51, 147, 161, 165] is with least squares method [174, 175, 231] to generate the reduced 

order stable system. Once again, the given higher order discrete system is converted to w-

domain using bilinear transformation (3.3) and then the proposed method is applied. Then 

the reduced system is converted back to z-domain using (3.5).The same method is then 

extended for multivariable systems also. The procedure for generating the reduced discrete 
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Step 1:Consider Gn(z) of the form (3.1) and convert using bilinear transformation (3.3) to 

give  

 1
2

1 2

...
;

.
( )

( ) 
( .) .

m
o mn

n n
o nn

N wG w a a z a z
b b z b zD b zw

+ + +
=

+ + + +
=                                                                                                                  

Step 2:Find the roots of the denominator polynomial Dn(w), such that  -p1 < -p2  < ... < -pn 

are the poles of the higher order system Gn(w). 

Step 3:Retain of dominant pole of Gn(w)\ 

Let us assume that rth order reduced system is desired. Then, 'r' number of poles nearest to 

the origin are selected and retained whereas the other poles are neglected. Doing so, the 

overall behavior of the reduced system is maintained similar to that of the original system. 

Now, the reduced denominator Dr(w) is 

            1
2

1 2

2( ) ( ) ( ) ...

...

( )
r

o

r r

e e e w
D w w p w p w p

w w
= + + +

+ + + +=
                                                                                     

Step 4:The numerator terms of Nr(w) are found initially computing the time moment 

proportional’s ‘ci’ by expanding Gn(w) about w=0 using the formula (3.11).Substitute the 

value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients ‘di’, i = 0,1, 2 

, ...(r-1) of Nr(w). 

Step 5: The ratio of Nr(w), Dr(w) is  

 
( )( )
( )

r
r

r

NG
D

ww
w

=  

Step 6:Applying inverse bilinear transformation using (3.5), the reduced order system Gr(z) 

is obtained 

 
( )( ) 
( )

r
r

r

N zG z
D z

=                                                                  

 

3.4.1 Illustrative examples 

The steps 1-6 of the proposed method are applied on numerical examples taken from the 

literature. The first example is solved in detail while the rest of the examples are solved 

briefly. The results obtained are compared with other methods available in the literature in 

terms of SSE given by (3.10).Further, the step and impulse responses are also plotted for the 

original and reduced discrete system.  
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Example 3.11: Consider eighth order higher order discrete transfer function [253] taken from 

example 3.4 in 3.2.1.  

Step 1:The given discrete system Gn(z) is converted using bilinear transformation by 

substituting  z=(1+w)/(1-w) both in the numerator and denominator polynomial according to 

(3.3)  

 

7 6 5 4 3

2

8 7 6 5 4

3 2

0.002 4.866 27.814 54.058 62.106

( ) 46.214 17.986 1.998( ) 
( ) 8 78.64 292.928 526.816 584.144

400.24 139.232 16 2

n
n

n

w w w w w
N w w wG w
D w w w w w w

w w w

− + + + +

+ + +
= =

+ + + + +

+ + +

 

Step 2:The roots of Dn(w) are p1,2 = -0.0463 ± j0.1362, p3,4 = -0.4281 ± j0.9899, p5,6 =-0.8380 

± j0.1839,p7,8 = -3.6025 ± j1.0655.Since a second order reduced systems is desired, the 

complex poles near the origin p1,2 are retained. The reduced denominator obtained is  

 
1

2
2( ) ( )( ) ( 0.0463 j0.1362)( 0.0463 j0.1362)

0.0926w+0.0207
rD w w p w p w w

w

= + + = + + + −

= +
 

Step 3:In order to find the numerator terms of Nr(w), the time moment proportional’s ‘ci’ are 

computed by expanding Gn(w) about w=0 by using (3.11). The first five time moment 

proportionals of Gn(w) as in Table 3.15. 

Table 3.15 Time moment proportionals obtained for example 3.11 

i ci 

0 0.9990 

1 1.0010 

2 -54.4474 

3 197.0266 

4 1749.1254 

 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 

Step 4:Nr(w) is ( ) 0.1132 0.02068rN w w= +  

Step 5:The ratio of Nr(w), Dr(w) is  

 2
( ) 0.1132 0.02068( )
( ) 0.0926 0.0207

r
r

r

w wG
D

w
w w

N
w

+
++

= =  

Step 6:Applying inverse bilinear transformation using (3.3), the reduced order discrete time 

system Gr(z) is obtained as (3.4). 
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( 1)/( 1)

( 1)/( 1)

( ) ( )|
0.1132 0.02068 |

( 1)0.1132 0.02068 0
( 1)

( ) 0.1132( 1) 0.02068( 1)

w z z

w z

r r

r

z

N z N w
w

z
z

N z z z

= − +

= − +

=
= +

−
= + =

+
= − + +

 

 

2

2

2

( 1)/( 1)

( 1)/( 1)

2 2

( ) ( )|

0.0926 0.0207

( 1) ( 1)0.0926 0.02 007
( 1)( 1)

( ) ( 1) 0.0926( 1)( 1) 0.0207( 1)

wr

r

z z

w z z

rD z D w

w w

z z
zz

D z z z z z

= − +

= − +

=

= +

− −
= + +

++

− −+ +

=

+ +

+

=

 

The second order reduced discrete system is  

 2

2

2

2678 1850
11133 19586 9281

0.24

( )( ) 
( )

0.166
1.759 0.8336

r

r
r

z
z z

z

N zG z
D z

z z

−
− +
−

=
− +

=

=    

           Table 3.16  Comparison of reduced order systems for example 3.11 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 2
0.24 0.166
1.759 0.8336

z
z z

−
− +

  0.00043 

Hwang et. al. [254] 2
0.316331 0.262395

1.73034 0.784276
z

z z
−

− −
 0.062 

Bistritz [253] 2
0.2696 0.2157

1.73 0.7842
z

z z
−

− −
 0.052 

Bistritz [132] 2
0.37131242 0.298

1.626873 0.701497
z

z z
−

− −
 0.057 

Hwang et. al. [254] 2
0.3664429 0.28918

1.626873 0.701497
z

z z
−

− −
 0.065 

Hwang and Shih [248] 
2

2
0.2018 0.156

1.2
0.04484

1.955 0.843
z z
z z− +

+ −  0.0791 

 

 The responses of the original and reduced system are shown in Fig. 3.11 (a)-(b). The 

results obtained are compared in terms of SSE with other available methods in Table 3.16. 
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Fig. 3.11 (a) Comparison of step responses for example 3.11 

 
Fig. 3.11 (b) Comparison of impulse responses for example 3.11 

Example 3.12:  Consider a supersonic inlet model transfer function taken from Lalonde et. 

al.[176]  

  ( )
6 5 4 3 2

7 6 5 4 3 2
( ) 2.0434 4.982 6.57 5.819 3.636 1.41 0.2997 
( ) 2.46 3.433 3.33 2.546 1.584 0.7478 0.252

n
n

n

N z z z z z z zG z
D z z z z z z z z

− + − + − +
= =

− + − + − + −
 

Gn(w) is given by 

( )
6 5 4 3 2

7 6 5 4 3 2
24.76 30.616 39.438 23.13 10.432 2.0398 0.3377

15.353 20.128 42.551 23.144 20.324 4.4992 1.9 0.1008
 n

w w w w w w
w w w w w

G
w w

w + + + + + +
+ + + + +

=
+ +

 

Then the reduced second and fifth order discrete system is obtained by following steps 2-6 in 

3.4, are 
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2

2

2

3 2

2

2
3

3 2

( ) 

140500 209900 86970( ) 
138

9303 56.46
16277 8620 4897

0

566 3111

.572 0.003
0.5296 0.3

1.013 1.513 0.627
2.245 1.905 0.

33 264077 8624

2

3

62

r

r

G z

z zG z
z z

z
z z

z
z z

z z
z

z

z z

=

− +
=

−

−
− −
−

=
− +

− −
=

− − +

+ −

 

The original and reduced system subjected to step and impulse input and their corresponding 

responses are shown in Fig. 3.12 (a)-(b). These responses are compared in Table 3.17 with 

respect to SSE given by (3.10) with other available methods. 

 
Fig. 3.12 (a) Comparison of step responses for example 3.12 

 
Fig. 3.12 (b) Comparison of impulse responses for example 3.12 
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Table 3.17  Comparison of reduced order systems for example 3.12 

Order Reduction 

Method 

Reduced System 

Gr(z) 
SSE 

Proposed Method 

(second order) 2
0.572 0.003

0.5296 0.3
z

z z
−

− +
  0.4535 

Proposed Method 

(third order) 

2

3 2
1.013 1.513 0.627

2.245 1.905 0.622
z z

z z z
− −

− − +
  0.2896 

Lalonde et. 

al.[176] 

(third order) 

2

3 2

30.0627 2.106 1.569 0.0371
0.8204 0.1697 0.1648
z z z

z z z
− + +

− + −
 0.55879 

 

Example 3.13:  Consider 8th order discrete time system taken in 3.2.1 in example 3.2.  

Using the procedure of the proposed method (3.4), the reduced second order discrete system 

is  

            2
2

( ) 0.498 0.342( ) 
( ) 1.5 0.658

r
r

r

N z zG z
D z z z

−
= =

− +
 

Table 3.18  Comparison of reduced order systems for example 3.13 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 

(second order) 2
0.498 0.342

1.5 0.658
z

z z
−

− +
  0.00148 

Chung et. al.[252]  2
0.3975 0.318

1.6025 0.682
z

z z
−

− +
 1.336 

Satakshi et. al.[251] 2
0.463 0.30172

1.5312 0.6868
z

z z
+

− +
 0.1466 

Prasad [240] 

(using 2 TM) 2
0.5282 0.4225

1.472 0.577
z

z z
−

− +
 1.176 

Prasad  

(using one TM and MP) 2
0.420499 0.31486

1.472 0.577
z

z z
−

− +
 0.4238 

  

 The step and impulse responses of the original and reduced system are shown in Fig. 

3.13 (a)-(b). These responses are compared in Table 3.18 in terms of SSE with other available 

methods. 
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Fig. 3.13 (a) Comparison of step responses for example 3.13 

 
Fig. 3.13 (b) Comparison of impulse responses for example 3.13 

Example 3.14:  Consider fifth order discrete time system taken from Chen et. al. [50]  

 ( )
4 3 2

5 4 3 2
3 8.886 10.0221 5.091975 0.9811125

3.7 5.47 4.037 1.4856 0.21 3
 

7n
z z z z
z z z z z

G z − + − +
− + − + −

=   

The reduced system of second order is obtained by applying the proposed method (3.4) and is 

given by             

 2
2

( )( ) 
( ) 0.

1.647  
7

1.161
1. 787 657

r
r

r

N z zG z
D z z z

−
= =

− −
 

The step and impulse responses of the original and reduced system are shown in Fig. 3.14 (a)-

(b). These responses are compared in Table 3.19 in terms of SSE with other available 

methods. 
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Fig. 3.14 (a) Comparison of step responses for example 3.14 

 
Fig. 3.14 (b) Comparison of impulse responses for example 3.14 

 

Table 3.19  Comparison of reduced order systems for example 3.14 

Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 2
1.647

0.778
 1.161

1.757 6
z

z z
−

− −
 1.737 

Chen et. al. [50] 20.6636
0.008634 0.003272

1.265 60 6 6. 0
z

z z
−

− +
 109.79 

Prasad [240] 

(using SE and continued fraction) 2
1.68157 1.587947

1.8542 0.86384
z

z z
−

− −
 178.11 
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3.4.2 Extension to Multivariable systems 

The mixed method using DP and least square is extended for multivariable systems. The 

procedure of 3.3 applies on each of the elements of the transfer function matrix of MIMO 

system. Example 5 is solved in depth to signify the proposed procedure.  

 

3.4.2.1 Illustrative Examples 

Example 3.15: Revisit the multivariable system of example 3.10 in 3.3.2 

 1311 12

2321 22

( )( ) ( )1[ ( )]
( )( ) ( )( )n

n

A zA z A z
G z

A zA z A zD z
 

=  
 

 

Step 1:[Gn(z)] is converted to [Gn(w)] following step 1- 2 of example 1 in 3.3.2.1. 

Step 2:The roots of Dn(w),  are p1,2 = -0.0463 ± j0.1362, p3,4 = -0.4281 ± j0.9899, p5,6 = -

0.8380 ± j0.1839, p7,8 = -3.6025 ± j1.0655.Since a second order reduced systems is desired, 

the complex poles near the origin p1,2 are retained.The reduced denominator obtained are 

 
1

2
2( ) ( )( ) ( 0.0463 j0.1362)( 0.0463 j0.1362)

0.0926w+0.0207
rD w w p w p w w

w

= + + = + + + −

= +
 

Step 3:Using each element of [Gn(z)] using steps 3-4 of example 3.11 in 3.4.1 resulting in 

 12 1311

22 2321

( ) ( )( )1[ ( )]
( ) ( )( )( )r

B w B wB w
R w

B w B wB wD w
 

=  
 

 

 

11 12

13 21

22 23
2

( ) ( ) 0.02316 0.002769
( ) 0.02718 0.0009025 ( ) 0.05107 0.01031
( ) 0.0498 0.003

0.0681

343 ( ) 0.05337 0.

9 0.0223

0.0926 0.0207

01263

( )r

B w

w w

w B w w
B w w B w w
B w w B w w

D w

= +

+ +

= −
= − = +
= + = +

=

 

Step 4:Convert Bij in w-domain to z-domain using inverse bilinear transformation using (3.5) 

and Dr(w) to Dr(z). Substituting Bij in z-domain and Dr(z) in (3.12),  

 12 1311

22 2321

( ) ( )( )1[ ( )]
( ) ( )( )( )r

B z B zB z
R z

B z B zB zD z
 

=  
 

 

 

11 12

13 2

23
2

1

22

( ) 0.1625 ( ) 0.0366 0.0465
( ) 0.0472 0.05 ( ) 0.11 0.0732
( ) 0.0954 0.0834 ( )

0.

0.122 0.0767

(

0824

1.75) 9 0.8334r

B z z B z z
B z z B z z
B z z B z

w

z

D z w

= − = −
= − = −
= − =

+

+

= −

 

The results are tabulated in Table 3.20 in terms of SSE for each element of transfer function 

matrix. The unit step and impulse responses of [Gn(z)] and [R(z)] are depicted in Fig. 3.15 (a)-

(b). 
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Table 3.20 Comparison of SSE for example 3.15 

rij (i,j=1-3) Proposed Method Prasad [240] 

r11 0.000192 0.04475 

r12 0.00202 0.00203 

r13 0.0000717 3.5437 

r21 0.01026 0.01026 

r22 0.006619 0.006618 

r23 0.00058 0.01747 

 

 
Fig. 3.15 (a) Comparison of step responses for example 3.15 

 
Fig. 3.15 (b) Comparison of impulse responses for example 3.15 
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Example 3.16: Given a z-transfer function matrix of example 3.9 in 3.3.2.1 

 The reduced system obtained by applying method 3 in 3.4.2 , 

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B z B z
R z

B z B zD z
 

=  
 

 

 

11

12

21

2
22

( ) 4.9 4.142
( ) 2.81 2.39
( ) 1.395 1.049

0.922 0.042

( ) 0.63 4.63

( ) 5r

B z z
B z z
B z z
B z z

D z z z− −

= −
= −
= −
= −

=

 

 
Fig. 3.16 (a) Comparison of step responses for example 3.16 

 
Fig. 3.16 (b) Comparison of impulse responses for example 3.16 
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Table 3.21 gives the SSE values obtained for rij. Fig. 3.16 (a)-(b) depicts the step and impulse 

responses of [Gn(z)]  and [R(z)] respectively. 

 

Table 3.21 SSE values for example 3.16 

rij (i,j=1-2) Proposed Method 

r11 27.909 

r12 43.84 

r21 157.2 

r22 9.2436 

 

3.5 MODIFIED POLE CLUSTERING AND LEAST SQUARES METHOD 

The advantages of modified pole clustering method and least squares method are utilized in 

proposed method. The results obtained by modified pole cluster method are better than that 

obtained by pole clustering method. The procedure to compute the coefficients of the 

reduced system are as follows.  

Step 1: Gn(z) in the form of (3.1) and convert using bilinear transformation using (3.3) to 

give  

 
( )( ) 
( )

n
n

n

N wG w
D w

=                                                                                                                  

Step 2:Find the roots of the denominator polynomial Dn(w), such that  |-p1| < |-p2|  < ... < |-pn| 

are the poles of the higher order original system Gn(w). 

Step 3:The step 2 and 3 of section 2.3.4 are followed 

Step 4:Determine of denominator polynomial Dr(w) 

 The denominator polynomial is constructed using modified pole cluster centre  

             1 2( ) ( ) ( ) ... ( )r e e erD w w p w p w p= − − −  

The following cases may occur during the formation of the reduced denominator polynomial. 

            Case 1:If the modified cluster centre's are real, then the rth order reduced denominator 

is 

          
2

2
1 2

1( ) ( ) ( )...( )

... r
o

r e e er

re e w e w e w

D w w p w p w p= − − −

+ + + +=
                                                           (3.13)                                                 

            Case 2:If the modified cluster centre's are complex conjugate, then the rth order 

reduced denominator obtained is given by 
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* *

1 2 /2

1 2

/2
2

( ) ( |( )...( )( )

...
r e e er er

r
o re e w e w e

w

w

D w w w wφ φ φ φ
° °

= − − − −

= + + + +
                                           (3.14)                                               

                          eii eie A jBφ = ±   

             Case 3:If some of the modified cluster centre's are real (assume (r-2)) and others are 

complex conjugate, then   the rth order reduced denominator obtained is given 

by 

             
*

1 2 ( 2) 2

2
2

1

1

( ) ( ) ( |...( ) (

.

)

.

)

.

(r e

r

r

o

e e

r

e eD w w p w p w p w

e e w e w e w

wφ φ
°

−= − − −

+ + +

− −

= +
                         (3.15)                    

                          eii eie A jBφ = ±  

Step 5:The numerator terms of Nr(w) are found out by initially computing the time moment 

proportional’s ‘ci’ by expanding Gn(w) about w=0 using the formula (3.11).Substitute the 

value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients ‘di’, i = 0,1, 2 

, ...(r-1) of Nr(w). 

Step 6:The ratio of Nr(w), Dr(w) gives Gr(w)  

 
( )( )
( )

r
r

r

NG
D

ww
w

=  

Step 7:Now, applying inverse bilinear transformation using (3.5), the reduced order system 

Gr(z) is obtained as 

 
( )( ) 
( )

r
r

r

N zG z
D z

=                                                                  

3.5.1 Illustrative examples 

Example 3.17: Revisit higher order discrete transfer function [253] taken from example 4 in 

3.2.1.  

Step 1:The eighth order discrete system Gn(z) is converted using bilinear transformation by 

substituting  z=(1+w)/(1-w) both in the numerator and denominator polynomial according to 

(3.3) resulting in  Nn(w)and Dn(w) 

Step 2:According to (3.4) 

7 6 5 4 3 2

8 7 6 5 4 3 2

( )( ) 
( )

0.002 4.866 27.814 54.058 62.106 46.214 17.986 1.998
8 78.64 292.928 526.816 584.144 400.24 139.232 16 2

n
n

n

N wG w
D w

w w w w w w w
w w w w w w w w

=

− + + + + + + +
=

+ + + + + + + +
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Step 3:The roots of  Dn(w), are -0.0463± j0.1362, -0.4281± j0.9899, -0.8380± j0.1839, -

3.6025± j1.0655.  

Step 4:A second order reduced system is desired, two clusters are formed (-0.0463, -0.4281, 

-0.8380, -3.6025) and (0.1362, 0.9899, 0.1839, 1.0655). 

Step 5:The modified pole cluster centre Pei are computed. Considering the first cluster (-

0.0463, -0.4281, -0.8380, -3.6025), the value of x=4. For m=1, according to (3.13), the value 

of σm is obtained as -21.5983. 

Step 6: m is incremented to 2 and σm=-23.9342.  

Step 7:Repeat until the value of m =4 and is equal to the value of x. Using (3.22) the value of 

σm= -0.0508. Therefore the pole centre of cluster (-0.0463, -0.4281, -0.8380, -3.6025) is  

pe1= -0.0508. 

Step 8:Similarly, for the next cluster (0.1362, 0.9899, 0.1839, 1.0655), m=1, σm=--7.3421 

and m is incremented to 2 . 

Step 9:Follow the rules in step 3 of 3.5 till the value of m and x are same. Finally, the value 

of σm will be -0.1453 or pole centre of cluster (0.1362, 0.9899, 0.1839, 1.0655),  is pe2= -

0.1453. 

Step 10:Now using (3.14),  

            2( ) ( 0.0508 0.1453) ( 0.0508 0.1453) 0.1016 0.0237rD w w j w ww j + += + + + − =         

Step 11:In order to find the numerator terms of Nr(w), the time moment proportional’s ‘ci’ 

are computed by expanding Gn(w) about w=0 by using  

 
0

( ) i
n i

i
G w c w

∞

=

= ∑                                                                                                        (3.16) 

The first five time moment proportionals of Gn(w) as in Table 3.22 

Table 3.22 Time moment proportionals obtained for example 3.17 

i ci 

0 0.9990 

1 1.0010 

2 -54.4474 

3 197.0266 

4 1749.1254 

 

Substitute the value of ‘ei’, i = 0,1, 2 , ... ∞ and ‘ci’ in (2.8) and (2.9) to obtain the coefficients 

‘di’, i = 0,1, 2 , ...(r-1). 
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Step 12:Nr(w) is then given by ( ) 0.1252 0.02368rN w w= +  

Step 13:The ratio of Nr(w), Dr(w) gives Gr(w).  

 2
( ) 0.1252 0.02368( )
( ) 0.1016 0.0237

r
r

r

w wG
D

w
w w

N
w

+
++

= =  

Step 14:Applying inverse bilinear transformation using (3.3), the reduced order discrete time 

system Gr(z) is obtained as (3.4). 

 
( 1)/( 1)

( 1)/( 1)

( ) ( )|
0.1252 0.02368 |

( 1)0.1252 0.02368 0
( 1)

( ) 0.1252( 1) 0.02368( 1)

w z z

w z

r r

r

z

N z N w
w

z
z

N z z z

= − +

= − +

=
= +

−
= + =

+
= − + +

 

 

2

2

2

( 1)/( 1)

( 1)/( 1)

2 2

( ) ( )|

0.1016 0.0237

( 1) ( 1)0.1016 0.02 037
( 1)( 1)

( ) ( 1) 0.1016( 1)( 1) 0.0237( 1)

wr

r

z z

w z z

rD z D w

w w

z z
zz

D z z z z z

= − +

= − +

=

= +

− −
= + +

++

− −+ +

=

+ +

+

=

 

Therefore the second order reduced discrete system is  

 2 2
2 2977 2030 0.2645 0.180

11253 19526 9221 1.7
( )( ) 
( 35 0.81) 9

r
r

r

z z
z z z

N
z

zG z
D z

− −
=

− + − +
= =   

Table 3.23  Comparison of reduced order systems for example 3.17 

Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 2
0.2645 0.180

1.735 0.819
z

z z
−

− +
  0.0101 

Hwang et. al. [254] 2
0.316331 0.262395

1.73034 0.784276
z

z z
−

− −
 0.062 

Bistritz [253] 2
0.2696 0.2157

1.73 0.7842
z

z z
−

− −
 0.052 

Bistritz [132] 2
0.37131242 0.298

1.626873 0.701497
z

z z
−

− −
 0.057 

Hwang et. al. [254] 2
0.3664429 0.28918

1.626873 0.701497
z

z z
−

− −
 0.065 

Hwang and Shih [248] 
2

2
0.2018 0.156

1.2
0.04484

1.955 0.843
z z
z z− +

+ −  0.0791 

Prasad [240] 2
0.2871 z - 0.1436

1.722 0.8564z z− +
 0.1765 
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Fig. 3.17 (a) Comparison of step responses for example 3.17 

 
Fig. 3.17 (b) Comparison of impulse responses for example 3.17 

  The step and impulse responses of the original and reduced system are shown 

in Fig. 3.17 (a)-(b). These responses are compared in Table 3.23 in terms of SSE with other 

available methods. 

Example 3.18: Consider a supersonic inlet model transfer function taken from Lalonde et. 

al.[176]  

  ( )
6 5 4 3 2

7 6 5 4 3 2
( ) 2.0434 4.982 6.57 5.819 3.636 1.41 0.2997 
( ) 2.46 3.433 3.33 2.546 1.584 0.7478 0.252

n
n

n

N z z z z z z zG z
D z z z z z z z z

− + − + − +
= =

− + − + − + −
 

Gn(w) is given by 

( )
6 5 4 3 2

7 6 5 4 3 2
24.76 30.616 39.438 23.13 10.432 2.0398 0.3377

15.353 20.128 42.551 23.144 20.324 4.4992 1.9 0.1008
 n

w w w w w w
w w w w w

G
w w

w + + + + + +
+ + + + +

=
+ +
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It is desired to obtain a second order reduced system. Hence two pole clusters are formed as (-

0.0587, -0.0593, -0.1508, -0.4164) and (-0.3668,0.00001, -0.6696, -1.2371). Then the second 

order reduced system is obtained by following the steps mentioned in 3.5 as 

 2
2 2

1302 1175 0.462 0.193( ) 
2817 4981 2202 1.768 0.782r

z zG z
z z z z

− −
= =

− + − +
  

A third order reduced system can be obtained by forming three clusters  (0.0593),  (-0.0587± 
j0.3668) and (-0.1508± j0.6696, -0.4164± j1.2371). The reduced discrete system is obtained 
by following steps in 3.5,  resulting in 

 
2

3
23

1.264 0.71.855
2.16

85( )
1.926 0.705r

z zG z
z z z −− +

=
− +

 

  
Fig. 3.18 (a) Comparison of step responses for example 3.18 

 
Fig. 3.18 (b) Comparison of impulse responses for example 3.18 
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Table 3.24  Comparison of reduced order systems for example 3.18 

Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 
(second order) 2

0.462 0.193
1.768 0.782

z
z z

−
− +

  0.5113 

Proposed Method 
(third order) 3

2

2
1 1.855

2.16
.264 0.785

1.926 0.705
z z

z z z −
−

− +
+   0.15714 

Lalonde et. al.[176] 
(third order) 

2

3 2

30.0627 2.106 1.569 0.0371
0.8204 0.1697 0.1648
z z z

z z z
− + +

− + −
 0.55879 

Lalonde et. al.[176] 
(fifth order) 

4 5 4 3 2

5 4 3 2
1.72 10 2.1 2.9 2.15 1.5 0.66

1.488 1.231 0.96 0.6693 0.3247
z z z z z

z z z z z

−× − + − −
+ − −
+

− −
 0.17453 

  

 The original and reduced system is subjected to step and impulse input. Their 

corresponding responses are shown in Fig. 3.18 (a)-(b). These responses are compared in 

Table 3.24 with respect to SSE given by (3.10) with other available methods. 

 

Example 3.19:  Consider 8th order discrete time system taken in 3.2.1 in example 3.2.  

By following the procedure of the proposed method (3.5), the reduced second order discrete 

system is  

            2
2

( ) 0.537 0.365( ) 
( ) 1.462 0.635

r
r

r

N z zG z
D z z z

−
= =

− +
 

 

Table 3.25  Comparison of reduced order systems for example 3.19 

Order Reduction Method 
Reduced System 

Gr(z) 
SSE 

Proposed Method 
(second order) 2

0.537 0.365
1.462 0.635

z
z z

−
− +

  0.0053 

Chung et. al.[252]  2
0.3975 0.318

1.6025 0.682
z

z z
−

− +
 1.336 

Satakshi et. al.[251] 2
0.463 0.30172

1.5312 0.6868
z

z z
+

− +
 0.1466 

Prasad [240] 
(using 2 TM) 2

0.5282 0.4225
1.472 0.577

z
z z

−
− +

 1.176 

Prasad [240] 
(using one TM and MP) 2

0.420499 0.31486
1.472 0.577

z
z z

−
− +

 0.4238 
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Fig. 3.19 (a) Comparison of step responses for example 3.19 

 
Fig. 3.19 (b) Comparison of impulse responses for example 3.19 

  

 The step and impulse responses of the original and reduced system are shown in Fig. 

3.19 (a)-(b). These responses are compared in Table 3.25 in terms of SSE with other available 

methods. 

 

3.5.2 Extension to Multivariable systems 

The composite method using modified pole clustering and least square is extended for 

multivariable systems. The procedure in 3.5.1 is applied separately on each of the elements 

of the transfer function matrix of MIMO system. Example 3.20 is solved in depth to signify 

the proposed procedure.  
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3.5.2.1 Illustrative Examples 

Example 3.20:  A multivariable system of dimension (m×l) with m=3 , l=2 taken from [250] 

and also example 3.9 in 3.3.2  is given by 

 1311 12

2321 22

( )( ) ( )1[ ( )]
( )( ) ( )( )n

n

A zA z A z
G z

A zA z A zD z
 

=  
 

 

It is desired to reduce G(z) to a reduced order system represented in the form (3.12) 

Step 1:Using bilinear transformation [Gn(z)] is converted to [Gn(w)] following step 1 and 2 

as in 3.3.2.1. 

Step 2:The roots of Dn(w) are (-0.0463 ± j0.1362, -0.4281 ± j0.9899, -0.8380 ± 

j0.1839, -3.6025 ± j1.0655).Since a second order reduced systems is desired, two clusters  (-

0.0463, -0.4281, -0.8380, -3.6025)  and (0.1362,  0.9899, 0.1839, 1.0655) are formed. Then 

using step 4, the pole centre are obtained as pe1,2=0.0508±j0.1452. 

Step 3:Therefore the reduced denominator obtained is  

 2

( ) ( 0.0508 j0.1452)( 0.0508 j0.1452)

0.1016w+0.0237
rD w w w

w

= + + +

= +

−
 

Step 4:Now, consider each element of [Gn(z)] and compute the values of Bij (w-domain) 

from step 11-12  in 3.5.1 resulting in 

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B w B w
R w

B w B wD w
 

=  
 

 

 11 12

13 21

( ) ( ) 0.02711 0.00317
( ) 0.03131 0.001033 ( ) 0.05627 0.0

0.07331 0.025
1 8

53
1 1

B w B w w
B w w B

w
w w

= = −
= =

+
− +

 

 
22 23

2

( ) 0.05631 0.003828 ( ) 0.0607 0.01446

( 0.1016 0.0237)r

B w

w w

w B w w

D w + +

= + = +

=
 

Step 5:Now, convert Bij in w-domain to z-domain using inverse bilinear transformation using 

(3.5). Similarly convert Dr(w) to Dr(z). Substituting the Bij (z-domain) and Dr(z) in (3.12) ,  

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B z B z
R z

B z B zD z
 

=  
 

 

 

11 12

13 21

2 3
2

2 2

( ) 0.175 ( ) 0.0425 0.0538
( ) 0.0538 0.0574 ( ) 0.121 0.079
( ) 0.1068 0.

0.0849

1.7

0932

35 0.819

( ) 0.133 0.082

( )r

B z z B z z
B z z B z z
B z z B z

w

z

D z w

= − = −
= − = −
= −

+

= −

= −
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Table 3.26 Comparison of SSE for example 3.20 

rij (i,j=1-3) Proposed Method Prasad [240] 

r11 0.0058 0.04475 

r12 0.0011 0.00203 

r13 0.00050 3.5437 

r21 0.00151 0.01026 

r22 0.00576 0.006618 

r23 0.00432 0.01747 

 

 
Fig. 3.20 (a) Comparison of step responses for example 3.20 

 
Fig. 3.20 (b) Comparison of impulse responses for example 3.20 
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 The results are tabulated in Table 3.26 in terms of SSE for each element of transfer 

function matrix. The unit step and impulse responses of [Gn(z)] and [R(z)] are depicted in Fig. 

3.20 (a)-(b).  

 

Example 3.21: Given a z-transfer function matrix of example 3.10 in 3.3.2 

 

  
Fig. 3.21 (a) Comparison of step responses for example 3.21 

 

 
Fig. 3.21 (b) Comparison of impulse responses for example 3.21 
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The reduced system obtained by following steps 1-5 of example 3.20 in 3.5.2.1 obtained is 

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B z B z
R z

B z B zD z
 

=  
 

 

 11 12

21 22

( ) 0.789 0.0723 ( ) 4.472 4.08
( ) 0.0044 0.329 ( ) 1.26 1.116

B z z B z z
B z z B z z

= − = −
=− + = −

 

and 

 2 1.4) . 4( 0 435r z zD z − +=  

 Table 3.27 represents the SSE values obtained for rij by the proposed method. Fig. 

3.21 (a)-(d) depicts the step, impulse responses of [Gn(z)] and [R(z)] respectively and are 

found to be comparable. 

  

Table 3.27 SSE for example 3.21 

rij (i,j=1-2) Proposed Method 

r11 2.94 

r12 8.931 

r21 1.395 

r22 0.2344 

  

 The step and impulse responses of the examples (SISO and MIMO) solved in this 

section by the introduced method justifies its applicability. Further, the proposed reduced 

systems are also compared with the other available methods in terms of SSE and tabulated. 

 

3.6 CONCLUSION 

The proposed mixed methods for continuous time systems are extended the higher order 

discrete time systems. This is achieved by first transforming the given original discrete time 

system into either p and w domain and then the transformed system is reduced. Later on, the 

reduced system in p/w domain is reverted back to z- domain. The proposed methods are 

justified for both SISO and MIMO systems with the aid of numerical examples. The stable 

denominators are found by using ESA or stability equation or dominant pole retention or 

modified pole clustering method. Hence, the reduced systems are stable in nature for stable 

original system. The other advantages of proposed methods are: 

1.Computationally simpler and flexible. 
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2.It is validated that, the methods can be applied for MIMO systems even though the 

number of inputs   and outputs are unequal. 

3.Algorithm for minimization process is not at all required. 

 Further, the results viz. step, impulse responses for original and reduced discrete time 

systems are plotted. The quality of these responses are compared with the responses obtained 

by other methods available in the literature in terms of SSE and are tabulated accordingly. 

Lower value of SSE is always desirable, as it signifies the closeness between the step 

response of the original and reduced discrete time systems. The same is justified in the 

examples (3.1 to 3.21) solved. 
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CHAPTER - 4 
 

REDUCTION OF LTI SYSTEMS USING EVOLUTIONARY 

TECHNIQUES 
 

The unending need for miniaturization, driven by the demand for increased system 

complexity, necessitates the speeding up of simulation process in the design and validation 

stage. This further ends up as a necessary procedure for simulating large complex systems. 

Abundant order reduction techniques are available in literature today [23, 30, 140] and the 

best technique is one which shields the vital dynamics of the system under consideration. 

Also, disentangle the best available model in light of the purpose for which the model is to be 

used- namely, to design a control system to meet certain specifications that helps to find 

reduced order approximated models, without incurring too much error. For such complex 

problems, nature inspired approaches are among the methods, that have proved to be useful.  

  Approximation algorithms were formally introduced about four decades ago [245] to 

generate near-optimal solutions to optimization problems that could not be solved efficiently 

by the computational techniques available at that time. Later, introduction of new 

methodologies referred to as metaheuristics kicked off a new wave with the tremendous 

growth of their usefulness for solving practical problems. Today, the evolutionary 

optimization methods namely Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) have fascinated both researchers as well as industry to solve a wide variety of problems 

including the reduction of large scale systems [255, 256]. A possibility of combining 

conventional method and optimization techniques has also proved to be fruitful in the order 

reduction domain [68, 135, 233]; further these techniques have influenced deeply in the 

controller design as well [257, 258]. In spite of these current optimization methods, there is a 

great emphasis for the advancement of the so called global optimization methods [135]. 

Researchers are still striving to attain a universal optimization method that can be applied to 

all multifaceted problems with equal efficiency. In the chapters discussed till now, 

conventional methods were used to develop new reduction methods for reducing higher order 

systems.But, in this chapter nature inspired approach called BBBC having proven track record 

is being introduced and explored for the purpose of order reduction [233]. 

 In recent times, BBBC method of evolutionary computation has been praised for 

effectively solving issues related to areas such as target motion analysis, fuzzy model 
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inversion, space trusses design, nonlinear controller design and airport gate assignment 

problem [259-261]. The significant features of this method is that it converges quicker, 

requires no rigid first guess algorithms and explores the majority of problem space; it is 

simple, intuitive in nature and easy to implement [262, 263]. Further, it is unfussy to code and 

understand its most basic form. Hence, it is found to be useful in solving mixed integer 

optimization problems that are typical of complex engineering systems [263]. In this chapter, 

a mixed method of order reduction technique combining the merits of BBBC with Routh 

Approximation (RA)[263], Stability Equation (SE) [261]method are utilized to meet the 

purpose. BBBC, being a numerical optimizer, assists in rationally searching the best values 

among the alternative ones, to suit the needs of the system. Stable reduction methods such as 

RA and SE maintains stability while matching the steady state. This new combinatorial 

method comes out to be comparable than the other conventional techniques available in the 

literature. 

 

4.1 BIG BANG BIG CRUNCH  ALGORITHM 

 The BBBC method, was developed and proposed as a novel optimization method by Erol and 

Eksin [264] in 2006; is inspired from one of the evolution of the universe theories in physics 

and astronomy; describes how the universe was created, evolved and would end namely the 

BBBC. The Big Bang(BB) phase is random energy dissipation over the entire search space or 

the transformation from an ordered state to a disordered or chaotic state. After the BB phase, a 

contraction occurs in the Big Crunch(BC) phase. Here, the particles that are randomly 

distributed are drawn into an order. This reduces the computational time and has quick 

convergence even in long, narrow parabolic shaped flat valleys. 

 The BB phase is similar to the creation of initial random population in GA. The 

designer should handle the impermissible candidates at this phase. Once the population is 

created, fitness values of the individuals are calculated [263, 265]. The crunching phase is a 

convergence operator that has many inputs but only one output, which can be named as the 

centre of 'mass'. The center of mass is the weighted average of the candidate solution 

positions. After a number of sequential banging and crunching phases, the algorithm 

converges to a solution. The term ‘mass’ refers to the inverse of the merit function value. The 

point representing the center of mass ‘Xc’ of the population is calculated according to the 

formula 
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where ‘Xk ’ is a point within an n-dimensional search space generated. Here, it is related to the 

numerator polynomial coefficients. ‘E’ is a fitness function or objective value of the candidate 

k, ‘N’ is the population size in banging phase. The convergence operator in the crunching 

phase is different from wild selection, since the output term may contain additional 

information (new candidate or member having different parameters than others) than the 

participating ones. In the next cycle of the BB phase, new solutions are created by using the 

previous knowledge (center of mass). The fitness function ‘E’ [264] is 
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where  
TM

t
=
∆

  

y(i∆t) and yr(i∆t) are the unit step responses of the given original and reduced model at time 

t=∆t. Usually time ‘T’ is taken as 10 sec and ∆t =0.1 sec. 

The basic BBBC algorithm is as follows. 

Step 1:[Start] The big bang starts by generating the new population. 

Step 2:[Evaluate Fitness value] For each iteration, the algorithm will act such that each 

candidates will move in a direction to improve its fitness function. The action involves 

movement updating of individuals and evaluating the fitness function for the new position. 

Step 3:[Compare Fitness Function]Compare the fitness function of the new position with the 

specified fitness function. Repeat the above steps for the whole candidates. 

Step 4:[Maximum iteration] Check if maximum iteration is reached or a specified termination 

criteria is satisfied. Stop and return the best solution, otherwise update and go to the next 

iteration.  

Step 5:[Loop] Go to step2 for fitness evaluation. 

  

 

 

 

 

Table 4.1 Typical parameters for BBBC 

Population size 75 

Number of iterations 50 

Reduction rate 0.75 

Termination method Maximum generation 
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The basic flowchart and typical parameters of the BBBC algorithm[261] is depicted in Fig. 

4.1 and Table 4.1 respectively. 

Start

Specify the parameters for BBBC  

Generate Random Initialize 
Population 

Update each individual and evaluate 
the boundaries 

Evaluate fitness 
function good ? Stop

YesNo

 
Find the fitness function of each 

individual in the current pool
 

 
Fig. 4.1 Basic flowchart of BBBC 

 

4.2 STATEMENT OF THE PROBLEM 

The original nth order LTI system is taken into account having  

Case a) Single Input and Single Output (SISO). 

    The LTI-SISO system is represented by the transfer function 

         ( ) 1
2

1 2

( ) ...
 ;

( ) ...

m
n o m

n n
n o n

N s a a s a sG s m n
D s b b s b s b s

+ + +
= = <

+ + + +
                                                 (4.3) 

The objective is to compute rth (r < n) order reduced system Gr(s) from (4.3) and represent in 

the form of  

          ( ) 1
2

1 2

...( ) ;
( ) ...

q
o qr

r r
r o r

d d s d sN sG s q r
D s e e s e s e s

+ + +
= = <

+ + + +
                                                  (4.4) 

where ai, bi, dj and ej's are the scalar constants.  

Case b) Multiple Input Multiple Output (MIMO) 

 Let the nth order MIMO system having 'p' inputs and 'm' outputs be described as  

            

11 12 13 1

21 22 23 2

1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1[ ( )]

( )
( ) ( ) ( ) ( )
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p
n

n

m m m mp
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A s A s A s A s
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A s A s A s A s

 
 
 =
 
 
 
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

    



  



Reduction of Discrete Time Systems using New Composite Methods 
                                                                                                                                                                                                                                             

125 
 

  [Gn(s)] = [gij(s)] ,  i=1,2,…m; j=1,2,…p                                       (4.5) 

The general form of gij(s) of [Gn(s)] in (4.5) will be 

            2 1
0 1 2 1

2 1
0 1 2 1
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ij

n
n

n
n n

n n

A s
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−
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+ + + + +
                                                                 (4.6) 

where Ai constants are matrices of appropriate dimension, bi  (i = 0,1,2…n-1) are scalar 

constants. 

The objective is to find the rth (r<n) order reduced system [R(s)] having ‘p’ inputs and ‘m’ 

outputs described by 
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1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1[ ( )]
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                                             (4.7) 

or,   [R(s)] = [rij(s)], i=1,2,…m; j=1,2,…p                   

The general form of rij(s) of [R(s)] in (4.7) could be 

              2 1
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                                                              (4.8) 

where Bi are constant matrices, di   (i = 0,1,2…r-1) are scalar constants. 

 

4.3 ROUTH APPROXIMATION AND BBBC METHOD 

In this novel method, the merits of BBBC and RA [45] method is reaped to meet the desired 

objective. RA is used to determine the stable reduced denominator polynomial while BBBC 

completes the reduced system by finding the numerator polynomials. The algorithm for 

finding the aimed reduced order system is as follows.  

i) Determination of the denominator polynomial  

Step 1:Given a stable original SISO system (4.3), the denominator Dn(s) is reciprocated 

resulting in 𝐷�𝑛(s) 

        
1 2
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.. 1
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Step 2:Form the alpha table as shown in Table 4.2 from the coefficients of 𝐷𝑛�(s) and obtain 

the values of α1, α2, α3,… αn parameters. 

 Table 4.2 Alpha  Table 

 0
0 0b b=   0

2 2b b=   0
4 4b b=   0

6 6b b=   


  

 1
0b b=   1

2 3b b=   1
4 5b b=   


   

0
0

1 1
0

b
b

α =   2 0 1
0 2 1 2b b α α= −   2 0 1

2 4 1 4b b α α= −   2 0 1
4 6 1 6b b α α= −   


  

 

1
0

2 2
0

b
b

α =   3 1 2
0 2 2 2b b α α= −   3 1 2

2 4 2 4b b α α= −   


   
 

2
0

3 3
0

b
b

α =   4 2 3
0 2 3 2b b α α= −   4 2 3

2 4 3 4b b α α= −   


   
 

3
0

4 4
0

b
b

α =   5 3 4
0 2 4 2b b α α= −   


  


   

 

4
0

5 5
0

b
b

α =   6 4 5
0 2 5 2b b α α= −   


  


   

 


  


  


     

 

Step 3:Compute the rth order denominator polynomial using 

           1 2

1 0

( ) ( ) ( ) 1,2,...
( ) ( ) 1

r r r rD s sD s D s for r
and D s D s

α − −

−

= + =
= =
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                                                                  (4.10)            

Step 4:Apply the reciprocal transformation to  𝐷𝑟�(s) to obtain the reduced denominator Dr(s) 

of the reduced system   

 
1( ) r

r rD s s D
s

 =  
 

                                           (4.11) 

ii) Determination of the numerator polynomial 

     In the present study, the numerator coefficients are obtained by using BBBC to 

minimize  the fitness function ‘E’ which is the error between the transient responses of the 

given original system and the reduced order system as given in (4.2). The IRE values 

represented by 'J' is calculated by using the formula (2.22). 

4.3.1 Illustrative examples 

The proposed method is justified by solving the following numerical examples taken from the 

available literature. The step, frequency responses of the original, reduced systems are plotted 
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and compared. Further, the results obtained are compared with other methods in terms of 'E', 

'J' using (4.2) and (2.22) respectively. 

 

Example 4.1: Consider a fourth-order system  [135, 147] with Jorg= 29.86 described by the 

transfer function as 

 
3 2

4 3 2

( ) 7 24 24( )
( ) 10 35 50 24

n
n

n

N s s s sG s
D s s s s s

+ + +
= =

+ + + +
                   

Step 1:Apply the reciprocal transformation to Dn(s) resulting in 

  


2 3 41 10 35 50 24

1( ) nn
nD

s s s

s s D
s

s

 =

= + + + +

 
    

Step 2:Forming the alpha array as 

 

 
24 35 1 

 
50 10 

 

 

α1 = 0.48 
30.2 1 

 

 

α2=1.655 8.345 0 
 

 

Step 3:The second order reduced denominator is then obtained by using 

 
2

1 1 2
2

( ) 1
1 1.65 0.7944

rD s s s
s s

α α α= + +
= + +



  

Step 4:Reverting back by reciprocating once again  

 2( ) 1.65 0.7944rD s s s= + +   

Step 5:Using BBBC, the numerator coefficients are generated according to (4.2) for initial 

population size as 75 feasible solutions, the number of iterations is limited to 50 and reduction 

rate is fixed at 0.75.  

  ( ) 0.8058 0.7944rN s s= +   

Step 6:Thus the reduced second order system is given as 

 2

( ) 0.8058 0.7944( )
( ) 1.65 0.7944

r
r

r

N s sG s
D s s s

+
= =

+ +
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 The reaction curves of the original system Gn(s), the proposed reduced system Gr(s) 

are as compared in Fig. 4.2 (a). Similarly, the frequency responses are compared and 

displayed in Fig. 4.2 (b). It is seen that the responses are matching both in steady and transient 

states. Table 4.3 exhibits the superiority of the proposed method by comparing with the 

alternative methods available in terms of fitness function and IRE. 

 

         
Table 4.3 Comparison of reduced order systems for example 4.1 

Order Reduction Method Reduced System Gr(s)  ‘E’  ‘J’ 

Proposed Method [263] 2

0.8058 0.7944
1.65 0.7944

s
s s

+
+ +

 0.24 x 10-3  28.2  

Philip and Pal [233]  2

0.9315 1.609
2.756 1.609

s
s s

+
+ +

 1.72 x 10-3 29.7  

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4  

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7  

Krishnamurthy and Seshadri 

[49] 
2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8  

Lucas [52] 2

0.833 s + 2
3 s + 2s +

 0.328 x 10-3 48.4  

Mittal et. al.[165] 2

0.799 s + 2
3 s + 2s +

 0.267 x 10-3 47.2  

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0  

Mukherjee and Mishra [147] 2

0.800000033 s + 2
3 s + 2s +

 0.237 x 10-3 47.2  

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1  

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6  

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1  

Safonov et. al.[236] 2

0.7431 s + 1.057
1.879 s + 1.084s +

 0.622 x 10-3 47.3  
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Example 4.2.Consider the system described by the transfer function [68] with Jorg= 5.19 x 102 

 
3 2

4 35 2

4( ) 10 264 369 156( )
( ) 2 21 84 173 148 40

82n
n

n

N s s s s sG s
D s s s s s s

+ + +
= =

+ + + +
+

+
 

The reciprocal transformation for Dn(s) is applied and the steps 2-6 in 4.3.1 are followed 

resulting in the reduced system as 

 2

( ) 2.60001 1.03701( )
( ) 1.01 0.26651

r
r

r

N s sG s
D s s s

+
= =

+ +
 

 
Fig. 4.2 (a) Comparison of step responses for example 4.1 

 

 
Fig. 4.2 (b) Comparison of frequency responses for example 4.1 

The comparison of step, frequency responses are depicted in Fig. 4.3 (a) and Fig. 4.3 (b) 

respectively. The values of 'E' and 'J' are compared in Table 4.4 with other methods. 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

 

 

Time (sec)

A
m

pl
itu

de

4th order - Original System
2nd order - Reduced System (By Proposed method)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

10-2 10-1 100 101 102
-90

-45

0

P
ha

se
 (

de
g)

 

 

Frequency  (rad/sec)

8th order - Original System
2nd order - Reduced System (By Proposed method)



Reduction of Discrete Time Systems using New Composite Methods 
                                                                                                                                                                                                                                             

130 
 

Table 4.4 Comparison of reduced order systems for example 4.2 

Order Reduction Method Reduced System Gr(s)  ‘E’  ‘J’ 

Proposed Method 2

2.60001 1.03701
1.01 0.26651

s
s s

+
+ +

 0.275 3.29 x 102 

Panda et. al. [68] 2

369 s + 156
239.5 148 s + 40s +

 1.567 2.45 x 102 

Krishnamurthy and 

Seshadri [266] 

2

3 2

5 +2.045s + 2.4729
2.709 +2.3176 s + 0.6264

s
s s+  

5.057 0.406 x 102 

Panda et. al. [68] 2

347.025 s + 225.61
135.68 166.38 s + 57.85s +

 0.283 3.39 x 102 

  

 
Fig. 4.3 (a) Comparison of step responses for example 4.2 

 
Fig. 4.3 (b) Comparison of frequency responses for example 4.2 
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4.3.2 Extension to Multivariable Systems 

The proposed reduction procedure described in 4.3 is extended to systems having multiple 

input and multiple outputs. The technique involves direct application of the proposed method 

on each element of the transfer function matrix of MIMO system as discussed below. 

 An nth order MIMO system having 'p' inputs and 'm' outputs of the form (2.23) is 

considered. The motive is to find the rth (r<n) order reduced system [R(s)] having ‘p’ inputs 

and ‘m’ outputs described by (2.25). The proposed method is applied to (2.23) by following 

the steps described in 4.3. To start with, the denominator Dn(s) is reduced using RA. Then the 

coefficients of the numerator polynomials of each element of [Gn(s)] is found out by BBBC. 

The method proposed is verified by solving an example. 

 4.3.2.1 Illustrative Examples 

Example 4.3: Consider a sixth order two input two output system [135] having transfer 

function matrix 

         

11 12

21 22

2( 5) ( 4)
( 1)( 10) ( 2)( 5)

[ ( )]
( 10) ( 6)

( 1)( 20) ( 2)( 3)

( ) ( )1
( ) ( )( )n

s s
s s s s

G s
s s

s s s s

A s A s
A s A sD s

 
 

+ +
+ + + +

=
+ +

+ + +

 
 
 +

 
=  








                               

The denominator Dn(s) is given by 

 6 5 4 3 2

( ) ( 1)( 2)( 3)( 5)( 10)( 20)
41 571 3491 10060 13100 6000

rD s s s s s s s
s s s s s s

= + + + + + +
= + ++ ++ +

  

and 

 

5 4 3 2
11

5 4 3 2
12

5 4 3 2
21

5 4 3 2
22

( ) 2 70 762 3610 7700 6000
( ) 38 459 2182 4160 2400
( ) 30 331 1650 3700 3000
( ) 42 601 3660 9100 6000

A s s s s s s
A s s s s s s
A s s s s s s
A s s s s s s

= + + +
= + + +
= + +

+ +
+ +
+ +
+ +

+
= + + +

  

A second order reduced system is desired of the form 

 11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )r

B s B s
R s

B s B sD s
 

=  
 

                                   

Step 1:Consider the denominator polynomial Dn(s) and obtain the reciprocated denominator 
 ( )nD s  according to step 1 in 4.3.1.  

Step 2:Apply the RA technique to  ( )nD s  by forming the alpha table as in step 2 of 4.3.1. 

Therefore the second order polynomial Dr(s) obtained, after reciprocating back will be  
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 

2 2o( ) 1 1.548267 0.7091 1.548267 0.7091r ( )rr DD s s s s ss= + + + +=    

Step 3:Applying the BBBC algorithm for minimizing (4.2) for each element of the transfer 

function matrix [G(s)], the reduced order elements Bij of the reduced system [R(s)] are 

obtained as [263] 

 11 12

21 22

( ) 0.9475 0.7091; ( ) 0.4892 0.2837
( ) 0.455 0.3546 ; ( ) 1.126 0.7091

B s s B s s
B s s B s s

= + = +
= + = +

  

 The step responses of the original, the proposed reduced system are depicted in Fig. 

4.4 (a) for inputs �10� and �01�. Similarly Fig. 4.4 (b) displays the comparison of frequency 

response of each element of the original and reduced transfer function matrix. The error 

analysis is also carried out and compared with other methods in Table 4.5.  

 
Fig. 4.4 (a) Comparison of step responses for example 4.3 

 
 Fig. 4.4 (b) Comparison of frequency responses for example 4.3 
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Table 4.5 Comparison of error analysis for example 4.3 

Order Reduction Method 
‘E’  for rij ( i, j = 1,2) 

r11 r12 r21 r22 

Proposed method [263] 0.0067 0.00591 0.00096 0.0059 
Parmar et. al.  [71] 0.0525 0.0020 0.0168 0.033 

Nahid and Prasad [139] 0.0658 0.1645 0.0066 0.157 
Parmar et. al.  [135] 0.0145 0.00874 0.00254 0.0157 
Prasad and Pal [241]

 
0.1365 0.00245 0.04029 0.0679 

Safanov and Chiang [242]
 

0.5906 0.03713 0.00733 1.0661 
Prasad et. al. [137] 0.0307 0.00026 0.26197 0.0217 
Parmar et. al. [157] 0.0266 0.0069 0.0061 0.0683 
Parmar et. al. [70] 0.0449 0.0344 0.0088 0.1577 

  

 It can be noticed that, the introduced method is successfully applied for the above 

examples and is justified from the step, frequency responses. Added to this, the tabulated error 

analysis confirms the same.   

 

4.4 STABILITY EQUATION AND BBBC METHOD 

SE method is essentially a stability criteria based reduction method and is one of the most 

popular frequency domain techniques available in the literature [26,27]. The SE method has 

the privilege of yielding stable reduced order system, provided the original system is stable. In 

other words, it retains the stability of the original system and also nullifies the steady state 

response matching issues. Here, the proposed method which is a combination of SE and 

BBBC is dealt with [261]. The procedure for obtaining the reduced denominator polynomial 

is same as mentioned in 2.3.2. However the numerator coefficients are optimized using 

BBBC. Numerical examples are solved to illustrate the proposed method. 

4.4.1 Illustrative Examples 

Example 4.4: Consider the transfer function of a system taken in example 4.1 in 4.3.1 

Adopting the SE method of reduction, the Dr(s) of the original system is reduced according to 

the procedure mentioned in 2.3.2, resulting in 

 

1 2

2
1 2

2
1 2

2
1 2

( ) ( ). ( )

( ) 1.47 0.686 ; 2, 0

( ) 10 34.3 ; 0, 2

( ) 3.913 1.6464 ; 1, 1

r r r

r

r

r

D s D s D s

D s s s r r

D s s s r r

D s s s r r

=

= + + = =

= + + = =

= + + = =
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Now, selecting  Dr(s) for r1 = 2, r2 = 0, the numerator coefficients are optimized using BBBC 

according to (4.2) resulting in 

 ( ) 0.8  0.678rN s s= +   

Therefore, the reduced second order system obtained is 

 2
( ) 0.8 0.678( )
( ) 1.47 0.686r

r
rN s sG s

D s s s
+

= =
+ +

  

 Fig. 4.5 (a) and (b) shows the reaction curves, frequency responses of the original 

system and proposed reduced system. It is seen that the responses are matching both in steady 

and transient states. The error analysis is carried out, compared with other methods and 

tabulated in Table 4.6 (Jorg=29.86). 

 
Fig. 4.5 (a) Comparison of step responses for example 4.4 

 
Fig. 4.5 (b) Comparison of frequency responses for example 4.4 
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Table 4.6 Comparison of reduced order systems for example 4.4 

Order Reduction Method Reduced System  ‘E’  ‘J’ 

Proposed Method [261] 2

0.8 0.678
1.47 0.686

s
s s

+
+ +

 2.2 x 10-3 29.3  

Chen et. al. [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 33.3 x 10-3 33.4  

Gutmen et. al.[47] 2

2(48 s + 144)
70  300s + 288s +

 45.6 x 10-3 79.7  

Krishnamurthy and Seshadri 

[49] 
2

20.5714 s + 24
30 42 s + 24s +  

8.9 x 10-3 47.8  

Lucas [52] 2

0.833 s + 2
3 s + 2s +

 0.328 x 10-3 48.4  

Mittal et. al.[165] 2

0.799 s + 2
3 s + 2s +

 0.267 x 10-3 47.2  

Moore [204] 2

0.8217 s + 0.4543
1.268 s + 0.4663s +

 2.9 x 10-3 50.0  

Mukherjee and Mishra [147] 2

0.800000033 s + 2
3 s + 2s +

 0.237 x 10-3 47.2  

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.1 x 10-3 49.1  

Prasad and Pal [234] 2

 s + 34.2465
239.8082 s + 34.2465s +

 1331 x 10-3 16.6  

Safonov and Chang [235] 2

0.8213 s + 0.4545
1.268 s + 0.4664s +

 2.855 x 10-3 50.1  

Safonov et. al.[236] 2

0.7431 s + 1.057
1.879 s + 1.084s +

 0.622 x 10-3 47.3  

 

Example 4.5: Consider a ninth order system having transfer function [168] with Jorg = 28.23 

 
4 3 2

9 8 7 6 5 4 3 2
35 291 1093 1700( )

9 66 294 1029 2541 4684 5856 4620 1700n
s s s sG s

s s s s s s s s s
+ + + +

=
+ + + + + + + + +

  

Using SE reduction method, the reduced denominators are found as 

 

3 2
1 2

3 2
1 2

3 2
1 2

3 2
1 2

( ) 1.3 1.34 0.493 ; 3, 0

( ) 9 46.54 187.43 ; 0, 3

( ) 9.96 8.994 3.1813 ; 2, 1

( ) 9.367 49.84 17.08 ; 1, 2

r

r

r

r

D s s s s r r

D s s s s r r

D s s s s r r

D s s s s r r

= + + + = =

= + + + = =

= + + + = =

= + + + = =
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Dr(s) for r1=3, r2=0 is selected and numerator coefficients are then generated using BBBC.  

 2( ) 0.08717  0.3142 0.493rN s s s= + +   

Then, the reduced third order model obtained is 

 
2

3 2
( ) 0.08717 0.3142 0.493( )
( ) 1.3 1.34 0.493

r
r

r

N s s sG s
D s s s s

+ +
= =

+ + +
  

 Fig. 4.6 (a) shows the step responses of the original system, proposed reduced system. 

It is seen that the responses are comparable. Similarly Fig. 4.6 (b) shows the comparison of 

the frequency plots. Table 4.7 compares various reduced order systems in terms of 'E' and 'J' 

values.  

 
Fig. 4.6 (a) Comparison of step responses for example 4.5 

 
Fig. 4.6 (b) Comparison of frequency responses for example 4.5 
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Table 4.7 Comparison of reduced order systems for example 4.5 
Order Reduction Method Reduced System  ‘E’ ‘J’ 

Proposed Method [261] 
2

3 2
0.08717 0.3142 0.493

1.3 1.34 0.493
s s

s s s
+ +

+ + +
 2.857x10-2 29.103 

Boby and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +  
2.82x10-2 29.42 

Mukherjee et. al. [168] 
(impulse response matching) 

2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 8.77x10-2 51.01 

Mukherjee et. al. [168] 
(step response matching) 

2

3 2

3.49 4.14 2.078
3.828 4.884 2.078

s s
s s s
− − +
+ + +

 7.26x10-1 364.36 

Chen et. al.[50] 
2

3 2

285 1093 1700
3408 5031 4620 1700

s s
s s s

+ +
+ + +

 2.96x10-1 25.43 

 
Example 4.6: Consider a eighth order system [267] having Jorg=2509.2. 

 
7 6 5 4 3 2

8 7 6 5 4 3 2
18  514  5982  36380 1  22664 222088 185760   40320( )

36 546 4536 22449 67284 118124 109584    40320n
s s s s s s sG s

s s s s s s s s
+ + + + + + +

=
+ + + + + + + +

  

The reduced denominators are found using SE reduction method as  

 

2
1 2

2
1 2

2
1 2

( ) 6.867 5.255 ; 2, 0

( ) 36 501.94 ; 0, 2

( ) 36.36 13.25 ; 1, 1

r

r

r

D s s s r r

D s s s r r t

D s s s r r

= + + = =

= + + = =

= + + = =
  

Using BBBC, the numerator coefficients for r1=2, r2=0 is found to be 

 ( ) 1  6.91 5.255rN s s= +   
Table 4.8 Comparison of reduced order systems for example 4.6 

Order Reduction Method Reduced System Gr(s)  ‘E’ ‘J’ 

Proposed Method [261] 2
16.91 5.255

6.87 5.26
s

s s
+

+ +
  0.68x10-3 23.17 x102 

Dia Abu--Nadi et. al. [267] 2
17.099 5.074

6.972 5.151
s

s s
+

+ +
  3.01x10-3 24.19 x102 

Parmar et. al. [105] 2
24.11 8

9 8
s

s s
+

+ +
  48 x10-3 41.92 x102 

Parmar et. al. [135] 2
22.8212 8.01

9 8
s

s s
+

+ +
  0.37x10-3 37.42 x102 

Mittal et. al. [165] 2
7.091 1.9906

3 2
s

s s
+

+ +
  272 x10-3 6.94 x102 

Lucas [52] 2
6.7786 2

3 2
s

s s
+

+ +   279 x10-3 6.297 x102 
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The reduced second order model obtained is 

 2
( ) 16.91 5.255( )
( ) 6.87 5.26

r
r

r

N s sG s
D s s s

+
= =

+ +
  

 Fig. 4.7 (a)- (b) shows the step, frequency responses of the original and reduced 

system. Error analysis is performed for reduced systems obtained by other methods also and 

are tabulated in Table 4.8. 

 
Fig. 4.7 (a) Comparison of step responses for example 4.6 

 
Fig. 4.7 (b) Comparison of frequency responses for example 4.6 
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reduced model may arise from a stable full system [228].To overcome this hitch, several 

variants were suggested and one such suggestion was to use least squares time moment fit, to 

obtain a reduced denominator and then the numerator terms using exact time moment 

matching [174]. In order to minimize the sensitivity towards pole distribution of the original 

system,  Lucas et. al.[175] proposed a linear shift point about a general point ‘a’. The value of 

a ≈ (1- α) and – α is the real part of the smallest magnitude pole. Further, the method of model 

reduction by least squares moment matching, was generalized by including Markov 

parameters in the process along with the time moments to cope with a wider class of transfer 

functions [85]. 

 This section deals with the concept of least squares time moment matching which has 

been extended about a general point ‘a’, to obtain lower order reduced system. The main 

contribution in this section, lies in selecting the critical value of ‘a’, as the behavior of the 

reduced system is dependent on it.  Optimized value of ‘a’, will help to realize more accurate 

approximation of the original system while safeguarding the crucial characteristics of the 

same as far as possible. This is accomplished here, by availing recently erupted optimization 

technique called BBBC. The denominator polynomial is computed by using the shifted time 

moment proportionals. Then, the numerator coefficients are found by matching the 

appropriate number of time moments. The validity of this criterion is illustrated by solving 

numerical examples and comparing it with the existing techniques available in the literature. 

The procedure for deriving the reduced system is as follows. 

Step 1:Given a nth order system Gn(s) (4.3), find the time moment proportionals ci by 

expanding Gn(s) about s=0 to give 

 
0

( ) i
n i

i

G s c s
∞

=

= ∑                                         (4.12) 

Step 2:It is well known that a reduced rth order model derived by the Pade approximation 

method [174] has a denominator polynomial Dr(s) given by 

 
0

( ) ;( 1)
r

i
r i r

i

D s e s e
=

= =∑                                                                                            (4.13) 

Given by the solution of the linear set 

 

1 1 0 0

1 2 1 1

2 1 2 2 1 1

r r

r r

r r r r r

c c c e c
c c c e c

c c c e c

−

+

− − − −

   
   
   
   
 

− 
  − =
 
  −

 
   





     



                                                                    (4.14) 
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Here the ei coefficients constitute the denominator of the reduced system.    

Step 3:The numerator polynomial can be constituted from the following set of equations 

 

0 0 0

1 1 0 0 1

1 1 0 0 1

1 1 0

1 2 0 1

1 0 1

0
0

0

r r r

r r

r r

r t r t

d e c
d e c e c

d e c e c
e c e c
e c e c

e c e c

− − −

−

− +

− + −

=
= +

= +…+
= +…+
= +…+

= +…+

  

  

                                                                                       (4.15) 

where (r ≥  t ≥  0) 

Step 4:Calculate the numerator and denominator of the reduced system Gr(s) by matching 

proper number of time moments of Gn(s) to the reduced model.  

Step 5:Applying BBBC, optimize the value of ‘a’ obeying (4.2). 

Step 6:Find the shifted time moments (𝑐𝚤�) by replacing Gn(s) by Gn(s + a) and expanding it 

about s = 0 in (4.12). Then, repeat the above steps 2-3. 

Step 7:Apply inverse shift s → (s - a) to the reduced denominator formed by ‘e’. 

Step 8:Repeat step 4 to obtain reduced system Gr(s). 

4.5.1 Illustrative Examples. 

Example 4.7: Consider a ninth order system having transfer function [168]  

 
4 3 2

9 8 7 6 5 4 3 2
35 291 1093 1700( )

9 66 294 1029 2541 4684 5856 4620 1700n
s s s sG s

s s s s s s s s s
+ + + +

=
+ + + + + + + + +

 

Step 1:The first ten time moment proportionals ci obtained by expanding Gn(s) about s=0 

(4.12) and is given in Table 4.9 

Table 4.9 Time Moment Proportionals 

i ci 
0 1.0000 
1 -2.0747 
2 2.3648 
3 -2.0146 
4 1.5513 
5 -1.2961 
6 1.2775 
7 -1.3817 
8 1.4924 
9 -1.5509 



Reduction of Discrete Time Systems using New Composite Methods 
                                                                                                                                                                                                                                             

141 
 

Step 2:The third order model coefficients obtained by following steps 2-4 in 4.5 are shown in 

Table 4.10. ‘Jr’ and ‘Ir’ forms the relative Integral Square Error (RISE) for step and impulse 

input, calculated to measure the goodness of reduced model given by [85] 

  

2 2

0

2 2

0

[ ( ) ( ) 2 ( ) ( )]

[ ( ) ( ) 2 ( ) ( )]

r r

r

r r

y t y t y t y t dt
J

y t y y t y dt

∞

∞

+ −

=

+ ∞ − ∞

∫

∫                           (4.16) 

 

2 2

0

2

0

[ ( ) ( ) 2 ( ) ( )]

( )

r r

r

g t g t g t g t dt
I

g t dt

∞

∞

+ −

=
∫

∫
                (4.17) 

Table 4.10 Comparison of third order models 
Moments used 

in least squares 

fit 

d2 d1 d0 e2 e1 e0 Jr Ir 

6 0.0850 -0.9719 2.392 2.708 3.990 2.392 0.00220 0.05265 

7 -0.0344 -0.7065 2.151 2.673 3.757 2.151 0.00336 0.07392 

8 -0.1445 -0.4967 1.984 2.673 3.623 1.984 0.00467 0.10305 

9 -0.2203 -0.3702 1.895 2.687 3.561 1.895 0.00568 0.12794 

 

Step 3:Now, by employing BBBC the value of ‘a’ is being optimized to 0.6615 according to 

(4.2) so as to achieve considerable improvement in the values of ‘Jr’ and ‘Ir’.  

Step 4:According to step 6 in 4.5, the shifted time moments (𝑐𝚤�) are found as given in Table 
4.11. 

Table 4.11 Shifted time moment proportionals 

i 𝑐𝚤�  
0 0.2748 
1 -0.5059 
2 0.5097 
3 -0.3695 
4 0.2151 
5 -0.1071 
6 0.0484 
7 -0.0214 
8 0.0104 
9 -0.0060 
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Step 5:It is noticed that the rate of increase in the magnitude of 𝑐𝚤�  is quite small in Table 4.11. 

Using these values the reduced third order models are as shown in Table 4.12. It can be 

judged easily that the RISE values (4.16), (4.17) obtained here are far better compared to 

those given in Table 4.10. This increases the approximation of the reduced model.  

Step 6:Since the value of Jr is least, when six shifted time moments are used, di , ei for i = 0, 

1, 2 are selected and substituted in (4.4) to give the reduced system as 

          ( )
2

3 2
0.1748    1.156    2.504
   2.606     4.052   

( ) 
2.504( )

r
r

r

N sG s s
ss

s
s sD
− +

+ + +
= =  

 

Table 4.12 Comparison of third order models (a = 0.6615) 

Shifted Time 
Moments used in 
least squares fit 

d2 d1 d0 e2 e1 e0 Jr Ir 

6 0.1748 -1.156 2.504 2.606 4.052 2.504 0.00116 0.04025 

7 0.2064 -1.302 2.722 2.776 4.35 2.722 0.00128 0.04303 

8 0.2214 -1.369 2.821 2.850 4.485 2.821 0.00127 0.04480 

9 0.2255 -1.387 2.848 2.869 4.521 2.848 0.00126 0.04531 

  

Table 4.13 Comparison of reduced order systems for example 4.7 

Order Reduction Method Reduced System Jr Ir 

Proposed Method 
2

3 2
0.1748    1.156    2.504
   2.606     4.052    2.504

s s
s s s

− +
+ + +

 0.001160 0.04025 

Lucas [268] 
2

3 2
 0.217   1.35    2.791

   2.814  4.456    2.791
s s

s s s
− +

+ + +
 0.001239 0.04394 

George and Rein 
Method I [163] 2

  0.29913    0.73912
 0.95727    0.73912

s
s s
− +
+ +

 0.026575 0.19418 

George and Rein 
method II [163] 2

  0.57072    0.98330
1  .42381    0.98330

s
s s
− +
+ +

 0.01117 0.26409 

Boby and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +  
0.00168 0.11 

Mukherjee et. al. [168] 
(impulse response 

matching) 

2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 5.336 12.421 

Mukherjee et. al. [168] 
(step response matching) 

2

3 2

3.49 4.14 2.078
3.828 4.884 2.078

s s
s s s
− − +
+ + +

 0.726 5.97 

Chen et. al.[50] 
2

3 2

285 1093 1700
3408 5031 4620 1700

s s
s s s

+ +
+ + +

 0.0296 0.278 
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 The results obtained are compared with that of the available existing methods and are 

listed in Table 4.13. It is noticed that the values of ‘Jr’ and ‘Ir’ obtained by proposed method 

is challenging for the existing methods. Fig. 4.8 (a) and (b) compares the step and impulse 

responses of original, proposed reduced system. It is seen that the responses of the proposed 

system are quite appealing. 

 
Fig. 4.8 (a) Comparison of step responses for example 4.7 

 
Fig. 4.8 (b) Comparison of impulse responses for example 4.7 
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The first ten time moment proportionals ci are obtained as in Table 4.14. The second order 

model coefficients obtained by following step 2-4 in 4.5 are shown in Table 4.15 

Table 4.14 Time moment proportionals 
i ci 
0 1.0000 
1 0.5000 
2 0.7500 
3 -3.3750 
4 6.6875 
5 -10.3438 
6 14.1719 
7 -18.0859 
8 22.0430 
9 -26.0215 

 
Table 4.15 Comparison of second order models 

Moments used 

in least squares 

fit 

d1 d0 e1 e0 Jr Ir 

4 -1.7778 -0.2222 -1.6667 -0.2222 unstable unstable 

5 -0.1418 -0.1099 -0.0869 -0.1099 unstable unstable 

6 0.6641 0.1110 0.6086 0.1110 3.361240 0.862037 

7 1.1202 0.2798 0.9803 0.2798 2.574628 0.750469 

8 1.4076 0.4026 1.2063 0.4026 2.176359 0.680474 

9 1.6025 0.4933 1.3558 0.4933 1.94334 0.643025 

 

Table 4.16 Shifted time moment proportionals 
i 𝑐𝚤�  
0 1.3233 
1 0.1069 
2 -0.2271 
3 0.1203 
4 -0.0318 
5 -0.0113 
6 0.0250 
7 -0.0248 
8 0.0198 
9 -0.0142 
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 It can be seen in Table 4.15, that the method dosen’t produce good approximated 

reduced system; especially reduced system obtained by using 4 and 5 time moments will 

result in unstable model. Now, applying BBBC the optimized value of ‘a’ is found according 

to (4.2) as 0.8751. The shifted time moments (𝑐𝚤�) are obtained as in Table 4.16. Then the 

second reduced order model coefficients being calculated are noted in Table 4.17. Finally, it 

can be concluded that the values of ‘Jr’ and ‘Ir’ shown in Table 4.17 have improved largely as 

compared to that in Table 4.15. 

Table 4.17 Comparison of second order models (a = 0.8751) 
Shifted Time Moments used in 

least squares fit d1 d0 e1 e0 Jr Ir 

4 7.541 4.677 2.987 4.677 0.06781 0.01468 
5 7.107 4.730 2.731 4.730 0.07453 0.02522 
6 6.889 4.719 2.593 4.719 0.08382 0.03338 
7 6.852 4.679 2.563 4.679 0.08760 0.03538 
8 6.884 4.644 2.576 4.644 0.08792 0.03440 
9 6.921 4.623 2.594 4.623 0.08750 0.03318 

  

Table 4.18 Comparison of reduced order models for example 4.8 

Order Reduction Method Reduced System Jr Ir 

Proposed Method 2
7.541    4.677
   2.987    4.677

s
s s

+
+ +

 0.06781 0.01468 

Parmar Method 
(a=AM) [85] 2

5.5932    4.5293
     3.3285    4.5293

s
s s

+
+ +

 0.1905 0.06705 

Parmar Method 
(a=HM) [85] 2

5.4959    4.5546  
     3.2186    4.5546

s
s s

+
+ +

 0.1812 0.06864 

Parmar Method 
(a=GM) [85] 2

5.5395    4.4179
     3.3305    4.4179

s
s s

+
+ +

 0.1999 0.07151 

Lucas and Beat  (a=0) [175] 2
1.4076    0.4206 

    1  .2063    0.4206
s

s s
+

+ +
 2.17636 0.68047 

Lucas and Mumro (a=0) 
[231] 2

4.0135   1  .9248
     3.0511   1  .9248

s
s s

+
+ +

 0.66326 0.24050 

Chuang [269] 2
8    7

     4.2    7.6
s

s s
+

+ +
 0.16801 0.02236 

Marshall [270] 2
12.08696    4.34783

     5.34783    4.34783
s

s s
+

+ +
 0.29366 0.11030 

Chen et. al [53] 2
1  .5    0.5
1  .25    0.5

s
s s

+
+ +

 2.05089 0.66030 

Pal [57] 2
1  .375    0.5

1  .125    0.5
s

s s
+

+ +
 2.20010 0.69327 

Lepschy and Viaro [88] 2
 0.906268    0.350005  

 0.731265    0.350005
s

s s
+

+ +
 3.05349 0.82127 
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 Since the value of Jr is least for four shifted time moments, di , ei for i = 0, 1 are 

selected and substituted in (4.4) resulting in the reduced system  

          ( ) 2
7.541    4.677
   2.987    4.6

( ) 
( 7) 7

r
r

r

s
s

ss
D s
NG

s
+

=
+

=
+

 

 The proposed method is compared in terms of ‘Jr’ and ‘Ir’ with the other available 

methods for validation in Table 4.18. It is seen that the proposed method excel as compared to 

other method. The step, impulse responses of the original, proposed system are depicted in 

Fig. 4.9 (a) and (b) respectively. 

 
Fig. 4.9 (a) Comparison of step responses for example 4.8 

 
Fig. 4.9 (b) Comparison of impulse responses for example 4.8 
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Example 4.9:  Revisiting an eighth order system considered in example 4.6 in 4.4.1 

The possible combination of second order reduced system is shown in Table 4.19.  

 

Table 4.19 Comparison of second order models 

Moments used in least 

squares fit 
d1 d0 e1 e0 Jr Ir 

4 15.1008 4.8206 5.9933 4.8206 0.002767 0.01475 

5 14.5023 4.6325 5.7503 4.6325 0.004379 0.021948 

6 14.0980 4.5040 5.5886 4.5040 0.005841 0.02777 

7 13.8238 4.4164 5.4800 4.4164 0.007025 0.032167 

8 13.6348 4.3557 5.4055 4.3557 0.007943 0.03542 

9 13.5015 4.3129 5.3532 4.3129 0.00864 0.03783 

 

Using BBBC the value of ‘a’ is optimized at 0.8972 satisfying (4.2). The shifted time 

moments are calculated and the possible combination of reduced second order models with 

‘Jr’ and ‘Ir’  are in Table 4.20. 

 

Table 4.20 Comparison of second order models (a = 0.8972) 

Moments used in 

least squares fit 
d1 d0 e1 e0 Jr Ir 

4 17.12 5.212 6.89 5.212 0.000940 0.00157 

5 16.94 5.22 6.821 5.22 0.00069 0.002041 

6 16.87 5.223 6.791 5.223 0.000626 0.002271 

7 16.84 5.2240 6.779 5.2240 0.000611 0.002364 

8 16.83 5.2244 6.775 5.2244 0.000607 0.002400 

9 16.82 5.2243 6.774 5.2243 0.000605 0.002407 

 

 Table 4.21 compares the proposed system (for 4 time shifted time moments) with 

various reduced systems available in the literature. It is observed that the proposed system 

excels in both ‘Jr’ and ‘Ir’ terms comparatively. This further can be validated by the step, 

impulse responses shown in Fig. 4.10 (a) and (b) respectively. 
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Table 4.21 Comparison of reduced order models for example 4.9 

Order Reduction 

Method 

Reduced System 

Gr(s) 
Jr Ir 

Proposed Method 2
17.12    5.212

     6.89    5.212
s

s s
+

+ +
 0.000940 0.00157 

Lucas Method [268] 2
18    5.6026

     7.4151    5.6026
s

s s
+

+ +
 0.001340 0.0062 

Shamash [92] 2
6.7786   2
     3    2

s
s s

+
+ +

 0.18978 0.3068 

Lucas Method [268] 2
1.9896    0.4318

    1  .1737    0.4318
s

s s
+

+ +
 1.31279 0.76358 

Nidhi et al 2
17.96     5.012

     7.028     5.012
s

s s
+

+ +  
0.01156 0.00198 

Chen et. al.[238] 2

0.72058 s + 0.3669
0.02768s + 0.3669s +

 4.669 0.991 

Gutmen et. al.[47] 
8 8

7 2 8 8

5.35 10  s + 8.129 10
8.505 10 5.523 10 s + 8.129 10s

× ×
× + × ×

 0.89 0.3979 

Hutton and Friedland 

[45] 
2

1.99 s + 0.4318
1.174s + 0.4318s +

 1.241 0.7831 

Krishnamurthyy and 

Seshadri [49] 

5

2

1.557 10  s + 40320
65520 75600s + 40320s

×
+  

1.069 0.7486 

Lucas [52] 2

6.779 s + 2
3s + 2s +

 0.1802 0.355 

Pal [57] 
5

2

1.518 10  s +40320
65520 75600s + 40320s

×
+

 1.068 0.753 

Prasad and Pal [234] 2

17.99 s +500
13.25s + 500s +

 0.9464 0.3418 

Safonov et. al. [236] 2

16.96 s +4.729
7.028s + 5.011s +

 0.00387 0.00268 

Mukherjee et. al.[168] 2

11.39 s +4.435
4.2122s + 4.4357s +

 0.0365 0.1207 

Mittal et. al.[165] 2

7.09 s +1.9907
3s + 2s +

 0.1734 0.337 
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 It is observed from the above illustrative examples, that optimizing the value of point 

'a' using BBBC has resulted in excellent results both in terms of 'Jr' and 'Ir' as compared with 

other reduced systems. Moreover the step and impulse responses are also pleasing. 

 
Fig. 4.10 (a) Comparison of step responses for example 4.9 

 
Fig. 4.10 (b) Comparison of impulse responses for example 4.9 

 
4.6 BBBC METHOD FOR CONTINUOUS TIME SYSTEMS 

In this proposal, the higher order continuous time system is accepted and reduced directly by 

using BBBC optimization technique while satisfying (4.2). The typical parameters while 

using BBBC are as mentioned in Table 4.1 in 4.1. The effectiveness of BBBC is justified by 

solving illustrative examples.  

4.6.1 Time Domain  

Let an nth order stable large scale LTI continuous system be described in time domain by 
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described by (1.2), such that the reduced rth order model retains the salient characteristics of 

the original nth  order system for a given set of inputs given by 

 

[ ] 1

( 1)

0

0

( ) ( )

( ) ; 1
( )

r r r r

r
i

i
ir

ir
ir

i
i

G s C sI A B

d s
N s e for i r
D s e s

−

−

=

=

= −

= = = =
∑

∑
                                                                  (4.18) 

4.6.1.1 Illustrative Examples 

Example 4.10: Consider a benchmark example of 84th order [271] represented in time 

domain form (1.1) 

 

1 78

2

3 154

4

5

6

7

1 8

77 42

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

[ ]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A a
A

A a
A

A
A

A
A

a A

a A

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  



 

 

Table 4.22 Coefficients of [B(i)] 
   i B(i)       i B(i)     i B(i)     i B(i) 

1.  7.624824 22   9.201152 43.  8.562598 64.  8.77164 
2.  2.354606 23   4.575071 44.  5.995426 65.  7.548852 
3.  7.570281 24   6.616429 45.  4.822466 66.  3.25237 
4.  2.321555 25   5.214498 46.  0.120089 67.  2.581167 
5.  4.608591 26   9.829012 47.  2.787891 68.  7.341292 
6.  0.353796 27   8.996692 48.  5.741295 69.  4.374441 
7.  5.242211 28   6.302044 49.  8.2792 70.  3.124567 
8.  3.992345 29   3.468259 50.  7.045744 71.  9.036562 
9.  8.994307 30   3.058394 51.  3.418584 72.  6.950758 
10.  1.71435 31   9.01239 52.  4.020264 73.  7.567942 
11.  0.247185 32   1.065961 53.  5.389039 74.  2.666435 
12.  5.921826 33   2.963187 54.  1.897445 75.  6.112229 
13.  5.702193 34   8.515574 55.  4.346914 76.  1.722831 
14.  5.824618 35   7.294136 56.  4.086833 77.  1.518785 
15.  3.413381 36   6.427816 57.  2.056365 78.  6.839423 
16.  5.595597 37   2.681877 58.  2.93394 79.  2.179521 
17.  3.976737 38   7.281299 59.  2.561231 80.  7.636844 
18.  9.456895 39   8.92205 60.  3.126108 81.  0.669466 
19.  8.76504 40   5.099291 61.  5.486768 82.  2.401817 
20.  9.884494 41   5.530897 62.  8.308178 83.  3.542152 
21.  3.913699 42   8.808669 63.  2.974988 84.  6.076599 
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where the diagonal elements are  

 
1,...42

734 171
9 734i

i
A

=

 
 


−
− − 

=   

and the off diagonal elements  

 1,...154

84 1

196

[ ] 1,2,3,...84

j
j

i

a

B B i
=

×

=

= =
  

The values of [Bi] are in Table 4.22  

 1, 1 84[ ] 1,2,3,...84j
T

C C j

B
×= =

=
  

The associated transfer function matrix is then obtained given by (4.18) 

 1[ ( )] ( )G s C sI A B−= −                                                

Using BBBC, obeying the fitness function (4.2) the reduced 13th order LTI system becomes  

 
( )[ ( )]
( )

r
r

r

N sG s
D s

=   

where denominator polynomial is given by 

 

13 12 6 11 9 10 12 9 14 8

18 7 20 6 23 5 25 4 28 3

31 2 33

( )    534.4     2.355 10      1  .109 10    2.237 10       9.204 10  

1  .097 10    3.896 10      2.93 10       8.841 10    4.035 10   

1  .016 10      2.238 10  4.594

rD s s s s s s s

s s s s s

s s

= + + × + × + × + × +

× + × + × + × + × +

× + × + 3510×

  

and numerator polynomial is  

 

12 5 11 9 10 12 9 15 8

18 7 21 6 23 5 26 4 28 3

31 2  33 36

( )  2780     7.432 10      6.326 10   399 10      5.805 10   

1  .021 10     2.747 10      3.606 10      7.063 10      6.164 10  

   9.4 10    4.1 10    4.978 10

rN s s s s s s

s s s s s

s s

= + × + × + × + × +

× + × + × + × + ×

+ × + × + ×

 

Fig. 4.11 (a) and (b) shows the comparison of step and impulse responses of the original, 

reduced system. It is seen that the responses are matching both in steady and transient states. 

The value of 'Jr', 'Ir' obtained are 4.87 x 10-09 and 1.10 x10-05 respectively.  

Example 4.11: Consider a 200th order benchmark example represented in time domain form 

[271] as 

 

1 200

1 2

398

199 200

0 0
0

[ ]
0
0 0

P q
q P

A
q

q P

 
 
 =
 
 
 



 

  

where the diagonal and off diagonal elements are 
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1,...200 1,...398
808.02 404.01i j

i j
P and q

= =

= − =   

,1 200 1

1, 1 200

[ ] 0 1,2,3...200
1 67

[ ] 0 1,2,3...200

1 133

i

j

B B i
for i

C C j
for j

×

×

= = ∀ =

= =
= = ∀ =

= =

  

The numerator and denominator coefficients are obtained by using BBBC while obeying 

(4.2) resulting in the fourth order reduced system in the form (4.18).  

 
3 2 

4 3 2
( ) 0.0001169     0.0005669   0.008125    0.03507[ ( )]
( )    3.511    1  6.24     7.928    0.6248

r
r

r

N s s s sG s
D s s s s s

+ − +
= =

+ + + +
  

 
Fig. 4.11 (a) Comparison of step responses for example 4.10 

 
Fig. 4.11 (b) Comparison of impulse responses for example 4.10 
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Fig. 4.12 (a) Comparison of step responses for example 4.11 

 
Fig. 4.12 (b) Comparison of impulse responses for example 4.11 

Fig. 4.12 (a) and (b) depicts the responses of the original, reduced system for a given step 

and impulse input respectively. It is seen that the responses are overlapping one over the 

other, with values of Jr, Ir being 1.187x10-9 and 6.747x10-04 . 

4.6.2 Frequency Domain 

Here, the higher order continuous time system represented in the form of  (4.3) or (4.5) is 

reduced to the form (4.4) or (4.6) respectively using BBBC obeying (4.2). Numerical 

examples are solved in the following for illustration.  

4.6.2.1 Illustrative Examples 

Example 4.12: Consider a ninth order system having transfer function [168] having 

Jorg=28.23. 
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4 3 2

9 8 7 6 5 4 3 2
35 291 1093 1700( )

9 66 294 1029 2541 4684 5856 4620 1700n
s s s sG s

s s s s s s s s s
+ + + +

=
+ + + + + + + + +

 

Using BBBC the reduced system obtained while minimizing (4.2) is  

             ( )
2

3 2
0.376 1.613( ) 

( )
3

2.686 4.65 3
r

r
r

N sG s
D

s
ss

s
s s
− +

+ +
=

+
=  

The results obtained are compared with that of the available existing methods and are listed in 

Table 4.23. It is noticed that the values of ‘E’ and ‘J’ obtained by proposed method is 

challenging for the existing methods. Fig. 4.13 compares the reaction curves of original and 

proposed reduced system. It is seen that the responses of the proposed system are quite 

appealing. 

 

Table 4.23 Comparison of reduced order systems for example 4.12 

Order Reduction Method Reduced System Gr(s) 'E' 'J' 

Proposed Method 
2

3 2
0.376 1.613 3

2.686 4.65 3
s s

s s s
− +

+ + +
 1.35x10-3 29.154 

Chen and Chang [50] 
2

3 2
285   1093   1  700

3408    5031    4620   1  700
s s

s s s
+ +

+ + +
 296 x10-3 25.43 

Lucas [268] 
2

3 2
 0.217   1.35    2.791

   2.814  4.456    2.791
s s

s s s
− +

+ + +
 2.15x10-3 26.88 

George and Rein 

Method I [163] 
2
  0.29913    0.73912

 0.95727    0.73912
s

s s
− +
+ +

 42.3 x10-3 26.03 

George and Rein 

method II [163] 
2
  0.57072    0.98330

1  .42381    0.98330
s

s s
− +
+ +

 18.7 x10-3 28.636 

Boby and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +  
28.7 x10-3 29.42 

Mukherjee et. al. [168] 

(impulse response 

matching) 

2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 87.7 x10-3 51.01 

Mukherjee et. al. [168] 

(step response matching) 

2

3 2

3.49 4.14 2.078
3.828 4.884 2.078

s s
s s s
− − +
+ + +

 726 x10-3 364.36 

Proposed Method (MPC 

and Least Squares) 

2

3 2

0.05311 0.2907 2.132
3 4.132 2.132

s s
s s s

− − +
+ + +

 15.1 x10-3 19.645 
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Fig. 4.13 Comparison of step responses for example 4.12 

 
Example 4.13: Consider an eighth order transfer function taken from [49] having Jorg=26286 
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The reduced system obtained by applying BBBC is given by 

 ( ) 2
( )  31.98 s + 79.03 
( ) 3.541 3.901

r
r

r s
N ss

s s
G

D + +
= =  

Table 4.24 Comparison of reduced order systems for example 4.13 

Order Reduction Method Reduced System Gr(s) 'E' 'J' 

Proposed Method 2
 31.98 s + 79.03

3.541 3.901s s+ +
 39.52 25408 

Krishnamurthyy and Seshadri 
[49] 22.012

334828 
004

s 
1.812 004 960

+ 19448
0

0
e s e s+ +

 135.66 16522 

Gutman et. al.[47] 22.699 007
 1.391e00

1.4
9 s + 3.921e

56 008 1
0
.
09
935 008e s e s e+ +

 73.65 39788 

Agathoklis and Sreeram [272] 2
3
7.169 8.02
5 s + 18 .9

9
1

s s+ +
 67.856 21018 

Chen et. al.[50] 2341
 482
94

964 s + 
28880 9600

194480
s s+ +

 172.1 11745 

Lepschy and Viaro [140] 20.
   

139
4.601 s + 20.
5 0.7

6
1
2

52 1s s+ +
 40.238 25990 

Sivanandam and Deepa [255] 3 23749
482964 

2 2
s + 194

28880 9600
480

s s s+ + +  
1570.3 

134733.
0 

Sivanandam and Deepa [255] 2
 3

3.357 3.27
5 s + 66 27

1
.
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Fig. 4.14 (a) Comparison of step responses for example 4.13 

 
Fig. 4.14 (b) Comparison of impulse responses for example 4.13 

Table 4.24 compares the reduced systems obtained by various authors in terms of ‘E’ and ‘J’. 

Fig. 4.14 (a) and (b) compares the step, impulse responses of original and proposed reduced 

system. It is seen that the responses of the proposed system overlaps the original system 

indicating the goodness of the proposed method.  

4.6.2.2 Extension to Multivariable Systems 

In 4.6.1 and 4.6.2, the proposed method has been successfully applied on SISO system to 

obtain the reduced system. The same proposed method can also be extended to MIMO 

systems, which is a direct application of the SISO method, on the elements of the transfer 

function matrix of MIMO system as discussed below. 
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 MIMO system of nth order described in the form (2.24) is considered to obtain (2.26). 

The proposed method is applied to (2.24) by following the steps described in 4.1. The method 

proposed is verified by solving two illustrative examples as given below. 

4.6.2.2.1 Illustrative Examples 

Example 4.14: Consider a practical power system of 10th order taken from [273]. It consists 

of a 3-ph synchronous generator with an automatic excitation control system, supplying 

power through a step-up transformer and a high voltage transmission line connected to an 

infinite grid. The outputs are the torque angle δ and terminal voltage νt. Inputs being exciter 

voltage ΔVref and mechanical torque ΔTm. The system is described by 

 

[ ]

1 2 3 4 5
T

q R FD

T
ref m

T
t

x E E

u V T

y

ω δ ν ν ν ν ν ν

δ ν

 =  
 = ∆ ∆ 

=

 

The state space form will be 

A= 

-0.5517 0 -0.3091 0 0 0 0 0 0 0.1695 

-0.0410 0 -0.035 0 0 0 0 0 0 0 

0 314.15930 0 0 0 0 0 0 0 0 

9.554 0 -0.866 -20 0 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0.04210 
-

0.0328 

-0.1962 10.869600 -0.1672 0 0 
-

10.8696 
0 0 0 0 

-0.9386 51.984900 -0.7999 0 0 
-

41.1153 

-

10.8696 
0 0 0 

-0.9386 51.984900 -0.7999 0 0 
-

41.1153 

-

10.8696 
-0.10 0 0 

0 0 0 
-

100 

-

1000 
0 0 1000 -20 0 

0 0 0 0 0 0 0 0 1.0526 
-

0.8211 

 

BT = 
0 0 0 0 0 0 0 0 1000 0 

0 0.0926 0 0 0 0.4428 2.1179 2.1179 0 0 

 

C = 
0 0 0 0 0 0 0 0 1000 0 

0 0.0926 0 0 0 0.4428 2.1179 2.1179 0 0 

The plant transfer function matrix is then given by 

           11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )n

n

A s A s
G s

A s A sD s
 

=  
 

                                                                             (4.19) 
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Fig. 4.15 (a) Comparison of step responses for example 4.14 

 
Fig. 4.15 (b) Comparison of impulse responses for example 4.14 
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It is desired to reduce [Gn(s)] to a second order system represented in the form 

           11 12

21 22

' ( ) ' ( )
[ '( )]

' ( ) ' ( )
B s B s

R s
B s B s
 

=  
 

                                                                             (4.20)                                                                

Applying BBBC, the reduced order system [R'(s)] is obtained, where  

 

2

2

4 3 2

2

2

4

11

1

3 2

2

21

22

0.5122 0.1892
35.62 4.815 34.33

0.6925 11.87 2.6 9.249

0.5078 0.1839
1.016 5.491 1.127

0.9044 1

 -1.408 s - 3.15' ( )

 ' ( )

 0.6895 s + 1.38' ( )

 ' ( )
1.44 5.815 1.

B s

B s

B

s s
s s

s s s s

s s
s s

s s

s

B s
s s

+ +
+ +

+ + + +

+ +
− − −

=

+
=

+ + +

=

=

895

 

 The results obtained by proposed method is compared with other method in terms of 

'E' and 'J' for each element of transfer function matrix are according to Table 4.25. The value 

Jorg of each element of plant transfer function matrix are 6090.9, 9516.2, 1073.2 and 65.05 

respectively. The step, impulse responses of [Gn(s)] and [R'(s)] are depicted in Fig. 4.15 (a) 

and (b). 

Table 4.25  Comparison of error for example 4.14 

rij (i,j=1,2) 
Proposed Method Parmar et. al. [274] 

Abu-Al-Nadi et. 

al.[273] 

‘E’ ‘J’ ‘E’ ‘J’ ‘E’ ‘J’ 

r11 0.945 5163 1125.2 397266 217.4 3459.3 

r12 0.8625 10865 2.9236 10048 259.88 53163 

r21 0.031 
1035.

3 
89.536 22712 30.339 794.66 

r22 1.45×10-5 64.33 26.952 11601 0.8352 125.72 

 

Example 4.15: Consider the state space representation of a longitudinal motion of a flexible 

bomber aircraft given by [275] 

 

0.14158 1.025 0.00267 0.0001106 0.08021 0
5.5 0.8302 0.06549 0.0039 5.115 0.809
0 0 0 1 0 0

1040 78.35 34.83 0.6214 865.6 631
0 0 0 0 75 0
0 0 0 0 0 100

A

− − − 
 − − − − − 
 

=  − − − − − − 
 −
 

− 
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0 0 0 0 75 0
0 0 0 0 0 100

TB  
=  
 

 

 
1491 146.43 40.2 0.9412 1285 564.65
0 1 0 0 0 0

C
− − − − − − 

=  
 

  

using BBBC the reduced order system [R'(s)] is obtained according to (4.20)   

 

11

12

21

2

2

2

2

22

0.9708 38.87

0.9179 25

-1.501e006 s + 4.334e007' ( )

1554 s - 0.09772' ( )

-3.09
.94

0.3279 3.265

0.

8 s + 0.7651' ( )

 2.012 s - 0.585' ( )
3289 3.343

B s
s s

s s

s s

s

B s

s
s

B

B
s

+ +

+ +

+ +

+ +

=

=

=

=

 

 

Table 4.26  Comparison of error for example 4.15 

rij (i,j=1,2) 
Proposed Method 

 ‘E’  ‘J’ 

r11 0.865 472.33×108 

r12 1.17 861.12×105 

r21 0.0647 795.1 

r22 0.02 335.4 

 

 
Fig. 4.16 Comparison of step responses for example 4.15 
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 The proposed system is compared with other reduced systems for each element of 

transfer function matrix in terms of 'E' and 'J'. The value Jorg of each element of plant transfer 

function matrix are 5.723 X 1010, 1.9642 X 1010, 831.087 and 367.43 respectively. The values 

obtained are tabulated in Table 4.26. The step responses of original, reduced models are 

depicted in Fig. 4.16.  

Example 4.16: Consider the two input two output turbo-generator system given by [275] 

having the value Jorg of each element of plant transfer function matrix are 80.845, 2535.99 X 

103, 4.0086 and 2.9789 X 102 respectively. 

 

-18.4456 4.2263 -2.283 0.226 0.422 -0.0951
-4.0977 -6.0706 5.6825 -0.6966 -1.2246 0.2873
1.4449  1.4336 -2.6477 0.6092  0.8979 -0.23
-0.0093 0.2302 -0.50022  -0.1764  -6.3152 0.135
-0.0464 -0.3489 0.7238 6.3117 -0.6886  0.3

A =

645
-0.06002  -0.2361  0.23 0.0915 -0.3214 -0.2087

 
 
 
 
 
 
 
 
 

 

 
-0.2748 -0.0501 -0.155 0.0716 -0.0814 0.0244
3.1463  -9.3737 7.4296 -4.9176  -10.2648 13.7943

TB  
=  
 

 

 
0.5971   0.7697  4.885 4.8608    9.8177 8.861
3.1013 9.3422  5.6  0.749 2.9974 10.5719

C
− 

 


− −
− − 

=   

Applying BBBC, each element of transfer function matrix of [R'(s)] is obtained, where 

 
2 2

2

11 12

21 222

1.522 0.3061 9.199 2.079
 -0.8983 s - 0.4476    138.3 s - 1217' ( ) ' ( )

 -0.0674
0.8489 0.1

8 s + 0.084 -153.3 s + 4528' ( ) '
51 28.86 4

(
6

)
.82

B s
s s s s

s s s

B s

B s B s
s

+ + + +

+ + + +

= =

= =
 

 

Table 4.27 Error analysis for example 4.16 

rij  (i, j =1,2) 'E' 'J' 

r11 0.22 30.95 

r12 151.3 231.42×104 

r21 0.0016 1.43 

r22 30.01 310.26×104 

 

Table 4.27 details the values of 'E' and 'J' for each element of transfer function matrix. The 

step responses of original, reduced models are plotted in Fig. 4.17 respectively. It is noticed 

that the response of the reduced system and the original system are comparable. 
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Fig. 4.17 Comparison of step responses for example 4.16 

Example 4.17: A electric power system consisting of a salient pole synchronous generator 

connected to an infinite bus bar is considered. Taking into account the well known 

parameters, a very accurate mathematical model in state space form is given by [3] 
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0 0 2.121 0.6642 1.328 0 0
0 52.08 0 0 0 0 0

TB
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 

 

 
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0.17 0 0 0.3018 0 0.0375 0
C

 
 =  
 − − 

  

As per (4.20), the reduced order system [R'(s)] obtained by applying BBBC will be 
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21 22

2

31
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3
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 -0.2922 s 80.17
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 The values of 'E' and 'J' for each element of transfer function matrix are according to 

Table 4.28. The value Jorg of each element of plant transfer function matrix are 1.8591, 
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22.452, 1.011, 16310, 1.788 and 3.07 respectively. The step and impulse responses of 

original, reduced models are depicted in Fig. 4.18 (a) and (b) respectively. 

 
Fig. 4.18 (a) Comparison of step responses for example 4.17 

 
Fig. 4.18 (b) Comparison of impulse responses for example 4.17 
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Table 4.28   Comparison of error for example 4.17 
rij 

(i=1,2,3;  j=1,2) 
‘E’ ‘J’ 

r11 0.54×10-8 1.86 
r12 2900×10-8 26.51 
r21 28.6×10-8 1.51 
r22 1850×10-8 15110 
r31 22.4×10-8 1.652 
r32 1.49×10-8 3.07 

 

4.7 BBBC METHOD FOR REDUCTION OF DISCRETE TIME SYSTEMS 

This section deals with the higher order systems represented in discrete domain. The typical 

parameters employed while using BBBC are according to Table 4.1 in 4.1. 

         Consider the nth order discrete-time system be represented in (3.1). The objective is to 

find the rth (r < n) order reduced system having the form (3.2) The effectiveness of BBBC is 

justified by solving illustrative examples as given below. 

4.7.1 Illustrative Examples 

Example 4.18: Consider eighth order higher order discrete transfer function [253] 

( )
7 6 5 4 3 2

8 7 6 5 4 3 2
1.68 1.116 0.21 0.152 0.516 0.262 0.044 0.006

8 5.046 3.348 0.63 0.456 1.548 0.786
( ) 

0.132 0.018( )
n

n
n

N zG z
D z

z z z z z z z
z z z z z z z z

+ − + − − + −
=

− − + − + + − +
=

Using BBBC the second order reduced system obtained is 

            2
2
0.2339 z - 0.159( )( ) 

( ) 1.765 0.839
7

r

r

r

N zG z
D z z z

= =
− +

 

 

Table 4.29 Comparison of reduced order systems for example 4.18 
Order Reduction Method Reduced System Gr(z) SSE 

Proposed Method 2
0.2339 z - 0.1597

1.765 0.839z z− +
  0.00025 

Hwang et. al. [254] 2
0.316331 0.262395

1.73034 0.784276
z

z z
−

− −
 0.062 

Bistritz [253] 2
0.2696 0.2157

1.73 0.7842
z

z z
−

− −
 0.052 

Bistritz [132] 2
0.37131242 0.298

1.626873 0.701497
z

z z
−

− −
 0.057 

Hwang et. al. [254] 2
0.3664429 0.28918

1.626873 0.701497
z

z z
−

− −
 0.065 

Hwang and Shih [248] 
2

2
0.2018 0.156

1.2
0.04484

1.955 0.843
z z
z z− +

+ −  0.0791 
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Fig. 4.19 (a) Comparison of step responses for example 4.18 

 
Fig. 4.19 (b) Comparison of impulse responses for example 4.18 

 
 The responses of the original and reduced system are shown in Fig. 4.19 (a)-(b). It is 

observed that the responses obtained are more or less exactly same. The results in terms of 

SSE (3.10) are compared with other available methods in Table 4.29. 

Example 4.19: Revisiting a supersonic inlet model transfer function of example 2 in 3.5.1 

and using BBBC, the second order reduced system obtained will be 
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 The original and reduced system is subjected to step and impulse input. Their 

corresponding responses are shown in Fig. 4.20 (a)-(b). These responses are compared in 

Table 4.30 with respect to SSE with other available methods. 
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Table 4.30  Comparison of reduced order systems for example 4.19 

Order Reduction 

Method 

Reduced System 

Gr(z) 
SSE 

Proposed Method 

(second order) 2 0.9245 0.0127
1.456 z - 16

4
 1.

z z− +
  0.1713 

Lalonde et. al.[176] 

(third order) 

2

3 2

30.0627 2.106 1.569 0.0371
0.8204 0.1697 0.1648
z z z

z z z
− + +

− + −
 0.55879 

Lalonde et. al.[176] 

(fifth order) 

4 5 4 3 2

5 4 3 2
1.72 10 2.1 2.9 2.15 1.5 0.66

1.488 1.231 0.96 0.6693 0.3247
z z z z z

z z z z z

−× − + − −
+ − −
+

− −
 0.17453 

 
Fig. 4.20 (a) Comparison of step responses for example 4.19 

 
Fig. 4.20 (b) Comparison of impulse responses for example 4.19 
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Example 4.20: Consider the 8th order transfer function investigated by Alsmadi et al. [276] 

given as 

( )
7 6 5 4 3 2

8 7 6 5 4 3 2
0.1625 0.125 0.0025 0.00525 0.02263 0.00088 0.003 0.000413

0.6307 0.4185 0.078
 

0.057 0.1935 0.09825 0.0165 0.00225n
z z z z z z z

z z z z z
G

z z z
z + − + − − + +

− − + − + + − +
=

Using BBBC the second order reduced system obtained is 

            2
  0.1663 z - 0.08625( )( ) 

( ) 1.756 0.8301r

r

r

N zG z
D z z z

= =
− +

 

 The corresponding responses of the original and reduced system, when subjected to 

step and impulse input are shown in Fig. 4.21 (a)-(b). It is worth to mention here that, the 

Gn(z) and Gr(z) behaves exactly similar for a given step/impulse input. These responses are 

compared in Table 4.31 in terms of SSE with other available methods. 

 
Fig. 4.21 (a) Comparison of step responses for example 4.20 

 
Fig. 4.21 (b) Comparison of impulse responses for example 4.20 
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Table 4.31 Comparison of reduced order systems for example 4.20 
Order Reduction Method Reduced System SSE 

Proposed Method 
(second order) 2

  0.1663 z - 0.0862
1.75 8

5
6 0. 301z z− +

  0.18×10-3 

Alsmadi et al. [276] 2
0.1623 z + 0.08245

1.759 0.8335z z− +
 48.7×10-3 

Ramesh [277] 
(Method 1) 20.

   
029

 0.004
27

756 z - 
0.

0.00232
0513 0

5
3 0. 243z z− +

 0.43×10-3 

Ramesh [277] 
(Method 2) 

2

2
0.02387 0.0576 0.03  37
1.145 1.946 0.9098

z z
z z

+ +
− +

 15.9×10-3 

Ramesh [277] 
(Method 3) 21.2

   0
35

.4094 z 
1.948 0.8158

- 0.2947
z z− +

 6.55×10-3 

Ramesh [277] 
(Method 4) 

2

2
0.1521 0.0497 0.1024

1.204 1.956 0.8
   

4
z z
z z
+ −
− +

 4732×10-3 

 
4.8 CONCLUSION 

The new reduction methods suggested in this chapter comprises of a recently introduced 

evolutionary technique named BBBC.  Some of the suggested new methods is a combination 

of BBBC and stability preserving methods such as Routh approximation and stability 

equation. Another new concept of reduction method is suggested which optimizes the value of  

linear shift point 'a' using least square method. Some of the advantages of the proposed 

methods are 

1.No knowledge of eigen values/ vectors are needed. 

2.Problem of solving nonlinear equations does not exist in some method.  

3.Knowledge of possible reduced system coefficients beforehand not necessary as in some 

search techniques. 
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CHAPTER - 5 
 

ORDER REDUCTION OF DIGITAL FILTERS 

IMPLEMENTED ON TMS320C5402 DSP 
 

According to the discussion in the previous chapters, it was noted that the key ingredients of 

any system viz. complexity and system order, are escalating exponentially in this fast ever-

changing era. The analysis, design of such systems has assumed greater importance and 

generally this is being accomplished with the help of simulation. However, simulation 

becomes untenable with increasing, complexity and order of the systems under consideration. 

This is so, because they prove to be costly, time consuming, larger memory usage and 

inefficient sometimes. The remedy is to find an alternate competent reduced order model, 

which preserves the vital dynamic elements while eliminating the spurious ones.  

 Digital Signal Processing has been exciting and growing technology during the past 

few decades [278]. Its applications have also been expanded vigorously to encompass almost 

all fields resulting in tremendous progress in both the theoretical and practical aspects. While 

more DSP algorithms are being discovered, better tools are also being developed to 

implement these algorithms. In the recent years, the availability of cheap DSP chips (both 

general purpose and specific purpose), have created a great impact on different disciplines 

from electronic and mechanical engineering to economics and metallurgy [279]. This has 

motivated to pioneer alternate way of implementing reduction technique on TMS320C5402 

DSP, to generate a reduced model. The reduced model is ought to inherit all the significant 

behavioral qualities of the original model. 

 In today’s digital world, the design of digital filter has emerged as a vital player in the 

signal processing field. This is due to the fact, that digital filters have their applications 

soaring, day by day. It is penetrating in almost all areas including control systems, 

audio/video processing, communication systems and systems for medical applications to 

name just a few. Nowadays, online and offline data can be processed using digital filters, 

which are being realized both in hardware and software. Digital filters in hardware form can 

perform tasks, that were almost exclusively performed by analog systems in the past. On the 

other hand, software realization can be achieved using programming languages. In this work, 

both lowpass and highpass digital Infinite Impulse Response (IIR) filter is realized, reduced 

and is implemented on TMS320C5402 DSP for a given filter specifications. Since the order of 
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the designed IIR filter is high, a recently erupted Big Bang Big Crunch (BBBC) based 

optimization technique is employed for reducing the order of the designed high order IIR 

filter. This further ensures easy, less complex, economical, realization of the filter. Moreover 

the reduced filter will be comparatively compact because of lesser number of adders and 

multipliers being used. The results obtained for reduced and original high order IIR filter, 

justifies the proposed approach. 

 The generation of TMS320C5402 DSPs integrate functions to improve performance, 

lower chip count and reduced power consumption to enable greater system cost savings. 

These devices combine high-performance, a large degree of parallelism and a specialized 

instruction set to effectively implement a variety of complex algorithms and applications. The 

features list include a Viterbi accelerator, four internal buses, dual-address generators, 40-bit 

adder, two 40-bit ALUs, eight auxiliary registers and a software stack [280]. Further, these 

DSP’s are also highly programmable, which makes them very attractive for system upgrades 

and multitasking. Because of the above mentioned attributes and many more, DSP’s are on 

the verge to be mushroomed in our day-to-day activities as well as in the near future. 

 

5.1 TMS320C5402 DSP 

Texas Instruments (TI)  introduced its first general purpose fixed point DSP TMS32010 in 

late 1982. The TMS320 product line contains a family of DSP’s designed to support a wide 

range of high-speed or numeric-intensive DSP applications [278]. It has extended  into two 

major classes: the floating point and the fixed point processors. The TMS320C54X DSP, 

grouped under the latter category [281-283] is a low-cost, comprehensive development tool; 

allows new DSP designers to explore the TMS320C5000 DSP architecture and begin 

developing DSP based applications. It has functional adaptability to a great extent and 

processing speed. Advanced modified Harvard architecture comprising of dedicated buses for 

program memory, data memory and address is employed. CPU with application specific 

hardware logic, on-chip memory, on-chip peripherals, large read only memory spaces for 

integrating entire algorithms on chip, highly specialized instruction set are additional features. 

The C54x devices have modular architecture design for fast development of byproduct 

devices and advanced integrated circuit processing technology, for increased performance 

with low power consumption [284].The foremost characteristics [285] of the ‘C54x family of 

DSP’s  are:  

1. Performance ranging from 30-200 MIPS 
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2. Multiplier of 17 x 17-bit 

3. ALU (40-bit) and dual accumulators (40-bit), 

4. Variety of versions operating on 1.2 -5 voltage range are available,  

5. Addressing mode for 8Mx16-bit max. (extended) 

6. Addressable external space 

7. On-chip RAM (up to 200 K words) 

8. Direct memory access (DMA) controller (six-channel) 

9. 8/16-bit host port interface (HPI) 

10. Full-duplex type of serial ports are available  

11. Serial port to support 8/16 bit transfers, time-division 

12. Multiplexed (TDM) serial port, buffered serial port (BSP) and multi-channel BSP 

(McBSP) 

13. Ultra-thin packaging (100, 128, and 144-pin TQFPs) 

5.1.1 Fixed Point Representation 

The TMS320C5402 DSP is basically a 16 bit processor with the dynamic number range 

varying from 32767 to -32768. These fixed point devices assume the binary point after the 

sign bit as shown in Fig. 5.1.This fractional number representation is called Q15 format since 

there are15 magnitude bits. The approximate allowable range of numbers in Q15 format 

representation is 0.999 to -1. 

0 1 2 1. ... M Mx b b b b b−=
 

                                                                                  Binary point 

                                                                                  Sign bit 

Fig. 5.1 Fixed point representation of binary fractional numbers. 

5.1.2 Code Composer Studio  

Code Composer Studio (CCS) is the integrated development environment used to implement 

various algorithms in TI owned DSPs and microcontrollers [286]. It comprises of tools 

required for developing and debugging embedded applications. TI's device specific compilers, 

code (source) editor, environment for building projects, debugger, profiler, simulators etc are 

some of the additional features. To conclude, it provides a single user interface, facilitating 

the users to go through every step of the application development. CCS helps in speeding up 

process development stage, for the users working on real time signal processing and 

embedded applications. Further, provision for coding in C/assembly language, development 
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and debugging are also provided [282]. Similar kind of tools/interfaces used elsewhere are 

incorporated, which helps the new users feel comfortable and start working quickly, 

modify/add additional features to their applications [287].   

 The CCS supports four phases of the development cycle as shown in the Fig. 5.2. The 

initial phase is the design phase, where all the conceptual planning is done. The CCS creates 

project, writes the code and configures the file in the code and build phase. Debugging is done 

in debug phase and lastly, the real time debugging is done in the analysis phase. In other 

words, CCS provides the interface with the C54X simulator(SIM), DSP starter kit (DSK), 

evaluation module (EVM) or in  circuit emulator (XDS).  

 

Design
Conceptual 

planning

Code and Build
Create project
Write source 

code
Configure

Debug
Syntax 
check

Analysis
Real time 
checking
Statistics 
tracking

 
Fig. 5.2 Development cycle of CCS 

In order to implement the filter design on TMS320C5402 processor the following steps are 

being followed 

Step 1:Generate a test signal comprising of different frequency components. 

Step 2:Design an IIR filter H(z) of Nth order for desired specifications. 

Step 3:Using the filter coefficients, obtain the filter output.  

Step 4:Obtain the impulse and frequency response of the designed filter.   

Step 5:Applying BBBC, obtain the reduced filter Hred(z) coefficients. 

Step 6:Compare the impulse and frequency response with the original after obtaining the 

filter output. 

Step 7:Export the scaled data in Q15 format into TMS320C5402 processor using CCS and 

execute  the program. 

Step 8:Plot the responses in CCS for comparison and justification. 

 

5.2 BBBC METHOD FOR ORDER REDUCTION  

In this section, BBBC optimization technique described in 4.1, is utilized to optimize the 

coefficients of the reduced order filter. 
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5.2.1 Problem Statement 

A finite-dimensional digital IIR filter under stable condition can be represented in the z-

domain as 

 

1
1

1
1

1 2 1
1

1 2 1
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It is desired to find a reduced ‘r’ (r < N) order digital IIR filter Hred(z) given by 
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=
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∑

∑                                                                                   (5.2) 

5.2.2 Illustrative Examples 

Example 5.1: Consider a fifteenth order highpass butterworth filter designed for 70Hz cutoff 

frequency, sampling frequency being 300Hz is represented by H(z). It is desired to find a 

approximate reduced order filter. 

1 2 -3 -4 -5 -6 -7 -8

-9 -10 -11 -12 -13 -14 -15

-1

( )
0.0003-0.0051z +0.0354z -0.1534z +0.4602z -1.0125z + 1.6876 z -2.1697 z + 2.1697 z - 

1.6876 z + 1.0125 z -0.4602z  + 0.1534  z -0.0354z  + 0.0051z -0.0003z       
1-0.9982z

H z
− −

=

-2 -3 -4 -5 -6 -7 -8 -9 -10

-11 -12 -13 -14 -15

 
+2.4783z -1.8191z +2.1660z -1.1766z + 0.8526 z -0.3384z +0.1587z -0.0444  z +0.0133z

-0.0024z + 0.0004 z -0.00004z +0.0000034z -0.0000001z

 

Scaling appropriately the filter coefficients in Q15 format is given by 

 
15

-1 -2 -3 -4 -5 -6 -7 -8 -9

-10 -11 -12 -13 -14 -15

-1 -2 -

( )

1h+0Chz +04Ehz +0150hz +03EEhz +08A4hz + 0E67hz +01284hz +01284hz +0E67hz
             +08A4hz +03EEhz +0150h  z +04Ehz +0Chz + 01h z     

0889h+0885hz +01526hz + 0F86hz

QH z =

3 -4 -5 -6 -7 -8 -9

-10 -11 -12 -13 -14

+0127Chz +0A0Bhz +0747h z +02E4hz +015Bhz + 061h z +
                                          01Ehz +06hz +  01hz +01hz +01hz

 

Applying BBBC for minimizing the fitness function given by 

( ( )[ ( ) ( )] ) ( ( )[ ( ) ( )] )
pass stop

j j pass j j stop
f red f rederr W H e H e W H e H emax maxω ω ω ω

ω≤ω ω ≤ω

= ω − − δ + ω − − δ  (5.3) 

where err is the error, Wf is the weighting function, H(ejω), Hred(ejω)  is the frequency response 

of the original high order and reduced order filter, δpass and δstop are the pass band and stop 

band ripples, ωpass and ωstop are the normalized pass band and stop band cut off frequencies. 

The reduced order filter in Q15 format is obtained as 
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15

-1 -2 -3 -4 -5 -6 -7 -8

-1 -2 -3 -4 -5 -6 -7 -8

( )

1h+0Ahz +03Bhz +0CFhz +01F1hz +0315hz + 0385hz +026Bhz +0118hz     
0889h+070Dhz +0108Ahz + 0C6Ahz +0BC3hz +06A4hz +0340hz +010Bhz +030hz

Q redH z =
 

or  -1 -2 -3 -4 -5 -6 -7 -8

-1 -2 -3 -4 -5 -6 -7 -8

( )

0.00033-0.0043z +0.0268z -0.0944z +0.227z -0.361z +0.412z -0.283z + 0.1281z     
1+0.826z +1.937z +1.454z +1.378z +0.778z +0.38z +0.121z +0.0218z

redH z =
 

 
Fig. 5.3 Comparison of filter responses obtained in CCS for example 5.1 

 
Fig. 5.4 Comparison of filter responses for example 5.1 
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Fig. 5.3 and 5.4 depicts the waveforms of the input (test) signal, filter response of the higher 

order (H(z)) and reduced order (Hred(z)) highpass butterworth filter obtained in CCS and 

MATLAB respectively. Fig. 5.5 compares the magnitude and phase responses of H(z) and 

Hred(z) obtained in MATLAB using fvtool. Similarly FFT power spectrum of input signal, 

H(z) and Hred(z) are compared in Fig. 5.6. It is seen that the frequency components above the 

cuttoff frequency (70 Hz) are passed through the filter as designed. 

 
Fig. 5.5 Comparison of magnitude and phase responses for example 5.1 

 
Fig. 5.6 Comparison of FFT power spectrum for example 5.1 
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Example 5.2:  A thirteenth order highpass Chebyshev filter with cutoff frequency equal to 

70Hz and sampling frequency is 300Hz having ripple factor of 0.1 is described by H(z).

 
1 2 -3 -4 -5 -6 -7 -8

-9 -10 -11 -12 -13

-1 -2 -3

( )
0.000088-0.00115z +0.0069z  -0.025z +0.0635z  -0.114z + 0.152 z -0.1527 z + 0.114 z - 

-0.0635 z + 0.0254 z -0.0069z + 0.00115 z -0.000088z       
1+2.766z +6.749z +11.398z +16

H z
− −

=

-4 -5 -6 -7 -8 -9 -10

-11 -12 -13

 
.258z +19.056z + 19.0395z +16.1408z +11.618z +7.0115 z +3.47z

+1.35142z + 0.3795z + 0.06296z

 

  
Fig. 5.7 Comparison of filter responses obtained in CCS for example 5.2 

 
Fig. 5.8 Comparison of filter responses for example 5.2 
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Scaling appropriately the filter coefficients in Q15 format is given by 

 
15

-1 -2 -3 -4 -5 -6 -7 -8 -9

-10 -11 -12 -13

-1 -2 -3 -4 -5 -6 -7

( )

1h+02hz +0Bhz +028hz +064hz +0B3hz + 0EEhz + 0EEhz +0B3hz +064hz
+028hz +0Bhz +02hz +01hz     

0619h+010DDhz +02924hz + 0457Ahz +0631Ahz +07428hz +0740Dhz +06262hz +046D

QH z =

-8

-9 -10 -11 -12 -13

1hz +
02ABDhz +01528hhz +083Dhz +0251hz 063hz+

 

Using BBBC, satisfying (5.3) the eight order filter is obtained in Q15 format as 
-1 -2 -3 -4 -5 -6 -7 -8

15 -1 -2 -3 -4 -5 -6 -7 -8

1h+010hz +05Chz +069hz +0244hz +038hz + 04D6hz +08Bhz +031Ehz     ( )
0925h+0C37hz +018A6hz + 018E3hz +017E4hz +01039hz +08ADhz +0336hz +0A0hzQ redH z =  

  
Fig. 5.9 Comparison of magnitude and phase responses for example 5.2 

 
Fig. 5.10 Comparison of FFT power spectrum for example 5.2 
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 The input signal, filtered output of higher order (H(z)) and reduced order chebyshev 

filter  (Hred(z)) obtained in CCS are shown in Fig. 5.7. The same set of signals obtained in 

MATLAB are depicted in Fig. 5.8. It is observed that the signals obtained in CCS and 

MATLAB are alike. The response obtained from higher order filter has introduced some 

delay in the beginning. Hence the magnitude is zero initially. This delay is nullified in the 

response of the reduced order filter.  The magnitude and phase responses of H(z) and Hred(z) 

are compared in Fig. 5.9 using fvtool in MATLAB. The phase responses in both cases are 

similar. However, the magnitude response of reduced order filter exhibits ripple in the pass 

band due to the characteristic of the chebyshev filter. The highpass filter under discussion is 

designed for 70Hz cutoff frequency. The same is clearly visible in Fig. 5.10, which depicts the 

FFT power spectrum of  input signal, output of higher order and reduced order filter. 

 

Example 5.3: A twelfth order lowpass Butterworth filter with cutoff frequency equal to 50Hz 

and sampling frequency 300Hz is described by H(z).  

 
1 2 -3 -4 -5 -6 -7

-8 -9 -10 -11 -12

-1 -2 -3 -4

( )
0.000019+ 0.000229z +0.00126z  +0.0042z +0.00946z +0.0151z + 0.0176z +0.0151 z + 

0.00946z + 0.0042 z + 0.00126 z +0.000229z + 0.000019 z      
1-3.99z +8.569z -12.15z +12.473z

H z
− −

=

-5 -6 -7 -8 -9 -10

-11 -12

 
-9.6z + 5.638z -2.528z +0.855z -0.211z +0.036z

-0.0038z + 0.00019z

 

Scaling appropriately the filter coefficients in Q15 format is given by 

 
15

-1 -2 -3 -4 -5 -6 -7 -8 -9

-10 -11 -12

-1 -2 -3 -4 -5 -6 -7 -8

( )

1h+01hz +03hz +0Ahz +017hz +024hz + 02Ahz + 024hz +017hz +0Ahz
+03hz +01hz +01hz     

0925h+0247Dhz +04E59hz + 06F2Bhz +0720Chz +057C8hz +0338Ehz +0171Fhz +07D2hz +
01F1hz

QH z =

-9 -10 -11 -12+056hz +0Ahz +01hz

 

Using BBBC, the eight order filter is obtained in Q15 format as 

 
15

-1 -2 -3 -4 -5 -6 -7 -8

-1 -2 -3 -4 -5 -6 -7 -8

( )

1h+01hz +04hz +0Chz +018hz +029hz + 029hz +021hz +012hz     
09D9h+025D5hz +04BAAhz + 060B7hz +05523hz +03455hz +015DDhz +05ADhz +0B5hz

Q redH z =
 

 The input signal comprising of 10Hz to 100Hz frequency components in steps of 10, is 

added with random noise and is shown in Fig. 5.11 and Fig. 5.12. In addition to this, the 

respective output of the higher order and reduced order butterworth lowpass filters are also 

obtained accordingly. It can be observed that the filtered output of H(z) and Hred(z) are 

identical. In Fig. 5.13, the phase response of  H(z) and Hred(z) are similar but, the magnitude 

response is better in case of reduced order filter. Fig. 5.14 indicates the comparison of FFT  
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power spectrums of input signal, output of higher order and reduced order filter, as obtained 

in MATLAB. It is clearly visible that the reduced order filter passes all the frequency 

components within 50Hz and attenuates thereafter. This is similar to that of higher order filter.  

 

 
Fig. 5.11 Comparison of filter responses obtained in CCS for example 5.3 

 

  
Fig. 5.12 Comparison of filter responses for example 5.3 

0 100 200 300 400 500 600
-10

-5

0

5

10
Input signal

C
oe

ffi
ce

nt
 v

al
ue

s

0 100 200 300 400 500 600
-5

0

5
Output of higher order IIR Low pass Butterworth filter

C
oe

ffi
ce

nt
 v

al
ue

s

0 100 200 300 400 500 600
-5

0

5
Output of reduced order IIR Low pass Butterworth filter

No of samples

C
oe

ffi
ce

nt
 v

al
ue

s



Order Reduction of Digital Filters Implemented on TMS320C5402 DSP 
                                                                                                                                                                                                                                             

180 
 

 
Fig. 5.13 Comparison of magnitude and phase responses for example 5.3 

   
Fig. 5.14 Comparison of FFT power spectrum for example 5.3 
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5.3.1 Introduction        

GA is now a days, has become a general-purpose search/optimization method. It is one among 

the various optimization techniques available, that can be employed to provide solutions for 

complex problems that are difficult to solve. It can also be applied for problems having 

discontinuous objective function, stochastic or highly nonlinear which cannot be solved easily 

by other standard optimization methods [288]. GA keeps and modifies a population of 

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10
x 104 Input signal

P
ow

er

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10
x 104 Output of higher order IIR low pass filter

P
ow

er

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10
x 104 Output of reduced order IIR low pass filter

Frequency (Hz)

P
ow

er



Order Reduction of Digital Filters Implemented on TMS320C5402 DSP 
                                                                                                                                                                                                                                             

181 
 

solutions and uses survival of the fittest strategy in search of better solutions. During each 

iteration, best solution of any population will reproduce and survive to the next iteration thus 

ameliorating successively. However, there is every chance that subordinate solutions can also 

remain alive and reproduce. Usually the solutions are represented as strings of fixed length, 

called chromosomes. The quality of each solution will be according to the fitness/objective 

function. To start with GA optimization, a random population is initialized and is executed in 

cycles called generations, as follows [289] : 

1.Objective/fitness function is used for evaluating every individual of the current population. 

2.Reproduction occurs during iterations. Random selection of single or multiple parents are 

choosen, however the strings with better fitness values have more tendency of providing an 

offspring. 

3.Offspring are yielded by applying crossover and mutation to parents. These offspring’s are 

injected into the next population and thus repeating the cycle.  

 Some fundamental issues have to be finalized before implementing GA. All these 

issues are described concisely in the below sections. 

5.3.1.1 Chromosome Representation 

This ascertains the structure of the problem and also the genetic operators used in GA. Every 

individual/ chromosome is formed by a series of genes. There are variety of 

individual/chromosome representations viz. binary digits, matrices, integers, real values, 

floating point numbers. In order to obtain efficient and better solutions one must go for 

natural representations. On the other hand, real-coded representation offers more efficiency as 

far as CPU time is considered. Additionally, it provides results of higher precision with good 

consistency. 

5.3.1.2 Selection Function 

The selection function plays a crucial role in deciding the individuals that survive and move 

forward to the next generation. This is performed based upon the individual’s fitness. The 

chances of inferior individuals being selected is lesser than that of the superior ones. There are 

variety of  schemes that can be followed for the selection viz. elitist models, roulette wheel 

selection and its extensions, normal geometric, ranking methods. However, the right type of 

selection plays an important role as it helps in yielding series of generations. In this 

communication, the geometric selection function (normalized) is found to be suitable for use.  
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   The selection process comprises of assigning a possibility of selection, denoted by pi 

to each individuals based on its fitness value. The possibility of individual selection pi is given 

as 

 

r-1
i

p

'

'

p =q (1- q)
qq =

1- (1- q)
              (5.4) 

where  q = probability of selecting the best individual, r = rank of the individual (with best 

equals 1) and P = population size 

5.3.1.3 Genetic Operators 

Genetic operators assist in the basic search operation in GA. Crossover and mutation are the 

two basic types of operators available. New solutions are yielded depending on the existing  

solutions in the current population. In case of crossover, two individuals are considered to be 

parents. this results in two new individuals. Whereas, mutation yields a one solution (new) by 

altering single individual. The different types of crossover employed are simple, arithmetic 

and heuristic crossover. Similarly the various types of mutations are uniform, multi-non-

uniform and non-uniform mutation etc. In this proposal, arithmetic crossover and non-uniform 

mutation are being used. A random number 'rn', is generated by crossover from a uniform 

distribution starting 1 to m and generates two new individuals. This is possible by using  

 

'

'

,

,

i n

i

i n

i

i

i

x if i r
x

y otherwise

y if i r
y

x otherwise

< 
=  
 

< 
=  
 

                                                 (5.5)  

Two linear combinations  (complimentary) of the parents are yielded by arithmetic crossover, 

 where rn = U (0, 1) 

 
'

'

(1 )

(1 )

n n

n n

X r X r Y

Y r Y r X

= + −

= + −
                                                 (5.6) 

the value of variable 'j' is randomly selected by non-uniform mutation and initializes to an 

non-uniform number randomly.  

 
1

1
'

( ) ( ) 0.5,

( ) ( ) 0.5,

,

i i i c

i i i c

i

i

x b x f G if r

x x x a f G if r

x otherwise

+ − < 
 = + + ≥ 
 
 

                                                                     (5.7) 
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2
max

( ) 1
b

c
c

Gf G r
G

  
= −  

  
 

where r1,r2 are uniform random numbers between 0 and 1, Gc is current generation, Gmax is 

maximum number of generations and b is the shape parameter 

5.3.1.4 Initialization, Termination and Evaluation Function 

Optimization method such as Particle Swarm Optimization (PSO) starts by floating an initial 

population randomly. The same case applies to GA also. The execution takes place and 

continues further from iteration to iteration until some stopping criterion is satisfied. The 

stopping criterion can be the limit for number of generations, criteria for population 

convergence, unsatisfactory improvement in the best solution provided over a span 

generations or desired value for the fitness function.  

 There are different forms of evaluation/objective that can be made use of. Doing so 

helps in mapping the population into a partially ordered set. The optimizing process continues 

until the best solution is obtained according to the fitness function under the limitation of the 

number of generations. The same is noticeable from the illustrative examples being solved. 

5.3.2 Problem Statement 

Consider a nth order linear time invariant single input single output (LTI-SISO) system, also 

called Higher Order Model (HOM), described by 

          ( ) 1
2

1 2

...
;

...

m
o m

n
o n

a a s a sG s m n
b b s b s b s

+ + +
= <

+ + + +
                                                                       (5.8) 

The objective is to compute rth (r < n) order Reduced Order Model (ROM) R(s) from (5.8) in 

the form  

          ( ) 1
2

1 2

...
;

...

p
o p

r
o r

d d s d s
R s p r

e e s e s e s
+ + +

= <
+ + + +

                                                                       (5.9) 

Further, it should also be noted that the ROM obtained must be stable and closely 

approximate the HOM, in such a way that the difference between the transient parts of the 

G(s) and R(s) is as minimum as possible. 

5.3.3 Illustrative Examples 

Example 5.4: Consider the system given by Phillip and Pal [233]  

 
3 2

4 3 2

7 24 24( )
10 35 50 24

s s sG s
s s s s

+ + +
=

+ + + +
                                     (5.10) 

 or in Q15 format, equation(5.8) is rewritten as 
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3 2

15 4 3 2

 08000h 038000h + 0C0000h 0C0000h( )
08000h 050000h 0118000h 0190000h 0C0000hQ

s s sG s
s s s s

+ +
=

+ + + +
 

The reduced model obtained in TMS320C5402 DSP using GA is given by [290] 

 15 2

061DCh 0D832h( )
08000h 014BA6h 0D832hQ

sR s
s s

+
=

+ +
 

or in decimal numbering system R(S) is 

       2

0.7645 1.689( )
2.591 1.689

sR s
s s

+
=

+ +
 

 
Fig. 5.15 Comparison of step responses obtained in CCS for example 5.4 

 

 
Fig. 5.16 Comparison of step responses for example 5.4 
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Fig. 5.15 and 5.16 shows the snap shot view of the results obtained in CCS and MATLAB 

respectively. It is seen that the step response of reduced model closely approximate with the 

original model. Table 5.1 compares the values of 'I' using (2.21), obtained by various authors 

using different techniques. 

 

Table 5.1 Comparison of reduced order systems for example 5.4 

Order reduction 

Method  
Reduced System R(s) 'I ' 

Proposed Method 2

0.7645 1.689
+2.591 1.689

s
s s

+
+

 7.23334 x 10-5 

Phllip and Pal 

[233] 
2

0.9315 1.609
2.756 1.609

s
s s

+
+ +

 1.75399 x 10-3 

Chen [53] 2

0.699 s + 0.699
1.45771 s + 0.699s +

 2.780534 x 10-3 

Krishnamurthy and 

Sheshadri [49] 
2

20.5714 s + 24
30 42 s + 24s +

 9.742003 x 10-3 

Pal [57] 2

16 s + 24
30 42 s + 24s +

 11.861676 x10-3 

Gutman et. al [47] 2

2(48 s + 144)
70  300s + 288s +

 45.5957 x 10-3 

 

Example 5.5: Consider the eight order transfer function [267] 
7 6 5 4 3 2

8 7 6 5 4 3 2

18 514 5982 36380 122664 222088 185760 40320( )
36 546 4536 22449 67284 118124 109584 40320
s s s s s s sG s

s s s s s s s s
+ + + + + + +

=
+ + + + + + + +

 

or in Q15 format the above equation is becomes 

7 6 5 4 3

2

15 8 7 6 5 4

3 2

90000h 01010000h 0BAF0000h 0470E0000h 0EF940000h
01B1C40000h 1016AD00000h 04EC00000h( )

8000h 0120000h 01110000h 08DC0000h 02BD88000h
0836A0000h 0E6B60000h 0D6080000h 0

Q

s s s s s
s sG s

s s s s s
s s s

+ + + + +

+ +
=

+ + + + +

+ + + 4EC00000h

 

The second order reduced model obtained in TMS320C5402 DSP using GA is given by [290] 

15 2

0875C3hs+ 02A148h( )
08000h 036F5Dh 02A148hQR s

s s
=

+ +
 

or in decimal numbering system R(S) is 
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2

16.92 5.26( )
6.89 5.26

sR s
s s

+
=

+ +
 

Fig. 5.17 shows the preview of the results obtained in CCS with the step response for the 

original and reduced model closely matching. Fig. 5.18 shows the step responses obtained in 

MATLAB. The comparison of 'I' (2.21) values is calculated for other reduced models and are 

tabulated in Table 5.2. 

 

 
Fig. 5.17 Comparison of step responses obtained in CCS for example 5.5 

 

 
Fig. 5.18 Comparison of step responses for example 5.5 
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Table 5.2 Comparison of reduced order systems for example 5.5 

Order reduction Method Reduced System R(s) 'I ' 

Proposed Method 2

16.92 5.26
6.89 5.26

s
s s

+
+ +

 0.000610 

Dia et.al [267] 2
17.099 5.074

6.972 5.151
s

s s
+

+ +
 0.00062 

 

Example 5.6: The transfer function of a original system [53] is given by 
4 3 2

9 8 7 6 5 4 3 2

35 291 1093 1700( )
9 66 294 1029 2541 4684 5856 4620 1700

s s s sG s
s s s s s s s s s

+ + + +
=

+ + + + + + + + +
 

In Q15 format the original model becomes, 

15

4 3 2

9 8 7 6 5 4

3 2

( )

8000h 0118000h 0918000h 02228000h 03520000h
8000h 048000h 0210000h 0930000h 02028000h 04F68000h

09260000h 0B700000h 09060000h 03520000h

QG s

s s s s
s s s s s s

s s s

=

+ + + +
+ + + + +

+ + + +

 

The numerator and denominator coefficients of reduced model obtained in TMS320C5402 

DSP using GA is given by  

2

15 3 2

03155hs + 02D50hs+018667h( )
08000h +015E98h 025AA0h 018667hQR s

s s s
=

+ +
  

or R(S) is 
2

3 2

0.3854s - 1.646s + 3.05( )
+ 2.739 4.708 3.05

R s
s s s

=
+ +

 

 

Table 5.3 Comparison of reduced order systems for example 5.6 
Order reduction Method Reduced System R(s) 'I ' 

Proposed Method 
2

3 2

0.3854s -1.646s+3.05
+2.739 4.708 3.05s s s+ +

 1.17822 x 10-3 

Philip and Pal [233] 
2

3 2
0.5058 1.985 3.534

3 5.534 3.534
s s

s s s
− +

+ + +
 3 x 10-3 

Mukherjee [168] 
2

3 2

0.2945 2.203 2.32
2.5008 4.778 2.32

s s
s s s

− +
+ + −

 20.5 x 10-3 

  

 The results obtained in CCS and MATALB are shown in Fig. 5.19 and 5.20. It is seen 

that the step response for the original model approximates with that of reduced model. Table 

5.2 lists the comparison of 'I' (2.21) values calculated for various reduced models.   
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Fig. 5.19 Comparison of step responses obtained in CCS for example 5.6 

 
Fig. 5.20 Comparison of step responses for example 5.6 
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given transfer function. The same is implemented on TMS320C5402 DSP, MATLAB and the 

results obtained are comparable. In 5.2, order reduction process is applied on higher order 

chebyshev and butterworth filter. Cases of lowpass, highpass are considered and it can be 

concluded that order reduction results in elimination of delay in the output of the reduced 

order filter. Furthermore, the number of multipliers, adders required reduces drastically 

thereby reducing the implementation cost of the filter. Lastly, GA is used to optimize the 

ROM coefficients so as to follow the step response of the HOM on TMS320C5402 DSP 

successfully. The responses show the effectiveness of the technique. 
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CHAPTER - 6 
 

CONTROLLER  DESIGN 
 

The chapters that were dealt till now projected the need for order reduction; various 

techniques available; means to combat/improve drawbacks of the prevailing methods, by 

developing/proposing new reduction techniques, thus satisfying the need of the hour. The 

methods proposed, is not only limited to continuous time systems, but can also be applied to 

discrete time systems. The same is justified by solving several numerical examples and 

comparing the results with other well known methods, when subjected to specified test inputs. 

However, these simulations were carried out to determine the open loop behavior of the 

system. But, in most of the practical cases, some sort of controller always exists to control the 

system behavior. The design of such controller becomes a crucial task, especially when the 

plant size is very large. In such  cases, the size of the controller also increases thereby 

resulting in complicated and costly design. Apart from this, more computational time, 

difficulties posed during analysis, simulation and understanding of the system are additional 

hurdles. Hence, there is a need for suitable lower order controller, which can be derived by 

preserving the crucial dynamics of the higher order controller. Furthermore, the derived 

reduced controller should be in a position to control the original higher order system 

satisfactorily and hence results in application of order reduction methods to controller 

reduction problems. In this chapter, the design of PID controller is dealt with using 

evolutionary techniques such as PSO and BBBC. Later, these techniques are adopted, to 

present a computer aided mode of optimizing the Fractional Order Proportional Integral 

Derivative (FOPID) controller parameters, including the integral order ‘λ’ and derivative 

order ‘µ’.   

 

6.1 PID CONTROLLER  

Today, abundant methods are proposed in [9, 258, 277, 291-293] are available. But, choosing 

the best technique is still at large because of various reasons. One of them is due to the fact 

that the designed system can only be accepted, if it satisfies the design constraints. 

Consequently this results in simple, low-order approximations without sacrificing accuracy. 

The heart of this chapter lies in the design of a PID controller Gc(s) connected in series with 

an uncontrolled plant Gp(s). The Gc(s) designed should be in a position to drive the plant in 
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stable mode, when the response of the closed loop plant  with unity feedback is considered. In 

spite of a desired quicker response, the designed  PID controller Gc(s), must also be able to 

closely match the time responses of the controlled system with those of the reference model. 

In order to carry out the above mentioned task, two different types of approaches [15, 294] for 

controller design are dealt with namely plant/process reduction and controller reduction. The 

same are being reflected in Fig. 6.1.  

 The process reduction approach comprises of reducing the original plant Gp(s) to 

Rp(s). Then a suitable controller Rc(s) is designed and placed in series with Rp(s) as shown in 

Fig. 6.2. Further, the closed loop response of RCL(s) is obtained with unity feedback. The 

block diagram in Fig. 6.2 depicts the original, reduced controller configurations with that of 

the reference model M(s). This method is also referred as direct approach.  

 
Fig. 6.1 Controller design approaches 

 

 

 
 

 

Fig. 6.2 Original and reduced controller configuration with reference model 
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propagation dosen’t persist, as the reduction process is carried out in the final stage of the 

design. 

 In the present study, both direct and indirect design approaches have been considered. 

In order to carry out the design task, a recently erupted evolutionary technique [264] called as 

Big Bang  Big Crunch  (BBBC) optimization algorithm is sought for the purpose. In other 

words, BBBC being another type of evolutionary computation is being roped in to assist in 

the design of PID controller. This approach comes out to be better than the other conventional 

techniques like HNA. Apart from this, PSO being another evolutionary method is also used 

for optimizing the design parameters. Such numerical technique not only aids in rationally 

searching, but also in selecting an appropriate combination of the best parameters among the 

available collection, so as to satisfy the design requirements. Once the design task is 

completed, the closed loop responses are then compared with the reference model M(s). The 

reference model M(s) also called as specification model or standard model is the desired 

transfer function of the closed loop system. To conclude, M(s) meets all the desired 

performance specifications and act as the basis for comparison.  

6.1.1 Design Procedure  

The direct and indirect approaches of controller design [294] are shown in the Fig.6.1. 

Initially a controller is designed for high order system and is reduced to obtain a low order 

controller. Then the closed loop response of higher order controller with original plant and 

low order controller with reduced plant are compared with the reference model. The controller 

parameters are obtained using approximate model matching in the Pade sense. The 

performance of full order controller is then compared, with that of the reduced order 

controller as shown in Fig. 6.2. 

6.1.1.1 Direct Approach: Plant Reduction and Controller Design 

The design procedure is based on approximate model matching in Pade sense and consists of 

the following steps. 

Step1:For the plant having a transfer function Gp(s), construct a reference model M(s) on the 

basis of time/frequency domain specifications. The closed loop response of the controlled 

system with unity feedback approximates the reference model response. 

Let the transfer function of the plant Gp(s) and the reference model M(s) are given by  

 1
2

1 2

...
(s) ;

...

m
o m

p n
o r

a a s a sG m n
b b s b s b s

+ + +
= <

+ + + +
                                                                (6.1) 
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 1
2

1 2

...( ) ;
...

u
o u

v
o v

g g s g sM s u v
h h s h s h s

+ + +
= <

+ + + +
                                                                 (6.2) 

Step 2:Determine an equivalent open loop specification model. If M(s) is the desired closed 

loop system (reference model) then the equivalent open loop specification model transfer 

function is obtained by 

 

( )( )
1 ( )

M sM s
M s

=
−

                                                      (6.3) 

Step 3:Structure of the controller: 

Let the controller structure Gc(s) is given by 

 1
2

1 2

...( ) ;
...

k
o k

c j
o j

p p s p sG s k j
q q s q s q s

+ + +
= <

+ + + +
                                                               (6.4) 

Step 4:For determining the unknown controller parameters, the response of the closed loop 

system is matched with that of the reference model as 

 ( ) ( ) ( )c pG s G s M s=                                                                              

 


0

( )( )
( )

i
c i

p i

M sG s e s
G s

∞

=

= =∑                                                                                                 (6.5) 

where ei are the power series expansion coefficients about s = 0. Now the unknown control 

parameters pk and qj are obtained by equating (6.4) and (6.5) in Pade sense. 
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                             (6.6) 

The controller with the desired structure is obtained by solving (6.6). 

Step 5:After obtaining the controller parameters, the closed loop transfer function can be 

obtained as 

 
( ) ( )

( )
1 ( ) ( )

c p
CL

c p

G s G s
G s

G s G s
=

+
                                                                                                             (6.7) 

Step 6:Reduce the plant GP(s) to RP(s) using reduction method. Repeat steps 4 and 5. The 

closed loop transfer function for the reduced order model is  
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( ) ( )

( )
1 ( ) ( )

c p
CL

c p

R s R s
R s

R s R s
=

+
                                                                                                           (6.8) 

6.1.1.2 Indirect Approach: Controller Design and Reduction 

In this approach a higher order controller Gc(s) is designed for Gp(s) and closed loop transfer 

function with unity feedback is obtained. Then, the closed loop transfer function GCL(s) is 

reduced to obtain reduced closed loop transfer function RCL(s). The procedure will become 

more transparent when refered to the illustrative examples in 6.1.2.1.2.  

6.1.2 Particle Swarm Optimization 

PSO being a global optimization algorithm, a subset of evolutionary computation has gained 

popularity in academia and industry; simplicity and intuitiveness, capable of handling both 

discrete and continuous variables, requires no rigid first guess algorithms, ease of 

implementation, exploring majority of the problem space are its advantages. As a result, it is 

found to be useful in solving mixed integer optimization problems, that are typical of complex 

engineering systems. Another main attraction of PSO is that, it works well for any 

dimensional problem. Hence, it is used at finding the optimum for single objective and multi-

objective functions (nonlinear and linear). Although, the problem of being stuck in local 

minima exists, it is uncomplicated to code and understand its most basic form. Conceptually, 

PSO is similar to Genetic Algorithms due to the stochastic population based nature, but is 

easier to implement with the same. Further, the stochastic population based optimization 

technique comes with a simple memory component. To conclude, PSO has similar or better 

results than GA [295, 296]. 

 The PSO algorithm is originally introduced in terms of social and cognitive behavior 

by Kennedy and Eberhart in 1995 [297]. Swarm can be formally defined as a group of mobile 

agents that communicate with each other directly or indirectly [298]. Since its inception, 

many problems in various engineering fields are benefitted because of its fairly simple 

computations; sharing of information within the algorithm as it derives its internal 

communications from the social behavior of individuals. The individuals, henceforth called 

particles, are flown through the multi-dimensional search space with each particle 

representing a possible solution to the multi-dimensional optimization problem [299]. Each 

solution’s fitness is based on a performance function related to the optimization problem 

being solved.  

  The process of PSO, begins by initializing the population of particles; randomly 

positioned across the search range with an initial random velocity having values not greater 
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than a certain percentage of the search space in each direction. Each particle (candidate 

solution), is expressed as a position within the search space of the problem; flies through 

search space by updating its individual velocity at regular intervals toward both the best 

position or location it personally has found called pbest [300] (i.e. the personal best), and 

toward the globally best position found by the entire swarm called gbest (i.e. the global best). 

The pbest and gbest are iteratively updated for each particle, till a better or more dominating 

solution (in terms of fitness) is found. This process continues, until the maximum iterations is 

reached or specified criteria is met. The particle swarm consists of a swarm of particles each 

moving or flying through the search space of the problem according to velocity update 

equation  

 1 1 2 2( ) ( )i i i i g iv v c r p x c r p x= + − + −                       (6.9) 

where vi   is the velocity vector of ith particle, xi  is the position vector of ith particle, pi  is the 

n-dimensional personal best of ith particle found from initialization, pg is the n-dimensional 

global best of the swarm found from initialization, c1 is the cognitive acceleration coefficient 

c2  the social acceleration coefficient, r1 , r2  are the random numbers drawn from a uniform 

distribution and the position is updated using 

 i i ix = x +v                                                                                    (6.10) 

The classical version of PSO algorithm defined by velocity update equations (6.9) and (6.10) 

inherits a weakness that can be fixed by the introduction of an inertia weight ‘w’ or 

constriction coefficient ‘χ’. The method of introducing inertia weight, was first introduced by 

Shi and Eberhart [301] and the modified velocity update equation is given by 

 1 1 2 2* ( - ) ( - )i i i i g iv w v c r p x c r p x= + +                         (6.11) 

According to Eberhart and Shi [302] the optimal strategy is to initially set w to 0.9 and reduce 

it linearly to 0.4, allowing initial exploration followed by acceleration toward an improved 

global optimum. 

The problems in velocity update equations (6.9) and (6.10) was addressed by Clerc [296] by 

introducing constriction coefficient ‘χ’ so as to result in 

 1 1 2 2[ ( - ) ( - )]i i i i g iv v c r p x c r p x= χ + +                         (6.12) 

where χ is computed as   

 2
2 ( 4)

χ =
− φ − φ φ −

                                        (6.13) 

where ϕ=c1+c2, ϕ>4 



Controller Design 
                                                                                                                                                                                                                                             

195 
 

The velocity equation, is the heart of the PSO algorithm; and expresses each particle’s 

velocity as a balance between attraction to its own personal best position and the current 

global best position among all particles. This is the difference between local and global 

searching. This is one of the reasons the algorithm is so resistant to getting stuck in local 

minima [303]. The basic PSO algorithm is as follows: 

Step 1: [start] The PSO starts by randomly initializing the position, velocity, and the personal 

best of each particle in the swarm. 

Step 2: [Evaluate Fitness value] For each iteration, the particles will be moved into the 

solution space. The algorithm will act on each particle such that each particle will move in a 

direction to improve its fitness function. The action involves updating the particles velocity, 

movement updating of particles and evaluating the fitness function for the new position. 

Step 3: [Compare Fitness Function] Compare the fitness function of the new position with the 

fitness function of gbest. Repeat the above steps for the whole particles. 

Step 4: [Maximum iteration] Check if maximum iteration reached or a specified termination 

criteria is satisfied. Stop, and return the best solution gbest otherwise, update w and go to the 

next iteration.  

Step 5: [Loop] Go to step2 for fitness evaluation. 

The flowchart showing the process of PSO [304] is as shown in Fig. 6.3. Table 6.1 gives the 

typical parameters used for PSO in the present study. 

Start

Specify the parameters for PSO  

Initialize  swarm

Calculate velocities and new postion

Evaluate fitness 
function 
good ?

Stop
YesNo

Evaluate  swarm and update each 
particle

 
Fig. 6.3 PSO optimization process 
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Table 6.1 Typical Parameters 
Parameters Value 
Swarm size 20 
Maximum 
generations 

100 

c1, c2 2, 2 

wstart, wend 0.9, 0.4 
 

6.1.2.1 Illustrative Examples 

Numerical examples are presented to illustrate both direct and indirect methods of PID 

controller design. The design parameters are optimized using PSO [305]and solved in detail 

for the first example. Later, the results are compared with other methods. 

6.1.2.1.1 Direct Method 

Example 6.1: Consider the regulator problem, whose transfer function and the reference 

model are given as [22] 

 

5 4 3 2

6 5 4 3 2

2

8 20 16 3 2( )
2 36.6 204.8 419 311.8 67.2 4
0.023 0.0121( )

0.21 0.0121

p
s s s s sG s

s s s s s s
sM s

s s

+ + + + +
=

+ + + + + +
+

=
+ +

  

Step 1:Consider M(s) and determine the equivalent open loop transfer function using (6.3)  

 

3 2

4 3 2

0.023 0.01693 0.002819 0.0001464( )
0.397 0.05137 0.002263

s s sM s
s s s s

+ + +
=

+ + +
  

Step 2:Let the desired controller be according to (6.5) and is given by 

 


2 3( ) 1( ) (0.064707 0.767859 0.801795 4.681159 ...)
( )c

p

M sG s s s s
G s s

= = + + − +   

Step 3:Taking the PID controller structure as 

 
2

1 2 32
1 3( )c

K s K K sKG s K K s
s s

+ +
= + + =   

Step 4:Comparing the controller Gc(s) with the power series expansion, parameters K1, K2 

and K3 of the controller are obtained, which results in the PID controller as 

 
20.064707 0.767859 0.801795( )c

s sG s
s

+ +
=   

Step 5:The corresponding closed loop transfer function is found using (6.7) 

 
7 6 5 4 3 2

7 6 5 4 3 2
0.8228 7.349 22.66 29.02 16.03 4.981 1.728 0.1294( )

1.823 25.65 125.1 238.5 172 38.58 3.728 0.1294CL
s s s s s s sG s
s s s s s s s

+ + + + + + +
=

+ + + + + + +
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Step 6:The original system is reduced to second order model using proposed PSO technique 

by minimizing the ISE between the Gp(s) and Rp(s) using (2.21). Where y(t), yr(t) are the unit 

step responses of Gp(s) and Rp(s) respectively. 

Thus, 

 2
0.02555 0.01036( )

0.4756 0.01036ppso
sR s

s s
+

=
+ +

 

Step 7:Similarly using GA and HNA, the reduced system obtained is 

  2
0.01414 0.009369( )

0.1436 0.009369pga
sR s

s s
+

=
+ +

       

 2
0.0113 0.0736( )
0.1436 0.009369phna

sR s
s s

+
=

+ +
  

Step 8:Now, following step 4 in 6.1.1.1, the controller structure obtained is 

 



2

( )( )
( )

1 (0.06471 0.714036 1.89926 ...)

cpso
pga

M sR s
R s

s s
s

=

= + + +

  

Step 9:Considering the PID controller structure as 

 
2

1 3

2
1 2 3

( )c
KR s K K s
s

K s K K s
s

= + +

+ +
=

   

Step 10:Comparing the coefficients with the power series expansion the parameters, K1, K2 

and K3 of the controller are obtained, which gives the PID controller as 

 
20.06471 0.714036 1.89926( )cpso

s sR s
s

+ +
=   

Step 11:The closed loop transfer function of the reduced second order model and the 

controller using PSO [305],GA and HNA [306] according to step 6 in 6.1.1.1, results in 

 
3 2

3 2
0.04853 0.03861   0.00933  0.0006703( )

1.049 0.2142  0.01969  0.0006703CLPSO
s s sR s

s s s
+ + +

=
+ + +

  

 
3 2

3 2
0.01165 0.07664  0.005604  0.004762( )

1.012 0.417  0.0792  0.004762CLGA
s s sR s
s s s

+ + +
=

+ + +
  

 
3 2

3 2
0.05177 0.0445   0.007102  0.0006152( )

1.052 0.1885  0.0167  0.0006152CLHNA
s s sR s
s s s

+ + +
=

+ + +
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Table 6.2 Comparison of original and reduced order plants for example 6.1 

System 
Rise Time 

tr (sec) 

Peak Overshoot 

% Mp 

Settling Time 

ts (sec) 

M (s) 28.1 0.00383 46.2 

GCL(s) 22.3 0 45.1 

RCLPSO(s) 28.8 0 43.6 

RCLGA(s) 28 0 45.3 

RCLHNA(s) 30 0.95 42.1 

  

 Fig 6.4 shows the comparison of step response of closed loop transfer function of the 

original plant, the reduced model using PSO with that of the reference model. It is seen that 

all the three responses are matching in both steady state and transient regions. Table 6.2 gives 

the qualitative comparison of original and reduced order plants in terms of transient response 

parameters. 

 
Fig. 6.4 Comparison of step responses for example 6.1 

6.1.2.1.2 Indirect Method 

Example 6.2: Consider a sixth order rational minimum phase stable practical system taken 

from Prasad [240] having transfer function and the reference model as 

              

4 3 2

6 5 4 3 2

2

248.05 1483.3 91931 468730 634950( )
26.24 1363.1 26803 326900 859170 528050
4( )
4 4

p
s s s sG s

s s s s s s

M s
s s

+ + + +
=

+ + + + + +

=
+ +

  

Step 1:Considering M(s), the equivalent open loop transfer function using (6.3) is given by 
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            
2

4 3 2
4 16 16( )
8 20 16
s sM s

s s s s
+ +

=
+ + +

  

Step 2:According to (6.5), the controller transfer function is given as 

             





2 3

( ) ( ) ( )

( )( )
( )

1 (0.8316 0.5313 0.2841 0.1159 ..)

c p

c
p

M s G s G s
or

M sG s
G s

s s s
s

=

=

= + − + +

  

Step 3:Choose the controller structure as 

 1

2

(1 )( )
(1 )c

k k sG s
s k s

+
=

+
  

Step 4:Matching controller structure with power series expansion coefficients gives  

  1 20.8316, 1.1735, 0.5347K K K= = =   

Hence the controller Gc(s) for the original plant is given as 

 2
0.976 0.8316( )

0.5347c
sG s

s s
+

=
+

  

Step 5:Then the corresponding closed loop transfer function GCL(s) is 

            

5 4 4 3 5 2

6 5

8 7 6 4 5 5 4 5 3

6 2 6 5

242.5 1656 9.11 10 5.347 10

1.011 10 5.28 10( )
0.5363 15.07 757.3 1.598 10 2.038 10 8.788 10

1.677 10 1.539 10 5.28 10

CL

s s s s

sG s
s s s s s s

s s

+ + × + ×

+ × + ×
=

+ + + × + × + ×

+ × + × + ×

  

Step 6:The closed loop transfer function is reduced to third order using PSO[305] by 

following step 6 in example 1 in 6.1.2.1.1 and is given by 

              
2

3 2
  0.8622  2.05 0.9609( )

     3.258     3.172      0.9609CLPSO
s sR s

s s s
+ +

=
+ + +

  

              
2

3 2
0.4844  2.393 1.674( )

     3.233    4.045    1  .674CLGA
s sR s

s s s
+ +

=
+ + +

  

              
2

3 2
 0.9633  3.88 1014( )

1  .176    1  .404  1  190     1  013CLHNA
s sR s

s s s
+ +

=
+ + +

  

  

 The comparison of step responses of M(s), GCL(s) and RCLPSO(s) is depicted in Fig.6.5. 

These responses are compared in terms of transient response parameters with responses from 
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other methods in Table 6.3. It can be concluded that the result obtained by PSO is 

comparable. 

 
Fig. 6.5 Comparison of step responses example for 6.2 

 

Table 6.3 Comparison of original and reduced order plants for example 6.2 

System 
Rise Time 

tr (sec) 
Peak Overshoot 

% Mp 
Settling Time 

ts (sec) 
M (s) 1.68 0 2.92 
GCL(s) 1.76 0.239 2.81 

RCLPSO(s) 2.57 0 4.57 

RCLGA(s) 1.82 0.158 2.79 

RCLHNA(s) 2.57 0.02 4.6 
 

6.1.3 BIG BANG BIG CRUNCH OPTIMIZATION 

The BBBC method relies on one of the theories of the evolution of the universe; namely, the 

Big Bang and Big Crunch theory and then realized to be useful for optimization [264]. The 

details of this recently introduced technique is already dealt in detail in the previous chapter 4. 

In the present section, BBBC optimization technique is utilized to optimize the parameters of 

the PID controller. It is seen that, this approach comes out to be better than the other 

conventional techniques including HNA in the following solved examples. 

6.1.3.1 Illustrative Examples 

The numerical examples considered in 6.3.1 are taken up to illustrate that BBBC outperforms 

better as compared to PSO,GA and HNA method. This same is verified in both methods 
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(indirect and direct) of PID controller design by comparing in terms of time domain 

specifications.  

6.1.3.1.1 Direct Method 

Example 6.3: Consider the regulator problem taken in example 6.1 in 6.1.2.1.1 

  

5 4 3 2

6 5 4 3 2

2

8 20 16 3 2( )
2 36.6 204.8 419 311.8 67.2 4
0.023 0.0121( )

0.21 0.0121

P
s s s s sG s

s s s s s s
sM s

s s

+ + + + +
=

+ + + + + +
+

=
+ +

  

Step 1:Following the steps 1 to 5 of example 6.1 in 6.1.2.1.1,  

 
7 6 5 4 3 2

7 6 5 4 3 2
0.8228 7.349 22.66 29.02 16.03 4.981 1.728 0.1294( )

1.823 25.65 125.1 238.5 172 38.58 3.728 0.1294CL
s s s s s s sG s
s s s s s s s

+ + + + + + +
=

+ + + + + + +
 

Step 2:The original system is reduced to second order model using BBBC resulting in 

  2
0.0233 0.01176( )

0.2035 0.01176PBBBCOA
sR s

s s
+

=
+ +

  

Step 3:Similarly using PSO,GA and HNA, the reduced transfer function is  

 2
0.02555 0.01036( )

0.4756 0.01036ppso
sR s

s s
+

=
+ +

  

 2
0.01414 0.009369( )

0.1436 0.009369pga
sR s

s s
+

=
+ +

       

 2
0.0113 0.0736( )
0.1436 0.009369phna

sR s
s s

+
=

+ +
  

Step 4:Now, the reduced controller obtained is 

 


2( ) 1( ) (0.06191 0.76252 0.5764 ...)
( )CBBBC

PBBBC

M sR s s s
R s s

= = + + −   

Step 5:Taking the PID controller structure as 

 

2
1 3

2
1 2 3

( )c
KR s K K s
s

K s K K s
s

= + +

+ +
=

   

Step 6:Comparing the coefficients with the power series expansion the parameters, K1, K2 and 

K3 of the controller are obtained, which gives the PID controller as 

 
2 0.06191  0.7625 0.5764 ( )CBBBC

s sR s
s

+ +
=   

Step 7:The closed loop transfer function of the reduced second order model and the controller 

using BBBC, PSO, GA and HNA according to step 6 in 6.1.1.1, results in [307]  
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3 2

3 2
0.01343 0.02455    0.01041  0.000728( )

1.013  0.2281  0.02217   0.000728CLBBBC
s s sR s
s s s

+ + +
=

+ + +
  

 
3 2

3 2
0.04853 0.03861   0.00933  0.0006703( )

1.049 0.2142  0.01969  0.0006703CLPSO
s s sR s

s s s
+ + +

=
+ + +

  

 
3 2

3 2
0.01165 0.07664  0.005604  0.004762( )

1.012 0.417  0.0792  0.004762CLGA
s s sR s
s s s

+ + +
=

+ + +
  

 
3 2

3 2
0.05177 0.0445   0.007102  0.0006152( )

1.052 0.1885  0.0167  0.0006152CLHNA
s s sR s
s s s

+ + +
=

+ + +
  

Table 6.4 Comparison of original and reduced order plants for example 6.3 

System Rise Time 
tr (sec) 

Peak Overshoot 
% Mp 

Settling Time 
ts (sec) 

M (s) 28.1 0.00383 46.2 

GCL(s) 22.3 0 45.1 

RCLBBBC(s) 28.2 0 47.5 

RCLPSO(s) 28.8 0 43.6 

RCLGA(s) 28 0 45.3 

RCLHNA(s) 30 0.95 42.1 

 
Fig. 6.6 Comparison of step responses example for 6.3 

 The response of M(s), GCL(s) and RCLBBBC(s) for a given step input is plotted in Fig 6.6. 

Further, the results are compared with other methods in terms of tr, Mp, ts and are tabulated in 

Table 6.4. 
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6.1.3.1.1 Indirect Method 

Example 6.4:  Consider a 6th order rational minimum phase stable practical system taken 

from example 6.2 in 6.1.2.1.2  
4 3 2

6 5 4 3 2 2
248.05 1483.3 91931 468730 634950 4( ) , ( )

26.24 1363.1 26803 326900 859170 528050 4 4p
s s s sG s M s

s s s s s s s s
+ + + +

= =
+ + + + + + + +

  

Step 1:Following the same steps 1 to 5 of example 6.2 in 6.1.2.1.2,  the closed loop transfer 

function GCL(s) as 

            

5 4 4 3 5 2

6 5

8 7 6 4 5 5 4 5 3

6 2 6 5

( )

242.5 1656 9.11 10 5.347 10

1.011 10 5.28 10
0.5363 15.07 757.3 1.598 10 2.038 10 8.788 10

1.677 10 1.539 10 5.28 10

CLG s

s s s s

s
s s s s s s

s s

=

+ + × + ×

+ × + ×
+ + + × + × + ×

+ × + × + ×

  

Step 2:GCL(s) is reduced to third and second order using BBBC [307]  

              
2

3 3 2
   0.04996   7.323 25.83( )
    1  4.13     33.04      25.83CL BBBC

s sR s
s s s
− + +

=
+ + +

 

    2 2
   0.2917 2.797( )

    3.083    2.797CL BBBC
sR s

s s
+

=
+ +

  

Step 3:The reduced third order system obtained [307] by PSO, GA, HNA are 

   
2

3 3 2
  0.8622  2.05 0.9609( )

     3.258     3.172      0.9609CL PSO
s sR s

s s s
+ +

=
+ + +

  

            
2

3 3 2
0.4844  2.393 1.674( )

     3.233    4.045    1  .674CL GA
s sR s

s s s
+ +

=
+ + +

  

            
2

3 3 2
 0.9633  3.88 1014( )

1  .176    1  .404  1  190     1  013CL HNA
s sR s

s s s
+ +

=
+ + +

  

Table 6.5 Comparison of original and reduced order plants for example 6.4 

System 
Rise Time 

tr (sec) 
Peak Overshoot 

% Mp 
Settling Time 

ts (sec) 
M (s) 1.68 0 2.92 
GCL(s) 1.76 0.239 2.81 

RCL3BBBC(s) 1.76 0.213 2.81 

RCL2BBBC(s) 1.76 0.0583 2.84 

RCLPSO(s) 2.57 0 4.57 

RCLGA(s) 1.82 0.158 2.79 

RCLHNA(s) 2.57 0.02 4.6 
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Fig. 6.7 Comparison of step responses for example for 6.4 

 The comparison of step responses of M(s), GCL(s), RCL3BBBC(s) and RCL2BBBC(s) is 

depicted in Fig.6.6. It is seen that GCL(s), RCL3BBBC(s) and RCL2BBBC(s) almost overlaps each 

other and are competitive. The same can be concluded by observing Table 6.5, which 

compares responses from other methods in terms of transient response parameters. It can be 

concluded that the result obtained by BBBC is comparable. 

 

6.2 FOPID CONTROLLER 

The Proportional Integral Derivative (PID) controllers have become popular during the past 

decades and its widespread use has attested it. This is because of its performance, robustness, 

simplicity, availability of many effective and simple tuning methods [308]. However, 

according to the reports of Van Overschee and De Moor (2000), 80% of the PID controllers 

are badly tuned [267]. Over the decades the PID control techniques have undergone many 

changes and the same will continue in the days to come. Today, various PID controller tuning 

methods are available but, the determination of the best PID controller parameter is still a 

challenging task and is under active research [309]. Also, the progress of design methods for 

classical PID control is approaching the point of diminishing returns. Therefore this study 

proposes to use a FOPID controller which provides relief to some of the problems. FOPID 

controllers are similar to usual PID controllers, except for the fractional derivative λ and 

integral μ orders, which helps to provide additional design flexibility.These two parameters 

ensure a robust performance of the controlled system in terms of gain variations and phase 

characteristics. Hence fractional order controller becomes a powerful tool in designing robust 

control system with less controller parameters to tune. 
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 The concept of FOPID controller was initially proposed by Igor Podlubny [310] with a 

drawback, that its applicability is limited only to linear systems with constant coefficients 

[310]. However, a new tuning method for the problem of identifying of parameters of FOPID 

model was kept open. In this regard several analytical ways of tuning were proposed [311]. 

Since then, FOPID controllers are increasingly being used. Recently evolutionary techniques 

such as Particle Swarm Optimization (PSO) [312] and Genetic Algorithm (GA) [313, 314] 

based FOPID controller design was proposed and proved to be more effective.  

 The FOPID controller also known as PI λ D μ was studied in time domain in [310] and 

in frequency domain [311]. Generally the FOPID controller takes the form  

 ( ) D P I
FOPID

K s K s KG s
s

λ µ λ

λ

+ + +
=                   (6.14) 

where λ and μ are positive real numbers, Kp is the proportional gain, KI the integral gain and 

KD the differentiation gain. Considering λ and μ as unity, we obtain a classical PID controller.  

The graphical representation highlighting the flexibility provided by FOPID controller in PID 

control design is as shown in Fig. 6.8. The FOPID controller extends the four control points 

(P, PI, PD, PID) of the classical PID to a variety of control points on the quarter-plane defined 

by selecting the values of λ and μ. Thus generalizes the conventional integer order PID 

controller and expands it from point to plane. 

 
Fig. 6.8 FOPID v/s Classical PID : from points to plane  a) integer order PID   b) 

fractional order PID 

6.2.1 Problem Statement 

 The original nth order LTI-SISO system is taken into account represented by the 
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where bj’s, ai’s are scalar constants and n, m are the order of the numerator, denominator 

polynomial respectively. The objective is to find the FOPID controller GFOPID(s) given by 

(6.14). Further the unit step response of closed loop transfer function of Gp(s), GFOPID(s)  

connected in series for a given unit step input meets the desired design specifications such as 

peak overshoot ‘MP’, settling time ‘TS’, rise time ‘Tr’, Integral Square Error (ISE) etc. The 

feedback gain of the closed loop system is assumed to be unity. 

6.2.2 Optimizing FOPID Controller Parameters using BBBC 

During the past decade, the usage of evolutionary technique has transformed the way of 

solving problems successfully in almost all fields and is drawing much attention. Big Bang 

Big Crunch (BBBC) as discussed in chapter 4, is one such optimization technique recently 

introduced and belongs to the family of evolutionary method [264]. Hence, BBBC [315] is 

used here to find the optimal regions of complex search spaces through the interaction of 

individuals and turns out to be successful. As a result, the main objective of optimizing the 

FOPID controller parameters for an uncontrolled plant GP(s) is fulfilled; the closed loop 

response with unity feedback is stable and may have suitable fast response. This results in 

rationally searching the best design among the alternative designs to meet the desired. 

6.2.2.1 Illustrative Examples 

Example 6.5: Consider an original system characterized by transfer function Gp(s) [313] for 

which a FOPID controller has to be designed which will provide lesser MP , TS,  ISE for a 

given unit step input.  

 3 2
40

2 10 8
( )

2 10p s s
G

s
s

+ + +
=  

Step 1:Taking the FOPID controller structure as 

 ( ) D P I
FOPID

K s K s KG s
s

λ µ λ

λ

+ + +
=  

Step 2:Substitute the values of KP, KI, KD, λ, µ generated using BBBC by minimizing the 

fitness function ‘E’ given by (4.2) and the peak overshoot  given by 

 exp 100
d

d
pM

σ π
ω

 −
 
 =                                                                                                   (6.16) 

(σd ± jωd is the location of the dominant pole) 

Step 3:This results in 

 
0..9 1.1 0.9

0.9
5.3896 27.0406 19.6417( )FOPIDBBBC

s sG s
s

+ + +
=  
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Step 4:The open loop transfer function is then obtained by 

 
3 22 10 82 10

( ) ( ) ( )

40 5.3896 27.0406 19.6417
OL P FOPIDBBBCG s G s G s

s
s

s
ss s

λ µ λ

λ

+

=

 + + =   
 + + +

 

Step 5:The closed loop transfer function is then obtained by 

 
2 0.9

3.9 2.9 2 1.9 0.9

( ) ( )
( )

1 ( ) ( )

215.584 1081.624 785.668
2 10 215.584 82 1091.624 785.668

p FOPIDBBBC
CLBBBC

p FOPIDBBBC

G s G s
G s

G s G s

s s
s s s s s

=
+

+ +
=

+ + + + +

 

Step 6:The FOPID controller designed using GA [313] is given by 

 
0.36015 6 12.24( )FOPIDGA

s sG s
s

λ µ λ

λ

+ + +
=  

Step 7:The closed loop transfer function using GFOPIDGA(s) for λ = 0.9 and µ = 1.1 

 
2 0.9

3.9 2.9 2 1.9 0.9
14.40 240 489.6( )

2 10 14.406 82 250 489.6CLGA
s sG s

s s s s s
+ +

=
+ + + + +

 

Step 8:The approximated closed loop transfer function GCLBBBCRED(s) obtained for GCLBBBC(s) 

using BBBC [315] minimizing (4.2) 

 
2 5

3 2
4.858 3.25 10 0.07416( )

4.859 0.0153 0.07416CLBBBCRED
s sG s

s s s

−+ × +
=

+ + +
 

 

 
Fig. 6.9 Comparison of unit step response of closed loop system using FOPIDBBBC and 

FOPIDGA controller for λ=0.9 and µ=1.1  
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Fig. 6.10 Unit step response of system using FOPID controller  

for unity λ and µ 

 
Fig. 6.11 Unit step response of system using FOPID controller  

for varying µ (µ< 1) 

 
Fig. 6.12 Unit step response of system using FOPID controller for varying λ (λ< 1) 
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Fig. 6.13 Unit step response of system using FOPID controller  

for varying λ and µ (λ< 1,µ< 1) 

 
Fig. 6.14 Unit step response of system using FOPID controller 

 for varying λ (λ> 1) 

 
Fig. 6.15 Unit step response of system using FOPID controller  

for varying λ and µ (λ> 1,µ>1) 
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Fig. 6.16 Unit step response of system using FOPID controller  

for varying λ and µ (λ> 1,µ< 1) 

 
Fig. 6.17 Unit step response of system using FOPID controller  

for varying λ and µ (λ< 1,µ>1) 

 
Fig. 6.18 Path traced to by λ and µ during the optimization process 
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Table 6.6 Comparison of parameters for different combinations of λ and µ for example 6.5 

λ µ 

Values obtained by  BBBC (proposed) Values obtained by  GA [313] 

Settling      

Time 

‘Ts’ 

Peak 

Overshoot 

‘Mp’ 

ISE IATE 

Settling 

Time 

 ‘Ts’ 

Peak 

Overshoot 

‘Mp’ 

ISE IATE 

1 1 5.4627 11.3171 1.9246 36.3443 23.65 47.15 2.350 53.70 

1 0.3 4.3278 10.0349 2.4982 33.1984 41.742 46.0245 2.889 123.7 

1 0.5 2.5002 11.6848 2.2635 23.6048 34.903 46.9016 2.659 89.85 

1 0.7 2.2034 14.3641 2.0940 18.2592 25.293 47.2256 2.505 67.85 

1 0.9 10.4159 10.6855 1.9705 35.1073 24.148 47.3067 2.405 56.97 

0.3 1 4.2231 10.8044 2.1812 29.7341 27.228 37.3379 2.243 68.56 

0.5 1 1.9948 11.3069 2.0830 23.9988 24.263 40.0857 2.253 56.97 

0.7 1 3.2528 14.6011 2.3424 28.4420 24.031 42.9715 2.291 54.11 

0.9 1 10.4159 10.6855 1.9705 35.1073 23.632 45.8391 2.335 53.58 

0.5 0.5 1.9548 11.4000 1.9830 24.1121 35.404 38.7205 2.543 95.84 

0.5 0.7 6.8865 12.2687 2.2163 38.9573 26.266 39.7392 2.397 72.19 

0.5 0.9 3.7937 11.5378 2.1081 23.6011 24.703 40.1304 2.300 60.52 

0.7 0.5 3.3538 14.8011 2.3436 28.4520 28.661 42.1173 2.589 92.45 

1.1 0.5 11.1732 11.2030 2.2012 24.1625 23.4050 48.5314 2.381 54.04 

1.5 0.5 3.8488 0.9096 2.0339 23.2997 27.4584 53.5798 2.475 56.14 

7.5 0.5 3.9123 0.1060 5.5167 11.0425 37.8834 141.1292 5.643 121.3 

1.1 1.1 2.4884 13.5817 2.2104 18.5385 22.925 45.8945 2.142 49.08 

1.1 1.15 4.4859 11.8160 2.2241 502059 22.096 36.124 1.438 38.42 

1.1 1.2 4.5773 6.7630 1.9964 70.8083 13.319 44.7987 0.2839 13.54 

1.1 1.21 4.1228 10.1151 2.2047 19.7048 20.628 93.2290 0.8556 30.17 

2.5 1.1 3.9123 0.0 5.5167 11.0425 25.475 60.6300 2.441 57.84 

2.5 1.15 3.9120 0.0 5.5180 11.0200 24.189 46.7059 1.658 44.59 

2.5 1.2 3.9200 0.0 5.5200 11.0100 17.147 44.2505 0.4092 21.84 

1.1 0.3 4.5326 12.9902 2.2375 36.9991 41.357 47.7478 2.918 123.5 

1.1 0.9 3.9314 10.7146 2.3835 28.9681 23.860 48.6390 2.428 57.27 

2.5 0.9 3.9123 0.0 5.5167 11.0425 30.375 64.9865 2.764 67.17 

4.5 0.3 3.9122 0.0 5.5169 11.0430 40.946 102.1544 4.574 135.4 

0.3 1.1 2.6811 10.5548 2.2649 22.5673 26.564 36.0403 2.021 63.14 

0.9 1.1 4.9125 6.7860 1.6417 23.2709 23.366 43.4405 2.098 48.6 

0.3 1.15 13.3011 11.1522 2.0382 47.0520 25.260 30.5292 1.344 48.47 

0.9 1.15 10.1522 10.8518 2.0804 27.5545 22.705 34.3791 1.403 38.11 

0.3 1.2 1.5322 13.6581 0.1837 2.98015 4.8701 47.5611 0.1939 5.328 

0.9 1.2 1.4958 12.2436 0.2507 5.36410 13.042 45.1063 0.2591 11.7 
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6.3 CONCLUSION 

In this chapter, the task of designing both PID and FOPID controllers have been accomplished 

successfully. In case of PID controller, both direct and indirect methods of controller design is 

considered. The reduction of the closed loop system is then performed using PSO and BBBC 

by reducing the error between the reference model and the reduced model. Later, the 

unknown controller parameters have been found. The suitability of the proposed methods 

have been justified by solving illustrative examples from the literature available. The step 

responses illustrates the goodness of the proposed method. 

 In the case FOPID controller, the values of λ and µ are tuned by using BBBC and then 

the results are compared with the existing technique. Qualitative comparison in terms of 

settling time, peak overshoot, ISE and IATE are tabulated apart from step responses to justify 

the proposed method.       

 

 

 

 

 



213 
 

CHAPTER - 7 
 

CONCLUSIONS AND FUTURE SCOPE 
 

The area of devising new reduced order methods has been on the move from past few 

decades. The work presented here pertains to the development of new techniques for order 

reduction and design of controllers. However, most of the proposed methods are confined to 

frequency domain, where a given system is primarily described by transfer function. This 

concluding chapter is primarily devoted for summarizing main results of each chapter. 

Further, the scope for future work is also discussed.  

 

7.1 RESULTS AND DISCUSSION 

The chapters deliberated in this thesis until now, deals with the order diminution methods 

developed for linear systems, including nature guided techniques. These methods are 

applicable for both SISO and MIMO time invariant systems delineated in frequency domain. 

The same is also extended for discrete systems as well and is exemplified. Subsequently, 

effort has been made to circumvent some of the drawbacks related with frequency domain 

reduction methods. Later, their applicability in the field of controller design is also proposed. 

The whole work presented here, is carried out in MATLAB 7.10 (R2010a) and Spectrum 

Digital Code Compose Studio (CCStudio) Version 3.1 with the view of using TMS320C5402 

DSP processor.  

 The introductory chapter gives an insight regarding the importance and applications of 

model order reduction, various available methods of order reduction along with its 

merits/demerits. However, an emphasis has given for the methods being employed in 

developing new reduction methods. Apart from this, problem statement of model order 

reduction for SISO/MIMO systems in both time and frequency domain are also included. 

Further, it has been noted that order reduction field has received widespread interest among 

research community. 

 In chapter 2, four composite reduction methods, are proposed based on mixed 

reduction method leading to superior solutions. These methods were applied to reduce the 

order of the original stable system (continuous time) represented in frequency domain. The 

first and second method reaps the benefits of ESA and stability equation for reducing the 

denominator terms, whereas the third and fourth method employs dominant pole and modified 

pole clustering respectively. All these methods were proposed in combination with least 
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squares method to preserve the stability/vital features of the original system, apart from 

improving ISE values as exemplified. Further, the same algorithms were also extended for 

MIMO systems and results are comparable. 

 In chapter 3 the developed algorithms were discussed for reducing the order of 

discrete time (stable) systems. In order to accomplish the task a, continuous time reduction 

methods such as ESA, stability equation, dominant pole and modified pole clustering 

techniques were used in combination with least squares method. The developed combinative 

methods were applied on original higher order stable system (discrete time). This was 

possible only, by using discrete to continuous time transformation and vice versa during the 

initial and final stages. The same methods were further extended for MIMO systems and 

proved to be comparable in quality. The comparison of step/impulse responses along with 

tables indicating SSE values confirm it.  

 In chapter 4, four new approximation methods were introduced based on the recently 

erupted evolutionary technique called BBBC. The first and second method used the merits of 

Routh approximation and stability equation method in combination with BBBC to obtain the 

reduced order system. The said method well well suited, for both linear dynamic stable SISO 

and MIMO systems. The third method comprise of optimizing the linear shift point about a 

general point 'a' by employing BBBC optimization technique, to obtain the resultant system 

comparable to reduced systems derived from other methods. This has been apparent from the 

examples solved by considering SISO systems and comparing the results with other available 

reduced order systems. In case the fourth approximation method, both numerator and 

denominator terms were optimized using BBBC, while satisfying the fitness function. 

Benchmark examples belonging to SISO/MIMO linear stable systems available, were 

considered and then operated upon. The responses obtained for step and impulse input were 

compared along with performance indices values. It has been observed that the results 

obtained were encouraging. The same approximation technique, was then extended for 

generating reduced system in discrete time. The suitability of the proposed method was shown 

by solving illustrative examples. 

 In chapter 5, TMS320C5402 processor were introduced to reduce the order of the 

digital filters and original systems. BBBC was used to perform the task. The order of 

Butterworth and Chebyshev filters designed were reduced and implemented. The input/output 

waveforms obtained in MATLAB  and CCS were compared. In addition, the frequency 

response and FFT power spectrum of the input/ output signals were also plotted for clarity. In 
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the second case, GA was employed to optimize the system coefficients and implemented on 

CCS. The resultant waveforms show the validity of the said method.  

 The various controllers were designed and discussed in chapter 6. The PID values of 

the controller were optimized by using PSO in the first method and BBBC in the second. Both 

direct and indirect approach of designing the controller were adopted and exemplified. The 

flexibility offered by FOPID controller was discussed and compared to PID controller. An 

original system was picked up from the available literature for consideration and FOPID 

controller parameters were then optimized using BBBC. The results obtained were 

comparable to its counterpart. 

 

7.2 FUTURE SCOPE 

Research is a continuous process and hence, there will be opportunities for further 

amelioration  all the time. The same is true in the present work and some suggestions are 

given below which may motivate the researchers to take up research work in this direction. 

 The developed reduction methods works well for SISO systems. Apart from this, 

MIMO systems are also benefitted from these methods, provided the common denominator 

polynomial is available. If this condition is not met, then direct extension of the methods 

applicable to SISO cannot be extended to MIMO systems. This is the research gap that one 

can think to fill it up. In this regard, introducing a new reduction algorithm can be thought of 

which considers all the elements of the MIMO system together and delivers a reduced MIMO 

system respectively.  

 Scope for devising some norms which provides an idea about the least order an 

original system can be reduced, without altering its vital characteristics is another research 

area to be explored upon. Predicting beforehand, reduces the time consumed to arrive at the 

appropriate order of the reduced system. Further, one can also extend the proposed methods in 

the reduction of interval systems as well. 

 The proposed techniques applicable for continuous time systems discussed so far are 

extended for discrete time systems. This has been achieved by incorporating z-p 

transformations and vice versa during the initial and final stages of reduction process 

respectively. Approximation methods dealing with discrete time systems without the need of 

z-p transformations can be further explored and developed.  
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 The evolutionary techniques viz. BBBC, GA are roped in to generate reduced systems 

by using ISE as fitness function. However, performance indices such as IAE, ITAE and ITSE 

can also be minimized to generate reduced order systems.  
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