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ABSTRACT

Small strain one dimensional consolidation theory, based on many simplified
assumptions is applicable effectively to thin layers only. Theory of large or finite strain one
dimensional consolidation takes into account the self weight of soil, variation of void ratio,
compressibility and hydraulic conductivity and offers a generalized approach for
consolidation of a homogeneous soil type. These attributes make the theory capable of
predicting the settlements of soft soils such as the deposits of dredged materials’ mine
tailings under self / overburden loads at their disposal sites and also the consolidation
settlement of thicker layers of usual soils. Thiswork presents a novel explicit time marching
numerical model based on finite volume method with quadratic three point Lagrangian
interpolation function. Model takes into account the geometric non linearity of the
governing egquation and material nonlinearity of the constitutive equations. Unlike the other
numerical models, such as finite element method and finite difference method, this model
accounts for the continuity of fluid flow (mass conservation) automatically due to
conservation specific formulation of the model at discrete control volume level. The
conservativeness and boundedness of the numerical scheme makes the model solutions
feasible and stable. The accuracy of the model is maintainable to the level of third order.
The time step restrictions are not very tight and depend on consolidation induced velocity
and the size of the discrete control volume. The boundary conditions of consolidation for
drained and undrained boundaries are presented in terms of void ratio. The initia
equilibrium distribution of void ratio due to self load and a pre-existing overburden pressure
are determined with the help of quadratic interpolation on data of compressibility
constitutive relation. Comparison of the model solutions with analytical and other numerical
models affirms the accuracy and efficiency of the model. A parametric study on
consolidation behaviour of soft soil having initial void ratio ranging from 3.2 to 2.4, shows
amost linear relation of settlement and square root of time up to 80% average degree of
consolidation. Model has further been tested on experimental results of consolidation of

thicker specimens of 40 mm and 70 mm thickness and has been found to work well.

Solute transport through porous mediais an important field of research in the context
of geoenvironmental issues. The concerned one-dimensional governing equation is aso a
differential equation of conservation law. An explicit time marching finite volume

numerical model for one-dimensional solute transport in rigid porous media is developed on
[



the pattern of large strain consolidation. The novelty of the model lies in treating the solute
concentrations in liquid and solid phases of the media as combined concentration for
developing the numerical scheme and segregating it into solid and liquid concentrations
during post processing of the solution. The methodology adopted keeps the solute transport
equation linear up to solutions and opens the model at the stage of post processing to
accommodate variety of sorption isotherms such as linear-equilibrium, nonlinear-
equilibrium and nonlinear-nonequilibrium. The model is also set to accommodate the
variation of hydrodynamic dispersion with void ratio and decay reaction of first order. The
solute concentration boundary conditions taken up are; constant concentration for a
boundary with unlimited reservoir, zero concentration gradient for a non-transmitting
boundary and constant flux or reservoir boundary condition for a boundary with small well
mixed reservoir. The interpolation scheme followed is the quadratic upwinding in genera
but at critical situations of high gradient or discontinuity the model adopts the exponential
upwinding scheme with normalized variables. Model verification and checks through
comparative studies with other numerical models show the efficiency of the model and it
requires lesser elements to provide an acceptable solution. The model has further been
extended to one-dimensional advection with two-dimensiona hydrodynamic dispersion.
Quadratic interpolation functions for two-dimensional space are derived. The departure from
one dimensional interpolation function is found to be only by a small curvature term which
can easily be accommodated with exponential upwinding scheme aso. Two-dimensiona
model maintains the accuracy level of third order as well. Comparison of results with
exhibits that less number of elements are required in the suggested model as compared to

existing linear interpolation models.

Consolidation induced solute transport is important in assessing the spread of
contaminants in soft deposits of dredged materials and mine tailings as well as in the
compacted clay liners of waste disposal sites. The penultimate chapter of the thesis
describes the synthesis of computational modules of large strain consolidation and solute
transport through rigid porous media to give a semi-coupled numerica model for
consolidation induced solute transport through deforming porous media due to mechanical
consolidation. The coupling of two modules requires additional provision of computation of
Darcy velocity due to existing hydraulic gradient and the consolidation induced Darcy
velocity in consolidation module. Thus computed Darcy velocity is used for computing the
solute transport. Consolidation induced velocity is computed on kinematical considerations



on the basis of reduction in void ratio a each time step as calculated during the
consolidation. It is obvious that the kinematical provision for consolidation induced
advection provides better mass conservation and continuity of fluid flow compared to
computations based on dynamic equation of excess pore pressure gradient. The model
performance has been tested for four types of problems varying mainly in sorption isotherm.
The first one considers the problem of a hypothetical landfill clay liner with linear sorption
isotherm, second is about an experimental observation on kaolinite slurry with nonlinear-
nonequilibrium sorption isotherm, the third one is regarding organoclay modified bentonite-
soil mix liner material and shows the influence of consolidation on design of such a clay
liner with nonlinear equilibrium sorption. Fourth problem is related to two-dimensional
solute transport in dredged materia deposit with linear equilibrium sorption. The
comparison of results with other models affirms the efficiency of the present model. It may
also be inferred that the consolidation induced solute transport is worth considering while
designing a clay barrier systems for waste disposal sites. A limited parametric study on two-
dimensional solute transport for only two parameters, the longitudinal/ lateral dispersivities
and effective diffusion coefficient, reveas that the dispersivities have amost negligible
influence on two-dimensional spread of contaminants, but the influence of effective
diffusion is substantial. Finally, it is concluded that the problems of momentum and mass
transfer with deterministic approach can be dedlt effectively with finite volume formulation
with an advantage of automatic mass conservation and complexity level is less than the

finite and boundary element based numerical models.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

Mounds of dredged materials from waterways, waktaining industries containing
mineral ores, manifest large settlement due to @atation under self weight. The natural
soft clay layers below the foundations of embankis:iend buildings also pose similar
challenge. Proper estimation of primary consolmasgettlement, which is based on finite or
large strain one dimensional consolidation of sdfys, is a challenging task. The
theoretical treatment of this problem involves $solu of nonlinear partial differential
equation belonging to the category of conservatam. The analytical solution to this
equation is available only with certain constraiatel the numerical solutions like finite
difference, piecewise linear model and finite elamalso exist in literature. The finite
volume method, as a numerical technique of discagtin method, works well for solution
of all types of conservation laws. It is based wegral formulation and keeps some of the
important features similar to the finite elementtimoel. The additional feature, i.e., local
conservativeness of numerical fluxes at each cbmotume, makes this method more
special and attractive. The present work primaailms at developing a numerical model of
large strain consolidation equation based on thaefivolume method with three point
Lagrangian interpolation function. The accuracytted method as well as its versatility in
accommodating various initial and boundary condgichas also been assessed. The
accuracy of the void ratio based finite strain direensional finite volume formulation of
consolidation, has been verified with experimemedults of consolidation of somewhat
thicker specimens of compacted clay. The other péritvork describes consolidation
induced solute transport. The equations of contaminsolute transport with sorption and
decay terms also belong to the class of differeet@@ations of conservation laws and can
be cast as finite volume formulation. The preseatkancludes the extended application of
large strain consolidation to consolidation inducgmlute transport with one and two
dimensional spread in clayey systems followed didation, advantages and limitations of

the proposed model over the existing numerical nsode



The issue of the movement of dissolved contaminatdsthe ground and ultimately
to ground water reserves, from waste disposalitiasillike engineered landfills, is still
significant to researchers. This geo-environmeptablem has attracted the interests of
many researchers for developing various improvementwaste disposal technologies to
control and prevent the ground water contaminatidfater in a pool of waste acts not only
as carrier of contaminant solutes, but plays alsangportant role in transformation and
degradation of the waste and thus accumulates ofdree solutes progressively with time.
When the landfills are active and open to predijita formation and migration of leachate
is enhanced and it becomes important to restrieteifiress of leachate below the ground
surface to save ground water from contaminationmit@ate the problem of open landfills,
seepage barriers are employed to contain the astagte isolated from the ground water
system. The engineered landfills are generally madeolate the waste from the ground
system with two barriers, one at the bottom anemé#t the top. The bottom barrier liner is
laid before placing the waste load and the topidarcap is formed when the waste
emplacement fills the landfill fully. Thus the wasis exposed to precipitation till the
emplacement is complete. The base seepage baasdo lesist the advection of leachate to
ground against the pooled head, subjected to maxiamd chemical stresses as well as the

diffusion of contaminants into the ground.

Waste disposal facilities widely use the compobgerier system consisting of an
impermeable thin geomembrane (GM) over a compactag liner (CCL) with low
permeability. Geo-synthetic clay liners (GCL) alamein addition to CCL are an alternate
low cost barrier system. The underlain earthenrlaypport to impermeable membrane or
low permeable GCL improves the integrity of therlmarsystem that may take care of any
defect appearing sooner or later in the GM or GCherefore, in most of the cases
composite system of clay liners is the preferredigie of seepage barrier at the base of
landfills. In many of the areas where soft clapats are available locally, the clay would
cost low and may be used for CCL. Wastes from nalngrocessing such as red mud from
alumina and crushed mudrocks may be an equivaldrdtitute where natural soft clay is
not available in the nearby region. However, usesoth substitutes are still under
investigation. Another advantage with use of sddiyas CCL is its adhesiveness which
makes a good bonding with the geomembrane that tadtse integrity of the composite

barrier.



Fine-grained soils as barrier material are subjetdevaste load depending upon the
capacity of the landfill. The waste load may vargni heavy to very heavy for ‘simple
dump’ to ‘super dump’ landfills. This mechanicahtbcauses the consolidation of the soft
clay barriers. It is difficult to observe the cohdation settlement of the CCL as it is
concealed well below the mask of waste. HoweveacHate collection system (LCS)
installed below the bottom barriers of landfill cka used for the water balance analysis
through the barrier. The consolidation of soft clener system is evident from the water
balance analysis that identifies the ‘consolidati@ter’ component.

The consolidation of CCL is not much known partly the quantitative
information is limited, but it has been envisagedttthe consolidation certainly influences
the contaminant transport through these barriecan definitely be inferred that more is the
consolidation more will be its contribution to tle®ntaminant transport. The barriers
undergo one-way consolidation with the pore fluidovement towards LCS; this
consolidation induced advection in some cases reayl o unanticipated transport of
contamination. It is difficult to acquire field gabn consolidation of clay barriers because of
its inaccessible location in the landfill systefkis situation has prompted to mathematical
assessment of consolidation and coupled solutspgaahof clay barriers rather than going
for an experimental investigation. The current wask an attempt to investigate the
consolidation and coupled contaminant transporbufin a clay layeby the numerical
mathematical model based on finite volume method.

Studies on spreading of contaminants in naturatreated open channels employ
advection-dispersion theory. The same theory witle lextension of sorption and decay is
used for analysing contaminant expansion in growater flow through incompressible
granular soils. The theory considers the steadie standition of flow. The engineering
practice still employs the above theory for thelgsia of contaminant transport through
clay barriers. But, the behaviour of clay barriéiféer far from granular soils. Clay minerals
are more active to sorption due to high ion exclkaogpacity and have time dependent
consolidation characteristics. These propertiesclay make the contaminant transport
through clay barriers more complicated comparedgr@anular soils. This makes clear
distinction between the contaminant transport tghotigid porous media (granular soils)

and that through deformable porous media (clays).

In the recent past, attempts were made to gener#ie theory of contaminant
transport in rigid porous media so that it can udel the contaminant transport through
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deformable porous media as well. The governing lsmbiequations include finite/ large
strain consolidation and solute/ contaminant trartsprhe preliminary analytical solution
of these equations have been attempted and areagplonly for limited conditions. In
recent past, attempts have been made to solve ¢hes¢ions through finite element method
for general conditions. But, the solution is lintiteo linear sorption model and there is no
explicit mention of conservation of mass (pore wated the solute) either at the element
level or for the entire system. Alternatively, iahbeen attempted to tackle the issue by
determining consolidation induced velocity at aakien and time and use it with the
advection-dispersion-Reaction (ADR) equation. Thiecpess has been termed as semi-
coupled approach. This recent research emplogewise linear numerical model for large
strain consolidation and uses dual Lagrangian frveonle for solids and fluid elements
separately. The model accommodates the soluteptransquations with linear or nonlinear
sorption isotherm. However solute mass balanceihé®e observed separately. The solute
distribution differs much from assumed linear digition and requires more number of
elementdor fluid than that for solid. Furthermore, the @a®®d linearity of void ratio over
the elements also needs relatively more numbeteofients to get better results regarding

consolidation.

The next section describes in brief the work byiowes researchers concerning the
finite/ large strain consolidation of clays andoatolute transport in rigid and deformable
porous media including the above descriptions. & ffelevant works of solute transport in

open channel flow with finite volume formulatioreaalso discussed.
1.2 HISTORICAL BACKGROUND

The present section deals with the literature kgwea finite strain one dimensional
consolidation and solute transport through poroesdien In particular, it draws attention on
mathematical modelling of finite strain consolidatias well as coupled solute transport.

Theoretical investigations on one dimensional cbdaton of soils may be grouped
into two categories i.e. small strain theories &nie or large strain theories. The pioneer
work of small strain theory of one dimensional aditi&tion due to mechanical loading was
introduced by Terzaghi (1923) along with the concep effective stress. Later, many
investigators attempted to generalise this thegryetaxing few of its restrictions such as
material linearity, homogeneity, constant comptabgi and permeability,
incompressibility of solids and fluids, negligib&elf weight, no creep and small strain.

Schiffman and Gibson (1964) developed the goverreggation for one dimensional
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consolidation assuming variable permeability aneéffocient of volume compressibility
with the depth as per known functions. Davis amyrRond (1965) gave the governing
equation for nonlinear consolidation with the asgtiom of a constant logarithmic relation
of void ratio and effective stress. Basak (197@oreed a governing differential equation
independent of material linearity which accepts aoil ratio-effective stress-permeability
relation but assumed the existence of small staith no creep. Lekha et al. (2002) gave
analytical solution of the equations of Basak ()9ft® a few particular relations of void
ratio-effective stress and void ratio-permeabilitie to vertical consolidation.

Few analytical solutions to large strain consolmatequation have also been
reported, but these solutions assume certain cgstrs on material property. Gibson et al.
(1967) provide one simplified solution with condtaalue of a parameter which depends
on current value of void ratio during consolidatidie and Leo (2004) reported that the one
dimensional large strain consolidation equatioregivby Gibson (1967) in terms of void
ratio can be converted into terms of excess passpire and gave analytical solution to this
equation with assumption of constant coefficienvolume compressibility throughout the
consolidation process with reducing void ratio. ¥teal. (2005) presented a semi analytical
solution to Schiffman and Gibson (1964)’s differahéquation with excess pore pressure as
dependent variable. This solution assumes lineaati@ of permeability and coefficient of
volume compressibility with depth. Further, genised solutions to large strain
consolidation have been attempted by various imyastrs through several numerical

techniques as described next.

McNabb (1960) presented a generalised equatiolafge strain consolidation using
void ratio as the governing parameter. The the@gsucoordinate system of ‘reduced
solids’. Restrictions on material linearity is rewed in this solution. Mikasa (1965)
proposed another theory of large strain consobdatiking the Eulerian strain as governing
parameter. Both the theories omitted the movemédnsatids. Gibson, et al. (1967)
combined these two approaches and proposed a goyezguation derived in terms of
convective (or moving) boundary coordinates, bespnted the final equation in terms of
material (reduced solids) coordinates. Most ofllige strain consolidation studies are in
the context of designing the waste ponds for tgdiof mining industries. Somogyi (1979)
suggested a governing equation of large strainatolagion in terms of excess pore water
pressure with respect to reduced material cooreirfathiffman et al. (1985) proposed an
implicit finite difference numerical model to soltiee equation of Somogyi (1979). Cargill



(1982, 1983, and 1984) proposed another goverrgngten for large strain consolidation
in terms of void ratio using reduced material cameites and gave its solution employing
explicit finite difference technique. Olson and Ha(l979) highlighted the limitations of
classical one dimensional consolidation and useitefidifference solution by taking into
account time dependent load, large strains andlinear material properties. The spatial
variation of permeability was however neglectedldvang this study, Yong et al. (1983,
1984) presented a piecewise linear numerical mddhed.proposed governing equation is in
terms of excess pore pressure and its variatioh gftatial coordinates and time. The
solution procedure is the explicit finite differendechnique and spatial variation of
permeability is taken into account. This approaeluires updating of all static and
kinematic variables at each time step. FeldkamBgLpresented the solution of large strain
consolidation equation of Gibson et al. (1967) nucadly by finite element method using
Galerkin weighted residual approach. Crank-Nicholéone stepping was used with the
provision of halving the time step successively ¢éonvergence. Townsend and McVay
(1990) published a classical research paper thatptes most of the past studies. It
concludes that there is good agreement among tdtgeof all the numerical models at
guiescent and final consolidation but the diffeesappear at the stage of filling level. It is
further added that the piecewise linear numericatleh is most versatile in handling the
various boundary conditions. Fox and Berles (199@yented a numerical model for large
strain consolidation and named it as Consolida8ettlement 2 (CS2). The dimensionless
piecewise linear finite difference numerical modesks Eulerian (convective) coordinate
system and takes into account the self weight of sative velocity of solids and fluids,
variation of hydraulic conductivity and compresbipi due to consolidation. The
constitutive relations of void ratio and effectisress as well as void ratio and hydraulic
conductivity may be used in the form of discreteadaoints. Bartholomeeusen et al. (2002)
performed a number of experiments on settling cokinDifferent heights of columns of
river bed sediment were used in this study andese¢int was observed due to self weight
only. The results were used for comparing the perémce of various numerical models.
The study concluded that all the predictions ouverege the initial settlements below the
level of 1kPa or time up to about 3 days and markesl disagreement to rate or time
dependence of void ratio-effective stress cormatatiRecently, Ito and Azam (2013)
presented solution of large strain consolidatioobfam in terms of excess pore pressure
obtained by the combination of the equation by Kap(970) and Somogyi (1980)

equations. They used general purpose solver of RidEwed as FlexPDE based on finite
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element method. The constitutive equations coinglatoid ratio with compressibility and
hydraulic conductivity were chosen fropublished data on various tailings. The problem
geometry was comprised of 10 m high vertical stgrelpvith impermeable bottom and
permeable top for the case of consolidation une#rvgeight. The results show that the
predicted settlement of top of tailing with timeimsgood agreement with the measured data

of Jeervipoolvarn et al. (2009a).

Applications of finite volume method are found ibuadance in the conservative
transport processes through convection and diffusssociated with heat and fluid flow.
There are two discretization methods cell-vertex aell-centred, however the present
description focuses on cell-centred finite volumaarfework. Godunov (1959) suggested a
conservative numerical scheme for solving the hyplea PDE (Riemann problem) which is
the basic scheme that can be taken as first arder ¥olume method and forms the base for
higher order methods. Initial attempts of finitelume method in computational fluid
dynamics used the frame of central differencingesth and linear interpolation for face-
values, however the poor performance of the methrodransportiveness lead to upwind
differencing (Versteeg and Malalaseker2007). Later hybrid differencing came into
existence due to Spalding (1972). However, Mc DbrA971) introduced the finite
volume method in the field of numerical fluid dyniasr Mac Cormack and Paullay (1972)
extended the method to solve the time dependentdtmensional Euler equation of fluid
motion and Rizzi and Inouye (1973) presented itth&r extension for three dimensional
flows. The method came more into use for transpostesses in heat transfer and fluid
dynamics after the Power law differencing schemePlbyankar (1980). Later the higher
order interpolation schemes were developed to exhdhe accuracy. The convection
dominated unsteady transport process during nuaiesiglutions posed the problem of
unphysical numerical diffusion and oscillation. Fsuch schemes, various researchers
proposed the use of flux limiters and normalisediaides to maintain the required
boundedness (Waterson and Deconinck, 2007). A fetabhe such total variation
diminishing (TVD) flux limiters are by van Leer (18, 1977), van Albada et al. (1982),
Osherand Chatkravathy (1984), Sweby (1984), Ro85)19%askell and Lau (1988), Koren
(1993), Lien and Leschziner (1994), Waterson andobmck (1995), Zhou el al. (1995).
The various flux limiters are particularly good @&oproblem but no one is applicable in
general to all physical problems.



Normalised variable (NV) schemes use linear, quadaa cubic interpolations for
face values of control volumes, however to asaeit@undedness condition, it switches to
linear schemes at the critical location of NV dagr Leonard (1979) proposed the explicit
third order accurate Quadratic Upstream Interpmtafior Convective Kinetics (QUICK)
scheme for steady flows and QUICKSET (QUICK withtilBated Streaming Terms) for
unsteady flows for convective transport. Furtheromard (1987, 1988) improved the
QUICK scheme and gave the NV scheme SHARP (Simjgéa Resolution Program) based
on EULER (Exponential Upwinding or Linear Extrapgda Refinement) — QUICK
algorithm. Gaskell and Lau (1988) also contributedfurther development in this NV
method and proposed the alternating direction ioitp{ADI) scheme, SMART (sharp and
monotonic algorithm for realistic transport). Zhu (1992) published another quadratic
interpolation NV scheme HLPA (Hybrid Linear/ Parabdpproximation) and Choi et al.
(1995) proposed a cubic interpolation scheme, SMBRTSMART Efficiently Revised);
both the schemes and the scheme SHARP give conipaesiilts.

Subsurface and ground water is prone to contanomatiie to unplanned disposal of
municipal wastes, hospital wastes, liquid wastesnfrindustries etc. as well as non-
engineered landfills and other repositories. Kastwad Parmar (2006), while discussing on
pollution management, mentioned that the waterugolh management in developing
countries is still quite behind the mark of accefgalevel. This has attracted many
researchers to work on design of suitable claydirier waste disposal sites as an effective
barrier to keep the supporting ground and the gltouater reserves uncontaminated. The
two books Scheidegger (1957) and Collins (1961tules the review of most of the early
attempts on the study of flow through porous medra transport including the
phenomenon of dispersion. Schlicter (1905) notiteel dispersion of tracer during its
transport through ground water flow. After a loggp Wentworth (1948) developed the
mathematical theory of dispersion. Gradually, theoty was shaped tequation of
hydrodynamic dispersion and was finally referred to aglvection-dispersion equation. The
major contributors to this development are Taylk853), Scheidegger (1954), Scheidegger
(1961), De Josselin de Jong (1958), Ogata(1958Hn&a (1959), Bear (1961), Harlemann
and Rumer (1962) and Bachmat and Bear (1964). &eawtrusion into nearby aquifers
remained the prevalent problem which was modelbedsblution. These methods used the
ground water sand-tank model, plug or piston floadel, and physically analogous models
like Hele-Shaw or parallel plate model (viscousid#) and Electrical Network model

(Wang and Anderson, 1995). The analytical solutimnghe mathematical models are very
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restrictive and assume the medium to be homogenaadsisotropic with simplified
boundary conditions. The advent of high speed aligibmputers since 1960 revolutionised
the approach of groundwater studies and numericzdets became the most favoured
choice (Wang and Anderson, 1995).

Buckley and Leverett (1942) presented the equafitwnwater movement in olil
reservoirs with the concept of ‘immiscible displamnt’. The analytical solution to the
equation neglects the influence of gravity and ltajty. The numerical methods came into
use in 1950s in the field of flow of petroleum ihetoil reservoirs overcoming the
limitations of analytical solutions of the equatiby Buckley and Leverett (1942). West et
al. (1954) applied finite difference method to #gations of flow of gas and oil through
petroleum reservoirs. A few other contributorste field of numerical methods are Fayers
and Sheldon (1959), Douglas et al. (1958) and @ke et al. (1966). Ground water flow
and transport of solutes has been modelled usmgumerical techniques finite difference,
finite element or methods of characteristics. Remladl Sunada (1970) gave finite difference
solution, Pinder and Cooper (1970) used methodhafacteristics. Few other researchers of
relevance are Oster, et al. (1970), Guymon (19if)Bredehoeft and Pinder (1973). Initial
researches assumed the solutes as non-reactirogritrand later the reacting solutes
showing decay/ sorption/ desorption were also sthidRubin and James (1973) presented
weighted residual finite element method to predectncentration changes of non-
conservative solutes during flow through porous isedhereas Lai and Jurinak (1971) as

well as van Genuchten et al. (1974) used finiteedéhce method.

Issues of anthropogenic environmental pollutiomegdiimportance much earlier in
1960s. In the beginning, the main concern was tueistrial discharges of liquid and
gaseous pollutants and their adverse effect oraseinivater and air. Later, ground water
contamination also attracted attention of reseasclieie to pollutants like waste water
stabilization plants, sludge lagoons, runoff froamrtyard, septic tank leaching fields or soak
pits or pit privies, deep well disposal of induskrwastes or effluents of treatment plants,
leachates of decomposing solid wastes of open dumgstary landfills, solid waste
composting sites, industrial refuge and treatméanitpsludge (Zanoni, 1972). Andersen and
Dornbush (1967, 1968) performed study on the wagetity of test wells constructed in the
nearby region of dump area of city Brooking, Solthkota, USA. The study observed
adverse influence particularly in the chloride @t which was fifty times more than that
of fresh water. Many such other observations, €grfwright and Sherman (1967), Apgar



and Langmuir (1971), Freeze (1972) and Freeze dair (1979) lead the field to further
research . Freeze (1972) broughthie numerical analysis of contaminant (non reacive

non dispersive) transport in the ground water floadelling.

The threat of contamination of ground water resewas acknowledged extensively
by researchers and this prompted them for devejoffia ways and means to contain the
contaminated liquids and gases. The economicaleffiedtive earthen/ natural barriers for
landfills, waste impoundments etc. have drawn tiention of several researchers. Fuller
(1980) suggested the ways to reduce permeabilisoibfat refuse disposal site to counter
the migration of pollutants to ground water. Cangivt et al. (1981) suggested that the size
of waste disposal facilities should be guided by #ttenuation capacity of the underlying
geologic material even though the waste is isolétedugh a low hydraulic conductivity
liner of fine-grained soil. Fine-grained naturabhesive soils exhibit low hydraulic
conductivity and therefore have great potentialaofing as barriers for containing the
migration of contaminants to ground water. Butsialso noteworthy that the geo-materials
exhibit large variation in its sorption/ desorpticsponse to various contaminants and wide
variation in the representative property, distribatcoefficient Ky). Arnepalli et al. (2010)
describes that the usual batch tests may not peothd real field value of distribution
coefficient of a contaminant and geo-material-imitiobg agent system. Pathak, et al.
(2014) presents the critical review of the issud aarrelateKy with electrical resistivity.
Ohrstrom et al. (2002, 2004) studied experimentiéildypenetration of dye in semiarid plots
of different physiographic shapes and inferred thatvariable responses can be modelled
as a random cascade process. Further, Ohrstrom(20@4) experimented on the transport
of dye and salt tracers in a plot of sandy loam albskrvations were recorded at various
timings in different space locations. The resultsved the preferential flow pattern of the
solutes. In unsaturated soils, the transport peocesnore complicated and the methods
based on stochastic probability have been triednéthet al. (2015) proposed diffusion
limited aggregation (DLA) model: a random walk mbde which model parameters are
optimized with genetic algorithm. The uncertaintly diffusive process has also been
analysed using semi-infinite probability distritartiand Monte Carlo-generated processes
(Adrian et al., 2002). Keshari (2014) describes fbeent trends in flow through porous
media and mentions that the numerical methods enfigid are method of characteristics
(MOC), finite difference method (FDM), finite elemtemethod (FEM), boundary integral
equation method (BIEM) and hybrid methods. Eldhal &®ao (1997) presented the

numerical model for two dimensional contaminannsgort through porous media using
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dual reciprocity boundary element method. Youngaét (2000) proposed Eulerian-
Lagrangian boundary element formulation and satutdd advection-diffusion equation.
The other numerical model by Mategaonkar and EI§p011) for two dimensional
contaminant transport in an unconfined aquifer asdal on mesh free point collocation
method. The flow through porous media finds apgiticain modelling the hydrology of a
watershed also; tracers are used to capture tbemation on surface and subsurface flow of
water (Singh et al., 2002). Havis et al. (1992)spreed the concept of mixing zone depth to
analyze the partition of contaminants existing loe ground, infiltrating into the ground and
overland flow during precipitation. The analysisre€tharging of subsurface ground water
systems is one more area where flow through paredia applies. Keshari and Koo (2007)
presented the influence of subsurface thermal lprdfstribution on the ground water flux.
The paper describes a finite difference numericaldeh of convection-diffusion heat
transport using Mac Cormack scheme and shows libakemperature profile can affect the
ground water flux by £18%. The studies on flow ammhtaminant transport through fine-
grained soils, however are limited due to compleRaviour of soils attributable to diverse
mineralogical character and high specific surface.

The lead role of fine-grained soils in designing tharriers of waste disposal facilities
prompted the researchers in the field to look thivissue of bottom liner as well as the top
covers.Viswanadhamand Rajesh (2009) and Rajesh afislvanadhan(2010) mention the
performance of various cover systems subjectedifterehtial settlement artificially in a
centrifuge using hydraulic trap-door system. Diwtaal.(2012) revealed the influence of
geomembrane on deformation behaviour of clay b#sedfill covers. The landfill design
requires insight of settlement behaviour of MuratigSolid Waste (MSW) and the
interactive settlement of the supporting liner.g&ivmar Babu et al. (2010, 2013) proposed
a constitutive model for prediction of settlemehM&W and also a closure plan of landfills
based on reliability analysis of design paramet&sddy et al. (2013) presented the
movement of leachate in the MSW with anisotropia dmeterogeneous permeability
distributions. Crooks and Quigley (1984) presemts physical model study of a field
problem of salt migration from the waste landfillundisturbed clay situated below. Yeh et
al. (1994) analysed the wicking effect in multigeyer clay liners by FEM where the
contaminants spread more in lateral directionst&rfiaces. Srivastva and Brusseau (1996)
described the non ideal solute transport/ reactorgaminant using FEM numerical model
and explained the spread of solutes through spatiditemporal moments of concentration

distribution. Kartha and Srivastava (2006) presetie FEM simulation of solute transport
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from a landfill in vadose zone and suggested tleakihrough curve and spatial distribution
of contaminant. Gillham et al. (1984) described tmeasured values of diffusion
coefficients for two nonreactive and one reactiolites in various mixes of bentonite and
silica sand. Rowe and Booker (1984, 1985 and 1®®&Eloped finite layer theory for
solution of single solute transport through non-bgeneous soil as for one, two and three
dimensional cases. Acar and Haider (1990) predeate analytical solution for solute
transport through clay barriers. All such models #re milestones in the field, but the
methods are based on transport of single solutegid porous media along with other
idealisations and assumptions as required for thhematical solution such as contaminant
concentration to be dilute, sorption characteristibe linear and reversible.
Physicochemical (osmotic consolidation) and meatani (effective stress
consolidation) behaviour of fine-grained soils ughces the flow through it considerably
and makes the flow response much different thantttraugh the rigid porous media. The
existence of osmotic flow through natural aquitands been noticed and reported by many
researchers including Hanshaw and Zen (1965), Mad Fritz (1981) and Neuzil (1986).
Kemper and van Schaik (1966), Kemper and Rolli®6¢), Greenberg et al. (1973), Elrick
et al. (1976). Few other references describe tfextedf osmotic flow on transport of salt
through clay system (aquitard). Detailed studyolume change of clays due to pore fluid
concentrations may be attributed to Bolt and Mil{@B55), Bolt (1956), Warkentirt
al.(1957), Aylmore and Quirk (1962), Blackmore avdler(1962) and Mesri and Olson
(1971). Barbour and Fredlund (1989) presented coeabinfluence of osmotic flow and
volume change of clays and referred itasaotically induced consolidation or osmotic
consolidation. Other researches on the chemo-mechanical consohdare due to Yeung
and Mitchell (1993), Kaczmarek and Heuckel (1998)n Impe et al. (2002), Gens (2010)
and Witteveen (2012). The principal focus of theseks lies on consolidation of clays due
to entry of solutes into the pore fluid causingdyr@ increase in concentration; however the

mechanical consolidation is either ignored or Itrrgted to small strain consolidation.

Goodall and Quigley (1977) published the observatiof pollutants below two
landfills founded on silty clays and showed that thigration of the pollutions do not match
with the calculated seepage fronts. With these rebtens, the idea of mechanical
consolidation contributing significantly to moveniesf contamination, got initiated. Few
more similar observations affirming the role of mawgical consolidation in solute transport,
include Kim, et al. (1997), Bonaparte and Gross989 Moo-Young, et al. (2004).

However, all these field and laboratory observaigmovide qualitative information on
12



enhanced leakage flow than the estimated seepagdHtough clay barriers, but there is no
exclusive field experimental result on the quantitfy consolidation induced flow and

coupled solute transport.

Schrefler et al. (1994) and Schrefler (2001) haliscussed on mechanical
consolidation induced contaminant transport anctritesd a sophisticated formulation of
heat and multiphase flow through a partially sakdgorous media. The proposed theory is
based on microscopic thermodynamic balance andasempic balance of mass, linear
momentum, angular momentum and energy. Howevdrdstormation has been assumed
to be small. Mechanical consolidation induced aonhant transport has been investigated
by many researchers in the context of capping ofarninated sediments in waterways to
isolate it from the flowing natural water. Loroyt al. (1996), and Potter, et al. (1994)
reported such investigations on consolidation amdaminant transport based on centrifuge
and finite element numerical modelling. Gibson,akt (1995) presented the theoretical
development on consolidation coupled solute trarispoth concept of large strain
consolidation. Arega and Hayter (2008) presentedntiimerical solution to coupled large
strain consolidation and contaminant transportdapping of contaminated sediments in
water bodies. The solution uses finite differencagimad for consolidation and finite volume
method for solute transport. Alshawabkeh and Ralip@06) reported the consolidation
induced solute transport by solving Terzaghi’s cfidation equation along with solute
transport equations using finite difference forniola The solutions are reported for
consolidation and swelling of clays under singld double drainage conditions. Case of a
composite barrier overlain by impermeable geomendravas approximated by single
drainage condition which shows faster solute trartspnd 95% reduction in breakthrough
time. All these investigations are remarkable buitéd to small strain consolidation.

The governing equations by Gibson, et al. (1995héspioneer attempt to describe
the finite or large strain consolidation inducetus® transport. Smiles (2000) described the
water flow in saturated swelling clays and contanintransport in unsaturated porous
medium. The work establishes that the use of nateviordinate system makes the analysis
and physical interpretation simple. Smith (2000¢sented the derivation of large strain
consolidation and coupled solute transport equatiaith linear reversible sorption
isotherm. Analytical solutions for a hypotheticahdlfill case overlying an aquifer was
presented. Assuming a quasi-steady-state probleensolutions were presented for the
solute transport through fluid phase only and tglodluid and solid phases of the soil
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matrix. Further, the coupled consolidation and ®olmansport equations were converted
into material and reduced solid coordinate systiEmthe solution. Peters and Smith (2002)
reaffirmed the equations derived by Smith and slibtat these equations are equivalent to
those of Smiles (2000) for a fully saturated cda@rther a solution was presented for a
problem of hypothetical landfill liner for the casef no deformation, small deformation and
large deformation. It was concluded that the bteakigh time is lowest with large
deformation and highest for no deformation, the Isteformation result lies in between.
The solutions were obtained by using explicit gnidifference numerical method. The
analysis was simplified with the assumptions thatgelf weight of soil is negligible, initial
void ratio is constant throughout the space, mechadispersion is negligible and diffusion
coefficient is constant and independent of voidorafox and co-researchers (2007 a, b)
have contributed significantly to the field of cohidation induced solute transport. Fox
(2007a, 2007b) presented development of a numemcalel (CST1) of solute transport
through deforming saturated porous media, the din&t describes the numerical model and
the companion paper details its verification ando&s. Large strain consolidation is dealt
with the piecewise-linear model CS2 (author’'s earwork, Fox and Berles, 1997), with
minor addition of the provisions of time dependading, effect of unload/ reload and
externally applied hydraulic gradient. Solute tgors takes into account the advection,
diffusion, longitudinal and transverse dispersilimgar equilibrium sorption and first order
decay reactions. The spatial and temporal adveslecity is taken as algebraic sum of
seepage velocity contributed by external hydrabkad and the consolidation induced
velocity. Motions of fluid and solid elements arensidered in two separate Lagrangian
fields. The model is very versatile and can accodmi® various initial and boundary
conditions of consolidation and solute transpooix Bnd Lee (2008) extended the model for
variable effective diffusion and non-linear, norugitprium sorption model and named it as
CST2. Lee et al. (2009a, 2009b) described expatmheesults of consolidation induced
solute transport and observed close agreementsimithlated results of the numerical model
CST2. Lewis et al. (2009) presented an exhaustigearpetric analysis of coupled
consolidation and solute transport through compdaidfill liner system. The analysis uses
finite element numerical solution to the couplediaen of large strain consolidation and
solute transport. The publications by Fox, Aregad drewis are the most recent
contributions to the development of numerical medi@r consolidation coupled solute

transport through deformable porous media.
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1.3 THESISOUTLINE

The present thesis focuses on the following points.

i.  The critical review on numerical and analytical ralsdof one dimensional large
strain consolidation and development of finite vo&unumerical model.

ii. Development of finite volume numerical model of oaad two dimensional
advection-diffusion equation with variable diffusiolinear, nonlinear equilibrium
and non-linear non-equilibrium sorption and fireier decay.

iii.  Development of finite volume numerical model fomsolidation induced solute
transport through deformable porous media.

Iv.  Theoretical parametric analysis of large strain sotidation and consolidation

induced two-dimensional solute transport.

All these issues as covered in the chapters arzided below.

Chapter 2 contains the critical review of numericaldels of Cargill (1982), Arega
and Hyter (2008), Fox and Berles (1997) and otHersone dimensional large strain
consolidation of saturated soil. The chapter furttescribes;

i.  Explicit finite volume formulation of one dimensianarge strain consolidation.
ii.  Treatment of geometric and material nonlinearitgoagated with the large strain
consolidation equation.
iii.  Derivation of drained, undrained and semi-permedimendary conditions and
initial condition of saturated soil in terms of daatio.
iv.  Verification and evaluation of the numerical mod®l comparing the model
solutions with analytical and other numerical metho

V. Parametric study of consolidation of soft clays.

Chapter 3 is about the experimental study on cafeadn of the clay specimens of
20 mm, 40 mm and 70 mm thickness respectively. Zlenm thick specimen has been
tested in usual oedometer and thicker specimens t@sted in specially built mould for the
purpose. Data of 20 mm specimen is used to chaiaethe compressibility and hydraulic
conductivity of the clay and was utilized for numsal analysis of thicker specimens. The

numerical and experimental results are comparedlidate the model.

Chapter 4 describes the development of an exdimite volume model of one
dimensional solute transport equations in poroudiamaccommodating the provisions of

linear equilibrium, nonlinear equilibrium and nav@ar-nonequilibrium sorption isotherms
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along with first order decay. Verification of theodel has been done by comparing the
results with the results of analytical and othemetical models. Problems with the
boundary conditions of constant concentration, zssncentration gradient and constant

mass flux with known initial condition on solutenm@ntration has been dealt with.

Chapter 5 details with the finite volume model depenent of one dimensional
advection and two-dimensional diffusion and dispersof solutes in porous media. The
considerations of sorption isotherms and first prdecay remain same as used in third
chapter. The model validation is presented with gansons of the model results with other

numerical models for all the boundary conditionsrestioned earlier.

Chapter 6 deals with the development of fully eciplfinite volume model for
coupled phenomenon of consolidation and one anddiwensional solute transport, i.e.,
consolidation induced solute transport in deformpmyous media. The numerical model
accommodates all the boundary conditions on voi far large strain consolidation as
stated above and solute transport boundary condisach as constant solute concentration,
zero concentration gradient and constant mass(¥ieX-mixed reservoir assumption). The
validation and advantages of the model are showncdaypparing results with other
numerical results through various example probldrasther, theoretical parametric study is

done on two dimensional solute transport in defagmporous media.

Chapter 7 is the overall summary and conclusioandie study of this investigation
and presents the scope of future studies arisihgfdhis work.
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Chapter 2

FINITE VOLUME MODEL OF LARGE STRAIN
CONSOLIDATION

2.1 INTRODUCTION

Small strain assumption of Terzaghi’'s one dimeraiconsolidation theory restricts
its applicability on such soft soils that may Iikéb undergo substantial vertical deformation
due to consolidation. In addition, the other limidas lie with the desertion of the influence
of self weight of soil and the change in valuesiydraulic conductivity and compressibility
with advancement of the consolidation. Basak e{18l79) derives the governing equation
of consolidation for small strain consolidation hwény relationship of void ratio-effective
stress-permeability. Further, Lekha et al. (1998gpnted its general solution for sand drain
consolidation and analytical solution for a fewtmanar relationships of void ratio-effective
stress-permeability. Zhuang et al. (2005) providetnlinear analysis of consolidation with
a semi-analytical solution. Nadar et al. (2007)ubedl a governing equation of small strain
consolidation with two new coefficient<C{ and «) which describe the changes in soil
characteristics during the consolidation and gé&veumerical solution. However, all these
variations to the Terzaghi’s theory may give gooedpctions for small thickness of settled

soils but they are not suited for soft soils, nepasits or fills.

Finite or large strain theory of consolidation amanes few of the limitations of the
small strain theory and takes into account the wadfght of soil, variable hydraulic
conductivity and compressibility and relaxes thealrstrain assumption. Schiffman and
Gibson (1964) derived the governing equation fonsodidation assuming the hydraulic
conductivity and coefficient of volume change tothe known functions of depth. Davis
and Raymond (1965) assuming a constant logarithelationship of the void ratio and
effective stress, proposed the nonlinear theorgooisolidation. Mesri and Rokhsar (1974)
presented the governing equation of consolidatiod &s numerical solution with the

assumption that compressibility and hydraulic canidity vary with void ratio.

The first general theory of finite (or large) straine-dimensional consolidation was
proposed by Gibson et al. (1967). The finite défewe numerical model presented by

Cargqill (1982) uses the one-dimensional non lirtkaory of finite strain developed in the
17



form of a second order differential equation inrterof material coordinates, to work out the
consolidation of soft clays and fills. In the caoxitef consolidation induced solute transport,
the nonlinear theory of finite strain has also bdereloped by Smith (2000), same as the
theory of Gibson et al. (1967) and has successivegn used in the works of Peters and
Smith (2002), Lewis and Smith (2003) and Lewis kt(a009). These works use the

equation in terms of Lagrangian coordinates andigeothe analytical and semi analytical

solutions with certain limitations and finite elemenumerical solution with its full

generality.

Fox and Berles (1997) presented a piecewise nailinemerical model for large
strain consolidation settlement (named as CS2) odel, like the Gibson’s equation, is
based on the mass conservation and instead ofrteavwcomposite differential equation for
consolidation it uses the basic principles andadgmnts separately to get the settlements
due to consolidation and other related derivablesgglal quantities. Leonard (1988) presents
a conservative finite volume formulation with theeuof quadratic interpolation for field
variables which avoids the stability problems oftcal differencing schemes and gives
quite accurate solutions with much larger grid spgacor the solution of advection-
diffusion equation of solute transport in flowinlyifls. The above formulation has been
followed in this paper to solve the finite straionsolidation equation. It may be noted that
the conservation laws are the time dependent systgmartial differential equations. One-
dimensional finite strain consolidation equation Bibson et al. (1967) is a nonlinear
differential equation representing the conservalemn. Such equations are amenable to
numerical solution effectively through finite volemriormulations. The following sections
describe the finite volume formulation of the fenistrain one-dimensional consolidation

equation and will be referred as FVM here onwards.

2.2 PRELIMINARIES TO GOVERNING EQUATION

2.2.1 Basic Assumptions
The basic assumptions of the theory of one-dimessifinite strain consolidation are:
i. The soil matrix is compressible, but the pore flaid individual soil particles are
incompressible.
il. The soil is homogeneous as to type and loadingisatonic.
iii. Pore fluid flow velocities are small and governgddarcy's law.
Iv. The soil permeability k) and vertical effective stresss) have the unique

relationships with void ratio.
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k= k(& 2.1)
o' =0d'(e (2.2)

+
15 T T
da * \ 5 \ W= Ea
1 1 1 \ dz
v v v 4
t=0 t>0 t=0&t>0
Lagrangian & Convective € Material &)

Fig.2.1 Coordinate Systems
2.2.2 Coordinate System

Lagrangian and convective coordinate systems aentbasure of soil solids and
pore-fluid matrix combine whereas the material domates are the measure of only solid
particles in the matrix. The Lagrangian coordinabésa consolidating soil matrix starts
always at initial boundary, i.e., at time t=0 whesdhe convective coordinates starts from
current moving boundary at any time after the starthe consolidation for the next time
step, i.e., for any time t>0. Thus the values ofyraamgian coordinates and material
coordinates are fixed and independent of time withike convective coordinates keep on

changing with time.

For the conversion of coordinates from one systemother, the following
relationship may easily be deducted (Cargill, 198)nsider a differential element of soill
shown in Fig. 2.1.

da=1+¢ (2.3)
dé=1+e (2.4)
dz=1 (2.5)
dz__1 (2.6)
da 1+¢

E = l+e (2 7)
da 1+¢ '
9 146 (2.8)
dz
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2.3 GOVERNING EQUATION

The governing equation of one-dimensional conatilich, in terms of void ratio (e),
hydraulic conductivityk (e)and effective stress(e) may be given in the material coordinate
system as follows (Cargill, 1982). The z-directibas been taken positive against the

direction of gravity.

AAIEOUN T I NE » 29
y, Jdell+e]dz dzy,(1+ & d& z 0 t '

In the above equation, first term is due to se#d of soil and second term is the

contribution due to a surcharge load. The tepnss andt denote unit weight of water, unit
weight of soil and time, respectively. Eq. (2.9)ymae transformed to the Lagrangian

coordinate systemaj using Eq. (2.6) and takes the following form.

1 a_e:_i{ k (£_1j+ k(1+%)(6_0'6_e;} (2.10)
1+e 0t 0da| I+ el y, Y,[A+ e\ d eo

2.4 FINITE VOLUME FORMULATION

The integration of Eq. (2.10) over the elementargticd volumedV and timedt

gives,

1 j t]'ma_edt deHft I_i _k Ys 4 +M(a_da_e; dv | dt (2.11)
1+e, ot 1 &, 0al 1+ e ¥, y,(1+ &\ 0 ed '

Ccv t

Integrating Eq. (2.11) using Gauss-divergence #maorand one-dimensional
consolidation, the following equation may be writtr | control volume element (Fig.
2.3).

1
i+

t+At : 2
L av=- [ | K[ L] KAt @)[00 Oe) 2y g, (2.12)
l+g ' 1+ el y, V,(A+ e\ deo el

2

t

where, volume\V=AaAA andAA is the cross-section area of the elementary contro

volume.

The following generalised scheme on time integgades an explicit scheme fér=

0; a fully implicit scheme fo = 1 and Crank- Nicolson scheme 6or 1/2.
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t+At

L= j R,dt=[6R™+(1-6) R |at (2.13)
t
Now, the explicit scheme for Eq. (2.12) may be teritas follows.

I k(1+e) Yo 4l k(1+ @T@J’@a) "]
1+e (), V,A+e)\ deda| .
At I+

erl1+1 - q1 _ = (214)

83 [kare)(x ), kar %)Z(aa'a_j "
1+e ), yY,1+e)\ deod 1
2

Here the superscript ‘n’ denotes time step andaidis]’ denotes the space

node as shown in the Fig. 2.3.Finally, Eq. (2.14yrbe rearranged as given next.

gl=d- Hﬂ(é‘) a(él)( ) }-{/3( &) +a( jel)(g—:)jf_‘lﬂ (2.15a)
where, ﬁ(e)—%@s 1}(1+ 8)a(9= ﬁf )639( gy (2.15b)

Egs. (2.15a) and (2.15b) may calculate values af vatio at any time with the
known prior requisites of initial condition and tvsmitable boundary conditions on void

ratio.

Fig. 2.3 shows the discretization of a compressi@yer, the nodes and the control
volumes. For calculating the values of void ragpt the control volume facgs-{/2 andj-

1/2), the following interpolation scheme has besadu

—e. +1 i 381
€,17 Gt Wl Ij,r%)(q §:1) O o PF 2 8175 % (2.16)
C el _gorde +8 1
- % +E¢’( T_é)( %—1 E) or 8 ?—1+ 8 je_ ) ,-(i—‘l (2-17)
where,r , = Sa” ey .= §~ P (2.18)
ERCECH ’_E §.~ F
andy(r)=(3+r)/4 (2.19)

This scheme is known as quadratic upstream int&ipn of convective kinetics
(QUICK) scheme (Leonard, 1988, 1995). The QUICKesoh as above may easily be
derived in the above form through the three poiagrangian interpolation functions for

equally spaced nodes. However, in the present tasdlow does not transport a property
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so, it is not essentially required to restrict tpstneam interpolation, the three point
Lagrangian interpolation function for the fage+(/2) may be formed with either of the
three pointsj(j+1, j+2) or (-1, j, j+1), covering the face point with negligibly small mo

influence on the solutions.

To simulate the nonlinearity of the equation, ttomlinear termsi(e) andf (e) are
calculated for a sufficient range of void rate) (ising the available input data correlating
void ratio @), hydraulic conductivityK) and effective stress’j. The termsx(e) ands (e) at

faces of control volumes (correspondingeo, and € ,) are then interpolated using the
J+5 J_E

guadratic interpolation functions i.e. the threenpd.agrangian interpolation function

(Burden and Fairs, 2011) given below for the teriat e , using the values, g.1ande.;
J+E

to maintain consistency.

J+2(e 1‘%)
1 = 4aj (7]
7 “I'I(% e @)

2
In case of given correlations ef- k and e »w'instead of the discrete point values, the
nonlinear terms can be determined using the giwrelations directly at control volume
faces. Thus, the terms of material non linearitye (tonstitutive equations to governing

equation for material propertids and o' as nonlinear function of void ratio) and the

geometrical non-linearity present in the consolaatquation can be taken care.

The gradients may be approximated as follows.

(%j _Snu"§ (2.21)
da).,1 Aa '
2
(Ej _&" 94 (2.22)
0a ), Aa '

2.4.1 Initial and boundary conditions

Egs. (2.15a) and (2.15b) require one initial cbadiand two boundary conditions
for its solution. The initial condition on the vordtio will be the values of void ratios that
may be ascertained as consistent with the void atd effective stress at the equilibrium

pre-existing surcharge. The effective stressesespanding to pre-existing surcharge at
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various node points can be calculated and initédl vatios can be interpolated using three
point Lagrangian interpolation function on the ahle input data points of compressibility
characteristics of the soil. Further, the varioasgible boundary conditions in terms of void
ratio may be deduced as follows (Cargill, 1982).

2.4.1.1 Free draining boundary

For free draining boundary, the excess pore pressualways zero, thus effective
stress equals the total stress and the corresgprdid ratio may be interpolated on the
input data of void ratio and effective stress.

2.4.1.2 Impermeable boundary

The boundary condition for the impervious strada be deduced from the fact that
there is no flow of pore fluid or soil across sumbundary. Let the fluid velocity be and
the soil velocity bess, then at the boundary;

v, =V, (2.23)

S

The Darcy’s law is usually written in the follovgrform and using the Eq. (2.7) it

may be written as;

n(v, —\,) :—Lﬂ:—_kﬂjl-*__eo (2.24)
Yy df y,0alte '

w

where,n :i, is the porosity.
l+e

If uy, Upandu be the total, static and excess fluid pressunes the following relations may

be written;
u, =y, +u (2.25)
ou,
—2+y =0 2.26
% Y (2.26)
odu, du
Y _P¥ Ly =0 2.27
¢ o¢ Vi (2.27)

Using Eq. (2.7) the above equation may be writeen a

du, _ou, y,(1+€)_, (2.28)
da oOda 1l+g
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Fig. 2.2 shows the equilibrium of a soil eleméftightW of the pore fluids and the
solids in the element will be;
do

l 0-+d_<td<t

de W l

l gravity

TU coordinate(+ vei

Fig.2.2 Soil element in equilibrium

W =g, +()y, (2.29)
The equilibrium of the soil mixture is given by;
Lo (2.30)
dé 1+e
Using Eq. (2.7) it may also be written as;
4o, & *¥s g (2.31)
da 1+¢
The concept of effective stresg’() relates it with total stressx() as follows;
o=0-u, (2.32)

Differentiating Eq. (2.32) with respect #goand using Egs. (2.23), (2.24) and (2.28)
the following equation is obtained,;

o8, Ve-Vu_
(1"'90)%"‘?— 0 (2.33)

“de
Eq. (2.33) gives the value of gradient of the afbale void ratio € at the
impermeable boundary and forms one of the Neumanndary conditions.

2.4.1.3 Semipermeable boundary

This boundary condition is based on the mass ceaten that the flow coming out
of lower part is equal to the flow into the uppartpat the interfacing boundary.
[n(vf - Vs)] upper=[ 'Q Vf_ V)] lowe (234)

Using Eq. (2.24), the above equation may be writis
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{k“e‘)@} :[k“%@} (235
1+e aa upper 1+ ea a lower

The same fluid pressures exist in pore wateratrtterface boundary and lead to the

following equations.

[U] upper :[ l'] lower (236)
From the effective stress principle (Eq. 2.32);
da 0da Oda
Egs. (2.28), (2.31) and (2.37) can give the folfayequation;
%e_|fu=Vs _0U| 08 (2.38)
da | 1+e Oda|do

Egs. (2.35), (2.36) and (2.38) form the boundanmyditions for a semi-permeable

boundary. However, the valugel{for the semi-permeable soil has to be assumedobytih
a

the interfacing boundary.

2.5 SOLUTION PROCEDURE

Consider a general consolidation problem as shawrFig. 2.3. A saturated
homogeneous type compressible soil layer with ampable upper boundary and
impermeable lower boundary, consolidated under dommly distributed pre-existing
surcharge pressurepf, is subjected to a uniformly distributed pressyreq(t). The height
of the compressible layer id and the height of the free water surface aboveutbeer
boundary isH,,. Since the time dependent consolidation load e gresent work can be
monotonic only, it may be a constant load or a &tagd increasing with time for a practical

consolidation situation.
2.5.1 Discretization of compressible layer

For solution over the entire domain, the compldessoil layer of heighH may be
discretized as shown in the Fig. 2.3. The nodeadiition to boundary points, at which
solutions are intended, may be placed at equakrdiss within the boundaries along with
two pseudo nodes (On+1) beyond the boundaries as shown in the figuexeHn is the
total number of control volumes or elements. Theelo boundary lies midway of the
starting nodes (0, 1) and the upper boundary isrilelle of the last nodesn( n+1). Every
node represents a control volume of lendthwith limiting faces [+1/2, j-1/2), where]
may vary from 1 tom.
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Fig.2.3 Discretization the compressible soil layer

2.5.2 Evaluation of pseudo nodes’ values and prosition of the boundary conditions

The local quadratic distribution of void ratio Wwitdistance may be expressed as
follows (Leonard, 1988).

_ €. 6§ ?+1_2 £+t 1)
df%—q+(—————Jf+( 20ay Jf (2.39)

Eq. (2.39) aj=m and forfz%will give;

e e, = {@jz o+~ 6m, G266, 1

6 .3
+— ot 2.40
> 2 3 gty frg /e (240)

Solving for the value of void rati@{.,) at pseudo node;

8 1
Sh) :g%sc_zen"'é G (2.41)

Where,euscis the void ratio at upper boundary.

If the bottom boundary is impermeable, the gradanvoid ratio is known through
the boundary condition given as Eq. (2.33). Al$® gradient at the lower face of control

volume 1, at any timg may be approximated as;
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(%) -85 (2.42)
oa ), 1 Aa
2

Therefore, the value of void ratio at pseudo n@jevill be;

de

—e—|— A 2.43
wma(%) o e
2

Now, using Eq. (2.40) far1, the boundary value of void ratie dc) will be;

Aa - -2e+ 3 6 1
L A an S Tl Y VRN

where,e gcis the void ratio at lower boundary.

Egs. (2.40, 2.41, 2.43 and 2.44) give the faceeslbf void ratio for the terminal
control volumes with inclusion of boundary conditso The face values of void ratios at all
other interior points can be obtained using Eqsl6:2.19). Having known the values of
void ratios at all the faces and nodal points #@glrcondition, the void ratios at next time
step is obtainable by Egs. (2.15a, 2.15b). The @bB¥M formulation has been
implemented through a computer program in FORTRAMG7 the desired solution. Void
ratios at various positions are obtained at a reduime. Further, from the above solution,
the evaluation of the other physical quantitieshsas excess pore pressumg, Gettlement
(9, fluid velocity (#), velocity of solids {s), and degree of consolidatiod{andUs) related
to the phenomenon of consolidation has been disdussxt.

2.5.3 Evaluation of pore pressure

Total vertical stress at a point in the comprdeddyer (Fig. 2.3) at any timteequals
the total pre-existing weight in unit area plus th&charge load applied and may be

calculated by integrating the Eq. (2.31);
H
o(at)=o(H,t)+ J.eyw—ﬂ/sda (2.45)
2 16§

where, the first term represents the stress atpper boundary due to uniformly distributed
pre-existing surcharge pressugg)énd the applied surcharge pressugg, the second term
is the stress due to self load of soil.

The soil propertyo’ = g’(e) can be used to interpolate the values of effecivess

corresponding to a solution value of void raté). (Eqgs. (2.27) and (2.34) of pore water

27



pressures and effective stress principle can bd tseyet the value of total pore water

pressure.

The static pore pressure is determined with tHieviing equation at any nodal
point.

u(at)=y,{h-<(ad} 2.46)

where,h;=(H-a)+H,,, is the height of free water surface above theelolaoundary g=0)
and¢ is the convective coordinate of that node poirdtal pore pressurai() minus the
static pressureug) gives the excess pore presswe[Eq. (2.25)]. However, the evaluation

of convective coordinates used in EqQ. (2.46) ixdesd in the next section.
2.5.4 Evaluation of settlement

The settlement at any point in the compressibielager domain can be calculated
by subtracting the Lagrangian coordinate and cdmeecoordinate. Thus the following

expression gives the settlement.
S(afd=4qa0)-¢(a? (2.47)

Integrating Eq. (2.7), convective coordinate carchleulated and the above expression can

be given as follows.

1*e 4 (2.48)
l+eg,

S(a 9= 4 a0)-|

The nodal and face values of void ratio obtainedugh the FVM solution can be
used to perform numerical integration of Eqg. (2.4§) Simpson’s rule and convective

coordinates can be found at all the nodes.
2.5.5 Evaluation of velocity of solid particlesnd pore fluid velocity

Velocity of solid particles defined by the equatigiven below can be calculated in
terms of Lagrangian coordinates using Eq. (2.7) mioaky from data obtained by the
solution;

v :aS(a,t)

2.49
ST 5 (2.49)

Egs. (2.24) and (2.49) gives the relation of pdudfvelocity and excess pore
pressure gradient;
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2.5.6 Evaluation of average degree of consolittan

There are two ways to define the average degremmgolidation; one is based on
the stress (excess pore pressure) and the otheorrtbe strain (settlement of upper
boundary). The stress based average degree oflicztem U,) is defined as;

p

H
U =1—ijuda (2.51)
aqH 5

and the strain based average degree of consohdatipis defined as;

_ S(H. 9

T (2.52)

The average degree of consolidatidncan be calculated by numerical integration
whereas,Us can be calculated directly at any node point; h@awet is evident that the

values ofU, andUs will not be same.
2.6 CONSERVATIVENESS, BOUNDEDNESS AND ACCURACY

The assessment of a finite volume schemes is danthe criteria of the fundamental
properties, viz.. conservativeness, boundednessspprtiveness and the accuracy of
interpolations (Versteeg et al. 2007). The thre@antphagrangian interpolation scheme

applied to the consolidation equation has beersasddor these properties.
2.6.1 Conservativeness

Conservativeness is the property of the numericla¢me which ensures conservation of a
property (fluid mass in this case). It is estaldilpy equating the algebraic sum of fluxes
across the domain boundaries with summation ofeBushrough all the discrete control
volume faces. The linear form of Eq. (2.10) cawiigten;

1 de__0q (2.53)
l+g, 0t Oda
where, q:|: K (ﬁ_lj.pM(a_ala_eg} (2_54)
@a+el y, Y, A+tel deo

It may also be noted that is the Darcy velocity and Eq. (2.53) represents the

continuity of pore fluid in a consolidating porousedium (Lewis et al. 2009). The
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conservativeness of the scheme on finite volummditation on Eq. (2.53) can be proved
easily. Consider the following set of nodal val¢@s o, ¢) control volumes (CV-1, CV-2,
CV-3) and pseudo node with variable vatyef a domain shown in Fig.2.4.

Gs a
q2 ..........................................................
A

< CV-1 ¢ CV-2 . cva

) | ! ! T = >0z @
A
fa L sal sa fa fa fa )
2 2 > > > =

Fig.2.4 A domain of 3 control volumes and nodes witboundaries
Face values of the control volumes fluxes (fluaduwne flow per unit area per unit
time, i.e., the velocity) can be interpolated udiyg (2.40) and (2.44) or Egs (2.16), (2.17),
(2.18) and (2.19) in combination. Both approach#éisgive the same result.

CV-1: left face:ga; right face::—éoﬂ +g % —_;oe (2.55)

3 6 1 : 3 6 1
CV-2: left face:=qg, +— g, —— q.; right face:=q, +— 0. — =
8% 8% 80‘3 g 8q2 808 8q4
(2.56)
_ 3 6 1 . _
CV-3: left face.gq2 +?3q3 —§q4, right face:gs (2.57)

It can now be easily established that the algebsam of incoming and outgoing
fluxes across the boundaries of the domain is etquttie sum of incoming and outgoing
fluxes of all control volumes. Thus, the finite wuple formulation preserves

conservativeness property and gives a consistgabidic formulation of Eq. (2.12).

2.6.2 Boundedness

If the node values are within the bounds of theefaalues of control volumes in a
finite volume numerical scheme, it is attributed ltave boundedness and will give a
convergent solution. Consider the control volume -Z\of Fig. 2.4, it will have
boundedness in terms of void raté) {or the scheme if following inequalities hold gbo

3 6 1
256+;8 5 6012e23¢ O £ & . (2.58)
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gs§g+g%—% gorSe<s6 g gor 6 £5 @0 & £ (2.59)

It may be concluded from Egs. (2.58) and (2.5%) the finite volume numerical
scheme with three point interpolation may lose bloeindedness property €, or e; is
sufficiently high compared to their two predecessdrhe right side face values are not
guaranteed to be positive with three point inteapohs (Leonard, 1979). For such unstable
cases, normalised variable approach has been mwgbeonard, 1988). However, normal
problem of consolidation can be solved with nunsraonvergence and stability using this
explicit scheme with a little bit numerical expeentation on number of nodes or the length

of control volumesAa) and time stepAt) to maintain the boundedness.
2.6.3 Accuracy

The truncation error in the scheme of finite voufiormulation is of third order
however, the scheme is effectively third order aati(even though formally second order
accurate as »0). The enhanced accuracy is attributable to the afscontrol volume

operator average in the formulation (Leonard, 1995)

2.6.4 Time Step Restrictions
The time step restrictions are very tight in quédraaterpolation QUICK schemes.

The considerations on time step restrictions foitdi grids depend upon local grid Courant

th).Leonard (1988) opined from the numerical expentaton that the

number c=—
€ Na

instabilities are avoided if a local Courant numblees not exceed 0.2. The maximum
Darcy velocity () occurs near the draining boundary where the dser@f void ratio is
maximum corresponding to a given load incremeaqp) (vhich equals the excess pore
pressure developed and dissipates instantly. Thushe initial hydraulic conductivitykg)

the time incrementAf) may be taken by the following relation.

At < 0208y, (2.60a)
k.Q,

2.7 MODEL VERIFICATION

2.7.1 Problem statement

The performance of the finite volume numerical mddes been evaluated through a

general one dimensional consolidation problem,hasva in the fig. 2.5. The clay layer is
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10 m thick with the overburden pressgge The numerical solution has been obtained for its
consolidation due to incremental logd The geotechnical properties of the soft soilase
follows, initial void ratio at the top.,= 3, the coefficient of volume compressibility,= 4
MPa?, initial hydraulic conductivity,= 10°m/s, Gs= 2.75. The water level above the initial
top surfaceH,, = 1 m and the pre-consolidation loag,= 10 kPa. The load increment, =

100 kPa. The boundary conditions considered arepugotop and impervious bottom

(PTIB) and porous top and pervious bottom (PTPB).

ry —

w d,, d,
YYV Y YVY ¥ YYVY YV VY

H Saturated homogenous cl

a

Bottom boundan T

Fig.2.5 Consolidation problem
2.7.2 Analytical solution

Xie and Leo (2004) presented the analytical sotutio the above consolidation

problem with the following assumptions.

. The coefficient of volume compressibilityng) of the soil remains constant during
consolidation.

m, = 1 de =constant (2.60Db)

l+edo’

. The coefficient of hydraulic conductivighas the following relationship;

% - [ 11:3 (2.60¢)

where kK, is the initial coefficient of hydraulic conductiyiof the soil at time: = O.

. Load incremen@Q= Q (t) = q, constant.

The analytical solution for PTIB (porous top andparvious bottom) boundary conditions
and the initial condition are given below.
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u(0,t)=0 (2.61)

M=o (2.62)
oa
u(a0)=q, (2.63)
1 Ma 2
Hln{1+(exp(m,1qj) }Z— Si v j expt M T (2.64)

where, T, is the time factor given by

t
T, :CV—"2 whereg, = %, (2.65a)
H Comy,
Mz(m—%jn, m=1,2,3.... 2.65b)

The following expression gives the value of setdabtat any depth and timet.

S(a = H{1-exptm, g}{ — Z— coE j exp{ M 'VI'} (2.66)

The top surface settlemeftand its final settlement.Swill be given as,

§ =90, 9= H1-expt m 9}{ 1-2_— expt M I}) (2.67a)
S, = 90,0)= H1-expt m ¢} (2.67b)

The average degree of consolidatiip) defined in terms of excess pore water pressure or

stress is given by;

1 H
U,=1-——|uda (2.68)
H9

The average degree of consolidatith)(in terms of settlement of top surface or strain i

given by

_S 1 v 2 i ?
=S 1 ZMZGXD(MTV) (2.69)

0
© m=1
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The analytical solutions have also been giventiergame initial condition but with
boundary condition PTPB (porous top and pervioutoho), the excess pore pressure in this
case were obtained simply by replacing the totatlief consolidating soil or the drainage
pathH by H/2.

2.7.3 Numerical solution

The finite volume formulation described in the pabas the spatial sign convention
positive in the direction of gravity and the lowersh boundary of the consolidating layer
would be taken as datum. Therefore, the equatises in the numerical solution would
have been transformed by usinig-4¢) in place of &) for algebraic equations and the

differential terms.

The termsB(e) and a(e) of Eq. (2.15) can be written as follows, using HGs60b)
and (2.60c);

A l+e ), __ k
= = -1 : =- 2.70
B(e) K{yw j{le a(e om, (2.70)

Further, the initial condition of the variables doitio €) and effective stress )

are taken as follows, as derived in the analysoaition.

&=€3a0)=g,~ My, (G-D( H 3 (2.71)
0,=0"(2,0)= g, +—1In 1+&, (2.72)
m, 1+ e~ m(G-D(H 3

The boundary condition for a permeable boundagisn by;
eO(O't) Ore(H,t): %nal (273)

The boundary condition for an impervious boundaity ve;

08 YoVw _
1+e) a o =0 @7
de

The numerical solutions have been obtained for 88mpointsrf = 30,Aa= 1/3 m)
and time incrememt = 10000 Seconds for both PTIB and PTTB boundanditimns and

comparison of numerical and analytical solutioresagone.
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2.7.4 Comparison of analytical and numerical $otions

The complete solution of a consolidation problemludes distribution of pore
pressures along the convective coordinates, vaniatf average degree of consolidation
(strain basedUs and/or stress based,) and settlement with time. Fig. 2.6 shows
distribution of pore pressures along the conveatvardinates calculated by the numerical
method and the analytical solution of Xie and L2004) for the boundary conditions PTIB
at different values of degree of consolidatibly € 0.3, 0.5, 0.7 and 0.9). The corresponding
settlement values are shown beside the graph.

Fig. 2.7 shows numerically calculated and analiliicgiven excess pore pressure
isochrones for PTTB boundary conditions for différedegree of consolidation and

settlements.

4*<;<; ------------------------- - $=0.99m

5 Av—\————-\s\-;\‘; _________________ © 5=1.65m

z--\ ------ \S{;; _________ © S=231m

L s e N L e R T 8=2.97m
N \ Us=0

Us=0.
6 HQ:OR\

Us=0.7

Distance from initial top surface (m)
S
[V
e
\

Us=0.9
Us=1 zl
<
10 A \ I\
0 20 40 60 80 100

Excess pore water pressure (kPa)

Fig.2.6 Excess pore water pressure isochrones iarvective coordinates (PTIB)
(Analytical datacaled from Fig.4 of Xie& Leo [2004])

Fig. 2.8 shows the comparison of average degreesrfolidation J, andUs) and
settlements with respect to time fact®y)( It is evident from the Figs. 2.6, 2.7 and 2.8tth
the values simulated by the finite volume formuwatiand the corresponding analytical

values show close agreement.
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Table 2.1 shows the comparison of FVM and anallytieaults (Eqs. 2.67a and
2.67b) of settlements of top surface with time ennts of time factor and the errors in
percent with respect to analytical results. The imam error is 1.45% and there is no error

in final settlement which infers a good agreement.

Table 2.1 Comparison of top surface settlement (PBI)

Time factor 0.05 0.102 0.217 0.724 0.853 1.956 2.46b o

Settlement (m) 0.8279 | 1.1896| 1.7303 2.8488 2.9715 3.27p6 3.29092968.
(Analytical)

Settlement (m) 0.8248 | 1.1817| 1.7101 2.807% 2.9321 3.25B4 3.27132968.
(FVM)

Error (%) 0.38 0.66 1.17 1.45 1.33 0.676 0.59 0.0
0
&:C A anal. num.

1 T $=0.99m
_ ________s_\_!si:\_;__________ S=1.65m
E k--'f\‘-i__---- R--'-- S=2.31m
S Ao L s Lo L L] S=297m
g 3 \s\ S N
2, N Us=0.3 "\
S \
s s \ Us3=0.5
z s=0[7 \\ X ¥
§ © Uspo]
i | J
e 7
2 /
8 3 / /ﬂ/

/’ / Pz
9 / / /
/"/A,/A'/A—/“ US=0.Q
10 %Kr{

0 20 40 60 80 100
Excess pore water pressure (kPa)

Fig.2.7 Excess pore water pressure isochrones inns@ctive coordinates (PTTB)
(Analytical data scaled from Fig.5 of Xie& Leo [20@])
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Fig 2.8Average degree of consolidation and surfasettiement vs. time
(Analytical data scaled from Fig.6 of Xie& Leo [20@])

2.7.5 Comparison with piecewise-linear model CS2

Fox and Berles (1997) describe a piecewise-lifiade difference numerical model
for large strain consolidation and named it CS2e Thodel uses the same constitutive
equations like the present FVM model and solves th@ consolidation settlement of
individual elements due to expulsion of pore wétem the element. The pore water flow is
calculated with the help of local values of compileidity and hydraulic conductivity
characteristics and these are interpolated thrdungdar interpolation using neighbouring
coordinates representing void ratios on comprdi#giband hydraulic conductivity
constitutive curves. Whereas, the FVM numerical etodses quadratic interpolation
functions and the similar physical condition ond/oatio through discretized form of Eq.
(2.10). The accuracy is thus enhanced and theisotubf FVM require less number of
elements than that for CS2. The FVM solutions aifrfexample problems have been

compared with CS2 that affirms the above statement.

Table 2.2 shows all the properties and paramefettsese four problems. Problem 1
is a small strain case where strain in soil elesiamd its self weight are negligible and
Terzaghi theory is applicable. Problems 2 and 3ickamn large strains in soil elements with
negligible self weight. The problem 2 assumes @nistoefficient of consolidatiort,) and
maintainable as such with variable hydraulic coniditg following the equation shown in
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relevant position in the table 2.2. Problem 3 faliahe variable coefficient of consolidation
(cv), but another coefficient denoted @sas constant which has been achieved through the
equation used for hydraulic conductivity as showits column in table 2.2. Problem 4 is
concerning the large strain and its consolidatiae tb self weight. The phosphatic clay
follows constitutive equations regarding compratigftband hydraulic conductivity as
shown in its column. The input data of void ratieffective stress and hydraulic
conductivity, were obtained through respective ttrts/e equations in sufficient range for
all the problems to be used in FVM program for sohs

Table 2.2 Problems’ descriptions

Variable Problem 1 Problem 2 Problem 3 Problem 4
(small strain) | (large strain) | (large strain) (large strain with self
c,=constant | c,=constant Cr = constant weight)
No. of elements, m| 20,50,100,200 20,50,100 20,%0,10 20
& 1.0 1.0 1.0 18.8
qu(kPa) 200 200 200 0.224
qu(kPa) 0.001 800 200, 800 0.0
Gs 1.0 1.0 1.0 271
Initial height of
compressible layer,
H (m) 20.0 20.0 20.0 6.33
Hy(m) 0.0 0.0 0.0 0.0
Compressibility, Non-linear
a, (/kPa) 0.001 0.001 0.001 e=12.19¢" (kPa))°%
Hydraulic Constant Variable Variable Variable
conductivity, 1x10° 1+e 1+e —1 A1 1014 &1
k(m/s) (k:k01+e0) (k=k°1+eo) (/9 =140107€
Kk, =1x10° K, =1x10°
c, (m’/s) 2.0394x10 2.0394x10 Variable Variable
(equation forcg) (equation forcg)
ce (m7s) 2.0394x10 Variable Constant Variable
_ 1+e, (equation forcg)
(& =6
Boundary Double Single-drained at| Single-drained at Single drained at top
conditions drained either boundary either boundary boundary
Final Vertical
settlemen, (%) 0.00005 40 10, 40 46
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2.7.6 FVM solution and comparisons with CS2

The resulted average degree of consolidationraiolpm 1 is shown in Table 2.3 for
different values of number of elements (20, 50,,186d 200). The values, at all time
factors, are very close to the Terzaghi’'s solutidawever, in case of small strain problem
the CS2 values are closer to Terzaghi’'s solutiompared to FVM with more number of
elements. It infers that the small strain linedusons give better results than FVM but with
more number of elements, whereas FVM gives suffttyeaccurate results with quite lesser
elements. This may probably be attributed to lingderpolations which is somewhat
advantageous than the quadratic interpolationsage ©f small strain linear consolidation.
Particularly, the pseudo node point needed neabthmdary in implementing quadratic
interpolation, has been approximated according tadecptic polynomial which may
introduce a small error in the solution in casesofall scale linear consolidation. This
situation can be improved, if the pseudo node geidetermined through linear variation of
the independent variable. Since the formulatiogeneral deals with large strain non linear
consolidation, the linear variation assumption imatsbeen adopted near the boundaries. The
better trends in favour of FVM compared to CS2 lbarseen in tables 2.4 and 2.5 for large

strain consolidation.

Table 2.3 Comparison of solutions of problem 1 (sntlsstrain)

Time Time | Average degree of consolidation, L)y (%)
(days) factor | Terzaghi | m=20 m=50 m=100 m=200
(e, t/ Solution FVM CS2 FVM CSs2 FVM Cs2 FVM Cs2
H?)
28.38 0.005 | 7.979 7.9174| 6.765 7.9369| 7.836 7.9499| 7.958 7.9677| 7.976
56.75 0.01 11.284 11.3902| 10.515 | 11.2539| 11.199 | 11.3190| 11.274 | 11.3113| 11.282

283.76 0.05 25.231 25.3411| 24.977 | 25.2520| 25.215 | 25.3005| 25.228 | 25.2290| 25.231
567.52 0.1 35.682 35.8135| 35.550 | 35.6438| 35.673 | 35.7058| 35.680 | 35.7321| 35.682
851.29 0.15 43.695 43.7508| 43.612 | 43.6699| 43.688 | 43.7239| 43.694 | 43.7765| 43.695
1135.05 0.2 50.409 50.3994| 50.352 | 50.4023| 50.404 | 50.4915| 50.408 | 50.4763| 50.409
1702.57 0.3 61.324 61.4079| 61.304 | 61.4920| 61.324 | 61.3502| 61.324 | 61.3912| 61.324
2838.77 0.5 76.395 76.4466| 76.416 | 76.4838| 76.400 | 76.4712| 76.396 | 76.5132| 76.395
4540.19 0.8 88.740 88.9363| 88.774 | 88.9204| 88.747 | 88.7907 | 88.742 | 88.9182| 88.741
6810.28 1.2 95.803 96.0292| 95.828 | 95.8534| 95.808 | 95.8933| 95.805 | 95.9212| 95.804
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Table 2.4 Comparison for solutions problem 2 (conant c,)

Time Time Average degree of consolidation, LJ, (%)
(days) factor Terzaghi m=20 m=50 m=100
(e t/ Solution FVM FVM CS2 FVM CS2
H?)
113.50| 0.005 11.107 10.9968 10.9600 10.829 10.9610 10.926
227.01| 0.01 15.619 15.5118 15.5000 15.404 15.5022 15.477
454.02| 0.02 22.016 21.9218 21.9219 21.851 21.9244 21.907
908.04| 0.04 31.078 30.9989 31.0041 30.953 31.0064 30.996
1589.07| 0.07 41.077 41.0094 41.0160 40.979 41.0182 41.013
2270.09 0.1 49.077 49.0156 49.0227 48.993 49.0247 49.022
3405.14| 0.15 60.029 59.9727 59.9814 59.960 59.9835 59.984
4540.19 0.2 68.978 68.9249 68.9359 68.921 68.9381 68.942
6810.28 0.3 82.149 82.1061 82.1187 82.113 82.1209 82.127
11350.47 0.5 94.858 94.8391 94.8463 94.848 94.8475 94.852
20430.85 0.9 99.653 99.6505 99.6514 99.652 99.6515 99.652
Table 2.5 Comparison for solutions problem 3 (conant cr)
Time Average degree of consolidation, LJ; (%)
factor Lee and Lee and m=20 m=50 m=20 m=50 m=100
(ce t/ Sills Sills S,=10% | S,;=10% | S,=40% S,= 40% S,= 40%
H?) S,=10% S,=40% FVM CS2 FVM FVM CS2 FVM CS2
0.01 11.315 11.292 11.3322 11.274 11.3322 | 11.2914| 11.274 | 11.2845 11.282
0.03 19.558 19.488 19.5734 19.540 19.5734 | 19.5464 | 19.540 | 19.5423 19.543
0.06 27.645 27.533 27.6587 27.637 27.6587 | 27.6389| 27.637 | 27.6361| 27.639
0.1 35.683 35.538 35.6951 35.680 35.6951 | 35.6796| 35.680 | 35.6774| 35.682
0.15 43.693 43.522 43.7027 43.694 43.7027 | 43.6903| 43.694 | 43.6886 43.695
0.25 56.216 56.976 56.2228 56.223 56.2229 | 56.2159| 56.223 | 56.2149 | 56.223
0.41 70.333 70.073 70.5156 70.526 70.5156 | 70.5151| 70.526 | 70.5151 70.525
0.61 81.886 81.682 81.9933 82.008 81.9933 | 81.9965| 82.008 | 81.9971 82.006
0.81 88.941 88.805 89.0026 89.016 89.0026 | 89.0067 | 89.016 | 89.0074| 89.015
1.01 93.248 93.162 93.2835 93.295 93.2835 | 92.2873| 93.295 | 93.2879 | 93.294
1.41 97.483 97.451 97.4947 97.501 97.4947 | 97.4971| 97.501 | 97.4975 97.501
2.01 99.427 99.420 99.4293 99.432 99.4293 | 99.4302| 99.432 | 99.4303| 99.431

40




Top surface settlement (m)

—FVM
O Fox & Berles (CS2)

1 10 100 1000

Time (days)

Fig.2.9. Settlement vs time
(CS2 data points scaled from Fig. 5 of Fox and Bex$ [1997])
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Fig.2.10 Void ratio distribution
[CS2 data points scaled from Fig. 5 of Fox and Bess (1997)]

Problem 4 uses the input data of void ratio, déffec stress and hydraulic
conductivity as per the relevant nonlinear equatishown in table 2 and the number of
elements as 20. The FVM results of settlement wiitte and distribution of void ratio at
400 days are compared with results of CS2 with é@dnents in Figs. 2.9 and 2.10 and
those show close match. All these comparisons tepe&e advantage of accuracy with

guadratic interpolation function.
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2.8 PARAMETRIC ANALYSIS

The parametric analysis aims at finding the responf various independent
parameters of consolidation of soft soil depostsft(organic clay), the void ratio of which
in natural state ranges from 2.5 to 3.2 (Das, 201b¢ variable parameters influencing the
consolidation settlement are, void ratio, compi@bsi, hydraulic conductivity, thickness of
compressible soil layer, and applied pressure. ddmstant parameters are specific gravity
of soil solids and unit weight of water. The véioa of constant parameters is ignored here
and the influences of independent parameters drcaosolation time rate are studied next
for the analysis. The constitutive equations used d¢ompressibility and hydraulic

conductivity (Taylor, 1948) are given below.

e-e

o' =0,(10) « (2.75)
e-&

k = k,(10) (2.76)

where, C. is the compression inde& is the hydraulic conductivity indexy is the void
ratio corresponding to initial effective overburdpressures, and hydraulic conductivity

k, and e is the void ratio that corresponds to any effextstressc and hydraulic

conductivityk. The compression index has been approximated.ad.15 & — 0.35) by
Nishida (1956). Hydraulic conductivity index ikém asCy~ 0.5ep and the initial value of

hydraulic conductivity k,) is determined approximately from the correspogdourve

presented by Travenas et al. (1983). Now, the petens influencing the consolidation
independently are initial void ratio at the top bdary &) at pre-existing load, thickness of
soil layer ) and applied surcharge load. Therefore the eftécvariation of these
parameters on consolidation has been studied Teeeschematic diagram of consolidation
problem, as shown in Fig. 2.5, has been followeth woundary conditions are given as
permeable top and impermeable bottom. The iniff@icéve overburden pressurgy) has
been kept constant with a value of 120 kPa. Thatamih data are the specific gravity of soil
(Gy = 2.3 and unit weight of water = 9.81 kNF.nEquilibrium initial void ratio variations
corresponding to overburden pressure 120 kPa attdpeof the compressible layer
considered for parametric analysis are 3.2, 38),26, 2.4, 2.2, 2.0, 1.8 and 1.6 and initial
hydraulic conductivities corresponding to these talen as 7.0x1%) 6.0x10° 5.0x10°
4.0x10°% 3.0x10% 1.5x10° 1.0x10° 9.0x10" and 4.0x18° Self load of soil is taken into
consideration and the initial void ratio with depthries in the layer accordingly. The

thickness of compressible layédt)(varies from 1 m to 8 m at the rate of 1 m. Inceeial
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applied pressureq() varies as 200, 300, 400, 500, 600, 700 and 80#® &Bove the
overburden pressure for each thickness of soilrlagd initial void ratio. Incremental loads
are applied as one time load in the beginning agot konstant throughout the primary
consolidation. It is also assumed that the saibisnally consolidated and remains saturated
during the consolidation. All combinations of iaitivoid ratio, applied pressure and
compressible layer thickness have been worked odttheir influence on time rate of
consolidation settlement as evaluated by the fwoleme formulation and presented here in
the next sections.

2.8.1 Effect of initial void ratio

Fig.2.11 shows the influence of initial void ratior a given thickness of
compressible layerH = 5.0 m) and load increment,£600 kPa). The graph shows the
variation of average degree of consolidatibg) (with square root of time for different void
ratios. It is seen that the rate of consolidatiesrdases with decrease in initial void ratio.
While the initial void ratio decreases from 3.22td, the rate of the consolidation decreases
slowly. However, the successive reduction with edebrease in void ratio is not uniform
but it is relatively little more than that for ipgedecessor. The next reduction of initial void
i.e. from 2.4 to 2.2 shows abrupt decrease in #te of consolidation. The consolidation
characteristics of soil with initial void ratio rgimg from 3.2 to 2.4 forms one class and
moves into other class below the void ratio 1.6hwattransition zone of void ratio from 2.4
to 1.6. It may also be noted that the soft claywsh@almost linear relationship between

average degree of consolidation and square raanhefup to 80% consolidation.
2.8.2 Effect of layer thickness

The influence of compressible layer thicknes§ ¢n consolidation time rate has
been found by varying the thickness from 1 m to &md keeping load incremerg,) and
initial void ratio () constant. Results have shown similar patternsaliothe loads (from
200 to 800 kPa), so one of them with= 200 kPa anéy= 3.2 has been shown in Fig.2.12.
This shows that more is the thickness of comprésddyer more time is required for
consolidation for any additional surcharge loadsoAlhe decreasing gap of curves indicates
the successive reduction in the rate of consobdatiecreases with decrease in initial void
ratio.

2.8.3 Effect of load increment

Fig.2.13 shows the influence of load incremaq) @nd it is evident that this, in
general, has relatively less effect on rate of obdation. Two sets of curves correspond to
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initial void ratios &) 3.2 and 1.6 for constant thickness of compresdinyer H=5.0 m).
However, it may be noticed that the higher initiaid ratio has lesser influence of the
variation of load increment on consolidation radenpared to that of lower initial void ratio.
The consolidation rate decreases with increasead &nd the reduction of gap in successive

curves at initial void ratio of 1.6 indicates thenthishing influence.
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CONCLUSION

The finite volume numerical formulation can be usedolve the large strain one-
dimensional consolidation equation, as it falls emthe category of conservation
law. The spatial distribution of independent valéabe. void ratio in the practical
consolidation problems matches well with the quiclriaterpolation functions on
void ratio and satisfies boundedness property reduin the FVM formulations for
convergence.

The FVM formulation presented here, maintains tlurder accuracy and hence it
may give sufficiently accurate solutions with relaty lesser number of mesh
points.

No special treatment is required for the nonlirtgari the explicit form of solution
method as the nonlinear terms appearing in the sgle of the numerical scheme
can be easily evaluated through quadratic intetfpoldrom the known values of

independent variable near the face value void &dtibe previous time step.
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. Since the large strain consolidation equation @ieable not only for fresh fills but

for the normally or over consolidated soils, th@gwosed numerical method can
handle the consolidation of any clay deposit.

. The present numerical model is efficient than thedr model and finite difference
model whereas the complexity level is much less tHaM based models.

. The continuity of flow during consolidation is auotatic whereas it requires
additional care in finite difference or finite elent based models.

. Thus the proposed FVM formulation can be a goodrdite to other existing

numerical methods used for the solution of consdilich problems.

The soft organic clays, with its natural void eatanging from 3.2 to 2.5, follow a

specific time rate of consolidation characteritica given load increment and layer
thickness. The proportionality of settlement andasg root of time is maintainable
almost up to value of 80% degree of consolidatidreneas Terzaghi’s solution

provides that in general only up to 50%.
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Chapter 3

EXPERIMENTAL STUDY ON CONSOLIDATION OF THICK
SPECIMENS OF CLAY

3.1 PRELIMINARIES

The oedometer tests were conducted on natural lolgitkn soil sample specimens
to assess the compressibility and hydraulic comdtictharacteristics of the soil. The same
soil sample is used to make thicker specimens lamddnsolidation tests of these specimens
were also performed. For the thick samples, Wiggee consolidation cells were used
similar to the consolidation test apparatus asrdest by Lee and Fox (2009) and keeping
the loading arrangement as used in oedometerRagher, the consolidation settlements of
thick samples were calculated by the present nwalemodel using the compressibility and
hydraulic conductivity characteristics obtained biynple oedometer test of the soil
specimens. The next sections describe the dethilse materials, experimental program,

methodology and comparison of numerical and expental results.
3.2 MATERIALS

The soil sample (natural black soil, greyish browncolour) was taken from
Belgaum, Karnataka (India). The index propertieshef soil sample were explored in the
laboratory and recorded as follows; specific grayis) of the soil = 2.95; the liquid limit
(LL) = 79.8 and the plastic limiP{) = 33.7. As per Indian Standard classificationtesys
the soil was classified aH. Standard Proctor’s compaction test was also @Gomkthe

optimum moisture contenOMC) of soil was found to be 28.4%.
3.3 CONSOLIDATION TEST APPARATUS

Fig. 3.1 shows the schematic arrangement of calet@n apparatus. It uses a rigid
wall consolidation cell of 100 mm diameter and 1B length. Load is applied through a
load plate and piston rod on the specimen. Thengagirrangement is as usual that is used
in oedometer test i.e. a lever arm, load hangerdiifierent standard weights. Taking into
consideration the specimen diameter and load ofptate and piston rod (7.33 N) the
influence of oedometer test loads of 25, 50, 10m), 200, 800 kN/ fmon the present

specimen would become 15.2, 29.5, 58.1, 115.372288.6 kN/ .
47



3.4 SPECIMEN PREPARATION

The oven dried soil sample was taken and sievemuigir 4.75 mm aperture sieve.
The sample weighing 4.0 Kg was made wet with al@00 ml water (30% of the weight).
Soil and water were mixed in steps so that the isithoroughly uniform. Compaction of
the wet soil was done in the standard Proctor’slthdstandard method of compaction was
followed i.e. three layers compaction and eachrlayas subjected to 25 blows of the
hammer (2.5 Kg) dropping from the height of 0.3Muisture content of the compact was
determined and found as 28.34. The prepared compastsliced to form specimens of
thicknesses 20 mm and 30 mm with the diameter Of hén. One specimen of 20 mm

thickness and 75 mm diameter was also groovedyotitdboedometer ring.
3.5 METHODOLOGY

Usual consolidation test on 20 mm thick and 75 miameter specimen was
performed first. The representative curves betwesd ratio vs. effective stress and void
ratio vs. hydraulic conductivity were drawn. Thdueaof coefficient of consolidatiorc,),
the coefficient of compressibilityai=-de/ds’) and the void ratiod) at each load were
determined. The coefficient of volume compresdipilm,, = a,/ (1+€)] was also calculated.
The values ot, m, and unit weight of watef,) gave the value of hydraulic conductivity
(k=c, myayw) corresponding to each void ratio. Compressibidind hydraulic conductivity
curves were then plotted. These are the curvesdpatsent the material properties of the
subject soil and are used as input data in theeptesumerical model for predicting the
consolidation settlement of any other thicknessaf under any load. Four specimens of
diameter 100 mm and thickness 20 mm were firsy fediturated that took 10 days time with
1 m head applied across them. The 30 mm thick smetiwas kept at 2 m head and that
consumed 10 days for full saturation. Five consdiah cells were used to saturate the four
specimens of 20 mm thickness and one for the 30speuimen. Finally the two specimens
of 20 mm were put in one cell to get one 40 mmktisigecimen and two 20 mm and one 30
mm specimens were transferred in one cell to fone 70 mm thick specimen. Swelling of
the samples on saturation has also been obsedvedspecimen with 40 mm thickness
swells by less than 1 mm and therefore ignoredtieitheight of 70 mm thick specimen
raises to 72.3 mm which was taken into considematihile calculating the vertical
deformation. The pattern of loading followed wihs same as it is done in usual oedometer

test, however the stresses developed in the preasatis different as mentioned earlier. The
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saturation status of the specimens was maintaimedighout the test by the arrangement

shown in figure 3.1.

Load
\/ /
O
v v
| Load
Piston rod " //
11 A
Rigid cel ——a] NN v
— Soil specime
Porousstone % \ Wate!
\\
L EEEEEEE |
X
Control valve

Fig. 3.1 Schematic arrangement of Consolidation Apratus

Each load was kept for 2880 min. (48 hrs) and tkdical deformations were
recorded at the timings 0.25, 1, 4, 9, 16, 36,1&0), 240, 1440, 2880 minutes to cover the

entire time behaviour of the consolidation settletmuring the period.

3.6 COMPARISON OF EXPERIMENTAL AND NUMERICAL
RESULTS

3.6.1 Experimental results

The experimental results of settlement of 40 mm &8 mm soil specimens of compacted
clay with time and load increments are shown inTtakles 3.1 and 3.2.

3.6.2 Numerical procedure, solution and comparisowith experimental results

Table 3.3 shows the data of void ratio, hydraubaductivity and effective stress.
These are derived from the results of oedometénte20 mm thick specimen of the black
soil and have been used as input values for fimteame analysis. The data are plotted and

shown in figs 3.3 and 3.4. These figures provide tharacteristic compressibility and
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hydraulic conductivity curves of the sample soiheTdata points are augmented through
these curves as shown in the figures and the seengsad as input values representing the
material properties of the sample soil. The addeidtp, to the laboratory curves of void
ratio ~ effective stress and void ratio ~hydraglhoductivity, ranging from void ratio value
of 0.97 to 0.73 at an interval of 0.01were marked the corresponding values of effective

stress and hydraulic conductivity were noted.

The initial conditions of the void ratios are ol considering the self weight of
soil consistent with the input data of compresgibturve. The boundary conditions at the
top and bottom boundaries are taken as draine@\asedl in the experiment. Other data as
taken for this computation are: specific gravitysoil (2.95), height of specimen (0.04 m
and 0.0732 m), head of water on the specimen (@.@&hd 0.099m), unit weight of water
(9.81 kN/n?), number of mesh points (40 and 70), elementang increments (0.001 min.)
and the load increments with time as used durirgy ékperiment. The results of the

numerical model are shown in table 3.4 and 3.5.

Figures 3.5 and 3.6 present the comparisons of ncah@nd experimental values of
vertical deformations of 40 mm thick and 72.3 mrckhthe soil specimens. It is obvious
from the figures that the experimental and compue=ililts are very close to each other
throughout the time period with changes in the $oathe comparable results of FVM
analysis with the laboratory observations on suemall scale, establish the accuracy and
efficiency of the method.

Table 3.1 Vertical deformation of 40 mm specimen gperimental results)

Pressure (kN/R) » 15.2 29.5 58.1 115.3 229.7 458.6
Time (min.)V¥ Settlement (mm)

0.00 0.00 0.18 0.40 0.84 1.52 241
0.25 0.02 0.20 0.42 0.91 1.58 2.45
1.00 0.03 0.21 0.44 0.92 1.60 2.46
4.00 0.05 0.23 0.46 0.94 1.61 2.47
9.00 0.08 0.25 0.50 0.95 1.65 2.48
16.00 0.11 0.27 0.52 0.96 1.70 2.49
36.00 0.15 0.30 0.58 0.97 1.73 2.54
60.00 0.17 0.33 0.61 0.99 1.80 2.64
120.00 0.18 0.39 0.75 1.17 1.87 2.66
240.00 0.18 0.39 0.80 1.27 2.01 2.80
1440.00 0.18 0.40 0.83 1.52 2.38 3.39
2880.00 0.18 0.40 0.84 1.52 241 3.67
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Fig3.2Photograph of the experimental set-up (fronview)
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Table 3.2 Vertical deformation of 72.3 mm specimetexperimental results)

Pressure (kN/R) » 15.2 29.5 58.1 115.3 229.7 458.6
Time (min.)V¥ Settlement (mm)

0.00 0.00 0.34 0.72 1.57 2.84 4.61
0.25 0.01 0.36 0.75 1.59 2.88 4.66
1.00 0.03 0.37 0.76 1.61 2.90 4.68
4.00 0.05 0.39 0.80 1.65 2.94 4.73
9.00 0.07 0.41 0.84 1.69 2.99 4.79
16.00 0.10 0.45 0.88 1.73 3.03 4.84
36.00 0.17 0.49 0.95 1.80 3.14 4.95
60.00 0.21 0.54 1.01 1.86 3.22 5.04
120.00 0.28 0.62 1.13 1.97 3.36 5.21
240.00 0.32 0.68 1.30 2.13 3.58 5.45
1440.00 0.34 0.72 1.56 2.72 4.45 6.49
2880.00 0.34 0.72 1.57 2.84 4.61 6.85

Table 3.3Void ratio (e) ~effective stresssf)&hydraulic conductivity (k)

e o’ (KN/mP) Kk (m/min.)
0.970354 0.00 2.50E-08
0.954433 25.00 1.70E-08
0.933941 50.00 6.36E-09
0.901429 100.00 1.94E-09
0.856453 200.00 1.40E-09
0.794798 400.00 4.96E-10
0.728591 800.00 3.66E-10
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Table 3.4 Vertical deformation of 40 mm specimen @merical results)

Pressure (kN/m) »

15.2 29.5 58.1 115.3 229.7 458.6
Time (min.)V Settlement (mm)
0.00 0.000 0.188 0.398 0.859 1.57 2.52
0.25 0.018 0.207 0.433 0.909 1.63 2.60
1.00 0.030 0.217 0.444 0.917 1.64 2.60
4.00 0.057 0.242 0.474 0.943 1.67 2.61
9.00 0.085 0.267 0.508 0.976 1.71 2.63
16.00 0.112 0.292 0.544 1.01 1.74 2.64
36.00 0.155 0.338 0.614 1.08 1.80 2.69
60.00 0.175 0.366 0.672 1.15 1.84 2.73
120.00 0.187 0.391 0.756 1.26 1.92 2.81
240.00 0.188 0.397 0.825 1.39 2.05 2.94
1440.00 0.188 0.398 0.859 1.57 2.43 3.49
2880.00 0.188 0.398 0.859 1.57 2.52 3.71

Table 3.5 Vertical deformation of 72.3 mm specime(numerical results)

Pressure (kN/m »

15.2 295 58.1 115.3 229.7 458.6
Time (min.)V Settlement (mm)
0.00 0.000 0.344 0.728 1.57 2.84 4.61
0.25 0.014 0.358 0.750 1.60 2.88 4.66
1.00 0.028 0.371 0.766 1.61 2.90 4.67
4.00 0.055 0.396 0.801 1.65 2.94 4.72
9.00 0.083 0.422 0.837 1.68 2.99 4.77
16.00 0.112 0.448 0.873 1.72 3.04 4.82
36.00 0.168 0.499 0.944 1.79 3.13 4.93
60.00 0.214 0.543 1.010 1.86 3.21 5.02
120.00 0.282 0.616 1.120 1.97 3.37 5.19
240.00 0.329 0.684 1.270 2.14 3.59 5.43
1440.00 0.344 0.728 1.560 2.72 4.45 6.49
2880.00 0.344 0.728 1.570 2.84 4.61 6.84
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Fig. 3.5 Vertical deformation of 40 mm specimen (Bperimental and FVM)
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Fig. 3.6 Vertical deformation of 72.3 mm specimerExperimental and FVM)

3.7 CONCLUSION

This chapter details the experimental set-up amucquiure for testing of the
relatively thick specimens of soils. This is alémwn that usual oedometer test results give
the constitutive relations of compressibility angdtaulic conductivity required for the
present numerical model of large strain consolhatirhe close agreement of numerical and
experimental results validates the model.
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Chapter 4

FINITE VOLUME MODEL OF ONE DIMENSIONAL
SOLUTE TRANSPOERT EQUATIONS

4.1 INTRODUCTION

This chapter contains the description of one dinwgr@ solute transport through
rigid porous media, the governing equation and fitéste volume numerical model
formulation. The governing equation does not h&weesorption and decay terms directly but
contains the inclusive terms, concentrations irdfand solid media. The capability of the
numerical model to include the linear-equilibriunorgion as well as nonlinear-
nonequilibrium sorption is shown. However, the d&sions on decay reaction are limited to
first order only. Model verification has been ddme comparing the results with another
numerical model by Fox (2007).

4.2 GOVERNING EQUATIONS &FINITE VOLUME MODEL
DEVELOPMENT

The solute transport equation in terms of Lagramgiaordinates may be given as
follows (Peters and Smith, 2002, Eq. 43).

0 d D dc
E{ncf J+(-ngd :_a_a{ q(F—nTa—;} (4.1)

where, n=porosity; ¢; =solute concentration in fluid medium (mass/ volyine = solute
concentration in solid medium (mass/ volum&dé/da (given by Eq. 2.7)D =effective

diffusion; q=n(v, — ) =Darcy velocity;v; = pore fluid velocity in the soil systems= soll

velocity. Since the description in this sectionlimited to rigid porous media, the soil
velocity and pore fluid velocity due to consoliaetiis ignored. Mechanical dispersion of
solute transport can be included in the Eq. (4U3ing the coefficient of longitudinal
hydrodynamic dispersionD{) in place of effective diffusion. Deng et al. () gave
analytical method to assess ti in open channels based on hydraulic geometry
relationship, assuming uniform flow. Later the samerk is extended for non-uniform
flows also (Deng et al., 2002).The other attemgtandle the diffusion component of solute

transport in open channels, Deng et al. (2001)seslkithe Fick's law component of the
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theory and proposed the fractional Advection —Disjpg equation along with its finite
difference solution. However, for one dimensionalute transport through porous media,
coefficient of longitudinal hydrodynamic dispersi@) is modelled by;

D,=D +a,v, (4.1a)

where, a4 is the longitudinal dispersivity ang is the pore fluid velocity. Eq. (4.1) is now

written as;

—_— 4.1b
J Oa ( )

nD, OcC;
a

%{ncfh(l— ned =-ai{ q¢ —

Eq. (4.1b) may also be classified as conservatiuagon containing a time derivative and a
spatial divergent term. The details of finite voirformulation of Eq. (4.1b) are given

below.

Let the combined quantity of solute concentratiofiuid and solid C.) be represented as;
C,,=nc,J+(1-ngd 4.2)
Eq. (4.1) is integrated with respect to time withimits as shown over a control volume

using Eg. (4.2) and it may be written as;

t+At t+At a
45( f iccmdt]dV: f (45‘1( aG -nDaij dVJ d (4.3)
S ot L Loy oda J oOa

where,dV= dAxda = volume of elementary control volume&A=cross section area of the

control volume normal to direction o&”; da=length of the control volume. Integrating Eg.
(4.3) using Gauss-Divergence theorem for the dematrgerm, it may be written as;

$[Conl, ™ AV =HIN(45 ( g -2 ai] dﬁ} d (4.4)

Ccv t Ccv J aa‘

Now, using definition of time integral Eq. (2.13)rfthe right hand side, Eq. (4.4)takes the
following form of explicit finite volume numericaicheme on & control volume (referring
to the Fig 2.3);

At nD, oc, nD, ac; |
CUMt =t _ (qc _ L P j _( qc, - a_fj (4.5)
cmy cm f f

Aa J Oa J da J._%

.+1
"2
where, superscript£4t) denotes value of the variable at the time staepsamilarly the f);

At = incremental time step; subscriptjs+(%) and (j —%) are the designations of upper and

lower faces of th¢" control volume of discretized field.
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4.2.1 Interpolation of face values

Leonard (1988) proposed Quadratic Upstream Intatjpnl for Convective Kinetics
(QUICK) scheme for bulk flow regions along with aodified scheme of same order in
terms of normalised variables for critical regionkere the QUICK scheme may give
undershoots or overshoots. This scheme has be@tedduere and its brief description is as
follows. The upstream quadratic interpolation fiumctis formed using 3-point Lagrangian

interpolation formula;

- (a_ aj+1)(a_ Q+2) +

. (a- q)(& @) L, (a ala @)
(aj _aj+l)(q - Q+2) : (§1+1_ §+2)( ?-+1_ Ja)

|+ ¢+
" (A, A(a,,a)

¢a) (4.6)

For equidistant nodes at an intervad) with the same length of control volume, eq.

(4.6) takes the following forms;

3 6 1

Upper face, ¢, :qoj% R R (4.7)
3 6 1

Lower face.g, =¢ , = @+ o¢ ~gh (4.8)

2

where,¢ is a transported variable;.,, &, g+1, g+ are the locations of the node§, j, j+1,

j+2, j+ 3 ( refer Fig 2.3) with the variable valugs:,¢;, ¢j+1. ¢j+» respectively;a= the
distance of face of control volumeandj-1 above the nodes. Eqgs (4.7, 4.8) represent
upwinding interpolation for downward flow as thegké the influence of two upstream
nodes above the faces of control volume and onaabie]l The above equations cannot be
used near the boundaries due to insufficient amfjginodes, under such situations pseudo
nodes may be formed numerically. If quadratic dstion of the variable is assumed,
referring the upper boundary in fig.2.3, the valeéabmay be expressed as follows;

Boi1 = G a+ (%1‘2(%12‘*(%2 2 (49)
2M\a 2(ha)

wa) =@+

Thus the boundary node may be expressed as;

% - ﬂ%) - (om—l + Wml ;wm—l + ¢w1_2¢8n+1+ ¢m2 (410)
The pseudo-nodgm.1 will be;
8 1
@nia =§¢m_2¢m—l+§(om2 (411)
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Similarly, for the lower boundary one pseudo-ngglmay be created;

8 1
@ =§¢1—2¢2+§¢3 (4.12)

However, the linear distribution near boundary rakp be useful at times and with this the

pseudo-nodes will be;

%+1:2¢m_¢m1;%=2¢1_¢2 13)

The above interpolation functions are applicableniost of the regions of transport
process, but near the regions of rapidly changnagignt of the variable, it may be unstable
or may return undershoots or overshoots. To oveecdhis problem, an exponential
upwinding, equivalent to the quadratic one, in twhnormalised variables is followed as
proposed by Leonard (1988).

5 <7087 -4, ”
1-2¢9.,

where, the value of square-root term is taken a#ipe, the normalised variable is defined

asp=""%2 and thus;
BB+
&jﬂ — AL AT : ﬁu — G, ~ P2 (4.15)
wj _¢l+2 Q _qoj+2
Eq. (4.15), in terms of normalized variable, maydis written as;
@ =9 ,=0.75+0.75p,,~ 0.5 (4.16)
u j+=

2

Egs. (4.14) and (4.15) can give the values faceegalp =@ ,); the lower face values for
u l+5

a node j) can be calculated by following the above proceduith nodesjfl, j, j+1) or
simply following the fact that upper face of a aohtvolume is the lower face for the next
higher control volume.

However, Eqg. (4.14) cannot be evaluated for evatyersof the normalized variable (

quﬂ). Also, the normalized variablqzl(ﬂ) lies in the range (0, 1) in the monotonic region.

Inclusion of non-monotonic variable, poses the meguoent of otherwise strategies for
calculating the face values. The apparent indetexoyirof the Eq. (4.14) neatﬁj+1 =0.5,

comes out to be 0.75 using L'Hospital’s rule aslwslgives the same slope value, this in
view of Eq. (4.16) becomes the criterion for segtiegathe smooth and rapidly changing
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region. The overall scheme is named as (Exponedpalinding or Linear Extrapolation

Refinement) EULER-QUICK algorithm and it is implented in the following manner
(Leonard, 1988).

(i)
(i)
(i)

(iv)

v)
(vi)
(vii)

(viii)

(ix)

(x)

One system of upstream and downstream is followexighout in the porous field.

If | (¢i—j+2) | < 10° usual QUICK scheme is followed.

If | (b—di+2) | > 10° and |@j+2 - 2641+ ¢ | < 0.3|d—gj+2 |; the condition follows the
common part of Eq. (3.16) (QUICK) and exponentrdkrpolation thus QUICK is
used.

If | (¢ - dj+2) | > 10° and |j+2 - 2441+ ¢ | > 0.3|¢i—dj+2 |; the rapid gradient region
prevails and depending upon the monotonic or nonatamic variation of the
variable exponential (Eq. 4.14) is followed or athise a consistent scheme is used
as described next.

If g.,<-1lor @, =15 (non-monotonic) Eq. (4.16); QUICK is used.

If 0.35< ¢, < 0.6%(values near 0.5) Eg. (4.16); QUICK is used.

If -1< 51“13 0; (Z; 20.3755“1 ; non-monotonic region (an adhoc arrangement for
limited region that avoids unphysical oscillatiorsused.

For the non-monotonic region iﬁlsl.S; 4_4 =a@+1(the equation joins the QUICK
atg,, 21.5) and QUICK is used.

For the monotonic region (0/_",+1 <0.35 and 0.65§7j+l§1); away from the common

region (item-vi above); exponential upwinding E4,.14) is used.

Finally, the un-normalized face value is found gssecond part of Eq. (4.15).

The above scheme is applicable to the downward &ogfor | control volume the

interpolation of solute concentration at fa¢&/2 includes the nodgs1 andj+2 as the two

upstream points and the mesh pqimats downstream point. For upward flow, the order is

reversed accordingly and the computation requireh lbypes of interpolation modules

separately to be used with appropriate case of.flow

4.2.2 Assessment of the Interpolation Scheme

The interpolated face values must satisfy the Valg three criteria for convergence

of the solution (Versteeg and Malalaskera, 200y Cénservativeness arfi) Boundedness

(i) Transportiveness. First criterion is that thégebraic sum of all the incoming and

outgoing flux values through faces of all the cohttolumes must be equal to the algebraic
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sum of boundary flux values. The second criteriagans that the node values are bounded
by their control volume face values. The third améor a consistent interpolated value that
takes care of the direction of the driving potdstiaf transported variables. The quadratic
scheme used here, interpolate the each controimsoltace values with two adjacent
enclosing nodes and one more node above the uppesuzcessively; the conservativeness
is therefore maintained. The transportivenessss alaintainable due to use of two upper
nodes and one lower node. However, the boundedseass guaranteed with the QUICK
scheme which poses stability problem. Thus, as s#uelQUICK scheme is conditionally
stable (Versteeg and Malalaskera, 2007). The EUEREK algorithm overcomes the
stability problem and avoids all critical regiotat may cause unphysical oscillations. The
entire scheme maintains overall accuracy of thradkoeven though the scheme uses linear

interpolations very sporadically in the non-monataegions (Leonard, 1988).
4.2.3 Time Step Restrictions

The time step restrictions are very tight in QUIG&hemes, particularly in case of
unsteady advection and diffusion in an infinite @am The von Neumann analysis of one-
dimensional QUICK scheme proves it easily (Leond880). However, the considerations
on time step restrictions for finite grids resuhto the following condition (Paollucci and
Chenoweth, 1982);

c< 2+ 4l > (4.17)
P, 2N
: gAt : _gAa.
where, local grid Courant numt[eq:A—a, local grid Peclet numb o NAa=A,

and/, is the long wave length cut-off corresponding ténéte grid on Fourier spectrum.
Further, Leonard (1988) opined from the numerie@legimentation that the instabilities are
avoided if a local Courant number does not exce2d O

4.3 SORPTION, DECAY, BOUNDARY CONDITIONS AND
SOLUTION PROCEDURE

The active clayey soils are sensitive to sorptaegorption for many solutes when
comes into contact. Three specific sorption isaotiserare followed here that may be
described as linear-equilibrium isotherm, nonlineguilibrium isotherm and nonlinear-
nonequilibrium isotherm. The implementation allgbesotherms in the present formulation

are shown. Initially the composite solute transGxt,) is calculated with the discrete Eq.
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(4.5) and then depending upon the sorption chaisiiteof the solute and the clay, solute

concentration in fluid and solid phase of soil systcan be distributed.
The linear and equilibrium sorption isotherm isided as;
Cs = pstCf (418)

where,ps= Gs yw= density of solid phasd{y = partition coefficient and; = the equilibrium
concentration of solute in the fluid phase. The bm@ad concentration(;) as defined in

Eq. (4.2) can now be written;

C 1+t = nt+AtleTrAt J+ (1= Y, K, dfl’fm J (4.19)

cm;

Thus, the Egs (4.18) and (4.19) provide the equilib concentrations of solute in
the fluid and solid phase of the system at theeturtime step at a node.

Nonlinear equilibrium Freundlich isothernt, (= ,ostCfF), if used in Eqg. (4.1b)

directly, introduces geometric nonlinearity in thguation. However the equation is solved
in the linear form in the term of combined concatitm C.; and at the stage of

segregation of; andcsthe following nonlinear algebraic equation is fodme

nc; ll:ei +(1-n)p, K, 11%;— C

em =0 (4.19a)
Eg. (4.19a) is worked out using Newton-Raphson oe{Burden and Fairs, 2011)

to getc: andcsis calculated using the Freundlich isotherm.

Nonlinear and non-equilibrium sorption isothermaiiis and Etnier 1981) followed here is

expressed as;

g—f=/ls(Kpc$ -9 (4.20)

where, s=&=sorbed concentration in the solid phase (masaupgrmass);.<=sorption
Ps

rate constant;K, and F are the constants describing a Freundlich isothefime
corresponding equilibrium sorption is defined &5 KpCf and the Eq. (4.20) represents the

imbalance of sorption from this equilibrium. Foisthypical isotherm, the distribution of
solute concentration in fluid and solid phaseshtimed by sufficient subdivisions of the
main time step and using the Egs (4.19) and (4.ZBg nonlinearity involved here is

approximated in piecewise linear manner duringsiledivisions of the time step. Let the
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time stepAt be further subdivided intos equal steps. It is assumed that the change in

tHAt _ st

composite concentration during tirh t+4t occurs linearly by equal values{&———).
n

S

Now the value obs/ot at any time is calculated using Eq. (4.20) and having kn@skit

the values ofc;:“'and c}jm' is found as shown in Eq. (4.21). The procedure tmibjs

presented below.

t+At t
Cij CCFT]

n

S

Ct
% = /]S { K . (thi )F _FSJJ (421)

t+At t
Chv =Cl, +

cm;

, 0s
t+At At ]
S; - C% +aAtps

t+At _ fq _ AtHALY JHAL qt+AL
war _ Cem, —(@=n7)c ™ J

¢t =

c

t+At qt+At
n=1J

where, the known composite concentrations for seraidc time and t+4t are;

Ciy =(n'c, +@-r)¢) 35 G =(hg*+@1- h) ) I« (4.22)

The difference of known new composite concentratibime stept¢At) and the
previous time stept)is divided into number of subdivisions 4t and further calculations
are done through iterations by the set of Egs {Aiere,n= the number of subdivisions
of the time stepAt). The current porosity is used in the equationd te variation of

porosity during the time step is ignored whicheglgibly small.

First order decay is governed by the expressionc, exp(-At); where the solute

decay constant is represented/byand the source decay constanigs th and c‘;’ are the

concentration of solute at a tirhand att=0 respectively.

Three types of boundary conditions as envisage@®dryckwerts (1953) are adopted and

described as under.

1. Boundary condition on solute concentration: thei®toncentration may be assumed to
be constant if the inflow boundary has a large teopool on it or it may be zero if the

outflow boundary has a large fluid pool without gwdute.
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2. Boundary condition on concentration gradient: com@ion gradient at the outflow
boundary will be zero if solute transfer is reggdctcthrough no flow boundary.

3. Boundary condition on mass flux: If a small wellxadl reservoir exists over a boundary
and its concentration is likely to change with s$eldransfer, the mass flux at the
boundary is constant, i.e., the convective mass fllawing in at the boundary will be
equal to the mass flux flowing out just below theubdary inside the media due to
combined effect of advection and diffusion andrdg@resentative equation will be;

V.G =V, c—%g—; (4.23)
where vt is the advective velocityg, is the solute concentration in the reservoirs the
solute concentration at the boundary &nds the coefficient of longitudinal hydrodynamic

dispersion for one dimensional solute transport.

The entire procedure is coded in the computer lagguFORTRAN-77 and the

problem solved is presented next for the evaluatfdhe computational model.

4.4 MODEL VERIFICATION

A set of simulations assesses the solute trandpod rigid porous media (no
consolidation) with steady flow and constant soidacentrations (boundary condition type
) at the boundaries. Fox (2007) describes the gégynmand data of the problem. Fig.4.1
shows the geometry which is initially uncontaminkt€he heightH=1.0 m, specific gravity
of solids Gs= 2.7, porosityn =0.4, dry densitypq = 1620 Kg/ m®, vertical hydraulic
conductivityk =2x10® m/ s and top and bottom boundaries are drainedthi@®simulation
the consolidation part is bypassed, consolidatimuced velocity is taken as zero and the
seepage velocity due to hydraulic gradient is aered. Table 4.1 shows all the cases,
seven in number, with all required data for whibk simulations were performed. Linear
equilibrium sorption isotherm is followed for theases with sorption. Longitudinal
dispersion has been taken into account by replatiagffective diffusiond’) term of Eq.
(4.5) by hydrodynamic dispersion coefficiela(=D +aa V) Where, o, is the longitudinal
dispersivity andx is the pore fluid velocity. Linear-equilibrium gaion followed gives the
retardation factor®;= (1+ pgKy/ n) =1.81].
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Table 4.1Parameters of 1D transport simulations

Simulation Boundary Effective Solute Source
total head Seepage Diffusion Longitudinal Distribution decay decay
values velocity coefficient dispersivity coefficient constant  Constant Peclet
hy, hy Vs D’ a Kq Je Jsc Number
(m) (m/s) (m?/s) (m) (mL/g) (1/s) (1/s) P
Advection 11,1 5x1d 0 0 0 0 ©
Diffusion 1,1 0 5x18° 0 0 0 0
Advection+ 11,1 5x10 5x10% 0 0 0 10
diffusion
Advection+ 11,1 5x10 5x10% 0.1 0 0 0 5
dispersion
ADS 11,1 5x16 5x10% 0.1 0.2 0 0 5
ADS+ 11,1 5x10 5x10% 0.1 0.2 2x10 0 5
decay
ADS+decay+ 11,1 5x10 5x10% 0.1 0.2 2x10 1x108 5

source decay

Solute decay at two levels, i.e., during the fllwwotigh and also at source has been

considered. First order decay is adopted for thepgme, governed by the expression

C. =’ exp(-At); where the solute decay constant is representeg dnyd the source decay

constant ass; C: andC’ are the concentration of solute at a tina®d at=0 respectively.

hh 6

n v
|
Z
! "

hy G

Fig.4.1 Geometry of the rigid porous media

Peclet numbeP (=v; H/D or D,) varies from zero to infinite as shown in Tablé.4.
Solute concentration at top boundary has been qavealue ofc, =10 mg/ L, however the
solutions are shown in terms of relative conceiumafc;/ co). Simulations are done with 32
equidistant nodes in the rigid porous field. Fo®(Q?2) gives the solution of this problem
with 200 elements with the finite difference pragr&€ST1 at the time=4x10's, 4x18s and
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1.6x10s. It has also been shown that the results areeiy good agreement with the

analytical solutions of Rabideau and Khandelwab@)9

Figs. 4.2 to 4.4 shows the comparisons of FinitduN@ results with the results of
Fox (2007) at the instants of time mentioned aldovall the cases listed in the Table 4.1. It
is evident that the results are quite close exteptadvective font. Figs.4.2, 4.3 and 4.4
show all the seven cases separately for clarifye$entation of comparisons with the CST1
results at time t=4x10s. The advective font (Fig.4.2) shows the traositf relative solute
concentration from 1 to O approximately from thevekion 0.9 to 0.7 whereas the CST1
shows this transport instantly at elevation 0.8aclhs due to the plug flow assumption for
pore fluid velocity based calculation. However thenerical scheme based result presented
here are close enough and acceptable and singladgrof advective fonts has also been
found as shown in Figs.4.3 and 4.4. The simulatiwee also performed for higher values
of hydraulic gradienti(=1.0 and 10.0) where, the Peclet numbers woul@id8eand 1000
for advection + diffusion; for advection + dispensithese would be 9.09 and 9.90. Fig.4.5
(t=1.0x1d s) and 4.6t€1.0x16 s) shows all the curves scaled from CST1 resulisfiaite
volume method (fvm) results in one graph. It isdewit that the finite volume values are in
excellent agreement with Fox (2007). A set of satadsets maintaining a fixed Peclet
numberP =10 as shown in Table4.2 were also simulatednfersame boundary condition of
fixed solute concentrations as mentioned abovearBation factor, for first three cases is
1.0 and for the next three, it is 1.81. The plots @resented between relative concentration
and relative elevationa( H). Fig.4.7 shows the comparison of finite volumsutes and
CST1 results (Fox, 2007) at non-dimensional timediat” (=tv; /H) as 0.5; which are in
close agreement. The identical results correspgnttila retardation factor with invariant
Peclet number shows the uniqueness of solutiotfsegbresent computational model. A few
more simulations were performed on the data of4Figwith the constant flux (reservoir/
type Ill) boundary condition at the top (inflow atition) and zero concentration gradient

(type 11) at the bottom (outflow condition); defihearlier are

D, o
ViG =V, C_TLEZ at a=(H) (4.24)
1% _ga a=(0,t) )2

J 0a
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Fig.4.6Solute concentration profile for 1-d rigid prous media {=10.0;t=1.0x16 s)
Table4.2 Parameters for 1-d transport for invariant Peclet number

SiR Layer Total Hydraulic Seepage Effective Longitudinal Longitudinal Distribution Retardation Peclet
No. height headat gradient velocity diffusion  Dispersivity  dispersion  coefficient factor number
top and \ coefficient o coefficient Kg R P
bottom D’ Da
h, hy
(m) (m) i (m/'s) (m’7's) (m) (m’'s) (mU/ g)
1 1 11,1 0.1 5x1D 5x10% 0 5x10% 0 1 10
2 0.2 0.4,0.2 1 5x1D  5x10% 0.01 1x1d 0 1 10
3 4 4.8, 4 0.2 1x1H 8x10% 0.32 4x10 0 1 10
4 1 11,1 0.1 5x1D 5x10% 0 5x10' 0.2 1.81 10
5 0.2 0.4,0.2 1 5x10 5x10% 0.01 1x10 0.2 1.81 10
6 4 48,4 2 1x1® 8x10™ 0.32 4x1d 0.2 1.81 10
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Fig.4.8 Profile of solute concentration for 1-d trasport with b.c. type Il and type I

Egs (4.24) and (4.25) are implemented in this cdatpanal model with the following
approximation of concentration gradient near boueda(Fig.4.1), wherd=1 ande=eyfor

rigid porous media as given by Eqs (4.26) and @4.27

Z(Cm_1 -C lj
oc _ (e (1+eo) (4)26
i=m-1
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ac_ ot G4
_ ( eo} zoj[q:cl_lj (4.27)
i=1 2 /i=1

% Aa 1+e

where,c is the solute concentration in fluids at the lawat indicated by suffices. Fig.4.8

shows the finite volume results along with the hessof Fox (2007) and the close agreement

is obvious.
4.5 CONCLUSION

The chapter presents a computational model fordonensional solute transport in a

rigid porous media using the framework of deformpagous media (the consolidating soil)

and the descriptions lead to following conclusions.

1.

The finite volume computational model is capable aocommodate required
boundary conditions, sorption isotherms and deeagtions.

The number of node points or elements required doceptable solutions are
relatively quite less, thus resulting in less cotapanal effort.

The high Peclet number flows also give quite goeglits which means the model
works well with advection dominated flows also.

Highly advection dominated flow with very high PectNumber ¢ H/D or D,) may
follow the plug flow assumption and the proposedtdi volume numerical model
may not capture it so accurately. However, thetsdiansport during flow through
porous media is seldom advection dominated rathepils the Reynolds number is
less than unity (Kumar and Singh, 1995) and thow fkelocity is always very low.
The Peclet Number in such flows is practically sagma to be rather low due to low
velocity and significant diffusion during solutamsport through clay medium.
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Chapter 5

FINITE VOLUME MODEL OF TWO DIMENSIONAL
SOLUTE TRANSPORT EQUATIONS

5.1 INTRODUCTION

The hydrodynamic dispersion (mechanical disperaiwh molecular diffusion) is the
key parameter in solute transport through poroudian&Vhen the advective solute transport
is not negligibly small consideration of mechanidelpersion becomes inevitable. For a line
source of contaminant, the solute transport is rthedievith one dimensional advection and
two-dimensional hydrodynamic dispersion: longitadinand transverse. Longitudinal
dispersion is the solute movement due to hydrodymattion in the direction of flow in
addition to advection. The mass fluy) (n the longitudinal direction due to hydrodynamic
dispersion through a porous media and the longialdcoefficient of hydrodynamic

dispersionD,) are modelled by the following equations.

oc,
f.=nD, — (5.1)
D,=D +a,yv, (5.2)

Where,n = porosity of the porous medig;= solute concentration in fluid = the vertical
direction coordinate as shown in Fig.2[3: = D, effective diffusion coefficientz =
tortuosity factor (Shackelford and Daniel, 1990);= free solution diffusion coefficient],
= longitudinal dispersivityy: = pore fluid velocity or seepage velocity.

Similarly the transverse mass fluk)(and transverse hydrodynamic dispersion

coefficient Oy) are modelled by the equations below.

¢ =np % (5.3)
fx X OX .
D,=D"+a,y, (5.4)

Where,ax = transverse dispersivity, = the transverse direction coordinate and othende

remains same as described with longitudinal dispers

This chapter follows the two dimensional hydrodymadispersion solute transport

with unidirectional advection as discussed abovkindudes the details of its finite volume
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formulation, derivation of two dimensional quadeatiterpolation function and verification
of the computational model. The basic frameworkhaf model is the deformable porous
media, but the discussion here is limited to rigidous media as a special case of it with no

deformation.
5.2GOVERNING EQUATIONS

Mass conservation in the solid phase of a poroudiane Lagrangian coordinates
may be given as follows (Peters and Smith, 200248}.

0 of

E{ (1-n)cJd} =S, = ~52 =0 (5.5)
where, n= porosity; t= time; ¢ = solute concentration in solids (mass/ volundegs/da
(given by Eq. 2.7)S.=rate of solute mass sink per unit volume in thelgzhase; ands =
solute flux in solid media. Here, the solute fliadjent is zero as in Lagrangian coordinate
system the solids are assumed to stay in theira@ortlume and there is no mixing of soils
of different locations. Similarly, the mass consdgion in fluid phase, due to two-

dimensional hydrodynamic dispersion, will be gilmnthe following equation

of ., ~ of .,
da 0Xx

g—t{nch} +S =- (5.6)

where,f;,= solute mass flux in fluid phase in the longitwdie-direction; f= solute mass
flux in the transversg-direction;S,= rate of solute mass source per unit volume irflthe
phase and equal to the rate of solute mass sirtkansolid phase. By definition, one
dimensional advective mass flux along with the asged hydrodynamic longitudinal and

transverse solute mass flux in fluids are expreased

f._=qgc, —nD oc (5.7)

fa q f a a .
f.=-nD oc, (5.8)
L X 0X -

where,q= Darcy velocity through porous media. Now combgnthe Eqgs 5.5 to 5.8, two-

dimensional governing equation of solute transpoporous media may be written as;

0 0 nD acf 0 6Cf
—{inc,J+(1-n)cJ} =——<0gc, ~——2—F+—<nD, — 59
at{ 9+ (=med) aa{qf J aa} ax{ * X (5-9)
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The above governing equation can be cast as tite frolume explicit numerical

scheme and described next.
5.3FINITE VOLUME MODEL DEVELOPMENT

Let the combined concentration in a control volumeeC; as defined by the Eq3.2,

the above Eqg45.9 is written;

oc oc
_accm = —i qc, — nDa —_ +i nDX—f (510)
ot oda J oOa 0X [9)4

Integrating Eq4.10 over a control volume of eleragnsizeAaxAx (Fig4.1) and time, it is

written as;

t+At aC t+At a nD aCf t+At a aCf
—m gt @V = ——1qc, ——=2—dV (dt+ —{nD,—-tdV [t (5.11
Cﬁ“ ot J(Jgaaqf J oa ICJSax * ox &4

cv t t cv t cv

Now, using Gauss-divergence theorem for controliw@ integration and using the

definition by Eq2.13 for explicit time integral &HS, the Eg5.11 may be written as;

At nD, ac, nD, 0c; |
cra) = (¢t _at _Ma 7t - ——a 7T
( om )i,j ( Cm)i,j Aa (qcf J aaj (qcf J oOa ji,j—l

ij+l
Y2

(5.12)

Eg5.12 is the finite volume numerical scheme and emaluate the composite
concentration at next time step with the known &alat previous time step. Thus a problem
of solute transport can be solved numerically ifiah and four boundary conditions of
solute concentration are known. The composite aura#on can be segregated into solute
concentration in fluid and solid phases for a gigerption isotherm as explained earlier in
Chapter- 4.
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Fig.5.1Two-dimensional control volume of sizaaxAx

The further requirement of the solution is to assi® face values of the solute
concentration on the four faces of the elementamtrol volume. The face values are
approximated by interpolating with upstream biagl #me two-dimensional interpolation

function is derived next for the purpose.
5.3.1 Two-dimensional interpolation function

The variable solute concentrations on the bottare fa (i-1/2, j-1/2), ¢ (i, j-1/2), ¢
(i+1/2, j-1/2)] with upstream bias can be approximated widlyldr series about the solute
concentration point; (i, j-1), just below it and taking the average of theakies. Now,

using Taylor’'s series expansion,

1.1
c(i-=,j-=
e ( 2] 2)

. DX Aa
=C(l——, ] 1+—
{ 2 . 2)

o (i 1-D) p d6.(.i-1 (5.13)
:Cf(i,j_l)_ Cf(l ) )g+ Cf(i J )E‘
ox 2 da 2
+£ ach (i,j-1) (AX)2 _ach (,j-1) (AaAx) +62Cf (A 1)(Aa)2 +O(X3)
2 0xX 4 daox 4 0a’ 4
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Similarly approximating the other points on thetbot facecdi, j-1/2), ci(i+1/2, j-
1/2) and neglecting the higher order ter®s’), the average bottom face value of solute

concentrationdgp)can be approximated by averaging the values ubm@pllowing equation

by Simpson’s rule.

1.1 1 1. 1
Cii—-=,j—2)+4c, (,j—2)+c (+—=,] ——
( o 2) (] 2) ( o] 2)

ci (i, ] —5) = 5 (5.14)

These equations give the average solute concentratithe bottom face as follows.
o1 . oc,(i,J-Dapa 109%;(,j-1)
c (i, ] _E) =c (i, ] ‘1)+fT—2+§faT (Bay
. (5.15)
+ 1 0% (i,j-1)

24 x> (8%’

Now, using the central difference quotient EqSslapproximated as;

o 1 _§ L. _6 N __1 | —
Cf(|,J_§)—8Cf(IlJ)+8Cf(I’J D gch’J 2) (5.16)

+i{cf (i-Lj-D)-Z (,j—Drc, (+1j- ]})

EQ5.16 is the quadratic interpolation function émaluating the bottom face value of solute
concentration. This interpolation function is sarae presented by Leonard (1988).

Similarly, the top, left and right face values ofige concentration of the control volume (

J) can be interpolated with the following expression

1.3 . 6 o1 .
Cf(l,J+§)=§cf(I,J+1)+§Cf6,1)——8@G,J—l)

(5.17)
+fe,(-L1)- 2, Gi)ve, (+1]}
1. 3 ... 6 . 1 .
c(i-=,j)=2c @, ))+—c (i-Lj)——c (-2])
2 i 8 8 (5.18)
te-Li-D- & (-1 e -1+ D)
o1 3 . .. 6 . 1 .
Ci(it-,))==c(i+Lj)+—c, (,j)——¢c (-1j)
2 8 8 8 (5.19)

+i{cf (|, j _l)_ch (i,] )+Cf G ’j + 1}
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5.3.2 Solution procedure and other considerations

The solution procedure or the FORTRAN program of-dmensional solute
transport can be extended for two-dimensional eaethe only change in interpolation of
face value in which the upstream biased transveuseature term is to be added. The
normalised variable EULER-QUICK scheme also admhits small term addition smoothly
(Leonard, 1988). Another point of attention istttiee node numbering should be advanced
in the direction of flow or written in the mannep $hat two upstream node points are
included in the interpolation function similar teet one dimensional description. Sorption
and decay reactions are treated in the same waydimensional cases as explained in

Chapter 4 for one dimensional solute transport.

5.4 MODEL VERIFICATION

To verify the two-dimensional solute transport nuice model, the same problem
geometry of rigid porous media as stated in Figigltaken up with only alteration in initial
distribution of contaminant, which now will be anited line source and downward flow of
fluid spreads the contaminant in two-dimensionacgp The initially uncontaminated rigid
porous mass has height of 1 m and width as 0.5ha.flow through porous mass is created
under unit hydraulic gradient. Other required prape of the flow through rigid porous
system are: Effective diffusion coefficiet = 5x10"° m?/ s; Longitudinal dispersivity, =
0.1m; Transverse dispersivity = 0.01m; Specific gravity of solidSs = 2.7; Porosityn =
0.4; dry densitpy =1620 Kg/ m. Drained top and bottom boundaries maintain zelots
concentration throughout the time. Side bounddo#ew no flow condition, so the solute
mass flux and fluid mass flux both are zero. Ihitiandition of the contaminant in the rigid
porous mass is introduced by injecting the contamtinvith a uniform concentratiazg into
the fluid at locationx = 0.2475 m;a = 0.5975 m. Bear (1972) mentioned the analytical
solution to two-dimensional solute transport iniafinite medium under steady state of

flow and also assumed the solute mass as a pairteso

M ] ox) @ amv)
4mt,/D D, 4Dt 4Dt

Where, M = mass of the injected solute at coorémad, a,). Fox (2007) also presented

c(x,a,t) =

(5.20)

solution to this problem with the numerical mod€S{T1) using separate Lagrangian
coordinate framework for fluid and solid elementsg Bssociating the movement of a fluid
element relative to a particular solid element.tlkenr, the advective solute transport is

evaluated with the plug flow concept and hydrodyitadispersion of the solute follows
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finite difference approach at element level. Thenparison of the analytical solution and
the numerical solution by Fox (2007) with 20000n&d@ts of size 0.005 m x 0.005 m,
shows an excellent agreement. For the solutiohisoproblem by the present finite volume

numerical model, the rigid porous mass is modeligtt 5000 elements of size 0.01 m x
0.01 m.

0.0

o x=0.2475m

A x=0.2975m

o0 x=0.3475m
FVM

Elevation, a (m)

Advection+Dispersion

0g ! i=1
t=t=1.0x10°s

1.0 T .

2 4 6 8 10
Relative concentration, c/g(x104)

Fig. 5.2 Distribution of relative concentration with elevation

Fig 5.2 and Fig 5.3 shows the comparison FVM sohgiand that of Fox (2007). Fig
5.2 shows the horizontal spread of contaminant utjino distribution of relative
concentration of solutec/cy) with elevation §) at horizontal locations = 0.2475 m, 0.2975
m and 0.3475 m. Fig 5.3 shows the comparison sifidution of relative concentration of
solute ¢/cy) with horizontal coordinates at vertical locaticas 0.5475 m, 0.4475 m and
0.3475 m. All these concentration distributions e@ts&ained at timeé= 1.0 x 16 s.
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i=1
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Relative concentration, c/g(x104)

0 0.1 0.2 0.3 0.4 0.5

Horizontal coordinates,x (m)

Fig. 5.3 Distribution of relative concentration with horizontal coordinates

The results are in close agreement with the adgaritaat the FVM numerical model

requires relatively less number of elements forstbletion for the same level of accuracy.

5.5 CONCLUSION

The focus of this chapter lies primarily on the eélepment of two-dimensional
interpolation function for FVM numerical model ajmaition. Further testing/ verification
are also shown with more number of example probl@glow through deformable
(consolidating) porous media in the next chaptesweler, with the instant discussions,
following conclusions can be drawn.

1. Implementation of two-dimensional interpolationsisnpler as it contains only one
additional transverse curvature term to the oneedsional interpolation function.

2. The order of accuracy is maintained to third ortike the one dimensional
interpolation.

3. Number of required elements is relatively lessdioraining an acceptable solution.
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Chapter 6

FINITEVOLUME MODEL FOR CONSOLIDATION
INDUCED SOLUTE TRANSPORT

6.1 INTRODUCTION

This chapter describes coupling of finite strainnsaidation and the resulting
advection solute transport along with the flow doeany hydraulic gradient across a
saturated soil mass. The finite volume numericadlehdor finite strain consolidation is used
to determine the Darcy fluid velocity due to comsafion and the same is added to flow by
hydraulic gradient and the resulting velocity isdlly used for one/ two dimensional solute
transport in a synchronized manner at each time 3i@is may be termed as semi coupling
as all the involved equations are programmed irarseé@ modules and linked with each
other through velocity term of consolidation moduldéne next few sections describe the
entire procedure of the semi coupled numerical rhdde solute transport through
deforming porous media keeping all other attribiwiesh as boundary conditions, sorption,
decay etc. to be same as described in earlier efsaptbout consolidation and solute
transport. The comparisons of results of examplablpms by this model and others,
validate this attempt well. Theoretical paramestiedy on two dimensional solute transports
through deforming porous media is also includedwitfficient variations in longitudinal
and transverse dispersivity and effective diffusmoefficient. At the end, the chapter

concludes the performance of the model.

6.2 COUPLING OF FINITE VOLUME MODEL OF CONSOLIDATION
WITH ONE AND TWO DIMENSIONAL SOLUTE TRANSPORT

The solute transport computations in deforming ¢otidating) soils require inclusion
of solute transport module in the program of cosdblon module where it computes the
consolidation induced Darcy and seepage velocityaddition to the provisions of
computation of Darcy/seepage velocity due to a déwylilr gradient. As introduced above,
the consolidation induced velocity is added toftbe velocity under any existing hydraulic
gradient and once the total advection value is knothe module of solute transport

program is called next for computation of solusnsport due to advection, dispersion with
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sorption and decay at that time increment for Eiments. The next section details the
mathematical procedure adopted for calculation aisolidation and hydraulic gradient

induced velocities in soils with varying porositycahydraulic conductivity along the depth.
6.2.1 Computation of stresses, Darcy velocity and effective hydraulic conductivity
Terzaghi’s principle of effective stress defines;

o' =0-u (6.1)

w

where,s = total stress andis the pore pressure which comprised of three cmapts;
U, = U+ U+ U 6.2)

where,up=hydrostatic pressurej=pressure departure from the hydrostatic due todwit
gradient andi=excess pore pressure. The excess pore pressutkeapdre pressure due to
hydraulic gradient across the soil layer contribiatehe Darcy velocity and cause flow of
water in the saturated soil field. However, hydatistpressure balances the potential head
only and does not play any role in the flow of watéonsolidation and hydraulic gradient

induced Darcy velocities can be added to get theltant velocity. Thus;
q=0.+0q, (6.3)

kK du,da_ _ kduy,1+¢g

b= 9 0f  y dalte

(6.4)

where, g=Darcy velocity; g=component of Darcy velocity due to excess poresganee
gradient;g, =component of Darcy velocity due to hydraulic gesd across the soil layer.
Hydraulic gradient across the soil layer causefoumi velocity in the soil field through the
layers hydraulically connected in series.

The componenty is determined by the kinematical considerationagu&gs. (2.14
and 2.53). This is advantageous as the pressuesl lwamsolidation induced velocity may
not be much accurately consistent with the contywionservation of fluid flow and may
lead to some discrepancy in conservation of maskeofransporting solute. Integrating the
Eq. (2.53) gives the value of Darcy velocity)(due to the consolidation as;

J'1 1 de (6.5)
21t 6 at

Where, the discrete point values of the integranthe right hand side are known through

the EqQ. (2.14) as given below;
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1 qn+1_é1=__1 1+e yw yw(l+e) ded i+% (66)
1+e0 At Aa k ys 1 +k(1+%)(a_0"a_eaj n

1+e Yo Y, 1+el\ deo i_éj

L 2

Thus the Eq. (6.5) is numerically integrated tothetvalue of Darcy velocitygf). It

may also be noted that the velocity within a cdnimume is assumed to be uniform.

The hydrostatic part of the pore pressure is ddfase

ou, 65 1+e
0 = 6.7
- e~ Pig (6.7)
1+e
=—j Vo (6.8)

Total stress is the applied pressure plus the pregxerted by the self load of the soil.
a +e
o(Et)=a(& )+ [L" P uga (6.9)
o 1+§

where, o (&, t) = total stress at a location at any time in tle@solidating soil;o (&,
t)=existing load applied at the top of the soil ay &ime. The solution of Eq. (2.14) yields
the spatial distribution of void ratio at a giveme; the corresponding effective stresses are
interpolated among the input data of soil compleltsi and the pore pressures are
calculated using Egs. (6.1 - 6.9). The derivatib&E@. (2.10) considers the hydrostatic pore
pressure and excess pore pressure (Cargill, 1982}re above calculated pore pressure
includes these two components only and can be gage as the hydrostatic pressure is
estimated directly through Eq. (6.2). The presqurg due to hydraulic gradient is taken
care separately with the general principles of aytic conductivity and the effective
hydraulic conductivity for elements of differing luas connected in series is estimated

using the following equation;

k.= (6.10)

where, T; =thickness;k= hydraulic conductivity of" CV; H=total height. The effective
conductivity gives the Darcy velocity due to hydragradient across the soil layers by Eq.
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(6.4). With the above additions in the large str@nsolidation module and then calling the
solute transport module, the problems of solutasjart in deforming porous media can
also be worked out by the present numerical modkdl eifferent boundary conditions and

the next section contains the comparative studyeaatuiation of the model.

6.3 MODEL VERIFICATION

The computational model has been applied for swistiof solute transport through
deformable porous media with decay reactions, firegilibrium, nonlinear equilibrium
and nonlinear nonequilibrium sorption isotherms.ristoon of effective diffusion with
porosity and cases with one-dimensional longitudidgpersion and two-dimensional
longitudinal and transverse dispersion are alssgnted.

6.3.1 Solutetransport in 1-d compressible porous media

Lewis (2009) and Fox (2007) presented solution ofictitious problem of a
composite liner. The computational model of Lew29(9) is based the Finite Element
Method and that of Fox (2007, CST1) uses the pismelinear method for the solution of
finite strain consolidation equation and solut@s$gort equations in a semi coupled manner.
The problem statement is as follows. A single cositgoliner system composed of a
Leachate Collection System (LCS), an impermeablemgenbrane, saturated compacted

clay liner (CCL) and a drainage layer as shownigng=l.

WASTE
LCSCo
T *x\ = ¢
GM =
aoré
CCL
Tt Lk,
DRAINAGE LAYER ag

Fig. 6.1 Single composite liner system

The thickness of GMHgy=0.0015 m; a volatile organic compound in the wasth
concentration ¢y, diffuses through GM and the corresponding diffuasicoefficient
D ev=1x10% m? y; the CCL is initially uncontaminated; initidlickness of CClHy=0.914

m; initial void ratio e=0.33; initial vertical hydraulic conductivitk;=3.74 x10° m/ y;
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effective diffusion of volatile organic compoundvraterD” =0.1 nf/ y; the compressibility
(0'~€) is linear. Mechanical dispersion, sorption antf seight of the clay is neglected
(¢a=0; Kq =0; G=1). The liner system was subjected to a load &f iZPa/ y for two years
and finally the surcharge load reaches to the le&=400 kPa.

Lewis (2009) and Fox (2007) presented the solutibthe problem for constant values of

strain-invariant coefficient of consolidation() defined as

- _1tg  _1+tg K
1+e 1+ e my,

6.11)

where,c,=coefficient of consolidatiorm, = coefficient of volume compressibility.

Hydraulic conductivity is assumed to hold the faling relation with void ratio for constant

value ofc. (Fox, 2007).

K = ks

i=1,2,3,...... (6)12

Solute concentration at the top boundary of C@{) (is found with the condition of

constant diffusion flux but no advection using E424). This gives the relation;

t * §
t — NysHewD Gy + D6y &
n:n—lD* Hou + hD*GM

h:%]j—ertn—l- t = éwl
2 1+e, ' "M 1te

(6.13)

where, 4a = initial distance between the two consecutive @sodr length of a control

volume: nt

' i m-1

= porosity of the uppermost control volume. Thetdot boundary condition
(type-ll) is the no flux flow across the boundasysihown in the fig 6.1 and is implemented

asc, = ,. The linear compressibility relation is expresasd
1-=
2

§ =6~ ml+ g)o’ 18)
Simulations were performed with 20 elements, fore¢hvalues of increasing
compressibilitym, = (3.82x1C, 3.82x10% and 6.37x1d kPa') and corresponding values of
decreasingc. = (10, 1 and 0.6 M y). Fig. 6.2 shows the vertical settlement of C@ith
time along with the results Fox (2007) and Fig $h8ws the relative concentration of solute

at the base (breakthrough curves). The settlemardsalmost identical whereas the
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breakthrough curves are in good agreement. It Wsasabserved that the case of maximum
compressibility §,=6.37x10°%kPa"; c.=0.6) the void ratio at the bottom becomes almost

zero att = 1.93 y and the program gets unstable and firiaiiypinates.

Timet (years)

0 0.5 1 15 2
0
—~ 0.05 A
E
N
g 0.1
g 0.15
fvm X)
0.2
Fig 6.2Settlement of CCL
0.5
X
X CST1l =——FVM

0.4 -

0.3 A

0.2 A

0.1 -

Relative concentration at CCL base, c,/c,

0 0.5 1 1.5 2

Time, t (y)

Fig. 6.3 Breakthrough curvefor solutetransport through CCL

A few more simulations of the same problem stateala are presented to show the
influence of longitudinal dispersivity and equiiilbm sorption as well as for the comparison

of the present model results with that of Fox (900Fig 6.4 shows the results with the data

c.=1.0 nf/ y; m, = 3.82x10% no sorption Kg = 0.0); longitudinal dispersivity,= 0.0, 0.1,
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0.2 and 0.5 with no consolidation where advectramgport is zero and solute mobility is
only due to diffusion. It is obvious that the colidation has considerable influence on
solute transport whereas dispersivity has limitagact. The results of present model and
that of Fox (2007) show good agreement with eablrot

The next comparison Fig 6.5 of the results is rdigarthe performance of the model
with sorption. The simulation shows the effect qtidibrium sorption K4 = 0.2 mL/ g) on
solute transport with and without consolidation.eThreakthrough time with sorption is
increased as the solute concentration at the leasees. The results show a close match.

0.4

X fox no consolidation - diffusion only
fvm

o fox a,=0.0
fvm
03 4 & fox a,= 0.1
fvm
o fox a,=0.2
fvm
o fox a,=0.5
0.2 - fvm

¢ =1m?/y
K,=0.0

Relative concentrationat CCL base (c,/c)

0.0 0.5 1.0 1.5 2.0

Time, t (y)

Fig. 6.4 Influence of longitudinal dispersivity and consolidation on solute transport
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fvm
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fvm

0.06 - a,=0.0
K,=0.2mlL/g

0.04

0.02 -

0.00

0.0 0.5 1.0 1.5 2.0

Relative concentrationat CCL base (c,/c,)

Time, t (y)

Fig. 6.5 Influence of sorption and consolidation on solute transport
6.3.2 Consolidation induced solute transport through kaolinite slurry
An experimental study for consolidation induceduseltransport was conducted on

contaminated and uncontaminated specimens of kimosilurry (Fox, 2009).

Reservoir condition
Load Q

LTI

//Unconta/pinated/
Contaminated
\ \

Fig. 6.6 Arrangement of contaminated and uncontaminated soil specimen

Fig 6.6 shows the required descriptions only; havdar other experimental details
in the cited reference may be seen. The arrangeshemn is kept in a special mould with
other allied arrangements which provides zero 8amdition (for solute mass and pore fluid
both) at the bottom and the top boundary condittothe constant flux condition due to
formation of a reservoir at the top by the fluidirgp out of the slurry specimen as the

consolidation proceeds. The surcharge loadingsappdied in steps as per the schedule
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(Q=3.1, 5.6, 10.4, 20.1, 39.5 and 78.4 kPa). Eactl is&kept for three days. Initially, the
height of the contaminated slurtf;= 50.4 mm; the height of uncontaminated slurry
H,=19.4 and total heighi=69.8 mm; void ratio of contaminated specimen=2wf ratio

of uncontaminated specimen=2.45. Dilute solutiopatissium bromide (KBr) was used as
contaminant and initial concentration the soluttapsium K in the contaminated specimen
=234 mg/ L and that of bromide Br 1672 mg/ L uniform throughout.

The compressibility characteristic of the soil dolls the relation as given in Eq.
(6.15) followed by the relevant details below.

!

e=¢g- Qlog% (6.15)

0

where, eg=weighted average of void ratios uncontaminated @maminated specimen as

per the heights=2.4T. = 0.65 (Fox, 2009) and,=0.92.

The hydraulic conductivity characteristic of thell assed for the simulation follows the
relation by Eq. (6.16).

e=8.16+ 0.765log (6.16)

The data set based on above constitutive materggepties were used as input
values. Initial value of void ratio for the entseil was taken as 2.47, the average void ratio
of contaminated and uncontaminated slurry. Boundamdition for void ratio at the top
was taken as drained and that at the bottom wa® tak undrained. The boundary condition
on solute concentration at the top was taken tmvothe reservoir condition and it is

implemented through the following equation.

t t *t t
t _ meilcm_1h+ D m—1Cm_1
¢, = t «t
me—lh + D m—l
1+ e
h=05Aa——01
1+ €, (6.17)
t
t —_ qm—l
mefl - t
nm—l

where, ¢ = concentration of solute in the reservoir.
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Effective diffusion D) was assumed to vary with porosity (Fox, 2009) exptessed as;
D" =D,(n)" (6.18)

where, D, = free diffusion coefficient of solution =20.8x1bm?/ s for Bf and 19.6x18°

m? s for K (Shackelford and Daniel, 1991); M= a constant=1f@2both solutes (Fox,
2009). Initial conditions of solutes’ concentraoin the uncontaminated specimen are
uniformly zero in the fluid and solid phases. Smnptisotherm followed was nonlinear and
nonequilibrium Eq. (4.20) (Travis and Etnier 198Ihe values of constants of Eq. (4.20)
were taken a&,=19.6 mL/gm;F=0.608 andi=0.005/s. In the contaminated specimen, the
reactive solute Khas an initial concentration of 234 mg/ L in theéd medium uniformly.

The specific gravity of the soil solids is taken2a82. It is assumed that initially the reactive

solute was in equilibrium and the concentratioi6fn the solidsc, :,ostcFf =407.86 mg/

L. Mechanical dispersion was neglected and disggrsvas taken as zero. The simulations
were run with 200 nodes with the time step of GaB8 for segregation of fluid and sorbed

concentration of solutes the time step was fursiidivided into 50 divisions.

Figs. 6.7 - 6.9 show the results of consolidatiart,pthe vertical settlement,
maximum excess pore pressure with time and thé ¥imid ratio along the elevation of the
specimen. The comparison of present FVM computaticth the CST2 (Fox, 2009) with
200 solid elements and 600 fluid elements and éxgetal results are also shown. The
present simulation gives settlements a little highred void ratio a little lower compared to
CST2 and the measured values. The maximum exceass guessure shows very close
match. The little difference may be attributed be input values of compressibility and
hydraulic conductivity relations that may not beaetty same as used in CST2. However,
the results are not out of pattern and are accleptihrther, the reservoir concentration of
K" and BF, their final distribution in fluids and the finabrbed concentration of'Kn soil
specimen are shown in Figs. 6.10 — 6.12. The casgaof FVM results with CST2 and
measured values shows close agreement in Figrét@l halues of reservoir concentration
up to time of six days are little more by the présamulation. Fig. 6.11 shows the final

fluid spatial concentrations’Kand Bf and the good agreement is evident.
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Fig. 6.8 Maximum excess por e pressure
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Fig. 6.10 Breakthrough curve of solutesK™ and Br-
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Fig. 6.12Final sorbed concentration in the soil specimen

The experimental results differ somewhat while canmg with the numerical
results which may be due to the lower boundary timmd This boundary condition is

achieved by saturating the lower layer with the epdluid of same Br- and K+
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concentrations through porous disk and water pigygfem which is difficult to maintain
consistently and vulnerable to temporary lapsesig. B.12 shows the final sorbed
concentration of K Experimental results are more but the match dh tbe numerical
results are obvious.
6.3.3 Consolidation induced solute transport through organically modified soil

bentonite mix

Earthen barriers of local soils mixed with benten&nd organoclays draws the
attention of researchers. Shreedharan and Puv2@i8) present the study on various mixes
of organoclay and bentonite slurry in water andeptbrganic fluids and this reveals the
substantial improvement in compressibility partily with organic fluids. Further, the
study by Shankara et al. (2014) reveals that ttentien of Copper and Iron ions increases
in sand, fly ash and bentonite mixture. Younus Sneedeep (2012) mention that fly ash
mixed with bentonite up to 70% by weight can giveatisfactory liner material and keep

the hydraulic conductivity within the limit of 70cm/ s.

Jhamnani and Singh (2009, 2009 and 2010) presergxperimental and numerical
analysis of potential CCL materials as admixtur@m@fanoclay (obtained from synthesis of
coco-dimethyl benzyl ammonium chloride and bentnmatural soil from Delhi, India and
bentonite. Authors describe the experimentally ioleth properties of five such samples
(M1, M2, M3, M4 and M5) and their solute transppdrformance analysing by finite
difference method ignoring the influence of condafion. This section shows the solute
transport analysis of one of the Mix M3 by the prasmodel without consolidation and
with consolidation. The properties (Jhamnani anty8i 2009) of the liner material M3 are;
the mix proportion; 15: 10: 75 (by weight of bentenorganoclay and natural soil); OMC =
35.2; MDD = 1340 Kg/ rfj Dry density fq) = 1158 Kg/ mi; porosity @) =0.47; hydraulic
conductivity k) = 4.7x10° cm/ sec. The initial and boundary conditions aficentration of

solute in the soil field are given below.

Initial condition: ¢ (a0)=0 (6.19)
Top boundary condition: ¢, (0,t) = ¢ (constant) (6.20)
" oc,
Bottom boundary condition: a—(oo,t) =0 (6.21)
a

The problem with the above boundary condition isrked by finite difference

formulation of the following ADS equation.
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oc, _D,0%c v, g
ot RAZ RIa

where,D, = 0.02 n¥/ s; mechanical dispersion is neglected; seepage (k) is very small

(6.22)

andR is the retardation factor that has been derivetdaiined on the basis of Freundlich
isotherm (. :pstch) as given below. For the derivation Shackelforél8g) is referred

for an average value &, by the following expression.

gidc
K pay =2 =Sk < .48a)
dc
!
K C F-1
R=1+ a0 (6.23b)

It may also be noted thap, =(1-n)p,, whereps is the density of soil solids and as

mentioned earliesy andn are bulk dry density and porosity of the soil matr

Here, the values of constants of Freundlich isathé&r the liner material sample
M3 are taken a¥p,= 2.1x 10" andF = 3.89 with sorbed solute concentratisn=¢ p¢) in
soils has the unit as mg/ Kg and that in fluid mediis in mg/ L. Fig 6.13 shows the
solution by Jhamnani and Singh (2009) that is tis&ridution of relative concentration of
solute in pore fluids with depth up to the valueld® m in the liner after expiry of 50 years.

This problem is solved by the present model withoahsolidation and with
consolidation. The constitutive equations of thel 343 is assumed to follow the
compressibility Eq. (6.15) and hydraulic condudsiviEq. (6.16) with values of associated
constants a€. = 0.65;e= 0.92; g,= 100 kPaky = 4.7x10° cm/ sec; specific gravity of soil

solids Gs=1.158. Top boundary is assumed to be undrainedtt@mdottom boundary as
drained. This problem uses nonlinear-equilibriuntpgon isotherm i. e. Freundlich
isotherm and that introduces a nonlinear equatieengbelow while segregating the known

combined solute concentratioGcf, into solute concentration in fluid and solid medi

nc, 11:; +1-n)p, K & 11%;— C.=0 (6.24)

Eq. (6.24) is solved foc; using Newton-Raphson method amds calculated to segregate
combined concentratio@., into ¢; andcs.

Two simulations were run, one for negligible loadgrement of 0.1 kPa and other

one for an incremental load of 500 kPa at the begin next 500 kPa at™year and last
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load increment of 500 kPa at"1§ear resulting in cumulative load of 1500 kPa. iRssof
negligible consolidation and heavy consolidationtagotal time of 50 years are shown in
Fig 6.13.1t is evident from the Fig 6.13 that thegent model solution and the solution of
Jhamnani and Singh (2009) are in close agreemehbuti considering the consolidation.
However, the impact of consolidation is considezad solute transport that results in much
higher concentration throughout the depth and tl@duces the breakthrough time

considerably.
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Fig. 6.13 Distribution of solute concentration in pore fluidswith depth in liner

6.3.4 Two-dimensional solutetransport in compressible porous media

Fig 6.14 shows the hydraulically dredged contaneideagediment impounded in a
confined disposal facility (CDF). The bottom of tDF is lined with an impermeable
geomembrane and contains a leachate collectioeraydtCS) above it. The initial height
(Ho) of the dredged slurry is 8.0m. The sediment doata contaminant tetrachloroethene
or perchloroethylene (PEC) within a block of Imm &ituated at the location of horizontal
coordinatesx= 4.5 m tox = 5.5 m and vertical coordinatas= 6.0m toa = 7.0m. The
saturated sediment is placed in the CDF suddendyssarts consolidating under self load
just after placement. Thus the isolated contamistents spreading vertically downwards
and horizontally due to consolidation induced atieecalong with diffusion and makes a
case of two-dimensional solute transport in defagniporous media. The material
properties and constitutive equations (Fox, 200f)cerning consolidation are given as

under.
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Specific Gravity of soil solidsGs = 2.78; LL = 112; PL = 56; e =4.34;
Compressibility and hydraulic conductivity curveggoverned by Egs. (6.25 and 6.26)

&€
o =0,(10)“ .26)
&9
k = k,(10) * (6.26)

where, g’ = 0.946 kPaC. = 1.02;k, = 2.04 x 1¢ m/ s andC, =1.3.

v G

1m
1m <«—Isolated contaminatic

[+ m]

a
T \ 4 aCf =0

LCS oa

GM

Fig. 6.14 Geometry of impounded slurry in CDF

The transport properties of the solute with resgecporous media are assumed:
Diffusion coefficientD'=6.0x10'° m?/ s; longitudinal dispersivity:, = 0.2 m; transverse
dispersivityay = 0.04 m, first order decay reaction constant 0.0 and partition coefficient
for linear equilibrium sorption isotherns € Ky ¢) Kg = 0.8 mL/ g. It is also assumed that
height of the water level above ground remains teonishi= Ho) and keeps the sediment
always saturated. Initial concentration of PCEhia block iscio = 100 mg/ L and the lateral
boundaries are confined xo= 0.0 m tox = 10.0 m. The boundary conditions considered are

the following.
(1) The top boundary is always taken as drained anates@oncentration is taken as

zero.
(2) The bottom boundary condition is taken in two wagsdrained in presence of LCS
above impermeable geomembrane and undrained ifioplgrmeable geomembrane

exists. Both of these consolidation boundary caowlitead to zero concentration

gradient at the bottom boundary.
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(3) One more case that assumes no consolidation (IK€3 the top boundary condition
as zero concentration and bottom boundary condégorero concentration gradient.

(4) The lateral boundaries are assumed as non tramgnitbundaries (no mass flux
flow across the boundaries) and to have zero cdraten gradients.

(5) Initial condition of solute concentration distribart is taken as uniformly 100 mg/ L

in the block and the rest of the sediment is coirtation free.

Fox (2007), by his computational model CST1, gitress solution of the above problem for
no consolidation (NC), singly drained (SD) and dguirained (DD) conditions. Only the
symmetric half portion is modelled with 50 horizahelements, 120 vertical elements and
360 fluid elements. The present model works outpitdlem for entire geometry with 80
horizontal elements and 100 vertical elements.G-dgp compares results of present model
(FVM) and CST1. The profile of solute concentratiorfluids (CPF) with maximum value
and that in solids (CPS) on vertical planexat4.95 m and timé= 5.4 years under doubly

drained condition.

8

t= 5.4 years

Elevation, a (m)
S

O Fox CPF_DD

fvm_CPS_DD
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O I I 1 1
0 20 40 60 80 100

PCE concentration in fluid (mg/L) or in soil (mg/Kg)

Fig. 6.15 PCE concentration profilein fluids (CPF) and solids (CPS) on a vertical plane
(DD)
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Fig. 6.16 PCE profilein fluids (CPF) and solids (CPS) on a horizontal plane (DD)

Fig 6.16 shows the comparison of PCE concentrgbiafiles in fluid and solid

medium on a horizontal planeat 5.23 m, timd = 5.4 years.

Fig 6.17 and 6.18 compares concentration profilegshe singly drained (SD)
condition on vertical planext4.95m) and horizontal plan@=6.28m). Fig 6.19 and 6.20
shows the same for the case of no consolidation) (&tCvertical planex=4.95m) and
horizontal plane d=6.28m). All the figures show close agreement o tlesults. The
concentration profile in doubly drained case onvésical plane starts at about the height of
6.0 m and that in case of singly drained casesstdraibout 7.0. In case of no consolidation
(NC) the concentration profile starts at 8.0 m ite height of the sediment deposit at the
beginning. This shows the settlement of the topnidawy due to singly and doubly drained

consolidation and the match of settlements of lmttresults are obviously evident.
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Fig. 6.17 PCE profilein fluids (CPF) and solids (CPS) on a vertical plane (SD)
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Fig. 6.18 PCE profilein fluids (CPF) and solids (CPS) on a horizontal plane (SD)
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6.4 PARAMETRIC STUDY ON TWO DIMENSIONAL SOLUTE
TRANSPORT

Two-dimensional solute transport as described & pghesent work depends on two
parameters, the transverse dispersivity and efiediffusion coefficient. The influence of
these two parameters, on the spreading of a congatiin a two dimensional space with
time, has been studied. For the purpose, the probfesection 6.3.4 fig. 6.14 is taken up
again with singly drained (SD) consolidation undelf weight up to time period= 5.4

years.
6.4.1 Influenceof longitudinal dispersivity

Delgado (2007) presents an extensive study on titigil and transverse
hydrodynamic dispersion coefficient®4 Dy). These coefficients depend on molecular
diffusion (Do), tortuosity factor4), Peclet numbe = vt H/ D) and Schmidt numbe&( =
WpDgy). The paper mentions that the value of longituddispersivity ¢;) ranges between
0.1 mm to 10.0 mm referring Freeze and Cherry, 2¥9it further reports that the ratig/
ox between 5:1 to 100:1 referrirBgar and Verruijt, 1987. The present problem destls water
only as the por8luid and single contaminant, so the change inealspity values depends on
tortuosity and pore fluid velocity. The pore flelocity due to consolidation is always
unsteady and non-uniform it is more near drainashidary and decreases with the location
towards undrained boundary. Since problem takéheisonsolidation of dredged sediment
under self load with uniform initial void ratio &34, it is assumed that the longitudinal
dispersivity takes uniform values as 10.0 mm, 5&,mM.0 mm, 0.5 mm, 0.1 mm and
corresponding to each the transverse dispersizgyalues are taken agi/5, aa/25, /50,

0.l 75 anduaa/100 and the influence of, on two-dimensional solute transport is studied.

Twenty-five simulations were run but the result®wltthat the influence ofix on
solute dispersion in the 2-d field is insignificahtdecreases further with decreaseoin
However, one result is shown here. Fig 6.21 depiesdistribution of solute concentration
in pore water on a vertical plane at horizontalrdowtex = 4.975m.This plane have the
point of highest concentration. The figure presénésresults ob, = 10.0 mm andi, = 2.0
mm, 0.4 mm, 0.2 mm, 0.13 mm and 0.1 mm. The infteeof this variation is too small to
distinguish among the graphs. The numerical valagéshighest concentrations with
decreasingir values are 58.9954 mg/L, 59.2997 mg/L, 59.3381LmH9.3516 mg/L and

102



59.3574 mg/L. Though this may be inferred that liheer the value ofux lesser is the

spreading of contaminant but it is almost insigrifit.
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Fig. 6.21Effect of variation of transver se dispersivity

on solutetransport (vertical plane)

6.4.2 Influence of effective diffusion

Shackelford and Daniel (1991) present a list ofeuolar diffusion coefficientljp)
values of many anions and cations that ranges &% x 10°°to 93.1 x 10° m% s. It is
further expressed there that in soils the effeddiffeision coefficient D) becomes less than
molecular diffusion coefficients as diffusion isntered due to presence of soil solids.
Effective diffusion can be determined experimemtdthr a given soil and depends on
various parameters such as, surface activity okthleparticles, presence of interfering ions
in the fluid, porosity, tortuosity etc. Ramkrishea al. (2011) present the experimental
determination of effective diffusion of Sodium a8dlphate ions in two different soils and
correlated the values. Further, Sreedeep and SR@DB) correlate the effective diffusion
with electrical impedance of the soil and showd tha diffusion characteristics of fine
grained soils are sensitive to variation of eleefriimpedance. However, the effective
diffusion and molecular diffusion in this studyderrelated a® = (1) Do where,t is the
tortuosity factor. Bear (1972) gave a simple encpiricorrelation of the tortuosity factor

with porosity ¢ = 1/ 33,
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To study of effect of diffusion coefficient on 2diste transport, the variations of
molecular diffusion coefficient considered here @@ x 10'°, 1.2 x 10°, 2.4 x 10, 6.0 x
10° and 9.6 x 18 m?/ s. Other data of the problem of dredged sedimensolidation and
initial contamination are kept as it is with dispeities a,= 10 mm andx,= 2.0 mm. Five
simulations were run with all these data that tesuinto substantial effect of the effective
diffusion coefficient on 2d-solute transport. Fi§.22 shows the solute concentration
distribution on a vertical plane containing higheshcentration points of the field. The
location of this vertical plane is at horizontabodinatex = 4.975 m. Fig 6.23 depicts the
same on the horizontal plane of maximum conceptmapoints. While the location of
vertical plane remains same for all diffusion cmééints, the location of horizontal plane
varies with increase in molecular diffusion andsthdéocations successively are at vertical
coordinates = 6.59 m, 6.54 m, 6.40 m, 5.97 m and 5.69 m.
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Fig. 6.22 Effect of variation of diffusion coefficient on solutetransport (vertical plane)
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Fig. 6.23Effect of variation of diffusion coefficient on solute transport (horizon. plane)
The extensive effect of effective diffusion coefict on the spreading of

contaminant in a two dimensional field due to dsfan and consolidation is obvious from

the figures and the diffusive capacity of a contaant plays a very vital role in migration of

contaminants in the soil field.

6.5 CONCLUSION
The chapter describes the coupling of finite volumenerical models of large strain

consolidation and solute transport. The verificatmf the numerical model results with

other recent numerical models’ results shows closgreement. The inherent

conservativeness of the finite volume method arel afsquadratic interpolation function

give this model little edge over other methods. Tawmensional extension of the model
maintains its accuracy and reduces number of desakments required for acceptable
solution. The parametric analysis of two dimensiosalute transports reveals the
importance of effective diffusion that may causealavispreading of contaminant in two

dimensional spaces in a given period of time.
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Chapter 7
SUMMARY AND CONCLUSIONS

This thesis is primarily aimed to develop the #nitolume numerical models of
large strain consolidation, one and two dimensi@wdlite transport through rigid porous
media and coupling the models to give a numericatieh for solute transport through
deforming (consolidating) porous media. The workibg with literature review on finite/
large strain consolidation models, the realm oitdirvolume method and its applications'
areas and lastly reviews the numerical models titesdransport in deforming porous
media. The development of numerical models of thedimensional consolidation, one and
two dimensional solute transport and the coupledlehavith various verification checks

successively follows the review work.

The introductory reviews and discussions lead tin&erence that the finite volume
method suits well for numerical analysis of the smmative equations inheriting the
conservativeness property at discrete control vellewel and thus in overall solution. It is
also obvious that such a numerical model follonenghpletely the finite volume method is
not available in literature as far as it could bglered here and this has motivated this

preset work.

Chapter 2 starts with the introductory review oansolidation followed by
preliminaries to the one dimensional consolidatamuation, the assumptions, coordinate
systems (Lagrangian, convective and material) hait transformations as applicable to the
governing equation. The assumptions restrict theicgtion of this model to homogeneous
soil type with monotonic loading. The detailed dggon of numerical model development
includes the nonlinear material behaviour of corsgitality/ hydraulic conductivity and the
geometrical nonlinearity of large/ finite strainnsmlidation equation. The genesis of the
interpolation functions in terms of nodal pointerfr Lagrangian quadratic interpolation
functions is explained. The interpolation functionterms of nodal points has been used to
approximate the face values of control volumeseims void ratio and the corresponding
approximation of nonlinear terms is done using ¢hmoint Lagrangian interpolation
functions directly to deal with the nonlinearity thie formulation. The boundary conditions
encountered in consolidation problems drained/ aindd and semipermeable presented in
terms of void ratio which is the independent vdealif subject equation. As presented, the
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solution obtained in terms of void ratio at nodalngs at a required point can be used to
calculate pore water pressure, settlement, pore Vielocity, velocity of solid particles and
degree of consolidation to evaluate the full pietaf the consolidation process. Assessment
of the numerical model for stability and convergerepresented with conservativeness and
boundedness that shows the acceptability of mod&l whe present scheme and its
suitability for all practical distribution of voidatio of a soil field. The accuracy of the
model comes out to be of third order with quadratierpolation and use of control volume
face values in the process. Verification of the elad endorsed by close agreement of
results with analytical and other numerical moddlse proposed model maintains third
order accuracy and hence it gives sufficiently eai®u solutions with relatively lesser
number of mesh points. At the end, the parametrayais of consolidation of soft clays
shows that the soft clays with initial void ratio23to 2.5 follow proportional relation
between average degree of consolidation and sqoateof time elapsed up to value of
80%. It is further inferred that the lesser is ithidal thickness of the soil layer faster is the

consolidation.

Chapter 3 is about the experimental study on datedmn of the remoulded
specimens of thickness 20 mm, 40 mm and 70 mmnatwaral clay sample. The test results
of 20 mm thickness provides the compressibility Bgdraulic conductivity characteristics
of the clay sample that has been used as input tat@nalyse the consolidation of
remoulded soil specimens of other thicknesses tsyrilimerical model. The specimens of
40 mm and 70 mm thickness were consolidated inigjpeoulds and loading arrangement
and the experimental results obtained has been tosedlidate the numerical model. The

close agreement of numerical and experimental tesadorses the numerical model.

Chapter 4 details the development of finite volumemerical model of solute
transport through rigid porous media, it contaims transformation term of Lagrangian to
convective coordinate system where its value isyuior a rigid system. The formulation
initially developed for the combined concentratadrsolid and liquid phases, segregates the
solution to concentrations of solute in liquid auadid phases through the sorption isotherm.
The face values of the control volumes are intefeal with normalised variable scheme
with upstream bias as given by Leonard (1988) asstiheme works well at a data set of
concentration distribution with discontinuity orasp gradient maintaining the accuracy of
third order even though it uses linear interpolatrarely in non-monotonic regions. The

time step restriction is governed by local grid @mi and Peclet Number and avoids the
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instability if local Courant number is less thar2.0As mentioned earlier, the model
incorporates the sorption isotherm while separatheg solute concentration in fluid and
sorbed concentration in solids after obtaining teelution in term of combined
concentration. Linear equilibrium sorption givessi@nple linear equation and directly
separates concentrations. Nonlinear-nonequilibigotherm is dealt in the segregation with
further subdivisions of the time step and duringheaubdivision of the time step the
combined concentration and sorbed concentratiasssmed to change linearly. The model
follows the first order decay reaction on the selabncentration. The initial condition of
solute concentration in rigid porous field is assdntio be known. The chapter explains the
three types of boundary conditions of solutes; isrtbe given solute concentration, second
is the zero concentration gradient and third orreservoir boundary condition. Finally, the
model verification check is done it is noted thhae tfinite volume model results, for
advection, diffusion, advection + diffusion and hvgorption/ decay reactions, are in close
agreement with the results of numerical model C&®42,007) excepting the flows with
infinite Peclet Number. This weakness of the madebnly hypothetical as the solute
transport through porous media is practically nehagsgpens without diffusion. In soils, the
Reynolds number is less than unity (Kumar and Sii@®5) and the diffusion contributes
significantly to solute transport. However, thecwacy of the model provides the

advantage in reduction of number of elements requor the solution.

Chapter 5 presents development of finite volumenenical model of two-
dimensional solute transport in rigid porous medii@ to one dimensional advection and
two-dimensional diffusion and dispersion. The twmensional control volume of the
numerical model contains three discrete points acheace. The quadratic interpolation
function for these faces is derived with the hetpiveo-dimensional Taylor's series and
averaging the three values on a face. The mathesmhgirocedure is elucidated and its
conformity with one dimensional interpolation fuioct is also mentioned. The verification
check of the model shows that the requirement @etements for two-dimensional scheme

is also lesser than the piecewise linear numenalel CST1.

Chapter 6 presents the coupling of consolidatioh $olute transport programming
modules coded separately as per the finite volwwmadlation requirements. The addition to
consolidation module for computation of Darcy véipcdue to an applied hydraulic
gradient and that due to consolidation is alsoarphl. The consolidation induced velocity

computation uses the change in void ratio compatedach time step and numerically
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integrating these to the level of each control wwduand it is assumed that the velocity in
each control volume is uniform. The resultant Darelocity within the porous media is the
vector addition of velocities due to hydraulic gead and consolidation. The verification
check part of the model contains four differentetypf problems, the comparative study and
findings are as follows. First problem is regardihg one dimensional solute transport
through compressible porous media with a hypothetiompacted clay liner. The reservoir
boundary condition at the impermeable top bounddiyws only diffusive flux and no
advection. The amended top boundary condition agxed. In one case of the problem the
void ratio at the bottom reaches near zero atithe hearing 1.9 years and results into
instability. This has caused slight difference @sults of present model and CST1 as the
different softwares may respond differently neastability. Otherwise all other results of
the problem are in close agreement. The results iaker that solute transport is least
affected by variation in longitudinal dispersivitput significantly influenced by
consolidation and breakthrough time in reduced. Texond problem shows the
performance of the present model on a problem experimental observations and the
results of another numerical model CST2 (Fox, 200%e comparisons show that the
results of the present model sometimes match wigtl @xperimental results compared to
CST2 and sometimes CST2 results are closer. ProBleshows again the influence of
consolidation where the present model is applie€@. made with a mix of organoclay,
bentonite and natural soil. The consolidation halsstantially reduced the breakthrough
time and deserves definite consideration whilegtesg a liner. This problem considers a
nonlinear equilibrium sorption isotherm (Freundlidotherm) and requires the root of a
nonlinear algebraic equation that has been workgdnothe model using Newton-Raphson
Method. Fourth problem shows the performance ofrtleglel on two-dimensional solute
transport in deforming porous media on a problencaffined disposal facility. This case
deals in varied boundary conditions of consolidaiie. doubly drained, singly drained, and
no consolidation for a line source of contaminadeedged slurry. The performance of the
model with this problem also establishes that tbesér number of elements give an
acceptable results and compares well with the tesfl CST1. The last section of the
chapter shows that the two-dimensional spread pfatwinant is mainly governed by the
coefficient of effective diffusion of the individlaontaminant. The contaminant with lower
diffusion coefficient travels down faster where&g ttontaminants with higher diffusion
coefficient spread laterally.
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As the overall conclusion, it is noteworthy thhe tfinite volume method offers a
good option as a numerical solution model to atidki of conservation equations. The
method is integration based but simpler than theefielement method/ boundary element
method. In particular, the cases of consolidatiod golute transport, in finite volume
formulation conserve the mass at each discreteralomblume level; the requirement of
assessment of mass conservation is not requireatagely. The overall accuracy of the
present model is maintained to third order and thakes it better than any linear model.
Further, the model is fully capable to handle tbggon isotherms of different types such
as linear equilibrium, nonlinear equilibrium, anohtinear nonequilibrium. The extension of
the method to two-dimensional solute transport shde potential to extend it further to

three-dimensional solute transport in deforming@d porous media.

The present numerical model of consolidation caa &vith only monotonic loading
and for non-monotonic loading (swelling problemj, requires the compressibility
characteristic Eq. (2.2) to be a functional notiaction (Gibson et al., 1967). The explicit
finite volume numerical model presented here haeaen compared with any such implicit
formulation and the performance of such a model dtégisnot appeared in the literature.
Further, the potential of the model for extensiontliree-dimensional case has not been
developed here. These are a few issues which foenfuture scope of study in connection

with this work.
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APPENDIX

Flow chart for numerical moded

Consolidation

INPUT DATA:

Constants: Gg, yw

Geometric & Material Parameters: H, H,, Hy gp, LBL

Control Flags: Contaminated soil to uncontaminated (NSOL ), No self load (NSL),

Uniforminitial void ratio (IEQ)

Initial Void Ratio: ey

Data Representing Constitutive Egs: e ~¢'; € ~ k

Datafor contaminated soil to uncontaminated: ey, and height of contaminated soil and

uncontaminated soil

Consolidation Calculation Data: Number of control volumes (NBDJV), time step, total time,
control flags for continuous load (NL), boundary condition
(NDRB), number of timings at which output is required
with or without load increment.

Required Output Data: Timings at which output is required, load increments at each time

H, = Water level above bottom of layer

LBL=Number of data points representing constitutive equations

Determineinitial void ratio for no load increment and final void ratio for instant initial 1oad.
Calculate nonlinear terms corresponding to each void ratio of input data set.

LOOP1: beginsfor desired timings of output with or without load increments.

LOOP2: begins on time step.

Calculate void ratio on boundary nodes using boundary condition.

Calculate void ratio for new time increments for all nodes.

!

Solute Transport

INPUT DATA:

Control flags: One/ two dimensional solute transport, Effective diffusion dependent on
void ratio, Sorption isotherm indicator, solute boundary condition, no
consolidation, Effective diffusion dependent on tortuosity factor

Solute transport parameters. pg, O, Ox, Ct, Coy Acr Aso D', Do, M, Ky, Kp, F, s, Dawms

Thickness of HDPE liner (TH), initial solute concentration
condition

Calculate Darcy velocity due to external hydraulic gradient and consolidation.

Calculate solute concentration at boundary nodes with boundary conditions.
Calculate solute concentration in fluid and solid media at all nodes.

End of LOOP2
Reset final void ratio on desired timings of output with or without load increments.
Calculate excess pore pressure, settlement and degree of consolidation

A 4
Output datafiles
End of LOOP1
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PROGRAM-LISTING (F-77)

MAIN PROGRAM

SOLUTE TRANSPORT

NSTBC=1 boundary conditions on concentration of sol
bottom
NSTBC=2 reservoir boundary condition at top and zer
NSTBC=3 flux boundary condition when CCL top is ove
and at bottom gradient is zero
NSBCB=1 constant concentration at bottom
NSBCB=2 zero concentration gradient at bottom
NSORP=1 linear sorption
NSORP=2 nonlinear sorption
NSL=1 self load of soil is considered otherwise not
ND1=1 one-dimensional problem
ND1=2 two-dimensional problem
NTAU=1 tortuosity factor is considered
NTAU=2 effective diffusion is taken directly
NC=1 no consolidation
NSOL=1 case of solute transport from contaminated s
soll
IEO=1 initial void ratio is given and to be used as
IE0=2 for NSOL=1, initial void ratio is given and t
|IE0=3 for NSOL=1, initial void ratio to determined
self load
ISS=1 if initial spread of contaminant is in 1 m br
ISS=2 if initial spread of contaminant is in at apo
NSTUBC=1 prescribed solute concentration at the top
NSTUBC=2 prescribed solute concentration gradient a
NSTUBC=3 prescribed mass flux or reservoir boundary
NSTBBC=1 prescribed solute concentration at the bot
NSTBBC=2 prescribed solute concentration gradient a
NSTBBC=3 prescribed mass flux or reservoir boundary
bottom
NSTRBC=1 prescribed solute concentration at the rig
NSTRBC=2 prescribed solute concentration gradient a
NSTRBC=3 prescribed mass flux or reservoir boundary
boundary
NSTLBC=1 prescribed solute concentration at the lef
NSTLBC=2 prescribed solute concentration gradient a
NSTLBC=3 prescribed mass flux or reservoir boundary
boundary
PCT=prescribed concentration at the top (boundary c
PGT=prescribed concentration gradient at the top (b
PRT=prescribed reservoir concentration (boundary co
PCB=prescribed concentration at the top (boundary ¢
PGB=prescribed concentration gradient at the top (b
PRB=prescribed reservoir concentration (boundary co
PCR=prescribed concentration at the top (boundary ¢
PGR=prescribed concentration gradient at the top (b
PRR=prescribed reservoir concentration (boundary co
PCL=prescribed concentration at the top (boundary ¢
PGL=prescribed concentration gradient at the top (b
PRL=prescribed reservoir concentration (boundary co
ND2=1 constant effective diffusion
ND2=2 variable effective diffusion with porosity
NL=1 continuous load with time stepped into per uni
NL=2 continuous load with time stepped into per uni
time step
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NSL=2 soil is incompressible

NDRB=1 top boundary impermeable bottom drained
NDRB=2 top boundary drained bottom impermeable
NDRB=3 top and bottom both boundaries drained
NSOL=1 consolidation of contaminated and uncontamin
each other

NSOL=2 above condition is not true

NNSOL= the number wherefrom the input data for cont
NNSOL1=the node number where the extent of contamin
DGM=diffusion coefficient of geomembrane
TH=thickness of geomembrane

CFT=initial concentration of solute at the top
CFB-=initial concentration of solute at the bottom
CFO=initial concentration of solute

CF1=previous time concentration of solute
CF2=current concentration of solute

BD=breadth of the sail field (clay liner) or sample
HBL=height of the soil field

WBL=width of the soil field

HCL=height of contaminated layer

HUCL=height of uncontaminated layer
NBDJV=number of parts of breadth divided for comput
NDJV=number of mesh points on the breadth side of t
HT=height of water above top of clay liner

HB=height of water above bottom of clay liner
CHDO=free solution diffusion

CHD1=constant effective diffusion coefficient
CHD2=effective diffusion dependent on porosity
ALPHAT=coefficient of transverse dispersion
ALPHAL=coefficient of longitudinal dispersion
CHDA=coefficient of longitudinal hydrodynamic dispe
CHDX=coefficient of transverse hydrodynamic dispers
EGO=initial void ratio

EG=current void ratio

ENO=initial porosity

EN=current porosity

CQI=Darcy velocity due to hydraulic gradient
CQU=Darcy velocity due to excess pore pressure
CQ=total Darcy velocity

RK=hydraulic conductivity input values

RK1=hydraulic conductivity interpolated values
RKEO=overall effective hydraulic conductivity
RKEIl=interfacial effective hydraulic conductivity
DJI=d &¢/da

CFF1=previous time step value of EN*CF*DJI+(1-EN)*C
CFF2=current time step value of above quantity
CSO=initial solute concentration in soil

CS1=previous time step solute concentration in soil
CS2=current time step solute concentration in soll
AKD-=patrtition coefficient

GSBL=specific gravity of soil

DS=density of soil

DW-=density of water

GW=unit weight of water

GS=unit weight of soil

GC=buoyant weight of soil

ALAMDAC-=solute decay constant
ALAMDASC-=source decay constant

NSORP=1 linear equilibrium sorption

NSORP=2 nonlinear nonequilibrium or kinetic sorptio
NSORP=3 non-linear equilibrium Freundlich isotherm
AKP=a constant describing non-linear Freundlich iso
ANF=a constant describing non-linear Freundlich iso
ANLAMDA-=sorption rate constant

INX=horizontal nhode number at which the contaminati
JNZ=vertical node number at which the contamination
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¢ DRD=dry density of soil matrix

C

¢ SOIL CONSOLIDATION

C

¢ Q2=current load on the consolidating soll
¢ NL=1 for continuous loading with certain load
¢ TTIME=total time of loading

Cc

EOC=uniform initial void ratio of contaminated laye r

¢ EOUC=uniform initial void ratio of uncontaminated layer

C

¢ TO AVOID THE MID POINT AS CONTROL VOLUME ALWAYS T AKE NBDIV AS EVEN NUMBER

c

OO0 00

VVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

common DA,DB,DZ,EQ0,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,E0C,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IE0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351), BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) )
Q1(351),RKEI(351),AKP,ANF,ANLAMDA,IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CF0(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIJMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351),EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351),CQIJMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1lIPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IJMINUSHALF(351,351),
PRINT1(351)

dimension ES2(351),RS2(351),RK2(351)

dimension ES3(351),RS3(351),RK3(351)

open(unit=17,file="INPUTJ4DD_S',status="OLD")
open(unit=18,file="OUTJ4DD_19_S',status="OLD")
open(unit=19,file="OUTJ4DD_20_S',status="OLD")
open(unit=20,file="INPUTJ4DD_ST',status="OLD")
open(unit=21,file="OUTJ4DD_19_ST',status='OLD")
open(unit=22,file="OUTJ4DD_20_ST',status='OLD")

READ SOIL DATA FOR FOUNDATION LAYER OR SOFT LAYER,

IF NSOL IS 1 START CONTMINATED LAYER INPUT DA TA AT 301

11

read(17,*) NST,GSBL,GW,HBL,HT,HB,Q0,LBL,NSOL,NSL,IE 0
if(IEO.eq.1) read(17,*) NST,E00

if(NSL.ne.1) GSBL=1.0

if(NSOL.eq.1) then do

1J=1,LBL

read(17,*) NST,ES2(J),RS2(J),RK2(J)

continue

do 11 J=1,LBL

ES(J)=ES2(J)

RS(J)=RS2(J)

RK(J)=RK2(J)

continue

if(IEO.eq.2) read(17,) NST,EOC,EOUC,HCL,HUCL
if(IEO.eq.3) read(17,*) NST,HCL,HUCL
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endif if(NSOL.ne.1)

then do 14 J=1,LBL

read(17,*) NST,ES(J),RS(J),RK(J)
14 continue

endif

CONSOLIDATION CALCULATION DATA

(9]

read(17,*) NST,NBDJV,TAU,TTIME,NL,NDRB,NTIME
do 2 J=1,NTIME
read(17,*) NST,PRINT1(J),DQ(J)

2 continue

SET INITIAL VARIABLES

(9]

ELL=0.0; TIME=0.0; DZ=0.0
UCON=0.0; SETT=0.0; DA=0.0
SFIN=0.0; VRI=0.0
NNN=1; NM=1; Q=Q0
do 3 J=1,NTIME
Q1(J)=QT+DQ(J)
QT=Q1(J)
3 continue
c
¢ PRINT INPUT DATA OF CONSOLIDATION AND MAKE INITIA L CALCULATIONS
c
call INTRO_4()
c
¢ SOLUTE TRANSPORT DATA c
call INPUT_ST()
c
¢ PERFORM CALCULATIONS TO EACH PRINT TIME AND OUTPUT RESULTS
c
if(NL.eq.1) then
KK=2
NNTIME=TTIME/TAU
do 5 J=1,NNTIME+1
NNN=J
TIME=TAU* float(NNN)
Q2=(Q1(NTIME)/float(NNTIME+1))*float(NNN)
if((TIME-0.001).gt. TTIME) goto 9
call RESET_4()
call FDIFEQ_4()
call STRESS_4()
TPRINT=PRINT1(KK)
if(TIME.It. TPRINT) goto 5
call DATOUT_4()
call DATOUT()
KK=KK+1
5 continue
endif
if(NL.eq.2) then
do 7 K=NM,NTIME
TPRINT=PRINT1(K)
Q2=Q1(K)
45 call FDIFEQ_4()
call RESET_4()
call STRESS_4()
if(TPRINT.eq.0.0) goto 7
call DATOUT_4()
call DATOUT()
7 continue
endif

9 stop
end
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(9]

(9]

(9]

(9]

K*kkkkk

subroutine INTRO_4()

*kkkkk

INTRO PRINTS INPUT DATA AND RESULTS OF INITIAL CALC  ULATIONS
IN TABULAR FORM

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,IJNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351), EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,

ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),
PRINT1(351)

VVVVVVVVVVVVVVVVVVVVVYVYVYVVYV

PRINT PROBLEN NUMBER AND HEADIN

write(18,100)
write(18,101)
write(18,102)
call SETUP_4()

PRINT SOIL DATA FOR COMPRESSIBLE FOUNDATION

write(18,104)
write(18,105)
write(18,106)
write(18,107) HBL,GSBL,WL,Q0
write(18,108)
write(18,109)

do1J=1,LBL
write(18,110) J,ES(J),RS(J),RK(J),PK(J),BETA(J),DSDE(J),
> ALPHA(J)
1 continue

16

PRINT CALCULATION DATA

write(18,115)
write(18,116)
write(18,117)
write(18,118) TAU

PRINT TABLES OF INITIAL CONDITIONS

NFLAG=1
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CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),



Cc
Cc
Cc

C

(9]

O0O0O0O0O0

call DATOUT _4()
NFLAG=0

FORMATS

100 format(1H1////9X,60(1H*))

101 format(9X,48HCONSOLIDATION OF SOFT LAYERS BY FINITE STRAIN --,
> 6HCF=0.6)

102 format(9X,60(1H*))

104 format(/////18(1H*),37THSOIL DATA FOR COMPRESSIB LE FOUNDATION,
> 17(1H%))

105 format(//6X,5HLAYER,6X,16HSPECIFIC GRAVITY,4X,1 1HWATER LEVEL,
> 9X,7HINITIAL)

106 format(4X,9HTHICKNESS,8X,9HOF SOLIDS,7X,11HFROM BOTTOM,8X,
> 9HSURCHARGE)

107 format(/4X,F8.3,7X,F8.3,2(10X,F8.3))

108 format(//8X,4HVOID,2X,9HEFFECTIVE,3X,5HPERM-,5X,5HK /1+E)

109 format(4X,8HI RATIO,4X,6HSTRESS,3X,8HEABILITY, 4X,2HPK,7X,4HBETA,
> 6X,4HDSDE,5X,5HALPHA)

110 format(2X,13,1X,F6.3,6E10.3)

111 format(/////23(1H*)26HSOIL DATA FOR DREDGED FILL,23 (2AH*®)

112 format(//5X,5HLAYER,5X,16HSPECIFIC GRAVITY,3X,11HWA TER LEVEL,
> 5X,7HINITIAL,4X,11HUNIT WEIGHT)

113 format(3X,9HTHICKNESS,7X,9HOF SOLIDS,6X,11HFROM BOT  TOM,
> 3X,10HVOID RATIO,5X,8HOF WATER)

114 format(/2X,F8.3,8X,F8.3,9X,F8.3,5X,F8.3,7X,F6.2)

115 format(////28(1H*),16HCALCULATION DATA,28(1H*))

116 format(//8X,3HTAU,10X,11HLOWER LAYER,7X,11HLOWER LA YER,7X,
> 13HDRAINAGE PATH)

117 format(21X,10HVOID RATIO,8X,12HPERMEABILITY,9X,6HLE NGTH)

118 format(/4X,E11.5,8X,F8.3,9X,E11.5,7X,3HZ =,F8.3)

300 return
end

* * *kkkkkkkk

subroutine SETUP_4()

*kkkkkkkk

SETUP MAKES INITIAL CALCULATIONS AND MANIP ULATIONS OF INPUT
DATA FOR LATER USE

common DA,DB,DZ,EQ0,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME, TP RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,

ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351), CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351), CQIJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),

VVVVVVVVVVVVVVVVVVVYVVYVYV
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ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHD0O,CHD1,AKD, ALAMDAC,



(9]

(9]

>
>
>

CF1lIPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1JMINUSHALF(351,351),

PRINT1(351)

SET CONSTANTS

NDJV=NBDJV+2
GS=GSBL*GW
GC=GS-GW

CALCULATE INITIAL ELL FOR COMPRESSIBLE SOIL

Z(1)=0.0; A(1)=0.0; XI(1)=0.0
if(NSOL.ne.1) then

DzZz=0.0
NBD=10000*NBDJV
DABL=HBL/float(NBD)
EFS=Q0

do 4 J=1,NBD

do 1 N=2,LBL
S1=EFS-RS(N)

if(S1.le.0.0) goto 2

continue

V=ES(LBL); goto 3

NN=N-1

XV=EFS

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,RS,ES,NN)
V=YV

TDZ=DABL/(1.0+V)

EFS=EFS+GC*TDZ
DzZZ=DZZ+TDZ
continue

ELL=DZZ
DZ=ELL/float(NBDJV)

CALCULATE INITIAL COORDINATES AND VOID RA

10

DA=HBL/float(NBDJV)
Z(2)=2(1)+(Dz/2.0)
A(2)=A(1)+(DA/2.0)

do 5 J=3,NDJV-1
A(J)=A(J-1)+DA
Z(J)=2(3-1)+Dz

continue Z(NDJV)=Z(NDJV-
1)+(DZ/2.0) A(NDJV)=A(NDJV-
1)+(DA/2.0) EFS1=GC*ELL+QO0
do 7 J=1,NDJV EFS=EFS1-
GC*Z(J) if(EFS.It.0.0)

EFS=0.0

do 8 N=2,LBL S1=EFS-

RS(N) if(S1.le.0.0)

goto 9

continue E11(J)=ES(LBL);
goto 10

NN=N-1

XV=EFS

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,RS,ES,NN)
E11(J)=YV

F(J)=E11(J)

ER(J)=E11(J)

continue

if(IEO.eq.1) then

do 210 J=1,NDJV

E11(J)=EO0
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F(J)=E11(J)
ER(J)=E11(J)
210 continue
ELL=HBL/(1.0+EQ0)
DZ=ELL/float(NBDJV)
Z(2)=Z(1)+(Dz/2.0)
do 65 J=3,NDJV-1
Z())=Z(J-1)+Dz
65 continue
66 Z(NDJV)=Z(NDJV-1)+(DZ/2.0)
call INTGRL_4(E11,E11,DA,NDJV,FINT)
do 211 J=1,NDJV
c FINT(J)=A(J)*E11(J)/(1.0+E11(J))
VRI(J)=FINT(J)
X1(3)=A(J)
ENO(J)=E11(J)/(1.0+E11(J))
211 continue
endif
call INTGRL_4(E11,E11,DA,NDJV,FINT)
do 212 J=1,NDJV
c FINT(J)=A(J)*E11(J)/(1.0+E11(J))
VRI(J)=FINT(J)
X1(3)=A(J)
ENO(J)=E11(J)/(1.0+E11(J))
212 continue
endif
if(NSOL.eq.1) then
DA=HBL/float(NBDJV)
NPART=int(HCL/DA)
NNSOL1=NPART+1
A(2)=A(1)+(DA/2.0)
do 60 J=3,NNSOL1-1
A(J)=A(J-1)+DA
60 continue A(NNSOL1)=A(NNSOL1-
1)+(DA/2.0)
A(NNSOL1+1)=A(NNSOL1)+(DA/2.0)
do 161 J=NNSOL1+2,NDJV-1
A(J)=A(J-1)+DA
161 continue
162 A(NDJV)=A(NDJV-1)+(DA/2.0)
if(IEO.eq.1) then
c
¢ CALCULATE AVERAGE DZ FOR TOTAL LAYER
[
EAAO=(EOC*HCL+EOUC*HUCL)/A(NDJV)
ELL=A(NDJV)/(1.0+EAAQ)
DZ=ELL/float(NBDJV)
Z(2)=2(1)+(Dz/2.0)
do 61 J=3,NDJV-1
Z(J)=2(J-1)+Dz
61 continue
62 Z(NDJV)=Z(NDJV-1)+(DZ/2.0)
do 35 J=1,NNSOL1
E11(J)=EAA0
35 continue
do 38 J=NNSOL1+1,NDJV
E11(J)=EAA0
38 continue
do 111 J=1,NDJV
F(J)=E11(J)
ER(J)=E11(J)
111 continue
call INTGRL_4(EFIN,E11,DA,NDJV,FINT)
do 411 J=1,NDJV
c FINT(J)=A(J)*E11(J)/(1.0+E11(J))
VRI(J)=FINT(J)
X1(3)=A(J)
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(9]

ENO(J)=E11(J)/(1.0+E11(J))
411 continue
endif
if(IEO.eq.3) then
DZZ=0.0
NBD=10000*NBDJV
DABL=HBL/float(NBD)
EFS=Q0
do 334 J=1,NBD
do 331 N=2,LBL
S1=EFS-RS(N)
if(S1.le.0.0) goto 332
331 continue V=ES(LBL);
goto 333
332 NN=N-1
XV=EFS
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
V=YV
333 TDZ=DABL/(1.0+V)
EFS=EFS+GC*TDZ
Dzz=DzZ+TDZ
334 continue
ELL=DZZ
DZ=ELL/float(NBDJV)

CALCULATE INITIAL COORDINATES AND VOID RA

DA=HBL/float(NBDJV)
Z(2)=2(1)+(Dz/2.0)
A(2)=A(1)+(DA/2.0)
do 335 J=3,NNSOL1
Z(J)=2(3-1)+DZ
A(J)=A(J-1)+DA

335 continue
do 435 J=NNSOL1+1,NDJV-1
Z(J)=2(J-1)+Dz
A(J)=A(J-1)+DA

435 continue Z(NDJV)=Z(NDJV-
1)+(DZ/2.0) A(NDJIV)=A(NDJIV-
1)+(DA/2.0) EFS1=GC*ELL+QO0
do 337 J=1,NDJV
EFS=EFS1-GC*Z(J)
if(EFS.It.0.0) EFS=0.0
do 338 N=2,LBL
S1=EFS-RS(N)
if(S1.le.0.0) goto 339

338 continue
E11(J)=ES(LBL); goto 340

339 NN=N-1
XV=EFS
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
E11(J)=YV

340 F(J)=E11(J)
ER(J)=E11(J)

337 continue
call INTGRL_4(E11,E11,DA,NDJV,FINT)
do 6 J=1,NDJV
VRI(J)=FINT(J)
X1(J)=A@)
ENO(J)=E11(J)/(1.0+E11(J))

6 continue

endif
endif
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c CALCULATE FINAL VOID RATIOS FOR SOIL LAYER

if(NSOL.ne.1) then
C1=GC*ELL; C2=Q0
S1=C1+C2
do 18 J=1,NDJV
S2=S1-Z(J)*GC
do 16 N=2,LBL
S3=S2-RS(N)
if(S3.1e.0.0) goto 17
16 continue EFIN(J)=ES(LBL);
goto 18
17 NN=N-1
XV=S2
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
EFIN(J)=YV
18 continue
endif
if(NSOL.eq.1) then
c
¢ UNCONTAMINATED LAYER
c
C1=ELL*GC; C2=Q0
S1=C1+C2
do 51 J=NNSOL1+1,NDJV
S2=S1-Z(J)*GC
do 52 N=2,LBL S3=S2-
RS(N) if(S3.1e.0.0)
goto 53
52 continue EFIN(J)=ES(LBL);
goto 51
53 NN=N-1
XV=S2
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
EFIN(J)=YV
51 continue

CONTAMINATED LAYER

(9]

do 54 J=1,NNSOL1
S2=S1-Z(J)*GC do
55 N=2,LBL S3=S2-
RS(N)
if(S3.le.0.0) goto 56
55 continue EFIN(J)=ES(LBL);
goto 54
56 NN=N-1
XV=S2
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
EFIN(J)=YV
54 continue
endif
c
¢ CALCULATE INITIAL STRESSES AND PORE PRESSURES FOR SOIL LAYER
c
do 19 J=1,NDJV
if(HT.ne.0.0) UO(J)=GW*(HT+XI(NDJV)-XI(J))
if(HT.eq.0.0) UO(J)=GW*(XI(NDJV)-XI(J))
U0(J)=GW*(HBL+HT-XI(J))
EFFSTR(J)=Q0+GC*(ELL-Z(J))
if(IEO.eq.1) EFFSTR(J)=Q0
TOTSTR(J)=GC*(ELL-Z(J))+GW*(HBL+HT-XI(J))+Q0
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UW(J)=TOTSTR(J)-EFFSTR(J)
U(J2)=UW(J)-U0(J)
19 continue

ULTIMATE SETTLEMENT FOR COMPRESSIBLE FOUNDA TION

(el e]

call INTGRL_4(EFIN,E11,DA,NDJV,FINT)
SFIN=VRI(NDJV)-FINT(NDJV)

CALCULATE FUNCTIONS FOR COMPRESSIBLE SOIL L AYER
PERMEABILITY FUNCTIONS

OO0 O0

do 28 J=1,LBL
PK(J)=RK(J)/(1.0+ES(J))
28 continue

SLOPE OFPERMEABILITY FUNCTION--BETA
SLOPE OF EFF STRESS-VOID RATIO CURVE--DSDE

OO0 00

CD=ES(2)-ES(1)
BETA(1)=PK(1)*(GSBL-1.0)
DSDE(1)=(RS(2)-RS(1))/CD
=LBL-1
do 29 J=2,L lI=J-
1; 1J=J+1
CD=ES(13)-ES(II)
BETA(J)=PK(J)*(GSBL-1.0)
DSDE(J)=(RS(1J)-RS(lI))/CD
29 continue
CD=ES(LBL)-ES(L)
BETA(LBL)=PK(LBL)*(GSBL-1.0)
DSDE(LBL)=(RS(LBL)-RS(L))/CD
do 31 J=2,LBL-1 DE=ES(J)-
ES(J+1)
ESJPLUSHALF=ES(J)+(DE/2.0)
N=J
XV=ESJPLUSHALF
call LINTP_4(XV,YV,ES,RS,N-1)
RSJPLUSHALF=YV
ESIMINUSHALF=ES(J)-(DE/2.0)
XV=ESIMINUSHALF if(J.eq.LBL-1)
N=J-1
call LINTP_4(XV,YV,ES,RS,N)
RSIMINUSHALF=YV
¢ DSDE(J)=(RSJPLUSHALF-RSIMINUSHALF)/(ESJPLUSHALF-E SIJMINUSHALF)
31 continue

PERMEABILITY FUNCTION TIMES DSDE-- ALPHA

(9]

do 33 J=1,LBL
ALPHA(J)=PK(J)*(DSDE(J))*(1.0/GW)
33 continue
c COMPUTE VOID RATIO FUNCTION FOR INITIAL VAL UES
call VRFUNC_4()

return
end

(9]

*kkkkk

(9]

subroutine INTRO_5()

* *kkkkk

INTRO PRINTS INPUT DATA AND RESULTS OF INI TIAL CALCULATIONS
IN TABULAR FORM

O0O0O0
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common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,E0C,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IE0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJIPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),
PRINT1(351)

VVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

PRINT PROBLEM NUMBER AND HEADING

(9]

write(18,100)
write(18,101)
write(18,102)
call SETUP_5()

do1J=1,LBL
write(18,110) J,ES(J),RS(J),RK(J),PK(J),BETA(J),DSD E(J),
> ALPHA(J)
1 continue
c
¢ FORMATS ¢

100 format(1H1////9X,60(1H*))

101 format(9X,48HCONSOLIDATION OF SOFT LAYERS BY FINITE STRAIN --,
> 6HCF=0.6)

102 format(9X,60(1H*))

110 format(2X,13,1X,F6.3,6E10.3)

return
end

K*kkkkkkkk

o

subroutine SETUP_5()

*kkkkkkkk

SETUP MAKES INITIAL CALCULATIONS AND MANIPULATIONS OF INPUT
DATA FOR LATER USE

OO0 0O0

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),

VVVVVYVYVYV
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F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

VVVVVVVVVVVVVVYVYVYVYV

c
¢ CALCULATE FUNCTIONS FOR COMPRESSIBLE SOIL LAYER
¢ PERMEABILITY FUNCTIONS
c
do 28 J=1,LBL
PK(J)=RK(J)/(1.0+ES(J))
28 continue

SLOPE OFPERMEABILITY FUNCTION--BETA
SLOPE OF EFF STRESS-VOID RATIO CURVE--DSDE

OO0 00

CD=ES(2)-ES(1)
BETA(1)=PK(1)*(GSBL-1.0)
DSDE(1)=(RS(2)-RS(1))/CD
L=LBL-1
do 29J=2,L
11=3-1; J=J+1
CD=ES(1J)-ES(ll)
BETA(J)=PK(J)*(GSBL-1.0)
DSDE(J)=(RS(13)-RS(I))/CD
29 continue
CD=ES(LBL)-ES(L)
BETA(LBL)=PK(LBL)*(GSBL-1.0)
DSDE(LBL)=(RS(LBL)-RS(L))/CD
do 31 J=2,LBL-1
DE=ES(J)-ES(J+1)
ESJPLUSHALF=ES(J)+(DE/2.0)
N=J
XV=ESJPLUSHALF
call LINTP_4(XV,YV,ES,RS,N-1)
RSJPLUSHALF=YV
ESIMINUSHALF=ES(J)-(DE/2.0)
XV=ESIMINUSHALF
if(J.eq.LBL-1) N=J-1
call LINTP_4(XV,YV,ES,RS,N)
RSIMINUSHALF=YV
¢ DSDE(J)=(RSJPLUSHALF-RSIMINUSHALF)/(ESJPLUSHALF-E SIJMINUSHALF)
31 continue

PERMEABILITY FUNCTION TIMES DSDE-- ALPHA

(9]

do 33 J=1,LBL
ALPHA(J)=PK(J)*(DSDE(J))*(1.0/GW)
33 continue

return
end
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(9]

subroutine EHALFVALUE_4()

kkkkkkkkkkkkkkhkkkkkk

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),
PRINT1(351)

VVVVVVVVVVVVVVVVVVVYVVYVVYVYVYV

CALCULATE CURRENT FACE VALUES OF FOUNDATION  SOIL

if(NDRB.eq.1) then do
2 J=2,LBL C1=F(NDJV)-
ES(J) if(Cl.ge.0.0)
goto 3
2 continue
DSED=DSDE(LBL); goto 4
3 11=J-1
XV=F(NDJV)
if(J.eq.LBL) lI=II-1
call LINTP_4(XV,YV,ES,DSDE,II)
DSED=YV
4 F(NDJV+1)=F(NDJV-1)-(DA/DSED)*(GC/(1.0+E11(NDJV)))
endif
if(NDRB.eq.2.0r.NDRB.eq.3) then
FIPLUSHALF(NDJV-1)=EFIN(NDJV)
F(NDJV+1)=(8.0/3.0)*FJIPLUSHALF(NDJV-1)-2.0*F(NDJV-1 )+
> (1.0/3.0)*F(NDJV-2)
endif
do 1 J=2,NDJV-3
if(abs(F(J)-F(J+2)).1e.0.00001) then

FIPLUSHALF(J)=(3.0/8.0)*F(J)+(6.0/8.0)*F(J+1)-(1.0/ 8.0)*F(J+2)

endif

if(al:ljs(F(J)-F(J+2)).Ie.0.0000l) goto 1

if(abs(F(J+2)-2.0*F(J)+F(J+1)).le.(0.3*abs(F(J)-F(J +2)))) then

FIPLUSHALF(J)=(3.0/8.0)*F(J)+(6.0/8.0)*F(J+1)-(1.0/ 8.0)*F(J+2)
dif

i??(albs(F(J+2)-2.0*F(J)+F(J+l))).gt.(0.3*abs(F(J)-F (J+2)))) then

FBAR3=(F(J+1)-F(J+2))/(F(J)-F(J+2))
if(FBAR3.le.(-1.0).or.FBAR3.ge.1.5) then
FIPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR2
endif

if(FBAR3.ge.0.35.and.FBAR3.le.0.65) then
FIPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
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FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR2
endif
if(FBAR3.le.0.0.and.FBAR3.gt.(-1.0)) then
FIPLUSHALFBAR2=0.375*FBAR3
FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR2
endif
if(FBAR3.gt.0.0.and.FBAR3.1t.0.35) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3*
> (1.0-2.0*FBAR3)
FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR?2
endif
if(FBAR3.gt.0.65.and.FBAR3.le.1.0) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3*
> (1.0-2.0*FBAR3)
FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR?2
endif
if(FBAR3.le.1.5.and.FBAR3.gt.1.0) then
FIPLUSHALFBAR2=FBARS3
FIPLUSHALF(J)=F(J+2)+(F(J)-F(J+2))*FIPLUSHALFBAR2
endif
endif
1 continue
2 if(abs(F(NDJV-2)-F(NDJV+1)).le.0.00001) then
FIPLUSHALF(NDJV-2)=(3.0/8.0)*F(NDJV-2)+(6.0/8.0)*F(
> (1.0/8.0)*F(NDJV+1)
endif
if(abs(F(NDJV-2)-F(NDJV+1)).le.0.00001) goto 605
if(@bs(F(NDJV+1)-2.0*F(NDJV-1)+F(NDJV-2)).le.
> (0.3*abs(F(NDJV-2)-F(NDJV+1)))) then
FIPLUSHALF(NDJV-2)=(3.0/8.0)*F(NDJV-2)+(6.0/8.0)*F(
> (1.0/8.0)*F(NDJV+1)
endif
if(@abs(F(NDJV+1)-2.0*F(NDJV-1)+F(NDJV-2)).gt.(0.3*
> abs(F(NDJV-2)-F(NDJV+1)))) then
FBAR3=(F(NDJV-1)-F(NDJV+1))/(F(NDJV-2)-F(NDJV+1))
if(FBAR3.le.(-1.0).or.FBAR3.ge.1.5) then
FIJPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-
> F(NDJV+1))*FIJPLUSHALFBAR?2
endif
if(FBAR3.ge.0.35.and.FBAR3.le.0.65) then
FIJPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-
> F(NDJV+1))*FIJPLUSHALFBAR?2
endif
if(FBAR3.le.0.0.and.FBAR3.gt.(-1.0)) then
FIPLUSHALFBAR2=0.375*FBAR3
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-
> F(NDJV+1))*FIJPLUSHALFBAR?2
endif
if(FBAR3.gt.0.0.and.FBARS3.|t.0.35) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3*

> (1.0-2.0*FBAR3)
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIPLUSHALFBAR2
endif

if(FBAR3.gt.0.65.and.FBAR3.le.1.0) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3*

> (1.0-2.0*FBAR3)
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIPLUSHALFBAR2
endif

if(FBAR3.le.1.5.and.FBAR3.gt.1.0) then
FIPLUSHALFBAR2=FBARS3
FIPLUSHALF(NDJV-2)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIJPLUSHALFBAR?2
endif
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endif
605 continue
do 5 J=3,NDJV-1
FIMINUSHALF(J)=FJPLUSHALF(J-1)
5 continue
FIMINUSHALF(2)=F(1)
FIPLUSHALF(NDJV-1)=F(NDJV)

CALCULATE INITIAL FACE VALUES OF SOIL LAYER
do 6 J=3,NDJV-2

if(J.eq.NDJV-2) goto 7
E11JPLUSHALF(J)=(3.0/8.0)*E11(J)+(6.0/8.0)*E11(J+1)

> -(1.0/8.0)*E11(J+2)
7 E11IMINUSHALF(J)=(3.0/8.0)*E11(J-1)+(6.0/8.0)*E11 @)
> -(1.0/8.0)*E11(J+1)
6 continue
E11JPLUSHALF(NDJV-1)=E11(NDJV)
E11JMINUSHALF(NDJV-1)=(-1.0/8.0)*E11(NDJV-3)+(6.0/8 0)*
> E11(NDJV-2)+(3.0/8.0)*E11(NDJV-1)
E11JPLUSHALF(NDJV-2)=(-1.0/8.0)*E11(NDJV-3)+(6.0/8. 0)*
> E11(NDJV-2)+(3.0/8.0)*E11(NDJV-1)
E11JPLUSHALF(2)=(3.0/8.0)*E11(2)+(6.0/8.0)*E11(3)-( 1.0/8.0)*E11(4)

E11JMINUSHALF(2)=E11(1)

return
end

kkkkkkkkkkkkkkhkkkkkk

subroutine LINTP_4(X,Y,XVAL,YVAL,IL)

kkkkkkkkkkkkkkkkkkkk

dimension XVAL(100),YVAL(100)
INTERPOLATE Y FOR GIVEN X USING LAGRANGIAN INTERPOL ATION

Y 1=((X-XVAL(IL+1))*(X-XVAL(IL+2)))/

> ((XVAL(IL)-XVAL(IL+1))*(XVAL(IL)-XVAL(IL+2))))*YVAL (IL)
Y2=((X-XVAL(IL))*(X-XVAL(IL+2)))/

> ((XVAL(IL+1)-XVAL(IL))*(XVAL(IL+1)-XVAL(IL+2))))*YV AL(IL+1)
Y3=(((X-XVAL(IL))*(X-XVAL(IL+1)))/

> ((XVAL(IL+2)-XVAL(IL))*(XVAL(IL+2)-XVAL(IL+1))))*YV AL(IL+2)
Y=Y1+Y2+Y3

return
end

*kkkkkkkkk

subroutine FDIFEQ_4()

*kkkkkkkkk

FDIFEQ CALCULATES NEW VOID RATIOS AS CONSOLIDATION PROCEEDS BY

AN EXPLICIT FINITE DIFFERENCE SCHEME BASED ON PREVI OUS VOID RATIOS.
SOIL PARAMETER FUNCTIONS ARE CONSTANTLY UPDATED TGCORRESPOND
WITH CURRENT VOID RATIO.

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

> NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
> UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
> ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
> ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
> NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,

> PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,

> A(351),B(351),Z(351),XI(351), ALPHA(351), BETA(351),

> DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),

> F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

>

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
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Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

LOOP THROUGH FINITE DIFFERENCE EQUATIONS U

CALCULATE VOID RATIO FOR IMAGE POINT AND F

LOWER BOUNDARY OF COMPRESSIBLE LAYER

if(NL.eq.1) goto 301

1 continue

APPLY BOTTOM BOUNDARY CONDITION

301 if(NDRB.eq.1.0r.NDRB.eq.3) then FIMINUSHALF(2)=

52
53

54

55

56

57

F0=(8.0/3.0)*FIMINUSHALF(2)-2.0*F(2)+(1.0/3.0)*F(3)
endif
if(NDRB.eq.2.and.NSOL.ne.1) then
do 52 J=2,LBL

C1=F(1)-ES(J)

if(C1.ge.0.0) goto 53

continue DSED=DSDE(LBL);

goto 54

11=J-1

XV=F(1)

if(J.eq.LBL) lI=II-1

call LINTP_4(XV,YV,ES,DSDE,II)

DSED=YV
FO=F(2)+(DA/DSED)*(GC/(1.0+E11(2)))
endif

if(NSOL.eqg.1.and.NDRB.eq.2) then
do 55 J=2,LBL

C1=F(1)-ES(J)

if(C1.ge.0.0) goto 56

continue DSED=DSDE(LBL);

goto 57

1=J3-1

XV=F(1)

if(J.eq.LBL) lI=1I-1

call LINTP_4(XV,YV,ES,DSDE,|II)

DSED=YV

FO=F(2)+(DA/DSED)*(GC/(1.0+E11(1)))

endif

if(@abs(FO-F(3)).le.0.00001) then
FIMINUSHALF(2)=(3.0/8.0)*F0+(6.0/8.0)*F(2)-(1.0/8.0
endif

if(abs(FO-F(3)).le.0.00001) goto 607
if(abs(F(3)-2.0*F(2)+FO0).le.(0.3*abs(F0-F(3)))) the
FIMINUSHALF(2)=(3.0/8.0)*F0+(6.0/8.0)*F(2)-(1.0/8.0
endif
if(abs(F(3)-2.0*F(2)+F0).gt.(0.3*abs(F0-F(3))))then
FBAR3=(F(2)-F(3))/(FO-F(3))

144

NTIL PRINT TIME

IRST REAL POINT

EFIN(L)

yF(3)

n
yF(3)



if(FBAR3.le.(-1.0).or.FBAR3.ge.1.5) then
FIMINUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIMINUSHALF(2)=F(3)+(FO0-F(3))*FIMINUSHALFBAR2
endif
if(FBAR3.ge.0.35.and.FBAR3.le.0.65) then
FIMINUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIMINUSHALF(2)=F(3)+(F0-F(3))*FIMINUSHALFBAR2
endif
if(FBAR3.le.0.0.and.FBAR3.gt.(-1.0)) then
FIMINUSHALFBAR2=0.375*FBAR3
FIMINUSHALF(2)=F(3)+(F0-F(3))*FIMINUSHALFBAR2
endif
if(FBAR3.gt.0.0.and.FBARS3.1t.0.35) then
FIMINUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3 **2)/
> (1.0-2.0*FBAR3)
FIMINUSHALF(2)=F(3)+(F0-F(3))*FIMINUSHALFBAR2
endif
if(FBAR3.gt.0.65.and.FBAR3.le.1.0) then
FIMINUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3 **2)/
> (1.0-2.0*FBAR3)
FIMINUSHALF(2)=F(3)+(F0-F(3))*FIMINUSHALFBAR2
endif if(FBAR3.le.1.5.and.FBAR3.gt.1.0)
then FIMINUSHALFBAR2=FBAR3
FIMINUSHALF(2)=F(3)+(F0-F(3))*FIMINUSHALFBAR2
endif
endif
607 if(abs(F(2)-F(4)).le.0.00001) then
FIPLUSHALF(2)=(3.0/8.0)*F(2)+(6.0/8.0)*F(3)-(1.0/8. 0)*F(4)
endif
if(abs(F(2)-F(4)).le.0.00001) goto 606
if(abs(F(4)-2.0*F(3)+F(2)).le.(0.3*abs(F(2)-F(4)))) then
FIPLUSHALF(2)=(3.0/8.0)*F(2)+(6.0/8.0)*F(3)-(1.0/8. 0)*F(4)
endif if(abs(F(4)-2.0*F(3)+F(2)).gt.(0.3*abs(F(2)-F (4))then
FBAR3=(F(3)-F(4))/(F(2)-F(4))
if(FBAR3.le.(-1.0).or.FBAR3.ge.1.5) then
FIJPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
if(FBAR3.ge.0.35.and.FBAR3.le.0.65) then
FIPLUSHALFBAR2=0.75+0.75*(FBAR3-0.5)
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
if(FBAR3.le.0.0.and.FBAR3.gt.(-1.0)) then
FIPLUSHALFBAR2=0.375*FBAR3
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
if(FBAR3.gt.0.0.and.FBARS3.|t.0.35) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3* *2)/
> (1.0-2.0*FBAR3)
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
if(FBAR3.gt.0.65.and.FBAR3.le.1.0) then
FIPLUSHALFBAR2=(sqrt(FBAR3*((1.0-FBAR3)**3))-FBAR3* *2)/
> (1.0-2.0*FBAR3)
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
if(FBAR3.le.1.5.and.FBAR3.gt.1.0) then
FIPLUSHALFBAR2=FBARS3
FIPLUSHALF(2)=F(4)+(F(2)-F(4))*FIPLUSHALFBAR2
endif
endif
606 if(NSOL.eq.1) then
do 75 N=2,LBL
C1=FJPLUSHALF(2)-ES(N)
if(C1.ge.0.0) goto 76
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75
76

77

78

79
80

10

c

continue

AFJPLUSHALF(2)=ALPHA(LBL)

BFIJPLUSHALF(2)=BETA(LBL); goto 77

NN=N-1

XV=FJPLUSHALF(2)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)

AFJPLUSHALF(2)=YV

call LINTP_4(XV,YV,ES,BETA,NN)

BFIJPLUSHALF(2)=YV

do 78 J=2,LBL

C1=FIMINUSHALF(2)-ES(J)

if(C1.ge.0.0) goto 79

continue AFJMINUSHALF(2)=ALPHA(LBL)

BFIMINUSHALF(2)=BETA(LBL); goto 10

11=J-1

XV=FIMINUSHALF(2)

if(J.eq.LBL) lI=II-1

call LINTP_4(XV,YV,ES,ALPHA,II)

AFIMINUSHALF(2)=YV

call LINTP_4(XV,YV,ES,BETA,II)

BFIMINUSHALF(2)=YV

endif if(NSOL.ne.1)

then do 5 N=2,LBL

C1=FJPLUSHALF(2)-ES(N)

if(C1.ge.0.0) goto 6

continue AFJPLUSHALF(2)=ALPHA(LBL)

BFIJPLUSHALF(2)=BETA(LBL); goto 7

NN=N-1

XV=FJPLUSHALF(2)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)

AFJPLUSHALF(2)=YV

call LINTP_4(XV,YV,ES,BETA,NN)

BFIJPLUSHALF(2)=YV

do 8 J=2,LBL

C1=FIMINUSHALF(2)-ES(J)

if(C1.ge.0.0) goto 9

continue AFJMINUSHALF(2)=ALPHA(LBL)

BFIMINUSHALF(2)=BETA(LBL); goto 10

11=J-1

XV=FIMINUSHALF(2)

if(J.eq.LBL) lI=II-1

call LINTP_4(XV,YV,ES,ALPHA,II)

AFIMINUSHALF(2)=YV

call LINTP_4(XV,YV,ES,BETA,II)

BFIMINUSHALF(2)=YV

endif

FFPLUS=BFJPLUSHALF(2)*(1.0+E11JPLUSHALF(2))+(AFJPLU
>(1.0+E11JPLUSHALF(2)**2)*((F(3)-F(2))/DA))

FFMINUS=BFJMINUSHALF(2)*(1.0+E11IMINUSHALF(2))+(AFJ
>*(1.0+E11IMINUSHALF(2)**2)*((F(2)-F0)/DA))

if(FFMINUS.gt.FFPLUS) FFMINUS=FFPLUS

ER(2)=F(2)-((TAU/DA)*(FFPLUS-FFMINUS))

DKQU(2)=(FFPLUS-FFMINUS)*(1.0/DA)

if(ER(2).eq.0.0) ER(2)=F(2)

if(NDRB.eq.3.0r.NDRB.eq.1) ER(1)=EFIN(1)

c TOP BOUNDARY OF COMPRESSIBLE SOIL LAYER

c

if(NDRB.eq.1) then
do 2 J=2,LBL
C1=F(NDJV)-ES(J)
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if(C1.ge.0.0) goto 3

2 continue
DSED=DSDE(LBL); goto 4

3 1I=J-1
XV=F(NDJV)
if(J.eq.LBL) lI=II-1
call LINTP_4(XV,YV,ES,DSDE,II)
DSED=YV

4 F(NDJV+1)=F(NDJV-1)-(DA/DSED)*(GC/(1.0+E11(NDJV)))
FIPLUSHALF(NDJV-1)=(-1.0/8.0)*F(NDJV-2)+(6.0/8.0)*F (NDJV-1)
> +(3.0/8.0)*F(NDJV+1)
endif
if(NDRB.eq.2.0r.NDRB.eq.3) then
FIPLUSHALF(NDJV-1)=EFIN(NDJV)
F(NDJV+1)=(8.0/3.0)*FJIPLUSHALF(NDJV-1)-2.0*F(NDJV-1 )+
> (1.0/3.0)*F(NDJV-2)
endif
if(@abs(F(NDJV-2)-F(NDJV+1)).le.0.00001) then
FIMINUSHALF(NDJV-1)=(3.0/8.0)*F(NDJV-2)+(6.0/8.0)*

> F(NDJV-1)-(1.0/8.0)*F(NDJV+1)
endif
if(abs(F(NDJV-2)-F(NDJV+1)).le.0.00001) goto 608
if(@abs(F(NDJV+1)-2.0*F(NDJV-1)+F(NDJV-2)).le.

> (0.3*abs(F(NDJV-2)-F(NDJV+1)))) then
FIMINUSHALF(NDJV-1)=(3.0/8.0)*F(NDJV-2)+(6.0/8.0)*

> F(NDJV-1)-(1.0/8.0)*F(NDJV+1)
endif
if(@abs(F(NDJV+1)-2.0*F(NDJV-1)+F(NDJV-2)).gt.

> (0.3*abs(F(NDJV-2)-F(NDJV+1))))then
FBAR2=(F(NDJV-1)-F(NDJV+1))/(F(NDJV-2)-F(NDJV+1))
if(FBAR2.le.(-1.0).or.FBAR2.ge.1.5) then
FIMINUSHALFBAR2=0.75+0.75*(FBAR2-0.5)
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJIV+1))*FIMINUSHALFBAR2
endif
if(FBAR2.ge.0.35.and.FBAR2.1e.0.65) then
FIMINUSHALFBAR2=0.75+0.75*(FBAR2-0.5)
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIMINUSHALFBAR2
endif
if(FBAR2.le.0.0.and.FBAR2.gt.(-1.0)) then
FIMINUSHALFBAR2=0.375*FBAR2
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIMINUSHALFBAR2
endif
if(FBAR2.gt.0.0.and.FBAR2.1t.0.35) then
FIMINUSHALFBAR2=(sgrt(FBAR2*((1.0-FBAR2)**3))-FBAR2 **2)/
> (1.0-2.0*FBAR?2)
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJIV+1))*FIMINUSHALFBAR2
endif
if(FBAR2.gt.0.65.and.FBAR2.le.1.0) then
FIMINUSHALFBAR2=(sqrt(FBAR2*((1.0-FBAR2)**3))-FBAR2 **2)/
> (1.0-2.0*FBAR2)
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJIV+1))*FIMINUSHALFBAR2
endif
if(FBAR2.le.1.5.and.FBAR2.gt.1.0) then
FIMINUSHALFBAR2=FBAR2
FIMINUSHALF(NDJV-1)=F(NDJV+1)+(F(NDJV-2)-

> F(NDJV+1))*FIMINUSHALFBAR?2
endif
endif
c FIMINUSHALF(NDJV-1)=(3.0/8.0)*F(NDJV-2)+(6.0/8.0)*F (NDJV-1)
c > -(1.0/8.0)*F(NDJV+1)
608 if(NSOL.eq.1) then
do 17 N=2,LBL
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17

18

19

20

21

171

181

191

201

211

22

C1=FJPLUSHALF(NDJV-1)-ES(N)
if(C1.ge.0.0) goto 18
continue AFJPLUSHALF(NDJV-1)=ALPHA(LBL)
BFIJPLUSHALF(NDJV-1)=BETA(LBL); goto 19
NN=N-1
XV=FJPLUSHALF(NDJV-1)
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,ES,ALPHA,NN)
AFJPLUSHALF(NDJV-1)=YV
call LINTP_4(XV,YV,ES,BETA,NN)
BFIJPLUSHALF(NDJV-1)=YV
do 20 J=2,LBL
C1=FIMINUSHALF(NDJV-1)-ES(J)
if(C1.ge.0.0) goto 21
continue AFJMINUSHALF(NDJV-1)=ALPHA(LBL)
BFIMINUSHALF(NDJV-1)=BETA(LBL); goto 22
11=J-1
XV=FIJMINUSHALF(NDJV-1)
if(J.eq.LBL) lI=II-1
call LINTP_4(XV,YV,ES,ALPHA,II)
AFIMINUSHALF(NDJV-1)=YV
call LINTP_4(XV,YV,ES,BETA,II)
BFIMINUSHALF(NDJV-1)=YV
endif if(NSOL.ne.1)
then do 171 N=2,LBL
C1=FJPLUSHALF(NDJV-1)-ES(N)
if(C1.ge.0.0) goto 181
continue AFJPLUSHALF(NDJV-1)=ALPHA(LBL)
BFJPLUSHALF(NDJV-1)=BETA(LBL); goto 191
NN=N-1
XV=FJPLUSHALF(NDJV-1)
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,ES,ALPHA,NN)
AFJPLUSHALF(NDJV-1)=YV
call LINTP_4(XV,YV,ES,BETA,NN)
BFIJPLUSHALF(NDJV-1)=YV
do 201 J=2,LBL
C1=FIMINUSHALF(NDJV-1)-ES(J)
if(C1.ge.0.0) goto 211
continue AFJMINUSHALF(NDJV-1)=ALPHA(LBL)
BFIMINUSHALF(NDJV-1)=BETA(LBL); goto 22
11=J-1
XV=FIJMINUSHALF(NDJV-1)
if(J.eq.LBL) lI=II-1
call LINTP_4(XV,YV,ES,ALPHA,II)
AFIMINUSHALF(NDJV-1)=YV
call LINTP_4(XV,YV,ES,BETA,II)
BFIMINUSHALF(NDJV-1)=YV
endif
FFPLUS=BFJPLUSHALF(NDJV-1)*(1.0+E11JPLUSHALF(NDJV-1 ))+
> (AFJPLUSHALF(NDJV-1)*(1.0+E11JPLUSHALF(NDJV-1)**2)
>*((F(NDJV+1)-F(NDJV-1))/DA))
FFMINUS=BFJMINUSHALF(NDJV-1)*(1.0+E11JMINUSHALF(NDJ V-1))+
> (AFIMINUSHALF(NDJV-1)*(1.0+E11IMINUSHALF(NDJV-1)**2
> *((F(NDJV-1)-F(NDJV-2))/DA))
if(FFMINUS.gt.FFPLUS) FFMINUS=FFPLUS
ER(NDJV-1)=F(NDJV-1)-((TAU/DA)*(FFPLUS-FFMINUS))
DKQU(NDJV-1)=(FFPLUS-FFMINUS)*(1.0/DA)
if(ER(NDJV-1).eq.0.0) ER(NDJV-1)=F(NDJV-1)
if(NDRB.eq.2.0r.NDRB.e(.3) ER(NDJV)=EFIN(NDJV)

CACULATE ALPHA AND BETA FOR CUURRENT VOID RATIOS
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c

c

call VRFUNC_4()

¢ CALCULATE NEW VOID RATIOS FOR REMAINDER NODES OF SOIL LAYER c

c

C

(9]

a7

CALCULATE ER(1) AND ER(NDJV) WITH IMPERMEAB

155

152

153

154

354

159

156

157

158

355

do 47 J=3,NDJV-2

FFPLUS=BFJPLUSHALF(J)*(1.0+E11JPLUSHALF(J))+(AFJPLU

>(1.0+E11JPLUSHALF(J)**2)*((F(J+1)-F(J))/DA))

FFMINUS=BFIJMINUSHALF(J)*(1.0+E11IMINUSHALF(J))+(AFJ

> (1.0+E11IMINUSHALF(3)**2)*((F(J)-F(J-1))/DA))
if(FFMINUS.gt.FFPLUS) FFMINUS=FFPLUS
ER(J)=F(J)-((TAU/DA)*(FFPLUS-FFMINUS))
DKQU(J)=(FFPLUS-FFMINUS)*(1.0/DA)
if(ER(J).eq.0.0) ER(J)=F(J)
continue
if(ER(1).gt.E11(l)) ER())=E11(l)
if(ER(1).IL.EFIN(1)) ER(I)=EFIN(l)

if(NDRB.eq.2) then

ER(1)=ER(2)

deltal=ER(1)

do 354 1=1,10

do 152 J=2,LBL

C1=ER(1)-ES(J)

if(C1.ge.0.0) goto 153

continue

DSED=DSDE(LBL); goto 154

11=J-1

XV=ER(1)

if(J.eq.LBL) lI=II-1

call LINTP_4(XV,YV,ES,DSDE,II)

DSED=YV

ERO=F(2)+(DA/DSED)*(GC/(1.0+E11(2)))

ER(1)=(3.0/8.0)*ER0+(6.0/8.0)*ER(2)-(1.0/8.0)*ER(3)

delta2=ER(1)

delta=abs(deltal-delta2)

if(delta.gt.0.001) goto 155

continue

endif

if(NDRB.eq.1) then

ER(NDJV)=ER(NDJV-1)

deltal=ER(NDJV)

do 355 1=1,10

do 156 J=2,LBL

C1=ER(NDJV)-ES(J)

if(C1.ge.0.0) goto 157

continue

DSED=DSDE(LBL); goto 158

11=J-1

XV=ER(NDJV)

if(J.eq.LBL) lI=II-1

call LINTP_4(XV,YV,ES,DSDE,II)

DSED=YV

F(NDJV+1)=F(NDJV-1)-(DA/DSED)*(GC/(1.0+E11(NDJV-1))

ER(NDJV)=(-1.0/8.0)*F(NDJV-2)+(6.0/8.0)*F(NDJV-1)
> +(3.0/8.0)*F(NDJV+1)

if(ER(NDJV).gt.E11(NDJV)) ER(NDJV)=E11(NDJV)

delta2=ER(NDJV)

delta=abs(deltal-delta2)

if(delta.gt.0.001) goto 159

continue

endif

RESET NEXT LOOP FOR FOUNDATION SOIL
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do 48 J=1,NDJV
FS(J)=ER(J)
F(J)=ER(J)

48 continue

¢ CALCULATE SOLUTE TRANSPORT

call FDIFEQ()
if(NL.eq.1) goto 51

¢ INCREMENT THE TIME STEP

TIME=TAU*float(NNN)
NNN=NNN+1

c CALCULATE CURRENT TIME AND CHECK AGAINST PR

if(TIME.It. TPRINT) goto 1

51 return
end

* * * * * * * *

subroutine VRFUNC_4()

(9]

O0O0O0

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV

INT TIME

Kkkkkkkkkkk

*kkkkkkkkk

VERFUNC CALCULATES FF1 AND FF2 FUNCTIONS FOR CURREN VOID RATIOS.

, NDIV,NBDJV,

Cc

C

> NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU, TIME,TP  RINT,

> UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,

> ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,

> ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUCNSORP,

> NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,

> PGR,PRR,PCL,PGL,PRL,INX,IJNZ,IE0,ISS,NC, TTIME,

> A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),

> DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),

> F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

> TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,

> Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,

> CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),

> ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),

> CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,

> CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),

> E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),

> AFJMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),

> EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),

> EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),

> CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),

> CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),

> CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),

> CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),

> CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

> PRINT1(351)

call EHALFVALUE_4()

¢ COMPRESSIBLE SOIL LAYER ¢

if(NSOL.ne.1) then

do 1 J=3,NDJV-2 do

2 N=2,LBL
C1=FJPLUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 3

2 continue
3 AFJPLUSHALF(J)=ALPHA(LBL)

BFJPLUSHALF(J)=BETA(LBL); goto 1
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c

(9]

4

NN=N-1

XV=FJPLUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFJPLUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIJPLUSHALF(J)=YV

continue

do 4 J=3,NDJV-2

do 5 N=2,LBL
C1=FIMINUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 6

continue
AFIMINUSHALF(J)=ALPHA(LBL)
BFIMINUSHALF(J)=BETA(LBL); goto 4
NN=N-1

XV=FIMINUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFIMINUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIMINUSHALF(J)=YV

continue

endif

7 if(NSOL.eq.1) then

CONTAMINATED LAYER

9

do 8 J=3,NNSOL1

do 9 N=2,LBL
C1=FJPLUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 10
continue

10 AFJPLUSHALF(J)=ALPHA(LBL)

11

12
13

14

BFJPLUSHALF(J)=BETA(LBL); goto 8
NN=N-1

XV=FJPLUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFJPLUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIPLUSHALF(J)=YV

continue

do 11 J=3,NNSOL1

do 12 N=2,LBL
C1=FIMINUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 13

continue
AFIMINUSHALF(J)=ALPHA(LBL)
BFIJMINUSHALF(J)=BETA(LBL); goto 11
NN=N-1

XV=FIMINUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFIMINUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIMINUSHALF(J)=YV

11 continue

UNCONTAMINATED LAYER

15

do 14 J=NNSOL1+1,NDJV-2

do 15 N=2,LBL
C1=FJPLUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 16

continue
AFJPLUSHALF(J)=ALPHA(LBL)
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o0

OO0O0O0OO0

16

14

18

19

17

BFJPLUSHALF(J)=BETA(LBL); goto 14
NN=N-1

XV=FJPLUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFJPLUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIJPLUSHALF(J)=YV

continue

do 17 J=NNSOL1+1,NDJV-2

do 18 N=2,LBL
C1=FIMINUSHALF(J)-ES(N)
if(C1.ge.0.0) goto 19

continue AFJMINUSHALF(J)=ALPHA(LBL)
BFIMINUSHALF(J)=BETA(LBL); goto 17
NN=N-1

XV=FIMINUSHALF(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,ALPHA,NN)
AFIMINUSHALF(J)=YV

call LINTP_4(XV,YV,ES,BETA,NN)
BFIMINUSHALF(J)=YV

continue

endif

return
end

* * * * * * * * * Kkkkkkkkkkkk

subroutine RESET_4()

*kkkkkkkkkk

RESET UPDATES PREVIOUS CALCULATIONS TO HANDLE ADDITONAL
DEPOSITIONS OF DREDGED FILLS

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJIPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),
PRINT1(351)

VVVVVVVVVVVVVVVVVVVYVVYVVYVYVYV

CALCULATE FINAL VOID RATIOS FOR SOIL LAYER

call INTGRL_4(FS,E11,DANDJV,FINT)
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(9]

(9]

(9]

if(NSOL.ne.1) then
S1=ELL*GC+Q2

do 8 J=1,NDJV

S2=S1-Z(J)*GC

do 6 N=2,LBL

S3=S2-RS(N)

if(S3.le.0.0) goto 7

continue

EFIN(J)=ES(LBL); goto 8

NN=N-1

XV=S2

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,RS,ES,NN)
EFIN(J)=YV

if(EFIN(J).gt.E11(J)) EFIN(J)=E11(J)
continue

endif

if(NSOL.eq.1) then

UNCONTAMINATED LAYER

52

54

C1=ELL*GC; C2=Q2
S1=C1+C2

do 51 J=NNSOL1+1,NDJV
S2=S1-Z(J)*GC

do 52 N=2,LBL
S3=S2-RS(N)

if(S3.le.0.0) goto 53
continue
EFIN(J)=ES(LBL); goto 51
NN=N-1

XV=S2

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,RS,ES,NN)
EFIN(J)=YV

51 continue

CONTAMINATED LAYER

55
56
57

54

do 54 J=1,NNSOL1
$2=51-Z(J)*GC do

55 N=2,LBL S3=S2-
RS(N)

if(S3.1e.0.0) goto 56
continue
EFIN(J)=ES(LBL); goto 54
NN=N-1

XV=S2

if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,RS,ES,NN)
EFINQ)=YV

continue

endif

ULTIMATE SETTLEMENT FOR COMPRESSIBLE FOUNDA

call INTGRL_4(EFIN,E11,DA NDJV,FINT)
SFIN=VRI(NDJV)-FINT(NDJV)

return
end

* * * * * * * * *

subroutine STRESS_4()

TION

Khkkkkkkkk

*kkkkkkkk

STRESS CALCULATES EFFECTIVE STRESSES, TOTAL STRESSES AND PORE
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c WATER PRESSURES BASED ON CURRENT VOID RATI O AND VOID RATIO INTEGRAL.

OO0 00

5

6
7

VVVVVVVVVVVVVVVVVVVVVYVVYVYVYV

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,IJNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351), EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351), CQIJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

FOR COMPRESSIBLE FOUNDATION

CALCULATE XI COORDINATES AND STRESSES

call INTGRL_4(ER,E11,DA,NDJV,FINT)
do 2 J=1,NDJV
X1(J)=A(J)-(VRI(J)-FINT(J))

continue W1=HBL+HT

if(NSOL.ne.1) then

do 6 J=1,NDJV

do 3 N=2,LBL

C1=FS(J)-ES(N)

if(C1.ge.0.0) goto 4

continue

EFFSTR(J)=RS(LBL); goto 5

NN=N-1

XV=FS(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,RS,NN)
EFFSTR(J)=YV

if(X1(J).gt.HB) U0(J)=GW*(W1-XI(J))
if(X1(J).le.HB) UO(J)=GW*(W1-XI(J))
U0(J)=GW*(W1-XI(J))
if(HT.eq.0.0.and.HB.eq.0.0) UO(J)=GW*(W1-XI(J))

¢ TOTSTR(I)=GS*ELL-Z(J))+GW*FINT(NDJIV)-FINT( J)+HT)+Q2

TOTSTR(J)=GC*ELL-Z(J))+GW*W1-XI(J))+Q2

UW(J)=TOTSTR(J)-EFFSTR(J)

U(J)=UW(J)-U0(J)
if(U(J).1t.0.0) U(J)=0.0
continue

if(NDRB.eg.1) U(1)=0.0
if(NDRB.eq.2) U(NDJV)=0.0
if(NDRB.eq.3) then
U(1)=0.0

U(NDJV)=0.0

endif
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(9]

(9]

endif
if(NSOL.eq.1) then

STRESSES IN CONTAMINATED LAYER

do 7 J=1,NNSOL1
do 8 N=2,LBL
C1=FS(J)-ES(N)
if(C1.ge.0.0) goto 9

8 continue
9 EFFSTR(J)=RS(LBL); goto 10
10 NN=N-1

11

XV=FS(J)

if(N.eq.LBL) NN=NN-1

call  LINTP_4(XV,YV,ES,RS,NN)
EFFSTRI)=YV

if(HT.ne.0.0)  UO(J)=GW*W1-XI(J))
if(HT.€q.0.0) UO(J)=GW*(W1-XI(J))
TOTSTR(J)=GW*W1-FINT(J))+GC*ELL-Z(J))+Q2
UW(J)=TOTSTR(J)-EFFSTR(J)

U(J)=UW(J)-Uo(J)

if(U(J).1t.0.0) U(J)=0.0

7 continue

STRESSES IN UNCONTAMINATED LAYER

12

13

14

11

do 11 J=NNSOL1+1,NDJV

do 12 N=2,LBL

C1=FS(J)-ES(N)

if(C1.ge.0.0) goto 13

continue EFFSTR(J)=RS(LBL);

goto 14

NN=N-1

XV=FS(J)

if(N.eq.LBL) NN=NN-1

call LINTP_4(XV,YV,ES,RS,NN)
EFFSTR@J)=YV

if(HT.ne.0.0) U0(J)=GW*(XI(NDJIV)+HT-XI(J))
if(HT.eq.0.0) UO(J)=GW*(XI(NDJIV)+HT-XI(J))
TOTSTR(J)=GW*(W1-FINT(J))+GC*(ELL-Z(J))+Q2
UW(J)=TOTSTR(J)-EFFSTR(J)
U(J)=Uw(J)-uUo(J)

if(U(J).1t.0.0) U(J)=0.0

continue

endif

if(IKK.eq.2) UMAX=U(1)

if(NDRB.eq.1) U(1)=0.0

if(NDRB.eq.2) U(NDJV)=0.0

if(NDRB.eq.3) then

U(1)=0.0

U(NDJV)=0.0

endif

CALCULATE SETTLEMENT AND DEGREE OF CONSOLID

SETT=A(NDJV)-XI(NDJV)
if(SFIN.eq.0.0) UCON=0.0
if(SFIN.ne.0.0) UCON=SETT/SFIN

return
end

subroutine INTGRL_4(EA,EAO,DA,N,F)
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INTGRL EVALUATES THE VOID RATIO INTEGRAL T O EACH MESH POINT
IN THE MATERIAL

OO0 0

dimension EA(351),EA0(351),F(351)

(9]

BY TRAPEZOIDAL RULE FOR FIRST SEGMENT

o0

F(1)=0.0
F(2)=F(1)+DA*(EA(2)/(1.0+EAO(2)))

BY SIMPSONS 1/3 RULE FOR ALL EVEN NUMBERED MESH POINTS

(9]

do 3 1=4,N-1,2

F()=F(1-2)+(DA)*(((EA(I-2)/(1.0+EAO(I-2)))+(4.0* EA(l-
> 1)/(1.0+EAO(I-1)))+(EA(1)/(1.0+EAQ(1))))/3.0)
3 continue

BY SIMPSONS 3/8 RULE FOR ALL EVEN NUMBERED MESH POINTS

(9]

do 4 1=5,N-1,2
F()=F(I-3)+(DA)*((EA(I-3)/(1.0+EAO(I-3)))+(3.0*EA( 1-2)/
>(1.0+EAO(1-2)))+(3.0*EA(I-1)/(1.0+EAO(I-1)))+(EA( )
>(1.0+EAO(1))))*(3.0/8.0)
4 continue

BY DIFFERENCES FOR FIRST INTERVAL

(9]

F3=(DA)*((EA(3)/(1.0+EAO(3)))+(4.0*EA(4)/(1.0+EAO(4 ))
> +(EA(B)/(1.0+EAO(5))))/3.0
F(3)=F(5)-F3
c BY TRAPEZOIDAL RULE FOR LAST SEGMENT
F(N)=F(N-1)

return
end

* *kkkkkkk

subroutine INTGRLQ(DCQU,EAO,D1,N,NDR,QR)

(9]

*kkkkkkk

INTGRL EVALUATES THE VOID RATIO INTEGRAL T O EACH MESH POINT
IN THE MATERIAL

OO0 0O0

dimension DCQU(351),EAO(351),QR(351)
if(NDR.eq.2) then

(9]

BY TRAPEZOIDAL RULE FOR FIRST SEGMENT

(9]

EAO(2)=(EAO(1)+EAO(2))/2.0
QR(2)=(D1)*(DCQU(2)/(1.0+EAO(2)))

BY SIMPSONS 1/3 RULE FOR ALL EVEN NUMBERED MESH POINTS

(9]

do 3 1=4,N-1,2 QR(I)=QR(I-2)+(D1)*(((DCQU(I-2)/(1.0 +EAO(I-2)))+
>(4.0*DCQU(I-1)/(1.0+EAO(I-1)))+(DCQU(I)/(1.0+EAQ(I )))/3.0)
3 continue

c BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M ESH POINTS

do 4 1=5,N-1,2
QOR(I):QR(I-3)+(D1)*((DCQU(I-3)/(1.O+EAO(I-3)))+(3.0 *DCQU(I-2)/
>(1.0+EAO(I-2)))+(3.0*DCQU(I-1)/(1.0+EAO(I-1)))+(DC Qu(l)/
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(9]

(9]

(9]

(9]

(9]

>(1.0+EAO(1))))*(3.0/8.0)
4 continue

BY DIFFERENCES FOR FIRST INTERVAL

QR3=(D1)*((DCQU(3)/(1.0+EAO(3)))+(4.0*DCQU(4)/(1.0+ EAO(4)))
> +(DCQU(5)/(1.0+EAO(5))))/3.0

QR(3)=QR(5)-QR3

QR(N)=QR(N-1)

QR(1)=0.0

endif

if(NDR.eq.1) then

QR(N-1)=(D1)*(DCQU(N-1)/(1.0+EAO(N-1)))

BY SIMPSONS 1/3 RULE FOR ALL EVEN NUMBERED MESH POINTS

I11=mod(N,2)
if(I11.ne.0) then
do 51=N-3,2,-2
QR(N=QR(I1+2)+(D1)*((DCQU(I+2)/(1.0+EAO(I+2)))+
>(4.0*DCQU(I1+1)/(1.0+EAO(1+1)))+(DCQU(1)/(1.0+EAQ(I ))))/3.0)
5 continue

BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M ESH POINTS

do 6 I=N-4,3,-2
QR()=QR(I+3)+(D1)*((DCQU(I+3)/(1.0+EAO(I+3)))+(3. 0*DCQU(I+2)/
>(1.0+EAO(1+2)))+(3.0*DCQU(I+1)/(1.0+EAQ(I+1)))+(DC Qu(y/
>(1.0+EAQ(1))))*(3.0/8.0)
6 continue
QR3=(D1)*((DCQU(N-2)/(1.0+EAO(N-2)))+(4.0*DCQU(N-3) /

>(1.0+EAO(N-3)))+(DCQU(N-4)/(1.0+EAO(N-4))))/3.0
QR(N-2)=QR(N-4)-QR3
endif
do 7 I=N-3,2,-2
QR()=QR(I+2)+(D1)*(((DCQU(I+2)/(1.0+EAO(I+2)))+
>(4.0*DCQU(I+1)/(1.0+EAO(I+1)))+(DCQU(I)/(1.0+EAO(l ))))/3.0)
7 continue

BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M ESH POINTS

do 8 1=N-4,3,-2
QR()=QR(I+3)+(D1)*((DCQU(I+3)/(1.0+EAO(I+3)))+(3. 0*DCQU(I+2)/
>(1.0+EAO(1+2)))+(3.0*DCQU(I+1)/(1.0+EAO(I+1)))+(DC QuU()/
>(1.0+EAO(1))))*(3.0/8.0)
8 continue

BY DIFFERENCES FOR FIRST INTERVAL ¢
QR3=(D1)*((DCQU(N-2)/(1.0+EAO(N-2)))+(4.0*DCQU(N-3) /
> (1.0+EAO(N-3)))+(DCQU(N-4)/(1.0+EAO(N-4))))/3.0
QR(N-2)=QR(N-4)-QR3
QR(N)=0.0
QR(1)=QR(2)
endif
if(NDR.eq.3) then
112=mod(N,2)
if(112.ne.0) then
write(*,*) "USE EVEN NUMBER OF ELEMENTS FOR DOUBLY DRAINED CASE"
stop
endif

LOWER HALF

JJ1=N/2
QR(JJ1)=(D1)*(DCQU(IJIL)/(1.0+EAO(JIL)))
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(9]

(9]

(9]

(9]

(9]

BY SIMPSONS 1/3 RULE FOR ALL EVEN NUMBERED

JJ2=mod(J3J1,2)

if(JJ2.ne.0) then

do 9 1=3J1-2,3,-2

QR()=QR(I+2)+(D1)*(((DCQU(I+2)/(1.0+EAO(I+2)))+
>(4.0*DCQU(I+1)/(1.0+EAO(1+1)))+(DCQU(I)/(1.0+EAO(l

9 continue

BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M

do 10 1=JJ1-3,2,-2
QR(N)=QR(I+3)+(D1)*((DCQU(I+3)/(1.0+EAO(I+3)))+(3.
>(1.0+EAO(1+2)))+(3.0*DCQU(I+1)/(1.0+EAO(I+1)))+(DC
>(1.0+EAO(1))))*(3.0/8.0)
10 continue
endif
do 11 1=JJ1-2,2,-2
QR(N=QR(I1+2)+(D1)*((DCQU(I+2)/(1.0+EAO(I+2)))+
>(4.0*DCQU(I1+1)/(1.0+EAO(1+1)))+(DCQU(1)/(1.0+EAQ(I
11 continue

BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M

do 12 1=JJ1-3,3,-2
QR()=QR(I+3)+(D1)*((DCQU(I+3)/(1.0+EAO(I+3)))+(3.
>(1.0+EAO(1+2)))+(3.0*DCQU(I+1)/(1.0+EAQ(I+1)))+(DC
>(1.0+EAQ(1))))*(3.0/8.0)
12 continue

BY DIFFERENCES FOR FIRST INTERVAL

QR3=(D1)*(DCQU(JJI1-1)/(1.0+EAO(JI1-1)))+(4.0*DCQU(

> (1.0+EAO(JJ1-2)))+(DCQU(II1-3)/(1.0+EAO(3I1-3))))
QR(JJ1-1)=QR(JJ1-3)-QR3

UPPER HALF
QR(JJ1+1)=(D1)*(DCQU(JI1+1)/(1.0+EAO(JJI1+1)))
BY SIMPSONS 1/3 RULE FOR ALL EVEN NUMBERED
do 13 1=JJ1+3,N-1,2
QR()=QR(I-2)+(D1)*((DCQU(I-2)/(1.0+EAO(I-2)))+
>(4.0*DCQU(I-1)/(1.0+EAO(I-1)))+(DCQU(I)/(1.0+
13 continue
BY SIMPSONS 3/8 RULE FOR ALL ODD NUMBERED M
do 14 1=JJ1+4,N-1,2
QR()=QR(I-3)+(D1)*((DCQU(I-3)/(1.0+EAO(I-3)))+(3.0
>(1.0+EAO(I-2)))+(3.0*DCQU(I-1)/(1.0+EAO(I-1)))+(DC
>(1.0+EAQ(1))))*(3.0/8.0)
14 continue

BY DIFFERENCES FOR FIRST INTERVAL

QR3=(D1)*((DCQU(JI1+2)/(1.0+EAO(II1+2)))+(4.0*DCQU(
> (1.0+EAO(JJ1+3)))+(DCQU(IIL+4)/(1.0+EAO(II1+4))))

QR(JJ1+2)=QR(JJ1+4)-QR3
QR(N)=QR(N-1)
QR(1)=QR(2)

endif

return
end
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OO0 0O0

Cc

* * * * * * * * * * Kkkkkkkkk

subroutine DATOUT_4()

VVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

*kkkkkkk

DATOUT PRINTS RESULTS OF CONSOLIDATIO CALCULATIONS AND BASE
DATA IN TABULAR FORM

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME, TP RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHD0O,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM,TH,RKEO,NSL,HCL,HUCL,EOC,EOUCNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,

PGR,PRR,PCL,PGL,PRL,INX,IJNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),

DSDE(351),E11(351),EFIN(351),ER(351),ES(351), EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA, IKK,UMAX,NTAU,

CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),

ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFJMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 )
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351),CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

¢ PRINT CONDITIONS IN COMPRESSIBLE FOUNDATION

c

Cc

16

17

if(NFLAG.eq.1) write(18,100)

if(NFLAG.eq.0) write(18,108)

write(18,101)

write(18,102)

do 16 J=1,NDJV

K=NDJV+1-J

write(18,103) A(K),XI(K),Z(K),E11(K),ER(K),EFIN(K)
continue

write(18,104)

write(18,105)

do 17 J=1,NDJV

K=NDJV+1-J

write(18,103) XI(K), TOTSTR(K),EFFSTR(K),UW(K),UO(K) ,U(K)
continue

write(18,107) TIME,UCON

write(18,110) SETT,SFIN

write(18,112) WL

write(19,*) TIME,SETT,U(1)

c FORMATS

c

>

100 format(/////14(1H*),34HINITIAL CONDITIONS IN CO MPRESSIBLE,

11H FOUNDATION, 13(1H*))

101 format(//9X,5(1H*),13H COORDINATES ,5(1H*),13X, 5(1H*), >

13H VOID RATIOS ,5(1H%))

>

>

102 format(/9X,1HA,11X,2HXI,10X,1HZ,7X,8HEINITIAL,8X,1H E,8X,

6HEFINAL)

103 format(5(F11.4,1X),F11.4)
104 format(//15X,5(1H*),10H STRESSES,5(1H*),7X,5(1H*),

16H PORE PRESSURES,5(1H*))
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(9]

(9]

105 format(/7X,2HXI,8X,5HTOTAL,5X,9HEFFECTIVE,6X,5HTOTA
> BHSTATIC,6X,6HEXCESS)

106 format(////19(1H*),34HINITIAL CONDITIONS IN DREDGE
> 19(1H%))

107 format(//10X,7HTIME = ,E10.4,5X,26HDEGREE OF CONSOL
> F10.6)

108 format(/////14(1H*),34HCURRENT CONDITIONS IN COMPRE
> 11H FOUNDATION, 13(1H*))

109 format(////19(1H*),34HCURRENT CONDITIONS IN DREDGE
> 19(1H%))

110 format(/10X,13HSETTLEMENT = ,F10.4,5X,19HFINAL SETT
> F10.4)

111 format(/10X,27HBOTTOM BOUNDARY GRADIENT = ,F10.4)

112 format(/10X,27HWATER LEVEL ABOVE BOTTOM = ,F10.4)

300 return
end

subroutine INPUT_ST()

common DA,DB,DZ,EQ0,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME, TP RINT,

L,6X,

D FILL,
IDATION =,
SSIBLE,

D FILL,

LEMENT =,

*kkkkk

*kkkkk

, NDIV,NBDJV,

VVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,E0C,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351), ALPHA(351), BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

read(20,*) NST,ND1,ND2,NSORP,NSTBC,NC,NTAU

READ SOLUTE TRANSPORT DATA FOR CLAY LINER OR DREDGED SEDIMENT

read(20,*) NST,DS,ALPHAL,ALPHAT,CFT,CFB,ALAMDAC,ALA

if(ND2.eq.1) read(20,*) NST,CHD1

if(ND2.eq.2) read(20,*) NST,CHDO,AM
if(NSORP.eq.1) read(20,*) NST,AKD

if(NSORP.eq.2) read(20,*) NST,AKP,ANF,ANLAMDA
if(NSORP.eq.3) read(20,*) NST,AKP,ANF

CALCULATE CONSTANTS
if(ND1.eq.1) then
if(NSTBC.eq.3) then

read(20,*) NST,DGM,TH
endif
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(9]

(9]

(9]

(9]

(9]

if(NSTBC.eq.1) then
CF0(1,1)=CFB
read(20,*) NST,CL,CSS
do 1 J=2,NDJV-1
CF0(1,J)=CL

1 continue
CFO(1,NDJV)=CFT
CF0(1,25)=1.0
if(NSTBC.eq.3) CFO0(1,NDJV)=0.0
do 2 J=1,NDJV
CF1(1,3)=CF0(1,J)

2 continue
do 3 J=1,NDJV
CS0(1,J)=CsS

3 continue
do 4 J=1,NDJV
CS1(1,J)=Cs0(1,J)

4 continue
do 6 J=2,NDJV-1

EQUILIBRIUM SORPTION WITH LINEAR ISOTHERM

DJI=(1.0+F(J))/(1.0+E11(J))

DRD(J)=(GSBL*(GW/9.81))/(1.0+ER(J))

if(NSORP.eq.1.and.AKD.eq.0.0) then

CFF1(1,J)=ENO0(J)*CF1(1,J)*DJI+((1.0-ENO(J))*DJI*CS1

endif

if(NSORP.eq.1.and.AKD.ne.0.0) then

CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*DRD(J)*
> AKD*DJI*CF1(1,J))

endif

EQUILIBRIUM SORPTION WITH NONLINEAR ISOTHERM

if(NSORP.eq.2.0r.NSORP.eq.3) then
endif if(NSTBC.eq.2.and.NSOL.eq.1)
then DJI=(1.0+ER(J))/(1.0+E11(J))
S=AKP*(CF1(1,J)**ANF)
CS1(1,J)=DRD(J)*S CS0(1,J)=DRD(J)*S
CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*CS1(1,J
endif

6 continue

CONTAMINATED LAYER

do 20 J=1,NNSOL1
CF1(1,J)=CFB
CFO(1,J)=CFB

EQUILIBRIUM SORPTION WITH NONLINEAR ISOTHER

if(NSORP.eq.2.0r.NSORP.eq.3) then
DJI=(1.0+ER(J))/(1.0+E11(J))

S=AKP*(CF1(1,J)**ANF)

CS1(1,J)=DRD(J)*S CS0(1,J)=DRD(J)*S
CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*CS1(1,J
endif

EQUILIBRIUM SORPTION WITH LINEAR ISOTHERM
if(NSORP.eq.1) then

DJI=(1.0+ER(J))/(1.0+E11(J))
S=AKD*CF1(1,J)
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c

CS1(1,J)=DRD(J)*S
CS0(1,J)=DRD(J)*S

CFF1(1,J)=ENO(J)*CF1(1,3)*DJI+((1.0-ENO(J))*CS1(1,J

endif
20 continue

UNCONTAMINATED LAYER

do 21 J=NNSOL1+

DJI=(1.0+ER(J))/(1.0+E11(J))

CF1(1,J)=CFT
CFO(1,J)=CFT
CS1(1,J)=0.0
CS0(1,J)=0.0

1,NDIV

CFF1(1,J)=ENO(J)*CF1(1,J)*DJI

21 continue
endif

EQUILIBRIUM SORPTION WITH LINEAR ISOTHERM

if(NSORP.eq.1) then

do 22 J=NNSOL1+

DJI=(1.0+ER(J))/(1.0+E11(J))
CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*DRD(J)*

1,NDJIV

> AKD*DJI*CF1(1,J))

22 continue
endif

EQUILIBRIUM SORPTION WITH NONLINEAR ISOTHER

if(NSORP.eq.2.0r.NSORP.eq.3) then

DJI=(1.0+ER(J))/(1.0+E11(J))

S=AKP*(CF1(1,J)**ANF)
CS1(1,J)=DRD(J)*S
CS0(1,J)=DRD(J)*S

CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*CS1(1,J

endif
endif
if(ND1.eqg.2) then

read(20,*) NST,NSTUBC,NSTBBC,NSTRBC,NSTLBC,ISS

read(20,*) NST,NB
NDIV=NBDIV+2

DIV,WBL

DB=WBL/float(NBDIV)

B(1)=0.0
B(NDIV)=WBL
B(2)=B(1)+DB/2.0
do 30 I=3,NDIV-1
B(1)=B(I-1)+DB

30 continue

READ THE PRESCRIBED INITIAL BOUNDARY VALUES

if(NSTUBC.eq.1)
if(NSTUBC.eq.2)
if(NSTUBC.eq.3)
if(NSTBBC.eq.1)
if(NSTBBC.eq.2)
if(NSTBBC.eq.3)
if(NSTRBC.eq.1)
if(NSTRBC.eq.2)
if(NSTRBC.eq.3)
if(NSTLBC.eq.1)
if(NSTLBC.eq.2)
if(NSTLBC.eq.3)

read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)
read(20,*)

NST,PCT
NST,PGT
NST,PRT
NST,PCB
NST,PGB
NST,PRB
NST,PCR
NST,PGR
NST,PRR
NST,PCL

NST,PGL

NST,PRL

read(20,*) NST,C0,S0,XC0O,ZCO

do 875 J=1,NDJV

DRD(J)=(GSBL*(GW/9.81))/(1.0+ER(J))

162

M

)*DJI)

)*DJI)



(9]

(9]

875

12
11

32
31

14

continue

do 11 J=1,NDJV

do 12 I1=1,NDIV
CF0(1,J)=0.0

continue

continue INX1=(XCO-
(DB/2.0))/DB INX=INX1+2
JNZ1=(ZCO-(DA/2.0))/DA
JNZ=JNZ1+2 INX2=((XCO+1.0)-
(DB/2.0))/DB INX3=INX2+2
JNZ2=((ZCO+1.0)-(DA/2.0))/DA
INZ3=JINZ2+2

if(1ISS.eq.1) then

do 31 I=INX,INX3

do 32 J=INZ,JNZ3
CFO0(1,J)=C0

continue

continue

endif

if(ISS.ne.1) then
CFO(INX,JNZ)=CO0

endif

do 13 1=1,NDIV do

14 J=1,NDJV
CF1(1,3)=CFo0(l1,J)

continue

continue

do 15 J=1,NDJV

do 16 1=1,NDIV
CS0(1,9)=0.0

16 continue

15

continue

if(1ISS.eq.1) then

do 131 I=INX,INX3
do 132 J=JNZ,JNZ3
CS0(1,J)=DRD(J)*S0

132 continue

131

continue

endif

if(ISS.ne.1) then
CSO(INX,JNZ)=DRD(J)*S0
endif

do 17 I1=1,NDIV

do 18 J=1,NDJV
CS1(1,3)=Cs0(1,J)

18 continue
17 continue

LINEAR EQUILIBRIUM SORPTION

if(NSORP.eq.1) then

do 27 1=2,NDIV-1 do

28 J=2,NDJV-1

DJI=(1.0+ER(J))/(1.0+E11(J))
CFF1(1,3)=ENO(J)*CF1(1,3)*DJI+(1.0-ENO(J))*CS1(l,J)

28 continue

27

continue
endif

INITIAL EQUILIBRIUM SORPTION WITH NONLINEAR

if(NSORP.eq.2) then

do 25 1=2,NDIV-1 do

26 J=2,NDJV-1
DJI=(1.0+ER(J))/(1.0+E11(J))
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DRD(J)=(GSBL*(GW/9.81))/(1.0+ER(J))
S=AKP*(CF1(l,J)**ANF)

CS1(1,J)=DRD(J)*S

CS0(1,J)=DRD(J)*S
CFF1(1,J)=ENO(J)*CF1(1,J)*DJI+((1.0-ENO(J))*CS1(1,J

26 continue

25

continue
endif

endif

call INTRO()

return
end

subroutine INTRO()

VVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

PRI

INTRO PRINTS INPUT DATA AND RESULTS OF INITIAL CALC

IN TABULAR FORM

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV

)*DJI)

*kkkkk

*kkkkk

ULATIONS

, NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME, TP RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHD0O,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM,TH,RKEO,NSL,HCL,HUCL,EOC,EOUCNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,

PGR,PRR,PCL,PGL,PRL,INX,JNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),

DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),

E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFIJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),

CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),

CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),

CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),

CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)
NT PROBLEM NUMBER AND HEADING

if(ND1.eqg.1) then
write(21,100)
write(21,101)
write(21,100)

WRITE SOLUTE TRANSPORT DATA FOR CLAY LINER

write(21,100)

write(21,102)

write(21,100)

write(21,103)

if(ND2.eq.1) write(21,104) CHD1,ALPHAL

if(ND2.eq.2) write(21,104) CHDO,ALPHAL

write(21,%) "k DIFF. H.G  i=0.2 Rf=1.81*

write(21,*) "INITIAL CONC. OF SOLUTE AT THE UPPER B
write(21,*) "INITIAL CONC. OF SOLUTE AT THE LOWER B
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write(21,*) "TIME STEP=",TAU
write(21,*) "NUMBER OF NODES=",NDJV
write(21,100)

write(22,105)

endif

if(ND1.eq.2) then

write(21,100)

write(21,106)

write(21,100)

write(21,100)

write(21,102)

write(21,100)

write(21,107)

write(21,108) CHD1,ALPHAL ,ALPHAT
write(21,100)

WRITE SOLUTE TRANSPORT DATA FOR CLAY LINER

write(21,*) "INITIAL CONC. OF SOLUTE AT THE UPPER B OUNDARY=",CFT
write(21,*) "INITIAL CONC. OF SOLUTE AT THE LOWER B OUNDARY=",CFB
write(21,*) "TIME STEP=",TAU

write(21,*) "NUMBER OF NODES X-DIRECTION=",NDIV

write(21,*) "NUMBER OF NODES Y-DIRECTION=",NDJV

endif

FORMATS

100
101
102
103
104
105
106
107

>

format(////60(1H%))

format(9X,35HSOLUTE TRANSPORT THROUGH CLAY LAYER)

format(//37HCALCULATION DATA FOR SOLUTE TRANSPORT)

format(/2X,19HEFFECTIVE DIFFUSION,25HLONGITUDINAL D ISPERSIVITY)

format(/10X,F1.15,15X,F5.2)

format(/8X,4HTIME,12X,5HCb/CO0/)

format(9X,51HTWO DIMENSIONAL SOLUTE TRANSPORT THROUGH CLAY LAYER)

format(/2X,19HEFFECTIVE DIFFUSION,25HLONGITUDINAL D ISPERSIVITY,
23HTRANSVERSE DISPERSIVITY)

108 format(/10X,E1.15,15X,F5.2,15X,F5.2)

300

return
end

* * *kkkkkkkkkkkkkkkkkhkk

subroutine FACEVALUE()

VVVVVVVVVVVVVVVVVVYVYVYV

kkkkkkkkkkkkkkkkkkkk

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV , NDIV,NBDJV,
NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,E0C,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11JMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFJMINUSHALF(351),BFJPLUSHALF(351), BFIMINUSHALF(351 ),
EGJPLUSHALF(351), EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
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CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),
PRINT1(351)

VVVYVYV

CALCULATE THE PREVIOUS TIME FACE VALUES OF SOLUTE C ONCENTRATION
FOR THE ELEMENTARY VOLUME AROUND MESH POINTS
if(ND1.eqg.1) then
do 1 J=2,NDJV-3
if(abs(CF1(1,J)-CF1(1,J+2)).le.0.00001) then
CF1JPLUSHALF(1,J3)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1,J+1)
> -(1.0/8.0)*CF1(1,J+2)
endif
if(@abs(CF1(1,J)-CF1(1,J+2)).le.0.00001) goto 1
if(@abs(CF1(1,J+1)-2.0*CF1(1,J)+CF1(1,J-1)).le.
> (0.3*abs(CF1(1,J-1)-CF1(1,J+1)))) then
CF1JPLUSHALF(1,J3)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1,J+1)
> -(1.0/8.0)*CF1(1,3+2)
endif
if((abs(CF1(1,J+1)-2.0*CF1(1,J)+CF1(1,J-1))).gt.
>(0.3*abs(CF1(1,J-1)-CF1(1,J+1)))) then
CF1BAR3=(CF1(1,J+1)-CF1(1,J+2))/(CF1(1,J)-CF1(1,J+2 )
if(CF1BARS3.le.(-1.0).0or.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-
> CF1(1,J+2))*CF1JPLUSHALFBAR2
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-
> CF1(1,J+2))*CF1IJPLUSHALFBAR2
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BAR3
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-
> CF1(1,J+2))*CF1IJPLUSHALFBAR?2
endif
if(CF1BARS.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-
> CF1(1,J+2))*CF1JPLUSHALFBAR2
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-
> CF1(1,J+2))*CF1IJPLUSHALFBAR?2
endif
if(CF1BARS.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAR3
CF1JPLUSHALF(1,J)=CF1(1,J+2)+(CF1(1,J)-

> CF1(1,J+2))*CF1JPLUSHALFBAR2
endif
endif
1 continue
2 CF1(1,NDJV+1)=(8.0/3.0)*CF1(1,NDJV)-2.0*CF1(1,NDJV- 1)+
> (1.0/3.0)*CF1(1,NDJV-2)
if(@bs(CF1(1,NDJV-2)-CF1(1,NDJV+1)).le.0.00001) the n
CF1JPLUSHALF(1,NDJV-2)=(3.0/8.0)*CF1(1,NDJV-2)+(6.0 /8.0)*
> CF1(1,NDJV-1)-(1.0/8.0)*CF1(1,NDJV+1)
endif
if(@bs(CF1(1,NDJV-2)-CF1(1,NDJV+1)).le.0.00001) got 0 605
if(@bs(CF1(1,NDJV+1)-2.0*CF1(1,NDJV-1)+CF1(1,NDJV-2 )).le.
> (0.3*abs(CF1(1,NDJV-2)-CF1(1,NDJV+1)))) then
CF1JPLUSHALF(1,NDJV-2)=(3.0/8.0)*CF1(1,NDJV-2)+(6.0 /8.0)*
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>CF1(1,NDJV-1)-(1.0/8.0)*CF1(1,NDJV+1)

endif

if(abs(CF1(1,NDJIV+1)-2.0*CF1(1,NDJV-1)+CF1(1,NDJV-2 )).gt.(0.3*

>abs(CF1(1,NDJV-2)-CF1(1,NDJV+1)))) then
CF1BAR3=(CF1(1,NDJV-1)-CF1(1,NDJV+1))/(CF1(1,NDJV-2 )-

> CF1(1,NDJV+1))
if(CF1BAR3.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -

> CF1(1,NDJV+1))*CF1IJPLUSHALFBAR2
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -

> CF1(1,NDJV+1))*CF1JPLUSHALFBAR2
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BARS3
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -

> CF1(1,NDJV+1))*CF1JPLUSHALFBAR2
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -
> CF1(1,NDJV+1))*CF1JPLUSHALFBAR2
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -
> CF1(1,NDJV+1))*CF1JPLUSHALFBAR2
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAR3
CF1JPLUSHALF(1,NDJV-2)=CF1(1,NDJV+1)+(CF1(1,NDJV-2) -
> CF1(1,NDJV+1))*CF1JPLUSHALFBAR2

endif
endif

605 continue
do 2 J=2,NDJV-2
CF1IJMINUSHALF(1,J+1)=CF1JPLUSHALF(1,J)

2 continue

endif

if(ND1.eq.2) then
INTERPOLATIOS IN I-DIRECTION

do 4 I=2,NDIV-3

do 5 J=2,NDJV-3
CURVETI=(1.0/24.0)*(CF1(1+1,J+1)-2.0*CF1(I+1,J)+CF1 (1+1,3-1))
if(abs(CF1(l,J)-CF1(1+2,J)).le.0.00001) then
CF1IPLUSHALF(1,J)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1+1,J)
> -(1.0/8.0)*CF1(1+2,J)+CURVETI

endif

if(@abs(CF1(l,J)-CF1(1+2,J)).le.0.00001) goto 5
if(abs(CF1(1+1,J)-2.0*CF1(1,J)+CF1(I-1,3)).le.
>(0.3*abs(CF1(I-1,J)-CF1(1+1,J)))) then
CF1IPLUSHALF(1,J)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1+1,J)
> -(1.0/8.0)*CF1(1+2,J)+CURVETI

endif

if((abs(CF1(1+1,3)-2.0*CF1(l,J)+CF1(I-1,3))).qt.

>(0.3*abs(CF1(I-1,J)-CF1(1+1,J)))) then

CF1BAR3=(CF1(I1+1,J)-CF1(1+2,J))/(CF1(l,J)-CF1(I+2, J))
if(CF1BAR3.le.(-1.0).0r.CF1BAR3.ge.1.5) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
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CF1IPLUSHALF(1,J)=CF1(1+2,3)+((CF1(1,J)-

> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
if(CF1BARS.ge.0.35.and.CF1BAR3.le.0.65) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(1,J)=CF1(1+2,3)+((CF1(1,J)-

> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1IPLUSHALFBAR2=0.375*CF1BAR3
CF1IPLUSHALF(1,J)=CF1(1+2,J)+((CF1(1,J)-

> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(1,J)=CF1(1+2,2)+((CF1(l,J)-
> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(1,3)=CF1(1+2,J)+((CF1(l,J)-
> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1IPLUSHALFBAR2=CF1BAR3
CF1IPLUSHALF(I,J)=CF1(1+2,d)+((CF1(1,J)-

> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
endif
5 continue
4 continue
do 6 1I=2,NDIV-3
do 7 J=2,NDJV-3
CURVETJ=(1.0/24.0)*(CF1(1+1,J+1)-2.0*CF1(l,J+1)+CF1 (1-1,3+1))
if(abs(CF1(1,J)-CF1(1,J+2)).le.0.00001) then
CF1JPLUSHALK(1,J)=(3.0/8.0)*CF1(l,J)+(6.0/8.0)*CF1( 1,J+1)
> -(1.0/8.0)*CF1(1,J+2)+CURVETJ
endif

if(@bs(CF1(l,J)-CF1(1,J+2)).le.0.00001) goto 7
if(@bs(CF1(1,J+1)-2.0*CF1(1,J)+CF1(l,J-1)).le.
>(0.3*abs(CF1(1,J-1)-CF1(1,J+1)))) then
CF1JPLUSHALF(1,J)=(3.0/8.0)*CF1(l,J)+(6.0/8.0)*CF1( 1,J+1)
> -(1.0/8.0)*CF1(1,J+2)+CURVETJ
endif
if(@bs(CF1(l,J+1)-2.0*CF1(1,J)+CF1(1,J-1))).gt.
>(0.3*abs(CF1(l,J-1)-CF1(1,J+1)))) then
CF1BAR3=(CF1(l,J+1)-CF1(1,J+2))/(CF1(1,J)-CF1(l,J+2 )
if(CF1BAR3.le.(-1.0).0r.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,J)=CF1(l,J+2)+((CF1(l,J)-
> CF1(1,J+2))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+((CF1(1,J)-
> CF1(1,J+2))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BAR3
CF1JPLUSHALF(1,J)=CF1(1,J+2)+((CF1(1,J)-

> CF1(1,J+2))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
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CF1JPLUSHALF(1,J)=CF1(1,J+2)+((CF1(1,J)-

> CF1(1,J+2))*CF1IPLUSHALFBAR2)+CURVETJ

endif

if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0 - CF1BAR3)**3)) - CF1BAR3**2)/

> (1.0 - 2.0*CF1BAR3)
CF1JPLUSHALF(1,J)=CF1(1,J+2)+((CF1(1,J) -

> CF1(1,J+2))*CF1JPLUSHALFBAR2)+CURVETJ
endif

if(CF1BARS.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAF
CF1JPLUSHALF(1,J)=CF1(1,J+2)+((CF1(1,J) -

> CF1(1,J+2))*CF1JPLUSHALFBAR2)+CURVETJ
endif
endif

7 continue

6 continue

BOUNDARY CONDITIONS AT THE TOF
PRESCRIBED CONCENTRATION AT THE TO

if(NSTUBC.eq.1) then

do 17 1=1,NDIV

CF1JPLUSHALF(I,NDJV - 1)=PCT

CF1(l,NDJV+1)=CF1JPLUSHALF(I,NDJV -1)
17 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 18 J=1,NDJV
CF1(NDIV+1,J)=CF1(NDIV - 1,J)
CF1IPLUSHALF(NDIV - 1,J)=CF1(NDIV,J)
CF1IPLUSHALF(NDIV - 1,J)=(3.0/8.0)*CF1(NDIV+1,J)+

> (6.0/8.0)*CFL(NDIV ~ -1,J) -(1.0/8.0)*CFL(NDIV  -2J)
CF1(NDIV,J)=CF1IPLUSHALF(NDIV - 1,J)

18 continue
endif

if(NSTUBC.eq.2) then
PRESCRIBED CONCENTRATION GRADIENT (GENERALLY ZERO) AT THE TOF

do 19 I=1,NDIV
CF1JPLUSHALF(I,NDJV - 1)=CF1(I,NDJV -1)
CF1(1,NDJV+1)=CF1IJPLUSHALF(I,NDJV -1)
CF1(I,NDJV+1)=CF1(I,NDJV - 1)
CF1IPLUSHALF(I,NDJV - 1)=(3.0/8.0)*CF1(I,NDJV+1)+
> (6.0/8.0)*CF1(1,NDJIV - 1) - (1.0/8.0)*CF1(I,NDJIV -2)
CF1(1,NDJV)=CF1IPLUSHALF(I,NDJV - 1)
19 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 20 J=1,NDJV
CF1lIPLUSHALF(NDIV- 1,J)=CF1(NDIV -1,J)
CF1(NDIV+1,J)=CF1IPLUSHALF(NDIV -1,J)
CF1(NDIV+1,J)=CF1(NDIV -1,J)
CF1IPLUSHALF(NDIV - 1,J)=(3.0/8.0)*CF1(NDIV+1,J)+
> (6.0/8.0)*CF1(NDIV -1,J) -(1.0/8.0)*CF1(NDIV -2J)
CF1(NDIV,J)=CF1IPLUSHALF(NDIV -1,J)
20 continue
endif
if(NSTUBC.eq.3) then

RESERVOIR BOUNDAR'CONDITION AT THE TOP
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VS1=abs(CQ(NDJV))/EN(NDJV)
HH=0.5*DA*(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))
do 21 1=1,NDIV
CF1(,NDJV)=(VS1*PRT*HH+CHDA(NDJV-1)*CF1(l,NDJV-1)) /
> (VS1*HH+CHDA(NDJV-1))

CF1JPLUSHALF(I,NDJV-1)=CF1(I,NDJV)
CF1(I,NDJV+1)=PRT

21 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 22 J=1,NDJV
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV-1,J)
CF1(NDIV+1,J)=CF1IPLUSHALF(NDIV-1,J)
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=(3.0/8.0)*CF1(NDIV+1,J)+

> (6.0/8.0)*CF1(NDIV-1,J)-(1.0/8.0)*CF1(NDIV-2,J)

CF1(NDIV,J)=CF1IPLUSHALF(NDIV-1,J)
22 continue

endif
do 10 J=2,NDJV-1 CURVETI=(1.0/24.0)*(CF1(NDIV-1,J+1 )-
2.0*CF1(NDIV-1,3)+

> CF1(NDIV-1,3-1))
if(@bs(CF1(NDIV-2,J)-CF1(NDIV+1,J)).le.0.00001) the n
CF1IPLUSHALF(NDIV-2,J)=(3.0/8.0)*CF1(NDIV-2,J)+(6.0 /8.0)*

> CF1(NDIV-1,J)-(1.0/8.0)*CF1(NDIV+1,J)+CURVETI
endif
if(@bs(CF1(NDIV-2,J)-CF1(NDIV+1,J)).le.0.00001) got 010
if(@bs(CF1(NDIV+1,J)-2.0*CF1(NDIV-1,J)+CF1(NDIV-2,J )).le.

> (0.3*abs(CF1(NDIV-2,J)-CF1(NDIV+1,J)))) then
CF1IPLUSHALF(NDIV-2,3)=(3.0/8.0)*CF1(NDIV-2,J)+(6.0 /8.0)*

> CF1(NDIV-1,J3)-(1.0/8.0)*CF1(NDIV+1,J)+CURVETI
endif
if(@abs(CF1(NDIV+1,J)-2.0*CF1(NDIV-1,J)+CF1(NDIV-2,J )).gt.(0.3*

>abs(CF1(NDIV-2,J)-CF1(NDIV+1,]J)))) then
CF1BAR3=(CF1(NDIV-1,J)-CF1(NDIV+1,J))/(CF1(NDIV-2,J )-

> CF1(NDIV+1,J))

if(CF1BAR3.le.(-1.0).0r.CF1BAR3.ge.1.5) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1lIPLUSHALFBAR2=0.375*CF1BAR3
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BARS.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1IPLUSHALFBAR2=CF1BAR3
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J)
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> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI CF1IMINUS  HALF(NDIV-
1,J)=CF1IPLUSHALF(NDIV-2,J)
endif
endif
10 continue
do 11 1=2,NDIV-1

CURVETJ=(1.0/24.0)*(CF1(1+1,NDJV-1)-2.0*CF1(I,NDJV- 1)+

> CF1(I-1,NDJV-1))
if(@abs(CF1(1,NDJV-2)-CF1(I,NDJV+1)).le.0.00001) the n
CF1JPLUSHALF(I,NDJV-2)=(3.0/8.0)*CF1(I,NDJV-2)+(6.0 /8.0)*

> CF1(I,NDJV-1)-(1.0/8.0)*CF1(I,NDJV+1)+CURVETJ
endif
if(@abs(CF1(,NDJV-2)-CF1(l,NDJV+1)).le.0.00001) got o011
if(@abs(CF1(,NDJV+1)-2.0*CF1(l,NDJV-1)+CF1(I,NDJV-2 )).le.

>  (0.3*abs(CF1(I,NDJV-2)-CF1(I,NDJV+1)))) then
CF1JPLUSHALF(I,NDJV-2)=(3.0/8.0)*CF1(I,NDJV-2)+(6.0 /8.0)*

> CF1(I,NDJV-1)-(1.0/8.0)*CF1(l,NDJV+1)+CURVETJ
endif
if(@bs(CF1(I,NDJV+1)-2.0*CF1(I,NDJV-1)+CF1(I,NDJV-2 )).gt.

>(0.3*abs(CF1(I,NDJV-2)-CF1(I,NDJV+1)))) then
CF1BAR3=(CF1(I,NDJV-1)-CF1(I,NDJV+1))/(CF1(I,NDJV-2 )-

> CF1(I,NDJV+1))

if(CF1BAR3.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(NDIV-2,J)=CF1(1,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(I,NDJV-2)=CF1(1,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BARS3
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1JPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1JPLUSHALFBAR2+CURVETJ
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAR3
CF1JPLUSHALF(I,NDJV-2)=CF1(J,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
CF1IJMINUSHALF(I,NDJV-1)=CF1JPLUSHALF(I,NDJV-2)
endif
endif
11 continue

do 8 I1=2,NDIV-2
do 9 J=2,NDJV-2
CF1IMINUSHALF(1+1,J)=CF1IPLUSHALF(I,J)
CF1IJMINUSHALF(I1,J+1)=CF1JPLUSHALF(I1,J)
9 continue
8 continue
endif
EGJPLUSHALF(NDJV-1)=EG(NDJV)
EG(NDJV+1)=(8.0/3.0)*EGIJPLUSHALF(NDJV-1)-2.0*EG(NDJ V-1)+
> (1.0/3.0)*EG(NDJV-2)
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EGOJPLUSHALF(NDJV-1)=EGO(NDJV)
EGO(NDJIV+1)=(8.0/3.0)*EGIJPLUSHALF(NDJV-1)-2.0*EG(ND JV-1)

>
do 3 J=3,NDJV-3

+(1.0/8.0)*EGO(NDJIV-2)

EGIMINUSHALF(J)=(3.0/8.0)*EG(J-1)+(6.0/8.0)*EG(J)-( 1.0/8.0)*
> EG(J+1
EGOJMINUSHALF(J)=(3.0/8.0)*EGO0(J-1)+(6.0/8.0)*EGO(J )-(1.0/8.0)*
> EGO(J+1
EGJPLUSHALF(J)=(3.0/8.0)*EG(J)+(6.0/8.0)*EG(J+1)-(1 .0/8.0)*
> EG(J+2)
EGOJPLUSHALF(J)=(3.0/8.0)*EG0(J)+(6.0/8.0)*EGO(J+1) -(1.0/8.0)*
> EGO0(J+2)
3 continue
4 EGJIMINUSHALF(NDJV-2)=(3.0/8.0)*EG(NDJV-3)+(6.0/8.0) *EG(NDJV-2)-

>

(1.0/8.0)*EG(NDJV-1)

EGOJMINUSHALF(NDJV-2)=(3.0/8.0)*EGO(NDJV-3)+(6.0/8. 0)*EGO(NDJV-2)-

>

(1.0/8.0)*EGO(NDJIV-1)

EGJPLUSHALF(NDJV-2)=(3.0/8.0)*EG(NDJV-2)+(6.0/8.0)* EG(NDJV-1)-

>

(1.0/8.0)*EG(NDJIV+1)

EGOJPLUSHALF(NDJV-2)=(3.0/8.0)*EGO(NDJV-2)+(6.0/8.0 *EGO(NDJV-1)-

>

return
end

(1.0/8.0)*EGO(NDJIV+1)

kkkkkkkkkkkkkkkkkkkk

subroutine FACEVALUE_1()

*

dkkkkkkkkkkkkkkkkhkhkk

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

VVVVVVVVVVVVVVVVVVVVVYVYVYVVYV

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUCNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,IJNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351), EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351),AFJPLUSHALF(351),
AFJMINUSHALF(351),BFJPLUSHALF(351),BFEIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQJPLUSHALF(351), CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

CALCULATE THE PREVIOUS TIME FACE VALUES OF SOLUTE C ONCENTRATION
FOR THE ELEMENTARY VOLUME AROUND MESH POINTS

if(ND1.eqg.1) then

do 1 J=3,NDJV-2 if(abs(CF1(1,J+1)-CF1(1,J-

1)).1e.0.00001) then

CF1IMINUSHALF(1,J+1)=(3.0/8.0)*CF1(1,J+1)+(6.0/8.0) *CF1(1,J)

>
endif

-(1.0/8.0)*CF1(1,J-1)

if(@bs(CF1(1,J+1)-CF1(1,J-1)).le.0.00001) goto 1
if(abs(CF1(1,J-1)-2.0*CF1(1,J)+CF1(1,J+1)).le.
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> (0.3*abs(CF1(1,J+1)-CF1(1,J-1)))) then
CF1IMINUSHALF(1,J+1)=(3.0/8.0)*CF1(1,J+1)+(6.0/8.0)

> -(1.0/8.0)*CF1(1,J-1)
endif
if((abs(CF1(1,J-1)-2.0*CF1(1,J)+CF1(1,J+1))).gt.

>(0.3*abs(CF1(1,J+1)-CF1(1,J-1)))) then
CF1BAR3=(CF1(1,J)-CF1(1,J-1))/(CF1(1,J+1)-CF1(1,J-1
if(CF1BARS3.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1IMINUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-

> CF1(1,J-1))*CF1IJMINUSHALFBAR2
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1IMINUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-

> CF1(1,J-1))*CF1IJMINUSHALFBAR2
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1IJMINUSHALFBAR2=0.375*CF1BAR3
CF1IMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-

> CF1(1,J-1))*CF1IMINUSHALFBAR2
endif
if(CF1BARS.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1IMINUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))

> (1.0-2.0*CF1BAR3)
CF1IMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-

> CF1(1,J-1))*CF1IMINUSHALFBAR2
endif

if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1IMINUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))

> (1.0-2.0*CF1BAR3)
CF1IJMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-

> CF1(1,J-1))*CF1IMINUSHALFBAR2
endif

if(CF1BARS.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JMINUSHALFBAR2=CF1BAR3
CF1IJMINUSHALF(1,J+1)=CF1(1,J-1)+(CF1(1,J+1)-
> CF1(1,3-1))*CF1IJMINUSHALFBAR2
endif
endif
1 continue

CF10=(8.0/3.0)*CF1(1,1)-2.0*CF1(1,2)+(1.0/3.0)*CF1(
if(@abs(CF1(1,3)-CF10).le.0.00001) then
CF1IMINUSHALF(1,3)=(3.0/8.0)*CF1(1,3)+(6.0/8.0)*

> CF1(1,2)-(1.0/8.0)*CF10
endif
if(@abs(CF1(1,3)-CF10).le.0.00001) goto 705
if(@abs(CF10-2.0*CF1(1,2)+CF1(1,3)).le.

> (0.3*abs(CF1(1,3)-CF10))) then
CF1IMINUSHALF(1,3)=(3.0/8.0)*CF1(1,3)+(6.0/8.0)*

> CF1(1,2)-(1.0/8.0)*CF10
endif
if(abs(CF1(1,3)-2.0*CF1(1,2)+CF10).gt.(0.3*

> abs(CF1(1,3)-CF10))) then
CF1BAR3=(CF1(1,2)-CF10)/(CF1(1,3)-CF10)
if(CF1BAR3.le.(-1.0).0or.CF1BAR3.ge.1.5) then
CF1IJMINUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CF1JMINUSHA
endif
if(CF1BAR3.ge.0.35.and.CF1BAR3.Ie.0.65) then
CF1IJMINUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CF1JMINUSHA
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1IMINUSHALFBAR2=0.375*CF1BAR3
CF1IMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CF1JMINUSHA
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endif

if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1IMINUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3)) -CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)

CF1JMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CFLJMINUSHA  LFBAR2

endif

if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JMINUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3)) -CF1BAR3*+2)/

> (1.0-2.0*CF1BAR3)

CF1IMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CF1IJMINUSHA LFBAR2

endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JMINUSHALFBAR2=CF1BAR3
CF1JMINUSHALF(1,3)=CF10+(CF1(1,3)-CF10)*CF1LJMINUSHA  LFBAR2

endif
endif
705 continue
do 2 J=2,NDJV-2

CF1JPLUSHALF(1,J)=CF1JMINUSHALF(1,J+1)

2 continue

3 CF1JPLUSHALF(1,NDJV-1)=CF1(1,NDJV)
CF1JMINUSHALF(1,2)=CF1(1,1)

endif

if(ND1.eqg.2) then

INTERPOLATIOS IN I-DIRECTION

do 4 I=2,NDIV-3
do 5 J=2,NDJV-3

CURVETI=(1.0/24.0)*(CF1(1+1,J+1)-2.0*CF1(I+1,J)+CF1 (1+1,3-1))
if(abs(CF1(1,J)-CF1(1+2,3)).le.0.00001) then
CF1IPLUSHALF(1,J)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1+1,)

> -(1.0/8.0)*CF1(I+2,J)+CURVETI

endif

if(@abs(CF1(l,J)-CF1(1+2,J)).le.0.00001) goto 5

if(abs(CF1(1+1,J)-2.0*CF1(l,J)+CF1(l-1,J)).le.
>(0.3*abs(CF1(l-1,J)-CF1(1+1,J)))) then

CF1IPLUSHALF(1,J)=(3.0/8.0)*CF1(1,J)+(6.0/8.0)*CF1( 1+1,J)
> -(1.0/8.0)*CF1(1+2,J)+CURVETI

endif

if((abs(CF1(1+1,J)-2.0*CF1(l,J)+CF1(l-
1,J))).gt.>(0.3*abs(CF1(l-1,J)-CF1(I1+1,J)))) then
CF1BAR3=(CF1(I1+1,J)-CF1(1+2,J))/(CF1(1,J)-CF1(I+2,J )
if(CF1BAR3.le.(-1.0).0r.CF1BAR3.ge.1.5) then
CF1lIPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(1,J)=CF1(I+2,3)+((CF1(l,J)-

>
endif

CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI

if(CF1BAR3.ge.0.35.and.CF1BAR3.le.0.65) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(1,J)=CF1(1+2,J)+((CF1(l,J)-

>
endif

CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI

if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1IPLUSHALFBAR2=0.375*CF1BAR3
CF1IPLUSHALF(I,J)=CF1(I+2,J)+((CF1(l,J)-

>
endif

CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI

if(CF1BAR3.gt.0.0.and.CF1BAR3.It.0.35) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

>

(1.0-2.0*CF1BARS)

CF1IPLUSHALF(I,J)=CF1(1+2,d)+((CF1(1,J)-

>
endif

CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI

if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
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> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(1,J)=CF1(1+2,2)+((CF1(l,J)-
> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
if(CF1BARS.le.1.5.and.CF1BAR3.gt.1.0) then
CF1IPLUSHALFBAR2=CF1BAR3
CF1IPLUSHALF(1,J)=CF1(1+2,3)+((CF1(l,9)-
> CF1(1+2,J))*CF1IPLUSHALFBAR2)+CURVETI
endif
endif
5 continue
4 continue

INTERPOLATIOS IN J-DIRECTION

do 6 1=2,NDIV-3
do 7 J=2,NDJV-3
CURVETJ=(1.0/24.0)*(CF1(1+1,J)-2.0*CF1(l,J)+CF1(l-1 J))
if(abs(CF1(1,J+1)-CF1(l,J-1)).le.0.00001) then
CF1JPLUSHALF(1,3)=(3.0/8.0)*CF1(l,J+1)+(6.0/8.0)*CF 1(1,J)
> -(1.0/8.0)*CF1(l,J-1)+CURVETJ
endif
if(@abs(CF1(l,J+1)-CF1(l,J-1)).le.0.00001) goto 7
if(abs(CF1(1,J-1)-2.0*CF1(1,J)+CF1(1,J+1)).le.
>(0.3*abs(CF1(l,J+1)-CF1(l,J-1)))) then
CF1JPLUSHALF(1,J)=(3.0/8.0)*CF1(l,J+1)+(6.0/8.0)*CF 1(1,J)
> -(1.0/8.0)*CF1(l,J-1)+CURVETJ
endif
if((@abs(CF1(1,J-1)-2.0*CF1(1,J)+CF1(l,J+1))).qgt.
> (0.3*abs(CF1(l,J-1)-CF1(1,J+1)))) then
CF1BAR3=(CF1(l,J)-CF1(1,J-1))/(CF1(l,J+1)-CF1(l,J-1 )
if(CF1BAR3.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALK(1,J)=CF1(1,J-1)+((CF1(1,J+1)-
> CF1(1,J-1))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BARS.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(1,J)=CF1(1,J-1)+((CF1(1,J+1)-
> CF1(1,J-1))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BAR3
CF1JPLUSHALK(1,J)=CF1(1,J-1)+((CF1(1,J+1)-

> CF1(1,J-1))*CF1JPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(1,J)=CF1(1,J-1)+((CF1(l,J+1)-
> CF1(1,3-1))*CF1IPLUSHALFBAR2)+CURVETJ
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/
> (1.0-2.0*CF1BAR3)
CF1JPLUSHALK(1,J)=CF1(1,J-1)+((CF1(1,J+1)-
> CF1(1,J-1))*CF1JPLUSHALFBAR2)+CURVETJ
endif

if(CF1BARS.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAR3
CF1JPLUSHALF(1,J)=CF1(1,J-1)+((CF1(l,J+1)-

> CF1(1,J-1))*CF1JPLUSHALFBAR2)+CURVETJ
endif
endif

7 conti nue

6 conti nue
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17

18

19

20

21

22

BOUNDARY CONDITIONS AT THE TOF
PRESCRIBED CONCENTRATION AT THE TO

if(NSTUBC.eq.1) then

do 17 1=1,NDIV

CF1JPLUSHALF(I,NDJV - 1)=PCT

CF1(l,NDJV+1)=CF1JPLUSHALF(I,NDJV -1)
continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 18 J=1,NDJV
CF1(NDIV+1,J)=CF1(NDIV - 1,J)
CF1IPLUSHALF(NDIV - 1,J)=CF1(NDIV,J)
CF1IPLUSHALF(NDIV - 1,J)=(3.0/8.0)*CF1(NDIV+1,J)+
> (6.0/8.0)*CFL(NDIV ~ -1,J) - (1.0/8.0)*CF1(NDIV
CF1(NDIV,J)=CF1IPLUSHALF(NDIV - 1,J)
continue
endif
if(NSTUBC.eq.2) then

-2,)

PRESCRIBED CONCENTRATION GRADIENT (GENERALLY ZEROAT THE TOP

do 19 I=1,NDIV

CF1JPLUSHALF(I,NDJV - 1)=CF1(I,NDJV - 1)

CF1(1,NDJV+1)=CF1JPLUSHALF(I,NDJV - 1)
CF1(,NDJV+1)=CF1(,NDJV  -1)

CF1IPLUSHALF(I,NDJV - 1)=(3.0/8.0)*CF1(I,NDJV+1)+

> (6.0/8.0)*CF1(INDJV - 1) - (1.0/8.0)*CF1(I,NDIV

CF1(I,NDJV)=CF1IPLUSHALF(I,NDJV -1)
continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 20 J=1,NDJV
CF1lIPLUSHALF(NDIV- 1,J)=CF1(NDIV -1,J)
CF1(NDIV+1,J)=CF1IPLUSHALF(NDIV -1,J)
CF1(NDIV+1,J)=CF1(NDIV -1,J)
CF1IPLUSHALF(NDIV - 1,J)=(3.0/8.0)*CF1(NDIV+1,J)+
> (6.0/8.0)*CF1(NDIV -1,J) -(1.0/8.0)*CF1(NDIV
CF1(NDIV,J)=CF1IPLUSHALF(NDIV -1,J)
continue
endif
if(NSTUBC.eq.3) then

RESERVOIR BOUNDARY CONDITION AT THE TOI

VS1=abs(CQ(NDJIV))/EN(NDJIV)

HH=0.5*DA*(1.0+EG(NDJV - 1))/(1.0+EGO(NDJV - 1))

do 21 I=1,NDIV

CF1(I,NDJV)=(VS1*PRT*HH+CHDA(NDJV - 1)*CF1(I,NDJV - 1))/
> (VS1*HH+CHDA(NDJ\- 1))

CF1JPLUSHALF(I,NDJV - 1)=CF1(I,NDJV)

CF1(I,NDJV+1)=PRT
continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 22 J=1,NDJV

CF1lIPLUSHALF(NDIV-1,J)=CF1(NDIV-1,J)

CF1(NDIV+1,J)=CF1IPLUSHALF(NDIV-1,J)

CF1(NDIV,J)=CF1IPLUSHALF(NDIV-1,J)
continue

endif
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do 10 J=2,NDJV-1

CURVETI=(1.0/24.0)*(CF1(NDIV-1,J+1)-2.0*CF1(NDIV-1, J)+

> CF1(NDIV-1,3-1))
if(@bs(CF1(NDIV-2,J)-CF1(NDIV+1,J)).le.0.00001) the n
CF1IPLUSHALF(NDIV-2,J)=(3.0/8.0)*CF1(NDIV-2,J)+(6.0 /8.0)*

> CF1(NDIV-1,J)-(1.0/8.0)*CF1(NDIV+1,J)+CURVETI
endif
if(@bs(CF1(NDIV-2,J)-CF1(NDIV+1,J)).le.0.00001) got 010
if(@bs(CF1(NDIV+1,J)-2.0*CF1(NDIV-1,J)+CF1(NDIV-2,J )).le.

> (0.3*abs(CF1(NDIV-2,J)-CF1(NDIV+1,J)))) then
CF1IPLUSHALF(NDIV-2,3)=(3.0/8.0)*CF1(NDIV-2,J)+(6.0 /8.0)*

> CF1(NDIV-1,J)-(1.0/8.0)*CF1(NDIV+1,J)+CURVETI
endif
if(@bs(CF1(NDIV+1,J)-2.0*CF1(NDIV-1,J)+CF1(NDIV-2,J )).gt.(0.3*

>abs(CF1(NDIV-2,J)-CF1(NDIV+1,]J)))) then
CF1BAR3=(CF1(NDIV-1,J)-CF1(NDIV+1,J))/(CF1(NDIV-2,J )-

> CF1(NDIV+1,J))

if(CF1BARS.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BARS.ge.0.35.and.CF1BAR3.le.0.65) then
CF1IPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1IPLUSHALFBAR2=0.375*CF1BAR3
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1IPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1IPLUSHALFBAR2=CF1BAR3
CF1IPLUSHALF(NDIV-2,J)=CF1(NDIV+1,J)+(CF1(NDIV-2,J) -

> CF1(NDIV+1,J))*CF1IPLUSHALFBAR2+CURVETI
CF1IMINUSHALF(NDIV-1,J)=CF1IPLUSHALF(NDIV-2,J)
endif
endif

10 continue

do 11 I=2,NDIV-1 CURVETJ=(1.0/24.0)*(CF1(I+1,NDJV-1 )-
2.0*CF1(I,NDJV-1)+

> CF1(I-1,NDJV-1))
if(@bs(CF1(I,NDJV-2)-CF1(I,NDJV+1)).le.0.00001) the n
CF1JPLUSHALF(I,NDJV-2)=(3.0/8.0)*CF1(I,NDJV-2)+(6.0 /8.0)*

> CF1(I,NDJV-1)-(1.0/8.0)*CF1(I,NDJV+1)+CURVETJ
endif
if(@bs(CF1(I,NDJV-2)-CF1(l,NDJV+1)).le.0.00001) got 011
if(@abs(CF1(l,NDJV+1)-2.0*CF1(l,NDJV-1)+CF1(I,NDJV-2 )).le.

> (0.3*abs(CF1(I,NDJV-2)-CF1(I,NDJV+1)))) then
CF1JPLUSHALF(I,NDJV-2)=(3.0/8.0)*CF1(I,NDJV-2)+(6.0 /8.0)*

> CF1(I,NDJV-1)-(1.0/8.0)*CF1(I,NDJV+1)+CURVETJ
endif
if(@bs(CF1(I,NDJV+1)-2.0*CF1(I,NDJV-1)+CF1(I,NDJV-2 )).ot.

> (0.3*abs(CF1(1,NDJV-2)-CF1(I,NDJIV+1)))) then
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CF1BAR3=(CF1(I,NDJV-1)-CF1(I,NDJV+1))/(CF1(I,NDJV-2 )-

> CF1(I,NDJV+1))
if(CF1BAR3.le.(-1.0).or.CF1BAR3.ge.1.5) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(NDIV-2,J)=CF1(I,NDJV+1)+(CF1(l,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif
if(CF1BARS.ge.0.35.and.CF1BAR3.le.0.65) then
CF1JPLUSHALFBAR2=0.75+0.75*(CF1BAR3-0.5)
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(l,NDJV-2) -

> CF1(I,NDJV+1))*CF1JPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.le.0.0.and.CF1BAR3.gt.(-1.0)) then
CF1JPLUSHALFBAR2=0.375*CF1BAR3
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(l,NDJV-2) -

> CF1(I,NDJV+1))*CF1JPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.gt.0.0.and.CF1BAR3.1t.0.35) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(I,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif
if(CF1BAR3.gt.0.65.and.CF1BAR3.le.1.0) then
CF1JPLUSHALFBAR2=(sqrt(CF1BAR3*((1.0-CF1BAR3)**3))- CF1BAR3**2)/

> (1.0-2.0*CF1BAR3)
CF1JPLUSHALF(I,NDJV-2)=CF1(I,NDJV+1)+(CF1(l,NDJV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
endif

if(CF1BAR3.le.1.5.and.CF1BAR3.gt.1.0) then
CF1JPLUSHALFBAR2=CF1BAR3
CF1JPLUSHALF(I,NDJV-2)=CF1(J,NDJV+1)+(CF1(I,NDJIV-2) -

> CF1(I,NDJV+1))*CF1IJPLUSHALFBAR2+CURVETJ
CF1IMINUSHALF(I,NDJV-1)=CF1JPLUSHALF(I,NDJV-2)
endif
endif
11 continue

do 8 1=2,NDIV-2
do 9 J=2,NDJV-2
CF1IMINUSHALF(1+1,J)=CF1IPLUSHALF(1,J)
CF1IMINUSHALF(1,J+1)=CF1JPLUSHALF(1,J)

9 continue
8 continue
endif
605 EGIJPLUSHALF(NDJV-1)=EG(NDJV)
EG(NDJV+1)=(8.0/3.0)*EGJPLUSHALF(NDJV-1)-2.0*EG(NDJ V-1)+
> (1.0/3.0)*EG(NDJV-2)
EGOJPLUSHALF(NDJV-1)=EGO(NDJV)
EGO(NDJV+1)=(8.0/3.0)*EGJPLUSHALF(NDJV-1)-2.0*EG(ND JV-1)
> +(1.0/8.0)*EGO(NDJV-2)
do 3 J=3,NDJV-3
EGIMINUSHALF(J)=(3.0/8.0)*EG(J-1)+(6.0/8.0)*EG(J)-( 1.0/8.0)*
> EG(J+1)
EGOJMINUSHALF(J)=(3.0/8.0)*EG0(J-1)+(6.0/8.0)*EGO(J )-(1.0/8.0)*
> EGO(J+1)
EGJPLUSHALF(J)=(3.0/8.0)*EG(J)+(6.0/8.0)*EG(J+1)-(1 .0/8.0)*
> EG(J+2
EGOJPLUSHALF(J)=(3.0/8.0)*EG0(J)+(6.0/8.0)*EGO(J+1) -(1.0/8.0)*
> EGO0(J+2)
3 continue
4 EGJIMINUSHALF(NDJV-2)=(3.0/8.0)*EG(NDJV-3)+(6.0/8.0) *EG(NDJV-2)-
> (1.0/8.0)*EG(NDJV-1)
EGOJMINUSHALF(NDJV-2)=(3.0/8.0)*EGO(NDJV-3)+(6.0/8. 0)*EGO(NDJV-2)-
> (1.0/8.0)*EGO(NDJV-1)
EGJPLUSHALF(NDJV-2)=(3.0/8.0)*EG(NDJV-2)+(6.0/8.0)* EG(NDJV-1)-
> (1.0/8.0)*EG(NDJV+1)
EGOJPLUSHALF(NDJV-2)=(3.0/8.0)*EGO(NDJV-2)+(6.0/8.0 J*EGO(NDJV-1)-
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(9]

(9]

OO0O0O0O0O0O0

> (1.0/8.0)*EGO(NDJIV+1)
EGJMINUSHALF(NDJV-1)=(3.0/8.0)*EG(NDJV-1)+(6.0/8.0)

> (1.0/8.0)*EG(NDJV-3)
EGOJMINUSHALF(NDJV-1)=(3.0/8.0)*EGO(NDJV-1)+(6.0/8.
> (1.0/8.0)*EGO(NDJV-3)

EGJPLUSHALF(2)=(3.0/8.0)*EG(2)+(6.0/8.0)*EG(3)-(1.0
EGOJPLUSHALF(2)=(3.0/8.0)*EG0(2)+(6.0/8.0)*EGO(3)(
EGIMINUSHALF(2)=EG(1)
EGOJMINUSHALF(2)=EGO(1)

return
end

subroutine LINTP(X,Y,XVAL,YVAL,IL)

dimension XVAL(351),YVAL(351)
INTERPOLATE Y FOR GIVEN X USING LAGRANGIAN INTERPOL

Y 1=(((X-XVAL(IL+1))*(X-XVAL(IL+2)))/

> ((XVAL(IL)-XVAL(IL+1))*(XVAL(IL)-XVAL(IL+2))))*YVAL
Y2=((X-XVAL(IL))*(X-XVAL(IL+2)))/

> ((XVAL(IL+1)-XVAL(IL))*(XVAL(IL+1)-XVAL(IL+2))))*YV
Y3=(((X-XVAL(IL))*(X-XVAL(IL+1)))/

> ((XVAL(IL+2)-XVAL(IL))*(XVAL(IL+2)-XVAL(IL+1))))*YV
Y=Y1+Y2+Y3

return
end

subroutine FDIFEQ()

FDIFEQ CALCULATES NEW VOID RATIOS AS CONSOLIDATION
AN EXPLICIT FINITE DIFFERENCE SCHEME BASED ON PREVI

*EG(NDJV-2)-
0)*EGO(NDJV-2)-

/8.0)*EG(4)
1.0/8.0)*EGO(4)

*kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkk

ATION

(IL)
AL(IL+1)
AL(IL+2)

*kkkkkkkkk

*kkkkkkkkk

PROCEEDS BY
OUS VOID RATIOS.

SOIL PARAMETER FUNCTIONS ARE CONSTANTLY UPDATED TGCORRESPOND

WITH CURRENT VOID RATIO.

common DA,DB,DZ,E00,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV

ALAMDASC,AM,DW,DS,DGM,TH,RKEO,NSL,HCL,HUCL,

PGR,PRR,PCL,PGL,PRL,INX,JNZ,IE0,ISS,NC, TTIME,
A(351),B(351),2(351),XI(351),ALPHA(351),BETA(351),

EGOJMINUSHALF(351),CQJPLUSHALF(351),CQJMINUS

CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

VVVVVVVVVVVVVVVVVVVVYVYVYVYVYV
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, NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME, TP RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,

EOC,EOUCNSORRP,

NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,

DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),
TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF, ANLAMDA, IKK,UMAX,NTAU,
CHD2(351),CHDA(351),CHDX(351),CQI(351),CQU(351),CQ( 351),
ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),

E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351), AFJPLUSHALF(351),
AFJMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 )
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),

HALF(35 1),

CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),



> PRINT1(351)
dimension HC(351)
[
¢ SET BOUNDARY CONDITIONS ON SOLUTE TRANSPORT AND ®LVE THE BOUNDARY NODES ¢
if(ND1.eqg.1.0r.ND1.eq.2) then
do 875 J=1,NDJV
DRD(J)=(GSBL*(GW/9.81))/(1.0+ER(J))
875 continue
c
¢ CALCULATE CURRENT HEIGHT OF SOIL LAYER AND USE EG ¢
call INTGRL_4(FS,E11,DA,NDJV,FINT)
do 2 J=3,NDJV-1 XI(J)=A(J)-(VRI(J)-
FINT(J))
2 continue
do 6 J=1,NDJV
EGO0(J)=E11(J)
EG(J)=FS(J)
EN(J)=EG(J)/(1.0+EG(J))
6 continue

CALCULATE THE HYDRAULIC CONDUCTIVITY AT EA CH NODE

(9]

if(NSOL.ne.1) then
do 107 J=1,NDJV do
108 N=2,LBL
C1=EG(J)-ES(N)
if(C1.ge.0.0) goto 109
108 continue
RK1(J)=RK(LBL); goto 107
109 NN=N-1
XV=FS(J)
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,ES,RK,NN)
RK1(J)=YV
107 continue
endif
if(NSOL.eq.1) then

HYDRAULIC CONDUCTIVITY AT NODES OF CONTAMIN ATED LAYER

(9]

do 110 J=1,NNSOL1
do 111 N=2,LBL
C1=EG(J)-ES(N)
if(C1.ge.0.0) goto 112
111 continue
RK1(J)=RK(LBL); goto 110
112 NN=N-1
XV=F(J)
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,ES,RK,NN)
RK1(J)=YV
110 continue

HYDRAULIC CONDUCTIVITY AT NODES OF UNCONTAM  INATED LAYER

(9]

do 113 J=NNSOL1+1,NDJV
do 114 N=2,LBL
C1=EG(J)-ES(N)
if(C1.ge.0.0) goto 115
114 continue
RK1(J)=RK(LBL); goto 113
115 NN=N-1
XV=F(J)
if(N.eq.LBL) NN=NN-1
call LINTP_4(XV,YV,ES,RK,NN)
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RK1(J)=YV
113 continue
endif
HTA=HBL+HT
HTB=HB
if(NSOL.eq.1.and.NSTBC.eq.2) HT=HBL-XI(NDJV )

CALCULATE DARCY VELOCITY DUE TO HYDRAULIC G RADIENT

OO0

THS=0.0
do 800 J=2,NDJV-1
HC(J)=DA*((1.0+EG(J))/(1.0+EGO0(J)))
THS=THS+HC(J)

800 continue
RCF=0.0
do 801 J=2,NDJV-1
RCF=RCF+(HC(J)/RK1(J))

801 continue
RK1EI=THS/RCF

if(NDRB.eq.3.0r.NDRB.eq.1)  CQUC=RKIEI*(HTB-HTA)/TH S)

if(NDRB.eq.2.and.HTA.gt.HTB) CQUC=0.0

if(NDRB.eq.3.and.HTA.I.HTB) CQUC=RK1EI*((HTB-HTA)/ THS)
c if(CQUC.It.0.0) CQUC=0.0

do 206 J=1,NDJV

CQI(J)=CQUC

206 continue
if(NDRB.ne.3) then
do 4 J=1,NDJV
CQI(J)=0.0

4 continue
endif

K*kkkkk

do 904 J=1,NDJV
CQI(J)=-0.007*EN(J)
904 continue

K*kkkkk

O0O00Q0

call STRESS_4()
call RESET_4()
[
¢ DARCY VELOCITY AT NODAL POINTS DUE TO EXCESS PORE PRESSURE HEAD DUE TO
¢ CONSOLIDATION
[

415 call INTGRLQ(DKQU,E11,DA,NDJV,NDRB,CQU)
if(NDRB.eq.2) then CQUJPLUSHALF(NDJV-
1)=CQU(NDJV-1) CQUIMINUSHALF(NDJV-
1)=CQU(NDJV-2) CQUJIPLUSHALF(2)=CQU(2)
CQUJIMINUSHALF(2)=CQU(1)
do 13 J=3,NDJV-2
CQUJPLUSHALF(J)=CQU(J)
CQUJIMINUSHALF(J)=CQU(J-1)

13 continue
endif
if(NDRB.eq.3) then
J2=((NBDJV+2)/2) do
205 J=2,NDJV-1
if(J.le.J2) then
CQU(J)=-CQU(J)
endif
if(J.gt.J2) then
CQU(J)=CQU(J)
endif

205 continue
do 306 J=2,NDJV-1
if(J.eq.J2) then
CQUJIPLUSHALF(J)=0.0
CQUJIMINUSHALF(J)=CQU(J)
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(9]

(9]

(9]

CQUJPLUSHALF(J+1)=CQU(J+1)
CQUJIMINUSHALF(J+1)=0.0
endif
if(J.gt.J2+1) then
CQUJPLUSHALF(J)=CQU(J)
CQUJIMINUSHALF(J)=CQU(J-1)
endif
if(J.1t.J2) then
CQUJIPLUSHALF(J)=CQU(J+1)
CQUJIMINUSHALF(J)=CQU(J)
endif

306 continue CQU(1)=CQUJMINUSHALF(2)
CQUJPLUSHALF(NDJV-1)=CQU(NDJV-1)

CQUJIMINUSHALF(NDJV-1)=CQU(NDJV-2)
CQU(NDJV)=CQUJIPLUSHALF(NDJV-1)
endif
if(NDRB.eq.1) then
CQUJPLUSHALF(NDJV-1)=0.0
CQUJIMINUSHALF(NDJV-1)=-CQU(NDJV-1)
do 312 J=2,NDJV-2
CQU(J)=-CQU(J)

312 continue
do 313 J=2,NDJV-2
CQUJIPLUSHALF(J)=CQU(J+1)
CQUJIMINUSHALF(J)=CQU(J)

313 continue
CQU(1)=CQUJIMINUSHALF(2)
CQUJPLUSHALF(NDJV-1)=CQU(NDJV-1)
CQU(NDJV)=CQUJIPLUSHALF(NDJV-1)
endif

TOTAL DARCY VELOCITY

do 5 J=2,NDJV-1
CQJPLUSHALF(J)=CQUJPLUSHALF(J)+CQI(J)
CQJIMINUSHALF(J)=CQUJIMINUSHALF(J)+CQI(J)
5 continue
do 14 J=1,NDJV
CQ(J)=CQU(I)+CQI(J)
14 continue

if(ND2.eq.1) then

do 15 J=1,NDJV
CHDA(J)=CHD1+(ALPHAL*abs(CQ(J))/EN(J))

if(ND1.eq.2) CHDX(J)=CHD1+(ALPHAT*abs(CQ(J))/EN(J))
if(NTAU.eq.1) CHDA(J)=CHD1/(1.0/(EN(J)**0.33))+

> (ALPHAL*abs(CQ(J))/EN(J))
if(NTAU.eq.1) CHDX(J)=CHD1/(1.0/(EN(J)**0.33))+
> (ALPHAT*abs(CQ(J))/EN(J))
15 continue
endif

if(ND2.eq.2) then
do 16 J=1,NDJV
CHD2(J)=CHDO*(EN(J)**AM)
CHDA(J)=CHD2(J)+(ALPHAL*abs(CQ(J))/EN(J)) if(ND1.eq 2)
CHDX(J)=CHD2(J)+(ALPHAT*abs(CQ(J))/EN(J))
16 continue
endif
endif

ONE DIMENSIONAL SOLUTE TRANSPORT
if(ND1.eqg.1) then

EULER-QUICK ALGORTHIM
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if(NDRB.eq.2) call FACEVALUE_1()
if(NDRB.eq.1.0r.NDRB.eq.3) call FACEVALUE()
c
c SOLUTE TRANSPORT FROM TOP BOUNDARY
c
EGJPLUSHALF(NDJV-1)=EG(NDJV)

EG(NDJV+1)=(8.0/3.0)*EGJPLUSHALF(NDJV-1)-2.0*EG(NDJ V-1)+
> (1.0/3.0)*EG(NDJV-2)
EGJIMINUSHALF(NDJV-1)=(3.0/8.0)*EG(NDJV-2)+(6.0/8.0) *EG(NDJV-1)-

> (1.0/8.0)*EG(NDJIV+1)
EGOJPLUSHALF(NDJV-1)=EGO(NDJV)

EGO(NDJV+1)=(8.0/3.0)*EGOJPLUSHALF(NDJV-1)-2.0*EGO( NDJV-1)+

> (1.0/3.0)*EGO(NDJV-2)
EGOJMINUSHALF(NDJV-1)=(3.0/8.0)*EGO(NDJV-1)+(6.0/8. 0)*EGO(NDJV-2)-

> (1.0/8.0)*EGO(NDJIV+1)

ENJPLUSHALF=EGJPLUSHALF(NDJV-1)/(1.0+EGJPLUSHALF(ND JV-1))
ENJMINUSHALF=EGJIJMINUSHALF(NDJV-1)/(1.0+EGIMINUSHALF (NDJV-1))
DJI=(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))
DJJPLUSHALF=(1.0+EGJPLUSHALF(NDJV-1))/(1.0+EGOJPLUS = HALF(NDJV-1))
DJIMINUSHALF=(1.0+EGIJMINUSHALF(NDJV-1))/
> (1.0+EGOJMINUSHALF(NDJV-1))
if(NSTBC.eq.1) then
CF1(1,NDJV)=CFT
CF1JPLUSHALF(1,NDJV-1)=CF1(1,NDJV)
CF1(1,NDJV+1)=CFT
endif
if(NSTBC.eq.2) then
CF1(1,NDJV+1)=2.0*CF1(1,NDJV)-CF1(1,NDJV-1)
if(CF1(1,NDJV+1).1t.0.0) CF1(1,NDJV+1)=0.0
CF1JPLUSHALF(1,NDJV-1)=CF1(1,NDJV)
endif
if(NSTBC.eq.3) then
DJJ=(1.0+EG(NDJV))/(1.0+EGO(NDJV))
DAA=DA
RCF5=(DGM*CFT/TH)+((2.0*EN(NDJV)*CHDA(NDJV)/(DJJ*DA A))*
> CF1(1,NDJV-1))
RCF6=(DGM/TH)+(2.0*EN(NDJV)*CHDA(NDJV)/(DJJ*DAA))
CF1(1,NDJV)=RCF5/RCF6
CF1JPLUSHALF(1,NDJV-1)=CF1(1,NDJV)
CF1(1,NDJV+1)=(8.0/3.0)*CF1IJPLUSHALF(1,NDJV-1)-2.0* CF1(1,NDJV-1)+
> (1.0/3.0)*CF1(1,NDJV-2)
endif

604 FQCFJPLUSHALF=CQJPLUSHALF(NDJV-1)*CF1JPLUSHALF(1,NDJV-1)
FDJPLUSHALF=(ENJPLUSHALF*CHDA(NDJV-1)/DJJPLUSHALF)*
>((CF1(1,NDJV+1)-CF1(1,NDJV-1))/(DA))
FQCFJIMINUSHALF=CQJMINUSHALF(NDJV-1)*CF1IJMINUSHALF(INDJV-1)
FDIMINUSHALF=(ENJMINUSHALF*CHDA(NDJV-1)/DJJMINUSHALF)*

> ((CF1(1,NDJV-1)-CF1(1,NDJV-2))/(DA))
CFF2(1,NDJV-1)=CFF1(1,NDJV-1)-(TAU/DA)*((FQCFJPLUSH ALF-
> FDJPLUSHALF)-(FQCFIMINUSHALF-FDIMINUSHALF))

if(CFF2(1,NDJV-1).1t.0.0) CFF2(1,NDJV-1)=0.0
if(NSORP.eq.1) then
if(AKD.eq.0.0) then
CF2(1,NDJV-1)=(CFF2(1,NDJV-1)-((1.0-EN(NDJV-1))*

> CS1(1,NDJV-1)*DJI))/(EN(NDJIV-1)*DJI)
endif

(9]

DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY AND SOURE DECAY

if(AKD.ne.0.0) then

DL1=EN(NDJV-1)*CF1(1,NDJIV-1)*DJI*(1.0-exp(-ALAMDAC* TAU))

DL2=EN(NDJV-1)*CF1(1,NDJIV-1)*DJI*(1.0-exp(-ALAMDASC *TAU))

CFF2(1,NDJV-1)=CFF2(1,NDJV-1)-DL1-DL2

CF2(1,NDJV-1)=CFF2(1,NDJIV-1)/((EN(NDJIV-1)*DJIN)+((1. 0-EN(NDJV-1))*
> DRD(NDJV-1)*AKD*DJI))

CS2(1,NDJV-1)=DRD(NDJV-1)*AKD*CF2(1,NDJV-1)
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608

endif

endif

if(NSORP.eq.2) then

CFN2=CF1(1,NDJV-1)

CSN2=CS1(1,NDJV-1)

NA=50

TAUN=TAU/float(NA)
CFFN=(CFF2(1,NDJV-1)-CFF1(1,NDJV-1))/float(NA) do
602 J=1,NA

if(CFN2.le.0.0) DSDT=0.0

if(CFNZ2.le.0.0) goto 608
DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(J)))
CSN2=CSN2+DSDT*TAUN*DRD(J)
CFFN1=CFF1(1,NDJV-1)+CFFN

¢ if(((1.0-EN(1))*DJI*CSN2).gt.CFFN1) CSN2=0.0
¢ if(CSN2.1t.0.001) CSN2=0.0

c

[
c
C

CFN2=(CFFN1-((1.0-EN(NDJV-1))*DJI*CSN2))/EN(NDJV-1) *DJI
602 continue
CF2(1,NDJV-1)=CFN2
CS2(1,NDJV-1)=CSN2
if(CF2(1,NDJV-1).1t.0.0) CF2(1,NDJV-1)=0.0
if(CS2(1,NDJV-1).1t.0.0) CS2(1,NDJV-1)=0.0
endif
FOR EQUILIBRIUM FREUNDILICH ISOTHERM BISEC TION METHOD FOR CF

701

if(NSORP.eq.3) then

DVALUE=0.2

if(CFF2(1,NDJV-1).1t.0.000001) then

CF2(1,NDJV-1)=0.0

CS2(1,NDJV-1)=0.0

DVALUE=0.000001

endif

CRO=CF1(1,NDJV-1)

do 701 while(ABS(DVALUE).gt.0.00001)

call BISFVALUE(EN(NDJV-1),ER(NDJV-1),E11(NDJV-1),CR 0,
> CFF2(1,NDJV-1),DRD(NDJV-1),AKP,ANF,FVALUE,GVALUE)
CRN=CRO-(FVALUE/GVALUE)

DVALUE=(CRO-CRN)

CRO=CRN

CF2(1,NDJV-1)=CRN

CS2(1,NDJV-1)=DRD(NDJV-1)*AKP*CF2(1,NDJV-1)**ANF

continue

endif

if(NSTBC.eq.1) CF2(1,NDJV)=CFT

SOLUTE TRANSPORT FROM BOTTOM BOUNDARY

EGJMINUSHALF(2)=EG(1)

EGJPLUSHALF(2)=(3.0/8.0)*EG(2)+(6.0/8.0)*EG(3)-(1.0 /8.0)*EG(4)
EGOJMINUSHALF(2)=EGO0(1)
EGOJPLUSHALF(2)=(3.0/8.0)*EG0(2)+(6.0/8.0)*EGO(3)-( 1.0/8.0)*EGO(4)

ENJPLUSHALF=EGJPLUSHALF(2)/(1.0+EGJPLUSHALF(2))
ENJMINUSHALF=EGJIMINUSHALF(2)/(1.0+EGIMINUSHALF(2))
DJI=(1.0+EG(2))/(1.0+EGO0(2))
DJJPLUSHALF=(1.0+EGJPLUSHALF(2))/(1.0+EGOJPLUSHALF(  2))
DJIMINUSHALF=(1.0+EGIMINUSHALF(2))/(1.0+EGOJMINUSHA  LF(2))
if(NSTBC.eq.1) then

CF1(1,1)=CFB

CF1JMINUSHALF(1,2)=CF1(1,1)
CF10=(8.0/3.0)*CF1IJMINUSHALF(1,2)-2.0*CF1(1,2)+(1.0 13.0)*CF1(1,3)
endif

if(NSTBC.eq.2.0r.NSTBC.eq.3) then

H=DA*((1.0+EG(2))/(1.0+EG0(2)))

VS=abs(CQ(1))/EN(1)

CF1(1,1)=CF1(1,2)

CF10=CF1(1,2)
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CF1IMINUSHALF(1,2)=CF1(1,2)
endif
606 FQCFJPLUSHALF=CQJPLUSHALF(2)*CF1JPLUSHALF(1,2)
FDJPLUSHALF=(ENJPLUSHALF*CHDA(2)/DJJPLUSHALF)*
>((CF1(1,3)-CF1(1,2))/(DA))
FQCFIMINUSHALF=CQJMINUSHALF(2)*CF1JMINUSHALF(1,2)
FDIMINUSHALF=(ENJMINUSHALF*CHDA(2)/DJJMINUSHALF)*
> ((CF1(1,2)-CF10)/(DA))
CFF2(1,2)=CFF1(1,2)-(TAU/DA)*((FQCFJPLUSHALF-FDJPL USHALF)-
> (FQCFJIJMINUSHALF-FDIMINUSHALF))
if(CFF2(1,2).1t.0.0) CFF2(1,2)=0.0
if(NSORP.eq.1) then
if(AKD.eq.0.0) then
CF2(1,2)=(CFF2(1,2)-((1.0-EN(2))*CS1(1,2)*DJl))/(EN (2)*DJan)
endif

DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY AND SOURCE DECAY

if(AKD.ne.0.0) then
DL1=EN(2)*CF1(1,2)*DJI*(1.0-exp(-ALAMDAC*TAU))
DL2=EN(2)*CF1(1,2)*DJI*(1.0-exp(-ALAMDASC*TAU))
CFF2(1,2)=CFF2(1,2)-DL1-DL2
CF2(1,2)=CFF2(1,2)/((EN(2)*DJI)+((1.0-EN(2))*DRD(2) *AKD*DJI))
CS2(1,2)=DRD(2)*AKD*CF2(1,2)
endif
endif
if(NSORP.eq.2) then
CFN2=CF1(1,2)
CSN2=CS1(1,2)
NA=100
TAUN=TAU/float(NA)
CFFN=(CFF2(1,2)-CFF1(1,2))/float(NA)
do 603 J=1,NA
if(CFN2.le.0.0) DSDT=0.0
if(CFNZ2.le.0.0) goto 607
DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(2)))
607 CSN2=CSN2+DSDT*TAUN*DRD(2)
CFFN1=CFF1(1,2)+CFFN
CFN2=(CFFN1-((1.0-EN(2))*DJI*CSN2))/EN(2)*DJI
603 continue
CF2(1,2)=CFN2
CS2(1,2)=CSN2
604 endif
605 if(NSORP.eq.3) then
DVALUE=0.2
CR0=CF1(1,2)
if(CFF2(1,2).1t.0.000001) then
CF2(1,2)=0.0
CS2(1,2)=0.0
DVALUE=0.000001
endif
do 702 while(ABS(DVALUE).gt.0.00001)
call BISFVALUE(EN(2),ER(2),E11(2),CR0,CFF2(1,2),
>DRD(2),AKP,ANF,FVALUE,GVALUE)
CRN=CRO-(FVALUE/GVALUE)
DVALUE=(CRO-CRN)
CRO=CRN
CF2(1,2)=CRN
CS2(1,2)=DRD(2)*AKP*CF2(1,2)**ANF
702 continue
endif

SOLUTE TRANSPORT VALUES AT NEXT TIME STEP FOR INTERIOR NODES
do 7 J=3,NDJV-2

DJI=(1.0+EG(J))/(1.0+EGO(J))
ENJPLUSHALF=EGJPLUSHALF(J)/(1.0+EGJPLUSHALF(J))
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ENJMINUSHALF=EGJMINUSHALF(J)/(1.0+EGIMINUSHALF(J))
DJJPLUSHALF=(1.0+EGJPLUSHALF(J))/(1.0+EGOJPLUSHALF(  J))
DJIMINUSHALF=(1.0+EGIJMINUSHALF(J))/(1.0+EGOJMINUSHA  LF(J))
FQCFJPLUSHALF=CQJPLUSHALF(J)*CF1JPLUSHALF(1,J)
FDJPLUSHALF=(ENJPLUSHALF*CHDA(J)/DJIPLUSHALF)*

>((CF1(1,J+1)-CF1(1,J))/(DA))

FQCFIMINUSHALF=CQJMINUSHALF(J)*CF1IMINUSHALF(1,J)
FDIMINUSHALF=(ENJMINUSHALF*CHDA(J)/DJIMINUSHALF)*

>((CF1(1,J)-CF1(1,J-1))/(DA))

CFF2(1,J)=CFF1(1,J)-(TAU/DA)*(FQCFIPLUSHALF

> (FQCFJMINUSHALF-FDIMINUSHALF))
if(CFF2(1,J).1t.0.0) CFF2(1,3)=0.0
if(NSORP.eq.1) then
if(AKD.eq.0.0) then
CF2(1,3)=(CFF2(1,J)-((1.0-EN(J))*CS1(1,J)*DJI))/(EN
endif
if(AKD.ne.0.0) then

c DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY

609

601

DL1=EN(J)*DJI*CF1(1,J)*(1.0-exp(-ALAMDAC*TAU))
DL2=EN(J)*DJI*CF1(1,J)*(1.0-exp(-ALAMDASC*TAU))
CFF2(1,J)=CFF2(1,J)-DL1-DL2
CF2(1,3)=CFF2(1,J)/((EN(J)*DJI)+((1.0-EN(J))*DRD(J)
CS2(1,J)=DRD(J)*AKD*CF2(1,J)

endif

endif

if(NSORP.eq.2) then

CFN2=CF1(1,J)

CSN2=CS1(1,J)

NA=50

TAUN=TAU/float(NA)
CFFN=(CFF2(1,J)-CFF1(1,J))/float(NA)

do 601 IR=1,NA

if(CFN2.le.0.0) DSDT=0.0

if(CFN2.le.0.0) goto 609
DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(J)))
CSN2=CSN2+DSDT*TAUN*DRD(J)
CFFN1=CFF1(1,J)+CFFN
CFN2=(CFFN1-((1.0-EN(J))*DJI*CSN2))/EN(J)*DJI
continue

CF2(1,J)=CFN2

CS2(1,J)=CSN2

if(CF2(1,J).t.0.0) CF2(1,J)=0.0
if(CS2(1,J).1t.0.0) CS2(1,J)=0.0

endif

if(NSORP.eq.3) then

DVALUE=0.2

CRO=CF1(1,J)

if(CFF2(1,J).1t.0.000001) then

CF2(1,3)=0.0

CS2(1,J)=0.0

DVALUE=0.000001

endif

do 703 while(ABS(DVALUE).gt.0.00001)

call BISFVALUE(EN(J),ER(J),E11(J),CRO,CFF2(1,J),

> DRD(J),AKP,ANF,FVALUE,GVALUE)

703

CRN=CRO-(FVALUE/GVALUE)
DVALUE=(CRO-CRN)

CRO=CRN

CF2(1,J)=CRN
CS2(1,J)=DRD(J)*AKP*CF2(1,J)**ANF
continue

endif

7 continue

if(NSTBC.eq.1) then
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CF2(1,NDJV)=CFT
CF2(1,1)=CFB
CS2(1,1)=DRD(2)*AKD*CF2(1,1)
endif
if(NSTBC.eq.2) then VS1=abs(CQ(NDJV))/EN(NDJV)
VS2=abs(CQ(NDJV-1))/EN(NDJV-1)
VS3=abs(CQ(NDJV-2))/EN(NDJV-2)
HH=0.5*DA*(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))
if(TIME.eq.0.0) then
CRVR=0.0
VR=0.0
endif
CRVR=CRVR+(VS1*CF1(1,NDJV)+
> CHDA(NDJV)*((CF1(1,NDJV-1)-CF1(1,NDJV))/HH))*EN(N DJV)*TAU
VR=VR+VS1*EN(NDJV)*TAU
CR=CRVR/VR
CF2(1,NDJV)=CR
CF2(1,1)=CF2(1,2)
endif if(NSTBC.eq.3)
then
DJJ=(1.0+EGO(NDJV))/(1.0+EGO(NDJV))
DAA=DA
RCF5=(DGM*CFT/TH)+((2.0*EN(NDJV)*CHDA(NDJV)/(DJJ*DA A))*
> CF2(1,NDJV-1))

RCF6=(DGM/TH)+(2.0*EN(NDJV)*CHDA(NDJV)/(DJJ* DAA))
CF2(1,NDJV)=RCF5/RCF6

LOSS OF SOLUTE IN THE TOP POOL AND BOTTOM PO

CF2(1,1)=CF2(1,2)
endif

APPLICABLE)

CF2(1,1)=CF2(1,1)*exp(-ALAMDASC*TAU)
CF2(1,NDJV)=CF2(1,NDJV)*exp(-ALAMDASC*TAU)
if(NSORP.eq.1) CS2(1,1)=DRD(2)*AKD*CF2(1,1)

RESET NEXT LOOP FOR SOLUTE TRANSPORT IN CLA Y LINER

10

do 10 J=2,NDJV-1
CFF1(1,J)=CFF2(1,J)
CF1(1,J)=CF2(1,J)
CS1(1,J)=CS2(1,J)

continue

CF1(1,1)=CF2(1,1)
CF1(1,NDJV)=CF2(1,NDJV)
CS1(1,1)=CS2(1,1)
CS1(1,NDJV)=CS2(1,NDJV)
endif

TWO DIMENSIONAL SOLUTE TRANSPORT

if(ND1.eqg.2) then

SOLUTE TREANSPORT FROM TOP BOUNDARY

if(NSTUBC.eq.1) then

PRESCRIBED CONCENTRATION AT THE TOP

do 17 I=1,NDIV

CF1(1,NDJV)=PCT
CF1JPLUSHALF(I,NDJV-1)=CF1(I,NDJV)
CF1(I,NDIV+1)=PCT

17 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)
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c

18

PRESCRIBED CONCENTRATION GRADIENT (GENERAL

19

do 18 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)=CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF1I10=CF1(2,J)

CF1(1,J)=CF1(2,J)
CF1IMINUSHALF(2,J)=CF1(1,J)
continue

endif

if(NSTUBC.eq.2) then

do 19 I=1,NDIV

CF1(I,NDJV+1)=CF1(I,NDJV-1)

CF1(I,NDJV)=CF1(I,NDJV-1)

CF1IPLUSHALF(I,NDJV-1)=CF1(I,NDJV)
continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

20

do 20 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)=CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF1I10=CF1(2,J)

CF1(1,J)=CF1(2,J)
CF1IMINUSHALF(2,J)=CF1(1,J)
continue

endif

if(NSTUBC.eq.3) then

RESERVOIR BOUNDARY CONDITION AT THE TOP

VS1=abs(CQ(NDJV))/EN(NDJV)
HH=0.5*DA*(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))

do 21 I=1,NDIV
CF1(1,NDJV)=(VS1*PRT*HH+CHDA(NDJV-1)*CF1(I,NDJIV-1))

>(VS1*HH+CHDA(NDJV-1))

21

CF1JPLUSHALF(I,NDJV-1)=CF1(I,NDJV)
CF1(I,NDJV+1)=PRT
continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

22

CALCULATE NEXT TIME STEP CONCETRATION NEAR

do 22 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)=CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF1I10=CF1(2,J)

CF1(1,J)=CF1(2,J)
CF1IMINUSHALF(2,J)=CF1(1,J)
continue

endif

if(NDRB.eq.2) call FACEVALUE_1()
if(NDRB.eq.1.0or.NDRB.eq.3) call FACEVALUE()

EGJPLUSHALF(NDJV-1)=EG(NDJV)
EG(NDJV+1)=(8.0/3.0)*EGJIPLUSHALF(NDJV-1)-2.0*EG(NDJ
> (1.0/3.0)*EG(NDJV-2)
EGJMINUSHALF(NDJV-1)=(3.0/8.0)*EG(NDJV-2)+(6.0/8.0)
> (1.0/8.0)*EG(NDJIV+1)
EGOJPLUSHALF(NDJV-1)=EGO(NDJV)
EGO(NDJV+1)=(8.0/3.0)*EGOJPLUSHALF(NDJV-1)-2.0*EGO(
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> (1.0/3.0)*EGO(NDJV-2)

EGOJMINUSHALF(NDJV-1)=(3.0/8.0)*EGO(NDJV-1)+(6.0/8. 0)*EGO(NDJV-2)-

> (1.0/8.0)*EGO(NDJV+1)
ENJPLUSHALF=EGJPLUSHALF(NDJV-1)/(1.0+EGJPLUSHALF(ND JV-1))
ENJMINUSHALF=EGJIJMINUSHALF(NDJV-1)/(1.0+EGIMINUSHALF (NDJV-1))
DJI=(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))
DJJPLUSHALF=(1.0+EGJPLUSHALF(NDJV-1))/(1.0+EGOJPLUS = HALF(NDJV-1))
DJIMINUSHALF=(1.0+EGIJMINUSHALF(NDJV-1))/
>(1.0+EGOJMINUSHALF(NDJV-1))

do 23 I=2,NDIV-1

FQCFJPLUSHALF=CQJPLUSHALF(NDJV-1)*CF1JPLUSHALF(I,NDJV-1)

FDJPLUSHALF=(ENJPLUSHALF*CHDA(NDJV-1)/DJJPLUSHALF)*
>((CF1(I,NDJV+1)-CF1(1,NDJV-1))/(DA))

FQCFIMINUSHALF=CQJMINUSHALF(NDJV-1)*CF1IJMINUSHALF(I,NDJV-1)

FDIMINUSHALF=(ENJMINUSHALF*CHDA(NDJV-1)/DJJMINUSHALF)*
>((CF1(I,NDJV-1)-CF1(I,NDJV-2))/(DA))

if(I.eq.(NDIV-1)) then

FDIPLUSHALF=(ENJPLUSHALF*CHDX(NDJV-1))*
> ((CF1(NDIV+1,NDJV-1)-CF1(NDIV-1,NDJV-1))/(DB))

endif

if(1.It.(NDIV-1)) then

FDIPLUSHALF=(ENJPLUSHALF*CHDX(NDJV-1))*
> ((CF1(1+1,NDJV-1)-CF1(1,NDJV-1))/(DB))

endif

if(l.eq.2) then

FDIMINUSHALF=(ENJMINUSHALF*CHDX(NDJV-1))*
> ((CF1(I,NDJV-1)-CF110)/(DB))

endif

if(1.gt.2) then

FDIMINUSHALF=(ENJMINUSHALF*CHDX(NDJV-1))*
> ((CF1(I,NDJV-1)-CF1(I-1,NDJV-1))/(DB))

endif

CFF2(1,NDJV-1)=CFF1(l,NDJV-1)-(TAU/DA)*((FQCFJPLUSH ALF-
> FDJPLUSHALF)-(FQCFIMINUSHALF-FDIJMINUSHALF))+
> (TAU/DB)*(FDIPLUSHALF-FDIMINUSHALF)
if(NSORP.eq.1) then

if(AKD.eq.0.0) then

CF2(I,NDJV-1)=(CFF2(I,NDJV-1)-((1.0-EN(NDJV-1))*
>CS1(I,NDJV-1)*DJI))/(EN(NDJIV-1)*DJI)
CS2(I,NDJV-1)=DRD(NDJV-1)*AKD*CF2(I,NDIV-1)

endif

if(AKD.ne.0.0) then

DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY AND SOURCE DECAY

DL1=EN(NDJV-1)*DJI*CF1(I,NDJV-1)*(1.0-exp(-ALAMDAC* TAU))

DL2=EN(NDJV-1)*DJI*CF1(I,NDJV-1)*(1.0-exp(-ALAMDASC *TAU))

CFF2(1,NDJV-1)=CFF2(l,NDJV-1)-DL1-DL2 CF2(I,NDJV-

1)=CFF2(I,NDJV-1)/((EN(NDJV-1)*DJI)+
>((1.0-EN(NDJV-1))*DRD(NDJV-1)*AKD*DJI))
CS2(I,NDJV-1)=DRD(NDJV-1)*AKD*CF2(I,NDJV-1)

endif

endif

if(NSORP.eq.2) then

CFN2=CF1(I,NDJV-1)

CSN2=CS1(I,NDJV-1)

NA=50

TAUN=TAU/float(NA)

CFFN=(CFF2(I,NDJV-1)-CFF1(I,NDJV-1))/float(NA)

do 611 IR=1,NA

if(CFN2.le.0.0) DSDT=0.0

if(CFNZ2.le.0.0) goto 619

DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(NDJV-1)))

619 CSN2=CSN2+DSDT*TAUN*DRD(NDJV-1)
CFFN1=CFF1(I,NDJV-1)+CFFN
CFN2=(CFFN1-((1.0-EN(NDJV-1))*DJI*CSN2))/EN(NDJV-1) *DJI

611 continue
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CF2(1,NDJV-1)=CFN2
CS2(I,NDJV-1)=CSN2 if(CF2(I,NDJV-1).1.0.0)
CF2(I,NDJV-1)=0.0 if(CS2(I, NDIV-1).1t.0.0)
CS2(1,NDJV-1)=0.0 endif

23 continue

SOLUTE TREANSPORT FROM BOTTOM BOUNDARY
if(NSTBBC.eq.1) then
PRESCRIBED CONCENTRATION AT THE BOTTOM

do 24 I=1,NDIV CF1(l,1)=PCB
CF1IMINUSHALF(1,2)=CF1(l,1)
CF1J0=CF1(1,1)

24 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 25 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)= CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF110=CF1(2,J)
CF1(1,9)=CF1(2,9)
CF1IMINUSHALF(2,J)=CF1(1,J)

25 continue
endif
if(NSTBBC.eq.2) then

PRESCRIBED CONCENTRATION GRADIENT (GENERAL

do 26 I1=1,NDIV

CF1(1,1)=CF1(l,2)

CF1J0=CF1(l,1)

CF1IMINUSHALF(1,2)=CF1(l,1)
26 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 27 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)= CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF1I10=CF1(2,J)
CF1(1,J)=CF1(2,J)
CF1IMINUSHALF(2,J)=CF1(1,J)

27 continue
endif
if(NSTBBC.eq.3) then

RESERVOIR BOUNDARY CONDITION AT THE BOTTOM

VS1=abs(CQ(1))/EN(1)
HH=0.5*DA*(1.0+EG(2))/(1.0+EG0(2))
do 28 I=1,NDIV
CF1(1,1)=(VS1*PRT*HH+CHDA(2)*CF1(l,2))/
>(VS1*HH+CHDA(2))
CF1JPLUSHALF(I,2)=CF1(l,1)
CF1I0=PRT
28 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)
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do 29 J=2,NDJV-1
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)= CF1(NDIV-1,J)
CF1IPLUSHALF(NDIV-1,J)=CF1(NDIV,J)
CF110=CF1(2,J)
CF1(1,9)=CF1(2,9)
CF1IMINUSHALF(2,J)=CF1(1,J)

29 continue
endif

CALCULATE NEXT TIME STEP CONCETRATION NEAR BOTTOM BOUNDARY LOCATION

EGIMINUSHALF(2)=EG(1)
EGJPLUSHALF(2)=(3.0/8.0)*EG(2)+(6.0/8.0)*EG(3)-(1.0 18.0)*EG(4)
EGOJMINUSHALF(2)=EGO0(1)

EGOJPLUSHALF(2)=(3.0/8.0)*EG0(2)+(6.0/8.0)*EGO(3)-( 1.0/8.0)*EGO(4)

ENJPLUSHALF=EGJPLUSHALF(2)/(1.0+EGJPLUSHALF(2))
ENJMINUSHALF=EGJMINUSHALF(2)/(1.0+EGIMINUSHALF(2))
DJI=(1.0+EG(2))/(1.0+EG0(2))
DJIJPLUSHALF=(1.0+EGJPLUSHALF(2))/(1.0+EGOJPLUSHALF(  2))
DJIMINUSHALF=(1.0+EGIMINUSHALF(2))/(1.0+EGOJMINUSHA  LF(2))
do 30 I1=2,NDIV-1
FQCFJIPLUSHALF=CQJPLUSHALF(2)*CF1JPLUSHALF(l,2)
FDJPLUSHALF=(ENJPLUSHALF*CHDA(2)/DJJPLUSHALF)*
>((CF1(1,3)-CF1(1,2))/(DA))
FQCFIMINUSHALF=CQJMINUSHALF(2)*CF1IMINUSHALF(I,2)
FDIMINUSHALF=(ENJMINUSHALF*CHDA(2)/DJJMINUSHALF)*
>((CF1(1,2)-CF1J0)/(DA))
if(l.eq.(NDIV-1)) then
FDIPLUSHALF=(ENJPLUSHALF*CHDX(2))*
> ((CF1(NDIV+1,2)-CF1(NDIV-1,2))/(DB))
endif
if(I.It.(NDIV-1)) then
FDIPLUSHALF=(ENJPLUSHALF*CHDX(2))*
> ((CF1(1+1,2)-CF1(1,2))/(DB))
endif
if(l.eq.2) then
FDIMINUSHALF=(ENJMINUSHALF*CHDX(2))*
> ((CF1(2,2)-CF110)/(DB))
endif
if(1.gt.2) then
FDIMINUSHALF=(ENJMINUSHALF*CHDX(2))*

> ((CF1(1,2)-CF1(I-1,2))/(DBY))

endif

CFF2(1,2)=CFF1(l,2)-(TAU/DA)*((FQCFJPLUSHALF-
> FDJPLUSHALF)-(FQCFIMINUSHALF-FDJMINUSHALF))+
> (TAU/DB)*(FDIPLUSHALF-FDIMINUSHALF)

30 continue
if(NSORP.eq.1) then
if(AKD.eq.0.0) then
CF2(1,2)=(CFF2(1,2)-((1.0-EN(2))*

> CS1(1,2)*DJN))/(EN(2)*DJI)

CS2(1,2)=DRD(2)*AKD*CF2(l,2)
endif
if(AKD.ne.0.0) then

DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY AND SOURCE DECAY

DL1=EN(2)*DJI*CF1(l,2)*(1.0-exp(-ALAMDAC*TAU))

DL2=EN(2)*DJI*CF1(l,2)*(1.0-exp(-ALAMDASC*TAU))

CFF2(1,2)=CFF2(1,2)-DL1-DL2

CF2(1,2)=CFF2(1,2)/((EN(2)*DJl)+
>((1.0-EN(2))*DRD(2)*AKD*DJI))

CS2(1,2)=DRD(2)*AKD*CF2(l,2)

endif

endif

if(NSORP.eq.2) then
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CFN2=CF1(1,2)

CSN2=CSs1(l,2)

NA=50

TAUN=TAU/float(NA)

CFFN=(CFF2(1,2)-CFF1(1,2))/float(NA)

do 621 IR=1,NA

if(CFN2.le.0.0) DSDT=0.0

if(CFN2.le.0.0) goto 629

DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(2)))
629 CSN2=CSN2+DSDT*TAUN*DRD(2)

CFFN1=CFF1(l,2)+CFFN

CFN2=(CFFN1-((1.0-EN(2))*DJI*CSN2))/EN(2)*DJI
621 continue

CF2(1,2)=CFN2

CS2(1,2)=CSN2

if(CF2(1,2).1t.0.0) CF2(l1,2)=0.0

if(CS2(1,2).1t.0.0) CS2(1,2)=0.0

endif

CALCULATE NEXT TIME STEP CONCETRATION AT | NTERNAL LOCATIONS

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 322 J=3,NDJV-2
CF1(NDIV+1,J)=CF1(NDIV-1,J)
CF1(NDIV,J)=(3.0/8.0)*CF1(NDIV+1,J)+
>(6.0/8.0)*CF1(NDIV-1,J)-(1.0/8.0)*CF1(NDIV-2,J)
CS1(NDIV,J)=DRD(J)*AKD*CF1(NDIV,J)
CF1I10=CF1(2,J)
CF1(1,3)=(3.0/8.0)*CF1I0+
> (6.0/8.0)*CF1(2,J)-(1.0/8.0)*CF1(3,J)
322 continue
do 31 J=3,NDJV-2
do 32 I=2,NDIV-1
DJI=(1.0+EG(J))/(1.0+EG0(J))
DJJPLUSHALF=(1.0+EGJPLUSHALF(J))/(1.0+EGOJPLUSHALF( J))
DJIMINUSHALF=(1.0+EGIJMINUSHALF(J))/(1.0+EGOJMINUSHA  LF(J))
FQCFJPLUSHALF=CQJPLUSHALF(J)*CF1JPLUSHALF(I,J)
FDJPLUSHALF=(ENJPLUSHALF*CHDA(J)/DJJPLUSHALF)*
>((CF1(1,J+1)-CF1(1,9))/(DA))
FQCFJIMINUSHALF=CQJMINUSHALF(J)*CF1IMINUSHALF(1,J)
FDIMINUSHALF=(ENJMINUSHALF*CHDA(J)/DJIMINUSHALF)*
> ((CF1(1,9)-CF1(1,3-1))/(DA))
if(l.eq.(NDIV-1)) then
FDIPLUSHALF=(ENJPLUSHALF*CHDX(J))*
> ((CF1(NDIV+1,J)-CF1(NDIV-1,3))/(DB))
endif
if(1.It.(NDIV-1)) then
FDIPLUSHALF=(ENJPLUSHALF*CHDX(J))*
> ((CF1(1+1,3)-CF1(1,2))/(DBY))
endif
if(l.eq.2) then
FDIMINUSHALF=(ENJMINUSHALF*CHDX(J))*
> ((CF1(2,3)-CF110)/(DB))
endif
if(1.gt.2) then
FDIMINUSHALF=(ENJMINUSHALF*CHDX(J))*
> ((CF1(1,9)-CF1(1-1,9))/(DBY))
endif CFF2(1,J)=CFF1(1,J)-
(TAU/DA)*((FQCFJPLUSHALF-
> FDJPLUSHALF)-(FQCFIMINUSHALF-FDIMINUSHALF))+
> (TAU/DB)*(FDIPLUSHALF-FDIMINUSHALF)
if(CFF2(1,J).1t.0.0) CFF2(1,J)=0.0
if(NSORP.eq.1) then
if(AKD.eq.0.0) then
CF2(1,9)=(CFF2(1,J)-((1.0-EN(J))*
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> CS1(1,J)*DJI))/(EN(J)*DJI)
CS2(1,9)=0.0
endif
if(AKD.ne.0.0) then

c DEDUCT LOSS OF SOLUTE DUE TO SOLUTE DECAY

DL1=EN(J)*DJI*CF1(1,J)*(1.0-exp(-ALAMDAC*TAU))
DL2=EN(J)*DJI*CF1(1,J)*(1.0-exp(-ALAMDASC*TAU))
CFF2(1,J)=CFF2(l,J)-DL1-DL2
CF2(1,9)=CFF2(1,J)/((EN(J)*DJ1)+
>((1.0-EN(J))*DRD(J)*AKD*DJI))
CS2(1,J)=DRD(J)*AKD*CF2(1,J)
endif
endif
if(NSORP.eq.2) then
CFN2=CF1(1,J)
CSN2=Cs1(1,J)
NA=50
TAUN=TAU/float(NA)
CFFN=(CFF2(1,J)-CFF1(l,J))/float(NA)
do 631 IR=1,NA
if(CFN2.le.0.0) DSDT=0.0
if(CFN2.le.0.0) goto 639
DSDT=ANLAMDA*(AKP*(CFN2**ANF)-(CSN2/DRD(J)))
639 CSN2=CSN2+DSDT*TAUN*DRD(J)
CFFN1=CFF1(l,J)+CFFN
CFN2=(CFFN1-((1.0-EN(J))*DJI*CSN2))/EN(J)*DJI
631 continue

CF2(1,J)=CFN2
CS2(1,J)=CSN2
if(CF2(1,J).t.0.0) CF2(1,J)=0.0
if(CS2(1,J).1t.0.0) CS2(1,3)=0.0
endif

32 continue

31 continue

c APPLY BOUNDARY CONDITIONS TO GET NEW BOUNDA
if(NSTUBC.eq.1) then
¢ PRESCRIBED CONCENTRATION AT THE TOP

do 117 1=1,NDIV
CF2(I,NDJV)=PCB
117 continue
c
¢ LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)
c
do 118 J=NDJV,NDJV
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,J)=CF2(2,J)
118 continue
endif
if(NSTUBC.eq.2) then

(9]

PRESCRIBED CONCENTRATION GRADIENT (GENERAL

do 119 I1=1,NDIV

CF2(I,NDJV+1)=CF2(l,NDJV-1)

CF2(I,NDJV)=CF2(I,NDJV-1)
119 continue

(9]

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 120 J=NDJV,NDJV
CF2(NDIV,J)=CF2(NDIV-1,J)
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c

(9]

(9]

(9]

(9]

(9]

(9]

(9]

CF2(1,J)=CF2(2,J)

120

continue
endif
if(NSTBBC.eq.3) then

RESERVOIR BOUNDARY CONDITION AT THE BOTTOM

VS1=abs(CQ(NDJV))/EN(NDJV)
HH=0.5*DA*(1.0+EG(NDJV-1))/(1.0+EGO(NDJV-1))
do 121 1=1,NDIV
CF2(1,NDJV)=(VS1*PRT*HH+CHDA(NDJV1)*

>CF2(I,NDJ-1))/(VS1*HH+CHDA(NDJV-1))
121 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

122

do 122 J=NDJV,NDJV
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,J)=CF2(2,J)

continue

endif

if(NSTBBC.eq.1) then

PRESCRIBED CONCENTRATION AT THE BOTTOM

do 124 1=1,NDIV
CF2(1,1)=PCB

124 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

125

do 125J=1,1
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,3)=CF2(2,J)

continue

endif

if(NSTBBC.eq.2) then

PRESCRIBED CONCENTRATION GRADIENT (GENERAL

do 126 1=1,NDIV
CF2(1,1)=CF2(1,2)

126 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

127

do 127 J=1,1
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,J)=CF2(2,J)

continue

endif

if(NSTBBC.eq.3) then

RESERVOIR BOUNDARY CONDITION AT THE BOTTOM

VS1=abs(CQ(1))/EN(1)
HH=0.5*DA*(1.0+EG(2))/(1.0+EGO0(2))

do 128 I=1,NDIV
CF2(1,1)=(VS1*PRT*HH+CHDA(2)*CF2(1,2))/
> (VS1*HH+CHDA(2))

128 continue

LATERAL BOUNDARIES' CONDITIONS (ZERO FLUX)

do 129 J=1,1
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,J)=CF2(2,J)
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(9]

OO0 0OO0

(9]

129

422

231
230

233
232

DATOUT PRINTS RESULTS OF CONSOLIDATIO CAL

continue

endif

do 422 J=2,NDJV-1
CF2(NDIV,J)=CF2(NDIV-1,J)
CF2(1,J)=CF2(2,J)

continue

do 230 I=1,NDIV

do 231 J=1,NDJV
if(CF2(1,J).1t.0.0)CF2(1,J)=0.0
if(CS2(1,J).1t.0.0)CS2(1,3)=0.0
CF1(1,9)=CF2(1,J)

continue

continue

do 232 I=2,NDIV-1

do 233 J=2,NDJV-1
if(CFF2(1,J).1t.0.0) CFF2(1,J)=0.0
CFF1(1,3)=CFF2(l,J)
CS1(1,J)=Cs2(1,J)

continue

continue

endif

return
end

*kkkkkkk

subroutine DATOUT()

*kkkkkkk

DATA IN TABULAR FORM

VVVVVVVVVVVVVYVYVYV

VVVVVYVYVVYV

common DA,DB,DZ,EQ0,ELL,GC,GS,GSBL,GW,HBL,LBL,NBDIV  , NDIV,NBDJV,

NDJV,NFLAG,NNN,NTIME,Q0,Q2,WL,SETT,SFIN,TAU,TIME,TP  RINT,
UCON,NNTIME,NST,NL,NBC,NDRB,ND1,ND2,NNL,NSOL,NNSOL, NNSOL1,
ALPHAL,ALPHAT,NSTBC,SL,CFT,CFB,HT,HB,CHDO,CHD1,AKD, ALAMDAC,
ALAMDASC,AM,DW,DS,DGM, TH,RKEO,NSL,HCL,HUCL,EOC,EOUGNSORP,
NSTUBC,NSTBBC,NSTRBC,NSTLBC,PCT,PGT,PRT,PCB,PGB,PRBPCR,
PGR,PRR,PCL,PGL,PRL,INX,JNZ,IEO0,ISS,NC, TTIME,
A(351),B(351),Z(351),XI(351), ALPHA(351), BETA(351),
DSDE(351),E11(351),EFIN(351),ER(351),ES(351),EFFSTR (351),
F(351),FS(351),FINT(351),PK(351),RK(351),RK1(351),R S(351),

TOTSTR(351),U(351),U0(351),UW(351),VRI(351),DQ(351) ,
Q1(351),RKEI(351),AKP,ANF,ANLAMDA, IKK,UMAX,NTAU,

CHD2(351),CHDA(351), CHDX(351),CQI(351),CQU(351),CQ( 351),

ENO(351),EN(351),EG0(351),EG(351),DVDA(351,351),
CS0(351,351),CS1(351,351),CS2(351,351),CFO(351,351) ,
CF1(351,351),CF2(351,351),CFF1(351,351),CFF2(351,35 1),
E11JPLUSHALF(351),E11IJMINUSHALF(351),DKQU(351),
FIPLUSHALF(351),FIMINUSHALF(351), AFJPLUSHALF(351),
AFIMINUSHALF(351),BFJPLUSHALF(351),BFIMINUSHALF(351 ),
EGJPLUSHALF(351),EGIMINUSHALF(351), EGOJPLUSHALF(351 ),
EGOJMINUSHALF(351),CQIJPLUSHALF(351),CQIMINUSHALF(35 1),
CQUJPLUSHALF(351),CQUIMINUSHALF(351),DRD(351),
CFOIPLUSHALF(351,351),CFOIMINUSHALF(351,351),
CFOJPLUSHALF(351,351),CFOJMINUSHALF(351,351),
CF1IPLUSHALF(351,351),CF1IMINUSHALF(351,351),
CF1JPLUSHALF(351,351),CF1IMINUSHALF(351,351),

PRINT1(351)

PRINT CONDITIONS IN COMPRESSIBLE FOUNDATION

write(21,100)
write(21,*) TIME
write(21,101)

if(ND1.eqg.1) then
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(9]

do 1 J=1,NDJV
L=NDJV+1

LL=L-J

write(21,%) XI(LL),CF1(1,LL),CS1(1,LL)/DRD(J)

continue

write(22,*)

endif

if(ND1.eq.2) then
Wr|te(21’*) '***************VERTICAL***************
do 3 I=1,NDIV
do 2 J=1,NDJV
L=NDJV+1

LL=L-J

write(21,%) XI(LL),l,LL,CF1(I,LL),CS1(l,LL)/DRD(J)

continue
continue

Wr Ite (2 1 ,*) Thkkkkkkkkkkkkhkkkkkk H O R I ZO N TA L**********

do 5 J=1,NDJV
do 4 1=1,NDIV
write(21,%) B(1),,,CF1(1,J),CS1(1,J)/DRD(J)

continue
continue
endif

FORMATS

100
101

300

format(//SHTIME=)
format(// 12X,2HA1,12X,3HCF2)

return
end

TIME,CF1(1,1)/CFT

>

subroutine BISFVALUE(ENT1,ENEW,ENI,CFT1,CFFT1,DST1,

FVALUE,GVALUE)

>

>

DJIDA=(1.0+ENEW)/(1.0+ENI)

FVALUE=ENT1*CFT1*DJIDA+(1.0-ENT1)*DJIDA*DST1*AKPT1*

GVALUE=ENT1*DJIDA+(1.0-ENT1)*DJIDA*DST1*AKPT1*FT1*

return
end

CFFT1

(CFT1**(FT1-1.0))

196

K*kkkkkkkkkkk!

Kkkkkkkkkhkkk!

kkkkkkkkkkkkkkkkkkk

AKPTL1,FT1,

*kkkkkkkkkkkkkkkkkk

(CETI*FT1)-



List of Publications

The following papers have been published on theshafsthe work presented in this
thesis.

Journal:

Singh, R. P., Singh, M. and Ojha, C. S. P., “An é&mxpental Study on
Consolidation of Compacted Clays”, Internationalurd@al of Geotechnical
Engineering, Vol. 8 (1), pp. 112-117, 2014.

Singh, R. P., Singh, M. and Ojha, “Finite Volume phpach for Finite Strain
Consolidation”, International Journal for Numericahd Analytical Methods in
Geomechanics, Accepted.

Conference:

Singh, R. P., Singh, M. and Ojha, “Finite Strainedty of Consolidation of Clays:
Finite Volume Approach”, Proceedings of IGC — 20B2per F-630.

Singh, R. P., Singh, M. and Ojha, “Explicit Finitéolume Approach to Solute
Transport through Porous Media”, Proc. IGC-201%dPd-TH-15.

197



	CD Cover Pages 
	ABSTRACT
	ACKNOWLEDGEMENTS_rps
	List of contents
	List of figures
	List of Tables
	List of symbols
	CHAPTER_1
	CHAPTER_2
	CHAPTER_3
	CHAPTER_4
	CHAPTER_5
	CHAPTER_6
	CHAPTER_7
	References
	Appendix
	List of Publications

