
RELIABILITY OPTIMIZATION OF SOME INDUSTRIAL 

SYSTEMS USING ABC TECHNIQUE  

 

 

 

 

 

 
 

Ph.D. THESIS 

 

 

 

 

 

 

 

 

 

by 

MONICA RANI 

 

 

 

 
 

 

 

DEPARTMENT OF MATHEMATICS 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE-247667 (INDIA) 

JUNE, 2013 



RELIABILITY OPTIMIZATION OF SOME INDUSTRIAL 

SYSTEMS USING ABC TECHNIQUE 

 

 

 

 
A THESIS 

Submitted in partial fulfilment of the  

requirements for the award of the degree 

of 

DOCTOR OF PHILOSOPHY 

in 

MATHEMATICS 

 

 

 

 

by 

MONICA RANI 

 

 

 

 
 

 

 

DEPARTMENT OF MATHEMATICS 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE-247667 (INDIA) 

JUNE, 2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE – 2013 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

                               ROORKEE 
 

CANDIDATE’S DECLARATION 

 

I hereby certify that the work which is being presented in the thesis entitled  “RELIABILITY 

OPTIMIZAITON OF SOME INDUSTRIAL SYSTEMS USING ABC TECHNIQUE” in 

partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy and 

submitted in the Department of Mathematics of the Indian Institute of Technology Roorkee, 

Roorkee is an authentic record of my own work carried out during a period from January, 2010 to 

June, 2013 under the supervision of Prof. S. P. Sharma, Department of Mathematics, Indian 

Institute of Technology Roorkee, Roorkee. 

 

The matter presented in this thesis has not been submitted by me for the award of any other 

degree of this or any other Institute.  

  

(MONICA RANI) 

 

This is to certify that the above statement made by the candidate is correct to the best of my 

knowledge.  

 

Date:  June    , 2013                                             (S. P. Sharma) 

Supervisor 

                  

The Ph.D. Viva-Voce Examination of Ms. Monica Rani, Research Scholar, has been held 

on…………………………………………….……………………………………………………..    

 

 

Signature of Supervisor        Chairman, SRC                       External Examiner  

 

 

Head of the Deptt./Chairman, ODC 

 

 



Abstract

With modern technology and higher reliability requirements, systems are getting

more complicated day-by-day and hence job of the system analyst or plant personnel

becomes so difficult to run the system under failure-free pattern. In the competitive

market scenario, reliability and maintainability are the most important parameters

that determine the quality of the product with the aim to estimate and predict the

probability of the failure, and optimize the operation management. From a sys-

tem effectiveness viewpoint, reliability and maintainability jointly provide system

availability and dependability. Increased reliability directly contributes to system

uptime, while improved maintainability reduces downtime. If reliability and main-

tainability are not jointly considered and continually reviewed, serious consequences

may result. Therefore, the primary objective of any industrial system is to acquire

quality products/systems that satisfy user needs with measurable improvements to

mission capability and operational support in a timely manner, and at a fair and

reasonable price. In determining the complexity and consequent frequent failure

of the critical combination and complex integration of large engineering processes

and systems, both in their level of technology as well as in their integration, the in-

tegrity of their design needs to be determined. This includes reliability, availability

and maintainability (RAM) of the inherent process and system functions and their

related equipments.

The main objective of the thesis is to present a technique for optimizing the reli-

ability and availability issues of the industrial systems under different scenarios. For
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this firstly, availability optimization model has been constructed for computing the

optimal design parameters-MTBF and MTTR- of the system by considering manu-

facturing as well as repairing cost as an objective functions subject to predetermined

availability constraints. Moreover, most of the data collected for analysis are taken

from their historical records/sheets which are generally representing the past behav-

ior of the system. Thus the issue of handling the uncertainties play a dominant role.

For this fuzzy set theory has been used during the analysis and based on that vari-

ous reliability parameters are depicted in the form of membership functions by using

a proposed hybridized technique named as artificial bee colony based lambda-tau

(ABCBLT). In this technique nonlinear optimization problem has been formulated

by taking ordinary arithmetic operations instead of fuzzy arithmetic operations.

Apart from their behavior analysis, an investigation has been done for finding

the most critical component of the system on which more attention may be given

for increasing the production as well as productivity of the system. For this a

composite measure of reliability, availability and maintainability named as RAM-

Index has been given for a time varying failure rate components and studied their

behavior in fuzzy environment. The advantage of defining this index is to analyze

the impact of each component failure rate or repair time individually as well as

simultaneously on its performance. Also this approach has been extended by taking

degree of hesitation between the membership and nonmembership functions in terms

of intuitionistic fuzzy set theory.

The present thesis is organized into nine chapters which are briefly summarized as

follows:

A brief account of the related work of various authors in evaluation of system

reliability by using conventional, fuzzy and optimization techniques is presented in

the first chapter. The overview of the thesis is also presented in this chapter. In

Chapter 2, the basics and preliminaries related to the reliability analysis and to

be used in subsequent chapters are given.
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Chapter 3 deals with performance analysis of a Butter-oil processing plant,

which consists of subsystems namely Separator, Pasteurizer, Continuous butter mak-

ing, Melting vats, Butter-oil Clarifier and Packaging units in series. For this an opti-

mization model has been constructed by considering the system cost-manufacturing

as well as repairing- as an objective and their system availability as a constraint.

The reliability block diagram (RBD) of this system is drawn and ABC is used to

compute optimal values of MTBF and MTTR. Finally computed results are shown

to be statistically significant as compared to other algorithm techniques. This work

has been submitted after revision to Mathematics and Computers in Simulation,

Elsevier.

In Chapter 4, the computed results from the Chapter 3 are used for analyzing

the behavior of their system. For this, the uncertainties which are present in the

data are handled with the help of fuzzy set theory and based on that behavior of

their corresponding system are analyzed in the form of fuzzy membership functions.

A nonlinear optimization model has been formulated and solved by ABC algorithm

for computing their reliability indices. Sensitivity as well as performance analysis

on the system performance index has been analyzed which shows the effect of its

component failure rate and repair time on the performance of the system. Finally

the computed results are compared with the existing results as obtained by other

researchers.

In Chapter 5, the behavior analysis of a paper mill, a complex repairable in-

dustrial system has been investigated by using ABC and fuzzy methodology. For

this, time varying failure rate which follows the Weibull distribution and a constant

repair time model, which follows the exponential distribution, have been taken cor-

responding to each component of the system. Uncertainties in the data are handled

with fuzzy set theory and then behavior of the system has been analyzed in the

form of various reliability parameters. To study the failure behavior of the system,

crisp and defuzzified values are obtained at ±15%, ±25% and ±50% spreads. This
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work has been published in International Journal of Industrial and Systems Engi-

neering, International Journal of Performability Engineering, International Journal

of Applied Mathematics and Mechanics and 16th Online World Conference on Soft

computing in Industrial Application conference.

In Chapter 6, performance analysis of repairable industrial systems has been

done by defining a composite measure of reliability parameters called as RAM-Index.

A time dependent RAM-Index as given below has been introduced in this chapter

to analyze and rank the sensitive components of each unit of the system.

RAM(t) = w1 ×Rs(t) + w2 × As(t) + w3 ×Ms(t)

where wi ∈ (0, 1), i = 1, 2, 3 are weights such that
3∑

i=1

wi = 1. Advantage of this

index is that by varying the component failure parameters, the corresponding effect

on its performance has been analyzed. The presented approach has been applied

to optimize the performance of a paper mill. This work has been published in Ap-

plied Soft Computing, Elsevier and International Journal of Quality, Statistics &

Reliability, Hindawi.

Chapter 7 introduces a two-phase approach for solving the reliability-redundancy

allocation problem of a series, series-parallel, complex design problems. In the first

phase, an optimal reliability and their corresponding redundant component of each

subsystem has been computed using ABC algorithm and the results are compared

with other evolutionary algorithm results. While the improvement of their compo-

nent reliability has been made in their second phase by preserving the redundant

components corresponding to each subsystem. Finally the computed results during

both the phases are compared to show the superbly of the proposed approach with

the existing techniques.

In Chapter 8, a structural framework has been developed to model, analyze

and predict the failure pattern of the system behavior in both quantitative as well
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as qualitative manner. In their framework, degree of hesitation or indeterminacy be-

tween the membership functions have been considered in which basic event are repre-

sented in the form intuitionistic fuzzy numbers of triangular membership functions.

To strengthen the analysis, various reliability parameters of interest are computed

and compared their results with their crisp as well as fuzzy technique results. Sensi-

tivity analysis on the system MTBF has been computed for different combinations

of reliability parameters. The part of this chapter has been published in proceeding

of International Conference on Applied Mathematics and Numerical Analysis held

at Paris.

Chapter 9 deals with the overall concluding observations of this study and a

brief discussion on the scope for future work.
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Chapter 1

Introduction

With modern technology and higher reliability requirements, systems are getting

more complicated day-by-day and hence job of the system analyst or plant personnel

becomes so difficult to run the system under failure-free pattern. In the competitive

market scenario, reliability and maintainability are the most important parameters

that determine the quality of the product with their aim to estimate and predict the

probability of the failure, and optimizing the operation management. From the view

point of system effectiveness, reliability and maintainability jointly provide system

availability and dependability. Increased reliability directly contributes to system

uptime, while improved maintainability reduces system downtime. If reliability and

maintainability are not considered jointly and reviewed continually, serious conse-

quences may result. Therefore, the primary objective of any industrial system is to

acquire quality products/systems that satisfy user needs with measurable improve-

ments to mission capability and operational support in a timely manner, and at a

fair and reasonable price. In determining the complexity and consequent frequent

failure of the critical combination and complex integration of large engineering pro-

cesses and systems, both in their level of technology as well as in their integration,

the integrity of their design needs to be determined. This includes reliability, avail-

ability and maintainability (RAM) of the inherent process and system functions and

their related equipment.

1
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A basic and fundamental understanding of the concepts of RAM parameters,

to a large extent, an empirical understanding of safety have in the main are dealt

with statistical techniques for the measure and/or estimation of various parameters

related to each of these concepts that are based on obtained data. However, in

designing for RAM parameters, it is more often the case that the measure and/or

estimators of various parameters related to each of these concepts are not based

on obtained data. Furthermore, the complexity arising from an integration of en-

gineering systems and their interactions makes it somewhat impossible to gather

meaningful statistical data that could allow for the use of objective probabilities in

the analysis of the integrity of engineering design. Any unfortunate consequences of

unreliable behavior of such equipments or systems have lead to the desire for reliabil-

ity analysis. Therefore, in recent year’s system reliability has become an important

issue in evaluating the performance of an engineering system by eliminating or re-

ducing the likelihood of failures and thus increasing their desired life and operational

availability.

The objective of the presented work is to analyze the behavior of some repairable

process industrial systems by using vague, imprecise and uncertain data. For this,

different optimization formulations for assessing their reliability parameters and

characteristics are presented. A brief literature on various issues related to reliability

evaluation of a system have been reviewed and are given section-wise hereafter.

1.1 Review of Literature

In this section, a brief literature review regarding reliability and availability opti-

mization under different scenario are given.

1.1.1 Reliability with Conventional Methods

Reliability is a popular concept, being used for years as an attribute of a person,

equipment or a system. Today reliability is growing into an omnipresent attribute
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with qualitative and quantitative connotations that pervades every aspect of our

present day of technologically intensive world. As reliability deals with reducing the

frequency of breakdowns, maintainability deals with the duration of breakdowns.

The usefulness of the reliability analysis for the systems was discussed almost half

century back by the researchers [23, 181, 206]. It has always been considered as a

useful tool for risk analysis, production availability studies and design of systems.

In 1970, Buzacott [31] computed reliability measures of a system based on suc-

cessive reduction of complex models and determined the intervals based on parallel

and series sets, which were referred as minimal cut and path sets. Exponential dis-

tribution was used to model system failure and repair rates. Kim [134] proposed a

technique for computing the reliability of complex systems and suggested a three

phase approach. In the first phase, all series parallel subsystems were reduced to non

series parallel subsystems. In the second stage, all the possible paths were traced

from source to sink and in the third phase, system reliability is calculated based on

these paths. Cherry et al. [49] performed reliability analysis of a system by calculat-

ing long run availability of plant, assuming constant failure and repair time for each

of the components. Arid [10] used reliability engineering techniques in order to chalk

out maintenance policies for the process plants. Dhillon [61] described application

of reliability engineering principles for carrying out stochastic analysis of parallel

systems with common cause failures and critical human errors by using Markovian

approach. Cafaro et al. [32] explained the use of markov chains in evaluating the

reliability and availability of a system with time-dependent transition rates using

analytical matrix- based methods. The researchers [145–148, 151, 152] used the

Markov modeling in the analysis and evaluated the performance of sugar, paper and

fertilizer plants by assuming constant failure and repair rates of the systems. Now a

days, system reliability evaluation has been focused by the various researchers using

different methods such as Monte Carlo simulation [190, 216, 226], failure mode and

effect analysis (FMEA)[214], fault tree analysis (FTA) [142, 215, 222] and Petri nets
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[1–3, 200–202, 217] whereas some stochastic or statistical analysis methods included

renewal process models, Markov process/analysis [9, 52, 129, 193], Poisson point

process [11, 54, 205], Bayesian method [15, 109, 112, 130, 246], proportional hazard

model [76, 166], redundancy allocations [53, 81, 155, 248] and combinations of these

models.

Gurov et al. [97] developed a mathematical model to minimize the cost of the

system under an availability constraint for partially (k-of-n) redundant repairable

systems. Aghayeri and Telen [6] reported the failure frequency of repairable re-

dundant systems and proposed an optimum production and maintenance planning

model for process industry. Adamyan and David [1, 2] stressed upon the assessment

of reliability and safety of a manufacturing system with sequential failures. Choi

et al. [50] presented a method for minimizing the investment budget for construct-

ing new transmission lines subject to probabilistic reliability criteria. Cochran et al.

[52] developed Generic markov models for availability estimation and failure char-

acterization of reactor regeneration system in fluid catalytic cracking unit for one

of the petroleum industry. Sarhan [208, 209], Sarhan et al. [210] investigated the

equivalence of different designs of simple series system, parallel systems and general

series-parallel systems, based on the system reliability function and system mean

time to failure. The system components are assumed to be independent and their

lives to have exponential distributions. Wang [243] suggested two methods for the

estimation of availability in which the allocation of MTBF and MTTR, subjected

to exponential distribution, is described in first method, while in the second method

estimation of the interval of availability is described when none of them is subjected

to exponential distribution. The reliability and long-run availability of the process

manufacturing industrial system - Butter-oil (melted butter) and Plastic-pipe plant

- have been discussed by Gupta et al. [94, 95] for various choices of failure and

repair rates of each component of the plant. Khan et al. [128] presented a two
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step risk-based methodology to estimate optimal inspection and maintenance inter-

vals which maximize the system’s availability. Isaac et al. [111] developed a model

for evaluating the availability, the production rate and the reliability function of

multi-state degraded systems subjected to minimal repairs and imperfect preventive

maintenance.

Durga-Rao et al. [68] developed a software tool named as Dynamic Reliability

with Simulation to do comprehensive dynamic fault tree analysis based on Monte

Carlo simulation approach. The developed simulation approach has been validated

with dynamic reliability problems. Yeh et al. [255] proposed particle swarm opti-

mization, based on Monte Carlo simulation to solve complex network reliability by

minimizing the cost of components that constituted the network under reliability

constraints. Sarhan et al. [211] derived the maximum likelihood and Bayes estima-

tors of the unknown parameters using a complete sample with the assumption that

the prior distributions of the two unknown parameters follow gamma distributions.

Most of the studies assume that time-between-event is exponentially distributed.

An important assumption when exponential distribution is used is that the event

occurrence rate is constant. In reliability applications, this implies that the items

have no aging property. But in reality this assumption is mostly violated due to wear

and tear and other usage conditions, items usually have an increasing failure rate.

To be able to monitor processes for which the exponential assumption is violated,

Weibull distribution is a good alternative and it is a simple generalization of the

exponential distribution. This flexibility and its reasonableness have made Weibull

distribution probably the most useful distribution model in reliability analysis and

it has been widely used by various researchers to model the failure times. There are

a couple of papers where the authors have indicated the use of Weibull distribution

for process monitoring in reliability [18, 249], but no detailed analysis is carried out.

Related to the use of Weibull distribution in statistical process control, the authors

[22, 29, 39, 57, 74, 157, 182, 223, 229, 250, 264] had discussed the use of Weibull
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distribution in various applications.

Liberopoulos and Tsarouhas [163] studied the statistical analysis of failure data

of an automated pizza production line, covering a period of four years, computing

the most important descriptive statistics of the failure data, and investigated the

existence of auto-correlations and cross-correlations in the failure data. Sartori

et al. [212] did comparison between the Weibull classical distribution and the q-

Weibull generalized distributions in a typical natural gas recovery plant. Their

results show that the q-Weibull distribution fits better to the available data. Tan

[229] studied the two-parameter maximum likelihood estimation problem for the

Weibull distribution with consideration of interval data. In this, they combined

the Weibull-to-exponential transformation technique and the equivalent failure and

life time technique. Castet and Saleh [39] conducted nonparametric analyses and

Weibull fits with the MLE procedure to the probabilities of satellite and satellite

subsystems’ reliability.

Tsarouhas and Arvanitoyannis [234] performed the statistical analysis of the field

of failure and repair data for a bread production line. The descriptive statistics of

data was performed and the parameters of the Weibull distribution that have the

best index of fit among the theoretical distributions were estimated. Moreover,

the reliability and hazard rate modes for all machines and the entire production

line that can be a useful tool to assess the current condition, and to predict the

reliability for upgrading the maintenance policy of the production line were calcu-

lated. Hoseinie et al. [103] analyzed the reliability and maintainability of electrical

system of drum shearer at Parvade.1 Coal Mine in central Iran by following the

lognormal and Weibull-3 parameters distribution for time between failures and time

to repair respectively. Veeramany and Pandey [237, 238] presented a semi-Markov

process model for evaluating the rupture frequencies and reliability of the nuclear

power plant by considering Weibull failure time distribution in the model. Monte

carlo simulation is used to validate the model result. El-Damcese and Tamraz [73]
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performed the reliability and availability analysis of parallel repairable system by

considering arbitrary repair time distribution. In their model, they used the Markov

and supplementary variable techniques for developing the equations for the model.

Garg and Sharma [80] presented an approach for reliability and maintainability anal-

ysis of industrial system. In their approach data are fitted over several distribution

namely Exponential, Weibull, Normal, Lognormal and best-fitted data are estimated

by using Anderson-Darling statistic test. A case-study of crank-case manufacturing

plant has been taken for demonstration of their approach.

1.1.2 Reliability with Fuzzy Methodology

Among the various paradigmatic changes in science and mathematics in this century,

one such change concerns the concept of uncertainty, which occurs in any problem-

solving situation in the form of some information deficiency. Information may be

incomplete, imprecise, not fully reliable, vague, contradictory or deficient in some

other way. In general, these various information deficiencies may result in different

types of uncertainty. Conventionally probability theory is being widely used in en-

gineering and management field for reliability analysis with the assumption that the

goals of the system target or information collected from the various resources are

precise, known or definite. This was true up to late nineteenth century until with

the introduction of fuzzy set by Zadeh in 1966 [260]. Zadeh’s work had a profound

influence on the thinking about uncertainty because it challenged not only probabil-

ity theory as the sole representation for uncertainty, but the very foundations upon

which probability theory was based: classical binary (two-valued) logic.

As far as reliability is concerned, conventional analysis or techniques have been

used which are based on the probabilistic and the binary state assumptions in

which uncertainties are dealt with probabilistic approach, which is random in na-

ture [33, 34, 239]. Moreover, the traditional technique requires large amount of

data related to component of the system in the form of probabilities which are



8

rather difficult to collect or obtain because of incomplete or non-obtainable infor-

mation. Thus, it is observed that the traditional approaches of reliability analy-

sis rely on probabilistic assumptions, which are often inappropriate, as probabil-

ity theory cannot deal with uncertainty due to vagueness in data. To overcome

this problem, the concept of fuzzy set theory has been used by many researchers

[34, 36, 42, 47, 69, 70, 79, 89, 93, 138, 161, 165, 179, 222, 240, 246]. This con-

cept efficiently deals with imprecise, uncertain dependent information related to

system performance and provides a better, consistent and mathematically more

sound method for handling uncertainties in data than conventional methods, such

as Bayesian statistics, Markov process, etc. In recent times, fuzzy methodology

has gained popularity and hence widely used in various reliability engineering dis-

ciplines which includes human reliability [126, 138, 266], hardware reliability [33],

software reliability [35, 135], structural reliability [108, 178, 191], Bayesian reliability

[109, 221, 241, 246, 247], fuzzy reliability optimization [79, 81, 169, 198, 203] etc.

Knezevic and Odoom [138] proposed a new procedure for analyzing the relia-

bility of repairable system by using Lambda-Tau and Fuzzy methodology. In their

approach, various reliability parameters are analyzed in the form of fuzzy member-

ship functions by using fuzzy arithmetic operations. Gupta and Bhattacharya [96]

proposed a methodology which employs ‘hybrid data’ as a tool to analyze the fault

tree. The proposed methodology estimates the failure probability of basic events

using the statistical analysis of field recorded failures. The proposed methodology

has been applied to a conveyor system. Ding and Lisnianski [63] proposed fuzzy uni-

versal generating functions to assess system reliability of fuzzy multi-state system.

Kishor et al. [136] gave an interactive fuzzy decision making approach for solving the

multi-objective reliability optimization of a life-support system in a space capsule,

where system reliability is maximized while minimizing the cost. Komal et al. [141]

gave a genetic algorithm based lambda-tau (GABLT) methodology for calculating

the membership function of the various reliability indices for depicting the behavior



9

of the system. Huang et al. [109] proposed a method for estimating the reliabil-

ity parameters in the form of fuzzy membership functions using fuzzy arithmetic’s,

artificial neural network and genetic algorithms. The effectiveness of the proposed

method is illustrated with normal and Weibull distributions. Rao et al. [197] pre-

sented a solution to test interval optimization problem with uncertain/imprecise

parameters with fuzzy-genetic approach along with a case of application of a safety

system of Indian pressurized heavy water reactor. The authors of [113, 114, 252]

have analyzed the fuzzy reliability of serial and parallel systems using statistical

fuzzy confidence interval methodology.

Mahapatra and Mahapatra [168] analyzed the reliability and cost of the series

system models using fuzzy parametric geometric programming by considering two

types of the non-linear cost function models. The former one is to find out the

optimum system reliability with cost constraint and the latter is to minimize the

system cost model with targeted reliability goal in fuzzy environment. Donighi

and Khanmohammadi [65] presented an approach for evaluating the reliability of

series-parallel system, based on the use of beta type distribution as membership

function. Kumar et al. [150] analyzed the reliability of system using real coded

genetic algorithms and fuzzy methodology. Hadi-Vencheh et al. [99] proposed a

fuzzy risk priority numbers (FRPNs) for prioritization of failure modes by treating

the risk factors as fuzzy variables and evaluate them using fuzzy linguistic terms

and fuzzy ratings.

1.1.3 Reliability, Availability and Maintainability (RAM)

With the advance in technology, a designer always wants to manufacture the equip-

ment and systems of greater capital cost, complexity and capacity which results

in increasing the reliability of the system. Also at the same time the unfortunate

penalty of low availability and high maintenance cost need to be improved for their

survival. To achieve this end, availability and reliability of equipment in the process
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must be maintained at the higher order. However, to improve the quality and quan-

tity of a manufactured associated prospectus, there is a need to accentuate more on

operational management. For this reason and to reduce the number of likelihood

failures, there is a great interest in dealing with the main feature of the reliability

parameters which affects the system performance directly i.e. reliability, availabil-

ity and maintainability (RAM) . Also with the growing complexities of the system,

the job of the system analyst becomes more tedious to analyze their simultaneous

effects on the system performance. In that direction, various researchers have ad-

dressed the issue of RAM analysis by adapting the suitable maintenance strategies

for increasing the performance of the system [67, 110, 167, 207, 244, 263].

Markeset and Kumar [172, 173] have discussed the application of reliability,

maintainability and risk analysis methods to minimize life cycle cost of the sys-

tem. Sun and Li [227] have proposed a truncated bathtub curve for failure rate by

considering their exponential and Weibull distributions failure rate. Barabady and

Kumar [20, 21, 22] had presented a methodology for improving the availability of a

repairable system by using the concept of importance measures. The empirical data

of two crushing plants at the Jajarm bauxite mine of Iran are used as a case study

for reliability and availability analysis. The reliability and maintainability analysis

of strudel, peach, bread production line at machine, workstation and entire line level

was developed in [233–235]. The descriptive statistics of the failure and repair data

was carried out and the best index of fit among the common theoretical distribution

and their corresponding parameters were determined.

Nepal et al. [186] presented an integrated and analytical approach to modularise

the product architecture by focusing on reliability and maintainability (R & M) is-

sues upfront at conceptual stage so that the redesign problems at the later stage can

be minimized. In addition, they also considered cost as criterion for modularisation

and fuzzy logic was used to evaluate the candidate modules with respect to R &

M and cost metrics. Sharma and Kumar [216] presented the application of RAM
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analysis in a process industry by using Markovian approach as a tool to model the

system behavior. In their approach, crisp historical data are utilized in the analysis

without quantification of involved uncertainties. Rajpal et al. [196] explored the ap-

plication of artificial neural networks to model the behavior of a complex, repairable

system. A composite measure of RAM parameters called as RAM-Index has been

proposed for measuring the systems performance by simultaneously considering all

the three key indices which influence the system performance directly. But disad-

vantage of their indices is that they are static in nature i.e. their values are specified

at a fixed time. As the industrial system performance varies from time to time and

hence the performance index must be improved. In that direction, Komal et al.

[142] introduced time dependent RAM-Index in which historical uncertain data are

used for its evolution. In their formulation, constant failure-rate and repair-time

model has been used for analysis while uncertainties occurring between them were

removed by using fuzzy set theory. Their membership functions were computed

by formulating a non-linear optimization problem. Barabadi et al. [19] studied the

effect of time-dependent covariates on the analysis of maintainability performance.

The proportional repair model based on proportional hazard model was developed

for analyzing the time-dependent covariates, instead of time-independent covari-

ates, by using Cox regression model in the maintainability field. The applicability

of the method has been demonstrated with a case study of crushing plants of Jijarm

Bauxite Mine.

1.1.4 Reliability-Redundancy Allocation Problem

The system reliability optimization has its importance in variety of engineering

yields. A design engineer has several options to improve the reliability of a sys-

tem with a given basic design. The reliability of a system can be enhanced by

either providing redundancy at the component level or increasing components’ reli-

abilities or both. The utilization of redundancy is assumed to be one of the main
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attributes to meet high level reliability. The problem is then to select the feasible

design configuration (i.e., optimal redundancy levels) that maximizes system relia-

bility. This problem is called redundancy allocation problem (RAP) which was first

introduced by Misra and Ljubojevic in 1973 [176]. A series-parallel system is basi-

cally characterized through a predefined number of sub-systems which are connected

serially. However, redundancy and component reliability enhancement lead to in-

crease in system cost. Thus, a tradeoff between these two options is necessary for

budget-constrained reliability optimization [155]. Besides the above two ways, the

combination of the two approaches and reassignment of interchangeable elements

are another feasible ways for increasing the system reliability [100, 155]. Such prob-

lem of maximizing system reliability through redundancy and component reliability

choices is called “reliability-redundancy allocation problem (RRAP)” [155]. In this

problem the aim is to find simultaneously the optimal redundancy levels and op-

timal component reliabilities that maximize system reliability subject to resource

constraints such as cost, weight and volume of the system. This problem is an NP

problem [48] and belongs to the category of constrained nonlinear mixed-integer

optimization problems.

Several researchers since 1960s have solved reliability optimization problems with

single objective in which reliabilities of the system components are assumed to be

known at fixed positive levels which lie between zero and one [5, 55, 98, 100, 155,

156, 177, 184, 185, 232]. However, in real-life situations, the reliability of a compo-

nent varies due to several reasons, such as improper storage facilities, the human

factor and other factors related to environment. Due to the non-availability of their

distribution function at the product design, the reliability of each component is sen-

sible and hence it may be treated as a positive imprecise number between zero and

one instead of a fixed real number. Hence, a more general problem is one where

both the optimal component reliability and the optimal redundancy at each stage

are determined to obtain the maximum system reliability i.e. RRAP.
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During the last two decades several heuristic as well as global optimization meth-

ods have been introduced by the researchers to solve these problems which can be

classified as heuristic methods, Lagrangian multiplier method, branch and bound

method, linear programming, and so on [87, 100, 133, 177, 177, 183, 192, 218, 230,

251, 258]. These approaches do not guarantee exact optimal solutions, but they

achieve reasonably good solutions for hard problems in relatively short time periods.

Specially, heuristics have been popular for solving reliability-redundancy allocation

problems, because global optimal solutions to these problems are not obtainable in

reasonable amounts of time. However, the heuristic techniques require derivatives

for all non-linear constraint functions, that are not derived easily because of the

highly computational complexity. Due to the non-convexity, non-smoothness and

high-dimension of the problems, many classical mathematical methods fail to obtain

satisfactory solutions. To overcome this difficulty meta-heuristic methods, based on

swarm intelligence, have shown great potential in solving the reliability optimization

problem and gained increasing attention. These heuristics include genetic algorithm

[83, 106, 174, 188, 257], particle swarm optimization [53, 81, 248], evolutionary al-

gorithm [85, 204] ,ant colony algorithm [175], harmony search algorithms [242, 267],

neural network [56], immune algorithm [46, 107] and artificial bee colony algorithm

[105, 253] etc.

1.1.5 Reliability with Artificial Bee Colony optimization

The last few decades have witnessed the introduction of several optimization al-

gorithms, based on nature-inspired ideas. Some examples of such algorithms in-

clude ant colony optimization [66], evolutionary algorithm [85, 204] genetic algo-

rithm [86, 102], particle swarm optimization [72, 127] etc. Most of these algorithms

are meta-heuristic-based search techniques and generally referred to as multipurpose

optimization algorithms because of their applicability to a wide range of problems.

In a similar context, Artificial Bee Colony algorithm (ABC) was initially published
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by Karaboga in 2005 as a technical report for numerical optimization problems [116]

and with its co-authors for optimizing numerical problems [116, 118, 124]. Its de-

velopment was motivated by simulating the intelligent foraging behaviour of honey

bees in their colony and its performance was initially measured using benchmark

optimization function. In recent times, however, the attention of researchers in

the engineering and optimization domains have been drawn to adopt the use of

ABC for a variety of decision making problems such as for constrained optimization

[28, 117], in engineering [7, 224], economic dispatch problems [225], neural network

[104, 123, 213, 254], software engineering [58, 171], multi-objective [187, 265, 269]

and many others.

Karaboga and Basturk [119] extended ABC algorithm for solving constrained

optimization problems and applied it to a set of constrained problems. Brajevic

et al. [27] presented an improved version of ABC for constrained optimization prob-

lems, which has been implemented and tested on several engineering benchmarks

which contain discrete and continuous variables. Li et al. [160] used ABC for relia-

bility analysis of engineering structures and their study was demonstrated by four

examples to show the present method is reliable and accurate. Dongli et al. [64] pro-

posed a modified ABC algorithm for numerical optimization problems and tested its

performance on a set of benchmark problems. Rajasekhar et al. [194] proposed an

improved version of ABC algorithm with mutation based on Levy probability distri-

butions. Yeh et al. [256] presented an approximate model for predicting the network

reliability by combining the ABC algorithm and Monte Carlo simulation. Yeh and

Hsieh [253] presented the penalty guided ABC for solving the reliability redundancy

allocation problem. Four benchmark reliability allocation problem has been solved

and found that ABC algorithm perform better than the well known solution given

by other meta-heuristic technique results. Hsieh and Yeh [105] presented a penalty

guided artificial bee colony algorithm to solve system reliability allocation problems

with a mix of components. For more details about the application and methodology
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of ABC algorithm, we may refer to [7, 8, 118, 121–123]

1.1.6 Reliability with Intuitionistic fuzzy set theory

The theory of fuzzy sets proposed by Zadeh [260] has achieved a great success in

various fields to handle the uncertainties in the data by defining the fuzzy set which

accommodate the various degree of membership on the real interval [0,1] by the

membership function µÃ ∈ [0, 1]. After the introduction of the concept of fuzzy

sets, several researches were conducted on the extensions of the notion of fuzzy sets.

Among these extensions the one that has drawn the attention of many researchers

during the last decades is the theory of intuitionistic fuzzy sets (IFSs) introduced by

Attanassov [13, 14]. IFS adds an extra degree called as degree of non-membership

function in order to model the hesitation or indeterminacy between the degree of

membership functions belonging. In fuzzy set the degree of non-membership or

degree of hesitation is simply considered as one minus the degree of membership

function and hence it is fixed. However, in IFS theory, the characteristic function of

an element in the universe is expressed by the degree of membership (or acceptance)

and the degree of non-membership (or rejection) simultaneously such that sum of

their membership function is less than 1. Thus, the introduced IFS is more suitable

for dealing with fuzziness and uncertainty than the ordinary fuzzy set, and has

received more and more attention since its appearance. Gau and Buehrer [82] gave

the notion of vague set, which is another generalization of fuzzy sets. But Bustince

and Burillo [30] showed that it is an equivalent of the IFS. Therefore, it is expected

that IFSs could be used to simulate any activities and processes requiring human

expertise and knowledge, which are inevitably imprecise or not totally reliable.

In many complex decision making problems, the decision information provided

by the decision maker is often imprecise or uncertain [137] due to time pressure, lack

of data, or the decision maker’s limited attention and information processing capabil-

ities. Thus, IFS is a very suitable tool to be used to describe imprecise or uncertain
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decision information. In that direction, Chen [43, 45] presented the arithmetic oper-

ations and analyzing the fuzzy system reliability based on vague sets. Shu et al. [220]

proposed an algorithm to calculate the fault interval of system components by inte-

grating both expert knowledge and experience in terms of providing the possibilities

of failure of bottom events using intuitionistic fuzzy fault tree analysis. They ap-

plied their method to the failure analysis problem of printed circuit board assembly.

Kumar et al. [144] developed a method for analyzing system reliability by using in-

terval valued vague sets, and applied it for the reliability analysis of a marine power

plant. Chang et al. [40] proposed a vague fault-tree analysis procedure to determine

the weapon system’s reliability. Mahapatra and Roy [170] presented a method for

fuzzy system reliability analysis using the idea of interval valued vague sets and

intuitionistic fuzzy numbers respectively. Chang and Cheng [41] obtained fault in-

terval and reliability interval of the printed circuit board assembly with different

membership function using fault-tree analysis. Taheri and Zarei [228] investigated

the Bayesian system reliability assessment in vague environment. Kumar and Yadav

[149] presented an approach for constructing the membership and non-membership

of reliability index using non-linear programming problem using different types of

intuitionistic fuzzy numbers. As far as reliability field is concerned, IFSs have been

proven to be highly useful to deal with uncertainty and vagueness, and a lot of work

has been done by researchers [12, 17, 40, 45, 90–92, 144, 149] to develop and enrich

the IFS theory.

1.2 Objective of the Thesis

The main objective of the thesis is to present a technique for optimizing the reliability

and availability issues of the industrial systems under different scenarios. As most of

the data collected for analysis are taken from their historical records/sheets which

generally represent the past behavior of the system. Thus the issue of handling the

uncertainties play a dominant role. For this fuzzy set theory has been used during
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the analysis for handling such type of vagueness, limited or imprecise data. Based

on that, behavior of an industrial system is analyzed in terms of various reliability

parameters, which affects the performance of the system directly, in the form of var-

ious fuzzy membership functions such as failure rate, repair time, MTBF etc. For

computing the membership functions of these parameters, a hybridized technique

named as artificial bee colony based lambda-tau (ABCBLT) technique has been

proposed in which nonlinear optimization problem has been formulated by taking

ordinary arithmetic operations instead of fuzzy arithmetic operations. ABC tech-

nique has been used for solving this problem. The major advantages of proposed

technique is that it gives compressed range of prediction for all computed reliability

parameters by utilizing uncertain data as compared to other techniques. Sensitivity

as well as performance analysis on the system performance have also been done for

showing the effect of various reliability parameters on its performance.

Apart from their behavior analysis, a time varying index named as RAM-Index,

which is a composite measure of reliability, availability and maintainability param-

eters, are studied in fuzzy environment. Advantage of this index is that by varying

the component failure parameters, the corresponding effect on its performance has

been analyzed. Based on their analysis, critical component of the system, as per

preferential order, has been given to the system analyst for analyzing the impact of

failure rate and repair time of each component on its system. Based on that plant

maintenance personnel may decide the best suited action and to assign the repair

priorities as per the system requirements. In addition to these, an approach has

been suggested for analyzing the behavior of complex repairable industrial systems

in terms of membership and nonmembership functions by defining their intermi-

nancy between the membership functions in terms of vague set theory. Sensitivity

analysis on the system MTBF has been computed for different combinations of re-

liability parameters. Finally, an approach has been given to enhance the reliability

of the redundant component of a series, series-parallel or complex (bridge) system.
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1.3 Overview of the thesis

The present thesis is organized into nine chapters including the present one that

contains mainly the literature review. The rest of chapters are described below:

In Chapter 2, the basics and preliminaries related to the reliability analysis

which are to be used in subsequent chapters are given.

Chapter 3 deals with performance analysis of a Butter-oil processing plant,

which consists of subsystems namely Separator, Pasteurizer, Continuous butter mak-

ing, Melting vats, Butter-oil Clarifier and Packaging units in series. For this an opti-

mization model has been constructed by considering the system cost-manufacturing

as well as repairing- as an objective and their system availability as a constraint.

The reliability block diagram (RBD) of this system is drawn and ABC is used to

compute optimal values of MTBF and MTTR. Finally computed results are shown

to be statistically significant as compared to other algorithm techniques.

In Chapter 4, the computed results from the Chapter 3 are used for analyzing

the behavior of their system. For this, the uncertainties which are present in the

data are handled with the help of fuzzy set theory and based on that behavior of

their corresponding system are analyzed in the form of fuzzy membership functions.

A nonlinear optimization model has been formulated and solved by ABC algorithm

for computing their reliability indices. Sensitivity as well as performance analysis

on the system performance index has been analyzed which shows the effect of its

component failure rate and repair time on the performance of the system. Finally

the computed results are compared with the existing results as obtained by other

researchers.

In Chapter 5, the behavior analysis of a paper mill, a complex repairable in-

dustrial system has been investigated by using ABC and fuzzy methodology. For

this, time varying failure rate which follows the Weibull distribution and a constant

repair time model, which follows the exponential distribution, have been taken cor-

responding to each component of the system. Uncertainties in the data are handled
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with fuzzy set theory and then behavior of the system has been analyzed in the form

of various reliability parameters. To study the failure behavior of the system, crisp

and defuzzified values are obtained at ±15%, ±25% and ±50% spreads.

In Chapter 6, performance analysis of repairable industrial systems has been

done by defining a composite measure of reliability parameters called as RAM-Index.

A time dependent RAM-Index as given below has been introduced in this chapter

to analyze and rank the sensitive components of each unit of the system.

RAM(t) = w1 ×Rs(t) + w2 × As(t) + w3 ×Ms(t)

where wi ∈ (0, 1), i = 1, 2, 3 are weights such that
3∑

i=1

wi = 1. Advantage of this

index is that by varying the component failure parameters, the corresponding effect

on its performance has been analyzed. The presented approach has been applied to

optimize the performance of a paper mill.

Chapter 7 introduces a two-phase approach for solving the reliability-redundancy

allocation problem of a series, series-parallel, complex design problems. In the first

phase, an optimal reliability and their corresponding redundant component of each

subsystem has been computed using ABC algorithm and the results are compared

with other evolutionary algorithm results. While the improvement of their compo-

nent reliability has been made in their second phase by preserving the redundant

components corresponding to each subsystem. Finally the computed results during

both the phases are compared to show the superbly of the proposed approach with

the existing techniques.

In Chapter 8 a structural framework has been developed to model, analyze

and predict the failure pattern of the system behavior in both quantitative as well

as qualitative manner. In their framework, degree of hesitation or indeterminacy

between the membership functions have been considered in which basic event are

represented in the form of vague fuzzy numbers of triangular membership functions.

A vague set theory over fuzzy set theory has been used, as the vague sets separates

the trueness and falseness evidence for membership of an element in a set. Further,
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in vague set, the level of confidence of domain experts lies between [0,1] instead of 1

as in fuzzy set theory. To strengthen the analysis, various reliability parameters of

interest are computed and compared their results with their crisp as well as fuzzy

technique results. Sensitivity analysis on the system MTBF has been computed for

different combinations of reliability parameters.

Chapter 9 deals with the overall concluding observations of this study and a

brief discussion on the scope for future work.



Chapter 2

Preliminaries

This chapter presents some of the fundamental definitions and mathematical theory

for reliability. The focus is on the reliability and unreliability functions, the prob-

ability density function, the hazard rate, the conditional reliability function, and

some time-to-failure metrics.

2.1 Reliability metrics

2.1.1 Reliability

Reliability in engineering problems is concerned with whether a system can operate

properly without failure. System reliability is a measure of how well a system meets

its design objective. In the probability context it can be taken as a quantitative and

is defined as the probability that the product or a system performs the intended

function adequately for a specified period of time, under stated operating conditions

or environment. Mathematically, if we define T ≥ 0 to be the continuous random

variable that represents the time to failure of a system and F (t) the distribution of

the system life time, then the basic reliability function R(t), is defined [25] for time

to failure of the system (or subsystem) as

R(t) = Pr(T > t) = 1− F (t) =

∫ ∞

t

f(x)dx (2.1.1)

21
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where R(0) = 1 and R(∞) = 0 and f(t) failure probability density function. The

function R(t) is a non increasing function of t. The reliability function is also called

the survivor function in literature. The cumulative distribution function of T is also

called the unreliability function and is defined as

F (t) = Pr(T ≤ t) =

∫ t

−∞
f(x)dx (2.1.2)

In addition to the probability function, there is another function, called the

failure rate or hazard rate function which is often used in reliability. It provides an

instantaneous (at time t) rate of failure. The conditional probability of a failure in

the time interval from t to t+ δt given that the system has survived to time t is

Pr{t ≤ T ≤ t+ δt | T ≥ t} = R(t)−R(t+ δt)

R(t)
(2.1.3)

then
R(t)−R(t+ δt)

R(t)δt
is the conditional probability of failure per unit of time (failure

rate). The rule of conditional probability therefore dictates that:

λ(t) =
−dR(t)

dt
· 1

R(t)
=

f(t)

R(t)
(2.1.4)

then λ(t) is known as the instantaneous hazard rate or failure rate function. Based

on these hazard rate function, the reliability function can be derived as

R(t) = exp

[
−

∫ t

0

λ(u) du

]
(2.1.5)

The mean time to failure(MTTF) of the system is defined as

MTTF =

∫ ∞

0

R(t)dt (2.1.6)

2.1.2 Availability

Availability is one of the most important measures in reliability theory. Some au-

thors have defined various kinds of availabilities. A good survey and a systematic

classification of availabilities were given in [164] and is defined as the probability

of a product or system working satisfactorily at any given point of time when used
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under the given conditions of use [71]. Thus availability signifies the probability

that the system is available and is working satisfactorily at a given point of time.

Availability is a more meaningful parameter of performance of a maintained system

than reliability. For defining the availabilities of the system, let

X(t) =

1 if the system is up at time t

0 if the system is down at time t
(2.1.7)

(a) Pointwise availability: It is the probability that the system will be up at a given

instant of time. This availability is given by

A(t) = Pr(X(t) = 1) = E{X(t)} (2.1.8)

(b) Interval availability: It is the expected fraction of a given interval that the

system will be able to operate, which is given by

A(t) =
1

t

∫ t

0

A(u) du (2.1.9)

(c) Limiting interval availability: It is the expected fraction of time in the long run

that the system will be able to operate, which is given by

A(t) = lim
t→∞

1

t

∫ t

0

A(u) du (2.1.10)

(d) Steady State Availability: The steady state availability of the system is the limit

of the instantaneous availability function as time approaches infinity and is given

as

A(t) = lim
t→∞

A(t) =
MTBF

MTBF +MTTR
(2.1.11)

where MTBF and MTTR are the mean time between failure and mean time

to repair of the system respectively.



24

2.1.3 Maintainability

Maintainability refers to the measures taken during the development, design, and

installation of a manufactured product which ensure that the product meets the

requirements for its intended use [71]. When it is observed that a system or piece of

equipment fails to perform its function satisfactorily, all or part of it is taken out of

operation to locate and correct the fault. The fault may be corrected by a repair or a

part may be replaced by a spare. From a qualitative point of view, maintainability is

defined as the probability that an item will be restored to specified conditions within

a given period of time when maintenance action is performed in accordance with

prescribed procedures and resources. Maintainability is characterized by specifying

a repair-time probability distribution. Let TD denote the item downtime random

variable, distributed according to a density function g(t). Then, the probability

that a repair will be accomplished within time t i.e., maintainability (M(t)) can be

written as

P(TD 6 t) = M(t) =

∫ t

0

g(u) du (2.1.12)

and the mean downtime i.e., mean time to repair (MTTR) is defined as:

MTTR =

∫ ∞

0

t g(t)dt =

∫ ∞

0

(1−M(t))dt (2.1.13)

2.2 Fault Tree Analysis

For complex multi-component systems, for example nuclear, chemical, paper, pro-

cess and aerospace industries, it is important to analyze the possible mechanisms

of failure and to perform probabilistic analyses for the expected frequency of such

failures. Often, each such system is unique in the sense that there are no other

identical systems for which failure data have been collected: therefore a statistical

failure analysis is not possible. Furthermore, it is not only the probabilistic aspects

of failure of the system which are of interest but also the initiating causes and the
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combination of events which can lead to a particular failure. The engineering way to

tackle a problem of this nature, where many events interact to produce other events,

is to relate these events using simple logical relationships (intersection, union, etc.)

and to methodically build a logical structure which represents the system. In this re-

spect, Fault tree analysis (FTA) model is the systematic, deductive technique which

allows to develop the causal relations leading to a given undesired event.

Fault tree analysis (FTA) is one of the most widely used methods in the industrial

sector to evaluate reliability of engineering systems. The method was developed

in the early 1960s at Bell Telephone Laboratories to evaluate the reliability and

safety of the minuteman Launch Control System [60]. A fault tree is a graphical

representation of causal relations obtained when a system failure mode is traced

backward to search for its possible causes. To complete the construction of a fault

tree for a complex system, it is necessary to understand the functioning of the system.

A system flow diagram (e.g. a reliability block diagram) is used for this purpose,

i.e. for showing how component reliability contributes to the success or failure of

a complex system. The first step in fault tree construction is the selection of the

system failure event of interest. This is called the top event and every following

event will be considered in relation to its effect upon it. The next step is to identify

contributing events that may directly cause the top event to occur. Fault events

which could cause the top event are generated and connected by logic gates such as

OR and AND. The fault tree construction proceeds by generation of fault events in a

successive manner until the events need not be developed any further. The analysis

of fault tree is commonly done by finding minimum path sets and/or minimum

cut sets of a tree. Although many symbols are used in performing FTA, the four

commonly used symbols are shown in Fig. 2.1 and are described below.

• Rectangle. This denotes a fault event that results from the logical combination

of fault events through the input of a logic gate.

• Circle. This represents a basic fault event or the failure of an elementary
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(a) Rectangular (b) Circle (c) AND (d) OR

Figure 2.1: Symbols of FTA model

component. The event’s probability of occurrence, failure, and repair rates

are normally obtained from field failure data.

• AND gate. This denotes that an output fault event occurs only if all of the

input fault events occur.

• OR gate. This denotes that an output fault event occurs if one or more of the

input fault events occur.

For more details about this analysis, we refer to [60, 71].

2.3 Fuzzy set theory

Fuzzy set theory, compared to other mathematical theories, is perhaps the most

easily adaptable theory to practice. The main reason is that a fuzzy set has the

property of relatively, variability, and inexactness in the definitions of its elements.

Instead of defining an entity in calculus by assuming that its role is exactly known,

we can use fuzzy sets to define the same entity by allowing possible deviations and

inexactness in its role. This representation suits well for the uncertainties encoun-

tered in practical life, which make fuzzy sets a valuable mathematical tool.

2.3.1 Crisp versus fuzzy set

In the classical set, its characteristic function also called as indicator function, assigns

a value of either 1 or 0 to each individual in the universal set, thereby discriminating

between members and nonmembers of the crisp set under consideration. The values

assigned to the elements of the universal set fall within a specified range and indicate
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the membership grade of these elements in the set. The concept of fuzzy set was

introduced by Zadeh [260] in 1965, which can be defined on the universe of discourse

U as Ã = {< x, µÃ(x) >| x ∈ U}, where µÃ is the membership function of the fuzzy

set Ã defined as µÃ : U → [0, 1] and µÃ(x) indicates the degree of membership of

x in Ã and its value lies between zero and one. Mathematically, fuzzy set Ã in the

universe of discourse U is defined as a set of ordered pairs (x, µÃ(x)), i.e.

Ã = {(x, µÃ(x)) | x ∈ U} (2.3.1)

where µÃ(x) is the degree of membership of x in fuzzy set Ã and it indicates the

degree that x belongs to Ã. Clearly µÃ(x) ∈ [0, 1]. When a set is an ordinary set,

its membership function can take on only two values 0 and 1, with χA(x) = 1 or 0

according as x does or does not belong to A. χA(x) is referred to as the characteristic

function of the set A.

2.3.2 α− cuts

α− cut of the fuzzy set Ã, denoted by A(α), is a crisp set which consists of elements

of Ã having at least degree α and is defined mathematically as

A(α) = {x ∈ U : µÃ(x) > α} (2.3.2)

where α is the parameter in the range 0 ≤ α ≤ 1. Every α− cut of a fuzzy number is

a closed interval and a family of such intervals describes completely a fuzzy number

under study. Hence we have A(α) = [A
(α)
L , A

(α)
U ] where

A
(α)
L (α) = inf{x ∈ R | µÃ(x) > α}

A
(α)
U (α) = sup{x ∈ R | µÃ(x) > α}

2.3.3 Extension principle

Extension principle was introduced by Zadeh in 1975 [261, 262] and is a very im-

portant tool of fuzzy set theory. This extension principle allows the generalization
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of crisp sets into fuzzy set framework and extends point-to-point mapping in crisp

sets to mapping for fuzzy sets. This principle allows any function f , that maps an

n-tuple (x1, x2, . . . , xn) in a crisp set M to a point in a crisp set N , to be generalized

as a set that maps n fuzzy subsets in M to a fuzzy set in N . Thus, any mathemati-

cal relationship between nonfuzzy crisp elements can be extended to deal with fuzzy

entities.

Given a function f : M −→ N and a fuzzy set Ã in M, where

Ã =
µ1

x1

+
µ2

x2

+
µ3

x3

+ . . .+
µn

xn

where µi = µÃ(xi)

the extension principle states that

f(Ã) = f

(
µ1

x1

+
µ2

x2

+ . . .+
µn

xn

)
=

µ1

f(x1)
+

µ2

f(x2)
+ . . .+

µn

f(xn)

If f maps several elements of M to the same element y in N (i.e. many-to-one

mapping), then the maximum among their membership grades is taken. That is

µf(Ã)(y) = max
xi∈m

f(xi)=y

µÃ(xi) (2.3.3)

where xi’s are the elements mapped to same element y. The function f maps n-

tuples in M to a point in N .

2.3.4 Membership function

The concept of membership function is the most important aspect in fuzzy set the-

ory. It is a curve that defines how each point in the input space is mapped to a

membership value (partial truth) between 0 and 1. They are used to represent var-

ious fuzzy sets. For a fuzzy set Ã a membership function, denoted by µÃ(·) maps

U to the interval [0,1] i.e. µÃ : U → [0, 1], the range of the membership function is

a subset of the non-negative real numbers whose supremum is finite. Many mem-

bership functions such as normal, triangular, trapezoidal can be used to represent

fuzzy numbers. However, triangular membership functions (TMF) are widely used
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for calculating and interpreting reliability data because of their simplicity and under-

standability [16, 189]. The decision of selecting TMF lies in their ease to represent

the membership function effectively and to incorporate the judgement distribution

of multiple experts. This is not true for complex membership functions, such as

trapezoidal one, and so forth. For instance, imprecise or incomplete information

such as low/high failure rate that is about 4 or between 5 and 7, is well represented

by TMF. Also, it not only conveys the behavior of system parameters but also re-

flect the dispersion of the data adequately. Based on the membership functions, the

fuzzy sets can be classified as under.

Normal fuzzy set: If the membership function has at least one element in the

universe whose value is equal to 1, then that set is called normal fuzzy set. Mathe-

matically, a fuzzy set Ã in the universe U is said to be normal fuzzy set if µÃ(x) = 1

for at least one x ∈ U . Otherwise set is said to subnormal fuzzy set.

Support of fuzzy set: The support of a fuzzy set Ã is the crisp set of all x ∈ X

such that membership values are nonzero, µÃ(x) > 0.

Convex fuzzy set: A fuzzy set Ã is convex if its membership function is monoton-

ically increasing and/or decreasing without any saddle point in the middle. Mathe-

matically, it is expressed by the following condition

µÃ(λx1 + (1− λ)x2) ≥ min(µÃ(x1), µÃ(x2)) ∀ x1, x2 ∈ U, 0 ≤ λ ≤ 1

A fuzzy number of a fuzzy set Ã is a convex normalized fuzzy set of the real line

R such that

(i) it exits exactly one x0 ∈ R with µÃ(x0) = 1

(ii) µÃ is piecewise continuous

and its membership function is defined as
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µÃ(x) =



fA(x) ; a ≤ x ≤ b

1 ; x = b

gA(x) ; b ≤ x ≤ c

0 ; otherwise

(2.3.4)

where 0 6 µÃ(x) 6 1 and a, b, c ∈ R such that a 6 b 6 c, and two functions fA, gA :

R → [0, 1] are called the sides of fuzzy number. The function fA is nondecreasing

continuous functions and the function gA is nonincreasing continuous functions. In

other words, A fuzzy subset A = {(x, µÃ(x)) | x ∈ R} of the real line R is called

fuzzy number if Ã is convex, normal and bounded.

A triangular fuzzy number (TFN) is defined by the ordered triplet Ã = (a, b, c)

representing, respectively, the lower value, the modal value, and the upper value of

a triangular fuzzy membership function. Its membership function µÃ : R −→ [0, 1],

is defined as:

µÃ(x) =



x− a

b− a
; a ≤ x ≤ b

1 ; x = b

c− x

c− b
; b ≤ x ≤ c

0 ; otherwise

(2.3.5)

The α-cuts of the triangular fuzzy set is defined in the closed interval form as below

Aα = [a(α), c(α)] = [(b− a)α+ a,−(c− b)α+ c] (2.3.6)

The basic arithmetic operations, i.e., addition, subtraction, multiplication and

division, of fuzzy numbers depends upon the arithmetic of the interval of confidence.

The four main arithmetic operation on two triangular fuzzy sets Ã and B̃ described

by the α− cuts are given below for the following intervals:

A(α) = [A
(α)
1 , A

(α)
3 ] and B(α) = [B

(α)
1 , B

(α)
3 ], α ∈ [0, 1]
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(i) Addition : Ã+ B̃ = [A
(α)
1 +B

(α)
1 , A

(α)
3 +B

(α)
3 ]

(ii) Subtraction : Ã− B̃ = [A
(α)
1 −B

(α)
3 , A

(α)
3 −B

(α)
1 ]

(iii) Multiplication : Ã · B̃ = [P (α), Q(α)]

where P (α) = min(A
(α)
1 ·B

(α)
1 , A

(α)
1 ·B

(α)
3 , A

(α)
3 ·B

(α)
1 , A

(α)
3 ·B

(α)
3 )

and Q(α) = max(A
(α)
1 ·B

(α)
1 , A

(α)
1 ·B

(α)
3 , A

(α)
3 ·B

(α)
1 , A

(α)
3 ·B

(α)
3 )

(iv) Division : Ã÷ B̃ = Ã · 1
B̃
, if 0 /∈ B̃

It is clear that the multiplication and division of two TFNs is not again a TFN with

linear sides but it is a new fuzzy number with parabolic sides.

2.3.5 Defuzzification

Aggregating two or more fuzzy output sets (or membership functions) yields a new

fuzzy set (or a new membership function) in the basic fuzzy inference algorithm.

In most cases, a result in the form of a fuzzy set is converted into a crisp result by

the defuzzification process. Defuzzification is necessary for hardware applications,

because conventional systems’ operations are based on crisp data exchange. Among

the several methods which are suggested in the literature, the most widely used

methods are listed in Table 2.1. As there are two basic mechanisms: centroid and

Table 2.1: Defuzzification Methods

Centroid Methods: Maxima Methods:
Center of Gravity Mean of Maximums
Center of Weights Left-Right Maxima
Center of Largest Area Maximum Probability
Center of Mass

maxima. The centroid methods are based on finding a balance point of property

that can be the total geometric figure, the weight (area) of each fuzzy set, the area

of the largest fuzzy set, or the area of highest intersection. The maximum possibility

method searches for the highest peak whereas the left-right maxima method searches
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for the peak in a selected direction. The mean of maxima method may also be

considered as one of the centroid techniques since mean and center practically refer

to the same property. Out of these methods, centroid method, also known as center

of mass, center of area or center of gravity method, is the most commonly used

defuzzification method [195, 199]. In this method defuzzified output x̄ is defined as

x̄ =

∫
x · µÃ(x)dx∫
µÃ(x)dx

, (2.3.7)

where the symbol
∫
denotes algebraic integration.

2.4 Lambda-Tau methodology

It is a traditional method in which fault tree analysis model has been used for

modeling the system and the basic expressions of the system failure rate and repair

time are used for evaluating their corresponding system parameters of the top event

of the system. These basic expressions are summarized in Table 2.2 in which λi

and τi are the failure rate and repair time of the ith component of the system.

But disadvantage of this methodology is that they considered the historical data as

Table 2.2: Basic Expressions of Lambda Tau Methodology
Gate λAND τAND λOR τOR

Expression
n∏

j=1

λj

[
n∑

i=1

n∏
j=1
i̸=j

τj

] n∏
i=1

τi

n∑
j=1

[
n∏

i=1
i ̸=j

τi

] n∑
i=1

λi

n∑
i=1

λiτi

n∑
i=1

λi

such in the analysis. But the data which are collected form various resources are

generally out of date or it will represent the past behavior of the data and hence

contain some sort of uncertainties. Thus when the data are used as such during

the analysis then lambda-tau methodology does not provide the accurate results to

the system analyst. Moreover, this approach is valid only for those system whose

data are precise. This idea is highlighted by Knezevic and Odoom in 2001 [138] in

which uncertainties in the data are handled with the help of defining their triangular
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fuzzy numbers (TFNs) corresponding to each obtained crisp data. More specifically,

the obtained (crisp) data are fuzzified into a triangular fuzzy number (λ̃i and τ̃i)

with some known equal spreads (left and right sides to the middle) as suggested by

system experts or decision makers (DMs) e.g. ±15% as depicted in Fig. 2.2. Here,

λ̃i is fuzzy failure rate and τ̃i is fuzzy repair time of ith component in the form of

triangular fuzzy number with λij and τij, j = 1, 2, 3, as their lower, mean (crisp) and

upper limits respectively. Based on their input TFNs and the logical expressions of

1 1

(a) Triangular Membership functions of (b) Triangular Membership functions of

Figure 2.2: A TFN for failure rate λ̃ and repair time τ̃

the system failure rate and repair time for the AND and OR gate, various reliability

parameter of interest, which depicts the system behavior, such as failure rate, repair

time, mean time between failures (MTBF) etc. (given in Table 2.3) are evaluated

in the form of fuzzy membership functions with left and right spreads using various

fuzzy arithmetic operations. The interval expressions for their fuzzy numbers with

triangular membership function, for AND/OR transition can be obtained and are

given as follows:

Expressions for AND-Transitions:

λ(α) =

[
n∏

i=1

{(λi2 − λi1)α+ λi1} ·
n∑

j=1

[ n∏
i=1
i ̸=j

{(τi2 − τi1)α+ τi1}
]
, (2.4.1)

n∏
i=1

{−(λi3 − λi2)α+ λi3} ·
n∑

j=1

[ n∏
i=1
i̸=j

{τi3 − α(τi3 − τi2)}
]]
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τ (α) =

[ n∏
i=1

{(τi2 − τi1)α+ τi1}
n∑

j=1

[
n∏

i=1
i̸=j

{τi3 − α(τi3 − τi2)}]
,

n∏
i=1

{τi3 − α(τi3 − τi2)}
n∑

j=1

[
n∏

i=1
i ̸=j

{(τi2 − τi1)α+ τi1}]

]
(2.4.2)

Expressions for OR-Transitions:

λ(α) =

[
n∑

i=1

{(λi2 − λi1)α+ λi1},
n∑

i=1

{−(λi3 − λi2)α+ λi3}

]
(2.4.3)

τ (α) =

[ n∑
i=1

[{(λi2 − λi1)α+ λi1} · {(τi2 − τi1)α+ τi1}]
n∑

i=1

{−(λi3 − λi2)α+ λi3}
,

n∑
i=1

[{−(λi3 − λi2)α+ λi3} · {τi3 − α(τi3 − τi2)}]
n∑

i=1

{(λi2 − λi1)α+ λi1}

]
(2.4.4)

Table 2.3: Some Reliability Parameters
Parameters Expressions
Failure rate MTTFs =

1
λs

Repair time MTTRs =
1
µs

= τs
Mean Time Between Failures MTBFs = MTTFs +MTTRs

Reliability Rs = e−λst

Availability As =
µs

λs+µs
+ λs

λs+µs
e−(λs+µs)t

Expected numbers of failures Ws(0, t) =
λsµst
λs+µs

+ λ2
s

(λs+µs)2
[1− e−(λs+µs)t]

As most of the actions taken by humans or machines are generally crisp or binary

in nature. Thus the defuzzification is necessary for converting the fuzzy output

to crisp output. Out of existence of various defuzzification methods, described

in section 2.3.5, center of gravity method (COG) has been used because it has

the advantage of being taken the whole membership function into account for this

transformation.
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2.4.1 Shortcomings of λ-τ methodology

The following shortcomings are observed during the analysis of the repairable in-

dustrial system/subsystems when fuzzy lambda-tau (FLT) methodology has been

applied for computing their reliability parameters.

• One of the major shortcoming is observed from the study that this approach

is limited for a small size structure system. In other words, when the system

structure is complex or large then the computed reliability indices contain wide

range of spread due to various fuzzy arithmetic operations.

• It adopted a simple strategy to compute the defuzzified values of all the relia-

bility parameters at different levels of uncertainties and computed only defuzzi-

fied values of failure rate and repair time at a given level of uncertainties, and

then used these values for obtaining the defuzzified values of other reliability

parameters.

• The fuzzy arithmetic operations have been used for computing the systems’

parameters and hence the method will not produce the actual trend of values

of these reliability parameters as per the variations in uncertainty levels.

• There is no sensitivity analysis conducted on the system performance w.r.t.

parameters variations.

2.5 Evolutionary Algorithm

This section briefly describes the evolutionary algorithms (EAs) namely Genetic

algorithm, Particle swarm optimization and Artificial bee colony optimization which

are used in the presented analysis.
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2.5.1 Genetic Algorithm (GA)

Genetic algorithms (GAs) are a part of evolutionary algorithms, a rapidly growing

area of artificial intelligence. Holland [102] is considered the father of GA. GA is a

model or concept of biological evolution based on Charles Darwin’s theory of natural

selection. The essence of GAs involves the encoding of an optimization function

as arrays of bits or character strings to represent the solutions (represented by

chromosomes). Starting from possible solutions termed as the population, evolution

cycle or iterations by evaluating the fitness of all the individuals in the population,

creating a new population by performing crossover, and mutation etc., and replacing

the old population and then iteratively again using the new population. The above

process is repeated until some stopping condition is satisfied. A more detailed

implementation of genetic algorithm can be found in [85, 86] etc. The pseudo code

of the GA algorithm is described in Algorithm 1:

Algorithm 1 Pseudo code of Genetic algorithm (GA)

1: Objective function: f(x)
2: Define Fitness F (eg. F ∝ f(x) for maximization)
3: Initialize population
4: Initial probabilities of crossover (pc) and mutation (pm)
5: repeat
6: Generate new solution by crossover and mutation
7: if pc >rand, Crossover; end if
8: if pm >rand, Mutate; end if
9: Accept the new solution if its fitness increases.
10: Select the current best for the next generation.
11: until requirements are met

2.5.2 Particle Swarm Optimization(PSO)

Particle Swarm Optimization (PSO) [72, 127] is a population-based optimization

technique of swarm intelligence field inspired by social behavior of bird flocking

or fish schooling in which each solution called “particle” flies around in a multidi-

mensional problem search space. Unlike the genetic algorithm, PSO algorithm has
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no crossover and mutation operators. In this algorithm, the particle follows the

piecewise paths formed by positional vectors in a quasi-stochastic manner. During

movement, every particle adjusts its position according to its own experience of

neighboring particles, using the best position encountered by itself and its neigh-

bors. The former one is known as personal best (pbest, pi) and the latter one is

global best (gbest, pg). Acceleration is weighted by random terms, with the separate

random number being generated for acceleration towards pbest and gbest locations,

respectively. Based on the pbest and gbest information of the each particle’s, the

velocity (vi) and position of the particle (xi) are updated according to equations

(2.5.1) and (2.5.2) respectively as,

vi(t+ 1) = w · vi(t) + c1 · ud · (pi(t)− xi(t)) + c2 · Ud · (pg(t)− xi(t))(2.5.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.5.2)

where w is the inertia weight; i = 1, 2, · · · , N indicates the number of the particles

of the population (swarm), t = 1, 2, · · · , tmax indicates the iterations; Positive con-

stant c1& c2 are the cognitive and social components, respectively, which are the

acceleration constants responsible for varying the particle velocity towards pbest

and gbest, respectively. Variables ud and Ud are two random functions in the range

[0, 1]. Equation (2.5.2) represents the position update, according to its previous

position and its velocity.

The essential steps of the particle swarm optimization can be summarized as the

pseudo code given in Algorithm 2.

2.5.3 Artificial Bee Colony (ABC) Optimization

Artificial Bee Colony algorithm (ABC) was initially published by Karaboga in 2005

as a technical report for numerical optimization problems [116] and its co-authors

for optimizing numerical problems [118, 120, 124]. Its development was motivated

by simulating the intelligent foraging behaviour of honey bees in their colony and
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Algorithm 2 Pseudo code of Particle swarm optimization (PSO)

1: Objective function: f(x), x = (x1, x2, . . . , xD);
2: Initialize particle position and velocity for each particle and set t = 1.
3: Initialize the particle’s best known position to its initial position
4: repeat
5: Update the best known position (pi) for each particle
6: Update the swarm’s best known position (pg)
7: Calculate particle velocity according to the velocity equation (2.5.1).
8: Update particle position according to the position equation (2.5.2).
9: until requirements are met.

its performance was initially measured using benchmark optimization function. As

compared with other metaheuristics ABC does not employ crossover operators to

produce new or candidate solutions from the present ones. It produces the candidate

solution from its parent by a simple operation based on taking the difference of

randomly determined parts of the parent and a randomly chosen solution from the

population. Moreover, ABC employs less number of control parameters than others

as it employs only population size(colony size) and maximum cycle number. Due to

these features and having the advantages of memory, multi-character, local search

and solution improvement mechanism, ABC is able to discover an excellent optimal

solution. In recent times, however, the attention of researchers in the engineering

and optimization domains have been drawn to adopt the use of ABC for a variety

of decision making problems such as for constrained optimization [28, 117, 236], in

engineering [7, 224], economic dispatch problems [225], neural network [104, 123,

213, 254], software engineering [58, 131, 171], multi-objective [187, 265, 269] and

many others.

ABC algorithm provides solution in organized form by dividing the bee objects

into different tasks such as employed bees, onlooker bees, and scout bees. These

three bees/tasks determine the objects of problems by sharing information to others

bees. Half of the colony consists of the employed bees, and another half consists of

onlookers. The number of solutions in the swarm are equal to the employed and



39

onlooker bees i.e. number of employed bees and onlooker bees are same as that of

number of swarms positions. In these, employed bees randomly search the position

of the bee in the entire swarm in the form of food sources, while on the dancing areas,

they share their information with the onlooker bees which are waiting in the dance

area at the hive to choose a food source. The duration of a dance is proportional

to the nectar’s content (fitness value) of the food source being exploited by the

employed bee. When the food-source position has been visited (tested) fully, the

employed bee associated with it abandons it, and may once more become a scout or

onlooker bee. In the scout phase bees searching for food sources randomly. In the

ABC algorithm, onlookers and employed bees perform the exploration process in

the search space, while, on the other hand, scouts control the exploration process.

ABC algorithm starts with the initialization phase, in which solution or popula-

tion of food sources’ positions (Xi, i = 1, 2, · · · , SN) are initialized randomly by the

bees within the search domain and their nectar amounts (i.e. fitness function) are

determined. Here, SN represents the colony size and D is the dimension size. After

initialization, the population of the solutions are subjected to repeated cycle of the

search processes for the employed, onlooker and scout bees. Here cycle = 1, 2, · · ·

MCN, where MCN represents the maximum cycle number of the search process used

for the termination criterion.

In the employed bees phase, let Xi = {xi,1, xi,2, · · · , xi,D} be the position of the

ith solution in the swarm, then the artificial employed bees search for a new food

sources Vi in the neighborhood of each of its present employed bee Xi as follows:

vi,j = xi,j + ϕi,j(xi,j − xk,j) (2.5.3)

where Xk is the randomly selected candidate solution such that index k is differ from

the index i i.e. (i ̸= k) and j is the randomly chosen dimension index from the set

{1, 2, · · · , D} and ϕi,j is the random number between [-1,1]. Except for the selected

parameter index j, all other parametric values of Vi are the same as that of Xi

i.e. Vi = (xi,1, xi,2, · · · , xi,(j−1), vi,j, xi,(j+1), · · · , xi,D). Based on their new candidate
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solution Vi, its fitness is calculated and a greedy selection process is carried out by

it and its parent. If the solution is better than that of its present one then replace

Xi with Vi; otherwise keep Xi unaltered.

After the employed bee phase is completed, they share their food source infor-

mation with onlooker bees who are waiting in the hive by dancing on the dancing

area. In this phase, based on these employed bees solutions, nectar (fitness) amount

corresponding to each solution is evaluated by a fitness function and chooses a food

source Xi with a probability (pi) proportional to the nectar content as defined by

Eq. (2.5.4)

pi =
fi

SN∑
i=1

fi

(2.5.4)

where fi = f(Xi) is the fitness of the solution represented by the food source i and

SN is the number of food sources. Clearly, resulting from using Eq. (2.5.4), a good

food source will attract more onlooker bees than a bad one. After all onlookers have

selected their food sources, each of them determine a food source in the neighborhood

of its own chosen food source and compute its fitness i.e. greedy selection process

as described in Eq. (2.5.3) is performed on the onlooker bees. The best food source

among all the neighboring food sources determined by the onlookers associated with

a particular food source i itself, will be the new location of the food source i.

Furthermore, if the ith solution of the source does not improve beyond the prede-

termined number called ‘limit’ then the employed bee associated with this solution

abandons it, and becomes a scout. Assume that abandonment source is xi and

j ∈ {1, 2, · · · , D} then the scout discovers a new food source to be replaced with

randomly generated food source xi within its domain [xmin, xmax] as follow

xi,j = xmin,j + rand · (xmax,j − xmin,j) (2.5.5)

where rand is the random number between (0,1). So this randomly generated food

source is equally assigned to this scout and changing its status from scout to em-

ployed and hence other iteration/cycle of the algorithm begins until the termination
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condition, maximum cycle number (MCN) or relative error, is not satisfied.

The general algorithm structure of the ABC optimization approach is given in

Algorithm 3 as follows:

Algorithm 3 Pseudo code of the ABC algorithm

1: Objective function: f(X), X = (x1, x2, . . . , xD);
2: Generate an initial bee population (solution) Xi where Xi = (xi,1, xi,2, . . . , xi,D)

and number of employed bees are equal to onlooker bees;
3: Evaluate fitness value
4: Initialize cycle=1
5: For each employed bee

(a) Produce new food source position vi,j in the neighborhood of xi,j by Eq.
(2.5.3)

(b) Evaluate the fitness value at new source vi,j

(c) If new position is better than previous position then memorizes the new
position.

6: End For.

7: Calculate the probability values pi =
fi

SN∑
i=1

fi

for the solution.

8: For each onlooker bee

(a) Chooses a food source depending on pi for the solutions Xi

(b) Produce new food source positions Vi from the populations Xi depending
upon pi and evaluate their fitness.

(c) If new position is better than previous position, then memorizes the new
position.

9: End For
10: If there is any abandoned solution i.e. if employed bee becomes scout then

replace its position with a new random source positions
11: Memorize the best solution achieved so far
12: cycle = cycle + 1
13: If termination criterion is satisfied then stop otherwise go to step 5
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2.6 Merits of ABC over other algorithms

The following are the main features of the ABC which completely shows the jus-

tification of using ABC algorithm rather than other meta-heuristic algorithms like

GA, DE, PSO etc.

1. While GA and DE employ crossover operators to produce new or candidate

solutions from the present ones, ABC algorithm does not. ABC algorithm

produces the candidate solution from its parent by a simple operation based

on taking the difference of randomly determined parts of the parent and a

randomly chosen solution from the population. This process increases the

convergence speed of search into a local minimum.

2. In GA, DE and PSO the best solution found so far is always kept in the

population and it can be used for producing new solutions in the case of

DE and GA, new velocities in the case of PSO. However, in ABC, the best

solution discovered so far is not always held in the population since it might be

replaced with a randomly produced solution by a scout. Therefore, it might

not contribute to the production of trial solutions.

3. Apart from the maximum evaluation number and population size, a standard

GA has three more control parameters (crossover rate, mutation rate, gen-

eration gap), a standard DE has at least two control parameters (crossover

rate, scaling factor) and a basic PSO has three control parameters (cogni-

tive and social factors, inertia weight) whereas ABC algorithm has only one

control parameter limit. In the present work, an expression for determining

the value of “limit” depending on population (colony size) and dimension of

problem has been used i.e. limit = SN × D. Therefore, ABC has only two

common control parameters: maximum cycle number (MCN) and colony size

(SN). Consequently, ABC is as simple and flexible as DE and PSO; and also

employs less control parameters.
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4. In GA or DE, mutation process creates a modification on a randomly selected

part of a solution to provide required diversity in the population. In ABC,

rather than changing a part of a solution, a whole solution in the population is

removed and then a new one produced randomly is inserted into the population

by a scout. This mechanism provides the ABC algorithm a global search ability

and prevents the search from premature convergence problem. Hence, there

is a good balance between the local search process carried out by artificial

onlooker and employed bees and the global search process managed by artificial

scouts.

2.7 Parameter Setting

While using GA, PSO and ABC algorithm, the values of the common parameters

used in each algorithm such as population size and total evaluation number are

chosen to be the same, and are randomly as 20 × D and 1000 respectively where

D is the dimension of the problem. The method has been implemented in Matlab

and the program has been run on a T6400 @ 2GHz Intel Core(TM) 2 Duo processor

with 2GB of Random Access Memory. In order to eliminate stochastic discrepancy,

30 independent runs have been made that involves 30 different initial trial solutions.

The termination criterion has been set either limited to a maximum number of

generations or to the order of relative error equal to 10−6, whichever is achieved

first. The other specific parameters of algorithms are given below:

GA Settings: In all experiments, we employed a real coded GA having evaluation,

fitness scaling, crossover, mutation units. Roulette wheel selection criterion is em-

ployed to choose better fitted chromosomes. One-point crossover with the rate of

0.85 are employed and random point mutation with rate 0.01 are used in the present

analysis for the reproduction of new solution.

PSO setting: In the experiment, cognitive and social components, c1 and c2, in eq.

(2.5.1) are both set to be 1.49 while Inertia weight (w) was defined as the linearly
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decreases from initial weight w1 to final weight w2 with the relation w = w2 +

(w1 −w2)(itermax − iter)/itermax. Here itermax represents the maximum generation

number and ‘iter’ is used a generation number as recommended in [51, 219]

ABC Settings: There is only one control parameter except for the common pa-

rameters which is called ‘limit’. The limit value is defined by using the dimension

(D) of the problem and the colony size (SN) as limit = SN ×D [118].

2.8 Constraints handling

The main task while solving the constrained optimization problem is to handle the

constraints. In the constrained optimization problem, it is not easy to find the

feasible solution of the problem due to the presence of both type of constraints in

the form of equalities and inequalities. When GA or PSO algorithms are used for

constrained optimization problem then penalty function, which penalize the unfea-

sible function, is used to handle the constraints. Despite the popularity of penalty

functions, they have several drawbacks out of which the main one is that of hav-

ing two many parameters to be adjusted and finding the right combination of the

same may not be easy. Also during that the search is very slow and there is no

guarantee that the optima will be attained. To overcome this limitation, Deb [59]

modified these algorithms by proposing a parameter free penalty function given in

Eq. (2.8.1) in which the fitness of an infeasible solution not only depends on the

amount of the constraint violation, but also on the population of solutions at hand.

Thus the modified function is

F (x) =


fw +

∑
i

gi(x) ; if x /∈ S

f(x) ; if x ∈ S

(2.8.1)

where fw is the objective function value of the worst feasible solution currently

available in the population and S is the search space. If there are no feasible solutions

in the population, then fw is set to be zero.



Chapter 3

Cost minimization of butter-oil
processing plant using artificial
bee colony technique

This chapter deals with the performance evaluation of butter-oil processing plant.

The Reliability Block Diagram (RBD) of the system are drawn and based on it,

availability-cost optimization model of the system is constructed by considering

availability function, manufacturing cost and repair cost, and optimal values of

MTBF and MTTR are obtained by using ABC algorithm.

3.1 Introduction

With advances in technology and increasing demand of reliable components for a

longer interval of time, the study of reliability and availability optimization becomes

plays a dominant role for a series-parallel system architecture. To maintain the reli-

ability or availability of the system to a higher level, the system structural design or

system components of higher reliability or both are required simultaneously. How-

ever, with the design of the highly reliable system there is correspondingly increase

in their weight, cost etc. Therefore, optimization methods are necessary to obtain

allowable costs at the same time as high availability levels.

The reliability of a series-parallel system has drawn continuous attention in both

45
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problem characteristics and solution methodologies. For the framework of series-

parallel system, it is very difficult to find out an optimal solution under multiple

constraint conditions [48]. Under an increasingly complex and diversified system en-

vironment, Yuen and Katafygiotis [259] have used simulation methods to evaluate

the reliability or availability of a complex system, as common estimation methods are

subjected to strict assumptions. Under repairable series-parallel system framework,

there are many methods in the literature such as dynamic programming, integer

programming, nonlinear integer programming and heuristic or meta-heuristic algo-

rithms [156, 231] for determining the optimal parameters of components. Wang

[243] suggested two methods for the estimation of availability. The first method is

applicable when the allocation of MTBF and MTTR is subjected to exponential dis-

tribution, while the second one is to estimate the interval of availability when none

of them is subjected to exponential distribution. These two methods were examined

and compared by the Monte Carlo simulation. Li et al. [159] proposed a new effi-

cient exact method for solving both pure and mixed-integer nonlinear programming

problems arising from reliability optimization in complex systems using a convexifi-

cation scheme. Caserta and Nodar [38] proposed a Cross Entropy-based algorithm

for reliability optimization of complex systems, where one wants to maximize the

reliability of a system through optimal allocation of redundant components while

respecting a set of budget constraints. Apart from that a lot of researchers have

investigated the problems of availability modeling by using evolutionary algorithms

[37, 53, 75, 79, 85, 88, 115, 155, 158, 174, 245] and their corresponding references.

ABC is one of the most recently defined algorithms by Dervis Karaboga in 2005

[116], motivated by the intelligent behavior of honey bees and further developed by

Karaboga and others [8, 24, 118, 121, 124]. As compared with other meta-heuristics

ABC does not employ crossover operators to produce new or candidate solutions

from the present ones. It produces the candidate solution from its parent by a

simple operation based on taking the difference of randomly determined parts of
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the parent and a randomly chosen solution from the population. Moreover, ABC

employs less number of control parameters than others as it employs only popula-

tion size(colony size) and maximum cycle number. Due to these features and have

the advantages of memory, multi-character, local search and solution improvement

mechanism, ABC is able to discover an excellent optimal solution. Yeh and Hsieh

[253] showed that the solution of series-parallel problem found by ABC is better

than the other meta-heuristic techniques in reliability optimization problems. The

same has also been established by Hsieh and Yeh [105]. Motivated by this, the

present chapter considers the availability-cost optimization problem of a industrial

system in which an optimization model has been formulated by considering the to-

tal cost (manufacturing and repairing cost) of the system as an objective retaining

the preassigned system availability. The preassigned availability which may be the

optimized availability of the system as obtained by some other technique acts as a

constraint and the problem is solved with ABC technique. The approach has been

applied on the butter-oil processing plant to find their optimal design parameters.

3.2 Problem formulation & mathematical model

3.2.1 Expression of the System Availability

Reliability or availability analysis of a series-parallel system becomes increasingly

tedious as the system structure becomes complex and complex. In these cases, it is

difficult, if not impossible, to construct the accurate and precise mathematical model

for estimating the optimal design parameters for increasing its performance and

productivity. Moreover, the information extracted from the past record/history are

much dependent on the system configuration. Thus in order to obtain the optimal

design parameter- MTBF and MTTR- of the system/component which make the

maximum profit to the system analyst or DM, the approximate expression of the

system availability index has been formulated on the basis of its reliability block

diagram (RBD) under the following assumptions.
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(a) the components of the system are operated independently, i.e. the failure and

repair characteristics of components are statistically independent,

(b) the failure rate (λi) and repair rate (µi) of i
th component are constants for each

component,

(c) There are no simultaneous failures among the subsystems.

(d) λi < µi, and

(e) separate maintenance facility is available for each component. The repair process

begins soon after a unit fails.

(f) The repaired unit or system is as good as new.

The basic parameters for series and parallel system are shown in Table 3.1 [25] where

λs and µs represent respectively the failure and repair rates of the system. Then the

Table 3.1: Basic Parameters of Availability for Series-Parallel Systems

Type of System Expression

Series Configuration Avs = Av1 · Av2 · · ·Avn ≈ 1− (λ1

µ1
+ λ2

µ2
+ · · ·+ λn

µn
)

λs ≈ λ1 + λ2 + · · ·+ λn; µs ≈ λ1+λ2+···+λn
λ1
µ1

+
λ2
µ2

+···+λn
µn

Parallel Configuration Avs ≈ 1− λ1·λ2···λn

µ1·µ2···µn

λs ≈ λ1·λ2···λn(µ1+µ2···µn)
µ1·µ2···µn

; µs ≈ µ1 + µ2 + · · ·+ µn

approximate expression of the availability Avs parameter for the series and parallel

system can be written as:

Avs = f(MTBF1, · · ·MTBFn,MTTR1, · · ·MTTRn) (3.2.1)

3.2.2 Expression for total system cost:

A design engineer has several options to improve the reliability of a system with

a given basic design. But an optimal reliability design is one in which all possible
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means available to a designer have been explored to enhance the reliability or avail-

ability of the system with limited available system cost. According to Aggarwal and

Gupta [4] the cost of reliability is monotonically increasing function of reliability

and hence on its mean time between failures. Also its cost versus reliability is an

equivalent feature to the cost versus maintainability functions. As the system de-

signer will always like to repair the fault component as soon as possible for saving

money, manpower and time, the total cost of the system or component will depend

upon its manufacturing as well as on its repairing. For this, manufacturing cost will

depend on the product specification in which cost of the component is likely to be

higher when its failure rate will be lower or equivalently MTBF is longer which lead

to sharp increase in the manufacturing cost [162]. Therefore, MTBF of a component

and manufacturing cost are related to each other as shown in Fig. 3.1(a), with the

relation defined mathematically as [115, 231]

CMTBFi = αi · (MTBFi)
βi + γi (3.2.2)

where, CMTBFi and MTBFi, respectively, represent the manufacturing cost and

MTBF of the ith component, while, αi, βi and γi are constants, representing the

physical property of the ith component and βi is greater than one.

On the other hand, the failure of any component will reduce the output or even

impair the efficiency of the complete system. So it is necessary to repair the faulty

components of the system as soon as possible for avoiding such occurrences and

to facilitate the repair within a reasonable time for saving the money, manpower

and time. For this, a linear relationship between the MTTRi and its corresponding

repairing cost CMTTRi as shown graphically in Fig. 3.1(b), are expressed mathe-

matically as [115]:

CMTTRi = ai − bi ·MTTRi (3.2.3)

while, ai and bi are constants depending upon the ith component.
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Based on equations (3.2.2) and (3.2.3), the total cost can be written as:

Tc =
n∑

i=1

(αi · (MTBFi)
βi + γi) +

n∑
i=1

(ai − bi ·MTTRi) (3.2.4)

MTBF

Cost

0

(a) MTBF and Cost

MTTR

Cost

0

(b) MTTR and Cost

Figure 3.1: Relation Between (a) MTBF and the Associated Cost, (b) MTTR and
the Associated Cost

3.2.3 Optimization model

Using availability (3.2.1) and the achieved cost (3.2.4) of the system, the optimiza-

tion model is formulated as

Minimize Tc

subject to Avs > Amin (3.2.5)

LbMTBFi 6 MTBFi 6 UbMTBFi

LbMTTRi 6 MTTRi 6 UbMTTRi

i = 1, 2 · · ·n All variables > 0

where LbMTBFi,UbMTBFi,LbMTTRi,LbMTTRi are respectively the lower and

upper bound of MTBF and MTTR for ith component of the system. The optimiza-

tion model (3.2.5) thus obtained is solved by the evolutionary techniques.
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3.3 System description

To illustrate the proposed approach the butter-oil manufacturing plant is discussed

here [94, 143]. The given system consists of six sub-systems. A brief outline of the

system is described as below:

1. Sub-system A (Separator): This part of the plant works on the principle

of centrifugal force. Chilled milk from chiller is taken to the cream separator,

where fats are separated from the milk in the form of cream containing 40-

50 per cent fat and the remaining skimmed milk is stored in milk silos for

preparing milk powder. It consists of three components in series, namely,

motor, bearings and high-speed gearbox.

2. Sub-system B (Pasteurizer): Cream from separator is pasteurized in this

sub-system. Pasteurization refers to the process of heating every particle of

cream to not less than 710C. In practice it is heated up to 800C to 820C

for no holding time. Its purpose is to destroy pathogenic and undesirable

organisms, to inactivate the enzymes present and to make possible removal of

volatile flavors. This sub-system is also used to remove the tanning substances

present in the cream. The pasteurized cream is stored in double-jacketed cream

storage tank for further processing. When the pasteurized milk goes out of

this sub-system, some particles (or residues) get stuck around the outlet and

the flow gets affected. This effect gradually increases with the passage of time

and sludge is formed at the out let. This sludge gradually increases in size and

blocks the flow of milk, thus resulting in the failure of the sub-system. This

sub-system consists of a motor and bearings in series.

3. Sub-system C (Continuous butter making): Cream from the cream stor-

age tank is pumped into the continuous butter making machine (CBM). The

cream is churned in this machine in order to get butter granules. The butter-

milk produced in this process is pumped back to raw milk silos and the butter
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granules are further processed in the machine so as to get homogeneous mass

of butter. The homogeneous butter is taken out from machine into butter

trolleys and shifted to melting vats. The CBM consists of gearbox, motor and

bearings in series.

4. Sub-system D (Melting vats): This sub-system consists of a double-

jacketed storage tank. Butter is melted in this section at about 1070C very

gently so that the water evaporates from the melting butter. The melted

butter is then allowed to remain undisturbed for about half an hour. This

sub-system consists of monoblock pumps, motors and bearings in series.

5. Sub-system E (Butter-oil clarifier): Butter-oil from melting vats is taken

out into butter-oil settling tanks where it is allowed to settle for a few hours.

After this the fine particles of butter-oil residue are removed from the butter-

oil and then butter-oil is stored in storage tanks. Now, it is cooled to a

temperature of 280C to 300C suitable for storage of butter-oil. This sub-

system consists of motor and gearbox in series.

6. Sub-system F (Packaging): In this sub-system the packets of processed

butter-oil are created using a pouch-filling machine. It is a fill, flow and seal

automatic machine. This sub-system consists of printed circuit board and

pneumatic cylinder in series.

3.3.1 Mathematical Model of the System

The interaction among the various subsystem of the plant are shown by Reliability

Block Diagram (RBD) in Fig. 3.2. Based on its RBD and the expression given in
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Table 3.1, the optimization model of the considered plant is given as

Minimize Tc =
6∑

i=1

(αi · (MTBFi)
βi + γi) +

6∑
i=1

(ai − bi ·MTTRi)

subject to Avs > Amin (3.3.1)

LbMTBFi 6 MTBFi 6 UbMTBFi

LbMTTRi 6 MTTRi 6 UbMTTRi

i = 1, 2 . . . 6 All variables > 0

where Avs = 1−
[
5 · MTTR1

MTBF1

+ 4 · MTTR2

MTBF2

+ 3 · MTTR3

MTBF3

+
6∑

i=4

MTTRi

MTBFi

]
Amin = 0.96

where MTBFi and MTTRi are the mean time between failures and mean time to

repair of the ith component of the system and Avs and Tc are respectively availability

and cost of the system. The lower and upper bounds of MTBF and MTTR are

tabulated in Table 3.2 while the respective values of α, β and γ are taken to be 0.92,

1.94 and 1250, whereas a and b are assumed to be 18150 and 50, respectively, from

the literature [143].

A1 B2 C1B1A3A2

Separator (A) Pasteuriser (B)

C2 C3

CBM (C)

D3 D2E1E2F1

Clarifier (E) Melting Vats (D)

D1F2

Packaging (E)

Motor Bearing Gearbox Motor Bearing Gearbox Motor Bearing

MotorBearing PumpMotorGearboxCircuit boardPneumatic cylinder

Figure 3.2: Reliability Block Diagram of Butter-Oil Processing Plant

3.4 Results and Discussions

In this section results obtained by the optimization technique are described and

analyzed.
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Table 3.2: Variance Range of MTBF and MTTR for each Component of the Butter-
Oil Processing Plant

Component
MTBF (hrs) MTTR (hrs)

LbMTBF UbMTBF LbMTTR UbMTTR
Motors 4025 4125 4.0 5.0
Bearings 4100 4200 2.0 3.0
Gear Box 4075 4175 4.5 5.5
Pumps 4150 4250 2.5 3.5
Circuit Box 4070 4170 2.0 3.0
Cylinder 4115 4215 2.5 3.5

3.4.1 Computational results

By using the parameters setting as given in section 2.7, the optimal design param-

eters for the system cost are obtained by solving the optimization problem (3.3.1)

with the three algorithms namely GA, PSO and ABC and their corresponding results

are tabulated in Table 3.3. Each of the experiments in this section was repeated 30

times with different random seeds and the best values produced by the algorithms

have been recorded. By using these optimal designs – MTBF and MTTR – result,

the system analyst/decision maker may plan suitable maintenance strategies to im-

prove system performance and to reduce operation and maintenance costs. The best,

mean, worst, median and standard deviation (SD) values of the objective functions

are summarized in Table 3.4.

Table 3.3: Optimal Design Parameters for Butter-Oil Processing Plant

GA PSO ABC
Components MTBF MTTR MTBF MTTR MTBF MTTR
Motors 4118.9952212 4.2843858 4029.4362431 4.6938213 4029.8243580 4.3041114
Bearing 4148.3659480 2.6036587 4104.7069313 2.5729568 4107.3792059 2.5036840
Gear Box 4143.9751348 5.4818490 4083.0290973 4.8907689 4075.7680236 5.1518057
Pumps 4231.5483428 2.7229241 4159.3619740 2.5067517 4177.4317633 2.8491466
Circuit Box 4173.5656629 2.6617569 4126.7575943 2.6305498 4082.9188943 2.6350220
Cylinder 4180.8910331 3.1493177 4117.3618028 2.8729487 4116.2605990 3.4395527
System Cost 1.4427458873×108 1.3987850183×108 1.3971990799×108
System Availability 0.9862856 0.9861368 0.9862664

To test whether the mean of ABC results is statistically better than that of GA

and PSO results, analysis has been done by using t-test. Since t-test assumes the
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Table 3.4: Statistics Analysis for the Optimization Problem

Methods Mean (×108) Best (×108) Worst (×108) Median (×108) SD (×105)
GA 1.44689425 1.44274588 1.45117503 1.44675304 1.94195049
PSO 1.40151211 1.39878501 1.40434081 1.40130492 1.57322023
ABC 1.39919068 1.39719907 1.40257548 1.39917395 1.86459902

equality of variances and hence for this one tail F–test has been performed with

significant level of α=0.05. The calculated values of F-statistics (=1.08468940 and

1.40472677 respectively for GA and PSO when paired with ABC) is less than the

F-critical value (=1.860811) at (29, 29) degree of freedom. Hence null hypothesis of

equal variances, i.e. of equal variances may be accepted. Now a single-tail t-test with

equal variances was performed with null hypothesis that their mean difference is zero

for the case of ABC results with GA and PSO results at 5% level of significance.

The results of the t-test for the minimum cost of the system are shown in Table 3.5

Table 3.5: t-test: Two-Sample Assuming Equal Variances for Cost of the System

Cost of the system
GA PSO ABC

Mean (×108) 1.44689425 1.40151211 1.39919068
Variance (×1010) 3.77117170 2.47502191 3.47672954
Std (×105) 1.94195049 1.57322023 1.86459903
Observations 30 30 30
Pooled variance (×1010) 3.74891443 3.07849212
Hypothesized mean difference 0 0
degree of freedom 58 58
t stat 95.420952 5.124272
P(T≤ t) one tail 0 1.78810753×10−6

T critical one-tail 1.671552 1.671552

and it is indicated from the table that values of t-stat are much greater than the

t-critical values. Also the probability value (p-value) obtained from the test is less

than the significant level α. Thus it is highly significant and null hypothesis i.e.

means of two algorithm are identical is rejected. Hence the two types of means

differ significantly. Further, since mean of cost of system with ABC is less than the

mean of cost of system with GA and PSO, we conclude that ABC is definitely better
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than GA and PSO results and this difference is statistically significant.

3.4.2 Sensitivity analysis

To analyze the impact of change in values of αi, βi and ai, bi on to the system’s cost,

behavioral plots have been plotted for different combinations of these parameters

and are shown in Figs. 3.3 and 3.4 respectively for the first component of the system

(i.e. motors). Throughout the combinations, ranges of MTBF and MTTR are fixed

and have been varied, along the x and y-axes respectively, while their effects on the

total cost of system are represented along z-axis. For instance, in the first three

plots of Fig. 3.3, the value of βi has been fixed to 1.93 while the αi change from 0.91

to 0.92 and further to 0.93. Similar plots have been observed for ai and bi in Fig.

3.4. From these, it is clear that ai and bi produce a little effect on cost as compared

to αi, βi. The computed range of system cost for all the combinations are tabulated

Table 3.6: Change in Tc for Various Combinations of (αi,βi) and (ai,bi)

S.No. [αi, βi] Tc (×106) [ai, bi] Tc (×106)
1. [0.91, 1.93] Min: 8.265078 [17150, 40] Min: 9.076228

Max: 8.665088 Max: 9.517949
2. [0.92, 1.93] Min: 8.355693 [18150, 40] Min: 9.077228

Max: 8.760098 Max: 9.518949
3. [0.93, 1.93] Min: 8.446307 [19150, 40] Min: 9.078228

Max: 8.855108 Max: 9.519949
4. [0.91, 1.94] Min: 8.978721 [17150, 50] Min: 9.076178

Max: 9.415651 Max: 9.517909
5. [0.92, 1.94] Min: 9.077178 [18150, 50] Min: 9.077178

Max: 9.518909 Max: 9.518909
6. [0.93, 1.94] Min: 9.175635 [19150, 50] Min: 9.078178

Max: 9.622167 Max: 9.519909
7. [0.91, 1.95] Min: 9.754126 [17150, 60] Min: 9.076128

Max: 10.23137 Max: 9.517869
8. [0.92, 1.95] Min: 9.861103 [18150, 60] Min: 9.076128

Max: 10.34359 Max: 9.518869
9. [0.93, 1.95] Min: 9.968081 [19150, 60] Min: 9.076128

Max: 10.45581 Max: 9.519869
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in Table 3.6. Based on these behavioral plots, the system manager can analyze the

critical behavior of the system-cost for fixed MTBF and fixed MTTR and hence can

plan for suitable maintenance and higher goals.

4000

4075

4150

4

4.5

5
8

8.5

9

x 10
6

MTBF

 α
i
 = 0.91, β

i
 = 1.93

MTTR

C
o

st

4000

4075

4150

4

4.5

5
8

8.5

9

x 10
6

MTBF

α
i
 = 0.92, β

i
 = 1.93

MTTR

C
o
st

4000

4075

4150
4

4.5

5

8

8.5

9

x 10
6

MTBF

α
i
 = 0.93, β

i
 = 1.93

MTTR

C
o

st

4000

4075

4150
4

4.5

5

8.5

9

9.5

x 10
6

MTBF

α
i
 = 0.91, β

i
 = 1.94

MTTR

C
o
st

4000

4075

4150

4

4.5

5
8.5

9

9.5

10

x 10
6

MTBF

α
i
 = 0.92, β

i
 = 1.94

MTTR

C
o

st

4000

4075

4150

4

4.5

5
8.5

9

9.5

10

x 10
6

MTBF

α
i
 = 0.93, β

i
 = 1.94

MTTR

C
o

st

4000

4075

4150

4

4.5

5
0.95

1

1.05

x 10
7

MTBF

α
i
 = 0.91, β

i
 = 1.95

MTTR

C
o

s
t

4000

4075

4150

4

4.5

5
0.95

1

1.05

x 10
7

MTBF

α
i
 = 0.92, β

i
 = 1.95

MTTR

C
o

st

4000

4075

4150

4

4.5

5
0.95

1.025

1.1

x 10
7

MTBF

α
i
 = 0.93, β

i
 = 1.95

MTTR

C
o

st

Figure 3.3: Behavior Analysis plot for different combination of αi and βi
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3.5 Conclusion

An efficient ABC algorithm has been proposed to determine minimum cost con-

figuration of complex repairable series-parallel system (butter oil processing plant

industrial system) subject to given constraints on availability. The structural de-

sign of repairable series-parallel system is inefficient if one relies merely on empirical

methods, as the industrial systems are profit oriented. It may tend to cause in-

creasing design cost due to the difficulty of inheriting design experience. The soft

computing technique has been used to analyze and optimize the design parameters

of repairable series-parallel system and it appears to be very helpful as it facilitates

the system analyst to choose the best repair policy according to the optimal design

information. An optimization model with system availability and design constraints

has been developed here and the optimal design parameters (MTBF & MTTR) are

obtained by utilizing ABC technique. The search towards an optimal solution is

directed from both the sides of the region i.e feasible and infeasible regions and, is

much superior to the strategy of allowing only feasible solutions. The infeasibility

of the solutions is handled by a penalty function, which helps the search to proceed

efficiently for final optimal /near optimal solution. The obtained result by ABC

algorithm is shown to be statistically significant as compared to GA and PSO in

terms of means of pooled t- test. The optimal design parameters help the decision

maker basically in the following two ways

(i) in deciding the related characteristics of each component

(ii) in formulating optimal design policies and repair policies for the entire system

to ensure highly reliable and efficient system.

The optimization procedure may easily be applied to a wide variety of real-life struc-

ture optimization problems and with the help of the optimal results the plant main-

tenance personnel will decide his/her future strategy to gain optimum performance

of the system.
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Chapter 4

Reliability analysis of Butter-Oil
Processing Plant with ABC and
fuzzy methodology

The main aim of this chapter is to present the novel technique named as Artificial

bee colony based Lambda-Tau (ABCBLT) technique for analyzing and predicting

the behavior of a complex repairable industrial system by utilizing uncertain data.

For this, butter-oil processing plant has been taken to demonstrate the approach

by using their computed parameters as obtained in Chapter 3. To study the failure

behavior of the system, crisp and defuzzified values are obtained at±15%, ±25% and

±50% spreads. The results obtained will be useful to the system manager/analyst

to plan and execute the future course of action in the industry.

4.1 Introduction

Over the last couple of decades, globalization and other factors have significantly

changed the business environment. Although, the concept of failure analysis is

nearly an unavoidable phenomenon for all repairable industrial systems. The cause

of failure may be deteriorating and/or human error which leads to the job of relia-

bility/system analysts more challenging. Therefore, it is very difficult to construct

an accurate and complete mathematical model of an industrial system which may

61
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be very close to the real situation. In reliability and maintainability studies a small

number of researchers have addressed the issue of handling uncertainties particu-

larly related to failure data. The concept of fuzzy set theory and fuzzy arithmetic

has been used in the evaluation of the reliability of the system by the various re-

searchers [34, 42, 44, 47, 138, 180, 222]. But their approaches are limited for a small

size structured system as it contains a wide range of uncertainties in the computed

results. Therefore it is necessary that to develop a technique which are suitable for

a large complex structured system and the uncertainties existing in the analysis are

reduced up to a desired degree of accuracy.

Motivated by this and the merits of ABC algorithms over others, as mentioned in

section 2.6, the main emphasis of the present chapter is to present a novel technique

named as an Artificial Bee Colony based Lambda-Tau (ABCBLT) technique for

analyzing the behavior of the complex repairable industrial system up to a desired

degree of accuracy by utilizing uncertain and limited data. With this technique,

expression of the various reliability parameters is obtained from Lambda-Tau tech-

nique and their corresponding membership functions are obtained after solving a

nonlinear programming problem. An ordinary arithmetic operation has been used

in the analysis instead of fuzzy arithmetic operations. The technique has been

demonstrated through a case study of butter-oil processing plant and their results

are compared with the existing fuzzy lambda-tau (FLT) and genetic algorithm based

lambda-tau (GABLT) techniques. Sensitivity as well as performance analysis on the

system availability has also been addressed. The obtained results may help the sys-

tem analyst for reallocating the resources to achieve the targeted goal of higher

profit.

4.2 ABCBLT technique

In the present study, a technique named as artificial bee colony based Lambda-Tau

(ABCBLT) technique for analyzing the behavior of the industrial systems up to a
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desired degree of level has been presented. By this technique the behavior of an

industrial system is depicted by using an uncertain data, collected from the various

resources, Lambda-Tau methodology as well as ABC algorithm. Fuzzy set theory

has been used for handling the uncertainties in the data. The analysis has been done

in the form of fuzzy membership functions. Various reliability parameters reflecting

the system behavior are calculated.

The expressions involved in them are obtained by Lambda-Tau methodology

(with the basic expressions given in Table 2.2) and ABC has been used for computing

their membership functions. The details of the technique have been discussed below

under the assumptions:

(i) Component failures (λi) and repair rates (µi) are obey exponent distributions.

(ii) λi << µi

(iii) Separate maintenance facility is available for each component and

(iv) After repairs, the repaired component is considered as good as new.

The flow chart of the presented technique is given in Fig. 4.1.
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Figure 4.1: Flow chart of the ABCBLT technique
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Step 1: The presented technique starts with the information extraction phase in which

data/information is extracted from various sources such as historical records,

reliability databases, system reliability expert opinion, etc. in the form of

system’s components’ failure rates (λ’s) and repair times (τ ’s).

Step 2: Since collected data are generally imprecise, vague or limited in nature, so

to account the uncertainties in the analysis, the obtained data are fuzzified

into fuzzy numbers. More specifically, crisp numbers in the extracted data

are converted into triangular fuzzy numbers (TFN’s) having known spread

(support) suggested by decision makers/design maintenance expert/system

reliability analyst. For instance, an input data for the ith component of a

system in the form of TFNs with equal spread ±15% in both the directions

(left and right to the middle) with corresponding α-cuts is shown in Fig. 2.2.

As soon as, the input fuzzy triangular numbers for failure rates and repair

times for each of the components are known, the corresponding fuzzy value

of the crisp failure rate (λs) and repair time (τs) can be obtained, using the

extension principle coupled with α− cuts.

Step 3: In this step, minimal-cut set of the system are obtained from its block di-

agram and based on that expressions of their various reliability parameters,

which depict the behavior of the system, are obtained which are generally

highly nonlinear and complex due to large structured system. As a result,

if FLT approach as given by Knezevic and Odoom [138] is used for analyz-

ing their resultant system failure rate and repair time then it contains a high

range of uncertainties due to various arithmetic operations used in the anal-

ysis. To overcome this problem, a nonlinear optimization problem has been

constructed by taking ordinary arithmetic operations instead of fuzzy arith-

metic operations for computing the membership functions of various reliability

parameters. In the formulation, the quantified input data at cut level α, in the
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form of bounded intervals, is substituted in the expression of each obtained re-

liability index. The finally computed reliability index at cut level α has a wide

range of solutions and it becomes smaller and smaller as the analysis progresses

further i.e cut level α increases from 0 to 1. So to decrease the uncertainty

level at each cut level α, a nonlinear programming problem of computing the

membership functions of reliability indices is formulated as below.

Maximize/Minimize:

H̃(λ1, · · · , λn, τ1, · · · , τm) or G̃(t/λ1, · · · , λn, τ1, · · · , τm) (4.2.1)

subject to : µλi
(x) ≥ α

µτj(x) ≥ α,

0 ≤ α ≤ 1

i = 1, 2, . . . , n j = 1, 2, . . . ,m

where H̃(λ1, λ2, · · · , λn, τ1, τ2, · · · , τm) or G̃(t/λ1, λ2, · · · , λn, τ1, τ2, · · · , τm) are

time independent (failure rate, repair time, MTBF) and time dependent (reli-

ability, availability, ENOF) fuzzy reliability indices as given in Table 2.3. The

lower and upper boundary values of each reliability index are computed at

each cut level α and are given as

µH̃(H̃min) = µH̃(H̃max) = α (4.2.2)

where H̃min and H̃max respectively denote the minimum and maximum value

of H̃.

In order to solve this problem, ABC algorithm is used as a tool to solve the op-

timization problem (4.2.1) in the process of determining the fuzzy membership

function of each reliability index which has optimized spread. The objective

function for maximization problem and the reciprocal of the objective function
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for minimization problem is taken as the fitness function. To stop the opti-

mization process maximum number of generations and change in population

fitness value are used as termination criteria.

Step 4: Finally, in order to make the decision more reliable by human or machines

which are binary in nature so it is necessary to convert the fuzzified output

into crisp output. The process of converting the fuzzy output to a crisp value

is said to be defuzzification. The center of gravity (COG) method [199] has

been used for this purpose as it gives the results equivalent to the mean of the

data.

4.3 Butter-Oil Processing Plant

The above mentioned technique has been demonstrated by analyzing the behavior

of the Butter-Oil processing plant which has already been described in Chapter 3.

Under the information extraction phase, the data related to main components of

the system, in the form of failure rate (λi’s) and repair time (τi’s), are obtained by

using the computed parameters in Chapter 3 in Table 3.3. The interaction among

the various subsystems of the plant are shown by RBD in Fig. 3.2. Based on that,

the minimal cut sets of the system obtained are {A}i=1,2,3, {B}i=1,2, {Ci}i=1,2,3,

{Di}i=1,2,3, {Ei}i=1,2 and {Fi}i=1,2. Based on these cut sets and the collected data,

a behavior analysis of the system has been done by using ABCBLT technique and

compared their results with FLT and GABLT technique results as follow.

4.3.1 Behavior analysis

In order to taken the account of uncertainties during the computational analysis,

firstly the obtained data are converted into a triangular fuzzy number with ±15%

spread (also at ±25%, ±50%). After that based on their minimal cut sets and by

following the basic steps (Step1 to Step 4) of the proposed technique, expressions of
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their various reliability parameters in the form of membership functions are calcu-

lated and depicted graphically in Fig. 4.2 for a mission time t = 10 hrs along with

their crisp, FLT and GABLT techniques’ results with an increment of 0.1 confidence

level. From the Fig. 4.2, it has been concluded that the values of all reliability in-

dices obtained by using traditional method (crisp) are independent of the degree of

confidence level α which means that it does not consider the uncertainties in the

data. On the other hand, result computed by FLT methodology contains a wide

spread of uncertainties in the computed reliability parameters due to various fuzzy

arithmetic operations involved during the analysis whereas ABCBLT results have

reduced region and small spread in comparison of existing results. The reason be-

hind is that ABC gives near to the optimal solution. In order to analyze the decrease

in spread (in %) of the reliability parameters by ABCBLT technique in comparison

to the FLT and GABLT techniques, an analysis has been done which computes the

support of the parameters from the plotted Fig. 4.2 and are shown in tabulated

form in Table 4.1. From the analysis, it has been concluded that the largest and

the smallest decrease in spread occurs corresponding to the repair time and failure

rate respectively from FLT while the largest and the smallest decrease in spread oc-

cur corresponding to availability and ENOF respectively from GABLT results when

ABCBLT technique has been applied. This suggests that DMs have smaller and

more sensitive region to make more sound and effective decision in lesser time.

Table 4.1: Data related to Spread of Reliability Indices
Computed spread for reliability indices

Technique Failure rate Repair time ENOF MTBF Reliability Availability
I 0.0011043 3.464054 0.011916 86.833172 0.010644 0.013811
II 0.0008469 0.926911 0.008091 54.947230 0.008269 0.003835
III 0.0002356 0.244670 0.001985 17.377297 0.002077 0.001235

Decrease in spread (in %) from
I to II 23.308883 73.242016 32.099697 36.720922 22.313040 72.232278
I to III 78.665217 92.936888 83.341725 79.987721 80.486659 91.057852
II to III 72.180895 73.603722 75.466567 68.374571 74.882089 67.796610

I: FLT II: GABLT III: ABCBLT
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Figure 4.2: Fuzzy Reliability Analysis Plot of the System at ±15% spread
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The crisp and defuzzified values of all reliability parameters at different spreads

±15%, ±25% and ±50% are computed in Table 4.2 by using COG method and

are compared with FLT and GABLT results. It has been clearly seen that the

crisp value does not change with the change of spreads while defuzzified values

change with the change of spread. It has also been noticed that with the increase

in uncertainty level in the form of spread from ±15% to ±25% and further to

±50%, the variation in defuzzified values for almost all the reliability indices are

not that significant for ABCBLT results as that for FLT and GABLT techniques.

When the uncertainty level is optimized, plant personnel may have changed their

targeted goals rather goal comes from traditional analysis. For example, if plant

personnel want to optimize reliability of the system using ABCBLT results then the

new target of system reliability should be greater than 0.96380879 rather 0.96386389

and 0.96386743 that comes from Lambda-Tau and GABLT when uncertainty level

is taken as ±15%. Similarly, for other reliability indices new targets will be set. The

result shown by ABCBLT technique follows the same trend (increase or decrease)

as that of FLT and GABLT techniques. Due to this and their reduced region

of prediction, the values obtained through ABCBLT technique are conservative in

nature which may be beneficial for a system expert / analyst for future course of

action i.e. now the maintenance will be based on the defuzzified values rather than

crisp values.

Table 4.2: Defuzzified Values of the Reliability Parameters

Spread Technique Failure rate Repair time MTBF ENOF Reliability Availability
±0% Crisp 0.00368128 3.73434034 275.378718 0.03648534 0.96385652 0.98733735

Defuzzified values for reliability indices
FLT 0.00368832 3.90641535 278.67612957 0.03651720 0.96386389 0.98664310

±15% GABLT 0.00368837 3.74332841 277.32980107 0.03649392 0.96386743 0.98728116
ABCBLT 0.00368444 3.74210013 275.31074783 0.03654426 0.96380879 0.98729288
FLT 0.00368878 4.23049593 284.86621232 0.03658171 0.96387700 0.98528472

±25% GABLT 0.00367261 3.73819865 280.24523758 0.03637431 0.96365488 0.98727673
ABCBLT 0.00368875 3.74619668 274.98202985 0.03659464 0.96364712 0.98730306
FLT 0.00369317 6.15254254 321.16324960 0.03705108 0.96393843 0.97637077

±50% GABLT 0.00365819 3.76773428 293.84428687 0.03647868 0.96401885 0.98715129
ABCBLT 0.00370863 3.74375968 276.05839796 0.03683116 0.96339521 0.98735221



70

4.3.2 Sensitivity analysis

Sensitivity analysis has also been conducted for various combinations of reliability,

failure rate and availability on the system MTBF and the corresponding results

have been depicted graphically as shown in Fig. 4.3 for all the three techniques. In

Table 4.3: Variation of the MTBF Parameter for all Techniques by Changing Other
Reliability Parameters

S.No. [Reliability, Failure rate, Availability] Mean time between Failures
FLT GABLT ABCBLT

1 [0.9528, 3.4583×10−3, 0.9868] Min: 329.6245 344.8674 370.6349
Max: 459.5221 430.9115 395.8302

2 [0.9528, 3.6812×10−3, 0.9868] Min: 309.7096 324.0496 348.2688
Max: 431.8494 404.9222 371.9492

3 [0.9528, 3.8025×10−3, 0.9868] Min: 299.8531 313.7462 337.1991
Max: 418.1534 392.0594 360.1298

4 [0.9638, 3.4583×10−3, 0.9872] Min: 251.5196 263.2123 282.9034
Max: 350.9467 328.9610 302.1537

5 [0.9638, 3.6812×10−3, 0.9872] Min: 236.3326 247.3368 265.8473
Max: 329.8437 309.1419 283.9423

6 [0.9638, 3.8025×10−3, 0.9872] Min: 228.8161 239.4795 257.4056
Max: 319.3992 299.3328 274.9289

7 [0.9698, 3.4583×10−3, 0.9900] Min: 209.1492 218.8576 235.2247
Max: 291.7541 273.5085 251.2262

8 [0.9698, 3.6812×10−3, 0.9900] Min: 196.5184 205.6542 221.0394
Max: 274.2031 257.0253 236.0801

9 [0.9698, 3.8025×10−3, 0.9900] Min: 190.2671 199.1194 214.0186
Max: 265.5166 248.8672 228.5838

this analysis, for all different combinations, ranges of repair time have been fixed

as shown in Fig. 4.2(b) at α = 0 while for ENOF ranges have been taken as

in Fig. 4.2(d) at α = 0 corresponding to FLT, GABLT and ABCBLT techniques

respectively. The corresponding ranges of MTBF by all the techniques are computed

and arranged in tabulated form in Table 4.3 for different combinations of reliability

parameters. For the first combination of Table 4.3, the selected values of reliability,

failure rate and availability are 0.9528, 0.0034583 and 0.9868 respectively. In this

combination, the computed ranges of MTBF are 329.6245 to 459.5221, 344.8674 to

430.9115 and 370.6349 to 395.8302 for FLT, GABLT and ABCBLT respectively. For
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this combination, it has been analyzed that the predicted range of the MTBF has

been reduced up to 80.6037% from FLT and 73.4909% from GABLT, when ABCBLT

is applied. This observation infers that if system analysts use ABCBLT results for

the system, then they may have less range of prediction which finally leads to more

sound decisions. Similar kind of reductions has been noticed for other combinations

too. The plots show that as the failure rate of the system increases then for the

prescribed ranges and values of the other indices, the MTBF of the system decreases

exponentially.

4.3.3 Performance analysis

As the performance of the system directly depends on each of the constituent com-

ponents. So to increase the performance of the system, more attention should be

given to their corresponding subsystem for the effectiveness of the maintenance pro-

gram. In order to find the most critical component, as per preferential order, of

the system, an investigation has been done on system availability by varying their

failure rate and repair time individually. The effects of failure rate and repair time

on system availability has been shown graphically in Fig. 4.4 corresponding to each

component of the system. This figure contains six subplots corresponding to six

main components of the system. Each subplot contains two subplots against vari-

ations in failure rate and repair time respectively of the corresponding component

without increase in other component’s parameters. The corresponding maximum

and minimum values obtained for each component of the system are given in Table

4.4.

But in a real-life modeling, the parameters of failure and repair times affect si-

multaneously on the system performance. For this, the effect of these parameters

on system performance has been investigated for each of the components of the

system with varying simultaneously their failure rate and repair time parameters

and fixing the parameters of other components’ at the same time. The results thus
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Figure 4.3: Butteroil processing unit Behavior Analysis: (a) FLT (b) GABLT (c)
ABCBLT

obtained are shown graphically in Fig. 4.5 which contains six subplots correspond-

ing to six main components of the system. It has been observed from Fig. 4.5(a)
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Table 4.4: Effect of Individual Component Failure rate and Repair time on System
Performance
Component Range of failure rate(hrs−1) System availability Range of repair time System availability

λ× 10−4 (hrs)
Motors 2.111528 - 2.856773 Min: 0.98662623 3.658494 - 4.949728 Min: 0.98676034

Max: 0.98804971 Max: 0.98793717
Bearing 2.070708 - 2.801546 Min: 0.98697272 2.128131 - 2.879236 Min: 0.98707122

Max: 0.98770336 Max: 0.98760822
Gear Box 2.088135 - 2.825125 Min: 0.98684689 4.379034 - 5.924576 Min: 0.98692523

Max: 0.98782904 Max: 0.98776098
Pumps 2.036131 - 2.754766 Min: 0.98723846 2.421774 - 3.276518 Min: 0.98726242

Max: 0.98743628 Max: 0.98741264
Circuit Box 2.083188 - 2.818431 Min: 0.98724196 2.239768 - 3.030275 Min: 0.98726644

Max: 0.98743280 Max: 0.98740858
Cylinder 2.066707 - 2.796134 Min: 0.98722117 2.923619 - 3.955485 Min: 0.98724559

Max: 0.98745355 Max: 0.98742966

that the simultaneous increase in the failure and repair time of the motor compo-

nent from 2.111528×10−4 to 2.856773×10−4 (hrs−1) and from 3.658494 to 4.949728

(hrs) respectively shows the significant impact on the system availability. Similarly,

variation in failure time from 2.088135×10−4 to 2.825125×10−4 (hrs−1) and repair

time from 4.379034 to 5.924576 (hrs) of the gear box components, shown in Fig.

4.5(c), will change the system availability by 0.71%. Similar effect on the system

availability by the variation of the other component’s failure rates and repair times

are analyzed from the Fig. 4.5. The magnitude of the effect of variation in failure

rates and repair times of various subsystems of the system on its performance is

summarized in Table 4.5. From the results, it can be analyzed that for improving

the performance of the system, more attention should be given to the components

as per the preferential order; gear box, motors, cylinder, pumps, circuit box and

bearing. Thus the system manager can analyze the critical behavior of the system

and hence can plan for suitable maintenance strategy for achieving the highest goals.

The maintenance engineer may therefore determine the repair policy according to

the optimal design by considerations and the company strategies.
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Figure 4.4: Effect of Individual Component Failure rate and Repair time on Avail-
ability Index when other Parameters are Fixed
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Table 4.5: Simultaneously Effect of Failure rate and Repair time on System Perfor-
mance

Component Range of failure rate(hrs−1) Range of repair time System availability
λ× 10−4 (hrs)

Motors 2.111528 - 2.856773 3.658494 - 4.949728 Min: 0.98342466
Max: 0.98926656

Bearing 2.070708 - 2.801546 2.128131 - 2.879236 Min: 0.98919964
Max: 0.99349126

Gear Box 2.088135 - 2.825125 4.379034 - 5.924576 Min: 0.98088527
Max: 0.98780600

Pumps 2.036131 - 2.754766 2.421774 - 3.276518 Min: 0.98746689
Max: 0.99277235

Circuit Box 2.083188 - 2.818431 2.239768 - 3.030275 Min: 0.98800820
Max: 0.99312737

Cylinder 2.066707 - 2.796134 2.923619 - 3.955485 Min: 0.98518834
Max: 0.99130274
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Figure 4.5: Simultaneously Effect of Components Failure rate and Repair time on
the System Availability
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4.4 Conclusion

In this chapter a hybridized technique named as ABCBLT for analyzing the relia-

bility indices of an industrial system has been discussed. The technique has been

demonstrated through a case study of butter-oil processing plant. In the analysis,

an attempt has been made to deal with imprecise, uncertain dependent information

related to system performance. Fuzzy set theory has been used for handling the

uncertainties in the data and nonlinear programming problem has been formulated

for constructing their membership functions. To strengthen the analysis, various re-

liability indices such as system failure rate, repair rate, MTBF, ENOF, availability

and reliability have been computed in the form of fuzzy membership functions. The

technique optimizes the spread of computing reliability indices which may be useful

for the plant manager to take more relevant decisions. The defuzzified values of

reliability indices for different levels of uncertainties are calculated and summarized

in tabular form along with FLT, GABLT results. In order to analyze their behavior

effect on system performance, a sensitivity analysis as well as performance analysis

has been conducted for various combinations of reliability parameters. Based on

that the system manager may analyze the critical behavior of the system and plan

for suitable maintenance for improving system’s performance and thereby reduce

operational and maintenance costs. From the results, it can be analyzed that for

improving the performance of the system, more attention should be given to the

components as per the preferential order; gear box, motors, cylinder, pumps, circuit

box and bearing. Thus, system reliability engineers/analysts may use these results

to set the future targets of their interest and will help to model and predict the

behavior of industrial systems in more consistent and realistic manner as they often

make use of subjective judgments and uncertain data.
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Chapter 5

Behavior of the industrial systems
using soft computing based
technique

In this chapter already presented ABCBLT hybridized technique in chapter 4 for

analyzing the behavior of an industrial system is used for time varying failure rate

instead of constant failure rate and constant repair rate model. The repair rate is

taken as constant here also. The technique has been illustrated by analyzing the

behavior of all the subsystems/units of a paper mill, a complex repairable industrial

system, individually.

5.1 Introduction

Today with growing complexity of the repairable industrial systems along with ad-

vances in technology, it is difficult, if not impossible, for the system analyst to

predict and analyze the behavior of the industrial system in a more realistic and a

proper manner. Thus, system reliability analysis is an important issue for academic

research and practice. Realising of this, various researchers [79, 93, 109, 138, 142,

144, 149, 169, 196, 203, 216, 246] have paid more attentions to the system-behavior

by using traditional and non-traditional techniques with the target that system op-

erates for a long time for maximizing its profit as well its production. For evaluating

79
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their behavior, the data related to system parameters are generally estimated from

the existing databases/sheets or historical records, which are usually imprecise in

nature. Thus, if data are used as such in the analysis then the computed results

contain a high amount of uncertainties and hence the results are deviated from their

original behavior results. Moreover, in addition to reliability parameter other pa-

rameters like failure rate, repair time etc., are also responsible for their system’s

behavior failure. For considering all these factors, Knezevic and Odoom [138] high-

lighted this idea and extended an approach from crisp results to fuzzy results by

quantifying the data in terms of fuzzy numbers. A constant failure rate model has

been taken during the analysis. Also it is an established fact that preventive main-

tenance is not useful when the failure rate is constant. So the components having

shape factor sufficiently larger than one must have been taken for the analysis, i.e.

which have more deterministic deteriorating characteristics. Therefore, there is a

need for developing such type of methodology which will reduce the uncertainties,

for each reliability index, up to a desired degree of accuracy so that plant personnel

may use these indices to analyze the system behavior more closely and take more

sound decisions to improve the performance of the plant.

Thus the objective of the present chapter is to analyze the behavior of a repairable

industrial system by considering the time varying failure rate and a constant repair

time i.e. failure rate of the components follows the Weibull distribution and repair

time follows the exponential distribution. For analyzing the behavior of these sys-

tems, ABCBLT technique is used here. Triangular membership functions have been

used for representing the data. The technique has been illustrated by analyzing the

behavior of all the subsystems/units of a paper mill.

5.2 Fuzzy Reliability with Weibull distribution

We assume that the object (element or system) under investigation is either in a

failure free or in a failure state. The failure-free state time is a random variable X,
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which assumes values t ∈ [0,∞). Reliability or survival function is the probability

that a unit perform its satisfactory operation beyond time ‘t’. Let the random

variable X denote the lifetime of a system components then reliability function at

time t is defined as

R(t) = P (X ≥ t) = 1− F (t) (5.2.1)

where F (t) is the failure distribution function of X, and F (t) = 0,∀ t ∈ (−∞, 0] and

the unreliability function Q(t) is the probability of failure or probability of an item

failing in the time interval [0, t] and is defined as

Q(t) = P (X ≤ t) = F (t) , t > 0 (5.2.2)

The fuzzy probability model of reliability presumes that the time of such a tran-

sition is a fuzzy random variable which describes the vagueness of the transition time

t and the uncertainty of the probability distribution[125]. Thus the fuzzy reliability

by means of the fuzzy distribution function of fuzzy random variable X is defined

as R̃(t) = P̃ (X ≥ t) = 1 − F̃ (t), ∀ t ∈ [0,∞), where P̃ is the fuzzy probability

whose distribution function is F̃ (x) = P̃ (X < x) and X is the random variable on

R. In order to obtain a fuzzy reliability model, we assume that the values of a fuzzy

random variable X are the fuzzy numbers t̃ = ([0,∞), µt̃) and t̃ = k̃t where t is the

observed value of a crisp random number variable X representing the failure - free

state time and k̃ is vagueness coefficient. The vagueness coefficient k̃ is a real trian-

gular fuzzy number k̃ = ([0,∞), µk̃) with the crisp value k = 1 and the membership

function

µk̃(x) =



x− kL
1− kL

, if kL ≤ x ≤ 1

1, if x = 1
x− kU
1− kU

, if 1 ≤ x ≤ kU

0, otherwise

(5.2.3)

where 0 < kL ≤ 1 ≤ kU , and the boundary values kL, kU are specified by expert’s

estimates. Fig. 5.1 represent the graph of µk̃(x).
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k

Figure 5.1: Triangular Fuzzy Number of the vagueness coefficient

It is well known that the two-parameter Weibull probability distribution W (θ, β)

for β > 0 as its shape parameter and θ > 0 as its scale parameter and t ∈ [0,∞) has

the following functional and numerical characteristics for the crisp random number

T [71].

(a) Hazard function λ(t) =
β

θ

(
t

θ

)β−1

(b) Mean time to failure (MTTF) = expected value E(T ) = θΓ

(
1 +

1

β

)
where

Gamma function Γ(n) =
∫∞
0

xn−1e−xdx.

(c) Failure distribution function F(t) = 1− exp

[
−
(
t

θ

)β]

(d) Reliability function R(t) = 1− F(t) = exp

[
−

(
t

θ

)β]

(e) Availability function A(t) = e−( t
θ
)β− t

τ

(
1 + 1

τ

∫ t

0
exp(( t

θ
)β + t

τ
)dt

)
(f) Maintainability function M(t) = 1− exp(− t

τ
)

(g) Mean time to Repair (MTTR) =
1

µ
= τ ; where µ is repair rate of the system.

(h) Mean time between Failure, MTBF = MTTF +MTTR
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Using the above concepts, it can be seen that the Weibull fuzzy probability

distribution W̃ (β, θ) for the fuzzy random variable that corresponds to the crisp

Weibull distribution for the random variable has the following fuzzy characteristics.

(a) The fuzzy failure rate function λ̃(t) =
βtβ−1

(k̃ θ)β
, ∀ t ∈ [0,∞), so that ∀ α ∈ [0, 1],

the α−cuts of fuzzy failure rate function

λ̃α(t) = [λ̃Lα(t), λ̃Uα(t)]

=

[
βtβ−1

({kL + α(1− kL)}θ)β
,

βtβ−1

({kU + α(1− kU)}θ)β

]
(5.2.4)

(b) The fuzzy mean of fuzzy random variable T̃ is triangular fuzzy number Ẽ(T̃ ) =

k̃ θ · Γ
(
1 +

1

β

)
where

µẼ(T̃ )(t) =



t− kLθΓ(1 +
1
β
)

(1− kL)θΓ(1 +
1
β
)

if kLθΓ(1 +
1
β
) ≤ t ≤ θΓ(1 + 1

β
)

1 if t = θΓ(1 + 1
β
)

t− kUθΓ(1 +
1
β
)

(1− kU)θΓ(1 +
1
β
)

if θΓ(1 + 1
β
) ≤ t ≤ kUθΓ(1 +

1
β
)

(5.2.5)

(c) The fuzzy failure distribution function F̃ (t) = 1−exp
[
−
(

t

k̃ θ

)β]
∀ t ∈ [0,∞),

so that ∀ α ∈ [0, 1], the α−cuts of fuzzy failure distribution function are:

F̃α(t) = [F̃Lα(t), F̃Uα(t)]

=

[
1− exp

{
−

(
t

{kU + α(1− kU)}θ

)β}
, (5.2.6)

1− exp

{
−

(
t

{kL + α(1− kL)}θ

)β}]

(d) The fuzzy reliability function R̃(t) = exp

[
−

(
t

k̃θ

)β]
∀ t ∈ [0,∞), so that
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∀ α ∈ [0, 1], the α−cuts of fuzzy reliability function are:

R̃α(t) = [R̃Lα(t), R̃Uα(t)]

=

[
exp

{
−

(
t

{kL + α(1− kL)}θ

)β}
, (5.2.7)

exp

{
−

(
t

{kU + α(1− kU)}θ

)β}]

(e) The fuzzy availability function Ã(t) = e−( t

k̃θ
)β− t

k̃τ

(
1+ 1

k̃τ

∫ t

0
exp{( t

k̃θ
)β + t

k̃τ
}dt

)
∀ t ∈ [0,∞), so that ∀ α ∈ [0, 1], the α−cuts of fuzzy availability function are:

Ãα(t) = [ÃLα(t), ÃUα(t)]

=

[
exp

{
−

(
t

{kL + α(1− kL)}θ

)β

−
(

t

{kL + α(1− kL)}τ

)}
·{

1 +
1

{kU + α(1− kU)τ}
× (5.2.8)∫ t

0

exp

{(
t

{kU + α(1− kU)}θ

)β

+

(
t

{kU + α(1− kU)}τ

)}
dt

}
,

exp

{
−
(

t

{kU + α(1− kU)}θ

)β

−
(

t

{kU + α(1− kU)}τ

)}
·{

1 +
1

{kL + α(1− kL)τ}
×∫ t

0

exp

{(
t

{kL + α(1− kL)}θ

)β

+

(
t

{kL + α(1− kL)}τ

)}
dt

}]

(f) The fuzzy maintainability function M̃(t) = 1 − exp

(
− t

k̃ τ

)
∀ t ∈ [0,∞), so

that ∀ α ∈ [0, 1], the α−cuts of fuzzy maintainability function are:

M̃α(t) = [M̃Lα(t), M̃Uα(t)]

=

[
1− exp

{
−
(

t

{kU + α(1− kU)}τ

)}
, (5.2.9)

1− exp

{
−

(
t

{kL + α(1− kL)}τ

)}]
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(g) The fuzzy mean time to repair M̃TTR = k̃ τ , ∀ t ∈ [0,∞), so that ∀ α ∈ [0, 1],

the α−cuts of fuzzy mean time to repair function are:

M̃TTRα = [ ˜MTTRLα, M̃TTRUα]

= [{kL + α(1− kL)}τ, {kU + α(1− kU)}τ ] (5.2.10)

In the present analysis, instead of computing the membership functions of above

stated reliability parameters by using their arithmetic functions, a nonlinear pro-

gramming problem (5.2.11) has been constructed by utilizing the quantified fuzzy

θ’s and τ ’s. Here expressions of various reliability parameters are obtained coupled

with the α-cut and ordinary arithmetic unlike of fuzzy arithmetic operations. Then,

the boundary values of reliability indices are computed at cut level α by solving the

optimization problems (5.2.11).

Minimize/Maximize :

H̃(θ1, θ2, . . . , θn, τ1, τ2, . . . , τm) or H̃(t/θ1, θ2, . . . , θn, τ1, τ2, . . . , τm) (5.2.11)

Subject to : µθi(x) ≥ α,

µτj(x) ≥ α,

0 ≤ α ≤ 1,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

where H̃(θ1, θ2, . . . , θn, τ1, τ2, . . . , τm) and H̃(t/θ1, θ2, . . . , θn, τ1, τ2, . . . , τm) are time

independent and dependent fuzzy reliability indices. The obtained minimum and

maximum values of H̃ are denoted by Hmin and Hmax respectively.

The membership function values of H̃ at Hmax and Hmin are both α that is:

µH̃(Hmax) = µH̃(Hmin) = α

Since the problem is nonlinear in nature so it requires an efficient technique for

its solution. Out of the existing techniques, ABC optimization technique is used
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as a tool to find out the optimal solution of the above optimization problems and

compare their results with fuzzy and GA results. In order to defuzzify the fuzzy

output results the center of gravity method as described in section 2.3.5 is used here.

5.3 System Description: Paper Mill

This section is devoted to the description of various subsystems/units of the system

i.e. a paper mill situated in the northern part of India and producing approximately

200 tons of paper per day [140, 143, 145, 214]. The paper mills are large capital

oriented engineering systems, comprising of units/subsystems namely, feeding, pulp-

ing, washing, screening, bleaching, forming, dryer and press, arranged in predefined

configuration. A schematic diagram of the various interconnecting processes of a

paper mill is shown in Fig. 5.2.

Chipper

Storage Chain
conveyor

Belt
conveyor Digester Blow tank Knotter

DeckerOpenerScreenerCleanerWasher
Black liquor

storage

Black liquor

Washed
Stock Chest

Bleach
Plant Screen Decker Screened

Stock  Chest

Paper
machine

Paper
collection

chlorine

Wooden logs

chips

white
liquor Steam

fresh water

Rejects to
refiners

White water
for refuse

fresh water

To recovery
process

Figure 5.2: Systematic Flow Diagram of the Paper Mill

For the production of paper, the raw material (softwood, hardwood and bamboo

etc.) is chopped into small pieces of approximately uniform size and transported for

temporarily storage through compressed air. Conveyor in the feeding system carry
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the chips from the store to the digesters, whenever required. These chips are cooked

in the digester by using white liquor (NaOH+Na2S) with steam at pressure of 8.5

Kg/Cm2 (around 1800C temperature). The chips when cooked are referred to as

‘pulp’. The pulp is then transported to the storage tanks and stirred continuously.

After that it is further processed through fiberlizer and refiner. The pulp is then

filtered and washed (in stages) with water to remove knots and chemicals. The final

washed pulp is stored in a surge tank. The next stages of processing are bleaching

and screening. For the production of white paper, pulp is bleached by passing

chlorine gas through the pulp stored in the tank. For the production of brown pulp,

used for packaging purpose, pulp is screened directly. The white pulp so obtained

is passed through screeners to separate odd and oversized particles. The pulp is

then made to pass through cleaners which separate heavy material from the pulp.

Then, pulp is fed to the head box of the paper machine comprising of three sections

viz. forming, press and dryer. In the forming section of the paper machine, the

suction box (having six pumps) de-waters the pulp by vacuum action. The paper

in the form of sheets produced by rolling presses is sent to press and dryer section

to reduce the moisture content by means of heat and vapor transfer and to smooth

out any irregularities. Finally, the rolled-dried sheet of the paper (in the form of

rolls) is sent for packaging. The paper industry/production system consists of six

subsystems - (a) feeding (b) pulping (c) washing (d) bleaching (e) screening (f) paper

formation/production which are briefly described as follows.

(a) Feeding system - It consists of a chain conveyor for carrying chips from store

to digesters and blower with blowing units for pneumatic conveying of chips to

the digesters.

(b) Pulping system - It consists of digesters for cooking the pulp using NaOH,

Na2S and stem, knotter (fiberizer) to remove the knots from the cooked pulp,

decker for removing the black liquor from the cooked pulp and refiner (opener)

to open the knots.
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(c) Washing system - It consists of the screening unit for separating the unwanted

foreign material from the pulp, cleaner for removing heavy material from the

pulp and washer for removing chemicals through washing.

(d) Bleaching system - It consists of filter for filtering the unbleached pulp and

opener to open the fibers.

(e) Screening system - It is composed of four subsystems; filter to remove black

liquor, screen for removing the knots and other undesirable material, cleaner

and mixer for cleaning the fibers and mixing of fresh water with the pulp and

washer to wash the pulp for brightness.

(f) Paper Formation system - It consists of fiber decomposition and water suc-

tion unit, pressing unit for ironing and smoothening the paper sheets and dryers

for removing the moisture content from the paper sheets.

The six systems introduced above in the paper mill are considered to analyze the

behavior for obtaining the overall capability of the paper industry. For this following

analysis has been done for each of its subsystems.

(i) Collecting the data: Each subsystem of the paper mill namely feeding,

pulping, washing, bleaching, screening, forming, press and dryer are modeled

with the help of FTA as shown in Figs. 5.3(b), 5.5(b), 5.7(b), 5.9(b), 5.11(b),

5.13, 5.15 and 5.17 respectively in each of which the basic event represents

the main component of the system. On the other hand, the data related to

their corresponding systems are extracted from the historical records and are

integrated with the plant personnel and are tabulated in Tables 5.1, 5.5, 5.9,

5.13, 5.17, 5.21, 5.25 and 5.29 respectively in the form of failure rates and

repair times of the main components of the system. As mostly the collected

data represent the past behavior and are collected under different conditions

and hence the data generally contain some sort of uncertainty. Thus to handle
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these uncertainties and vagueness in the data, the collected (crisp) data are

fuzzified into triangular fuzzy numbers with some support, say ±15% on both

sides of the data. Based on these input triangular fuzzy numbers, the system

expressions of the failure rate and repair time are evaluated from its cut sets.

(ii) Analyzing the behavior: Based on their cut sets, the fuzzy membership

functions of various reliability parameters are computed at mission time t =

10(hrs) after solving the nonlinear optimization problem (5.2.11) with left and

right ±15% spreads. These computed results are depicted graphically in their

respective figures along with the results by FLT and GABLT techniques.

(iii) Defuzzified values at different spreads: To make these results useful for

the system analyst it is necessary that the obtained fuzzified output should be

converted into crisp number or a single number so that the decision makers may

utilize it for improving the performance of the system. For this the crisp and

defuzzified values of these reliability parameters for different spreads, ±15%,

±25% and ±50%, are computed and tabulated in Tables along with their FLT

and GABLT results corresponding to each subsystem of the paper mill. It is

clearly seen from their respective tables that when uncertainties’ level, in the

form of spread, increases then the computed results of ABCBLT technique are

quite less in variation than other techniques’ result.

(iv) Change in defuzzified values: The results computed from their defuzzified

table shows that the crisp values are independent of their spreads while de-

fuzzified values change with change of spreads. The change in their defuzzified

values, for showing the sustainability of the computed results, corresponding to

each reliability index by all the technique are computed and tabulated in their

respective Tables. From these tables it has been concluded that variation in

ABCBLT technique is smaller than existing techniques. This observation infers

that if system analysts use ABCBLT results, then they may have less range
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of prediction which finally leads to more sound decisions. Thus, based on the

behavioral analysis plots and corresponding tables, the system manager can

analyze the critical behavior of the system and plan for suitable maintenance.

5.3.1 Feeding System

The main function of the feeding system [140, 143, 145, 214] is to continuously feed

the wooden chips from store to the digester. It comprises of various subsystems,

defined as:

• Blower (A): It is used to push the chips through the pipe by compressed air

whose failure will cause complete failure of the feeding system.

• Conveyor Subsystem: It consists of three operating units in series, namely

Chain conveyor (B), Belt conveyor (C) and Bucket conveyor (D).

Failure in any of the three will switch to the standby unit E, which feeds the

digester slowly, causing a delay in the digestion process and hence delay in

further processing.

• Feeder (E): A standby unit for carrying the chips by compressed air from

the store to the digester (low capacity process). This unit works either when

there is an extra demand for chips or there is a sudden failure in conveyor

subsystem.

The systematic diagram of the feeding system and its equivalent FTA model are

shown in Fig. 5.3(a) and Fig. 5.3(b) respectively [140], where FSF represents the

failure top event of the feeding system. The input data related to failure rate and

repair time parameters of the main components of the system are given in Table 5.1.

The minimal-cut sets, {A}, {B,E}, {C,E} and {D,E} of the system are obtained

from the FTA model. Based on these cut-sets, the expressions of the failure rate
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and repair time for this system are given as below

λs = λ1 + λ2λ5(τ2 + τ5) + λ3λ5(τ3 + τ5) + λ4λ5(τ4 + τ5)

τs =
λ1τ1 + λ2λ5τ2τ5 + λ3λ5τ3τ5 + λ4λ5τ4τ5

λs

Using these expressions of λs and τs, various reliability parameters are depicted

graphically in Fig. 5.4 along with the results by FLT and GABLT techniques. From

this analysis, it has been concluded that the results computed by the traditional

FLT methodology are not so much useful for the system analyst or plant personnel

for giving the correct idea about the behavior of the system because it contains

a wide range of spread in all the computed parameters. On the other hand, the

results computed by using soft computing techniques have a less range of prediction

region which enables the decision maker or system analyst to take a more sensitive

and effective decision in a lesser time. Moreover, it can be seen from the plots that

the proposed methodology have compressed range of uncertainties as compared to

other existing methodologies at any α− cut level of satisfaction. These computed

results may lead to more sound and effective decision for future course of actions in

lesser time, consequently benefitting the system analyst for analyzing the behavior

of the system. For predicting the decrease in spread (or support in %) by the

proposed technique over the existing techniques, an analysis has been done in which

we compute the support of the reliability indices based on their behavior analysis

plots and are shown in tabular form in Table 5.2. It has been seen from the table that

the largest and the smallest decrease in spread occur corresponding to the availability

and reliability respectively from FLT while MTBF and repair time respectively from

GABLT results when ABCBLT technique has been applied. On the other hand, the

largest and smallest spreads occur corresponding to repair time and availability

respectively from FLT when GABLT technique has been applied, which means a

prediction range of reliability parameters is decreased. This suggests that DMs have

smaller and more sensitive region to make more sound and effective decision in lesser

time.
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The defuzzified values of these reliability parameters at different spreads are

tabulated in Table 5.3. Based on these values, plant personnel may change their

target goals from their traditional results. For instance, if plant personnel want to

optimize the system reliability as a target then the corresponding new target should

be greater than 0.87721835 rather than 0.87676541 or 0.87598915 at ±15% level of

uncertainties. Similarly for other parameters new targets may be set. From Table

5.4, it is evident that defuzzified values change with change of spread. For instance,

failure rate of the system increases by 3.093493%, 1.601105% and 0.119220% for

FLT, GABLT and ABCBLT respectively, when spread changes from±15% to±25%,

and it further increases by 14.195106%, 3.025358% and 0.246051%, when spread

changes from ±25% to ±50%. On the other hand, reliability of the system decreases

firstly by 0.335381%, 0.079621% and 0.058392% and further 1.534878%, 0.315696%

and 0.102252% for FLT, GABLT and ABCBLT respectively, when spread changes

from ±15% to ±25%, and from ±25% to ±50%.

Wood Chips
Blower for
pushing the
wood chips

Feeder unit for
carrying the

chips

Store of
wood chips

Chain
Conveyor

Belt
Conveyor

Bucket
Conveyor

Digester

Compressed
      Air

   Pipe filled by
compressed  air

(a)

A

E1 E2

E

B C D

O R

E3

FSF

O R

A N D

(b)

Figure 5.3: (a) Systematic diagram and (b) FTA model of the Feeding System
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Table 5.1: Input Data for Feeding System

Components Failure rate (hrs−1) Repair time (hrs)
Blower 6.25×10−3 10
Chain Conveyor 4.00×10−2 2.5
Belt Conveyor 1.00×10−2 2.0
Bucket Conveyor 8.30×10−2 5.0
Feeder 1.33×10−2 6.0

Table 5.2: Data related to Spread of Reliability Indices for Feeding System

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00804116 8.12678606 56.46956864 0.07026931 0.10697685 0.37166651
II 0.00521241 2.42905058 28.69243288 0.04378932 0.02500545 0.13656064
III 0.00152224 0.70904056 10.58957288 0.01347028 0.00826647 0.04185284

Decrease in spread (in %) from
I to II 35.17838222 70.11056324 49.18956604 37.68357765 76.62536333 63.25721141
I to III 81.06939794 91.27526484 81.24729277 80.83049342 92.27265525 88.73914144
II to III 70.79585067 70.80997135 63.09280246 69.23843531 66.94132679 69.35219401

I: FLT II: GABLT III: ABCBLT

Table 5.3: Defuzzified Values of Reliability Indices for Feeding System

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.01305029 5.77670688 82.40335655 0.87765395 0.94079291 0.82290874

Defuzzified values for reliability indices
FLT 0.01328078 6.40158520 85.32518355 0.87598915 0.93069158 0.80119740

±15% GABLT 0.01316840 5.86234357 82.87279918 0.87676541 0.94072528 0.82077631
ABCBLT 0.01311860 5.77603147 82.27128602 0.87721835 0.94080904 0.82248426
FLT 0.01369162 7.62783469 90.85228292 0.87305125 0.91077801 0.76870473

±25% GABLT 0.01337924 5.93632318 85.21872527 0.87746350 0.94012728 0.81518173
ABCBLT 0.01310296 5.78139194 82.94668964 0.87773058 0.94061041 0.82481891
FLT 0.01563516 15.8876264 123.9047285 0.85965097 0.81080251 0.68068748

±50% GABLT 0.01378401 6.22481066 96.86479919 0.87469338 0.93767974 0.80375018
ABCBLT 0.01313520 5.74223319 83.48733841 0.87683308 0.94198132 0.82792347

Table 5.4: Change in Defuzzified Values of Reliability Indices for Feeding System

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 1.76616764 10.8172066 3.54576211 0.18968751 1.07370388 2.63836546
to GABLT 0.90503735 1.48244824 0.56968872 0.10124035 0.00718861 0.25913323
±15% ABCBLT 0.52343664 0.01169195 0.16027324 0.04963231 0.00171451 0.05158287
±15% FLT 3.09349300 19.1554037 6.47768822 0.33538086 2.13965296 4.05551365
to GABLT 1.60110567 1.26194599 2.83075522 0.07962106 0.06356797 0.68162055
±25% ABCBLT 0.11922003 0.09280541 0.82094695 0.05839253 0.02111267 0.28385345
±25% FLT 14.1951062 108.28488 36.3804238 1.53487896 10.9769338 11.45007264
to GABLT 3.02535869 4.8596997 13.6660973 0.31569632 0.26034134 1.40233147
±50% ABCBLT 0.24605127 0.6773239 0.65180271 0.10225233 0.14574684 0.37639292
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Figure 5.4: Fuzzy Reliability Indices Plot for Feeding System at ±15% spread
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5.3.2 Pulping System

The four major actions carried out in the system are, (i) cooking of chips, (ii)

separation of knots, (iii) washing of pulp, and (iv) opening of fibers. The pulping

system [140, 143, 145, 214] consists of four subsystems, namely:

• Digester (A): It consists of single unit, used for cooking the chips.Here a

mixture of wooden chips and NaOH + Na2S (1:3.5 ratio) is heated by steam

at 175oC. Failure of digester stops the cooking process and hence leads to

system failure.

• Knotter (B): It consists of two units, one working and other standby, used

to remove the knots from the cooked chips because the knots preclude the

production of paper. Knotter subsystem’s complete failure occurs only if both

of its units fail.

• Decker (C): It has three units, arranged in series configuration and are used

to remove black liquor from the cooked chips. Failure of any one causes the

complete failure of the pulping system. Although production is possible even

with two or single decker, but it will reduce the quality of paper, which is less

requirement and consequently lead to lesser profit.

• Opener (D): This subsystem possesses two units, one working and other

standby and are used to break the walls of the fibers into ribbons ensuring

the availability of large surface area for bonding. Complete failure of this

subsystem occurs when both the units fail.

The equivalent systematic diagram of the system and their corresponding fault

tree model has been given in Fig. 5.5(a) and 5.5(b) respectively [140], where PSF

represents the system top failure event. The input data related to failure rate

and repair time parameters of the main components of the system are given in

Table 5.5. The minimal-cut sets, {A}, {B1B2}, {C1}, {C2}, {C3} and {D1D2} of

the system are obtained from their FTA model. Based on these cut sets various
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reliability parameters are depicted graphically in Fig. 5.6 along with FLT and

GABLT technique results. Based on these figures, the decrease in the spread in the

form of uncertainties are calculated by ABCBLT technique from FLT and GABLT

technique and their corresponding values are tabulated in Table 5.6. It has been

concluded from the table that the results computed by proposed approach are more

crucial as compared to other technique results because there is a significant decrease

in their parametric values when compared with the other techniques results.

The crisp and defuzzified values for various reliability parameters at±15%, ±25%

and ±50% spreads for all the three techniques are calculated and depicted in Table

5.7. It is observed from the table that the variations in their defuzzified values by

ABCBLT technique are quite less as compared to other techniques’ results values.

For instance, failure rate of the system increases by 6.83531028%, 5.03894116% and

2.15368555% for FLT, GABLT and ABCBLT respectively, when spread changes

from ±15% to ±25%, and it further increases by 46.0739272%, 26.1282019% and

16.8262806% when spread changes from ±25% to ±50%. The complete analysis of

the decrease or increase in their defuzzified values, when spread changes from ±15%

to ±25% and further from ±25% to ±50% are summarized in Table 5.8.

Table 5.5: Input data for the Pulping system

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Digester (i=1) 511 1.37 15
Knotters (i=2,3) 111 1.31 5.0
Deckers (i=4,5,6) 252 1.76 2.5
Openers (i=7,8) 151 1.19 5.0
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Figure 5.5: (a) Systematic diagram and (b) FTA model of the Pulping System
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Figure 5.6: Fuzzy Reliability Indices Plot for Pulping unit at ±15% spread
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Table 5.6: Data related to Spread of Reliability Indices for Pulping System

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00186220 7.76140447 21.23992825 0.00991466 0.00511243 0.35903877
II 0.00139353 2.67002602 11.77486269 0.00824847 0.00282767 0.14899611
III 0.00051635 0.61697203 3.29221745 0.00260169 0.00145857 0.04841293

Decrease in spread (in %) from
I to II 25.16754376 65.59867443 44.56260609 16.80531657 44.69029404 58.50138691
I to III 72.27204381 92.05076822 84.49986548 73.75916067 71.47012281 86.51596037
II to III 62.94661758 76.89265852 72.04029009 68.45851412 48.41795541 67.50725237

I: FLT II: GABLT III: ABCBLT

Table 5.7: Defuzzified Values of Reliability Indices for Pulping System

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00296371 5.13789617 50.06630877 0.98209417 0.99219734 0.85720167

Defuzzified values for reliability indices
FLT 0.00307038 5.75858883 50.68198455 0.98157347 0.99182699 0.82911642

±15% GABLT 0.00303278 5.22921543 50.11618832 0.98180298 0.99200431 0.85302591
ABCBLT 0.00298883 5.12234622 49.92873112 0.98192776 0.99212027 0.85729468
FLT 0.00328025 7.00582173 51.89308947 0.98056359 0.99123568 0.78867198

±25% GABLT 0.00318560 5.37793627 50.07465495 0.98089567 0.99187728 0.84418492
ABCBLT 0.00305320 5.13453531 49.44027938 0.98156038 0.99195566 0.85815036
FLT 0.00479159 16.5899120 60.60456345 0.97376311 0.98746361 0.68483374

±50% GABLT 0.00401794 6.11551231 49.83710622 0.97612388 0.99082414 0.81446331
ABCBLT 0.00356694 4.96641027 47.47805087 0.97857934 0.99108188 0.86525583

Table 5.8: Change in Defuzzified Values of Reliability Indices for Pulping System

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 3.59920505 12.0806773 1.22972073 0.05301935 0.03732624 3.27638769
to GABLT 2.33052491 1.77736678 0.09962697 0.02964990 0.01945479 0.48713857
±15% ABCBLT 0.84758630 0.30265208 0.27479087 0.01694440 0.00776760 0.01085042
±15% FLT 6.83531028 21.6586552 2.38961621 0.10288379 0.05961826 4.87801701
to GABLT 5.03894116 2.84403735 0.08287415 0.09241263 0.01280538 1.03642690
±25% ABCBLT 2.15368555 0.23795912 0.97829792 0.03741415 0.01659173 0.09981165
±25% FLT 46.0739272 136.8018005 16.7873488 0.69352768 0.38054219 13.16621391
to GABLT 26.1282019 13.71485274 0.47438915 0.48647273 0.10617644 3.52074637
±50% ABCBLT 16.82628062 3.27439641 3.96888637 0.30370418 0.08808659 0.82799825
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5.3.3 Washing System

The Washing of prepared pulp is done in three to four stages, to get it free from

blackness and to prepare the fine fibers of the pulp. The washing system [140, 143,

145, 214] consists of four main subsystems, defined as:

• Filter (A): It consists of single unit which is used to drain black liqueur from

the cooked pulp.

• Cleaners (B): In this subsystem three units of cleaners are arranged in par-

allel configuration. Each unit may be used to clean the pulp by centrifugal

action. Failure of anyone will reduce the efficiency of the system as well as

quality of paper.

• Screeners (C): Herein two units of screeners are arranged in series. These are

used to remove oversized, uncooked and odd shaped fibers from pulp through

straining action. Failure of any one will cause the complete failure of the

system.

• Deckers (D): Two units of deckers are arranged in parallel configuration.

The function of deckers is to reduce the blackness of pulp. Complete failure

of decker occurs when both the components will fail.

The equivalent systematic diagram of the system and their corresponding fault

tree model has been given in Fig. 5.7(a) and 5.7(b) respectively [140], where WSF

represents the system top failure event. The input data related to failure rate and

repair time parameters of the main components of the system are given in Table

5.9. The minimal-cut sets, {A}, {B1B2}, {C1}, {C2} and {D1D2} of the system are

obtained from their FTA model. Based on these cut sets various reliability param-

eters are depicted graphically in Fig. 5.8, along with FLT and GABLT technique

results. Based on these figures, the decrease in spread in the form of uncertainties

are calculated by ABCBLT technique from FLT and GABLT technique and their

corresponding values are tabulated in Table 5.10. The crisp and defuzzified values
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for various reliability parameters at ±15%, ±25% and ±50% spreads for all the

three techniques are calculated and depicted in Table 5.11. It is observed from the

table that the variation in their defuzzified values by ABCBLT technique ar quite

less as compared to other techniques results values. For instance, failure rate of the

system increases by 3.63121246%, 3.47212792% and 1.68028108% for FLT, GABLT

and ABCBLT respectively, when spread changes from ±15% to ±25%, and it further

increases by 21.94528407%, 18.81291298% and 8.475554653% when spread changes

from ±25% to ±50%. The complete analysis of the decrease or increase in their de-

fuzzified values, when spread changes from ±15% to ±25% and further from ±25%

to ±50% are summarized in Table 5.12.

Table 5.9: Input Data for the Washing System

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Filter (i=1) 337 1.33 3.5
Cleaners (i=2,3,4) 170 1.88 2.0
Screeners (i=5,6) 426 1.46 4.0
Deckers (i=7,8) 252 1.76 2.5

Table 5.10: Data related to Spread of Reliability Indices for Washing System

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00106276 4.48841061 24.19241643 0.00747565 0.00462835 0.21022394
II 0.00101359 1.06030015 16.69617207 0.00697279 0.00266581 0.05308428
III 0.00019810 0.23675094 4.60344901 0.00112911 0.00089560 0.01256076

Decrease in spread (in %) from
I to II 4.62663254 76.37693513 30.98592644 6.72663915 42.40258407 74.74869893
I to III 81.35985547 94.72528338 80.97152046 84.89616287 80.64969157 94.02505727
II to III 80.45560828 77.67132825 72.42811711 83.80691229 66.40420735 76.33807974

I: FLT II: GABLT III: ABCBLT



102

Pulp from tank Filter (A)

Undesirable
material

Cleaner (B1) Cleaner (B2) Cleaner (B3)

Screener (C1)

Screener (C2)

Decker (D1) Decker (D2)

Washed pulp
tank

Chemical
collector

Water tank

(a)

A

E1 E4

D1

A N D

D2

WSF

OR

B1 B3
B2

E2

A N D

C1 C2

O R

E3

(b)

Figure 5.7: (a) Systematic diagram and (b) FTA model of the Washing System
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Table 5.11: Defuzzified Values of Reliability Indices for Washing System

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00245830 3.74652200 69.42654140 0.98249050 0.99277595 0.93068835

Defuzzified values for reliability indices
FLT 0.00250605 4.03899283 69.71699758 0.98215885 0.99258197 0.90796267

±15% GABLT 0.00250394 3.74391932 69.51780162 0.98220870 0.99267327 0.92967769
ABCBLT 0.00247042 3.75361555 69.31634847 0.98240450 0.99277380 0.93028859
FLT 0.00259705 4.60599201 70.26950357 0.98152808 0.99221235 0.87320168

±25% GABLT 0.00259088 3.75671173 69.29305777 0.98159663 0.99235548 0.92869121
ABCBLT 0.00251193 3.75704513 68.82121168 0.98215572 0.99263145 0.92962589
FLT 0.00316698 8.37595488 73.69205035 0.97761985 0.98990460 0.76597076

±50% GABLT 0.00307830 3.77792750 68.69727268 0.97825935 0.99165891 0.92174277
ABCBLT 0.00272483 3.76369840 65.62112887 0.98068754 0.99229121 0.92868797

Table 5.12: Change in Defuzzified values of Reliability Indices for Washing System

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 1.94239921 7.80646236 0.41836475 0.03375605 0.01953915 2.44181416
to GABLT 1.85656754 0.06946923 0.13144860 0.02868221 0.01034271 0.10859274
±15% ABCBLT 0.49302363 0.18933693 0.15871873 0.00875326 0.00021656 0.04295315
±15% FLT 3.63121246 14.03813286 0.79249825 0.06422280 0.03723823 3.82846026
to GABLT 3.47212792 0.341684980 0.32328963 0.06231567 0.03201355 0.10610989
±25% ABCBLT 1.68028108 0.091367375 0.71431458 0.02532358 0.01433861 0.07123595
±25% FLT 21.94528407 81.84909704 4.87060048 0.39817811 0.23258630 12.28020083
to GABLT 18.81291298 0.564743092 0.85980487 0.33998486 0.07019359 0.748197024
±50% ABCBLT 8.475554653 0.177087838 4.64984956 0.14948546 0.03427656 0.100892198
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Figure 5.8: Fuzzy Reliability Indices Plot for Washing System at ±15% spread
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5.3.4 Bleaching System

The bleaching system [140, 143, 145, 214] is used to bleach the pulp and to obtain

bright pulp for the production of white paper. It consists of bleaching tank along

with two subsystems arranged in series which are defined below.

• Bleaching Tank (A): It is a tank with a stirrer where the washed pulp from

the washing system is stored and the chlorine is passed here into the pulp for

brightening it. Failure in this unit will cause the complete failure of bleaching

system.

• Filter (B): The primary action of a filter is to remove chlorine and unbleached

mass from the pulp received from the washing system. This subsystem consists

of two units in parallel, and is said to be failed when both the units have failed.

• Washer (C): Their primary action is to wash the fibers and to remove chlorine

from the pulp. It consists of two units in parallel, and is said to be failed when

both the units have failed.

The equivalent systematic diagram of the system and their corresponding fault

tree model has been given in Fig. 5.9(a) and 5.9(b) respectively [140], where BSF

represents the system top failure event. The input data related to failure rate and

repair time parameters of the main components of the system are given in Table 5.13.

The minimal-cut sets, {A}, {B1B2} and {C1C2} of the system are obtained from

their FTA model. Based on these cut sets various reliability parameters are depicted

graphically in Fig. 5.10, along with FLT and GABLT technique results. Based on

these figures, the decrease in spread in the form of uncertainties are calculated

by ABCBLT technique from FLT and GABLT technique and their corresponding

values are tabulated in Table 5.14. The crisp and defuzzified values for various

reliability parameters at ±15%, ±25% and ±50% spreads for all the three techniques

are calculated and depicted in Table 5.15. It is observed from the table that the
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variation in their defuzzified values by ABCBLT technique ar quite less as compared

to other techniques results values. For instance, failure rate of the system increases

by 4.74800088%, 4.47261738% and 0.28214064% for FLT, GABLT and ABCBLT

respectively, when spread changes from ±15% to ±25%, and it further increases by

29.83989578%, 27.88525307% and 3.278367887% when spread changes from ±25%

to ±50%. The complete analysis of the decrease or increase in their defuzzified

values, when spread changes from ±15% to ±25% and further from ±25% to ±50%

are summarized in Table 5.16.
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Figure 5.9: (a) Systematic diagram and (b) FTA model of the Bleaching System

Table 5.13: Input Data for the Bleaching System

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Bleaching Tank (i=1) 311 1.60 2.5
Filters (i=2,3) 337 1.33 2.0
Washers (i=4,5) 426 1.46 3.0
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Figure 5.10: Fuzzy Reliability Indices Plot for Bleaching System at ±15% spread
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Table 5.14: Data related to Spread of Reliability Indices for Bleaching System

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00033834 3.37131717 35.27890412 0.00211302 0.00100331 0.11652513
II 0.00032675 0.74811544 36.24033395 0.00206287 0.00075968 0.02126761
III 0.00013461 0.31573520 11.20475275 0.00082881 0.00030397 0.00908812

Decrease in spread (in %) from
I to II 3.42554826 77.80940201 2.72522589 2.37338028 24.28262451 81.74847777
I to III 60.2145770 90.63466342 68.2395101 60.7760456 69.70328213 92.20072099
II to III 58.8033664 57.79592518 69.0820929 59.8224803 59.98709983 57.26778890

I: FLT II: GABLT III: ABCBLT

Table 5.15: Defuzzified Values of Reliability Indices for Bleaching System

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00066254 2.48278847 131.31685950 0.99581710 0.99863981 0.98218526

Defuzzified values for reliability indices
FLT 0.00068155 2.72707261 131.55826373 0.99571315 0.99858954 0.96054987

±15% GABLT 0.00067835 2.48296828 131.43108974 0.99572024 0.99861384 0.98136810
ABCBLT 0.00066279 2.48925318 131.07142124 0.99582455 0.99864537 0.98182177
FLT 0.00071391 3.21630347 132.02623486 0.99551313 0.99849433 0.92358028

±25% GABLT 0.00070869 2.48253921 131.60714590 0.99552483 0.99851350 0.97996486
ABCBLT 0.00066466 2.48825118 130.05489665 0.99578500 0.99866371 0.98150158
FLT 0.00092694 6.72112800 134.94771911 0.99420776 0.99787436 0.79407091

±50% GABLT 0.00090631 2.48507852 131.04073964 0.99429806 0.99807127 0.97364493
ABCBLT 0.00068645 2.51157171 124.15001724 0.99569629 0.99862809 0.97990675

Table 5.16: Change in Defuzzified Values of Reliability Indices for Bleaching System

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 2.86926072 9.83910401 0.18383338 0.01043866 0.00503384 2.20278097
to GABLT 2.38627101 0.00724226 0.08698825 0.00972668 0.00260053 0.08319815
±15% ABCBLT 0.03773357 0.26038102 0.18690536 0.00074812 0.00055675 0.03700829
±15% FLT 4.74800088 17.93978122 0.35571397 0.02008811 0.00953444 3.84879444
to GABLT 4.47261738 0.017280526 0.13395320 0.01962499 0.01004792 0.14298814
±25% ABCBLT 0.28214064 0.040253036 0.77555013 0.00397158 0.00183648 0.03261182
±25% FLT 29.83989578 108.9705795 2.21280585 0.13112534 0.06209048 14.02253521
to GABLT 27.88525307 0.102286803 0.43037652 0.12322846 0.04428883 0.644913941
±50% ABCBLT 3.278367887 0.937225718 4.54029764 0.00890854 0.00356676 0.162488785
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5.3.5 Screening System

The screening system [140, 143, 145, 214] is used to screen the pulp available from

bleaching and/or pulping and to make it free from impurities. It consists of four

main subsystems, defined as:

• Filter (A): A single unit of filter is employed for removal of black liquor from

the pulp. its failure causes failure of the system.

• Screener (B): Screener has one unit which is used to remove oversized, un-

cooked and odd shaped fibers from pulp through straining action. Its failure

will cause system to fail.

• Cleaners (C): This subsystem has three units in parallel. Here water is mixed

with pulp to cleanse it by centrifugal action. Failure of any one will reduce the

efficiency of the system, and hence, reduces the quality of paper with respect

to cleanliness.

• Decker (D): A single unit of decker is used to wash and remove the impurities

from the pulp before delivering it to the head box of the paper machine.

The equivalent systematic diagram of the system and their corresponding fault

tree model has been given in Fig. 5.11(a) and 5.11(b) respectively [140], where SSF

represents the system top failure event. The input data related to failure rate and

repair time parameters of the main components of the system are given in Table 5.17.

The minimal-cut sets, {A}, {B}, {C1C2C3} and {D} of the system are obtained from

their FTA model. Based on these cut sets various reliability parameters are depicted

graphically in Fig. 5.12, along with FLT and GABLT technique results. Based on

these figures, the decrease in spread in the form of uncertainties are calculated

by ABCBLT technique from FLT and GABLT technique and their corresponding

values are tabulated in Table 5.18. The crisp and defuzzified values for various

reliability parameters at ±15%, ±25% and ±50% spreads for all the three techniques

are calculated and depicted in Table 5.19. It is observed from the table that the
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variation in their defuzzified values by ABCBLT technique ar quite less as compared

to other techniques results values. For instance, failure rate of the system increases

by 4.06283693%, 3.40957694% and 1.84339009% for FLT, GABLT and ABCBLT

respectively, when spread changes from ±15% to ±25%, and it further increases by

24.90227688%, 18.63179663% and 11.54419922% when spread changes from ±25%

to ±50%. The complete analysis of the decrease or increase in their defuzzified

values, when spread changes from ±15% to ±25% and further from ±25% to ±50%

are summarized in Table 5.20.
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Figure 5.11: (a) Systematic diagram and (b) FTA model of the Screening System

Table 5.17: Input Data for the Screening System

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Filter (i=1) 337 1.33 2.0
Screeners (i=2) 315 1.54 4.0
Cleaners (i=3,4,5) 470 1.88 2.0
Deckers (i=6) 252 1.76 5.0
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Figure 5.12: Fuzzy Reliability Indices Plot for Screening System at ±15% spread
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Table 5.18: Data related to Spread of Reliability Indices for Screening System

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00120092 4.22311337 27.60903436 0.00790404 0.00337698 0.18456749
II 0.00109760 1.17198062 18.83765407 0.00736161 0.00220702 0.05071374
III 0.00033229 0.34472321 5.71329338 0.00216078 0.00107863 0.01639967

Decrease in spread (in %) from
I to II 8.60340405 72.24842154 31.76996404 6.86269301 34.64515632 72.52292914
I to III 72.33038004 91.83722576 79.30643533 72.66233470 68.05933111 91.11454026
II to III 69.72576530 70.58627044 69.67088705 70.64799683 51.12731194 67.66227456

I: FLT II: GABLT III: ABCBLT

Table 5.19: Defuzzified Values of Reliability Indices for Screening System

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00259627 3.27925706 81.23232702 0.98251623 0.99367855 0.95261603

Defuzzified values for reliability indices
FLT 0.00265258 3.57551107 81.52610962 0.98215219 0.99315659 0.92744100

±15% GABLT 0.00264197 3.28789856 81.25766926 0.98219078 0.99342732 0.95107977
ABCBLT 0.00261963 3.28320212 81.03557825 0.98242826 0.99364004 0.95250914
FLT 0.00276035 4.15696018 80.34480159 0.98145753 0.99256723 0.88879311

±25% GABLT 0.00273205 3.33022187 81.19098639 0.98168133 0.99354363 0.94822880
ABCBLT 0.00266792 3.29850564 80.34480159 0.98203008 0.99358383 0.95174317
FLT 0.00344774 8.21918073 85.70664633 0.97708415 0.98953749 0.76937920

±50% GABLT 0.00324108 3.38059898 81.58548505 0.97861175 0.99302807 0.93392026
ABCBLT 0.00297591 3.31960956 76.83199291 0.98008021 0.99304296 0.95162085

Table 5.20: Change in Defuzzified Values of Reliability Indices for Screening System

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 2.16888074 9.03418074 0.36165724 0.03705180 0.05252805 2.64272584
to GABLT 1.76021754 0.26352005 0.03119723 0.03312413 0.02528282 0.16126749
±15% ABCBLT 0.89975233 0.12030346 0.24220501 0.00895354 0.00387549 0.01122068
±15% FLT 4.06283693 16.2619860 1.44899350 0.07072834 0.05934210 4.16715349
to GABLT 3.40957694 1.28724500 0.08206347 0.05186874 0.01170795 0.29976139
±25% ABCBLT 1.84339009 0.46611568 0.85243626 0.04053018 0.00565697 0.08041602
±25% FLT 24.90227688 97.7209396 6.67354282 0.44560053 0.30524279 13.4355125
to GABLT 18.63179663 1.51272533 0.48588972 0.31268599 0.05189102 1.50897547
±50% ABCBLT 11.54419922 0.63980245 4.37216672 0.19855501 0.05443627 0.01285220
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5.3.6 Forming Unit

The function of the forming unit [140, 143, 145, 214] is to carry metered quantity

of the pulp for further processing. It consists of head box, wire mat, suction box

and a number of rollers. Cooked pulp after processing through number of stages

is fed to head box of paper machine from where pulp is made to run on the wire

mat, supported by number of rollers. The head box delivers stock (pulp + water) in

controlled quantity to moving wire mat, supported by series of tables and wire rolls.

The suction box (having six pumps) de-waters the pulp through vacuum action.

Four pumps out of six should keep on working to keep the system working. The

chances of failure of head box are negligibly small.

• Head box (A): It consists of a single unit only. Its failure causes complete

failure of the system.

• Wire mat (B): It consists of a single unit of wire mat. Its failure causes

complete failure of the system.

• Suction box (C): Six pumps are arranged in complex configuration and is

considered as a single system. Failure of more than two pumps at a time causes

failure of the system.

• Rollers (D,E,F): This subsystem consist of roller bearing, roller bending and

roller rubber wear.

The interaction among the working components of the system are shown in

Fig. 5.13 [140], where FUF represents the system top failure event of the forming

unit. The input data related to failure rate and repair time parameters of the main

components of the system are given in Table 5.21. The minimal-cut sets, {A}, {B},

{C}, {D}, {E} and {F} of the system are obtained from their FTA model. Based

on these cut sets various reliability parameters are depicted graphically in Fig. 5.14,

along with FLT and GABLT technique results. Based on these figures, the decrease

in spread in the form of uncertainties are calculated by ABCBLT technique from
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FLT and GABLT technique and their corresponding values are tabulated in Table

5.22. The crisp and defuzzified values for various reliability parameters at ±15%,

±25% and ±50% spreads for all the three techniques are calculated and depicted in

Table 5.23. It is observed from the table that the variation in their defuzzified values

by ABCBLT technique ar quite less as compared to other techniques results values.

For instance, failure rate of the system increases by 3.16343271%, 1.59023512% and

1.46965625% for FLT, GABLT and ABCBLT respectively, when spread changes

from ±15% to ±25%, and it further increases by 18.88864406%, 10.56909685% and

8.454456966% when spread changes from ±25% to ±50%. The complete analysis of

the decrease or increase in their defuzzified values, when spread changes from ±15%

to ±25% and further from ±25% to ±50% are summarized in Table 5.24.

FUF

OR

A

E1

B

E2

C

E3

D E F

OR

E4

Figure 5.13: FTA model of the Forming Unit

Table 5.21: Input Data for the Forming Unit

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Head Box 415 1.60 10
Wire Mat 342 1.80 12
Suction Box 960 1.22 2.5
Roller Bearing 523 1.17 2.0
Roller Bending 424 1.21 4.0
Roller Rubber Wear 313 1.24 3.0
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Table 5.22: Data related to Spread of Reliability Indices for Forming Unit

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00211420 4.67327578 24.61603726 0.01584372 0.00858562 0.22547575
II 0.00145098 1.14974776 16.51028825 0.01221376 0.00381519 0.06188913
III 0.00045447 0.39769248 4.74455827 0.00357712 0.00184429 0.02043862

Decrease in spread (in %) from
I to II 31.36978526 75.39739116 32.92873229 22.91103351 55.56302282 72.55175778
I to III 78.50392583 91.49007037 80.72574305 77.42247401 78.51884895 90.93533561
II to III 68.67841045 65.41045837 71.26301977 70.71237686 51.65928826 66.97542847

I: FLT II: GABLT III: ABCBLT

Table 5.23: Defuzzified Values of Reliability Indices for Forming Unit

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00536426 4.04733997 70.52321155 0.95829314 0.98484149 0.91547928

Defuzzified values for reliability indices
FLT 0.00545515 4.34356997 70.81748232 0.95763420 0.98423790 0.89435564

±15% GABLT 0.00543253 4.08334430 70.30825894 0.95782415 0.98478052 0.91397452
ABCBLT 0.00539650 4.06192449 70.34123193 0.95804598 0.98472096 0.91460789
FLT 0.00562772 4.91756397 71.37733246 0.95638865 0.98336874 0.86174266

±25% GABLT 0.00551892 4.08478788 70.41299876 0.95718573 0.98468339 0.91044414
ABCBLT 0.00547581 4.06321641 69.88420866 0.95753611 0.98456588 0.91371524
FLT 0.00669072 8.73843164 74.85338400 0.94887855 0.97850278 0.75973975

±50% GABLT 0.00610222 4.26226956 70.06419996 0.95209849 0.98344317 0.89892753
ABCBLT 0.00593876 4.10464963 66.75943508 0.95385152 0.98824364 0.91119569

Table 5.24: Change in Defuzzified Values of Reliability Indices for Forming Unit

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 1.69436231 7.31912817 0.41726796 0.06876184 0.06128803 2.30738591
to GABLT 1.27268253 0.88958007 0.30479696 0.04894013 0.00619084 0.16436854
±15% ABCBLT 0.60101486 0.36034828 0.25804216 0.02579169 0.01223851 0.09518402
±15% FLT 3.16343271 13.2147980 0.79055357 0.13006532 0.08830791 3.64653372
to GABLT 1.59023512 0.03535288 0.14897228 0.06665315 0.00986311 0.38626678
±25% ABCBLT 1.46965625 0.03180561 0.64972315 0.05321978 0.01574862 0.09759920
±25% FLT 18.88864406 77.6983826 4.86996560 0.78525607 0.49482557 11.8368179
to GABLT 10.56909685 4.34494238 0.49536137 0.53147888 0.12595114 1.26494416
±50% ABCBLT 8.454456966 1.01971482 4.47135860 0.38479906 0.37354128 0.27574783
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Figure 5.14: Fuzzy Reliability Indices Plot for Forming Unit at ±15% spread
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5.3.7 Press Unit

The main function of the press unit [140, 143, 145, 214] is to reduce the moisture

content of the paper by pressing the pulp under the rolls received from forming unit

of machine. The system consists of synthetic belt (felt), upper and bottom rollers

as main components. The unit receives wet paper sheet from forming unit on to

the synthetic belt, which is further, carried through press rolls thereby reducing the

moisture content to almost 50-60%. The system consists of the following subsystems

defined as:

• Synthetic Belt(A): It consists of a single belt only. Its failure causes the

complete failure of the system.

• Upper Rollers(B,C,D): This subsystem consist of bearing, bending and

rubber wear arranged in series configuration.

• Lower Rollers(E,F,G): It also has bearing, bending and rubber wear ar-

ranged in series configuration.

The interaction among the working components of the system are modeled with

their fault tree which has been given in Fig. 5.15 [140], where PUF represents

the system top failure event. The input data related to failure rate and repair

time parameters of the main components of the system are given in Table 5.25.

The minimal-cut sets, {A}, {B}, {C}, {D}, {E}, {F} and {G} of the system

are obtained from their FTA model. Based on these cut sets various reliability

parameters are depicted graphically in Fig. 5.16, along with FLT and GABLT

technique results. Based on these figures, the decrease in spread in the form of

uncertainties are calculated by ABCBLT technique from FLT and GABLT technique

and their corresponding values are tabulated in Table 5.26. The crisp and defuzzified

values for various reliability parameters at ±15%, ±25% and ±50% spreads for all

the three techniques are calculated and depicted in Table 5.27. It is observed from
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the table that the variation in their defuzzified values by ABCBLT technique ar

quite less as compared to other techniques results values. For instance, failure rate

of the system increases by 2.88208121%, 2.22605915% and 1.22303368% for FLT,

GABLT and ABCBLT respectively, when spread changes from ±15% to ±25%, and

it further increases by 16.9629697%, 10.8618221% and 7.56578244% when spread

changes from ±25% to ±50%. The complete analysis of the decrease or increase in

their defuzzified values, when spread changes from ±15% to ±25% and further from

±25% to ±50% are summarized in Table 5.28.

PUF

A

E1

B C D

OR

E2

E F G

OR

E3

OR

Figure 5.15: FTA model of the Press Unit

Table 5.25: Input Data for the Press Unit

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Felt (i=1) 1045 2.40 5.0
Roller bearing (i=2,5) 523 1.17 2.0
Roller bending (i=3,6) 434 1.21 3.5
Roller rubber wear (i=4,7) 313 1.24 4.0
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Table 5.26: Data related to Spread of Reliability Indices for Press Unit

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00309302 3.53428329 16.3707788 0.02378282 0.01254591 0.15518350
II 0.00218671 0.95715940 18.0028037 0.02048058 0.00547232 0.04391716
III 0.00074202 0.31623352 5.12545109 0.00617058 0.00148575 0.01364099

Decrease in spread (in %) from
I to II 29.30178272 72.91786420 9.96913415 13.88498083 56.38164150 71.69985211
I to III 76.00985444 91.05240032 68.6914645 74.05446452 88.15749515 91.20976779
II to III 66.06683099 66.96124804 71.5297062 69.87106810 72.84972370 68.93927111

I: FLT II: GABLT III: ABCBLT

Table 5.27: Defuzzified Values of Reliability Indices for Press Unit

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00828005 3.29634520 69.64655236 0.93391670 0.97690247 0.95186101

Defuzzified values for reliability indices
FLT 0.00840816 3.50214818 69.85066521 0.93296867 0.97592786 0.93370339

±15% GABLT 0.00835737 3.30691464 69.60651464 0.93319642 0.97641768 0.95075604
PSOBLT 0.00832520 3.29851908 69.44763593 0.93350628 0.97673760 0.95151731
FLT 0.00865049 3.89560133 70.23181031 0.93118494 0.97467663 0.90472467

±25% GABLT 0.00854341 3.30447480 69.67961557 0.93185341 0.97653744 0.94930196
PSOBLT 0.00842702 3.29904959 68.85239394 0.93279659 0.97636286 0.95150865
FLT 0.01011787 6.37215311 72.39361302 0.92065257 0.96815424 0.80552919

±50% GABLT 0.00947138 3.36924022 69.19201356 0.92397784 0.97361727 0.93970612
PSOBLT 0.00906459 3.30569446 65.88485400 0.92765158 0.97697570 0.95115385

Table 5.28: Change in Defuzzified Values of Reliability Indices for Press Unit

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 1.54721287 6.24336856 0.29306956 0.10151119 0.09976533 1.90759152
to GABLT 0.93381078 0.32064117 0.05748701 0.07712465 0.04962522 0.11608522
±15% PSOBLT 0.54528656 0.06594819 0.28560843 0.04394610 0.01687681 0.03610821
±15% FLT 2.88208121 11.2346231 0.54565707 0.19118862 0.12820927 3.10363230
to GABLT 2.22605915 0.07377995 0.10502024 0.14391503 0.01226524 0.15293933
±25% PSOBLT 1.22303368 0.01608327 0.85710907 0.07602412 0.03836649 0.00091012
±25% FLT 16.9629697 63.5730294 3.07809623 1.13107177 0.66918501 10.9641621
to GABLT 10.8618221 1.95993081 0.69977712 0.84515117 0.29903308 1.01083115
±50% PSOBLT 7.56578244 0.20141770 4.31000255 0.55156826 0.06276764 0.03728815
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Figure 5.16: Fuzzy Reliability Indices Plot for Press Unit at ±15% spread
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5.3.8 Dryer Unit

In the dryer unit [140, 143, 145, 214], the pulp is further dried by heating and thus

vaporizing the moisture content to zero level. The system consists of steam-heated

rolls (dryers), in stages, and the steam is supplied from steam handling systems.

The rolls are heated with superheated steam and remove the moisture content of the

paper rolled over them completely. The system consists of the following subsystems

defined as:

• Belt (A): It consists of a single belt only. Its failure will cause the complete

failure of the system.

• Upper Rollers (B,C): There are two rollers each of them consists of bearing

and bending.

• Bottom Rollers (D,E): It also have two rollers and each of them consists of

bearing and bending.

The interaction among the working components of the system are modeled with

their fault tree which has been given in Fig. 5.17 [140], where DUF represents the

system top failure event. The input data related to failure rate and repair time

parameters of the main components of the system are given in Table 5.29. The

minimal-cut sets, {A}, {B}, {C}, {D} and {E} of the system are obtained from

their FTA model. Based on these cut sets various reliability parameters are depicted

graphically in Fig. 5.18, along with FLT and GABLT technique results. Based on

these figures, the decrease in spread in the form of uncertainties are calculated

by ABCBLT technique from FLT and GABLT technique and their corresponding

values are tabulated in Table 5.30. The crisp and defuzzified values for various

reliability parameters at ±15%, ±25% and ±50% spreads for all the three techniques

are calculated and depicted in Table 5.31. It is observed from the table that the

variation in their defuzzified values by ABCBLT technique ar quite less as compared

to other techniques results values. For instance, failure rate of the system increases
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by 2.90442074%, 2.65330367% and 1.04311581% for FLT, GABLT and ABCBLT

respectively, when spread changes from ±15% to ±25%, and it further increases by

17.1109324%, 15.4289801% and 5.48240159% when spread changes from ±25% to

±50%. The complete analysis of the decrease or increase in their defuzzified values,

when spread changes from ±15% to ±25% and further from ±25% to ±50% are

summarized in Table 5.32.

A

E1

DUF

B C

OR
E2

OR

D E

OR

E3

Figure 5.17: FTA model of the Dryer Unit

Table 5.29: Input Data for the Dryer Unit

Components Failure data Repair time
Webiull distribution

scale (θ)(hrs) shape(β) τ (hrs)
Felt (i=1) 1045 2.40 10
Roller bearing (i=2,4) 523 1.17 2.0
Roller bending (i=3,5) 324 1.25 4.0
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Table 5.30: Data related to Spread of Reliability Indices for Dryer Unit

Computed spread for reliability indices
Failure rate Repair time MTBF Reliability Availability Maintainability

I 0.00207215 3.42535887 25.14556939 0.01623914 0.00767241 0.14634740
II 0.00193976 1.08320235 21.94243950 0.01521692 0.00405819 0.04466586
III 0.00054109 0.41230365 7.08183191 0.00409405 0.00165526 0.01720821

Decrease in spread (in %) from
I to II 6.38901623 68.37696746 12.73834702 6.29479147 47.10671092 69.47956711
I to III 73.88750814 87.96319843 71.83666116 74.78899744 78.42581405 88.24153350
II to III 72.10531199 61.93659938 67.72541216 73.09540958 59.21186538 61.47346093

I: FLT II: GABLT III: ABCBLT

Table 5.31: Defuzzified Values of Reliability Indices for Dryer Unit

Spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% Crisp 0.00552089 3.17655936 98.41298694 0.95561227 0.98517284 0.95706467

Defuzzified values for reliability indices
FLT 0.00560697 3.37733617 98.61219926 0.95495494 0.98437007 0.93902792

±15% GABLT 0.00559755 3.18780318 98.41359082 0.95500723 0.98502619 0.95556664
ABCBLT 0.00557081 3.17592457 98.08817270 0.95530016 0.98498296 0.95690310
FLT 0.00576982 3.76153168 98.98503169 0.95371576 0.98344696 0.91006439

±25% GABLT 0.00574607 3.19421402 98.56709785 0.95395732 0.98480731 0.95306835
ABCBLT 0.00562892 3.18016744 97.35544411 0.95480405 0.98501110 0.95686136
FLT 0.00675709 6.18905215 101.12610411 0.94633121 0.97887225 0.80968882

±50% GABLT 0.00663263 3.26174703 98.19366622 0.94750523 0.98303253 0.94013029
ABCBLT 0.00593752 3.18915406 94.05682695 0.95222728 0.98433350 0.95527553

Table 5.32: Change in Defuzzified Values of Reliability Indices for Dryer Unit

%age change in defuzzified values(in magnitude) from
spread Technique Failure rate Repair time MTBF Reliability Availability Maintainability
±0% FLT 1.55916890 6.32057478 0.20242482 0.06878626 0.08148519 1.88459051
to GABLT 1.38854423 0.35396221 0.00061361 0.06331438 0.01488571 0.15652338
±15% ABCBLT 0.90420203 0.01998357 0.33005221 0.03266073 0.01927377 0.01688182
±15% FLT 2.90442074 11.3756964 0.37807941 0.12976319 0.09377672 3.08441627
to GABLT 2.65330367 0.20110526 0.15598153 0.10993738 0.02222072 0.26144592
±25% ABCBLT 1.04311581 0.13359479 0.74701013 0.05193236 0.00285690 0.00436198
±25% FLT 17.1109324 64.5354253 2.16302645 0.77429254 0.46517099 11.0295019
to GABLT 15.4289801 2.11422934 0.37886032 0.67634996 0.18021596 1.35751648
±50% ABCBLT 5.48240159 0.28258323 3.38822054 0.26987422 0.06879110 0.16573247
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Figure 5.18: Fuzzy Reliability Indices Plot for Dryer Unit at ±15% spread
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5.4 Conclusion

The main objective of this chapter has been to analyze the behavior of the paper

mill, a repairable industrial system more closely by utilizing uncertain, vague and

imprecise data. For this, data related to time varying failure rate and a constant

repair time model has been used during the analysis. The uncertainties which are

present in the data are handled with the help of triangular fuzzy numbers which

will greatly increase the relevance of the reliability study. FTA model has been

used for modeling the system and hence on that minimal cut set of the system are

obtained. In order to analyze the behavior of the system, six well known reliability

indices which depicts the behavior of the system are calculated in the form of fuzzy

membership functions. For constructing these membership functions, a novel tech-

nique namely artificial bee colony based lambda-tau (ABCBLT) has been proposed

in which a nonlinear optimization problem has been formulated by utilizing the

quantified failure and repair rate data. The computation of the various reliability

parameters at different degree of membership values will help the system analyst or

maintenance managers to understand the behavior of the system. Based on their

analysis, the system analyst may predict the behavior of the system and also take

necessary steps to build the reliability into the system. The corresponding defuzzified

as well as crisp values will helps the plant personnel to implement the corresponding

results on their system. The computed results by the proposed approach are finally

compared with the traditional (crisp) and FLT and GABLT techniques results in

the tabular and in figure form. The major advantages for the system analyst from

the view of proposed technique results is that it gives compressed range of region

for each reliability index which gives higher sensitive zone and thus may have useful

for the reliability engineers/experts to make more sound decisions. Moreover, the

variation of the their defuzzified values are quite less as compared to other technique

results. Thus, it will facilitate the management in reallocating the resources, making

maintenance decision and enhancing the overall production as well productivity of
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the paper industry and thereby reduce operational and maintenance costs.

In nutshell, the important managerial implications drawn by using the discussed

technique are to

• model and predict the behavior of industrial systems in a more consistent

manner;

• carry out design modifications, if any, required to achieve minimum failures,

• help in maintenance (repair and replacement) decision making,

• analyze failure behavior of industrial systems in more realistic manner as they

often make use of imprecise data;

• analyze the behavior of the system in higher sensitivity zone;



Chapter 6

RAM analysis of an industrial
systems by utilizing uncertain data

In this chapter analysis RAM parameters of an industrial system are analysed by uti-

lizing uncertain, imprecise data. A composite measure of RAM parameters, namely

RAM-Index has been given for performance analysis of the system. ABCBLT tech-

nique has been used here for analysis of this index. The technique has been applied

on the paper mill.

6.1 Introduction

Today industrial systems are becoming more complex and getting more complicated

due to modern technology and higher reliability requirements. So utilisation of

multi-level redundant, bridge design structures have been seen immensely increasing

in many practical systems like communication system, network design etc., which

allow a system to achieve high reliability at the expense of system complexity. In

addition to complexity of the system, most of the real-world industrial systems

are repairable in nature and hence when the system/components are failed then

they get repaired based on different distributions and with additional constraints

such as spare parts availability, repair crew response time, etc. The effectiveness

of production processes and the equipment that are part of them are generally

measured according to the results of reliability and availability indicators, as well

127
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as through the economic analysis of its life cycle. The behavior of such systems

can be studied in terms of their reliability, availability and maintainability (RAM).

RAM encompasses the essential features of reliability in general. These features are

interrelated in such a way that it is necessary to have both a high reliability and a

good maintainability in order to achieve a high availability.

For the last four decades, there are several investigations with the objective to

identify the principal factors that directly affect the maximization of economic ben-

efit, and that converge at empirical consideration of RAM indicators [142, 145, 196,

216]. Moreover, a company cannot adopt a rapid response strategy if its systems

are unavailable and unreliable. So it is expected that a production system should

remain operative for maximum possible duration to achieve the desired goals of

production. For the correct estimation of a RAM analysis, it is necessary that a

logical sequence of procedures for ensuring the correct assessment of the process has

been followed. Further, it is necessary to require precise knowledge of numerical

probabilities and system’s components’ functional dependencies which may be dif-

ficult to obtain in any large-scale system. Thus in such situation, it is difficult, if

not impossible, to analyze the RAM parameters and consequently their behavior.

Therefore, it is very difficult to construct a precise and comprehensive mathemat-

ical model for an industrial system which may be close to real conditions. Thus

in order to minimize the deleterious effects of system/ subsystem failures, different

improvement opportunities can be identified and recommendations be made for the

most appropriate actions needed to be developed through the use of a maintenance

management support tool.

In the framework of reliability, availability and maintainability analysis, some

researcher have paid attention on that issue in which they analyzed the performance

of the system by considering reliability, availability or maintainability as an objective

function. In their analysis they utilized the historical data for analysis without

quantifying the uncertainty. Thus the computed results did not follow actual trend
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of the system because historical data/reords can only represent the past behavior of

the system but unable to predict the future behavior. Thus it is necessary that the

collected data should be quantified in order to handle the uncertainties in the data.

For this, fuzzy set theory [260] has been used for representing the collected data in

terms of fuzzy numbers. In analysis of the RAM of an industrial system, researchers

have paid more attention on the components whose failure follows the exponential

distribution. But in real-life modeling, as we know, the most popular reliability

distributions for the failure rate are Weibull distributions. Therefore, it seems that

there is a need for a more generalized methodology that can be applied for variable

failure rates. In this light, the main objective of this chapter is to investigate the

effect of failure and repair rates parameters on the composite measure of the RAM

for an industrial system by using limited, imprecise and vague data. A time varying

failure rate and constant repair rate model have been for an industrial system for

analysis. The approach has been applied for all the important functioning units of a

paper mill and help the system analyzer to analyze the system performance on the

basis of past failure and repair data.

6.2 Mathematical Aspects of RAM parameters

System reliability, maintainability and availability have assumed great significance

in recent years due to a competitive environment and overall operating and produc-

tion costs. Performance of equipment depends on the reliability and availability of

the equipment used, operating environment, maintenance efficiency, operation pro-

cess and technical expertise of operators, etc. When the reliability and availability

of systems are low, efforts are needed to improve them by reducing the failure rate or

increasing the repair rate for each component or subsystem. Thus, reliability, avail-

ability and maintainability are the important key features for keeping the production

and productivity of the system high. For maintaining this, a composite measure of

RAM parameters named as the RAM-Index has been analyzed by the researchers
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[142, 196, 216] for increasing the performance of the system. But the disadvantages

of Sharma and Kumar [216] approach are that they applied Markovian approach

by utilizing historical crisp data without quantification of involved uncertainties.

On the other hand, Rajpal et al. [196] developed an artificial neural network (ANN)

model for assessing the effect of input parameters on system performance at specified

times i.e. its value does not change with time. But in real life situations, industrial

system behavior changes with time. Thus it does not provide the actual trend of the

system behavior. Also it is unable to access and analyze the sensitive component

of the system. Komal et al. [142] extended this idea by quantifying the uncertainty

in the analysis. But their approach is limited to a system whose components follow

the constant failure rate model i.e. following the exponential distribution. Thus

there is a need of a generalized index for a time varying component parameter for

measuring the performance of the system such that system analyst may find the

component on which more attention should be given to save money, manpower and

time. Therefore, the proposed RAM-Index is valid for a time varying failure rate

model instead of constant failure rate model (exponential distribution) and is given

as below

RAM(t) = w1 ×R(t) + w2 × A(t) + w3 ×M(t) (6.2.1)

where wi’s are the weights associated with the reliability parameters such that
3∑

i=1

wi = 1. Here W = [0.36, 0.30, 0.34] are the values of weights used during the

analysis corresponding to reliability, availability and maintainability respectively.

The equation (6.2.1) can be rewritten in more elaborative form as

RAM(t) = w1 × exp

[
−

(
t

θ

)β]
+ w3 ×

{
1− exp

(
−t
τ

)}
(6.2.2)

+w2 × exp

{
−
(
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)β

− t

τ

}[
1 +

1

τ

∫ t

0

exp
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t

θ

)β

+
t

τ

}
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]
The major benefit/advantages of this index is that by varying individually the

components’ parameters the corresponding combined effects on the system perfor-

mance have been analyzed which effect the plant personnel/DMs/system analyst
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for predicting the impact of components’ parameters on its performance. Moreover,

this index has simultaneously considered the reliability parameters which affect the

system performance directly. For analyzing the performance of the system through

this index, a large amount of data are required which are difficult to obtain from

the maintenance personnel due to lack of human error etc. Also, if somehow they

are collected then they have a large range of uncertainties as they represent only the

past behavior and unable to predict the future behavior of the system. Thus the

collected data are usually incomplete, imprecise, conflicting, and lead to inadequate

knowledge of system behavior. Therefore fuzzy methodology has been used for han-

dling such uncertainties and hence triangular fuzzy numbers corresponding to the

collected data are developed for increasing the relevance of the study. Therefore by

using quantified input data, RAM parameters and consequently their RAM-Index

becomes a triangular fuzzy membership function which can be expressed as

R̃AM(t) = (RAML(t), RAMM(t), RAMU(t)) (6.2.3)

Since each reliability parameter at any time ‘t’ belongs to (0, 1) and RAM-Index

is a linear combination of these parameters and hence it is clear that RAM(t) ∈

(0, 1).

6.3 RAM analysis of various subsystems of a Pa-

per mill

The behavior of all the system of the paper mill is already described in Chapter 5

in which various reliability parameters are addressed in the form of fuzzy member-

ship functions by using ABCBLT technique. As it can been seen from the analysis

that the initial condition of the equipment or system should be changed in order to

increase the performance of the system. For this necessary maintenance action or

special attention should be given to the equipments/components as per the preferen-

tial order. But it is difficult for the system analyst as to how to find the component
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on which more attention should be given for improving the performance and to save

the money, manpower and time. Also there are so many inherent factors that affect

the system performance internally. Thus it is very difficult, if not impossible, to

find the components as per their behavior so that decision makers/system analysts

may increase the production and productivity of the system by adopting the nec-

essary actions. This problem can be resolved by RAM analysis using the proposed

RAM-Index which may be very helpful for the system analyst/plant personnel for

finding out the components on which more attention should be given to improve the

performance of the system. For analysis the below given schedule is followed:

(i) As the system performance depends on the performance of its subsystems and

their components which in turn again depends on their components’ parame-

ters. Moreover, failure of a component will reduce the efficiency of the system

and hence the performance. Handling the uncertainties also plays an impor-

tant role during the analysis. Thus it is necessary that the uncertainties during

the analysis must be reduced first, up to a desired level. In view of this, the

behavior of the system RAM-index has been analyzed first at t = 10(hrs) in

the form of fuzzy membership functions by ABCBLT technique, and then with

different level of uncertainties ranging from 0 to 100% for all the subsystems of

a paper mill. This has been depicted through plots. These two plots are shown

for all the subsystems in their respective analysis. This analysis suggests that

for achieving higher performance of the system, involved uncertainties should

be minimized.

(ii) At different α− cuts (0, 0.5, 1), the long-run period behavior of the RAM

and their corresponding RAM-index has been analyzed and shown in their

respective figures which shows that RAM-Index of the system increases within

a fixed time interval and attains a maximum at a certain time and after that

system performance reduces exponentially.
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(iii) Effect on the subsystems’ RAM - Index consequently on its performance has

been examined by varying each component’s parameters individually and si-

multaneously and at the same time by keeping both the parameters of other

components fixed. Based on their performance analysis results, recommenda-

tions have been given to the plant personnel or system analyst for maintaining

the performance of the system as per the obtained preferential order.

Thus in this section, RAM analysis of a various subsystems of a paper mill has

been done by using RAM-Index.

6.3.1 Analysis of Feeding system

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM-index and the spread from 0 to 100(in %) have been shown for

the feeding system in Fig. 6.1(a) and 6.1(b) respectively. On the other hand, the

variation of their RAM parameter along with their index for a long-run period are

shown in Fig. 6.2 which shows that the RAM-Index of the system increases within

the time interval from t = 0 to 17 (hrs) and then attains its maximum value in

the interval range 0.880037245 - 0.909273575 at t = 17 (hrs) and after that system

performance reduces exponentially. Thus it is found that current condition of the

system or equipments should be changed after t = 17 (hrs). In order to find the

component, at this time, on which more attention should be given for saving money,

time etc., an investigation has been done on RAM-Index from the view-point of

system’s performance by varying each component’s parameters individually. The

effect of each component parameters, failure parameter λ for failure rate and τ for

repair time, on system RAM-Index has been analyzed and shown graphically in

Fig. 6.3 which contains five subplots corresponding to the five main components

of the system. Each subplot contains two subplots corresponding to the variation

of the failure rate and repair time parameters. The ranges of their corresponding

parametric values are summarized in Table 6.1. This analysis will suggest the system
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analyst that how the components’ failure and repair rates significantly affect its

performance.

But in real-life situation, components failure and repair rates simultaneously

affect the system performance. Hence it is necessary to analyze the simultaneous

impact of components parameters on its RAM-Index. For this, by varying the

components’ parameters, λ and τ , of each component simultaneously then the cor-

responding effect on the system performance has been analyzed and shown through

their surface plot in Fig. 6.4 which contains five subplots corresponding to each com-

ponent of the system. It may be observed from the Fig. 6.4(a) that the variations

in the failure rate and repair time of the blower components show the significant

impact on the performance of the system i.e. an increase in their failure rate from

0.0053125 to 0.0071875 hrs−1 and repair time from 8.500 to 11.500 hrs reduce the

system index by 4.803%. Similar effects on system RAM-Index by the variations in

the other components’ failure rate and repair times are also observed from the Fig.

6.4. The magnitude of effect of variation in failure rate and repair times of various

subsystems of the system on its performance is summarized in Table 6.2. On the

basis of these tabulated results, it has been analyzed that for improving/increasing

the performance and productivity of the system, more attention should be given to

the components by the plant personnel as per preferential order; chain conveyor,

blower, feeder, bucket conveyor and belt conveyor.
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Figure 6.1: RAM-Index variation for Feeding System

Table 6.1: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Feeding System

Component Range of failure RAM-Index Range of Repair RAM-Index
rate λ(hrs−1) Time MTTR(hrs)

Blower 0.0053125 - 0.0071875 Min: 0.86819680 8.500 - 11.500 Min: 0.86400908
Max: 0.88870809 Max: 0.89254844

Chain Conveyor 0.03400 - 0.04600 Min: 0.87668248 2.125 - 2.875 Min: 0.87702666
Max: 0.87895755 Max: 0.87894140

Belt Conveyor 0.00850 - 0.01150 Min: 0.87764213 1.700 - 2.300 Min: 0.87779086
Max: 0.87830340 Max: 0.87817381

Bucket Conveyor 0.007055 - 0.009545 Min: 0.87793712 4.250 - 5.750 Min: 0.87758526
Max: 0.87800929 Max: 0.87837987

Feeder 0.011305 - 0.015295 Min: 0.87610521 5.100 - 6.900 Min: 0.87775234
Max: 0.87914560 Max: 0.87799854
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Figure 6.2: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Feeding System
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Figure 6.3: Effect of Varying Individual Components’ Parameters on RAM-Index
for Feeding System
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Figure 6.4: Effect of Simultaneously Varying the Components’ Parameters on RAM-
Index for Feeding System
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Table 6.2: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Feeding System

Component Range of failure Range of Repair RAM-Index
rate λ(hrs−1) Time MTTR(hrs)

Blower 0.0053125 - 0.0071875 8.500 - 11.500 Min: 0.83690744
Max: 0.87711190

Chain Conveyor 0.03400 - 0.04600 2.125 - 2.875 Min: 0.75314666
Max: 0.83560871

Belt Conveyor 0.00850 - 0.01150 1.700 - 2.300 Min: 0.94410519
Max: 0.96304723

Bucket Conveyor 0.007055 - 0.009545 4.250 - 5.750 Min: 0.89477042
Max: 0.93581206

Feeder 0.011305 - 0.015295 5.100 - 6.900 Min: 0.83732381
Max: 0.89606563
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6.3.2 Analysis of Pulping system

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM-Index and the spread from 0 to 100(in %) have been shown

for the pulping system in Fig. 6.5(a) and 6.5(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.6 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 19hrs and attains its maximum value at t =

19 hrs in the interval 0.960801250 - 0.96506191 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=19hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously

and fixing failure rate and repair time parameters of other components at the same

time. The results are depicted graphically by Fig. 6.7 and Fig. 6.8 respectively.

The maximum and minimum values of each of the component are noticed and given

in Table 6.3 and Table 6.4 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; digester, knotters, openers

and deckers.
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Figure 6.5: RAM-Index variation for Pulping System

Table 6.3: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Pulping System

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Digester 434.350 - 587.650 Min: 0.93297831 12.750 - 17.250 Min: 0.93393685
Max: 0.95005046 Max: 0.95143491

Knotters 94.350 - 127.6500 Min: 0.94126214 4.250 - 5.750 Min: 0.94253238
Max: 0.94485643 Max: 0.94266240

Deckers 214.200 - 289.800 Min: 0.93629069 2.1250 - 2.8750 Min: 0.93835874
Max: 0.94924583 Max: 0.94698597

Openers 128.350 - 173.650 Min: 0.94179008 4.2500 - 5.7500 Min: 0.94257357
Max: 0.94402525 Max: 0.94266190

Table 6.4: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Pulping System

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Digester 434.350 - 587.650 12.750 - 17.250 Min: 0.80673255
Max: 0.84184266

Knotters 94.350 - 127.6500 4.250 - 5.750 Min: 0.88890019
Max: 0.93671713

Deckers 214.200 - 289.800 2.1250 - 2.8750 Min: 0.97622526
Max: 0.98638181

Openers 128.350 - 173.650 4.2500 - 5.7500 Min: 0.90912831
Max: 0.94905336
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Figure 6.6: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Pulping System
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Figure 6.7: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Pulping System
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Figure 6.8: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Pulping System
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6.3.3 Analysis of Washing system

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM-Index and the spread from 0 to 100(in %) have been shown

for the washing system in Fig. 6.9(a) and 6.9(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.10 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 17hrs and attains its maximum value at t =

17 hrs in the interval 0.97637403 - 0.97875121 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=17hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.11 and Fig. 6.12 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.5 and Table 6.6 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; screener, filter, cleaner and

decker.
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Figure 6.9: RAM-Index variation for Washing System

Table 6.5: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Washing System

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Filter 286.45 – 387.55 Min: 0.9673619 2.975 – 4.025 Min: 0.9633272
Max: 0.9683148 Max: 0.9724028

Cleaner 144.50 – 195.50 Min: 0.9679633 1.700 – 2.300 Min: 0.9679633
Max: 0.9679636 Max: 0.9679634

Screener 362.10 – 489.90 Min: 0.9663787 3.400 – 4.600 Min: 0.9627452
Max: 0.9691401 Max: 0.9729289

Decker 214.20 – 289.80 Min: 0.9679531 2.125 – 2.875 Min: 0.9679608
Max: 0.9679836 Max: 0.9679652

Table 6.6: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Washing System

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Filter 286.45 – 387.55 2.975 – 4.025 Min: 0.95884551
Max: 0.97848162

Cleaner 144.50 – 195.50 1.700 – 2.300 Min: 0.96566412
Max: 0.98015829

Screener 362.10 – 489.90 3.400 – 4.600 Min: 0.95186796
Max: 0.97436143

Decker 214.20 – 289.80 2.125 – 2.875 Min: 0.97142664
Max: 0.98559936
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Figure 6.10: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Washing System
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Figure 6.11: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Washing System
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Figure 6.12: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Washing System
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6.3.4 Analysis of Bleaching system

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM-index and the spread from 0 to 100(in %) have been shown for

the bleaching system in Fig. 6.13(a) and 6.13(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.14 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 18hrs and attains its maximum value at t =

18 hrs in the interval 0.99406699 - 0.99491802 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=18hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.15 and Fig. 6.16 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.7 and Table 6.8 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; washer, bleaching tank

and filter.

Table 6.7: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Bleaching system

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Bleaching Tank 264.350 - 357.650 Min: 0.99143531 2.125 - 2.875 Min: 0.98782547
Max: 0.99244581 Max: 0.99514513

Filter 286.450 - 387.550 Min: 0.99199712 1.700 - 2.300 Min: 0.99202085
Max: 0.99208389 Max: 0.99203318

Washer 362.100 - 489.900 Min: 0.99202047 2.550 - 3.450 Min: 0.99202524
Max: 0.99204461 Max: 0.99203069
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Figure 6.13: RAM-Index variation for Bleaching unit

Table 6.8: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Bleaching system

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Bleaching Tank 264.350 - 357.650 2.125 - 2.875 Min: 0.98721290
Max: 0.99462516

Filter 286.450 - 387.550 1.700 - 2.300 Min: 0.99362376
Max: 0.99780882

Washer 362.100 - 489.900 2.550 - 3.450 Min: 0.98033122
Max: 0.99257253
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Figure 6.14: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Bleaching System
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Figure 6.15: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Bleaching system
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Figure 6.16: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Bleaching system
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6.3.5 Analysis of Screening system

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM-index and the spread from 0 to 100(in %) have been shown for

the screening system in Fig. 6.17(a) and 6.17(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.18 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 16hrs and attains its maximum value at t =

16 hrs in the interval 0.97846852 - 0.98042122 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=16hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.19 and Fig. 6.20 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.9 and Table 6.10 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; decker, screener, filter and

cleaner.



156

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

0.2

0.4

0.6

0.8

1

RAM−Index

D
e

g
re

e
 o

f 
M

e
m

b
e

rs
h

ip

Fuzzy RAM−Index

 

 

FLT
GABLT
ABCBLT

(a)

0 20 40 60 80 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Variation of RAM Index w.r.t. spread

Spread (in %)

R
A

M
 I

n
d
ex

 
(b)

Figure 6.17: RAM-Index variation for Screening unit

Table 6.9: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Screening system

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Filter 286.450 - 387.550 Min: 0.97465822 1.700 - 2.300 Min: 0.97342489
Max: 0.97667539 Max: 0.97787954

Screener 267.750 - 362.250 Min: 0.97417942 3.400 - 4.600 Min: 0.97294317
Max: 0.97680809 Max: 0.97831576

Cleaner 399.500 - 540.500 Min: 0.97569885 1.700 - 2.300 Min: 0.97569885
Max: 0.97569885 Max: 0.97569885

Decker 214.200 - 289.800 Min: 0.97324561 4.250 - 5.750 Min: 0.97298904
Max: 0.97743319 Max: 0.97827127

Table 6.10: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Screening system

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Filter 286.450 - 387.550 1.700 - 2.300 Min: 0.98675020
Max: 0.99197856

Screener 267.750 - 362.250 3.400 - 4.600 Min: 0.95034946
Max: 0.97417884

Cleaner 399.500 - 540.500 1.700 - 2.300 Min: 0.99011339
Max: 0.99565120

Decker 214.200 - 289.800 4.250 - 5.750 Min: 0.92456143
Max: 0.95706339
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Figure 6.18: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Screening System
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Figure 6.19: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Screening system
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Figure 6.20: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Screening system



160

6.3.6 Analysis of Forming unit

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM index and the spread from 0 to 100(in %) have been shown for

the forming system in Fig. 6.21(a) and 6.21(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.22 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 17hrs and attains its maximum value at t =

17 hrs in the interval 0.95344938 - 0.95617210 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=17hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.23 and Fig. 6.24 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.11 and Table 6.12 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; wire mat, head box, roller

bending, roller rubber wear, roller bearing and suction box.
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Figure 6.21: RAM-Index variation for Forming unit

Table 6.11: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Forming unit

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Head Box 352.750 - 477.250 Min: 0.94893083 8.500 - 11.500 Min: 0.94964214
Max: 0.95361064 Max: 0.95373846

Wire Mat 290.700 - 393.300 Min: 0.94864037 10.200 - 13.800 Min: 0.94984082
Max: 0.95373651 Max: 0.95354232

Suction Box 816.000 - 1104.000 Min: 0.95158189 2.125-2.875 Min: 0.95108967
Max: 0.95184939 Max: 0.95231269

Roller Bearing 444.550 - 601.450 Min: 0.95110995 1.700 - 2.300 Min: 0.95049021
Max: 0.95238686 Max: 0.95290690

Roller Bending 360.400 - 487.600 Min: 0.95066132 3.400 - 4.600 Min: 0.94900352
Max: 0.95244384 Max: 0.95437178

Roller Rubber Wear 266.050 - 359.950 Min: 0.95155516 2.550 - 3.450 Min: 0.94897402
Max: 0.95170786 Max: 0.95439904
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Figure 6.22: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Forming Unit



163

Table 6.12: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Forming unit

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Head Box 352.750 - 477.250 8.500 - 11.500 Min: 0.82485552
Max: 0.87276252

Wire Mat 290.700 - 393.300 10.200 - 13.800 Min: 0.79314723
Max: 0.84373886

Suction Box 816.000 - 1104.000 2.125-2.875 Min: 0.98012622
Max: 0.99014132

Roller Bearing 444.550 - 601.450 1.700 - 2.300 Min: 0.97659914
Max: 0.98505662

Roller Bending 360.400 - 487.600 3.400 - 4.600 Min: 0.93367518
Max: 0.96211070

Roller Rubber Wear 266.050 - 359.950 2.550 - 3.450 Min: 0.94328083
Max: 0.96601023
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Figure 6.23: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Forming Unit
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Figure 6.24: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Forming Unit
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6.3.7 Analysis of Press unit

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM index and the spread from 0 to 100(in %) have been shown

for the press unit in Fig. 6.25(a) and 6.25(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.26 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 13hrs and attains its maximum value at t =

13 hrs in the interval 0.94689267 - 0.94982651 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=13hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.27 and Fig. 6.28 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.13 and Table 6.14 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; roller rubber wear, felt,

roller bending and roller bearing.
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Figure 6.25: RAM-Index variation for Press unit

Table 6.13: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Press unit

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Felt 888.250 - 1201.750 Min: 0.95290494 4.250 - 5.750 Min: 0.95290868
Max: 0.95291861 Max: 0.95291834

Roller Bearing 444.550 - 601.450 Min: 0.95233001 1.700 - 2.300 Min: 0.95147981
Max: 0.95324182 Max: 0.95432199

Roller Bending 368.900 - 499.100 Min: 0.95071606 2.975 - 4.025 Min: 0.95020223
Max: 0.95450743 Max: 0.95553040

Roller Rubber Wear 266.050 - 359.950 Min: 0.94916368 3.400 - 4.600 Min: 0.94866045
Max: 0.95569419 Max: 0.95691173

Table 6.14: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Press unit

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Felt 888.250 - 1201.750 4.250 - 5.750 Min: 0.92661313
Max: 0.95862976

Roller Bearing 444.550 - 601.450 1.700 - 2.300 Min: 0.96916705
Max: 0.97851774

Roller Bending 368.900 - 499.100 2.975 - 4.025 Min: 0.93545317
Max: 0.96074888

Roller Rubber Wear 266.050 - 359.950 3.400 - 4.600 Min: 0.90718910
Max: 0.94123915
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Figure 6.26: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Press Unit
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Figure 6.27: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Press unit
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Figure 6.28: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Press unit
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6.3.8 Analysis of Dryer unit

The behavior of the RAM-Index in the form of fuzzy membership function and a

plot between RAM index and the spread from 0 to 100(in %) have been shown

for the dryer unit in Fig. 6.29(a) and 6.29(b) respectively. On the other hand,

the variation of their RAM parameter along with their index for a long-run period

are shown in Fig. 6.30 which shows that the RAM-Index of the system increases

within the time interval from t = 0 to 12hrs and attains its maximum value at t =

12 hrs in the interval 0.95930246 - 0.96380728 and after that system performance

reduces exponentially. Thus it is found that for increasing the performance of the

system, a necessary action should be taken after time t=12hrs. The sensitivity of

system performance is analyzed by varying individually and simultaneously their

components’ failure rate (θ) and repair time (τ) as done in section 6.3.1 of this

chapter. In this analysis, computation have been done for each of the components

of the systems by varying the values of θ and τ individually and simultaneously and

fixing failure rate and repair time parameters of other components at the same time.

The results are depicted graphically by Fig. 6.31 and Fig. 6.32 respectively. The

maximum and minimum values of each of the component are noticed and given in

Table 6.15 and Table 6.16 respectively. On the basis of tabulated results, it can be

analyzed that for improving the performance of the system, more attention should

be given to the components as per the preferential order; felt, roller bending and

roller bearing.

Table 6.15: Effect of Variations of System’s Components’ Failure and Repair Times
on its RAM-Index for Dryer unit

Component Range of scale RAM-Index Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Felt 888.250 - 1201.750 Min: 0.96494118 8.500 - 11.500 Min: 0.96496069
Max: 0.96499400 Max: 0.96498784

Roller bearing 444.550 - 601.450 Min: 0.96463578 1.700 - 2.300 Min: 0.96296715
Max: 0.96503641 Max: 0.96690805

Roller bending 275.400 - 372.600 Min: 0.960860599 3.400 - 4.600 Min: 0.95928853
Max: 0.96812013 Max: 0.97005414
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Figure 6.29: RAM-Index variation for Dryer unit

Table 6.16: Effect of Simultaneous Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Dryer unit

Component Range of scale Range of Repair RAM-Index
parameter θ(hrs) Time MTTR(hrs)

Felt 888.250 - 1201.750 8.500 - 11.500 Min: 0.84743224
Max: 0.88842020

Roller bearing 444.550 - 601.450 1.700 - 2.300 Min: 0.97792739
Max: 0.98438871

Roller bending 275.400 - 372.600 3.400 - 4.600 Min: 0.92627537
Max: 0.95431901
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Figure 6.30: Long run period of the RAM parameters and RAM-Index at different
α− cuts for Dryer Unit
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Figure 6.31: Variation of RAM-Index by varying components’ failure and repair rate
parameters for Dryer unit
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Figure 6.32: Effect of Simultaneously Varying the Components’ Parameters on its
RAM-Index for Dryer unit



176

6.4 Conclusion

In this chapter, an attempt has been made to enhance the performance of the paper

industry by utilizing uncertain, vague and imprecise data. The uncertainties in the

data are handled with the help of fuzzy approach in order to increase the efficiency of

the system and their membership functions are computed by using ABCBLT tech-

nique. In order to find the most critical component of the system, a time varying

RAM-Index has been proposed for analyzing the performance of the system by using

ABCBLT technique and compared their results with FLT and GABLT techniques

results and concluded that proposed results have lesser range of uncertainties and

hence predictions. The major advantage of this index is that by varying the sys-

tem component parameter individually the simultaneous effect on its performance

has been computed and observed. Apart from that a conceptual model has been

suggested through which it is illustrated, how a suitable performance analysis based

maintenance can be identified. Components of each of the subsystems/units of the

plant which have excessive failure rates, long repair time or high degree of uncer-

tainty associated with these values, are identified and reported in preferential order.

The critical component of each of the units has been found by studying the effects

on RAM index of varying individually and simultaneously the parameters of failure

and repair rates of components and also of fixing failure rate and repair time of other

components at the same time. This analysis indicates the effects of taking wrong de-

cision on to the system’s behavior as well as performance. Based on these analyses,

it has been concluded that for increasing the performance of the system, it is nec-

essary that proper maintenance actions are needed for enhancing its performance.

Apart from these advantages, the system performance analysis may be utilized to

conduct cost-benefit analysis, operational capability studies, inventory/spare parts

management, and replacement decisions.



Chapter 7

An approach for solving RRAP
through ABC technique

The main objective of this chapter is to develop a two-phase approach for maximiz-

ing the reliability of the system under redundancy allocation environment. More

clearly the aim is to propose a method for solving a reliability redundancy alloca-

tion problem (RRAP) by finding the reliability of components as well as the number

of redundant components simultaneously that maximize the system reliability un-

der the system’s cost, weight and volume constraint. Justification of the suggested

approach has been ascertained by applying it on four benchmark problems and

observing the better results than the already existed results in the literature.

7.1 Introduction

The system reliability optimization is very important in the real world applications

and the various kinds of systems have been studied in the literature for the decades.

To design a highly reliable system there are mainly two ways of improving the system

reliability. One is - adding redundant components, and the other is - increasing the

component reliability. Both the ways usually increase the resources (cost, volume,

weight, etc). Therefore, at the stage of designing a highly reliable system, an im-

portant problem is to get the balance between reliability and other resources [155].

177
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Besides the above two ways, the combination of the two approaches and reassign-

ment of interchangeable elements are another feasible ways for increasing the system

reliability [100, 155]. Such problem of maximizing system reliability through redun-

dancy and component reliability choices is called “reliability-redundancy allocation

problem (RRAP)”.

The general mathematical formulation of the reliability - redundancy allocation

problem is

Maximize Rs(r1, r2, . . . , rm; n1, n2, . . . , nm)

subject to g(r1, r2, . . . , rm; n1, n2, . . . , nm) ≤ b

0 ≤ ri ≤ 1 ; i = 1, 2, · · · ,m ri ∈ [0, 1] ⊂ R

1 ≤ ni ≤ ni,max ni ∈ Z+

where g(·) is the set of constraint functions usually associated with the system’s

weight, volume and cost; Rs(·) is the objective function for the overall system re-

liability; ri and ni are the reliability and the number of redundant components in

the ith subsystem, respectively; m is the number of subsystems in the system and b

is the vector of resource limitation. This problem is an NP problem and belongs to

the category of constrained nonlinear mixed-integer optimization problems because

the number of redundancy ni are the positive integer values and the component

reliability ri are the real values between 0 and 1. The goal of the problem is to

determine the number of components ni and the components’ reliability ri in each

subsystem so as to maximize the overall system reliability.

During the last two decades, numerous reliability design techniques have been

introduced to solve these problems. These techniques can be classified as implicit

enumeration, dynamic programming, branch and bound technique, linear program-

ming, Lagrangian multiplier method, heuristic methods and so on. To solve this type

of problem, Kuo et al. [156], Tillman et al. [231] have extensively reviewed the sev-

eral optimization techniques for system reliability design. Nakagawa [183] compared
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three heuristic methods (Nakagawa - Nakashima, Gopal - Aggarwal - Gupta, Sharma

- Venkateswaran) for solving reliability optimization problems with nonlinear con-

straints. Their effectiveness, measured in terms of computation time, optimality

rate, and relative error, is evaluated on several sets of randomly generated test

problems with nonlinear constraints for series systems. After combining Lagrange

multiplier and branch and bound algorithms, Kohda and Inoue [139] gave a heuris-

tic approach in which new criterion of local optimality was presented. They showed

that their method generates solutions which are optimal in 2-neighborhood for the

redundancy optimization problem. Kuo et al. [154] proposed a heuristic algorithm

for a series system and obtained solutions close to the optimal one via Lagrange

multiplier. Misra and Sharma [177] proposed an algorithm and solved problems by

integer programming, which serves as an algorithm searching for nearby boundary

of the domain of feasible solution. Prasad and Kuo [192] pointed out that the algo-

rithm given by Misra and Sharma sometimes cannot yield an optimal solution, and

suggested a method for searching the upper limit of reliability objective function.

Kim and Yum [133] solved the reliability optimization problem of a series-parallel

system by using heuristic algorithms. The method proposed by them allows excur-

sions over a bounded infeasible region, and hence gives global optimal solution. On

the basis of computational results they proved that the approach was faster and

straight-forward than any other heuristic method. Shi [218] developed a heuristic

method with separable, monotonic nondecreasing constraints function following the

approach of adjusting unit-increment with time.

However, the heuristic techniques require derivatives for all non-linear constraint

functions, that are not derived easily because of the highly computational complex-

ity. To overcome this difficulty metaheuristics have been selected and successfully

applied to handle a number of reliability optimization problems. These heuristics in-

clude genetic algorithms (GA), simulated annealing (SA), tabu search (TS), particle

swarm optimization (PSO), artificial bee colony (ABC) etc. Painton and Campbell
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[188], Yokota et al. [257] and Hsieh et al. [106] applied genetic algorithms to solve

these mixed-integer reliability optimization problems. Coit and Smith [56] combined

GA and neural network (NN) to tackle the series-parallel redundancy problem. Chen

[46] applied the immune algorithm (IA) for solving the reliability–redundancy allo-

cation problem. Coelho [53] proposed an efficient PSO algorithm based on Gaussian

distribution and chaotic sequence to solve the reliability - redundancy optimization

problems. Yeh and Hsieh [253] developed a penalty guided artificial bee colony

algorithm (ABC) for solving the reliability optimization problems.

In the light of the advantages of the meta-heuristics techniques, the presented

chapter discusses the two phase approach for the reliability - redundancy allocation

problem. In the first phase, the optimal solution of the reliability–redundancy allo-

cation problem has been obtained with one of the meta-heuristic technique namely

artificial bee colony (ABC) while in the second phase the component reliability al-

location is improved after fixing the number of component redundancy as obtained

during Phase I. Four benchmark problems of reliability-redundancy allocation are

solved with the proposed technique and it is observed that the our results are all

better than the existing results in the literature.

7.2 Problem formulation: reliability redundancy

allocation problem

The following assumptions and notations for RRAP have been used in this chapter.

7.2.1 Assumptions:

• If a component of any subsystem fails to function, the entire system will not

fail.

• All redundancies is active redundancy without repair.

• The components and system have only two states – operating state or failure
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state.

7.2.2 Notations:

m number of subsystems in the system.

M number of constraints.

ni the number of components in the subsystem i, 1 ≤ i ≤ m.

n =(n1, n2, . . . , nm), the vector of redundancy allocation for the system.

ri reliability of each of the components in subsystem i, 1 ≤ i ≤ m.

r =(r1, r2, . . . , rm), the vector of component reliabilities for the system.

gj the jth constraint function, j = 1, 2, . . . ,M .

wi the weight of each component in subsystem i, 1 ≤ i ≤ m.

ci the cost of the each component in subsystem i, 1 ≤ i ≤ m.

vi the volume of each component in subsystem i, 1 ≤ i ≤ m.

Ri = 1− (1− ri)
ni is the reliability of the ith subsystem 1 ≤ i ≤ m.

Qi 1−Ri is the unreliability of the ith subsystem.

ni,max maximum number of components in subsystem i, 1 ≤ i ≤ m.

Rs the system reliability.

C,W the upper limit of the system’s cost, weight respectively.

S feasible search space.

7.2.3 Problem Description

Out of the four benchmark problems of the reliability - redundancy allocation prob-

lem studied in this chapter, the first three problems with non-linear constraints used

by Chen [46], Hikita et al. [100], Hsieh et al. [106], Xu et al. [251], Yeh and Hsieh

[253] are a series system, series-parallel system and complex (bridge) system, respec-

tively as shown in Fig. 7.1. The fourth problem, investigated by Chen [46], Coelho

[53], Dhingra [62], Yeh and Hsieh [253], Yokota et al. [257] is of overspeed protec-

tion system. All these problems are to maximize the systems’ reliability subject
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to multiple nonlinear constraints and can be stated as the mixed-integer nonlinear

programming problems. For each problem both, the component reliabilities and

redundancy allocations are to be decided simultaneously. The mathematical formu-

lation of these four reliability-redundancy allocation problems is given below.

Problem 1: Series System (Fig. 7.1(a)) [46, 100, 106, 132, 253]

Maximize Rs(r, n) =
5∏

i=1

[1− (1− ri)
ni ]

s.t. g1(r, n) =
5∑

i=1

vin
2
i − V ≤ 0 (7.2.1)

g2(r, n) =
5∑

i=1

αi(−1000/ ln ri)βi [ni + exp(ni/4)]− C ≤ 0 (7.2.2)

g3(r, n) =
5∑

i=1

wini exp(ni/4)−W ≤ 0 (7.2.3)

0.5 ≤ ri ≤ 1 , ri ∈ [0, 1] ⊂ R+,

1 ≤ ni ≤ 5, ni ∈ Z+ ; i = 1, 2, · · · , 5

Problem 2: Series-parallel system (Fig. 7.1(b)) [46, 100, 106, 132, 253]

Maximize Rs(r, n) = 1− (1−R1R2)(1− (1−R3)(1−R4)R5)

s.t. g1(r, n), g2(r, n), g3(r, n)

(as specified by (7.2.1), (7.2.2), (7.2.3) respectively)

0.5 ≤ ri ≤ 1 ; ri ∈ [0, 1] ⊂ R+

1 ≤ ni ≤ 5 ; ni ∈ Z+ i = 1, 2, · · · , 5

where Ri = 1− (1− ri)
ni
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Problem 3: Complex(bridge) system (Fig. 7.1(c)) [46, 53, 100, 106, 132, 253]

Maximize Rs(r, n) = R5(1−Q1Q3)(1−Q2Q4) +Q5[1− (1−R1R2)(1−R3R4)]

s.t. g1(r, n), g2(r, n), g3(r, n)

(as specified by (7.2.1), (7.2.2), (7.2.3) respectively)

0.5 ≤ ri ≤ 1 ; ri ∈ [0, 1] ⊂ R+,

1 ≤ ni ≤ 5 ; ni ∈ Z+, i = 1, 2, · · · , 5

where Qi = 1−Ri = (1− ri)
ni

Problem 4: Overspeed protection system (Fig. 7.1(d)) [46, 53, 62, 132, 253, 257]

The fourth problem is considered for the reliability-redundancy allocation prob-

lem of the overspeed protection system for a gas turbine. Overspeed detection is

continuously provided by the electrical and mechanical systems. When an overspeed

occurs, it is necessary to cut off the fuel supply. For this purpose, 4 control valves

(V1-V4) must close. The control system is modeled as a 4-stage series system. The

objective is to determine an optimal level of ri and ni at each stage i such that the

system reliability is maximized. This reliability problem is formulated as follows:

Maximize Rs(r, n) =
4∏

i=1

{1− (1− ri)
ni}

s.t. g1(r, n) =
4∑

i=1

vin
2
i − V ≤ 0

g2(r, n) =
4∑

i=1

αi(−1000/ ln ri)βi [ni + exp(ni/4)]− C ≤ 0

g3(r, n) =
4∑

i=1

wini exp(ni/4)−W ≤ 0

0.5 ≤ ri ≤ 1 ; ri ∈ [0, 1] ⊂ R+,

1 ≤ ni ≤ 10 ; ni ∈ Z+, i = 1, 2, · · · , 4

where vi is the volume of each component at stage i, wi is the weight of each

component at the stage i, Qi = 1− Ri is the failure probability of each component
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in subsystem i. The factor exp(ni/4) accounts for the interconnecting hardware.

The parameters βi and αi are the physical features (shaping and scaling factor) of

the cost - reliability curve of each component in stage i. V is the upper limit on the

volume; C is the upper limit on the cost of the system, and W is the upper limit

on the weight of the system. Constraints g1(r, n) is the volume constraints, g2(r, n)

is a cost constraints while g3(r, n) is a weight constraints. The values of the input

parameters defining the specific instances of these problems has been taken the same

as in [46, 53, 62, 100, 106, 132, 153, 251, 253, 257], and are given in Tables 7.1-7.3.

1 2 3 4 5

(a) Series system

1 2

3

4

5

(b) Series-parallel system

1

4

5


3

2

(c) Complex (Bridge) system

Gas Turbine

V2 V3 V4V1

Mechanical
and electrical

overspeed
detection

Air Fuel Mixture

(d) Overspeed Protection system

Figure 7.1: Series, Series - parallel, Bridge and Overspeed protection systems

7.3 Two Phase approach

The presented approach for solving the reliability-redundancy allocation problem

is divided into two phases. In the first phase, problem is solved with the ABC
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Table 7.1: Parameter used for Problems 1 and 3

i 105αi βi vi wi C V W
1 2.330 1.5 1 7
2 1.450 1.5 2 8
3 0.541 1.5 3 8 175 110 200
4 8.050 1.5 4 6
5 1.950 1.5 2 9

Table 7.2: Parameter used for Problem 2

i 105αi βi vi wi C V W
1 2.500 1.5 2 3.5
2 1.450 1.5 4 4.0
3 0.541 1.5 5 4.0 175 180 100
4 0.541 1.5 8 3.5
5 2.100 1.5 4 3.5

Table 7.3: Parameter used for Problem 4

i 105αi βi vi wi C V W
1 1.0 1.5 1 6
2 2.3 1.5 2 6 400 250 500
3 0.3 1.5 3 8
4 2.3 1.5 2 7

algorithm in which constraints are handled with the help of parameter-free based

penalty functions. Local search process has been applied for improving the solution.

On the other hand, the computed reliability allocation is improved in the second

phase after fixing the number of component redundancy as obtained during the

phase I. Both the phases are described as below.

7.3.1 Phase I: Obtaining the solution

During this phase, the reliability-redundancy allocation problems have been solved

by using the artificial bee colony algorithm which has been described in section 2.5.3.

During the evolution, the reliability and the number of redundant components are

treated as continuous variables and the corresponding constraints are handled with

the parameter-free penalty method as described in section 2.8.
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7.3.2 Phase II: Improvement procedure

In the second phase, we fix the number of component redundancy as obtained by

Phase-I and then use the following procedure to improve the component reliability

allocation. The main steps of the second phase are as follows.

Step 1: Obtain the solution (n, r) and Rs by Phase I.

Step 2: In order to increase the efficiency of the system, the obtained r’s is to be

converted into closed interval [ri, rj] with equal spread ±0.5% in both the

directions (left and right) of r’s i.e. ri = 0.995r and rj = 1.005r ≤ 1

Step 3: Find max R̃s(r̃, n) where r̃ ∈ [ri, rj] s.t. ri, rj ∈ [0, 1] w.r.t. g1, g2, g3.

Step 4: If R̃s > Rs and |R̃s −Rs| >∈ then Rs ←− R̃s, (r, n)←− (r̃, n) and go to next

step, otherwise go to Step 3.

Step 5: Report the optimal or near optimal solution.

7.4 Computational Results

This section turns to the description and analysis of the results obtained by the

optimization tests.

7.4.1 Parametric setting

The bees’ particle for each problem uses the variable vectors n and r. During

the evolution process, the integer variable ni are treated as real variables, and in

evaluating the objective functions, the real values are transformed to the nearest

integer values. In the experiment we set ∈= 10−7. The presented algorithm is

implemented in Matlab (MathWorks) and the program has been run on a T6400 @

2GHz Intel Core(TM) 2 Duo processor with 2GB of Random Access Memory(RAM).

In order to eliminate stochastic discrepancy,in each case study, 30 independent runs
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are made for each of the optimization methods involving 30 different initial trial

solutions for each optimization method.

7.4.2 Results and Discussion

The numerical results corresponding to the four problems are shown in Tables 7.4-7.7

respectively, in which the best solutions of each problem are reported. For the series

system (i.e. Problem 1), Table 7.4 shows that the best solution by the presented

approach is 0.931682387672 which is better than solutions obtained by the other ap-

proaches available in the literature [46, 84, 87, 100, 101, 106, 153, 248, 251] with an

improvement factor 2.75072%,1.99881%, 0.33755%, 0.00788%, 0.46532%, 0.15256%,

0.00934%, 0.00642%, 0.00349%, 0.02908%, 0.00006% respectively. It should be no-

ticed that even very small improvements in reliability are critical and beneficial to

system security and system efficiency. It is worth notifying here that solution by

ABC algorithm, as given by Yeh and Hsieh [253], is infeasible solution as it violates

the cost constraint. The results of the experiment for the problem 2, shown in Table

7.5, indicate that the best solution by the presented approach (Rs= 0.999976649054)

is much better than the solutions given by [46, 100, 106, 107, 132]. It is worth men-

tioning that the solution obtained by Yeh and Hsieh [253] by using ABC algorithm

is not a feasible solution as it violates the cost constraint function. From Table

7.6 it may be clearly observed that the solution to the Problem 3 as obtained by

us is relatively with more significant improvement over the solutions presented by

[46, 53, 100, 106, 107, 132]. It may again be pointed out that the solution by

ABC algorithm, obtained by Yeh and Hsieh [253] is also infeasible, since it again

violates the cost constraint function. Table 7.7 depicts that the solution of Prob-

lem 4 as obtained by the proposed approach is better than the previously known

solutions by [46, 62, 107, 132, 257]. The optimal component redundancy by the pro-

posed approach is (5,5,4,6) which is completely different from those from the other

approaches. Here again we have observed through calculations that the solutions
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given by Yeh and Hsieh [253] and Yokota et al. [257] are not feasible solutions as

both of these violate the cost constraint function. Moreover, the solutions found by

the proposed approach for all the four problems dominate the solutions obtained by

other methods discussed in literature. This confirms the superiority of the presented

approach over the approaches available in the literature.

To evaluate the performance of proposed approach, the following maximum pos-

sible improvement (MPI) index [46] has been used to compute the relative improve-

ment

MPI =
Rs(approach)−Rs(other)

1−Rs(other)

where Rs(approach) is the best-known solution obtained from proposed approach

and Rs(other) is the best solution by other typical approaches. Numerical results are

reported in Tables 7.4-7.7 which show that proposed approach when compared with

other optimization approaches leads to improvement. Clearly, greater MPI implies

greater improvement. Moreover, the standard deviations of system reliabilities by

proposed approach are pretty low, and it further implies that the approach seems

reliable to solve the reliability-redundancy allocation problems. For example, the

standard deviations of system reliabilities for Problems 1 – 4 are 2.37214×10−8,

3.18206×10−11, 8.667×10−9, 3.38683×10−11 respectively.
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7.5 Conclusion

The goal of this chapter is to present an efficient two phase approach for solving

the constrained reliability redundancy allocation problem of series, series-parallel

and complex (bridge) system under different resource constraints. The objective

of these problems is to maximize the system reliability subject to three nonlinear

resource constraints, namely cost, weight and volume. In these optimization prob-

lems, both the redundancy and the corresponding reliability of each component in

each subsystem are decided simultaneously. In the proposed approach, firstly an

optimal reliability and the corresponding redundant components of each subsystem

have been computed using ABC algorithm and their results are compared with other

evolutionary algorithm results. While the improvement on the component reliability

has been made in their second phase by preserving the redundant components cor-

responding to each subsystem. The resource constraints have been handled with the

help of parameter-free penalty technique. The performance of proposed algorithm is

evaluated through the comparison of numerical experiments with the previous study

for mixed-integer reliability problems. The best solutions found by this approach are

all individually better than the well-know best solutions by other heuristic methods

for mixed-integer reliability problems.
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Chapter 8

Reliability analysis of industrial
system using vague set theory

In this chapter, vague set theory, an extension of fuzzy set theory, has been used

for developing a methodology to analyze the behavior of a repairable industrial

system using uncertain, limited and vague data. Finally results are compared with

traditional and fuzzy methodologies.

8.1 Introduction

In fuzzy set theory, the degree of belonging of an element to the set is represented

by a membership value in the real interval [0, 1] and there exists degree of non-

membership which is complementary in nature. From latter point of view, it is true

and acceptable that grade of membership and non-membership are complementary.

But in real life situations, it is assumed that a certain object may or may not be in a

set A to a certain degree, but it is possible to entertain some doubt about it. In other

words, some hesitation about the degree of belongingness exists. This hesitation in

the membership degree may be modeled by intuitionistic fuzzy sets (IFS) defined

by Attanassov [13] and has been found to be well suited for dealing with problems

concerning vagueness. The concept of IFS can be viewed as an alternative approach

to define a fuzzy set in a situation where available information is not sufficient for

the definition of an imprecise concept by means of a conventional fuzzy set. Gau
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and Buehrer [82] extended the idea of fuzzy sets by vague sets. Biswas [26] pointed

out that there were situations where IFS theory is more appropriate to deal with.

Bustince and Burillo [30] showed that the notion of vague sets coincides with that of

IFSs. Therefore, it is expected that IFSs could be used to simulate any activities and

processes requiring human expertise and knowledge, which are inevitably imprecise

or not totally reliable. A lot of work has been done to develop and enrich the IFS

theory given in [12, 17, 40, 45, 78, 144, 149] and their corresponding references in

terms of reliability evaluation of series-parallel system.

Thus it is observed from the study that by using limited, vague and imprecise

data of the system, the behavior and the performance analysis of the complex re-

pairable industrial system in terms of their reliability parameters may be calculated.

The objective of the present investigation is divided into two folds. In the first fold,

behavior of the complex repairable industrial systems are analyzed in the form of

the various reliability parameters by utilizing the uncertain, limited or vague data,

while in second fold, the effect of failure pattern on a composite measure of reliabil-

ity, availability and maintainability (RAM) of industrial system has been assessed

which will help the system analyst to rank the components as per preferential order.

The model will help to analyze the system’s behavior on the basis of past failure and

repair data. To remove the uncertainty in the available/collected data, intuitionistic

fuzzy numbers are developed using fuzzy possibility theory.

8.2 Intuitionistic fuzzy/ Vague set theory

Uncertainties exist always everywhere and are a result of lack of information, in par-

ticular, inaccuracy of measurements. This idea is highlighted by Zadeh in 1965 with

a concept of fuzzy logic, and is a mathematical tool for dealing with uncertainty[260].

It provides an inference structure that enables appropriate human reasoning capa-

bilities. Among the extension of the notion of fuzzy set, the theory of intuitionistic

fuzzy set (IFS) firstly proposed by Attanassov [13] by two characteristic functions
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that express the degree of membership and non-membership of elements in the uni-

verse. Gau and Buehrer [82] extended the idea of fuzzy sets by vague sets. Bustince

and Burillo [30] showed that the notion of vague sets coincides with that of IFSs.

Mathematically, let U be a universe of discourse then IFS Ã of universe of discourse

U is characterized by a membership function µÃ : U → [0, 1], and a non-membership

function νÃ : U → [0, 1] with the condition µÃ(x) + νÃ(x) ≤ 1, ∀x ∈ U where µÃ(x)

is considered as the lower bound for the degree of membership of x in Ã (based on

evidences) and νÃ(x) is the lower bound of the negation (derived from the evidence

against of x ) of the membership of x in Ã . Therefore, the degree of membership

of x in the vague set Ã is characterized by the interval [µÃ(x), 1− νÃ(x)]. A typical

illustration of a vague set Ã is shown in Fig. 8.1.

x

1
Against
 region

Support
 region

Hesitation
  region

Membership
    values

Figure 8.1: Representation of a vague set

A vague set Ã in universe U is said to be convex if and only if

(i) Membership functions of µÃ(x) of Ã is fuzzy - convex i.e.

µÃ(λx1 + (1− λ)x2) ≥ min(µÃ(x1), µÃ(x2)) ∀ x1, x2 ∈ U, 0 ≤ λ ≤ 1

(ii) Non-membership functions of νÃ(x) of Ã is fuzzy - concave i.e.

νÃ(λx1 + (1− λ)x2) ≤ max(νÃ(x1), νÃ(x2)) ∀ x1, x2 ∈ U, 0 ≤ λ ≤ 1
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On the other hand, vague set is said to be normal vague set if there exist at

least two points x1, x2 ∈ U such that µÃ(x1) = 1 and νÃ(x2) = 0. A vague subset

Ã = {< x, µÃ(x), 1− νÃ(x) >| x ∈ R} of the real line R is called vague number if

(i) Ã is convex and normal.

(ii) µÃ is upper semi-continuous and νÃ is lower semi-continuous.

α- cut of an vague set: In vague set Ã, α-cut of a membership function is a

crisp set which consists of elements of Ã having at least degree α. It is denoted by

A(α) and is defined mathematically as

A(α) = {x ∈ U : µÃ(x) ≥ α} (8.2.1)

while for non-membership function, it is defined as

A(α) = {x ∈ U : 1− νÃ(x) ≥ α} (8.2.2)

where α is the parameter in the range 0 ≤ α ≤ 1.

Triangular vague number and interval arithmetic operations: Let Ã be

vague set denoted by Ã =< [(a, b, c);µ, 1− ν] >, where a, b, c ∈ R then the set Ã is

said to be triangular vague number if its membership function is given by

µÃ(x) =



µ×
(
x− a

b− a

)
; a ≤ x ≤ b

µ ; x = b

µ×
(
c− x

c− b

)
; b ≤ x ≤ c

0 ; otherwise

(8.2.3)

and

1− νÃ(x) =



ν ×
(
x− a

b− a

)
; a ≤ x ≤ b

ν ; x = b

ν ×
(
c− x

c− b

)
; b ≤ x ≤ c

0 ; otherwise

(8.2.4)
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where the parameter b gives the modal values of A i.e. µÃ(b) = 1 and a, c are

the lower and upper bounds of available area for the evaluation data. A triangular

vague set defined by the triplet (a, b, c) with α-cuts, is defined as

A(α) = [a(α), c(α)] = [a+
α

µ
(b− a), c− α

µ
(c− b)] (8.2.5)

and A(α) = [a(α), c(α)] = [a+
α

1− ν
(b− a), c− α

1− ν
(c− b)] (8.2.6)

where a(α), a(α) are the increasing functions and c(α), c(α) are decreasing functions of

0 ≤ α ≤ 1.

8.3 Vague Lambda-Tau Methodology

Traditionally in order to analyze the behavior of the repairable system, crisp as well

as fuzzy Lambda-Tau (FLT) methodology has been used with their basic events,

associated with logical AND and OR gates, for evaluating the system failure rate

and repair time. Their expressions are summarized in Table 2.2. But there are

some disadvantages of these methodologies. For instance, crisp methodology does

not consider the uncertainties during the analysis which are in the data while FLT

methodology does not consider the degree of hesitation between the membership

functions. Also the highest level of confidence of domain experts is taken as 1 in

their methodology. Thus the results computed by these methodologies are not so

much beneficial for the system analyst for predicting the system behavior. Keep-

ing these points in view, the technique named as Vague Lambda-Tau methodology

(VLTM), has been used [78] for analyzing the behavior of the complex repairable

system. The constant failure rate model is adopted in this technique because most

of the technical systems exhibit constant failure and repair rates(i.e. exponentially

distributed) after initial burn-in-period in bathtub curve. The uncertainties present

in the data are removed with the help of vague fuzzy numbers instead of fuzzy and

crisp numbers because it allow experts’ opinion, linguistic variables, operating con-

ditions, uncertainty and imprecision in reliability information to be incorporated
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into the system model. The detail of the methodology are described as follow:

The technique starts from the information extraction phase in which data related

to main component of the system in the form of failure rates (λi’s) and repair times

(τi’s) are extracted from the historical records/sheets or collected from the various

resources. As these data are collected under the different conditions and environment

and hence they will contain some sort of uncertainties. Moreover, the collected data

1 1

(a) Membership Functions of (b) Membership Functions of

Figure 8.2: Failure rate and repair time in the form of triangular vague numbers

are represent the past behavior of the system. Thus to incorporate these data into

the future behavior of the system, the uncertainties which are present in the data are

needed to be quantified. For this the obtained data are fuzzified into the triangular

vague numbers with some support as suggested by decision makers (DMs) on both

sides of the data. For instance, membership functions for failure rate (λi) and repair

time (τi) of the ith component of a system in the form of triangular vague numbers

with equal spread ±15% in both the directions (left and right to the middle) with

corresponding α-cuts are shown in Fig. 8.2.

Thus based on that, an input data which represents the basic events of the

system are represented in the form of fuzzy numbers then the corresponding values

of their top event (system fail) can be obtained by using extension principle and

interval arithmetic operations on triangular vague numbers. For this, an expression
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of the system failure rate λ̃ and repair time τ̃ in the form of membership and non-

membership functions for AND and OR transitions are used which are as follows.

For truth membership functions:

Expressions for AND-Transitions

λ(αµ) =

[
n∏

i=1

{(λi2 − λi1)
αµ

µi

+ λi1} ·
n∑

j=1

[ n∏
i=1
i̸=j

{(τi2 − τi1)
αµ

µi

+ τi1}
]
,

n∏
i=1

{−(λi3 − λi2)
αµ

µi

+ λi3} ·
n∑

j=1

[ n∏
i=1
i ̸=j

{−(τi3 − τi2)
αµ

µi

+ τi3}
]]

(8.3.1)

τ (αµ) =

[ n∏
i=1

{(τi2 − τi1)
αµ

µi
+ τi1}

n∑
j=1

[
n∏

i=1
i̸=j

{−(τi3 − τi2)
αµ

µi
+ τi3}]

,

n∏
i=1

{−(τi3 − τi2)
αµ

µi
+ τi3}

n∑
j=1

[
n∏

i=1
i̸=j

{(τi2 − τi1)
αµ

µi
+ τi1}]

]
(8.3.2)

Expressions for OR-Transitions

λ(αµ) =

[
n∑

i=1

{(λi2 − λi1)
αµ

µi

+ λi1},
n∑

i=1

{−(λi3 − λi2)
αµ

µi

+ λi3}

]
(8.3.3)

τ (αµ) =

[ n∑
i=1

[{(λi2 − λi1)
αµ

µi
+ λi1} · {(τi2 − τi1)

αµ

µi
+ τi1}]

n∑
i=1

{−(λi3 − λi2)
αµ

µi
+ λi3}

,

n∑
i=1

[{−(λi3 − λi2)
αµ

µi
+ λi3} · {−(τi3 − τi2)

αµ

µi
+ τi3}]

n∑
i=1

{(λi2 − λi1)
αµ

µi
+ λi1}

]
(8.3.4)

For false membership functions (i.e. non-membership functions):

Expressions for AND-Transitions

λ(α1−ν) =

[
n∏

i=1

{(λi2 − λi1)
αν

1− νi
+ λi1} ·

n∑
j=1

[ n∏
i=1
i̸=j

{(τi2 − τi1)
αν

1− νi
+ τi1}

]
,

n∏
i=1

{−(λi3 − λi2)
αν

1− νi
+ λi3} ·

n∑
j=1

[ n∏
i=1
i̸=j

{−(τi3 − τi2)
αν

1− νi
+ τi3}

]]
(8.3.5)
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τ (α1−ν) =

[ n∏
i=1

{(τi2 − τi1)
αν

1−νi
+ τi1}

n∑
j=1

[
n∏

i=1
i̸=j

{−(τi3 − τi2)
αν

1−νi
+ τi3}]

,

n∏
i=1

{−(τi3 − τi2)
αν

1−νi
+ τi3}

n∑
j=1

[
n∏

i=1
i̸=j

{(τi2 − τi1)
αν

1−νi
+ τi1}]

]
(8.3.6)

Expressions for OR-Transitions

λ(α1−ν) =

[
n∑

i=1

{(λi2−λi1)
αν

1− νi
+λi1},

n∑
i=1

{−(λi3−λi2)
αν

1− νi
+λi3}

]
(8.3.7)

τ (α1−ν) =

[ n∑
i=1

[{(λi2 − λi1)
αν

1−νi
+ λi1} · {(τi2 − τi1)

αν

1−νi
+ τi1}]

n∑
i=1

{−(λi3 − λi2)
αν

1−νi
+ λi3}

,

n∑
i=1

[{−(λi3 − λi2)
αν

1−νi
+ λi3} · {−(τi3 − τi2)

αν

1−νi
+ τi3}]

n∑
i=1

{(λi2 − λi1)
αν

1−νi
+ λi1}

]
(8.3.8)

In order to analyze the system behavior qualitatively as well as quantitatively,

various reliability indices of interest namely, failure rate, repair time, MTBF, ENOF,

reliability, availability of the system, with left and right spreads, are obtained at var-

ious membership grades by using the expressions of failure rate and repair time given

in equations (8.3.1-8.3.4) and (8.3.5-8.3.8) with the increment of 0.1 confidence level

α in the form of truth (membership) and false (non-membership) functions. The

expression of these reliability indices are summarized in Table 2.3. Finally, the ob-

tained fuzzified output are necessary to convert into binary or crisp form in order

to implement these into the system behavior. Thus defuzzification is necessary for

conversion of these values into crisp values. Out of existence of various defuzzifica-

tion methods, described in section 2.3.5, center of gravity method (COG) has been

used because it has the advantage of having taken the whole membership function

into account for this transformation.
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8.4 Case Study

To illustrate the proposed approach for analyzing the system failure behavior, a

case study of a pharmaceutical plant is done in the vague set [0.6, 0.8] i.e. degree

of acceptance µ = 0.6 and degree of rejection is ν = 1− 0.8 = 0.2.

8.4.1 System Description

The Pharmaceutical plant consists of various subunits viz. Weighing Machine,

Shifter Machine, Mass Mixer, Granulator, Fluid Bed Dryer, Octagonal Blender,

Rotary Compression Machine, Coating Machine, Air Compressor and Strip Pack-

ing Machine all are arranged in series [77, 81]. Initially, different raw materials are

Sifter
Machine Mass Mixer

Air
compressor

Coating
Machine

Granulator Fluid Bed
Dryer

Rotary
Compression

Machine

Octagonal
Blender

Weighing
Machine

Strip
Packing

 Machine

Figure 8.3: Flow diagram of the Pharmaceutical Plant

weighed according to the master formula with the help of weighing machine. Then

this mixture is placed into the Shifter. Shifter is used for sieving of raw material.

After sieving, raw material is transferred to Mass Mixer for proper mixing and then

granulation is done with the help of granulator, then these wet granules are dried up

with the help of Fluid Bed Dryer. After drying, the granules are shifted to Octag-

onal blender for lubrication, then lubricated granules are compressed with the help

of compression machine. Then coating of compressed tablets are done with the help

of coating machine and hereafter coated tablets are ready for final packing. The

systematic flow diagram of the considered plant is shown in Fig. 8.3.
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8.4.2 Behavior Analysis

The data related to main component of the subsystem of the plant are tabulated

in Table 8.1. To handle the vagueness and uncertainties in the data, the obtained

Table 8.1: Input data in the form of failure rate and repair time for the Plant

Components −→
Main Component of the Plant

Weighting Shifter Mass
Granulator

Fluid Bed
Machine Machine Mixer Dryer

Failure rate (λi’s) hrs
−1 5×10−3 2×10−3 1×10−3 5×10−3 1.5×10−3

Repair time (τi’s) hrs 6 3 2 5 3
Octagonal Rotary Coating Air Strip Packing
Blender Compression Machine Machine Compressor Machine

Failure rate (λi’s) hrs
−1 3×10−3 1×10−4 2×10−3 3×10−3 2.5×10−3

Repair time (τi’s) hrs 10 10 2 3.5 4

crisp data, λi and τi are converted into triangular vague fuzzy numbers with ±15%

(also at ±25% and ±50%) spreads as suggested by the decision makers/ system

analyst. Based on these fuzzifier data of the basic events of the system, the system

reliability expression are obtained at different α− cuts by using the expression given

in equation (8.3.1)-(8.3.4) and (8.3.5)-(8.3.8) respectively for the membership and

non-membership functions with left and right spreads with the increment of the

0.1 confidence level. The results obtained corresponding to the reliability indices

are shown in Fig. 8.4 that corresponds to ±15% spread along with the FLT and

traditional(crisp) methodologies results which indicate that results obtained from

VLTM are in between crisp and FLT values, i.e. VLTM technique acts as a bridge

between Markov process (crisp values) and Lambda-Tau technique.

From these plots the following conclusions are drawn.

(i) The values of all reliability indices computed by using traditional methods(crisp)

are independent of the degree of confidence level (α). It shows that while

obtaining the results by these method, attention has not been paid to the

uncertainties in the data. Thus this methodology is not practically sound as

uncertainties play an important role during the analysis. Hence their results

will be suitable only for a system with precise data.
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Figure 8.4: Reliability indices plot for Pharmaceutical Plant at ±15% spread
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(ii) The results computed by the FLT technique are presented in figure with FLT

legend. While computing the results by the usual methodology the degree of

interminancy between the membership functions have not been considered. In

other words, the degree of rejection of the membership function is simply one

minus of the degree of acceptance so that their is zero degree of hesitation

between them. Moreover the domain of confidence level is taken to be one i.e.

(α = 1). Therefore the results computed by FLT methodology are not that

practical.

(iii) The proposed approach provides improvement over the above shortcoming by

considering 0.2 degree of hesitation between the degree of membership and

non-membership functions shown by solid and dotted lines respectively. In

the proposed approach the domain of confidence level is clearly α ≤ 0.8. In

this, if γ1 is the degree of membership function for some reliability index and

γ2 be the degree for the corresponding non-membership function then there is

1 − γ1 − γ2 degree of hesitation between the degree of membership functions.

For instance, the degree of membership and non-membership functions corre-

sponding to reliability value 0.763513 are 0.3 and 0.4 respectively. Therefore

there is 0.3 degree of interminancy between the reliability indices for the re-

liability 0.763513. Thus, the proposed technique is beneficial for the system

analyst for analyzing the behavior of the system in more flexible ways in lesser

time.

In order to maintain the trend of the analysis the approach has been applied

at different spreads say ±15%, ±25% and ±50%. To import the results into the

daily life situation, it is necessary that the obtained fuzzified output should be in

the form of crisp or binary in nature since most of the actions implemented by the

machines or humans are binary in nature. Thus center of gravity method has been

used for defuzzification and their corresponding values are listed in tabular form in

Table 8.2 along with their crisp as well as FLT techniques values. From this table it
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is clearly seen that the crisp value does not change irrespective of the spread chosen

while defuzzified value changes with the change of spread.

Table 8.2: Defuzzified Values of Reliability Parameters at different spreads of Phar-
maceutical Plant
Spread Technique Failure rate Repair time MTBF ENOF Reliability Availability

(hrs−1) (hrs) (hrs)
Crisp 0.02510000 4.90039841 44.74103586 0.23429202 0.77802237 0.90154518

Defuzzified values for reliability indices
I 0.02510000 5.12620431 45.42517504 0.23380002 0.77829904 0.89765461

±15%
II

A: 0.02510000 5.12760158 45.42941239 0.23379737 0.77830067 0.89763044
B: 0.02510000 5.12664662 45.42651635 0.23379918 0.77829956 0.89764696

I 0.02510000 5.55147994 46.71049157 0.23298795 0.77879106 0.89035970
±25%

II
A: 0.02510000 5.55587121 46.72380401 0.23298218 0.77879560 0.89028577
B: 0.02510000 5.55287133 46.71470920 0.23298613 0.77879249 0.89033629

I 0.02510000 8.07369090 54.26883528 0.23020329 0.78110016 0.85141817
±50%

II
A: 0.02510000 8.10768811 54.37125153 0.23020814 0.78111838 0.85107614
B: 0.02510000 8.08453623 54.30148454 0.23020487 0.78110592 0.85130985

I: FLT technique II: proposed approach A: membership function B: nonmembership function

It may also be observed from the Table 8.2 that when uncertainty levels in the

form of spread increase, defuzzified values of reliability parameters also follow the

same trend of increment or decrement with respect to the existing methodology.

This means that values obtained through vague methodology are conservative in

nature, which may be beneficial for plant personnel and have some idea about the

system’s behavior. Moreover, variation of the defuzzified values are quite less as

compared to the FLT results, for instance, the repair time of the system increases

by 8.296111%, 8.352240% and 8.313908% for FLT, vague membership and non-

membership respectively, when spread changes from ±15% to ±25%, and it further

increases by 45.433127%, 45.930094% and 45.591996%, when spread changes from

±25% to ±50%. Similar observation is also there for all the reliability parame-

ters. The complete change in defuzzified values for both the techniques from the

crisp results is tabulated in Table 8.3 at ±15% spread and concluded that varia-

tion in VLTM technique is quite less as compared to FLT methodology. Maximum

percentage of decrease (↓) and increase (↑) is noticed for availability and repair

time, respectively which means that the prediction range of the system parameters

decreases. Hence, the maintenance is performed using defined defuzzified values
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rather than crisp values.

Table 8.3: Change in Defuzzified value of Reliability Parameters of Pharmaceutical
Plant

Defuzzified values at ±15% spread
Method Failure rate Repair time MTBF ENOF Reliability Availability
I 0.02510000 5.12620431 45.42517504 0.23380002 0.77829904 0.89765461

II
A: 0.02510000 5.12760158 45.42941239 0.23379737 0.77830067 0.89763044
B: 0.02510000 5.12664662 45.42651635 0.23379918 0.77829956 0.89764696

Change in defuzzified values from
I to A 0 0.02725739 0.00932819 0.00113344 0.00020943 0.00269257

− ↑ ↑ ↓ ↑ ↓
I to B 0 0.00862841 0.00295278 0.00035928 0.00006681 0.00085222

− ↑ ↑ ↓ ↑ ↓

8.4.3 Sensitivity analysis

The effect of the various reliability parameters on the system MTBF has been ad-

dressed by varying all the other components simultaneously. The behavioral plots

are obtained and shown in Fig. 8.5 in which repair time and ENOF are plotted

against x-axis and y-axis, respectively in the range computed by their member-

ship functions (Figs. 8.4(b) and 8.4(d)) at cut-levels α = 0, whereas MTBF varies

along z-axis. The change in MTBF for nine combinations of reliability, availabil-

ity and failure rate are summarized in Table 8.4. For the first three combinations

of the Table 8.4, the selected values of reliability and availability are 0.7715 and

0.8812 respectively while failure rate changes from 0.0215 to 0.0251 and further

to 0.0343. For these combinations, computed ranges of MTBF are 44.783811 –

68.614352, 38.549610 – 59.460427 and 28.563176 – 44.796950. This suggests that

slight change in system’s failure rate may change its MTBF largely and consequently

behavior of the system. Similar effect is observed from Fig. 8.5 for other combina-

tions. Thus, based on the behavioral and sensitivity analysis plots and corresponding

tables, the system manager can analyze the critical behavior of the system and plan

suitable maintenance.

The system analyst or plant personnel is always eager to find the most critical
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Figure 8.5: Variation of the Reliability Parameters on system MTBF

component of the system on which more attention should be given so as to main-

tain or save the money and time. For this suitable strategy is needed to find that
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Table 8.4: Effect of Various Reliability Parameters on MTBF

Fig. [Reliability, Failure rate, MTBFmin MTBFmax

Availability]
8.5(a) [0.7715, 0.0215, 0.8812] 44.783811 68.614352
8.5(b) [0.7715, 0.0251, 0.8812] 38.549610 59.460427
8.5(c) [0.7715, 0.0343, 0.8812] 28.563176 44.796950
8.5(d) [0.7782, 0.0215, 0.8976] 43.153115 65.825605
8.5(e) [0.7782, 0.0251, 0.8976] 37.126712 56.976797
8.5(f) [0.7782, 0.0343, 0.8976] 27.473144 42.802079
8.5(g) [0.7831, 0.0215, 0.9057] 42.011580 63.954681
8.5(h) [0.7831, 0.0251, 0.9057] 36.136018 55.327360
8.5(i) [0.7831, 0.0343, 0.9057] 26.724080 41.507437

component for increasing the performance and productivity of the system. The fol-

lowing RAM-Index analysis may help the system analyst for finding the most critical

component of the system based on its performance.

8.4.4 Performance analysis: RAM-Index

It is quite understood that if the current condition of the equipment or system

are not changed then the performance of the system decreases rapidly. Thus, in

order to achieve higher performance of the systems, involved uncertainties should

be minimized. For this, firstly the fuzzy RAM-Index has been analyzed at ±15%

by using VLTM and results are compared with the FLT along with crisp results in

Fig. 8.6(a) while behavior of the defuzzified values of vague membership functions

of RAM-Index against different uncertainty (spread from 0 to 100%) levels has

been plotted and shown in Fig. 8.6(b). Figure shows that as uncertainty level

increases RAM index decreases i.e. to achieve higher performance of the system

uncertainties should be minimize. For a long run period, Fig. 8.6(c) shows the

variation of RAM-Index for a time-range of 0-100(hrs) using VLTM technique for

depicting the behavior of the system. It is observed from the analysis that RAM-

Index increases for 0 to 11(hrs) and then decreases gradually. The results shows

that at t = 0, the value of RAM-Index for the system is 0.66 and then attains its
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maximum value 0.901447 at t = 11(hrs) and after that it is decreases gradually to

0.621704 at t = 100 (hrs). Thus it has been concluded that if current condition of

system components does not change then after t = 11(hrs) then system performance

decreases exponentially.
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Figure 8.6: RAM-Index Analysis plot of Pharmaceutical Plant

As the performance of the system directly depends on each of the constituent

subunits/components. So to analyze the effect of components’ parameters on its

performance, a simultaneous effect of each of its failure rate and repair time on the

system performance has been investigated. In their analysis, failure rate and repair

time of each of the component varies simultaneously and fixing the parameters
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of other components’ at the same time. The corresponding results obtained are

shown through surface plots in Fig. 8.7 which contains ten subplots corresponding

to ten main component of the system. Based on these subplots the range of their

corresponding parameters are summarized in Table 8.5 in the form of their maximum

and minimum values. On the basis of results, it can be analyzed that for improving

the performance of the system, more attention should be given to the components as

per the preferential order; Weighing Machine, Octagonal Blender, Granulator, Air

Compressor, Strip Packing Machine, Rotary Compression Machine, Shifter Machine,

Coating Machine, Fluid Bed Dryer and Mass Mixer.

Table 8.5: Effect of Simultaneously Variations of System’s Components’ Failure and
Repair Times on its RAM-Index for Pharmaceutical System

Component Range of failure rate Range of Repair time RAM-Index
λ(hrs−1) τ(hrs) Min Max

Weighing Machine 0.00425 - 0.00575 5.1000 - 6.9000 0.69342253 0.77897878
Shifter Machine 0.00170 - 0.00230 2.5500 - 3.4500 0.88844543 0.92472760
Mass Mixer 0.00085 - 0.00115 1.7000 - 2.3000 0.95001127 0.96545412
Granulator 0.00425 - 0.00575 4.2500 - 5.7500 0.72016770 0.79998280
Fluid Bed Dryer 0.001275 - 0.001725 2.5500 -3.4500 0.90992254 0.94088835
Octagonal Blender 0.00255 - 0.00345 8.5000 - 11.5000 0.69619037 0.77345448
Rotary Compression Machine 0.000085 - 0.000115 8.500 - 11.500 0.85125129 0.89061483
Coating Machine 0.00170 - 0.00230 1.7000 - 2.3000 0.90880883 0.93436469
Air Compressor 0.00255 - 0.00345 2.9750 - 4.0250 0.83530920 0.88659050
Strip Packing Machine 0.002125 - 0.002875 3.4000 - 4.6000 0.84212471 0.89377705
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Figure 8.7: Effect of Varying Components Parameters on its Performance(Contd.)
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Figure 8.7: Effect of Varying Components Parameters on its Performance
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8.5 Conclusion

In the present study a technique for improving the reliability and availability of a

repairable system by using RAM analysis under the vague environment has been

described. As the collected data obtained from the historical records are imprecise,

vague or limited and thus have a some sort of uncertainties. The development of

vague numbers from the available data and using vague possibility theory can greatly

increase the relevance of reliability study. A vague set theory over fuzzy set theory

has been used as the vague sets separates the trueness and falseness evidence for

membership of an element in a set and also, in vague set, the level of confidence of do-

main experts lies between [0 1] instead of 1 as in fuzzy set theory. The technique has

been applied for analyzing the behavior of the repairable industrial system namely a

Pharmaceutical plant. To strengthen the analysis, various reliability parameters of

interest which depict the system behavior closely have been computed using vague

lambda-tau methodology and compared their results with fuzzy lambda-tau and

crisp methodologies. From the analysis it is inferred that approach approach has

overcome the shortcomings of the existing techniques by considering the interval

valued membership functions instead of single one. Depending on the confidence

level ‘α’, the system analysts may predict the behavior of the system. Sensitivity

analysis on the system MTBF for various combinations of reliability parameters has

also been addressed. The outcomes of sensitivity analysis will help the management

to understand how the maintenance resources, policies and subsystem conditions

affect the performance of the system. For ranking the critical components of the

system on the basis of their performance on which more attention is to be given to

save money, manpower and time, a RAM-Index analysis has been done. The major

advantage of this index is that by varying individual component’s failure rate and

repair time, the impact on the system’s performance can be analyzed effectively

to plan the future course of action. Using these analysis and results tabulated in

tables, it has been concluded that more attention should be given in preferential
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order to the components; Weighing Machine, Octagonal Blender, Granulator, Air

Compressor, Strip Packing Machine, Rotary Compression Machine, Shifter Machine,

Coating Machine, Fluid Bed Dryer and Mass Mixer for improving the performance

of the system. Thus, it will facilitate the management in reallocating the resources,

making maintenance decisions, achieving long run availability of the system, and

enhancing the overall productivity of the plant.

In nutshell, the important managerial implications drawn using the discussed

techniques are to:

• deal with imprecise, uncertain dependent information related to system per-

formance by vague set methodology.

• determine reliability indices such as MTBF, MTTR which are important for

planning the maintenance need of the systems;

• sensitivity analysis on system MTBF has been addressed for taking the effect

of wrong combinations of reliability parameters.

• Performance analysis of the system has been done by using composite measure

of the system reliability, availability and maintainability called RAM-Index.

• Ranking of the system for improving the performance of the system as per

preferential order has been given.



Chapter 9

Summary and Future Scope

The chapter highlights the major research contribution and presents a comprehen-

sive summary of the research work presented in this thesis. It also outlines the

recommendations to system analysts for improving the systems’ performance. Fi-

nally the scope for future work has been outlined.

9.1 Summary of the work

The research work presented in this thesis is an attempt to analyze the behavior of

a repairable industrial system by using soft computing based techniques. The data

available is uncertain. The detailed overview of the available literature on reliabil-

ity optimization in different scerenio using conventional methods; fuzzy methodol-

ogy, reliability-redundancy allocation problem, performance analysis has been given.

From the reviewed literature, it is concluded that the job of the system analyst is

quite challenging to maintain the performance of the system for maximum possible

duration of time by using vague, imprecise and limited data. In the present the-

sis proper attention has been given to balance the different resources by making

use of fuzzy set theory and evolutionary algorithm technique namely artificial bee

colony. Fault tree analysis has been used for modeling and interacting the different

components of the repairable industrial system.
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Keeping these points in view, different optimization problem has been formu-

lated for a complex repairable industrial system. Due to, the growing complexity of

industrial systems it is very difficult to have a complete and accurate mathematical

model of the system. Moreover, the design of a repairable series-parallel system

becomes insufficient, if the analysis are based on the empirical methods. There-

fore, soft computing technique, such as ABC is useful, to analyze and to optimize

the design problems of repairable systems. Also the data obtained from historical

records/sheets are generally out of date and hence it represents the past behavior

of the system. Thus the main theme of the present work is to analyze the behavior

and performance of the complex repairable industrial systems by utilizing uncer-

tain, imprecise and vague data. An approach has been given to compute the various

reliability parameters in the form of membership functions for depicting the behav-

ior and performance of industrial systems. A structured framework may help the

system analyst or plant personnel to analyze and predict the system behavior and

related characteristics of each of the system-components.

For this, a novel technique named as artificial bee colony based lambda-tau

(ABCBLT) has been proposed in this work. To strengthen the analysis, various

reliability parameters (failure rate, repair time, MTBF, ENOF, reliability and avail-

ability) have been analyzed individually for all the subsystems of the industrial

systems by using traditional FLT, GABLT and the discussed ABCBLT techniques.

Sensitivity and performance analyses of the system have also been carried out for

various combinations of reliability index and their effects have been shown graphi-

cally, and also summarized in terms of minimum and maximum values. Based on

these analyses, system analyst/plant personnel may find the most critical compo-

nent of the system, as per preferential order, and plan the suitable maintenance

strategies. From the analysis it has been concluded that ABCBLT performs con-

sistently well in comparison of GABLT and traditional FLT techniques as it gives

a reduced region of predictions and hence may give results closer to real situation.
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The computed results are further used to formulate and then solve the performance

optimization problem for the system.

The conclusions made from the work presented in this thesis are summarized

below:

(i) An availability-cost optimization model has been developed for the butter-oil

processing plant by taking manufacturing and repairing cost function as an

objective and solved in terms of optimal MTBF and MTTR by using ABC

algorithm and compared their results with GA and PSO. A statistical t-test

has been performed by ABC with other algorithms’ results and shown that the

results computed by the suggested approach are statistically significant.

(ii) A hybridized technique named as ABCBLT for analyzing the behavior of indus-

trial systems by utilizing uncertain data with reduced uncertainty is proposed.

Fuzzy set theory has been used in it for increasing the efficiency of handling the

data as compared to probability theory. A constant failure rate model has been

taken during the analysis. Sensitivity as well as performance analysis have also

been carried out by varying the failure rate and repair time on its availability

index. These analyses will help the system analyst for finding the most critical

component of the system on which more attention should be given for saving

money, manpower and time by adopting a suitable maintenance strategy.

(iii) Instead of considering the constant failure rate model, a study has been done

for analyzing the behavior of industrial systems by considering time varying

component model, i.e. by considering the Weibull distribution for failure rate

parameters. The uncertainties which are present in their corresponding param-

eters are removed with the help of triangular fuzzy numbers. Various reliability

parameters are addressed to strengthen the analysis in the form of fuzzy mem-

bership function by using ABCBLT technique and compared their results with

the Crisp, FLT and GABLT technique results. From this analysis, it has been



218

concluded that maintenance should be based on the defuzzified values rather

than crisp values for getting a safe inspection interval between maintenance

action to monitor the condition and status of the equipments constituting the

system before reaches to crisp value.

(iv) A time dependent RAM-Index has been given in Chapter 6 of this thesis for

analyzing the composite effect of reliability, availability and maintainability of

each subsystem/units of a paper mill. The major advantage of this analysis

is that by varying the individual component failure rates and repair times

parameter of the component, the corresponding effect on its performance has

been analyzed. Based on their analysis, the system analyst may plan the

suitable maintenance strategies for improving the performance of the system

and thus decreasing their operational and maintenance cost.

(v) A two-phase approach has been introduced in Chapter 7 for reliability-redundancy

allocation problem of a series, series-parallel and bridge systems. In the first

phase, an optimal reliability and the corresponding redundant component of

each subsystem has been computed using ABC algorithm and the results have

been compared with other evolutionary algorithm results. While the improve-

ment on the component reliability has been made in the second phase by

preserving the redundant components corresponding to each subsystem. Fi-

nally the computed results during both the phases are compared to show the

superbly of the proposed approach with the existing techniques.

(vi) A structural framework has been developed in Chapter 8 to model, analyze and

predict the failure pattern of the system behavior in both quantitative as well as

qualitative manner. In their framework, degree of hesitation or indeterminacy

between the membership functions have been considered in which basic events

are represented in the form of vague fuzzy numbers of triangular membership

functions. Vague set theory over fuzzy set theory has been used as the vague
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sets separate the trueness and falseness evidence for membership of an element

in a set. Also, in vague set, the level of confidence of domain experts lies

between [0,1] instead of 1 as in fuzzy set theory. To strengthen the analysis,

various reliability parameters of interest are computed and compared their

results with their crisp as well as fuzzy technique results. The most important

benefit is that the crisp, vague and defuzzified values for even highly complex

integrated system can be obtained all at once.

9.2 Future scope of the work

The method of analysis, design and reliability/availablity optimization aspects in the

production and manufacturing system can be extended in the following directions:

(i) The present work has been investigated for a system whose functional de-

pendency are known, so in future we are working on the development of the

methodology for those systems or large complex systems whose functional de-

pendency are not known.

(ii) The presented study can be performed equally well to evaluate the system

behavior of other process industries such as sugar industry, power plant, ce-

ment industry, petroleum, food processing etc. as the considered methodology

can overcome various kind of problems in the area of quality, reliability and

maintainability, which strongly needs the management attention.

(iii) The presented methodology will be further extended and improved using other

optimization tools/algorithm such as Ant colony optimization, Firefly algo-

rithm etc. and artificial neural network will be used to handle the complex

nature of the systems.

(iv) The study can be extended with the consideration of the degree of uncertainty

between the membership functions and domain of confidence.
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(v) The present research work can be extended to arbitrary repairs and failure

time distribution.
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