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ABSTRACT

The enzyme streptokinase is secreted by B-hemolytic streptococcus sp., which is
often used to treat acute myocardial infarction and pulmonary embolism, being a vital drug
it is required to be produced in recombinant form for thrombolytic therapy. This enzyme
can be produced by using recombinant E. coli cells. The unstructured model factors were
found to apparently influence the existence of active cells in the bioreactor environment.
Our endeavour was to make out obligatory constraints that deal with the plasmid instability
with an approach to apply composite model, which explained the relevant part of dynamics
in bioreactor operation.

Computational models were developed utilizing structured and unstructured
approaches. A range of dilution rates were selected starting from 0.1 to 0.65. On
simulation of the process, the patterns obtained noticeably depicts the role of relevant
parameters governing bioprocess system, particularly metabolite concentration and dilution
rate, to present segregational instability and competitive dynamics in cell population. A set
of parameters, including plasmid bearing cell population, plasmid lacking cell population,
substrate concentration, metabolite concentration and probability of plasmid loss were
taken into account. The idea was to measure the instability of plasmid, which could be
directly derived from the growth of plasmid lacking cell population. This strategy ensures
high flexibility in bioprocess modelling framework since it has a number of adjustable
parameters.

Other bioprocess models were assumed to reveal the significance of dilutions and
antibiotic concentration regulation during continuous culture. The structural machinery of
a cell itself could assume to be an entire structured system that presented the functional
role of various sub-cellular entities. The rate of failure of any cellular entity was found to
be governed by prime metabolic events and partitioning phenomenon. Plasmid copy
number dynamics trend was observed to evaluate the effect of metabolite concentration in
time dependent manner. The copy number was estimated particularly after 2-6 hours of
induction to understand its variability.

Firstly, the production media was statistically assessed using Plackett Burman
design and later central composite design was used to estimate the interacting media
components and culture condition factors. The four selected media components were put

for CCD analysis and optimization. The production of streptokinase with optimized



medium and culture conditions was found up to 40% higher in magnitude in comparison to
usual based conditions. An effective numerical system had been further considered using
neural network and statistical method together where the prior one served as a potent tool
for identifying and optimizing the output parameter. The statistical and neural network
approaches were compared in predicting the output of different set of optimization
systems; the later had revealed results that are more accurate. The different inputs of
population dynamics simulation had been taken to neural network and prediction accuracy
with high value of r* 0.98 was achieved in estimation product formation. The production of
highly valuable recombinant enzymes is being done using fermentation technology and in
similar way the computational bioprocess methodologies can be used for its large scale

production.
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CHAPTER-1

INTRODUCTION

Streptokinase was the first thrombolytic drug, eodescribed and introduced for
treatment of acute myocardial infarction and pulargnembolism for more than forty
years ago. It is now the leading fibrinolytic agemtthe treatment of thrombo-embolic
conditions and it is included in the World Healtlg@nization Model List of Essential
Medicines. The enzyme streptokinase is secretgdhmmolyticStreptococcus equisimilis,

a gram-positive bacterium. Being a vital drug ghhdemand it is required to be produced
in recombinant form for thrombolytic therapy. Bi@ehically, streptokinase is regarded as
an extracellular 47kDa glycoprotein consists of 4b%ino acid residues. It interacts with
plasminogen to form a stoichiometric complex, whagttivates plasminogen to plasmin,
the later being the active form can degrade thenfitmatrix of blood clots (Wongt al.,
1994). Streptokinase has been widely used as tholytithagent since long. Its ability to
induce reperfusion of the occluded coronary arsedad to reduce mortality has been
firmly established.

Workers have over-expressed the streptokinase wrominant E. coli
(Thangaduraét al., 2008) It is encoded by usually occurirsgc gene ofStreptococcus sp.
in native form. Earlier the constructs were transfed into BL21 (DE3) and transformants
grown in LB medium till 0.6 OD at absorbance wawgfh of 600 nm. Then the cultures
were induced with 1 mM IPTG at 37°C for 3h. The gsion profile of the streptokinase
samples were analyzed by resolving in 10 percer@ &M staining in Coomassie Blue G-
250. Thoughskc gene is known to have many rare codons in its caitipn,
overexpression was achieved instead of having soegative effect. The analysis of
relative codon frequency gkc gene inE.coli reveals the presence of few position specific
rare codons that affect the heterologous protejpression significantly. The specific
growth rate decreased sharply upon induction obmdxsnant protein expression i.e.
streptokinasethus various feed profiles employed in post induttphase, with varying
feed rates (Ramalingaanal., 2007).

The S. equisimilis streptokinase gene expressecEincoli has led to a ten-fold
greater streptokinase titer than magnitude obtainedulturing of any other group C

bacterium. Work had been reported on localizing tdoee promoter region of the
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streptokinase gene akc (Malke et al., 2000). Usually recombinant streptokinase was
produced fromE. coli culture using the LB medium at 37°C from the espren ofskc
gene (Leeet al., 1997). The plasmid used had previously impartagiaillin resistance
marker that provided the bacterium resistance tpi@hmn in turn rendered the selection
pressure for plasmid retention. The production toédpgokinase was induced by adding
1.0mM IPTG to the medium. This enhanced the praditygtof the recombinant protein
and enabled its secretion into the extracelluladioma. A radial caseinolysic method with
the agarose gel containing both casein and plagfamis commonly used (Saksela, 1981).

High cell density could be obtained with high celénsity cultivation of
recombinant cell system by using a proper feedegya The T7 RNA polymerase was
induced with IPTG when biomass was 1.2mg DCW peramdl pulse feeding of
concentrated substrate was done with different timervals (Yazdani and Mukherjee,
1998). Likewise, an inducer concentration of 0.1 G was used while recombinant
streptokinase accumulated to about 20% of the tstduble protein in the cell
(Balagurunatharet al., 2008). Different dilution rate was used in cootins culture for
expression of streptokinase protein and foundaHzgh dilution rate of 0.3 hbefore and
after induction helped in increasing the productasmtration up to a level of 421 plasmin
units per ml (Yazdani and Mukherjee, 2002). Charigedilution rate during continuous
culture would lead to an attainment of higher lesfgblasmid stability (Patnaik, 1995).

Streptokinase is a non-growth associated produndesits production and cell
growth are not linearly proportional. The culturfeko coli cells was routinely grown and
maintained in LB medium and production medium uiedobatch fermentation contained
in a medium contains ampicillin (1Q6/ml). In performing streptokinase assay to test it
activity in culture supernatant fluids, comparisgrexperimental samples with dilutions of
standard purified streptokinase solution using icgssminogen plate technique was
performed.

While conducting fermentation process in the biot@a recombinant cells are
found to lose their plasmid. After some time asférenentation proceeds two types of cell
populations are to be developed. Since substrate gsowth-limiting nutrient factor so
there starts a competition between two populatidie organisms carrying the plasmid
are likely to be weaker competitors than one withmcause of the added load on its extra

metabolic machinery (Lu and Hadeler, 1998).



The Lotka and Volterra model had significant relea in bioprocess since
chemostat used adopts the behaviour of theoretimalbgy. The organisms carrying the
plasmid used to compete with plasmid lacking citstheir existence in culture (Lu and
Hadeler, 1998). There could be a number of fadtwasregulates the dynamics of plasmid
carrying cells within the reactor. One such magmtdr was probability of plasmid loss due
to segregation during cell division that could besaibed by segregative instability
coefficient (Syamset al., 1992).

The behaviour of the systems like bioreactor wasdoto be solely dynamic.
Population dynamics model for plasmid bearing atadmid lacking cells in bioreactor
were being made more robust to developirailico dynamical system, which had the
characteristics of a chemostat that several workeed to employ for streptokinase
production. The representation of the dynamicaltesysthrough modelling had its
relevance in predicting the behaviour of the systamdisturbances made to its initial
conditions. The most significant consideration lué present day model is the challenge
regarding instability of plasmid or plasmid lossttwrespect to time, which incorporates
the effect generated from different means. Variotiser time invariants and intrinsic
constraints together were now taken into accounsttmly such responsible factors. A
sophisticated model ensures a higher degree ofbiliéx since it has a number of
adjustable parameters. Still efforts regarding degelopment of operational approaches
imparting certain non-ideal bioreactor conditions much preferable in this regard.

So, on the coexistence of two species which ocicutendling the recombinant
cells population, an interaction occurs which mayt e simply evaluated as of
competitive type. The formation of recombinant prodstreptokinase is directly related to
the population of plasmid bearing cells which oft@ving decreasing trend with respect to
process duration due to plasmid instability. Matyails considered to lower the extent of
inter specific competition and thereby promote tduexistence of competing species
(Abrams, 2001). Preferably our endeavour is todtip a developed model that has close
resemblance to a natural chemostat in behavioamiay the involved noticeable factors
that seems to play some relevant role in dynamics.

Streptokinase production in bioreactor is asgediato the development of
bioprocess models pertaining to various aspectsheffermentation system. It is an
established fact that plasmid lacking cells arentbto emerge from the initial pool of
recombinant cell population. This phenomenon lgadan undesired loss in yield of the
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product. Primary metabolites, particularly acetmdaetc are formed as by-product of
metabolism, has its influential role in regulatitg competitive and inhibitory dynamics.
Metabolites were found to play a crucial role sittogir threshold amount was assumed to
promote the formation of plasmid lacking cells. the other hand, probability of plasmid
loss had shown to follow a variable trend in thedeladynamics. In this study a process
model with coupled differential equations is reqdirto reveal the interaction among
various parameters. Numerical simulation of delag periodic model of partially recycled
nutrient after extinction of cells due to decomposi during fermentation (Yuan and
Zhang, 2012).

Our effort is to make out obligatory constraintatttdeals with the plasmid
instability i.e., time dependent loss of plasmidbAef review of probability of plasmid
loss has been presented which has been shownldwvfal variable trend in the model
dynamics. The bioreactor is often used to gathfaramation in form of data, regarding
microorganism activity and bioprocess phenomenoaorder to generate a mathematical
model utilizing a set of culture parameters. Pdigr, the endeavour was to develop a
model that had close resemblance to a natural dgnaystem that involved noticeable
factors.

In producing the recombinant enzyme using biopdeshnique the forth most
problem was the cease of production magnitude yithgress in process duration of
fermentation. Since the formation of product (sio&mase) would be directly proportional
to the number of plasmid bearing recombinant cellshe media and also the average
plasmid copy number present in individual cellre point of time, so our emphasis was to
consider plasmid copy number into our account andtudy its variations. A stochastic
model for plasmid copy number is studied (Senetd &avare, 1983). In continuous
culture the increase in dilution rate to certaimnpseemed to induce a rapid decrease in
plasmid copy numbers (Reinikainen and Virkajarvi9o89). A method of rapid
guantification of plasmid copy number is regardedhé¢ an important process variable that
can be used in the process control dynamics stu@ebmit et at.,, 1996). Hence,
subsequent determination of the copy number wasmerch essential and a kinetic model
was required to analyse the decrease in plasmig momber. In order to maintain a high
copy number and high fraction of recombinant cellthe culture medium, strategy would
be to optimize key parameters in production proadsstreptokinase. The magnitude of

product formation was regulated through sustenapiceecombinant cells fraction.
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Specifically, the research work deals with the tasktaining to strength of plasmid
bearing and plasmid lacking cell population, plasmopy number and their dynamics. It
also deals with media and culture condition optahan and its analysis. Several
modelling strategies in bioprocess were found &y @ relevant role in the production of
valuable recombinant products. Modelling of plasnsicbility is presently dealt in
mechanistic way to support structured and unstradtmodels.

The unstructured model factors were found to beasgyly influence the
existence of active cells in the bioreactor envinent. On the other side, the structural
features of a cell itself can be assumed to benéireestructured system that presents the
functional role of various sub-cellular entitiesn Approach was made to apply composite
model, which explains the relevant part of dynamitsbioreactor operation. Genetic
Algorithm simultaneously evaluates many pointshia given parameter space and it often
used to converge towards the global solution; heénisehelpful in identifying bioprocess
parameters in a non-linear system (Rangaetadh, 1999).

In the substrate inhibition kinetics @&@accharomyces cerevisiae in fed-batch
cultures operated under the condition of constartoge and maltose concentration level.
The observed sugar inhibition effect in glucostattures was taken into account in
modelling the growth kinetics (Papagiamatial., 2007). In glucose grown culture there
would be an effect of lactic acid accumulation vihiresults in the lowering of pH, the acid
tolerance response results into a varying amodnmeaombinant protein i.e., streptokinase
produced (Sriraman and Jayaraman, 2006). The piipadf plasmid loss in selective
medium with difference in specific growth rate acombinant and plasmid free cells
(Zabriskie and Arcuri, 1986) were found to be akbelcby factors like genetic make-up of
the host cells and the reactor operating paramstgh as temperature, pH and growth
medium composition. The selective pressure of seleenedium is less effective due to
the leakage of gene product (Sardonini and Dibja$@B87) which is responsible for
selective mechanism. The effect of substrate feswentration and forcing via dilution
rate was examined on the performance of the bityeéali et al., 2012).

Computational models were developed utilizing dtrred and unstructured
approaches. On simulation of the process, the rpattebtained noticeably depicted the
role of relevant parameters governing bioprocesstesy, particularly metabolite
concentration and dilution rate, to present sedraga instability and competitive
dynamics in cell population. A numerical system badn further designed and considered
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using neural network and statistical method togettteere the goal was to optimize the
input parameter. Now an improvement in the techgwlts required to increase the
magnitude of enzyme production from the developedombinant strain. A Kkinetic
structured model for cell cultivation in reactor svassumed on basis of structuring
biomass in two main groups including dividing andnsdividing cells (Klykov and
Kurakov, 2012). Plasmid dynamics was studied irpeesto generation time and half-
elimination time of plasmids from recombinant cptipulation (Ganusov and Brilkov,
2002).

Secretion rates of microbial products can be adfibdiy cell-cycle position of
individual cells and thus on the degree of hetamedgg in terms of intracellular
constituents (Henson, 2003). Growth conditions havefound effect over plasmid
stability as well as specific growth rates of twell populations (Stephanopoulos and
Lapidus, 1988). On the other hand formation andas# of by-products may have its
profound impact over the functional subunits inelin expression and translation
pathway, it results into decline in the reliabildf/functional metabolic subunits and hence
ceases the production.

The computational intelligence techniques includmegulatory control are of
major help in artificial framing and dynamics asated to bioprocess (Wargal., 2010)
Cellular intelligence is now-a-days a most excel@ol to amplify the information taken
from cellular level activities in order to utilizeé for higher level computational
applications in prospects of getting automated ¢Nitti et al., 2009). A highly constituted
model framework presents designing of compositéitacture that optimally blends
cellular and artificial intelligence as well as rhaaistic models (Patnaik, 2009). The
signal oriented modelling is remarkably an appro&wh utilizing the intra and inter
cellular level signals to emphasize over the funelatals of structured model. The use of
regulatory control enable the models based on ¢ellstilize information gained from
experience and thereby respond intelligently teml environmental stimulating factor.

The rationale of structural instability is descdde be manifold (Summess al.,
1993). Insufficient repair mechanisms are furtherson for mutations, which results into
failure of expression. It is a fact that generajlyite complex mechanistic models are
required to adequately describing the metabolicadyns of multi-cellular systems
especially under non-ideal conditions. It is evidémat cells have internal regulatory
control to govern all biochemical pathways in aitietate manner. Hence, it coordinates
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and directs the adaptive machinery to cope up external or extra-cellular variations
maintaining the supportive mechanism that operdtesserve simultaneously. This
instrumental work can only be made feasible emplgpystochastic approaches, which
easily support to constitute the variable pathwgges$ that can be evaluated using
simulation method. The identification of a key ftional unit within the network of
pathways is a vital task to complete for providangninimal framework to our model. An
optimal and reliable representation of the ovenatidel using integrated approach for
bioprocess design (Rouf, 1999) is a mandatoryitagikis direction.

It was observed that after 60h of continuous cation in LB medium without
ampicillin the stability of plasmid ceases to zeémm, the entire culture contained only
plasmid free cells. On using ampicillin concentratof 100mgf the stability was found to
drop upto 60% and did not significantly cease fertliFriehs, 2004). All the model
parameters of plasmid replication control can bimiokd independently and no adjustable
parameters are needed (Ataai and Shuler, 1987).atharacy of simulations allows
description of the complex interaction between #albs, microorganism and metabolite,
acetate, which is a product and also a carbon sdarcthe microbes (Reinikainen and
Virkajarvi, 1989).

In microbial culture, assay with different inoculsmages and different
concentrations were performed, the biomass obtamasl analysed in terms of their
chemical composition (Pelizeet al., 2003). ThePischia pastoris clone producing
streptokinase was optimized and the effects ofaradnd nitrogen sources were observed.
Response surface methodology has been widely wsesl/aluate and understand the
interactions between different process parameiavs. level Plackett and Burman design
was used for the screening of carbon sources. fdsept study was aimed at screening of
the important carbon and organic nitrogen sourcéls ke@spect to their main effects and
not the interaction effects between various medionmstituents and hence such design was
used for the screening of different carbon soui@édlanki et al., 2009). A response
surface methodology together with central compasitator design was also employed to
optimize the fermentation medium for Nattokinaseodoiction by Bacillus subtilis.
(Deepaket al., 2008) Streptokinase activity of culture supernathuids was estimated by
comparison with dilutions of standard purified ptokinase solution using casein-

plasminogen plate technique (Malke and Ferret84)9



Media optimization for the strain d&. coli BL21, which was taken as a host
organism with plasmid vector pRSET-B had not bemmedyet. From the literature survey,
it was clear that the parameters pertaining taucelltonditions were not yet optimized for
the same. Consequently, the optimization of varimedia constituents and condition
parameters were to be done. In order to achievepéimal level of production primarily
the effort was made to optimize the production rmextimponents and culture conditions
statistically. Statistical methods were helpfulmrmnimizing the number of experiments
required to test the combination of factors fortlmegput. In statistical technique screening
design should be carried out to determine whicthefseveral experimental variables and
their interactions present more significant effe(@ezerraet al., 2008). ANOVA was
constructed for the second order response surfagdelmnthe significance of each
coefficient was determined by Student’test andp-value to identify the corresponding
significant factors. A mathematical method was usedolve the regression equation
(Vellanki et al., 2009).

So, statistical techniques viz. PB and CCD were leyaggl to screen the
parameters and to optimize those in successiveriexpas. A mathematical method had
been used to compute the regression and correlatimong output data. Optimization
would be the first major step before carrying therdmctor operations. In next step,
streptokinase production had to be optimized usipgropriate conditions under process
operation. Finally, fermentation would be done ewlg the microorganism based on
maximum yield of streptokinase providing most apiate conditions for growth of cells
and plasmid retention criteria.

Building ecological model utilizes many methodsngiag from numerical,
mathematical and statistical methods to techniquiggnating from artificial intelligence,
like neural networks. A multilayer feed forward na&lu network with multi-layer
perceptron, is very popular and it is more commardgd than any other neural network
types (Lek and Guegan, 1999). Feed-forward ANNsdifieal to include dynamic
characteristics and form the basis of estimatorefsod\NNSs, serve as a powerful tool for
non-linear modelling and process control (Glasgtesd., 1994). Use of about more than
hundred iterations was enough for successful cgevee of the error under the conditions
employed. Obtaining the observed data and simulegsdlts were close, suggests the
superior capability of neural network modelling the dynamic behaviour of the system
(Horiuchiet al., 2001). The ANN model showed a better correlatuith the experimental
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values than the regression model (Haidéeral., 2001). Various training procedures
proposed for the hybrid modelling approach is galheibased on gradient optimization
method, so performing repeatedly the exploratioalysms with different start vectors of
the ANN weights should be taken and the networkttedninimal “test error” is to be

adopted (Simutis and Lubbert, 1997) (Simutis anddeut, 1997).

The Neural Network based simulation of the process done using Matlab
2008Ra, the predicted values obtained from newtdork had been taken into account
together with the statistically predicted outpueuxal network modelling was applied for
control of fed-batch like process and to evalulte ioprocess performance under non-
ideal conditions (Patnaik, 2004). The previouslyaleped model for fed-batch culture in
respect to streptokinase production has remarl@dghycted the sole dynamic behaviour of
the bioprocess system (Patnaik, 1995) (Patnaik?2@nline estimators for biomass and
recombinant protein concentration were construatdg information available online by
the application of Neural Network (Glassatyal., 1994). The ANN has been proved to be
a useful tool for model building; there was a s$trgv need to improve bioprocess
operability dealing with the large scale industfi@mentation systems (Massingbal.,
1991).

Significant attempts were made to configure a caiipanodel to represent the
overall dynamics in a well-defined algorithm thapetts the behaviour of the microbial
population in the entire bioreactor operationalimmment. The estimators of instability
were utilized to estimate some of the aspects ofidatation process, which may lead to
an improved supervision. The simulation of the peschad been done using numerical
method to evaluate and predict the model behawisung neural network approach.

Pilot-scale bioreactors differ from small laborgtscale reactors in terms of a
greater occurrence of noise and incomplete mixindp® broth. Conventional control tries
to induce good mixing and to filter out the noisecmpletely as possible. As such an
ideal operation is difficult to achieve, recent wdias tried to exploit the non-ideal features
to improve the performance using computational iseas approaches. The bioreactor is
often used to generate online data of a set ofnpetexs from the microbial culture to
constitute a mathematical model. Other bioprocesdets had been incorporated to the
work suggesting the means to exploit other domahdiochemical technology for
developing a more worthy approach. The structueatures are assumed to model the
productive span of cells in the bioreactor system.
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In this research the work focus would be on the efiody of production of
recombinant streptokinase from the bioreactor. Aeotapproach would be the use of
heuristic approaches that might be a most desiratdeultimate step in the direction of
improving the model output. A novel multidimensibagproach was used to improve the
robustness of the problem of data management, asdswpported by computational and
experiment framework. Moreover the idea was to @xphe features concerning to such
dynamics, particularly plasmid vector stability thandirectly governs the product

formation.
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CHAPTER-2

POPULATION DYNAMICSMODEL

2.1. An Overview

The production of streptokinase in bioreactor can viell depicted as cell
population dynamics. It is an established fact that types of cell populations are found
to emerge from the initial pool of recombinant gadipulation. This phenomenon leads to
an undesirable loss in yield of recombinant prodBdmary metabolites are formed as by-
product of metabolism, has its influential rolerggulating the competitive dynamics. On
the other hand, probability of plasmid loss haswshao follow a variable trend in the
model dynamics. In this study a process model withipled differential equations is
designed to reveal the interaction among variostesy parameters.

The population dynamics model in context of indtgbiof plasmid during
fermentation were taken elaborately. In presentigored model the coefficients were
either taken from the earlier known classical medal may have been derived using
multiple linear regression technique taking staddaalidated values from simulation in
respect to experimental results. The five parameteciuding a) plasmid bearing cell
population, b) plasmid lacking cell population, st)bstrate concentration, d) metabolite
concentration and e) probability of plasmid losseMaken into account. The idea was to
evaluate the instability of plasmid, which can besdly derived from the growth of
plasmid lacking cell population. Mortality was ahet indispensable factor, which was
found to lower the extent of inter-specific competi and thereby promote the
coexistence of competing species (Abrams, 2001).

The toxicity of metabolite equally harm both thepptation simultaneously but
since plasmid bearing cells are liable to losertpkEsmid in response, so plasmid free cell
population was strengthened during the time. Se,pllasmid free cell population would
have an increasing trend despite of decreasingadties event. The probability of plasmid
loss was not constant throughout the fermentatioocgss due to the formation of
metabolites, which showed its presumed toxic efédr certain threshold concentration,
so it was taken as variable parameter in the madthl respect to time. A criterion of
threshold policy could be implemented to evaluatéective probability factor which
influenced the time dependent variation of probghbilAlso mortality or formation of
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dormant cells was possible which was due to taaiitn developed on account of toxic
metabolite or by-product formation, like acetic cadormation in case of fermentation
process carried for streptokinase production.

The model was simulated at different dilution raéesl different initial substrate
concentration and thereby differences in the mduHaviour had been observed on
simulation. There was a remarkable decline in tecgntage of plasmid bearing cells
above a certain level of dilution rate. System Bladwn its prevalent sensitivity to change
in dilution rate. The probability of plasmid losachshown a gradual trend at high dilution
rates. The numerical simulation of the model equiatishowed plasmid loss tends to occur
after a certain limit of metabolite level, whichosts that the increasing concentration of
metabolite tends to support the population of plddacking cells that witnessed the trend
in loss of plasmid from recombinant cells. Simuativas done using most of the standard
values from existing models and assumed constreagusired to explicate this dynamical
system. Since the production of streptokinase wasttly depending upon the dynamics of
plasmid bearing cells, so to enhance the produdtiaas inevitable to reveal the kinetics
operating factors and to evaluate the instabilitthe plasmid.

2.2. Model Development Parameters
2.2.1. Segregational Instability

Segregational plasmid stability would have siguifitinfluence on the production
of heterologous proteins since it ensures the @egfresustenance of plasmid. Reportedly
stabilization machineries found on natural plasmighich somewhat control the
partitioning of plasmids on to daughter cells (Re£2004). The partitioning phenomenon
depends on mechanisms of segregational plasmiditstalvhich is governed by several
factors including, plasmid size and form, high capymber and plasmid distribution,
difference in specific growth rate by cell interrfactors, post segregational killing of
plasmid free cells etc. Possibly our effort wasbting up a model that incorporates
noticeable factors that seems to play some releadain dynamics of the vector.
2.2.2. Dilution Rate

In a continuous culture, the dynamics of the stiepiase was observed at different
dilution rates. Simulation was performed for a mmg dilutions. Thus attempt had been
taken to investigate the bioprocess potential keppidynamic view into account.
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2.2.3. Substrate Concentration

After some time as the fermentation proceeds, tweg of cell populations were
obtained. Since substrate was a growth-limitingdiadhere started a competition between
two populations. The organisms carrying the plasomiglasmid bearing cells were likely
to be weaker competitors than one without becafisxtoa load of vector machinery; on
the other hand, plasmid carrying cells had an aidggnof selection stress due to antibiotic
in the medium. The production media comprising &rbon, nitrogen and salt
concentration was used and its characteristic gopsan with either type of population
during bioprocess was observed simultaneously.
2.2.4. Metabolite Concentration

Various indispensable factors served as signifitagtors in influencing the model.

A threshold criterion was implemented for toxicigffect generated from primary
metabolite for the growth of cells. Their effectigencentration could bring mortality or
sluggishness in growth, moreover it used to fat#itthe cells to carry out and enhance the
state of plasmid instability.
2.3. Previous Population Dynamics Models

The earliest models for population dynamics wagpgsed earlier by Lotka and
Volterra (Bailey and Ollis, 1986) which interpretdte population interaction for a prey-

predator like system. The folowing relation giviee tlynamics,
dA

2p = @A~ pAB M
dB
— = —YB+384B 2)

In the above expressipn growth rate of prey or population £,is the rate at
which predators or population B, destroys pheig the death rate of population B aht
the rate at which predators increase by consunfiagotey. The above model Equations
(1) and (2) has good relevance in bioprocess sohegnostat adopts the behaviour of
theoretical ecology. A microbial ecosystem was @mmred as a functional entity
characterized by certain macroscopic measurements &s the total quantity of biomass
or the total number of cells in the medium. It mspible to work with rapid growth of
species in well controlled environments, such ake€mostat” (Harmand et al., 2008).
During the culture and production of micro-orgarssnthe control of the bioprocess

sometimes depends on the micro-organism concerair the biomass density and
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conditions provided during that time period, fostence, in case some aerobic microbial
community the Dissolved Oxygen (DO) is a key fadto their growth (Guo and Chen,
2009).

The expression profile of the streptokinase samplese analysed by workers
(Thangadurai et al., 2008) and the specific gromatk noticeably found to decrease upon
induction for recombinant protein expression (Rangam et al., 2007). While performing
fermentation process in the bioreactor since recoamb cells are found to lose their
plasmid, after some time as the fermentation prixdeo types of cell populations are
developed. Since substrate is a growth-limitingdaso there starts a competition between
two populations. The organisms carrying the plasoniglasmid bearing cells are likely to
be weaker competitors than one without becausehefaidded load on its metabolic
machinery (Lu and Hadeler, 1998).

There could be a number of factors, which reguthte dynamics of plasmid
carrying cells within the reactor. One such magmtdér was probability of plasmid loss due
to segregation during cell division that could besctibed by segregative instability
coefficient (Syamsu et al., 1992). On the otherdhahe likelihood of segregation for a
plasmid bearing cell is independent of the freqyesfglasmid-free cells generation in the
population (Lenski and Bouma, 1987) while the d@&ac intensity against plasmid
carriage is influenced by occurrence of plasmidtilag cells in population. In cell division
process occasionally a daughter cell results tbasnit contain the plasmid and can no
longer produce the desired product (Stephens ,et@82). Plasmid free cells being faster
in adapting to environmental changes, it is indeeskible to give a competitive edge to a
plasmid containing population through cycling olution rate. But the periodic variation
of dilution rate noticeably proved to have insigeaht role in improving the performance
of biomass production in a continuous process (&iep et al., 1992).

The probability of plasmid loss in selective mediamd difference in specific
growth rate between recombinant and plasmid frde C&abriskie and Arcuri, 1986) are
affected by factors like genetic make-up of thethoalls and the reactor operating
parameters such as temperature, pH and growth medamposition. Moreover, the
selective pressure of selection medium is lesg®fe due to the leakage of gene product

(Sardonini and Dibiasio, 1987), which is resporesilbbr selective mechanism. The
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continuous system of production often serves astteibchoice even in the packed column
reactor for production of antibiotics (Banerjee @&@wbnath, 2007).

A chemostat model of competition could be establishetween plasmid bearing
and plasmid free organism for a single nutrient ihplasmid-bearing organism can
produce toxins against plasmid free organism aeseawst to its reproductive abilities (Hsu
et al., 2000). Lenski and Hattingh (Lenski and ligti, 1986) studied the effect of an
inhibitor on two populations. They considered tregme of inhibition in presence of
inhibitor or toxicant on growth rate. It was stutli¢hat estimation of unmeasurable
biological variables was important in fermentatpocess, directly influencing the optimal
control performance of the fermentation system ak & quality and yield of the targeted
recombinant product. Application of some noveltsigg for state estimation of fed-batch
fermentation was suggested (Wang et al., 2010).

The input substrate concentration and dilution ssere as operating parameters
and these are to be controlled by the experimemter.study for the cases where nutrient
supplied at constant rate and time dependent maverer performed earlier and a delay in
the growth response of organism to nutrient uptake obtained. Varying feed profiles
were employed in the post-induction phase of redpami streptokinase protein
expression, including constant feed rates, lineemtyeasing feed rate and exponentially
varying feed rates (Ramalingama et al., 2010) auate the requirement of variable feed
strategy. Modulation of an input such as a sulsstata nutrient concentration or the cell
environment such as the pH can enhance the ratésodfiemical reactions that were
occurring (Silveston et al., 2008). A twofold inase in the concentration of plasmid
bearing cells using square wave modulation of theidn rate had been found. The use of
altering dilution rate for the same environmentisgtcould revert competitive exclusion
to species coexistence (Costa et al., 2006).

According to model proposed by Imanaka and Aibaa(laka and Aiba, 1981) for
a continuous culture the two types of populatioralfs, plasmid bearing and non bearing
cells having interaction given by the following eggsion, Eqgs. (3) and (4):

at = 4Ny — DN; — puy N, 3)
P piy Ny + u;N, — DN, €))
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Where,N; population of plasmid bearing cells ahd population of plasmid free
cells. The above model Equations (3) and (4) camewl is purely of exploitative
competition since no toxin is assumed to be form&dother model was given by
Stephanopaulis and Lapidus (Stephanopoulos andilisypl 988) which is very close to the
model given earlier researchers (Imanaka and AlS&1), it includes three parameter
variables plasmid bearing and plasmid lacking peflulations and substrate concentration
which is limiting, expression shown in set of mhatance Eqgs. (5) - (7):

dx,
wra M, X1(1—q) —DX; (5)
ax; _ _

I U2X7 + qui Xy — DX, (6)
as 1

E =D(Sy—S) — 7(H1X1 — UzX>) (7)

Sy =0,X;(0)>0,i =1,2.

2.4. New Model Development
2.4.1. Model Assumptions and framework

In case selective media is considered, a rele\antibrf selection stress coefficient
can be taken into account, which is favourablepiasmid bearing cells (Sardonini and
Dibiasio, 1987) while it does not favour the pladniiee cells. Since it favours the
population of plasmid bearing cells so this par@metould be considered to resist the
phenomenon of plasmid loss. Therefore, probalulitgplasmid loss in selective medium is
smaller than that in non-selective medium.

During the process of fermentation metabolites fdram occur (Lee and
Papoutsakis, 1999) as by-products of metabolisnthvare toxic (Stuebner et al., 1991)
and inhibit the growth of both types of cells tdfelient extent. The plasmid bearing cells
are likely to lose their plasmid because of thammability of such metabolites into the
cells from the environment while other type thafree of plasmid do not have that much
extent of harm. In other words this can be said theicity of metabolite equally harm
both the population simultaneously but since plash&aring cells are liable to lose their
plasmid in response, so plasmid free cell poputasastrengthening during the same time.

The probability of plasmid loss is not constantotlghout the fermentation
process due to the formation of metabolites, wislsbws its presumed toxic effect after

certain threshold concentration, so it needs ttaken as variable parameter in the model
16



with respect to time. A criterion of threshold pglican be implemented to evaluate
collective probability factor which influence thene dependent variation in probability.
Also mortality or formation of dormant cells is gdsde which is due to toxification
developed on account of toxic metabolite or by-paidformation, like acetic acid
formation in case of fermentation process carr@dsfreptokinase production. Therefore,

considering the above assumptions we may writelyhamic model as:

ax
d_tl =wX:(1—q) — DXy — mqu Xy + 1 Xy ®
a HaXp + qui Xy — DXy + mypu Xy — mypp Xy — g Xy €))
as 1
E =D(S,—S5) — ? (U1 X1 + p2X3) (10)
d —mf(—X2_
d_z = (1 —e mf(X1+X2)> Iy (11)
aMm
E = Yy (X1uq + Xou,) — DM (12)

P
= = Yo — qka)X, = P(k, = D) (13)
U1 = Himax S/ (K +5) (14)
ﬂz = #Zmax S/(KZ + S) (15)
fi=m,—1r+2z (16)
fo=z—r a7
wherems = | f1 if M > My,

f2 if M < M,

also,(0<fi, f2< 1)

Here,m;> m;

Since metabolic toxicity has an influence over pias bearing cell population to a larger
amount.

m; & mz=0,if M < Mu,

M was required to be evaluated for different recarabi strain of micro-
organisms and media composition under varying $etperational conditions and it
depends upon experimental setup with presumed péeasnfor a bioprocess. Likewise,
values of constantsy, nmp, m, andr; were assessed for a defined set of conditions.

The dynamics related to plasmid bearing and lackield) populations together
with effects impart due to metabolite toxicity aselective stress has been shown in mass
balance Egs. (8) and (9). The numerical value,aiy andr; together at any instance
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cannot be more than unity. Material balance foisgnalbte concentration is expressed in Eq.
(10) where the substrate consumption rates wersider@d proportional to the rates of
formation of the two types of cells through theielgt factors. The kinetics shown in
Equations (11) and (12) ensures the role of varyrgpability of plasmid loss in the
model and variation in metabolite concentratiorpeesively. The Eq. (13) is mass balance
for product i.e., streptokinase formation, Eqs (a4d (15) are Monod expressions to
compute specific growth rates. For the collectix@bability factormtwo variants are used
asf; andf,, in expression (16) and (17) that has got variakleprobability tested with the
level of threshold metabolite concentration to assuts value.

Since initially plasmid lacking cell population amdetabolite concentration is
absent in the medium, both were taken as zerchdnvery start of the process all cells
present are plasmid bearing, so the probabilifpl@$mid loss was also to be taken as zero.
The magnitude of recombinant cell population andstate had a pivotal role in

governing the dynamics.

2.4.2. Genetic algorithm (GA) approach for optimizing of model constants
2.4.2.1. Algorithm topology

Optimization tool

(GA)
Sim. & Experimental Fitness Function Updated Values
values compared for 12 P2 —>Puay (close to 1) for constants
max

v

Model Equations
with updated

h

Multiple Regression
Methodology

i=i+1 ’\ Model Code /

{Set of ODE)
M file execution

Iteration Stops

(n)

constant values

up to i=n

Figure 2.1. Algorithm of model development.
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2.4.2.2. Modified Genetic Algorithm Paradigm

Genetic Algorithm (GA) simultaneously evaluates gngwoints in the given
parameter space it often used to converge towheldglobal solutionfigure 2.2); hence it
was helpful in identifying bioprocess parametera mon-linear system [18].

Start (random population generation)
n chromosomes

Objective function for population <+—
Crossover
Mlitation
Fitness Evaluation
Selection
Objective function for offspring

Insertion in new population

Unsatisfie
Test ( fied)
l(Satisﬁed)

Stop

Figure 2.2. Global optimization paradigm for genetic operatmath condition testing.

2.4.2.3. Parameter Identification and Optimization

i0.0045 T T T T T T T T T
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2.3 (a)

19



0.085

—
=

= 0.08¢

0015- : i
001

0.005 - B

O I 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
No. of Generations

2.3 (b)
Figure 2.3. a and b. Profile for process coefficientsyimm, and m, in continuous culture
with number of generations.

Table 2.1. Numerical values of Genetic algorithm against Gier@perators with adjusted

parameters.

Genetic Operator and Type Genetic Parameter Numerical value of G.A.
Encodingbinary Gap value in Generation 0.90
Crossovemultipoint Prob. of Cross-over 0.05
Mutation-inversion/duplication Prob. of Mutation 0.01
SelectionRoulette wheel method Precision of Cycle 30
Fitnesslinear type Screened individuals 200

Table 2.2. Results of continuous culture, showing GA estiatenverged values and the
actual values.

GA estimated values for my m my
parameters 0.0811 0.0032 0.0121

The plots inFigure 2.3 (A and B), of continuous culture parameter identification
was generated using adjusted genetic-operator paeesnnT able 2.1, and GA estimated

converged values of three model variables as depiofT able 2.2.

20



Finally, a simulated plotRigure 2.4) for estimating the key factor, threshold
metabolite concentration, which may influence teeombinant state dynamics, was

obtained experimentally.
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Figure 2.4. Showing simulated (dotted line) and experimentahk circle) plots of
metabolite level variation (with bifurcation for tich (lower thin blue line) and
continuous(upper thick blue culture) and fractidrpasmid bearing cells (green line) to

obtain M, using GA optimized model variables

2.4.3. List of model parameters
Table 2.3. Initial values of model variables

Variable Unit Initial Value
X1 glt 0.70
X2 gl 0.00
S gl 70.0
M gl 0.00
q - 0,00
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Table 2.4. Values of parameters assumed in the model

Variable Unit Initial Value
oS gl? 70.00
Mimax h 0.74
Hamax h 0.80
Y — 2.00
Y — 4.80
Yo — 0.44
kg ht 0.02
ko ht 0.0005
Ky gl? 20.00
Ks gl? 10.00
my — 0.081
my — 0.003
m — 0.012
r — 0.01
r - 0.02
z — 0.001

2.5. Resultsand Analysis
2.5.1. Modd simulation

The simulation of the above model was done usingldda2010Ra. The initial
values (Patnaik, 1995) taken for different paramsest time zero has been showrtable
2.3. The simulation was done using most of the stahdafues taken from a previous
model data meant for streptokinase (Patnaik, 2@0g@¢ther with various other model
constraints with smaller magnitude assumed foretfiit set parameters which have been
given intable 2.4., taken on the basis of their apparent role ia tiyinamical system. The
probability of plasmid loss was zero at timgesince at the beginning of process all
recombinants cells had plasmid machinery. Diffehittion rates were considered which

proved to be the most relevant factor for contirsuoperation. Dilution rate was started at a
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very low value and increased to high values to watal the sensitivity of response at
different levels.

Specific growth rates taken for plasmid bearing ptasmid lacking cells in the
model were different since specific growth rate pdésmid lacking cells would be
noticeably higher. Yield factor which was regardede the ratio of gram of cells formed
and gram of substrate consumed was taken togeittreanother yield term associated to
the formation of metabolite. Other constants gowernthe effect of metabolite
concentration were the two toxicity coefficients and m,. While various model related
probability factors were effectively incorporateceriaining to plasmid loss due to
metabolite toxicity and plasmid retention for sélex stress, some other rare factors were
also considered.

The approximate value of exponential term was takeh 71828, as the base of
natural logarithm. The value of threshold concedmraof metabolite taken here after
estimation,my = 0.50 which had its pronounced key role in leading theganaspects of
the process. Additionally another factor, selectstress coefficient was incorporated to
strengthen the model in respect to the selectiveratipn carried over by traces of
antibiotics present in the medium. The stress ogusilbstances present in the environment
which often found to inhibit the formation of celievoid of any plasmid. The simulation
was done at low and a fairly high different diluticateviz. D; andD,, as being shown in
subsequent plots. In figures all three variableth wifferent initial value t@ble 2.3) were
taken together to generate the dynamics. The aalsese dilution going outside the limit
i.e.,, 0.23< D; < 0.65, i=1, 2,...; had not been studied becausasgnificant changes
beyond the range for this context. The model phottiiree vital variable parameters were
obtained on simulation. The uppermost prominantheddine showingX; and the just
lower solid line is representing(;, the third dash-dot line is showing product
(streptokinase) concentration. Plotting all thee¢hwariable parameters kigs. 2.5.1. to
2.5.5, together consequently justifies the correlatiomoag different component variables

simultanaeously.
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Figure 2.5 (a). Dynamics shown in plot at low dilution rate;=90.10
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Figure 2.5 (b). Dynamics shown in plot at dilution rate;=50.23
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Figure 2.5 (e). Dynamics shown in plot at dilution rates® 0.52

It is quite reasonable to investigate that low tiblo rate allows the fermentation
to last longer generates higher magnitude of cdaraton of plasmid bearing cells and
favour the consumption of substrate. The numestalulation of the model equations
shows plasmid loss tends to occur after a certaiit bf metabolite level, which depicts
that the increasing concentration of metabolitel$eto support the population of plasmid
lacking cells that witnesses the trend in losslasmid from recombinant cells. Using the
simulation dynamics it becomes easier to resoleeptbt in order to understand the trend
followed by the two population of cells. The probigy of plasmid loss has its dependence
over metabolite concentration and the two poputatibcells. The varying probability has
its impact over the dynamics of the model theretwpiving almost all the parameters that
are being substantially affected due to its valigbilt is very interesting to note that only
a threshold amount of metabolite concentrationesponsible for starting the variable
dynamics of plasmid lacking and plasmid bearinglsceThe model simulation was
performed using most of the standard values froistieg models and assumed constraints
required to explicate this dynamical system.

Dynamics observed in initial plotjgure 2.5 (a), clearly depicts the bifurcation
in population of pure recombinant cells and growthplasmid lacking cell population.
Noticeable decline itX; with subsequent elevation Kp level is evident on moving from

26



Figs. 2.5 (a) to 2.5 (g). After a certain dilution rate the downward stezgm of the the
curve elucidate the event of ongoing increaselasmid lacking cells, indicates that there
is a gradual decline in the level of recombinariscen enhancing the dilution, shown in
Figure 2.5 (c) Since the production of streptokinase is direatBpending upon the
dynamics of palsmid bearing cells so to enhancetbéuction it is inevitable to reveal the
kinetics operating factors and to evaluate thealibty of the plasmid. The rise in
probability can also be well marked in the plotsr@spect to the remarkable hike in
metabolite formation. These two events can be ssgibto deduce the trend followed by
growth of plasmid lacking cell population.

The influence of dilution rat® on concentration of plasmid bearing and plasmid
lacking cells with respect to time duration of aoobus process is represented in two
plots, Figs. 2.6 and 2.7. The plots in respect to dilution rate have thegiportance in
deciphering the behavior of biased inter-populatielh dynamics in this case. The results
emphasizes that delayed plasmid loss occurs at Idivgion rates. Numerical simulation
of the continuous fermentation process could beerdtelpful to enhance the performance
adjusting dilution rate to achieve product in arigdi amount.

Concentration of Plasmid Bearing Cells, g/l

60h

0 . - -
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Dilution Rate, 1/h

Figure 2.6. Effect of dilution rate on plasmid bearing cellésharespect to time duration of

fermentation process
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Figure 2.7. Effect of dilution rate on plasmid lacking cellsaagst time duration
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Figure 2.8. Effect of dilution rate on percentage of plasmehibing cells with respect to
time duration

The observed trends were matched by the concemtrptdfiles at different time
duration of the fermentation process. It could bted that better dynamics was obtained at
late hours. Two cases were studied for plasmidithgaand plasmid lacking cells. The
concentration profile is plotted at duration in reul5, 30, 45 and 60, fot; andX; cell
concentrations Figures 2.6 and 2.7 respectively. There is a remarkable increase in

abruptness of the slope on progressing ahead jpeces$o process duration, from 15h —
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60h. TheFigure 2.6, showing nearly smooth variation with increasingation on the
other hand irregular variability is there with resp to concentrationF{gure 2.7). An
interesting feature reflected by plotting concetidraagainst dilution rate is assessment of
time in governing the interaction between cell dapans ; and X;) and dilution rate
regardless of how intense the phenomena assodatether variables are progressing.
Figure 2.8 shows the effect of dilution rate on percentagelamid bearing cells with
respect to time duration. An interesting featureclbdnging probability of plasmid loss
with respect to metabolite concentration at diffiérdilution rates, is depicted iRigure
2.9. There is a very high probability of plasmid lasgen at low metabolite concentration
on moving towards a high dilution rate. ParticytaHe probability has shown a rapid hike
on increasing dilution rate fro®=0.45 toD=0.52. The percentage of plasmid bearing
cells with respect to time iRigure 2.11, showing a gradual decreasing trend on increasing
the dilution rate to some exteli=0.35, the declining trend is not found to existforther

dilution rates.

0.04 \
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Figure 2.9. Changing probability of plasmid loss with respecimetabolite concentration

at different dilution rates
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Figure 2.10. Percentage of plasmid bearing cells with respetihie

2.5.2. Modd Validation

The model dynamics has beed validated for spedifition rates. Experimental
results (Yazdani and Mukherjee, 2002) were usembtopare with the simulated numerical
values to compute the statistical significancehaf tloseness of two data using multiple
regression analysis via mutivariate optimizationl.tdatlab contains optimization tool
commandsnlin function, that was used to obtain results in teigard. TheFigure 2.10.
shows together the experimental and simulated plataobtained at a particular dilution

and substrate concentration in continuous culture.
10

x1
X2 ]

Population/Concentration, g/l

L L L L
0 5 10 15 20 25 30 35 40
Time, h

Figure 2.11. Showing diversion of X and X% cells growth dynamics at dilution rate,

D=0.15 and substrate concentration in g/l, expemntadefindings for product streptokinase

in mg/l after induction (5h to 20 h ) has been espnted by open circles
30



The model validation was done in respect to dewjjrirend of plasmid bearing cells for

which simulation plots obtained at different diartirates were correlated to experimental
results obtained at respective dilutution. Simdata characteristic were observed (Kim et
al., 1998) in study of unstable bacterial populatgtrain in chemostat. The obtained

correlated trends are depicted in Ehgure 2.11. below.

Percentage of Population of Plasmid free and Plasmid bearing cells in Pop. Dynamics
100 k
I I I I
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----- %2 (Pl Non-Bearing)

it
=
T

entage of Cell Population/Cancentration

Perci

80 100 120

Figure 2.11. Simulated and experimental data plot has been shdynamics depicting
the percentage decline of plasmid bearing cellesective dilution rates of D=0.65 and
D=057.

2.6. Discussion

The behaviour of the systems like bioreactor istbto be solely dynamic. The
effort was to organize the information obtainednfrdermentation regarding set of
cultivation parameters. The key factors noticedbiynd to play the key role would be
taken together into account to resolve the simaltas variation in system dynamics
(Friehs and Schugerl, 1990).

Population dynamics model for plasmid bearing atabmid lacking cells in
bioreactor had been made more robust to develapsdito dynamical system which had
having the characteristics of a chemostat that weduto employ for streptokinase
production. The dynamical system representatioautjin modelling has its relevance in
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predicting the behaviour of the system on distuckanor changes made in initial
conditions.

All the considered five parameters, including plakrearing cell population,
plasmid lacking cell population, substrate conamin, metabolite concentration and
probability of plasmid loss were taken into accounthe idea was to measure the
instability of plasmid, which can be directly dexd/from the growth of plasmid lacking
cell population. The model had been simulated Heréint dilution rates and different
initial substrate concentration and thereby diffiees in the model behaviour were
observed on simulation. There was a remarkabléngem the percentage of plasmid
bearing cells above a certain level of dilutioneraBystem had shown its prevalent
sensitivity to change in dilution rate. The proligpbf plasmid loss had shown to follow a
gradual trend at high dilution rates. In the praabsnodel new factors were taken into
account like selection stress coefficient and mnaditeb toxicity coefficient that had
resolved the simultaneous variation in other patarseand their interaction criteria.
Selection stress coefficient showed to resist tloegss of plasmid loss up to some extent.
Increasing concentration of metabolites had shownnhibit the growth of two cell
populations after attaining a certain thresholdcemtration, it could lead to the fact that
plasmid lacking cells population had adopted ameiasing trend while plasmid bearing
cell population was found to follow a decreasirentt. The most significant consideration
of the model was the changing probability of plasruss with respect to time which
incorporated the effect generated from toxicity eleped by the metabolites. Various
other time invariants and intrinsic constraints evergether taken into account to plot their
collective effect with probability factor. The mddensures a higher degree of flexibility
since it has a number of adjustable parameter8. efiorts are required for including
influence of genetic factors and use of heurisppraaches to impart certain non-ideal

conditions to bioprocess phenomenon.
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CHAPTER-3

DEVELOPMENT OF MODEL SIMUTALION TOOL AND
ANTIBIOTIC REGULATION STRATEGY

3.1. An Overview

In this chapter, the problem of stating adjustailerall bioreactor dynamics
has been studied. Since the formation of produepgikinase was found to be directly
proportional to the number of recombinant cellshe media so our emphasis here was to
regulate the antibiotic concentration since iteeiffceases after few hours of the start of
fermentation process in continuous culture. Usialjuce medium without ampicillin the
plasmid stability decreased to 0% after 60hoursudtfvation while it dropped to only 60%
on using 100 mg! of antibiotic in the medium (Kinet al, 1998). Sometime use of
combination of two antibiotics provided a bettesui (Friehs and Schugerl, 1990).

Since the effect of antibiotic in culture mediund diot control the plasmid
lacking cells with same strength for a longer spanmodel with variable antibiotic
concentration was proposed to show the shiftingl@f signifying the generation time
(Ganusov et al., 2000) of plasmid bearing cells.sthategy to regulate antibiotic
concentration during bioprocess was adapted. Ptabedring and non-bearing cell growth
dynamics in respect to generation time was obsemdding time of half-elimination of
plasmids from the recombinant cell populationt Mvould be possible to increa3e, we
may compute for better production magnitude. Tlsemms to be a probable solution and it
could be possible via applying this variable amwiiisi concentration strategy. Since
addition of antibiotic ampicillin improves the h#abf plasmid bearing cells its variation
after initial addition of an amount may further uége the competitive dynamics and
relative growth of two kinds of cell populationsehte, adding the antibiotic to the
bioreactor in a fashion reduced the probabilityosing at least one plasmid copy per cell
during cell division. Implementing the above thenweg incorporated the effect of
antibiotic concentration in the prior developed ibasiodel equations. The effect of
antibiotic on both the populations and other mqughmeters can be observed performing
the simulation in Matlab. It noticeably representieel delay in percentage decline trend for

plasmid bearing cells in reactor with the progmsiermentation.
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A Graphics User Interface (GUI) was constituted greedict the model
behaviour at different dilution rate and other atid parameters. Development of
bioprocess model simulation tool had been donetlaiscbioprocess simulator was helpful
in simulating different models dealing with variob®process operations (Sevella and
Bertalan, 2000). The general mathematical modeliawy was developed on the basis of
Matlab inbuilt tool box. The programming systemw@UI having the functions to solve
differential equations based system had been amafiywith ease to use graphical user
interface. It became easy to adjust different patams of the dynamical system and
observe the behaviour in response to the assunrederiéation systems viansilico
environment.

In the way to exploit the relevance of other bigass models, fed-batch had
been particularly considered and simulation of phecess model was performed on the
basis of conceptual algorithm. In the model forchatontinuous culture the additional
criteria of intermittent addition of substrate oroguction media were summed up to
develop a model for fed batch culture. It was welliceable from the validated simulation
plot that higher yield in this process was possilolea sustained fashion for longer
duration. Several bioprocess approaches includpdmture up-shift approaches, feeding
strategies, timing of induction, and implementatioh two-stage culture mode for
stabilization of plasmid had been implemented (Raaal, 2007). Moreover, a structured
model framework to evaluate production in bioprecémd been taken into account.
Mechanistic model for reliability based assessnwnstreptokinase production from a
bacterial cell using stochastic Monte-Carlo basedcples had been configured to make
another application of structural modelling stragésgOur product enzyme is formed from
the cell as the result of interaction among varimiisa-cellular factors within the cell and
the composite effect of its environment. Since ghlyi developed model presents
designing of composite architecture that optimalignded cellular intelligence, artificial
intelligence and mechanistic models. Hence seuatatacting sub-components pattern
together have their influential role in enzyme proitbn kinetics.

The concept of reliability has its relevance inegsing the durability of any
functional mechanistic unit within a defined timerhe. The idea was to support the
dynamic pathway associated networks in view of catidg possible estimation of the
enzyme production, taking streptokinase into carsition as an instance. Here time
dependent interaction of intra-cellular subcompdsenas plotted out, few prominent
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parameters among the ample of parameters in natalalar system had been given a

desirable weight age in developing the model.

3.2. Bioprocess Simulation Tool
3.2.1. Design of simulation platform

The GUI was created to perferimsilico simulation of the bioprocess. Few
functions which were configured in Matlab were tibge simulated to perform the

simulation task. The snap shot of the simulati@ifptm is visualized ifrigure 3.1.
1 igure - 0 or Boproress Dymarrics e 2 i
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2 (P Non-Bearing)
— p (Product Conc)
— — x1(PI Bearing Ac) —
— — %2 (Pl Mon-Bearing Ac) | Bioprocess Simulation
— — p (Product Cong Ac) -

I Biopr Sim Together ‘

Concentration, g/l

| All Factors Sim
| Percent Pop Sim
| Batch Culture ‘
Time, h
0.50 per hr 48 2999 5 percent 50 glL
DilutionRate | < [ »| « [ +| | Time Duration Inoculum Conc | ¢ )| < |+| Substrate Conc

FPESDF B0 s 022 i

Figure 3.1. Bioprocess Simulator

A general mathematical modelling tool was developedhe basis of Matlab
software. The program system with GUI provides clato solve differential equation
based system with the help of easy to use grapbic&hce (Sevella and Bertalan, 2000).
The Matlab code of creating GUI is givenAppendix Al

The model simulator can present the various staf#ise model dynamics. In
order to compute the concerned numerical domaate@lto work, process simulation has
been done using Matlab R2010a, it is thus possibfeimerically evaluate the role of each

and every parameter using initial values (Patna95) of different parameters. Using
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standard values, the simulation can be performadsll platform following the previous
model input data intended for streptokinase pradodiPatnaik, 2002) in culcating various
other constraints with little magnitude considefeda different set of model parameters
(Kumar and Ghosh, 2010), incorporated in our eawerk.

The dilution rates of discrete magnitude are applie which provide a most
significant factor for continuous process. In tleginning, the dilution rate was set at very
low value and subsequently increased to a high matmto assess the level of response at
various extents. Atrtificial intelligence has beemaked extensively to model macroscopic
microbial behaviour under the influences of noisel acertain spatial variations in
fermenter [30]. Dilution rate regulates the pegsise of cells in the production broth for

the definite duration.

3.2.2. Topology of the Simulator

The working topology of the biopess simulator for culture and production of
streptokinase is described in thigure 3.2. It comprised of Ordinary differential equation
(ODE) functions which were linked to callback butso The GUI terminal was configured
to provide a sophidticated platform to conduct pssc operation. The adjustment of
various parameters pertaining to bioprocess pammsiebuld be well feasible via parmeter
selection buttons in slider window form. The usan @djust the parameters including,
dilution rate, time duration, innoculum and subtstreoncentration before visualizing the

results using buttons on the graphics platform.

function GUI_main &

callback_buttons

' {

1
- _5
{functlon ode4j' - om GUI terminal

Figure 3.2. The topology of the GUI scheme in working
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3.2.3. Advantages of using simulator in evaluating fermentation process

Bioprocess simulator is helpful in simulating dréfat models dealing with
various bioprocess operations. It becomes easydpostadifferent parameters of the
dynamical system and observe the behavior in respdo the assumed bioreaction
systems. The batch as well as continuous cultivaten be visualized adjusting dilution
rate from zero to some decimal value and othempai@rs too.

It is evident from numerical simulation of the mbtleat plasmid loss tends to
occur after a certain value of metabolite levelcettainly depicts that the elevation in
concentration of metabolite have a propensity tppsu the plasmid lacking cells
population. The data obtained experimentally igrefat significance in understanding and
validating the computational results.

In case of continuous operation, varying dilutiateD with slider have shown
noticiable influence on recombinant cells concedmnawith respect to process duration.
The dynamics pertaining t® have their relevance in interpreting the behawbra
blended inter-population dynamics at an instanagc@ne emphasizes over the delayed
plasmid loss that often occurs at lower dilutioBgce continuous cultivation has number
of adjustable parameters so their inter-dependeh in dynamics behaviour is
appreciable. The numerical simulation of continupuscess using a graphics platform
would be rather much helpful to improve the perfante regulating dilution rate in order
to achieve amplified amount of product.

On utilizing the graphics facility of different ganeter adjustment, it was clear
from the simulation that rapid variation particlyanike in metabolite concentration after a
certain concentration caused profound increaseaabgbility of plasmid loss. Using the
means of simulation it was evident that even aery \ow metabolite concentration level

there found a high probability of plasmid loss aiftsng towards high dilution rates.

3.3. Relevance of other Bioprocess Models
3.3.1. Fedbatch
In the model for continuous culture @hapter 2, Eq.8 - Eq.17) the following

condition were are added after Eq. 17, to develoydel for fed batch culture.
Case | X> Xmax

D= D¢
Case Il X< (1 -S) Xmax

D =Dy
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Here,Xmax=3.20/1,5=30g/l ,Do=0 andDg=0.20;
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X(total)
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P [l

25+

20+ =

15+ B

5L -
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Time(h)

Conc.(g/l)

101 S~ —

Figure 3.3. Fed-Batch Simulation Pattern

Plotting all the three variable parametersetbgr, subsequently justifies the
correlation among various component variables fadabatch culture simultaneously, in
which substrate is being added at time intervalse Bimilar effort was made by
researchers (Sevella and Bertalan, 2000) earliginlour case the conditions applied with
reference to production of streptokinase and thepawable results were obtained by
experiments (Yazdani and Mukherjee, 1998). Impleéingnthe defined criterion the
simulated model obtained is shown in the plot abBigure 3.3. Progressive induction by
means of continuous IPTG dosageEln coli fed-batch cultures yield a higher specific
levels of recombinant protein (Pinsaghal, 2008). It is noticeable that sustained yield is

possible in a continued fashion for longer duration

3.3.2. Overall Bioreactor System model

The model equations were developed by incotpayadifferent model
parameters (Sevella and Bertalan, 2000). The limitiaditions taken in the model @tare:
X(0)=1.40;50)=30.0;P(0)=0.00;C(0)=5.20;V(0)=2.00;

Various other model constraints uskg:0.0002;K a=150;0=0.64; C*=0.005Y=0.5; and
Umax=0.2;
The simulation result is shown, in tRegure 3.4,
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In overall bioreactor model, for representing tHearacteristic dynamics of different
parameters together, our culture system is destribe the given set of differential

equationsgEq.18-21.

dXx

total — . X
dt :umax ks+S k0+C total
(18)
d_S = —llu i L X
dt Y max kS+S' ko+C * /X total
dC 1 S C (19)
P lumaxm'm'xtotal_K (C*-C)
o s 0 (20)
E - dxtotal
dt  dt
(21)

The overall bioreactor model is described in fettlhhghase like fermentation system, it

mimics the parametr dynamics obtained from biomasystem.

Ovwerall Bioreactor Performance Model
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Figure 3.4. Overall Bioreactor Performance

3.4. Strategy to Regulate a Variable Antibiotic Concentration during Bioprocess

Plasmid bearing and non-bearing cells growth dyoamin respect to
generation time utilizing time of half-eliminaticsf plasmids from the recombinant cell
population had been studied (Lu and Hadeler, 19@8anusovet al, 2000). It was
noticeable, if it would be possible to incredse it might be possible to compute better
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production magnituderigure 3.5. There seems to be a probable solution and it coald

possible via applying regulation of variable ardtii concentration. Since addition of
antibiotic ampicilin improves the health of plasnbdaring cells its additional variation

after initial addition of its requisite amount miyther regulate the competitive dynamics
and relative growth of two kinds of cell populatson

If, at an instancé number of plasmid bearing cell0 then,

In casedX-=1,dX+/dX-=dX+, dX+ =dX+max

This is the maximum value for plasmid bearing cellthe bioreactor,

Therefore,

+
— , always less thadX" nax

Hence, adding the antibiotic to the bioreactor ceduthe probability of losing one plasmid

copy per cell during cell division which is invelg@roportional to generation time.

ThereforeToptima = 9/tpl

Where Topimal IS the optimal time of continuing the bioreactgris the mean generation

time,

g =1In2D

andty is the probability of losing one plasmid copy iwidion.

Ganusovet al (Ganusov et al., 2000) stated that the time of-dlahination of plasmid

carrying cells from the entire population in thereiactor is half of the time of generation,

i.e.Tiyp=0

This proves that th&:/z < Toptimal

WhereToptimai = T2 + @

has been discussed (Lu and Hadeler, 1998) in matieahmodel for plasmid bearing and

non-bearing population. The simulation of two kimefsplots can be well visualized in

Figure 3.6 and3.7, noticeably showing the shifting @f,.time.

Assuming the relative dynamics of two population,

alpha = @Xy/dt)/(dXo/dt) = dX/dX; (22)
ifalpha<=1, a; = f(&)

a = f(bx), otherwise
In above expressiol, = f(a;) anda. = f(b); where,
a = (Mof Ma)*te (23)
br = (Wa/ M2)*tc heret. - the antibiotic toxicity coefficient (24)
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After addition of a necessary quantity of antikgetithe rest of other quantity would be
regulated in variable fashion following the relali varying population trend of two cell
types.

Implementing the above theme we need to incorpotate affect of antibiotic
concentration in basic model equationdivapter 2, Eq. 11);

do/dt = (1 — e " (nf (Xo/ (X2 +Xz))* ac)) *H2 (25)

The effect of antibiotic oiX;, X; population and other model parameters can be odderv
performing the simulation in Matlab. It noticeablgpresents the delay in percentage
decline trend for plasmid bearing cells in reactith the progress of fermentatioalso
been found experimentally. The simple generatioretcurve is designed to present the
possibility of improvingTy, by some finite magnitud&jgure 3.5.

A

Plasmid bearing Cells

Plasmid non-bearing Cells

Growth of Cells, g/L

T-Half GenerationTime, T

Figure 3.5. Diagram showing 7, of generation time (Ganusov et al., 2000) in resp

plasmid-bearing (¥ and non-bearing cells ¢Xcell population and achievable increase in
T1,2by additionale magnitude

15

x1 (Pl Bearing)

x2 (Pl Non-Bearing)

p (Product Conc)

x1 (Pl Bearing Ac)

x2 (Pl Non-Bearing Ac)
10+ — p (Product Conc Ac) H

Concentration, g/l

7 — +— — L L L 1 L
0 5 10 15 20 25 30 35 40
Time, h

Figure 3.6. Profile of X;, X, & P with fixed antibiotic (solid lines) and antilio
concentration (dashed lines).
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Figure 3.7. Population dynamics of % plasmid free and plasnadrimg cells at dillution
rate 0.20 perh

In the figure solid and dotted perfihe shows percentage decline in plasmid
bearing cell population while dotted line depidise trend of population with administered
ampicillin concentration at D=0.20, likewise therd is presented for plasmid lacking
cells in green line.

The population of plasmid bearing dacking cells system is showRjgure
3.6, with and without antibiotic regulation strategygéther with variation in product
concentration. The simulated pldEjgure 3.7, illustrated T1, of generation time with
respect to both type of cell populations with aghlde shifting inT1, by a magnitude on
using the stated strategy.
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Figure 3.8. Plot showing decline in percentage of N+ at onkedi and variable antibiotic

concentration at D=0.14
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Using variable antibiotic concentratidigure 3.8, it was clearly observed that
there found to be a delay in percentage declineeambinant cells during fermentation
process on applying the strategy of variable arlipiciconcentration with devised

algorithm.

3.5. Structured Pathway M odel Approach
3.5.1. General Framework

The models have sufficient details to get compatiblith new experimental
techniques and together with experimental and ntiadelork in fermentation technology
(GanNielsen, 1992). Focus is required on the siradt models which describe microbial
kinetics by means of selected cell components rathen by undifferentiated mass. To
understand the plasmid-bacteria interaction, sihastructured model of plasmid dynamics
have been often studied using simulation of dynahsgstem (Krone et al., 2007).

Production of an enzyme or product within a cellassociated to various

pathways. So, several components and sub-compotegether have their role in an
enzyme production dynamics, depicted kgure 3.9. Several subcomponents or
intracellular state vector parameters (PalssonJarsthi, 1987) involve in the production
dynamics used to contribute their some vital rald hence control the product formation.
Although there is a decline in the product formasgian respect to the considered time
frame in general. We can evaluate the performarica onit carrying out production
process considering the associated prime pathwdagisheir subcomponents and ultimate
component which is giving the product after theireninteraction of all subunits
substantially in a defined manner. The sequemigraction of subunits, their failure and
repair in the considered time span is quite intergsA probabilistic framework can show
a better implication of the approach to design aeho order to evaluate the performance
of such dynamic units. The feasibility of this eggch is to be made on the basis of
reliability assessment of the production unit imechanistic way. The sole network could
be expressed in the form of a unitary system wigatesponsible for the production of a
particular product which lies on the retaining tf productive state with varying level of
product formation which is very likely to be timemendent. The release of metabolites etc
may have its impact to negatively affect the sutsumvolve in pathways, results into
cease in production and hence decline in the nétiabf such units taken into account.

It is also a remarkable thing that production canefffected by interference of

large number of intra-cellular factors that may sbow interact to alter the production
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level in the process. It may be possible that failof a few sub-components can have
insignificant impact to decline the entire prodantion the other hand there may be other
set of components whose dormancy may result imtoit@tion of productive strength. A
combinatorial approach is required to device the@ and ‘off’ state of such subunits in
various feasible ways. The study of the performaateven a single cell under the
presumed assumption is somewhat sufficient to medeh process in respect to the
reliability criteria.

The major task is to define chances of failurendlividual subunits and topology
of possible paths, to fix their assumptions for plaepose of large number of trials over a
population model. The study pertaining to presuméyige number of particular pathways
with experimental substantiation is required to s the hypothesis for the existing
system. The random trial dependent Monte-Carlo agugdr considering the utilization of
an ample of database have an effective potentislipport the model functionality in lieu
of the natural process, in a putative manner. Toisenprone behaviour of the natural
system dynamics will still be a challenging tasktire direction of updating the neo
configured artificial model. Any production systamit in cell is highly complex in its
topological pathways and fairly non-linear in thieiteraction paradigm. So representation
their sole interaction require indispensable compomal efficacy to plot their multivariate

routine.

Figure 3.9. A model framework showing interacting process sutisun

State vector of each cell can be represente&py26,

dx/dt =f(g, v, X) (26)
¢ -Intracellular parameter

y -Extracellular state vector

x -Intracellular state vector

Interaction of intra-cellular parameteZ,f to Cy) has been shown in a topological model.
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Model frame and its dynamics
The concept of reliability has its relevance inessing the durability of the

functionality of any mechanistic unit for a definédhe frame. The overall idea is to
support the associated pathway networks in viewoofucting possible estimation of the
enzyme streptokinase production taking into comatiltn as an instance. The time
dependent interaction of few prominent parametensry the ample of parameters in
natural cellular system has been given a desinabight age in the developing model. The
general theme was to make the model robust in terimss configured subunits and

dynamic pathways to ensure an optimal outcome marical terms.

3.5.2. Major assumptionsin governing topology
The first assumption envisages over the fact tmt production unit has
initially maximum reliability and it decreases dretbasis of interaction of several subunits
in a specific topological fashion with variable dynics. The varying consequence of
transformation in topology can be taken into actaindepict the observed level of
productivity in any terms. Basic formula to estimatny existing system reliabilitizs
(having failure rat€) at a timet is given by the general formula;
Rs=e ¢!
Three possibilities are assumed in this model élular system:
» The running original part with general decline éhability (Frequently)
> Repair of the partially failed component at anydimstant (Sometimes)
(to resume some degree of reliability)
» Replacement of the completely failed componenhaitnstant (Rarely)
(to resume a high (initial) level réligty for that component again)

Overall the process is Stochastic

Basic Assumptions
In General, reliability is just the reverse of fad.
» Four pathways are considered in the model
» Failure of the support or completion of any twawore pathways at a time
may lead to failure in the formationstrfeptokinase
» In all sorts of possible combinations failure ok thssumed four pathways are
possible

» Each component in the pathway has its specific antalue
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(bd: failure rate or probability of failure with resgdo time)
> The failure of the pathways has been made to berged by Monte -Carlo method

The possible intracellular mechanisticnfeavork is represented in the
pathway topologyFigure 3.10. It was found that sometimes growth conditionsehtav
change in order to increase structural stabilitgn¢@nta et al., 1998). The UV repair
system and SOS repair pathway show their role ébteb structural plasmid stability
(Greener, 1996). Plasmid replication mechanism Yasd to have key influence on
segregational plasmid stability (Sharma, 1993)ngk and Thomas , 2001). The
sequences of ribonucleic acid RNAI and RNAII geiigraecome the targets for the
mutations (Moser and Campbell, 1983), (Lin-Chaalet 1992), due to which their
involvement in regulation and replication is effstt In reverse cases of mutation or
deletion the condition leads to production of lolagmid copy and even impairment of
replication (Phillips, 1998). So the biological seas for the structural instabilities of
vector are manifolds (Summers et al., 1993). Readuainces have been made in cell
population modelling which allows the effects ofllcheterogeneity in culture

dynamics using intra cellular state and metabgliteluction (Henson, 2003).

Induction of Transcription

: Processed
fsuA | Transcription fsuB Translation fsuClPrecursor Protein " i
P I —_T> —>| TFommofSK Pfl oduct
segene Biochem Modf Active Form
Binding of Repressor Reverse Orientation Proper
Geite regulation "’;’"gfg?‘" .
Promoter A Desired product
Operon =, not formed
4 Feedback 4
FsuC Repression
Prokaryotic Vector having Functional
Nucleus ske gene Insert Vector
Host Vector Interaction Cytoplasinic fitctors
Metabolites | Unstrictured
Factors Vector
Catabolic Size of Gene of Insert 1ot
Anabolic Segregation instability ~—m7———
fsur Eugenics fsuG fsuM
d ) S
Metabolic |, Proper Cell «| Septum Wall
Dynamics Morphology “ Synthesis
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Figure 3.10. Pathways showing assumed interactions among coenp®mo facilitate the

formation of resulting product (fsu=>functional suni)
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A chemically structured growth model Bf coli had been formulated and
essential dynamic part of the model was consid@Patsson and Joshi, 1987). Abstract
mathematical quantities lead to a particular intation when linear analysis is applied to
chemical kinetics (Palsson, 1984). The secretorgdyction of complex proteins
particularly peri-plasmic proteins like proteasewl a&haperones can be manipulated to
enhance the yield of secreted recombinant pro{&@hsi and Lee, 2004). The segregation
and selection both had been demonstrated to eeakexttor constructs that could be
stabilized by patrtitioning factors (Ray and Skurra984). Partitioning function is often
the breakage function and denotes the probabilitycal division of a cell with
intracellular mass content (Fredrickson et al.,@9The stoichiometric study of glucose
and acetate metabolism of elementary compoundsfewasd significant in respect to
conversion kinetics framework pathway (Guardia @ati’o, 2001).

A few attempts had been made to construct a gesegle cell model including
most of the intra-cellular pathways (Heinmets, 19@9ccording to Shuler and Domach
(Shuler and Domach, 1982) the advantages of soedlenodels were to account explicitly
the cell in various respects. Particularly in resge its geometry for potential effects on
protein/nutrient transport, spatial arrangementstracellular components, and temporal
events during cell cycle, biochemical pathway andtamolic control models. Four
pathways were configured showing interactions ameagous components of the

recombinant cell during its active stafégure 3.10.

3.5.3. Structured Pathways
Apparent Model Topology

The general topology of the structured pathwayslesh constituted using the biological
interactive pathway model. The subcomponents amvede from their relevance in
regulating metabolism. The topology of the modethwinteracting subcomponents has

been illustrated belovkigure 3.11.
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Figure 3.11. The assumed topology of heuristic based model Witeubcomponents and
4 prime pathways

Combination of chances constitutes five differeaeas (considering six pathwagsb, c,
d), thereby four Pathways (each may having sevemné)urelated to a Product Formation
i.e., their interaction together assumed to raatdtformation of the product;

Rs (t) =rsa(t) + rs(t) + rc(t) + rsd(t) (27)
According to topology,
Rs (1) = (rsl.r2 .13) + (rsA.15.16) + (rs7.[( r8.r9) + (rs10.r511)]) (28)

Keeping in consideration, the existing pathway digai, Figure3.10, the chances of
failure at a junction was kept declining frgto £11.
Using the basic form, it would be computed as;
Rs (t) = e(-(5a1+{2+ £ 4 e(-({4+55+{6)* 4 e(—({?)*t) .(e(—({8+§(-9)*t) +
é—({10+§-11)*t)) 129

Model Assumptionsin Detail:

Combination of chances constitutes five differeageas (considering four pathwa¥; Py,
P. andPg4can be mentioned as 1, 2, 3 and 4 respectively):

1% caseNone fails: (1) Failure of none (as usually expd}

Failing pathways[0]
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2" caseOne fails: (4)P, or Py or P, or Pq
Failing pathways combinatiornl 2 3 4]

3" caseTwo fail: (6) PaPp, PaPe, PaPd, PoPc, PoPg, PPy
Failing pathways combinationl2 13 14 23 24 34]

4" caseThree fail: (4)PaPoPc PoPPy PcPaPa PaPuPq
Failing pathways combinatiorn123 234 341 124]

5™ caseFour fail: (1) only one possibility is there of gry all in failed state
Failure of all (very less occurrence)
Failing pathways combinatior1234]

The expressiondsq. 27-29, were simulated incorporating the stated model apsons.
Individually each pathway has its reliability forggluction and as a system it showed a
characteristic trend. The structured system dynasiimulation result is shown Figure
3.12, on basis of Monte Carlo simulation method whigheaflecting the declining stability

of recombinant cells in cultivation.

System Reliability
& &

=
=
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Conzidered Spsn of Time

Figure 3.12. Reliability variation trend in stochastic manneowin for a cellular system
3.5.4. Supportive algorithms and property of existing regulatory networks

Stochastic assumptions are made to generate raddoision to regulate the

variable pathways by the predefined optimal crterfime dependent variables play
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crucial role in governing the multidimensional dgmies thus preparing the model for
showing close proximity to the real-time processes.

Incorporating regulatory control, which is a neeggscharacteristic to mimic
the regulatory pathways showing their property @hb autonomous in performing repair
and other adaptability steps. Cellular intelligemgaow-a-days a most excellent tool to
amplify the information from cellular level actives in order to utilize it for higher level
computational applications.

Incorporating regulatory control enable the modadsed on cells to utilize
information gained from external stimulus or cormmlis, so doing that approach makes
feasible for cybernetics modelling to overcome tigédity and limitation of mechanistic
modelling. Even quite complex models are requiedédscribe adequately the metabolic
dynamics of multicellular systems, especially unaan-ideal conditions.

3.5.5. Applicability in estimating enzyme production

Present day logical models have their passive ilbioprocess modelling
since untouched dimensions cannot be resolve ualgslying hybrid approaches. Now
recently cybernetics modelling has come forward deercome the rigidity and
shortcomings of mechanistic model which is toorumsiental and conceptual.

It is true that cells have internal regulatory cohto govern all biochemical
pathways in a legitimate manner. Hence it coorémaind directs the adaptive machinery
to cope up with external or extra-cellular variaganaintaining the supportive mechanism
that operates to serve simultaneously. It seentseta good model for representing the
complex biological processes and their associated g&vents in terms of mechanical
dynamics.

3.6. Discussion
The bioprocess simulation tool was constitutedisualize the predictive stages
of the bioprocess operation. The antibiotic regotastrategy could be helpful in utilizing
selective pressure resulting into the strengthemihgecombinant cells population. The
other bioprocess models can comparatively be takiEnaccount to obtain the relative
model dynamics in the different process operations.
Optimal allocation of metabolic pathways for proahgcthe desired protein is a
quite tough deed. This work can only be made féas#nploying computational and

stochastic approaches which easily support to itatestthe variable pathways.
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Identification of functional units within the netwoof pathways is a vital task to complete
for giving a minimal framework. On the other hartimal and reliable representation of
the overall model is a mandatory task in this dioec Classical interpretation has always
been appreciated to support and realize the emtergén of any component. Indeed
constituting a framework revealing some link betwaptra-cellular and extra-cellular
processes is reasonably of high utility to genemateobust model with an ample of
indispensable dimensions.

Predictive models are now found to be of great helgorecast the model
performance resolving its dynamics with severaltuea anticipating the outcome of
different time dependent parameters and theiractens at different instances. Thus this
sort of approach is of great help in understantiegvariable facets of the model dynamics
and their extent visualizing the apparent aspecigrag in the way.

Although sub-cellular topology based reliability deb can be a supplement to our
structured model system but it is considered tadael approach pertaining to assessment
of a cellular function in bioprocess system. ltilitates to design and identify the pathway
failures during the operation which thereby quigdpful to improve the production system,
since the population of cells would have been egpemng the same sort of complication.
The structured fame work would be of worth in umstiending the specific effect of
external factor that has most significant influemecaegulating and mal-functioning the

intra-cellular dynamical system.
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CHAPTER-4

PLASMID COPY NUMBER DYNAMICS

4.1. An Overview

This chapteinof thesis deals with an important problem pertamghe regulation
of plasmid copy number that has role in managimgptoduction of recombinant enzyme
streptokinase. Experiments using production medivas performed to achieve high
production of biomass and maximum streptokinaswigctThe basic work was primarily
associated to estimate the plasmid loss and taaeathe changes in copy number, if any,
during the progress of the culture for which difietr factors were evaluated using the
known experimental conditions.

It was evident from the outcome of data chart fhlasmid copy number was
apparently changing with time and depended on thanging environment in the
chemostat system. The approximate estimation ofptaemid bearing and lacking cell
population together with acetate, a primary metiédabncentration was required that had
great importance for understanding the overall dyina. It was found that a rapid hike in
metabolite concentration at later stages of batdtuie might lead to the abrupt decline of
plasmid copy number, which was increasing previpugifter performing several
experiments in this direction, a plenty of factgasling competitive trend of parameter
dynamics had come forward to supplement our exjkimowledge. Plasmid copy number
dynamics was studied to evaluate the instabilityteda, thus most significant
consideration of the present work was to handlecttadlenge of plasmid instability with
respect to process duration.

4.1.1. Earlier work

According to the known biochemical mechanism stkipase binds to
plasminogen forming an "activator complex" that wems plasminogen into the
proteolytic enzyme plasmin. Streptokin