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ABSTRACT 

 

The enzyme streptokinase is secreted by β-hemolytic streptococcus sp., which is 

often used to treat acute myocardial infarction and pulmonary embolism, being a vital drug 

it is required to be produced in recombinant form for thrombolytic therapy. This enzyme 

can be produced by using recombinant E. coli cells. The unstructured model factors were 

found to apparently influence the existence of active cells in the bioreactor environment. 

Our endeavour was to make out obligatory constraints that deal with the plasmid instability 

with an approach to apply composite model, which explained the relevant part of dynamics 

in bioreactor operation.  

Computational models were developed utilizing structured and unstructured 

approaches. A range of dilution rates were selected starting from 0.1 to 0.65. On 

simulation of the process, the patterns obtained noticeably depicts the role of relevant 

parameters governing bioprocess system, particularly metabolite concentration and dilution 

rate, to present segregational instability and competitive dynamics in cell population. A set 

of parameters, including plasmid bearing cell population, plasmid lacking cell population, 

substrate concentration, metabolite concentration and probability of plasmid loss were 

taken into account.  The idea was to measure the instability of plasmid, which could be 

directly derived from the growth of plasmid lacking cell population. This strategy ensures 

high flexibility in bioprocess modelling framework since it has a number of adjustable 

parameters.  

Other bioprocess models were assumed to reveal the significance of dilutions and 

antibiotic concentration regulation during continuous culture. The structural machinery of 

a cell itself could assume to be an entire structured system that presented the functional 

role of various sub-cellular entities. The rate of failure of any cellular entity was found to 

be governed by prime metabolic events and partitioning phenomenon. Plasmid copy 

number dynamics trend was observed to evaluate the effect of metabolite concentration in 

time dependent manner. The copy number was estimated particularly after 2-6 hours of 

induction to understand its variability.  

Firstly, the production media was statistically assessed using Plackett Burman 

design and later central composite design was used to estimate the interacting media 

components and culture condition factors. The four selected media components were put 

for CCD analysis and optimization.   The production of streptokinase with optimized 



 

vi 

medium and culture conditions was found up to 40% higher in magnitude in comparison to 

usual based conditions. An effective numerical system had been further considered using 

neural network and statistical method together where the prior one served as a potent tool 

for identifying and optimizing the output parameter. The statistical and neural network 

approaches were compared in predicting the output of different set of optimization 

systems; the later had revealed results that are more accurate. The different inputs of 

population dynamics simulation had been taken to neural network and prediction accuracy 

with high value of r2 0.98 was achieved in estimation product formation. The production of 

highly valuable recombinant enzymes is being done using fermentation technology and in 

similar way the computational bioprocess methodologies can be used for its large scale 

production. 
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CHAPTER-1 

INTRODUCTION 

Streptokinase was the first thrombolytic drug, to be described and introduced for 

treatment of acute myocardial infarction and pulmonary embolism for more than forty 

years ago. It is now the leading fibrinolytic agent in the treatment of thrombo-embolic 

conditions and it is included in the World Health Organization Model List of Essential 

Medicines. The enzyme streptokinase is secreted by β-hemolytic Streptococcus equisimilis, 

a gram-positive bacterium.  Being a vital drug of high demand it is required to be produced 

in recombinant form for thrombolytic therapy. Biochemically, streptokinase is regarded as 

an extracellular 47kDa glycoprotein consists of 415 amino acid residues. It interacts with 

plasminogen to form a stoichiometric complex, which activates plasminogen to plasmin, 

the later being the active form can degrade the fibrin matrix of blood clots (Wong et al., 

1994). Streptokinase has been widely used as thrombolytic agent since long. Its ability to 

induce reperfusion of the occluded coronary arteries and to reduce mortality has been 

firmly established. 

Workers have over-expressed the streptokinase in recombinant E. coli 

(Thangadurai et al., 2008). It is encoded by usually occuring skc gene of Streptococcus sp. 

in native form. Earlier the constructs were transformed into BL21 (DE3) and transformants 

grown in LB medium till 0.6 OD at absorbance wavelength of 600 nm. Then the cultures 

were induced with 1 mM IPTG at 37°C for 3h. The expression profile of the streptokinase 

samples were analyzed by resolving in 10 percent SDS and staining in Coomassie Blue G-

250. Though skc gene is known to have many rare codons in its composition, 

overexpression was achieved instead of having some negative effect. The analysis of 

relative codon frequency of skc gene in E.coli reveals the presence of few position specific 

rare codons that affect the heterologous protein expression significantly. The specific 

growth rate decreased sharply upon induction of recombinant protein expression i.e. 

streptokinase, thus various feed profiles employed in post induction phase, with varying 

feed rates (Ramalingam et al., 2007). 

The S. equisimilis streptokinase gene expressed in E. coli has led to a ten-fold 

greater streptokinase titer than magnitude obtained in culturing of any other group C 

bacterium. Work had been reported on localizing the core promoter region of the 
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streptokinase gene as skc (Malke et al., 2000). Usually recombinant streptokinase was 

produced from E. coli culture using the LB medium at 37°C from the expression of skc 

gene (Lee et al., 1997). The plasmid used had previously imparted ampicillin resistance 

marker that provided the bacterium resistance to ampicillin in turn rendered the selection 

pressure for plasmid retention. The production of streptokinase was induced by adding 

1.0mM IPTG to the medium. This enhanced the productivity of the recombinant protein 

and enabled its secretion into the extracellular medium. A radial caseinolysic method with 

the agarose gel containing both casein and plasminogen is commonly used (Saksela, 1981).  

High cell density could be obtained with high cell density cultivation of 

recombinant cell system by using a proper feed strategy. The T7 RNA polymerase was 

induced with IPTG when biomass was 1.2mg DCW per ml and pulse feeding of 

concentrated substrate was done with different time intervals (Yazdani and Mukherjee, 

1998). Likewise, an inducer concentration of 0.1mM IPTG was used while recombinant 

streptokinase accumulated to about 20% of the total soluble protein in the cell 

(Balagurunathan et al., 2008). Different dilution rate was used in continuous culture for 

expression of streptokinase protein and found that a high dilution rate of 0.3 h-1 before and 

after induction helped in increasing the product concentration up to a level of 421 plasmin 

units per ml (Yazdani and Mukherjee, 2002). Changes in dilution rate during continuous 

culture would lead to an attainment of higher level of plasmid stability (Patnaik, 1995). 

Streptokinase is a non-growth associated product since its production and cell 

growth are not linearly proportional. The culture of E. coli cells was routinely grown and 

maintained in LB medium and production medium used for batch fermentation contained 

in a medium contains ampicillin (100µg/ml). In performing streptokinase assay to test its 

activity in culture supernatant fluids, comparison of experimental samples with dilutions of 

standard purified streptokinase solution using casein/plasminogen plate technique was 

performed.  

While conducting fermentation process in the bioreactor, recombinant cells are 

found to lose their plasmid. After some time as the fermentation proceeds two types of cell 

populations are to be developed. Since substrate is a growth-limiting nutrient factor so 

there starts a competition between two populations. The organisms carrying the plasmid 

are likely to be weaker competitors than one without because of the added load on its extra 

metabolic machinery (Lu and Hadeler, 1998). 
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The Lotka and Volterra model had significant relevance in bioprocess since 

chemostat used adopts the behaviour of theoretical ecology. The organisms carrying the 

plasmid used to compete with plasmid lacking cells for their existence in culture (Lu and 

Hadeler, 1998). There could be a number of factors that regulates the dynamics of plasmid 

carrying cells within the reactor. One such major factor was probability of plasmid loss due 

to segregation during cell division that could be described by segregative instability 

coefficient (Syamsu et al., 1992). 

The behaviour of the systems like bioreactor was found to be solely dynamic. 

Population dynamics model for plasmid bearing and plasmid lacking cells in bioreactor 

were being made more robust to develop an insilico dynamical system, which had the 

characteristics of a chemostat that several workers used to employ for streptokinase 

production. The representation of the dynamical system through modelling had its 

relevance in predicting the behaviour of the system on disturbances made to its initial 

conditions. The most significant consideration of the present day model is the challenge 

regarding instability of plasmid or plasmid loss with respect to time, which incorporates 

the effect generated from different means. Various other time invariants and intrinsic 

constraints together were now taken into account to study such responsible factors. A 

sophisticated model ensures a higher degree of flexibility since it has a number of 

adjustable parameters. Still efforts regarding the development of operational approaches 

imparting certain non-ideal bioreactor conditions are much preferable in this regard. 

So, on the coexistence of two species which occurs in handling the recombinant 

cells population, an interaction occurs which may not be simply evaluated as of 

competitive type. The formation of recombinant product streptokinase is directly related to 

the population of plasmid bearing cells which often having decreasing trend with respect to 

process duration due to plasmid instability. Mortality is considered to lower the extent of 

inter specific competition and thereby promote the coexistence of competing species 

(Abrams, 2001). Preferably our endeavour is to bring up a developed model that has close 

resemblance to a natural chemostat in behaviour retaining the involved noticeable factors 

that seems to play some relevant role in dynamics.  

  Streptokinase production in bioreactor is associated to the development of 

bioprocess models pertaining to various aspects of the fermentation system. It is an 

established fact that plasmid lacking cells are found to emerge from the initial pool of 

recombinant cell population. This phenomenon leads to an undesired loss in yield of the 
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product. Primary metabolites, particularly acetic acid etc are formed as by-product of 

metabolism, has its influential role in regulating the competitive and inhibitory dynamics. 

Metabolites were found to play a crucial role since their threshold amount was assumed to 

promote the formation of plasmid lacking cells. On the other hand, probability of plasmid 

loss had shown to follow a variable trend in the model dynamics. In this study a process 

model with coupled differential equations is required to reveal the interaction among 

various parameters. Numerical simulation of delay and periodic model of partially recycled 

nutrient after extinction of cells due to decomposition during fermentation (Yuan and 

Zhang, 2012). 

Our effort is to make out obligatory constraints that deals with the plasmid 

instability i.e., time dependent loss of plasmid. A brief review of probability of plasmid 

loss has been presented which has been shown to follow a variable trend in the model 

dynamics. The bioreactor is often used to gather information in form of data, regarding 

microorganism activity and bioprocess phenomenon in order to generate a mathematical 

model utilizing a set of culture parameters. Preferably, the endeavour was to develop a 

model that had close resemblance to a natural dynamic system that involved noticeable 

factors.  

In producing the recombinant enzyme using bioprocess technique the forth most 

problem was the cease of production magnitude with progress in process duration of 

fermentation. Since the formation of product (streptokinase) would be directly proportional 

to the number of plasmid bearing recombinant cells in the media and also the average 

plasmid copy number present in individual cell at the point of time, so our emphasis was to 

consider plasmid copy number into our account and to study its variations. A stochastic 

model for plasmid copy number is studied (Seneta and Tavare, 1983). In continuous 

culture the increase in dilution rate to certain point seemed to induce a rapid decrease in 

plasmid copy numbers (Reinikainen and Virkajarvi, 1989). A method of rapid 

quantification of plasmid copy number is regarded to be an important process variable that 

can be used in the process control dynamics studies (Schmit et at., 1996). Hence, 

subsequent determination of the copy number was very much essential and a kinetic model 

was required to analyse the decrease in plasmid copy number. In order to maintain a high 

copy number and high fraction of recombinant cells in the culture medium, strategy would 

be to optimize key parameters in production process of streptokinase. The magnitude of 

product formation was regulated through sustenance of recombinant cells fraction. 
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Specifically, the research work deals with the task pertaining to strength of plasmid 

bearing and plasmid lacking cell population, plasmid copy number and their dynamics. It 

also deals with media and culture condition optimization and its analysis. Several 

modelling strategies in bioprocess were found to play a relevant role in the production of 

valuable recombinant products. Modelling of plasmid stability is presently dealt in 

mechanistic way to support structured and unstructured models.  

The unstructured model factors were found to be apparently influence the 

existence of active cells in the bioreactor environment. On the other side, the structural 

features of a cell itself can be assumed to be an entire structured system that presents the 

functional role of various sub-cellular entities. An approach was made to apply composite 

model, which explains the relevant part of dynamics in bioreactor operation. Genetic 

Algorithm simultaneously evaluates many points in the given parameter space and it often 

used to converge towards the global solution; hence it is helpful in identifying bioprocess 

parameters in a non-linear system (Ranganath et at., 1999).  

In the substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch 

cultures operated under the condition of constant glucose and maltose concentration level. 

The observed sugar inhibition effect in glucostat cultures was taken into account in 

modelling the growth kinetics (Papagianni et al., 2007). In glucose grown culture there 

would be an effect of lactic acid accumulation which results in the lowering of pH, the acid 

tolerance response results into a varying amount  of recombinant protein i.e., streptokinase 

produced (Sriraman and Jayaraman, 2006). The probability of plasmid loss in selective 

medium with difference in specific growth rate of recombinant and plasmid free cells 

(Zabriskie and Arcuri, 1986) were found to be affected by factors like genetic make-up of 

the host cells and the reactor operating parameters such as temperature, pH and growth 

medium composition. The selective pressure of selection medium is less effective due to 

the leakage of gene product (Sardonini and Dibiasio, 1987) which is responsible for 

selective mechanism. The effect of substrate feed concentration and forcing via dilution 

rate was examined on the performance of the bioreactor (Ali et al., 2012). 

Computational models were developed utilizing structured and unstructured 

approaches. On simulation of the process, the patterns obtained noticeably depicted the 

role of relevant parameters governing bioprocess system, particularly metabolite 

concentration and dilution rate, to present segregational instability and competitive 

dynamics in cell population. A numerical system had been further designed and considered 
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using neural network and statistical method together where the goal was to optimize the 

input parameter. Now an improvement in the technology is required to increase the 

magnitude of enzyme production from the developed recombinant strain. A kinetic 

structured model for cell cultivation in reactor was assumed on basis of structuring 

biomass in two main groups including dividing and non-dividing cells (Klykov and 

Kurakov, 2012). Plasmid dynamics was studied in respect to generation time and half-

elimination time of plasmids from recombinant cell population (Ganusov and Brilkov, 

2002). 

Secretion rates of microbial products can be affected by cell-cycle position of 

individual cells and thus on the degree of heterogeneity in terms of intracellular 

constituents (Henson, 2003). Growth conditions have profound effect over plasmid 

stability as well as specific growth rates of two cell populations (Stephanopoulos and 

Lapidus, 1988). On the other hand formation and release of by-products may have its 

profound impact over the functional subunits involve in expression and translation 

pathway, it results into decline in the reliability of functional metabolic subunits and hence 

ceases the production.  

The computational intelligence techniques including regulatory control are of 

major help in artificial framing and dynamics associated to bioprocess (Wang et al., 2010). 

Cellular intelligence is now-a-days a most excellent tool to amplify the information taken 

from cellular level activities in order to utilize it for higher level computational 

applications in prospects of getting automated (Nicoletti et al., 2009). A highly constituted 

model framework presents designing of composite architecture that optimally blends 

cellular and artificial intelligence as well as mechanistic models (Patnaik, 2009). The 

signal oriented modelling is remarkably an approach for utilizing the intra and inter 

cellular level signals to emphasize over the fundamentals of structured model. The use of 

regulatory control enable the models based on cells to utilize information gained from 

experience and thereby respond intelligently to external environmental stimulating factor.  

The rationale of structural instability is described to be manifold (Summers et al., 

1993). Insufficient repair mechanisms are further reason for mutations, which results into 

failure of expression. It is a fact that generally quite complex mechanistic models are 

required to adequately describing the metabolic dynamics of multi-cellular systems 

especially under non-ideal conditions. It is evident that cells have internal regulatory 

control to govern all biochemical pathways in a legitimate manner. Hence, it coordinates 
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and directs the adaptive machinery to cope up with external or extra-cellular variations 

maintaining the supportive mechanism that operates to serve simultaneously. This 

instrumental work can only be made feasible employing stochastic approaches, which 

easily support to constitute the variable pathway types that can be evaluated using 

simulation method. The identification of a key functional unit within the network of 

pathways is a vital task to complete for providing a minimal framework to our model. An 

optimal and reliable representation of the overall model using integrated approach for 

bioprocess design (Rouf, 1999) is a mandatory task in this direction.  

It was observed that after 60h of continuous cultivation in LB medium without 

ampicillin the stability of plasmid ceases to zero i.e., the entire culture contained only 

plasmid free cells. On using ampicillin concentration of 100mgl-1 the stability was found to 

drop upto 60% and did not significantly cease further (Friehs, 2004). All the model 

parameters of plasmid replication control can be obtained independently and no adjustable 

parameters are needed (Ataai and Shuler, 1987). The accuracy of simulations allows 

description of the complex interaction between substrate, microorganism and metabolite, 

acetate, which is a product and also a carbon source for the microbes (Reinikainen and 

Virkajarvi, 1989).  

In microbial culture, assay with different inoculums ages and different 

concentrations were performed, the biomass obtained was analysed in terms of their 

chemical composition (Pelizer et al., 2003). The Pischia pastoris clone producing 

streptokinase was optimized and the effects of carbon and nitrogen sources were observed. 

Response surface methodology has been widely used to evaluate and understand the 

interactions between different process parameters. Two level Plackett and Burman design 

was used for the screening of carbon sources. The present study was aimed at screening of 

the important carbon and organic nitrogen sources with respect to their main effects and 

not the interaction effects between various medium constituents and hence such design was 

used for the screening of different carbon sources (Vellanki et al., 2009). A response 

surface methodology together with central composite rotator design was also employed to 

optimize the fermentation medium for Nattokinase production by Bacillus subtilis. 

(Deepak et al., 2008) Streptokinase activity of culture supernatant fluids was estimated by 

comparison with dilutions of standard purified streptokinase solution using casein-

plasminogen plate technique (Malke and Ferretti, 1984).  
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Media optimization for the strain of E. coli BL21, which was taken as a host 

organism with plasmid vector pRSET-B had not been done yet. From the literature survey, 

it was clear that the parameters pertaining to culture conditions were not yet optimized for 

the same. Consequently, the optimization of various media constituents and condition 

parameters were to be done. In order to achieve an optimal level of production primarily 

the effort was made to optimize the production media components and culture conditions 

statistically. Statistical methods were helpful in minimizing the number of experiments 

required to test the combination of factors for best output. In statistical technique screening 

design should be carried out to determine which of the several experimental variables and 

their interactions present more significant effects (Bezerra et al., 2008). ANOVA was 

constructed for the second order response surface model; the significance of each 

coefficient was determined by Student’s t-test and p-value to identify the corresponding 

significant factors. A mathematical method was used to solve the regression equation 

(Vellanki et al., 2009).   

So, statistical techniques viz. PB and CCD were employed to screen the 

parameters and to optimize those in successive experiments. A mathematical method had 

been used to compute the regression and correlation among output data. Optimization 

would be the first major step before carrying the bioreactor operations. In next step, 

streptokinase production had to be optimized using appropriate conditions under process 

operation. Finally, fermentation would be done employing the microorganism based on 

maximum yield of streptokinase providing most appropriate conditions for growth of cells 

and plasmid retention criteria.  

Building ecological model utilizes many methods, ranging from numerical, 

mathematical and statistical methods to techniques originating from artificial intelligence, 

like neural networks. A multilayer feed forward neural network with multi-layer 

perceptron, is very popular and it is more commonly used than any other neural network 

types (Lek and Guegan, 1999). Feed-forward ANNs, modified to include dynamic 

characteristics and form the basis of estimator models. ANNs, serve as a powerful tool for 

non-linear modelling and process control (Glassey et al., 1994). Use of about more than 

hundred iterations was enough for successful convergence of the error under the conditions 

employed. Obtaining the observed data and simulated results were close, suggests the 

superior capability of neural network modelling for the dynamic behaviour of the system 

(Horiuchi et al., 2001). The ANN model showed a better correlation with the experimental 
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values than the regression model (Haider et al., 2001). Various training procedures 

proposed for the hybrid modelling approach is generally based on gradient optimization 

method, so performing repeatedly the exploration analysis with different start vectors of 

the ANN weights should be taken and the network led to minimal “test error” is to be 

adopted (Simutis and Lubbert, 1997) (Simutis and Lubbert, 1997).  

The Neural Network based simulation of the process was done using Matlab 

2008Ra, the predicted values obtained from neural network had been taken into account 

together with the statistically predicted output. Neural network modelling was applied for 

control of fed-batch like process and to evaluate the bioprocess performance under non-

ideal conditions (Patnaik, 2004). The previously developed model for fed-batch culture in 

respect to streptokinase production has remarkably depicted the sole dynamic behaviour of 

the bioprocess system (Patnaik, 1995) (Patnaik, 2002). Online estimators for biomass and 

recombinant protein concentration were constructed using information available online by 

the application of Neural Network (Glassey et al., 1994). The ANN has been proved to be 

a useful tool for model building; there was a striving need to improve bioprocess 

operability dealing with the large scale industrial fermentation systems (Massimo et al., 

1991).   

Significant attempts were made to configure a composite model to represent the 

overall dynamics in a well-defined algorithm that depicts the behaviour of the microbial 

population in the entire bioreactor operational environment. The estimators of instability 

were utilized to estimate some of the aspects of fermentation process, which may lead to 

an improved supervision. The simulation of the process had been done using numerical 

method to evaluate and predict the model behaviour using neural network approach. 

Pilot-scale bioreactors differ from small laboratory-scale reactors in terms of a 

greater occurrence of noise and incomplete mixing of the broth. Conventional control tries 

to induce good mixing and to filter out the noise as completely as possible. As such an 

ideal operation is difficult to achieve, recent work has tried to exploit the non-ideal features 

to improve the performance using computational heuristics approaches. The bioreactor is 

often used to generate online data of a set of parameters from the microbial culture to 

constitute a mathematical model. Other bioprocess models had been incorporated to the 

work suggesting the means to exploit other domains of biochemical technology for 

developing a more worthy approach. The structural features are assumed to model the 

productive span of cells in the bioreactor system.  
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In this research the work focus would be on the modelling of production of 

recombinant streptokinase from the bioreactor. Another approach would be the use of 

heuristic approaches that might be a most desirable and ultimate step in the direction of 

improving the model output. A novel multidimensional approach was used to improve the 

robustness of the problem of data management, and was supported by computational and 

experiment framework. Moreover the idea was to exploit the features concerning to such 

dynamics, particularly plasmid vector stability that indirectly governs the product 

formation.   
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CHAPTER-2 

POPULATION DYNAMICS MODEL 

2.1. An Overview  

The production of streptokinase in bioreactor can be well depicted as cell 

population dynamics. It is an established fact that two types of cell populations are found 

to emerge from the initial pool of recombinant cell population. This phenomenon leads to 

an undesirable loss in yield of recombinant product. Primary metabolites are formed as by-

product of metabolism, has its influential role in regulating the competitive dynamics. On 

the other hand, probability of plasmid loss has shown to follow a variable trend in the 

model dynamics. In this study a process model with coupled differential equations is 

designed to reveal the interaction among various system parameters.  

The population dynamics model in context of instability of plasmid during 

fermentation were taken elaborately. In present configured model the coefficients were 

either taken from the earlier known classical models or may have been derived using 

multiple linear regression technique taking standard validated values from simulation in 

respect to experimental results. The five parameters, including a) plasmid bearing cell 

population, b) plasmid lacking cell population, c) substrate concentration, d) metabolite 

concentration and e) probability of plasmid loss were taken into account.  The idea was to 

evaluate the instability of plasmid, which can be directly derived from the growth of 

plasmid lacking cell population. Mortality was another indispensable factor, which was 

found to lower the extent of inter-specific competition and thereby promote the 

coexistence of competing species (Abrams, 2001). 

The toxicity of metabolite equally harm both the population simultaneously but 

since plasmid bearing cells are liable to lose their plasmid in response, so plasmid free cell 

population was strengthened during the time. So, the plasmid free cell population would 

have an increasing trend despite of decreasing due to this event. The probability of plasmid 

loss was not constant throughout the fermentation process due to the formation of 

metabolites, which showed its presumed toxic effect after certain threshold concentration, 

so it was taken as variable parameter in the model with respect to time. A criterion of 

threshold policy could be implemented to evaluate collective probability factor which 

influenced the time dependent variation of probability. Also mortality or formation of 
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dormant cells was possible which was due to toxification developed on account of toxic 

metabolite or by-product formation, like acetic acid formation in case of fermentation 

process carried for streptokinase production.  

The model was simulated at different dilution rates and different initial substrate 

concentration and thereby differences in the model behaviour had been observed on 

simulation. There was a remarkable decline in the percentage of plasmid bearing cells 

above a certain level of dilution rate. System had shown its prevalent sensitivity to change 

in dilution rate. The probability of plasmid loss had shown a gradual trend at high dilution 

rates. The numerical simulation of the model equations showed plasmid loss tends to occur 

after a certain limit of metabolite level, which shows that the increasing concentration of 

metabolite tends to support the population of plasmid lacking cells that witnessed the trend 

in loss of plasmid from recombinant cells. Simulation was done using most of the standard 

values from existing models and assumed constraints required to explicate this dynamical 

system. Since the production of streptokinase was directly depending upon the dynamics of 

plasmid bearing cells, so to enhance the production it was inevitable to reveal the kinetics 

operating factors and to evaluate the instability of the plasmid.  

 

2.2. Model Development Parameters 

2.2.1. Segregational Instability 

Segregational plasmid stability would have significant influence on the production 

of heterologous proteins since it ensures the degree of sustenance of plasmid.  Reportedly 

stabilization machineries found on natural plasmids which somewhat control the 

partitioning of plasmids on to daughter cells (Friehs, 2004). The partitioning phenomenon 

depends on mechanisms of segregational plasmid stability, which is governed by several 

factors including, plasmid size and form, high copy number and plasmid distribution, 

difference in specific growth rate by cell internal factors, post segregational killing of 

plasmid free cells etc. Possibly our effort was to bring up a model that incorporates 

noticeable factors that seems to play some relevant role in dynamics of the vector.  

2.2.2. Dilution Rate 

In a continuous culture, the dynamics of the streptokinase was observed at different 

dilution rates. Simulation was performed for a range of dilutions. Thus attempt had been 

taken to investigate the bioprocess potential keeping a dynamic view into account. 
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2.2.3. Substrate Concentration  

After some time as the fermentation proceeds, two types of cell populations were 

obtained. Since substrate was a growth-limiting factor, there started a competition between 

two populations. The organisms carrying the plasmid or plasmid bearing cells were likely 

to be weaker competitors than one without because of extra load of vector machinery; on 

the other hand, plasmid carrying cells had an advantage of selection stress due to antibiotic 

in the medium. The production media comprising of carbon, nitrogen and salt 

concentration was used and its characteristic consumption with either type of population 

during bioprocess was observed simultaneously.      

2.2.4. Metabolite Concentration 

Various indispensable factors served as significant factors in influencing the model. 

A threshold criterion was implemented for toxicity effect generated from primary 

metabolite for the growth of cells. Their effective concentration could bring mortality or 

sluggishness in growth, moreover it used to facilitate the cells to carry out and enhance the 

state of plasmid instability.  

2.3. Previous Population Dynamics Models 

The earliest models for population dynamics was proposed earlier by Lotka and 

Volterra (Bailey and Ollis, 1986) which interpreted the population interaction for a prey-

predator like system. The folowing relation gives the dynamics, 

��
�� = �� − ���                                                                                                                                                                 (1) 

��
�� = −
� + ���                                                                                                                                                              (2) 

In the above expression, α growth rate of prey or population A, β is the rate at 

which predators or population B, destroys prey, γ is the death rate of population B and δ is 

the rate at which predators increase by consuming the prey. The above model Equations 

(1) and (2) has good relevance in bioprocess since chemostat adopts the behaviour of 

theoretical ecology. A microbial ecosystem was considered as a functional entity 

characterized by certain macroscopic measurements such as the total quantity of biomass 

or the total number of cells in the medium. It is possible to work with rapid growth of 

species in well controlled environments, such as ‘‘chemostat” (Harmand et al., 2008). 

During the culture and production of micro-organisms, the control of the bioprocess 

sometimes depends on the micro-organism concentration or the biomass density and 
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conditions provided during that time period, for instance, in case  some aerobic microbial 

community  the Dissolved Oxygen (DO) is a key factor to their growth (Guo and Chen, 

2009). 

The expression profile of the streptokinase samples were analysed by workers 

(Thangadurai et al., 2008) and the specific growth rate noticeably found to decrease upon 

induction for recombinant protein expression (Ramalingam et al., 2007). While performing 

fermentation process in the bioreactor since recombinant cells are found to lose their 

plasmid, after some time as the fermentation proceeds two types of cell populations are 

developed. Since substrate is a growth-limiting factor so there starts a competition between 

two populations. The organisms carrying the plasmid or plasmid bearing cells are likely to 

be weaker competitors than one without because of the added load on its metabolic 

machinery (Lu and Hadeler, 1998).  

There could be a number of factors, which regulate the dynamics of plasmid 

carrying cells within the reactor. One such major factor was probability of plasmid loss due 

to segregation during cell division that could be described by segregative instability 

coefficient (Syamsu et al., 1992). On the other hand, the likelihood of segregation for a 

plasmid bearing cell is independent of the frequency of plasmid-free cells generation in the 

population (Lenski and Bouma, 1987) while the selection intensity against plasmid 

carriage is influenced by occurrence of plasmid lacking cells in population. In cell division 

process occasionally a daughter cell results that doesn’t contain the plasmid and can no 

longer produce the desired product (Stephens et al., 1992). Plasmid free cells being faster 

in adapting to environmental changes, it is indeed possible to give a competitive edge to a 

plasmid containing population through cycling of dilution rate. But the periodic variation 

of dilution rate noticeably proved to have insignificant role in improving the performance 

of biomass production in a continuous process (Stephens et al., 1992). 

The probability of plasmid loss in selective medium and difference in specific 

growth rate between recombinant and plasmid free cells (Zabriskie and Arcuri, 1986) are 

affected by factors like genetic make-up of the host cells and the reactor operating 

parameters such as temperature, pH and growth medium composition. Moreover, the 

selective pressure of selection medium is less effective due to the leakage of gene product 

(Sardonini and Dibiasio, 1987), which is responsible for selective mechanism. The 
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continuous system of production often serves as a better choice even in the packed column 

reactor for production of antibiotics (Banerjee and Debnath, 2007).  

A chemostat model of competition could be established between plasmid bearing 

and plasmid free organism for a single nutrient where plasmid-bearing organism can 

produce toxins against plasmid free organism at same cost to its reproductive abilities (Hsu 

et al., 2000). Lenski and Hattingh (Lenski and Hattingh, 1986) studied the effect of an 

inhibitor on two populations. They considered the degree of inhibition in presence of 

inhibitor or toxicant on growth rate. It was studied that estimation of unmeasurable 

biological variables was important in fermentation process, directly influencing the optimal 

control performance of the fermentation system as well as quality and yield of the targeted 

recombinant product. Application of some novel strategy for state estimation of fed-batch 

fermentation was suggested (Wang et al., 2010). 

The input substrate concentration and dilution rate serve as operating parameters 

and these are to be controlled by the experimenter. The study for the cases where nutrient 

supplied at constant rate and time dependent manner were performed earlier and a delay in 

the growth response of organism to nutrient uptake was obtained. Varying feed profiles 

were employed in the post-induction phase of recombinant streptokinase protein 

expression, including constant feed rates, linearly increasing feed rate and exponentially 

varying feed rates (Ramalingama et al., 2010) to evaluate the requirement of variable feed 

strategy. Modulation of an input such as a substrate or a nutrient concentration or the cell 

environment such as the pH can enhance the rates of biochemical reactions that were 

occurring (Silveston et al., 2008). A twofold increase in the concentration of plasmid 

bearing cells using square wave modulation of the dilution rate had been found. The use of 

altering dilution rate for the same environment setting could revert competitive exclusion 

to species coexistence (Costa et al., 2006). 

According to model proposed by Imanaka and Aiba (Imanaka and Aiba, 1981) for 

a continuous culture the two types of population of cells, plasmid bearing and non bearing 

cells having interaction given by the following expression, Eqs. (3) and (4): 

���
�� = ���� − ��� − �����                                                                                                                                           (3) 

���
�� = ����� + ���� − ���                                                                                                                                           (4) 
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    Where, N1 population of plasmid bearing cells and N2 population of plasmid free 

cells. The above model Equations (3) and (4) considered, is purely of exploitative 

competition since no toxin is assumed to be formed. Another model was given by 

Stephanopaulis and Lapidus (Stephanopoulos and Lapidus, 1988) which is very close to the 

model given earlier researchers (Imanaka and Aiba, 1981), it includes three parameter 

variables plasmid bearing and plasmid lacking cell populations and substrate concentration 

which is limiting, expression shown in set of mass balance Eqs. (5) - (7): 

���
�� = µ���(1 − �) − ���                                                                                                           (5) 

���
�� = ���� + ����� − ���                                                                                                          (6)                              
�!
�� = �(!" − !) − 1

# (���� − ����)                                                                                          (7) 

!"  ≥ 0, �((0) > 0, * = 1, 2.                                

 

2.4. New Model Development 

2.4.1. Model Assumptions and framework 

In case selective media is considered, a relevant factor selection stress coefficient 

can be taken into account, which is favourable for plasmid bearing cells (Sardonini and 

Dibiasio, 1987) while it does not favour the plasmid free cells. Since it favours the 

population of plasmid bearing cells so this parameter would be considered to resist the 

phenomenon of plasmid loss. Therefore, probability of plasmid loss in selective medium is 

smaller than that in non-selective medium. 

During the process of fermentation metabolites formation occur (Lee and 

Papoutsakis, 1999) as by-products of metabolism which are toxic (Stuebner et al., 1991) 

and inhibit the growth of both types of cells to different extent. The plasmid bearing cells 

are likely to lose their plasmid because of the permeability of such metabolites into the 

cells from the environment while other type that is free of plasmid do not have that much 

extent of harm. In other words this can be said that toxicity of metabolite equally harm 

both the population simultaneously but since plasmid bearing cells are liable to lose their 

plasmid in response, so plasmid free cell population is strengthening during the same time.  

The probability of plasmid loss is not constant throughout the fermentation 

process due to the formation of metabolites, which shows its presumed toxic effect after 

certain threshold concentration, so it needs to be taken as variable parameter in the model 
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with respect to time. A criterion of threshold policy can be implemented to evaluate 

collective probability factor which influence the time dependent variation in probability. 

Also mortality or formation of dormant cells is possible which is due to toxification 

developed on account of toxic metabolite or by-product formation, like acetic acid 

formation in case of fermentation process carried for streptokinase production. Therefore, 

considering the above assumptions we may write the dynamic model as:  

���
�� = ����(1 − �) − ��� − ,����� + -�����                                                                                                    (8) 

���
�� = μ��� + �μ��� − ��� + ,�μ��� − ,�μ��� − -�μ���                                                                            (9)  

�!
�� = �(!" − !) − 1

# (���� + ����)                                                                                                                        (10) 

��
�� = 11 − 23456 ���78 ��9: μ�                                                                                                                                      (11) 

�;
�� = #<(���� + ����) − �;                                                                                                                                 (12) 

�=
�� = #>(� − �?�)�� − =@?> − �A                                                                                                                         (13) 

�� = ��BCD !/(F� + !)                                                                                                                                               (14) 

�� = ��BCD !/(F� + !)                                                                                                                                               (15) 

G� = ,> − - + H                                                                                                                                                            (16) 

G� = H − -                                                                                                                                                                      (17) 
where, mf   =      f1  if M  > Mth     

                          f2   if M < Mth 

also, (0< f1, f2 < 1) 

Here, m1 > m2 

Since metabolic toxicity has an influence over plasmid bearing cell population to a larger 

amount. 

m1 & m2 = 0, if M < Mth       

Mth was required to be evaluated for different recombinant strain of micro-

organisms and media composition under varying set of operational conditions and it 

depends upon experimental setup with presumed parameters for a bioprocess. Likewise, 

values of constants m1, m2, mp and r1 were assessed for a defined set of conditions. 

The dynamics related to plasmid bearing and lacking cell populations together 

with effects impart due to metabolite toxicity and selective stress has been shown in mass 

balance Eqs. (8) and (9). The numerical value of q, m1 and r1 together at any instance 
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cannot be more than unity. Material balance for substrate concentration is expressed in Eq. 

(10) where the substrate consumption rates were considered proportional to the rates of 

formation of the two types of cells through their yield factors. The kinetics shown in 

Equations (11) and (12) ensures the role of varying probability of plasmid loss in the 

model and variation in metabolite concentration respectively. The Eq. (13) is mass balance 

for product i.e., streptokinase formation, Eqs (14) and (15) are Monod expressions to 

compute specific growth rates. For the collective probability factor mf two variants are used 

as f1 and f2, in expression (16) and (17) that has got variable net probability tested with the 

level of threshold metabolite concentration to assume its value.  

Since initially plasmid lacking cell population and metabolite concentration is 

absent in the medium, both were taken as zero. In the very start of the process all cells 

present are plasmid bearing, so the probability of plasmid loss was also to be taken as zero. 

The magnitude of recombinant cell population and substrate had a pivotal role in 

governing the dynamics.  

 

2.4.2. Genetic algorithm (GA) approach for optimizing of model constants  

2.4.2.1. Algorithm topology 

 

 

Figure 2.1. Algorithm of model development. 
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2.4.2.2. Modified Genetic Algorithm Paradigm 

Genetic Algorithm (GA) simultaneously evaluates many points in the given 

parameter space it often used to converge towards the global solution, Figure 2.2); hence it 

was helpful in identifying bioprocess parameters in a non-linear system [18].  

 

Figure 2.2. Global optimization paradigm for genetic operation with condition testing. 

 

2.4.2.3. Parameter Identification and Optimization 

 

2.3 (a) 
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2.3 (b) 

Figure 2.3. a and b. Profile for process coefficients m1, m2 and mp, in continuous culture 

with number of generations. 

 

Table 2.1. Numerical values of Genetic algorithm against Genetic operators with adjusted 

parameters.  

Genetic Operator and Type Genetic Parameter Numerical value of G.A.  

Encoding-binary Gap value in Generation 0.90 

Crossover-multipoint Prob. of Cross-over 0.05 

Mutation-inversion/duplication Prob. of Mutation 0.01 

Selection-Roulette wheel method Precision of Cycle  30 

Fitness-linear type Screened individuals 200 

 

Table 2.2. Results of continuous culture, showing GA estimated converged values and the 

actual values.  

GA estimated values for 

parameters 

m1 m2 mp 

0.0811 0.0032 0.0121 

The plots in Figure 2.3 (A and B), of continuous culture parameter identification 

was generated using adjusted genetic-operator parameters in Table 2.1, and GA estimated 

converged values of three model variables as depicted in Table 2.2.  



 

 

21 

 

Finally, a simulated plot (Figure 2.4) for estimating the key factor, threshold 

metabolite concentration, which may influence the recombinant state dynamics, was 

obtained experimentally. 

 

Figure 2.4. Showing simulated (dotted line) and experimental (pink circle) plots of 

metabolite level variation (with bifurcation for batch (lower thin blue line) and 

continuous(upper thick blue culture) and fraction of plasmid bearing cells (green line) to 

obtain Mth using GA optimized model variables  

 

2.4.3. List of model parameters  

Table 2.3. Initial values of model variables 

Variable Unit Initial Value 

X1 g l-1 0.70 

X2 g l-1 0.00 

S g l-1 70.0 

M g l-1 0.00 

q - 0,00 
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Table 2.4. Values of parameters assumed in the model 

 

         Variable          Unit              Initial Value 

 

                                                  S0                   g l-1                    70.00 

µ1max              h
-1                       0.74 

µ2max              h
-1                       0.80 

Y                                              2.00 

YM                                            4.80 

YP                                                    0.44 

kd                   h
-1                      0.02 

   kp                            h
-1                      0.0005 

K1                           g l-1  
                       20.00 

K2                           g l-1                       10.00 

m1                                            0.081 

m2                                            0.003 

mp                                            0.012 

r                                              0.01 

r1                                             0.02 

z                                              0.001 

 

2.5. Results and Analysis 

2.5.1. Model simulation 

The simulation of the above model was done using Matlab 2010Ra. The initial 

values (Patnaik, 1995) taken for different parameters at time zero has been shown in table 

2.3. The simulation was done using most of the standard values  taken from a previous 

model data meant for streptokinase (Patnaik, 2002) together with various other model 

constraints with smaller magnitude assumed for different set parameters which have been 

given in table 2.4., taken on the basis of their apparent role in this dynamical system. The 

probability of plasmid loss was zero at time t0 since at the beginning of process all 

recombinants cells had plasmid machinery. Different dilution rates were considered which 

proved to be the most relevant factor for continuous operation. Dilution rate was started at a 
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very low value and increased to high values to evaluate the sensitivity of response at 

different levels.  

Specific growth rates taken for plasmid bearing and plasmid lacking cells in the 

model were different since specific growth rate of plasmid lacking cells would be 

noticeably higher. Yield factor which was regarded to be the ratio of gram of cells formed 

and gram of substrate consumed was taken together with another yield term associated to 

the formation of metabolite. Other constants governing the effect of metabolite 

concentration were the two toxicity coefficients m1 and m2. While various model related 

probability factors were effectively incorporated pertaining to plasmid loss due to 

metabolite toxicity and plasmid retention for selective stress, some other rare factors were 

also considered. 

The approximate value of exponential term was taken e=2.71828, as the base of 

natural logarithm. The value of threshold concentration of metabolite taken here after 

estimation, mth = 0.50, which had its pronounced key role in leading the major aspects of 

the process. Additionally another factor, selection stress coefficient was incorporated to 

strengthen the model in respect to the selective operation carried over by traces of 

antibiotics present in the medium. The stress causing substances present in the environment 

which often found to inhibit the formation of cells devoid of any plasmid. The simulation 

was done at low and a fairly high different dilution rate viz. D1 and D2, as being shown in 

subsequent plots. In figures all three variables with different initial value (table 2.3) were 

taken together to generate the dynamics. The cases where dilution going outside the limit 

i.e., 0.23 ≤ Di  ≤  0.65, i=1, 2,...; had not been studied because of insignificant changes 

beyond the range for this context. The model plot for three vital variable parameters were 

obtained on simulation. The uppermost prominant dashed line showing X1 and the just 

lower solid line is representing X2, the third dash-dot line is showing product 

(streptokinase) concentration. Plotting all the three variable parameters in Figs. 2.5.1. to 

2.5.5, together consequently justifies the correlation among different component variables 

simultanaeously. 
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Figure 2.5 (a). Dynamics shown in plot at low dilution rate, D1= 0.10 

 

 

Figure 2.5 (b).  Dynamics shown in plot at dilution rate, D2= 0.23 
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Figure 2.5 (c). Plot shownatdilution rate D3= 0.35   

 

Figure 2.5 (d).  At dilution rate, D4=  0.40 
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Figure 2.5 (e). Dynamics shown in plot at dilution rate, D5=  0.52 

 

It is quite reasonable to investigate that low dilution rate allows the fermentation 

to last longer generates higher magnitude of concentration of plasmid bearing cells and 

favour the consumption of substrate. The numerical simulation of the model equations 

shows plasmid loss tends to occur after a certain limit of metabolite level, which depicts 

that the increasing concentration of metabolite tends to support the population of plasmid 

lacking cells that witnesses the trend in loss of plasmid from recombinant cells. Using the 

simulation dynamics it becomes easier to resolve the plot in order to understand the trend 

followed by the two population of cells. The probability of plasmid loss has its dependence 

over metabolite concentration and the two population of cells. The varying probability has 

its impact over the dynamics of the model thereby involving almost all the parameters that 

are being substantially affected due to its variability. It is very interesting to note that only 

a threshold amount of metabolite concentration is responsible for starting the variable 

dynamics of plasmid lacking and plasmid bearing cells. The model simulation was 

performed using most of the standard values from existing models and assumed constraints 

required to explicate this dynamical system. 

Dynamics observed in initial plots, Figure 2.5 (a), clearly depicts the bifurcation 

in population of pure recombinant cells and growth in plasmid lacking cell population. 

Noticeable decline in X1 with subsequent elevation in X2 level is evident on moving from 
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Figs. 2.5 (a) to 2.5 (e). After a certain dilution rate the downward steepness of the the 

curve elucidate the event of ongoing  increase in  plasmid lacking cells, indicates that there 

is a gradual decline in the level of recombinant cells on enhancing the dilution, shown in 

Figure 2.5 (c) Since the production of streptokinase is directly depending upon the 

dynamics of palsmid bearing cells so to enhance the production it is inevitable to reveal the 

kinetics operating factors and to evaluate the instability of the plasmid. The rise in 

probability can also be well marked in the plots in respect to the remarkable hike in 

metabolite formation. These two events can be supposed to deduce the trend followed by 

growth of plasmid lacking cell population.  

The influence of dilution rate D on concentration of plasmid bearing and plasmid 

lacking cells with respect to time duration of continuous process is represented in two 

plots, Figs. 2.6 and 2.7. The plots in respect to dilution rate have their importance in 

deciphering the behavior of biased inter-population cell dynamics in this case. The results 

emphasizes that delayed plasmid loss occurs at lower dilution rates. Numerical simulation 

of the continuous fermentation process could be rather helpful to enhance the performance 

adjusting dilution rate to achieve product in amplified amount. 

 

Figure 2.6. Effect of dilution rate on plasmid bearing cells with respect to time duration of 

fermentation process 
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Figure 2.7. Effect of dilution rate on plasmid lacking cells against time duration 

 

Figure 2.8. Effect of dilution rate on percentage of plasmid bearing cells with respect to 

time duration  
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60h. The Figure 2.6, showing nearly smooth variation with increasing duration on the 

other hand irregular variability is there with respect to concentration (Figure 2.7). An 

interesting feature reflected by plotting concentration against dilution rate is assessment of 

time in governing the interaction between cell populations (X1 and X2) and dilution rate 

regardless of how intense the phenomena associated to other variables are progressing. 

Figure 2.8 shows the effect of dilution rate on percentage of plasmid bearing cells with 

respect to time duration. An interesting feature of changing probability of plasmid loss 

with respect to metabolite concentration at different dilution rates, is depicted in Figure 

2.9. There is a very high probability of plasmid loss even at low metabolite concentration 

on moving towards a high dilution rate. Particularly the probability has shown a rapid hike 

on increasing dilution rate from D=0.45 to D=0.52. The percentage of plasmid bearing 

cells with respect to time in Figure 2.11, showing a gradual decreasing trend on increasing 

the dilution rate to some extent, D=0.35, the declining trend is not found to exist on further 

dilution rates. 

 

Figure 2.9. Changing probability of plasmid loss with respect to metabolite concentration 

at different dilution rates 
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Figure 2.10. Percentage of plasmid bearing cells with respect to time 

 

2.5.2. Model Validation 

The model dynamics has beed validated for specific dilution rates. Experimental 

results (Yazdani and Mukherjee, 2002) were used to compare with the simulated numerical 

values to compute the statistical significance of the closeness of two data using multiple 

regression analysis via mutivariate optimization tool. Matlab contains optimization tool 

commands, nlin function, that was used to obtain results in this regard. The  Figure 2.10. 

shows together the experimental and simulated data plot obtained at a particular dilution 

and substrate concentration in continuous culture. 

 
Figure 2.11. Showing diversion of X1 and X2 cells growth dynamics at dilution rate, 

D=0.15 and substrate concentration in g/l, experimental findings for product streptokinase 

in mg/l after induction (5h to 20 h ) has been represented by open circles 
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The model validation was done in respect to declining trend of plasmid bearing cells for 

which simulation plots obtained at different dilution rates were correlated to experimental 

results obtained at respective dilutution. Similar data characteristic were observed (Kim et 

al., 1998) in study of unstable bacterial population strain in chemostat. The obtained 

correlated trends are depicted in the Figure 2.11. below. 

 

 

Figure 2.11. Simulated and experimental data plot has been shown, dynamics depicting 

the percentage decline of plasmid bearing cells at respective dilution rates of D=0.65 and 

D=057. 

 

2.6. Discussion 

The behaviour of the systems like bioreactor is found to be solely dynamic. The 

effort was to organize the information obtained from fermentation regarding set of 

cultivation parameters. The key factors noticeably found to play the key role would be 

taken together into account to resolve the simultaneous variation in system dynamics 

(Friehs and Schügerl, 1990). 

Population dynamics model for plasmid bearing and plasmid lacking cells in 

bioreactor had been made more robust to develop an insilico dynamical system which had 

having the characteristics of a chemostat that we used to employ for streptokinase 

production. The dynamical system representation through modelling has its relevance in 
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predicting the behaviour of the system on disturbances or changes made in initial 

conditions.  

All the considered five parameters, including plasmid bearing cell population, 

plasmid lacking cell population, substrate concentration, metabolite concentration and 

probability of plasmid loss were taken into account.  The idea was to measure the 

instability of plasmid, which can be directly derived from the growth of plasmid lacking 

cell population. The model had been simulated at different dilution rates and different 

initial substrate concentration and thereby differences in the model behaviour were 

observed on simulation.  There was a remarkable decline in the percentage of plasmid 

bearing cells above a certain level of dilution rate. System had shown its prevalent 

sensitivity to change in dilution rate. The probability of plasmid loss had shown to follow a 

gradual trend at high dilution rates. In the proposed model new factors were taken into 

account like selection stress coefficient and metabolite toxicity coefficient that had 

resolved the simultaneous variation in other parameters and their interaction criteria. 

Selection stress coefficient showed to resist the process of plasmid loss up to some extent. 

Increasing concentration of metabolites had shown to inhibit the growth of two cell 

populations after attaining a certain threshold concentration, it could lead to the fact that 

plasmid lacking cells population had adopted an increasing trend while plasmid bearing 

cell population was found to follow a decreasing trend. The most significant consideration 

of the model was the changing probability of plasmid loss with respect to time which 

incorporated the effect generated from toxicity developed by the metabolites. Various 

other time invariants and intrinsic constraints were together taken into account to plot their 

collective effect with probability factor. The model ensures a higher degree of flexibility 

since it has a number of adjustable parameters. Still efforts are required for including 

influence of genetic factors and use of heuristic approaches to impart certain non-ideal 

conditions to bioprocess phenomenon.  
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CHAPTER-3 

DEVELOPMENT OF MODEL SIMUTALION TOOL AND 

ANTIBIOTIC REGULATION STRATEGY 

 

3.1. An Overview 

In this chapter, the problem of stating adjustable overall bioreactor dynamics 

has been studied. Since the formation of product streptokinase was found to be directly 

proportional to the number of recombinant cells in the media so our emphasis here was to 

regulate the antibiotic concentration since its effect ceases after few hours of the start of 

fermentation process in continuous culture. Using culture medium without ampicillin the 

plasmid stability decreased to 0% after 60hours of cultivation while it dropped to only 60% 

on using 100 mgl-1 of antibiotic in the medium (Kim et al., 1998). Sometime use of 

combination of two antibiotics provided a better result (Friehs and Schügerl, 1990). 

Since the effect of antibiotic in culture medium did not control the plasmid 

lacking cells with same strength for a longer span, a model with variable antibiotic 

concentration was proposed to show the shifting of T1/2 signifying the generation time 

(Ganusov et al., 2000) of plasmid bearing cells. A strategy to regulate antibiotic 

concentration during bioprocess was adapted. Plasmid bearing and non-bearing cell growth 

dynamics in respect to generation time was observed, utilizing time of half-elimination of 

plasmids from the recombinant cell population. If it would be possible to increase T1/2 we 

may compute for better production magnitude. There seems to be a probable solution and it 

could be possible via applying this variable antibiotic concentration strategy. Since 

addition of antibiotic ampicillin improves the health of plasmid bearing cells its variation 

after initial addition of an amount may further regulate the competitive dynamics and 

relative growth of two kinds of cell populations. Hence, adding the antibiotic to the 

bioreactor in a fashion reduced the probability of losing at least one plasmid copy per cell 

during cell division. Implementing the above theme, we incorporated the effect of 

antibiotic concentration in the prior developed basic model equations. The effect of 

antibiotic on both the populations and other model parameters can be observed performing 

the simulation in Matlab. It noticeably represented the delay in percentage decline trend for 

plasmid bearing cells in reactor with the progress of fermentation.  
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A Graphics User Interface (GUI) was constituted to predict the model 

behaviour at different dilution rate and other adjusted parameters. Development of 

bioprocess model simulation tool had been done and this bioprocess simulator was helpful 

in simulating different models dealing with various bioprocess operations (Sevella and 

Bertalan, 2000). The general mathematical modelling tool was developed on the basis of 

Matlab inbuilt tool box. The programming system with GUI having the functions to solve 

differential equations based system had been configured with ease to use graphical user 

interface. It became easy to adjust different parameters of the dynamical system and 

observe the behaviour in response to the assumed fermentation systems via insilico 

environment. 

In the way to exploit the relevance of other bioprocess models, fed-batch had 

been particularly considered and simulation of the process model was performed on the 

basis of conceptual algorithm. In the model for batch continuous culture the additional 

criteria of intermittent addition of substrate or production media were summed up to 

develop a model for fed batch culture. It was well noticeable from the validated simulation 

plot that higher yield in this process was possible in a sustained fashion for longer 

duration. Several bioprocess approaches include temperature up-shift approaches, feeding 

strategies, timing of induction, and implementation of two-stage culture mode for 

stabilization of plasmid had been implemented (Razali et al., 2007). Moreover, a structured 

model framework to evaluate production in bioprocess had been taken into account. 

Mechanistic model for reliability based assessment of streptokinase production from a 

bacterial cell using stochastic Monte-Carlo based principles had been configured to make 

another application of structural modelling strategies. Our product enzyme is formed from 

the cell as the result of interaction among various intra-cellular factors within the cell and 

the composite effect of its environment. Since a highly developed model presents 

designing of composite architecture that optimally blended cellular intelligence, artificial 

intelligence and mechanistic models. Hence several interacting sub-components pattern 

together have their influential role in enzyme production kinetics.  

The concept of reliability has its relevance in assessing the durability of any 

functional mechanistic unit within a defined time frame. The idea was to support the 

dynamic pathway associated networks in view of conducting possible estimation of the 

enzyme production, taking streptokinase into consideration as an instance. Here time 

dependent interaction of intra-cellular subcomponents was plotted out, few prominent 
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parameters among the ample of parameters in natural cellular system had been given a 

desirable weight age in developing the model. 

 

3.2. Bioprocess Simulation Tool 

3.2.1. Design of simulation platform 

The GUI was created to perferm insilico simulation of the bioprocess. Few 

functions which were configured in Matlab were together simulated to perform the 

simulation task. The snap shot of the simulation platform is visualized in Figure 3.1. 

 

Figure 3.1. Bioprocess Simulator 

 

A general mathematical modelling tool was developed on the basis of Matlab 

software. The program system with GUI provides chance to solve differential equation 

based system with the help of easy to use graphical surface (Sevella and Bertalan, 2000). 

The Matlab code of creating GUI is given in Appendix A1. 

The model simulator can present the various stages of the model dynamics. In 

order to compute the concerned numerical domain related to work, process simulation has 

been done using Matlab R2010a, it is thus possible to numerically evaluate the role of each 

and every parameter using initial values (Patnaik, 1995) of different parameters. Using 
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standard values, the simulation can be performed via GUI platform following the previous 

model input data intended for streptokinase production (Patnaik, 2002) in culcating various 

other constraints with little magnitude considered for a different set of model parameters 

(Kumar and Ghosh, 2010), incorporated in our earlier work.  

The dilution rates of discrete magnitude are applicable which provide a most 

significant factor for continuous process. In the beginning, the dilution rate was set at very 

low value and subsequently increased to a high magnitude to assess the level of response at 

various extents. Artificial intelligence has been invoked extensively to model macroscopic 

microbial behaviour under the influences of noise and certain spatial variations in 

fermenter [30]. Dilution rate regulates the persistence of cells in the production broth for 

the definite duration.  

 

3.2.2. Topology of the Simulator 

                The working topology of the bioprocess simulator for culture and production of 

streptokinase is described in the Figure 3.2. It comprised of Ordinary differential equation 

(ODE) functions which were linked to callback buttons. The GUI terminal was configured 

to provide a sophidticated platform to conduct process operation. The adjustment of 

various parameters pertaining to bioprocess parameters could be well feasible via parmeter 

selection buttons in slider window form. The user can adjust the parameters including, 

dilution rate, time duration, innoculum and substrate concentration before visualizing the 

results using buttons on the graphics platform. 

 

Figure 3.2. The topology of the GUI scheme in working 
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3.2.3. Advantages of using simulator in evaluating fermentation process 

Bioprocess simulator is helpful in simulating different models dealing with 

various bioprocess operations. It becomes easy to adjust different parameters of the 

dynamical system and observe the behavior in response to the assumed bioreaction 

systems. The batch as well as continuous cultivation can be visualized adjusting dilution 

rate from zero to some decimal value and other parameters too. 

It is evident from numerical simulation of the model that plasmid loss tends to 

occur after a certain value of metabolite level, it certainly depicts that the elevation in 

concentration of metabolite have a propensity to support the plasmid lacking cells 

population. The data obtained experimentally is of great significance in understanding and 

validating the computational results.  

In case of continuous operation, varying dilution rate D with slider have shown 

noticiable influence on recombinant cells concentration with respect to process duration. 

The dynamics pertaining to D have their relevance in interpreting the behavior of a 

blended inter-population dynamics at an instance. Outcome emphasizes over the delayed 

plasmid loss that often occurs at lower dilutions. Since continuous cultivation has number 

of adjustable parameters so their inter-dependent role in dynamics behaviour is 

appreciable. The numerical simulation of continuous process using a graphics platform 

would be rather much helpful to improve the performance regulating dilution rate in order 

to achieve amplified amount of product.  

On utilizing the graphics facility of different parameter adjustment, it was clear 

from the simulation that rapid variation particularly hike in metabolite concentration after a 

certain concentration caused profound increase in probability of plasmid loss. Using the 

means of simulation it was evident that even at a very low metabolite concentration level 

there found a high probability of plasmid loss on shifting towards high dilution rates.  

 

3.3. Relevance of other Bioprocess Models  

3.3.1. Fedbatch 

     In the model for continuous culture (in chapter 2, Eq.8 - Eq.17) the following 

condition were are added after Eq. 17, to develop a model for fed batch culture.  

Case I: X > Xmax 

    D = DF 

Case II: X < (1 – Sf) Xmax 

    D = D0 
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Here, Xmax=3.2g/l, Sf=30g/l , D0=0 and DF=0.20;  

 

Figure 3.3. Fed-Batch Simulation Pattern   

 

     Plotting all the three variable parameters together, subsequently justifies the 

correlation among various component variables in a fed batch culture simultaneously, in 

which substrate is being added at time intervals. The similar effort was made by 

researchers (Sevella and Bertalan, 2000) earlier, but in our case the conditions applied with 

reference to production of streptokinase and the comparable results were obtained by 

experiments (Yazdani and Mukherjee, 1998). Implementing the defined criterion the 

simulated model obtained is shown in the plot above, Figure 3.3. Progressive induction by 

means of continuous IPTG dosage in E. coli fed-batch cultures yield a higher specific 

levels of recombinant protein (Pinsach et al., 2008). It is noticeable that sustained yield is 

possible in a continued fashion for longer duration.  

 

3.3.2. Overall Bioreactor System model  

    The model equations were developed by incorporating different model 

parameters (Sevella and Bertalan, 2000). The initial conditions taken in the model at t0 are: 

X(0)=1.40; S(0)=30.0; P(0)=0.00; C(0)=5.20; V(0)=2.00;  

Various other model constraints used, ko=0.0002; KLa=150; α=0.64; C*=0.005; Y=0.5; and 

�max=0.2; 

The simulation result is shown, in the Figure 3.4; 
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In overall bioreactor model, for representing the characteristic dynamics of different 

parameters together, our culture system is described by the given set of differential 

equations, Eq.18-21. 

 

 

                                                                                                                                   (18) 

 

                                                                                                                                   (19) 

 

                                                                                                                                    (20) 

 

                                                                                                                                    (21)                

The overall bioreactor model is described in fed batch phase like fermentation system, it 

mimics the parametr dynamics obtained from bioreactor system.  

 

Figure 3.4. Overall Bioreactor Performance  

3.4. Strategy to Regulate a Variable Antibiotic Concentration during Bioprocess 

Plasmid bearing and non-bearing cells growth dynamics in respect to 

generation time utilizing time of half-elimination of plasmids from the recombinant cell 

population had been studied (Lu and Hadeler, 1998), (Ganusov et al., 2000). It was 

noticeable, if it would be possible to increase T1/2, it might be possible to compute better 
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production magnitude, Figure 3.5. There seems to be a probable solution and it could be 

possible via applying regulation of variable antibiotic concentration. Since addition of 

antibiotic ampicilin improves the health of plasmid bearing cells its additional variation 

after initial addition of its requisite amount may further regulate the competitive dynamics 

and relative growth of two kinds of cell populations.     

If, at an instance t, number of plasmid bearing cell ≠ 0 then, 

In case, dX- = 1, dX+/dX- = dX+,  dX+ = dX+max 

This is the maximum value for plasmid bearing cells in the bioreactor, 

Therefore, 

���

���
  , always less than dX+

max 

Hence, adding the antibiotic to the bioreactor reduces the probability of losing one plasmid 

copy per cell during cell division which is inversely proportional to generation time. 

Therefore Toptimal = g/τpl 

Where Toptimal is the optimal time of continuing the bioreactor, g is the mean generation 

time, 

g = In2/D  

and τpl is the probability of losing one plasmid copy in division. 

Ganusov et al (Ganusov et al., 2000) stated that the time of half-elimination of plasmid 

carrying cells from the entire population in the bioreactor is half of the time of generation,   

i.e. T1/2 = g/τ 

This proves that the T1/2 < Toptimal 

Where Toptimal = T1/2 + α 

has been discussed (Lu and Hadeler, 1998) in mathematical model for plasmid bearing and 

non-bearing population. The simulation of two kinds of plots can be well visualized in 

Figure 3.6 and 3.7, noticeably showing the shifting of T1/2 time. 

Assuming the relative dynamics of two population,  

alpha  =  (dX1/dt)/(dX2/dt)  =  dX1/dX2                                                                                                                     (22) 

    if alpha <= 1,     ac  =  f(af) 

    ac = f(bf),            otherwise     

In above expression, ac = f(af) and ac = f(bf); where, 

af = (µ2/ µ1)* tc                                                                                                                   (23)   

bf = (µ1/ µ2)* tc           here, tc - the antibiotic toxicity coefficient                                     (24)   
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After addition of a necessary quantity of antibiotics, the rest of other quantity would be 

regulated in variable fashion following the relatively varying population trend of two cell 

types.  

Implementing the above theme we need to incorporate the affect of antibiotic 

concentration in basic model equation (in chapter 2, Eq. 11); 

dq/dt = (1 – e ^ (-mf (X2/(X1+X2))*ac)) *µ2                                                                                                      (25) 

The effect of antibiotic on X1, X2 population and other model parameters can be observed 

performing the simulation in Matlab. It noticeably represents the delay in percentage 

decline trend for plasmid bearing cells in reactor with the progress of fermentation, also 

been found experimentally. The simple generation time curve is designed to present the 

possibility of improving T1/2 by some finite magnitude, Figure 3.5. 

 

Figure 3.5. Diagram showing T1/2 of generation time (Ganusov et al., 2000) in respect to 

plasmid-bearing (X1) and non-bearing cells (X2) cell population and achievable increase in 

T1/2 by additional α magnitude  

 

Figure 3.6. Profile of X1, X2 & P with fixed antibiotic (solid lines) and antibiotic 
concentration (dashed lines). 
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Figure 3.7. Population dynamics of % plasmid free and plasmid bearing cells at dillution 

rate 0.20 per h-1  

               In the figure solid and dotted purple line shows percentage decline in plasmid 

bearing cell population while dotted line depicts the trend of population with administered 

ampicillin concentration at D=0.20, likewise the trend is presented for plasmid lacking 

cells in green line.  

              The population of plasmid bearing and lacking cells system is shown, Figure 

3.6, with and without antibiotic regulation strategy together with variation in product 

concentration. The simulated plot, Figure 3.7, illustrated T1/2 of generation time with 

respect to both type of cell populations with achievable shifting in T1/2 by α magnitude on 

using the stated strategy. 

 

Figure 3.8. Plot showing decline in percentage of N+ at only fixed and variable antibiotic 

concentration at D=0.14  
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Using variable antibiotic concentration Figure 3.8, it was clearly observed that 

there found to be a delay in percentage decline of recombinant cells during fermentation 

process on applying the strategy of variable ampicillin concentration with devised 

algorithm. 

 

3.5. Structured Pathway Model Approach 

3.5.1. General Framework 

The models have sufficient details to get compatible with new experimental 

techniques and together with experimental and modelling work in fermentation technology 

(GanNielsen, 1992). Focus is required on the structured models which describe microbial 

kinetics by means of selected cell components rather than by undifferentiated mass. To 

understand the plasmid-bacteria interaction, spatially structured model of plasmid dynamics 

have been often studied using simulation of dynamical system (Krone et al., 2007). 

Production of an enzyme or product within a cell is associated to various 

pathways. So, several components and sub-components together have their role in an 

enzyme production dynamics, depicted in Figure 3.9. Several subcomponents or 

intracellular state vector parameters (Palsson and Joshi, 1987) involve in the production 

dynamics used to contribute their some vital role and hence control the product formation. 

Although there is a decline in the product formations in respect to the considered time 

frame in general. We can evaluate the performance of a unit carrying out production 

process considering the associated prime pathways with their subcomponents and ultimate 

component which is giving the product after the entire interaction of all subunits 

substantially in a defined manner. The sequential interaction of subunits, their failure and 

repair in the considered time span is quite interesting. A probabilistic framework can show 

a better implication of the approach to design a model in order to evaluate the performance 

of such dynamic units.  The feasibility of this approach is to be made on the basis of 

reliability assessment of the production unit in a mechanistic way. The sole network could 

be expressed in the form of a unitary system which is responsible for the production of a 

particular product which lies on the retaining of its productive state with varying level of 

product formation which is very likely to be time dependent. The release of metabolites etc 

may have its impact to negatively affect the subunits involve in pathways, results into 

cease in production and hence decline in the reliability of such units taken into account. 

It is also a remarkable thing that production can be effected by interference of 

large number of intra-cellular factors that may somehow interact to alter the production 
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level in the process. It may be possible that failure of a few sub-components can have 

insignificant impact to decline the entire production on the other hand there may be other 

set of components whose dormancy may result into termination of productive strength. A 

combinatorial approach is required to device the ‘on’ and ‘off’ state of such subunits in 

various feasible ways. The study of the performance of even a single cell under the 

presumed assumption is somewhat sufficient to model such process in respect to the 

reliability criteria. 

The major task is to define chances of failure of individual subunits and topology 

of possible paths, to fix their assumptions for the purpose of large number of trials over a 

population model. The study pertaining to presumably large number of particular pathways 

with experimental substantiation is required to impose the hypothesis for the existing 

system. The random trial dependent Monte-Carlo approach considering the utilization of 

an ample of database have an effective potential to support the model functionality in lieu 

of the natural process, in a putative manner. The noise prone behaviour of the natural 

system dynamics will still be a challenging task in the direction of updating the neo 

configured artificial model.  Any production system unit in cell is highly complex in its 

topological pathways and fairly non-linear in their interaction paradigm. So representation 

their sole interaction require indispensable computational efficacy to plot their multivariate 

routine.  

 

Figure 3.9. A model framework showing interacting process subunits  

State vector of each cell can be represented by, Eq. 26, 

dx/dt = f(�, y, x)                                                                                                                 (26) 

� -Intracellular parameter 

y -Extracellular state vector 

x -Intracellular state vector  

Interaction of intra-cellular parameter (Ca0 to Cd) has been shown in a topological model. 
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Model frame and its dynamics 

The concept of reliability has its relevance in assessing the durability of the 

functionality of any mechanistic unit for a defined time frame. The overall idea is to 

support the associated pathway networks in view of conducting possible estimation of the 

enzyme streptokinase production taking into consideration as an instance. The time 

dependent interaction of few prominent parameters among the ample of parameters in 

natural cellular system has been given a desirable weight age in the developing model. The 

general theme was to make the model robust in terms of its configured subunits and 

dynamic pathways to ensure an optimal outcome in numerical terms.  

 

3.5.2. Major assumptions in governing topology 

The first assumption envisages over the fact that any production unit has 

initially maximum reliability and it decreases on the basis of interaction of several subunits 

in a specific topological fashion with variable dynamics. The varying consequence of 

transformation in topology can be taken into account to depict the observed level of 

productivity in any terms. Basic formula to estimate any existing system reliability RS 

(having failure rate �) at a time t is given by the general formula;  

RS = e – � * t 

Three possibilities are assumed in this model for cellular system: 

� The running original part with general decline in reliability (Frequently) 

� Repair of the partially failed component at any time instant (Sometimes) 

            (to resume some degree of reliability) 

� Replacement of the completely failed component at the instant (Rarely) 

            (to resume a high (initial) level reliability for that component again) 

  Overall the process is Stochastic 

 

Basic Assumptions 

In General, reliability is just the reverse of failure. 

� Four pathways are considered in the model  

� Failure of the support or completion of any two or more pathways at a time 

            may lead to failure in the formation of streptokinase 

� In all sorts of possible combinations failure of the assumed four pathways are 

possible 

� Each component in the pathway has its specific lambda value 
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            (lbd: failure rate or probability of failure with respect to time) 

� The failure of the pathways has been made to be governed by Monte -Carlo method 

 

         The possible intracellular mechanistic framework is represented in the 

pathway topology, Figure 3.10. It was found that sometimes growth conditions have to 

change in order to increase structural stability (Samanta et al., 1998). The UV repair 

system and SOS repair pathway show their role for better structural plasmid stability 

(Greener, 1996). Plasmid replication mechanism Was found to have key influence on 

segregational plasmid stability (Sharma, 1993), (Bingle  and Thomas , 2001). The 

sequences of ribonucleic acid RNAI and RNAII generally become the targets for the 

mutations (Moser and Campbell, 1983), (Lin-Chao et al., 1992), due to which their 

involvement in regulation and replication is effected. In reverse cases of mutation or 

deletion the condition leads to production of low plasmid copy and even impairment of 

replication (Phillips, 1998). So the biological reasons for the structural instabilities of 

vector are manifolds (Summers et al., 1993). Recent advances have been made in cell 

population modelling which allows the effects of cell heterogeneity in culture 

dynamics using intra cellular state and metabolite production (Henson, 2003).  

 

Figure 3.10. Pathways showing assumed interactions among components to facilitate the 

formation of resulting product (fsu=>functional subunit) 
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        A chemically structured growth model of E. coli had been formulated and 

essential dynamic part of the model was considered (Palsson and Joshi, 1987). Abstract 

mathematical quantities lead to a particular interpretation when linear analysis is applied to 

chemical kinetics (Palsson, 1984). The secretory production of complex proteins 

particularly peri-plasmic proteins like proteases and chaperones can be manipulated to 

enhance the yield of secreted recombinant proteins (Choi and Lee, 2004). The segregation 

and selection both had been demonstrated to evaluate vector constructs that could be 

stabilized by partitioning factors (Ray and Skurray, 1984). Partitioning function is often 

the breakage function and denotes the probability of cell division of a cell with 

intracellular mass content (Fredrickson et al., 1970). The stoichiometric study of glucose 

and acetate metabolism of elementary compounds was found significant in respect to 

conversion kinetics framework pathway (Guardia and Calvo, 2001).  

A few attempts had been made to construct a general single cell model including 

most of the intra-cellular pathways (Heinmets, 1969). According to Shuler and Domach 

(Shuler and Domach, 1982) the advantages of single cell-models were to account explicitly 

the cell in various respects. Particularly in respect to its geometry for potential effects on 

protein/nutrient transport, spatial arrangements of intracellular components, and temporal 

events during cell cycle, biochemical pathway and metabolic control models. Four 

pathways were configured showing interactions among various components of the 

recombinant cell during its active state, Figure 3.10. 

 

3.5.3. Structured Pathways  

Apparent Model Topology  

The general topology of the structured pathways had been constituted using the biological 

interactive pathway model. The subcomponents are derived from their relevance in 

regulating metabolism. The topology of the model with interacting subcomponents has 

been illustrated below, Figure 3.11. 
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Figure 3.11. The assumed topology of heuristic based model with 11 subcomponents and 

4 prime pathways 

 

Combination of chances constitutes five different cases (considering six pathways: a, b, c, 

d), thereby four Pathways (each may having several units) related to a Product Formation 

i.e., their interaction together assumed to result into formation of the product; 

RS (t) = rsa(t) + rsb(t) + rsc(t) + rsd(t)                                                                             (27) 

According to topology, 

RS (t) = (rs1.rs2 .rs3) + (rs4.rs5.rs6) + (rs7.[( rs8.rs9) + (rs10.rs11)])                              (28) 

Keeping in consideration, the existing pathway depicted, Figure 3.10, the chances of 

failure at a junction was kept declining from �1 to �11.  

Using the basic form, it would be computed as; 

RS (t) = e ( - (� 1 + � 2+ � 3) * t) + e ( - (� 4 + � 5 + � 6) *  t) + e ( - (� 7) * t) .(e ( - (� 8+ � 9) * t) +  

              e ( - (� 10 + � 11) * t) )                                                                                                   (29) 

 

Model Assumptions in Detail:  

Combination of chances constitutes five different cases (considering four pathways: Pa, Pb, 

Pc and Pd can be mentioned as 1, 2, 3 and 4 respectively): 

1st case None fails: (1)   Failure of none (as usually expected)    

Failing pathways: [0] 
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2nd case One fails: (4) Pa or Pb or Pc or Pd       

Failing pathways combination: [1 2 3 4] 

 

3rd case Two fail: (6) PaPb, PaPc, PaPd, PbPc, PbPd, PcPd  

Failing pathways combination: [12 13 14 23 24 34] 

  

4th case Three fail: (4) PaPbPc  PbPcPd  PcPdPa  PaPbPd   

Failing pathways combination: [123 234 341 124] 

  

5th case Four fail: (1) only one possibility is there of getting all in failed state 

Failure of all (very less occurrence)      

Failing pathways combination: [1234] 

 

The expressions, Eq. 27-29, were simulated incorporating the stated model assumptions. 

Individually each pathway has its reliability for production and as a system it showed a 

characteristic trend. The structured system dynamics simulation result is shown in Figure 

3.12, on basis of Monte Carlo simulation method which is reflecting the declining stability 

of recombinant cells in cultivation. 

 

Figure 3.12. Reliability variation trend in stochastic manner shown for a cellular system  

 

3.5.4. Supportive algorithms and property of existing regulatory networks 

Stochastic assumptions are made to generate random decision to regulate the 

variable pathways by the predefined optimal criteria. Time dependent variables play 
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crucial role in governing the multidimensional dynamics thus preparing the model for 

showing close proximity to the real-time processes. 

Incorporating regulatory control, which is a necessary characteristic to mimic 

the regulatory pathways showing their property of being autonomous in performing repair 

and other adaptability steps. Cellular intelligence is now-a-days a most excellent tool to 

amplify the information from cellular level activities in order to utilize it for higher level 

computational applications.  

Incorporating regulatory control enable the models based on cells to utilize 

information gained from external stimulus or conditions, so doing that approach makes 

feasible for cybernetics modelling to overcome the rigidity and limitation of mechanistic 

modelling. Even quite complex models are required to describe adequately the metabolic 

dynamics of multicellular systems, especially under non-ideal conditions.   

 

3.5.5. Applicability in estimating enzyme production  

Present day logical models have their passive role in bioprocess modelling 

since untouched dimensions cannot be resolve unless applying hybrid approaches. Now 

recently cybernetics modelling has come forward to overcome the rigidity and 

shortcomings of mechanistic model which is too instrumental and conceptual. 

It is true that cells have internal regulatory control to govern all biochemical 

pathways in a legitimate manner. Hence it coordinates and directs the adaptive machinery 

to cope up with external or extra-cellular variations maintaining the supportive mechanism 

that operates to serve simultaneously. It seems to be a good model for representing the 

complex biological processes and their associated vital events in terms of mechanical 

dynamics. 

 

3.6. Discussion  

The bioprocess simulation tool was constituted to visualize the predictive stages 

of the bioprocess operation. The antibiotic regulation strategy could be helpful in utilizing 

selective pressure resulting into the strengthening of recombinant cells population. The 

other bioprocess models can comparatively be taken into account to obtain the relative 

model dynamics in the different process operations.  

Optimal allocation of metabolic pathways for producing the desired protein is a 

quite tough deed. This work can only be made feasible employing computational and 

stochastic approaches which easily support to constitute the variable pathways. 
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Identification of functional units within the network of pathways is a vital task to complete 

for giving a minimal framework. On the other hand optimal and reliable representation of 

the overall model is a mandatory task in this direction. Classical interpretation has always 

been appreciated to support and realize the emergent role of any component. Indeed 

constituting a framework revealing some link between intra-cellular and extra-cellular 

processes is reasonably of high utility to generate a robust model with an ample of 

indispensable dimensions.  

Predictive models are now found to be of great help to forecast the model 

performance resolving its dynamics with several feature anticipating the outcome of 

different time dependent parameters and their interactions at different instances. Thus this 

sort of approach is of great help in understanding the variable facets of the model dynamics 

and their extent visualizing the apparent aspects arriving in the way. 

Although sub-cellular topology based reliability model can be a supplement to our 

structured model system but it is considered to be novel approach pertaining to assessment 

of a cellular function in bioprocess system. It facilitates to design and identify the pathway 

failures during the operation which thereby quite helpful to improve the production system, 

since the population of cells would have been experiencing the same sort of complication. 

The structured fame work would be of worth in understanding the specific effect of 

external factor that has most significant influence in regulating and mal-functioning the 

intra-cellular dynamical system.  
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CHAPTER-4 

PLASMID COPY NUMBER DYNAMICS 

 

4.1. An Overview 

This chapter of thesis deals with an important problem pertains to the regulation 

of plasmid copy number that has role in managing the production of recombinant enzyme 

streptokinase. Experiments using production medium was performed to achieve high 

production of biomass and maximum streptokinase activity. The basic work was primarily 

associated to estimate the plasmid loss and to evaluate the changes in copy number, if any, 

during the progress of the culture for which different factors were evaluated using the 

known experimental conditions.  

It was evident from the outcome of data chart that plasmid copy number was 

apparently changing with time and depended on the changing environment in the 

chemostat system. The approximate estimation of the plasmid bearing and lacking cell 

population together with acetate, a primary metabolite concentration was required that had 

great importance for understanding the overall dynamics. It was found that a rapid hike in 

metabolite concentration at later stages of batch culture might lead to the abrupt decline of 

plasmid copy number, which was increasing previously. After performing several 

experiments in this direction, a plenty of facts regarding competitive trend of parameter 

dynamics had come forward to supplement our existing knowledge. Plasmid copy number 

dynamics was studied to evaluate the instability criteria, thus most significant 

consideration of the present work was to handle the challenge of plasmid instability with 

respect to process duration. 

 

4.1.1. Earlier work 

According to the known biochemical mechanism streptokinase binds to 

plasminogen forming an "activator complex" that converts plasminogen into the 

proteolytic enzyme plasmin. Streptokinase assays rely on its ability to activate 

plasminogen to plasmin. Plasmin then hydrolyses an indicator substrate and the extent of 

hydrolysis over a given period is related back to the concentration of streptokinase. The 

indicator substrates for plasmin include the fibrin clot, casein and other proteins including 

various synthetic esters. 
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The digestion of casein for estimating streptokinase had been established too 

early. The fibrin plate method originally introduced for determining proteolytic activity in 

blood has been widely used for measuring fibrinolysis. A radial caseinolytic method with 

the agarose gel containing both casein and plasminogen is commonly used (Saksela, 1981). 

In glucose grown culture there may be an effect of lactic acid accumulation which results 

in the lowering of pH, the acid tolerance response may result into a varying amount of 

recombinant streptokinase produced (Sriraman and Jayaraman, 2006).  

High cell density can be obtained with high cell density cultivation of 

recombinant cell system by using a proper feed strategy. The T7 RNA polymerase was 

induced with IPTG to produce biomass and pulse feeding of concentrated substrate was 

done with different time intervals (Yazdani and Mukherjee, 1998). With an inducer 

concentration of 0.1mM IPTG, recombinant streptokinase accumulated was about 20% of 

the total soluble protein in the cell (Balagurunathan et al., 2008). Using microbial culture, 

assay for four different inoculum ages and four different inoculums concentrations were 

performed. The biomass obtained was analysed in terms of their chemical composition 

(Pelizer et al., 2003).  

Batch cultures of streptococci had been characterized of having a rather extended 

lag phase followed by a relatively short period of exponential growth period. Comparison 

with continuous culture had revealed a lower productivity of the equivalent batch 

fermentation. In contrast, the production of streptokinase was maximized when glucose 

was in excess and the other nutrients were present in limiting amounts. There might be a 

number of factors that used to regulate the dynamics of plasmid carrying cells within the 

reactor. One such major factor was probability of plasmid loss due to segregation during 

cell division that could be described by segregative instability coefficient (Syamsu et al., 

1992).  

On the other hand, the likelihood of segregation for a plasmid bearing cell is 

independent of the frequency of plasmid-free cells generation in the population [66] while 

the selection intensity against plasmid carriage is influenced by occurrence of plasmid 

lacking cells in population. Occurrence of point mutation in the gene for RNA I might 

leads to high copy type due to change in replication control of vector (Boros et al., 1984). 

Several other mutations are known to enhance the copy number (Müller et al., 1995). The 

interaction between two RNA’s, tRNA and RNA I consequently diminishes the inhibitory 

effect of the later one and this leads to the phenomenal increase in the copy up to the time 



55 

 

when metabolic capacity of the host cell is exhausted (Kramer et al., 1996), (Cserjan-

Puschmann et al., 1999).  In cell division process occasionally a daughter cell results that 

doesn’t contain the plasmid and can no longer produce the desired product (Stephens et al., 

1992). Modulation of an input such as nutrient concentration or the cell environment such 

as the pH could enhance the rate of biochemical reactions that were occurring (Silveston et 

al., 2008). Excessive plasmid replication is observed after induction, it greatly contributes 

to the metabolic overload of the cell (Grabherr et al., 2002). In genetic study the fraction of 

repressor-free operators affect multi-copy plasmids containing the lac promoter-operator to 

increase plasmid copy number (Lee et al., 1984d). Also the compartmental model used to 

describe the variation in intra cellular RNA and copy number with varying specific growth 

rate (Nielsen et al., 2008). Moreover, the decrease of specific growth rate with increasing 

plasmid content was observed in mechanistic way due to enhancing metabolic burden. The 

vector copy number with binding affinity of tRNA and RNA I in relaxed strain were 

assumed that were starved for some amino acids (Wang et al., 2002). Chemostat 

cultivation conditions were found to work for stable genetic inheritance of vectors in the 

hosts (Noack et al., 1981). The consequence of theta and rolling circle modes of replication 

on maintenance of recombinant bacterial strain with their plasmid copy were studied 

(Kiewiet et al., 1981).  

 

4.1.2. Relevance of Evaluating Plasmid Copy Number 

Study of plasmid copy number dynamics has its relevance in pointing out the span 

of bioprocess in which the copy number is high. The specific growth rate of recombinant 

cells and average plasmid copy per cell can be of much significance to harvest high yield 

from the fermentation process. There are several factors that were found affecting plasmid 

copy number during fermentation process. The structured as well as unstructured factors 

are collectively supposed to influence the copy number dynamics. 

 

4.2. Materials and Methods 

4.2.1. Materials  

The overall general requirement for conducting the experiment is given below, 

 Recombinant strain and vector: E. coli BL21 as host with vector pRSET-B was used. 
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4.2.1.1. General Requirements 

Glassware requirement: Micropipettes, Conical Flasks of 100, 250, 1000 ml and 3000ml 

were required. Beaker 250ml, Test-tube and disposable Petri-Plates were also used. 

Miscellaneous requirement: Aluminium    foil, sterilized cotton, inoculation needle, lamp, 

tissue paper, permanent marker, strider, tooth-pick, paraffin paper, vacuum pump 

assembly, filter 0.3µ, syringe etc were needed. 

Growth Media: LB media composition (Tryptone, Yeast Extract and NaCl) 

Production Media: Major and trace salt components  

Major Components: K2HPO4, KH2PO4, NH4Cl, NaCl, MgSO4 and CaCl2 

Trace Components: Al2 (SO4)3.7H2O, H3BO3, CuSO4.H2O, MnCl3.4H2O, NiCl2.6H2O, 

Na2MoO4.2H2O and ZnSO4.7H2O etc 

Antibiotics: Ampicillin 

Inducer: IPTG for induction 

ddH2O was used for media preparation 

 

4.2.1.2. Requirement for Streptokinase Assay (Caesinolytic assay) 

• Plasminogen 

• Pure Streptokinase 

• Tris-HCL Buffer 

• Caesin milk powder (Analytical grade) 

• Sodium Azide 

• Agarose 

• Chromozym PL 

 

4.2.1.3. Requirement for Plasmid Isolation 

Zyppy Plasmid Miniprep Kit was required. 

It contained Lysis Buffer, Neutralization Buffer, Endo-wash Buffer, Wash Buffer, Elution 

Buffer, RNAse, IIN Columns and Collection Tubes. 

 

4.2.1.4. Equipments Required 

Bioreactor system (New Brunswick Scientific with Bio-command software) and 

accessories, Autoclave, Laminar flow, Refrigerator, Centrifuge, Shaker, UV-



57 

 

spectrophotometer, SDS-PAGE assembly, Agarose Gel Electrophoresis Unit, Compound 

Microscope, Lyphilizer etc. 

 

4.2.1.5. Organism Strain and Vector Used 

Bacterial recombinant strain used in our experimental work was E. coli BL21 having 

shuttle vector pRSET-B. The organism was preserved in glycerol stock at -800C.  For 

working, time to time maintenance media was prepared using pure colony. The vector map 

of pRSET-B showing important features is depicted in Figure 4.1. The detail about the 

vector properties was described in Table 4.1.  

 

Figure 4.1. pRSET-B Vector Map 
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Table 4.1. Important features of pRSET-B vector  

Features Advantage 

T 7 promoter Provides tight, dose-dependent regulation of 

heterologous gene expression. 

Provides a binding site for most T7 promoter 

primers for sequencing into the insert. 

Multiple cloning site Allows insertion of our gene of interest and 

facilitates cloning in frame with N-terminal epitope 

tag 

Ampicillin resistance gene (β-

lactamase) 

Allows selection of the plasmid carrying E. coli 

cells. 

pUC origin Meant for high copy replication and growth in E. 

coli. 

  

4.2.1.6. Various Media Used 

A. Growth Media 

 E. coli cells were routinely grown and maintained in LB medium (Tryptone, 

10g/l; yeast extract, 5g/l; NaCl, 10g/l) containing 100µg Ampicillin per ml at 37 °C. The 

pH of the medium was always adjusted to 7.0 with 0.1N NaOH and 0.1N HCl solution. 

When required, the medium was solidified by adding 15g/l agar before autoclaving to 

prepare the maintenance media.  

B. Production Media 

The production media constituents (Yazdani and Mukherjee, 2002) taken for producing the 

recombinant enzyme in shake flask and bioreactor batch culture is described below under 

the heads of Major and Micro-elements, Table 4.2(a) and 4.2(b); 
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Table 4.2(a). Major-elements 

Constituents Amount (g/l) 

K2HPO4  

K2HPO4 

6.0  

3.0 

NaCl 0.5 

NH4Cl 1.0 

Yeast Extract 5.0 

Glucose 5.0 

MgSO4 2.0 

CaCl2 1.0 

 

Table 4.2(b). Micro-elements  

Constituents Amount (mg/l) 

FeSO4 100.0 

Al 2(SO)4.7H2O 10.0 

CuSO4.H2O 2.0 

H3BO3 1.0 

MnCl3.4H2O 20.0 

NiCl2.6H2O 1.0 

Na2MoO4.2H2O 50.0 

ZnSO4.7H2O 5.0 

  

The pH of the solution was adjusted to 7.0 with 0.1N NaOH and 0.1N HCl and then 

autoclaved at 1210C and 15 lb for 20 minutes as usual. 

 

4.2.2. Methods 

The streptokinase production could be efficiently done understanding the 

behaviour of the population and plasmid copy dynamics. Logical models were now being 

developed after identifying the missing indispensable factors in existing models. In order 

to impart the effect of relevant parameters and supplement the existing knowledge 
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experimental support was required.  The improvement in the bioreactor performance was 

possible using experimental methodology.  

Now in order to make effort to reveal the characteristics of a natural non-ideal 

bioreactor system and making the ongoing models closer to our experimental setup, the 

endeavour would be to evaluate and adjust the numerical values of the parameters to get 

maximum response. The constituent of the media and culture conditions were being given 

with reference to the earlier works in this field. The sole objective of understanding the 

system behaviour was to improve the performance of the existing bioreactor related 

models. 

The Streptokinase producing cloned strain of E.coli BL21 had been taken with 

plasmid vector pRSET-B, it was obtained from Dr. V. Murugan’s Lab, Department of 

Biotechnology, Anna University, Chennai. This vector was carrying ampicillin marker 

hence this antibiotic was used in preparing growth media for promoting the growth of 

selective     microbial strain. Having lac promoter the induction of recombinant protein 

expression was effected by addition of the non-metabolically lac inducer IPTG, it was to 

be added when OD reached just above to a level, generally 0.6 to 0.8. Production media 

which contained glucose, major and trace metal salts, and yeast extract, as mentioned in 

Table 2 (a) and (b) that was found suitable to get the desired level of product. The 

response in terms of maximum biomass formation and streptokinase activity was 

considered to be relevant in this direction.  

The culture condition could be assumed to be responsible for maximum 

productivity since other constraints were kept constant. The goal was to understand the 

plasmid bearing and lacking cell dynamics at the given culture conditions like pH and 

agitation that can be done at shake flash level or in a bioreactor. The vital steps in the 

methodology constituted of the following techniques; 

� Bacterial Culture to Estimate Cell Population 

� IPTG Induction 

� Streptokinase Assay for Estimation of Streptokinase 

� Plasmid Isolation and Quantification 

� Population Screening 
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4.2.2.1. Bacterial Culture to Estimate Cell Population 

E. coli Growth Curve was made using the cell concentration readings at 600nm 

wavelength using UV Spectrophotometer. 

• Since ampicillin containing plates were to be made (having final conc. 100µg/ml in 

the plate) so for this purpose stock solution was prepared in 10ml ddH2O adding 1g 

of pure ampicillin powder in sterilized environment and kept as stock at -200C. 

• A starter culture was prepared by inoculating a single colony from a freshly 

streaked selective plate into 2–10 ml LB medium containing the ampicillin 

antibiotic. It was allowed to grow at 37°C for about 8 hours (having logarithmic 

growth phase) with shaking (at 200 rpm) in incubator-shaker.  

• Diluted the starter culture, 1/500 to 1/1000 into a larger volume of selective LB 

medium, 

• The culture was grown at 37°C at 200 rpm for 12–16 hours. 

• The bacterial culture was now harvested 12–16 hours after inoculation. It was 

harvested by centrifugation at 6000 X g for 15 min at 4°C. All traces of supernatant 

were removed by inverting the open centrifuge tube until the entire medium would 

be drained. The cells were now ready for the lysis procedure, as indicated in the 

appropriate plasmid purification protocol. 

• The growth curve of an E. coli culture could be divided into distinct phases.  

• The first, lag phase occurred directly after dilution of the starter culture into fresh 

medium. During this phase, cell division was slow as the bacteria adapt to the fresh 

medium.  

• The bacteria then started to divide more rapidly and the culture entered logarithmic 

(log) phase (4–5 hours after dilution), during which the number of cells increased 

exponentially. 

• As the available nutrients in the medium were used up and released metabolites 

inhibited bacterial growth, the culture became saturated and entered stationary 

phase (in about 16 hours after dilution), during which cell density used to remain 

constant. 

• Eventually the culture entered into declining phase cells started to lyse, the number 

of viable bacteria turned down, and DNA became partly degraded. 
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• The growth curve of a bacterial culture had been monitored photo-metrically by 

reading the optical density at 600 nm.  

 

4.2.2.2. IPTG Induction 

A stock solution of IPTG was prepared in ddH2O of strength 100mM 

(2.38g/100ml). It was then filtered with syringe and sterilized. The starting point to 

perform the IPTG induction was to obtain an inoculated freshly prepared culture. The 

desired OD600 was measured in the range of 0.5-0.8 at which IPTG induction had been 

added. One more flask had to be taken just as control in which IPTG was added. The 

starting reading should be same for both the cultures. 

The method of IPTG induction suggested by researchers (Thangadurai et al., 

2008) was slightly modified to obtain better expression in present case. An IPTG 

concentration of 0.8mM was used instead of 1.0mM IPTG to get better expression of skc 

gene. 

 

4.2.2.3. Streptokinase Assay for Estimation of Streptokinase 

Two types of assays are mention in literature one is Caesinolytic assay and the 

other one is enzymatic assay. A simple, easy, sensitive and reproducible method, 

Caesinolytic assay (Saksela, 1981) was developed for detection of plasminogen activator 

in cell growth media and cell extracts. Samples to be assayed were applied into wells cut in 

opaque casein containing agarose gels with and without plasminogen. Diameters/area of 

the clear circular zone (plaque) resulting from proteolysis around the wells were 

proportional to the amount of applied plasminogen activator.  

Firstly, agarose was made to final concentration of 1% in 0.1M Tris-HCl buffer, 

pH 8.0 [38]. Now purified plasminogen was added just before preparation of the plates to 

give a concentration of 2µg protein per millilitre into agarose melted and kept at 450C. 

Non-fat dry milk served as the source of casein and it was stored frozen in 15% (w/v) stock 

solution in the tris-HCl buffer. The final concentration of milk powder in the test plate was 

made to be 0.6%. Lastly sodium azide was added to a final concentration of 0.1% in order 

to prevent the microbial growth. On the other hand, no plasminogen was added into the 

control plates. Plasminogen was obtained from MP biomedical (25U, 1mg vial). It was 

then diluted in 0.05M Tris HCl buffer to 0.05mg/ml was kept as stock. 
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While preparing the plates, the mixture was rapidly poured into petri-plate and a 

2mm thick gel was made. After cooling a suitable, 3mm diameter size wells were punched 

into the gel. Later 10µl of samples were filled in the well. One such plate was suitable for 

the analysis of 3-4 samples. During incubation, the gels were placed at 370C and the results 

were recorded after 48 h of incubation. 

The plaques size (i.e., diameter) was measured using finely graduated scale, to 

take the accurate size dimension diameter was measured from two sides to get the average 

size of plaque zone and its area was considered in final reading. Pure Streptokinase (from 

MP Biomedicals, 10kU, 2mg in vial) with known concentration had been used to draw a 

standard curve. For this purpose pure streptokinase was diluted in Tris-HCl buffer (0.15M) 

and different dilution viz. 25U, 25U, 100U, 250U, 500U, 1000U were done. Now, since 

the plaque size for different concentrations was known so using the regression approach 

the unknown sample concentrations were calculated.     

 

4.2.2.4. Plasmid Isolation and Quantification 

Plasmid isolation was done for samples obtained at various stages of the culture to 

know the plasmid content at different stage of the culture process. Firstly the plasmids 

samples were isolated (using Prolab protocol) then diluting it to 1:1000 times with ddH2O. 

It was then, taken for measuring the OD through UV Spectrophotometer at 260nm 

wavelength in order to quantify the plasmid concentration. 

 

A. Principle Involved in Plasmid Isolation 

Exposure of bacterial suspension to strongly anionic detergents at high pH opens 

the cell wall, denatures chromosomal DNA and proteins, and releases plasmid DNA into 

the supernatant. Although the alkaline solution disrupts the base pairing, the strands of 

closed circular plasmid DNA are unable to separate from each other because they are 

topologically inter-wined as long as the intensity and duration of exposure to -OH ions is 

returned to neutral. During lysis, denatured chromosomal DNA becomes enmeshed in 

large complexes that are coated with dodecyl sulphate. These complexes are efficiently 

precipitated from solution when Na+ ions are replaced by K+ ions. After denatured 

material has been removed by centrifugation, native plasmid DNA can be recovered from 

the supernatant.  
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B. Procedure for Plasmid Isolation 

 In our experiment, the plasmid isolation step had been conducted using Zyppy 

Plasmid Miniprep Kit. The sub-steps followed are shortly mentioned as under; 

• 100µl volume of 7X Lysis Buffer was added to 600µl of E. coli culture in a 1.5ml 

microcentrifuge tube was then mixed by inverting the tube 4-6 times. 

• 350µl of cold Neutralization Buffer was added and mixed thoroughly. 

• Centrifuged at 11000-16000X g for two minutes. 

• The supernatant was then transferred into Zymo-spin IIN column provided with the 

kit. 

• The column was placed into the collection tube and centrifugation was done for 15 

seconds. The flow was discarded through it and placed the column back into the 

same collection tube. 

• Endo-Wash buffer of 200µl volume was added to the column. It was now 

centrifuged for 15 seconds. 

• Again added 400µl of Zyppy Wash buffer to the column and then centrifuged for 

30 seconds. 

• The column was then, transferred into a clean 1.5ml centrifuge tube then added 

30µl of Zyppy Elution buffer directly to the column matrix and it was let to stand 

for one minute at room temperature. Then it was centrifuged for 15 seconds to elute 

the DNA. 

C. Plasmid Quantification 

Plasmid quantification was done using the isolated plasmid sample from 2.5ml of 

fresh E. coli culture sample. So to get better yield replica of the samples were taken and 

isolation had been done using Zyppy Plasmid Isolation kit. After isolating the plasmid the 

yield was mixed with ddH2O and OD was taken at 260nm using UV spectrophotometer. 

Likewise OD had been taken for each sample from different stages of the culture process.  

 

4.2.2.5. Population Screening 

Population screening was done using cell culture at different stages. A small 

volume of culture i.e., 0.1ml at regular time gap of 2 h had been collected and spread on 

separate non-ampicillin plates after dilution of 10-4 times, then on the basis of cfu (colony 
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forming unit), individual colonies were selected and transferred over grid marked plate 

which contained ampicillin. So likewise the process was performed for different collected 

samples separately. Using this method non-amp and amp resistant colonies could be 

counted and the percentage of cells which were plasmid bearing was sorted out. This was 

helpful in estimating the population and differentiates the recombinant population at 

different stages of the culture. 

4.3. Results  

Assay of streptokinase enzyme was done using the method described in steps of 

methodology, reading of shake flask and bioreactor (batch process) has been shown 

separately. 

4.3.1. Standard Curve using plaque size of pure Streptokinase 

Table 4.3. Values for Standard Curve, as plaque size for pure streptokinase 

Serial No. Pure Streptokinase Sample Plaque Size (diameter in mm) 

1. 25U 5.0 

2. 50 U 7.0 

3. 100U 12.0 

4. 250U 18.0 

5. 500U 27.0 

6. 1000U 33.0 

                      

4.3.2. Streptokinase assay and finding of unknown concentration using standard 

.  

Figure 4.2. Standard curve for streptokinase assay 
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Pure streptokinase had been diluted using Tris-HCl buffer to draw a standard 

curve. The corresponding concentration for units of streptokinase, Table 4.3, from serial 

no. 1 to serial no. 6 would be 2.5µg/ml, 5µg /ml, 20µg/ml, 50µg/ml, 100µg/ml and 

200µg/ml respectively. The standard plot was made with the help of pure streptokinase 

sample, Figure 4.2. 

 

4.3.3. Growth of E. coli Cells and Streptokinase Production (in Shake Flask) 

 

Table 4.4(a). Results of shake flask study for streptokinase production 

S. No. Time after induction (hours) Concentration of streptokinase 

(µg/ml)  

1. 2 10.9 

2. 4 56.41 

3. 6 69.42 

4. 8 23.91 

                               

 

Table 4.4(b). Results of batch bioreactor studies for streptokinase production 

S. No. Time  after induction (hours) Concentration of streptokinase 

(µg/ml) 

1. 2 4.4 

2. 4 43.41 

3. 6 36.91 

4. 8 85.67 

5. 10 10.90 

6 12 1.15 

 

 

Readings taken to plot out overall cell concentration in terms of OD. Weight of a 

single E. coli is about 7 x 10-13g. On this basis the weight of E. coli to the respective cell 

OD was calculated, Table 4.5(a). 
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Table 4.5(a). Cell growth reading from Shake Flask experiment 

S.No. Time (hours) Absorbance (600nm) Number of E. coli cells (per ml) x 1012 

1. 0 0.0175 0.0250 

2. 1 0.0391 0.0558 

3. 2 0.0903 0.1290 

4. 3 0.2459 0.3510 

5. 4 0.4350 0.6210 

6. 5 0.6590 0.9410 

7. 6 0.9896 1.4130 

8. 7 1.1687 1.6690 

9. 8 1.2228 1.7460 

10. 9 1.2243 1.7490 

11. 10 1.2152 1.7360 

12. 11 1.1806 1.6860 

 

Curve was plotted, Figure 4.3, showing cell population growth and streptokinase activity 

on the same scale to understand the dynamics.  

 

Figure 4.3. Cell growth and streptokinase production profile in shake flask 
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4.3.4. Growth of E. coli Cells and Streptokinase Production (in Bioreactor) 

Table 4.5(b). Cell growth reading from Bioreactor 

S. No. Time (hours) Absorbance (600nm) Number of E. coli cells (per ml) x 1012 

1. 0 0.0078 0.0114 

2. 1 0.0478 0.0683 

3. 2 0.4123 0.5890 

4. 3 0.4354 0.6220 

5. 4 0.6086 0.6694 

6. 5 0.7743 1.1061 

7. 6 0.8115 1.1593 

8. 7 1.0070 1.4386 

9. 8 1.1120 1.5886 

10. 9 1.2936 1.8480 

11. 10 1.3230 1.8900 

12. 11 1.4234 2.0334 

   13           12              1.4519                             2.7410 

14 13 1.6234 2.3191 

15 14 1.7615 2.5164 

The experiment was carried out in bioreactor (batch mode), the obtained values were given 

in Table 4.5 and plotted (Figure 4.4). 

 

Figure 4.4. Cell growth and streptokinase profile in batch bioreactor studies 
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4.3.5. Vector Quantification   

Plasmid concentration was measured in terms of OD as shown in the following 

Tables 6(a) and (b). Firstly plasmid was isolated from 1ml of culture media then it was 

diluted in 1ml ddH2O and absorbance was measured. Plasmid concentration was derived 

from absorbance directly multiplying it by 50µg/ml, which had been the known plasmid 

concentration at OD 1.0 and A260.  

Since each pRSET-B vector consists of 2887basepairs (additionally 2.5kb gene 

insert), so each base pair is having known mass of 660daltons. The calculation was done 

using (Kramer et al., 1996) established expression, hence gram weight of each plasmid 

copy would be, 

{(2887+2500) x 660}/(6.023 x 1023) 

= 5.9039 x 10-18g 

 

Table 4.6(a). Plasmid quantification in Shake Flask experiment 

S. No. Time 

(hours) 

Absorbance 

(260nm) 

Plasmid Concentration 

(µg/ml) 

Number of Plasmid Copy 

per ml reaction volume x 1013 

1. 0 0.0012 0.060 0.0896 

2. 2 0.0117 0.585 0.1849 

3. 4 0.0158 0.790 0.2497 

4. 6 0.0232 1.160 0.3666 

5. 8 0.0336 1.680 0.5310 

6. 10 0.1100 5.500 1.7385 

7. 12 0.0068 0.340 0.1074 

8. 14 0.0128 0.640 0.2023 

9. 16 0.0220 1.100 0.3477 

10. 18 0.0214 1.070 0.3382 

 

So the plasmid quantification in case of shake flask and bioreactor was done employing the 

expression and finally the plasmid copy per unit volume was obtained in each case, Table 

4.6 (a) and (b). 
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Table 4.6(b). Plasmid quantification in Bioreactor medium 

S. No. Time 

(hours) 

Absorbance 

(260nm) 

Plasmid Concentration 

(µg/ml) 

Number of Plasmid Copy 

per ml volume x 1013 

1. 0 0.0019 0.095 0.0300 

2. 2 0.1149 5.745 1.8160 

3. 4 0.1513 7.565 2.3913 

4. 6 0.2034 10.170 3.2147 

5. 8 0.1409 7.045 2.2269 

6. 10 0.1229 6.145 1.9424 

7. 12 0.1014 5.070 1.6026 

8. 14 0.1045 5.225 1.6516 

9. 16 0.09080 4.540 1.4351 

 

4.3.6. Population Screening 

The screening of population of recombinant and plasmid lacking cells was carried out on 

colony basis as mentioned in sub-section 4.2.2.5 of this chapter. The experiments were 

conducted triplicate for batch accuracy; the results obtained were given in Table 4.7 (a) 

and (b). 

 

Table 4.7(a). Recombinant cells screening, in Shake Flask medium 

S. No. Time  

(h) 

Number of Plasmid Bearing 

Cells Colonies (on cfu basis)  

Number of Plasmid Lacking Cells 

Colonies (on cfu basis) 

1. 0 31 2 

2. 2 38 4 

3. 4 30 4 

4. 6 42 2 

5. 8 33 4 

6. 10 36 6 

7. 12 39 12 
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Table 4.7(b). Recombinant cells screening in medium from Bioreactor 

S. No. Time  

(h) 

Number of Cell Colonies 

(on cfu basis) 

Number of Plasmid Lacking 

Cells Colonies (on cfu basis) 

1. 0 43 1 

2. 2 36 4 

3. 4 40 4 

4. 6 43 3 

5. 8 40 5 

6. 10 41 6 

7. 12 44 9 

8. 14 42 20 

 

4.3.7. Average Copy Number per Cell 

To find the Average Copy Number  

Plasmid bearing fraction of cells = 

(Total colonies of cells - Plasmid lacking cell colonies)/ Total colonies of cells 

Copy Number (Average) at an instance = 

Total Plasmid copy / (Plasmid bearing fraction x Total cells presents) 

 

Table 4.8(a). The Average Copy Number (in Shake Flask Experiment) 

S. No. Time 

(hours) 

Plasmid Bearing E. coli 

cells (per ml)x 1010 

Plasmid copy present  

         (per ml) x 1013 

 Plasmid Average Copy  

number per cell 

1. 0 2.3387 0.0896 16.0 (16) 

2. 2 11.5421 0.1849 38.3 (38) 

3. 4 53.8200 0.2497 06.6 (7) 

4. 6 134.5714 0.3666 05.7 (6) 

5. 8 153.4364 0.5310 05.5 (5) 

6. 10 144.6667 1.7385 12.0 (12) 

7. 12 116.7213 0.1074 00.92 (1) 

The plasmid average copy number per cell was finally obtained in each case, Table 4.8 (a) 

and (b), at different time instances after induction in fermentation process. 
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Figure 4.5. Characteristic curve of average plasmid copy number for shake flask study 

 

Together with the count of plasmid bearing cells and plasmid copy present in unit volume 

of culture, average copy number was computed and illustrated in the plot, Figure 4.5.  

 

Table 4.8(b). The Average Copy Number (in Bioreactor Batch Process) 

S.No. Time 

(hours) 

Plasmid Bearing E. coli 

cells (per ml)x 1010 

Plasmid copy present  

              (per ml) x 1013 

Plasmid Average Copy 

number per cell 

1. 0 1.1135 0.0300 22.9 (23) 

2. 2 52.3556 1.8160 34.7 (35) 

3. 4 60.2460 2.3913 39.7 (40) 

4. 6 107.8419 3.2147 29.8 (30) 

5. 8 139.0025 2.2269 16.0 (16) 

6. 10 161.3415 1.9424 12.0 (12) 

7. 12 218.0341 1.6026 07.0 (7) 

8. 14 131.8114 1.6516 12.0  (12) 
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Figure 4.6. Characteristic curve of average plasmid copy number (in Bioreactor) 

 

The curve for average copy number per cell, Figure 4.6, was obtained on the basis of 

plasmid bearing cells count and plasmid copy present in unit volume of bioreactor 

medium. Experiments were carried out to see the effect of metabolite concentration (in 

terms of acetate formation) in shake flask (Guardia and Calvo, 2001) and the data is shown 

in Figure 4.7. 

 
Figure 4.7. Effect of metabolite concentration (asterisk) on average plasmid copy number 

per cell  
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4.4. Discussion 

Inference could be drawn from the experiments conducted using samples from 

different time steps viz. overall cell count through OD and DCW, plasmid density, 

streptokinase expression, plasmid bearing and lacking cells count through population 

screening.  It was observed that plasmid bearing cells and copy number population were 

going on declining after certain time span with the progress of recombinant culture 

process. The comparison of shake flask and bioreactor results had been done to evaluate 

the change in plasmid copy dynamics more firmly.  

The dynamics pertaining to plasmid average copy number showed that copy 

number showing a decreasing trend after 4-6 hours and it became negligible in magnitude 

after 12 hours of culture time. There found a little hike in average copy number in late 

hours of batch cultivation due to inertial reasons which work on decline of metabolite 

concentration.  

Experiments using production medium was performed to achieve high production 

of biomass and to get maximum product i.e., activity. The basic work was primarily 

associated to estimate the plasmid loss and to evaluate the changes in copy number. From 

the outcome of chart it is evident that plasmid copy number was apparently changing with 

time and it depends upon the changing environment in the chemostat system. The 

approximate estimation of plasmid copy number was required which would be of greater 

importance for understanding the instability dynamics. After performing several 

experiments in this direction a plenty of facts regarding competitive trend of dynamics had 

been emerged. Also role of parameters like primary metabolite were established in a 

simple way for its contribution in plasmid copy number decline with culture process. It 

was evident from the experiments that bioreactor supports for a better sustenance of cell 

biomass and copy number and to a higher magnitude in comparison to the shake flask.   

Since the formation of product streptokinase would be directly proportional to the 

number of recombinant cells and vector copies per cell in the media so our emphasis here 

was to consider plasmid copy number into our account to study the variations. Moreover 

the idea was to exploit the dynamical features concerned to structural reasons particularly 

genetic basis that indirectly govern the copy number sustenance in production medium.  
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CHAPTER-5 

MEDIA AND CULTURE CONDITION OPTIMIZATION 

 

5.1. An Overview 

This chapter addresses another interesting area of research in bioprocess system 

involving efficient optimization of culture conditions together with media. It depicts the 

use of statistical approach to improve the product formation via test of model and 

prediction methodology. After performing the task of optimization of production media 

components the next aim had been to optimize the culture-condition governing parameters 

which had been done subsequently and success was achieved to an extent. 

Streptokinase assay was performed to test its activity in culture supernatant fluid 

which was done by comparison with dilutions of standard purified streptokinase solution, 

using casein/plasminogen plate technique. Plackett Burman (PB) design was prepared to 

screen out media components using experimental results. Central Composite Design 

(CCD) matrix application was carried out to determine which of the several experimental 

variables were significant and their interactions present more significant effects. Design 

Expert Software, DX5 and Matlab installed system were used for conducting the 

optimization work. ANOVA (Analysis of variance) was done for analysing the second 

order response surface model; the significance of each coefficient was determined by 

Student’s t-test and p-value, to identify the corresponding significant factors.  

Screening of media components was firstly conducted using PB, since a number 

of media components were used to constitute production medium to carryout the 

fermentation. The next step was performed as CCD analysis to estimate the interaction 

among the relevant factors and evaluate the response. The vital production media 

components had been considered to optimize for streptokinase production. After 

performing the task of optimization of production media components the next aim was to 

optimize the culture-condition governing parameters. Statistically the model was tested for 

being significant and lack of fit was evaluated simultaneously for finding lack of its 

significance.  

Statistical technique for screening and design experiments would be carried out to 

determine which of the several experimental variables and their interactions present more 

significant effects (Yazdani and Mukherjee, 1998).  ANOVA was constructed for the 
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second order response surface model; the significance of each coefficient was determined 

by Student’s t-test and p-value (Vellanki et al., 2009), to identify the corresponding 

significant coefficient (Balagurunathan et al., 2008). The statistical technique of 

optimization was also compared with neural network approach. Box and Behnken 

(Gilmour, 2006), (Bruns, 2006) studied how to select points from three-level factorial 

design for optimization using linear polynomial function (Theophilus and Ferreira, 2006). 

It might help in evaluation of first and second order coefficients of the statistical model 

(Boxa and Behnkena, 1960). ANOVA often used to compare variations due to process 

treatment with the randomly generated errors due to measurement of the responses (Vieira, 

1989). The screening and experiment design should be carried out to determine the several 

experimental factors and their interaction that would be more promising to present the 

more significant effects (Bezerra et al., 2008). The industrial fermentation process directly 

depends upon factors like specific growth rate, biomass yield, final product quality etc, 

which influence the production cost (Monaghan et al., 1999), (Stabury et al., 1995). The 

cellulase activity of Bacillus strain was enhanced by optimizing the medium composition 

by statistical methods, Placket-Burman design and CCD (Deka et al., 2011). Structural 

characteristics of different combinations of bioprocess variables viz. time, temperature, and 

acid concentration were used for enhancing bioethanol production (Dhabhai et al., 2013). 

Central composite experimental design maximizes the acquired information and reduces 

the number of individual experiments required for any inference (Deepak et al., 2008). The 

fermentation factors optimization with respect to cultures condition was done in one-at-a-

time strategy to enhance the D-amino acid oxidase yield (Gupta et al., 2012). To find the 

optimal fermentation media different monosaccharide and disaccharides were used as 

carbon sources such as glucose, fructose etc. RSM is a well known technique usually 

applied in optimization of medium constituents and other critical condition parameters 

responsible for production of enzymes (Xiong et al., 2004). RSM used by several 

researchers to find the requirement of media components malt and yeast extract for lipase 

production (Kumar and Gupta, 2009). Identification of important factors or key 

determinants with screening experiment is followed by application of complex response 

surface design to work for further optimization (Chauhan and Gupta, 2004). The statistical 

experiment design provides a global means to workers of different field particularly 

academia, industry and engineering for designing and analysing the experiments 

(Montogomery, 2001).  
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5.1.1. Statistical Bioprocess Modelling 

   It is clear from the literature that the parameters pertaining to culture conditions are 

not yet optimized for this recombinant strain. Consequently the screening of various 

production media constituents and optimization of culture condition parameters are to be 

assumed for maximum streptokinase/plasmin activity. After screening out vital media 

components for E. coli, on the basis of their statistical significance CCD would be the next 

aim to find out the most significant interaction of culture conditions with respect to maximum 

streptokinase activity.  

   Optimization methodology widely used in bioprocess often applying CCD. The 

Response Surface Methodology (RSM) was originally developed in perspective to fitness of 

the mathematical model. The CCD was initially configured by Box and Wilson (Gilmour, 

2006), (Bruns et al., 2006). Optimization approach was developed for two factors (variables) 

and three factors with axial values α=1.41 and 1.68 respectively. RSM comprises of a cluster 

of mathematical and statistical techniques which used to depend on fitness of empirical model 

with the experimental model in contrast to experimental data design. Linear or square 

polynomial functions are usually applicable to utilize modelling setup using experimental 

condition upto its optimization goal (Theophilus and Ferreira, 2006). Two and three variable 

optimization has been shown diagramatically, Figure 5.1 (a) and (b). 

 

Figure 5.1 (a). Two variable optimization (α=1.41) using CCD, with points of factorial design 

(double circled dots), axial (single circled dots) and central point at intersection (f1 and f2 are 

the factors) 
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Figure 5.1 (b). Three variable optimization (α=1.68) using CCD, with points of factorial 

design (double circled dots), axial (single circled dots) and central point at intersection of axes 

(f1, f2 and f3 are the factors) 

The RSM application was carried out with few steps; 

� Screening the vital variables 

� Selection of suitable experimental design 

� Simple codification of factors with levels 

� Statistical analysis of experimental data 

� Model fitness evaluation 

� Solving Quadratic expression to find optimal parameters 

In order to apply the linear function of RSM model it is essential that responses should be well 

fitted to the following expression; 

y = β0∑ ���� + �
�
��	                                                                                                                   

(30) 

Here, n-number of factor variables, k is the index, β0 a constant, βk coefficients of linear 

experimental parameters, xk denotes the factors, � the residual term associated to the 

considered experiments. 

5.1.2. Culture conditions optimization 

   The indispensable task of culture condition optimization had been assumed for 

maximum productivity using Design Expert 8.0 software. Numerical based simulation of the 

process was performed in Matlab 2010Ra. In optimization process the contour plots were 
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obtained that interprets interactions among the pair of variables to achieve best level plasmin 

activity. 

Inoculum Percentage Optimization 

   Additionally, inoculum concentration and age for best Plasmin Activity had been 

manually optimized. Several other parameters that were previously employed in similar 

work (Yazdani and Mukherjee, 2002) incorporated in our process as usual. The inoculum 

percentage and age optimization was done individually to achieve best level of 

recombinant streptokinase production, shown in Figure 5.2 (a) and (b). Prior proceeding 

to the composite optimization of several parameters of cultivation it would be necessary to 

independently evaluate the individual parameters in terms of product formation.  

Thus inoculum concentration of 2.75 g/ml and inoculum preparation of 6 hours of age was 

found to be most appropriate for our purpose to promote streptokinase production. 

 

 

Figure 5.2(a). Inoculum percentage optimization 
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Figure 5.2(b). Inoculum age optimization 

5.2. Screening of Production Media Constituents for Streptokinase production:  

5.2.1. Plackett Burman Method (PB) 

Numerous factors may influence the response of the system and it is generally not possible 

to evaluate and identify the significance of their role in the system individualy. It would be 

more convinient and feasible to select the factors that having prime role. Screening design 

was thus applied to findout which of the experimental factors, those having vital 

interaction that provide additional significant effects. The full factorial level design was 

more efficient and found to be applicable to bioprocess. 

5.2.2.  Screening Media Components using PB Methodology 

5.2.2.1. Level of Factors 

The PB design with level and range of media components shown in Table 5.1, while 

layout is given in Table 5.2. 
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Table 5.1. Levels and range of various factors used in Plackett-Burman 

Factors Medium 

Constituents 

Levels  Used (g/l) 

        ( -1)                   (+1) 

A Glucose 3.0 7.0 

B Yeast Extract 3.0 7.0 

C NH4Cl 0.7 1.30 

D Phosphate 5.0 11.0 

E NaCl 0.3 0.7 

F MgSO4 0.3 0.7 

G FeSO4 0.07 0.13 

 

5.2.2.2. PB Layout 

The seven media components were together put into consideration to conduct statistical 

screening, Table 5.2. 

Table 5.2. Plackett-Burman design layout   

 

    

Run 

A:Glucose 

g/l 

B:Yeast 

Extract 

g/l 

C:NH 4Cl 

g/l 

D:Phosphate 

g/l 

E:NaCl 

g/l 

F:MgSO4.7H2O 

g/l 

G:FeSO4   

g/l                

SK 

Production 

µg/ml 

1 3.0 3.0 1.3 11.0 0.3 0.3 0.13 1.624 

2 3.0 3.0 0.7 11.0 0.7 0.7 0.07 1.596 

3 3.0 7.0 0.7 5.0 0.7 0.3 0.13 1.554 

4 7.0 7.0 1.3 11.0 0.7 0.7 0.13 1.918 

5 7.0 3.0 0.7 5.0 0.3 0.7 0.13 1.386 

6 7.0 3.0 1.3 5.0 0.7 0.3 0.07 1.344 

7 7.0 7.0 0.7 11.0 0.3 0.3 0.07 1.484 

8 3.0 7.0 1.3 5.0 0.3 0.7 0.07 1.862 

   

5.2.2.3. Numerical Solution for Screening the Vital Components 

Effect of each factor variable was computed from the design to find out their respective t 

and p values. The Eq. 31 and 32 are representing expression to calculate effect and t-value 

subsequently. 

Glucose,………………..FeSO4  

X1, X2,………………….....X7 

As Xi to Xn being encoded to show factors from A to G 
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Effect(Xi) = ∑(y(+)i – y(-)i) / (N/2)                                                                                       

(31)    

N -> is the number of run (experiments) 

 

E(X1)=(6.1320-6.6360)/4 = -0.1260 

E(X2)=(6.8180-5.9500)/4= 0.2170 

E(X3)=(6.7480-6.0200)/4= 0.1820 

E(X4)=(6.6220-6.1460)/4= 0.1190 

E(X5)=(6.4120-6.3560)/4= 0.0140 

E(X6)=(6.7620-6.0060)/4=- 0.1890 

E(X7)=(6.4820-6.2860)/4= 0.0490 

 

Degree of Freedom = Number of dummy variables found were two (here, E(X5) and E(X7)) 

Veff  = ∑Ed
2/Nd =1.3X10-3 

S.E. = √ Veff  = 0.0360 

 

t(Xi) = E(Xi)/S.E.                                                                                                                   

(32)   

t(X1) to t(X7) = -3.50, 6.0278, 5.0556, 3.3056, 0.3889, 5.2500 and 1.3611 respectively  

 

From the table, where p corresponds to t (http://graphpad.com/quickcalcs/PValue1.cfm) 

is given, thus  p value was obtained likewise.  
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5.2.2.4. Statistical Analysis for Screening 

Table 5.3. Statistical analysis from the results of Plackett-Burman design for screening of 

media components 

Factors Medium Components Effect, E(xi) t-value p-value 

A Glucose -0.1260 -3.50 0.0228 

B Yeast Extract 0.2170 6.0278 0.0264 

C NH4Cl 0.1820 5.0556 0.0806 

D Phosphate 0.1190 3.3056 0.0370 

E NaCl 0.0140 0.3889 0.7348 

F MgSO4 0.1890 5.2500 0.0344 

G FeSO4 0.0490 1.3611 0.3066 

       

So from the p-values obtained in Table 5.3, it is evident that factors A, B, D and F are 

found significant. Since p-value is regarded to be the probability of rejecting any 

hypothesis/assumption thus the lesser value (usually <0.05) favours the acceptance of the 

proposed model.  

 

5.3. Optimization of Production Media Components for Streptokinase production:  

       Using Central Composite Design (CCD) 

The level of selected factors are depicted in Table 5.4, while CCD layout is given in Table 

5.5.  

 

5.3.1. Level of factors for CCD 

Table 5.4. The level and extent of factors taken for CCD 

Factors Medium 

Constituents 

                                             Levels 

                                               (g/l) 

      -α                -1                    0                   +1              + α 

A Glucose 1.0 3.0 5.0 7.0 9.0 

B Yeast Extract 1.0 3.0 5.0 7.0 9.0 

C Phosphate 2.0 5.0 8.0 11.0 14.0 

D MgSO4 0.1 0.3 0.5 0.7 0.9 

 

Note: α=2 (2k/4, where k is the no. of factors, k=4) 
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5.3.2. Optimization of Media Components using  CCD 

Four production media components with their response as streptokinase prodution and 

model predicted values for CCD has been shown in the Table 5.5.  

Table 5.5. CCD for media component optimization 

Run Factor 1 Factor 2 Factor 3 Factor 4 Response 1 Predicted 

Values 

ANN 

Predicted 

 A:Glucose B:Yeast 

Extract 

C:Phosphate D:MgSO4 SK 

Production 

SK 

Production 

SK 

Production 

 g/l g/l g/l g/l µ g/ml µ g/ml µ g/ml 

1 5 9 8 0.5 2.014 2.1809 2.0535 

2 7 7 11 0.3 1.547 1.9017 1.7223 

3 5 5 8 0.5 2.184 1.8787 1.9188 

4 5 5 8 0.5 1.554 1.8884 1.5188 

5 9 5 8 0.5 1.619 2.091 1.4806 

6 3 3 11 0.7 2.34 1.9894 2.1991 

7 5 5 14 0.5 2.019 1.9449 1.9572 

8 3 7 5 0.3 2.461 2.1317 2.5027 

9 3 3 5 0.3 1.756 2.5622 1.4964 

10 5 5 8 0.9 2.428 2.0639 2.4288 

11 7 7 11 0.7 1.544 2.0094 1.6262 

12 5 5 2 0.5 2.381 1.9997 2.4717 

13 7 3 11 0.3 1.507 2.1774 1.7060 

14 7 3 5 0.3 1.506 1.8562 1.4855 

15 5 5 8 0.5 2.403 1.7802 2.3188 

16 5 5 8 0.5 1.708 1.7479 1.5188 

17 5 5 8 0.5 1.573 2.1782 1.5188 

18 3 3 5 0.7 1.612 1.8667 1.4066 

19 5 1 8 0.5 1.576 2.0287 1.3889 

20 5 5 8 0.5 2.291 1.6182 1.9188 

21 7 7 5 0.3 2.333 2.2092 2.4378 

22 3 7 11 0.3 2.299 2.0677 1.9606 

23 3 7 5 0.7 2.31 2.0177 1.8639 

24 7 3 5 0.7 1.548 2.0152 1.5152 
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25 3 7 11 0.7 1.561 1.5403 1.6467 

26 1 5 8 0.5 2.279 2.5043 1.5866 

27 5 5 8 0.1 2.363 2.1403 1.8560 

28 7 7 5 0.7 1.407 1.5401 1.4162 

29 3 3 11 0.3 1.256 1.4503 1.2990 

30 7 3 11 0.7 1.659 1.8403 1.6552 

 

5.3.3. ANOVA for production medium 

Analysis of variance is used to evaluate the significance of the model, Table 5.6. 

Table 5.6. ANOVA for production medium constituents  

                                Sum of         Mean        F                p-value 

 Source                Squares      df             Square Value     Prob > F 

   Mode                    0.38               14             0.027     2.59                   0.0388      significant 

   A-Glucose            9.963E-003 1 9.963E-003 0.95 0.3449 

   B-Yeast Extract    0.086 1 0.086 8.22 0.0118 

   C-Phosphate        0.029 1 0.029 2.73 0.1190 

   D-MgSO4            0.015 1 0.015 1.42 0.2523 

   AB     0.10 1 0.10 9.61 0.0073 

   AC     0.060 1 0.060 5.72 0.0303 

   AD     1.351E-003 1 1.351E-003 0.13 0.7245 

   BC     0.053 1 0.053 5.04 0.0403 

   BD                       2.328E-003 1 2.328E-003 0.22 0.6441 

   CD     9.361E-003 1 9.361E-003 0.89 0.3594 

   A2         1.534E-004 1 1.534E-004 0.015 0.9053 

   B2     2.680E-003 1 2.680E-003 0.26 0.6203 

   C2     9.525E-003 1 9.525E-003 0.91 0.3554 

   D2     3.713E-003 1 3.713E-003 0.35 0.5604 

 Residual              0.16 15 0.010 

 Lack of Fit          0.12 10 0.012 1.45 0.3568      not significant 

 Pure Error          0.040 5 8.049E-003  

    Cor Total            0.54              29 
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5.3.4. Inferences from ANOVA  

   The Model F-value of 2.59 implies the model is significant.  There is only a 

3.88% chance that a "Model F-Value" this large could occur due to noise. R-Squared is 

0.7201. Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this 

case B, AB, AC and BC are significant model terms. The "Lack of Fit F-value" of 1.45 

implies the Lack of Fit is not significant relative to the pure error. Non-significant lack of 

fit value is good as it emphasizes is the model to unfit. 

 

5.3.5. Numerical Analysis of Optimization Solving Quadratic Equation 

Model Quadratic Equation obtained, given by Eq. 33; 

(Abbreviations used here, G=> Glucose, Y=> Yeast Extract, P=> Phosphates, and M => 

Magnesium Sulphate) 

SK (y) = + 1.22772 

               + 0.033318G + 0.062130Y – 0.034054P + 0.45307M 

              -0.019828GY + 0.010198GP – 0.022969GM 

             + 9.57292X10-3YP + 0.030156YM – 0.040312PM 

             +5.91146X10-4G2 – 2.47135X10-3Y2 

             -2.07060X10-3P2 – 0.29089M2                                                                                  

(33) 

 

A simplified form: 

y = b0 + b1*A + b2*A + b3*C + b4*D 

     +b11*A2 + b22*B2 + b33*C2 + b44*D2   

     +b12*AB + b23*BC + b34*CD + b41*DA 

     + b13*AC +b24*BD 

 

Taking partial derivatives of y with respect to each of the four parameters and considering 

it in matrix form; 

2*b11*x1 + b12*x2 + b13*x3 + b41*x4 = -b1 

b12*x1 + 2* b22*x2 + b23*x3 + b24*x4 = -b2 

b13*x1 + b23*x2 + 2*b33*x3 + b34*x4 = -b3 

b41*x1 + b24*x2 + b34*x3 + 2*b44*x4 = -b4 
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In general, the above set of equation could be solved using matrix method; 

A = [2*b11  b12  b13  b14   

                   2*b22 b23 b24  

                         2*b33  b34   

                                 2*b44] 

B=[ - b1 - b2 - b3 - b4]; 

 

Now the four simultaneous equations solved for, 0
y

P

∂ =
∂

, 0
y

A

∂ =
∂

, 0
y

T

∂ =
∂

, 0
y

I

∂ =
∂

   

Since, y = inv (A) * B;                                                                                                           

(34) 

So using Eq.34, the values of matrix coefficients variables can be obtained as,  

G=4.3695; Y=2.1899; P=1.8210; M=0.5936; 

The production magnitude obtained as, y=1.8720 

The set of quadratic equations obtained was done in Matlab Editor. The term of correlation 

r2 in the case was found to be close to 1.0. The performance efficiency of CCD with 

respect to error minimization was found to be appreciable. The correlation r2 computed to 

be 0.7201 for the statistical model which could also be evaluated using other simulation 

means. The statistical and ANN predicted output values of Table 5 has been further 

analysed in section 6.3.1, Chapter 6. 

 

5.3.6. 3-D and Contour Plots 

           Figures 5.3-5.8, shown with response surface 3-D and contour plots and to 

represent interaction of different pair of production media components and their response 

in terms of streptokinase production. 
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5.3(a) 

 

 
5.3(b) 

Figure 5.3(a) and (b). Response surface and contour curve of streptokinase production 
(
g/ml) as a function of glucose and MgSO4 in medium with yeast extract and phosphate, 
3.74 and 8.00 g/l respectively 
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5.4(a).  

 
 

 

5.4(b) 

Figure 5.4(a) and (b). Response surface and contour plot for streptokinase production 
(
g/ml) as a function of glucose and yeast extract in medium with varying conc. of 
phosphate and MgSO4 in g/l 
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5.5(a). 

 

 

 

5.5(b) 

Figure 5.5(a) and (b). Response surface and contour plot for streptokinase production 
(
g/ml) as a function of yeast extract and phosphate in medium with varying 
concentration of glucose and MgSO4 in g/l 
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5.6(a) 

 

 

5.6(b) 

Figure 5.6(a) and (b). Response surface and contour plot for streptokinase production 
(
g/ml) as a function of phosphate and glucose in the medium with yeast extract and 
MgSO4  
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5.7(a) 

 

 

5.7(b) 

Figure 5.7(a) and (b). 3-D response surface and 2-D contour plot showing streptokinase 
production (
g/ml) as a function of yeast extract and MgSO4 in the medium with glucose 
and phosphate  
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5.8(a). 

 

 

5.8(b). 

Figure 5.8(a) and (b). 3-D response surface and 2-D contour plot for streptokinase 
production (
g/ml) as a function of phosphate and glucose in the medium with yeast 
extract and MgSO4 in concentration 4.83 and 3.80 (g/l) respectively 

   The optimal level of each medium component for maximum response in terms of 

streptokinase production was evaluated via response surfaces. It would be helpful in 
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determining the best magnitude combination of factors to achieve optimal production. So, 

six pairs of 3-D and contour plots were obtained using Design Expert software, Figures. 3-

8, a slightly increased concentration of MgSO4 and yeast extract indicated to favours the 

production of recombinant enzyme streptokinase.  

5.4. Optimization of Culture Conditions for Streptokinase production 

5.4.1. Level of Factors for CCD 

The level of cultivation factors were taken, Table 5.7 according to CCD method. 

Table 5.7. The range of various factors taken for CCD 

Factors Medium Constituents                          Levels (g/l) 

   -α           -1            0                +1               + α 

A pH 6.00 6.50 7.00 7.50 8.00 

B Agitation (rpm) 100 150 200 250 300 

C Temperature (°C) 31.0 34.0 37.0 40.0 43.0 

D Inoculum Conc. (%,V/V) 1.25 2.00 2.75 3.50 4.25 

Note: α=2 (2k/4, where k is the no. of factors, k=4) 

 

5.4.2. Optimization of Culture Conditions Using CCD 

The layout of CCD for four culture condition parameters with response and predicted 

model values are given below in Table 5.8. 

 

Table 5.8. CCD for culture conditions optimization 

Run Factor 1 Factor 2 Factor 3 Factor 4 Response 1 Predicted 

Values 

ANN 

Predicted 

A: pH B:Agitation 
C: 

Temp. 

D: 

Inoculum 

conc. 

SK 

Production 

SK 

Production 

SK 

Production 

  rpm (°C) (%, V/V) µ g/ml µ g/ml µ g/ml 

1 7.5 250 40 2 2.779 2.0265 2.1663 

2 6.5 250 40 3.5 2.072 1.7596 2.2401 

3 6.5 250 34 3.5 2.142 2.8586 2.072 

4 7.0 200 37 2.75 2.723 2.4430 2.5209 
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5 6.5 150 40 2.0 1.953 1.4842 1.8403 

6 7.0 200 43 2.75 2.002 1.9386 2.4046 

7 7.0 200 31 2.75 1.946 2.5211 1.7756 

8 7.5 150 34 3.5 2.912 2.0267 2.7029 

9 7.5 250 34 2.0 1.778 2.1702 1.6931 

10 7.5 150 40 2.0 2.303 2.1151 2.3497 

11 6.5 250 40 2.0 2.079 2.0346 2.0773 

12 7.0 200 37 2.75 1.435 1.8307 1.7209 

13 6.5 150 34 2.0 2.163 2.1023 2.1417 

14 7.5 150 40 3.5 2.086 1.9684 2.0065 

15 7.0 200 37 4.25 1.365 2.1714 1.7791 

16 6.5 150 40 3.5 2.156 1.8888 2.0675 

17 7.5 250 34 3.5 2.107 2.2560 2.163 

18 7.0 300 37 2.75 1.239 1.7065 2.107 

19 6.0 200 37 2.75 2.053 1.8185 2.303 

20 7.5 250 40 3.5 1.907 2.5710 2.0201 

21 7.5 150 34 2.0 1.953 2.0168 1.7783 

22 6.5 150 34 3.5 1.778 1.5327 2.1607 

23 7.0 200 37 2.75 2.023 2.1813 1.9209 

24 7.0 100 37 2.75 2.121 2.1782 1.9461 

25 8.0 200 37 2.75 1.351 1.6241 1.3185 

26 6.5 250 34 2.0 2.24 1.9441 2.5123 

27 7.0 200 37 2.75 1.323 1.5141 1.9209 

28 7.0 200 37 2.75 2.128 1.9241 1.9289 

29 7.0 200 37 2.75 2.107 1.9141 1.9209 

30 7.0 200 37 1.25 2.072 1.9141 1.9495 
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5.4.3. ANOVA for culture conditions 

The result of CCD analysis is presented in ANOVA framework, Table 5.9. 

Table 5.9. ANOVA for culture condition factors 

                                 Sum of                       Mean                          F                   p-value 

 Source                  Squares               df                    Square                      Value             Prob > F 

 

  Model                   3.24              14 0.23 2.63                   0.0368 significant 

   A-pH                    0.45               1 0.45 5.15 0.0385 

   B-Agitation          0.85               1 0.85 9.65 0.0072 

   C-Temperature    0.35               1 0.35 4.00 0.0640 

   D-Inoculum  

           conc (%)      5.104E-005   1 5.104E-005 5.801E-004 0.9811 

   AB0                  022                          1  0.022 0.25 0.6233 

   AC                    6.202E-003 1 6.202E-003 0.070 0.7942 

   AD                    0.045 1 0.045 0.51 0.4863 

   BC                    0.042 1 0.042 0.48 0.5006 

   BD                    0.94 1 0.94 10.64 0.0052 

   CD                    0.22 1 0.22 2.56 0.1307 

   A2                     7.724E-003 1 7.724E-003 0.088 0.7711 

   B2                     0.14 1 0.14 1.53 0.2345 

   C2                    0.033 1 0.033 0.38 0.5476 

   D2                    0.13 1 0.13 1.42 0.2516 

 Residual             1.32 15 0.088 

  

   Lack of Fit        0.93 10                     0.093                        1.17                    0.4569   (not- 

         Significant) 

 Pure Error                          0.39 5 0.079 

 Cor Total                            4.56 29 

 

 

5.4.4. Inference of ANOVA 

            The Model F-value of 2.63 implies the model was significant. There was only a 

3.68% chance that a "Model F-Value" this large could occur due to noise. R-Squared was 

0.7102. Values of "Prob > F" less than 0.0500 that used to indicate model terms were 

significant. In this case A, B, BD are significant model terms. The "Lack of Fit F-value" of 

1.17 implies the Lack of Fit was not significant relative to the pure error. Non-significant 

lack of fit assumed to be good since it was desirable for the model to fit. 
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5.4.5. Numerical Analysis of Optimization using Quadratic Expression 

Model Quadratic Equation obtained as Eq. 35, given by, 

(Abbreviations used here, P=> pH, A=> Agitation, T=> Temperature, I=> Inoculum Conc. 

(%)) 

SK Production(y) = 6.16592 – 0.81958P + (8.06583X10-3A) + 0.12486T – 2.30589I –     

                                (1.48750 X10-3PA) – 0.013125PT + 0.14117PI + (3.41250 X10-4AT) –    

                                (6.45167 X10-3AI) + 0.052694TI + 0.067125P2 + (2.80625 X10-5A2) –    

                                (3.87153 X10-3T2) + 0.12006I2                                                             (35) 

δy/δP = -0.81958 + 2X0.067125P - 1.48750X10-3A - 0.013125T + 0.14117I = 0 

δy/δA = 8.06583 - 1.48750X10-3P + 2X2.80625X10-5A + 3.41250TX10-4 - 6.45167X10-3I 

= 0 

δy/δT = 0.12486 - 0.013125P + 3.41250X10-4A – 2(-3.87153X10-3)T + 0.52694I = 0 

δy/δI = -2.30589 + 0.14117P - 6.45167X10-3A + 0.052694T + 2X0.12006I = 0 

 

In general, the above set of equation could be solved in matrix method form. Now the four 

simultaneous equations solved for, 0
y

P

∂ =
∂

, 0
y

A

∂ =
∂

, 0
y

T

∂ =
∂

, 0
y

I

∂ =
∂

   

Since, y = inv (A) * B, using the values of matrix coefficients, parameter variables can be 

obtained as,  

P=8.1351 (pH value), A=283.0167 (rpm), T=37.5653 (°C) and I=3.5930 (%, V/V). 

Finally the production magnitude computed as, y=2.8665 (µg/ml) 

 

The numerical solution of the quadratic equation was done in Matlab Editor. The 

correlation r2 in the later case was found to be close to 1.0. The performance efficiency of 

CCD in respect to error minimization was found to be appreciable. Plot shows the Actual 

vs Predicted obtained from statistical based methods. The correlation r2 for the plot, 

computed to be 0.7102 for the statistical model. Further, the statistical and ANN predicted 

output obtained in Table 8, has been compared and analysed in section 6.3.2, Chapter 6. 
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5.4.6. Optimization 3-D and Contour Plots 

Figures 5.9-5.14, Showing 3-D surface and contour plots to represent interaction of 

different pair of culture condition parameters and their response in terms  in streptokinase 

production 

 

5.9 (a)  

 

5.9(b) 

Figure 5.9(a) and (b). 3-D surface and contour plot showing showing the interaction and 

effect of agitation and pH on streptokinase production (
g/ml). In plot, actual constraints are 

temperature 37°C, inoculum concentration 2.75% (V/V)  
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5.10(a) 

 

 
 

5.10(b)   

Figure 5.10 (a) and (b). 3-D surface plot and contour diagram depicting the interaction 

effect of temperature and pH on streptokinase production, given actual constraints are 

agitation and inoculum concentration as 185rpm and 2.38g/l respectively 
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5.11 (a)  

 

5.11(b)  

Figure 5.11 (a) and (b). 3-D surface plot and contours showing the effect of inoculum 

concentration and pH on streptokinase production at temperature of 36.030C and agitation 

215.71 rpm  
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5.12(a) 

 

 

5.12(b) 

Figure 5.12 (a) and (b). Surface and contour plots showing interaction effect of  agitation 

vs temperature to evaluate streptokinase production with constrains pH and Inoculcum 

conc., 7.15 and 2.60g/l respectively 
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5.13(a)    

 

 

 

5.13(b)  

Figure 5.13 (a) and (b). Response surface 3-D and contour plot between inoculum conc. 

vs agitation is shown in 3-D surface and contour plot to evaluate their effect in terms of 

streptokinase production, the other constrains maintained are pH and temperature as 6.63 

and 36.23 respectively. 
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5.14(a) 

     

 

5.14(b) 

 

Figure 5.14 (a) and (b) 3-D surface and contour plot signifying the interaction and effect 

of temperature and inoculum concentration on streptokinase production (
g/ml), other 

contraints of culture conditions are pH 7.50 and agitation 2500C respectively  



104 

 

The 3-D response surface and contour curves were employed to determine the optimal 

magnitude of each factor for maximum response in terms of streptokinase production. So, 

six pairs of 3-D and contour plots Figures. 5.9-5.14, were obtained on analysing the 

parameter values using design expert. Increasing agitation, pH and inoculum concentration 

indicated to favour streptokinase production.  

 

5.5. Discussion 

In the dynamical system, it was observed that sustenance of plasmid bearing cells 

depends upon unstructured conditions provided during the cultivation. The production media 

components and culture condition factors are the two basic prime requirements which were 

used to support the cell growth and product formation. The four production media 

components were screened out by Plackett Burman methodology; these factors viz., Glucose, 

Yeast Extract, Phosphate and MgSO4 had shown their relevance in recombinant enzyme 

production having significant role in growth. It would be due to the reason that glucose and 

yeast extract are prime carbon and nitrogen sources for proper cell growth, phosphate and 

MgSO4 used to support ATP formation, protein synthesis at intracellular level. Subsequently, 

the next aim had been to optimize the culture governing parameter which was done 

subsequently with success. The validation of the model outcome from CCD was done 

afterward and about 40% enhancement in product was obtained.  

The task of optimization of culture conditions was achieved to a good extent; 

increase in yield had been acquired employing this technique. Statistically both, production 

media and culture condition models were found to be significant and lack of fit was not 

significant which was desirable. Enhancing the level of MgSO4 and yeast extract showed to 

favor the enzyme production. In the surface topology observation, shifting of pH to some 

higher extent and increased level of inoculum concentration and agitation had been proved to 

be beneficial for optimal streptokinase production as evident from CCD analysis. 

Therefore, CCD analysis was performed to evaluate the interaction and relevance of 

variation of factors in terms of response that was evident from ANOVA analysis. Due to 

presence of natural noise in system the observation with very adequate correlation could be 

sometimes harder to achieve. Also, it might be due to the reason that accuracy in experimental 

response measurement was not always adequate. Efficient modeling may ensure an enhanced 
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production of streptokinase on large scale. The optimization task usually marks an increase of 

one or two fold in magnitude of response while in our case it was up to a certain extent, still it 

would be quite worthy since streptokinase is a known highly valuable product.  
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CHAPTER-6 

NEURAL NETWORK APPLICATIONS TO BIOPROCESS 
MODEL 

 
6.1. An Overview 

In this chapter, a multilayer feed forward artificial neural networks (ANNs) 

having a multi-layer perceptron is employed. It is more commonly used than any other 

neural network types. The building of ecological model that utilizes a lot of methods, 

ranging from numerical, mathematical and statistical methods to techniques originating 

from artificial intelligence, like neural networks. Artificial intelligence knowledge is 

required to be implemented to bioprocess field in recent times to achieve a high degree of 

accuracy in prediction and process optimization. In our work, Matlab 2010Ra nn toolbox 

was used together with neural network algorithm based programming in Matlab editor and 

simulation of the model.  

A feed-forward neural network was modified to include dynamic characteristics, 

form the basis of estimator models. Training, testing and validation of data were repeatedly 

done. A multilayer perceptron is usually designed to process the weighted input (Lek and 

Guegan, 1999). Sigmoidal function was used as an activation function using which the 

output was obtained. The given inputs to the model were taken as medium components, 

culture condition parameters and also as population size of plasmid bearing and lacking 

cells and metabolite concentration etc, while the output was obtained in terms of 

streptokinase production. The idea was to iterate through the training set and adjust the 

weights to minimize the gradient of the error. ANNs, serve as a powerful tool for non-

linear modelling and process control (Glassey et al., 1994). The ANN model showed a 

better correlation with the experimental values than the regression model (Haider et al., 

2008), it suggests the superior capability of neural network modelling for the dynamic 

behaviour of the system. Artificial neural network proved to be a useful model building 

tool for improving bioprocess operability dealing for industrial level fermentation systems 

(Massimo et al., 1991).  
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6.1.1. Development of modelling strategies for bioprocess using ANN 

Neural network application are widely used in prediction for model parameters 

and supervision of bioprocess. Unstructured model factors are found to apparently 

influence the existence of active cells in the bioreactor environment. The simulation of the 

process has been done using Matlab 7.2, the patterns obtained noticeably depicts the role 

of few relevant governing parameter including, metabolite concentration, dilution rate, 

plasmid copy number etc, to find out about segregational instability and competitive 

dynamics in cell population. The most potent technique has been further applied using 

collectively Neural Network and Logical Models together where the later one serves as 

tool of optimizing the process parameters. This is often reffered as hybrid approach. The 

production of many highly profitable compounds like recombinant enzymes is being done 

using fermentation technology          

Several modelling strategies in bioprocess are found to play a vital role in the 

production of high value recombinant products. Modelling of plasmid stability is presently 

dealt in mechanistic with neural network applications. Our effort is to configure a 

composite hybrid model which represents the overall dynamics in a well defined algorithm 

that depicts the behaviour of the microbial population in the bioreactor environment.  

ANNs function serves as ‘black box’ representation of the process, their 

performance depends solely on their training, i.e., selection of data and training 

methodology (Patnaik, 2003). Also over-learning or extra number of neuron in a particular 

layer may decrease the efficiency rather than increasing it (Zhang et al., 1994). It would be 

sometimes difficult to make ANN applicable to real conditions, so by combining 

mathematical model of bioprocess to neural network helpful in developing a new approach 

inferred as Hybrid Neural Network (HNN). In HNN, mathematical models work together 

with neural network framework having interaction among their operational routines 

(Schubert et al., 1994), (Van Can et al., 1997). ANN can be modified efficiently in order to 

model dynamic systems that can be utilized in process applications (Willis et al., 1992). 

The fed batch fermentation by a recombinant E. coli strain was studied in reference to 

carryout on-line optimization of PID control using ANN (Patnaik, 1999). The bioreactor 

controller would be adjusted on the basis of data of previous interval. System of neural 

networks was taken to update continually during successive time intervals (Patnaik, 2002).  

The continuous fermentation are more susceptible than batch fermentation. The 

incorporation of prior knowledge serve as an practical approach which improves the 
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prediction ability of considered neural network. Use of ANN in modelling of yeast 

biomass and yield of β glucan was done successfully adjusting nurons in the hidden layer 

(Desai et al., 2005). The combination of neural network together with the emperical 

expression providea an efficient representation of estimated parameter values (García-

Ochoa and Castro, 2001). It is quite noticeable that extraction of useful information from 

the complex fuzzy data can be well handled using neural network technique (Hoskins and 

Himmelblau, 1988), (Chitra, 1993) & (Qian and Tessier, 1995). ANN technique has been 

utilized for several purposes in biotechnology particularly for bioprocess in process 

control, prediction of factor variables, optimization and modelling of bioprocess(Ungar et 

al., 1995), (Thibault et al., 1990), (Di Massimo et al., 1992), (Thomposon and Kramer, 

1994), (Kurtanjek, 1994) & (Tholudur, 1996). The application of prior knowledge has been 

examined as the means of developing and enhancing ANN prediction and estimation in 

case of noisy data of the bioprocess (Thomposon and Kramer, 1994). The feed forward 

neural network has been more commonly used in different bioprocess disciplines (Yet-

Poleo et al., 1996), while two layered neural network is also sufficient for such 

applications in fermentation technology (Reuss, 1995). On experimental analysis and 

validation  the output values of hybrid neural network are found to be very close to the 

numerical values obtained using other means by the non-linear regression analysis of 

process data (Costa et al., 1982).   

 

6.1.2. Modelling Strategies and Use of Neural Network 

There are variety of knowledge based approaches among those ANN has been 

extensively used in modelling the various biological phenomenona, it is because of its 

superior capability to configure non-linear na multivariate complicated bioprocess 

systems (Linko and Zhu, 1991), (Karim and Rivera, 1992), (Tomida, 1999) & (Shimizu 

et al., 1997). The ANN is often regarded as a data driven model, framed by learning 

procedure that utilizes back-propagation algorithm and input-output data maping 

(Rumelhart et al., 1986). The intelligence based has been further applied using 

collectively Neural Network and Logical Models together where the later one serves as 

tool of optimizing the process parameters. Supervision of bioprocess can be conducted 

on the basis of known developed algorithms. 

In earlier attempts several deterministic mathematical models describing 

microbial population were evaluated but due to complex system behavior, the 
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mathematical and transient response approach were not found to be sufficient (Molleta et 

al., 1984), (Pavlou, 1987), (Mata-Alvarez, 1987) & (Lessard and Beck, 1993). Since 

several interacting sub-components within a cell, together have their influential role in 

enzyme production kinetics. Utilizing the theme we must have to assume the intracellular 

level dynamics and its sustainability for a certain span. So intra-cellular intelligence with 

various subcomponents involve in the production dynamics often used to contribute their 

indispensable role in product formation (Patnaik, 2009). So, it would be interesting to 

ensure the applicability of stochastic process in running the working state of system at any 

instance of time. Such entire network can be expressed in the form of a unitary system 

which is working for the production of a particular product that depends on the retention of 

its productive state. An artificial neural network (ANN) was developed to estimate the 

growth of microorganisms during a fermentation process. The two input variables were 

supervised on-line from a series of batch cultivations, which was used to train the ANN to 

estimate biomass (Hur and Chung, 2006). 

The formation of secretory microbial products can be affected by cell-cycle 

position of individual cells and thus on the degree of heterogeneity in the system. The 

intelligence based computing methods including regulatory control are of much help in 

artificail farming associated to bioprocess dynamics (Wang et al., 2010). A nonlinear 

statistical approach meant for data analysis and an auto-associative neural network, was 

taken to fault diagnosis in the optimal production process of a recombinant yeast (Shimizu, 

1997).  Since production media and growth conditions have profound effect over plasmid 

stability as well as specific growth rates of two kind of cells, thus improvement of such 

systems via optimization using neural network is desirable. The pioneer applications of the 

knowledge-based approach to bioprocess operations were already reported. The expert 

systems and use of genetic algorithms have been extensively considered and used in 

control of various bioprocess designs (Shioya et al., 1999). The modelling of the dynamics 

of chemical processes with non-linear characteristics and multiple input-output can be well 

suited to such framework (Hotta, 1975).  

 

6.1.3. Neural Network based Bioprocess Supervision 

Artificial intelligence knowledge is required to be implemented to bioprocess 

field in recent times to achieve a high degree of accuracy in prediction and process 

optimization. ANNs are used for engineering purposes to process information and control 
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automated systems. By adjusting the weights of an artificial neuron we can obtain the 

desired output for specific inputs. Intelligent  descriptions of microbial processes in 

biorectors have some decisive avantages over mechanistic model under realistic conditions 

and has wide range of flexibility (Patnaik, 2009).  A generaal topology of the proposed 

method using ANN and logical model input is depicted below, Figure 6.1.  

 

Figure 6.1. Flow diagram of proposed methodology 

Recently artificial intelligence working paradigm has been implemented to 

bioprocess field in order to achieve a high degree of accuracy in process optimization and 

prediction. We may obtain the desired output for specific data inputs merely by adjusting 

the strengths of artificially simulated neuron in connecting layer.  

 

6.2. Neural Network Working Plan and its Architechture 

6.2.1. Feed Forward Neural Network Architechture  

Artificial intelligence knowledge is required to be implemented to bioprocess field 

in recent times to achieve a high degree of accuracy in prediction and process optimization. 

Artificial Neural Networks (ANNs) are used for engineering purposes to process 

information and control automated systems, the scheme is shown in Figure 6.2. 

FFNN Training Trained Neural Network 

Media Condition 
 (MCD) 

Media Components 
(MCM) 

Product 
(Streptokinase) 

Optimization of Inputs 

Model inputs  
(MIP) 

To select one task 
(MCM , MIP , MCM) 
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Figure 6.2.  A general plan Neural Network with feedforward type architechture, showing 

input, hidden and output layer 

 

A wide range of applications can be seen using different inputs from the 

bioprocess system to evaluate the output as production magnitude. Neural network has 

defined mechanism of adjusting the weights through learning or training. In our case the 

data is first normalized using upper and lower bound of the numerical value range and then 

the normalized data is used to serve as input for the neural network model. 

 

6.2.2. Devised Algorithm for ANN Implementation 

6.2.2.1. Error Minimization Approach 

A multilayer perceptron is designed to process the weighted input. In our case 

sigmoidal function was used as an activation function in hidden layer using which the 

output was obtained. The taken input was given as different magnitude of culture 

conditions while the output is taken in terms of streptokinase production with time 

duration. To ensure optimal memory for the network ten hidden layers are taken after 

optimizing the number of layers to ensure optimal memory for the neurons. Training, 

testing and validation of data is repeatedly done. Allowing about few hundred of iterations 

is enough for efficient convergence of the error under the employed conditions. On 

obtaining the experimental data close to the simulated results, suggests the superior 

capability of neural network modelling for dynamic behaviour of the system (Horiuchi et 

al., 2001). The functional theme of ANN is clearly configured in famework, shown in 

Figure 6.3 (a) and (b). 
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� Error Function € depends on the assumed weight values 

� Gradient Descent: To minimize error by shifting weights along the decreasing slope 

of error  

� The idea is just to iterate through the training set and adjusting the weights to 

minimize the gradient of the error 

The process of gradient descent is made to minimize the error via iteration of training set 

and regulate the weights to by adjusting it along the descending slope of the computed 

error, Eqs. 36-38 

€ =  ∑ (�� − ф�)	
�� 
                                                                                                 

(36)             

The gradient of €:  

�€

�� =  � �€

���  , … , �€

���  , … , � �€

������� 
0

0 0

( )

( ( ( )) )

q rq r qr

rq pr p r qr p

O f w u w

f w f w x w w

= +

= + +

∑

∑ ∑                                                         (37) 

Where, 

0( )r pr p rp
u f w x w= +∑                                                                                           (38) 

 

6.2.2.2. Back-Propagation and Learning 

Data has been allowed to repeatedly pass through training, testing and validation 

subsequently. The input for the ANN model is the culture conditions while the output is 

streptokinase production obtained at certain duration of time. Inbuilt tool box in Matlab is 

employed to simulate the neural network and to make out the output; the statistical 

significance of the output is evaluated. The error minimization criterion in prediction is 

well achieved with high degree of accuracy. Back-propagation helps to compute the 

learning rate ɳ and adjusting the weight. Usually, back-propagation algorithm (Eq. 39) is 

used:  

( ) ( 1)
i

i pq i pq
pq

E
w w

w
δ η µ δ∂∆ = − + ∆ −

∂
                                                                                              

(39) 

 



114 

 

6.2.3. Working of Neural Network Framework 

6.2.3.1. Data Normaliztion and Processing 

From Neural Network Architecture, output is given by Eqs. 40-41,  

uo = f (xp, �p)                                                                                                                         

(40) 

Simply,   uo = ∑ xp �p  

where, xp – are inputs, uo is output vector  and �p - are the weights 

Activation function, af = 1 / (1 + e -up)                                                                            (41) 

           By adjusting the weights of an artificial neuron we can obtain the desired output 

for specific inputs. Intelligent  descriptions of microbial processes in biorectors have some 

decisive avantages over mechanistic model under realistic conditions and has wide range 

of flexibility (Patnaik, 2009). A general plan and working of Neural Network is framed out 

in Figure 6.3 (a). ANN weights should be taken iinitially with different start vectors and 

the network led to minimal ‘test error’ which provides adaptibility for its dynamic 

behavior.  

The ANN model is first trained and then testing and validation is done using the 

part of the same dataset. For our purpose nn toolbox and code written in editor is used, 

available in Matlab 7.0 platform.   

 

 

3(a) 



115 

 

 

3(b) 

Figure 6.3 (a) and (b). Overall Working Plan of ANN parameters 

 

6.2.3.2. Neural Network Architechture 

Neural network has defined mechanism of adjusting the weights through learning 

or training. In our case the data is first normalized using upper and lower bound of the 

numerical value range and then the normalized data is used to serve as input for the neural 

network model.  

Training, testing and validation of data is repeatedly done. A multilayer 

perceptron is designed to process the weighted input. Sigmoidal function is used as an 

activation function using which the output is obtained. The given input is population size 

of plasmid bearing and lacking cells and metabolite concentration while the output is taken 

in terms of streptokinase production  with time duration.  

The Idea is to iterate through the training set and adjust the weights to minimize 

the gradient of the error. The prime steps are summerized in the stepwise logical 

representaion as algorithm for Feed-forward ANN which had been utilized in our task, 

Table 6.1.  
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Table 6.1. FFNN Algorithm 

 

Step 1: Select the number of hidden layer neurons (h) 

 

Step 2: Initialize the number of iterations with a desirable learning rate (η).  

 

Initialize the weights with small random values. 

  

Initialize a threshold value (θ) as additional weight i.e. equal to 1. 

 

Step 3: For every Training set parameters, (Inputs (Media components, Media 

condition and set of media input, Output Op) repeat steps 4-7. 

 

Step 4: current input parameters to input layer nodes and the output to the output 

layer node; 

  

Step 5: Calculate the input values to hidden layer nodes: 

mi = f (pn , �n)      

Simply,   mi = ∑ pn  �n  

where, xp – are inputs, uo is output vector  and �p - are the weights 

Calculate the output value from hidden layer nodes  

(Activation function):  

Xh =Af = 1 / (1 + e -mi)  

 

     Calculate the input values to the output nodes: 

Oi = f (Xh , �nk)      

Simply,   Oi = ∑ Xh  �nk  

where, Xh – are inputs, Oi is output vector, �nk - are the weights  and 

k=1 for single output node. 

Calculate the corresponding output value:  

O = 1 / (1 + e -oi)  
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Step 6: Calculate the error term for the output node:  
 
The gradient of €:  

€ =  � (�� −  ф�)	

�� 


 

 �€

�� =  � �€

���  , … , �€

���  , … , � �€

������� 
 
€� = ��� − ���′(Oi) 
 
Calculate the error term for the hidden node:  

€� = (A�)′� €� ���
�

 

Step 7: update the weights on the output layer as follows: 

( ) ( 1)
i

i pq i pq
pq

E
w w

w
δ η µ δ∂∆ = − + ∆ −

∂
 

Step 8: The network converged and successfully. Training is aborted. 

 

6.3. Results 

          Simulated plots of bioprocess system showing neural network applications has 

been obtained. Neural network has defined mechanism of adjusting the weights through 

learning or training. In our case the data is first normalized using upper and lower bound of 

the numerical value range and then the normalized data is used to serve as input for the 

neural network model. 

   !
 =  (
"
#$%)
(
#&'"
#$%)                                                                  (42) 

Here, !
 denote the normalized concentration of data variable and subscripts max and min 

denote the maximum and minimum value of data variable in the input vector X 

respectively.  

Simulated plot of bioprocess showing neural network applications with predicted and data 

point put for regression using the correlation method, Figure 6.4. 
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Figure 6.4. The typical actual and predicted data points distribution from ANN system 

 
6.3.1 ANN approach for CCD used in Media optimization 
 
               The inputs of CCD for media component optimization was taken for neural 

network model, Figure 6.5, the simulation result provides for gradient descent, 

performance error minimization approach and regression plot for predected vs actual data, 

Figure 6.6 (a)-(d) respectively. The last plot of regression is compared with statistical 

method outcome. ANN has shown remarkable advantage over the later one. In Table 5.5 

of chapter 5, given the various inputs and statistically as well as ANN predicted values for 

media component optimization. 

 

 
Figure 6.5. Neural network architecture using production medium components as input  
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Figure 6.6(a). Showing the span of gradient function performance 
 
 
 

 
 
Figure 6.6(b). Showing performance of neural network via error minimization during 

training the media concentration data in ANN 
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Figure 6.6(c). Plot of output vs target data obtained from ANN Model  
 
      

 
 
Figure 6.6(d). Regression plot obtained from statistical methodology, having correlation 

coefficient r2 =0.7201 
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6.3.2. ANN approach for CCD used in Culture Condition Optimization 
 

               The input values of CCD for culture condition analysis was taken for neural 

network model, Figure 6.7. On simulation, result provides for gradient descent, 

performance error minimization approach and regression plot for predected vs actual data, 

Figure 6.8 (a)-(d) respectively. The last figure of regression is compared with statistical 

method outcome where ANN has shown better performance. The Table 5.8 of chapter 5, 

provide the various inputs as well as statistically and ANN predicted values. 

 

 
Figure 6.7. Use of  Neural network in developing model using culture conditions 
parametrs 
 
 
 

 
Figure 6.8(a). Gradient minimization function 
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Figure 6.8(b). Performance of neural network with error minimization approach  during 

training of culture condition parameter data in ANN 

 
 

 
     Figure 6.8(c). Regression plot for neural network results with coefficient r2 = 0.8632  
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Figure 6.8(d). Regression plot for values obtained from statistical method, correlation 

coefficient r2 =0.7102  

 

6.3.3.  ANN approach for predicting NNNN+ cells population in population Dynamics 
model 
 
              The inputs for this model were obtained from population model dynamics model 

Eq. 8-17 (Chapter 2), the output vector of the respective parameters were given as input to 

neural network model, Figure 6.9.  

Figure 6.9. Showing input parameters of population dynamics model with wighted 

connections, hidden layer and output product, in neural network architecture  

 

N1 

N2 

S 

Pb 

Mb 

Plasmid Bearing Cells 

T 

Plasmid Non- Bearing 
Cells 

Substrate 

Probability 

Metabolic 

Time 

Wb 

Wnb

 

Ws 

Wp 

Wt 

Wm 

 

 

 

 

 

 

 

 

 

 

PSK 

Streptokinase 
product 

HIDDEN LAYERS 
INPUT LAYER WEIGHTS OUTPUT 



124 

 

In this case also, result obtained in terms of gradient descent, performance error 

minimization approach and regression plot for predected vs actual data likewise, shown in 

Figure 6.10 (a)-(d) respectively. The last figure showed the plot of two methodology 

output i.e., the actual data is comparaed with simulated outcome from ANN, where ANN 

has shown high level of accuracy. 

 

 
 

Figure 6.10(a). Gradient descent plot from ANN 
 

 

 
 
Figure 6.10(b). The performance efficiency of neural network in respect to error 

minimization during data training for population parameter model is represented 
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Figure 6.10(c). Showing the accuracy of neural network prediction, clearly presents the 

prdicted actual points of the data set. The correlation r2 in this case was found much closer 

to 1.0. 

 

 

 

Figure 6.10(d). Data plot showing the actual (solid line) and predicted (dotted line) using 

feed-forward Neural network for product formation at dilution rate (D=0.12), on 

simulation of the model described in section A. 
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The various input data has been given in form of vector to neural network model, specified 

in Appendix A2 together with ANN code for  our bioprocess model.  

 

6.4. Discussion  

              A supervision system has been configured for various facets of bioprocess field. 

The effort is to integrate the knowledge based systems, so neural network had been made 

to work with database mathematical models of the bioprocess. The process variable vectors 

were generated from the mathematical model simulation futher processed with neural 

network.  The various process dynamics parameters once learned by the neural network 

after training, made the system could be supervised with previous interval database. The 

efficient on-line supervision of large scale recombinant streptokinase production had been 

considered and stages of the fermentation with output magnitute was taken into account.  

It is evident that ANN model developed in reference to streptokinase production 

follow the actual data trend and satisfactory level of accuracy. In case of media 

composition and culture condition parameters modelling neural network has shown better 

prediction ability over ther classical statistical methodology. The characteristic ability of 

the neural network to learn complex type of non-linear input-output relation with requisite 

prior bioprocess knowledge base has been successfully used. 



127 

 

CHAPTER-7 

CONCLUSION AND FUTURE PROSPECTS 

7.1. Conclusion 

Understanding the substantial role of vital parameters in streptokinase production to 

an extent provides a worthy approach to configure a machinery to evaluate the performance 

by reviewing the governing factors.  

The population dynamics model is found to well depict the system behaviour with 

more inculcated real condition factors in comparison to the earlier established classical model 

systems. The plasmid copy number dynamics suggest to utilized the initial slot of span in 

fermentation process for better production magnitude and to neutralize the metabolite toxicity 

for rest of the span while copy number is having declining trend using weak alkaline solution. 

The use of GUI to simulate streptokinase selecting different set of parameters using variable 

dilution rate, substarte and inoculum concentration for taken time span made it feasible to 

observe the phenomena using desired level of input.   

Four production media components were screened out by Plackett Burman 

methodology. Optimization of culture conditions was achieved to an extent in Central 

composite design technique, statistically model was found significant and lack of fit was not 

significant which is desirable. Four variables, viz., factors glucose, yeast extract, phosphate 

and MgSO4,  have shown there relevance in recombinant enzyme production, it would be due 

to the reason that glucose and yeast extract are prime carbon and nitrogen sources for proper 

cell growth, phosphate and MgSO4 used to support ATP formation, protein synthesis at 

intracellular level. From the CCD analysis the updated combination of constituents has been 

obtained for production media while slightly enhanced level of pH, agitation and inoculum 

concentration is inferred from the CCD model for optimal production of streptokinase. 

Artificial Neural Network was also employed to predict the output and it has shown more 

accuracy in prediction in comparison to our statistical technique. The overall model 

supervision and output prediction using ANN approach is well performed and high level of 

precision. 

The role of various parameters is identified using computational means, utilizing 

mathematical and statistical bioprocess algorithms. The representation of the dynamical 

system through modelling has its relevance in predicting the behaviour of the system on 
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changes made to initial conditions. In our proposed modelling strategy, new factors are taken 

into account to provide computational solution in different ways. The knowledge of 

interaction criteria of the various parameters governing streptokinase production made our 

task easier to configure a composite model. Screening vital media components statistically 

and then evaluating system structured and unstructured factors in model form would really 

ensure a high degree of precision in approach. On the other hand, the strategy to use variable 

antibiotic concentration prior supervising the bioprocess would be a novel approach to retain 

recombinant cell population for a greater span of time and thus enhancing the product yield. 

The structured model framework is developed to evaluate the subsequent performance and 

reliability of sub-cellular components in temporal fashion to give desired level of production 

of recombinant enzyme.  

7.2. Future Prospects 

The representation of fermentation process has several facets that are still required to 

be incorporated to improve the model. The area of enzyme engineering would be taken 

further to deal with streptokinase production implementing the existing usable information.   

The proposed work in this thesis can be extended to evaluate batch and continuous 

fermentation for synthesizing other recombinant products on pilot scale using online process 

applications via controller system. The previously observed trends of parameter dynamics for 

crucial time span would be helpful to update and improve the fermentation strategy. 

Use of micro-bioreactors to generate extensive data can be helpful to frame models 

that are more sophisticated, thereby it would be possible to test several parameters together 

utilizing only small amount of culture medium and test constituents to generate ample of 

output. A server with data-base can be further established installing bioprocess programmed 

tools and graphics to make available the use of online validated model facility for testing and 

organizing similar kind of work to the user. 

The industrial level production of recombinant streptokinase needs to be carried out 

taking directions to collectively incorporate the mathematical as well as intelligence-based 

techniques. So training of model would be once required on previous knowledge database 

and then implementation can be made accordingly to avoid extra number of classical trials for 

optimization.   

Several strategies of removing noise in carrying out fermentation process is under 

way, there is a need to evaluate other intelligence paradigm which may bring more accuracy 

in dealing with bioprocess related issues. 
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The emphasis also had been on structured model to understand the intra-cellular 

biochemical state and partitioning event of cell cycle. Likewise, the state of the entire cell 

population need to be assumed and more hybrid model as well as composite methods are 

desirable.  

Furthermore, the study of the biological process happening within each cell at 

subcellular level may require to be incorporated together with genetic factors that affect the 

stability of the vector. There are several other unstructured features including metabolic 

pathways are to be considered to effectively evaluate and understand the unravelled causes of 

instability in fermentation process.      
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APPENDIX - A1 
 

GUI simulation code 
 
function GUI() 
% SIMPLE_GUI2 Select a data set from the pop-up menu, then 
% click one of the plot-type push buttons. Clicking the button 
% plots the selected data in the axes. 
  
f = figure('Visible','off','Position',[360,500,450,285]); 
  
   %  Construct the components. 
   hsurf = uicontrol('Style','pushbutton','String','Antibiotics Addition',... 
          'Position',[315,230,50,15],... 
          'Callback',{@surfbutton_Callback}); 
   hmesh = uicontrol('Style','pushbutton','String','Bioprocess Simulation',... 
          'Position',[315,200,50,15],... 
          'Callback',{@meshbutton_Callback}); 
   hmesha = uicontrol('Style','pushbutton','String','Biopr Sim Together',... 
          'Position',[315,170,50,15],... 
          'Callback',{@meshbutton_Callbacka}); 
   hmeshb = uicontrol('Style','pushbutton','String','All Factors Sim',... 
          'Position',[315,140,50,15],... 
          'Callback',{@meshbutton_Callbackb}); 
   hmeshc = uicontrol('Style','pushbutton','String','Percent Pop Sim',... 
          'Position',[315,110,50,15],... 
          'Callback',{@meshbutton_Callbackc}); 
   hmeshd = uicontrol('Style','pushbutton','String','Batch Culture',... 
          'Position',[315,80,50,15],... 
          'Callback',{@meshbutton_Callbackd});  
   hcontour = uicontrol('Style','pushbutton',... 
          'String','Close',... 
          'Position',[315,60,50,10],... 
          'BackgroundColor','g',... 
          'Callback',{@contourbutton_Callback});   
     
 
   ha = axes('Units','Pixels','Position',[50,60,200,185]);  
   align([hmesh,hmesha,hmeshb,hmeshc,hmeshd,hsurf,hcontour],'Center','None'); 
    
S.sl = uicontrol('style','slide',... 
                 'unit','pix',... 
                 'position',[390,40,80,20],... 
                 'min',0.01,'max',1,'val',0.50);              
S.sll = uicontrol('style','slide',... 
                 'unit','pix',... 
                 'position',[520,40,80,20],... 
                 'min',5,'max',240,'val',100);   
S.edd1 = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[260,40,120,20],... 
                 'fontsize',12,... 
                 'string','Dillution Rate'); 
S.ed = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[390,70,80,20],... 
                 'fontsize',12,... 
                 'string','0.50 per hr'); 
S.edd2 = uicontrol('style','edit',... 
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                 'unit','pix',... 
                 'position',[610,40,120,20],... 
                 'fontsize',12,... 
                 'string','Time Duration'); 
S.edd = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[520,70,80,20],... 
                 'fontsize',12,... 
                 'string','100 hrs'); 
S.edd2aa = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[450,770,500,50],... 
                 'fontsize',20,... 
                 'BackgroundColor','Cyan',... 
                 'string','Bioprocess Model Dynamics Simulator'); 
S.sl2 = uicontrol('style','slide',... 
                 'unit','pix',... 
                 'position',[980,40,80,20],... 
                 'min',0.1,'max',10,'val',0.50);              
S.sll2 = uicontrol('style','slide',... 
                 'unit','pix',... 
                 'position',[1100,40,80,20],... 
                 'min',1,'max',100,'val',100);   
S.edd12 = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[850,40,120,20],... 
                 'fontsize',12,... 
                 'string','Inoculum Conc'); 
S.ed2 = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[980,70,80,20],... 
                 'fontsize',12,... 
                 'string','5 percent'); 
S.edd22 = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[1190,40,120,20],... 
                 'fontsize',12,... 
                 'string','Substrate Conc'); 
S.edd12 = uicontrol('style','edit',... 
                 'unit','pix',... 
                 'position',[1100,70,80,20],... 
                 'fontsize',12,... 
                 'string','50 g/L'); 
set([S.ed,S.sl,S.sll,S.edd,S.ed2,S.sl2,S.sll2,S.edd12],'call',{@ed_call,S});  % Shared Callback. 
 
function [] = ed_call(varargin) 
% Callback for the edit box and slider. 
[h,S] = varargin{[1,3]};   
    case S.ed 
        L = get(S.sl,{'min','max','value'});   
        E = str2double(get(h,'string'));   
        if E >= L{1} && E <= L{2} 
            set(S.sl,'value',E)   
        else 
            set(h,'string',L{3}) % User tried to set slider out of range.  
        end 
    case S.sl 
        set(S.ed,'string',get(h,'value'))  
        dilution_rate=get(h,'value'); 
        save dilution_rate 
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        disp ('Dilution rate changed');   
    case S.edd 
        L = get(S.sll,{'min','max','value'});   
        E = str2double(get(h,'string'));   
        if E >= L{1} && E <= L{2} 
            set(S.sll,'value',E)   
        else 
            set(h,'string',L{3})   
        end 
    case S.sll 
        set(S.edd,'string',get(h,'value'))  
        time_duration=get(h,'value'); 
        save time_duration 
        disp ('Duration fixed now');     
    case S.ed2 
        L = get(S.sl2,{'min','max','value'});  % Get the slider's info. 
        E = str2double(get(h,'string'));  % Numerical edit string. 
        if E >= L{1} && E <= L{2} 
            set(S.sl,'value',E)  % E falls within range of slider. 
        else 
            set(h,'string',L{3}) % User tried to set slider out of range.  
        end 
    case S.sl2 
        set(S.ed2,'string',get(h,'value')) % Set edit to current slider. 
        inoculum_conc=get(h,'value'); 
        save inoculum_conc 
        disp ('Inoculum concentration changed');   
    case S.edd2 
        L = get(S.sll2,{'min','max','value'});  % Get the slider's info. 
        E = str2double(get(h,'string'));  % Numerical edit string. 
        if E >= L{1} && E <= L{2} 
            set(S.sll,'value',E)  % E falls within range of slider. 
        else 
            set(h,'string',L{3}) % User tried to set slider out of range.  
        end 
    case S.sll2 
        set(S.edd12,'string',get(h,'value')) % Set edit to current slider. 
        substrate_conc=get(h,'value'); 
        save substrate_conc 
        disp ('Substrate amount fixed now');  
     otherwise 
end 
end  
   set([f,ha,hsurf,hmesh,hmesha,hmeshb,hmeshc,hmeshd,hcontour],... 
   'Units','normalized'); 
   set(f,'Name','GUI for Bioprocess Dynamics') 
%    % Move the GUI to the center of the screen. 
   movegui(f,'center') 
%    % Make the GUI visible. 
   set(f,'Visible','on'); 
  
   function surfbutton_Callback(source,eventdata)  
%    % Display surf plot of the currently selected data. 
      bior_paper2_antibiotica(); 
   disp ('Antibiotics addition regulated successfully') 
   disp ('Population Dynamics Model') 
   end 
  
   function meshbutton_Callback(source,eventdata)  
        bior_paper2_2_a(); 
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        disp ('Population Dynamics Model without Additional Antibiotics') 
   end 
 
function meshbutton_Callbacka(source,eventdata)  
        bior_paper2_2aa(); 
        disp ('Population Dynamics Model, with and without Additional Antibiotics') 
end 
 
function meshbutton_Callbackb(source,eventdata)  
        bior_paper2_2ba(); 
        disp ('Population Dynamics Model Showing All Factors Dynamics') 
end 
 
function meshbutton_Callbackc(source,eventdata)  
        bior_paper2_2percenta(); 
        disp ('Percentage of Population Bearing and Lacking Cells Dynamics Model') 
end 
 
function meshbutton_Callbackd(source,eventdata)  
        bior_paper2_2batch(); 
        disp ('Batch Culture Dynamics Model') 
end 
 
function popup_menu_Callback(hObject, eventdata, handles) 
r=rand(1,10); 
if r<=0.5 
    value=0 
else 
    value=1 
end 
val = get(hObject,'Value'); 
switch val 
case 1 
    if val==0 
        hobject=10; 
    end 
% % The user selected the first item 
case 2 
    if val==1 
        hobject=50; 
end 
   function contourbutton_Callback(source,eventdata)  
    disp 'Thanks for Using This Bioprocess Simulation Tool' 
    clear all; 
    close all;  
    close(); 
   end   
end 
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Appendix - A2 
 

Population parameter vectors from model 
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Matlab Codes to generate a population model : 
function  bior_dilrates();  
bior_dilrate1();  
bior_dilrate2();  
%.................................................. .......................  
function  bior_dilrate1();  
% clear all  
time=60;  
[t,x]=ode45(@bior_dy221,[0,time],[0.7 0.00 70 0.00 0.00 0.00]);  
%.................................................. .......................  
figure(1);  
plot(t,x(:,1),t,x(:,2));  
title( 'Dynamics of Plasmid free and bearing cells at D ra te 0.10 per hr' );  
xlabel( 'Time, h' ),ylabel( 'Cell Population/Concentration, g/l' );  
legend( 'x1 (Pl Bearing)' , 'x2 (Pl Non-Bearing)' );  
axis([0 time 0 15]);hold on;  
%% 
function  dydt22a1 = bior_dy221(t,x);  
e=2.71828;  
x1=x(1);  
x2=x(2);  
s=x(3);  
q=x(4);  
m=x(5);  
p=x(6);  
d=0.10;  
mum1=0.74; %for plasmid bearing cells  
mum2=0.80; %for plasmid lacking cells  
ks1=40;  
ks2=20;  
kp=0.0005;  
kd=0.020;  
yp=0.44;  
s0=70; %For all other dilution rates  
y=0.15;  
ym=1.7;  
m_th=0.75;  
mp=0.010;  
f1=mp-r+z;  
f2=r+z;  
if  m > m_th  
    mf = f1;  
elseif  m < m_th  
    mf = f2;  
    m1=0;  
    m2=0;  
end  
mu1=mum1*s/(ks1+s);  
mu2=mum2*s/(ks2+s);  
dydt22a1 = [mu1*x1*(1 - q) - d*x1 - m1*mu1*x1 + r1*  mu1*x1; ...  
          mu2*x2 + q*mu1*x1 - d*x2 + m1*mu1*x1 - m2 *mu2*x2 - r1*mu1*x1; ...  
          d*(s0 -  s) - 1/y*( mu1*x1 + mu2*x2); ...   
          (1 - e^( -mf*(x2/(x1+x2))))* mu2;...  
          ym*(x1*mu1 + x2*mu2) - d*m; ...  
         (yp*(mu1-q*kd)*x1-kp*p-d*p)];  
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%.................................................. ........................  
%.................................................. ........................  
  
function  bior_dilrate2();  
% clear all  
time=60;  
[t,x]=ode45(@bior_dy222,[0,time],[0.7 0.00 70 0.00 0.00 0.00]);  
%.................................................. ........................  
figure(2);  
plot(t,x(:,1), '--' ,t,x(:,2), '--' );  
title( 'Dynamics of Plasmid free and bearing cells at D = 0.15 per hr' );  
xlabel( 'Time, h' ),ylabel( 'Cell Population/Concentration, g/l' );  
legend( 'x1 (Pl Bearing)' , 'x2 (Pl Non-Bearing)' );  
axis([0 time 0 15]);hold on;  
%% 
function  dydt22a2 = bior_dy222(t,x);  
e=2.71828;  
x1=x(1);  
x2=x(2);  
s=x(3);  
q=x(4);  
m=x(5);  
p=x(6);  
d=0.15;  
mum1=0.74; %for plasmid bearing cells  
mum2=0.80; %for plasmid lacking cells  
ks1=40;  
ks2=20;  
kp=0.0005;  
kd=0.020;  
yp=0.44;  
s0=70;  
y=0.15;  
ym=1.7;  
m_th=0.75;  
mp=0.010;  
f1=mp-r+z;  
f2=r+z;  
if  m > m_th  
    mf = f1;  
elseif  m < m_th  
    mf = f2;  
    m1=0;  
    m2=0;  
end  
mu1=mum1*s/(ks1+s);  
mu2=mum2*s/(ks2+s);  
dydt22a2 = [mu1*x1*(1 - q) - d*x1 - m1*mu1*x1 + r1*  mu1*x1; ...  
          mu2*x2 + q*mu1*x1 - d*x2 + m1*mu1*x1 - m2 *mu2*x2 - r1*mu1*x1; ...  
          d*(s0 -  s) - 1/y*( mu1*x1 + mu2*x2); ...   
          (1 - e^( -mf*(x2/(x1+x2))))* mu2; ...  
          ym*(x1*mu1 + x2*mu2) - d*m; ...  
          (yp*(mu1-q*kd)*x1-kp*p-d*p)];  
%.................................................. ........................  
%.................................................. ........................ 
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function nnprogram() 
 
%Design for Training  
clc; clear all; 
P = [1 to n]; %Training Patterns (domain values) 
T=[1 to n]; 
T=T'; 
net = newff([0 161;0 161;0 161;0 161;0 161],[5 1],{ 'tansig', 'purelin'});  
% Input Vectors for training 
% To plot the original data points and ANN output 
Y = sim(net,P); 
plot(P,T,P,Y,'o'); 
title('Data and Untrained Network Output'); 
%Train the network and plot the results 
net.trainParam.goal=0.01;  
net.trainParam.epochs = 100;  
plot(P,T,'ko',X,Y); 
 
%An alternative way to test training: postreg 
Tout=sim(net,P); %Get network output for the traini ng domain 
[m,b,r]=postreg(T,Tout); %Performs a linear regress ion 
T=T(:); 
Tout=Tout(:); 
x=[];y=[]; 
disp('S.No Actual Predicted'); 
disp('_______________________'); 
for i=1:length(T); 
disp([sprintf('%d\t%0.4f\t%0.4f\n',round(i),T(i),To ut(i))]); 
end; 
title('Actual and Predicted Plot of Streptokinase P rouction'); 
xlabel('Time (h)'),ylabel('Actual and Predicted Str eptokinase Conc (g/L)'); 
plot(t,T); plot(t,Tout,'--'); 
legend('Actual','Predicted'); 
x=x(:);  
 [sprintf('%d\n',round(x)) T Tout]; 
([x A]) 
sprintf('%d \n%0.4f \n%0.4f\n',A) 
 
� Training Session 1 explanation: Appearing in the fi rst argument of 

newff. Notice also that the sizes of the domain and rang e sets are given 
as m × n, where m = dimension and n =number of data  points. 

� The arguments shown in newff are required; notice that the first 
argument gives the minimum and maximum values in th e domain set. 
Normally, one uses minmax(P) in place of actually typing these values 
in. This also implicitly defines the number of node s in the input layer 
(which is the domain dimension). 

� The second argument in newff, defines the number of nodes in the hidden 
layer and in the output layer. This vector also imp licity defines how 
many layers you have by counting the size of this v ector. Thus, we can 
have as many layers as we wish.  

� The last required argument is the type of transfer function. The tansig 
function is the inverse tangent function, which giv es the same 
performance as our standard sigmoidal  function. We  will always use a 
linear layer in the output, so this argument is alw ays purelin. 

� The default training (optimization) method is combi nation of gradient 
descent and Newton’s Method). In the next training/ testing session, we 
will use a different method.  
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