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ABSTRACT 

 

 

The quality of subsurface water can be affected by natural processes, nonpoint agricultural and 

urban runoff, waste-disposal practices and industrial discharges etc. The most challenging task for 

groundwater hydrologist is to make accurate prediction of arrival times and spatial patterns of toxic 

levels of a waste substance below the ground. The difficulty in prediction increases with the 

heterogeneity, and chemical properties of solute and porous medium. Most of the pathogenic 

bacteria and virus in ground water originate from human and animal sewage from municipal 

wastewater discharges, septic tanks, sanitary landfills and agricultural processes. The wastewater 

infiltrates through the vadose zone and, upon reaching the water table, continues to travel for large 

distances through the subsurface environment. When this water is drawn by wells and consumed 

without any treatment, it may be hazardous to human health. Hence, it is necessary to study the 

transport mechanism of reactive chemicals through porous media. 

 

Most of the early studies on contaminant transport through porous media considered the 

contaminant to be either non-reactive or to have instantaneous reaction with the porous matrix. In 

such cases, the transport process could be described by advection (including retardation for 

reactive contaminants), diffusion and dispersion. Advection is governed by the movement of 

contaminants along with the flowing groundwater at the seepage velocity in porous media. 

Diffusion is a molecular mass transport process in which contaminants move from area of higher 

concentration to the area of lower concentration. Dispersion is governed by spatial variability of 

groundwater velocity in porous media caused by the heterogeneity of hydraulic properties of the 

porous media. Transport of non-reactive solute through homogeneous and heterogeneous porous 

media has been investigated experimentally, theoretically, and numerically by a number of 

researchers. A common approach to study the transport behaviour subjected to the seemingly 

irregular variation of hydraulic properties in porous media is that based on the stochastic theory. 

The resulting equations are, however, quite complicated and difficult to solve analytically except 

for a few simple cases. 
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There are a number of studies that use mathematical modeling and experimental techniques to 

study and understand the behaviour of contaminants in a heterogeneous porous medium. It has 

been widely accepted in the literature that the non-equilibrium conditions significantly affect the 

solute transport at the field scale. Therefore, the present study focuses on the development of a 

generalized model, which can incorporate physical and sorption related non-equilibrium in 

heterogeneous porous media. Physical non-equilibrium (PNE) is accounted by a diffusive mass 

transfer between the advective and non-advective partitioning within porous medium. Sorption 

non-equilibrium (SNE) is accounted by using a two-site conceptualization for both advective and 

nonadvective regions in porous media, where at the first site, the sorption is assumed to be 

governed by an instantaneous equilibrium adsorption isotherm and at the second site; the sorption 

is described by a first order rate-limited process.  

 

In this study, semi-analytical solution of multiprocess non-equilibrium (MPNE) transport model 

with asymptotic distance-dependent dispersion is developed. Semi-analytical solution was 

developed in Laplace domain which was then inverted numerically to obtain time domain 

concentration. Semi-analytical solution was developed for constant concentration type input. To 

describe the features of MPNE transport model, results of breakthrough curves were simulated 

using constant and asymptotic distance-dependent dispersion models. 

 

An experimental investigation on large heterogeneous soil column is performed for which a 1500 

cm long heterogeneous soil column was constructed in the lab using different types of materials. 

Chloride and Fluoride were used in the experiments which represent conservative and non-

conservative solutes, respectively. The developed model is then used to simulate the laboratory 

experimental data of Chloride and Fluoride, through heterogeneous soil column. It was observed 

that a better fit to the observed BTC was observed when mass transfer between advective and non-

advection region is considered. It was also observed that asymptotic distance-dependent dispersion 

model gives a good fit to the observed breakthrough curve as compared to constant dispersion 

model. It is found that physical non-equilibrium significantly affects the breakthrough curves of 

both non-reactive and reactive solutes through porous media. The mass transfer from advective to 

non-advective region influence the behaviour of distribution of BTC’s obtained at various 

distances. Further the, experimental investigation of solute transport through long soil column 

experiments is studied. Batch sorption study is performed to estimate the linear and nonlinear  
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sorption coefficients for different types of soil materials. Linear and nonlinear sorption models 

were used to simulate experimental breakthrough curves through porous media. Analysis and 

simultion of the observed data of fluoride suggested that nonlinear sorption i.e., Freundlich 

sorption model simulate better as compared to linear sorption model.   

 

It is also shown that the MIMA model gives the best fit curve of experimental breakthrough curves 

in long heterogeneous soil column experiment as compared to both MIMC and MIML models. 

Estimated value of dispersivity is smaller in case of MIMA model as compared to both MIMC and 

MIML models. Thus MIMA model is efficient to capture the evolution distance-dependent 

dispersion behavior. Accurate prediction of mass transfer coefficient is also essential and 

significant for transport of contaminant through porous media. Hence, asymptotic dispersivity 

including variable mass transfer coefficient can be useful for describing solute transport in long 

heterogeneous porous media 

 

Finally, the behavior of concenration profiles and spatial moments for reactive transport through 

triple-permeability porous medium was studied. For this, numerical model has been developed for 

transport equations  using  both FDM and FVM methods. A detailed analysis of triple-permeability 

transport model has been carried out to study its performance for advection and dispersion 

dominant cases. For an advection dominant flow, FDM model produces oscillation in presence of 

small and higher values of of mass transfer coefficients. Hence, FVM can be used for both the 

simulation of solute transport through porous media for any value of Peclet number. The results of 

mean travel distance and spreading behavior of solutes remain the same in the presence of higher 

values of mass transfer coefficients.  

.   
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  Chapter  1 

 

 

INTRODUCTION 
 

 

1.1  General 

 

Groundwater is an important natural resource that is extensively used for various industrial, 

agricultural and domestic purposes. In a large part of the country, ground water is the only 

source of water for human consumption. Ground water can become contaminated from point 

source pollution that comes from a single source, such as wastewater treatment plants. 

Fertilizers and pesticides, surface run-off, septic wastes, and household wastes are also the 

various sources of non-point source pollution. Sometimes, leaching of wastes from landfills or 

discharge of industrial wastes to the soil without treatment also affects ground water (Fetter 

1999). Different chemicals like chloride, arsenic, fluoride, etc. are dissolved in the water. 

Polluted ground water is difficult to purify. Different types of contaminant have different 

transport properties and depend on the size of grain of porous medium. Contaminated 

groundwater can have serious health effects. Therefore, it becomes critical to prevent 

groundwater contamination due to natural processes as well as human activities. 

 

 In contamination due to natural processes, the leaching of natural chemical deposits increases 

the concentrations of chloride, nitrate, iron and other organic and inorganic chemicals. On the 

other hand, agricultural activities and waste disposal on the land surface change the chemical 

composition of the ground water. The wastewater infiltrates through the vadose zone and, upon 

reaching the water table, continues to travel for large distances through the subsurface 

environment. When this water is drawn by wells and consumed without any treatment, it may 

be hazardous to human health. Hence, it is necessary to study the transport mechanism of 

reactive chemicals through porous media. 

 

Solute transport in soil and groundwater systems is affected by various factors such as physical, 

chemical, and microbiological processes. Various mathematical models have been developed 



 2 

by researchers to evaluate the transport of linearly interacting solutes in porous media (Ogata 

and Banks, 1961; Remson et al., 1971; Bear, 1972, 1979; Selim and Mansell, 1976; Goltz and 

Roberts, 1986; Selim et al., 1999; Abulaban and Nieber, 2000; Fitts, 2002; Berkowitz et al., 

2008, Gao et al., 2009, 2012). The transport of chemical is affected by different processes and 

porous media properties including convective transport with flowing water, molecular 

diffusion, hydrodynamic dispersion, equilibrium or non-equilibrium exchange with the solid 

phase if reactive solutes are involved, and decay processes. 

 

1.2 Motivation of present study 

 

It is generally seen that the Advective dispersion transport equation was widely used to model 

solute transport through homogeneous porous media (Ogata and Banks 1961; Ogata 1970, 

Freeze and Cherry, 1979).  Both analytical and numerical methods have been used to get the 

solution of transport equation by various investigators (Chiou et al., 1979; Eldho and Rao, 

1997; Mohrlok et al., 1997; Delay et al., 1998; Elzein and Booker, 1999; Shashidhar et al., 

2007; Bethe and Mohrlok, 2008; Mohrlok et al., 2010; Meenal and Eldho, 2012; Singh et al., 

2010, 2012, 2013; Sharma et al. 2014). Most of the models were initially based on the classical 

one dimensional Advection-dispersion equation as studied by Lapidus and Amundson (1952), 

Van Genutcheten et al. (1974) and Van Genutcheten and Alves (1982). For a pulse input, this 

approach predicts symmetrical, bell-shaped breakthrough curves. Departures from this ideal 

behavior have been observed at scales of investigation ranging from column experiments to 

field-scale tests. Conservative solute transport in porous media is typically modeled using the 

generalized advection and dispersion equation (ADE) (Bear, 1972). The solution of ADE’s in 

most groundwater transport applications requires numerical methods, excepting the limited 

cases where analytical solutions exist (van Genuchten and Alves, 1982 and Jarvis et al., 1991). 

Analytical solutions have an important role to play because they offer fundamental insight into 

governing physical processes, provide useful tools for validating numerical solutions, and are 

sometimes more computationally efficient. Most previously published analytical solutions to 

advective-dispersive transport problems are predicated on  the assumption of a homogeneous 

porous medium (van Genuchten and Alves, 1982). In reality, subsurface porous media is 

seldom homogeneous and significant spatial variability of transport properties can be expected 
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( Gelhar, 1993; Dagan, 1982 and  Dagan, 1984; Yates, 1992; Deng et al. 1993; Zhou and Selim, 

2003;Chaudhuri and Sekhar 2007). 

 

 However, in case of heterogeneous porous medium,Advective dispersion transport equation 

fails to describe the solute transport by ADE because of the long tailing effect in that all the 

available water is not equally involved in solute transport. This results in dividing the available 

water into two components, which leads to the development of more complex models such as 

mobile-immobile model (MIM). The MIM model (van Genuchten and Wierenga, 1976) 

conceptualized the porous medium into mobile and stagnant immobile domains and takes into 

account the exchange between mobile and stagnant domains. There have been number of 

studies which gave better performance of mobile-immobile model than ADE for both 

homogeneous and heterogeneous media (Bond and Wierenga, 1990; Toride et al., 2003; Gao et 

al., 2009, 2010, 2012). Conceptually, the transport of solute through mobile-immobile zone is 

analogous to that of fractured porous medium (Tang et al., 1981.; Van Genuchten and 

Wierenga, 1976; Kumar and Sekhar, 2005; Kumar et al., 2006; Sekhar et al., 2006). An 

advance form of mobile-immobile is also studied by further dividing immobile liquid phase in 

slow and fast moving liquid (Kartha and Srivastava, 2008a, 2008b, 2012).  

 

Reactive transport through porous media is affected by various factors such as equilibrium 

sorption, first order mass transfer coefficients, reverse sorption coefficients. After such 

extensive analysis of various forms of ADE and MIM were done. Later they considered one 

dimensional and multidimensional  models  for increasing complicated process and soil 

properties. This was done by extending the models to include different types of  sorption sites, 

and different expressions characterizing physical and chemical non-equilibrium, and alternative 

geometries of immobile (stagnant) liquid phases in the medium (de Smedt and Wierenga 1984; 

Valocchi,1985 and 1988; Brusseau et al.,1989; Srivastava and Brusseau, 1996).    

 

Hence, Brusseaue et al. (1989) had developed multi-process non-equilibrium (MPNE) model 

that includes both physical and chemical non-equilibrium for reactive solute movement through 

porous medium. The physical non-equilibrium transport is caused due to preferential and 

stagnant flows. The chemical non-equilibrium is caused due to the simultaneous presence of 

instantaneous and rate limted sorption of the solute in the solid and liquid forms. Most  of the 
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studies were focused on the formulation of appropriate mass balance equations governing 

solute transport through porous media. The transport of sorbing solutes is modeled with 

mobile-immobile model, in which the porous media is represented as an interconnected 

continuum, and sorption is represented as an equilibrium process which is instantaneous and 

reversible with a linear isotherm. 

  

As general the use of ADE has been frequently questioned by many investigators in recent 

years, as it cannot adequately account for anomalous transport in heterogeneous porous media, 

and alternative models have been proposed. The mobile-immobile model (MIM) presented by 

van Genuchten and Wierenga (1976) is a practical and physically based approach to describe 

anomalous solute transport behavior. Also, the presence of dead end pores in the medium 

influence  the transport process. The liquid filled dead end pores were called immobile water 

and transfer of mass occurs between the mobile and immobile liquid zones. A model that 

accounts for multiple sources of non-equilibrium would be required to accurately represent 

these systems. Such model was developed by Brusseau et al. (1989).  

 

It was found that there are other factors which affect the transport of reactive solute through 

porous medium. It is also known that distance-dependent dispersion has long been a focus of 

experimental and theoretical research in solute transport through porous media. The essence of 

distance-dependent dispersion is that the dispersion coefficients obtained from the analysis of 

the breakthrough curves by the Advective–dispersion equation (ADE) are not constant but 

increases with travel distance. The tracer test was used to measure dispersivity along with 

travel distance; the large value of the dispersivity was computed by Molz et al. (1983). This 

type of phenomenon occurred in the field-scale transport and in laboratory-scale transport 

(Pickens and Grisak, 198b; Gelhar et al., 1992; Gelhar, 1993; Vanderborght and Vereecken, 

2007). The magnitude of dispersivities acquired from laboratory observation are usually in the 

order of a few to tens millimeters, while those from the field can be several orders of higher 

magnitude as reported by many authors (Pickens and Grisak, 1981a; Dagan 1982; 

Vanderborght and Vereecken, 2007; Gao et al. 2010, 2012). A general consensus at present is 

that the distance-dependent dispersion is used to represent the heterogeneous nature of porous 

media at different scales (Huang et al., 2006). Hence, ADE with a constant dispersion model 

cannot satisfactorily describe the solute transport at various scales in subsurface groundwater 
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systems (Pickens and Grisak, 1981b; Gao et al., 2009, 2010 and 2012). Huang et al. (1996) had 

developed analytical solution for one dimensional transport with linear asymptotic scale-

dependent dispersion using the MIM model. They assumed that the dispersivity increases 

linearly with distance until some travel distance after which the dispersivity reached an 

asymptotic value.  

 

From above discussion, it is clear that analytical solution of multiprocess non-equilibrium 

(MPNE) transport equations is not developed using asymptotic distance-dependent dispersion 

model. Hence, in the present study, an attempt has been made to derive semi-analytical solution 

of MPNE transport equations by using Laplace transform technique and the power series 

method with asymptotic dispersion model for constant concentration boundary condition (de 

Hoog et al., 1982; Moench, 1991). It is expected that the MPNE model with asymptotic 

distance- dependent dispersion can much better describe the behaviour of reactive contaminant 

transport through heterogeneous porous media. There are very few studies available in 

literature which uses long soil column (smaller than 12m) experimental data to study the 

behaviour of non-reactive solute in heterogeneous porous medium. Thus, there is a need to 

investigate the behaviour of reactive transport through long heterogeneous soil column. On the 

basis of literature review, following objectives were decided for this study:- 

 

1.3 Objectives  

 

The objectives of the present study are following: 

1. To develop analytical solution of multiprocess non-equilibrium (MPNE) transport 

equations using asymptotic dispersivity.  

2. To analyze the behavior of breakthrough curves in presence of both constant and 

asymptotic dispersion models 

3. To conduct the soil column experiments for solute transport in 1500 cm long soil 

column experiments in the lab 

4. To simulate the experimental breakthrough curves using asymptotic and constant 

dispersion models and  to estimate transport parameters. 

5. To conduct batch sorption experiments to estimate linear and nonlinear sorption 

isotherm of fluoride in soil media and these isotherms are used to simulate fluoride 
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transport through porous media.  

6. To develop numerical model with finite difference and finit volume method and study 

its performance for advection and dispersion dominant cases. 

7. To simulate breakthrough curves using variable mass transfer coefficient in presence of 

asymptotic distance dependent dispersion model. 

1.4 Organisation of thesis 

The thesis is organised in following chapters, the contents of which are briefly described. 

 

Chapter 1  presents the introduction, motivation of present study and research   objectives. 

 

Chapter 2  presents the comprehensive review of literature pertinent to the field of solute 

transport through porous medium; recent development and gap found in the studies 

are identified.  

 

Chapter 3  presents the conceptualisation of MPNE model and analytical solution of MPNE 

model with asymptotic distance-dependent dispersivity. Both physical and sorption 

related non-equilibrium are incorporated in the solution developed with asymptotic 

dispersivity which makes it more effective for the field application. Presented 

analytical solution is verified with existing analytical solution. Analytical solution 

was then used to simulate experimental breakthrough curves of non-reactive and 

reactive solute transport in 1500 cm long soil column experiments. 

 

Chapter 4  presents the estimation of sorption isotherm of fluoride in different types of soil 

media via batch sorption and these isotherms are used to simulate fluoride transport 

through porous media. Freundlich and Langmuir isotherms are tested in case of fine 

sand and natural soil. Subsequently, implicit finite difference numerical technique 

is used to solve one-dimensional advection-dispersion transport equation. Transport 

of fluoride through a porous bed has been simulated with linear and nonlinear 

sorption models. Results show that fluoride breakthrough curves simulated by 

using the Freundlich nonlinear sorption model reveal good agreement with 

experimental observed data through soil column. Further, it is also seen that the 
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Freundlich nonlinear isotherm model gives best fit of concentration profiles in case 

of both fine sand and natural soil, as compared to Langmuir sorption model.   

 

Chapter 5 presents the behavior of breakthrough curves in mixed heterogeneous soil column 

experiments. Advective dispersive transport equations are used for solute transport 

through mobile-immobile porous medium. In first part of the study, constant 

dispersion, linear and asymptotic distance-dependent dispersion functions are used 

to describe the scale effect and to simulate the experimental breakthrough curves 

observed in long soil column experiment. Also, a comparative study has been done 

among distance-dependent and constant-dispersion models, while simulating the 

experimental data of solute transport through soil column with constant mass 

transfer coefficient. In second part of the study, variable mass transfer coefficient as 

function of pore velocity and travel distance is considered and an empirical relation 

is derived from observed data from experiments.  

 

Chapter 6 deals with finite volume method (FVM) and implicit finite difference method 

(FDM) used to solve transport equations for reactive solute transport through triple-

permeability porous media. Performance of both FDM and FVM have been 

evaluated in presence of high value of Peclet number (Pe) for reactive transport 

through triple-permeability porous media. It is shown that, in case of advection 

dominant transport (i.e. at high value of Pe), numerical oscillation has been 

obtained by FDM, while oscillation-free result is seen by FVM in the presence of 

both small and higher values of mass transfer coefficients. In addition to this, 

behavior of spatial moments are investigated in the presence of various transport 

paramteres. 

 

Chapter 7  summarises the work done and specifies the main conclusions based on 

experimental and numerical investigations of reactive solute transport through 

heterogeneous porous media, and provides suggestions for future studies. 
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2 Chapter 2 

 

 

REVIEW OF LITRATURE 
 

2.1 General 

 

A comprehensive review of the available literature was undertaken to ascertain the current 

status of research in the field of reactive transport through saturated porous media with constant 

and distance-dependent dispersivity. It is also known that the groundwater quality is susceptible 

to natural and man-made contaminant sources. The reason for the degradation of the quality of 

groundwater includes municipal waste, waste from chemical industry, fertilizer used in the 

irrigation field etc. Therefore for the prevention and minimisation of pollution in groundwater, 

it becomes essential to understand the transport processes associated with contaminant through 

porous media. Follwoing transport mechanisms such as advection, dipersion, diffusion, 

sorption are occurred during reactive transport through porous media. 

2.2 Advection transport 

 

The advection transport is the movement of a chemical substance as it is carried along with 

bulk fluid movement or the movement of solute caused by groundwater flow. Advection is the 

most significant mass transport process. It results from large-scale gradients in fluid energy, 

although the resulting rates of mass transport are much less than those found for surface water 

transport. Advection is the primary process by which solute moves in the groundwater system 

(Bear, 1979). It is the fastest form of chemical transport in porous media and its concentration 

decrease in the direction of fluid movement.It can be expressed as  

 

                                                                    (2.1) 
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2.3  Dispersion transport 

 

Dispersion is an effect of the departure of an individual particle from the average groundwater 

velocity, results from simultaneous action of both a purely mechanical and physiochemical 

phenomenon. Mechanical dispersion is basically the mean deviation in the velocity vector in 

both longitudinal and transverse directions caused due to the change in direction of velocity 

vector at every point of the fluid flowing through a porous media. The change in the direction 

of the velocity vector at any point depends upon the heterogeneity of porous media.Hence 

Variations in hydraulic conductivity due to lithological heterogeneities are the main sources of 

velocity variations. The hydrodynamic dispersion coefficient (D) is combination of mechanical 

dispersion (Dm) and bulk diffusion (D0)..The advective flow velocity (v) and mean grain 

diameter (dm) have been shown to be the main controls on longitudinal dispersion parallel to 

the flow direction. it can be expressed as: 

 2
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2.4 Diffusion transport          

 

The domain of diffusion is the scattering of particles by random or turbulent motion at 

microscopic scale. Diffusion and dispersion takes place in two different types of domain. 

Diffusion is a component of dispersion. As flow takes place, the solute spreads in all directions 

at molecular scale for the reason that of concentration gradient and random motion on account 

of diffusion. The solute particles move from region of higher concentration to the areas of 

lower concentration due to diffusive transport, which also occurs in the absence of velocity of 

flow. This transport mechanism is associated with the molecular motions instead of bulk fluid 

movement (Bear, 1979). 

2.5 Sorption transport 

 

Sorption is the process by which chemicals are either entrained into soil or leaches out from the 

soil particles. Physical adsorption depends on Vander Waals forces of attraction between 
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molecules and resembles condensation of liquids. In chemical adsorption, the solute particle is 

held to the surface by chemical forces specific to the chemicals involved, and formation of the 

bond may require activation energy. The most common sorption transport mechanisms are 

Linear, Nonlinear, Freundlich, Langmuir, and Irreversible Reactions. 

Specific sorption represents a chemical interaction between sorbet and sorbent, and occurs at 

specific sites on the surface of the sorbet. In chemisorptions, the chemical bonds between 

sorbet and sorbent usually is covalent. A molecule undergoing chemisorptions may lose its 

identity as atoms are rearranged to form new compounds fulfilling the unsatisfied valences of 

the surface atoms. Nonspecific sorption is the process in which solutes are attracted to the 

surface of the soil particles, generally from London-Vander walls or electrostatic bonds.  

2.6  Review of literatures 

 

In the following section, an attempt has been made to describe various analytical/numerical  

studies related to the solute transport through porous media for constant and distance-dependent 

dispersion models. 

 

Valocchi (1985) had made an attempt to assess the criteria to find out the validity of local 

equilibrium assumptions for one-dimensional steady state homogeneous flow condition. A 

method is described to determine solute breakthrough curve for time moments. It is observed 

that validity of linear equilibrium assumption depends upon several macroscopic and 

microscopic parameters. Macroscopic parameter includes seepage velocity, hydrodynamic 

dispersion, time variation of mass input and microscopic parameters includes mass transfer 

coefficient, aggregate size distribution and distribution coefficient. Time moment methodology 

is used because analytical solution for coupled differential equation cannot be applied to non-

equilibrium readily. It is also noted that the linear equilibrium assumption (LEA) criteria 

developed in this study is strongly dependent on hypothesized kinetic model. 

 

Duijn and van der Zee (1986) had studied the transport of solute in two different regions which 

are separated by very sharp interface in the flow direction. Physical and chemical properties of 

both the regions are different but remain same throughout the experiments. First expression for 

approximate concentration is derived at interface boundary and then analytical solution is 
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derived for the solute transport in both the regions. Numerical and analytical solutions are 

compared and it was found that for larger values of retardation factor of lesser permeable 

region, a good agreement is achieved. A finite boundary in case of numerical simulation and an 

infinite boundary length in analytical solution were found to be the main differences for the out 

come of the solution. Analytical solution was found to be useful when the thickness of both 

regions is considered to be of same dimension. It was found that system resembling the flow 

domain is comparable for numerical and analytical solution. 

 

Goltz and Roberts  (1986) had developed three dimensional solutions for solute transport in an 

infinite medium considering porous medium in distributed discrete mobile-immobile zones to 

observe the tailing effect of breakthrough curve. Authors presented three dimensional solutions 

for advective-diffusive transport equation with infinite boundary condition. Analytical solution 

for point source was derived for infinite medium incorporating first order reaction and diffusion 

rate limitations. The solution was found to be similar for semi finite and infinite mediums at 

larger values of Peclet number.  

 

Brusseau et al. (1989) had described the solute transport through porous media under the 

influence of multiprocess non-equilibrium. They considered two types of non-equilibrium for 

reactive transport through porous media. One is physical or transport related non-equilibrium 

which is present in the system because of the combination of mobile immobile regions and due 

to diffusive mass transfer from mobile or advective flow regions to immobile or non-advective 

flow region, second is the chemical or sorption related non-equilibrium is caused by the rate 

limited interactions between solute and the specific sites of sorbent. Authors had stated that 

employing bicontinuum model gives the combined effect of lumped kinetic terms causing the 

non-equilibrium while employing the MPNE is useful for detailed analysis. In the proposed 

model mobile and immobile regions are coupled by diffusive mass transfer within the intra 

aggregate pores. Then further the rate limited and instantaneous regions are coupled through 

instantaneous and rate limited coefficients. According to the above conceptualisation a 

mathematical model has been developed incorporating all types of non-equilibrium in the 

system.  Model accounts explicitly for the multiprocess non-equilibrium, and the performance 

as compared to the bicontinuum model is found obviously superior if the parameters estimated 

for input are available. This model is aimed for the process level investigation. Model required 
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number of parameters, without that evaluation of model is dubious.  

 

Valocchi (1989) had studied the spatial moments to analyse the depth average solute pulse in 

stratified porous media. Transport equation incorporated arbitrary variation in porous water 

velocity, dispersivity, and adsorption with first order reversible kinetic law. This paper presents 

more general solution to the problem discussed by the author in previous paper (Valocchi, 

1988). It is found that dispersion term can be divided in three major components, 

hydrodynamic dispersion; vertical variation in velocity generates Taylor dispersion and 

dispersion due to kinetic sorption reactions. It is also found that deviation from local 

equilibrium behaviour depends on interexchange reaction and spatial variation of retardation 

factor and pore water velocity. The spreading is also affected by nature of correlation in pore 

water and retardation factor and slow sorption kinetics. At field scale the results obtained 

provide a good insight to physical and chemical parameters varying spatially. 

 

Bond and Wierenga (1990) had made an attempt to investigate the effect of immobile water in 

unsaturated fine sand under steady and unsteady flow regimes. The results of experiments were 

simulated with two numerical models with immobile water and without immobile water. It was 

found that in case of steady state flow numerical solution of equation containing immobile 

water terms gives better representations of experimental data. The RMS value was significantly 

reduced by applying the numerical solution including the immobile water term. In case of 

unsteady flow experiments, immobile water terms was found to be lesser influencing the 

observed and simulated BTC’s . The reason of this was explained in terms of wetting patterns, 

which was found to be different in both cases. 

 

Brusseau (1991) had evaluated the capability of multiprocess non-equilibrium (MPNE) model 

to predict the transport of solute through stratified porous medium under the influence of 

multiprocess non-equilibrium. Starr et al.(1985) used data from the experiments which were 

performed by Sudicky et al. (1985) using chloride as non-reactive solute and strontium as 

reactive solute. It is found that MPNE model provides a valid representation of sorption 

dynamics for the stratified porous medium under the influence of multiple sources of non-

equilibrium. 
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Goltz and Oxley (1991) had developed analytical model for organic contaminant specifically 

considering clean up well sites problem. Rate limited desorption was considered to be major 

reason for influencing contaminant load discharge. The analytical solution presented in Laplace 

domain solved for radial advection, dispersion and rate limited sorption. It was observed that 

analytical solution can be applied to estimate concentration filtered through well and 

concentration remaining in aquifer. Brusseau (1992) evaluated one-dimensional multifactor 

non-ideality model to represent the transport of sorbing solute under nonideal flow conditions. 

Results obtained from several field experiments have been simulated applying the numerical 

model. It is observed that single factor non-ideality model will give a lumped value for discrete 

parameters and this value cannot give proper information about discrete processes causing non-

ideality in the transport. Proposed model accounts separately for multifactor participations in 

non-ideality. Field scale data are very well represented by the model, considering that all input 

parameters are obtained separately. Two domain approaches is found to be successfully 

applicable to represent the heterogeneity of hydraulic conductivity on solute transport. The only 

limitation of model is found to be its lacking of multi-dimensional solution. A more complex 

model can be used for representing the transport by enhancing dimension dependency. 

 

Brusseau et al. (1992) presented a numerical model which explicitly accounts for conceptual 

MPNE model combining transformation reactions. This is an advance version of MPNE model 

represented by Brusseau et al. (1989), incorporating biotic/abiotic transformation reactions. The 

combination of transport related, sorption related processes with first order transformation 

reaction considered for more realistic representation. In this work potential impact of 

transformation reaction on solute transport is studied. Model was found to predict accurately 

the experimental data through a soil column packed with aggregated soil. MPNE transport 

model was founded very useful for the system affected by non-ideal transport and complex 

transformation reactions. 

 

Tang and Aral (1992) had tested closed form solution for the transport through layered aquifer 

system. Verification of the analytical solution was done with standard examples available in the 

literature. The range of prediction of present solution is then tested for other aquifer-aquitard 

combinations. The present solution incorporates non-uniform, time dependent first type 

boundary conditions at influent and effluent end of domain. Advection, diffusion and first order 
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reaction terms are considered in both aquitard and main aquifer. Main aquifers are assumed to 

be two dimension finite systems and aquitard are one dimension infinite system. Laplace 

transformation is used for solving partial differential equation and separation of variable 

technique is used to assemble the solution. Vertical diffusion and advection in adjacent layer of 

aquitard is given. It was found that in most stratified aquifer is influenced with vertical 

advection in between the layers and cannot be ignored. 

 

Brusseau (1994) reviewed the basic concepts related to contaminant transport, which is given 

by the results obtained from well-controlled field experiments designed to investigate the 

transport of reactive contaminants in the subsurface flow. Burr et al. (1994) had analysed the 

transport of reactive and non-reactive contaminant through heterogeneous and anisotropic 

geological formation by using multi-realization numerical model. Field scale displacement and 

dispersion behaviour of reactive and non-reactive solute was observed carefully and other non-

ideality is lumped together in single factor of realization. The data of Bordon aquifer test was 

analysed and compared with several other solution given by different authors. It was found that 

a temporal increase in retardation factor was due to several local non-idealities and effect of 

intraparticle diffusion is negligible. In Bordon aquifer scenario nonlinear equilibrium sorption 

and sorption desorption processes are not significant. It is found that stochastic theories applied 

by Dagan (1982) provides upper limits of concentration standard deviation with decreases 

limits of concentration standard deviation with decreases eventually with travel distance. The 

uncertainty in concentration profile is compared for reactive and nonreactive solute after an 

equivalent travel distance. It was because local scale solute velocity enhances dispersion, which 

in turn decreases the uncertainty because plume smearing increases.  

 

Xu and Brusseau (1996) had developed semi analytical solution for solute transport in porous 

media with spatially variable reaction processes, reverse sorption, reversible mass transfer and 

reversible transformations (radioactive decay, hydrolysis reaction and biodegradation). Laplace 

transformation technique is used to obtain the analytical solution in Laplace domain. It is found 

that constant obtained for spatial variation of transformation reaction decreases the rate of mass 

loss and affects the solute transport in the porous system. Brusseau et al. (1997) used a flow 

interruption, which can be used to discriminate between various sets of processes, such as rate-

limited vs non-linear sorption and physical non-equilibrium vs heterogeneity.  
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Robinson et al. (1998) developed steady state and transient state analytical solution for solute 

transport in a finite system of parallel fractures with fracture skins using dual porosity model. 

For transient solution, Laplace transforms were inverted numerically and they presented a 

series solution. The steady state solution derived was closed form analytical solutions for solute 

transport in finite system of fracture porous media. Author also analysed the effect of fracture 

skins and reported an increase in distances of transport with thicker skins of lower porosity and 

lower diffusivity. 

 

Zhan (1998) had investigated the transport of contaminant under different landfill conditions in 

a stratified formation. Considering leakage scenarios of continues waste leakage, temporal 

waste leakage, continues deep well injection wastes and temporal deep well injection wastes. 

Transport in a strongly heterogeneous aquifer is solved analytically without any perturbation 

approach and solution obtained for average and variable concentration. Author also considered 

field heterogeneity as the reason of dispersion and local dispersivity and hence diffusion can be 

neglected in field. 

 

Elzein and Booker (1999) had investigated transport of solute through stratified porous media 

under the influence of multiprocess non-equilibrium condition. Numerical solution generally 

restricted to single layer and includes a single source of non-equilibrium. In this work author 

tried to implement boundary element method in Laplace domain to solve the advection-

dispersion equation under the influence of multiple sources causing non-equilibrium and rate 

limited mass transfer. Infinite and semi-infinite domains are modelled accurately by using 

Green’s function and using Laplace transformation eases out the need of time stepping and 

associated numerical complexity. The proposed boundary element solution is validated by 

predicting analytical solution developed in available literature. Presented solution is very well 

capable of dealing with heterogeneous porous media and anisotropic transport, parameter 

partitioning porous medium with lesser computational requirements. By deploying this method 

single layer and multilayer soil breakthrough curve has been predicted with good agreement. 

This method is also used for studying the migration of solute in sand aquifer bounded by silt 

layer at a nearby infiltration boundary of a lake. Inclusion of scale dependent dispersion 

function can improve the solution for more realistic and field scale problem. 
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Abulaban and Nieber (2000) studied the transport of sorbing solute from a heterogeneous 

porous medium. The sorption isotherm was considered to be linear and Freundlich behaviour of 

pulse of sorbing solute observed. Heterogeneity of porous medium was introduced both 

physically and chemically for observing the skewness of solute plume. Results of homogeneous 

and heterogeneous field test are compared and it is seen that plume was more scattered in 

former case. The retardation of solute plume also causes a slower solute moment through 

porous medium. The effect of nonlinear sorption was found more in field heterogeneity which 

is also supported by the studies performed by Jury and Utermann (1992). In large 

heterogeneous medium a shorter pulse input is found to be scattered in starting of simulation. 

This broken up of plume initiates oscillatory behaviour of spatial moments derived in 

homogeneous medium. The oscillatory behaviour causes the skewness of solute plume.  

 

Neville et al. (2000) had developed analytical solution for one-dimensional advection-

dispersion equation under the influence of multiprocess non-equilibrium model based on theory 

developed by Brusseau et al. (1992). The solution is derived in Laplace domain and de Hoog et 

al. (1982) algorithm is used for inverting Laplace solution. The solution is extended for 

different boundary conditions and found to be satisfactorily applicable on controlled lab 

experimental data. The solution is also used for estimation of parameters at field scale. By 

using Laplace techniques, solution is remained free from spatial discretization and time 

stepping which can be obtained easily. 

 

Al-Tabbaa et al. (2000) Had performed laboratory experiments for migration of nonreactive 

solute (NaCl) through short length of stratified porous media. Authors had atempt to investigate 

the effect of different direction of stratification on the dispersion coefficient. Parallel 

perpendicular and inclined directions of layers to the flow direction have been arranged. Author 

also tried to evaluate the effect of scale of heterogeneity on dispersion coefficient. Dispersion 

coefficients from three different methods have been calculated and it was found that dispersion 

coefficient increases with the volume under same porosity. 

 

Toride et al. (2003) had examined the variation of dispersion as a function of water content in 

homogeneous dune sand by applying mobile-immobile model. An experimental setup was 
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prepared of dune sand soil column. A comparison of dispersivity at various water contents has 

been tried to evaluate the functional relationship interlinking the parameters. It was found that 

at lower water content, pore water velocity is lower but resistance to solute transfer between 

mobile-immobile phase’s increases, which in turn causes the transverse diffusion to be higher. 

Peclet number was found lower at lower water content. In the solution it was found that lower 

water content, lower velocity and thinner water films between pore spaces resulted in 

maximum dispersivity. Bhallamudi et al. (2003) described a sub-time stepping approach for 

fluid dynamics problems in which a implicit formulations is used to obtain transient solutions. 

This method is suitable for extensive simulations where portions of a domain are temporally 

over-discretized by conventional implicit time-stepping approaches. 

 

Chastanet and Wood (2008) had attempt to apply volume averaging method on solute transport 

through highly heterogeneous porous media.  In the proposed solution decoupling of macro and 

micro solution system are done by neglecting concentration variation. Spherical inclusion 

geometry is considered and convective terms are neglected to determine the analytical 

expression. Convective terms in low conductivity region can be important but in higher 

conductivity region convective terms are neglected for simplicity. Proposed model can be 

applied to any bimodal geometry except uncoupled transient model and need to be analysed in 

that case. Bethge and Mohrlok (2008) studied the risk of groundwater contamination by flood 

water seepage from retention areas and calculated contaminant infiltration. 

 

Avila and Brieter (2009) had developed a mathematical model for solving advection-dispersion 

equation for mobile-immobile region including two site non-ideality and first order 

transformation reaction introducing multiple solutes. Simultaneously, two solutes were injected 

and both follows nonlinear sorption isotherm. FORTRAN numerical solution is developed and 

tested for adequacy and capability with experimental data obtained from soil column 

experiments.  Materials used in soil column were silica gel and soil from a specified landfill. It 

was found that advantages of taking general bicontinuum model is that effect of dual porosity 

and non-equilibrium can be solved simultaneously or one be switched off for simpler solution. 

Sorption is best observed in silica gel as compared to soil sample because of heterogeneity. 

Proposed mathematical model was found performing satisfactorily with experimental data. But 

for more extensive computations, the competitive sorption term should be given more attention. 
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In proposed model if competitive sorption is ignored, false prediction may observe and error in 

estimation of isotherm parameters may be noticed. Brindha and Elango (2011) studied in detail 

about fluoride in groundwater, which has a major problem to human society in the world. The 

main source of fluoride in groundwater is the rocks which are rich in fluoride. The other 

sources for fluoride are infiltration of agricultural runoff containing chemical fertilisers, 

improper disposal of liquid waste from industries, alumina smelting, cement production and 

ceramic and brick firing. 

 

Leij et al. (2012) had developed a new dual advection dispersion equation (DADE) model for 

solving solute transport through layered porous medium. It was assumed that flow rates were 

nonzero in distinct pore domains and solute transport was linear. The basic equation used for 

developing the model is combination of advection dispersion equation for transport in uniform 

porous medium and mobile-immobile model for mass transfer in between mobile and immobile 

regions. In continuation to the transport model presented by Leij and Bradford (2009), an 

analytical solution for DADE is derived using Laplace transformation technique while 

assuming the uniform dispersivity in both the regions. Explicit nonzero solutions for solute 

concentration are derived which the function of time and position of both domains is including 

time moments of BTC’s. Presented analytical solution is used for describing the transport of 

solute pulse through a dual-velocity medium including different combinations of Darcy’s flux, 

water content and rate parameters. Solution was found to show double peaks in volume and 

flux averaged concentrations varying spatially and temporally respectively. The reason for 

double peak was found to be travel time difference in the separate processes of advection and 

first order mass transfer. Advection was found to be dominating in mobile domain and first 

order mass transfer in between mobile and immobile domains. Presented solution was found to 

illustrate in depth scenario of bimodal behaviour of BTC’s obtained for Japanese Andisol soil 

having distinct intra and inter aggregate porosity. 

 

Pickens et al. (1981a) demonstrated the method for the in situ determination of adsorptive and 

dispersive properties of sandy aquifer using radial injection dual tracer test. Reactive (85Sr) and 

non-reactive (131I) tracers were introduced together. Using multilevel point sampling device at 

various radial distances and depths, spreading and adsorption of both were compared. The 

effect of physical and chemical non-equilibrium is incorporated in “effective dispersivity” term 
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rather than using a separate kinetic term. Values of effective dispersivity for reactive solute 

were found 2-5 times to that of non-reactive solute. Inclusion of non-equilibrium effects in 

effective dispersivities found to be very effective analysing reactive solute transport in the field. 

 

Pickens et al. (1981b) had carried out study on scale and time dependency of dispersion 

coefficient and stated that the scale which is used to define the flow domain and obtain 

groundwater samples can result in a scale dependency of the mechanical dispersion coefficient 

or dispersivity. Author conducted several tests in the laboratory and in the field and derived an 

expression relating longitudinal dispersivity to the statistical properties of a stratified medium 

and the mean travel distance of the solute. It is found that the concentration profile within an 

aquifer or breakthrough curve at sampling position depends on monitoring system and it can 

result in some apparent spreading and subsequently larger dispersivity. It is also found that 

wide distribution of permeability at field causes the increased longitudinal dispersion. The 

spreading and reversal of spreading in the direction of flow results from the law of mass 

conservation and can also be caused by porosity and moisture content variations within the 

stratified medium. 

 

Molz et al. (1983) investigated the scale dependency of dispersivity in field expression. 

Authors introduced a new formulation and used recent field experimental data for representing 

scale-dependent dispersion coefficient (Pickens and Grisak 1981b). By the analysis of observed 

data of several well tracer tests, it was found that hydraulic conductivity and local transverse 

hydrodynamic dispersion influences dispersion term.  The scale dependent dispersivity alone 

cannot adequately represent the processes causing spreading due to dispersion. The effect of 

field scale, accurate value of hydraulic conductivity and scale of heterogeneity are given more 

emphasis in accounting arbitrary dispersion coefficient. By giving more attention to these 

parameters, good agreement is found with experimental data. The present study is limited to 

perfectly stratified porous media. It was found that macrodispersivity contains a convective 

term that dominates hydrodynamic dispersion and for a finite value of local transverse 

dispersivity this convective term attains an asymptotic value. The present solution was found to 

be erroneous when applied near to source for the case of scale dependent dispersive coefficient. 

 

Mackay et al. (1986) had conducted a large-scale field experiment on natural gradient transport 
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of solute in groundwater. By introducing two inorganic, five halogenated organic tracers and 

over 5000 sampling points to collect over 19,900 samples, fate of tracers elucidated in a 3-D 

porous medium. A spatial and temporally detailed data set in high contrast is collected for 7 

different types of solutes. By observing the collected samples it was found that tracer trajectory 

and velocity followed the same path, which could be predicted by conventional techniques and 

hypothesis. 

 

Roberts et al. (1986) had studied the long-term behaviour of organic solutes under natural 

gradient conditions by mean of moment estimates. It was found that mass was conserved for 

two of the solute (carbon tetrachloride and tetra-dichlorobenzene) and rest of the solute 

converted their masses in different compounds. A markedly increment in the value of 

retardation factor was found as much as by 150% from its initial value for all tracers due to 

heterogeneity and deviation from local equilibrium. It was also found that the behaviour of 

organic plume through heterogeneous porous medium can be very well described by the model 

considering porous medium as a quasi-homogeneous continuum. 

 

Barry and Sposito (1989) had developed  a closed form solution of the transport equation with 

time dependent dispersion coefficient in a semi-infinite spatial domain. Solution incorporated 

arbitrary initial and boundary conditions. A stable numerical scheme utilizing a trapezoidal 

quadrature rule has been used, and for small time step solution is found to be stable. It was 

found that this solution is a reliable result for solute transport problem through a wide variety of 

heterogeneous porous material. 

 

Yates (1990) had developed analytical solution for the transport of dissolved substances 

through heterogeneous porous medium. Dispersion was assumed to be distance dependent in 

the solution. Constant concentration and constant flux type boundary condition has been 

imposed and solution obtained using inverse of Laplace transformation of advection-dispersion 

transport equation. The solution was very useful in verifying the numerical accuracy of 

comprehensive finite element solutions, and for investigation some aspects of scale dependency 

of dispersion coefficient. 

 

Dykhuizen (1991) had developed asymptotic solutions for solute transport in dual porosity 
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model. A general equation is derived from porosity models and solution is obtained by 

analysing moments of particular solution. It is found that dual velocity model is generally 

governed by same set of equations. Temporal behaviour of various moments of solution 

equation is used to investigate effective velocity and dispersion coefficient. It is also observed 

that the asymptotic solution is found to valid for a very large time and for a particular greater 

distance. Early time behaviour can be predicted by more velocity model region while 

neglecting the slower velocity model region. The importance of dual porosity model 

complexity is important in the intermediate time interval only. 

 

Sternberg and Greenkorn (1994) had performed several experiments in linear, homogeneous 

and non-uniform porous medium using spherical glass bed in Lucite columns. The experiments 

were similar to Taylor (1953) except different combinations of columns were joined in series in 

order to create a series of layered heterogeneous porous media. The effect of porosity, 

permeability, velocity, length and column position are tried to investigate the dispersion values 

obtained from homogeneous porous medium, whether can predict the dispersion in 

heterogeneous medium or not. It is found that averaging the dispersivity in serial system for 

predicting the accurate value of dispersivity is not enough for heterogeneous medium.  General 

linear model of variables showed that for layered homogeneous-heterogeneous porous material 

advective velocity, permeability, kinematic viscosity, length and layer order play significant 

role is prediction of dispersion values. Prediction of dispersion based on average of dispersion 

coefficient, Peclet number and Reynolds number of homogeneous porous medium were found 

inappropriate. By this experiment it is clear that extrapolation of dispersion from one media to 

similar other one on the basis of permeability is not possible. 

 

Aral and Liao (1996) had developed analytical solution for time dependent dispersion 

coefficient of two-dimensional advection-dispersion equations for infinite aquifer domain. 

Constant, linear, asymptotic and exponential function of dispersivity is considered for pulse and 

continues contaminant point source boundary conditions. In this solution dispersivity is 

assumed to be the function of travel time from its source under steady and uniform flow field 

conditions. It is found that analytically point pulse initial distribution and instantaneous pulse 

injection tend towards similar solutions. It was also observed that dispersivity can be analysed 

in two parts firstly at small time scale where it continues to grow with position and time 
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secondly at larger time when it attains a maximum value and becomes constant. This behaviour 

of dispersivity is found to influence longitudinal and transverse dispersivity at small times. It is 

also noticed that for observing a non-expansion and constant behaviour of dispersivity, a very 

large time scale will be needed. That is why the dispersivity is considered pre-asymptotic 

because practically it is impossible for dispersivity to achieve infinite time step. It is found that 

increase in dispersion is significant in longitudinal direction as compared to transverse direction 

during pre-asymptotic time period. It is observed from analytical solution that time dependent 

nature of dispersion equation do not influence solute transport pattern significantly. Presented 

solution is found useful in case of 2-D domains with scale dependent dispersion function. 

Analytical solution is very useful in evaluating field problem under influence of scale 

dependent dispersion. 

 

Gerke and van Genuchten (1996) had  analysed dual porosity model of first order by 

introducing geometry dependent coefficient β in transport equation. This term represents 

macroscopically size and shape of particles of soil and rock matrix. First order model is used 

for calculating the values of β by a direct matching with the solution of the diffusion model 

under standard boundary condition. It is seen that dual porosity model generally required 

geometrical information of soil or rock matrix and the geometry information of interface area 

through which solute will be exchanged. Naturally porous media consists of combination of 

matrix blocks of different size and shape which leads to very complex interfacial geometries. 

An expression is derived to appropriately describe the geometrical structure of dual porosity 

medium. Preferential flow in dual porosity system of various matrix geometries is simulated 

using a first order type water transfer term. Comparison of simulation with two dimensional 

reference model showed that proposed approach has limitation due to simplifying highly 

nonlinear transfer processes in an approximate first order rate model. Mass transfer coefficient 

is found sensitive to the geometry matrix pore system. Proposed approach provides a good 

approximation of more realistic two dimensional representations of mass transfer processes. 

This approach provides the capability to measure the porous material properties in dual 

porosity model. This model is not limited to homogeneous matrix formation; it can be explored 

for other combinations as well.  

 

Hunt (1998) had obtained solution for advection-dispersion equation with distance dependent 
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dispersion coefficient for unsteady flow under instantaneous source and for steady flow 

condition for constant contaminant source boundary condition. The solution was presented 

ranging from one-dimensional to three-dimensional and compared with corresponding standard 

solution of constant dispersivity. The comparison of both the solutions showed that constant 

dispersivity calculated by considering maximum flow length over estimates the dispersion of 

smaller travel distance and underestimates at the point of maximum dispersion. It is also found 

that with constant dispersion function the point of maximum concentration reaches slightly 

earlier as compared to scale dependent dispersivity for instantaneous source input. 

Concentrations are found exactly zero at upstream in case of scale dependent dispersivity 

whereas a finite concentration appeared at the same point when considered constant 

dispersivity. The comparison clearly showed the advantages of scale dependent dispersivity 

over constant dispersivity and for any flow length scale dependent dispersivity provides better 

solution. 

 

Matrix diffusion is an important transport process in subsurface soil media of low hydraulic 

conductivity to predict transport of contaminant. Boving and Grathwohl (2001) studied the 

diffusive transport in different geological media such as limestone and sandstone rocks. Pung 

and Hunt (2001) developed a one-dimensional analytical solution of transport equation with a 

dispersion coefficient linearly increasing with distance. Hunt (2002) had suggested single 

perturbation approximation approach for the solute transport through porous media including 

scale dependent dispersivity. Author presented comparison of exact and approximate solution 

for a pit of source located in uniform flow region. The advection-dispersion equation is solved 

in two dimensions for dispersion. Dispersivity is assumed to be linearly increasing with an 

increase in distance from the pit to downstream. Comparison of exact solution with 

approximate perturbation solution shows that former solution has acceptable accuracy for field 

problem.  

 

Srivastava et al. (2002) had investigated the effect of rate-limited sorption, first order mass 

transfer and first order transformation on one-dimensional solute transport through 

heterogeneous porous medium. Analytical solution is derived using an exponentially distance 

dependent dispersivity function for spatial moment of solute in solution phase. Spatial moments 

are calculated for solute present in the advective region only. A comparative study is also 
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performed for observed temporal moments that whether simple ADR model or MPNE model 

are suitable and more appropriate. It is found that heterogeneous porous medium can be 

satisfactorily represented by increasing macrodispersivity value. It is also observed that 

heterogeneity and nonideality both contributes equally to second moments and third moment is 

largely contributed by heterogeneity of the medium. 

 

Chen et al. (2003) had presented mathematical model to describe transport of contaminant in 

cylindrical coordinate system with scale dependent dispersion coefficient. Dispersion is 

assumed to be increasing linearly with distance from input source. Scale dependent advection-

dispersion equation is solved in a radially convergent flow field using Laplace transform power 

series technique with variable coefficient. The accuracy of proposed analytical solution has 

been verified by employing Laplace transform finite difference solution of transport equation. 

A comparison has been done of two solution obtained using constant dispersivity and scale 

dependent dispersion coefficient. The comparison of breakthrough curves showed that rising 

limbs and spreading tail were found similar but intermediate portion showed small differences. 

Proposed solution is used for simulating field tracer test and found following the linear function 

of dispersivity. It is also observed that constant dispersion assumption underestimates the 

dispersivity values whereas scale dependent dispersivity estimates the near about accurate 

value. It is suggested that dispersivity/distance ratio derived from constant dispersion for a 

radially convergent tracer test should be multiplied by 4 for a close approximation in scale 

dependent dispersion.  

 

Furman et al. (2003) had proposed Laplace-transform analytic element method (LT-AEM) for 

the solution of transient flow problems in porous media. Analytic element method (AEM) is 

used to solve the resultant time-independent modified Helmholtz equation, and the solution is 

inverted numerically back into the time domain. It is especially well suited for problems in 

which a solution is required in limited number of points in space time, and for problems 

involving materials with sharply contrasting hydraulic properties. The solution is general, 

retaining the mathematical elegance (in the Laplace domain) and computational efficiency of 

the AEM.  They illustrated the method by solving the problem of transient flow to a well 

through a uniform confined aquifer with a circular inclusion of contrasting hydraulic 

conductivity and speicific storage.Rao et al. (2004) studied an approach for planning 
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groundwater development to control seawater intrusion by using barrier extraction wells in 

coastal aquifer. 

 

Huang et al. (2006) had analysed laboratory experimental data of conservative solute transport 

obtained in earlier experiments.. Parameter estimations for Fractional advection dispersion 

equation (FADE) is developed using semi analytical solution of FADE to the measured data of 

different transport scales. Semi analytical solution is used for estimation of input parameters for 

FADE for steady state flow conditions and step input of solute. Analysis of data set obtained 

from a 12.5 m long homogeneous and heterogeneous soil column showed scale dependency of 

dispersion coefficient. Dispersion is found to be increasing with distance in both homogeneous 

and heterogeneous soil column but spreading was more in heterogeneous soil comparatively. It 

is found that for homogeneous soil an exponential relation between dispersion coefficient and 

distance and for heterogeneous soil power function showed best results. Three kinds of FADE 

models were used for depicting the transport in homogeneous and heterogeneous soil medium. 

In homogeneous soil all three model found in good agreement with scale dependent dispersion 

but for heterogeneous soil agreement was less satisfactory. 

 

Chen et al. (2008a) used analytical power series solution for transport equation considering 

hyperbolic asymptotic distance-dependent dispersivity. Chen et al. (2008b) had presented 

analytical technique to solve two-dimensional advection-dispersion equation with dispersivity 

as a linear function of distance. Analytical solution for two-dimensional advection-dispersion 

equation. Power series method is used to obtain the solution in addition to Laplace 

transformation and finite Fourier cosine transform. Longitudinal and transverse dispersivity 

both considered being linearly dependent function of distance. Power series method is found to 

be effective for solving advection-dispersion equation with distance dependent dispersivity 

function in two dimensions, incorporating changes in transport coefficient.  

 

Gao et al. (2010) had presented mobile immobile model for depicting the processes included in 

solute transport through heterogeneous porous medium. The proposed model includes scale 

dependent dispersion coefficient. Linear and exponential dependencies of dispersivity are 

considered in the proposed model. First order degradation and linear adsorption are also 

included in model. The transport equation is solved in Laplace domain by applying de Hoog 
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techniques for Laplace inversion. An arithmetic mean of distance dependent dispersivity is 

calculated and it was found that at medium heterogeneity MIM produced comparable results as 

with scale dependent dispersivity function. In case of strongly heterogeneous porous medium 

discrepancies are found due to accumulated effect of scale dependency of dispersivity. It was 

found that constant and linear dependent dispersivity used in MIM model gives lesser 

satisfactory results as compared to exponential dependent dispersivity. Experimental results of 

1250cm heterogeneous soil column experiments are represented accurately by including 

exponential distance dependent dispersivity in MIM model. 

 

Gao et al. (2012) had combined the mobile–immobile model (MIM) with an asymptotic 

dispersivity function of travel distance to embrace the concept of scale-dependent dispersion 

during solute transport in finite heterogeneous porous media. The proposed MIM with an 

asymptotic scale-dependent dispersivity (MIMA) was analytically solved by the Laplace 

transform technique and the extended power series technique. The semi-analytical solution of 

MIMA compared with the Laplace transformed finite-difference numerical solution, and they 

are agreed well with each other. The applicability of MIMA was tested with simulation of 

experimental solute concentration data through 1250cm long heterogeneous soil column.     

Simulation results were indicated that MIMC could not adequately describe solute transport in 

the large heterogeneous soil column and it overestimated solute transport dispersion at 

foregoing distances away from 1200 cm. In contrast to MIMC, the simulation results of MIMA 

were in satisfactory agreement with the measured ones as MIMA considered the asymptotic 

characteristic of increased dispersion in porous media. These results indicate that MIMA was 

efficient to capture the evolution of scale-dependent dispersion behavior, and it was useful for 

describing solute transport in heterogeneous porous media. 

 

Sharma and Srivastava (2012) had investigated the effect of heterogeneity on spatial 

concentration profile by employing advection dispersion equation incorporating terms for 

physical and chemical non-equilibrium. Numerical solution for spatial moments of the 

advection dispersion equation adding exponential dispersivity function is presented. Implicit 

finite difference methodology is used for obtaining numerical solution of the ADE for reactive 

solute. Linear distance-dependent and exponential time dependent dispersion coefficients are 

considered for observing the comparison on breakthrough curves. It is found in the 
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concentration profile that time dependent dispersivity simulates a lower peak as compared to 

distance dependent dispersivity. It was also observed that present numerical solution is much 

simpler than stochastic analytical method and more efficient than solution given by Monte 

Carlo method. It was also noted that obtained solution is much simpler and reproduces the 

results at same level accuracy as by rigorous complex computational model. The only 

limitation observed in the model is in the estimation of uncertainty analysis of field data 

including single realization. Leij et al. (2012) presented a dual-advection dispersion equation to 

describe one-dimensional solute transport in dual-permeability medium with different flow 

rates and linear solute transfer between two domains. They derived an analytical solution using 

Laplace transform method with time and modal decomposition based on matrix 

diagonalization, and assuming the same dispersivity for both domains. Meenal and Eldho 

(2013) used a Mesh free point collocation method (PCM) with radial basis function (RBF) to 

study flow and contaminant transport simulation and decontamination in porous media. They 

studied the effects of decontamination strategies such as flushing and pumping effects with a 

total dissolved solids contaminated aquifer. Morales et al (2014) conducted experiments to 

study the behavior of pathogen through porous media and their results showed that the early 

arrival of breakthrough curve of bacteria and virus indicated the presence of preferential flow. 

Boving (2014) studied the contamination of groundwater with hydrocarbons methyl ter-butyl 

ether, which occurs from leaking of gas stations. Kuranchie et al (2015) conducted experiment 

to study electrical resistivity of iron ore of mine tailing. Further, Sciortino et al. (2015) 

developed both numerical and analytical solutions of transport equation for solute in dual-

permeability media considering the two domains having different velocities and dispersivities.  

Sharma et al. (2016) conducted mobile-immobile soil column experiments to investigate the 

behavior of concentration profile for both conservative and non-conservative tracer.  

 

2.7 Summary 

Several studies are done on emphasising the nonideal transport behaviour of solute through 

porous medium. It is also found that solute transport through heterogeneous porous medium is 

mainly influenced by physical and chemical non-equilibrium.  Inclusion of physical and 

chemical non-equilibrium in the contaminant transport model developed for porous medium, 

explores the opportunity for the process level investigation. Further the scale dependent 
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behaviour of dispersivity attracted lots of research; different scale dependent functions of 

dispersivity (linear, exponential and asymptotic) have been included in several studies.   

From above discussion, it is clear that analytical solution of multiprocess non-equilibrium 

(MPNE) transport equations is not developed using asymptotic dispersion model. There is a 

need of study, to develop an analytical solution of non-equilibrium transport model with 

asymptotic dependent dispersion coefficient. The inclusion of scale dependent dispersivity in 

MPNE model is expected to enhance the prediction of solute transport at lab and field scale. It 

is also found that not much of literature is available on the experimental investigation of 

reactive solute transport through porous medium with large travel distance. Therefore a study 

of reactive solute transport through porous medium is needed, using MPNE with scale 

dependent dispersivity function. 
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3 Chapter 3 

 

 

DEVELOPMENT OF SEMI-ANALYTICAL SOLUTION AND 

APPLICATION 
 

3.1  General 

 

In this chapter, an attempt has been made to describe the conceptual model of multiprocess 

non-equilibrium transport model, which was given by Brusseau et al. (1992). However, many 

experimental, theoretical and numerical studies have been performed to understand the physical 

process of solutes transport in porous media. A number of approaches towards the solution of 

flow and transport equations have been proposed. Analytical solutions have been developed to 

obtain the concentration of solutes in aqueous phase for some simple cases. A brief description 

of the conceptual model and the governing equations are used in the present study. Afterwards, 

analytical solution of multi process non-equilibrium transport equations with asymptotic 

dispersion function is developed.  The developed model is used to simulate observed 

breakthrough curves for both non-reactive and reactive solutes through long soil column 

experiments. 

 

3.2 Conceptual model of non-equilibrium transport 

 

Early studies on the transport process in porous media modelled only the advection and 

diffusion/dispersion processes. Also, the porous medium was typically idealized as 

homogeneous. For these models, the governing equations were simple enough to be solved 

analytically. As more and more knowledge of the heterogeneity of porous media and the 

reactivity of the solutes was gained, the conceptual model and the governing equations tended 

towards more complexity. Obviously, it is almost impossible to exactly represent the transport 

process by a conceptual model. However, it is now well established that a realistic 

conceptualization of the transport process for typically encountered pollutants in the porous 

media must account for multiple reactions including sorption and transformation. In this study 
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we have used a state of the art of the conceptual model, which accounts for multiple sources of 

non-equilibrium and transformation. Two types of processes leading to non-equilibrium during 

transport of a reactive solute have been suggested. First is the transport-related non-equilibrium 

(also known as physical non-equilibrium) and second is the sorption-related non-equilibrium 

(chemical non-equilibrium). Physical non-equilibrium is generally attributed to the presence of 

regions within the porous medium in which there is minimum advective flow and has been 

observed in aggregated soils and in a heterogeneous porous media. This affects the transport of 

both non-sorbing and sorbing solutes. Chemical non-equilibrium, on the other hand, is typically 

caused by intrasorbent diffusion and by rate-limited interactions between the solute and specific 

sorption sites of the sorbent. Non-equilibrium resulting from intrasorbent diffusion involves the 

diffusive mass transfer of sorbent within the sorbent matrix. Both physical non-equilibrium and 

intrasorbent diffusion involve a diffusive mass transfer mechanism. However, these are 

considered to be different because physical non-equilibrium is a pore diffusive process and 

intrasorbent diffusion is similar to a solid diffusion process. In contrast to transport-related non-

equilibrium, sorption-related non-equilibrium influences only sorbing-solutes. 

 

Most early studies conceptually model non-equilibrium by using a bicontinuum approach, in 

which the porous medium is divided into two domains. During applications of bicontinuum 

models, it is assumed that a single process is responsible for the non-equilibrium. Brusseau et 

al. (1989) developed a conceptual model based on multiple processes of non-equilibrium 

(MPNE) to simulate solute transport in porous media where both transport-related and sorption-

related non-equilibrium processes occur. This model was further extended (Brusseau et al. 

1992) to include transformation reactions, which were described as a first order process. Since 

this model is central to the work performed in this thesis, a detailed description of the model is 

given in this section.  

 

The conceptual model for multiprocess non-equilibrium with transformation (MPNET) divides 

the porous media into two solution phases and four sorption domains as shown in Figure 3.1. 

The two solution phases are characterized by widely different flow velocities and are termed 

advective (or mobile) and non-advective (or immobile) regions. Each region comprises two 

sorption domains, one where instantaneous sorption occurs (domains 1 and 3) and the other 

where sorption is rate-limited (domains 2 and 4). The model is formulated by linking 1 and 2 in 
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parallel to the advective region and domains 3 and 4 in parallel to the non-advective region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The conceptual model for the multiprocess non-equilibrium with transformation 

model of reactive transport through porous medium.   

 

The instantaneous transfer of solute occurs between the interaggregate (advective) region and 

the surface of the organic matter situated on external surfaces of the aggregates (sorption 

domain 1). Diffusive mass transfer within the matrix of the organic matter couples sorption 

domain 1 and 2. The advective and non-advective (intraaggregate) regions are coupled with 

diffusive mass transfer within the intraaggregate pores. Transfer between the non-advective 

region and sorption domain 3 is instantaneous as it was between the advective region and 

domain 1. The coupling between sorption domains 3 and 4 is similar to that between domains 1 

and 2. Transformation is assumed to take place in all the domains and regions. 

Advective 
(mobile) 
solution 
phase 

Non-advective 
(immobile) 

solution 
phase 

 
Instantaneous 
Sorbed-Phase 

(1) 

 
Rate-Limited 
Sorbed-Phase 

(2) 

 
Instantaneous 
Sorbed-Phase 

(3) 

 
Rate-Limited 
Sorbed-Phase 

(4) 

α  

aK  

2ak

1ak  

1nk  

2nk

1nµ  

2aµ  

2nµ  

aµ  

nµ  

nK  

1aµ



 34 

3.3 Governing Equations 

Based on this conceptual model, Brusseau et al. (1992) developed general transport equations 

that account for both the physical and chemical non-equilibrium for reactive solute transport 

through porous media. The advective-dispersive-reactive transport equation for transport of 

solute through the advective region of a porous media can be written as: 
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The mass balance for the non-advective region can be described by the following equation: 

 

( ) ( ) ( )

22

1
2

)1(

)1()1()1(

nn

nnnnnnna
nn

nnn

Sf

CKFfCCw
t

Sf
t

CKFf

ρµ

ρµθµρρθ

−

−−+−−=
∂
∂

−+
∂
∂

−+
        (3.2) 

 

where, x is the spatial coordinate (L), aθ is the fractional volumetric water content of the 

advective region (L3/L3), nθ is the fractional volumetric water content of the non-advective 

region (L3/L3), f is the mass fraction of sorbent constituting the advective region, ρ is the bulk 

density of the porous medium (ML-3), aF and nF are the mass fraction of sorbent for which 

sorption is essentially instantaneous, aK and nK are the equilibrium sorption coefficient for 

advective and non-advective region (L3M-1), aC is the concentration of solute in the solution 

phase for advective region (ML-3), nC is the concentration of solute in solution phase for non-

advective region (ML-3), t  is the time (T), 2aS and 2nS are the rate-limited sorbed-phase 

concentration in advective and non-advective regions, respectively (MM-1), q  is the specific 

discharge (LT-1), w is the first-order coefficient for mass transfer between the advective and 

non-advective regions (T-1), aµ and nµ are the first-order transformation coefficient for the 

solution phase in advective and non-advective regions, 1aµ and 1nµ are the transformation 

coefficients (T-1) for the instantaneous sorbed-phase of advective and non-advective regions, 

respectively, and 2aµ and 2nµ are the transformation coefficients for rate-limited sorbed-phase 
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domains of advective and non-advective regions, respectively (T-1). Dynamics of sorption and 

transformation for the rate-limited domains are described by: 

 

[ ] 2222
2 )1( aaaaaaa

a SSCKFk
t

S µ−−−=
∂
∂

               (3.3) 

[ ] 2222
2 )1( nnnnnnn

n SSCKFk
t

S µ−−−=
∂
∂

                          (3.4) 

 

where ka2 and kn2 are the first-order reverse sorption rate coefficients (T-1) for the advective and 

non-advective regions, respectively.  

 

It is generally accepted that the solute transport can be well described by the advection 

dispersion equation for laboratory column packed with homogeneous soils (Bear 1972).  

However, in heterogeneous soils the measured breakthrough curves usually show early arrival 

and long tailing due to the inherent heterogeneity of natural soils at various scales (Berkowitz 

et al., 2006). Such phenomena can be found during solute transport in repacked soil column. It 

is also recognized that the estimated dispersivity is not constant but varies with spatial scales 

(Gelhar et al., 1992).  Even if the field is macroscopically homogeneous, the dispersion 

coefficient is not a constant from the beginning, but only after the tracer plume has been 

transported over a large enough domains, containing several correlation lengths (Dentz et al 

2011). Therefore, it is difficult for advection dispersion equation with a single set of parameters 

to predict breakthrough curves at different distances. Hence, asymptotic dispersivity function of 

travel distance is used to embrace the concept of scale-dependent dispersion during solute 

transport in heterogeneous media. 

 

The hydrodynamic dispersion coefficient D(x) is a function of distance in the porous media 

(L2T-1). It is commonly expressed as follows without consideration of molecular diffusion 

(Bear, 1972): 

 

  ( ) ( ) aVxxD α=                       (3.5) 
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where, ( )xα  is the dispersivity (L) and aa qV θ/=  is the pore water velocity in advective region. 

It is observed that the dispersivity generally increases with transport distance in the subsurface 

groundwater systems. However, an asymptotic dispersivity is considered to account for the 

heterogeneity of the porous media. For this case, the dispersivity is assumed to initially increase 

with travel distance and approach an asymptotic value eventually.  

 

Asymptotic distance dependent dispersion coefficient is given by (Picken and Grisak 1981b): 

 

 ( ) aV
bx

baxD 
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+
−= 1                                         (3.6)  

 

where a is an asymptotic dispersivity value (L) and b is a characteristic distance (L) which 

determine the travel distance for the dispersivity to reach half of the asymptotic value. Figure 

3.2 shows the spatial variation of the asymptotic dispersion function equal to the ratio between 

distance dependent dispersion coefficient and asymptotic dispersivity for different values of b. 

The values of b depend on the extent of the pre-asymptotic zone. For a smaller value of b the 

dispersivity will approach the asymptotic value faster. The value b equal to zero indicates the 

constant dispersion. 
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Figure 3.2 Variation of relative dispersivity with different values of characteristic distance (b). 
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3.4  Initial and Boundary conditions 

The initial solute concentrations are assumed to be uniform with iC  for the entire domain. It 

assumed that the initial rate limited sorbed phase concentrations iS  (at time t= 0) are same in 

both the mobile and immobile regions of the porous medium. The zero gradient boundary 

condition is imposed at the exit, which can satisfy the mass balance requirement and ensure the 

continuity in concentration at x=L. The initial and the exit boundary conditions can be written 

as: 

 

( ) ( ) ina CxCxC == 0,0,         Lx ≤≤0                                   (3.7a) 

( ) 0,
=

∂
∂

x
tLCa              ∞≤≤ t0                            (3.7b) 

 

Constant concentration condition at inlet can be written as: 

 

( ) 0,0 CtCa =      ∞≤≤ t0                            (3.7c) 

 

where 0C is the constant source concentration (ML-3). The value of dispersion coefficient, D(x) 

is equal to zero at x=0. 

3.5 Semi-analytical solution 

There are several modeling techniques ranging from simple analytical, semi-analytical 

solutions and too complex numerical codes which were developed in recent years. The 

procedure of derivation of the semi-analytical model is described below.   

Taking Laplace transform of Equation (3.3) with respect to time, t 
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After simplifying,  
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Similarly, Laplace transform of Equation (3.4) can be written in simplified form as: 
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Laplace transform of Equation (3.2) can be written as: 
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Substituting the value of 2nS  from Equation (3.10) into Equation (3.11) and after simplifying 

following expression can be obtained as: 
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where coefficients are: 

 

2221 )1)(1()1()( nnnnnnlnnnnn kKFfKFfwkRA ρρµθµµ −−+−++++=                    (3.13a) 

2222 )1)(1())(()1(( nnnnnnnnlnn kKFfkKFfwA ρµρµθµ −−++−++=                      (3.13b) 

aaaa KFfR ρθ +=                         (3.13c) 

( ) nnnn KFfR ρθ −+= 1                       (3.13d) 

 

Taking Laplace-transform of Equation (3.1) and after simplifying: 
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And after substituting the value of nC  from Equation (3.12) and 2aS  from Equation (3.9) into 

above Equation (3.14) and simplified form can be written as:  
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Substituting the value of aV
bx

baxD 







+
−= 1)(  into Equation (3.15) and yields the following 

final simplified equation: 
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Defining, 
3

4

A
ACY a −= , Equation 3.17 can be  changed to the following equation: 
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where,    aA θψ /3=  
The solution of Equation (3.18) can be described by power series method with undetermined 

coefficients as (Kreyszig, 1999; Chen et al., 2008a) 
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where the exponent r is a constant and it can be determined using an indicial equation. 

Substituting Equation (3.19) together with its term-wise differentiation into Equation (3.18) and 

following equation can be obtained: 
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Rearranging the terms of Equation (3.20) can be related as:- 
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Equation (3.21) works for any given value of x. The sum of coefficient of power 𝑥𝑥𝑚𝑚+𝑟𝑟−1 on the 

left hand side of Equation (3.21) should be zero (Chen et al., 2008a). For m=0, it gives 

following equation: 
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As 0a  cannot be equal to zero, the indicial equation of Equation (3.22) can be written as: 

 

 02 =− brar                                                                                     (3.23) 

 

The two roots of equation (3.23) are r=0 and r=b/a, respectively. Using equation (3.21) and for 

m=1,2,3,....... following equations can be obtained: 
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 (Equation (3.24c) can be used to obtain the value of m=3,4,5,........). 

 

Introducing the coefficients of equation (3.24a-c) into Equation (3.19) with different roots, i.e., 

0=r  and abr /= , following two linearly independent solutions   ( )pxY ,1  and ( )pxY ,2  can be 

obtained of Equation (3.18) (Chen et al., 2008). Therefore, the general solution of Equation 

(3.18) can be expressed in terms of ( )pxY ,1  and ( )pxY ,2 . 
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where 1B  and 2B  are two coefficients which can be determined using two prescribed boundary 

conditions. The value of 1B  and 2B can be obtained in terms of the inlet and exit boundary 

conditions. The solution of MPNE in the Laplace domain can be expressed as: 
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pxYBCa ++=                  (3.28) 

 

The value of 1B  and 2B  can be obtained in terms of inlet and exit boundary condition using 

( ) 1,0 01 === aPxY  and ( ) 0,02 == PxY . The following expressions can be written as: 
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In this study, the value of the coefficient a0 is considered as 1. After derived solutions in terms 

of Laplace domain, numerical Laplace inversion method is used to obtain in real time domain. 

In this paper, the numerical inversion of Laplace transform is done by de Hoog algorithm (de 

Hoog et al., 1982). The de Hoog’s algorithm has been widely applied on numerous flow and 

transport problems and has been found to perform satisfactory on both advection and dispersion 

dominated cases (Moench, 1991; Park and Zhan, 2003; and Furman and Neuman, 2003; Gao et 

al., 2010). The de Hoog’s algorithm of the inverse Laplace transform approximates in the form 

of a Fourier series. 
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where T is the period of approximating the Fourier series and the value is taken as 𝑇𝑇 =

0.80t  (Neviile et al., 2000), a is related to the the singularities in the transformed solution 

which is estimated as: 

𝑎𝑎 = 𝛼𝛼 − ln⁡(𝐸𝐸𝑟𝑟)
2𝑇𝑇

                                                                          (3.31) 

The value of  𝛼𝛼 = 0,   𝐸𝐸𝑟𝑟 = 0.001 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀 = 7  is taken as suggested by de Hoog et al. (1982).                      

3.6 Validation of the semi-analytical solution 

The analytical solution for multiprocess non-equilibrium (MPNE) transport equation is not 

available in the literature for asymptotic dispersivity. Hence, present semi-analytical solution of 

MPNE model is validated for simplified case of mobile immobile (MIM) model with 

asymptotic dispersivity of Gao et al. (2012). In the comparison cases, adsorption of the solute is 

not considered and the initial concentration in the medium is taken equal to zero. The length of 

finite system is taken as 10 m. The flow rate (q) is 0.4 m/day. The water content of the medium 

system is taken to be θ =0.4 and water content in the mobile region equal to aθ =0.3 and in 

immobile region is nθ =0.1. The value of mass transfer coefficient (w) is 0.01 per day. The 
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comparison tests are conducted under various combinations of a and b values which are key 

parameters. Figure 3.3 shows the comparison of concentration profile obtained at 10 m from 

present semi-analytical solution and with different values of a (a=2m, 4 m, 6 m and 10 m) and 

a fixed value of b=10 m.  
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Figure 3.3 Comparison of the concentration profile at 10 m obtained from semi-analytical 

solution with different values of ‘a’ for a fixed value of ‘b’ equal to 10m.  
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Figure 3.4 Comparison of the concentration profile at 10 m obtained from semi-analytical 

solution with different values of ‘b’ for a fixed value of ‘a’ equal to 10m. 
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Similar, comparison results are shown in Figure 3.4 with different values of b (b = 2 m, 4 m, 8 

m) and a fixed value of a = 10 m. Comparison results between present solution as compared 

with the analytical solution gives very good match. 
 

3.7 Application of model 

3.7.1 Solute transport Experiments in long soil column 

 

For applicability of developed model, laboratory experiments were conducted on a 1500 cm 

long horizontally placed heterogeneous soil column. Figure 3.5 represents the line diagram of 

soil column experiments in the lab and also  actual photograph of experimental model is shown 

in Figure 3.6. 

 
Figure 3.5 Line diagram of experimental set-up  filled with mixed soils in long horizontal 

column. 

 

 
 

Figure 3.6 Photograph of experimental set-up for long horizontal column. 
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Sodium chloride and sodium fluoride were used as non-reactive and reactive tracers in the 

experiments. A horizontally placed column made-up of acrylic pipe with size of 6 mm 

thickness, having 15 cm diameter and 1500 cm long was considered. The soil column was 

packed with soil mixtures of natural soil, gravel, fine sand and coarse sand in equal proportion 

by weight. The mean particle size (D50) of natural soil is 0.33 mm, gravel is 6 mm, fine sand is 

0.75 mm and coarse sand is 1.1 mm. Figure 3.7 represents the grain size distribution curve for 

mixed soil media used in the experiment. The mixed soil had a median size, D50=0.9 mm, 

D60=1.1 mm, D30= 0.33 mm, D10=0.11 mm. The dry bulk density of mixed soil was found to be 

equal to 1.72 g/cm3.  
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Figure 3.7 Grain size distribution curve of mix soil media. 

 

Prior to filing, the soil material was cleaned, washed and dried to ensure that the material free 

from organic matters. The soil column was packed with mixture of materials in layer by layer 

to get the uniform density throughout the column length. During packing, piezometers were 

installed laterally at 100 cm intervals in the center along the length of column. The horizontally 

placed soil column was fully saturated slowly with tap water for three to four days, and the 

steady-state water flow condition was established by using peristaltic pump. The soil column 

was saturated slowly from inlet of the soil column with deaired tap water during start of the 

solute transport experiment. Thus, entrapped air in the soil column was removed. A peristaltic 

pump is used to obtain a steady saturated flow in the soil column. Sodium chloride (NaCl) 

solution with initial solute concentration of C0=60 mg/L was injected into the soil column 
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through peristaltic pump. Similarly fluoride with an initial solute concentration of 5 mg/L in 

solution phase was injected at inlet of soil column through peristaltic pump.  

 

A continuous concentration type input is maintained at the inlet of the column and solute 

concentration in solution phase was measured for different time interval at a distance of 300 

cm, 600 cm, 900 cm, 1200 cm and 1500 cm along the soil column and also pulse type boundary 

condition also done for Chloride at the above different distance in the analysis of Mobile 

Immobile model (MIM) of chapter 5 of this thesis. The samples at this interval were taken with 

sampling bottles after sampling and labeling the sample were tested for the reactive and non 

reactive solute of fluoride and chloride, respectively. Fluoride was tested with SPADNS 

method using the HACH DR 5000 spectrophotometer (APHA 1995) where as Chloride was 

done using Silver nitrate titration method as follows: 

i) Chloride 

The amount of chloride (conservative solute) present in water can be easily by titrating the 

given water sample with siliver nitrate solution. 

The silver nitrate reacts with chloride ion according to 1 mole of AGNO3 reacts with 1 

mole of chloride. The titrant concentration is generally 0.02M.Silver chloride is precipitated 

quantitatively, before red silver chromate is formed. 

The end of titration is indicated by formation of red silver chromate from excess silver 

nitrate the result is expressed in mg/L of chloride (with a molecular weight of 35.45 g/mol. 

The procedure is as follows;- 

1. Sodium chloride of 99.5% purity was used. 

2. 1 gm of sodium chloride was dissolved in 1 lit of water which introduces 0.60PPM 

Conc. 

3. Potassium chromate was used as indicator. 

4. For preparation of the titrant, 2.395 gm silver nitrate was dissolved. 

5. 50ml volume of samples was taken in conical flask, then after 1 ml of potassium 

chromate indicator was mixed. 

6. Then the samples were titrated till the yellow colour turned in to brick red. 

7. The initial and the final reading was noted down and the concentration was calculated 

by the following formula: 

Mg Cl-/L= (A-B) xN x 35.450 x 1000/ (ml sample)                                               (3.35) 
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Where: 

A= ml titration of sample 

B = ml titration for blank, and 

N= Normality of silver nitrate 

Mg NaCl=(mg Cl-/L) x 1.65                                                                                   (3.36) 

where, concentration units are in mg/l  

ii) Fluoride  

For the testing of the samples HACH DR5000 Spectrometer is used the methods for 

computing the concentration of the samples is as follows: 

1. Each of the 10ml sample was mixed with 2ml of SPADNS dye and provided 1 minute 

of reaction time. 

2. Then small Vials were filled with mixture and the absorbance of the sample is observed 

at 570 nm using the instrument. 

3. This absorbance was then converted into the concentration using standard concentration 

absorbance profile plotted for the range of 10 ppm. 

4. Before testing in spectrometer, all the samples were filtered with 0.45µm cellulose 

acetate syringe filter for avoiding any interference caused by turbidity or colloid 

particles. 

The estimated value of total volumetric water content, i.e., ( )na θθθ += of the soil media within 

the column was measured as 0.38, and the observed flow rate (q) at the outlet of the soil 

column was 0.326 cm/min. The computed value of bulk density ( ρ ) of the soil media was 

found to be equal to 1.74 g/cm3.  

3.7.2 Parameter estimation and simulation of experimental data of chloride 

 

The MPNE model is identical to MIM model for non-reactive transport through porous media. 

The breakthrough curves of Chloride were observed at 300 cm, 600 cm, 1200cm and 1500cm 

down gradient in the flow direction. These data of experimental breakthrough curves are 

simulated using mobile-immobile model with constant dispersivity (MIMC) and mobile-

immobile model with asymptotic dispersivity (MIMA). There are three parameters in MIMC 

model, i.e., ( aθ , w and D) and four parameters ( aθ , w, a  andb ) in MIMA. However, MIMC 

and MIMA models have similar mobile water fraction and mass transfer coefficient values. The 
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main difference between them was that MIMC has a constant dispersion coefficient in the 

mobile region, whereas the dispersivity in MIMA has an asymptotic distance–dependent 

function with parameters of a  and b . Thus, in the simulation process, the Levenberg-

Marquardt nonlinear least square optimization approach was firstly used to fit the breakthrough 

curve at 1500 cm with MIMC to determine the values of aθ , w and D. The fixed value of aθ  

and w, the other two parameters ( a  and b ) in MIMA are determined by fitting it with 

breakthrough curve at 1500 cm.  

 

Firstly, the experimental breakthrough curve of chloride obtained at 1500cm was fitted using 

MIMC model with constant dispersion model. Estimated value of dispersivity was found to be 

equal to 108.56 cm, the value of mass transfer coefficient, w=2.31E-05 min-1 and the value of 

water content in the mobile region was aθ =0.34. Other measured parameters were kept same as 

measured. Now the experimental BTC was simulated with constant and asymptotic distance- 

dependent dispersion models. The model parameters are estimated with optimization algorithm 

and their values were a =82.73 cm, b =148.21 cm for asymptotic distance-dependent model.  

The estimated model parameters for constant and asymptotic distance-dependent dispersion 

models are listed in Table 3.1. 

Table 3.1 Model parameters used for simulation of Chloride BTC. 

Parameters MIM model 

q (cm/min) 0.326 

θa 0.34 

θn 0.04 

w (min-1) 2.31E-05 

Dispersivity (cm) 108.56 

Asymptotic distance dependent coefficient,  
a=82.73 cm 

b=148.21 cm 

 

Figure 3.8a shows the fitted BTC at 1500 cm distance with constant (MIMC) and asymptotic 

distance dependent (MIMA) dispersion models. It can be seen that constant dispersion model 

tends to overestimate the BTC at small transport time. Also, the estimated value of coefficient 

of correlation r2=0.9754 and RMSE=0.0814 for MIMC model, and value r2=0.9965 and root 

mean square error, RMSE=0.02631 are obtained for the MIMA model. This value indicates that 
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the value of coefficient of correlation is higher for MIMA model as compared to MIMC model. 

Thus, indicating the unsuitability of MIMC to simulate the BTC as compared to MIMA model.  

These estimated model parameters for constant and asymptotic distance dependent are kept 

fixed and the experimental BTC at 300 cm, 600 cm and 1200cm are simulated using these 

parameters. The simulated experimental breakthrough curves at 300 cm, 600 cm and 1200 cm 

are shown in Figures 3.8b, 3.8c, 3.8d. The estimated value of coefficient of correlation and 

RMSE is shown in Table 3.2 for MIMC and MIMA dispersion models. It can be seen from 

Figures 3.8(b-d) that a higher arrival time is observed with constant dispersion model as 

compared to MIMA model. A much better fit was obtained with asymptotic distance dependent 

model as compared to constant dispersion model. 

Table 3.2 Goodness of fit values for Chloride BTC simulation using MIMC and MIMA models  

Distance MIMC MIMA 

(cm) r2 RMSE r2 RMSE 

1500 0.9754 0.0814 0.9965 0.0263 

1200 0.9881 0.0569 0.9988 0.0176 

600 0.9651 0.0832 0.9947 0.0259 

300 0.9895 0.0389 0.9897 0.0472 
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Figure 3.8a Simulation of observed experimental data of chloride at 1500 cm down gradient 

distance using MIMC and MIMA dispersion models.  
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Figure 3.8b  Simulation of observed experimental data of chloride at 1200 cm down gradient 

distance using MIMC and MIMA dispersion models.  
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Figure 3.8c  Simulation of observed experimental data of chloride at 600 cm down gradient 

distance using MIMC and MIMA dispersion models.  
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     Figure 3.8d  Simulation of observed experimental data of chloride at 300 cm down gradient 

distance using MIMC and MIMA dispersion models.  

 

3.7.3 Simulation of experimental breakthrough curves of fluoride data 

 

In order to simulate fluoride experimental observed breakthrough data, multiprocess non-

equilibrium (MPNE) transport model is used. For the constant and asymptotic distance- 

dependent dispersion models, the values of dispersion coefficient and advective region 

volumetric water content were taken same as estimated from chloride data simulation. 

However, the value of mass transfer coefficient (w) of fluoride is obtained by correcting the 

value of w=2.31E-05 min-1 from chloride by multiplying it with ratio of free water diffusion 

coefficient of fluoride and chloride. Thus the value of mass transfer coefficient for fluoride was 

obtained as equal to 1.66E-05 per min. Value of  f  was taken as ratio of advective and non-

advective porosity, i.e,  f = 0.89.  In order to estimate the transport parameters in case of 

reactive case, it is assumed that na FF = , na KK =  and 22 na kk = . The fluoride data at 1500 cm 

was first simulated using constant dispersion model. Transport parameters, i.e., aF , aK , 2ak  

were estimated using Levenberg Marquardt nonlinear least square optimization algorithm.  
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The estimated value of transport parameters are obtained as na FF = = 0.758; na KK =  = 0.021 

ml/g; and 22 na kk =  = 0.02 min-1. Using the above estimated parameters, Fluoride data were 

simulated at 1500 cm using multiprocess non-equilibrium constant dispersion (MPNEC) and 

asymptotic distance-dependent dispersion (MPNEA) models. Thus all the parameters of 

Fluoride data were independently simulated. The BTC curves for constant and asymptotic 

distance dependent models are shown in Figure 3.9a. 

 

It can be seen here that both models estimate BTC very well however, for asymptotic distance 

dependent models all the parameters were independently estimated. Using the estimated 

parameters for constant and asymptotic distance dependent dispersion models, BTC were 

simulated at 1200 cm 600 cm and 300 cm as shown in Figures 3.9b, 3.9c and 3.9d, 

respectively.  Goodness of fit values for Fluoride simulation using constant and asymptotic 

distance dependent model is shown in Table 3.3. The computed value of RMSE is smaller in 

case of MPNEA dispersion model as compared to MPNEC dispersion model. It can be seen 

that at 1500 cm and 1200 cm MPNEC model tends to overestimate the observed BTC. From 

the simulated results of measured concentration profile, it can be seen that the asymptotic 

distance dependent dispersion model fits the experimental data much better as compared to 

constant dispersion model. 

0 400 800 1200 1600 2000 2400 2800 3200
0.0

0.2

0.4

0.6

0.8

1.0
X=1500 cm

Re
lai

ve
 S

ol
ut

e C
on

ce
nt

ra
tio

n

Time (Minutes)

 Measured data of Fluoride
 MPNEC
 MPNEA

 
Figure 3.9a Simulation of observed experimental data of fluoride at 1500 cm using MPNEC 

and MPNEA dispersion models.  
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Figure 3.9b Simulation of observed experimental data of fluoride at 1200 cm using MPNEC 

and MPNEA models.  
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Figure 3.9c Simulation of observed experimental data of fluoride at 600 cm using MPNEC and 

MPNEA models.  
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Figure 3.9d Simulation of observed experimental data of fluoride at 300 cm using MPNEC and 

MPNEA models.  

 

 

Table 3.3: Goodness of fit values for Fluoride data simulation using MPNEC and MPNEA 

 

Distance MPNEC MPNEA 

(cm) r2 RMSE r2 RMSE 

1500 0.9897 0.0544 0.9982 0.0187 

1200 0.9892 0.0522 0.9988 0.0168 

600 0.9776 0.0654 0.9911 0.0369 

300 0.9862 0.0397 0.9804 0.0507 

 

3.8 Summary  

In this chapter, semi-analytical solution of multiprocess non-equilibrium transport model with 

an asymptotic distance-dependent dispersion (MPNEA) is developed for constant concentration 

type boundary condition. Analytical solution is derived in Laplace domain which has then 

inverted numerically by using de Hoog’s algorithm. To describe the features of multiprocess 
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non-equilibrium transport model, results of experimental breakthrough curves are compared 

between constant and asymptotic distance dependent dispersion models. The present semi-

analytical solution of MPNEA model was used to describe solute transport in 1500 cm long 

heterogeneous soil column. Transport parameters estimated at 1500 cm was used to simulate 

breakthrough curves at fore going distances. Results show that a better fit to the experimental 

BTC is observed when mass transfer between advective and non-advection region was 

considered. It was also observed that asymptotic distance-dependent dispersion model gave a 

good fit to the observed BTC as compared to constant dispersion model.  The simulation results 

demonstrated that multiprocess non-equilibrium with constant dispersion model could not 

adequately describe solute transport in large heterogeneous soil column and it overestimated 

solute transport dispersion at fore going distances away from 1500 cm long soil column. 

Finally, in this study the developed MPNEA model has been tested by solute transport in a 

laboratory long column experiment.  
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Chapter 4 
 

 

SIMULATION OF EXPERIMENTAL DATA USING NONLINEAR 

SORPTION MODEL 
 

4.1 General 
 
In this chapter, Freundlich and Langmuir isotherms are tested in case of fine sand and natural 

soil. Subsequently, implicit finite difference numerical technique is used to solve one-

dimensional advection-dispersion transport equation considering non-linear sorptions. 

Transport of fluoride through a porous bed has been simulated with linear and non-linear 

sorption models.   

 

4.2 Governing Equation  
 
For a homogeneous, isotropic, and fully saturated porous medium and with no dispersion in the 

transverse direction to the flow direction, one dimensional advective dispersive reactive 

transport equation including equilibrium sorption can be written as (Lapidus Amundson, 1952): 
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∂

2

2ρ           (4.1) 

 

where, C is the concentration of solute in the solution phase (M/L3); Q is the amount of mass 

sorbed per unit weight of soil solids (M/M); ρ  is the bulk density of soil media (M/L3), n is the 

porosity of the soil media; D is the hydrodynamic dispersion coefficient (L2/T),  which includes 

two components of the molecular and mechanical dispersion; v is pore water velocity along 

flow path (L/T); t is time (T); and x is distance along the flow path (L). In this study, an attempt 

is made to study the sorption characteristics of fluoride through both fine sand and natural soil. 

Subsequently, the use of these parameters has been investigated in simulating transport of 

fluoride through long soil column. 
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4.3 Material used and Soil Column experiment 
 
The natural soil used in this experiment has been obtained from 20 to 50 cm below the ground 

surface from IIT Roorkee campus. Both fine sand and natural soil are used for column 

experiment, respectively. Chloride and Fluoride are used as non-reactive and reactive tracers, 

respectively. It is also seen that the value of permeability is equal to 10-3 cm /min in case of fine 

sand and the value of permeability is equal to 10-4 cm /min in case of natural soil. It indicates 

that the fine sand is having higher permeability as compared to natural soil. The different tests 

were also performed in the laboratory to determine the particle size analysis, moisture content 

and bulk density of soil media as shown in Table 4.1.  

 

Table 4.1 Properties of fine sand and natural soil  

S. 

No. 

Soil 

media  

Particle size distribution 

(mm) 

 

Moisture 

content 

(%) 

Bulk 

density  

( ρ ) 

(g/cm3) 

Porosity         

(n) 

    (%) 

D10 CC CU 

1. Fine 

sand 

0.15 1.014 1.67 17.36 1.86 36 

2. Natural 

soil 

0.085 0.795 2.94 16.95 1.84 38 

4.4  Batch test 
 
Batch equilibrium tests were performed to determine sorption of reactive solute to solids in the 

soil. A number of solutions of the chemical were tested at varying concentrations. The solutions 

are then mixed with soil solids until the equilibrium degree of adsorption, if any, occurs. The 

concentrations of the chemical in the solutions are then measured and any decrease in mass of 

the chemicals in the solutions was assumed to be due to adsorption onto the soil solids, and 

sorbed concentrations can be calculated.  A relationship is then established between the 

equilibrium aqueous concentration of the chemical and the sorbed concentration of the 

chemical. 



 59 

4.5 Soil column Experiment 

The experimental set-up consists of a column, made-up of acrylic pipe of 600 cm long and it is 

placed horizontal. The acrylic pipe was of 6 mm thickness, internal dimension of 15 cm 

diameter and cross sectional area of 176.71 cm2. A schematic sketch of experimental set-up of 

long soil column has been shown in Figure 4.1. Oven-dry soil was carefully packed in small 

increments into column (acrylic pipe) avoiding any soil particle size segregation and kept 

constant density through out the column length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic diagram of one dimensional soil column experiment. 

 

Peristaltic pump was used to provide constant flow rate through soil column in order to 

maintain the same pore water velocity.  A porous plate was provided at the inlet in order to 

achieve a uniform entry of water into the soil column. Before the experiment, soil column was 

saturated with water for time duration of three days. The concentration of solute at different 

outlet of soil column was measured at various intervals of time. Conservative solute such as 

chloride has been passed in to the soil column in order to determine the dispersion coefficient.  

The Spadns method (Eaton et al. 1995) has been described to estimate fluoride concentration 

from collected sample at different outlets along the length of soil column. The prepared 
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solution was introduced into the soil column at a constant flux through peristaltic pump.  The 

effluent solutions were collected in fractions at different time of interval according to the 

suitability of the sample, so that minimum 300ml effluent can be obtained for proper execution 

of titration. At the end of soil column experiment, the soil was carefully extruded and the 

volume of water contained in soil was gravimetrically determined. The effluent solute 

concentrations were expressed as relative concentrations ( )0/C C , where C  and 0C  are solute 

concentration in an effluent fraction and input solution, respectively.  

 

4.6  Sorption isotherms  
 
The relationship between the amount of adsorbate on the adsorbent surface and the 

concentration in solution at given temperature is generally known as adsorption isotherm. 

Freundlich proposed an empirical formula which describes the adsorption isotherm 

(Freundlich, 1906). Afterwards, Langmuir proposed a hypothesis for monolayer molecular 

adsorption (Langmuir, 1916). Also, it is seen that the many solute transport models are based 

on both linear and nonlinear sorption models. Therefore, sorption isotherm equation for the 

case of linear, Freundlich and Langmuir are described below: 

4.6.1  Linear sorption 
 
In case of linear equilibrium isotherm, it is assumed that the sorbed phase concentration is 

directly proportional to solution phase solute concentration.  Based on this assumption, the 

linear isotherm can be represented as: 

 

  CKdQ =             (4.2) 

 

Using Equation (4.2) 
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Substituting Equation (4.3) into the Equation (4.1) and simplifying, following equation can be 

obtained: 
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Or in general form: 
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R d1
ρ is known as the retardation factor and it retards the transport of adsorbed 

species relative to the advection front; Kd represents the distribution coefficient (L/M).  

 

4.6.2 Nonlinear sorption 

 

It is seen that many natural systems represent non-linear sorption behavior which can be 

described by the Freundlich or Langmuir isotherm models. However, on the basis of adsorption 

process on a heterogeneous surface, Freundlich equation can be written as (Freundlich, 1906; 

Nandi et al. 2009): 

 

 b
eQ CK=             (4.6) 

 

Where Ke represents the Freundlich sorption coefficient (M/M)/(M/L)b and b is Freundlich 

exponent.  In case of linear sorption b=1 and Ke is equal to Kd (the linear distribution 

coefficient). 

Langmuir equation can be written as (Langmuir, 1916; Weng et al 2008): 
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=                (4.7) 

 

where Qs represents the maximum sorption capacity (M/M) and Ka represents an absorption 

constant related to binding energy (L3/M). 

Again it is assumed that local conditions of equilibrium exist between sorbed and solution 

phase solute concentration. Equation (4.6) is differentiated with respect to time and substituted 

in Equation (4.1) and after simplifying lead to: 
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Now, retardation factor for Freundlich nonlinear sorption isotherm can be written as: 

 

 










+=

−

n
CK

R
)1b(

eb
1

ρ             (4.9) 

For the Langmuir isotherm model, we used same approach to Equation (4.7) and obtained 

following transport equation: 

 

 
( ) x

Cv
x
CD

t
C

CKn
KQ

∂
∂

−
∂

∂
=

∂
∂















+
+ 2

2

2
a

aS

1
1

ρ          (4.10) 

 

And retardation factor for Langmuir isotherm can be written from Equation (10) as: 
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4.7 Numerical model development and validation 
 
An implicit finite-difference numerical technique was used to solve the governing equations for 

linear sorption, Freundlich and Langmuir nonlinear isotherm models.  Implicit finite difference 

formulation of Equation (4.5) can be written as: 
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In case of linear sorption, the term of retardation factor (R) can be replaced by 

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the case of Freundlich nonlinear isotherm, the term of retardation factor can be replaced by 

Equation (4.9) and its finite difference formulation can be written as: 
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And for the case of Langmuir isotherm model, the finite difference formulation of Equation 

(4.11) can be represented as: 
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where i  represents the grid number; l represents the known time; 1l + represents the unknown 

time level; x∆ represents the grid size along the length of domain;  and t∆ represents the 

computational time step. Following initial and boundary conditions have been used: 

 

  ( ) 00, =xC                   (4.13a) 

  ( ) 0,0 CtC =                 (4.13b) 
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 where, C0 represents the injected solute concentration at the inlet.  

Thomas algorithm is used to solve the set of linear simultaneous equations. Picard’s iteration 

method is used to solve nonlinear sorption model. For verification of the numerical model, 

spatial relative concentration profiles have been simulated for a constant concentration 

boundary condition and are compared with analytical solutions given by Ogata and Banks 

(1961) for linear sorption model. The results obtained for both analytical and numerical 

breakthrough curves are well matched and are shown in Figure 4.2. The numerical model is 

verified with analytical solution given by Serrano (2001) for both cases of Freundlich and 

Langmuir nonlinear sorption models, as shown in Figures 4.3a and 4.3b. Input parameters such 

as Freundlich sorption coefficient, Ke=0.001 (mg/g)/(mg/L)b ;Freundlich exponent, b=0.6; 

porosity, n=0.1; dispersion coefficient, D=10 m2/month, pore water velocity, v=1 m/month and 

initial solute concentration, C0=100 mg/L are used in simulation, as  shown in Figure 4.3a. 

However, in case of Figure 4.3b, following input parameters, such as, maximum sorption 

capacity, Qs=1.0 mg/g; absorption capacity, Ka=0.01 and 0.0003 L/mg; dispersion coefficient, 

D=1m2/month, and initial solute concentration, C0=10000 mg/L are used.  In this simulation, 

both Peclet number (
D

xvP ∆
=e ) and Courant number (

x
tvC

∆
∆

=r ) are kept less than one to reduce 

the numerical error. The following grid size i.e., 1.0=∆x m and 025.0=∆ t day are used. 
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Figure 4.2 Simulated spatial concentration profile with both analytical (Ogata and Banks 1961) 

and present numerical model (pore velocity, v= 4 cm/hr. dispersion coefficient, D = 12 cm2/hr 

and retardation factor, R=1).   
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Figure 4.3a Simulated spatial concentration profiles with both analytical (Serrano 2001) and 

present numerical model for linear and non-linear Freundlich isotherm. 
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Figure 4.3b Simulated spatial concentration profiles with both analytical (Serrano 2001) and 

numerical model for Langmuir isotherm model.  

 

4.8 Results and Discussion 

4.8.1 Batch adsorption Studies  

 

Batch kinetics and sorption studies were conducted to understand the role of adsorption on the 

transport of fluoride in subsurface soils at room temperature. Both batch kinetics and sorption 

isotherm experiments were conducted in 50 ml glass tubes (Figure 4.4) at room temperature. 

The amount of fluoride adsorbed by soil was calculated from the difference between the initial 

concentration and final concentration after the specified period of shaking using the following 

equation (Gupta et al., 2009): 

 

( )
M
VCCQ ∗−= e0F                                                                                                       (4.14) 

 

where QF is the fluoride sorption (mg/g) for the specified period, C0 and Ce are the initial and 

equilibrium solute concentrations in the solution (mg/L), respectively. V and M are the volume 

of aqueous solution and mass of sorbent, respectively.   
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Figure 4.4 Glass tube filled with fluoride and soil sample. 

 

The kinetics of fluoride retention was studied for a standard sodium fluoride (NaF) solution of 

concentration of 20 mg/L. A glass tube containing 10 gm of soil in 200 ml fluoride solution 

was mixed for 12 hours. During the experiment, 5 ml aliquots were sampled from the glass tube 

at different time of intervals, and it is filtered and then analysed for fluoride concentration.  
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   Figure 4.5 Kinetic of adsorption of fluoride by fine sand and natural soil, respectively. 
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It can be seen from Figure 4.5 that adsorption attained an equilibrium state at approximately at 

time of 11hrs for both fine sand and natural soil. All batch experiments were carried out at 

initial fluoride concentrations of 5, 8, 10, 20, 25 and 40 mg/L, blank samples with no added 

NaF were also included in the experiments to verify whether natural background fluoride was 

desorbing from the soil. The sample tubes containing 10g of soil in 100ml of fluoride solution 

were shaken by shaking machine for time of 24 hours at regular interval and then samples were 

filtered using a 0.45 µm cellulose acetate syringe filter and analysed for fluoride concentration.  

 

In this study, the coefficient of correlation i.e., 2R  has been used to test the fitting of 

equilibrium isotherms for given set of experimental data of fluoride (Chapra and Canale, 2000): 

 

 
( )

( )
2

1
ee

1

2
ce

2 1

∑

∑

=

=

−

−

−=
N

i

N

i

QQ

QQ

R            (4.15) 

 

where, cQ  is the equilibrium capacity obtained from the isotherm model, eQ is the equilibrium 

capacity obtained from experiment, and eQ  is the average of eQ obtained from experiment. 

 

Langmuir isotherm can be linearized in four different ways, as shown in Table 4.2 and the 

parameters were calculated for all the forms (Parimal et al. 2010). It is seen that due to the 

transformations into different linear forms, the error structures were changed in different forms; 

hence, the results obtained would be different for all of them. Table 4.3 represents the 

Freundlich and Langmuir coefficients and the corresponding correlation coefficient for three 

cases of fine sand and natural soil at equilibrium. Freundlich isotherm plots have been shown in 

Figure 4.6 for fine sand and natural soil respectively. Similarly, Langmuir-1, 2, 3 and 4 types of 

plots have been shown in Figures 4.7-4.10 for both fine sand and for natural soil, respectively.  
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Table 4.2: Isotherm models and their linear forms 
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Table 4.3: Freundlich and Langmuir isotherm parameters obtained using linear   method for 

fine sand and natural soil  

 

 

 

 

 

 

 

 

 

 

 

 

 

Isotherms Parameters Fine Sand Natural Soil 

Fruendlich 

Ke   ((mg/g)/(mg/L)b) 0.0171 0.0051 

b 0.3736 0.4264 

R2 0.8306 0.8673 

Langmuir-1 

Qs (mg/g) 0.06014 0.0255 

Ka (L/mg) 0.246 0.1338 

R2 0.9063 0.9272 

Langmuir-2 

Qs (mg/g) 0.0629 0.0252 

Ka (L/mg) 0.218 0.135 

R2 0.908 0.8963 

Langmuir-3 

Qs (mg/g) 0.06 0.0248 

Ka (l/mg) 0.2696 0.1483 

R2 0.6545 0.616 

Langmuir-4 

Qs (mg/g) 0.069 0.0306 

Ka (L/mg) 0.1765 0.0913 

R2 0.6545 0.616 
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Figure 4.6 Freundlich adsorption of fluoride by fine sand and natural soil respectively. 
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Figure 4.7 Langmuir-1 adsorption of fluoride by fine sand and natural soil respectively. 
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Figure 4.8 Langmuir-2 adsorption of fluoride by fine sand and natural soil, respectively. 
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Figure 4.9 Langmuir-3 isotherm for fluoride adsorption by fine sand and natural soil. 
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Figure 4.10 Langmuir-4 isothetrm for fluoride adsorption by fine sand and natural soil. 

 

The various linear plots of log Ce versus log Qe were plotted for both cases of fine sand and 

natural soil, and the various sorption parameters were estimated for analyzing the applicability 

of the Freundlich nonlinear sorption isotherm. The parameter Qe represents equilibrium 

capacity. The parameter, Qs represents the saturated monolayer sorption capacity, and Ka 

represents the sorption equilibrium constant, and the values of Langmuir constants were 

calculated for all the forms of linear Langmuir isotherms and have been listed in Table 4.3.  It 

is observed that in case of fine sand, the best fit is given by Langmuir -2 linear isotherms in 

comparison to other Langmuir linear isotherms (i.e. Langmuir-1, 3 and 4). However, in case of 

natural soil, Langmuir-1 linear isotherm gives the best fit. 

In case of fine sand, the value of correlation coefficient (R2=0.8306 and 0.908) were calculated 

for Freundlich linear isotherm and Langmuir-2 linear isotherms, respectively. The above results 

show that the Langmuir-2 linear isotherms can be used more precisely as compared to 

Freundlich linear isotherm. For the analysis of natural soil, the value of correlation coefficient 

(R2=0.8673 and 0.9272) were calculated for both Freundlich linear isotherm and Langmuir-1 

linear isotherms, respectively. The above results show that the Langmuir-1 linear isotherms can 

be used more precisely as compared to Freundlich linear isotherm. It is seen that both values of 

coefficient of determination, R2 are approximately equal; hence both Freundlich and Langmuir-

2 linear isotherm can be used.  
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4.8.2 Simulation of breakthrough curves for Chloride data 

 

In view of the objectives of the study, experiments were performed in order to investigate the 

concentration profiles through one-dimensional soil column using solute tracers such as 

chloride and fluoride. First, conservative chloride as a tracer was passed through soil column to 

get the breakthrough curves through both fine sand and natural soils, respectively. The pore 

water velocity through the soil column is estimated from discharge of Peristaltic pump. The 

other parameter i.e., dispersion coefficient is estimated through simulation of breakthrough 

curve of chloride. These transport parameters are used to simulate the breakthrough curves for 

reactive fluoride. Figures 4.11 and 4.12 represent observed and numerically simulated temporal 

relative concentration profiles for chloride tracer in natural soil and fine sand, respectively. It is 

observed that the magnitude of solute concentration is almost zero during small transport time. 

It means that solute tracer moves along with water pore velocity in the soil filled column. The 

observed and numerical results show approximately a good match. The following parameters, 

i.e., pore water velocity, v=2.24 cm/min and dispersion coefficient, D=12 cm2/min for natural 

soil and v =2.8 cm/min and D=8.5 cm2/min in case of fine sand have been estimated through 

simulation. 
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Figure 4.11 Simulation of experimental data of chloride through natural soil column. 
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Figure 4.12 Simulation of experimental data of chloride through fine sand column. 

 

4.8.3  Simulation of break through curves for Fluoride data 

 

In this section, transport parameters i.e. pore water velocity and dispersion coefficient are used 

to simulate the breakthrough curves of experimental data of fluoride through both natural soil 

and fine sand, respectively. It is also well known that fluoride is reactive in nature. Once it 

occurs in contact of soil media, it is adsorbed on the soil surface. While conducting experiment 

through soil column, the pore velocity i.e., v=2.24 cm /min in case of natural soil and v=2.8 

cm/min in case of fine sand are found. The behavior of temporal and spatial concentration 

profiles for fluoride is observed through soil column of length of 600 cm.  

 

Figures 4.13 and 4.14 represent the temporal relative concentration profiles of fluoride in case 

of both natural soil and fine sand, respectively. The parameters used for numerical simulation 

of fluoride through natural soil are dispersion coefficient, D=12 cm2/min and pore water 

velocity, v =2.24 cm/min. However, in case of fine sand the values of transport parameters i.e., 

D=8.5 cm2/min and v =2.8 cm/min are used. The soil column was solute free initially, so the 

relative concentration in both soil media starts from zero value and increases rapidly and 

thereafter being constant during large transport time. The three values of retardation factor i.e., 

R= 1, 1.24 and 1.5 are used to simulate the observed temporal concentration profiles in case of 
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natural soil, as shown in Figure 4.13. It is seen that observed and numerical results show 

relatively a good match with value of retardation factor of 1.24. While the value of retardation 

factor R=1.2 gives best fit curve in case of fine sand as shown in Figure 4.14.  
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Figure 4.13 Simulation of experimental data of fluoride through natural soil column. 
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Figure 4.14 Simulation of experimental data of fluoride through fine sand column. 

 

Further, spatial concentration profiles have been predicted at time of 200 minutes along the 

length of flow direction in case of both fine sand and natural soil, respectively. The observed 

spatial concentration profiles for fluoride have been shown in Figures 4.15 and 16. The 
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parameters used for numerical simulation are dispersion coefficient, D=8.5 cm2/min and pore 

velocity, v =2.2 cm/min for fine sand and D=12 cm2/min and v =1.8 cm/min in case of natural 

soil. Afterwards, linear sorption, Freundlich and Langmuir nonlinear isotherm models are used 

to simulate experimental data of fluoride through soil column. In case of linear adsorption 

isotherm, the value of distribution coefficients for both natural soil and fine sand were 

computed by using least square method.  

The value of distribution coefficient equal to 0.000856 l/g for natural soil and 0.00297 l/g for 

fine sand were found. The value of porosity and density of both soils as shown in Table 4.1 

were used to compute the value of retardation factor in case linear sorption. The computed 

value of retardation factor, R=5.14 in case of natural soil and R=16.69 in case of fine sand were 

found. Sorption parameters for Langmuir-2 are used in case of fine sand and sorption 

parameters of Langmuir-1 are used in case of natural soil. The estimated sorption parameters 

for Freundlich and Langmuir sorption isotherm have been shown in Table 4.3. The observed 

and numerical results show an excellent match in case of Freundlich isotherm model in 

comparison to Langmuir sorption isotherm model. It indicates that the Freundlich nonlinear 

sorption model revealed good agreement with the experimental observed data of fluoride. 
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Figure 4.15 Simulation of experimental data of fluoride through fine sand column using linear 

sorption, Freundlich and Langmuir isotherm, respectively. 
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Figure 4.16 Simulation of experimental data of fluoride through natural soil column using 

linear sorption, Freundlich and Langmuir isotherm, respectively. 

4.9  Summary  

Present study examined the linear sorption, Freundlich and Langmuir nonlinear isotherm of 

fluoride through natural soil and fine sand, respectively. Batch sorption parameters were used 

to simulate fluoride breakthrough curves of experimental observations by using implicit finite 

difference numerical model of one-dimensional transport equation. On the basis of linearization 

of Langmuir nonlinear isotherm model, it is shown that the best fit is given by Langmuir -2 

linear isotherms in comparison to other Langmuir linear isotherms in case of fine sand. 

However, in case of natural soil, Langmuir-1 linear isotherm gives the best fit. In case of fine 

sand, the value of R2=0.8306 and 0.908 is obtained for Freundlich linear isotherm and 

Langmuir-2 linear isotherms, respectively. This also indicates that the Langmuir-2 linear 

isotherms can be preferred in comparison to Freundlich linear isotherm. In case of natural soil, 

the value of R2=0.8673 and 0.9272 is obtained for Freundlich linear isotherm and Langmuir-1 

linear isotherms, respectively. This also indicates that the Langmuir-1 linear isotherms can be 

preferred in comparison to Freundlich linear isotherm. Observed experimental data of fluoride 

has been well simulated using numerical model by using transport parameters, such as pore 

velocity, v=2.42 cm/min, dispersion coefficient, D=8.5 cm2/min for fine sand and v=2.2 
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cm/min and D=12 cm2/min for natural soil, respectively. It is also shown that the Freundlich 

sorption model gives best fit of observed spatial concentration along the length of soil column. 

Finally, this study indicates that Freundlich nonlinear isotherm model incorporated in the 

transport equation with an implicit finite difference method would provide accurate prediction 

for reactive transport in the soil column.  
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Chapter   5 

 

 

SIMULATION OF BREAKTHROUGH CURVES WITH DISTANCE-

DEPENDENT DISPERSION AND VARIABLE MASS TRANSFER 

COEFICIENTS 
 

5.1 General 

 

In this Chapter, the behavior of breakthrough curves in mixed heterogeneous soil column 

experiments has been analyzed. Advective dispersive transport equations are used for solute 

transport through mobile-immobile porous medium. A hybrid finite volume method is used to 

solve the governing equations for solute concentration in mobile region. In first part of the 

study, constant dispersion, linear and asymptotic distance dependent dispersion functions are 

used to describe the scale effect and to simulate experimental breakthrough curves observed in 

long soil column experiment. Also, a comparative study has been done among distance 

dependent and constant dispersion models, while simulating the experimental data of solute 

transport through soil column with constant mass transfer coefficient. In second part of the 

study, variable mass transfer coefficient as function of pore velocity and travel distance is 

considered and an empirical relation is derived from observed data from experiments.  

 

5.2 Governing Equations 

 

Mobile-immobile model (MIM) separates the porous medium into mobile and immobile 

regions. It is assumed that advection-dispersion equation is used for mobile region, and solute 

exchange between mobile and immobile regions can be described as a first-order process. The 

porous medium is also partitioned into two fractions of adsorption sites which equilibrate 

instantaneously with the mobile and immobile liquid regions. The solute adsorption by the solid 

phase is described with a linear isotherm, and the solute degradation in both the liquid and solid 

phases is assumed to be a first‐order process. Based on the above conceptual model, MIM for 

reactive transport under steady state flow is given by the following expressions (van Genuchten 
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and Wagenet, 1989): 
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where, mθ  and imθ are water contents in the mobile and immobile regions, respectively, and mθ  

+ imθ  = θ ; θ is the total water content of the soil media, mC  and imC  are solute concentrations 

in the mobile and immobile regions (ML−3), respectively; mV  is mobile pore‐water velocity 

(LT−1) and mV mθ is equal to flow rate, q (LT−1); w is the first‐order mass transfer coefficient 

(T−1); f and (1 − f ) represent fractions of adsorption sites that equilibrate instantaneously with 

the mobile and immobile regions, respectively; ρ is bulk density of the porous medium (ML−3);

dK is distribution coefficient for the linear sorption process (M−1 L3); lmµ  and limµ  are the 

first‐order decay coefficients for degradation of solute in the mobile and immobile regions 

(T−1), respectively; smµ  and simµ  are the first‐order decay coefficients for degradation of solute 

in the mobile and immobile adsorbed solid phases (T−1), respectively; x is spatial coordinate 

(L); t is time (T); D(x) is the hydrodynamic dispersion coefficient in the mobile region (L2 T−1).  

 

The dispersivity is generally considered as constant in case of mobile-immobile model (MIM) 

with constant dispersion, while in case of scale dependent dispersion, the dispersivity is 

considered as function of distance (Yates, 1990). However, Picken and Grisak (1981b) and 

Yates (1990) have shown that the dispersivity (α ) can be considered as a function of linear and 

asymptotic function of distance ( x ). At laboratory scale, distance ( x ) is the length of soil 

column experiments. The linear distance-dependent dispersivity increases with distance without 

bounds, while the asymptotic distance-dependent dispersivity initially increases with distance 

and ultimately approaches an asymptotic value. The linear distance-dependent dispersion 

coefficient, as given by Yates (1990) is: 

 

mm VxkVxxD == )()( α        (5.3)  
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where )(xα the distance-dependent dispersivity, k is the slope of the dispersivity-distance 

relationship (dimensionless), x  is distance from the source and Vm is mean pore water velocity.  

The expression of asymptotic dispersivity is given in Chapter 3. 

 

5.3 Numerical Scheme 
 

       The governing equations for contaminant transport through mobile-immobile porous media are 

solved using the split operator approach for advection, dispersion and reaction terms. 

5.3.1  Formulation of governing equations 
 
The modified form of Equation 5.1 and 5.2 can be written as: 
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where coefficients are defined as:    

   

dmm KfR ρθ +=                   (5.6a)

( ) dimim KfR ρθ −+= 1                           (5.6b)

( )smdlmm Kfwg µρµθ ++=1                          (5.6c) 

( )simdim Kfwg µρµθ )1(lim2 −++=                         (5.6d)     

                          

After applying the operator splitting, the advective term of Equation 5.4 can be written as: 
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where mmVq θ= . Similarly the dispersive transport term can be written as: 
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And the reactive transport can be written as: 

mim
m

m CgwC
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Following initial the exit boundary conditions have been used: 
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The constant concentration type boundary condition is 

 

( ) 0,0 CtCm =           (5.11c) 

 

Pulse type boundary condition is: 

 

( ) 0,0 CtCm =                 for t ≤ t0                         (5.11d) 

 ( ) 0,0 =tCm              for t >t0                  (5.11e) 

 

where C0 is initial injected solute concentration at inlet of the soil media (M/L3) and t0 is the 

pulse time (T).  

5.3.2 Numerical solution 
 

The finite volume method is used for numerically solving the advective transport which is 

based on monotone upwind schemes for conservation laws (MUSCL) by van Leer (1977a,b). 
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This method is globally high-order accurate and non-oscillatory. The formulation of this 

scheme is as follows: 

0=
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x
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t
Cm                                              (5.12)                                           

where F is advective flux, which can be written as mmm RCVF /=  

 Equation (5.12) can be written in a discrete form by assuming the cell centered concentration 

as cell averaged concentration as: 
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where miC is the cell centered concentration, 
n
iF 2/1+ is time-averaged flux, n denotes the time 

level, t∆ represents the time step and x∆  represents the space step. Advective flux is computed 

using a second order upwind method similar to the one adopted by Putti et al. (1990).  

 

Assuming a linear distribution in the cell, the mass concentration value at the cell interface is 

reconstructed using a MUSCL approach (van Leer 1977a). The gradient of the concentration 

distribution in the cell i for monotonocity, prescribed by the superbee and minimod  limiters is 

(Putti et al. 1990): 

( ) ( )mimiMONmi CCaveC +− ∆∆= ,δ                                     (5.14) 

  With  

 1−− −=∆ immimi CCC                             (5.15a) 

 miimmi CCC −=∆ ++ 1                                                             (5.15b) 

where ( )mimi CCave +− ∆∆ ,  in Equation (5.14) for minimod and superbee limiters are given by 

Putti et al. (1990). In this paper, we have adopted least dissipative superbee limiter, which is 

expressed as: 
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Fluxes at the interface are evaluated as 

L
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n
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Otherwise 



 84 

 R
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where 112/1 2
1

+++ −= imim
R

im CCC δ  and mimi
L

im CCC δ
2
1

2/1 +=+  here miCδ is the gradient of the 

concentration distribution in the cell i while L and R represent the left and right faces of the cell 

interface.  

 

Hancock’s scheme (van Albada et al. 1982) is usually employed, which is a two step second 

order accurate explicit scheme. The two half time steps in this method can be represented as 

predictor and corrector step. The miC  obtained from the predictor step is used for calculation of 

the fluxes. The same gradient miCδ is used in both predictor and corrector steps. For the above 

scheme, the time step is limited by the Courant number. For stability of this scheme, the 

Courant number
x

tVC m
r ∆

∆
=

.
, should be less than or equal to one. 

5.3.3 Dispersive transport equation  
 
The dispersive transport (Equation 5.8) is performed on the concentrations, resulting from the 

advective transport in each time step. A conventional fully implicit, finite-difference scheme, 

which is unconditionally stable, is used to obtain the final concentrations at the end of time 

step. This formulation has the advantage of using an implicit numerical scheme for the 

dispersive transport, while using an explicit numerical scheme for advection transport there by 

either advection dominated or dispersion dominated systems can be accurately handled. 

Remaining equations 5. 9 and 5.10 are solved using explicit numerical method. 

5.4 Results and discussion 

5.4.1 Concentration profiles with constant, linear and asymptotic dispersion models 
 
Numerical model is used to predict temporal and spatial solute concentration with constant, 

linear and asymptotic distance dependent dispersivity. Following input parameters i.e., constant 

dispersivityα =2 m, linear distance coefficient, k = 0.1, asymptotic distance dependent 

parameters, a = 2.5 m, b =5 m, flow rate, q=0.04 m/d, mθ = 0.3, imθ = 0.1, mass transfer 

coefficient, w=0.01 per day are used during simulation. Figure 5.1 represents the temporal 

concentration profile predicted at down gradient distance of 5 m and 20 m in the flow direction. 
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The behavior of temporal concentration profiles is different among constant, linear and 

asymptotic distance dependent dispersivity. Early arrival of solute concentration has been 

obtained in case of constant dispersivity as compared to both linear and asymptotic value of 

dispersivity. Similarly, behavior of spatial solute concentration profiles is different for constant, 

linear and asymptotic distance dependent dispersivity as shown in Figure 5.2. In case of 

constant dispersivity (MIMC), the value of solute concentration is smaller at small distance and 

its value is higher at large travel distance. 
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Figure 5.1 Temporal concentration profiles predicted at 5 m and 20 m down gradient distance 

with constant, linear and asymptotic distance-dependent dispersivity. 
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Figure 5.2 Spatial concentration profiles predicted at different transport time with constant, 

linear and asymptotic distance-dependent dispersivity. 

 

5.4.2 Simulation of breakthrough curves with constant and distance-dependent 
dispersion models 

 

The numerical model is used to simulate the observed experimental breakthrough curves 

predicted at different distances of 300 cm, 600 cm, 900 cm, 1200 cm and 1500 cm in the flow 

direction. Figures 5.3-5.7 show the observed experimental breakthrough curves and 

numerically simulated results at different distances in the flow direction. Following parameters 

i.e., flow rate, q = 0.42 cm/min, mθ = 0.34, imθ = 0.04, mass transfer coefficient, w = 2.42 E-05 

per min, dispersivity, α =82.46 cm, linear distance dependent coefficient, k = 0.0824, 

asymptotic distance dependent coefficients, a = 82.74 cm, b = 148.56 cm are used during 

simulation. Firstly, we simulated observed experimental data at 1500 cm down gradient 

distance using mobile immobile with constant, linear and asymptotic distance dependent 

dispersivity as shown in Figure 5.3. Thus, via best fit simulation of observed breakthrough 

curve, the value of mass transfer coefficient, constant dispersivity, linear and asymptotic 

distance dependent parameters have been estimated. Performance of simulations are evaluated 

by considering root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE) and 

coefficient of determination (R2) are used for finding efficiency of simulations as described by 
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Equations 18(a-c). 

                    (5.18a) 

                 (5.18b) 

                   (5.18c) 

where and  are ith observed and simulated concentration, respectively,  and 

are the mean of observed and simulated concentration, respectively. N is the number 

representing total observations taken at any particular observational point.   

 

Computed values of root mean square error, coefficient of determination and Nash-Sutcliffe 

efficiency coefficients are shown in Table 5.1 for mobile immobile model with constant, linear 

and asymptotic distance dependent dispersivity (i.e., MIMC, MIML and MIMA). The estimated 

values of R2= 0.907, RMSE=0.035, NSE =0.896 in case of MIMC, R2= 0.984, RMSE=0.017, 

NSE =0.976 in case of MIML, R2= 0.99, RMSE=0.011, NSE =0.99 in case of MIMA are 

obtained for simulated breakthrough curve in Figure 5.4.  It is seen that the value of R2 and NSE 

is higher for the case of asymptotic dispersivity model (MIMA) as compared to both constant 

dispersivity (MIMC) and linear distance dependent (MIML) models. Similarly, to evaluate the 

performance of simulation of breakthrough curve observed at 1200 cm, 900 cm, 600 cm and 

300 cm down gradient distances (Figures 5.4, 5.5, 5.6 and 5.7), the estimated value of R2, 

RMSE, and NSE is shown in Table 5.1. The simulation results of experimental breakthrough 

curves indicates that the MIMC and MIML models could not give the best fit of observed data 

and also over estimate the value of dispersivity. The estimated value of dispersivity equal to 

82.46 cm, 123.6 cm and 75.28 cm are found for the case of MIMC, MIML and MIMA 

dispersion models. Thus the value of dispersivity equal to 75.28 cm for the case of MIMA 

model is lower than other constant and linear dispersion models. Finally, results indicated that 

the asymptotic (MIMA) model gives best fit of observed data of experimental breakthrough 

curves in long heterogeneous soil column experiment. 
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Figure 5.3 Simulated breakthrough curve of experimental data of chloride at 1500 cm down 

gradient distance in the flow directon. 
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Figure 5.4 Simulated breakthrough curve of experimental data of chloride at 1200 cm down 

gradient distnace in the flow direction. 
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Figure 5.5 Simulated breakthrough curve of experimental data of chloride at 900 cm down 

gradient distance in the flow direction. 
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Figure 5.6 Simulated breakthrough curve of experimental data of chloride at 600 cm down 

gradient distance in the flow direction. 
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Figure 5.7 Simulated breakthrough curve of experimental data of chloride at 300 cm down 

gradient distance in the flow direction. 

 

Table 5.1 estimated values of R2, RMSE and Nash Sutcliffe coefficients (NSE) for the case of 

MIMC, MIML and MIMA models 

 

 

5.4.3 Simulation of breakthrough curves with asymptotic dispersion and variable mass 
transfer coefficient 

 

Previous study showed that the value of mass transfer coefficient is dependent on system 

parameters including pore-water velocity, length scale and retardation coefficient (Maraqa 

Distance 

(cm) 

MIMC MIML MIMA 

RMSE R2  NSE RMSE R2 NSE RMSE R2 NSE 

300 0.102 0.84 0.83 0.081 0.97 0.89 0.019 0.995 0.995 

600 0.09 0.791 0.778 0.053 0.985 0.923 0.032 0.976 0.972 

900 0.061 0.848 0.843 0.031 0.986 0.959 0.018 0.988 0.986 

1200 0.039 0.91 0.91 0.022 0.98 0.97 0.013 0.993 0.992 

1500 0.035 0.907 0.896 0.017 0.984 0.976 0.011 0.994 0.994 
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2001). It means that the value of mass transfer coefficient is not constant and it is variable 

parameter for movement of contaminant through subsurface aquifer. Hence, in this study, it 

was assumed that the value of mass transfer coefficient is dependent on both pore velocity and 

travel distance in the flow direction in the experiments. Thus, we estimated the individual value 

of mass transfer coefficient via simulation of experimental breakthrough curves observed at 

different down gradient distances i.e., 300cm, 600 cm, 900 cm, 1200 cm and 1500 cm, 

respectively in the flow direction. Afterwards, a graph between mass transfer coefficient and 

ratio of pore velocity to the distance is plotted which is shown in Figure 5.8.  A power function 

is used to get the relationship between mass transfer coefficient vs velocity and travel distance. 

The value of coefficient of determination was found to be equal to R2=0.991, which shows the 

best fit curve. From the relationship it was shown that the value of mass transfer coefficient 

was increasing towards the inlet boundary of the soil column experiment. It means that the 

value of mass transfer coefficient is changing with the movement of solute transport through 

porous media in the flow direction. However, the variability of mass transfer coefficient is 

higher during small transport distance and it variability is smaller at large travel distance. 

 

From above discussion it is found that the accurate prediction of mass transfer coefficient is 

very significant at laboratory scale and it affects movement of solute transport through porous 

medium.  

 

 
Figure 5.8 Variable mass transfer coefficients vs. ratio of pore velocity to travel distance. 
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The empirical relationship of mass transfer coefficient with pore velocity and travel distance is 

used to simulate the observed experimental breakthrough curves. To see the performance of 

mass transfer coefficient, both constant and variable mass transfer coefficient were used for 

simulation of breakthrough curves in presence of asymptotic dispersion model (MIMA). 

Figures 5.9-6.13 show the simulation of breakthrough curves using MIMA model with both 

constant value of mass transfer coefficient and variable mass transfer coefficients. The 

estimated value of coefficient of determination, root mean square error and NSE are shown in 

Table 5.2. It is seen that the accuracy of simulation of observed breakthrough curves were 

improved for the case of variable mass transfer coefficient as compared to constant value of 

mass transfer coefficient. However, the behavior of break through curves is similar for both 

cases of mass transfer coefficient.  
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Figure 5.9 Simulation of breakthrough curve of experimental data of chloride at 300 cm down 

gradient distance using MIMA model with constant mass transfer and variable mass transfer 

coefficients. 
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Figure 5.10 Simulation of breakthrough curve of experimental data of chloride at 600 cm down 

gradient distance using MIMA model with constant mass transfer and variable mass transfer 

coefficients. 
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Figure 5.11 Simulation of breakthrough curve of experimental data of chloride at 900 cm down 

gradient distance using MIMA model with constant mass transfer and variable mass transfer 

coefficients. 
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Figure 5.12 Simulation of breakthrough curve of experimental data of chloride at 1200 cm 

down gradient distance using MIMA model with constant mass transfer and variable  mass 

transfer coefficients. 
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Figure 5.13 Simulation of breakthrough curve of experimental data of chloride at 1500 cm 

down gradient distance using MIMA model with constant mass transfer and variable mass 

transfer coefficients. 
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Table 5.2 Estimated values of R2, RMSE and Nash Sutcliffe coefficients (NSE) for constant and 

variable mass transfer coefficient 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

5.5 Experimental Setup 

Figures 5.14a and 5.14b represent the line diagram of soil column experiments in the lab. 

Different combination of soil materials are filled in the first soil column experiment as shown 

in Figure 5.14a. It means that soil samples of different material such as gravel, coarse sand, fine 

sand, silt, natural soil and fine sand are filled in layered in the soil column. In the second part of 

the soil column experiment as shown in Figure 5.14b, mixed soil of different soil materials are 

filled in the column.  Both set up of layered soil and mixed soil placed in the soil column 

experiments behave as heterogeneous media. 

 

 

Figure 5.14a Line diagram of experimental set-up  for heterogeneous medium for layered soils. 
 

Distance 

(cm) 

MIMA 

variable mass transfer coefficient constant mass transfer coefficient 

RMSE R2 NSE RMSE R2 NSE 

300 0.013 0.996 0.969 0.019 0.995 0.995 

600 0.027 0.981 0.981 0.032 0.976 0.972 

900 0.014 0.992 0.992 0.018 0.988 0.986 

1200 0.013 0.993 0.989 0.013 0.993 0.992 

1500 0.009 0.995 0.993 0.011 0.994 0.994 
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Figure 5.14b  Line diagram of experimental set-up  for heterogeneous medium for mixed soils. 
 

5.5.1 Experimental Procedure 
 
The length of the column is taken 1500 cm and diameter of the column is 15.24 cm, 

espectively. The soil column is heterogeneous in nature and is filled with coarse, fine, natural 

soil, silt and gravels in periodical layers. 300 liter of storage tank in which solution is made was 

placed near to the column. The experiments are conducted using heterogeneous soil columns, 

which contained negligible organic content. For sample collection at regular intervals, entire 

column length was divided in 5 equally distributed distances of 300 cm, afterward the column 

was saturated slowly by flowing tap water continuously for 72 hrs. To avoid leakage through 

joints, high quality sealant was applied to joints of the column. The head gradient was 

introduced by maintaining varying head at input, while keeping output head constant. For a 

known concentration of solute tracer was introduced in the column from storage tank. Several 

sets of samples were collected at time of 1 hr interval. Chloride testing was done by silver 

nitrate titration method. In the titration method 50ml volume of sample is taken and 1ml 

potassium chromate indicator was mixed, and then titrated with silver nitrate till red brick color 

appeared. Pulse type boundary condition, was considered in experiment.   

5.5.2 Observed Breakthrough Curves In Layered and Mixed Soils 

Figures 5.15-17 represent the behavior of observed experimental breakthrough curves through 

layered and mixed heterogeneous soil media, respectively. The experimental breakthrough 

curves are predicted at 300 cm, 900cm and 1500 cm down gradient distance in the flow 

direction during experiment. The observed value of solute concentration for chloride has been 

compared for both cases of layered soil and mixed soil media. The behaviors of breakthrough 

curves are similar in both cases of soil media, but the magnitude of solute concentration is not 
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same for higher transport time. It is also, known that the different types of soil strata affect the 

value of hydraulic conductivity within the soil media. The physical properties of the soil affect 

the transport of solute through heterogeneous media. Dispersion is a key process controlling 

transport of solute in heterogeneous porous medium. Long tailing is also observed in 

breakthrough curves during large transport time. It indicates that the some magnitude of solute 

is remained in immobile zone.  Velocity also plays an important role in the diffusion process. 

The steady-state conditions describe the function for the solute behavior.  Dispersivity is also 

defined as the ratio of dispersion coefficient to the effective pore water velocity. Hence, solute 

transport in soil and groundwater is generally affected by a large number of physical, chemical 

and microbial processes and medium properties. 
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Figure 5.15 Break through curves of experimental data for chloride at 300cm distance in 

heterogeneous soil. 
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Figure 5.16 Break through curves of experimental data for chloride at 900cm distance in 

heterogeneous soil. 
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Figure 5.17 Break through curves of experimental data for chloride at 1500cm distance in 

heterogeneous soil. 
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5.6 Summary  

 
Breakthrough curve for non-reactive solute shows early appearance due to strong dispersion in 

layered soil as compared to mixed. Long tailing is also observed due to presence of solute in 

porous space. It is also seen that the stratification i.e., layered and mixed soil media affect the 

behavior of predicted breakthrough curves in long heterogeneous soil column experiments. The 

behaviors of breakthrough curves are very irregular and exhibited extensive tailing. It means 

that the variation of pore velocity in heterogeneous porous media is much larger as compared to 

homogeneous porous media. It means that the large variation of hydraulic conductivity increase 

the dispersion of solute in heterogeneous porous media. 

In this study, observed experimental break through curves have been simulated using mobile-

immobile constantant, linear and asymptotic distance-dependent dispersivity. The results show 

that the variation of pore velocity in heterogeneous porous media is much larger as compared to 

homogeneous porous media. It is shown that early arival of solute concentration has been 

obtained in case of constant dispersivity as compared to both linear and assymptotic value of 

dispersivity. 

Finally, it is also shown that the MIMA model gives the best fit curve of experimental 

breakthrough curve in long heterogeneous soil column experiment as compared to both MIMC 

and MIML models. Estimated value of dispersivity is smaller in case of MIMA model as 

compared to both MIMC and MIML models. Thus MIMA model is efficient to capture the 

evolution distance dependent dispersion behavior. Accurate prediction of mass transfer 

coefficient is also essential and significant for transport of contaminant through porous media. 

Hence asymptotic dispersivity including variable mass transfer coefficient can be useful for 

describing solute transport in long heterogeneous porous media.  
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Chapter 6 

 

 

Reactive solute transport through triple-permeability porous medium  
 

6.1 General 

 

This chapter describes the reactive solute transport through porous media such as the fractured 

rock masses or soils consisting of triple pore regions. Triple advective-dispersive transport 

equations considering equilibrium sorption and first-order degradation rate coefficients are 

used. Both the finite-volume method (FVM) and the implicit finite-difference method (FDM) 

have been used to develop the numerical model for reactive solute transport through triple-

permeability medium.  The performance of FVM and FDM methods has been analysed in 

terms of concentration profiles for smaller and higher values of Peclet numbers. In addition to 

this, the behavior of spatial moments is also analyzed. 

6.2 Mathematical model 
 

One-dimensional advection-dispersion transport equation is presented for solute transport 

through triple-permeability medium. Figure 6.1 describes the solute transport through  triple- 

permeability porous medium consisting of three regions 1, 2 and 3.  

 

 

 

 

 

 

 

Figure 6.1 Schematic diagrams of triple-permeability media with advection-dispersion transport 

model.  
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A first order mass transfer coefficient is used to describe the solute exchange between regions 

of 1 or 2 and  2 or 3. The governing eqution for solute transport in an arbitrary region i, which 

equals 1 or 2 and 2 or 3, is affected by the transport in the other region j, which equals 2 or 1 

and 3 or 2, as is given in Equation (6.1). The advective-dispersive transport equation including 

the equilibrium sorption and the first-order degradation rate constant is given below (Lapidus 

and Amundson 1952 and  Leij et al. 2012): 

 

( ) iiji
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ii
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ii
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ii CCw
x
CD

x
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t
CR µθθθθ −−−

∂
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=
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∂

+
∂
∂

2

2

       (6.1) 

 

where t is the time (T); x is the distance (L); iC and jC  are the aqueous phase solute 

concentrations for three regions, expressed as mass of solute per aqueous volume in regions i

and j , respectively (M/L3); w is the first-order mass transfer coefficient (T-1); iD  is the 

hydrodynamic dispersion coefficient for region i  (L2/T); iv is the pore water velocity for region 

i (L/T); iR  is the retardation factor to account for sorption of the solute by solid phase; iµ is the 

first-order degradation rate coefficient (T-1); and iθ is the volumetric water content given as 

volume of water in region i per total bulk volume (L3/L3). The total volumetric water content 

for the entire porous medium is )( 321 θθθθ ++= . The Darcy flux iiiq θν=  and dispersivity 

iii vD /=α  are related to pore-water velocity and dispersion coefficient. The retardation factor 

is defined as idii KR θρ /1+= ,  where ρ is the bulk density (M/L3); and diK is a distribution 

coefficient for equilibrium partitioning between the solid and aqueous phases, which is 

expressed as the volume of aqueous phase in region i per mass of solid phase (L3/M).  A solute 

will travel at a different speed through the pore regions because of a difference in permeability.  

6.2.1 Boundary conditions 
 

The following initial conditions are given as: 

 

0)0,( =xCi                 (6.2a) 
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( ) 0, =∞
∂
∂ t

x
Ci                 (6.2b) 

 

Constant boundary condition is given as: 

 

0),( CtxCi =                 (6.2c) 

 

Pulse type boundary condition is given as: 

 

0),( CtxCi =    for 0tt ≤                 (6.2d) 

0),( =txCi       for 0tt >               (6.2e) 

 

where 0C is the injected solute concentration and 0t is the pulse time. 

The total amount of solute present in the porous medium,that is, in the aqueous and sorbed 

phases of three regions, is expressed with the total concentration defined by the weighted sum 

of volume averaged concentrations as: 

 

 ( ) θθθθ /333222111 CRCRCRCt ++=                 (6.3a) 

 

For the analysis of breakthrough curves, for example, determined from effluent samples 

collected during the solute transport in soil column, the solute concentration can be defined as 

the ratio of advective solute and water flux. 

 

( ) qCqCqCqCe /332211 ++=                    (6.3b) 

where 321 qqqq ++= . 

6.3 Numerical Methods 
 

An implict finite difference numerical method has been used to get the solution of one-

dimensional advective dispersive transport Eq. (6.1) for solute transport through triple medium. 

The numerical model first determines the solute concentration in the first region of the current 
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time step, using solute concentration in the second region at previous time step. Similarly, the 

solute concentration is determined in the second region, using the solute concentration in the 

first region at previous time step. Then the solute concentration is determined in the third 

region at the current time step. Once the concentration is determined for third region, the 

solution proceeds to the next time step witout iteration. A tridiagonal coefficient matrix was 

obtained, which solved the equation more efficiently. The finite volume method was also used 

to the solution of governing equations, which is described below. 

 

6.3.1 Formulation of governing equations for triple-permeability medium 
 

The governing transport equations for three regions can be written as: 
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The advective terms of Eqs. (4), (5) and (6) can be written as: 
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 Similarly, the dispersive transport terms can be expressed as:  
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And remaining equations can be written as: 
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6.3.2 Procedure of numerical solution 

 

The finite volume numerical method is used for solving the advective transport which is based 

on monotone upwind schemes for conservation laws (MUSCL) by van Leer (1977a,b). This 

method is globally high-order accurate and non-oscillatory. The formulation of this scheme is 

extended for solute transport as: 

 

0=
∂
∂

+
∂
∂

x
F

t
C

                           (6.16) 

 

where C  can be replaced by 1C , 2C  and 3C ; F  is the advecrive flux, which can be written as 

C
R
vF = . Equation (6.16) can be written in a discrete form by assuming the cell centered 

concentration iC as cell averaged concentration: 
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where iC is the cell centered concentration, 
n
iF 2/1+ is the time average flux, n  denotes the time 

stage, t∆  represents the time step and x∆  represents the space step. Advective flux is 

computed using a second order upwind method similar to the one adopted by Putti et al. (1990).  

Assuming a linear distribution in the cell, the mass concentration value at the cell interface is 

reconstructed using a MUSCL approach (van Leer 1977a).  Other procedure has been explained 

in Chapter 5.  

6.3.3 Dispersive transport equation 
 
The dispersive transport simulations from Equations (6.10), (6.11) and (6.12) are performed on 

the concentrations, resulting from the advective transport in each time step. A conventional 

fully implicit, finite-difference scheme, which is unconditionally stable, is used to obtain the 

final concentrations at the end of time step. This formulation has the advantage of using an 

implicit numerical scheme for the dispersive transport, while using an explicit numerical 

scheme for advection transport there by either advection dominated or dispersion dominated 

systems can be accurately handled. Remaining Equations (6.13-6.15) are solved using explicit 

numerical method and formulations are expressed below. 
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          (6.20)   

6.3.4 Verification of numerical model 
 
Both finite volume and finite difference numerical methods were verified with analytical 

solution of Sciortino et al. (2015) for solute transport through dual-permeability medium. 

Figure 6.2 represents the temporal concentration profiles predicted at 25 cm down gradient 

distance in the flow direction using input parameters as pulse time, 0t  = 0.5 day; flow rate 1q = 

10 cm/day; 2q = 5 cm/day; volumetric water content 1θ = 0.1; 2θ = 0.4; dispersivity 1α  =0.5 cm 

and 2α  =2.5 cm. The excellent agreement of the numerical results with the analytical solution 
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verified the model with Courant number Cr  equal to 0.5 and Peclet number (
D

xv ∆
=

.Pe  ) equal 

to 0.5.  

 
Figure 6.2 Comparison of breakthrough curves obtained from FDM, FVM and analytical 

solutions for solute 1C  2C and eC at x = 25 cm and pulse input 0t = 0.5 day.  

6.4 Application of model 

6.4.1 Concentration profiles  

 

The results of concentration profiles have been compared between FVM and FDM for small 

and higher values of Peclet number (Pe=0.5 and 200). Values of input parameters such as 1q = 

10 cm/day; 1θ = 0.1; 2q = 7.5 cm/day; 2θ = 0.25; 3q = 4 cm/day; 3θ = 0.4; dispersivity 1α = 2α =

3α =0.05 cm and pulse time 0t  = 0.2 day are used during simulation. Spatial solute 

concentration profiles for solute concentration 1C , 2C and 3C for small value of mass transfer 

coefficient (w = 0.01 day-1) and higher value (w = 5 day-1) are shown in Figures 6.3a and 6.3b, 

respectively. The value of Peclet number, Pe=0.5 has been used. It is observed that the 

magnitude of solute concentration remained the same for both cases of FVM and FDM. 

However, only very small deviation is found in solute concentration 1C in the presence of small 

value of mass transfer coefficient. The solute concentrations 1C , 2C and 3C travel small distance 
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due to higher value of mass transfer coefficient, w = 5 day-1. It means that a higher value of 

mass transfer coefficient retards the solute plume in the porous medium. 

 
Figure 6.3a Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 0.5 

and small value of mass transfer coefficient w = 0.01 day1 using FDM and FVM.  

 
Figure 6.3b Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 0.5 

and higher value of mass transfer coefficient w = 5 day-1 using FDM and FVM.  
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Figure 6.4a shows the spatial concentration profile for small value of mass transfer coefficient 

(w = 0.01 day-1) and Peclet number equal to 2. It is found that the deviation occurs in the results 

of concentration profiles as predicted from both FVM and FDM. However, the deviation in the 

results of concentration profile for 1C is large as compared to 2C and 3C . Figure 6.4b shows the 

concnetration profiles for 1C , 2C and 3C for a higher value of mass transfer coefficient (w = 5 

day-1). It is seen that the results of concentration prfiles remain the same in both numerical 

FVM and FDM methods. Hence, it can be concluded that both FVM and FDM models give the 

same results for Peclet number (Pe=2) in the presence of a higher value of mass transfer 

coeffiicient. 

Figures 6.5a and 6.5b show the results of concentration profiles for 1C , 2C and 3C for Peclet 

number equal to 200 and for values of mass transfer coefficient equal to 0.01 and 5 day-1. The 

numerical oscilation is observed in case of FDM method, while oscillation free results is seen 

in case of FVM method. It means that the implict finite difference method cannot be used in 

case of a higher value of peclet number, while the finite volume method gives the accurate 

results for solute concentration for small and higher values of peclet number. Hence, the FVM 

method can be used for simulation of concentration profiles for solute through porous media for 

any value of Peclet number. 

 
Figure 6.4a Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 2 

and smaller value of mass transfer coefficient w = 0.01day-1 using FDM and FVM.     
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Figure 6.4b Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 2 

and higher value of mass transfer coefficient w = 5 day-1 using FDM and FVM. 

 

 
Figure 6.5a Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 200 

and smaller value of mass transfer coefficient w = 0.01day-1 using FDM and FVM.  
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Figure 6.5b Spatial concentration profiles for solutes 1C , 2C  and 3C for Peclet number Pe = 200 

and higher value of mass transfer coefficient w = 5 day-1 using FDM and FVM. 
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Figure 6.6a Spatial concentration profiles for solutes 1C , 2C  and 3C for two values of mass 

transfer coefficient predicted at time t = 0.025 day.  

 

 
Figure 6.6b Spatial concentration profiles for solutes 1C , 2C  and 3C for two values of mass 

transfer coefficient predicted at time t = 0.1 day.  
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Figure 6.7a Spatial concentration profiles for 1C , 2C  and 3C for two values of first-order 

degradation rate coefficients predicted at time t = 0.1 day.  

 
Figure 6.7b Spatial concentration profiles for solutes 1C , 2C  and 3C for two values of first-order 

degradation coefficient predicted at time t = 0.2 day.  
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the higher value of retaradtion factor. The behavior of concentration profiles are non-linear 

with travel distance. The value of equilibrium sortpion,that is, the retardation factor is the same 

and the values of pore velocity are different in three regions of porous medium. Hence the 

retardation rate of solute plume is different in three regions. 

 

 
Figure 6.8 Spatial concentration profiles for solutes 1C , 2C  and 3C for two values of retardation 

coefficient predicted at time t = 0.1 day.  

6.4.2 Spatial moments  

 

Spatial moments describe the location and shape of the solute plume, that is, the position of the 

centroid and the spreading around the centroid, and these moments are useful in describing the 

transport process of solute through porous media. The spatial moments can be obtained for the 

solute concentration distribution using a similar approach given by Guven et al. (1984). The 

first and second spatial moments for solute in the porous medium are given, respectively, by: 
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dxCM ∫
∞

=
0

                                                                                                          (6.21c)                                              

where M is the mass of solute in porous medium,  1X  is the first spatial moment (mean travel 

distance), and 2X is the second spatial moment (variance) in x  coordinate direction. The 

expressions of spatial moments are valid for a concentration pulse source. Since a constant 

continuous source is applied as a boundary condition at the inlet of fracture, a first spatial 

derivative of concentration in the porous medium is used to obtain an equivalent pulse. 

 

The results of spatial moments for solutes 1C , 2C , 3C tC and eC are discussed in the presence of 

mass tansfer, first-order degradation coefficeints and retardation factor. Figures  6.9a, 6.9b and 

6.9c show the results of mean travel distance for values of mass transfer coefficient w = 0.05, 

0.5 and 5 day-1, respectively. During samll transport time, the behavior of mean travel distance 

is non-linear for small value of mass transfer coefficient. The magnitude of mean travel 

distance is higher for solute 1C as compared to other solutes, because the value of pore water 

velocity is large in the first region as compared to other two regions. However, in the presence 

of large value of mass transfer coefficient w = 5 day-1, the magnitue of mean travel distance 

remains the same for all the solutes in the regions of medium. 

 
Figure 6.9a Mean travel distance for solute concentration in triple-permeability media for value 

of mass transfer coefficient w = 0.05 day-1. 
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Figure 6.9b Mean travel distance for solute concentration in triple-permeability media for value 

of mass transfer coefficient w = 0.5 day-1. 

 

 

 
Figure 6.9c Mean travel distance for solute concentration in triple-permeability media for value 

of mass transfer coefficient w = 5 day-1. 
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Figures 6.10a, 6.10b, 6.10c show the results of variance for solutes 1C , 2C , 3C tC and eC with 

different values of mass transfer coefficient. In case of mass transfer w = 0.01 day-1, the 

magnitude of spreading or variance of solutes increases with an increase in the transport time. 

But in the case of large value of mass tranfer coefficeint w = 5 day-1, the magnitude of variance 

remains the same for all the solutes and linearly increases with an increase in transport time. 

 

Figures 6.11a and 6.11b represent the results of mean travel distance and spreading beavior of 

effluent solute ( eC ) for different values of retardation factor. A higher value of retardation 

factor (equal to 2 or 5) leads to reduce the magnitude of both mean travel distance and variance 

along with transport time. Similarly, the higher value of decay rate coefficient reduces the mean 

travel distance and variance for large transport time, but the magnitude remains the same 

during the small transport time as shown in Figures 6.12a and 6.12b. It is also seen that the 

behavior of spreading of effluent solute is non-uniform during the intermediate transport time. 

 

 

 
Figure 6.10a Variance for solute concentration in triple-permeability media for value of mass 

transfer coefficient w = 0.05 day-1.  
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Figure 6.10b Variance for solute concentration in triple-permeability media for value of mass 

transfer coefficient w = 0.5 day-1.  

 

 

 
Figure 6.10c Variance for solute concentration in triple-permeability media for value of mass 

transfer coefficient w = 5 day-1.  
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Figure 6.11a Mean travel distance for solute concentration eC  in triple-permeability media for 

different values of retardation factor. 

 

 

 
Figure 6.11bVariance for solute concentration eC  in triple-permeability media for different 

values of retardation factor. 
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Figure 6.12a Mean travel distance for solute concentration eC  in triple-permeability media for 

different values of first-order degradation rate coefficient. 
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Figure 6.12b Variance for solute concentration eC  in triple-permeability media for different 

values of first-order degradation rate coefficient. 
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6.5 Summary  
 
In this chapter, a numerical model has been developed for the governing equation of reactive 

solute transport through triple-permeability porous medium using the finite-volume method 

(FVM) and the implicit finite-difference method (FDM).  The concentration profiles indicate 

that the performance of both FDM and FVM are the same for the Peclet number equal to 0.5 in 

the presence of small and higher values of mass transfer rate coefficient. In the case of Peclet 

number equal to 2, the concentration profiles remain the same by FDM and FVM in the 

presence of higher value of mass transfer rate coefficient. However, a significant difference in 

the results is obtained for both methods in the case of small value of mass transfer coefficient. 

In the case of Peclet number equal to 200, the numerical oscillation has been obtained by FDM, 

while oscillation-free result is seen by FVM in the presence of both small and higher values of 

mass transfer coefficient. Hence, the FVM can be used for the simulation of solute transport 

through porous media for any value of Peclet number. The results of mean travel distance and 

spreading behaviour of solutes remain the same in the case of higher values of mass transfer 

coefficient. Higher value of mass transfer, first-order degradation rate and retardation factor 

lead to reduce the magnitude of mean travel distance and spreading of solute in the porous 

medium. During the small transport time, the behaviour of spreading of solute is non-uniform 

and it becomes linear for higher transport times. This study can be useful for remediation of 

contaminant transport through triple permeability medium.  
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Chapter 7 

 

7 SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

 

In this study, an advection-dispersion-reaction equation is used, which accounts for both 

physical non-equilibrium (PNE) and sorption non-equilibrium (SNE) for reactive solute 

transport through porous media.  PNE is accounted by a diffusive mass transfer between the 

advective and the non-advective regions. SNE is accounted by using a two-site 

conceptualization for both advective and non-advective regions, where at the first site, the 

sorption is assumed to be governed by an instantaneous equilibrium adsorption isotherm and at 

the second site, the sorption is described by a first order rate-limited process.  

 

Semi-analytical solution for multiprocess non-equilibrium transport model with asymptotic 

distance-dependent dispersion has been developed for reactive transport through heterogeneous 

porous media. Analytical solution was developed using the Laplace transform technique, which 

was then numerically inverted to time domain, to obtain solute concentration in the advective 

region. The present semi-analytical solutions were compared with the existing analytical 

solutions developed for heterogeneous porous medium (Gao et al., 2012) and a very good 

agreement between the present model and the available analytical solutions were obtained. 

 

The applicability of asymptotic distance-dependent dispersion model was evaluated by 

simulating the experimental data of 1500 cm long heterogeneous soil column. Batch sorption 

experiment has been done to estimate linear and nonlinear sorption coefficients for natural soil 

and fine sand, respectively. These sorption coefficients were used to simulate observed 

breakthrough curves for fluoride transport through soil column experiments. Also, variable 

mass transfer coefficient is used to simulate observed breakthrough curves in the presence of 
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asymptotic dispersion model. Finally, the performance for advection and dispersion dominant 

cases for reactive transport through triple-permeaility porous media was studied. 

7.2 Conclusions 

 

Following conclusions are made from the study: 

1. Semi-analytical solution of multiprocess non-equilibrium transport equations with 

asymptotic distance-dependent dispersivity functions are derived for reactive solute 

transport through heterogeneous porous media. This model includes both physical and 

chemical non-equilibrium simultaneously. Therefore, this model is more general and it 

can be more applicable for reactive transport through porous media. 

 

2. It was also observed that asymptotic distance-dependent dispersivity model gives a 

good fit to the observed breakthrough curves as compared to constant dispersion model. 

The simulated results of observed data demonstrated that multiprocess non-equilibrium 

with constant dispersion model could not adequately describe solute transport in large 

heterogeneous soil column and it overestimated solute transport dispersion at foregoing 

distances away from 1500 cm long soil column experiments.  

 
3. On the basis of linearization of Langmuir nonlinear isotherm model, it is shown that the 

best fit is given by Langmuir -2 linear isotherms in comparison to other Langmuir linear 

isotherms in case of fine sand. However, in case of natural soil, Langmuir-1 linear 

isotherm gives the best fit. In case of fine sand, the value of coefficient of 

determination, R2=0.8306 and 0.908 is obtained for Freundlich linear isotherm and 

Langmuir-2 linear isotherms, respectively. This also indicates that the Langmuir-2 

linear isotherms can be preferred in comparison to Freundlich linear isotherm. 

 

4. In case of natural soil, the value of R2=0.8673 and 0.9272 is obtained for Freundlich 

linear isotherm and Langmuir-1 linear isotherms, respectively. This also indicates that 

the Langmuir-1 linear isotherms can be preferred in comparison to Freundlich linear 

isotherm. 
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5. Observed experimental breakthrough curves were simulated using linear and nonlinear 

sorption models. It is shown that the Freundlich sorption model gives best fit of 

observed spatial concentration profile along the length of soil column. This study also 

indicates that Freundlich nonlinear isotherm model incorporated in the transport 

equation with an implicit finite difference method would provide accurate prediction for 

reactive transport in the soil column. Also, estimated linear and nonlinear sorption and 

transport parameters for fluoride can be useful for safe disposal of solid-wastes and 

planning of future landfill sites. 

 
6. Various experiments were conducted in the laboratory to understand the behavior of 

solute transport through horizontal heterogeneous long soil column filled with mixed 

soil media. The results show that the variation of pore velocity in heterogeneous porous 

media is much larger as compared to homogeneous porous media. It means that the 

large variation of hydraulic conductivity increases the dispersion of solute in 

heterogeneous porous media.  

 
7. It is also shown that the MIMA model gives the best fit curve of experimental 

breakthrough curves through long heterogeneous soil column experiment as compared 

to both MIMC and MIML models. Estimated value of dispersivity is smaller in case of 

MIMA model as compared to both MIMC and MIML models. Thus, MIMA model is 

efficient to capture the evolution distance dependent dispersion behavior.  

 
8. An empirical relationship of mass transfer coefficient with pore velocity and travel 

distance was developed. The variable mass transfer coefficient enhanced the simulation 

of experimental breakthrough curves as compared to constant value of mass transfer 

coefficient. Hence, accurate prediction of mass transfer coefficient is also essential and 

significant for transport of contaminant through porous media. Hence, asymptotic 

dispersivity including variable mass transfer coefficient can be useful for describing 

solute transport in long heterogeneous porous media.  

 
9. The results of concentration profiles are compared in the presence of small and higher 
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values of Peclet number using both FDM and FVM methods for movement of solute 

through triple-permeability media. In the presence of small value of mass transfer 

coefficient ( w =0.01 day-1) and Peclet number equal to 0.5 and 2, it is shown that 

deviation occurs in the results of concentration profiles as predicted by both FVM and 

FDM methods. However, the results are remaining same in the presence of higher value 

of mass transfer coefficient ( w =5 day-1). 

 
10. In the case of Peclet number equal to 200, the numerical oscillation has been obtained 

by FDM, while oscillation-free result is seen by FVM in the presence of both small and 

higher values of mass transfer coefficient. Hence, the FVM can be used for the 

simulation of solute transport through porous media for any value of Peclet number. 

 
11. The behavior of spatial concentration profiles is predicted in three regions of triple-

permeability media, respectively. The results show that the behavior of concentration 

profiles is not symmetrical for movement of solute in three regions, respectively. It is 

also shown that the higher value of mass transfer coefficient, first-order degradation and 

sorption coefficients are lead to reduce the magnitude of solute concentration along the 

travel distance. 

 
12. The results of mean travel distance and spreading behaviour of solutes remain the same 

in the case of higher values of mass transfer coefficient. Higher value of mass transfer, 

first-order degradation rate and retardation factor lead to reduce the magnitude of mean 

travel distance and spreading of solute in the porous medium. During the small transport 

time, the behaviour of spreading of solute is non-uniform and it becomes linear for 

higher transport times. This study can be useful for remediation of contaminant 

transport through triple permeability medium.  

7.3 Research Contribution 

Overall following major research contribution can be made out of the study: 

1. This study presents a general semi-analytical solution of multiprocess non-equilibrium 

with asymptotic distance dependent dispersivity function, which is more useful for 

simulating reactive transport through porous media at filed scale. Further, mass transfer 
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coefficient is considered as a constant and variable parameter during simulation of 

experimental data. 

2. This study also shows the estimation of linear and nonlinear sorption parameters for 

fluoride transport through porous media. It shown that the Freundlich nonlinear sorption  

gave best fit of spatial concentration profile for reactive transport through porous media 

as compared to linear and Langmuir sorption model. 

3. Both FDM and FVM numerical methods have been used to study the behavior of 

concentration profiles in the presence of small and higher value of Peclet number and 

mass transfer coefficients.    

7.4 Scope of future works 

The present work is focused on the development of semi-analytical solution of MPNE transport 

equations with asymptotic distance-dependent dispersivity functions, and this model has been 

used to simulate the experimental breakthrough curves through heterogeneous long soil column 

experiments in the lab.  However, it is required to further explore the future investigations as 

mentioned below: 

1. Field experiments can be carried out to get the experimental data through heterogeneous 

porous media for understanding the effect of physical and chemical non-equilibrium 

and scale effects.  

2. In the present study, only asymptotic distance-dependent dispersivity has been 

considered, further study can be extended incorporating time dependent dispersivity.  

3. Only one type of reactive solute, i.e. Fluoride, has been considered in the present work. 

Options to include many other reactive solutes should be considered in future work. 

4. Stochastic approach can also be used to investigate the effect of heterogeneity of porous 

media. 

 

  



 128 



 129 

BIBLIOGRAPHY 

 

1. Abulaban, A., and Nieber, J.L., (2000). “Modeling the effects of nonlinear equilibrium 

sorption on the transport of solute plumes in saturated heterogeneous porous media.” 

Adv. Water Resour., vol. 23(8), 893-905. 

2.     Al-Tabbaa, A., Ayotamuno, J. M., and Martin, R. J., (2000). “One-dimensional solute 

transport in stratified sands at short travel distances.” J. Hazard. Mat.,73(1),  

1-15. 

3.     Apha, A. WPCF (1995). “Standard methods for the examination of water and 

wastewater.” American Public Health Association, Washington, DC.. 

4.     Aral, M., and Liao, B., (1996). “Analytical Solutions for Two-Dimensional Transport 

Equation with Time-Dependent Dispersion Coefficients.” J. Hydrol. Eng., 1(1), 20–32. 

5.     Avila, M. A. S., and Breiter, R., (2009). “Modelling the Competitive Sorption Process 

of Multiple Solutes during their Transport in Porous Media.” Env.Mod. Asses., 14(5), 

615-629. 

6.     Barry, D. A., and Sposito, G., (1989). “Analytical solution of a convection-dispersion 

model with time-dependent transport coefficients.” Water Resour. Res., 

25 (12), 2407–2416. 

7.   Bear, J., (1972). “Dynamics of Fluids in Porous Media.” 764 pp., Elsevier, New York. 

8.     Bear, J., (1979). “Hydraulics of Groundwater.” McGraw-Hill, New York. 

9.     Berkowitz, B., Emmanuel, S., and Scher, H., (2008). “Non-Fickian transport and 

multiple-rate mass transfer in porous media.” Water Resour. Res., 44, W03402, 

doi:10.1029/2007WR005906. 

10.     Bethge, E. and Mohrlok, U., (2008). “Uncertainty assessment for contaminant leaching 

from flood water retention areas, in: Calibration and Reliability in Groundwater 

Modelling, redibility of  Modelling.” IAHS Publication, 320, IAHS Press, Oxfordshire, 

Great Britain, 27–33. 

11. Bhallamudi, S. M., Panday, S., & Huyakorn, P. S. (2003). “Sub-timing in fluid flow and 

transport simulations.” Advances in water resources, 26(5), 477-489. 

12. Bond, W. J., and Wierenga, P. J., (1990). “Immobile water during solute transport in 

unsaturated sand columns.” Water Resour. Res., 26(10), 2475-2481. 



 130 

13. Boving, T. B., and Grathwohl, P., (2001). “Tracer diffusion coefficients in sedimentary 

rocks: correlation to porosity and hydraulic conductivity.” J. Cont. Hydrol., 53 (1), 85-

100. 

14. Boving, T.B., (2014). “Forensic Analysis of MTBE Contamination Using Basic 

Hydrogeologic Concepts.” J Forensic Sci, July 2014, Vol. 59, No. 4, DOI: 

10.1111/1556-4029.12510 

15. Brindha, K., and Elango, L., (2011). “Fluoride in Groundwater: Causes, Implications 

and Mitigation Measures.” In: Monroy S.D. (Ed.). Fluoride Properties Applications and 

Environmental Management, 111-136. 

16. Brusseau, M.L., Jessup, R.E., and Rao, P.S.C., (1989). “Modeling the transport of 

solutes influenced by multiprocess non-equilibrium.” Water Resour. Res., 25(9), 1971-

1988. 

17. Brusseau, M. L., (1991). “Application of a Multiprocess non-equilibrium sorption 

model to solute transport in a stratified porous medium.” Water Resour. Res., 27 (4). 

589-595. 

18. Brusseau, M.L., (1992). “Transport of rate limited sorbing solute in heterogeneous 

porous media: Application of a one dimensional multifactor nonideality model to field 

data.” Water Resour. Res., 28 (9), 2485-2497. 

19. Brusseau, M. L., Jessup, R. E., and Rao, P. S. C. (1992). “Modeling solute transport 

influenced by multiprocess non-equilibrium and transformation reactions.” Water 

Resour. Res., 28(1), 175-182. 

20. Brusseau, M. L., (1994). “Transport of reactive contaminants in heterogeneous porous 

media.” Reviews of Geophysics, 32(3), 285-313. 

21. Brusseau, M. L., Hu, Q., and Srivastava, R., (1997). “Using flow interruption to identify 

factors causing nonideal contaminant transport.” J. Cont. Hydrol., 24(3), 

205-219. 

22. Burr, D.T., Sudicky, E.A, and Naff, R.L., (1994). “Nonreactive and reactive solute 

transport in three-dimensional heterogeneous porous media: Mean displacement, plume 

spreading, and uncertainty.” Water Resour. Res., 30 (3), 791-815. 

23. Chapra, S.C., and Canale, R.P. (2000). “Numerical methods for engineers with 

programming and software.” Third edition,Tata McGraw-Hill, New Delhi. 



 131 

24. Chastanet, J., and Wood, B. D., (2008). “Mass transfer process in a two‐region 

medium.” Water Resour. Res., 44(5).  

25. Chaudhuri, A. and Sekhar, M. (2007). “Stochastic finite element method for analysis of 

transport of nonlinearly sorbing solutes in three-dimensional heterogeneous porous 

media”. Water Resour. Res., (43), W07442, doi:10.1029/2006WR004892. 

26. Chen, J.S., Liu, C.W., Liao, C.M., (2002). A novel analytical power series solution for 

solute transport in a radially convergent flow field. J. Hydrol. 266, 120-138. 

27. Chen, J. S., Liu, C. W., Hsu, H. T., and Liao, C. M., (2003). “A Laplace transform 

power series solution for solute transport in a convergent flow field with 

scale‐dependent dispersion.” Water Resour. Res., 39(8).  

28. Chen, J.S., Ni, C.F., Liang, C.P., Chiang, C.C., 2008a. Analytical power series solution 

for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity. J. 

Hydrol. 362, 142–149. 

29. Chen, J. S., Ni, C. F., and Liang, C. P., (2008). “Analytical power series solutions to the 

two‐dimensional advection–dispersion equation with distance‐dependent dispersivities.” 

Hydrol. Proc., 22(24), 4670-4678. 

30. Chiou, C.T., Peters, L.J, and Freed, V.H., (1979). “A physical concept of soil-water 

equilibria for non-ionic organic compounds.” Science, 206(16), 831-832. 

31. Dagan, G., (1982). “Stochastic modelling of groundwater flow by unconditional and 

conditional probabilities. 2. The solute transport.” Water Resour. Res., 18 (4), 835-848. 

32. Dagan, G. (1984). “Solute transport in heterogeneous porous formations.” J. Fluid 

Mech., 145, 151-177. 

33. Deng, F.-W., Cushman, J. H., and Delleur, J. W. (1993). “A Fast Fourier Transform 

Stochastic analysis of the contaminant transport problem.” Water Resour. Res., 29(9), 

3241-3247 

34. Delay F, Porel G, Banton O., (1998). “An approach to transport in heterogeneous 

porous media using the truncated temporal moment equations: theory and numerical 

validation.” Transp. Porous Med., 32 (2). 199–232. 

35. Dentz, M., Gouze, P., Carrera, J., (2011). “Effective non-local reaction kinetics for 

transport in physically and chemically heterogeneous media.” J. Cont. Hydrol., 222-

236. 



 132 

36. de Hoog, F.R.,  Knight, J.H.,  Stokes, A.N., (1982).  “An improved method for 

numerical inversion of Laplace transforms.” SIAM J. Sc. Stat. Computing, 3(3), 357-

366. 

37. De Smedt, F., and Wierenga, P. J., (1984). “Solute transfer through columns of glass 

beads.” Water Resour. Res., 20(2). 225-232. 

38. Duijn Van, C. J., and, van derZee, S. E. A. T. M., (1986). “Solute transport parallel to 

an interface separating two different porous materials.” Water Resour. Res., 22 (13). 

1779–1789. 

39. Dykhuizen, R.C., (1991). “Asymptotic solutions for solute transport in dual velocity 

media.” Mathematical Geology, vol., 23 (3). 383-401. 

40. Eaton, A.D.,C lesceri, L.S., Greenberg, A.E., Franson, M.A.H., 1995. Standard methods 

for the examination of water and waste water. American Public Health Association. 

41. Eldho, T. I., and Vasudeva Rao, B., (1997). “Simulation of two-dimensional 

contaminant transport with dual reciprocity boundary elements.” Engineering analysis 

with boundary elements, 20(3), 213-228. 

42. Elzein, A. H., and Booker, J. R., (1999). “Ground water pollution by organic 

compounds: A two- dimensional analysis of contaminant transport in stratified porous 

media with multiple sources of non-equilibrium partitioning.” Int. J. Numer. Anal. 

Meth. Geomech., 23(14), 1717-1732. 

43. Fetter, C.W. (1999). Contaminant hydrogeology, vol. 500, Prentice Hall, NJ. 

44. Fitts, C. R., (2002). “Groundwater Science.” Academic, San Diego, Calif. 

45. Freeze, R. A., and Cherry, J. A., (1979). “Groundwater, Prentice-Hall, Englewood 

Cliffs, N. J.  

46. Freundlich, H., (1906). “Uber die adsorption in iosungen.” Zeitschrift fur physikalische 

Chemie, vol. 57, 385-470. 

47. Furman, A., and Neumann, S.P., (2003). “Laplace-Transform Analytic Element 

Solution of Transient Flow in Porous Media.” Adv. Water Resour., 26(12), 1229-1237.  

48. Gao, G., Feng, S., Zhan, H., Huang, G., and Ma, X., (2009). “Evaluation of 

anomalous solute transport in a large heterogeneous soil column with mobile-immobile 

model.” J. Hydrol. Eng., 14(9). 966-974. 



 133 

49. Gao, G., H. Zhan, S. Feng, B. Fu, Y. Ma, and Huang, G., (2010). “A new mobile-

immobile model for reactive solute transport with scale-dependent dispersion”. Water 

Resour. Res., 46(8), W08533.  

50. Gao, G., Zhan, H., Feng, S., Fu, B., Huang, G. (2012) “A mobile–immobile model with 

an asymptotic scale-dependent dispersion function.” Journal of Hydrology 424–425 

(2012) 172–183 

51. Gelhar, L.W., Welty, W., Rehfeldt, K.R., (1992). A critical review of data on field-scale 

dispersion in aquifers. Water Resour. Res. 28(7), 1955-1974.  

52. Gelhar, L. W., (1993). “Stochastic Subsurface Hydrology.” Prentice-Hall, Englewood 

Cliffs, NJ. 

53. Gerke, Horst H., and, Van Genutcheten, M. Th., (1996). “Macroscopic representation of 

structural geometry for simulating water and solute movement in dual-porosity media.” 

Adv. Water Resour., 19(6), 343-357. 

54. Goltz, M. N., and Roberts, P. V., (1986). “Three-dimensional solutions for solute 

transport in an infinite medium with mobile and immobile zones.” Water Resour. Res., 

22 (7), 1139-1148. 

55. Goltz, M. N., and Oxley, M. E., (1991). “Analytical modeling of aquifer 

decontamination by pumping when transport is affected by rate‐limited sorption.” 

Water Resour. Res., 27(4), 547-556. 

56. Gupta, M. K., Singh A. K., and Srivastava, R. K., (2009). “Kinetic Sorption Studies of 

Heavy Metal Contamination on Indian Expansive Soil.” E-J. Chem., 6(4), 1125-1132. 

57. Guven, O., Molz, F.J., and Melville, J.G. (1984). “An analysis of dispersion in a 

stratified aquifer.” Water Resour. Res., 20(10),1337–1354 

58. Huang, K., M. T. van Genuchten, and R. Zhang (1996). Exact solutions for One 

dimensional transport with asymptotic scale dependent dispersion. Appl. Math. Model. 

20, 298–308. 

59. Huang, H., Huang, Q., and Zhan, H., (2006). “Evidence of one dimensional scale-

dependent fractional advection-dispersion.” J. Cont. Hydrol., 85(1), 53-71. 

60. Hunt, B., (1998). “Contaminant source solutions with scale-dependent dispersivities.” J. 

Hydrol. Eng., 3(4), 268-275. 

61. Hunt, B., (2002). “Scale-dependent dispersion from pit.” J. Hydrol. Eng., 7 (2), 168-

174. 



 134 

62. Jarvis, N. J., Jansson, P. E., Dik, P. E., and Messing, I., (1991). “Modelling water and 

solute transport in macroporous soil. I. Model description and sensitivity analysis.” J. 

Soil Sc., 42(1), 59-70. 

63. Jury, W. A., and Utermann, J., (1992). “Solute transport through layered soil profiles: 

Zero and perfect travel time correlation models.” Transp. Porous Med., 8(3), 277-297 

64. Kartha, S. A., and Srivastava, R., (2008a). “Effect of immobile water content on 

contaminant transport in unsaturated zone.” J. Hydro-Env. Res., 1(3), 206-215. 

65. Kartha, S. A., and Srivastava, R., (2008b). “Effect of slow and fast moving liquid zones 

on solute transport in porous media.” Transp. Porous Med., 75(2), 227-247. 

66. Kartha, S. A, and Srivastava, R., (2012). “Slow and fast transport in heap leaching of 

precious metals.” Transp. in Porous Med., 94(3), 707-727. 

67. Kreyszig, E., (1999). Advanced Engineering Mathematics. Eighth ed. John Wiley, New 

York. 

68. Kumar, G. S., and Sekhar, M., (2005). “Spatial moment analysis for transport of non-

reactive solutes in a fracture-matrix system.” J. Hydrol. Eng., 10 (3), 192-199. 

69. Kumar, G. S., Sekhar, M., and Misra, D., (2006). “Time dependent dispersivity 

behavior of non-reactive solutes in a system of parallel fractures.” Hydrol. Earth Sys. 

Sc. Disc., 3(3), 895-923.  

70. Kuranchie, A., Shukla, S., Habibi, D., (2015). “Electrical resistivity of iron ore mine 

tailings produced in Western Australia.” International Journal of Mining, Reclamation 

and Environment, 29(3), 191-200, DOI: 10.1080/17480930.2014.941551 

71. Lapidus, L., and Amundson, N.R., (1952). Mathematics of adsorption in beds. VI. The 

effect of longitudinal diffusion in ion exchange and chromatographic columns. J. of 

Physical Chemistry, 56, 984-988.  

72. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids, 

Part I Solids. J. of the American Chemical Society, vol 38, 2221-2295. 

73. Leij, F. J., and Bradford, S. A., (2009). “Combined physical and chemical        

 non-equilibrium transport model: analytical solution, moments, and application to 

colloids.” J. Cont. Hydrol., 110(3), 87–99. 

74. Leij, F. J., Toride, N., Field, M. S., and Sciortino, A., (2012). “Solute transport in 

dual‐permeability porous media.” Water Resour. Res., 48(4). 



 135 

75. Mackay, D. M., Freyberg, D. L., Roberts, P. V., and, Cherry, J. A., (1986). “A natural 

gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of 

plume movement.” Water Resour. Res., 22(13), 2017–2029. 

76. Maraqa, M. A. (2001). “Prediction of mass-transfer coefficient for solute transport in 

porous media.” Journal of contaminant hydrology, 50(1), 1-19. 

77. Matheron, G., and de Marsily, G., (1980). “Is Transport in Porous Media Always 

Diffusive? A Counterexample.” Water Resour. Res., 16(5), 901-917. 

78. Meenal, M., and Eldho, T. I., (2012). “Two-dimensional contaminant transport 

modeling using meshfree point collocation method (PCM).” Eng. Ana. with Bound. 

Elem., 36(4), 551-561. 

79. Meenal, M., and Eldho T.I., (2013). “Aquifer Decontamination Studies Using a 

Meshfree Point Collocation Method (PCM).” Journal of Ground Water 

Research, AGGS, 2(1), 163-172, ISSN: 2321-4783. 

80. Moench, M., (1991). “Social Issues in Western U.S. Groundwater Management: An 

Overview.” Oakland, Pacific Institute. 

81. Mohrlok, U., Kienle, J., and Teutsch, G., (1997). “Parameter identification in double-

continuum models applied to karst aquifers.” In Proceedings of the 12th International 

Congress of Speleology,10-17 August 1997, La Chaux-de-Fonds, Switzerland, Vol. 2, 

163-166. 

82. Mohrlok, U., Samuel Kirubaharan, C., and Eldho, T. I., (2010). “Transport 

Characteristics in 3D Groundwater Circulation Flow Field by Experimental and 

Numerical Investigations.” Practice Periodical of Hazardous, Toxic, and Radioactive 

Waste Management, 14(3), 185-194. 

83. Molz, F. J., Guven, O., and Melville, J. G., (1983). “An examination of scale –

dependent dispersion coefficient.” Ground Water, 21(6). 715-725.  

84. Morales, I. Atoyan, J.A., Amador, J.A., Boving, T.B., (2014). “Transport of Pathogen 

Surrogates in Soil Treatment Units: Numerical Modeling.” Water. 6, 818-838; DOI: 

10.3390/w6040818. 

85. Nandi, B.K., Goswami, A., Purkait, M.K., 2009. Adsorption characteristics of brilliant 

green dye on kaolin. J. Hazardous Materials, Vol 161, 387-395. 



 136 

86. Neville, C. J., Ibaraki, M., and Sudicky, E. A., (2000). “Solute transport with 

multiprocess non-equilibrium: A semi-analytical solution approach.”  J. Cont. Hydrol., 

44(2), 141–159. 

87. Ogata, A., and Banks, R. B., (1961). “A solution of the differential equation of 

longitudinal dispersion in porous media.” U. S. Geol. Surv. Prof. Pap. 411-A. 

88. Ogata, A., (1970). “Theory of dispersion in a granular medium.” U.S. Geol. Surv. Prof., 

Paper 411-I.  

89. Pang, L., and Hunt, B., (2001). “Solutions and verification of scale-dependent 

dispersion model.” J. Cont. Hydrol., 53(1), 21-39. 

90. Parimal, S., Prasad, M. and Bhaskar, U., 2010. Prediction of Equilibrium Sorption 

Isotherm: Comparison of Linear and Nonlinear Methods. Ind. Eng. Chem. 49, 2882-

2888. 

91. Park, E. and Zhan, H., (2003). “Hydraulics of horizontal wells in fractured shallow 

aquifer systems.” J. Hydrol., 281(1), 147–158. 

92. Pickens, J. F., Jackson, R. E., Inch, K. J., and Merritt, W. F. (1981a). “Measurement of 

distribution coefficients using a radial injection dual‐tracer test.” Water Resour. Res., 

17(3), 529-544. 

93. Pickens, J. F., and Grisak, G. E., (1981b). “Modeling of scale dependent dispersion in 

hydrogeologic systems.” Water Resour. Res., 17(6), 1701-1711.  

94. Putti, M., Yeh, W., and Mulder W.A., (1990). A Triangular Finite Volume Approach 

with High Resolution Upwind Terms for the Solution of Groundwater Transport 

Equations. Water Resour. Res., 26(12), 2865-2880. 

95. Rao, S. V. N., Sreenivasulu, V., Bhallamudi, S. M., Thandaveswara, B. S., & Sudheer, 

K. P. (2004). Planning groundwater development in coastal aquifers/Planification du 

développement de la ressource en eau souterraine des aquifères côtiers. Hydrological 

Sciences Journal, 49(1), 155-170. 

96. Remson, I., Hornberger, I. G. M., and Molz, F. J., (1971). “Numerical Methods in 

Subsurface Hydrology.” Wiley-Intersience New York. 

97. Roberts, P. V., Goltz, M. N., and, Mackay, D. M., (1986). “A natural gradient 

experiment on solute transport in a sand aquifer: 3. Retardation estimates and mass 

balances for organic solutes.” Water Resour. Res., 22(13), 2047–2058. 



 137 

98. Robinson, N. I., Sharp Jr, J. M., and Kreisel, I., (1998). “Contaminant transport in sets 

of parallel finite fractures with fracture skins.” J. Cont. Hydrol., 31(1), 83-109. 

99. Sciortino, A., Leij, F. J., Caputo, M. C., & Toride, N. (2015). “Modeling transport in 

dual-permeability media with unequal dispersivity and velocity.” J. of Hydrol. Eng., 

04014075. 

100. Sekhar, M., Suresh Kumar, G., and Misra, D., (2006). “Numerical modeling and 

analysis of solute velocity and macrodispersion for linearly and nonlinearly sorbing 

solutes in a single fracture with matrix diffusion.”  J. Hydrol. Eng., 11(4), 319-328. 

101. Selim, H. M., and Mansell, R. S., (1976). “Analytical solution of the equation of 

reactive solutes through soils.” Water Resour. Res., 12(3), 528-532. 

102. Selim, H. M., Ma, L., and Zhu, H., (1999). “Predicting Solute Transport in Soils 

Second-Order Two-Site Models.” S. Sc. Soc. America J., 63(4), 768-777. 

103. Serrano,S. E., (2001). Solute transport under non-linear sorption and decay. Water Res. 

Vol. 35, (6), p. 1525-1533. 

104. Sharma, P. K. And Srivastava, R. (2012). “Concentration profiles and spatial moments 

for reactive transport through porous media.” ASCE Journal of Hazardous, Toxic, and 

Radioactive Waste, Vol. 16 (2), P-125-133. 

105. Sharma, P. K., Savant, V.A., Shukla, S. K., and Khan, Z. (2014) “Experimental and 

numerical simulation of contaminant transport through layered soil”. International 

Journal of Geotechnical Engineering. Vol. 8(4), 345-351, DOI 

10.1179/1939787913Y.0000000014. 

106. Sharma, P. K., Shukla, S. K., Choudhary, R., & Swami, D. (2016). “Modeling for solute 

transport in mobile–immobile soil column experiment.” ISH Journal of Hydraulic 

Engineering, 22(2), 204-211. 

107. Shashidhar, T., Bhallamudi, S. M., and Philip, L. (2007). “Development and validation 

of a model of bio-barriers for remediation of Cr (VI) contaminated aquifers using 

laboratory column experiments.” J. of hazardous materials, 145(3), 437-452. 

108. Singh, M. K., Ahamad, S. and Singh, V. P., (2011). “Analytical Solution for One-

Dimensional Solute Dispersion with Time-Dependent Source Concentration along 

Uniform Groundwater Flow in a Homogeneous Porous Formation.” J. Eng. Mech. Vol., 

pp., in press. 



 138 

109. Singh, M. K., Singh, V. P., Kumari, P. and Das, P., (2012). “Analytical and Numerical 

Approaches to Horizontal Non-Reactive Solute Dispersion in a Semi-Infinite Aquifer.” 

J. Ground Water Res., 1(1), 42-51. 

110. Singh, M. K., Singh, Premlata, and Singh, V. P., (2010). “Analytical Solution for Solute 

Transport along and against Time Dependent Source Concentration in Homogeneous 

Finite Aquifers.” Adv. Theor. and Appl. Mech., 3(3), 99-110. 

111. Srivastava, R., and Brusseau, M. L., (1996). “Nonideal transport of reactive solutes in 

heterogeneous porous media: 1. Numerical model development and moments analysis.” 

J. Cont. Hydrol., 24 (2), 117-143. 

112. Srivastava, R., Sharma, P.K., and Brusseau, M. L., (2002). “Spatial moments for 

reactive transport in heterogeneous porous media.” J. Hydrol. Engg., ASCE 7 (4), 336-

341.  

113. Starr, R. C., Gillham, R. W., and Sudicky, E. A., (1985). “Experimental investigation of 

solute transport in stratified porous media, 2. The reactive case.” Water Resources. Res., 

21(7), 1043-1050. 

114. Sternberg, S. P., and Greenkorn, R. A., (1994). “An experimental investigation of 

dispersion in layered porous media.” Transp. Porous Med., 15(1). 15-30. 

115. Sudicky, E. A., Gillham, R.W., and Frind, E. O., (1985). “Experimental investigation of 

solute transport in stratified porous media, 1. The nonreactive case.” Water Resour. 

Res., 21(7), 1035-1041. 

116. Tang, D. H., Frind, E. O., and Sudicky, E. A., (1981). “Contaminant transport in 

fractured porous media: Analytical solution for a single fracture.” Water Resour. Res. 

17(3), 555-564. 

117. Tang, Y., and Aral, M. M., (1992). “Contaminant transport in layered porous media: 1. 

General solution.” Water Resour. Res., 28(5), 1389-1397. 

118. Taylor, G., (1953). “Dispersion of soluble matter in solvent flowing slowly through a 

tube.” Proceedings of the Royal Society of London. Series A. Mathematical and 

Physical Sciences, 219(1137), 186-203. 

119. Toride, N., Inoue, M., and Leij, F. J., (2003). “Hydrodynamic dispersion in an 

unsaturated dune sand.” S. Sc. Soc. America J., 67(3), 703-712.  



 139 

120. van Albada, G.D., van Leer, B., and Robers Jr., W.W., (1982) A Comparative Study of 

Computational Methods in Cosmic Gas Dynamics. Astronomy and Astrophysics. 108: 

76-86. 

121. van Leer, B., (1977a). Towards the Ultimate Conservative Difference Scheme III: 

Upstream Centred Finite Difference Schemes for Ideal Compressible Flow. J. Comput. 

Phys., 23: 263-275. 

122. van Leer, B., (1977b). Towards the Ultimate Conservative Difference Scheme IV: A 

New Approach to Numerical Convection. J. Comput. Phys., 23: 276-299. 

123. van Genuchten, M, Th., and Alves, W. J. (1982). Analytical solutions of the one-

dimensional convective-dispersive solute transport equation. US Dept. Agriculture 

Tech. Bull. No.1661 151p. 

124. Valocchi, A. J., (1985). “Validity of the local equilibrium assumption for modeling 

sorbing solute transport through homogeneous soils.” Water Resour. Res., 21(6), 808-

820.  

125. Valocchi, A. J., (1988). “Theoretical analysis of deviations from local equilibrium 

during sorbing solute transport through idealized stratified aquifers.” J. Cont. Hydrol., 

2(3), 191-207.  

126. Van Genutcheten, M.Th., and Alves, W.J., 1982. Analytical solution of one dimensional 

convective-dispersion solute transport equation. Tech. Bull. Regist Med. Technol., 1-51. 

127. Valocchi, A. J., (1989). “Spatial moment analysis of the transport of kinetically 

adsorbing solutes through stratified aquifers.” Water Resour. Res. 25(2), 273-279. 

128. van Genuchten, M. Th., Davidson, J. M., and Wierenga, P. J., (1974). “An evaluation of 

kinetic and equilibrium equations for the prediction of pesticide movement through 

porous media.” S. Sci. America. Proc., 38(1), 29-35. 

129. van Genuchten, M. Th., and Wierenga, P. J., (1976). “Mass transfer studies in sorbing 

porous media: Analytical solutions.”  Soil Sci. Soc. America. J., 40(3), 473-479. 

130. van Genuchten, M. Th., and Wierenga, P. J., (1977). “Mass transfer studies in sorbing 

porous media: II. Experimental evaluation with tritium (3H2O).” S. Sc. Soc. America J., 

41(2), 272-278. 

131. van Genuchten, M. Th., and Wagenet, R. J., (1989). “Two-site/two-region models for 

pesticide transport and degradation: Theoretical development and analytical solutions.” 

Soil Sci. Am. J., 53(5), 1303-1310. 



 140 

132. Vanderborght, J.,  Vereecken,  H., (2007). Review of dispersivities for transport          

modelling  in soil. J. Vadose Zone, (6), 29-52. 

133. Weng, C.H., Sharma, Y.C. Chu, S.H., 2008. Adsorption of Cr (VI) from aqueous 

solution by spent activated clay. J. of Hazardous Materials, vol. 155, 65-75. 

134. Xu, L., and Brusseau, M. L., (1996). “Semi-analytical Solution for Solute Transport in 

Porous Media with Multiple Spatially Variable Reaction Processes.” Water Resour. 

Res., 32(7), 1985-1991. 

135. Yates, S. R., (1990). “An analytical solution for one-dimensional transport in 

heterogeneous porous media.” Water Resour. Res., 28(8), 2149-2154. 

136. Yates, S. R., (1992). “An analytical solution for one-dimensional transport in 

heterogeneous porous media with an exponential dispersion function.” Water Resour. 

Res., 26(10), 2331-2338. 

137. Zhan, H., (1998). “Transport of waste leakage in stratified formations.” Adv. Water 

Resour., 22(2), 159-168. 

138. Zhou, L., and Selim, H. M., (2003). “Scale dependent dispersion in soil: an 

overview.”  Adv. Agron., 80, 223-263. 

  



 141 

1. Abgaze, T. A., and Sharma, P. K. (2015). Solute transport through porous media 
with scale-dependent dispersion and variable mass transfer coefficient. ISH Journal 
of Hydraulic Engineering, 21(3), 298-311. 

LIST OF PUBLICATIONS 

 

 
2. Sharma, P. K., & Abgaze, T. A. (2015). Solute transport through porous media 

using asymptotic dispersivity. Sadhana Journal, Indian Academy of Sciences, 
(Springer publisher), 40(5), 1595-1609. 
 

3. Sharma, P. K., Ojha, C. S. P., Abegaze, T. A., Swami, D., and Yadav, A. (2015). 
Simulation of Fluoride Transport through Fine Sand Column Experiments. Journal 
of Hydrogeology & Hydrologic Engineering, 4:2.  
 

4. Abgaze, T. A., Sharma, P. K. and Swami Deepak. (2014) Modeling solute transport 
through porous media with scale dependent dispersion. HYDRO 2014 
INTERNTIONAL Conference, December 18-20, 2014, at M.A.N.I.T. Bhopal, India. 

 


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF NOTATIONS
	INTRODUCTION
	General
	Motivation of present study
	Objectives
	Organisation of thesis

	Chapter 2
	REVIEW OF LITRATURE
	General
	Advection transport
	Dispersion transport
	Diffusion transport
	Sorption transport
	Review of literatures
	Summary

	Chapter 3
	DEVELOPMENT OF SEMI-ANALYTICAL SOLUTION AND APPLICATION
	General
	Conceptual model of non-equilibrium transport
	Governing Equations
	Initial and Boundary conditions
	Semi-analytical solution
	Validation of the semi-analytical solution
	Application of model
	Solute transport Experiments in long soil column
	Parameter estimation and simulation of experimental data of chloride
	Simulation of experimental breakthrough curves of fluoride data

	Summary
	General
	Governing Equation
	Material used and Soil Column experiment
	Batch test
	Soil column Experiment
	Sorption isotherms
	Linear sorption
	Nonlinear sorption

	Numerical model development and validation
	Results and Discussion
	Batch adsorption Studies
	Simulation of breakthrough curves for Chloride data
	Simulation of break through curves for Fluoride data

	Summary

	SIMULATION OF BREAKTHROUGH CURVES WITH DISTANCE-DEPENDENT DISPERSION AND VARIABLE MASS TRANSFER COEFICIENTS
	General
	Governing Equations
	Numerical Scheme
	Formulation of governing equations
	Numerical solution
	Dispersive transport equation

	Results and discussion
	Concentration profiles with constant, linear and asymptotic dispersion models
	Simulation of breakthrough curves with constant and distance-dependent dispersion models
	/                    (5.18a)
	/                 (5.18b)
	/                   (5.18c)

	Simulation of breakthrough curves with asymptotic dispersion and variable mass transfer coefficient

	Experimental Setup
	Experimental Procedure

	Observed Breakthrough Curves In Layered and Mixed Soils
	Summary

	Reactive solute transport through triple-permeability porous medium
	General
	Mathematical model
	Boundary conditions

	Numerical Methods
	Formulation of governing equations for triple-permeability medium
	Procedure of numerical solution
	Dispersive transport equation
	Verification of numerical model

	Application of model
	Concentration profiles
	Spatial moments

	Summary

	SUMMARY AND CONCLUSIONS
	Summary
	Conclusions
	Research Contribution
	Scope of future works

	BIBLIOGRAPHY

