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Abstract 
 

The present research work has been carried out with an aim to enhance the diagnostic 

potential of conventional B-Mode ultrasound (US) imaging modality for diagnosis of liver 

diseases. To achieve this objective, the design and implementation of an interactive system for 

diagnosis of liver diseases using B-Mode liver US images is proposed in the present study. The 

research objectives for the present work were formulated keeping in view the needs of the 

radiologists, based on the practical difficulties faced by them in routine clinical practice. 

The study was conducted by collecting a comprehensive image database of 124 B-Mode 

liver US images with representative cases from each image class, acquired from the patients 

who underwent US examination at the Department of Radiodiagnosis and Imaging, PGIMER, 

Chandigarh, India during a period from March 2010 to March 2012.  

The image database comprises of 21 Normal (NOR), 16 Cirrhotic, 12 Cyst, 15 

Hemangioma (HEM), 28 Hepatocellular Carcinoma (HCC) and 32 Metastatic Carcinoma 

(MET) liver images. Further bifurcation of Cyst, HEM and MET images into typical and 

atypical cases, and HCC cases into small HCC (SHCC) and large HCC (LHCC) cases is shown 

in Fig. 1.  

Fig. 1 The description of image database used in the present research work. 
Note: FLLs: Focal liver lesions; HEM: Hemangioma; HCC: Hepatocellular carcinoma; MET: 
Metastatic carcinoma or metastasis; SHCC: Small HCC; LHCC: Large HCC.  

The proposed interactive system for diagnosis of liver diseases using B-Mode US images 

consists of two modules as shown in Fig. 2. Module 1 is designed to assist or provide second 

opinion to the radiologist if there is confusion within Normal, Cirrhosis, HCC or MET liver 

image classes.  
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Fig. 2 Block diagram of the proposed interactive system for diagnosis of liver diseases. 
Note: IROIs: Inside lesion regions of interest; SROIs: Surrounding lesion regions of interest. 

Early diagnosis of liver cirrhosis using texture descriptors computed from regions of 

interest (ROI) extracted from conventional B-Mode liver US images is clinically significant as 

most of the cirrhotic patients are asymptomatic, and the biochemical tests like elevated liver 

enzyme detect cirrhosis at an advanced stage.   

It is worth mentioning that the patients with liver cirrhosis are at high risk of developing 

hepatocellular carcinoma (HCC, a primary malignant focal liver lesion), and cirrhosis is also 

the leading cause of portal hypertension.  
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Since fibrosis is an essential stage leading to liver cirrhosis, it is important to know 

whether the fibrotic changes in liver parenchyma correspond to liver cirrhosis so that 

medication can be administered timely and the associated complications can be prevented. 

 Furthermore, since liver cirrhosis is considered as a pre-cursor to development of HCC 

and it is considerably difficult to diagnose small HCCs developed on already nodular cirrhotic 

liver parenchyma, the diagnosis as to whether the textural changes in the liver parenchyma are 

cirrhotic changes or they indicate the development of HCC is absolutely necessary.  

It is worth mentioning that there is a considerable overlap between the sonographic 

appearances of HCC and MET lesions, at the same time the differential diagnosis between 

HCC and MET lesions is essential for effective treatment of liver malignancies.  

Accordingly, the Module 1 of the proposed interactive system for diagnosis of liver 

diseases incorporates three different CAD systems: (i) CAD System-I for binary classification 

between normal and cirrhotic liver tissue, (ii) CAD System-II for classification between 

normal, cirrhotic and HCC liver, and (iii) CAD system-III for binary classification between 

HCC and MET liver malignancies.  

The region of interest (ROI) extracted by the radiologist, is fed to CAD system-I, for 

characterization between normal and cirrhotic liver tissue. Although the design of the proposed 

CAD system-I yields 100 % accuracy for characterization between normal and cirrhotic liver 

tissue, but due to severely limited sensitivity of US for detection of small HCCs developed on 

cirrhotic liver, it is quite possible that the region of interest (ROI) belonging to cirrhotic liver 

may actually represent a HCC. Therefore, the ROI which is predicted as cirrhotic by the CAD 

system-I is passed through CAD System-II for characterization between normal, cirrhotic and 

HCC liver tissue. If the prediction of the CAD System-II for an ROI is cirrhosis, it gives greater 

confidence to the radiologist that the liver tissue is cirrhotic. However, if for a particular ROI 

the decision of the CAD System-II is HCC, it is advised to investigate whether the ROI belongs 

to a HCC lesion or a MET lesion because of their significant overlapping sonographic 

appearances. Although, both HCC and MET lesions represent malignant liver lesions, 

differential diagnosis between HCC and MET lesion is absolutely necessary for better 

management of the disease and adequate scheduling of treatment options. Therefore, the ROI, 

if predicted as HCC by CAD System-II, is passed through CAD System-III for binary 

classification between HCC and MET liver tissue. If it is predicted as HCC, it gives greater 

confidence to the radiologist that the ROI represents HCC, or else if the ROI is predicted as 
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MET, it is recommended to pass the ROI to the CAD System-IV of Module 2 of the proposed 

interactive system for diagnosis of liver diseases for its differential diagnosis with other FLLs.  

Exhaustive experimentation was carried out for the design of efficient classifiers for CAD 

System-I, CAD System-II, CAD System-III and CAD System-IV. The radiologists observe the 

texture patterns of the IROIs (inside lesion regions of interest, i.e., regions of interest extracted 

from region well inside the lesion boundary) as well as the texture patterns of the SROIs 

(surrounding lesion regions of interest, i.e., regions of interest extracted from liver parenchyma 

surrounding the lesion and approximately at the same depth as that of the centre of the lesion) 

for making differential diagnosis between HCC and MET lesions using B-Mode US images. 

Accordingly, texture feature extraction from IROIs and SROIs were carried out for design of 

CAD System-III for classification between HCC and MET lesion.  Therefore, if the prediction 

of CAD system-II for a ROI is HCC, the radiologist is required to mark an additional SROI for 

the classification task. The results obtained from exhaustive experiments carried out in the 

present work indicate that the texture feature extraction from both IROIs and SROIs enhances 

the efficiency of the CAD System-III for classification between HCC and MET lesions.  

The classification performance obtained by CAD System-I, CAD-System-II and CAD 

System-III designs implemented for the design of Module 1 of the proposed interactive system 

for diagnosis of liver diseases using B-Mode US images is depicted in Table 1.  

Table 1 Classification performance CAD System-I, CAD System-II and CAD System III of 
Module 1  

CAD System Design OCA (%) 
CAD System-I: (Normal and cirrhotic Liver): Design based on first four singular value 
mean features derived by singular value decomposition of gray level co-occurrence 
matrix and SVM classifier [RFVL:4] 

 

100 

CAD System-II: (Normal, cirrhotic and HCC Liver): Design based on 2D-WPT 
multiresolution texture descriptors [RFVL: 10]  88.8 

CAD System-III: (HCC and MET): Design based on texture features computed from 
IROIs and texture ratio features computed from IROIs and corresponding SROI. [RFVL: 
9] 

 

91.6 

Note: MRS: Multiresolution scheme, RFVL: Reduced feature vector length, OCA: Overall 
classification accuracy, IROIs: Inside lesion regions of interest, SROIs: Surrounding lesion 
regions of interest. 

The CAD System-IV of Module 2 is designed to assist or provide second opinion to the 

radiologist for making differential diagnosis between FLLs using B-Mode US images.  
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The radiologists diagnose typical focal liver lesions (FLLs) easily by their classic 

sonographic appearances; however, the differential diagnosis between atypical FLLs from B-

Mode ultrasound (US) is quite a challenging task faced in routine clinical practice, mainly due 

to existence of overlapping sonographic appearances even within individual classes of FLLs. 

Even then, B-Mode US is considered as preferred examination for characterization of FLLs, 

mainly due to its noninvasive, nonradioactive, inexpensive nature and real-time imaging 

capabilities. Therefore, a CAD system for classification of FLLs from B-Mode US images is 

highly desired. At the same time, it is worth mentioning that there are certain disadvantages 

associated with the use of B-Mode US for characterization of FLLs: (a) limited sensitivity for 

detection of small FLLs (< 2 cm) developed on cirrhotic liver which is already nodular and 

coarse-textured, (b) sonographic appearance of HCC and MET lesions are highly overlapping, 

(c) sonographic appearances of cystic metastasis and atypical cyst are often overlapping, (d) 

sonographic appearances of atypical HEM, sometimes mimic with atypical MET or HCC, and 

(e) difficulty to characterize isoechoic lesions with very slim difference in contrast between 

region inside the lesion and the surrounding liver parenchyma in some cases.  

Therefore, it is important to address these issues and design an efficient CAD system for 

FLLs using a comprehensive and representative image database with (a) typical and atypical 

cases of Cyst, hemangioma (HEM) and metastasis (MET), (b) small as well as large 

hepatocellular carcinoma (HCC), and (c) normal (NOR) liver tissue.  

As it is well known fact that US imaging has limited sensitivity for detection of SHCCs 

less than 2 cm in size, therefore in order  to design a robust classification system, it is ensured 

that the constituent HCC images in the dataset offered a high degree of variability in terms of 

size and sonographic features.  

To ensure generality, the training data for designing the classifier was chosen carefully in 

consultation with experienced participating radiologists, so as to include all the typical and 

atypical image classes for Cyst, HCC, HEM and MET lesions as well as small and large HCC 

lesions for designing a robust classifier with representative cases for all image subclasses. Two 

sets of images were created for each image class, ROIs from one set of images were used for 

training and ROIs from the other set were used for testing to avoid any biasing. 

The Module 2 incorporates a CAD System-IV for classification between Normal, Cyst, 

HEM, HCC and MET liver image classes. In the present work, rigorous experiments were 

carried out for designing an efficient CAD system for characterization of FLLs. Radiologists 
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visualize the texture patterns of the regions inside and outside of the lesion for differential 

diagnosis between FLLs using B-Mode US images. Accordingly, texture feature extraction 

from IROIs as well as SROIs was considered for the design of the proposed CAD system. 

Thus, IROIs (extracted from the region inside the lesion) and a corresponding SROI (extracted 

from the surrounding of each lesion) are inputted to Module 2 for classification between NOR, 

Cyst, HEM, HCC or MET liver image classes.  

The CAD system designs implemented in the present research work for characterization of 

FLLs using B-Mode US images, include designs (a) using PCA-kNN, PCA-PNN, PCA-NN 

and PCA-SVM based multiclass classifiers, (b) using hierarchical framework of PCA-kNN, 

PCA-PNN, PCA-NN and PCA-SVM based binary classifiers, and (c) using an ensemble of 

neural network classifiers.  

A brief comparision of classification performance obtained by different CAD System-IV 

designs implemented for the design of Module 2 of the proposed interactive system for 

diagnosis of liver diseases using B-Mode US images is depicted in Table 2.  

Table 2 Comparison of classification performance: CAD System-IV designs for Module 2 
Experiment No.  CAD System-IV Design OCA (%) 

1 PCA-SVM based CAD system 87.2 
2 PCA-NN based CAD system 87.7 
3 PCA-PNN based CAD system 86.1 
4 PCA-kNN based CAD system 85.0 
5 PCA-SVM based Hierarchical CAD system 90.5 
6 PCA-NN based Hierarchical CAD system 88.3 
7 PCA-PNN based Hierarchical CAD system 91.6 
8 PCA-kNN based Hierarchical CAD system 90.5 
9 Hybrid Hierarchical CAD system 92.7 
10 Neural Network Ensemble based CAD system 95.0 

Note: OCA: Overall classification accuracy, NN: Neural network, PNN: Probabilistic neural network, 
kNN: k-nearest neighbour classifier.  

From Table 2, it can be observed that the neural network ensemble based CAD system 

yields the best performance for characterization of FLLs using B-Mode US images. Therefore, 

the NNE based CAD system should be used for the design of Module 2 of the proposed 

interactive system for diagnosis of liver diseases using B-Mode US images. 
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Chapter 1 

Introduction 

1.1 Motivation  

Liver is the most vital and largest organ of the human body. It performs many important 

functions like production and excretion of bile (a digestive fluid), synthesis of cholesterol, 

production of triglycerides (fats), metabolism of proteins, fats and carbohydrates, storage of 

vitamins and minerals, synthesis of plasma proteins, breakdown of insulin and other hormones, 

blood pressure management, blood detoxification, etc. Liver is a metabolically active organ 

necessary for survival.  The working cells of the lever (called hepatocytes) have unique 

capability to reproduce whenever the liver is injured. Thus, liver regeneration can occur after 

surgical removal of a portion of the liver or after an injury that destroys a part of the liver. 

However, there is absolutely no way to compensate for long-term liver dysfunction, because of 

the diversity of functions it handles. 

As liver is the largest solid organ of the human body, it becomes an easy target for many 

diseases. Liver diseases are widely recognized as an emerging public health crisis particularly 

in South Asian countries [214]. In clinical diagnosis, liver diseases are always taken seriously 

as it is a vital organ, which performs very important functions required for sound operation of 

human body. Liver diseases are classified in two broad categories, i.e., diffuse liver diseases 

and focal liver diseases. 

1.1.1 Diffuse Liver Diseases 
In diffuse liver diseases, the abnormality is distributed throughout the liver tissue. It has 

been verified by histological and pathological investigations that the severity of diffuse liver 

diseases is closely related to hepatic fibrosis progression [208]. In diffuse liver disease, higher 

than normal amount of collagen fibre is deposited in the extra-cellular spaces of the 

hepatocytes, due to which these hepatocytes lose blood thereby leading to liver fibrosis. 

According to different fibrosis stages, diffuse liver diseases can be sorted into three classes, 

namely, hepatitis, fatty liver and cirrhosis.  

Among diffuse liver diseases, the liver cirrhosis (characterized as irreversible hepatic 

fibrosis) is considered more serious as it represents the end stage of chronic diffuse liver 

disease. 
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The viral hepatitis, such as hepatitis B or C is one of the causes of liver cirrhosis; the virus 

can induce chronic inflammation in the liver causing fibrotic changes. The extent of fibrosis in 

liver tissue can range from fibrous expansion in the portal area to cirrhosis [208].   

In liver cirrhosis, strong association with fibrosis results in regenerative nodule formation 

which leads to alterations in normal hepatic structure such as (i) decrease in homogeneity, (ii) 

modification in hepatic vessels, (iii) modification in shape and contour, and (iv) increase in 

liver volume (toxic cirrhosis) or decrease in liver volume (viral cirrhosis). [109] 

Since fibrosis is a necessary stage that leads to cirrhosis which is an irreversible process, 

therefore, it is critical to detect the fibrosis status at an early stage so that proper medication is 

administered to avoid cirrhosis. [26] 

For many years, diffuse liver diseases are the leading cause of mortality. Therefore, an 

early diagnosis of diffuse liver diseases is important during regular checkups [101]. US is 

usually performed as a screening step for evaluation of diffuse liver disease. But as the 

sonographic diagnosis is subjective based on clinical observation, biopsy (an invasive 

procedure) is considered a gold standard for arriving at the final diagnosis. Furthermore, the 

needle biopsy of the liver parenchyma may lead to biased results due to sampling error. 

Moreover this procedure being invasive may result in severe complications leading in 

morbidity and even mortality [213]. 

The pathological changes in diffuse liver diseases alter certain physical and micro 

architectural properties like density, elasticity, homogeneity of the tissue. However, these 

alterations are difficult to be observed even though they certainly affect the propagation of 

ultrasound (US) during sonographic examination. Hence, the computerized, statistical analysis 

of US image texture has become necessary. [109]  

1.1.2 Focal Liver Diseases  
In focal liver diseases, the abnormality is concentrated in a small localized region of the 

liver parenchyma which is often referred to as focal liver lesion (FLL).  Liver Cysts, 

Hemangioma (HEM, i.e., a primary benign FLL), Hepatocellular carcinoma (HCC, i.e., a 

primary malignant FLL) and Metastatic carcinoma (MET, i.e., a secondary malignant FLL), are 

some of the commonly occurring focal liver diseases.  
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1.1.2.1 Liver Cyst  
Liver Cysts are most common FLLs, and are frequently observed on US. Cysts represent 

the fluid filled cavities in the liver. Liver Cysts can be congenital or acquired from trauma or 

any previous infection. Usually, cysts are asymptomatic unless they are large enough to cause 

mass effect (i.e., compression and displacement of adjacent structures). Mostly, liver cysts are 

incidental findings during the US scan. Typical cysts appear with anechoic echotexture, well 

defined smooth thin lined capsule and posterior acoustic enhancement. On the other hand, 

atypical cysts contain low level fine echoes which occur as a result of hemorrhage or infection 

and are outlined by thick irregular wall. These atypical cysts are usually asymptomatic; 

however, the symptomatic ones are regularly monitored on US and treated with percutaneous 

aspiration under US guidance or laparoscopic unroofing. Typical cysts can be easily diagnosed 

from their characteristic appearance on B-Mode US, but atypical cysts can be easily confused 

with cystic metastasis. Atypical cysts always appear with internal echoes and thickened 

irregular walls. Differential diagnosis of cystic metastasis and atypical cyst using conventional 

gray scale B-Mode US can be quite challenging. 

1.1.2.2 Hemangioma (HEM) 
The hemangioma (HEM) is the most common primary benign FLL. It is a highly vascular 

benign FLL which is composed of tiny blood vessels. HEMs usually appear as a solitary lesion, 

but may also be multiple in 10 % of cases. In most of the cases, HEMs are small (< 3 cm) and 

are found incidentally.  In very rare cases, these lesions are symptomatic; but it is sometimes 

difficult to diagnose these lesions as they can be indistinguishable from MET lesions [184]. 

They appear in all age-groups but are more frequent in adult females. Once HEMs are detected 

in adult, they are stable in size, any further change in size and appearance is uncommon. HEMs 

found in children tend to be large and symptomatic. Many of these HEMs found in children 

regress with time, while others may have to be emoblized with coils under radiological 

guidance.    

The sonographic appearance of HEMs varies considerably. In 70 % of cases, HEMs 

encountered in routine clinical practice are typical HEMs. These typical HEMs have a 

characteristic sonographic appearance; it appears as a round, homogeneous, hyperechoic, well 

defined lesion. These typical HEMs may sometimes exhibit posterior acoustic enhancement 

due to blood filled capillaries [140]. Atypical HEMs are a great mimic and a definite diagnosis 

with conventional gray scale B-Mode US is difficult. Atypical HEMs can be isoechoic or even 

hypoechoic mimicking the sonographic appearance of certain atypical MET and HCC lesions 
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[29]. These atypical HEMs generally cause diagnostic problems as they may appear as 

hypoechoic lesions or as lesions with mixed echogenicity. Large HEMs (> 3 cm) are often 

heterogeneous and demonstrate spectrum of reflectivity based on the composition and central 

areas of degeneration. These large HEMs frequently exhibit slightly increased through- 

transmission with posterior acoustic enhancement.  In case of atypical HEMs, where the 

diagnosis is not certain and a malignancy is suspected, administration of an ultrasound contrast 

agent and further imaging like MRI scanning helps to characterize the lesion confidently.  

1.1.2.3 Hepatocellular Carcinoma (HCC) 
The hepatocellular carcinoma (HCC), also called as malignant hepatoma (liver cancer), is 

primary malignant FLL [111-113,153]. HCC accounts for 80 to 90 % of all the malignant 

FLLs, amongst various primary FLLs [38]. The US imaging modality is used world-wide for 

screening of HCCs. This occurrence of HCC is most common in adult population.  It is the fifth 

most common cancer worldwide and the third leading cause of cancer related deaths [56, 105, 

207]. Worldwide, HCCs are detected with an estimated occurrence of 100000 - 300000 new 

cases per year [18]. The occurrence of HCC is not uniform throughout, with highest occurrence 

rates in Sub-Saharan Africa and the Southeast Asia. The areas of low occurrence include North 

America and Northern Europe. Males have higher occurrence of HCC than females. 

The risk factors which give rise to development of HCC are (i) cirrhosis, (ii) chronic 

infection with the hepatitis B and hepatitis C virus, and (iii) metabolic diseases. The symptoms 

of liver cancer vary among individuals. Many patients with primary liver cancer reveal no 

symptoms until the cancer develops to an advanced stage [158]. In some cases, jaundice, 

general feeling of poor health, loss of appetite, weight loss, nausea, fever, fatigue, bloating, 

itching, swelling of legs, or weakness may be present. In certain cases abdominal pain or 

discomfort may also occur. It is worth mentioning that these symptoms can be vague and very 

similar to other diseases and conditions.  

In 85 % cases, HCC occurs in patients with cirrhosis. The appearance of HCC on B-Mode 

US depends mostly on whether or not there is underlying cirrhosis. In fact, in radiology 

practice, cirrhosis is seen as precursor to development of HCC as the occurrence of HCCs on 

normal liver is very rare. Detecting small HCCs (SHCCs) developed on coarse and nodular 

cirrhotic liver parenchyma presents a daunting challenge for experienced radiologists. On the 

other hand, in rare cases when the HCC develops on normal liver parenchyma it can be easily 

diagnosed from its sonographic appearance, as it appears as a well differentiated HCC or as 

fibro lamellar HCC (which commonly appears with calcified areas). 
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The sonographic appearance of a large HCC (LHCC) is often inhomogeneous, whereas 

SHCCs can be hypoechoic and homogeneous [209]. Experienced participating radiologists 

opined that no sonographic appearance can be considered typical for HCC as there is a wide 

variability of sonographic appearances even within SHCCs and LHCCs. The sonographic 

appearances of SHCC vary from hypoechoic to hyperechoic. LHCC appear frequently with 

mixed echogenicity [62, 73, 189, 191].  

1.1.2.4 Metastasis (MET)  
The Metastatic carcinoma or Metastasis (MET) is the most common secondary malignant 

FLL. MET is caused by the cancerous cells that spread from the primary cancerous tumors of 

the other parts of the body. As the liver is the largest solid organ of the human body, it becomes 

an easy target for occurence of metastatic tumors [11]. Also, since one of the main functions of 

the liver is to filter blood, cancer cells from other parts of the body may enter the liver and 

become tumors.  MET lesion may be hyper-vascular or hypo-vascular, and small or large, 

depending upon the site of the primary cancer. Hypo-vascular MET lesions can present central 

necrotic areas [64]. METs are the most common secondary malignant neoplasms which can 

originate from many different types of cancer. In the initial stages, MET lesion may be 

asymptomatic or it may produce symptoms that may not be specific to the disease. For 

example, symptoms like loss of weight and appetite, fever may be present which is not specific 

to liver cancer only. It is very difficult to diagnose MET lesion at an early stage. So most of the 

time, the disease is detected only at an advanced stage. Depending upon the site of the primary 

tumor, 30 to 70 % patients who die of cancer, have liver metastasis.  

Metastatic tumors are common during the late stages of cancer. MET may occur singly or 

as multiple deposits of varying sizes. The internal texture pattern of MET lesion is often 

inhomogeneous although the sonographic appearance is variable [209].  

The typical characteristic of MET lesion is liquefactive necrosis, producing a fluid centre 

with an inhomogeneous internal texture pattern. Thus, sonographic appearance of typical MET 

lesion is the target or bull’s-eye appearance (i.e., hypoechoic centre surrounded by a 

hyperechoic rim).  

Atypical MET lesions can appear with extremely variable sonographic appearances 

ranging from anechoic, hypoechoic, isoechoic, hyperechoic and even with mixed echogenicity. 

Differentiating atypical MET lesions from certain HEM and HCC lesions is considerably 

difficult [179].  
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1.1.2.5 Malignant Liver Neoplasms 
Among all the malignant FLLs, HCC and MET are considered as most severe malignant 

liver neoplasms and are responsible for the third most common cause of cancer related deaths 

worldwide. HCC alone accounts for 1.25 million deaths world-wide because of the presence of 

large population with hepatitis C virus infection [206, 212]. The diagnosis of these malignant 

neoplasms can be delayed or completely missed, as most of these present no symptoms until 

the tumor has progressed to an advanced stage. Additionally, the symptoms, if present, can be 

extremely vague and similar to other diseases, conditions or disorders. If a patient has 

symptoms of the liver disease, a medical practitioner performs one or more procedures like 

physical examination, blood tests, diagnostic imaging, surgical biopsy or laparoscopy [29].  

Early detection and accurate staging of liver cancer is an important issue in histopathology and 

practical radiology.  

1.1.3 Ultrasound Imaging 
The field of medical imaging and image analysis has evolved due to collective efforts from 

many disciplines like medicine, engineering and basic sciences. In current medical practice, 

imaging procedures are one of the major bases for diagnosis apart from other procedures like 

pathological examinations and biopsy.  The overall objective of the medical imaging system is 

to acquire useful information about the physiological processes of the organs of the human 

body. The choice of the best imaging technique for any particular clinical application is based 

on several factors including resolution, speed, convenience, acceptability and safety. As an 

example, the US imaging modality is ideally suited for imaging the soft tissues, over other 

techniques accounting for all these factors [3, 4, 93, 119, 194]. The other imaging modalities 

used for diagnosis of liver diseases include computed tomography (CT) and magnetic 

resonance imaging (MRI) [54, 71]. The US, CT and MRI are all non-invasive imaging 

modalities. However, CT uses ionizing radiations, which are otherwise harmful for human 

body. On the other hand, US don’t produce any known harmful effects on any of the tissues 

examined during clinical practice. The clinical relevance of the US imaging modality is high 

worldwide due to its versatility, wide spread availability, portability and ease of operation in 

comparision to CT and MRI.   

The US is particularly useful for differentiating between cystic and solid FLLs, whereas 

CT and MRI are particularly sensitive for differential diagnosis between solid FLLs [54]. For 

differential diagnosis between solid FLLs, the radiologists don’t rely on US examinations only, 

because of varying overlapping sonographic appearances between them. Therefore, for 
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confirming their diagnosis the radiologists resort to administration of contrast agents, or  

additional imaging procedures (CT and MRI) which are costlier and time consuming, or  

invasive procedures such as biopsy. Furthermore, the diagnostic information extracted from the 

US examination is highly operator dependent; but this limitation can be overcome by proper 

training of the observer. In addition, obese patients can be difficult to scan with US and thus 

obtaining good quality diagnostic US images for these patients can be considerably difficult. 

Despite the disadvantages associated with US imaging modality, it is the most preferred option 

for screening of the liver, especially in the developing countries like India where most of the 

patients generally come from rural environment who cannot afford the financial burden of 

radiological procedures which are relatively costlier.  

The aim of the present research work is to do value addition in the diagnostic performance 

obtained by most commonly available conventional gray scale B-Mode US imaging modality 

for diagnosis of liver diseases.  

1.2 Sonographic Appearances of Different Liver  Image Classes used  in 
the Present Research Work 

The brief details of the sonographic appearances of liver image classes used in the present 

research work are depicted below: 

1.2.1 Sonographic Appearance of Normal Liver 
The sample of the Normal liver image from the image database is given in Fig. 1.1.  

 

Fig. 1.1 Conventional gray scale ultrasound liver images with appearance of normal liver. 
Note: Normal liver exhibits homogeneous echotexture with medium echogenicity. 
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The sonographic appearance of normal (NOR) liver is homogeneous with slightly 

increased echogenicity as compared to the right kidney [108, 183 - 187, 191]. The NOR liver 

appears as a mid gray organ with smooth outlining and homogeneous echotexture because of its 

uniform acoustic impedance on ultrasound. The smooth liver parenchyma is interrupted by 

anechoic structures such as vessels (i.e., the hepatic veins, portal veins, hepatic arteries, etc.  

The capsule of the liver appears hyperechoic especially at its border with the diaphragm. The 

diaphragm appears as a curvilinear bright reflector.  It is difficult to quantify the size of the 

liver as there are large variations in shape within normal subjects. The size of the liver is 

therefore assessed subjectively. All the NOR cases are considered as typical as there is no 

atypical appearance for normal liver tissue. 

1.2.2 Sonographic Appearance of Cirrhotic Liver 
The sample images of the cirrhotic liver from the image database is given in Fig. 1.2. 

 

Fig. 1.2 Conventional gray scale B-Mode liver ultrasound images with appearance of cirrhotic liver  
Note: Cirrhotic liver exhibits coarse echotexture with diffused uneven nodularity. 

The cirrhotic liver exhibits coarse echotexture with diffused uneven nodularity [71, 75, 

172]. Variation in size and shape of liver is observed depending upon severity of the liver 

cirrhosis.  

The right lobe is mostly affected by cirrhosis [172]. Cirrhotic liver has relatively large 

speckles; so the coarseness with respect to normal tissue will be different [213]. It is clinically 

believed that changes in the process of normal liver progressing towards cirrhosis can be 

related to echotextural changes in the liver parenchyma [213].  
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1.2.3 Sonographic Appearance of Typical FLLs 
The sample images of typical case of Cyst, HEM and MET lesions from the image 

database are shown in Fig. 1.3. 

 

Fig. 1.3 Conventional gray scale ultrasound liver images with appearance of: (a) Typical cyst (thin 
walled anechoic lesion with posterior acoustic enhancement); (b) Typical HEM (well circumscribed 
uniformly hyperechoic appearance); (c) Typical MET (target or bull’s-eye appearance i.e. hypoechoic 
centre surrounded by a hyperechoic rim). 

Typical cyst appears as round, anechoic lesion with posterior acoustic enhancement and 

well defined thin imperceptible wall. Typical HEM always appears as a well circumscribed 

uniformly hyperechoic lesion. The typical sonographic appearance of MET lesion is the target 

or bull’s-eye appearance (i.e., hypoechoic centre surrounded by a hyperechoic rim) [188, 190].  

1.2.4 Sonographic Appearance of Atypical FLLs 
The sample images for atypical case of Cyst, HEM and MET lesion are shown in Fig. 1.4. 

Fig. 1.4 Sample image variants of with appearance of : (a) Atypical cyst with internal echoes and 
irregular walls; (b) Atypical HEM with heterogeneous echotexture; (c) Hyperechoic atypical MET 
with heterogeneous echotexture. 

Atypical cysts always appear with internal echoes and thickened irregular walls. 

Differential diagnosis of cystic metastasis and atypical cyst from conventional gray scale B-
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Mode US can be quite challenging.  Atypical HEMs are a great mimic and definite diagnosis 

with conventional gray scale B-Mode US is difficult [104]. Atypical HEMs can be isoechoic or 

even hypoechoic mimicking the sonographic appearance of certain atypical MET and HCC 

lesions. Atypical MET lesions can appear with extremely variable sonographic appearances 

ranging from anechoic, hypoechoic, isoechoic, hyperechoic and even with mixed echogenicity. 

Differentiating atypical MET lesions from certain HEM and HCC lesions is considerably 

difficult [188, 190]. Sonographic Appearance of Small and Large HCCs  

1.2.5 Sonographic Appearance of Small and Large HCCs 
The sample images of SHCC and LHCC cases from the image database are shown in Fig. 

1.5. 

 
Fig. 1.5 Sample images of SHCC and LHCC variants from the image database:  (a) Variant of SHCC 
with mixed echogenicity (coexistence of hyper-echoic and iso-echoic areas); (b) Isoechoic SHCC; (c) 
Hypoechoic SHCC; (d-f) Heterogeneous echotexture represents complex and chaotic structure 
exhibited by LHCC due to coexistence of areas of necrosis, fibrosis and active growth areas.  
Note: Hypoechoic halo formation is visible in (d), Necrotic area is visible at centre of LHHC in (d). 

The sonographic appearances of Small HCC (SHCC) vary from hypoechoic to 

hyperechoic. Large HCC (LHCC) appears frequently with mixed echogenicity [62, 73, 188 - 

191]. Experienced participating radiologists opined that no sonographic appearance can be 

considered typical for HCC as there is wide variability of sonographic appearances even within 

small HCCs (SHCCs) and large HCCs (LHCCs). 
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1.3 Need For CAD Systems  for Liver Diseases using BMode Ultrasound 
Images  

The evolution of computer technology, medical image processing algorithms and artificial 

intelligence techniques have given ample opportunity to researchers to investigate the potential 

of computer-aided diagnostic systems for tissue characterization [54, 146, 176, 192]. Tissue 

characterization refers to quantitative analysis of tissue imaging features resulting in accurate 

distinction between normal and abnormal tissues. Thus, the result of tissue characterization is 

interpreted using numerical values. The overall aim of developing a computerized tissue 

characterization system is to provide additional diagnostic information about the underlying 

tissue which cannot be captured by visual inspection of B-Mode US images [210]. 

Ultrasonographic tissue characterization methods based on physical tissue models have 

been shown to be useful for improving the diagnostic accuracy of sonograms [2, 78]. 

Unfortunately, no physical model based diagnostic system have been developed for 

characterization of FLLs probably because these systems have been developed assuming single, 

homogeneous tissue model, whereas in case of FLLs the variability in sonographic appearances 

within different lesions is quite large and quite often large HCCs and MET lesions are 

inhomogeneous [209].  

For viable and useful sonographic characterization of FLLs, radiologists need to extract 

subtle sonographic information which may be difficult to extract visually, consistently and 

objectively [209]. It is, therefore, expected that sophisticated computerized analysis of the 

texture patters of FLLs can yield objective characterization of lesions [209]. 

1.4 Objectives of the Present Study 

The main objective of the research work presented in this thesis is to enhance the 

diagnostic potential of conventional gray scale B-Mode ultrasound for diagnosis of liver 

diseases by developing efficient CAD system designs using a comprehensive and 

representative image database. To achieve this, various research objectives were formulated 

according to the needs of the radiologists, based on the practical difficulties faced by them in 

routine clinical practice. These research objectives are described below:  

(i)  The collection of a comprehensive and representative image database: In order to 

develop efficient and robust classifier designs, it is necessary to train the classifiers with a 

comprehensive image database with representative images from each subclass. Thus, 

collection of a comprehensive image database with representative cases from each class, 
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including (a) normal liver, (b) cirrhotic liver, (c) typical and atypical cases of cyst, HEM 

and MET lesions and (e) small as well as large HHC cases is taken up as the first 

objective of the present research work. 

(ii)  The design, development and implementation of an efficient CAD system for normal and 

cirrhotic liver using B-Mode US images:  Liver cirrhosis, characterized irreversible 

hepatic fibrosis is the end stage of chronic diffuse liver disease which is considered as 

precursor to development of hepatocellular carcinoma (HCC), a primary malignant FLL. 

Therefore, it is understood that liver cirrhosis can be fatal if not diagnosed early, and it is 

believed that a CAD system for prediction of liver cirrhosis can support radiologist in 

better management of disease and adequate scheduling of treatment options. Therefore, 

design of a CAD system for classification between normal and cirrhotic liver is taken up 

as the next objective of the present research work.  

(iii)  The design, development and implementation of an efficient CAD system for normal, 

cirrhotic and HCC liver using B-Mode US images: In radiological practice, it is always 

considered difficult to diagnose, small FLLs (< 2 cm) developed on already nodular and 

coarse textured cirrhotic liver parenchyma. Experienced participating radiologists opined 

that in very rare cases, when HCC develops on normal liver parenchyma it can be easily 

diagnosed, but diagnosis of SHCC on cirrhotic liver parenchyma is considerably difficult. 

Thus, in order to monitor the progress of the disease from cirrhosis towards HCC, it is 

necessary to know whether the textural changes in the liver parenchyma are cirrhotic 

changes or indicate development of HCC. Therefore, the design of an efficient CAD 

system for characterization of normal, cirrhotic and HCC liver by using a comprehensive 

and representative image database consisting of (a) normal (b) cirrhotic and (c) SHCC 

and LHCC cases developed on cirrhotic liver, is taken up as the third objective of the 

present research work.  

(iv)  The design, development and implementation of an efficient CAD system for primary and 

secondary malignant liver lesions using B-Mode US images: The sonographic 

characterization of hepatocellular carcinomas (HCCs) and metastatic carcinomas (METs) 

presents a daunting challenge for radiologists, due to their highly overlapping 

sonographic appearances. As the characterization of malignant liver lesions as HCC or 

MET lesion is clinically significant for effective treatment and management of liver 

malignancies, the design of an efficient CAD system for binary classification between 

HCC and MET lesions by using a comprehensive and representative image database 
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consisting of (a) SHCC and LHCC cases and (b) typical and atypical MET cases, is taken 

up as the fourth objective of the present research work.  

(v)  The design, development and implementation of an efficient CAD system for focal liver 

lesions using B-Mode US images: Radiologists easily diagnose typical FLLs by their 

classic sonographic appearances; however, the differential diagnosis between atypical 

FLLs from B-Mode US images is quite challenging task faced by radiologist in routine 

practice, mainly due to the existence of overlapping sonographic appearances even within 

individual classes of atypical FLLs. Even then, B-Mode US is considered as preferred 

examination for characterization of FLLs, mainly due to its noninvasive, nonradioactive, 

inexpensive nature and real-time imaging capabilities. Therefore, a CAD system for 

classification of FLLs from B-Mode US images is highly desired. At the same time, it is 

worth mentioning that there are certain disadvantages associated with the use of 

conventional gray scale US for characterization of FLLs, namely, (a) limited sensitivity 

for detection of small FLLs (< 2 cm) developed on cirrhotic liver which is already nodular 

and coarse-textured [16, 20, 62, 73, 191], (b) sonographic appearance of HCC and MET 

lesions which are highly overlapping [16, 20, 62, 73, 152, 189], (c) sonographic 

appearances of cystic metastasis and atypical cyst which is often overlapping [16, 62], (d) 

sonographic appearances of atypical HEM, sometimes mimic with atypical MET and 

HCC, [21, 73, 179, 114, 209], and (e) difficulty to characterize isoechoic lesions with 

very slim difference in contrast between region inside the lesion and the surrounding liver 

parenchyma in some cases [114, 189].  

Thus, the design of an efficient CAD system for FLLs using a comprehensive and 

representative image database consisting of (a) typical and atypical cases of Cyst, HEM 

and MET lesions, (b) SHCC as well as LHCC cases, and (c) NOR liver cases, is taken up 

as the fifth objective of the present research work.  

(vi)  The design, development and implementation of an efficient hierarchical CAD system for 

focal liver lesions using B-Mode US images: The CAD system designs with hierarchically 

placed classifiers provide the possibility to go stepwise from the general classification 

problem, normal versus abnormal liver tissue to the more particular classification 

problem, which is the identification of exact liver abnormality. Such a hierarchical design 

of CAD system is analogous to biological system where sequentially placed layers of 

physiological neurons are arranged in a hierarchical manner in order to solve complex 

problems in a stepwise manner. 
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The design of hierarchical classifier is based on the idea of splitting the original problem 

of classifying the liver tissue in five classes into four sub-problems (i)  diagnosis between 

normal healthy liver tissue and abnormal liver tissue, (ii) diagnosis of abnormal liver 

tissue into Cyst and other lesion (OL) classes, (iii) diagnosis of liver tissue belonging to 

OL class as HEM (PBL) or malignant lesion (ML), and (iv) diagnosis of malignant lesion 

as HCC (PML) or MET (SML) classes. To develop an efficient hierarchical CAD system 

with texture features computed from regions inside and outside the lesions for diagnosis 

of FLLs using B-Mode liver ultrasound images is taken up as the sixth objective of the 

present research work. 

(viii)  The design, development and implementation of a neural network ensemble (NNE) based 

CAD system for FLLs using B-Mode US images: In human society, many experts each 

specializing in a particular task, meet to overcome a complicated problem in order to 

reach at a decision in a collective manner which is expected to be a better solution than 

can be given by an individual expert.  Therefore, in the area of medical decision making 

as well, CAD system frameworks using ensemble of classifiers are expected to yield 

better results in comparision to the CAD system frameworks build upon single multi-class 

classifier designs. Thus, the design of an efficient CAD framework based on ensemble of 

classifiers for FLLs using B-Mode liver US images is taken up as the seventh objective of 

the present research work.  

1.5 Organization of Thesis 

This thesis report is organized into ten chapters, as described below.  

(i)  Chapter 1 lays the foundation as to why ‘Analysis and Classification of B-Mode Liver 

Ultrasound Images’ is clinically significant. It begins with documenting facts like why 

liver diseases are considered seriously?  What types of liver diseases are most common?  

How these diseases affect the sonographic appearance of the liver tissue? Why B-Mode 

ultrasound examination is considered as primary choice for diagnosis of liver diseases? 

What are the problems faced by the radiologists for diagnosis of liver diseases using B-

Mode ultrasound which are encountered in clinical practice? Why there is a need to 

develop efficient CAD systems for diagnosis of liver diseases using B-Mode US images? 

What are the objectives of the present research work?  How these objectives were 

formulated? To conclude, the content documented in this chapter provides the basic 
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motivation regarding the fact that computer vision for liver US images can enhance the 

diagnostic potential of B-Mode US imaging modality. 

(ii)  Chapter 2 presents a brief literature review of the other related studies for diagnosis of 

liver diseases using B-Mode ultrasound images.  

(iii)  Chapter 3 lays the foundation of research methodology followed for undertaking this 

research work. The importance of medical ethics, while working with clinical human data 

is highlighted. The Chapter introduces the readers, to various set of protocols followed for 

undertaking this research work, i.e., the protocols followed for collection of 

comprehensive and representative image database, for assessment of images, for selection 

of ROIs, for selection of ROI size, for bifurcation of dataset into training dataset and 

testing dataset. Thus, the complete description of dataset used in the present research 

work is described in this Chapter.  

(iv) Chapter 4 gives a detailed description of exhaustive experimentation carried out for 

design of an efficient CAD system for characterization of normal and cirrhotic liver 

tissue. 

(v)  Chapter 5 provides description of the proposed CAD system for characterization of 

normal, cirrhotic and HCC liver tissue. 

(vi)  Chapter 6 describes the details of the proposed CAD system for characterization of 

primary and secondary malignant liver lesion. 

(vii)  Chapter 7 gives detailed description of exhaustive experimentation carried out in the 

present work in order to design an efficient CAD system for focal liver lesions using 

single multi-class classifier design.  

(viii)  Chapter 8 reports the experimentation carried out to design an efficient hybrid 

hierarchical CAD (HCAD) system for focal liver lesions using hierarchically placed 

classifiers. 

(ix)  Chapter 9 gives the detailed description of design of the proposed neural network 

ensemble (NNE) based CAD system for focal liver lesions using B-Mode US images.  

(x)  Chapter 10 summarizes the conclusions drawn from the exhaustive experimentation 

carried out in the present research work on “Analysis and Classification of B-Mode Liver 

US Images”. The future directions in which the work can be extended are also reported in 

this Chapter.   



Chapter 2 

Literature Review 

2.1 Introduction 

Medical imaging provide effective mapping of the anatomy of human body. The analysis 

of the patterns exhibited by the biological tissues through their images have been in routine 

clinical use for diagnostic purposes, as different tissue pathological conditions produce 

different image patterns. With the rapid development and proliferation of medical imaging 

technologies, the role of medical imaging has expanded beyond the simple visualization and 

inspection of anatomical structure. Computer assistance in medicine is widely used for analysis 

and classification of biomedical signal and images for diagnostic purposes [19, 22, 24, 30, 45, 

72, 80, 81, 86, 87, 125, 131, 132, 139, 143, 156, 157, 176, 198, 212]. The medical image 

analysis community has become preoccupied with the challenging problem of extracting 

clinically useful information of anatomic structures from images obtained through X-ray, CT, 

MRI, positron emission tomography (PET), ultrasound and other modalities [16, 20, 33, 62, 73, 

121, 122, ,126, 134, 159, 162, 181, 211, 212]. These imaging modalities provide exceptional 

views of internal anatomy and the experienced radiologists quantify and analyze the embedded 

structures. However, manual analysis, i.e., visualization of medical images by trained 

radiologists is often time consuming process besides being susceptible to human errors 

depending upon one’s expertise.  To overcome the bottlenecks associated with manual analysis, 

the need for computer-assisted approaches to analyze these images has been visualized by the 

medical professionals and this has resulted in increased application of computer–assisted 

medical imaging in the clinical diagnosis and research [203].  

The medical imaging modalities depend heavily on computer technology for creation and 

display of images. Using the computer, multidimensional digital images of physiological 

structures can be processed and manipulated to visualize hidden characteristic diagnostic 

features that are difficult to observe. Further, these features of interest can be quantified and 

analyzed using sophisticated computer programs and models to understand their behavior to 

help in diagnosis or to evaluate treatment protocols. In many critical radiological applications, 

the visualization and quantitative analysis of physiological structures provide unprecedented 

clinical information that is extremely valuable for diagnosis and treatment. The computerized 

processing and analysis of medical images provides a powerful tool to help physicians in this 

regard. The ability to improve diagnostic information from medical images can be further 

enhanced by designing computer- processing algorithms intelligently.  
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Thus, evolution of medical image processing and artificial intelligence techniques have 

given ample opportunity to researchers to investigate the potential of computer-aided 

diagnostic systems for characterization of tissues [54, 71].  

Tissue characterization refers to quantitative analysis of tissue imaging features resulting in 

accurate distinction between normal and abnormal tissues. Thus, the result of tissue 

characterization is interpreted using numerical values. The overall aim of developing a 

computerized tissue characterization system is to provide additional diagnostic information 

about the underlying tissue which cannot be captured by visual inspection of images [210]. 

This chapter presents a review of published literature on CAD systems for: (i) prediction of 

liver cirrhosis, (ii) for characterization of normal, cirrhotic and HCC Liver and, (iii) for 

characterization of FLLs using B-Mode US images. 

2.2 CAD Systems for Prediction of Liver Cirrhosis 

As cirrhosis increases the risk for development of HCC, which is the leading cause of 

mortality by the disease, there is a significant interest among researchers to develop CAD 

systems for classification between normal and cirrhotic liver tissue [100]. Imaging modalities 

like US, CT and MRI can be used for diagnosis of cirrhotic liver. MRI has more diagnostic 

potential than CT and US for accurate characterization of liver cirrhosis. However, US is 

always considered as a first line examination for evaluation of liver tissue because of its 

undisputed advantages over CT and MRI. Thus, CAD system designs for binary classification 

between normal and cirrhotic liver by using B-Mode liver US images have been proposed in 

few studies in the literature [67, 101, 118, 183, 184, 185, 192, 213] whereas, other related 

studies have proposed a CAD system for classification between normal healthy liver tissue and 

different grades of cirrhotic liver using B-Mode liver US images [26, 75, 168]. Mojsilovic et al. 

[118] experimented classification between normal and cirrhotic liver tissue by using various 

sets of texture descriptors and an Euclidean distance classifier. They considered energy, 

entropy, inertia and cluster shade amongst the GLCM (Gray-level co-occurrence matrix) 

texture features for different values of inter-pixel distance d = [2,…,12] and angle values [θ = 

0°, 45°, 90°, 135°]  and reported the classification accuracy of 75 % with Euclidean distance 

classifier. For Laws’ TEM (texture energy measures) method the first order, second order and 

higher order statistics evaluated from texture energy images obtained by convolution with 12 

Laws’ masks the classification accuracy of 70 % is reported by using Euclidian distance 

classifier. By using statistics calculated from pyramidal wavelet image decomposition and a 
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Euclidean distance classifier the classification accuracy of 85 % is reported. By using statistics 

derived from tree-structured wavelet image decomposition and a Euclidean distance classifier 

the classification accuracy of 92 % is reported. However, their study reports the classification 

accuracy of 92 % by using statistics derived from their proposed 2N×1-DWT image 

decomposition and a Euclidean distance classifier. Their study highlighted the disadvantages of 

using standard wavelet decomposition schemes and reported that their proposed 2N×1-DWT 

decomposition is better for texture characterization. However, the classification accuracy of  

92 % was obtained with both, tree structured wavelet transform and their proposed 2N×1-D 

wavelet transform, but it has been highlighted that in their study that 2N×1-DWT is more 

computationally efficient algorithm.  Huang et al. [67] firstly preprocessed the normal and 

cirrhotic liver US images by wavelet denoising and wavelet packet denoising methods before 

feature extraction and classification. Their study reported the use of four GLCM texture 

descriptors, i.e., four directions mean statistic of angular second moment (ASM), contrast, 

entropy and inverse difference moment (IDM) features extracted from preprocessed images 

along with a probabilistic neural network (PNN) classifier for achieving binary classification 

between normal and cirrhotic liver. For comparision they also experimented classification by 

using Gray level difference histogram statistics (GDHS) extracted from preprocessed images 

along with PNN classifier.  For GLCM statistics derived from images preprocessed by wavelet 

denoising method their study reports correct classification rate of 82.5 % for both normal and 

cirrhotic image classes. For GLCM statistics derived from images preprocessed by wavelet 

packet denoising method, their study reports classification accuracy of 85 % and 87.5 % for 

normal and cirrhotic images, respectively. For GDHS features derived from images 

preprocessed by wavelet denoising method their study reports classification accuracy of 77.5 % 

and 72.5 % for normal and cirrhotic image classes. For GDHS features derived from images 

preprocessed by wavelet packet denoising method their study reports correct classification rates 

of 80 % and 75 % for normal and cirrhotic images, respectively. They concluded that higher 

classification accuracy can be achieved by preprocessing the images using wavelet packet 

denoising and using GLCM statistics along with PNN classifier for achieving binary 

classification between normal and cirrhotic liver.  

Lu et al. [101] designed a CAD system for classification between normal and cirrhotic 

liver by capturing the variations of echotexture in normal and cirrhotic liver with respect to the 

echo texture of accompanying spleen. Their study reports, exhaustive experiments carried out 

with features derived from liver, features derived from liver and accompanying spleen and the 

effect of including fractal dimension feature on classification between normal and cirrhotic 
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liver. They reported the classification accuracy of 94.7 % by using combined feature set 

consisting of features extracted from liver regions only and features derived from liver and 

accompanying spleen (i.e., the ratio features, value of feature derived from liver region / value 

of feature derived from spleen region) as well as fractal dimension feature with feature space 

dimensionality reduction by using principal component analysis (PCA) and classification by 

using classification trees.  

Wan and Zhou, [192] attempted to classify normal and cirrhotic liver by using mean and 

energy texture features estimated from ten sub-band images obtained as a result of third level 

decomposition of the region of interest (ROI) by 2D-DWT with db4 wavelet filter resulting in a 

feature set of length 20. Their study also reports the use of mean and energy texture features 

derived from 16 sub-band images obtained as a result of second level decomposition of ROI by 

2D-WPT with db4 wavelet filter resulting in a feature set of length 32, for the binary 

classification task. The study reports the use of various feature ranking methods, like 

hypothesis test, fisher discriminant ratio (FDR) and ROC curves and various feature subset 

selection methods based on class seperability criteria, such as divergence, Bhattacharya 

distance and scatter matrix related criterion, for feature selection. The study reports the use of 

selected 2D-DWT and 2D-WPT features along with support vector machine (SVM) classifier 

for achieving binary classification between normal and cirrhotic liver. Their study concluded 

that 2D-WPT features can better discriminate normal and cirrhotic liver in comparision with 

2D-DWT features with the classification accuracy of 85.7 % and 77.6 %, respectively as 

obtained with support vector machine classifier using Leave one out (LOO) cross validation 

procedure. 

Virmani et al. [185] reported the use of GLCM-Mean and GLCM-Range texture features 

computed for inter pixel distance d = [1, 2, 3 4] individually along with a neural network (NN) 

classifier for classification between normal and cirrhotic liver tissue. The study reports the 

highest classification accuracy of 95.8 % with four directional GLCM-Mean texture features 

computed for d = 2. Among the GLCM-Range texture features the highest classification 

accuracy of 94.2 % has been observed for with GLCM-Range features computed for d = 4. 

Further, experiments carried out in the study indicate that all the four directional GLCM-Mean 

features computed for d = 2 yielding the highest classification accuracy of 95.8 % are not 

significant for the classification task. The correlation based feature selection (CFS) method 

yield that only seven GLCM-Mean features, i.e., angular second moment (ASM), contrast, 

variance, sum average, entropy, difference entropy and information measures of correlation-1 
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are least correlated to each other and most correlated to the class variable. These seven GLCM-

Mean selected features yielded the classification accuracy of 95 % using a NN classifier. 

Further, experiments were carried out by singular value decomposition (SVD) of four 

directions GLCMs obtained for d = 2. The mean of the first two singular values obtained after 

SVD of GLCMs corresponding to normal and cirrhotic ROIs were used as features for 

classification with NN classifier. It was observed that the mean of the first two characteristic 

singular values yielded the classification accuracy of 95 % for characterization of normal and 

cirrhotic liver. The study reports that features computed by SVD of GLCM yield a 

computationally efficient system for characterization of normal and cirrhotic liver tissue.  

Virmani et al. [183] attempted binary classification between normal and cirrhotic liver by 

features derived from Laws’ masks analysis. The study reports the use of CFS technique for 

determining the features which are least correlated to each other and most correlated to the 

class variable. The SVM and NN classifiers have been used for the classification task. Mean 

standard deviation, skewness, kurtosis and energy statistics were initially computed from 15 

rotation invariant texture energy images, resulting in a feature set of seventy five texture 

features for each ROI. CFS method yielded an optimal subset of eight discriminatory Laws’ 

texture features which were inputted to the NN and SVM classifiers. The study reports the 

classification accuracy of 91.7 % and 92.5 % with NN and SVM classifiers. The results of the 

study demonstrate that only eight Laws’ texture features are adequate to account for textural 

variations exhibited by normal and cirrhotic ROIs.  

Virmani et al. [184] reports the use of first order statistics (FOS), i.e., average gray level, 

standard deviation, smoothness, skewness, entropy and uniformity texture features along with 

NN classifier for classification between normal and cirrhotic ROIs. The study reports the 

classification accuracy of 93.3 % with six FOS features and a NN classifier. The CFS method 

yielded three discriminatory FOS features, i.e., average gray level, standard deviation, and 

uniformity which were found to be least correlated with each other and most correlated with the 

class variable. The classification accuracy of 92.5 % is reported by using these FOS features 

along with NN classifier. The study proposed a liver state index (LSI) which was obtained by 

the three FOS features selected by CFS method. It was demonstrated that if the value of the LSI 

statistic is more than three the ROI belongs to normal class, otherwise and if the LSI statistic is 

less than or equal to the threshold value of three the ROI is labeled as belonging to cirrhotic 

class.  It is documented that LSI statistic can be used for rapid prediction of cirrhosis as it can 
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be computed on the fly as soon as the radiologist marks the ROI. Therefore the LSI statistic can 

be used as a second opinion tool for prediction of cirrhosis in a clinical environment. 

Zhou et al. [213] used features extracted from M-Mode and B-Mode ultrasound images 

along with fusion of selected features using sequential forward search (SFS) method and 

classification using fisher linear decision rule to develop a CAD system for binary 

classification between normal and cirrhotic liver.  The study reports the use of texture features 

including first order statistics (i.e., mean, variance, skewness and kurtosis), gray level run 

length statistics (run percentage), gray level difference statistics ( mean of adjacent pixels gray 

level difference statistics) derived from B-Mode US images of normal and cirrhotic liver. The 

study also reports the use of features derived from motion curve (i.e., amplitude and standard 

deviation of the motion curve) obtained from M-Mode ultrasound images of normal and 

cirrhotic liver. To obtain a subset of discriminatory features the sensitivity analysis of each 

feature was carried out by SFS technique and most sensitive features were fused for use with 

fisher linear discriminant classifier. Their study demonstrates that 100 % classification 

accuracy can be achieved by using a combined feature subset of 20 selected features. However, 

their experiments have been carried out on a limited and unbalanced dataset, i.e., total 43 ROIs 

(13 cirrhotic and 30 normal) and their methodology requires both the M-Mode and B-Mode 

image of the patient to be acquired.   

Jeong et al. [75] attempted classification between normal and cirrhotic liver by calculating 

the representative coarseness level (RCL) parameter which is computed from texture features 

computed from the liver region and texture feature computed from the spleen region. The RCL 

parameters use in this study includes texture features such as edge density, GLCM features, run 

length matrix features, statistical feature matrix (SFM) features, and difference histogram 

variation based features. The linear combination of these computed RCL parameters were used 

to define a classifier for predicting the degree of severity of liver cirrhosis. For determining the 

coefficients the use of simple Levenberg-Marquardt minimization as training step is reported. 

The study demonstrates good quantitative correlation of classifier performance with the clinical 

diagnosis for normal and cirrhotic liver classes. 

Sun et al. [168] experimented, classification between normal liver tissue and different 

grades of cirrhosis including type-1 cirrhosis (i.e., cirrhosis with grade 1), type-2 cirrhosis (i.e., 

cirrhosis with grade 2) and type-3 cirrhosis (i.e., most serious case). The study reports the 

preprocessing the US images by fast discrete wavelet transform (FDWT) to cut down the size 

of patterns fed to the three layer NN based on the back-propagation method. The study 
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demonstrates the use of information located in LL band indicating that after sub-band 

decomposition of the US image, nearly seventy five percent of the energy is concentrated in the 

LL band and only little energy exists in LH band and practically no features lie in HL and HH 

bands. However, the study reports the drawback of conventional multilayer NN classifier, 

highlighting that data carried by the last hidden layer doesn’t utilize the information carried by 

the input data fully. The study reports improvement in results by first preprocessing the B-Scan 

patterns with wavelet transform and then feeding the compressed data into a pyramid neural 

network to diagnose the severity of cirrhosis. The results of the study indicate that the proposed 

CAD system using pyramid neural network results in better diagnosis especially for diagnosis 

between normal liver tissue and type-1 cirrhosis in comparision with the CAD design using 

traditional multilayer NN classifier.   

Cao et al. [26] experimented classification between normal healthy liver tissue and fibrosis 

(fibrosis is a precursor for development of cirrhosis), since fibrosis is reversible, so it is 

clinically significant to detect fibrosis at an early stage. The study reports the effect of varying 

scanning parameters (US machine settings) on classification results. The images of the normal 

subjects and patients with liver fibrosis were acquired under different imaging conditions such 

as, by varying emission frequency as 2.5, 3.5, 4.5 and 7 MHz, and by gain from 95 to 170 in 

addition different TGC settings were also taken into account. The study experimented 

classification using linear fisher classifier and SVM classifier using the joint feature set 

consisting of fractal dimension (FD) and entropies of texture edge co-occurrence matrix. The 

results of the study indicate that while FD changes significantly with change in US machine 

settings, the entropy values are not sensitive to change in US machine settings.  The 

classification accuracy obtained by using entropy features is much more satisfactory in 

comparision with classification accuracy obtained using FD features.   

Yeh et al. [208] experimented, classification between normal liver tissue and different 

grades of fibrosis by using features derived from GLCM and non-separable wavelet (NSW) 

transform along with SVM classifier. Their study reports fibrosis grading into six classes, i.e., 

from 0 to 5, 0 being normal liver tissue and 5 being severe cirrhosis. The labels of the classes 

were determined by histological examination. The study experimented classification by 

dividing the dataset into two, three, four, five and six classes, respectively. The classification 

accuracy values obtained for two classes, three classes, four classes, and five classes with SVM 

classifier are 91 %, 85 %, 81 % and 72 %, respectively. Thus their study indicates that the 

performance of their proposed CAD system decreases as the number of classes increases. 
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Mitrea et al. [109] proposed a CAD system for classification between normal, hepatitis and 

cirrhosis liver US image classes based on GLCM and fractal dimension features and k-nearest 

neighbor classifier.  

Wu et al. [202] experimented, the design of a CAD system for distinction between six 

grades of cirrhosis from B-Mode liver US images based on evolutionary feature construction 

and automatic ROI selection. The work reports the use self organization properties of genetic 

algorithm (GA) for automatic selection of ROIs and evolutionary optimization properties of 

GA for building the feature set. The images are first filtered by Gaussian filter so that the 

speckle noise is removed without destroying the speckle pattern of the ROI. In the feature 

extraction module, the GLCM and fractal dimension features are computed from ROIs and 

SVM is used as classifier. The study highlights the use of GA to optimize the selection of ROIs 

and to obtain stable parameters for the SVM classifier. The study reports improved 

classification results in comparison with other related studies including [26, 109, 208]. 

2.3 CAD  Systems  for  Characterization  of  Normal,  Cirrhotic  and  HCC 
Liver 

Differentiating the texture patterns exhibited by hepatocellular carcinoma (HCC) 

developed on cirrhotic liver from its preceding stage of cirrhosis presents a daunting challenge 

for radiologists, as high variability exists in terms of echo patterns, i.e., texture, even within 

small HCCs (SHCCs).  These SHCCs frequently appear as hypoechoic nodule, (i.e., solid 

tumor nodule without necrosis) or as hyperechoic nodule (i.e., solid tumor likely containing 

fat). In very few cases, SHCCs can also be isoechoic (i.e., same echogenicity as that of 

surrounding liver parenchyma). The HCC lesion may also exhibit hyperechoic echotexture with 

a hypoechoic halo (i.e., rim like structure surrounding HCC lesion) or alternatively hypoechoic 

echotexture with hyperechoic halo sign. Thus, the visual appearance of HCCs on 

ultrasonography examination offers a high degree of variability and therefore the subjective 

diagnosis of SHCC during screening is a difficult task even for experienced radiologists.   The 

study in [34] reported, 64 % sensitivity for detecting SHCCs using B-Mode US images.  Large 

HCCs (LHCCs) appear much more complex and heterogeneous with mixed echogenicity (i.e., 

coarse irregular internal echoes) as a result of areas of necrosis, fibrosis as well as active 

growth areas.  
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In study [62], it has been reported that US has limited sensitivity for detection of lesions in 

cirrhotic liver, though contrast enhance ultrasonography (CEUS) improves the sensitivity to 85 

% for HCC lesions greater than 1 cm.  

Given the fact that there is high variability between sonographic appearances of HCC 

lesions and especially the fact that the SHCC lesions are quite difficult to diagnose in already 

nodular cirrhotic liver parenchyma there has been a significant zeal in the research community 

to design a CAD system for characterization of normal, cirrhotic and HCC liver image classes. 

Brief details of CAD systems proposed in literature for characterization of normal, cirrhotic and 

HCC liver from B-Mode US images are given in Table 2.1. 

Table 2.1 Brief details of CAD systems proposed in literature for characterization of normal, 
cirrhotic and HCC liver 
 Dataset Description Classification Performance: SVM 

Author’s 
 

Patients Images 
per  class 

No. of 
ROIs 

ROI Size ICANOR(%) ICACIRR(%) ICAHCC(%) OCA(%) 

Wu et al. 
[200] 45 15 90 32×32 86.6 100 83.3 90.0 

Wu et al. 
[199] - - 90 30×30 80.0 90.0 93.3 87.8 

Le et al. 
[97] - - 150 64×64 92.0 100 96.0 96.0 

Le et al. 
[95] - - 432 64×64 100 91.5 94.5 95.3 

Note: ICA: Individual class accuracy, OCA: Overall classification accuracy.  

Wu et al. [200] compared the performance of traditional feature extraction methods like 

spatial gray level dependence matrix (SGLDM), Fourier power spectrum (FPS), gray level 

difference statistics (GLDS), Laws’ texture energy measures (TEM) along with bayes classifier 

for classification of liver tissue as normal, cirrhotic or HCC. The experiments carried out in this 

study indicate that these traditional texture feature extraction methods reports low classification 

accuracy. The study highlights the use of multiresolution texture descriptors, i.e., fractal 

dimension (roughness) and lacunarity (granularity) of sub-images obtained at various resolution 

levels for characterization of normal, cirrhosis and HCC liver [200]. The study reports 

exhaustive experimentation using various combinations of multiresolution texture descriptors 

along with traditional texture feature extraction methods for the classification task. The results 

of the study indicate that 90 % classification accuracy can be achieved by using the 

combination of roughness and granularity texture descriptors computed at various resolutions 

along with FPS based features by using bayes classifier.  
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Wu and Chen [199] proposed multi-threshold dimension feature vector along with k-NN 

classifier for characterization between normal, cirrhotic and HCC liver. The features used in 

this study are reported to be invariant to geometric transformation and linear gray level 

transformation and yield the classification of 88 % for distinction between normal, cirrhotic and 

HCC liver. The study also reports the comparision of the results obtained with multi-threshold 

dimension feature vector with the feature vector consisting of 12 SGLDM features along with 

kNN classifier. It was observed that SGLDM features yield lower classification accuracy of 

78.9 % for the classification task.  

Lee et al. [97] used multiresolution fractal feature vector based on M-band wavelet 

transform instead of fractal feature vector based on standard pyramidal wavelet transform as 

used in study [200]. The study reports the use of two statistical classifiers (i.e., bayes classifier 

and k-nearest neighbor classifier) and there different artificial neural networks (i.e., back 

propagation neural network, probabilistic neural network and modified probabilistic neural 

network) for the classification of liver tissue into normal, cirrhotic and HCC classes.  The 

exhaustive experiments carried out in their study, indicates that by using statistical classifiers 

the classification accuracy of 90.7 % and by using artificial neural networks the classification 

accuracy of at least 92 % is obtained for the classification task. The study reports the design of 

CAD system using fractal feature vector based on M-Band wavelet transform along with 

artificial neural network as an attractive alternative for the classification task. 

 Lee et al. [96] used the same multiresolution fractal feature vector based on M-band 

wavelet transform for design of hierarchical CAD using bayes classifier for classification of 

normal, cirrhotic and HCC liver. The first binary classifier yields classification accuracy of 

92.2 % for distinction between normal and abnormal liver (i.e., by considering cirrhotic and 

HCC liver as abnormal liver class). The second binary classifier which provides classification 

of abnormal class as cirrhotic or HCC liver yielded the classification accuracy of 93.6 % for the 

classification task.  

 Lee et al. [94] used the same multiresolution fractal feature vector based on M band 

wavelet transform as used in [96, 97], but important modification was in the method of 

determining the fractal dimension. The study reports the drawback of box counting algorithm 

for determining the fractal dimension and highlights that the estimation errors in computing the 

fractal dimension due to presence of speckle noise inherent in ultrasound images can be 

overcome by their proposed modified box counting method. The results of the study indicate, 

that the classification accuracy for characterization of liver tissue as normal, cirrhotic and HCC 
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is enhanced to 95 % by their robust and efficient approach to compute fractal dimension instead 

of the standard box counting method along with the use of bayes classifier.  

The study in [95] reported the use of same fractal feature vector obtained by computing the 

fractal dimension at various resolutions using M-band wavelet transform as used in the 

previous researches [94, 96, 97]   along with fusion of four classifiers, i.e., bayes classifier, 

fuzzy kNN classifier, back-propagation neural network classifier (BPNN) and modified 

probabilistic neural network classifier (MPNN) by using five different fusion schemes, i.e., 

majority rule, Borda count, averaging, weighted averaging and fuzzy integral fusion for 

characterization of liver tissue as normal, cirrhotic and HCC liver. It is reported that the fuzzy 

integral fusion of the four classifiers yield the maximum correct classification rate of 100 % , 

91.5 %, and 94.5 % and for normal, cirrhosis and HCC classes,  respectively.  

 In yet another related research reported in [111], the authors have attempted to obtain 

textural models for detection of hepatocellular carcinoma in early and advances stages. Their 

study reports investigations made on finding relevant texture features for separating the binary 

classes which eventually leads to the development of hepatocellular carcinoma, like cirrhosis 

without HCC and cirrhotic parenchyma around HCC, cirrhotic parenchyma around HCC and 

incipient HCC, cirrhotic parenchyma around HCC and advanced HCC, incipient HCC and 

advanced HCC, incipient HCC and normal liver as well as advanced HCC and normal liver.  

The study in [112] defined incipient HCC as tumor of size varying between 1.5 to 2 cm and 

advanced HCC of size greater than 2cms. In their study, binary classifications like hyper-

echogenic HCC vs. surrounding parenchyma around HCC and hypo-echogenic HCC vs. 

surrounding parenchyma around HCC is investigated.  

2.4 CAD Systems for Characterization of Focal Liver Lesions 

 The differential diagnosis between focal liver lesions (FLLs) from B-Mode ultrasound 

(US) images is broad due to existence of wide variety of sonographic appearances even within 

individual classes of FLLs [16, 20, 62, 73, 126, 162]. Even then, B-Mode US is considered as a 

primary choice for characterization of FLLs mainly due to its nonionising, noninvasive, 

inexpensive nature and real time imaging capabilities [20, 162]. Therefore an efficient 

computer-aided diagnostic (CAD) system for classification of FLLs based on conventional gray 

scale B-Mode US images is highly desired.  There are very few studies reported in literature for 

characterization of FLLs using B-Mode US images, the brief detail of these studies [114, 167, 

138, 189, 209] is depicted in Table 2.2.  
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Table 2.2 Brief details of studies for classification of FLLs using B-Mode US 
Authors (year) Image Class Dataset Description 
  Patients Images per class No. of ROIs ROI size  

Sujana et al. 
[167] (1996)  
 

NOR, HEM, 
Malignant 

- - 113 10×10pixels 

Classifier used Distribution of ROIs for classifier design 
Neural Network, 
LDA 

Training data Testing Data 
NOR(40) 
HEM(15) 
Malignant (30) 

NOR(13) 
HEM(5) 
Malignant(10) 

Features used:               FOS, GLCM and GLRLM features  
Yoshida et al. 
(2003) [209] 

HEM , Malignant 
(HCC+MET) 

44 HEM(17) 
HCC(11) 
MET(16) 

193 64×64pixels 

Classifier used Cross validation procedure 
Neural Network HEM(50), HCC(87) and MET(56) 
Features used:               Wavelet packet texture features 

Poonguzhali et 
al. (2008) [138] 

NOR, Cyst, HEM 
and Malignant 

- - 120 10×10pixels 

Classifier used Cross validation procedure 
Neural Network NOR(30) 

Cyst(30) 
HEM(30) 
Malignant (30) 

Features used:            AC, Edge frequency, GLCM and Laws’ TEM features 
Mittal, et al. 
[114] (2011)  

NOR, Cyst, 
HEM,HCC 
and MET 

88 NOR(16), 
Cyst (17)  
HEM18) 
HCC(15) and 
MET(45) 

 800 25×25pixels 
 

Classifier used Training data Validation data Testing data 
Neural Network NOR(50) 

Cyst (50) 
HEM(50) 
HCC(50) 
MET(50) 

NOR(10) 
Cyst(10) 
HEM(10) 
HCC(10)  
MET(10) 

NOR(172) 
Cyst (6) 
HEM(30) 
HCC(167)  
MET(125) 

Features used:            FOS, GLCM, GLRLM, GWT and Laws’ TEM features 
Jeon, et al. [74] 
(2013) 

Cyst, HEM, and 
Malignant 

102 Cyst(50), 
HEM(50), 
Malignant(50) 

150 variable  
ROI sizes 

Classifier used Cross Validation Procedure 
SVM Cyst(50) 

HEM(50) 
Malignant(50) 

Features used:            FOS, GLCM, AMI, GWT, AC and Laws’ TEM features 
Note: AC: Autocorrelation, AMI: Algebraic moment invariant features.  
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The study in [114] used statistical features based on first order statistics (FOS), second order 

statistics, i.e., gray level co-occurrence matrix (GLCM), higher order statistics, i.e. gray level 

run length matrix (GLRLM), spectral features, i.e., Gabor wavelet transform (GWT) based 

features and spatial filtering based features, i.e., Laws’ texture features along with two stage 

neural network classification module for characterization of liver tissue as NOR, Cyst, HEM, 

HCC and MET liver.  

 The study in [167] reported classification between NOR, benign and malignant liver 

classes by using FOS and GLRLM statistical features with linear discriminant analysis and a 

neural network (NN) classifier.  

  The study in [148] used GLCM, autocorrelation, Laws’ and edge frequency based texture 

features and a NN classifier for classification of NOR, Cyst, HEM and malignant liver classes. 

In researches [148, 167] malignant lesions are considered as a single class; however, the 

diagnosis of malignant lesion as HCC or MET is clinically significant for effective treatment 

and management of liver malignancies [20, 162].  

 In another related study [209], multiscale wavelet packet texture descriptors are used with 

NN classifier for binary classification tasks, i.e., HEM vs. HCC, HEM vs. MET and HCC vs. 

MET. Their study reports, preprocessing the images by 5×5 median filter for speckle noise 

removal and by second order polynomial fitting technique based on least square method for 

background trend correction. The preprocessing was carried out to reduce the dependence 

sonographic appearances of the lesions on time-gain settings of the scanners and patients 

attenuation [209].  

 The multiscale texture features obtained from the sub-band images obtained from wavelet 

packet decomposition of the ROI images were fed to the NN classifier at each level of 

decomposition. The features extracted from sub-band images were included in the feature set if 

they yielded higher classification accuracy. Thus, repeated classification experiments using the 

extracted multiresolution features and a NN classifier were used to decide whether further 

decomposition is required or not. At last, the feature set of multiresolution features yielding the 

maximum classification accuracy was subjected to backward elimination method in which one 

by one the feature is eliminated from the feature set until the classification accuracy starts to 

decrease. The subset of features obtained after applying backward elimination is considered to 

be optimal feature set for the considered binary classification task.  The study reports good 

results for binary classification between HEM and HCC, HEM and MET lesions in comparison 

with the classification performance obtained for HCC and MET liver image classes. The results 
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of the study indicate that multiresolution texture features and a NN classifier can be used for 

distinction between benign and malignant FFLs [209].  

 As per the best of the author’s knowledge, only one study reported in literature, 

experimented classification between five liver image classes, i.e., Cyst, HEM, HCC,MET and 

NOR liver [114] by using a large feature vector consisting of 208 texture features extracted by 

using FOS, GLCM, GLRLM, GWT and Laws’ feature extraction methods. Their proposed 

CAD system design, consisted of two stage classification system with total 11 NNs (i.e., a 

single five class NN in the first stage and 10 binary NNs in the second stage). However, the 

study reports good classification accuracy of 86.4 % with US images enhanced with modified 

anisotropic diffusion method [114]. One of the limitations of the proposed CAD in [114] is that 

their design doesn’t use any feature selection or feature dimensionality reduction methodology 

to get rid of superfluous and redundant features in a large feature set consisting of 208 texture 

features. In the present work, in order to design efficient CAD systems feature space 

dimensionality reduction is carried out by using principal component analysis (PCA). Also, the 

study in [114] considered the HCC cases as typical and atypical HCCs, given the fact that there 

are large variations in sonographic appearances within SHCCs and even within                   

LHCCs, many other studies opined that HCC doesn’t have any typical appearance, accordingly 

these studies have considered bifurcation of HCC class into small and large HCCs classes to 

represent the variability present in HCC class [188-191]. From studies related to classification 

of FLLs [114, 148, 167, 209], it is understood that statistical, spectral and spatial filtering based 

Laws’ texture features are important for characterization of FLLs using B-Mode US images. 

 Another concern while designing a CAD system is the choice of size for region of interest 

(ROI), in [167] the ROI size of 10×10 pixels is considered, however in [114, 148] the ROI size 

of 25×25 pixels has been used for computing texture features. It is worth mentioning that the 

use of 10×10 pixels and even 25×25 pixels as ROI size yields smaller number of pixels in 

comparison to minimum 800 pixels required to estimate reliable statistics [14, 50 ,76, 191]. The 

study in [209] reports the use of 64×64 pixels as ROI size, possibly because they used high-

resolution scanned images instead of real US images. It is otherwise difficult to select such a 

large ROI size keeping in view the size of small lesions and resolution of images obtained from 

US machines. In the present work ROI size of 32×32 pixels is considered which gives a sample 

size of 1024 pixels, adequate for computing reliable estimates for texture parameters. 
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2.5 Concluding Remarks  

The conclusions drawn from the literature survey of the related studies are depicted below:  

(i)  The brief summary of the literature review available on the problem of characterizing 

normal, cirrhosis and HCC liver images indicate that there has been much focus on using 

fractal dimension information with multiresolution analysis to tackle the characterization 

problem, as it has been mentioned that the normal liver tissue has smooth texture, 

cirrhotic liver has rough texture in comparison to normal liver and roughness of HCC is 

even higher than that of cirrhotic tissue. At the same time, it is worth mentioning that this 

cannot always be guaranteed and will heavily depend upon the database used for the 

classifier design. In actuality, HCCs exhibit high variability in terms of their sonographic 

appearances, for example, when a SHCC appears as homogeneously hyperechoic lesion 

the roughness of the HCC ROI is usually lesser than that of cirrhotic ROI. Thus, it is very 

important to design the classifier with a comprehensive and representative image database 

consisting of a variety of SHCC and LHCC lesions. 

(ii)  From, the studies related to classification of FLLs  [114, 138, 167, 189, 209], it can also 

be concluded that statistical, spectral and spatial filtering based Laws’ texture features are 

important for characterization of FLLs using B-Mode US images. It is worth mentioning, 

that these studies have used texture samples from regions inside the lesion for differential 

diagnosis between FLLs. Also, only a single study [114] has considered five-class 

classification of FLLs using B-Mode US images, Other studies have either not considered 

MET image class or considered HCC and MET image as single malignant class. It is 

worth mentioning that diagnosis as to whether the ROI is HCC or MET is clinically 

significant, for proper management of liver malignancies. Also, it is important to 

consider, HCC and MET as separate image classes due to overlapping sonographic 

appearances between HCCs and atypical MET lesions due to which the subjective 

differential diagnosis is difficult.  

(iii)  It is understood that differential diagnosis between HCC and MET lesion is clinically 

significant as it can help the physician to follow the right treatment protocol and thereby 

aid in proper management of liver malignancies, but still a CAD system for binary 

classification between HCC and MET lesions using B-Mode US images has not been 

experimented yet.  

(iv)  The advantage with the hierarchical CAD designs for characterization of FLLs is that 

these designs provide the possibility to go stepwise from the general classification 
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problem, i.e., normal versus abnormal liver tissue, to the more particular classification 

problem which is the identification of exact liver abnormality with hierarchically placed 

classifiers. It is worth mentioning that the design of a hierarchical CAD system for 

characterization of FLLs using B-Mode US images have not been experimented yet, 

while the research study [54] experimented a hierarchical CAD for FLLs using liver CT 

images. The hierarchical CAD system design in [54] used FOS and GLCM texture 

features with 3 binary NN classifiers arranged in a hierarchical framework for stepwise 

classification between NOR or abnormal (ABNOR), cyst or other lesion (OL) and HEM 

or HCC image classes.  

(v)  The selection of ROI size plays important role as texture measurements are sensitive to 

ROI size. In other studies, it has been demonstrated that ROI size must be at least 800 

pixels to provide good sampling distribution for estimating reliable statistics [50, 76, 161] 

whereas in few other related researches, a sample size of at least 1000 pixels is suggested 

to estimate reliable statistics [15, 48]. 

 

 

 

 

 

 



Chapter 3 

Methodology 

3.1 Introduction  

The research is a scientific investigation carried out in a systematic way for search of 

knowledge on a specific topic. Research in any specific domain or branch of knowledge should 

yields new facts by probing deeper and deeper for understanding the unknown. It comprises   

many crucial steps like defining and redefining the problem, formulation of possible solutions, 

collection, organization and evaluation of data, making deductions by careful observation, 

comparison and exhaustive experimentation and finally arriving at some conclusions.  

Formulation of research objectives and the collection of image database are crucial for 

design of experimental work flow for a researcher working in the area of medical image 

processing. The research objectives are to be framed according to the needs of the radiologists 

based on the practical difficulties faced by them during their routine practice. Thus, the 

formulation of research objectives require detailed discussions and interactive sessions with the 

domain experts from medical fraternity. Collection of a comprehensive and representative 

image database is time consuming as it depends upon the frequency of patients with a particular 

disease visiting the hospital.  

For the researchers working specifically in the area of analysis and classification of liver 

ultrasound (US) images, collection of a comprehensive database representative of all the image 

subclasses is an absolute pre-requisite. Furthermore, due to non-availability of the standard 

reference image database, there is absolutely no means of reliable and direct quantitative 

comparison of results reported by other research studies in this area. As a result, most of the 

research groups working in the area of classification of liver ultrasound images have to depend 

upon image databases acquired by them.  

The development of a comprehensive database of B-Mode liver US images, with 

representative images from all the subclasses requires the consent, cooperation and time 

involvement of the radiologists. Thus, a Memorandum of Understanding (MoU) was signed, 

between Indian Institute of Technology, Roorkee (IITR) and Post Graduate Institute of Medical 

Education and Research (PGIMER), Chandigarh, to support each other in this research work.   

The medical images are directly related to the patients; therefore it is important to obtain 

ethical clearance as well as the informed consent of the patients before image acquisition. It is 

also necessary to maintain their confidentiality, dignity and anonymity.  In order to carry out 
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the research work, an experimental work flow was designed and a comprehensive image 

database of B-Mode liver US images with representative cases from all the image subclasses 

was developed during the time period from March 2010 to March 2012.  

This Chapter gives brief outline of the proposed interactive system for diagnosis of liver 

diseases by using B-Mode liver US images. The description of the dataset used in the present 

research work is given in detail. The protocols followed for data collection, extraction of ROIs 

and selection of ROI size for the present research work are also described.  

3.2 Proposed Interactive System for Diagnosis of Liver Diseases  

The block diagram of the proposed interactive system for diagnosis of liver diseases 

(earlier shown as Fig.1 in Abstract), is revisited here in Fig. 3.1. 

The proposed interactive system for diagnosis of liver diseases consists of two modules. 

The Module 1 is designed to assist or provide second opinion to the radiologist in cases where 

the radiologist has confusion within normal, cirrhosis, HCC or MET liver image classes. Since 

cirrhosis is considered as a pre-cursor to development of HCC and it is considerably difficult to 

diagnose small HCCs developed on already nodular cirrhotic liver parenchyma. The diagnosis 

as to whether the parenchymal changes are cirrhotic or indicative of the development of HCC is 

absolutely necessary. Furthermore since there is considerable overlap between the sonographic 

appearances of HCC and MET lesions, the characterization of liver malignancies as HCC or 

MET lesions is absolutely essential for effective treatment of liver malignancies. Accordingly, 

the Module 1 incorporates three different CAD systems, i.e., CAD System-I for binary 

classification between normal and cirrhotic liver tissue, CAD System-II for classification 

between normal, cirrhotic and HCC liver, and CAD System-III for binary classification 

between HCC and metastasis (MET) liver malignancies. The region of interest (ROI) extracted 

by the radiologist, is fed to CAD System-I for characterization between normal and cirrhotic 

liver tissue. Although the design of the proposed CAD System-I yields 100 % accuracy for the 

characterization between normal and cirrhotic liver tissue, but considering the fact that the 

sensitivity of US for detection of SHCCs developed on cirrhotic liver is severely limited, it is 

quite possible that the ROI belonging to cirrhotic liver class may actually represent a HCC. 

Therefore, the ROI which is predicted as cirrhotic by the CAD System-I is passed through 

CAD System-II for characterization between normal, cirrhotic and HCC liver tissue. If the 

prediction of the CAD System-II for a ROI is cirrhosis it gives greater confidence to the 

radiologist that the liver tissue is cirrhotic. However, if for a particular ROI the decision of the 
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CAD System-II is HCC, it is advised to investigate whether the ROI belongs to a HCC lesion 

or a MET lesion, because of their significant overlapping sonographic appearances. Although, 

both HCC and MET lesions represents malignant liver lesions but differential diagnosis 

between HCC and MET lesion is absolutely necessary for better management of the disease 

and adequate scheduling of treatment options. Therefore, if the ROI is predicted as HCC by 

CAD System-II, it is fed to CAD System-III for binary classification between HCC and MET 

liver tissue. If it is predicted as HCC, it gives greater confidence to the radiologist that the ROI 

represents HCC, or else if the ROI is predicted as MET, it is recommended to pass the ROI 

through CAD System-IV of Module 2 of the proposed interactive system for its differential 

diagnosis with other FLLs.  

 

Fig. 3.1 Block diagram of the proposed interactive system for diagnosis of liver diseases. 
Note: IROIs: Inside lesion regions of interest; SROIs: Surrounding lesion regions of interest. 

Exhaustive experimentation was carried out for the design of efficient classifiers for CAD 

system-I, CAD System-II, CAD System-III and CAD System-IV. The radiologists observe the 
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texture patterns of the IROIs (inside regions of interest, i.e. regions of interest extracted from 

region inside the lesion boundary) as well as the texture patterns of the SROIs (surrounding 

regions of interest, i.e., regions of interest extracted from liver parenchyma surrounding the 

lesion and approximately at the same depth as that of the centre of the lesion) for making 

differential diagnosis between HCC and MET lesions using B-Mode US images. Accordingly, 

texture feature extraction from IROIs and SROIs were carried out for design of CAD System-

III for classification between HCC and MET lesion.  Therefore, if the prediction of CAD 

System-II is HCC, the radiologist is required to mark IROI as well as SROI for feature 

extraction. The results obtained from exhaustive experiments carried out in the present work 

indicate that texture feature extraction from both IROIs and SROIs enhances the efficiency of 

the CAD System-III for classification between HCC and MET lesions.  

The Module 2 of the proposed interactive system for diagnosis of liver diseases is designed 

for differential diagnosis between FLLs by using B-Mode liver US images.  Accordingly, the 

Module 2 incorporates a CAD System-IV for classification between Normal, Cyst, HEM, HCC 

and MET liver image classes. In the present work, rigorous experimentation was carried out for 

the design of a stand-alone multiclass classifier for characterization of FLLs.  

In case of atypical cases of different FLLs the differential diagnosis is carried out not only 

by looking at the texture patterns of the regions inside the lesion but also by looking at the 

texture of the background liver parenchyma on which the lesion has evolved. Texture feature 

extraction from IROIs as well as SROIs was considered for the design of the proposed CAD 

system. Thus ROIs extracted from within the inside lesion boundary (IROIs) and a single SROI 

extracted from the region surrounding the lesion and approximately at the same depth as that of 

the centre of the lesion are inputted to the Module 2 for classification into NOR, Cyst, HEM, 

HCC or MET liver image classes.  

3.3  Data Acquisition Protocols 

3.3.1 Medical Ethics and Ethical Clearance  

The medical ethics are basically the moral values which must be followed during clinical 

practice and medical imaging research. Ethical guidelines indicate the binding principles on 

researchers, radiologists as well as the patients/subjects involved in the research activity. The 

reputed institutions and hospitals across the world have an Institutional Review Board (IRB) to 

review the submitted research proposals in terms of the ethical issues involved in undertaking a 

research activity. The IRB generally consists of health care professionals and the philosophers 
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which ensure that the researcher has considered all the important ethical issues during 

formulation of research procedures, so that there is no ethical conflict by undertaking the 

research activity. The IRB after careful investigation of the submitted research proposal may at 

its discretion impose certain additional guidelines to ensure the safety and rights of the patients/ 

subjects. The careful review of research proposals by the IRB protects the researcher as well as 

the organization against possible legal actions of ignoring to address important ethical issues 

concerning patients/subjects.  

The aim of the present research work is to do value addition in the diagnostic performance 

obtained by most commonly available conventional gray scale B-Mode US imaging modality 

for diagnosis of liver diseases. The present research work is related to human healthcare and the 

collection of comprehensive database of B-Mode liver US images with representative images 

of different subclasses from various patients is absolutely necessary. Therefore for the present 

research work the author was required to obtain the ethical clearance from the medical ethics 

committee of the associated medical education and research institute, i.e., Post Graduate 

Institute of Medical Education and Research (PGIMER), Chandigarh. The medical ethics 

committee of PGIMER approved the research proposal submitted by the author after examining 

the research problem, and imposed the following research ethics for the researcher to follow: 

(i)  The researcher will not involve in any procedure which may infringe or interfere with the 

medical ethics. 

(ii)  The researcher will not provide any input to the participating radiologists, as it may bias 

their opinion regarding the medical management. 

(iii)  The researcher would be required to obtain written consent from the patients before 

collecting the data. 

(iv)  There should be no disclosure of personal information of the patients in any of the 

publication by the researcher. 

(v)  The data collected by the researcher would be used for academic purposes only. 

3.3.2 Image Assessment Protocols 

Experienced participating radiologists with more than 13 years of experience in radiology 

ensured that all the images are of diagnostic quality (i.e., free from artifacts), and confirmed the 

representativeness of each image class,  i.e., normal liver, cirrhotic liver, typical and atypical 

cases of Cyst, HEM, MET lesions, and  SHHC as well as LHCC cases, using liver image 

assessment criteria including (a) visualization of sonographic appearances of normal liver, 
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cirrhotic liver and FFLs lesions based on their knowledge. (b) follow-up of clinical history of 

the patient and associated findings, and (c) imaging appearance on dynamic helical CT/ 

magnetic resonance imaging (MRI)/pathological examinations and biopsy, which is an invasive 

procedure.   

3.4  Dataset Description  

 To develop a comprehensive image database with representative cases form each image 

class, i.e., normal liver, cirrhotic liver, typical and atypical cases of Cyst, HEM and MET 

lesions and small and large HCC lesions. For the present research work total 124 conventional 

gray scale B-Mode US images (consisting of 21 NOR, 16 CIRR, 12 Cyst, 15 HEM, 28 HCC 

and 32 MET) were acquired from the patients who underwent US examination at the 

Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh, India during the period 

from March 2010 to March 2012. The Philips ATL HDI 5000 US scanner equipped with 

transducer of 2-5 MHz range was used for recording of images. The images were digitized to 

800×564 pixels with gray scale consisting of 256 tones. The horizontal and vertical resolution 

of the recorded images is 96 dpi.  The bifurcation of the image database consisting of total 124 

conventional gray scale B-Mode US images into different liver image classes is shown in      

Fig. 3.2. 

Fig. 3.2 The distribution of acquired image database into various liver image classes.  

To design a robust classification system, it is ensured that the constituent HCC images in 

the dataset offer a high degree of variability in terms of size and sonographic features. The size 

of SHCC varied from 1.5 to 1.9 cm and the size of LHCC varied from 2.1 to 5.6 cm. 

To ensure generality, the training data for designing the classifier was chosen carefully in 

consultation with experienced participating radiologists, so as to include all the typical and 
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atypical image classes for Cyst, HCC, HEM and MET lesions as well as small and large HCC 

lesions for designing a robust classifier with representative cases for all image subclasses. Two 

sets of images were created for each image class, ROIs from one set of images were used for 

training and ROIs from the other set were used for testing to avoid any biasing. 

3.4.1 Data Collection Protocols 

The following protocols were followed for data collection: 

(i)  Before recording the image for a patient suffering from liver cirrhosis it was ensured that 

the patient is not suffering from any other hepatopathy.  

(ii)  Only HCC lesions developed on cirrhotic liver were included as the existence of HCC on 

normal liver is very rare.  

(iii)  Labeling of HCC lesions as SHCC (< 2 cm) or LHCC was done by observing the size of 

the lesion in transverse and longitudinal views. 

(iv)  Labeling of HCC as SHCC or LHCC and Cyst, HEM and MET as typical or atypical 

lesion was carried out during data collection in order to ensure that the training dataset 

used for classifier design should consist of representative cases from all image subclasses.  

3.4.2 ROI Extraction Protocols 

The protocols followed for selection of ROIs in different experiments carried out in the 

present research work, as well as the protocols followed for selection of ROI size are discussed 

in this section.  

3.4.2.1 Selection of ROIs  
The following protocols were followed for cropping the regions of interest (ROIs) from the 

image database: 

(i) The ROIs were cropped by an experienced participating radiologist by using a graphic 

user interface (GUI) based ROI manager software developed in Biomedical 

Instrumentation Laboratory, Indian Institute of Technology, Roorkee. The ROI manager 

software provided the radiologist the flexibility to load the image, choose the ROI size 

and shape, move the ROI to any desired location over the image, freeze the ROI at any 

location and crop the ROIs together after the position of all the ROIs for an image is 

frozen.  



40 
 

(ii)  For the design of CAD system for characterization of normal and cirrhotic liver tissue 

maximum non-overlapping ROIs were cropped from right lobe of the liver such that the 

ROIs contain only liver parenchyma without any inhomogeneous structures like hepatic 

ducts, blood vessels, etc.  

(iii)  For the design of CAD system for characterization of normal, cirrhotic and HCC liver 

tissue: (a) from normal and cirrhotic images, maximum non-overlapping ROIs were 

cropped from right lobe of the liver such that the ROIs contain only liver parenchyma 

without any inhomogeneous structures like hepatic ducts, blood vessels, etc., and (b) from 

HCC images maximum non-overlapping ROIs were cropped from well inside the 

boundary of the lesion.  

(iv)  For the design of CAD system for characterization of HCC and MET liver tissue: (a) two 

type of ROIs (i.e., IROIs and SROIs) were extracted, (b) maximum non-overlapping 

IROIs were cropped from well inside the boundary of the lesion, (c) the necrotic areas 

inside the lesions were avoided while cropping IROIs (d) for each lesion a single SROI 

was cropped from region surrounding the lesion approximately at the same depth as that 

of the centre of the lesion, (e) due care was taken while cropping SROI such that the 

SROI contain only liver parenchyma without any inhomogeneous structures like hepatic 

ducts, blood vessels, etc.  

(v)  For the design of CAD system for characterization of focal liver lesions : (a) two type of 

ROIs (i.e., IROIs and SROIs) were extracted, (b) maximum non-overlapping IROIs were 

cropped from well inside the boundary of the lesion, (c) the necrotic areas inside the 

lesions were avoided while cropping IROIs (d) for each lesion a single SROI was cropped 

from region surrounding the lesion approximately at the same depth as that of the centre 

of the lesion, (e) due care was taken while cropping SROI such that the SROI contain 

only liver parenchyma without any inhomogeneous structures like hepatic ducts, blood 

vessels, etc., and (f) for each NOR image, maximum ROIs were cropped at the same 

depth and a single extreme ROI is considered as SROI and all other ROIs at the same 

depth are considered as IROIs. 

3.4.2.2 Selection of ROI Size 
The selection of ROI size plays important role as texture measurements are sensitive to 

ROI size. In other studies, it has been demonstrated that ROI size must be at least 800 pixels to 

provide good sampling distribution for estimating reliable statistics [50, 76, 161] whereas in 
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few other related researches, a sample size of at least 1000 pixels is suggested to estimate 

reliable statistics [15, 48]. However for characterization of diffuse liver diseases different ROI 

sizes ranging from 32×32 pixels [95, 133, 200], 40×40 pixels [183, 185] to 64×64 pixels [27, 

118] have been considered.  

Similarly, for characterization of FLLs, the study reported in [114] used ROI size of 25×25 

pixels for computing texture features, and in studies [138, 167] the use of ROI size of 10×10 

pixels is reported. The use of 10×10 pixels and even 25×25 pixels as ROI size yields smaller 

number of pixels in comparison to minimum 800 pixels required to estimate reliable statistics 

[14, 50, 76, 189, 191]. The study reported in [209] used 64×64 pixels as ROI size extracted 

from high-resolution scanned images instead of real US images. It is otherwise difficult to 

select such a large ROI size keeping in view the size of small lesions and resolution of images 

obtained from US machines.  

After interaction with the participating radiologists, ROI size of 32×32 pixels was 

considered appropriate for the present study considering the facts such as:  

(i)  There is sufficient evidence in the literature that ROI size must be at least 800 pixels to 

provide good sampling distribution for estimating reliable statistics [14, 50]; as ROI size 

of 32×32 gives 1024 pixels, it can be assumed that the computed texture parameters are 

reliable estimates.  

(ii)  During initial discussions with the participating radiologists, an attempt was made to 

mark larger ROI sizes, but few practical difficulties were faced. Certain lesions had 

necrotic area; radiologists opined that the necrotic area inside lesions must be avoided 

while extracting IROIs, and it was not possible to consider large ROI size for these 

lesions. Also, participating radiologists were of the view that SROI for each lesion, and 

ROIs for each normal and cirrhotic liver image, must be selected by avoiding the 

inhomogeneous structures like hepatic ducts, blood vessels, etc., which was practically 

difficult by considering larger ROI size.  

(iii)  For real-time implementation, small ROI size is always favourable as time taken for 

feature extraction and classification is obviously less in comparison to large ROI size. 

Also, with small ROI size, more number of samples are available for classifier design. 

The entire image database was stored in a personal computer with Pentium Core-2-Duo, 2.67 

GHz processor and 1.97 GB RAM.  
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3.5 Brief Description of Experiments Carried out in the Present Work  

The brief description of experiments carried out in the present work is given below: 

3.5.1 Design of  CAD  System  for Characterization of Normal  and Cirrhotic  Liver 
Tissue  

The experiments carried out for the design of an efficient CAD system to characterize 

normal and cirrhotic liver in the present research work have been carried using total 120 ROIs, 

(60 normal and 60 cirrhotic ROIs) extracted from 31 clinically acquired B-Mode liver 

ultrasound images, i.e., 15 normal and 16 cirrhotic liver images.  

(i)  Experiment 1: In this study, a CAD system to characterize normal and cirrhotic liver by 

multi-resolution texture features is proposed. Mean and standard deviation 

multiresolution texture features derived by using 2D-Discrete wavelet transform (2D-

DWT), 2D-Wavelet packet transform (2D-WPT) and 2D-Gabor wavelet transform (2D-

GWT) are considered for analysis and exhaustive search with J3 criterion of class 

seperability is used for feature selection. The performance of subset of five most 

discriminative texture descriptors obtained from 2D-DWT, 2D-WPT and 2D-GWT is 

compared by using a support vector machine (SVM) classifier. It is observed that only 

five mean multiresolution texture descriptors obtained from 2D-GWT at selective scale 

and orientations yield highest classification accuracy of 98.3 % and sensitivity of 100 % 

by using a SVM classifier.  

(ii)  Experiment 2: In this experiment, initially the performance of GLCM-Mean and GLCM-

Range texture features (computed by varying the inter-pixel distance d from 1 to 4) is 

compared by using SVM classifier. It is observed that the highest classification accuracy 

and sensitivity value of 100 % is obtained by using GLCM-Mean features computed for  

d = 2, GLCM-Range features computed for d = 2 and also with GLCM-Range features 

computed for d = 4. Further, three scalar feature ranking methods based on fisher 

discriminant ratio (FDR), divergence (Div.) and Bhattacharyya distance (B-dist) as class 

seperability measures and two feature subset selection methods, i.e., sequential forward 

selection (SFS) and sequential backward selection (SBS) based on divergence as a class 

seperability measure are used to find the subset of optimal GLCM-Range features 

computed at d = 2, which are significant to account for textural variations exhibited by 

normal and cirrhotic liver. It is observed that the subset consisting of four features (i.e., 

contrast, sum of squares: variance, inverse difference moment and information measures 

of correlation-1) selected by SBS feature subset selection method yield the highest 
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classification accuracy and sensitivity value of 100 % for characterization between 

normal and cirrhotic liver. 

(iii)  Experiment 3: In this experiment, the potential of singular value mean features derived 

from singular value decomposition (SVD) of GLCM for characterization of normal and 

cirrhotic liver is tested by using SVM classifiers. It is observed that the highest 

classification accuracy and sensitivity value of 100 % is obtained by using first four 

singular mean features obtained by SVD of GLCM. 

3.5.2 Design  of  CAD  System  for  Characterization  of Normal,  Cirrhotic  and HCC 
Liver Tissue  

The experiment carried out for the design of an efficient CAD system to characterize 

normal and cirrhotic liver in the present research work have been carried out using total 180 

ROIs (60 ROIs from each image class) extracted from 56 clinically acquired B-Mode liver 

ultrasound images, i.e., 15 normal, 16 cirrhotic and 25 HCC liver images.  

A system to characterize normal liver, cirrhotic liver and hepatocellular carcinoma (HCC) 

evolved on cirrhotic liver is proposed in this study. The multiresolution wavelet packet texture 

descriptors, i.e. mean, standard deviation and energy features, are computed from all 180 ROIs 

by using various compact support wavelet filters including Haar, Daubechies (db4 and db6), 

biorthogonal (bior3.1, bior3.3 and bior4.4), symlets (sym3 and sym5) and coiflets (coif1 and 

coif2). It is observed that a combined texture feature vector (TFV) of length 48 consisting of 16 

mean, 16 standard deviation and 16 energy features estimated from all 16 sub-band feature 

images (wavelet packets) obtained by second-level decomposition with 2D-WPT by using Haar 

wavelet filter gives the best characterization performance of 86.6 %. Feature selection by 

genetic algorithm–support vector machine (GA–SVM) method increased the classification 

accuracy to 88.8 % with sensitivity of 90 % for detecting normal and cirrhotic cases and 

sensitivity of 86.6 % for HCC cases. Considering limited sensitivity of B-Mode ultrasound for 

detecting HCCs evolved on cirrhotic liver, the sensitivity of 86.6 % for HCC lesions obtained 

by the proposed CAD system is quite promising and suggests that the proposed system can be 

used in a clinical environment to support radiologists in lesion interpretation. 

3.5.3 Design of CAD System for Characterization of Primary and Secondary Focal 
Liver Lesions  

For the design of an efficient CAD system for differential diagnosis between HCC and 

MET lesions, total 174 ROIs (i.e., 120 IROIs, 60 HCC+ 60 MET IROIs and 54 SROIs, i.e., 27 
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HCC+ 27 MET SROIs) are extracted 51 real ultrasound liver images with 54 malignant lesions, 

i.e., 27 HCC images with 27 solitary HCCs lesions and 24 MET images with 27 MET lesions.  

The differential diagnosis of HCCs from METs is often carried out by observing the 

texture of regions inside the lesion and the texture of background liver on which the lesion has 

evolved. The present study investigates the contribution made by texture patterns of regions 

inside (IROIs) and regions surrounding (SROIs) the lesions for binary classification of HCC 

and MET lesions. A total of 120 IROIs and 54 SROIs are cropped from 54 lesions. 

Subsequently, 112 texture features (56 texture features and 56 texture ratio features) are 

computed by statistical, spectral, and spatial filtering based texture features extraction methods. 

A two-step methodology is used for feature set optimization, i.e., feature pruning by removal of 

nondiscriminatory features followed by feature selection by GA–SVM approach. The SVM 

classifier is used for classifier design based on optimum features. The proposed CAD system 

yields the classification accuracy of 91.6 % with sensitivity of 90 % and 93.3 % for HCCs and 

METs, respectively. The promising results obtained by the proposed CAD system indicate its 

usefulness to assist radiologists in diagnosing liver malignancies. 

3.5.4  Design of CAD System for Focal Liver Lesions  

For the design of an efficient CAD system for differential diagnosis between FLLs, total 

491 ROIs (380 IROIs i.e., 75 NOR+55 Cyst+70 HEM+ 90 HCC + 95 MET, IROIs and 111 

SROIs, i.e., 21 NOR+12 Cyst+15 HEM+28 HCC+35 MET SROIs) are extracted from 108 B-

Mode liver US images comprising 21 NOR images, 12 Cyst images with 12 Cystic lesions (8 

typical cases and 4 atypical cases), 15 HEM images with 15 HEM lesions (8 typical cases and 7 

atypical cases), 28 HCC images with 28 HCC lesions (13 SHCC cases and 15 LHCC cases) 

and 32 MET images with 35 MET lesions (12 typical cases and 23 atypical cases).  

(i)  Experiment 1: A comparative study of four CAD systems designed for characterization of 

most commonly occurring FLLs, such as Cyst, HEM, HCC and MET lesions along with 

NOR liver tissue is carried out in the present work. In order to develop an efficient CAD 

system, a comprehensive and representative dataset consisting of B-Mode ultrasound 

images with (a) typical and atypical cases of Cyst, HEM and MET lesions, (b) SHCC as 

well as LHCC lesions, and (c) NOR liver cases, have been used for designing k-Nearest 

Neighbor (kNN), Probabilistic Neural Network (PNN), Neural Network (NN), and 

Support Vector Machine (SVM) classifiers. For differential diagnosis between atypical 

FLLs, expert radiologists often visualize the textural characteristics of regions inside and 

outside the lesion. Accordingly in the present work, texture features and texture ratio 
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features are computed from regions inside and outside the lesions.  The texture features 

extracted by using first order statistics, second order statistics (GLCM method, i.e., gray 

level co-occurrence matrix method), higher order statistics (GLRLM method, i.e., gray 

level run length matrix method), spectral features (GWT based multiresolution features 

and FPS based features), and spatial filtering based Laws’ texture features are used in the 

present study. Feature set consisting of 208 texture features (i.e., 104 texture features and 

104 texture ratio features) is subjected to principal component analysis (PCA) for feature 

space dimensionality reduction; it is observed that maximum classification accuracy of 

87.7 % is obtained for PCA-NN based CAD system in comparision to 85 %, 86.1 %, and  

87.2 % as obtained by PCA-kNN, PCA-PNN, and PCA-SVM based CAD systems. 

Keeping in view the comprehensive and representative dataset used for designing the 

classifier the results obtained by the proposed PCA-NN based CAD system are quite 

encouraging and indicate its usefulness to assist experienced radiologists for 

interpretation and diagnosis of FLLs. 

 (ii)  Experiment 2: The study proposes a hybrid-hierarchical computer-aided diagnostic (Hy–

HCAD) system for FLLs, designed using texture features computed for regions inside and 

outside the lesions. The Hy–HCAD system consists of four binary classifiers which are 

arranged in a hierarchical framework. The first classifier classifies into normal (NOR) or 

Abnormal (ABNOR) cases. The ABNOR cases are classified by second classifier as Cyst 

or ‘Other Lesion’ (OL) cases.  The third classifier classifies ‘OL’ cases into Primary 

Benign Lesion (PBL) or Malignant Lesion (ML) cases. Finally, fourth classifier classifies 

‘ML’ cases into Primary Malignant Lesion (PML) or Secondary Malignant Lesion (SML) 

cases. Feature space dimensionality reduction using PCA is carried out for designing each 

classifier. Initially SVM, NN, PNN and k-NN classifiers are used for design of four 

hierarchical CAD systems. The Hy–HCAD system is designed using four best binary 

classifiers. The proposed Hy–HCAD system yields highest classification accuracy of 

92.7 % for characterization of FLLs using B-Mode US images.  

(iii)  Experiment 3: A neural network ensemble (NNE) based CAD system to assist 

radiologists in differential diagnosis between FLLs, including (a) typical and atypical 

cases of Cyst, HEM and MET lesions, (b) SHCC as well as LHCC lesions along with, (c) 

normal (NOR) liver cases, is proposed in the present work. Expert radiologists visualize 

the textural characteristics of regions inside and outside the lesions to differentiate 

between different FLLs, accordingly texture features computed from inside lesion regions 
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of interest (IROIs) and texture ratio features computed from IROIs and surrounding lesion 

regions of interests (SROIs) are taken as input. PCA is used for reducing the 

dimensionality of the feature space before classifier design. The first step of classification 

module consists of a five class PCA-NN based primary classifier which yields probability 

outputs for five liver image classes. The second step of classification module consists of 

ten binary PCA-NN based secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC, 

NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET and HCC/MET 

classes. The probability outputs of five class PCA-NN based primary classifier is used to 

determine the first two most probable classes for a test instance, based on which it is 

directed to the corresponding binary PCA-NN based secondary classifier for crisp 

classification between two classes. By including the second step of the classification 

module, the classification accuracy increases from 88.7 % to 95 %. The promising results 

obtained by the proposed CAD system indicate its usefulness to assist radiologists in 

differential diagnosis of FLLs. 

3.6 Concluding Remarks  

The methodology adopted to accomplish the research objectives of the present work on 

Analysis and Classification of B-Mode Liver US Images is presented in this Chapter. The 

design of the proposed interactive system for diagnosis of liver diseases, the criterion followed 

for assessment of liver images, the description of protocols followed for collection of image 

database, the description of protocols followed for cropping of ROIs from images and 

preparation of datasets for each experiment. The main steps involved in the design of a CAD 

system are illustrated in Fig. 3.3.  

 

Fig 3.3 Generalized block diagram of a computer-aided diagnostic system 
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The ROIs extracted from the acquired image database are used as texture samples for 

feature extraction. The texture features computed from ROIs are subjected to feature selection 

and the reduced optimal set of features is used for classifier design. The details of feature 

extraction, feature selection or feature space dimensionality reduction and classification 

methods used in the experiments carried out in the present research work, are discussed in 

detail in the subsequent Chapters.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 
Prediction of Liver Cirrhosis 

4.1 Introduction 
Among diffuse liver diseases, the liver cirrhosis is considered more serious as it is the 

end stage of chronic diffuse liver disease which is characterized by replacement of normal 

liver tissue by fibrosis, scar tissue and regenerative nodules. Liver fibrosis refers to the 

formation of fibrous scar tissue in the liver as a result of injury to heptocytes (functional liver 

cells) because of infection with virus or due to heavy alcohol consumption. Thus, alcoholism, 

chronic viral hepatitis and fatty liver disease are considered most common causes for the 

occurrence of liver cirrhosis.  

Cirrhosis is a diffuse process, which converts normal liver architecture into structurally 

abnormal nodules. This process can be micronodular in which the size of the regenerating 

nodules is less than 3 mm in diameter or macronodular with regenerative nodules of size 3 

mm and above. Micronodular cirrhosis, which generally gives a coarse echotexture, results 

from consumption of alcohol whereas chronic viral hepatitis is considered as the most 

frequent cause of macronodular form. The cirrhotic liver is initially enlarged but it tends to 

shrink as the disease progresses; however in certain cases the liver tissue remains normal in 

size due to disproportionate changes in different lobes. Cirrhosis causes scarring of the liver, 

which in-turn slows down the blood flow through the liver, leading to back up of blood in 

portal vein (portal hypertension). This back up causes high blood pressure in the portal vein 

which may lead to variceal rupture.  

Early diagnosis of liver cirrhosis is absolutely essential as (i) most of the cirrhotic 

patients are asymptomatic, (ii) biochemical tests like elevated liver enzyme detect cirrhosis at 

an advanced stage, (iii) patients with cirrhosis are at high risk of developing hepatocellular 

carcinoma, and (iv) it is the most common cause of portal hypertension. 

Further, since cirrhosis is generally irreversible the treatment options generally focus on 

preventing progression and related complications. 

The conventional grayscale B-Mode ultrasound (US) is commonly used as initial 

examination for diagnosis of diffuse liver diseases because of its nonradioactive, noninvasive 

and inexpensive nature. Experienced radiologists differentiate normal liver from cirrhotic 

liver by observing the echotexture which is mostly homogeneous with medium echogenicity 
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(i.e., same or slightly increased echogenicity in comparison to right kidney) in case of normal 

liver and coarse with diffused uneven nodularity in case of cirrhotic liver.  

Although, currently liver biopsy is considered a ‘gold standard’ for determining the 

extent of the liver disease; there is no need of biopsy if clinical, laboratory and radiologic 

findings suggest cirrhosis [14, 15]. Since the biochemical tests are able to detect cirrhosis at 

an advanced stage when the liver is already infected with its associated complications 

therefore there has been a significant clinical interest in the ability to detect cirrhosis using 

conventional gray scale US images.  

Zohu et al. used features extracted from M-Mode (amplitude and standard deviation of 

the motion curve) and B-Mode (FOS and GLRLM features) liver US images along with 

sequential forward selection (SFS) algorithm for feature selection and linear discriminant 

analysis (LDA) for classification between normal and cirrhotic liver [213]. Lu et al. used 

comparision of echotexture of normal and cirrhotic liver with the echotexture of 

accompanying spleen for classification of normal and cirrhotic liver [101]. Huang et al. used 

GLCM features extracted from B-Mode US images processed by wavelet packet denoising 

method for classification between normal and cirrhotic liver [67]. Wan and Zhou used mean 

and energy, multiresolution texture features computed from 2D-DWT and 2D-WPT sub-band 

images resulting by use of db4 wavelet filter along with SVM classifier for classification 

between normal and cirrhotic liver [192]. Few other related researches in the literature 

attempted classification between normal liver and different grades of cirrhosis. Sun et al. 

used LL sub-band images obtained by processing ROIs of size 16×16 by 2D-DWT along 

with BPNN and PNN classifiers for classification between normal liver, mild, moderate and 

severe cirrhosis [168]. Wu et al. used pre-processed images filtered by using Gaussian filter 

for extraction of GLCM features along with ensemble of SVM classifiers for classification 

between normal liver , mild, moderate and severe cirrhosis [202]. Jeong et al. used relative 

degree of coarseness of liver parenchyma with accompanying spleen by computing FOS, 

GLCM, GLRLM, SFM, Edge density, and fractal dimension features for classification 

between normal liver and different grades of cirrhosis [75].  

In the present work, exhaustive experiments have been carried out to develop an efficient 

computer-aided diagnostic (CAD) system for prediction of liver cirrhosis using B-Mode US 

images.  
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4.2 Dataset Description – CAD System for Prediction of Liver Cirrhosis 

The design of CAD system for characterization of normal and cirrhotic liver tissue was 

carried out with 31 B-Mode liver US images, i.e., 15 normal images and 16 Cirrhotic images. 

The protocols followed for collection of dataset, selection of ROIs and selection of ROI size 

are described in Section 3.4.1 of Chapter 3. The normal and cirrhotic liver variants from the 

acquired image database with ROIs marked are shown in Fig. 4.1(a) and Fig. 4.1(b), 

respectively.  

 
Fig. 4.1 (a) Normal liver image with ROIs marked; (b) Cirrhotic liver image with ROIs marked.

The description of the dataset used in this study, and its bifurcation into training dataset 

and testing dataset is shown in Fig.  4.2. 

 
Fig. 4.2 Dataset description – CAD system for characterization of normal and cirrhotic liver. 
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4.3 Experimental Work Flow – Prediction of Liver Cirrhosis 
In the present work, exhaustive experimentation have been carried out with 

multiresolution texture features, GLCM-Mean and GLCM-Range texture features as well as 

with features derived by singular value decomposition (SVD) of GLCM in order to design an 

efficient CAD system for characterization between normal and cirrhotic liver tissue. In all the 

experiments, SVM classifier has been used extensively for the classification task.  

The brief description of the experiments carried out in the present work is given below.  
 

Experiment 1: In this experiment, an investigation is made to realize the potential of 2D-

DWT, 2D-WPT and 2D-GWT based multiresolution texture features for characterization of 

normal and cirrhotic liver tissue. Exhaustive search procedure combined with J3 criterion of 

class seperability is used in order to obtain optimal reduced texture feature vector (TFV) for 

the classification task. The classification is carried out by using SVM classifiers. 

Experiment 2: In this experiment, the efficacy of TFV consisting of 13 GLCM-Mean and 

TFV consisting of 13 GLCM-Range features (computed at inter-pixel distance d varying 

from 1 to 4) for characterization of normal and cirrhotic liver is tested by using SVM 

classifiers.  Further, different feature selection techniques are applied to texture feature set 

consisting of 13 GLCM-Range features computed at d = 2, in order to find out the prominent 

features which are significant to account for textural variations exhibited by normal and 

cirrhotic liver. Five feature selection methods, i.e., three scalar feature ranking methods based 

on fisher discriminant ratio (FDR), divergence (Div.) and Bhattacharyya distance (B-dist) as 

class seperability measures and two feature subset selection methods, i.e., sequential forward 

selection (SFS) and sequential backward selection (SBS) based on divergence as a class 

seperability measure are used in this experiment. The efficacy of the selected features is 

tested by using SVM classifiers. 

 

Experiment 3: In this experiment, the potential of singular value mean features derived from 

singular value decomposition (SVD) of GLCM for characterization of normal and cirrhotic 

liver is tested by using SVM classifiers. 

The block diagram depicting the experimental work flow of the present study for 

prediction of liver cirrhosis using B-Mode US images is shown in Fig. 4.3. 
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Fig. 4.3 Block Diagram – Experimental Work Flow (Prediction of Cirrhosis). 
Note: FDR: Fisher discriminant ratio, B-Dist: Bhattacharya distance, Div.: Divergence, SFS: 
Sequential forward selection, SBS: Sequential backward selection, FVL: Feature vector length, 
RFVL: Reduced feature vector length, SVM: Support vector machine. 
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4.4 Experiment  1  –  Design  of  CAD  System  for  Prediction  of  Liver 
Cirrhosis using Multiresolution Texture Features  

The block diagram indicating the experimental work flow for design of CAD system for 

prediction of liver cirrhosis using multiresolution texture features is shown in Fig. 4.4.  

 
Fig. 4.4 Block diagram – Experimental work flow – Design of CAD system for prediction of liver 
cirrhosis using multiresolution texture features. 
Note: MRS: Multiresolution Scheme, FVL: Feature vector length, RFVL: Reduced feature vector 
length, SVM: Support vector machine. Accuracy values are expressed in percentage. 

The CAD system consist of feature extraction, feature selection and classification stages.  

In feature extraction stage, mean and standard deviation texture descriptors are extracted 

from sub-band feature images obtained by all the three multiresolution schemes, i.e., 2D-

DWT, 2D-WPT and 2D-GWT. For feature selection, exhaustive search procedure combined 

with J3 criterion of class seperability is used in order to obtain reduced TFVs of length 5 
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from initial TFVs of length 20, 32 and 42 in case of 2D-DWT, 2D-WPT and 2D-GWT, 

respectively. For classification, three different binary SVM classifiers are trained and tested 

with instances of reduced TFVs consisting of 5 most discriminative texture features selected 

by feature selection stage. These binary SVM classifiers are implemented using LibSVM 

library [31]. 

4.4.1 Feature Extraction ― Experiment 1 
Feature extraction can be carried on a single scale by considering the spatial interactions 

which exists over small neighborhoods, for example, by using gray level co-occurrence 

matrix (GLCM), gray level difference statistics (GLDS), neighborhood gray tone dependence 

matrix (NGTDM), statistical feature matrix (SFM) and gray level run length matrix (GLRL), 

etc [6, 36, 61]. Feature extraction in transform domain is carried out over various scales by 

using various multiresolution schemes such as discrete wavelet transform (DWT), wavelet 

packet transform (WPT) and Gabor wavelet transform (GWT). Computing texture features in 

transform domain is much more logical given the fact that human visual system (HVS) 

processes any image in a multiscale way and scale is a dominant aspect for analysis of 

texture. This multiscale processing by HVS provides motivation for multiresolution 

representations and multiscale texture analysis methods [43].  

Extensive literature survey on texture classification in transform domain using 

multiresolution approaches like 2D-DWT, 2D-WPT and 2D-GWT reveals that mean and 

standard deviation features are frequently used not only for texture characterization of natural 

texture, i.e., Brodatz image database [12, 32, 120] but also for medical images [178, 192, 

209]. In the present work mean and standard deviation texture descriptors evaluated from 

various sub-band feature images obtained by 2D-DWT, 2D-WPT and 2D-GWT are 

considered for characterization between normal and cirrhotic liver tissue.  

4.4.1.1  Multiresolution Analysis 
Texture characterization in transform domain using multiresolution features is affected 

by the choice of filter bank as the properties of the decomposition filters play important role 

in description of texture. The criteria like support width, shift invariance, orthogonality or 

biorthogonality and symmetry are important and must be considered for selecting an 

appropriate wavelet filter. Compact support means that the non-zero values exist only for a 

finite duration and support width indicates the length of the non-zero duration. A wavelet 

with small support width (compact support) is fast to compute and is therefore desired for 
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ease of implementation [205]. Orthogonality is another important property for conservation 

of energy at each decomposition level. Symmetry is required to avoid dephasing in 

processing images. It is a well known fact that only Haar wavelet has all the useful properties 

like compact support, orthogonality and symmetry.  For the present work, Haar wavelet is 

considered for analysis with 2D-DWT and 2D-WPT multiresolution schemes. Mean and 

standard deviation texture descriptors are estimated from the sub-band feature images by 

using equations 4.1 and 4.2.   
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Here, SIj are sub images of size M × N at level j = 1, 2, … 

A. Two Dimensional  Discrete Wavelet Transform (2DDWT) 

The 2D-DWT tree up to third level of decomposition results in 10 sub-band feature 

images as shown in Fig. 4.5 [9, 10]. Mean and standard deviation texture descriptors 

estimated from all 10 sub-band feature images result in a TFV of length 20.  

Fig. 4.5 2D-DWT tree up to 3rd level of decomposition. A3, H3, D3, V3, H2, D2, V2, H1, D1and 
V1 represent 10 sub-band feature images. 
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B.  Two Dimensional  Wavelet Packet Transform (2DWPT):  

The 2D-WPT tree up to second level of decomposition results in 16 sub-band feature 

images (wavelet packets) each representing a band in the frequency plane as shown in Fig. 

4.6. 

Fig. 4.6 2D-WPT tree up to 2nd level of decomposition [(2, 0) to (2, 15)] represents 16 sub-band 
feature images (wavelet packets). 
Note: A: Approximate sub-band, H: Horizontal sub-band, D: Diagonal sub-band, V: Vertical sub-
band. 

  Mean and standard deviation texture descriptors estimated from all 16 sub-band feature 

images result in a TFV of length 32.  

C.  Two Dimensional  Gabor Wavelet Transform (2DGWT) 

Gabor wavelets are regarded as a set of frequency and orientation selective filters [9, 85, 

124, 164]. 2D-GWT considering 3 scales (0, 1, 2) and 7 angles (22.5°, 45°, 67.5°, 90°, 

112.5°, 135°, 157.5°) results in a group of 21 (7×3) wavelets with each wavelet capturing 

energy at a specific frequency and specific orientation.  The real parts of Gabor filter family 

of 21 wavelets resulting from 13×13 convolution mask, 3 scales and 7 orientations are shown 

in Fig. 4.7.   

When this group of Gabor filter family of 21 wavelets is convolved with a given ROI 

image a set of 21 filtered images (Gabor outputs or feature images) is obtained. Each filtered 

image represents the image information at a certain scale and orientation [90, 114]. 
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Fig. 4.7 Real parts of Gabor filter family of 21 wavelets. 
Note: Orientation: 22.7°,  45°, 67.5°, 90°, 112.5°, 135° and 157.5° from left to right, Scale: 0, 1 and 
2 from top to bottom. 

The mean and standard deviation texture descriptors estimated from the 21 Gabor 

outputs or feature images results in a TFV of length 42. 

4.4.2 Feature Selection ― Experiment 1 

In order to find the subset of five most discriminative texture features, exhaustive search 

procedure combined with J3 criterion of class seperability based on within-class scatter 

matrix, between-class scatter matrix and mixture scatter matrix is used as a feature selection 

method [173]. The J3 criterion is used to quantify the class seperability of instances of the 

TFVs in the reduced feature space based on the way these instances are scattered in the 

reduced feature space. The subset of 5 most discriminative texture features is obtained by 

looking for the maximum value of J3 criterion by exhaustive search with all possible 

combinations of TFVs of length five.  The J3 criterion of class seperability is obtained by 

using equations 4.3 to 4.9.  

4.4.2.1 WithinClass Scatter Matrix 

1

M

w i i
i

S P
=

= ∑ ∑               4.3 

Here, M represents the number of classes, for the present work M is 2 and ∑i represents the 

covariance matrix for class ωi, such that  
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E x xµ µ⎡ ⎤= − −⎣ ⎦∑    

Pi represents priori probability of class ωi, i.e., Pi = ni/N, here, ni represents number of 

training samples of class ωi out of total N training samples. µi represents individual class 

mean, i.e., µi= E[xi], where E is the expectation operator. The trace {Sw} which is the sum of 

the diagonal elements of within-class scatter matrix Sw represents the average over all classes, 

variance of the features.  

4.4.2.2  BetweenClass Scatter Matrix  
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Here, µ0  represent global mean vector given by 
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The trace {Sb} represents distance of the mean of each individual class from their respective 

global mean value, averaged over all classes. 

4.4.2.3 Mixture Scatter Matrix 
Sm represents the covariance matrix of the feature vector with respect to the global mean 

µo, and is given as  

0 0( )( )T
mS E x xµ µ⎡ ⎤= − −⎣ ⎦                                             4.7 

Also,                                                        m w bS S S= +                                                            4.8  

The trace {Sm} represents the sum of variances of features around their respective global 

mean. 

4.4.2.4  J3 Criterion 
It is defined by the following relation and is used to find optimal features. 

   
13 { }w mJ trace s s−=                         4.9 

A large value of J3 indicates that training samples are well clustered around their respective 

class means and the clusters of different classes are well separated, i.e., small within-class 

variance and large between-class distances. 
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4.4.3 Classification ― Experiment 1  

It is well known that classifier designs which use regularization like SVM are less prone 

to over fitting and obtain good generalization performance to a certain extent even without 

feature space dimensionality reduction [25]. For the present work SVM classifier is chosen 

for classification between normal and cirrhotic liver tissue.  

4.4.3.1 SVM Classifier 
The SVM classifier attempts to construct an optimum hyper plane in the higher 

dimensional feature space to separate the training data with minimum expected risk [27]. 

Nonlinear mapping of the training data from input space to higher dimensional feature space 

is carried out by kernel functions which satisfy Mercer’s theorem. In the present work, the 

performance of Gaussian radial basis function (GRBF) kernel is considered as it provides 

better results in most situations.   

Crucial step for obtaining good generalization performance is correct choice of the 

regularization parameter C and kernel parameter γ. The regularization parameter C attempts 

to maximize the margin while keeping low value for training error.  In the present study, 

extensive search is carried out in the parameter space for the values of C ∈ {2-4, 2-3,……., 

215} and γ ∈  {2-12, 2-11,……., 25} using 10 fold cross validation to obtain optimal values of C 

and γ for training the SVM model. The SVM classifier trained with this C and γ is 

subsequently used for classification of unseen testing dataset. 

Out of total 120 ROIs (60 Normal and 60 cirrhotic ROIs), the training dataset and testing 

dataset have 60 ROIs each, with 30 normal ROIs and 30 cirrhotic ROIs. i.e., 50 % of the data 

from each class is hold out as testing dataset for evaluating the performance of the classifier. 

To avoid the bias caused by unbalanced feature values the extracted features were normalized 

in the range [0, 1] by using min-max normalization procedure. 

4.4.4 Results ― Experiment 1 

4.4.4.1 Feature Selection Results  
In case of 2D-DWT the mean and standard deviation texture descriptors, estimated from 

10 sub-band feature images, result in a TFV of length 20. Five most discriminative texture 

descriptors (3 mean and 2 standard deviation texture descriptors), estimated from four sub-

band feature images (shaded in gray in Fig. 4.8), are selected by exhaustive search procedure 

on the basis of J3 criterion of class seperability. Note that both mean and standard deviation 
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texture descriptors obtained from horizontal detail coefficients at 1st level of decomposition 

are discriminative.  

Fig 4.8 2D-DWT tree up to 3rd level of decomposition. 
Note: M: Mean, S: Standard deviation, Five most discriminative texture features (shaded in gray). 

In case of 2D-WPT the mean and standard deviation texture descriptors, estimated from 

16 sub-band feature images, result in a TFV of length 32. Five most discriminative texture 

descriptors (2 mean and 3 standard deviation texture descriptors), estimated from five sub-

band feature images selected by exhaustive search procedure on the basis of J3 criteria of 

class seperability are shaded in gray in Fig. 4.9 and Fig. 4.10. 

Fig. 4.9 2D-WPT decomposition at 2nd level. 
Note: M: Mean, S: Standard deviation. Five most discriminative texture features are shaded in gray. 
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Fig. 4.10 2D-WPT tree at 2nd level of decomposition (2, 0), (2, 1),……..,(2,15) represent 16 sub-band 
feature images (wavelet packets). 
Note: M: Mean, S: Standard deviation. Five most discriminative texture features are shaded in gray. 

In case of 2D-GWT considering three scales (0, 1, 2) and seven angles (22.5°, 45°, 67.5°, 

90°, 112.5°, 135°, 157.5°) results in a group of 21 (7×3) wavelets with each wavelet 

capturing energy at a specific frequency and specific orientation.  When the real parts of 

Gabor filter family of 21 wavelets (as shown in Fig. 4.7) are convolved with a given ROI 

image, a set of 21 filtered images (Gabor outputs or feature images) is obtained. The mean 

and standard deviation texture descriptors, estimated from the 21 Gabor outputs or feature 

images, results in a TFV of length 42. Five most discriminative texture descriptors (5 mean 

texture descriptors), estimated from selected scale and orientation sensitive Gabor output 

feature images selected by exhaustive search procedure on the basis of J3 criterion of class 

seperability are shaded in gray as shown in Fig. 4.11. 

 
Fig 4.11 Twenty one Gabor outputs or feature images. 
Note: M: Mean, S: Standard deviation. Five most discriminative features are shaded in gray. 
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The study carried out by [90] studied the classification of liver diseases from CT 

(computed tomograpgy) images by using scale and orientation sensitive Gabor features along 

with SVM classifer. Their study highligted the Gabor outputs for various classes for 

visualisation purposes. The real parts of Gabor outputs for a normal and cirrhotic ROI 

selected randomly from the image database are shown in Fig. 4.12(a) and Fig. 4.12(b) for 

visualization. It is observed that mean texture descriptors obtained from five Gabor output 

images encircled in Fig. 4.12(a) and Fig. 4.12(b) provide adequate descrimination between 

normal and cirrhotic ROIs. 

Fig. 4.12 (a) Real part of Gabor outputs (Normal ROI); (b) Real part of Gabor outputs (Cirrhotic 
ROI). Note: Mean texture descriptors computed from 5 encircled Gabor outputs provide adequate 
discrimination between normal and cirrhotic ROIs. 

4.4.4.2 Classification Results 
The performance of the CAD system without feature selection is depicted in Table 4.1.  

Table 4.1 Comparison of classification performance of SVM for 2D-DWT, 2D-WPT and 2D-GWT 
Multiresolution resolution schemes (MRS) with mean and standard deviation texture descriptors 
(TDs).  

Classification Performance: SVM
MRS (TDs)(FVL) CM Acc. (%) Sen. (%) Spec. (%) 

2D-DWT (µ, σ) (20) 
 C N 

93.3 86.6 100 C 26 4
N 0 30

2D-WPT (µ, σ) (32) 
 C N 

98.3 96.6  100 C 29 1
N 0 30

2D-GWT (µ, σ) (42) 
 C N 

98.3 100 96.6 C 30 0
N 1 29

Note: MRS: Multiresolution scheme, TDs: Texture descriptors, FVL: Feature vector length, CM: 
Confusion matrix, Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, N: Normal and C: Cirrhotic. 
The maximum accuracy and sensitivity is obtained by 2D-GWT texture signatures (shaded in gray).
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From Table 4.1, it can be observed that maximum classification accuracy of 98.3 % and 

sensitivity of 100 % is obtained with TFVs of length 42 consisting of mean and standard 

deviation texture descriptors estimated from 21 feature images (obtained by convolving the 

ROI with a family of 21 Gabor wavelets obtained for 3 scales and 7 orientations). The 

classification accuracy of 98.3 % but slightly reduced sensitivity of 96.6 % is achieved with 

TFVs of length 32 consisting of mean and standard deviation texture descriptors estimated 

from 16 sub-band feature images obtained by 2D-WPT by using Haar wavelet filter.  In 

comparison it is observed that with TFVs of length 20 (consisting of mean and standard 

deviation texture descriptors estimated from 10 sub-band feature images) obtained by using 

2D-DWT using Haar wavelet filter, the classification accuracy of 93.3 % and sensitivity of 

86.6 % is obtained. It can be observed that the best performance is obtained by using 2D-

GWT texture descriptors. The performance of the proposed CAD system with feature 

selection (i.e., with 5 most discriminative mean and standard deviation texture descriptors 

found by exhaustive search to maximize the J3 criterion of class seperability) is depicted in 

Table 4.2. From Table 4.2, it can be observed that the maximum classification accuracy and 

sensitivity of 98.3 % and 100 % is obtained by using only five mean texture descriptors 

computed from Gabor outputs or feature images obtained at selected scale and orientations. 

In comparison, the reduced TFVs of length five in case of 2D-DWT and 2D-WPT yielded the 

classification accuracies of 96.6 % and 95 % with sensitivity values of 93.3 % and 90 %, 

respectively. 

Table 4.2 Comparison of classification performance of SVM for 2D-DWT, 2D-WPT and 2D-GWT 
Multiresolution resolution schemes (MRS) with five most discriminating mean and standard 
deviation texture descriptors (TDs).    

Classification Performance: SVM 

(MRS)(TDs)(RFVL) CM Acc.(%) Sen.(%) Spec.(%) 

2D-DWT (µ, σ) (5) 
 C N 

96.6 93.3 100 C 28 2
N 0 30

2D-WPT (µ, σ) (5) 
 C N 

95.0 90.0 100 C 27 3
N 0 30

2D-GWT (µ) (5) 
 C N 

98.3 100 96.6 C 30 0
N 1 29

Note: MRS: Multiresolution scheme, TDs: Texture descriptors, RFVL: Reduced feature vector 
length, CM: Confusion matrix, Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, N: Normal and 
C: Cirrhotic. The maximum accuracy and sensitivity is obtained by 2D-GWT texture descriptors, 
(shaded in gray). 
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From Table 4.2, it can be observed that the maximum classification accuracy and 

sensitivity of 98.3 % and 100 % is obtained by using only five mean texture descriptors 

computed from Gabor outputs or feature images obtained at selected scale and orientations. 

In comparison, the reduced TFVs of length five in case of 2D-DWT and 2D-WPT yielded the 

classification accuracies of 96.6 % and 95 % with sensitivity values of 93.3 % and 90 %, 

respectively. 

The highest classification accuracy of 98.3 % and sensitivity of 100 % is achieved by 

using a subset of five mean texture descriptors obtained from Gabor outputs feature images at 

selective scale and orientations, i.e., M(0,22.5º), M(0,45º), M(1,45º), M(2,90º) and M(2,135º) shown 

highlighted in Fig 4.11. These five scale and orientation selective mean texture features yield 

the sensitivity of 100 %.  

The results of the study indicate that only a subset 5 mean texture descriptors, obtained 

from selected scale and orientation sensitive Gabor outputs, can significantly account for 

textural variations exhibited by normal and cirrhotic liver. Further experimentation were 

carried out to evaluate the performance of five most discriminative Gabor mean features by 

fine tuning the parameters of polynomial and sigmoid kernel with SVM classifier.  

It is observed that maximum accuracy of 95 % is obtained with polynomial kernel, and 

maximum accuracy of 83.3 % is obtained with sigmoid kernel. In case of RBF kernel, 

maximum classification accuracy of 98.3 % is obtained. The results of the study indicate that 

the application of radial basis function (RBF) kernel outperformed the performance of 

polynomial and sigmoid kernel for the present classification task.  

4.4.5  Conclusions – Experiment 1 

The results of the study demonstrate that selective frequency and orientation properties 

of Gabor filters are extremely useful for providing multiscale texture description specifically 

in case of discrimination between normal and cirrhotic liver. Only mean texture descriptors 

obtained from five frequency, and orientation selective Gabor output feature images are 

sufficient to account for textural variations exhibited by normal and cirrhotic liver. In further 

experiments, the efficacy of GLCM features for characterization of normal and cirrhotic liver 

tissue is evaluated.  
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4.5 Experiment 2A and 2B ― Design of CAD System  for Prediction of 
Liver Cirrhosis using GLCM  Mean and GLCM  Range Texture Features  

GLCM method [42, 45, 61] is most commonly used method for texture analysis. The 

four direction GLCMs obtained for both normal as well as cirrhotic ROI are shown in Fig. 

4.13(a) and Fig. 4.13(b) respectively.  

It can be seen that the GLCM elements are concentrated in case of normal ROI and 

relatively more dispersed in case of cirrhotic ROI. This fact was reported earlier in study [67],  

In further experiments, an attempt is made to capture this difference in dispersion of 

GLCM elements by considering GLCM texture features for the classification task. 

Fig. 4.13 (a) GLCMs for a normal ROI for 4 directions (0º, 45º, 90º and 135º); (b) GLCMs for a 
cirrhotic ROI for 4 directions (0º, 45º, 90º and 135º). 

In the experiment 2-A and 2-B the efficacy of TFVs consisting of thirteen GLCM-Mean 

features (computed at inter-pixel distance d varying from 1 to 4) and the efficacy of TFVs 

consisting of thirteen GLCM-Range features (computed at inter-pixel distance d varying from 

1 to 4) is tested for characterization of normal and cirrhotic liver by using SVM classifiers.  

The block diagram indicating the experimental work flow for the design of CAD system 

for prediction of liver cirrhosis using GLCM features is depicted in Fig 4.14. 
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Fig. 4.14 Block Diagram – Experimental work flow – Design of CAD system for prediction of liver 
cirrhosis using GLCM-Mean and GLCM-Range features.  
Note: FVL: Feature vector length, The maximum classification accuracy value of 100 % is obtained by 
TFV of length thirteen consisting of GLCM-Mean features computed at d = 2 and also with TFVs of 
length thirteen each with GLCM-Range features computed at d = 2 and d = 4 (shaded in gray).  

4.5.1 Feature Extraction ― Experiment 2A and 2B 

The GLCM-Mean and GLCM-Range features estimated for inter-pixel d = 1 to 4 and are 

used as TFVs for the present study [67]. For example, GLCM-Mean feature, inverse 

difference moment (IDM) at inter-pixel distance d = 1 and GLCM-Range feature IDM at inter-

pixel distance d = 1 are calculated by using equations 4.10 and 4.11. 

( 1) 4IDM d
A B C DGLCM Mean =
+ + +⎛ ⎞− = ⎜ ⎟

⎝ ⎠
            4.10 

( ) ( )( 1) max , , , min , , ,IDM dGLCM Range A B C D A B C D=− = −                       4.11 

Here,  

( 0 , 1) ( 45 , 1) ( 90 , 1) ( 135 , 1)
,  ,   and 

IDM d IDM d IDM d IDM d
A GLCM B GLCM C GLCM D GLCM

θ θ θ θ= = = = = = = =
= = = =
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In the same way, four TFVs consisting of thirteen GLCM-Mean features (F1 to F13 of 

Table 4.3) are computed at inter-pixel distance d varying from 1 to 4 and four TFVs consisting 

of thirteen GLCM-Range texture features (F14 to F26 of Table 4.3) are computed at inter-

pixel distance d varying from 1 to 4. These features are tabulated in Table 4.3. 

Table 4.3 GLCM-Mean features (F1 to F13) and GLCM-Range features (F14 to F26) 

Feat. Id Feature Name Feat. Id Feature Name 

F1 Angular second moment-Mean F14 Angular second moment-Range 

F2 Contrast-Mean F15 Contrast-Range 

F3 Correlation-Mean F16 Correlation-Range 

F4 Sum of squares: variance-Mean F17 Sum of squares: variance-Range 

F5 IDM-Mean F18 IDM-Range 

F6 Sum average-Mean F19 Sum average-Range 

F7 Sum Variance-Mean F20 Sum variance-Range 

F8 Sum Entropy-Mean F21 Sum entropy-Range 

F9 Entropy-Mean F22 Entropy-Range 

F10 Difference variance-Mean F23 Difference variance-Range 

F11 Difference entropy-Mean F24 Difference entropy-Range 

F12 Inf. measures of corr.1-Mean F25 Inf. measures of corr.1-Range 

F13 Inf. measures of corr.2-Mean F26 Inf. measures of corr.2-Range 

4.5.2 Classification ― Experiment 2A and 2B 
In classification module, the TFVs consisting of GLCM-Mean texture features (F1 to 

F13) and TFVs consisting of GLCM-Range texture features (F14 to F26) computed for inter-

pixel distance d varying from 1 to 4 are fed separately to eight binary SVM classifiers.  

4.5.3 Results ― Experiment 2A and 2B 
The classification accuracy, sensitivity and specificity values obtained by using TFVs 

consisting of thirteen GLCM-Mean features (F1 to F13) computed at d = 1 to 4 and for TFVs 

consisting of GLCM-Range features (F14 to F26) computed for d = 1 to 4 along with SVM 

classifier are tabulated in Table 4.4. 
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Table 4.4 The classification accuracies obtained for GLCM-Mean features (d = 1 to 4) and 
GLCM-Range features (d = 1 to 4) with SVM classifier.  

Classification Performance: SVM
TFV CM Acc. (%) Sen.(%) Spec.(%) 

GLCM-Mean  
F1 to F13 for d = 1 

 C N 
98.3 96.6 100 C 29 1

N 0 30

GLCM-Mean  
F1 to F13 for d = 2 

 C N 
100 100 100 C 30 0

N 0 30

GLCM-Mean  
F1 to F13 for d = 3 

 C N 
92.8 96.6 93.3 C 29 1

N 2 28

GLCM-Mean  
F1 to F13 for d = 4 

 C N 
98.3 100 96.6 C 30 0

N 1 29

GLCM-Range  
F14 to F26 for d = 1 

 C N 
98.3 100 96.6 C 30 0

N 1 29

GLCM-Range  
F14 to F26 for d = 2 

 C N 
100 100 100 C 30 0

N 0 30

GLCM-Range  
F14 to F26 for d = 3 

 C N 
98.3 100 96.6 C 30 0

N 1 29

GLCM-Range  
F14 to F26 for d = 4 

 C N 
100 100 100 C 30 0

N 0 30
Note: TFV: Texture feature vector, CM: Confusion matrix, Acc.: Accuracy, Sen.: Sensitivity, 
Spec.: Specificity, N: Normal and C: Cirrhotic. The maximum classification accuracy value of 
100 % is obtained by GLCM-Mean features computed at d = 2 and GLCM-Range features 
computed at d = 2 and d = 4 (shaded in gray).

From Table 4.4, it can be observed that with TFV consisting of thirteen GLCM-Mean 

features estimated at inter-pixel distance d = 2 provide 100 % classification accuracy and 

sensitivity for characterization between normal and cirrhotic liver. It is also observed that the 

TFVs consisting of thirteen GLCM-Range features estimated at inter-pixel distances d = 2 

and d = 3 also provide 100 % classification accuracy and sensitivity for characterization of 

normal and cirrhotic liver tissue.   

4.5.4 Conclusions ― Experiment 2A and 2B 

It can be observed that TFV consisting of thirteen GLCM-Mean texture features 

computed at inter-pixel distance d = 2 as well as TFVs consisting of thirteen GLCM-Range 

features computed at inter-pixel distance d = 2 and at d = 4 provide effective discrimination 
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between normal and cirrhotic ROIs. Further, in order to find an optimal reduced TFV 

consisting of discriminative GLCM-Range texture features, the feature set consisting of TFVs 

of thirteen GLCM-Range features computed at inter-pixel distance d = 2 is subjected to 

various feature filter methods in experiment 2C.  

4.6 Experiment  2C  ―  Design  of  CAD  System  for  Prediction  of  Liver 
Cirrhosis using Selected GLCMRange Texture Features  

The block diagram indicating the experimental work flow for the design of CAD system 

for prediction of liver cirrhosis using selected GLCM-Range features computed at inter-pixel 

distance d = 2 is depicted in Fig 4.15. 

Fig. 4.15 Block Diagram – Experimental work flow – Design of CAD system for prediction of liver 
cirrhosis using selected GLCM-Range features computed at inter-pixel distance d = 2. 

4.6.1 Feature Extraction – Experiment 2C 

From the results of experiment 2A and 2B, it is observed that thirteen GLCM-Range 

features computed at inter-pixel distances d = 2 provide 100 % classification accuracy and 

sensitivity for classification between normal and cirrhotic liver tissue. In this experiment, an 

investigation is made to determine the optimal GLCM-Range features computed at inter-pixel 
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distance d = 2, which could account for the textural variations within normal and cirrhotic 

liver tissue. In feature extraction module, thirteen GLCM-Range features (tabulated as F1 to 

F13 in Table 4.5) are computed at inter-pixel distance d = 2.  

Table 4.5 GLCM-Range Features for d = 2, (F1 to F13)
Feature Id Feature

F1 Angular second moment-Range
F2 Contrast-Range
F3 Correlation-Range
F4 Sum of squares: variance-Range
F5 Inverse difference moment-Range
F6 Sum average-Range
F7 Sum variance-Range
F8 Sum entropy-Range
F9 Entropy-Range
F10 Difference variance-Range
F11 Difference entropy-Range
F12 Information measures of correlation-1-Range 
F13 Information measures of correlation-2-Range 

4.6.2 Feature Selection ― Experiment 2C  

In feature selection module, five feature filers including three scalar feature ranking 

methods based on class seperability measures, i.e., Fisher discriminant ratio (FDR), 

divergence (Div.) and Bhattacharyya distance (B-dist) and two feature subset selection 

methods, i.e., sequential forward search (SFS) and sequential backward search (SBS) based 

on divergence as a measure of class seperability are implemented [85, 173]. For each feature 

filter only top four features were retained for the classification task. 

In scalar feature ranking methods each feature is considered individually and ranked 

according to some class seperability criterion like: 

(i) Fisher’s Discriminant Ratio (FDR):  The ability of any individual feature to discriminate 

two classes can be quantified by estimating the FDR by using equation 4.12.  

( )
( )

2

1 2

2 2

1 2

FDR
µ µ

σ σ

−
=

+
                            4.12 

Here, 1µ , 2µ represent the mean values and 2
1σ , 2

2σ  represent the variances of a single feature 

in two classes.  
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(ii) Divergence: The divergence (Div.1,2) between two classes in l dimensional space can be 

estimated by using equation 4.13. 

                  

{ }1 1 1 1
1,2 1 2 2 1 1 2 1 2 1 2

1 1Div. 2 ( ) ( )( )
2 2

Ttrace S S S S I m m S S m m− − − −= + − + − + −
         4.13 

Here, Si represents the covariance matrix, mi represents mean vector of ith class and I 

represents l × l identity matrix. 

(iii) Bhattacharyya Distance : The Bhattacharyya distance (B-dist1,2) between two classes can 

be estimated by using equation 4.14. 

( ) ( ) ( )1
1 21 2

1,2 1 2 1 2
1 2

0.51 1 ln
8 2 2

T S SS SB dist m m m m
S S

− ++⎛ ⎞− = − − +⎜ ⎟
⎝ ⎠

                4.14 

Here, Si represents the covariance matrix, mi represents mean vector of ith class and | | 

represents matrix determinant.  

In feature subset selection methods like SBS and SFS, best combination of predefined 

number of features is obtained by using some class seperability criterions like FDR, Div. and 

B-dist, etc. In the SFS procedure, firstly a single most discriminatory feature is selected from 

all the available features based on adopted class seperability criterion. This feature is 

permanently selected and its combination with all other remaining features is tested and the 

best pair is chosen again in terms of adopted class seperability criterion. The process 

continues until the desired number of features is reached [169].  

In the SBS procedure, firstly a single feature is removed from the complete set of 

features. The feature which when removed, results in maximum separation between two 

classes in the remaining feature space is considered for exclusion. The process is continued 

and a single feature is removed with every iteration such that the adopted class seperability 

measure ensures maximum class seperability amongst the remaining feature space.  The 

process is terminated when the desired numbers of features are remaining [127]. 

4.6.3 Classification – Experiment 2C 

In classification module, the reduced TFVs of feature vector length (FVL) four resulting 

from corresponding feature filters are fed separately to three binary SVM classifiers. 
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4.6.4 Results ― Experiment 2C 

4.6.4.1 Feature Selection Results 
In feature selection module, three scalar feature ranking methods based on class 

seperability measures including Fisher discriminant ratio (FDR), divergence and 

Bhattacharyya distance as well as two feature subset selection methods including sequential 

forward search (SFS) and sequential backward search (SBS) based on divergence as a 

measure of class seperability are implemented. For each feature filter only top four features 

are retained as reduced TFVs for the classification task. The initial TFVs of FVL thirteen, 

consisting of GLCM-Range texture features computed at inter-pixel distance d = 2 are fed to 

these five feature filters and reduced TFVs of FVL four are obtained. The top four most 

discriminatory GLCM-Range features selected by individual feature filters are tabulated in 

Table 4.6. 

Table 4.6 Top four ranked features listed in order of priority selected by scalar feature ranking 
methods based on class seperability criterion (S. No 1to 3). A subset consisting of four most 
discriminatory features, i.e., optimal reduced TFV selected by feature subset selection methods, 
SFS and SBS using divergence as class seperability measure (S. No. 4 and 5). 

S.No Feature Filter Ordered List of Feature Ids
1 Fisher discriminant ratio (FDR) F2, F8, F11, F4 
2 Divergence (Div.) F2, F8, F11,F4 
3 Bhattacharyya distance (B-Dist) F2, F8, F11, F4 
4 Sequential forward selection (SFS) F2, F4, F9, F12 
5 Sequential backward selection (SBS) F2, F4, F5, F12 

From Table 4.6, it can be observed that same four GLCM-Range features, i.e., feature ids 

(F2, F8, F11 and F4) representing (contrast, sum entropy, difference entropy and sum of 

squares: variance) are selected as top four discriminatory features by all the three scalar 

feature ranking algorithms (S. No 1to 3). The SFS feature subset selection method yielded the 

best combination of four features with feature ids, F2, F4, F9 and F12 (i.e., contrast, sum of 

squares: variance, entropy and information measures of correlation-1) as optimal reduced TFV 

and SBS feature subset selection method yielded the best combination of four features with 

feature ids F2, F4, F5 and F12 (i.e., contrast, sum of squares: variance, inverse difference 

moment and information measures of correlation-1) as optimal reduced TFV. 

4.6.4.2 Classification Results  
In classification module the top four GLCM-Range texture features obtained by different 

feature filters are fed separately to three binary SVM classifiers. The classification accuracy, 
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sensitivity and specificity values obtained by using selected GLCM-Range features are 

tabulated in Table 4.7. 

Table 4.7 The classification accuracy, sensitivity and specificity values obtained for selected 
GLCM-Range features computed for d = 2 with SVM classifiers.  

Classification Performance: SVM
Features Filters  

[Feature Ids] CM Acc. (%) Sen.(%) Spec.(%) 

FDR, Div. and B-Distance  
[F2,F8,F11,F4]  

 C N 
96.6 96.6 96.6 C 29 1

N 1 29
SFS  
[F2,F4,F9,F12]  
 

 C N 
90.0 86.6 93.3 C 26 4

N 2 28
SBS  
[F2,F4,F5,F12]  
 

 C N 
100 100 100 C 30 0 

N 0 30 

Note: CM: Confusion matrix, Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, N: Normal 
and C: Cirrhotic. The maximum accuracy of 100 % obtained for features selected by SBS feature 
selection procedure (shaded in gray). 

From Table 4.7, it can be observed that four GLCM-Range features (i.e., feature ids, F2, 

F8, F11 and F4 representing contrast, sum entropy, difference entropy and sum of squares: 

variance selected as top four discriminatory features by three scalar feature ranking 

algorithms based on FDR, Div., and B-dist as measure of class seperability) yield the 

classification accuracy and sensitivity value of 96.6 %. It can also be observed the best 

combination of four features (i.e., feature ids F2, F4, F9 and F12 representing contrast, sum 

of squares: variance, entropy and information measures of correlation-1) selected by SFS 

feature subset selection method yield the classification accuracy and sensitivity values of  

90 % and 86.6 % respectively.  

Further, it is observed that the best combination of four features (i.e., feature ids, F2, F4, 

F5 and F12 representing contrast, sum of squares: variance, inverse difference moment and 

information measures of correlation-1) selected by SBS feature subset selection method yield 

the highest classification accuracy and sensitivity value of 100 % for characterization 

between normal and cirrhotic liver. 

4.6.5 Conclusions – Experiment 2C 

From the results of experiment 2C, it can be concluded that out of total thirteen GLCM-

Range features computed for inter-pixel distance d = 2, considered initially in the experiment 

2-B, only four GLCM-Range features (i.e., contrast, sum of squares: variance, inverse 
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difference moment and information measures of correlation-1) selected by SBS feature subset 

selection method based on Div. as a measure of class seperability are significant to account 

for textural variations exhibited by normal and cirrhotic liver.  

4.7 Experiment  3  ―  Design  of  CAD  System  for  Prediction  of  Liver 
Cirrhosis using Features derived by Singular Value Decomposition of 
GLCM 

The block diagram indicating the experimental work flow for design of CAD system for 

prediction of liver cirrhosis using singular value mean features derived by SVD of GLCM is 

shown in Fig. 4.16.  

Fig. 4.16 Block Diagram – Experimental work flow – Design of CAD system for prediction of 
liver cirrhosis using singular value mean features.  
Note: RFVL: Reduced feature vector length, (Classification accuracies are expressed in 
percentage). Maximum classification accuracy of 100 % is obtained from first four singular values 
obtained from SVD of GLCM (shaded in gray).



76 

 

4.7.1 Feature Extraction ― Experiment 3  

Singular value features have been used extensively with SVM classifier for various 

classification tasks [63, 171, 175, 205]. In the present work, singular value mean features 

derived by SVD of GLCM are considered for classification between normal and cirrhotic 

liver. 

In feature extraction module, four direction GLCMs (i.e., for θ = 0º, 45º, 90º and 135º) 

with inter-pixel distance d = 2 are estimated. These four GLCMs are then decomposed by 

singular value decomposition (SVD) method. By SVD, any matrix is decomposed into its 

component matrices, which expose many useful properties of the original matrix [175, 205]. 

The GLCM of a ROI consists of n × n matrix Ap of real numbers such that p = 1 to L. 

The matrix Ap decomposed by SVD takes the following form: 

T

P P P PA U V= Λ              4.15  

Here, Up and Vp are orthogonal and represent row vector and column vector, respectively and 

Λp is a diagonal matrix whose diagonal entities represent the singular values which are real 

and decreasing.  

1 2 3 4 ..... 0n

p p p p p
σ σ σ σ σ≥ ≥ ≥ ≥ ≥           4.16 

The diagonal matrix Λp(d = 2, θ = 0˚) obtained by SVD of GLCM (d = 2, θ = 0˚) contain 

singular value-1(0˚), singular value-2(0˚) up to singular value-n(0˚) as diagonal entities. 

Similarly, diagonal matrices Λp(d = 2, θ = 45˚), Λp(d = 2, θ = 90˚) and Λp(d = 2, θ = 135˚) 

obtained by SVD of corresponding GLCMs are obtained. Finally, Λp-mean (d = 2), i.e., a 

diagonal matrix consisting of mean of the four directions (0˚, 45˚, 90˚ and 135˚) characteristic 

singular values is estimated. The matrix Λp-mean (d = 2) contains n singular values as its 

diagonal elements, i.e., σ1
p(mean), σ2

p(mean), σ3
p(mean), σ4

p(mean), σ5
p(mean), ………….., 

σn
p(mean) such that σ1

p(mean) = [σ1
p(0˚) + σ1

p(45˚) + σ1
p(90˚) + σ1

p(135˚)] / 4. Similarly, the 

mean value for all the singular values is calculated [185]. The average values of the first 15 

singular values-mean features, [i.e., average of sixty σ1
p(mean) values up to average of sixty 

σ15
p(mean) values corresponding to 60 normal ROIs and average of sixty σ1

p(mean) values up 

to average of sixty σ15
p(mean) values corresponding to 60 cirrhotic ROIs] are plotted in Fig. 

4.17 
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Fig. 4.17 First 15 singular value mean features (Average value for 60 normal liver ROIs and 60 
cirrhotic liver ROIs. 

 From Fig. 4.17., it is observed that the average of first four singular value-mean features 

differ significantly in case of normal and cirrhotic liver ROIs and therefore these singular 

value mean features are considered for further analysis.  

4.7.2 Classification ― Experiment 3 

In classification module the TFVs of FVL, two (i.e., first two singular value mean 

features), FVL, three (i.e., first three singular value mean features) and FVL, four (i.e., first 

four singular value mean features) are fed separately to three binary SVM classifiers.  

4.7.3 Results ― Experiment 3 

The classification accuracy, sensitivity and specificity values obtained by using first two, 

three and four singular value mean features with SVM classifier are tabulated in Table 4.8. 

Table 4.8 The classification accuracies obtained for singular value mean features obtained by 
SVD of GLCM with SVM classifier.  

Classification Performance: SVM
Features  CM Acc. (%) Sen.(%) Spec.(%) 

First two singular value 
mean features 
 

 C N 
98.3 96.6 100 C 29 1

N 0 30
First three singular value 
mean features 
 

 C N 
98.3 96.6 100 C 29 1

N 0 30
First four singular value 
mean features 
 

 C N 
100 100 100 C 30 0

N 0 30
Note: CM: Confusion matrix, Acc.: Accuracy, Sen.: Sensitivity, Spec.: Specificity, N: Normal 
and C: Cirrhotic. The maximum accuracy is obtained by using first four singular value mean 
features (shaded in gray) 
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Form Table 4.8, it is observed that a first four singular value mean features yield the 

highest classification accuracy, sensitivity and specificity value of 100 %.  

4.7.4 Conclusions ― Experiment 3 

It can be concluded that first four singular value mean features estimated by SVD of 

GLCM contain most of the energy and texture information which is significant to account for 

textural variations exhibited by normal and cirrhotic liver.  

4.8 Concluding Remarks  
The comparison of the results, obtained by different experiments undertaken in the 

present work for prediction of liver cirrhosis using B-Mode ultrasound images are shown in 

the Table 4.9 

Table 4.9 Comparison of results (prediction of liver cirrhosis). 
Experiment  Features Acc. (%) 
Exp. 1A Selected multi-resolution features [MRS: 2D-DWT, RFVL: 5] 96.6 
Exp. 1B Selected multi-resolution features [MRS: 2D-WPT, RFVL: 5] 90.0 
Exp. 1C Selected multi-resolution features [MRS: 2D-GWT, RFVL: 5] 98.3 
Exp. 2A GLCM-Mean features (d = 2) [FVL:13] 100 
Exp. 2B GLCM-Range features (d = 2) [FVL:13] 100 
Exp. 2B GLCM-Range features (d = 4) [FVL:13] 100 
Exp. 2C Selected GLCM-Range features (d = 2) [FDR, B-Dist and Div, RFVL:4] 96.6 
Exp. 2C Selected GLCM-Range features (d = 2) [SFS, RFVL:4] 90.0 
Exp. 2C Selected GLCM-Range features (d = 2) [SBS, RFVL:4] 100 
Exp. 3 First two singular value mean features [RFVL:2] 95.0 
Exp. 3 First three singular value mean features [RFVL:3] 95.0 
Exp. 3 First four singular value mean features [RFVL:4] 100 

Note: MRS: Multiresolution scheme, FVL: Feature vector length, RFVL: Reduced feature 
vector length, Acc. Accuracy, For experiment 2A and 2B, the results obtained by GLCM-
Mean and GLCM-Range features yielding the maximum classification accuracy are reported.  

It is observed that among the 2D-DWT, 2D-WPT and 2D-GWT multiresolution texture 

descriptors, the highest classification accuracy of 98.3 % is achieved by using only mean 

texture descriptors obtained from five frequency and orientation selective Gabor output 

feature images. The results of the study demonstrate that selective frequency and orientation 

properties of Gabor filters are extremely useful for providing multiscale texture description in 

case of discrimination between normal and cirrhotic liver.  
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Further, by plotting four direction GLCMs of a normal and cirrhotic ROI, it is observed 

that GLCM elements are concentrated for normal ROI and relatively dispersed for cirrhotic 

ROI, therefore in the present study characterization between normal and cirrhotic liver by 

using GLCM-Mean and GLCM-Range texture features computed at inter-pixel distance d 

varying from 1 to 4 is carried out. It is worth observing that TFV consisting of thirteen 

GLCM-Mean features computed at inter-pixel distance d = 2 yield the classification accuracy 

and sensitivity values of 100 %. Also, TFV consisting of thirteen GLCM-Range features 

computed at inter-pixel distance d = 2 and the TFV consisting of thirteen GLCM-Range 

features computed at inter-pixel distance d = 4 yield the classification accuracy and 

sensitivity value of 100 % for characterization between normal and cirrhotic liver tissue.  

The feature set consisting of TFV of thirteen GLCM-Range features computed at inter-

pixel distance d = 2 is subjected three feature ranking methods and two feature subset 

selection methods in order to obtain the optimal GLCM-Range texture features for 

characterization of normal and cirrhotic liver tissue. It is observed that a subset of four 

GLCM-Range computed at inter-pixel distance d = 2 selected by SBS feature subset selection 

method with divergence as a class seperability measure (consisting of features, contrast, sum 

of squares-variance, inverse difference moment and information measures of correlation-1) 

also yield the maximum classification accuracy and sensitivity value of 100 % for 

characterization between normal and cirrhotic liver tissue.  

Since reduced TFV of FVL five consisting of scale and orientation selective multi-

resolution Gabor mean texture features yield the classification accuracy of 98.3 % and 

reduced TFV of FVL four consisting of selected GLCM-Range texture features yield the 

classification accuracy of 100 %, another experiment based on singular value mean features 

derived by SVD of GLCM is carried out and it is observed that the first four singular value 

mean features obtained by SVD of GLCM yield the classification accuracy and sensitivity 

value of 100 % for discrimination of normal and cirrhotic ROIs.  

Early diagnosis of liver cirrhosis is absolutely essential as cirrhosis is an irreversible liver 

disease and also patients with liver cirrhosis are at increased risk of development of 

hepatocellular carcinoma [71]. Early diagnosis always helps radiologist for better 

management of the disease and adequate scheduling of treatment options. The promising 

results obtained by the experiments carried out in this study indicate that while only mean 
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texture descriptors obtained from five frequency and orientation selective Gabor output 

images are sufficient to account for textural variations exhibited by normal and cirrhotic liver, 

the CAD system design using first four singular value mean features obtained by SVD of 

GLCM yields 100 % classification accuracy and sensitivity for characterization between 

normal and cirrhotic liver tissue. Thus, it can be concluded that the proposed CAD system 

design using singular value mean features derived by SVD of GLCM along with SVM 

classifier can be routinely used in a clinical environment to assist radiologists for diagnosis of 

liver cirrhosis.   

In case of diffuse liver diseases the progression takes place from normal liver tissue 

towards different grades of fibrosis. The end stage of fibrosis is referred to as cirrhosis which 

is considered as a precursor to development of hepatocellular carcinoma [71]. Given the fact 

that diagnosis of small HCCs developed on already nodular cirrhotic liver parenchyma by B-

Mode US images is a daunting challenge even for experienced radiologists, it is necessary to 

investigate the progression of cirrhosis towards HCC. Thus, it is clinically significant to 

investigate if the changes in the textural patterns of the liver correspond to cirrhosis or 

indicate development of HCC.  Early detection of HCC is necessary for better management 

of liver malignancy by adequate scheduling of treatment options. Therefore the design of an 

efficient CAD system for characterization of normal, cirrhotic and HCC liver is taken up as 

the next objective and is discussed in Chapter 5. 

 

 

 

 

 



Chapter 5 

Characterization of Normal, Cirrhotic and HCC Liver 

5.1 Introduction  

Although biopsy is the “gold standard” for diagnosing liver diseases; ultrasonography is 

mostly preferred for screening, due to its noninvasive, nonradioactive and inexpensive nature. 

Echotexture of normal liver, as it appears on ultrasound (US), is homogeneous with medium 

echogenicity, i.e., it exhibits same or slightly increased echogenicity compared to the right 

kidney. Cirrhosis is considered to be the end stage of chronic hepatopathies which often leads 

to hepatocellular carcinoma (HCC). The diagnosis of cirrhosis is best achieved by looking at 

the granular structure of the liver parenchyma and the degree of nodularity present in the 

heterogeneous echotexture. HCC is viewed as most probable solid primary malignant liver 

lesion occurring on cirrhotic liver. Most small HCCs (SHHCs) are diagnosed with a follow-up 

procedure for patients with cirrhosis. In few cases, when HCC develops on normal liver 

parenchyma it can be easily diagnosed by its sonographic appearance as it appears as a well 

differentiated HCC or as fibrolamellar HCC (commonly appears with calcified areas). A lesion 

can be labeled as typical in appearance when its subjective diagnosis can be made with a good 

confidence level by looking at the US examination. The associated radiologists opined that no 

sonographic appearance is typical for HCCs as they exhibit a high degree of variability in terms 

of sonographic appearances even within SHCCs and large HCCs (LHCCs). 

SHCCs frequently appear as hypoechoic nodule (solid tumor nodule without necrosis) or 

as hyperechoic nodule (solid tumor likely containing fat). In very few cases SHCCs can also be 

isoechoic, i.e., same echogenicity as surrounding parenchyma. The HCC lesion may also 

exhibit hyperechoic echotexture with a hypoechoic halo (rim like structure surrounding HCC 

lesion) or alternatively hypoechoic echotexture with hyperechoic halo sign. LHCCs appear 

much more complex and heterogeneous with mixed echogenicity (coarse irregular internal 

echoes) as a result of areas of necrosis, fibrosis as well as active growth areas [110]. 

It is always considered difficult to diagnose small focal liver lesions (FLLs < 2 cm) 

developed on already nodular and coarse textured cirrhotic liver parenchyma by using B-Mode 

liver US images. Also, since cirrhosis is a precursor to development of HCC it is necessary to 

monitor the progress of the disease from cirrhosis towards HCC. Thus, it is essential to 

investigate whether the textural changes in the liver parenchyma are cirrhotic changes or 

indicate the development of HCC.  Therefore, it is clinically significant to design an efficient 
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CAD system for characterization of normal, cirrhotic and HCC liver. The study presented in 

this Chapter addresses this issue.  

There are few related researches in literature for characterization of liver tissue as normal, 

cirrhotic or HCC. The study in [200] reports characterization between normal, cirrhotic and 

HCC liver by using combination of roughness and granularity texture descriptors computed at 

various resolutions along with Fourier power spectrum based texture features by using bayes 

classifier. In another related research [199], multi threshold dimension feature vector based on 

fractal geometry is proposed for classification between normal, cirrhotic and HCC liver. The 

study in [97] used fractal dimension of subimages obtained at various resolutions with M-band 

wavelet transform as fractal feature vector for classification between normal, cirrhotic and 

HCC liver. The study in [95] used the same fractal feature vector and developed a system to 

characterize normal, cirrhotic and HCC by fusion of classifiers. The study in [95, 97], reports 

the use of images scanned by high resolution scanner, (i.e., 32-pixel/cm and 8-bit/pixel 

resolution) with ROI size of 64×64 pixels, (i.e., 2 cm by 2 cm for the given image resolution); 

however, in case of SHCCs (< 2 cm), it is not possible to extract such a large ROI. The dataset 

description reported in studies [95, 97, 199, 200] doesn’t clarify if only HCCs developed on 

cirrhotic liver are considered and also about the number of SHCCs and LHCCs considered for 

their CAD designs.  

Keeping in view the research perspective in literature, the current study is different in the 

sense that only HCC lesions evolved on cirrhotic liver are considered and the representative 

dataset of HCC images consisting of both small HCC images (SHCCIs) and large HCC images 

(LHCCIs) is used for designing an efficient classifier.  

Although detection of HCC in early stages has important clinical value, at the same time it 

is observed that in many cases HCCs are detected in advanced stages therefore the participating 

radiologists opined that isolation of a single case series, i.e., HCC lesions into incipient (small) 

and advanced (large) HCC for characterization is not adequate as a ROI from HCC lesion 

representing primary malignancy of liver should be predicted as HCC irrespective of the fact 

whether the ROI belongs to SHCC or LHCC. 

 It is worth mentioning that conventional gray scale B-Mode US offers limited sensitivity 

for detection of lesions developed on already nodular and coarse textured cirrhotic liver 

parenchyma as a result differentiating the texture patterns exhibited by HCCs developed on top 

of cirrhosis from its preceding stage of cirrhosis presents a daunting challenge even for 

experienced radiologists, therefore a US tissue characterization system capable of providing 
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adequate discrimination between normal liver, cirrhotic changes in the liver, and HCC 

developed on cirrhotic liver, is proposed in this study.  

5.2 Dataset Description – CAD for Normal, Cirrhotic and HCC liver 

The design of CAD system for characterization of normal, cirrhotic and HCC liver tissue 

was carried out with 56 B-Mode liver US images, i.e., 15 normal images, 16 cirrhotic images 

and 25 HCC images.  

Experienced participating radiologists were of the view that the HCC image dataset used in 

the present work consists of representative images, offering a high degree of variability 

encountered during subjective analysis of these lesions in routine clinical practice. The size of 

SHCC varied from 1.5 to 1.9 cm and the size of LHCC varied from 2.1 to 5.6 cm, respectively. 

Fig. 5.1 and Fig. 5.2 represent 5 SHCCI variants and 5 LHCCI variants from the acquired 

image database. 

 
Fig. 5.1(a) Hypoechoic SHCCI;  (b) Hypoechoic SHCCI;  (c) Hyperechoic SHCCI with hypoechoic 
halo; (d) Homogeneously hyperechoic SHCCI without halo; (e) Variant of SHCCI with mixed 
echogenicity (coexistence of hyperechoic and isoechoic areas). 
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Fig. 5.2 Heterogeneous echotexture represents complex and chaotic structure exhibited by LHCCIs 
due to coexistence of areas of necrosis, fibrosis and active growth areas.  
Note: Hypoechoic halo formation is visible in (d) and (e). Necrotic area is visible in the centre of 
LHHCI shown in (e). 

The protocols followed for collection of dataset, selection of ROIs and selection of ROI 

size are described in Section 3.4 of Chapter 3. The sample of normal, cirrhotic and HCC liver 

image from the acquired image database with ROIs marked are shown in Fig. 5.3. 

 

Fig. 5.3 Sample B-Mode US images with ROIs marked: (a) Normal liver image; (b) Cirrhotic liver 
image; (c) HCC on top of cirrhosis.  

The detailed description of the dataset used in this study, and its bifurcation into training 

dataset and testing dataset is shown in Fig. 5.4. 
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Fig. 5.4 Dataset description – CAD for normal, cirrhotic and HCC liver.  
Note: LHCCIs: Large HCC images, SHCCIs: Small HCC images, LHCC: Large HCC, SHCC: Small 
HCC  

5.3 Proposed CAD System for Normal, Cirrhotic and HCC Liver Tissue 

For implementation of the proposed CAD system, database of 180 non-overlapping ROIs 

is created from 56 clinically acquired US images. The CAD system consisted of three modules: 

(i) feature extraction module, (ii) feature selection module, and (iii) classification module. The 

block diagram of the proposed CAD system for characterization of normal, cirrhotic and HCC 

liver using B-Mode US images is shown in Fig. 5.5.  

In feature extraction module, each ROI in the database is decomposed up to 2nd level of 

decomposition by 2D-WPT, resulting in 16 sub-band feature images for each ROI. The texture 

feature vectors (TFVs) of length 48 are computed by estimating mean, standard deviation (Std) 

and energy features from all the 16 sub-band feature images for each ROI. In feature selection 

module, Genetic algorithm-support vector machine (GA–SVM) feature selection method is 

used to find the optimal reduced TFV, which can significantly account for the textural 

variations exhibited by normal, cirrhotic and HCC liver. The feature set consisting of instances 

of optimal reduced TFV outputted by the feature selection module is passed to the classification 
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module. In classification module, a multiclass SVM classifier is implemented using LibSVM 

library [31]. 

 
Fig. 5.5 Proposed CAD system for characterization of normal, cirrhotic and HCC liver. 

5.3.1 Feature Extraction Module 

A speckled image of liver tissue is produced on US [44]. It is a well known fact that 

speckle in US images carries useful information and therefore cannot be treated as a typical 

random noise [58, 65, 165, 193]. As speckle represents high frequency components of the US 

image, the 2D-WPT, which is considered as richer space-frequency multiresolution analysis 

scheme may offer appropriate texture descriptors for classification tasks. Other researches 

where multiresolution wavelet packet texture descriptors have shown remarkable performances 

are [192, 209]. For the present study, multiresolution texture descriptors obtained from 2D-

WPT are considered for analysis. 
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5.3.1.1 Multiresolution Analysis  
Feature extraction can be carried on a single scale by considering the spatial interactions 

which exists over small neighborhoods, for example, by using gray level co-occurrence matrix 

(GLCM), gray level run length matrix (GLRLM), gray level difference statistics (GLDS), 

neighborhood gray tone dependence matrix (NGTDM), statistical feature matrix (SFM), etc. 

Feature extraction in transform domain is carried out over various scales by using 

multiresolution schemes such as discrete wavelet transform (DWT), stationary wavelet 

transform (SWT), wavelet packet transform (WPT) and Gabor wavelet transform (GWT). 

Computing texture descriptors in transform domain is much more logical in the sense that 

human visual system (HVS), processes images in a multiscale way and scale is a dominant 

aspect for analysis of texture [43, 115].  In case of 2D-DWT as only the low frequency sub-

image is recursively decomposed; it may not be efficient for texture characterization, as most 

significant texture information usually appears in the middle and high frequency channels [32].  

5.3.1.2  Wavelet Packet Transform  
As a result of 2D-WPT decomposition, complete frequency plane is sub-divided into equal 

size bands. The 2D-WPT tree up to second level of decomposition results in 16 sub-band 

feature images (wavelet packets) each representing a band in the frequency plane as depicted in 

Fig. 5.6.  

 
Fig. 5.6 2D-WPT tree up to 2nd level of decomposition represent 16 [(2,0) to (2,15)] sub-band feature 
images (wavelet packets). Eight sub-band feature images (wavelet packets) are shaded in gray; features 
from these eight images are selected by GA–SVM feature selection method. 
Note: A: Approximate sub-band, H: Horizontal sub-band, D: Diagonal sub-band and V: Vertical sub-
band. 
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Computing mean, standard deviation (Std), and energy features estimated from all 16 sub-

band feature images result in a TFV of feature vector length (FVL) forty eight. Ten texture 

descriptors, (i.e., 3 mean features, 5 Std features and 2 energy features, shaded in gray in Fig. 

5.7) computed from eight sub-band feature images (shaded in gray in Fig. 5.6) are selected by 

GA–SVM feature selection method as optimal features for the classification task. 

Fig. 5.7 Features extracted from 2D-WPT tree at 2nd level of decomposition. Ten features shaded in 
gray are selected by GA–SVM feature selection method. 
Note:  M: Mean, S: Standard deviation and E: Energy features. 10 features (3 mean features, 5 standard 
deviation features and 2 energy features) estimated from eight sub-bands {(2,0), (2,1), (2,2), (2,4), (2,5), 
(2,7), (2,8) and (2,13)} feature images selected by GA–SVM feature selection method are shaded and 
indicated in bold. 

5.3.1.3  Selection of Wavelet Filter  
The review of literature for texture characterization in transform domain using 

multiresolution features indicates that the choice of wavelet filter is important as the properties 

of these decomposition filters play a significant role in description of texture; specifically with 

2D-DWT and 2D-WPT schemes, the choice of an appropriate wavelet filter affects the 

characterization performance. Studies in literature [12, 52, 123, 147, 178, 192, 209] have 

shown empirical success by using different wavelet filters for specific classification tasks. The 

criteria like support width, shift invariance, orthogonality or biorthogonality, and symmetry are 

important and must be considered for selecting an appropriate wavelet filter. Usually compact 

support wavelet filters are desired for the ease of implementation. Orthogonality is another 

important property for conservation of energy at each decomposition level. Symmetry is 

required to avoid dephasing in processing the images [120, 178]. In the present work, ten 

compact support wavelet filters including Haar, Daubechies (db4 and db6), biorthogonal 

(bior3.1, bior3.3 and bior4.4), symlets (sym3 and sym5) and coiflets (coif1 and coif2) are 

considered for analysis with 2D-WPT. Comparison of important properties of wavelet filters 

used in the present study is summarized in Table 5.1. 
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Table 5.1  Comparison of properties of wavelet filters used in the present study. 

Wavelet Biorthogonal Orthogonal Symmetry Asymmetry Near Symmetry Compact Support 

Db No Yes No Yes No Yes 

Haar No Yes Yes No No Yes 

Bior Yes No Yes No No Yes 

Coif No Yes No No Yes Yes 

Sym No Yes No No Yes Yes 

5.2.1.4  Selection of Wavelet Packet Texture Descriptors 

Extensive literature survey on texture classification in transform domain using 

multiresolution approaches reveals that mean, standard deviation and energy features are 

frequently used for texture description [12, 32, 120, 178, 192, 204, 209]. For the present study, 

mean, standard deviation (Std) and energy features are computed for each sub-band feature 

image by using equations 5.1, 5.2 and 5.3. 
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Here, SIj are subimages of size M×N at level j = 1, 2,...,5. As the size of the ROI is 32 by 32 

pixels, decomposition up to 5th level is possible.  

The study in [178], determined the best level of decomposition for 2D-WPT with entropy 

criterion based best level algorithm according to which decomposition is carried out until the 

entropy of the sub-band is less than the sum of entropy of all its child sub-bands. However, in 

another study [142], it is reported that such a criterion for obtaining the best level of 

decomposition may not be suitable for texture classification tasks as small entropy value 

obtained from a particular sub-band may not necessarily indicate that the sub-band will 

separate the texture classes effectively.  By 2nd level decomposition of a ROI with 2D-WPT, 16 

sub-band images are obtained. Computing mean, standard deviation (Std), and energy features 

from these 16 sub-band images yields a TFV of FVL 48 (16×3). By subsequent 3rd, 4th and 5th 

level decomposition of ROI with 2D-WPT, 64, 256 and 1024 sub-band images are obtained. 
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Computing mean, Std, and energy features from these sub-band images results in large TFVs of 

FVLs, 192 (64×3), 768 (256×3) and 3072 (1024×3), respectively. These large TFVs are not 

considered for analysis due to computational efficiency constraints.  

Wavelet packet decomposition tree up to 2nd level of decomposition yields 16 sub-band 

images (wavelet packets) as shown in Fig. 5.6. Only mean feature estimated from these 16 sub-

band images results in mean TFV of FVL 16, similarly the standard deviation TFV and energy 

TFV of FVL 16 are obtained. The combined TFVs like, Mean+Std TFV consisting of mean and 

standard deviation features of FVL 32, Mean+Energy TFV and Std+Energy TFVs of FVLs 32 

are obtained. The Mean+Std+Energy TFV, consisting of mean, standard deviation and energy 

features is of FVL 48.  

5.3.2 Feature Selection Module 

Designing CAD systems with smallest number of features is always desired as interference 

of irrelevant features can lead to reduced learning performance of the classifier which further 

increases the time taken to perform classification task and reduces the classification accuracy 

[160, 180]. GA–SVM feature selection method is used in this study to remove irrelevant 

features. For applying genetic algorithm (GA) to any problem two steps are extremely 

important, adequate representation and appropriate fitness function [66, 84, 127]. In the present 

study, binary representation is used for representing all possible feature subspaces of a given 

feature set and the training accuracy obtained by the SVM classifier is used as fitness function. 

The main steps of GA–SVM feature selection method are:  

(i)  Initialization: An initial population of possible candidate solutions (individuals or 

chromosomes) is created randomly. 

(ii)  Representation:  Each chromosome is a 48-bit binary mask where each bit corresponds to 

a single feature, 0 at any location in the bit string indicates that the corresponding feature 

is excluded and 1 indicates that it is included.  

(iii)  Fitness Evaluation: The performance of each individual or chromosome is gauged by 

appropriate fitness function.   

(iv)  Selection: Roulette Wheel selection - The individuals or chromosomes which are deemed 

fit have high probability to enter the mating pool than those deemed unfit.  

(v)  Crossover: The selected individuals in the mating pool are recombined with the 

probability Pc using crossover operator to produce next-generation offspring.  
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(vi)  Mutation: A mutation operator is applied to these offspring with a low probability Pm to 

ensure that there is always a variability added to the pool of solutions. 

(vii)  Fitness Check: The offspring are then again evaluated using the fitness function and 

those which have higher fitness values then the earlier individuals are considered for 

forming a new population.   

At the end of one iteration, the new population formed after selection, crossover, mutation 

and fitness check contains old individuals which are fitter than the new individuals and those 

which are comparatively fitter amongst the new individuals. In this way, in subsequent 

generations the chromosomes which are fittest mate more often and propagate their genetic 

material to the offspring which form potential candidate solutions thus biasing the search space 

towards promising candidate subspaces.  The GA search procedure terminates when either 

there is no improvement in the fitness value after a fixed number of successive iterations or 

after a predefined number of generations.  

In this study single point crossover is used and the other GA run parameters are set as 

crossover rate (Pc) equal to 0.6, mutation rate (Pm) equal to 0.033, and population size equal to 

20 by manual optimization after a series of trails.   

5.3.3 Classification Module 

The generalization capability of the classifier is tested with instances of the TFVs which 

are not used in classifier design.  The dataset used in the present work consists of total 180 

ROIs (60 normal ROIs taken from 15 normal images, 60 cirrhotic ROIs taken from 16 cirrhotic 

images, and 60 HCC ROIs taken from 25 HCC images). The training dataset and testing dataset 

consists of 90 ROIs each, i.e., 30 ROIs from each image class. A complete description of 

dataset used in this study is summarized in Fig. 5.4. 

5.3.3.1  SVM Classifier  
It has been argued in [25, 59] that classifier designs which use regularization like SVM are 

less prone to over fitting and obtain good generalization performance to a certain extent even 

without feature space dimensionality reduction. For the present work, SVM classifier is chosen 

for the classification task. To avoid the bias caused by unbalanced feature values, all the 

extracted features were normalized in the range of [0, 1] by using min-max normalization 

procedure.  

For multiclass classification, LibSVM library [31] uses one-against-one (OAO) technique 

by constructing M (M – 1) / 2 binary sub-classifiers, where M is the number of classes. Each 
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binary sub-classifier is trained to separate a pair of classes and prediction is made by majority 

voting technique. 

 In present three class classification problem, the prediction of the class for an instance of 

TFV of the testing dataset is made by majority voting mechanism on the predictions of 3 binary 

sub-classifiers, i.e., SVM (normal/cirrhosis), SVM (normal/HCC) and SVM (cirrhosis/HCC).  

Crucial step for obtaining good generalization performance with SVM classifier is the 

correct choice of the regularization parameter C and kernel parameter γ. The regularization 

parameter C attempts to maximize the margin while keeping low value for training error.  In 

the present study, extensive search is carried out in the parameter space for the values of C ∈ 

{2-4, 2-3,……., 215} and γ ∈  {2-12, 2-11,……., 25} using 10 fold cross validation to obtain 

optimal values of C and γ for training the SVM model. The SVM classifier trained with this C 

and γ is subsequently used for classification of unseen testing dataset. 

5.3.3.2 Classification performance  
In addition to the overall classification accuracy (OCA) value, the individual class 

accuracy (ICA) values for each class are also estimated.  

ICA for a particular class, say, for HCC ROIs abbreviated as ICAHCC is the ratio of number 

of correctly classified HCC ROIs over the total number of actual HCC ROIs.  

5.4 Results – CAD System for Normal, Cirrhotic and HCC Liver 

Initially, all the seven TFVs, i.e., mean TFV, standard deviation TFV (Std TFV), energy 

TFV, Mean+Std TFV, Mean+Energy TFV, Std+Energy TFV and Mean+Std+Energy TFV 

estimated from all 16 sub-band feature images obtained from 2nd level decomposition of a ROI 

with 2D-WPT by using ten compact support wavelet filters including Haar, Daubechies (db4 

and db6), biorthogonal (bior3.1,bior3.3 and bior4.4), symlets (sym3 and sym5) and coiflets 

(coif1 and coif2) are used for classification with SVM classifier to compare the capability of 

different wavelet filters to characterize textural variations exhibited by normal, cirrhotic and 

HCC liver.  

The maximum and minimum classification accuracy values obtained by all the seven TFVs 

with the corresponding wavelet filters are reported in Table 5.2. 
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Table 5.2 Comparison of maximum and minimum accuracy obtained by all seven TFVs with the 
corresponding wavelet filter. 

Classification performance: SVM 
S.No TFVs  l  Max. Acc. (%)   Wavelet filter   Min. Acc.(%) Wavelet filter 
1 Mean  16 84.4 Haar 73.3 sym3 
2 Std 16 84.4 Haar 70.0 sym5 
3 Energy 16 81.1 Haar 72.2 coif2,db6 
4 Mean+Std 32 84.4 Haar 76.6 bior3.3 
5 Mean+Energy 32 85.5 Haar 71.1 sym3 
6 Std+Energy 32 84.4 Haar 74.4 coif1 
7 Mean+Std+Energy 48 86.6 Haar 74.4 bior3.1 

Note: TFVs: Texture feature vectors, l: Length of TFV.  

From Table 5.2, it is interesting to note that for all seven TFVs maximum classification 

accuracy is obtained by using Haar wavelet filter. The highest accuracy of 86.6 % is obtained 

by using Haar wavelet filter with Mean+Std+Energy TFV (7th row of Table 5.2). 

The classification results, i.e., OCA value and ICA values of each image class, obtained by all 

seven TFVs using Haar wavelet filter are reported in Table 5.3. 

Table 5.3 The classification results obtained by all seven TFVs using Haar wavelet filter. 
Classification performance: SVM 

S.No TFV FVL OCA (%) ICANOR (%) ICACIRR (%) ICAHCC(%) 
1 Mean 16 84.4 93.3 76.6 83.3 
2 Std 16 84.4 90.0 83.3 80.0 
3 Energy 16 81.1 86.6 70.0 76.6 
4 Mean+Std 32 84.4 93.3 80.0 80.0 
5 Mean+Energy 32 85.5 93.3 80.0 83.3 
6 Std+Energy 32 84.4 90.0 80.0 83.3 
7 Mean+Std+Energy 48 86.6 93.3 83.3 83.3 
Note: TFV: Texture feature vector, FVL: Feature vector length, OCA: Overall classification accuracy, 
ICANOR: Individual class accuracy for normal, ICACIRR: Individual class accuracy for cirrhosis, 
ICAHCC: Individual class accuracy for HCC.  

From Table 5.3, it can be visualized that the second highest OCA of 85.5 % is obtained by 

using Mean+Energy TFV (5th row of Table 5.3). By including standard deviation features with 

mean and energy features the ICA for cirrhosis has increased from 80.0 % to 83.3 % (compare 

5th and 7th rows of Table 5.3).  

It can be concluded that mean, standard deviation and energy features all contribute to 

capture the textural variations of normal, cirrhotic and HCC ROIs with highest OCA of 86.6 % 

obtained by Mean+Std+Energy TFV. 

The classification results obtained by using Mean+Std+Energy TFVs with all ten wavelet filters 

are reported in Table 5.4. 
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Table 5.4 The classification results obtained by using Mean+Std+Energy TFVs with all 10 compact 
support wavelet filters. 

Classification performance: SVM 
S.No. Wavelet filter OCA (%) ICANOR (%) ICACIRR (%) ICAHCC (%) 
1 bior3.1 74.4 93.3 73.3 56.6 
2 bior3.3 77.7 100.0 66.6 66.6 
3 bior4.4 76.6 83.3 70.0 76.6 
4 Haar 86.6 93.3 83.3 83.3 
5 db4 80.0 86.6 80.0 73.3 
6 db6 80.0 93.3 76.6 70.0 
7 sym3 78.8 90.0 73.3 73.3 
8 sym5 76.6 83.3 73.3 73.3 
9 coif1 81.1 90.0 83.3 70.0 
10 coif2 78.8 86.6 73.3 76.6 
Note: OCA: Overall classification accuracy, ICANOR: Individual class accuracy for normal, ICACIRR: 
Individual class accuracy for cirrhosis, ICAHCC: Individual class accuracy for HCC.  

It can be observed that the highest OCA of 86.6 % is obtained by Mean+Std+Energy TFV 

with Haar wavelet filter (4th row of Table 5.4). It can also be noted that the highest ICA value 

of 83.3 % for cirrhosis and HCC cases is obtained in this case.  

It can be concluded that compactly supported, orthogonal and symmetric Haar wavelet 

filter is suitable for use with 2D-WPT multiresolution scheme along with SVM classifier for 

characterizing the normal, cirrhotic and HCC liver.  

However, since the FVL of Mean+Std+Energy TFV (16 mean, 16 standard deviation and 

16 energy features) is 48 and the total number of training instances are 90; feature selection 

with GA as search procedure and classification accuracy of the SVM classifier as fitness 

function is used for removing noisy, non-informative and redundant features.  

The GA–SVM feature selection method selected a subset of 10 features, i.e., 3 mean, 5 

standard deviation and 2 energy features (highlighted in Fig. 5.7) out of total 48 features, i.e., 

16 mean, 16 standard deviation and 16 energy features (shown in Fig. 5.7).  

It can also be noted that the 10 features of optimal reduced TFV (highlighted in Fig. 5.7) 

are estimated from eight sub-band feature images (highlighted in Fig. 5.6).  

The classification results obtained by using Mean+Std+Energy TFV with Haar wavelet 

filter and optimal reduced TFV selected by GA–SVM method by using SVM classifier are 

reported in Table 5.5. 
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Table 5.5 The classification results obtained by using Mean+Std+Energy TFV with Haar wavelet 
filter and optimal reduced TFV selected by GA–SVM method. 

Classification performance: SVM 

TFV FVL Confusion Matrix ICA (%) OCA (%) 

Mean+Std+Energy TFV 

 
48 

 NOR CIRR HCC  

86.6 
NOR 28 0 2 93.3 

CIRR 0 25 5 83.3 

HCC 1 4 25 83.3 

Optimal reduced TFV 10 

 NOR CIRR HCC  

88.8 
NOR 27 0 3 90.0 

CIRR 0 27 3 90.0 

HCC 2 2 26 86.6 

Note: TFV: Texture feature vector, FVL: Feature vector length, NOR: Normal, CIRR: Cirrhosis, 
OCA: Overall classification accuracy, ICA: Individual class accuracy, Mean+Std+Energy Features: 
16 mean features, 16 standard deviation features and 16 energy features, optimal reduced TFV: 3 
mean, 5 standard deviation and 2 energy features selected by GA–SVM method. 

It can be observed that optimal reduced TFV of FVL 10 selected by GA–SVM feature 

selection method yields the OCA value of 88.8 %. However, the OCA achieved by using 

Mean+Std+Energy TFV of FVL 48 is 86.6 %. The other interesting fact is that by use of 

optimal reduced TFV the ICA for detecting abnormal cases, i.e., cirrhotic as well as HCC cases 

has increased. The ICA value for HCC cases has increased from 83.3 % to 86.6 % and 

sensitivity for cirrhosis cases has increased from 83.3 % to 90.0 %. The results obtained are 

promising as the sensitivity of conventional gray scale B-Mode US for detecting HCC lesions 

evolved on cirrhotic liver is limited and it is reported that contrast-enhanced US improves the 

sensitivity to around 85 % [62].  

The sensitivity of the proposed CAD system for detecting HCCs is 86.6 % with 

conventional B-Mode US images. The results of the study indicate that optimal reduced TFV 

consisting of 10 features (3 mean and 5 standard deviation and 2 energy features) estimated 

from 8 sub-band feature images (wavelet packets) obtained by 2D-WPT using Haar wavelet 

filter can significantly account for textural variations exhibited by a variety of HCCs evolved 

on cirrhotic liver as well as cirrhotic and normal liver. 

5.4.1 Misclassification Analysis 

The 12 HCC images of the testing dataset were reviewed by an experienced participating 

radiologist and the remarks are summarized in Table 5.6.  
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Table 5.6 Review remarks from experienced radiologist for 12 HCC images of the testing dataset. 

Image No. in  
Test Data  

LHCCI/ SHCCI ROI Identification No. Prediction of Proposed CAD Remarks 

1 SHCCI 1  Predicted as HCC Correct 

2 SHCCI 2 Predicted as HCC Correct 

3 LHCCI 3*,4,5,6 3* misclassified as Normal Incorrect* 

Remaining 4,5,6 Predicted as HCC Correct 

4 SHCCI 7 Predicted as HCC Correct 

5 SHCCI 8 Predicted as HCC Correct 

6 SHCCI 9 Predicted as HCC Correct 

7 SHCCI 10,11 10,11 both misclassified as Cirrhotic Incorrect 

8 LHCCI 12,13,14 All predicted as HCC Correct 

9 LHCCI 15,16,17 All predicted as HCC Correct 

10 LHCCI 18,19,20 All predicted as HCC Correct 

11 LHCCI 21,22,23,24,25,26,27,28 All predicted as HCC Correct 

12 LHCCI 29,30 29 misclassified as Normal Incorrect 

30 predicted as HCC Correct 

From Table 5.6, it is observed that HCC ROIs predicted as normal belong to two different 

LHCC images (Image No. 3 and Image No. 12 in Table 5.6) and remaining 2 misclassified 

HCC ROIs predicted as cirrhotic belong to a single SHCC Image (Image No. 7 in Table 5.6). 

Experienced participating radiologists opined that ROI with identification number 3* might 

have been misclassified due to close proximity with the halo although it is confirmed that the 

ROIs with identification numbers 3, 10, 11 and 29 are actual misclassifications of the proposed 

CAD system.  

ROIs with identification numbers 3 and 29 are patches inside HCC lesion which are 

predicted as normal by the proposed CAD system. As US is commonly used to facilitate liver 

lesion biopsy, the participating radiologist were of the view that any ROI inside the HCC lesion 

if predicted as normal should be avoided for taking the sample for biopsy.  

5.5 Summary   

Brief description of CAD systems proposed in literature for characterization of normal, 

cirrhotic and HCC liver from B-Mode US images (earlier shown as Table 2.1 of Chapter 2 is 

revisited here as Table 5.7 for comparision with the present study).  
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Table 5.7 Brief description of CAD systems proposed in literature for characterization of normal, 
cirrhotic and HCC liver 
 Dataset Description Classification Performance: SVM 

Author’s 
(year) 

Patients Images/  
class 

No. of 
ROIs 

ROI Size ICANOR(%) ICACIRR (%) ICAHCC (%) OCA(%) 

Wu et al. 
[200]  45 

Normal-15 
Cirrhotic-15 
HCC-15 

90 32×32 86.6 100 83.3 90.0 

Wu et al. 
[199]  - - 90 30×30 80.0 90.0 93.3 87.8 

Le et al.  
[97]  - - 150 64×64 92.0 100 96.0 96.0 

Le et al. 
[95]  - - 432 64×64 100 91.5 94.5 95.3 

Virmani et al. 
[191]  56 

Normal-15 
Cirrhotic-16 
HCC-25* 

180 32×32 90.0 90.0 86.7 88.8 

Note: ICA: Individual class accuracy, OCA: Overall classification accuracy. *25 HCC images 
consisting of 25 solitary HCC lesions (14 small HCC lesions and 11 large HCC lesions) developed on 
top of cirrhotic liver are used in this study.  

From the data description reported in studies [95, 97, 199, 200], it is not clear whether  or 

not, only HCCs developed on cirrhotic liver are considered, further the bifurcation of number 

of HCCs into SHCC and LHCC is also not specified. The direct comparison of the present 

study with other related researches is not possible because image databases and image 

acquisition methods are different. However, it can be stated that the proposed approach for 

characterization between normal, cirrhotic and HCC liver yields comparable results with use of 

comprehensive and representative training data for classifier design.  

5.6 Concluding Remarks  

In the present study, a CAD system for characterizing normal, cirrhotic and HCC liver is 

proposed by multiresolution texture analysis of B-Mode liver US images. The proposed CAD 

system achieved OCA of 88.8 % with the ICA values of 90.0 % for normal and cirrhotic liver 

and 86.6 % for HCC liver with optimal reduced TFV obtained by GA–SVM feature selection 

method and SVM classifier. Considering limited sensitivity of conventional B-Mode gray-scale 

US for detecting HCCs evolved on cirrhotic liver, the sensitivity of 86.6 % for HCC lesions 

obtained by the proposed CAD system is quite promising and suggests that the proposed 

system can be used in a clinical environment to support radiologists in lesion interpretation 

thereby improving diagnostic accuracy which can avoid unnecessary biopsies. 

Since the development of HCC is most often associated with liver cirrhosis, in radiology 

practice cirrhosis is considered to be the precursor for development of HCC. In very rare cases 

when a HCC occur on normal liver, it can be easily diagnosed by radiologists but the diagnosis 
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of these lesions on coarse and nodular cirrhotic liver parenchyma pose a diagnostic challenge 

for radiologists in routine practice. The HCC (primary malignant lesion) is the second most 

common liver malignancy only after metastasis (secondary malignant lesion). Due to highly 

overlapping sonographic appearances between HCC and MET lesions, the differential 

diagnosis between these lesions using conventional gray-scale B-Mode US images is 

considerably difficult. However, the differential diagnosis between these malignant lesions is 

clinically significant for proper management of liver malignancies. Therefore, an efficient CAD 

design for achieving binary classification between primary and secondary malignant focal liver 

lesions by using B-Mode liver US images is taken as the next objective of the present research 

work and is discussed in Chapter 6. 



Chapter 6 

Characterization  of Primary  and  Secondary Malignant 
Liver Lesions 

6.1 Introduction 

The sensitivity of contrast-enhanced US, contrast-enhanced spiral computed tomography 

and magnetic resonance imaging modalities for detection and characterization of FLLs is 

higher than that of conventional gray-scale US, but these modalities are not widely available, 

are expensive and pose greater operational inconvenience [4, 16, 20, 62, 73, 130, 135, 150, 

162]. On the other hand, the real-time imaging capabilities offered by widely available 

ultrasound (US) imaging modality along with its inexpensive, nonradioactive and noninvasive 

nature makes it a first-line examination for screening of focal liver lesions (FLLs) [20,107, 151, 

170, 184]. However, there are certain distinct disadvantages associated with the use of 

conventional gray-scale US for characterization of malignant FLLs; (i) Limited sensitivity for 

detection of small FLLs (< 2 cm) developed on cirrhotic liver which is already nodular and 

coarse-textured [16, 62, 162]. (ii) Sonographic appearance of hepatocellular carcinoma (HCC), 

primary malignant solid FLL and metastatic carcinoma (MET), secondary malignant solid FLL 

are highly overlapping [16, 20, 62, 73, 162].  

An early and accurate characterization of malignant FLLs is extremely important, because 

treatment options like curative surgical resection or successful percutaneous ablation are only 

possible if these malignancies are detected early [4, 62, 162]. However, the practical problem 

faced by the radiologists during routine practice is highly overlapping sonographic appearances 

of HCC (small and large HCCs on top of cirrhosis) and MET lesions (atypical METs) [16, 20, 

62]. Therefore a computer aided diagnostic (CAD) system for accurate characterization of 

primary and secondary malignant FLLs based on conventional gray-scale US is highly desired 

to facilitate radiologists in clinical environment.  

Among malignant FLLs the present study is focused on characterization between HCC 

(most common primary malignant FLL) and MET (most common secondary malignant FLL).  

In 85 % of cases, HCC occurs in patients with cirrhosis. In fact in radiology practice, the 

condition of cirrhosis is seen as a precursor to the development of HCC [16, 20, 62, 73, 162]. 

The only feature that favours the possibility of HCC in differential diagnosis between HCC and 

other FLLs is that HCC is most commonly associated with cirrhosis [4, 20].  The sonographic 

appearances of small HCCs (< 2 cm) vary from hypoechoic to hyperechoic. Large HCCs 
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appear frequently with mixed echogenicity [16, 62]. A lesion can be labeled as typical in 

appearance when its subjective diagnosis can be made with a good confidence level by looking 

at the US examination. Experienced participating radiologists opined that the HCC case series 

should not be isolated as having typical or atypical sonographic appearance because of wide 

variability of sonographic appearances even within small and large HCCs, therefore no 

sonographic appearance is typical for HCC, however a representative dataset for designing the 

classifier should contain both small and large HCCs.  

The occurrence rate of MET is twenty times more than that of HCC, because liver is the 

most common site for metastatic disease [62, 73]. Metastatic deposits may appear as single 

solitary mass or multiple masses of varying sizes. The sonographic appearance of MET lesions 

is extremely variable ranging from anechoic, hypoechoic, isoechoic, hyperechoic and even with 

mixed echogenicity [16, 20, 62, 73, 162]. However, the typical sonographic appearance of 

MET lesion is the ‘target’ or bull’s-eye appearance, i.e., hypoechoic centre surrounded by a 

hyperechoic rim [20, 114, 152]. Diagnosis of these typical MET lesions can be made easily by 

an experienced radiologist from B-Mode US but differentiating atypical metastasis from HCCs 

lesions is considerably difficult.  

The sonographic characterization between HCC and MET lesions is often carried out not 

only by observing the textural characteristics of regions inside the lesion but also by the texture 

of the background liver on which the lesion has evolved [20, 97]. The experienced participating 

radiologists opined that the textural feature computation from regions surrounding the lesion 

should effectively contribute for differential diagnosis between HCC and MET lesions. 

Accordingly, in the present work exhaustive experimentation have been carried out to 

investigate the contribution made by the texture information from the surrounding liver 

parenchyma, for characterization between HCC and MET liver malignancies.  

The related researches in literature for characterization of FLLs are few. The details of 

these studies [114, 138, 167, 209] are summarized in Table 2.2 of Chapter 2.  

The study in [167] reported classification between normal liver, benign and malignant 

FLLs with statistical texture analysis methods by using linear discriminant analysis (LDA) and 

neural network (NN) classifier. The study in [209] reported classification between normal liver, 

Cyst, HEM and FLLs with manually selected optimal statistical and spectral texture features by 

using NN classifier. A CAD system for five-class classification between normal liver, Cyst, 

HEM, HCC and MET is proposed in [114]. However, their proposed CAD system is developed 

using a large feature vector consisting of 208 features extracted with statistical, spectral and 
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spatial filtering based methods and NN classifiers. The researches in [167, 209] experimented 

characterization by considering malignant lesions as single class; however the characterization 

of malignant lesions as HCC or MET lesions is clinically significant for effective treatment and 

management of liver malignancies [62, 162]. The study in [114] used the ROI size of 25×25 

pixels for computing texture features, however in [138, 167] the use of ROI size of 10×10 

pixels is reported. The use of 10×10 pixels and even 25×25 pixels as ROI size yields smaller 

number of pixels in comparison to minimum 800 pixels required to estimate reliable statistics 

[14, 50, 76].  

The related research, reported in [209] used wavelet packet texture descriptors with NN 

classifier for binary classification tasks, i.e., HEM vs. HCC, HEM vs. MET and HCC vs. MET. 

Among these the lowest characterization performance for HCC vs. MET is reported on their 

data. Their study reports the use of 64×64 pixels as ROI size, possibly because they used high 

resolution scanned images instead of real US images. It is otherwise difficult to select such a 

large ROI size keeping in view the size of small lesions and resolution of images obtained from 

US machines.  

All the researches in literature for characterization of FLLs have considered only the 

texture patterns of regions inside the lesions and a CAD system for characterization between 

HCC and MET lesions has not been experimented as yet. The present study investigates the 

contribution made by texture patterns of inside lesion regions of interest (IROIs) and 

surrounding lesion regions of interest (SROIs) for binary classification between HCC and MET 

lesions.  

6.2 Dataset  Description  –  CAD  for  Primary  and  Secondary Malignant 
Liver Lesions 

The design of CAD system for characterization of HCC and MET lesions was carried out 

with 51 B-Mode liver US images, i.e., 27 HCC images and 24 MET images.  

Experienced participating radiologists were of the view that the HCC and MET image 

dataset used in this study is a complete representative data offering a high degree of variability 

encountered during subjective analysis of these lesions in routine practice. The size of SHCC 

varied from 1.5 to 1.9 cm and size of LHCC varied from 2.1 to 5.6 cm.  

The sample images of SHCC, LHCC, typical MET and atypical MET lesions from the 

acquired database are shown in Fig. 6.1(a), (b), (c) and (d), respectively. 
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Fig. 6.1 Ultrasound liver images with (a) SHCC image; (b) LHCC image; (c) typical MET image; (d) 
atypical MET image. 
Note: In (c) typical bull’s-eye appearance of MET lesion alternating layers of hyper and hypoechoic 
tissue is clearly visible. 

The protocols followed for collection of dataset, selection of ROIs and selection of ROI 

size are described in Section 3.4.1 of Chapter 3. The sample of HCC and MET liver images 

with IROIs and SROI marked is shown in Fig 6.2. 

 

Fig. 6.2 Sample images with IROIs and SROI marked: (a) HCC liver image with 5 IROIs and a 
corresponding SROI; (b) MET liver image with 8 IROIs and a corresponding SROI.  
Note: IROIs: Inside lesion ROIs; SROI: Surrounding lesion ROI. As shown in (b), necrotic area 
within the MET lesion is avoided while extracting IROIs.  

In the present work, two types of features are considered for analysis, i.e., texture features 

computed from IROIs and texture ratio features computed by taking the ratio of texture feature 

computed from IROI and texture feature computed from corresponding SROI. It can be noted 

that HCC lesion in Fig. 6.2(a) contains five IROIs and a corresponding SROI, Thus five 

instances of a single texture feature can be obtained with these five IROIs and five instances of 
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texture ratio feature can be obtained by dividing the texture feature value obtained for each 

IROI with the texture feature value obtained for corresponding SROI. 

The detailed description of the dataset used in this study, and its bifurcation into training 

dataset and testing dataset is shown in Fig. 6.3. 

 
Fig. 6.3 Dataset description for design of CAD system for characterization of HCC and MET lesions. 
Note: IROIs: Inside lesion ROIs; SROIs: Surrounding lesion ROIs; SHCC: Small HCC; LHCC: Large 
HCC; Only HCC lesions evolved on cirrhotic liver are considered. The size of SHCC lesion varied 
from 1.5 to 1.9 cm and size of LHCC lesion varied from 2.1 to 5.6 cm.

To ensure generality, the training dataset for designing the classifier was chosen carefully 

in consultation with experienced participating radiologists, so as to include, typical and atypical 

cases of MET lesions as well as cases of SHCC and LHCC lesions, for designing a robust 

classifier with representative cases for all image subclasses. Two sets of images were created 

for each image class, ROIs from one set of images were used for training and ROIs from the 

other set were used for testing to avoid any biasing. 

The final data set consisting of total 120 IROIs and 54 SROIs was stored in a PC (Pentium 

Core-2-Duo, 2.67 GHz with 1.97 GB RAM). 
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6.3 Proposed  CAD  System  for  Primary  and  Secondary Malignant  FLLs 
using BMode Ultrasound Images 

 The block diagram of the proposed CAD system is depicted in Fig. 6.4. 

Fig. 6.4  CAD system for characterization of malignant FLLs. 

For implementation of the proposed CAD system, the database of 120 non-overlapping 

IROIs and 54 SROIs is created from 51 clinically acquired US images.  The CAD system 

consisted of feature extraction, feature selection and classification module. In feature extraction 

module, texture features are computed from IROIs as well as SROIs by gray level co-

occurrence matrix GLCM [61], gray level run length matrix (GLRLM) [28, 36, 40, 51], Fourier 

power spectrum (FPS) [196] and Laws’ texture feature [89] extraction methods. In feature 

selection module, initially feature pruning is carried out by removal of non-discriminatory 

feature vectors followed by feature selection by Genetic algorithm–Support vector machine 

(GA–SVM) approach. The GA–SVM procedure results in optimal reduced set of features. In 

classification module, a support vector machine (SVM) classifier is designed with the selected 

optimal features. The SVM classifier is implemented using LibSVM library [31]. 

6.3.1 Feature Extraction  

Texture features are important attributes which are used to describe images in computer 

vision and image processing [13]. The general idea of feature extraction is to convert both 

visually extractable and visually non-extractable sonographic features into mathematical 

descriptors [106]. These mathematical descriptors are either morphological (based on shape or 

contour of the lesion) or textural features (based on intensity distribution) [82]. Both these 

morphological as well as textural features are significant for developing CAD systems for 

breast lesions using B-Mode US images [5, 8, 46, 68, 117, 127]. Experienced participating 

radiologists opined that morphological sonographic features of FLLs doesn’t give any 

significant information for their characterization as also evident from other related researches 

the proposed CAD systems for characterization of FLLs using B-Mode US images have relied 

on textural features only [114, 138, 167, 209].  
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Initially a wide variety of visual and non-visual echotexture features are extracted by using 

statistical, spectral and spatial filtering based feature extraction methods. These features are 

then applied in the present classification system with a tedious task of combining the most 

relevant and effective features while discarding the non-performing features.  

The statistical texture features are defined by the spatial distribution of gray level intensity 

values in the image. Local features are computed at each point in the image and a set of 

statistics are derived from the distribution of these local features.  

Statistical methods are classified as first order statistics, second order statistics or higher 

order statistics depending upon the number of pixels used in defining a local feature [114, 163].  

The spectral features computed by FPS method such as radial sum and angular sum of the 

discrete Fourier transform are used to describe texture [32].  

The spatial filtering based texture descriptors, i.e., Laws’ texture features determine texture 

properties by performing local averaging, edge detection, spot detection, wave detection and 

ripple detection in texture [89].  

Law’s texture features are computed by using special 1-D filters of length 3, 5, 7 and 9. 

Different filter lengths correspond to different resolutions for extraction of texture features 

from a ROI.   

In the present work, 1-D filters of length 7, i.e., L7 = [1, 6, 15, 20, 15, 6, 1], E7 = [–1, –4, –

5, 0, 5, 4, 1], S7 = [–1, –2, 1, 4, 1, –2, –1] are used.   

Special 2-D filters called Laws’ masks are derived by outer vector product of these 1-D 

kernels with themselves or with each other as shown in Fig. 6.5. 

 

Fig. 6.5 Nine 2-D Laws Masks 
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The texture images (TIs) are obtained by convolving the ROI of size M × N with these 2D 

Laws’ masks, for example  

TI ROI 7 77 7 E EE E = ⊗           6.1 

The output TIs are processed by texture energy measurement (TEM) filters. The TEM 

filter performs moving average non-linear filtering operation as depicted by  

7 7
TEI TEM[TI( , )] TI( , )

7 7
x y x i y j

i j
∑ ∑= = + +
=− =−

         6.2 

Here, 15×15 descriptor windows are used to obtain nine texture energy images (TEIs).  

Texture energy images obtained by a pair of identical filters for example, TEIE7L7 and TEIL7E7 

are combined to obtain rotational invariant image (TR) [183]. 

      6.3 

Statistics derived from these TR images provide significant texture information of ROI. 

Five statistics, i.e., mean, standard deviation, skewness, kurtosis and energy are extracted from 

each TR image [141, 183]. Thus, thirty Laws’ texture features (6 TR images × 5 statistical 

parameters) are computed for each ROI.   

In the present work, statistical methods, i.e., GLCM and GLRLM methods, spectral 

method, i.e., FPS method and spatial filtering based method, i.e., Laws’ texture feature 

extraction method are selected for the classification task.  

The selection of these methods for the classification task is based on other related 

researches with US images [14, 76, 183, 185] and few other studies for diagnosis of FLLs with 

US images [114, 138, 167, 209].  

For extraction of efficient diagnostic features for characterization of liver malignancies, 

initially 112 features (56 features computed from IROIs + 56 texture ratio features) are 

computed using GLCM, GLRLM, FPS and Laws’ texture feature extraction methods as 

tabulated in Table 6.1.  

 

 

TEI TEI7 7 7 7TR 7 7 2
E L L E

E L
+

=
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Table 6.1 Description of 112 texture features extracted for characterizing HCC and MET FLLs. 
Statistical Methods Spectral Method Spatial Filtering Method 

GLCM features (13) GLRLM features (11) FPS features (2) Laws’ texture features (30) 

F1: Angular second 
moment 
F2: Contrast 
F3: Correlation 
F4: Sum of squares: 
variance 
F5: Inverse difference 
moment 
F6: Sum average 
F7: Sum variance 
F8: Sum entropy 
F9: Entropy 
F10: Difference variance 
F11: Difference entropy 
F12: Information 
measures of Correlation-1 
F13:Information 
measures of Correlation-2 

F14: Short run emphasis 
F15: Long run emphasis 
F16: Low gray level run 
emphasis 
F17: High gray level run 
emphasis 
F18: Short run low gray 
level emphasis 
F19: Short run high gray 
level run emphasis 
F20: Long run low gray 
level emphasis 
F21: Long run high gray 
level emphasis 
F22: Gray level non 
uniformity 
F23: Run length non 
uniformity 
F24: Run percentage 

F25: Angular 
sum  
F26: Radial 
sum 
 

F27:LLmean 
F28:EEmean 
F29:SSmean 
F30:LEmean  
F31:LSmean 
F32:ESmean 
F33: LLstd 
F34: EEstd 
F35: SSstd 
F36: LEstd 
F37: LSstd 
F38: ESstd 
F39: LLskew 
F40: EEskew 
F41: SSskew 
F42: LEskew 
F43: LSskew 
F44: ESskew 
 

F45:LLkurt 
F46:EEkurt 
F47:SSkurt 
F48:LEkurt 
F49:LSkurt 
F50:ESkurt 
F51:LLenergy 
F52:EEenergy 
F53:SSenergy 
F54:LEenergy 
F55:LSenergy 
F56:ESenergy 

F57 to F112: 56 Texture ratio features corresponding to above features (F1 to F56).  
Note: Above 56 features (F1 to F56) are computed for each IROI and SROI so as to compute another 56 
texture ratio features (F57 to F112) corresponding to the above features. 

F57 to F69  
GLCM ratio features 

(13) 

F70 to F80 
GLRLM ratio features  

(11) 

F81 to F82 
FPS ratio features 

(2) 

F83 to F112 
Laws’ ratio features (30) 

For computation of Laws’ texture features, different 1-D filters of length 5, 7 and 9 were 

experimented as shown in Table 6.2.   

Table 6.2 Description of various 1-D filters used for computation of Laws’ texture features.  
Length of 
1-D filter  

1-D filter coefficients No. of 2-D  
Laws’ masks (X) 

TRs obtained  
from identical  
filters pairs (Y) 

Total TRs (X-Y) 

5 

 L5 = [1, 4, 6, 4, 1] 
E5 = [–1, –2, 0, 2, 1] 
S5 = [–1, 0, 2, 0, –1] 
W5 = [–1, 2, 0, –2, 1] 
R5 = [1, –4, 6, –4, 1] 
 

25 10 15 

7 

 L7 = [1, 6, 15, 20, 15, 6, 1] 
E7 = [–1, –4, –5, 0, 5, 4, 1] 
S7 = [–1, –2, 1, 4, 1, –2, –1] 
 

9 3 6 

9 

 L9 = [1, 8, 28, 56, 70, 56, 28, 8, 1] 
E9 = [1, 4, 4, –4, –10, –4, 4, 4, 1] 
S9 = [1, 0, –4, 0, 6, 0, –4, 0, 1] 
W9 = [1, –4, 4, 4, –10, 4, 4, –4, 1] 
R9 = [1, –8, 28, –56, 70, –56, 28,–8, 1] 

25 10 15 

Note: TRs: Rotation invariant texture images. 
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Statistics derived from TRs are used as texture feature vectors (TFVs). In the present work, 

five features, i.e., mean, standard deviation, skewness (skew), kurtosis (kurt) and energy are 

computed from TRs. Thus, TFVs of lengths 70, 30 and 70, are obtained with 1-D filter of 

length 5, 7 and 9, respectively. It is observed that the classification accuracy obtained by SVM 

classifier by TFV of length 30 obtained for filter length 7 is higher in comparison with TFVs of 

length 70 obtained for filter lengths 5 and 9. Thus, 30 Laws’ texture features computed for filter 

length 7 are considered for further analysis.  

6.3.2 Feature Selection 

Feature selection is used to eliminate the interference of irrelevant features which often 

increases the time taken to perform classification task and also reduces the classification 

accuracy [41]. In the present work, a two step methodology is followed for feature selection. In 

the first step, initial feature pruning is carried out by removal of non-discriminatory individual 

texture feature vectors (TFVs). The discrimination ability of a TFV is measured by the 

classification accuracy obtained by SVM classifier. Feature pruning yields a pruned TFV 

consisting of best performing individual TFVs.  

In second step, GA–SVM feature selection is applied on pruned TFV; here binary genetic 

algorithm (GA) is used to evolve subsets of pruned TFV and the training accuracy obtained by 

the SVM classifier is used as a fitness function. The GA–SVM feature selection procedure 

removes irrelevant features from pruned TFV to yield an optimal subset of discriminatory 

features. The main steps for implementation of binary GA [127] algorithm are already 

explained in Section 5.3.2 of Chapter 5. 

In the present work, single point cross over is used and the other run parameters are set as 

crossover rate (Pc) equal to 0.7, mutation rate (Pm) equal to 0.05, and population size equal to 

20 by manual optimization after a series of trials. 

6.3.3 Classification 

In the present work, SVM classifier has been chosen for the classification task. Literature 

survey on texture classification reveal that SVM has shown remarkable performance for the 

classification of biomedical signals and images [68, 70, 79, 90 – 92, 98, 108, 117, 128, 145, 

177, 192].  

6.3.3.1 SVM Classifier  
The SVM classifier attempts to construct an optimum hyper plane in the higher 

dimensional feature space to separate the training data with minimum expected risk. Kernel 
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functions that are used for nonlinear mapping of the training data from input space to higher 

dimensional feature space [25, 59, 99]. In the present study, the performance of Gaussian radial 

basis function (GRBF) kernel is investigated. Extensive search is carried out in the parameter 

space for obtaining the values of C ∈ {2-4, 2-3… 215}, γ ∈ {2-12, 2-11… 24} using 10 fold cross 

validation on training data.  To avoid the bias caused by unbalanced feature values, extracted 

features were normalized in the range [0, 1] by using min-max normalization procedure. The 

SVM classifier is implemented using LibSVM library [31].  The generalization capability of 

the SVM classifier is tested with instances of the TFVs which are not used in classifier design.  

The dataset used in the present work consists of total 120 ROIs (60 HCC ROIs taken from 27 

HCC images, 60 MET ROIs taken from 24 MET images). The training dataset and testing 

dataset consists of 60 ROIs each, i.e., 30 ROIs from each image class. A complete description 

of dataset used in this study is summarized in Fig. 6.3. 

6.4 Results  

Rigorous experimentation has been carried out to identify potential TFVs of texture 

features and TFVs of texture ratio features for characterization of HCC and MET FLLs. In all 

the experiments the discrimination ability of TFVs has been evaluated by using a SVM 

classifier. 

(i)  Experiment 1: In experiment 1, the discrimination ability of total 112 texture features, i.e., 

total eight TFVs (four TFVs corresponding to texture features and four TFVs 

corresponding to texture ratio features) obtained by GLCM, GLRLM, FPS and Laws’ 

feature extraction methods is investigated. By comparing the results obtained by all the 

eight individual TFVs, the non-performing TFVs are removed to obtain a pruned TFV for 

the classification task. 

(ii)  Experiment 2: In this experiment the discrimination ability of combined TFV (i.e., TFV 

consisting of all texture features) is investigated.  

(iii)  Experiment 3: In this experiment the discrimination ability of combined TFV (i.e., TFV 

consisting of all texture ratio features) is investigated.  

(iv)  Experiment 4: The discrimination ability of pruned TFV obtained from experiment 1 is 

investigated in this experiment. 

(v)  Experiment 5: In this experiment 5, the discrimination ability of optimal reduced TFV, 

(obtained by applying GA–SVM method to pruned TFV) is investigated. 
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6.4.1 Results – Experiment 1– CAD System  for Characterization of Primary and 
Secondary Malignant FLLs  

This experiment compares the performance of SVM classifiers for all the eight individual 

TFVs. The results obtained are reported in Table 6.3. 

Table 6.3 Comparison of performance of SVM classifiers for individual TFVs.  
Classification performance: SVM 

TFV (l)         CM OCA (%) ICA HCC (%) ICAMET (%) 

GLCM features - IROIs (13) 

 

 HCC MET 

58.3 

 

53.3 

 

63.3 HCC 16 14 

MET 11 19 

GLCM ratio features (13) 

 HCC MET 

70.0 

 

66.6 

 

73.3 HCC 20 10 

MET 8 22 

GLRLM features - IROIs (11) 

 HCC MET 

56.6 

 

66.6 

 

46.6 HCC 20 10 

MET 16 14 

GLRLM ratio features (11) 

 HCC MET 

71.6 

 

73.3 

 

70.0 HCC 22 8 

MET 9 21 

FPS features  - IROIs (2) 

 HCC MET 

68.3 

 

53.3 

 

83.3 HCC 16 14 

MET 5 25 

FPS ratio features (2) 

 HCC MET 
 

53.3 

 

56.6 

 

50.0 HCC 17 13 

MET 15 15 

Laws’ features -  IROIs (30) 

 HCC MET 

70.0 

 

86.6 

 

53.3 HCC 26 4 

MET 14 16 

Laws’ ratio features (30) 

 HCC MET 

56.6 

 

66.6 

 

46.6 HCC 20 10 

MET 16 14 

Note: TFV: Texture Feature Vectors, l: length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICAHCC : Individual class accuracy for HCC cases, ICA MET : Individual class 
accuracy for MET cases. IROIs: Inside lesion ROIs. 
Note: Best performing individual TFVs are shaded in gray. Here, Individual class accuracy of class A 
denoted as ICAA refers to (Number of cases correctly classified as class A / Total number of cases in 
class A). 

It can be observed from Table 6.3, that GLRLM texture ratio features provide highest 

OCA value of 71.6 %. Both Laws’ texture features computed from IROIs and GLCM texture 

ratio features provide second highest OCA value of 70 %. It can also be observed that GLCM 
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texture ratio features and GLRLM texture ratio features show better characterization 

performance than corresponding IROI texture features. Further, it can be noted that FPS texture 

features computed from IROIs and Laws’ texture features computed from IROIs show better 

characterization performance in comparison to corresponding texture ratio features.    

6.4.2 Results – Experiment 2 – CAD System  for Characterization of Primary and 
Secondary Malignant FLLs  

This experiment evaluates the performance of SVM classifier for combined TFV of all 56 

IROI texture features. The results obtained are reported in Table 6.4. 

Table 6.4 Performance of SVM classifier for combined TFV of all 56 IROI texture features.  
Classification performance: SVM 

TFV (l) CM OCA (%) ICA HCC (%) ICAMET (%) 

GLCM , GLRLM, FPS and 
Laws’ IROI texture features  
(56) 

 HCC MET 

61.6 

 

60.0 

 

63.3 HCC 18 12 

MET 11 19 

Note: TFV: Texture Feature Vector, l: length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICAHCC : Individual class accuracy for HCC cases, ICA MET : Individual class 
accuracy for MET cases 

It can be seen from Table 6.4 that the combined TFV of all 56 IROI texture features yields 

OCA value of 61.6 % for characterization of HCC and MET FLLs.  

6.4.3 Results – Experiment 3 – CAD System  for Characterization of Primary and 
Secondary Malignant FLLs  

This experiment evaluates the performance of SVM classifier for combined TFV of all 56 

texture ratio features. The results obtained are reported in Table 6.5. 

Table 6.5 Performance of SVM classifier for combined TFV of all 56 texture ratio features.  
Classification performance: SVM 

TFV (l) CM OCA (%) ICAHCC (%) ICAMET (%) 

GLCM, GLRLM, FPS and 
Laws’ texture ratio features 
(56) 

 

 HCC MET 

78.3 

 

70.0 

 

86.6 HCC 21 9 

MET 4 26 

Note: TFV: Texture Feature Vector, l: Length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICAHCC : Individual class accuracy for HCC cases, ICA MET : Individual class 
accuracy for MET cases 

It can be seen from Table 6.5, that combined TFV of all texture ratio features yields OCA 

value of 78.3 %. For further experimentation, feature pruning is carried out on the basis of 

OCA value obtained by SVM classifier for eight individual TFVs shown in Table 6.3. The non-

performing individual TFVs are removed and the best performing individual TFVs (highlighted 
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in Table 6.3) are combined to form a pruned TFV for adequate discrimination of HCC and 

MET FLLs.  

6.4.4 Results  –  Experiment  4  –  CAD  for  Characterization  of  Primary  and 
Secondary Malignant FLLs  

This experiment evaluates the performance of SVM classifier for pruned TFV of length 56 

consisting of best performing individual TFVs. The results obtained are reported in Table 6.6. 

Table 6.6 Performance of SVM classifier for pruned TFV.  
Classification performance: SVM 

TFV (l) CM OCA (%) ICAHCC (%) ICA MET (%) 

GLCM , GLRLM Texture 
ratio features and FPS, Laws’ 
features - IROIs (56) 

 HCC MET  

80.0 

 

76.6 

 

83.3 HCC 23 7 

MET 5 25 

Note: TFV: Texture Feature Vector, l: Length of feature vector, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICA HCC: Individual class accuracy for HCC cases, ICA MET : Individual class 
accuracy for MET cases. 

From Table 6.6, it can be seen that pruned TFV yields the OCA value of 80 %.  For further 

experimentation, this pruned TFV is subjected to GA–SVM feature selection procedure which 

iteratively removes the irrelevant and interfering features from the pruned TFV and returns an 

optimal reduced TFV of length 9. Nine texture features, i.e., four GLCM ratio features (angular 

second moment, sum average, difference entropy and inverse difference moment), three 

GLRLM ratio features (long run emphasis, gray level non-uniformity and long run high gray 

level emphasis), one FPS IROI feature (radial sum) and one Laws’ IROI feature (LLmean) are 

selected by GA–SVM procedure.  

6.4.5 Results  –  Experiment  5  –  CAD  for  Characterization  of  Primary  and 
Secondary Malignant FLLs  

This experiment evaluates the performance of SVM classifier for optimal reduced TFV of 

length 9 consisting of features selected by GA–SVM procedure by using SVM classifier. The 

results obtained are reported in Table 6.7.  

Table 6.7 Performance of SVM classifier for optimal reduced TFV.  
Classification performance: SVM 

TFV (l) CM OCA (%) ICAHCC (%) ICA MET (%) 

Texture ratio features and texture features - 
IROIs selected by GA–SVM method (9) 
 

 HCC MET  

91.6 

 

90.0 

 

93.3 HCC 27 3 

MET 2 28 

TFV: Texture Feature Vector, l: Length of TFV, CM: Confusion matrix, H: HCC, M: MET, ICA HCC 
:Individual class accuracy for HCC cases, ICA MET : Individual class accuracy for MET cases 
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From Table 6.7, it can be observed that optimal reduced TFV consisting of 9 features 

selected by GA–SVM procedure yields the OCA value of 91.6 % and ICA values of 90 % and 

93.3 % for HCC and MET lesions respectively.   

6.4.5.1 Misclassification Analysis  
The analysis of 5 misclassified cases out of 60 cases in the testing dataset is reported in 

Table 6.8. 

Table 6.8 Misclassification analysis of 60 cases of testing dataset.
Misclassification analysis for HCC cases   Misclassification analysis for MET cases  
Total HCC cases: 30 

Small HCC cases:9 , Large HCC cases:21 

Correctly classified: 27, Misclassified: 3 

ICA HCC: 90.0 % 

1 out of 9 small HCC cases is misclassified 

2 out of 21 large HCC cases are misclassified 

ICA SHCC: 88.8 % 

ICA LHCC : 90.4 % 

Total MET cases: 30 

Typical MET cases:6 , Atypical MET cases: 24  

Correctly classified: 28, Misclassified: 2 

ICA MET: 93.3 % 

All six typical MET cases are correctly classified 

2 out of 24 atypical MET cases are misclassified 

ICA Typical MET: 100 %, 

ICA Atypical MET : 91.6 % 
Note: ICASHCC : Individual class accuracy for small HCC cases, ICALHCC: Individual class accuracy 
for large HCC cases, ICATypical MET: Individual class accuracy for typical MET cases, ICAAtypical MET : 
Individual class accuracy for atypical MET cases. 

It can be observed from Table 6.8 that the proposed CAD system yields ICA values of 

88.8 % and 90.4 %, for SHCC cases and LHCC cases, and the ICA values of 100 % and 91.6 % 

for typical and atypical MET cases, respectively.  

However, it can be observed from Table 6.7, that the accuracy of the proposed CAD 

system is 91.6 % with ICA of 90 % for HCC cases and ICA of 93.3 % for MET cases.  Given 

the fact that the sonographic appearances of HCC and MET overlap sufficiently, and the 

sensitivity of conventional B-Mode US is limited, the results obtained by the proposed CAD 

system are quite promising specifically in the presence of a comprehensive and representative 

dataset consisting of SHHCs, LHCCs and typical as well as atypical MET cases.   

6.5 Concluding Remarks  

The texture ratio features are more discriminatory than IROI texture features for 

characterization of HCC and MET FLLs. Only nine texture features (seven texture ratio 

features and two IROI texture features) are significant to account for textural variations 

exhibited by HCC and MET lesions. It can be concluded that the texture of the background 

liver on which the lesion has evolved, effectively contributes towards characterization of 
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primary and secondary malignant FLLs from B-Mode US images. The proposed CAD system 

yields the OCA value of 91.6 % with ICA values of 90 % and 93.3 % for HCC and MET cases, 

respectively. The results obtained by the proposed CAD are up to the satisfaction of 

experienced participating radiologists. The promising results of the study indicate that the 

proposed CAD system can be routinely used in a clinical environment to assist radiologists in 

diagnosing liver malignancies and thereby facilitate in providing better disease management. 

Liver Cyst and HEM are the other commonly occurring FLLs apart from HCC and MET 

lesions. The subjective differential diagnosis between different FLLs from B-Mode US images 

in the presence of SHCCs and LHCCs as well as typical and atypical cases of Cyst, HEM and 

MET lesions is considerably difficult keeping few the important facts such as follows: 

(i) There is considerable sonographic overlap between atypical MET, atypical HEM and 

HCC lesions. 

(ii) The sonographic appearance of cystic MET and atypical cyst overlaps considerably. 

(iii)  It is difficult to diagnose certain isoechoic lesions having very slim difference in contrast 

from the surrounding liver parenchyma. 

Thus, it is very much desired to reduce these limitations and design a robust CAD system 

for FLLs using B-Mode US images. Accordingly, the design of CAD system for FLLs using B-

Mode US images is taken up as the next research objective of the present work and is discussed 

in Chapter 7.  

 

 

 

 

 

 

 



Chapter 7 

CAD Systems for Focal Liver Lesions 

7.1 Introduction 

The differential diagnosis between focal liver lesions (FLLs) from B-Mode ultrasound 

(US) images is a difficult and confusing task for radiologists due to existence of wide variety of 

sonographic appearances even with-in individual classes of FLLs [16, 20, 62, 69, 73, 126, 162]. 

Even then, B-Mode US is considered as a primary choice for characterization of FLLs mainly 

due to its nonionising, noninvasive, inexpensive nature and real time imaging capabilities [20, 

162].  

The brief description of sonographic appearances of different liver image classes 

considered in the present study reported earlier in Chapter 1 is revisited here in Table 7.1 as 

ready reference for the readers. 

Table 7.1 Brief description of sonographic appearances of different liver image classes
Image class Sonographic Appearance (typical) Sonographic Appearance (Atypical) 
Normal Appear homogeneous with slightly 

increased echogenicity as compared to 
the right kidney [108, 184, 186, 187, 
191]. 

No atypical appearance 

Cyst Appear as round, anechoic lesion with 
posterior acoustic enhancement and 
well defined thin imperceptible wall 
[20, 62, 73, 114, 189] 

Appear with internal echoes and thickened 
irregular walls 

HEM Appear as well circumscribed uniformly 
hyperechoic lesion [20, 62, 73, 114, 
134, 189] 

May appear as isoechoic or even 
hypoechoic mimicking the sonographic 
appearance of certain atypical MET and 
HCC lesions [20, 21, 104, 114, 179]. 

MET Appear with ‘target’ or ‘bull’s-eye’ 
appearance, i.e., hypoechoic centre 
surrounded by a hyperechoic rim [20, 
114, 152, 174, 189, 209].  

Appear with extremely variable 
sonographic appearances ranging from 
anechoic, hypoechoic, isoechoic, 
hyperechoic and even with mixed 
echogenicity [16, 20, 62, 73, 152, 189]. 

HCC Sonographic appearance for HCC cannot be classified as typical or atypical. The 
sonographic appearances of SHCC vary from hypoechoic to hyperechoic. LHCC 
appear frequently with mixed echogenicity [62, 73, 189, 191]. 

The disadvantages associated with use of conventional gray scale US for characterization 

of FLLs include (i) limited sensitivity for detection of small FLLs (< 2 cm) developed on 

cirrhotic liver which is already nodular and coarse-textured [16, 20, 62, 73, 191], (ii) 

sonographic appearance of HCC and MET lesions which are highly overlapping [16, 20, 62, 

73, 152, 189], (iii) sonographic appearances of cystic metastasis and atypical cyst which is 

often overlapping [16, 62], (iv) sonographic appearances of atypical HEM, sometimes mimic 
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with atypical MET and HCC, [21, 73, 114, 179, 189, 209], and (v) difficulty to characterize 

isoechoic lesions with very slim difference in contrast between region inside the lesion and the 

surrounding liver parenchyma in some cases [114, 189].  

It is very much desirable to reduce these limitations and to build an efficient CAD system 

for characterization of FLLs using B-Mode US images.  

Typical FLLs can be easily diagnosed, even by an inexperienced radiologist, from their 

classic sonographic appearances. But differential diagnosis between atypical FLLs and HCC 

lesions developed on cirrhotic liver from B-Mode US images is considered a difficult task for 

radiologists in routine practice [62, 83, 104, 114, 152, 153, 174, 179, 189, 191, 209].   

The experienced participating radiologists opined that the textural characteristics of the 

liver parenchyma surrounding the lesion should contribute for effective characterization of 

FLLs. The present work investigates the contribution of texture information extracted from 

inside lesion ROIs (IROIs) and surrounding lesion ROIs (SROIs) in characterization of FLLs 

using conventional gray scale B-Mode US images. The participating radiologists were of the 

view that the training dataset used in the present study is a comprehensive and diversified set 

consisting of representative images from various subclasses. 

It is worth mentioning that till date, the research in the area of liver disease diagnosis using 

conventional B-Mode liver US images have been carried out using individual databases 

collected by the efforts of individual research groups due to non-availability of benchmark 

image database. Consequently, there are very few studies reported in literature in the area of 

developing CAD system for characterization of FLLs using B-Mode US images, the brief detail 

of these studies [114, 138, 167, 189, 209] is depicted in Table 2.2 of Chapter 2.  

The study in [20], used statistical features based on first order statistics (FOS), second 

order statistics i.e. gray level co-occurrence matrix (GLCM), higher order statistics i.e. gray 

level run length matrix (GLRLM), spectral features, i.e. Gabor wavelet transform (GWT) based 

features  and Laws’ texture features for classification of NOR, Cyst, HEM, HCC and MET 

liver classes. The study in [25], reported classification between NOR, benign, malignant liver 

classes by using FOS and GLRLM statistical features with linear discriminant analysis and 

neural network (NN) classifier. The study in [26] used GLCM, autocorrelation, Laws’ and edge 

frequency based texture features and a NN classifier for classification of NOR, cyst, HEM and 

malignant liver classes. In researches [25, 26] malignant lesions are considered as a single 

class; however diagnosis of malignant lesion as HCC or MET is clinically significant for 
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effective treatment and management of liver malignancies [2, 3, 19]. The recent study carried 

out by the authors of the present work, [19] reported the effect of texture analysis of region 

surrounding the lesions for designing an exclusive computer-aided diagnostic (CAD) system 

for diagnosis of HCC and MET liver malignancies using GLCM, GLRLM, FPS (Fourier power 

spectrum) and Laws’ texture features along with SVM classifier. In another related study [21], 

multiscale wavelet packet texture descriptors are used with NN classifier for binary 

classification tasks i.e. HEM vs. HCC, HEM vs. MET and HCC vs. MET.  

As per the best of the author’s knowledge, only one study reported in literature, 

experimented classification between five liver image classes i.e. Cyst, HEM, HCC,MET and 

NOR liver [20] by using a large feature vector consisting of 208 texture features extracted by 

using FOS, GLCM, GLRLM, GWT and Laws’ feature extraction methods. Their proposed 

CAD system design consisted of two stage classification system with total 11 NNs (i.e. a five 

class NN in the first stage and 10 binary NNs for the second stage). Their proposed CAD 

system design obtains good classification accuracy of 86.4 % with US images enhanced with 

modified anisotropic diffusion method [20]. One of the limitations of the proposed CAD 

system in [20], is that their design doesn’t use any feature selection or feature dimensionality 

reduction methodology to get rid of superfluous and redundant features in a large feature set 

consisting of 208 texture features. 

In present work, the CAD system designs implemented are different in the sense: (i) 

feature space dimensionality reduction using PCA has been applied to get rid of redundant 

features, (ii) the texture features computed from IROIs and SROIs have been used for the 

classification task, (iii) the raw conventional B-Mode gray scale US images have been used, 

without any sort of pre-processing, and (iv) a comprehensive and diversified image database 

consisting of representative images of (a) typical and atypical cases of Cysts, HEM and MET 

image classes, (b) SHCC and LHCC image classes, along with (c) normal liver tissue, have 

been used. 

7.2 Dataset Description – CAD System for FLLs  

The design of CAD system for characterization of FLLs was carried out with 108 B-Mode 

liver US images, i.e., 21 NOR, 12 Cyst, 15 HEM, 28 HCC and 32 MET images.  

The participating radiologists opined that no sonographic appearance can be considered 

typical for HCC as there is wide variability of sonographic appearances even within SHCCs 

and LHCCs. However, the associated radiologists were of the view that a comprehensive and 
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representative dataset for designing the classifier should contain both SHCCs and LHCCs.  The 

size of SHCCs and LHCCs in the acquired image database varied from 1.5 to 1.9 cm and 2.1 to 

5.6 cm, respectively.  

The experienced participating radiologists were of the view that the dataset used in this 

study is  a comprehensive and representative dataset offering a high degree of variability 

encountered during subjective analysis of (i) typical and atypical cases of Cyst, HEM and MET 

lesions, (ii) SHCC and LHCC lesions, and  (iii) NOR liver cases.  

The sample images for (a) NOR liver tissue, (b) typical case of Cyst, HEM and MET 

lesions and (c) SHCC and LHCC lesions are shown in Fig. 7.1. 

Fig. 7.1 B-Mode ultrasound liver images with appearance of: (a) Normal liver (homogeneous 
echotexture with medium echogenicity); (b) Typical cyst (thin walled anechoic lesion with posterior 
acoustic enhancement); (c) Typical HEM (well circumscribed uniformly hyperechoic appearance) ; (d) 
Typical MET (‘target’ or ‘bull’s-eye’ appearance i.e., hypoechoic center surrounded by a hyperechoic 
rim); (e) Hypoechoic SHCC; (f) Heterogeneous echotexture represents complex and chaotic structure 
exhibited by LHCC due to coexistence of areas of necrosis, fibrosis and active growth areas.  

The sample images for atypical case of Cyst, HEM and MET lesion shown earlier in Fig. 1.4 is 

revisited here in Fig. 7.2. 

 
Fig. 7.1 Sample image variants of atypical cases: (a) Atypical cyst with internal echoes and irregular 
walls; (b) Atypical HEM with heterogeneous echotexture; (c) Hyperechoic atypical MET with 
heterogeneous echotexture. 
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The protocols followed for collection of dataset, selection of ROIs and selection of ROI size are 

described in Section 3.4.1 of Chapter 3. The sample images of NOR, Cyst, HEM, HCC and 

MET cases from the acquired image database with ROIs marked are shown in Fig. 7.3 (a) to 

(e). 

 
Fig. 7.3 (a) to (e) NOR, Cyst, HEM, HCC and MET image with IROIs and SROI marked.  
Note: As shown in (e) necrotic area within the lesions is avoided while cropping IROIs. For NOR 
image, all the IROIs and SROI are taken at same depth and a single extreme ROI is considered as SROI 
as shown in (a). For liver images with lesions, maximum non-overlapping IROIs are taken from well 
within the boundary of each lesion and a single SROI is extracted from liver parenchyma surrounding 
the lesion approximately at the same depth as that of centre of the lesion by avoiding inhomogeneous 
areas like blood vessels, hepatic ducts, etc., as shown in (b) to (e). 

In the present work, two types of features are considered for analysis, i.e., texture features 

computed from IROIs and texture ratio features computed by taking the ratio of texture feature 

computed from IROI and texture feature computed from corresponding SROI.  

It can be noted that NOR liver image in Fig. 7.3(a) contains 4 IROIs and a corresponding 

SROI. Thus, 4 instances of texture feature set and 4 instances of texture ratio feature set are 

obtained. Similarly, from Cyst, HEM, HCC and MET lesions shown in Fig. 7.3(b-e), 6, 4, 4 

and 2 instances of texture feature set and 6, 4, 4 and 2 instances of texture ratio feature set are 

obtained.  
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The distribution of clinically acquired database of 108 B-Mode liver US images (including 

NOR, Cyst, HCC, HEM and MET images) among various liver image subclasses is shown in 

Fig. 7.4. 

Fig.7.4 Dataset description – CAD system for FLLs 

The bifurcation of total FLLs, among typical, atypical, SHCC and LHCC lesions and 

bifurcation of total ROIs, among IROIs and SROIs belonging to typical, atypical, SHCC and 

LHCC lesions is shown in Fig. 7.5. 

Fig.7.5 Description of total FLLs and ROIs 

The bifurcation of acquired dataset into training dataset and testing dataset is shown in Fig. 

7.6. To ensure generality, the training data was chosen carefully in consultation with 

experienced participating radiologists, so as to include typical and atypical cases of Cyst, HEM 

and MET lesions as well as cases of SHCC and LHCC lesions for designing a robust classifier 

with representative cases for all image sub-classes. Two sets of images were created for each 

image class, ROIs from one set of images were used for training and ROIs from the other set 

were used for testing to avoid any biasing.  
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Fig. 7.6 Description of training dataset and  testing dataset 
Note: The size of SHCC lesion varied from 1.5 to 1.9 cm and size of LHCC lesion varied from 2.1 to 
5.6 cm. 

The final dataset consisting of total 380 IROIs and 111 SROIs was stored in a PC (Pentium 

Core-2-Duo, 2.67 GHz with 1.97 GB RAM). 

7.3 Experimental Work Flow ― Proposed CAD Systems for FLLs using B
Mode Ultrasound Images  

In present study, exhaustive experiments, (listed in Table 7.2), have been carried out for 

designing an efficient CAD system for characterization of FLLs using B-Mode US images.  

Table 7.2 Experiments carried out for the design of CAD system for characterization of FLLs 
using B-Mode US images. 

Experiment 1:   To design and evaluate the performance of CAD systems for characterization of 
FLLs using multi-class classifier based designs (Discussed in this Chapter). 

Experiment 2:  To design and evaluate the performance of CAD systems for characterization of 
FLLs using hierarchical classifier based designs (Discussed in Chapter 8). 

Experiment 3:  To design and evaluate the performance of CAD system for characterization of 
FLLs using an neural network ensemble based classifier design (Discussed in 
Chapter 9). 

The experimental work flow for design of proposed CAD systems for characterization of 

FLLs using B-Mode US images is shown in Fig. 7.7. 
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Fig. 7.7 Experimental work flow – Design of CAD systems for FLLs using B-Mode US images.  
Note: The size of SHCC lesion varied from 1.5 to 1.9 cm and size of LHCC lesion varied from 2.1 to 5.6 
cm. 
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7.4 CAD  Systems  for  Characterization  of  FLLs  using  MultiClass 
Classifier Designs 

The block diagram of the experimental work flow followed for the design of CAD systems 

for characterization of FLLs using multi-class classifier designs is shown in Fig. 7.8. 

 
Fig. 7.8 Experimental work flow – CAD systems for FLLs using multi-class classifier based designs. 

For the design of CAD systems a database of 380 non-overlapping IROIs and 111 SROIs 

was created from 108 clinically acquired B-Mode US liver images. The CAD systems consisted 

of feature extraction, feature dimensionality reduction and classification module. In feature 
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extraction module, statistical texture features based on first order statistics, second order 

statistics, (i.e., GLCM features [61, 128, 185, 189]), higher order statistics, (i.e., GLRLM 

features [36, 40, 51, 189]), spectral features, (i.e., FPS features [189, 197] and GWT features 

[90, 114]) as well as spatial filtering based Laws’ texture features [89, 141, 183, 189], are 

computed from all 380 IROIs and 111 SROIs. Both texture features and texture ratio features 

are considered for analysis.  The feature set of 208 texture features (104 texture features + 104 

texture ratio features) is normalized using z-score normalization. The normalized feature set is 

partitioned into training data feature set and testing data feature set. The bifurcation of 

instances of individual classes in training data feature set and testing data feature set is 

described in Fig. 7.6.  

In dimensionality reduction module, PCA is carried out on training data feature set and 

reduced training dataset of PCA derived principal components (PCs) is obtained. The reduced 

testing dataset is obtained by projecting the data points of testing data feature set in the 

direction of PCs of training data feature set.  

In classification module, four different classifiers, i.e., kNN, PNN, NN and SVM are 

trained and tested with reduced feature sets obtained after applying PCA.   

7.4.1 Feature Extraction Module  

The general idea of feature extraction is to obtain mathematical descriptors for both 

visually extractable and visually non-extractable sonographic features of FLLs. These 

mathematical descriptors are either morphological (based on shape or contour of the lesion) or 

textural features (based on intensity distribution) [82]. Both these morphological as well as 

textural features are significant for developing CAD systems for breast lesions from B-Mode 

US images [46, 70, 117, 127]. Experienced participating radiologists opined that morphological 

features of FLLs do not give any significant information about their characterization as is also 

evident from other related researches, the proposed CAD systems for characterization of FLLs 

from B-Mode US have relied on textural features only [114, 138, 167, 189, 209]. In the present 

work initially, a wide variety of visual and non visual echotexture features are extracted by 

using statistical, spectral and spatial filtering based feature extraction methods. 

7.4.1.1 FOS Features  
Total six FOS texture features, i.e., average gray level, standard deviation, smoothness, 

third moment, uniformity and entropyFOS are computed for each ROI [55]. 
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7.4.1.2 GLCM Features  
Total thirteen GLCM mean texture features, i.e., angular second moment, contrast, 

correlation, variance, inverse difference moment, sum average, sum variance, sum entropy, 

entropyGLCM, difference variance, difference entropy, information measures of correlation-1, and 

information measures of correlation-2 are computed for each ROI [61, 189]. 

7.4.1.3 GLRLM Features  
Total eleven GLRLM texture features, i.e., short run emphasis, long run emphasis, low 

gray level run emphasis, high gray level run emphasis, short run low gray level emphasis, short 

run high gray level emphasis, long run low gray level emphasis, long run high gray level 

emphasis, gray level non uniformity, run length non uniformity and run percentage are 

computed for each ROI [36, 40, 51, 189]. 

7.4.1.4 FPS Features  
Two spectral features, i.e., radial sum and angular sum of the discrete Fourier transform are 

computed for each ROI [189, 197].  

7.4.1.5 GWT Features  
Multiscale features estimated at various frequency and orientations of Gabor filters provide 

useful description of texture [23, 37, 90, 114, 131]. Two statistical features mean and standard 

deviation are computed by using a set of Gabor wavelets at 3 scales and 7 orientations resulting 

in a set of (2×3×7 = 42) texture features for each ROI. 

7.4.1.6 Laws’ Features  
Spatial filtering based Laws’ texture features determine texture properties by performing 

local averaging, edge detection, spot detection, wave detection and ripple detection in texture 

[89]. Law’s texture features can be computed by using special 1-D filters of length 3, 5, 7 and 9 

[114, 189]. Different filter lengths correspond to different resolutions for extraction of texture 

features from a ROI.  In the present work, 1-D filters of length five, i.e., L5 = [1, 4, 6, 4, 1], E5 

= [–1, –2, 0, 2, 1], S5 = [–1, 0, 2, 0, –1], W5 = [−1, 2, 0, −2, 1] and R5 = [1, −4, 6, −4, 1] are 

used.  A total of twenty five 2-D filters are generated by combining these 1-D filters. These 2-D 

filters are convolved with the ROI images. A 15×15 square window is applied to the resulting 

convolved images in order to compute texture energy images. Out of twenty five 2-D filters, 

ten filters are identical to each other if they are rotated by 90°. Texture energy images 

computed from these pairs of identical filters can be combined to obtain rotation invariant 

image. Thus, total fifteen rotational invariant texture energy images are obtained for each ROI. 
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Two statistics, i.e., mean and standard deviation, computed from each rotational invariant 

texture energy image results in (15×2 = 30) texture features for each ROI.   

For detection and characterization of FLLs initially, three texture feature vectors (TFVs) 

are computed using FOS, GLCM, GLRLM, FPS, GWT and Laws’ texture feature extraction 

methods. The brief description of these TFVs is tabulated in Table 7.3.  

Table 7.3 Description of TFVs  
TFV  Description (l) 

TFV1:  TFV consisting of 104 texture features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 42 
Gabor and 30 Laws’ features) computed from IROIs. 

104 

TFV2:  TFV consisting of 104 texture ratio features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 
42 Gabor and 30 Laws’  features) computed by taking the ratio of texture feature 
computed from IROI and the corresponding SROI.

104 

TFV3:  Combined TFV consisting of 104  texture features (TFV1) and 104 texture ratio 
features (TFV2) 

208 

Note: TFV: Texture feature vector, l: Length of TFV. 

7.4.2 Feature Space Dimensionality Reduction Module  

The combined TFV of length 208 computed for the present classification task, i.e., TFV3 

may contain redundant and correlated features. If these are used for classifier design, the 

performance of CAD systems in terms of accuracy and reliability can be degraded. PCA 

reduces the dimensionality of the feature space by retaining most of the original variability in 

the data. PCA is widely used for finding essential attributes / variables, i.e., PCs needed for the 

classification task [1, 47, 77, 148].  

In the present work, PCA is used as preprocessing step for reducing the dimensionality of 

the feature space before classification. The main steps in PCA algorithm are (i) standardization 

of the values of all the features in the dataset to zero mean and unit variance, (ii) obtaining the 

covariance matrix form the training dataset, (iii) obtaining the Eigen values and Eigen vectors 

from the covariance matrix (Eigen vectors are the directions of the PCs), and (iv) projecting the 

data points in the testing dataset in the direction of PCs of the training dataset [47, 49, 166]. 

As the computed PCs are uncorrelated to each other and are arranged in decreasing order 

of variance explained by each PC, it is reasonable to step through first few PCs for building the 

classification model [47, 77, 148]. In the present work, the optimal number of PCs to be 

retained for classification task is determined empirically by repeated experimentations carried 

out by stepping through first 15 PCs to build the classification models, (i.e., by first considering 

only first PC and then first 2 PCs, first 3 PCs and so on up to first 15 PCs and verifying the 

performance of resulting classification models). The number of PCs yielding the maximum 

classification accuracy are used as features of reduced TFV as described in Table 7.4. 
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 Table 7.4 Description of reduced TFV. 
Reduced texture feature vector (RTFV) 

TFV4: Reduced TFV consisting of first few PCs obtained by subjecting combined TFV (TFV3) to PCA 

Note: RTFV: Reduced texture feature vector. The length of RTFV, i.e., length of TFV4 implies optimal 
number of PCs retained for the classification task, obtained by repeated experimentations carried out by 
stepping through first 15 PCs to build the classification models. 

7.4.3 Classification module 

7.4.3.1 kNearest Neighbor (kNN) Classifier  
The kNN classifier attempts to cluster instances of feature vectors into disjoint classes 

assuming that the instances of the feature vector which lie close to each other in feature space 

represent instances of the same class. The algorithm stores all the instances of the feature 

vectors in the training data along with their class labels [7]. The class of an unknown instance 

of feature vector in the testing dataset is selected to be the class of majority of instances 

amongst its k nearest neighbors in the training dataset [121]. The optimum values for parameter 

k and the number of PCs to be retained in order to design a kNN model is determined 

empirically by repeated experimentation for values of k ∈  {1,2,…,9,10}  and number of PCs ∈  

{1,2,…,14,15}. In the present work, Euclidean metric is used to calculate the distance between 

neighboring instances. In case of a tie, i.e., if the same classification accuracy is obtained for 

more than one value of k, the smallest value of k is used to obtain the classification results.  

7.4.3.2 PNN classifier  
The PNN classifier operates as a neural network implementation of kernel discriminant 

analysis; it constructs a classification function with the instances of features vectors in the 

training dataset. The PNN classification algorithm defines a probability density function for 

each class based on the training dataset and the optimized kernel width parameter. The spread 

parameter Sp determines the width of the radial basis kernel function that covers the space of 

the input features [57, 121, 154].  The optimum values for spread parameter Sp and the number 

of PCs to be retained in order to design a PNN model is determined empirically by repeated 

experimentation for values of Sp ∈  {1,2,…,9,10}  and number of PCs ∈  {1,2,…,14,15}. The 

PCA-PNN model for the present classification task consist of 5 neurons in the input layer 

(corresponding to first 5 PCs), 200 neurons in the pattern layer (each neuron corresponds to one 

instance of feature vector of the training dataset) and 5 neurons in the category layer 

(corresponding to NOR, Cyst, HEM, HCC and MET classes). 
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7.4.3.3 NN classifier  
The NN architecture consists of an input layer, hidden layer and output layer. The 

optimum values for number of hidden layer neurons and the number of PCs to be retained in 

order to design a NN model is determined empirically by repeated experimentation for number 

of hidden layer neurons  ∈  {4,5,…,9,10}  and number of PCs ∈  {1,2,…,14,15}. The PCA-NN 

model for the present classification task consist of 6 neurons (corresponding to first 6 PCs), one 

hidden layer with 10 neurons and one output layer with 5 neurons (corresponding to NOR, 

Cyst, HEM, HCC and MET classes). The output of the neuron corresponding to the labeled 

class is set to 1 and the output of other neurons is set to 0. The learning of the network is 

supervised and back-propagation algorithm with adaptive learning rate and momentum is used 

to obtain the desired input-output relationship [35, 39, 114]. 

7.4.3.4 SVM Classifier  
SVM classifier is implemented using LibSVM library [31]. In kernel based classifiers such 

as SVM, kernel functions are used for nonlinear mapping of training data from input space to 

higher dimensional feature space. The performance of Gaussian radial basis function kernel is 

investigated for the present classification task. A crucial step for obtaining good generalization 

performance is correct choice of the regularization parameter C and kernel parameter γ. The 

optimal values of C and γ are obtained by extensive search, carried out in the parameter space 

for the values of C ∈ {2-4, 2-3… 215}, γ ∈ {2-12, 2-11… 24} using 10 fold cross validation on 

training data.  

7.5 Results  

Rigorous experimentation has been carried out for performance analysis of proposed CAD 

systems for characterization of FLLs. Initial experiments were carried out using original 

features vectors (TFV1, TFV2 and TFV3) primarily, for the validation of the fact that texture 

information from the surrounding liver parenchyma significantly contributes towards 

classification of FLLs. It was observed that the combined TFV, i.e., TFV3 (consisting of both 

texture features and texture ratio features) yielded better classification performance in 

comparison with TFV1 (consisting of texture features computed from IROIs) and TFV2 

(consisting of texture ratio features computed from IROIs and corresponding SROI).  

These results indicate that texture information from inside lesion ROIs (IROIs) and 

surrounding lesion ROIs (SROIs) collectively yield significant improvement in classification 

accuracy. Thus, only combined TFV, i.e., TFV3 was considered for dimensionality reduction 
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through PCA, resulting in a reduced TFV, i.e., TFV4. The flow chart indicating the 

experimental work flow for design and comparative evaluation of the proposed CAD systems is 

depicted in Fig. 7.9. 

 

Fig. 7.9 Flow chart ― Experimental work flow for design and comparative evaluation of the proposed 
CAD systems.  
Note: Only combined TFV, i.e., TFV3 is considered for feature space dimensionality reduction using 
PCA as it yields the highest classification accuracy in comparison to TFV1 and TFV2. 
 

7.5.1 Results – CAD Designs based on FiveClass PCAkNN Classification Models 

The classification performance of feature set consisting of instances of TFV1, TFV2, 

TFV3 and TFV4 is tested by using five-class kNN classification models. The results obtained 

are reported in Table 7.5.  
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Table 7.5 Classification performance – CAD design based on five-class kNN classification models 
with TFV1, TFV2, TFV3 and TFV4. 

Classification performance:  five-class kNN classification models 
TFV (l) CM OCA (%) ICACLASS: (%) 

TFV1 (104) 

 NOR CYST HEM HCC MET  
 
 

69.4 

 
NOR 32 0 1 2 5 ICANOR: 80.0 
CYST 0 22 0 1 2 ICACYST: 88.0 
HEM 0 0 28 2 0 ICAHEM: 93.3 
HCC 1 1 9 15 14 ICAHCC: 37.5 
MET 0 1 4 12 28 ICAMET: 62.2 

TFV2 (104) 

 NOR CYST HEM HCC MET  
 
 

74.4 

 
NOR 32 0 0 5 3 ICANOR: 80.0 
CYST 0 23 0 1 1 ICACYST: 92.0 
HEM 0 0 26 0 4 ICAHEM: 86.6 
HCC 2 6 0 27 5 ICAHCC: 67.5 
MET 4 0 9 6 26 ICAMET: 57.7 

TFV3 (208) 

 NOR CYST HEM HCC MET  
 
 

85.0 

 
NOR 36 0 0 0 4 ICANOR:  90.0 
CYST 0 24 0 0 1 ICACYST: 96.0 
HEM 0 0 28 0 2 ICAHEM: 93.3 
HCC 1 3 0 34 2 ICAHCC: 85.0 
MET 4 0 10 0 31 ICAMET: 68.8 

TFV4 (5) 

 NOR CYST HEM HCC MET  
 
 

85.0 

 
NOR 36 0 0 1 3 ICANOR: 90.0 
CYST 0 24 0 0 1 ICACYST: 96.0 
HEM 0 0 30 0 0 ICAHEM: 100 
HCC 3 3 1 32 1 ICAHCC: 80.0 
MET 5 0 8 1 31 ICAMET: 68.8 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICA: Individual class accuracy, Here, ICA of class A, denoted as ICA (A) 
refers to (Number of cases correctly classified as class A / Total number of cases in class A). 

It can be observed from Table 7.5, that TFV1 (consisting of texture features computed 

from IROIs), TFV2 (consisting of texture ratio features computed from IROIs and 

corresponding SROI) and combined TFV, i.e., TFV3 (consisting of texture features and texture 

ratio features) yield maximum OCA value of 69.4 %, 74.4 % and 85 % with values of k equal 

to 6, 1 and 8, respectively by using kNN classifier.  

It can be noted that maximum OCA value of 85 % is achieved by using TFV3, i.e., 

combined TFV consisting of 104 texture features and 104 texture ratio features. Thus, TFV3 is 

considered for feature space dimensionality reduction by using PCA to design an efficient CAD 

system using kNN classifier. It can be observed that reduced TFV, i.e., TFV4 consisting of first 

five PCs obtained by subjecting combined TFV, i.e., TFV3 to PCA yield the same OCA value 

of 85 % with k equal to 9 by using kNN classification model.  
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From Table 7.5, it can be observed that texture features computed from IROIs yield OCA 

value of 69.4 % with the ICA values of 80 %, 88 %, 93.3 %, 37.5 % and 62.2 % for NOR, 

Cyst, HEM, HCC and MET classes, respectively.  

The texture ratio features yield the OCA value of 74.4 % with the ICA values of 80 %, 92 

%, 86.6 %, 67.5 % and 57.7 % for NOR, Cyst, HEM, HCC and MET classes, respectively.  

Thus, it can be concluded that texture ratio features have more discrimination ability than 

texture features for classification of FLLs from B-Mode US. 

 It can be observed that combined TFV, i.e., TFV3 (consisting of texture features and 

texture ratio features) yields the OCA value of 85 % with the ICA values of 90 %, 96 %, 93.3 

%, 85 % and 68.8 % for NOR, Cyst, HEM, HCC and MET classes, respectively.   

In comparison to ICA values obtained by using texture ratio features only, the values 

obtained by using  texture features and texture ratio features collectively show improvement by 

10 %, 4 %, 6.7 % , 17.5 % and 11.1 %, for NOR, Cyst, HEM, HCC and MET classes, 

respectively.  

These results indicate that both texture features and texture ratio features contribute 

towards effective classification of FLLs from B-Mode US. The results are in agreement with 

the premise that radiologists visualize the textural characteristics of regions inside and outside 

the lesions for differential diagnosis between FLLs.  

Finally, it is observed that optimal reduced TFV with first six PCs also yields the 

maximum OCA value of 85 % with the ICA values of 90 %, 96 %, 100 %, 80 % and 68.8 % for 

NOR, Cyst, HEM, HCC and MET classes, respectively.  

7.5.2 Results – CAD Designs based on FiveClass PCAPNN Classification Models 

The classification performance of feature set consisting of instances of TFV1, TFV2, 

TFV3 and TFV4 is tested by using five-class PNN classification models. The results obtained 

are reported in Table 7.6.  
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Table 7.6 Classification performance – CAD design based on five-class PNN classification model 
with TFV1, TFV2, TFV3 and TFV4. 

Classification performance: five-class PNN classification models 
TFV (l) CM OCA (%) ICACLASS: (%) 

TFV1 (104) 

 NOR CYST HEM HCC MET  
 
 

68.3 

 
NOR 26 0 0 11 3 ICANOR: 65.0 
CYST 0 21 0 2 2 ICACYST: 84.0 
HEM 0 0 27 0 3 ICAHEM: 90.0 
HCC 2 6 1 25 6 ICAHCC: 62.5 
MET 4 0 13 4 24 ICAMET: 53.3 

TFV2 (104) 

 NOR CYST HEM HCC MET  
 
 

73.8 

 
NOR 34 0 0 3 3 ICANOR: 85.0 
CYST 0 23 0 1 1 ICACYST: 92.0 
HEM 0 0 26 0 4 ICAHEM: 86.6 
HCC 2 6 0 27 5 ICAHCC: 67.5 
MET 5 0 10 7 23 ICAMET: 51.1 

TFV3 (208) 

 NOR CYST HEM HCC MET  
 
 

86.1 

 
NOR 37 0 0 0 3 ICANOR: 92.5 
CYST 0 23 0 0 2 ICACYST: 92.0 
HEM 0 0 28 0 2 ICAHEM: 93.3 
HCC 1 4 0 35 0 ICAHCC: 87.5 
MET 5 0 8 0 32 ICAMET: 71.1 

TFV4 (6) 

 NOR CYST HEM HCC MET  
 
 

86.1 

 
NOR 36 0 0 0 4 ICANOR: 90.0 
CYST 0 24 0 0 1 ICACYST: 96.0 
HEM 0 0 30 0 0 ICAHEM: 100 
HCC 3 3 0 32 2 ICAHCC: 80.0 
MET 6 0 6 0 33 ICAMET: 73.3 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICA: Individual class accuracy, Here, ICA of class A, denoted as ICA (A) 
refers to (Number of cases correctly classified as class A / Total number of cases in class A). 

 It can be observed from Table 7.6, that TFV1 (consisting of texture features computed 

from IROIs), TFV2 (consisting of texture ratio features computed from IROIs and 

corresponding SROI) and combined TFV, i.e., TFV3 (consisting of texture features and texture 

ratio features) yield maximum OCA value of 68.3 %, 73.8 % and 86.1 % with values of spread 

parameter Sp equal to 3, 1 and 6, respectively by using PNN classification models.  

 It can be noted that maximum OCA value of 86.1 % is achieved by using TFV3, i.e., 

combined TFV consisting of 104 texture features and 104 texture ratio features. Thus, TFV3 is 

considered for feature space dimensionality reduction by using PCA to design an efficient CAD 

system using PNN classifier. It can be observed that reduced TFV, i.e., TFV4 consisting of first 
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six PCs obtained by subjecting combined TFV, i.e., TFV3 to PCA yield the same OCA value of 

86.1 % with spread parameter Sp equal to 3 by using PNN classification model.  

From Table 7.6, it can be observed that texture features computed from IROIs yield OCA 

value of 68.3 % with the ICA values of 65 %, 84 %, 90 %, 62.5 % and 53.3 % for NOR, Cyst, 

HEM, HCC and MET classes, respectively. The texture ratio features yield the OCA value of 

73.8 % with the ICA values of 85 %,   92 %, 86.6 %, 67.5 % and 51.1 % for NOR, Cyst, HEM, 

HCC and MET classes, respectively.  

It can be concluded that texture ratio features have more discrimination ability than texture 

features for classification of FLLs from B-Mode US. It can be observed that combined TFV, 

i.e., TFV3 (consisting of texture features and texture ratio features) yields the OCA value of 

86.1 % with the ICA values of 92.5 %, 92 %, 93.3 %, 87.5 % and 71.1 % for NOR, Cyst, HEM, 

HCC and MET classes, respectively. In comparison to ICA values obtained by using texture 

ratio features only, the values obtained by using texture features and texture ratio features 

collectively show improvement by 7.5 %, 0 %, 6.7 % , 20 % and 20 %, for NOR, Cyst, HEM, 

HCC and MET classes, respectively.  

These results indicate that both texture features and texture ratio features contribute 

towards effective classification of FLLs from B-Mode US. The results are in agreement with 

the premise that radiologists visualize the textural characteristics of regions inside and outside 

the lesions for differential diagnosis between FLLs.  

Finally, it is observed that optimal reduced TFV with first six PCs yields the maximum 

OCA value of 86.1 % with the ICA values of 90 %, 96 %, 100 %, 80 % and 73.3 % for NOR, 

Cyst, HEM, HCC and MET classes, respectively.  

7.5.3 Results CAD Design based on FiveClass PCANN classification models 

The classification performance of feature set consisting of instances of TFV1, TFV2, 

TFV3 and TFV4 is tested by using five-class NN classification models. The results obtained 

are reported in Table 7.7. 
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Table 7.7 Classification performance –CAD design based on five-class NN classification models 
with TFV1, TFV2, TFV3 and TFV4. 

Classification performance: five-class NN classification models 
TFV (l) CM OCA (%) ICACLASS: (%) 

TFV1 (104) 

 NOR CYST HEM HCC MET  
 
 

66.1 

 
NOR 31 0 0 5 4 ICANOR: 77.5 
CYST 0 23 2 0 0 ICACYST: 92.0 
HEM 0 0 15 10 5 ICAHEM: 50.0 
HCC 0 1 8 15 16 ICAHCC: 37.5 
MET 1 0 2 7 35 ICAMET: 77.7 

TFV2 (104) 

 NOR CYST HEM HCC MET  
 
 

75.0 

 
NOR 35 0 0 2 3 ICANOR: 87.5 
CYST 1 19 5 0 0 ICACYST: 76.0 
HEM 0 0 23 0 7 ICAHEM: 76.6 
HCC 7 1 0 24 8 ICAHCC: 60.0 
MET 1 0 8 2 34 ICAMET: 75.5 

TFV3 (208) 

 NOR CYST HEM HCC MET  
 
 

82.7 

 
NOR 34 0 0 4 2 ICANOR: 85.0 
CYST 0 23 2 0 0 ICACYST: 92.0 
HEM 0 0 25 1 4 ICAHEM: 83.3 
HCC 1 0 0 35 4 ICAHCC: 87.5 
MET 3 0 6 4 32 ICAMET: 71.1 

TFV4 (6) 

 NOR CYST HEM HCC MET  
 
 

87.7 

 
NOR 33 0 2 4 1 ICANOR: 82.5 
CYST 0 24 0 0 1 ICACYST: 96.0 
HEM 1 0 28 0 1 ICAHEM: 93.3 
HCC 1 2 0 36 1 ICAHCC: 90.0 
MET 1 0 4 3 37 ICAMET: 82.2 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICA: Individual class accuracy, Here, ICA of class A, denoted as ICA (A) 
refers to (Number of cases correctly classified as class A / Total number of cases in class A).  

It can be observed from Table 7.7, that TFV1 (consisting of texture features computed 

from IROIs) yield maximum OCA value of 66.1 % with NN classification model consisting of 

input layer (104 neurons), one hidden layer (10 neurons) and output layer (5 neurons).  TFV2 

(consisting of texture ratio features computed from IROIs and corresponding SROI) yield 

maximum OCA value of 75 % with NN classification model consisting of input layer (104 

neurons), one hidden layer (10 neurons) and output layer (5 neurons). Combined TFV, i.e., 

TFV3 (consisting of texture features and texture ratio features) yield maximum OCA value of 

82.7 % with NN classification model consisting of input layer (208 neurons), one hidden layer 

(10 neurons) and output layer (5 neurons).  

It can be noted that maximum OCA value of 82.7 % is achieved by using TFV3, i.e., 

combined TFV, consisting of 104 texture features and 104 texture ratio features. Thus, TFV3 is 
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considered for feature space dimensionality reduction by using PCA to design an efficient CAD 

system using NN classifier. It can be observed that reduced TFV, i.e., TFV4 consisting of first 

six PCs yield maximum OCA value of 87.7 % with NN classification model consisting of input 

layer (6 neurons), one hidden layer (10 neurons) and output layer (5 neurons).  

From Table 7.7, it can be observed that texture features computed from IROIs yield OCA 

value of 66.1 % with the ICA values of 77.5 %, 92 %, 50 %, 37.5 % and 77.7 % for NOR, 

Cyst, HEM, HCC and MET classes, respectively. The texture ratio features yield OCA value of 

75 % with the ICA values of 87.5 %, 76 %, 76.6 %, 60 % and 75.5 % for NOR, Cyst, HEM, 

HCC and MET classes, respectively. It can be concluded that texture ratio features have more 

discrimination ability than texture features for classification of FLLs from B-Mode US. It can 

be observed that combined TFV, i.e., TFV3 (consisting of texture features and texture ratio 

features) yields the OCA value of 82.7 % with the ICA values of 85 %, 92 %, 83.3 %, 87.5 % 

and 71.1 % for NOR, Cyst, HEM, HCC and MET classes, respectively.   

In comparison to ICA values obtained by using texture ratio features only, the values 

obtained by using  texture features and texture ratio features collectively show improvement by 

16 %, 6.7 %, and 27.5 %, for Cyst, HEM and HCC classes, respectively. However, there is 

little fall in the ICA values for NOR and MET cases by 2.5% and 4.4%, respectively. These 

results indicate that both texture features and texture ratio features contribute towards effective 

classification of FLLs from B-Mode US.  

The results are in agreement with the premise that radiologists visualize the textural 

characteristics of regions inside and outside the lesions for differential diagnosis between FLLs. 

Finally, it is observed that optimal reduced TFV with first six PCs yields the maximum OCA 

value of 87.2 % with the ICA values of 82.5 %, 96 %, 93.3 %, 90 % and 82.2 % for NOR, 

Cyst, HEM, HCC and MET classes, respectively.  

7.5.4 Results – CAD Design based on FiveClass PCASVM Classification Models 

The classification performance of feature set consisting of instances of TFV1, TFV2, 

TFV3 and TFV4 is tested by using five-class SVM classification models. The results obtained 

are reported in Table 7.8. 
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Table 7.8 Classification performance – CAD design based on five-class SVM classification models 
with TFV1, TFV2, TFV3 and TFV4. 

Classification performance : five-class SVM classification models 
TFV (l) CM OCA (%) ICACLASS: (%) 

TFV1 (104) 

 NOR CYST HEM HCC MET  
 
 

66.1 

 
NOR 32 0 0 5 3 ICANOR: 80.0 
CYST 0 22 0 1 2 ICACYST: 88.0 
HEM 0 0 18 8 4 ICAHEM: 60.0 
HCC 2 2 9 12 15 ICAHCC: 30.0 
MET 0 0 5 5 35 ICAMET: 77.7 

TFV2 (104) 

 NOR CYST HEM HCC MET  
 
 

70.0 

 
NOR 32 0 0 4 4 ICANOR: 80.0 
CYST 0 21 0 0 4 ICACYST: 84.0 
HEM 0 0 22 0 8 ICAHEM: 73.3 
HCC 3 1 1 24 11 ICAHCC: 60.0 
MET 2 1 11 4 27 ICAMET: 60.0 

TFV3 (208) 

 NOR CYST HEM HCC MET  
 
 

86.1 

 
NOR 35 0 0 2 3 ICANOR: 87.5 
CYST 0 23 0 1 1 ICACYST: 92.0 
HEM 0 0 26 1 3 ICAHEM: 86.6 
HCC 4 0 0 35 1 ICAHCC: 87.5 
MET 0 0 9 0 36 ICAMET: 80.0 

TFV4 (6) 

 NOR CYST HEM HCC MET  
 
 

87.2 

 
NOR 34 0 1 3 2 ICANOR: 85.0 
CYST 0 24 0 0 1 ICACYST: 96.0 
HEM 0 0 27 0 3 ICAHEM: 90.0 
HCC 1 4 0 35 0 ICAHCC: 87.5 
MET 1 0 5 2 37 ICAMET: 82.2 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion matrix, OCA: Overall 
classification accuracy, ICA: Individual class accuracy, Here, ICA of class A, denoted as ICA (A) 
refers to (Number of cases correctly classified as class A / Total number of cases in class A). 

It can be observed from Table 7.8, that TFV1 (consisting of texture features computed 

from IROIs), TFV2 (consisting of texture ratio features computed from IROIs and 

corresponding SROI) and combined TFV, i.e., TFV3 (consisting of texture features and texture 

ratio features) yield maximum OCA values of 66.1 %, 70 % and 86.1 % with the values of (C, 

γ) equal to (32, 0.0038), (128, 4.8828×10-4) and (8, 0.0078), respectively by using SVM 

classification models.  

It can be noted that maximum OCA value of 86.1 % is achieved by using TFV3, i.e., 

combined TFV consisting of 104 texture features and 104 texture ratio features. Thus, TFV3 is 

considered for feature space dimensionality reduction by using PCA to design an efficient CAD 

system using SVM classifier. It can be observed that reduced TFV, i.e., TFV4 consisting of 

first six PCs obtained by subjecting combined TFV, i.e., TFV3 to PCA yield the same OCA 
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value of 86.1 % with the value of (C, γ) equal to (4, 0.0078) by using SVM classification 

model.  

From Table 7.8, it can be observed that texture features computed from IROIs yield OCA 

value of 66.1 % with the ICA values of 80 %, 88 %, 60 %, 30 % and 77.7 % for NOR, Cyst, 

HEM, HCC and MET classes, respectively. The texture ratio features yield an OCA value of 70 

% with the ICA values of 80 %, 84 %, 73.3 %, 60 % and 60 % for NOR, Cyst, HEM, HCC and 

MET classes, respectively.  

It can be concluded that texture ratio features have more discrimination ability than texture 

features for classification of FLLs from B-Mode US. It can be observed that combined TFV, 

i.e., TFV3 (consisting of texture features and texture ratio features) yields the OCA value of 

86.1 % with the ICA values of 87.5 %, 92 %, 86.6 %, 87.5 % and 80 % for NOR, Cyst, HEM, 

HCC and MET classes, respectively.   

In comparison to ICA values obtained by using texture ratio features only, the values 

obtained by using  texture features and texture ratio features collectively show improvement by 

7.5 %, 8 %, 13.3 %, 27.5 % and 20 % for NOR, Cyst, HEM, HCC and MET classes, 

respectively. It can be concluded that both texture features and texture ratio features contribute 

towards effective classification of FLLs from B-Mode US.  

The results are in agreement with the premise that radiologists visualize the textural 

characteristics of regions inside and outside the lesions for differential diagnosis between FLLs. 

Finally, it is observed that optimal reduced TFV with first six PCs yields the maximum OCA 

value of 87.2 % with the ICA values of 85 %, 96 %, 90 %, 87.5 % and 82.2 % for NOR, Cyst, 

HEM, HCC and MET classes, respectively.  

7.5.5 Discussion on Misclassified Cases  

The analysis of 27, 25 , 22 and 23 misclassified cases amongst 180 cases of the testing 

dataset as predicted by PCA-kNN, PCA-PNN ,PCA-NN and PCA-SVM based CAD systems is 

reported in Table 7.9. 

It can be observed from Table 7.9, that PCA-kNN based CAD system yields highest ICA 

value of 90.6 % for detection of typical cases in comparison to 89.0 %, 85.9 % and 87.5 % as 

delivered by PCA-PNN, PCA-NN and PCA-SVM based CAD systems. Also, PCA-NN based 

CAD system yields highest ICA value of 88.1 % for detection of atypical cases in comparison 
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to 86.8 %, 82.8 % and 86.8 % as delivered by PCA-PNN, PCA-kNN and PCA-SVM based 

CAD systems.  

Table 7.9 Misclassification analysis. 

S.No. PCA-kNN CAD System PCA-PNN CAD System PCA-NN CAD System PCA-SVM CAD System 

1. NOR cases: 40  NOR cases: 40  NOR cases: 40  NOR cases: 40  
 Misclassified: 4 

ICA NOR: 90.0 
Misclassified: 4 
ICA NOR:90.0 

Misclassified: 7 
ICA NOR: 82.5 

Misclassified: 6 
ICA NOR: 85.0 

2. Typical Cyst cases: 13 Typical Cyst cases: 13 Typical Cyst cases: 13 Typical Cyst cases: 13 
 Misclassified: Nil 

ICA Typical CYST:100 
Misclassified: Nil 
ICA Typical CYST:100 

Misclassified: Nil 
ICA Typical CYST: 100 

Misclassified: Nil 
ICA Typical CYST: 100 

3. Atypical Cyst cases :12 Atypical Cyst cases: 12 Atypical Cyst cases: 12 Atypical Cyst cases: 12 
 Misclassified:1 

ICA Atypical CYST:91.6 
Misclassified:1 
ICA Atypical CYST:91.6 

Misclassified:1 
ICA Atypical CYST: 91.6 

Misclassified:1 
ICA Atypical CYST: 91.6 

4. Typical HEM cases: 6 Typical HEM cases: 6 Typical HEM cases: 6 Typical HEM cases: 6 
 Misclassified: Nil 

ICA Typical HEM:100 
Misclassified: Nil 
ICA Typical HEM:100 

Misclassified: Nil 
ICA Typical HEM: 100 

Misclassified: 1 
ICA Typical HEM: 83.3 

5. Atypical HEM cases:24  Atypical HEM cases:24 Atypical HEM cases:24 Atypical HEM cases:24  
 Misclassified: Nil 

ICA Atypical HEM :100 
Misclassified: Nil 
ICA Atypical HEM :100 

Misclassified:2 
ICA Atypical HEM :91.6 

Misclassified:2 
ICA Atypical HEM :91.6 

6. Small HCC cases: 9   Small HCC cases: 9   Small HCC cases:9  Small HCC cases:9  
 Misclassified:3 

ICA SHCC:66.6 
Misclassified:3 
ICA SHCC:66.6  

Misclassified: Nil 
ICA SHCC: 100 

Misclassified: 1 
ICA SHCC: 88.8 

7. Large HCC cases:31 Large HCC cases: 31 Large HCC cases: 31 Large HCC cases: 31 
 Misclassified:5 

ICA LHCC :83.8 
Misclassified:5 
ICA LHCC :83.8 

Misclassified:4 
ICA LHCC : 87.0 

Misclassified:4 
ICA LHCC : 87.0 

8. Typical MET cases:5   Typical MET cases:5   Typical MET cases:5   Typical MET cases:5   
 Misclassified:2 

ICA Typical MET:60.0 
Misclassified:3 
ICA Typical MET: 40.0 

Misclassified:2 
ICA Typical MET: 60.0 

Misclassified:1 
ICA Typical MET: 80.0 

9. Atypical MET cases:40  Atypical MET cases:40  Atypical MET cases: 40 Atypical MET cases: 40  
 Misclassified:12 

ICA Atypical MET :70.0 
Misclassified:9 
ICA Atypical MET :72.5 

Misclassified:6 
ICA Atypical MET : 85.0 

Misclassified:7 
ICA Atypical MET : 82.5 

10. *Total Typical cases:64   Total Typical cases: 64  Total Typical cases: 64  Total Typical cases: 64   
 Misclassified: 6 

ICA Typical Cases:90.6 
Misclassified: 7 
ICA Typical Cases:89.0 

Misclassified: 9 
ICA Typical Cases: 85.9 

Misclassified: 8 
ICA Typical Cases: 87.5 

11. *Total Atypical 
cases:76 

Total Atypical cases:76 Total Atypical cases:76 Total Atypical cases:76 

 Misclassified:13 
ICA Atypical Cases:82.8 

Misclassified:10 
ICA Atypical Cases:86.8 

Misclassified:9 
ICA Atypical Cases:88.1 

Misclassified:10 
ICAAtypical Cases:86.8 

Note: *Total typical cases in testing dataset = 40 NOR+13 Cyst + 6 HEM + 5 MET = 64; *Total 
atypical cases in testing dataset = 12 Cyst + 24 HEM + 40 MET = 76. ICA values are expressed in 
percentage. Here, ICA of class A, denoted as ICAA refers to the ratio of Number of cases correctly 
classified as class A to Total number of cases in class A. 
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From the results of CAD systems with PCA-kNN, PCA-PNN, PCA-NN and PCA-SVM 

based five-class classifier designs implemented in the present work, it can be observed that 

PCA-NN based CAD system also yields maximum OCA value of 87.7 % for classification of 

FLLs in comparison to 86.1 % , 85 % and 87.2 % as delivered by PCA-PNN , PCA-kNN and 

PCA-SVM based CAD systems. Further, it can be noted from Table 7.8, that PCA-NN based 

CAD system yields ICA value of 100 % for SHHCs in comparison to 66.6 % as delivered by 

PCA-PNN as well as PCA-kNN based CAD systems and 88.8 % as delivered by PCA-SVM 

based CAD system.  

Given the fact, that conventional gray scale B-Mode US has low sensitivity for atypical 

cases of FLLs and SHCCs developed on top cirrhotic liver, the experienced radiologists opined 

that the performance obtained by the proposed PCA-NN based CAD system is encouraging.  

From the analysis of the results obtained by PCA-kNN, PCA-PNN, PCA-NN and PCA-

SVM based CAD systems, it can be concluded that PCA-NN based CAD system clearly 

outperforms in comparison with PCA-PNN, PCA-kNN and PCA-SVM based CAD systems.  

7.6 Summary  

The brief performance comparison of PCA-kNN, PCA-NN, PCA-PNN and PCA-SVM 

based classifier designs for FLLs using B-Mode US images is given in Table 7.10. 

Table 7.10 Comparative analysis of PCA-kNN, PCA-NN, PCA-PNN and PCA-SVM based 
classifier designs. 
Classifier ICASHCC (%) ICALHCC (%) ICATypical Cases (%) ICAAtypical Cases (%) OCA (%) 

PCA-kNN 66.6 83.8 90.6 82.8 85.0 

PCA-NN 100 87.0 85.9 88.1 87.7 

PCA-PNN 66.6 83.8 89.0 86.8 86.1 

PCA-SVM 88.8 87.0 87.5 86.8 87.2 

Note: ICA: Individual class accuracy, OCA: Overall classification accuracy. The maximum values 
for ICA in case of SHCCs and atypical cases is obtained by using PCA-NN based classifier design. 
The PCA-NN based classifier design also yield the maximum value for OCA, i.e., 87.7 % (shaded in 
gray). 

Keeping in view the fact that the detection of SHCCs and differential diagnosis between 

HCCs and atypical FLLs is considerably difficult, the PCA-NN based classifier design 

outperforms in comparison to PCA-kNN, PCA-PNN and PCA-SVM based classifier designs. 

The promising results obtained by proposed CAD system with PCA-NN based classifier 

design, indicate its usefulness to assist experienced radiologists for differential diagnosis 

between FLLs from B-mode US images. The proposed CAD system can also facilitate better 
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management of focal liver malignancies by providing second opinion in case of highly 

overlapping sonographic appearances of HCC and MET lesions.  

7.7 Concluding Remarks 

From experimentation carried out in the present study, it can be concluded that the texture 

information from IROIs and SROIs collectively yields significant improvement in classification 

accuracy. This indicates that the texture of the liver parenchyma surrounding the lesion 

significantly contribute towards differential diagnosis of FLLs from B-Mode US images. 

Further, it can also be concluded that by application of PCA to feature set consisting of 208 

texture features (104 texture features and 104 texture ratio features), the information required 

for classification of FLLs was squeezed in first six PCs. This concludes that only first six PCs 

are significant to account for visually extractable and visually non-extractable textural 

variations exhibited by FLLs on conventional B-Mode gray scale US images.  The proposed 

PCA-NN based CAD system obtained the OCA value of 87.7 % with ICA of 85.9 % and 88.1 

% for typical and atypical cases, respectively. The ICA values for small and large HCC cases 

are 100 % and 87 %, respectively. The promising results obtained by the proposed PCA-NN 

based CAD system in the presence of a diversified, comprehensive and representative dataset 

used in the present study indicate its usefulness in a clinical environment to assist experienced 

radiologists in lesion interpretation and differential diagnosis of FLLs from conventional B-

Mode gray scale US images.  

In the present work, conventional gray scale B-Mode US images are considered for 

developing the CAD systems, primarily because the differential diagnosis between FLLs using 

US images is considered to a diagnostic challenge faced by radiologists in routine practice.  

The developed CAD system is an interactive system, radiologist can always freeze the image 

which is free from artifacts, and can carefully select the ROIs, the only prerequisite is the lesion 

should be imaged so that a SROI can be extracted from the surrounding liver parenchyma. 

Keeping in view the fact that the CAD system designs with four hierarchically placed 

classifiers provide the possibility to go stepwise from the general classification problem, i.e., 

normal versus abnormal liver tissue to the more particular classification problem which is the 

identification of exact liver abnormality. Here, the first binary classifier identifies an unknown 

patch, (i.e., ROI) as normal (NOR) or abnormal (ABNOR). If the diagnosis is NOR the 

procedure is terminated, else the second binary classifier identifies the ROI belonging to 

ABNOR class as Cyst or ‘other lesion’ (OL) class. If the diagnosis is Cyst the procedure is 



141 
 

terminated, else the third binary classifier identifies a ROI belonging to OL class as primary 

benign lesion (PBL, i.e., HEM) or malignant lesion (ML). If the diagnosis is PBL the procedure 

is terminated, else the fourth binary classifier identifies the ROI belonging to ML class as 

primary malignant lesion (PML, i.e., HCC) or secondary malignant lesion (SML, i.e., MET). 

It is worth observing that SVM multiclass classification using one-against-one (OAO) 

approach requires ten binary classifiers, (i.e., NOR/Cyst, NOR/HEM, NOR/HCC, NOR/MET, 

Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET, and HCC/MET, respectively) at 

the same time four binary classifiers, (i.e., NOR/ABNOR, ABNOR/OL, PBL/ML, and   

PML/SML, respectively) are required for a hierarchical CAD (HCAD) design.    

The design of an efficient HCAD system with texture features computed from IROIs and 

SROIs for characterization of FLLs using B-Mode US images is taken up as the next objective 

of the present research work and is discussed in Chapter 8. 



Chapter 8 

Hybrid Hierarchical CAD System for Focal Liver Lesions 

8.1 Introduction  

It has been demonstrated earlier that the radiologists diagnose typical focal liver lesions 

(FLLs) easily by their classic sonographic appearances; however, the differential diagnosis in 

the presence of atypical FLLs as well as small and large hepatocellular carcinoma (HCC) 

lesions using B-mode ultrasound (US) is considerably difficult due to existence of overlapping 

sonographic appearances even within individual classes of FLLs [16, 62, 73, 74, 114, 188, 

189]. Thus, it is important to design of an efficient CAD system for characterization of FLLs 

using B-Mode US images. The results of the experimentation carried out for design of CAD 

systems using multi-class classifier designs (discussed in Chapter 7), demonstrate that an 

efficient CAD system for diagnosis of FLLs using B-Mode US images can be designed by 

using texture features computed extracted from IROIs and SROIs.  

It is worth mentioning that the hierarchical CAD (HCAD) designs provide the possibility 

to go stepwise from the general classification problem, i.e., normal versus abnormal liver 

tissue, to the more particular classification problem which is the identification of exact liver 

abnormality with hierarchical framework of classifiers.  

Further, the brief details of few studies reported in literature in the area of developing CAD 

system for characterization of FLLs using B-Mode US images are reported in Table 2.2 of 

Chapter 2. The design of HCAD system for diagnosis of FLLs using B-Mode US images has 

not been experimented as yet; however, the study in [54] reported design of HCAD system for 

FLLs using liver CT images. The HCAD system design in [54] used FOS and GLCM texture 

features with 3 binary NN classifiers arranged in a hierarchical framework for stepwise 

classification between NOR or abnormal (ABNOR), cyst or other lesion (OL) and HEM or 

HCC image classes. 

In the present work, an efficient hybrid-hierarchical CAD (Hy-HCAD) system is designed 

with texture features computed from IROIs and SROIs by using a comprehensive and 

representative image database with (i) typical and atypical cases of liver Cyst, primary benign 

lesion (PBL, i.e., HEM) and secondary malignant lesion (SML, i.e., MET), (ii) small as well as 

large cases of primary malignant lesion (PML, i.e., HCC), and (iii) normal (NOR) liver tissue.  

The sample images for (a) NOR liver tissue, (b) typical case of Cyst, PBL (i.e., HEM) and 

SML (i.e., MET) lesions and (c) small PML (i.e., SHCC) and large PML (i.e., LHCC) lesions 
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are shown earlier in Fig. 7.1 of Chapter 7. The sample images for atypical case of Cyst, PBL 

(i.e., HEM) and SML (i.e., MET) lesions are shown earlier in Fig. 7.2 of Chapter 7.  

The protocols followed for collection of dataset, selection of ROIs and selection of ROI 

size are described in Section 3.4.1 of Chapter 3,  

The sample images of NOR, Cyst, PBL, PML and SML liver image classes with ROIs 

marked are shown in Fig. 8.1. 

Fig. 8.1 (a) to (e) NOR, Cyst, PBL (i.e., HEM), PML (i.e., HCC) and SML (i.e., MET) image with 
IROIs and SROI marked.  
Note: As shown in (e), necrotic area within the lesion is avoided while extracting IROIs. 

In the present study, two types of features are considered for analysis, i.e., texture features 

computed from IROIs and texture ratio features computed by taking the ratio of texture feature 

computed from IROI and texture feature computed from corresponding SROI.  

NOR liver image in Fig. 8.1(a) has 4 IROIs and a corresponding SROI, thus 4 instances of 

texture feature set and 4 instances of texture ratio feature set are obtained.  

Similarly, from Cyst, HEM, HCC and MET lesions shown in Fig. 8.1(b) to (e), 1, 1, 4 and 

2 instances of texture feature set and 1, 1, 4 and 2 instances of texture ratio feature set are 

obtained. 

8.2 CAD  Systems  for  Characterization  of  FLLs  using  Hierarchical 
Classifier Designs 

The proposed CAD systems for characterization of FLLs using hierarchical classifier 

designs consist of feature extraction, dimensionality reduction and classification module as 

shown in Fig. 8.2. 
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Fig. 8.2 Generalized block diagram of a hierarchical computer-aided diagnostic (HCAD) system. 

8.2.1 Feature Extraction Module  

In the present work, initially, a wide variety of texture features are extracted by using 

statistical, spectral and spatial filtering based feature extraction methods.  

As described earlier in Section 7.4.1 of Chapter 7, a feature vector of 104 texture features, 

i.e., 6 FOS features, 13 GLCM features [61, 185, 189], 11 GLRLM features [36, 40, 51], 2 FPS 

features [189, 197], 42 Gabor features [90, 114] and 30 Laws’ texture features [89, 183] is 

computed for each IROI. Similarly, a feature vector of 104 texture ratio features is computed 

for each IROI and a corresponding SROI. Finally, a combined feature set consisting of 208 

features (104 texture features + 104 texture ratio features) is inputted to dimensionality 

reduction module. 

8.2.2 Feature Space Dimensionality Reduction Module  

In the present work, feature space dimensionality reduction has been carried out using 

principal component analysis (PCA). The optimal number of principal components (PCs) to be 

retained for classification task is determined empirically by repeated experiments carried out by 

stepping through first 15 PCs to build the classification model [77, 188]. The steps describing 

the implementation of PCA algorithm are discussed in Section7.4.2 of Chapter 7.  

8.2.3 Classification Module  

The classification module consists of four binary classifiers arranged in a hierarchical 

framework. These four classifiers provide stepwise classification for the generalized five class 

classification problem. The first classifier is used to classify an unknown test case into normal 

(NOR) or abnormal (ABNOR) case. If the test case is predicted as abnormal (ABNOR), the 

second classifier is activated for classification into Cyst or ‘Other Lesion’ (OL) class. If the test 
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case is predicted as belonging to OL class, the third classifier is activated for classification into 

PBL or Malignant Lesion (ML) class. If the prediction of the third classifier is for ML class, the 

fourth classifier is activated for further classification into PML or SML classes. The block 

diagram of the classification module of the proposed HCAD systems is shown in Fig. 8.3. 

 
Fig. 8.3 Block diagram of the classification module of proposed HCAD systems.  
Note: OL: Other lesion; ML: Malignant lesion; PBL: Primary benign lesion (HEM); PML: Primary 
malignant lesion (HCC); SML: Secondary malignant lesion (MET). 

Feature space dimensionality reduction using PCA algorithm is applied individually before 

designing each binary classifier. Initially, four different HCAD systems are designed using four 

kNN classifiers (PCA-kNN based HCAD system, shown in Fig. 8.4), four PNN classifiers 

(PCA-PNN based HCAD system, shown in Fig. 8.5), four NN classifiers (PCA-NN based        

HCAD system, shown in Fig. 8.6), and four SVM classifiers (PCA-SVM based HCAD system, 

shown in Fig. 8.7). The performance of each binary classifier is evaluated at each stage and the 

best classifiers (yielding the maximum accuracy) are combined in a hierarchical framework for 

designing the Hy-HCAD system. 

8.2.3.1 KNearest Neighbor (kNN) Classifier  

The kNN classifier is an instance based classifier in which the class of an unknown 

instance in the testing dataset is selected to be the class of majority of instances amongst its k 

nearest neighbors in the training dataset [121, 188, 201]. Euclidean metric is used to calculate 

the distance between neighboring instances. The classification performance is affected by 

varying the parameter k. In the present work, the optimum value of k is obtained by repeated 

experimentation for classifier design by stepping through various values of k ranging from 1 to 

10, and in case of a tie (i.e., if the same classification accuracy is obtained for more than one 

value of k), the smallest value of k is used to design the kNN classifier. 

The classification module for PCA-kNN based HCAD system for classification of FLLs is 

shown in Fig. 8.4. 
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Fig. 8.4 Block diagram of classification module for PCA-kNN based HCAD system. 
Note: NOR: Normal; ABNOR: Abnormal; OL: Other lesion; ML: Malignant Lesion; PML: Primary 
malignant lesion; SML: Secondary malignant lesion. 

8.2.3.2 PNN Classifier  
The architecture of PNN classifier consists of three layers, i.e., an input layer, pattern layer 

and category layer. Instances of feature vectors consisting of optimal number of PCs obtained 

for the binary classification tasks (i.e., NOR/ABNOR, CYST/OL, PBL/ML and PML/SML) are 

fed to the input layer of corresponding binary PNN classifiers.  

PNN classifier constructs a classification function with instances of feature vectors in the 

training dataset. Thus, the pattern layer of each PNN consists of the number of instances of 

feature vectors in the corresponding training datasets.  

The PNN classification algorithm defines a probability density function for each class 

based on the training dataset and the optimized kernel width parameter. The width of the radial 

basis kernel function that covers the space of the input features is determined by the spread 

parameter denoted as Sp [154, 188].  

In the present work, the optimum value of the spread parameter Sp is obtained by repeated 

experimentation for classifier design by stepping through various values of Sp ranging from 1 to 

10. The PNN classifier trained with the optimum value of Sp is then tested with testing dataset. 

The category layer of each PNN classifier has two neurons corresponding to the considered 

classes.  

The block diagram of classification module for PCA-PNN based HCAD system for 

classification of FLLs is shown in Fig. 8.5. 
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Fig. 8.5 Block diagram of classification module for PCA-PNN based HCAD system. 
Note: NOR: Normal; ABNOR: Abnormal; OL: Other lesion; ML: Malignant Lesion; PML: Primary 
malignant lesion; SML: Secondary malignant lesion. 

8.2.3.3 NN Classifier  
The architecture of NN classifier consists of three layers (i.e., an input layer, hidden layer 

and output layer). Instances of feature vectors consisting of optimal number of PCs obtained for 

the binary classification tasks (i.e., NOR/ABNOR, CYST/OL, PBL/ML and PML/SML) are 

fed to the input layer of corresponding binary NN (BNN) classifiers. The number of neurons in 

the hidden layer is obtained by trial-and-error procedure. Experiments were carried out with 

different numbers of hidden neurons and it was observed that with 4 neurons in hidden layer, a 

reasonable tradeoff between accuracy and convergence is obtained. The output layer of each 

NN has two neurons corresponding to the considered classes. For designing each NN classifier, 

the output of the neuron corresponding to the labeled class is set to 1 and the output of other 

neuron is set to 0, i.e., the learning of each NN classifier is supervised and back-propagation 

algorithm with adaptive learning rate and momentum is used to obtain the desired input-output 

relationship [114, 188].  

The block diagram of classification module for PCA-NN based HCAD system for 

classification of FLLs is shown in Fig. 8.6. 

 
Fig. 8.6 Block diagram of classification module for PCA-NN based HCAD system. 
Note: NOR: Normal; ABNOR: Abnormal; OL: Other lesion; ML: Malignant Lesion; PML: Primary 
malignant lesion; SML: Secondary malignant lesion. 
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8.2.3.4 SVM Classifier  
All four binary SVM classifiers are implemented using LibSVM library [31]. In SVM 

algorithm, training data is mapped from lower dimensional input space to higher dimensional 

feature space.  

In the present work, the Gaussian radial basis function kernel is used for classifier design. 

The optimal values for regularization parameter C and kernel parameter γ are obtained by 

extensive search,  carried out in the parameter space for the values of C ∈  {2-4, 2-3 ,….., 215}, γ 

∈ {2-12, 2-11,…., 24} using 10 fold cross validation on training data [189].  

The block diagram of classification module for PCA-SVM based HCAD system for 

classification of FLLs is shown in Fig. 8.7. 

Fig. 8.7 Block diagram of classification module for PCA-SVM based HCAD system. 
Note: NOR: Normal; ABNOR: Abnormal; OL: Other lesion; ML: Malignant lesion; PML: Primary 
malignant lesion; SML: Secondary malignant lesion. 

8.3 Results  

Four classification tasks were considered, corresponding to four classifiers arranged in a 

hierarchical framework. Each binary classifier was trained independently. The design of HCAD 

systems for characterization of FLLs was carried out with 108 B-Mode liver US images, i.e., 21 

NOR, 12 Cyst, 15 PBL, 28 PML and 32 SML images. 

The dataset description and the bifurcation of dataset into disjoint training and testing 

datasets for each binary classifier is shown in Table 8.1.  
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Table 8.1 Dataset Description – HCAD systems for FLLs 
Dataset Description: 108 B-Mode Liver US images 

NOR Images : 21 Cyst Images : 12 PBL Images:15 PML Images: 28 SML Images: 32 
- Cyst Lesions: 12 PBL lesions :15 PML lesions:28 SML lesions: 35 
- typ. : 9 atyp.: 3 typ.:9 atyp.: 6 small:13 large:15 typ.:13 atyp.: 22 

Description: 491 ROIs (SROIs: 111, IROIs: 380) 
Description: 111 SROIs 

NOR:21 Cyst:12 PBL:15 PML:28 SML:35 
Description: 380 IROIs 

NOR:70 Cyst:55 PBL:70 PML:90 SML:95 
typ.: 70 atyp.:Nil typ.:35 atyp.:20 typ.:24 atyp.:46 small: 19 large:71 typ.:13 atyp.:82 

Dataset Description – Binary Classifier NOR/ABNOR 
Training Set Description 
Images:57, SROIs:59, IROIs:200 

Testing Set Description 
Images:51, SROIs:52, IROIs:180 

NOR: Images: 10, SROIs: 10, IROIs:30 NOR: Images: 11, SROIs: 11, IROIs:40 
ABNOR: Images: 47, SROIs: 49, IROIs:170 ABNOR: Images: 40, SROIs: 41, IROIs:140 
Cyst: Images: 4, Lesions: 4, typ.:3, atyp.: 1 
SROIs: 4, IROIs: 30, typ. IROIs: 22, atyp. IROIs:8 
PBL: Images: 9, Lesions: 9, typ.:6, atyp.: 3 
SROIs: 9, IROIs: 40, typ. IROIs: 18, atyp. IROIs:22 
PML: Images: 16, Lesions: 16, small :7, large: 9 
SROIs: 16, IROIs: 50, small IROIs:10, large IROIs:40 
SML: Images: 18, Lesions: 20, typ.:8, atyp.: 12 
SROIs: 20, IROIs: 50, typ. IROIs: 8, atyp. IROIs:52 

Cyst: Images: 8, Lesions: 8, typ.:6, atyp.: 2 
SROIs: 8, IROIs: 25, typ. IROIs: 13, atyp. IROIs:12 
PBL: Images: 6, Lesions:6, typ.:3, atyp.: 3 
SROIs: 6, IROIs: 30, typ. IROIs: 6, atyp. IROIs:24 
PML: Images: 18, Lesions: 20, small:8, large: 12 
SROIs: 12, IROIs: 40, small IROIs:9, large IROIs:31 
SML: Images: 14, Lesions: 15, typ.:5, atyp.: 10 
SROIs: 15, IROIs: 45, typ. IROIs: 5, atyp. IROIs:40 

Dataset Description – Binary Classifier CYST/OL
Training Set Description 
Images:47, SROIs:49, IROIs:170 

Testing Set Description 
Images:40, SROIs:41, IROIs:140 

Cyst: Images: 4, Lesions: 4, typ.:3, atyp.: 1 
SROIs: 4, IROIs: 30, typ. IROIs: 22, atyp. IROIs:8 

Cyst: Images: 8, Lesions: 8, typ.:6, atyp.: 2 
SROIs: 8, IROIs: 25, typ. IROIs: 13, atyp. IROIs:12 

OL*:  Images: 43, SROIs:45, IROIs: 140 OL*:  Images: 32, SROIs:33, IROIs: 115 

Dataset Description – Binary Classifier PBL/ML 
Training Set Description 
Images:43, SROIs:45, IROIs:140 

Testing Set Description 
Images:32, SROIs:33, IROIs:115 

PBL: Images: 9, Lesions: 9, typ.:6, atyp.: 3 
SROIs: 9, IROIs: 40, typ. IROIs: 18, atyp. IROIs:22 

PBL: Images: 6, Lesions:6, typ.:3, atyp.:3  
SROIs: 6, IROIs: 30, typ. IROIs: 6, atyp. IROIs:24 

ML*:  Images: 34, SROIs:36, IROIs: 100 ML*:  Images: 26, SROIs:27, IROIs: 85 

Dataset Description – Binary Classifier PML/SML 
Training Set Description 
Images: 34, SROIs: 36, IROIs:100 

Testing Set Description 
Images:26, SROIs: 27, IROIs:85 

PML: Images: 16, Lesions: 16, small.:7, large.: 9 
SROIs: 16, IROIs:50,  small IROIs: 10, large IROIs:40 

PML: Images:12, Lesions:12, typ.:6, atyp.:6  
SROIs: 12, IROIs: 40, small IROIs: 9, large IROIs:31 

SML:  Images: 18, Lesions: 20, typ.:8, atyp.: 12 
SROIs: 20, IROIs: 50, typ. IROIs: 8, atyp. IROIs:42 

SML:  Images: 14, Lesions: 15, typ.:5, atyp.: 10 
SROIs: 15, IROIs: 45, typ. IROIs: 5, atyp. IROIs:40 

Note: typ.: Typical; atyp. : Atypical; OL: Other lesion (Further bifurcation of OL* class into PBL, PML 
and SML sub-classes in training and testing dataset is shown in dataset bifurcation for ABNOR image 
class); ML: Malignant lesion (Further bifurcation of ML* class into PML and SML sub-classes in 
training and testing dataset is shown in dataset bifurcation for ABNOR image class). The size of small 
PML lesion varied from 1.5 to 1.9 cm and size of large PML lesion varied from 2.1 to 5.6cm; (a) Total 
lesions = 90 [(typ. lesions (31) + atyp. lesions (31) + small PML lesions (13) + large PML lesions (15)]; 
(b) Total SROIs = 111 [90 SROIs corresponding to 90 lesions + 21 SROIs corresponding to 21 NOR 
images]; (c) Total typ. IROIs = 142 [typ. lesion IROIs (72) + typ. NOR IROIs (70)]; (d) Total atyp. 
IROIs = 148; (e) Total small PML lesion IROIs = 19; (f) Total large PML lesion IROIs = 71; (g) Total 
IROIs = (c) + (d) + (e) + (f) = 142 + 148 + 19 + 71 = 380.  
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The brief details of the experiments carried out with HCAD system designs for diagnosis of 

FLLs using B-Mode US images are depicted in Table 8.2. 

Table 8.2  Experiments carried out with HCAD system designs for diagnosis of FLLs using B-Mode 
US images. 

Experiment No Experiment 

Experiment 1  Design of PCA-kNN based HCAD system 
Experiment 2  Design of PCA-PNN based HCAD system 
Experiment 3  Design of PCA-NN based HCAD system 
Experiment 4  Design of PCA-SVM based HCAD system  
Experiment 5 Comparative evaluation of PCA-kNN, PCA-PNN, PCA-NN and PCA-SVM based 

HCAD systems  
Experiment 6 Design of an efficient hybrid-HCAD (Hy-HCAD) system 

These experiments have been carried out with a comprehensive and representative 

database consisting of (i) typical and atypical cases of liver Cyst, primary benign lesion (PBL, 

i.e., HEM) and secondary malignant lesion (SML, i.e., MET), (ii) small as well as large cases 

of primary malignant lesion (PML, i.e., HCC), and (iii) normal (NOR) liver tissue.  

(i) Experiment 1: In this experiment the performance of binary classifiers of PCA-kNN based 

HCAD system is evaluated and the results obtained are given in Table 8.3. 

Table 8.3 Performance obtained by PCA-kNN based HCAD systems. 

Results - Experiment 1:  PCA-kNN based HCAD system 

Classifier PCs CM Acc_Bin_Class  OCA (%)  ICA (%) 
   NOR ABNOR  
PCA-kNN1 
 

8 NOR 35 5 
95.5 (172/180) 

90.5 
(163/180) 

87.5 (35/40) 
 ABNOR 3 137 97.8 (137/140) 

   CYST OL   
PCA-kNN2 
 

4 CYST 22 3 97.1 (136/140) 88(22/25) 
 OL 1 114 99.1(114/115) 

   PBL ML   
PCA-kNN3 
 

3 PBL 28 2 96.5 (111/115) 93.3(28/30) 
 ML 2 83 97.6(83/85) 

   PML SML   
PCA-kNN4 
 

7 PML 39 1 98.8 (84/85) 97.5(39/40) 
 SML 0 45 100(45/45) 

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, Acc_Bin_Class: Accuracy of 
binary classifier, OCA: Overall classification accuracy, ICA: Individual class accuracy, NOR: Normal 
liver, ABNOR: Abnormal liver, OL: Other lesion, PBL: Primary benign lesion, ML: Malignant lesion, 
PML: Primary malignant lesion, SML: Secondary malignant lesion, PCA: Principal component analysis, 
NN: Neural network, kNN: k-Nearest neighbour classifier. 
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(ii) Experiment 2: In this experiment the performance of binary classifiers of PCA-PNN based 

HCAD system is evaluated and the results obtained are given in Table 8.4. 

Table 8.4 Performance obtained by PCA-PNN based HCAD systems. 

Results - Experiment 2:  PCA-PNN based HCAD system 

Classifier PCs CM Acc_Bin_Class OCA (%)  ICA (%) 
   NOR ABNOR   
PCA-PNN1 
 

10 NOR 36 4
96.1 (173/180) 

91.6 
(165/180) 

90 (36/40) 
 ABNOR 3 137 97.8 (137/140) 

   CYST OL   
PCA-PNN2 
 

8 CYST 24 1 97.1 (136/140) 96(24/25) 
 OL 3 112 97.3(112/115) 

   PBL ML   
PCA-PNN3 
 

3 PBL 29 1 97.3 (112/115) 96.6(28/30) 
 ML 2 83 97.6(83/85) 

   PML SML   
PCA-PNN4 
 

4 PML 40 0 98.8 (84/85) 100(40/40) 
 SML 1 44 97.7(44/45) 

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, Acc_Bin_Class: Accuracy of 
binary classifier, OCA: Overall classification accuracy, ICA: Individual class accuracy, NOR: Normal 
liver, ABNOR: Abnormal liver, OL: Other lesion, PBL: Primary benign lesion, ML: Malignant lesion, 
PML: Primary malignant lesion, SML: Secondary malignant lesion, PCA: Principal component analysis, 
PNN: Probabilistic neural network. 
 

(iii) Experiment 3: In this experiment the performance of binary classifiers of PCA-NN based 

HCAD system is evaluated and the results obtained are given in Table 8.5. 

 

Table 8.5 Performance obtained by PCA-NN based HCAD systems. 

Results - Experiment 3:  PCA-NN based HCAD system 

Classifier PCs CM Acc_Bin_Class OCA (%)  ICA (%) 
   NOR ABNOR   
PCA-NN1 
 

11 NOR 37 3
95.5 (172/180) 

88.3 
(159/180) 

92.5 (37/40) 
 ABNOR 5 135 96.4 (135/140) 

   CYST OL   
PCA-NN2 
 

15 CYST 22 3 97.1 (136/140) 88(22/25) 
 OL 1 114 99.1(114/115) 

   PBL ML   
PCA-NN3 
 

11 PBL 30 0 93.0 (107/115) 100(30/30) 
 ML 8 77 90.5(77/85) 

   PML SML   
PCA-NN4 
 

3 PML 40 0 98.8 (84/85) 100(40/40) 
 SML 1 44 97.7(44/45) 

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, Acc_Bin_Class: Accuracy of 
binary classifier, OCA: Overall classification accuracy, ICA: Individual class accuracy, NOR: Normal 
liver, ABNOR: Abnormal liver, OL: Other lesion, PBL: Primary benign lesion, ML: Malignant lesion, 
PML: Primary malignant lesion, SML: Secondary malignant lesion, PCA: Principal component analysis,  
NN: Neural Network. 
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(iv) Experiment 4: In this experiment the performance of binary classifiers of PCA-SVM based 

HCAD system is evaluated and the results obtained are given in Table 8.6. 

Table 8.6 Performance obtained by PCA-SVM based HCAD systems. 

Results - Experiment 4:  PCA-SVM based HCAD system 

Classifier PC CM Acc_Bin_Class  OCA (%)  ICA (%) 
   NOR ABNOR   
PCA-SVM1 
 

11 NOR 35 5 96.6 (174/180) 

90.5 
(163/180) 

87.5 (35/40)
 ABNOR 1 139 99.2 (139/140) 

   CYST OL  
PCA-SVM2 
 

15 CYST 22 3 97.8 (137/140) 73.3(22/25) 
 OL 0 115 100(115/115)

   PBL ML   
PCA-SVM3 
 

11 PBL 29 1 93.9 (108/115) 96.6(29/30) 
 ML 6 79 92.9(79/85) 

   PML SML   
PCA-SVM4 
 

4 PML 40 0 98.8 (84/85) 100(40/40) 
 SML 1 44 97.7(44/45) 

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, Acc_Bin_Class: Accuracy 
of binary classifier, OCA: Overall classification accuracy, ICA: Individual class accuracy, NOR: 
Normal liver, ABNOR: Abnormal liver, OL: Other lesion, PBL: Primary benign lesion, ML: 
Malignant lesion, PML: Primary malignant lesion, SML: Secondary malignant lesion, PCA: Principal 
component analysis, SVM: Support vector machine. 

The value of OCA is obtained by adding the number of misclassifications obtained at each 

stage of the HCAD system, e.g., PCA-SVM based HCAD system yield total 17 

misclassifications (i.e., 6, 3, 7 and 1 misclassifications for PCA-SVM1, PCA-SVM2, PCA-

SVM3 and PCA-SVM4 classifiers, respectively), therefore, OCA for PCA-SVM based HCAD 

system is {(180 – 17) / 180}×100 = {(163 / 180) ×100} = 90.5 %. It is observed that PCA-PNN 

based HCAD system yields the maximum OCA of 91.6 % with only 15 misclassifications out 

of 180 test cases. 

By visualizing the performance of individual binary classifiers of PCA-kNN, PCA-PNN, 

PCA-NN, and PCA-SVM based HCAD systems (shown in Table 8.3, Table 8.4, Table 8.5 and 

Table 8.6), some interesting facts are observed: 

(a)  For classification between NOR/ABNOR classes the maximum accuracy of 96.6 % is 

obtained by using PCA-SVM1 classifier in comparison with 95.5 %, 96.1 % and 95.5 % 

as obtained by using PCA-kNN1, PCA-PNN1 and PCA-NN1 classifiers. 

(b)  For classification of ABNOR cases between CYST/OL classes the maximum accuracy of 

97.8 % is obtained by using PCA-SVM2 classifier in comparison with 97.1 % as obtained 

by using PCA-NN2, PCA-PNN2 and PCA-kNN2 classifiers. 



154 
 

(c)  For classification of OL cases between PBL/ML classes the maximum accuracy of 97.3 

% is obtained by using PCA-PNN3 classifier in comparison with 93.9 %, 93 % and 96.5 

% as obtained by using PCA-SVM3, PCA-NN3 and PCA-kNN3 classifiers.  

(d)  For classification of ML cases between PML/SML classes all the four classifiers (i.e., 

PCA-SVM4, PCA-NN4, PCA-PNN4 and PCA-kNN4) yield the same accuracy of 98.8 %. 

It may be noted that PCA-NN4 is considered as best classifier for PML/SML classes 

because it is designed with only 3 PCs (least number of PCs) for the classification task.  

(v) Experiment 5: In this experiment the comparative performance analysis of proposed HCAD 

systems for characterization of FLLs has been carried out. The results obtained are reported in 

Table 8.7 

Table 8.7 Comparative performance analysis – Proposed HCAD systems. 

Results - Experiment 5: Comparative performance analysis of HCAD Systems 

HCAD system Acc.NOR/ABNOR (%) Acc.CYST/OL (%) Acc.PBL/ML (%) Acc.PML/SML (%) OCA (%) 
PCA-kNN 95.5 97.1 96.6 98.8 90.5 
PCA-PNN 96.1 97.1 97.3 98.8 91.6 
PCA-NN 95.5 97.1 93.0 98.8 88.3 
PCA-SVM 96.6 97.8 93.9 98.8 90.5 
Note: HCAD system: Hierarchical CAD system, Acc.: Accuracy of binary classifier, OCA: Overall 
classification accuracy 

From Table 8.7, it can be observed that the PCA-PNN based HCAD outperforms in 

comparison with PCA-kNN, PCA-NN and PCA-SVM based HCADs. For classification 

between NOR/ABNOR and Cyst/OL, PCA-SVM1 and PCA-SVM2 are best. For classification 

between PBL/ML, PCA-PNN3 is the best and for classification between PML/SML all the four 

binary classifiers (i.e., PCA-kNN4, PCA-PNN-4, PCA-NN4 and PCA-SVM4) yield the same 

classification performance. However, PCA-NN4 is considered the best, because it uses only 3 

PCs, in comparison with 7, 4 and 4 PCs used by PCA-kNN, PCA-PNN and PCA-NN based 

HCAD systems, respectively.  

(vi) Experiment 6: In this experiment, the best performing individual classifiers are combined in 

a hierarchical framework to design an efficient Hy-HCAD system for classification of FLLs 

from B-Mode US images. The performance analysis of Hy-HCAD system is reported in Table 

8.8.  

 

 



155 
 

Table 8.8: Performance obtained by Hy-HCAD system. 

Results - Experiment 6:  Hy-HCAD system 

Classifier PCs CM Acc_Bin_Class  OCA (%)  ICA (%) 
   NOR ABNOR   
PCA-SVM1 
 

11 NOR 35 5 
96.6 (174/180) 

92.7 
(167/180) 

87.5 (35/40) 
 ABNOR 1 139 99.2 (139/140) 

   CYST OL   
PCA-SVM2 
 

15 CYST 22 3 97.8 (137/140) 73.3(22/25) 
 OL 0 115 100(115/115) 

   PBL ML   
PCA-PNN3 
 

3 PBL 29 1 97.3 (112/115) 96.6(29/30) 
 ML 2 83 97.6(83/85) 

   PML SML   
PCA-NN4 
 

3 PML 40 0 98.8 (84/85) 100(40/40) 
 SML 1 44 97.7(44/45) 

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, Acc_Bin_Class: Accuracy of 
binary classifier, OCA: Overall classification accuracy, ICA: Individual class accuracy, NOR: Normal 
liver, ABNOR: Abnormal liver, OL: Other lesion, PBL: Primary benign lesion, ML: Malignant lesion, 
PML: Primary malignant lesion, SML: Secondary malignant lesion, PCA: Principal component 
analysis, SVM: Support vector machine, NN: Neural network, PNN: Probabilistic neural network. 

From Table 8.8, it is observed that the proposed Hy-HCAD system yields the maximum 

OCA of 92.7 % with only 13 misclassifications out of 180 test cases. The proposed Hy-HCAD 

system outperforms in comparison PCA-kNN, PCA-PNN, PCA-NN and PCA-SVM based 

HCAD systems. The OCA obtained by Hy-HCAD system is 92.7 % in comparison with 90.5 

%, 91.6 %, 83.3 %, 91.6 % as obtained by PCA-kNN, PCA-PNN, PCA-NN and PCA-SVM 

based HCAD systems, respectively.   

The architecture of the classification module of the proposed Hy-HCAD system designed 

the best performing individual classifiers arranged in a hierarchical framework is shown in Fig. 

8.8. 

Fig. 8.8 Architecture of classification module of proposed Hy-HCAD system for classification of 
FLLs using B-Mode US images. 
Note: NOR: Normal liver; ABNOR: Abnormal liver; OL: Other lesion; ML: Malignant lesion; PML: 
Primary malignant lesion; SML: Secondary malignant lesion. 
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8.4 Concluding Remarks 

Among PCA-kNN, PCA-PNN, PCA-NN, and PCA-SVM based HCAD systems, the PCA-

PNN based HCAD system yields maximum OCA of 91.6 % with 15 misclassifications out of 

total 180 test cases. However, it is observed that the Hy-HCAD system designed by using best 

binary classifiers yields OCA of 92.7 % with only 13 misclassifications out of total 180 test 

cases. Keeping in view the fact that conventional gray scale B-Mode US offers limited 

sensitivity for differential diagnosis between atypical cases of Cyst, PBL, SML lesions as well 

as small and large PML cases the results obtained by the proposed Hy-HCAD system are quite 

promising and indicate its usefulness to assist radiologist in a clinical environment.  

 In human society, many experts each specialized in a particular task meet to overcome a 

complicated problem and reach at a decision in a collective manner. This combined decision is 

expected to be a better solution than can be given by an individual expert. Therefore, in the area 

of medical decision making as well, CAD system designs based on ensemble methods, (i.e., 

methods based on combining decisions from various classifiers) are expected to yield better 

results in comparison to the results achieved by CAD system designs based on multi-class 

classifier.  

 The results of comparative evaluation of proposed CAD systems using multi-class 

classifier designs (reported in Table 7.10 of Chapter 7), it can be concluded that PCA-NN 

based CAD yields the maximum OCA value of 87.7 %, in comparison with 87.2 %, 86.1 % and 

85 % as obtained with PCA-kNN, PCA-PNN and PCA-NN based CAD systems.  

Accordingly, design of neural network ensemble (NNE) based CAD system for 

classification of FLLs using B-Mode US images is the next objective of the present research 

work as discussed in Chapter 9. 

 

 

 

 

 

 



Chapter 9 

Neural Network Ensemble based CAD System  for Focal 
Liver Lesions 

9.1 Introduction 

It has been already demonstrated that the differential diagnosis in patients with focal liver 

lesions (FLLs) using B-Mode ultrasound (US) images is broad due to the existence of a wide 

variety of overlapping sonographic appearances even with-in individual classes of FLLs [20, 

116, I56, 174, 195]. Therefore, an efficient computer-aided classification (CAD) system using 

ensemble of classifiers for classification of FLLs based on conventional gray scale B-Mode US 

is highly desired.   

The motivation for experimenting with NNE based CAD design is that these designs based 

on ensemble methods (i.e., methods based on combining decisions from various classifiers) are 

expected to yield better results in comparison to the results achieved by CAD system designs 

based on multi-class classifier [60, 215].  

By comparing the performance obtained by CAD systems based multi-class classifier 

designs from Table 7.10 of Chapter 7, it can be concluded that an efficient CAD system for 

characterization of FLLs using B-Mode US images can be designed by using texture features 

(computed from IROIs) and texture ratio features (computed from IROIs and SROIs) along 

with five-class PCA-NN based classifier.  

It was observed that the PCA-NN based five-class classifier design yield the highest OCA 

value of 87.7 % in comparison to the OCA values of 85 %, 86.1 % and 87.2 %, obtained by 

using PCA-kNN, PCA-PNN and PCA-SVM, based five-class classifier designs, respectively. 

Therefore, it is desired to enhance the performance of the five-class PCA-NN based classifier 

design a using an ensemble of PCA-NN based classifiers. 

In this chapter, the design of a neural network ensemble (NNE) based CAD system for 

characterization of commonly occurring FLLs such as Cyst, HEM, HCC, and MET along with 

normal (NOR) liver tissue is proposed.  
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9.2 Dataset Description – NNE based CAD System 
The design of NNE based CAD system for characterization of FLLs was carried out with 

108 B-Mode liver US images, (i.e., 21 NOR, 12 Cyst, 15 HEM, 28 HCC and 32 MET images) 

by using texture features computed from IROIs and SROIs. 

The sample images for (a) NOR liver tissue, (b) typical case of Cyst, HEM and MET 

lesions and (c) SHCC as well as LHCC lesions are shown earlier in Fig. 7.1 of Chapter 7.  

The sample images for atypical case of Cyst, HEM and MET lesions are shown earlier in 

Fig. 7.2 of Chapter 7. The protocols followed for collection of dataset, selection of ROIs and 

selection of ROI size are described earlier in Section 3.4 of Chapter 3.  

The sample images of NOR, Cyst, HEM, HCC and MET cases from the acquired image 

database with ROIs marked are shown earlier in Fig. 7.3 (a) to Fig 7.3 (e) of Chapter 7. 

The distribution of clinically acquired database of 108 B-Mode liver US images (including 

NOR, Cyst, HCC, HEM and MET images) among various liver image subclasses is shown 

earlier in Fig. 7.4 of Chapter 7.  

The bifurcation of total FLLs, among typical, atypical, SHCC and LHCC lesions and 

bifurcation of total ROIs, among IROIs and SROIs belonging to typical, atypical, SHCC and 

LHCC lesions is shown earlier in Fig. 7.5 of Chapter 7.  

The bifurcation of acquired dataset into training dataset and testing dataset is shown earlier 

in Fig. 7.6 of Chapter 7.  

The final dataset consisting of total 111 SROIs and 380 IROIs was stored in a PC (Pentium 

Core-2-Duo, 2.67 GHz with 1.97 GB RAM). 

9.3  CAD System for Characterization of FLLs using Ensemble of Neural 
Network Classifiers 

The block diagram of proposed NNE based CAD system for characterization of FLLs is 

shown in Fig. 9.1. 
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Fig. 9.1 Proposed NNE based CAD system for classification of FLLs from B-Mode US images. 
Note: IROIs: Inside lesion ROIs: SROIs: Surrounding lesion ROIs; l: Length of feature vector; NN: 
Neural network; BNN: Binary neural network; PCA: Principal component analysis.  
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For implementation of the proposed NNE based CAD system, the database of 380 non-

overlapping IROIs and 111 SROIs was created from 108 clinically acquired B-Mode US liver 

images.  The NNE based CAD system consists of feature extraction module, and a two-step 

classification module. Feature dimensionality reduction by PCA is considered as an integral 

part of both the steps in classification module. In feature extraction module, 104 texture 

features and 104 texture ratio features are computed for all 380 IROIs, resulting in feature set 

consisting of 380 texture feature vectors (TFVs) of length 208. The feature set is normalized 

using z-score normalization. The normalized feature set is bifurcated into two disjoint feature 

sets, i.e., training data feature set and testing data feature set. PCA is carried out on the training 

data feature set and reduced training dataset of PCA derived principal components (PCs) is 

obtained. The reduced testing dataset is obtained by projecting the data points of the testing 

data feature set in the direction of PCs of training data feature set. Feature space dimensionality 

reduction by PCA is applied individually for the design of five-class NN primary classifier in 

Step 1 of the classification module and for the design of ten mutually independent binary neural 

network (BNN) secondary classifiers in Step 2 of the classification module in order to find out 

the number of PCs which could provide adequate discrimination capability in each case.  

9.3.1 Feature Extraction Module 

In feature extraction module, initially a wide variety of visual and nonvisual sonographic 

features are extracted by using statistical, spectral and spatial filtering based feature extraction 

methods as described earlier in Section 7.4.1 of Chapter 7.  

For characterization of FLLs, initially three texture feature vectors (TFVs) are computed 

using FOS, GLCM, GLRLM, FPS, GWT and Laws’ texture feature extraction methods. The 

brief description of these TFVs is given in Table 9.1. 

Table 9.1 Description of TFVs.  

Texture Feature Vectors (TFVs)  (l) 

TFV1:  TFV consisting of 104 texture features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 42 
Gabor and 30 Laws features) computed from IROIs. 

104 

TFV2:  TFV consisting of 104 texture ratio features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 
42 Gabor and 30 Laws  features) computed by taking the ratio of texture feature 
computed from IROI and the corresponding SROI. 

104 

TFV3:  Combined TFV consisting of 104 texture features (TFV1) and 104 texture ratio 
features (TFV2). 

208 

Note: TFV: Texture feature vector; l: length of TFV; IROI: Inside lesion ROI; SROI: Surrounding 
lesion ROI; FOS: First order statistics; GLCM: Gray level co-occurrence matrix; GLRLM: Gray level 
run length matrix; FPS: Fourier power spectrum. 
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Initially, all the three feature sets, i.e., FS1, FS2 and FS3 consisting of instances of TFV1, 

TFV2 and TFV3, respectively, as described in Table 9.2, are used for classification of FLLs 

from B-Mode US images. The FS3 consisting of instances of combined TFV, i.e., TFV3 was 

considered for analysis, to investigate the effect of including texture information from SROIs in 

differential diagnosis between FLLs from B-Mode US. The classification experiments are 

carried out by using NN classifiers. The classification performance with respect to overall 

classification accuracy (OCA) values and the individual class accuracy (ICA) values obtained 

by five class primary NN classifier with FS1, FS2 and FS3 is summarized in Table 9.2.  

Table 9.2 Classification performance of five-class primary NN classifier with FS1, FS2 and FS3.  
Classification Performance : NN classifier 

FS OCA (%) ICANOR (%) ICACYST (%)  ICAHEM (%) ICAHCC(%) ICAMET (%) 
FS1 66.1 77.5 92.0 50.0 37.5 77.7 

FS2 75.0 85.0 76.0 76.6 60.0 75.5 

FS3 82.7 87.7 92.0 83.3 87.5 71.1
Note: FS: Feature set, OCA: Overall classification accuracy, ICA: Individual class accuracy 

From Table 9.2, it can be observed that FS3 yield highest OCA value of 82.7 % in 

comparison to 66.1 % and 75 % as obtained by FS1 and FS2. The results justify the premise 

that both texture features and texture ratio features contribute for effective characterization of 

FLLs from B-Mode US. Thus FS3, consisting of combined TFVs is considered for all further 

analysis.  

9.3.2 Classification Module 

The proposed NNE based CAD system incorporates two steps in classification module.  

The Step 1 of the classification module consists of a five-class NN classifier and the Step 2 of 

the classification module consists of ten BNN (binary neural network) classifiers.  

The FS3, consisting of instances of combined TFV of length 208 (i.e., TFV3), is used for 

the present classification task. This combined TFV may contain redundant and correlated 

features, which if used for classifier design can degrade its performance in terms of accuracy 

and reliability. Thus, PCA is used for feature space dimensionality reduction before classifier 

design in both the steps of classification module. The PCA algorithm ensures that the 

covariance of any of the components with any other component is zero. As it is quite possible 

that the PCs accounting for a lesser amount of variance in the data may be significant for the 

classification task, and also since the computed PCs are uncorrelated to each other, it is always 

reasonable to step through the first few PCs for building the classification model [47, 60]. In 

the present work, the optimal number of PCs to be retained for classification task is determined 
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empirically by repeated experiments carried out by stepping through first 15 PCs to build the 

classification models. 

The flow chart showing the working of proposed NNE based CAD system for 

characterization of FLLs using B-Mode US images is shown in Fig. 9.2.  

 

Fig. 9.2 Flowchart of the proposed NNE based CAD system for characterization of FLLs using B-Mode 
US images. 

9.3.2.1 Classification Module (Step 1) 

The Step 1 of classification module consists of a five-class PCA-NN based primary 

classifier. As shown in Table 9.2, the FS3, consisting of instances of combined TFV, (i.e., 

TFV3), yield higher OCA in comparison with FS2 and FS1. Thus, FS3 is subjected to feature 

space dimensionality reduction using PCA. The number of PCs yielding the maximum OCA 

are retained in reduced feature set (FS4) for classifier design. It is observed that the first six 

PCs yield maximum OCA of 87.7 %. Thus, reduced features set (i.e., FS4), consisting of 

instances of reduced TFVs of length 6 (Optimal number of PCs), is used for the design of the 

five-class PCA-NN based primary classifier. The classification performance obtained with FS4 

is shown in Table 9.3.  
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Table 9.3 Classification performance of five-class primary NN classifier with FS4 (Step 1). 

NN Arch: (I: H: O) Optimal No. of PCs OCA (%) 

Five-class primary  NN: (6:10:5) 
NOR/CYST/HEM/HCC/MET    6 87.7 

Note: NN Arch: Neural network architecture; I: Input layer neurons; H: Hidden layer neurons; O: 
Output layer neurons. 

For design of each PCA-NN based primary classifier, the optimal number of neurons in the 

hidden layer is obtained by trial-and-error procedure. Experiments were carried out with 

different numbers of hidden neurons and it was observed that for 10 neurons in hidden layer a 

reasonable tradeoff between accuracy and convergence is obtained [189]. 

The bifurcation of instances of individual classes in FS4 (training data) and FS4 (testing 

data) in case of five-class PCA-NN based primary classifier is shown is shown in Fig. 9.3. 

Fig. 9.3 The bifurcation of instances of individual classes in FS3 (training data) and FS3 (testing data) 
for five-class NN primary classifier. 

The five-class PCA-NN based primary classifier yield weightage scores for five liver 

image classes. Normalization of this five dimensional output weight vector makes it analogous 

to probability outputs for each class. The prediction of output weight vector [Wnor Wcyst Whem 

Whcc Wmet] for all the 180 TFVs in the FS4 (testing data) is stored for analysis.  

9.3.2.2 Classification Module (Step 2) 
The Step 2 of classification module consists of ten mutually independent PCA-BNN based 

secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC, NOR/MET, Cyst/HEM, 

Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET and HCC/MET classes, respectively. The 

output weight vector predicted by five-class PCA-NN based primary classifier for an unknown 

test instance in FS4 (testing data) is used to determine the first two most probable classes, 
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based on which it is directed to the corresponding binary PCA-NN based secondary classifier 

for crisp classification between two classes. The proposed approach can be understood as 

analogous to querying about the diagnosis of an unknown test case from a radiologist, with 

expertise of providing interpretation among all the five liver image classes, in the Step 1, and 

then based on his advice on first two most probable classes, again querying another radiologist, 

with expertise in interpretation of these two most probable classes only, in the Step 2. It is 

expected that the overall result will improve by including the Step 2. 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of ten PCA-BNN secondary classifiers is shown is shown in Fig. 

9.4. to Fig. 9.13. The bifurcation of instances of individual classes in training data feature set 

and testing data feature set in the case of PCA-BNN1 classier designed for classification 

between NOR/Cyst classes is shown is shown in Fig. 9.4. 

 
Fig. 9.4 Dataset bifurcation for PCA-BNN1 (NOR/CYST).

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN2 classier designed for classification between 

NOR/HEM classes is shown is shown in Fig. 9.5. 

 
Fig. 9.5 Dataset bifurcation for PCA-BNN2 (NOR/HEM). 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN3 classier designed for classification between 

NOR/HCC classes is shown is shown in Fig. 9.6. 
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Fig. 9.6 Dataset bifurcation for PCA-BNN3 (NOR/HCC).

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN4 classier designed for classification between 

NOR/MET classes is shown is shown in Fig. 9.7. 

Fig. 9.7 Dataset bifurcation for PCA-BNN4 (NOR/MET).

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN5 classier designed for classification between 

CYST/HEM classes is shown is shown in Fig. 9.8. 

Fig. 9.8 Dataset bifurcation for PCA-BNN5 (CYST/HEM). 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN6 classier designed for classification between 

CYST/HCC classes is shown is shown in Fig. 9.9. 

Fig. 9.9 Dataset bifurcation for PCA-BNN6 (CYST/HCC). 
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The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN7 classier designed for classification between 

CYST/MET classes is shown is shown in Fig. 9.10. 

Fig. 9.10 Dataset bifurcation for PCA-BNN7 (CYST/MET). 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN8 classier designed for classification between 

CYST/MET classes is shown is shown in Fig. 9.11. 

Fig. 9.11 Dataset bifurcation for PCA-BNN8 (HEM/HCC). 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN9 classier designed for classification between 

HEM/MET classes is shown is shown in Fig. 9.12. 

 
Fig. 9.12 Dataset bifurcation for PCA-BNN9 (HEM/MET). 

The bifurcation of instances of individual classes in training data feature set and testing 

data feature set in the case of PCA-BNN10 classier designed for classification between 

HCC/MET classes is shown is shown in Fig. 9.13. 
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Fig. 9.13 Dataset bifurcation for PCA-BNN10 (HCC/MET). 

The optimal number of PCs and the resulting OCA for all ten PCA-BNN based secondary 

classifiers is reported in Table 9.4.  

Table 9.4 Classification performance of Ten PCA-BNN secondary classifiers  

NN: (I: H: O) Optimal No. of PCs OCA (%) 

BNN1: (2:4:2) –[NOR/CYST] 2 100 

BNN2: (2:4:2) – [NOR/HEM] 2 100 

BNN3: (6:4:2) –[NOR/HCC] 6 98.7 

BNN4: (5:4:2) – [NOR/MET] 5 96.4 

BNN5: (2:4:2) – [CYST/HEM] 2 100 

BNN6: (2:4:2) – [CYST/HCC] 2 98.4 

BNN7: (2:4:2) – [CYST/MET] 2 95.7 

BNN8: (2:4:2) – [HEM/HCC] 2 98.5 

BNN9: (3:4:2) – [HEM/MET] 3 92.0 

BNN10: (2:4:5) – [HCC/MET] 3 97.6 
Note: NN: Neural network, BNN: Binary neural network, I: Input layer neurons, H: Hidden layer 
neurons, O: Output layer neurons; PCs: Principal components, OCA: Overall classification accuracy.  

For designing each PCA-BNN secondary classifier, the optimal number of neurons in the 

hidden layer is obtained by trial-and-error procedure. After repeated experimentation with 

different numbers of hidden neurons, it was observed that with 4 neurons in hidden layer a 

reasonable tradeoff between accuracy and convergence is obtained. The output of the neuron 

corresponding to the labeled class is set to 1 and the output of other neurons is set to 0. The 

learning of the network is supervised and back-propagation algorithm with adaptive learning 

rate and momentum is used to obtain the desired input-output relationship [189]. 

The brief details of the experiments carried out in this study are reported in Table 9.5. 

Table 9.5 Brief details of experiments carried out in the present study.  

Experiment No 1: To obtain classification performance of five-class PCA-NN based primary 
classifier, i.e., output of Step 1of the classification module.  

Experiment No 2: To obtain classification performance of Proposed NNE based CAD system, i.e., 
output of Step 2 of the classification module. 
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9.4 Results  

9.4.1 Results  –  Experiment  1–  Classification  Performance  FiveClass  PCANN 
based Primary Classifier  

The classification performance obtained by the five-class, PCA-NN based primary 

classifier (i.e., Step 1 of classification module), is reported in Table 9.6.  

Table 9.6 Classification performance obtained by five-class primary NN classifier (Step 1). 

Classification performance : Five-class PCA-NN based primary classifier 
NN Arch 
(I: H: O) CM OCA (%) ICACLASS: (%) 

6:10:5 

 NOR CYST HEM HCC MET  
 
 

87.7(158/180) 

 

NOR 33 0 2 4 1 ICANOR: 82.5(33/40) 

CYST 0 24 0 0 1 ICACYST: 96.0 (24/25) 

HEM 1 0 28 0 1 ICAHEM: 93.3(28/35) 

HCC 1 2 0 36 1 ICAHCC: 90.0 (36/40) 

MET 1 0 4 3 37 ICAMET:82.2 (36/40) 

Note: NN Arch: Neural network architecture, I: Input layer neurons, H: Hidden layer neurons, O: 
Output layer neurons, CM: Confusion matrix, NN Arch: Neural network architecture, OCA: Overall 
classification accuracy, ICACLASS-A: Individual classification accuracy for class A (Number of correctly 
classified instances of class A/ Total number of instances belonging to class A). 

From Table 9.6, it can be visualized that out of total 180 testing instances, 22 instances are 

MIs and remaining 158 testing instances are correctly classified instances.  Thus, Step 1 of the 

classification module yield the OCA of 87.7 % (158/180).  It can be noted that, 158 out of 180 

correctly classified instances, consist of 33 out of 40 correctly classified NOR instances, 24 out 

of 25 correctly classified cyst instances, 28 out of 30 correctly classified HEM instances, 36 out 

of 40 correctly classified HCC instances and 37 out of 45 correctly classified MET instances. 

Thus, the Step 1 of classification module yields ICA values of 82.5 % (33/40), 96 % (24/25), 

93.3 % (28/30), 90 % (36/40) and 82.2 % (37/45) for NOR, Cyst, HEM, HCC and MET cases, 

respectively. 

It can be observed that, 22 misclassified instances (MIs) out of total 180 instances in the 

testing data, consist of 7 NOR MIs out of 40 NOR instances, 1 Cyst MI out of 25 Cyst 

instances, 2 HEM MIs out of 30 HEM instances, 4 HCC MIs out of 45 HCC instances and 8 

MET MIs out of 45 MET instances.   

Further, it is observed that, out of total 22 MIs, 17 MIs have second highest probability for 

the correct class and the remaining 5 MIs have the third highest probability for the correct 

class.  
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These 17 out of 22 MIs, for which the second probability is for the correct class, consist of 

7 out of 7 NOR MIs, 1 out 1 Cyst MI, 2 out of two HEM MIs, 3 out of 4 HCC MIs and 4 out of 

8 MET MIs, respectively.  

The remaining 5 out of 22 MIs, for which the third probability is for the correct class, 

consist of 1 out of 4 HCC MIs and 4 out of 8 MET MIs, respectively. These 5 MIs are peculiar 

MIs, as it is observed that for all these instances, there is a slim difference between the 

predicted probability values for all classes and even the highest probability value representing 

the predicted class is less than 0.4. This signifies that these peculiar MIs are confusing cases, as 

PCA-NN based primary classifier has assigned a low weightage for all the classes for these 

cases. Further, it is worth observing that these peculiar MIs are observed only for HCC and 

MET cases.  

The prediction of five-class PCA-NN based primary classifier for first two most probable 

classes in 180 instances of testing data feature set is given in Table 9.7. 

Table 9.7 Prediction of first two most probable classes by five-class PCA-NN primary classifier for 
180 testing instances (TIs) of the testing data feature set. 

Class pair  TIs  Class pair TIs 
NOR/CYST 7  CYST/HCC 22 

NOR/HEM 12 CYST/MET 17 

NOR/HCC 38 HEM/HCC 8 

NOR/MET 20 HEM/MET 37 

CYST/HEM Nil HCC/MET 19 

Note: TIs: Testing Instances; TIs=7, for class pair NOR/CYST indicates that for (7/180) testing 
instances, the first highest and the second highest probability predictions of PCA-NN based primary 
classifier is among NOR or Cyst classes, therefore these 7 testing instances will be directed to PCA-
BNN based secondary classifier for NOR/CYST cases. 

From Table 9.7, it can be noticed that out of 180 instances in the testing data feature set, 

there is not even a single instance with Cyst and HEM among the first two most probable 

classes. This is in agreement with the fact that there is no overlap between sonographic 

appearances of Cyst and HEM image classes. Associated radiologists opined that while atypical 

Cyst can overlap significantly with Cystic metastasis cases, but there is no overlap even 

between atypical cases of Cyst and HEM image classes.  
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9.4.2 Results – Experiment 2– Classification Performance of Proposed NNE based 
CAD System 

In experiment 2, the TFVs corresponding to testing instances (TIs) described in Table 9.7 

are fed to corresponding PCA-BNN based secondary classifiers and the results obtained are 

reported in Table 9.8. 

Table 9.8 Description of misclassified instances (MIs) predicted by secondary PCA-BNN based 
classifiers for 180 testing instances (TIs) of the testing data feature set. 

BNN  No. of instances tested Misclassified Instances (MIs) 

NOR/CYST 7 (2 NOR, 5 CYST) 2NOR and 5Cyst correctly classified, MIs = 0 

NOR/HEM 12(4NOR, 7HEM, 1MET*) 4NOR and 7HEM correctly classified, MIs = 1  
[One peculiar case of MET misclassified as NOR 
by Step 1 remains misclassified as NOR by Step 2] 

NOR/HCC 38(21NOR, 16HCC, 1MET*) 21NOR and 16HCC correctly classified, MIs = 1 
[One peculiar case of MET misclassified as HCC 
by Step 1 is misclassified as NOR by Step 2] 

NOR/MET 20(13NOR, 6MET, 1HCC*) 13NOR and 6MET correctly classified, MIs = 1 
[One peculiar case of HCC misclassified as NOR 
by Step 1 remains misclassified as NOR by Step 2] 

CYST/HEM Nil Nil 

CYST/HCC 22(14Cyst, 7HCC, 1MET*) 14CYST and7HCC  correctly classified, MIs = 1 
[One peculiar case of MET misclassified as HCC 
by Step 1 remains misclassified as HCC by Step 2] 

CYST/MET 17(6CYST, 11MET) 5CYST and 11 MET correctly classified, MIs = 1 
[One case of Cyst misclassified as MET by Step 1 
remains misclassified as MET (atypical cyst 
resembling cystic metastasis] 

HEM/HCC 8(1HEM, 6HCC, 1MET*) 1 HEM and 6 HCC predicted correctly, MIs = 1 
[One peculiar case of MET misclassified as HEM 
by Step 1 is misclassified as HCC by Step 2] 

HEM/MET 37(22HEM, 15MET) 21HEM and 14MET correctly classified, MIs = 2 
[One case of MET misclassified as HEM by Step 1 
remains misclassified as HEM by Step 2 (atypical 
cyst resembling cystic metastasis)] 
[1 HEM correctly classified as HEM by Step 1 is  
misclassified as MET by Step 2]** 

HCC/MET 19(10HCC, 9MET) 9HCC and 9MET correctly classified, MIs = 1 
[One case of HCC misclassified as MET by Step 1 
remains misclassified as MET by Step 2]  

Note: BNN: Binary neural network, MIs: Misclassified instances. 

From Table 9.8, it can be visualized that out of the total 180 testing instances, 9 instances 

are MIs and remaining 171 testing instances are correctly classified instances.  Thus, Step 2 of 

the classification module yields the OCA of 95 % (171/180).  It can be noted that, 171 out of 

180 correctly classified instances, consist of 40 out of 40 correctly classified NOR cases, 24 out 
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of 25 correctly classified cyst cases, 29 out of 30 correctly classified HEM cases, 38 out of 40 

correctly classified HCC cases and 40 out of 45 correctly classified MET cases. Thus, Step 2 of 

the classification module yields ICA values of 100 % (40/40), 96 % (24/25), 96.6 % (29/30), 

95 % (38/40) and 88.8 % (40/45) for NOR, Cyst, HEM, HCC and MET cases, respectively.  

It is interesting to note that the Step 1 of the classification module yielded 22 MIs out of 

180 testing instances and by incorporating the Step 2 of the classification module the number of 

MIs have reduced to 9 out of 180 testing instances. Further, it is observed that 17 out of 22 MIs 

predicted by the Step 1 of classification module, for which the second highest probability was 

for the correct class, 14 out of these 17 MIs are correctly classified by the Step 2 of the 

classification module and remaining 3 out of 17 MIs remained misclassified. The 5 peculiar 

MIs out of 22 MIs, as predicted by the Step 1 of the classification module remained 

misclassified after Step 2 also. This is expected as for these cases the third highest probability 

prediction is for the correct class, so these cases were not directed to the correct BNNs in the 

Step 2 of classification module. It can be visualized 1HEM** correctly classified as HEM by 

Step 1 is misclassified as MET by Step 2. The classification performance obtained by the 

proposed NNE based CAD system is summarized in Table 9.9. 

Table 9.9 Classification performance of Proposed NNE based CAD system. 
Classification performance: NNE based CAD System 

CM OCA (%) ICACLASS: (%) 
 NOR CYST HEM HCC MET  

 
 

95.0(171/180) 

 
NOR 40 0 0 0 0 ICANOR: 100 (40/40) 
CYST 0 24 0 0 1 ICANOR: 96.0 (24/25) 
HEM 0 0 29 0 1 ICAHEM: 96.6 (29/30) 
HCC 1 0 0 38 1 ICAHCC: 97.5 (39/40) 
MET 2 0 1 2 40 ICAMET: 88.8 (40/45)

Note: CM: Confusion matrix, OCA: Overall classification accuracy, ICA: Individual classification 
accuracy; ICACLASS-A: Individual classification accuracy for class A (Number of correctly classified 
instances of class A/ Total number of instances belonging to class A). 

It can be observed that by including the Step 2 in the classification module, the number of 

MIs has reduced from 22 MIs out of 180 testing instances to 9 MIs out of 180 testing instances, 

thus OCA has increased from 87.7 % to 95 %.  

However, it is worth mentioning that as for (5/9) peculiar MIs, the PCA-NN based primary 

classifier (Step 1 of the classification module) has assigned a low weightage for all the classes 

(highest probability being 0.4). The developed CAD system is an interactive system which 

displays the weightage [Wnor Wcyst Whem Whcc Wmet], i.e., probability outputs yielded by PCA-

NN based primary classifier for each test instance. Therefore, for peculiar MIs having a low 

highest weightage and slim difference between all class weightages, it is expected that the 
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radiologist should consider an alternative approach for confirming the diagnosis, which may be 

taking a second opinion from another expert, patients history, other imaging modalities, biopsy, 

etc.  

9.4.3 Analysis of Misclassified Instances (MIs) 

The analysis of MIs predicted by the PCA-NN based primary classifier, i.e., after the Step 

1 of the classification module and the analysis of MIs predicted by the proposed NNE based 

CAD system, i.e., after the Step 2 of the classification module, in terms of various sub-classes 

is reported is reported in Table 9.10. 

Table 9.10 Misclassification analysis of 22 MIs out of 180 test cases in classification Step 1 and 
9MIs out of 180 test cases in classification Step 2.  
S.No. PCA-NN based primary classifier (Step 1) NNE based CAD System (Step 2) 
1. NOR cases: (40) NOR cases: (40)  
 Misclassified: 7 

ICANOR: 82.5% 
Misclassified: Nil 
ICANOR:100% 

2. Typical Cyst cases: (13) Typical Cyst cases: (13) 
 Misclassified: Nil 

ICATYPICAL CYST: 100% 
Misclassified: Nil 
ICATYPICAL CYST: 100% 

3. Atypical Cyst cases: (12) Atypical Cyst cases: (12) 
 Misclassified:1 

ICAATYPICAL CYST: 91.6% 
Misclassified:1 
ICAATYPICAL CYST: 91.6% 

4. Typical HEM cases: (6) Typical HEM cases: (6) 
 Misclassified: Nil 

ICATYPICAL HEM: 100% 
Misclassified: 1 
ICATYPICAL HEM: 83.3% 

5. Atypical HEM cases: (24) Atypical HEM cases: (24)  
 Misclassified:2 

ICAATYPICAL HEM: 91.6% 
Misclassified: Nil 
ICAATYPICAL HEM: 100% 

6. Small HCC cases: (9) Small HCC cases: (9)   
 Misclassified: Nil 

ICASHCC: 100% 
Misclassified: Nil 
ICASHCC:100 % 

7. Large HCC cases: (31) Large HCC cases: (31) 
 Misclassified:4 

ICALHCC: 87.0% 
Misclassified:2 
ICALHCC: 93.5% 

8. Typical MET cases: (5)   Typical MET cases: (5)   
 Misclassified:2 

ICATYPICAL MET: 60.0% 
Misclassified:2 
ICATYPICAL MET: 60.0% 

9. Atypical MET cases: (40) Atypical MET cases: (40)  
 Misclassified:6 

ICAATYPICAL MET: 85.0% 
Misclassified:3 
ICAATYPICAL MET: 92.5% 

10. Total Typical cases: (64)   Total Typical cases: (64)   
 Misclassified: 9 

ICATYPICAL CASES: 85.9% 
Misclassified: 3 
ICATYPICAL CASES: 95.3% 

11. Total Atypical cases: (76) Total Atypical cases: (76)
 Misclassified:9 

ICAATYPICAL CASES: 88.1% 
Misclassified: 6 
ICAATYPICAL CASES: 92.1% 

Note: ICACLASS-A: Individual classification accuracy for class A (Number of correctly classified 
instances of class A/ Total number of instances belonging to class A).  
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From Table 9.10, it can be observed that by Step 2 of the classification module the ICA 

values for NOR, atypical HEM, Large HCC and atypical MET cases have increased from 82.5 

%, 91.6 %, 87 % and 85 % to 100 %, 100 %, 93.5 % and 92.5 %, respectively. The ICA values 

for typical cyst, atypical cyst, small HCC and typical METs have remained the same, i.e., 

100%, 91.6%, 100% and 60%, respectively. However, it can be visualized that ICA for typical 

HEM cases has decreased from 100 % to 83.3 %. It is expected that ICA for typical HEM cases 

should increase by adding more cases for classifier design. Overall, by incorporating the Step 2 

of the proposed classification module the ICA values for typical and atypical cases has 

increased from 85.9 % and 88.1 % to 95.3 % and 92.1 %, respectively. Given the fact that 

conventional gray scale B-Mode US has limited sensitivity for detection and characterization of 

atypical cases of FLLs, the performance obtained by the proposed NNE based CAD system is 

encouraging.  

From Table 9.6 and Table 9.9, it can be observed that the ICA values for HCC and MET 

cases have increased from 90 % and 82.2 % to 97.5 % and 88.8 %, respectively. These results 

indicate that the proposed NNE based CAD system can facilitate better management of focal 

liver malignancies by providing second opinion in case of highly overlapping sonographic 

appearances of HCC and MET lesions.  

9.5 Concluding Remarks 

From the experiments carried out in the present study, it is observed that significant 

improvement in classification performance is obtained by including the texture ratio features 

along with texture features computed from IROIs for characterization of FLLs from B-Mode 

US. Thus, it can be concluded that the texture analysis of the region surrounding the lesion 

significantly contribute towards the differential diagnosis of FLLs using B-Mode US images. 

Further, it is worth mentioning that by application of PCA to feature set consisting of 208 

texture features (104 texture features and 104 texture ratio features); the information required 

for the classification of FLLs was squeezed in the first six PCs. It is concluded that by 

incorporating the Step 2 of classification module the OCA value increases from 87.7 % to 95 % 

and ICA values for typical and atypical cases increase from 85.9 % and 88.1 % to 95.3 % and 

92.1 %, respectively. The promising results obtained by the proposed CAD with such a 

diversified, comprehensive and representative dataset used in the present study indicate that the 

proposed CAD system can be routinely used in clinical environment to assist radiologists in 

lesion interpretation and differential diagnosis of FLLs using conventional B-Mode gray scale 

US images. 



Chapter 10 

Conclusions  

10.1 Introduction 

The main aim of the present study, “Analysis and Classification of B-Mode Liver 

Ultrasound Images” is to enhance the potential of commonly available conventional B-Mode 

US imaging modality for diagnosis of liver diseases. To achieve this, the design of an 

interactive system for diagnosis of liver diseases (block diagram shown earlier in Fig. 3.1 of 

Chapter 3 is revisited here in Fig. 10.1) has been proposed in this study. 

 

Fig. 10.1 Proposed interactive system for diagnosis of liver diseases. 
Note: IROIs: Inside lesion regions of interest; SROIs: Surrounding lesion regions of interest. 

 



176 
 

Thus, efficient CAD system designs for  characterization between: (a) normal and cirrhotic 

liver (i.e., CAD System-I) (b) normal, cirrhotic and HCC liver, i.e., (CAD-System-II) (c) HCC 

and MET lesions, i.e., CAD-System III and (d) focal liver lesions (Cyst, HEM, HCC and MET 

along with normal liver tissue), i.e., CAD System-IV are implemented in the present research 

work. The conclusions drawn from exhaustive experimentations carried out for design of CAD 

System-I, CAD System-II, CAD System-III and CAD System- IV are reported in this Chapter.  

10.1.1 Conclusions  –  Design  of  an  Efficient  CAD  System  for  Characterization  of 
Normal and Cirrhotic Liver Tissue (CAD SystemI of Module 1) 

From the results of the studies undertaken in the present work, it can be concluded that:  

(i)  The selective frequency and orientation properties of Gabor filters are extremely useful 

for providing multiscale texture description in case of discrimination between normal and 

cirrhotic liver with the highest classification accuracy of 98.3 % achieved by using only 

mean texture descriptors obtained from five frequency and orientation selective Gabor 

output feature images.  

(ii)  The four direction GLCMs (plotted as an image) for normal and cirrhotic ROIs reveal that 

the distribution of GLCM elements are concentrated in case of normal liver and relatively 

more dispersed for a cirrhotic liver. This difference in dispersion of GLCM elements for 

normal and cirrhotic patches is captured by computing the GLCM-Mean and GLCM-

Range texture features. It is observed that the GLCM-Mean texture features computed at 

d = 2 and GLCM-Range features computed at d = 2 and d = 4, yield 100 % classification 

accuracy for characterization between normal and cirrhotic liver.  

(iii)  The four GLCM-Range features computed for d = 2, selected by sequential backward 

search with divergence as a measure of class seperability also yield 100 % classification 

accuracy for characterization between normal and cirrhotic liver.  

(iv)  The difference in dispersion of GLCM elements for normal and cirrhotic patches 

captured using singular value decomposition of GLCM indicate that the first four singular 

value mean features also yield 100 % classification accuracy for characterization between 

normal and cirrhotic liver.  

10.1.2 Conclusions  –  Design  of  an  Efficient  CAD  System  for  Characterization  of 
Normal, Cirrhotic and HCC Liver Tissue (CAD SystemII of Module 1) 

From the results of the study undertaken in the present work, for characterization of 

normal, cirrhotic and HCC liver tissue, it can be concluded that the optimal reduced texture 
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feature vector selected by GA–SVM approach (consisting of 10 features, i.e., 3 mean and 5 

standard deviation and 2 energy features, estimated from sub-band feature images obtained by 

2D-WPT using Haar wavelet filter) can significantly account for textural variations exhibited 

by normal, cirrhotic and HCC liver. The proposed CAD system yield individual class accuracy 

(ICA) value of 90 % for abnormal cases (i.e., for both cirrhotic and HCC cases) and ICA of 

86.6 % for normal liver tissue, with overall classification accuracy of 88.8 %. From the analysis 

of misclassified cases, it is observed that certain HCC patches (ROIs belonging to large HCCs) 

are predicted as normal, the associated radiologists were of the view that these HCC ROIs 

should be avoided while taking the sample for biopsy.  

As the sensitivity of conventional gray scale B-Mode US for detecting HCC lesions 

evolved on cirrhotic liver is limited (because cirrhotic liver exhibits diffused uneven nodularity 

so subjective differentiation between cirrhotic changes in the liver and development of HCC is 

difficult), the ICA value of 86.6 % for HCC cases obtained by the proposed CAD system is 

quite satisfactory.  It can also be concluded that all the three multiresolution texture descriptors, 

i.e., mean, standard deviation and energy texture features are important to account for textural 

variations exhibited by normal, cirrhotic and HCC liver tissue.  Finally, it can be concluded that 

the proposed CAD system can assist radiologist by providing second opinion for the diagnosis 

between cirrhotic changes in the liver parenchyma or development of HCC.  

10.1.3 Conclusions  –  Design  of  an  Efficient  CAD  System  for  Characterization  of 
Primary and Secondary Malignant Liver Lesions (CAD SystemIII of Module 1) 

 It is worth mentioning that till date the CAD system designs proposed for characterization 

of focal liver lesions are based on texture features computed from IROIs only. The CAD 

system proposed in the present work investigates the contribution made by texture of the 

background liver for differential diagnosis between HCC and MET malignant liver lesions. The 

performance of texture features computed from IROIs and SROIs by statistical, spectral and 

spatial filtering based methods have been investigated for the classification task by using SVM 

classifier. The feature selection is carried out by first obtaining the pruned feature set by 

removing nonperforming features and then applying GA–SVM approach on pruned feature 

vector to obtain optimal reduced texture feature vector for the classification task. The CAD 

system based on optimal reduced features yield 91.6 % classification accuracy by using SVM 

classifier.  

From the results of the study, it can be concluded that:  

(i)  The ratio features are more discriminatory than features computed from IROIs.  
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(ii)  Nine features, i.e., four GLCM ratio features (ASM, sum average, difference entropy and 

IDM), three GLRLM ratio features (LRE, GLN and LRHGE), one FPS WLROI feature 

(radial sum) and one Laws’ WLROI feature (LLmean) selected by GA–SVM procedure 

are significant to account for textural variations exhibited by HCC and MET lesions.  

(iii)  The texture of the liver parenchyma surrounding the lesion contributes for differential 

diagnosis between HCC and MET liver malignancies.  

(iv)  The proposed CAD system can be used as a second opinion tool for differential diagnosis 

between HCC and MET malignant neoplasms using B-Mode liver US images and thereby 

aid in proper management of liver malignancies.  

10.1.4 Conclusions  –  Design  of  an  Efficient  CAD  System  for  Characterization  of 
Focal Liver Lesions (CAD SystemIV of Module 2) 

In the present research work, the proposed CAD systems for characterization of FLLs are 

based on multi-class classifier designs, four binary classifiers arranged in a hierarchical 

framework, and ensemble of neural network classifiers. In all the experiments, IROIs and 

SROIs are used for computing the texture features. The results obtained by these proposed 

CAD systems are summarized in Table 10.1 

Table 10.1 Performance: CAD for characterization of FLLs using B-Mode US images. 
Experiment No.  CAD System Design OCA (%)  
1. PCA-SVM based CAD system 87.2 
2. PCA-NN based CAD system 87.7 
3. PCA-PNN based CAD system 86.1 
4. PCA-kNN based CAD system 85.0 
5. PCA-SVM based Hierarchical CAD system 90.5 
6. PCA-NN based Hierarchical CAD system 88.3 
7. PCA-PNN based Hierarchical CAD system 91.6 
8. PCA-kNN based Hierarchical CAD system 90.5 
9. Hybrid Hierarchical CAD system 92.7 
10. Neural Network Ensemble based CAD system 95.0 
Note: OCA: Overall classification accuracy, NN: Neural network, PNN: Probabilistic neural 
network, kNN: k-nearest neighbour classifier. SVM: Support vector machine. 

By comparative evaluation of the proposed CAD systems, it can be concluded that the 

neural network ensemble based CAD system design is best for classification of FLLs using B-

Mode US images.  

The results obtained by the proposed NNE based CAD system in the presence of 

diversified and representative dataset demonstrates the usefulness of the proposed system to (a) 

facilitate better disease management by providing second opinion in case of highly overlapping 
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sonographic appearances of focal liver lesions, (b) assist radiology students as a training tool 

for interpretation of FLLs using B-mode US images, and (c) provide second opinion to 

radiologists to select patches inside malignant lesions for taking the sample for biopsy. (i.e., 

patches inside malignant lesions declared as normal should be avoided for taking the sample for 

biopsy).  

The main conclusion of the present research work is that CAD system designs using 

texture features (computed from IROIs) and texture ratio features (computed from IROIs and 

corresponding SROI) collectively enhance the performance of the system for characterization 

of FLLs. Thus, it can be concluded that the texture of the region surrounding the lesion 

contribute effectively for differential diagnosis between different FLLs.  

10.2 Limitations and Future Scope 

Till date, no standard benchmark image database of liver ultrasound images has been 

created with an objective of pooling it for research purpose, Therefore it is not possible to 

compare similar studies on liver ultrasound due to lack of standard reference images.  

The following are the recommendations for the future work: 

(i)  There are certain focal liver lesions with very rare incidence for example, hepatoblastoma, 

cholangiocarcinoma and cystadenocarcinoma are rare malignant lesions and focal nodular 

hyperplasia, hepatic adenoma and abscess are rare benign lesions.  In future, image 

database for such rarely occurring focal liver lesions may be included; however, data 

collection may take a long span of time. 

(ii)  In the CAD designs proposed in the present work, texture feature computation have been 

carried out on raw images (i.e., without any sort of preprocessing on the images). In 

future the effect of despeckling, the B-Mode US images by various methods on the 

performance of proposed CAD systems may be tested. 

(iii)  The exhaustive experiments carried out in the present research work indicate that texture 

feature computation from regions inside and outside of the lesions significantly enhances 

the performance of the CAD system for characterization of focal liver lesions. Thus, the 

concept of extracting SROI along with IROIs for computing texture ratio features, and 

using them for designing the classification system has been done in this study, can be 

extended to two dimensional images of focal hepatic lesions acquired from CT or MRI, as 

tumor aggression will show significant changes in surrounding liver parenchyma in CT 
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and MR images as well, the design and performance evaluation of such a CAD system 

can be taken up in future.  

(iv)  In the present work, ROIs are extracted manually. In future, texture based automatic 

segmentation algorithms can be developed to identify and extract ROIs automatically. 

(v)  Although the design of proposed CAD systems have been carried out by using a 

comprehensive image database with representative images from various liver image 

classes, but these images are acquired from a single US scanner (Philips ATL HDI 5000). 

Therefore, the generalization performance of the proposed system for images acquired 

from different US scanner remains to be tested. 

 (vi)  The research in this important and clinically significant application domain “Analysis and 

Classification of B-Mode Liver Ultrasound Images” is lacking due to non availability of 

standard reference images as a result the research outputs are dependent on image 

databases collected by individual research groups. It is a dire necessity to collaborate with 

various medical institutes and research centers to create a bench mark dataset with labeled 

image classes acquired from different US scanners and pool it together for research 

purposes. 
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