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ABSTRACT 

Remote sensing is an art and science of acquiring information about earth surface without 

actual contact with the earth surface. It gives data in the form of images which comprises 

of finite number of elements known as pixels. Such images which are obtained in from 

remote sensing needs to be processed and the easy and effective way is to do it digitally. 

Hence the field of digital image processing refers to processing of digital images by means 

of a computer. Digital image processing plays a key role in the field of image processing, 

image analysis, image enhancement and coding with a wide range of applications such as, 

classification, target/anomaly detection, mineral identification, super resolution mapping, 

etc. In remote sensing, the digital image processing methods are used for deriving the 

information from airborne and satellite borne images. 

 Remote sensing community has utilized the digital images obtained from airborne 

and satellite borne sensors and has made enormous progress in recent years. Based on the 

sensor specifications the digital image produced by each sensor varies in spatial, spectral 

and radiometric resolutions. Other components like dimension of the image, temporal 

resolution of the image, swath width of the image, etc., plays secondary role in some types 

of applications. Due to variation in spectral resolution we have panchromatic (single band), 

multi-spectral (few bands less than 10) and hyperspectral (100s of bands) data are 

available. In this research, the study has been done for hyperspectral data. The land use 

land cover classes on the earth's surface have different physical characteristics. 

Particularly, for a hyperspectral data, due to coarse spatial resolution pixels may contain 

two or more classes. Hence classification of hyperspectral data is a way to extract useful 

information from it. 

 But due to the large spectral dimension of hyperspectral data, it suffers while doing 

processing. Redundant information from hyperspectral data are carried every time. Also 

one of the important properties of hyperspectral data is that the neighbouring bands of 

hyperspectral data are highly correlated. Hence due to the collective reasons the 

hyperspectral data needs to be reduced. To reduce the hyperspectral data, in this research, 

the feature extraction techniques have been employed. The two feature extraction 

techniques employed here are wavelet based feature extraction and PCA based feature 

extraction. In wavelet based feature extraction three wavelet transforms have been used, 

namely, Haar wavelets, Daubechies wavelets and Coiflets wavelets. These wavelets along 

with its sub classes have also been utilized. For each of the sub classes, decomposition 
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upto 4 levels have been performed. In case of PCA based feature extraction two prominent 

techniques have been used, segmented PCA and spectrally segmented PCA. The 

evaluation of the feature extraction techniques has been done by calculating the 

classification accuracy. Also a study has been made to observe the duration of feature 

extraction, duration of classification, number of extracted features, relation between 

classification accuracy and number of reduced features, etc. 

 Once the features have been extracted from hyperspectral data, now it is ready for 

performing classification. Even though the number of bands reduced to significant level 

the algorithms used for multi-spectral classification are incapable of producing useful 

information. Hence for classification of hyperspectral data few algorithms exist in 

literature. For hyperspectral data also, the classification may be per pixel and sub pixel. By 

incorporating training pixels if the classification is done then it is called as supervised 

classification while with no help from training data if classification is done then it is 

unsupervised classification. Also if the statistical parameter extracted from the data are 

used then it is parametric classification and if not it is called as non-parametric 

classification. In this research all types of these classifications are touched and they are 

support vector machines (SVM) which is supervised, per pixel and non-parametric 

classifier while linear mixture model (LMM) is also supervised and non-parametric but sub 

pixel classification. Finally, the independent component analysis (ICAMM) which is 

parametric classification unsupervised but produces sub pixel outputs. The information 

extractions by each of these classification techniques are useful in one or the other way. 

 To have a study about the performance of these techniques, three hyperspectral 

datasets have been taken. Two AVIRIS datasets with different spatial resolutions 4m and 

20 m while one HYPERION dataset with spatial resolution 30m. The 20m spatial 

resolution dataset is named as dataset II covers by most of the region by vegetation and the 

classes are almost crisp. The 4m resolution data from HYPERON is named as dataset III 

which covers Roorkee and its surroundings covers by urban area and vegetation. Also 

some small classes like barren land, sand, etc., are also present in the dataset. Moreover the 

classes are not crisp enough to retrieve them back easily because of the nature of the land 

cover and the coarse spatial resolution. The next dataset is again from AVIRIS sensor but 

its airborne and hence a fine spatial resolution of 4m data is available. This data is over 

San Diego Naval Station and has many classes whose spectral signatures are almost 
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similar. The study of classification algorithms has been made on these three hyperspectral 

datasets. 

 When per pixel classification produces thematic map in which each pixel has been 

allotted to one and only one class while in sub pixel classification the fraction abundance 

of each class present in each pixel has been estimated. But that is not suffice until the 

spatial location has been estimated at sub pixel level. A solution to this problem may be 

achieved by super resolution mapping. In super resolution mapping, every pixel is divided 

into a specified zoom factor and each divided portion (sub pixel location) is filled by 

unique class thus making the original data into much finer spatial resolution. In this 

research, a novel super resolution mapping algorithm has been proposed, named as Pixel 

Filling Algorithm, to split each of the pixels and by gathering fractional abundance 

information from neighbouring pixels each sub pixel location may be filled by class 

values. This algorithm has been compared with existing super resolution mapping 

algorithm named as Pixel Swapping Algorithm. 

 Due to the novelty of the pixel filling algorithm, a synthetic dataset has been 

generated of dimension 45x60. This dataset has been reduced by two low-pass filters, 3x3 

and 5x5, to convert the data to dimensions 15x20 and 9x12 respectively. Now if super 

resolution mapping algorithm has been applied on the reduced dataset by appropriate zoom 

factors, 3 and 5, respectively then it is expected to get back the original data of dimension 

45x60. 

 At every stage of information extraction, the accuracy assessment has been 

performed. The feature extracted hyperspectral data are classified by SVM and then the 

conventional error matrix based accuracy assessment has been used. For sub pixel 

classification techniques the fuzzy error matrix based accuracy assessment has been 

performed. Finally, for super resolution mapping algorithms, the conventional error matrix 

based accuracy assessment has been performed but by taking three types of testing 

samples. 

 Among the feature extraction techniques studied here, Daubechies wavelets 

perform better in extracting useful information from hyperspectral data. The second level 

decomposition is better in both accuracy wise and feature reduction wise. Since for all the 

datasets only the first two decomposition levels give better overall classification accuracies 

the sub pixel classifications have been performed only to the first two decomposition levels 
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and that too only for Daubechies and its sub classes. In LMM has two solutions, 

constrained and unconstrained and there is no significant classification accuracies between 

them. The accuracy comes to be around 67%, 62% and 61% respectively for dataset II, 

dataset III and dataset IV. The ICAMM too extracts sub pixel information but due to 

unsupervised nature it retrieves some classes which are small enough to collect pure pixels 

from the three hyperspectral datasets. From dataset II, ICAMM retrieves railway track and 

non-metallic road and from dataset III, it retrieves noise free water body while from dataset 

IV it retrieves cylindrical drum, aircrafts, etc. In this way, each algorithm proves that it is 

superior over the other. 

 The results for super resolution mapping have been analysed for the two 

algorithms, the proposed pixel filling algorithm and pixel swapping algorithm. The pixel 

filling algorithm performs well in super resolving mixed pixels which are having 

complicated boundaries and simple boundaries while the pixel swapping works well for 

only classes having linear boundaries. The accuracy for pixel filling and pixel swapping 

algorithms has been given in ordered pairs (for easy comparison) (92%, 98%), (96%, 

90%), (97%, 91%) for datasets II, III, IV respectively for zoom factor 3 while for zoom 

factor 5 it is (91%, 94%), (90%, 70%), (90%, 70%) respectively. For dataset I, the overall 

accuracy of super resolved image by pixel filling algorithm gives 90.7% and 72.7% for 

zoom factors 3 and 5 respectively. Also the time required to perform super resolution 

mapping via pixel resolution mapping takes less than 10 seconds while by pixel swapping 

algorithm it takes more than a minute. Both in accuracy wise and duration for super 

resolution wise pixel filling algorithm is better than pixel swapping algorithm. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Changes on the earth surface are bound to happen. In the last few decades, global warming 

has been a big threat to the living species on the earth. Drought at one place and flood at 

another place are common phenomena. Two-third of the earth surface is covered by water 

whereas the remaining one-third is covered by land masses, which include a number of 

land use land cover types; built-up areas, vegetation, forest, inland water bodies, rivers, 

roads, deserts, barren lands, soil, sand, etc.  Conventional way of gathering information 

about the land use land cover via field surveys is time consuming and expensive. 

Moreover, the information at spatial level may not be extracted expediently from field 

surveys.  

 During last 4 decades or so, remote sensing has been found to be one of the 

cheapest and efficient ways in mapping and monitoring the land use land cover on the 

earth surface. The remote sensing sensors can collect data in spectral bands of visible to 

microwave region of the electromagnetic spectrum. Sensors which are capable of acquiring 

information in a single but wide spectral range produce panchromatic data while 

multispectral sensors are capable of collecting information in less number of bands (also 

called as features). No doubt, multispectral images provide more information than 

panchromatic but it is available in discrete bands. Due to significant improvement in 

sensor technology, the spectral bands can further be sub-divided into few more bands. 

Sensors which are capable of collecting information in hundreds of narrow width 

contiguous bands are now in existence. These sensors are called as imaging spectrometers 

and collect data as hyperspectral images. 

1.2 Hyperspectral Imaging  

A hyperspectral image is often represented as a hyperspectral image cube (Figure 1.1). In 

this cube, x and y axes represent the spatial position of the image while the z axis 

represents the spectral dimension. The number of bands acquired is the spectral dimension 

of the hyperspectral data. Hyperspectral sensors deal with imaging narrow spectral bands 
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over a contiguous spectral range and produce the spectra of all pixels in the scene. So a 

sensor with only 20 bands can also be hyperspectral when it covers the range from 500 to 

700 nm with 10-20 nm wide bands (while a sensor with 20 discrete bands covering the VIS 

(visible), NIR (near infra-red), SWIR (short-wave infra-red), MWIR (mid-wave infra-red), 

and LWIR (long-wave infra-red) is considered as multispectral) (Gonz´alez et al., 2010). 

Some prevalent hyperspectral sensors are DAIS 7915 (Digital Airborne Imaging 

Spectrometer with 79 bands), HyMap (Hyperspectral Mapper with 125 bands), HYDICE 

(HYperspectral Digital Imagery Collection Experiment with 210 bands), HYPERION 

(High Resolution Hyperspectral Imager with 220 bands), CASI 2 (Compact Airborne 

Spectrographic Imager with 288 bands), AVIRIS (Airborne Visible/Infrared Imaging 

Spectrometer with 224 bands). 

 

Figure 1.1: The hyperspectral cube. This cube is an AVIRIS hyperspectral image of the 

Leadville mining district in Colorado. The front of the cube is a true color composite, with 

areas containing secondary minerals from acid mine drainage highlighted in red, orange 

and yellow. This cube has been processed using ENVI (Source:  Shippert, 2004) 

 

 Hyperspectral imaging is a class of techniques commonly referred to as spectral 

imaging or spectral analysis. The perception of hyperspectral imaging originated at 

NASA’s Jet Propulsion Laboratory (JPL) in California, when they developed instruments 

such as the Airborne Imaging Spectrometer (AIS), then termed AVIRIS. As a result, each 

pixel of an image becomes pixel vector collected by a hyperspectral sensor and can be seen 
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as a spectral signature or spectral cure or fingerprint of the underlying materials within the 

pixel (Figure 1.2) (Gonz´alez et al., 2010). 

 

Figure 1.2: The concept of hyperspectral imaging (Source: Gonz´alez et al., 2010) 

 

 Several imaging tools have been developed for hyperspectral data processing in 

recent years, covering tasks such as data compression, dimensionality reduction, land 

cover classification, multi-source image fusion techniques, spectral mixture analysis (both 

linear and non-linear), etc. The primary assumption governing clustering and classification 

techniques is that each pixel vector comprises the response of a single underlying material. 

However, if the spatial resolution of the sensor is not high enough to separate different 

materials, these can jointly occupy a single pixel. The resulting spectral measurement will 

be a mixed pixel, that is, a composite of the few individual pure spectra. For instance, in 

Figure 1.2, it is likely that the pixel labeled as vegetation is actually a mixture of 

vegetation and soil or of different types of vegetation canopies. To deal with this problem, 



linear spectral mixture analysis (Foody and Arora, 1996

al., 2011) has been used. In fact, spectral mixture analysis has been a fascinating 

exploitation goal since the earliest days of hyperspectral imaging. No matter the spatial 

resolution, in natural environments the spectral signature for a nominal pixel is invariably a 

mixture of the signatures of the various materials found within the spatial extent of the 

ground instantaneous field view of the sensor. 

Figure 1.3: Curse of dimensi

 

Figure 1.4: Hughes phenomenon

 Since hyperspectral images contain rich and fine spectral information, an 

improvement of land use/cover classification accuracy is highly expected from the 

utilization of such images. However, the traditional statistics

which have been successfully applied to multispectral data in 
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to hyperspectral data. One major issue is that the number of spectral bands is too large 

relative to the number of training samples (Figure 1.3). 

 Due to the small number of training samples and the high number of features 

available in remote sensing applications, reliable estimation of statistical class parameters 

is another challenging goal (Foody et al., 2004). As a result, with a limited training set, 

classification accuracy tends to decrease as the number of features increases. This is 

known as the Hughes phenomenon (Hughes, 1968) (Figure 1.4). High dimensional spaces 

have been demonstrated to be mostly empty, thus making density estimation even more 

difficult (Plaza et al., 2009). 

 

1.3 Issues in Dimensionality Reduction 

Reducing the high dimension data set into lower dimension without sacrificing significant 

information of interest is thus one of the significant steps in hyperspectral image 

processing. In hyperspectral image classification, effective features are those which are 

most capable of preserving class separability (Hsu, 2000). Here features represent bands. 

After feature reduction, a subset of features is obtained. But, preserving the useful 

information from hyperspectral sensor is the key issue in feature reduction, which demands 

for development of appropriate algorithms. The meaning of reduction of hyperspectral data 

means the reduction in the spectral dimension by keeping the spatial dimension unaltered. 

So this reduction is called as feature reduction or dimension reduction. Feature reduction 

of hyperspectral data may be done by two ways, either by feature selection or by feature 

extraction. 

(i) feature selection – selecting an optimum number of subsets from original data 

that allow the user to extract the land cover information as accurate as possible. 

(ii) feature extraction - allows transforming the original data into a new feature 

space, from which the salient features (i.e., reduced feature space) are taken for 

further processing to derive information. 

 Feature selection has the advantage of preserving the relevant original information 

from the data (Adolfo Martínez-Usó et al., 2007; Archibald and Fann, 2007). Some of the 

feature selection methods used for reducing hyperspectral data are sequential forward 

selection (SFS), sequential backward selection (SBS), sequential forward floating selection 

(SFFS), sequential backward floating selection (SBFS) (Somol et al., 1999), distance 
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measures (Bhattacharya distance, Mahalonobis distance, JM distance, etc.,), divergence 

analysis, steepest ascent, fast constrained search, feature similarity measure, graph 

searching algorithms, neural networks, genetic methods, tabu search meta-heuristics, 

spectral distance metrics, parametric feature weighting, spatial autocorrelation, band 

ratioing, wavelet based feature selection, etc. Standard feature selection methods based on 

class separability measures such as divergence, JM distance and transformed divergence 

may not be used effectively as a result of several considerations (Chang 2007), 

(i) First, the number of permutations of band subsets is intensively large for 

hyperspectral data and hence practically impossible. 

(ii) Second, the resulting subsets may not be as information-rich as the features 

consisting of linear combinations of bands generated by transformation-based 

methods for feature reduction (Richards and Jia, 1999). 

 

 Optimal search algorithms identify the subset that contains a prefixed number of 

features and that is the best in terms of the adopted criterion function, whereas suboptimal 

search algorithms select a good subset that contains a prefixed number of features but that 

is not necessarily the best one. Due to their combinatorial complexity, optimal search 

algorithms may not be used when the number of bands is larger than a few tens. In these 

cases, (which obviously include hyperspectral data), the use of suboptimal algorithms 

become mandatory (Serpico, 2007). 

 The goal of feature extraction is to reduce the number of dimension substantially 

without sacrificing significant information (Hsu, 2007). Feature extraction may require the 

whole (or most) of the original data representation to extract the new features, forcing to 

always obtain and deal with the whole initial representation of the data. In addition, since 

the data are transformed, some critical information may have to be compromised and 

distorted (Martínez-Usó et al., 2007). But feature extraction methods are more effective 

than feature selection methods (Serpico and Moser, 2007). 

 Some of the standard feature extraction techniques are principal component 

analysis ((PCA) (Richards, 1993; Jensen and Walts, 1997; Schowengerdt, 1997), 

segmented principal component analysis (SPCA) (Jia and Richards, 1999), the decision 

boundary method (Lee and Landgrebe, 1993), independent component analysis (ICA) 

(Hyvarinen et al, 2000; Robila et al., 2000), orthogonal sub-space projection (OSP) 

(Harsayani and Chang, 1994), projection pursuit (PP) (Ifarraguerri and Chang, 2000), 
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wavelet transformation (Cheriyadat and Bruce, 2003; Zhang et al., 2014), discriminant 

analysis feature extraction (DAFE) (Landgrebe, 2003; Fukunaga, 1990), penalized 

discriminant analysis (Hastie et al., 1995; Ye et al., 1999), kernel Fisher discriminant 

(Muller et al., 2001; Baudat and Anouar, 2000; Mika et al., 1999), projection pursuit (PP) 

(Jimenez and Landgrebe, 1999), decision boundary feature extraction (DBFE) (Lee and 

Landgrebe, 1993). 

 The PCA involves the eigen value analysis of the co-variance matrix obtained from 

the given data (Cheriyadat and Bruce 2003, Gonzalez and Woods, 2001). The popularity of 

PCA is due to its simplicity and ease of use. However, the PCA may not be an optimal 

method for feature extraction in classification and target detection applications. Cheriyadat 

and Bruce (2003) have demonstrated the ineptness of PCA in extracting discriminating 

features from certain data distributions. The higher order principal components (PCs) do 

not always guarantee retention of the discriminatory information present in the original 

feature space. It has also been shown that for certain cases of data distribution, the 

transformed features derived using PCA do not provide better discrimination than the 

original subset of features. Under a supervised classification problem, the authors 

investigate the use of a class specific co-variance matrix as the basis of transformation, 

which leads to different Karhunen-Loeve transformation (KLT) methods.  When the 

original bands are highly correlated, PCA works efficiently, while for poorly correlated 

data it yields little change (Shah et al., 2002) 

 The special characteristic of hyperspectral data is the peaks and valleys of spectral 

response of classes. But PCA fails to retain these sharp variances in the spectral response 

of classes (Cheriyadat and Bruce, 2003). Higher order principal components do not always 

retain desired distinct features. Therefore, alternative feature extraction methods for better 

performance in target detection and supervised classification with hyperspectral data has 

been suggested by Tsai et al. (2007). 

 When feature extraction techniques have been applied to hyperspectral data, the 

principal components analysis (PCA) outperforms those feature extraction techniques that 

are based on class statistics. But there are limitations in using PCA. First, it requires high 

computational load. Second, the variances of spectral bands in the short wavelength region 

are much higher than the remaining bands if the data are not calibrated. Finally, PCA 

operates on global statistics and thus it may overlook the local variances that are helpful 

for the detection of targets and anomalies (Cheriyadat and Bruce, 2003). 
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 Hyperspectral data have the property in which the correlations between 

neighboring spectral bands are generally higher than for bands further apart, with high 

correlations appearing in blocks. If the conventional PCA is modified so that the 

transformation is carried out by avoiding the low correlations between the highly 

correlated blocks, the efficiency of the PCA will be improved. Highly correlated bands are 

selected as the subgroups in a segmented PCA (SPCA) scheme so that the PCA works 

efficiently, since it depends on redundancy reduction. Moreover, the difference between 

the transformed data obtained by conventional PCA and that from the new scheme will be 

minimized when the new bands corresponding to the high eigen values in all subgroups are 

kept. The solar spectrum weighting imposed on each band within a subgroup, 

corresponding to a narrow region of wavelength, tends to be relatively uniform. Therefore, 

the bands in a subgroup with similar variance will not suffer from the bias problem that 

occurs with a conventional PCA (Jia and Richards 1999). 

 The classical feature extraction techniques contribute little to class separability. 

Canonical analysis and discriminant analysis feature extraction are often useful when 

applied to multispectral data, but have disadvantages when applied to hyperspectral data. 

These include difficulty in calculating covariance matrices with high dimensional data, and 

unreliability of extracted features when the classes have similar means or when a class has 

a very different mean from other classes (Richards and Jia, 2006; Hsu, 2007).  

 Recently, a multi-resolution technique from wavelets has been introduced to study 

hyperspectral data for feature extraction (Moon and Merenyi, 1995; Bruce et al. 2002). 

Wavelets have been used to detect crop zinc stress assessment (Liu et al., 2011) for 

hyperspectral image. A wavelet is a mathematical function used to divide a signal or vector 

into different frequency components, affording analysis of each component with scale 

dependent resolution. A wavelet transform is the representation of a function by wavelets. 

The strength of the wavelet transform for hyperspectral feature extraction lies in this ability 

to analyse signal at different resolution or scales (Bruce et al., 2001). The advantages of 

multi-scale representation of hyperspectral data are twofold. First, subtle variation in 

spectral features in the original hyperspectral data may be detected at different scales (Hsu, 

2007). Second, the useful information is represented by fewer wavelet features, effectively 

compressing the data (Bruce et al., 2002; Peng et al., 2013; Banskota et al., 2011). 

 Although some wavelet-based methods, such as the matching pursuit, the non-

linear wavelet feature extraction (WFE) and the best basis algorithms (Kumar et al., 2001) 
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are based on the best approximation for data representation, they are effective for 

classification. Especially, the nonlinear wavelet-based methods are more effective for 

classification than linear methods. In some circumstances, the matching pursuit basis had 

better results than the best wavelet packet basis (Hsu, 2007). However, it has been 

demonstrated that the reduction of features will be in powers of two may lead to either 

reducing more features with loss of some useful information or taking more features for 

further processing (Richards and Jia, 2006). 

1.4 Image Classification 

Similar to classification of multispectral data, here also the classification of hyperspectral 

data may be done by two ways, per pixel classification and sub pixel classification. In per 

pixel classification, each pixel is allotted to one and only one class while in case of sub 

pixel classification, the proportion of class availability in each pixel is determined.  

1.4.1 Issues in Per Pixel Classification 

 In hyperspectral image analysis, especially in classification and detection 

applications, spectral characterization plays a more crucial role. To determine spectral 

variability, similarity, discrimination or divergence, many spectral measure criteria that 

calculate different distance metrics have been proposed over the past few decades. These 

include maximum likelihood decision metric, spectral angle mapper (SAM), spectral 

correlation mapper (SCM), spectral information measure (SIM), Euclidean minimum 

distance (EMD), spectral gradient angle (SGA), and band add-on spectral angle mapper 

(BAO-SAM). Appropriate distance metrics employed in hyperspectral data processing for 

classification and detection application can produce accuracy classification by describing 

spectral characteristics in mathematical or physical meaning properly (Wang et al., 2009). 

 In N dimensional multi-(or hyper) spectral space, a pixel vector x has both 

magnitude (length) and an angle measured with respect to the axes that defines the 

coordinate system of the space (Richards and Jia, 1996). In the Spectral Angle Mapper 

(SAM) technique for identifying pixel spectra, only the angular information is used. SAM 

is based on the idea that an observed reflectance spectrum can be considered as a vector in 

a multidimensional space, where the number of dimensions equals the number of spectral 

bands. If the overall illumination increases or decreases (due to the presence of a mix of 

sunlight and shadows), the length of this vector will increase or decrease, but its angular 

orientation will remain constant (Richards and Jia, 1996). The limitations of SAM are: 
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(i) The SAM algorithm may not distinguish between positive and negative 

correlations because a spectral angle value measured by SAM may be generated 

from two spectral vectors with random interrelation (Wang et al., 2009). 

(ii) Further, due to sensitivity to the additive factor in the feature space, the SAM 

holds high false alarm rate generally (Wang et al., 2009). The SAM may also 

fail if the vector magnitude is important in providing discriminating 

information, which it will in many instances. 

 Therefore, during last decade or so, a number of machine learning algorithms have 

become popular in producing image classification for hyperspectral data. These include 

Artificial Neural Network (ANN) (Foody et al., 1997, Carpenter et al., 1999) and, decision 

tree classification (Richards and Jia, 1999; Pal, 2006; Watanachaturaporn et al., 2008), 

support vector machines (Brown et al., 2000; Watanachaturaporn and Arora, 2004; Sun et 

al., 2013). These techniques are attractive as they do not suffer from the problem of 

dimensionality as observed in many statistical classifiers. There are several studies 

conducted on the use of ANN for per pixel classification from multispectral data (Foody et 

al., 1997).  

However, ANN has two limitations particularly in reference to hyperspectral data, 

(i) First, as in any neural network, the number and sizes of the hidden layers need 

to be set. Generally, the problem is over specified and some form of pruning is 

used to generate a minimum network that will solve the problem at hand. 

Nevertheless, the issue is not straightforward (Chang, 2007). 

(ii) Second, a very large number of iterations are often required to find a solution 

which leads to computation overload. 

 

 Support Vector Machines (SVMs) are large margin classifiers that exploit the 

principles of the statistical learning theory (Vapnik 1998). If an L2-norm regularizer is 

used, the optimization problem related to the learning of SVMs can be represented as a 

quadratic convex optimization problem with inequality constraints. For such optimization 

problems in nonlinear optimization theory, duality is preferred. Thus, SVMs are often 

solved in dual representation by introducing Lagrange multipliers. However, this is not 

mandatory since one can also implement SVMs in the primal representation (Chapelle, 

2007; Bruzzone, 2007; Chi et al., 2008). 
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 Although, SVM appears to be the most appropriate classifier for any hyperspectral 

image classification problem, however, its major limitation lies in the selection of 

appropriate kernel function, selection of the suitable multiclass method and the choice of 

appropriate value of the parameters for the selected kernel function. Moreover, SVMs also 

have high algorithmic complexity and extensive memory requirements due to quadratic 

programming in applications requiring a large datasets. The computational complexity also 

increases in case of non-linear SVM when the data are projected into higher dimension it’s 

computationally expensive. 

1.4.2 Issues in Sub Pixel Classification 

In per-pixel classification, each pixel is assigned to one and only class, whereas in case of 

sub-pixel classification the fraction abundance tells the proportion of available classes in 

each pixel. The hyperspectral sensors which are efficient to collect fine details from the 

ground, are useful to identify the type of vegetation, the type of mineral and the objects 

present in the image. For example, Apan et al. (2004) used EO-1 Hyperion hyperspectral 

imagery to detect disease in sugarcane. Various researchers used hyperspectral data to find 

fine details from the image. Asner and Heidebrecht (2002) used hyperspectral data to 

unmix the land cover classes vegetation, soil and dry carbon cover in arid region. Here 

they compared the output with multispectral data output. Benediktsson and Kanellopoulos 

(1999) and Benediktsson et al., (2005) used hyperspectral data for classification which 

covers urban area and to separate the bright and dark regions, and applied mathematical 

morphology as a pre-processing step. Okin et al. (2001) discussed about some practical 

difficulties on hyperspectral vegetation discrimination in arid and semiarid environments.  

 From the literature, it can also be deciphered that the typical algorithms used for 

sub-pixel classification of hyperspectral data are linear mixture modeling (Lu et al., 2003; 

Kasetkasem, 2011; Shanmugam et al., 2006, Shanmugam and Abhishekh, 2006), 

orthogonal subspace projection (Kwon and Nasrabadi, 2005), independent component 

analysis mixture model (Shah et al., 2004), etc. 

 The linear mixing model has been widely used due to its strong tie between the 

mathematical foundations of the model and the physical processes of mixing that result in 

much of the variance seen in hyperspectral imagery. However, issues arise when the basic 

assumptions of the model are violated and it fails to accurately represent the nature of 

hyperspectral imagery. One such situation is nonlinear mixing.  Another reason is the 
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assumption that mixtures of a small number of deterministic spectra can be used to 

represent all of the non-noise variance in hyperspectral imagery. 

 Depending upon whether or not the constraints are imposed, there are 

unconstrained or constrained approaches and hence two solutions. The end member spectra 

are generally assumed to be pure. However, for certain land cover studies obtaining 

required number of end member spectra is quite impossible. This is particularly true when 

the signatures are extracted directly from an image scene with no precise knowledge of 

ground truth. So the orthogonal subspace projection tackles some of these limitations. 

 The idea of OSP is to divide the p substances into two classes, desired substance 

class and undesired substance class. Without loss of generality, we assume that the desired 

substance class contains only one single substance and undesired substance class consists 

of the remaining p – 1 substances. 

 It is also well-known that linear classifiers fail when the data are not linearly 

separable. However, by transforming the original data into a much higher dimensional 

space (feature space) by using an appropriate non-linear mapping, the mapped data will 

probably become linearly separable in the high-dimensional feature space where a linear 

classifier can be applied (Sebastiano, 2001). 

 In real imagery, when light reflects off surfaces that are composed of an intimate 

mixture of various material components that cause multiple bounces, spectral mixing tends 

to become nonlinear (Keshava and Mustard, 2002; Keshva, 2003). But both LMM and 

OSP are linear algorithms based on a linear mixture model, which do not exploit the higher 

order correlations between the spectral bands nor it addresses the nonlinear mixing of the 

spectral signatures that are encountered in real data. Therefore, LMM and OSP are not 

flexible enough to fully exploit the complex data structure encountered with real 

hyperspectral imagery. The higher order statistics which are useful in discriminating 

classes is not possible by LMM and OSP. So ICAMM, an unsupervised classifier, which 

exploits the higher order statistics, came into existence. 

 The ICA mixture model (ICAMM) algorithm vfiews the observed data as a mixture 

of several mutually exclusive classes. Each of these classes is described by a linear 

combination of independent components with non-Gaussian densities. The ICAMM 

algorithm finds independent components and the mixing matrix for each class using an 

extended information-maximization learning algorithm and computes the class 
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membership probability for each pixel. The pixel is allocated to the class with the highest 

posterior class probability to produce the classification map (Hyvärinen and Oja, 2000, 

Shah et al., 2004). Nevertheless, some limitations of ICAMM are (Hyvärinen and Oja 

2000), 

(i) The independent components may have at most one non-Gaussian distribution. 

(ii) It requires lots of computation in finding the fraction abundance, particularly if 

the number of bands is more than the number of classes. 

(iii)We cannot determine the variances (energies) of the independent components. 

(iv) We cannot determine the order of the independent components (Hyvärinen and 

Oja 2000). Since the extraction of mixing matrix starts from random 

initialization of mixing matrices, the clusters permute with respect to the other 

clusters. The order of fraction abundance values need not same for every run.  

The fraction maps derived from the sub pixel classification may provide more useful land 

cover information as compared with that derived from hard classification techniques. 

However, the spatial distribution of each class in these mixed pixels may not be 

ascertained from sub-pixel classification outputs. Only the building areas could be 

estimated more precisely using sub-pixel classification technologies, whereas the 

boundaries of the urban buildings could not be determined (Ling and Fu, 2009). To find 

details upto that level, super resolution mapping may be helpful. The art of producing fine 

spatial resolution map from a coarse spatial resolution is called super resolution mapping. 

1.5 Issues in Super Resolution Mapping 

Super resolution mapping is a promising technology for prediction of the spatial 

distribution of each class at the sub-pixel scale. This distribution is often determined based 

on the principle of spatial dependence and from fraction images derived with sub-pixel 

classification technology. This technology uses the fraction maps derived with sub pixel 

classifications as input and converts them into high resolution maps based on the land 

cover spatial pattern, which is often described with the maximum spatial dependence 

principle. The super resolution mapping has its origin by converting a single gray scale 

image into finer by simply dividing the pixels and rearranging according to the 

neighbouring pixels. Current super-resolution mapping methods include the Hopfield 

neural network (HNN) (Tatem et al., 2003), linear optimization (Verhoeye and Wulf, 

2002), genetic algorithm (Mertens et al., 2003), feed-forward neural network (Mertens et 

al., 2004), Markov random field (Kasetkasem et al., 2005), pixel swapping (Atkinson 
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2005; Thornton et al., 2006), simulated annealing (Makido et al., 2007) and geostatistical 

methods (Boucher and Kyriakidis, 2006; Boucher and Kyriakidis, 2007).  

 Super resolution mapping of a hyperspectral image has been done by artificially 

multiple-sub-pixels shift of the original data. Also, by fusion of multi-observation images 

by sub-pixel shifted to get more accurate image of higher spatial resolution than the 

original observations. This can be done by iteratively back propagation algorithm (Peleg et 

al., 2002; Mianji et al., 2009a; Mianji et al., 2009b; Lu et al., 2010). 

 To map a certain features alone like roads, water bodies, by giving the characters of 

that particular feature the super resolution map has been obtained (Foody et al., 2005, Ling 

et al. 2008, Akgun et al., 2005). Super resolution mapping algorithm based on an MRF 

model has also been proposed. It is assumed that a super resolution map (SRM) has MRF 

properties, i.e., two adjacent pixels are more likely to belong to the same land cover class 

than different classes. By integrating this fact into the model, a large number of 

misclassified pixels, which often appear as isolated pixels, are removed from the resulting 

SRM (Kasetkasem et al., 2005). By using multiple sub-pixel shifted remotely sensed 

images super resolution map will be obtained (Ling et al., 2010). Low-resolution pixels in 

these remotely sensed images contain different land-cover fractions that can provide useful 

information for super-resolution land cover mapping. Here, by constructing a Hopfield 

Neural Network (HNN) model the sub-pixels are mapped by sub-pixel shift of the original 

image (Ling et al., 2010). Maximum spatial dependence is the goal of the proposed model, 

and the fraction maps of all images are constraints added to the energy function of HNN 

(Ling, 2009). The drawbacks of this technique are:  

(i) The information on accurate boundary feature (i.e., the reference data) may not 

be readily available. 

(ii) It does not consider the spatial dependence within and between pixels. 

 A spatial-spectral data fusion technique was discussed by Mianji et al., (2010). In 

this algorithm, the four main steps used are endmember extraction, spectral unmixing, 

training of the SRM algorithm and super resolution mapping.  Here training data are taken 

from high spatial resolution hyperspectral image. Based on the assumption of spatial 

correlation of the land cover classes, simulated annealing is used to optimize a function 

where spatial proximity of pixels belonging to the same land cover class is preferred (Villa 

et al., 2011). 
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1.6 Research Gaps 

From the brief review presented above, a few research gaps in extracting information from 

hyperspectral data have been identified as,  

1. A number of feature extraction algorithms for hyperspectral have been 

developed each having its own limitations. The efficacy of these techniques on 

hyperspectral data have yet to be established. There appears to be no work 

conducted in the direction of evaluating the quality of features obtained from 

feature extraction techniques.  

2. The computational load of SVM is heavy and the parameter fixation of SVM 

has always been an issue to investigate.  

3. The ICAMM for various types of datasets with various spatial resolutions needs 

to be explored. The classifier has been studied less for extracting fraction 

outputs from hyperspectral data.  

4. While producing super resolution map from a hyperspectral image, the basic 

assumption is that the spatial proximity of pixels belonging to the same land 

cover class is preferred. But classes may fall in the center of the pixel also, 

which has not been studied earlier.  

5. Targets/anomalies which fall at the inner portion of a pixel via super resolution 

mapping have not been addressed.  

6. Attention is required to perform accuracy assessment for super resolved image 

only for super resolved mixed pixels.  

1.7 Objectives of the Research 

The main objective of this research is to produce a fine spatial resolution map after 

applying various feature extraction techniques, per pixel and sub-pixel classification in a 

sequential manner. In this process, several specific research objectives have been defined,  

1. Investigating the use of wavelet and PCA based techniques for feature 

extraction.  

2. Assessing the usefulness of SVM for extracting information at per pixel level 

from hyperspectral data.  
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3. Study and implementation of supervised and unsupervised techniques for 

extracting information at sub-pixel level from hyperspectral data.  

4. Development of a novel algorithm to produce super resolution map from 

hyperspectral data.  

5. Accuracy assessment of extracting information from hyperspectral data at each 

stage. 

1.8 Overview of Methodology 

The methodology framed to fulfill the aims of these research objectives includes several 

processing steps, namely, feature extraction, per pixel and sub-pixel classification and 

super resolution mapping of hyperspectral data and is portrayed in  Figure 1.5. Three 

hyperspectral datasets have been used for experimental purposes which are from different 

sensors, different spatial and spectral resolutions and different types of datasets. Two 

datasets from AVIRIS sensor with spatial resolution 20 m and 4 m respectively and one 

HYPERION dataset which is of spatial resolution 30 m. Details of these datasets have been 

provided in Chapter 3. 

1.8.1 Feature Extraction of Hyperspectral Data 

From the three hyperspectral data sets, the features are reduced by two feature extraction 

techniques: wavelet based and PCA based approaches. Three families of wavelets, namely, 

Haar, Daubechies, and Coiflets have been used. The features are extracted by decomposing 

each of the pixel vectors of hyperspectral data at 1-level decomposition to 4-level 

decompositions. A total of 32 different extractions have been performed for each dataset. 

The other feature extraction technique is based on PCA applied to segments depends upon 

the spectral nature of the classes. The spectral region is divided into four segments namely, 

visible, NIR, SWIR – I and SWIR – 2. Now PCA is applied on each of the segments and 

only first few PCs from each segment have been collected for further investigation. 



[17] 

 

 

Figure 1.5: The overall methodology adopted in this research 

  

1.8.2 Classification of Hyperspectral Data 

The extracted features from each of the datasets form the input data to the per- and sub-

pixel classification algorithms. The supervised per pixel classification, supervised sub 

pixel classification and unsupervised sub pixel classification by SVM, LMM and ICAMM 

respectively have been performed. 

 The main advantage of using SVM classifier for hyperspectral data classification is 

that it requires less training samples. Particularly here, in dataset I, number of available 

pixels for classes’ alfalfa, grass/pasture-mowed and oats are very less whose number of 

training pixels are 22, 18 and 11 respectively. For dataset II, the number of pixels for class 

sand is less and for dataset III class vegetation is having only 32 pixels for training.  

 Here, one-against-one SVM classifier has been used with tolerance value 0.0001 

and penalty value one to extract the classes.  
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been used to extract classes from the datasets. Here in dataset I, there is a highway running 

across east to west on the top of the dataset for which pure pixels are not available. Also

dataset III, some metallic objects like aircraft, metallic cylinder may not be extracted using 

LMM but possibly by ICAMM. In this study the proportionality constant involve in 

updating the mixing matrix has been studied for various spatial resolution, various t
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Figure 1.6: (a) Abundance fraction got from spectral unmixing, (b) Random initialization 

of sub-pixels according to zoom factor, (c) Final map after super resolution mapping 

algorithm is performed,  (d) PTS and its surrounding pixels, (e) Arrangement of subpixels 

of PTS, (f), (g), (h) respective weights to be convolute with neighbouring pixels.

 

1.8.3 Super Resolution Mapping 

To super resolve each of the pixels in the hyperspectral data, the class proportion of each 

of the pixels are required. The spatial proximity of

The pixel to be super resolved is divided into z

odd). First total number of sub pixels to be mapped to each of the classes is calculated and 

then a linear combination is calculated by taking the number of classes to be mapped 

multiplied with the weights, where the weights depends upon the spatial location of the sub 

pixel. In this algorithm, for zoom factor z, the total number of weights are (z + 1)/2. These 

weights vary from 8 to 17. For z = 3, there are 2 weights 8 and 17. For z= 5, there are 3 

weights and they are w1 = 8, w2 = 13 and w

depend upon the corresponding diagonal pixel and the two pixels adjacent to PTS on the 

same side in which it presents.  
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 There are 4 types of sub pixel locations in PTS and they are filled in their own way. 

They are (i) middle sub pixel (only one sub pixel), (ii) corner sub pixels (denoted by C) (4 

sub pixels), (iii) pixels which falls on the middle line (both horizontal and vertical) but not 

middle sub pixel, (iv) Remaining sub pixels. For zoom factor z, there could be only (z + 1)/ 

2 levels. Then weight matrices (Figure 1.6) for each class have been calculated by linear 

combination of the number of sub pixels along with the level at each sub pixel location. 

Greater the value the sub pixel is occupied by the class attributes from the corresponding 

matrix. 

 Since SVM output has been subsampled by 3x3 or 5x5 low-pass filter, only the best 

output from SVM classified for all the datasets are taken for super resolution mapping.  

 The quality of derived outputs at various stages of processing has been assessed 

based on conventional error matrix (Story and Congalton, 1986; Congalton, 1991) based 

accuracy assessment procedures, namely, overall accuracy, user’s accuracy, producer’s 

accuracy and kappa coefficients. The quality of feature extraction has been assessed by 

finding out the accuracy of classification (by SVM) obtained from the extracted features 

used. For sub pixel classification, fuzzy error matrix has been generated for each fraction 

output. Due to the non availability of reference or the ground data, the best classification 

output from SVM has been taken as reference data. In case of super resolution mapping, 

the accuracy of super-resolved map at fine spatial resolution has again been assessed using 

conventional error matrix based accuracy measures. Also small patches of mixed pixels, 

mixed by 2 classes, mixed by 3 classes have been taken as testing pixels for spatial 

accuracy assessment. 

1.9 Organization of the Thesis 

The thesis has been systematically organized into seven chapters including the current 

chapter on introduction. In this chapter, the motivation of the work has been given 

followed by a brief introduction to hyperspectral imaging. Some issues on the processing 

of hyperspectral data have been discussed. From that a set of research gaps has been 

identified. Research gaps helped in framing the research objectives. A skeleton of the 

overall methodology to fulfill the objectives is also given. 

 A brief literature review has been given in Chapter 2 for all the various processing 

tasks. Literature review has been done on three major topics including feature extraction of 

hyperspectral data, classification of hyperspectral data and super resolution mapping of 



[20] 

 

hyperspectral data.  A description on PCA and wavelet based feature extraction techniques 

for feature extraction of hyperspectral data and per pixel and sub pixel classification 

algorithms has been provided. Review on SVM classification, LMM classification and 

ICAMM classification algorithms have been given. Finally, a review on super resolution 

mapping has been given for hyperspectral data. 

 In Chapter 3, introduction of the datasets has been given which is followed with a 

detailed methodology which includes training data, testing data and implementation 

details. 

 The feature extraction of hyperspectral data part has been described in Chapter 4. 

Besides the description of feature extraction of hyperspectral data, wavelet based and PCA 

based techniques have been elaborated. The mathematical background and implementation 

of those techniques has been given. Finally results got from feature extraction techniques 

have been discussed. 

 In Chapter 5, mathematical background and techniques of the three classifiers 

SVM, LMM and ICAMM have been given. Then the methodologies of each classifier have 

been described followed with accuracy assessments and observations from the result for all 

the hyperspectral datasets have been explained. The chapter concludes with a discussion of 

results. 

 A separate chapter has been dedicated to super resolution mapping and it is 

Chapter 6. The description of a novel super resolution mapping algorithm, developed here, 

has been given. The details of pixel swapping algorithm have also been provided 

described. It followed by description of the methodology, experiments, results and 

discussion on super resolution mapping from hyperspectral data. 

 Finally, the conclusions derived from this research have been narrated in Chapter 

7. A few recommendations and possibility of future work have also been suggested in this 

chapter. At the end of this thesis, lists of references and recent publications have been 

given. 



 

 

Chapter 2  

Literature Review 

 

2.1 Introduction 

The urge to know more about the earth surface is ever increasing. Remote sensing has 

become a viable technology to extract information about the earth surface on almost real 

time basis. The remote sensing data are now available at many different spatial, spectral, 

radiometric and temporal resolutions. The spectral resolution has been enhanced from a 

panchromatic image to hyperspectral images and in future to ultraspectral also. The 

hyperspectral sensors, which are capable of acquiring information in contiguous, narrow 

width wavelength bands and that too in hundreds of bands offer lot of information about 

earth’s surface.  These data are being used in a number of applications such as studying 

types of vegetation species (Tipping, 2000, 2001), (Okin, 2001), coastal vegetation 

mapping (Schmidt et al., 2004), detecting disease in vegetation (Apan et al., 2004), 

mineral exploration (Neville et al., 2003), soil classification, military target applications 

(Arora and Tiwari, 2013), urban environment, (Pathak and Dikshit, 2004a; Pathak and 

Dikshit, 2004b), estimating grassland biomass, (Clevers et al., 2007), retrival of images 

(Sawant, et al., 2006) etc. Therefore, to extract information for a range of applications, 

visual interpretation of hyperspectral data may not efficient. The data have to undergo 

several digital image processing operations to derive desired, effective and quality 

information in an efficient manner. 

 However, the voluminous hyperspectral data are fraught with difficulties of long 

processing time. Also, at times the data acquired in neighbouring contiguous bands may be 

highly correlated. It is therefore necessary to reduce the number of bands without 

compromising on the quality of information extraction. Further, typically, supervised 

image classification is applied to extract the information from hyperspectral data, which is 

highly dependent on the size of the training data which in turn depends upon the number of 

bands used for classification. Sufficient training data are required to be input to the 

classification process in order to avoid Hughes’ phenomenon (Hughes, 1968). Collection 

of pure training data has always been a difficult task due to time, money and other 

constraints. It is therefore expedient to reduce the feature space thereby reducing the 

training data size requirement and hence satisfy the Hughes’ phenomenon.  
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 The feature reduction of hyperspectral data may be possible by feature extraction 

(FE); projecting the original data set onto adequate sub-spaces. Feature extraction 

algorithms are categorized into two main approaches: supervised and unsupervised feature 

extraction. Principal component analysis (Fukunaga, 1990), independent component 

analysis (Hyvarinen and Oja, 2000), unsupervised linear feature extraction (Rodriguez et 

al., 2007) and maximum noise fraction (Green et al., 1988) are examples of unsupervised 

feature extraction techniques. The most common feature extraction technique employed in 

remote sensing data analysis is the principal component analysis (PCA). Since PCA 

operates on global statistics, it may overlook local variances that are helpful in 

classification. PCA may not necessarily be an optimal method for feature extraction of 

hyperspectral data (Cheriyat and Bruce, 2003) especially for target detection and 

supervised classification applications. Jia and Richards (1999) presented a segmented PCA 

(SPCA) procedure to extract the best principal components. However, if the goal is to 

detect a specific plant type, it may not be an efficient way to segment spectral bands. To 

identify a predetermined plant species a spectrally segmented PCA system specifically 

designed (Tsai et al., 2007) for hyperspectral remote sensing imagery. Also wavelets have 

been used to extract important features and signature classification of hyperspectral data 

(Bruce et al., 2002).  Once the feature reduction of hyperspectral data has been achieved, 

then the classification algorithms may be applied on the reduced datasets. By mapping 

each pixel to single land cover class, a per-pixel classification may be obtained whereas 

finding the proportion of class present in each pixel results into a sub-pixel classification. 

Some of the commonly used per pixel classification algorithms include Maximum 

Likelihood Classification (MLC) (Song et al., 2005), Decision Tree Classification 

(Brodley et al. 1996), Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), 

Spectral Information Measure (SIM), Euclidean Minimum Distance (EMD), Spectral 

Gradient Angle (SGA), Band Add-On Spectral Angle Mapper (BAO-SAM), Support 

Vector Machines (SVM) (Melgani and Bruzzone, 2002; Huang et al., 2002), Evidential 

Reasoning (ER), Artificial Neural Networks (ANN) (Foody and Arora, 1996; Mohan, 

2000; Reddy and Mohan, 2005, Foody et al., 1997), Decision-Tree Regression (Min et al., 

2005; Goel et al., 2003), Logistic Regression (Cheng et al., 2006), relevance vector 

machine (Demir and Erturk, 2007), etc. Each of these algorithms has its own advantages 

and disadvantages when handling hyperspectral data. In a similar way, few sub pixel 

classification algorithms have also been used in classification of hyperspectral data. Some 

of the algorithms used in information extraction of hyperspectral data are MLC in soft 
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form, Linear Mixture Model (LMM) (Foody and Arora, 1996; Heinz and Chang, 2001; 

Kasetkasem et al., 2011; Dias et al., 2012), Fuzzy set based methods, Independent 

Component Analysis Mixture Model (ICAMM), (Hyvarinen et al., 2001; Robila and 

Varshney, 2002; Wang and Chang, 2006), probabilistic SVM (Platt, 1999; Villa et al., 

2011), etc.  

 The class proportions (also known as fractional abundance) of each pixel may be 

useful information in many applications but the spatial location of a class within each pixel 

is not available from the sub-pixel classification outputs. The solution to this problem may 

be obtained through super resolution mapping. Thus, the output from super resolution 

mapping is a finer resolution image from the coarse spatial resolution hyperspectral data. 

Super resolution mapping technique may be performed using regression-type algorithms 

and spatial optimization based algorithms. 

 As the focus of this research is on feature extraction, sub-pixel classification and 

super resolution mapping of hyperspectral data, a brief literature covering these aspects has 

been provided in this chapter.  

2.2 Feature Extraction of Hyperspectral Data 

The hyperspectral data may either be reduced by feature selection (Jain and Zongker, 1997, 

Bruzzone and Serpico, 2000) or feature extraction (Liu and Motoda, 1998; Serpico et al., 

2003; Zortea and Haertel, 2004; Tsai et al. 2007). Feature extraction allows transforming 

the original data into a new feature space, from which the prime features (i.e., reduced 

feature space) are taken for further processing to derive useful information. 

 Some of the prevalent feature extraction techniques include principal component 

analysis (PCA) (Richards, 1993; Jensen and Walts, 1997, Schowengerdt, 1997), segmented 

principal component analysis (SPCA) (Jia and Richards, 1999), the decision boundary 

method (Lee and Landgrebe, 1993), independent component analysis (ICA) (Hyvarinen et 

al., 2001, Robila et al., 2000), orthogonal sub-space projection (OSP) (Harsayani and 

Chang, 1994), projection pursuit (PP) (Ifarraguerri and Chang, 2000), wavelet 

transformation (Cheriyadat and Bruce, 2003), etc. These techniques are capable of 

compressing the information present in the original hyperspectral data into a subset of 

uncorrelated components. 
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 In this research, two types of feature extraction techniques namely wavelet based 

feature extraction and PCA based feature extraction techniques have been used. Hence, a 

review on these two techniques applied on hyperspectral data has been given. 

 2.2.1 Wavelet Based Feature Extraction of Hyperspectral Data 

The advantage of using wavelets in hyperspectral data is their capability of reducing the 

dataset exponentially. The reduction in the number of bands of hyperspectral data will 

depend on the level of decomposition. Higher the number of decomposition level, more 

will be the reduction. The wavelets are generated from a base function called ‘mother 

wavelet’. The convolution of any bounded function with mother wavelet produces wavelet 

coefficients. These wavelet coefficients are used in extracting features from hyperspectral 

data. The wavelet transform is used to dissect the signal or pixel vector of a hyperspectral 

data into different frequency components and then depending upon the frequency 

components they are used in further processing. Wavelet analysis of a pixel vector of a 

hyperspectral data is performed by scaling and shifting the wavelet function which 

produces the wavelet coefficients. By doing so, there occurs a similar pattern between the 

spectral curve and the wavelet coefficients (Blackburn, 2007). The earlier uses of wavelet 

transformations can be found in signal processing. Of late, wavelets have also been used in 

remote sensing for various image processing related tasks such as image compression (Lee 

et al., 1994), image texture feature analysis (Fukuda and Hirosawa, 1999), feature 

extraction (Pittner and Kamarthi, 1999; Simhadri et al., 1998) and image fusion (Nu´n˜ez 

et al., 1999; Wang et al., 2012), soil moisture retrieving using hyperspectral data (Peng et 

al., 2013). 

 Wavelet based transforms provide transformation of a pixel vector of a 

hyperspectral data from the time domain to the time-frequency domain. The performance 

of wavelets on dimensionality reduction of hyperspectral data has been studied in the last 

decade (Bruce et al., 2002; Kaewpijit et al., 2003; Cheriyadat and Bruce, 2003; Wang et 

al., 2012; Singh et al., 2012; Chen et al., 2009) and wavelet feature-based classification 

(Koger et al., 2003; Pu and Gong 2004; Zhang et al., 2014; Schmidt et al., 2007). 

 Bruce et al. (2002) applied Haar, Daubechies and Coiflets wavelets on 

hyperspectral data for vegetation mapping and found that wavelet based features resulted 

in significant increase in the classification accuracy as compared to the spectral band 

selection and PCA based reduction. Among 1000 spectral bands for consideration, after 

feature extraction by different mother wavelets, the number of bands reduced to nearly 
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50% since 1-level decomposition was performed. The wavelet based techniques produced 

higher overall accuracy than PCA based feature extraction for per pixel classification as 

well as sub pixel classification. For PCA based feature extraction the per pixel 

classification accuracy was 67.9 percent while that for wavelets it ranged from 91.2 

percent to 98.6 percent. For sub pixel classification, the accuracy was around 50 percent 

for PCA while for wavelets it varied from 77 percent to 97 percent (Bruce et al., 2002). 

Kaewpijit et al. (2003) considered only discrete orthonormal bases of wavelets and 

compared the wavelet based feature extraction with PCA. The experiments were conducted 

on three hyperspectral datasets, two AVIRIS data and one AISA data.  Here, upto 5 levels 

of decomposition were performed. In comparison to PCA based feature extraction, the 

wavelet based feature extraction produced better classification accuracy for most of the 

classifications. Further, as the decomposition level increased the classification accuracy 

decreased.  

 The discrimination  capability for different classes in the original signal and the 

wavelet based decomposed signal may be  different, since  projection  of the signal onto a 

wavelet function can separate the low pass and high pass signals from hyperspectral pixel 

vectors (Bruce et al., 2002). By adopting the receiver operating characteristics (ROC) 

curves, Bruce et al. (2002), selected the optimum subset wavelet coefficients as the 

reduced feature set, and then on the reduced dataset a maximum-likelihood classifier was 

applied to evaluate the effectiveness of the extracted features. The reduction of number of 

bands was exponential when applying wavelet transform when the decomposition level 

increased. Kaewpijit et al. (2003) also proved that wavelets based feature extraction 

technique was efficient in dimension reduction for hyperspectral data. Here the 

decomposition level is selected automatically. The wavelet based technique has been 

effective for detecting the weed pitted morning glory in soybean crops (Koger et al., 2003). 

Pu and Gong (2004) conducted an experiment to analyse the effectiveness of wavelet 

based feature extraction as a spectral feature extraction method for mapping forest crown 

closure and leaf area index (LAI) with Earth Observing (EO)-1 Hyperion data. By 

performing the wavelet energy feature (WEF) as a pre-processing step, Zhang et al. (2005) 

performed two classification techniques, namely the maximum-likelihood and hidden 

Markov models, to classify soil texture. 

 Not only for classification of hyperspectral data but also for other applications like 

quantifying vegetation pigment concentrations (Blackburn, 2007), wavelet decomposition 
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has been used. The wavelets used here are Reverse Biorthogonal Wavelet 3.3 (rbio3.3), 

Coiflets 4 (Coif4), Symlets 8 (sym8), Meyer Wavelet (dmey) and Biorthogonal Wavelets 

(bior various sub-classes – small change in the scaling function of the corresponding 

mother wavelet). Here the decomposition level has been from 3 to 5 found that wavelets 

are much useful in quantifying pigment concentration of vegetation across leaf and canopy 

scales (Blackburn, 2007). 

 Hence, in remote sensing applications, a few wavelets, namely, Haar, Daubechies 

wavelets (only one or very few sub-classes), Symlet wavelets (only one sub-class), etc., 

have been studied. However, an in-depth analysis of these wavelets for feature extraction 

and classification of hyperspectral data has been lacking. 

 2.2.2 PCA Based Feature Extraction of Hyperspectral Data 

PCA is the most widely used technique for feature extraction in remote sensing community 

because of its simplicity but it operates on the global statistics and thus  may overlook 

local fluctuations which are helpful in discriminating classes and detection of targets 

(Cheriyadat and Bruce, 2003, Tsai et al., 2007). Due to this, an advanced version of PCA 

by segmenting the spectral bands with the help of correlation matrix, named as SPCA, was 

introduced (Jia and Richards, 1999). This technique is not much effective for detecting a 

specific plant type.  

 ICA is also a statistical tool which exploits higher order statistics in reducing the 

data. The implementation of reducing technique for hyperspectral data by ICA is by 

maximizing the non-Gaussianity of each component. But ICA is iterative based and it 

takes lot of computation time in reducing the data (Robila et al., 2000). In ICA, all the 

required components are retrieved at simultaneously while in case of projection pursuit the 

retrieval is done by component by component (Ifarraguerri and Chang, 2000). Also finding 

the optimum number of components is inexplicable. Taking more components leads to 

redundancy while leaving some components becomes sub-optimal. But for hyperspectral 

data, PCA and its variant has not been studied much for feature extraction. Hence an 

advanced version of PCA may be required to extract information from hyperspectral data.  

2.3 Classification Techniques of Hyperspectral Data 

The classification of hyperspectral data may be performed to extract information at pixel 

level, either by mapping each pixel to a single land cover class (per pixel classification) or 

by finding the proportion of class present in each pixel (sub pixel classification). A number 
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of algorithms have been proposed in the last decades for classification of hyperspectral 

data. Algorithms which are useful for classification of multi-spectral data might not be 

useful in hyperspectral data due to the high dimensionality of hyperspectral data and other 

issues, as discussed in Chapter 1.  

  2.3.1 Per Pixel Classification of Hyperspectral Data 

Some of the techniques are the Maximum Likelihood Classifier (MLC) (Song et al., 2005), 

Spectral Angle Mapper (SAM) technique (Sohn and Rebello, 2002; Sohn et al., 1999), for 

identifying pixel spectra, only the angular information is used, machine learning 

algorithms include ANN (Foody et al., 1997; Carpenter et al., 1999), decision tree 

classification and support vector machines (Brown et al., 2000) have been used.  There are 

several studies conducted on the use of ANN for per pixel classification (Foody et al., 

1997). There is a range of different network architectures (Aleksander and Morton, 1990; 

Davalo and NaÈõm, 1991) and a range of potential applications in remote sensing. Feed-

forward artificial neural networks can be trained to learn by example and are attractive for 

supervised classification (Schalkoff, 1992). They also can readily accommodate 

multisource data acquired at different levels of measurement precision, are free of 

distribution assumptions, and can process data rapidly once trained (Peddle et al., 1994). 

Such networks have been used for image classification (e.g., Kanellopoulos et al., 1992) 

 In this research, one per pixel classifier (SVM) which is non-parametric and 

supervised in nature has been used. Also, two more classifiers for sub pixel classification; 

a supervised classifier, LMM, and an unsupervised classifier, ICAMM, have been used. 

Hence a brief literature on these classification algorithms has been given.  

  2.3.1.1 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are large margin classifiers that exploit the principles of 

the statistical learning theory (Vapnik, 1998; Watanachaturaporn and Arora, 2004; 

Watanachaturaporn et al., 2008 ). If an L2-norm regularizer is used, the optimization 

problem related to the learning of SVMs can be represented as a quadratic convex 

optimization problem with inequality constraints. For such optimization problems in 

nonlinear optimization theory, duality is preferred. Thus, SVMs are often solved in dual 

representation by introducing Lagrange multipliers. However, this is not mandatory since 

one can also implement SVMs in the primal representation (Chapelle 2007).  The most 

advantage of using SVMs in the field of remote sensing is the ability to produce accurate 

classification even with the small training dataset (Mantero et al., 2005). Even though 
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SVMs have more benefits, few challenges are also there. The major challenge is the choice 

of kernels. A plenty of options are available, but some of the kernel functions may not 

provide optimal SVM solution for remote sensing applications. Experimental evidence 

indicates that kernels such as polynomial kernels for higher order and radial basis function 

applied on SVM-based classification of remote sensing data produce different results (Zhu 

and Blumberg, 2002). A good review on SVM kernels and their functionality is presented 

in numerous papers (e.g., Kavzoglu and Colkesen, 2009). A detailed survey on SVMs 

applied on various types of remote sensing datasets and for various applications has been 

given in Mountrakis et al. (2010). The incorporation of localized, highly sensitive 

transformations to capture fine changes in hyperspectral signatures has been addressed by 

Sahoo et al. (2007). They compared the so called S-transform to classifiers without it and 

found encouraging results. By incorporating border training samples Demir and Erturk 

(2009) produced an improvement to classification of hyperspectral data by SVM in a two 

step classification process.  

 Bazi and Melgani (2006) performed experiment on selecting the most appropriate 

feature subspace and model selection based on a genetic optimization framework using 

three feature selection methods including steepest ascent, recursive feature elimination 

technique, and the radius margin bound minimization method. The genetically optimized 

SVM using the support vector count as a criterion resulted in the best performance for both 

simulated and real-world AVIRIS hyperspectral data.  

Pal (2006) explored methods for feature selection based on SVMs. He addressed 

the unreasonably large computational requirements as a major drawback of exhaustive 

search methods in practical applications. Also the researcher justified that non-exhaustive 

search procedure is useful in selecting features with high discriminating power from large 

search spaces. SVM-based methods combined with genetic algorithm (GA) produced 

marginal better accuracy when compared with the random forest feature selection method 

in land cover classification problems with hyperspectral data.  

A modified recursive SVM was proposed by Zhang and Ma (2009) who applied the 

approach to reduce AVIRIS dataset. The reduced dataset produced marginally better result 

but the computational burden was higher than other methods. A hybrid classification by 

integration of SVMs with pairwise decision trees was proposed by Chen et al. (2008). Here 

the proposed method produced similar results from both the methods..  
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 A new classification scheme was proposed by Tarabalka et al. (2009) by 

highlighting both the spatial and the spectral characteristics of hyperspectral data. In their 

method, they combined the pixel-wise SVM classification results with the segmentation 

map based on partitional clustering using the majority voting strategy. This hybrid type of 

approach was useful when large spatial structures were included in the dataset or when 

separability of spectral signatures of classes was more. For vegetation classification, 

Gualtieri and Cromp (1998) evaluated performance of SVM on hyperspectral AVIRIS 

data. SVM performed better than other classifiers applied on the same dataset. SVM also 

outperformed Gaussian maximum likelihood classification and k-NN techniques in forest 

species classification (Dalponte et al., 2009). Dalponte et al. (2009) classified a complex 

forest scenario of a hyperspectral data. SVMs were used in classification of crops using 

HyMap hyperspectral imagery (Camps-Valls et al. (2004)). SVMs performed better than 

typical neural networks in terms of three factors namely, accuracy, simplicity, and 

robustness. They also found that SVMs were not as sensitive to training sample size, and 

SVMs were able to successfully detect noisy bands. Hyperspectral image data of a 

cornfield, acquired through airborne mission (Compact Airborne Spectrographic Imager) 

was used in conjunction with the SVM method in automatic detection of weeds and 

nitrogen in the field (Karimi et al., 2006). The discriminant features were based on the 

general remote sensing principle: corn exhibits different spectral responses depending on 

the type or method of weed control used and nitrogen application rates. 

 Karimi et al. (2006) while using CASI data of cornfields for automatic detection of 

weeds and nitrogen by SVM. Linear support vector machines were reported to be useful in 

classification of hyperspectral remote sensing data whose elements had been extracted 

using a technique called kernel principal component analysis (KPCA) (Fauvel et al., 2007). 

Although only the basic SVM was employed in the set of experiments, the improved 

feature provided a significant clue on the effectiveness of SVMs especially when applied 

on reliably clean datasets.  

 An experiment was performed by Melgani and Bruzzone (2004) for classification 

of AVIRIS data using SVMs and radial basis function (RBF) neural networks and the K-

nearest neighbor classifier. They observed that SVMs outperformed the other techniques 

and concluded that SVMs were effective approaches to hyperspectral remote sensing data. 

Another experiment was performed on Landsat 7ETM+and hyperspectral data by Pal and 

Mather (2005) to compare SVM classification with MLC and back propagation ANN. 
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Here also SVM outperformed both the classifiers for the two datasets. Hence the usage of 

SVM for classification of hyperspectral data has a significant role in extraction techniques 

of hyperspectral data. Moreover, the training of SVM requires less pixels compared to 

MLC technique. Hence in this research, SVM has been used for analysing feature 

extraction and per pixel classification techniques. 

 2.3.2 Sub Pixel Classification of Hyperspectral Data 

The sensors providing data at coarse spatial resolutions such as AVIRIS, Hyperion and 

MODIS increase the possibility occurrence of mixed pixels. Hence, the conventional per 

pixel classification algorithms that allocate one class to each pixel may not be appropriate 

for the classification of mixed pixels. Alternative approaches for classifying mixed pixels 

are, therefore, sought. Some sub-pixel classification techniques include, maximum 

likelihood classification (MLC) (Jia and Richards, 1994) in soft form, linear mixture model 

(LMM) (Foody and Arora, 1996; Lu et al., 2003; Kasetkasam et al., 2011), fuzzy set based 

methods (Chanussot et al., 2006), artificial neural networks (ANN) (Foody and Arora, 

1996), support vector machines (SVMs) (Platt, 2000) in soft form, decision-tree regression 

(Xu et al., 2005 ), logistic regression (Cheng et al., 2006), orthogonal subspace projection 

(Kwon, 2005) and independent component analysis mixture model (Lee et al., 1999; Lee et 

al., 1999; Shah et al., 2004), etc.. So, an algorithm which is capable of estimating the class 

member probability for each pixel is required. 

 Unlike in per-pixel classification algorithms, here in sub-pixel classification the 

fraction abundance for each pixel have been determined. The hyperspectral sensors which 

are efficient to collect fine details from the ground, are useful to identify the type of 

vegetation, the type of mineral and the objects present in the image. Apan et al. (2004) 

used to detect disease in sugarcane using EO-1 Hyperion hyperspectral imagery. Various 

researchers used hyperspectral data to find fine details (Asner and Heidebrecht, 2002; 

Benediktsson and Kanellopoulos, 1999; McGwire et al., 2000; Okin et al., 2001; Shah et 

al., 2004). The LMM approach assumes that the spectrum measured by a sensor is a linear 

combination of the spectra of all components within the pixel (Adams et al., 1995; Roberts 

et al., 1998; Ustin et al., 1998). Both LMM & OSP are algorithms based on a linear 

mixture model, which do not exploit the higher order correlations between the spectral 

bands nor it addresses the nonlinear mixing of the spectral signatures that are encountered 

in real data. Therefore, LMM & OSP are not flexible enough to fully exploit the complex 

data structure encountered with real hyperspectral imagery. So ICAMM which exploits the 
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higher order statistics came into existence. The fraction maps derived from the soft 

classification may provide more useful land cover information as compared with that 

derived from hard classification technologies. If needed, the pixel is allocated to the class 

with the highest posterior class probability to produce thematic map (Hyvärinen and Oja, 

2000; Shah et al., 2007). 

  2.3.2.1 Linear Mixture Model (LMM) 

The linear mixture model (LMM) algorithm is based on the concept of spectral unmixing. 

The LMM approach assumes that the spectrum measured by a sensor is a linear 

combination of the spectra of all components within the pixel (Manolakis et al., 2001). 

Both LMM and OSP are linear algorithms based on a linear mixture model, which do not 

exploit the higher order statistics in the data nor it addresses the nonlinear mixing of the 

spectral signatures that are encountered in real data. Therefore, LMM and OSP are not 

flexible enough to fully exploit the complex data structure encountered with real 

hyperspectral imagery. Less work has been performed for classification of hyperspectral 

data. Hence a deep analysis for various spatial, spectral resolution images needs to be 

classified by using LMM. 

  2.3.2.2 Independent Component Analysis Mixture Model (ICAMM) 

An approach for unsupervised classification of hyperspectral images is based on a mixture 

model, where the distribution of the entire data is modeled as a weighted sum of the class-

conditional densities. If the classes are modeled as multivariate Gaussian distribution the 

mixture model is known as Gaussian Mixture Model (GMM) (Duda et al., 2001) while, if 

the classes are modeled as multivariate non-Gaussian distribution then the mixture model 

is Independent Component Analysis Mixture Model (ICAMM). GMM works by 

considering the lower order statistics of the data. Classification is done on the basis of 

second order statistical parameters derived from spectral characteristics of each class, 

which may not be sufficient in discriminating the within-class variation. For example, in 

Figures 2.1(a) and 2.1(b), both the spectral data sets are having same mean and same 

variance values; however, there are four clusters in Figure 2.1(a) and only one cluster in 

Figure 2.1(b) (Shah and Varshney, 2004). Thus, second order statistics are not capable of 

revealing the information available in the data. In ICAMM, kurtosis, a higher order 

statistics, plays an important role in making the clusters as independent as possible. The 

ICAMM algorithm finds the linear transformation from the data to independent 

components for each cluster. 
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(a)      (b) 

Figure: 2.1: Two data sets having identical second order statistics 

 

 Even sometimes the sub pixel proportion of each class available in each pixel of a 

hyperspectral data is not enough but the spatial arrangement of the classes in sub pixel 

level is required. This could be possible by performing super resolution mapping 

algorithm. A study on super resolution mapping algorithms has been given in the 

subsequent section. 

2.5 Super Resolution Mapping 

The sub pixel classification gives the proportion of classes available in each of the mixed 

pixels, but fails to locate the classes at sub-pixel level. Super resolution mapping is a 

promising technology for prediction of the spatial distribution of each class at the sub pixel 

scale. The super resolution mapping has its origin by converting a single gray scale image 

into finer by simply dividing the pixels and rearranging according to the neighbouring 

pixels. Current super-resolution mapping methods include the Hopfield neural network 

(HNN) (Tatem et al., 2001), linear optimization (Verhoeye and Wulf, 2002), genetic 

algorithm (Mertens et al., 2003), feed-forward neural network (Mertens et al., 2004), 

Markov random field (Kasetkasem et al., 2005), pixel swapping (Atkinson, 2005; 

Thornton et al., 2006), simulated annealing (Makido et al., 2007), inverse Euclidean 

algorithm (Tiwari et al., 2011) and geostatistical methods.  

 Super resolution mapping of a hyperspectral image has been performed by 

artificially multiple-sub-pixels shift of the original data. The geostatistical approach 

described in Villa et al. (2011) has been studied for mixed pixels mixes with only two 

classes. Here the algorithm has been applied on a region where sea meets the shore. So this 

is almost considered as linear boundary classification problem. So a general super 

resolution mapping algorithm is required which maps mixed pixels mixed with two or 
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more classes. The main limitation of spatial regularization by simulated annealing 

(Thornton et al., 2006) is in its incapability of mapping linear features. Since the objective 

function used in this algorithm is the cost function to be minimized, where the cost 

function here is the perimeter of the areas belonging to the same class. So, error in one 

pixel will be carried over to the other pixels also. So an algorithm in which the super 

resolution mapping of one pixel does not affect the super resolution mapping of the other is 

to be considered. The drawback of the spatial pixel swapping algorithm (Shen et al., 2009) 

is it is also incapable of super resolving linear pixels. In case of target detection using pixel 

swapping algorithm (Arora and Tiwari, 2013) the binary class problem may be extended to 

multi-class problem.  

 Collectively, by considering the limitations of the above said super resolution 

mapping algorithms, we propose an algorithm, based on inverse Euclidean distance, which 

works better for pixels having linear boundary and multi-class classification problem. 

 Also, by fusion of multi-observation images by sub-pixel shifted to get more 

accurate image of higher spatial resolution than the original observations. This can be done 

by iteratively back propagation algorithm (Peleg et al., 2002; Lu et al., 2010). To map a 

certain features alone like roads, water bodies, by giving the characters of that particular 

feature the super resolution map was obtained (Foody et al., 2005; Ling et al., 2008). 

Super resolution mapping algorithm based on an MRF model was also proposed. It is 

assumed that a super-resolution map (SRM) has MRF properties, i.e., two adjacent pixels 

are more likely to belong to the same land cover class than different classes. By integrating 

this fact into the model, a large number of misclassified pixels, which often appear as 

isolated pixels, are removed from the resulting SRM (Kasetkasem et al., 2005). By using 

multiple sub pixel shifted remotely sensed images super resolution map will be obtained 

(Ling et al., 2010). Low-resolution pixels in these remotely sensed images contain 

different land-cover fractions that can provide useful information for super-resolution land 

cover mapping. Here, by constructing a Hopfield Neural Network (HNN) model the sub-

pixels are mapped by sub-pixel shift of the original image (Ling et al., 2010). Maximum 

spatial dependence is the goal of the proposed model, and the fraction maps of all images 

are constraints added to the energy function of HNN (Ling 2009). A spatial-spectral data 

fusion technique has been discussed by Mianji (2010). In this algorithm, the four main 

steps used are endmember extraction, spectral unmixing, training of the SRM algorithm 

and super resolution mapping.  Here training data are taken from high spatial resolution 



[34] 

 

hyperspectral image. Based on the assumption of spatial correlation of the land cover 

classes, simulated annealing has been used to optimize a function where spatial proximity 

of pixels belonging to the same land cover class is preferred (Villa et al., 2011). Here a 

novel algorithm to perform super resolution mapping of hyperspectral data which has more 

class is required. 

2.6 Summary of Review 

In this chapter, the following review on hyperspectral data has been given 

1. A brief literature on feature extraction of hyperspectral data has been given and 

more specifically the uses of the two techniques, wavelet based feature 

extraction technique and PCA based feature extraction technique have been 

discussed. 

2. The two major divisions of classification techniques, per pixel and sub pixel 

classification have been given. 

3. In particular, a review of SVM, LMM and ICAMM for classification of 

hyperspectral data has been given. 

4. Finally, a review on super resolution mapping for hyperspectral data has been 

given. 



 

 

Chapter 3 

Experimental Datasets and Methodology 

 

3.1 Introduction 

In order to achieve the research objectives, three hyperspectral datasets have been taken at 

varied spatial, spectral and radiometric resolutions to extract information from the 

algorithms developed. Further, as the emphasis of the research is on assessment of 

algorithms, one synthetic dataset has also been created. Detailed description of these 

datasets has been given in this chapter. The spectral, spatial and radiometric resolutions of 

these datasets have been given in Table 3.1. 

Table 3.1: The specifications of experimental datasets  

Dataset 

No. 
Dataset Sensor 

Dimension 

(pixels) 

Spatial 

Resolution (m) 

Spectral Resolution 

(bands) 

Dataset 1 Synthetic Data - 45x60 - - 

Dataset 2 Indiana Pine AVIRIS 145x145 20 224 

Dataset 3 
Roorkee & its 

Surroundings 

Hyperion 

EO-I 
250x250 30 242 

Dataset 4 San Diego AVIRIS 140x150 4 224 

 

3.2 Description about Training and Testing Data 

The two important components of remote sensing data are the training data and testing 

data. The training data are useful in classification of the data while testing data helps in 

validation of the classified data. The descriptions of these two types of data have been 

discussed in this section. 

3.2.1 Training Data 

Training is one of the important steps in supervised classification of hyperspectral. From 

the available classes, pure pixels have been taken whose quantity is proportion to the area 

covered by each class in the dataset. Hence, the number of pixels used in the training stage 

varies for each class. Collecting pure pixels from a dataset depends upon the spatial 

resolution of the dataset, available classes, size of the classes, etc. Particularly, when the 

data is of coarse spatial resolution, the domination of mixed pixels may be more and 

extraction of collecting training data becomes complex. Generally, for each class, instead 

of collecting a big block training data, few small patches at various locations, if available, 
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for the training data may be collected. The details of training samples and testing/reference 

samples for each of the three datasets have been given in Table 3.2, Table 3.3 and Table 

3.4. 

3.2.2 Reference Data 

To validate the performance of feature extraction of hyperspectral data, first it has been 

classified by a per pixel classifier SVM. Then based on the accuracy assessment obtained 

through error matrix based accuracy measures, the quality of information extraction has 

been assessed. To perform accuracy assessment, a set of samples which are pure pixels 

from the data, whose class is known, is collected. Such pure pixels are collectively known 

as reference data or testing samples. The number of testing samples collected for each class 

for each image has been given in Table 3.2, Table 3.3 and Table 3.4. 

3.3 Description of Experimental Datasets 

The datasets used in fulfilling the objects of this research have been discussed in this 

section. One synthetic data and three hyperspectral data have been used. The descriptions 

of these datasets have been given in this section. 

3.3.1 Experimental Dataset I: Synthetic Data 

A synthetic data of dimension 45x60 pixels has been created by imitating the spectral 

signatures from AVIRIS San Diego dataset (described as Experimental Dataset IV). Five 

classes, namely, vegetation, steel, metallic road, aircraft and concrete road (or simply 

called as concrete) have been considered to map from this dataset. The area of interest 

(.aoi) for each class has been demarcated on the image and the spectral responses are 

collected. For each class, the average of the spectral response in each band is obtained. As, 

there are 5 classes and 189 bands, 5 pixel vectors each of length 189 are generated. A 2D 

matrix of dimension 45x60 pixels consisting of values from 1 to 5 representing class labels 

is also created. Finally, a 3D image with pixel vectors of length 189 each has been created, 

by associating number 1 (which is in 2D matrix) to pixel vector 1. Similar exercise has 

been done for other class labels 2 to 5. An FCC of the image has been given in Figure 3.1. 

Clearly, the classes are very distinct from each other in this synthetic data. The resolution 

of image has been coarsened by applying low-pass filters of sizes 3x3 and 5x5 (Figure 3.2 

and Figure 3.3). These coarse resolution images shall be subjected to super resolution 

algorithm. 
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Figure 3.1: Synthetic data having five classes. Band combination is 170, 80, 20. 

Dimension of the image is 45 x 60 pixels. 

 

  

Figure 3.2: Synthetic data sub-sampled by 3x3 low-pass filter. Band combination is 170, 

80, 20. Dimension of the image is 15 x 20 pixels. 

 

  
Figure 3.3: Synthetic data sub sampled by 5x5 low-pass filter. Band combination is 170, 

80, 20. Dimension of the image is 9x12. 
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3.3.2 Experimental Dataset II: AVIRIS Dataset at 20m Spatial Resolution 

This dataset contains an image from AVIRIS hyperspectral sensor 

(www.ece.purdue.edu/~biehl/MultiSpec). The image is taken over NW Indiana’s Indian 

Pine test site and has been used in many similar studies. From the original 224 spectral 

bands, four bands containing no data have been discarded. From this set, 38 water 

absorption bands have also been removed. Thus, 182 bands have been used in the 

experiment. Additional advantage of this data is the availability of reference image of the 

area covered, which can be used to extract the training and testing samples required for 

classification and accuracy assessment. Two third of the area is covered with agriculture 

and the remaining one third is covered with forest or other natural perennial vegetation. 

However, due to the early season of data collection, the cultivated land appears to have 

very little canopy cover as yet. There is a major dual lane highway, a rail line crossing near 

the top and a major secondary road near the middle, all in a NW and SE direction. A false 

color composite (FCC) of the image and the reference image are given in Figure 3.4. 

  

      (a)        (b)    

Figure 3.4: (a) FCC (Red: Band 50, Green: Band 27, Blue: Band 17) of AVIRIS image 

(dataset II) and  (b) The reference image for dataset II. 

 

 A total of 16 classes have been identified and training and testing samples have 

been collected for each class, which scales with the area cover of the respective classes. In 

this dataset, there are 15 classes of different vegetation species and one class is stone-steel 

tower. Few classes are having less number of pixels like alfalfa, oats, etc. The number of 

training and testing samples used in classification of this dataset has been given in Table 

3.2. 
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Table 3.2: Number of training and testing samples for experimental dataset – II 

 

S.No. Class Name 
Number of Training 

Samples 

Number of Testing 

Samples 

1 Alfalfa 22 26 

2 Corn-notill 341 234 

3 Corn-min 279 144 

4 Corn 72 132 

5 Grass/pasture 188 298 

6 Grass/trees 210 184 

7 Grass/pasture-mowed 18 24 

8 Hay-windrowed 173 315 

9 Oats 11 18 

10 Soy-notill 291 330 

11 Soy-min till 601 408 

12 Soy-clean 199 140 

13 Wheat 66 126 

14 Woods 445 527 

15 Bldg-grass-trees-drives 142 80 

16 Stone-steel towers 49 62 

 TOTAL 3107 2948 

 

 Here for the purpose of classification, 14.78 percent of training pixels have been 

used while 14.02 percent of pixels for testing. There may be a few pixels which are 

common to both training and testing samples because of the classes may be having less 

number of pixels. 

 

3.3.3 Experimental Dataset III: Hyperion Dataset at 30m Spatial Resolution 

The third dataset is an image from the sensor Hyperion of EO-1 (Earth Observation-1) 

acquired over Dehradun area on 25th December, 2006. The data are collected in 220 

unique spectral bands covering 0.357–2.576 µm spectrum. The Level 1 product has a total 

of 242 bands but only 198 bands have been calibrated. Because of an overlap of data 

between the VNIR and SWIR regions, there are only 196 unique bands. Calibrated bands 

are 8–57 for the VNIR, and 77–224 for the SWIR. The bands that are not calibrated are set 

to zero. A subset of image covering Roorkee area and surroundings has been extracted to 

perform experiments in this research. An FCC of the subset is shown in Figure 3.5.  
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Figure 3.5: The FCC of Roorkee and its surrounding area by Hyperion sensor (Red: Band 

70, Green: Band 20, Blue: Band 2). 

Table 3.3: Number of training and testing samples for experimental dataset – III 

 

S.No. Class Name 
Number of Training 

Samples 

Number of Testing 

Samples 

1 Trees 125 181 

2 Vegetation 88 59 

3 Barren Land 85 104 

4 Sand 28 28 

5 Urban 420 467 

6 Water 131 66 

 TOTAL 877 905 

 

 This dataset has only 6 major classes which are trees, vegetation, barren land, sand, 

urban and water. As the spatial resolution is 30, there are mixed pixels. Hence, for 

classification, 1.4 percent training pixels have been used while 1.45 percent of pixels for 

testing. Both the datasets are mutually exclusive.  

3.3.4 Experimental Dataset IV: AVIRIS Dataset at 4m Spatial Resolution 

This AVIRIS dataset is a 400x400 pixel hyperspectral image of naval air station in San 

Diego, California collected by the AVIRIS sensor in 224 bands and was received as part of 

the ENVI 4.2 tutorials. Due to the effects of illumination source and the atmosphere, the 

raw radiance spectra obtained by any hyperspectral sensor is required to be converted into 

reflectance spectrum. This true reflectance spectrum can only be compared with any 

laboratory spectra available for identification of the targets. The true colour composite of 
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the image is given in Figure 3.6. A subset of the image of dimension 140x150 has been 

taken for experiment purpose.  

 

Figure 3.6: Subset of false colour composite (Red : Band 170, Green : Band 80, Blue : 

Band 20) of Naval Air Station, San Diego, California. 

Table 3.4: Number of training and testing samples for experimental dataset – IV 

 

S.No. Class Name 
Number of Training 

Samples 

Number of Testing 

Samples 

1 Vegetation 32 18 

2 Road Type 1 70 49 

3 Road Type 2 86 42 

4 Concrete 1 124 65 

5 Concrete 2 235 89 

6 Concrete 3 74 36 

7 Building Type 1 54 59 

8 Building Type 2 72 32 

9 Building Type 3 48 36 

 TOTAL 795 426 

 

 Here for classification 3.79 percent pixels from the whole dataset have been taken 

for training while 2.03 percent of pixels for testing. Here also there are no pixels which are 

common to both training and testing samples. The predominant classes are vegetation, two 

types of roads, three types of concrete and three types of building types. Even though the 

spatial resolution of the dataset is 4m, the with-in class variation is very less. 
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3.2 Methodology 

In this section, the methodology followed to achieve the objectives has been given. In this 

research, the algorithms developed for information extraction from hyperspectral data has 

followed four image processing tasks in sequential manner. These tasks are, 

(i) feature extraction, 

(ii) per-pixel classification, 

(iii) sub-pixel classification and 

(iv) super resolution mapping. 

 First, the hyperspectral data has been reduced by applying two unique feature 

extraction algorithms, namely, segmented PCA and wavelet based feature extraction. The 

reduced datasets are then classified by using the most widely used per pixel classification 

technique, namely, Support Vector Machines (SVM) for hyperspectral data. The SVM 

classification forms the basis of assessing the performance of various feature extraction 

algorithms. The reduced datasets having acceptable accuracy values are then subjected to 

sub-pixel classification by LMM and ICAMM. The sub-pixel classification outputs have 

been assessed using fuzzy error matrix based accuracy measures.  The information from 

sub-pixel outputs via LMM or ICAMM then forms the basis of super-resolution mapping 

by the proposed Pixel Filling Algorithm. The outputs of super resolution mapping have 

been assessed using three techniques, given as,  

(i) Computation of accuracy of super resolved image with respect to reference data 

as used for assessing a per pixel classification 

(ii) Pixel-to-pixel comparison of super resolved image with SVM classified image. 

(iii)Analysing the portions of super resolved image where there is likelihood of 

mixed pixels. 

 A flow chart for overall methodology has been given in Figure 3.7, which has been 

followed with a detailed description in the subsequent paragraphs. 

 For feature extraction using wavelets, three wavelet transforms, namely, Haar, 

Daubechies and Coiflets wavelets have been used. For each wavelet, the first 4 sub-classes 

have also been taken. Haar wavelet is the first subclass of Daubechies wavelets. Therefore, 

we get 4 sub-classes for Daubechies wavelets and 4 sub-classes for Coiflets. These 8 sub-

classes are decomposed upto first 4 decomposition levels. Hence there will be a total of 32 
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feature extracted datasets generated from wavelet based feature extraction. Here, Daub2_4 

means Daubechies wavelets 2
nd

 sub-class and level of decomposition is 4. The other 

feature extraction algorithm is spectrally segmented PCA to get a reduced dataset. Thus, 

there are 34 reduced datasets, which have been used for classification. The flowchart 

describing the methodology followed in feature extraction has been given in Figure 3.8. To 

validate the feature extraction techniques, the reduced datasets are classified using SVM 

and their accuracy assessed using conventional error matrix based overall accuracy. 

 

 

Figure 3.7: The overall methodology adopted in this research. 
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Figure 3.8: Flowchart for the feature extraction. 

 

 For information extraction, three classification algorithms have been performed on 

the selected datasets. In the feature extraction part, the per pixel classification using SVM 

has been performed to all the reduced datasets. Now, only for the reduced datasets whose 

classification accuracies are acceptable, have been classified by using sub pixel 

classification algorithms. Then the accuracy assessment of sub-pixel classification 
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algorithms have been performed by fuzzy error matrix (FERM) based measures. One of 

the main requirements of FERM is the soft reference data (i.e., proportion of classes on the 

reference data). Due to non-availability of soft reference data from any source, the best 

classified SVM output has been taken as soft reference data. For example, if there are 6 

classes in a dataset and a pixel has been classified as class 3 by SVM, then this information 

has been used as soft reference data represented as a vector of length 6 and denoted as (0 0 

1 0 0 0). A flowchart for this part of methodology has been given in Figure 3.9. 

 
 

Figure 3.9: Flowchart for classification of hyperspectral data. 
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 Once the hyperspectral data has been classified, then a super resolution mapping 

has been performed. The output from sub pixel classification is taken as input to the super 

resolution mapping using pixel filling algorithm.  For this purpose, the sub-pixel outputs 

generated in following two ways have been considered. 

(i) The sub-pixel output having the highest classification accuracy, as obtained in 

the classification stage of information extraction. 

(ii) Degrading the per pixel classification produced from SVM at a pre-defined 

zoom factor (3, 5, 7, etc.) and finding out the proportion of classes within each 

pixel of the degraded image.  

The methodology followed in obtaining a super resolution map has been given as a 

flowchart in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Flowchart for super resolution mapping techniques 
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The super-resolution outputs have been assessed in three different ways,  

(i) conventional error matrix construction based on some testing samples taken for 

validation of per pixel classification algorithm, 

(ii) conventional error matrix construction based on pixel-to-pixel comparison of 

the whole classified image, 

(iii)conventional error matrix construction for patches of mixed pixels (mixed by 2 

classes or 3 classes or 4 classes) respectively. 

 

 The reference data taken for classification have been given in Figure 3.11 and 

Figure 3.12. In Figure 3.11, since it is a thematic map, it is clearly visible that which 

training pixels are pure, which are sharing common boundaries with its neighbours and 

which pixels falls at the center of the class. 

 

 

Figure 3.11: SVM classified pseudo image of dataset II along with reference data 

described in the adjoining box. 
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Figure 3.12: FCC of dataset II along with reference data described in the adjoining box. 

 
To execute the algorithms and for applying them on hyperspectral images, coding have 

been done in MATLAB. For accuracy assessment of hyperspectral classification 

algorithms, VC++ has been used while for displaying images both MATLAB and ERDAS 

have been used.  

 

 

3.5 Summary 

In this chapter, the experimental datasets and the different components of methodology to 

achieve the research objectives were described.  In the following chapters, the results from 

feature extraction, classification and super-resolution mapping will be analysed and 

discussed. 
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Chapter 4 

 

Feature Extraction of Hyperspectral Data: 

Mathematical Background, Methodology and Results 

 

4.1 Introduction 

The advantage of hyperspectral data is that it collects information throughout the visible 

and near infrared (VNIR) region in a contiguous manner. Hyperspectral data have found 

their usage in extracting a number of information such as object and target/anomaly 

detection, mineral identification, segmentation and classification. Although, more useful 

information from hyperspectral data than multispectral data may be obtained, there are 

three major issues at various levels; storage of hyperspectral data redundancy of the data 

and large training sample requirement. The first issue is that the hyperspectral data is of 

huge volume and high dimension. There is thus always a challenge to process such a 

massive data. The second issue in the hyperspectral data is that the data have a tendency 

that the neighbouring bands are highly correlated. So taking all the bands for processing is 

not advisable. The third major issue of hyperspectral data processing is that in some 

applications like classification by means of statistical methods, large amount of training 

samples are required for higher accuracy, which is termed as curse of dimensionality. Also 

more training samples leads to poor classification accuracy, which is termed as the Hughes 

phenomenon. But often collecting the required number of training samples from field is 

time and cost intensive. Therefore, the hyperspectral data needs to be reduced without loss 

of information or not much loss of information. A typical spectral signature of vegetation 

has been given in Figure 4.1, collected in the region visible to near infrared (VNIR). It 

contains many peaks and valleys and those are very important in differentiating from one 

kind of species to another kind. Thus, when the spectral bands are narrow and information 

acquisition is contiguous, it increases the number of bands and leads to high 

dimensionality. Moreover to show the tiny difference in the spectral signature between 

bands, it requires high radiometric resolution which further increases the capacity 

requirement of the hyperspectral data. Hence it requires lots of storage space to keep the 

collected data.  
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 Once the hyperspectral data is stored, their processing is also a challenging task. 

For a given algorithm, the data may be input as pixel vectors, row vector along spatial 

coordinate, band wise, etc. Due to huge volume and high dimension dataset, the processing 

time will be exponentially large. Often, carrying huge data in processing stage leads to low 

performance of the processing algorithms. 

 

Figure 4.1: A typical spectral reflectance curve of vegetation 

 

 Second, the spectral signature given in Figure 4.1 is continuous and tells that the 

nearby bands values are close enough to each other which lead to high correlation between 

the neighbouring bands in the hyperspectral dataset. Therefore, some of the wavebands 

may provide redundant information. This redundancy may also be eliminated without any 

effective loss of information content within the hyperspectral dataset. 

 The third issue in hyperspectral data comes in case of supervised classification, the 

number of training samples required is proportional to the number of bands involved in 

classification. As the spectral dimension increases, requirement for the number of training 

pixels also increases, which at times is difficult to fulfill. Thus, this may also lead to the 

curse of dimensionality or Hughes phenomenon (Hughes 1968). For any reason, the 

hyperspectral data needs to be reduced. 

4.2 Feature Reduction Techniques 

Reducing the high dimension data set into lower dimension without sacrificing significant 

information of interest is thus one of the significant steps in hyperspectral image 

processing. In hyperspectral image classification, effective features are those which are 
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most capable of preserving class separability (Hsu 2000). Here feature represents bands. 

After feature reduction, a subset of features is obtained. But, preserving the useful 

information is the key issue in feature reduction, which demands for development of 

appropriate algorithms. The reduction of hyperspectral data means the reduction in the 

spectral dimension by keeping the spatial dimension unaltered. Feature reduction of 

hyperspectral data may be done by two ways; feature selection and feature extraction. 

 Selecting a subset of features/bands from the original data, where the classes are 

highly separable is known as feature selection. Feature extraction allows transforming the 

original data into a new feature space, from which the prime features (i.e., reduced feature 

space) are derived for further processing to derive information. 

 4.2.1 Feature Selection 

Feature selection has the advantage of preserving the relevant original information from 

the data (Martínez-Usó et al., 2007). Some of the feature selection methods used in 

hyperspectral data reduction are sequential forward selection (SFS) (Jain and Zongker, 

1997), sequential backward selection (SBS) (Pudil et al., 1994), sequential forward 

floating selection (SFFS), (Pudil et al., 1994) sequential backward floating selection 

(SBFS) (Somol et al., 1999; Pudil et al., 1994), distance measures (Bhattacharya distance, 

Mahalonobis distance, Jeffries–Matusita (JM) distance (Serpico and Moser, 2007) , etc.,), 

divergence analysis, steepest ascent (Bruzzone and Serpico, 2000), fast constrained search 

(Bruzzone and Serpico, 2000), feature similarity measure, graph searching algorithms, 

neural networks, genetic methods, tabu search meta-heuristics (Korycinski et al., 2003a; 

Korycinski et al., 2003b), spectral distance metrics (Keshava, 2004), parametric feature 

weighting, spatial autocorrelation, band ratioing, wavelet based feature selection, mutual 

information based feature selection (Guo et al., 2006),  orthogonal subspace projection (Du 

and Yang, 2008) etc. Standard feature selection methods based on class separability 

measures such as divergence, JM distance and transformed divergence may not be used 

effectively as a result of several considerations (Chang 2007). 

 4.2.2 Feature Extraction 

Feature extraction may require the whole (or most) of the original data representation to 

extract the new features, forcing to always obtain and deal with the whole initial 

representation of the data. In addition, since the data are transformed, some critical 

information may have to be compromised and distorted (Martínez-Usó et al., 2007). But 
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feature extraction methods are more effective than feature selection methods (Serpico and 

Moser, 2007). 

 Some of the standard feature extraction techniques are principal component 

analysis (PCA) (Richards, 1993; Jensen and Walts, 1997; Schowengerdt, 1997) and 

minimum noise fraction (MNF) (Belluco et al., 2006, Bakos and Gamba, 2011). Others 

feature extraction methods are segmented PCA (SPCA) (Jia and Richards, 1999), 

orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994), singular value 

decomposition subset selection, discriminant analysis feature extraction (DAFE) (Lee and 

Landgrebe, 1993), prototype space feature extraction (PSFE), penalized discriminant 

analysis (Hastie et al., 1995; Yu et al., 1999), kernel Fisher discriminant (Jin et al., 2010), 

Fisher’s canonical transform projection pursuit, decision boundary feature extraction 

(DBFE), independent component analysis (ICA) (Wang and Chang, 2006, ), etc. 

 As can be seen, there are many feature extraction techniques that may be used for 

hyperspectral data, the description of each of them cannot be provided here. In this thesis, 

the study has been focused onto two feature extraction techniques based on markedly 

different mathematical background. The first one is wavelet based feature extraction which 

is a multi-level decomposition technique. On the other hand, statistical transformation 

based feature extraction technique has also been executed to extract important information 

from the hyperspectral data. Description of these two techniques has been given in the 

following section. 

4.3 Wavelet Based Feature Extraction Techniques 

Wavelets view the hyperspectral data in a different way by taking weighted average of the 

neighbouring band values or digital numbers of each pixel vector. The hyperspectral data 

are transformed from the original feature space into a scale space plane using the wavelet 

transform to extract the significant spectral features. The wavelet transform can focus on 

localized signal structures with a zooming procedure.  The decomposition of a pixel vector 

is achieved by applying two filters act on the signal; averaging filter to produce a vector 

named as trend and the other vector named fluctuations, to give details coefficients 

(Walker, 2008).  

 Wavelets have some mathematical properties in addition to multi-resolution 

analysis, orthogonality, compact support, etc. and are given as follows:  



[53] 

 

a) Wavelets are important tools in mathematics which are useful for 

decomposition of given signals into various frequencies. 

b) Transformation in one pixel vector does not affect the other pixel vectors. 

c) Wavelets are very simple to handle. 

d) The wavelet series are usually orthogonal to each other. 

e) Reconstruction is possible. 

 
(a)       (b) 

 
(c)       (d) 

Figure 4.2(a) – (d): The first 4 sub-classes of Daubechies scaling functions, (a) Haar 

or Daubechies 1, (b) Daubechies 2, (c) Daubechies 3, (d) Daubechies 4. Here  ���� is the 

scaling function depends on time t. 

 The 1-D mother wavelet function Ψ  (in continuous form) may be defined as, 

          Ψ�,���� 	  
√�Ψ �
��� �,   (4.1) 

where  such that  and satisfies the admissibility condition, 

            � Ψ����� 	 0���     (4.2) 
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where � and � are the dilation (scale) and translation (position) parameters respectively. 

    
(a)          (b) 

 

    
(c)      (d) 

Figure 4.3(a) – (d): The first 4 sub-classes of Coiflets scaling functions, (a) Coiflets 1,         

(b) Coiflets 2, (c) Coiflets 3, (d) Coiflets 4. Here ���� is the scaling function depends on 

time t. 

 

 This may happen only when the function values are zero at most of the places and 

the other values ‘wave’ around zero. The set of values at which the function is non-zero is 

called the support of the function. By imposing additional mathematical restrictions, a 

number of wavelet families may be created. Already, the formulation of a few wavelets, 

namely, Haar, Daubechies, Coiflets, Symlets, BiorSplines, ReverseBior, Gaussian wavelets 

etc. exists in the literature. Also, within each family of wavelets, there is a range of sub-

classes of different orders which are different from each other in respect of their scaling 

and the wavelet functions (Blackburn, 2007). Figures 4.2 and 4.3 provide a selected 

number of scaling functions for the first four sub-classes of Daubechies and Coiflet 

wavelets respectively. As each of the families behaves differently with the hyperspectral 

data, because of the scaling function for all these wavelets are different, the mathematical 
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background of these wavelets could be helpful. Also, the decomposition level is one of the 

most important parts in applying the wavelet transform, in which the number of features 

extracted decreases when level of decomposition increases. 

 4.3.1 Mathematical Details of Haar Wavelet Transform 

The Haar wavelet or Daubechies 1 wavelet is the simplest of all the wavelets. The Haar 

Mother wavelet is denoted by Ψ���and is defined as,  

    Ψ��� 	 � 1 0 � � � 1/2,�1 
 � � � 1,0 !�"#$%&�#
'    (4.3) 

The scaling function of Haar wavelet is denoted by  ���� (Figure 4.2) as,  

     ���� 	  (1 0 � � � 1,0 !�"#$%&�#'     (4.4) 

The scaling numbers,  )
 and ) , may be  generated from  equation (4.4). The curve given 

in Figure 4.2(a) and obtained from equation (4.3) may be divided into two parts. In both 

the parts, the values  ���� are 1. Normalisation of these results into  

√ . That is )
 	  
√   

and ) 	  
√ . And now these scaling numbers are used to create vectors called as scaling 

signals, defined as, 

*++  	 �α
, α , 0, 0, 0, … 0� 	  - 1√2 , 1√2 , 0, 0, … , 0. 

*/+  	  �0, 0, α
, α , 0, 0, … 0� 	  -0, 0, 1√2 , 1√2 , 0, 0, … , 0. 

*0+  	  10, 0, 0, 0, α
, α , 0, 0, … 02  	  -0, 0, 0, 0, 1√2 , 1√2 , 0, 0, … , 0. 

. 

. 

. 

    

                    *3 /⁄+  	   �0, 0, 0, … 0, α
, α �  	  � 0, 0, … , 0, 
√ , 
√ �          (4.5) 
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 Using these Haar scaling signals, the values 5
, 5 , … 567  for the first trend are 

expressed as scalar products: 58 	 9. *8
 , for m = 1, 2, … , N/2, where f is the signal to be 

decomposed. Then all the  values are collected to form the reduced signal of length N/2 

and is given by, 

;+ 	  -5
, 5 , … 5< . 

 Hence, the pixel vector  which is of length N has been decomposed into two 

vectors of length N/2 each, which is mentioned as averaging part and detail part (detail part 

is not used in further processing and hence derivation is also not given). Similarly, each 

pixel vector of the hyperspectral data has been also decomposed and only the 

approximation part vectors are collected. Hence, a hyperspectral data of dimension L x M 

x N is now reduced to L x M x N/2. Thus, the wavelet transform when applied on pixel 

vector reduces the spectral dimension and not spatial dimension. 

 The same concept may be extended to every other levels of decompositions also. 

After performing a 1-level Haar scaling decomposition of a signal ffff, a first approximation 

part vector or first trend a1 is obtained. Again apply 1-level decomposition on a1 to 

compute a second trend a2. 

 The spectral curves of hyperspectral pixel vectors signal consists of peaks and 

valleys such that the difference between the number of peaks and number of valleys is at 

most 1. But the sharpness of peaks and valleys considered to be important. In general, for 

all wavelet transforms, when the number of decomposition level increases, the length of 

the signal decreases since every time only the approximation part vector is  taken which is 

half in length that of the pixel vector. 

 4.3.2 Mathematical Details of Daubechies Wavelet Transform 

Haar transform is the first sub-class of Daubechies transforms which differs in the scaling 

functions and wavelets. The other Daubechies sub-classes also follow the same procedure 

as that of Haar. The most obvious difference between them is the length of the support, 

which means the number of non-zero terms of their scaling signals. The explanation on 

formation of scaling signals for all sub-classes of Daubechies is similar to that of Haar 

transformation. 



[57] 

 

 However, here a brief description for Daubechies 2 scaling function is given. The 

graph of the scaling function of Daubechies 4 is given in Figure 4.2(d). The scaling 

numbers, denoted by )
, ) , )> and )?, are given in equation (4.6). 

)
 	  
@ √>?√ 	 0.48, ) 	  > @ √>?√ 	 0.84, )> 	  >� √>?√ 	 0.22, )? 	  
�√>?√ 	 0.13(4.6) 

The derivation of values in equation (4.6) is beyond the scope of this thesis. Using these 4 

scaling numbers, the 1-level scaling signals can be obtained as: 

*++  	   �α
, α , α>, α?, 0, 0, 0, … 0� 	 �0.48, 0.84, 0.22, �0.13, 0, 0, 0, … 0� 

*/+  	   �0, 0, α
, α , α>, α?, 0, 0, … 0� 	  �0, 0, 0.48, 0.84, 0.22, �0.13, 0, 0, … 0� 

*0+  	   10, 0, 0, 0, α
, α ,α>, α?, 0, 0, … 02 	  �0, 0, 0, 0, 0.48, 0.84, 0.22, �0.13, 0, 0, … 0� 

*3 /⁄  –+ +  	   � 0, 0, … , 0,α
, α , α>, α?� 	  � 0, 0, … , 0, 0.48, 0.84, 0.22, �0.13� 

. 

. 

. 

 *3 /⁄+ 	 �α>, α?, 0, 0, 0, … α
, α � 	 �0.22, �0.13, 0, 0, 0, … 0.48, 0.84�  (4.7) 

These scaling signals hold few properties: 

(i) α
 E  α  E  α> E α? 	 1 

     (ii) )
 E ) E )> E  )? 	  √2   (4.8) 

 From Figures 4.2(a) to 4.2(d), it can be seen that the Daubechies scaling functions 

are not symmetric. Therefore, the corresponding scaling numbers (i.e., weights) are 

different and may also contain few negative numbers. Here also, for the signal f, the first 

level approximation part vector a1 and the second level approximation part vector a2 may 

be computed as explained for Haar transform in sub-section 2.1. Here also for first level 

decomposition, the length of first level approximation part vector a1 is half that of the 

original signal and the second level approximation part vector a2 is 1/4
th

 of the original 

signal. 

 4.3.3 Mathematical Details of Coiflets Wavelet Transform 

The Daubechies scaling functions are neither symmetric nor asymmetric while the Coiflets 

family is asymmetric (near to symmetry). Here also, there are many sub-classes, which are 

identified by the respective scaling functions. The graphs of first four sub-classes of 

Coiflets are given in Figures 4.3(a) to 4.3(d). Similar to earlier wavelet transforms, the 
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scaling signals are formed from the scaling numbers )
, ) , )>, etc. Appropriate values of )
, ) , )>, etc., are taken from Table 4.1. 

Table 4.1: The scaling coefficients of the first four sub-classes of Daubechies and Coiflets 

wavelets. (Walker, 2008) 

Haar α1 =  0.7071067812 α2 =  0.7071067812 

 Coif 1 α4  =  0.3848648469 α5  = -0.0727326195 α6  = -0.0156557281 

α1  = -0.0727326195 α2  =  0.3378976625 α3  =  0.8525720202 

Daub 2 α1  =  0.4829629131 α2  =  0.8365163037 α3  =  0.2241438680 α4  = -0.1294095226 

 Coif 2 α7 = -0.0764885991 α8 = -0.0594344186 α9 =  0.0236801719 α10 =  0.0056114348 α11 = -0.0018232089 α12 = -0.0007205494 

α1 =  0.0163873365 α2 = -0.0414649368 α3 = -0.0673725547 α4 =  0.3861100668 α5 =  0.8127236354 α6 =  0.4170051844 

Daub 3 α1  =  0.3326705530 α2  =  0.8068915093 α3  =  0.4598775021 α4  = -0.1350110200 α5  = -0.0854412739 α6  =  0.0352262919 

 Coif 3 α10 = -0.0823019271 α11 =  0.0345550276 α12 =  0.0158805449 α13 = -0.0090079761 α14 = -0.0025745177 α15 =  0.0011175188 α16 =  0.0004662170 α17 = -0.0000709833 α18 = -0.0000345998 

α1 = -0.0037935129 α2 =  0.0077825964 α3 =  0.0234526961 α4 = -0.0657719113 α5 = -0.0611233900 α6 =  0.4051769024 α7 =  0.7937772226 α8 =  0.4284834764 α9 = -0.0717998216 

Daub 4 α1  =  0.2303778133 α2  =  0.7148465706 α3  =  0.6308807679 α4  = -0.0279837694 α5  = -0.1870348117 α6  =  0.0308413818 α7  =  0.0328830117 α8  = -0.0105974018 

 Coif 4 α13 =  0.0393344271 α14 =  0.0250822618 α15 = -0.0152117315 α16 = -0.0056582867 α17 =  0.0037514362 α18 =  0.0012665619 α19 = -0.0005890208 α20 = -0.0002599746 α21 =  0.0000623390 α22 =  0.0000312299 α23 = -0.0000032597 α24 = -0.0000017850 

α1 =  0.0008923137 α2 = -0.0016294920 α3 = -0.0073461663 α4 =  0.0160689440 α5 =  0.0266823002 α6 = -0.0812666997 α7 = -0.0560773133 α8 =  0.4153084070 α9 =  0.7822389309 α10 =  0.4343860565 α11 = -0.0666274743 α12 = -0.0962204420 

 

 By using the scaling numbers given in Table 4.1 for various wavelet transforms and 

sub-classes, the 1-D pixel vector f is decomposed to produce various levels of trends.  

 4.3.4 Reconstruction of Wavelet Transformation 

Just now we have seen how a hyperspectral pixel vector is decomposed into averaging 

(trend) and detail (fluctuation) coefficients by wavelet techniques. From the decomposed 

signals, it is possible to retrieve the original signals. The method is called as reconstruction 

of wavelets or inverse wavelet transform. In decomposition of signals, filtering and down-

sampling happens while in reconstruction filtering and up-sampling will happen. 
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 The reconstruction of wavelets can be done in many ways. One such way is to 

assume the detail coefficient value obtained at the final level to be zero and to find the 

averaging coefficients from lower level to higher level to reach the original signal f. 

Another way is to assume all the detail coefficients to be zero and to find the averaging 

coefficients from lower level to higher level to reach the original signal f. 

 Since wavelets have the property of multi-resolution analysis, the spectral 

decomposition of each pixel vector has been performed and studies have been made on 

various decomposition levels. Here every pixel vector has been taken and the wavelet 

transformation has been applied on them individually. Another transformation based on 

statistical method has also been performed. Here the whole dataset has been transformed 

into another dataset of same dimension. The mathematical concept of wavelets and PCA 

are entirely different. The transformation is pixel wise in the former case and in the latter 

case it is collective information transformation. Therefore, the study on these two 

techniques for feature extraction of hyperspectral data may be useful. The basic 

mathematical structure of PCA based feature extraction techniques has been given in the 

next section. 

4.4 PCA Based Feature Extraction Techniques 

The PCA is a multivariate statistical tool which generally projects the data into orthogonal 

space. PCA, an orthogonal subspace projection is performed on the hyperspectral images 

and produces a new sequence of uncorrelated bands or components. Usually the first few 

components contain the most of information, and the later components that tend to show 

little variance which are usually ignored. Therefore, the essential dimensionality of the 

classification space will be reduced. Although, this method can effectively provide high 

classification accuracy, it is sensitive to noise and has to be performed with the whole 

dataset (Schowengerdt, 1997). 

 In PCA, the second order statistics (covariance) are considered for transforming the 

original data. Let x represents the vector of a pixel’s digital number value in an image of N 

bands. The transformation is defined in equation (4.9) as, 

      K 	 L
M,,    (4.9) 

where, A is the normalized matrix of eigen vectors of the covariance matrix. The image 

covariance matrix, C, is an N-by-N matrix and can be constructed by finding covariance 

between band to band and by keeping each band as a pixel vector. Now, when xi represents 
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a pixel vector for i = 1, 2, …, K and let m be the mean vector, then the mean and 

covariance matrix can be described as, 

     N 	 OPMQ 	  
R ∑ MTRTU
    (4.10) 

     V 	 OP�MT �  N��MT �  N�
Q 	  
R�
  ∑ �MT �  N��MT �  N�
RTU
   (4.11) 

 PCA may be regarded as an optimal method for data compression but it is not 

necessarily an optimal method for feature extraction. Particularly, in case of applications 

such as image classification and target/anomaly detection, PCA is inept in extracting 

discriminating feature. Also, as PCA operates on global statistics it may overlook local 

variances that are helpful in detection problems. To improve PCA for better feature 

extraction, Jia and Richards (1999) developed a segmented PCA to extract best principal 

components from hyperspectral data. 

 4.4.1 Segmented Principal Component Analysis (SPCA) 

In segmented PCA, the spectral bands are segmented by taking the correlation between the 

neighbouring bands. Since in hyperspectral data, correlation between neighbouring bands 

is higher than bands far away, the high correlations bands appear in white coloured blocks, 

as shown in Figure 4.4. 

 

Figure 4.4: Image of a typical correlation matrix of dataset II (AVIRIS Indiana Pine with 

182 bands which has been used in this research)  
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 Once the image of correlation matrix has been obtained, an edge detection 

technique may be performed on the correlation matrix to find the exact boundary between 

the blocks. Let the entire image be divided into k number of subgroups, 1, 2, …k,  based 

upon the edges got from edge detection technique. Now each subgroup has b1, b2, …bK 

number of bands, respectively.  The PCA is then applied on each group. Here, the sum of 

variances or the eigen vectors is considered to be 100% and based upon the requirement of 

number of bands or threshold value from each subgroup the PCs are taken for further 

processing. 

 Since PCA has been applied onto less number of bands, the computational load 

may be reduced significantly. But on the other hand, in SPCA, the segmentation of spectral 

bands has been performed by the correlation matrix but if it is with respect to the available 

classes then the accuracy may improve. Hence, a segmentation of spectral bands has been 

performed based on the properties of spectral curves of the available classes, which has 

been explained in the subsequent sections. 

  4.4.2 Spectrally Segmented Principal Component Analysis (SSPCA) 

One technique to divide the spectral group into various groups is by finding edges on a 

correlation matrix and there are few other techniques too. Bell and Baranoski (2004) 

developed a piecewise PCA (PPCA) algorithm to study field collected spectral datasets of 

vegetation. The algorithm has been developed based on the concepts of how plants interact 

with solar radiation in absorption, reflection and transmittance throughout the light spectral 

wavelength regions due to the structure and constituents of the leaf. The collected 

spectrum is divided into several groups of different wavelength regions and the PCA is 

then applied to each group independently. The experiments of Bell and Baranoski 

indicated that PCA worked effectively in visible to near-infrared regions while PPCA 

further improved the efficiency and accuracy–cost ratio in data compression and 

restoration of plant spectra.  

 Tsai et al., (2007) proposed a spectrally segmented PCA based on known 

characteristics of plant leaves over different regions of wavelength. Here, the aim is to 

extract information about particular types of plant species.  Several experiments have been 

conducted to define various spectral groups. A number of PCs in each segment have been 

taken in order to find the aptness of the technique. 
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 Now, a detailed description on how feature extraction has been performed by the 

two techniques, wavelet based feature extraction technique and PCA based feature 

extraction technique.  

4.5 Implementation of Feature Extraction Techniques 

The two feature extraction techniques, wavelet based and PCA based have been 

implemented. The transformation by wavelets has been applied on hyperspectral vector 

while PCA takes groups of bands for feature extraction. Detailed explanation about the 

implementation of the two techniques has been given in the following sub-sections. 

 4.5.1 Implementation of Wavelet Based Feature Extraction Technique of 

Hyperspectral Data 

In order to fulfill the objectives of this study, set of experiments have been planned. The 

general methodology has been given in Figure 4.5. 

 

Figure 4.5: Flowchart of general methodology for feature reduction using wavelet 

transformation. 

 

 

Input hyperspectral image 

Remove water absorption bands, 

noisy bands and bands with no data 

Feature extraction by wavelet 

transformations 

Select training data 

Classification by SVM 

Select testing data 

Accuracy assessment 

Increase the decomposition 

levels until the required 

number of bands obtained 
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 4.5.1.1 Decomposition of a Pixel Vector of Hyperspectral Data 

Typically, the hyperspectral data is represented as a 3-dimension matrix with its rows and 

columns representing the spatial coordinates and the 3
rd

 dimension for spectral details. 

Thus, the data pertaining to every pixel may be represented as a pixel vector, in which the 

length is same as that of the number of spectral bands or dimensions.  In general, the 

wavelet transformation may be applied to 1-D signal (a pixel vector) or 2-D image (a 

matrix). In the context of hyperspectral data, the data reduction is not along its spatial 

dimension but along its spectral dimension.  The wavelet transform is applied on each of 

the pixel vectors (here the pixel vectors are 1-D signals) of the hyperspectral data.  In this 

study, the wavelet families from Haar, Daubechies and Coiflets have been used to extract 

features. 

 

Figure 4.6: The process of decomposition of a hyperspectral signal when wavelet 

transformation is applied to 1-D signal vector. 

The notations used in the Figure 4.6 are explained as follows:  

f is the original pixel vector of the given hyperspectral data,  

a1 and a2 are the first and second level scaling functions (scaling signals) respectively 

obtained by decomposing   f, 

d1 is the first level wavelet function such that f = a1 + d1,   
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d2 is the second level of wavelet function such that a1 = a2 + d2, i.e., f = a2 + d2 + d1. 

Here, the binary operation ‘+’ has been used to append two vectors. 

 Every wavelet family depends upon a ‘mother wavelet’. Haar wavelet is the 

simplest among all the wavelets. The wavelet multi-resolution analysis is used to sub-

sample the spectral domain by a factor 2 on each pixel vector of hyperspectral data 

considered as discrete signal. A discrete signal is an 1-D array of elements at discrete 

instants. Generally, a discrete signal is expressed as: 

       W 	 �X
, X , … X<�,     (4.12) 

where N is a positive even integer, referred to as the length of f. The values of f are the N 

real numbers f1, f2,…fN. In hyperspectral data, f is a pixel vector, where the values fi , i = 1 

to N is the digital number of that pixel at i
th

 spectral band and N is the total number of 

spectral bands of the hyperspectral data. Now, by applying the transformation on f, it 

decomposes f into two parts. The first part is the scaling function and the second part is the 

wavelet function. The decomposition stages may be explained with the help of Figure 4.6. 

 Like all wavelet transforms, the Haar transform decomposes a discrete signal into 

two sub-signals of half its length. One sub-signal is a running average or approximation 

vector or trend while the other sub-signal is the running difference or detail or fluctuation. 

In general, the fluctuation is used to reconstruct the original signal with the help of trend. 

The trend is used for further processing of the signal. The first approximation vector Y+ 	 �5
, 5 , … 5<  ⁄ �, , for the signal f is computed by taking a running average in the 

following way.  

 Its first value, a1, is computed by taking the average of the first pair of values 

�X
 E  X � 2⁄ ; and then normalization by multiplying it by √2. Thus, the first value of 

approximation vector is given as: 

    5
 	 �X
 E  X �/√2    (4.13) 

 Similarly, its next value is computed by taking the average of next pair of values of             

 W Z  �X> E X?� 2⁄ ; and then multiplying it by √2. Hence, the second term in the sequence is 

given by: 

     5 	 �X> E  X?�/√2     (4.14) 
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 Continuing this way, all the values of approximation vector a1 are produced by 

taking averages of successive pairs of values of f, and then multiplying these averages by 

√2. A formula for the values of a1 is given as,: 

    58 	  [7\]^@ [7\√  , m = 1, 2, 3, …, N/2  (4.14) 

 The other sub-signal is called the fluctuation or detail part. The first fluctuation of 

the signal f, denoted by _+ 	 ��
, � , … �<  ⁄ �, is computed by taking a running difference 

in the following way.  

 Its first value, d1, is found by taking half the difference of the first pair of values of            

 9 	 �X
 �  X �/2; and multiplying it by √2. That is, 

     �
 	 �X
 �  X �/√2    (4.15) 

 Likewise, its next value d2 is found by taking half the difference of the next pair of 

values of  9 	 �X> �  X?�/2; and multiplying it by √2In other words, 

   � 	 �X> � X?�/√2     (4.16) 

 Continuing this way, all the values of d1 are produced according to equation (4.17):  

    �8 	  [7\]^� [7\√ , m = 1, 2, 3, …, N/2.  (4.17) 

 Here, a1 is a vector of length N/2. Now, decompose each pixel vector of the 

hyperspectral data using the above procedure and collect them to produce a reduced data.  

 Several  experiments have been planned for feature extraction of hyperspectral data 

using  eight wavelets, namely, Haar, Daubechies 2, Daubechies 3, Daubechies 4, Coiflets 

1, Coiflets 2, Coiflets 3 and Coiflets 4 wavelets each for first four levels of decomposition. 

Thus, a total of 32 reduced datasets have been produced. Each of these reduced data is then 

classified using the most appropriate classifier, namely, SVM and their classification 

accuracy assessed to evaluate the quality of each wavelet transformation. The original 

hyperspectral datasets (after pre-processing) have also been classified. Thus, a total of 33 

classified images for each dataset (for dataset II, dataset III and dataset IV) have been 

generated. The training and testing samples have been kept same in all the classifications. 

The number of training and testing samples used in supervised classification has been 

given in Table 3.2, Table 3.3 and Table 3.4 respectively, from Chapter 3. 
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 4.5.2 Implementation of PCA Based Techniques in Feature Extraction of 

Hyperspectral Data 

Two types of PCA based feature extraction have been made. The implementation details of 

both the techniques have been given in this section. 

  4.5.2.1 Implementation of Segmented PCA 

The spectral region is divided into few number of groups based on the image obtained 

from correlation matrix of the pre-processed hyperspectral data. First, a correlation matrix 

has been generated and the same is converted into an image. Then, Canny edge detection 

technique has been applied on the image obtained from correlation matrix and the sharp 

variation in tone in the image has been identified. Based on this, the image has been 

segmented into 4 to 8 segments. If a segment contains less number of bands (say around 

less than 4), then they are grouped with the neighbouring segment. Figure 4.7 shows a 

typical image obtained from correlation matrix of dataset II (AVIRIS Indiana Pine dataset) 

and the edges detected by Canny edge detection technique. Out of 224 bands, after pre-

processing, only 182 bands have been identified and segmented. A total of 8 segments 

have been obtained from the correlation image, which are 1 – 3, 4 – 36, 37 – 79, 80, 81 – 

100, 101, 102 – 180, 181 – 182. Since few segments have only one band, such bands are 

combined with the neighbouring bands. The resulting segments are 0 – 36, 37 – 79, 80 – 

101, 102 – 182. Now, PCA has been applied on each segment and from each group, few 

components have been chosen according to the required variance. 

 
Figure 4.7: The image of correlation matrix. The edges of correlation image obtained after 

applying Canny edge detection technique. 

 

  4.5.2.2 Implementation of Spectrally Segmented PCA 

In SSPCA, the spectral region is divided into 4 groups based on the spectral response of 

classes. The wavelength range for each class is different and hence the number of bands in 

each group is also different. The wavelength groups taken are VIS (visible), NIR (near 
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infra-red), SWIR-1 (shortwave infra-red-1) and SWIR-2 (shortwave infra-red-2) and the 

corresponding ranges are 400-660nm, 670-900nm, 970-1350nm and 1530-2240nm 

respectively (Tsai et al., 2007). 

After segmentation according to spectral region, PCA has been independently 

applied on each group and the predominant PCs from each group has been selected and 

used for further processing. 

 The quality of each feature reduction method has been assessed in terms of overall 

classification accuracy, users’ and producers’ accuracies based on the classifications 

obtained by applying SVM classifier on reduced datasets.  

4.6 Results and Discussion 

Application of these two feature extraction techniques, wavelet based feature extraction 

and segmented based PCA feature extraction techniques differs in the base mathematical 

formulation itself. The WBFE is multi-resolution analysis and has various levels of 

decomposition while in case of SPCA and SSPCA, the data has been segmented based on 

the spectral behavior of classes. For wavelet based feature extraction, the two parameters 

used in choosing the reduced datasets are the time required to carry over feature extraction 

and the overall classification accuracy. Priority has been given to classification accuracy 

and then to time required for feature extraction. For SPCA and SSPCA, the performance 

has been assessed based on the classification accuracy. The accuracy of classification 

produced from reduced number of bands in each case has been analysed. Since the land 

cover of the three datasets are different and also the spatial – spectral resolutions too, the 

analysis has been performed data wise. 

 4.6.1 Assessment of Feature Extraction Techniques for Dataset II (AVIRIS Indian 

Pine Dataset) 

The performance of each of the feature extraction techniques has been assessed based on 

the overall accuracy and computational efficiency in reducing the dataset. Table 4.2 shows 

the number of features after reduction, duration of feature extraction (in seconds), duration 

of classification, overall accuracy and kappa coefficient for data reduced using different 

wavelets. Further, a detailed analysis on the basis of users’ and producers’ accuracies has 

been given on Chapter 5. 
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Table 4.2: The time duration for feature extraction and classification, overall accuracy and 

kappa coefficient for classifications obtained by considering features obtained at various 

levels from different wavelets for dataset II. 
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1 

Full 

Image 182 

- 

435.59 90.85 0.90 

2 Haar_1 91 175.51 386.22 92.06 0.91 

3 Haar_2 46 97.02 354.86 87.43 0.86 

4 Haar_3 23 47.84 315.93 89.11 0.88 

5 Haar_4 12 32.92 298.65 86.00 0.83 

6 Daub2_1 92 195.83 387.62 100.00 1 

7 Daub2_2 47 103.01 355.73 93.34 0.93 

8 Daub2_3 25 55.96 316.39 91.57 0.91 

9 Daub2_4 14 39.83 301.31 88.00 0.87 

10 Daub3_1 93 191.71 389.24 92.52 0.92 

11 Daub3_2 49 112.85 357.21 93.34 0.93 

12 Daub3_3 27 60.76 322.56 92.91 0.92 

13 Daub3_4 16 43.02 304.6 87.47 0.86 

14 Daub4_1 94 194.07 390.38 92.32 0.91 

15 Daub4_2 50 111.26 357.86 93.37 0.93 

16 Daub4_3 28 63.09 325.41 74.34 0.72 

17 Daub4_4 17 44.30 305.12 66.67 0.63 

18 Coif1_1 93 197.05 386.67 88.52 0.87 

19 Coif1_2 49 108.61 357.26 93.18 0.92 

20 Coif1_3 27 56.26 321.29 92.82 0.92 

21 Coif1_4 16 42.11 302.54 88.64 0.87 

22 Coif2_1 96 197.45 392.53 88.71 0.87 

23 Coif2_2 53 117.58 358.79 93.27 0.93 

24 Coif2_3 32 70.84 337.98 91.67 0.91 

25 Coif2_4 21 51.03 312.74 88.91 0.88 

26 Coif3_1 99 203.51 394.68 92.13 0.91 

27 Coif3_2 58 138.52 362.77 93.96 0.93 

28 Coif3_3 37 81.20 344.56 66.83 0.64 

29 Coif3_4 27 65.04 320.45 56.07 0.52 

30 Coif4_1 102 223.74 396.45 86.25 0.85 

31 Coif4_2 62 144.53 370.95 72.96 0.70 

32 Coif4_3 42 99.00 350.48 74.34 0.72 

33 Coif4_4 32 75.42 336.94 51.80 0.49 

34 SPCA 48 120.43 352.94 90.25 0.87 

35 SSPCA 50 118.57 353.86 93.80 0.91 

 From Table 4.2, it is evident that as the decomposition level increases, the time 

duration required to extract information for hyperspectral data decreases, and the number 

of features (bands become features after transformation) get decreased. The time required 
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for classification is around 350 seconds for each of the datasets. It should not be 

misunderstood that ‘if the number of features is reduced to half the time required to 

classify is also half ’. Because the training stage depends upon various parameters, which 

includes number of training pixels, number of classes and finally number of features 

involved in classification duration varies. 

 But from Table 4.2, it is observed that among the 34 feature extraction techniques 

for dataset II, level-1 decomposition gives better classification accuracy for 3 out of 8 

feature extractions while at level-2 decomposition 5 out of 8 feature extraction techniques 

give better accuracy with-in the sub-class of wavelets. Visual interpretation of Figure 4.9 

shows that the classification from Daub2_1 and Coif4_4 are having significant difference 

between them. The overall accuracy for these two dataset also confirms the same. The 

overall accuracy for Daub2_1 is 100% while that of Coif4_4 is 51.804 and hence the 

information extraction by Daub2_1 is considered to be better than Coif4_4. Some classes 

are completely mis-classified into other classes which lead to low accuracy value in Coif 

4_4. Even though the number of features has been reduced significantly, from 91 to 32, 

most of the useful information has been lost. So reduction time reduces from above 175 

seconds (for Haar_1) to 75 seconds (for Coif4_4) also took away useful information from 

the dataset. 

 An insight study of reason for min-classification has been identified. Mis-

classification between grass/pasture and wheat occurs while using Coif4, level-4 feature 

extraction. The spectral signatures of these two classes after decomposition by Daub2, 

level-1 and Coif4, level-4 feature extractions has been given in Figure 4.8 which shows 

that in Coif4_4, the discrimination between the two spectral signatures are less compared 

to that of Daub4_1. Similarly, mis-classification between corn-min and soy-min till, corn-

min and soy-clean, woods and wheat (Table 4.3) is due to the level-4 decomposition by 

Coiflets. When applying Daub2, level-1 feature extraction technique, the 182 band data has 

been reduced to 92 features and from the reduced data, feature 26 has been given in Figure 

4.9. Similarly, feature 17 from Coif4, level-4 reduced has been given in Figure 4.9. The 

correlation coefficient between the two features got from feature extraction by using 

Daub2_1 and Coif4_4 is 0.657. For calculating coefficient correlation between the two 

features, the last feature has been taken where in Daub2_1, the last feature is feature 

number 92 and in Coif4_4 it is 32. The correlation coefficient for the first feature from 

both the feature extraction techniques for dataset IV is 0.786. 
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 In general both SPCA and SSPCA perform better in information extraction but 

more precise, SSPCA performs better than SPCA. 

Table 4.3: Error matrix for dataset II reduced by Coiflet 4, level-4 decomposition. 
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Alfalfa 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 

Corn-notill 0 218 1 3 0 0 0 0 0 34 35 0 0 0 0 0 291 

Corn-min 0 16 137 5 0 0 0 0 0 13 333 119 0 0 0 0 623 

Corn 0 0 6 124 0 0 0 0 0 0 5 4 0 0 0 0 139 

Grass/pasture 0 0 0 0 18 0 0 0 0 0 0 0 0 1 0 0 19 

Grass/trees 0 0 0 0 0 184 1 0 0 0 4 1 0 51 39 0 280 

Grass/pasture-

mowed 0 0 0 0 0 0 21 0 0 0 0 0 0 0 2 0 23 

Hay-

windrowed 0 0 0 0 0 0 2 315 0 0 0 0 0 0 9 0 326 

Oats 0 0 0 0 33 0 0 0 18 0 4 0 0 2 16 0 73 

Soy-notill 0 0 0 0 0 0 0 0 0 283 17 15 0 0 0 0 315 

Soy-min till 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 4 

Soy-clean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wheat 0 0 0 0 247 0 0 0 0 0 9 0 126 425 12 0 819 

Woods 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 46 

Bldg-grass-

trees-drives 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 4 

Stone-steel 

towers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 60 

Total 26 234 144 132 298 184 24 315 18 330 408 140 126 527 80 62 3048 

 

 

 

  
Figure 4.8: The spectral signatures for two classes (grass/pasture in blue colour and wheat 

in red colour) of dataset II after Daub2_1 and Coif4_4 wavelet feature extractions 

respectively. 
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Figure 4.9: Feature 26 after Daub2, level-1 reduction vs band 17 of Coif4, level-4 reduced 

datasets of dataset II. 

   

 
 

Figure 4.10: The pseudo coloured thematic map of dataset II classified by SVM which are 

reduced by Daub2, level-1 and Coif4, level-4 transformations along with legend. 
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 4.6.2 Assessment of Feature Extraction Techniques for Dataset III (HYPERION 

Roorkee and its Surroundings Dataset) 

The experimental dataset III is from HYPERION sensor which covers Roorkee and its 

surroundings. This dataset consists of trees and urban area as major classes while few other 

classes like barren land and sand are having less number of pixels. The classification 

accuracy wise comparison along with duration required to reduce the features has been 

given in this section. 

Table 4.4: The time duration for feature extraction and classification, overall accuracy and 

kappa coefficient for classifications obtained by considering features obtained at various 

levels from different wavelets for dataset III. 
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1 Full Image 90 - 100.11 89.2 0.84 

2 Haar_1 45 852.33 49.28 99.3 0.99 

3 Haar_2 23 444.52 44.56 96.1 0.94 

4 Haar_3 12 221.71 40.37 97.00 0.96 

5 Haar_4 6 123.62 36.69 95.70 0.94 

6 Daub2_1 46 821.94 50.34 98.10 0.97 

7 Daub2_2 24 485.88 44.97 98.60 0.98 

8 Daub2_3 13 247.34 41.43 39.90 0.27 

9 Daub2_4 8 164.6 37.12 46.20 0.35 

10 Daub3_1 47 754.38 51.52 97.10 0.96 

11 Daub3_2 26 482.62 45.14 96.50 0.95 

12 Daub3_3 15 288.38 42.32 47.40 0.37 

13 Daub3_4 10 199.27 39.12 46.30 0.35 

14 Daub4_1 48 784.01 52.47 97.70 0.97 

15 Daub4_2 27 457.65 45.23 96.50 0.95 

16 Daub4_3 17 335.5 43.27 46.90 0.36 

17 Daub4_4 12 236.77 40.19 46.60 0.36 

18 Coif1_1 47 762.78 51.96 97.50 0.96 

19 Coif1_2 26 463.59 45.89 97.10 0.95 

20 Coif1_3 15 283.72 41.48 46.90 0.36 

21 Coif1_4 10 182.95 39.39 46.10 0.35 

22 Coif2_1 50 861.71 56.43 97.30 0.96 

23 Coif2_2 30 566.44 46.31 96.60 0.95 

24 Coif2_3 20 387.79 43.45 46.40 0.35 
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25 Coif2_4 15 296.35 41.83 46.20 0.35 

26 Coif3_1 53 896.72 57.58 98.30 0.98 

27 Coif3_2 35 622.91 47.64 96.80 0.95 

28 Coif3_3 26 494.7 45.73 45.70 0.34 

29 Coif3_4 21 421.55 43.95 45.00 0.34 

30 Coif4_1 56 977.36 58.8 89.30 0.96 

31 Coif4_2 39 686.95 47.67 82.40 0.96 

32 Coif4_3 31 583.86 46.37 48.20 0.37 

33 Coif4_4 27 518.94 45.27 47.20 0.36 

34 SPCA 27 465.73 45.92 92.50 0.91 

35 SSPCA 30 556.80 43.82 96.40 0.93 

 

 Mis-classification happens between trees and urban, trees and water (Table 4.5) 

while decomposing the data by using Daub2, level-3 decomposition. Since the class urban 

and class trees occupy most of the region of dataset III, the mis-classification between 

them leads to significant decrease in overall accuracy (39.9 percent, from Table 4.4). Here 

also the visual interpretation of the two classified images shows significant difference. But 

the overall accuracy comes from Haar_1 is better among all reductions. Here also when the 

duration required for classification gradually increases (Table 4.4) with increase in number 

of features involved in classification. There is a sudden flow in classification accuracy 

when the feature extraction exceeds 2
nd

 level decomposition, but a marginal change in 

duration of classification. The classification accuracy of such level algorithms is very poor. 

Table 4.5: Error matrix for dataset III reduced by Daub 2, level-3 decomposition. 

 

Sl. 

No. 
Reference 

Classified 
Trees Vegetation 

Barren 

Land 
Sand Urban Water Total 

1 Trees 179 2 6 0 427 66 680 

2 Vegetation 2 57 1 0 0 0 60 

3 
Barren 

Land 
0 0 90 0 8 0 98 

4 Sand 0 0 5 28 25 0 58 

5 Urban 0 0 2 0 7 0 9 

6 Water 0 0 0 0 0 0 0 

 Total 181 59 104 28 467 66 905 
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Figure 4.11: The pseudo coloured thematic map of dataset III classified by SVM which 

are reduced by Haar, level-1 and Daub2, level 3 transformations along with legend. 

 

 4.6.3 Assessment of Feature Extraction Techniques for Dataset IV (AVIRIS San 

Diego Naval Air Station Dataset) 

Various types of concrete structures and various types of buildings are to be classified is 

considered to be the challenging part in classification of dataset IV. The feature reduction 

has been analysed by classification of the reduced datasets by SVM classifier has been 

given in this section. 
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Table 4.6: The time duration for feature extraction and classification, overall, accuracy 

and kappa coefficient for classifications obtained by considering features obtained at 

various levels from different wavelets for dataset IV. 

Sl. 

No 

Name of 

the 

Wavelet 

Number 

of  

Features 

Duration of 

Feature 

Extraction (in 

seconds) 

Duration of 

Classification 

by SVM (in 

seconds) 
Overall 

Accuracy 

Kappa 

Coeff. 

1 

Full 

Image 
189 - 45.72 96.00 0.95 

2 Haar_1 95 188.81 37.23 97.20 0.97 

3 Haar_2 48 101.59 25.16 99.30 0.99 

4 Haar_3 24 49.62 17.84 34.50 0.25 

5 Haar_4 12 34.73 17.64 34.00 0.24 

6 Daub2_1 96 197.97 37.59 97.70 0.97 

7 Daub2_2 49 106.96 25.31 98.60 0.98 

8 Daub2_3 26 57.27 18.21 33.80 0.24 

9 Daub2_4 14 39.38 17.21 33.30 0.24 

10 Daub3_1 97 199.64 38.8 96.70 0.96 

11 Daub3_2 51 114.97 25.56 98.80 0.98 

12 Daub3_3 28 61.64 18.78 34.30 0.25 

13 Daub3_4 16 42.7 17.49 36.20 0.27 

14 Daub4_1 98 201.15 38.91 97.20 0.97 

15 Daub4_2 52 113.52 25.83 96.20 0.96 

16 Daub4_3 29 61.26 19.13 35.90 0.27 

17 Daub4_4 18 42.88 17.93 34.70 0.25 

18 Coif1_1 97 195.92 38.41 96.50 0.96 

19 Coif1_2 51 105.44 25.97 98.40 0.98 

20 Coif1_3 28 58.72 18.93 36.40 0.27 

21 Coif1_4 16 39.67 17.42 35.00 0.25 

22 Coif2_1 100 193.87 39.21 97.40 0.97 

23 Coif2_2 55 115.2 25.94 98.80 0.98 

24 Coif2_3 33 68.51 21.21 36.60 0.28 

25 Coif2_4 22 49.2 17.01 36.60 0.27 

26 Coif3_1 103 212.14 39.72 96.90 0.96 

27 Coif3_2 60 134.07 26.3 90.60 0.89 

28 Coif3_3 38 85.62 23.38 39.40 0.31 

29 Coif3_4 27 62.81 18.67 36.90 0.28 

30 Coif4_1 106 224.05 40.28 96.70 0.96 

31 Coif4_2 64 148.1 27.49 98.80 0.98 

32 Coif4_3 43 99.7 24.73 35.70 0.27 

33 Coif4_4 33 79.13 20.28 35.50 0.26 

34 SPCA 47 102.41 25.52 92.30 0.91 

35 SSPCA 50 113.37 25.29 96.20 0.95 
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Table 4.7: Error matrix for dataset IV reduced by Daub 2, level-4 decomposition. 
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Vegetation 0 0 0 0 25 0 0 0 0 25 

Road Type 1 4 7 2 0 40 6 0 0 9 68 

Road Type 2 0 16 29 0 0 0 0 0 0 45 

Concrete Type 1 0 13 2 33 1 5 0 0 0 54 

Concrete Type 2 0 11 4 32 17 22 0 0 0 86 

Concrete Type 3 0 0 1 0 1 3 0 0 27 32 

Building Type 1 0 2 4 0 0 0 59 0 0 65 

Building Type 2 0 0 0 0 5 0 0 0 0 5 

Building Type 3 14 0 0 0 0 0 0 32 0 46 

Total 18 49 42 65 89 36 59 32 36 426 

 

   

 
Figure 4.12: The pseudo coloured thematic map of dataset IV classified by SVM which 

are reduced by Haar, level-2 and Daub 2, level-4 transformations along with legend. 
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Here also the visual interpretation of the two classified images comes from Haar, level-2 

decomposition and Daub, level-4 decomposition are having significant difference. The 

Table 4.7 above confirms the same which gives the error matrix for dataset IV reduced by 

Daub 2, level-4 decomposition. No pixel from the reference has been classified as 

vegetation, building type 2 and building type 3. Also mis-classification between every 

classes leads to poor overall accuracy of 36.6 %. Here also when the duration required for 

classification gradually increases (Table 4.6) with increase in number of features involved 

in classification. 

 
 
Figure 4.13: The band vs overall accuracy comparison for feature extraction at various 

levels of decomposition from different wavelets and PCA based feature extraction of 

dataset II, dataset III and dataset IV respectively. 

 
 From Figure 4.13 it is evident that for datasets III and IV, the classification 

accuracies have been increased when using 1
st
 and 2

nd
 level decompositions compared to 

original datasets. But when the decomposition level is increasing from 3
rd

 level, the 

classification accuracy gets decreased for all the datasets. Hence for further analysis only 

the first 2 decomposition levels have been taken. Not only for 2D images but also for 

hyperspectral data of various spatial resolutions, Haar and Daubechies wavelets perform 

better than the rest and they are carried out for further experiments. For dataset II, since the 

classes are crisp the feature reduction performs better even when decomposition goes 

beyond 2
nd

 level. 

 But from Table 4.2, it is observed that among the 34 feature extraction techniques 

for dataset II, level-1 decomposition gives better classification accuracy for 3 out of 8 

feature extractions while at level-2 decomposition 5 out of 8 feature extraction techniques 

give better accuracy with-in the sub-class of wavelets. 
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 The same observation has been made for the other two hyperspectral datasets too. 

From Table 4.4 for dataset III, it is clear that the first two levels of decomposition perform 

better in extracting useful information than the higher level decomposition. In fact, for this 

dataset, the level-1decomposition gives better classification accuracy for 6 out of 8 feature 

extractions while at level-2 decomposition 2 out of 8 feature extraction techniques give 

better accuracy. 

 For dataset IV, the situation is reversed even though the lower level decomposition 

performs better. Here, 6 out of 8 feature extractions comes from 2
nd

 level decomposition 

produces better classification accuracy while only 2 out of 8 for 1
st
 level decomposition 

produces better results obtained from Table 4.6. 

 In all the cases, there is no significant difference in classification accuracies by 

level-1 and level-2 decompositions but the number of bands used in 2
nd

 level 

decomposition is almost half of that used in level-1 decomposition. This reduces time for 

feature extraction and time for classification. Hence level-2 decomposition from 

Daubechies is preferred both in accuracy wise as well as duration wise for feature 

extraction of hyperspectral data. 

4.7 Summary 

In this chapter, the mathematical background of wavelets and PCA has been described and 

the explanation about how they are useful in extraction of features from hyperspectral data 

has been given. The implementation of both the techniques has also been given in this 

chapter. There is a drastic reduction in the hyperspectral data by doing wavelet based 

feature extraction. When the level of decomposition increases the number of extracted 

bands (components) becomes almost half of the data on which reduction applied.  

 At the same time, the time duration required to extract the features decreases when 

the level of decomposition increases. The Haar wavelets are quite simple to handle while 

the Coiflets are complicated. In general, Daubechies wavelets perform better for 2D 

images and here also it is proved that they perform better than other wavelets and also than 

SPCA and SSPCA. All these wavelets take information from all the bands while PCA 

based extraction overlook the local variances that are helpful for the detection of useful 

information from hyperspectral data. In particular, the second level decomposition by 

wavelets gives better classification accuracy and also it reduces the hyperspectral data to 

1/4
th

 of the original size. The time duration for performing 2
nd

 level decomposition is more 
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than for performing 1
st
 level decomposition but the classification accuracy wise 2

nd
 level 

decomposition is better. Hence only the first two levels of decomposition based feature 

extraction by Haar and Daubechies sub classes have been taken for further information 

extraction. 



 

 

Chapter 5 

Mathematical Background, Implementation and Results 

of Per Pixel and Sub Pixel Classification of 

Hyperspectral Data 

 

5.1 Introduction 

Classification of remote sensing images is the process of labeling each pixel vector into 

various classes based on some mathematical matching logic. Classification is thus a key 

task to derive information from hyperspectral images for various applications like military 

applications (to distinguish between actual vegetation and camouflage (van der Meer and 

de Jong, 2001)), atmospheric characterization (Hsiao et al., 2001) and climate research, 

snow and ice hydrology, monitoring coastal environments (Lucas et al., 2002), 

understanding the structure and functioning of ecosystems, mineral exploration and land 

use land cover and vegetation mapping. The classification may be performed on per pixel, 

sub pixel or object basis depending upon the spatial resolution of the sensor viz medium, 

coarse and fine respectively. 

 The spatial resolution plays a vital role in classification. If the spatial resolution is 

finer for an image it may have classes or targets composed of several pixels as objects 

whereas if the spatial resolution is coarser, a pixel may contain many classes and is 

regarded as a mixed pixel. Thus, suitable classification algorithms must be used depending 

upon the spatial resolution of the dataset. 

 In object based classification, the image is segmented into groups of pixels to form 

objects (Pathak and Dikshit, 2003; Pathak and Dikshit, 2010). Each object is then assigned 

one class. In per pixel classification, a pixel is allotted to one and only class whereas in sub 

pixel classification, the proportion of classes present in a mixed pixel are obtained. These 

proportions are also called as fraction or abundance.  The per-pixel, object based and sub-

pixel classifications can be performed in supervised or unsupervised way depending upon 

whether the training data are available or not. To perform supervised or unsupervised 

classification, both parametric and non-parametric mathematical algorithms may be used. 

In this research three different types of algorithms have been used. Per pixel classification 



[82] 

 

has been performed by support vector machines (SVMs) which requires less number of 

training pixels. In the case study, some of the classes of some experimental datasets are 

having less number of pixels leads to collection of less number of training pixels. SVMs 

are large margin classifiers and supervised and non-parametric in nature. The next two 

classifiers are sub pixel classifiers which produces fractional abundance of each pixel. 

Among the two classifiers the first one is supervised non-parametric (LMM) classifier. 

This is a supervised classifier and requires training data but the classification does not 

depend upon the statistics of the training data. Finally, an unsupervised parametric 

classifier by making use of ICAMM technique has been used to classify small classes. 

Classes which may not contain pure pixels and which may not be classified by using LMM 

may also be classified using ICAMM. 

5.2 Brief Description of Algorithms Used for Classification of Hyperspectral Data 

Every classification algorithm has its own mathematical background and hence the 

classification process differs in each case. A brief description about the classification 

algorithms used in classifying the hyperspectral data in this work has been given in this 

section. 

 5.2.1 Per Pixel Classification Algorithm 

Per pixel classification algorithm aims in mapping each pixel to one and only one class. 

Here one machine learning algorithm (SVM) has been used and the description of this 

algorithm is given in this section. 

  5.2.1.1 Support Vector Machines (SVM) 

It is one of the important many machine learning algorithms, introduced by Boser et al. 

(1992) and discussed in more detail by Vapnik (Vapnik, 1995, Vapnik 1998) has its root in 

statistical learning theory (Vapnik 1999) which intends to create a mathematical 

framework for learning from input training samples with known identity and produces the 

outcome of data points with unknown identity. The main advantage of using this algorithm 

is the capability of classification by taking less number of training pixels. 

 The classification of hyperspectral data having more than two classes may be 

performed by SVM by considering it to be a binary classification problem. First, a binary 

classification problem needs to be explained for clear understanding of SVM. Consider a 

set of data having two groups. This set needs to be partitioned into two groups such that 

the boundary between the two groups is as more as possible. Collect a set of training 
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samples from the set. Let there be k number of samples which are represented by (x1, y1), 

(x2, y2), … (xk, yk), where ��  �  ℜ� is an N-dimensional vector such that the samples 

belongs two any one of the two groups labeled as ��  � �	1, �1
. The aim of the support 

vector classifier is to construct an optimal hyperplane from the set of k pixels that separates 

the two classes in such a way that the distance from the hyperplane to the closest training 

data points in each of the classes is as large as possible. Figure 5.1 show a set of training 

pixels consisting of two classes and few hyperplanes which divides the dataset into two 

groups. This distance is called the margin. The hyperplane can be represented by the 

following decision function: 

           w
T
.x + b = 0,    (5.1) 

where x is a point lying on the hyperplane, � �  ℜ�
 is normal to the hyperplane which 

determines the orientation of the discriminating hyperplane, and b �  ℜ�
 is a bias. The 

perpendicular distance from the hyperplane to the origin is |�| ||�||⁄ , where ||�|| is the 

Euclidean norm of w. Suppose that all the training data satisfy the following  constraints 

(Bazi and Melgani, 2006): 

        ���� �  � �  �1, for �� �  �1   (5.2) 

        ���� �  � �  	1, for �� �  	1   (5.3) 

These two equations can be further combined to give, 

     ������� �  �� 	 1 � 0    (5.4) 

 One can then implicitly define a scale for (w x b) to generate two canonical 

hyperplanes (i.e., P1 and P2 in Figure 5.2), namely, �� �  �� �  � � 1 for the closest 

training points lying on one side of the hyperplane with normal w and perpendicular 

distance from the origin |1 	 �| ||�||⁄ , and second �� �  �� �  � � 	1 for the closest 

training points on the other side with perpendicular distance from the origin 

|	1 	 �| �|�|�⁄ . These training pixels are referred as support vectors. In other words, those 

vectors are central to the establishment of the optimal separating hyperplane. Accordingly, 

the margin between these two hyperplanes is 2 �|�|�⁄ . The maximization of this margin 

(Melgani and Bruzzone, 2004), in turn, leads to, 

       !" #||�||$

% &     (5.5) 
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subject to equality constraints shown equation 5.4. 

Equation (5.4) becomes easier to handle, if a primal Lagrangian formulation is used: 

  '()�*+, �  -
% ||�||% 	  ∑ /������ � �� �  �� 	  1�0

�1- � ∑ /�
0
�1- , (5.6) 

where /� are positive lagrangian multipliers. Now minimize '()�*+, with respect to w and 

b.  

From Wolfe’s theorem (Fletcher, 1987), take the derivatives of '()�*+, with respect to b 

and w to obtain, 

     
23456789

2: � 0 ⇒   ∑ α<y< � 0>
<1-   (5.7) 

             
23456789

2� � 0 ⇒     � �  ∑ α<y<�<
>
<1-   (5.8) 

and substituting them to the primal formulation (5.6) to give the Wolfe dual Lagrangian: 

    '?@+, �  ∑ /� 	 -
% ∑ /�/A���A�� � �A

0
�1-

0
�1-   (5.9) 

subject to the constraints 

         ∑ /��� � 00
�1-     (5.10) 

and, 

           0 � /A � B,  for i = 1, 2, …,n (5.11) 

 Solution to equation (5.9) by satisfying the constraints given in equations (5.10) 

and (5.11) gives the separating plane. Hence this separating plane divides the entire set of 

points into two groups. While classification there are two types of technique may be 

followed, namely, one-against-one classification strategy Knerr et al. (1990) and one-

against-all classification strategy. Also few kernel functions exist for performing SVM 

like, linear, polynomial, radial basis function (RBF) and Sigmoid kernel functions. In this 

research, the linear kernel function has been used and it is defined as the dot product of xi 

and xj (xi.xj). 

 In this research, one-against-one classification strategy has been used. If there are n 

number of classes, then there are nC2 hyperplanes created. By taking training samples for 

two classes, say class 1 and class 2, hyperplanes may be created and find the optimum 
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hyperplane. Now pixels fall on one side are mapped as class 1 and the remaining pixels as 

class 2. Now take training samples for two classes, say class 1 and class 3. Here also each 

pixel is classified as either class 1 or class 3. Hence by performing various other 

combinations of training samples we get nC2 hyperplanes and based on these hyperplanes 

each pixel with unknown identity has nC2 values. These values represent the class it belong 

to by taking maximum appearance of class mapped to particular pixel. The Table 5.1 and 

Figure 5.3 give the hyperplanes and the classes of each pixel allocation to single class. 

 
Figure 5.1: Hyperplane b separates the two classes with the maximal margin. 

 

 

 
 

Figure 5.2: Linearly separable case 

 

 

 



Table 5.1: Pixel allocation by each hyperplanes and final allocation 

 
Class 1vs Class 2 Class 1vs Class 3 Class 2vs Class 3 Final Allocation 

Pixel 1 1 1 2 1 

Pixel 2 1 1 2 1 

Pixel 3 1 1 1 1 

Pixel 4 1 1 1 1 

Pixel 5 2 3 3 3 

Pixel 6 2 3 3 3 

Pixel 7 3 3 3 3 

Pixel 8 3 3 3 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Allocation of class of each pixel by the hyperplanes 

 

 

 5.2.2 Sub Pixel Classification 

Here two classification algorithms have been used while they both belong to different 

group, supervised classification and unsupervised classification. Information extraction by 

transforming the data into independent components has to be analysed and compared with 

that of the method of least square approximation technique. The supervised classification 

has been done by making use of Linear Mixture Model (LMM) while the unsupervised 

classification is by Independent Component Analysis Mixture Model (ICAMM). A brief 

description of these two classification algorithms have been discussed in the following 

sub-sections. 

  5.2.2.1 Linear Mixture Model (LMM) 

The LMM assumes each pixel which is a spectral curve, a linear combination of the 

spectra of all classes within the pixel (Adams et al., 1995; Roberts et al., 1998; Ustin et al., 

1998). The linear mixing model has been used due to its strong tie between the 

mathematical foundations of the model and the physical processes of mixing that result in 

much of the variance seen in hyperspectral imagery. 

pixel 1 and pixel 2    

pixel 3 and pixel 4    

pixel 5 and pixel 6    

pixel 7 and pixel 8    

 

 

 

 

 

Class 1 vs Class 2 

Class 2 vs Class 3 

Class 1 vs Class 3 

Class 1 Class 2 

Class 3 
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Common observations would support the case that there is a natural variation to 

almost all materials. Therefore, one would expect a certain degree of variability to exist for 

any materials that would be selected as pure pixel for a particular hyperspectral image. 

Few materials in a scene will actually be pure, and the collected training samples usually 

represent classes of materials that are spectrally very similar. Given the great diversity of 

materials of which a typical hyperspectral image is likely to be composed, the variation in 

spectral curve characteristics is further increased because of the practical limit to how 

many spectral curves can be used to represent a scene. When the intra-class variance 

(within class) is very small relative to the inter-class variance (between classes), the 

deterministic assumption upon which the linear mixing model is based may remain valid. 

However, when the intra-class variance becomes appreciable relative to the inter-class 

variance, the deterministic assumption becomes invalid and the training samples 

themselves should be treated as random vectors (Chang, 2007).  

Depending upon whether the constraints are imposed or not, there are 

unconstrained and constrained approaches. The constraints applied to get an optimum 

solution in finding the fractional abundance are non-negativity constraint and sum-to-one 

constraint. The training pixels collected are generally assumed to be pure. The distribution 

followed by all the training pixels of each class should be unimodal normal distribution for 

each band. Various algorithms exist in extracting pure pixels from the data and the 

validation of pure pixels may be performed by pixel purity index (PPI). However, they are 

very difficult to obtain in practice. This is particularly true when the spectral curves are 

extracted directly from a hyperspectral data scene with no precise knowledge of ground 

truth. 

Since the information extraction is from visible through mid-infrared region in 100s 

of bands, say n bands, each pixel vector is of length n. Now collect enough number of pure 

pixels for each of the available classes from the data. Let there be c number of classes. 

Now construct matrix M by collecting average pixel vectors from the collected pixel 

vectors of each class. We get c number of pixel vectors. 

      x = Mf + e,    (5.10) 

 Let M be the end member spectra which consists of pure pixels of each class. Each 

class has been arranged column wise and the band details for each class have been given 

row wise. Therefore, M is a matrix of order n x c. Now since each pixel is mixed by 
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classes, the proportion of each class in that pixel is given by the vector, say f of dimension 

c x 1. Now x is the observed pixel vector of dimension n x 1. The last term e is an error 

vector of dimension n x 1. Here M and x are known and the aim is to find f, which is the 

fractional abundance of each class present in each pixel. But based upon two conditions 

that the fraction abundance could not be negative and the summation of each fraction 

abundance vector f to be one, the following two constraints have been included in 

estimation of f. 

The non-negativity constraint is given by, 

     CA � 1, for all j land cover classes  (5.11) 

The sum-to-one constraint tells that the class proportions summation cannot exceed 

hundred percent is given by, 

           ∑ CA
D
A1- � 1    (5.12) 

 Now solving equation (5.10), for f gives the fraction abundance of each class 

present in each pixel. Thus, we get solution of equation (5.10) by including the two 

constraints given in equation (5.11) and equation (5.12), we get a solution named as 

constrained solution while without the constraints, the obtained solution is called as 

unconstrained solution. The solution of equation (5.10) is unique if c = n+1. For c < n+1, 

there are infinite number of solutions while for c > n+1, there will be no exact solution. 

 In the second case (c < n+1), the number of unknowns is less than that of the 

number of equations and hence f can be found by making the error term in equation (5.10) 

to be zero. Hence method of least squares may be performed to find the class proportion f 

by keeping the sum of squares of the error or noise minimum (Settle and Drake, 1993). 

  �E 	 FC���E 	 FC� � G�G �  G-
% �  G%

% �  GH
% �  … … � GD% (5.13) 

To solve equation (5.13), it is required to minimize the quadratic form of error, J�E, C�, 

    J�E, C� �  �E 	 FC�� ∑ �E 	 FC�K-( ,  (5.14) 

where ∑(  is the pooled variance covariance matrix (Foody and Arora, 1996). 

The unconstrained solution of equation (5.10) without imposing any condition is given by, 

           C �  LF� ∑ FK-( M�F� ∑ EK-( ,   (5.15) 
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By imposing the constrains given in equation (5.11) and (5.12), the solution to (5.10) is 

given by, 

     C �  /N� � �N 	  /NON�F� ∑ EK-( ,  (5.16) 

where b is the unit matrix, / is a constant value equal to �O�NO�K-, where O � �� ���, 

and N � �F�F�K-. Equation (5.16) is the constrained solution of equation (5.10) 

The fraction values, f, of each vector are scaled between and 0 and 1 and further these 

values are normalized such that the summation of all the values in each vector comes to be 

one. 

Pseudo code of LMM  

Input the hyperspectral data 

Identify the classes and collect training samples for each class 

Find the average of training samples for each class band wise 

Collect such vectors for each class got from the above step and put them in matrix M 

For each pixel vector x 

 Solve equation (5.10) for fractional abundance f 

  Unconstrained solution: Equation (5.15) is the unconstrained solution 

  Constrained solution: Equation (5.11) and equation (5.12) are the 

constraints and    equation (5.16) is the constrained solution 

 Normalize the values in the vector f 

Display fractional image 

 

  5.2.2.2 Independent Component Analysis Mixture Model (ICAMM) 

The origin of independent component analysis (ICA) is from signal processing. Imagine 

that in a room two persons are talking simultaneously. It was recorded by two microphones 

placed at two different locations in the room, but the positions of microphones are fixed 

throughout the recording process. These two microphones record the speech by both the 

persons but with different intensities. Let x1(t) and x2(t) be the intensities of the recorded 

signals at the two microphones at time t. Now this situation may be modeled as a linear 

combination of source signals weighed by parameters which depends upon the distance 

between microphones and the speakers. This situation has been expressed as, (Hyvärinen 

and Oja, 2000)      x1(t) = a11s1 + a12s2 

     x2(t) = a21s1 + a22s2    (5.17) 
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where a11, a12, a21, a22 are the mixing parameters in which aij corresponds to distance 

between microphone i and person j and s1 and s2 are intensities of the original speech 

signals by the two persons respectively. In its simple form, the system of equations can be 

written as x = As. Recovering the original signal from the obtained sensor signal without 

having the knowledge about the mixing process is called as blind source separation (BSS) 

(Hyvärinen and Oja, 2000,  Common, 1994). 

Based upon the above analogy, the hyperspectral image may also be modeled as, 

      EP �  QARA,P �  �A,   (5.18) 

for deriving class proportions to produce a sub-pixel classification. Here, there are t 

number of mixed pixels are taken for finding fractional abundance, EP is the intensity 

values of the pixels of hyperspectral data in various bands, QA is the mixing matrix for class 

j which is unknown, RA,P is the source signal and �A  is the bias. Thus, in the present context, 

the solution of BSS problem leads to finding fractions, given the observed hyperspectral 

image. 

 The solution for ICA exists when the following restrictions are implicitly executed 

by the algorithm:  

(i) The number of bands should be greater than or equal to the number of classes to be 

extracted. 

(ii) Among the statistical distribution of all the classes for each band, at most one 

distribution can be Gaussian. Remaining distributions should be non-Gaussian.  

(iii) For each class, either no sensor noise or only low additive noise signals are 

permitted. 

 The matrix A is the linear combination that transforms the data x into independent 

components s. Every class is modeled as a linear combination of spectral response values 

weighted by the class-component densities. 

Let the number of spectral bands of a hyperspectral data be N. Then each pixel 

vector xt, denoted as xt = (x1, x2,…xN)
T
, is an N dimensional vector. Assuming that there 

are T number of pixels given by X = {x1, x2,…xT} that are to be unmixed, the likelihood of 

the data (Lee et al., 1999) is given by the joint density, 
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    S�T | Θ� �  ∏ S��V |Θ��
P1- ,   (5.19) 

where Θ � � θ-, θ%, … θW� are the K class parameters, which are to be adapted. 

The maximum likelihood estimate of  is the value of  that maximizes the value 

S�T | Θ� (Shah et al., 2004). 

Let the pixel vectors from the hyperspectral data be obtained probabilistically from 

the set of spectral classes�B-, B%, … BW
. The probability of selecting the spectral class Cj is 

P(Cj) and hence the probability of a pixel EP having the parameter  is given by the 

probability density function (pdf) of EP, which may be expressed by the mixture density 

model (Lee et al., 1999), 

    S��V | Θ� �  ∑ S��V | CY, θA�W
A1- ,   (5.20) 

The conditional density for class Cj is given by (Lee et al., 2000),  

          S��V | CY, θA� �  (�Z[,\�
| ]^_L`[M|   (5.21)  

Normalize p(sj,t), so that the fraction abundance becomes non-negative and less than one 

(Plumbley, 2003). 

The classes are assumed to follow multivariate non-Gaussian distribution and the 

ICAMM algorithm is capable of finding the non-orthogonal directions of the data 

distributed. Since the distribution of the entire data is modeled as a weighted sum of the 

class-component densities of all the classes, it is represented as follows: 

     �V �  QARA,P �  �A    (5.22) 

where QA is a full-rank matrix assumed as the basis matrix or mixing matrix which 

specifies the linear combination of independent sources (Lee and Lewicki, 2002). By 

knowing only the observed mixed signals �V, the aim of ICAMM is to find the independent 

components, the mixing matrix QA for each class and the bias �A and hence the class 

member probability for each pixel. 

Each QA consists of M rows such that each data is represented by these M 

hyperplanes. In general, N ≥ M. For simplicity, let the number of bands be the same as 
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number of components (N = M). Such assumption can be met by transforming the 

hyperspectral data in reduced feature space. The bias bj are the translation parameters 

which gives the position of the center of cluster (or spectral mean of class) BA. From 

equation (5.22) we get, 

     RA,P �  QA
K- ��V 	  �A�    (5.23)  

For each pixel vector xt, calculate the class-component density, given by equation (5.22). 

Adapt QA ’s and bj’s by using gradient ascent for learning the parameters (Lee et al., 

1999). Learning the parameters is a process in which iteratively the parameters QA  and bj 

are updated until they fit into the data as perfect as possible. They are adapted as follows: 

  ∆QA ∝  S�EP  | CY, θA�QA ab 	 ΦA tanhLRA,PM RA,P
� 	  RA,P . RA,P

� h  (5.24)  

where I is an identity matrix, and ΦA is an N-dimensional diagonal matrix corresponding to 

class j and is composed of φ�,A (Shah and Varshney, 2004) defined by: 

     φ�,A �  *i�Z[,6,\�
*$i�Z[,6,\� 	  3,    (5.25) 

where, mp corresponds to the p
th

 moment of the independent source.  The value of kurtosis 

φ�,A is positive for super-Gaussian, negative for sub-Gaussian and zero for Gaussian RA,�.   

For each class j, the bias is updated by, 

     �A �  ∑ k\l\mn oLp[ � k\,   Θ�
∑ oLp[ � k\,   Θ�l\mn

,   (5.26) 

In general, the proportionality constant is kept in-between 0 and 1 and here in this 

research we have taken it as 0.7. The kurtosis for i
th

 independent component over class j, is 

used to find the class-component density and is given by equation (5.22). The 

independency of the component is checked from the joint probability density given as in 

equation (5.19).The kurtosis is used to find the class-component density. Once the QA ’s 

and bj’s are adapted, the class member probability for each pixel is calculated from Baye’s 

theorem given as follows: 

    SLBA � x_, Θ� �  (�k\ | rs,θ[�o�p[�
∑ (�k\ | rs,θ[�o�p[�t

[mn
,   (5.27) 

where all P(Cj)s’ are assumed to be equal.  



[93] 

 

Now the pixel EP is allotted to class Cj, which is having highest probability and is given by: 

   EP  ∈ B� !C S�B� | x_, Θ� u SLBA � x_, Θ�, Cvw ! x y  (5.28) 

Pseudo code of ICAMM (Lee and Lewiciki, 2002) 

Initialize the mixing matrices and bias 

For each pixel vector EP, 

Repeat 

 For each class 

  Calculate RA,P 

  Calculate S�EP | Θ� 

  Calculate SLBA � x_, Θ� 

  Check for independence 

  Adapt QA 

  Adapt �A 

Repeat the entire process for all t = 1, 2, …T. 

Convert into hard classification output, if required. 

 

5.3 Accuracy Assessment of Classification of Hyperspectral Data 

The assessment of classification accuracy is an essential step in any classification process. 

Generally, for per pixel classification, error matrix based accuracy assessment has been 

performed while for a sub pixel classification technique, fuzzy error matrix based accuracy 

assessment has been found suitable.  

5.3.1 Error Matrix Based Accuracy Assessment 

Classification is not complete unless assessment of accuracy has been performed (Jensen, 

2002). An excellent review on the status of classification accuracy assessment till 2002 has 

been provided in Foody (2002). One of the most common ways of representing the 

classification accuracy is by defining it with the help of an error matrix. An error matrix is 

a cross tabulation of the classes on the classified remotely sensed image and the reference 

data. It is represented by a z x z matrix (where c is the number of classes). The columns of 

the matrix generally define the reference data while the rows define the classified remotely 

sensed data albeit both are inter-changeable. The error matrix has been referred to in the 

literature by different names such as confusion matrix, contingency table, evaluation 

matrix and mis-classification matrix. The elements of this matrix indicate the number of 
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samples in the testing data. A typical error matrix is shown in Table 5.2 (Varshney and 

Arora, 2004). 

 The error matrix is used to derive several classification accuracy measures. Overall 

accuracy (also referred to as percentage correct allocation) is the ratio of number of 

correctly classified samples (i.e., the sum of diagonal elements of the error matrix) to the 

total number of samples in the testing dataset. Overall accuracy is the measure of the 

classification as a whole. Even though to calculate the percentage of correctly 

classified/mapped pixels or overall accuracy, it requires the total number of correctly 

classified pixels and total number of pixels. There are other two simple measures that 

determine accuracy of an individual class; producer’s accuracy and user’s accuracy. The 

producer’s accuracy is so called because the producer (or originator) of the classified map 

is typically interested in how well the samples from the reference data can be mapped 

using remotely sensed data. In contrast, the user’s accuracy is an indication of the 

probability or reliability that a sample from the classified map actually represents that class 

on the reference data. From the error matrix, the producer’s accuracy may be determined 

by dividing the number of correctly classified samples of a class by the column total 

(column marginal). The user’s accuracy may be determined by dividing the number 

correctly classified sample of a class by the row total (row marginal) (Varshney and Arora, 

2004). 

 If each row of error matrix denotes the classified data, the columns by reference 

data and let the confusion matrix be denoted by E then E is defined as, 

     { �  ∑ ∑ "�A
D
�1-

D
A1-     (5.29) 

The same equation may be represented as matrix form too as given in Table 5.2: 

From this table, various accuracy measures like overall accuracy, users’ accuracies, 

producers’ accuracies, kappa coefficient, etc., may be calculated. The formulae to calculate 

each of these accuracy measures are given as follows: 

 The overall accuracy is the ratio of number of correctly classified samples to total 

number of samples. From the table, the number of correctly classified samples may get 

from the trace of the matrix. 

     |}Gw~�� ~zz�w~z� �  ∑ "��
D
�1-   (5.30) 
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Table 5.2: Conventional error matrix for number of classes is c. 

 

Classified 

data 

Reference data Row Total 

Class 1 Class 2 Class 3  Class c  

Class 1 "-- "-% "-H . "-D  �-. 
Class 2 "%- "%% "%H . "%D  �%. 
Class 3 "H- "H% "HH . "HD  �H. 

 . . . . . . 

Class c "D- "D% "DH . "DD  �D. 
 �. - �. % �. H  �. D � �  ∑ �� .D

�1-  = ∑ �. �D
�1-  

Definition of terms used  

1. N is the total number of testing samples 

2. "��  is the number of correctly classified samples 

3. "�A  is the number of wrongly classified samples for class j in the reference data and 

class i in the classified data 

4. ��. is the sum of i
th

 row of the matrix and by taking all the columns 

5. �. A is the sum of j
th

 column of the matrix and by taking all the rows 

  

 Even though we get an overall view of the classified map from overall accuracy 

that does not give about accuracy of how individual classes are mapped. So here two 

simple accuracy measures users’ accuracies and producers’ accuracies may be helpful in 

such studies. The producer of the map wishes to check how well the algorithm is capable 

to map the reference data correctly. The producer’s accuracy for class i may is the ratio of 

number of samples from class i correctly classified to total number of samples of class i 

from the reference and hence it is defined as: 

  �vw z�~RR !, Swv��zGw�R ~zz�w~z� �  066
�. 6

, Cvw ~�� ! � 1, 2, … z (5.31) 

 On the other side, the user of the map is willing to know that how well the sample 

from the classified map represents that class on the reference data. From the table it can be 

calculated by taking the ratio of number of samples from class i correctly classified to total 

number of samples of class i from the classified and hence defined as: 

   �vw z�~RR !, �RGw�R ~zz�w~z� �  066
� 6. , Cvw ~�� ! � 1, 2, … z (5.32) 

 The overall accuracy takes only the diagonal elements of the error matrix and hence 

if one class is having significantly more number of samples then the classification accuracy 

result may dominate by that particular class. On the contrary, a class with significant 

amount of less number of samples may not be projected well. Hence users’ and producers’ 

accuracies have to be done to focus how individual classes have been mapped. But even 
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then the use of unclassified samples has not been properly used. These accuracy measures 

are not capable of comparing between classified and reference data. Such measures usually 

overestimate the accuracy. The kappa coefficient of agreement has the capability to 

account for class agreement. The kappa coefficient is denoted by κ and defined as follows: 

     κ �  �0�L∑ 066�
6mn MK ∑ ��6.���. 6��

6mn
0$K ∑ ��6.���. 6��

6mn
   (5.33) 

 Hence there exist many measures of a classified hyperspectral data based on 

different assumptions about the dataset. All the accuracy measures have been derived from 

the error matrix which gives full picture about the pixels mapped correctly, even wrongly 

classified pixels to which class it has been mapped. But in error matrix, only non-negative 

integer values are entertained because both the classified data as well as the reference data 

taken are per pixels. This may underestimate or overestimate the accuracy when there are 

more mixed pixels in the data. So a modification to error matrix is required by giving fuzzy 

input values both at classified data as well as reference data. 

 5.3.2 Fuzzy Error Matrix (FERM) Based Accuracy Assessment 

Unlike in traditional error matrix based accuracy assessment, here instead of one error 

matrix to be produced, for each pixel of the testing sample, error matrix may be produced. 

Hence, there is an equal number of error matrices equal to the size of the set containing 

testing samples. Then these matrices are added–up to form fuzzy error matrix. From the 

obtained fuzzy error matrix we may able to calculate the overall accuracy, users’ 

accuracies for each class, producers accuracies for each class and the kappa coefficient, in 

the same way how these have been calculated from traditional matrix. The way how error 

matrix may be obtained for each pixel from the training sample set may be defined as 

follows: 

 Let Ri and Ci (for i = 1, 2, …c) be set of vectors representing the proportion of each 

class in a pixel from a reference pixel and a classified pixel, respectively. Both the vectors 

Ri and Ci are of equal in length whos length is same as that of the number of class in the 

reference data. The elements in the two vectors are arranged by the corresponding classes 

in equally (i.e., class 1, class 2, … class c). Here Ri and Ci contains values in fraction whos 

summation equals 1. It means Ri and Ci are fuzzy sets. The membership function of Ri and 

Ci may be given as: 

    ℑ�6: T � a0,1h, Cvw ! � 1, 2, … z  

and 
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    ℑp6: T � a0,1h, Cvw ! � 1, 2, … z   (5.34) 

where, [] represents closed interval in which both the end points 0 and 1 are included in the 

set. Since, these membership functions represent the proportions of classes in each pixel 

vector, the summation of each vector is 1. 

i.e.,      ∑ ℑ�6 � 1D
�1-   

and      ∑ ℑp6 � 1D
�1-     (5.35) 

Hence all the accuracy measures may be calculated by the above formulae and the quality 

of classified images are analysed. 

5.4 Experimental Set-up to Extract Information from Hyperspectral Data from Per-

pixel and Sub-pixel Classification 

From the feature extraction techniques discussed in Chapter 4 and section 4.6 we have 

concluded that only Haar and Daubechies wavelets performed better that Coiflets wavelet 

transform and PCA based feature extraction techniques for all the three datasets. The 

comparison has been made by considering few parameters like classification accuracy, 

time duration required to do feature extraction, time required to do classification, levels of 

decomposition and number of components/features extracted after feature extraction. Also, 

only the first two levels of decomposition have been performed well in extraction of 

information from hyperspectral data.   

  SVM classification output     LMM classification 

output 
 

 

Figure 5.4: Comparison between SVM and LMM classified images 

 

    Comparison between better and poor overall accuracy from SVM classifier 

    Comparison between SVM classified and LMM classified outputs of same 

feature      extraction techniques 
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 In this chapter, an in-depth analysis of information extraction has been made by 

classifying the reduced datasets (reduced by the above said techniques) by three classifiers. 

For SVM, comparison of best classification with the worst classification has been done for 

all the datasets. Also, the best classification of SVM is compared with the corresponding 

LMM classification because of the SVM classification produces good accuracy and hence 

it has been taken as reference image for validating LMM output. For example, for dataset 

II, the SVM classification for Daub2_1 performs better than other feature extraction 

techniques, while Haar_2 performs poor when compared to other first and second level 

decomposition techniques. So here Daub2_1 has been compared with Haar_2. Also, since 

Daub2_1 performs well in SVM classification it has been kept as a bench mark and the 

LMM classification of Daub2_1 has been compared with it. For ICAMM, the extractions 

of classes which have significant less number of pixels have been analysed. The 

experimental set-up, training data and testing data have been given in Chapter 3. The 

process of comparison of SVM classified and LMM classified images are given in Figure 

5.4. 

 5.4.1 Observations and Result for Experimental Dataset II (AVIRIS – Indiana 

Pine) 

Few observations based on classification by SVM, LMM and ICAMM has been made and 

they are measured by image to image comparison, error matrix accuracy assessment, fuzzy 

error matrix accuracy assessment, etc. Also, the number of pixels mentioned here is for 

pixels taken from reference data. 

 5.4.1.1 Error Matrix Based Accuracy Assessment for SVM 

1. The SVM classification of Daub2_1 (Figure 5.5(a)) gives better classification 

accuracy while that for Haar_2 (Figure 5.5(b)) gives poor classification accuracy. 

Hence a comparison has been made between these two classified images. 

2. For Haar_2 feature extraction and followed by SVM classification, 322 pixels 

(Table 5.3) are classified as corn-min. Among this, 101 pixels which have to be 

classified as corn and 52 pixels have been classified as soy-min till instead of 

classified as corn-min, leads to poor user’s accuracy for corn-min and poor 

producer’s accuracy for corn and soy-min till (corn-min vs corn, corn-min vs soy-

min till). 

3. Similarly, among the 366 pixels classified as soy-min till, 29 pixels from reference 

data for corn-notill in SVM classification of Haar_1 feature extraction. This leads 
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to poor user’s accuracy for soy-min till and poor producer’s accuracy for corn-

notill (soy-min till vs corn-notill). Similarly, among the 366 pixels classified as 

soy-min till, 21 pixels from reference data for soy-notill. This lead to poor user’s 

accuracy for soy-min till and poor producer’s accuracy for soy-notill (soy-min till 

vs soy-notill). 

4. On the contrary, among the 126 pixels which are to be classified as wheat, 16 

pixels have been classified as grass/pasture and 37 pixels have been classified as 

grass/trees. This leads to poor producer’s accuracy in wheat and poor users 

accuracies in grass/pasture and grass/trees (wheat vs (grass/pasture and 

grass/trees)). 

 

Table 5.3: Error matrix for Haar_2 
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Alfalfa 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 

Corn-notill 0 187 0 11 0 0 0 0 0 5 11 0 0 0 0 0 214 

Corn-min 0 18 138 101 0 0 0 0 0 1 52 12 0 0 0 0 322 

Corn 0 0 6 19 0 0 0 0 0 0 2 0 0 0 0 0 27 

Grass/pasture 0 0 0 0 298 0 0 0 0 0 8 0 16 0 2 0 324 

Grass/trees 0 0 0 0 0 184 0 0 0 0 3 0 37 0 3 0 227 

Grass/pasture-

mowed 
0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 23 

Hay-

windrowed 
0 0 0 0 0 0 1 315 0 0 0 0 0 0 0 0 316 

Oats 0 0 0 0 0 0 0 0 18 0 7 0 6 0 1 0 32 

Soy-notill 0 0 0 0 0 0 0 0 0 303 12 3 0 0 0 0 318 

Soy-min till 0 29 0 0 0 0 0 0 0 21 310 4 0 0 0 2 366 

Soy-clean 0 0 0 1 0 0 0 0 0 0 1 121 0 0 0 1 124 

Wheat 0 0 0 0 0 0 0 0 0 0 1 0 67 0 0 0 68 

Woods 0 0 0 0 0 0 0 0 0 0 0 0 0 523 0 0 523 

Bldg-grass-

trees-drives 
0 0 0 0 0 0 0 0 0 0 1 0 0 4 74 0 79 

Stone-steel 

towers 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 59 

Total 26 234 144 132 298 184 24 315 18 330 408 140 126 527 80 62 3048 

 



  
Figure 5.5 (a) SVM classified pseudo image got from Daub2_1 feature extraction of 

AVIRIS dataset of Indiana Pine, (b) SVM classified pseudo image got from Haar_2 feature 

extraction of AVIRIS dataset of Indiana Pine. 

 

 

 
Figure 5.6:- Spectral curves for the three classes corn-min, corn and soy-min till after 

decomposition using (a) Daub2_1 and (b) Haar_2. 

 

 The spectral curves for the three classes corn-min, corn and soy-mintill comes from 

Daub2_1 feature extraction and Haar_2 feature extraction wavelets have been given in the 

Figure 5.6. For the second level decomposition the number of bands reduced to half that of 

the previous decomposition level and also the peaks and valleys also have been reduced (as 

seen from figure 5.6). The band values at 41-51 for Daub2_1 transformation is compared 

with the equivalent region between 21 and 25 from Haar_2. Here the class corn-min is 

having less discrimination with the others leads to mis-classification. In overall 

performance Daub2_1 feature extraction retrieves information better than other feature 

extraction techniques. 

 5.4.1.2 FERM Based Accuracy Assessment for LMM 

The sub pixel classification accuracy assessment for LMM has been compared with the 

corresponding SVM classification. It means, Daub2_1 feature extraction performs better 
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for per pixel classification, hence the LMM has been applied on the same transformed 

dataset by Daub2_1 feature extraction. Also the two solutions by LMM, constrained and 

unconstrained solutions are almost equal in extracting information, only the constrained 

solution has been taken. The fraction images for each class have been shown in Figure 5.7. 

Also the user’s and the producer’s accuracies for SVM and LMM classified comes from 

Daub2_1 reduced have been given in Table 5.5. Few observations have been made on the 

output from LMM. 

1. In all the fraction images the domination of granules/noise is more. Since there is a 

natural variation to almost all materials, a certain degree of variability to exist for 

any materials that would be selected as end-members for a particular hyperspectral 

image it effects in classification by LMM. Since in LMM the solution has been 

obtained by solving linear equations, for each variable (proportion of class) certain 

fraction is allotted to every class leads to granules. 

2. Classes which are small or having less number of pixels, like alfalfa, grass/pasture-

mowed, and oats are completely hidden because of the presence of granules. 

3. There are no separate classes for railway track, metallic road and non-metallic road 

due to the non-availability of pure pixels for them. Hence they are classified to the 

existing class. Since the image is covered by vegetation and among the available 16 

classes, there are 15 classes of vegetation and only one class is non-vegetation, 

stone-steel towers, whose area cover is very less. Now the spectral curve of railway 

track, metallic road and non-metallic road are not resembled with vegetation while, 

they mostly resemble with stone-steel tower, they are classified as stone-steel 

tower. Also, because of the spatial resolution is 20m, those three classes are mixed 

with vegetation, leads to mixture of granules. 

4. The areawise comparison of SVM classified and LMM constrained solution of 

dataset II has been given in Figure 5.8 and Table 5.4. The classes 3, 4, 5, 6, 14 

(corn-min, corn, grass/pasture, grass/trees and woods, respectively) show much 

deviation in mapping between SVM classification and LMM constrained solution. 

Since the class 14 – woods cover large area and have boundary with many other 

classes, the per pixel classification forced the boundary pixels to classify into 

neighbouring classes leads to reduction in the area. But since the LMM gives 

fractional abundance, such mixed pixels give fractional proportion and add-up to 

increase area of woods. Also since the pair corn-min and corn are having with-in 
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class variation there is a big classification difference between the two above said 

classifiers. Also the same explanation follows for grass/pasture and grass trees. 

 

Table 5.4: Areawise comparison of dataset II classified by LMM (constrained solution) 

and SVM, where the area is scaled to number of classes. 
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Figure 5.7: Fraction images for all the 16 classes of dataset AVIRIS over Indiana Pine. 



 
Figure 5.8: Area wise comparison of LMM classified constrained solution of feature 

extracted dataset II along with SVM classification solution. 

 

Table 5.5: User’s and producer’s accuracies for classification by SVM and LMM 

(constrained solution) of dataset II comes from Daub2_1 feature extraction technique. 

Sl. 

No. 
Class 

Daub2_1 - SVM 
Daub2_1 – LMM 

Constrained 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

1 Alfalfa 100 100 75.4 67.6 

2 Corn-notill 100 100 63.1 71.7 

3 Corn-min 100 100 70 69.8 

4 Corn 100 100 66.6 72.5 

5 Grass/pasture 100 100 68.6 60.8 

6 Grass/trees 100 100 63.4 63.6 

7 Grass/pasture-mowed 100 100 71.3 61.9 

8 Hay-windrowed 100 100 71.2 68.5 

9 Oats 100 100 63.6 64.7 

10 Soy-notill 100 100 70 68.6 

11 Soy-min till 100 100 66.4 69.3 

12 Soy-clean 100 100 60.7 68.2 

13 Wheat 100 100 71.1 55.1 

14 Woods 100 100 70.8 63.8 

15 Bldg-grass-trees-drives 100 100 64.3 67.4 

16 Stone-steel towers 100 100 67.9 55.9 

 Average 100 100 67.78 65.59 

 

 

 5.4.1.3 Extraction of Small Classes via ICAMM 

To extract information for which training pixels are not available or less number of 

training pixels are available or the class is covered by small area, unsupervised 

classification may be performed. Here, few observations regarding classification by 

 LMM constrained solution 

 SVM classified 



ICAMM have been made. The main aim of using ICAMM is to extract information from 

data which are independent from other classes. 

1. The class stone-steel tower is the only non-vegetation class present in the dataset. 

The same class is available at few other places (circled in red) which are not 

perfectly classified by LMM (Figure 5.9) due to granules but has been classified 

well by ICAMM (Figure 5.9). 

2. By applying Daub2_1 transform on dataset II and then classified by ICAMM, the 

objects metallic and non-metallic roads have been extracted (Figure 5.10). 

3. By applying Daub2_2 transform on dataset II and then classified by ICAMM, the 

objects metallic and non-metallic roads have been classified as class stone-steel 

towers (Figure 5.11). Since, all the other classes are vegetation the above said 

objects are mapped as non-vegetation class. 

4. There is no or less number of granules present in ICAMM classified images (Figure 

5.9) compared to LMM classified images (Figure 5.7). 

 

 
 
Figure 5.9: The extraction of class stone-steel towers by ICAMM two different iterations 

applied on Haar_1 feature extraction. 
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Figure 5.10: The extraction of metallic and non-metallic roads by ICAMM applied on 

Daub2_1 feature extraction. 

 

 
Figure 5.11: The extraction of metallic and non-metallic roads which are classified as 

stone-steel towers by ICAMM applied on Daub2_2 feature extraction. 

 

 

5.4.2 Observations and Result for Experimental Dataset III (HYPERION – 

Roorkee and its Surroundings Dataset) 

Few observations based on classification by SVM, LMM and ICAMM has been made and 

they are measured by various measuring techniques described as follows: 

 5.4.2.1 Error Matrix Based Accuracy Assessment for SVM  

1. The overall classification accuracy for Haar level-1 decomposition followed by 

SVM classification is better than the other feature extraction techniques. For 

comparison of the Haar_1 feature extraction, we used Daub4_2 feature extraction 



which gives poor classification accuracy. Also we have compared with the 

classification of original dataset (Figure 5.13). 

2. For Haar_1 feature extraction followed by SVM classification of extracted dataset, 

33 pixels have been classified as sand. Among this, only 28 pixels need to be 

classified as sand and it has been done. Hence the producer’s accuracy is 100 

percent (Table 5.6, Figure 5.12) while among the remaining 5 pixels which are 

classified as sand, 2 pixels are from barren land and 3 pixels are from urban leads 

to poor user’s accuracy for sand. Since the class is small and hence the testing 

samples are small in size, only the user’s accuracy has been affected but not the 

overall classification accuracy. 

3. The pre-processed dataset also has been classified by SVM and compared with the 

extracted result. Here, 52 pixels have been classified as sand instead of 28 pixels 

which leads to poor user’s accuracy for sand. Also 18 pixels for barren land which 

are at reference data have been classified as sand leads to poor producer’s accuracy 

for barren land. Also among the 66 pixels from reference for water, 9 pixels have 

been classified as urban leads to only 84.8% of producer’s accuracy for water. 

These 9 pixels together with 20 more pixels from barren land in the reference lead 

to poor user’s accuracy for urban. 

4. In Figure 5.14, the spectral curves for the three classes barren land, sand and urban 

after pre-processing, Haar_1 decomposition and Daub4_2 decomposition have been 

given and the discrimination between the curves may be compared. 

  

Figure 5.12: (a) SVM classified pseudo image got from Haar_1 feature extraction of 

HYPERION dataset of Roorkee and its surroundings, (b) SVM classified pseudo image got 

from Daub4_2 feature extraction of HYPERION dataset of Roorkee and its surroundings. 

 



 

 
 

Figure 5.13: SVM classified pseudo image got from pre-processed HYPERION dataset of 

Roorkee and its surroundings. 

 

 

(a) 

 

 
(b)       (c) 

Figure 5.14: Spectral curves for three classes barren land, sand and urban after (a) pre-

processing, (b) Haar_1 decomposition and (c) Daub4_2 decomposition.  
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Table 5.6: User’s and producer’s accuracies for classification by SVM of dataset II comes 

from Haar_1, Daub4_2 feature extraction techniques and for original dataset.  

Class 

Haar_1 Daub4_2 Original Image 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

Trees 98.37 100 92.188 97.79 94.253 90.608 

Vegetation 98.305 98.305 94.915 94.915 61.364 91.525 

Barren 

Land 
100 99.038 92.157 90.385 100 50 

Sand 96.552 100 84.848 100 51.923 96.429 

Urban 99.785 99.358 99.78 97.002 93.996 97.216 

Water 100 98.485 100 98.485 100 84.848 

Average 98.84 99.2 93.98 96.43 83.59 85.1 

 

 

 5.4.2.2 FERM Based Accuracy Assessment for LMM  

The sub pixel classification accuracy assessment for LMM has been compared with the 

corresponding SVM classification. It means, here Haar_1 performs better for per pixel 

classification, hence the LMM has been applied on the same transformed dataset by 

Haar_1. Also the two solutions by LMM, constrained and unconstrained solutions are 

almost equal in extracting information, only the constrained solution has been taken. The 

fraction images for each class have been shown in Figure 5.15. Few observations have 

been made on the output from LMM given as follows: 

1. In all the fraction images the domination of granules/noise is more. Since there is a 

natural variation to almost all materials, a certain degree of variability exist for any 

materials that would be selected as end-members for a particular hyperspectral 

image it effects in classification by LMM. Since in LMM the solution has been 

obtained by solving linear equations, for each variable (proportion of class) certain 

fraction is allotted to every class leads to granules. 

2. The two classes trees and vegetation have spectral curves more similar to each 

other while the classes barren land, sand and urban have spectral curves more 

similar to each other. 

3. The spatial resolution of the dataset is 30 m and hence a large number of mixed 

pixels are there. This shows effect in classification, particularly a huge variance 

may be expected between per pixel and sub pixel classification. 

4. Generally, misclassification occurs when spectral signatures of two classes are 

nearly similar, but while comparing sub pixel classification output with per pixel 

classification output for dataset III, the area occupied by the classes in each of the 
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pixels could affect. In Figure 5.17, the circular portion indicates the region where 

urban and trees are mixed together leads to the pixels are mixed. In SVM, these 

pixels are classified as urban (represented by white coloured circle in Figure 

5.12(a)) hence it leads to increase in area cover of urban when compared to LMM 

output (Table 5.8 and Figure 5.16). Also, class sand is mapped as class urban in 

SVM classification. So the area cover of urban increases while for sand it 

decreases. 

5. Table 5.7 gives the users’ and the producers’ accuracies for classification by SVM 

and LMM (constrained solution) of dataset II comes Haar_1feature extraction 

technique. 

 
Figure 5.15: Fraction images for all the 6 classes of dataset HYPERION over Roorkee and 

its surroundings comes from constrained solution of LMM from Haar_1 feature extraction. 

 

Table 5.7: User’s and producer’s accuracies for classification by SVM and LMM 

(constrained solution) of dataset II comes Haar_1feature extraction technique.  

Class 

Haar_1 – SVM 
Haar_1 – LMM 

Constrained 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

Trees 98.37 100 56.7 63.5 

Vegetation 98.305 98.305 69.7 57.9 

Barren Land 100 99.038 54.2 73.1 

Sand 96.552 100 70 59.7 

Urban 99.785 99.358 65.2 62.4 

Water 100 98.485 70.6 57 

Average 98.84 99.2 64.4 62.27 



 
Figure 5.16: Area wise comparison of LMM classified constrained solution of Haar_1 

feature extracted dataset III along with SVM classification. 

 
Figure 5.17: The FCC of Roorkee and its surrounding area by Hyperion sensorp (Red: 

Band 100, Green: Band 30, Blue: Band 20). 

 

 

Table 5.8: Areawise comparison of dataset III classified by LMM (constrained solution) 

and SVM, where the area is scaled to number of classes. 
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 5.4.2.3 Extraction of Small Classes via ICAMM  

As mentioned in the result analysis of dataset II in section 5.4.1.3, here for dataset III also 

the granules are not there in extraction of features from hyperspectral data from ICAMM. 

Few observations and analysis have been made for this dataset are given as follows: 

 LMM constrained solution 

 SVM classified 



1. The class water has been mapped clearly compared to LMM constrained solution. 

Particularly, the canal which is a linear structure has been mapped perfectly by 

ICAMM for which Haar_1 feature extraction technique has been used. 

2. ICAMM is capable for extraction of other water bodies like small lakes 

(highlighted by red circles) in Figure 5.18(a). 

3. The Golf course made up of grass land which is a small object has also been 

classified (Figure 5.18(c), highlighted by red coloured circle). 

4. Even though the class vegetation covers the entire image, it has distinguished from 

class trees (Figure 5.18(d)). 

   
(a)      (b) 

 

    
(c)      (d) 

Figure 5.18: Fraction images obtained by classifying Haar_1 feature extraction of dataset 

III by ICAMM (a) water, (b) barren land, (c) a new object golf course (made up of grass) 

and (d) vegetation. 
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5.4.3 Observations and Result for Experimental Dataset IV (AVIRIS – San Diego 

Naval Dataset) 

Few observations based on classification by SVM, LMM and ICAMM has been made and 

they are measured by various measuring techniques described as follows: 

 5.4.3.1 Error Matrix Based Accuracy Assessment for SVM  

1. The overall classification comes from Haar 2
nd

 level decomposition followed by 

SVM classification is better than other feature extraction techniques. 

Comparatively, Daub4_2 feature extraction is poor than Haar_2 feature extraction. 

Hence an assessment comparing Haar_2 and Daub4_2 has been made. 

2. In Haar_2, one of the three aircrafts has been mapped clearly, but unfortunately, 

due to the non-availability of pure pixels for this object it is not considered as a 

separate class. Even though, by this observation we may not conclude which 

feature extraction is better, we are interested in analysing the mapping of aircraft. 

Here, the aircraft has been classified as building type 2 while the same has been 

classified as building type 3 (few pixels) and building type 2 (remaining pixels) in 

Daub 4, 2
nd

 level decomposition. 

3. Also, in Daub4_2, few pixels from the class building type 3, have been 

misclassified as building type 2. 

4. Few other small objects like cylindrical drum, small aircrafts, etc., have also been 

classified to different classes while using different feature extraction techniques. 

5. In the classification of original data, one of the aircrafts has been classified into 

building type 3 and more granules appears for the class road type 1 (Figure 5.19) 

(high). 

6. In the classification of original data, 10 pixels have been misclassified into road 

type 1, instead of road type 2 leads to poor user’s accuracy of road 2 and poor 

producer’s accuracy of road type 1. 



  
 

Figure 5.19: (a) SVM classified pseudo image got from Haar_2 feature extraction of 

AVIRIS dataset of San Diego region, (b) SVM classified pseudo image got from Daub4_2 

feature extraction of AVIRIS dataset of San Diego region. 

 

 
 

Figure 5.20: SVM classified pseudo image got from classification of original dataset IV, 

AVIRIS dataset of San Diego region. 

 

 5.4.3.2 FERM Based Accuracy Assessment for LMM 

The sub pixel classification accuracy assessment for LMM has been compared with the 

corresponding SVM classification. It means, here Haar_2 feature extraction followed by 

SVM classification performs better for per pixel classification, hence the LMM has been 

applied on the same transformed dataset by Haar_2 feature extraction. Also the two 

solutions by LMM, constrained and unconstrained solutions are almost equal in extracting 

information, only the constrained solution has been taken. The fraction images for each 
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class have been shown in figure 5.21. Few observations have been made on the output 

from LMM given as follows: 

1. Unlike other fraction images of dataset II and dataset III, here the LMM 

classification is able to produce better fraction images. This is due to few factors 

which involves spatial resolution (here it is 4 m), crispy nature of classes, etc. 

Among the nine classes, class vegetation is completely differs from the other 

classes and we have two types of roads, three types of concrete surfaces and three 

types of buildings. It is expected to have with-in class variation. 

2. None of the fraction images contain the object aircraft. Because of the solution of 

LMM has been obtained by solving linear equations, for each pixel of object 

aircraft a proportion has been goes to each class, because of the non-availability of 

pure pixels for aircraft. 

3. The areawise comparison of SVM classified and LMM classified outputs (Table 

5.10) shows that almost all the corresponding classes are classified well, except for 

three classes, road type 1, concrete 2 and concrete 3. 

4. Mixed pixels are mapped as mixed pixels by using LMM while they are mapped as 

pure pixels by SVM. It is observed in the fraction images of concrete 1 and 

concrete 2, where actually they are mixed pixels and mapped as mixed pixels 

(Figure 5.21) (highlighted as red coloured circles) whereas these pixels are mapped 

as pure pixels in SVM classification (Figure 5.19(a) and Figure 5.20). 

5. Table 5.9 shows the users’ and the producers’ accuracies for classification by SVM 

and LMM (constrained solution) of dataset III comes Haar_2 feature extraction 

technique in which most of the classes are classified well by SVM as the two 

accuracies are 100 percent in those cases. 



 
Figure 5.21: Fraction images for all the 9 classes of dataset IV AVIRIS over San Diego 

region, comes from constrained solution of LMM from Haar_2 feature extraction. 

 

Table 5.9: User’s and producer’s accuracies for classification by SVM and LMM 

(constrained solution) of dataset III comes Haar_2 feature extraction technique. 

 

Sl. 

No. 
Class 

Haar_2 – SVM 
Haar_2 – LMM 

Constrained 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

1 Vegetation 100 100 27.6 7.2 

2 Road Type 1 97.917 97.917 63 74.1 

3 Road Type 2 95.349 95.349 62 65.7 

4 Concrete Type 1 100 100 56.6 57.8 

5 Concrete Type 2 100 100 49.1 38.2 

6 Concrete Type 3 100 100 61.4 75.6 

7 Building Type 1 100 100 66.6 12.5 

8 Building Type 2 100 100 56.8 37.2 

9 Building Type 3 100 100 66.3 47.7 

 Average 99.25 99.25 56.6 46.22 
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Table 5.10: Areawise comparison of dataset IV classified by LMM (constrained solution) 

and SVM, where the area is measured in number of pixels. 
C

la
ss

if
ie

r
 

  
  

  
  

  
  

  
  

  
  

C
la

ss
 

V
eg

et
a

ti
o
n

 

R
o

a
d

 T
y
p

e 
1

 

R
o

a
d

 T
y
p

e 
2

 

C
o

n
cr

et
e 

T
y
p

e 
1

 

C
o

n
cr

et
e 

T
y
p

e 
2

 

C
o

n
cr

et
e 

T
y
p

e 
3

 

B
u

il
d

in
g

 T
y

p
e 

1
 

B
u

il
d

in
g

 T
y

p
e 

2
 

B
u

il
d

in
g

 T
y

p
e 

3
 

LMM 349 4472 4448 1815 3950 4000 808 774 384 

SVM 75.21 6068.33 4079.31 1919.66 1447.97 5161.34 168.47 638.93 1393.7 

 

 

 
Figure 5.22: Area wise comparison of LMM classified constrained solution of Haar_1 

feature extracted dataset III along with SVM classification. 

 

 5.4.3.3 Extraction of Small Classes via ICAMM 

Some small classes for which either pure pixels may not be available or less number of 

pure pixels are available, but such classes are useful in applications, may not be classified 

using SVM and LMM. ICAMM, an unsupervised classifier detects such useful information 

from dataset IV. Few of the observations and result are given as follows: 

1. In dataset IV, the object aircraft has not at all classified by the other two above 

mentioned classifiers, but ICAMM is able to map well (Figure 5.23). Not only 

aircraft but also few vehicles which occupy in sub pixels have also been classified 

(highlighted by red coloured circle in Figure 5.23).  

2. No or less number of granules present in ICAMM classified image. 

3. Since the aircrafts, the vehicles and the cylindrical drums may be made up of 

metals these forms a cluster in ICAMM classification. The two small rectangular 

buildings (highlighted as yellow coloured circle in Figure 5.23) also made up of 

metals and hence all these objects are classified as single class. 



4. Area wise comparison (Figure 5.22) of the SVM and LMM constrained solution 

comes from Haar_1 shows a significant difference in classification of the two 

classes road type 1 and concrete 2. 

 

 
Figure 5.23: Extraction of small objects by ICAMM for dataset IV by AVIRIS sensor over 

San Diego region. 

 

5.6 Summary 

In this chapter, a brief description of the per pixel classification algorithm SVM and sub 

pixel classification algorithms LMM and ICAMM have been given. The mathematical 

concepts and the derivation of these algorithms give an insight to the information 

extraction for hyperspectral data in the name of classification. The SVM is supervised, per 

pixel classifier which requires no statistical details of the data classified every pixel into 

single class. Then sub pixel classification has been performed by one supervised classifier 

(LMM) and another by unsupervised classifier (ICAMM). Based on the classifiers we 

obtain the following results: 

(i) SVM classification has been performed on all the three datasets which comes 

from feature extraction. Here only the first and second level decomposition of 

the original data has been made by Haar and Daubechies transforms. 

(ii) Haar and Daubechies sub class 2 wavelets produce better classification 

accuracy for all the datasets. 

(iii)Accuracy assessment for SVM classification has been performed by error 

matrix based accuracy assessment while that for LMM classification, fuzzy 

error matrix (FERM) has been performed. 
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(iv) Due to the non-availability of mixed pixels for reference, the reference data has 

been taken from best result of SVM classification for each dataset. 

(v) The noise present in fraction images by LMM solution is due to the 

mathematical phenomenon of LMM. 

(vi) The ICAMM is capable to produce noise less classes and objects/classes which 

are having no or minimum number of pure pixels. 



 

 

Chapter 6 

Spatial Enhancement of Information Extraction via 

Super Resolution Mapping Techniques 

 

6.1 Introduction to the Problem 

In the previous chapters, results from experimental investigations on two major tasks 

related to hyperspectral imaging, namely, the feature extraction and the classification for 

extraction of information have been reported, analysed and discussed. The feature 

extraction has been performed by two methods, wavelet based feature extraction and PCA 

based feature extraction. Both per pixel and sub pixel classifications have been examined 

for extraction of accurate information of hyperspectral via support vector machines, LMM 

and ICAMM. Although, sub pixel classification extracted better information than per pixel 

classification, the spatial arrangement of the sub pixels inside a pixel was lacking.  Thus, 

while the areal extent of the classes within a pixel may be accurately estimated through sub 

pixel classification, their spatial location on ground may not be inferred. This problem can 

be overcome by applying super resolution mapping, which, in the literature few definitions 

exist which are given as follows: 

“Mapping land cover at a spatial resolution finer than the size of the pixel of the image is 

called super resolution mapping” – (Kasetkasem et al., 2005) 

“Super resolution mapping is a set of techniques to increase the spatial resolution of a land 

cover map obtained by soft classification methods” (Genitha and Vani, 2010) 

 Hence super resolution mapping may be defined as “the technique of producing a 

fine spatial resolution data from the coarse spatial resolution data by dividing the pixels 

into smaller size”. 

 The super resolution may be achieved by dividing each of the pixels of a 

hyperspectral data into equal number of sub pixels and filling each sub pixel by one and 

only one class. Generally, the output from a sub pixel classification (e.g., class proportion 

or fraction abundance) within a pixel is considered to define the number of sub pixels to be 

mapped in that pixel based on a pre-defined zoom factor to enhance the spatial resolution. 
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Thus, with the help of information content in the neighbouring pixels and the fraction 

abundance, the super resolution mapping may be achieved via one of the many 

optimization techniques. 

6.2 Need for Study 

Super resolution mapping is an emerging area in remote sensing, particularly in 

hyperspectral imaging. Often, targets and classes fall within a pixel and the exact location 

of these may be desired in many applications such as military target detection, crop type 

identification, coastal boundary extraction (Niedermeier et al., 2000), road and other linear 

feature extraction etc. Thus, finding the exact location of a target or the boundary of a 

linear feature from remote sensing data has been a problem to be investigated. It is 

anticipated that super resolution mapping may be quite useful in solving this problem, 

which is the main objective of this chapter. Current super-resolution mapping methods 

include the Hopfield neural network (HNN) (Tatem et al., 2001), linear optimization 

(Verhoeye and Wulf, 2002), genetic algorithm (Mertens et al., 2003; Siedlecki and 

Sklansky, 1989), feed-forward neural network (Mertens et al., 2004), Markov random field 

(Kasetkasem et al., 2005), pixel swapping (Atkinson 2005, Thornton et al., 2007), 

simulated annealing (Makido et al., 2007), inverse Euclidean algorithm (Tiwari et al., 

2007) and geostatistical methods (Villa et al., 2011). The geostatistical approach described 

in (Villa et al., 2011) has been studied for mixed pixels mixes with only two classes. Here 

the algorithm has been applied on a region where sea meets the shore. So this is almost 

considered as linear boundary classification problem. So a general super resolution 

mapping algorithm is required which maps mixed pixels mixed with two or more classes. 

The main limitation of spatial regularization by simulated annealing (Thornton, 2006) is it 

is incapable of mapping linear features. Since the objective function used in this algorithm 

is the cost function to be minimized, where the cost function here is the perimeter of the 

areas belonging to the same class. So, error in one pixel will be carried over to the other 

pixels also. So an algorithm in which the super resolution mapping of one pixel does not 

affect the super resolution mapping of the other is to be considered. The drawback of the 

spatial pixel swapping algorithm (Shen et al., 2009) is it is also incapable of super 

resolving linear pixels. In case of target detection using pixel swapping algorithm (Arora 

and Tiwari, 2013) the binary class problem may be extended to multi-class problem. 

Collectively, by considering the limitations of the above said super resolution mapping 

algorithms, we propose an algorithm, based on inverse Euclidean distance, which works 

better for pixels having linear boundary and multi-class classification problem. 
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 In this research, a novel algorithm has been proposed by fulfilling few of the 

limitations exist in other algorithms. The proposed algorithm works for any number of 

classes is the big advantage over few other super resolution mapping algorithms. The 

mapping of small classes has also been taken with much care to avoid confusion between 

small classes and noise. Generally, in other super resolution mapping algorithms, classes 

having few pixels may be considered as noise and may be removed, but in the proposed 

algorithm every class is taken as equal importance. By finding weights to the sub pixel 

locations the filling process has been done. So introduction of new noise was highly 

impossible. Since the super resolution mapping algorithm is new, a dataset with known 

pixel values is required and hence a synthetic data of size 45x60 has been created. 

6.3 Super Resolution Mapping via Pixel Swapping Algorithm 

Atkinson (2001) proposed a super resolution mapping by calculating membership values of 

each sub pixel locations within a pixel of the hyperspectral data.  Based on the membership 

value of two sub pixels, the class label on it may be interchanged or swapped and hence it 

got the name Pixel Swapping Algorithm. Super resolution mapping takes information 

about fraction abundance of all neighbouring pixels of the pixel to be super resolved (PTS) 

and maps them according to a pre defined zoom factor (defined by user, generally an odd 

number like, 3, 5, etc.,) which gives a spatial resolution finer than the pixel resolution of 

the image.  

 The literature suggests that initially, the pixel swapping algorithm (Atkinson, 2001; 

Atkinson, 2005) has been implemented on simulated data and on some satellite images for 

extraction of only binary land cover classes or single target detection. Later, Thorton 

(2006) used this algorithm for mapping land cover proportions for each pixel obtained 

from a soft classification and mapped to fewer classes for real satellite datasets. 

 In this algorithm, each pixel is divided into a pre-defined fixed number of sub 

pixels by a suitable zoom factor. Zoom factor governs the spatial resolution of the super 

resolved image.  For instance, a 5 x 5 pixels zoom factor implies that soft output of land 

cover proportion for each single pixel needs to be mapped into 5 rows of sub pixels with 5 

columns. Thus, a total of 25 sub pixels within each pixel are created. Similarly, a 7 x 7 

pixels zoom implies a total of 49 sub pixels with 7 rows of sub pixels with 7 columns. 

Moreover, a soft proportion of 0.6 implies that 60% of the total zoomed pixels i.e 25 x 

0.6=15 pixels (in case of 5 x 5 pixels zoom) and 49 x 0.6=29.4 = 29 or 30 pixels 

(approximately, in the case of 7 x 7 pixels zoom). The zoom factor for each pixel remains 
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fixed throughout the pixel swapping procedure. During this process, each sub pixel is 

allocated to a single land cover class such that the original class proportions in each pixel, 

(i.e., output from the soft classification) are maintained throughout the procedure. The 

implementation steps in brief are given as,  

1. Randomly allocate subpixels to binary classes based on pixel proportions. 

2. For each iteration – 

 (a) For each pixel ; 

               (i) For each subpixel within the pixel – 

(aa)  Calculate attractiveness for each neighbouring subpixel within 

a window. The order of clique considered is 2 x 2 (see Figure 6.1). 

The attractiveness �� of a pixel i is predicted as a distance weighted 

function of its j =1,2….j neighbours and is given by,  

�� �  ∑ λ����	�
�
��� ,       

 (6.1) 

where ��	�
 is the (binary) class of the pixel at location 	� and λ��  is 

a distance dependent weight predicted as, 

λ�� � 
	� �����
� �,      

 (6.2) 

where, ����  is the distance between the location 	� of a pixel i for 

which the attractiveness is desired, location 	� of a neighbouring 

pixel j, and a is non-linear parameter. 

(ab)  Find minimum attractiveness �� for all sub pixels currently 

allocated to 1(i.e., �� � ������
 | ��	�� � 1). 

(ac)  Find maximum attractiveness �� for all sub pixels currently 

allocated to 0 (i.e., �� � ������� | ��	�� � 0). 

  (ii) if ��   ��, then swap the single pair of sub pixel allocations. 

     

Figure 6.1: Two-pixel neighbourhood 
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Two limitations have been stated by the proposer of the algorithm as well as the 

authors who used this algorithm (Atkinson, 2005; Thornton, 2006). First, the algorithm has 

been written to map linear features (such as hedgerows, paths, walls and fences) and hence 

this will work well for the case of linear features and that too when the width of the class 

occupies more than one pixel. Also, the algorithm fails to map features which are at sub 

pixel locations. The second limitation reported by the authors was, whenever there is mis-

allocation of certain sub pixels, it carries the error till the end of the algorithm and hence 

cluster the misclassified pixels.  

Apart from these limitations reported by the authors, there are few other issues, 

which are worth mentioning. The algorithm commences with random allocation of sub 

pixels depending upon the fraction abundance of each pixel. For example, if the fraction 

abundance of a typical pixel is 60% and if the zoom factor is 5, then the pixel is divided 

into 5
2
 = 25 sub pixels, among these, 

!"
�"" # 25 � 15, sub pixels belong to that class. These 

15 sub pixels are randomly arranged in 25 sub pixel locations. There are &�'('  ways of 

arranging these pixels in sub pixel locations. Not all the arrangements are going to produce 

same result at the end of the algorithm, and hence the solution to the problem of super 

resolution by pixel swapping may not be unique. In a binary classification problem, since 

the expected result in the final output is that, all the sub pixels of same class in each pixel 

should be clustered together, this random arrangement increases unnecessary complication. 

The requirement here is to seek the spatial distribution of all the sub pixels determined 

using their respective abundance fraction. Therefore, it may be appropriate to treat all sub 

pixels of a given fraction as one unit and iterated to get their correct spatial distribution. 

Similarly, the algorithm uses a non-linear parameter and a variable number of 

iterations, neither of which can be determined deterministically for different zoom factors 

and may vary for different applications.  Also for multi-class super resolution mapping, 

this method is not effective because of the swapping has been done between two classes 

finds optimum and when for another class if the swapping has been introduced then the 

optimality between the first two classes may be disturbed. Therefore, a new method based 

on filling the pixels at the required location has been proposed in this thesis, which may 

overcome the limitations of the pixel swapping algorithm. 
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6.4 Super Resolution Mapping via Pixel Filling Algorithm 

Once the fraction abundance of each pixel or the number of sub-pixels of each class 

belonging to each pixel is known, the super resolution mapping is carried out. To achieve 

super resolution mapping, the number sub-pixels of each class in the neighbouring pixels 

should also known. Let the pixel to be super resolved is  denoted by PTS and the 8-

neighbourhood pixels be named from top and arranged in clockwise direction as top, top 

right, right, bottom right, bottom, bottom left, left and top left are denoted as P1, P2, … P8, 

(Figure 6.2(a)). The description given here is for a zoom factor 3 but the algorithm can be 

appropriately modified for any odd order zoom factors. The PTS is divided into 9 sub 

pixels denoted as s1, s2,…s9, (Figure 6.2(b)) taken in clockwise order from top sub-pixel. 

Here, the PTS which consists of 9 sub-pixels has been grouped into 3 unequal parts, (i) 

corner sub pixels, (ii) center sub pixel, (iii) remaining sub pixels other than those  in (i) and 

(ii). For zoom factor 3, there will be 4 sub pixels of case (i), only one center sub pixel and 

4 sub pixels of case (iii). The weights at each sub pixel location of PTS are determined. 

 
  (a)      (b) 

 

Figure 6.2: (a) The arrangement of PTS and its neighbouring pixels, (b) the sub pixels of 

PTS.  

 

Case (i) Weights of corner sub-pixels 

The corner sub pixels directly depend upon the 3 neighbours. For instance, s8 

depends upon P7, P8 and P1. At the same time P1 and P8 are not in equal distance to s8. 

Since the spatial proximity is considered, the influence of P1 and P7 is more than P8 for 

location s8 and therefore these are given different weights inversely proportion to the 

Euclidean distance. Thus, the weights for corner pixels will be half that of the middle 

pixel. The weights 8 and 17 have been calculated from the nature of the neighbouring 

pixels, and these are taken and applied to sub pixel s8. So the weight of sub pixel s8 will be,  

        s8 = P7x17 + P8x8 + P1x17,      (6.3) 
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Similarly for s2, it depends upon P1, P2 and P3 and the respective weights are 17, 8 

and 17. Hence s2 may be calculated by, 

      s2 = P1x17 + P2x8 + P3x17,      (6.4) 

The other two corner sub-pixels s4 and s6 are also filled in the same way. Hence 

      s4 = P3x17 + P4x8 + P5x17,      (6.5) 

      s6 = P5x17 + P6x8 + P7x17,      (6.6) 

Case (ii) Weights of center sub-pixel 

The centermost sub pixel s9 depends upon all the 8 neighbours of PTS. Here also the 

contribution of corner pixels P2, P4, P6 and P8 are less compared to that of the remaining 

adjacent pixels P1, P3, P5, and P7. So, for the centre sub-pixel, the s9 value for a particular 

class could be the summation of product of the number of sub pixels for that class at pixel 

location P8, P1, P2, P3, P4, P5, P6, P7 and 8, 17, 8, 17, 8, 17, 8, 17. So the value s9 is given 

as, 

 s9 = P8x8 + P1x17 + P2x8 + P3x17 + P4x8 + P5x17 + P6x8 + P7x17  (6.7) 

Case (iii) Weights of remaining sub-pixels 

The center row/column sub pixels except the center most sub pixel, they depend 

upon 3 neighbouring pixels which falls in their respective side. There are four such sub 

pixels and they are s1, s3, s5 and s7. For example, consider s1, it is at the top middle position 

and it depends upon the corresponding pixels which are adjacent to it and lying on the 

same side of the matrix. Here s1 depends upon P8, P1 and P2. The number of sub pixels at 

these locations for a particular class, is multiplied by the weights 8, 17 and 8. The value s1 

is given as, 

        s1 = P8x8 + P1x17 + P2x8   (6.8) 

Similarly, the other values for s3, s5 and s7 may be calculated by the following 

formulae: 

        s3 = P2x8 + P3x17 + P4x8   (6.9) 

        s5 = P4x8 + P5x17 + P6x8   (6.10) 

        s7 = P6x8 + P7x17 + P8x8   (6.11) 
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Now collect all the values of s1, s2, s3, s4, s5, s6, s7, s8 and s9 and put them in matrix 

form given in figure 6.2(b). We obtain this matrix called as weight matrix for one class. 

Similarly, for the remaining classes also we have to find such matrices. The number of 

weight matrix is same as that of the number of classes present in the image. A general 

consequence we obtain is that always the middle sub pixel value is larger than other sub 

pixel values because the middle sub pixel value depends upon all the surrounding eight 

pixels while the remaining sub pixels values depend upon only three of the neighbouring 

pixels. Hence the weight matrices are normalized by dividing each of the values got from 

equation (6.3) to equation (6.11) by the summation of respective weights. Now for each 

weight matrix we get normalized weight matrix. The pixel filling process completely 

depends on these normalized weight matrices. 

Pixel Filling Process 

Since each normalized weight matrix is related to each class, there is an equal number of 

matrix named as filled matrix for class i, of order zf x zf (zf means zoom factor) has been 

created. The filling process has been explained in step-by-step procedure. 

Step 1: Find the number of sub pixels to be mapped as class 1. 

Step 2: Sort the values in normalized weight matrix for class 1 in descending order. 

Step 3: The number of values to be mapped (got from step 1) has been filled in the place 

where the normalized values are larger (from step 2). 

Here, if only 3 sub pixels are to be mapped as class 1, then only those three places may be 

filled by number 1 and the remaining places of the filled matrix i are kept as empty or zero.  

Step 4: Repeat step 1, step 2 and step 3 for next classes. 

At this stage we get the number of filled matrices equal to number of classes. 

Step 5: Now combine all the filled matrices by simple matrix addition. At this stage we get 

three possibilities which should be taken care. The first possibility is there may be no 

overlapping in the arrangement of numbers. The second possibility is there may be 

overlapping between classes. The third possibility is there may be some sub pixel locations 

which are unoccupied. The third case occurs only if the second case occurs. But the pixel 

filling processes for these last two cases are different. If no overlapping is there then the 
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sub pixel locations are filled by mere addition of the filled matrices and proceed to next 

pixel. Otherwise the procedure continues to step 6. 

Step 6: Overlapping of sub pixels after addition of filled matrices. 

 Case (i): Find the place of overlapping and from the filled matrices for each class 

find the maximum value which is among all the values of same location in different 

matrices and fill it by the class value. Do this for all the overlapping sub pixel locations. 

 Case (ii): If any sub pixel location is unoccupied, it means some pixel locations 

might be overlapped. So once the case (i) of step 6 has been performed the unoccupied 

location needs to be filled. Go to the unoccupied location and for that location, find the 

maximum value of the same location from the pixel filled matrices and fill it by the class 

value. Since there is one-to-one correspondence between the pixels to be occupied and the 

number of elements in sub matrix, no place will be unoccupied. 

Step 7: Repeat the process for each pixel. 

Pseudo-code of Pixel Filling (PF) algorithm  

1) Input fractional output 

2) Decide zoom factor 

3) For each subpixel within the pixel of consideration 

a) Calculate the weights for each subpixel using the neighbouring pixels 

i) For corner subpixels use equations (6.3), (6.4), (6.5) and (6.6) 

ii) For middle subpixels which are at the outer boundary use equation (6.7) 

iii) For middle subpixel use equations (6.8), (6.9), (6.10) and (6.11) 

b) Normalize the matrices name it as normalized matrices. 

4) Fill the subpixels in a new matrix (named as pixel filled matrix), whose dimension is      

zf x zf times bigger than the original data, where zf is zoom factor, whose weight is 

more. 

5) If unoccupied pixels are there or pixels with two or more classes trying to occupy at 

one subpixel, then the maximum value at the normalized matrices’ class will be filled. 

 

For each sub-pixel position which is unoccupied in the final pixel-matrix, select the 

candidate classes and fill with the class having maximum weight for corresponding pixels 

from all the candidate classes. The same algorithm may be extended for any zoom factor 

by scaling the weights between 8 and 17. 
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 The coding for pixel swapping algorithm written for binary classes in IDL language 

has been downloaded from website http:\\www.globalchange.msu.edu/gomsu/models.php. 

However, the same coding has been implemented in MATLAB for the current 

experiments. Here for implementation for multi-class problem, a one-against-all strategy 

has been followed to obtain super resolved image. Extract each class versus all the other 

classes and collect the information where overlapping is not there. All the extracted pixels 

are put it in a matrix to obtain a super resolution map. 

6.5 Methodology 

After pre-processing of hyperspectral data, the feature extraction techniques, as discussed 

in earlier chapters, have been applied to obtain reduced hyperspectral data, which then has 

been classified to produce both per pixel and sub pixel classifications. The per pixel 

classification has been performed by SVM to produce hard classification output. 

Generally, a sub pixel classification output is required to do sub pixel mapping, but due to 

non-availability of soft reference data for validation purpose, the super resolution mapping 

algorithms have been applied on low pass filter applied on output of SVM classification. 

The flowchart given in Figure 6.3 gives a complete overview of the methodology followed 

in this section. 

 The experiment has been done on four datasets, one synthetic dataset and three 

hyperspectral datasets. The result analysis has been made according to the three types of 

assessment techniques described in section 6.7. The super resolved images are compared 

with best classified SVM output for each dataset, since SVM output acts as reference data. 

The novel pixel filling algorithm has been compared with pixel swapping algorithm 

(Atkinson, 2005). 
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Figure 6.3: Flowchart of the methodology followed to obtain a super resolution map  

  

 All the implementation steps from feature extraction of hyperspectral to super 

resolution mapping have now been described as follows:  

(i) feature extraction of hyperspectral data, 

(ii) per pixel classification of hyperspectral data, 

(iii)application of low pass filters 3 x 3 and 5 x 5 on classified data to coarsen the 

data by factor 3 and 5 respectively, and finally, 

(iv) application of super resolution mapping algorithms on the coarsen data 

obtained at step (iii). 

Input hyperspectral data 

Accuracy Assessment 

Super Resolution 

Mapping Algorithms 

Sub Pixel Classification Per Pixel Classification 
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Apply Low Pass Filter 
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Super Resolution Mapping Algorithms 

Finer Spatial Resolution 
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 Let the hyperspectral data, after pre-processing, is of dimension M x N x B, where 

M and N denotes the spatial locations (of x and y axes respectively) and B is the total 

number of bands. The feature extraction of hyperspectral data has been performed by 

wavelet based techniques and PCA based techniques. For super-resolution mapping, 

features extracted from only 3 feature reduction techniques, Haar_1, Haar_2 and Daub2_1 

wavelets, have been considered.  

 Each of these feature reduced datasets has been classified using SVM classifier to 

produce a thematic map of size M x N pixels, and its accuracy has been determined. The 

thematic map with highest classification accuracy has been considered as reference data 

for super resolution mapping. A low-pass filter of size zf x zf (zf may be 3 or 5 or 7, etc.,) 

has been applied to the thematic map got from the hard output of SVM classification. By 

doing this, the spatial resolution of each pixel has been degraded by zf times along x-

direction and z times along y-direction. So, the SVM classified (which will act as reference 

data for validation of super resolution mapping algorithms) data of dimension M x N has 

been degraded to size  
)
*+ # ,

*+. At this level, every zf x zf square window (or sub-matrix) 

takes information from SVM classified output about the number of classes present in this 

sub matrix as a vector of length equals the total number of classes. 

1 2 2 4 2 2 2 2 1 5 … … 

1 1 1 4 2 4 3 4 4 3 … ... 

1 3 4 2 2 4 4 3 4 4 … … 

1 4 4 5 5 4 1 2 5 5 … ... 

3 4 2 1 5 3 3 4 4 5 … … 

3 3 2 4 3 2 2 4 2 1 … ... 

2 2 1 4 4 1 2 4 2 2 … … 

1 3 3 2 5 5 3 1 4 2 … ... 

3 4 4 5 5 4 1 4 4 3 … … 

4 4 2 1 5 3 3 5 5 4 … ... 

… … … … … … … … … … … … 

… ... … ... … ... … ... … ... … ... 

Figure 6.4: Class labels of a thematic map 
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 Let us take a zoom factor of 3 and first apply corresponding low-pass filter on the 

thematic map (Figure 6.4) and then collect the number of pixels belonging to each of the 

class for every 9 (3x3 sub-matrix) pixels. Since for zoom factor 3, each pixel is divided 

into 9 sub pixels, 3 along x-direction and 3 along y-direction, the 3x3 filter is being 

applied. Now we collect only the class labels for each of the 3x3 window and the number 

of class label is noted for each class.  

 From the Figure 6.4, a thematic map is given and the numbers represent class 

labels. Assume that there are five classes. The number of pixels covered by solid border 

circle is 9. Hence the values in that circle may be represented as the vector (5 2 1 1 0). It 

means there are 5 pixels having class label 1, while 2 pixels are having class label 2 and so 

on, and finally no pixel belonging to class 5. Similarly, for the dotted border circle, class 

values vector is (1 2 2 2 2). To emphasize the meaning of the vector notation the same may 

be represented in Table 6.1. Now this class values vector is converted into fraction values 

by dividing the numbers by 9 (since the zoom factor is 3x3 = 9). This is the fraction 

abundance of each pixel and used as input for producing super resolution map. 

Table 6.1: Pixel details and the corresponding fraction abundance for each pixel 

 
Number of pixels with 

class label 
Total 

Fraction abundance 

for each pixel 

Total 

Class label 1 2 3 4 5  1 2 3 4 5  

Pixel 1 5 2 1 1 0 9 0.6 0.2 0.1 0.1 0 1 

Pixel 2 0 5 0 4 0 9 0 0.6 0 0.4 0 1 

… … … … … … …       

 

 Now the thematic map of size MxN is degraded / reduced to size  
)
- # ,

- and each 

pixel has been divided into 9 sub-pixels. These 9 sub-pixels have to be filled by class 

labels given according to the Table 6.1. To achieve this, the proposed super resolution 

mapping based on neighbouring pixels label is discussed in the next section. 

 Now on this reduced datasets which is in the form of matrix representation given in 

Table 6.1, super resolution mapping algorithms described on section 6.3 and section 6.4 

have been applied. Sometimes the number of pixels along row or column or both, in the 

dataset on which super resolution mapping algorithm is applied may not be divisible by the 

zoom factor. In that case, few rows or columns or both may be reduced to make it divisible 

by zoom factor. So a maximum of z–1 rows or z–1 columns or both may be removed. 
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6.6 Accuracy Assessment for Super Resolution Mapping Algorithms 

The performances of two super resolution mapping algorithms have been evaluated in 

different ways,  

1. conventional error matrix construction based on some testing samples 

2. conventional error matrix construction based on pixel-to-pixel comparison of 

the whole classified image 

3. conventional error matrix construction for patches of mixed pixels (mixed by 2 

classes or 3 classes or 4 classes) respectively. 

6.6.1 Conventional Error Matrix Construction Based on Some Testing Samples 

The first type of accuracy assessment has been done by exactly how the same has been 

done for per pixel classification. The reference samples / testing samples used here are 

exactly used from the same. Since the output of a super resolution mapping is a thematic 

map such accuracy assessment is possible. Also there is no need of calculating user’s and 

producer’s accuracies. Since in classification problems, we are interested in finding how 

much variation is there in with-in class species, for instance, how much pixels belonging to 

class alfalfa has been mapped to class oats, because there spectral characteristics plays a 

big role, while in super resolution mapping the spatial characteristic is important. Hence 

overall accuracy and kappa coefficient alone has been calculated in analysing the super 

resolution mapping. The reference data taken here is same as that of used for evaluating 

per pixel classification algorithm which has been given in Chapter 3. 

6.6.2 Conventional Error Matrix Construction Based on Pixel-to-Pixel 

Comparison of the Whole Classified Image 

Since SVM output has been degraded by applying low pass filters, the SVM output has 

been taken as reference. Now comparing the SVM output as well as the super resolved 

output and by using the same contingency table / error matrix accuracy assessment has 

been performed. Also, if a pixel is pure, the application of any super resolution mapping 

algorithm on that pixel gives 100% accuracy for that pixel. So, the overall accuracy for a 

dataset having more number of pure pixels will be generally high that a dataset having less 

number of pure pixels. Hence from the degraded dataset by applying low pass filter, has 

been bifurcated into two sets, set of pure pixels only and the other set containing only 

mixed pixels. Definitely these two sets are mutually exclusive and collectively exhaustive 

and hence such partition is possible. Now for the set having only pure pixel, the super 
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resolution accuracy would be 100 percent. For the remaining pixels, the accuracy has been 

calculated by the following formula given by:p-to-p 

�../01.2 34
��	
5 ��	
67

�  89��::
 ;  ��<:
= # 1�>� ?2 � � @3 � �
 � ��::
 # 100A
��<:
                 �6.12
  

where,  

PP – set of all pure pixels 

MP – set of all mixed pixels 

n(PP) – denotes the number of elements belonging to the set PP, i.e., the number of pure 

pixels 

n(MP) – denotes the number of elements belonging to the set MP, i.e., the number of 

mixed pixels 

1�>� ?2 � � @3 � �
 – denotes overall accuracy obtained by pixel-to-pixel measurement 

 

 By this accuracy assessment we get how mixed pixels are resolved but an in-depth 

view of this type of accuracy is needed, since the mixed pixels may be mixed by two 

classes or more classes. A modification in testing data requires to do further analysis.  

 

6.6.3 Conventional Error Matrix Construction for Patches of Mixed Pixels (mixed 

by 2 classes or 3 classes or 4 classes) 

Now the focus of accuracy assessment tends to how each of the mixed pixels has been 

mapped. To some extent this could be achieved by modifying the testing data. Generally, 

for classification purpose, testing samples have been taken at middle of class. On the 

contrary, here testing samples are specially taken where it is mixed by two classes, three 

classes or four classes, etc., separately. Now the usual error matrix based accuracy 

assessment has been conducted for these types of mixed pixels separately.  

 

6.7 Results and Discussions 

The experiment has been done for four datasets, one synthetic dataset and three 

hyperspectral datasets. The result analysis has been made according to the three types of 

assessment techniques described in section 6.6. Results according to datawise analysis 

have been presented in this section. 
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6.7.1 Results of Super Resolution Mapping for Dataset I – Synthetic Data 

By taking reference data described in section 6.6.1, the accuracy assessment for the super 

resolved data which comes from pixel filling algorithm has been calculated.  Here the 

overall accuracy of super resolved image by pixel filling algorithm gives 90.7% and 72.7% 

for zoom factors 3 and 5 respectively. This includes pure pixels also for which always the 

super resolved accuracy is 100%. So only for mixed pixels the accuracy has been 

calculated and it comes to be 65.5% and 46.3% for zoom factors 3 and 5 respectively. 

Since this is the result for synthetic data, a hypothesis may be set that these are the overall 

accuracies for pixel filling algorithm by taking zoom factor 3 and 5 respectively. 

 By taking reference data described in section 6.6.2, in the synthetic data when low-

pass filters have been applied to the SVM classified map, the pure pixel are more (219 pure 

pixels out of 300 pixels) when the low-pass filter is 3, while for the low-pass filter 5, it is 

near to 50 percent (53 pure pixels out of 108 pixels) (refer Table 6.2). The accuracy for 

only mixed pixels for zoom factor 3 is relatively higher than that of zoom factor 5. Even 

though the overall accuracy has been 72.67% for zoom factor 5, due to the removal of pure 

pixels there is a deep difference in accuracy. 

Table 6.2: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for synthetic dataset 
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2 5x5 108 72.67  53 100  55 2548.79  46.3 

 

 

6.7.2 Results of Super Resolution Mapping for Dataset II – AVIRIS Indiana Pine 

Dataset 

The accuracy assessment has been performed by using conventional error matrix and 

by taking the same reference data which has been used for evaluating per pixel 

classification.  

1. The Indiana Pine dataset is full of vegetation cover. Each of the vegetation class 

is available on patches and almost they are crisp in nature and hence possibility 

of mixed pixels inside the patches is less. But many patches are small in size 
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and the boundaries are mixed pixels. So in Figure 6.5(b) and Figure 6.6(b), the 

noise present inside the patches of classes is due to classification error. Such 

types of errors are carried over for super resolution mapping. 

2. Here also the boundary pixels are well classified for zoom factor 3 when 

compared to zoom factor 5. 

  

Figure 6.5: (a) FCC (Red : 40, Green : 30, Blue : 20) of subset of Indiana Pine dataset 

subsampled by 3. (b) Super resolution map by taking zoom factor 3 of 3x3 sub-sampled 

Indiana Pine dataset. 

  

Figure 6.6: (a) FCC (Red : 40, Green : 30, Blue : 20) of subset of Indiana Pine dataset 

subsampled by 5. (b) Super resolution map by taking zoom factor 5 of 5x5 subsampled 

Indiana Pine dataset. 
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Table 6.3: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 3. 

 

 Dataset II 

 Pixel 

Filling 

Pixel 

Swapping 

Haar_1 92.4 98.7 

Haar_2 87.7 98.4 

Daub2_1 93 98.2 

Table 6.4: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 5. 

 

 Dataset II 

 Pixel 

Filling 

Pixel 

Swapping  

Haar_1 91.9 94.8 

Haar_2 87.2 94 

Daub2_1 92.3 93.8 

 

 The comparison of two algorithms for zoom factor 3 and 5 has been displayed in 

Table 6.3 and Table 6.4 respectively. Moreover from these two tables we may compare 

how the two algorithms performed for various datasets. Also from both the Tables 6.3 and 

6.4, it is observed that pixel swapping algorithm performs better than pixel filling 

algorithm. Its due to the classes of this dataset are crisp in nature and pixel swapping 

algorithm works for such datasets. 

 Now the analysis has been based on how well the mixed pixels are super resolved 

which was described in section 6.6.2. The AVIRIS Indiana Pine dataset has classes 

dominated by vegetation and few classes occupies less area. Except the class wood which 

is having irregular shape boundary almost all other classes are having linear boundaries 

except for those classes which shares boundary with class woods. The classes are also crisp 

in nature and possibility of mixed pixels within the region of class is less. Hence for zoom 

factor 3, the accuracy of mixed pixels is around 60 percent. Even though the overall 

accuracy is around 70 percent, the algorithm performs well for super resolving mixed 

pixels. For zoom factor 3, the results are given in Table 6.5: 
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Table 6.5: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Indiana Pine Dataset 
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1 Haar_1 2304 70.814  625 100  1679 100655.5  59.9 

2 Haar_2 2304 72.627  692 100  1612 98132.61  60.9 

3 Daub2_1 2304 71.677  651 100  1653 100043.8  60.5 

 

Now analysis has been done by taking patches of mixed pixel alone which was 

described in section 6.6.3. 

1. From Table 6.6, it is evident that the accuracy of mixed pixels when mixed by 2 

classes is 80.9% while the worst super resolved is for pixels with 4 classes 

mixed which comes to be more than 51%.  

2. For zoom factor 5, the accuracy of super resolved mixed pixels mixed by 2 

classes is around 70% while the same for mixed for 4 classes is above 40% 

(Table 6.7). 

Table 6.6: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Indiana Pine dataset for 2-3-4- mixed pixels by taking zoom factor 3 

2 Classes 3 Classes 4 Classes 

Haar_1 75.5 0.73 

 

61.1 0.57 

 

51.9 0.47 

Haar_2 71.8 0.69 

 

59.2 0.55 

 

52.7 0.48 

Daub2_1 80.9 0.79 63.9 0.61 56.5 0.52 

 

Table 6.7: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Indiana Pine dataset for 2-3-4- mixed pixels by taking zoom factor 5 

2 Classes 3 Classes 4 Classes 

Haar_1 68.9 0.65 

 

50.6 0.46 

 

44.4 0.39 

Haar_2 65.4 0.61 49.7 0.45 43.9 0.38 

Daub2_1 71.3 0.68 51.7 0.47 45.8 0.4 
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6.7.3 Results of Super Resolution Mapping for Dataset III – HYPERION Roorkee 

and its Surroundings Dataset 

The Roorkee dataset is a challenging dataset because of two reasons. The first one is that 

the region is textured with the classes are not in regular shape and the second reason is the 

spatial resolution is 30 m which leads to more pixels mixed.The canal which runs across 

the image is part of the class water (dark blue colour) and this is the only portion having 

linear boundary. When the zoom factor is 3x3 the class water is super resolved well 

(Figure 6.7) while when the zoom factor is 5, the 5x5 window consists of 3 classes, 

namely, water, urban (purple colour) and trees (dark green). The poor super resolution is 

due to the class water is not having any pixels in its left and right neighbouring pixels 

(Figure 6.8) but only along its top and bottom pixels, hence the sub pixels accumulate 

towards top and bottom of the pixel. So in every 5x5 pixel in super resolved image the 

center row never contains the class water. 

  
(a)       (b) 

Figure 6.7: (a) FCC (Red : 70, Green : 20, Blue : 2) of subset of Roorkee dataset 

subsampled by 3. (b) Super resolution map by taking zoom factor 3 of 3x3 subsampled 

Roorkee dataset. 
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(a)       (b) 

Figure 6.8: (a) FCC (Red : 70, Green : 20, Blue : 2) of subset of Roorkee dataset 

subsampled by 5. (b) Super resolution map by taking zoom factor 5 of 5x5 subsampled 

Roorkee dataset. 

Table 6.8: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 3. 

 Dataset III 

 Pixel 

Filling 

Pixel 

Swapping 

Haar_1 96.6 93.3 

Haar_2 94.8 87.9 

Daub2_1 95.7 90.4 

Table 6.9: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 5. 

 Dataset III 

 Pixel 

Filling 

Pixel 

Swapping  

Haar_1 93.3 77.1 

Haar_2 89 69.8 

Daub2_1 90 73.1 

  

 Contrary to dataset II, for this dataset, the pixel filling algorithm performs better 

than the pixel swapping algorithm (Table 6.8 and Table 6.9) when zoom factors 3 and 5 

are used. Here the classes are meshed together and here efficacy of the pixel filling 

algorithm is shown good. 

 By taking reference data described in section 6.6.2, the accuracy assessment for the 

super resolved data which comes from pixel filling algorithm has been calculated. The 

spatial resolution of Roorkee dataset is 30 m and hence more mixed pixels are there. Also 
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canal is the only linear class available and the other classes have irregular boundary. So the 

effect of super resolution algorithm can be viewed well for this dataset. Here the mixed 

pixels are resolved much better compared to Indiana Pine dataset. Here it comes to be 

around 62 percent while the overall classification is still around 70 percent (refer Table 

6.10). 

Table 6.10: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Roorkee and its surroundings dataset 
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Haar_1 6889 69.289  1274 100  5615 349931.9  62.3 

Haar_2 6889 70.849  1373 100  5516 350778.8  63.6 

Daub2_1 6889 70.015  1347 100  5542 347633.3  62.7 

 

 By taking reference data described in section 6.6.3, the accuracy assessment for the 

super resolved data which comes from pixel filling algorithm has been calculated. There is 

a significant difference in accuracies when taking mixed pixel mixed by 2 classes while 

using zoom factor 3 and 5 (Table 6.11 and Table 6.12). The reason is because of the 

classes have irregular boundaries, the mis-mapping increases when zoom factor increases. 

In general, the super resolved pixels mixed by 2 classes and mixed by 3 classes are better 

for Roorkee dataset when compared to the other 2 datasets. 

Table 6.11: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Roorkee and its surroundings dataset for 2-3- mixed pixels by taking zoom 

factor 3 

 
2 Classes 3 Classes 

Haar_1 98.3 0.97 88.6 0.83 

Haar_2 89.9 0.86 78.4 0.73 

Daub2_1 93.6 0.91 87.9 0.85 

Table 6.12: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for Roorkee and its surroundings dataset for 2-3- mixed pixels by taking zoom 

factor 5 

 
2 Classes 3 Classes 

Haar_1 70.3 0.59 44.6 0.32 

Haar_2 69.3 0.58 45.1 0.33 

Daub2_1 69.5 0.58 47.1 0.35 



6.7.4 Results of super resolution mapping for dataset IV – AVIRIS San Diego 

Dataset 

By taking reference data described in section 6.6.1, the accuracy assessment for the super 

resolved data which comes from pixel filling algorithm has been calculated. 

1. The classes having linear borders are super resolved well by using both the 

zoom factors 3 and 5, as it can be seen from the elliptical region in Figures 6.9 

(a) and 6.9(b) and Figures 6.10 (a) and 6.10(b). 

2. The algorithm is strong enough to map pixels surrounding by mixed classes. 

The class building having all its border pixels mixed with classes has also super 

resolved well, as highlighted by circular region from Figure 6.9 and Figure 

6.10. 

3. Not only the linear boundaries, but also for curved boundaries between classes 

may be super resolved. The two circular region demarcated in rectangular 

boxes have also super resolved well, as it can be seen from Figure 6.9 and 

Figure 6.10. 

  
(a)       (b) 

Figure 6.9: (a) FCC (Red : 140, Green : 80, Blue : 20) of subset of San Diego dataset 

subsampled by 3. (b) Super resolution map by taking zoom factor 3 of 3x3 subsampled San 

Diego dataset. 



  
(a)       (b) 

Figure 6.10: (a) FCC (Red : 140, Green : 80, Blue : 20) of subset of San Diego dataset 

subsampled by 5. (b) Super resolution map by taking zoom factor 5 of 5x5 subsampled San 

Diego dataset. 

 

Table 6.13: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 3. 

 Dataset III 

 Pixel 

Filling 

Pixel 

Swapping 

Haar_1 97.4 91 

Haar_2 98.4 92.6 

Daub2_1 97.4 87.4 

 
Table 6.14: Comparison of the proposed Pixel Filling algorithm with Pixel Swapping 

algorithm for zoom factor 5. 

 Dataset IV 

 Pixel 

Filling 

Pixel 

Swapping 

Haar_1 88.5 68.3 

Haar_2 97.4 70.3 

Daub2_1 92.7 66 

 

 There is a significant difference in accuracies (Table 6.13 and Table 6.14) when 

using pixel filling algorithm and pixel swapping algorithm for dataset IV. Pixel filling 

algorithm outperforms pixel swapping in accuracy wise. 

 By taking reference data described in section 6.6.2, the accuracy assessment for the 

super resolved data which comes from pixel filling algorithm has been calculated. The 

classes of this dataset look like crisp but it didn’t so. Class concrete of one type is mixed 

with class concrete of other type. Even though this effect more in classification but not in 
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super resolution mapping but for few 3x3 window class of one type will have less number 

of pixel while its neighbouring pixels will don’t have this class. So this effects in super 

resolution of mixed pixels. Even though it is so the accuracy of super resolved mixed 

pixels is around 64 percent while the overall accuracy is around 76 percent (refer Table 

6.15). 

Table 6.15: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for San Diego dataset 
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1 Haar_1 2300 75.986  757 100  1543 99067.8  64.2 

2 Haar_2 2300 78.647  893 100  1407 91588.1  65.1 

3 Daub2_1 2300 76.256  779 100  1521 97488.8  64.1 

 

By taking reference data described in section 6.6.3, the accuracy assessment for the super 

resolved data which comes from pixel filling algorithm has been calculated. The algorithm 

works almost uniform for mixed pixels mixed by two classes for both the zoom factors 3 

and 5 while there is a significant fall in accuracy when zoom factor is 5 for mixed pixels 

mixed by 3 classes. Such types of pixels are very less and have less impact on the overall 

accuracy. 

Table 6.16: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for San Diego dataset for 2-3- mixed pixels by taking zoom factor 3 

2 Classes 3 Classes 

Haar_1 69.4 0.53 

 

71.4 0.62 

Haar_2 69.4 0.55 68.3 0.59 

Daub2_1 69.4 0.53 71.4 0.62 

Table 6.17: Accuracy assessment for super resolution mapping algorithm by Pixel Filling 

Algorithm for San Diego dataset for 2-3- mixed pixels by taking zoom factor 5 

2 Classes 3 Classes 

Haar_1 64 0.46 

 

54 0.41 

Haar_2 66.7 0.51 52.4 0.39 

Daub2_1 64.9 0.47 57.1 0.44 

 

 In Table 6.18 and Table 6.19, a collective information about the accuracy 

assessment for super resolution mapping of all the 3 hyperspectral datasets have been 
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given for zoom factors 3 and 5 respectively, by taking mixed pixels separately. Among all 

the datasets the Pixel Filling Algorithm performs better for Roorkee dataset. 

Table 6.18: The super resolved accuracy for pixels mixed by 2, 3 and 4 classes of all the 3 

datasets by taking zoom factor 3. 

 Indiana Pine Roorkee San Diego 

Mixed 

by 
2 classes 3 classes 4 classes 2 classes 3 classes 2 classes 3 classes 

Haar_1 75.5 0.73 61.1 0.57 51.9 0.47 98.3 .97 88.6 .83 69.4 0.53 71.4 0.62 

Haar_2 71.8 0.69 59.2 0.55 52.7 0.48 89.9 0.86 78.4 0.73 69.4 0.55 68.3 0.59 

Daub2_1 80.9 0.79 63.9 0.61 56.5 0.52 93.6 0.91 87.9 0.85 69.4 0.53 71.4 0.62 

 

Table 6.19: The super resolved accuracy for pixels mixed by 2, 3 and 4 classes of all the 3 

datasets by taking zoom factor 5. 

 Indiana Pine Roorkee San Diego 

 2 classes 3 classes 4 classes 2 classes 3 classes 2 classes 3 classes 

Haar_1 68.9 0.65 50.6 0.46 44.4 0.39 70.3 0.59 44.6 0.32 64 0.46 54 0.41 

Haar_2 65.4 0.61 49.7 0.45 43.9 0.38 69.3 0.58 45.1 0.33 66.7 0.51 52.4 0.39 

Daub2_1 71.3 0.68 51.7 0.47 45.8 0.4 69.5 0.58 47.1 0.35 64.9 0.47 57.1 0.44 

 

6.8 Summary 

Two algorithms for super resolution mapping have been presented in this chapter and the 

results have been compared. One algorithm is the existing pixel swapping algorithm which 

requires lots of computation time to perform super resolution map while the other is novel 

pixel filling algorithm which outperforms the earlier algorithm for complicated land cover 

classes. The pixel filling algorithm explained here will work for classes with less number 

of pixels, any number of classes, for any odd order zoom factor and if boundary between 

classes are linear or non-linear. Three types of accuracy assessments have been performed 

and in almost all analysis the pixel filling algorithm shows high accuracy that the other 

one. 



 

 

Chapter 7 

Conclusion and Future Research 

 

7.1 Introduction 

To study about the earth surface hyperspectral data are very useful in extracting useful 

information from them. Based on the application, the hyperspectral spatial resolution varies 

from few meters to 10s of meters. In this research, three original hyperspectral data have been 

taken for study whose spatial resolutions are 4m, 20m and 30m. The advantage of using 

hyperspectral data over multispectral data is the availability of rich spectral details present in 

hyperspectral data which are further useful in discrimination of various inter-class and intra-

class variance. Sometimes, a multispectral data of 2m spatial resolution may not be useful in 

study about soil types or vegetation species but a hyperspectral data of 20m spatial resolution 

could be useful. 

 Due to the large data size and redundant information the hyperspectral data suffers 

from dimensionality problem. A solution to this problem is to reduce the number of bands by 

some mathematical transformations. Even though there are two major techniques available to 

reduce the number of bands, namely feature selection and feature extraction, the literature 

suggests that feature selection technique takes more time to select optimum number of bands 

and also loss of information from the hyperspectral data could be more. So in this research, 

only feature extraction techniques have been performed. 

 Once the feature extraction has been performed, now to identify the percentage of class 

present in the hyperspectral data, it should be classified. There are mainly two types of 

classifications, per pixel and sub pixel classification. With the help of training samples the 

classification may be done, named as supervised classification and when no training samples 

are used in unsupervised classification. Moreover, the statistical properties may be used in any 

type of classification called as parametric and the one which does not depend on statistical 

parameters are known as non-parametric classification. In this research, all these type of 

classifications have been executed. For supervised per pixel classification SVM has been used 
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and for supervised but sub pixel classification LMM has been used. ICAMM is unsupervised 

sub pixel parametric classifier. Hence the efficacy of all these algorithms for different spatial 

and spectral resolutions has been studied. 

 A modified type of mapping has been performed to improve the spatial resolution of 

the hyperspectral data by means of super resolution mapping. When literature is having no or 

less work on multi-class super resolution mapping, a novel algorithm is required at this stage 

to tackle such situation. Also, if the boundaries between classes are irregular or atleast non-

linear, the literature is having very algorithm to do spatial enhancement. 

 Without validation the research may not end. So at every stage of the information 

extraction accuracy assessment has been performed and analysed. For feature extraction, the 

analysis is mainly based on classification accuracy, time required to extract the features and 

duration of classification. For per pixel classification, conventional error matrix based 

accuracy assessment has been performed while for sub pixel classification, fuzzy error matrix 

based has been performed. For super resolution mapping technique, three types of accuracy 

has been performed in have an indepth study of that technique. 

7.2 Summary of the Study 

Hyperspectral data has been used largely by remote sensing community to extract useful 

information from earth atmosphere. But due to large information content in a hyperspectral 

data due to redundancy of information, further processing becomes complicated. This creates 

a necessity to reduce the hyperspectral data by some means without loss of much information. 

Hence, by two feature extraction techniques namely wavelet based feature extraction and PCA 

based feature extraction the hyperspectral data has been reduced. Both these are having 

different mathematical structures in which transformation based on multi-resolution and 

statistical transformation techniques have been employed, respectively. In each of these two 

techniques a couple of special sub classes have been studied. In wavelet transformation, Haar, 

Daubechies and Coiflet wavelets have been used along with their sub classes while in PCA 

based feature extraction technique, SPCA and SSPCA techniques have been employed. 

Among all these feature extractions, Daubechies wavelets second sub class first and second 

level decomposition levels (denoted as Daub2_1 and Daub2_2) performs better than the rest. 



[147] 

 

 A collective study about classification of various spatial resolution hyperspectral data 

was missing from the literature and hence it triggered to do such an analysis for hyperspectral 

data. Hence, after feature extraction, the extracted features are classified by various categories 

of classifiers. Here three classification algorithms have been implemented which are SVM 

(per pixel, supervised), LMM (sub pixel and supervised in nature) and finally ICAMM (sub 

pixel but unsupervised classification). Here ICAMM alone is parametric but the other two 

classifications are non-parametric. Each of these algorithms performs best in extracting 

information within its limitations. 

 Once the classification is performed, the classified output goes to super resolution 

mapping technique. In the literature, only for binary class super resolution is mainly available 

or extraction of linear features is available. Hence a super resolution algorithm has been 

developed for multi-class super resolution and analysis has been made how well this algorithm 

super resolves mixed pixels. Since the three datasets, described in Chapter 3, varies not only in 

spatial and spectral resolutions but also the arrangement of classes the efficacy of the proposed 

super resolution mapping algorithm named as pixel filling algorithm has been analysed. This 

novel algorithm performs better for all the three hyperspectral datasets and one synthetic data 

when compared to pixel swapping algorithm. 

7.3 Conclusions 

Following broad conclusions have been drawn from the research carried out in this study, 

 

i. The feature reduction technique using wavelet based reduces the data drastically 

and retrieves more information while decomposing the hyperspectral data upto two 

levels. 

ii. The Haar wavelets and Daubechies wavelets are better for any type of 

hyperspectral dataset than Coiflets and PCA based techniques. 

iii. When the decomposition level is getting increased by wavelet transformation, then 

the loss of information is also increasing in hyperspectral data. 

iv. SSPCA based extraction technique is better than SPCA for all the datasets as the 

segmentation of bands collects information from the few necessary bands. 

v. The classification accuracy of SVM is remarkable for all the three datasets even 

though few classes having less number of training samples. 
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vi. A small change in spectral curve with other curve of same class effects fractional 

change in proportion of class by using LMM. 

vii. ICAMM has been able to detected new objects in case of all datasets, which was 

not possible using LMM. This proves the utility of ICAMM as a potential sub-

pixel technique for hyperspectral datasets. 

viii. Adaptation parameter value has been fixed to 0.7 in estimation of fractional 

abundance of hyperspectral data using ICAMM. 

ix. ICAMM extracts two classes namely railway track and non-metallic road which 

could not be extracted by SVM and LMM due to the non-availability of pure pixels 

of the two classes. 

x. In general, the super resolution mapping by pixel filling algorithm performs better 

for both zoom factors 3 and 5 than the pixel swapping algorithm. Particularly, the 

classes having linear and circular boundaries have been accurately mapped. 

xi. The pixel filling algorithm works better for complicated dataset of HYPERION 

Roorkee and its surroundings dataset which has classes rolled together. The 

efficacy of the algorithm has been shown for this dataset. 

xii. The pixel filling algorithm takes few seconds to produce super resolution map 

while the other algorithm pixel swapping takes more than a minute to produce a 

finer map. 

7.4 Major Research Contributions 

The major research contributions from the work carried out in this research are as follows: 

i) A novel algorithm for super resolution mapping to map the features has been 

proposed for hyperspectral data. 

ii) The applicability of wavelet based transformation using different wavelets for as a 

potential feature reduction technique for hyperspectral data has been demonstrated.  

 iii) The efficacy of ICAMM to produce sub-pixel outputs from hyperspectral data has 

been proven. It has further been shown that ICAMM can be effectively used to 

extract certain unidentfied features in the datasets. 
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7.5 Future Research 

The research work presented in this thesis can be considered as contribution in the area of 

super resolution mapping. Although this research focus on feature extraction, classification 

and super resolution mapping some area of research needs further attention which have been 

identified and narrated as follows: 

(i) The need of a new feature extraction technique will always be there in 

hyperspectral data. 

(ii) Evaluation of feature extraction technique without finding classification is 

required. 

(iii)LMM produces noisy fraction images which should be modified to produce 

noiseless fraction images. 

(iv) The execution and derivation of ICAMM algorithm is very complicated and 

requires much attention to reduce the complication. 

(v) Super resolution mapping may be extended for target/anomaly detection from 

hyperspectral data. 
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