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ABSTRACT  

 

 

Differential Equations are the language in which many laws of nature and their governing rules 

are expressed mathematically. Most physical phenomena can be modeled mathematically by 

second order and still some by fourth order partial differential equations; and these equations 

(PDEs) have become enormously successful as models of physical phenomena in all areas of 

engineering and sciences. The growing need for understanding the partial differential equations 

modeling of the physical problem has seen an increase in the use of mathematical theory and 

techniques, and has attracted the interest of many mathematicians. The elliptic type is perhaps 

one of the most important second order partial differential equation in applied mathematics. In 

engineering and many science fields one of the best known applicable theories in elliptic 

equations is potential equation. 

These equations describe many physical problems, like the slow motion of incompressible 

viscous fluid;  the St. Venant theory of torsion; electrostatics; in heat and mass transfer theory; 

elasticity; magnetism and gravitating matter at points where the charge density, pole strength or 

mass density are non zero; and other areas of mechanics and physics. In particular, the Poisson’s 

equation describes stationary temperature distribution in the presence of thermal sources or sinks 

in the domain under consideration.  

In this thesis an attempt has been made to find efficient numerical solution of Poisson’s equation 

and biharmonic boundary value problem by considering different approximation schemes and 

extending the method of Hockney’s in Cartesian and cylindrical coordinate systems (including 

when 0r   is an interior or a boundary point ) with respect to the given boundary conditions.  

Chapter I is an introductory part and it deals with the important ideas and historical background 

of the development of finding the solution of Poisson’s equation.  

Chapter II deals with the numerical solution of the Poisson’s equation in a cube with the given 

Dirichlet’s boundary conditions. The Poisson’s equation is approximated by its equivalent finite 

difference second order approximation scheme in order to obtain a large number of algebraic 
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linear equations and these equations are systematically arranged to get a block diagonal matrices 

structure. The obtained systems of block diagonal matrices are reduced, then, by extending the 

method of Hockney to a tri-diagonal matrix.  Six examples have been considered in both cases 

and it is found that the method produce accurate results considering double precision.     

Chapter III deals with the numerical solution of the three dimensional Poisson’s equation 

approximated by a fourth order finite difference method in Cartesian coordinate systems in a 

cube with the Dirichlet’s boundary conditions. Based on the approximation scheme we have 

developed 19 and 27 points stencil schemes. Both schemes result in a large algebraic system of 

linear equations and are treated systematically in order to get a block tri-diagonal system by 

extending the method of Hockney, and these systems of linear equations are solved by the use of 

Thomas algorithm. It is shown that the method produce accurate results and moreover 19-point 

formula produces comparable results with 27-point formula, though computational efforts are 

more in 27-point formula. Six examples are taken to show the accuracy of the method and it is 

shown that the method produces accurate results.  

Part of this chapter has been published in the American Journal of Computational Mathematics 

2011, Vol 1, No. 4 pp. 285-293. 

Chapter IV deals with the numerical solution of the three dimensional Poisson’s equation in 

cylindrical coordinate systems for 0r  approximated by a second order finite difference method 

in a cylinder or portion of cylinder with the Dirichlet’s boundary conditions.  Based on the 

approximation scheme we have transformed the Poisson’s equation in to a large number of 

algebraic systems of linear equations and these systems of linear equations are treated 

systematically in order to get a block tri-diagonal system, and these systems of linear equations 

are solved by the use of Thomas algorithm. Seven examples have been tested to verify the 

efficiency of the method and it is shown that this method produces good result.  

Part of this work is to appear in the American Journal of Computational Mathematics. 

Chapter V deals with the fourth-order numerical solution of the three dimensional Poisson’s 

equation in cylindrical coordinate systems for 0r  with the Dirichlet’s boundary conditions. The 

Poisson’s equation is approximated by a fourth order finite difference approximation (19 points 

stencil scheme) to convert the equation in to a large number of system of algebraic linear 
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equations; and the resulting large number of these algebraic system of linear equations is treated 

systematically in order to get a block tri-diagonal system. These systems of linear equations are 

solved by the use of Thomas algorithm, and using backward substitution we obtain the solution 

for the Poisson’s equation. Seven examples have been considered and it is shown that this 

method produces good result.  

Part of this work is to appear in the American Journal of Computational Mathematics. 

Chapter VI deals with the second and fourth-order approximation scheme for the numerical 

solution of the three dimensional Poisson’s equation in cylindrical coordinate systems when 

0r  is an interior or a boundary point.  

Chapter VII deals with the numerical solution of the two (three) dimensional biharmonic 

boundary value problem of the second kind in a rectangular region (a cube) respectively, in 

Cartesian coordinate systems. Using the splitting method the two/three dimensional linear 

biharmonic boundary value problem is replaced by a coupled Poisson’s equations and these 

coupled Poisson’s equations are solved directly by using the fourth order finite difference 

approximation scheme which we have developed in Chapter III. For non-linear biharmonic 

boundary value problem of the second kind, we use splitting and iterative method together. Eight  

examples have been considered to test the efficiency of the methods.  

Finally, in Chapter VIII, based on the present study, conclusions are drawn and in this direction 

future research work is suggested.  
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CHAPTER I 

INTRODUCTION 

 

 

1.1   Historical Background of PDE 

           Partial differential equations (PDEs) have become enormously successful as models of 

physical phenomena in all areas of engineering and sciences. The growing need for 

understanding the partial differential equations modeling of the physical problem has seen an 

increase in the use of mathematical theory and techniques, and has attracted the interest of many 

mathematicians. Many interesting progresses have been achieved in the last 60 years with the 

introduction of numerical methods that allow the use of modern computers to solve PDEs of 

every kind, in general geometries and under arbitrary external conditions (at least in theory; in 

practice there are still a large number of hurdles to be overcome). 

Especially in recent years we have seen a dramatic increase in the use of PDEs in areas such as 

biology, chemistry, computer sciences (particularly in relation to image processing and graphics) 

and in economics (finance). The primary reason for this interest was that partial differential 

equations both express many fundamental laws of nature and frequently arise in the 

mathematical analysis of diverse problems in science and engineering. The theoretical analysis 

of PDEs is not merely of academic interest, but rather has many applications that originate from 

a model of a physical or engineering problem in real life situations [31],[103],[109]. 

Perhaps one of the most important of all the partial differential equations involved in applied 

mathematics and mathematical physics is the potential equation, also known as the Laplace 

equation 0xx yyU U  , where subscripts denote partial derivatives. This equation was first 

discovered by Pierre-Simon Laplace (1749–1827) while he was involved in an extensive study of 

gravitational attraction of arbitrary bodies in space; and this equation arose in steady state heat 

conduction problems involving homogeneous solids. James Clerk Maxwell (1831–1879) also 

gave a new initiative to potential theory through his famous equations, known as Maxwell’s 

equations for electromagnetic fields. 
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The problem of finding a solution of Laplace’s equation that takes on the given boundary values 

is known as the Dirichlet boundary-value problem, after Peter Gustav Lejeune Dirichlet (1805–

1859). On the other hand, if the values of the normal derivative are prescribed on the boundary, 

the problem is known as Neumann boundary-value problem, in honor of Karl Gottfried 

Neumann (1832–1925). Despite great efforts by many mathematicians including Gaspard Monge 

(1746–1818), Adrien-Marie Legendre (1752–1833), Carl Friedrich Gauss (1777–1855), Simeon- 

Denis Poisson (1781–1840), and Jean Victor Poncelet (1788–1867), very little was known about 

the general properties of the solutions of Laplace’s equation until 1828, when George Green 

(1793–1841) and Mikhail Ostrogradsky (1801–1861) independently investigated properties of a 

class of solutions known as harmonic functions. Partial differential equations have been the 

subject of vigorous mathematical research for over three centuries and remain so today [3],[103]. 

 

1.2    Poisson’s Equation 

Poisson’s equation was used by the French mathematician Simeon Poisson (1781–1840) in his 

studies of diverse problems in mechanics, gravitation, electricity, and magnetism. Therefore it is 

called Poisson’s equation. No partial differential equation competes with Poisson’s equation in 

regard to its importance and ubiquity in applications [103],[109]. 

A variety of problems in scientific computing involve the solution of the Poisson’s equation 

                                   2U f    in D                                                                                  (1.1) 

subject to appropriate boundary conditions (BC), 

                            i)       1U f       on D       for a given function 1f , (i.e. U specified on the 

boundary)  is called the Dirichlet problem,             

                         ii)     2

U
f

n





   on D       where 2f  is a given function, n̂ denotes the unit 

outward normal to ∂D, and 
U

n




denotes a differentiation in the direction of n̂  (i.e. ˆ

U
n

n


 


), 

(i.e. gradient of U  normal to the boundary is specified) is called the Neumann problem, and 

                          iii)   3

U
U f

n



 


  on D  where α and 3f are given functions, (i.e. the BC is in 

terms of a mixture of the first two types – typically a linear combination) is called a problem of 

the third kind (it is also sometimes called the Robin problem). 
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                        iv) mixed boundary condition for a PDE; that is, different boundary are used on 

different parts of the boundary of the domain of the equation. For example, if U is a solution to a 

partial differential equation on D with piecewise-smooth boundary D , and D  is divided into 

two parts, 1 and 2 , one can use a Dirichlet boundary condition on 1  and a Neumann 

boundary condition  on 2 , i.e. 1 2D     and U is prescribed on the boundary as 

                     1U g   on 1  and 

                   2

U
g

n





 on 2 ,  where 1g and 2g are given functions defined on those portions of 

the boundary. 

Equation (1.1) along with the boundary conditions i) to iv) is said to be a boundary value 

problem.  

The first question what we have to address now is whether there exist a solution to each one of 

the problems we just defined in i) to iii) or not. This question is not at all easy, it has been 

considered by many great mathematicians since the middle of the nineteenth century. It was 

discovered that when the domain D is bounded and ‘sufficiently smooth’, then the Dirichlet 

problem, for example, does indeed have a solution. 

Theorem: Let D  be a smooth, bounded domain. Then there exists at most one solution         

                
2 1( ) ( )U C D C D    of the Poisson’s equation (1.1), satisfying either i) or iii) on D      

                 and for case ii) on D there might be more than one solution but any two solutions  

                 differ by a constant. 

For the proof and some details of this part refer [54],[83],[103],[109]. 

The Poisson’s equation in different coordinates system is expressed as; 

 Two Dimensional  

       
2 2

2 2
( , )

U U
f x y

x y

 
 

 
                                  Cartesian 

       
2 2

2 2 2

1 1
( , )

U U U
f r

r r r r




  
  

  
                  Polar 
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Three Dimensional  

    
2 2 2

2 2 2
( , , )

U U U
f x y z

x y z

  
  

  
                       Cartesian 

    
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z

r r r r z




   
   

   
       Cylindrical 

    
2 2 2

2 2 2 2 2 2 2

2 1 cot 1
( , , )

sin

U U U U U
f


  

         

    
    

    
          Spherical 

Based on the nature of the geometry of D , we have to choose the appropriate Poisson’s equation 

accordingly.   

 

1.3   Biharmonic Equations 

The biharmonic equation is a fourth-order elliptic PDE which arises in areas of continuum 

mechanics, including linear elasticity theory (to find the displacement of the bending of elastic 

plates), the solution of the stream function of incompressible Stokes flow, and other areas of 

engineering and sciences.  

The biharmonic problem for the domain D  consists of determining a function U which satisfies 

the partial differential equation     

                             

4

1

2

2

22

( ) ( )

( ) ( )

( )
) ( )

( )
) ( )

U P f P P D

U P f P P D

U P
i f P P D

n

U P
or ii f P P D

n

  

 


 




 



                                                    (1.2) 

Here we assume that 1,f f and 2f are given, sufficiently smooth functions and that the boundary 

D  is sufficiently smooth to insure the existence of a solution to the biharmonic equation (1.2).  

 
n




 or 

2

2n




 denote the derivative in the direction of the exterior normal. 
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A solution of (1.2) can be obtained analytically by using some theories of harmonic functions in 

complex analysis (See [83]), but always it is not an easy task. Thus many of the developments in 

this area are based on the numerical solutions of biharmonic equation.   

 

1.4 Numerical Methods 

                 The PDEs associated with most science and engineering applications are often 

impossible, or impractical, to solve using analytic methods, such as separation of variables and 

Fourier series. PDEs with non constant coefficients, equations in complicated domains, and 

nonlinear equations cannot, in general, be solved analytically. Even when we can produce an 

‘exact’ analytical solution, it is often in the form of an infinite series. Worse than that, the 

computation of each term in the series, although feasible in principle, might be tedious in 

practice, and, in addition, the series might converge very slowly.  

Numerical solution methods provide a reasonable alternative in many of these situations. The 

method is based on replacing the continuous variables by discrete variables, and thus, the 

continuum problem represented by the PDE is transformed into a discrete problem in finitely 

many variables. Naturally we pay a price for this simplification; we can only obtain an 

approximation to the exact answer, and even this approximation is only obtained at the discrete 

values taken by the variables [5],[10],[16],[59],[75]. 

The discipline of numerical solution of PDEs is rather young. The first analysis (and, in fact, also 

the first formulation) of a discrete approach on the solution of problems of mathematical physics 

by means of finite differences to a PDE was presented in 1929 by the German-American 

mathematicians Richard Courant (1888–1972), Kurt Otto Friedrichs (1901–1982), and Hans 

Lewy (1905–1988) for the special case of the wave equation. Incidentally, they were not 

interested in the numerical solution of the PDE (their work preceded the era of electronic 

computers by almost two decades), but rather they formulated the discrete problem as a means 

for a theoretical analysis of the wave equation. The Second World War witnessed the 

introduction of the first computers that were built to solve problems in continuum mechanics. 

Following the war and the rapid progress in the computational power of computers, it was argued 

by many scientists that soon people would be able to solve numerically any PDE. As a result of 

these renewed interest, towards finding the solution of PDEs numerically, forced scientists to 
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develop different numerical methods and approaches. Some of the most popular numerical 

methods are the Finite Difference Method (FDM), the Finite Elements Method (FEM), the Finite 

Volume Method (FVM), Fast Fourier Transform Methods, Spline Collocation Methods, Spectral 

Methods, Multigrid Methods, Galerkin Method, Domain Decomposition Methods, Boundary 

Element Methods, Wavelet Methods and others [81],[94],[100],[103],[109].  

Using either of these numerical methods, they have also developed different solvers for the 

solutions of PDEs. In Particular, to find the numerical solution of the two or three dimensional 

Poisson’s and biharmonic equations they have introduced several fast solvers (a fast solver is an 

algorithm for the efficient implementation of a method for solving equation in a standardized 

region D )  based on the geometry of the problem and the type of boundary conditions. For 

Poisson’s equation (two or three dimensional), for instance, in simple geometries (circular or 

rectangular domains) with regular grids, there are well-known fast direct solvers 

[13],[20],[21],[22],[24],[25],[26],[62], which typically rely on the fast Fourier transform (FFT) 

[2],[28],[66],[88],[96],[98] and are well suited to the task. When either restriction is relaxed, 

however, these methods no longer apply. Since practical problems tend to involve complex 

geometries, highly inhomogeneous source distributions f, or both, there has been a lot of effort 

directed at developing alternative approaches [4],[7],[12], [33],[36], [64],[65],[70],[108]. Most 

currently available solvers rely on iterative techniques using multigrid, 

[47],[48],[80],[101],[110]; domain decomposition, or some other adaptive methods [55]. 

Unfortunately, while such multilevel strategies can achieve nearly optimal efficiency in theory, 

they require an appropriate hierarchy of coarse grids which is not provided in practice. Although 

there has been significant progress in this direction, the available solvers compare unfavorably 

with the fast direct solvers in terms of work per grid point.  

Several attempts have been made in developing and improving different techniques and methods 

to solve the Poisson’s equation in polar and cylindrical coordinates system both analytically 

[3],[5],[10],[16],[75],[94],[103],[109] and numerically [9],[14],[30],[31],[40],[54],[59],[67], 

[68], [69],[97] for practical and theoretical problems in many branches of engineering and 

physics. When solving such boundary value problems, appropriate choice of coordinates system 

is very useful, because most of these problems along with their solutions are mainly dependent 

on the geometry of the boundaries. In physical problems that involve a cylindrical surface, (for 
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example the problem of evaluating the temperature in a cylindrical rod), it will be convenient to 

make use of cylindrical coordinates. 

For biharmonic equation (two/ three dimensional) several solvers have been developed based on 

the availability of the data kind (first or second), the numerical method, and the geometry of the 

problem [11],[15],[18],[34],[41],[42],[45],[53],[56],[57],[58],[61],[72],[73],[78],[86],[93],[95]. 

 

1.4   Finite Difference Method 

           A computational solution of a partial differential equation (PDE) involves a discretization 

procedure by which the continuous equation is replaced by a discrete algebraic equation. The 

discretization procedure consists of an approximation of the derivatives in the governing PDE by 

differences of the dependent variables, which are computed only at discrete points (grid or mesh 

points) in different geometries. In general, one starts with a given PDE and uses a discretization 

procedure for developing a finite-difference equation (FDE) that is a linear relation between 

discrete values of the unknown function computed on grid point. 

Thus, a finite difference solution basically involves three steps: 

         1. Dividing the solution into grids of nodes. 

         2. Approximating the given differential equation by finite difference equivalence that   

              relates the solutions to grid points. 

         3. Solving the difference equations subject to the prescribed boundary and/or initial   

              conditions.  

When approximating the given PDE by its finite difference approximation, we have to consider 

some factors, for instance, the order of accuracy of an approximation, stability, consistency and 

convergence of the difference scheme having a potential impact on the approximate solution. 

Many works have been done in this regard (see [9],[16],[30], [40], [67],[68],[69],[75],[87],[97]). 

The search for approximate solution of PDEs like Poisson’s equation, researchers were forced to 

study and develop different approximation schemes to reduce the error with the exact solution. 

The most popular approximation in finite difference method is the polynomial approximation by 

using Taylor’s series method (higher accuracy can be derived by keeping more terms in the 

Taylor series). Based on the geometry of the problem, particular numerical method and the 

nature of the accuracy of the solution, different approximation schemes have been introduced 
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and developed using Taylor’s method. (For two dimensional Poisson/biharmonic equation  

[1],[2],[6],[11],[12],[19],[24],[25],[26],[28],[35],[36],[45],[48],[55],[57],[58],[61],[62],[63],[65],

[73],[76],[78],[85],[86],[89],[90],[96],[102],[108] ). 

Consider the three dimensional Poisson’s equation in Cartesian coordinate system 

                        
2 2 2

2

2 2 2
( , , )

U U U
U f x y z

x y z

  
    

  
                                           (1.3)                                         

Applying the Taylor series expansion of ( , , )U x h y z and ( , , )U x h y z , where   is the mesh 

size in the   direction, we get  

2 2 3 3

2 3

( , , ) ( , , ) ( , , )
( , , ) ( , , ) ...

2! 3!

U x y z h U x y z h U x y z
U x h y z U x y z h

x x x

  
     

  
                     (1.4) 

2 2 3 3

2 3

( , , ) ( , , ) ( , , )
( , , ) ( , , ) ...

2! 3!

U x y z h U x y z h U x y z
U x h y z U x y z h

x x x

  
     

  
                     (1.5) 

Adding (1.4) and (1.5), gives us 

2 2 4 4

2 4

( , , ) ( , , )
( , , ) 2 ( , , ) ( , , ) 2 ...

2! 4!

h U x y z h U x y z
U x h y z U x y z U x h y z

x x

  
       

  
            (1.6)    

Dividing (1.6) by   , we get 

2

2 2 4 4 6

2 4 6

( , , ) 2 ( , , ) ( , , )

( , , ) ( , , ) ( , , )
...

12 360

U x h y z U x y z U x h y z

h

U x y z h U x y z h U x y z

x x x

   

  
   

  

                              (1.7)                  

Using (1.7),  
2

2

( , , )U x y z

x




  can be written as  

                
2

2

2 2

( , , ) ( , , ) 2 ( , , ) ( , , )U x y z U x h y z U x y z U x h y z
O h

x h

    
 


                           (1.8)               
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                  Figure 1.1                                                                                                            Figure 1.2                          

      Three dimensional Cartesian grid                                                   seven-point stencil                       

           

Assume that there are ,M N and P mesh points along the ,X Y and Z directions respectively, and 

let ( , , )U x y z be discretized at the mesh point ( , , )i j k and we adopt writing 
, ,i j kU

 
for ( , , )U x y z , 

where 1(1) , 1(1)  and 1(1)i M j N k P     and  

 let x i x    ( 1)x x i x x i x          and 

                           ( 1)x x i x x i x         

  Similarly we have for ( 1) , ( 1)y y j y y y j y         

                                    ( 1) , ( 1)z z k z z z k z         

Thus we write 
1, ,i j kU 

 for ( , , )U x x y z ,  
, 1,i j kU 

 for  ( , , )U x y y z  and 
, , 1i j kU 

 for  

( , , )U x y z z , and thus  

1, , , , 1, ,

2 2

2( , , ) 2 ( , , ) ( , , )

( ) ( )

i j k i j k i j kU U UU x x y z U x y z U x x y z

x x

     


 
                                (1.9a)      

, 1, , , , 1,

2 2

2( , , ) 2 ( , , ) ( , , )

( ) ( )

i j k i j k i j kU U UU x y y z U x y z U x y y z

y y

     


 
                                (1.9b)            

, , 1 , , , , 1

2 2

2( , , ) 2 ( , , ) ( , , )

( ) ( )

i j k i j k i j kU U UU x y z z U x y z U x y z z

z z

     


 
                                (1.9c)           

Thus we can write 
2

2

( , , )U x y z

x




 by its equivalent central difference approximation as         
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2

1, , , , 1, ,

2 2

2( , , )

( )

i j k i j k i j kU U UU x y z

x x

  


 
                                                           (1.10a) 

   Similarly,  
2

, 1, , , , 1,

2 2

2( , , )

( )

i j k i j k i j kU U UU x y z

y y

  


 
                                                            (1.10b)                                                                      

            and  
2

, , 1 , , , , 1

2 2

2( , , )

( )

i j k i j k i j kU U UU x y z

z z

  


 
                                                              (1.10c) 

Now substituting (1.10a), (1.10b) and (1.10c) in (1.3), we get 

 
1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1

, ,2 2 2

2 2 2

( ) ( ) ( )

i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k

U U U U U U U U U
f

x y z

          
  

  
            (1.11) 

This approximation scheme is a second order approximation one, and gives a seven point stencil 

form. This means that the Poisson’s equation is transformed in to a large system of linear 

equations in terms of the functional values of U  at the grid points. 

We can consider the fourth order approximation of 
2

2

U

x




 by 

                        

 
22

2 4

2
21

1
12

x

x

U
h U O h

x





 
 

  
  

                                                                     (1.12)           

Similarly, we write for the operators 
2

2

U

y




and 

2

2

U

z




using (1.12) and substitute these in to (1.3), 

we get another higher order approximation scheme 

     
22 2

4 4 4

1 2 3 , , , ,
2 2 2 2 2 2

1 2 3

1 1 1
1 1 1

12 12 12

yx z
i j k i j k

x y z

O h O h O h U f

h h h

 

  

 
 
      

              
          (1.13)               

 

On further simplification of (1.13), depending on the accuracy of the approximation, we can get 

different systems of a large number of linear equations such as 19-point stencil scheme or 27-

point scheme and other schemes. 

Similarly we can establish the equivalent finite difference approximation of the three 

dimensional Poisson’s equation in Cylindrical/Spherical coordinates system. 
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For biharmonic equation (1.2) we have also different approximation schemes, based on the 

coordinates system of the problem and its boundary kind (first or second). Efficient numerical 

methods for the solution of the discrete biharmonic equation on simple regions have recently 

received a great deal of attention.  

There are essentially two approaches to solve the biharmonic problem numerically:  

The first approach consists of the direct discretization of the biharmonic equation, which results 

either 9-points, 13-points or 25-points formula (See the derivation of the 13 or 25-points 

approximation schemes in [35]). The 13-points and 25-points approximation schemes lead to a 

system of algebraic equations with a 13-diagonal or 25-diagonal coefficient matrix which is, in 

general, very ill-conditioned. Some progress has been made in recent years for the direct solution 

of these matrix equations, (see [11], [53], [57]) because most of the iterative methods require a 

large number of iterations in order to obtain some satisfactory solutions (see [11],[53],[56], 

[57],[58] and other references therein). 

For the first kind problem Gupta and Manohar [78] have considered several such schemes and 

have shown that the accuracy of its numerical solution depends upon the boundary 

approximation used.   

The second approach is the splitting method where the biharmonic equation (1.2) is replaced by 

introducing an auxiliary variable 2( , ) ( , )v x y U x y  and splitting the biharmonic equation into a 

coupled system of Poisson equations as 

                      

                 

2

2

U v

v f

 

 
   

That is, the biharmonic equation with the given boundary conditions is equivalent to the 

Dirichlet problems for two Poisson equations.  

Thus (1.2) can be written using the splitting method for the first kind boundary problem as  

                 

2

1

2

               on 

                on 

=                on 

U v D

U f D

U
f D

n

 

 






           and          2v f   

And one can easily see that under this formulation for the first kind boundary problem, one of 

these Poisson equations has no boundary conditions and we consider two classes of boundary 

approximations for this undefined boundary condition. The functions U and v  are coupled 
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through the boundary conditions implicitly which turns out to be the main difficulty of solving 

such problem.  

The second kind boundary problem (1.2) can be written using the splitting method as  

             
2

1

               on 

                on 

U v D

U f D

 


 
         and         

2

2

               on 

                on 

v f D

v f D

 


 
 

Observe that the biharmonic equation is converted in to two Poisson’s equation with sufficient 

boundary conditions for both Poisson’s equations. These two second order boundary value 

problems can be discretized and solved using one of the fast Poisson solvers that are available, 

(see [25],[35],[41],[42], [44],[73]); we first solve for v  from the second Poisson’s equation and 

use this value to solve U in the first. One of the important reasons for using the splitting method, 

in general, is that the accumulation of rounding errors is substantially reduced; and it is shown 

that the splitting of the biharmonic equation produces a numerically efficient procedure and is 

very successful for the second kind problem since the boundary conditions (the second 

derivative) do not have to be discretized at all in this case (see [18],[58],[77]).  

Still now there are tremendous progresses in developing higher order approximation schemes of 

the finite difference method to address the accuracy of the numerical solutions of Poisson’s 

equation. For different applications in engineering and sciences such as the computation of 

incompressible viscous flows, the higher-order compact (HOC) finite difference schemes have 

been developed ([37],[38],[39],[79],[82]). Most of these schemes were developed for equations 

of the convection–diffusion type and were well equipped to simulate incompressible viscous 

flows governed by the N–S equations as well. A compact finite difference scheme is one that 

utilizes grid points located only directly adjacent to the node about which the differences are 

taken. In addition, if the scheme has an order of accuracy greater than two, it is termed as HOC 

method. The higher-order accuracy of the HOC methods combined with the compactness of the 

difference stencils yields highly accurate numerical solutions on relatively coarser grids with 

greater computational efficiency. 

Since the 1950s considerable contributions in developing high-order-accurate finite-difference 

discretization schemes for elliptic partial differential equations have been made by, for instance, 

O. Buneman [43], R.W Hockney [96], and others[22],[29],[35],[46],[74],[76],[90],[92]. 
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1.5 Systems of Linear Equations 

One of the most important phases in the analysis of many engineering systems is the solution of 

a set of linear equations. For the case of a linear boundary value problem, only one solution of 

equations is required. However, for initial value problems and for nonlinear systems several 

solutions of sets of equations may be necessary for a complete analysis. There are a number of 

different techniques to solve a system of linear equations. Solution methods for linear systems 

fall into two categories: direct methods, which provide the answer with finitely many operations; 

and iterative methods, construct a sequence of approximations to the exact solution of a linear 

system.  

Many direct methods are developed for the Poisson’s equation and they fall into the following 

categories: 

-methods based on Gaussian-Elimination and reordering; such as LU factorization, Cholesky    

     factorization, QR factorization and others. 

-marching techniques  [49],[50],[51]  

-methods based on fast Fourier transform (FFT); 

-methods based on block cyclic reduction; 

-methods based on both FFT and cyclic reduction (FACR) [96]. 

The most well-known iterative methods are of course the Jacobi method and the Gauss-Seidel 

method. These methods are easy to implement but usually not efficient. More recent iterative 

methods, like the Conjugate Gradient (CG) method and the Generalized Minimal Residual 

(GMRes) method are much more efficient. Furthermore, the performance of iterative methods 

depends on the spectrum of the coefficient matrix. For systems with low or moderate dimensions 

and for large systems with a band structure, the most efficient algorithms for solving linear 

systems are direct [23],[43],[60]. 

Theoretically many of the methods are similar; however, the computer program implementation 

of these methods may differ significantly. During recent years it has been recognized that in most 

cases a direct solution of linear equations is preferable to using an iterative technique; and as a 

consequence of this considerable research has been devoted toward finding very efficient 

equation solvers by direct method.  
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Thus to find a numerical solution of PDEs, like Poisson’s/biharmonic, first we transform the 

PDE using finite difference method in to a system of linear equations and we solve the resulting 

equations by one of the technique developed so far. Once we obtain these systems of linear 

equations, applying some points from the theory of matrix we can fully discuss about the nature 

of the solution. [8],[9],[10],[16],[17],[27],[30],[31],[43],[52],[54],[59],[71],[75],[84],[87],[94], 

[97], [99],[105],[106][109]). 

A key strategy in matrix computations is to transform the matrix in question to a form that makes 

the problem at hand easy to solve. Major important contributions have been made to solve a 

large number of systems of linear equations using eigenvalues and eigenvectors. Historically, 

Euler first solved the eigenvalue problem when he developed a simple mathematical model for 

describing the ‘buckling’ modes of a vertical elastic beam. The general theory of eigenvalue 

problems for second-order differential equations, now known as the Sturm–Liouville Theory, 

originated from the study of a class of boundary-value problems due to Charles Sturm (1803–

1855) and Joseph Liouville (1809–1882).  

Major results of eigenvalues and eigenvectors have made the community of computations for the 

solution of PDE somewhat smooth and helped a lot to develop solvers. Here we present some 

points that are relevant for our discussion in the coming chapters. 

Definition: Let A be a matrix of order n  and let U be nonsingular. Then the matrices A and   

                 1B U AU  are said to be similar. We also say that B is obtained from A by a  

                 similarity transformation.  

The following is an important result of a similarity transformation.  

Let the matrix A  have a complete system of eigenpairs  , 1,2,...,i ix i n    where i  is the 

eigenvalue and ix is the eigenvector of A and  1 2, , , nX x x x  and  1 2, , , ndiag     .  

Then, the individual relations i i iAx x  can be combined in the matrix equation as AX X  . 

Because the eigenvectors ix  are linearly independent, and the matrix X is nonsingular.  

Hence we may write
1X AX   . 

Thus we have shown that a matrix with a complete system of eigenpairs can be reduced to 

diagonal form by a similarity transformation, whose columns are eigenvectors of A. Conversely, 

by reversing the above argument, we see that if A  can be diagonalized by a similarity 

transformation
1X AX

, then the columns of X  are eigenvectors of A , which form a complete 
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system. The matrix X formed by the linearly independent eigenvectors of a matrix A is called a 

modal matrix for A and the diagonal matrix   having the eigenvalues of A as the diagonal 

elements is called a spectral matrix for A . 

A nice feature of similarity transformations is that they affect the eigensystem of a matrix in a 

systematic way, as the following theorem shows.  

Theorem: Let A  be a matrix of order n and let 1B U AU  be similar to A . Then the  

                eigenvalues of A and B are the same and have the same multiplicities.  

                If  , x  is an eigenpairs of A , then  1,U x   is an eigenpairs of B .  

Proof  

Since        1 1det det det det 1U U U U I    ,  

                      1 1det det det det det detI A U I A U I U AU I B             

Thus A and B  have the same characteristic polynomial and hence the same eigenvalues with the 

same multiplicities.  

If  , x  is an eigenpairs of A , then  

              
1 1 1 1 1( ) ( ) ( )B U x U AU U x U Ax U x        

so that  1,U x 
 is an eigenpairs of B .  

In addition to preserving the eigenvalues of a matrix (and transforming eigenvectors in a 

predictable manner), similarity transformations preserve functions of the eigenvalues. The 

determinant of a matrix, which is the product of its eigenvalues, is clearly unchanged by 

similarity transformations.  

Corollary:  Let the matrix A  of order n have distinct eigenvalues 1 2, , , k   with multiplicities         

                  1 2, , , km m m . Then there is a nonsingular matrix X such that  

                    1

1 2, , , kX AX diag L L L   where iL  is of order im  and has only the eigenvalue i .  

o If all the eigenvalues of A are distinct, then the blocks iL  are scalars. 

o Hence, if A  has distinct eigenvalues, A is diagonalizable and has a complete system of 

eigenvectors.  
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o Let n nA   and suppose it has a real eigenvalue  . Then in the homogeneous equation

  0XI A v  , the coefficient matrix  XI A  is real. The fact that  XI A is singular 

implies that the equation   0XI A v   has nontrivial real solutions. We conclude that 

every real eigenvalue of a real matrix has a real eigenvector associated with it. 

Corollary: The eigenvectors associated with distinct eigenvalues of a real symmetric matrix  

                  constitute an orthogonal set. 

Corollary: An n n real symmetric matrix A possesses an orthogonal (as well as orthonormal)  

                  set of n eigenvectors. 

Theorem: The eigenvalues of a real symmetric matrix are all real.  

Theorem: All the eigenvalues of a symmetric positive-definite matrix are positive. 

                  For, suppose ( 0)AX X X   

                  Then 
2

2
0 T TX AX X X X     

                   0   

To find the numerical solution of PDE, a great number of computer soft ware have been 

introduced and developed; in particular to find the numerical solution of Poisson’s equation such 

as  Fortran module Poisson solvers.f95, POSSOL (a two-dimensional Poisson equation solver for 

problems with arbitrary non-uniform gridding in Cartesian coordinates developed by 

Schwarztrauber and Sweet ), POISSON, SUPERFISH (used to compute field quality for both 

magnets and fixed electric potentials and  RF cavity codes that calculate resonant frequencies 

and field distributions of the fundamental and higher modes), Scilab, Matlab, and others have 

been developed in the last 60 years. This era is one of the best periods in history in developing 

numerical algorithms and their computer codes.  
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1.6 Organization of the Thesis 

In this thesis an attempt has been made to solve the three dimensional Poisson’s equation in 

Cartesian and Cylindrical coordinates system and the two and three dimensional biharmonic 

equation with the Dirichlet boundary problem of the second kind. Here is the chapter wise 

summary of the thesis.  

Chapter II deals with the second order numerical solution of the three dimensional Poisson’s 

equation in Cartesian coordinates system   

 
1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1

, ,2 2 2

2 2 2

( ) ( ) ( )

i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k

U U U U U U U U U
f

x y z

          
  

  
 

in a cube with the given Dirichlet’s boundary conditions. 

When 1x y h    and  2z h    ( 1h and 2h need not be equal), this Poisson’s equation reduces to  
           

    
  2

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,(4 2 )i j k i j k i j k i j k i j k i j k i j k i j kU U U U r U U r U h f                        

where  
2

1

2

2

h
r

h
   

A large number of linear equations are obtained and systematically arranged in order to get a 

block tri diagonal matrix structure. The obtained systems of linear equations are solved by 

extending the method of Hockney in three dimensional Cartesian coordinates system. Six 

examples have been considered in both cases and it is found that the method produce accurate 

results considering double precision.     

Chapter III deals with the fourth order numerical solution of the three dimensional Poisson’s 

equation in Cartesian coordinates system, i.e.  

2 2 2 2 2 2 2 2 2

, ,

1 1 1 1 1 1
1 1 1 1 1 1

12 12 12 12 12 12
x y z y x z z x y i j kr U        

         
                

         

2 2 2 2

1 , ,

1 1 1
1 1 1

12 12 12
x y z i j kh f  

   
      

                                                                    

 

in a cube with the Dirichlet’s boundary conditions. Based on the approximation we have 

considered two cases. 
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Case I   19 points stencil scheme 

Case II   27 points stencil scheme 

 Both schemes results in a large algebraic system of linear equations and are treated 

systematically in order to get a block tri-diagonal system, and these systems of linear equations 

are solved by the use of Thomas algorithm. Six examples are taken to show the accuracy of the 

method and it is shown that the method produces accurate results.  

Part of this chapter has been published in the American Journal of Computational 

Mathematics, 2011,vol 1, No. 4  pp 285-293. 

Chapter IV   deals with the second order numerical solution of the three dimensional Poisson’s 

equation in cylindrical coordinates system given by 

                                           2

1 1
, ,rr r zzu u u u f r z

r r
        

with the Dirichlet’s boundary conditions for 0r   

The Poisson equation for 0r   is approximated by second order finite difference approximation 

        

1, , , , 1, , 1, , 1, , , 1, , , , 1,

, , 2 2 2

2 2 2, , 1 , , , , 1

2

2 21

( ) (2 ) ( )

2

( )

i j k i j k i j k i j k i j k i j k i j k i j k

i j k

i i

i j k i j k i j k

U U U U U U U U
f

r r r r

U U U
O r O O z

z





     

 

     
    

   

 
      



                   

 

and truncating higher order differences and simplifying, we have 

2

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,(1 ) (1 ) ( ) ( ) ( )i i j k i i j k i i j k i j k i j k i j k i i j k i j kU U U U U U yU r f                 
           

 where
2

i

i

r

r



 ,  

2

2 2

( )

( )
i

i

r

r








,  

2

2

( )

( )

r

z






 and                 

the resulting large algebraic system of linear equations obtained is treated systematically in order 

to get a block tri-diagonal system, and these systems of linear equations are solved by the use of 

Thomas algorithm. Seven examples have been tested to verify the efficiency of the method and it 

is shown that this method produces good result.  
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Part of this chapter has been published in the American Journal of Computational 

Mathematics,  2013,vol. 3, pp 356-361. 

Chapter V deals with the fourth order numerical solution of the three dimensional Poisson’s 

equation in cylindrical coordinates system given by 

                                           2

1 1
, ,rr r zzu u u u f r z

r r
         

with the Dirichlet’s boundary conditions for 0r  . 

The Poisson equation for 0r  is approximated by fourth order finite difference approximation 

scheme 

2 2 2 2

2 , , 0 , , 1 1, , 2 1, ,

3 , 1, , 1, 4 , , 1 , 1, 5 1, 1, 1, 1,

6 1, 1, 1, 1, 7 1

3
( ) 24 ( ) ( ) ( )

2

( )( ) ( )( ) ( )( )

( )( ) ( )(

r z r i j k i j k i j k i j k

i

i j k i j k i j k i j k i j k i j k

i j k i j k i

r
r f a i U a i U a i U

r

a i U U a i U U a i U U

a i U U a i U

     

       

    

 
        

 

     

   , , 1 1, , 1 8 1, , 1 1, , 1

9 , 1, 1 , 1, 1 , 1, 1 , 1, 1

) ( )( )

( )( )

j k i j k i j k i j k

i j k i j k i j k i j k

U a i U U

a i U U U U

      

       

  

   
     

 

and the resulting large algebraic system of linear equations is treated systematically in order to 

get a block tri-diagonal system, and these systems of linear equations are solved by the use of 

Thomas algorithm. Seven examples for both cases have been considered and it is shown that this 

method produces good result.  

Part of this chapter is to appear in the American Journal of Computational Mathematics 

 

Chapter VI deals with the second and fourth-order approximation scheme for the numerical 

solution of the three dimensional Poisson’s equation in cylindrical coordinates system when 

0r  is an interior or a boundary point where the system becomes singular. By taking an 

appropriate approximation scheme together with the method developed in chapters IV and V we 

solve the system for the given Dirichlet’s boundary conditions.  

 

Chapter VII deals with the numerical solution of the two and three dimensional biharmonic 

equation of the second type in a rectangular region and a cube respectively, in Cartesian 

coordinate systems 
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                             4U f       on  D                           

                                 1U g       on D  

                              2

2U g       on D . 

The two or three dimensional biharmonic equation can be decoupled as two Poisson’s equations 

with a Dirichlet boundary condition on the same domain as 

                               
2

1

    on 

     on    

U v D

U g D

 


 
 

                               
2        on 

       on 

v f D

v U D

 


  
 

These coupled Poisson’s equations are solved directly by using the fourth order finite difference 

approximation schemes which we have developed so far in Chapter III adapted to two or three 

dimensional Cartesian coordinates system. Seven examples have been taken to test the efficiency 

of the method, and results have shown that the method produced comparable results as shown in 

literatures.  

 

Chapter VIII is about the conclusion part and the future work plan.  
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CHAPTER II 

Second Order Numerical Solution of the Three Dimensional 
Poisson’s Equation in Cartesian Coordinates System  

 

2.1   Introduction 

        The three-dimensional Poisson’s equation is often encountered in heat and mass 

transfer theory, fluid mechanics, elasticity, electrostatics, and other areas of mechanics 

and physics. In particular, the Poisson’s equation describes stationary temperature 

distribution in the presence of thermal sources or sinks in the domain under 

consideration. A variety of problems in computational physics require the second order 

numerical solution of the three dimensional Poisson’s equation in Cartesian coordinates 

system. To solve the two or three dimensional Poisson’s equation in Cartesian 

coordinates system, different attempts have been made with respect to developing new 

methods and accuracy of the solution. 

For two dimensional Poisson’s equation in Cartesian coordinates system, for instance, 

Averbuch et al [1] developed a direct method in rectangular regions based on a 

pseudospectral Fourier approximation and a polynomial subtraction technique; 

McKenney and Greengard [4] developed a fast Poisson Solver based on potential theory 

by combining fast algorithms for computing volume integrals and evaluating layer 

potentials on a grid with a fast multipole accelerated integral equation solver; Banegas 

[6] developed a Fast Poisson Solvers for Problems with Sparsity; Buzbee et al developed 

[12] the direct solution of the discrete Poisson equation on irregular regions, [13] a 

unified mathematical development and generalization of the method of matrix 

decomposition or discrete separation of variables and the block-cyclic reduction process 

and techniques for solving the reduced system; Braverman et al [19] developed a fast 

spectral Subtractional solver for elliptic equations based on the eigenfunction expansion 

of the right hand side with integration and the successive solution of the corresponding 

homogeneous equation using Modified Fourier Method; Ethridge and Greengard [24] 
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developed an integral equation method for solving the Poisson equation in two 

dimensions in which they claim that their method is direct, high order accurate, 

insensitive to the degree of adaptive mesh refinement, and accelerated by the fast 

multipole method; Skolermo [28] developed a method in a rectangle, based on the relation 

between the Fourier coefficients for the solution and those for the right-hand side, and the 

Fast Fourier Transform is used for the computation; Greengard [55] developed a direct, 

adaptive solver for the Poisson equation based on a domain decomposition approach 

using local spectral approximation, as well as potential theory and the fast multipole 

method; Kadalbajoo and Bharadwaj  [70] presented a survey of fast direct methods for 

solving elliptic boundary-value problems and the methods reviewed are based on Fourier 

analysis, block reduction techniques, and marching algorithms; Swarztrauber [84] 

developed approximate cycle reduction for solving Poisson’s equation; Hockney [96] 

developed a technique using Fourier series for numerically approximating the solution of 

the Poisson equation in a rectangle. 

For the three dimensional Poisson’s equation, Braverman et al [20] have developed a fast 

3D Poisson solver of arbitrary order accuracy based on the application of the discrete 

Fourier transform accompanied by a subtraction technique which allows reducing the 

errors associated with the Gibbs phenomenon; Israeli et al [66] a domain decomposition 

non-iterative solver in a 3D rectangular box based on the application of the discrete 

Fourier transform accompanied by a subtraction technique.  

The aim of this Chapter is to derive a second order finite difference approximation 

scheme to solve the three dimensional Poisson’s equation on Cartesian coordinates 

system. The resulting large algebraic system of linear equations is treated systematically 

in order to get a block tri-diagonal system [60] and extend the Hockney’s method [30].  
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2.2     Finite Difference Approximation 

Consider the three dimensional Poisson equation in Cartesian coordinate system 

                        
2 2 2

2

2 2 2
( , , )

U U U
U f x y z

x y z

  
    

  
       on D               (2.1) 

                                                 ( , , ) ( , , )U x y z g x y z         on D                            (2.2)     

where {( , , ) : 0 , 0 , 0 }D x y z x a y b z c        and D  is the boundary of D .   

Assume that there are ,M N and P mesh points along the ,X Y and Z directions        

respectively, and let ( , , )U x y z be discretized at the mesh point ( , , )i j k and we adopt 

writing , ,i j kU
 
for ( , , )i j kU x y z , where 1(1) , 1(1)  and 1(1)i M j N k P      

Let x , y and z be the step sizes in the ,X Y and Z directions respectively, and 

suppose ix i x    ( 1)x x i x x i x          and 

                           ( 1)ix x i x x i x         

  Similarly we have for ( 1) , ( 1)j jy y j y y y j y         

                                    ( 1) , ( 1)k kz z k z z z k z         

Thus we write 1, ,i j kU   for ( , , )i j kU x x y z ,  , 1,i j kU   for  ( , , )i j kU x y y z  and , , 1i j kU   

for  ( , , )i j kU x y z z   

We transform (2.1) in to its equivalent finite difference approximation by 

1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1

, ,2 2 2

2 2 2

( ) ( ) ( )

i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k

U U U U U U U U U
f

x y z

          
  

      (2.3)        

 

Assume that 1x y h    and  2z h    ( 1h
 
and 2h need not be equal)  

Let 
2

1

2

2

h
r

h
 , we can write the above equation as  

  2

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,(4 2 )i j k i j k i j k i j k i j k i j k i j k i j kU U U U r U U r U h f                        (2.4) 

                  1 1 ,        1 1 ,         1 1i M j N k P         
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In (2.3) we put      and    ,  by taking   from 1 to   we get    set of equations 

along the   direction. Again putting        still we get another    set of equations, and 

so on until        getting a total of     set of equations on the plane parallel to the XY

plane. Again for    ( )  we follow the same pattern as       and finally we have P

block of equations and each block has a set of    equations. Thus, in general, (2.1) can 

be written in matrix form as  

                                                AU                      (2.5)                                                                 

where  

              

R S

S R S

S R S
A

S R S

S R

 
 
 
 

  
 
 
  
   

          (2.6) 

Matrix A has P blocks and each block is of order      , 

M

M M

M M

M M

M

T I

I T I

I T I
R

I T I

I T

 
 
 
 

  
 
 
  
 

,          

M

M

M

M

r I

r I

S r I

r I

 
 
 
 
 
 
 
 

 

    R and S have N blocks and each block is of order M M . 

           

4 2 1

1 4 2 1

1 4 2 1

1 4 2 1

1 4 2

r

r

r
T

r

r

  
 

 
 
  

  
 
  
    

                      (2.7) 

where T is a square matrix of order M , and MI is an identity matrix of order  M , 
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 1 2 3 1

T

P PU  U U U U U ,  and 

  1 2 3 1

T

P P B B B B B   

where  

           
1 2    [      ]T

k k k Nk U u u u    and 1 2        [  ]jk jk jk Mjk

TU U Uu  

and      
1 2    [        ]T

k k k Nk B d d d    and  
1 2  [       ] jk jk jk Mj

T

kd d d d 1,2,3,  , k P   

is the known column vector such that each 
ijkd  represents known boundary values of U

and values of f . 

Thus, (2.5) can be written as   

          

1 1

2 2

3 3

1 1P P

P P

R S

S R S

S R S

S R S

S R

 

    
    
    
    

    
    
    
        

    

U B

U B

U B

U B

U B

                                             (2.8) 

Equation (2.8) once again can be written as 

                                    1 2 1    R S U U B  

                             1 2 3 2S R S  U U U B  

                             2 3 4 3S R S  U U U B                                                                    (2.9)                                                     

              

                                      1P P PS R  U U B  

We obtain the solution of the system of linear equations (2.9) by applying extended 

Hockney’s method to three dimensions.  
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2.3   Extended Hockney’s Method 

As we can see the matrix T is a real tridiagonal symmetric matrix and hence its 

eigenvalues and eigenvectors can easily be obtained (See G.D Smith [30]). 

Note that the eigenvalues i  of T  are given by  

          4 2 2cos       1,2, ,
1

i

i
r i M

M




 
     

 
 

Let iq  be an eigenvector of T corresponding to the eigenvalue i  and Q  be the modal 

matrix 1 2 3[           ]Mq q q q  of the matrix T of order  M such that  

                      
TQ Q I , and  

                      
1 2 3( , , , , )T

MQ TQ diag       (say)                                               (2.10)                                         

The M M  modal matrix Q is defined by 

    
2

sin , 1,2, ,
1 1

i j

ij
q i j M

M M

 
  

  
   

Let  , , , ,diag Q Q Q Q  be a matrix of order MN MN .  

Thus   satisfy
T I , and 

        

M

M M

M MT

M M

M

I

I I

I I
R R

I I

I



 
 

 
 

  
 
 
   

  

and  T S S  (say)   

         Let      T

k k k k  U V U V     

                  T

k k k kB B  B B                                                                               (2.11)                              

where [ ]T

k 1k 2k  Nk    … V v v v and  [ ]jk 1j

T

k 2jk Mjk v  v … vv    
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1 2    [      ]T

k k k NkB  b b b and  1 2      ] [  jk jk jk Mjk

Tb b bb  

Pre multiplying (2.9) by T and using (2.11), we get 

                           
*

1 2 1           R S B V V  

                           
*

1 2 3 2S R SV B  V V  

                            
*

2 3 4 3S R S B  V V V                                                                     (2.12)         

                                              

                                  
*

1P P PS R B  V V  

 

Consider the first equation of (2.12) i.e. 
*

1 2 1 R S B V V
 
which we can write it as  

M

M M

M M

M M

M

I

I I

I I

I I

I

 
 

 
 
 
 
 
   

11

21

31

( 1)1

1

N

N



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+

M

M

M

M

rI

rI

rI

rI

 
 
 
 
 
 
 
 

12 11

22 21

32 31

2 1N N

   
   
   
   
   
   
   
   

v b

v b

v b

v b

 

              (2.13) 

Again we write equation (2.13) as  

            11 21 12 11         r   v v v b  

            11 21 31 22 21r   v v v v b  

            21 31 41 32 31r   v v v v b                                                                              (2.14) 

                              … 

          ( 1)1 1 2 1    N N N Nr   v v v b  

Now collect the first equations from each of (2.14) and consider as one group of 

equations
 
 

             1 111 121 112 111         v rvv b   
 

             111 1 121 131 122 121v v v rv b     

             121 1 131 141 132 131v v v rv b                                                                             (2.15a) 

                               … 

             1( 1)1 1 1 1 1 2 1 1   N N N Nv v rv b     
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Again we collect the second equations from each equation of (2.14) and consider as a 

second group of equations 

                    211 221 2122 211         v rvv b   
 

                    211 2 221 231 222 221v v v rv b     

                    221 2 231 241 232 231v v v rv b                                                                    (2.15b) 

                                         … 

                   2( 1)1 2 2 1 2 2 2 1   N N N Nv v rv b     

Lastly we collect the last equations from each equation of (2.14) and consider as a last 

group of equations    

                    11 21 12 11         M M M M Mv rv v b   
 

                   11 21 31 22 21M M M M M Mv v v rv b     

                   21 31 41 32 31M M M M M Mv v v rv b                                                             (2.15c)                

                                            … 

                      ( 1)1 1 2 1   M N M MN MN MNv v rv b     

 Equations (2.15a) to (2.15c) can be written in matrix form as 

     

11

12 11

21

22 21

31

32 31

( 1)1

2 1

1

1

1 1

1 1

1 1

1

i i

i i

i i

i i

i i

i i

i i N

iN iN

i iN

v
v br

v
v br

v
v br

v
v br

v













  
      
      
      
       
      
      

             
  

 

                        1,2,...,i M                                                                                         (2.16) 

Let 

1

1 1

1 1

1 1

1

i

i

i

i

i

i











 
 
 
 

  
 
 
  
 

 , 

1

2

3

i k

i k

ik i k

iNk

v

v

v

v

 
 
 
 
 
 
 
 

W ,

1

2

3

i k

i k

ik i k

iNk

b

b

b

b

 
 
 
 
 
 
 
 

B  and 

( , , ,..., )diag r r r rr  

 



 

29 

 

                                          NUMERICAL SOLUTION’S OF POISSON’S EQUATION 

We can write equation (2.16) as  

                                 
1 2 1=  i i i iW rW B                                                                       (2.17) 

Let           

i

i

i

i

 
 
 
 
 
 
 
 

is of order MP  

1 2 3[    ... ]T

k i i i iPw W W W W      and 
1 2[ , , , ]T

k i i iPB  B B B     

Thus the first equation of (2.12) can be written as  

                                        
1 2 1= B  Sw w   

Similarly we write the other equations in (2.12) using the matrices , kw and 
kB . 

Thus, equation (2.12) can be written, equivalently, as   

                   1 2 1          = B  Sw w  

                   1 2 3 2= B  S S w w w  

                   
2 3 4 3= B  S S w w w                                                                            (2.18) 

                                    … 

                        ( 1) = B  P P PS  w w   

Observe that  

1 2 3( , , ,..., )T

Ndiag      (say)      where 1 2 3( , , ,..., )j Mdiag       

Here 2cos
1

i i

i

M


 

 
   

 
             ( )  

Let      T

k k k k   ww     

          T

k k k kBB                                                                                            (2.19) 

where 1 2 3[    ... ]T

k k k k Nk  Ψ Ψ Ψ Ψ and  1 2 3[    ... ]T

jk jk jk jk Mjk   Ψ  

            1 2 3[ , , ,..., ]T

k k k k Nk  β β β β  and 1 2[ , ,..., ]T

jk jk jk Mjk  β  

Now pre-multiplying (2.18) by 
T

and make use of (2.19), we get  
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                                       1 2 1         = S     

                                     1 2 3 2S S      

                                     2 3 4 3S S                                                              (2.20) 

                                                     … 

                                             1P P PS     

Now we write these sets of equations (2.20) turn by turn starting from the first row               

i.e.  1 2 1S    , as 

                        

                        

                        

                        

                                                                                                       (2.21a)  

                                                                                        

                                             

                                              

                                              

                                              

…                   

                                                                                       

                                                                    

                                                               

                                                                                      

                                                                                    

For the second equation of (2.20) i.e. 1 2 3 2S S     , we get the second group of 

system of equations 

                         

                         

                         

                        

                                                                                           (2.21b)                                                                                         
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                                                                             … 

                                                                                      

                                                                                            

                                                                                      

                                                                                        

                                                                                   

For the last equation of (2.20), i.e.
 1P P PS    , we obtain 

            (   )              

            (   )                   

            (   )              

                       

          (   )                                                                                          (2.21c) 

                              (   )              

                              (   )                                                        

                              (   )              

                                            

                            (   )              

                                     …            

                                                          (   )              

                                                           (   )              

                                                           (   )              

                                                                       

                                                        (   )              
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Now from each set of equations of (2.21a) to (2.21c), we select the first equations from 

(2.21a), (2.21b), …, (2.21c) and put together as one group of equations; again we take the 

second equations from each of (2.21a), (2.21b), …, (2.21c) and put together as a second 

group of equations; consider the third equations and put together as a third group of 

equations and so on and finally we consider the last equations and put together. In doing 

these we obtain the following sets of equations, each set being of order P and has tri-

diagonal form     

                                   

                           

                            

                      

                (   )                  

                                                                          

                                                  

                                                  

                                             

                                      (   )                                                                   (2.22) 

                                                  …    …           

                                                                                                          

                                                                             

                                                                              

                                                                      

                                                                    (   )              

Observe that the above set of equations (2.22), for     , and for each    ( )   the 

coefficient matrix of the left hand side is a tridiagonal matrix of order P and has the form  
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i

i

i

i

i

i

r

r r

r r

r r

r











 
 
 
 

  
 
 
  
 

,       ( )   

Continuing for the other groups of equations as above for          we get     

                                   

                           

                            

                      

              (   )                  

                                                                          

                                                  

                                                  

                                             

                                      (   )                                                                   (2.23) 

                                                  …    …           

                                                                                                          

                                                                             

                                                                              

                                                                      

                                                                    (   )              

In this case also for each          the coefficients matrix of the left hand side of 

(2.23) is a tridiagonal matrix similar to that of (2.22) for      
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i

i

i

i

i

i

r

r r

r r

r r

r











 
 
 
 

  
 
 
  
 

,      ( )                                   (2.24) 

We can easily observe that (2.8) reduces to the matrix (2.24) which is a tridiagonal matrix 

for 1,2,3, ,j N and hence we solve these sets of equations (2.24) for 
, ,i j k by the use 

of Thomas Algorithm [30]. Once after getting each 
, ,i j k  (and hence k ) by the help of 

(2.19) we get kw and again by the help of (2.11) we obtain kU and this means that each 

, ,i j kU are obtained. Thus, this solves our problem.  

 

2.4   Numerical Results 

In order to test the efficiency and adaptability of this proposed method, a computational 

experiment is done on six examples for which the analytical solutions of U  are known to 

us. The computed solutions are displayed in terms of maximum absolute error (i.e. the 

error taken between the exact value and the computed value using this method) for some 

grid points but results are available for all grid points. The results for these test problems 

are reported in Tables 2.1 to 2.6. 

Example 2.1 Suppose 
2  0U  ,        0 1,0 1,0 1x y z       

 with the boundary conditions  

                  0, , ,0, , ,0 , ,1 1, , ,1, 1U y z U x z U x y U x y U y z U x z       

       The analytical solution is ( , , ) 1U x y z    and its results are shown in Table 2.1  

Example 2.2 Consider 
2  0U  ,               0 1,0 1,0 1x y z       

with the boundary conditions 

                 0, , ,0, , ,0 0,U y z U x z U x y    

                 1, , ,      ,1, ,        , ,1U y z yz U x z xz U x y xy   . 

The analytical solution is ( , , )U x y z xyz and its results are shown in Table 2.2  



 

35 

 

                                          NUMERICAL SOLUTION’S OF POISSON’S EQUATION 

Example 2.3 Suppose  2  6U  ,               0 1,0 1,0 1x y z       

with the boundary conditions                                            

                2 2 2 2  0, , ,     ,0, ,  U y z y z U x z x z     

                2 2 2 2, ,0 1, , 1 ,,U x y x y U y z y z            

               2 2 2 2   ,1, 1 ,   , ,1 1U x z x z U x y x y       

The analytical solution is   2 2 2, ,U x y z x y z    and its results are shown in Table 2.3  

Example 2.4 Suppose 2  2( )U xy xz yz    ,            0 1,0 1,0 1x y z       

with the boundary conditions 

                   0, , ,0, , ,0 0,U y z U x z U x y         

                 1, , 1 ,U y z yz y z            

                   ,1, 1 ,      , ,1 (1 )U x z xz x z U x y xy x y       

The analytical solution is  , , ( )U x y z xyz x y z    and its results are shown in 

Table 2.4  

Example 2.5 Suppose 
2 2  sin( )U xy z                   0 1,0 1,0 1x y z       

with the boundary conditions 

                       0, , ,0, , ,0 , ,1 0U y z U x z U x y U x y     

                   1, , sin ,   U y z y z  and  

                 ,1, sin( )U x z x z  

The analytical solution is ( )U xysin z  and its results are shown in Table 2.5  

Example 2.6 Suppose  
2 2  sin( )U z     with the boundary conditions  

                              0, , sin ,0, ,  , ,0 ( , ,1)U y z z U x z U x y xy U x y     

                            1, , sin ,    ,1, sin( )U y z y z U x z x z      

The analytical solution is  , , sin( )U x y z xy z   and its results are shown in Table 2.6  
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Table 2.1  

The maximum absolute error of example 2.1 

M P  Max. abs. error M P  Max. abs. error 

 9     9 2.22945e-015 29     9 1.69864e-014 

 9   19 1.77636e-015 29    19 1.47660e-014 

 9   29 1.33227e-015 29    29 1.50990e-014 

 9   39 2.44249e-015 29    39 1.04361e-014 

19    9 6.43929e-015 39      9 2.08722e-014 

19  19 7.10543e-015 39    19 2.10942e-014 

19  29 7.10543e-015 39    29 7.43849e-015 

19  39 4.95159e-014 39    39 4.17444e-014 

 

 

 

 

 

Table 2.2  

The maximum absolute error of example 2.2 

M P  Max. abs. error M P  Max. abs. error 

 9     9 6.66134e-016 29     9 2.52576e-015 

 9   19 7.77156e-016 29    19 2.22045e-015 

 9   29 1.11022e-015 29    29 3.71925e-015 

 9   39 7.21645e-016 29    39 2.2482e-015 

19    9 1.16573e-015 39      9 3.94129e-015 

19  19 1.27676e-015 39    19 3.9968e-015 

19  29 1.38778e-015 39    29 2.19269e-015 

19  39 7.49401e-015 39    39 6.57807e-015 
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 Table 2.3  

    The maximum absolute error of example 2.3 

M P  Max. abs. error M P  Max. abs. error 

 9     9 2.22045e-015 29     9 1.4877e-014 

 9   19 2.22045e-015 29    19 1.39888e-014 

 9   29 4.44089e-015 29    29 1.75415e-014 

 9   39 3.88578e-015 29    39 1.17684e-014 

19    9 6.66134e-015 39      9 2.15383e-014 

19  19 7.32747e-015 39    19 2.24265e-014 

19  29 7.54952e-015 39    29 9.65894e-015 

19  39 4.65183e-014 39    39 4.05231e-014 

 

 

 

 

 Table 2.4  

   The maximum absolute error of example 2.4 

M P  Max. abs. error M P  Max. abs. error 

 9     9 1.11022e-015 29     9 4.38538e-015 

 9   19 1.33227e-015 29    19 4.27436e-015 

 9   29 2.88658e-015 29    29 7.77156e-015 

 9   39 1.77636e-015 29    39 4.71845e-015 

19    9 2.44249e-015 39      9 7.77156e-015 

19  19 2.83107e-015 39    19 8.21565e-015 

19  29 3.10862e-015 39    29 5.71765e-015 

19  39 1.43219e-014 39    39 1.31006e-014 
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   Table 2.5  

The maximum absolute error of example 2.5 

M P  Max. abs. error M P  Max. abs. error 

 9     9 1.17276e-003 29     9 1.1972e-003 

 9   19 2.93418e-004 29    19 2.99503e-004 

 9   29 1.30427e-004 29    29 1.33129e-004 

 9   39 7.33687e-005 29    39 7.48883e-005 

19    9 1.19084e-003 39      9 1.19791e-003 

19  19 2.97895e-004 39    19 2.9969e-004 

19  29 1.32413e-004 39    29 1.33213e-004 

19  39 7.444852e-005 39    39 7.49356e-005 

 

  

 

  Table 2.6  

The maximum absolute error of example 2.6 

M P  Max. abs. error M P  Max. abs. error 

 9     9 3.7907e-003 29     9 3.82394e-003 

 9   19 9.4785e-004 29    19 9.56166e-004 

 9   29 4.21281e-004 29    29 4.24977e-004 

 9   39 2.36973e-004 29    39 2.39053e-004 

19    9 3.81868e-003 39      9 3.82579e-003 

19  19 9.5485e-004 39    19 9.56629e-004 

19  29 4.24392e-004 39    29 4.25183e-004 

19  39 2.38723e-004 39    39 2.39168e-004 
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2.5   Conclusion  

In this work, we have transformed the three dimensional Poisson’s equation in Cartesian 

coordinates system in to a system of algebraic linear equations using its equivalent finite 

difference approximation scheme. The resulting large number of algebraic equation is, 

then, systematically arranged in order to get a block matrix. Based on the extension of 

Hockney’s method we reduced the obtained matrix in to a block tridiagonal matrix, and 

each block is solved by the help of Thomas algorithm. We have successfully 

implemented this method to find the solution of the three dimensional Poisson’s equation 

in Cartesian coordinates system. It is found that the method can easily be applied and 

adapted to find a solution for large set of equations and produce accurate results 

considering double precision. This method is direct and allows considerable savings in 

computer storage as well as execution speed.  

Therefore, the method is suitable to apply on any three dimensional Poisson’s equations.  
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 CHAPTER III 

Fourth Order Numerical Solution of the Three Dimensional 
Poisson’s Equation in Cartesian Coordinate Systems  

 

 

  3.1.   Introduction 

                      Poisson’s equation in three dimensional Cartesian coordinates system plays 

an important role due to its wide range of application in areas like ideal fluid flow, heat 

conduction, elasticity, electrostatics, gravitation etc, in physics, engineering fields and 

other sciences. Attempts have been made to solve Poisson’s equation numerically by 

using higher order finite difference approximation.  

For two dimensional Poisson’s equation, for instance, Averbuch et al [2] developed a 

high order numerical algorithm based on the Fourier method in combination with a 

subtraction procedure; Houstis and Papatheodorou [22] developed an algorithm that uses 

high-order 9-point difference approximations to the Helmholtz-type (fourth-order) or 

Poisson (sixth-order) equations and the fast Fourier transform; Jun Zhang [48] developed 

a multigrid method and fourth order compact difference scheme;  Barad and Colella [74] 

developed a fourth order accurate local refinement method for either Dirichlet, Neumann, 

or periodic boundary conditions, and their approach uses a conservative, finite-volume, 

block-structured local refinement discretization that generalizes the classical Mehrstellen 

methods; Gupta [76] developed a fourth order Poisson solver; Gupta et al [80] developed 

second and fourth order discretization for Multigrid Poisson Solvers that combine a 

compact high-order difference approximation with multigrid V-cycle algorithm; Wang et 

al [107] have developed a high order compact difference scheme in non uniform grid 

systems. 

To solve the three dimensional Poisson’s equations in Cartesian coordinate systems 

using finite difference approximations; for instance, Braverman et al [20] have 

developed an arbitrary order accuracy fast 3D Poisson Solver on a rectangular box 
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and their method is based on the application of the discrete Fourier transform 

accompanied by a subtraction technique which allows reducing the errors associated 

with the Gibbs phenomenon; Sutmann and Steffen [29] a compact approximation 

schemes for the Laplace operator of fourth and sixth order based on Padé 

approximation of the Taylor expansion for the discretized Laplace operator; Jie Wang 

et al [46] a fourth-order compact difference scheme with unrestricted general mesh 

sizes in different coordinates direction and used a preconditioned conjugate gradient 

method to solve the sparse linear systems; Jun Zhang [47] developed a multigrid 

solution for the Poisson’s equation based on uniform mesh size finite difference 

approximation  and has solved the resulting system of linear equations by a residual 

or multigrid method; Israeli et al [66] developed a hierarchical 3D Poisson modified 

Fourier solver by domain decomposition; Spotz and Carey [104] have constructed a 

higher order compact formulation using central difference scheme to obtain a 19-

point stencil and a 27-point stencil with some modification on the right hand side 

terms; Yongbin [109] developed a multigrid and fourth-order compact difference 

discretization scheme with unequal mesh sizes, and other contributions have been made. 

Interesting developments have been observed in recent years to solve the three 

dimensional Poisson’s equation in Cartesian coordinates system using modern computers 

and different application packages. 

The aim of this chapter is to develop a fourth order finite difference approximation 

schemes and solve the resulting large algebraic system of linear equations  systematically 

using block tridiagonal system [60] and extend the Hockney’s method [96] to solve the 

three dimensional Poisson’s equation on Cartesian coordinates system.  
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3.2    Finite Difference Approximation 

Consider the three dimensional Poisson equation in Cartesian coordinate system 

                        
2 2 2

2

2 2 2
( , , )

U U U
U f x y z

x y z

  
    

  
       on D                (3.1) 

                                                 ( , , ) ( , , )U x y z g x y z         on D                              (3.2)     

where {( , , ) : 0 , 0 , 0 }D x y z x a y b z c        and D  is the boundary of D . 

Assume that there are ,M N and P mesh points along the ,X Y and Z directions        

respectively, and let ( , , )U x y z be discretized at the mesh point ( , , )i j k and we adopt 

writing 
, ,i j kU

 
for ( , , )i j kU x y z , where 1(1) , 1(1)  and 1(1)i M j N k P    .  

Let the mesh step size along the X -direction and Y -direction be 1h , and along the Z -

direction be 2h  ( 1h and 2h  need not be equal) 

We transform (3.1) in to its equivalent finite difference equation using the fourth order 

finite difference approximation (1.12) and get 

    
22 2

4 4

1 2 , , , ,
2 2 2 2 2 2

1 1 2

1 1 1
1 1 1

12 12 12

yx z
i j k i j k

x y z

O h O h U f

h h h

 

  

 
 
     

              
      

     (3.3) 

where 1,2,3, , ,    1,2,3, , , i M j N    and 1,2,3, ,k P   

Letting
2

1

2

2

h
r

h
 , neglecting the truncation error and simplifying (3.3), we get  

2 2 2 2 2 2 2 2 2

2

, , 1 , ,
2 2 2

1 1 1 1 1 1
1 1 1 1 1 1

12 12 12 12 12 12

1 1 1
1 1 1

12 12 12

x y z y x z z x y

i j k i j k

x y z

r

U h f

        

  

         
                

          
          
    

                                                                                                                                        (3.4) 
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2 2 2 2 2 2 2 2 2

, ,

1 1 1 1 1 1
1 1 1 1 1 1

12 12 12 12 12 12
x y z y x z z x y i j kr U        

         
                

         

2 2 2 2

1 , ,

1 1 1
1 1 1

12 12 12
x y z i j kh f  

   
      

   
                                                               (3.5) 

This implies 

   

   

2 2 2 2 2 2 2 2 2 2 2 2

, ,

2 2 2 2 2 2 2 2 2 2 2 2 2

1 , ,

1 1 2

6 12 144

1 1 1
1

12 144 1728

x y z x y x z y z x y z i j k

x y z x y x z y z x y z i j k

r r
r U

h f

           

           

  
      

 

 
        

 

     (3.6) 

 

Now we will consider two different schemes:   

 

I.  19 Points Stencil Scheme 

Omitting the term  2 2 2

x y z    in both sides of equation (3.6) and simplifying it further, we 

get 

   

   

2 2 2 2

1 , , , , , , 1 , , 1

1, , 1, , , 1, , 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, , 1 1, , 1 1, , 1

1
12 1 (32 16 ) (8 4)

12

(6 2 ) 2

(1 )

x y z i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k

h f r U r U U

r U U U U U U U U

r U U U U

    

           

     

 
         

 

        

     1, , 1 , 1, 1 , 1, 1 , 1, 1 , 1, 1i j k i j k i j k i j k i j kU U U U            

 

                                                                                                                                      (3.7) 

Taking first in the X -direction, next Y -direction and lastly Z -direction in (3.7) we get a 

large system of equations (the number of equations actually depends on the values of 

,M N and P ), and these systems of equations can be written in matrix form as  

                                         AU                                     (3.8)        
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where   

R S

S R S

S R S
A

S R S

S R

 
 
 
 

  
 
 
  
   

                                                            (3.9) 

it has P blocks and each block is of order MN MN , 

1 2

2 1 2

2 1 2

2 1 2

2 1

R R

R R R

R R R
R

R R R

R R

 
 
 
 

  
 
 
  
 

,     

1 2

2 1 2

2 1 2

2 1 2

2 1

S S

S S S

S S S
S

S S S

S S

 
 
 
 

  
 
 
  
 

     

    R and S have N blocks and each block is of order M M . 

1

32 16 6 2

6 2 32 16 6 2

6 2 32 16 6 2

6 2 32 16 6 2

6 2 32 16

r r

r r r

r r r
R

r r r

r r

   
 

    
    

  
 
    
     

 

2

6 2 2

2 6 2 2

2 6 2 2

2 6 2 2

2 6 2

r

r

r
R

r

r

 
 

 
 

  
 
 
   
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1

8 4 1

1 8 4 1

1 8 4 1

1 8 4 1

1 8 4

r r

r r r

r r r
S

r r r

r r

  
 

   
   

  
 
   
    

 

2

1

1

1

1

r

r

S r

r

 
 

 
  
 
 
  

 

           
 1 2 3 1

T

P PU  U U U U U ,  and 

            1 2 3 1

T

P P B B B B B                                                                (3.10)            

where  

           
1 2    [      ]T

k k k Nk U u u u    and 
1 2        [  ]jk jk jk Mjk

TU U Uu  

and      
1 2    [        ]T

k k k Nk B d d d    and  1 2  [       ] jk jk jk Mj

T

kd d d d 1,2,3,  , k P   

 is the known column vectors such that each 
ijkd  represents known boundary values of 

U and values of f    

Using (3.9) and (3.10), we write (3.8) as  

                     

1 1

2 2

3 3

1 1P P

P P

R S

S R S

S R S

S R S

S R

 

    
    
    
    

    
    
    
        

    

U B

U B

U B

U B

U B

                                 (3.11)  

                                                  

 

Equation (3.11) again can be written as  
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                                    1 2 1    R S U U B  

                             1 2 3 2S R S  U U U B  

                             2 3 4 3S R S  U U U B                                                                     (3.12)                                                     

              

                                     1P P PS R  U U B  

Now by applying extended Hockney’s method to three dimensions we obtain the 

solution of the system of linear equations (3.12)  

3.3.1   Extended Hockney’s Method for 19-Points Scheme 

As we can see all the matrices 1 2 1, , R R S  and 2S  are real tridiagonal symmetric matrices 

and hence their eigenvalues and eigenvectors can easily be obtained. [30] 

Note that the eigenvalues of         and    are given by    

             32 16 2 6 2 cos
1

i

i
r r

M




 
      

 
 

            6 2 4cos
1

i

i
r

M




 
    

 
     and     

             8 4 2 1 cos
1

i

i
r r

M




 
     

 
                  1,2, ,i M  

Let iq  be an eigenvector of  1 2 1, , R R S  and 2S  corresponding to the eigenvalues   , ,i i i   , 

and 1  r respectively, and   Q  be the modal matrix 1 2 3[           ]Mq q q q  of the matrix 

1 2 1, , R R S  and 2S   of order  M such that   TQ Q I ,  

                                          (say), 

                                          (say)  

                                          (say)   and   

                        (since    is a diagonal matrix) 
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Note that the M M  modal matrix Q is defined by 

                
2

sin , 1,2, ,
1 1

i j

ij
q i j M

M M

 
  

  
 

Let  , , , ,diag Q Q Q Q  is a matrix of order MN MN  

Thus  satisfy
T I , 

            

T R

  
 
   

   
  
 
   
    

 and  

         

2

2 2

2 2

2 2

2

  T

S

S S

S S
S

S S

S

 
 

 
 

  
 
 
   

   

   Let                 T

k k k k  U V U V      

                   T

k k k kB B  B B                                                                           (3.13)                                             

where [ ]T

k 1k 2k  Nk    … V v v v and  [ ]jk 1j

T

k 2jk Mjk v  v … vv    

          1 2    [      ]T

k k k NkB  b b b and  1 2      ] [  jk jk jk Mjk

Tb b bb  

Consider the first equation of (3.12) i.e. 1 2 1    R S U U B , and pre multiplying it by 

     and using (3.13), we get 
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  
 
   

   
 
 
   
    

11

21

31

( 1)1

1

N

N



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+ 

2

2 2

2 2

2 2

2

S

S S

S S

S S

S

 
 

 
 
 
 
 
   

12

22

32

( 1)2

2

N

N



 
 
 
 
 
 
 
  
 

v

v

v

v

v

 =  

11

21

31

( 1)1

1

N

N



 
 
 
 
 
 
 
  
 

b

b

b

b

b

                         

(3.14) 

Again we write equation (3.14) as 

11 21 12 2 22 11S    v v v v b  

11 21 31 2 12 22 2 32 21S S      v v v v v v b  

21 31 41 2 22 32 2 42 31S S      v v v v v v b                                                            (3.15) 

                               … 

( 1)1 1 2 ( 1)2 2 1N N N N NS     v v v v b  

Now collect the first equations from each of (3.15) and consider as one group of 

equations
 
 

                             1 111 1 121 1 112 122 111(1 )v v v r v b        

1 111 1 121 1 131 112 1 122 132 121(1 ) (1 )v v v r v v r v b            

1 121 1 131 1 141 122 1 132 142 131(1 ) (1 )v v v r v v r v b                                                     (3.16a) 

                                       … 

                  
1 1( 1)1 1 1 1 1( 1)12 1 1 2 1 1(1 )N N N N Nv v r v v b         

Again we collect the second equations from each equation of (3.15) and consider as a 

second group of equations  

                               2 211 2 221 1 212 222 211(1 )v v v r v b        

2 211 2 221 2 231 212 1 222 232 221(1 ) (1 )v v v r v v r v b            

2 221 2 231 2 241 222 2 232 242 231(1 ) (1 )v v v r v v r v b                                                 (3.16b) 

                                       … 

                  
2 2( 1)1 2 2 1 2( 1)12 2 1 2 2 1(1 )N N N N Nv v r v v b         



                                                                     Numerical Solutions of Poisson’s Equation 

50 

 

                   

Lastly we collect the last equations from each equation of (3.15) and consider as a last 

group of equations    

                                  11 21 12 22 11(1 )M M M M M M M Mv v v r v b        

11 21 31 12 22 32 21(1 ) (1 )M M M M M M M M M M Mv v v r v v r v b            

21 31 41 22 32 42 31(1 ) (1 )M M M M M M M M M M Mv v v r v v r v b                                    (3.16c) 

                                       … 

                       
( 1)1 1 ( 1)12 2 1(1 )M M N M MN M N M MN MNv v r v v b         

Now we write equations (3.16a) to (3.16c) in matrix form as 

11

21

31

1

i i i

i i i i

i i i i

i i iN

v

v

v

v

 

  

  

 

  
  
  
   
  
  
  
  

   

1

1 1

1 1

1

i

i

i

i

r

r r

r r

r









 
 
  

  
 
 
  

 

12

22

32

2

i

i

i

iN

v

v

v

v

 
 
 
 
 
 
 
 

 

11

21

31

1

i

i

i

iN

b

b

b

b

 
 
 
 
 
 
 
 

 
                      1,2,...,i M                                                                                            (3.17) 

Let 

i i

i i i

i i i i

i i

 

  

  

 

 
 
 
 
 
 
 
 

 , 

1

1 1

1 1

1

i

i

i i

i

r

r r

r r

r









 
 
  

   
 
 
  

 

     

1

2

3

i k

i k

ik i k

iNk

v

v

v

v

 
 
 
 
 
 
 
 

W

  

and  

1

2

3

i k

i k

ik i k

iNk

b

b

b

b

 
 
 
 
 
 
 
 

B  

Equation (3.17) which is the same as the first equation of (3.12) once again can be written 

as 
1 2 1=B  w w   
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where  

i

i

i

i

 
 
 
 
 
 
 
   

,  

i

i

i

i

 
 
 
 
 
 
 
 

 both are of order MP  

1 1 2 3[    ... ]T

i i i iPw W W W W      and 
1 2[ , , , ]T

k i i iPB  B B B  

Similarly, we can write the other equations in (3.12) using the matrices , , kW and 
kB . 

Therefore, (3.12) can, equivalently, be written as  

                                    1 2 1= B  w w
 

                          
1 2 3 2= B   w w w

 

                          
2 3 4 3= B   w w w                                                                   (3.18) 

                                            … 

                                   
1 = B  P P P w w  

Observe that 

1 2 3( , , ,..., )T

Ndiag       (say)    where 
1 2 3( , , ,..., )j Mdiag       

1 2 3( , , ,..., )T

Ndiag      (say)      where 
1 2 3( , , ,..., )j Mdiag       

Here    2 cos
1

i i i

i

M


  

 
   

 
   and  

            2 1 cos 1,2, ,
1

i i

i
r i M

M


 

 
    

 
 

Let      T

k k k k   ww     

          T

k k k kBB                                                                                            (3.19) 

where 1 2 3[    ... ]T

k k k k Nk  Ψ Ψ Ψ Ψ and  1 2 3[    ... ]T

jk jk jk jk Mjk   Ψ  

            
1 2 3[ , , ,..., ]T

k k k k Nk  β β β β  and 1 2[ , ,..., ]T

jk jk jk Mjk  β  
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Now pre-multiplying (3.18) by 
T

and make use of (3.19), we get  

                1 2 1         =      

             1 2 3 2     

             2 3 4 3                                                                                     (3.20) 

                            … 

                    1P P P    

Starting from the first row of (3.20), i.e. 
1 2 1     

 
, we write these set of 

equations turn by turn as 

                         

                         

                         

                       … 

                                                                                                      (3.21a)                                                             

                                                                               

                                               

                                               

                                           … 

                                             

                                         …                

                                                                               

                                                            

                                                        

                                                                          … 
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Again for the second equation of (3.20) 1 2 3 2     , we get 

                                

                               

                               

                           

                                                                                       (3.21b)                                               

                                                                                                            

                                                       

                                                       

                                                     … 

                                                      

                                                      …      …      …       

                                                                                           

                                                                                                 

                                                                                           

                                                                                        

                                                                                       

 And the last equation of (3.20), i.e. 1P P P    is written as 

                               

                                    

                               

                       

                                                                                                     (3.21c)                                                          

                           

                                                                                           

                                                 

                                            

                                              

                                     …         …       …             
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From each set of equations of (3.21), we select the first equations and put together as one 

group of equations; again we take the second equations and put together as a second 

group of equations and so on till we get the last set of equations from each of (3.21a), 

(3.21b), …, (3.21c). In doing these we obtain the following sets of equations    

                                       

                             

                              

                                           

                                        

                                                                                                             (3.22) 

                                                    

                                                    

                                                       

                                                           

                                                    …     …           

                                                                                                              

                                                                               

                                                                               

                                                                                 

                                                                                        

Observe that here in the above set of equations (3.22)     , and for each          the 

coefficient matrix of the left hand side is a tri-diagonal matrix of order P and has the form  
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i i

i i i

i i i

i i i

i i

 

  

  

  

 

 
 
 
 

  
 
 
  
 

,           

Continuing for the other groups of equations as above from          we get  

                                                

                                     

                                      

                                 

                                           

                                                                                                                         

                                                            

                                                            

                                                           

                                                                                                             (3.23) 

                                  …                 

                                                                                                                           

                                                                                         

                                                                                         

                                                                                

                                                                                                  

For each          the coefficients matrix of the left hand side of (3.23) is a tridiagonal 

matrix similar to that of the form for      
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i i

i i i

i i i

i i i

i i

 

  

  

  

 

 
 
 
 

  
 
 
  
 

,        ,           is of order  .    

(3.24) 

Observe that (3.12) reduces to a diagonal matrix (3.24) for          ,            

and          . Thus we solve these sets of equations (3.24) for 
, ,i j k by the use of 

Thomas Algorithm [30]. Once after getting each 
, ,i j k  (and hence k ) by the help of 

(3.19) we get kw and again by the help of (3.13) we obtain kU and this means that each 

, ,i j kU are obtained. Thus, this solves our problem.  

  

II.   27  Points Stencil Scheme 

In this scheme we consider all terms of equation (3.6) and simplifying 

  

 
, , 1, , 1, , , 1, , 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, , 1 1, , 1 1, , 1 1, , 1 , 1, 1 , 1, 1

, 1, 1

(400 200 ) (80 20 ) (20 2 )

(100 40)

i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k i j k i j k

i j k

r U r U U U U r U U

U U r U U U U U U

U U

       

               

 

         

        

   



   

, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1

1, 1, 1 1, 1, 1

2 2 2 2 2 2 2 2 2 2 2 2 2

1 , ,

(2 )

1
144 12

12

i j k i j k i j k i j k i j k i j k i j k

i j k i j k

x y z x y x z y z x y z i j k

r U U U U U U

U U

h f           

                   

     

      

 

 
        

 

                                                                                                                                      (3.25) 

Taking first in the  -direction, next  -direction and lastly  -direction in (3.25) we get a 

large system of equations (the number of equations actually depends on the values of  

    and  ); and these systems of equations can be written in matrix form as  

                                        AU                                                                                  (3.26)        

where   
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R S

S R S

S R S
A

S R S

S R

 
 
 
 

  
 
 
  
 

                                                            (3.27)  

 it has    blocks and each block is of  order      .

  

1 2

2 1 2

2 1 2

2 1 2

2 1

R R

R R R

R R R
R

R R R

R R

 
 
 
 

  
 
 
  
  ,     

1 2

2 1 2

2 1 2

2 1 2

2 1

S S

S S S

S S S
S

S S S

S S

 
 
 
 

  
 
 
  
 

 

  and   have   blocks and each block is of order    . 

1

400 200 80 20

80 20 400 200 80 20

80 20 400 200 80 20

80 20 400 200 80 20

80 20 400 200

r r

r r r

r r r
R

r r r

r r

   
 

    
    

  
 
    
     

 

2

80 20 20 2

20 2 80 20 20 2

20 2 80 20 20 2

20 2 80 20 20 2

20 2 80 20

r r

r r r

r r r
R

r r r

r r

  
 

   
   

  
 
   
    

 

1

100 40 8 10

8 10 100 40 8 10

8 10 100 40 8 10

8 10 100 40 8 10

8 10 100 40

r r

r r r

r r r
S

r r r

r r

  
 

   
   

  
 
   
    
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2

8 10 2

2 8 10 2

2 8 10 2

2 8 10 2

2 8 10

r r

r r r

r r r
S

r r r

r r

  
 

   
   

  
 
   
    

 

           
 1 2 3 1

T

P PU  U U U U U ,  and 

            1 2 3 1

T

P P B B B B B                                                                (3.28)            

where  

           
1 2    [      ]T

k k k Nk U u u u    and 
1 2        [  ]jk jk jk Mjk

TU U Uu  

and      
1 2    [        ]T

k k k Nk B d d d    and  1 2  [       ] jk jk jk Mj

T

kd d d d 1,2,3,  , k P   

 is the known column vectors such that each 
ijkd  represents known boundary values of 

U and values of f    

Using (3.27) and (3.28), we write (3.26) as  

                     

1 1

2 2

3 3

1 1P P

P P

R S

S R S

S R S

S R S

S R

 

    
    
    
    

    
    
    
        

    

U B

U B

U B

U B

U B

                                 (3.29)  

Equation (3.29) again can be written as  

                                    1 2 1    R S U U B  

                             1 2 3 2S R S  U U U B  

                             2 3 4 3S R S  U U U B                                                                     (3.30)                                                     

              

                                     1P P PS R  U U B  
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Now by applying extended Hockney’s method to three dimensions we obtain the 

solution of the system of linear equations (3.30)  

3.3.2   Extended Hockney’s Method for 27-Points Scheme 

Observe that all the matrices 1 2 1, , R R S  and 2S  are real tridiagonal symmetric matrices 

and hence their eigenvalues and eigenvectors can easily be obtained. [30] 

The eigenvalues of           and    are given by    

              ( 400 200 ) 2 80 20 cos
1

i

i
r r

M




 
      

 
    

           (80 20 ) 2(20 2 )cos
1

i

i
r r

M




 
     

 
     

            (100 40) 2 8 10 cos
1

i

i
r r

M




 
     

 
 

                8 10 2 2 cos
1

i

i
r r

M




 
     

 
                  , 1,2, ,i j M  

Let iq  be an eigenvector of  1 2 1, , R R S  and 2S corresponding to the eigenvalues   , ,i i i   , 

and  i respectively, and Q  be the modal matrix 1 2 3[ , , ,  , ]Mq q q q  of the matrix 

1 2 1, , R R S  and 2S  of order   such that 
TQ Q I ,  

             1 1 2 3(  ,  ,  , ,  )T

MQ R Q diag       (say) , 

              2 1 2 3, , , ,T

MQ R Q diag        (say), 

              1 1 2 3α ,α , , ,   T

MQ S Q diag     (say) and  

              2 1 2 3, , , ,T

MQ S Q diag        (say)  

The M M  modal matrix Q  is defined by 

            
2

sin , 1,2, ,
1 1

i j

ij
q i j M

M M

 
  

  
 

Let  , , , ,diag Q Q Q Q  is a matrix of order     . 
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Thus   satisfy 
T I ,  

        T R

  
 
   

   
  
 
   
    

 and           

          T S

  
 
   
   

  
 
   
    

   

   Let                T

k k k k  U V U V      

                   T

k k k kB B  B B                                                                             (3.31)                                             

where [ ]T

k 1k 2k  Nk    … V v v v and  [ ]jk 1j

T

k 2jk Mjk v  v … vv    

          1 2    [      ]T

k k k NkB  b b b and  1 2      ] [  jk jk jk Mjk

Tb b bb  

Consider the first equation of (3.30) i.e. 1 2 1    R S U U B , and pre multiplying it by 

     and using (3.31), we get 

  
 
   

   
 
 
   
    

11

21

31

( 1)1

1

N

N



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+ 

  
 
   
   
 
 
   
    

12

22

32

( 1)2

2

N

N



 
 
 
 
 
 
 
  
 

v

v

v

v

v

 =  

11

21

31

( 1)1

1

N

N



 
 
 
 
 
 
 
  
 

b

b

b

b

b

                         

(3.32) 

 

Again we write equation (3.32) as 
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11 21 12 22 11    v v v v b  

11 21 31 12 22 32 21      v v v v v v b  

21 31 41 22 32 42 31      v v v v v v b                                                              (3.33) 

                               … 

( 1)1 1 ( 1)2 2 1N N N N N     v v v v b  

Now collect the first equations from each of (3.33) and consider as one group of 

equations
 
 

                        1 111 1 121 1 112 1 122 111v v v v b        

1 111 1 121 1 131 1 112 1 122 1 132 121v v v v v v b            

1 121 1 131 1 141 1 122 1 132 1 142 131v v v v v v b                                                                (3.34a) 

                                       … 

             
1 1( 1)1 1 1 1 1 1( 1)12 1 1 2 1 1N N N N Nv v v v b         

Again we collect the second equations from each equation of (3.33) and consider as a 

second group of equations  

                               2 211 2 221 2 212 2 222 211v v v v b        

      2 211 2 221 2 231 2 212 2 222 2 232 221v v v v v v b            

      2 221 2 231 2 241 2 222 2 232 2 242 231v v v v v v b                                                     (3.34b) 

                                       … 

                  
2 2( 1)1 2 2 1 2 2( 1)12 2 1 2 2 1N N N N Nv v v v b         

Lastly we collect the last equations from each equation of (3.33) and consider as a last 

group of equations    

                              11 21 12 22 11M M M M M M M M Mv v v v b        

11 21 31 12 22 32 21M M M M M M M M M M M M Mv v v v v v b            

21 31 41 22 32 42 31M M M M M M M M M M M M Mv v v v v v b                                            (3.34c) 

                                       … 

                    
( 1)1 1 ( 1)12 2 1M M N M MN M M N M MN MNv v v v b         
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Now we write equations (3.34a) to (3.34c) in matrix form as 

11

21

31

1

i i i

i i i i

i i i i

i i iN

v

v

v

v

 

  

  

 

  
  
  
   
  
  
  
  

   

i i

i i i

i i i

i i

 

  

  

 

 
 
 
 
 
 
 
 

 

12

22

32

2

i

i

i

iN

v

v

v

v

 
 
 
 
 
 
 
 

 

11

21

31

1

i

i

i

iN

b

b

b

b

 
 
 
 
 
 
 
 

 
                      1,2,...,i M                                                                                            (3.35) 

Let 

i i

i i i

i i i i

i i

 

  

  

 

 
 
 
 
 
 
 
 

 , 

i i

i i i

i i i i

i i

 

  

  

 

 
 
 
 
 
 
 
 

 

     

1

2

3

i k

i k

ik i k

iNk

v

v

v

v

 
 
 
 
 
 
 
 

W

  

and  

1

2

3

i k

i k

ik i k

iNk

b

b

b

b

 
 
 
 
 
 
 
 

B  

Equation (3.35) which is the same as the first equation of (3.30) once again can be written 

as 1 2 1=B  w w   

where  

i

i

i

i

 
 
 
 
 
 
 
   

,  

i

i

i

i

 
 
 
 
 
 
 
 

 both are of order MP  

1 1 2 3[    ... ]T

i i i iPw W W W W      and 1 2[ , , , ]T

k i i iPB  B B B  

Similarly, we can write the other equations in (3.12) using the matrices , , kW and kB . 

Therefore, (3.12) can, equivalently, be written as  
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                                    1 2 1= B  w w
 

                          
1 2 3 2= B   w w w

 

                          
2 3 4 3= B   w w w                                                                   (3.36) 

                                            … 

                                   
1 = B  P P P w w  

Observe that 

1 2 3( , , ,..., )T

Ndiag       (say)    where 
1 2 3( , , ,..., )j Mdiag       

1 2 3( , , ,..., )T

Ndiag      (say)      where 
1 2 3( , , ,..., )j Mdiag       

Here 2 cos
1

i i i

i

M


  

 
   

 
  and  

        2   cos
1

i i i

i

M


  

 
   

 
                   , 1,2, ,i j M  

Let      T

k k k k   ww     

          T

k k k kBB                                                                                            (3.37) 

where 
1 2 3[    ... ]T

k k k k Nk  Ψ Ψ Ψ Ψ and  1 2 3[    ... ]T

jk jk jk jk Mjk   Ψ  

            1 2 3[ , , ,..., ]T

k k k k Nk  β β β β  and 1 2[ , ,..., ]T

jk jk jk Mjk  β  

Now pre-multiplying (3.36) by 
T

and make use of (3.37), we get  

                1 2 1         =      

             1 2 3 2     

             2 3 4 3                                                                                      (3.38) 

                            … 

                    1P P P    

Starting from the first row of (3.38), i.e. 1 2 1     
 
, we write these set of 

equations turn by turn as 
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                       … 

                                                                                                      (3.39a)                                                             

                                                                               

                                               

                                               

                                           … 

                                             

                                     …                

                                                                               

                                                            

                                                        

                                                                          … 

                                                                             

For 1 2 3 2     , we get 

                                    

                                    

                                    

                           

                                                                                             (3.39b)   

                                                                                                        

                                                       

                                                       

                                                     … 

                                                      

                                                      …      …      …       
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 And the last equation of (3.20), i.e. 1P P P    is written as 

                               

                                    

                               

                       

                                                                                                     (3.39c)                                                          

                           

                                                                                           

                                                 

                                            

                                              

                                     …         …       …             

                                                                              

                                                                              

                                                                              

                                                                       

                                                                           

From each set of equations of (3.39), we select the first equations and put together as one 

group of equations; again we take the second equations and put together as a second 

group of equations and so on till we get the last set of equations from each of (3.39a), 

(3.39b), …, (3.39c). In doing these we obtain the following sets of equations    
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                                                                                                               (3.40) 

                                                    

                                                    

                                                       

                                                           

                                                    …     …           

                                                                                                              

                                                                               

                                                                               

                                                                                 

                                                                                        

Observe that here in the above set of equations (3.40)     , and for each          the 

coefficient matrix of the left hand side is a tri-diagonal matrix of order P and has the form  

 

i i

i i i

i i i

i i i

i i

 

  

  

  

 

 
 
 
 

  
 
 
  
 

,           

 Continuing for the other groups of equations as above from          we get  
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                                                                                                             (3.41) 

                                  …                 

                                                                                                                           

                                                                                         

                                                                                         

                                                                                

                                                                                                  

For each          the coefficients matrix of the left hand side of (3.41) is a tridiagonal 

matrix similar to that of the form for      

i i

i i i

i i i

i i i

i i

 

  

  

  

 

 
 
 
 

  
 
 
  
 

,        ,           is of order  .    

(3.42) 
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Observe that (3.30) reduces to a diagonal matrix (3.42) for          ,            

and          . Thus we solve these sets of equations (3.42) for 
, ,i j k by the use of 

Thomas Algorithm [30]. Once after getting each 
, ,i j k  (and hence k ) by the help of 

(3.37) we get kw and again by the help of (3.31) we obtain kU and this means that each 

, ,i j kU are obtained. Thus, this solves our problem.  

 

3.4   Numerical Results 

For 19 and 27 points stencil schemes, computational experiment is done on six selected 

examples as a test problem in order to test the efficiency and adaptability of both 

methods. The results are reported in terms of maximum absolute error and the computed 

solution is found for the entire interior grid points but results are reported only at some 

mesh points. The results for these test problems are reported in Tables 3.1 to 3.6. 

Example 3.1 Suppose 2  0U  ,        0 1,0 1,0 1x y z       

 with the boundary conditions  

                  0, , ,0, , ,0 , ,1 1, , ,1, 1U y z U x z U x y U x y U y z U x z       

       The analytical solution is ( , , ) 1U x y z    and its results are shown in Table 3.1  

Example 3.2 Consider 
2  0U  ,               0 1,0 1,0 1x y z       

with the boundary conditions 

                 0, , ,0, , ,0 0,U y z U x z U x y    

                 1, , ,      ,1, ,        , ,1U y z yz U x z xz U x y xy   . 

The analytical solution is ( , , )U x y z xyz and its results are shown in Table 3.2  
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Example 3.3 Suppose  2  6U  ,               0 1,0 1,0 1x y z       

with the boundary conditions                                            

                2 2 2 2  0, , ,     ,0, ,  U y z y z U x z x z     

                2 2 2 2, ,0 1, , 1 ,,U x y x y U y z y z            

               2 2 2 2   ,1, 1 ,   , ,1 1U x z x z U x y x y       

The analytical solution is   2 2 2, ,U x y z x y z    and its results are shown in Table 3.3  

Example 3.4 Suppose 
2  2( )U xy xz yz    ,            0 1,0 1,0 1x y z       

with the boundary conditions 

                   0, , ,0, , ,0 0,U y z U x z U x y         

                 1, , 1 ,U y z yz y z            

                   ,1, 1 ,      , ,1 (1 )U x z xz x z U x y xy x y       

The analytical solution is  , , ( )U x y z xyz x y z    and its results are shown in     

Table 3.4.  

Example 3.5 Suppose 
2 2  sin( )U xy z                      0 1,0 1,0 1x y z         

with the boundary conditions 

                       0, , ,0, , ,0 , ,1 0U y z U x z U x y U x y     

                   1, , sin ,   U y z y z  and  

                 ,1, sin( )U x z x z  

The analytical solution is ( )U xysin z  and its results are shown in Table 3.5  

Example 3.6 Suppose 
2 2  3 sin(πx)sin(πy)sin( )U z                                               

with boundary conditions 

                          0, , 1, , ,0, ,1, , ,0 , ,1 0U y z U y z U x z U x z U x y U x y       

The analytical solution is  , , sin(πx)sin(πy)sin( )U x y z z  and its results are shown in 

Table 3.6  
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Table 3.1 

The maximum absolute error for example 3.1 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 1.99840e-015 1.55431e-015 

(9,9,19) 1.55431e-015 2.22045e-015 

(9,9,29) 1.90958e-014 7.88258e-015 

(9,9,39) 5.10703e-015 5.66214e-015 

(19,19,9) 7.54952e-015 9.54792e-015 

(19,19,19) 1.55431e-015 1.19904e-014 

(19,19,29) 6.43929e-015 2.15383e-014 

(19,19,39) 7.21645e-015 234257e-014 

(29,29,9) 1.69864e-014 1.11022e-014 

(29,29,19) 9.43690e-015 4.66294e-015 

(29,29,29) 1.63203e-014 6.66134e-015 

(29,29,39) 3.96350e-014 8.43769e-015 

(39,39,9) 6.43929e-015 5.77316e-015 

(39,39,19) 2.33147e-014 2.88658e-015 

(39,39,29) 4.46310e-014 1.62093e-014 

(39,39,39) 3.29736e-014 1.39888e-014 
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Table 3.2 

The maximum absolute error for example 3.2 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 5.55112e-016 5.55112e-016 

(9,9,19) 7.77156e-016 5.55112e-016 

(9,9,29) 2.83107e-015 1.30451e-015 

(9,9,39) 1.72085e-015 1. 16573e-015 

(19,19,9) 1.27676e-015 1.55431e-015 

(19,19,19) 2.33147e-015 1.99840e-015 

(19,19,29) 1.38778e-015 3.38618e-015 

(19,19,39) 1.33227e-015 3.99680e-015 

(29,29,9) 2.44249e-015 1.52656e-015 

(29,29,19) 1.77636e-015 2.02616e-015 

(29,29,29) 2.80331e-015 1.67921e-015 

(29,29,39) 6.16174e-015 2.08167e-015 

(39,39,9) 1.24900e-015 1.66533e-015 

(39,39,19) 3.69149e-015 1.88738e-015 

(39,39,29) 7.54952e-015 3.05311e-015 

(39,39,39) 6.59195e-015 4.49640e-015 
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Table 3.3 

The maximum absolute error for example 3.3 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 1.11022e-015 1.33227e-015 

(9,9,19) 1.55431e-015 1.11022.e-015 

(9,9,29) 5.13478e-015 2.88658e-015 

(9,9,39) 3.83027e-015 2.88658e-015 

(19,19,9) 2.77556e-015 3.05311e-015 

(19,19,19) 4.77396e-015 4.10783e-015 

(19,19,29) 3.55271e-015 6.71685e-015 

(19,19,39) 3.10862e-015 7.99361e-015 

(29,29,9) 4.71845e-015 3.10862e-015 

(29,29,19) 3.94129e-015 4.44089e-015 

(29,29,29) 5.27356e-014 4.44089e-015 

(29,29,39) 1.24623e-014 4.44089e-015 

(39,39,9) 3.10862e-015 4.44089e-015 

(39,39,19) 7.82707e-015 4.99600e-015 

(39,39,29) 1.49880e-014 6.32827e-015 

(39,39,39) 1.37113e-014 1.03251e-014 
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Table 3.4 

The maximum absolute error for example 3.4 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 2.55351e-015 1.77636e-015 

(9,9,19) 3.10862e-015 2.22045e-015 

(9,9,29) 1.74305e-014 7.43849e-015 

(9,9,39) 6.88338e-015 5.88418e-015 

(19,19,9) 7.54952e-015 9.32587e-015 

(19,19,19) 1.44329e-014 1.28786e-015 

(19,19,29) 6.99441e-015 2.14273e-014 

(19,19,39) 7.77156e-015 2.28706e-014 

(29,29,9) 1.48770e-014 9.99201e-015 

(29,29,19) 9.32587e-015 8.43769e-015 

(29,29,29) 1.58762e-014 8.88178e-015 

(29,29,39) 3.67484e-014 1.02141e-014 

(39,39,9) 7.32747e-015 7.43849e-015 

(39,39,19) 2.17604e-014 7.10543e-015 

(39,39,29) 4.39648e-014 1.78746e-014 

(39,39,39) 3.39728e-014 1.79856e-014 

 

 

 

 

 



                                                                     Numerical Solutions of Poisson’s Equation 

74 

 

                   

 

Table 3.5 

The maximum absolute error for example 3.5 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 5.89952e-006 5.90013e-006 

(9,9,19) 3.67647e-007 3.67666e-007 

(9,9,29) 7.25822e-008 7.25853e-008 

(9,9,39) 2.29611e-008 2.2962e-008 

(19,19,9) 5.92320e-006 5.9233e-006 

(19,19,19) 3.69122e-007 3.69124e-007 

(19,19,29) 7.28734e-008 7.28737e-008 

(19,19,39) 2.30532e-008 2.30533e-008 

(29,29,9) 5.94508e-006 5.94513e-006 

(29,29,19) 3.70486e-007 3.70487e-007 

(29,29,29) 7.31427e-008 7.31428e-008 

(29,29,39) 2.31384e-008 2.31384e-008 

(39,39,9) 5.94513e-006 5.94515e-006 

(39,39,19) 3.70489e-007 3.70489e-007 

(39,39,29) 7.31432e-008 7.31433e-008 

(39,39,39) 2.31386e-008 2.31386e-008 
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Table 3.6 

The maximum absolute error for example 3.6 

        19-Points Scheme   27-Points Scheme  

(9,9,9) 4.07466e-005 9.56601e-005 

(9,9,19) 2.80105e-005 3.9912e-005 

(9,9,29) 2.73312e-005 2.79092e-005 

(9,9,39) 2.72169e-005 2.35847e-005 

(19,19,9) 1.52747e-005 1.01614e-005 

(19,19,19) 2.53918e-006 5.93387e-006 

(19,19,29) 1.85988e-006 3.47172e-006 

(19,19,39) 1.74565e-006 2.48652e-006 

(29,29,9) 1.3916e-005 3.32432e-006 

(29,29,19) 1.18059e-006 1.88497e-006 

(29,29,29) 5.01294e-007 1.17049e-006 

(29,29,39) 3.87057e-007 7.96897e-007 

(39,39,9) 1.36876e-005 7.87013e-006 

(39,39,19) 9.52114e-007 6.34406e-007 

(39,39,29) 2.72819e-007 5.30167e-007 

(39,39,39) 1.58582e-007 3.70168e-007 

 

This example 3.6 was considered as a test case in [29] and [104] and we have found that 

our scheme shows better results as compared to results in [29] and [104].For instance, 

when 
1

8
h  our result is 9.96995e-005 but in [104] it is 3.84e-003 and in [29] it is  

1.015e-004. 
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3.5   Conclusion 

In this work, the three dimensional Poisson’s equation in Cartesian coordinates system is 

approximated by two different fourth order finite difference approximation schemes. 

Here we used to approximate the Poisson’s equation by 19-points and 27- points stencil 

schemes. In doing this, by the very nature of the finite difference method for elliptic 

partial differential equations, it resulted in transforming the Poisson’s equation in to a 

large number of algebraic systems of linear equations. In both schemes these systems of 

linear equations, then, arranged in order to get a block matrices; these block matrices are 

reduced to a block tridiagonal matrix by extending Hockney’s method, and by the help of 

Thomas Algorithm [30] we obtained the solution of the system.  

It is found that both fourth order approximations methods produce accurate results for the 

test problems. Actually it is shown that the discussed method, in general, for 27-points 

scheme produces better results (though the computational cost is high) than 19-points 

scheme but 19-points scheme has also shown comparable results to 27-points scheme. 

The main advantage of these methods is that we have used a direct method to solve the 

Poisson’s equation for which the error in the solution arises only from rounding off 

errors; and the methods allow considerable savings in computer storage as well as 

execution speed, that is it reduces the number of computations and computational time.  

Therefore, this method is suitable to find the solution of any three dimensional Poisson’s 

equation with the given boundary conditions in Cartesian coordinates system.  
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CHAPTER IV 

Second Order Numerical Solution of the Three Dimensional 
Poisson’s Equation in Cylindrical Coordinates System  

 

 

4.1    Introduction 

The three-dimensional Poisson’s equation in cylindrical coordinates (       is given by  

                           2

1 1
, ,rr r zzU U zU U f r

r r
                                                        (4.1)                                 

is often encountered in heat and mass transfer theory, fluid mechanics, elasticity, 

electrostatics, and other areas of mechanics and physics. In particular, the Poisson 

equation describes stationary temperature distribution in the presence of thermal sources 

or sinks in the domain under consideration.  

To solve the two dimensional Poisson’s equation in polar and cylindrical coordinates 

geometry, different approaches and numerical methods using finite difference 

approximation have been developed, for instance, Chao [21] developed a direct solver 

method for the electrostatic potential in a cylindrical region; Chen [32] a direct spectral 

collocation Poisson solver for several different domains including a part of a disk, an 

annulus, a unit disk, and a cylinder using the weighted interpolation technique and non 

classical collocation points; Christopher [36] a solution method in an annulus using 

conformal mapping and Fast Fourier Transform; Kalita and Ray [39] have developed a 

high order compact scheme on a circular cylinder to solve their problem on 

incompressible viscous flows; Lai and Wang [65] a fast direct solvers for Poisson’s 

equation on 2D polar and spherical coordinates based on FFT; Swarztrauber and Sweet 

[85] a direct solution of the discrete Poisson equation on a  disk in the sense of least 

squares; Mittal and Gahlaut [89] a boundary integral formulation in polar coordinates 

using conformal mapping and four point Gaussian quadrature formula,  and other several 

attempts have been made to solve the two dimensional Poisson equation in particular for 

physical problems that are related directly or indirectly to this equation. 
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The analytic solution for the three dimensional Poisson’s equation in cylindrical 

coordinate system is much more complicated and tedious because of the complexity of 

the nature of the problems and their geometry, and the availability of methods. Some 

contributions have been done to solve the three dimensional Poisson equation, for 

instance, Tan [14] developed a spectrally accurate solution for the three dimensional 

Poisson’s equation and Helmholtz’s equation using Chebyshev series and Fourier series 

for a simple domain in a cylindrical coordinate system; Iyengar and Goyal [101] 

developed a multigrid method in cylindrical coordinates system; Lai and Tseng [64] have 

developed a fourth-order compact scheme, and their scheme relies on the truncated 

Fourier series expansion, where the partial differential equations of Fourier coefficients 

are solved by a formally fourth-order accurate compact difference discretization; Xu et al 

[106] developed a parallel three-dimensional Poisson solver in cylindrical coordinate 

system for the electrostatic potential of a charged particle beam in a circular, which uses 

Fourier expansions in the longitudinal and azimuthal directions, and Spectral Element 

discretization in the radial direction, and some other developments have also been 

observed. The need to obtain the best solution for the Poisson’s equation is still in 

progress. 

In this chapter, we  develop a second order finite difference approximation scheme and 

solve the resulting large algebraic system of linear equations  systematically using block 

tridiagonal system [60] and extend the Hockney’s method [96] to solve the three 

dimensional Poisson’s equation on Cylindrical coordinates system.  
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4.2    Finite Difference Approximation 

Consider the three dimensional Poisson’s equation in cylindrical coordinates (        

(4.1) given by 

           
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z on D

r r r r z




   
   

   
                                

     and the boundary condition 

                   ( , , ) ( , , )U r z g r z    on            (4.2)  

          where   is the boundary of   and  

      is  a)    1 0 1 0 1 0 1, , :  ,   ,   ,   2D r z R r R a z b                 

      and b)    2 0 1, , :  ,   ,  0 2D r z R r R a z b            

                                                                                      

                           Figure 4.1  

              Portion of a cylindrical grid  

Consider figure 4.1 as the geometry of the problem.  

Let ( , , )U r z be discretized at the point ( , , )i j kr z and for simplicity write a point 

( , , )i j kr z
 
as         and ( , , )i j kU r z  as

, ,i j kU .  
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Assume that there are M points along  , N points along   and P points along the   

directions to form the mesh, and let the step size along the direction of   be r , along the 

direction of   be  and along the direction of z be z . 

Here 0 0,    and i j kr R i r j z a k z           where                      

and          . 

When      is an interior or boundary point in (4.1), the Poisson’s equation becomes 

singular. To avoid the singularity in (4.1) we take the condition 0  
U

r




  
(this is the 

essential condition), thus the limiting value of 
1 U

r r




as 0r   (applying L’hopital’s 

rule) is the value of 
2

2

U

r



  
at    . The second order finite difference method to solve 

Poisson’s equation under this condition is well explained in the paper by Mittal and 

Gahlaut [91]. As a result of this we adopt a new approximation scheme in Chapter VI. 

Thus we discuss in this chapter only for the case 0r  . 

Using the central difference scheme   

   
1, , 1, ,

( )
2

i j k i j kU UU
O r

r r

 
  

 
  ,            

   
2

21, , , , 1, ,

2 2

2

( )

i j k i j k i j kU U UU
O r

r r

  
  

 
  

   
2

2, 1, , , , 1,

2 2

2

( )

i j k i j k i j kU U UU
O 

 

  
  

 
  

  
2

2, , 1 , , , , 1

2 2

2

( )

i j k i j k i j kU U UU
O z

z z

  
  

 
                       (4.3)  

Substituting (4.3) in (4.1), we get  

        

1, , , , 1, , 1, , 1, , , 1, , , , 1,

, , 2 2 2

2 2 2, , 1 , , , , 1

2

2 21

( ) (2 ) ( )

2

( )

i j k i j k i j k i j k i j k i j k i j k i j k

i j k

i i

i j k i j k i j k

U U U U U U U U
f

r r r r

U U U
O r O O z

z





     

 

     
    

   

 
      



           
(4.4)
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and truncating higher order differences of (4.4), we have 

1, , , , 1, , 1, , 1, , , 1, , , , 1, , , 1 , , , , 1

, , 2 2 2 2

2 2 21

( ) (2 ) ( ) ( )

                                                                  

i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k

i i

U U U U U U U U U U U
f

r r r r z

              
    

    

                                 

(4.5)                  

                                                                                                                                        

 Let 
2

i

i

r

r



 ,  

2

2 2

( )

( )
i

i

r

r








,  

2

2

( )

( )

r

z






 and   2(1 )i iy       

Multiplying both sides of (4.5) by 2( )r  and rearranging and simplifying further, we get    

  
2

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,(1 ) (1 ) ( ) ( )i i j k i i j k i i j k i j k i j k i j k i i j k i j kU U U U U U yU r f                 

      

(4.6) 

When there are two or more space dimensions the band width is larger and the number of 

operations goes up and thus the computation for the solution is not such an easy task. 

Thus our aim now is to solve (4.6) systematically. 

The system of equations in (4.6) is a linear sparse system, and if we solve this sparse 

system technically we save both work and storage compared with a general system of 

equations. Such savings are basically true of finite difference methods: they yield sparse 

systems because each equation involves only a few variables. Now we use these 

advantages. 

Consider equation (4.6) first in the   direction, next in the   direction and lastly in the   

direction, and hence equation (4.5) can be put in matrix form as  

                                     A U                                                                               (4.7)        

where 

1 1

*

2 2 2

*

3 3 3

*

1 1 1

*

M M M

M M

R S

S R S

S R S
A

S R S

S R

  

 
 
 
 

  
 
 
  
 

,  
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it has   blocks and each block is of order    by               

             

i

i

i

i

i

i

L

L

L
R

L

L

 
 
  

  
  
 
  
   

      is of order    by                     (4.8) 

For domain   , 

             

i i

i i i

i i i

i

i i i

i i

y

y

y
L

y

y



 

 

 



 
 
 
 

  
 
 
  
 

                                                  (4.9) 

and for   , 

            

i i i

i i i

i i i

i

i i i

i i i

y

y

y
L

y

y

 

 

 

 

 

 
 
 
 

  
 
 
  
 

is a circulant matrix,                      (4.10) 

in both (4.9) and (4.10) iL  is of order  . 

 and Τ ( , , , , )diag      is of order  .     

( , , , , )i i i i iS diag ω ω ω ω  has   blocks and (1 ,1 ,...,1 )i i i idiag      ω  is of order 

  by   

* ( , , , , )i i i i iS diag φ φ φ φ  has   blocks  and (1 ,1 ,...,1 )i i i idiag      φ  is of order 

  by  . 
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 1 2 3

T

M B B B B  , 
1 2    [        ]Tk k k Nk B d d d and 1 2  [       ] jk jk jk Mj

T

kd d d d
  

  

such that each 
ijkd represents a known boundary values of    and values of  , and 

 1 2 3

T

MU U U U U  , and   1 2 3

T

i i i i iPU U U UU and 

 1 2 3

T

ik ij ij ij ijPU U U U U
 

We write (4.7) as          

                                       1 1 1 2 1    R S U U B  

                            
2 1 2 2 2 3 2

* R SS   U U U B  

                            
3 2 3 3 3 4 3

* R SS   U U U B                            (4.11)                                                              

                              

                                 
1

*

M M M M MS R  U U B  

 

4.3   Extended Hockney’s Method 

Observe that the matrix iL  is a real symmetric matrix and hence its eigenvalues and 

eigenvectors can easily be obtained. [30] 

            
 2 cos

1
i j i i

j
y

N




 
   

 
 1,2,3, , i M  and 1,2,3, ,j N  for     

    and   

2
2 cosi j i i

j
y

N




 
   

 
  1,2,3, , i M  and 1,2,3, ,j N   for   . 

Let 
jq  be an eigenvector of iL  corresponding to the eigenvalue   ij and Q  be the matrix 

1 2 3[          ]T

nq q q q be a modal matrix of iL  , i   such that 

                   TQQ I and  

                   1 2 3, , , ,T

i i i i iN iQ LQ diag       (say)   

The N N  modal matrix Q is defined by 

       ,

2
sin

1 1
i j

ij
q

N N

 
  

  
  1,2,3, , i N  and 1,2,3, ,j N   for   . 
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,

(cos sin )
i jq

N

 
 ,   where   

2
1 1i j

N




 
   
 

 ,   

         1,2,3, , i N  and 1,2,3, ,j N   for                                            

Let                 be a matrix of order    by   . 

Thus   satisfy the property that        since       and 

   *

i

i

i i

i

T

i RR

  
 
   

    
 
 
 



  

                                                     (4.12)
 

   T

i iS S  and * *T

i iS S   since both iS  and *

iS  are diagonal matrices. 

Let         T

i i i i  U UV V  

              i i i

T

iB B  B B                                                                                   (4.13) 

where 
1 2 3[          ]T

i i i i iPV V V V V  and 
1 2 3[           ]T

ik i k i k i k iNkV v v v v    

1 2   [      B ]T

i ki i iB B B and 
1 2     ] [  ik i k i k iNk

Tb b bB 
 

Pre-multiplying equation (4.11) by T and applying (4.13), we get   

                                      
1

*

1 1 1 2     R S B V V  

                            *

2 1 2 2 2 2

*

3S R S B  V V V  

                            *

3 2 3 3 3 3

*

4S R S B  V V V                                    (4.14)                                                       

                               

                                **

1 MM M M MRS B  V V  

Consider the first equation of (4.14) i.e. 
1

*

1 1 2 1SR B V V  and write this equation as 
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1

1

1

1

  
 
   

   
 
 
   

11

12

13

1P

 
 
 
 
 
 
 
 

v

v

v

v

+

1

1

1

1

 
 
 
 
 
 
 
 

ω

ω

ω

ω

21 11

22 12

23 13

2 1P P

   
   
   
   
   
   
   
   

v b

v b

v b

v b
          (4.15)

 

 

Again we write (4.15) as 

             1 11 12 1 21 11         T   v v ω v b  

            11 1 12 13 1 22 12T T   v v v ω v b  

            12 1 13 14 1 23 13T T   v v v ω v b                                                                       (4.16) 

                              … 

                  1( 1) 1 1 1 2 1P P P PT    v v ω v b  

Now from each equation of (4.16) we collect the first equations and put as one group of 

equation  

                       11 111 112 1 211 111(1+ )v v v b        

         111 11 112 113 1 212 112(1+ )v v v v b        

            112 11 113 114 1 213 113(1+ )v v v v b                                                                (4.17a) 

                                   … 

                  11( 1) 11 11 1 21 11(1+ )P P P Pv v v b       

Once again collect the second equations of (4.16) and put them as other group of equation 

                        12 121 122 1 221 121(1+ )v v v b        

          121 12 122 123 1 222 122(1+ )v v v v b        

             122 12 123 124 1 223 123(1+ )v v v v b                                                               (4.17b) 

                                   … 

                   12( 1) 12 12 1 22 12(1+ )P P P Pv v v b       

And lastly collect the last equations of (4.16) and put them altogether to form one group 

of equation 
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1 1 1 1 2 1 2 1 1 1(1+ )N N N N Nv v v b        

          
1 1 1 1 2 1 3 1 2 2 1 2(1+ )N N N N N Nv v v v b        

             1 2 1 1 3 1 4 1 2 3 1 3(1+ )N N N N N Nv v v v b                                                          (4.17c) 

                                   … 

                   1 ( 1) 1 1 1 2 1(1+ )N P N NP NP NPv v v b       

The equations (4.17a) to (4.17c) can again be written as 

1 1 1 2 1 1 11

1 1 2 2 2 1 21

1 1 3 2 3 1 31

1 1 2 11

1

1

1

1

j j j j

j j j j

j j j j

j jP jP jP

v v b

v v b

v v b

v v b

  

   

   

  

       
       

       
        
       
       

              

 

      1,2,3,...,j N                                                                                                        (4.18) 

Let 

1

1

1

1

1

1

j

j

j

j

j

j

 

  

  

  

 

 
 
 
 

  
 
 
 
 
 

 , 

1

2

3

ij

ij

ijij

ijP

v

v

v

v

 
 
 
 
 
 
 
 

W and 

1

2

3

ij

ij

ijij

ijP

b

b

b

b

 
 
 
 
 
 
 
 

B

 

Thus the equations (4.17a) to (4.17c) can be written as 1 1 1 2 1j j j j W W Bω .  

Let           

ij

ij

ij

ij

 
 
 
 
 
 
 
 

is of order NP  

1 2 3[    ... ]T

i i i i iNw W W W W      and 1 2[ , , , ]T

i i i iNB  B B B     

Thus the first equation of (4.14) can be written as  

                                        1 1 2 1= B  Sw w   
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By a similar procedure we can write for the second, third and last equations of (4.14) as 

the first equation, for instance the i
th
 equation of (4.14) can be written as 

                          *

1 1= B  i i i i i iS S  w w w  

Hence we can write (4.14) as  

                                         1 1 2 1= B  Sw w
 

                            
*

2 1 2 2 3 2= B  S S w w w
 

                             
*

3 2 3 4 3= B  S S w w w
                                                         (4.19) 

                                                    … 

                                   
*

1 = B  M M M MS  w w
 

Observe that  

1 2 3( , , ,..., )T

i i i iP idiag      (say)      where 
1 2 3( , , ,..., )ik i k i k i k iNkdiag       

Here 2 cos , 1,2,3, ,  ,  1,2,3,  and   1,2,3, , ,
1

ijk ij

k
i M j N k P

P


  

 
        

 
          

Let      T

i i i i   ww     

         T

i i i iBB                                                                                              (4.20) 

where 
1 2 3[   ... ]T

i i i i iP  Ψ Ψ Ψ Ψ and  
1 2 3[    ... ]T

ik i k i k i k iNk   Ψ  

            
1 2 3[ , , ,..., ]T

i i i i iP  β β β β  and 
1 2[ , ,..., ]T

ik i k i k iNk  β  

Pre-multiplying (4.19) by T  and make use of (4.20), we get 

                                                     1 1 1 2 1S    
 

                                      
*

2 1 2 2 2 3 2S S       

                                      
*

3 2 3 3 3 4 3S S     
                                                  (4.21)

 

                                                     … 

                                          *

1M M M M MS      

Now we write (4.21) turn by turn starting from the first equation i.e. 1 1 1 2 1S      as 
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                    … 

                         

                                                                                                     (4.22a) 

                                               

                                                

                                           … 

                                                

                                     …                 …          … 

                                                                  

                                                                  

                                                                   

                                                                  … 

                                                                  

 The second equation of (4.21) i.e.  *

2 1 2 2 2 3 2S S      is written as 

                                      

                                      

                                      

                            … 

                                     

                                                                                    (4.22b) 

                                                             

                                                             

                                                   … 

                                                           

                                        …                   …             … 
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                                                                                       … 

                                                                                      

And the last equation of (4.21) i.e. *

1M M M M MS     is written as  

                                 

                                 

                                 

                                 … 

                                 

                                                                                               (4.22c) 

                                                        

                                                        

                                                        … 

                                                        

                                                     …       …         … 

                                                                                  

                                                                                  

                                                                                  

                                                                                    … 

                                                                                 

 Now take the first equations of (4.22a) to (4.22c) , and get  

                                                        

                                     

                                     

                                               … 
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                                                                                    (4.23a) 

                                                  

                                                  

                                                    … 

                                                             

                                                               …           …          … 

                                                                                                                   

                                                                                               

                                                                                               

                                                                                                   … 

                                                                                                           

Observe that here in the above set of equations     , and for each          

the coefficient matrix of the left hand side is a tri-diagonal matrix of order   and has the 

form  

11 1

2 21 2

3 31 3

1

1 ( 1)1 1

1

1

1 1

1 1

1 1

1

k

k

k

k

M M k M

M M k

 

  

  

  

 

  

 
 
  

  
  
 
  
   

 

Now collect again other groups of equations of (4.11) for        , and get 

                                                        

                                     

                                     

                                               … 

                                                

                                                                                                      (4.23b) 

                                                        

                                                         

                                                         … 
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                                                           …           …          … 

                                                                                                             

                                                                                           

                                                                                            

                                                                                                   … 

                                                                                                       

As we can easily see that these set of equations (4.23b), have tridiagonal matrix structure  

for 2(1)j N and observe that (4.11) reduces to equation (4.23b) which is a tridiagonal 

matrix  

1 1

2 2 2

3 3 3

1 ( 1) 1

1

1 1

1 1

1 1

1

jk

jk

jk

M M jk M

M Mjk

 

  

  

  

 

  

 
 
  

  
  
 
  
 
  

 

 for 1,2,3, ,j N and hence we solve these sets of equations (2.23b) for 
, ,i j k by the 

use of Thomas Algorithm [30]. Once after getting each 
, ,i j k  (and hence i ) by the help 

of (4.20) we get iw and again by the help of (4.13) we obtain kU and this means that each 

, ,i j kU are obtained. Thus, this solves our problem.  

 

 

4.4   Numerical Results 

           In order to test the efficiency and adaptability of the method, computational 

experiments are done on seven test problems that may arise in practice, for which the 

analytical solutions of   are known to us. The computed solutions are found for all grid 

points but results are reported here only for some points in terms of the absolute 

maximum error and are shown from table 4.1 to 4.7. 
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Example 4.1 Consider 2 3U cos    with the boundary conditions 

     0, , 1, , 2  ,U z U z z        ,0, 1 2 ,    , , 2
2

U r z r r z U r z z
 

     
 

 

         , ,0 1  ,       , ,1 1 2U r r r cos U r r r cos         

The analytical solution is    , , 1 cos 2U r z r r z    and the results of this example 

are shown in Table 4.1. 

Example 4. 2  Consider 2 2 sin( )U rcos z      with the boundary conditions 

                1, , sin ,      2, , 2 sinU z cos z U z cos z        

          ,0, sin ,   , , sinU r z r z U r z r z     , and    , ,0 , ,1 0U r U r    

The analytical solution is    , ,   sinU r z r cos z   and the results of this example are 

shown in Table 4.2. 

Example 4.3 Consider  2 2 2

2

1
sin(2 )sin( )U r z

r
  

 
    

 
 with the boundary   

conditions        
15

1, , 0,     2, , sin 2 sin( )
4

U z U z z      

                   ,0, 0 , ,
2

U r z U r z
 

   
 

      and      , ,0 0 ( , ,1)U r U r    

The analytical solution is 2

2

1
sin(2 )sin( )U r z

r
 

 
  
 

 and the results of this example 

are shown in Table 4.3. 

 Example 4.4  (See [101]) Consider 

  

2 2 2 2
2 * *

1 1 1 12 2
4 cos 4 sin ( sin ) ( )

2 2 2 2
U r r cos cosz sinz

r r r r

     
 

    
            

    
 

 where      *

1 14 ,    2 1 ,      1 ,     2 4,       0 0.5,
2 2

r r z z r
 

              

 and 1 1.z    
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The analytical solution is * *

1 1 1 1( , , ) (   sin )( sin ) ( )U r z cosr r cos cosz sinz       

This problem was   considered as one test problem by Iyengar and Goyal [101]. Their 

results and ours are found to be the same for
1

8
h  , but their method is restricted only to 

the same values of       and   . We have shown the results of this example in Table 4.4. 

Example 4.5 Consider  2 3U cos    where 0 2   , with the boundary conditions 

 

                  0, , 1, ,U z z U z   ,   , ,0 (1 ) , U r r r cos    and   

                 , ,1 1 (1 )U r r r cos     

The analytical solution is (1 )U r r cos z     and the results of this example are shown 

in Table 4.5. 

Example 4.6 Consider 2 6  U rz cos   where 0 2   , with the boundary conditions  

                                ,              and                 

The analytical solution is            and the results of this example are shown in 

Table 4.6. 

Example 4.7 Consider         (   
 

  )                               with the 

boundary conditions   

                             
  

 
                                    

The analytical solution is   (   
 

  )                  and the results of this example 

are shown in Table 4.7. 
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       Table 4.1 

The maximum absolute error of example 4.1  

       Max. abs. error        Max. abs. error        Max. abs. error 

        6.83901e-005             1.71675e-005             7.63846e-006 

         6.85359e-005             1.72164e-005             7.65884e-006 

         6.85882e-005            1.71752e-005            4.28351e-006 

          6.85881e-005             1.72198e-005            4.29603e-006 

          6.87927e-005            7.63105e-006             4.30845e-006 

          6.88027e-005            7.64055e-006             4.29998e-006 

         1.71132e-005             7.63684e-006            4.30369e-006 

          1.71127e-005             7.65726e-006             4.31261e-006 

      

 Table 4.2 

The maximum absolute error of example 4.2  

      Max. abs. error         Max. abs. error        Max. abs. error 

        5.97565e-003             1.6095e-003             4.18664e-004 

         6.04232e-003             7.53504e-004             4.19068e-004 

         1.68198e-003            4.50526e-004            6.23836e-003 

          1.69672e-003             4.53562e-004            6.24401e-003 

          8.9486e-004            6.25865e-003             1.5717e-003 

          6.14273e-004            1.56933e-003             7.07837e-004 

         6.18349e-003             7.21066e-004            4.01493e-004 

          6.24022e-003             7.21498e-004             4.05867e-004 
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      Table 4.3 

The maximum absolute error of example 4.3  

       Max. abs. error        Max. abs. error        Max. abs. error 

        1.0041e-002             2.51841e-003             6.45366e-004 

         1.03659e-002             1.33191e-003             6.85093e-004 

         3.33415e-003            6.40825e-004            8.98428e-003 

          3.5776e-003             8.95344e-004            9.07348e-003 

          2.39279e-003            9.14135e-003             2.30437e-003 

          1.94206e-003            2.09239e-003             1.01451e-003 

         8.97807e-003             1.08113e-003            3.98681e-004 

          9.24935e-003             1.12241e-003             6.31752e-004 

 

       Table 4.4 

The maximum absolute error of example 4.4  

      Max. abs. error        Max. abs. error        Max. abs. error 

        1.52153e-002             3.87647e-003             2.13081e-003 

         1.18196e-002             2.66641e-003             1.558e-003 

         1.26939e-002            6.34865e-003            4.98915e-003 

          9.82575e-003             2.49938e-003            4.21468e-003 

          8.67411e-003            4.59667e-003             1.82246e-003 

          8.68314e-003            5.9446e-003             1.91856e-003 

         9.48954e-003             2.29605e-003            4.97913e-003 

          6.4572e-003             1.72475e-003             9.7357e-004 
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          Table 4.5 

The maximum absolute error of example 4.5  

       Max. abs. error        Max. abs. error        Max. abs. error 

         2.91054e-003             7.34274e-004             3.26426e-004 

          2.94732e-003             7.39078e-004             3.28008e-004 

          2.91942e-003            7.28843e-004            1.82891e-004 

           2.94503e-003             7.3923e-004            1.83977e-004 

           2.96297e-003            3.27118e-004             1.84332e-004 

           2.95912e-003            3.2355e-004             1.83546e-004 

         7.26075e-004             3.26362e-004            1.8211e-004 

          7.32065e-004             3.27939e-004             1.84702e-004 

 

 

       Table 4.6 

The maximum absolute error of example 4.6  

       Max. abs. error        Max. abs. error        Max. abs. error 

         8.08303e-003             2.06074e-003             9.74094e-004 

          7.78161e-003             1.99772e-003             9.19684e-004 

          8.13051e-003            2.35229e-003            5.8771e-004 

           7.87559e-003             1.99854e-003            5.1461e-004 

           7.82057e-003            8.96012e-004             5.35984e-004 

           7.84024e-003            1.26723e-003             5.9185e-004 

         2.33516e-003             9.73704e-004            9.27532e-004 

          2.0482e-003             9.19304e-004             5.18641e-004 
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 Table 4.7 

The maximum absolute error of example 4.7  

       Max. abs. error        Max. abs. error        Max. abs. error 

         2.8935e-002             7.39905e-003             2.97592e-003 

          2.9406e-002             6.2994e-003             3.02879e-003 

          2.2444e-002            5.55157e-003            8.42863e-002 

           2.29089e-002             5.89069e-003             7.43613e-002 

           2.18002e-002            1.14219e-002             3.30954e-002 

           2.13515e-002            4.40139e-003             6.92702e-002 

         1.35531e-002             3.40452e-003            7.68463e--003 

          1.38225e-002             3.4587e-003             5.36082e-002 

 

  4.5   Conclusion 

In this work, we have transformed the three dimensional Poisson’s equation in cylindrical 

coordinates system in to a system of algebraic linear equations using its equivalent 

second order finite difference approximation scheme. The resulting large number of 

algebraic equation is, then, systematically arranged in order to get a block matrix. Based 

on the extension of Hockney’s method we reduced the obtained matrix in to a block 

tridiagonal matrix, and each block is solved by the help of Thomas algorithm.[30] We 

have successfully implemented this method to find the solution of the three dimensional 

Poisson’s equation in cylindrical coordinates system and it is found that the method can 

easily be applied and adapted to find a solution of some related applied problems. The 

method produced accurate results considering double precision. This method is direct and 

allows considerable savings in computer storage as well as execution speed.  

Therefore, the method is suitable to apply on some three dimensional Poisson’s 

equations. 



                                                                                                                                        

98 

 

                   

 



99 

 

CHAPTER V  

Fourth Order Numerical Solution of the Three Dimensional 

Poisson’s Equation in Cylindrical Coordinates System 

 

5.1   Introduction 

The three dimensional Poisson’s equation in cylindrical coordinates system (       is 

given by  

                                
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z

r r r r z




   
   

   
                                  (5.1) 

has a wide range of application in engineering and physics.  

In physical problems that involve a cylindrical surface, (for example the problem of 

evaluating the temperature in a cylindrical rod), it will be convenient to make use of 

cylindrical coordinates. For the numerical solution of the three dimensional Poisson’s 

equation in cylindrical coordinates system several attempts have been made in particular 

for physical problems that are related directly or indirectly to this equation. For instance, 

Lai [62] a simple compact fourth-order Poisson solver on polar geometry based on the 

truncated Fourier series expansion, where the differential equations of the Fourier 

coefficients are solved by the compact fourth order finite difference scheme; Mittal and 

Gahlaut [90] have developed high order finite difference schemes of second and fourth 

order in polar coordinates  using a direct method similar to Hockney's method; Mittal and 

Gahlaut [91] have developed a second and fourth order finite difference scheme to solve 

Poisson’s equation  in the case of cylindrical symmetry; Iyengar and Manohar [102] 

derived fourth-order difference schemes for the solution of the Poisson equation which 

occurs in problems of heat transfer.  The need to obtain the best solution for the three 

dimensional Poisson’s equation in cylindrical coordinates system is still in progress. 

In this chapter, we  develop a fourth order finite difference approximation scheme and 

solve the resulting large algebraic system of linear equations  systematically using block 
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tridiagonal system [60] and extend the Hockney’s method [96] to solve the three 

dimensional Poisson’s equation on Cylindrical coordinates system.  

 

5.2   Finite Difference Approximation 

 Consider the three dimensional Poisson’s equation in cylindrical coordinates ( , , )r z

(5.1) given by 

            
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z on D

r r r r z




   
   

   
    and                                               

                                                       ( , , ) ( , , )U r z g r z    on C                                 (5.2) 

C is the boundary of D  where D  is 

  a)   1 0 1 0 1 0 1, , :  ,   ,   ,   2D r z R r R a z b                and 

  b)    2 0 1, , :  ,   ,  0 2D r z R r R a z b           

Consider figure 4.1 in chapter IV as the geometry of the problem. 

Let ( , , )U r z be discretized at the point ( , , )i j kr z and write the point ( , , )i j kr z
 
as

( , , )i j k  and ( , , )i j kU r z  as 
, ,i j kU . Assume that there are M points along the   direction,  

N points along   and P points along the   directions to form the mesh, and let the step 

size along the direction of   be r , along the direction of   be  and along the 

direction of z be z . 

Here 
0 0,  and = , 1(1) , 1(1)  and 1(1)i j kr R i r j z a k z i M j N k P            

 

When      is an interior or a boundary point in (4.1), then the Poisson’s equation 

becomes singular and to take care of the singularity we consider a different approach will 

be taken in the next chapter.  

 

Thus we discuss in this chapter the fourth-order approximation scheme only for the case

0r  . 
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Using the approximations that 

                      
12

2 2 4

, ,2 2

, ,

1 1
1 ( )

( ) 12
r r i j k

i j k

U
U O r

r r
 


   

      
    

                              (5.3)                       

                      
22

4

, ,2 2
2

, ,

1
( )

1( )
1

12

i j k

i j k

U
U O






  

 
  

    
    

 

                      (5.4) 

 and     
22

4

, ,2 2
2

, ,

1
( )

1( )
1

12

z
i j k

i j k
z

U
U O z

z z





 
  

    
    

 

                         (5.5)   

Now using (5.3), (5.4) and (5.5), we get the following approximations (Refer the work of 

Mittal and Ghalaut in [91]) 

i) In the three dimensional Poisson’s equation in cylindrical coordinates system (5.1) 

consider only the approximation of the sum of the first term and the third term, that is, 

the sum of  
2

2

U

r




 and 

2

2 2

1

i

U

r 




  

 

   

2 2

1, 1, 1, 1, 1, 1, 1, 1,2 2 2 2 2

, ,

1, , 1, , , 1, , 1, , ,2 2 2

2 2

2 2

1 1
1

12( )

5
2 5 2 1 20 1

1 1

12

i j k i j k i j k i j k

i ii j k

i j k i j k i j k i j k i j k

i i i

i

U U
U U U U

r r r r

U U U U U
r r r

r r





  



       

   

    
        

     

     
             

      

 
 

 
 

2 2
2 2 4 4

, ,2 2 2
( ) ( ) ( ) ( )i j kr U O r

r
 



   
        

   

     (5.6) 

 where  

2

2

( )

( )

r








  

 

 

ii)  Again in (5.1) consider only the approximation of the sum of the first term and the 

fourth term, that is, the sum of  
2

2

U

r




 and 

2

2

U

z




. 
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 

   

2 2 2

1, , 1 1, , 1 1, , 1 1, , 12 2 2 2

, ,

2 2 2

1, , 1, , , 1, , 1, , ,2 2 2

1 ( )
1

12( ) ( )

( ) ( ) ( )
2 5 2 5 1 20 1

( ) ( ) ( )

i j k i j k i j k i j k

i j k

i j k i j k i j k i j k i j k

U U r
U U U U

r z r z

r r r
U U U U U

z z z

       

   

     
        

      

       
            

       

 
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(5.7) 
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Equation (5.9) implying that 
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(5.11) 
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(5.12)
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The system of equations in (5.14) is a linear sparse system, and thereby when solving we save 

both work and storage compared with a general system of equations. Such savings are 

basically true of finite difference methods: they yield sparse systems because each equation 

involves only few variables.  

To solve equation (5.14), consider first in the   direction, next in the Z direction and lastly in 

the   direction, and as a result of this (5.14) can be written in matrix form as  
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 

 

, ,  and i i iR S T  are of order NP   

for the domain 1D   

0 3

3 0 3

3 0 3'

3 0 3

3 0

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 

     

 

4 9

9 4 9

9 4 9"

9 4 9

9 4

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i

 
 
 
 

  
 
 
  
   
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1 5

5 1 5

5 1 5'

5 1 5

5 1

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
S

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 

,     

 

7

7

"

7

7

( )

( )

( )

( )

i

a i

a i

S a i

a i

 
 
 
 
 
 
 
 

 

                     

  

2 6

6 2 6

6 2 6'

6 2 6

6 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
T

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 

,  

8

8

"

8

8

( )

( )

( )

( )

i

a i

a i

T a i

a i

 
 
 
 
 
 
 
 

 

 

for the domain 2D ,  

0 3 3

3 0 3

3 0 3'

3 0 3

3 3 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 
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4 9 9

9 4 9

9 4 9"

9 4 9

9 9 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

  

 

    

1 5 5

5 1 5

5 1 5'

5 1 5

5 5 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
S

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

,      

    

7

7

"

7

7

( )

( )

( )

( )

i

a i

a i

S a i

a i

 
 
 
 
 
 
 
 

 

    

2 6 6

6 2 6

6 2 6'

6 2 6

6 6 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
T

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

,      

    

8

8

"

8

8

( )

( )

( )

( )

i

a i

a i

T a i

a i

 
 
 
 
 
 
 
    
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Here in 
2D , the matrices , , , , , and i i i i i iR R S S T T      are circulant matrices of order N ; and 

 0 1 2

T

M B B B B  , 
1 2  3   [        ]Ti i i i iP B d d d d and 

1 2  [       ] ik i

T

j ij ijPd d d d
  

  such 

that each 
ijkd represents a known boundary values of    and values of   , and 

 1 2 3

T

MU U U U U  ,     1 2 3

T

i i i i iPU U U UU and 

 1 2 3

T

ij ij ij ij ijPU U U U U
 

We write (5.15) as          

                                     
1 1 1 2 1    R S U U B  

                            2 1 2 2 2 3 2T R S  U U U B  

                             3 2 3 3 3 4 3T R S  U U U B                                                               (5.16)                                                               

                                  

                                 1  M M M M MT R  U U B  

 

5.3   Extended Hockney’s Method 

Observe that the matrices , ,i i iR R S    and iT   are real symmetric matrices and hence their 

eigenvalues and eigenvectors can easily be obtained. [30] 

For 1D     0 3( ) 2 ( )cos
1

ij

j
a i a i

N




 
   

 
  

               4 9( ) 2 ( )cos
1

ij

j
a i a i

N




 
   

 
       

               1 5( ) 2 ( )cos
1

ij

j
a i a i

N




 
   

 
               

               2 6( ) 2 ( )cos
1

ij

j
a i a i

N




 
   

 
              1(1) and 1(1)   i M j N   
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and for 
2D      

0 3

2
( ) 2 ( )cosij

j
a i a i

N




 
   

 
        

                       
4 9

2
( ) 2 ( )cosij

j
a i a i

N




 
   

 
          

                       
1 5

2
( ) 2 ( )cosij

j
a i a i

N




 
   

 
       

                       2 6

2
( ) 2 ( )cosij

j
a i a i

N




 
   

 
        1(1) and 1(1)   i M j N   

Let 
jq be an eigenvector of , ,i i iR R S    and 

iT  corresponding to the eigenvalue , ,ij ij ij    

and 
ij ; and 

1 2 3[    ... ]T

NQ  q q q q  be a modal matrix of , ,i i iR R S    and 
iT  , i   such 

that 

 TQ Q I .  

The N N modal matrix Q is defined by 

For 1D   
2

sin
1 1

ij

ij
q

N N

 
  

  
   , 1(1)i j N  

For 2D    
cos sin

ijq
N

  
  
 

 where  
2

( 1)( 1)i j
N


    ,     , 1(1)i j N  . 

Since , ,i i iR R S    and iT   are symmetric matrices, we have 

             1 2 3( , , , , )T

i i i i iN iQ R Q diag         (say)   

             1 2 3( , , , , )T

i i i i iN iQ R Q diag Y       (say)  

             1 2 3( , , , , )T

i i i i iN iQ S Q diag        (say)  

             1 2 3( , , , , )T

i i i i iN iQ T Q diag         (say)   
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Let ( , , ,..., )diag Q Q Q Q be a matrix of order NP by NP . 

Thus  satisfy the property that T I  since TQ Q I and

i i

i i i

i i iT

i

i i i

i i

Y

Y Y

Y Y
R

Y Y

Y

 
 

 
 

  
 
 
                                                            (5.17)

 

i i

i i i

i i iT

i

i i i

i i

S

S S

S S

S S

S

S

 
   
  

  
 
  
                                                            (5.18)

 

i i

i i i

i i iT

i

i i i

i i

Z T

T Z T

T Z T

T Z T

T Z

T

 
  
 
  

  
 
  
                                                                (5.19)

 

T

i iS S   and
 

T

i iTT     since both iS   and iT   are diagonal matrices. 

Let         T

i i i i  U UV V  

              i i i

T

iB B  B B                                                                                    (5.20) 

where 1 2 3[          ]T

i i i i iP v v v vV  and 1 2 3[           ]T

ik i k i k i k iNkv v v v v  and 

          1 2   [      ]i ii

T

i k  bB b b and 1 2     ] [  ik i k i k iNk

Tb b bb
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Consider the first equation of (5.16) i.e. 
1 1 1 2 1    R S U U B  and pre-multiplying it 

by    and further by using (5.20), we get   

1 1

1 1 1

1 1 1

1 1 1

1 1

Y

Y Y

Y Y

Y Y

Y

 
 

 
 
 
 
 
   

11

12

13

1( 1)

1

P

P



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+

1 1

1 1 1

1 1 1

1 1 1

1 1

H S

S H S

S H S

S H S

S H

 
  
 
  
 
 
  
   

21

22

23

2( 1)

2

P

P



 
 
 
 
 
 
 
  
 

v

v

v

v

v

=  

11

12

13

1( 1)

1

P

P



 
 
 
 
 
 
 
  
 

b

b

b

b

b

  

                            (5.21) 

We write (5.21) again as 

                11 1 12 1 211 1 22 11                         Y S     v v v v b  

                1 11 12 1 13 1 21 1 22 1 2 121 3  Y Y S S      v v v v v v b  

                1 12 13 1 14 1 22 1 23 1 2 131 4  Y Y S S      v v v v v v b                                      (5.22) 

                                             … 

               
1 1( 1) 1 1 2( 1) 1 2 11                 P P P P PY S 

    v v v v b  

We write (5.22) turn by turn as 

11 111 11 112 11 211 7 212 111(1)v v v a v b       

12 121 12 122 12 221 7 222 121(1)v v v a v b        

 13 131 13 132 13 231 7 232 131(1)v v v a v b     
                                                                     (5.23)

 

                                … 

1 1 1 1 1 2 1 2 1 7 2 2 1 1(1)N N N N N N N Nv v v a v b     
 

                            11 111 11 112 11 113 7 211 11 212 7 213 112(1) (1)v v v a v v a v b           

                            12 121 12 122 12 123 7 221 12 222 7 223 122(1) (1)v v v a v v a v b             

                             13 131 13 132 13 133 7 231 13 232 7 233 132(1) (1)v v v a v v a v b        
 

                                                         … 

                      1 1 1 1 1 2 1 1 3 7 2 1 1 2 2 7 2 3 1 2(1) (1)N N N N N N N N N N Nv v v a v v a v b          
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                                                                                 …      …      … 

                                                                      11 11( 1) 11 11 7 21( 1) 11 21 11(1)P P P P Pv v a v v b        

                                                                     
12 12( 1) 12 12 7 22( 1) 12 22 12(1)P P P P Pv v a v v b      

 

                                                                      13 13( 1) 13 13 7 23( 1) 13 23 13(1)P P P P Pv v a v v b        

                                                                                                       … 

                                                                
1 1 ( 1) 1 1 7 2 ( 1) 1 2 1(1)N N P N NP N P N NP NPv v a v v b        

Now collect the first equations from each of (5.23) and consider as a first group of 

equations
 
 

                            11 111 11 112 11 211 7 212 111(1)v v v a v b       

11 111 11 112 11 113 7 211 11 212 7 213 112(1) (1)v v v a v v a v b          

11 112 11 113 11 114 7 212 11 213 7 214 113(1) (1)v v v a v v a v b                                                (5.24a) 

                                       … 

                    
11 11( 1) 11 11 7 21( 1) 11 21 11(1)P P P P Pv v a v v b        

Now once again collect the second equations from each of (5.23) and consider as a 

second group of equations 

                                          12 121 12 122 12 221 7 222 121(1)v v v a v b       

             12 121 12 122 12 123 7 221 12 222 7 223 122(1) (1)v v v a v v a v b          

              12 122 12 123 12 124 7 222 12 223 7 224 123(1) (1)v v v a v v a v b                                 (5.24b) 

                                                         … 

                                 12 12( 1) 12 12 7 22( 1) 12 22 12(1)P P P P Pv v a v v b        

Similarly collect the last equations of (5.23) and considering as a last group of equations 

                                             1 1 1 1 1 2 1 2 1 7 2 2 1 1(1)N N N N N N N Nv v v a v b       

              1 1 1 1 1 2 1 1 3 7 2 1 1 2 2 7 2 3 1 2(1) (1)N N N N N N N N N N Nv v v a v v a v b          

              1 1 2 1 1 3 1 1 4 7 2 2 1 2 3 7 2 4 1 3(1) (1)N N N N N N N N N N Nv v v a v v a v b                        (5.24c) 

                                                         … 

                                     1 1 ( 1) 1 1 7 2 ( 1) 1 2 1(1)N N P N NP N P N NP NPv v a v v b        
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Now we write these set of equations (5.24a) to (5.24c) in matrix form as 

1 1

1 1 1

1 1 1

1 1

j j

j j j

j j j

j j

 

  

  

 

 
 
 
 
 
 
 
 

1 1

1 2

1 3

1

j

j

j

jP

v

v

v

v

 
 
 
 
 
 
 
 

+

1 7

7 1 7

7 1 7

7 1

(1)

(1) (1)

(1) (1)

(1)

j

j

j

j

a

a a

a a

a









 
 
 
 
 
 
 
 

2 1

2 2

2 3

2

j

j

j

jP

v

v

v

v

 
 
 
 
 
 
 
 

=

1 1

1 2

1 3

1

j

j

j

jP

b

b

b

b

 
 
 
 
 
 
 
 

 

          1,2,...,j N                                                                                                      (5.25) 

Let 

ij ij

ij ij ij

ij ij ijij

ij ij

 

  

  

 

 
 
 
 
 
 
 
 

 , 

1

2

3

ij

ij

ijij

ijP

v

v

v

v

 
 
 
 
 
 
 
 

W and 

1

2

3

ij

ij

ijij

ijP

b

b

b

b

 
 
 
 
 
 
 
 

B

 

 

and 

7

7 7

7 7

7

(1)

(1) (1)

(1) (1)

(1)

ij

ij

ijij

ij

a

a a

a aC

a









 
 
 
 
 
 
 
 

 

Thus we write the j
th

 equation of (5.22) as 

                      1 1 1 2 1j j j j jC W W B
 

Let 

ij

ij

iji

ij

F

 
 
 
 
 
 
 
 

,  

ij

ij

iji

ij

C

 
 
 
 
 
 
 
 

C   both are of order NP  

1 2 3[    ... ]T

i i i i iNw W W W W      and 1 2[ , , , ]T

i i i iNB  B B B     
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Thus the first equation of (5.16) can be written as  

                                        
1 1 1 2 1= B  F Cw w   

By the same procedure as above after pre-multiplying by T  and make use of (5.20) we 

can write the second equation of (5.16) i.e. 2 1 2 2 2 3 2T R S  U U U B as 

2 2

2 2 2

2 2 2

2 2

Z T

T Z T

T Z T

T Z

 
  
 
  
 
 
  

11

12

13

1( 1)

1

P

P



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+

2 2

2 2 2

2 2 2

2 2 2

2 2

Y

Y Y

Y Y

Y Y

Y

 
 

 
 
 
 
 
   

21

22

23

2( 1)

2

P

P



 
 
 
 
 
 
 
  
 

v

v

v

v

v

+

1 1

1 1 1

1 1 1

1 1 1

1 1

H S

S H S

S H S

S H S

S H

 
  
 
  
 
 
  
   

31

32

33

3( 1)

3

P

P



 
 
 
 
 
 
 
  
 

v

v

v

v

v

=  

21

22

23

2( 1)

2

P

P



 
 
 
 
 
 
 
  
 

b

b

b

b

b
                   

                               (5.26)  

After rearranging and applying the same process as in the first case, equation (5.26) can 

be written as   

                           
2 1 2 2 2 3 2= B  E F C w w w

 

 where    

ij

ij

iji

ij

E

E

EE

E

 
 
 
 
 
 
 
 
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and  

8

8 8

8 8

8

( )

( ) ( )

( ) ( )

( )

ij

ij

ijij

ij

a i

a i a i

a i a iE

a i









 
 
 
 
 
 
 
 

      

Thus, in general, pre-multiplying (5.16) by T  and make use of (5.20), and rearranging 

the equations, we obtain 

                                                  
1 1 1 2 1= B  F Cw w    

                                      
2 1 2 2 2 3 2= B  E F C w w w  

                                        
3 2 3 3 3 4 3= B  E F C w w w                                                     (5.27) 

                                               … 

                                           
1 = B  M M M M ME F w w  

Observe that  

1 2 3( , , ,...,F )T

i i i iP ii diag      (say)      where 
1 2 3( , , ,..., )ik i k i k i k iNkdiag     

 

1 2 3( , , ,...,C )T

i i i i iPi diag L L L L   (say)   where 1 2( , ,..., )ik i k i k iNkL diag     

1 2 3( , , ,..., )T

i i i ii iPdiag G G G GE   (say) where 1 2( , ,..., )ik i k i k iNkG diag     

Note that  

                2 cos
1

ijk ij ij

k

P


  

 
   

 
 

                7  2 ( )cos
1

ijk ij

k
a i

P





 
   

 
 and  

                8  2 ( )cos
1

ijk ij

k
a i

P





 
   

 

1,2,3, ,  ,  1,2,3,  and   1,2,3, ,,i M j N k P       
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          Let      T

i i i i   ww     

                   T

i i i iBB                                                                                     (5.28) 

where 
1 2 3[   ... ]T

i i i i iP  Ψ Ψ Ψ Ψ and  
1 2 3[    ... ]T

ik i k i k i k iNk   Ψ  

            
1 2 3[ , , ,..., ]T

i i i i iP  β β β β  and 
1 2[ , ,..., ]T

ik i k i k iNk  β  

Pre-multiplying (5.27) by T  and make use of (5.28), we get 

                            1 1 1 2 1+                       

                   2 1 2 2 2 3 2+      

                   3 2 3 3 3 4 3+                                                                             (5.29) 

                                     … 

                     1M M M M M     

Now we write (5.29) turn by turn starting from the first equation i.e. 
1 1 1 2 1      as 

                         

                         

                         

                    … 

                       

                     

                                                                                                   (5.30a) 

                                             

                                              

                                           … 

                                              

                                     …                 …          … 
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                                                                  … 

                                                                

 The second equation of (5.29)  i.e.  2 1 2 2 2 3 2+     is written as 

                                  

                                  

                                  

                            … 

                                 

                                                                                (5.30b) 

                                                         

                                                         

                                                   … 

                                                       

                                        …                   …             … 

                                                                                  

                                                                                  

                                                                                   

                                                                                       … 
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And the last equation of (5.29) i.e. 
1M M M M M    is written as  

                              

                               

                               

                                 … 

                               

                                                                                              (5.30c) 

                                                      

                                                      

                                                        … 

                                                      

                                                     …       …         … 

                                                                                

                                                                                

                                                                                

                                                                                    … 

                                                                               

 Now we collect the first equations of (5.30a) to (5.30c) , and get  

                                               

                                 

                                 

                                               … 
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                                                                                                   (5.31a) 

                                                    

                                                    

                                                    … 

                                                         

                                                               …           …          … 

                                                                                                         

                                                                                           

                                                                                           

                                                                                                   … 

                                                                                                 

Observe that here in the above set of equations     , and for each          the 

coefficient matrix of the left hand side is a tri-diagonal matrix of order   and has the 

form  

11 11

21 21 21

31 31 31

1

( 1)1 ( 1)1 ( 1)1

1 1

k k

k k k

k k k

k

M k M k M k

M k M k

 

  

  

  

 

  

 
 
 
 

  
 
 
  
 

 

 

Now collect again other groups of equations of (5.30) for        , and get 

                                               

                                 

                                 

                                               … 
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                                                                                                   (5.31b) 

                                                    

                                                    

                                                    … 

                                                         

                                                               …           …          … 

                                                                                                         

                                                                                           

                                                                                           

                                                                                                   … 

                                                                                                 

 

As we can see from these set of equations (5.31b), the matrix structure for 2(1)j N has 

the form  

                  

1

2 2

3 3

( 1) ( 1)

1

2

3

( 1)

jk

jk jk

jk jk

jk

M jk

jk

jk

jk

M jkM jk

Mjk Mjk



 

 

 

 







  

 
 
 
 

  
 
 
 
 
 

       (5.32) 

This Matrix (5.32) is a tri-diagonal matrix and hence we solve for      by using Thomas 

algorithm [30]. Once we get      by the help (5.28) again we get all      and by the help 

of (5.20) again we get      and this solves our problem as desired. By doing this we 

generally reduce the number of computations and computational time. 

 

 

 

 

  



Numerical Solution of Poisson’s Equation  

 

123 

 

5.4     Numerical Results 

In order to test the efficiency and adaptability of the proposed method, computational 

experiments are done on seven selected problems that may arise in practice, for which the 

analytical solutions of   are known to us; and in some of the examples even we have 

considered for 0r  regardless of the finite difference approximation when 0r   is an 

interior or a boundary point. The computed solutions are found for all grid points incl. 

But here results are reported at some mesh points in terms of the absolute maximum error 

and are shown from table 5.1 to 5.7.  

Example 5.1 Consider       with the boundary conditions 

                                                                  

                                     , and 

                                               

The analytical solution is                  and the computed results of this example 

are shown in Table 5.1. 

Example 5.2 Consider                      with the boundary conditions 

                                                                 

                              (  
 

 
  )    , and 

                               

The analytical solution is                        and the computed results of this 

example are shown in Table 5.2. 

 Example 5.3 Consider            with the boundary conditions 

                                    

                                    (  
 

 
  )      

                                                             

The analytical solution is                         and the computed results of 

this example are shown in Table 5.3. 
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Example 5.4 Consider        (   
 

  )                   

with the boundary conditions 

                                           
  

 
               ,  

                                  (  
 

 
  ) and                      

The analytical solution is   (   
 

  )                and the computed results of 

this example are shown in Table 5.4. 

 Example 5.5 Consider                                 where 0 2    

with the boundary conditions   

                                                              

                                             

The analytical solution is                       and the computed results of this 

example are shown in Table V. 

This example was considered by M.C. Lai [64] as a test problem and our results are 

better than their results in terms of accuracy. For instance, for (8,16,16) the maximum 

absolute error in their result is 9.1438e-004 and while ours is 3.28689e-004. 

Example 5.6 Consider              , where 0 2   with the boundary conditions  

                                           , 

                         and                 

The analytical solution is            and the computed results of this example are 

shown in Table 5.6. 

Example 5.7 Consider         (   
 

  )                 where 0 2    

with the boundary conditions 

                                
  

 
               ,                      

The analytical solution is   (   
 

  )                  and the computed results of this 

example are shown in Table 5.7. 
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Table 5.1 

The maximum absolute error of example 5.1  

         Max. abs. error          Max. abs. error 

        3.51670e-005            1.37257e-006 

         1.46565e-005            4.15180e-006 

         3.53325e-005             2.45633e-006 

          2.06578e-005             1.74383e-006 

          1.13280e-005             2.45924e-006 

          1.46438e-005             1.74829e-006 

         9.21838e-006            1.35171e-006 

          5.32850e-006            7.75143e-007 

           5.46733e-006             9.82456e-007 

           3.02425e-006             1.38647e-006 

          9.27536e-006            2.34568e-006 

           3.02636e-006             7.68613e-007 
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 Table 5.2 

The maximum absolute error of example 5.2  

         Max. abs. error          Max. abs. error 

        2.93159e-003            2.98714e-003 

         2.95649e-003            7.39877e-004 

         7.32025e-004             3.31950e-004 

          7.38648e-004             3.31771e-004 

          3.27574e-004             1.86718e-004 

          1.83450e-004             1.86618e-004 

         2.95328e-003            2.98618e-003 

          2.97861e-003            2.98710e-003 

           7.44907e-004             7.46353e-004 

           3.31145e-004             3.31953e-004 

          1.84585e-004            1.84916e-004 

           1.86232e-004             1.86784e-004 

 

 

 

 

 

 

 

 

 



Numerical Solution of Poisson’s Equation  

 

127 

 

 

 Table 5.3 

The maximum absolute error of example 5.3  

        Max. abs. error          Max. abs. error 

        1.81124e-004            1.16544e-005 

         4.45263e-005            1.82484e-004 

         1.81185e-004             4.61297e-005 

          6.02480e-005             2.04978e-005 

          3.97430e-005             4.61300e-005 

          4.46327e-005             2.04979e-005 

         1.81939e-004            4.61828e-005 

          4.59426e-005            1.17058e-005 

           4.59583e-005             2.05467e-005 

           1.50833e-005             4.61879e-005 

          1.82013e-004            1.82652e-004 

           1.50852e-005             1.15493e-005 
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 Table 5.4 

The maximum absolute error of example 5.4  

        Max. abs. error          Max. abs. error 

        3.68396e-003            3.98135e-003 

         4.07400e-003            6.33780e-004 

         7.68229e-004             3.64070e-004 

          1.04366e-003             4.17368e-004 

          5.73867e-004             1.75928e-004 

          3.62888e-004             2.24720e-004 

         3.58663e-003            3.89251e-003 

          3.92179e-003            3.97355e-003 

           9.34774e-004             9.60868e-004 

           4.61633e-004             3.55183e-004 

          7.29565e-004            7.23913e-004 

           2.68695e-004             2.34933e-004 
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 Table 5.5 

The maximum absolute error of example 5.5  

        Max. abs. error          Max. abs. error 

         5.97062e-004            1.65910e-004 

          4.42157e-004            4.11093e-004 

          5.09956e-004             1.01380e-004 

           3.72361e-004             6.92680e-005 

           3.26827e-004             1.03392e-004 

           3.27891e-004             6.38312e-005 

         3.72181e-004            1.80739e-004 

          2.39220e-004            1.49613e-004 

           1.52973e-004             6.95506e-005 

           1.04227e-004             1.06985e-004 

          3.96923e-004            4.28673e-004 

           9.84850e-005             3.91182e-005 
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 Table 5.6 

The maximum absolute error of example 5.6  

        Max. abs. error          Max. abs. error 

         3.04648e-003            3.06543e-004 

          3.18297e-003            2.00777e-004 

          3.05549e-003             2.85659e-004 

           3.16606e-003             3.02059e-004 

           3.19893e-003             2.85718e-004 

           3.19459e-003             3.02122e-004 

         6.03143e-004            1.42033e-004 

          6.87721e-004            1.62951e-004 

           6.89766e-004             1.58004e-004 

           7.13568e-004             1.42553e-004 

          6.05428e-004            1.58596e-004 

           7.13712e-004             1.63583e-004 
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  Table 5.7 

The maximum absolute error of example 5.7  

        Max. abs. error          Max. abs. error 

         3.00418e-003            4.13706e-003 

          2.36262e-003            8.41886e-004 

          4.54924e-003             5.78646e-004 

           4.13088e-003             6.30456e-004 

           4.49099e-003             3.91287e-004 

           4.67590e-003             4.41870e-004 

         3.54731e-003            4.01710e-003 

          3.84938e-003            4.09806e-003 

           1.08325e-003             1.10354e-003 

           6.43373e-004             5.01257e-004 

          9.83307e-004            7.61254e-004 

           4.66590e-004             3.82100e-004 
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5.5 Conclusion 

In this work, we have transformed the three dimensional Poisson’s equation in cylindrical 

coordinates system in to a system of algebraic linear equations using its equivalent fourth  

order finite difference approximation scheme. The resulting large number of algebraic 

equation is, then, systematically arranged in order to get a block matrix. Based on the 

extension of Hockney’s method we reduced the obtained matrix in to a block tridiagonal 

matrix, and each block is solved by the help of Thomas algorithm.[30] We have 

successfully implemented this method to find the solution of the three dimensional 

Poisson’s equation in cylindrical coordinates system and it is found that the method can 

easily be applied and adapted to find a solution of some related applied problems. The 

method produced accurate results considering double precision. This method is direct and 

allows considerable savings in computer storage as well as execution speed.  

Therefore, the method is suitable to apply on some three dimensional Poisson’s 

equations. 
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CHAPTER VI  

Numerical Solution of the Three Dimensional Poisson’s 

Equation in Cylindrical Coordinates System when r=0 is an 

interior or a boundary point 

 

6.1   Introduction 

In cylindrical coordinates system (       the three dimensional Poisson’s equation given 

by  

                                
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z

r r r r z




   
   

   
                                  (6.1) 

has a wide range of application in engineering and physics especially when 0r  .  

For the numerical solution of the three dimensional Poisson’s equation in cylindrical 

coordinates system several attempts have been made for 0r  . But in particular if 0r   

is an interior point or a boundary point, the numerical solution of this equation because of 

the factors 
1

r
 and 

2

1

r
in (6.1) requires special attention.  

In this regard, for 0r   Iyengar and Manohar [102] derived fourth-order difference 

schemes for the solution of the Poisson equation which occurs in problems of heat 

transfer; Iyengar and Goyal [101] implement and compare S- and V-cycles in the 

multigrid context for the fourth-order method derived in[102]; Mittal and Gahlaut [90] 

have developed high order finite difference schemes of second and fourth order in polar 

coordinates  using a direct method similar to Hockney's method; Mittal and Gahlaut [91] 

have developed a second and fourth order finite difference scheme to solve Poisson’s 

equation  in the case of cylindrical symmetry.  To obtain a good approximate solution for 

the three dimensional Poisson’s equation in cylindrical coordinates system is not an easy 

task. 
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In this chapter, we develop a second and fourth order finite difference approximation 

scheme when 0r   is an interior point or a boundary point, and solve the resulting large 

algebraic system of linear equations.   

 

6.2   Finite Difference Approximation 

 Consider the three dimensional Poisson’s equation in cylindrical coordinates ( , , )r z

(6.1) given by 

            
2 2 2

2 2 2 2

1 1
( , , )

U U U U
f r z on D

r r r r z




   
   

   
    and                                               

                                                       ( , , ) ( , , )U r z g r z    on C                                 (6.2) 

where C is the boundary of  D ; and D  is 

  a)   1 0 1 0 1 0 1, , :  ,   ,   ,   2D r z R r R a z b               and 

  b)    2 0 1, , :  ,   ,  0 2D r z R r R a z b          

Consider figure 4.1 in chapter IV as the geometry of the problem. 

For the discretization of (6.2) we consider 0 ,ir R i r  
 0j j    

 
and 

= , 1(1) , 1(1)  and 1(1)kz a k z i M j N k P     .  

 When      in (6.2), the Poisson’s equation becomes singular and to obtain the solution 

we need a difference equation which is valid at this point.  

 As 0r   from equation (6.2), we get 

               4 2 2 (0, , )rr rr zzU U U f z            (6.3) 

Now using the idea what we have discussed in chapters IV and V for 0r  and the 

approximation scheme (6.3) when 0r   is an interior point or a boundary point, we 

develop first a second-order and then a fourth-order numerical scheme.
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CASE I     SECOND-ORDER APPROXIMATION SCHEME 

Consider the approximations  

  
2

21, , , , 1, ,

2 2

2

( )

i j k i j k i j kU U UU
O r

r r

  
  

 
 

  
2

2, 1, , , , 1,

2 2

2

( )

i j k i j k i j kU U UU
O 

 

  
  

 
       (6.4) 

  
2

2, , 1 , , , , 1

2 2

2

( )

i j k i j k i j kU U UU
O z

z z

  
  

 
 

and substituting (6.4) in (6.3) when 0r  , we get  

     

  

2 21, , , , 1, , 1, , , , 1, ,

2 2

2, , 1 , , , , 1

2

2 2
4

( ) ( )

2
2 2 (0, , )

( )

i j k i j k i j k i j k i j k i j k

i j k i j k i j k

U U U U U U
O r O r

r r

U U U
O z f z

z





   

 

      
       

    

  
    

 

  (6.5) 

But for 0r  , 0r rU U U     and since

     2 21, , , , 1, , 1, , , ,

2 2

2 2 2

( ) ( )

i j k i j k i j k i j k i j kU U U U U
O r O r

r r

    
    

 
, 

equation (6.5) becomes  

     

    

2 21, , , , 1, , , ,

2 2

2, , 1 , , , , 1

2

2 2 2 2
4

( ) ( )

2
2 2 0, ,

( )

i j k i j k i j k i j k

i j k i j k i j k

U U U U
O r O r

r r

U U U
O z f z

z





 

 

    
       

    

  
    

 

 

 

  

        

21, , 0, , 1, 1, 1, , 1, 1, 0, 1, 0, , 0, 1,

2 2 2

2 2 2, , 1 , , , , 1

2

2 2
8 2

( ) ( ) ( )

2
2 2 (0, , )

( )

j k j k j k j k j k j k j k j k

i j k i j k i j k

U U U U U U U U
O r

r r

U U U
O r O r O z f z

z





   

 

       
    

    

  
        

 

 

           (6.6) 
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Let 
2

i

i

r

r



 , 

2

2 2

( )

( )
i

i

r

r








, 

2

2

( )

( )

r

z






 and 

2

1

( )
b





; 

 truncating higher order differences of (6.6), multiplying both sides of (6.6) by 2( )r  and 

rearranging and simplifying further, we have 

 

   

2

0, , 1, , 0, ,

0, , 1 0, , 1 1, 1, 1, 1, 0, 1, 0, 1,

(4 2 ) (4 2 2 )j k j k j k

j k j k j k j k j k j k

r f b U b U

U U b U U U U



      

     

     
       (6.7) 

Since 0, , 0, 1,,j k j kU U  and 0, 1,j kU  are the same point and thus we write equation (6.7) as  

2

0, , 1, , 0, , 0, , 1 0, , 1 1, 1, 1, 1,( ) (4 2 ) (4 2 ) ( ) ( )j k j k j k j k j k j k j kr f b U U U U b U U                (6.8) 

and for 0r  , we have from chapter IV 

2

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,(1 ) (1 ) ( ) ( ) ( )i i j k i i j k i i j k i j k i j k i j k i i j k i j kU U U U U U yU r f                          (6.9) 

Now by combining (6.8) and (6.9), we get  

2

0, , 1, , 0, , 0, , 1 0, , 1 1, 1, 1, 1,

2

, , 1, , 1, , , 1, , 1, , , 1 , , 1

, ,

( ) (4 2 ) (4 2 ) ( ) ( ),

( ) (1 ) (1 ) ( ) ( )

j k j k j k j k j k j k j k

i j k i i j k i i j k i i j k i j k i j k i j k

i i j k

r f b U U U U b U U

r f U U U U U U

yU

 

   

   

     

         

        




(6.10)  

Considering equation (6.10) first in the   direction, next   direction and lastly   

direction, equation (6.2) can be put in matrix form as  

                                     A U                                                                               (6.11)        
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where 

0 0

1 1 1

2 2 2

1 1 1M M M

M M

R S

T R S

T R S
A

T R S

T R

  

 
 
 
 

  
 
 
  
 

,  

it has 1M   blocks and each block is of order    by              

where 0

B C

C B C

C B C
R

C B C

C B

 
 
 
 

  
 
 
  
 

 

and (4 2 ,4 2 , ,4 2 )B diag       ,  

      ( , , , )C diag     

0 ( , , , )S diag D D D , where 

4 2

4 2

4 2

4 2

4 2

b b

b b b

b b b
D

b b b

b b

 
 


 
 

  
 
 
   

  

For 1,2,3, ,i M  

i

i

i

i

i

i

L

L

L
R

L

L

 
 
  

  
  
 
  
   

 is of order    by        
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For domain   , 

             

i i

i i i

i i i

i

i i i

i i

y

y

y
L

y

y



 

 

 



 
 
 
 

  
 
 
  
 

                                                  (6.12)  

 

and for   , 

            

i i i

i i i

i i i

i

i i i

i i i

y

y

y
L

y

y

 

 

 

 

 

 
 
 
 

  
 
 
  
 

is a circulant matrix,                      (6.13) 

in both (6.12) and (6.13) iL  is of order  . 

 and Τ ( , , , , )diag      is of order  .     

( , , , , )i i i i iS diag ω ω ω ω  has   blocks and (1 ,1 ,...,1 )i i i idiag      ω  is of order 

  by   

( , , , , )i i i i idiagT  φ φ φ φ  has   blocks  and (1 ,1 ,...,1 )i i i idiag      φ  is of order 

  by  . 

 0 1 2

T

M B B B B  , 
1 2  3   [        ]T

i i i i iN B d d d d and 
1 2  [       ] ij i

T

j ij ijPd d d d
  

  such 

that each 
ijkd represents a known boundary values of    and values of  , and 

 1 2 3

T

MU U U U U  ,     1 2 3

T

i i i i iPU U U UU and 

 1 2 3

T

ij ij ij ij ijPU U U U U
 

We write (6.11) as          
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                                      0 0 10 0    R S U U B   

                             1 1 10 1 2 1    T R S  U U U B  

                             
1 2 2 2 3 22 R ST   U U U B  

                             
3 2 3 3 3 4 3T R S  U U U B                            (6.14)                                                              

                              

                                 
1M M M M MRT   U U B  

Now we follow the same procedure what we have done so far as in chapter IV.  

 

CASE II     FOURTH-ORDER SCHEME        

Consider the fourth-order approximations that 

                      
22

4

, ,2 2
2

, ,

1
( )

1( )
1

12

r
i j k

i j k
r

U
U O r

r r





 
  

    
    

 

                                                           

                      
22

4

, ,2 2
2

, ,

1
( )

1( )
1

12

i j k

i j k

U
U O






  

 
  

    
    

 

                    (6.15)  

  and     
22

4

, ,2 2
2

, ,

1
( )

1( )
1

12

z
i j k

i j k
z

U
U O z

z z





 
  

    
    

 

                           

Now we write (6.3) as 

   

 

1 1

2 2 4 2 2 4

, , , ,2 2

1

2 2 4

, ,2

1 1 1 1
4 1 ( ) 1 ( )

( ) 12 ( ) 12

1 1
2 1 ( ) 2 (0, , )

( ) 12

r r i j k r r i j k

z z i j k

U O r U O r
r r

U O z f z
z



   

  

 



      
                      

  
          
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   

   

1 1

2 2 4 2 2 4

0, , 0, ,2 2

1 1

2 2 2 2 4 4

0, ,2 2

1 1 1 1
4 1 ( ) 2 1 ( )

( ) 12 ( ) 12

1 1 1
1 1 ( ) ( ) 2 (0, , )

( ) ( ) 12 12

r r j k z z j k

r r r j k

U O r U O z
r z

U O r O f z
r



   

     


 

 

      
                      

    
                  

 

          (6.16) 

Truncating higher order differences of (6.16), multiplying both sides of equation (6.16) 

by 2 2 2 21 1 1
( ) 1 1 1

12 12 12
r zr   

   
      

   
,  rearranging and simplifying, we get 

2 2 2

0 0, , 1 0, 1, 0, 1, 2 0, , 1 0, , 1

3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 4 1, , 5 1, 1, 1, 1, 6 1, , 1 1, , 1

7 1, 1, 1

1
144(1 ( ) (0, , )) ( ) ( )

12

( ) ( ) ( )

(

r z j k j k j k j k j k

j k j k j k j k j k j k j k j k j k

j k

f z b U b U U b U U

b U U U U b U b U U b U U

b U

       

           

 

       

        

  1, 1, 1 1, 1, 1 1, 1, 1)j k j k j kU U U      

                                (6.17)  

   

0

1

2

3

4

5

6

7

400 240 200

32 120 20

40 12 52

4 12 10

400 240 40

40 120 4

8 24 20

4 12

b b

b b

b b

b b

b b

b b

b b

b b

















   

   

   

   

  

  

   

  

  

Since 0, , 0, 1,,j k j kU U  and 0, 1,j kU  are the same point; 0, , 1 0, 1, 1,j k j kU U   and 0, 1, 1j kU    are 

again same point; 0, , 1 0, 1, 1,j k j kU U   and 0, 1, 1j kU    are also same point thus we write 

equation (6.17) as  

2 2 2

0 1 0, , 2 3 0, , 1 0, , 1 4 1, ,

5 1, 1, 1, 1, 6 1, , 1 1, , 1 7 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1

1
144(1 ( ) (0, , )) ( 2 ) ( 2 )( )

12

( ) ( ) ( )

r z j k j k j k j k

j k j k j k j k j k j k j k j k

f z b b U b b U U b U

b U U b U U b U U U U

     

           

        

       

           (6.18) 
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and for 0r  , we have from chapter V that 

2 2 2 2

2 , , 0 , , 1 1, , 2 1, ,

3 , 1, , 1, 4 , , 1 , , 1 5 1, 1, 1, 1,

6 1, 1, 1, 1, 7 1

3
( ) 24 ( ) ( ) ( )

2

( )( ) ( )( ) ( )( )

( )( ) ( )(

r z r i j k i j k i j k i j k

i

i j k i j k i j k i j k i j k i j k

i j k i j k i

r
r f a i U a i U a i U

r

a i U U a i U U a i U U

a i U U a i U

     

       

    

 
        

 

     

   , , 1 1, , 1 8 1, , 1 1, , 1

9 , 1, 1 , 1, 1 , 1, 1 , 1, 1

) ( )( )

( )( )

j k i j k i j k i j k

i j k i j k i j k i j k

U a i U U

a i U U U U

      

       

  

   
   (6.19)     

 

Now by combining (6.18) and (6.19), we get  

2 2 2

0 1 0, , 2 3 0, , 1 0, , 1 4 1, ,

5 1, 1, 1, 1, 6 1, , 1 1, , 1 7 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1

2 2 2 2

1
144(1 ( ) (0, , )) ( 2 ) ( 2 )( )

12

( ) ( ) ( )

(6.20)

( ) 24

r z j k j k j k j k

j k j k j k j k j k j k j k j k

r z

f z b b U b b U U b U

b U U b U U b U U U U

r





   

  

 

           

        

       

    2 , , 0 , , 1 1, , 2 1, ,

3 , 1, , 1, 4 , , 1 , , 1 5 1, 1, 1, 1,

6 1, 1, 1, 1, 7 1, , 1 1, , 1

3
( ) ( ) ( )

2

( )( ) ( )( ) ( )( )

( )( ) ( )( )

r i j k i j k i j k i j k

i

i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k

r
f a i U a i U a i U

r

a i U U a i U U a i U U

a i U U a i U U

  

       

       

 
    

 

     

     8 1, , 1 1, , 1

9 , 1, 1 , 1, 1 , 1, 1 , 1, 1

( )( )

( )( )

i j k i j k

i j k i j k i j k i j k

a i U U

a i U U U U

   

       












 


   


 

Considering equation (6.20) first in the   direction, next   direction and lastly   

direction, and hence equation (6.2) can be put in matrix form as  

                                     A U                                                                               (6.21)        

where 

0 0

1 1 1

2 2 2

1 1 1M M M

M M

R S

T R S

T R S
A

T R S

T R

  

 
 
 
 

  
 
 
  
 

, it has 1M  blocks and each is of 

order NP  
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0 0

0 0 0

0 0 0

0

0 0 0

0 0

B C

C B C

C B C
R

C B C

C B

 
 
 
 

  
 
 
  
 

is of order NP  

 0 0 1 0 1 0 12 , 2 , , 2B diag b b b b b b     , 

 0 2 3 2 3 2 32 , 2 , , 2C diag b b b b b b     both are order of N  

1 1

1 1 1

1 1 1

0

1 1 1

1 1

B C

C B C

C B C
S

C B C

C B

 
 
 
 

  
 
 
  
 

is of order NP  

4 5

5 4 5

5 4 5

1

5 4 5

5 4

b b

b b b

b b b
B

b b b

b b

 
 
 
 

  
 
 
  
 

is of order N  

6 7

7 6 7

7 6 7

1

7 6 7

7 6

b b

b b b

b b b
C

b b b

b b

 
 
 
 

  
 
 
  
 

is of order N  

For 1,2,3, ,i M  
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' ''

'' ' ''

'' ' ''

'' ' ''

'' '

i i

i i i

i i i

i

i i i

i i

R R

R R R

R R R
R

R R R

R R

 
 
 
 

  
 
 
 
 
 

,  

                

"

" "

" "

" "

"

i i

i i

i i

i

i i

i

S S

S S S

S S S
S

S S S

S S

 
 

 
 

  
 
 
 
  

 

                

' "

" ' "

" ' "

" ' "

" '

i i

i i i

i i i

i

i i i

i i

T T

T T T

T T T
T

T T T

T T

 
 
 
 

  
 
 
 
 
 

 

, ,  and i i iR S T  are of order NP   

For the domain 1D   

0 3

3 0 3

3 0 3'

3 0 3

3 0

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 
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4 9

9 4 9

9 4 9"

9 4 9

9 4

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i

 
 
 
 

  
 
 
  
   

 

1 5

5 1 5

5 1 5'

5 1 5

5 1

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
S

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 

,     

 

7

7

"

7

7

( )

( )

( )

( )

i

a i

a i

S a i

a i

 
 
 
 
 
 
 
 

 

                     

  

2 6

6 2 6

6 2 6'

6 2 6

6 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i

a i a i

a i a i a i

a i a i a i
T

a i a i a i

a i a i

 
 
 
 

  
 
 
  
 

,  

 

8

8

"

8

8

( )

( )

( )

( )

i

a i

a i

T a i

a i

 
 
 
 
 
 
 
 
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For the domain 2D ,  

0 3 3

3 0 3

3 0 3'

3 0 3

3 3 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

   

   

4 9 9

9 4 9

9 4 9"

9 4 9

9 9 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
R

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

  

 

    

1 5 5

5 1 5

5 1 5'

5 1 5

5 5 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
S

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

,      

    

7

7

"

7

7

( )

( )

( )

( )

i

a i

a i

S a i

a i

 
 
 
 
 
 
 
 
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2 6 6

6 2 6

6 2 6'

6 2 6

6 6 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i

a i a i a i

a i a i a i

a i a i a i
T

a i a i a i

a i a i a i

 
 
 
 

  
 
 
  
 

,      

    

8

8

"

8

8

( )

( )

( )

( )

i

a i

a i

T a i

a i

 
 
 
 
 
 
 
    

Here in 2D , the matrices , , , , , and i i i i i iR R S S T T      are circulant matrices of order N ; and 

 0 1 2

T

M B B B B  , 
1 2  3   [        ]T

i i i i iN B d d d d and 
1 2  [       ] ij i

T

j ij ijPd d d d
  

  such 

that each 
ijkd represents a known boundary values of    and values of  , and 

 0 1 2

T

MU U U U U  ,     1 2 3

T

i i i i iPU U U UU and 

 1 2 3

T

ij ij ij ij ijPU U U U U
 

 

We write (6.21) as                 0 0 0 1 0    R S U U B  

                                     1 1 10 1 2 1    T R S  U U U B  

                                     2 1 2 2 2 3 2T R S  U U U B  

                                      3 2 3 3 3 4 3T R S  U U U B                                                     (6.22)                                                               

                                  

                                       1  M M M M MT R  U U B  

Now we follow all the procedure what has been done in Chapter V. 
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6.3    Numerical Results 

In order to test the efficiency and adaptability of the proposed method, computational 

experiments are done on two selected problems that may arise in practice, for which the 

analytical solutions of   are known to us. The computed solutions are found for all grid 

points in both second order and fourth-order schemes. But here results are reported at 

some mesh points in terms of the absolute maximum error and are shown in table 6.1 and 

6.3 for second order approximations and in tables 6.2 and 6.4 for fourth order 

approximation .  

Example 6.1 Consider            with the boundary conditions 

                       (                            (             

                 (           (       , and 

                 (               (              

The analytical solution is  (                and the computed results of this 

example are shown in Table 6.1 and 6.2 

Example 6.2 Consider            (      (    with the boundary conditions 

                  (               (           (      (    

            (          (  
 

 
  )    , and 

            (             (           (    
 

 
)    

The analytical solution is  (             (      (    and the computed results of this 

example are shown in Table 6.3 and 6.4. 
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Table 6.1 

          The maximum absolute error of example 6.1 for second order scheme 

 (       Max. abs. error  (       Max. abs. error 

(       2.51924e-004  (         2.83122e-005 

(        2.57e-004  (         2.91765e-005 

(        2.6086e-004  (          2.87145e-005 

(         2.59295e-004  (          2.86698e-005 

(         2. 59459e-004  (          2.82675e-005 

(         2.60338e-004  (          2.96831e-005 

(        6.44475e-005  (         1.55121e-005 

(         6.42538e-005  (         1.61678e-005 

(          6.44773e-005  (          1.54823e-005 

(          6.44177e-005  (          1.67638e-005 

(         6.42091e-005  (         1.56909e-005 

(          6.53267e-005  (          1.65403e-005 

 

 

 

 

 

 

 

 

 



Numerical Solution of Poisson’s Equation  

 

149 

 

 

Table 6.2 

        The maximum absolute error of example 6.1 for fourth-order scheme 

 (       Max. abs. error  (       Max. abs. error 

(       1.32542e-004  (         2.83122e-005 

(        1.67253e-004  (         1.48821e-005 

(        1.82314e-004  (          1.43577e-005 

(         1.34261e-004  (          1.43349e-005 

(         1.17898e-004  (          1.41388e-005 

(         1.06752e-004  (          1.48151e-005 

(        3.21189e-005  (         1.22061e-005 

(         3.36108e-005  (         1.31834e-005 

(          3.37823e-005  (          1.27411e-005 

(          3.84921e-005  (          1.45328e-005 

(         3.90121e-005  (         1.43206e-005 

(          3.95478e-005  (          1.44301e-005 
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 Table 6.3 

                 The maximum absolute error of example 6.2 for second-order scheme 

 (       Max. abs. error  (       Max. abs. error 

(       1.17818e-003  (         1.58485e-004 

(        1.18044e-003  (         1.36197e-004 

(        1.16232e-003  (          1.32054e-004 

(         1.1647e-003  (          1.33336e-004 

(         1.16095e-003  (          1.38773e-004 

(         1.16116e-003  (          1.31696e-004 

(        3.16888e-004  (         1.0258e-004 

(         3.17872e-004  (         1.01089e-004 

(          2.96772e-004  (          7.88867e-005 

(          2.9245e-004  (          7.39098e-005 

(         2.9096e-004  (         7.24792e-005 

(          2.90751e-004  (          7.14064e-005 
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Table 6.4 

                 The maximum absolute error of example 6.2 for fourth-order scheme 

 (       Max. abs. error  (       Max. abs. error 

(       1.1213e-004  (         1.78325e-005 

(        1.13739e-004  (         1.76276e-005 

(        1.13923e-004  (          1.72107e-005 

(         1.13947e-004  (          1.69578e-005 

(         1.14609e-004  (          1.65938e-005 

(         1.14821e-004  (          1.60254e-005 

(        6.43336e-005  (         1.57034e-005 

(         6.67782e-005  (         1.50069e-005 

(          6.79586e-005  (          1.20564e-005 

(          6.85401e-005  (          1.17830e-005 

(         6.90615e-005  (         1.0412e-005 

(          6.90758e-005  (          1.00231e-005 
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6.5 Conclusion 

In this work, we have transformed the three dimensional Poisson’s equation in cylindrical 

coordinates system when 0r   is an interior point or a boundary point in to a system of 

algebraic linear equations using its equivalent second and fourth-order finite difference 

approximation scheme. The resulting large number of algebraic equation is, then, can be 

solved by following the same procedure as in chapters IV and V.   

We have successfully implemented this method to find the solution of the three 

dimensional Poisson’s equation in cylindrical coordinates system when 0r   is an 

interior point or a boundary point and it is found that the method can easily be applied 

and adapted to find a solution of some related applied problems. The method produced 

accurate results considering double precision.  

This method is direct and allows considerable savings in computer storage as well as 

execution speed.  
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CHAPTER VII 

Efficient Numerical Solution of the Biharmonic Equation of 
the Second Kind in Cartesian Coordinates System   

 

 

7.1   Introduction 

Consider the biharmonic equation on a domain D  

                                  4 ( ),U f P                                                                             (7.1) 

where P  is a point in the domain D , with two types of boundary conditions. 

 In the first case with the Dirichlet boundary conditions 

                    1( ) ( )                  PU P f P D   

                    2

( )
( )              P

U P
f P D

n


 


                                                             (7.2) 

(where 
( )U P

n




 is the normal to the boundary derivative), which we call the first kind 

problem and in the second case with the Dirichlet boundary conditions    

                              1( ) ( )               PU P f P D      

                           
2

22

( )
( )              P

U P
f P D

n


 


                                                     (7.3) 

which we will refer to as the second kind problem. 

Attempts are made by different workers to solve (7.1) with the boundary conditions (7.2) 

or (7.3) in two or three dimensional Cartesian coordinates system. 

For instance, in two dimensional Cartesian coordinates system Buzbee and Dorr [12] 

have developed a direct solution method based on matrix decomposition; Smith [12], [13] 

has developed a numerical solution method based on coupled equation approach using 

finite difference method; Altas et al [35] have derived a family of finite difference 

approximation using a symbolic algebra package; McLaurin [44] have developed a 
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method based on reducing to a coupled system of Poisson equations, which depends upon 

an arbitrary, positive coupling constant 0c  ; Stephenson [45] has established a second 

and a fourth  order approximation schemes; Ehrlich [56],  has described a semi-direct 

method for solving the biharmonic equation in a square using a coupled pair of finite 

difference equations based on a general block SOR method; Ehrlich and Gupta [58] have 

developed several finite difference schemes for solving the coupled Poisson equations 

obtained by splitting the biharmonic equation; Arad et al  [61] have derived the high-

order accuracy discretization scheme using the symbolic operator procedure ; Lai and  

Liu [63] developed a simple and efficient FFT-based fast direct solver for the biharmonic 

equation on a disk by splitting into a coupled system of harmonic problems using  the 

truncated Fourier series expansion to derive a set of coupled singular ODEs, and solving 

those singular equations by second-order finite difference discretization; Dehghan and 

Mohebbi [73] have derived a method by combining compact finite difference schemes 

with multigrid method and Krylov iteration methods preconditioned by multigrid for the 

second biharmonic equation; Gupta [77] has examined the discretization error of the 

finite difference scheme by splitting the first biharmonic boundary value problems; 

Gupta and Manohar [78] have tried to solve the problem directly without splitting it in to 

two Poisson’s equation and much more progresses has been observed in this dimension. 

For the three dimensional biharmonic equation, for instance Khattar et al [18]  derive a  

fourth order finite difference approximation based on arithmetic average discretization 

for the solution of three-dimensional non-linear biharmonic partial differential equations 

on a 19-point compact stencil using coupled approach; Altas et al [34] considered several 

finite-difference approximations using a symbolic algebra package to derive a family of 

finite difference approximations for the biharmonic equation on a 27 point compact 

stencil; Dehghan and Mohebbi  [72] have developed a multigrid solution of high order   

(second and fourth-order approximations on a 27 point compact stencil) discretization; 

Mohanty et al [95] developed a higher order compact difference scheme, which is  4O h , 

using coupled approach on the 19 point 3D stencil for the solution of non-linear 

biharmonic equation; and other contributions have been made in developing schemes and 

methods. 
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                                                                                Numerical Solution of Biharmonic equation 

In this chapter we examine a finite difference scheme for solving the biharmonic equation 

(7.1) along with the Dirichlet boundary condition of the second kind in two and three 

dimensions.  

In the first part we consider the two dimensional biharmonic equation and in the second 

part the three dimensional one. 

 

7.2   Linear Biharmonic Equation 

Part 1 :   Two Dimensional Biharmonic Equation 

Consider the two dimensional biharmonic equation on a rectangular domain D  

                 
4 4 4

4 2 2 4
2 ( , ),    ( , )

U U U
f x y x y D

x x y y

  
   

   
                                            (7.1a) 

where {( , ) : 0 , 1}D x y x y   with the second Dirichlet boundary conditions    

                           1( , ) ( , )                  ( , )U x y f x y x y D      

                           
2

22

( , )
( , )              ( , )

U x y
f x y x y D

n


 


                                          (7.3a) 

Using the splitting method where the biharmonic equation (7.1a) is replaced by 

introducing an auxiliary variable 
2( , ) ( , )v x y U x y  and splitting the biharmonic 

equation into a coupled system of two dimensional Poisson equations, 

                      

                 

2

2

( , ) ( , )

( , ) ( , )

v x y f x y

U x y v x y

 

 
                                                                 (7.4) 

This means that we are transferring the two dimensional biharmonic equation with the 

given boundary conditions in to its equivalent coupled Poisson equations.  

Since the grid lines are parallel to coordinate axes and the values of U are exactly known 

on the boundary, and this implies, the successive tangential partial derivatives of U are 

known exactly on the boundary. For example, on the side 0y  , the values of ( ,0)U x and 

( ,0)yyU x are known, i.e. the values of ( ,0)xU x , ( ,0)xxU x  are known on the side 0y  .  
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This implies, the values of  ( ,0)U x  and  

                       2 ( ,0) ( ,0) ( ,0)xx yyU x U x U x   are known on the side 0y  . 

Similarly, the values of U and 2U are known on all sides of the rectangular region D .  

Therefore, (7.1a) is reformulated as   

                            
2 2

2

2 2
( , ) ( , )                 ( , )

U U
U x y v x y x y D

x y

 
    

 
                        (7.5a)            

 

     

2 2
2

2 2
( , ) ( , , , , , , , )          ( , )x x y y

v v
v x y f x y U v U v U v x y D

x y

 
    

 
                       (7.5b)                                                                           

with the Dirichlet boundary conditions  

                                                1( , ) ( , )              ( , )U x y f x y x y D   

                                                ( , ) ( , )                 ( , )v x y g x y x y D                           (7.5c) 

7.3   Finite Difference Approximation 

Let h  be the mesh step size along the  - and  -directions, and let    be the central 

difference operator, and we know that  

                  
12

2 2 2 4

2

1
1

12
x xh O h

x
 


  

   
  

                                                               (7.6) 

Using (7.6) in (7.5b), we have 

             
1 1

2 2 2 2 4

, ,2 2

1 1 1 1
1 1

12 12
x x y y i j i jO h v f

h h
   

     
             

                        (7.7) 

where                            

    
1 1

2 2 2 2 2 2 4 2

, ,

1 1 1 1
1 1 1 1

12 12 12 12
x y x y y x i j i jO h v h f     

 
        

              
        

(7.8)

 

Simplifying (7.8) further, we get 
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 2 2 2 2 2 2 2 2 2

, ,

1 1 1
1

6 12 144
x y x y i j x y x y i jv h f       

   
        

   

                    

(7.9)  

Using the central difference approximation scheme, omitting the last term in the right 

hand side and simplifying (7.9) further we get,

  1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1 ,4 20i j i j i j i j i j i j i j i j i jv v v v v v v v v F                                    (7.10a) 

                    where  
2

, 1, 1, , 1 , 18
2

i j i j i j i j i j

h
F f f f f f          

Similarly, by applying the same principle as above to (7.5a), we get  

 

 1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1 ,4 20i j i j i j i j i j i j i j i j i jU U U U U U U U U G                          (7.10b)   

          where   
2

, 1, 1, , 1 , 18
2

i j i j i j i j i j

h
G v v v v v       

      

Taking first the  -direction and next  -direction in (7.10) we get a large system of 

equations (the number of equations actually depend on the values of    and  ), and these 

systems of equations can be written in matrix form as  

                                              AV                                                              (7.11)        

where   

R S

S R S

S R S
A

S R S

S R

 
 
 
 

  
 
 
  
   

  

it has N blocks and each block is of order  , and 

20 4

4 20 4

4 20 4

4 20 4

4 20

R

 
 


 
 

  
 
 
   

,     

4 1

1 4 1

1 4 1

1 4 1

1 4

S

 
 
 
 

  
 
 
  
 
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  and   are each of order  , 

 1 2 3     ... 
T

NV V V V V where  1 2 3     ... 
T

i i i i iNV v v v v and  

 1 2 3     ... 
T

NB B B B where  1 2 3     ... 
T

i i i i iNB b b b b .   

Now by applying Hockney’s method we solve (6.11). 

7.4   Hockney’s Method 

Observe that the matrices   and   are real symmetric matrices and hence their 

eigenvalues and eigenvectors can easily be obtained. [30] 

Note that the eigenvalues of    and   are given by    

        20 8cos
1

i

i

M




 
    

 
   and     

         4 2cos
1

i

i

M




 
   

 
    

Let iq be an eigenvector of   and   corresponding to the eigenvalues    and         

1,2, ,i M  respectively, and   be the modal matrix  1 2 3   ... 
T

Mq q q q  of the matrix   

and   of order   such that         ,  

                       (             )    (say), and 

                       (             )    (say)      

 Let            V    V   T

j j j jQ T QT        

                   T

j j j jQ B B Q  b b                                                                           (7.12)                                              

  where  1 2    [      ] ,T

j j j MjT w w w    and  1 2    [      ]T

j j j Mj   b  1,2,...,j N . 

Equation (7.11) can be written in terms of the matrices   and   as        
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                                                                                                          (7.13)                                                     

             

                                       

Pre multiplying (7.13) by      and using (7.12), we get 

                              1 2 1ΦT T   b  

                     1 2 3 2Φ ΦT T T   b  

                     2 3 4 3Φ ΦT T T   b                                                                            (7.14)                                                                  

        

   N 1Φ N NT T   b  

Now we write (7.14) starting from the first equation i.e. 1 2 1Φ  T T   b as  

                                         

                                         

                                                                                                              (7. 15a) 

                                              … 

                                                 

The second equation i.e. 1 2 3 2Φ ΦT T T   b again can be written as 

                                            

                                                 

                                                                                                    (7. 15b) 

                                        … 
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And the last equations i.e.   
N 1Φ N NT T   b be written as 

                           (   )            

                           (   )                 

                            (   )                                                                          (7. 15c) 

                                         … 

                         (   )            

Now we arrange (7.15) as follows: 

Firstly we take the first equations from each of (7.15a), (7.15b) and (7.15c) and write as 

one set of group of equations 

                                                         

                                                

                                                                                                      (7.16a) 

                                                  … 

                                      (   )            

Again collect the second equations from each of  (7.15a), (7.15b) and (7.15c) 

                                                        

                                                    

                                                                                                   (7.16b) 

                                                    … 

                                     (   )            

Keep on doing for all groups of equations and for the last equations, we get 

                                                   

                                         

                                                                                             (7.16c) 

                                             … 

                                    (   )            

As can be seen from the above set of equations, all groups have the same matrix form 
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i i

i i i

i i i

i

i i i

i i

 

  

  

  

 

 
 
 
 

  
 
 
  
 

  1,2,...,i M  of order N . 

Thus, equation (7.13) reduces to 

                   

1 1

2 2

3 3

i

i

i

i N N

T B

T B

T B

T B

   
   
   
    
   
   

    
      

                                              (7.17) 

We can easily observe that (7.13) reduces to the matrix (7.17) which is a tridiagonal 

matrix and we solve this system for 
,i jw by the use of Thomas Algorithm [30], and once 

after getting 
,i jw

 
by the backward substitution and make use of (7.12)  we get the solution 

for 
ijv . 

Now we use these values of 
ijv  as the right hand side of (7.10b) and we apply the same 

procedure as previous to solve the Poisson’s equation in terms of U .  

This solves the given two dimensional biharmonic equation as desired. 

 

 7.5.1   Numerical Results for Two Dimensional Biharmonic Equations 

In order to test the efficiency and adaptability of this method in two dimensional 

biharmonic problems, a computational experiment is done on three linear biharmonic 

problems of the second kind for which the analytical solutions of U  are known to us. The 

computed solutions are displayed in terms of maximum absolute error for some grid 

points but results are available for all grid points. It is shown that the method produces 

accurate results.  
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Example 7.1 Consider the biharmonic equation of the second kind on the unit square  

                      where the exact solution ( , ) 1U x y  . The forcing term f  and boundary   

                      data 
1f and 

2f  can be obtained from exact solution. 

Table 7.1 

The maximum absolute error for U and 2U  of example 7.1 

h  U  2U  

0.01 1.76081e-013 0 

0.02 2.77556e-014 0 

0.04 1.66533e-014 0 

0.05 4.21885e-015 0 

0.1 1.55431e-015 0 

 

 

Example 7.2 Consider the biharmonic equation of the second kind on the unit square  

                      where the exact solution   ( , ) 1 cos2 1 cos2U x y x y    . The   

                      forcing term f  and boundary data 1f and 2f  can be obtained from the      

                      exact solution. 

Table 7.2 

The maximum absolute error for U and 2U  of example 7.2 

h  U  2U  

0.01 6.40764e-004 2.75741e-006 

0.02 2.50084e-003 4.41543e-005 

0.04 9.54848e-003 7.02282e-004 

0.05 0.0146972 1.72793e-003 

0.1 0.0554526 0.0281114 
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Example 7.3 Consider the biharmonic equation of the second kind on the unit square  

                      where the exact solution ( , ) sin sinU x y x y  . The forcing term f  and  

                       boundary data 
1f and 

2f  can be obtained from the exact solution. 

Table 7.3 

The maximum absolute error for U and 2U  of example 7.3 

h  U  2U  

0.01 5.41107e-009 5.34052e-008 

0.02 8.65655e-008 8.54367e-007 

0.04 1.37861e-006 1.36063e-005 

0.05 3.37726e-006 3.33323e-005 

0.1 5.37909e-005 5.30902e-004 

 

 

Part II  :   Three Dimensional Biharmonic Equation 

Consider the three dimensional biharmonic equation on a cube D given by                            

 
4 4 4 4 4 4

4 4 4 2 2 2 2 2 2
2 2 2 ( , , ),    ( , , )

U U U U U U
f x y z x y z D

x y z x y x z z y

     
      

        
         (7.18) 

with the second kind Dirichlet boundary condition 

                1( , , ) ( , , )               ( , , )U x y z f x y z x y z D      

            
2

22

( , , )
( , , )              ( , , )

U x y z
f x y z x y z D

n


 


                                               (7.19) 

Using the splitting method where the biharmonic equation (7.18) is replaced by 

introducing an auxiliary variable ( , , ) ( , , )v x y z U x y z   and splitting the biharmonic 

equation into a coupled system of three dimensional Poisson’s equations, 

                                      

2 ( , , ) ( , , )v x y z f x y z                                                            (7.20) 

                                    
2 ( , , ) ( , , )U x y z v x y z   
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i.e. the biharmonic equation with the given boundary conditions of the second kind is 

equivalent to the Dirichlet problems for two Poisson’s equations of three dimensions. 

Since the grid lines are parallel to coordinate axes and the values of U are exactly known 

on the boundary, and this implies, the successive tangential partial derivatives of U are 

known exactly on the boundary. For example, on the plane 0y  , the values of ( ,0, )U x z

and ( ,0, )yyU x z are known, i.e. the values of ( ,0, )xU x z , ( ,0, )xxU x z , ( ,0, )zU x z , 

( ,0, )zzU x z , … are known on the plane 0y  . This implies, the values of  ( ,0, )U x z  and  

2 ( ,0, ) ( ,0, ) ( ,0, ) ( ,0, )xx yy zzU x z U x z U x z U x z   
 
are known on the plane 0y  . 

Similarly, the values of U and 2U are known on all plane sides of the cubic region D .  

Therefore, the biharmonic boundary value problem is reformulated as   

               
2 2 2

2

2 2 2
( , , ) ( , , )          ( , , )

v v v
v x y z f x y z x y z D

x y z

  
     

                       

(7.21)        

             
2 2 2

2

2 2 2
( , , ) ( , , )                 ( , , )

U U U
U x y z v x y z x y z D

x y z

  
     

  
          (7.22)                         

 

with the Dirichlet boundary conditions  

                            1( , , ) ( , , )              ( , , )U x y z f x y z x y z D   

                            ( , , ) ( , , )                 ( , , )v x y z g x y z x y z D                                  (7.23)           

Now the given biharmonic equation is transformed to coupled Poisson’s equation and we 

find the solution of the coupled equation first for the auxiliary variable v  in (7.21) and 

using this value of v  then for U in (7.22); this solves the given biharmonic equation 

(7.18).  

Here to solve for v  in (7.21) we directly use the fourth order finite difference 

approximation method especially the 19-point stencil scheme developed in chapter III 

with the boundary conditions (7.23). 
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Thus the Poisson’s equation (7.21) be written using the 19-point stencil approximation 

scheme   

   

 

, , 1, , 1, , , 1, , 1, , , 1 , , 1

1, , 1 1, , 1 1, , 1 1, , 1 , 1, 1 , 1, 1 , 1, 1 , 1, 1

1, 1, 1, 1,

(32 16 ) (6 2 ) (8 4)

(1 )

2

i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k i j k i j k

i j k i j k i

r v r v v v v r v v

r v v v v v v v v

v v v

     

               

   

         

        

   

 

1, 1, 1, 1,

2 2 2 2

1 , ,

1
                                     =12 1

12

j k i j k

x y z i j k

v

h f  

   

 
   

    (7.24) 

Now we solve these systems of linear equations (7.24) for v by the method developed 

there. 

Once if we get v then we consider the values of v as the right hand side of (7.22), write 

this Poisson’s equation (7.22) using the 19-point stencil approximation scheme and we go 

to find the solution of U in (7.22). 

Thus, we will have the Poisson’s equation as  

   

 

, , 1, , 1, , , 1, , 1, , , 1 , , 1

1, , 1 1, , 1 1, , 1 1, , 1 , 1, 1 , 1, 1 , 1, 1 , 1, 1

1, 1, 1, 1,

(32 16 ) (6 2 ) (8 4)

(1 )

2

i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k i j k i j k

i j k i j k i

r U r U U U U r U U

r U U U U U U U U

U U U

     

               

   

         

        

   

 

1, 1, 1, 1,

2 2 2 2

1 , ,

1
                                     =12 1

12

j k i j k

x y z i j k

U

h v  

   

 
   

 

                                                                                                                          

                                                                                                                                (7.25) 

We solve these systems of equations (7.25) for U  as we have solved v in the case above. 

Thus, the boundary value problem (7.18) with the given Dirichlet boundary condition of 

the second kind is solved as desired.  
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7.5.2   Numerical Results for Three Dimensional Biharmonic Equations 

In order to test the efficiency and adaptability of this method in three dimensional 

biharmonic problems, a computational experiment is done on two linear biharmonic 

problems of the second kind for which the analytical solutions of U  are known to us. The 

computed solutions are displayed in terms of maximum absolute error for some grid 

points but results are available for all grid points. It is shown that the method produces 

accurate results.  

Example 7.4 Consider the biharmonic equation of the second kind on a cube where the  

                      exact solution ( , , ) sin sin sinU x y z x y z   . The forcing term f and  

                      boundary data 1f and 2f  can be obtained from the exact solution. 

Table 7.4 

The maximum absolute error for U of example 7.4 

        Maximum Absolute error         Maximum Absolute error 

    9       9 9.49352e-003 29     9 7.78734e-004 

9      19 9.30127e-003 29    19 2.62716e-004 

9      29 9.28032e-003 29    29 1.22990e-004 

9      39 9.27483e-003 29    39 1.22952e-004 

   19      9 2.10435e-003 39     9 3.69283e-004 

19     19 6.16428e-004 39    19 1.35733e-004 

19      29 6.15533e-004 39    29 6.76903e-005 

19     39 6.15286-004  39   39 3.90621e-005 

 

Example 7.5   Consider the three dimensional biharmonic equation with exact solution         

                        ( , , ) (1 cos2 )(1 cos2 )(1 cos2 )U x y z x y z       on a unit cube. The  

                         forcing term f  and boundary data 1f  can be obtained from the exact  

                         solution and the second boundary data 2f   is as follows:  
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            
2

2

2
4 cos 2 1 cos 2 1 cos 2          0,     ( , )xx

U
U x y z x y z D

n
   


       


 

            
2

2

2
4 cos 2 1 cos 2 1 cos 2          1,     ( , )xx

U
U x y z x y z D

n
   


     


 

            
2

2

2
4 cos 2 1 cos 2 1 cos 2          y 0,     ( , )yy

U
U y x z x z D

n
   


       


 

           
2

2

2
4 cos 2 1 cos 2 1 cos 2          y 1,     ( , )yy

U
U y x z x z D

n
   


     


 

           
2

2

2
4 cos 2 1 cos 2 1 cos 2           0,     ( , )zz

U
U z x y z x y D

n
   


       


 

           
2

2

2
4 cos 2 1 cos 2 1 cos 2          1,     ( , )zz

U
U z x y z x y D

n
   


     


 

Table 7.5 

The maximum absolute error of example 7.5 

        Maximum Absolute error         Maximum Absolute error 

    9       9 0.0521407   29      9 0.0654526 

9      19 0.0730145 29    19 0.0526271 

9      29 0.0911132 29    29 0.0516799 

9      39 0.0987464 29    39 0.0512763 

   19      9 0.0643510 39     9 0.0438912 

19     19 0.0716329 39    19 0.0413573 

19      29 0.0617234 39    29 0.0406761 

19     39 0.0635286  39   39 0.040124 
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7.6   Non-Linear Biharmonic Equation 

Consider the two or three dimensional non-linear biharmonic boundary problem given by  

                               4 ( )   U f U           on D                                                             (7.26) 

where ( )f U is a non-linear function, with the second Dirichlet boundary conditions    

                           
1                   U f   on D   

                           
2

22
             

U
f

n





    on D                                                              (7.27)

 

To solve (7.26) with the given boundary conditions (7.27) first we reformulate (7.26) 

as coupled Poisson’s equations, and write equation (7.26) as 

                                        

2

2

( )

              

v f U

U v

 

                                                                (7.28) 

To find the solution of the biharmonic problem we assume an initial guess for  U  say

(0)U
 
in (7.28). 

Now we iterate as follows: 

                              
2 ( ) ( )

2 ( 1) ( )

( )

                   0,1,2,...

n n

n n

v f U

U v n

 

  
                                        (7.29) 

We start with 0n  .  

By using the method developed in the previous part we solve for the first equation of 

(7.29) and get  say (0)v , again we solve by the same method for U  in the second 

equation of (7.29) and get say (1)U . Therefore, equation (7.29) becomes 

                                
2 (1) (1)

2 (2) (1)

( )v f U

U v

 

 
                                                                       (7.30) 
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In the second iteration again we repeat this process to solve for (1)v  in the first 

equation of (7.30) using the new (1)U and get say (2)v ; with this (2)v once again using 

the second equation of (7.30) we solve for (2)U . Therefore (7.29) becomes  

                                         
2 (2) (2)

2 (3) (2)

( )v f U

U v

 

 
                                                             (7.31) 

We keep on doing up to some iteration steps say it and get 
itU ; at each stage of the 

iteration we check whether the convergence condition is satisfied or not. 

i.e. 1it itU U    where  is the measure of the convergence.  

If the convergence criterion is satisfied, then we stop the process and itU will be a 

solution to the biharmonic problem.  

Example 7.6   Consider the non-linear biharmonic equation 4 21U U   in a unit square                          

                         region i.e. {( , ) : 0 , 1}D x y x y   with the exact solution ( , ) 1U x y  .   

                        The   convergence condition here is 1.0e-010. 

Table 7.6 

The maximum absolute error of example 7.6 

h  U  

0.01 1.82675e-007 

0.02 2.44147e-006 

0.04 9.73538e-006 

0.05 1.52481e-005 

0.1 6.08285e-005 
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Example 7.7   Consider the non-linear biharmonic equation 4 21U U   in a unit cube   

                       i.e. {( , ) : 0 , , 1}D x y x y z   with the exact solution ( , ) 1U x y  . The    

                       convergence condition here is 1.0e-010. 

Table 7.7 

The maximum absolute error of example 7.7 

h  U  

0.01 2.49637e-007 

0.02 7.44147e-006 

0.04 3.52438e-005 

0.05 5.33341e-006 

0.1 9.14263e-005 

 

Example 7.8 Consider the non-linear biharmonic equation  4 44 x yU U U U    in a   

                      unit square region i.e. {( , ) : 0 , 1}D x y x y   with the exact solution    

                      ( , ) sin sinU x y x y  . The convergence condition here is 1.0e-010. 

        

  Table 7.8 

The maximum absolute error of example 7.8 

h  U  

0.01 4.72314e-004 

0.02 5.93628e-004 

0.04 8.02736e-004 

0.05 9.39247e-004 

0.1 9.72369e-004 
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7.7   Conclusion 

In this work, by using splitting method we have transformed the two or three dimensional 

biharmonic equation of the second kind in Cartesian coordinates system in to two 

Poisson’s equation in two or three dimensions. These two Poisson’s equations by using 

their equivalent fourth order finite difference approximation schemes converted in to a 

system of algebraic linear equations. The resulting large number of linear algebraic 

equation is, then, systematically arranged in order to get a block matrix. Based on 

Hockney’s method we reduced the obtained matrix in to a block tridiagonal matrix, and 

each block is solved by the help of Thomas algorithm [30]. We have successfully 

implemented this method to find the solution of the two or three dimensional linear or 

non-linear biharmonic equation in Cartesian coordinates system. The method produces 

good results and comparable with the results obtained in the literature. This method is a 

direct one and it allows considerable savings in computer storage as well as execution 

speed.  
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CHAPTER VIII 

        Conclusion and Future Plan 
 

 

The aim of this work is to find efficient numerical solutions for the three dimensional 

Poisson’s equation in Cartesian/ Cylindrical coordinates system and for the two/three 

dimensional biharmonic equation in Cartesian coordinates system.  

In Chapter II we have transformed the three dimensional Poisson’s equation in Cartesian 

coordinates system in to a system of algebraic linear equations using its equivalent 

second order finite difference approximation scheme. The resulting large number of 

algebraic equation is, then, systematically arranged in order to get a block matrices. 

Based on the extension of Hockney’s method we reduced the obtained matrices in to 

block tridiagonal matrices, and each block is solved by the help of Thomas algorithm 

[30] and we use backward substitution to get the solution for 
, ,i j kU .  

We have successfully implemented this method to find the solution of the three 

dimensional Poisson’s equation in Cartesian coordinates system. It is found that the 

method can easily be applied and adapted to find a solution for problems of this kind and 

produce accurate results considering double precision.  

In Chapter III the three dimensional Poisson’s equation in Cartesian coordinates system is 

approximated by two different fourth order finite difference approximation schemes, the 

19-points and 27- points stencil schemes. In both schemes the systems of linear 

equations, then, arranged in order to get a block matrices; these block matrices are 

reduced to  block tridiagonal matrices by extending Hockney’s method, and by the help 

of Thomas Algorithm we obtained the solution of the system and we go back to get the 

solution for 
, ,i j kU .  

It is found that both fourth order approximation methods produced accurate results for the 

test problems. Actually it is shown that the discussed method, in general, for 27-points 

scheme produces better results (though the computational cost is high) than 19-points 
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scheme but 19-points scheme has also shown comparable results to 27-points scheme. 

Therefore, this method is suitable to find the solution of any three dimensional Poisson’s 

equation with the given boundary conditions in Cartesian coordinates system. 

In Chapter IV the three dimensional Poisson’s equation in cylindrical coordinates system 

is approximated by its equivalent second order finite difference approximation scheme. 

Here also we have applied the same technique as in the previous chapters, and we have 

successfully implemented the method to find the solution of the three dimensional 

Poisson’s equation in cylindrical coordinates system. The method produced accurate 

results considering double precision and it is found that the method can easily be applied 

and adapted to find a solution of some related applied problems.  

In Chapter V, the three dimensional Poisson’s equation in cylindrical coordinates system 

is approximated by its equivalent fourth order finite difference approximation scheme, 

19-point stencil scheme derived directly. Here we have also applied the same technique 

as in the previous chapters, and we have successfully implemented the method to find the 

solution of the three dimensional Poisson’s equation in cylindrical coordinates system. 

The method produced accurate results considering double precision and it is found that 

the method can easily be applied and adapted to find a solution of some related applied 

problems. 

In Chapter VI, the three dimensional Poisson’s equation in cylindrical coordinates system 

when 0r  is an interior or a boundary point is considered. We approximated by its 

equivalent second and fourth-order appropriate finite difference approximation scheme 

and by combining the difference scheme obtained in chapters IV and V we have 

successfully implemented the method to find the solution of the three dimensional 

Poisson’s equation in cylindrical coordinates system. The results obtained are accurate. 

In Chapter VII by using splitting method we have transformed the two or three 

dimensional biharmonic equation of the second kind in Cartesian coordinates system in to 

two Poisson’s equation in two or three dimensions. For the two dimensional biharmonic 

equation we have established how to apply Hockney’s method while for the three 

dimensional case when the forcing function f is linear we have solved the Poisson’s 
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equations by using the method developed in Chapter III directly; and when f  is non-

linear we have used the iterative method by assuming an initial guess for U . The method 

produced good results as in the literature. 

In general, the main advantage of these methods is that we have used a direct method to 

solve the Poisson’s equation and the biharmonic boundary value problem of the second 

kind for which the error in the solution arises only from rounding off errors; and the 

methods allow considerable savings in computer storage as well as execution speed, that 

is, it reduces the number of computations and computational time.  

For future work,  

- To work on more practical applied problems that use biharmonic equations in 

solid mechanics, fluid mechanics and other engineering problems. 
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