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Abstract

The study of approximation properties of the periodic functions in Lp(p ≥ 1)-spaces, in

general and in Lipschitz classes Lipα, Lip(α, p), Lip(α, p, w), Lip(ξ(t), p), Lip(ω(t), p),

W(Lp, ω(t), β) and W(Lp, Ψ(t), β), p ≥ 1, in particular, through trigonometric Fourier

series, although is an old problem and known as Fourier approximation in the existing

literature, has been of a growing interests over the last four decades due to its applica-

tion in filters and signals. The most common methods used for the determination of

the degree of approximation of periodic functions are based on the minimization of the

Lp-norm of f (x)− Tn(x), where Tn(x) is a trigonometric polynomial of degree n and

called approximant of the function f . In this thesis, we study the approximation prop-

erties of functions belonging to various function classes through trigonometric Fourier

series and conjugate trigonometric series.

The present thesis is divided into six chapters and the chapterwise description is

given below:

Chapter 1 is introductory in nature and gives the details of developments in re-

search on the trigonometric Fourier approximation and some basic concepts and defi-

nitions. Current status of the field, objective of the work done and layout of the thesis

are also given in this chapter.

Chapter 2 deals with the approximation properties of the periodic functions and

their conjugates belonging to the Lipschitz classes Lipα and W(Lp, ω(t), β), p ≥ 1 by a

trigonometric polynomial generated by the product matrix (C1.T) means of the Fourier

series and conjugate Fourier series, respectively. We prove the following theorems in

Chapter 2:

Theorem 2.2.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and

non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries which satisfies, An,0 = 1, ∀n ∈ N0

and

an,n−k − an+1,n+1−k ≥ 0 f or 0 ≤ k ≤ n. (0.1)
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Then the degree of approximation of a 2π-periodic function f ∈ Lipα by C1.T means of its

Fourier series is given by

∥tC1.T
n ( f )− f (x)∥∞ =

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(0.2)

Theorem 2.2.2. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem 2.2.1.

Then the degree of approximation of a 2π-periodic function f ∈ W(Lp, ω(t), β) with p > 1

and 0 < β < 1/p by C1.T means of its Fourier series is given by

∥ tC1.T
n ( f ; x)− f (x) ∥p= O

(
(n + 1)βω (1/(n + 1))

)
, (0.3)

provided a positive increasing function ω(t) satisfies the following conditions:

ω(t)/t is a decreasing function, (0.4)(∫ π/(n+1)

0

∣∣∣ϕ(t) sinβ(t/2)/ω(t)
∣∣∣q dt

)1/q

= O((n + 1)−1/q), (0.5)

(∫ π

π/(n+1)

(
t−δ|ϕ(t)| sinβ(t/2)/ω(t)

)p
dt
)1/p

= O((n + 1)δ−1/p), (0.6)

where δ is a real number such that p−1 < δ < β + p−1and p−1 + q−1 = 1. Also conditions

(0.5) and (0.6) hold uniformly in x.

In the case p = 1, i.e., q = ∞; sup norm is required while using Hölder’s inequality.

Therefore, the above proof will not work for p = 1. Thus, for p = 1, we have the

following theorem.

Theorem 2.5.1. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem

2.2.1. Then the degree of approximation of a 2π-periodic function f belonging to the weighted

Lipschitz class W(L1, ω(t), β), with 0 < β < 1 by C1.T means of its Fourier series is given by

∥ tC1.T
n ( f ; x)− f (x) ∥1= O

(
(n + 1)βω(1/(n + 1))

)
, (0.7)

provided a positive increasing function ω(t) satisfies (0.4) and the following condition:

ω(t)/tβ is non-decreasing, (0.8)∫ π/(n+1)

0

| ϕ(t) | sinβ(t/2)
ω(t)

dt = O((n + 1)−1), (0.9)

∫ π

π/(n+1)

t−δ | ϕ(t) | . sinβ(t/2)
ω(t)

dt = O((n + 1)δ−1), (0.10)
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where 1 < δ < β + 1. The conditions (0.9) and (0.10) hold uniformly in x.

If we replace matrix T with Nörlund matrix, then C1.T means of Fourier series of f

reduces to C1.Np means.

In the next section, we obtain, in Theorems 2.6.1, 2.6.2 and 2.9.1, the degree of

approximation for the function f̃ , conjugate to the function f belonging to the same

classes by C1.T means of the conjugate Fourier series of f . Some corollaries and partic-

ular cases are also discussed in this chapter.

In Chapter 3, we determine the degree of approximation of f̃ , conjugate of a 2π-

periodic function f belonging to the weighted W(Lp, ω(t), β), p ≥ 1-class by using

Hausdorff means of conjugate Fourier series of f . More precisely, we prove:

Theorem 3.2.1. Let f be a 2π-periodic function belonging to the weighted Lipschitz class

W(Lp, ω(t), β)-class, with p > 1 and 0 ≤ β ≤ 1 − 1/p. Then the degree of approximation of

f̃ by Hausdorff means of conjugate Fourier series of f generated by H ∈ H1,is given by

∥ H̃n( f ; x)− f̃ (x) ∥p= O
(
(n + 1)β+1/pξ(1/(n + 1))

)
, (0.11)

provided a positive increasing function ξ(t) satisfies the following conditions:

ξ(t)/t is non-increasing, (0.12)

{∫ π/(n+1)

0

(
| ψx(t) | sinβ(t/2)

ξ(t)

)p

dt

}1/p

= O((n + 1)−1/p), (0.13)

{∫ π/(n+1)

ϵ

(
ξ(t)

t sinβ(t/2)

)q

dt
}1/q

= O((n + 1)β+1/pξ(π/(n + 1))), (0.14)

{∫ π

π/(n+1)

(
t−δ | ψx(t) |

ξ(t)

)p

dt

}1/p

= O((n + 1)δ), (0.15)

where δ is an arbitrary number such that 0 < δ < β + 1/p and p−1 + q−1 = 1 for p > 1.

The conditions (0.13) and (0.15) hold uniformly in x.

Since (C, 1), the Cesàro matrix of order 1, and (E, q), the Euler matrix of order q > 0,

are Hausdorff matrices, and the product of two Hausdorff matrices is also a Hausdorff

matrix, so the results proved by using product of (C, 1) and (E, q) (q > 0) matrices are

particular cases of Theorem 3.2.1.

In Theorem 3.4.1, we prove the above result for p = 1.
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In Chapter 4, we introduce a more general Lipschitz class Lip(ω(t), p) which in-

cludes the classical Lip(ξ(t), p) class of functions i.e.,

{ f ∈ Lp[0, 2π] : ∥ f (x + t)− f (x) ∥p= O(ξ(t)), t > 0
}

and { f ∈ Lp[0, 2π] :| f (x + t)− f (x) | = O(t−1/pξ(t)), t > 0
}

defined by Khan and

Ram and compute analytically the degree of approximation of f ∈ Lip(ω(t), p) using

matrix means of the Fourier series of f generated by the matrix T ≡ (an,k). We also

discuss an example to show the application of the result. Also, in the corollaries of the

theorems of this paper, we observe that the degree of approximation of f ∈ Lip(ξ(t), p)

is free from p and sharper than the earlier one. The main results of this chapter are:

Theorem 4.2.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and

non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries with An,0 = 1. Then the degree of

approximation of a 2π-periodic function f ∈ Lip(ω(t), p), with p ≥ 1 by matrix means of its

Fourier series is given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)1/p ω (π/(n + 1))

)
, (0.16)

provided a positive increasing function ω(t) satisfies the following conditions:

ω(t)/tσ is an increasing function for 0 < σ < 1, (0.17)(
ϕ(t)

(t−1/pω(t))

)
is a bounded function of t, (0.18)

(∫ π

π/(n+1)

(
ω(t)

t1+ 1/p

)p

dt
)1/p

= O
(
(n + 1) ω

(
π

n + 1

))
, (0.19)

where p−1 + q−1 = 1. Also condition (0.18) holds uniformly in x.

In Theorem 4.2.2, we prove (0.16) for hump matrices with the condition

(n + 1)maxk{an,k} = O(1).

In the next section of this chapter, we define W(Lp, Ψ(t), β)-class, a weighted ver-

sion of Lip(ω(t), p)-class, with weight function sinβp(x/2) and determine the error of

approximation of f ∈ W(Lp, Ψ(t), β) using the same matrix means. More precisely, we

prove:

Theorem 4.7.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and

non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries. Then the degree of approximation of
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a 2π-periodic function f ∈ W(Lp, Ψ(t), β) with 0 ≤ β < 1/p and p ≥ 1 by matrix means of

its Fourier series is given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)β+1/p Ψ (π/(n + 1))

)
, (0.20)

provided a positive increasing function Ψ(t) satisfies the following conditions:

Ψ(t)/tβ+ 1/p is an increasing function, (0.21)(
ϕ(t) sinβ(t/2)

t−1/p Ψ(t)

)
is bounded function of t, hold uniformely in x, (0.22)

(∫ π

π/(n+1)

(
Ψ(t)

t1+ 1/p+β

)p

dt
)1/p

= O
(
(n + 1)β+1 Ψ

(
π

n + 1

))
, (0.23)

where p−1 + q−1 = 1.

In Theorem 4.7.2, we prove (0.20) by using hump matrices with the condition

(n + 1)maxk{an,k} = O(1). We also derive some corollaries from our results.

In chapter 5, the approximation properties of the matrix means of trigonometric

Fourier series of f belonging to weighted Lipschitz class Lip(α, p, w) with Mucken-

houpt weights generated by T ≡ (an,k) under relaxed conditions has been investigated.

Our theorem extends some of the previous results pertaining to the degree of approxi-

mation of functions in weighted Lipschitz class Lip(α, p, w) and the ordinary Lipschitz

class Lip(α, p). The main theorem of this chapter is:

Theorem 5.2.1. Let f ∈ Lip(α, p, w), p > 1, w ∈ Ap and let T ≡ (an,k) be an infinite lower

triangular regular matrix and satisfies one of the following conditions:

(i) 0 < α < 1, {an,k} ∈ AMIS in k,

(ii) 0 < α < 1, {an,k} ∈ AMDS in k and (n + 1)an,0 = O(1),

(iii) α = 1 and ∑n−1
k=0 (n − k) |∆kan,k| = O(1),

(iv) α = 1, ∑n
k=0 |∆kan,k| = O(an,0) with (n + 1)an,0 = O(1),

(v) 0 < α < 1, ∑n−1
k=0

∣∣∣∆k

(
An,0−An,k+1

k+1

)∣∣∣ = O
(

1
n+1

)
.

Then

∥ f (x)− τn( f ; x)∥p,w = O((n + 1)−α), n = 0, 1, 2... (0.24)

In Chapter 6, we generalize the notion of Λ-strong convergence of numerical se-

quences to T-strong convergence (an intermediate notion between bounded variation
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and ordinary convergence), using a lower triangular matrix T = (an,k) with nonde-

creasing monotone rows of positive numbers tending to ∞ i.e., an,k ≤ an,k+1∀n and

limk→∞ an,k = ∞ ∀n. We say, a sequence U = {uk} of complex numbers converges

T-strongly to a complex number u if

lim
n→∞

1
an,n

n

∑
k=0

| an,k(uk − u)− an,k−1(uk−1 − u) |= 0

Here an,−1 = 0 and u−1 = 0. We also establish a relationship between ordinary con-

vergence and T-strong convergence. We denote, class all the T-strongly convergent

sequences U = {uk} of complex numbers by c(T). Obviously, c(T) is a linear space.

Further, we define a norm on c(T) as

∥U∥c(T) := sup
n≥0

1
an,n

n

∑
k=0

| an,kuk − an,k−1uk−1 |

The main result of this chapter is:

Lemma 6.1.1. T-strong convergence of a sequence U = {uk} to a number u implies the

following two conditions

(i) ordinary convergence o f U = {uk} to u, and (0.25)

(ii) lim
n→∞

1
an,n

n

∑
k=1

an,k−1 | uk − uk−1 |= 0, (0.26)

and vice-versa.

We write

σn :=
1

an,n

n

∑
k=0

(an,k − an,k−1)uk (n = 0, 1, ...).

Lemma 6.1.2. Convergence of σn to u in the ordinary sense together with (0.26) of Lemma

6.1.1 implies the T-strong convergence of U to number u.

Theorem 6.2.1. The class c(T) together with the norm ∥.∥c(T) is a Banach space.

In Theorem 6.2.2, we show that Banach space c(T) has a Schauder basis.

We also apply the notion of T-strong convergence on the trigonometric Fourier series

under C-metric and Lp-metric.
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Chapter 1

Introduction

Fourier approximation was originally evolved from the problem of approximating a

typically unknown function f [i.e., f is not completely known to us, we have only some

information about f for example values of f at some points, continuity/differentiability/

integrability of the function etc. This information may be encoded by the statements

like f ∈ W, some function class] by a trigonometric polynomial using trigonomet-

ric Fourier series of f . We know that a function f which is not (among other things)

infinitely differentiable in some interval cannot be approximated by algebraic polyno-

mial (truncated Taylor series of f ). Since sines and cosines serve as much more versatile

“prime elements" than powers of t, the trigonometric polynomial (truncated Fourier se-

ries of f ) can be used to approximate not only non-analytic functions; they even do

good job in the wilderness of the widely discontinuities.

As we know that the Fourier series of a function f need not to be convergent to

f , the summability techniques play key role to find the sum of non-convergent series

which in turn approximate the function under consideration.

1.1 Summability

The notion of the sum of an infinite series ∑∞
n=0 un has been based on the construction of

a suitable sequence (say, sn = ∑n
k=0 uk) and on the limit of this sequence. The definition

of the limit of a sequence is an arbitrary one imposed by mathematicians, although it

may appeal to our intuition and may appear as a natural one. Consequently, notion of

the sum of an infinite series is arbitrary to some extent. These are not sums in the sense

of addition in arithmetic. They may be considered as a logical outcome of an "ultimate"

1
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process of successive approximations, but at a certain stage this "ultimate" process has

to be ended by an arbitrary definition. So there is no a priori reason why the definitions

may not be replaced by quite different definitions, and why new processes may not be

introduced whereby a sequence or a series is associated with a certain definite number.

If by such a new process, a number is associated with a sequence {sn}∞
n=0 or with a

series ∑∞
n=0 un, then we usually say that {sn}∞

n=0 is limitable, and ∑∞
n=0 un is summable

by this process.

Thus summability is the extended notion of the convergence of series/integrals

by which we attach a value (number) to them.

Definition

Let ∑∞
n=0 un be an infinite series with sequence of partial sums {sn}∞

n=0. Let T ≡ (an,k)

be an infinite matrix with real or complex entries. Then the sequence-to-sequence trans-

formation

tn :=
n

∑
k=0

an,ksk, n ∈ N0, (1.1)

defines the matrix transform of the sequence {sn}∞
n=0 generated by the elements an,k

of the matrix T, and we call it the matrix means of ∑∞
n=0 un. If lim

n→∞
tn = s, then the

sequence {sn}∞
n=0 or the series ∑∞

n=0 un is said to be matrix summable or simply T-

summable to s. Then we write

∑ un = s (T).

If for every convergent sequence {sn}∞
n=0, lim

n→∞
sn = s implies lim

n→∞
tn = s, then

the matrix T and corresponding summability method is said to be regular. The neces-

sary and sufficient conditions for the regularity of matrix T, obtained by Toeplitz [121]

and Silverman [111], are

(1) lim
n→∞

n

∑
k=0

an,k = 1,

(2)
n

∑
k=0

|an,k| < M (n = 0, 1, 2...),

(3) lim
n→∞

an,k = 0 (k = 0, 1, 2...),

where M is a finite constant independent of n.
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1.1.1 Some Particular Cases of Matrix T

1. Cesàro Matrix of Order δ : For a positive real number δ, if

an,k =

 Eδ−1
n−k

/
Eδ

n, 0 ≤ k ≤ n,

0 , k > n,

where

Eδ
n =

∣∣∣(n + δ + 1)∣∣n + 1
∣∣δ + 1

=
n

∑
k=0

Eδ−1
k ,

is the binomial coefficient given by ∑ Eδ
n xn = (1 − x)−δ−1 , δ > −1,

| x | < 1, then the linear means tn reduces to Cesàro means of order δ or sym-

bolically tδ
n.

If

tδ
n =

1
Eδ

n

n

∑
k=0

Eδ−1
n−k sk → s, as n → ∞,

then the series ∑∞
n=0 un is said to be Cesàro (C, δ))-summable to s.

2. Harmonic Matrix: If

an,k =


1

(n − k + 1) log n
, 0 ≤ k ≤ n,

0, k > n,

then the linear means tn reduces to Harmonic (H1) means.

The series ∑∞
n=0 un is said to be Harmonic (H1) - summable to s, if

tn =
1

log n

n

∑
k=0

sk
(n − k + 1)

→ s, as n → ∞.

3. Nörlund Matrix: If

an,k =

{
pn−k

/
Pn, 0 ≤ k ≤ n,

0, k > n,

where Pn = ∑n
k=0 pk ̸= 0 and P−1 = p−1 = 0, then the linear means tn reduces to

Nörlund (Np) means, where {pn} is any sequence of real or complex numbers.

If

tn =
1

Pn

n

∑
k=0

pn−k sk → s, as n → ∞,

then the series ∑∞
n=0 un is said to be Nörlund (Np)-summable to s.
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4. Riesz Matrix: If

an,k =

{
pk
/

Pn, 0 ≤ k ≤ n,

0, k > n,

where Pn = ∑n
k=0 pk ̸= 0 and P−1 = p−1 = 0, then the linear means tn reduces to

Riesz (N̄p) means, where {pn} is any sequence of real or complex numbers.

The series ∑∞
n=0 un is said to be Riesz N̄p-summable to s, if

tn =
1

Pn

n

∑
k=0

pk sk → s, as n → ∞.

5. Euler Matrix of Order q: For q > 0, if

an,k =

{
(n

k ) qn−k/(1 + q)n 0 ≤ k ≤ n

0 k > n.

If

tn =
1

(1 + q)n

n

∑
k=0

(n
k )q

n−ksk → s, as n → ∞,

then the series ∑∞
n=0 un is said to be Euler-summable to s.

Some more summability methods such as lag-averaged Euler scheme, Euler-Abel

method can be seen in [4; 5], which work excellently in case of alternating series and

give exponential convergence.

1.1.2 Composition of Two Summability Methods

Composition of two summability methods is same as the compositions of two func-

tions. For defining this, we take two summability matrix S = (an,k) and T = (bn,k). By

superimposing T-summability upon S-summability, we get TS-summability defined

by

tT.S
n =

n

∑
r=0

bn,r

r

∑
k=0

ar,ksk.

The following example shows that product/composite summability method is power-

ful than the individual summability method.

Example 1: Consider the infinite series 1 − 4 ∑∞
n=1 (−3)n−1.

Here sn = 1 − 4 ∑n
k=1 (−3)k−1 = (−3)n.

The (C, 1) means of given series are

C1
n =

1
n + 1 ∑n

k=0 (−3)k =
(1 − (−3)n+1)

4(n + 1)
.
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The lim
n→∞

C1
n does not exist, therefore given series is not (C, 1) summable. Also the (E, 1)

means of given series are

E1
n =

1
2n ∑n

k=0(
n
k ) sk =

1
2n ∑n

k=0(
n
k )(−3)k = (−1)n.

The series is not (E, 1) summable also. The (C, 1)(E, 1) means of the given series are

given by (CE)1
n = 1

n+1 ∑n
k=0 (E1

k) = 1
n+1 ∑n

k=0 (−1)k → 0 as n → ∞. Hence the given

series is (C, 1)(E, 1) summable.

We note that ST ̸= TS.

1.2 Trigonometric Fourier Series

For a 2π-periodic function f ∈ Lp := Lp[0, 2π], p ≥ 1, integrable in the sense of

Lebesgue, the trigonometric Fourier series s( f ) of f is

f (x) ∼=
a0

2
+

∞

∑
k=1

(ak cos kx + bk sin kx),

where

ak =
1
π

∫ 2π

0
f (x) cos kxdx, k = 0, 1, 2...

and

bk =
1
π

∫ 2π

0
f (x) sin kxdx, k = 0, 1, 2...

The constants ak and bk are known as Fourier coefficients.

The

sn( f ; x) :=
a0

2
+

n

∑
k=1

(ak cos kx + bk sin kx), n ∈ N and s0( f ; x) =
a0

2
, (1.2)

denote the (n+ 1)th partial sums, called trigonometric polynomials of degree (or order)

n, of the Fourier series of f .

Consider the power series ∑∞
k=0 ckzk, z ∈ C and ck =

{
ak − ibk, k ≥ 1,

a0/2, k = 0 .

If z = eix, then

∞

∑
k=0

ckzk =
∞

∑
k=0

ckeikx = a0/2 +
∞

∑
k=1

(ak − ibk)(cos x + i sin x)k

= a0/2 +
∞

∑
k=1

(ak cos kx + bk sin kx) + i
∞

∑
k=1

(ak sin kx − bk cos kx).
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The imaginary part of ∑∞
k=0 ck eikx, i.e., ∑∞

k=1(ak sin kx− bk cos kx) is called the conjugate

series of s( f ), and denoted by s̃( f ).

The nth partial sum of the conjugate series s̃( f ) is defined as

s̃n( f ; x) :=
n

∑
k=1

(ak sin kx − bk cos kx), n ∈ N and s̃0( f ; x) = 0. (1.3)

The sn( f ; x) and s̃n( f ; x) have the following integral representations:

sn( f ; x) =
1
π

∫ π

0
[ f (x + t) + f (x − t)]

sin(n + 1/2)t
2 sin(t/2)

dt (1.4)

and

s̃n( f ; x) = ∑n
k=1 (bk cos kx − ak sin kx)

= − 1
π

∫ π

0
ψx(t)

{
cos(t/2)− cos(n + 1/2)t

2 sin(t/2)

}
dt, (1.5)

where

ψx(t) = f (x + t)− f (x − t), (1.6)

and we also write

ϕ(t) ≡ ϕ(x, t) := f (x + t) + f (x − t)− 2 f (x). (1.7)

It is known that the series conjugate to a Fourier series is not necessarily itself a

Fourier series, e. g., ∑∞
k=0

cos kθ
log(k+2) is a Fourier series but the corresponding sine series

is not a Fourier series [2, pp. 218-219]. Therefore, a separate study of conjugate Fourier

series is required [123].

The conjugate of f , denoted by f̃ , is defined as

f̃ (x) = − 1
2π

lim
ϵ→0

∫ π

ϵ
ψx(t) cot(t/2)dt . (1.8)

There are some other Fourier series also like Mellin, Walsh [110], Ciesliski [122], Legen-

dre, and Bessel [88, pp. 775 & 812] etc. In this thesis, we confine ourselves to trigono-

metric Fourier series only.

1.3 Some Basic Definitions

1. Lp Norm: The Lp-norm of f ∈ Lp[0, 2π] is defined by

∥ f ∥p :=
{

1
2π

∫ 2π

0
| f (x) |p dx

}1/p

(1 ≤ p < ∞)
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and

∥ f ∥∞ := ess sup
x∈[0,2π]

| f (x) | .

2. Modulus of Continuity: Let f (x) be a continuous function in the interval [a, b].

Then the modulus of continuity w(δ) of the function f (x) is defined as

w(δ) = w( f , δ) = max
|x−y|≤δ

| f (x)− f (y)|, a ≤ x, y ≤ b.

Also w(δ) is a monotonically increasing function of argument δ.

Some basic properties of modulus of continuity w( f , δ) are as follows:

(a) w( f , δ) ≥ 0 and w( f , δ) = 0, if δ = 0.

(b) w( f , δ1) ≤ w( f , δ2) for 0 < δ1 < δ2.

(c) The function f is uniformly continuous on [a, b] if and only if

lim
δ→0

w( f , δ) = 0.

(d) If n ∈ N and δ > 0, then w( f , nδ) ≤ n w( f , δ).

3. Integral Modulus of Continuity: Let f (x) be a function of period 2π in Lp(1 ≤

p < ∞). Then the integral modulus of continuity of first and second order of f in

Lp-spaces are defined by

ωp(h; f ) = sup
0<|t|≤h

∥ f (x + t)− f (x) ∥p

and

ω2
p(h; f ) = sup

0<|t|≤h
∥ f (x + t) + f (x − t)− 2 f (x) ∥p

respectively [11]. More generally, the integral modulus of continuity of order k of

f in Lp-spaces are defined by

ωk
p(h; f ) = sup

0<|t|≤h
∥ △k

t f (x) ∥p,

where

△k
t f (x) =

k

∑
α=0

(−1)k−α(k
α) f (x + αt) [105].
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4. Function Spaces: A function f ∈ Lipα if | f (x + t)− f (x)| = O(tα), for 0 < α ≤ 1,

f ∈ Lip(α, p) if
(∫ 2π

0 | f (x + t)− f (x)|pdx
)1/p

= O(tα), 0 < α ≤ 1, p ≥ 1,

f ∈ Lip(ξ(t), p) if
(∫ 2π

0 | f (x + t)− f (x)|pdx
)1/p

= O(ξ(t)) and

f ∈ W(Lp, ω(t), β) if
(∫ 2π

0 |( f (x + t)− f (x)) sinβ( x
2 )|pdx

)1/p
= O(ω(t)), β ≥ 0,

p ≥ 1, where ξ(t) and ω(t) are positive increasing functions of t [35; 112; 114].

It is important to note that the increasing function ω(t) in the definition of

W(Lp, ω(t), β)-class is not the same as ξ(t) in the definition of Lip(ξ(t), p)-class.

The ξ(t) in Lip(ξ(t), p)-class depends on t only, whereas ω(t) in W(Lp, ω(t), β)-

class depends on both t and β [35]. In particular, if we take ω(t) = tβψ(t) for

β ≥ 0 and some positive increasing function ψ(t), then W(Lp, ω(t), β)-class de-

fined above reduces to W
′
(Lp, ψ(t))-class defined by Khan [35].

If β = 0 and ω(t) = ξ(t), then W(Lp, ω(t), β) ≡ Lip(ξ(t), p) and for ξ(t) =

tα(0 < α ≤ 1), Lip(ξ(t), p) ≡ Lip(α, p). Lip(α, p) → Lipα as p → ∞. Thus

Lipα ⊆ Lip(α, p) ⊆ Lip(ξ(t), p) ⊆ W(Lp, ω(t), β).

In this thesis, we use notation W(Lp, ω(t), β) for W(Lp, ξ(t)) and replace sin(x)

by sin(x/2) as given in [29; 112; 114].

There are many other function classes such as Lebesgue space with Mucken-

houpt weights [21], homogeneous Banach space [34, p. 14], classical Lorentz

space [59; 60], grand Lorentz space [30], weighted grand Lebesgue space [16]

and generalized Orlicz space[31] etc.

Note 1: We note that ϕ(x, t) also belongs to W(Lp, ω(t), β).

Clearly,

| ϕ(x + t, t)− ϕ(x, t) | ≤ | f (x + 2t)− f (x + t) | +2 | f (x + t)− f (x) |

+ | f (x)− f (x − t) | .

Hence by Minkowski’s inequality,(∫ 2π

0
| (ϕ(x + t, t) − ϕ(x, t)) sinβ (x/2)|pdx)1/p
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≤
(∫ 2π

0
|( f (x + 2t)− f (x + t)) sinβ(x/2) |p dx

)1/p

+ 2
(∫ 2π

0
| ( f (x + t)− f (x)) sinβ(x/2) |p dx

)1/p

+

(∫ 2π

0
| ( f (x)− f (x − t)) sinβ(x/2) |p dx

)1/p

= O(ω(t)),

i.e., ϕ(t) ≡ ϕ(x, t) ∈ W(Lp, ω(t), β).

1.4 Trigonometric Fourier Approximation

A function f in Lp-spaces is approximated by a trigonometric polynomials Tn(x) of

degree ≤ n (which is either partial sum or some summability means of the Fourier

series of f ), and the error of approximation En( f ) in terms of n, is given by

En( f ) = min
Tn

∥ f (x)− Tn(x)∥p .

The trigonometric polynomial Tn(x) is known as the Fourier-approximant of f and this

method of approximation is called trigonometric Fourier approximation.

1.5 Some Important Tools

We use the following tools/inequalities for the proof of lemmas and theorems of the

present thesis:

1. The Hölder Inequality ( for p > 1 and q such that 1
p + 1

q = 1) : Let x and y be

scalar-valued Lebesgue-measurable functions on the Lebesgue-measurable set T

such that
∫

T | x(t) |p dt < ∞ and
∫

T | y(t) |q dt < ∞. Then
∫

T | x(t)y(t) | dt < ∞

and ∫
T
| x(t)y(t) | dt ≤

(∫
T
| x(t) |p dt

)1/p (∫
T
| y(t) |q dt

)1/q
.

For p = 1 and q = ∞, we have

∫
T
| x(t)y(t) | dt ≤

(∫
T
| x(t) | dt

)
(ess sup

t∈T
| y(t) |).
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2. The Minkowski Inequality (for 1 ≤ p < ∞): For scalar-valued Lebesgue-

measurable functions x and y on a Lebesgue-measurable set T such that∫
T | x(t) |p dt < ∞ and

∫
T | y(t) |p dt < ∞, we have(∫

T
| x(t) + y(t) |P dt

)1/p
≤
(∫

T
| x(t) |p dt

)1/p
+

(∫
T
| y(t) |p dt

)1/p
.

For p = ∞, we have

ess sup | (x + y)(T) |≤ (ess sup | x(T) |) + (ess sup | y(T) |).

3. Abel’s Lemma: If {an}∞
n=0 is a sequence of real numbers whose partial sums

sn = ∑∞
k=1 ak satisfy

m ≤ sn ≤ M n = 0, 1, 2, ... ,

for some m, M ∈ R, and if {bn}∞
n=0 is a nonincreasing sequence of nonnegative

numbers, then

mb1 ≤
n

∑
k=1

akbk ≤ Mb1 n = 0, 1, 2, ... .

4. Abel’s Transformation: Let {an}∞
n=0 and {bn}∞

n=0 be two sequence of real num-

bers, then
n

∑
k=m

akbk =
n−1

∑
k=m

Ak△bk + Anbn − Am−1bm, (1.9)

where Ak = ∑k
r=0 ar and △bk ≡ bk − bk+1. For m = 0, (1.9) reduces to

n

∑
k=0

akbk =
n−1

∑
k=0

Ak△bk + bn An.

1.6 Literature Review

The study of error estimates of the periodic functions in Lipschitz classes [Viz. Lipα ⊆

Lip(α, p) ⊆ Lip(ξ(t), p)] spaces through the summability means of Fourier series, re-

ferred as Fourier approximation in the literature, has been of a growing interests over

the last few decades. The engineers and scientists use properties of Fourier approx-

imation for designing digital filters. As mentioned in [99], the Lp-space in general,

and L2 and L∞ in particular play an important role in the theory of signals and filters.

In [99], Psarakis and Moustakides presented a new L2 based method for designing the
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Finite Impulse Response (FIR) digital filters and get corresponding optimum approx-

imations having improved performance. Lubinsky and Mache [61] have discussed

(C, 1)-summability of the orthonormal expansions for exponential weights. Also, a

good amount of work on Lp−boundedness of Cesàro means, a particular type of Haus-

dorff matrix, of orthonormal expansions for general exponential weights has been car-

ried out in [62].

Many researchers use the Euler-Abel summation method to reduce the error ex-

ponentially rather than algebraically with n, the number of terms retained in the trun-

cated series, by using an approximation which weights all the terms in the truncated

series. But, unfortunately, as mentioned by Boyd and Moore [5, p. 59] and Boyd [4, pp.

1-2], Euler’s method is an efficient accelerator for an alternating series and works best,

but when applied to a series whose terms are all positive, it invariably increases the er-

ror rather than decreases. It is not necessary that all functions have alternating Fourier

series. In such cases, the matrix method, a generalized form of regular summability

methods, works efficiently. However, the best use of Euler-Abel summation method is

in solving the problems in equatorial oceanography via series of Hermite functions.

Govil[18; 19] has discussed the convergence of derived Fourier series (series ob-

tained from term by term differentiation of a Fourier series) and its conjugate. In [20],

Govil and Mohapatra have discussed several inequalities by using trigonometric form

of Markov and Bernstein type inequalities, arousen from the problem of chemist

Mendeleev.

The first result in the direction of Fourier approximation is that of Bernstein [3].

He used T for (C, 1), the Cesàro matrix of order one with assumption f ∈ Lip 1 and

obtained the result En( f ) = O(n−1 log n). Jackson [29] has shown that if T ≡ (C, δ)−

the Cesàro matrix of order δ with assumption f ∈ Lip α, then

En( f ) = O(n−α), 0 < α < δ ≤ 1 and En( f ) = O(n−α log n), 0 < α ≤ δ ≤ 1 .

The problem was further extended by many investigators such as Holland et al. [25],

Chandra [7; 8], by choosing T to be Nörlund and Riesz matrices with monotonic

weights pn. Leindler [51] moderated the classical monotonicity conditions on {pn} in

four theorems of Chandra [8]. Further Szal [118] generalized the result of Leindler [51]
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for Mean Rest Bounded Variation sequences and extend it to the strong summabil-

ity with a mediate function satisfying the standard conditions. Some authors such as

Kathal et al. [33], Holland et al. [25] and Mittal and Rhoades [78] have replaced the

assumption f ∈ Lip α with an estimate involving modulus of continuity. A very good

survey paper on trigonometric approximation of continuous functions has been pub-

lished by Holland, A.S.B. [24] in 1981. However, in case of f ∈ Lip(α, p), a nice work

has been done by Chandra [9], Liendler [52] and Mittal et al. [80; 81] have extended

these results to T by relaxing the condition on monotonicity on (an,k) and error of ap-

proximation in their papers is of order n−α, which is free from p. Sun [117], Mazhar and

Totik [68], Mazhar and Siddiqi [67], Mazhar [63–66], Khan and Wafi [37], Kumar and

Sikdar [39], Dubey and Kumar [15] and Cheney [10] have proved a number of inter-

esting results on Fourier approximations of functions belonging to Lp(p ≥ 1)-spaces

using Cesàro, Nörlund and general matrix T.

Khan and Ram [36] introduced a new function class Lip(ψ(t), p), p > 1 as the

collection of all 2π-periodic functions such that | f (x + t) − f (x) |≤ M(ψ(t)t−1/p),

0 < t < π, where ψ(t) is a positive increasing function and M is a positive number

independent of x and t, and obtain the degree of approximation of functions belong-

ing to this class by using the Euler’s means. Apart from this Nigam and Sharma [95]

applied the concept of (C, 1)(E, q) summability method and establish a new theorem

on degree of approximation of a function f ∈ Lip(ξ(t), r) class. Further, Nigam [90]

used the (E, q)(C, 1) product means of the Fourier series and obtain the order (n +

1)1/pξ(1/(n + 1)) for the functions belonging to Lip(ξ(t), p) class, which clearly de-

pends on p, even though ξ(t) is free from p. In the sequel, Lal [45] has studied the

degree of approximation of f ∈ W(Lp, ξ(t)) by using Cesàro-Nörlund summability,

which has been extended and improved recently by Singh et al. [112] by dropping the

monotonocity condition on {pn}. Nigam [89] determined the error of functions belong-

ing to Lipα and weighted (Lp, ξ(t))-class by (E, 1)(C, 1) product summability means

of Fourier series. Lal [45], Nigam and Sharma [93; 97] studied the same in Lip(α, p),

Lip(ξ(t), p) and W(Lp, ξ(t)) classes by using product summability. Also Rhoades [107]

and Rhoades et al. [108] have used the Hausdorff matrices to determine the degree of

approximation of f ∈ W(Lp, ξ(t)) and f ∈ Lip α, respectively.
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In the last four decades, many researchers have been approximated the function

f̃ , conjugate of f belonging to Lipα, Lip(α, p), Lip(ξ(t), p) and W(Lp, ξ(t))-classes with

p ≥ 1, by different summability means of the conjugate Fourier series of f and ob-

tained the error of approximation En( f̃ ), which depends heavily on p [22; 74; 99; 115].

Qureshi [100; 101], Lal and Kushwaha [46], Nigam and Sharma [97] and Padhy et

al. [98] have proved some interesting theorems on the degree of approximation of func-

tion conjugate of f ∈ Lipα(0 < α ≤ 1) using almost reisz means, lower triangular

matrix means, (E, 1)(C, 1) product means, (E, q)(Ñ, pn) product means of conjugate

Fourier series, respectively. Lal [42] obtained the degree of approximation of conju-

gates of almost Lipschitz functions by (C, 1)(E, 1) means. Also Lal and Singh [48] deter-

mined the degree of approximation of f̃ , conjugate of a function f ∈ almost Lipα using

(N, p, q)(E, 1) means of the conjugate Fourier series of f . Further Qureshi [102], Nigam

and Sharma [96], Lal and Singh [49] have used Nörlund, Karmata and (C, 1)(E, 1)

summability means to obtain En( f̃ ) = O(n−α+1/p) for the function conjugate to f ∈

Lip(α, p) through conjugate Fourier series of f .

Approximation of the conjugate to functions f ∈ Lipα and Lip(α, p) (p ≥ 1, 0 <

α ≤ 1) motivated the researchers to analyze the degree of approximation of the con-

jugate of the functions belonging to more general Lipschitz classes Lip(ξ(t), p) and

W(Lp, ξ(t))(p ≥ 1), where ξ(t) is a positive increasing function. Lal and Nigam [47],

Mittal et al. [83], Lal and Kushwaha [46], Lal and Srivastava [50], Nigam and Sharma [92]

have obtained the degree of approximation En( f̃ ) = O(n1/pξ(1/n)) for conjugate of

functions f ∈ Lip(ξ(t), p) using different summability means such as matrix T ≡ (an,k)

means, and (E, q)(C, 1) product means of the conjugate Fourier series of f . Qureshi [103],

Dhakal [14], Nigam and Sharma [94] introduced new theorems concerning the degree

of approximation of the conjugate of a function belonging to W(Lp, ξ(t))−class by Nör-

lund, (N, pn)(E, 1) product means and (C, 1)(E, q) product means of conjugate Fourier

series, respectively. Lal [43] used the matrix summability with increasing rows for

this purpose. The degree of approximation so obtained is En( f̃ ) = O(nβ+1/pξ(1/n)).

Rhoades [107], Mittal et al. [79; 82] have proved the same results by using a summa-

bility matrix without monotonicity condition. Mishra [70] extended the results of Lal

and Srivastava [50] for the functions f ∈ W(Lp, ξ(t)). Recently, Mishra et al. [72; 73]
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and Nigam and Sharma [93] have obtained the degree of approximation of function

conjugate to f ∈ W(Lp, ξ(t)) and gave interesting results using lower triangular ma-

trix operator, (E, q)(C, 1) and (N, pn)(C, 1) product summability, respectively. Nigam

and Sharma [96] study the degree of approximation of function and their conjugates

belonging to W(Lr, ξ(t)) by Kλ-summability means of its Fourier series and conjugate

Fourier series, respectively and established quietly new theorems. Very recently, Łen-

ski and Szal [57], Kranz et al. [38] and Mishra et al. [75] have studied the same problem

by using matrix means and (E, 1)(C, 1) means, and gave important remarks which may

be useful to improve the above results.

Moreover, some investigators like Das and Mohapatra [13], Mohapatra and Chan-

dra [84], etc. investigated the error of approximation of functions in the Hölder metric.

For 0 < α ≤ 1 and some positive constant K, Mohapatra and Chandra [84] defined the

function space Hα given by

Hα = { f ∈ C2π : | f (x)− f (y)| ≤ K|x − y|α}

and investigated the error of functions belonging to Hα-class using a lower triangular

infinite matrix with non-negative and non-decreasing entries (with respect to k) and

row sum 1. Sun [116] obtained the degree of approximation in generalized Hölder met-

ric and Das et al. [12] used the matrix means of the Fourier series in generalized Hölder

metric to calculate the degree of approximation . Further, Singh and Sonkar [113] have

studied the degree of approximation of periodic functions in generalized Hölder met-

ric space through matrix means of Fourier series, where matrix T ≡ (an,k) has almost

monotone rows, which in turn generalizes most of the results of Liendler [53].

Mohapatra and Russell [85] proved some results on the convergence of a se-

quence of linear operators connected with the Fourier series of a function of class

Lp(p > 1) to that function and some inverse results in relating the convergence to the

classes of functions. Łenski and Szal [54] have proved the approximation results for the

functions belonging to the class Lp(ω)β by linear operators and Łenski and Szal [55]

have proved the some approximation results of integrable functions by general linear

operators of their Fourier series at the Lebesgue points.

F. Móricz [86] gave the notion of Λ-strong convergence, an intermediate notion
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between bounded variation and and ordinary convergence, using a nondecreasing se-

quence Λ = {λk : k = 0, 1, ...} of positive numbers tending to ∞. He defined that a

sequence S = {sk} of complex numbers converges Λ-srtongly to a complex number s

if

lim
n→∞

1
λn

n

∑
k=0

| λk(sk − s)− λk−1(sk−1 − s) |= 0.

Braha and Mansour [6] generalized the concept of Λ-strong convergence given by

Móricz [86] and introduced the concept of Λ2-strong convergence using the second

difference defined as △2(λk) = △(△(λk)) = λk − 2λk−1 + λk−2.

They also proved lemma [Lemma 1, p. 113] related to ordinary convergence and Λ2-

strong convergence, and a theorem [Theorem 1, p.120] showing that c2(Λ), the col-

lection of all Λ2-strong convergent sequences S = {sk} of complex numbers form a

Banach space with the norm defined as

∥S∥c2(Λ) := sup
n≥0

1
λn − λn−1

n

∑
k=0

| λksk − 2λk−1sk−1 + λk−2sk−2 | .

Also, they applied these concepts to Fourier series in C-metric and Lp-metric, and

proved the corresponding results.

1.7 Objective of the Present Study (Summary of the the-
sis)

The objective of this thesis is to fill the gap in the Literature and also making some

advancement in the direction of Trigonometric Fourier approximation. The pointwise

objective is as follows:

• To study trigonometric approximation of functions and their conjugates belong-

ing to certain Lipschitz classes such as Lipα and W(Lp, ω(t), β) by C1.T operator

(Chapter 2).

• To study approximation of conjugate of functions belonging to weighted Lips-

chitz class W(Lp, ω(t), β) by Hausdorff means of conjugate Fourier series

(Chapter 3).

• To introduce the function classes Lip(ω(t), p) and W(Lp, Ψ(t), β) and determine

the degree of approximation of functions belonging to them (Chapter 4).
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• To study degree of approximation of functions in Lipschitz class with

Muckenhoupt weights by matrix means (Chapter 5).

• To study T-strong convergence of numerical sequences and Fourier series

(Chapter 6).



Chapter 2

Approximation of Functions and their
Conjugates Belonging to Certain
Lipschitz Classes by C1.T Operator

2.1 Introduction

The study of approximation properties of the periodic functions in Lp(p ≥ 1)-spaces,

in general and in Lipschitz classes Lipα, Lip(α, p), Lip(ξ(t), p) and weighted Lipschitz

class W(Lp, ω(t), β)(= W(Lp, ξ(t))), in particular, through trigonometric Fourier se-

ries, has attracted the researchers over the last four decades due to its application in

filters and signals [Emmanouil Z. Psarakis and George V. Moustakides, An L2-based

method for the design of 1-D zero phase FIR digital filters, IEEE Transactions on Cir-

cuits and Systems-I: Fundamental Theory And Applications, 44(7) (1997), 551-601].

The most common methods used for the determination of the degree of approxima-

tion of periodic functions are based on the minimization of the Lp-norm of f (x) −

Tn(x), where Tn(x) is a trigonometric polynomial of degree at most n and called ap-

proximant of the function f . In this chapter, we discuss the approximation proper-

ties of the periodic functions and their conjugates in the Lipschitz classes Lipα and

W(Lp, ω(t), β), p ≥ 1 by a trigonometric polynomial generated by the product matrix

means of the Fourier series associated with the function. The degree of approximation

obtained in our theorems of this chapter is free from p and sharper than earlier results.

Let T ≡ (an,k) is a lower triangular matrix with non-negative entries such that

an,−1 = 0, An,k = ∑n
r=k an,r, n ∈ N0.

17
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In particular, if an,k = 1/(n + 1) for k ≤ n and an,k = 0 for k > n, then tn( f , x)

reduces to Cesàro means of order one defined as

σn( f ; x) =
1

n + 1

n

∑
k=0

sk( f ; x).

By superimposing C1-summability upon T-summability, we get the C1.T-summability.

Thus the C1.T means of {sn( f ; x)} denoted by tC1.T
n ( f ; x) are given by

tC1.T
n ( f ; x) := (n + 1)−1

n

∑
r=0

( r

∑
k=0

ar,ksk( f ; x)
)

, n ∈ N0. (2.1)

If tC1.T
n ( f ; x) → s1 as n → ∞, then the Fourier series of f is said to be C1.T-summable

to the sum s1. The regularity of methods C1 and T implies regularity of method C1.T.

We also write

(C1.T)n(t) :=
1

2π(n + 1)

n

∑
r=0

r

∑
k=0

ar,r−k
sin(r − k + 1/2)t

sin(t/2)
,

bn,n−k := ∆nan,n−k = an,n−k − an+1,n+1−k and τ := [1/t], the integer part of 1/t.

Various investigators such as Qureshi and Nema [104], Rhoades [106], Lal [44; 45]

and Nigam [90; 91] have determined the degree of approximation of 2π-periodic func-

tions belonging to weighted Lipschitz class W(Lp, ω(t), β) with p ≥ 1, through trigono-

metric polynomials using different summability methods and obtained

||tn( f ; x)− f (x)||p = O((n+ 1)β+1/p ω(1/(n+ 1))) which clearly depends on p. How-

ever, Khan [35] has obtained |sn( f ; x) − f (x)| = O((n + 1)1/p ω(1/(n + 1)). Since

Lipα ⊆ Lip(α, p) ⊆ Lip(ξ(t), p) ⊆ W(Lp, ω(t), β), a number of corollaries have also

been deduced from the above results with a separate proof for the Lipschitz class

Lip α (α = 1) [45; 108; 112]. The authors have used various auxiliary conditions on

the positive increasing function ω(t). Recently, following the remarks of Rhoades et

al. [108, pp. 6870-6871] about the conditions on ω(t) and definition of W(Lp, ω(t), β) ,

Singh et al. [112, pp. 3-4, Remarks 2.3 & 2.4], and Singh and Sonkar [114, p. 4, Remark

2.1] have improved the results of Lal [45] and Rhoades [106], respectively and obtained

the same degree of approximation. The similar type of remarks can also be seen in [57].

Very recently, Łenski and Szal [56] have generalized the C1.T method of summability

introduced by Mittal [77] to the product of two general summability matrices and ob-

tained the degree of approximation point-wise in Lp-space, which is dependent on p.
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Chandra [9] was the first to obtain the degree of approximation of f ∈ Lip(α, p) as

||tn( f ; x) − f (x)||p = O(n−α) which is free from p, and the same was continued by

Liendler [52] and Mittal et al. [80; 81]. Thus to obtain a degree of approximation of

f ∈ W(Lp, ω(t), β) which is sharper than earlier results and free from p is still an open

problem which we address in this chapter.

2.2 Main Results

The above mentioned observations motivate us to study further the problem of ap-

proximation in weighted Lipschitz class W(Lp, ω(t), β), particularly result of Lal [45].

In this chapter, we use the C1.T method with a set of weaker conditions on ω(t) and

prove the following:

Theorem 2.2.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and
non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries which satisfies, An,0 = 1, ∀n ∈ N0
and

bn,n−k ≥ 0 f or 0 ≤ k ≤ n. (2.2)

Then the degree of approximation of a 2π-periodic function f ∈ Lipα by C1.T means of its
Fourier series is given by

∥tC1.T
n ( f ; x)− f (x)∥∞ =

{
O((n + 1)−α), 0 < α < 1,
O (log(n + 1)/(n + 1)) , α = 1. (2.3)

Theorem 2.2.2. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem 2.2.1.
Then the degree of approximation of a 2π-periodic function f ∈ W(Lp, ω(t), β) with p > 1
and 0 < β < 1/p by C1.T means of its Fourier series is given by

∥ tC1.T
n ( f ; x)− f (x) ∥p= O

(
(n + 1)βω (1/(n + 1))

)
, (2.4)

provided a positive increasing function ω(t) satisfies the following conditions:

ω(t)/t is a decreasing function, (2.5)(∫ π/(n+1)

0

∣∣∣ϕ(t) sinβ(t/2)/ω(t)
∣∣∣q dt

)1/q

= O((n + 1)−1/q), (2.6)

(∫ π

π/(n+1)

(
t−δ|ϕ(t)| sinβ(t/2)/ω(t)

)p
dt
)1/p

= O((n + 1)δ−1/p), (2.7)

where δ is a real number such that p−1 < δ < β + p−1and p−1 + q−1 = 1. Also conditions
(2.6) and (2.7) hold uniformly in x.
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The conditions (2.6) and (2.7) of Theorem 2.2.2 give better estimate than theorems

of Lal [45, p. 347], Singh et al. [112, p. 4] and Singh and Sonkar [114, p. 40], as the

degree of approximation in our Theorem 2.2.2 is free from p.

Remark 2.2.1. If we replace matrix T with Nörlund matrix Np, then C1.T means of Fourier
series of f defined in (2.1) reduces to C1.Np means. Also for non-decreasing sequence {an,k} in
k, {pn} is non-increasing such that

bn,n−k = an,n−k − an+1,n+1−k = pk/Pn − pk/Pn+1 ≥ 0,

and condition (3) of Theorem 1 of Lal [45, p. 347] is obvious as under

Pτ

n

∑
v=τ

P−1
v ≤ Pτ.

1
Pτ

n

∑
v=τ

(1) ≤ (n + 1).

Hence Theorems 1 and 2 of Lal [45, p. 347] are particular and improved cases of our Theorems
2.2.1 and 2.2.2, respectively.

For the easy understanding of the conditions of the matrix T in Theorems 2.2.1

and 2.2.2, we show an example of the lower triangular regular matrix T ≡ (an,k) which

satisfy the mentioned assumptions . Let us consider the matrix T ≡ (an,k) defined by

an,k =


2k

2n+1 − 1
, 0 ≤ k ≤ n

0, k > n .

It is easy to check that entries of the matrix T ≡ (an,k) are non-negative and non-

decreasing (with respect to k, for 0 ≤ k ≤ n). It also satisfies the conditions

An,0 =
n

∑
r=0

an,r =
n

∑
r=0

2r

2n+1 − 1
=

1
2n+1 − 1

n

∑
r=0

2r = 1, ∀n ∈ N0

and

bn,n−k := ∆nan,n−k = an,n−k − an+1,n+1−k

=
2n−k

2n+1 − 1
− 2n+1−k

2n+2 − 1

= 2n−k
[

2n+2 − 2n+1

(2n+1 − 1)(2n+2 − 1)

]
≥ 0 for 0 ≤ k ≤ n.
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2.3 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 2.3.1. If {an,k} satisfies the conditions of Theorem 2.2.1, then (C1.T)n(t) = O(n+ 1),
for 0 < t ≤ π/(n + 1).

Proof. Using sin nt ≤ nt and sin(t/2) ≥ t/π for 0 < t ≤ π/(n + 1), we have

∣∣∣(C1.T)n(t)
∣∣∣ = (2π(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−k (sin(r − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣
≤ (2π(n + 1))−1

n

∑
r=0

r

∑
k=0

ar,r−k |(sin(r − k + 1/2)t)/ sin(t/2)|

≤ (2π(n + 1))−1
n

∑
r=0

r

∑
k=0

ar,r−k((r − k + 1/2)t)/(t/π)

≤ (4(n + 1))−1
n

∑
r=0

r

∑
k=0

ar,r−k(2r − 2k + 1)

≤ (4(n + 1))−1
n

∑
r=0

(2r + 1)Ar,0

= (4(n + 1))−1
n

∑
r=0

(2r + 1) = (n + 1)2/4(n + 1) = O(n + 1),

in view of Ar,0 = 1.

Lemma 2.3.2. If {an,k} satisfies the conditions of Theorem 2.2.1, then

|(C1.T)n(t)| = O
(

t−2/(n + 1)
)

, for π/(n + 1) < t ≤ π.

Proof. Using sin(t/2) ≥ t/π, for π/(n + 1) < t ≤ π, we have

| (C1.T)n(t) | = (2π(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−k(sin(r − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣
= O(t(n + 1))−1

∣∣∣∣∣Im
n

∑
r=0

r

∑
k=0

ar,r−kei(r−k+1/2)t

∣∣∣∣∣
= O(t(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−kei(r−k)t

∣∣∣∣∣ .
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Following [77, pp. 445-446], we have∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−kei(r−k)t

∣∣∣∣∣ ≤
∣∣∣∣∣ τ

∑
r=0

r

∑
k=0

ar,r−kei(r−k)t

∣∣∣∣∣+
∣∣∣∣∣ n

∑
r=τ+1

τ

∑
k=0

ar,r−kei(r−k)t

∣∣∣∣∣
+

∣∣∣∣∣ n

∑
r=τ+1

r

∑
k=τ+1

ar,r−kei(r−k)t

∣∣∣∣∣
≤ K1 + K2 + K3, say,

where τ is the integer part of 1/t.

Now

K1 ≤
τ

∑
r=0

r

∑
k=0

ar,r−k

∣∣∣ei(r−k)t
∣∣∣ ≤ τ

∑
r=0

Ar,0 = (τ + 1) = O(t−1).

Using Abel’s transformation after changing the order of summation in K2, we have

K2 :=
∣∣∣∣ τ

∑
k=0

n

∑
r=τ+1

ar,r−kei(r−k)t
∣∣∣∣ = ∣∣∣∣ τ

∑
k=0

[ n−1

∑
r=τ+1

{
br,r−k

r

∑
v=0

ei(v−k)t
}

+ an,n−k

n

∑
v=0

ei(v−k)t − aτ+1,τ+1−k

τ

∑
v=0

ei(v−k)t
]∣∣∣∣

= O(t−1)
τ

∑
k=0

(
n−1

∑
r=τ+1

br,r−k + an,n−k + aτ+1,τ+1−k

)

= O(t−1)
τ

∑
k=0

(
n−1

∑
r=τ+1

(ar,r−k − ar+1,r+1−k) + an,n−k + aτ+1,τ+1−k

)

= O(t−1)
τ

∑
k=0

(2aτ+1,τ+1−k + an,n−k + an+1,n+1−k)

= O(t−1)
τ

∑
k=0

(aτ,τ−k + an,n−k) = O(t−1)

(
τ

∑
k=0

aτ,τ−k +
n

∑
k=0

an,n−k

)

= O(t−1) (Aτ,0 + An,0) = O(t−1),

in view of br,r−k = ar,r−k − ar+1,r+1−k ≥ 0 for 0 ≤ k ≤ r, and Aτ,0 = An,0 = 1. Again

using Abel’s transformation in K3, we have

K3 :=
∣∣∣∣ n

∑
r=τ+1

[ r−1

∑
k=τ+1

{
∆kar,r−k

k

∑
v=0

ei(r−v)t
}
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+ ar,0

r

∑
v=0

ei(r−v)t − ar,r−τ−1

τ

∑
v=0

ei(r−v)t
]∣∣∣∣

= O(t−1)
n

∑
r=τ+1

[ r−1

∑
k=τ+1

∣∣∣∣ar,r−k − ar,r−k+1

∣∣∣∣+ ar,0 + ar,r−τ−1

]

= O(t−1)
n

∑
r=τ+1

(ar,r−τ + ar,1 + ar,0 + ar,r−τ−1)

= O(t−1)
n

∑
r=τ+1

(ar,r−τ)

= O(t−1)

[
aτ+1,1 + aτ+2,2 + aτ+3,3 + ... + an,n−τ

]

= O(t−1)

[
aτ+1,1 + aτ+1,2 + aτ+1,3 + ... + aτ+1,n−τ

]
= O(t−1)Aτ+1,0 = O(t−1),

in view of ar,r−k ≥ ar+1,r+1−k ≥ ar+1,r−k for 0 ≤ k ≤ r, and Aτ+1,0 = 1.

Collecting K1, K2 and K3, we get

|(C1.T)n(t)| = O
(

t−2/(n + 1)
)

.

2.4 Proof of Theorem 2.2.1

We have

sn( f ; x)− f (x) =
1

2π

∫ π

0
ϕ(t)(sin(n + 1/2)t/ sin(t/2))dt.

Using (2.1), we can write

tC1.T
n ( f ; x)− f (x) =

1
n + 1

n

∑
r=0

r

∑
k=0

ar,k [sk( f ; x)− f (x)]

=
∫ π

0
ϕ(t)(2π(n + 1))−1

n

∑
r=0

r

∑
k=0

ar,r−k
sin(r − k + 1/2)t

sin(t/2)
dt

=
∫ π/(n+1)

0
ϕ(t)(C1.T)n(t)dt +

∫ π

π/(n+1)
ϕ(t)(C1.T)n(t)dt

= I1 + I2, say. (2.8)
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Using Lemma 2.3.1 and the fact that f ∈ Lipα ⇒ ϕ(t) ∈ Lipα, we have

|I1| ≤
∫ π/(n+1)

0
|ϕ(t)||(C1.T)n(t)|dt = O(n + 1)

∫ π/(n+1)

0
tαdt

= O(n + 1)((n + 1)−α−1) = O((n + 1)−α). (2.9)

Now, using Lemma 2.3.2 and the fact that f ∈ Lip α ⇒ ϕ(t) ∈ Lip α,

|I2| ≤
∫ π

π/(n+1)
|ϕ(t)|

∣∣∣(C1.T)n(t)
∣∣∣ dt

=
∫ π

π/(n+1)
|ϕ(t)|O

[
t−2/(n + 1)

]
dt

= O((n + 1)−1)
∫ π

π/(n+1)
tα−2dt

=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(2.10)

Collecting (2.8)-(2.10) and using 1/(n + 1) ≤ log(n + 1)/(n + 1), we get

| tC1.T
n ( f ; x)− f (x) |=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.

Thus

∥tC1.T
n ( f ; x)− f (x)∥∞ = ess sup

0≤x≤2π

|tC1.T
n ( f ; x)− f (x)|

=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.

This completes the proof of Theorem 2.2.1.

2.5 Proof of Theorem 2.2.2

Following the proof of Theorem 2.2.1, we have

tC1.T
n ( f ; x)− f (x) =

∫ π/(n+1)

0
ϕ(t)(C1.T)n(t)dt +

∫ π

π/(n+1)
ϕ(t)(C1.T)n(t)dt

= I
′
1 + I

′
2, say. (2.11)
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Using Hölder’s inequality, ϕ(t) ∈ W(Lp, ω(t), β), condition (2.6), sin(t/2) ≥ t/π,

Lemma 2.3.1 and the mean value theorem for integrals, we have

|I ′1| =

∣∣∣∣limϵ→0

∫ π/(n+1)

ϵ

[
(ϕ(t) sinβ(t/2)/ω(t)).(ω(t)(C1.T)n(t)/ sinβ(t/2))

]
dt
∣∣∣∣

≤
[∫ π/(n+1)

0

(
|ϕ(t)| sinβ(t/2)/ω(t)

)q
dt
]1/q

×

[
lim
ϵ→0

∫ π/(n+1)

ϵ

(
ω(t)|(C1.T)n(t)|/ sinβ(t/2)

)p
dt
]1/p

= O((n + 1)−1/q)

[
lim
ϵ→0

∫ π/(n+1)

ϵ

∣∣∣ω(t)(n + 1)/ sinβ(t/2)
∣∣∣p dt

]1/p

= O((n + 1)1−1/q)(ω(π/(n + 1)))
[

lim
ϵ→0

∫ π/(n+1)

ϵ
t−βpdt

]1/p

= O(ω(π/(n + 1))(n + 1)β+1−1/q−1/p) = O((n + 1)βω(π/(n + 1))), (2.12)

in view of 0 < β < 1/p and p−1 + q−1 = 1.

Using Lemma 2.3.2, Hölder’s inequality, | sin t| ≤ 1, sin(t/2) ≥ t/π, the mean value

theorem for integrals and condition (2.7), we have

|I ′2| =

[∫ π

π/(n+1)
|ϕ(t)|

[
O
(

t−2/(n + 1)
)]

dt
]

= O
[∫ π

π/(n+1)
t−2|ϕ(t)|/(n + 1)dt

]

= O
[
(n + 1)−1

∫ π

π/(n+1)

{
(t−δ|ϕ(t)| sinβ(t/2)/ω(t)) ×

(ω(t)/(t−δ+2 sinβ(t/2))
)}

dt
]

≤ O((n + 1)−1)

[∫ π

π/(n+1)

∣∣∣t−δ|ϕ(t)| sinβ(t/2)/ω(t)
∣∣∣p dt

]1/p
×

[∫ π

π/(n+1)

∣∣∣ω(t)/
(

t−δ+2 sinβ(t/2)
)∣∣∣q dt

]1/q

= O((n + 1)−1)

[∫ π

π/(n+1)

∣∣∣t−δ|ϕ(t)| sinβ(t/2)/ω(t)
∣∣∣p dt

]1/p
×
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[∫ π

π/(n+1)

∣∣∣ω(t)/
(

t−δ+2 sinβ(t/2)
)∣∣∣q dt

]1/q

= O((n + 1)−1)O
(
(n + 1)δ−1/p

) [∫ π

π/(n+1)

∣∣∣ω(t)/t−δ+2+β
∣∣∣q dt

]1/q

= O((n + 1)δ−1−1/p)((n + 1)/π)ω(π/(n + 1))
[∫ π

π/(n+1)
t−(1−δ+β)qdt

]1/q

= O
(
(n + 1)δ−1/pω(π/(n + 1))(n + 1)(1+β−δ)−1/q

)
= O((n + 1)βω(π/(n + 1))), (2.13)

in view of condition (2.5), p−1 < δ < β + p−1 and p−1 + q−1 = 1.

Collecting (2.11) - (2.13), we have

|tC1.T
n ( f ; x)− f (x)| = O

(
(n + 1)βω(π/(n + 1))

)
.

Hence,

∥tC1.T
n ( f ; x)− f (x)∥p =

(
1

2π

∫ 2π

0
|tC1.T

n ( f ; x)− f (x)|pdx
)1/p

= O
(
(n + 1)βω (π/(n + 1))

)
= O

(
(n + 1)βω (1/(n + 1))

)
,

in view of condition (2.5), i.e., ω(π/(n+ 1))/(π/(n+ 1)) ≤ ω(1/(n+ 1))/(1/(n+ 1)).

This completes the proof of Theorem 2.2.2.

Remark 2.5.1. Most of the authors mentioned above have taken p ≥ 1 in their theorems and
applied Hölder’s inequality without using L∞-norm when q = ∞(i.e., p = 1). Thus proofs of
their theorems are not valid for p = 1. Therefore, we have taken p > 1 in Theorem 2.2.2 stated
above [2, pp. 32-33].

Theorem 2.5.1. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem
2.2.1. Then the degree of approximation of a 2π-periodic function f belonging to the weighted
Lipschitz class W(L1, ω(t), β), with 0 < β < 1 by C1.T means of its Fourier series is given by

∥ tC1.T
n ( f ; x)− f (x) ∥1= O

(
(n + 1)βω(1/(n + 1))

)
, (2.14)

provided a positive increasing function ω(t) satisfies (2.5) and the following condition:

ω(t)/tβ is non-decreasing, (2.15)
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∫ π/(n+1)

0

| ϕ(t) | sinβ(t/2)
ω(t)

dt = O((n + 1)−1), (2.16)

∫ π

π/(n+1)

t−δ | ϕ(t) | . sinβ(t/2)
ω(t)

dt = O((n + 1)δ−1), (2.17)

where 1 < δ < β + 1. The conditions (2.16) and (2.17) hold uniformly in x.

2.6 Proof of Theorem 2.5.1

Following the proof of Theorem 2.2.2, for p = 1 i.e., q = ∞, we have

|I ′1| ≤
∫ π/(n+1)

0

(
|ϕ(t)| sinβ(t/2)

ω(t)

)
dt × ess sup

0<t≤π/(n+1)

∣∣∣∣ω(t)|(C1.T)n(t)
sinβ(t/2)

|
∣∣∣∣

= O(n + 1)−1 × ess sup
0<t≤π/(n+1)

∣∣∣∣ω(t).(n + 1)
sinβ(t/2)

∣∣∣∣
= O(1) ess sup

0<t≤π/(n+1)

∣∣∣∣ω(t)
tβ

∣∣∣∣
= O(1)

{
ω(π/(n + 1))
(π/(n + 1))β

}
= O((n + 1)β ω(π/(n + 1)), (2.18)

in view of conditions (2.15) and (2.16).

|I ′2| = O

{
1

n + 1

∫ π

π/(n+1)

t−δ|ϕ(t)| sinβ(t/2)
ω(t)

dt

}

× ess sup
π/(n+1)≤t≤π

∣∣∣∣ ω(t)
t−δ+2. sinβ(t/2)

∣∣∣∣
= O

[
(n + 1)δ−2ω

(
π

n + 1

)(
(n + 1)2+β−δ

π2+β−δ

)]
= O[(n + 1)βω(π/(n + 1))], (2.19)

in view of decreasing nature of ω(t)/tβ−δ+2 and condition (2.17).

Collecting (2.18) and (2.19), we get

| tC1.T
n ( f ; x)− f (x) |= O[(n + 1)βω(π/(n + 1))]. (2.20)

The work of Theorems 2.2.1, 2.2.2 and 2.5.1 have been accepted for publication in Asian-European
Journal of Mathematics (World Scientific).
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Hence

∥ tC1.T
n ( f ; x)− f (x) ∥1= O

(
(n + 1)βω(1/(n + 1))

)
, (2.21)

in view of (2.5). This completes the proof of Theorem 2.5.1.

As mentioned in Chapter 1 on Page 5, a separate study of conjugate Fourier series

is required. In the next theorems, we shall discuss the degree of approximation of

f̃ , conjugate of f belonging to Lipα and W(Lp, ω(t), β), p ≥ 1 by the C1.T means of

conjugate Fourier series.

The sequence-to-sequence transformation

t̃n( f ; x) :=
n

∑
k=0

an,k s̃k( f ; x), n ∈ N0,

defines the matrix means of {s̃n( f ; x)}. The conjugate Fourier series of the function f

is said to be T-summable to s, if t̃n( f ; x) → s as n → ∞.

The C1.T means of {s̃n( f ; x)} denoted by t̃C1.T
n ( f ; x) are given by

t̃C1.T
n ( f ; x) := (n + 1)−1

n

∑
r=0

( r

∑
k=0

ar,k s̃k( f ; x)
)

, n ∈ N0. (2.22)

If t̃C1.T
n ( f ; x) → s1 as n → ∞, then the conjugate Fourier series of f is said to be C1.T -

summable to the sum s1.

We also write

∼
(C1.T)n(t) =

1
2π(n + 1)

n

∑
r=0

r

∑
k=0

ar,r−k
cos(r − k + 1/2)t

sin(t/2)
.

Theorem 2.6.1. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem 2.2.1.
Then the degree of approximation of f̃ , conjugate of a 2π - periodic function f ∈ Lipα by C1.T
means of its conjugate Fourier series is given by

∥t̃C1.T
n ( f ; x)− f̃ (x)∥∞ =

{
O((n + 1)−α), 0 < α < 1,
O (log(n + 1)/(n + 1)) , α = 1. (2.23)

Theorem 2.6.2. Let T ≡ (an,k) be a lower triangular regular matrix same as in Theorem 2.2.1.
Then the degree of approximation of f̃ , conjugate of a 2π-periodic function f ∈ W(Lp, ω(t), β),
with p > 1 and 0 ≤ β < 1/p by C1.T means of its conjugate Fourier series is given by

∥ t̃C1.T
n ( f ; x)− f̃ (x) ∥p= O

(
(n + 1)βω(1/(n + 1))

)
, (2.24)

provided a positive increasing function ω(t) satisfies the following conditions:

ω(t)/tβ+1−σ is non-decreasing , (2.25)
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{∫ π/(n+1)

0

(
t−σ | ψx(t) | sinβ(t/2)

ω(t)

)p

dt

}1/p

= O((n + 1)σ−1/p), (2.26)

for β < σ < 1/p,
ω(t)/t is non-increasing, (2.27){∫ π

π/(n+1)

(
t−δ | ψx(t) sinβ(t/2) |

ω(t)

)p

dt

}1/p

= O((n + 1)δ−1/p), (2.28)

where δ is an arbitrary number such that 1/p < δ < β + 1/p and p−1 + q−1 = 1. The
conditions (2.26) and (2.28) hold uniformly in x.

The condition (2.28) above is improved version of condition (14) of [22].

2.7 Lemmas

We need the following lemmas for the proof of Theorems 2.6.1 and 2.6.2.

Lemma 2.7.1. If {an,k} satisfies the conditions of Theorem 2.2.1, then
∼

(C1.T)n(t) = O(1/t),
for 0 < t ≤ π/(n + 1).

Proof. Using | cos t| ≤ 1 and sin(t/2) ≥ t/π for 0 < t ≤ π/(n + 1), we have∣∣∣∣ ∼
(C1.T)n(t)

∣∣∣∣ = (2π(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−k (cos(r − k + 1/2)t)/(sin t/2)

∣∣∣∣∣
≤ (2π(n + 1))−1

n

∑
r=0

r

∑
k=0

ar,r−k |(cos(r − k + 1/2)t)/(sin t/2)|

≤ (2π(n + 1))−1
n

∑
r=0

r

∑
k=0

ar,r−k1/(t/π)

= O((n + 1)t)−1
n

∑
r=0

(
r

∑
k=0

ar,r−k

)

= O((n + 1)t)−1
n

∑
r=0

(1)

= O(1/t).

Lemma 2.7.2. If {an,k} satisfies the conditions of Theorem 2.2.1, then

|
∼

(C1.T)n(t)| = O
(

t−2/(n + 1)
)

, π/(n + 1) < t ≤ π.
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Proof. Using sin(t/2) ≥ t/π, for π/(n + 1) < t ≤ π, we have

|
∼

(C1.T)n(t) | = (2π(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−k(cos(r − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣
= O(t(n + 1))−1

∣∣∣∣∣Re
n

∑
r=0

r

∑
k=0

ar,r−kei(r−k+1/2)t

∣∣∣∣∣
= O(t(n + 1))−1

∣∣∣∣∣ n

∑
r=0

r

∑
k=0

ar,r−kei(r−k)t

∣∣∣∣∣ .

Following Lemma 2.3.2, we have

|
∼

(C1.T)n(t)| = O
(

t−2/(n + 1)
)

.

2.8 Proof of Theorem 2.6.1

Using the integral representation of s̃n( f ; x) given in (1.5), we can write

s̃n( f ; x)− f̃ (x) =
1
π

∫ π

0
ψx(t)

cos(n + 1/2)t
sin (t/2)

dt.

Now, using (2.1), we write

t̃C1.T
n ( f ; x)− f̃ (x) =

1
n + 1

n

∑
r=0

r

∑
k=0

ar,k
[
s̃k( f ; x)− f̃ (x)

]
=

∫ π

0
ψx(t)(2π(n + 1))−1

n

∑
r=0

r

∑
k=0

ar,r−k
cos(r − k + 1/2)t

sin(t/2)
dt

=
∫ π/(n+1)

0
ψx(t)

∼
(C1.T)n(t)dt +

∫ π

π/(n+1)
ψx(t)

∼
(C1.T)n(t)dt

= I1 + I2, say. (2.29)

Using Lemma 2.7.1 and the fact that ψx(t) ∈ Lipα, we have

|I1| ≤
∫ π/(n+1)

0
|ψx(t)||

∼
(C1.T)n(t)|dt = O

∫ π/(n+1)

0
tα−1dt

= O((n + 1)−α). (2.30)

Now, using Lemma 2.7.2 and the fact that ψx(t) ∈ Lip α,

|I2| ≤
∫ π

π/(n+1)
|ψx(t)|

∣∣∣∣ ∼
(C1.T)n(t)

∣∣∣∣ dt
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=
∫ π

π/(n+1)
|ψx(t)|O

[
t−2/(n + 1)

]
dt

= O((n + 1)−1)
∫ π

π/(n+1)
tα−2dt

=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(2.31)

Collecting (2.29)-(2.31) and using 1/(n + 1) = O(log(n + 1)/(n + 1)), we get

| t̃C1.T
n ( f ; x)− f̃ (x) |=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(2.32)

Thus

∥t̃C1.T
n ( f ; x)− f̃ (x)∥∞ = ess sup

0≤x≤2π

{|t̃C1.T
n ( f ; x)− f̃ (x)|}

=

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(2.33)

This completes proof of the Theorem 2.6.1.

2.9 Proof of Theorem 2.6.2

Following the proof of Theorem 2.6.1, we have

t̃C1.T
n ( f ; x)− f̃ (x) =

∫ π/(n+1)

0
ψx(t)

∼
(C1.T)n(t)dt +

∫ π

π/(n+1)
ψx(t)

∼
(C1.T)n(t)dt

= I
′
1 + I

′
2, say. (2.34)

Using Hölder’s inequality, conditions (2.25), (2.26), sin(t/2) ≥ t/π, Lemma 2.7.1, the

mean value theorem for integrals and p−1 + q−1 = 1, we have

|I ′1| = lim
ϵ→0

∫ π/(n+1)

ϵ

∣∣∣[t−σ(ψx(t) sinβ(t/2)/ω(t)) ×

(ω(t)
∼

(C1.T)n(t)/t−σ sinβ(t/2))
]∣∣∣∣ dt

≤
[∫ π/(n+1)

0

(
t−σ|ψx(t)| sinβ(t/2)/ω(t)

)p
dt
]1/p

×
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lim
ϵ→0

∫ π/(n+1)

ϵ

ω(t)|
∼

(C1.T)n(t)|
t−σ sinβ(t/2)

q

dt

1/q

= O((n + 1)σ−1/p)

[
lim
ϵ→0

∫ π/(n+1)

ϵ

∣∣∣ω(t)/(t1−σ. sinβ(t/2))
∣∣∣q dt

]1/q

= O((n + 1)σ−1/p)

[
lim
ϵ→0

∫ π/(n+1)

ϵ

∣∣∣ω(t)/(tβ+1−σ)
∣∣∣q dt

]1/q

= O((n + 1)σ−1/p)(n + 1)β+1−1/q−σω(π/(n + 1))

= O((n + 1)β ω(π/(n + 1))). (2.35)

Again using Lemma 2.7.2, Hölder’s inequality and (sin(t/2))−1 ≤ π/t for 0 < t ≤ π,

we have

|I ′2| =

[∫ π

π/(n+1)
|ψx(t)|

[
O
(

t−2/(n + 1)
)]

dt
]

= O
[∫ π

π/(n+1)
t−2|ψx(t)|/(n + 1)dt

]

= O

(∫ π

π/(n+1)

t−δ|ψx(t)| sinβ(t/2)
(n + 1)ω(t)

t−1ω(t)
t−δt sinβ(t/2)

dt
)

= O

{
1

n + 1

∫ π

π/(n+1)

(
t−δ|ψx(t)|

ω(t)

)p

dt

}1/p

×
{∫ π

π/(n+1)

(
t−1ω(t)
t−δ+β+1

)q

dt

}1/q

= O
[
(n + 1)δ−1−1/pω

(
π

n + 1

)(
n + 1

π

) (∫ π

π/(n+1)
t−(β+1−δ)qdt

)1/q
]

= O
[
(n + 1)δ−1/pω(π/(n + 1))(n + 1)β+1−δ−1/q

]
= O[(n + 1)βω(π/(n + 1))], (2.36)

in view of (2.27), (2.28), the mean value theorem for integrals, 1/p < δ < β + 1/p and

p−1 + q−1 = 1.

Collecting (2.34)-(2.36), we get

| t̃C1.T
n ( f ; x)− f̃ (x) |= O[(n + 1)βω(π/(n + 1))]. (2.37)
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Finally from (2.37), we easily get

∥ t̃C1.T
n ( f ; x)− f̃ (x) ∥p= O

(
(n + 1)βω(1/(n + 1))

)
, (2.38)

in view of Note 1. This completes the proof of Theorem 2.6.2.

As mentioned in Remark 2.5.1, the above proof will not work for p = 1. Thus, for

p = 1, we have the following theorem.

Theorem 2.9.1. Let T ≡ (an,k) be the same as in Theorem 2.6.2. Then the degree of approx-
imation of f̃ , conjugate of a 2π-periodic function f belonging to the weighted Lipschitz class
W(L1, ω(t), β), with 0 ≤ β < 1 by C1.T means of its conjugate Fourier series is given by

∥ t̃C1.T
n ( f ; x)− f̃ (x) ∥1= O

(
(n + 1)βω(1/(n + 1))

)
, (2.39)

provided a positive increasing function ω(t) satisfies conditions (2.25) to (2.28) of Theorem
2.6.2 for p = 1, β < σ < 1 and 1 < δ < β + 1.

2.10 Proof of Theorem 2.9.1

Following the proof of Theorem 2.6.2, for p = 1, i.e., q = ∞, we have

I
′
1 =

∫ π/(n+1)

0

(
t−σ|ψx(t)| sinβ(t/2)

ω(t)

)
dt × ess sup

0<t≤π/(n+1)

∣∣∣∣∣∣ω(t)|
∼

(C1.T)n(t)|
t−σ sinβ(t/2)

∣∣∣∣∣∣
=

∫ π/(n+1)

0

(
t−σ|ψx(t)| sinβ(t/2)

ω(t)

)
dt × ess sup

0<t≤π/(n+1)

∣∣∣∣ ω(t)
t−σ+1 sinβ(t/2)

∣∣∣∣
= O((n + 1)σ−1) ess sup

0<t≤π/(n+1)

∣∣∣∣ ω(t)
tβ−σ+1

∣∣∣∣
= O((n + 1)σ−1)

{
ω(π/(n + 1))

(π/(n + 1))β−σ+1

}
= O((n + 1)β ω(π/(n + 1)). (2.40)

in view of conditions (2.25) and (2.26) for p = 1.

I
′
2 = O

{
1

n + 1

∫ π

π/(n+1)

t−δ|ψx(t)| sinβ(t/2)
ω(t)

dt

}
×

The work of Theorems 2.6.1, 2.6.2 and 2.9.1 have been published as a book chapter in IAENG Trans-
actions on Engineering Sciences, CRC Press/Balkema (Taylor & Francis Group), (2014), 81-89.
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ess sup
π/(n+1)≤t≤π

∣∣∣∣ ω(t)
t−δ+β+2

∣∣∣∣
= O

[
(n + 1)δ−2ω

(
π

n + 1

)(
(n + 1)2+β−δ

π2+β−δ

)]
= O[(n + 1)βω(π/(n + 1))], (2.41)

in view of (2.27), i.e., decreasing nature of ω(t)/t−δ+β+2 and (2.28).

Collecting (2.40) and (2.41), we get

| t̃C1.T
n ( f ; x)− f̃ (x) |= O[(n + 1)βω(π/(n + 1))]. (2.42)

Finally from (2.42), we easily get

∥ t̃C1.T
n ( f ; x)− f̃ (x) ∥1= O

(
(n + 1)βω(1/(n + 1))

)
, (2.43)

in view of Note 1. This completes the proof of Theorem 2.9.1.

2.11 Corollaries

If we define T ≡ (an,k) as

an,k =

{
pn−k/Pn for 0 ≤ k ≤ n,

0, for k > n,

where Pn = ∑n
k=0 pk → ∞ as n → ∞, then matrix T reduces to Nörlund matrix Np and

the C1.T means of {s̃n( f ; x)} defined in (2.22) reduces to C1.Np means given by

t̃C1.N
n ( f ) := t̃C1.N

n ( f ; x) =
1

n + 1

n

∑
r=0

r

∑
k=0

pr−k s̃k( f ; x)

Also, if (an,k) is non-decreasing, then {pk} is non-increasing so that bn,n−k = an,n−k −

an+1,n+1−k = pk/Pn − pk/Pn+1 ≥ 0, i.e., condition is satisfied. Thus we have the fol-

lowing C1.Np analogues of Theorem 2.6.1:

Corollary 2.11.1

Let Np be a regular Nörlund matrix generated by non-increasing and non-negative
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sequence {pk}, then the degree of approximation of f̃ , conjugate of a 2π − periodic

function f ∈ Lipα by C1.Np means of its conjugate Fourier series is given by

∥t̃C1.N
n ( f ; x)− f̃ (x)∥∞ =

{
O((n + 1)−α), 0 < α < 1,

O (log(n + 1)/(n + 1)) , α = 1.
(2.44)

In the similar way, we can get C1.Np analogues of our Theorems 2.6.2 and 2.9.1 of this

chapter. For example, Mishra et. al [76, p. 158] have proved a theorem on the degree

of approximation of conjugate of functions belonging to weighted W(Lr, ω(t), β)-class

using C1.Np means (taking semi-monotonicity on the generating sequence {pn}) of

conjugate series of Fourier series.

Remark 2.11.1. In the light of Rhoades et al. [108], Singh and Sonkar [114] and references
therein, Łenski and Szal [57] and Kranz et al. [38], we observe that in [14; 43; 70; 72; 73; 79;
82; 93; 94; 97; 103; 107] the authors have defined the weighted Lipschitz class by

W(Lp, ω(t), β) = { f ∈ Lp[0, 2π] :
∥∥∥( f (x + t)− f (x)) sinβ x

∥∥∥
p
= O(ω(t))},

where ω(t) is a positive increasing function and β ≥ 0; and used the condition of the form(∫ π/(n+1)
0

(
t|ψx(t)| sinβ(t)/ω(t)

)p
dt
)1/p

= O
(
(n + 1)−1), which leads to a divergent

integral of the form
∫ π/(n+1)

0 t−(β+1)q dt. Also they have used sin t ≥ (2t/π) for π/(n +
1) < t ≤ π which is not valid as t → π [75; 114]. However, the authors in [75] have tried to
resolve this problem by replacing sin x with sin(x/2) in the definition of W(Lp, ω(t), β), but
do not resolve the problem of divergent integral

∫ π/(n+1)
0 t−(β+1)q dt [75, p.9]. As pointed out

by the authors in [70; 72; 73; 75; 79; 82; 83; 93; 114], many of the authors mentioned above
including Łenski and Szal [57] and Kranz et al. [38] have used ω(t) as an increasing function.
This condition alone is not sufficient to prove the results. One more condition, namely, ω(t)/t
is non-increasing is also required. In our theorems, we have also made an attempt to resolve
these issues.
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Chapter 3

Approximation by Hausdorff Means of
Conjugate Fourier Series

3.1 Introduction

In this chapter, we determine the degree of approximation of f̃ , conjugate of a 2π-

periodic function f belonging to the weighted W(Lp, ω(t), β)-class and its subclasses

such as Lip(ξ(t), p), Lip(α, p) and Lipα, by using Hausdorff means of conjugate Fourier

series of f . Since (C, 1), the Cesàro matrix of order 1, and (E, q), the Euler matrix of

order q > 0, are Hausdorff matrices, and the product of two Hausdorff matrices is also

a Hausdorff matrix [109], our theorems generalize and improve some of the previous

results. Some corollaries have also been deduced from our results.

The Hausdorff matrix H ≡ (hn,k) is an infinite lower triangular matrix defined by

hn,k =

{
(n

k )△
n−kµk, 0 ≤ k ≤ n,

0, k > n,

where △ is the forward difference operator defined by △µn = µn −µn+1 and △k+1µn =

△k(△µn). If H is regular, then {µn}, known as moment sequence, has the representa-

tion

µn =
∫ 1

0
undγ(u), (3.1)

where γ(u), known as mass function, is continuous at u = 0 and belongs to BV[0, 1]

such that γ(0) = 0, γ(1) = 1; and for 0 < u < 1, γ(u) = [γ(u + 0) + γ(u − 0)]/2

[17; 106].

The work of this chapter in the form of a research paper has been published in Journal of Computa-
tional and Applied Mathematics (Elsevier Publications) 259 (2014), 633–640.
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The Hausdorff means of conjugate Fourier series are defined by

H̃n( f ; x) :=
n

∑
k=0

hn,k s̃k( f ; x), n = 0, 1, 2, ... (3.2)

The conjugate Fourier series is said to be summable to s by Hausdorff means, if H̃n( f ; x) →

s as n → ∞. For the mass function γ(u) given by

γ(u) =

{
0, if 0 ≤ u < a,

1, if a ≤ u ≤ 1,
(3.3)

where a = 1/(1 + q), q > 0, we can verify that µk = 1/(1 + q)k and

hn,k =

 (n
k )

qn−k

(1 + q)n , if 0 ≤ k ≤ n,

0, if k > n.
(3.4)

Thus the Hausdorff matrix H ≡ (hn,k) reduces to (E, q), the Euler matrix of order q > 0,

and defines the corresponding (E, q) means by

Eq
n( f ; x) :=

1
(1 + q)n

n

∑
k=0

(n
k )q

n−k s̃k( f ; x). (3.5)

One more example of Hausdorff matrix is the well known Cesàro matrix of order

1, denoted as (C, 1), which defines the corresponding means by

σn( f ; x) :=
1

n + 1

n

∑
k=0

s̃k( f ; x). (3.6)

To enrich the knowledge about Hausdorff matrices one can see [17; 109]. In this chapter,

the class of all regular Hausdorff matrices with moment sequence {µn} associated with

mass function γ(u) having finite derivative, is denoted by H1.

We also write

g(u, t) := Re
[
∑n

k=0(
n
k )u

k(1 − u)n−kei(k+1/2)t
]

.

We note that the series, conjugate to a Fourier series, is not necessarily a Fourier series [2; 123].

Hence a separate study of conjugate series is desirable and attracted the attention of researchers.

3.2 Main Results

Taking into account of the observations in Remark 2.11.1 of Chapter 2, in this chapter,

we prove the followings theorems:
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Theorem 3.2.1. Let f be a 2π-periodic function belonging to the weighted Lipschitz class
W(Lp, ω(t), β), with p > 1 and 0 ≤ β ≤ 1 − 1/p. Then the degree of approximation of f̃ by
Hausdorff means of conjugate Fourier series of f generated by H ∈ H1, is given by

∥ H̃n( f ; x)− f̃ (x) ∥p= O
(
(n + 1)β+1/pω(1/(n + 1))

)
, (3.7)

provided a positive increasing function ω(t) satisfies the following conditions:

ω(t)/t is non-increasing, (3.8){∫ π/(n+1)

0

(
| ψx(t) | sinβ(t/2)

ω(t)

)p

dt

}1/p

= O((n + 1)−1/p), (3.9)

{∫ π/(n+1)

ϵ

(
ω(t)

t sinβ(t/2)

)q

dt
}1/q

= O((n + 1)β+1/pω(π/(n + 1))), (3.10)

{∫ π

π/(n+1)

(
t−δ | ψx(t) |

ω(t)

)p

dt

}1/p

= O((n + 1)δ), (3.11)

where δ is an arbitrary number such that 0 < δ < β + 1/p and p−1 + q−1 = 1 for p > 1.
The conditions (3.9) and (3.11) hold uniformly in x.

3.3 Lemma

For the proof of theorem 3.2.1, we need the following lemma:

Lemma 3.3.1. Let g(u, t) = Re[∑n
k=0 (

n
k )u

k(1 − u)n−kei(k+1/2)t] for 0 < u < 1 and 0 ≤
t ≤ π. Then∣∣∣∣∫ 1

0
g(u, t)dγ(u)

∣∣∣∣ = { O(1), 0 < t ≤ π/(n + 1)
O(t−1/(n + 1)), π/(n + 1) ≤ t ≤ π.

Proof.

We can write

g(u, t) = Re ∑n
k=0 (

n
k )u

k(1 − u)n−kei(k+1/2)t

= (1 − u)nRe

{
eit/2 ∑n

k=0 (
n
k )

(
ueit

1 − u

)k}

= Re
{

eit/2
(

1 − u + ueit
)n}

.

Now, since γ′(u) ≤ M (a constant), for 0 < t ≤ π/(n + 1) we have∣∣∣∣∫ 1

0
g(u, t) dγ(u)

∣∣∣∣ ≤
∣∣∣∣M ∫ 1

0
Re{eit/2(1 − u + ueit)n}du

∣∣∣∣
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=

∣∣∣∣∣MRe

{∫ 1

0

eit/2(1 − u + ueit)n

(−1 + eit)
(−1 + eit)du

}∣∣∣∣∣
=

∣∣∣∣∣MRe
ei(n+1)t − 1

(n + 1)(eit/2 − e−it/2)

∣∣∣∣∣ =
∣∣∣∣M sin(n + 1)t

2(n + 1) sin(t/2)

∣∣∣∣
≤ (n + 1)t

(n + 1)
(π/t) = O(1), (3.12)

in view of (sin t)−1 ≤ π/2t for 0 < t ≤ π/2 and sin t ≤ t for t ≥ 0 [2, p.247].

Similarly, for π/(n + 1) ≤ t ≤ π we have∣∣∣∣∫ 1

0
g(u, t) dγ(u)

∣∣∣∣ = O
(

t−1

n + 1

)
, (3.13)

in view of |sin t| ≤ 1 for all t [2, p.247].

Collecting (3.12) and (3.13), we get Lemma 3.3.1.

3.4 Proof of Theorem 3.2.1

Using (1.5), we can write

s̃n( f ; x)− f̃ (x) =
1

2π

∫ π

0
ψx(t)

cos(n + 1/2)t
sin (t/2)

dt.

Now,

H̃n( f ; x)− f̃ (x) = ∑n
k=0 hn,k{s̃k( f ; x)− f̃ (x)}

=
1

2π

∫ π

0

(
ψx(t)

sin(t/2) ∑n
k=0 hn,k cos(k + 1/2)t

)
dt

=
1

2π

∫ π

0

(
ψx(t)

sin (t/2) ∑n
k=0 (

n
k )∆

n−kµk cos(k + 1/2)t
)

dt

=
1

2π

∫ π

0

(
ψx(t)

sin (t/2)
×

∑n
k=0 (

n
k )
∫ 1

0
uk(1 − u)n−kdγ(u)Re{ei(k+1/2)t}

)
dt

=
1

2π

∫ π

0

(
ψx(t)

sin(t/2)
×

∫ 1

0
Re
[
∑n

k=0(
n
k )u

k(1 − u)n−kei(k+1/2)t
]

dγ(u)
)

dt
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=
1

2π

∫ π

0

(
ψx(t)

sin(t/2)

∫ 1

0
g(u, t)dγ(u)

)
dt. (3.14)

Using (sin(t/2))−1 ≤ π/t for 0 < t ≤ π, we have

| H̃n( f ; x)− f̃ (x) | ≤
∫ π

0

| ψx(t) |
t

∣∣∣∣∫ 1

0
g(u, t)dγ(u)

∣∣∣∣ dt

=

(∫ π/(n+1)

0
+
∫ π

π/(n+1)

)
| ψx(t) |

t

∣∣∣∣∫ 1

0
g(u, t)dγ(u)

∣∣∣∣ dt

= I1 + I2, say. (3.15)

Now using Lemma 3.3.1 and Hölder’s inequality, we have

I1 = O(1)

{∫ π/(n+1)

0

ψx(t) sinβ(t/2)
ω(t)

ω(t)
t sinβ(t/2)

dt

}

= O(1)

{∫ π/(n+1)

0

(
|ψx(t)| sinβ(t/2)

ω(t)

)p

dt

}1/p

×

{
lim
ϵ→0

∫ π/(n+1)

ϵ

(
ω(t)

t sinβ(t/2)

)q

dt
}1/q

= O[(n + 1)−1/p(n + 1)β+1/p ω(π/(n + 1))]

= O((n + 1)β ω(π/(n + 1)), (3.16)

in view of (3.9), (3.10) and p−1 + q−1 = 1.

Again using Lemma 3.3.1, Hölder’s inequality and (sin(t/2))−1 ≤ π/t for 0 < t ≤ π,

we have

I2 = O

(∫ π

π/(n+1)

t−δ|ψx(t)| sinβ(t/2)
(n + 1)ω(t)

t−1ω(t)
t−δt sinβ(t/2)

dt

)

= O

{
1

n + 1

∫ π

π/(n+1)

(
t−δ|ψx(t)| sinβ(t/2)

ω(t)

)p

dt

}1/p

×

{∫ π

π/(n+1)

(
t−1ω(t)
t−δ+β+1

)q

dt

}1/q

= O

[
(n + 1)δ−1ω

(
π

n + 1

)(
n + 1

π

)(∫ π

π/(n+1)
t−(β+1−δ)qdt

)1/q
]
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= O
[
(n + 1)δω(π/(n + 1))(n + 1)β+1−δ−1/q

]
= O[(n + 1)β+1/pω(π/(n + 1))], (3.17)

in view of (3.11), the mean value theorem for integrals, 0 < δ < β + 1/p and p−1 +

q−1 = 1.

Collecting (3.15)-(3.17), we get

| H̃n( f ; x)− f̃ (x) |= O[(n + 1)β+1/pω(π/(n + 1))]. (3.18)

Finally, from (3.18) we easily get

∥ H̃n( f ; x)− f̃ (x) ∥p= O
(
(n + 1)β+1/pω(1/(n + 1))

)
, (3.19)

in view of condition (3.8), i.e., ω(π/(n + 1)) = O(ω(1/(n + 1))).

This completes the proof of Theorem 3.2.1.

Remark 3.4.1. In the case p = 1, i.e., q = ∞; sup norm is required while using Hölder’s
inequality. Therefore, the above proof will not work for p = 1. Thus, for p = 1, we have the
following theorem.

Theorem 3.4.1. Let f be a 2π-periodic function belonging to the weighted Lipschitz class
W(L1, ω(t), β), with 0 ≤ β < 1. Then the degree of approximation of f̃ by Hausdorff means
of conjugate Fourier series of f is given by

∥ H̃n( f ; x)− f̃ (x) ∥1= O
(
(n + 1)β+1ω(1/(n + 1))

)
, (3.20)

provided a positive increasing function ω(t) satisfies (3.8) and the following conditions:

ω(t)/tβ+σ is non-decreasing , (3.21)

∫ π/(n+1)

0

tσ−1 | ψx(t) | sinβ(t/2)
ω(t)

dt = O((n + 1)−σ), (3.22)

for some σ > 0 such that σ + β < 1 ,

∫ π

π/(n+1)

t−δ | ψx(t) |
ω(t)

dt = O((n + 1)δ), (3.23)

and
ω(t)

t−δ+β+2 is non-increasing , (3.24)

where 0 < δ < β + 1. The conditions (3.22) and (3.23) hold uniformly in x.
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3.5 Proof of Theorem 3.4.1

Following the proof of Theorem 3.2.1, for p = 1, i.e., q = ∞, we have

I1 =
∫ π/(n+1)

0

(
tσ−1|ψx(t)| sinβ(t/2)

ω(t)

)
dt × ess sup

0<t≤π/(n+1)

∣∣∣∣ ω(t)
tσ sinβ(t/2)

∣∣∣∣
= O((n + 1)−σ × ess sup

0<t≤π/(n+1)

∣∣∣∣ω(t)
tσ+β

∣∣∣∣
= O((n + 1)−σ)

{
ω(π/(n + 1))
(π/(n + 1))σ+β

}
= O((n + 1)β ω(π/(n + 1)). (3.25)

and

I2 = O

{
1

n + 1

∫ π

π/(n+1)

t−δ|ψx(t)| sinβ(t/2)
ω(t)

dt

}
× ess sup

π/(n+1)≤t≤π

∣∣∣∣ ω(t)
t−δ+β+2

∣∣∣∣
= O

[
(n + 1)δ−1ω

(
π

n + 1

)(
(n + 1)2+β−δ

π2+β−δ

)]
= O[(n + 1)β+1ω(π/(n + 1))]. (3.26)

Collecting (3.25) and (3.26), we get

| H̃n( f ; x)− f̃ (x) |= O[(n + 1)β+1ω(π/(n + 1))]. (3.27)

Finally, from (3.27) we easily get

∥ H̃n( f ; x)− f̃ (x) ∥1= O
(
(n + 1)β+1ω(1/(n + 1))

)
, (3.28)

in view of condition (3.8).

This completes the proof of Theorem 3.4.1.

3.6 Corollaries

The following corollaries can be derived from our theorems:

1. If β = 0 , then for f ∈ Lip(ξ(t), p) with p ≥ 1,

∥H̃n( f ; x)− f̃ (x)∥p = O
(
(n + 1)1/pξ(1/(n + 1))

)
.
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2. If β = 0, ξ(t) = tα(0 < α ≤ 1), then for f ∈ Lip(α, p)(α > 1/p),

∥H̃n( f ; x)− f̃ (x)∥p = O
(
(n + 1)1/p−α

)
. (3.29)

3. If p → ∞ in Corollary 2, then for f ∈ Lipα(0 < α < 1), (3.29) gives

∥H̃n( f ; x)− f̃ (x)∥∞ = O((n + 1)−α).

For α = 1, we can write an independent proof to obtain

∥H̃n( f ; x)− f̃ (x)∥∞ = O(log(n + 1)/(n + 1)).

Since the product of two Hausdorff matrices is a Hausdorff matrix ([106, Lemma 1] and

[109, Theorem 1]), the results proved by Nigam and Sharma [92–94], Lal and Singh [49],

Nigam and Sharma [97], Mishra et al. [73; 75] and Sonkar and Singh [115] pertaining

to the product of (C, 1) and (E, q) (q > 0) matrices, which are Hausdorff matrices, are

also particular cases of Theorems 3.2.1 and 3.3.1.



Chapter 4

Approximation of Periodic Functions
Belonging to Lip(ω(t), p) and
W(Lp, Ψ(t), β) -Classes

4.1 Introduction

In this chapter, we introduce a more general Lipschitz class Lip(ω(t), p)

which includes the classical Lip(ξ(t), p) class of functions and the function

class { f ∈ Lp[0, 2π] :| f (x + t)− f (x) | = O(t−1/pξ(t)), t > 0
}

defined by Khan and

Ram [36] and compute analytically the degree of approximation of f ∈ Lip(ω(t), p) us-

ing matrix means of the Fourier series of f generated by the matrix T ≡ (an,k). We also

discuss an example to show the application of the result. In the corollaries of the the-

orems of this chapter, we observe that the degree of approximation of f ∈ Lip(ξ(t), p)

is free from p and sharper than the earlier one.

Various investigators such as Nigam [90], Nigam and Sharma [92; 94], Lal and

Srivastava [50], Nigam and Sharma [95–97], Mishra et al. [76], Dhakal [14], Lal and

Nigam [47], Mishra et al. [71], Lal and Kushwaha [46] and Rhoades [107] have defined

the Lip(ξ(t), p)-class by

Lip(ξ(t), p) =
{

f ∈ Lp[0, 2π] :∥ f (x + t)− f (x) ∥p= O(ξ(t))
}

, t > 0, p ≥ 1, (4.1)

where ξ(t) is a positive increasing function of t. On the other hand for positive increas-

ing function ξ(t), Khan and Ram [36] have defined

Lip(ξ(t), p) =
{

f ∈ Lp[0, 2π] :| f (x + t)− f (x) |= O(t−1/pξ(t))
}

, t > 0, p > 1. (4.2)
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Here we generalize the definition of Lip(ξ(t), p)-classes given in (4.1) and (4.2) by in-

troducing a new Lipschitz class Lip(ω(t), p) defined as

Lip(ω(t), p) =
{

f ∈ Lp[0, 2π] :∥ f (x + t)− f (x) ∥p= O(t−1/p ω(t))
}

, t > 0, (4.3)

where p ≥ 1 and ω(t) is a positive increasing function. If we take ω(t) = t1/pξ(t),

Lip(ω(t), p) coincides with Lip(ξ(t), p) defined in (4.1). Also Lip(ξ(t), p) defined in

(4.2) is a subset of Lip(ω(t), p) for ω(t) = ξ(t), since ∥.∥p = O(∥.∥∞). For ω(t) =

tα+1/p, 0 < α ≤ 1, Lip(ω(t), p) reduces to Lip(α, p).

We also write

K(n, t) :=
1

2π

n

∑
k=0

an,n−k
sin(n − k + 1/2)t

sin(t/2)
,

and τ := [1/t], the integer part of 1/t.

For the functions f ∈ Lipα, Alexits [1] proved a theorem [36, Theorem A, p.

48] concerning the degree of approximation using the (C, δ) means of its Fourier se-

ries. Later Hölland et al. [25] extended results of Alexits [1] to functions belonging

to C∗[0, 2π], the class of 2π-periodic continuous functions on [0, 2π], using Nörlund

means of Fourier series. Khan and Ram [36] defined another class, the so called

Lip(ξ(t), p)-class, which does include the Lipα class discussed by Alexits [1] and ob-

tain the degree of approximation [36, Theorem 1.1, p. 49] using the Euler’s means

of functions belonging to this class . He also proved that the order of approximation

arrived at is best possible and is free from the means generating sequences.

4.2 Main Results

In this chapter, we determine the degree of approximation of f ∈ Lip(ω(t), p)

for p ≥ 1, through trigonometric polynomials of the form given in (1.1). More pre-

cisely, we prove:

Theorem 4.2.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and
non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries with An,0 = 1. Then the degree of
approximation of a 2π-periodic function f ∈ Lip(ω(t), p), with p ≥ 1 by matrix means of its
Fourier series is given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)1/p ω (π/(n + 1))

)
, (4.4)

provided a positive increasing function ω(t) satisfies the following conditions:
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ω(t)/tσ is an increasing function for some 0 < σ < 1, (4.5)(
ϕ(t)

(t−1/pω(t))

)
is a bounded function of t, (4.6)

(∫ π

π/(n+1)

(
ω(t)

t1+ 1/p

)p

dt
)1/p

= O
(
(n + 1) ω

(
π

n + 1

))
, (4.7)

where p−1 + q−1 = 1. Also condition (4.6) holds uniformly in x.

As mentioned in [80, p. 674], it is not necessary that all matrices have monotonic rows;

for example, the hump matrices, defined as: A lower triangular matrix T is called a

hump matrix if, for each n, there exists an integer k0 = k0(n), such that an,k ≤ an,k+1

for 0 ≤ k < k0, and an,k ≥ an,k+1 for k0 ≤ k < n.

For hump matrices, we have the following Theorem.

Theorem 4.2.2. Let T ≡ (an,k) be a hump matrix with non-negative entries and satisfies
(n + 1)maxk{an,k} = O(1). Then the degree of approximation of a 2π-periodic function
f ∈ Lip(ω(t), p), with p ≥ 1 by matrix means of its Fourier series is given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)1/p ω (π/(n + 1))

)
, (4.8)

provided a positive increasing function ω(t) satisfies the conditions (4.5), (4.6) and (4.7).

4.3 Lemmas

For the proof of our theorems, we need the following lemmas:

Lemma 4.3.1. Let T ≡ (an,k) be a lower triangular regular matrix. Then for 0 < t ≤
π/(n + 1), K(n, t) = O(n + 1).

Proof. Using sin nt ≤ nt and sin(t/2) ≥ t/π for 0 < t ≤ π/(n + 1), we have

|K(n, t)| = (2π)−1

∣∣∣∣∣ n

∑
k=0

an,n−k (sin(n − k + 1/2)t)/(sin t/2)

∣∣∣∣∣
≤ (2π)−1

n

∑
k=0

an,n−k |(sin(n − k + 1/2)t)/(sin t/2)|

≤ (2π)−1
n

∑
k=0

an,n−k((n − k + 1/2)t)/(t/π)

The work of Theorems 4.2.1 and 4.2.2 have been published in Journal of Computational and Applied
Mathematics (Elsevier Publications) 270 (2014), 223–230.
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≤ (4)−1
n

∑
k=0

an,n−k(2n − 2k + 1)

≤ (4)−1(2n + 1)
n

∑
k=0

an,n−k

≤ (4)−1(2n + 1)An,0 = (2n + 1)/4 = O(n + 1).

Lemma 4.3.2. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and
non-decreasing entries (with respect to k, for 0 ≤ k ≤ n). Then for π/(n + 1) < t ≤ π,
K(n, t) = O(An,n−τ/t).

Proof. Using sin(t/2) ≥ t/π, for π/(n + 1) < t ≤ π, we have

| K(n, t) | = (2π)−1

∣∣∣∣∣ n

∑
k=0

an,n−k(sin(n − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣
≤ O(t−1)

∣∣∣∣∣Im
n

∑
k=0

an,n−kei(n−k+1/2)t

∣∣∣∣∣
≤ O(t−1)

∣∣∣∣∣ n

∑
k=0

an,n−kei(n−k)t

∣∣∣∣∣ . (4.9)

Following McFadden [69, p.8, Lemma 5.11], we have∣∣∣∣∣ n

∑
k=0

an,n−kei(n−k)t

∣∣∣∣∣ =

∣∣∣∣∣eint
n

∑
k=0

an,n−ke−ikt

∣∣∣∣∣
≤

∣∣∣∣∣τ−1

∑
k=0

an,n−ke−ikt

∣∣∣∣∣+
∣∣∣∣∣ n

∑
k=τ

an,n−ke−ikt

∣∣∣∣∣
≤

τ−1

∑
k=0

an,n−k + 2an,n−τ max
τ≤k≤n

∣∣∣∣∣1 − e−i(k+1)t

1 − e−it

∣∣∣∣∣
≤ An,n−τ+1 + 2an,n−τ(1/ sin(t/2))

≤ An,n−τ + 2(τ + 1)an,n−τ = O(An,n−τ), (4.10)

in view of increasing nature of an,k, i.e., 2(τ + 1)an,n−τ = O(An,n−τ).

Thus from (4.9) and (4.10), we have

| K(n, t) |= O(An,n−τ/t).

Lemma 4.3.3. For a hump matrix T ≡ (an,k) with (n + 1)maxk{an,k} = O(1), K(n, t) =
O(t−2/(n + 1)) for π/(n + 1) < t ≤ π.
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Proof. Following Lemma 4.3.2, we have

| K(n, t) | ≤ O(t−1)

∣∣∣∣∣ n

∑
k=0

an,n−kei(n−k)t

∣∣∣∣∣ = O(t−1)

∣∣∣∣∣ n

∑
k=0

an,keikt

∣∣∣∣∣
= O(t−1).an,k0

∣∣∣∣∣1 − ei(n+1)t

1 − eit

∣∣∣∣∣
= O(t−1).an,k0(1/ sin(t/2)) = O

(
t−2

n + 1

)
, (4.11)

in view of an,k0 = max{an,0, an,1, ..., an,n} and condition (n + 1)maxk{an,k} = O(1).

We note that the authors in [90; 94–96] have taken p ≥ 1 and used Hölder’s

inequality for p > 1. On the other hand the author in [36] has proved their result for

p > 1. In this paper, we shall prove our theorems for p ≥ 1 by using proper form of

Hölder’s inequality for p = 1.

4.4 Proof of Theorem 4.2.1

Case 1 (p > 1): We have

sn( f ; x)− f (x) =
1

2π

∫ π

0
ϕ(t)(sin(n + 1/2)t/ sin(t/2))dt,

and

tn( f ; x)− f (x) =
n

∑
k=0

an,k [sk( f ; x)− f (x)]

=
∫ π

0
ϕ(t)(2π)−1

n

∑
k=0

an,k
sin(k + 1/2)t

sin(t/2)
dt

=
∫ π

0
ϕ(t)(2π)−1

n

∑
k=0

an,n−k
sin(n − k + 1/2)t

sin(t/2)
dt

=
∫ π

0
ϕ(t)K(n, t)dt

=
∫ π/(n+1)

0
ϕ(t)K(n, t)dt +

∫ π

π/(n+1)
ϕ(t)K(n, t)dt

= I1 + I2, say. (4.12)
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Using Hölder’s inequality, ϕ(t) ∈ Lip(ω(t), p), Lemma 4.3.1, conditions (4.5), (4.6) and

the mean value theorem for integrals, we have

|I1| ≤
∫ π/(n+1)

0

(
|ϕ(t)|

t−1/pω(t)
.
ω(t).|K(n, t)|

t1/p

)
dt

≤
[∫ π/(n+1)

0

(
t1/p|ϕ(t)|

ω(t)

)p

dt

]1/p

×

[∫ π/(n+1)

0

(
ω(t)
t1/p .|K(n, t)|

)q

dt
]1/q

= O(n + 1)−1/p(n + 1)(ω(π/(n + 1))).(n + 1)1/p(n + 1)−1/q

= O((n + 1)1/p ω(π/(n + 1))), (4.13)

in view of p−1 + q−1 = 1 and decreasing nature of ω(t)/t1/p.

Using Hölder’s inequality, Lemma 4.3.2, boundedness of ϕ(t)/(t−1/pω(t)) and condi-

tion (4.7), we have

|I2| ≤
∫ π

π/(n+1)

(
|ϕ(t)|
ω(t)

× |K(n, t)|.ω(t)
)

dt

= O
∫ π

π/(n+1)

(
t−1/p × ω(t)

t
An,n−τ

)
dt

= O
[∫ π

π/(n+1)

(
ω(t)

t1+ 1/p

)p

dt
]1/p

·
[∫ π

π/(n+1)
(An,n−τ)

q dt
]1/q

= O
[∫ π

π/(n+1)

(
ω(t)

t1+ 1/p

)p

dt
]1/p

·
[∫ π

π/(n+1)

{
π

(n + 1)t

}q
dt
]1/q

= O(n + 1)ω(π/(n + 1))(n + 1)−1
[∫ π

π/(n+1)
t−qdt

]1/q

= O ω(π/(n + 1))(n + 1)1−1/q

= O((n + 1)1/pω(π/(n + 1))). (4.14)

in view of An,n−τ = O (π/(n + 1)t) (from the regularity condition of (an,k)) and p−1 +

q−1 = 1.

Collecting (4.12) - (4.14), we have

|tn( f ; x)− f (x)| = O
(
(n + 1)1/pω(π/(n + 1))

)
.
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Hence,

∥tn( f ; x)− f (x)∥p =

(
1

2π

∫ 2π

0
|tn( f ; x)− f (x)|pdx

)1/p

= O
(
(n + 1)1/pω (π/(n + 1))

)
. (4.15)

Case 2 (p = 1): Following the above proof and using Hölder’s inequality for p = 1, we

have

|I1| ≤
∫ π/(n+1)

0

(
|ϕ(t)|

t−1ω(t)
.
ω(t)tσ|K(n, t)|

tσ+1

)
dt

= O(n + 1) ess sup
0<t≤π/(n+1)

(∣∣∣∣ ϕ(t)
t−1ω(t)

.
ω(t)

tσ

∣∣∣∣) ∫ π/(n+1)

0
|tσ−1|dt

= O(n + 1)(n + 1)σ ω(π/(n + 1))(n + 1)−σ

= O((n + 1) ω(π/(n + 1))) , (4.16)

in view of Lemma 4.3.1, conditions (4.5) and (4.6).

Using Hölder’s inequality for p = 1, Lemma 4.3.2, boundedness of ϕ(t)/(t−1ω(t)) and

condition (4.7), we have

|I2| ≤
∫ π

π/(n+1)

(
|ϕ(t)|
ω(t)

× |K(n, t)|.ω(t)
)

dt

≤ O
∫ π

π/(n+1)

(
t−1 × ω(t)

t
An,n−τ

)
dt

≤ O
[∫ π

π/(n+1)

ω(t)
t2 dt

]
ess sup

π/(n+1)≤t≤π

| An,n−τ |

= O ((n + 1)ω(π/(n + 1)) ess sup
π/(n+1)≤t≤π

∣∣∣∣ π

(n + 1)t

∣∣∣∣
= O(1) O((n + 1) ω(π/(n + 1))), (4.17)

in view of An,n−τ = O (π/(n + 1)t).

Collecting (4.12), (4.16) and (4.17), we get

| tn( f ; x)− f (x) |= O[(n + 1)ω(π/(n + 1))].

Hence

∥ tn( f ; x)− f (x) ∥1= O ((n + 1)ω(π/(n + 1))) . (4.18)
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This completes the proof of Theorem 4.2.1.

4.5 Proof of Theorem 4.2.2

Case 1 (p > 1): Following the proof of Case I of Theorem 4.2.1, we have

tn( f ; x)− f (x) = I
′
1 + I

′
2, say, (4.19)

where

|I ′1| = O((n + 1)1/p ω(π/(n + 1))), (4.20)

and

|I ′2| ≤ O
{∫ π

π/(n+1)

(
t−1/p ω(t)

t2(n + 1)

)
dt
}

≤ O (n + 1)−1
[∫ π

π/(n+1)

(
ω(t)

t1+ 1/p

)p

dt
]1/p

·
[∫ π

π/(n+1)

(
1
t

)q
dt
]1/q

= O (n + 1)−1(n + 1)ω(π/(n + 1))(n + 1)1−1/q

= O((n + 1)1/pω(π/(n + 1))) , (4.21)

in view of Hölder’s inequality, Lemma 4.3.3, condition (4.7) and p−1 + q−1 = 1.

Collecting (4.19)-(4.21), we have

|tn( f ; x)− f (x)| = O
(
(n + 1)1/p ω(π/(n + 1))

)
.

Hence

∥tn( f ; x)− f (x)∥p = O
(
(n + 1)1/p ω (π/(n + 1))

)
. (4.22)

Case 2 (p = 1): Following the proof of Case II of Theorem 4.2.1, we have

|I ′1| = O((n + 1)ω(π/(n + 1))), (4.23)

and

|I ′2| ≤ O
∫ π

π/(n+1)

(
t−1 ω(t)

t2(n + 1)

)
dt

≤ O (n + 1)−1
[∫ π

π/(n+1)

ω(t)
t2 dt

]
ess sup

π/(n+1)≤t≤π

∣∣∣∣1t
∣∣∣∣
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= O (n + 1)−1(n + 1) ω(π/(n + 1))(n + 1)

= O ((n + 1) ω(π/(n + 1))), (4.24)

in view of Hölder’s inequality for p = 1, Lemma 4.3.3 and condition (4.7).

Collecting (4.23) and (4.24), we get

| tn( f ; x)− f (x) |= O[(n + 1)ω(π/(n + 1))].

Hence

∥ tn( f ; x)− f (x) ∥1= O ((n + 1)ω(π/(n + 1))) . (4.25)

This completes the proof of Theorem 4.2.2.

4.6 Example

In this section we show that how tn( f ; x) is better approximant than sn( f ; x). Let

f (x) =

{
1 if 0 < x < π

−1 if π ≤ x ≤ 2π,
(4.26)

with f (x + 2π) = f (x). For this function Fourier coefficients are

an = 0, ∀n ∈ N0 , bn =

{
4/(nπ) if n is odd

0 if n is even,

therefore, sn( f ; x) is defined as

s2n−1( f ; x) =
4
π

n

∑
k=1

sin(2k − 1)x
2k − 1

, and s2n( f ; x) = s2n−1( f ; x), n ∈ N.

It is easy to verify that f (x) ∈ Lip(ω(t), p), for ω(t) = t2/p for p > 2. Let T = (an,k)

be such that an,k = 2k/(n(n + 1)) for 0 ≤ k ≤ n and an,k = 0 for k > n. For this lower

triangular matrix, we may write tn( f ; x) as

tn( f ; x) :=
n

∑
k=0

2k
n(n + 1)

sk( f ; x), n ∈ N0.

Also from our Theorem 4.2.1, ∥ tn( f ; x)− f (x) ∥p= O((n + 1)−1/p) → 0 as n → ∞.
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Figure 4.1: Graph of function f (x), sn(x) and tn(x)

Figure 4.1 represents graph of the function f (x), s5 and t5 in [0, 2π]. It is clear

from the figure that t5 gives better approximation than s5. Also t10 is a better approxi-

mant than t5. This implies that error decreases as n increases, which verifies our theo-

rems. We further note that near the points of discontinuities i.e., x = 0, π and 2π, the

graphs of s5 and s10 show peaks and move closer to the line passing through points of

discontinuity as n increases (Gibbs Phenomenon ), but in the graphs of t5 and t10 the

peaks become flatten. Thus the matrix means of Fourier series of f (x) overshoot the

Gibbs Phenomenon and shows the smoothing effect of the method. We also note that a

discontinuous function has been approximated by a trigonometric polynomial which

is differentiable throughout the interval [0, 2π].

4.7 Corollaries

The following corollaries can be derived from our theorem:

1. If ω(t) = t1/pξ(t), then for f ∈ Lip(ξ(t), p)

∥ tn( f ; x)− f (x) ∥p= O(ξ(π/(n + 1))), p ≥ 1,

where ξ(t) is a positive increasing function satisfying following conditions:

(i)
t1/pξ(t)

tσ
is an increasing function for some 0 < σ < 1,

(ii)
ϕ(t)
ξ(t)

is a bounded function of t,

(iii)
(∫ π

π/(n+1)

(
ξ(t)

t

)p

dt
)1/p

= O
(
(n + 1)1/q ξ

(
π

n + 1

))
.
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2. If ω(t) = tα+1/p(0 < α < 1/q), then for f ∈ Lip(α, p),

∥tn( f ; x)− f (x)∥p = O
(
(n + 1)−α

)
, p > 1, σ − 1/p < α < 1/q.

3. If p → ∞ in Corollary 2, then for f ∈ Lipα(0 < α < 1),

∥tn( f ; x)− f (x)∥∞ = O((n + 1)−α).

A separate proof can be written for the case α = 1, and for this case we get degree of

approximation as

∥tn( f ; x)− f (x)∥∞ = O(log(n + 1)/(n + 1)).

[Please see Theorem 2.2.1 of Chapter 2].

The above corollaries are valid for matrix T ≡ (an,k) having non-decreasing rows as

well as for hump matrix. The Nörlund version of the above theorems and corollaries

can also be derived by replacing matrix T with Np.

In the next section, we generalize the definition of Lipschitz class Lip(ω(t), p)

to weighted version and introduce the weighted Lipschitz class W(Lp, Ψ(t), β), with

weight function sinβp(x/2) and determine the error of approximation of

f ∈ W(Lp, Ψ(t), β). We also derive some corollaries from our results.

We define Lipschitz class W(Lp, Ψ(t), β) as

W(Lp, Ψ(t), β) =
{

f ∈ Lp[0, 2π] :∥ ( f (x + t)− f (x)) · sinβ(x/2) ∥p= O(t−1/p Ψ(t))
}

, (4.27)

where t > 0, β ≥ 0, p ≥ 1 and Ψ(t) is a positive increasing function of t and depends

on β also.

For β = 0 and Ψ(t) = ω(t), an increasing function, W(Lp, Ψ(t), β) reduces to

Lip(ω(t), p) defined in (4.3). Also, if we take Ψ(t) = t1/pξ(t), then

W(Lp, Ψ(t), β) coincides with classical weighted Lipschitz class

W(Lp, ξ(t)) = { f ∈ Lp[0, 2π] : ∥ ( f (x + t)− f (x)) sinβ(x/2) ∥p= O(ξ(t))
}

, where

t > 0, β ≥ 0, p ≥ 1 and ξ(t) is a positive increasing function of t, as defined in

[112; 114], and the reference therein.

Also

Lip(ξ(t), p) =
{

f ∈ Lp[0, 2π] :| f (x + t)− f (x) | = O(t−1/pξ(t))
}

, t > 0, p > 1 de-

fined by Khan and Ram [36] is a subset of W(Lp, Ψ(t), β) for Ψ(t) = ξ(t) and β = 0,
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since ∥.∥p = O(∥.∥∞). For β = 0 and Ψ(t) = tα+1/p, 0 < α ≤ 1, W(Lp, Ψ(t), β) reduces

to Lip(α, p).

Theorem 4.7.1. Let T ≡ (an,k) be a lower triangular regular matrix with non-negative and
non-decreasing (with respect to k, for 0 ≤ k ≤ n) entries. Then the degree of approximation of
a 2π-periodic function f ∈ W(Lp, Ψ(t), β) with 0 ≤ β < 1/p and p ≥ 1 by matrix means of
its Fourier series is given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)β+1/p Ψ (π/(n + 1))

)
, (4.28)

provided a positive increasing function Ψ(t) satisfies the following conditions:

Ψ(t)/tβ+ 1/p is an increasing function, (4.29)(
ϕ(t) sinβ(t/2)

t−1/p Ψ(t)

)
is bounded function of t, hold uniformely in x, (4.30)

(∫ π

π/(n+1)

(
Ψ(t)

t1+ 1/p+β

)p

dt
)1/p

= O
(
(n + 1)β+1 Ψ

(
π

n + 1

))
, (4.31)

where p−1 + q−1 = 1.

Remark 4.7.1. Here Ψ(t) is not an arbitrary increasing function. It must satisfy conditions
(4.29), (4.30) and (4.31) simultaneously. For example, we can take a function class for which
Ψ(t) = t2/p for p > 2.

For hump matrices, we have the following theorem.

Theorem 4.7.2. Let T ≡ (an,k) be a hump matrix with non-negative entries and satisfies
(n + 1)maxk{an,k} = O(1). Then the degree of approximation of a 2π-periodic function
f ∈ W(Lp, Ψ(t), β) with 0 ≤ β < 1/p and p ≥ 1 by matrix means of its Fourier series is
given by

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)β+1/p Ψ (π/(n + 1))

)
, (4.32)

provided a positive increasing function Ψ(t) satisfies the conditions (4.29), (4.30) and (4.31).

Remark 4.7.2. If Ψ(t) = ω(t) and β = 0, then Theorem 4.7.1 and Theorem 4.7.2 coincides
with Theorem 4.2.1 and Theorem 4.2.1, respectively.

The work of Theorems 4.7.1 and 4.7.2 have been presented at “The 7th Conference on Function
Spaces”, held during May 20-24, 2014 at the Department of Mathematics and Statistics, College of Arts
and Sciences, Southeren Illinois University, Edwardsville, Illinois, USA, likely to be published in Con-
temporary Mathematics (AMS).
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4.8 Proof of Theorem 4.7.1

Case 1 (p > 1): We have

sn( f ; x)− f (x) =
1

2π

∫ π

0
ϕ(t)(sin(n + 1/2)t/ sin(t/2))dt,

and

tn( f ; x)− f (x) =
n

∑
k=0

an,k [sk( f ; x)− f (x)]

=
∫ π

0
ϕ(t)(2π)−1

n

∑
k=0

an,k
sin(k + 1/2)t

sin(t/2)
dt

=
∫ π

0
ϕ(t)(2π)−1

n

∑
k=0

an,n−k
sin(n − k + 1/2)t

sin(t/2)
dt

=
∫ π

0
ϕ(t)K(n, t)dt

=
∫ π/(n+1)

0
ϕ(t)K(n, t)dt +

∫ π

π/(n+1)
ϕ(t)K(n, t)dt

= I1 + I2, say. (4.33)

Using Hölder’s inequality, ϕ(t) ∈ W(Lp, Ψ(t), β), Lemma 4.3.1, (sin(t/2))−1 ≤ π/t for

0 < t ≤ π, conditions (4.29), (4.30) and the mean value theorem for integrals, we have

|I1| ≤
∫ π/(n+1)

0

(
|ϕ(t)| · sinβ(t/2)

t−1/p Ψ(t)
.

Ψ(t).|K(n, t)|
t1/p · sinβ(t/2)

)
dt

≤
[∫ π/(n+1)

0

(
t1/p|ϕ(t)| · sinβ(t/2)

Ψ(t)

)p

dt

]1/p

×

[∫ π/(n+1)

0

(
Ψ(t)

t1/p · tβ
.|K(n, t)|

)q

dt
]1/q

= O(n + 1)−1/p(n + 1)(Ψ(π/(n + 1))).(n + 1)β+1/p(n + 1)−1/q

= O((n + 1)β+1/p Ψ(π/(n + 1))), (4.34)

in view of p−1 + q−1 = 1.

Using Hölder’s inequality, Lemma 4.3.2, boundedness of (ϕ(t) sinβ(t/2))/(t−1/pΨ(t)),
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(sin(t/2))−1 ≤ π/t for 0 < t ≤ π and condition (4.31), we have

|I2| ≤
∫ π

π/(n+1)

(
|ϕ(t)| sinβ(t/2)

Ψ(t)
× |K(n, t)|.Ψ(t)

sinβ(t/2)

)
dt

= O
∫ π

π/(n+1)

(
t−1/p × Ψ(t)

t
An,n−τ

tβ

)
dt

= O
[∫ π

π/(n+1)

(
Ψ(t)

t1+ 1/p+β

)p

dt
]1/p

·
[∫ π

π/(n+1)
(An,n−τ)

q dt
]1/q

= O
[∫ π

π/(n+1)

(
Ψ(t)

t1+ 1/p+β

)p

dt
]1/p

·
[∫ π

π/(n+1)

{
π

(n + 1)t

}q
dt
]1/q

= O(n + 1)β+1Ψ(π/(n + 1))(n + 1)−1
[∫ π

π/(n+1)
t−qdt

]1/q

= O (n + 1)βΨ(π/(n + 1))(n + 1)1−1/q

= O((n + 1)β+1/pΨ(π/(n + 1))). (4.35)

in view of An,n−τ = O (π/(n + 1)t) (from the regularity condition of (an,k)) and p−1 +

q−1 = 1.

Collecting (4.33) - (4.35), we have

|tn( f ; x)− f (x)| = O
(
(n + 1)β+1/pΨ(π/(n + 1))

)
.

Case 2 (p = 1): Following the above proof and using Hölder’s inequality for p = 1, we

have

|I1| ≤
∫ π/(n+1)

0

(
|ϕ(t)| sinβ(t/2)

t−1Ψ(t)
.
Ψ(t)|K(n, t)|
t sinβ(t/2)

)
dt

≤ O(n + 1) ess sup
0<t≤π/(n+1)

(∣∣∣∣ ϕ(t)
t−1Ψ(t)

.
Ψ(t)
tβ+1

∣∣∣∣) ∫ π/(n+1)

0
(1)dt

= O(n + 1)(n + 1)β+1 Ψ(π/(n + 1))(n + 1)−1

= O((n + 1)β+1 Ψ(π/(n + 1))), (4.36)

in view of Lemma 4.3.1, (sin(t/2))−1 ≤ π/t for 0 < t ≤ π and conditions (4.29), (4.30).

Using Hölder’s inequality for p = 1, Lemma 4.3.2, boundedness of (ϕ(t) sinβ(t/2))
(t−1Ψ(t)) and
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conditions (4.31), we have

|I2| ≤
∫ π

π/(n+1)

(
|ϕ(t)| sinβ(t/2)

Ψ(t)
× |K(n, t)|.Ψ(t)

sinβ(t/2)

)
dt

≤ O
∫ π

π/(n+1)

(
t−1 × Ψ(t)

t
An,n−τ

tβ

)
dt

≤ O
[∫ π

π/(n+1)

Ψ(t)
t2+β

dt
]

ess sup
π/(n+1)≤t≤π

| An,n−τ |

= O ((n + 1)β+1Ψ(π/(n + 1)) ess sup
π/(n+1)≤t≤π

∣∣∣∣ π

(n + 1)t

∣∣∣∣
= O(1) O((n + 1)β+1 Ψ(π/(n + 1))), (4.37)

in view of An,n−τ = O (π/(n + 1)t) and (sin(t/2))−1 ≤ π/t for 0 < t ≤ π.

Collecting (4.33), (4.36) and (4.37), we get

| tn( f ; x)− f (x) |= O[(n + 1)β+1Ψ(π/(n + 1))].

Hence, for p ≥ 1, we have

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)β+1/pΨ(π/(n + 1))

)
. (4.38)

This completes the proof of the Theorem 4.7.1.

4.9 Proof of Theorem 4.7.2

Case 1 (p > 1): Following the proof of Case I of Theorem 4.7.1, we have

tn( f ; x)− f (x) = I
′
1 + I

′
2, say, (4.39)

where

|I ′1| = O((n + 1)β+1/p Ψ(π/(n + 1))), (4.40)

and

|I ′2| ≤ O
{∫ π

π/(n+1)

(
t−1/p Ψ(t)

t2(n + 1)tβ

)
dt
}

≤ O (n + 1)−1
[∫ π

π/(n+1)

(
Ψ(t)

t1+ 1/p+β

)p

dt
]1/p

·
[∫ π

π/(n+1)

(
1
t

)q
dt
]1/q
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= O (n + 1)−1(n + 1)β+1 Ψ(π/(n + 1))(n + 1)1−1/q

= O((n + 1)β+1/pΨ(π/(n + 1))) , (4.41)

in view of Hölder’s inequality, Lemma 4.3.3, (sin(t/2))−1 ≤ π/t for 0 < t ≤ π, condi-

tion (4.31) and p−1 + q−1 = 1.

Collecting (4.39)-(4.41), we have

|tn( f ; x)− f (x)| = O
(
(n + 1)β+1/p Ψ(π/(n + 1))

)
.

Case 2 (p = 1): Following the proof of Case II of Theorem 4.7.1, we have

|I ′1| = O((n + 1)β+1Ψ(π/(n + 1))), (4.42)

and

|I ′2| ≤ O
∫ π

π/(n+1)

(
t−1 Ψ(t)

t2(n + 1)tβ

)
dt

≤ O (n + 1)−1
[∫ π

π/(n+1)

Ψ(t)
t2+β

dt
]

ess sup
π/(n+1)≤t≤π

∣∣∣∣1t
∣∣∣∣

= O (n + 1)−1(n + 1)β+1 Ψ(π/(n + 1))(n + 1)

= O ((n + 1)β+1 Ψ(π/(n + 1))), (4.43)

in view of Hölder’s inequality for p = 1, Lemma 4.3.3, (sin(t/2))−1 ≤ π/t

for 0 < t ≤ π and condition (4.31).

Collecting (4.42) and (4.43), we get

| tn( f ; x)− f (x) |= O[(n + 1)β+1Ψ(π/(n + 1))].

Hence, for p ≥ 1, we have

∥ tn( f ; x)− f (x) ∥p= O
(
(n + 1)β+1/pΨ(π/(n + 1))

)
, (4.44)

This completes the proof of the Theorem 4.7.2.



61

4.10 Corollaries

The following corollaries can be derived from our theorem:

1. If Ψ(t) = t1/pξ(t), then for f ∈ W(Lp, ξ(t))

∥ tn( f ; x)− f (x) ∥p= O((n + 1)βξ(π/(n + 1))), p ≥ 1,

where ξ(t) is a positive increasing function satisfying following conditions:

(i) ξ(t)/tβ is an increasing function,

(ii)

(
ϕ(t) sinβ(t/2)

ξ(t)

)
is a bounded function of t,

(iii)
(∫ π

π/(n+1)

(
ξ(t)
t1+β

)p

dt
)1/p

= O
(
(n + 1)β+1/q ξ

(
π

n + 1

))
,

where p−1 + q−1 = 1. Also condition (ii) holds uniformly in x.

2. If β = 0 and Ψ(t) = t1/pξ(t), then for f ∈ Lip(ξ(t), p)

∥ tn( f ; x)− f (x) ∥p= O(ξ(π/(n + 1))), p ≥ 1,

where ξ(t) is a positive increasing function satisfying following conditions:

(i)
ϕ(t)
ξ(t)

is a bounded function of t, uniformely in x,

(ii)
(∫ π

π/(n+1)

(
ξ(t)

t

)p

dt
)1/p

= O
(
(n + 1)1/q ξ

(
π

n + 1

))
.

3. If β = 0 and Ψ(t) = tα+1/p(0 < α < 1/q), then for f ∈ Lip(α, p),

∥tn( f ; x)− f (x)∥p = O
(
(n + 1)−α

)
, p > 1, σ − 1/p < α < 1/q.

4. If p → ∞ in Corollary 2, then for f ∈ Lipα(0 < α < 1),

∥tn( f ; x)− f (x)∥∞ = O((n + 1)−α).

As mentioned earlier, a separate proof can be written for the case α = 1, and for this

case we get degree of approximation as

∥tn( f ; x)− f (x)∥∞ = O(log(n + 1)/(n + 1)).
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The above corollaries are valid for matrix T ≡ (an,k) having non-decreasing rows as

well as for hump matrix. If an,k = pn−k/Pn for 0 ≤ k ≤ n and an,k = 0 for k > n,

where Pn = ∑n
k=0 pn ̸= 0 → ∞ as n → ∞, then the matrix T reduces to Nörlund matrix

Np. The Nörlund version of the above theorems and corollaries can also be derived by

replacing matrix T with Np.



Chapter 5

Approximation of Functions in
Lipschitz Class with Muckenhoupt
Weights by Matrix Means

5.1 Introduction

In this chapter, we investigate the approximation properties of the matrix means of

trigonometric Fourier series of f belonging to weighted Lipschitz class Lip(α, p, w)

with Muckenhoupt weights generated by T ≡ (an,k) under relaxed conditions. Our

theorem extends some of the previous results pertaining to the degree of approxima-

tion of functions in weighted Lipschitz class Lip(α, p, w) and the ordinary Lipschitz

class Lip(α, p).

A measurable 2π-periodic function w : [0, 2π] → [0, ∞] is said to be a weight

function if the set w−1({0, ∞}) has the Lebesgue measure zero. We say that f ∈

Lp
w[0, 2π](= Lp

w), the weighted Lebesgue space of all measurable 2π-periodic functions

if

∥ f ∥p,w =

(∫ 2π

0
| f (x)|p w(x)dx

)1/p

< ∞, 1 ≤ p < ∞.

Let 1 < p < ∞. A weight function w belongs to the Muckenhoupt class Ap if

sup
I

 1
|I|

∫
I

w(x)dx

 1
|I|

∫
I

[w(x)]−1/(p−1)dx

p−1

< ∞,

where the supremum is taken over all intervals I with length |I| ≤ 2π. The weight

functions belonging to Ap class, introduced by Hunt et al. [26], play an important role

The work of this chapter in the form of a research paper has been published in IAENG International
Journal of Applied mathematics, 43(4) (2013), 190–194.
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in different fields of mathematical analysis.

Let w ∈ Ap and f ∈ Lp
w. The modulus of continuity of the function f is defined by

Ω( f , δ)p,w = sup
| h |≤δ

∥∆h( f )∥p,w , δ > 0,

where (∆h f )(x) = 1
h

∫ h
0 | f (x + t)− f (x)| dt.

The existence of the modulus of continuity of f ∈ Lp
w follows from the boundedness of

the Hardy-Littlewood maximal function in the space Lp
w [87]. The modulus of continu-

ity Ω( f , ·)p,w defined by Ky [41] is non-decreasing, non-negative, continuous function

such that

lim
δ→0

Ω( f , δ)p,w = 0

and Ω( f1 + f2, ·)p,w ≤ Ω( f1, ·)p,w + Ω( f2, ·)p,w.

The modulus of continuity Ω( f , ·)p,w is defined in this way, since the space Lp
w

is non-invariant, in general, under the usual shift f (x) → f (x + h). We note that in the

case w ≡ 1, the modulus of continuity Ω( f , ·)p,w and the classical integral modulus of

continuity wp( f , ·) are equivalent [41]. The weighted Lipschitz class Lip(α, p, w) for

0 < α ≤ 1 is defined by

Lip(α, p, w) = { f ∈ Lp
w : Ω( f , δ)p,w = O(δα), δ > 0}.

For w(x) = 1 ∀x ∈ [0, 2π] the weighted Lip (α, p, w) class reduces to well known Lips-

chitz class Lip (α, p), p > 1.

Let f ∈ Lp[0, 2π] (p ≥ 1) be a 2π-periodic function. Then, for n ∈ N ∪ {0} we write

sn( f ; x)= a0/2 +
n

∑
k=1

(ak cos kx + bk sin kx)

=
n

∑
k=0

uk( f ; x) with u0( f ; x) = s0( f ; x) = a0/2,

the (n + 1)th partial sum of Fourier series of f at point x, which is a trigonometric

polynomial of order (or degree) n. In this chapter, we use the matrix means of the

Fourier series of f defined by the sequence to sequence transformation

τn( f ; x) = τn(x) =
n

∑
k=0

an,ksk( f ; x), n ∈ N ∪ {0}, (5.1)
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where T ≡ (an,k) is a lower triangular matrix with non-negative entries such that

an,−1 = 0, An,k = ∑n
r=k an,r and An,0 = 1 ∀n ≥ 0.

A positive sequence a = {an,k} is called almost monotonically decreasing with

respect to k, if there exists a constant K = K(a), depending on the sequence a only, such

that an,p ≤ Kan,m for all p ≥ m and we write that a ∈ AMDS. Similarly a = {an,k} is

called almost monotonically increasing with respect to k, if an,p ≤ Kan,m for all p ≤ m

and we write that a ∈ AMIS [52; 81]. We note that every monotone sequence is an

almost monotone sequence.

The Fourier series and trigonometric polynomials play an important role in var-

ious scientific and engineering fields, e.g., Lo and Hui [58] use the Fourier series ex-

pansion in a very nice way. Based upon the Fourier series expansion, they propose

a simple and easy-to-use approach for computing accurate estimates of Black-Scholes

double barrier option prices with time-dependent parameters.

Chandra [9] has studied the approximation properties of the means Nn( f ; x) and

Rn( f ; x) in Lip(α, p), 1 ≤ p < ∞, 0 < α ≤ 1 with monotonicity conditions on

the means generating sequence {pn} and proved ∥Nn( f ; x)− f (x)∥p = O(n− α) =

∥Rn( f ; x)− f (x)∥p , n = 1, 2, 3.... Mittal et al. [80] generalized the paper of Chan-

dra [9] partially, and extended its Theorem 1 and Theorem 2 (ii) to matrix means with

|∑n
k=0 an,k − 1 | = O(n−α). On the other hand, Leindler [52] has relaxed the condition

of monotonicity on {pn} and proved some of the results of Chandra [9] for almost

monotone weights {pn}. Mittal et al. [81] extended the results of Leindler [52] to ma-

trix means with almost monotone sequence {an,k} and row sums 1. Following [23],

[28] and [40], recently Guven [21] has extended some of the results of Chandra [9]

in another direction. He has extended Lipschitz class Lip(α, p) to Lip(α, p, w), and

proved the weighted version of the Theorem 1 and Theorem 2 of Chandra [9] for

1 < p < ∞, 0 < α ≤ 1 i.e., for f ∈ Lip(α, p, w) and monotone {pn} he proved

∥Nn( f ; x)− f (x)∥p,w = O(n− α) = ∥Rn( f ; x)− f (x)∥p,w , n = 1, 2, 3, ... .

Following Mittal et al. [81], very recently, Singh and Sonkar [113] have studied the

degree of approximation of periodic functions in generalized Hölder metric space

through matrix means of Fourier series, where matrix T ≡ (an,k) has almost mono-

tone rows, which in turn generalizes most of the results of Liendler [53]. On the
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other hand, Guven [22, Theorem 1 and Theorem 2] has given the weighted version

of the results of Leindler [52] and some of the results of Mittal et al. [80] by assuming

T ≡ (an,k) almost monotone with |∑n
k=0 an,k − 1 | = O(n−α). We note that condition

|∑n
k=0 an,k − 1 | = O(n−α) was not used by Leindler [52] as ∑n

k=0 an,k = 1 for Nörlund

matrix. It also appears that the author in [22] have followed many conditions and

calculations as given in [81] and [113].

5.2 Main Result

In the present chapter, we continue the work of Mittal et al. [81] and Singh and Sonkar [113]

and prove weighted version of the theorem of [81] for p > 1 which extend the result of

Leindler [52] to weighted version as well as matrix version for p > 1. Our theorem also

extends theorems of Guven [21] to matrix means τn( f ; x) under the relaxed conditions

of monotonicity and replaces the two theorems of Guven [22] by a single theorem for

∑n
k=0 an,k = 1. More precisely, we prove:

Theorem 5.2.1. Let f ∈ Lip(α, p, w), p > 1, w ∈ Ap and let T ≡ (an,k) be an infinite lower
triangular regular matrix and satisfies one of the following conditions:

(i) 0 < α < 1, {an,k} ∈ AMIS in k,

(ii) 0 < α < 1, {an,k} ∈ AMDS in k and (n + 1)an,0 = O(1),

(iii) α = 1 and ∑n−1
k=0 (n − k) |∆kan,k| = O(1),

(iv) α = 1, ∑n
k=0 |∆kan,k| = O(an,0) with (n + 1)an,0 = O(1),

(v) 0 < α < 1, ∑n−1
k=0

∣∣∣∆k

(
An,0−An,k+1

k+1

)∣∣∣ = O
(

1
n+1

)
.

Then

∥ f (x)− τn( f ; x)∥p,w = O((n + 1)−α), n = 0, 1, 2... (5.2)

5.3 Lemmas

To prove our theorem, we need the following lemmas.

Lemma 5.3.1 ([21]). Let 1 < p < ∞, w ∈ Ap and 0 < α ≤ 1. Then the estimate

∥ f (x)− sn( f ; x)∥p,w = O((n + 1)−α), n = 0, 1, 2, ..., (5.3)

holds for every f ∈ Lip(α, p, w).
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Lemma 5.3.2 ([21]). Let 1 < p < ∞ and w ∈ Ap. Then, for f ∈ Lip(1, p, w) the estimate

∥sn( f ; x)− σn( f ; x)∥p,w = O((n + 1)−1), n = 0, 1, 2, ... , (5.4)

holds.

Lemma 5.3.3 ([81]). Let either {an,k} ∈ AMIS or {an,k} ∈ AMDS with (n + 1)an,0=O(1).
Then, for 0 < α < 1,

n

∑
k=0

(k + 1)−αan,k = O((n + 1)−α).

Proof. Let r = [n/2] and {an,k} ∈ AMIS, then

n

∑
k=0

(k + 1)−αan,k ≤ Kan,r

r

∑
k=0

(k + 1)−α + (r + 1)−α
n

∑
k=r+1

an,k

≤ Kan,r(r + 1)1−α + (r + 1)−α
n

∑
k=0

an,k

≤ K(r + 1)−α(r + 1)an,r + (r + 1)−α An,0

= O(r + 1)−α = O((n + 1)−α),

in view of (r + 1)an,r ≤ (n − r + 1)an,r ≤ K(an,r + an,r+1 + ... + an,n) ≤ An,0 and

(r + 1)−α = O((n + 1)−α).

If {an,k} ∈ AMDS and (n + 1)an,0 = O(1), then

n

∑
k=0

(k + 1)−αan,k ≤ Kan,0

n

∑
k=0

(k + 1)−α

= O((n + 1)−α).

This completes the proof of Lemma 5.3.3.

A different proof of this lemma can also be seen in [22; 81].

5.4 Proof of Theorem 5.2.1

We prove the cases (i) and (ii) together by using Lemma 5.3.1 and Lemma 5.3.3. Since

τn( f ; x)− f (x) =
n

∑
k=0

an,k{sk( f ; x)− f (x)},

∥τn( f ; x)− f (x)∥p,w ≤
n

∑
k=0

an,k ∥sk( f ; x)− f (x)∥p,w
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=
n

∑
k=0

an,kO(k + 1)−α

= O((n + 1)−α).

Next, we consider the case (iv). By Abel’s transformation and an,n+1 = 0,

τn( f ; x) =
n

∑
k=0

an,ksk( f ; x)

=
n

∑
k=0

an,k

(
k

∑
i=0

ui( f ; x)

)

=
n

∑
k=0

An,kuk( f ; x),

and thus

sn( f ; x)− τn( f ; x)=
n

∑
k=0

(1 − An,k)uk( f ; x)

=
n

∑
k=1

k−1 (An,0 − An,k) kuk( f ; x).

Hence, again by Abel’s transformation and An,n+1 = 0, we get

sn( f ; x)− τn( f ; x) =
n

∑
k=1

(∆kk−1(An,0 − An,k))×

k

∑
i=1

iui( f ; x) + (n + 1)−1
n

∑
k=1

kuk( f ; x).

Therefore,

∥sn( f ; x)− τn( f ; x)∥p,w ≤
n

∑
k=1

∣∣∣∆kk−1(An,0 − An,k)
∣∣∣ ∥∥∥∥∥ k

∑
i=1

iui( f ; x)

∥∥∥∥∥
p,w

+ (n + 1)−1

∥∥∥∥∥ n

∑
k=1

kuk( f ; x)

∥∥∥∥∥
p,w

. (5.5)

Also

sn( f ; x)− σn( f ; x) = (n + 1)−1
n

∑
k=0

((n + 1)uk( f ; x)− sk( f ; x))

= (n + 1)−1
n

∑
k=1

kuk( f ; x),
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which implies∥∥∥∥∥ n

∑
k=1

kuk( f ; x)

∥∥∥∥∥
p,w

= (n + 1) ∥σn( f ; x)− sn( f ; x)∥p,w = O(1), (5.6)

in view of Lemma 5.3.2.

Using (5.6) in (5.5), we get

∥sn( f ; x)− τn( f ; x)∥p,w ≤
n

∑
k=1

∣∣∣∆kk−1(An,0 − An,k)
∣∣∣+ (n + 1)−1. (5.7)

Now,

∆kk−1(An,0 − An,k) =
An,0 − An,k

k
− An,0 − An,k+1

k + 1

= k−1(k + 1)−1(An,0 − An,k − kan,k)

= k−1(k + 1)−1(
k−1

∑
i=0

an,i − kan,k). (5.8)

Next, we shall verify by induction that,∣∣∣∣∣k−1

∑
i=0

an,i − kan,k

∣∣∣∣∣ ≤ k

∑
i=1

i | an,i−1 − an,i|. (5.9)

For k = 1, we have ∣∣∣∣∣k−1

∑
i=0

an,i − kan,k

∣∣∣∣∣ = |an,0 − an,1| = 1. |an,0 − an,1| ,

i.e., (5.9) is true for k = 1.

Let us assume that (5.9) is true for k = m, then for k = m + 1,

|
m

∑
i=0

an,i − (m + 1)an,m+1| =

∣∣∣∣∣m−1

∑
i=0

an,i + an,m + man,m−man,m − (m + 1)an,m+1

∣∣∣∣∣
≤

∣∣∣∣∣m−1

∑
i=0

an,i − man,m

∣∣∣∣∣+ (m + 1) |an,m − an,m+1|

=
m

∑
i=1

i |an,i−1 − an,i|+ (m + 1) |an,m − an,m+1|

=
m+1

∑
i=1

i |an,i−1 − an,i|.
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Thus (5.9) is true for k = m + 1, hence (5.9) is true for 1 ≤ k ≤ n.

Using (5.8) and (5.9), we get

n

∑
k=1

∣∣∣∆kk−1(An,0 − An,k)
∣∣∣ ≤

n

∑
k=1

k−1(k + 1)−1
k

∑
i=1

i |an,i−1 − an,i|

≤
n

∑
i=1

i |an,i−1 − an,i|
∞

∑
k=i

k−1(k + 1)−1

=
n

∑
i=1

|an,i−1 − an,i| =
n−1

∑
k=0

|∆kan,n−k|

= O(an,0) = O((n + 1)−1). (5.10)

Combining (5.7) and (5.10), we get

∥sn( f ; x)− τn( f ; x)∥p,w = O((n + 1)−1). (5.11)

Using Lemma 5.3.1 and (5.11), we have for α = 1

∥ f (x)− τn( f ; x)∥p,w ≤ ∥ f (x)− sn( f ; x)∥p,w + ∥sn( f ; x)− τn( f ; x)∥p,w

= O((n + 1)−1).

Herewith the case (iv) is proved.

For the proof of case (iii), we first verify that the condition ∑n−1
k=0 (n − k) |∆kan,k| = O(1),

implies that
n

∑
k=1

∣∣∣∆kk−1(An,0 − An,k)
∣∣∣ = O((n + 1)−1). (5.12)

From (5.8), we can write

n

∑
k=1

|∆kk−1(An,0 − An,k)| ≤
n

∑
k=1

k−1(k + 1)−1
k

∑
i=1

i |an,i−1 − an,i|

=
n

∑
k=1

∆(k−1)
k

∑
i=1

i |an,i−1 − an,i|.

By Abel’s transformation, we have

n

∑
k=1

|∆kk−1(An,0 − An,k)| ≤
n+1

∑
k=1

k−1.k |an,k−1 − an,k| −
1

n + 1

n+1

∑
k=1

k |an,k−1 − an,k|

=
n+1

∑
k=1

(
1
k
− 1

n + 1

)
k |an,k−1 − an,k|
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=
n+1

∑
k=1

(
n − k + 1

n + 1

)
|an,k−1 − an,k|

=
n

∑
k=0

(
n − k
n + 1

)
|an,k+1 − an,k|

≤ 1
n + 1

n−1

∑
k=0

(n − k) |∆kan,k| = O((n + 1)−1),

which verifies (5.12).

Combining (5.7), (5.12) and Lemma 5.3.2, we get (5.2) for α = 1.

Finally, we prove the case (v). Using Lemma 5.3.1 and Abel’s transform, we have

∥τn( f ; x)− f (x)∥p,w ≤
n

∑
k=0

an,k ∥sk( f ; x)− f (x)∥p,w

= O{
n

∑
k=0

(k + 1)−αan,k}

= O{
n−1

∑
k=0

∆k(k + 1)−α(
k

∑
i=0

an,i)+(n + 1)−α
n

∑
i=0

an,i}

= O[
n−1

∑
k=0

(An,0 − An,k+1){(k + 1)−α − (k + 2)−α}

+(n + 1)−α An,0]

= O{
n

∑
k=0

(k + 1)−α(An,0 − An,k+1)/(k + 1)}

+O(n + 1)−α, (5.13)

where by Abel’s transformation

n

∑
k=0

(k + 1)−α An,0 − An,k+1

k + 1
=

n−1

∑
k=0

∆k

{
An,0 − An,k+1

k + 1

} k

∑
i=0

(i + 1)−α

+
An,0 − An,n+1

n + 1

n

∑
i=0

(i + 1)−α

≤
n−1

∑
k=0

∆k

{
An,0 − An,k+1

k + 1

}
(k + 1)1−α +

(n + 1)1−α

n + 1

≤ (n + 1)1−α
n−1

∑
k=0

∆k

{
An,0 − An,k+1

k + 1

}
+ (n + 1)−α
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= O((n + 1)−α), (5.14)

in view of An,n+1 = 0 and condition (v) of Theorem 5.2.1.

Collecting (5.13) and (5.14), we get (5.2). Thus proof of Theorem 5.2.1 is complete.

5.5 Corollaries

In order to justify the significance of our result, we prove that the following results are

the particular cases of Theorem 5.2.1 for p > 1. We also drive an analogous result of

Theorem 5.2.1 for monotone {an,k}.

1. If we take an,k = pn−k/Pn for k ≤ n and an,k = 0 for k > n, then conditions (i) to

(iv) of Theorem 5.2.1 reduce to conditions (i) to (iv) of Theorem 1 of Leindler [52,

p. 131], respectively, and τn( f ; x) means reduces to Nn( f ; x) means. Further, we

note that Lip(α,p, 1) ≡ Lip(α,p), p > 1. Thus our theorem generalizes Theorem

5.2.1 of [52], except for the case p = 1 in two directions.

2. Since Lip(α,p, 1) ≡ Lip(α,p), p > 1 and conditions of Theorem 1 of Mittal et

al. [81, p. 4485] for p > 1 are included in the conditions (i) to (iv) of Theorem

5.2.1, so Theorem 5.2.1 includes weighted version of Theorem 1 of [81] for p > 1.

3. Since every monotone sequence is almost monotone, the conditions (i) and (ii) of

Theorem 5.2.1 are satisfied in case of monotonic {an,k}. Further, every sequence

{an,k} non-decreasing with respect to k always satisfies condition (iii) of Theorem

5.2.1, e. g.,

n−1

∑
k=0

(n − k) |∆kan,k| =
n−1

∑
k=0

(n − k)(an,k+1 − an,k)

= An,0 − (n + 1)an,0 = O(1).

If {an,k} is non-increasing with respect to k, then (iv) of Theorem 5.2.1 is also true,

e. g.,

n−1

∑
k=0

|∆kan,k| =
n−1

∑
k=0

(an,k − an,k+1) = an,0 − an,n ≤ an,0.

Thus, we have the following analogous result of Theorem 5.2.1 for monotone

{an,k}:



73

Corollary 5.5.1. Let f ∈ Lip(α, p, w), p > 1, w ∈ Ap and let T ≡ (an,k) be an infinite
regular triangular matrix and satisfies one of the following conditions:

(i) {an,k} is non-decreasing in k,

(ii) {an,k} is non-increasing in k and (n + 1)an,0 = O(1).

Then 5.2 holds.

4. If we take an,k = pn−k/Pn for k ≤ n and an,k = 0 for k > n, then Corollary 5.5.1

reduces to Theorem 1 of Guven [21, p. 101].

5. Finally, if we take an,k = pk/Pn for k ≤ n and an,k = 0 for k > n, then τn( f ; x)

means reduces to Rn( f ; x) means; and

An,0 − An,k+1 =
n

∑
i=0

an,i −
n

∑
i=k+1

an,i

=

(
n

∑
i=0

pi −
n

∑
i=k+1

pi

)
/Pn

=
k

∑
i=0

pi/Pn = Pk/Pn,

so that

∆k

(
An,0 − An,k+1

k + 1

)
=

An,0 − An,k+2

k + 2
− An,0 − An,k+1

k + 1

=
1
Pn

(
Pk+1

k + 2
− Pk

k + 1

)
,

i. e., condition (v) of Theorem 5.2.1 reduces to condition (3) of Guven [21, Theo-

rem 2]. Thus Theorem 5.2.1 under condition (v) extends Theorem 2 of Guven [21]

to matrix means.

6. If we take an,k = Aβ−1
n−k /Aβ

n for k ≤ n and an,k = 0 for k > n(β > 0), where

Aβ
0 = 1, Aβ

k =
β(β + 1)...(β + k)

k!
, k ≥ 1,

then matrix means τn( f ; x) reduces to Cesàro means of order β > 0 denoted by

σ
β
n ( f ; x) and defined as

σ
β
n ( f ; x) =

1

Aβ
n

n

∑
k=0

Aβ−1
n−ksk( f ; x).

Hence, Corollary 3 of Guven [21, p. 102] can also be derived from Theorem 5.2.1.
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7. In the light of remark of Guven [21, p. 102], we note that Theorems 5.2.1 and

Corollary 5.5.1 also hold in reflexive weighted Orlicz spaces LM
w , which are dis-

cussed in [28] in detail.



Chapter 6

T-Strong Convergence of Numerical
Sequences and Fourier Series

6.1 Introduction

The notion of Λ-strong convergence was first given by Móricz [86] using a nondecreas-

ing sequence Λ = {λk : k = 0, 1, ...} of positive numbers tending to ∞. In this chapter,

we generalize the notion of Λ-strong convergence of numerical sequences defined by

Móricz [86] to T-strong convergence, using a lower triangular matrix T = (an,k) with

nondecreasing monotone rows of positive numbers tending to ∞ i.e., an,k ≤ an,k+1∀n

and limk→∞ an,k = ∞ ∀n. We also establish a relationship between ordinary conver-

gence and T-strong convergence. We further show that this concept can also be applied

to the strong convergence of Fourier series under C-metric and Lp-metric.

Let T = (an,k) be a lower triangular matrix with nondecreasing monotone rows

of positive numbers tending to ∞ i.e., an,k ≤ an,k+1∀n and limk→∞ an,k = ∞ ∀n. A

sequence U = {uk} of complex numbers converges T-strongly to a complex number u

if

lim
n→∞

1
an,n

n

∑
k=0

| an,k(uk − u)− an,k−1(uk−1 − u) |= 0

Here an,−1 = 0 and u−1 = 0. Since

un − u =
1

an,n

n

∑
k=0

[an,k(uk − u)− an,k−1(uk−1 − u)]. (6.1)

From above relation, we can easily say that if a sequence converges T-strongly to a

number u, then it will converge to u in ordinary sense also.

The work of this chapter in the form of a research paper has been communicated for possible
Publication.

75
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Further, we can write two inequalities

1
an,n

n

∑
k=0

| an,k(uk − u)− an,k−1(uk−1 − u) |

≤ 1
an,n

n

∑
k=0

(an,k − an,k−1) | uk − u | + 1
an,n

n

∑
k=1

an,k−1 | uk − uk−1 |, (6.2)

and

1
an,n

n

∑
k=1

an,k−1 | uk − uk−1 |≤ 1
an,n

n

∑
k=0

(an,k − an,k−1) | uk − u |

+
1

an,n

n

∑
k=0

| an,k(uk − u)− an,k−1(uk−1 − u) |, (6.3)

by using the representation

an,k(uk − u)− an,k−1(uk−1 − u) = (an,k − an,k−1(uk − u) + an,k−1(uk − uk−1).

It is well-known that if un → u as n → ∞ in ordinary sense, then

lim
n→∞

1
an,n

n

∑
k=0

(an,k − an,k−1) | uk − u |= 0.

It is clear that ordinary convergence of a sequence does not imply T-strong con-

vergence. Below, we will show the condition that is necessary for an ordinary conver-

gent sequence to converge T-strongly. We write

σn :=
1

an,n

n

∑
k=0

(an,k − an,k−1)uk (n = 0, 1, ...).

Lemma 6.1.1. T-strong convergence of a sequence U = {uk} to a number u implies following
two conditions

(i) ordinary convergence o f U = {uk} to u, and (6.4)

(ii) lim
n→∞

1
an,n

n

∑
k=1

an,k−1 | uk − uk−1 |= 0, (6.5)

and vice-versa.

Proof. First we suppose T-strong convergence of sequence U, then (i) is obvious from

the definition and both the quantity on the right side of equation (6.3) will be zero as

n → ∞. Hence, we get (ii) of Lemma 6.1.1.

On the other hand, assume both the conditions of Lemma 6.1.1 are satisfied, then both
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the quantity on the right side of equation (6.2) will be zero as n → ∞, which imply

T-strong convergence of sequence U.

Further, if ∑∞
k=0 |uk − uk−1| < ∞ for a sequence U = {uk}, then the sequence U is

said to be of bounded variation.

Obviously, ∑∞
k=0 |uk − uk−1| < ∞ implies ordinary convergence of U with a suitable u.

Also for a sequence of bounded variation, we always find n0 such that

∞

∑
k=n0+1

|uk − uk−1| ≤ ϵ,

for a given ϵ > 0.

Now

1
an,n

n

∑
k=1

an,k−1 | uk − uk−1 |≤ 1
an,n

n0

∑
k=1

an,k−1 | uk − uk−1 | +
∞

∑
k=n0+1

| uk − uk−1 |≤ 2ϵ,

provided n is large enough, an,k ≤ an,k+1 and an,k → ∞ as k → ∞.

This means that bounded variation also implies condition (6.5) of Lemma 6.1.1.

Hence, if a sequence is of bounded variation, then it converses T-strongly. Thus, the T-

strong convergence is an intermediate notion between bounded variation and ordinary

convergence.

If we define T = (an,k) by

an,k =

{
k + 1, 0 ≤ k ≤ n ,

0, k > n ,

then the notion of T-strong convergence and Lemma 6.1.1 is the same as given by

Hyslop [27] and Tanović-Miller [120].

Lemma 6.1.2. Convergence of σn to u in the ordinary sense together with (6.5) of Lemma 6.1.1
implies the T-strong convergence of U to number u.

Proof. Clearly,

un − σn =
1

an,n

n

∑
k=0

(an,k − an,k−1)(un − uk)

=
1

an,n

n

∑
k=0

(an,k − an,k−1)
n

∑
j=k+1

(uj − uj−1)

=
1

an,n

n

∑
j=1

(uj − uj−1)
j−1

∑
k=0

(an,k − an,k−1)
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=
1

an,n

n

∑
j=1

an,j−1(uj − uj−1).

Using equation (6.5) of Lemma 6.1.1, we have

lim
n→∞

(un − σn) = 0 =⇒ lim
n→∞

un = lim
n→∞

σn = u. (6.6)

Thus, we arrive at T-strong convergence of U to u in view of Lemma 6.1.1.

6.2 Results on Numerical Sequences

Let us collect all the T-strongly convergent sequences U = {uk} of complex numbers

and denote it by c(T). Obviously, c(T) is a linear space. Further,

∥U∥c(T) := sup
n≥0

1
an,n

n

∑
k=0

| an,kuk − an,k−1uk−1 |

is finite for every U ∈ c(T) and ∥.∥c(T) is a norm on c(T). Denote by ∥.∥∞ and ∥.∥bv the

usual l∞ and bv-norms, respectively; that is

∥U∥∞ := sup
k≥0

| uk | and ∥U∥bv :=
∞

∑
k=0

| uk − uk−1 | .

Using inequalities (6.1) and (6.2) with u = 0 in each, we obtain instantaneously that for

any sequence U,

∥U∥∞ ≤ ∥U∥c(T) ≤ 2∥U∥bv. (6.7)

As a result, we have bv ⊂ c(T) ⊂ c, where bv and c denote the well-familiar Banach

spaces of the sequences of complex numbers that are of bounded variation and the

sequence convergent in the ordinary sense, respectively.

Another trivial appraisal is

∥U∥c(T) ≤ ∥U∥∞ sup
n≥0

1
an,n

n

∑
k=0

(an,k + an,k−1). (6.8)

Thus, if one can find a constant K such that an,n+1
an,n

≥ K > 1 for all n large enough, then

∥U∥c(T) = O(∥U∥∞). Thus in this particular case, c(T) = c, in the light of (6.7).

Now we prove the following:

Theorem 6.2.1. The class c(T) together with the norm ∥.∥c(T) is a Banach space.
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Proof. It is sufficient to show that c(T) is complete with respect to the norm ∥.∥c(T). Let

{Uj : j = 1, 2, ...} be a Cauchy sequence in the norm ∥.∥c(T). In the light of inequality

(6.7), {Uj} will be a Cauchy sequence in the norm ∥.∥∞. So, there exist a sequence

U ∈ c such that

lim
j→∞

∥Uj − U∥∞ = 0. (6.9)

Now our aim is to show that U ∈ c(T) and

lim
j→∞

∥Uj − U∥c(T) = 0. (6.10)

Let ϵ be a positive number. Then, by presumption, there exist a positive integer r = r(ϵ)

such that

∥Uj − Ul∥c(T) ≤ ϵ for j, l ≥ r. (6.11)

Let Uj := {ujk : k = 0, 1, ...} and U := {uk : k = 0, 1, ...}. We shall fix l and n. Likewise

equation (6.8), we have

1
an,n

n

∑
k=0

|an,k(ulk − uk)− an,k−1(ul,k−1 − uk−1)|

≤ ∥Ul − U∥∞
1

an,n

n

∑
k=0

(an,k + an,k−1) ≤ ϵ , (6.12)

provided l is large enough, due to (6.9). Here l depends on both n and ϵ, and assume

l ≥ r.

Applying the triangle inequality, using (6.11) and (6.12), we have

1
an,n

n

∑
k=0

|an,k(ujk − uk)− an,k−1(uj,k−1 − uk−1)|

≤ 1
an,n

n

∑
k=0

|an,k(ujk − ulk)− an,k−1(uj,k−1 − ul,k−1)|

+
1

an,n

n

∑
k=0

|an,k(ulk − uk)− an,k−1(ul,k−1 − uk−1)|

≤ ∥Uj − Ul∥c(T) + ϵ ≤ 2ϵ if j ≥ r.

Since this holds for any n = 0, 1, ..., by definition,

∥Uj − U∥c(T) ≤ 2ϵ if j ≥ r,
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thereby proving (6.10) and U ∈ c(T). This completes the proof of Theorem 6.2.1.

Further, one more fascinating result is that Banach space c(T) has a Schauder

basis.

Let

F(j) := (0, 0, ...,
j−1
⌣

0 ,
j
⌣

1, 1, 1, ...), (j = 0, 1, ...),

clearly each Fj ∈ c(T).

Theorem 6.2.2. {F(j): j=0, 1, ...} is a basis in c(T).

Proof. Existence. If U = {uk} is a T-strongly convergent sequence, then we will show

that

lim
m→∞

∥∥∥∥∥U −
m

∑
j=0

(uj − uj−1)F(j)

∥∥∥∥∥
c(T)

= 0. (6.13)

Since

U −
m

∑
j=0

(uj − uj−1)F(j) = (0, 0, ...,
m
⌣

0,
m+1
⌣

um+1 − um, um+2 − um, ...), (6.14)

by definition,

∥U −
m

∑
j=0

(uj − uj−1)F(j)∥c(T) = sup
n≥m+1

1
an,n

[an,m+1|um+1 − um|

+
n

∑
k=m+2

|an,k(uk − um)− an,k−1(uk−1 − um)|]

≤ sup
n≥m+1

1
an,n

[
n

∑
k=m+1

(an,k − an,k−1)|uk − um|

+
n

∑
k=m+1

an,k−1|uk − uk−1|] → 0

as m → ∞,

in view of Lemma 6.1.1.

Linear Independence. For linear independence, we refer [86, p. 323].

This completes the proof of Theorem 6.2.2.
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6.3 Results on Fourier Series: C-metric

In this section, we show that the notion of T-strong convergence, applied to sequence

of complex valued functions, is also applicable to Fourier series. Let C denote the

well-known Banach space of the 2π periodic complex-valued continuous functions en-

dowed with the norm ∥ f ∥c := maxt | f (t)|.

Suppose the Fourier series of a function f ∈ C is

1
2

a0( f ) +
∞

∑
n=1

(an( f ) cos nt + bn( f ) sin nt), (6.15)

and let

uk( f ) = uk( f ; x) :=
a0

2
+

k

∑
n=1

(an( f ) cos nx + bn( f ) sin nx), k ∈ N with u0( f ; x) =
a0

2
,

denote the (k + 1)th partial sums of the Fourier series (6.15).

Let us denote the classes of functions f ∈ C whose Fourier series converges uni-

formly, converges absolutely, and converges T-strongly on [0, 2π) by P, A, and U(T),

respectively. In other words, a function f ∈ C belongs to U(T) if

lim
n→∞

∥∥∥∥∥ 1
an,n

n

∑
k=0

| an,k(uk( f )− f )− an,k−1(uk−1( f )− f ) |
∥∥∥∥∥

c

= 0. (6.16)

It is well-familiar that P is a Banach space with the norm

∥ f ∥P := sup
k≥0

∥uk( f )∥c,

and A is also a Banach space with the norm

∥ f ∥A :=
1
2
|a0( f )|+

∞

∑
n=1

(|an( f )|+ |bn( f )|) (6.17)

(see, e.g., [32, pp. 6-8]).

Here we introduce the norm

∥ f ∥U(T) := sup
n≥0

∥∥∥∥∥ 1
an,n

n

∑
k=0

|an,kuk( f )− an,k−1uk−1( f )|
∥∥∥∥∥

c

, (6.18)

which will be finite for every f ∈ U(T). Also, using triangle inequality, we have

∥ f ∥U(T) ≤ ∥ f ∥c + sup
n≥0

∥∥∥∥∥ 1
an,n

n

∑
k=0

|an,k(uk( f )− f )− an,k−1(uk−1( f )− f )|
∥∥∥∥∥

c

, (6.19)
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which is finite due to (6.16).

The norm inequalities corresponding to (6.7) are

∥ f ∥P ≤ ∥ f ∥U(T) ≤ 2∥ f ∥A, (6.20)

which implies that A ⊆ U(T) ⊆ P.

The following outcomes are the similitude to Lemmas 6.1.1, 6.1.2, Theorem 6.2.1

and Theorem6.2.2, respectively.

Lemma 6.3.1. The Fourier series of a function f ∈ C converges T-strongly i.e., f ∈ U(T) if
and only if the following two conditions are satisfied:

(i) lim
k→∞

∥uk( f )− f ∥c = 0, and

(ii) lim
n→∞

∥∥∥∥∥ 1
an,n

n

∑
k=1

an,k−1|ak( f ) cos kt + bk( f ) sin kt|
∥∥∥∥∥

c

= 0.

Denote

σn( f ) = σn( f , t) :=
1

an,n

n

∑
k=0

(an,k − an,k−1)uk( f , t), n = 0, 1, ... . (6.21)

Lemma 6.3.2. If condition (ii) of Lemma 6.3.1 is satisfied and lim
n→∞

∥σn( f )− f ∥c = 0, then

Fourier series of a function f ∈ C converges T-strongly i.e., f ∈ U(T).

Theorem 6.3.1. The set U(T) form a Banach space with the norm defined in (6.18).

Denote Z0 = a0/2 and Zj = an( f ) cos nx + bn( f ) sin nx for j = 1, 2, ...

Theorem 6.3.2. {Zj : j = 0, 1, 2,...} is a basis in U(T), i.e., if f ∈ U(T), then

lim
m→∞

∥ um( f )− f ∥U(T)= 0.

Proof. For the proof of Theorem 6.3.2, first we write sequence of partial sums of the

Fourier series of the difference f − um( f ) which is

(0, 0, ...,
m
⌣

0,
m+1
⌣

um+1( f )− um( f ), um+2( f )− um( f ), ...).

This sequence is same as in (6.14) occuring in the proof of Theorem 6.2.2. Using the

similar calculation as in Theorem 6.2.2, we easily get limm→∞ ∥ um( f )− f ∥U(T)= 0, in
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view of Lemma 6.3.1.

For T = (an,k) defined by

an,k =

{
k + 1, 0 ≤ k ≤ n

0, k > n ,

Szalay [119] obtained Lemma 6.3.1, Theorem 6.3.1 and Theorem 6.3.2.

6.4 Results on Fourier Series: Lp-metric

In this section, we develop the results of Section 6.3 for a Lp-metric. We know that

Lp-space endowed with the norm

∥ f ∥p =

{∫ π

−π
| f (x) |p dx

}1/p
(1 ≤ p < ∞) and ∥ f ∥∞ = sup

x∈[0,2π]

| f (x) | .

is a Banach space.

Let us denote the classes of functions f ∈ Lp[−π, π] whose Fourier series con-

verges uniformly and T-strongly by Pp and Up(T), respectively, in the Lp-metric. In

other words, a function f ∈ Lp belongs to Up(T) if

lim
n→∞

∥∥∥∥∥ 1
an,n

n

∑
k=0

| an,k(uk( f )− f )− an,k−1(uk−1( f )− f ) |
∥∥∥∥∥

p

= 0. (6.22)

It is well-known that Pp is a Banach space with the norm

∥ f ∥Pp := sup
k≥0

∥uk( f )∥p.

Here we introduce the norm

∥ f ∥Up(T) := sup
n≥0

∥∥∥∥∥ 1
an,n

n

∑
k=0

|an,kuk( f )− an,k−1uk−1( f )|
∥∥∥∥∥

p

, (6.23)

which will be finite for every f ∈ Up(T).

The norm inequalities corresponding to (6.20) are

∥ f ∥Pp ≤ ∥ f ∥Up(T) ≤ 2∥ f ∥A, (6.24)

where ∥.∥A is the same as defined in (6.17). These relations implies that A ⊂ Up(T) ⊂

Pp.

The following outcomes are the similitude to Lemma 6.3.1, Lemma 6.3.2, Theo-

rem 6.3.1 and Theorem 6.3.2, respectively.
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Lemma 6.4.1. The Fourier series of a function f ∈ Lp converges T-strongly i.e., f ∈ Up(T)
if and only if the following two conditions are satisfied:

(i) lim
k→∞

∥uk( f )− f ∥p = 0, and

(ii) lim
n→∞

∥∥∥∥∥ 1
an,n

n

∑
k=1

an,k−1|ak( f ) cos kt + bk( f ) sin kt|
∥∥∥∥∥

p

= 0.

Lemma 6.4.2. If condition (ii) of Lemma 6.4.1 is satisfied for p = 1 and lim
n→∞

∥σn( f )− f ∥1 =

0, then f ∈ U1(T).

Theorem 6.4.1. The set Up(T) form a Banach space with the norm defined in (6.23).

Theorem 6.4.2. If f ∈ Up(T), then

lim
m→∞

∥ um( f )− f ∥Up(T)= 0.

Proof. By using Lemma 6.4.1, we can easily prove the above theorem as it is similar to

the proof of Theorem 6.3.2.

Remark 6.4.1. If we define T = (an,k) by

an,k =

{
λk/λn, 0 ≤ k ≤ n

0, k > n

then most of the results of F. Móricz [86] will be particular cases of our theorems.



Conclusions and Future Scope

The work carried out in the present thesis is aimed to determine the error (or or-

der/degree) of approximation of functions and their conjugates belonging to different

Lipschitz classes viz., Lipα, Lip(α, p), Lip(α, p, w), Lip(ξ(t), p), Lip(ω(t), p),

W(Lp, ω(t), β) and W(Lp, Ψ(t), β), p ≥ 1 using different summability means of their

trigonometric Fourier series and its conjugate, respectively. Also the case p = 1 is dis-

cussed separately. Some corollaries and examples are also given to show the utility

of the summation methods. There is sufficient scope to extend this work in multi-

directions. Some of possible options are as listed below:

• To study the degree of approximation of functions belonging to Homogeneous

Banach spaces [34, p. 14].

• Recently, Jain and Kumari [30] generalized the notion of classical Lorentz space

∧p,w introduced by Lorentz [59; 60] to grand Lorentz space ∧p),w. Our work can

be extended to determine the degree of approximation of functions belonging

to other function spaces namely, weighted grand Lebesgue spaces [16], grand

Lorentz spaces [30] and generalized Orlicz spaces[31].

• We can generalized the notion of T-strong convergence into T2-strong conver-

gence using the second difference defined as △2(λk) = △(△(λk)) = λk − 2λk−1 +

λk−2.

• The work of this thesis can be extended to other Fourier series such as Mellin,

Walsh [110], Legendre, and Bessel [88, pp. 775 & 812] Fourier series also.
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