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Abstract

The research work presented in the thesis is study of methods developed to construct

desired Boolean functions and solutions of system of linear inequalities.

The thesis consists of seven chapters. The chapter-wise summary of the thesis is as

follows:

Chapter 1 is introductory in nature. In this chapter, we have defined the relevant

supporting theory of Boolean functions. In particular, we have provided numerous def-

initions and theorems for various aspects of the theory. The necessary cryptographic

properties which are used to analyze the strength of Boolean functions have been also

defined and discussed, and inter-relations between pairs of selected properties are also

discussed. Finally, we have presented a brief summary of major cryptanalytic attacks

against Boolean functions and cipher systems.

In Chapter 2, we have developed a new evolutionary method to optimize the

Boolean functions’ properties by two objective optimization method. In this Chapter ,

we have taken balancedness, nonlinearity and resiliency, and developed an evolutionary

method to construct Boolean functions having these properties at optimal level. We

have got the desired functions and compared our results with previous results. Our

results are as good as previous results.

In Chapter 3 also, we have developed a new evolutionary method to optimize the

Boolean functions’ properties by two objective optimization method but here we have

taken balancedness, nonlinearity and autocorrelation, and developed an evolutionary

method to construct desired Boolean functions. We have got the desired functions

and compared our results with previous results. Our results are at least as better as

previous results.
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In Chapter 4, we have developed a new method to optimize the Boolean func-

tions’ properties by three objective optimization method. In this chapter, we have

taken balancedness, nonlinearity, resiliency and autocorrelation simultaneously to op-

timize these properties. We have got the desired functions and compared our results

with previous results and found that our results are at least as better as available in

the literature.

In Chapter 5, we have introduced the concept of biasedness in the proposed

method and developed a new method based on biasedness to construct Boolean func-

tions and got the desired results. In this chapter, we got the Boolean functions of 7

and 8 variables that could not be possible by the methods developed in Chapters 2, 3

and 4. We also compared our results with previous results and found that our results

are at least as better as available in the literature.

In Chapter 6, we have developed a new method based on NSGA-II to solve a

system of linear inequalities. This method is applicable for all types of inequalities.

We have generated three examples of different types and solved them by the developed

method. The developed method gives better spread of solutions. Consequently, our

method is better than previous methods to solve the system of linear inequalities.

In Chapter 7, based on the study carried out in the thesis, conclusions are drawn

and future scope of the research work is suggested.

ii
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Chapter 1

1.1 Introduction

In this world we are living in the age of information. The existing information is very

important and is used in many forms like transaction(financial), documents(legal),

plans and strategies(military), political etc. The protection of information is very

important as its compromise may result in financial losses, exposure of commercial

secretes or defence secretes and many more.

Cryptography is one of the most important tools used for information security. Security

in cryptography is provided in many forms. Confidentiality, integrity and authentica-

tion are most important forms among them. Ensuring that information is kept private

from unauthorized disclosure is known as confidentiality. By making sure that the

information has not been modified since creation or storage is known as integrity. Au-

thentication is the procedure of checking that the information are coming from the

correct source.

The data storage system, authentication, key management system, cipher system, poli-

cies etc. are main components of security system. The overall strength of a security

system depends on its individual components. In the same way the strength of a cipher

system depends on its individual components.

Boolean functions are the most common and critical components of a cipher system.

Boolean functions and S-Boxes(multidimensional Boolean functions) are highly suit-

able for receiving bits of linear feedback shift register as input in order to combine

1



Chapter 1: 2

them to produce the single keystream. So, they are often utilized in the keystream

generation process of stream cipher.

There are different types of attacks like linear cryptanalysis [71], differential crypt-

analysis [7], correlation attack [87] etc. To resist the cipher system from the attacks

Boolean functions should have good combination of cryptographic properties such as

balancedness, nonlinearity, resiliency, autocorrelation etc..

To understand the research work presented in this thesis, knowledge of Boolean

functions and different attacks is required. So, a necessary background of theory of

Boolean functions is provided in this chapter.

1.2 Theory of Boolean functions

The theory of Boolean functions is a wide area in itself. The comprehensive review

of Boolean functions’ theory is not required here. So, in this chapter we have given a

brief review of the theory of Boolean functions.

1.2.1 Boolean function and its Properties:

We now discuss some important properties of Boolean functions. We also include

specific Boolean function measures and different types of representations of Boolean

functions. Some important Boolean functions’ properties and how they contribute to

provide security to the function are also discussed in this section.

Boolean Function:

Let Fn2 be the prime field of characteristic 2 and F2 = {0,1}. Then Fn2 is an n-

dimensional vector space over F2. An element of Fn2 can be represented by a binary

vector of length n.



3 1.2 Theory of Boolean functions

Definition 1.1. Any function f : Fn2 → F2 is called a Boolean function of n-variables.

The set of all Boolean functions of n-variables is denoted by Bn. The Hamming weight

of a binary vector x = (x1, . . . , xn) ∈ Fn2 is denoted by wH(x) and is defined to be the size

of its support {i ∈ N : xi 6= 0}, where N={1, 2, . . . , n}. The Hamming weight wH(f)

of a Boolean function f on Fn2 is defined to be the size of its support {x ∈ Fn2 : f(x) 6= 0}.

Representation of Boolean functions:

(i)Truth Table Form(TTF): A Boolean function F3
2 → F2 can be represented in

TTF as given in Table 1.1.

F3
2 F2

x1, x2, x3 f(x)

0, 0, 0 0

0, 0, 1 1

0, 1, 0 0

0, 1, 1 0

1, 0, 0 0

1, 0, 1 1

1, 1, 0 0

1, 1, 1 1

Table 1.1: Truth table representation of a Boolean function of 3-variables

Algebraic Normal Form(ANF): It is the n-variable polynomial representation

of the Boolean function f(x) given by

f(x) =
⊕

I∈P(N )

aI(
∏
i∈I

xi)

=
⊕

I∈P(N )

aIx
I ,
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where P(N ) denotes the power set of N={1, 2, . . . , n}. Since every bit in F2 equals its

own square, therefore every coordinate xi in the polynomial f(x) appears with exponent

at most 1. This representation belongs to F2[x1, x2, x3, ..., xn]/[x21⊕x1, x22⊕x2, ..., x2n⊕

xn]. The ANF of every Boolean function always exists and is unique.

Example: f(x)=x1x2x3+x3x1+x3.

Conversion TTF to ANF and vice-versa: Let f(x) be a Boolean function whose

TTF is given in Table 1.1.

The function f is the sum of the atomic functions f1, f2, f3 whose TTF is given

Table 1.2.

x1, x2, x3 f1(x) f2(x) f3(x)

0, 0, 0 0 0 0

0, 0, 1 1 0 0

0, 1, 0 0 0 0

0, 1, 1 0 0 0

1, 0, 0 0 0 0

1, 0, 1 0 1 0

1, 1, 0 0 0 0

1, 1, 1 0 0 1

Table 1.2: Truth table representation of Boolean function for 3-variables

The function f1(x) takes value 1 if and only if 1⊕ x1 = 1, 1⊕ x2 = 1 and x3 = 1,

i.e., if and only if (1⊕ x1 = 1)(1⊕ x1 = 1)x3=1. Thus the ANF of f1 can be obtained

by expanding the product (1 ⊕ x1 = 1)(1 ⊕ x1 = 1)x3. Similarly, the ANFs of f2

and f3 can be written. Hence, the ANF of f equals (1 ⊕ x1 = 1)(1 ⊕ x1 = 1)x3 ⊕x3
⊕x1x2x3=x1x2x3 ⊕ x1x3 ⊕ x3.

Conversely, if we have Boolean function in ANF form, we can convert it in TTF as
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follows:

Let a Boolean function f be given in the ANF as f(x)= x1x2x3 ⊕ x1x3 ⊕ x3. To

convert this form to TTF, we put 1’s in table according to the coordinates present in

polynomial. In the first term of polynomial, we have all three coordinates. So, we put

1 for f(x) where all coordinates have value 1 in TTF. In the second term, we have x1x3.

So, we put 1 for f(x) where these two coordinates have 1 in TTF. In the third term,

we have x3. So, we put 1 for f(x) where only x3 is 1 in TTF. Remaining places in TTF

should be occupied by 0’s. So, the required TTF for f will be Table 1.1.

The degree of the ANF: The degree of ANF is denoted by df and is defined by

df = max |I| : aI 6= 0, where |I| denotes the size of I. It is also called the algebraic

degree or nonlinear order of Boolean function.

Definition 1.2. The Hamming distance between two functions f and g, denoted by

hd(f,g), is defined as the number of truth table positions in which the functions f and g

disagree, i.e.,

hd(f, g) = |{x : f(x) 6= g(x)}| (1.2.1)

where |.| stands for the cardinality of the set.

Balancedness:

The Balancedness is very important property of Boolean functions. This is the basic

property of Boolean functions. In most of cases we consider only balanced Boolean

functions.

Definition 1.3. A function is said to be balanced if the number of 0’s is the same as

the number of 1’s in the output table. This property is called balancedness.
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Hamming weight for an n-variable balanced function is 2n−1. Hence, an n-variable

Boolean function not having weight 2n−1 can not be balanced. (We have used this

criteria to get balanced Boolean function in our proposed method).

Balancedness is very important property to resist different types of attacks specially

linear approximation(Section 1.3.2.). More deviation of a function from the balanced-

ness or higher magnitude of function imbalancedness( deviation from 2n−1), the more

likelihood of a high probability linear approximation being obtained.

Functions Similarity:

By this property we compare two Boolean functions.

Definition 1.4. The similarity between two functions f and g, denoted by s(f,g), is defined

as the number of truth table positions in which the functions f and g agree, i.e.,

s(f, g) = |{x : f(x) = g(x)}| (1.2.2)

The relation between s(f,g) and hd(f,g) is given by

s(f, g) = 2n − hd(f, g). (1.2.3)

Linear Boolean Function: Linear Boolean function can be defined as:

Definition 1.5. A linear Boolean function is denoted by Lλ(x) and is defined by Lλ(x)

= λ1.x1 ⊕ λ2.x2 ⊕ λ3.x3 ⊕ ... ⊕ λn.xn, where λ, x ∈ Fn2 , λi.xi denotes the bitwise

AND of the ith bits of λ and x, and ⊕ denotes bitwise XOR. An affine Boolean function

is denoted by Aλ,c(x) and is defined by
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Aλ,c(x) = Lλ(x)⊕ c, (1.2.4)

where c∈ F2.

Affine Transformation:

Affine transformation of a Boolean function can be defined as:

Definition 1.6. An affine transformation on the input of n-variable Boolean function

f(x) can be defined as the resultant function g(x) given by as g(x) = f(Ax
⊕

a)
⊕

b,

where x ∈ Fn2 , A is an n× n invertible binary matrix, and a and b ∈ F2. If a=0, it is

called linear transformation.

Linear Structure:

Linear structure of a Boolean function can be defined as:

Definition 1.7. The property that for an affine or a linear Boolean function f, the

values f(x+s) and f(x), for every fixed s, are either always equal or always different is

called the linear structure.

Walsh Hadamard Transform:

The Walsh Hadamard Transform(WHT) provides another means of representing a

Boolean function. It gives the measure of the correlation between a Boolean function

and the set of all linear Boolean functions.

Definition 1.8. For a given linear function Lλ specified by λ ∈ Fn2 , the WHT of a func-
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tion f is denoted by Wf (λ) and is defined by

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+λ.x. (1.2.5)

The vector representing the WHT of a function is referred to as its Walsh Hadamard

Spectrum(WHS).

The Walsh Hadamard values in the spectrum of a Boolean function are constrained by

Parseval’s relationship. This is also known as Parseval’s equation.

Theorem 1.1.Parseval’s Equation [67]

For an n-variable Boolean function Parseval’s relation is given by

∑
λ∈Fn

2

[Wf (λ)]2 = 22n. (1.2.6)

Proof: ∑
λ∈Fn

2

[Wf (λ)]2 =
∑
λ∈Fn

2

(
∑
x∈Fn

2

(−1)f(x)+λ.x
∑
x∈Fn

2

(−1)f(x)+λ.x).

=
∑
x∈Fn

2

(−1)f(x)(−1)f(x)
∑
λ∈Fn

2

(−1)λ.x(−1)λ.x.

= 2n2n

= 2n+n

= 22n.

This value is constant for all n-variable Boolean functions. All Boolean functions
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must satisfy Parseval’s equation. But if a function satisfy this relationship, it may not

be a Boolean function. (We will use this relationship to get high nonlinear Boolean

function in our proposed method.)

Non-Linearity:

Nonlinearity is the one of the most important property of Boolean functions. Non-

linearity of an Boolean function f represents a measure of the dissimilarity between

function f and n-variable affine function. All affine functions are considered crypto-

graphically weak functions. It means they are low resistant to cryptanalysis attacks.

So, more dissimilar f to affine functions will possess high nonlinearity and hence more

resistant to cryptanalysis attacks. If a Boolean function has low nonlinearity, function

will be low resistant to a particular type of attack(linear cryptanalysis Section 1.3.2.).

Thus, to provide resistance to the linear cryptanalysis Boolean functions should have

high nonlinearity.

Definition 1.9. The nonlinearity Nl(f) of a Boolean function f is its minimum Ham-

ming distance to all members of the set of affine functions. It is given by

Nl(f) = (2n −max
λ∈Fn

2

|Wf (λ)|)/2. (1.2.7)

Nonlinearity of a Boolean function is invariant under affine transformations. If f(x)

is a Boolean function and A is an n× n invertible binary matrix, a and b ∈ Fn2 and c

∈ F2, then nonlinearity of f(Ax+ a) ⊕ b.x ⊕ c will be equal to that of f(x).

Autocorrelation:

The autocorrelation of a function gives an indication of the imbalanceness of all first
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order derivatives of a Boolean function and provides a measure of self similarity for

Boolean function. The derivative of Boolean function f(x), taken with respect to a

vector s, where x and s ∈ Fn2 , is defined as f(x)
⊕

f(x + s). Similarly the derivative

in polar form can be defined as f̂(x)f̂(x+ s).

Definition 1.10. The autocorrelation of a function f is denoted by rf (s) and is defined

by

rf (s) =
∑
x∈Fn

2

f̂(x)f̂(x+ s) (1.2.8)

where f̂(x) = (−1)f(x).

rf (0) has the maximum value and equals to 2n.

The autocorrelation function measures the directional derivative of a Boolean func-

tion for an input shift in the direction s over all x ∈ Fn2 . Autocorrelation function sums

the polarity form of the derivative of Boolean function. Autocorrelation of a Boolean

function of n-variables is a real valued vector containing the 2n values of rf (s). The

range of these values is [−2n, 2n]. The autocorrelation measure of a Boolean function

are invariant under affine transformation. A Boolean function f is considered to be

good if rf is small . To resist the differential cryptanalysis attack to the function,

function should have optimal autocorrelation value.

The avalanche characteristic gives the measurement of the quality that how well

input propagates throughout a process and affects the output uniformly. The autocor-

relation measures the avalanche characteristics and determines the two indicators:

(i). absolute indicator and

(ii). sum-of-square indicator.

Colollary 1.1 Let |AC|max denote the absolute indicator derived from the auto-

correlation function rf (λ). Then
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|AC|max = maxλ|rf (λ)| (1.2.9)

with λ={1, 2, . . . , 2n − 1}.

Colollary 1.2 Let σ denote the sum-of-square indicator derived from the autocor-

relation function rf (λ). Then

σ = Σλ[rf (λ)]2. (1.2.10)

with λ={1, 2, . . . , 2n − 1}.

The above two autocorrelation measures of Boolean function are invariant under affine

transformations.

Avalanche Criterion:

Avalanche criterion of a Boolean function can be defined as:

Definition 1.11 An n-variable Boolean function f(x) is said to satisfy the propagation

criterion of degree k, denoted by PC(k), with respect to a non-zero vector α ∈ Fn2 if

∑
x

f(x)
⊕

f(x+ α) = 2n−1

∀ α such that 1 ≤ wH(x) ≤ k.

Correlation Immunity:

The extent of independence between linear combination of input and output bits is

termed as correlation immunity.
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Definition 1.12. A function f ∈ Bn is called the correlation immune of order m

if Wf (α) = 0 ∀α ∈ Fn2 such that 1 ≤ wH(α) ≤ m.

The correlation immunity property is not invariant under affine( or linear) transfor-

mation. For a cryptographically strong Boolean function order of correlation immunity

should be high. As we mentioned above correlation immunity gives an extent of in-

dependence between linear combination of input and output bits of a function. So,

correlation attacks(Section 1.3.3.) exploit the dependence that may exist within com-

bining functions of stream cipher(involve to produce keystream). Hence, higher is the

order of correlation immunity, lesser is the chance of correlation attack.

Resiliency:

Resiliency of a boolean function can be defined as:

Definition 1.13. A correlation immune function f of order m is called the m-resilient if

f is balanced. The resiliency of m-resilient function f is denoted by Rs(f) and is defined

to be m.

1.2.2 Some special Boolean functions

There are some special Boolean functions. We will describe some of them with their

properties.

Bent functions:
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These functions were first developed by Rothaus [80]. These functions have maxi-

mum distance to the set of affine functions(maximum nonlinearity). That is why these

functions are also called perfect nonlinear Boolean functions. These functions are not

balanced and exist only for even n. These functions do not exhibit any order of corre-

lation immunity, having the value of WHT always 2n/2 or −2n/2. Beside having high

nonlinearity, bent functions have one of another important criteria that they have min-

imum autocorrelation.

Definition 1.14. A Boolean function is called bent if Wf (λ)= c 2n/2, where n is even(bent

function exists only for even variables) and c = 1 or −1. The Bent functions have max-

imum nonlinearity and its value is (2n−1 − 2(n/2)−1).

Although bent functions have optimal(maximum) nonlinearity and have the lowest

value of autocorrelation, still they are not good for practical use because they are not

balanced. Furthermore, they have very low algebraic degree. So, they are good only for

nonlinearity and autocorrelation points of view but not good for practical use because

of their some other weakness discussed as above.

Semi-bent functions:

As discussed above bent functions are not good from cryptographic point of view

because of unblessedness and low algebraic degree. So, some modified functions are

given by Chee et al. [14] to overcome the weakness of bent functions. These functions

are called semi-bent functions. These functions have the same properties as bent

functions but are balanced. These functions are constructed by concatenating a bent

function to the same bent function that has had an affine transformation applied to it

and its output complemented.

If f(x) is a bent function of n(even) variables, then semi-bent function g(x) of n+1
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variables can be given by

g(x) = f(x)||f(Ax⊕ b)⊕ 1,

where || stands for concatenations of two functions.

Multidimensional Boolean function or S-Boxes(Substitution Boxes):

Boolean functions are multiple input and single output functions. An S-Box is an

extension of the theory of single output Boolean functions to the theory of multiple

output Boolean function.

Definition 1.15. Any function f : Fn2 → Fm2 is called S −Box. If m=1, f becomes a

Boolean function.

An n×m S-Box is a mapping from n input bits to m output bits.

Here we are giving some definition related to the S-Boxes

Definition 1.16. The nonlinearity of an n × m S-box, denoted by Nl(Sn,m), is de-

fined as the minimum nonlinearity of each of its component output Boolean functions

and their linear combinations. Let S=(f1, f2, f3, ..., fm), where fi(i=1,2,3,...,m) are n-

variable Boolean functions. Let gj = αj1f1 +αj2f2 +αj3f3 + ...+αjmfm, j=1,2,3,...,2m−1

and G={g1, g2, . . . , g2m−1}. Then the nonlinearity of S is given by

Nl(Sn,m) = min
G

Nl(gj). (1.2.11)

Clearly, as n and m increase, the task of computing the nonlinearity value of an n×m

S-box rapidly becomes computationally difficult.
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Definition 1.17. Let r̂gj(α) be the autocorrelation value of gj for α ∈ {1, 2, . . . , 2n−

1}. Then the maximum absolute autocorrelation value of S, denoted by

|AC(Sn,m)|max, is defined by

|AC(Sn,m)|max = max
G
|r̂gj(α)|. (1.2.12)

1.2.3 Relationship between cryptographic properties of Boolean

functions:

A Boolean function is ideal if it has all its properties at optimal level. But in reality it

is not possible to get such functions because all properties are inter-related. If we want

to optimize some properties, it results in loss of the optimality of some other properties.

We construct Boolean functions having the best trade-off among its properties. Now

we will describe, in brief, the relationship among some properties of Boolean functions

required for our research work.

Relationship between nonlinearity and autocorrelation:

We know that nonlinearity is the measurement of dissimilarity between a Boolean

function and the nearest affine function in the set. The following theorem due to

Wiener-Khintchine [84] exhibits the relationship between nonlinearity and autocorre-

lation.

Theorem 1.2. If f(x) is an n-variable Boolean function with WHT Wf (λ) and auto-

correlation rf (λ), then.

∑
α

rf (α)Lα(λ) = [Wf (λ)]2 (1.2.13)

where Lα(λ) is a linear function of λ characterized by α.
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Proof: ∑
α

rf (α)Lα(λ) =
∑
α

[
∑
x

f̂(x)f̂(x⊕ λLα)(λ)]

=
∑
α

∑
x

(−1)f(x)(−1)f(x⊕α)(−1)α.λ

=
∑
y

∑
x

(−1)f(x)(−1)f(y)(−1)(x⊕y).λ

(on assuming y = x⊕ α)

=
∑
y

∑
x

(−1)f(x)(−1)f(y)Lλ(x)Lλ(y)

=
∑
y

∑
x

(−1)f(x)Lλ(x)(−1)f(y)Lλ(y)

= [Wf (λ)]2.

�
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By Corollary 1.2, we conclude that the sum-of-square indicator σ will be high if rf (λ)

will contain large magnitude. So, by Theorem 1.2, we can conclude that if σ is high,

then nonlinearity will be low and vise-versa.

The same result is observed from the following relation:

Nl(f) ≤ 2n−1 −
√

(2n + ACmax)/2 (1.2.14)

where ACmax = max |rf (λ)|.

It is clear from the above relation that to get high nonlinearity, autocorrelation should

be low and vise-versa.

Relationship between nonlinearity and correlation immunity:

Relationship between nonlinearity and autocorrelation can be explained by Parse-

val’theorem(Theorem 1.1). As discussed in definition 1.11, to get an m-order cor-

relation immune Boolean function, the value of Wf (λ) corresponding to the positions

wH(x) must be zero. So, to get high correlation immune function, the more positions

in WHS must be zero. Then by Parseval’s relation some values in WHS should be high

to get that equality, means low nonlinearity. Conversely, higher is the nonlinearity, low

is the correlation immune function.

Relationship between autocorrelation and correlation immunity:

To understand the relation between autocorrelation and correlation immunity, consider

following theorem( [106]).

Theorem 1.3. If f(x) is an m-resilient Boolean function of n-variables with 2 ≤ m ≤ n

and ACmax is the maximum absolute value of autocorrelation, then

ACmax ≥ 2m−1
∞∑
i=0

2i(m−1−n) (1.2.15)
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Theorem 1.4. If f(x) is an m-resilient Boolean function of n-variables with

1 ≤ m ≤ n− 1 and ACmax is the maximum absolute value of autocorrelation, then

ACmax ≥ 2m
∞∑
i=0

2i(m−n) (1.2.16)

It is clear that Autocorrelation will increase as we increase the value of m. But the

following theorem [106] gives the contradictory relation.

Theorem 1.5. If f(x)is an m-resilient Boolean function of n-variables satisfying PC(k),

then

m+ k ≤ n− 2. (1.2.17)

It is obvious from the above relation that autocorrelation will decrease as m increases.

1.3 Some cryptanalytic attacks on cipher system:

We have given number of cryptographic properties of Boolean functions relevant to our

research and relation between them. Here, we describe some cryptanalysis attacks and

how the above properties provide resistance to these attacks.

1.3.1 Differential Cryptanalysis:

The technique of this attack is given by Biham and Shamir [7] and applied to block

cipher in a chosen plaintext attack. On a block cipher system this attack involves the

analysis of trend between plaintext input differences and corresponding output differ-

ences in the ciphertext. A differential attack generally seeks to exploit these trends to

get information. The information may be key bits and some thing like this. This can
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be explained as below:

Let for a Block cipher with block length I bits, A = A1 A2 A3...AI and B=B1 B2

B3...BI represent a plaintext and ciphertext block respectively. Let Aj and Ak be two

I-bit blocks of plaintext with Bj and Bk their corresponding output blocks. Their

input and output differences will be 4A= Aj ⊕ Ak and 4B= Bj ⊕ Bk respectively.

A pair of corresponding input and output differences is called a differential. We want

to minimize the correlation between input and output differences which in turn make

accurate predictions of intermediate bits more difficult during the encryption process.

In the cipher a series of differentials for consecutive rounds which satisfy ∆k
B = ∆k+1

A

for rounds 1 to l is called an l -round differential characteristic. This can be used to

find the overall differential probability of cipher.

Differential probabilities are influenced by the cipher component within the rounds of

the cipher. S-Boxes form a key component of block cipher with respect to their security

as they give necessary sole source of nonlinearity of the system. An S-Box is a pair

of two values, the first value presents the difference between two input values and the

second for the difference between their corresponding output values. If the dimension

of S-box is m×n, then there will be 22n−1 - 2n−1 possible distinct pairs producing input

differences from a possible 2n distinct values. Tabulting the frequency of occurrence of

all the resultant output differences, of which 2m distinct values are possible, form the

basis of the difference distribution table of the S-Boxes. Thus, the difference distribu-

tion table is a 2n × 2m matrix containing the frequency of occurrence of all possible

output differences given possible input differences. The largest value in the difference

distribution table of an S-Box is usually written as δ and is called differential unifor-

mity.

The value in each row of the pairing distribution table must sum to 2n since an input

difference exists for the pairing of every possible distinct input to the S-Box. Therefore,

a flat difference distribution table, in which the frequency values are almost uniform,

implies that the magnitude of the frequencies are small. An S-Box whose difference

distribution table is flat provides little or no information about output difference which
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may be exploited to reveal intermediate bits of cipher. Large frequency value in the

difference distribution table can be used to form a differential characteristic with high

probability.

In a typical cipher system, several rounds of processing occur with multiple S-Box

look-ups. By combining S-Box differentials, a differential characteristic probability

for the cipher system can be determined. In order for a cipher to successfully resist

differential cryptanalysis, the differential characteristic probability should be small.

Ciphers which contain a greater number of rounds are likely to be better able to achieve

a low probability differential characteristic. The magnitude of S-Box differential will

also affect the differential characteristic probability of overall system. The absence

of any high values in the difference distribution table of the S-Box result in small

S-Box differential probability and thus produces a differential characteristic with low

probability.

Let DS be a 2n × 2m matrix representing the difference distribution table of an n×m

S-Box. Let CS be a 2n × 2m matrix representing the autocorrelation matrix of S.

In [105], it has been shown that for an n×m S-Box with n ≥ m, the relationship

between its difference distribution table and autocorrelation matrix is given by the

matrix product DSL̂, where L̂ is the polarity form of the linear matrix(Sylvester-

Hadamard matrix [67]). A lower bound on the differential uniformity δ involving the

maximum absolute values in the autocorrelation matrix of an S-Box is given in [105]

as follows:

δ ≥ 2n−m + 2−mAC(Sn,m)max (1.3.1)

where AC(Sn,m)max is as defined in Definition 1.16. Noting that δ takes a value in

the range [2n−m,2n], an AC(Sn,m)max value of 0, exhibited by bent S-Box, results in

the minimum δ value possible. Additionally, the presence of non-linear structure in the

S-Box will consequently cause AC(Sn,m)max to take the value 2n. A further observation

made in [105] is that a small δ implies values for AC(Sn,m)max. Hence, minimizing the
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overall autocorrelation of S-Box helps to resist differential cryptanalysis through the

minimization of their differential uniformity and in turn reducing the characteristic

probability of the cipher.

It is clear from [105] that two upper bounds on the nonlinearity of an n×m S-Box are

provided which relate it to the enumeration of non-zero entries in the difference distri-

bution table of the S-Box and depend also on n and m. In essence, an increase in the

number of nonzero entries in the table corresponds to an S-Box with potentially higher

nonlinearity and vice-versa, i.e., a highly nonlinear S-Box forces a minimum number

of nonzero entries in the difference distribution table, resulting less susceptibility to

differential cryptanalysis.

It is shown that differential cryptanalysis [7, 8] breaks the Data Encryption Stan-

dard(DES). The susceptibility of DES is primarily due to the fact that the difference

distribution tables of the DES S-Boxes exhibit clear non-uniformity, whilst resistance

against differential cryptanalysis is characterized by a highly uniform difference table,

as discussed above.

So, we can conclude that to resist the cipher system to the differential cryptanalysis

Boolean function(or S-box) should have high nonlinearity and low autocorrelation.

1.3.2 Linear Cryptanalysis:

Matsui [71] introduced linear Cryptanalysis. It is a form of plaintext attack which

attempts to approximate the relationship between plaintext, ciphertext and key bits

by forming a linear expression and evaluating the probability of linear expression ac-

curately depicting the relationship. So, linear cryptanalysis attack aims to find the

information about the key bits. We can explain the theory of linear cryptanalysis as

follows.

Let X=X1X2X3...Xl and Y=Y1Y2Y3...Yl be plaintext and ciphertext blocks respectively
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of a block cipher of length l. Goal of linear cryptanalysis is to find a linear expression

for some combination of input and output bits where,

l⊕
i=1

ψiXi =
l⊕

j=1

τjYj (1.3.2)

with ψi, τj ∈ {0, 1}. The expression with the highest probability of being valid will

be the best linear approximation, and the best affine approximation is the expression

with the lowest probability of being valid. Let p=P(X=Y) be the probability related to

the above expression. Cipher will be more resistant to linear and affine approximation

if p ≈ 1/2. So, the probability bias is given by | p − 1/2 |, the variation away from

the expected probability for a random process. Any linear expression which seeks to

relate the plaintext, ciphertext and key bits of a cipher must include the structure of

the cipher and the components, including any S-boxes utilized in the rounds. To find

a linear approximation to an n×m S-box, the linear relationships between inputs and

outputs of the S-box may be calculated for all pairs of inputs and outputs. This is

expressed in a 2n × 2m matrix which is referred to as the linear approximation table.

In this table, each entry LX′,Y ′ can be defined as

LX′,Y ′ = 2n−1 − hd(X ′, Y ′). (1.3.3)

This value provides the signed probability bias, LX′,Y ′/2n = p’=P(X’=Y’) - 1/2∈ [-1/2,

1/2]. If p’=0, then linear approximation to S-box is not possible. If p′ → ±1/2, then

S-box can be easily approximated by a linear or affine function. Thus, the best linear

approximation to an n × m S-box will be the linear expression of the form given in

Equation 1.3.2. Generally, when we apply linear cryptanalysis to a block cipher sys-

tem, it involves finding a linear approximation with a large signed probability at each

stage, typically rounds, of the cipher. The probabilities of linear equations best ap-

proximating different stages of the encryption process are combined. The ability of this

combination relies upon the assumption of independence of the linear approximation

at each stage. To define the overall probability of a linear expression which necessar-
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ily combines the probabilities of multiple linear approximations all holding under this

assumption, Matsui used the Pilling-up lemma. Application of this lemma gives the

probability for the cipher’s overall linear approximation. The higher the probability

calculated from the Pilling Lemma, the more likely the approximation will successfully

retrieve relevant bits of the key given sufficient plaintext-ciphertext pairs. Further, at

each stage of the process, greater the magnitude of the of the bias exhibited by the

individual linear expression, higher the overall probability of approximating the cipher

linearly. For linear approximation to a component s-box, bias values in its linear ap-

proximation table which are nonproportionally high will result in a more successful

cryptanalytic attack on the cipher system.

A linear expression combines the multiple linear approximations. Matsui [71] defined

the overall probability of the linear expression by using the Pilling-up Lemma. The

overall linear approximation of the cipher is obtained by linking multiple linear ex-

pressions together. Its probability is obtained by using the Pilling-up Lemma. If this

probability is higher, then the linear approximation will more successfully retrieve rel-

evant bits of the key provided sufficient plaintext-ciphertext pairs are available. If the

magnitude of the probability bias of the individual linear expression at each stage of

the process is greater, the overall probability of approximating the cipher is higher.

Bias values is linear approximation table of a component S-box which are dispropor-

tionably high will give more successful cryptanalytic attack on the cipher system. The

bias values in the linear approximation table and the entries in the WHT matrix of all

linear combinations of component Boolean functions of the S-box are closely related to

each other by the relation [11]

bias = LX′,Y ′ = Wf (λ)/2 (1.3.4)

Using Equation 1.2.7 in Equation 1.2.11, we get

Nl(Sn,m) = min
G

(2n −max
λ∈Fn

2

|Wgj(λ)|)/2. (1.3.5)
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Putting the value of Wf (λ) from Equation 1.3.4 in Equation 1.3.5, we get

Nl(Sn,m) = 2n−1− | LX′,Y ′ |max (1.3.6)

where | LX′,Y ′ |max represents the maximum absolute value in the linear approxi-

mation table and X ′ 6= 0, Y ′ 6= 0. For large n and m the determination of the entire

approximation table for an n×m S-box is infeasible. Nevertheless, the incorporation of

highly nonlinear S-box into cipher system is desirable in order for the cipher to be re-

sistant to linear cryptanalysis attacks. Matsui [71] showed that DES was breakable by

linear cryptanalysis. This happened because of the existence of high magnitude values

in the linear approximation tables of the DES S-boxes. The resistance against linear

cryptanalysis requires low magnitude values in the linear approximation table. These

values are obtained by the using of highly nonlinear S-box. Hence, high nonlinearity

is an important property for the security of cipher systems and components.

1.3.3 Correlation Attacks

Siegenthaler [87] introduced the concept of a correlation attack in 1984. Since its in-

ception a number of specific variants [87] such as

(i)Fast Correlation Attacks [68],

(ii) Divide and Conquer attacks [22],

(iii)Decimal Attacks [32] are developed. Still all these collectively are called correla-

tion attacks. Modern stream ciphers use combination keystream generators such as

those which comprise multiple linear feedback shift registers(LFSRs). These LFSRs

linked together with a nonlinear combining function. Correlation attacks analyze the

correlation between the keystream and a sequence of output bits from one or more

LFSRs. The uncorrelatedness between the resulting keystream and some fixed subset

of m input variables of the combining function from the individual LFSR determines

the order of correlation immunity, m. In a stream cipher, often a cryptanalytic attack
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targets the initial state of each of n individual LFSRs. This attack aims to find the

most significant correlation between the output of the target LFSRs and the output of

the combining function. This attack will be more inefficient and ineffective if length of

LFSRs is longer or more LFSRs are targeted.

Meier and Staffelbach [68] developed a fast correlation attack. This uses a series of

parity check equations which are determined from the feedback polynomial of LFSRs.

The probability that all of the parity check equations hold for each bit in a keysyream,

is calculated and the bit positions with the highest probabilities are then used to form a

proposed candidate initial state. To get the state with perfect correlation small changes

are made to this candidate. Greater efficiency is achieved as the parity check equations

are able to be computed much quicker than the exhaustive search process of [86].

The best trade-off among the properties of a Boolean function can increase a stream

cipher’s resistance to correlation attacks. In particular, if a function has high nonlin-

earity, fast correlation attack becomes infeasible as a greater distance between function

and the set of all affine functions that prevents a good linear approximation given by

the parity check equations. Moreover, if function is correlation immune of order m, the

output of function is not correlated to any fixed subset of m input variables. It will

increase the resistance of a Boolean function to correlation attacks. To avoid the weak-

ness of a Boolean function some other properties like balancedness, algebraic degree

etc. also play an important role. If we want to prevent output bias and maintain high

algebraic complexity, thus nonlinearity and correlation immunity should have optimal

values.

�

Apart from construction of cryptographically strong Boolean functions, we have also

developed the method to solve the set of linear inequalities. To solve a set of linear

inequalities is a difficult task if system is nonconvex or number of variables is large.

There are methods to solve the set of linear inequalities but most of them have some

limitations. The method that we have developed is applicable for all types of prob-
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lems(nonconvex, large variables size, large inequalities size) and works for all types of

variables real as well as binary also. Apart from ability to solve all types of inequalities,

our method gives multiple solutions in one iteration. In Chapter 6, we have explained

our method and shown how our method is better than previous methods that have

been used to solve the set of linear inequalities.

1.4 Heuristic Techniques

The focus of our work is to improve the cryptographic properties of cipher components

and solution of system of linear inequalities. As the size of input space increases, it

quickly becomes infeasible to exhaustive search space in order to analyze the prop-

erties exhibited by functions within the space. Thus to discover knowledge about

functions(specially for large space), it is necessary to employ techniques to direct in-

vestigations to certain parts of the space which contain functions of interest(desired

functions with multi criteria). The two main techniques which have been used for this

purpose by researchers in the field are:

• Heuristic Techniques

• Algebraic Constructions.

Heuristic techniques are driven by directed search algorithms typically searching

in a localized area from a specified starting point. Their use is more frequent for

searching in large spaces in order to find a large number of solutions which are

satisfactory, but generally not optimal. That is why these techniques are usually

applied to difficult combinatorial problems. Some well known heuristic Tech-

niques are Simulated Techniques [53], Tabu Search [39], Genetic Algorithms [45]

and Hill Climbing Techniques [71]. Verma and Ramesh [96] formulated schedul-

ing of preventive maintenance as a constrained nonlinear multiobjective decision

making problem and used an elitist GA to solve it. Verma et.al. [97] carried out

a multiobjective TBPM optimization and got optimum results regarding some
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parameters of a large engineering plant(LEP). Mishra and Jaiswal [72] consid-

ered a nondifferentiable multiobjective semi-infinite programming problem and

established sufficient optimality conditions. Gupta et.al. [43] considered portfo-

lio selection in a multiobjective decision making environment and employed real

coded GA to solve it. Wang and Pham [98] studied a multiobjective maintenance

optimization problem. NSGA-II is applied to solve the problem. The comparison

results show that the optimization solutions is consistent between single-objective

and multiobjective optimizations. Mohanty and Vijayaraghavan [73] suggested

a method to construct multiobjective programming problem into a lexicographic

goal programming problem by appropriately fixing priorities and goals. The con-

version method uses the concept of conflict among objectives. Bector et.al. [3]

have given an account of the fundamental principles of optimization theory with

current research work. Bharti and Singh [9] gave computational algorithm to

solve MOLPP using IF optimization method. Bharti et.al. [10] developed a new

method for solving MOLPP in IF environment.

Algebraic Constructions rely on proven mathematical relationships holding for

a generalized construction of functions. Whilst Algebraic Constructions have

been shown to generally produce functions with the most optimum combinations

of properties and they are not designed to produce a great number of such func-

tions. Further, the existence of inherent weaknesses in functions produced by

Algebraic Constructions is a valid concern. But as space size increases, these

techniques are generally unable to generate optimal function. Let f be a Boolean

function of n variables. If the number of input variables increases by one, the

number of functions in the space increases by a factor of 22n and the probability

of searching optimal functions decreases. However, because Heuristic Techniques

involve directed search methods, they have been shown to produce consistent

results in finding functions with good properties, and unlike Algebraic Construc-

tions, are able to produce a large number of such functions. For this reason, the
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approach taken in this research has been primarily focussed on the application

of Heuristic Techniques.

In this chapter we have described some existing techniques and also discussed

our method that we have used in this thesis.

1.4.1 Overview of Existing Heuristic Techniques used

Genetic Algorithms and Hill Climbing Techniques have been used, for many

years, as heuristic optimization techniques for non-cryptographic applications.

Minsky [71] applied a form of hill climbing to develop artificial intelligence sys-

tems. Holland [45] introduced the concept of Genetic Algorithms to a study of

cellular automata.

We now discuss Boolean functions’ cryptographic applications, specifically in gen-

erating strong components for use in cipher systems to enhance their security.

1.5 Related Work by Other Researchers

We have described many properties of Boolean functions and their correlation in this

chapter. Further, we are giving some literature review related to the properties of

Boolean functions which we have used in this thesis.

1.5.1 Previous work Related to optimize the nonlinearity

High nonlinearity is one of the most essential properties required not only for the strong

Boolean functions but also for the security of cipher system incorporating these com-

ponents. Cryptanalytic attacks which exploit moderate nonlinearity values are linear

cryptanalysis [71] and best affine approximation [25].

Research work that makes a related contribution to the area of obtaining highly non-

linear Boolean functions are given here. This work encompasses research that has been
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conducted in the construction of such functions largely through algebraic means. A

brief discussion of some selected examples of construction is now outlined.

Dobbertin [26] provides a proposition for the construction of highly nonlinear balanced

Boolean functions from normal bent functions. The construction is based on the idea

that turning a bent function into a balanced function will ensure high nonlinearity by

minimizing the maximum absolute WHT value Wf (λ). The substance of the propo-

sition is the modification of the initial segment of a 2n-variable normal bent function

which is constant. We replace it by a balanced function whose maximum absolute

WHT value is small. To construct a 2n-variable balanced function f from a 2n-variable

normal bent function g, an appropriate n-variable balanced function h is expected such

that WHTmax(f) = 2n + WHTmax(h). Seberry et.al [84] presented construction meth-

ods for highly nonlinear n-variable Boolean functions, for even variables n ≥ 4 (here

n=4j or n=4j+2, j ≥ 1) and a construction method involving the concatenation of all

linear functions in F 2j
2 and F 2j+1

2 respectively was described. In each case, L0(x)(first

linear function) was replaced by a balanced Boolean function and it was then concate-

nated with the remaining linear functions. For n= 4j, L0(x) in F 2j
2 was substituted for

a balanced 2j-variable function representing the concatenation of the linear functions

L2j(x) ,...,L22j+1−1(x) in F j+1
2 . Similarly, Seberry et.al [84] also discussed concatenating

linear functions when n = 2i, i ≥ 2 or n = 2u(2v + 1), u ≥ 1, v ≥ 1.

Maitra [60] proposed a construction method for balanced n(n > 3 and odd) variable

Boolean functions and found the low maximum absolute autocorrelation value and high

nonlinearity by using this construction method. The component functions of this con-

struction are taken to be bent. The construction involves the concatenation of two bent

functions b1(x) and b2(x) in F n−1
2 , each produced by the ⊕ sum of bent subfunctions. If

the hamming weights of the functions b1(x) and b2(x) are such that the resulting odd n-

variable Boolean function f(x)= b1(x) ‖ b2(x) is not balanced, then f(x)= b1(x) ‖ b2(x)

is used to get achieve the balanced function, where b2(x) represents complimenting

function of b2(x). Youssef and Gong [103] discussed construction of Boolean functions

with large distance to all bi-objective monomials. Gong and Khoo [51] suggested new
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construction for Boolean functions.

1.5.2 Previous work Related to optimize the resiliency

Resiliency is an essential cryptographic property for a Boolean function. The Boolean

functions are incorporated into those cipher systems whose most significant source of

strength relies on little or no correlation between the combined input bits and the out-

put bits of its component functions. The resilient Boolean functions have been most

commonly used in stream ciphers. Cryptographically attacks on stream cipher typi-

cally focus on revealing the secret key by retrieving the initial states of linear feedback

shift registers. This task is made easier if a high correlation exists between the input

and output bits of the combining Boolean functions. The attacks exploiting this cor-

relation are called the correlation attacks [47, 48, 68, 86]. We know that there exists

a tradeoff between the correlation immunity and nonlinearity of a Boolean function.

Now, we give a brief literature review of the work done to improve the resiliency.

Dawson et.al [23] proposed a method to construct n-variable balanced Boolean func-

tion to find non-zero order of correlation immunity coupled with high nonlinearity.

This construction method combined heuristic method and an algebraic construction

method. Wu and Dawson [101] gave a method for the construction of correlation im-

mune Boolean functions. By using this method, they obtained 10-variable balanced

Boolean functions having nonlinearity 480 and correlation immunity of order 1, and

10-variables balanced Boolean function having nonlinearity 464 and correalation im-

munity of order 2. Maity and Johansson [63] proposed a method to construct crypto-

graphically important Boolean functions and got 8-variable and 10-variable 1-resilient

Boolean functions having nonlinearity 116 and 488 respectively. Maity and Maitra [64]

gave a small extension to the method proposed by Maity and Johnsson of [63]. By us-

ing this extension method, they constructed balanced, first order correlation immune

functions having nonlinearity of 116. Roy [81] presented an interesting review which

includes a summary of construction methods and bounds on cryptographic proper-
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ties achievable for correlation immune functions. Fedorova and Tarannikov [31], Gong

and Khoo [36], Khoo and Gong [51], Tarannikov [93, 94] worked on the construction

of t-resilient Boolean functions. Gupta and Sarakar [42], Johansson and Pasalic [49],

Kurosawa et.al. [56], Zhang and Zheng [104] worked on the construction of multiple

output functions(S-boxes) which are correlation immune.

1.5.3 Previous word Related to optimize the Autocorrelation

( propagation criteria PC(k))

Seberry et.al. [85] presented methods for constructing highly non-linear balanced

Boolean functions satisfying the strict avalanche criterion(SAC). Kavut and Yucel [50]

developed a new method based on simulated annealing and hill climbing to construct

Boolean function having low autocorrelation with other optimal properties. They got

some Boolean functions of 8 and 9 variables. Gong and Khoo [36] introduced a notion

of dual function to study Boolean functions. Using this notion, they constructed highly

nonlinear resilient functions with better additive autocorrelation than the Maiorana-

McFarland functions. Maitra [61] provided a construction method for unbalanced, first

order correlation immune Boolean functions of even number of variables n ≥ 6. He

provided new lower bounds and related results on absolute indicator and sum of square

indicator of autocorrelation values for low order of correlation immunity. These func-

tions achieved the best nonlinearity of 2n−1 − 2n/2 + 2n/2−2.

Burnett et.al. [11] presented two heuristic optimization methods for generating n-

variable Boolean functions. Method 1 generated many 8-variable balanced Boolean

functions with nonlinearity 116 and maximum autocorrelation value 16, which had not

previously been found directly by heuristic technique. Method 2 generated known op-

timal m-resilient Boolean functions with high nonlinearity, varying degrees of resiliency

and maximum algebraic degree.
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Guillot [41] presented an extension of the Maiorana-McFarland method [66] for build-

ing Boolean function with good cryptographic properties. He studied nonlinearity,

resiliency and autocorrelation properties of Boolean functions. He could not get better

result for nonlinearity. But he could get a better result for resiliency and autocorrela-

tion.

Wei [100] constructed Boolean function having multiple cryptographic crite-

ria(balancedness, nonlinearity, autocorrelation etc.) based on the use of linear error-

correcting code. Izbenko [46] gave a modification of the hill climbing method to design

balanced, highly nonlinear Boolean functions with high algebraic degree and low au-

tocorrelation. The functions with the best known profiles have been designed. Tang

et.al [91] gave a method to construct balanced Boolean functions of n-variables satisfy-

ing SAC, where n ≥ 10 is an even integer. These functions have the highest nonlinearity

and the best global avalanche characteristics(GAC) property compared with the known

balanced Boolean functions with SAC property. Thavaneswaran et.al. [95] considered

GARCH models and derived the theoretical autocorrelation functions for them.

1.6 Summary

The thesis consists of seven chapters. The chapter-wise summary of the thesis is as

follows:

Chapter 1 is introductory in nature. In this chapter, we have defined the relevant

supporting theory of Boolean functions. In particular, we have provided numerous def-

initions and theorems for various aspects of the theory. The necessary cryptographic

properties which are used to analyze the strength of Boolean functions have been also

defined and discussed, and inter-relations between pairs of selected properties are also

discussed. Finally, we have presented a brief summary of major cryptanalytic attacks



33 1.6 Summary

against Boolean functions and cipher systems.

In Chapter 2, we have developed a new evolutionary method to optimize the

Boolean functions’ properties by two objective optimization method. In this Chapter ,

we have taken balancedness, nonlinearity and resiliency, and developed an evolutionary

method to construct Boolean functions having these properties at optimal level. We

have got the desired functions and compared our results with previous results. Our

results are as good as previous results.

In Chapter 3 also, we have developed a new evolutionary method to optimize the

Boolean functions’ properties by two objective optimization method but here we have

taken balancedness, nonlinearity and autocorrelation, and developed an evolutionary

method to construct desired Boolean functions. We have got the desired functions

and compared our results with previous results. Our results are at least as better as

previous results.

In Chapter 4, we have developed a new method to optimize the Boolean func-

tions’ properties by three objective optimization method. In this chapter, we have

taken balancedness, nonlinearity, resiliency and autocorrelation simultaneously to op-

timize these properties. We have got the desired functions and compared our results

with previous results and found that our results are at least as better as available in

the literature.

In Chapter 5, we have introduced the concept of biasedness in the proposed

method and developed a new method based on biasedness to construct Boolean func-
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tions and got the desired results. In this chapter, we got the Boolean functions of 7

and 8 variables that could not be possible by the methods developed in Chapters 2, 3

and 4. We also compared our results with previous results and found that our results

are at least as better as available in the literature.

In Chapter 6, we have developed a new method based on NSGA-II to solve a

system of linear inequalities. This method is applicable for all types of inequalities.

We have generated three examples of different types and solved them by the developed

method. The developed method gives better spread of solutions. Consequently, our

method is better than previous methods to solve the system of linear inequalities.

In Chapter 7, based on the study carried out in the thesis, conclusions are drawn

and future scope of the research work is suggested.
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A new Evolutionary multiobjective

Approach to Construct Balanced

Boolean Functions based on Two

Objectives-Nonlinearity and

Resiliency

Boolean functions are the basic components in cryptography. Many desirable properties

such as nonlinearity, balancedness, autocorrelation etc. are known for Cryptograph-

ically strong Boolean functions . It is difficult task to get optimal trade-offs among

such properties. Nowadays, the design of strong cryptographic Boolean functions is a

multi-objective problem. In this chapter, we focus on non-linearity, resiliency related

criteria and explore a multiobjective evolutionary approach aiming to find balanced

Boolean functions having the best trade off between nonlinearity and resiliency for 4, 5

and 6 variables. We show that the multiobjective approach is an efficient alternative to

single objective optimization approaches presented so far [1]. In this chapter, we show

how non-dominating sorting genetic algorithm(NSGA− II) can be used to construct

35
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Boolean functions with profiles of cryptographically relevant properties.

2.1 Introduction

Boolean functions are the basic components in cryptography. In this chapter, we have

outlined a number of cryptographic properties of Boolean functions. Among them high

nonlinearity, balancedness, high algebraic degree, high resiliency and low autocorrela-

tion are important from cryptographic point of view. These properties contribute to

the security system and provide resistance to them. There are different types of crypt-

analytic attacks against Boolean functions like differential cryptanalysis [7], correlation

attack [68], linear cryptanalysis [71], etc. Boolean functions are the most vulnerable

to attack if exploitable weaknesses in their components exist. For this reason, it is

important to be able to ensure that any Boolean function exhibits the appropriate

combination and measures of robust cryptographic properties. To resist differential

cryptanalysis Boolean functions should have high nonlinearity and low autocorrela-

tion, to resist linear cryptanalysis nonlinearity should be high, to resist correlation

attack correlation immunity should be high [12] etc. The Boolean functions having the

best trade-offs between nonlinearity and resiliency will resist the correlation attack. So,

In this chapter, we propose an evolutionary multiobjective method to construct bal-

anced Boolean functions having the best trade-offs between nonlinearity and resiliency.

It is well known that a function cannot at the same time be balanced and can

have maximum algebraic degree, maximum distance to linear functions and maximum

distance to linear structure. If we increase the resiliency of a Boolean function, it de-

creases the nonlinearity of the function. Similarly, if we decrease the autocorrelation,

it decreases the nonlinearity. The trade-offs between some of these criteria have been

shown in [1,62,70,83]. Some works have been sought to combine algebraic construction

with deterministic computer search methods [62,83] and some authors have attempted

using search heuristics such as genetic algorithms, hill climbers, and simulated anneal-
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ing to generate Boolean functions [18, 69, 70]. A clear trade-off has been shown for

correlation immunity, algebraic degree and nonlinearity [19]. By using meta-heuristic

search (particularly hill climbing, genetic algorithms and simulated annealing), Burnett

et. al. [50], Kavut and Yucel [11], and Izbenko et. al. [46] designed Boolean functions.

Pasalic [78] investigated the possibilities of an iterative concatenation method towards

construction of Boolean functions resistant to algebraic cryptanalysis. Beelen and Le-

ander [4] constructed Boolean functions by using concatenation from codes over Fq
containing a first-order generalized ReedMuller code. However, generating Boolean

functions purely by constructive algebraic methods becomes increasingly difficult as

the number of criteria to be satisfied is augmented. The more criteria to be taken into

account, the more difficult is to generate Boolean functions satisfying those properties

purely by constructive algebraic means. Previous researches for generating highly non-

linear balanced functions by search heuristics have used single objective optimization

approaches by considering either the non-linearity or autocorrelation. These meth-

ods are called direct-single objective approaches. Clark and Jacob [18], and Clark et

al. [19] proposed a two-stage optimization approach and obtained the best functions

of small number of variables. In the first stage, an annealing-based method is used

to evolve functions restricting the spread of Walsh values. In the second stage, hill

climbing with respect to nonlinearity or autocorrelation is applied to the best function

obtained in the first stage. This method also focuses on single objective optimization,

although at the end of the run other properties of the function are also measured.

Better results in terms of the individual objectives have been achieved by the two-

stage optimization approach compared to the direct single objective methods. The

two-stage approach is an important improvement towards the automatic generation

of highly non-linear Boolean functions with cryptographic application. However, it

suffers from some drawbacks and limitations. First, the objective function used dur-

ing the first stage introduces two parameters and needs to be fine tuned in order to

produce good results and second, the method offers very limited function diversity.

Aguirre et. al. [1] focused on nonlinearity related criteria and used an evolutionary
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multi-objective approach, namely multiobjective random bit climber(moRBC), to find

balanced Boolean functions of similar characteristics satisfying multiple criteria. They

showed that the multiobjective approach is an efficient alternative to single objective

optimization approaches. Keeping this in the view, in this chapter, we have developed

a new evolutionary multiobjective approach and constructed cryptographically strong

Boolean functions, that is, the balanced Boolean functions having the best trade-off

between nonlinearity and resiliency.

Section-wise the remaining chapter is arranged as follows: Section 2.2 gives a brief

description of NSGA-II. In Section 2.3, we have developed an evolutionary multiobjec-

tive approach to construct the desired Boolean functions. Section 2.4 gives results and

discussions of our work. In Section 2.5, we have concluded our work.

2.2 A Brief Description of NSGA-II

There are many simple evolutionary algorithms like simple genetic algorithm, Simu-

lated annealing, Hill climbing etc. in literature. All these methods are single objective

optimization methods. But in real life problems we come across to the multiobjective

optimization problems(MOOPs) and want to get optimal trade-off among objectives.

So, only single objective optimization method is not sufficient. Nondominated sort-

ing genetic algorithm(NSGA) developed by Srinivas and Deb. [89] is an extension of

the Genetic Algorithm for multiobjective optimization. Multiobjective evolutionary

algorithms(MOEAs) which use non-dominated sorting and sharing have been mainly

criticized for their (i) O(kN3) computational complexity (where k is the number of

objectives and N is the population size), (ii) non-elitism approach, and (iii) the need

for specifying a sharing parameter. Deb et. al. [21] suggested a non-dominated sorting

based MOEA known as the Non-dominated Sorting GA-II(NSGA-II), which alleviates
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all the above three difficulties. Specifically, a fast non-dominated sorting approach with

O(kN2) computational complexity is presented.

NSGA-II was proposed to resolve the weaknesses of NSGA, specially its non-elitist

nature. Although several elitist MOEA exist, few are widely used, one of them is

NSGA-II. It maintains the solutions of the best front found in a generation into the

next generation (elitism). The introduction of the controlled elitism operator in the

NSGA-II algorithm produces a better equilibrium between exploitation and explo-

ration.

In NSGA-II, for each solution one has to determine how many solutions dominate it

and how many solutions to whom it dominates. The NSGA-II estimates the density of

solutions surrounding a particular solution in the population by computing the average

distance of two points on either side of this solution along each of the objectives of the

problem. This value is called the crowding distance. During selection, the NSGA-II

uses a crowded-comparison operator which takes into consideration both the nondom-

ination rank of an individual solution in the population and its crowding distance (i.e.,

nondominated solutions are preferred over dominated solutions, but between two so-

lutions with the same nondomination rank, the one that resides in the less crowded

region is preferred). Instead, the elitist mechanism of the NSGA-II consists of combin-

ing the best parents with the best offspring obtained (i.e., a selection). Due to its clever

mechanisms, the NSGA-II is much more efficient (computationally speaking) than its

predecessor NSGA, and its performance is so good that it has become very popular in

the last few years. As we know simple evolutionary algorithm is extended to maintain

a diverse set of solutions with the emphasis on moving towards a true Pareto-optimal

region. The non-dominated sorting GA (NSGA) proposed by Srinivas and deb [89],

is one of the first such algorithms. It is based on several layers of classification of the

individuals. Non-dominated individuals get a certain dummy fitness value and then

are removed from the population. This process is repeated until the entire popula-

tion has been ranked. It is a very effective algorithm but it has been criticized for its

computational complexity, lack of elitism and its requirement for specifying sharing
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parameters in the algorithm. Based on these issues, a modified version of the NSGA,

named NSGA-II [21] is developed. Two distinct entities are calculated in the NSGA-II

to validate the quality of a given solution. The first is a domination-count where the

number of solutions that dominate a given solution are tracked. The second keeps track

of how many sets of solutions a given solution dominates. In the process, all the solu-

tions in the first non-dominated front will have their domination count zero. The next

step is to select each solution in which the nondomination count is set to zero and visit

all other solutions in the solution set and reduce the domination count by one. In doing

so, if the domination count of any other solution becomes zero, this solution is grouped

in a separate list. This list is flagged as the second nondominated front. This process is

then continued with each member of the second list until the next non-dominated front

is identified. The process is continued until all fronts are identified. Based on the non-

domination count given to a solution, a non-domination level will be assigned. Those

solutions that have higher nondomination levels are flagged as non-optimal and will

never be visited again. One of the key requirements of a successful solution method is

ensuring that a good representative sample from all possible solutions is chosen. Intro-

duction of a density estimation process and a crowded-comparison operator has helped

NSGA-II to address the above need. The crowding-distance computation requires sort-

ing of a given population according to each objective function value in ascending order

of magnitude. Once this is done, the two boundary solutions with the largest and

smallest objective values are assigned distance values of infinity. All other solutions

lying in between these two solutions are then assigned a distance value calculated by

the absolute normalized distance between each pair of adjacent solutions. After each

population member is assigned a crowding-distance value, a crowded-comparison op-

erator is used to compare each solution with the others. This operator considers two

attributes associated with every solution which is the nondomination rank and the

crowding-distance. Every solution is rated with others based on the non-domination

rank. Solutions with lower ranks are deemed better in this attribute. Once solutions

that belong to the best front are chosen based on the non-domination rank, the solution
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that is located in a lesser-crowded region is considered better and forms the basis of

the NSGA-II algorithm.

NSGA-II, doveloped by Deb et.al. [21] is a generational MOEA that aims at ap-

proximating the Pareto optimal fronts for a given problem, while keeping high diversity

in its result set.

It works on three main modules:

1. Non-dominated Sorting

2. Crowding distance assignment

3. Crowded comparison operator.

1. Non-dominated Sorting: At a certain generation t, it partitions the popula-

tion Pt into different fronts Fi with index i indicating the non-domination rank shared

by all solutions in such a front. The first front F1 is the actual non-dominated front,

i.e., it consists of all non-dominated solutions in the population Pt at a certain genera-

tion t. The second front F2 consists of all solutions that are non-dominated in the set

Pt − F1, i.e., each member of F2 is dominated by at least one member of F1 as shown

in Figure. 2.1 Generally, front Fk comprises all solutions that are non-dominated in

the set Pt −
⋃
i Fi ( i varies from 1 to k − 1).

2. Crowding distance assignment: To get an estimate of the density of solu-

tions surrounding a particular solution i in the population, we take the average distance

of two solutions on either side of the solution i along each objective. This quantity id

serves as an estimate of the perimeter of the cuboid formed by using the nearest neigh-

bors as vertices. It is called the Crowding distance(Figure. 2.2). The crowding

distance assignment calculates a crowding distance value for each individual within

a certain front Fi as the difference between objective function values in the nearest

neighbors on each side of the individual, then summed up over all objectives. The
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Figure 2.1: Nondominated Sorting of a Population

crowding distance values for extreme solutions (i.e., solutions with the smallest and

largest function values occurring within the front) are assigned an infinite value, which

is motivated by the pursuit of diversity and which effectively preserves them into the

next generation. The front in which they are contained should be partially discarded

when a new population Pt+1 is formed.

3. Crowded comparison operator ≺n: It guides the selection process by defin-

ing an ordering on Pt. Each solution i in the population has two attributes:

1. non-domination rank(ir);

2. crowding distance(id).

The crowded comparison operator ≺n can be defined as

i ≺n j if ir < jr or ir = jr and id > jd.

Between two solutions with different non-domination ranks, the solution having

the lower rank is preferred. If both solutions belong to the same front(having the
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Figure 2.2: Description of Crowding Distance
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same rank), we prefer the solution that is located in the lesser crowded region (i.e.,

with higher crowding distance value). The crowding comparison operator guides the

selection process at the various stages of algorithm toward uniformly spread-out Pareto-

optimal fronts.

2.2.1 Algorithm of NSGA-II :

Algorithmically, NSGA-II is explained below:

step 1. Combine parent and offspring populations Pt and Qt and create Rt =

Pt
⋃
Qt . Perform a non-dominated sorting on Rt and identify different fronts Fi,

i = 1, 2, ..., etc.

step 2. Set new population Pt+1 = φ. Set a counter i = 1. Until |Pt+1| + |Fi| < N(N

is population size), perform Pt+1 = Pt+1

⋃
Fi and set i = i+ 1.

step 3. Perform the Crowding sort procedure(i.e., assign crowding distance and apply

crowded comparison operator) and include the widely spread N − |Pt+1| solutions by

using the crowding distance values in the sorted Fi to Pt+1.

step 4. Create offspring population Qt+1 from Pt+1 by using the crowded tourna-

ment selection, crossover and mutation operators.

The flow chart depicting the NSGA-II algorithms in shown in Figure 2.3.

2.2.2 Constraint Handling in NSGA-II

Consider a constrained MOOP. The constraints divide the search space into two re-

gions - feasible and infeasible regions. In MOOP, all Pareto-optimal solutions must be
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feasible solutions. The constrained problems in NSGA-II can be handled on the basis

of dominance. A solution i is said to constrained-dominate a solution j if any of the

following conditions is true:

1 . Solution i is feasible and solution j is not.

2 . Both solutions i and j are infeasible, but solution i has a smaller overall con-

strained violation.

3 . Both solutions i and j are feasible and solution i dominates solution j.

When comparing two feasible solutions, the solution which dominates the other

solution is considered a better solution. On the other hand, if both solutions

are infeasible, the solution having a lesser number of constrained violations is a

better solution.

The flow chart depicting the NSGA-II algorithms is shown in Figure 2.3.

2.3 The Proposed Method for Construction of Bal-

anced Boolean Functions Having the Best Trade-

offs Between Nonlinearity and Resiliency

In this section, we will describe the proposed method to construct the balanced Boolean

functions having the best trade-offs between nonlinearity and resiliency. The proposed

method consists of:

(i) Formulation of MOOP,

(ii) Application of NSGA-II.

(i) Formulation of MOOP : We will use the criteria of nonlinearity, balancedness
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Figure 2.3: Flow chart of NSGA-II

and resiliency to construct the desired Boolean functions.

Now we describe the evaluation criteria used to evolve Boolean functions. The first
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evaluation criterion used is the non-linearity Nl and the second is resiliency .

We know that the bent functions have the maximum nonlinearity and for bent func-

tions, |Wf (λ)| = 2n/2 for all λ ∈ Fn
2 . For balanced Boolean functions this ideal bound

cannot be achieved but it does suggest that an objective function that seeks to mini-

mize the spread of Walsh Hadamard values is well motivated. So, we take

f1 =
∑
λ∈Fn

2

||Wf (λ)| − 2n/2|R (2.3.1)

as the first objective function, where R ∈ [3, 10] is a constant.

If a function has resiliency m, then Wf (λ) will be zero for all those λ ∈ Fn
2 for which

wH(λ) ≤ m. Hence, we take

f2 =
∑
λ∈Fn

2

|Wf (λ)| (2.3.2)

as the second objective function, where wH(λ) ≤ m for λ ∈ Fn
2 .

Now,

f1 =
∑
λ∈Fn

2

||Wf (λ)| − 2n/2|R

for w(λ) ≥ m ,

(where Wf (λ) =
∑

x∈Fn
2
(−1)f(x)+λ.x and n is the number of variables.)

So,

f1 =
∑
λ∈Fn

2

||
∑
x∈Fn

2

(−1)f(x)+λ.x| − 2n/2|R,
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=
∑
λ∈Fn

2

||
∑
x∈Fn

2

(−1)f(x).(−1)λ.x| − 2n/2|R,

=
∑
λ∈Fn

2

||
∑
x∈Fn

2

(1− 2.f(x)).aλ.x| − 2n/2|R,

=
∑
λ∈Fn

2

||Mλ −
∑
x∈Fn

2

2f(x).aλ.x| − 2n/2|R (2.3.3)

where

Mλ =
∑
x∈Fn

2

aλ.x (2.3.4)

and

aλ.x = (−1)λ.x (2.3.5)

f(x)′s are binary variables(Boolean functions that have to be found. We have taken R

= 3 for all values of m.

Similarly,

f2 =
∑
λ

|Wf (λ)|

=
∑
λ

|
∑
x∈Fn

2

(−1)f(x)+λ.x|,

=
∑
λ

|
∑
x∈Fn

2

(−1)f(x).(−1)λ.x|,

=
∑
λ

|
∑
x∈Fn

2

(1− 2.f(x)).aλ.x|,

=
∑
λ

|Mλ −
∑
x∈Fn

2

2f(x).aλ.x| (2.3.6)

for wH(λ) ≤ m.
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So, our problem as an MOOP is given below:

minimizeF = (f1, f2)

subject to∑
x∈Fn

2
f(x) = 2n−1.

 (2.3.7)

(
∑

x∈Fn
2
f(x) should be equal to 2n−1 for balanced function).

(ii) Application of NSGA-II: Now we apply NSGA-II to the MOOP given in

(2.3.7) and get the results(Boolean functions). The obtained results are given in Table

2.1 and discussed in Section 2.4. Comparison of the results is given in Table 2.2. The

parameters that we have used in NSGA-II are given in Tables 2.3, 2.4, 2.5 and 2.6.

(4,1,3,12) 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0

(5,1,3,12) 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1

(5,2,3,12) 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1

(6,1,4,24) 1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1

Table 2.1: Results obtained by the proposed method

Previous Results Results by the proposed method

(4,1,3,12) (4,1,3,12)

(5,1,3,12) (5,1,3,12)

(5,2,3,12) (5,2,2,8)

(6,1,4,24) (6,1,4,24)

Table 2.2: Comparison of results
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number of generation 200

population size 100

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 2.3: Parameters used in NSGA-II for 4 variables.

number of generation 500

population size 200

probability of crossover 0.9

probability of mutation 0.01

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 2.4: Parameters used in NSGA-II for 5 variables with resiliency 1.

number of generation 1000

population size 500

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 2.5: Parameters used in NSGA-II for 5 variables with resiliency 2
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number of generation 1000

population size 500

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 2.6: Parameters used in NSGA-II for 6 variables.
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2.4 Results and Discussion

By applying the proposed method on the basis of the criteria balancedness, nonlinear-

ity and resiliency, we got the desired Boolean functions. These functions are balanced

and have the best trade-offs between nonlinearity and resiliency. Applying our method,

we have constructed such functions of 4, 5 and 6 variables as shown in Table 2.1. The

parameters taken to construct functions of 4, 5 and 6 variables are listed in Tables 2.3,

2.4, 2.5 and 2.6. Table 2.2 shows that our method gives at least as better results as

are given in literature [1, 18,19].

2.5 Conclusion.

In this chapter, we have developed a new evolutionary multiobjective approach to

construct desired Boolean functions. By applying our method, we got at least as

better results(Table 2.1) as obtained in literature [1, 18, 19]. Thus our approach to

construct desired Boolean functions is at least as better as the approaches available in

the literature.



Chapter 3

A new Evolutionary multiobjective

Approach to Construct Balanced

Boolean Functions based on Two

Objectives-Nonlinearity and

Autocorrelation

In Chapter 2, we have proposed an evolutionary multiobjective approach to construct

balanced Boolean functions based on two objectives having the best trade-offs between

nonlinearity and resiliency. Now, in this chapter, we will construct balanced Boolean

functions by the proposed evolutionary multiobjective approach based on two objec-

tives having the best trade-offs between nonlinearity and autocorrelation. So,we focus

on non-linearity and autocorrelation related criteria and explore a multiobjective evolu-

tionary approach aiming to find balanced Boolean functions having the best trade-offs

between nonlinearity and autocorrelation for 4, 5 and 6 variables. We show that the

multiobjective approach is an efficient alternative to single objective optimization ap-

proaches presented so far [1].

53
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3.1 Introduction

In Chapter 2, we have constructed Boolean functions having the best trade-offs between

nonlinearity and resiliency. Boolean functions having the best trade-offs between non-

linearity and resiliency will be resistant to the cryptanalysis like linear cryptanalysis

and correlation attack. But to resist the Boolean functions to the Differential crypt-

analysis, Boolean functions should have optimal(low) value of autocorrelation. The

Boolean functions having the best trade-offs between nonlinearity and autocorrelation

will be resistant to the linear cryptanalysis and differential cryptanalysis. So, in this

chapter, we propose an evolutionary multiobjective approach to construct balanced

Boolean functions having the best trade-off between nonlinearity and autocorrelation.

Many of the best such functions of small number of variables have been obtained by

single objective two stage optimization method [18, 19]. Agguire et.al. [1] found such

functions by two stage optimization method. Previous works aiming to generate highly

non-linear balanced functions by search heuristics have used single objective optimiza-

tion approaches targeting directly either the non-linearity with respect to the set of

affine functions or Boolean functions with linear structures [18].

All the optimization works developed so far search the space of Boolean functions

for particular properties. Aguirre et. al. [1] developed an evolutionary multiobjec-

tive approach, called multiobjective random bit climber(moRBC) and found balanced

Boolean functions of similar characteristics satisfying multiple criteria. They showed

that the multiobjective approach is an efficient alternative to single objective opti-

mization approaches. Keeping this in the view, in this chapter, we have developed

a new evolutionary multiobjective approach and constructed cryptographically strong

Boolean functions based on two objectives nonlinearity and autocorrelation.

Section-wise the remaining chapter is arranged as follows: In Section 3.2, we have

developed an evolutionary multiobjective approach to construct the desired Boolean

functions. Section 3.3 gives results and discussions of our work. In Section 3.4, we
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have concluded our work.

3.2 Proposed method for Construction of Balanced

Boolean Functions Having the Best Trade-offs

Between Nonlinearity and Autocorrelation

In this section, we will describe the proposed method to construct the balanced Boolean

functions having best trade-offs between nonlinearity and autocorelation. The proposed

method consists of

(i) Formulation of MOOP, (ii) Application of NSGA-II.

(i) Formulation of MOOP : We will use the criteria of nonlinearity, balancedness

and autocorrelation to construct the desired Boolean functions.

We know that the bent functions have the maximum nonlinearity and for bent func-

tions |Wf (λ)| = 2n/2 for all λ ∈ Fn
2 . For balanced Boolean functions this ideal bound

cannot be achieved but it does suggest that a objective function that seeks to minimize

the spread of Walsh Hadamard values is well motivated. So, we take

f1 =
∑
λ∈Fn

2

||Wf (λ)| − 2n/2|R (3.2.1)

as the first objective function, where R ∈ [3, 10] is a constant.

The autocorrelation of a function f is given by

rf (λ) =
∑
x∈Fn

2

(−1)f(x)+f(x+λ) (3.2.2)
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and rf (0) is maximum.

So, we take

f2 = max
λ∈Fn

2

|rf (λ)|, (3.2.3)

as the second objective function, where λ ∈ Fn
2 and λ 6= zero.

Now, for all λ ∈ Fn
2 ,

f1 =
∑
λ∈Fn

2

||Wf (λ)| − 2n/2|R,

=
∑
λ∈Fn

2

||
∑
x∈Fn

2

(−1)f(x)+λ.x| − 2n/2|R,

=
∑
λ∈Fn

2

||
∑
x∈Fn

2

(−1)f(x).(−1)λ.x| − 2n/2|R,

=
∑
λ∈Fn

2

||
∑
x∈Fn

2

(1− 2.f(x)).aλ.x| − 2n/2|R,

f1 =
∑
λ∈Fn

2

||Mλ −
∑
x∈Fn

2

2f(x).aλ.x| − 2n/2|R (3.2.4)

where

Mλ =
∑
x∈Fn

2

aλ.x (3.2.5)

aλ.x = (−1)λ.x (3.2.6)

f(x)′s are binary variables(Boolean function) to be determined. We have taken R

= 3 for all values of m.

Similarly, for all λ ∈ Fn
2 ,

f2 = max
λ
|
∑
x∈Fn

2

(−1)f(x)+f(x+λ)| (3.2.7)
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So, our problem as an MOOP is given below:

minF = (f1, f2)

subject to∑
x∈Fn

2
f(x) = 2n−1

 (3.2.8)

(
∑

x∈Fn
2
f(x) should be equal to 2n−1 for balanced function).

(ii) Application of NSGA-II: Now we apply NSGA-II to the MOOP given in

(3.2.8) and get the results(Boolean functions). The obtained results are given in Table

3.1 and discussed in Section 3.4. The parameters that we have used in NSGA-II are

given in Tables 3.2, 3.3 and 3.4,

No. of variables Previous results Results by the proposed method

4 Nl(f) = 4 and rf = 8 Nl(f) = 4 and rf = 4 .

5 Nl(f) = 12 and rf = 8 Nl(f) = 12 and rf = 8 .

6 Nl(f) = 26 and rf = 16 Nl(f) = 26 and rf = 8 .

Table 3.1: Comparison of results
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number of generation 200

population size 100

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 3.2: Parameters used in NSGA-II for 4 variables.

number of generation 500

population size 200

probability of crossover 0.9

probability of mutation 0.01

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 3.3: Parameters used in NSGA-II for 5 variables.
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number of generation 1000

population size 500

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 2

Table 3.4: Parameters used in NSGA-II for 6 variables.

3.3 Results and Discussion

By applying the proposed method on the basis of the criteria balancedness, nonlin-

earity and autocorelation, we got the desired Boolean functions. These functions are

balanced and have the best trade-offs between nonlinearity and autocorrelation. Ap-

plying our method, we have constructed such functions of 4, 5 and 6 variables as shown

in Table 3.1. The parameters taken to construct functions of 4, 5 and 6 variables are

listed in Tables 3.2, 3.3, 3.4. Table 3.1 shows that our method gives at least as better

results as are available in the literature [1, 18,19].

3.4 Conclusion.

In this chapter, we have developed a new evolutionary multiobjective approach to con-

struct desired Boolean functions. By applying our method, we got at least as better

results(Table 3.1) as given in literature [1, 18, 19]. Thus our approach to construct

desired Boolean functions is at least as better as the approaches available in the liter-
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ature.



Chapter 4

A New Evolutionary Multiobjective

Approach to Construct Balanced

Boolean Functions Based on Three

Objectives-Nonlinearity, Resiliency

and Autocorrelation

In Chapters 2 and 3, we developed evolutionary multiobjective approaches based on two

objectives nonlinearity and resiliency, and nonlinearity and autocorrelation respectively

and constructed the balanced Boolean functions having the best trade-offs between

nonlinearity and resiliency, and nonlinearity and autocorrelation. In this chapter, we

propose to develop an evolutionary multiobjective approach based on three objectives

nonlinearity, resiliency and autocorrelation, and construct balanced Boolean functions

having the best trade-offs among nonlinearity, autocorrelation and resiliency for 4, 5

and 6 variables.
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4.1 Introduction

Nonlinearity, balancedness, resiliency, autocorrelation etc. are the main properties of

Boolean functions. There are some common cryptanalysis like linear cryptanalysis,

differential cryptanalysis, correlation attack etc on cipher system. To resist a Boolean

function from them, it should have optimal properties.

In the Chapters 2 and 3, we have constructed Boolean functions having the best

trade-offs between nonlinearity and resiliency, and nonlinearity and autocorrelation

respectively. Boolean functions having the best trade-offs between nonlinearity and

resiliency will be resistant to the cryptanalysis like linear cryptanalysis and correlation

attack, and Boolean functions having the best trade-off between nonlinearity and au-

tocorrelation will be resistant to the linear cryptanalysis and differential cryptanalysis.

But to resist all above attacks simultaneously Boolean functions should be balanced

and have the best trade-offs among nonlinearity, resiliency and autocorrelation. Non-

linearity and resiliency are very important properties to resist cryptanalysis like linear

cryptanalysis and correlation attack. But to resist the attack like differential crypt-

analysis Boolean functions should have high nonlinearity and low autocorrelation. So,

in this chapter we propose to construct balanced Boolean functions having the best

trade-off among nonlinearity, resiliency and autocorrelation. Many of the best such

functions of small number of variables have been obtained by single objective two stage

optimization method [18,19]. Agguire et.al. [1] found such functions for small number

of variables by two stage optimization method. Previous works aiming to generate

highly non-linear balanced functions by search heuristics have used single objective

optimization approaches, targeting directly either the non-linearity with respect to the

set of affine functions or the non-linearity with respect to the set of Boolean functions

with linear structures [18]. We call these methods direct-single objective approaches.

Clark and Jacob [18], Clark et al. [19] have proposed a two-stage optimization ap-

proach. In the first stage, an annealing-based method is developed to evolve Boolean
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functions restricting the spread of Walsh values. In the second stage, hill climbing with

respect to nonlinearity or autocorrelation is applied to the best function obtained in

the first stage. This method also focuses on single objective optimization, although

at the end of the run other properties of the function are also measured. Best results

in terms of individual objectives have been achieved by the two-stage optimization

approach than by the direct single objective methods. The two-stage approach is an

important improvement towards the automatic generation of highly non-linear Boolean

functions with cryptographic applications. However, it suffers from some drawbacks

and limitations. First, the objective function used during the first stage introduces

two parameters and needs to be fine tuned in order to produce good results. Second,

the method offers very limited function diversity. Third, the method is not scalable

in the sense that it does not support the addition of criteria that could be related to

non-linearity or to other cryptographic characteristics. Boolean functions are the basic

components in cryptography. In Chapter 1, we have outlined a number of crypto-

graphic properties of Boolean functions. Among them high nonlinearity, balancedness,

high algebraic degree and low autocorrelation are important from cryptographic point

of view. These properties contribute to the security system and provide resistance to it.

There are different types of cryptanalytic attacks against Boolean functions like differ-

ential cryptanalysis [7], linear cryptanalysis [71], correlation attack [86,87] etc. Boolean

functions are most vulnerable to attack if exploitable weaknesses in their components

exist. For this reason, it is important to be able to ensure that any Boolean function

exhibits the appropriate combination and measures of robust cryptographic properties.

To resist differential cryptanalysis Boolean function should have high nonlinearity and

low autocorrelation, to resist linear cryptanalysis nonlinearity should be high, to resist

correlation attack correlation immunity should be high and etc. [12].

The trade-offs between some of these criteria have been studied by some au-

thors [62, 70, 83]. Some works have been done to combine algebraic construction with
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deterministic computer search methods [62, 83] and some authors have attempted us-

ing search heuristics such as genetic algorithms, hill climbering, and simulated anneal-

ing to generate Boolean functions [18, 69, 70]. A clear trade-off has been shown for

correlation immunity, algebraic degree and nonlinearity [19]. The design of suitable

functions has received significant attention from cryptographers for decades. Meta-

heuristic search(particularly hill climbing, genetic algorithms and simulated annealing)

has emerged as a potentially very powerful tool for the design of such functions. How-

ever, generating Boolean functions purely by constructive algebraic methods becomes

increasingly difficult as the number of criteria to be satisfied is augmented. The more

criteria to be taken into account, the more difficult is to generate Boolean functions

satisfying those properties purely by constructive algebraic means. Many of the best

functions of small numbers of variables have been obtained by single objective two

stage optimization method [19]. All the optimization works so far have searched the

space of Boolean functions with particular properties. Aguirre et. al. [1] have devel-

oped a multiobjective random bit climber(moRBC) algorithm. This algorithm uses

elitism and bias selection by Pareto dominance to search on non-linearity criteria and

generate several balanced functions of similar characteristic by using moRBC algo-

rithms. They observed that, overall, the performance by the multi-objective approach

seems promising in the sense that the multiobjective approach is more efficient than

a two-stage optimization requiring much fewer runs and evaluations to generate func-

tions with high non-linearity approach. Keeping this in the view, we have developed

an evolutionary multiobjective approach and constructed balanced Boolean functions

having the best trade-off among nonlinearity, autocorrelation and resiliency for 4, 5,

and 6 variables.

Section-wise the remaining chapter is arranged as follows: In Section 4.2, we have

developed an evolutionary multiobjective approach to construct the desired Boolean

functions. Section 4.3 gives results and discussions of our work. In Section 4.4, we
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have concluded our work.

4.2 The Proposed Method for Construction of Boolean

Functions

In this section, we will describe the proposed method to construct the desired Boolean

functions. The proposed method consists of

(i) Formulation of MOOP,

(ii) Application of NSGA-II.

(i) Formulation of MOOP : We will use the criteria of nonlinearity, resiliency

and autocorrelation to construct the desired Boolean functions.

We know that the bent functions have the maximum nonlinearity and for bent func-

tions, |Wf (λ)| = 2n/2 for all λ ∈ Fn
2 . For balanced Boolean functions this ideal bound

cannot be achieved but it does suggest that an objective function that seeks to mini-

mize the spread of Walsh Hadamard values is well motivated. So, we take

f1 =
∑
λ

||Wf (λ)| − 2n/2|R (4.2.1)

as the first objective function, where R ∈ [3, 10] is a constant.

If a function has resiliency m, then Wf (λ) will be zero for all those λ ∈ Fn
2 for which

wH(λ) ≤ m. Hence, we take
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f2 =
∑
λ

|Wf (λ)| (4.2.2)

as the second objective function, where wH(λ) ≤ m for λ ∈ Fn
2 .

The autocorrelation of a function f is given by

rf (λ) =
∑
x∈Fn

2

(−1)f(x)+f(x+λ)

and rf (0) is maximum,

So, we take

f3 = max
λ
|rf (λ)| (4.2.3)

as the third objective function, where λ ∈ Fn
2 and λ 6= zero.

Now, for all those λ ∈ Fn
2 for which wH(λ) > m,

f1 =
∑
λ

||Wf (λ)| − 2n/2|R,

=
∑
λ

||
∑
x∈Fn

2

(−1)f(x)+λ.x| − 2n/2|R,

=
∑
λ

||
∑
x∈Fn

2

(−1)f(x).(−1)λ.x| − 2n/2|R,

=
∑
λ

||
∑
x∈Fn

2

(1− 2.f(x)).aλ.x| − 2n/2|R,

=
∑
λ

||Mλ −
∑
x∈Fn

2

2f(x).aλ.x| − 2n/2|R (4.2.4)
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where

Mλ =
∑
x∈Fn

2

aλ.x (4.2.5)

aλ.x = (−1)λ.x (4.2.6)

f(x)′s are binary variables(Boolean function) to be determined. Let us take R = 3 for

all values of m.

For all those λ ∈ Fn
2 for which wH(λ) ≤ m,

f2 =
∑
λ

|Wf (λ)|

=
∑
λ

|
∑
x∈Fn

2

(−1)f(x)+λ.x|,

=
∑
λ

|
∑
x∈Fn

2

(−1)f(x).(−1)λ.x|,

=
∑
λ

|
∑
x∈Fn

2

(1− 2.f(x)).aλ.x|,

=
∑
λ

|
∑
x∈Fn

2

2f(x).aλ.x −Mλ| (4.2.7)

and for all λ ∈ Fn
2 ,

f3 = max
λ
|rf (λ)|

= max
λ
|
∑
x∈Fn

2

(−1)f(x)+f(x+λ)| (4.2.8)
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So, our problem as an MOOP is given below:

Min(f1, f2, f3),

s.t.∑
x∈Fn

2
f(x) = 2n−1

 (4.2.9)

(
∑

x∈Fn
2
f(x) should be equal to 2n−1 for balanced function).

(ii) Application of NSGA-II: Now we apply NSGA-II to the MOOP given

in(3.2.9) and get the results(Boolean functions). The obtained results are described in

Section 3.3. The parameters that we have used in NSGA-II are given in Tables 3.2,

3.3 and 3.4.

4.3 Results and Discussion

After applying the method developed in Section 4.2, we got the desired Boolean func-

tions(Table 4.1). These functions are balanced and have the best trade-off among non-

linearity, resiliency and autocorrelation. Applying our method, we have constructed

such functions of 4, 5 and 6 variables as shown in Table 4.1. The parameters taken to

construct functions of 4, 5 and 6 variables are listed in Table 4.2, Table 4.3 and Table

4.4 respectively. Table 4.1 shows that our method gives at least as better results as are

given in literature [1, 18,19].
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4.4 Conclusion.

In this chapter, we have developed a method to construct desired Boolean functions of

4, 5 and 6 variables. By applying our method, we got at least as better results (Table

No. of variables Previous results Results by the proposed method

4 Nl(f) = 4, rf = 8 and resiliency=1 Nl(f) = 4 and rf = 4 and resiliency=1.

5 Nl(f) = 12 and rf = 8 and resiliency=1 Nl(f) = 12 and rf = 8 and resiliency=1.

6 Nl(f) = 26 and rf = 16 and resiliency=1 Nl(f) = 26 and rf = 8 and resiliency=1.

Table 4.1: Comparison of results

number of generation 200

population size 200

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 3

number of constraints 2

Table 4.2: Parameters used in NSGA-II for 4 variables.

number of generation 1000

population size 500

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 3

number of constraints 2

Table 4.3: Parameters used in NSGA-II for 5 variables.
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4.1) in comparison with the results given in literature [1, 18, 19]. Thus our method to

construct desired Boolean functions is at least as better as the methods available in

the literature.

number of generation 2000

population size 1000

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 3

number of constraints 2

Table 4.4: Parameters used in NSGA-II for 6 variables.



Chapter 5

An Evolutionary Multiobjective

Approach with Biasedness to

Construct Desired Boolean

Functions

Many desirable properties are known for Cryptographically strong Boolean functions.

It is difficult task to get optimal trade-off among such properties. In this chapter,

we have focused on nonlinearity, balancedness and autocorrelation, and explored an

evolutionary multiobjective approach with biasedness to construct balanced Boolean

functions having the best trade-offs among them. By including biasedness, we can get

desired set of solutions instead of all solutions. Biasedness diverts the solutions towards

the desired region. So, we get only the solutions that are desired.

5.1 Introduction

Many real-world optimization problems are naturally posed as multi-objective opti-

mization problems. They have been suitably converted into single-objective optimiza-

71
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tion problems and solved. The basic difficulty arises due to the nature of the optimality

conditions for multiple objectives. In the presence of multiple and conflicting objec-

tives, the resulting optimization problem gives rise to a set of optimal solutions, instead

of one optimal solution. Multiple optimal solutions exist because no one solution can

be optimal for multiple conflicting objectives. Let us illustrate this concept through

an example. If cost and reliability are two objectives in a design optimization, it is

clear that a minimum cost solution is usually not maximally reliable and a maximally

reliable solution is not often the cheapest. In such a scenario, none of these two extreme

solutions (the cheapest and the most reliable solutions) can be declared as an absolute

optimum corresponding to both objectives of design. In the parlance of multi-criteria

decision-making, both these solutions are optimal in some sense or they are Pareto-

optimal. In fact, there exist many other solutions in the search space which are also

Pareto-optimal. Since none of these solutions can be said to be an absolute optimum,

the onus on the part of the user is then to first find as many such solutions as possible.

Once multiple such solutions are found, usually, a higher-level decision-making strategy

is adopted to choose a solution from the set of obtained Pareto-optimal solutions.

Multi-objective evolutionary algorithms(MOEAs) have found increasing attention

due to the ability to find multiple Pareto-optimal solutions in single simulation run. But

often, users need to impose a particular order of priority to objectives. In this chapter,

we describe the technique to identify a preferred or a compromised solution, and finally

suggest a biased sharing technique [20] which can be used during the optimization

phase to find a biased distribution of Pareto-optimal solutions in the region of interest.

By including biasedness we can get desired set of solutions instead of all solutions.

Bieasedness diverts the solutions towards the desired region. So, we get only the desired

solutions. If the Pareto optimal solutions are too many, their analysis to reach the final

decision is quite a challenging and burdensome process for the decision maker(DM).

In addition, in a particular problem, the user may not be interested in the complete

Pareto set, instead, the user may be interested in a certain region of the Pareto set.

Such a biasedness can arise if all objectives are not of equal importance to the user.
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Finding a preferred distribution in the region of interest is more practical and less

subjective than finding one biased solution in the region of interest. Keeping this in

the view, we have developed an evolutionary approach with biasedness and constructed

cryptographically strong Boolean functions, that is, the balanced Boolean functions

having the best trade-offs between nonlinearity and autocorrelation.

Section-wise chapter is arranged as follows: Section 5.2 gives a brief description of

biased sharing technique and reason of using it. In Section 5.3, we have developed

an evolutionary multiobjective approach with biasedness and constructed the desired

Boolean functions. Section 5.4 gives results and discussions of our work. In Section

5.5, we have concluded our work.

5.2 Biasedness sharing technique

Here, we discuss a sharing approach [20] which uses a biased distance metric. In

calculating the distance metric in the fitness-space sharing, the following normalized

distance metric d(i,j) between two solutions i and j is suggested as

d(i, j) = [
m∑
k=1

(f
(i)
k − f

(j)
k )2/(f

(max)
k − f (min)

k )2]1/2 (5.2.1)

This distance metric is nothing but the normalized Euclidian distance between two

objective vectors. In the proposed biased sharing approach, an unequal weightage is

given to each objective in computing the Eucledian distance. For example, if ωk ∈

(0, 1) is the weight assigned to the kth objective function, then the normalized $k is

calculated as follows:

$k = (1− ωk)/
m∑
r=1

(1− ωr) (5.2.2)

k=1,2,3,...m.
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and modified distance metric is computed as follows:

d(i, j) = (
m∑
k=1

$k(f
(i)
k − f

(j)
k )2/(f

(max)
k − f (min)

k )2)1/2 (5.2.3)

Figure 5.1: Illustration of biasedness sharing

The fitness-based sharing can then be used with this distance metric.

The highest priority objective always gets the highest weightage. For convex Pareto-

optimal regions, a higher weight ω for an objective function will produce more dense

solutions near the individual optimum. Figure 5.1 explains this fact. For a two-

objective optimization problem, if an extreme case of ω1 = 0 and ω2 = 1 is used, the

corresponding $ is as follows: $1 = 0 and $2 = 1. Since the effect of f2 is absent in

calculating the distance metric, equal number of solutions are expected to be created in

each equal partition of the f1 search in the space. Thus, the density of Pareto optimal

solutions in the partition closer to the individual best ( here f ∗1 ) will be less. For

non-convex Pareto-optimal region, $k = ωk/maxMi=1 ωk.

We introduce weights into multiobjective optimization if we solve it by single objective

optimization technique. But if we apply multiobjective optimization technique, there is

no need to convert multiobjectives into single objective. In this case we construct con-
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straint(s) to give weightage to the particular objective(s) to support the corresponding

objective(s).

5.2.1 Why biasedness sharing technique

In Chapter 2, we took the same objective functions and developed the method without

using the concept of biasedness. We got the desired Boolean functions of 4, 5 and 6

variables. The developed method(Section 4 [37]) failed for variables more than 6. So,

in this chapter, we include biasedness in the proposed method. By using the proposed

method, we will construct the desired Boolean functions of 7 and 8 variables.

5.3 The Proposed Method

In this section, we will describe the proposed method to construct the desired Boolean

functions. The proposed method consists of (i) Formulation of MOOP with biasedness

and (ii) Application of NSGA-II.

(i) Formulation of MOOP with biasedness : We will use the criteria of nonlin-

earity, balancedness and autocorrelation to construct the desired Boolean functions.

Nonlinearity of a Boolean function is given by

Nl = 2(n−1) − (1/2) max
λ

Wf (λ).

We desire Nl to take the value R(say). So, we take

f1 = R−Nl (5.3.1)

as the first objective function. The maximum value of Nl is 56 for 7 variables and

120 for 8 variables. That is why, in the present discussion, we have taken R=56 for 7

variables and 120 for 8 variables.

The autocorrelation of a function f is given by
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rf (λ) =
∑
x∈Fn

2

(−1)f(x)+f(x+λ),

and rf (0) is maximum.

So, we take

f2 = max
λ
|rf (λ)| (5.3.2)

as the second objective function, where λ ∈ Fn2 and λ 6= zero.

Now, ∀λ ∈ Fn2 ,

f1 = R−Nl

= R− (2(n−1) − (1/2) max
λ

Wf (λ))

= R− (2(n−1) − (1/2) max
λ

∑
x∈Fn

2

(−1)f(x)+λ.x) (5.3.3)

Similarly, ∀λ ∈ Fn2 ,

f2 = max
λ
|
∑
x∈Fn

2

(−1)f(x)+f(x+λ)|. (5.3.4)

So, our problem as an MOOP with biasedness is given below:

minF = (f1, f2)

subject to∑
x∈Fn

2
f(x) = 2n−1,

Nl = R.


(5.3.5)

∑
x∈Fn

2
f(x) should be equal to 2n−1 for balanced function. To give more weightage

to the first objective, we take second constraint as Nl = R. (The concept of biasedness

sharing technique in MOOP)

(ii) Application of NSGA-II: Now we apply NSGA-II to the MOOP with bi-

asedness given in (5.3.5) and get the results(Boolean functions). The obtained results

are described in Section 5.4. The parameters that we have used in NSGA-II are given
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in Tables 5.2 and 5.3.

5.4 Results and Discussion

By applying the method developed in Section 5.3, we got the desired Boolean func-

tions. These functions are balanced and have the best trade-offs between nonlinearity

and autocorrelation. Applying our method, we have constructed such functions of 7

and 8 variables as shown in Table 5.1. The parameters taken to construct functions

are listed in Table 5.2 and Table 5.3 respectively. Table 5.1 shows that our method

gives at least as better results as are known in literature [1, 18, 19].

No. of variables Previous results Results by proposed method

7 [1]Nl(f) = 54, rf = 16 Nl(f) = 54 and rf = 12 .
[1]Nl(f) = 56, rf = 16
[18,19]Nl(f) = 56, rf = 16

8 [1]Nl(f) = 112 and rf = 24 Nl(f) = 116 and rf = 20 .
[1, 18,19]Nl(f) = 116 and rf = 24

Table 5.1: Comparison of results

number of generation 3000

population size 2000

probability of crossover 0.7

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 3

Table 5.2: Parameters used in NSGA-II for 7 variables.
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number of generation 6000

population size 3000

probability of crossover 0..7

probability of mutation 0.01

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 2

number of constraints 3

Table 5.3: Parameters used in NSGA-II for 8 variables.

5.5 Conclusion.

In this chapter, we have developed an evolutionary multiobjective method with bi-

asedness to construct the desired Boolean functions. By applying our method, we

got at least as better results(Table 5.1) in comparison with the results given in litera-

ture [1,18,19]. Thus our method to construct the desired Boolean functions is at least

as better as the methods available in the literature.



Chapter 6

A new approach to solve a general

system of linear inequalities based

on NSGA-II

A large variety of real life problems in practice are formulated as integer optimization

problems. A system of linear inequalities can be solved by conjugate gradient algorithm

for linear constraints. But this algorithm is applicable only to inequalities of the type∑n
j=1 aijxj > 0, i=1,2,3,...,m.

The construction of exact algorithms designed to solve integer problems has been

considerably improved during the last 50 years. But very often they can not be ap-

plied to solve practical problems of middle and large size because of their excessive

runtimes and memory requirements. Some theoretical and algorithmic investigations

are devoted to combinatorial or binary problems. In general, the solution of the integer

problem remains considerably harder. The hybrid methods are promising tools, since

they combine the best features of different methods (exact techniques or metaheuris-

tics) in a complementary mode. Since obtaining a good feasible solution in reasonable

time is completely satisfactory for many practical problems, the development of heuris-

tic algorithms having polynomial computational complexity, is still a problem of the
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present day. Many large size real problems can not be solved by exact algorithms due

to their exponential computational complexity. In such case approximate polynomial

time algorithms are better to use.

A set of inequalities can be solved by graphical method or simplex method. But

these methods have some drawbacks. Graphical method is conveniently applicable to

a system containing two variables; while simplex method gives one solution at a time.

So, in this chapter, a new approach to solve a general system of linear inequalities based

on NSGA-II is developed. NSGA-II is a fast and elitist approach. The main advantage

of using NSGA-II is that it provides multiple solutions(Pareto-optimal fronts) in one

single simulation run.

6.1 Introduction

A system of linear inequalities occurs in many real life problems. A wide variety of real

life problems in logistics, economics, social science and politics can be reformulated

as linear inequalities. The combinatorial problems like the Knapsack-capital budget-

ing problem, warehouse location problem, traveling salesman problem, decreasing cost

and machinery selection problem, network and graph problems such as maximum flow

problems, set covering problems, matching problems, weighted matching problems,

spanning tree problems and many scheduling problems can also be solved as linear

inequalities [15,44,58,77]. To find the solutions for this class of problems requires use

of considerable computational resources. The development of efficient hybrid methods,

combining in a suitable way the best features of different approaches(exact or approx-

imate) is the actual direction, in which many researcher devote their efforts to solve

successfully various hard practical problems.

A system of linear inequalities can be solved by converting it into optimization

problems [35]. There are mainly two types of methods to solve linear inequalities.

1. Exact methods [35]
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2. Approximate methods [20,21,39,53]

Exact methods: There are many exact methods in literature to solve linear inequal-

ities. The development of exact optimization methods for linear inequalities specially

linear integer problems during the last 50 years has been very successful. There are

mainly three approaches for solving linear integer problems.

(a) Cutting-planes algorithms based on polyhedral combinatorics,

(b) Enumeration approaches: Branch and Bound(BB), Branch and cut(BC) and branch

and Price(BP) methods,

(c). Relaxation and Decomposition(RD) techniques.

Ben-Isreal and Charnes [6] proposed a primal cutting-plane algorithm and Young

[102] proposed a finitely convergent primal cutting-plane algorithm for general integer

programs. Later on Glover [38] and Young [102] gave simplified versions. Because

of poor computational experience, this line of research has been very inactive. An

exception is a primal cutting-plane algorithm for the traveling salesman problem. Al-

though this algorithm has been moderately successful, it seems to be inferior to a

fractional cutting-plane algorithm for the traveling salesman problem. Another strat-

egy for cutting-plane algorithms is to maintain integrality and dual feasibility, and then

to use cuts to obtain primal feasibility.

Enumeration approaches are known under different names. The most popular of

them are BB, implicit enumeration, and divide and conquer [75]. The explicit enu-

meration is the simplest approach for solving a pure integer programming problem by

means of enumeration of all possibilities which are finite in number. However, due to

the combinatorial explosion of number of these possibilities resulting from the param-

eter size only instances having relative small size could be solved by such an approach

within a reasonable computational time limit. The BB method developed by Land and

Doing [57] consist of branches and bounds. The branching refers to the enumeration

part of the solution technique and bounding refers to the fathoming of possible solutions
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by comparison to a known upper or lower bound on the solution value. The commercial

BB codes usually relax the problem by dropping the integrality conditions and solve

the resultant continuous linear programming problem over the constraint system. The

bounds obtained from the LP-relaxations are often weak which may cause standard

BB algorithms to fail in practice. Later on some methods like BC [44], BP [2], Column

generation concept, LP relaxation, Combinatorial relaxation [27, 28] and Lagrangian

relaxation [5, 40] were developed to improve BB algorithms.

Dahl [24] has given Fourier-Motzkin Elimination method to solve the linear in-

equalites. Fourier-Motzkin elimination is a classical method for solving linear inequal-

ities in which one variable is eliminated in each iteration. Robert Orsi et. al. gave

Newton-Like Method for solving Rank constrained linear matrix inequalities [76]. Local

quadratic convergence of the Newton-like algorithm is not a priori guaranteed. Korovin

et.al [55] have given a method to solve the set of linear inequalities over the rational

and real numbers and presented experimental evaluation. The method and heuristics

are evaluated against various benchmarks and compared to other methods, such as the

Fourier-Motzkin elimination method and the simplex method.

All the above methods to solve the linear inequalities is applicable only for small

size. As the number of variables increases, their complexity increases very high and

less chance to get optimal solutions. For problem with large variables Approximate

methods are good.

Approximate methods: A huge number of approximate algorithms has been created

for the solution of large real life LIP optimization problems without any guarantee for

optimality of the final solution [88]. Many local search based metaheuristics have been

developed to avoid the trap of local optimality and to find a global optimal solution [79].

It was proven that they are highly useful in practice. The development of approximate

algorithms is important in the sense that they terminate their performance using a

polynomial number of standard mathematical operations.

Linear inequalities can also be solved by graphical method or simplex method [90].
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But graphical method is conveniently applicable to a system containing two variables

and simplex method gives one solution at a time. Also, the simplex method may

give only one solution out of many solutions to the system. Nagaraja and krishna

[74] developed a conjugate gradient algorithm for linear constraints to solve a set of

linear inequalities. But Warmack and Gonzaloz [99] developed an algorithm for the

optimal solutions of consistent and inconsistent linear inequalities. The algorithm is

developed as a non- enumerative search procedure. The set of inequalities considered

are
∑n

j=1 cijxj > 0, i = 1, 2, 3...m. Clark and Gonzalez [17] developed an algorithm

to find the optimal solutions of a system of linear inequalities and applied to pattern

recognition. Forsgren and Murray [34] discussed Newton method of the line search

type for large scale minimization subject to linear inequality constraints. They have

also given the convergence analysis.

A number of multiobjective evolutionary algorithms(MOEAs) like MOGA-III,

SPEA2, NSGA, NPGA and MOMGA( [30], [33], [92], [21], [29], [89]) have been sug-

gested to solve multi-objective optimization problems(MOOPs). NSGA-II, in most of

the problems, finds much better convergence near the true Pareto-optimal front com-

pared to other elitist MOEAs like PAES [54] and SPEA [29] that pay special attention

to creating diverse Pareto-optimal fronts. Simulation results of constrained NSGA-II

show much better performance of NSGA-II [21].

So, in this chapter, we have developed a methodology to solve a general system of

linear inequalities based on NSGA-II. The developed method gives better spread of

solutions. The presence of multi-objectives in problem gives rise to a set of efficient

solutions(Pareto-optimal solutions) instead of single optimal solution. In the absence

of any further information one of these Pareto-optimal solutions cannot be said to be

better than the other [21].

The rest of the chapter is organized as follows: In Section 6.2, we have described

a general system of linear inequalities(with examples in Subsection 6.2.1) and the
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algorithm developed to solve it based on NSGA-II. Section 6.3 gives results with its

discussion and Section 6.4 gives conclusion of our work.

6.2 The method developed to solve a general sys-

tem of linear inequalities

Let a general the system of linear inequalities to be solved be

ai ≤
∑
j

cijxj ≤ bi (6.2.1)

where i= 1,2,3,...,m; j= 1,2,3,...,n; xj ∈ B, a bounded set(continuous or discrete), cij

are real numbers, and all ai and bi are nonzero real numbers.

step 1. To solve (6.2.1), let us define

fi =
∑
j

cijxj (6.2.2)

Gi =
fi − ai
ai

(6.2.3)

and

Hi =
bi − fi
bi

(6.2.4)

step 2. Now, we formulate the MOOP as given below:
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Min(G1, G2, G3, ..., Gm, H1, H2, H3, ..., Hm),

s.t.

fi − ai ≥ 0

bi − fi ≥ 0

xj ∈ B

i = 1, 2, 3, ...,m, j = 1, 2, 3, ..., n.


(6.2.5)

step 3. Now, we apply NSGA-II to the MOOP given in (6.2.5).

6.2.1 Illustration

We illustrate the method developed in Section 6.2 by the following numerical examples.

Example 1: Let us apply the method developed in Section 6.2 to the following system

of linear inequalities to find all possible solutions.

14 ≤ 3x1 + 15x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 + 0x10 + 15x11 ≤ 20

10 ≤ 1x1 + 1x2 + 2x3 + 4x4 + 2x5 + 2x6 + 4x7 + 4x8 + 6x9 + 4x10 + 3x11 ≤ 16

9 ≤ 0x1 + 2x2 + 4x3 + 1x4 + 5x5 + 3x6 + 0x7 + 4x8 + 4x9 + 5x10 + 5x11 ≤ 20

15 ≤ 0x1 + 4x2 + 1x3 + 2x4 + 6x5 + 4x6 + 5x7 + 1x8 + 5x9 + 2x10 + 3x11 ≤ 18

12 ≤ 0x1 + 2x2 + 5x3 + 6x4 + 4x5 + 2x6 + 3x7 + 3x8 + 3x9 + 0x10 + 5x11 ≤ 20

13 ≤ 0x1 + 2x2 + 3x3 + 4x4 + 2x5 + 4x6 + 5x7 + 1x8 + 1x9 + 6x10 + 5x11 ≤ 24

10 ≤ 0x1 + 4x2 + 0x3 + 5x4 + 3x5 + 5x6 + 2x7 + 6x8 + 2x9 + 3x10 + 3x11 ≤ 20

15 ≤ 0x1 + 4x2 + 4x3 + 1x4 + 3x5 + 1x6 + 6x7 + 6x8 + 2x9 + 3x10 + 3x11 ≤ 21

13 ≤ 0x1 + 6x2 + 4x3 + 5x4 + 3x5 + 1x6 + 2x7 + 2x8 + 4x9 + 5x10 + 1x11 ≤ 20

9 ≤ 0x1 + 4x2 + 5x3 + 2x4 + 0x5 + 6x6 + 3x7 + 3x8 + 5x9 + 2x10 + 3x11 ≤ 20


(6.2.6)

where x1, x2,x3,...,x11 ∈ F2 and F2 = {0, 1}.

To solve the above system of inequalities by the method developed in Section 6.2,
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we proceed as follows.

Let us define

f1 = 3x1 + 15x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 + 0x10 + 15x11,

f2 = x1 + 1x2 + 2x3 + 4x4 + 2x5 + 2x6 + 4x7 + 4x8 + 6x9 + 4x10 + 3x11,

f3 = 0x1 + 2x2 + 4x3 + 1x4 + 5x5 + 3x6 + 0x7 + 4x8 + 4x9 + 5x10 + 5x11,

f4 = 0x1 + 4x2 + 1x3 + 2x4 + 6x5 + 4x6 + 5x7 + 1x8 + 5x9 + 2x10 + 3x11,

f5 = 0x1 + 2x2 + 5x3 + 6x4 + 4x5 + 2x6 + 3x7 + 3x8 + 3x9 + 0x10 + 5x11,

f6 = 0x1 + 2x2 + 3x3 + 4x4 + 2x5 + 4x6 + 5x7 + 1x8 + 1x9 + 6x10 + 5x11,

f7 = 0x1 + 4x2 + 0x3 + 5x4 + 3x5 + 5x6 + 2x7 + 6x8 + 2x9 + 3x10 + 3x11,

f8 = 0x1 + 4x2 + 4x3 + 1x4 + 3x5 + 1x6 + 6x7 + 6x8 + 2x9 + 3x10 + 3x11,

f9 = 0x1 + 6x2 + 4x3 + 5x4 + 3x5 + 1x6 + 2x7 + 2x8 + 4x9 + 5x10 + 1x11,

f10 = 0x1 + 4x2 + 5x3 + 2x4 + 0x5 + 6x6 + 3x7 + 3x8 + 5x9 + 2x10 + 3x11.

We have

a1=14, a2=10, a3=9, a4=15, a5=12, a6=13, a7=10, a8=15, a9=13, a10=9,

b1=20, b2=16, b3=20, b4=18, b5=20, b6=24, b7=20, b8=21, b9=20, b10=20.
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The MOOP formulation is as given below

Min(G1, G2, G3, ..., G10, H1, H2, H3, ..., H10, ),

s.t.

fi − ai ≥ 0,

bi − fi ≥ 0,

xj ∈ F2,

i = 1, 2, 3, ..., 10, j = 1, 2, 3, ..., 11.


(6.2.7)

Now we set the parameters to be used in NSGA-II. List of parameters is given in

Table 6.1.

number of generation 500

population size 100

probability of crossover 0.8

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 20

number of constraints 20

Table 6.1: Parameters used in NSGA-II for Example 1

Now we apply NSGA-II to the MOOP(6.2.7). For this we set the parameters to

be used in NSGA-II as given in Table 6.1. We get the solutions of inequalities (6.2.6)

through the MOOP(6.2.7). These solutions are given in Table 6.3 and their Pareto

fronts are given in Figure 6.3

Example 2: In Example 1, we have considered a rectangular system of 10 inequalities
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in 11 variables. Let us now consider a square system of 11 inequalities in 11 variables.

15 ≤ 3x1 + 15x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + 0x9 + 0x10 + 15x11 ≤ 19

14 ≤ 1x1 + 1x2 + 2x3 + 4x4 + 2x5 + 2x6 + 4x7 + 4x8 + 6x9 + 4x10 + 3x11 ≤ 18

14 ≤ 0x1 + 2x2 + 4x3 + 1x4 + 5x5 + 3x6 + 0x7 + 4x8 + 4x9 + 5x10 + 5x11 ≤ 19

16 ≤ 0x1 + 4x2 + 1x3 + 2x4 + 6x5 + 4x6 + 5x7 + 1x8 + 5x9 + 2x10 + 3x11 ≤ 19

1 ≤ 0x1 + 2x2 + 5x3 + 6x4 + 4x5 + 2x6 + 3x7 + 3x8 + 3x9 + 0x10 + 5x11 ≤ 15

13 ≤ 0x1 + 2x2 + 3x3 + 4x4 + 2x5 + 4x6 + 5x7 + 1x8 + 1x9 + 6x10 + 5x11 ≤ 13.9

10 ≤ 0x1 + 4x2 + 0x3 + 5x4 + 3x5 + 5x6 + 2x7 + 6x8 + 2x9 + 3x10 + 3x11 ≤ 20

15 ≤ 0x1 + 4x2 + 4x3 + 1x4 + 3x5 + 1x6 + 6x7 + 6x8 + 2x9 + 3x10 + 3x11 ≤ 21

13 ≤ 0x1 + 6x2 + 4x3 + 5x4 + 3x5 + 1x6 + 2x7 + 2x8 + 4x9 + 5x10 + 1x11 ≤ 20

9 ≤ 0x1 + 4x2 + 5x3 + 2x4 + 0x5 + 6x6 + 3x7 + 3x8 + 5x9 + 2x10 + 3x11 ≤ 20

14 ≤ 1x1 + 3x2 + 5x3 + 3x4 + 5x5 + 5x6 + 3x7 + 3x8 + 1x9 + 3x10 + 1x11 ≤ 20.


(6.2.8)

x1, x2, x3,..., x11 ∈ F2 and F2 = {0, 1}.

After applying the developed method, we find that the system is inconsistent.

Example 3: In this example, let us take the same system of inequalities as taken

in Example 2 but xj ∈ [−1, 1]. The parameters to be used in NSGA-II for this example

are given in Table 6.2. After applying the developed method, we get the solutions as

given in Table 6.4.

6.3 Results and Discussion

After applying the developed method discussed in Section 6.2, we got the solutions of

Examples 1 and 3 as given in Tables 6.3 and 6.4 respectively. From Tables 6.3 and 6.4,

we observe that there are hundred solutions(based on population size) but some are

repeated. Example 2 has no solution. On comparing Examples 2 and 3, we see that
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the system of inequalities in Example 2 is inconsistent because x1, x2, x3,..., x11 ∈ F2,

while in Example 3 the variables xi ∈ [−1, 1]. Observe that In Examples 1 and 2 all

the variables are binary taking values 0 or 1, while in Example 3 all the variables are

real taking values in [-1,1]

6.4 Conclusion

In this chapter, we have developed a method to solve a general system of linear in-

equalities based on NSGA-II. We have illustrated the technique by three numerical

examples. Examples 1 and 3 are consistent, while Example 2 is inconsistent. Example

1 deals with a rectangular system consisting of 10 inequalities in 11 variables. Exam-

ples 2 and 3 deal with a square system consisting of 11 inequalities in 11 variables.

The main advantage of using the method developed in this chapter is that multiple

solutions, if exist, of a problem are obtained in one single simulation run.

number of generation 500

population size 200

probability of crossover 0.8

probability of mutation 0.1

seed random number 0.9876

number of bits for binary variables (have been taken equal bits for all variables) 1

number of objective functions 20

number of constraints 20

Table 6.2: Parameters used in NSGA-II for Example 3
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1 1 1 1 0 0 1 1 0 0 1 0 35 0 1 1 1 1 0 1 0 0 0 0 69 0 1 0 1 1 0 1 1 0 0 0

2 1 1 0 1 1 0 1 1 0 0 0 36 1 1 1 0 1 1 0 0 0 1 0 70 0 1 1 1 1 0 1 0 0 0 0

3 0 1 1 1 1 0 1 0 0 0 0 37 1 1 1 0 0 1 1 0 0 1 0 71 1 1 1 1 1 0 1 0 0 0 0

4 1 1 0 1 1 0 1 1 0 0 0 38 1 1 1 0 1 0 1 0 0 1 0 72 1 1 1 0 1 0 1 0 0 1 0

5 1 1 1 1 0 1 1 0 0 0 0 39 1 1 1 0 0 1 1 0 0 1 0 73 0 1 1 0 1 1 0 0 0 1 0

6 1 1 1 0 1 1 0 0 0 1 0 40 0 1 1 0 1 1 0 0 0 1 0 74 0 1 1 1 0 1 1 0 0 0 0

7 0 1 1 0 1 1 0 0 0 1 0 41 0 1 1 0 1 1 0 0 0 1 0 75 0 1 1 0 0 1 1 0 0 1 0

8 1 1 0 1 1 0 1 1 0 0 0 42 0 1 1 0 1 1 0 0 0 1 0 76 0 1 1 0 0 1 1 0 0 1 0

9 1 1 0 1 1 0 1 1 0 0 0 43 0 1 1 1 0 1 1 0 0 0 0 77 0 1 1 1 0 1 1 0 0 0 0

10 1 1 1 0 0 1 1 0 0 1 0 44 1 1 1 1 0 1 1 0 0 0 0 78 0 1 1 0 0 1 1 0 0 1 0

11 0 1 1 0 1 1 0 0 0 1 0 45 0 1 0 1 1 0 1 1 0 0 0 79 1 1 0 1 1 0 1 1 0 0 0

12 1 1 1 0 1 0 1 0 0 1 0 46 1 1 1 0 1 0 1 0 0 1 0 80 1 1 1 0 0 1 1 0 0 1 0

13 0 1 1 1 0 1 1 0 0 0 0 47 0 1 1 0 1 1 0 0 0 1 0 81 1 1 1 1 1 0 1 0 0 0 0

14 0 1 1 0 1 0 1 0 0 1 0 48 1 1 1 0 1 0 1 0 0 1 0 82 1 1 1 1 1 0 1 0 0 0 0

15 1 1 1 1 1 0 1 0 0 0 0 49 1 1 0 1 1 0 1 1 0 0 0 83 0 1 0 1 1 0 1 1 0 0 0

16 1 1 1 0 1 0 1 0 0 1 0 50 0 1 1 1 0 1 1 0 0 0 0 84 0 1 1 0 1 1 0 0 0 1 0

17 0 1 0 1 1 0 1 1 0 0 0 51 1 1 0 1 1 0 1 1 0 0 0 85 0 1 0 1 1 0 1 1 0 0 0

18 1 1 1 1 1 0 1 0 0 0 0 52 1 1 1 1 1 0 1 0 0 0 0 86 1 1 1 0 1 1 0 0 0 1 0

19 1 1 1 1 0 1 1 0 0 0 0 53 0 1 1 1 0 1 1 0 0 0 0 87 0 1 1 0 0 1 1 0 0 1 0

20 1 1 1 0 1 0 1 0 0 1 0 54 0 1 1 0 0 1 1 0 0 1 0 88 0 1 1 1 0 1 1 0 0 0 0

21 0 1 0 1 1 0 1 1 0 0 0 55 0 1 1 0 0 1 1 0 0 1 0 89 1 1 1 1 1 0 1 0 0 0 0

22 1 1 1 0 1 1 0 0 0 1 0 56 1 1 1 0 1 0 1 0 0 1 0 90 0 1 1 0 1 1 0 0 0 1 0

23 0 1 0 1 1 0 1 1 0 0 0 57 1 1 0 1 1 0 1 1 0 0 0 91 0 1 1 0 0 1 1 0 0 1 0

24 1 1 1 1 0 1 1 0 0 0 0 58 0 1 1 0 1 1 0 0 0 1 0 92 0 1 1 0 1 1 0 0 0 1 0

25 1 1 1 0 1 0 1 0 0 1 0 59 0 1 1 0 0 1 1 0 0 1 0 93 1 1 1 0 1 1 0 0 0 1 0

26 0 1 1 0 1 1 0 0 0 1 0 60 0 1 1 0 0 1 1 0 0 1 0 94 1 1 1 1 0 1 1 0 0 0 0

27 1 1 0 1 1 0 1 1 0 0 0 61 1 1 1 0 1 1 0 0 0 1 0 95 0 1 1 0 1 1 0 0 0 1 0

28 1 1 1 0 1 1 0 0 0 1 0 62 0 1 1 1 0 1 1 0 0 0 0 96 1 1 1 1 1 0 1 0 0 0 0

29 0 1 1 1 0 1 1 0 0 0 0 63 1 1 1 0 1 0 1 0 0 1 0 97 1 1 1 0 1 1 0 0 0 1 0

30 0 1 1 1 0 1 1 0 0 0 0 64 1 1 1 1 1 0 1 0 0 0 0 98 0 1 1 1 1 0 1 0 0 0 0

31 0 1 1 0 1 0 1 0 0 1 0 65 0 1 1 0 0 1 1 0 0 1 0 99 0 1 1 0 0 1 1 0 0 1 0
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32 0 1 1 1 0 1 1 0 0 0 0 66 1 1 1 0 1 1 0 0 0 1 0 100 0 1 1 1 0 1 1 0 0 0 0

33 0 1 1 1 0 1 1 0 0 0 0 67 1 1 1 0 1 1 0 0 0 1 0

34 0 1 1 0 1 1 0 0 0 1 0 68 0 1 1 0 1 0 1 0 0 1 0

Table 6.3: Solutions of Example 1.

Figure 6.1: Pareto fronts of solutions of Example 1(here on the horizontal axis i stands
for the ith objection function fi, i= 1,2,3, ... ,20).



Chapter 6: A new approach to solve a general system of linear inequalities based on
NSGA-II 92

1 -.451, .726, .737, .190, .995, .228, -.414, -.239, .537, .631, .894

2 -.197, .705, .748, -.163, .122, .628, -.411, .776, .800, .615, .8.55

3 -.513, .670, .863, .649, .411, .226, -.450, -.862, .901, .504, .917

4 -.513, .670, .863, .649, .411, .226, -.450, -.862, .901, .500, .917

5 -.476, .721, .878, -.559, .491, .921, -.991, .977, .940, .996, .888

6 -.720, .670, .696, .166, .704, .500, -.564, -.302, .795, .532, .927

7 -.304, .575, .541, -.124, .318, .981, -.997, .948, .878, .947, .870

8 -.252, .714, .844, -.589, .841, .476, -.359, .10, .81, .606, .841

9 -.346, .746, .897, -.943, .731, .462, -.522, .139, .791, .562, .856

10 -.363, .657, .951, .157, .614, .170, -.374, -.944, .835, .622, .947

11 -.327, .664, .8.58, .411, .4.17, .230, -.396, -.972, .860, .645, .880

12 -.126, .729, .844, -.510, .995, .801, -.242, .120, .100, .470, .802

13 -.586, .698, .961, .293, .947, .855, -.848, -.851, .493, .496, .919

14 -.622, .689, .551, .642, .402, .924, -.997, -.876, .893, .567, .901

15 .259, .585, .925, -.564, .981, .965, -.986, .981, .497, .960, .793

16 -.147, .748, .888, .217, .609, .379, -.994, .180, .100, .977, .801

17 .411, .572, .909, -.499, .990, .467, -.606, .976, .497, .960, .793

18 -.703, .744, .696, .166, .699, .500, -.568, -.247, .484, .619, .924

19 -.568, .720, .176, -.319, .833, .100, -.803, .100, .744, .670, .901

20 .260, .584, .921, -.706, .999, .504, -.606, .987, .454, .960, .793

21 -.556, .720, .866, .554, .406, .205, -.303, -.930, .750, .495, .916

22 -.495, .713, .750, -.641, .712, .436, -.473, .747, .999, .891, .869

23 .168, .657, .943, -.730, .545, .465, -.881, .269, .940, .914, .804

24 .168, .657, .967, .919, .545, .465, -.881, .269, .100, .914, .804

25 -.588, .689, .609, .679, .516, .852, -.867, -.932, .748, .465, .931

26 -.737, .753, .796, .139, .702, .500, -.608, -.247, .910, .619, .924

27 -.648, .580, .988, .379, .673, .851, -.935, -.864, .861, .578, .943

28 -.438, .675, .910, .574, .406, .184, -.319, -.868, .804, .495, .917

29 -.727, .739, .502, .642, .910, .885, -.997, -.910, .906, .566, .913
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30 -.629, .720, .187, -.122, .669, .100, -.783, .100, .740, .595, .902

31 -.145, .695, .863, -.50, .967, .790, -.896, .126, .985, .990, .840

32 -.145, .753, .849, -.564, .934, .904, -.607, .999, .573, .654, .792

33 -.727, .689, .551, .642, .402, .924, -.997, -.876, .893, .567, .917

34 .168, .649, .931, .919, .545, .501, -.881, .258, .942, .914, .779

35 -.145, .695, .863, -.493, .969, .767, -.981, .871, .809, .974, .840

36 -.389, .681, .906, -.560 .994, .733, -.411, .105, .996, .470, .915

37 -.440, .685, .248, -.895, .958, .987, -.789, .712, .821, .631, .928

38 -.222, .584, .702, -.154 .349, .987, -.986, .965, .785, .890, .870

39 -.538, .695, .878 -.559 .491 .887 -.991 .878 .989 .996 .888

40 -.187, .753, .952, -.564, .934, .380, -.610, .998, .570, .963, .793

41 -.323, .648, .911, .167, .849, .184, -.410, -.624 .965 .580, .908

42 -.187, .753, .888, -.564, .934 .379, -.610, .999, .570, .963, .793

43 -.491, .659, .922, .177, .669, .181, -.400, -.635, .907 .580, .895

44 -.265, .736, .844, -.534, .966, .465, -.271, -.169, .906, .623, .813

45 -.438, .676, .920, .574, .406, .184, -.322, -.954, .804, .495, .917

46 .339, .584, .860, -.553, .982, .588, -.606, .814, .497, .967, .793

47 -.717, .658, .689, .642, .539, .934, -.995, -.897, .883, .567, .925

48 .168, .657, .943, .919, .545, .465, -.881, .269, .940, .914, .804

49 -.297, .585, .541, -.101, .348, .986, -.986, .959, .851, .825, .870

50 -.222, .584, .711, -.154, .349, .987, -.976, .974, .785, .890, .870

51 -.267, .660, .796, .177, .463, .501, -.411, -.635, .997, .580, 9.05

52 -.440, .581, .248, -.906, .989, .987, -.778, .711, .851, .630, .928

53 -.425, .766, .741, -.535, .721, .894, -.377, .707, .997, .401, .849

54 -.539, .721, .878 -.559, .491, .921, -.991, .867, .940, .911, .888

55 -.363, .657, .951, .157, .614, .204, -.374, -.944, .835, .683, .947

56 -.363, .663, .951, .157, .665, .179, -.330, -.944, .835, .620, .913

57 -.720, .656, .696, .227, .539, .498, -.553, -.351, .901, .564, .927

58 -.207, .753, .593, .615, .373, .492, -.566, -.364, .750, .536, .814

59 -.705, .745, .551, .642, .399, .918, -.997, -.876, .958, .567, .901

60 .259, .550, .925, -.564, .981, .965, -.986, .981, .497, .960, .793
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61 -.365, .670, .696, .227, .427, .464 -.394, -.351, .972, .564, .855

62 -.314, .648, .911, .167, .861, .188, -.405, -.624, .906, .579, .872

63 -.717, .658, .927, .120, .669, .934, -.995, -.633, .973, .567, .925

64 -.374, .736, .844, -.534, .994, .836, -.271, .110, .905, .470, .834

65 -.225, .754, .836, -.701, .996, .857, -.309, -.100, .999, .612, .813

66 -.265, .736, .844, -.534, .966, .507, -.271, .487, .906, .623, .834

67 -.720 .670, .696, .227, .427. .500, -.560, -.351, .972, .564, .927

68 -.451, .726, .930, -.261, .995, .228, -.399, -.239, .537, .622, .894

69 -.119, .639, .864, -.564, .952, .927, -.680, .973, .575, .645, .820

70 -.717, .658, .840, .620, .539, .927, -.998, -.897, .875, .485, .925

71 -.118, .695, .864, -.493, .983, .507, -.916, .873, .809, .974, .840

72 -.586, .698, .958, .293, .976, .855, -.848, -.851, .502, .496, .919

73 -.720, .670, .713, .157, .704, .500, -.562, -.201, .795, .536, .972

74 -.717, .658, .689, .642, .539, .934, -.995, -.831, .883, .567, .925

75 -.119, .639, .864, -.564, .952, .927, -.680, .973, .575, .645, .887

76 .411, .572, .951, -.556, .990, .467, -.606, .976, .497, .960, .792

77 -.147, .748, .888, .217, .572, .282, -.994, .180, .100, .977, .801

78 -.252, .696, .844, -.588, .841, .769, -.971, .996, .810, .991, .840

79 -.217, .730, .880, .217, .572, .274, -.994, .114, .100, .977, .801

80 .260 .584, .921, -.564, .998, .504, -.606, .973, .497, .960, .793

81 -.462, .600, .845, .649, .411, .226, -.450, -.863, .951, .500, .917

82 -.512, .711, .551, .746, .402, .924, -.100, -.748, .893, .600, .917

83 -.374, .736, .844, -.544, .994, .836, -.271, -.559, .905, .470, .834

84 -.720, .670, .797, .166, .704, .500, -.562, -.281, .795, .518, .972

85 -.703, .744, .696, .166, .699, .500, -.568, -.172, .484, .688, .914

86 -.103, .695, .864, -.493, .983, .507, -.927, .744, .998, .974, .840

87 -.538, .721, .878, -.559, .491, .921, -.991, .936, .940, .996, .888

88 -.579, .744, .989, .180, .839, .965, -.997, -.5.15, .462, .536, .902

89 -.538, .668, .878, -.601, .491, .922, -.991, .922, .940, .996, .925
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90 -.187, .753, .925, -.564, .919, .380, -.591, .998, .570, .963, .793

91 .191, .654, .888, -.564, .956, .499, -.606, .973, .497, .960, .803

92 -.425, .766, .740, -.540, .666, .912, -.383, .738, .997, .412, .849

93 -.412, .718, .888, -.550, .992, .458, -.991, .973, .940, .996, .884

94 -.222, .584, .702, -.154, .349, .997, -.992, .965, .785, .890, .870

95 -.291, .579, .541, -.101, .348, .986, -.994, .959, .851, .828, .870

96 -.462, .600, .845, .649, .411, .226, -.450, -.863, .978, .500, .917

97 -.149, .713, .863, -.620, .967, .790, -.361, .194, .985, .600, .841

98 -.125, .552, .772, .180, .597, .443, -.786, .134, .905, .803, .844

99 -.107, .696, .864, -.372, .983, .530, -.916, .873, .722, .974, .840

100 -.425, .766, .740, -.535, .721, .912, -.383, .707, .997, .412, .849

Table 6.4: Solutions of Example 3.
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Chapter 7

Conclusions and Future Scope

In this chapter we have given the conclusions of the thesis and the future scope of the

research. This chapter is organized as follows: Section 7.1 gives the conclusion and

Section 7.2 gives the future scope.

7.1 Conclusions

In this thesis, we have developed evolutionary multiobjective approaches to construct

desired Boolean functions having the best trade-offs among their properties. We have

also included a new concept of biasedness in our method(chapter 5) and got suc-

cess to get those functions that could not be possible by the method without biased-

ness(Chapter 2). Apart from construction of Boolean functions, we have also developed

a new method based on NSGA-II to solve a set of linear inequalities. The primary aim

of my research work has been to develop new evolutionary methods by using heuristic

technique to construct Boolean functions by optimizing their properties and to solve

a system of linear inequalities. In Chapter 1(Introduction), we have given necessary

back ground related to our work to understand the thesis. Also,in this chapter, we

have briefly described the Boolean functions and their properties, and a comprehensive

literature review related to our work is given. In Chapter 2, evolutionary multiobjec-

tive approaches is developed based on two objective nonlinearity and resiliency and in
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Chapter 3, evolutionary multiobjective approaches is developed based on 2 objective

nonlinearity and autocorrelation to construct balanced Boolean functions having the

best trade-offs between the properties respectively.

In Chapter 4, Evolutionary multiobjective approach is developed based on 3 objectives

nonlinearity, resiliency and autocorrelation to construct balanced Boolean functions.

In Chapter 5, the concept of biasedness is introduced in the proposed method to get

the desired Boolean functions of 7 and 8 variables. Observe that such functions could

not be constructed by the method developed in Chapter 2.

In Chapter 6, we have developed a method based on NSGA-II to solve a general system

of linear inequalities. The main advantage of using NSGA-II is that multiple solutions,

if exist, of a problem are obtained in one single simulation run.

7.2 Future Scope

The following areas of future work have been identified.

1. extansion of research work contained in this thesis.

2. Development of new heuristic methods for construction of Boolean functions and

S-boxes to improve their cryptographic properties.

3. Development of future methods should further aim to simultaneously optimize

multiple cryptographic properties which will be dependent on the limitations of

property combination co-existence.

4. New methods for constructing strong Boolean functions and s-boxes which are a

combination of heuristic techniques.

5. extension of the method discussed for the system of linear inequalities to the

system of nonlinear inequalities
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