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Introduction

Partial differential equations are used in modeling of many physical, chemical and biological
phenomena, besides these its uses have also spread into financial forecasting, image processing,
economics and other fields as well. There are many theoretical results on existence and unique-
ness, but only the simplest specific problems can be solved explicitly. Since limited classes of the
equations are solved by analytical means, we usually construct approximate numerical solution
of these differential equations especially nonlinear one, which is of practical importance. Various
numerical techniques have been promulgated for finding the solution of partial differential equa-
tions among which the two most popular are (a) finite difference method and (b) finite element
method.

Spline is a numeric function that is piecewise defined by polynomial functions and which
possesses a sufficiently high degree of smoothness at the places where the polynomial pieces are
connected. The first mathematical reference to splines was made in the year 1946 in an interest-
ing paper by Schoenberg [1], which is probably the first place that the word “spline” is used in
connection with smooth, piecewise polynomial approximation. Splines have many implementa-
tions in the numerical solution of a variety of problems in applied mathematics and engineering.
Some of them are, Data fitting, Function approximation, Integro-differential equations, Optimal
control problems, Computer-Aided Geometric Design (CAGD) and Wavelets. Some of the books
which discuss splines thoroughly includes Ahlberg et al. [4], deBoor [3], Prenter [5], Schumaker
[2].

B-spline is a spline function that has minimal support with respect to given degree, smooth-
ness and domain partition. Every spline function of a given degree, smoothness, and domain
partition can be uniquely represented as a linear combination of B-splines of that same degree
and smoothness, and over that same partition. The term B-spline was coined by Isaac Jacob
Schoenberg [1] and is short for basis spline. The original definition of the B-spline basis functions
was given by Schumaker [2], which uses the idea of divided differences. In 1970s, a recurrence
relation was independently established by Cox and deBoor [3] for computing the B-splines basis
functions. By applying the Leibniz’s theorem, deBoor was able to derive the following formula
for ith B-splines basis function of dth degree in a recursive manner as follows:

Bi,d(x) =

(
x− xi

xi+d − xi

)
Bi,d−1 +

(
xi+d+1 − x
xi+d+1 − xi+1

)
Bi+1,d−1. (1)

This formula is known as Cox and deBoor [3] recursion formula and shows that the B-splines
basis functions of any arbitrary degree can be stably evaluated as a linear combination of basis
functions of lower degree. The recurrence relation starts with the first degree B-splines. For
degree d ≥ 1, basis function Bi,d(x) is a linear combination of two (d−1)th degree basis functions.

B-splines are the smoothest interpolating functions compared with other piecewise polyno-
mial interpolating functions and have been used as a basis functions in Finite element method,
Galerkin method, Collocation method and Differential Quadrature method, to construct numeri-
cal methods for the approximate solutions of PDEs occurring in various engineering applications.
In many papers various techniques using quadratic, cubic, quartic, quintic, sextic, septic and
higher degree B-splines have been discussed for the numerical solution of linear and nonlinear
PDEs. For example, Ahlberg and Ito [6] have presented a collocation method for two-point
boundary value problems using cubic, quintic and septic B-splines. Dağ et al. [8] have solved
RLW equation using quadratic and cubic B-splines collocation method. Kutluay et al. [9],
have given a least-squares quadratic B-spline finite element method for Burgers’ equation. Özis
et al. [10] used a Galerkin quadratic B-spline finite element method to solve one-dimensional
Burgers’ equation. Kadalbajoo and Arora [12] have solved singular-perturbation problem using
artificial viscosity to capture the exponential features on a uniform mesh with cubic B-spline
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collocation method. Kasi Vishwanadham and Krisnna [13, 14] have illustrated solution of fifth
order and sixth order boundary value problems using quintic and septic B-splines collocation
method with redefined basis functions. Kumar and Srivastava [16], have presented a survey of
quadratic, quartic and octic spline techniques used to solve ordinary differential equations of dif-
ferent orders. Kumar and Srivastava [15], have presented a survey on computational techniques
for solving boundary value problems by cubic, quintic, and sextic splines.

The first chapter of the thesis is introductory type and deals with the important ideas and
historical back ground of the development of finding the solution of partial differential equations.

The chapters 2-7, deal with the numerical solutions of some linear and nonlinear partial
differential equations using collocation and differential quadrature methods with B-spline basis
functions.

Collocation method approximates the solution of differential equations in some form of lin-
ear combination of coordinate functions with linear coefficients. The idea is to choose a finite-
dimensional space of candidate solutions (usually, polynomials up to a certain degree) and a
number of points in the domain (called collocation points), and to select that solution which
satisfies the given equation at the collocation points.

Differential quadrature method(DQM) is a higher order numerical technique for solving lin-
ear and nonlinear differential equations. The DQM can yield highly accurate solutions with
relatively little computational effort and storage requirements. The method can easily and
exactly satisfy a variety of boundary conditions and require much less formulation and program-
ming effort. It have been pointed out that the DQM are basically equivalent to the collocation
(pseudo-spectral) methods, but the DQM directly compute function values at grid points rather
than spectral variables. Thus, they are more explicit and simple for some practical applications
and especially advantageous for nonlinear problems. Moreover, the mathematical techniques
involved in the method are not sophisticated. So the DQM is easily learned and used. The
key procedure in the differential quadrature method is the determination of the weighting coef-
ficients. DQM has been efficiently employed in a variety of problems occurring in engineering
and physical sciences. For more detail, see [17].

Contents of the Thesis

The chapter-wise brief summary is given below:

Chapter 1. The first chapter is introductory type. It gives an introduction to B-spline collo-
cation and B-spline differential quadrature method. Some properties of B-spline basis functions
and existing literature review on methods using B-spline, is also discussed. Various degrees of
B-splines function’s definitions are extracted by using recursive function. Thomas algorithm and
strong stability preserving Runge-Kutta (SSP-RK) methods of various stages and orders with
their important properties are also briefly discussed.

Chapter 2. This chapter deals with numerical solution of nonlinear Klein-Gordon equation
and Klein-Gordon-Schrödinger equations with Dirichlet and Neumann boundary conditions.
One dimensional Klein-Gordon equation is given by

utt + αuxx + g(u) = f(x, t), x ∈ (a, b) , t ≥ 0

The parameter α is a known real constant, f(x, t) is known analytic function and g(u) is a
nonlinear force, which may takes many forms such as: sinu, sinhu, sinu + sin 2u, sinhu +
sinh 2u. The nonlinear Klein-Gordon equation describes a variety of physical phenomena such
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as dislocations, ferroelectric and ferromagnetic domain walls, DNA dynamics, and Josephson
junctions.
Yukawa-coupled Klein-Gordon-Schrödinger (KGS) equations is given by

iψt = −1

2
ψxx − φψ,

φtt = φxx − φ+ |ψ|2,

 x ∈ R, t ≥ 0,

where ψ(x, t) is a complex function representing a scalar neutron field and φ(x, t) is a real
function representing a scalar neutral meson field.

Numerical solution of both the equations have been obtained using B-spline collocation
method. The equations are decomposed into a system of partial differential equations, which
are further converted to an amenable system of ODEs by using cubic B-spline basis functions
for spatial variable and its derivatives. The system of equations so obtained have been solved by
SSP-RK(54 or 43) scheme. Numerical results are presented for seven examples to demonstrate
the usefulness and accuracy of approach. The results obtained by the presented method are
of better accuracy than the results available in the earlier studies. The numerical approximate
solutions of both the equations have been computed without using any transformation and lin-
earization.

A part of this chapter has been published in International Journal of Computer Math-
ematics (2014).

Chapter 3. In this chapter, modified cubic B-spline collocation method is discussed to find
numerical solution of nonlinear sine-Gordon equation with Dirichlet boundary conditions.
We consider one-dimensional sine-Gordon equation

∂2u

∂t2
=
∂2u

∂x2
− sin(u), x ∈ (L1, L2), t ≥ 0, (2)

with suitable initial and boundary conditions.
The equation is decomposed into system of equations and modified cubic B-spline basis

functions have been used for spatial variable and its derivatives, which results in an amenable
system of ordinary differential equations. The resulting system of equation subsequently have
been solved by SSP-RK54 scheme. Rate of convergence of method is computed and found to be
approaching two. The efficacy of the approach has been confirmed with four numerical experi-
ments, which shows the results obtained are acceptable and are in good agreement with earlier
studies.

A part of this chapter has been published in International Journal of Partial Differen-
tial Equations (2014).

Chapter 4. This chapter is concerned with the numerical solution of one dimensional hy-
perbolic telegraph equation with Dirichlet and Neumann boundary conditions, using B-spline
collocation method.
We consider second order one-dimensional hyperbolic telegraph equation

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), a ≤ x ≤ b, t ≥ 0,

where α and β are known real constants. For α > 0, β = 0 it represents a damped wave equa-
tion and for α > β > 0 it is called as telegraph equation. We apply cubic B-splines collocation
method, which produce a system of first order ordinary differential equations. This system is
solved by SSP-RK54 scheme. Stability of scheme is discussed using matrix stability analysis and
found to be unconditionally stable. Five illustrative examples are included to authenticate the
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effectiveness and applicability of the technique. The results accomplished with the developed
approach are better in comparisons to available results in literature.

First part of this chapter has been published in Applied Mathematics and Computa-
tion (2013).
Second part of this chapter has been published in International Journal of Computational
Mathematics (2014).

Chapter 5. This chapter deals with the numerical solution of two dimensional hyperbolic
telegraph equation with Dirichlet and Neumann boundary conditions. We consider the following
two dimensional hyperbolic telegraph equation

utt(x, y, t) + 2αut(x, y, t) + β2u(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y, t),

(x, y, t) ∈ [a, b]× [c, d]× (0, T ],

where, α, β are the real constants. For α > 0, β = 0, it represents a damped wave equation and
for α > 0, β > 0, it is called telegraph equation.

In order to find the numerical solution of two dimensional hyperbolic telegraph equation,
modified cubic B-spline basis functions based differential quadrature method is developed. The
equation is converted into system of partial differential equation and further reduced into a sys-
tem of ordinary differential equations using DQM. The obtained system of ODEs is then solved
by a SSP-RK43 scheme. By employing DQM, accurate solutions can be obtained using less grid
points in spatial domain. The stability of the scheme is studied using matrix stability analysis
and found to be unconditionally stable. Seven example are solved to illustrate accuracy and
efficiency of DQM.

A part of this chapter has been published in Applied Mathematics and Computation
(2014).

Chapter 6. This chapter discusses the application of modified cubic B-spline differential
quadrature method to find numerical solution of some nonlinear wave equations in one and two
dimension with Dirichlet boundary conditions. We consider following mathematical model of
the form

utt = uxx + f(x, t, u, ux, ut), a ≤ x ≤ b, t ≥ 0,

utt = uxx + uyy + f(x, y, t, u, ux, uy, ut), (x, y, t) ∈ [a, b]× [c, d]× (0, T ],

with suitable initial and boundary conditions. where f is some nonlinear expression in terms of
u, ux, ut, uy.

To obtain the numerical solution, above equations are decomposed into system of partial
differential equations and modified cubic B-spline basis functions based differential quadrature
method has been used for space discretization to obtain a system of nonlinear first order ordi-
nary differential equations. The resulting system of equations have been solved using SSP-RK
scheme. In numerical testing, the presented method is implemented on Vander pole type non-
linear wave equation, Dissipative nonlinear wave equation, telegraph equation. The accuracy of
the approach has been confirmed with seven numerical experiments and results obtained are in
good agreement with the exact solutions and earlier studies.

A part of this chapter has been accepted for publication in the proceedings of 3rd Inter-
national conference on Advances in Computing, Communications and Informatics
(ICACCI 2014).
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Chapter 7. Chapter 7 presents the numerical solution of nonlinear two dimensional coupled
Burgers’ equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

R

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

R

(
∂2v

∂x2
+
∂2v

∂y2

)
(x, y, t) ∈ [a, b]× [c, d]× (0, T ],

where R is Reynolds number. This system models a large number of physical phenomena such as
traffic flow, flow of a shock wave traveling in a viscous fluid, phenomena of turbulence, interaction
between the non-linear convection process and the diffusive viscous processes, sedimentation of
two kinds of particles in fluid suspensions under the effect of gravity. The equations are reduced
into system of ordinary differential equations by modified cubic B-spline differential quadrature
method and obtained system of nonlinear ODEs is then solved by SSP-RK scheme. The accuracy
of the approach is tested on five test problems and computed results are compared with some
earlier works. The results of computations indicate that modified cubic B-spline function based
DQM combined with SSP-RK scheme gives more accurate results than earlier works with smaller
grid points and larger time steps. Numerical results are computed for higher Reynolds number
upto R = 1500. The strong point of the method is in ease to apply and less computational effort.

Chapter 8. This chapter addresses the conclusions, based on the present study.
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Abstract

Collocation method is an emerging popular technique to solve initial and boundary value

problems. It was developed to seek an approximate solution of differential equation in the

form of linear combination of basis functions. The idea is to choose a finite dimensional

space of candidate solution (usually, polynomials up to a certain degree) and a number of

points in the domain (called collocation points), and to select that solution which satisfies

the given equation at the collocation points.

Differential quadrature method (DQM) is a higher order numerical discretization tech-

nique for solving differential equations. DQM can provide the solution with a higher level

of accuracy and with less computational effort. It has been also pointed out that the

DQM is basically equivalent to the collocation (pseudo-spectral) method, in fact, DQM

directly compute the functional value at the grid points rather than spectral variables.

In this method, determination of the weighting coefficients is the key procedure which is

of paramount importance. One of the advantage of this method is that it satisfies vari-

eties of boundary conditions and require much less formulation and programming effort.

Moreover, the mathematical techniques involved in the method are also not so sophisti-

cated. And therefore, they are more explicit and simple for some practical applications

and especially advantageous for nonlinear problems. So the DQM could be easily learned

and successfully applied in the varieties of problems originated in the applied sciences.

In this research, we have developed collocation and differential quadrature methods

with B-spline functions to solve linear/nonlinear partial differential equations (PDEs).

The use of cubic B-spline basis functions in getting the numerical solutions of some par-

tial differential equations is shown to provide an easy and simple algorithm. Strong

stability preserving Runge-Kutta (SSP-RK) methods of different stages and order are

also combined with these methods. In case of nonlinear PDEs, the numerical solutions
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can be obtained without using any transformation and linearization process of the equa-

tion. Therefore, the equations are solved more easily and elegantly using the developed

techniques. These methods are simple and easy to use in comparison to other existing

methods, e.g. finite element, finite volume and spectral methods, etc. All the chapters

include several examples to demonstrate the applicability and efficiency of the presented

methods. The chapter wise summary of the thesis is as follows:

Chapter 1 is preface which contains some relevant definitions, introduction to nu-

merical techniques like the finite difference method, finite element method and existing

literature review. B-spline functions of various degree are drawn out from the recursive

formula. Some of the significant properties of B-spline functions are also discussed. Af-

terwards a brief introduction on B-spline functions, it contributes an introduction to col-

location method, differential quadrature method and their execution process to solve lin-

ear/nonlinear PDEs. Strong stability preserving Runge-Kutta methods of various stages

and orders with their significant attributes are also briefly talked about. The formulae

for computing error norms and order of convergence are also discussed.

Chapter 2 deals with the numerical solutions of nonlinear Klein-Gordon equation

and coupled Klein-Gordon-Schrödinger equation with Dirichlet and Neumann boundary

conditions.

One dimensional Klein-Gordon equation is given by

utt + αuxx + g(u) = f(x, t), x ∈ (a, b), t > 0,

with appropriate initial and boundary conditions. The parameter α < 0 is a known

real constant, f(x, t) is known analytic function and g(u) is a nonlinear force which may

takes many forms such as: sinu, sinhu, sinu + sin 2u, sinhu + sinh 2u. The nonlinear

Klein-Gordon equation describes a variety of physical phenomena such as dislocations,

ferroelectric and ferromagnetic domain walls, DNA dynamics, and Josephson junctions.

Yukawa-coupled Klein-Gordon-Schrödinger (KGS) equation is given by

iψt = −1

2
ψxx − φψ,

φtt = φxx − φ+ |ψ|2, x ∈ R, t > 0,



iii

with suitable initial and boundary conditions. Here ψ(x,t) is a complex function represents

a scalar neutron field and φ(x,t) is a real function represents a scalar neutral meson

field. The model describes the interaction between conservative complex neutron field and

neutral meson Yukawa in quantum field theory and plays an important role in quantum

physics.

Numerical solutions of both the equations are obtained using cubic B-spline colloca-

tion method. Modified cubic B-spline basis functions are used to handle the Dirichlet

boundary conditions. The equations are decomposed into a system of partial differential

equations, which is further converted to an amenable system of ordinary differential equa-

tions (ODEs). The obtained system of ODEs is solved by SSP-RK54 scheme. Numerical

results are presented for six examples, to show the accuracy and utility of proposed ap-

proach. The approximate solutions of both the equations are computed without using any

transformation and linearization process. The computed results are of better accuracy

than earlier results available in the literature. The execution of this method is very easy

and cost-effective.

A portion of this chapter has been published in International Journal of Com-

puter Mathematics (2014).

Chapter 3 addresses the modified cubic B-spline collocation method to find the nu-

merical solution of nonlinear sine-Gordon equation with Dirichlet boundary conditions.

One dimensional sine-Gordon equation turn out in many different applications such as

propagation of fluxion in Josephson junctions, differential geometry, stability of fluid mo-

tion, nonlinear physics and applied sciences.

We consider one-dimensional nonlinear sine-Gordon equation

utt = uxx − sin(u), x ∈ (a, b), t > 0,

with suitable initial and boundary conditions.

The method is based on collocation of modified cubic B-splines over finite elements

so that the continuity of the dependent variable and its first two derivatives throughout

the solution range is preserved. The sine-Gordon equation is converted into a system

of partial differential equations. Using modified cubic B-spline collocation method, we



iv

obtain a system of first order ordinary differential equations. Finally obtained system

of ODEs is solved by SSP-RK54 scheme. The particular feature of SSP-RK scheme is

that, it inherently perpetuates certain stability properties and maximum norm stability.

It also controls spurious oscillations and non-linear instability during simulation. In terms

of computational cost, SSP-RK schemes have drawn the same cost as traditional ODE

solvers. To demonstrate the accuracy and usefulness of present scheme, four numerical

examples are presented. The obtain results are of better precision and competent accuracy

than the results available in the earlier works. The order of convergence of the scheme is

also computed and found to be approaching two.

A part of this chapter has been published in International Journal of Partial Dif-

ferential Equations (2014).

Chapter 4 is concerned with the numerical solution of one dimensional hyperbolic

telegraph equation with Dirichlet and Neumann boundary conditions, using cubic B-spline

collocation method. The one dimensional hyperbolic telegraph equation is given by

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ (a, b), t > 0,

where α and β are known real constants. For α > 0, β = 0 it represents a damped wave

equation and for α > β > 0 it is called as telegraph equation.

The method is based on collocation of cubic B-spline basis functions over finite ele-

ments. Modified cubic B-spline basis functions are used to handle the Dirichlet boundary

conditions. The use of B-spline basis functions for spatial variable and its derivatives,

results in an amenable system of differential equations. The resulting system of equations

is solved by SSP-RK54 scheme. Stability of scheme is discussed using matrix stability

analysis and found unconditionally stable. The efficacy of approach is confirmed with four

numerical experiments and the numerical results are found to be very good in comparison

with the existing solutions found in the literature. The advantage of this scheme is that,

it can be conveniently use to solve the complex problems and also capable of reducing the

size of computational work.

First part of this chapter has been published in Applied Mathematics and Com-

putation (2013). Second part of this chapter has been published in International
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Journal of Computational Mathematics (2014).

In chapter 5 we have proposed an efficient differential quadrature method, to find

the numerical solution of two dimensional hyperbolic telegraph equation with Dirichlet

and Neumann boundary conditions. The hyperbolic partial differential equations have

significant role in formulating fundamental equations in atomic physics and are also very

useful in understanding various phenomena in applied sciences like engineering, industry,

aerospace as well as in chemistry and biology too.

Consider

utt(x, y, t) + 2αut(x, y, t) + β2u(x, y, t) =uxx(x, y, t) + uyy(x, y, t) + f(x, y, t),

(x, y, t) ∈ [a, b]× [c, d]× (0, T ],

with appropriate initial and boundary conditions. Here α, β are known real constants.

For α > 0, β = 0, it represents a damped wave equation and for α > 0, β > 0, it is called

telegraph equation.

In order to find the numerical solutions, modified cubic B-spline basis functions based

differential quadrature method is developed. The equation is converted into a system of

partial differential equations and further reduced into a system of ordinary differential

equations using DQM. SSP-RK43 scheme is used to solve the obtained system of ODEs.

By employing DQM, accurate solutions can be obtained using fewer grid points in spatial

domain. The stability of the scheme is studied using matrix stability analysis and found to

be unconditionally stable. The efficacy of proposed approach is confirmed with seven nu-

merical experiments, where comparisons are made with some earlier works. It is observed

that the obtained results are acceptable and are in good agreement with earlier studies.

However, we obtain these results in much less CPU time. The method is very simple,

efficient and produces very accurate numerical results in considerably smaller number of

nodes and hence saves computational effort.

A part of this chapter has been published in Applied Mathematics and Compu-

tation (2014).
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Chapter 6 discusses the application of modified cubic B-spline differential quadrature

method to find the numerical solutions of some nonlinear wave equations in one and two

dimensions with Dirichlet boundary conditions. We consider

utt = uxx + f(x, t, u, ux, ut), x ∈ (a, b), t > 0,

utt = uxx + uyy + f(x, y, t, u, ux, uy, ut), (x, y, t) ∈ [a, b]× [c, d]× (0, T ],

with suitable initial and boundary conditions. Here f is some nonlinear expression in

terms of u, ux, ut, uy. Nonlinear wave equations are arise in many physical and engineering

applications such as continuum physics, mixed models of transonic flows, fluid dynamics

and many other fields of science and engineering.

To obtain the numerical solutions, above equations are decomposed into a system of

partial differential equations. Modified cubic B-spline basis functions based differential

quadrature method is used for space discretization to obtain a system of nonlinear first

order ordinary differential equations. The resulting system of equations is solved using

SSP-RK43 scheme. In numerical testing, the method is implemented on Vander pole type

nonlinear wave equation, Dissipative nonlinear wave equation and Telegraph equation.

The obtained numerical results are found to be very good in comparison with the existing

solutions found in the literature. The numerical solutions of nonlinear equations are

computed without linearizing the nonlinear term. The order of convergence of method is

also computed and found to be two.

A part of this chapter has been published in the proceeding of 3rd International

Conference on Advances in Computing, Communications and Informatics

(ICACCI 2014)(IEEE Xplore).

Chapter 7 presents the numerical solution of two dimensional nonlinear coupled

Burgers’ equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

R

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

R

(
∂2v

∂x2
+
∂2v

∂y2

)
(x, y, t) ∈ [a, b]× [c, d]× (0, T ],

where R is Reynolds number. This system models a large number of physical phenom-

ena such as traffic flow, flow of a shock wave traveling in a viscous fluid, phenomena of
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turbulence, interaction between the non-linear convection process and the diffusive vis-

cous process, sedimentation of two kinds of particles in fluid suspensions under the effect

of gravity. Modified cubic B-spline differential quadrature method (MCB-DQM) is used

to discretized the spatial derivatives of coupled Burgers’ equation and reduces it into a

system of first order ordinary differential equations. The obtained system of equations is

solved by SSP-RK43 scheme. The accuracy of the approach is tested on five test prob-

lems and computed results are compared with some earlier works. The results indicate

that MCB-DQM combined with SSP-RK scheme gives more accurate results than earlier

works with less computational cost. Numerical results are computed for higher Reynolds

number up to R = 1500. The strong points of the method are in ease to apply and less

computational effort.

Finally, in chapter 8 conclusions are drawn based on the present study and future

research work is suggested, in this direction.
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Chapter 1

Introduction

1.1 Overview

Partial differential equations are used in modeling of many physical, chemical and biolog-

ical phenomena. Besides these its uses have also spread into financial forecasting, image

processing, economics and other fields as well. There are many theoretical results on

existence and uniqueness, but only the simplest specific problems can be solved explicitly.

Since limited classes of the equations are solved by analytical means, we usually construct

approximate numerical solutions of these differential equations especially of nonlinear ones

which are of practical importance. Various numerical techniques have been promulgated

for finding the solutions of partial differential equations among which the two most pop-

ular are (a) finite difference method and (b) finite element method.

Finite Difference Method [75, 163]

In the numerical solutions of partial differential equations and their applications,

finite difference methods are often dominant. In this method, the derivatives appearing in

a PDEs are approximated by sums and differences of function values at a set of discrete

points, usually evenly spaced with respect to each independent variable. Finally, a large

algebraic system of equations are obtained, instead of solving the given differential equa-

tion. The appropriate types of differencing scheme and proper method for solutions are

chosen in different applications. The accuracy of the method is based on the refinement of

the grid points, where the solution is evaluated. For one dimensional case these methods

can be easily formulated but in higher dimensions, meshes should be structured in either

1
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two or three dimensions.

Finite Element Method [75, 173]

The finite element method was first developed in 1956 for the analysis of aircraft

structural problems. Thereafter, within a decade, the potentialities of the method for the

solution of different types of applied science and engineering problems were recognized.

In the finite element method, the solution is expanded in terms of a set of basis functions

superimposed on a family of elements, which in turn span the region in which the solution

of the differential equation is under study. In this method, the domain is divided into

a finite number of subdomains, which may be of different shapes i.e. triangular, rectan-

gular, curvilinear, etc. In addition, the accuracy of FEM programs can be improve by

using adaptive meshing procedures and nonuniform unstructured meshes. Some limita-

tions should be placed in the selection of the shape functions to guarantee the fact that

with an arbitrary number of shape functions, the exact solution is approximated best,

and in the limit we must obtain the exact solution. A good approximation is obtained

by the residual formulation, where the residual is formulated as the difference of the ana-

lytical solution and the calculated numerical solution. This residual is weighted over the

simulation domain and integrated with the requirement that the integral vanishes with a

set of linearly independent weighting functions.

In this work, we have implemented the collocation and differential quadrature meth-

ods using third degree B-spline basis functions to solve linear and nonlinear partial differ-

ential equations. The combination of B-splines with these methods is shown to provide a

simple and effective solution procedure to solve partial differential equations.

The first chapter of the thesis is prolegomenon, which deals with the important ideas

and historical background of the development of finding the solutions of partial differential

equations. It also provides an introduction to B-spline basis functions, collocation and

differential quadrature methods along with the methodology used to solve PDEs. B-

spline functions of various degree are extracted by using recursive formula. Some of the

key features of these functions are also discussed. Strong stability preserving Runge-Kutta

(SSP-RK) methods of various stages and orders with their important properties are also

briefly discussed. The formulae for computing the error norms are also presented.
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1.2 Literature Survey

Splines have many implementations in finding the numerical solutions of a variety of

problems in applied mathematics and engineering. Some of them are, Computer-Aided

Geometric Design (CAGD), Data fitting, Integro-differential equations, Function approx-

imation, Wavelets and so on. Some of the research papers that have made outstand-

ing contributions to the development of splines, include Birkhoff and Garabedian [22],

Loscalzo and Talbot [136], Rubin and Khosla [185], Sastry [188], Schoenberg [190]. Some

of the books which discuss splines thoroughly are Ahlberg et al. [5], de Boor [40], Prenter

[168], Schumaker [191].

A lot of work has been reported in the literature using spline functions of vari-

ous degree. Some of the earliest papers which demonstrate the approximate methods

using spline functions for solution of ordinary and partial differential equations, include

Albasiny and Hoskins [7], Bickley [21], Crank and Gupta [36], Jain and Aziz [83, 84],

Rubin and Khosla [185], Sastry [188], Usmani [201], Usmani and Sakai [202], Usmani and

Warsi [203]. Today, there are number of research papers in this subject and it remains

an active research area. For example, Jain et al. [85] have developed implicit finite dif-

ference schemes for numerical integration of one-and two-dimensional scalar hyperbolic

equations and a system of conservation laws using the spline (in compression) function

approximation. Singular two-point boundary value problems have been solved by Iyengar

and Jain [80], using spline difference methods and by Ravi Kanth and Reddy [183], using

collocation method with cubic spline functions. Higher order splines are also used to

solve higher-order boundary value problems. For instance, collocation method has been

developed for the approximate solution of eighth order linear special case boundary value

problem using nonic spline by Akram and Siddiqi [6]. Solution of twelfth-order boundary

value problems has been discussed by Siddiqi and Twizell [195], using polynomial spline

of degree twelve.

B-splines are the smoothest interpolating functions compared with other piecewise poly-

nomial interpolating functions. These functions have been used as a basis functions in

finite element method, collocation method and differential quadrature method, for con-

structing numerical methods for the solutions of PDEs that occur in various engineering
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applications. In many papers various techniques using quadratic, cubic, quartic, quintic,

sextic, septic and higher degree B-splines have been discussed for the numerical solutions

of linear/nonlinear ODEs and PDEs. Ahlberg and Ito [4] have presented a solution of

two-point boundary value problems using collocation method with cubic, quintic and sep-

tic B-splines. Ali et al. [9] have developed a collocation method for Burgers’ equation

using cubic B-spline finite elements. Kasi Vishwanadham and Koneru [98] have proposed

a B-spline finite element method for one-dimensional and two-dimensional time depen-

dent problems. In a series of papers by Caglar et al. [30, 31], initial and boundary

value problems of fifth and third order have been solved using B-spline basis functions

of sixth and fourth degree, respectively. Dağ and Özer [38] have proposed a approxi-

mation of RLW equation by the least square cubic B-spline finite element method. Dağ

et al. [37] have solved RLW equation using cubic B-spline collocation method. Kumar

[114] has applied a second order spline finite difference method and fourth-order spline

finite difference method based on a non-uniform mesh to find the numerical solutions of

singular two-point boundary value problems. Dağ and Saka [39] have proposed a cubic

B-spline collocation method to obtain numerical solutions of EW equation. Kutluay et al.

[121] have given a least-square quadratic B-spline finite element method to solve Burg-

ers’ equation. A B-spline finite element method for thermistor problem with modified

electrical conductivity has been developed by Kutluay and Esen [119]. Raslan [179, 180]

has exhibited a collocation method for solving EW equation using quintic and quartic B-

splines respectively, along with Runge-Kutta method. Saka and Dağ [187] have presented

a collocation method using cubic B-spline for solving RLW equation. Özis et al. [164]

have used a Galerkin quadratic B-spline finite element method to solve one-dimensional

Burgers’ equation. Kadalbajoo and Aggarwal [92] have solved a self-adjoint singularly

perturbed boundary value problems using B-spline collocation method. Raslan [181] has

proposed a computational collocation method for RLW equation. Kumar [115] has de-

veloped a fourth-order spline finite difference method based on a non-uniform mesh to

find the numerical solution of singular two-point boundary value problems. Dehghan and

Lakestani [45] have solved a nonlinear system of second-order boundary value problems

using cubic B-spline scaling functions. Kadalbajoo and Yadaw [96] and Kadalbajoo and
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Gupta [95] have developed a cubic B-spline collocation method for solving singularly per-

turbed convection-diffusion boundary value problems. Kumar and Srivastava [116] have

presented a survey of quadratic, quartic and octic spline techniques, which are used to

solve ordinary differential equations of different orders. Kadalbajoo and Arora [93] have

solved singular-perturbation problem using artificial viscosity to capture the exponen-

tial features on a uniform mesh with cubic B-spline collocation method. Lakestani and

Dehghan [122] have used the cubic B-spline scaling functions to solve Fokker-Planck equa-

tion. Kumar and Srivastava [117] have described a survey on computational techniques

for solving boundary value problems by cubic, quintic, and sextic splines, which includes a

large amount of work done in the area of application of spline functions during 2000-2007.

A Taylor-Galerkin B-spline finite element method for one-dimensional advection-diffusion

equation has been developed by Kadalbajoo and Arora [94]. Lakestani and Dehghan [124]

have found the numerical solution of Riccati equation using the cubic B-spline scaling

functions and Chebyshev cardinal functions. Kasi Vishwanadham and Krishnna [99, 100]

have illustrated the solutions of fifth order and sixth order boundary value problems using

quintic and septic B-splines collocation method with redefined basis functions. Mittal and

Arora [139] have presented the numerical solution of Kuramoto-Sivashinsky equation us-

ing B-spline collocation method. Mittal and Jain [141] have proposed cubic B-spline and

quintic B-spline collocation methods with redefined basis functions to solve fourth order

parabolic partial differential equations. Mittal and Arora [138] have developed a cubic

B-spline collocation method to find stable and accurate numerical solutions of Fisher’s

equation. A quartic B-spline differential quadrature method for solving one dimensional

Burgers’ equation has been proposed by Korkmaz et al. [112]. Mittal and Arora [140]

have used a cubic B-spline collocation method to solve coupled Burgers’ equation. Mittal

and Jain [145] have proposed a redefined cubic B-spline collocation method for solving

convection-diffusion equation. Lakestani and Dehghan [125] have found numerical solu-

tion of generalized Kuramoto-Sivashinsky equation using B-spline functions. Mittal and

Jain [143] have solved nonlinear parabolic partial differential equations with Neumann

boundary conditions, using cubic B-spline collocation method. Lakestani and Dehghan

[126] have proposed four techniques based on the B-spline expansion and the colloca-

tion approach for the numerical solution of the Lane-Emden equation. Quintic B-spline
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collocation method to solve some Rosenau type nonlinear evolution equations has been

developed by Mittal and Jain [142]. Lakestani et al. [127] have constructed the oper-

ational matrix of fractional derivatives using B-spline functions. Arora and Singh [11]

have developed a B-spline differential quadrature method to solve one dimensional Burg-

ers’ equation. Korkmaz and Dağ [110, 111] have developed a cubic B-spline differential

quadrature method to solve one dimensional Burgers’ and boundary forced RLW equa-

tions, respectively. Mittal and Jain [144, 146] have developed a modified cubic B-spline

collocation method for solving Burgers’ and Fisher’s equations, respectively. A finite ele-

ment Galerkin method with redefined sextic B-spline functions has been developed by Kasi

Viswanadham and Ballem [97] to solve a general tenth order boundary value problems.

1.3 Idea of Splines

The first reference to mathematical splines was made in an interesting paper by Schoen-

berg [189] in 1946. Splines are types of curves, originally developed for the shipbuilding

industry in the days before computer modeling. Naval architects needed a way to draw

a smooth curve through a set of points. The solution was to place metal weights (called

knots) at the control points, and bend a thin metal or wooden beam (called a spline)

through the weights. The physics of the bending spline meant that the influence of each

weight was higher at the point of contact and decreased smoothly along the spline. For

more control over a particular region, the draftsman just added more weights. This scheme

had obvious problems with the exchange of data. There was a need for mathematically

describing the shape of the curve. Splines have become more important with the ad-

vent of computers. They have been used primarily as a replacement for polynomials in

interpolation and as a tool for creating a smooth and flexible shapes in computer graphics.

Therefore, the problem of working with higher degree polynomials can be resolved

by using the piecewise polynomials. Instead of using polynomial for the entire domain, the

function can be approximated by several polynomials defined over the sub-domains. The

piecewise polynomial approximation allows us to construct highly accurate approxima-

tions, but some approximation functions are not smooth at the point connecting separate

piecewise polynomial approximations. Sometimes, while the polynomial is continuous, it
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may not be continuously differentiable on the interval of approximation and the graph of

the interpolant may not be smooth. So the basic idea of splines is to construct a piecewise

polynomial approximation which not only interpolate the given data or function values

given but it is also smooth i.e. it must be continuously differentiable to a certain degree.

1.4 B-splines

The first reference to the word B-spline was given by Schoenberg [189] in 1946, who

described it as a smooth piecewise polynomial approximation. B-spline or basis spline,

is define as a spline function that has minimal support with respect to a given degree,

smoothness, and domain partition. Let X be a set of N + 1 non-decreasing real numbers

such that x0 ≤ x1 ≤ · · · ≤ xN−1 ≤ xN , where x
′
js are called knots. The half open interval

[xj, xj+1) is called the jth knot span. If the knots are equally spaced i.e. xj+1 − xj = h =

constant, for 0 ≤ j ≤ N − 1, then the knot vector or the knot sequence is said to be

uniform; otherwise non-uniform.

The original definition of the B-spline basis functions was given by Schumaker [191],

using the idea of divided differences. In 1970’s, a recurrence relation was developed

independently by de Boor [40] to calculate the B-spline basis functions of higher degree.

By applying the Leibnitz’s theorem, de Boor was able to derive the following formula for

jth B-spline basis function of dth degree, in a recursive way as follows:

Bj,d(x) =
(x− xj)

(xj+d − xj)
Bj,d−1(x) +

(xj+d+1 − x)

(xj+d+1 − xj+1)
Bj+1,d−1(x). (1.1)

This formula is known as de Boor’s recursion formula. Where Bj,d(x) defines a jth B-spline

basis function of dth degree and shows that the B-spline basis functions of any arbitrary

degree can be stably evaluated as a linear combination of basis functions of lower degree.

The recurrence relation starts with the first degree B-spline and builds the basis functions

of higher degree.

1.4.1 Zero Degree B-spline

The zero degree B-spline is one of the simplest basis function and is given as

Bj,0 =

{
1, x ∈ [xj, xj+1)

0, otherwise
(1.2)
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Thus for d = 0, the B-spline function is just a step function i.e. it is equal to zero at all

points except on the half open interval [xj, xj+1).

1.4.2 First Degree B-spline

The first degree B-splines are named as linear B-spline and can be obtained using the de

Boor recursion formula (1.1) with d = 1 and using the definition of zero degree B-spline

(1.2), as follows

Bj,1(x) =
(x− xj)

(xj+1 − xj)
Bj,0(x) +

(xj+2 − x)

(xj+2 − xj+1)
Bj+1,0(x)

Bj,1 =


(x−xj)

(xj+1−xj) , x ∈ [xj, xj+1)
(xj+2−x)

(xj+2−xj+1)
, x ∈ [xj+1, xj+2)

0 otherwise

(1.3)

The first degree B-splines are like a Hat or Tent function and are non-zero for two con-

secutive intervals [xj, xj+1) and [xj+1, xj+2).

1.4.3 Second Degree B-spline

The second degree B-splines are also called as quadratic B-spline and can be obtained by

using the de Boor recursion formula and linear B-splines, for d = 2

Bj,2(x) =
(x− xj)

(xj+2 − xj)

(
(x− xj)

(xj+1 − xj)
Bj,0(x) +

(xj+2 − x)

(xj+2 − xj+1)
Bj+1,0(x)

)
+

(xj+3 − x)

(xj+3 − xj+1)

(
(x− xj+1)

(xj+2 − xj+1)
Bj+1,0(x) +

(xj+3 − x)

(xj+3 − xj+2)
Bj+2,0(x)

)

=
(x− xj)2

(xj+2 − xj)(xj+1 − xj)
Bj,0(x) +

(xj+3 − x)2

(xj+3 − xj+1)(xj+3 − xj+2)
Bj+2,0(x)

+

(
(x− xj)(xj+2 − x)

(xj+2 − xj)(xj+2 − xj+1)
+

(xj+3 − x)(x− xj+1)

(xj+3 − xj+1)(xj+2 − xj+1)

)
Bj+1,0(x)

The explicit formula for quadratic B-spline is given by

Bj,2 =
1

2h2


(x− xj)2, x ∈ [xj, xj+1)

(x− xj)(xj+2 − x) + (xj+3 − x)(x− xj+1), x ∈ [xj+1, xj+2)

(xj+3 − x)2, x ∈ [xj+2, xj+3)

0 otherwise

(1.4)
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Quadratic B-splines Bj,2(x) are non-zero on three knot span [xj, xj+1), [xj+1, xj+2) and

[xj+2, xj+3).

The coefficients of quadratic B-splines and its derivatives are reported in Table-1.1

and graph of quadratic B-spline is depicted in Figure-1.2.

1.4.4 Third Degree B-spline

The formula for cubic B-spline Bj,3(x) at the knot is given by

Bj,3 =
1

h3



(x− xj−2)3, x ∈ [xj−2, xj−1)

(x− xj−2)3 − 4(x− xj−1)3, x ∈ [xj−1, xj)

(xj+2 − x)3 − 4(xj+1 − x)3, x ∈ [xj, xj+1)

(xj+2 − x)3, x ∈ [xj+1, xj+2)

0 otherwise

(1.5)

It is evident that the nonzero part of Bj,3(x) is localized to a small neighborhood of xj

namely in the interval [xj−2, xj+2) i.e. each cubic B-spline covers four intervals namely

[xj−2, xj−1), [xj−1, xj), [xj, xj+1), [xj+1, xj+2), so that an interval is covered by four cubic

B-splines.

The coefficients of cubic B-splines and its derivatives are presented in Table-1.2 and

Figure-1.3 shows the graph of cubic B-spline.

1.4.5 Properties of B-splines

Some of the important properties of B-spline functions are given below:

• Non-negativity: For all j,d and x, Bj,d(x) is non-negative in the interval [xj, xj+d+1).

The closed interval [xj, xj+d+1] is called the support of Bj,d(x).

• Local Support: If x /∈ [xj, xj+d+1) then Bj,d(x) = 0. In particular if xj = xj+d+1,

then Bj,d(x) = 0 i.e. B-splines have minimal compact support. More precisely,

B-spline function of degree d is nonzero over d+ 1 consecutive intervals.

• Partition of Unity: The sum of all non-zero dth degree basis functions on span

[xj, xj+1) is one.

• Smoothness: For degree d ≥ 1, the B-splines belong to continuity class Cd−1.
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• B-spline representation of functions is shape preserving. In particular, it does not

exhibit spurious oscillations also known as Runge phenomenon, which is usually

experienced with global polynomial approximations.

• Boundary conditions of various types are easily incorporated with B-spline functions.

1.5 Modified Cubic B-spline Basis Functions

In collocation method with cubic B-splines, there is a necessity to modify the basis func-

tions into a new set of basis functions to handle with Dirichlet boundary conditions. The

cubic B-splines set has been modified into a new set of basis functions in such manner

that the number of basis functions matches with the selected points in the given domain

and we obtain a diagonally dominant system of differential equations for handling with

given Dirichlet boundary conditions [144, 146].

In the domain [a, b] with uniform partition as a = xa < xa+h < · · · < xa+(N−1)h < xa+Nh =

b, the modified cubic B-spline basis functions are given as

B̃a(x) = Ba(x) + 2Ba−h(x),

B̃a+h(x) = Ba+h(x)−Ba−h(x),

B̃j(x) = Bj(x), j = a+ 2h, . . . , a+ (N − 2)h,

B̃a+(N−1)h(x) = Ba+(N−1)h(x)−Ba+(N+1)h(x),

B̃a+Nh(x) = Ba+Nh(x) + 2Ba+(N+1)h(x).


(1.6)

1.6 Collocation Method

Collocation method [19, 100, 143, 144, 187] approximates the solution of differential equa-

tions in some form of a linear combination of basis functions. Consider a differential

equation

f(x, u, ux, uxx) = 0, (1.7)

where u is define in the domain [a, b] with the following boundary conditions

u(a) = f0, u(b) = f1. (1.8)
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The method begins with a proper choice of basis functions φ0, φ1, . . . , φN and a set of

points a = x0 < x1 < x2 < · · · < xN = b, called collocation points.

The approximate solution is assumed as

U =
N∑
j=0

cjφj(x), (1.9)

where N is considered as the quality parameter. As N increases, the error in the approx-

imation must reduce. The method requires that the above approximation should satisfy

the differential equation at each node and also the boundary conditions.

For this, residual must be zero at the selected points, which is defined as

r(x, u, ux, uxx) = f(x, u, ux, uxx)− f(x, U, Ux, Uxx). (1.10)

Much attention has been given in the literature for the choice of the knots xj and the basis

functions φj and it has been found that spline curves or piece-wise polynomials are more

effective in representing the solution of the differential equations than pure polynomials.

1.7 B-spline Collocation Method

B-spline collocation method is a method for finding the numerical solutions of differen-

tial equations. The idea is to choose a finite-dimensional space of candidate solutions

(B-splines up to a certain degree) and a number of points within the domain (called col-

location points), and to select that solution which satisfies the given equation at each

collocation point.

We consider the basis functions for which the knots are equidistant. In such a

case, the B-spline is said to be uniform. A fundamental theorem states that every spline

function of a given degree, smoothness, and domain partition can be represented as a

linear combination of B-splines of the same degree and smoothness, and over the same

partition. This attribute immediately implies the banded structure of matrices occurring

in interpolation and collocation problems. As a result, these matrices can be efficiently

stored in a computer and inverted by Gaussian elimination without pivoting. The problem

of stable calculation of polynomial B-splines and their derivatives may be found in Prenter

[168].
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A number of choices must be made while applying B-spline collocation method to

approximate the solutions of differential equations. These include the particular choice of

B-spline basis functions, the order of the B-spline functions, the regularity of the B-splines

curve and the location of collocation points.

1.7.1 Cubic B-spline Collocation Method

Consider a mesh a = x0 < x1 < · · · < xN−1 < xN = b as a uniform partition of the

solution domain a ≤ x ≤ b by the knots xm, with the step length h = xm+1 − xm, where

m = 0, 1, . . . , N − 1.

In this method, the approximate solution of a partial differential equation can be written

as linear combination of cubic B-spline basis functions as

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (1.11)

U(xj, t) = cj−1Bj−1(xj) + cj Bj(xj) + cj+1Bj+1(xj), (1.12)

where the set of functions {B−1, B0, B1, . . . , BN−1, BN , BN+1} forms a basis for the func-

tion define over the region a ≤ x ≤ b with the obvious adjustment of the boundary base

functions to avoid undefined knots.

Using Table-1.2 and approximate solution (1.11), the approximate values of U(x, t)

and its two derivatives at the knot x = xj are computed as

Uj = cj−1 + 4cj + cj+1,

U
′

j =
3

h
(cj+1 − cj−1),

U
′′

j =
6

h2
(cj−1 − 2cj + cj+1).

(1.13)

In this work, collocation method using B-spline functions is shown to provide an easy

and simple algorithm to solve one dimensional linear and nonlinear PDEs. The devel-

oped method is based on collocation of B-splines over finite elements so that we have

continuity of the dependent variable and its derivatives throughout the solution range.

Modified cubic B-spline basis functions have been used for solving the PDEs, when Dirich-

let boundary conditions are prescribed. SSP-RK methods are also combined with B-spline

collocation method. The special feature of this approach for solving nonlinear PDEs is
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that there is no need of any transformation and without using any linearization proce-

dure, the nonlinearity can be treated. B-spline collocation method provides a piecewise

continuous closed-form solution, which can be used to obtain the solution at any point

of the domain. This method is simple and easy to apply in comparison to other existing

methods, e.g. finite element, finite volume, etc.

1.8 Differential Quadrature Method

Differential quadrature method (DQM) is a higher order numerical discretization tech-

nique for solving linear and nonlinear differential equations. Numerical methods like finite

difference, finite element are lower order method as they require a large number of grid

points to get satisfactory results. Consequently, the requirements for CPU time and stor-

age are often unnecessarily large in such cases. The above-mentioned shortcomings are

not inherent in the differential quadrature method. DQM can provide the solution with

a higher degree of accuracy with less computational effort. It has been also pointed out

that the DQM is basically equivalent to the collocation (pseudo-spectral) method, in fact,

DQM directly compute the functional value at grid points rather than spectral variables.

In this method, determination of the weighting coefficients is the key procedure which is

of paramount importance. One of the advantage of this method is that it satisfies a num-

ber of boundary conditions and require much less formulation and programming effort.

Moreover, the mathematical techniques involved in the method are also not so sophis-

ticated. And therefore, they are more explicit and easy for some practical applications

and especially advantageous for nonlinear problems. So DQM could be easily learned and

successfully applied in the varieties of problems originated in the applied sciences.

Richard Bellman and his associates [17] have introduced DQM in the early 1970’s

that require less number of grid points. DQM approximates the partial derivative of a

function at any grid point as a linear combination of all the function values along a mesh

line. Weighting coefficients determination is the key process of this method. Progress in

the DQM took place after the late 1980’s. As a consequence, the DQM has gone forth

as a powerful tool in the past ten years. It has been applied efficaciously in a variety of

problems encountered in engineering and applied sciences. For details, readers may refer
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to [192].

1.8.1 Approximation of First Order Derivatives

Consider a one dimensional problem over a closed interval [a, b]. Suppose there are N

grid points with coordinates as a = x1, x2, . . . , xN = b. Bellman and his associates [17]

supposed that a function f(x) is sufficiently smooth over the interval [a, b], so that its

first order derivative f
(1)
x (x) at a grid point x = xi can be approximated by the following

relation

f (1)
x (xi) =

N∑
j=1

a
(1)
ij f(xj), i = 1, 2, . . . , N, (1.14)

where f(xj) represents the function value at a grid point xj, f
(1)
x (xi) indicates the first or-

der derivative of f(x) at point xi and a
(1)
ij , i, j = 1, 2, . . . , N are the weighting coefficients.

Now the main task is to determine a
(1)
ij in the equation (1.14). Once these weighting

coefficients are determined, the derivative can be known in terms of the functional values

at the mesh points. In the literature, different approaches have been used to compute

these weighting coefficients.

Bellman et al. [17] have proposed two approaches in which following two different

test functions have been applied as the trial functions to calculate the weighting coeffi-

cients related to first order derivatives:

fk(x) = xk, k = 0, 1, . . . , N − 1,

fk(x) =
LN(x)

(x− xk) L
(1)
N (xk)

, k = 1, 2, . . . , N,
(1.15)

where LN(x) and L
(1)
N (x) represent the Legendre polynomial of degree N and its first

order derivative, respectively.

In the first approach when number of grid points N are large, the resulting matrix

is ill-conditioned and therefore, in the practical application of this approach N is usually

chosen to be less than 13. However, second approach is not as flexible as the first ap-

proach because in the second approach the roots of the Legendre polynomial of degree N

are chosen as the coordinates of the grid points. So due to inflexibility associated with

second approach in selecting the grid points, the first approach is usually adopted in prac-

tical applications. Many attempts have been made by researchers to improve Bellman’s
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approaches.

One of the useful approach is suggested by Quan and Chang [169, 170]. They have

used the following Lagrange interpolation polynomials as the test functions to compute

a
(1)
ij

fk(x) =
M(x)

(x− xk) M (1)(xk)
, k = 1, 2, . . . , N,

where M(x) = (x− x1)(x− x2) . . . (x− xk),

M (1)(xi) =
N∏

k=1,k 6=i

(xi − xk).

(1.16)

Using (1.16) as the test functions, it has been noticed that there is no restriction on the

choice of grid points.

Shu [192] has proposed a more general approach, which covers the approaches pro-

posed by Bellman et al. [17] and Quan and Chang [169, 170]. Shu concluded that the

weighting coefficients calculation by all the approaches is same. As from the properties

of a linear vector space, if a set of base polynomials satisfies a linear operator then other

sets of base polynomials obey the same. This means that each set of base polynomials

would give the same weighting coefficients and finally it was observed that a
(1)
ij ’s satisfy

the following relation

N∑
j=1

a
(1)
ij = 0 or a

(1)
ii = −

N∑
j=1,j 6=i

a
(1)
ij . (1.17)

1.8.2 Approximation of Second Order Derivatives

To discretized the second order derivatives, a similar approximation has been used as

f (2)
x (xi) =

N∑
j=1

a
(2)
ij f(xj), i = 1, 2, . . . , N, (1.18)

where f
(2)
x (xi) represents the second order derivative of f(x) at the point xi and a

(2)
ij

i, j = 1, 2, . . . , N are the weighting coefficients related to second order derivatives.

Shu [192] has proposed a general approach to compute the weighting coefficients

a
(2)
ij , which is also based on polynomial approximation and linear vector space analysis.
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Following simple formulation has been obtained to compute a
(2)
ij

a
(2)
ij =2

(
a
(1)
ij a

(1)
ii −

a
(1)
ij

xi − xj

)
, for j 6= i,

a
(2)
ii =−

N∑
j=1,j 6=i

a
(2)
ij , for j = i; i, j = 1, 2, . . . , N.

(1.19)

1.8.3 Shu’s Formula for Higher Order Derivatives

Higher order derivatives are discretized in the following manner

f (n)
x (xi) =

N∑
j=1

a
(n)
ij f(xj), i = 1, 2, . . . , N, (1.20)

where f
(n)
x (xi) denotes the nth order derivative of f(x) at the point xi and a

(n)
ij are the

weighting coefficients.

Shu [192] has used the similar procedure for calculation of higher order derivatives.

The following explicit recurrence formulation has been obtained for weighting coefficients

a
(n)
ij

a
(n)
ij =n

(
a
(1)
ij a

(n−1)
ii −

a
(n−1)
ij

xi − xj

)
, for j 6= i,

a
(n)
ii =−

N∑
j=1,j 6=i

a
(n)
ij , for j = i; i, j = 1, 2, . . . , N,

(1.21)

where a
(n−1)
ij ’s represent the weighting coefficients related to (n− 1)th order derivative of

f(x).

1.8.4 Extension to Multi-Dimensional Case

This section demonstrate the extension of DQM from one dimensional case to two dimen-

sional case. Shu [192] has shown that the one dimensional DQM can be directly extended

to higher dimensions, if discretization domain is regular. The regular domain can be a

rectangle, square or other shapes such as circle. Consider a rectangular domain divided

into a mesh of uniform length along x and y coordinate direction and a two dimensional

function f(x, y) define on it, as shown in Figure-1.1. Along the line y = b, f(x, b) (de-

noted by filled circles) can be approximated by a polynomial of degree (N − 1), PN(x).
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Figure 1.1: Rectangular domain.

PN(x) constitutes a N -dimensional linear vector space VN with N base vectors (polyno-

mials) ri(x), i = 1, 2, . . . , N . Similarly, along a vertical line x = a, f(a, y) (denoted by

the open circles) can be approximated by a polynomial of degree (M − 1), PM(y) which

constitutes a M -dimensional linear vector space VM with M base vectors (polynomials)

sj(y), j = 1, 2, . . . ,M . Then the value of the function f(x, y) at any location can be

approximated by a polynomial PN×M(x, y) of the form

f(x, y) = PN×M(x, y) =
N∑
i=1

M∑
j=1

cijx
i−1yj−1. (1.22)

It is clear that PN×M(x, y) constitutes a N × M dimensional linear polynomial vector

space VN×M with respect to the operation of vector addition and scalar multiplication,

where φij(x, y) = ri(x)sj(y) constitutes the base vectors in the linear vector space VN×M .

Now it is assumed that the first order derivatives of f(x, y) can be approximated as

f (1)
x (xi, yj) =

N∑
k=1

a
(1)
ik f(xk, yj), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M. (1.23)

f (1)
y (xi, yj) =

M∑
k=1

b
(1)
jk f(xi, yk), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M. (1.24)

From the properties of vector space, if all the base polynomials φij(x, y) satisfy the linear

operators defined by equations (1.23) and (1.24), then every polynomial in VN×M will also
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satisfy. So substituting φij(x, y) in the equations (1.23) and (1.24), we have

N∑
k=1

a
(1)
ik rj(xk) = r

(1)
j (xi), i, j = 1, 2, . . . , N, (1.25)

M∑
k=1

b
(1)
ik sj(yk) = s

(1)
j (yi), i, j = 1, 2, . . . ,M, (1.26)

where r
(1)
j (xi) and s

(1)
j (yi) represent the first order derivatives of rj(x) and sj(y) at the

point (xi and yi). It is clear that a
(1)
ik or b

(1)
jk is only related to ri(x) or sj(y) respectively.

Hence formulation of one dimensional case can be directly extended to two dimensional

case and the weighting coefficients for the second or higher degree derivatives are given

by following recurrence relations:

Weighting coefficients related to nth order derivatives w.r.to x are given by

a
(n)
ij =n

(
a
(1)
ij a

(n−1)
ii −

a
(n−1)
ij

xi − xj

)
, for j 6= i,

a
(n)
ii =−

N∑
j=1,j 6=i

a
(n)
ij , for j = i; i, j = 1, 2, . . . , N.

(1.27)

Similarly, weighting coefficients related to mth order derivatives w.r.to y are given by

b
(m)
ij =m

(
b
(1)
ij b

(m−1)
ii −

b
(m−1)
ij

yi − yj

)
, for j 6= i,

b
(m)
ii =−

M∑
j=1,j 6=i

b
(m)
ij , for j = i; i, j = 1, 2, . . . ,M.

(1.28)

Hence the nth order derivatives of f(x, y) w.r.t. x and mth order derivatives of f(x, y)

w.r.t. y satisfy the following relations:

f (n)(xi, yj) =
N∑
k=1

a
(n)
ik f(xk, yj), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

f (m)(xi, yj) =
M∑
k=1

b
(m)
jk f(xi, yk), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

(1.29)

The calculation of weighting coefficients is the key procedure in DQM, which is of paramount

importance. Various other test functions have been used in the literature to compute these

weighting coefficients such as Legendre polynomials and spline functions by Bellman et

al. [16] and [17] respectively. Lagrange interpolated trigonometric functions have been
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used by Shu and Xue [194]. Striz et al. [198] have presented the harmonic differential

quadrature method. Korkmaz and Dağ [109] have used Sinc functions. Shu and Wu

[193] have presented an implicit approach using radial basis functions. Korkmaz et al.

[112] have used the quartic B-spline basis functions based differential quadrature method

to solve one dimensional Burgers’ equation. Dehghan and Nikpour [51] have used the

local radial basis functions based differential quadrature method for solving system of

second-order boundary value problems. Korkmaz and Dağ [108] have used polynomial

based differential quadrature method to solve Burgers’ equation. Jiwari et al. [89] have

presented a weighted average differential quadrature method to solve Burgers’ equation.

Korkmaz and Dağ [107] have developed a cosine expansion based differential quadrature

method to solve nonlinear Schrödinger equation. Mittal and Jiwari [147] have presented

a polynomial based differential quadrature method for two dimensional coupled Burgers’

equation. Cubic B-spline functions based differential quadrature method has been used

to solve one dimensional Burger’s equation by Korkmaz and Dağ [110].

1.9 Modified Cubic B-spline Differential Quadrature

Method

We have proposed an approach different from existing literature in which modified cubic

B-spline basis functions (1.6) have been used to calculate the weighting coefficients of

differential quadrature method.

1.9.1 Calculation of Weighting Coefficients

1.9.1.1 One Dimensional Case

For one dimensional DQM, the domain a ≤ x ≤ b is divided into a mesh of uniform length

h = xi+1 − xi = b−a
N−1 by the knot xi, where i = 1, 2, . . . , N − 1.

To calculate the weighting coefficients related to first order derivative, we use modified

cubic B-spline basis functions B̃l(x), l = 1, 2, . . . , N in the equation (1.14) as

B̃
′

l(xi) =
N∑
j=1

a
(1)
ij B̃l(xj), i = 1, 2, . . . , N ; l = 1, 2, . . . , N. (1.30)
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At the first knot (boundary point) x = x1, we have

B̃
′

l(x1) =
N∑
j=1

a
(1)
1j B̃l(xj), l = 1, 2, . . . , N,

which gives the following system of equations:

6 1

0 4 1

1 4 1
. . . . . . . . .

1 4 1

1 4 0

1 6





a
(1)
11

a
(1)
12

a
(1)
13

...

a
(1)
1N−2

a
(1)
1N−1

a
(1)
1N


=



− 6
h

6
h

0
...

0

0

0


(1.31)

The above tridiagonal system of equations has been solved using Thomas algorithm to

get the weighting coefficients a
(1)
1j , j = 1, 2, . . . , N related to knot x = x1.

Similarly, at the second knot x = x2, we have

B̃
′

l(x2) =
N∑
j=1

a
(1)
2j B̃l(xj), l = 1, 2, . . . , N, (1.32)

which again produces a following tridiagonal system of equations:

6 1

0 4 1

1 4 1
. . . . . . . . .

1 4 1

1 4 0

1 6





a
(1)
21

a
(1)
22

a
(1)
23

...

a
(1)
2N−2

a
(1)
2N−1

a
(1)
2N


=



− 3
h

0

3
h
...

0

0

0


.

Again using Thomas algorithm, weighting coefficients a
(1)
2j , j = 1, 2, . . . , N can be com-

puted.

In the similar way, weighting coefficients a
(1)
3j , a

(1)
4j , . . . , a

(1)
N−1,j can be computed at

each knot xi, i = 3, 4, . . . , N − 1.

At the last knot x = xN , the following tridiagonal system is obtained

B̃
′

l(xN) =
N∑
j=1

a
(1)
NjB̃l(xj), l = 1, 2, . . . , N, (1.33)
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which gives 

6 1

0 4 1

1 4 1
. . . . . . . . .

1 4 1

1 4 0

1 6





a
(1)
N1

a
(1)
N2

a
(1)
N3
...

a
(1)
NN−2

a
(1)
NN−1

a
(1)
NN


=



0

0

0
...

0

− 6
h

6
h


,

Hence for each point xi, i = 1, 2, . . . , N, we will get a tridiagonal system of equations.

Once all the weighting coefficients a
(1)
ij are determined, we use Shu’s recurrence formulae

(1.21) to get the weighting coefficients related to second or higher order partial derivatives.

1.9.1.2 Two Dimensional Case

According to Shu [192], one dimensional DQM can be directly extended to multi dimen-

sional case, if discretization domain is regular. So for two dimensional DQM the domain

a ≤ x ≤ b, c ≤ y ≤ d is discretized by taking N and M grid points in x and y direction

respectively, such that hx = xi+1 − xi and hy = yj+1 − yj.

The nth order partial derivative of f(x, y) with respect to x and mth order partial

derivative of f(x, y) with respect to y are approximated using the following formulae

f (n)
x (xi, yj) =

N∑
k=1

a
(n)
ik f(xk, yj), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (1.34)

f (m)
y (xi, yj) =

M∑
k=1

b
(m)
jk f(xi, yk), for i = 1, 2, . . . , N ; j = 1, 2, . . . ,M. (1.35)

where n and m denote the order of derivative.

To compute the weighting coefficients a
(1)
ik related to first order derivatives, we use

modified B-spline basis functions B̃l(x), l = 1, 2, . . . , N in equation (1.34) as y axis is

fixed there, which gives

B̃
′

l(xi) =
N∑
k=1

a
(1)
ik B̃l(xk), i = 1, 2, . . . , N ; l = 1, 2, . . . , N. (1.36)

Now using the similar procedure as defined in the Section (1.9.1.1), weighting coefficients

a
(1)
ik for i, k = 1, 2, . . . , N can be computed.
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Similarly, the weighting coefficients b
(1)
jk , for j, k = 1, 2, . . . ,M are computed using

modified B-spline basis functions B̃l(y), l = 1, 2, . . . ,M in equation (1.35) as

B̃
′

l(yj) =
M∑
k=1

b
(1)
jk B̃l(yk), j = 1, 2, . . . ,M ; l = 1, 2, . . . ,M. (1.37)

Once the weighting coefficients related to first order derivatives are determined, we use

Shu’s recurrence formulae (1.27) and (1.28) to determine the weighting coefficients a
(n)
ik ,

for i, k = 1, 2, . . . , N and b
(m)
jk , for j, k = 1, 2, . . . ,M related to second or higher order

partial derivatives.

1.10 Error Norms and Order of Convergence

To verify the performance of the proposed methods, the numerical approximation errors

are obtained using the following formulae:

L2 =

√√√√h
N∑
j=0

|uj − Uj|2 (1.38)

L∞ = max
j
|uj − Uj| (1.39)

RMS error =
1

N + 1

√√√√ N∑
j=0

|uj − Uj|2 (1.40)

Order of Conv. =
log
( ‖u−Uhi

‖Lj

‖u−Uhi+1
‖Lj

)
log
(

hi
hi+1

) , i = 1, 2; j = 2,∞ and hi+1 =
hi
2

(1.41)

where u and U denote the exact and approximate solutions, respectively.

1.11 Thomas Algorithm

In the process of numerical solutions of partial differential equations with B-spline collo-

cation and differential quadrature methods, we get system of linear algebraic/ord

inary differential equations in which the elements distributed on the diagonal and above

and below that diagonal.

Instead of storing the obtained system in matrix(order N) form with a very large

number of zero elements (especially in case of large N), we store the system in vector
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format as: the diagonal elements in matrix A; say vector b is of order N , the elements

below the diagonal; say vector a, is of order N and the elements above the diagonal; say

vector c is also of order N with a1 = cN = 0, then we apply the elimination process of

one row below the diagonal.

The benefits for solving such systems of equations using Thomas algorithm instead

of using the general elimination (Gauss elimination on a full matrix) is to reduce the

number of arithmetic operations from O(N3) to O(N). The Thomas algorithm is very

efficient in computer time and storage for solving tridiagonal system of equations.

1.12 SSP-RK Methods

Strong stability preserving time discretization methods were developed to address the need

for nonlinear stability properties in time discretization as well as spatial discretization of

hyperbolic PDEs. Hyperbolic PDEs typically have discontinuous solution and a stronger

measure than linear stability is thus required.

When the spatial derivatives of time dependent partial differential equations are

discretized, we obtain the system of ODEs in time variable as

ut = F (u), (1.42)

where u is a vector of approximation. This system is then discretized by an ODE solver.

For problems with smooth solutions, usually a linear stability analysis is sufficient. The

spatial discretization is carefully designed so that when this ODE is fully discretized using

the forward Euler method

un+1 = un + ∆tL(un), (1.43)

certain convex functional properties (such as the total variation) of the numerical solution

un does not increase with time, i.e. the following so called Total Variation Diminishing

(TVD) property holds

TV (un+1) ≤ TV (un), TV (un) =
∑
j

|unj+1 − unj |, (1.44)

for all small enough step sizes ∆t ≤ ∆tFE.

Here ∆tFE is the largest allowable step size which guarantee that the above stability

condition will hold for forward Euler with given PDE and spatial discretization.
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Typically, we need methods of higher order and we wish to guarantee that the

higher-order time discretization will preserve this strong stability property. This guarantee

is obtained by observing that if a time discretization can be decomposed into convex

combinations of forward Euler steps then any functional property (referred to here as

strong stability property) satisfied by forward Euler will be preserved by the higher-order

time discretization, perhaps under a different time-step restrictions.

Given a semi-discretization of the form (1.42) and convex functional ‖.‖, we assume

that there exists a value ∆tFE such that for all u,

‖un + ∆tF (un)‖ ≤ ‖un‖, for 0 ≤ ∆t ≤ ∆tFE. (1.45)

An explicit s-stage Runge-Kutta method is written in the form

u(0) = un,

u(i) =
i−1∑
j=0

(αiju
(j) + ∆tβijF (u(j))), i = 1, 2, . . . , s,

un+1 = u(s),

(1.46)

where all αij ≥ 0 and αij = 0 only if βij = 0. If all the coefficients βij are non-negative

then by consistency
i−1∑
j=0

αij = 1 and intermediate stages of Runge-Kutta method can

be arranged into convex combinations of forward Euler’s steps with a modified step size

βij
αij

∆t as

‖u(i)‖ = ‖
i−1∑
j=0

(
αiju

(j) + ∆tβijF (u(j))
)
‖ ≤

i−1∑
j=0

αi,j‖(u(j) + ∆t
βij
αij

F (u(j)))‖ (1.47)

where each ‖u(j) + ∆t
βij
αij

F (u(j))‖ ≤ ‖u(j)‖ as long as
βij
αij

∆t ≤ ∆tFE.

Thus if forward Euler method applied to (1.42) is strongly stable under the time step

restriction ∆t ≤ ∆tFE, and if αij, βij ≥ 0 then the solution obtained by the RK method

(1.46) is SSP i.e. ‖un+1‖ ≤ ‖un‖, under the time step restriction ∆t ≤ min
i,j

αi,j
βi,j

∆tFE,

where c = min
i,j

αi,j
βi,j

is called the SSP coefficient of the method.



25

Properties of SSP-RK Methods

SSP-RK methods are designed to achieve certain stability properties of the original PDE

such as total variation stability or maximum norm stability.

• SSP-RK high order time discretization maintains stability under a certain norm

with a suitable restriction on the time step.

• Numerical experiments show that oscillations and nonlinear instability could occur

when a non SSP-RK method is applied for time discretization. Thus, it is safer to

use an SSP time discretization, especially for hyperbolic problems.

• These methods do not increase computational cost and have the added assurance

of provable stability.

• In terms of computational cost, most SSP-RK methods are of the same form and

have the same cost as traditional ODE solvers.

1.13 Solution of a System of First Order ODEs

Consider the system of first order ODEs

du

dt
= L(u), with given initial condition u(0) = u0. (1.48)

To solve above system Spiteri and Ruuth [197] have given the following explicit formulae:

SSP-RK43 Scheme

u(1) = un +
1

2
∆t L(un),

u(2) = u(1) +
1

2
∆t L(u(1)),

u(3) =
2

3
un +

1

3
u(2) +

1

6
∆t L(u(2)),

un+1 = u(3) +
1

2
∆t L(u(3)).

(1.49)
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SSP-RK54 Scheme

u(1) =un + 0.39175222700392∆tL(un),

u(2) =0.44437049406734un + 0.55562950593266u(1)

+0.36841059262959 ∆t L(u(1))

u(3) =0.62010185138540un + 0.379898148511597u(2),

+0.251891774271694 ∆t L(u(2)),

u(4) =0.178079954393132un + 0.821920045606868u(3)

+0.544974750228521 ∆t L(u(3)),

un+1 =0.00683325884039un + 0.517231671970585u(2)

+0.12759831133288u(3) + 0.34833675773694u(4)

+0.08460416338212 ∆t L(u(3)) + 0.22600748319395 ∆t L(u(4)).

(1.50)

1.14 Contents of the Thesis

In this thesis, an attempt has been made to find the approximate solutions of some time

dependent linear/nonlinear partial differential equations, using collocation and differen-

tial quadrature methods with B-spline basis functions. The chapter wise summary is as

follows:

Chapter 2 deals with numerical solutions of nonlinear Klein-Gordon equation and

Klein-Gordon-Schrödinger equations with Dirichlet and Neumann boundary conditions.

One dimensional Klein-Gordon equation is given by

utt + αuxx + g(u) = f(x, t), x ∈ (a, b), t > 0, (1.51)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),

and with following Dirichlet or Neumann boundary conditions

u(a, t) = f1(t), u(b, t) = f2(t),

ux(a, t) = h1(t), ux(b, t) = h2(t), t ≥ 0
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where α < 0 is a known real constant, f(x, t) is known analytic function and g(u) is a

nonlinear force which may takes many forms such as sinu, sinhu, sinu+ sin 2u, sinhu+

sinh 2u.

Yukawa-coupled Klein-Gordon-Schrödinger (KGS) equation is given by

iψt = −1

2
ψxx − φψ,

φtt = φxx − φ+ |ψ|2, x ∈ R, t > 0,
(1.52)

with the following initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

lim
|x|→∞

ψ(x, t) = 0, lim
|x|→∞

φ(x, t) = 0.

Here ψ(x,t) is a complex function represents a scalar neutron field and φ(x,t) is a real

function represents a scalar neutral meson field.

Numerical solutions of both the equations are obtained using cubic B-spline collo-

cation method. Modified cubic B-spline basis functions are used to handle the Dirichlet

boundary conditions. The equations are decomposed into a system of partial differential

equations, which are further converted to an amenable system of ODEs. The obtained

system of ODEs is solved by SSP-RK54 scheme. Numerical results are presented for

six examples to show the accuracy and utility of proposed approach. The approximate

solutions of both the equations are computed without using any transformation and lin-

earization. The computed results are of better accuracy than earlier results available in

the literature. The implementation of this method is very easy and cost-effective.

Chapter 3 addresses the modified cubic B-splines collocation method to find nu-

merical solution of nonlinear sine-Gordon equation. We consider

utt = uxx − sin(u), x ∈ (a, b), t > 0, (1.53)

with initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x),

and with following Dirichlet boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0.
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The nonlinear sine-Gordon equation is converted into a system of partial differential equa-

tions. We apply modified cubic B-splines for spatial variable and its derivatives, which

produces a system of first order ordinary differential equations. The obtained system of

ODEs is solved using SSP-RK54 scheme. The particular features of these schemes are that

it inherently perpetuates certain stability properties and maximum norm stability. It also

controls spurious oscillations and non-linear instability during simulation. The accuracy

of scheme is tested on four numerical examples. The results obtained by the presented

method are of better precision and competent accuracy than the results available in the

earlier works. The order of convergence of the scheme is also computed and found to be

approaching two.

Chapter 4 is concerned with the numerical solution of one dimensional hyperbolic

telegraph equation with Dirichlet and Neumann boundary conditions. Consider

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ (a, b), t > 0, (1.54)

with initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x)

and the following Dirichlet or Neumann boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t),

ux(a, t) = w1(t), ux(b, t) = w2(t), t ≥ 0.

Here α and β are known real constants. For α > 0, β = 0 it represents a damped wave

equation and for α > β > 0 it is called as telegraph equation.

The cubic B-spline collocation method is developed to get the numerical solution

of telegraph equation. Modified cubic B-spline basis functions are utilized to handle the

Dirichlet boundary conditions. The use of B-splines basis functions for spatial variable

and its derivatives, results in an amenable system of differential equations. The resulting

system of equations is solved by the SSP-RK54 scheme. Stability of scheme is discussed

using matrix stability analysis and found unconditionally stable. The efficacy of proposed

approach is confirmed with five numerical experiments, which shows that the obtained
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solutions are acceptable and in good agreement with earlier studies.

In chapter 5 we propose an efficient differential quadrature method, to find the

numerical solution of two dimensional hyperbolic telegraph equation with Dirichlet and

Neumann boundary conditions. Consider

utt(x, y, t) + 2αut(x, y, t) + β2u(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y, t),

(x, y, t) ∈ D × (0, T ].
(1.55)

The initial conditions are given by

u(x, y, 0) = u0(x, y),

ut(x, y, 0) = v0(x, y), (x, y) ∈ D.

The Dirichlet and Neumann boundary conditions are given by

u(a, y, t) = f1(y, t), u(b, y, t) = f2(y, t),

u(x, c, t) = f3(x, t), u(x, d, t) = f4(x, t), (x, y, t) ∈ ∂D × (0, T ]

ux(a, y, t) = g1(y, t), ux(b, y, t) = g2(y, t),

uy(x, c, t) = g3(x, t), uy(x, d, t) = g4(x, t), (x, y, t) ∈ ∂D × (0, T ]

where D denotes the rectangular domain [a, b]× [c, d], ∂D is its boundary, α and β are the

real constants. For α > 0, β = 0, it represents a damped wave equation and for α > 0,

β > 0, it is called telegraph equation.

The equation is converted into a system of partial differential equations and further

reduced into a system of ordinary differential equations using DQM. The resulting system

of ODEs in time is solved by SSP-RK43 scheme. The stability of the scheme is analyzed

by matrix stability analysis and found unconditionally stable. The efficacy of proposed

approach is confirmed with seven numerical experiments, where comparisons are made

with some earlier work. It has been observed that obtained results are acceptable and

are in good agreement with earlier studies. However, we obtained these results in much

less CPU time. The method is very simple, efficient and produces very accurate numer-

ical results in considerably smaller number of nodes and hence saves computational effort.
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Chapter 6 discusses the application of modified cubic B-spline differential quadra-

ture method to find the numerical solutions of some nonlinear wave equations in one and

two dimensions with Dirichlet boundary conditions. We consider

utt = uxx + f(x, t, u, ux, ut), x ∈ (a, b), t > 0, (1.56)

utt = uxx + uyy + f(x, y, t, u, ux, uy, ut), (x, y, t) ∈ [a, b]× [c, d]× (0, T ] (1.57)

with suitable initial and boundary conditions. Here f is some nonlinear expression in

terms of u, ux, uy, ut,.

To obtain the numerical solutions, above equations are decomposed into a system

of partial differential equations. Modified cubic B-spline basis functions based differential

quadrature method is used for space discretization to obtain a system of nonlinear first

order ordinary differential equations. The resulting system of equations is solved using

SSP-RK43 scheme. In numerical testing, the method is implemented on Vander pole type

nonlinear wave equation, Dissipative nonlinear wave equation and Telegraph equation.

The numerical solutions of nonlinear wave equations are computed without linearizing

the nonlinear term. The accuracy of the approach is confirmed with seven numerical

experiments and obtained results are found better in comparison with previous studies.

The order of convergence of method is also computed and found to be two.

Chapter 7 presents the numerical solution of nonlinear two dimensional coupled

Burgers’ equation, given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

R

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

R

(
∂2v

∂x2
+
∂2v

∂y2

)
(x, y, t) ∈ D × (0, T ],

(1.58)

with initial conditions

u(x, y, 0) = φ(x, y),

v(x, y, 0) = ψ(x, y), (x, y) ∈ D.

and boundary conditions

u(x, y, t) = φ1(x, y, t),

v(x, y, t) = ψ1(x, y, t), (x, y, t) ∈ ∂D × (0, T ],
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where D is the rectangular domain [a, b]× [c, d] and R denotes the Reynolds number.

The equations are reduced into a system of ordinary differential equations by mod-

ified cubic B-spline differential quadrature method. The obtained system of nonlinear

ordinary differential equations is then solved by SSP-RK43 scheme. The accuracy of the

approach is tested on five test problems and computed results are compared with some

earlier works. The results of computations indicate that modified cubic B-spline differen-

tial quadrature method combined with SSP-RK scheme gives more accurate results than

earlier works with less computational cost. Numerical results are computed for higher

Reynolds number up to R = 1500. The strong points of the method are in ease to apply

and less computational effort.

Finally, in chapter 8 conclusions are drawn based on the present study and future

research work is suggested, in this direction.
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Table 1.1: Values of quadratic B-spline and its derivative at different knots.

x xj−1 xj xj+1 xj+2

Bj(x) 0 0 1 0

B
′
j(x) 0 2

h
−2
h 0

Table 1.2: Values of cubic B-spline and its derivatives at different knots.

x xj−2 xj−1 xj xj+1 xj+2

Bj(x) 0 1 4 1 0

B
′
j(x) 0 3

h 0 −3
h 0

B
′′
j (x) 0 6

h2
−12
h2

6
h2

0
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Figure 1.2: Graph of quadratic B-spline.

Figure 1.3: Graph of cubic B-spline.
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Chapter 2

Numerical Solution of a System of
Nonlinear Klein-Gordon Equations

2.1 Introduction

The study in this chapter is concerned with the numerical solutions of nonlinear Klein-

Gordon and coupled Klein-Gordon-Schrödinger equations.

2.1.1 Klein-Gordon Equation

The nonlinear Klein-Gordon (KG) equation describes a variety of physical phenomena

such as dislocations, ferroelectric and ferromagnetic domain walls, DNA dynamics, and

Josephson junctions. It plays a pivotal role in mathematical physics and in condensed

matter physics. It has attracted much attention in investigating the interaction of solitons

in a collisionless plasma, initial states and in examining the nonlinear wave equations

[33, 60]. With polynomial nonlinearity, it models many problems in classical and quantum

mechanics and in nonlinear optics.

Consider nonlinear Klein-Gordon equation

utt + αuxx + g(u) = f(x, t), x ∈ (a, b), t > 0, (2.1)

subjected to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [a, b]. (2.2)

The Dirichlet boundary conditions are given by

u(a, t) = f1(t), u(b, t) = f2(t), t ≥ 0, (2.3)

35
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or Neumann boundary conditions are given by

ux(a, t) = h1(t), ux(b, t) = h2(t), t ≥ 0, (2.4)

where f1(t), f2(t), h1(t), h2(t) and their derivatives up to second order are continuous in

the domain of interest.

The parameter α < 0 is a known real constant, f(x, t) is known analytic function

and g(u) is a nonlinear force, which may takes many forms such as: sinu, sinhu,

sinu + sin 2u, sinhu + sinh 2u, that characterize the sine-Gordon, sinh-Gordon, double

sine-Gordon and double sinh-Gordon equations [56, 123] respectively. Function g(u) also

appears in the form of a polynomial like βu+ γun [42], where β, γ ∈ R.

The nonlinear Klein-Gordon equations are the Hamiltonian partial differential equa-

tions and the solitons that appears in form of utt + αuxx + g(u) = 0, for a wide class of

function g(u), Hamiltonian energy and momentum are conserved [42, 88].

Energy(E(t)) =

∫ b

a

(
1

2
u2t +

1

2
u2x +G(u)

)
dx, where G

′
(u) = g(u). (2.5)

Momentum(P (t)) =

∫ b

a

(
1

2
uxut

)
dx. (2.6)

2.1.2 Coupled Klein-Gordon-Schrödinger Equation

We also consider following Yukawa-coupled Klein-Gordon-Schrödinger (KGS) equation

iψt = −1

2
ψxx − φψ,

φtt = φxx − φ+ |ψ|2, x ∈ R, t > 0,
(2.7)

where ψ(x,t) is a complex function represents a scalar neutron field and φ(x,t) is a real

function represents a scalar neutral meson field. This model describes the interaction

between conservative complex neutron field and neutral meson Yukawa in quantum field

theory and plays an important role in quantum physics.

In large domain |x| ≥ 0, solutions of the above equations decay rapidly to zero.

Therefore, the system (2.7) has been solved in a compact space domain. The initial and

homogenous boundary conditions are given by

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (2.8)

lim
|x|→∞

ψ(x, t) = 0, lim
|x|→∞

φ(x, t) = 0, (2.9)
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where ψ0(x) is a complex-valued function and φ0(x), φ1(x) are known real valued functions.

Much work has been reported in the literature on the progress of numerical schemes

for the KG and coupled KGS equations. Jiménez and Vázquez [88] have compared the

properties of four explicit finite difference schemes for KG equation and found undesirable

characteristics in some of these schemes. Lee [129] has developed a collocation method

for the numerical solution of KG equation in two dimension and showed the stability,

convergence of the method using spectral method technique. Decomposition methods

[41, 67, 102] have been successfully applied to find the approximate analytical solutions

of nonlinear KG equation in terms of a convergent power series. Wang and Cheng [205]

have proposed the numerical solution of damped nonlinear Klein-Gordon equation using

variational method and finite element approximations. The existence and uniqueness of

the solution of damped nonlinear Klein-Gordon equation have been discussed in [103].

Ravi Kanth and Aruna [182] have implemented differential transform method to find

exact series solutions of linear and nonlinear KG equations. Dehghan and Shokri [56]

have proposed a collocation method to solve one-dimensional nonlinear KG equation with

quadratic and cubic nonlinearity. Lakestani and Dehghan [123] have presented a collo-

cation method using cubic B-spline scaling functions to solve equation (2.1). Rashidinia

et al. [175] have developed a B-spline collocation method to solve equation (2.1) with

both Dirichlet and Neumann boundary conditions. Rashidinia and Mohammadi [177]

have constructed a three time-level spline-difference scheme. Bratsos [24] has presented a

predictor-corrector scheme, Li et al. [130] have proposed a lattice Boltzmann scheme and

Rashidinia et al. [174] have developed a B-spline collocation method to solve linear Klein-

Gordon equations. However, very few researchers have paid attention to find numerical

solutions of equation (2.1) with Neumann boundary conditions (2.4). Dehghan et al. [50]

have developed an unconditionally stable fourth order compact method, which has fourth

order accuracy in both space and time. In [42], the approximate solution of equation (2.1)

has been obtained by employing the dual reciprocity boundary integral equation method.

Recently, Doha et al. [63] have developed a Jacobi-Gauss-Lobatto collocation (J-GLC)

method for finding the numerical solution of nonlinear coupled Klein-Gordon equation.



38

Numerical solutions of nonlinear KGS system have been also studied by various

approaches in literature. Hong et al. [78] have applied five difference schemes to solve the

KGS equations (2.7). The symplectic and multisymplectic methods have been discussed

in [104, 105]. Zhang [210] has discussed a conservative difference scheme for a class of KGS

equations. Wang and Zhang [206] have developed a class of discrete-time orthogonal spline

collocation scheme by using piecewise cubic Hermite interpolations in space, combined

with finite difference methods in time. Wang and Zhou [204] have studied the periodic

wave solutions and Kong et al. [106] have proposed an explicit symplectic partitioned

Runge-Kutta Fourier pseudo-spectral scheme to solve nonlinear system of KGS equations

(2.7).

In this chapter, we have proposed a numerical scheme based on collocation of cubic

B-spline basis functions for solving Klein-Gordon and coupled Klein-Gordon-Schrödinger

equations. For Neumann boundary conditions, we have used cubic B-splines and for

Dirichlet boundary conditions, we have used modified cubic B-splines. The use of B-

splines for spatial variable and its derivatives produces a system of first order nonlinear

ordinary differential equations. Obtained system of equations is solved using SSP-RK54

[73] scheme. The presented method approximates both the equations (2.1) and (2.7),

without using any transformation and quasi-linearization approach. Finally, the efficiency

of the method is tested on different type of six examples.

This chapter is structured as follows. In Section-2.2, cubic B-spline collocation

method is exemplified. In Section-2.3, execution procedure of this method is explained for

equations (2.1)-(2.4). Numerical scheme for Yukawa-coupled Klein-Gordon-Schrödinger

equations (2.7)-(2.9) is presented in Section-2.4. In Section-2.5, six numerical test ex-

amples are considered to show the accuracy of proposed method, computationally. The

conclusions are given in Section-2.6, that briefly summarizes the numerical outcomes.

2.2 Description of Method

The domain [a, b] is divided into a number of subinterval by taking uniform interval

h = xj+1 − xj, such that a = x0 < x1 < · · · < xN−1 < xN = b.

To solve equations (2.1) and (2.7), using collocation method with cubic B-splines,
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we assume our approximate solution U(x, t) in the form

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (2.10)

where cj(t) are the unknown time dependent quantities.

The cubic B-splines Bj(x) at the knots are given as equation (1.5). In Table-1.2,

values of Bj(x) and its two derivatives are reported at different knots. Since Bj(x) = 0,

outside the interval [xj−2, xj+2), so there is no need to tabulate Bj(x) for other values of

x.

Using approximate solution (2.10) and Table-1.2, the approximate values of U(x, t)

and its two derivatives at the knots are determined in terms of the time parameters cj,

which have been reported in equation (1.13).

2.3 Numerical Solution of Klein-Gordon Equation

KG equation (2.1) is converted into a system of partial differential equations using the

transformation ut(x, t) = v(x, t), as

ut = v,

vt = −αuxx − g(u) + f(x, t),
(2.11)

where the boundary conditions for v are obtained from corresponding values of ut at the

boundary points.

2.3.1 Treatment of Dirichlet Boundary Conditions

We have used the modified cubic B-spline basis functions (1.6) to solve equation (2.1)

with Dirichlet boundary conditions. In collocation method with cubic B-splines, there

is a requirement to change the basis functions into a new set of functions such that

the number of basis functions matches with the selected points in the given domain. The

Dirichlet boundary conditions can be easily tackled using these basis functions and finally,

we get a diagonally dominant system of equations.

We assume our approximate solution as the linear combination of modified cubic

B-spline basis functions (1.6) as

U(x, t) =
N∑
j=0

cj(t)B̃j(x). (2.12)
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Using equation (2.12), approximate value of Ut(x, t) can be written as

Ut(x, t) =
N∑
j=0

ċj(t)B̃j(x), (2.13)

where ċj(t) is the derivative of cj(t) with respect to time t.

Using modified basis functions and Table-1.2 in equation (2.13), the values of Ut(x, t)

at different knots will be given by

Ut(x0, t) = 6ċ0, for j = 0,

Ut(xj, t) = ċj−1 + 4ċj + ċj+1, for j = 1, 2, . . . , N − 1,

Ut(xN , t) = 6ċN , for j = N.

(2.14)

Using (2.13) in equation (2.11) and imposing the boundary conditions (2.3) at the bound-

ary points, we have

Ut(x0, t) = ḟ1(t), for i = 0,

Ut(xi, t) = vi, for i = 1, 2, . . . , N − 1,

Ut(xN , t) = ḟ2(t), for i = N.

(2.15)

vt(x0, t) = f̈1(t), for i = 0,

vt(xi, t) = −α
N∑
j=0

cjB̃
′′

j (xi)− g

(
N∑
j=0

cjB̃j(xi)

)
+ f(xi, t), for i = 1, . . . , N − 1,

vt(xN , t) = f̈2(t), for i = N.

(2.16)

Now using (2.14) in equation (2.15) and using modified basis functions (1.6), Table-1.2 in

equation (2.16), we have

6ċ0 = ḟ1(t), for j = 0,

ċj−1 + 4ċj + ċj+1 = vj, for j = 1, 2, . . . , N − 1,

6ċN = ḟ2(t), for j = N.

(2.17)

v̇0 = f̈1(t), for j = 0,

v̇j = −6α

h2
(cj−1 − 2cj + cj+1)− g(cj−1 + 4cj + cj+1) + f(xj, t), j = 1, .., N − 1

v̇N = f̈2(t), for j = N.

(2.18)
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Systems (2.17) and (2.18) represent the following systems of first order ODEs

Aċ = G,

V̇ = D,
(2.19)

where

A =


6 0 . . . . . . 0
1 4 1 . . . 0

. . . . . . . . .

. . . . . . . . .
1 4 1

0 6


(N+1)×(N+1)

,

ċ and V̇ are column vectors each of order (N + 1). G and D are column vectors of order

(N + 1) which depend on the boundary conditions and represent the rhs of equations

(2.17) and (2.18), respectively.

2.3.2 Treatment of Neumann Boundary Conditions

In this case, we use collocation of cubic B-spline basis functions (1.5) to solve coupled

system (2.11). We assume our approximate solution as

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (2.20)

which gives

Ut(x, t) =
N+1∑
j=−1

ċj(t)Bj(x). (2.21)

Using (2.20), Neumann boundary conditions (2.4) are approximated as

Ux(x0, t) =
1∑

j=−1

cjB
′

j(x0) = h1(t),

Ux(xN , t) =
N+1∑
j=N−1

cjB
′

j(xN) = h2(t).

(2.22)

Using Table-1.2 in above, we have

3

h
(c1 − c−1) = h1(t),

3

h
(cN+1 − cN−1) = h2(t).

(2.23)
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From (2.23), we have

ċ1 − ċ−1 =

(
h

3

)
ḣ1(t),

ċN+1 − ċN−1 =

(
h

3

)
ḣ2(t).

(2.24)

Now using (2.20) and (2.21) in coupled system (2.11), we have

N+1∑
j=−1

ċjBj(xi) = vi, for i = 0, 1, . . . , N. (2.25)

v̇i = −α
N∑

j=−1

cjB
′′

j (xi)− g

(
N∑

j=−1

cjBj(xi)

)
+ f(xi, t), for i = 0, 1, . . . , N. (2.26)

Using approximate solution (1.13) and Table-1.2 in equations (2.25) and (2.26), we get

following systems of ODEs

ċj−1 + 4ċj + ċj+1 = vj, j = 0, 1, . . . , N. (2.27)

v̇j =
−6α

h2
(cj−1 − 2cj + cj+1)− g(cj−1 + 4cj + cj+1) + f(xj, t), j = 0, 1, . . . , N. (2.28)

Now eliminating c−1, cN+1, ċ−1, ċN+1 from (2.27) and (2.28) by using (2.23) and (2.24), we

have

4ċ0 + 2ċ1 = v0 +

(
h

3

)
ḣ1(t), for j = 0,

ċj−1 + 4ċj + ċj+1 = vj, for j = 1, . . . , N − 1,

2ċN−1 + 4ċN = vN −
(
h

3

)
ḣ2(t), for j = N.

(2.29)

v̇0 =
−6α

h2
(−2c0 + 2c1 − (

h

3
)h1(t))− g(4c0 + 2c1 − (

h

3
)h1(t)) + f(x0, t), for j = 0,

v̇j =
−6α

h2
(cj−1 − 2cj + cj+1)− g(cj−1 + 4cj + cj+1) + f(xj, t), for j = 1, . . . , N − 1,

v̇N =
−6α

h2
(2cN−1 − 2cN + (

h

3
)h2(t))− g(2cN−1 + 4cN + (

h

3
)h2(t)) + f(xN , t), for j = N.

(2.30)

Systems (2.29) and (2.30) are represented in the compact form as:

Bċ = M,

V̇ = X,
(2.31)
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where

B =


4 2 . . . . . . 0
1 4 1 . . . 0

. . . . . . . . .

. . . . . . . . .
1 4 1

2 4


(N+1)×(N+1)

M and X are (N + 1) order vectors represent the rhs of the systems (2.29) and (2.30),

respectively.

To compute the approximate solution U(x, t), we need the vector c. So for Dirich-

let boundary conditions, system Aċ = G in equation (2.19) is solved by using Thomas

algorithm to get a vector ċ. Then obtained first order ODEs with the second system in

(2.19) i.e V̇ = D will give (2N + 2) first order ordinary differential equations. Finally

(2N + 2) first order ODEs have been solved by SSP-RK54 [73] scheme and consequently

the approximate solution U(x, t) is computed. For Neumann boundary, system (2.31) can

be solved using the same procedure and approximate solution can be computed.

2.3.3 Initial Vectors

The initial vectors c0 and v0 can be obtained from the given initial conditions (2.2), as

the following expressions:

2.3.3.1 Initial Vector c0 for Dirichlet Boundary Conditions

We consider

U(x0, 0) = f1(0), j = 0,

U(xj, 0) = u0(xj), j = 1, 2, . . . , N − 1,

U(xN , 0) = f2(0), j = N.

This gives (N + 1) linear equations in (N + 1) unknowns, which can be written in the

form

Ac0 = F 0, (2.32)

where c0 = [c00, c
0
1, . . . , c

0
N−1, c

0
N ]T ,F 0 = [f1(0), u0(x1), . . . . . . , u0(xN−1), f2(0)]T .

Using Thomas-algorithm, solution of (2.32) can be easily computed.



44

2.3.3.2 Initial Vector c0 for Neumann Boundary Conditions

The initial vector c0 for Neumann case can be computed as

Ux(x0, 0) = h1(0),

U(xj, 0) = u0(xj), j = 0, 1, 2, . . . , N − 1, N,

Ux(xN , 0) = h2(0).

This gives a (N + 1)× (N + 1) system of equations of the form

Bc0 = H0, (2.33)

where H0 = [u0(x0) + (h
3
)h1(0), u0(x1), . . . . . . , u0(xN−1), u0(xN)− (h

3
)h2(0)]T .

Using Thomas-algorithm in (2.33), initial vector c0 can be computed.

2.3.3.3 Initial Vector v0

Initial vector v0 for both the above cases can be found using the initial condition (2.2) as:

Ut(x, 0) = u1(x),

v(xj, 0) = u1(xj), j = 0, 1, . . . , N − 1, N. (2.34)

2.4 Numerical Solution of Yukawa-Coupled KGS Equa-

tion

In this section, we consider the system (2.7) and let

ψ(x, t) = p(x, t) + iq(x, t),

φt(x, t) = w(x, t),

where p(x, t) and q(x, t) are real valued functions. Using above substitutions, we get the

following system of partial differential equations

pt = −1

2
qxx − φq,

qt =
1

2
pxx + φp,

φt = w,

wt = φxx − φ+ p2 + q2,

(2.35)
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with the initial conditions (2.8) and Dirichlet boundary conditions (2.9).

We assume approximate solutions pN(x, t), qN(x, t) and φN(x, t) to the exact so-

lutions p(x, t), q(x, t) and φ(x, t) respectively, using the collocation of modified cubic

B-spline basis functions (1.6) as

pN (x, t) =

N∑
j=0

αj(t)B̃j(x),

qN (x, t) =
N∑
j=0

βj(t)B̃j(x),

φN (x, t) =

N∑
j=0

γj(t)B̃j(x).

(2.36)

From equation (2.35), we have

N∑
j=0

α̇j(t)B̃j(xi) = −1

2

(
N∑
j=0

βj(t)B̃
′′

j (xi)

)
−

(
N∑
j=0

γj(t)B̃j(xi)

)(
N∑
j=0

βj(t)B̃j(xi)

)
,

N∑
j=0

β̇j(t)B̃j(xi) =
1

2

(
N∑
j=0

αj(t)B̃
′′

j (xi)

)
+

(
N∑
j=0

γj(t)B̃j(xi)

)(
N∑
j=0

αj(t)B̃j(xi)

)
,

N∑
j=0

γ̇j(t)B̃j(xi) = wi,

ẇi =

(
N∑
j=0

γj(t)B̃
′′

j (xi)

)
−

(
N∑
j=0

γj(t)B̃j(xi)

)
+

(
N∑
j=0

αj(t)B̃j(xi)

)2

+

(
N∑
j=0

βj(t)B̃j(xi)

)2

, i = 0, 1, . . . , N.

(2.37)

Using modified cubic B-spline basis functions (1.6), Table-1.2 and applying the boundary

conditions (2.9) at boundary points, we get the following systems

6α̇0 = 0, for j = 0,

α̇j−1 + 4α̇j + α̇j+1 = − 3

h2
(βj−1 − 2βj + βj+1)−

(γj−1 + 4γj + γj+1)(βj−1 + 4βj + βj+1), for j = 1, 2, . . . , N − 1,

6α̇N = 0, for j = N,

(2.38)
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6β̇0 = 0, for j = 0,

β̇j−1 + 4β̇j + β̇j+1 =
3

h2
(αj−1 − 2αj + αj+1)+

(γj−1 + 4γj + γj+1)(αj−1 + 4αj + αj+1), for j = 1, 2, . . . , N − 1,

6β̇N = 0, for j = N,

(2.39)

6φ̇0 = 0, for j = 0,

φ̇j−1 + 4φ̇j + φ̇j+1 = wj, for j = 1, 2, . . . , N − 1,

6φ̇N = 0, for j = N,

(2.40)

ẇ0 = 0, for j = 0,

ẇj =
6

h2
(γj−1 − 2γj + γj+1)− (γj−1 + 4γj + γj+1) + (αj−1 + 4αj + αj+1)

2+

(βj−1 + 4βj + βj+1)
2, for j = 1, 2, . . . , N − 1,

ẇN = 0, for j = N.

(2.41)

Systems (2.38)-(2.41) can be written in the compact form as:

Aα̇ = F1,

Aβ̇ = F2,

Aγ̇ = F3,

ẇ = F4,

(2.42)

where

α̇ =
[
α̇0, α̇1, . . . , α̇N−1, α̇N

]T
, β̇ =

[
β̇0, β̇1, . . . , β̇N−1, β̇N

]T
,

γ̇ =
[
γ̇0, γ̇1, . . . , γ̇N−1, γ̇N

]T
, ẇ =

[
ẇ0, ẇ1, . . . , ẇN−1, ẇN

]T
.

A is tridiagonal matrix of order (N +1), detailed in the Section-(2.3.1). F1, F2, F3, F4 are

column vectors of order (N + 1) representing rhs of equations (2.38-2.41), respectively.

The system (2.42) represents a system of (4N + 4) first order ODEs and solved by SSP-

RK54 scheme with Thomas algorithm. Once the vectors α, β and γ are computed, using

them we can easily find the approximate solutions ψN(x, t) and φN(x, t) at the require

knots.
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2.4.1 Initial Vectors

The initial vectors α0, β0, γ0 and w0 can be computed from the initial conditions (2.8),

using the same procedure as given in the Section-2.3.3.

2.5 Numerical Results

To prove the effectiveness of the method, six numerical examples are taken and maximum

absolute error, L2 error and root mean square error (RMS) are computed to assess the

accuracy of the method.

Example 2.1

We consider the Klein-Gordon equation with quadratic nonlinearity [56, 123, 175],

utt − uxx + u2 = −x cos(t) + x2 cos2(t), −1 < x < 1, t > 0, (2.43)

with initial conditions

u(x, 0) = x, ut(x, 0) = 0. (2.44)

The exact solution is given by

u(x, t) = x cos(t). (2.45)

The Dirichlet boundary conditions (2.3) are obtained from the exact solution.

In Table-2.1, results are reported with h = .02 and ∆t = .01, .001, respectively.

L2, L∞, RMS errors and CPU time are given in Table-2.2 with h = .02, ∆t = .0001

and compared with the results given by Dehghan and Shokri [56]. We found that our

solutions are better and CPU time is very less in our case. In our next computation

we take h = .02, ∆t = .00002. Results are reported in Table-2.3 and compared with

the results of Li et al. [130]. From table it is clearly seen that our results are much

better than that of [130]. In Table-2.4, errors are reported at different time levels with

h = .1 and ∆t = .0001 and compared with those given by Lakestani and Dehghan [123].

A comparison of exact and numerical solutions at t = 20 with h = .02 and ∆t = .0001

is depicted in Figure-2.1(a) and corresponding space-time graph is shown in Figure-2.1(b).
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Example 2.2

We consider the following Klein-Gordon equation with cubic nonlinearity [56, 130] with

constants α = −2.5, β = 1, γ = 1.5,

utt + αuxx + βu+ γu3 = 0, 0 < x < 1, t > 0, (2.46)

with initial conditions

u(x, 0) = B tan(Kx), ut(x, 0) = BKc sec2(Kx). (2.47)

The exact solution is given by

u(x, t) = B tan(K(x+ ct)) (2.48)

where B =
√

β
γ
, K =

√
−β

2(α+c2)
.

The Dirichlet boundary conditions (2.3) can be obtained from the exact solution.

L2, L∞, RMS errors and CPU time with h = .01, ∆t = .001, for c = .05 and c = 0.5

are reported in Table-2.5 and compared with those given by Dehghan and Shokri [56].

We noticed that our results are compatible with [56] but CPU time is less in our compu-

tation. Next we take h = .01, ∆t = .00005 and compare our results with those of Li et

al. [130], in Table-2.6. We note that our method gives more accurate results compared to

the results in [130]. Figure-2.2(a) and Figure-2.2(b) depict the comparison of exact and

approximate solutions at t = 4 for c = .05 and c = 0.5 with h = .01, ∆t = .001.

Example 2.3

Now we consider the KG equation with cubic nonlinearity [42, 50],

utt − uxx + u+ u3 = 0, 0 < x < 1.28, t > 0, (2.49)

with initial conditions

u(x, 0) = A

[
1 + cos

(
2πx

1.28

)]
, ut(x, 0) = 0, (2.50)

where A is the amplitude.

The Neumann boundary conditions are given by

ux(0, t) = 0, ux(1.28, t) = 0. (2.51)
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In this problem due to the periodic boundary conditions the continuous solution

remains always symmetric with respect to the center of the spatial interval. It has been

solved in the literature for different values of A. Bratsos [24] has investigated initial en-

ergy E(0) = 26.5963 for A = 1.5. Dehghan and Ghesmati [42] have reported the initial

energy and momentum for A = 1.5 and t ≤ 150. Dehghan et al. [50] have depicted their

results for A = 1.5 and t ≤ 1000. In Table-2.7, we report the energy and momentum for

A = 1.5 for t ∈ [0, 1000] and found them similar to the results of [42, 50] and it is clear

that solution preserves the conservation laws during the propagation. Figure-2.3 depicts

the graphs of approximate solutions and energy for t ∈ [0, 1000] and A = 1.5 with h = .01,

∆t = .001. In Figure-2.4, approximate solutions are plotted for A = 100 and t ∈ [0, 7]

with h = .01, ∆t = .001. Approximate solutions at t = 0, .1, 32 for amplitude A = 150

are illustrated in Figure-2.5, which shows that the solution remains bounded for t ∈ [0, 32].

Example 2.4

We consider the KG equation with quadratic nonlinearity [56],

utt − uxx + u2 = 6xt(x2 − t2) + x6t6, 0 < x < 1, t > 0, (2.52)

with initial conditions

u(x, 0) = 0, ut(x, 0) = 0. (2.53)

The exact solution is given by

u(x, t) = x3t3. (2.54)

Dirichlet boundary conditions (2.3) and Neumann boundary conditions (2.4) can be ob-

tained from the exact solution.

For Dirichlet problem, results are reported in Table-2.8 at t = 1, 2, 3, 4, 5 with

h = .02 and ∆t = .0001. Comparisons have been made with the results given by Dehghan

and Shokri [56]. We note that obtained solutions are compatible with those given in

[56] but CPU time is much less in our case. Table-2.9 shows the comparison of errors at

different time with Lakestani and Dehghan [123] with h = .2 and ∆t = .0001. A graphical

comparison of exact and numerical solutions at t = 5 with h = .02, ∆t = .0001 is depicted

in Figure-2.6.
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With Neumann boundary conditions, we have solved above problem with h = .02

and ∆t = .0001. Computed results are reported up to t = 5 in Table-2.10.

Example 2.5

Single soliton solution

In this example, we consider KGS equations (2.7) having analytic solitary wave solution

ψ(x− x0, t, q) =
3
√

2

4
√

1− q2
sech2 1

2
√

1− q2
(x− qt− x0) e

(
i

(
qx+ 1−q2+q4

2(1−q2)
t

))
,

φ(x− x0, t, q) =
3

4(1− q2)
sech2 1

2
√

1− q2
(x− qt− x0),

(2.55)

where |q| < 1 represents the propagating velocity of wave and x0 is the initial phase.

The initial conditions (2.8) are given as

ψ0(x) =
3
√

2

4
√

1− q2
sech2 1

2
√

1− q2
(x− x0) e(iqx),

φ0(x) =
3

4(1− q2)
sech2 1

2
√

1− q2
(x− x0),

φ1(x) =
3q

4(1− q2) 3
2

sech2 1

2
√

1− q2
(x− x0) tanh

1

2
√

1− q2
(x− x0).

(2.56)

We take initial phase x0 = −10 and initial velocity q = 0.8. Solutions are obtained

in the spatial interval [−20, 20] up to t = 30. The evolutions of |ψN(x, t)| and φN(x, t)

at different time levels are depicted in Figure-2.7 and Figure-2.8, respectively. Next, we

take x0 = 0 and q = 0.5 in the domain [−40, 40] and solve the problem till t = 40 with

h = .1 and ∆t = .001. L2 and L∞ error norms of |ψN(x, t)| and φN(x, t) are reported in

Table-2.11.

Example 2.6

Collision of two solitons

In this example, we consider KGS equations (2.7) with the following initial conditions

ψ0(x) = ψ(x− x1, 0, q1) + ψ(x− x2, 0, q2),

φ0(x) = φ(x− x1, 0, q1) + φ(x− x2, 0, q2),

φ1(x) = φt(x− x1, 0, q1)|t=0 + φt(x− x2, 0, q2)|t=0,

(2.57)
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where x1, x2 are the initial phases and q1, q2 are propagating velocities of two solitons.

Interaction of two symmetric solitons: First we consider the collision of two sym-

metric solitons. The two solitons are said to be symmetric when they are symmetrically

distributed around the origin. We consider the collision of two solitons with same ve-

locities but different directions. We take x1 = 20, x2 = −20, q1 = −0.5, q2 = 0.5 and

solve the problem in the domain [−40, 40] with h = .16 and ∆t = .001. The graphs of

interaction of solitons at different times are depicted in Figure-2.9. We note that the two

solitary waves collides at t = 40 and propagate in their original directions after collision.

Interaction of two asymmetric solitons: Next we consider two solitons propagating

with both different velocities and opposite directions. The parameters x1 = −15, x2 = 15

and q1 = 0.8, q2 = −0.4 are chosen in the space domain [−40, 40]. In Figure-2.10, graphs

of interaction of solitons at different time levels are depicted with h = .16 and ∆t = .001.

We observe that two solitons preserve their own shapes and velocities unchanged before

collision. At t = 20 collision occurs, results in a fusion and are accompanied by a series

of emission of waves after interaction.

2.6 Conclusions

The following observations have been made based on present study:

1. The cubic B-spline collocation method has been developed to solve Klein-Gordon

and coupled Klein-Gordon Schrödinger equations.

2. The method is able to handle Dirichlet’s as well as Neumann’s boundary conditions.

3. The solutions of these equations are obtained without using any transformation and

linearization process.

4. The accuracy of the method is tested by solving six numerical examples known in

the literature. It has been proved that the proposed method produces better results

in comparison to those available in literature. However, we obtain these results in

much less CPU time.

5. This scheme provides the solution not only at the grid points but at any point in

the solution domain.
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Table 2.1: Errors of Example 2.1 with h = .02.

t ∆t = .01 ∆t = .001

L2 L∞ L2 L∞
1 3.3759E-3 4.1286E-3 3.3796E-4 4.1294E-4
3 6.3474E-4 6.8066E-4 6.3647E-5 7.0137E-5
5 3.8419E-3 4.7009E-3 3.8720E-4 4.7217E-4
7 2.7703E-3 3.2785E-3 2.7262E-4 3.2415E-4
10 2.3023E-3 2.7282E-3 2.6212E-4 2.7022E-4
15 2.6794E-3 3.1783E-3 2.6766E-4 3.1886E-4
20 3.5556E-3 4.4488E-3 3.5493E-4 4.4491E-4

Table 2.2: Errors and CPU time of Example 2.1 with h = .02 and ∆t = .0001.

t Proposed method Dehghan and Shokri [56]

L2 L∞ RMS CPU L2 L∞ RMS CPU
time(s) time(s)

1 3.3799E-5 4.1295E-5 2.3663E-6 3.07 6.5422E-5 1.2540E-5 6.5097E-6 5
3 6.3684E-6 7.0385E-6 4.4586E-7 8.09 1.1717E-4 1.5554E-5 1.1659E-5 22
5 3.8721E-5 4.7220E-5 2.7108E-6 12.97 2.2011E-4 3.3792E-5 2.1902E-5 49
7 2.2727E-5 3.2420E-5 1.9091E-6 14.04 2.5892E-4 3.7753E-5 2.5763E-5 83
10 2.2571E-5 2.7001E-5 1.5802E-6 17.45 7.9854E-5 1.3086E-5 7.9458E-6 150
15 2.6763E-5 3.1901E-5 1.8737E-6 32 - - - -
20 3.5485E-5 4.4490E-5 2.4843E-6 60 - - - -

Table 2.3: Errors of Example 2.1 with h = .02 and ∆t = .00002.

t Proposed method Li et al. [130]

L2 L∞ RMS L2 L∞ RMS

1 6.7600E-6 8.2590E-6 4.7327E-7 1.9558E-3 1.1135E-3 1.1294E-4
3 1.2736E-6 1.4074E-6 8.9608E-7 1.3664E-3 7.6676E-3 7.6295E-4
5 7.7440E-6 9.4439E-6 5.4216E-7 1.5260E-3 8.5602E-3 8.5178E-4
7 5.4538E-6 6.4841E-6 3.8183E-7 2.5892E-3 3.7753E-3 2.5763E-4
10 4.5133E-6 5.3996E-6 3.1598E-7 1.0465E-3 6.9848E-3 6.9501E-4
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Table 2.4: Errors and CPU time of Example 2.1 with h = .1 and ∆t = .0001.

t Proposed method Lakestani and Dehghan [123]

L2 L∞ RMS CPU time(s) L2 L∞
.1 2.0292E-7 3.2048E-7 4.1253E-7 .06 4.1E-5 6.7E-5
.2 1.3572E-6 2.1884E-6 2.7590E-7 .08 3.6E-5 4.2E-5
.3 3.5537E-6 5.7855E-6 7.2241E-7 .16 4.9E-5 5.6E-5
.4 6.4119E-6 1.0226E-5 1.3034E-7 .18 5.4E-5 7.3E-5
.5 9.6776E-6 1.4751E-5 1.9672E-7 .23 6.3E-5 8.3E-5
.6 1.3255E-5 1.9158E-5 2.6944E-7 .27 4.5E-5 6.6E-5
.7 1.7052E-5 2.3398E-5 3.4663E-7 .34 5.8E-5 7.4E-5
.8 2.0995E-5 2.7366E-5 4.2678E-7 .37 7.0E-5 8.1E-5
.9 2.5130E-5 3.1020E-5 5.1085E-7 .42 5.2E-5 7.9E-5
1 2.9376E-5 3.4281E-5 5.9717E-7 .44 5.3E-5 7.7E-5

Table 2.5: Errors and CPU time of Example 2.2 with h = .01 and ∆t = .001.

Proposed method Dehghan and Shokri [56]

t L2 L∞ RMS CPU L2 L∞ RMS CPU
time(s) time(s)

c = .05

1 1.8930E-6 3.6481E-6 1.8742E-7 .39 3.6497E-7 1.7861E-6 1.7772E-7 0
2 2.5245E-6 3.5691E-6 2.4996E-7 .60 3.8952E-7 1.5383E-6 1.5306E-7 1
3 2.7593E-6 3.7474E-6 2.7320E-7 .62 4.2123E-7 1.7275E-6 1.7190E-7 1
4 2.1504E-6 3.9616E-6 2.1291E-7 .80 4.5928E-7 2.0097E-6 1.9997E-7 2

c = .5

1 2.2480E-5 3.5702E-5 2.2258E-6 .37 5.9964E-6 4.0761E-5 4.0559E-6 0
2 7.5075E-5 1.3161E-4 7.4332E-6 .51 2.1973E-5 1.5769E-4 1.5691E-5 1
3 2.1963E-4 4.2853E-4 2.1745E-5 .71 9.0893E-5 6.4792E-4 6.4470E-5 1
4 1.8264E-4 2.1806E-3 8.6272E-5 .90 8.2945E-4 5.3572E-3 5.3306E-4 2
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Table 2.6: Errors of Example 2.2 with h = .01 and ∆t = .00005.

Present Scheme Li et al. [130]

t L2 L∞ L2  L∞
c = .05

1 2.8010E-6 3.7221E-6 2.9718E-4 5.6970E-5
2 2.0174E-6 3.8238E-6 3.8699E-4 7.4878E-5
3 3.1641E-6 3.9990E-6 5.2203E-4 1.1972E-4
4 2.7095E-6 4.7432E-6 4.4143E-4 1.4008E-4

c = .5

1 3.6802E-6 6.7946E-6 6.6508E-4 1.4189E-4
2 8.2992E-6 1.5770E-5 1.5438E-3 4.6601E-4
3 2.7509E-5 7.0254E-5 4.9588E-3 1.9445E-3
4 3.2482E-4 1.2584E-3 7.1870E-2 2.8219E-2

Table 2.7: The energy E(t) and momentum |p(t)| of Example 2.3 with h = .01, ∆t = .001,
A = 1.5 for t ∈ [0, 1000].

t 0 10 50 100 150 500 1000

Proposed method

E(t) 26.5964 26.5984 26.5995 26.5966 26.5987 26.5994 26.5974
|p(t)| 0 2.060E-15 6.528E-14 8.021E-14 3.406E-14 3.580E-15 2.292E-14

Dehghan and Ghesmati [42]

E(t) - 26.5957 26.5902 26.5725 26.5308 - -
|p(t)| 0 9.419E-11 1.459E-10 5.131E-8 6.172E-6 - -

Table 2.8: Errors and CPU time of Example 2.4 with h = .02 and ∆t = .0001.

t Proposed method Dehghan and Shokri [56]

L2 L∞ RMS CPU L2 L∞ RMS CPU
time(s) time(s)

1 8.9965E-5 2.3442E-4 1.2473E-5 1.26 1.1012E-5 5.4998E-5 5.4725E-6 6
2 1.8101E-3 2.4415E-3 1.6362E-4 2.45 1.6496E-4 1.1522E-3 1.1465E-4 14
3 2.6825E-3 8.2711E-3 3.7193E-4 3.02 5.9728E-4 3.2588E-3 3.2426E-4 25
4 4.6003E-3 1.8738E-2 6.3782E-4 3.60 1.8264E-3 9.8191E-3 9.7704E-4 37
5 7.1257E-3 3.4252E-2 9.8797E-4 4.87 3.6915E-3 1.9139E-2 1.9044E-3 52
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Table 2.9: Errors and CPU time of Example 2.4 with h = .2 and ∆t = .0001.

t Proposed method Lakestani and Dehghan [123]

L2 L∞ RMS CPU time(s) L2 L∞
.1 4.5177E-7 1.0976E-6 1.0088E-7 .02 3.6E-5 5.3E-5
.2 1.8924E-6 5.4978E-6 4.2258E-7 .14 3.9E-5 5.7E-5
.3 9.2599E-6 3.5926E-5 2.0677E-6 .16 2.7E-5 4.1E-5
.4 3.0119E-5 1.0909E-5 6.7433E-6 .18 3.8E-5 5.6E-5
.5 7.3277E-5 2.4346E-5 1.6362E-6 .23 3.2E-5 4.5E-5
.6 1.4837E-5 4.5742E-5 3.3131E-6 .25 3.4E-5 5.9E-5
.7 2.6639E-5 7.6917E-5 5.9485E-5 .32 3.5E-5 5.9E-5
.8 4.3907E-5 1.1963E-5 9.8042E-5 .34 3.1E-5 4.5E-5
.9 6.7862E-5 1.7572E-4 1.5153E-5 .36 3.8E-5 6.3E-5
1 9.9749E-5 2.4676E-4 2.2273E-5 .38 3.3E-5 4.6E-5

Table 2.10: Errors and CPU time of Example 2.4 with h = .02 and ∆t = .0001.

t L2 L∞ RMS CPU time(s)

1 5.7658E-5 1.4852E-4 5.7089E-6 1.5
2 2.3059E-4 5.9398E-4 2.2830E-5 2.6
3 5.1883E-4 1.3365E-3 5.1369E-5 3.5
4 9.2237E-4 2.3759E-3 9.1323E-5 5.0
5 1.4412E-3 3.7124E-3 1.4269E-4 5.8

Table 2.11: Errors of Example 2.5 with h = .1 and ∆t = .001.

|ψ| φ

t L2 L∞ L2 L∞
10 2.4046E-2 1.4552E-2 3.1071E-2 1.2044E-2
20 4.8021E-2 2.8054E-2 6.1636E-2 2.3323E-2
30 7.1836E-2 4.1339E-2 9.2170E-2 3.3013E-2
40 9.5477E-2 5.5029E-2 1.2272E-2 4.3792E-2
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Figure 2.1: Exact and approximate solutions of Example 2.1 with h = .02 and ∆t = .0001.
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(a) Exact and approximate solution for c =
.05.
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Figure 2.2: Exact and approximate solutions of Example 2.2 at t = 4 with h = .01,
∆t = .001.
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Figure 2.3: Approximate solutions and energy of Example 2.3 for A = 1.5 at t =
0, 200, 1000.

0 0.2 0.4 0.6 0.8 1 1.2
−200

−150

−100

−50

0

50

100

150

200

x

u

 

 

Approximate solution at t = 0
Approximate solution at t = .1

(a) Approximate solutions at t = 0, .1

0 0.2 0.4 0.6 0.8 1 1.2
−150

−100

−50

0

50

100

150

200

x

u

 

 

Approximate solution at t = 0
Approximate solution at t = 7

(b) Approximate solutions at t = 0, 7.

Figure 2.4: Approximate solutions of Example 2.3 for A = 100 at t = 0, .1, 7.
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Figure 2.5: Approximate solutions of Example 2.3 for A = 150 at t = 0, .1, 32.
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Figure 2.7: Single soliton solutions |ψ(x, t)| of Example 2.5 for t ∈ [0, 30] with h = .1 and
∆t = .001.
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Figure 2.8: Single soliton solutions φ(x, t) of Example 2.5 for t ∈ [0, 30] with h = .1 and
∆t = .001.
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Figure 2.9: Collision of symmetric solitons of Example 2.6 for t ∈ [0, 60] with h = .16 and
∆t = .001.
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Chapter 3

Numerical Solution of Nonlinear
Sine-Gordon Equation

3.1 Introduction

The nonlinear sine-Gordon equation appears in many different applications such as dif-

ferential geometry, propagation of fluxion in Josephson junctions [167], dislocations in

crystals, stability of fluid motion, nonlinear physics and applied sciences [13]. The present

chapter is concerned with the numerical solution of one-dimensional nonlinear sine-Gordon

equation

utt = uxx − sin(u), x ∈ (a, b), t > 0, (3.1)

with initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x), x ∈ [a, b], (3.2)

and the following Dirichlet boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0. (3.3)

In the literature a lot of work has been reported for the numerical solution of sine-

Gordon equation. Ben-Yu et al. [18] have proposed two difference schemes; Bratsos and

Twizell [25] have used method of lines to transform the initial/boundary value problem

associated with equation (3.1) in to a first order nonlinear initial value problem. Mohebbi

and Dehghan [162] have presented a combination of a compact finite difference approxi-

mation of fourth order and a fourth-order A-stable DIRKN method. Kuang and Lu [113]
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have proposed two classes of finite difference method for generalized sine-Gordon equa-

tion; Bratsos and Twizell [26] have converted the equation in to a linear algebraic system

using a family of finite difference methods. Wei [207] has used a discrete singular con-

volution algorithm for solving (3.1). A variational iteration method has been developed

by Batiha et al. [15], to obtain approximate analytical solution of the sine-Gordon equa-

tion without any discretization. A second order numerical scheme has been presented by

Zheng [212] to solve sine-Gordon equation define on whole real axis. Bratsos [23] has used

a fourth order numerical method to solve equation (3.1). Dehghan and Shokri [53] have

developed a collocation method using radial basis functions; Dehghan and Mirzaei [47]

have used a boundary integral equation method; Rashidinia and Mohammadi [178] have

developed two implicit finite difference schemes by using spline function approximations.

Li-Min and Zong-Min [131] have presented a meshless scheme by using a multiquadric

quasi-interpolation without solving a large-scale linear system of equations but a polyno-

mial was needed to improve the accuracy of the scheme, while Jiang and Wang [87] have

proposed a meshless approach by using high accuracy MQ quasi-interpolation without

using any polynomial. In [68], exp-function method has been used to obtain generalized

travelling wave solutions of the MKdV-sine-Gordon and Boussinesq-double sine-Gordon

equations with free parameters. A modified decomposition method has been proposed by

Kaya [101]. Uddin et al. [200] have proposed a meshfree approach based on radial basis

functions to solve the sine-Gordon equation (3.1).

B-splines with collocation provide a simple solution procedure of differential equa-

tions. They produce a spline function which is useful to obtain the solution at any point

of the domain, while in finite difference methods [18, 26, 113, 162, 178], we can find the

solution only at the selected knots. In the present method, approximate solutions of sine-

Gordon equation are obtained using modified cubic B-spline collocation method in space

and SSP-RK54 scheme [73] in time. The equation is converted into a system of partial

differential equations and then using modified B-spline collocation method, it reduces into

a system of first order ODEs. Finally, we use SSP-RK54 scheme to solve obtained system

of ODEs. The method does not need any extra effort to tackle the non-linearity and hence

equations may be solved very easily.
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In Section-3.2, cubic B-spline collocation method is described. In Section- 3.3, pro-

cess for execution of present method is illustrated for equations (3.1)-(3.3), using modified

cubic B-spline functions. Initial vectors have been computed in Section-3.4, which are re-

quire to start our method. To show the efficiency of the present approach computationally,

four numerical experiments are taken in Section-3.5. Finally, brief conclusions drawn from

the present study are presented in Section-3.6.

3.2 Description of Method

The solution domain a ≤ x ≤ b is partitioned into a mesh of uniform length h = xj+1−xj,

where j = 0, 1, 2, ...., N − 1, such that a = x0 < x1 < ..... < xN−1 < xN = b.

In the cubic B-spline collocation method the approximate solution can be written

as the linear combination of cubic B-spline basis functions for the approximation space

under consideration. Consider approximate solution U(x, t) to the exact solution u(x, t)

in the form

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (3.4)

where cj(t) are the time dependent quantities, to be determined from boundary conditions

and collocation from the differential equation.

The values of Bj(x) and its derivatives are tabulated in Table-1.2. Approximate

values of U(x, t) and its two derivatives in terms of time parameter cj are given in equation

(1.13).

3.3 Implementation of Method

The sine-Gordon equation (3.1) is rewritten as a coupled equation using the transforma-

tion ut(x, t) = v(x, t) as

ut = v,

vt = uxx − sinu.
(3.5)

Modified cubic B-spline basis functions (1.6) have been used for handling the Dirichlet

boundary conditions. So we assume our approximate solution as the linear combination
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of modified cubic B-spline basis functions i.e.

U(x, t) =
N∑
j=0

cj(t)B̃j(x). (3.6)

Using the approximate solution (3.6), the approximate value of Ut(x, t) can be written as

Ut(x, t) =
N∑
j=0

ċj(t)B̃j(x), (3.7)

where ċj(t) is the derivative of cj(t) with respect to time t.

Using modified cubic B-spline basis functions (1.6) and Table-1.2 in (3.7), the values

of Ut(x, t) at different knots are calculated as

Ut(x0, t) = 6ċ0, for j = 0,

Ut(xj, t) = ċj−1 + 4ċj + ċj+1, for j = 1, 2, . . . , N − 1,

Ut(xN , t) = 6ċN , for j = N.

(3.8)

Using (3.6) in coupled system (3.5) and imposing boundary conditions (3.3) at the bound-

ary points, we have

Ut(x0, t) = ψ̇1(t), for i = 0,

Ut(xi, t) = vi, for i = 1, 2, . . . , N − 1,

Ut(xN , t) = ψ̇2(t), for i = N.

(3.9)

vt(x0, t) = ψ̈1(t), for i = 0,

vt(xi, t) =
N∑
j=0

cjB̃
′′

j (xi)− sin(U(xi, t)), for i = 1, 2, . . . , N − 1,

vt(xN , t) = ψ̈2(t), for i = N.

(3.10)

Now using (3.8) in (3.9), and using (1.6), Table-1.2 in (3.10), we obtain the following

system of equations

6ċ0 = ψ̇1(t), for j = 0,

ċj−1 + 4ċj + 4ċj+1 = vj, for j = 1, 2, . . . , N − 1,

6ċN = ψ̇2(t), for j = N.

(3.11)
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v̇0 = ψ̈1(t), for j = 0,

v̇j =
6

h2
(cj−1 − 2cj + cj+1)− sin(cj−1 + 4cj + cj+1), for j = 1, 2, . . . , N − 1,

v̇N = ψ̈2(t), for j = N.

(3.12)

The systems (3.11) and (3.12) represent the system of first order ODEs, which can be

expressed as

Aċ = F,

V̇ = G.

i.e. 

6 0 . . . . . . 0

1 4 1 . . . 0

. . . . . . . . .

. . . . . . . . .

1 4 1

0 6
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
=



G0

G1

. . .

. . .

GN−1

GN


(3.14)

where F0 = ψ̇1(t), G0 = ψ̈1(t),

Fj = vj, Gj = 6
h2

(cj−1 − 2cj + cj+1)− sin(cj−1 + 4cj + cj+1), for j = 1, 2, . . . , N − 1,

FN = ψ̇2(t), GN = ψ̈2(t).

Once the vector c is determined at a specific time level, using (1.13) we can compute

the approximate solution. So first we solve system (3.13) for vector ċ, by using Thomas

algorithm only once at each time level t > 0. Then obtained system with the system

(3.14) will give (2N + 2) first order ordinary differential equations, which are solved using

SSP-RK54 [73] scheme and consequently the approximate solution U(x, t) is completely

known.
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3.4 Computation of Initial Vectors

To find the solution at a specific time level t > 0, we need the initial vectors c0 and v0.

3.4.1 Initial Vector c0

Initial vector c0 can be computed using initial condition (3.2) as the following expressions

U(x0, 0) = ψ1(0), for j = 0,

U(xj, 0) = φ1(xj), for j = 1, . . . , N − 1,

U(xN , 0) = ψ2(0), for j = N.

Above system represents the following (N + 1)× (N + 1) tridiagonal system of equations

Ac0 = B (3.15)

where

A =



6 0 . . . . . . 0

1 4 1 . . . 0

. . . . . . . . .

. . . . . . . . .

1 4 1

0 6


, c0 =



c00

c01

. . .

. . .

c0N−1

c0N


, B =



ψ1(0)

φ1(x1)

. . .

. . .

φ1(xN−1)

ψ2(0)


Using Thomas-algorithm the solution of (3.15) can be easily found.

3.4.2 Initial Vector v0

Initial vector v0 is computed using the following initial condition

Ut(x, 0) = φ2(x),

v(xj, 0) = φ2(xj) j = 0, 1, . . . , N − 1, N. (3.16)
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3.5 Numerical Experiments

To determine the efficacy of the method, it is tested on the following four test problems

and accuracy of the method is measured using the maximum absolute error, L2 error and

root mean square error (RMS) between the numerical and exact solution.

Example 3.1

We consider the equation (3.1) in the computational domain x ∈ (−a, a) with the following

initial conditions

u(x, 0) = 0, ut(x, 0) = 4 sech(x). (3.17)

The exact solution is given in [131, 162, 178] as

u(x, t) = 4 arctan(t sech(x)). (3.18)

The boundary conditions (3.3) are obtained from the exact solution.

Case I:

First we solve this problem in the computational domain (−1, 1) with ∆t = .0001 and for

space step sizes h = .02, .04, respectively. In Table-3.1, L2 and L∞ errors are reported

and compared with those obtained by Dehghan and Shokri [53]. We observe that our

results are compatible with the results given in [53], for h = .04. For h = .02, in terms

of L2 error our method produces better results than those in [53]. Table-3.2 reports the

absolute errors at t = .01, .1, 1 with h = .02. A graph comparing the exact and numerical

solutions at t = 1 with h = .02, ∆t = .0001 is depicted in Figure-3.1.

Case II:

In the domain (−2, 2), the solutions of Example 3.1 are obtained with ∆t = .01 and

h = .01. In Table-3.3, L∞ and RMS errors are given at different time levels and compared

with those obtained by Li-Min and Zong-Min [131]. We observe that our results in terms

of L∞ errors are in good agreement with the results of [131]. In terms of RMS errors our

results are better than those given in [131]. Figure-3.2 depicts the comparison of exact

and numerical solutions at t = 1.
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Example 3.2

We consider equation (3.1) in the computational domain x ∈ (−3, 3) with the following

initial conditions

u(x, 0) = 4 arctan(exp(γx)), ut(x, 0) =
−4cγ exp(γx)

1 + exp(2γx)
, (3.19)

and the exact solution is given in [162, 178] as

u(x, t) = 4 arctan(exp(γ(x− ct))), (3.20)

where c is the velocity of solitary wave and γ = 1/
√

1− c2.

The boundary conditions (3.3) can be obtained from the exact solution.

In Table-3.4, L2 and L∞ errors are reported for h = .04, .02 with c = 0.5 and

∆t = .0001. These errors are compared with those given in Dehghan and Shokri [53].

From table it is clear that our scheme and that of [53], have approximately similar L2

errors, for h = .04. For h = .02 our results are better than the results of [53], in term

of L2 errors and approximately similar in terms of L∞ errors. The absolute errors are

shown in Table-3.5, at t = .01, .1, 1. L2, L∞ errors and order of convergence are given

in Table-3.6 at t = 1 with ∆t = .0001. Figure-3.3 shows the graph between exact and

numerical solutions at t = 1.

Example 3.3

We consider nonlinear sine-Gordon equation (3.1) in the computational domain x ∈

(−10, 10) with the following initial conditions

u(x, 0) = 0, ut(x, 0) = 4γ̄ sech(γ̄x). (3.21)

The exact solution is given in [23, 200] as

u(x, t) = 4 arctan(c−1 sin(γ̄ct) sech(γ̄x)), (3.22)

where c is the velocity of solitary wave and γ̄ = 1/
√

1 + c2.

The boundary conditions (3.3) can be obtained from the exact solution.

In our numerical computation we take c = 0.5, h = .01,∆t = .001. Computed errors

are presented in Table-3.7 and compared with the results given in Uddin et al. [200] and
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Bratsos [23]. It is clear from the table that our scheme produces much better results than

those in [23, 200]. Table-3.8 reports the L2 and L∞ error norms at t = 20 for different

values of h with ∆t = .001. Order of convergence is also reported in Table-3.8. Figure-

3.4 depicts the space-time graph of approximate solutions for t ≤ 20 with h = .01 and

∆t = .001.

Example 3.4

We consider equation (3.1) in the computational domain x ∈ (−20, 20) with the initial

conditions

u(x, 0) = 4 arctan(c sinh(γx)), ut(x, 0) = 0. (3.23)

The exact solution is given in [23, 200] as

u(x, t) = 4 arctan(c sinh(γx) sech(γct)), (3.24)

where c is the velocity of solitary wave and γ = 1/
√

1− c2. The boundary conditions

(3.3) can be obtained from the exact solution.

This example is solved for c = 0.5, h = .01 and ∆t = .001. Results are reported in

Table-3.9 and compared with those given in Uddin et al. [200] and Bratsos [23] in term

of L∞ errors and found much better. In Table-3.10, L2 and L∞ error norms are reported

at t = 20 for different values of h with ∆t = .001. Order of convergence of the method

is also computed and found to be two. Figure-3.5 represents the space-time graph of

approximate solutions for t ≤ 20 with h = .01 and ∆t = .001.

3.6 Conclusions

The following observations have been made based on present study:

1. A collocation method with modified cubic B-spline basis functions has been proposed

to solve nonlinear sine-Gordon equation with Dirichlet boundary conditions.

2. Approximate solutions have been computed without using any transformation and

quasi-linearization approach.



72

3. It has been observed that the proposed method produces better results in compar-

ison to those available in literature.

4. From the order of convergence reported in Tables-3.6, 3.8 and 3.10, the scheme is

shown to have a second order of convergence.
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Table 3.1: L2 and L∞ errors of Example 3.1 in the domain [−1, 1] with ∆t = .0001.

t Present Scheme Dehghan and Shokri [53]

h = .04 h = .02 h = .04

L2 L∞ L2 L∞ L2 L∞
.25 1.18E-5 2.32E-5 3.71E-6 8.20E-6 3.91E-5 5.89E-6
.50 4.19E-5 4.11E-5 1.34E-5 1.62E-5 1.30E-4 2.01E-5
.75 7.78E-5 1.02E-4 2.40E-5 2.54E-5 2.35E-4 3.63E-5
1 1.30E-4 1.64E-4 3.00E-5 4.14E-5 3.27E-4 5.07E-5

Table 3.2: Absolute errors of Example 3.1 with h = .02, ∆t = .0001.

x t = .01 t = .1 t = 1

-.80 4.19E-11 4.24E-8 1.11E-5
-.60 1.72E-11 1.94E-8 6.17E-7
-.40 3.32E-11 3.01E-8 1.47E-5
0 1.15E-10 1.09E-7 4.13E-5

.40 3.32E-11 3.01E-8 1.47E-5

.60 1.72E-11 1.94E-8 6.17E-7

.80 4.19E-11 4.24E-8 1.11E-5
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Table 3.3: Errors of Example 3.1 in the domain [−2, 2] with h = .01, ∆t = .01.

t Present Scheme Li-Min and Zong-Min [131]

L∞ RMS L∞ RMS

.1 7.20E-6 6.53E-8 1.54E-6 7.43E-6

.2 2.26E-5 2.69E-7 9.25E-5 1.76E-5

.3 4.54E-5 6.36E-7 9.02E-5 3.60E-5

.4 7.52E-5 1.19E-6 1.62E-4 1.62E-4

.5 1.12E-4 1.96E-6 2.58E-4 1.10E-4

.6 1.55E-4 2.96E-6 3.73E-4 1.65E-4

.7 2.04E-4 4.21E-6 4.98E-4 2.29E-4

.8 2.59E-4 5.72E-6 6.24E-4 2.98E-4

.9 3.19E-4 7.50E-6 7.44E-4 3.69E-4
1 3.84E-4 9.56E-6 8.49E-4 4.37E-4

Table 3.4: L2 and L∞ errors of Example 3.2 with c = 0.5, ∆t = .0001.

t Present Scheme Dehghan and Shokri [53]

h = .04 h = .02 h = .04

L2 L∞ L2 L∞ L2 L∞
.25 3.66E-5 4.90E-5 9.26E-6 1.21E-6 1.76E-5 4.95E-6
.50 9.00E-5 7.55E-5 2.24E-5 1.89E-5 4.31E-5 8.42E-6
.75 1.60E-4 1.43E-4 3.98E-5 3.57E-5 8.25E-5 1.65E-5
1 2.27E-4 2.10E-4 5.66E-5 5.25E-5 1.27E-4 2.51E-5

Table 3.5: Absolute errors of Example 3.2 with h = .02, ∆t = .0001.

x t = .01 t = .1 t = 1

-2.5 6.05E-10 5.96E-8 5.28E-6
-2 8.76E-10 8.69E-8 1.21E-6

-1.5 5.64E-10 5.89E-8 9.16E-8
-1 2.68E-9 2.53E-7 2.02E-5
0 5.80E-11 5.64E-8 2.51E-5
1 2.72E-9 2.92E-7 4.82E-5

1.5 5.57E-10 5.08E-8 1.27E-5
2 8.78E-10 8.81E-8 2.21E-6

2.5 6.07E-10 6.15E-8 3.41E-6
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Table 3.6: Errors and order of conv. of Example 3.2 at t = 1 with ∆t = .0001.

h L2 Order of Conv. L∞ Order of Conv.

.08 9.08E-4 8.40E-4

.04 2.27E-4 2 2.10E-4 2

.02 5.66E-5 2.003 5.25E-5 2

.01 1.40E-5 2.015 1.31E-5 2.002
.005 3.65E-6 1.939 3.28E-6 1.998

Table 3.7: L2 and L∞ errors of Example 3.3 with c = 0.5, h = .01, ∆t = .001.

t Present Scheme Bratsos [23] Uddin et al. [200]

L2 L∞ L∞ L∞
1 7.448E-6 7.029E-6 .98816E-3 1.474E-3
10 3.999E-5 2.226E-5 .16291E-2 9.215E-3
20 6.467E-4 3.567E-4 .10379E-2 3.038E-1

Table 3.8: Errors and order of conv. of Example 3.3 at t = 20 with ∆t = .001.

h L2 Order of Conv. L∞ Order of Conv.

.08 4.171E-2 2.302E-2

.04 1.038E-2 2.006 5.729E-3 2.006

.02 2.593E-3 2.001 1.430E-3 2.002

.01 6.467E-4 2.003 3.567E-4 2.003

Table 3.9: L2 and L∞ errors of Example 3.4 with c = 0.5, h = .01, ∆t = .001.

t Present Scheme Bratsos [23] Uddin et al. [200]

h = .01 h = .01 N = 201

L2 L∞ L∞ L∞
2 2.564E-5 1.818E-5 .12760E-3 1.568E-3
10 8.850E-5 5.228E-5 .19115E-3 3.151E-3
20 1.713E-4 9.438E-5 .25189E-3 1.828E-2
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Table 3.10: Errors and order of conv. of Example 3.4 at t = 20 with ∆t = .001.

h L2 Order of Conv. L∞ Order of Conv.

.08 1.094E-2 6.025E-3

.04 2.740E-3 1.997 1.509E-3 1.997

.02 6.851E-4 1.999 3.775E-4 1.999

.01 1.713E-4 1.999 9.438E-5 1.999
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Figure 3.1: Solutions of Example 3.1 at t = 1 with h = .02, ∆t = .0001.
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Figure 3.2: Solutions of Example 3.1 at t = 1 with h = .01, ∆t = .01.
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Figure 3.3: Solutions of Example 3.2 at t = 1 with h = .02, ∆t = .0001.
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Figure 3.4: Approximate solutions of Example 3.3 up to t = 20.

−20
−15

−10
−5

0
5

10
15

20

0
2

4
6

8
10

12
14

16
18

20
−8

−6

−4

−2

0

2

4

6

8

xt

u
(x

,t
)

Figure 3.5: Approximate solutions of Example 3.4 up to t = 20.



Chapter 4

Numerical Solution of One
Dimensional Linear Telegraph
Equation

4.1 Introduction

The hyperbolic partial differential equations have a significant role in formulating funda-

mental equations in atomic physics [128] and are also very useful in understanding various

phenomena in applied sciences like engineering industry aerospace as well as in chemistry

and biology too. The one dimensional telegraph equation arises in the study of propa-

gation of electric signal in a cable of transmission line and wave phenomena. Interaction

between convection and diffusion or reciprocal action of reaction and diffusion describe a

number of nonlinear phenomena in physical and biological process [161]. In fact telegraph

equation is more suitable than ordinary diffusion equation in modeling reaction-diffusion

for such branches of sciences.

The present chapter deals with the numerical solution of following second-order one

dimensional telegraph equation with constant coefficients

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ (a, b), t > 0, (4.1)

with initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x), x ∈ [a, b], (4.2)

79
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and the following Dirichlet or Neumann boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0, (4.3)

ux(a, t) = w1(t), ux(b, t) = w2(t), t ≥ 0, (4.4)

where α and β are known real constants. For α > 0, β = 0, equation (4.1) represents a

damped wave equation and for α > β > 0, it is called as telegraph equation.

In the literature several numerical schemes have been developed for solving second

order linear hyperbolic equation. Mohanty and Jain [155] have proposed an uncondi-

tionally stable ADI scheme for two space dimensional hyperbolic equation. Mohanty et

al. [156] have presented an unconditionally stable ADI scheme for three dimensional

hyperbolic equation. Dehghan and Mohebbi [49] have presented a higher order implicit

collocation method for solving two dimensional linear hyperbolic equation. Numerical

solution of hyperbolic equation with variable coefficients in one and two space dimensions

has been presented by Mohanty [151] and Dehghan and Shokri [55], respectively. One

dimensional nonlinear hyperbolic equation with variable coefficients has been tackled by

Mohanty et al. [158].

Numerical solution of one dimensional linear hyperbolic equation with Dirichlet

boundary conditions has been proposed by many authors. Liu and Liu [134] have pro-

posed an unconditionally stable three level difference scheme, which was based on quartic

spline interpolation in space and finite difference discretization in time. Mohanty [150]

has presented an unconditionally stable three level implicit difference scheme. Gao and

Chi [72] have developed an unconditionally stable difference scheme to solve the equation

(4.1). Dehghan and Lakestani [46] have used the elements of Chebyshev cardinal func-

tions, whereas Saadatmandi and Dehghan [186] have used the Chebyshev tau method for

expanding the approximate solution of the equation (4.1). Mohebbi and Dehghan [161]

have reported a higher order compact finite difference approximation of fourth order for

discretizing spatial derivatives and used collocation method for time direction. Dehghan

and Shokri [54] have proposed a scheme using collocation points and approximate the

solution using thin plates spline radial basis functions. Lakestani and Saray [128] have

used the elements of interpolating scaling functions for expanding the approximate solu-

tion of equation (4.1). Some of other numerical schemes, which have been developed to
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solve equation (4.1) are radial basis functions based collocation method [69], quartic B-

spline collocation method [64] and differential quadrature method [90]. Thus much work

has been done to solve the equation (4.1) with Dirichlet boundary conditions. However,

very little has been reported to solve equation (4.1) with Neumann boundary conditions.

Dehghan and Ghesmati [44] have reported a dual reciprocity boundary integral equation

(DRBIE) method, in which three different types of radial basis functions have been used.

Recently, Liu and Liu [135] have developed an unconditionally stable compact difference

schemes for solving equation (4.1) with Neumann boundary conditions.

In this chapter, a collocation method is proposed to solve equations (4.1-4.4). For

Dirichlet boundary conditions, approximate solution is considered as collocation of mod-

ified cubic B-splines. In case of Neumann boundary conditions, approximate solution is

assumed as collocation of cubic B-spline functions. The stability of presented method is

discussed using matrix stability analysis. It is shown that the proposed method is un-

conditionally stable. Four numerical examples are solved in this chapter. The obtained

solutions are tabulated and presented graphically for the considered examples and results

are also compared with those already available in the literature.

4.2 Description of Method

The solution domain a ≤ x ≤ b is partitioned into a mesh of uniform length h = xj+1−xj,

where j = 0, 1, 2, ...., N − 1, such that a = x0 < x1 < ..... < xN−1 < xN = b.

In the cubic B-spline collocation method the approximate solution U(x, t) can be

written as the linear combination of cubic B-spline basis functions for the approximation

space under consideration as

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (4.5)

where cj(t) are the time dependent quantities to be determined from boundary conditions

and collocation from the differential equation.

The set of functions {B−1, B0, B1, . . . , BN−1, BN , BN+1} forms a basis for the func-

tion define over the region a ≤ x ≤ b with the obvious adjustment of the boundary base

functions to avoid undefined knots. The values of Bj(x) and its derivatives are tabulated
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in Table-1.2. Approximate values of U(x, t) and its two derivatives in terms of the time

parameters cj are given in equation (1.13).

4.3 Implementation of Method

First the telegraph equation (4.1) is decomposed into a system of equations using the

transformation ut(x, t) = v(x, t) as

ut = v,

vt = −2αv − β2u+ uxx + f(x, t),
(4.6)

where the boundary conditions for v are obtained from corresponding values of ut at the

boundary points.

4.3.1 Treatment of Dirichlet Boundary Conditions

In collocation method with cubic B-splines, there is a need to change the basis functions

into a new set of functions such that they matches in the number with selected points in

given domain. The Dirichlet boundary conditions can be easily tackled using these basis

functions and produce a diagonally dominant system of equations.

We assume our approximate solution as the linear combination of modified cubic

B-spline basis functions (1.6) as

U(x, t) =
N∑
j=0

cj(t)B̃j(x). (4.7)

Using (4.7), approximate value of Ut(x, t) can be written as

Ut(x, t) =
N∑
j=0

ċj(t)B̃j(x), (4.8)

where ċj(t) is the derivative of cj(t).

Using modified basis functions (1.6) and Table–1.2 in (4.8), we have

Ut(x0, t) = 6ċ0, for j = 0,

Ut(xj, t) = ċj−1 + 4ċj + ċj+1, for j = 1, 2, . . . , N − 1,

Ut(xN , t) = 6ċN , for j = N.

(4.9)
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Using (4.8) in coupled system (4.6) and imposing boundary conditions (4.3) at the bound-

ary points, we have

Ut(x0, t) = ġ1(t), for i = 0,

Ut(xi, t) = vi, for i = 1, 2, . . . , N − 1,

Ut(xN , t) = ġ2(t), for i = N.

(4.10)

vt(x0, t) = g̈1(t), for i = 0,

vt(xi, t) = −2αvi − β2

N∑
j=0

cjB̃j(xi) +
N∑
j=0

cjB̃
′′

j (xi) + f(xi, t), for i = 1, 2, . . . , N − 1,

vt(xN , t) = g̈2(t), for i = N.

(4.11)

Now using (4.9) in (4.10) and using modified basis functions (1.6) and Table-1.2 in (4.11),

we have

6ċ0 = ġ1(t), for j = 0,

ċj−1 + 4ċj + ċj+1 = vj, for j = 1, 2, . . . , N − 1,

6ċN = ġ2(t), for j = N.

(4.12)

v̇0 = g̈1(t), for j = 0,

v̇j = −2αvj − β2(cj−1 + 4cj + cj+1) +
6

h2
(cj−1 − 2cj + cj+1) + f(xj, t), for j = 1, 2, . . . , N − 1,

v̇N = g̈2(t), for j = N.

(4.13)

Systems (4.12) and (4.13) can be written in compact form as

Aċ = F,

V̇ = G.

i.e. 

6 0 . . . . . . 0

1 4 1 . . . 0

. . . . . . . . .

. . . . . . . . .

1 4 1

0 6





ċ0

ċ1

. . .

. . .

ċN−1

ċN


=



F0

F1

. . .

. . .

FN−1

FN


(4.14)
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

v̇0

v̇1

. . .

. . .

v̇N−1

v̇N


=



G0

G1

. . .

. . .

GN−1

GN


(4.15)

where F0 = ġ1(t), G0 = g̈1(t),

Fj = vj, Gj = −2αvj−β2(cj−1+4cj+cj+1)+
6
h2

(cj−1−2cj+cj+1)+f(xj, t), j = 1, . . . , N−1,

FN = ġ2(t), GN = g̈2(t).

4.3.2 Treatment of Neumann Boundary Conditions

For solving couple of equations (4.6) with Neumann boundary conditions, we assume our

approximate solution as (4.5) i.e linear combination of cubic B-spline basis functions.

Using (4.5), Neumann boundary conditions (4.4) are approximated as

Ux(x0, t) =
1∑

j=−1

cjB
′

j(x0) = w1(t),

Ux(xN , t) =
N+1∑
j=N−1

cjB
′

j(xN) = w2(t),

(4.16)

which gives

ċ1 − ċ−1 =
h

3
ẇ1(t),

ċN+1 − ċN−1 =
h

3
ẇ2(t).

(4.17)

Using approximate solution (4.5) and its time derivative, in system (4.6), we have

N+1∑
j=−1

ċjBj(xi) = vi, for i = 0, 1, . . . , N. (4.18)

v̇i = −2αvi − β2

N+1∑
j=−1

cjBj(xi) +
N+1∑
j=−1

cjB
′′

j (xi) + f(xi, t), for i = 0, 1, . . . , N. (4.19)
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Now using Table-1.2 in above, we get

ċj−1 + 4ċj + ċj+1 = vj, j = 0, 1, . . . , N. (4.20)

v̇j = −2αvj − β2(cj−1 + 4cj + cj+1) +
6

h2
(cj−1 − 2cj + cj+1) + f(xj, t), j = 0, 1, . . . , N.

(4.21)

Eliminating c−1, cN+1, ċ−1, ċN+1, we get the following systems

Mċ = X,

V̇ = Y.

i.e. 

4 2 . . . . . .

1 4 1 . . .

. . . . . . . . .

. . . . . . . . .

1 4 1

2 4





ċ0

ċ1

. . .

. . .

ċN−1

ċN


=



µ0

µ1

. . .

. . .

µN−1

µN


, (4.22)



v̇0

v̇1

. . .

. . .

v̇N−1

v̇N


=



χ0

χ1

. . .

. . .

χN−1

χN


, (4.23)

where µ0 = v0 + h
3
ẇ1(t),

µj = vj, j = 1, 2, . . . , N − 1,

µN = vN − h
3
ẇ2(t),

χ0 = −2αv0 − β2(4c0 + 2c1 − h
3
w1(t)) + 6

h2
(−2c0 + 2c1 − h

3
w1(t)) + f(x0, t),

χj = −2αvj − β2(cj−1 + 4cj + cj+1) + 6
h2

(cj−1 − 2cj + cj+1) + f(xj, t), j = 1, 2, . . . , N − 1,

χN = −2αvN − β2(2cN−1 + 4cN + h
3
w2(t)) + 6

h2
(−2cN + 2cN−1 + h

3
w2(t)) + f(xN , t).

To compute the approximate solution at any time level, we need the vector c. So

for Dirichlet boundary conditions, first we solve the system (4.14) for vector ċ by using
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Thomas algorithm. Then obtained system of ODEs with the system (4.15) i.e. total

(2N + 2) first order ordinary differential equations have been solved using SSP-RK54

[197] scheme and consequently the approximate solution U(x, t) is completely known.

For Neumann conditions, systems (4.22-4.23) are solved using the same procedure and

approximate solution can be computed.

4.3.3 Initial Vectors

The initial vectors c0 and v0 can be determined from the initial conditions (4.2) as:

4.3.3.1 Initial Vector c0 for Dirichlet Boundary Conditions

We consider

U(x0, 0) = g1(0), j = 0,

U(xj, 0) = f1(xj), j = 1, 2, . . . , N − 1,

U(xN , 0) = g2(0), j = N.

This gives following (N + 1) tridiagonal system of equations

Ac0 = F 0 (4.24)

where A is tridiagonal matrix defined in Section-4.3.1,

F 0 = [g1(0), f1(x1), f1(x2), . . . , f1(xN−1), g2(0)]T .

This system is solved using Thomas algorithm to get initial vector c0=[c00, c
0
1, . . . , c

0
N−1, c

0
N ]T .

4.3.3.2 Initial Vector c0 for Neumann Boundary Conditions

We consider

Ux(x0, 0) = w1(0)

U(xj, 0) = f1(xj), j = 0, 1, . . . , N − 1, N,

Ux(xN , 0) = w2(0).

which gives

Mc0 = H0 (4.25)

where M is tridiagonal matrix defined in Section-4.3.2 and

H0 = [f1(x0) + h
3
w1(0), f1(x1), f1(x2), . . . , f1(xN−1), f1(xN)− h

3
w2(0)]T .
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4.3.4 Initial Vector v0

Initial vector v0 for both the above cases can be found using the following initial condition

Ut(xj, 0) = f2(xj), j = 0, 1, . . . , N − 1, N. (4.26)

4.4 Stability Analysis

The stability of obtained system of ODEs is related to the stability of numerical scheme

for solving it. If the system is unstable then stable numerical scheme for temporal dis-

cretization may not produce converged solution. The stability of these systems depends

on the eigenvalues of coefficient matrix, since its exact solution can be directly found using

its eigenvalues.

We consider

N
dC

dt
= BC + F (t), (4.27)

where C = [ c1, c2, . . . , cN−1, v1, v2, . . . , vN−1 ]T is the unknown vector, F (t) is a column

vector of order 2(N − 1).

Above system can be written as[
T1 O

O I

][
ċ

v̇

]
=

[
O I

T2 −2αI

][
c

v

]
+ F (t) (4.28)

where T1 and T2 are symmetric tridiagonal matrices of order N − 1, given by

T1 =


4 1 . . . . . .
1 4 1 . . .

. . . . . . . . .

. . . . . . . . .
1 4 1

1 4

 , T2 =


−4β2 − 12

h2 −β2 + 6
h2 . . . . . .

−β2 + 6
h2 −4β2 − 12

h2 −β2 + 6
h2 . . .

. . . . . . . . .

. . . . . . . . .
−β2 + 6

h2 −4β2 − 12
h2 −β2 + 6

h2

0 −β2 + 6
h2 −4β2 − 12

h2


I and O are identity and null matrices of order N − 1, respectively.

Stability of system (4.27) depends on the eigenvalues of the coefficient matrix N−1B.

If all the eigenvalues are having negative real part then the system will be stable.

Let λ is an eigenvalue of N−1B and x1 and x2 be two components of eigenvector

(each of order (N − 1)) corresponding to eigenvalue λ.
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We have [
O T−11

T2 −2αI

][
x1

x2

]
= λ

[
x1

x2

]
(4.29)

from (4.29), we have

T−11 x2 = λx1,

T2x1 − 2αx2 = λx2,

which gives

T2T1−1x2 = (λ2 + 2αλ)x2 (4.30)

⇒ λ(λ+ 2α) is an eigenvalue of T2T
−1
1 .

Since T1 and T2 are tridiagonal matrices, so their eigenvalues can be obtained as

λs(T1) = 4 + 2 cos
πs

N
, s = 1, 2, . . . , N − 1. (4.31)

λs(T2) = −2β2 − 4β2 cos2
πs

2N
− 24

h2
sin2 πs

2N
, s = 1, 2, . . . , N − 1. (4.32)

T1 and T2 are symmetric also, so eigenvalues of matrix T2T
−1
1 will be given by

λs(T2T
−1
1 ) =

−2β2 − 4β2 cos2 πs
2N
− 24

h2
sin2 πs

2N

4 + 2 cos πs
N

, s = 1, 2, . . . , N − 1,

which are negative and real.

(4.33)

Let λ = x+ iy, where x and y are real numbers.

Then from (4.30) and (4.33) we have, (x+ iy)(x+ iy + 2α) is real and negative. i.e.

x(x+ 2α)− y2 < 0,

y(x+ α) = 0.

 (4.34)

From above set of equations, we get the solution as:

(i) If x+ α = 0 and y is arbitrary real number.

⇒ x is negative real number, since α is real and positive.

(ii) If y = 0

⇒ x(x+ 2α) < 0,

⇒ (x+ α)2 < α2,

⇒ −2α < x < 0, since α is real and positive.

Hence we conclude that the real part of eigenvalues of N−1B are always negative i.e

system (4.27) is stable.



89

4.5 Numerical Experiments

Example 4.1

We consider telegraph equation (4.1) in the domain (a, b) with f(x, t) = (2 − 2α +

β2)e−t sin(x) and the following initial conditions

u(x, 0) = sin(x), ut(x, 0) = − sin(x). (4.35)

The exact solution of this example is given in [44, 72] as

u(x, t) = e−t sin(x). (4.36)

The boundary conditions can be obtained from exact solution.

For Dirichlet boundary conditions, we have solved this example in the computational

domain (0, π) with α = 2, β =
√

2. L2, L∞ errors and CPU time are reported in Table-4.1

with h = .02 and ∆t = .0001 and compared with those given in Dehghan and Shokri [54].

It may be noted that our results are better and CPU time is less in our computations.

In Table-4.2, L2 and L∞ errors are presented at different levels of time with h = .02 and

∆t = .01. A comparison of numerical and exact solutions with h = .02, ∆t = .01 at

t = 1, 2, 3 is presented in Figure-4.1. Space-time graph of approximate solutions up to

t = 2 is shown in Figure-4.2.

For Neumann boundary conditions, this example has been solved in domain (0, 2π)

with α = 4, β = 2. Errors are reported in Table-4.3 with ∆t = .001 and h = .05, .02.

Table-4.4 shows the comparison of RMS errors with those given in Dehghan and Ghesmati

[44]. We note that our solutions are compatible with [44].

Example 4.2

In this example, we consider the telegraph equation (4.1) with α = 10, β = 5, f(x, t) =

α(1 + tan2(x+t
2

)) + β2 tan(x+t
2

), in the domain (0, 2).

The initial and boundary conditions are given as

u(x, 0) = tan
(x

2

)
, ut(x, 0) =

1

2

(
1 + tan2

(x
2

))
, (4.37)

u(0, t) = tan

(
t

2

)
, u (2, t) = tan

(
2 + t

2

)
. (4.38)
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The exact solution is given in [64, 90] as

u(x, t) = tan

(
x+ t

2

)
. (4.39)

In our numerical computation, we take h = .02 and ∆t = .001,.0001, respectively. L2 and

L∞ errors for different time levels are reported in Table-4.5. Table-4.6 shows the compar-

ison of our results in terms of L∞ errors with those of Dosti and Nazemi [64] at different

time levels with ∆t = .001, h = .001. The graphs of exact and approximate solutions for

different times are presented in Figure-4.3 and space-time graph of numerical solutions

up to t = 1 is shown in Figure-4.4.

Example 4.3

In this example we consider the telegraph equation (4.1) with α = 1
2
, β = 1, f(x, t) =

(2− 2t + t2)(x− x2)e−t + 2t2e−t, in the domain 0 < x < 1 with the following initial and

boundary conditions

u(x, 0) = ut(x, 0) = 0, (4.40)

u(0, t) = u(1, t) = 0. (4.41)

The exact solution is given in [54, 186] as

u(x, t) = (x− x2)t2e−t. (4.42)

L2, L∞ errors and CPU time are reported in Table-4.7 with ∆t = .001, h = .01. These

errors are compared with those given in Dehghan and Shokri [54]. We can see that the

solutions obtained by our method are good in comparison with [54] and also CPU time

taken is less in our case. The graphs of exact and numerical solutions at t = 1, 2, 3, 4, 5

are depicted in Figure-4.5 and the space time graph of numerical solutions is plotted up

to t = 5, which is shown in Figure-4.6.

Example 4.4

Consider the telegraph equation (4.1) with α = 6, β = 2, f(x, t) = −2α sin(t) sin(x) +

β2 cos(t) sin(x), in the domain a < x < b with the following initial conditions

u(x, 0) = sin(x), ut(x, 0) = 0. (4.43)
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The exact solution is given in [44] as

u(x, t) = cos(t) sin(x). (4.44)

The boundary conditions are taken from (4.44).

For Dirichlet boundary conditions we have solved this example in computational

domain (0, 1). Table-4.8 reports the L2, L∞ and RMS errors with ∆t = .0001, h = .01.

In Table-4.9 errors are presented for different values of h with ∆t = .001 and compared

with those given in Dosti and Nazemi [64]. We found that our results are comparable to

that of [64] in terms of L∞ errors. Figure-4.7 depicts the comparison of numerical and

exact solutions at different time levels with h = .01 and ∆t = .001. Space-time graph of

numerical solutions up to t = 1 is depicted in Figure-4.8.

For Neumann boundary conditions this example is solved in the domain (0, 4). The

computed errors are reported in Table-4.10 with h = .05, .02 and ∆t = .001. In Table-

4.11, we show the comparison of RMS errors with those obtain by Dehghan and Ghesmati

[44] by taking different space step sizes and observe them in good agreement with [44].

4.6 Conclusions

The following observations have been made based on present study:

1. The cubic B-spline collocation method has been developed to solve one dimensional

hyperbolic telegraph equation.

2. The presented method is able to handle Dirichlet as well as Neumann boundary

conditions.

3. It has been observed that the proposed method produces better results in compar-

ison to those available in the literature and CPU time is quite less in our case.

4. The stability of the scheme is tested using matrix stability analysis and found to be

unconditionally stable.

5. This scheme produces a solution in the form of spline function, which can be use to

obtain the solution can be computed at any point in the domain.
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Table 4.1: Errors and CPU time of Example 4.1 with ∆t = .0001, h = .02.

t Proposed method Dehghan and Shokri [54]

L2 L∞ CPU time(s) L2 L∞ CPU time(s))

.5 2.3328E-6 1.8612E-6 3.04 7.9491E-5 8.3721E-6 5
1 4.3667E-6 3.4839E-6 4.89 1.4554E-4 1.5680E-5 12

1.5 4.7817E-6 3.8251E-6 5.27 1.5895E-4 1.7412E-5 19
2 4.2706E-6 3.4073E-6 7.53 1.4185E-4 1.5813E-5 28

Table 4.2: Errors and CPU time of Example 4.1 with h = .02, ∆t = .01.

t L2 L∞ CPU time(s)

.5 2.3328E-6 1.8612E-6 0.51
1 4.3667E-6 3.4839E-6 0.59

1.5 4.7817E-6 3.8251E-6 0.63
2 4.2706E-6 3.4073E-6 0.68

Table 4.3: Errors of Example 4.1 with ∆t = .001.

t h = .05 h = .02

L2 L∞ RMS errors L2 L∞ RMS errors

1 5.1145E-4 4.9491E-4 2.0328E-4 1.7865E-4 1.6756E-4 7.1176E-5
2 3.2011E-4 2.4541E-4 1.2722E-4 1.5356E-4 1.0723E-4 6.1178E-5
3 1.9952E-4 1.3436E-4 7.8599E-4 1.0689E-4 6.6156E-5 4.2587E-5
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Table 4.4: Comparison of RMS errors of Example 4.1 at t = 3.

h Proposed Method Dehghan and Ghesmati [44]

RMS errors CPU time(s) RMS errors CPU time(s)

.05 7.8599E-4 .70 3.010E-4 –

.02 4.2587E-5 1.7 7.128E-5 –

.01 3.7601E-5 3.1 4.320E-5 –

Table 4.5: Errors of Example 4.2 at different time levels with h = .02.

t h = .02,∆t = .0001 h = .02,∆t = .001

L2 L∞ L2 L∞
.2 5.0305E-5 3.4797E-5 1.8782E-4 2.6332E-4
.4 9.5163E-5 5.3456E-5 4.8888E-4 6.9997E-4
.6 2.2041E-4 9.4725E-5 9.4864E-4 1.4860E-3
.8 7.8267E-4 1.8792E-4 1.8743E-3 3.4057E-3
1 7.9277E-3 5.8720E-4 5.0981E-3 1.1148E-2

Table 4.6: Errors of Example 4.2 with h = .001,∆t = .001 at different time levels.

t Proposed method Dosti and Nazemi [64]

L2 L∞ L∞
.2 2.1800E-4 3.6103E-4 2.774E-4
.4 5.6618E-4 1.0368E-4 7.0782E-4
.6 1.1535E-4 2.5996E-3 1.3848E-3
.8 2.6058E-3 7.6254E-3 3.0930E-3
1 1.0351E-2 4.6642E-2 1.3424E-2

Table 4.7: Errors of Example 4.3 with h = .01, ∆t = .001.

t Proposed method Dehghan and Shokri [54]

L2 L∞ CPU time(s) L2 L∞ CPU time(s)

1 4.5526E-5 5.9153E-5 .43 1.4386E-4 1.8479E-5 0
2 1.4307E-5 1.7864E-5 .77 8.0879E-5 1.0713E-5 0
3 6.4273E-6 1.4309E-5 1.19 1.2944E-4 1.8161E-5 1
4 8.9203E-6 1.3529E-5 1.29 1.1845E-4 1.6489E-5 1
5 3.0161E-6 5.2032E-6 1.46 7.5545E-5 1.0455E-5 2
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Table 4.8: Errors of Example 4.4 with h = .01, ∆t = .0001.

t L2 L∞ RMS errors

.2 2.6903E-6 5.2412E-6 2.6775E-6

.4 5.6183E-6 8.6095E-6 5.5904E-6

.6 9.7545E-6 1.2529E-5 9.7061E-6

.8 1.3774E-5 2.0274E-5 1.3706E-5
1 1.7347E-5 2.7555E-5 1.7261E-5

Table 4.9: Errors of Example 4.4 at different time levels with ∆t = .001.

t Proposed method Dosti and Nazemi [64]

h = .01,∆t = .001 h = .005,∆t = .001 h = .005,∆t = .001

L2 L∞ L2 L∞ L∞
.2 3.6711E-5 7.9139E-5 3.4308E-5 6.8272E-5 2.4249E-5
.4 8.8989E-5 1.5967E-4 8.5756E-5 1.4935E-4 7.9315E-5
.6 1.3733E-4 2.3362E-4 1.3367E-4 2.2410E-4 1.2097E-4
.8 1.7913E-4 2.9820E-4 1.7532E-4 2.8978E-4 1.4883E-4
1 2.1302E-4 3.5085E-4 2.0929E-4 3.4386E-4 1.6462E-4

Table 4.10: Errors of Example 4.4 with ∆t = .001.

t h = .05 h = .02

L2 L∞ RMS errors L2  L∞ RMS errors

1 6.7752E-4 6.6070E-4 3.3667E-4 5.2299E-4 3.8981E-4 2.6084E-4
2 6.0042E-4 5.1361E-4 2.9835E-4 5.7309E-4 4.3320E-4 2.8588E-4
3 1.7361E-4 1.7448E-4 8.6268E-5 7.8085E-5 6.6723E-5 3.8945E-5

Table 4.11: Errors of Example 4.4 at t = 2.

h Proposed Method Dehghan and Ghesmati [44]

RMS errors CPU time(s) RMS errors CPU time(s)

.05 2.9835E-4 .56 2.153E-4 –

.01 2.8758E-4 2.4 7.012E-5 –
.005 2.8819E-4 4.2 4.003E-5 –
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Figure 4.1: Numerical and exact solutions of Example 4.1 with h = .02, ∆t = .01.
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Figure 4.2: Space-time graph of numerical solutions of Example 4.1 up to t = 2.
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Figure 4.4: Space-time graph of numerical solutions of Example 4.2 up to t = 1.
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Figure 4.8: Space-time graph of numerical solutions of Example 4.4 up to t = 1.



Chapter 5

Numerical Solution of Two
Dimensional Linear Telegraph
Equation

5.1 Introduction

The study in this chapter is mainly concerned with the numerical solution of second-order

linear two-space dimensional hyperbolic telegraph equation. The hyperbolic partial dif-

ferential equations have a significant role in formulating fundamental equations in atomic

physics [128] and are also very useful in understanding various phenomena in applied

sciences like engineering, industry, aerospace as well as in chemistry and biology too. On

one hand vibrations of structures can be easily analyzed and studied and on the other

hand it is more convenient than ordinary diffusion equation in modeling reaction diffusion

for such branches of sciences [44].

Consider the two dimensional hyperbolic telegraph equation

utt(x, y, t) + 2αut(x, y, t) + β2u(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y, t),

(x, y, t) ∈ D × (0, T ],
(5.1)

with the initial conditions

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) ∈ D. (5.2)

The Dirichlet boundary conditions are given by

u(a, y, t) = f1(y, t), u(b, y, t) = f2(y, t),

u(x, c, t) = f3(x, t), u(x, d, t) = f4(x, t), (x, y, t) ∈ ∂D × (0, T ],
(5.3)
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or Neumann boundary conditions are given by

ux(a, y, t) = g1(y, t), ux(b, y, t) = g2(y, t),

uy(x, c, t) = g3(x, t), uy(x, d, t) = g4(x, t), (x, y, t) ∈ ∂D × (0, T ],
(5.4)

where D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, ∂D is its boundary and (0, T ] is the time

interval. α, β are the constants, for α > 0, β = 0 equation (5.1) represents a damped

wave equation and for α > 0, β > 0 it is called telegraph equation.

On delving through the literature we found that much efforts have been taken for

the numerical solution of hyperbolic telegraph equation. Various numerical schemes were

developed for one dimensional telegraph equation such as Taylor matrix method [28],

dual reciprocity boundary integral method [44], unconditionally stable finite difference

scheme [72], Chebyshev tau method [186], interpolating scaling function method [128]

etc. Numerical solution of linear hyperbolic telegraph equation in three space dimensions

has been proposed by Mohanty et al. [156], by constructing an unconditionally stable

ADI scheme. In [152], Mohanty propounded an unconditionally stable implicit difference

scheme for one, two and three space dimensional telegraphic equations. Dehghan et

al. [57] have used He’s variational iteration method to solve linear, variable coefficient,

fractional derivative and multi space dimensional telegraph equations.

In the recent past, much emphasis has been given in the literature for numerical

solution of two dimensional hyperbolic telegraph equation. Bülbül and Sezer [27] have

proposed a Taylor matrix method which converts the telegraph equation into the matrix

equation and solutions are computed by solving matrix equation, which corresponds to

a system of linear algebraic equations. Dehghan and Ghesmati [43] have explored two

meshless methods, namely meshless local weak-strong (MLWS) and meshless local Petrov-

Galerkin (MLPG) method for equations (5.1)-(5.4). Dehghan and Mohebbi [49] have

solved equation (5.1) using higher order implicit collocation method. Ding and Zhang

[58] have discussed compact finite difference scheme which is of the fourth order in both

space and time. Mohanty and Jain [155] have derived an unconditionally stable alternating

direction implicit scheme. A combination of boundary knot method (BKM) and analog

equation method (AEM) for equation (5.1) has been proposed by Dehghan and Salehi [52].

Numerical solution of 2D telegraph equation with variable coefficients has been tackled by

Dehghan and Shokri [55]. The differential quadrature method, which approximates the
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solution of the problem on a finite dimensional space by using polynomials as the basis

of the space, has been applied to solve two dimensional telegraph equations with both

Dirichlet and Neumann boundary conditions by Jiwari et al. [91].

In this chapter we have developed a differential quadrature method to solve two

dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary condi-

tions. In this method modified cubic B-spline basis functions (1.6) are used to compute

the weighting coefficients. First we convert the telegraph equation (5.1) into a system of

partial differential equations and further it is reduced into a system of ordinary differential

equations by DQM. Then the obtained system is solved using SSP-RK43 [197] scheme. By

employing DQM, accurate solutions can be obtained using fewer grid points in the spatial

domain and hence computer execution time can be reduced. Seven numerical examples

are solved to illustrate the accuracy and efficiency of the DQM. Stability of scheme is also

examined using matrix stability analysis.

This chapter is organised as follows. In Section-5.2, process for execution of mod-

ified cubic B-spline differential quadrature method is described for equations (5.1)-(5.4).

Stability of scheme is discussed in Section-5.3. To show the efficiency of the present ap-

proach computationally, seven numerical experiments are taken in Section-5.4. Finally,

brief conclusions drawn from the present study are presented in Section-5.5.

5.2 Solution of Two-Dimensional Telegraph Equation

The region a ≤ x ≤ b, c ≤ y ≤ d is discretized by taking N and M grid points in x

and y direction respectively, such that hx = xi+1 − xi, i = 1, 2, . . . , N − 1 and hy =

yj+1− yj, j = 1, 2, . . . ,M − 1. Then according to two-dimensional differential quadrature

method stated in chapter 1, the first and second order partial derivatives of the function

u(x, y, t) with respect to x, at a point (xi, yj) can be approximated as follows

u(1)x (xi, yj, t) =
N∑
k=1

a
(1)
ik u(xk, yj, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (5.5)

u(2)x (xi, yj, t) =
N∑
k=1

a
(2)
ik u(xk, yj, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (5.6)
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where a
(1)
ik and a

(2)
ik are the weighting coefficients related to first and second order partial

derivatives of u w.r.to x, respectively.

Similarly, partial derivatives of the function u(x, y, t) with respect to y, at a point

(xi, yj) along line x = xi can be approximated as

u(1)y (xi, yj, t) =
M∑
k=1

b
(1)
jk u(xi, yk, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (5.7)

u(2)y (xi, yj, t) =
M∑
k=1

b
(2)
jk u(xi, yk, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (5.8)

where b
(1)
jk and b

(2)
jk are the weighting coefficients related to first and second order partial

derivatives of u w.r.to y, respectively.

To compute the weighting coefficients a
(1)
ik and b

(1)
jk , we use modified cubic B-spline

differential quadrature method defined in chapter 1 (see Section-1.9). Then weighting

coefficients a
(2)
ik and b

(2)
jk are computed using Shu’s [192] recurrence formulae (1.27) and

(1.28), respectively.

To solve telegraph equation (5.1), first we convert it into the coupled system using

the transformation ut = v

ut(x, y, t) = v(x, y, t),

vt(x, y, t) = −2αv(x, y, t)− β2u(x, y, t) + uxx(x, y, t) + uyy(x, y, t) + f(x, y, t).
(5.9)

Now the spatial derivatives of u are discretized by using the approximations (5.6) and

(5.8) and finally we obtain the following system of first order ODEs in time

dui,j
dt

= v(xi, yj, t),

dvi,j
dt

= −2αv(xi, yj, t)− β2u(xi, yj, t) +
N∑
k=1

a
(2)
ik u(xk, yj, t) +

M∑
k=1

b
(2)
jk u(xi, yk, t) + f(xi, yj, t),

(xi, yj, t) ∈ D × (0, T ], i = 1, 2, . . . , N ; j = 1, 2, . . . ,M,

(5.10)

with the following initial conditions

u(xi, yj, 0) = u0(xi, yj),

v(xi, yj, 0) = v0(xi, yj), (xi, yj) ∈ D.
(5.11)
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5.2.1 Treatment of Boundary Conditions

The Dirichlet boundary conditions are directly used on the boundary and do not need

any further simplification. But when the boundary conditions are of Neumann type or

mixed, they are discretized using the modified B-spline differential quadrature method

and further simplified to get the solutions at the boundary points.

Dirichlet boundary conditions (5.3) give

u1,j = f1(yj, t), uN,j = f2(yj, t),

ui,1 = f3(xi, t), ui,M = f4(xi, t), (xi, yj, t) ∈ ∂D × (0, T ].
(5.12)

Neumann boundary conditions (5.4) along x = a and x = b are approximated as

N∑
k=1

a
(1)
1k u(xk, yj, t) = g1(yj, t),

N∑
k=1

a
(1)
Nku(xk, yj, t) = g2(yj, t), j = 1, 2, . . . ,M.

(5.13)

Rewriting the above system as

a
(1)
11 u1,j + a

(1)
1NuN,j = g1 −

N−1∑
k=2

a
(1)
1k uk,j,

a
(1)
N1u1,j + a

(1)
NNuN,j = g2 −

N−1∑
k=2

a
(1)
Nkuk,j, j = 1, 2, . . . ,M.

(5.14)

On solving the above system of equations, we get approximate values of u on x = a and

x = b as

u1,j =
A− s1

(a
(1)
1,1a

(1)
N,N − a

(1)
N,1a

(1)
1,N)

,

uN,j =
B − s2

(a
(1)
1,1a

(1)
N,N − a

(1)
N,1a

(1)
1,N)

, j = 1, 2, . . . ,M,

(5.15)

where

A = (g1a
(1)
N,N − g2a

(1)
1,N), s1 =

N−1∑
k=2

(a
(1)
N,Na

(1)
1,k − a

(1)
1,Na

(1)
N,k)uk,j,

B = (g2a
(1)
1,1 − g1a

(1)
N,1), s2 =

N−1∑
k=2

(a
(1)
1,1a

(1)
N,k − a

(1)
N,1a

(1)
1,k)uk,j.
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In a similar way, Neumann boundary conditions (5.4) along y = c and y = d are approx-

imated as

M∑
k=1

b
(1)
1k u(xi, yk, t) = g3(xi, t),

M∑
k=1

b
(1)
Mku(xi, yk, t) = g4(xi, t), i = 1, 2, . . . , N.

(5.16)

Solution of above system will give ui,1 and ui,M as

ui,1 =
C − s3

(b
(1)
1,1b

(1)
M,M − b

(1)
M,1b

(1)
1,M)

,

ui,M =
D − s4

(b
(1)
1,1b

(1)
M,M − b

(1)
M,1b

(1)
1,M)

, , i = 1, 2, . . . , N,

(5.17)

where

C = (g3b
(1)
M,M − g4b

(1)
1,M), s3 =

M−1∑
k=2

(b
(1)
M,Mb

(1)
1,k − b

(1)
1,Mb

(1)
M,k)ui,k,

D = (g4b
(1)
1,1 − g3b

(1)
M,1), s4 =

M−1∑
k=2

(b
(1)
1,1b

(1)
M,k − b

(1)
M,1b

(1)
1,k)ui,k.

To find the solution, first we compute the initial vector [u0i,j, v
0
i,j]

T , i = 1 : N ; j = 1 : M ,

using the initial conditions (5.11). Then SSP-RK43 scheme has been employed to solve

the system of first order ODEs (5.10) with the appropriate boundary conditions and hence

the approximate solution [uki,j, v
k
i,j]

T is computed at a time level t = tk.

5.3 Stability Analysis

We consider the system (5.10) and rewrite it in compact form as

dW

dt
= PW + F (5.18)

or

d

dt

[
u

v

]
=

[
O I

Q −2αI

][
u

v

]
+

[
O1

Fi(t)

]
, (5.19)

where O=null matrix,

I=identity matrix of order (N − 2)(M − 2),
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Q is a square matrix of weighting coefficients of order (N − 2)(M − 2),

W = [u, v]T is solution vector at the interior grid points, given by

W = [u2,2, u2,3, . . . , u2,M−1, u3,2, . . . , u3,M−1, . . . , uN−1,2, . . . , uN−1,M−1, v2,2, v2,3, . . . , v2,M−1

, v3,2, . . . , v3,M−1, . . . , vN−1,2, . . . , vN−1,M−1]
T .

F = [O1, Fi(t)]
T is a vector containing non-homogenous part and boundary conditions,

where O1 is null and Fi(t) is column vector whose entries are given by

Fi(t) = −(a
(2)
i,1u1,j+a

(2)
i,NuN,j)−(b

(2)
j,1ui,1+b

(2)
j,Mui,M)+f(xi, yj, t), i = 2 : N−1; j = 2 : M−1.

The stability of the system (5.18) is very important since it is related to the stability

of numerical scheme for solving it. If the system of ordinary differential equations (5.18)

is unstable then stable numerical scheme for temporal discretization may not generate

converged solution. The stability of this system depends on the eigenvalues of coefficient

matrix P , since its exact solution can be directly found using the eigenvalues. If all the

eigenvalues of P are having negative real part then the system will be stable.

Let λP is an eigenvalue of P and X1, X2 be two components (each of order (N −

2)(M − 2)) of eigenvector corresponding to eigenvalue λP . Then we have[
O I

Q −2αI

][
X1

X2

]
= λP

[
X1

X2

]
, (5.20)

which gives

IX2 = λPX1,

QX1 − 2αX2 = λPX2.
(5.21)

From above set of equations, we get

QX1 = (λ2P + 2αλP )X1, (5.22)

⇒ λP (λP + 2α) is an eigenvalue of Q.

The matrix Q is given by

Q = −β2I +Q1 +Q2, (5.23)

where Q1 and Q2 are the matrices of weighting coefficients a
(2)
ij and b

(2)
ij , given by

Q1 =


a
(2)
22 IM−2 a

(2)
23 IM−2 . . . a

(2)
2,N−1IM−2

a
(2)
32 IM−2 a

(2)
33 IM−2 . . . a

(2)
3,N−1IM−2

...
. . .

...

a
(2)
N−1,2IM−2 a

(2)
N−1,3IM−2 . . . a

(2)
N−1,N−1IM−2

 , (5.24)
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Q2 is block diagonal matrix, given by

Q2 =


R O . . . O

O R . . . O
...

. . .
...

O O . . . R

 , (5.25)

and

R =


b22 b23 . . . b2,M−1

b32 b32 . . . b2,M−1
...

. . .
...

bM−1,2 bM−1,2 . . . bM−1,M−1


(M−2)×(M−2)

(5.26)

We have computed the eigenvalues of the matrix Q1 and Q2 by taking different grid points.

In Figure-5.1 we have plotted the eigenvalues of matrix Q for 6 × 6, 11 × 11, 21 × 21,

31× 31, 41× 41 grid points in space and found that all the eigenvalues of Q are real and

negative for different values of N and M .

From (5.22) it is clear that λP (2α + λP ) will be negative and real.

Let λP = x+ iy, where x and y are real numbers.

We have (x+ iy)(x+ iy + 2α) is real and negative.

i.e.

x(x+ 2α)− y2 < 0,

y(x+ α) = 0.
(5.27)

From above set of equations, we get the solution as

1. x+ α = 0 and y is arbitrary real number.

⇒ x is negative real number, since α is real and positive.

2. if y = 0

⇒ x(x+ 2α) < 0,

⇒ (x+ α)2 < α2,

⇒ −2α < x < 0, since α is real and positive.

⇒ Real part of eigenvalues of P are negative.

We conclude that the real part of eigenvalues of P are always negative, i.e. the system

(5.18) is stable.
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5.4 Numerical Results

To illustrate the efficiency of proposed scheme, we have solved seven examples which are

also considered by other researchers. In order to measure the accuracy of numerical solu-

tions we have computed L2, L∞ and relative errors.

Example 5.1

We consider equation (5.1) in the region 0 ≤ x, y ≤ 1 with α = 1, β = 1, f(x, y, t) =

2(cos t− sin t) sinx sin y and the following initial conditions

u(x, y, 0) = sinx sin y,

ut(x, y, 0) = 0.
(5.28)

The Dirichlet boundary conditions are given by

u(0, y, t) = 0, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = cos t sin(1) sin y, 0 ≤ y ≤ 1, x = 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = cos t sinx sin(1), 0 ≤ x ≤ 1, y = 1.

(5.29)

The exact solution is given in [43] as

u(x, y, t) = cos t sinx sin y. (5.30)

Results are computed for ∆t = .01, hx = hy = .1 and ∆t = .001, hx = hy = .05 and re-

ported in Table-5.1. A comparison of exact and numerical solutions at time t = 1, 2, 3 is

depicted in Figure-5.2 with ∆t = .001 and hx = hy = .05, which shows that the numerical

solutions are in excellent agreement with the exact solutions.

Example 5.2

In this example, we consider the telegraph equation (5.1) in the region 0 ≤ x, y ≤ 1 with

f(x, y, t) = (−2α + β2 − 1)e−t sinhx sinh y and the following initial conditions

u(x, y, 0) = sinh x sinh y,

ut(x, y, 0) = − sinhx sinh y.
(5.31)
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Dirichlet boundary conditions are given by

u(0, y, t) = 0, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = e−t sinh(1) sinh y, 0 ≤ y ≤ 1, x = 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = e−t sinhx sinh(1), 0 ≤ x ≤ 1, y = 1.

(5.32)

The exact solution is given in [91] as

u(x, y, t) = e−t sinhx sinh y. (5.33)

This example is solved for α = 10, β = 5 and α = 10, β = 0. In Table-5.2, results are

reported at different time levels with ∆t = .01 and hx = hy = .1. Table-5.3 shows the com-

parison of our results with those of Jiwari et al. [91] with ∆t = .001 and hx = hy = .05. We

observe that our results are comparable to that of [91] in terms of relative error, however

the CPU time taken in our computation is very less. So we can conclude that our scheme

produces good accuracy with less computational effort. Figure-5.3 depicts the comparison

of numerical and exact solutions at t = 1, 2, 3 with ∆t = .001 and hx = hy = .05.

Example 5.3

Consider the following telegraph equation in the region 0 ≤ x, y ≤ 1,

utt+4πut+2π2u = uxx+uyy+2π sinπ(x+y)e−(x+y)t+((x+y−2π)2−2t2) sin(πx) sin(πy)e−(x+y)t.

(5.34)

The initial and Dirichlet boundary conditions are given by

u(x, y, 0) = sin πx sin πy,

ut(x, y, 0) = −(x+ y) sinπx sinπy.
(5.35)

u(0, y, t) = 0, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = 0, 0 ≤ y ≤ 1, x = 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = 0, 0 ≤ x ≤ 1, y = 1.

(5.36)
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The exact solution is given in [43] as

u(x, y, t) = e−(x+y) sin πx sinπy. (5.37)

In Table-5.4, results are reported with ∆t = .01 and hx = hy = .1. Table-5.5 shows the

accuracy of computed solutions in terms of L2, L∞ and relative errors with ∆t = .001

and hx = hy = .025 and also compares the relative error at t = 2 with those obtained by

Dehghan and Ghesmati [43]. The plots of numerical and exact solutions at different time

levels are depicted in Figure-5.4.

Example 5.4

We consider the telegraph equation (5.1) in the region 0 ≤ x, y ≤ 1 with f(x, y, t) =

(−3 cos t− 2α sin t+ β2 cos t) sinhx sinh y and with the following initial conditions

u(x, y, 0) = sinh x sinh y,

ut(x, y, 0) = 0.
(5.38)

The Dirichlet boundary conditions (5.3) are given by

u(0, y, t) = 0, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = cos t sinh(1) sinh y, 0 ≤ y ≤ 1, x = 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = cos t sinhx sinh(1), 0 ≤ x ≤ 1. y = 1.

(5.39)

The exact solution is given in [91] as

u(x, y, t) = cos t sinhx sinh y. (5.40)

We solve this problem for α = 10, β = 5 and α = 50, β = 5 with ∆t = .001, hx = hy = .05.

Table-5.6 presents the computed errors and CPU time at different time levels. Relative

errors are also compared with those obtained by Jiwari et al. [91]. It can be seen from

the table that our results are comparable to that of [91] but CPU time used in our com-

putation is very less. Figure-5.5 demonstrates the comparison of numerical solutions with

exact solutions at t = 1, 2, 3.
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Example 5.5

We consider the telegraph equation (5.1) in the region 0 ≤ x, y ≤ 1 with α = 1, β = 1,

f(x, y, t) = −2ex+y−t and the following initial conditions

u(x, y, 0) = ex+y,

ut(x, y, 0) = −ex+y,
(5.41)

and with the following mixed boundary conditions

u(0, y, t) = ey−t, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = e1+y−t, 0 ≤ y ≤ 1, x = 1,

∂u

∂y
(x, 0, t) = ex−t, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = e1+x−t, 0 ≤ x ≤ 1. y = 1.

(5.42)

The exact solution is given in [43] as

u(x, y, t) = ex+y−t. (5.43)

To get the numerical solutions, first we take ∆t = .01, hx = hy = .1 and results are

reported in Table-5.7. Further, we check the performance of proposed scheme on a finer

grid hx = hy = .05 and with ∆t = .001. Results are shown in Table-5.8 up to time t = 10

and compared with the results of Dehghan and Ghesmati [43], in terms of relative errors.

We noticed that our results are better than that given in [43] and CPU time used in

our computations is much less. Figure-5.6 shows the comparison of numerical and exact

solutions at t = 1, 2, 4 with ∆t = .001 and hx = hy = .05.

Example 5.6

Consider the telegraph equation (5.1) with α = 1, β = 1, f(x, y, t) = 2π2e−t sin πx sinπy

and the following initial conditions

u(x, y, 0) = sin πx sin πy,

ut(x, y, 0) = − sin πx sinπy,
(5.44)



111

and with the following mixed boundary conditions

∂u

∂x
(0, y, t) = πe−t sinπy, 0 ≤ y ≤ 1, x = 0,

u(1, y, t) = 0, 0 ≤ y ≤ 1, x = 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0,

∂u

∂y
(x, 1, t) = −πe−t sinπx, 0 ≤ x ≤ 1. y = 1.

(5.45)

The exact solution is given in [43] as

u(x, y, t) = e−t sin πx sin πy. (5.46)

Table-5.9 reports the L2, L∞, relative errors and CPU time up to time level t = 10 with

∆t = .01 and hx = hy = .1. Table-5.10 provides the numerical results with ∆t = .001 and

hx = hy = .05 and also shows the comparison of our results with those of Dehghan and

Ghesmati [43] and Jiwari et al. [91], in term of relative errors. It is clear from the table

that our scheme produces much better results in comparison with [43, 91]. In Figure-5.7,

numerical and exact solutions are plotted at t = .5, 1, 2 and it is noticed that the numeri-

cal solutions produced by presented method exhibit correct physical behavior for different

values of t.

Example 5.7

Consider (5.1) for α = 1, β = 1 in the domain 0 ≤ x, y ≤ 1 with the following initial

conditions

u(x, y, 0) = log(1 + x+ y),

ut(x, y, 0) =
1

1 + x+ y
,

(5.47)

and with the following mixed boundary conditions

u(0, y, t) = log(1 + y + t), 0 ≤ y ≤ 1, x = 0,

∂u

∂x
(1, y, t) =

1

2 + y + t
, 0 ≤ y ≤ 1, x = 1,

∂u

∂y
(x, 0, t) =

1

1 + x+ t
, 0 ≤ x ≤ 1, y = 0,

u(x, 1, t) = log(2 + x+ t), 0 ≤ x ≤ 1, y = 1.

(5.48)
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The exact solution is given in [43] as

u(x, y, t) = log(1 + x+ y + t), (5.49)

and we extract f(x, y, t) from the exact solution.

Numerical results are computed for ∆t = .001 and hx = hy = .05 and reported

in Table-5.11 in terms of L2, L∞, relative errors and CPU time. The obtained results

demonstrate that the proposed scheme produces better results with less computational

cost in comparison with Dehghan and Ghesmati [43]. Figure-5.8 shows the surface plots

of numerical and exact solutions at t = 1, 3, 5, which also confirms the good accuracy of

the scheme.

5.5 Conclusions

The following observations have been made based on present study:

1. A differential quadrature method based on modified cubic B-spline basis functions

has been developed to solve two dimensional hyperbolic telegraph equation, which

can easily deal with Dirichlet’s or Mixed boundary conditions.

2. The presented method converts the telegraph equation into a system of first order

ordinary differential equations, which has been solved using the SSP-RK43 scheme.

3. Seven numerical examples have been solved and it is observed that the scheme

produces better results while taking less CPU time in comparison with other known

work.

4. The stability test is performed with matrix stability analysis and scheme is found

to be unconditionally stable.

5. The combination of modified cubic B-spline differential quadrature method in space

and SSP-RK43 scheme in time is found to be a apposite solution procedure in terms

of accuracy and computational cost for solving two dimensional telegraph equation.
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Table 5.1: Errors and CPU time of Example 5.1.

t L2 L∞ Relative-errors CPU time(s)

∆t = .01, hx = hy = .1

1 9.9722E-4 2.2746E-3 5.9762E-3 .08
2 1.0926E-3 2.8706E-3 8.5019E-3 .11
3 2.2877E-4 6.0818E-4 7.4720E-4 .14
5 1.1562E-3 2.9942E-3 1.2767E-3 .20
7 7.2867E-4 1.8781E-3 3.1572E-3 .26
10 5.8889E-4 1.5158E-3 2.2874E-3 .34

∆t = .001, hx = hy = .05

1 9.8870E-5 2.4964E-4 6.2977E-4 .78
2 1.2148E-4 3.2296E-4 1.0025E-3 1.3
3 3.7627E-5 9.9310E-5 1.3078E-4 1.7
5 1.2762E-4 3.3205E-4 1.5411E-3 3.0
7 6.7672E-5 1.7679E-4 3.0892E-4 3.3
10 5.1764E-5 1.3521E-4 2.1245E-4 5.2

Table 5.2: Errors and CPU time of Example 5.2 with α = 10, β = 5, ∆t = .01, hx = hy =
.1.

t L2 L∞ Relative-errors CPU time(s)

.5 8.3931E-4 3.3019E-3 2.8902E-3 .13
1 6.0254E-4 2.0597E-3 3.4208E-3 .16
2 2.4167E-4 7.6531E-4 3.7297E-3 .19
3 8.9534E-5 2.7920E-4 3.7937E-3 .24
5 1.2168E-5 3.7800E-5 3.8097E-3 .34
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Table 5.3: Errors and CPU time of Example 5.2 with α = 10, ∆t = .001, hx = hy = .05.

t Proposed method Jiwari et al. [91]

L2 L∞ Rel. errors CPU time(s) Rel. errors CPU time(s)

β = 5

0.5 1.0690E-4 2.4738E-4 1.1088E-4 0.47 1.1185E-4 6
1 1.5293E-5 3.3082E-4 1.3266E-4 1.1 1.8051E-4 12
2 4.6468E-5 1.1380E-5 3.1954E-4 1.1 4.7289E-4 25
3 2.1994E-5 4.3577E-5 1.3024E-4 2.8 1.2656E-4 37
5 2.7151E-6 5.4141E-6 1.4439E-4 4.3 9.2770E-4 62

β = 0

0.5 9.2959E-5 4.2348E-4 3.4675E-4 0.52 1.1198E-4 6
1 6.3652E-5 2.5838E-4 3.9146E-4 0.98 1.8635E-4 12
2 2.5540E-5 9.5843E-5 4.2739E-4 1.8 5.1797E-4 25
3 9.9234E-6 3.5340E-5 4.5140E-4 2.2 1.4412E-4 37
5 1.5116E-6 4.8043E-6 5.0758E-4 4.5 1.0883E-4 62

Table 5.4: Errors and CPU time of Example 5.3 with ∆t = .01 and hx = hy = .1.

t L2 L∞ Relative-errors CPU time(s)

1 9.7047E-4 1.9232E-3 4.9447E-3 .05
2 3.7546E-4 1.0072E-3 4.3014E-3 .10
3 5.1383E-4 1.6753E-3 1.1908E-2 .17
5 6.8021E-4 2.6738E-3 4.8567E-2 .22

Table 5.5: Errors and CPU time of Example 5.3 with ∆t = .001 and hx = hy = .025.

t Proposed method Dehghan and Ghesmati [43]

L2 L∞ Relative-errors CPU time(s) Rel.-errors(MLWS)

1 1.1370E-4 1.9735E-4 5.7932E-4 1.1 -
2 1.1044E-4 3.4253E-4 1.2658E-4 1.9 4.731E-4
3 1.4336E-4 4.5378E-5 3.2997E-4 3.3 -
5 1.6269E-4 5.8801E-4 1.1501E-4 5.5 -
7 1.5769E-4 6.7607E-4 2.6368E-3 7.3 -
10 1.4145E-4 7.9495E-4 6.3276E-2 11.0
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Table 5.6: Errors and CPU time of Example 5.4 for β = 5 with ∆t = .001 and hx = hy =
.05.

t Proposed method Jiwari et al. [91]

L2 L∞ Relative CPU Relative CPU
errors time(s) errors time(s)

α = 10

0.5 1.0696E-4 3.7559E-4 1.3787E-5 .57 2.0149E-5 7
1 1.7174E-4 5.6395E-4 3.5957E-5 .92 4.6003E-5 13
2 1.6468E-4 5.1298E-4 4.4722E-5 1.2 4.4460E-5 27
3 8.9858E-6 1.9564E-5 1.0266E-6 2.3 6.4830E-6 39
5 1.7737E-4 5.5627E-4 7.0735E-5 4.1 7.3626E-5 69
7 1.4200E-4 4.7231E-4 2.1307E-5 5.4 - -
10 1.2241E-4 4.1222E-4 1.6514E-5 7.4 2.4901E-5 139

α = 50

0.5 9.8800E-5 3.6962E-4 1.2735E-5 .57 2.8724E-5 7
1 1.6766E-4 5.6874E-4 3.5104E-5 .94 7.0064E-5 13
2 1.7109E-4 5.2572E-4 4.6408E-5 1.4 6.7759E-5 27
3 1.7406E-5 4.3459E-5 1.9886E-6 2.5 1.3856E-5 39
5 1.8420E-4 5.6940E-4 7.3460E-5 4.1 1.2840E-4 69
7 1.3760E-4 4.7587E-4 2.0647E-5 6.0 - -
10 1.1691E-4 4.1396E-4 1.5772E-5 8.8 4.4202E-5 139

Table 5.7: Errors and CPU time of Example 5.5 with ∆t = .01 and hx = hy = .1.

t L2 L∞ Relative errors CPU time(s)

1 1.4441E-2 2.9996E-2 1.0829E-3 .03
2 1.3898E-3 3.9711E-3 2.8333E-4 .05
3 1.3018E-3 2.2178E-3 7.2867E-4 .08
5 1.1112E-4 2.0618E-4 4.5956E-4 .11
7 1.3695E-5 3.0052E-5 4.1851E-4 .14
10 1.4408E-6 2.5354E-6 8.8440E-4 .19
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Table 5.8: Errors and CPU time of Example 5.5 with ∆t = .001 and hx = hy = .05.

Proposed method Dehghan and Ghesmati [43]

t L2 L∞ Rel. CPU Rel. err. CPU Rel. err. CPU
errors time(s) (MLWS) time(s) (MLPG) time(s)

0.5 3.4808E-3 9.5129E-3 8.4225E-5 .5 8.014E-5 7.4 2.032E-5 16.6
1 3.2351E-3 7.4749E-3 1.2906E-4 .7 2.020E-4 12.3 9.071E-5 28.9
2 2.8518E-4 1.0361E-4 3.0957E-5 1.3 9.791E-5 22.9 3.004E-4 42.3
3 3.1028E-4 5.7859E-4 9.1555E-5 1.9 7.029E-4 31.0 5.201E-4 53.7
4 9.0898E-5 2.7645E-4 7.2908E-5 2.3 1.703E-3 40.2 7.065E-4 67.4
5 2.4495E-5 6.7234E-5 5.3354E-5 3.3 - - - -
7 2.5376E-6 8.2203E-6 4.0840E-5 3.9 - - - -
10 3.6505E-6 8.5897E-6 1.1812E-5 5.2 - - - -

Table 5.9: Errors and CPU time of Example 5.6 with ∆t = .01 and hx = hy = .1.

t L2 L∞ Rel. errors CPU time(s)

1 1.6144E-3 3.6006E-3 8.7768E-4 .07
2 2.6345E-3 5.7068E-3 3.8933E-3 .09
3 5.3845E-4 1.2479E-3 2.1847E-3 .11
5 1.2418E-4 2.1003E-4 3.7232E-3 .15
7 1.3653E-5 2.6261E-5 3.0247E-3 .12
10 7.5592E-6 1.4083E-6 3.3635E-3 .20

Table 5.10: Errors and CPU time of Example 5.6 with ∆t = .001 and hx = hy = .05.

t Proposed method Dehghan and Ghesmati [43] Jiwari
et al. [91]

L2 L∞ Rel. CPU Rel. errors Rel. errors Rel.
errors time(s) (MLWS) (MLPG) errors

0.5 3.5833E-4 9.5129E-4 8.4225E-5 .3 7.040E-5 3.701E-5 1.0078E-4
1 3.2351E-4 7.4749E-4 1.2906E-4 .7 9.088E-5 7.900E-5 9.1354E-4
2 2.8518E-5 1.0361E-4 3.0957E-5 1.3 4.820E-4 1.216E-4 1.1962E-4
3 3.1028E-5 5.7859E-4 9.1555E-5 1.7 1.400E-3 8.302E-4 1.3267E-5
5 2.4495E-6 6.7234E-5 5.3354E-4 2.9 - - 1.3277E-5
7 2.5376E-7 8.2203E-7 4.0840E-5 4.1 - - –
10 3.6505E-9 8.5897E-8 1.1812E-5 5.4 - - 3.3574E-6
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Table 5.11: Errors and CPU time of Example 5.7 with ∆t = .001 and hx = hy = .05.

t Proposed method Dehghan and Ghesmati [43]

L2 L∞ Rel. CPU Rel. errors CPU Rel. errors CPU
errors time(s) (MLWS) time(s) (MLPG) time(s)

0.5 1.0690E-3 2.4738E-3 1.1088E-3 .5 7.939E-5 9.2 9.991E-5 21.0
1 1.5293E-3 3.3082E-3 1.3266E-3 1.1 9.098E-5 12.9 7.198E-5 36.2
2 4.6468E-4 1.1380E-3 3.1954E-4 2.0 8.705E-4 25.7 8.784E-5 49.1
3 2.1994E-4 4.3577E-4 1.3024E-4 2.8 9.931E-4 38.1 4.801E-4 66.8
4 2.7151E-4 5.4141E-4 1.4435E-5 4.3 4.703E-3 49.8 6.091E-4 82.0
5 1.7201E-4 3.4812E-4 8.4225E-5 7.0 7.302E-3 62.0 9.498E-4 97.3
10 7.7285E-5 1.4037E-4 2.9624E-5 9.6 - - - -
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Figure 5.1: Eigenvalues of matrix Q using different grid points.
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Figure 5.2: Plots of numerical and exact solutions of Example 5.1.
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Figure 5.3: Plots of numerical and exact solutions of Example 5.2.
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Figure 5.4: Plots of numerical and exact solutions of Example 5.3.
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Figure 5.5: Plots of numerical and exact solutions of Example 5.4.
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Figure 5.6: Plots of numerical and exact solutions of Example 5.5.
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Figure 5.7: Plots of numerical and exact solutions of Example 5.6.
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Figure 5.8: Plots of numerical and exact solutions of Example 5.7.
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Chapter 6

Numerical Solutions of Some
Nonlinear Wave Equations

6.1 Introduction

Wave equations arise in many physical and engineering applications such as continuum

physics, mixed models of transonic flows, fluid dynamics and many other fields of science

and engineering. These equations have been studied by various numerical techniques

in past several decades. In this chapter, we are mainly concerned with the numerical

solutions of one and two dimensional wave equations.

6.1.1 One Dimensional Nonlinear Wave Equations

We consider one dimensional nonlinear wave equations of the form

utt = uxx + f(x, t, u, ux, ut), x ∈ (a, b), t > 0, (6.1)

with the following initial and Dirichlet boundary conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x), x ∈ [a, b], (6.2)

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0. (6.3)

6.1.2 Two Dimensional Nonlinear Wave Equations

We also consider two dimensional nonlinear wave equations of the form

utt = uxx + uyy + f(x, y, t, u, ux, uy, ut), (x, y, t) ∈ D × (0, T ], (6.4)

127



128

with the following initial conditions

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) ∈ D, (6.5)

and the following Dirichlet boundary conditions

u(a, y, t) = h1(y, t), u(b, y, t) = h2(y, t),

u(x, c, t) = h3(x, t), u(x, d, t) = h4(x, t), (x, y, t) ∈ ∂D × (0, T ],
(6.6)

where D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, ∂D is its boundary and (0, T ] is the time

interval.

Many authors have studied the numerical solutions of one dimensional linear wave

equations by using various techniques. Some are unconditionally stable difference schemes

[72, 134, 150], Chebyshev tau method [186], Quartic B-spline collocation method [64],

dual reciprocity boundary integral function method [44], Bernoulli matrix method [199]

etc. Ding and Zhang [59] and Rashidinia et al. [176] have solved the second order linear

hyperbolic equation with mixed boundary conditions using parameter cubic spline method

and non-polynomial cubic spline method, respectively.

Mohanty et al. [158] have proposed a higher order difference method for one dimen-

sional nonlinear hyperbolic equations with variable coefficients. Implicit finite difference

methods for quasilinear hyperbolic equations have been proposed by [154, 159]. A three

level implicit nine point compact finite difference scheme for one dimensional nonlinear

wave equations has been proposed by Mohanty and Gopal [153]. Mohanty and Singh

[160] have proposed a Numerov type three-level implicit compact discretization scheme

for nonlinear hyperbolic equations. The study of the solution of two dimensional nonlin-

ear wave equations is also an attractive area of research in the literature. Jain et al. [82]

have proposed an implicit finite difference method for two dimensional wave equations.

Iyengar and Mittal [81] have proposed an unconditionally stable ADI scheme of O(h2+k2)

and O(h4 + k4) for two dimensional nonlinear wave equations with variable coefficients.

Three level implicit conditionally stable difference scheme of order O(k4 + h2k2 + h4) for

two dimensional nonlinear wave equations with constant coefficients has been proposed

by Mohanty et al. [157]. Mohanty and Jain [155] have proposed an unconditionally stable

ADI scheme for two dimensional linear wave equations with constant coefficients and Mo-

hanty [149] has presented an unconditionally stable three level implicit operator splitting
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method for two dimensional linear hyperbolic equation with variable coefficients. Dehghan

and Mohebbi [48] have used the compact finite difference approximations of orders two

and four, for discretizing the spatial derivatives and used collocation method for the time

component. Dehghan and Mohebbi [49] have developed an unconditionally stable implicit

collocation method for two dimensional linear hyperbolic equations. Dehghan and Shokri

[55] have proposed a meshless method using collocation points with radial basis functions

for two dimensional hyperbolic equations with variable coefficients. Jiwari et al. [91]

and Kumar et al. [118] have solved two dimensional linear hyperbolic telegraph and two

dimensional quasi-linear hyperbolic equations, respectively using polynomial differential

quadrature method.

In this chapter, we have applied a differential quadrature method based on modified cubic

B-spline basis functions for solving one and two dimensional wave equations with Dirich-

let boundary conditions. The equations are converted into a system of partial differential

equations and further discretized spatially by using DQM. Finally, we obtain a system

of first order ODEs, which has been solved using SSP-RK43 [197] scheme. This chapter

is organized as follows. Section-6.2 and Section-6.3 give details of execution of present

method for solving equations (6.1) and (6.4), respectively. In Section-6.4, seven numer-

ical test examples are considered to show the efficiency and accuracy of the proposed

method, computationally. Conclusions are presented in Section-6.5, that briefly sum up

the numerical outcomes.

6.2 Solution of One Dimensional Wave Equations

For one dimensional DQM, the domain a ≤ x ≤ b is divided into a mesh of uniform

length hx = xi+1 − xi = b−a
N−1 by the knot xi, where i = 1, 2, ., N − 1. Then the first and

second order partial derivatives of the function u(x, t) at any time at a knot x = xi can

be approximated as follows:

u(1)x (xi, t) =
N∑
j=1

a
(1)
ij u(xj, t), i = 1, 2, . . . , N, (6.7)

u(2)x (xi, t) =
N∑
j=1

a
(2)
ij u(xj, t), i = 1, 2, . . . , N, (6.8)
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where a
(1)
ij and a

(2)
ij are the weighting coefficients of first and second order derivatives of

u(x, t) at the point x = xi. The weighting coefficients a
(1)
ij are computed by using modified

cubic B-spline basis functions (1.6) in the approximations (6.7) as stated in chapter 1 (see

Section-1.9). To compute a
(2)
ij , we have used Shu’s recurrence formulae (1.19).

To solve equation (6.1), we convert it into a system of partial differential equations using

the transformation ut = v, as

ut = v,

vt = uxx + f(x, t, u, ux, v).
(6.9)

Now spatial derivatives of u at the grid points xi, for 1 ≤ i ≤ N are discretized using

approximations (6.7) and (6.8) and finally we get the following system of first order

ordinary differential equations

dui
dt

= v(xi, t),

dvi
dt

=
N∑
j=1

a
(2)
ij u(xj, t) + f(x, t, u(xi, t),

N∑
j=1

a
(1)
ij u(xj, t), v(xi, t)), i = 1, . . . , N,

(6.10)

with the following initial conditions

u(xi, 0) = f1(xi), v(xi, 0) = f2(xi), i = 1, 2, . . . , N. (6.11)

System (6.10) represents a system of 2N nonlinear first order ordinary differential equa-

tions. Once the initial vector [u0
i ,v

0
i ]
T

, i = 1, . . . , N is computed using initial conditions

(6.11), we solve the system (6.10) with boundary conditions (6.3) using SSP-RK43 scheme

and consequently the approximate solution
[
uki ,v

k
i

]T
is computed at time level t = tk.

6.3 Solution of Two Dimensional Wave Equations

For two dimensional DQM, the region a ≤ x ≤ b, c ≤ y ≤ d is discretized by taking N

and M grid points in x and y directions such that hx = xi+1 − xi and hy = yj+1 − yj.

Then the first and second order partial derivatives of the function u(x, y, t) with respect

to x at a point (xi, yj) can be approximated as follows:

u(1)x (xi, yj, t) =
N∑
k=1

a
(1)
ik u(xk, yj, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (6.12)
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u(2)x (xi, yj, t) =
N∑
k=1

a
(2)
ik u(xk, yj, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M. (6.13)

Similarly, the partial derivatives of the function u(x, y, t) with respect to y at a point

(xi, yj) are approximated as follows:

u(1)y (xi, yj, t) =
M∑
k=1

b
(1)
jk u(xi, yk, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (6.14)

u(2)y (xi, yj, t) =
M∑
k=1

b
(2)
jk u(xi, yk, t), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M, (6.15)

where a
(1)
ik , a

(2)
ik , b

(1)
jk and b

(2)
jk represent the weighting coefficients, which are computed using

modified cubic B-spline basis functions in approximations (6.12) and (6.14) (see chapter

1, Section-1.9.1.2) and using Shu’s recurrence formulae (1.27) and (1.28).

Now to solve equation (6.4), first we convert it into the following coupled system

using the transformation ut = v, as

ut = v,

vt = uxx + uyy + f(x, y, t, u, ux, uy, v).
(6.16)

The first and second order spatial derivatives of u are discretized using approximations

(6.12-6.15) and finally system of equations (6.16) reduces into the following system of

nonlinear first order ordinary differential equations

dui,j
dt

= v(xi, yj, t),

dvi,j
dt

=
N∑
k=1

a
(2)
ik u(xk, yj, t) +

M∑
k=1

b
(2)
jk u(xi, yk, t) + f(xi, yj, t, u(xi, yj, t),

N∑
k=1

a
(1)
ik u(xk, yj, t),

M∑
k=1

b
(1)
jk u(xi, yk, t), v(xi, yj, t)),

(xi, yj, t) ∈ D × (0, T ], i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

(6.17)

Initial vector is computed using the following initial conditions

u(xi, yj, 0) = u0(xi, yj),

v(xi, yj, 0) = v0(xi, yj), i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.
(6.18)
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The system of first order nonlinear ordinary differential equations (6.17) with the bound-

ary conditions (6.6) have been solved using SSP-RK43 scheme and consequently the ap-

proximate solution [uki,j, v
k
i,j] is computed at time level t = tk.

6.4 Numerical Results

The proposed scheme is applied on some linear and nonlinear wave equations and accu-

racy of the scheme is tested by computing L2 error, maximum absolute error (MAE) and

root mean square error (RMSE).

Example 6.1

We consider Vander Pol type nonlinear wave equation

utt = uxx + γ(u2 − 1)ut +
(
π2 + γ2e−2γt sin2(πx)

)
e−γt sin(πx), x ∈ (0, 1) t > 0. (6.19)

The initial and boundary conditions are given by

u(x, 0) = sin(πx), ut(x, 0) = −γ sin(πx), x ∈ (0, 1), (6.20)

u(0, t) = 0, u(1, t) = 0, t ≥ 0. (6.21)

The exact solution is given in [153] as

u(x, t) = e−γt sin(πx). (6.22)

The maximum absolute errors and CPU time are tabulated in Table-6.1 for γ = 1, 2, 3

at t = 2 with h = .05 and for ∆t = .01, .001, .0001. It is observed that the results are

close to the exact solutions. Table-6.2 compares the maximum absolute errors for various

values of h with numerical method of order (k2 + h2) given in Mohanty and Gopal [153].

It can be seen from this table that the errors given by our method are better than those

given by the method of [153]. It has been also noticed that by decreasing the space and

time steps the errors get improved. A comparison of exact and approximate solutions at

t = 2 for γ = 1, 2, 3 is depicted in Figure-6.1.
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Example 6.2

In this example we consider Dissipative nonlinear wave equation

utt = uxx − 2uut +
(
π2 − 1− 2 sin(πx) sin t

)
sin(πx) cos t, x ∈ (0, 1), t > 0. (6.23)

The initial and boundary conditions are given by

u(x, 0) = sin(πx), ut(x, 0) = 0, x ∈ (0, 1), (6.24)

u(0, t) = 0, u(1, t) = 0, t ≥ 0. (6.25)

The exact solution is given in [153] as

u(x, t) = sin(πx) cos t. (6.26)

Table-6.3 presents the numerical results at different time t with h = .05 and ∆t = .01, .001.

In Table-6.4 we report the maximum absolute errors for various values of h and compare

them with numerical method of order (k2 + h2) given in Mohanty and Gopal [153]. Our

results are found to be better in comparison with that in [153]. It has been also no-

ticed from tables that as we decrease the space and time steps the approximate solution

approaches to the exact one. In Figure-6.2, the comparisons of approximate and exact

solutions are depicted at t = 1, 2 , 3 with h = .05 and ∆t = .001.

Example 6.3

Now we consider following nonlinear wave equation in the domain (0, 1)

utt = uxx + γu(ux + ut) + (x2 sinh t− 2 sinh t− γx2 sinh t(2x sinh t+ x2 cosh t)). (6.27)

The initial and boundary conditions are given by

u(x, 0) = 0, ut(x, 0) = x2, x ∈ (0, 1), (6.28)

u(0, t) = 0, u(1, t) = sinh t, t ≥ 0. (6.29)

The exact solution is given in [154] as

u(x, t) = x2 sinh t. (6.30)

Table-6.5 reports the maximum absolute errors for γ = 1, 5 and 10 with h = .05 and

∆t = .01, .001, .0001 respectively. From table it may be seen that our results are in good
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agreement with exact solutions. Convergence study is also carried out in Table-6.6 with

different space step sizes and ∆t = .0001. From this table it is observed that the dif-

ference between the exact and numerical solutions decreases as the mesh size is reduced.

Figure-6.3 depicts the comparison of exact and numerical solution at t = 1 with h = .05,

γ = 1 and ∆t = .001.

Example 6.4

In this example we consider the one dimensional telegraph equation

utt + 2αut + β2u = uxx + (2− 2α + β2)e−t sinx, x ∈ (0, π), t > 0. (6.31)

The initial and boundary conditions are given by

u(x, 0) = sin x, ut(x, 0) = − sinx, x ∈ (0, π), (6.32)

u(0, t) = 0, u(π, t) = 0, t ≥ 0. (6.33)

The exact solution is given in [54] as

u(x, t) = e−t sinx. (6.34)

This example has been solved for α = 2 and β =
√

2. Table-6.7 shows the L2 and L∞

errors with ∆t = .01 and h = .06, h = .04, respectively. In Table-6.8 results are presented

for more finer space step size h = .02 and ∆t = .0001 and compared with those given in

Dehghan and Shokri [54]. Table-6.7 and Table-6.8, indicate that our scheme gives better

numerical results while using less number of grid points in comparison to [54]. CPU time

is also very less in our computations. Further, the absolute errors are computed with

h = π
30

and ∆t = .1. Table-6.9 compares absolute errors with those of Gao and Chi [72].

It may be noticed that numerical solutions obtained by present method are accurate than

in [72]. Comparisons of approximate and exact solutions at t = 1, 2, 3 with h = .04 and

∆t = .01 are presented in Figure-6.4.



135

Example 6.5

We consider the following one dimensional hyperbolic telegraph equation

utt + 2αut + β2u = uxx + α

(
1 + tan2

(
x+ t

2

))
+ β2 tan

(
x+ t

2

)
, x ∈ (0, 2), t > 0.

(6.35)

The initial and boundary conditions are given by

u(x, 0) = tan
(x

2

)
, ut(x, 0) =

1

2

(
1 + tan2

(x
2

))
, x ∈ (0, 2), (6.36)

u(0, t) = tan

(
t

2

)
, u(2, t) = tan

(
2 + t

2

)
, t ≥ 0. (6.37)

The exact solution is given in [64] as

u(x, t) = tan

(
x+ t

2

)
. (6.38)

For this example we take α = 10, β = 5. To measure the accuracy of proposed method

we compute L2 and L∞ error norms with h = .04, ∆t = .0001, which are presented

in Table-6.10. It has been noticed that our results are in excellent agreement with the

exact solutions. A comparison of our results with those of Dosti and Nazemi [64] has

been reported in Table-6.11 with h = .04, ∆t = .001. We noticed that our results are

compatible with [64], but grid points used in our computation are very less. CPU time

is also reported in Table-6.10 and 6.11. A graph comparing the exact and approximate

solutions at time t = .2, .4, .6, .8, 1 is presented in Figure-6.5.

Example 6.6

We consider Vander Pol type two dimensional nonlinear wave equation

utt = uxx + uyy + γ(u2 − 1)ut + (2π2 + γ2e−2γt sin2 πx sin2 πy)e−γt sinπx sin πy,

0 ≤ x, y ≤ 1, t > 0,

(6.39)

with the following initial conditions

u(x, y, 0) = sinπx sin πy,

ut(x, y, 0) = −γ sin πx sinπy.
(6.40)
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The Dirichlet boundary conditions are given by

u(0, y, t) = 0, 0 ≤ y ≤ 1,

u(1, y, t) = 0, 0 ≤ y ≤ 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1,

u(x, 1, t) = 0, 0 ≤ x ≤ 1.

(6.41)

The exact solution is given in [157] as

u(x, y, t) = e−γt sin πx sinπy. (6.42)

The results of this example are given in Table-6.12 for γ = 1, 2 and 3 with ∆t = .001 and

hx = hy = .1, .05, respectively and are found close to the exact solutions. In Table-6.13

we report the comparison of maximum absolute errors with those given in Mohanty et

al. [157] for γ = .01 and γ = .001. Order of convergence is also computed at t = 1. The

physical behaviour of numerical and exact solutions at t = 1 and t = 3 is presented in

Figure-6.6. From the tables and figures we conclude that the obtained results show very

good accuracy and efficiency of proposed scheme.

Example 6.7

We consider two dimensional Dissipative nonlinear wave equation

utt = uxx+uyy−2uut+(2π2−1+2 sinπx sin πy cos t) sinπx sin πy sin t, 0 ≤ x, y ≤ 1, t > 0,

(6.43)

with the following initial and boundary conditions

u(x, y, 0) = 0,

ut(x, y, 0) = sinπx sin πy,
(6.44)

u(0, y, t) = 0, 0 ≤ y ≤ 1,

u(1, y, t) = 0, 0 ≤ y ≤ 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1,

u(x, 1, t) = 0, 0 ≤ x ≤ 1.

(6.45)
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The exact solution is given in [157] as

u(x, y, t) = sinπx sin πy sin t. (6.46)

The maximum absolute errors, root mean square errors and CPU time are computed up

to time t = 10 with grid sizes hx = hy = .1, .05 and ∆t = .001 and reported in Table-6.14.

It has been observed that the obtained numerical solutions agree well with the exact so-

lutions. Table-6.15 shows the maximum absolute errors for different grid sizes and order

of convergence at t = 1. We compare obtained errors with those given in Mohanty et

al. [157] and found them better. Finally, in Figure-6.7 exact and numerical solutions are

plotted at t = 1 and t = 3.

6.5 Conclusions

1. In this chapter modified cubic B-spline differential quadrature method has been

successfully applied to find the solutions of some linear and nonlinear partial dif-

ferential equations such as the 1D Vander Pol equation, 1D Dissipative nonlinear

wave equation, 2D Vander Pol equation, 2D Dissipative nonlinear wave equation

and some linear telegraph equations.

2. The obtained numerical results are found to be very good in comparison with the

existing solutions in the literature. From the numerical results given in Table-

6.7, Table-6.8 and Table-6.11, we conclude that the scheme gives more accurate

results than earlier works with smaller grid points, larger time steps and with less

computational cost.

3. The main advantage of this scheme is that it does not use any transformation or

linearization process to solve nonlinear equations.

4. The scheme is easy and very suitable for computer implementation.



138

Table 6.1: MAE of Example 6.1 at t = 2 with h = .05.

∆t γ = 1 γ = 2 γ = 3 CPU time(s)

.01 1.650E-3 1.834E-3 1.444E-3 .02
.001 1.994E-4 1.962E-4 1.483E-4 .13
.0001 5.697E-5 3.683E-5 2.188E-5 1.23

Table 6.2: MAE of Example 6.1 at t = 2 with ∆t = .0001.

Proposed method Mohanty and Gopal [153]

h γ = 1 γ = 2 γ = 3 CPU time(s) γ = 1 γ = 2 γ = 3
1
8 7.633E-4 3.484E-3 1.445E-4 1.05 3.390E-3 1.580E-3 6.629E-4
1
16 1.023E-4 5.640E-5 3.007E-5 1.10 8.434E-4 3.986E-4 1.662E-4
1
32 2.578E-5 2.246E-5 1.598E-5 1.30 2.103E-4 9.976E-5 4.156E-5
1
64 1.718E-5 1.852E-5 1.439E-5 2.16 5.254E-5 2.494E-5 1.039E-5

Table 6.3: Errors of Example 6.2 with h = .05.

t ∆t = .01 ∆t = .001

L2 L∞ CPU L2 L∞ CPU
time(s) time(s)

1 3.046E-3 4.274E-3 .02 4.613E-4 6.086E-4 .07
2 3.251E-3 4.625E-3 .02 2.117E-4 3.339E-4 .14
3 5.737E-5 9.782E-5 .03 8.708E-5 1.120E-4 .21
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Table 6.4: MAE of Example 6.2 with ∆t = .0001.

Proposed method Mohanty and Gopal [153]

h t = 1 CPU time(s) t = 2 CPU time(s) t = 1 t = 2
1
8 3.259E-3 .54 2.465E-3 1.1 1.741E-2 1.323E-2
1
16 4.296E-4 .57 2.826E-4 1.2 4.366E-3 3.374E-3
1
32 8.866E-5 .69 2.788E-5 1.4 1.092E-3 8.476E-3
1
64 4.689E-5 1.1 4.301E-5 2.3 2.731E-4 2.121E-4

Table 6.5: MAE of Example 6.3 at t = 1 with h = .05.

∆t γ = 1 γ = 5 γ = 10

.01 6.769E-3 7.080E-3 1.095E-2
.001 4.906E-4 5.188E-4 9.601E-4
.0001 1.788E-4 4.540E-4 1.456E-3

Table 6.6: MAE of Example 6.3 at t = 1 with ∆t = .0001.

h γ = 1 γ = 5 γ = 10 CPU time(s)
1
8 1.404E-3 3.572E-3 1.174E-2 .67
1
16 3.041E-4 7.604E-4 2.427E-3 .71
1
32 4.782E-5 1.415E-4 4.861E-4 .77
1
64 5.573E-5 6.405E-5 1.076E-4 1.23

Table 6.7: Errors of Example 6.4 at different time levels with ∆t = .01.

t h = .06 h = .04

L2 L∞ CPU L2 L∞ CPU
time(s) time(s)

.5 3.820E-6 5.153E-6 .036 1.142E-7 1.550E-7 .07
1.0 2.989E-6 3.183E-6 .039 8.872E-7 9.486E-7 .07
1.5 2.126E-6 1.952E-6 .041 6.278E-7 5.796E-7 .08
2.0 1.542E-6 1.195E-6 .043 4.535E-7 3.537E-7 .10
2.5 1.135E-6 7.236E-7 .047 3.333E-7 2.136E-7 .11
3.0 8.350E-7 4.985E-7 .054 2.449E-7 1.452E-7 .12

Table 6.8: L2 and L∞ errors of Example 6.4 with h = .02, ∆t = .0001.

Proposed method Dehghan and Shokri [54]

t L2 L∞ CPU L2 L∞ CPU
time(s) time(s)

.5 1.416E-7 1.920E-7 1.2 7.949E-5 8.372E-6 5
1.0 1.099E-7 1.171E-7 2.0 1.455E-4 1.568E-5 12
1.5 7.797E-8 7.129E-8 2.7 1.590E-4 1.741E-5 19
2.0 5.644E-8 4.337E-8 3.5 1.418E-4 1.581E-5 28
2.5 4.176E-8 2.638E-8 4.1 - - -
3.0 3.068E-8 1.827E-8 4.9 - - -
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Table 6.9: Comparison of absolute errors of Example 6.4 with h = π
30

and ∆t = .1.

x t = 1 t = 2

Present method Gao and Chi [72] Present method Gao and Chi [72]

h 1.546E-5 9.04E-6 5.601E-6 8.84E-6
8h 1.230E-6 6.479E-5 2.410E-7 6.337E-5
15h 8.203E-6 8.928E-5 2.098E-6 8.731E-5
22h 1.230E-6 7.069E-5 2.410E-7 6.913E-5
29h 1.546E-5 9.04E-6 5.601E-6 8.84E-6

Table 6.10: L2 and L∞ errors of Example 6.5 with h = .04 and ∆t = .0001.

t L2 L∞ CPU time(s)

.2 2.5347E-5 8.1533E-5 .21

.4 6.1875E-5 2.1482E-4 .39

.6 1.6704E-4 6.6819E-4 .56

.8 6.9870E-4 3.0221E-3 .74
1.0 8.4574E-3 3.9648E-2 .91

Table 6.11: L2 and L∞ errors of Example 6.5 with ∆t = .001.

t Proposed method Dosti and Nazemi [64]

h = .04 h = .001

L2 L∞ CPU time(s) L∞
.2 3.1922E-4 8.3002E-4 .05 2.774E-4
.4 6.4498E-4 1.2832E-3 .07 7.0782E-4
.6 1.1111E-3 2.0374E-3 .09 1.3848E-3
.8 1.9570E-3 3.5872E-3 .11 3.0930E-3
1.0 4.4368E-3 1.1975E-2 .13 1.3424E-2
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Table 6.12: Errors and CPU time of Example 6.6 at different time.

t N = M = 11, ∆t = .001 N = M = 21, ∆t = .001

MAE RMSE CPU time MAE RMSE CPU time(s)

γ = 1

1 8.8267E-4 5.0855E-4 .24 2.4756E-4 1.4750E-4 .45
2 1.0663E-3 4.5911E-4 .45 3.6623E-4 1.7121E-4 .78
3 2.8078E-4 1.1910E-4 .64 7.8208E-5 3.7667E-5 1.1
5 2.7463E-4 8.8053E-5 .93 7.6234E-5 3.1852E-5 1.8

γ = 2

1 4.2033E-4 2.3093E-4 .19 1.3672E-4 7.2942E-5 .38
2 4.0214E-4 1.8060E-4 .36 2.0909E-4 9.8179E-5 .73
3 9.5439E-5 4.4826E-5 .53 4.6129E-5 2.1882E-5 1.1
5 2.5087E-5 8.7846E-5 .87 1.0318E-5 4.6889E-6 1.8

γ = 3

1 2.0988E-4 1.0927E-4 .18 5.3468E-5 2.5444E-5 .37
2 1.6754E-4 7.5001E-5 .36 1.0867E-4 5.0905E-5 .73
3 3.4819E-5 1.6319E-5 .53 2.1649E-5 1.0096E-5 1.1
5 1.9699E-6 7.7289E-7 .87 1.1101E-6 3.1852E-7 1.8

Table 6.13: MAE of Example 6.6 with ∆t = .001.

Present scheme Mohanty et al. [157]

h t = 0.5 t = 1 Order of Conv.(at t = 1) t = 0.5 t = 1

γ = .01

.25 2.733E-2 2.527E-2 5.946E-2 3.547E-2
.125 3.668E-3 3.426E-3 2.8828 1.591E-2 6.722E-3
.0625 5.196E-4 4.712E-4 2.8621 4.108E-3 1.426E-3

γ = .001

.25 2.736E-2 2.544E-2 5.951E-2 3.550E-2
.125 3.669E-3 3.448E-3 2.8832 1.592E-2 6.723E-3
.0625 5.135E-4 4.732E-4 2.8652 4.113E-3 1.462E-3
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Table 6.14: Errors and CPU time of Example 6.7 with ∆t = .001.

t N = M = 11 N = M = 21

MAE RMSE CPU time(s) MAE RMSE CPU time(s)

1 8.9440E-4 5.5389E-4 .29 2.5162E-4 9.6896E-5 .46
2 1.0571E-3 7.2458E-4 .49 1.6671E-4 1.1439E-4 .86
3 7.1048E-4 3.7267E-4 .69 6.0546E-4 2.9335E-4 1.2
5 1.3813E-3 8.9369E-4 1.1 5.5131E-4 2.9705E-4 2.1
7 7.4138E-4 5.0181E-4 1.5 9.8372E-5 6.8085E-5 2.8
10 4.8445E-4 2.6003E-4 2.1 4.6837E-5 2.0792E-5 3.9

Table 6.15: MAE of Example 6.7 with ∆t = .001.

h Present scheme Mohanty et al. [157]

t = 0.5 t = 1 Order of Conv.(at t = 1) t = 0.5 t = 1

.25 1.797E-2 4.903E-3 5.763E-2 6.217E-2
.125 3.080E-3 7.637E-4 2.6825 1.542E-2 1.373E-2
.0625 1.255E-4 1.423E-4 2.4240 3.972E-3 3.269E-3
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Figure 6.1: Approximate and exact solutions of Example 6.1.
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Figure 6.2: Approximate and exact solutions of Example 6.2.
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Figure 6.4: Approximate and exact solutions of Example 6.4.
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Figure 6.6: Surface plots of numerical and exact solutions of Example 6.6.
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Figure 6.7: Surface plots of numerical and exact solutions of Example 6.7.
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Chapter 7

Numerical Solution of Two
Dimensional Coupled Burgers’
Equation

7.1 Introduction

This chapter focuses on the numerical solution of two-dimensional coupled Burgers’ equa-

tion. It is an important nonlinear parabolic partial differential equation in evolution

theory and is named for the great Physicist Johannes Martinus Burgers’ [29]. Burgers’

equation has a convection term, a viscosity term and a time-dependent term, and is very

similar to the Navier-Stokes equations except pressure gradient term.

Consider the following two-dimensional coupled Burgers’ equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

R

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

R

(
∂2v

∂x2
+
∂2v

∂y2

)
, (x, y, t) ∈ D × (0, T ],

(7.1)

with initial conditions

u(x, y, 0) = φ(x, y),

v(x, y, 0) = ψ(x, y), (x, y) ∈ D
(7.2)

and the following boundary conditions

u(x, y, t) = φ1(x, y, t),

v(x, y, t) = ψ1(x, y, t), (x, y, t) ∈ ∂D × (0, T ],
(7.3)

where D={(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} denotes the rectangular domain, ∂D is its

boundary and (0, T ] is the time interval. R is the Reynolds number, u(x, y, t) and v(x, y, t)

149



150

are the unknown velocity components and φ(x, y), ψ(x, y), φ1(x, y, t) and ψ1(x, y, t) are

the known sufficient smooth functions.

This system models a large number of physical phenomena such as traffic flow,

flow of a shock wave traveling in a viscous fluid [35], phenomena of turbulence [29],

interaction between the nonlinear convection process and the diffusive viscous process

[71], sedimentation of two kinds of particles in fluid suspensions under the effect of gravity,

etc.

To study the general properties and the solutions of Burgers’ equation, the first at-

tempt was made by Bateman [14], who derived the analytical solution for one dimensional

case and later modified by Burger [29] to model the turbulence behavior. Subsequently,

various methods have been developed by researchers to find the approximate analytical

solutions of one and two dimensional Burgers’ equations such as Variational iteration

method [2, 20], Tanh-function method [196], Lie point symmetry method [3], modified

Adomian decomposition method [1] etc. In [79], one dimensional Burgers’ equation has

been solved analytically for arbitrary initial condition. Fletcher [71] has used the Hopf-

Cole transformation to find an analytical solution for the two dimensional system of

Burgers’ equations (7.1).

Numerical solutions of one and two dimensional Burgers’ equations were studied

by many schemes. Kutluay and Esen [120] have developed a linearized implicit finite-

difference scheme to find numerical solutions of one-dimensional Burgers-like equations.

Mittal and Jain [144] have developed a modified cubic B-spline collocation method and Ko-

rkmaz and Dağ [110] have presented a cubic B-spline functions based differential quadra-

ture method for solving one dimensional Burgers’ equation. Mantri et al. [137] have devel-

oped a qualocation method for one dimensional Burgers’ equation, which is a quadrature

based modification of the collocation approximations. Fletcher [70] has presented a com-

parisons of linear, quadratic and cubic finite element methods and three, five and seven

points finite difference methods for the numerical solutions of one and two dimensional

Burgers’ equations. In [76, 77], local discontinuous Galerkin (LDG) finite element meth-

ods have been developed for one and two dimensional Burgers’ equations. These methods

were based on the Hopf-Cole transformation and transforms the Burgers’ equation into

linear equation. Rong-Pei et al. [184] have developed local discontinuous Galerkin method
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to solve modified Burgers’ equation. Jain and Holla [86] have presented cubic spline func-

tion based two algorithms for solving Burgers’ equation in one dimension and coupled

Burgers’ equation in two dimensions. Wei et al. [208] have used distributed approxi-

mating functionals (DAFs) in space direction and Taylor expansion in time direction for

solving one and two dimensional Burgers’ equations. Radwan [172] has derived two higher

order finite difference schemes namely the fourth-order two-point compact scheme and the

fourth-order accurate Du Fort Frankel scheme for two dimensional Burgers’ equations. In

[8], a meshfree solution of coupled Burgers’ equation has been presented by applying the

combination of collocation method using the radial basis functions (RBFs) with first-order

accurate forward difference approximation. Zhang et al. [211] have proposed a meshfree

method based on characteristic and Galerkin method for solutions of one and two di-

mensional Burgers’ equations. Bahadir [12] has proposed a fully implicit finite difference

scheme, which leads to a system of nonlinear difference equations to be solved at each

time step. A discrete Adomian decomposition method has been proposed by Zhu et al.

[213], to solve two dimensional coupled Burgers’ equation. Mittal and Jiwari [147] have

developed a polynomial based differential quadrature method for two dimensional coupled

Burgers’ equation. Recently, Goyal and Mehra [74] have developed a fast adaptive wavelet

method for equation (7.1). Doha et al. [62] have proposed a J-GL-C method based on

Jacobi polynomials and Gauss-Lobatto quadrature integration, in combination with the

implicit Runge-Kutta-Nystrom (IRKN) scheme, for solving equation (7.1). Many other

numerical methods have been developed to solve Burgers’ equation such as finite element

methods [10, 32, 34, 121, 164, 166], finite difference methods [132, 165], lattice Boltzmann

method [65, 133], spectral method [148], spectral collocation methods [61, 66] etc.

In this chapter, we present a differential quadrature method based on modified

cubic B-spline functions for finding the numerical solutions of two dimensional coupled

Burgers’ equation. The coupled Burgers’ equation is discretized spatially by modified

cubic B-spline differential quadrature method, which results in a system of nonlinear

ODEs. The system of differential equations obtained over time is solved using SSP-RK43

scheme given by Spiteri and Ruuth [197]. The accuracy of the scheme is tested by solving

five numerical experiments. The computed numerical solutions are compared with the

analytical and other numerical solutions available in the literature.
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7.2 Solution of Coupled Burgers’ Equation

The region a ≤ x ≤ b, c ≤ y ≤ d is discretized by taking N and M grid points in x and

y direction respectively, such that hx = xi+1 − xi and hy = yj+1 − yj.

Then according to two dimensional DQM stated in chapter 1, the first and second order

partial derivatives of the function u(x, y, t) can be approximated as follows:

u(1)x (xi, yj, t) =
N∑
k=1

a
(1)
ik u(xk, yj, t), u(1)y (xi, yj, t) =

M∑
k=1

b
(1)
jk u(xi, yk, t),

u(2)x (xi, yj, t) =
N∑
k=1

a
(2)
ik u(xk, yj, t), u(2)y (xi, yj, t) =

M∑
k=1

b
(2)
jk u(xi, yk, t),

i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

(7.4)

Similarly, for the function v(x, y, t) we have

v(1)x (xi, yj, t) =
N∑
k=1

a
(1)
ik v(xk, yj, t), v(1)y (xi, yj, t) =

M∑
k=1

b
(1)
jk v(xi, yk, t),

v(2)x (xi, yj, t) =
N∑
k=1

a
(2)
ik v(xk, yj, t), v(2)y (xi, yj, t) =

M∑
k=1

b
(2)
jk v(xi, yk, t),

i = 1, 2, . . . , N ; j = 1, 2, . . . ,M.

(7.5)

First we compute the weighting coefficients a
(1)
ik , a

(2)
ik , b

(1)
jk and b

(2)
jk . Then the spatial

derivatives of u and v are discretized using the approximations (7.4) and (7.5), and finally

the equation (7.1) is reduced into the following system of nonlinear first order ODEs

dui,j
dt

= −ui,j
N∑
k=1

a
(1)
ik uk,j − vi,j

M∑
k=1

b
(1)
jk ui,k+

1

R

(
N∑
k=1

a
(2)
ik uk,j +

M∑
k=1

b
(2)
jk ui,k

)
,

dvi,j
dt

= −ui,j
N∑
k=1

a
(1)
ik vk,j − vi,j

M∑
k=1

b
(1)
jk vi,k+

1

R

(
N∑
k=1

a
(2)
ik vk,j +

M∑
k=1

b
(2)
jk vi,k

)
,

i = 1, 2, . . . , N ; j = 1, 2, . . . ,M,

(7.6)

with the initial conditions

u(xi, yj, 0) = φ(xi, yj),

v(xi, yj, 0) = ψ(xi, yj), (xi, yj) ∈ D.
(7.7)

Initial vector [u0i,j, v
0
i,j]

T is computed using the initial conditions (7.7). Finally, system

of nonlinear first order ordinary differential equations (7.6) is solved with the boundary

conditions (7.3), using SSP-RK43 scheme and hence the approximate solution [uki,j, v
k
i,j]

T

at a time level t = tk is computed.
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7.3 Numerical Results

Example 7.1

We consider the Burgers’ equation (7.1) in the computational domain D={(x, y) : 0 ≤

x ≤ 1, 0 ≤ y ≤ 1} with the following exact solutions, which have been obtained by

Fletcher [71] using the Hopf-Cole transformation:

u(x, y, t) =
3

4
− 1

4
(

1 + e
R(−4x+4y−t)

32

) , (7.8)

v(x, y, t) =
3

4
+

1

4
(

1 + e
R(−4x+4y−t)

32

) . (7.9)

The initial and boundary conditions are taken from the exact solutions.

The numerical solutions are computed with a mesh size hx = hy = .05 and time

step size ∆t = .001.

In Table-7.1, numerical solutions and corresponding absolute errors are reported for

R = 100 at t = .01 at some mesh points. We see that the numerical results are close to

the exact solutions. Comparisons are also made with the results given by Bahadir [12],

Mittal and Jiwari [147], Zhu et al. [213] and results of the proposed method are found

better.

Table-7.2 and Table-7.3 present the numerical solutions and corresponding absolute

errors for R = 100 at t = 0.5 and t = 2.0, respectively. These tables also depict the

comparisons of our results with those given in Bahadir [12], Mittal and Jiwari [147], Zhu

et al. [213] and Liu and Shi [133]. It is found that our results are better as compare to

[12, 133, 147, 213]. To demonstrate the accuracy of proposed approach for higher time

level, maximum absolute errors (MAE), root mean square errors (RMSE) and relative

errors are computed up to time t = 12 and reported in Table-7.4. We observe that as

calculations are carried out for higher time level the approximate solution approaches to

the exact ones.

In addition, the performance of the method is also tested for a larger value of

Reynolds number R = 1000 and 1200 at t = 2 with ∆t = .001 and for finer grid size

hx = hy = .025. Numerical solutions at some grid points are given in Table-7.5 and

compared with the exact solutions. From these results it is concluded that the proposed



154

method solves the system for large values of R with remarkable accuracy.

Approximate velocity profiles of u and v are plotted at t = .5, 2, 5 and 12, and are

shown in Figure-7.1.

Example 7.2

We consider equation (7.1) in the computational domain D = {(x, y) : 0 ≤ x ≤ 0.5, 0 ≤

y ≤ 0.5} with the following initial conditions as given in [86]

u(x, y, 0) = sin(πx) + cos(πy),

v(x, y, 0) = x+ y.
(7.10)

The boundary conditions are given by

u(0, y, t) = cos(πy), 0 ≤ y ≤ 0.5,

u(.5, y, t) = 1 + cos(πy), 0 ≤ y ≤ 0.5,

u(x, 0, t) = 1 + sin(πx), 0 ≤ x ≤ 0.5,

u(x, .5, t) = sin(πx), 0 ≤ x ≤ 0.5.

(7.11)

v(0, y, t) = y, 0 ≤ y ≤ 0.5,

v(.5, y, t) = 0.5 + y, 0 ≤ y ≤ 0.5,

v(x, 0, t) = x, 0 ≤ x ≤ 0.5,

v(x, .5, t) = x+ 0.5, 0 ≤ x ≤ 0.5.

(7.12)

The analytic solution of this problem is not known.

It has been mentioned in [86] that time to reach the steady state solution does not

depend on the Reynolds number and the steady state solution is reached at t = .625.

Therefore, numerical computations are performed with hx = hy = .05, ∆t = .001 up

to t = .625. Numerical values of velocity u and v are reported in Table-7.6 and 7.7 at

some mesh points for R = 50 and R = 500 and compared with the solutions obtained

in Jain and Holla [86], Bahadir [12], and Mittal and Jiwari [147]. We have noticed that

our results are in excellent agreement with those obtained in [12, 86, 147]. Numerical

solutions are also computed for higher Reynolds number R = 1200 and 1500 with mesh

size hx = hy = .025, ∆t = .001 and are shown in Table-7.8. Steady state profiles of u and
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v forR = 50 at t = .625 are shown in Figure-7.2. Similar figures have been obtained in [12].

Example 7.3

In this example, we consider 2D Burgers’ equation (7.1) in the computational domain

D = {(x, y) : 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5} with the following initial conditions

u(x, y, 0) = x+ y,

v(x, y, 0) = x− y.
(7.13)

The exact solution is given in [213] as

u(x, y, t) =
x+ y − 2xt

1− 2t2
,

v(x, y, t) =
x− y − 2yt

1− 2t2
.

(7.14)

The boundary conditions can be obtained from the exact solution.

Absolute errors are reported in Table-7.9 at t = 0.1 and 0.4 for Reynolds number

R = 500, h = .05 and ∆t = .001. In order to compare our results with Zhu et al. [213],

calculations are performed for smaller time step ∆t = .0001 and obtained results are

presented in Table-7.10. From tables it is clear that our method produces much better

numerical results than [213]. In Table-7.11, we show the L2 and L∞ norms of error and

CPU time at different levels of time. The physical behavior of numerical solutions at

t = 0.1 and t = 0.4 is also presented in Figure-7.3 and 7.4, respectively. Similar figures

were obtained in [213] at t = 0.1.

Example 7.4

We consider the following 2D Burgers’ equation in the computational domain D={(x, y) :

0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

ut + uux + uuy =
1

R
(uxx + uyy), (x, y, t) ∈ D × (0, T ], (7.15)

with the following initial conditions

u(x, y, 0) =
1

1 + eR(x+y)/2
, (x, y) ∈ D. (7.16)
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The boundary conditions are given by

u(0, y, t) =
1

1 + eR(−t+y)/2 ,

u(1, y, t) =
1

1 + eR(−t+1+y)/2
,

u(x, 0, t) =
1

1 + eR(−t+x)/2 ,

u(x, 1, t) =
1

1 + eR(−t+1+x)/2
, (x, y, t) ∈ ∂D × (0, T ].

(7.17)

The exact solution is given by

u(x, y, t) =
1

1 + eR(−t+x+y)/2 . (7.18)

The numerical solutions are computed at time t = 0.25 for Reynolds number R = 1, 10

and 100. Table-7.12 presents the L2, L∞ error norms and CPU time with ∆t = .001 and

for different grid sizes. These results are compared with those obtained in Duan and Liu

[65]. It is found that our results are more accurate than [65] and also errors increases with

the increasing Reynolds numbers. Therefore, it can be concluded that we must choose

finer grids for high Reynolds number. Velocity profiles of u are depicted in Figure-7.5 at

t = .25, 3, 5, 12 for R = 1. In order to compare our results with Young et al. [209], numer-

ical experiments are also conducted for R = 20. Absolute errors are computed at different

grid points at time t = 0.5, 0.75, 1.0, 1.25 and are shown in Table-7.13. The comparison

shows that proposed scheme gives better accuracy, while using very less number of grid

points in comparison with [209].

Example 7.5

We consider the Burgers’ equation (7.1) in the computational domain D={(x, y) : 0 ≤

x ≤ 1, 0 ≤ y ≤ 1}, with the following initial conditions as given in [10, 208]

u(x, y, 0) = sin πx sinπy,

v(x, y, 0) = (sin πx+ sin 2πx) (sin πy + sin 2πy), (x, y) ∈ D,
(7.19)

and the homogenous boundary conditions

u(x, y, t) = 0,

v(x, y, t) = 0, (x, y, t) ∈ ∂D × (0, T ].
(7.20)
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The exact solution of this problem is not available in the literature.

In our first computation, we take hx = hy = .05, ∆t = .001. First we compute

the velocities u and v at some mesh points with R = 1 at t = .01. Computed results

are given in Table-7.14 and are compared with those given in Arminjon and Beauchamp

[10], Radwan [171], Goyal and Mehra [74], and Wei et al. [208]. It can be seen that our

results are in excellent agreement with their results and the time step ∆t is much bigger

in our case. In addition, to check the performance of the method for higher value of R,

computations are performed for R = 100, hx = hy = .01 and ∆t = .001. Results are

tabulated in Table-7.15 and compared with those given by Wei et al. [208] at t = 0.5, 1.0.

It is observed that our results are very similar to the results given in [208]. To measure the

computational efficiency of proposed scheme, the CPU time is also calculated in Table-

7.16 at different time levels and compared with those obtained in Radwan [171]. It is

apparent that CPU time used in our computation is much less. The physical behaviors of

u and v are depicted in Figure-7.6 at t = .01 for R = 1. Similar trends have been observed

in [8]. Figure-7.7 represents the contour plots of u and v at t = 0.5, 1.0 for R = 100.

Same figures have been also obtained by Wei et al. [208].

7.4 Conclusions

1. Differential quadrature method has been used for space discretization of nonlinear

coupled Burgers’ equation and SSP-RK54 scheme is used to solve resulting system

of first order nonlinear ordinary differential equations.

2. The accuracy of the approach is tested by taking five test problems. The results of

computations indicate that modified cubic B-spline differential quadrature method

gives more accurate results than previous works with larger time steps and with less

computational cost.

3. The numerical results are computed for higher Reynolds number up to R = 1500.

4. The proposed method solves the nonlinear Burgers’ equation without using any

transformation or quasi-linearization approach.
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Table 7.1: Numerical values of velocity u and v with hx = hy = .05, R = 100 at t = .01
of Example 7.1.

Numerical solutions Exact soln Absolute errors

(x, y) Proposed Bahadir Mittal and Proposed Zhu et al.
method [12] Jiwari [147] method [213]

∆t = .001 ∆t = .0001 ∆t = .001 ∆t = .001 ∆t = .0001

u(x, y, t)

(.1,.1) 0.6230428970 0.62310 0.62305 0.6230470339 4.1369E-6 5.9137E-5
(.5,.1) 0.5016217544 0.50161 0.50162 0.5016220674 3.1302E-7 4.8403E-6
(.9,.1) 0.5000110010 0.50000 0.50001 0.5000110003 7.4652E-10 3.4100E-8
(.3,.3) 0.6230488712 0.62311 0.62305 0.6230470339 1.8373E-6 5.9137E-5
(.7,.3) 0.5016221262 0.50162 0.50162 0.5016220674 5.8757E-8 4.8403E-6
(.1,.5) 0.7482743425 0.74827 0.74827 0.7482740405 3.0205E-7 1.6429E-6
(.5,.5) 0.6230488682 0.62311 0.62305 0.6230470339 1.8343E-6 5.9137E-5
(.9,.5) 0.5016225333 0.50162 0.50162 0.5016220673 4.6588E-7 -
(.3,.7) 0.7482740496 0.74827 0.74827 0.7482740405 9.0754E-9 -
(.7,.7) 0.6230488357 0.62311 0.62305 0.6230470339 1.8017E-6 -
(.1,.9) 0.7499882881 0.74998 0.74999 0.7499882902 2.1421E-9 -
(.5,.9) 0.7482734318 0.74827 0.74827 0.7482740405 6.0872E-7 -
(.9,.9) 0.6230392844 0.62311 0.62305 0.6230470339 7.7495E-6 -

v(x, y, t)

(.1,.1) 0.8769571030 0.87688 0.87695 0.8769529661 4.1369E-6 5.9137E-5
(.5,.1) 0.9983782456 0.99837 0.99838 0.9983779326 3.1302E-7 4.8403E-6
(.9,.1) 0.9999889990 0.99998 0.99999 0.9999889997 7.4652E-10 3.4100E-8
(.3,.3) 0.8769511288 0.87689 0.87695 0.8769529661 1.8373E-6 5.9137E-5
(.7,.3) 0.9983778738 0.99838 0.99838 0.9983779326 5.8757E-8 4.8403E-6
(.1,.5) 0.7517256574 0.75172 0.75172 0.7517259595 3.0205E-7 1.6429E-6
(.5,.5) 0.8769511317 0.87689 0.87695 0.8769529661 1.8343E-6 5.9137E-5
(.9,.5) 0.9983774667 0.99838 0.99838 0.9983779326 4.6588E-7 -
(.3,.7) 0.7517259504 0.75173 0.75173 0.7517259595 9.0754E-9 -
(.7,.7) 0.8769511643 0.87689 0.87695 0.8769529661 1.8017E-6 -
(.1,.9) 0.7500117119 0.75001 0.75001 0.7500117097 2.1421E-9 -
(.5,.9) 0.7517265682 0.75173 0.75172 0.7517259595 6.0872E-7 -
(.9,.9) 0.8769607156 0.87689 0.87695 0.8769529661 7.7495E-6 -
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Table 7.3: Numerical values of velocity u and v with hx = hy = .05, R = 100 at t = 2.0
of Example 7.1.

Numerical solutions Exact soln Absolute errors

(x, y) Proposed Bahadir Mittal and Proposed Liu and Shi
method [12] Jiwari [147] method [133]

∆t = .001 ∆t = .0001 ∆t = .001 ∆t = .001 ∆t = .005

u(x, y, t)

(.1,.1) 0.50050084 0.49983 0.50048 0.50048018 2.0654E-5 1.08E-5
(.5,.1) 0.50000336 0.49930 0.50000 0.50000324 1.2254E-7 2.67E-7
(.9,.1) 0.49999996 0.49930 0.50000 0.50000000 6.0147E-8 6.68E-8
(.3,.3) 0.50050125 0.49977 0.50048 0.50048018 2.1070E-5 1.40E-4
(.7,.3) 0.50000429 0.49930 0.50000 0.50000324 1.0462E-6 2.78E-6
(.1,.5) 0.55640420 0.55461 0.55540 0.55567503 7.2916E-4 2.34E-3
(.5,.5) 0.50049593 0.49973 0.50048 0.50048018 1.5747E-5 2.91E-4
(.9,.5) 0.50000572 0.49931 0.50000 0.50000324 2.4752E-6 2.87E-6
(.3,.7) 0.55605555 0.55429 0.55540 0.55567503 3.8051E-4 7.52E-4
(.7,.7) 0.50053624 0.49970 0.50048 0.50048018 5.6056E-5 3.72E-4
(.1,.9) 0.74406456 0.74340 0.74422 0.74425566 1.9109E-4 1.61E-3
(.5,.9) 0.55583135 0.55413 0.55541 0.55567503 1.5631E-4 4.80E-4
(.9,.9) 0.50051858 0.50001 0.50048 0.50048168 3.6898E-5 4.63E-4

v(x, y, t)

(.1,.1) 0.99949916 0.99826 0.99952 0.99951982 2.0654E-5 6.88E-5
(.5,.1) 0.99999664 0.99860 1.00000 0.99999676 1.2254E-7 2.96E-6
(.9,.1) 1.00000000 0.99861 1.00000 0.99999998 6.0147E-8 2.18E-8
(.3,.3) 0.99949875 0.99820 0.99952 0.99951982 2.1070E-5 2.97E-4
(.7,.3) 0.99999571 0.99860 1.00000 0.99999676 1.0462E-6 3.52E-6
(.1,.5) 0.94359580 0.94393 0.94460 0.94432496 7.2916E-4 6.42E-4
(.5,.5) 0.99950407 0.99821 0.99952 0.99951982 1.5747E-5 4.48E-4
(.9,.5) 0.99999428 0.99862 1.00000 0.99999676 2.4752E-6 8.60E-6
(.3,.7) 0.94394445 0.94409 0.94460 0.94432496 3.8051E-4 2.11E-3
(.7,.7) 0.99946376 0.99823 0.99952 0.99951982 5.6056E-5 6.14E-4
(.1,.9) 0.75593543 0.75500 0.75578 0.75574434 1.9109E-4 5.01E-4
(.5,.9) 0.94416865 0.94441 0.94459 0.94432497 1.5631E-4 3.73E-3
(.9,.9) 0.99948142 0.99846 0.99952 0.99951832 3.6898E-5 6.81E-4
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Table 7.4: Error norms with hx = hy = .05 and R = 100 of Example 7.1.

t u v

MAE RMSE Rel. err. MAE RMSE Rel. err. CPU
time(s)

.01 1.7043E-4 1.8412E-5 2.7680E-5 1.7043E-4 1.8412E-5 1.9881E-5 .03
.5 9.8298E-4 2.2796E-4 3.5719E-4 9.8297E-4 2.2796E-4 2.3930E-4 .25
2.0 8.7692E-4 2.1645E-4 3.8067E-4 8.7692E-4 2.1645E-4 2.1337E-4 .91
3.0 9.0788E-4 1.6910E-4 3.1329E-4 9.0788E-4 1.6910E-4 1.6295E-4 1.38
5.0 9.8970E-5 8.1480E-6 1.5516E-5 9.8990E-5 8.1480E-6 7.7609E-6 2.30
7.0 1.9995E-7 1.6383E-8 3.1206E-8 1.9995E-7 1.6383E-8 1.5603E-8 3.23
9.0 3.8603E-10 3.1628E-11 6.0244E-11 3.8603E-10 3.1631E-11 3.0125E-11 4.17
12.0 6.5614E-14 2.3960E-14 4.5638E-14 2.0850E-13 6.9216E-14 6.5920E-14 5.36

Table 7.5: Numerical results for R = 1000, 1200 at t = 2 with ∆t = .001 and 41× 41 grid
of Example 7.1.

R = 1000 R = 1200

(x, y) Num. u Num. v Num. u Num. v Exact u Exact v

(.1,.1) 0.49964 1.00034 0.49715 1.00285 0.50000 1.00000
(.5,.1) 0.50000 1.00000 0.49996 1.00000 0.50000 1.00000
(.9,.1) 0.49990 1.00001 0.49965 1.00035 0.50000 1.00000
(.3,.3) 0.50016 0.99984 0.50025 0.99975 0.50000 1.00000
(.7,.3) 0.50022 0.99978 0.50049 0.99951 0.50000 1.00000
(.1,.5) 0.49875 1.00124 0.49637 1.00362 0.50000 1.00000
(.5,.5) 0.50000 1.00000 0.50004 0.99996 0.50000 1.00000
(.9,.5) 0.50001 0.99999 0.50072 0.99993 0.50000 1.00000
(.3,.7) 0.49896 1.00102 0.49629 1.00371 0.50000 1.00000
(.7,.7) 0.50013 0.99987 0.50069 0.99931 0.50000 1.00000
(.1,.9) 0.74997 0.75003 0.74991 0.75009 0.75000 0.75000
(.5,.9) 0.49386 1.00613 0.49469 1.00531 0.50000 1.00000
(.9,.9) 0.50000 1.00000 0.50000 1.00000 0.50000 1.00000
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Table 7.6: Numerical results at t = .625 for R = 50 and N = M = 21 of Example 7.2.

(x, y) Proposed Jain and Mittal and Bahadir
method Holla [86] Jiwari [147] [12]

Numerical values of velocity u

(.1,.1) 0.970585 0.97258 0.96921 0.96688
(.3,.1) 1.151574 1.16214 1.14940 1.14827
(.2,.2) 0.862447 0.86281 0.86195 0.85911
(.4,.2) 0.980827 0.96483 0.97972 0.97637
(.1,.3) 0.663353 0.66318 0.66340 0.66019
(.3,.3) 0.772274 0.77030 0.77201 0.76932
(.2,.4) 0.582738 0.58070 0.58266 0.57966
(.4,.4) 0.761842 0.74435 0.76065 0.75678

Numerical values of velocity v

(.1,.1) 0.098428 0.09773 0.09787 0.09824
(.3,.1) 0.141090 0.14039 0.14014 0.14112
(.2,.2) 0.167321 0.16660 0.16708 0.16681
(.4,.2) 0.172248 0.17397 0.17181 0.17065
(.1,.3) 0.263803 0.26294 0.26362 0.26261
(.3,.3) 0.226536 0.22463 0.22630 0.22576
(.2,.4) 0.329367 0.32402 0.32873 0.32745
(.4,.4) 0.328893 0.31822 0.32731 0.32441

Table 7.7: Numerical results at t = .625 for R = 500 of Example 7.2.

Proposed Jain and Mittal and Bahadir
method Holla [86] Jiwari [147] [12]

(x, y) N = M = 21 N = M = 31 N = M = 41 N = M = 41 N = M = 25 N = M = 21
Numerical values of velocity u

(.15,.1) 0.964465 0.959430 0.960778 0.96066 0.96761 0.96650
(.3,.1) 1.029908 0.980835 0.970515 0.96852 1.04403 1.02970
(.1,.2) 0.840304 0.844443 0.844390 0.84104 0.85449 0.84449
(.2,.2) 0.880544 0.870308 0.869170 0.86866 0.91481 0.87631
(.1,.3) 0.675582 0.678624 0.678688 0.67792 0.68668 0.67809
(.3,.3) 0.810984 0.778471 0.774280 0.77254 0.82894 0.79792
(.15,.4) 0.547864 0.547063 0.547239 0.54543 0.55412 0.54601
(.2,.4) 0.594760 0.587874 0.587587 0.58564 0.61024 0.58874

Numerical values of velocity v
(.15,.1) 0.088681 0.085847 0.086529 0.08612 0.08770 0.09020
(.3,.1) 0.107883 0.082916 0.077526 0.07712 0.11439 0.10690
(.1,.2) 0.177108 0.178964 0.178906 0.17828 0.18128 0.17972
(.2,.2) 0.169529 0.163332 0.162646 0.16202 0.18443 0.16777
(.1,.3) 0.260731 0.261823 0.261778 0.26094 0.26514 0.26222
(.3,.3) 0.244151 0.219622 0.216409 0.21542 0.25498 0.23497
(.15,.4) 0.323536 0.315426 0.314824 0.31360 0.31375 0.31753
(.2,.4) 0.313240 0.299906 0.299016 0.29776 0.31462 0.30371
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Table 7.8: Numerical results at t = .625 with N = M = 41, ∆t = .001 of Example 7.2.

R = 1200 R = 1500

(x, y) u v u v

(.15,.1) 0.964486 0.087661 0.966157 0.088398
(.3,.1) 0.994682 0.089244 1.009743 0.096525
(.1,.2) 0.845572 0.178998 0.845184 0.178769
(.2,.2) 0.874949 0.165032 0.878667 0.167067
(.1,.3) 0.679879 0.261733 0.679638 0.261586
(.3,.3) 0.788421 0.225640 0.798285 0.232718
(.15,.4) 0.549387 0.316921 0.549934 0.319252
(.2,.4) 0.590868 0.302111 0.593049 0.305828

Table 7.9: Absolute errors for R = 500, N = M = 21 and ∆t = .001 of Example 7.3.

t = 0.1 t = 0.4

(x, y) u v u v

(.1,.1) 6.4392E-9 9.0914E-8 3.4051E-5 1.0982E-4
(.3,.1) 9.6570E-7 1.3957E-7 7.5609E-5 6.8940E-5
(.2,.2) 1.3726E-7 5.2305E-8 1.7559E-5 6.1213E-5
(.4,.2) 3.4424E-5 1.2368E-5 1.3142E-5 1.9016E-6
(.1,.3) 2.1993E-8 2.2153E-7 4.0438E-4 1.1973E-3
(.3,.3) 6.9693E-6 4.7591E-6 4.3935E-5 2.0305E-4
(.2,.4) 1.0468E-6 6.6090E-7 4.6586E-4 1.4875E-3
(.3,.4) 1.1901E-5 1.1638E-5 3.5245E-4 1.3163E-3
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Table 7.10: Comparison of absolute errors for R = 500, N = M = 21 and ∆t = .0001 of
Example 7.3.

u(x, y, t) v(x, y, t)

(x, y) Numerical soln Absolute errors Numerical soln Absolute errors

Proposed Proposed Zhu et al. Proposed Proposed Zhu et al.
method method [213] method method [213]

t = 0.1

(.1,.1) 0.1836734700 6.3332E-10 3.3075E-6 -0.0204081723 9.0041E-9 1.0538E-6
(.3,.1) 0.3469388729 9.7371E-8 5.5616E-6 0.1836734832 1.3868E-8 3.3077E-6
(.2,.2) 0.3673469526 1.3801E-8 6.6152E-6 -0.0408163213 5.2570E-9 2.1077E-6
(.4,.2) 0.5306156878 3.4429E-6 8.8694E-6 0.1632665427 1.2365E-6 2.2540E-6
(.1,.3) 0.3877551038 1.8096E-9 7.6693E-6 -0.2653060967 2.5758E-8 7.5234E-6
(.3,.3) 0.5510211070 6.9885E-7 9.9233E-6 -0.0612240123 4.7750E-7 3.1615E-6
(.2,.4) 0.5714286771 1.0564E-7 1.0977E-5 -0.2857142160 6.9678E-8 8.5770E-6
(.3,.4) 0.6530624175 1.1931E-6 1.2104E-5 -0.1836723007 1.1686E-6 6.3960E-6

t = 0.4

(.1,.1) 0.17647929 3.4207E-6 1.0194E-4 -0.11769314 1.1025E-5 3.5483E-4
(.3,.1) 0.23526882 7.5755E-6 5.5872E-4 0.17647579 6.9199E-6 1.0195E-4
(.2,.2) 0.35296364 1.7706E-6 2.0389E-4 -0.23540217 6.1659E-6 7.0967E-4
(.4,.2) 0.41174526 1.3128E-6 6.6067E-4 0.05877873 1.8901E-7 4.5678E-4
(.1,.3) 0.47062902 4.0564E-5 1.5094E-4 -0.64717936 1.2002E-4 1.3174E-3
(.3,.3) 0.52944368 4.4423E-6 3.0584E-4 -0.35309204 2.0471E-5 1.0645E-3
(.2,.4) 0.64710554 4.6745E-5 4.8996E-5 -0.76485444 1.4911E-4 1.6722E-3
(.3,.4) 0.67650617 3.5387E-5 1.7939E-4 -0.61777818 1.3193E-4 1.5458E-3

Table 7.11: Errors of Example 7.3 for R = 500, N = M = 21 and ∆t = .0001.

t L2 L∞ CPU time(s)

.01 2.4371E-5 5.9231E-6 .06

.05 7.9137E-5 2.2580E-5 .23
.1 1.0597E-4 3.2506E-5 .43
.2 1.5193E-4 3.6833E-5 .80
.3 2.7067E-4 4.0271E-5 1.20
.4 5.8403E-4 7.9467E-5 1.61
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Table 7.12: Errors of Example 7.4 at t = .25 with ∆t = .001.

Proposed method Duan and Liu [65]

R Grid points L2 L∞ CPU time(s) L2 L∞
1 4× 4 1.7293E-5 4.3726E-5 .03 1.914E-5 4.423E-5

10×10 4.9798E-5 6.5233E-5 .05 2.016E-5 7.882E-5
20×20 5.6196E-5 6.6368E-5 .08 2.652E-4 1.483E-4

10 4 × 4 2.7636E-3 7.3628E-3 .03 – –
10× 10 3.1799E-4 1.9106E-3 .05 2.565E-3 1.061E-2
20× 20 1.8545E-4 8.4678E-4 .08 4.536E-4 3.077E-3
30× 30 1.9381E-4 6.8501E-4 .20 – –

100 30×30 4.0574E-3 4.8182E-2 .20 – –
40×40 2.0214E-3 2.0001E-2 .25
70×70 9.8851E-4 9.2900E-3 .78
80×80 9.0412E-4 8.3590E-3 .98 7.610E-3 5.893E-2
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Table 7.16: Comparison of CPU time of Example 7.5.

R t Grid points CPU time(s)

Proposed method Radwan [171]
(∆t = .001) (∆t = .00125)

1 .01 10× 10 0.014 4
20× 20 0.024 14

100 0.1 100×100 0.98 –
0.3 100×100 2.3 –
0.5 100×100 3.9 –
0.7 100×100 5.3 –
1.0 100×100 7.2 –
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Chapter 8

Conclusions and Future Scope

8.1 Conclusions

In this thesis, we have developed B-splines collocation and differential quadrature methods

to solve some linear and nonlinear partial differential equations. These methods are

designed in such a way that they reduce the given partial differential equation into a system

of first order ordinary differential equations. Strong stability preserving Runge-Kutta

(SSP-RK) methods of different stages and order have been used to solve resulting system

of first order ordinary differential equations. SSP-RK methods provide an efficient explicit

solution with high accuracy and minimal computational effort. The presented methods

do not require any extra effort to tackle the nonlinearity i.e. the numerical solutions can

be obtained without using the process of the transformation and linearization. Therefore,

the equations are easily solved with the help of the developed techniques.

The problems considered in chapters two to seven have applications in many fields

such as quantum physics, differential geometry, stability of fluid motion, atomic physics,

in wave phenomena, continuum physics, mixed models of transonic flows, fluid dynamics,

flow of a shock wave, phenomena of turbulence etc. The chapter wise conclusions are as

follows:

In chapter 2, we have proposed a collocation method with cubic B-splines for solving

Klein-Gordon and coupled Klein-Gordon-Schrödinger equations. For Neumann boundary

conditions, we have used cubic B-splines and for Dirichlet boundary conditions, we have

used modified cubic B-splines. The presented method approximates both the equations

without using any transformation and quasi-linearization approach. The accuracy of the
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method is tested by taking six numerical experiments known in the literature. It has

been proved that the proposed method produces better results with less CPU time in

comparison to those available in the literature. This scheme not only provides solutions

to grid points but at any point in the solution domain.

In chapter 3, we have presented a modified cubic B-spline collocation method for solving

one dimensional sine-Gordon equation with Dirichlet boundary conditions. The approxi-

mate solutions of nonlinear sine-Gordon equation have been obtained without using any

transformation and linearization process. The efficiency of the method is demonstrated by

applying it on four examples. The numerical results obtained by it are quite accurate and

better in comparison with the existing solutions in the literature. Order of convergence

of the method is also calculated and found to be approaching two. This method produces

a spline function, which may be used to obtain the solution at any point in the range of

interest.

In chapter 4, cubic B-spline collocation method has been developed to solve one di-

mensional hyperbolic telegraph equation with Dirichlet as well as Neumann boundary

conditions. The use of B-spline basis functions for spatial variable and its derivatives,

results in an amenable system of differential equations. The resulting system has been

solved by SSP-RK54 scheme. The accuracy of the scheme is measured by solving four nu-

merical examples. It has been observed that the proposed method provides better results

in comparison to those available in the literature and also CPU time taken is relatively

less in our case. The stability of the scheme is tested with matrix stability analysis and

found to be unconditionally stable. The scheme is simple and require less computational

effort.

In chapter 5, a differential quadrature method has been introduced to solve two dimen-

sional hyperbolic telegraph equation that can easily deal with Dirichlet or Mixed boundary

conditions. Modified cubic B-spline basis functions were used to determine the weighting

coefficients of the differential quadrature method. The telegraph equation is reduced to

a system of ordinary differential equations using DQM and the resulting system is solved

by SSP-RK43 scheme. In seven numerical test problems, the performance of this method

is shown by computing L2, L∞ and relative error norms, for different time levels. The

results show that the numerical solutions are very close to the exact solutions and better
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compared to the existing solutions found in literature with less computational cost. The

stability test is also performed with matrix stability analysis and scheme is found to be

unconditionally stable.

In chapter 6, we have applied a modified cubic B-spline functions based differential

quadrature method to solve some linear and nonlinear wave equations with Dirichlet

boundary conditions. The numerical solutions of nonlinear wave equations have been

computed without using any transformation and linearization process. In numerical test-

ing, the presented method is implemented on seven test problems such as 1D Vander Pol

equation, 1D Dissipative nonlinear wave equation, 2D Vander Pol equation, 2D Dissipa-

tive nonlinear wave equation and some linear telegraph equations. The results show that

the scheme gives more accurate results than earlier works with smaller grid points, larger

time steps and with less computational cost. The order of convergence of the method is

also calculated and found to be two. The scheme is simple and very suitable for computer

implementation.

In chapter 7, the application of modified cubic B-spline differential quadrature method

is discussed by solving the coupled system of Burgers’ equation with appropriate initial

and boundary conditions. The accuracy of the approach is tested on five test problems.

The results of computations indicate that the modified cubic B-spline differential quadra-

ture method gives more accurate results than previous works with larger time steps and

with less computational efforts. The system has been solved for large Reynolds number

R = 1500. The proposed method solves the nonlinear Burgers’ equation without using a

transformation or quasi-linearization approach.

The following observations have been made with respect to the B-spline collocation

and differential quadrature methods:

• The B-spline collocation and differential quadrature methods are introduced along

with SSP-RK schemes that are capable for solving nonlinear PDEs, without using

a transformation and linearization.

• These methods are easy to use compared to other numerical methods such as finite

difference and finite element methods.
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• The obtained results are compared with the results available in the literature and

found better or in very good agreement.

• Differential quadrature method yields higher accuracy in a smaller number of grid

points.

• The order of convergence of the derived schemes are found to be close to two or

more, which is quite good.

8.2 Future Scope

For the future work, the following is suggested for consideration:

• The collocation method with B-spline functions is developed for one dimensional

problems. This approach can be extended to solve two or higher dimensional prob-

lems.

• The modified cubic B-spline differential quadrature method can be extended to solve

higher dimensional partial differential equations appearing in various applications

of science and engineering.

• Higher degree B-spline basis functions can be also modified to solve the higher order

PDEs.
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