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ABSTRACT 

 

The thesis entitle “Design Synthesis and Estrogen Receptor Binding Study of Flavone and 

Indanone Based Ligands” is divided into five chapters. 

The present work is aimed to synthesize the novel flavone and indanone based ligands and their 

anti-proliferative evaluation against breast and cervical cancers. The novel methods are 

developed in the deprotection of hydroxyl groups for alcohols and phenols. Also, novel 

reagents are explored for the McMurray coupling reaction using different metal catalysts. All 

synthesized compounds are characterized using standard analytical techniques like IR, 1H-

NMR, 13C-NMR, GC-MS, HRMS, etc. The thesis has been divided into five chapters for 

further transparency and clarity and elaborated as follows:  

CHAPTER-1 

 Introduction 

The first chapter describes the introduction of flavones, indanone and their biological 

applications, deprotection methods of hydroxyl groups for alcohols and phenols and reagents in 

the McMurray coupling reaction. Flavone, a sub-class of flavonoid compounds (polyphenolic 

phytochemicals), is a secondary metabolite of plants which plays important role in various 

biological processes. Various natural, semi-synthetic and synthetic derivatives of flavones have 

been synthesized and evaluated for several therapeutic activities like anti-inflammatory, anti-

estrogenic, anti-microbial anti-allergic, anti-oxidant, anti-tumour and anti cytotoxic activities. 

Indanone, indenone and indane skeletons are important moiety present in different natural 

products and biologically active compounds. For example, indenone (3-(2,3-

dihydrobenzofuran-6-yl)-5,6-dimethoxy-2-methyl-2,3-dihydro-1H-inden-1-one)  was isolated 

from the fruits of virola sebifera, indanone  (pterosin C) is a cytotoxic and antibacterial natural 

products, donepezil, a potent acetylcholinessterase inhibitor prescribed for the treatment of  

Alzheimer’s disease, is a marketed drug (Aricept TM), and indenone (5-(4-chlorophenyl)-3-

(methylsulfonyl)-2H-indeno[5,6-d]oxazole-2,7(3H)-dione) is a structural analogue of the 

selective COX-2 inhibitor nimesulide (Fig.1) 
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Fig. 1: Bioactive compounds containing indanone and indenone core. 

CHAPTER-2 

Part-A: Highly efficient deprotection of phenolic tetrahydropyranyl and methoxymethyl 

ethers and sequel cyclization to indanones using Sn (IV) Cl4 catalyst 

Naseem Ahmed*a, Gulab Khushalrao Pathe a and B. Venkata Babu a Tetrahedron Letters 2014, 

55, 3683 – 3687. 

In this chapter, we have developed a novel, rapid and efficient deprotection method for the 

phenolic THP and MOM ethers and sequel intramolecular Friedel-Crafts alkylation reaction of 

THP and MOM protected chalcone epoxides to indanone by SnCl4 catalyst under mild 

conditions. The reaction took place in 2-3 min to gave the products 1a-1s in excellent yield (90-

98%) at 0 0C without affecting the other functional groups (Scheme 1).  These products were 

fully characterized on the basis of their spectral analysis 1H-, 13C-NMR and GC-MS. 

 

Scheme 1: Detetrahydropyranylation and demethoxymethylation of phenol and sequel 

cyclization reaction. 

Part-B: SnCl4 or TiCl4: Highly efficient catalysts for detetrahydropyranylation and 

demethoxymethylation of phenolic ethers and sequel one-pot asymmetric synthesis of 3-

aryl-2-hydroxy-2, 3-dihydroindan-1-ones from chalcone epoxides 

Naseem Ahmed*a, Gulab Khushalrao Pathea RSC Advances 2015, Accepted. 

In this section, we have described the role of novel SnCl4 or TiCl4 catalysts for the deprotection 

of phenolic THP and MOM ethers and sequel one-pot regioselective synthesis of trans-3-aryl-

2-hydroxy-1-indanones (R/S) by intramolecular Friedel-Crafts alkylation of chalcone epoxides 

with enantiomeric excess up to 99.9% under same conditions. Epoxide ring opening followed 



 

by intramolecular Friedel-Crafts alkylation was performed in the presence of TiCl4 to obtain the 

diastereoisomerically pure trans (2R, 3S) indanone derivatives 6a-e (Scheme 2). 

 

Scheme 2: Synthesis of enantioselective 3-aryl-2-hydroxyindan-1-ones. 

CHAPTER- 3 

 Part-A: Zn-SnCl4: A novel reductive system for deoxygenative coupling of aliphatic, 

aromatic, chalcone epoxide and indanone carbonyl compounds to olefins 

Gulab Khushalrao Pathe and Naseem Ahmed*, Tetrahedron Letters 2015, 56, 1555-1561.  

In this part, SnCl4-Zn complex provided a novel reductive system in the deoxygenative cross-

coupling of aliphatic, aromatic, chalcone epoxide and indanone carbonyl compounds to olefins 

in high yield (55-86%) at reflux temperature in THF. The advantage of this reagent is 

inexpensive, short reaction time and high yield compare to the reagents used in the McMurry 

cross-coupling reaction. These products were fully characterized on the basis of their spectral 

analysis 1H-, 13C-NMR, HRMS and GC-MS. 

 

Scheme 3: SnCl4-Zn mediated deoxygenative cross-coupling reaction. 

Part-B: Design, Synthesis of McMurry cross-coupled indanophen, analogs of Tamoxifen 

by novel SnCl4-Zn reagent and Anti-Proliferative Evaluation of Flavone-Estradiol adduct  

and Indanone based Ligands against Breast Cancer Cell Line 

Gulab Khushalrao Pathe, Naveen Konduru, Iram Parveen and Naseem Ahmed*, European 

Journal of Medicinal Chemistry 2015, Under Review. 



 

In this section, we described the synthesis of McMurry cross-coupled indanophen, analog of 

tamoxifen using novel SnCl4-Zn reagent and anti-proliferative evaluation of indanone based 

ligands and flavone-estradiol adduct, against human cervical cancer cell line (HeLa) and 

human breast cancer cell lines (MCF-7& MDA-MB-231). The compounds 3ac, 3ad, 3ae, 3ao 

displayed the best activity having IC50 = 2.13 - 3.81µM and rest of the compounds also showed 

comparable activity to the standard drug doxorubicin having IC50 = <28 µM. The flavones-

estradiol adduct 6ab, 6ad showed excellent activity than the standard drug having IC50 values 

in μM 2.85 ± 0.165 & 2.42 ± 0.226 and 3.64 ± 0.276, 2.93 ± 0.137 against MCF-7& MDA-

MB-231 and 2.17 ± 0.183, 2.56 ± 0.322 against HeLa respectively. The structure of all the 

compounds was confirmed by 1H-, 13C-NMR, HRMS, ESI/MS and IR analysis. 

 

Scheme 4: Synthesis of Tamoxifen Analogs. 

CHAPTER-4 

SeO2 in water: A mild and efficient promoter for deprotection of acetyl, methoxymethyl 

and tetrahydropyranyl ethers and sequel oxidation of carbonyl carbons 

Gulab Khushalrao Pathea and Naseem Ahmed*a, RSC Advances 2015, 5, 59114-59119. 

In this chapter, we have reported SeO2-water system provided an efficient and one-pot green 

deprotection of acetyl, THP and MOM ethers in alcohols and phenols and sequel oxidation of 

alpha carbonyl carbons to dicarbonyl functional groups at 80 0C in 30-60 min. Using substrate: 

SeO2 in 1:3 ratio, the reaction gave excellent yield (85-95%) for acetyl and THP deprotections 

and a moderate yield (30-40%) for MOM deprotection without affecting other functional 

groups. However, substrate: SeO2 in 1:1 ratio in 1ml H2O, got only deprotection product in 85-

95% yields for Ac and THP  and  demethoxymethylation gave moderate yields (30-40%) at 80 

0C in 30-60 min (Scheme 6). The products were characterized on the basis of their spectral 

analysis 1H- and 13C-NMR, GC-MS.   



 

 

Scheme 6: Deprotection of acetyl, MOM and tetrahydropyranyl ethers and sequel oxidation of 

active methylene in SeO2-water promoter. 

CHAPTER-5 

 Part-A: Mild and efficient reductive deoxygenation of epoxides to olefins with SnCl2/NaI 

as a novel reagent 

Gulab Khushalrao Pathea and Naseem Ahmed*a, Synthesis 2015, Ahead of print. 

In this chapter, we have developed a novel, highly efficient protocol for deoxygenation of 

aliphatic and aromatic epoxides, chalcone epoxide, nitro styrene epoxide and nitrochromene 

epoxide to corresponding olefins using SnCl2/NaI in ethanol as a novel reagent, for this 

conversion with up to 96% yield. This methodology has more importance than the earlier 

methods such as inexpensive reagents, high yield, short reaction time, environment friendly 

(Scheme 7). These compounds were further characterised by NMR, IR and GC-MS.  

 

Scheme 7: Deoxygenation of aliphatic and aromatic epoxide by SnCl2/NaI. 

Part-B: Efficient and green protocol for the eliminative deoxygenation of aliphatic and 

aromatic epoxides to olefin with polyphosphoric acid as a novel catalyst  

Gulab Khushalrao Pathea and Naseem Ahmed*a, Helvetica Chemica Acta 2015, Under Review. 

In this part, we have developed a highly efficient and green catalytic deoxygenation of aliphatic 

and aromatic epoxides, chalcone epoxide, nitro styrene epoxide and nitrochromene epoxide to 

olefin using 30 mol% of polyphosphoric acid up to 96 % yields. This methodology have more 

importance than the earlier methods such as inexpensive reagents, high yield, short reaction 

time, environment friendly and solvent free. These compounds were further characterised by 

NMR, IR and GC-MS. 



 

 

Scheme 8: Deoxygenation of nitrostyrene epoxide by polyphosphoric acid catalyst.  
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Introduction 

1.1 GENERAL INTRODUCTION OF FLAVONOIDS 

First time in 1936 flavonoids are reported by Hungerian scientist Rusznyak and Sent- 

Gyorgyi, as polyphenolic compounds of plant origin that are the most important compounds in 

human diet due to their widespread distribution in foods and beverages. In the late 1980s and 

throughout the 1990s flavonoids were intensely studied concerning their actions as a mutagenic 

agents, antioxidants and pro-oxidants as their likely roles in biological systems. They can occur 

both in the free form (aglycones) and as glycosides and differ in their substituent’s (types, 

number and position) and in their in saturation. The most common sub-classes are flavones, 

flavonols, flavonones, catechins, isoflavones and anthocynidines, which account for around 80 

% of flavonoids (Figure 1). 

All flavonoids share a basic C6-C3-C6 phenyl-benzopyran backbone. The position of the 

phenyl ring relative to the benzopyran moiety allows a broad separation of these compounds 

into flavonoids (2-phenyl-benzopyrans) (Figure 1).    

 

 

Figure 1: Structure of the structural backbones of the main flavonoid groups (flavan, isoflavan 

and neoflavan) and of relevant flavonoids classes and classification 

Flavonoids and bioflavonoids are widely distributed in plant kingdom, modulating the 

human metabolism for prevention of chronic and degenerative diseases. The Hungarian 

scientist termed flavonoids as citrin or vitamin P to explain the synergy between pure vitamin 
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C and as yet unidentified co-factors from the peels of lemons.[1] Till now, more than 4000 

such molecules have been identified from fruits, vegetables and beverages. They are produced 

in plants via the flavonoids branch of the phenylpropanoid and acetate-malonate metabolic 

pathway. These phenolic compounds comprising a general structure of flavan nucleus phenyl 

benzopyrone skeleton (C-3-C-6-C-3) in all molecules and having a chromene type skeleton 

having phenyl substituent in C2-C3 position. They have the general structure of a 15-carbon 

skeleton, which consists of two phenyl rings (A and B) and heterocyclic ring (C). The three 

cycle or heterocycles in the flavonoid backbone are generally called ring A, B and C. Ring A 

usually shows a phloroglucinol substitution pattern.[2] The ring A synthesized in polyacetate 

pathway whereas, B and C rings in shikimic pathway. The different classes of flavonoids have 

been categorized based on the oxidation status of central ring C. Anthocynidins are produced 

by oxidation and reduction gives rise to flavon-3-ols and flavan-3, 4-diols. Intermediate 

compounds such as flavanones, flavonols and flavones produces based on the presence or 

absence of the double bond between C2-C3 of the molecule. 

There are three major classes of flavonoids viz. flavones, isoflavonoids, neoflavonoids. 

Flavones are derived from 2-phenyl-1,4-benzopyrene derivatives such as quercetin and rutin. 

Isoflavanoids are derivatives of 3-phenyl-1,4-benzopyrene where being derived from 

neoflavonoids 4-phenyl-1,4-benzopyrene. Alternative to chemical or synthetic antimicrobials 

and antioxidants to control the food borne diseases, inhibiting lipid oxidation and thus 

extending the shelf-life and quality of food products is an increasing trend in food indutry.[3] 

The common flavonoids obtained from plants in various classes are shown in Figure 2. All 

classes of flavonoids exhibit variety of biological activities, but among them, the flavones have 

been considerably explored. Various natural, semi-synthetic and synthetic derivatives of 

flavones have been synthesized and evaluated for several therapeutic activities like anti-

inflammatory, anti-oestrogenic, anti-microbial, anti-allergic, anti-oxidant, anti-tumor and anti- 

cytotoxic activities (Figure 2).  

Figure 2: Structure of flavonoids and their naturally occurring compounds  

Group of 

flavonoids 

Structure 

backbones 

Examples 

https://en.wikipedia.org/wiki/Phloroglucinol
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1.1.1 Biosynthetic pathway for Flavonoids 

Flavonoids are synthesized by the phenylpropanoid metabolic pathway in which the amino 

acid phenylalanine is used to produce 4-coumaroyl-CoA [3]. This can be combined with 

malonyl-CoA to give the true backbone of flavonoids, a group of compounds 

called hydroxychalcones. The metabolic pathway continues through a series of enzymatic 

modifications to yield flavanones →dihydroflavonols → anthocyanins. Along this pathway, 

http://en.wikipedia.org/wiki/Flavonoid
http://en.wikipedia.org/wiki/Phenylpropanoid_metabolic_pathway
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/4-coumaroyl-CoA
http://en.wikipedia.org/wiki/Flavonoid_biosynthesis#cite_note-Ververidis-1
http://en.wikipedia.org/wiki/Malonyl-CoA
http://en.wikipedia.org/wiki/Chalconoid
http://en.wikipedia.org/wiki/Flavanone
http://en.wikipedia.org/wiki/Dihydroflavonol
http://en.wikipedia.org/wiki/Anthocyanin
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many products can be formed, including the flavonols, flavan-3-ols, pro-

anthocyanidins (tannins) and a host of other various polyphenolics (Scheme 1). 

 

 

Scheme 1: Flavonoids biosynthetic pathway 

1.2 Chalcone 

Chalcone is an aromatic ketone and an enone that forms the central core for a variety of 

important biological compounds, which are known collectively as chalcones or chalconoids. 

Benzylidene acetophenone is the parent member of the chalcone series. The alternative name 

given to chalcone is phenyl styryl ketone, benzalacetophenone, β-phenylacrylophenone and α-

phenyl-β-benzoylethylene (Figure 3). 

 

Figure 3: General structure of chalcone (C6-C3-C6) 

1.2.1 BIOACTIVITY OF CHALCONES 

http://en.wikipedia.org/wiki/Flavonol
http://en.wikipedia.org/wiki/Flavan-3-ol
http://en.wikipedia.org/wiki/Proanthocyanidin
http://en.wikipedia.org/wiki/Proanthocyanidin
http://en.wikipedia.org/wiki/Aromatic
http://en.wikipedia.org/wiki/Ketone
http://en.wikipedia.org/wiki/Enone
http://en.wikipedia.org/wiki/Chalconoid
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Chalcone are valuable chemicals because of their well known diverse pharmacological 

activity. A number of chalcone have demonstrated cytotoxic properties which is an implication 

of anticancer activity. Dimnock et. al. [4] have studied cytotoxic property of a number of 

chalcone and their related Mannich base towards murine P388 and L1210 leukemia cell lines, 

as well as human tumor cell line and are found that compound 1 exhibited the highest activity 

towards L1210 and human tumor cells. Compounds 2 and 3 are other compound of interest due 

to its huge differential in cytotoxicity between P388 and L1210 cells, where compound 5 

exhibited a high therapeutic index by comparison of the toxicity of P388 cells toward Molt 

4/C8 T-lymphocytes. The study showed that in general the Mannich bases were more toxic 

than the corresponding chalcones. 

Attempting to determine the influence of relative direction of the two phenyl rings towards 

cytotoxic effect, Dimnock et. al. [5] studied the cytotoxic properties of 2-arylideneindanone 4, 

2-arylindenetetralones 5 and 2-arylindenesuberones 6 derivatives against murine P388, L1210, 

and Molt 4/C8 cancer cell lines and found out that in general the order of cytotoxicity was 6 > 

5 > 4. 

Exploration of the mechanism of action as anticancer agent bring us to a better 

understanding of cancer and can lead us to design better anticancer drug. Licochalcones A (7) 

and Licochalcones E (8) are retrochalcone isolated from the root of glycyrrhiza inflate 

exhibited the DNA topoisomerase inhibitory activity in dose dependent manners and this 

property might explain the cytotoxic activity of these compounds against some human cancer 

cell line. (Figure 4) [6] 

 

Figure 4: Naturally occurring bioactive chalcone 

1.2.2 Methods of Synthesis of chalcone 

1.2.2.1 Chalcone synthesis 
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Chalcone and its derivatives are primarily synthesized in the laboratory using Claisen-

Schmidt reaction, in which acetophenone and its derivative reacted with benzaldehyde or its 

derivative using strong base, such as NaOH, KOH, or NaH in polar solvent.[7] Other catalyst is 

also used, such as sodium phosphate doped sodium nitrite[8] and aluminium-magnesium 

hydroxide hydrate.[9] 

 

Scheme 2: Synthesis of chalcone by Claisen-Schmidt reaction 

Microwave irradiation induced reaction in the chalcone synthesis is another alternative 

procedure to synthesize chalcone. This reaction method can shorten the reaction time and 

simplify the purification procedure. Cross aldol condensation by using microwave was used for 

the synthesis of chalcone analog 9 namely 2, 6-bis (benzyliden)-cyclohexanone employing 

BMPTO (bis-(4-methoxyphenyl)-telluroxide) as catalyst. [10] 

 

Scheme 3: Synthesis of chalcone by Cross-Aldol Condensation reaction 

 Chalcone 10 could be synthesized using Suzuki reaction, employing cynnamoyl-chloride 

and phenyl boronic acids as reagents and Pd-catalyst in base reaction condition. More exotic 

synthetic protocols have also been developed to pursue high reaction yield and to minimize the 

side reaction. [11] 

 

Scheme 4: Synthesis of chalcone by Suzuki reaction 

1.2.2.2 Biosynthesis method of chalcone 

In biosynthetic pathway, chalcones are synthesized their carbon skeleton from two basic 

compounds, malonyl-CoA and L-phenylalanine. L-alanine synthesized through the shikimate 

pathway which is deaminated by phenylalanine deaminase to give trans-cinnamate, and then in 

the presence of trans-cinnamate 4-monooxygenase generates 4-coumarate which reacts with 
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coenzyme A to produce 4-coumaroyl-CoA. It reacts with malonyl-CoA in the presence of 

naringenin chalcone synthase by losing coenzyme A produce naringenin chalcone. (Scheme 5) 

[12, 13] 

 

Scheme 5: Biosynthesis of chalcone 

1.3 FLAVONE 

Flavones (flavus = yellow), are a class of flavonoids based on the backbone of 2-

phenylchromene-4-one apart from flavonoids are isoflavonoids, derived from 3-

phenylchromene-4-one structure and  neoflavonoids, derived from 4-phenylcoumarine 

structure. The three flavonoids classes are all ketone-containing compounds, and as such, are 

anthoxanthins (flavones and flavonols). Flavones are well known for their various biological 

activities such as anticancer, anti-inflammatory, anti-osteoporotic and anti-diabetic (Figure 5). 

 

Figure 5: General structure of flavones 

1.3.1 BIOACTIVITY OF FLAVONES 

The major natural flavones are apigenin (4, 5, 7-trihydroxyflavone), chrysin (5, 7-

dihydroxyflavone), 6-hydroxyflavone, baicalein (5, 6, 7-trihydroxyflvone), and wogonin (5, 7-

dihydroxy-8-methoxyflavone). They are mainly found in cereals and herbs. Synthetic flavones 

are diosmin, hindrosmin and flavoxate (Figure 6). Flavones intake in the form of dietary 

supplements and plant extracts has been steadily increasing. Natural dietary flavones, found in 

parsley, celery and citrus peels. The estimated daily intake of flavones is in the flavones, found 

in parsley, celery and citrus peels. The estimated daily intake of flavones is in the range 20-50 

mg/day. In recent years, scientific and public interest in flavone has grown enormously due to 
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wide spectrum of biological activities and their putative beneficial effects against 

atherosclerosis, osteoporosis, diabetes mellitus and certain cancers. Flavones are used to treat 

urinary bladder spasms, treatment of various disease, neurodegenerative diseases such as 

Alzheimer’s disease, anti-inflammatory and anti-apoptotic activity has been demonstrated in 

neuronal cells, in vitro. [14] 

 

Figure 6: Some examples of natural and synthetic flavones 

1.3.2 Methods of Synthesis of flavone 

1.3.2.1. Synthesis of flavones 

Flavones can be synthesized by various synthetic schemes like Claisen-Schmidt 

condensation, [15] Baker-Venkataraman-rearrangement, [16] Ionic liquid promoted synthesis, 

[17] Allan-Robinson, [18] Vilsmeier-Haack reaction, [19] Wittig reaction, Fries rearrangement, 

[20] and modified Schotten- Baumann reaction. [21] Now a day’s most of the flavones are 

synthesized based on the Baker-Venkataraman method. It involves the conversion of o-

hydroxyacetophenone into phenolic esters, which undergoes an intramolecular Claisen 

condensation in the presence of a base to form beta- diketones, which is cyclized to flavones by 

an acid catalysed cyclodehydration (Schemes 6 & 7). 

 

Scheme 6: Synthesis of flavones by via beta diketone intermediate 

Aldehyde and ketone using base form a chalcone followed by Claisen-Schmidt 

condensation at 110-130 
0
C to give compound 12. 



______________________________________________________Chapter 1: Introduction 

9 

 

 

Scheme 7: Synthesis of flavone by Claisen-Schmid condensation reaction 

Ferrer, J. L. et. al. synthesized the flavone 13 in excellent yield by reaction of iodo-phenoxy 

acetate through Sonagashira coupling using palladium catalyst and base. [22] 

 

Scheme 8: Palladium catalysed synthesis is carried out in basic environment by Hua & Yang
 

Choi, R. C. Y. et. al. discovered the one-pot  micro-assisted  synthesis of compound 14 

through Sonagashira “carbonylation” annulations in 30 min. using Pd2dba3 - catalyst and DBU 

base. [23] 

 

Scheme 9: Flavones via micro-assisted, one-pot Sonagashira “Carbonylation” Annulations 

reaction used by E. Awuah & A. Capretta 

1.3.2.2 Biosynthesis of flavones 

Flavones biosynthesis starts with the condensation of one molecule of 4-coumaroyl-CoA 

and three molecules of malonyl-CoA yielding neringenin chalcone, carried out by the enzyme 

chalcone synthase (CHS). The two immediate precursors of the chalcone originate from two 

different pathways of primary metabolism. Coumaroyl-CoA is synthesized from the amino acid 

phenylalanine by three enzymatic steps, collectively called the general phenyl propanoid 

pathway, Malonyl-CoA IS synthesized by carboxylation of acetyl-CoA, a central intermediate 

in the Krebs tricarboxylic acid cycle. The chalcone is consequently isomerized by the enzyme   

chalcone flavonone isomerase (CHI) to yield a flavonone. From this central intermediate the 

pathway diverges into several different classes of flavonoids. [24] (Scheme 10) 
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Scheme 10: Biosynthetic pathway of flavones 

1.3.2.3 Flavonoids based ligands 

Flavonoids based natural or synthetic compounds have been widely reported to exhibit 

various biological activities, when incorporate new functional groups (hydroxyl, methoxy, 

amino, carboxyl, sulphone, prenyl, geranyl, glucose) or biologically active moieties 

(tetrahydropyran, indole, pyrrole, quinolone, triazole, and admantyl) improves its activity. For 

example, hydroxyl groups containing chalcone derivative butein extracted from Rhus 

verniciflua which shows good antioxidant activity Flavokawain B found in kava plant it 

demostrated To possess potent apoptotic abilities, Xanthohumol is, a prenylated-chalconoid 

from hops and beer. Xanthohumol is a free radical scavenger it, has anticancer properties and 

prevents platelate build-up. Cycloaltilisin extracted from the bud cover of Artocarpus altilis 

showed activity in a cathepsin K inhibition assay and showed IC50 value 840 Nm, Flavone-

triazole-tetrahydropyran conjugates shows a excellent antiproliferative activity against human 

cancer cell line. [25] Tetrahydropyran containing flavone derivative calyxin G and epicalyxin 

G are extracted from the seeds of A. blepharocalyx showed significant hepatoprotective activity 
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against CCl4 induced hepatotoxicity in rats. Triazole moiety attached isoflavone found inhibitor 

of estrogen receptor alpha-positive breast cancer. 

 

Figure 7: Natural and synthetic biologically active flavonoids conjugates 

Based on the literature, we have synthesized novel flavone based ligands as flavone-

estradiol adducts and are reported in chapter 2. They were exhibited excellent anti-proliferative 

activity against human breast cancer cells (MCF-7 and MDA-MB-231) and cervical cancer 

cells (HeLa). Some derivatives were shown better than the standard drug Doxorubicin.  

1.4 DEPROTECTION OF HYDROXYL PROTECTING GROUPS 

1.4.1 THP deprotection  

Tetrahydropyranyl ethers are usually transformed into their parent alcohols or phenols 

under acid-catalysed conditions. [26] A wide variety of catalysts have been already used for 

this conversion, including the use of protic acids [27] (acetic acid, toluene-p-sulphonic acids, 

boric acid), lewis acids [28] (magnesium bromide in diethyl ether, dimethyl alluminium 

chloride), electrogenerated acids, [29] pyridinium toluene-p-sulphonate, [30] ion-exchange 

resins, [31] (Amberlyst H-15, Dowex 50W X8, Nafion-117),  Bis-(trimethylsylyl)sulphate, [32]
 

distannoxane, [33] organotin phosphate condensates [34] and triphenyl phosphine dibromide 

(PPh3Br2), [35] more recently, 2, 3-dichloro-5,6-dicyno-p-benzoquinone(DDQ), [36]
 

mesoporous H-MCM-41 molecular sieve, [37] and heteropolyacid, [38] have been applied to 

this reaction.  
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1.4.2 MOM-Cl-deprotection 

Protection of functional groups in multistep organic synthesis is one of the key factors in 

the success of the synthesis. The  protecting group should selectively react in good yield to give 

a protected substrate and shoud be selectively removed in good yield by readily 

available,preferably nontoxic reagents that  do not attack the regenerated functional group. [39]
 

one of the most abundant functional groups is the hydroxyl group, which is present in a number 

of compounds of biological and synthetic interest, including nucleosides, carbohydrates, 

steroids, macrolides, polyethers, and the side chain of some amino acids or in large number of 

intermediates in total synthesis of complex natural products. [40]
 
diverse protecting groups 

have been developed for hydroxyl groups, but it is hard to find an appropriate protecting group 

for each hydroxyl in the many cases whwre multiple hydroxyl group are present in the 

molecule. [41]
 

The methoxymethyl(MOM) group is widely used as a hydroxyl-protecting group because 

MOM ethers can be easily prepared and are stable under the removal conditions of protecting 

groups such as silyl, alkoxyacyl, or benzyl derivative, as well as in strongly basic and weakly 

acidic conditions. [42a] many methods have been developed to cleave MOM ethers using 

Bronstead acids. [42b] lewis acids, [42c] but synthetic application of these methods has been 

limited, largely due to the high reactivity combined with long reaction time and low selectivity 

for MOM in the presence of other protecting groups. 

 

Scheme 11: Selective deprotection of MOM ethers 

1.4.3 Deprotection of acetate groups  

Nucleosides and their analogues have been extensively investigated due to their potential 

activity as antibiotics, enzyme inhibitors, anticancer and antiviral agents. [43] Consequently, 

improved and abbreviated synthesis of modified nucleosides from readily available precursors 

is of considerable interest. [44] However, nucleosides are challenging synthetic substrates as 

they contain several functionalized groups that must be chemically differentiated for successful 

transformations. Therefore, multi-step synthesis frequently requires the introduction of 

protective groups and their subsequent removal. [45-46] Typical methods for the removal of 
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acetate groups in acetylated nucleosides rely on the use of methanolic ammonia, [47] metal 

alkoxides, [48] and hydrolytic enzymes, [49] often in good yields. Although all of the above 

procedures offer certain benefits, they also suffer from drawbacks such as long reaction times, 

high costs, the use of unstable or noxious reagents, harmful conditions, and the need for special 

safety precautions, which represent major disadvantages due to environmental concerns. Also, 

the generation of non-volatile by-products such as acetamide or alkaline salts from the 

corresponding ammonolysis or alcoholysis of acetates requires additional separation steps for 

complete product purification. Therefore, the development of a simple catalytic process for the 

fast and efficient cleavage of acetate groups in acetylated nucleosides, including facilitated 

workup and purification steps, is highly desirable. 

Phenolic hydroxyl groups are frequently observed in various bioactive natural products. 

The modifications and synthesis of these compounds generally require the protection of this 

hydroxyl groups. [50] This protection is usually carried out by making the acetates of the 

compounds as the acetates as the acetate can easily be prepared and again be converted into the 

parent hydroxyl compounds. [51] However, these deprotection methods may affect several 

sensitive functional groups present in the molecules. Different methods are also now known for 

the deprotection of aromatic acetates but the number of process for the selective deprotection of 

this conversion is limited. Several manipulations can be carried out on the regenerated phenolic 

hydroxyl groups of a molecule in the presence of alkyl acetate groups and other sensitive 

functionalities and this method can be utilized in multistep organic transformation and 

synthesis. 

1.4.4 EXAMPLES (deprotection of MOMCl, THP and Acetate) 

Hocek, M. & co-workers developed the methodology for the deprotection of mom ethers to 

alcohol 16 using zinc dibromide as a novel catalyst in DCM at 0
0
C. [52] 

 

Scheme 12: Demethoxymethylation with ZnBr2 as a catalyst  

Sá, M. M. et. al. used expansive graphite as a catalyst for the detetrahydropyranylation of 

hydroxyl group in methanol at 40-50 
0
C to afford corresponding alcohol 17.[53] 
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Scheme 13: Detetrahydropyranylation with expansive graphite as a catalyst 

Witczak, Z. J. et. al. developed novel methods for the deprotection of THP ethers using 

bisthmuth triflate as a novel catalyst in 1 mol5 loading to gave alcohol 18. [54] 

 

Scheme 14: Detetrahydropyranylation with bisthmuth triflate as a catalyst  

Ahmed, N. et. al. used  expansive zeolite for the detetrahydropyranylation of hydroxyl 

group in methanol at reflux temperature to afford corresponding alcohol 19. [55] 

 

Scheme 15: Detetrahydropyranylation with expansive zeolite as a catalyst  

Deprotection of THP, MOM and acetate used in total synthesis of Tonkinecin, [56] 

Solamin, [57] Jimenezin, [58-59] Muricatacin. [60] 

We have developed a novel, efficient and green methodology for the deprotection of THP, 

MOM and acetate groups of alcohol and phenol by using novel catalysts SnCl4, TiCl4 and SeO2 

in water and are reported in chapters 2 and 4. These methods have more advantage than the 

earlier reported methods like short reaction time, high yields, green reaction condition and easy 

experimental procedures. 

1.5 McMURRY COUPLING 

The reaction is discovered by John E. McMurry for the ketones and aldehydes eliminative 

deoxygenation reaction to alkene using titanium (III) and titanium (IV) as a reductant. [61]  

The original reaction involved the use of a mixture TiCl3 and LiAlH4, which produces the 

active reagent(s). Related species have been developed involving the combination of TiCl3 or 

TiCl4 with various other reducing agents, including potassium, zinc, and magnesium. [62, 

63] The coupling is related to the Pinacol coupling reaction which also proceeds by the 

reductive coupling of carbonyl compounds to diol. This eliminative deoxygenation can be 

viewed as involving two steps. First is the formation of a pinacolate (1, 2-diolate) complex, a 

step which is equivalent to the Pinacol coupling reaction. The second step is 

http://en.wikipedia.org/wiki/John_E._McMurry
http://en.wikipedia.org/wiki/McMurry_reaction#cite_note-1
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Pinacol_coupling_reaction
http://en.wikipedia.org/wiki/Pinacol
http://en.wikipedia.org/wiki/Diol
http://en.wikipedia.org/wiki/Pinacol_coupling_reaction
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the deoxygenation of the pinacolate which yields the alkene. The second step exploits 

the oxophilicity of titanium. 

1.5.1 Introduction 

The McMurry coupling is the reaction of two carbonyl functional groups to establish a new 

double bond between the carbons of the carbonyl groups. The reaction is mediated by low-

valent titanium reagents, which may be generated through the combination of titanium 

chlorides with any of a number of reducing agents. The McMurry coupling is useful for the 

construction of sterically hindered alkenes, but has limited scope due to a lack of stereo 

chemical control and statistical mixtures of products in mixed-coupling reactions. [64] The 

formation of alkenes as minor products in Pinacol couplings of aromatic carbonyl compounds 

with aluminum amalgam was first reported in 1970. [65] Since then, the reductive coupling of 

carbonyl compounds to afford alkenes has been developed into a useful synthetic method, most 

notably by McMurry and colleagues. The modern McMurry coupling employs low-valent 

titanium generated from a titanium source and a reducing agent (Scheme 16), and the scope of 

the reaction has benefited from the development of several titanium-reductant combinations. 

Aldehydes and ketones may be coupled in an intra- or intermolecular fashion to afford alkenes 

that may be difficult to access using other methods. Carboxylic acid derivatives such as esters, 

amides, and thioesters are amenable to coupling in some cases. 

 

Scheme 16: Reductive coupling of carbonyl compounds to afford alkenes by low-valent Ti 

In general, the McMurry coupling has four possibility for the formation of products, homo- 

and hetero-coupled products and  E/Z -isomers,  the (E)-isomer of product is favored over the 

(Z)-isomer, that depends on the substituent on carbonyl groups. One- and two-electron transfer 

mechanisms have been postulated for the McMurry coupling and the details of its mechanism 

remain unknown. When the steric environments and reduction potentials of the carbonyl 

groups involved are similar, achieving selective mixed coupling (rather than a statistical 

mixture of homo-coupling and mixed-coupling products) is often difficult. Methods that 

circumvent this issue have relied on the use of carbonyl equivalents such as thioacetals and 

geminal dihalides. 

1.5.2 Mechanism and Stereochemistry 

http://en.wikipedia.org/wiki/Deoxygenation
http://en.wikipedia.org/wiki/Alkene
http://en.wikipedia.org/wiki/Oxophilicity
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1.5.2.1 Prevailing Mechanism  

The mechanism of the McMurry coupling is unclear at present, and isolated observations 

have pointed to both one-electron and two-electron mechanisms. One-electron reduction may 

afford two titanium ketyl radicals 20, which could subsequently coupled with one another to 

yield titanium pinacolate 21. Elimination of two titanium oxo molecules would then occur to 

afford the product olefin. This mechanism has been supported by electron paramagnetic 

resonance spectroscopy. [66] More readily reducible aromatic carbonyl compounds undergo 

two-electron reduction to produce titanium ketyl anion 22, which leads to the same 

pinacolate 21 after addition to a second molecule of the carbonyl compound (Scheme 17). [67] 

 

Scheme 17: Plausible mechanism for alkene formation 

Several mechanisms have been discussed for this reaction, [68] the nature of low-valent 

titanium species formed is varied as the products formed by reduction of the precursor titanium 

halide complex will naturally depend upon both the solvent (most commonly THF or DME) 

and the reducing agent employed typically, lithium aluminum hydride, zinc-copper couple, zinc 

dust, magnesium-mercury amalgam, magnesium, or alkali metals. [69] 

1.5.2.2 Stereochemistry 

McMurry couplings generally produce mixtures of (E)- and (Z)-isomers, with the (E)-

isomer predominating. Increasing the size difference between the substituent’s increases the 

selectivity for the less sterically hindered (E)-isomer. [70] 

 

Scheme 18: Formation of mixtures of (E)- and (Z)-isomers by McMurry couplings 

Coupling reactions between monoaryl ketones are an interesting and important exception to 

this rule. The tendency of these reactions to yield the (Z)-isomer as the major product when R 
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is small has been attributed to coordination of the aryl groups to the titanium center. (Scheme 

19) [71]  

 

 

 

 

 

 

 

 

Scheme 19: Exception to the McMurry couplings gave (Z)-isomers as a major product 

1. 5. 3. Comparison to Other Methods  

The McMurry coupling is limited by the formation of E/Z mixtures and by formation of 

statistical mixtures of products in many mixed-coupling reactions. A number of alternative 

olefination methods exist, and these tend to dominate the McMurry coupling in organic 

synthesis. The Wittig reaction (Scheme 20) employs a carbonyl compound in combination with 

a phosphonium ylide (the latter, in a sense, serving as a carbonyl equivalent). [72]  

 

Scheme 20: Comparison of the McMurry coupling with Wittig reaction 

Carbonyl olefinating reagents involving pre-formed or intermediate metal carbenes offer 

another alternative to the McMurry coupling (Scheme 21). Schrock carbenes associated with 

high-valent metals such as niobium and tantalum react with carbonyl compounds to afford the 

corresponding alkenes. [92] Tebbe's reagent, a titanium methylene complex, is used for the 

formation of terminal olefins from aldehydes and ketones. [73]  

 

Scheme 21: Alternative to the McMurry coupling (Tebbe's reagent) 

R Yield (%) (E)/(Z) 

Me 81 26:74 

Et 59 27:73 

Pr 55 11:89 

i-Pr 25 88:12 
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The original publication by Mukaiyama demonstrated reductive coupling of ketones using 

reduced titanium reagents. McMurry and Fleming coupled retinal to give carotene using a 

mixture of titanium trichloride and lithium aluminium hydride. Other symmetrical alkenes were 

prepared similarly, e.g. civetone from adamantanone and tetraphenylethylene 

from benzophenone. [74] 

 

Scheme 22: Alternative to the McMurry coupling 

1.5.4 Scope and Limitations 

The McMurry coupling employing titanium requires a low-valent species, which is 

typically generated ‘in situ’ via treatment of a titanium halide with a reducing agent. A variety 

of titanium-reductant combinations have been employed for the reaction. Reductants include 

zinc metal, Zn/Cu, LiAlH4, alkali and alkali earth metals, lithium arenes, and butyllithium. 

TiCl4 and TiCl3 are the most common titanium sources employed. In general, aliphatic ketones 

are more difficult to couple than aromatic ketones. For example, aliphatic ketones exclusively 

form pinacols in the presence of the low-valent titanium reagent generated from TiCl4 and Zn, 

and are poor substrates for titanium powder. Other metals employed in McMurry couplings 

include zirconium, vanadium, [75] niobium, [76] molybdenum, [77]   tungsten, [78] aluminum, 

[79] and zinc. [80] The practical utility of some of these metals is limited by their cost and 

availability, but the scope of the reaction certainly benefits from the large number of metallic 

reagents that may be used. 

In many cases, additives can have a beneficial effect on McMurry couplings suffering from 

reduced yields due to pinacol formation and rearrangement. For example, amines suppress the 

formation of pinacols and rearrangement in the homo-coupling of β-ionone. (Scheme 23) 

[81] Sub-stoichiometric amounts of iodine facilitate the coupling of aliphatic carbonyl 

compounds by TiCl3–Li at low temperatures and short reaction times. [82]  

http://en.wikipedia.org/wiki/Retinal
http://en.wikipedia.org/wiki/Titanium_trichloride
http://en.wikipedia.org/wiki/Lithium_aluminium_hydride
http://en.wikipedia.org/wiki/Civetone
http://en.wikipedia.org/wiki/Adamantanone
http://en.wikipedia.org/wiki/Benzophenone
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Tert-amine 68(%) 69 (%) 70 (%) 

none 44 8 25 

Bu3N 91 0 0 

Py 82 0 0 

Et3N 82 0 0 

 

94 0 0 

DABCO 72 0 0 

 

Scheme 23: Effect of additives on McMurry coupling 

Amides are relatively versatile substrates, and both inter- and intramolecular homo-

coupling reactions of amides have been reported. [83] The intramolecular coupling of amides 

with ketones has been employed for the synthesis of indole derivatives 26. (Scheme 24) [84]  

 

Scheme 24: Intramolecular McMurry coupling with low valent Ti -metal 

Homo-coupling reactions are the most straightforward transformations that can be 

accomplished under the conditions of the McMurry coupling. Aliphatic and aromatic ketones 

can be converted into the corresponding symmetric alkenes in high yield and stereoselectivity. 

In reactions that could form diastereomers, selectivity for the (E)-isomer is typical. (Scheme 

25) 
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Scheme 25: Selectivity in McMurry coupling 

Mixed-coupling reactions between carbonyl substrates with different substitution patterns 

often afford a statistical mixture of products unless an excess of one of the coupling partners is 

employed. (Scheme 26) The success of a mixed-coupling also depends on the structures of the 

substrates; in some cases, an excess of one of the coupling partners does not minimize homo-

coupling. 

 

Scheme 26: Application of McMurry coupling in the synthesis of bycyclic products 

When the reduction potentials of the two substrates employed are sufficiently different, 

selective mixed-couplings can be accomplished using equimolar amounts of the two coupling 

partners. For example, monoaryl and diaryl ketones readily couple with one another in high 

yield in the presence of TiCl3–Zn. (Scheme 27) [85]  

 

Scheme 27: Effect of amount of substrate on formation of mix- coupled products 

The McMurry coupling is severely limited by the drawback that mixed coupling between 

ketones and aldehydes is difficult to achieve. Reactions employing carbonyl equivalents such 

as gem-dihalides and thioacetals are amenable to mixed coupling and nicely complement the 

traditional McMurry coupling. Essentially, these reactions are an extension of the strategy of 

using coupling partners with very different reduction potentials. Esters, amides, and thioesters 

are useful substrates and afford electron-rich olefins. (Scheme 28) [86]  

 

Scheme 28: Drawbacks of the McMurry coupling 
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In chapter 3, we have developed a novel methodology for the deoxygenation of carbonyl 

compounds to olefin using the novel reagent, SnCl4-Zn (1:1.5) in THF which gave the major 

cross-coupled products over the homo-coupled products within 1h at 66 
o
C and this 

methodology extended for the synthesis of E & Z- isomers of Tamoxifen analogs.  

1.6 INDANONE  

Indanone, indenone and indane skeletons are important moieties present in a variety of 

natural products and biologically active compounds. For example, indenone (3-(2,3-

dihydrobenzofuran-6-yl)-5,6-dimethoxy-2-methyl-2,3-dihydro-1H-inden-1-one)  was isolated 

from the fruits of virola sebifera, [87] indanone  (pterosin C) is a cytotoxic and antibacterial 

natural products, [88] donepezil, a potent acetylcholinessterase inhibitor prescribed for the 

treatment of  Alzheimer’s disease, [89] is a marketed drug (Aricept 
TM

), and indenone (5-(4-

chlorophenyl)-3-(methylsulfonyl)-2H-indeno[5,6-d]oxazole-2,7(3H)-dione) is a structural 

analogue of the selective COX-2 inhibitor nimesulide. [90]  Indan-1-one and indan-2-one 

derivatives are important moieties in the core structures of many natural products, 

agrochemicals and medicines [91-94] including Indacrinone, [95 a-c] indanoyl isoleucine 

conjugates, [95d] indanocines, [95e] quadranglularin A,[95 f, g] parthenocissin A, [95 h, i] (+)-

pauciflorol F, [96] norditerpene taiwaniaquinol B, [97]
 
sulindac, NSAID, [98a-c] NMDA 

receptor antagonists, [98d] benzodiazepines, [98e] melatonin precursor, [98f]  and 

neoflavonoids [99,100] (Figure 11). They are also reported from higher plants such as Uvaria 

afzelii roots, [101] Pteridium aquilinum [102a-c] and Equisetum arvense [102d] and screened 

for various biological activities including cancer and Alzheimer’s diseases. 2-(Alkoxycarbonyl) 

and 2-acetyl-1-indanones are present in cytotoxic natural compound pterosines,
 
a potent and 

selective COX-2 inhibitor flosulide, and the acetyl cholinesterase inhibitor donepezil 

hydrochloride. They are approved by US-FDA for the treatment of mild to moderate 

Alzheimer’s disease. Similarly, the enantiomerically pure derivative, 1-amino-2-indanol is a 

key precursor of the chiral ligand and the chiral auxiliary for asymmetric synthesis of indinavir, 

a potent inhibitor of the protease of human immunodeficiency virus (HIV) [103] and Detrol LA 

(tolterodine tartrate), a muscarine receptor antagonist used for the treatment of urinary bladder 

disorder. [104a] The Indan-1-one bearing carboxylate scaffold is also used a peroxisome 

proliferator activated receptor γ (PPARγ) agonist in the treatment of type-2 diabetes. [104b]  
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Figure 8: Bioactive compounds containing indanone and indenone cores 

 Various methods have reported in the literature to access indanones and indenones. 

Substituted indanones were obtained by using the intramolecular Friedal-Crafts reaction, [105] 

photochemical reactions, [106] Nazarov cyclization [107] and organometallic-catalysed 

reactions.[108] Friedel-Crafts alkylation, [109] Nazarov cyclization, [110,111] Tandem 

Knoevenagel Condensation-cycloalkylation, [112] Heck & Negishi coupling, [113]
 
Larock 

annulations. [114] Similarly, enantioselective indanones synthesis required multi-step reaction 

and high catalyst loading for the 3-substituted indanone derivatives. [115] Indanone 

frameworks are commonly found in a wealth of natural products and biologically active 

compounds. [116] Among them, 1-indanone bearing a stereogenic center at the 3-position are 

not only particularly important structural components of many pharmaceutical agents but also 

versatile intermediates in organic synthesis and medicinal chemistry. [117] As a result, 

methods that enable convenient access to optically active 3-substituted 1-indanones are of great 

importance. Surprisingly however, only a limited number of methods for the stereoselective 

formation of 3-substituted 1-indanones have been developed. [118]  
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1.6.1 Methods of synthesis of Indanone 

Ho, T. et. al. synthesized the indanone 27 by using Rh-catalyst and (R)-Monophos ligand in 

toluene at 80 
0
C in a good yield. [119] 

 

Scheme 29: [Rh(C2H4)Cl]2 -catalysed asymmetric intramolecular 1,4-addition 

 Brunner, et. al.  investigated that the target compound could be prepared via a process 

involving a one pot Pd-catalysed Heck-Matsuda (HM) reaction [120] procedure followed by 

hydrolysis of the ester 28 to afford the corresponding carboxylic acid. Finally, as the last step, 

an acid catalyzed cyclization reaction was employed to provide compound 29. (Scheme 30) 

 

Scheme 30: Synthesis of indanone 29 via a Heck-Matsuda (HM) reaction  

Galici, R. & co-workers prepared BINA in nine steps from 3-bromotoluene, 2, 3-dimethyl 

anisole, ethyl 4-iodobenzoate, and cyclopentylacetic acid in 16% overall yield. BINA 

constitutes a highly selective positive allosteric modulator of mGluR2 with a long duration of 

action and robust efficacy in several preclinical models used to predict anxiolytic and 

antipsychotic-like activity. [121] 

 

Scheme 31: Synthesis of BINA  

1.6.2 Reactivity of indanone 
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Vidyadhar, et. al. industrially manufactured the indanone derivative donepezil 31, which is 

used for the treatment of mild to moderate Alzheimer’s disease, in three steps via aldol 

condensation of indanone and pyridine aldehyde. [122]   

 

Scheme 32: Industrial manufacture of donepezil via a pyridine derivative 

It has been observed that 2-(E)-benzylidine-1-indanone 32 undergoes dimerization under 

basic conditions. The reaction is highly stereoselective and provides almost exclusively dimer 

33 using NaHCO3/DMF, guanidine carbonate/DMF, or Cs2CO3/CH3CN. [123] 

 

Scheme 33: Stereoselective synthesis of dimer of 2-(E)-benzylidine-1-indanone  

Tretment of 1-indanone with aromatic aldehydes and NaOEt in THF afforded complex 

spiropolycyclic compounds 34 through a four-component reaction in which two molecules of 

each starting compounds are combined with formation of four new carbon-carbon bonds, 

leading to the elaboration of  a new five-membered ring that bears five contiguous stereogenic 

centers  with a well defined relative configuration. The reaction seems to take place by cross-

aldol condensation, dehydration and dimerization of enones. [124] 

 

Scheme 34: Synthesis of complex spiropolycyclic compound  
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2, 2-methyl benzylbromide was reacted with diethyl malonate in alcoholic sodium ethoxide 

to gave diethyl (2-methylbenzyl)malonate in 75% yield followed by saponification and 

intramolecular ring formation in PPA to gave compound 35 in 90% yields. [125] 

 

Scheme 35: Synthesis of methyl indanone 

Indanone on reaction with hydroxyl amine hydrochloride at -10 
0
C followed by tosylation 

to give a 1-indanone oxime tosylate. Then undergo Beckmann rearrangement in presence of 

alluminium chloride to obtained isomers 36 & 37. [126] 

 

 

Scheme 36: Synthesis of 1-indanone oxime tosylate and their Beckmann rearrangement 

We have also synthesized indanone based ligands as tamoxifen analogs via McMurry 

reaction. A major cross-coupled product was obtained within 1h at 66 
0 

C. Tamoxifen analogs 

were exhibited excellent anti-proliferative activity against human breast cancer cells (MCF-7 

and MDA-MB-231) and cervical cancer cells (HeLa) are reported in chapter 3, part B. 
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Part A: Highly efficient deprotection of phenolic tetrahydropyranyl and methoxymethyl 

ethers and sequel cyclization to indanones using Sn (IV) Cl4 catalyst 

2.1 INTRODUCTION 

Protection-deprotection of the functional groups is the most frequent used strategies in the 

multi-steps organic syntheses. In particular, the protection and the deprotection of hydroxyl 

group is extremely important because of its enormous demand for the synthesis of a number of 

compounds of biological and synthetic interest such as carbohydrates, macrolides, peptides, 

steroids, nucleotides and polyethers.[1] The protection of hydroxyl groups with 3,4-dihydro-

2H-pyran is the most frequent used method due to stability of the resulting 2-tetrahydropyranyl 

ethers (THPEs) in the presence of strong bases or nucleophiles such as Grignard reagents, 

organolithium compounds, metal hydrides, catalytic hydrogenation, alkylating and acylating 

agents.[2]  Similarly, methoxymethyl chloride (MOMCl) is an another important reagent for 

the hydroxyl group protection.[3] 

The deprotection of THP and MOM ethers therefore required efficient methods to avoid the 

decomposition of the products and/or loss of other functional groups in the products under 

harsh reaction conditions. Therefore, several catalysts have been explored for the 

detetrahydropyranylation of alcohols and phenols that include protic acids,[4] Lewis acids like 

BF3-etherate,[5] LiBr,[6] LiBF4,[7] LiOTf,[8] LiClO4,[9] Sc(OTf)3,[10] In(OTf)3,[11] I2,[12] 

InCl3,[13] ZrCl4,[14] CuCl2,[15] and NH4Cl,[16] expansive graphite,[17] clay materials,[18] 

silica-supported sulfuric acid,[19] and other miscellaneous catalysts.[20-25] Similarly, many 

catalysts have been used for the demethoxymethylation of alcohols and phenols such as HCl, 

BBr3, pyridinium p-toluene sulphonate under strong acidic condition, mild Lewis acids ZnBr2, 

and TiCl4 in aprotic conditions and BBr3 derivatives Me2BBr, and (i-PrS)2BBr.[26] Most of 

these methods have different drawbacks such as longer reaction time, low yields, refluxing at 

high temperature and the tedious workup procedures. Hence, there is still a scope to develop 

mild and efficient methods in the deprotection of tetrahydropyranyl and methoxymethyl ethers. 

In continuation of our interest to develop new methods for the synthesis and the acid catalysis 

reactions, [27] herein, we report an efficient deprotection method of the THP and the MOM 

ethers and sequel Friedel-Crafts alkylation reaction of the protected THP and MOM chalcone 

epoxides using SnCl4 catalyst under mild reaction conditions. 
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2.2 OBJECTIVE  

Protection and deprotection of hydroxyl group is very important development, frequently 

used in organic synthesis of molecule like, carbohydrates, macrolides, peptides, steroids, 

nucleotides and polyethers. Hence, our intention to developed a highly efficient protocol for the 

deprotection of hydroxyl group by using metal catalyst, and we used different metal catalyst 

and found that SnCl4 catalyst provided a rapid and efficient deprotection method for the 

phenolic THP and MOM ethers and sequel intramolecular Friedel-Crafts alkylation reaction of 

THP and MOM protected chalcone epoxides under mild conditions. The reaction took 2-3 min 

to give the products in excellent yield (90-98%) at 0 
0
C without affecting the other functional 

groups. 

2.3 Results and Discussion 

2.3.1. Optimization reaction conditions by using different catalyst 

The catalytic efficiency of different metal halides was screened (Table 1). The metal halides 

(Table 1, entries 1-5) were shown poor to moderate catalytic activity. InCl3 (Table 1, entry 6) 

was found to be a better catalyst at 10 mol% catalyst loading, which gave 90% yield of the 

cyclized products without deprotecting the THP or the MOM ethers. However, the reaction was 

completed in 4-5 hours. SnCl4 (Table 1, entries 7, 8) at less than 10 mol% catalyst loading gave 

lower yields in a longer reaction time. SnCl4 (Table 1, entry 9) at 10 mol% catalyst loading was 

found to be the most efficient catalyst, which gave the optimal yield (98%) with deprotecting 

the THP and the MOM ethers within 2-3 min.  Further, increase in the catalyst loading of SnCl4 

(Table 1, entry 10) gave the side-product as 3-(4-chlorophenyl)-2-chloro-2,3-dihydro indan-1-

one along with the desider product. We also applied SnI4 and SnBr4 in 5, 10, and 20 mol% 

catalysts loading during the deprotection of THP and MOM ethers. However, it gave the 

desired products only 5-10% yields after stirring for 2-6 h at 0 
0
C. 

Table 1. Optimization conditions in deprotection of the THP and the MOM ethers and sequel 

cyclization of phenolic compounds with different catalysts 

 

Entry Catalyst Mol % Time Yield (%) 
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a
 Gave only cyclization.

b
Gave both THP and MOM ethers deprotection 

and sequel cyclization.
c
 Other product as 3-(4-chlorophenyl)-2-chloro-

2,3-dihydro indan-1-one (20%). 

2.3.2. Solvents effect  

We observed the solvent effects using different solvents like CH3COCH3, CHCl3, CH2Cl2 

and THF. CHCl3 and CH2Cl2 were found to be the desired solvents (Table 2, entries 4, 6). 

Table 2. Solvent effects on yields in deprotection of the THP and the MOM ethers and sequel 

cyclization reaction 

 

Entry Mol% Solvents Yield (%) 

1 1 Acetone 40
a
 

2 5 Acetone 45
 a
 

3 2 DCM 80
 b
 

4 10 DCM 98
 b

 

5 2 CHCl3 85
 c
 

6 10 CHCl3 96
 c
 

7 5 THF 52
 d
 

8 10 THF 60
 d
 

1 SbCl3 10 20-24 h 28
a
 

2 SnI4 10 6 h 7
b
 

3 SbCl5 10 20-24 h 20
a
 

4 MgCl2 10 18-24 h 18
a
 

5 SnBr4 10 6 h 10
b
 

6 InCl3 10 4-5 h 90
a
 

7 SnCl4 1 3 min 75
b
 

8 SnCl4 5 2 min 90
b
 

9 SnCl4 10 3 min 98
b
 

10 SnCl4 20 3 min 70+20
c
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                                              Reaction time: 
a 
2h, 

b,c 
3 min, 

d 
3 h. 

2.3.3. Examples of the THP and MOM ethers deprotection and sequel cyclization reaction 

Under optimized reaction conditions, the deprotection of THP and MOM ethers in phenols, 

chalcone and chalcone epoxides were achieved using 10 mol% of SnCl4 in excellent yields (90-

98%) within 2-3 min at 0 
0
C in the presence of other functional groups. However, in the case of 

alcoholic THP and MOM ethers, even 20 mol% of catalyst loading gave less yield 10 and 25% 

respectively (Table 3, entry 1). In case of chalcone 1f-1m, only THP and MOM removal was 

observed without intramolecular Friedel-Crafts alkylation. These products were characterized 

by comparing their physical and spectral data with the literature values.[22, 28]
 
Interestingly, 

the THP and MOM removal followed by the Friedel-Crafts alkylation was observed for the 

chalcone epoxides which gave the corresponding indanones 1n-1s in excellent yield (90-98%) 

within 2-3 min at 0 
0
C (Table 3).

 
 The stereochemistry and the distereomeric excess ratio of the 

products 1n-1s were determined by the chiral column separation and determined as 2R, 3S-

configuration. These products were fully characterized on the basis of their spectral analysis 

1
H-, 

13
C-NMR, GC-MS, Chiral HPLC (Supporting information). 

Table 3. Examples of the THP and MOM ethers deprotection and sequel cyclization reaction 

 

Entry ROTHP/MOM ROH Time 

(min) 

Yield 

(%)
a
 

Yield 

(%)
b
 

 

1   

 

2 

 

10 

 

25 

 

2 
  

 

2 

 

95 

 

92 

 

3   

 

2 

 

96 

 

95 
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4   

 

2 

 

92 

 

95 

 

5   

 

2 

 

90 

 

92 

 

6 
  

 

3 

 

98 

 

94 

 

7 
  

 

3 

 

96 

 

98 

 

8 
  

 

2 

 

97 

 

94 

 

9 
  

 

2 

 

96 

 

93 

 

10 
  

 

3 

 

95 

 

92 

 

11 
  

 

3 

 

96 

 

95 

 

12 
  

 

2 

 

90 

 

92 

 

13 
  

 

3 

 

95 

 

95 

 

 

14 
  

 

 

3 

 

 

96 

 

 

93 
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15 
  

 

 

2 

 

 

98 

 

 

98 

 

 

16 
  

 

 

2 

 

 

95 

 

 

94 

 

 

17 

   

 

 

3 

 

 

96 

 

 

93 

 

 

18 
  

 

 

3 

 

 

95 

 

 

92 

 

 

19 
  

 

 

2 

 

 

92 

 

 

92 

                            a 
yield (1-19) from R-OTHP

 
and

  b 
yield (1-19) from R-OMOM ethers deprotection.

 

2.3.4. Synthesis of diastereoisomerically pure Trans-3-(4-bromophenyl)-2-hydroxy-2, 3-

dihydroindan-1-one. 

The stereochemistry and the distereomeric excess ratio of the indanone derivatives 1n-1s 

were determined by the chiral column separation of racemic mixture of diastereomers. For 

example, in the synthesis of racemic indanone 3-(4-bromophenyl)-2-hydroxy-2, 3-

dihydroindan-1-one (Scheme 1), the chiral HPLC purification gave peaks at 40.14 (51%) and 

56.43 (49%) min. for the diastereomers (See Supporting Information). Then, we synthesized 

enantiomerically excess (ee) trans-chalcone epoxide of 2R, 3S-configuration from chalcone 

with α, α’-diphenyl-L-prolinol and TBHP in hexane which gave a good yield (58%) with 
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77.6% ee (scheme 1). Asymmetric epoxides were characterized by comparing with the 

literature value of 
1
HNMR and enantiomeric excess was determined by chiral HPLC column 

and optical rotation in chloroform. [24] 

It was observed that during the ring opening of epoxides, the C-2 configuration remained 

same while the C-3
 
configuration changed due to SN1-like mechanism therefore it gave the 

regio- and stereoselective intramolecular Friedel-Crafts alkylation. The protons at C-2 and C-3 

positions are in trans-orientation which is confirmed by the coupling constant (J = 2.0 Hz) in 

1
HNMR spectrum.

 
[24] The absolute configurations at C-2 and C-3 are confirmed as 2R and 3S 

respectively. The stereoselectivity and high yields for 1-indanones under acidic condition 

(SnCl4) might be due to the variable oxidation state and availability of relatively low energy 

5d-orbitals on tin. On ligation with epoxide oxygen, the tetrahedron structure of SnCl4 was 

converted to a trigonal bipyramide/octahedron structure. This geometrical change enhanced the 

steric hindrance which results in a faster epoxide ring opening from β-carbon due to 

considerable electron deficient character at benzylic carbon. Therefore, the nucleophile 

attacked at β-carbon of carbonyl group. 

Scheme 1. Synthesis of diastereoisomerically pure trans-3-(4-bromophenyl)-2-hydroxy-2, 3- 

dihydroindan-1-one. 

 

2.4. MECHANISM 

A proposed reaction mechanism is shown in the scheme 1 for the MOM ether deprotection 

and the sequel intramolecular Friedel-Crafts alkylation, where ligation of SnCl4 with MOM 

oxygen resulted in the removal of the methyl (methylene) oxonium group followed by its 

reaction with Cl
−
 generated the MOMCl. [23] Same time, the epoxide oxygen ligation with 

SnCl4 might change the tetrahedron structure of SnCl4 into trigonal bipyramide/octahedron 

structure. The geometry changes enhanced the steric hindrance which results in faster epoxide 

ring opening from β-carbon due to considerable electron deficient character at benzylic position 

not on α-carbon due to a 4-membered cyclobutanone (unstable intermediate). Therefore, the 

nucleophilic attack took place at β-carbon of carbonyl which gave a resonance stabilized 
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benzyl intermediate.  Finally, a base hydrolysis regenerated SnCl4 catalyst which is used in the 

next catalytic-cycle. 

Scheme 2. A propose mechanism for the deprotection of MOM ethers followed by cyclization 

with SnCl4 

 

2.5. CONCLUSION 

In conclusion, we have illustrated an optimized reaction conditions for the rapid and 

efficient deprotection of the phenolic THP and MOM ethers and sequel intramolecular Friedel-

Crafts alkylation reaction of chalcone epoxides.  All reactions were completed within 2-3 min 

and gave excellent yield (90-98%) at 0 
0
C for both the THP and the MOM ethers and sequel 

cyclization reactions without affecting the other functional groups. 

2.6. EXPERIMENTAL DETAILS 

Organic solvents were dried by standard methods, the reagents (chemicals) were purchased 

from commercial sources, and used without further purification. All reactions were monitored 

by TLC using precoated silica gel aluminum plates. Visualization of TLC plates was 

accomplished with an UV lamp. Column chromatography was performed using silica gel 60–

120 mesh size (RANKEM Limited) with EtOAc–hexanes as eluent. Melting points were 

recorded on Perfit apparatus and are uncorrected. All products were characterized by NMR, IR 

and MS spectra. 
1
H and 

13
C NMR spectra were recorded in deuterated chloroform (CDCl3) on a 

500 MHz and 125 MHz spectrometer (Bruker), respectively. Chemical shifts were reported in 

parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are 

described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

48 

 

2.6.1. General Procedure for Deprotection of Tetrahydropyranyl and Methoxymethyl 

Ethers of Alcohols and Phenols: 

 SnCl4 (10 mol %) was added to a stirred solution of THP and MOM ethers (1 mmol) in 

CH2Cl2 (5 mL) at 0 
0
C. TLC monitoring, the reaction mixture was poured into 10% aqueous 

Na2CO3 solution and extracted with CH2Cl2. The organic layer washed with brine solution, 

dried with anhyd.Na2SO4, and concentrated in vacuo to give corresponding alcohol or phenol, 

which was purified by silica gel column chromatography with hexane-ethyl acetate when 

required to obtain the products 1 to 19 with excellent yield (90-98%). 

2.6.2. Characterization data for selected synthesized compounds 

(a) Selected spectral data of THP and MOM deprotected products: 

(E)-3-(4-fluorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (1f): 
 1

H 

NMR (CDCl3, 500 MHz) δ  ppm 7.99 ( d, J =  8.5 Hz, 2H), 7.77 (d, J = 

15.5 Hz, 1H), 7.62 (dd, J = 6, 13.5 Hz, 2H), 7.46 (d, J = 15.5 Hz, 1H), 

7.10 (t, J = 8 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H), 6.24 (s, 1H, br, D2O exchangeable); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 187.50, 164.68, 162.67, 141.94, 132.02, 131.52, 131.45, 129.53, 

122.46, 116.42, 116.25.  IR νmax (KBr, cm
-1

) 3415 (OH str), 2931, 2873 (aromatic C-H str), 

1681 (C=O str), 1597 (aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z) 242 [M
+.

, 

C15H11FO2]. 

(E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (1g): 
 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.99 (d, J =  8.5 Hz, 2H), 7.76 (d, J 

= 15.5 Hz, 1H), 7.63-7.61 (m, 2H), 7.45 (d, J =16 Hz, 1H), 7.10 (t, J = 

8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.2 (s, 1H, br, D2O exchangeable);
 13

C NMR (CDCl3, 

125 MHz) δ ppm 187.20, 162.37, 141.64, 131.72, 131.22, 131.15, 129.23, 122.16, 116.12, 

115.95; IR νmax (KBr, cm
-1

) 3408 (OH str), 2928, 2876 (aromatic C-H str), 1684 (C=O str), 

1598 (aromatic, C=C str), 1268, 1085, 864, 735; GC-MS (m/z) 258 [M
+.

, C15H11ClO2]. 

(E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (1h): 
 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.99 ( d, J = 8 Hz, 2H), 7.77 (d, J 

= 15.5 Hz, 1H), 7.63 (t, J = 8Hz, 2H), 7.46 (d, J = 15.5 Hz, 1H), 7.10 

(t, J = 8.5 Hz, 2H), 6.95 (d, J = 8 Hz, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 186.88, 

162.05, 141.32, 131.41, 130.90, 130.83, 128.92, 121.85, 115.81, 115.21; IR νmax (KBr, cm
-1

) 
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3410 (OH str), 2926, 2875 (aromatic C-H str), 1686 (C=O str), 1599 (aromatic, C=C str), 1265, 

1078, 862, 730; GC-MS (m/z) 302 [M
+.

, C15H11BrO2], 304 [M+2,]. 

3-(4-fluorophenyl)-2,5-dihydroxy-2,3-dihydroinden-1-one (1n): 
1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.87 (d, J =  8.5 Hz, 2H), 7.54 (dd,  J = 8.5, 14   Hz, 

2H),  7.06 (d, J = 9 Hz, 2H),6.95 (d, J = 9 Hz, 1H), 6.4 (s, 1H ) 5.29 (t, J = 7 Hz, 

1H), 5.22 (d, J = 1.5 Hz, 1H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 195.55, 

161.83, 137.36, 131.82, 131.42, 129.79, 125.99, 123.01, 116.23, 75.01, 63.53; IR νmax (KBr, 

cm
-1

) 3405 (OH str), 2922, 2875 (aromatic C-H str), 1688 (C=O str), 1595 (aromatic, C=C str), 

1266, 1089, 858, 731; GC-MS (m/z) 258  [M
+.

,C15H11FO3]. 

3-(4-chlorophenyl)-2,5-dihydroxy-2,3-dihydroinden-1-one (1o):
 1

H NMR 

(CDCl3, 500 MHz) δ ppm  7.88 (d, J = 8.5 Hz , 2H), 7.56-7.53 (m, 1H ), 7.07 

(t, J = 7 Hz, 2H), 6.96 (d, J = 9 Hz, 2H ), 6.45 (s, 1H), 5.30 (t, J =7 Hz,1H), 

5.23 (d, J = 1.5 Hz,1H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 195.72, 162.00, 

137.53, 131.99, 131.59, 129.96, 126.16, 123.18, 116.40, 76.23, 63.70; IR νmax (KBr,cm
-1

) 3415 

(OH str), 2931, 2873 (aromatic C-H str), 1681 (C=O str), 1597 (aromatic, C=C str), 1263, 

1081, 860, 737; GC-MS (m/z) 274 [M
+.

, C15H11ClO3]. 

3-(4-bromophenyl)-2,5-dihydroxy-2,3-dihydroinden-1-one (1p): 
1
H NMR 

(CDCl3, 500 MHz) δ ppm  7.86 (d, J = 8.5 Hz, 2H), 7.54-7.52 (m, 1H ), 7.05 (t, 

J = 7 Hz, 2H ), 6.95 (d, J = 9 Hz, 2H), 6.42 (s, 1H), 5.29 (t, J = 7 Hz, 1H), 5.22 

(d, J = 1.5 Hz,1H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 195.57, 161.85, 

137.38, 131.84, 131.45, 129.81, 126.01, 123.04, 116.25, 75.40, 63.55; IR νmax (KBr, cm
-1

) 

3425 (OH str), 2935, 2877 (aromatic C-H str), 1687 (C=O str), 1585 (aromatic, C=C str), 1266, 

1088, 862, 733; GC-MS (m/z) 318 [M
+.

, C15H11BrO3], 320 [M+2]. 

5-fluoro-2-hydroxy-3-(4-hydroxyphenyl)-2,3-dihydroinden-1-one (1q):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  7.86 (d, J = 8.5 Hz , 2H), 7.53 (dd,  J = 8.5, 

14   Hz, 2H), 7.06 (t, J = 7 Hz, 2H), 6.95 (d, J = 9 Hz, 1H), 6.44 (s, 1H, br, 

D2O exchangeable), 5.30 (t, J =7 Hz, 1H), 5.22 (d, J = 1.5 Hz, 1H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 195.53, 161.81, 137.34, 131.79, 131.40, 129.76, 

125.96, 122.99, 116.21, 75.36, 63.51; IR νmax (KBr, cm
-1

) 3428 (OH str), 2933, 2877 (aromatic 

C-H str), 1687 (C=O str), 1599 (aromatic, C=C str), 1265, 1088, 858, 725;  GC-MS (m/z) 258 

[M
+.

, C15H11FO3]. 
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5-chloro-2-hydroxy-3-(4-hydroxyphenyl)-2,3-dihydroinden-1-one (1r):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  7.87 (d, J = 8.5 Hz, 2H), 7.54-7.52 (m, 1H), 

7.06 (t, J = 7 Hz, 2H), 6.95 (d, J = 9 Hz, 2H ), 6.45(s, 1H, br, D2O 

exchangeable), 5.30 (t, J =7 Hz,1H), 5.22(d, J = 1.5 Hz, 1H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 195.82, 162.10, 137.63, 132.09, 131.69, 130.06, 126.26, 123.28, 

116.50, 75.65, 63.80; IR νmax (KBr, cm
-1

) 3415 (OH str), 2931, 2873 (aromatic C-H str), 1681 

(C=O str), 1597 (aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z) 274 [M
+.

, 

C15H11ClO3]. 

5-bromo-2-hydroxy-3-(4-hydroxyphenyl)-2,3-dihydroinden-1-one (1s):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  7.86 (d, J = 8.5 Hz , 2H), 7.54-7.52 (m, 1H ), 

7.06 (t, J = 7 Hz, 2H), 6.95 (d, J = 9 Hz, 2H ), 6.44 (s, 1H, br, D2O 

exchangeable), 5.30 (t, J =7 Hz, 1H), 5.22 (d, J = 1.5 Hz, 1H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 195.54, 161.82, 137.35, 131.80, 131.41, 129.78, 125.97, 123.00, 

116.22, 75.37, 63.52; IR νmax (KBr, cm
-1

) 3427 (OH str), 2937, 2875 (aromatic C-H str), 1685 

(C=O str), 1593 (aromatic, C=C str), 1266, 1083, 864, 727; GC-MS (m/z) 318 [M
+.

, 

C15H11BrO3], 320 [M+2]. 
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Part B: SnCl4 or TiCl4: Highly efficient catalysts for detetrahydropyranylation and 

demethoxymethylation of phenolic ethers and sequel one-pot asymmetric synthesis of 3-aryl-

2-hydroxy-2, 3-dihydroindan-1-ones from chalcone epoxides  

3.1. INTRODUCTION 

Protection and deprotection of functional groups are the most frequently used strategies in 

the multi-step organic syntheses. In particular, the protection and deprotection of the hydroxyl 

group is extremely important because of its enormous demand for the synthesis of a number of 

compounds of biological and synthetic interest such as carbohydrates, macrolides, peptides, 

steroids, nucleotides and polyethers.[1] Protection of the hydroxyl group with 3,4-dihydro-2H-

pyran (DHP) and methoxymethyl chloride (MOMCl) is the most frequently used method due to 

the stability of the resulting 2-tetrahydropyranyl ethers (THPEs) and the methoxymethyl ethers 

(MOMEs) respectively in the presence of strong bases or nucleophiles such as Grignard 

reagents, organolithium compounds, metal hydrides, catalytic hydrogenation, alkylating and 

acylating agents.[2,3] 

Conversely, the deprotection of THP and MOM ethers required efficient methods to avoid 

decomposition and/or loss of other functional groups in the product under harsh reaction 

conditions. Therefore, many catalysts are explored for the detetrahydropyranylation of alcohols 

and phenols include protic acids,[4] Lewis acids such as BF3-etherate,[5] LiBr,[6] LiBF4,[7] 

LiOTf,[8] LiClO4,[9] Sc(OTf)3,[10] In(OTf)3,[11] I2,[12] InCl3,[13] ZrCl4,[14] CuCl2,[15] and 

salt NH4Cl, [16] expansive graphite,[17] clay materials,[18] silica-supported sulfuric acid,[19] 

and other miscellaneous catalysts.[20-26] Similarly, many catalysts are used for the 

demethoxymethylation of alcohols and phenols; these catalysts include HCl, BBr3, pyridinium 

p-toluene sulphonate under strong acidic condition, mild Lewis acids ZnBr2, and TiCl4 in 

aprotic conditions and BBr3 derivatives like Me2BBr, and (i-PrS)2BBr.[27] Most of these 

methods have different drawbacks such as long reaction time, low yields, reflux at high 

temperature and tedious workup procedures. Hence, there is still scope to develop more 

straightforward and efficient methods in the deprotection of tetrahydropyranyl and 

methoxymethyl ethers. 

Indan-1-one and indan-2-one derivatives are important moieties in the core structures of 

many natural products, agrochemicals and medicines [28] including indacrinone,[28a-c] 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

55 

 

indanoyl isoleucine conjugates,[28d] indanocines,[28e] quadranglularin A,[28 f,g] 

parthenocissin A,[28 h,i] (+)-pauciflorol F,[29] norditerpene taiwaniaquinol B,[30]
 
sulindac, 

NSAID,[31a-c] NMDA receptor antagonists,[31d] benzodiazepines,[31e] melatonin 

precursor,[31f]  and neoflavonoids[32,33] (Figure 1). They are also reported from higher plants 

such as Uvaria afzelii roots,[34] Pteridium aquilinum [34c] and Equisetum arvense [34d] 
 
and 

screened for various biological activities including cancer and Alzheimer’s diseases. 2-

(Alkoxycarbonyl)- and 2-acetyl-1-indanones are present in cytotoxic natural compound 

pterosines,[28,29]
 

a potent and selective COX-2 inhibitor flosulide,[30,32] and the 

acetylcholinesterase inhibitor donepezil hydrochloride.[30] They are approved by US-FDA for 

the treatment of mild to moderate Alzheimer’s disease.[29] Similarly, the enantiomerically pure 

derivative, 1-amino-2-indanol is a key precursor of the chiral ligand and the chiral auxiliary for 

asymmetric synthesis of indinavir, a potent inhibitor of the protease of human 

immunodeficiency virus (HIV)[35] and Detrol LA (tolterodine tartrate), a muscarine receptor 

antagonist used for the treatment of urinary bladder disorder.[36a] The Indan-1-one bearing 

carboxylate scaffold is also used a peroxisome proliferator activated receptor γ (PPARγ) agonist 

in the treatment of type-2 diabetes.[36b]
 

 

Figure 1. Bioactive indan-1-one derivatives. 

Therefore, a number of synthetic methods have been reported that include intramolecular 

Friedel-Crafts alkylation, [37] Nazarov cyclization, [38,39]  tandem Knoevenagel 
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condensation-cycloalkylation,[40] Heck & Negishi coupling,[41]
 
Larock annulations [42]

 
and 

ring-closing metathesis[43] reactions under  different Lewis acids such as SbF5,[44a] 

AlCl3,[44b]
 
and TiCl4.[45-51]

 
The Friedel-Crafts reactions were carried out at high temperature 

and in strong acidic conditions. Similarly, enantioselective indanones synthesis required multi-

step reaction and high catalyst loading for the 3-substituted indanone derivatives.[32] In 

continuation of our interest in Lewis acid catalysis[52] and metal halides were used as 

inexpensive, easily available and stable catalysts during epoxide ring opening.[53] Herein, we 

report an efficient deprotection method of THP and MOM ethers and sequel Friedel-Crafts 

alkylation reaction in the stereoselective synthesis of functionalized 3-aryl 2-hydroxy-1-

indanone derivatives catalyzed by a highly efficient TiCl4 catalyst at 0 
0
C (Scheme 1, Table 1). 

In comparison with other methods, our protocol gave high yields (76-98%) with excellent 

regioselective products (up to 99.9% ee) in short reaction time (2-3 min). 

3.2. OBJECTIVE 

Metal catalysed organic transformation are the very important tool for inter and intra-

molecular reaction in Stereoselective synthesis under mild condition. Now a day’s people are 

trying to synthesize the cheap, inexpensive, commercial favorable methods for the one pot 

conversion in organic synthesis. Hence, our goal is to synthesize the commercially favorable 

methodology by using catalyst and we used different metal catalyst and SnCl4  or TiCl4 was 

found to be the versatile catalyst for the opening of chalcone epoxide and deprotection of 

hydroxyl group in a single step. Stereoselective syntheses of 3-aryl-2-hydroxy-1-indanones 

were also reported using TiCl4 as a catalyst. Our protocol gave regio-selective products in 

excellent yield (76-98%) and enantiomeric excess up to 99.9% under same conditions. 

3.3. RESULTS AND DISSCUSSION 

3.3.1. Optimization reaction conditions by using different catalyst 

The catalytic efficiency of different metal halides was screened (Table 1). Metal halides 

(Table 1, entries 1-6) exhibited poor to moderate catalytic activity. InCl3 (Table 1, entry 7) was 

found to be a better catalyst at 10 mol% catalyst loading, which gave 90% yield of cyclized 

product without deprotecting of THP or MOM ethers. However, TiCl4 (Table 1, entry 10,12) 

was found to be the most efficient catalyst at 10 mol% catalyst loading, which gave the optimal 

yield (98%) with deprotecting of THP and MOM ethers. We also used SnI4 and SnBr4 in 5, 10, 

and 20 mol% during the deprotection of THP and MOM ethers which gave the desired product 
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in a 5-10% yield after stirring for 2-6 h at 0 
0
C temperature. However, TiCl4 gave excellent 

yield of 90-98% within 2-3 min. under the same conditions (Table 1, entry 10, 12). 

To optimize the catalysts (InCl3 and TiCl4) loading, the reactions were carried out in 2, 5, 10 

and 20 mol% (Table 1, entries 8-12) in dichloromethane and the efficiency of the catalyst 

loading was determined from the amount of time needed for the complete conversion of 

epoxides (Figure 2). TiCl4 at 2 & 5 mol% loading, proceeded the reaction slowly, whereas at 20 

mol% the loading reaction gave the side product as 3-(4-Chlorophenyl)-2-chloro-2,3-

dihydroindan-1-one (20%), which was isolated and characterized by GC-MS.  

Scheme 1. Synthesis of indanone derivative in one-pot deprotection and cyclization. 

 

Table 1.  Optimization of catalysts for Scheme 1 

 

a
Gave only cyclization.

b,d
 Gave both THP and MOM ethers deprotection and sequel 

cyclization
 
other product as 3-(4-chlorophenyl)-2-chloro-2,3-dihydro indan-1-one(20%). 

Entry Catalyst Loading (mol%) Rxn.Time Yield (%) 

1 SbCl3 10 20-24 h 28
 a
 

2 SbCl5 10 20-24 h 20
 a
 

3 MgCl2 10 18-24 h 18
 a
 

4 ZrCl4 10 10-15 h 10
 a
 

5 SnBr4 10 6 h 10
b
 

6 SnI4 10 6 h 7
 b
 

7 InCl3 10 4-5 h 90
a
 

8 SnCl4 2 30 min 45
 b
 

9 SnCl4 5 15 min 65
 b
 

10 SnCl4 10 2 min 98
 b
 

11 InCl3/SnCl4 20 1 min 70+20
c
 

12 TiCl4 10 2 min 98
 d
 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

58 

 

Figure 2. Comparison of InCl3 and TiCl4 catalysts loading only for cyclization reaction 

 

3.3.2. Solvent effect by catalyst SnCl4 or TiCl4 

We also observed the solvent effects using acetone, chloroform, dichloromethane and 

tetrahydrofuran where chloroform and dichloromethane were found to be desired solvents 

(Table 2, entries 4, 6). 

Table 2. Solvent effects on yields in the deprotection of THP and MOM ethers 

 

Entry Mol% Solvents Yield (%) 

1 2 Acetone 40
a
 

2 5 Acetone 45
a
 

3 5 DCM 80
b
 

4 10 DCM 98
b
 

5 5 CHCl3 85
c
 

6 10 CHCl3 96
c
 

7 5 THF 52
d
 

8 10 THF 60
d
 

3.3.3. Examples of the THP and MOM ethers deprotection and sequel cyclization reaction 

by catalyst SnCl4  or TiCl4 

o
b

ta
in

ed
 Y
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 (
%

) 

Catalyst (mol%) 

InCl3 

(mol%) 
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Under optimized reaction conditions, the deprotection of THP and MOM ethers in phenols, 

chalcone and chalcone epoxides were achieved using 10 mol% of SnCl4 or TiCl4 TiCl4 in 

excellent yields (90-98%) within 2-3 min at 0 
0
C in the presence of other functional groups. 

However, in the case of alcoholic THP and MOM ethers, even 20 mol% of catalyst loading 

gave less yield 10 and 25% respectively (Table 3, entry 1). In case of chalcone 2f-2m, only 

THP and MOM removal was observed without intramolecular Friedel-Crafts alkylation. These 

products were characterized by comparing their physical and spectral data with the literature 

values.[22,28] Interestingly, the THP and MOM removal followed by the Friedel-Crafts 

alkylation was observed for the chalcone epoxides which gave the corresponding indanones 

2n-2s in excellent yield (90-98%) within 2-3 min at 0 
0
C (Table 3).

 
 The stereochemistry and 

the distereomeric excess ratio of the products 2n-2s were determined by the chiral column 

separation and determined as 2R, 3S-configuration. These products were fully characterized on 

the basis of their spectral analysis 
1
H-, 

13
C-NMR, GC-MS, Chiral HPLC  

Table 3. Examples of the THP and MOM ethers deprotection and sequel cyclization reaction 

 

Entry ROTHP/MOM ROH Time 

(min) 

Yield 

(%)
a
 

Yield 

(%)
b
 

 

1   

 

2 

 

10 

 

25 

 

2 
  

 

2 

 

95 

 

92 

 

3 
  

 

2 

 

96 

 

95 

 

4  
 

 

2 

 

92 

 

95 
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5  
 

 

2 

 

90 

 

92 

 

6 

  

 

3 

 

98 

 

94 

 

7 

  

 

3 

 

96 

 

98 

 

8 

  

 

2 

 

97 

 

94 

 

9 

  

 

2 

 

96 

 

93 

 

10 

  

 

3 

 

95 

 

92 

 

11 

  

 

3 

 

96 

 

95 

 

12 

 
 

 

2 

 

90 

 

92 

 

13 

  

 

3 

 

95 

 

95 

 

 

14 

  

 

 

3 

 

 

96 

 

 

93 
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15 

  

 

 

2 

 

 

98 

 

 

98 

 

 

16 

  

 

 

2 

 

 

95 

 

 

94 

 

 

17 

   

 

 

3 

 

 

96 

 

 

93 

 

 

18 
  

 

 

3 

 

 

95 

 

 

92 

 

 

19 

 
 

 

 

2 

 

 

92 

 

 

92 

                           a 
yield (1-19) from R-OTHP

 
and

  b 
yield (1-19) from R-OMOM ethers deprotection.

 

3.3.4. Asymmetric synthesis 

In asymmetric synthesis, following a simple experimental procedure (given in the 

experimental section), chalcone epoxides 3a-3w was dissolved in dichloromethane by stirring, 

SnCl4 or TiCl4 was added in proportion and stirred at 0 
0
C temperature for 2-3 min. After the 

usual work up, the 3-aryl-2-hydroxy-2, 3-dihydroindan-1-ones 4a-4w were obtained in 76-98% 

yields (Table 4). 

Table 4. Synthesis of racemic 3-aryl-2-hydroxy-1-indanones from racemic chalcone epoxides
a, 

b, c 
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a
Epoxides and 2-hydroxyindan-1-ones are racemic compounds and are shown as a single enantiomeric derivative 

(trans-configuration). 
b 

Reaction of 4e, 4j, 4r, 4w were carried out at   -20 °C and others are at 0 
0
C using 10 mol 

% of SnCl4 . 
c 
Isolated yield of racemic 2-hydroxy indan-1-ones. 

For example, in the synthesis of racemic indanone 4b (table 4) HPLC purification gave 

peaks at 26.9 (50%) and 35.4 (50%) min. for enantiomers (see experimental section).  The 

assigned structures of chalcone epoxides 3a-3w and products 4a-4w were confirmed on the 

basis of their spectral analysis (IR, 
1
H and 

13
C-NMR, and GC–MS/EI MS) and also when 

compared with reported data in the literature.[32] The trans-stereochemistry of epoxides 3a-3w 

was confirmed by the coupling constants of the α- & β-protons. For example, (4-chlorophenyl)-
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3-(4-bromophenyl) oxiran-2-yl-methanone (3i), the 
1
H NMR (500 MHz) δ (ppm): 4.07 (d, J = 

2.0 Hz, β-H, 1H), 4.21 (d, J =2.0 Hz, α-H, 1H), in which the J-values (2.0 Hz) indicate a trans-

substituted epoxide.
 
 Similarly, the trans-configuration of 2-hydroxy-2, 3-dihydro indan-1-ones 

4a-4w was confirmed by the coupling constants of the α- & β-protons. For example, trans 3-(4-

bromophenyl)-5-chloro-2-hydroxy-2,3-dihydroindan-1-one (4i), the 
1
H NMR (500 MHz) δ 

(ppm) at 5.15 (d, J = 2.0 Hz, β-H, 1H), 5.31 (d, J = 2.0 Hz, α-H, 1H), in which the J-values (2.0 

Hz) indicate a trans-configuration.[42] The stereoselectivity and high yields for 1-indanones 

under acidic condition (SnCl4) might be due to the variable oxidation state and availability of 

relatively low energy 5d-orbitals on tin. On ligation with epoxide oxygen, the tetrahedron 

structure of SnCl4 was converted to a trigonal bipyramide/octahedron structure. This 

geometrical change enhanced the steric hindrance which results in a faster epoxide ring 

opening from β-carbon due to considerable electron deficient character at benzylic position 

therefore, nucleophile attack takes place at β-carbon of carbonyl. 
 
In the case of electron 

donating (Table 4, entry 4j) and electron withdrawing groups on ring-Ar2 (Table 4, entries 4e, 

4r, 4w) the reaction at 0 
0
C temperature gave decomposed products.  Therefore, reactions were 

carried out by lowering the temperature (-20 
0
C) to obtain the desired product. 

3.3.5. Synthesis of enantioselective 3-aryl-2-hydroxyindan-1-ones. 

During enantioselective synthesis of indanones, first we synthesized diastereoisomerically 

pure trans-(2R, 3S)-chalcone epoxides (5a-e) from corresponding chalcones with α, α’-

diphenyl-L-prolinol and TBHP in hexane which gave a good yield (58%) with 64-99.9% 

enantiomeric excess. Epoxides were characterized by comparing with literature values and 

enantiomeric excess was determined by chiral HPLC column and optical rotation in chloroform 

(see in experimental section).[54] Epoxide ring opening followed by intramolecular Friedel-

Crafts alkylation was performed in the presence of SnCl4 to obtain the diastereoisomerically 

pure trans (2R,3S) indanone derivatives 6a-e (Scheme 2). The enantiomeric excess of 

indanones was again determined by chiral HPLC column and optical rotation in chloroform 

(see in experimental section). In general, indanones were obtained in 90-98% yields and 64-

99.9% ee (table 6). It was observed that with the ring opening of epoxide in the presence of 

metal halides, the configuration at C-2 position is retained while C-3
 
position is changed due to 

SN1-like mechanism to obtain regio- and stereoselective intramolecular Friedel-Crafts 

alkylation. Therefore, protons at C-2 and C-3 positions are in trans-oriented which was 
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confirmed by the coupling constant (J = 2.0 Hz) in 
1
HNMR spectrum.[42] Therefore, the 

absolute configurations at C-2 and C-3 were confirmed as 2R, and 3S respectively. 

 

Scheme 2. Synthesis of enantioselective 3-aryl-2-hydroxyindan-1-ones. 

The assigned structures of diastereoisomerically pure trans chalcone epoxides 5a-5e and 

products 6a-6e were confirmed on the basis of their spectral analysis (
1
H- & 

13
C-NMR and 

chiral HPLC) and also when compared with those reported data.[32] For example, trans-3-(4-

chlorophenyl)-2-hydroxy-2,3-dihydroindan-1-one (6a), the 
1
H NMR (500 MHz) δ (ppm) at 

5.36 (d, J = 2.0 Hz, 1H, -CO-CH-), and 5.21 (d, J = 2.0 Hz, -CH-Ar-,1H), in which the J-values 

indicate a trans-configuration.[15] The 
13

C NMR spectrum gave peaks at δ 197.49 ppm for the 

characteristic carbonyl carbon, 62.95 ppm  for Ar-CH-CH, and 75.89 ppm for Ar-CH-CH-CO- 

of indanone ring carbon. Since enantioselective epoxide 5a gave peaks at 54.7 min (13%) and 

58.7 min (87%), the major peak correlated with retention time of reported literature.
54

 

Therefore, the configuration is confirmed as 2R and 3S. We also took enantioselective indanone 

6a (table 5) which gave peaks at 27.9 min (13.9%) and 36.9 min (86.1%) (See HPLC 

chromatogram in supporting information). These retention time match those of racemic 

indanone (4b). Similarly, all other compounds 6b to 6e were confirmed on the basis of 

analytical data. 

Table 5. Synthesis of Enantioselective 3-aryl-2-hydroxy-1-indanones. 
a,b,c 

Entry Epoxide Indanone Yield (%)
b
 ee(%)

a
   

Configuration 

 

1 

 

74% ee; (2R,3S) 

 

6a 

 

98 

 

72.2% 

 (2R,3S) 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

65 

 

 

2 

 

77.6% ee; (2R,3S) 

 

6b 

 

90 

 

75%  

(2R,3S) 

 

3 

 

64.8% ee; (2R,3S) 

 

6c 

 

92 

 

64.8%  

(2R,3S) 

 

4 

 

>99.9% ee; (2R,3S) 

 

6d 

 

95 

 

>99.9% 

 (2R,3S) 

 

5 

 

66.8% ee; (2R,3S) 

 

6e 

 

93 

 

66.8% 

 (2R,3S) 

a
Enantiomeric excess was determined by chiral  HPLC column and found to be equivalent to literature data, 

b
isolated yields. 

c
all reactions are carried out at 0 

0
C for 2-3 min.HPLC conditions and retention times of 

racemic and enantiomeric excess of the epoxide and indanonone derivatives given in Tables 6 and 7. 

Table 6. HPLC conditions and retention times of racemic and enantiomeric excess of the 

epoxide derivatives.
a 

S.No Indanone
a
 Chiral 

Column 

Eluent 

(hexane:Isopropanol) 

Flow rate 

(ml/min) 

Retention time 

(min) & Area (%) 

ee 

(config)
a
 

1 5a Chiralcel-

OD-H 

55/1 0.5 54.7(13) 

58.7 (87) 

74% 

(2R,3S) 

2 5b Chiralcel-

OD-H 

95/5 0.8 22.4(11.2) 

22.4(88.8) 

77.6% 

(2R,3S) 

3 5c Chiralpak-

AD-H 

95/5 1 20.8(17.6) 

23.5(82.4) 

64.8% 

(2R,3S) 

4 5d Chiralpak-

AD-H 

95/5 0.5 54.0(>99.9) >99.9% 

(2R,3S) 

5 5e Chiralcel-

AD-H 

95/5 0.8 20.5 16.6) 

22.9(83.4) 

66.8% 

(2R,3S) 
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a-
Detection at 254 nm. Configuration determined ased on HPLC data analysis. 

Table 7. HPLC conditions and retention times of racemic and enantiomeric excess of the 

indanone derivatives.
a 

S. 

No 

Indanone 

a
 

Chiral 

Column 

Eluent 

(hexane:Isopropanol) 

Flow rate 

(ml/min) 

Retention time 

(min) & Area (%) 

ee 
a 

(config)
a
 

1 6a Chiralcel-

OD-H 

97.5/2.5 0.5 26.9(13.9) 

36.9(86.1) 

72.2% 

(2R,3S) 

2 6b Chiralcel-

OD-H 

92.5/7.5 0.8 38.8(12.5) 

53.1(87.5) 

75% 

(2R,3S) 

3 6c Chiralpak-

AD-H 

92.5/7.5 1 28.6 82.4) 

32.5(17.6) 

64.8% 

(2R,3S) 

4 6d Chiralpak-

AD-H 

92.5/7.5 1 5.3(>99.9) >99.9% 

(2R,3S) 

5 6e Chiralcel-

AD-H 

92.5/7.5 0.5 28.8(16.5) 

42.5(83.5) 

66.8% 

(2R,3S) 

a-
Detection at 254 nm. Configuration determined based on HPLC data analysis. 

3.4. MECHANISM 

 Proposed mechanism is shown in Scheme 3, where ligation of TiCl4 with MOM oxygen 

resulted in the removal of the methyl(methylene)oxonium group followed by its reaction with 

Cl
−
 generated the MOMCl.[24] Similarly, epoxide oxygen ligation might change the 

tetrahedron structure of TiCl4 into trigonal bipyramide/octahedron structure. The geometry 

changes enhanced the steric hindrance which results in faster epoxide ring opening from β-

carbon due to considerable electron deficient character at benzylic position. Therefore, the 

nucleophilic attack takes place at β-carbon of carbonyl. Finally, base hydrolysis produces TiCl4 

which is used as a Lewis acid in the next catalytic-cycle. 
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Scheme 3: Propose mechanism for the deprotection of MOM ethers followed by cyclization 

with TiCl4 

3.5. CONCLUSION 

In conclusion, we have developed a novel and highly efficient catalytic protocol for the 

deprotection of phenolic THP and MOM ethers and stereoselective synthesis of 2-hydroxy-3-

aryl-1-indanone derivatives by sequential ring opening of chalcone epoxides and 

intramolecular Friedel-Crafts alkylation in the presence of SnCl4 or TiCl4. This method has 

advantages such as (i) mild protocol (ii) excellent yield (up to 98%) with high regio and 

enantioselectivity (up to 99.9% ee) (iii) short reaction time (2-3 min) and (iv) easy work-up 

procedure. To the best of our knowledge, SnCl4 and TiCl4 has not been studied in this capacity 

before and therefore represents a novel subject for investigation. 

3.6. EXPERIMENTAL DETAILS  

3.6.1. GENERAL PROCEDURES 

Synthesis of chalcones epoxides: Aqueous NaOH (5M, 10 ml) was added drop wise to a 

stirred solution of chalcones (18 mmol) in aq. THF (30 ml, H2O: THF, 1:2 ratio) and further 

stirred for 10 min. Then, H2O2 (15 ml, 30% wt.%) was added drop wise and further stirred for 

6-7 h at room temperature. TLC monitoring, the reaction mixture was poured in water. The 

resulting precipitate was filtered, washed with water and dried under reduced pressure. The 

product was recrystallized in EtOH or silica gel column chromatography in petroleum ether: 

CH2Cl2 (8:2) as eluent gave 80-90% yields. 
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Synthesis of 3-aryl-2-hydroxy-2, 3-dihydroindan-1-one (6a-6e): Chlacone epoxides (1.0 

mmol) were dissolved in dichloromethane (5 mL) by stirring, SnCl4 or TiCl4 (10 mol%) was 

added drop wise and stirred for 2-3 min. at 0 
0
C. The reaction mixture was extracted with 

CH2Cl2 by adding water. The organic layer was dried (anhyd. Na2SO4), filtered and evaporated 

under reduced pressure to obtain the pure product or purified by flash column chromatography 

on silica gel using hexane: CH2Cl2 (8:2) as eluent to afford the products in 76-98% yields and 

64-99.9% enantiomeric excess.  

Synthesis of Enantioselective chalcones epoxides: To a solution of (-)(s) α,α'-diphenyl-L-

prolinol (23.0 mg, 0.090 mmol) and trans-chalcone (77.5 mg, 0.30 mmol) in distilled hexane  

(3.0 mL) (hexane of HPLC grade furnished comparable results) was added TBHP (5-6 M 

decane  solution, 75µL, 0.40 mmol) at room temperature and stirring was maintained for the  

indicated time. The crude reaction mixture was then purified by flash chromatography on silica 

gel (petroleum ether/ diethyl ether 99/1) to provide the epoxy ketone. 

3.6.2. Spectral data of deprotected chalcone, 2-hydroxy- indanone, epoxy chalcones and 2-

hydroxy-indanone derivatives 

a)  Spectral data of chalcone epoxides derivatives 

3-(4-Chlorophenyl)oxiran-2-yl-phenyl methanone (3b): White crystalline 

solid, Yield: 88%, m.p. = 120-123 
0
C; 

1
HNMR (CDCl3, 500 MHz): δ ppm: 

8.00 (dd, J1=7.5Hz, J2=1.5Hz, Ar-H, 2H), 7.63-7.48 (m, Ar-H, 5H), 7.40-7.30 

(m, Ar-H, 4H), 4.25 (d, J=1.5 Hz, -CO-CH- 1H), 4.06 (d, J= 2.0 Hz, -CH-Ar- 1H); 
13

C-NMR 

(CDCl3, 125MHz): δ ppm 192.8, 135.4, 134.9, 134.2, 129.7, 129.3, 129.0, 128.7, 128.4, 127.2, 

60.9, 58.7;  IR vmax  (KBr, cm
-1

):  CO νstretch 1685.55, 1592.37, 1438.03, 1391.67, 1232.43, 

1089.53, 1010.26, 888.63, 808, 700.79, 527.01; MS (EI, 70eV): m/z (%) 258 [M
+.

, 

C15H11O2Cl], 242, 207, 165, 125, 105(100), 91, 77, 65. 

Phenyl-3-(3-nitrophenyl) oxiran-2-yl-methanone (3e): Yellow solid; 

yield: 86%; m.p = 125–129 
0
C; IR vmax  (KBr, cm

-1
):  1689 (C=O str), 

1589 (arom C=C str), 1525 (N–O str),1405, 1344 (N–O bending), 1232, 

1081, 1009, 891, 812, 691, 601; 
1
H-NMR (500 MHz, CDCl3): 8.25–8.24 (m, 2 H, HAr), 8.03–

8.01 (m, 2 H, HAr), 7.73 (d, J = 6.5 Hz, 1 H, HAr), 7.67–7.59 (m, 2 H, HAr), 7.53–7.50 (dd, J = 

8.0, 1.5 Hz, 2 H, HAr), 4.31 (d, J = 2.0 Hz, 1 H, C(O)CH], 4.22 (d, J = 1.5 Hz, 1 H, Ar-CH(-O-

)CH);
13

C-NMR (CDCl3,125 MHz,): δ (ppm) 192.2 (C=O), 148.6, 137.9, 135.2, 134.7, 133.4, 
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131.9, 129.9, 129.4, 128.7, 128.4, 123.9, 120.8, 60.9 (C(O)-CH), 58.7 (Ar-CH-O); MS (EI, 70 

eV): m/z (%)  269 (24) [M+. C15H11NO4], 253 (23), 105 (100), 91 (68). 

 (4-Chlorophenyl)-3-(4-chlorophenyl)oxiran-2-yl- methanone (3g): 

White crystalline solid; Yield = 85%; m.p = 121-123 
0
C; IR νmax (KBr, 

cm
-1

): 3095, 3043 (aromatic C-H str), 1675 (C=O str), 1587 (aromatic, 

C=C str), 1485, 1399, 1235, 1177, 1090, 817 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz): δ 

(ppm): 7.97 (dd, J = 9.0Hz, 2.0Hz, 2 H, HAr), 7.48 (dd, J = 9.0 Hz,  2.0 Hz, 2 H, HAr), 7.39 (d, J 

= 8.5 Hz, 2 H, HAr), 7.31 (m, 2 H, HAr), 4.20 (d, J = 1.5 Hz,1 H, C(O)CH), 4.07 (d, J = 1.5 Hz,1 

H, Ar-CH(-O-)CH);
 13

C-NMR (CDCl3, 125 MHz): δ (ppm) 191.7 (C=O), 60.9 (C(O)CH), 

58.6 (Ar-CH-O-), 140.7, 135.1, 133.7, 130.0, 129.7, 129.3, 129.1, 127.1; MS (EI, 70eV): m/z 

(%)  292 [M
+.

, C15H10Cl2O2]: 292, 139 (100). 

 (4-Chlorophenyl)-3-(4-bromophenyl)oxiran-2-yl-methanone (3i): 

White crystalline solid; Yield = 89%; m.p =127-129 
0
C; IR νmax (KBr, 

cm
-1

): 3039 (aromatic C-H str), 1675 (C=O str), 1587 (aromatic, C=C 

str), 1430, 1400, 1236, 1177, 1092, 1011, 735 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz): δ 

(ppm) 7.99 (dd, J = 7.0, 2.0 Hz, 2 H, HAr), 7.54 (m, 4 H, HAr), 7.27 (dd, J = 7.0, 2.0 Hz, 2 H, 

HAr), 4.21 (d, J = 2.0 Hz, 1 H, C(O)CH), 4.07 (d, J = 2.0 Hz, 1 H, Ar-CH(-O-)CH); 
13

C-NMR 

(CDCl3, 125 MHz): δ (ppm) 191.7 (C=O), 60.9 (C(O)CH), 58.7 (Ar-CH-O-), 140.7, 134.4, 

133.6, 132.0, 129.8, 129.3, 127.4, 123.2; MS (EI, 70eV): m/z (%) = 336 [M
+.

, C15H10ClBrO2]: 

336, 139 (100). 

Naphthalen-2-yl-3-phenyloxiran-2-ylmethanone (3s): White crystalline 

solid; Yield = 88%; m.p = 90-92 
0
C; IR νmax (KBr, cm

-1
): 2928, 2891 

(aromatic C-H str), 1695 (C=O str), 1595 (aromatic, C=C str), 1460, 1396, 

1230, 1127, 1011, 820 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

8.54 (s, 1 H, HAr), 8.03 (dd, J = 8.5, 1.5 Hz, HAr), 7.93-7.85 (m, 3 H, HAr), 7.61 (t, J = 8.0 Hz, 

1H, HAr), 7.54 (t, J = 8.0 Hz, 1H, HAr), 7.43-7.38 (m, 5 H, HAr), 4.43 (d, J = 1.5 Hz,1 H, 

C(O)CH), 4.14 (d, J = 1.5 Hz, 1 H, Ar-CH(-O-)CH); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 

193.0 (C=O), 61.1 (C(O)CH), 59.6 (Ar-CH-O-), 135.9, 135.6, 132.8, 132.4, 130.5, 130.2, 

129.7, 129.1, 129.1, 128.9, 128.8, 128.4, 127.1, 125.9, 123.7; MS (EI, 70eV): m/z (%) = 274 

[M
+.

, C19H14O2]: 257 (12), 155 (100), 91 (25). 

(c) Spectral data of indanone derivatives 
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3-Phenyl-2-hydroxy-2, 3-dihydroindan-1-one (4a): Light yellow solid; m.p 

= 178-180 
0
C; Yield = 98%; IR vmax (KBr, cm

-1
): 3452 (OH str), 2963 

(aromatic C-H str), 1686 (C=O str), 1599 (aromatic, C=C str), 1451, 1419, 

1262, 1021, 933, 868, 799 and 704; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

7.89 (m, 2 H, HAr), 7.66 (m, 1 H, HAr), 7.54 (m, 3 H, HAr), 7.37-7.30 (m, 3 H, HAr), 5.39 (d, J = 

2.0 Hz, 1 H, H2), 5.24 (d, J = 2.0 Hz, 1 H, H3), 4.05 (s, br, D2O exchangeable, 1 H); 
13

C-NMR 

(CDCl3, 125 MHz): δ (ppm) 197.8 (C=O), 138.1, 134.3, 133.6, 129.2, 128.8, 128.6, 127.9, 

76.1 (C2), 63.8 (C3); MS (EI, 70eV): m/z (%)  224(35) [M
+
, C15H12O2], 207(25), 195(29), 

178(37), 165(40), 152(33), 121(64), 105(100), 91(62), 77(74) and 51(69). 

3-(4-Chlorophenyl) -2-hydroxy-2, 3-dihydroindan-1-one (4b): Light 

yellow solid; m.p = 188-190 
0
C; Yield = 98%; IR vmax (KBr, cm

-1
): 3408 

(OH str), 2917 (aromatic C-H str), 1689 (C=O str), 1589 (aromatic, C=C 

str), 1489, 1415, 1288, 1177, 1091, 1014, 929 and 701; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

7.83 (d, J = 7.5 Hz, 2 H, HAr), 7.59 (t, J = 7.0 Hz, 1 H, HAr), 7.48-7.45 (m, 2 H, HAr), 7.40 (dd, 

J=6.0, 2.0Hz, 2 H, HAr), 7.25 (m, 1 H, HAr), 5.27 (d, J = 2.0 Hz, 1 H, H2), 5.12 (d, J = 2.0 Hz, 1 

H, H3), 4.02 (s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.4 

(C=O), 136.6, 134.8, 134.4, 133.5, 129.4, 129.2, 128.7, 128.5, 75.9 (C2), 62.9 (C3); MS (EI, 

70eV): m/z (%) 258(17) [M
+
, C15H11ClO2], 242(28), 207(36), 179(43), 165(32), 135(57), 

130(61), 105(100), 89(49), 77(61), 75(55) and 51(62). 

2-Hydroxy-3-p-tolyl-2,3-dihydroinden-1-one (4c): Light yellow solid; 

m.p = 144-146 
0
C; Yield = 91%; IR vmax (KBr, cm

-1
): 3391 (OH str), 2951 

(aromatic C-H str), 1693 (C=O str), 1577 (aromatic, C=C str), 1468, 1401, 

1271, 1152, 1084, 1002, 910 and 725; 
1
H-NMR (CDCl3, 500 MHz): δ 

(ppm) 7.81 (d, J = 5.5 Hz, 2 H, HAr), 7.55 (m, 1 H, HAr), 7.44 (m, 1 H, HAr), 7.34 (d, J = 6.0 

Hz, 2 H, HAr), 7.07(d, J = 5.0 Hz, 2 H, HAr), 5.28 (d, J = 2.0 Hz, 1 H, H2), 5.14 (d, J = 2.0 Hz, 

1 H, H3), 4.05 (s, br, D2O exchangeable, 1 H), 2.24 (s, 3 H);  
13

C-NMR (CDCl3, 125 MHz): δ 

(ppm) 197.9 (C=O),138.7, 135.2, 134.3, 133.7, 129.2, 129.2, 128.6, 127.9, 76.2 (C2), 63.8 

(C3), 21.2;  MS (EI, 70eV): m/z (%)  238(21) [M
+
, C16H14O2], 212(28), 203(16), 159(43), 

145(32), 125(57), 105(100), 79(49), and 55(42). 

3-(4-Bromophenyl)-2-hydroxy-2,3-dihydroindan-1-one (4d): Light yellow solid; m.p = 183-

185 
0
C; Yield = 90%; IR vmax (KBr, cm

-1
): 3434 (OH str), 2924 (aromatic C-H str), 1670 (C=O 
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str), 1588 (aromatic, C=C str), 1485, 1413, 1288, 1177, 1071, 930, 703 and 545; 
1
H-NMR 

(CDCl3, 500 MHz) : δ (ppm) 7.82 (d, J = 7.5 Hz, 2 H, HAr), 7.57 (t, J = 7.0 

Hz, 1 H, HAr), 7.46-7.43 (m, 2 H, HAr), 7.38 (dd, J = 6.0, 2.0 Hz, 2 H, HAr), 

7.24 (m, 1 H, HAr), 5.30 (d, J = 2.0 Hz, 1 H, H2), 5.21 (d, J = 2.0 Hz, 1 H, 

H3), 4.11 (s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): 

δ(ppm) 197.3 (C=O), 136.6, 134.6, 134.2, 133.4, 129.3, 129.3, 128.6, 128.4, 76.0 (C2), 62.5 

(C3); MS (EI, 70eV): m/z (%)  302(16) [M
+
, C15H11BrO2], 196(55), 169(45), 139(73), 

105(100), 89(47), 77(54), 63(49) and 51(66). 

3-(3-Nitrophenyl)-2-hydroxy-2,3-dihydroindan-1-one (4e): Light yellow solid; m.p = 196-

198 
0
C; Yield = 82%; IR vmax (KBr, cm

-1
): 3369 (OH str), 2923 (aromatic 

C-H str), 1680 (C=O str), 1613 (aromatic, C=C str), 1528 (N─O str), 1393, 

1348 (N─O bending), 1259, 1094, 986, 911, 840, 728, 687; 
1
H-NMR 

(CDCl3, 500 MHz): δ (ppm): 8.14 (d, J = 7.5 Hz, I H, HAr), 7.99 (m, 1 H, HAr), 7.86 (m, 2 H, 

HAr), 7.70 (t, J = 7.5 Hz, 1 H, HAr), 7.61-7.58 (m, 2 H, HAr), 7.45 (m, 1 H, HAr), 5.57 (d, J = 2.0 

Hz, 1 H, H2), 5.32 (d, J = 2.0 Hz, 1 H, H3), 3.82 (s, br, D2O exchangeable, 1 H); 
13

C-NMR 

(CDCl3, 125 MHz): δ (ppm) 197.4 (C=O), 147.8, 137.7, 134.9, 134.2, 129.4, 129.2, 128.7, 

123.8, 123.2, 76.5 (C2), 61.75 (C3); MS (EI, 70eV): m/z (%)  269(13) [M
+
, C15H11NO4], 

241(21), 196(61), 176(32), 165(48), 136(43), 105(100), 89(64), 77(44), 63(39) and 51(60). 

3-Phenyl-5-chloro-2-hydroxy-2,3-dihydroinden-1-one (4f): Light yellow 

solid; m.p = 180-182 
0
C; Yield = 97%; IR νmax (KBr, cm

-1
): 3449 (OH str), 

2950 (aromatic C-H str), 1682 (C=O str), 1582 (aromatic, C=C str), 1389, 

1275, 1059, 854, 723 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

7.92 (d, J = 8.5 Hz,2 H, HAr), 7.78 (d, J = 8.5 Hz, 2 H, HAr), 7.45 (m, 2 H, HAr), 7.17 (m, 2 H, 

HAr), 5.23 (d, J = 4.0 Hz, 1 H, H2), 5.10 (d, J = 4.0 Hz, 1 H, H3), 3.92 (s, br, D2O 

exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 196.7 (C=O), 140.8, 137.7, 132.0, 

130.0, 129.5, 128.9, 128.6, 127.9, 76.1 (C2), 63.7 (C3); MS (EI, 70eV): m/z (%) 258(35) [M
+.

, 

C15H11ClO2], 139 (100). 

3-(4-Chlorophenyl)-5-chloro-2-hydroxy-2,3-dihydro-indan-1-one (4g): 

Light yellow solid; m.p = 202-204 
0
C; Yield = 98%; IR νmax (KBr, cm

-1
): 

3438 (OH str), 2922 (aromatic C-H str), 1674 (C=O str), 1591 (aromatic, 

C=C str), 1396, 1282, 1173, 1091, 756 (C-Cl, str); 
1
H-NMR (CDCl3, 500 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

72 

 

MHz): δ (ppm) 8.06 (d, J = 8.5 Hz, 1 H, HAr), 7.89 (m, 1 H, HAr), 7.53 (d, J = 8.5 Hz, 1 H, 

HAr), 7.47 (d, J = 8.5 Hz, 1 H, HAr), 7.28 (m, 2 H, HAr), 7.16 (d, J = 8.5 Hz, 1 H, HAr), 5.48 (d, 

J = 3.5 Hz, 1 H, H2), 5.21 (d, J = 3.5 Hz, 1 H, H3), 3.72 (s, br, D2O exchangeable, 1 H); 
13

C-

NMR (CDCl3, 125MHz): δ (ppm) 196.4 (C=O), 141.0, 136.3, 134.3, 131.8, 131.6, 129.9, 

129.6, 129.4, 128.9, 128.8, 75.9 (C2), 62.8 (C3); MS (EI, 70eV): m/z (%)  292(10) [M
+.

, 

C15H10Cl2O2], 245(25), 139(100). 

5-Chloro-2-hydroxy-3-p-tolyl-2,3-dihydroindan-1-one (4h): Light 

yellow solid; m.p = 182-184 
0
C; Yield = 91%; IR νmax (KBr, cm

-1
): 3439 

(OH str), 2922 (aromatic C-H str), 1670 (C=O str), 1594 (aromatic, C=C 

str), 1491, 1399, 1296, 1095, 760 (C-Cl, str); 
1
H-NMR (CDCl3, 500 

MHz): δ (ppm) 8.01 (dd, J = 8.0, 2.0 Hz,2 H, HAr), 7.74 (m,1 H, HAr), 7.54 (m, 2 H, HAr), 7.21 

(m, 2 H, HAr), 5.02 (d, J = 3.0 Hz, 1 H, H2), 4.95 (d, J = 3.0 Hz, 1 H, H3), 3.68 (s, br, D2O 

exchangeable, 1 H), 2.49 (s, 3H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 193.4 (C=O), 146.5, 

141.5, 131.4, 131.2, 130.3, 130.1, 129.8, 129.4, 128.9, 76.2 (C2), 62.3 (C3), 22.3;  MS (EI, 

70eV): m/z (%) 272(25) [M
+.

, C16H13ClO2], 160(55), 141(72), 139(100), 111(62), 105(73). 

3-(4-Bromophenyl)-5-chloro-2-hydroxy-2,3-dihydro indan-1-one 

(4i): Light yellow solid; m.p = 210-212 
0
C; Yield = 95%; IR νmax (KBr, 

cm
-1

): 3426 (OH str), 2923 (aromatic C-H str), 1678 (C=O str), 1591 

(aromatic, C=C str), 1417, 1395, 1282, 1170, 1092, 757 (C-Cl, str); 
1
H-

NMR (CDCl3, 500 MHz): δ (ppm) 7.88 (m, 2 H, HAr), 7.55-7.49 (m, 3 H, HAr), 7.40 (m, 2 H, 

HAr), 5.31 (d, J = 2.5 Hz, 1 H, H2), 5.15, (d, J = 2.5 Hz, 1 H, H3), 4.05 (s, br, D2O 

exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ(ppm) 196.3 (C=O), 141.1, 136.8, 131.8, 

131.8, 129.9, 129.6, 129.6, 123.1 75.8 (C2), 62.8 (C3); MS (EI, 70eV): m/z (%) = 336(18) 

[M
+.

, C15H10ClBrO2], 139 (100), 111(53). 

3-(3, 4, 5-Trimethoxyphenyl)-5-chloro-2-hydroxy-2,3-dihydroindan-1-one (4j): Light 

yellow solid; m.p = 220-222 
0
C; Yield = 80%; IR νmax (KBr, cm

-1
): 

3440 (OH str), 2920 (aromatic C-H str), 1666 (C=O str), 1592 (aromatic, 

C=C str), 1406, 1336, 1233, 1125(C-O-C, str), 1091, 771 (C-Cl, str); 
1
H-

NMR (CDCl3, 500 MHz): δ (ppm) 7.84 (d, J = 6.5 Hz, 2 H, HAr), 7.51 

(d, J = 7.0 Hz, 1 H, HAr), 6.74 (s, 2 H, HAr), 5.35 (d, J = 2.5 Hz, 1 H, H2), 5.10 (d, J = 2.5 Hz, 1 

H, H3), 4.10 (s, br, D2O exchangeable, 1 H), 3.87 (s, OMe, 9H) ; 
13

C-NMR (CDCl3, 125 MHz) 
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δ (ppm): 191.2 (C=O), 153.6, 132.3, 131.6, 131.5, 129.8, 129.3, 128.9, 127.6, 107.4, 75.2(C2), 

61.0(C3), 60.8, 56.3; MS (EI, 70eV): m/z (%)  348(29) [M
+.

, C18H17ClO5], 181(69), 139 (100), 

111(59). 

3-Phenyl-5-bromo-2-hydroxy-2,3-dihydroindan-1-one (4k): Light 

yellow solid; m.p = 192-194 
0
C; Yield = 98%; IR νmax (KBr, cm

-1
): 3466 

(OH str), 2920 (aromatic C-H str), 1678 (C=O str), 1593 (aromatic, C=C 

str), 1398, 1281, 1095, 843, 713 (C-Br, str); 
1
H-NMR (CDCl3, 500 MHz): 

δ (ppm) 7.99 (dd, J = 8.5 Hz, 1.5 Hz, 1 H, HAr), 7.87 (dd, J = 8.5 Hz, 1.5 Hz, 2 H, HAr), 7.69 

(m, 3 H, HAr), 7.54 (m, 2 H, HAr), 5.48 (d, J = 2.5 Hz, 1 H, H2), 5.15 (d, J = 2.5 Hz, 1 H, H3), 

3.51 (s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 196.9 (C=O), 

137.7, 132.5, 132.4, 131.7, 130.6, 130.4, 129.6, 128.9, 128.6, 128.6, 127.9, 76.1 (C2), 63.7 

(C3); MS (EI, 70eV): m/z (%)  302(18) [M
+.

, C15H11BrO2], 185(69), 183(53), 91(100). 

3-(4-Chlorophenyl)-5-bromo-2-hydroxy-2,3-dihydro indan-1-one 

(4l): Light yellow solid; m.p = 205-207 
0
C; Yield = 95%; IR νmax (KBr, 

cm
-1

): 3422 (OH str), 3087 (aromatic C-H str), 1678 (C=O str), 1583 

(aromatic, C=C str), 1404, 1278, 1169, 1091, 830, 752 (C-Br, str); 
1
H-NMR (CDCl3, 500 

MHz) δ (ppm):  7.78 (m, 1 H, HAr), 7.70 (m, 2 H, HAr), 7.47 (m, 2 H, HAr), 7.35 (m, 2 H, HAr),  

5.30 (d, J = 2.0 Hz, 1 H, H2), 5.16 (d, J = 2.0 Hz, 1 H, H3), 3.62 (s, br, D2O exchangeable, 1 

H); 
13

C-NMR (CDCl3, 125 MHz) δ (ppm):  196.6 (C=O), 136.3, 134.9, 132.6, 132.3, 129.8, 

129.4, 128.8, 75.9 (C2), 62.8 (C3); MS (EI, 70eV): m/z (%)  336(30) [M
+.

, C15H10ClBrO2], 

185(79), 183 (100), 125(49). 

3-(4-Bromophenyl)-5-bromo-2-hydroxy-2,3-dihydro indan-1-one 

(4m): Light yellow solid; m.p = 198-200 
0
C; Yield = 96%; IR νmax (KBr, 

cm
-1

): 3441 (OH str), 2921, 2853 (aromatic C-H str), 1676 (C=O str), 

1588 (aromatic, C=C str), 1276, 1066, 820, 746 (C-Br, str);
1
H-NMR 

(CDCl3, 500MHz): δ (ppm) 7.79 (d, J = 8.5 Hz, 1 H, HAr), 7.71 (d, J = 7.0 Hz, 2 H, HAr), 7.50 

(d, J = 7.0 Hz, 2 H, HAr), 7.40 (m, 2 H, HAr), 5.30 (d, J = 4.5 Hz, 1 H, H2), 5.15 (d, J = 4.5 Hz, 

1 H, H3), 4.05 (s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 196.5 

(C=O), 136.8, 132.6, 132.2, 131.8, 130.0, 129.8, 129.6, 123.1, 75.9  (C2), 62.8 (C3); MS (EI, 

70eV): m/z (%)  380(32) [M
+.

, C15H10Br2O2], 185(75), 183 (100). 
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 3-p-Tolyl-5-bromo-2-hydroxy-2,3-dihydroindan-1-one (4n): Light 

yellow solid; m.p = 181-183 
0
C; Yield = 89%; IR νmax (KBr, cm

-1
): 3464 

(OH str), 2917, 2849 (aromatic C-H str), 1685 (C=O str), 1586 (aromatic, 

C=C str), 1279, 1071, 815, 757 (C-Br, str); 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.69 (m, 2 

H, HAr), 7.69 (m, 1 H, HAr), 7.32 (d, J = 8.0 Hz, 2 H, HAr), 7.10 (m, 2 H, HAr), 5.23 (d, J = 2.5 

Hz, 1 H, H2), 5.10 (d, J = 2.5 Hz, 1 H, H3), 3.98 (s, br, D2O exchangeable, 1 H), 2.26 (s, 3 H); 

13
C-NMR (CDCl3, 125 MHz): δ (ppm) 195.99 (C=O), 137.84, 133.76, 131.41, 129.00, 128.24, 

126.79, 75.23 (C2), 62.68 (C3), 20.12; MS (EI, 70eV): m/z (%)  316(14) [M
+.

, C16H13BrO2], 

219(59), 185 (100), 183(82). 

2-Hydroxy-5,6-dimethyl-3-phenyl-2,3-dihydroinden-1-one (4o): Light 

yellow solid; m.p = 112-114 
0
C; Yield = 92%; IR νmax (KBr, cm

-1
): 3420 

(OH str), 2959, 2869 (aromatic C-H str), 1688 (C=O str), 1583 (aromatic, 

C=C str), 1253, 1063, 835; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.71 

(m, 1 H, HAr), 7.63 (dd, J = 7.0, 1.5 Hz, 1 H, HAr), 7.54 (d, J = 7.5 Hz, 2 H, HAr), 7.36 (t, J = 

7.0 Hz, 1 H, HAr), 7.32 (d, J = 7.0 Hz, 1 H, HAr), 7.27 (d, J = 8.0 Hz, 1 H, HAr), 5.35 (d, J = 2.5 

Hz, 1 H, H2), 5.25 (d, J = 2.5 Hz, 1 H, H3), 3.95 (s, br, D2O exchangeable, 1 H), 2.34 (s, 3 H), 

2.33 (s, 3 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.4 (C=O), 144.2, 138.4, 137.8, 131.3, 

130.3, 129.8, 128.7, 128.5, 127.9, 126.2, 75.8 (C2), 64.1 (C3), 20.2, 19.8; MS (EI, 70eV): m/z 

(%) = 252(07) [M
+.

, C17H16O2], 234(15),105 (25), 88(100). 

3-(4-Chlorophenyl)-2-hydroxy-5,6-dimethyl-2,3-dihydro inden-1-one 

(4p): Light yellow solid; m.p =116-118 
0
C; Yield = 93%; IR νmax (KBr, 

cm
-1

): 3412 (OH str), 2952, 2847 (aromatic C-H str), 1675 (C=O str), 

1609 (aromatic, C=C str), 1225, 1091, 842, 762; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.70 

(m, 1 H, HAr), 7.62 (d, J = 7.5 Hz, 1 H, HAr), 7.49 (m, 2 H, HAr), 7.34 (m, 1 H, HAr),7.29 (d, J = 

7.5 Hz, 1 H, HAr), 5.32 (d, J = 2.5 Hz, 1 H, H2), 5.21 (d, J = 2.5 Hz, 1 H, H3), 4.12 (s, br, D2O 

exchangeable, 1 H), 2.36(s, 3H), 2.35 (s, 3H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.1 

(C=O), 144.4, 137.9, 136.9, 134.6, 131.1, 130.3, 129.7, 129.4, 128.7, 126.1, 75.6 (C2), 63.2 

(C3), 20.2, 19.9; MS (EI, 70eV): m/z (%) = 286(10) [M
+.

, C17H15ClO2], 268 (20), 122 (100). 

2-Hydroxy-5,6-dimethyl-3-(3-nitrophenyl)-2,3-dihydro inden-1-one (4r): Light yellow 

solid; m.p = 142-144 
0
C; Yield = 79%; IR νmax (KBr, cm

-1
): 3381 (OH str), 2943 (aromatic C-

H str), 1674 (C=O str), 1620 (aromatic, C=C str), 1504 (N─O str), 1371, 1353 (N─O bending), 
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1241, 1061, 916, 832, 783, 675; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 8.14 (m, 1 H, HAr), 

7.94 (m, 1 H, HAr), 7.59 (m, 2 H, HAr), 7.44 (d, J = 8.0 Hz, 1 H, HAr), 

7.29 (d, J = 8.0 Hz, 1 H, HAr), 5.54 (d, J = 4.0 Hz, 1 H, H2), 5.34 (d, J = 

4.0 Hz, 1 H, H3), 3.82 (s, br, D2O exchangeable, 1 H), 2.35(s, 3 H), 2.30 

(s, 3 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 196.9(C=O), 147.7, 145.1, 138.1, 137.7, 

134.3, 131.7, 130.5, 129.6, 129.1, 126.4, 123.7, 123.2, 76.5 (C2), 62.0 (C3), 20.2, 19.8; MS 

(EI, 70eV): m/z (%) = 297(14) [M
+.

, C17H15NO4], 280 (10), 133 (100). 

2-Hydroxy-3-phenyl-2,3-dihydrocyclopenta[b]naphth- alen-1-one (4s): 

Light yellow solid; m.p = 114-116 
0
C; Yield = 92%; IR νmax (KBr, cm

-1
): 

3395 (OH str), 2951, 2848 (aromatic C-H str), 1677 (C=O str), 1580 

(aromatic, C=C str), 1247, 1092, 842; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 8.41 (m, 1H, 

HAr), 7.95 (m, 2 H, HAr), 7.85 (m, 1 H, HAr), 7. 63 (t, J = 7.0 Hz, 1 H, HAr), 7.58 (m, 3H, HAr), 

7.38-7.30 (m, 3 H, HAr), 5.53 (d, J = 2.0 Hz, 1H, H2), 5.31 (d, J = 2.0 Hz, 1H, H3), 4.21 (s, br, 

D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.7 (C=O), 138.2, 

136.0,132.4, 130.9, 130.5, 129.7, 129.3, 129.2, 128.8, 128.6, 128.0, 127.9, 127.3, 123.9, 76.2 

(C2), 64.1 (C3); MS (EI, 70eV): m/z (%) = 274 (12) [M
+.

, C19H14O2], 256 (15), 110 (100). 

 3-(4-Chlorophenyl)-2-hydroxy-2,3-dihydrocyclopenta[b] naphthalen-

1-one (4t):     Light yellow solid; m.p = 108-110 
0
C; Yield = 91%; IR νmax 

(KBr, cm
-1

): 3415 (OH str), 2931, 2873 (aromatic C-H str), 1681 (C=O 

str), 1597 (aromatic, C=C str), 1263, 1081, 860, 737; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

8.41 (m, 1H, HAr), 7.97 (t, J = 8.0 Hz, 2 H, HAr), 7.92 (t, J = 8.0 Hz, 2 H, HAr), 7.62 (dd, J = 

2.0, 7.5 Hz, 2 H, HAr), 7.50 (d, J = 7.0 Hz, 2 H, HAr), 7.33 (d, J = 7.5 Hz, 1H, HAr), 5. 49 (d, J = 

2.0 Hz, 1H, H2), 5.27 (d, J = 2.0 Hz, 1H, H3), 4.15 (s, br, D2O exchangeable, 1 H); 
13

C-NMR 

(CDCl3, 125 MHz): δ (ppm) 197.4 (C=O), 136.7, 136.0, 134.8, 132.4, 130.8, 130.5, 129.7, 

129.4, 129.3, 129.3, 128.8, 128.0, 127.4, 123.8, 75.9 (C2), 63.1 (C3); MS (EI, 70eV): m/z (%) 

308 (11) [M
+.

, C19H13ClO2], 290 (23), 144 (100), 65 (45). 

3-(4-Bromophenyl)-2-hydroxy-2,3-dihydrocyclopenta[b] 

naphthalen-1-one (4u): Light yellow solid; m.p = 112-114 
0
C; Yield = 

92%; IR νmax (KBr, cm
-1

): 3409 (OH str), 2925, 2870 (aromatic C-H 

str), 1685 (C=O str), 1590 (aromatic, C=C str), 1258, 1080, 865, 730; 

1
H-NMR (CDCl3, 500 MHz): δ (ppm) 8.42 (m, 1 H, HAr), 7.98 (t, J = 8.0 Hz, 2 H, HAr), 7.93 
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(t, J = 8.0 Hz, 2 H, HAr), 7.65 (dd, J = 2.0, 7.5 Hz, 2 H, HAr), 7.50 (d, J = 7.0 Hz, 2 H, HAr), 

7.43 (d, J = 7.5 Hz, 1 H, HAr), 5. 50 (d, J = 2.0 Hz, 1 H, H2), 5.27 (d, J = 2.0 Hz, 1 H, H3), 4.20 

(s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.3 (C=O), 137.2, 

136.0, 132.4, 131.7, 130.8, 130.5, 129.7, 129.7, 129.3, 129.3, 128.0, 127.4, 123.7, 123.0, 75.9 

(C2), 63.2 (C3); MS (EI, 70eV): m/z (%) = 352 (09), 354 (09) [M
+.

, C19H13BrO2], 155 (100). 

2-Hydroxy-3-p-tolyl-2,3-dihydrocyclopenta[b]naphth-alen-1-one 

(4v): Light yellow solid; m.p = 125-127 
0
C; Yield = 86%; IR νmax (KBr, 

cm
-1

): 3429 (OH str), 2951, 2880 (aromatic C-H str), 1692 (C=O str), 

1607 (aromatic, C=C str), 1271, 1107, 843, 729; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 8.41 

(m, 1 H, HAr), 7.98-7.87 (m, 3 H, HAr), 7.63 (m, 2 H, HAr), 7.45 (d, J = 8.0 Hz, 2 H, HAr), 7.17 

(d, J = 8.0 Hz, 2 H, HAr), 5. 52 (d, J = 2.0 Hz, 1 H, H2), 5.29 (d, J = 2.0 Hz, 1 H, H3), 4.09 (s, 

br, D2O exchangeable, 1 H), 2.32 (s, 3H); 
13

C-NMR (CDCl3, 125 MHz): δ (ppm) 197.8 

(C=O), 138.8, 136.0, 135.3, 132.4, 130.9, 130.5, 129.7, 129.3, 129.2,  128.6, 128.3, 127.9, 

127.3, 123.9, 76.3 (C2), 64.0 (C3), 21.2; MS (EI, 70eV): m/z (%) 288 (08) [M
+.

, C20H16O2], 

270 (28), 133 (100). 

2-Hydroxy-3-(3-nitrophenyl)-2,3-dihydrocyclopenta[b] naphthalen-1-

one (4w): Light yellow solid; m.p =138-140 
0
C; Yield = 76%; IR νmax 

(KBr, cm
-1

): 3382 (OH str), 2992, 2886 (aromatic C-H str), 1695 (C=O 

str), 1620 (aromatic, C=C str), 1262, 1095, 860, 743; 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

8.54 (m, 1 H, HAr), 8.14 (m, 1 H, HAr), 7.97-7.87 (m, 3 H, HAr), 7.70 (m, 1 H, HAr), 7.62 (m, 1 

H, HAr), 7.59 (m, 1 H, HAr), 7.43 (m, 1 H, HAr), 7.25 (m, 1 H, HAr), 5.72 (d, J = 2.0 Hz, 1 H, 

H2), 5.40 (d, J = 2.0 Hz, 1 H, H3), 3.84 (s, br, D2O exchangeable, 1 H); 
13

C-NMR (CDCl3, 

125 MHz): δ (ppm) 197.2 (C=O), 137.8, 136.2, 134.2, 132.3, 131.2, 130.9, 129.8, 129.7, 

129.5, 129.2, 128.0, 127.6, 123.8, 123.6, 123.2, 76.6 (C2), 61.9 (C3); MS (EI, 70eV): m/z (%) 

319 (09) [M
+.

, C19H13NO4], 302 (12), 189 (20), 155 (100), 127 (50). 

trans-(2R,3S)-3-(4-Chlorophenyl)oxiran-2-yl)(phenyl)methanone (5a): 

1
HNMR (CDCl3, 500 MHz): δ ppm  8.00 (dd, J1=7.5Hz, J2=1.5Hz, Ar-H, 

2H), 7.63-7.48 (m, Ar-H, 5H), 7.40-7.30 (m, Ar-H, 4H), 4.25 (d, J=2.0 Hz, -

CO-CH- 1H), 4.06 (d, J= 2.0 Hz, -CH-Ar- 1H).
  
The absolute configuration was determined by 

comparison with the optical rotation reported in the   [α]D
25

 = -171.9 (c 0.53, CHCl3) and chiral 

HPLC using Chiralcel OD-H columns and compared with the literature data. 
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trans-(2R,3S)-3-(4-Bromophenyl)oxiran-2-yl)(phenyl)methanone (5b): 

1
HNMR  (CDCl3, 500MHz ): δ ppm 8.02-7.98 (m, Ar-H, 2H), 7.63-7.59 

(m, Ar-H, 1H), 7.56 7.48 (m, Ar-H, 4H), 7.26-7.24 (m, Ar-H, 1H), 4.25 (d, 

J=2.0 Hz, -CH-Ar, 1H), 4.05 (d, J= 1.5 Hz,-CO-CH-, 1H). The absolute configuration was 

determined by comparison with the optical rotation reported in the [α]D
25

 = -118.4 (c 0.27, 

CHCl3) [lit. for (2R,3S)-epoxy-3-phenyl-1-(4-bromophenyl)-propan-1-one: [α]D
25

 = -162.1 (c 

0.46, CHCl3) for 74% ee and chiral HPLC using Chiralcel OD-H column and compared with 

the literature data. 

trans-(2R,3S)-Naphthalen-2-yl(3-phenyloxiran-2-yl)met -hanone (5c): 

1
H-NMR (CDCl3, 500 MHz): δ (ppm) 8.54 (s, 1 H, HAr), 8.03 (dd, J = 8.5, 

1.5 Hz, HAr), 7.93-7.85 (m, 3 H, HAr), 7.61 (t, J = 8.0 Hz, 1H, HAr), 7.54 (t, 

J = 8.0 Hz, 1H, HAr), 7.43-7.38 (m, 5 H, HAr), 4.43 (d, J = 1.5 Hz,1 H, C(O)CH), 4.14 (d, J = 

1.5 Hz, 1 H, Ar-CH(-O-)CH). The absolute configuration was determined by comparison with 

the optical rotation reported in the [α]D
25 

= -89.7 (c 1.0, CHCl3) [lit.
28

 for (2R,3S)-epoxy-3-

phenyl-1-(2-naphthyl)-propan-1-one: [α]D
25 

= -90.1 (c 1.0, CH2Cl2) for 64% ee] and chiral 

HPLC using Chiralpak AD-H column and compared with the literature data. 

trans-(2R,3S)-(4-Bromophenyl)(3-(4-chlorophenyl)oxi -ran-2-

yl)methanone (5d): 
1
H-NMR (CDCl3, 500 MHz): δ (ppm)  7.98 (dd, J 

= 7.0, 2.0 Hz, 2 H, HAr), 7.53 (m, 4 H, HAr), 7.28 (dd, J = 7.0, 2.0 Hz, 2 

H, HAr), 4.22 (d, J = 2.0 Hz, 1 H, C(O)CH), 4.08 [d, J = 2.0 Hz, 1 H, Ar-

CH(-O-)CH]. The absolute configuration was determined by comparison with the optical 

rotation reported in the [α]D
25 

= -108.5 (c 0.31, CHCl3) and chiral HPLC using Chiralpak AD-H 

column. 

trans-(2R,3S)-(-3-(4-Chlorophenyl)oxiran-2-yl)(3,4-di-

methylphenyl)methanone (5e):  
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 

7.85 (m, 1H, HAr), 7.72 (dd, J = 7.0, 2.0 Hz, 2 H, HAr), 7.61(m, 2 H, HAr), 

7.30 (dd, J = 7.0, 2.0 Hz, 2 H, HAr), 4.27 [d, J = 2.0 Hz, 1 H, C(O)CH], 

4.05 [d, J = 2.0 Hz, 1 H, Ar-CH(-O-)CH], 2.36(s, 3H), 2.35 (s, 3H). The absolute configuration 

was determined by comparison with the optical rotation reported in the [α]D
25 

= -134.3 (c 0.28, 

CHCl3) and chiral HPLC using Chiralpak AD-H column. 



_________________Chapter 2: Deprotection  and sequel cyclization to indanone by novel catalyst 

78 

 

trans-(2R,3S)-3-(4-Chlorophenyl)-2-hydroxy-2,3-dihyd-roindan-1-one 

(6a): 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.92 (d, J = 7.5 Hz, 2 H, HAr), 

7.69 (d, J = 7.0 Hz, 1 H, HAr), 7.56 (t, J = 7.0 Hz, 2 H, HAr), 7.49 (d, J=7.5 

Hz, 2 H, HAr), 7.35 (d, J = 7.0 Hz, 1 H, HAr), 5.36 (d, J = 2.0 Hz, 1 H, H2), 5.21 (d, J = 2.0 Hz, 

1 H, H3), 4.13 (s, br, D2O exchangeable, 1 H); The absolute configuration was determined by 

comparison with the optical rotation reported in the [α]D
25 

= -16.4 (c 1.0, CHCl3) and chiral 

HPLC using Chiralcel OD-H column. 

trans-(2R,3S)-3-(4-Bromophenyl)-2-hydroxy-2,3-dihyd-roindan-1-one 

(6b): 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.91 (d, J = 7.5 Hz, 2 H, HAr), 

7.57 (t, J = 7.0 Hz, 1 H, HAr), 7.50 (d, J = 7.0 Hz, 2 H, HAr), 7.43 (d, J = 7.0, 

2.0 Hz, 2 H, HAr), 7.24 (m, 1 H, HAr), 5.35 (d, J = 2.0 Hz, 1 H, H2), 5.19 (d, J = 2.0 Hz, 1 H, 

H3), 4.13 (s, br, D2O exchangeable, 1 H); The absolute configuration was determined by 

comparison with the optical rotation reported in the [α]D
25 

= -8.8 (c 1.2, CHCl3) and chiral 

HPLC using Chiralcel OD-H column. 

trans-(2R,3S)-2-Hydroxy-3-phenyl-2,3-dihydrocyclo 

penta[b]naphthalen-1-one (6c): 
1
H-NMR (CDCl3, 500 MHz): δ(ppm) 8.45 

(m, 1 H, HAr), 7.99 (m, 2 H, HAr), 7.85 (m, 1 H, HAr), 7. 65 (t, J = 7.0 Hz, 1 

H, HAr), 7.60 (m, 3 H, HAr), 7.39-7.34 (m, 3 H, HAr), 5.57 (d, J = 2.0 Hz, 1 H, H2), 5.32 (d, J = 

2.0 Hz, 1 H, H3), 4.19 (s, br, D2O Exchange-able, 1H); The absolute configuration was 

determined by comparison with the optical rotation reported in the [α]D
25 

= -3.5 (c 0.12, CHCl3) 

and chiral HPLC using Chiralcel AD-H column. 

trans-(2R,3S)-3-(4-Chlorophenyl)-5-bromo-2-hydroxy-2,3-

dihydroindan-1-one (6d): 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.89 (m, 

2 H, HAr), 7.56-7.50 (m, 3 H, HAr), 7.41 (m, 2 H, HAr), 5.31 (d, J = 2.0 Hz, 1 

H, H2), 5.16, (d, J = 2.0 Hz, 1 H, H3), 4.04 (s, br, D2O exchangeable, 1 H). The absolute 

configuration was determined by comparison with the optical rotation reported in the [α]D
25 

= -

10.1 (c 0.26, CHCl3) &chiral HPLC using Chiralcel AD-H column. 

trans-(2R,3S)-3-(4-Chlorophenyl)-2-hydroxy-5,6-dimet-hyl-2,3-

dihydroinden-1-one (6e): 
1
H-NMR (CDCl3, 500 MHz): δ (ppm) 7.71 

(m, 1 H, HAr), 7.61 (d, J = 7.5 Hz, 1 H, HAr), 7.50 (m, 2 H, HAr), 7.33 (m, 1 

H, HAr),7.28 (d, J = 7.5 Hz, 1 H, HAr), 5.25 (d, J = 2.0 Hz, 1 H, H2), 5.14 (d, J = 2.0 Hz, 1 H, 
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H3), 4.10 (s, br, D2O exchangeable, 1 H), 2.36(s, 3H), 2.35 (s, 3H); The absolute configuration 

was determined by comparison with the optical rotation reported in the [α]D
25 

= -9.5 (c 0.57, 

CHCl3) and chiral HPLC using Chiralcel AD-H column. 
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Part A: SnCl4 - Zn: A novel reductive system for deoxygenative coupling of aliphatic, 

aromatic, chalcone epoxide and indanone carbonyl compounds to olefins 

4.1. INTRODUCTION 

In the carbon- carbon bonds formation, the McMurry reaction plays an important role to 

obtain homo and cross-coupled alkenes from aliphatic and aromatic aldehydes and ketones in 

the presence of in situ generated low valent titanium (LVT) reagents at reflux temperature.[1] 

However, the reaction gave a moderate yield due to homo and cross-coupled products 

formation. To enhance the yield of cross-coupled products under mild reaction conditions, 

different reagents are explored for the McMurry reaction. For example, magnesium-mercury 

couple, NbCl5/NaAlH4,[2] zinc-copper couple,[3] LiAlH4,[4] dicyclopentadienyl  

titaniumdichloride,[5] trimethyl aluminium.[6] Although, these procedures have drawbacks 

like costly reagents, low yield, longer reaction time and/or less fuctional group tolerance. In 

recent years, tin tetrahalides (SnX4, X=Cl, Br) have been widely used as Lewis acids in 

numerous organic syntheses.[7] In many cases, these metal halides have been reported as 

efficient catalysts and easy to handle as compare to other metal halides such as TiX4 AlX3, 

ZnX2 and ZrX4.[8] 

Generally, metal alloy is used as reductive deoxygenating agent in the organic synthesis for 

coupling reactions. For example, zinc alloy is prepared by mixing of zinc and SnCl4 in 2:1 

ratio following the Rieck method.[9]
 
Where metals like Zn involves reduction of an oxidized 

metal species by enhancing the reactivity of zinc at the surface of the alloy. The reductive 

deoxygenating reagents may also be generated in situ by reaction of two equivalent of zinc dust 

with one equivalent metal chloride under refluxing temperature in ether or hydrocarbon 

solvents.
  
In the case of

 
McMurry reaction reagent Ti (IV) reduced to Ti (II) with reducing agent 

Zn in THF, which generate a complex TiCl4 -Zn-(THF)2 in situ.[10, 11] which is responsible 

for the coupling of aldehyde or ketone to pinacolate, followed by removal of TiO2 gave 

olefins.[12]
 
 Likewise, it might be taking place in SnCl4-Zn and THF to form a complex SnCl4-

Zn-(THF)2 for the coupling of aldehydes or ketones. Initially Sn(IV) converted into Sn(II) by 

reduction of tin halide with Zn, Sn(II) converted carbonyl oxygen to pinacolate, followed by 

removal of SnO2 gave olefins. 

Therefore, in continuation of our interest to develop new methods in the organic synthesis 

and the acid catalysis reactions.[13] Herein, we report a novel and efficient reagent, SnCl4-Zn 

http://en.wikipedia.org/wiki/Copper(I)_chloride
http://en.wikipedia.org/wiki/Ether
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system for the McMurry cross-coupling reaction in the conversion of aliphatic and aromatic 

ketones, aldehydes, chalcone epoxides and indanones into olefins and also useful in the 

synthesis of molecules like tamoxifen analogs in good yield within 4-4.5 h at reflux 

temperature. 

4.2. OBJECTIVE 

The McMurry reaction plays an important role in the carbon- carbon bonds formation, in 

which aliphatic and aromatic aldehydes and ketones undergo eliminative deoxygenation to 

gave homo and cross-coupled alkenes by using low valent titanium (LVT) reagents at reflux 

temperature. Several reagents explored for the McMurry reaction to enhance the cross-coupled 

products formation over the homo-coupled. Therefore, in continuation of our interest to 

develop new methods in the organic synthesis and the acid catalysis reactions. Hence, our aim 

is to find a novel and efficient reagent for McMurry reaction, we observed that SnCl4-Zn 

system for the McMurry cross-coupling reaction in the conversion of aliphatic and aromatic 

ketones, aldehydes, chalcone epoxides and indanones into olefins and also useful in the 

synthesis of molecules like tamoxifen analogs in good yield within 4-4.5 h at reflux 

temperature. 

4.3. RESULTS AND DISCUSSION 

4.3.1. Optimized reaction condition 

Initially, we optimized the cross-coupling reaction conditions in the reaction of chalcone 

epoxide 1 and propiophenone 2 used in 1:1.5 ratio and varying the equivalents of SnCl4-Zn 

(prepared in 1:2 ratio). We obtained the cross-coupled product in 50% and 55% yields in 4h 

using 1 and 2 equivalent of SnCl4-Zn respectively (Table1, entries 1 & 2). When SnCl4-Zn was 

used in 3 equivalents, the yield was serendipitously improved up to 75% in 4h (Table1, entry 

3). Further, increase in SnCl4-Zn equivalent decreased the yields of the cross-coupled product 

and increased the homo-coupled products (Table 1, entries 4 & 5). 

We optimized the reaction time, by using optimized condition of table 1, we checked the 

progress of reaction from 1h-3h to get only 20 to 60% of conversion at reflux temperature 

(Table 2, entries 1-3).Further increasing time from 3h to 4h  gave a very good yield up to 75% 

(Table 2, entry 4). And further increase in time from 4 to 5h decreased in product yield to 35% 

(Table 2, entry 5). After separating the homo-coupled products, we also determined the 

formation of E and Z isomers in the cross-coupled product where E-isomer and Z- isomer were 
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found as major and minor products respectively. Due to the closed Rf -values of Z- isomers 

with byproducts, we were unable to separate the Z- isomers by the column chromatography 

However, the yields of Z- isomers were confirmed by GC analysis which is ranging between 2-

5%. 

Table 1. Optimized condition for cross-coupling reaction by using different equivalent of 

SnCl4-Zn 

 

Entry SnCl4 –Zn Time (h) Yield (%)
a
 

1 SnCl4-Zn (1 equiv.) 4 50 

2 SnCl4-Zn (2 equiv.) 4 55 

3 SnCl4-Zn (3 equiv.) 4 75 

4 SnCl4-Zn (3.5 equiv.) 4 60 

5 SnCl4-Zn (4 equiv.) 4 35 

a
Isolated yield of cross-product 

Table 2. Optimized condition for cross-coupling reaction by varying reaction time 

 

Entry SnCl4 –Zn Time (h) Yield (%)
a
 

1 SnCl4-Zn (3equiv.) 1 20 

2 SnCl4-Zn (3 equiv.) 2 35 

3 SnCl4-Zn (3 equiv.) 3 60 

4 SnCl4-Zn (3 equiv.) 4 75 

5 SnCl4-Zn (3 equiv.) 5 65 

                                                       a
Isolated yield of cross-product 

Under optimal reaction conditions, the efficiency of different McMurry reagents was 

compared (Table 3). Aluminium and Indium complexes gave poor products yield (20%) at 
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reflux in 14 h (Table 3, entries 1, 2). However, the titanium complex (TiCl4-Zn-THF) gave the 

yield (40%) at reflux temperature in 6 h (Table 3, entry 3), while the tin complex (SnCl4-Zn-

THF) gave the optimal yield (75%) at reflux temperature within 4 h (Table 3, entry 4). Other 

reagents gave poor yield (traces to 20-25 %) in acetonitrile solvent (Table 3, entries 5, 6, 7 & 

8). 

Table 3. Comparison of McMurry reagents and solvents in McMurry cross- coupling of 

chalcone epoxide and propiophenone 

 

Entry McMurry reagents 

 

Time (h) 

 

Yield (%)
a
 

1
b
 AlCl3-Zn (3 equiv.) 14 20 

2
b
 InCl3-Zn (3 equiv.) 14 20 

3
b
 TiCl4-Zn (3 equiv.) 6 60 

4
b
 SnCl4-Zn (3 equiv.) 4 75 

5
C
 AlCl3-Zn (3 equiv.) 14 trace 

6
C
 InCl3-Zn (3 equiv.) 14 trace 

7
C
 TiCl4-Zn (3 equiv.) 14 20 

8
C
 SnCl4-Zn (3 equiv.) 14 25 

a
 Isolated yield of cross-product at 64-66 

0
C. 

b
reaction performed in THF 

c
reaction performed in Acetonitrile  

4.3.2. Deoxygenative cross-coupling of aromatic ketone and aldehyde with acetone 

In the case of aromatic aldehydes or aromatic ketones 7a-7c with acetone (1:1.5 ratio) and 

SnCl4- Zn (1:2 ratio) gave the corresponding cross-coupled olefin 2ab-2ad in excellent yield 

80-85% along with minor homo-coupled product 3aa-3cc and 4aa in yield 8-10% at reflux 

temperature within 1 h (Scheme 1). The reaction of aromatic aldehydes or aromatic ketones 8a-

8g with SnCl4- Zn (1:2 ratio) gave the homo-coupled olefins 8a-8g in excellent yield 70-86% at 

reflux temperature within 1 hour. Products 9a-9g was characterized on the basis of their 

spectral data IR, 
1
H NMR and melting point and comparing it with those of authentic samples. 
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Scheme 1. Under optimized conditions, SnCl4-Zn mediated deoxygenative cross-coupling of 

aromatic ketone and aldehyde with acetone 

 

Entry R
1
 R

2
 Time (h) Yield (%)

a
 

1 PH H 1 85(2ab) 

2 PH CH3 1 82(2ac) 

3 PH PH 1 80(2ad) 

                                                                                 a
Isolated yield. 

Scheme 2: Deoxygenation of simple carbonyl compound to olefin by using SnCl4-Zn 

 

Entry Product R R’ Yield(%)
a
 

1 9a Me Me 85 

2 9b Ph Ph 82 

3 9c Ph H 85 

4 9d 4-FC6H4 H 83 

5 9e 4-Cl C6H4 H 80 

6 9f 4-Me C6H4 H 70 

7 9g 4-OMe C6H4 H 86 

                                                       a
Isolated product yield. 

Further, the reaction of aromatic aldehyde or aromatic ketone 10a-10c with propiophenone 

10 (1:1.5 ratio) and SnCl4- Zn (1:2 ratio) gave the cross-coupled olefins 11ab, 11ac, 11ad in 80, 

77, 70 % yields  respectively along with homo-coupled products 9aa-9cc and 10aa in 5-8 % 

yields at reflux temperature in 2 h (Scheme 3). 

Scheme 3. Under optimized conditions, SnCl4-Zn mediated deoxygenative cross-coupling of 

aromatic ketone with propiophenone 
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Entry R
1
 R

2
 Time (h) Yield (%)

a
 

1 PH H 2 80(11ab) 

2 PH CH3 2 77(11ac) 

3 PH PH 2 70(11ad) 

                                                               a
Isolated product yield. 

4.3.3. Deoxygenative cross-coupling of chalcone epoxides with propiophenone 

The tin reagent (SnCl4-Zn) was further applied as an alternate reagent in the McMurry 

reaction for the synthesis of various classes of carbonyl compounds. For example, the cross-

coupled products 12ab-12ak was obtained in good yield (55-75%) from different chalcone 

epoxides 11a-11j and propiophenone 11 under optimized reaction conditions (table 4). Along 

with major cross-coupled product some minor homo-coupled products 13aa-13jj and 14bb 

were obtained in 8-10% yields. These homo-coupled products were isolated and the yields of 

product were written as isolated yields. The products were characterized on the basis of their 

spectral data. In 
1
H NMR spectra, the characteristic doublet signal appeared for 12ab-12ak in 

the range of δ 3.85-3.20 ppm, whereas for the compounds 11a-11j was obtained in the range of 

δ 4.30-4.20 ppm, the characteristic quartet and triplet signal of –CH2CH3 appeared in between δ 

0.80-2.5 ppm, indicates the cross-coupling reactions (Experimental section). 

Table 4. SnCl4-Zn mediated deoxygenative cross-coupling of chalcone epoxides with 

propiophenone 
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Entry 11a-11j 

 

11 

 

Cross-coupled 

products 

(12ab-12ak) 

Homo-coupled 

products 

Time 

(h) 

Yield 

(%)
a
 

13aa-13jj 14bb 

 

1 
 

 

 

 

8 

 

10 

 

4 

 

66 

 

2 

 
 

 

 

9 

 

8 

 

4 

 

60 

 

3 
  

 

 

10 

 

9 

 

4 

 

64 

 

4 

 
 

 

 

8 

 

8 

 

 

4.5 

 

58 

 

5 

 
 

 

 

10 

 

10 

 

4.5 

 

55 

 

6 

 
 

 

 

9 

 

8 

 

4 

 

75 
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7 

 
 

 

 

10 

 

9 

 

4 

 

72 

 

8 

 
 

 

 

9 

 

9 

 

4 

 

70 

 

9 

 
 

 

 

10 

 

10 

 

4.5 

 

68 

 

10 
 

 

 

 

10 

 

9 

 

4.5 

 

67 

a
 Isolated yield of cross-product at 64-66 

0
C. 

4.3.4. Synthesis of Tamoxifen analogs 

The tin reagent (SnCl4-Zn) was also successfully used in the synthesis of tamoxifen and 

tamoxifen analogs (Table 5). Products 12al-12ao were synthesized in good yield 58- 72% at 

reflux temperature in 4-5 h using SnCl4: Zn (1:2 equiv.) and the products were confirmed on 

the basis of their spectral data (supporting information). For example, product 12al, the 
1
H 

NMR spectra showed the characteristic double doublet peaks at δ 4.70- 4.60 ppm for CH-CH- 

which shifted from δ 5.30- 5.23 ppm in the indanone molecule and the characteristic quartet 

and triplet peaks of –CH2CH3 protons appeared at δ 0.90- 2.30 ppm, indicated the cross-

coupling product.[14] The structures of all other compounds were further confirmed by IR and 

HRMS. 

Table 5. Synthesis of Tamoxifen analogs (E isomers) of indanone using novel SnCl4-Zn 

reagent 
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Entry Indanone/Ketone Propiophenone 

derivatives 

Tamoxifen 

analog 

(12al-12ao) 

Time 

(h) 

Yield 

(%)
a
 

 

 

1 
 

 

 

 

4 

 

72 

 

 

2 
  

 

 

 

4 

 

 

65 

 

 

3 
 

 

 

 

4 

 

71 

 

 

4 

  

 

 

 

4 

 

 

58 

                a
 Isolated yield of cross-product at 64-66 

0
C. 
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4.3.5. Determination of E and Z-Tamoxifen analogs  

Compounds 4ab-4ac and 5ab-5ac were synthesized as a mixture of E and Z isomers which 

can be separated by using column chromatography and by comparing their spectral values in 

the literature. We observed that the E isomer is the major isomer with 52-55% yields and Z 

isomer is the minor product with 8-10% yields in 5 h, using SnCl4: Zn (1:2 equiv.) in indanone 

and propiophenone (1: 1.5 equiv.). The 
1
HNMR chemical shift (δ) 1.0-1.3 ppm for -CH3 and 

2.0-2.3 ppm for -CH2  indicated the E isomer of products 13ab-13ac and δ 0.6-0.7 ppm for -

CH3 and 1.6-1.9 ppm for -CH2 gave the Z isomer for products 14ab-14ac. Similarly, 
13

CNMR 

chemical shift (δ)13-15 ppm for -CH3  and 27-28 ppm for -CH2 indicated the E isomer for 

products 13ab-13ac and δ 10-12 ppm for -CH3 and 23-25 ppm for -CH2 gave the Z isomer in 

14ab-14ac.[15]
 
 Similarly, products 12ab-12ao was characterized as E-isomer. The NMR 

chemical shift (δ) values of –CH2CH3 in products 12ab-12ao is matches with the 13ab-13ac 

(E-isomer) and not with 14ab-14ac (Z-isomer). We were unable to isolate the Z-isomer due to 

close Rf values with other byproducts. However, the yields of Z-isomers were confirmed by GC 

analysis which is ranging between 2-5%. 

Table  6. Determination of E and Z-Tamoxifen analogs by using novel SnCl4-Zn reagent 

 

Entry Indanone E-Analog
a
 Z-Analog

a
 Time (h) 

 

 

1 

   

 

 

5 
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2 

 

 

 

 

 

5 

            a
Isolated yield of E and Z isomers. 

4.4. CONCLUSION 

In conclusion, we have reported a novel, efficient and economical tin-reagent for the 

reductive cross-coupling reaction of carbonyl compounds, known as McMurry coupling with 

aliphatic and aromatic ketones, aldehydes, chalcone epoxides and indanones in high yield with 

minor homo-coupling products. To our knowledge, no studies exploiting this reagent for such 

conversion have previously been reported. 

4.5. EXPERIMENTAL DETAILS 

Materials and methods. All the required chemicals were purchased from Merck and Aldrich 

Chemical Company. Pre-coated aluminium sheets (silica gel 60 F254, Merck) were used for 

thin-layer chromatography (TLC) and spots were visualized under UV light.IR spectra were 

recorded with KBr on Thermo Nicolet FT-IR spectrophotometer. 
1
H NMR and 

13
C NMR 

spectra were recorded respectively on Bruker Spectrospin DPX 500 MHz and Bruker 

Spectrospin DPX 125 MHz spectrometer using CDCl3 as a solvent and trimethylsilane (TMS) 

as an internal standard. Splitting patterns are designated as follows; s, singlet; d, doublet; m, 

multiplet. Chemical shift values are given in ppm. 

4.5.1. General procedure for the synthesis compounds 2ab-2ad/9a-9g/11ab-11ad/12ab-

12ao/13ab-13ac & 14ab-14ac:  

Under N2 atmosphere, a three neck flask equipped with magnetic stirrer was charged with Zn-

powder (1.5gm, 12 mmol) and 50 mL THF solvent. The mixture was cooled at 0 
0
C and SnCl4 

(2.3mL, 6 mmol) was added drop wise at 0 
0
C. The suspension was warmed to room 

temperature and stirred for 15 min and then heated at 64-66 
0
C for 1.5 h. The solution of 

aromatic aldehyde or ketone 10a-10c /chalcone epoxide 11a-11j/ indanone and propiophenone 

derivatives (1:1.5 molar ratio, 2 mmol) dissolved in THF (30 mL) was added slowly at same 

temperature. TLC monitoring, the reaction mixture was stirred at same temperature until the 

carbonyl compound was consumed in the reaction. Then, the reaction mixture was cooled and 
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quenched with 10% aqueous NaHCO3 solution and extracted in EtOAc. The organic layer was 

washed with brine solution, dried with anhydrous Na2SO4 and concentrated in vacuo. The 

crude material was purified by column chromatography to give the desired products2ab-

2ad/9a-9g/11ab-11ad/12ab-12ao/13ab-13ac & 14ab-14ac in 55-86 % yields. 

4.5.2. SPECTRAL DATA OF SYNTHESIZED COMPOUNDS 

(2-methylprop-1-en-1-yl)benzene (2ab): White solid; Yield: (111 mg, 85%); IR 

νmax (KBr, cm
-1

): 3083 (aliphatic, =C-H str),  2946 (aromatic C-H str), 1655 

(aliphatic, C=C str ), 1582 (aromatic, C=C str), 1391, 1280, 1062, 864; 
1
H-NMR 

(CDCl3, 500 MHz) δ (ppm):  7.91 (t, J = 7.0 Hz, 2H), 7.52 (dd, J = 1.5,8.0 Hz, 2H), 7.41(dd, J 

= 1.5,8.0 Hz, 2H), 1.91 (s, 3H); 
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):138.82, 135.76, 

129.03, 128.97, 128.68, 127.65, 25.66, 19.65; HRMS (ES-TOF) calcd for C10H12 132.0939, 

found 132.0941. 

(3-methylbut-2-en-2-yl)benzene (2ac): White solid; Yield: (119 mg, 82%); %); IR 

νmax (KBr, cm
-1

): 2975 (aromatic C-H str), 1680 (aliphatic, C=C str ), 1578 

(aromatic, C=C str), 1392, 1270, 1072, 845;  
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm):  7.31 (t, J = 7.0 Hz, 1H), 7.12 (t, J = 6.5 Hz, 2H), 6.81 (dd, J = 1.5,8.0 Hz, 2H), 2.56 (s, 

3H), 1.95 (s, 6H);  
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):145.54, 139.76, 129.65, 128.97, 

128.68, 127.03, 22.90, 12.77; HRMS (ES-TOF) calcd for C11H14  146.1096, found 146.1098. 

(2-methylprop-1-ene-1,1-diyl)dibenzene (2ad): White solid;; Yield: (165 mg, 

80%); IR νmax (KBr, cm
-1

): 2962 (aromatic C-H str), 1667 (aliphatic, C=C str ), 

1568 (aromatic, C=C str), 1390, 1284, 1065, 835;
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm):  7.52 (t, J = 8.0 Hz, 4H), 7.31 (t, J = 7.0 Hz, 4H), 7.11 (dd, J = 1.5,6.5 Hz, 2H), 1.92 (s, 

6H); 
13

C NMR (CDCl3, 125 MHz) δ (ppm):141.76, 138.77, 128.97, 128.65, 127.66, 19.65; 

HRMS (ES-TOF) calcd for C16H16 208.1252, found 208.1250. 

1,2-diphenylethene (9c): White solid; Yield: (153 mg, 85%); IR νmax (KBr, cm
-

1
): 3083 (aliphatic, =C-H str),  2948 (aromatic C-H str), 1648 (aliphatic, C=C str ), 

1580 (aromatic, C=C str), 1393, 1280, 1062, 864; 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm):  7.82 (t, J = 8.0 Hz, 4H), 7.62 (dd, J = 1.0, 7.0 Hz, 2H), 7.50(t, J = 7.5Hz, 4H), 7.00 (s, 

2H); 
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):162.68, 133.58, 130.68, 127.35, 115.78; HRMS 

(ES-TOF) calcd for C14H12 180.0939, found 180.0940. 
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4,4'-(but-2-ene-2,3-diyl)bis(fluorobenzene) (9d): White solid; Yield: (174 

mg, 83%); %); IR νmax (KBr, cm
-1

): 2955 (aromatic C-H str), 1674 

(aliphatic, C=C str ), 1574 (aromatic, C=C str), 1396, 1277, 1074, 855;  
1
H-

NMR (CDCl3, 500 MHz) δ (ppm):  7.87-7.84 (m, 4H), 7.16 (t, J = 8.5 Hz, 

4H), 6.94 (s, 2H);  
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):137.65, 129.97, 129.68, 128.66, 

127.97; HRMS (ES-TOF) calcd for C16H14F2 244.1064, found 244.1064. 

4,4'-(but-2-ene-2,3-diyl)bis(chlorobenzene) (9e): White solid;; Yield: (193 mg, 80%); IR νmax 

(KBr, cm
-1

): 2958 (aromatic C-H str), 1665 (aliphatic, C=C str ), 1568 

(aromatic, C=C str), 1399, 1288, 1062, 830;
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm):  7.95 (t, J = 7.0 Hz, 4H), 7.56 (dd, J = 1.0,7.5 Hz, 4H), 6.95 (s, 2H); 

13
C- NMR (CDCl3, 125 MHz) δ (ppm):135.65, 133.58, 129.67, 128.68, 

127.77; HRMS (ES-TOF) calcd for C16H14Cl2 276.0473, found 276.0473. 

4,4'-(but-2-ene-2,3-diyl)bis(methylbenzene) (9f): White solid; Yield: (165 

mg, 70%); %); IR νmax (KBr, cm
-1

): 2960 (aromatic C-H str), 1665 

(aliphatic, C=C str ), 1570 (aromatic, C=C str), 1397, 1278, 1072, 852;  
1
H-

NMR (CDCl3, 500 MHz) δ (ppm):  7.75 (t, J = 7.0 Hz, 4H), 7.25 (dd, J = 

1.5,8.0 Hz, 4H), 6.96 (s, 2H), 2.39 (s, 6H);  
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):137.65, 

135.53, 129.67, 128.68, 127.77, 21.65; HRMS (ES-TOF) calcd for C18H20 236.1565, found 

236.1566. 

4,4'-(but-2-ene-2,3-diyl)bis(methoxybenzene) (9g): White solid; Yield: 

(231 mg, 86%); IR νmax (KBr, cm
-1

): 2957 (aromatic C-H str), 1668 

(aliphatic, C=C str ), 1568 (aromatic, C=C str), 1395, 1283, 1065, 833;
1
H-

NMR (CDCl3, 500 MHz) δ (ppm):  7.55 (t, J = 7.0 Hz, 4H), 7.05 (dd, J = 

1.5,8.0 Hz, 4H), 6.90 (s, 2H), 3.19 (s, 6H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm):162.42, 

133.92, 130.66, 127.51, 115.78, 55.78; HRMS (ES-TOF) calcd for C18H20O2 268.1463, found 

268.1463. 

but-1-ene-1,2-diyldibenzene (11ab): Light yellow semi solid; Yield: (155 mg, 

80%); IR νmax (KBr, cm
-1

): 3080 (aliphatic, =C-H str),  2950 (aromatic C-H str), 

1644 (aliphatic, C=C str ), 1582 (aromatic, C=C str), 1391, 1278, 1062, 860; 
1
H-

NMR (CDCl3, 500 MHz) δ (ppm):  7.78 (t, J = 7.5 Hz, 2H), 7.49 (dd, J = 1.5, 7.0 Hz, 2H), 

7.39(t, J = 7.0 Hz, 2H), 7.08 (t, J = 7.0 Hz, 2H), 6.96 (t, J = 7.0 Hz, 2H), 6.46 (s, 1H), 2.07 (q, J 



____________________Chapter3: Reductive deoxygenation of carbonyl compounds to olefin 

 

100 

 

=2.0 , 8.0 Hz, 2H), 1.18 (t, J = 7.0 Hz, 3H),  
 13

C- NMR (CDCl3, 125 MHz) δ (ppm):142.32, 

138.46, 137.44, 128.95, 127.97, 126.66, 28.35, 12.97; MS (EI, 70eV): m/z (%) = 195[M]
+.

, for 

C15H15; HRMS (ES-TOF) calcd for C15H15 195.1174, found 195.1172. 

pent-2-ene-2,3-diyldibenzene (11ac): Light brown semi solid; Yield: (171 mg, 

77%); %); IR νmax (KBr, cm
-1

): 2958 (aromatic C-H str), 1678 (aliphatic, C=C str ), 

1572 (aromatic, C=C str), 1395, 1278, 1072, 850;  
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm):  7.49 (dd, J = 1.5, 7.0 Hz, 2H), 7.39(t, J = 7.5 Hz, 4H), 6.96 (t, J = 8.0 Hz, 

4H), 2.44(s, 3H),  2.12 (q, J =2.0 , 7.5 Hz, 2H), 1.17 (t, J = 7.0 Hz, 3H),   
 13

C- NMR (CDCl3, 

125 MHz) δ (ppm):146.54, 144.47, 142.32, 129.68, 128.66, 127.97, 126.95, 28.35, 14.28, 

12.95; MS (EI, 70eV): m/z (%) = 222[M]
+.

, for C17H18; HRMS (ES-TOF) calcd for C17H18 

222.1409, found 222.1411. 

But-1-ene-1,1,2-triyltribenzene (11ad): Yellow semi solid; Yield: (198 mg, 

70%); IR νmax (KBr, cm
-1

): 2958 (aromatic C-H str), 1665 (aliphatic, C=C str ), 

1568 (aromatic, C=C str), 1399, 1288, 1062, 830; 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 7.88 (dd, J = 2.5, 7.5 Hz, 4H), 7.78 (t, J = 8.5Hz, 4H), 7.48(t, J = 7.5 Hz, 

2H), 7.34(t, J = 8.0 Hz, 2H), 6.80(t,  J = 8.0 Hz, 2H),  2.10 (q, J =2.5 , 8.0 Hz, 2H), 0.98(t, J = 

7.0 Hz, 3H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm): 140.51, 139.41, 129.12, 128.68, 128.36, 

128.12, 127.85, 127.78, 126.28, 26.66, 13.68; MS (EI, 70eV): m/z (%) = 284[M]
+.

, for C22H20; 

HRMS (ES-TOF) calcd for C22H20 284.1565, found 284.1563. 

2-(4-chlorophenyl)-3-(1-(4-chlorophenyl)-2-phenylbut-1-en-1-yl) oxirane 

(12ab): Light brown semi Solid; Yield: (260 mg, 66 %); IR νmax (KBr, cm
-1

): 

2937, 2878 (aromatic C-H str), 1588 (aromatic, C=C str), 1268, 1090, 868, 735; 

1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.18-8.06 (m, 3H), 7.87(t, J = 8.0 Hz, 

2H), 7.48 (dd, J = 1.5, 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.30 (m, 2H ), 

6.88-6.85 (m, 2H), 3.60 (d,  J = 1.5 Hz, 1H), 3.47 (d,  J = 1.5 Hz, 1H), 2.19 (q, J = 2.5, 8.0 Hz, 

2H), 1.07 (t, J = 7.0 Hz, 3H );
13

C- NMR (CDCl3, 125 MHz) δ (ppm):144.35, 143.27, 137.95, 

132.55, 132.49, 131.65, 130.49, 130.47, 130.05, 129.65, 128.97, 128.77, 128.66, 127.66, 67.72, 

61.05, 27.05, 12.95; MS (EI, 70eV): m/z (%) = 394[M]
+.

, for C24H20Cl2O, 396[M+2H]
+
; 

HRMS (ES-TOF) calcd for C24H20Cl2O 394.0891, found 394.0893. 

2-(1-(4-chlorophenyl)-2-phenylbut-1-en-1-yl)-3-(3,4,5-trimethoxyphenyl)oxirane (12ac): 

Light yellow semi solid; Yield: (269 mg, 60 %); IR νmax (KBr, cm
-1

): 2952 (aromatic C-H str), 
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1582 (aromatic, C=C str), 1393, 1277, 1060, 856; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.00 

(d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 1H), 6.98 

(d,  J = 8.5 Hz, 1H), 6.80 (t, J = 9 Hz, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.49 

(dd, J = 2, 7 Hz, 1H), 3.91(s, 6H), 3.89 (s, 3H), 3.62 (d, J = 2 Hz, 1H), 3.46 

(d,  J = 2 Hz, 1H), 2.10  (q, J = 2, 7.5 Hz, 2H),  1.17 (t, J = 7 Hz, 3H)  
13

C- 

NMR (CDCl3, 125 MHz) δ (ppm):156.27, 141.54, 137.76, 132.54, 

132.47, 131.77, 130.65, 130.49, 130.05, 129.65, 128.97, 128.68, 128.66, 127.03, 100.06, 67.82, 

64.13, 60.33, 54.52, 28.95, 14.05; MS (EI, 70eV): m/z (%) = 450[M]
+.

, for C27H27ClO4; 

HRMS (ES-TOF) calcd for C27H27ClO4 450.1598,  found 450.1596. 

2-(1-(4-bromophenyl)-2-phenylbut-1-en-1-yl)-3-(p-tolyl) oxirane (12ad): 

Light yellow semi solid; Yield: (267 mg, 64 %); IR νmax (KBr, cm
-1

): 2922 

(aromatic C-H str), 1594 (aromatic, C=C str), 1491, 1399, 1296, 1095; 
1
H-

NMR (CDCl3, 500 MHz) δ (ppm): 7.92-7.90 (m, 2H), 7.66 (dd, J = 1.5, 6.5 

Hz, 2H),  7.29-7.23 (m, 4H), 6.91-6.86 (m, 3H), 6.47 (t, J = 7.5 Hz, 2H), 3.84 

(d, J = 2Hz, 1H), 3.66 (d, J = 2 Hz, 1H), 2.41 (s, 3H), 2.09 (q,  J = 2.0, 7.0 Hz, 2H), 1.19 (t, J = 

6.5 Hz, 3H);
13

C- NMR (CDCl3, 125 MHz) δ (ppm):143.45, 143.05, 134.31, 129.74, 129.52, 

128.65, 127.93, 127.69, 127.65, 126.76, 125.75, 125.48, 125.18, 124.07, 68.56, 62.95, 28.01, 

21.54, 13.47; MS (EI, 70eV): m/z (%) = 418[M]
+.

, for C25H23BrO, 420 [M+2H]
+
; HRMS (ES-

TOF) calcd for C25H23BrO 418.0932, found 418.0929. 

2-(1-(4-chlorophenyl)-2-phenylbut-1-en-1-yl)-3-(3,4-

dimethylphenyl)oxirane (12ae): Light yellow semi solid; Yield: (223 mg, 58 

%); IR νmax (KBr, cm
-1

): 2925 (aromatic C-H str), 1594 (aromatic, C=C str), 

1399, 1289, 1091, 845;
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.70-7.62 (m, 

3H), 7.50-7.47 (m, 2H), 7.36-7.29 (m, 3H), 6.88-6.75 (m, 3H), 3.65 (d, J = 3.5 

Hz, 1H), 3.51 (d,  J = 3.5 Hz, 1H), 2.66 (s, 3H), 2.65(s, 3H),  2.10 (q,  J = 1.5, 7.5 Hz, 2H), 

0.98 (t,  J = 7 Hz, 3H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm):146.05, 145.79, 144.93, 

137.47, 132.74, 132.57, 131.65, 130.93, 130.68, 130.66, 129.79, 128.79, 128.45, 128.16, 

127.05, 68.78, 64.05, 27.87, 21.15, 19.35, 14.43; MS (EI, 70eV): m/z (%) = 388[M]
+.

, for 

C26H25ClO, 390 [M+2H]
+
; HRMS (ES-TOF) calcd for C26H25ClO 388.1594, found 388.1590. 

2-(4-bromophenyl)-3-(1-(4-bromophenyl)-2-phenylbut-1-en-1-yl) oxirane (12af): Light 

brown semi solid; Yield: (263 mg, 55 %); IR νmax (KBr, cm
-1

): 2923 (aromatic C-H str), 1591 
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(aromatic, C=C str), 1417, 1395, 1282, 1170, 1092, 757 (C-Br, str); 
1
H-NMR (CDCl3, 500 

MHz) δ (ppm): 7.92-7.89 (m, 2H), 7.68-7.66 (m, 2H), 7.58-7.56 (m, 2H), 

7.29-7.26 (m, 3H), 6.67-6.55 (m, 4H), 3.78 (d, J = 3.5 Hz, 1H), 3.62 (d, J = 3.5  

Hz, 1H), 2.12 (q, J = 2.5, 7.5 Hz, 2H), 0.88 (t, J = 7.0 Hz, 3H); 
13

C- NMR 

(CDCl3, 125 MHz) δ (ppm):142.65, 141.32, 138.52, 131.66, 130.97, 130.68, 

129.97, 129.58, 128.68, 127.97, 126.68, 121.97, 121.68, 116.66, 115.32, 70.68, 

64.08, 26.12, 13.03; MS (EI, 70eV): m/z  = 482[M+2H]
+
, 484[M+4H]

+
, for C24H20Br2O; 

HRMS (ES-TOF) calcd for C24H20Br2O 481.9881, found 481.9884. 

2-(1,2-diphenylbut-1-en-1-yl)-3-phenyloxirane (12ag): Light brown semi solid; 

Yield: (243 mg, 75 %); IR νmax (KBr, cm
-1

): 2935, 2877 (aromatic C-H str), 1585 

(aromatic, C=C str), 1266, 1088, 862, 733; 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 7.91-7.63 (m, 5H), 7.54-7.51 (m, 4H), 7.37-7.33 (m, 3H), 7.32-7.29 (m, 

3H ), 3.88 (d,  J = 3.0 Hz, 1H), 3.62 (d,  J = 3.0 Hz, 1H), 2.32 (q, J = 1.5, 8.5 Hz, 

2H), 1.18 (t, J = 8.0 Hz, 3H );
13

C- NMR (CDCl3, 125 MHz) δ (ppm):142.51, 141.28, 138.58, 

131.52, 130.97, 130.68, 129.97, 129.68, 128.68, 127.78, 126.35, 121.97, 121.68, 68.03, 66.51, 

26.68, 13.66; MS (EI, 70eV): m/z (%) = 326[M]
+.

, for C24H22O; HRMS (ES-TOF) calcd for 

C24H22O 326.1671, found 326.1673. 

2-(1-(4-fluorophenyl)-2-phenylbut-1-en-1-yl)-3-phenyloxirane (12ah): Light yellow semi 

solid; Yield: (247 mg, 72 %); IR νmax (KBr, cm
-1

): 2950 (aromatic C-H str), 

1582 (aromatic, C=C str), 1389, 1275, 1059, 854; 
1
H-NMR (CDCl3, 500 MHz) 

δ (ppm): 7.88-7.85 (m, 4H), 7.55-7.49 (m, 4H), 7.41-7.39 (m, 3H), 6.88-6.85 (t, 

J = 7.5 Hz, 3H), 3.78 (d, J = 3.5 Hz, 1H), 2.37 (d, J = 3.5 Hz, 1H), 2.37 (q,  J = 

2.5, 7.0 Hz, 2H), 1.38 (t,  J = 7.5 Hz, 3H);
13

C- NMR (CDCl3, 125 MHz) δ (ppm):160.54, 

142.32, 141.58, 138.65, 130.97, 130.68, 129.97, 129.68, 128.66, 127.97, 126.68, 125.65, 

116.66, 115.05, 67.65, 64.08, 27.35, 13.12; MS (EI, 70eV): m/z (%) = 344[M]
+.

, for C24H21FO; 

HRMS (ES-TOF) calcd for C24H21FO 344.1576,  found 344.1574 

2-(1,2-diphenylbut-1-en-1-yl)-3-(4-fluorophenyl) oxirane (12ai):  Light yellow 

semi solid; Yield: (240 mg, 70 %); IR νmax (KBr, cm
-1

): 2922 (aromatic C-H str), 

1592 (aromatic, C=C str), 1495, 1397, 1298, 1093; 
1
H-NMR (CDCl3, 500 MHz) 

δ (ppm): 7.88-7.86 (m, 4H), 7.56-7.50 (m, 4H), 7.41-7.40 (m, 3H), 6.88 (t, J = 

7.5 Hz, 3H), 3.92 (d, J = 3.0 Hz, 1H), 3.71 (d, J = 3.0 Hz, 1H), 2.37 (q,  J = 2.0, 
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7.5 Hz, 2H), 1.38 (t, J = 7.0 Hz, 3H);
13

C- NMR (CDCl3, 125 MHz) δ (ppm):160.55, 142.32, 

141.65, 138.58, 130.97, 130.66, 129.97, 129.68, 128.68, 127.97, 126.68, 125.65, 116.66, 

115.08, 67.67, 64.15,27.35, 13.08; MS (EI, 70eV): m/z (%) = 344[M]
+.

, for C24H21FO; HRMS 

(ES-TOF) calcd for C24H21FO 344.1576, found 344.1574. 

2-(4-fluorophenyl)-3-(1-(4-fluorophenyl)-2-phenylbut-1-en-1-yl) oxirane 

(12aj): Light yellow semi solid; Yield: (246 mg, 68 %); IR νmax (KBr, cm
-1

): 

2920 (aromatic C-H str), 1597 (aromatic, C=C str), 1399, 1285, 1092, 845; 
1
H-

NMR (CDCl3, 500 MHz) δ (ppm): 8.10-8.06 (m, 2H), 7.94 (d, J = 8.5  Hz, 1H), 

7.53 (d, J = 8.5  Hz, 2H), 7.47 (d, J = 8.5  Hz, 1H), 7.28 (d,  J = 8.0 Hz, 2H ), 

7.16 (d, J = 8.5  Hz, 2H),   6.89 (dd,  J = 2.0, 8.0  Hz, 2H),  3.85(d,  J = 4.5 Hz, 1H),  3.51 (d, J 

= 4.5 Hz, 1H),  2.19 (q,  J = 2, 8  Hz, 2H), 1.09(t,  J = 8 Hz, 3H); 
13

C- NMR (CDCl3, 125 

MHz) δ (ppm):160.58, 160.32, 135.54, 134.47, 130.97, 130.68, 129.97, 129.68, 128.66, 

127.97, 126.95, 116.66, 115.05, 68.52, 63.66, 28.35, 14.95; MS (EI, 70eV): m/z (%) = 

362[M]
+.

, for C24H20F2O; HRMS (ES-TOF) calcd for C24H20F2O 362.1482, found 362.1482. 

2-(4-chlorophenyl)-3-(1,2-diphenylbut-1-en-1-yl) oxirane (12ak): Light brown 

semi solid; Yield: (240 mg, 67 %); IR νmax (KBr, cm
-1

): 2928 (aromatic C-H str), 

1591 (aromatic, C=C str), 1419, 1397, 1278, 1172, 1097, 755 (C-Cl, str); 
1
H-NMR 

(CDCl3, 500 MHz) δ (ppm): 7.98 (t, J = 7.5  Hz, 2H),  7.79-7.77 (m, 2H),7.69 

(dd, J = 2.0, 8.0 Hz, 2H), 7.48-7.45 (m, 2H), 7.36-7.33 (m, 3H), 6.86 (dd, J = 2.5, 

7.5 Hz, 3H), 3.86 (d, J = 2.0 Hz, 1H), 3.73 (d, J = 2.0 Hz, 1H), 2.29 (q, J = 2.0, 7.0 Hz, 2H), 

1.28 (t, J = 7.0 Hz, 3H);
13

C- NMR (CDCl3, 125 MHz) δ (ppm):142.32, 141.58, 138.65, 

131.52, 130.97,130.68, 129.68, 128.68, 127.78, 126.35, 125.65, 116.66, 115.32, 66.65, 63.12, 

26.68, 13.66; MS (EI, 70eV): m/z   360[M]
+.

, for C24H21ClO, 362[M+2H]
+
; HRMS (ES-TOF) 

calcd for C24H21ClO 360.1281, found 360.1283. 

1-phenyl-3-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (12al): Light 

brown semi solid; Yield: (259 mg, 72 %); IR νmax (KBr, cm
-1

): 3425 (OH str), 

2935, 2877 (aromatic C-H str), 1585 (aromatic, C=C str), 1266, 1088, 862, 733; 

1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.91-7.66 (m, 4H), 7.6-7.54 (m, 1H), 

7.54-7.50 (m, 4H), 7.37-7.34 (m, 2H ), 7.33-7.32 (m, 1H ), 7.31-23 (m, 2H), 4.72 

(d,  J = 2.0 Hz, 1H), 4.18 (d,  J = 2.0 Hz, 1H), 2.31 (q, J = 1.0, 7.5 Hz, 2H), 1.17 (t, J = 7.0 Hz, 

3H ), 3.30 (s, br, D2O exchangeable, 1H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm):157.60, 
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142.65, 141.32, 138.58, 131.52, 130.97, 130.68, 129.97, 129.68, 128.68, 127.78, 126.35, 

121.97, 121.68, 116.66, 115.32, 71.12, 51.03, 26.66, 13.68; MS (EI, 70eV): m/z (%)  

326[M]
+.

for C24H22O; HRMS (ES-TOF) calcd for C24H22O 326.1671, found 326.1673. 

1-(1-(4-(2-(dimethylamino)ethoxy)phenyl)propylidene)-3-phenyl-2,3-

dihydro-1H-inden-2-ol (12am): Light yellow semi solid; Yield: (268 mg, 65 %); 

IR νmax (KBr, cm
-1

): 3452 (OH str), 2963 (aromatic C-H str), 1599 (aromatic, 

C=C str), 1451, 1419, 1262, 1021, 933, 868, 799 and 704; 
1
H-NMR (CDCl3, 500 

MHz) δ (ppm): 7.92 (d, J = 8 Hz, 2H), 7.83 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7 

Hz, 1H), 7.49-7.45 (m, 2H), 7.41 (dd, J = 7.5, 2.5 Hz, 2H), 7.27-7.25 (m, 2H), 

6.92 (d, J = 7.5 Hz, 2H) 4.73 (d,  J = 3.5 Hz, 1H), 4.62 (d,  J = 3.5 Hz, 1H), 4.15 (t, J = 1.5 Hz, 

2H), 2.90 (s, 6H),  2.61 (t, J = 1.5 Hz, 2H),  2.25 (q, J = 8.0, 2.0  Hz, 2H), 1.18 (t, J = 7 Hz, 

3H), 3.60 (s, br, D2O exchangeable, 1 H);  
13

C-NMR (CDCl3, 125 MHz) δ (ppm): 160.25, 

157.05, 137.76, 132.57, 132.42, 131.77, 130.65, 130.49, 130.33, 129.65, 128.97, 128.68, 

128.66, 127.05, 116.56, 116.32, 114.65, 71.65, 67.73, 61.35, 52.65, 48.35, 28.27, 14.03; MS 

(EI, 70eV): m/z  = 413 [M]
+.

for C28H31NO2; HRMS (ES-TOF) calcd for C28H31NO2 

413.2355, found 413.2354. 

2-(4-(1,2-diphenylbut-1-en-1-yl)phenoxy)-N,N-dimethylethanamine 

(12an): White solid; Yield: (264 mg, 71%); IR νmax (KBr, cm
-1

): 2920 

(aromatic C-H str),1670 (C=C str for alkene), 1592 (aromatic, C=C str), 

1406, 1336, 1233, 1125(C-O-C, str), 1091; 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 7.89-7.85 (m, 4H), 7.55-7.49 (m, 4H), 7.41-7.39 (m, 2H),  6.86 (t, J 

= 7.5 Hz, 2H), 4.15(t, J = 2.5 Hz, 2H), 2.9 (s,  6H), 2.62 (t, J = 2.5 Hz, 2H),  2.25 (q, J = 2.5,  

7.0 Hz, 2H), 1.18 (t, J = 2.0 Hz, 3H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm): 158.66, 139.97, 

138.77, 131.65, 130.49, 130.47, 130.05, 129.65, 128.97, 128.77, 128.68, 127.66, 114.05, 67.72, 

61.05, 47.11, 26.05, 12.95; MS (EI, 70eV): m/z (%) = 371[M]
+.

for C26H29NO; HRMS (ES-

TOF) calcd for C26H29NO 371.2249, found 371.2251. 

1-(4-chlorophenyl)-3-(1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propylidene)-2,3-dihydro-1H-

inden-2-ol (12ao): Light yellow semi solid; Yield: (281 mg, 58 %); IR νmax (KBr, cm
-1

): 3440 

(OH str), 2920 (aromatic C-H str), 1592 (aromatic, C=C str), 1406, 1336, 1233, 1125(C-O-C, 

str), 1091, 771 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.92 (d, J = 7.0 Hz, 2H), 

7.83 (d, J = 7.5 Hz, 2H), 7.59 (d,  J = 7.0 Hz, 1H), 7.48-7.45 (m, 1H), 7.41(dd, J = 7.0, 2.5 Hz, 
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1H), 7.27-7.25 (m, 2H),  6.91 (d, J = 7.5 Hz, 1H),  5.27 (d, J = 2.0 Hz, 1H), 5.12 (d, J = 3.0 Hz, 

1H), 4.14 (t, J = 3.0 Hz, 2H), 2.94-2.90 (m, 2H),  2.77 (t, J=6.0 Hz, 2H),  2.49-

2.47 (m, 4H), 1.59 (q,  J = 7.0, 2.0 Hz, 2H), 1.44 (t, J = 6.0 Hz, 4H), 1.19 (t, J = 

7.0 Hz, 3H),  3.70 (s, br, D2O exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ 

(ppm): 157.78, 153.62, 137.74, 132.57, 132.47, 131.79, 130.65, 130.45, 130.05, 

129.63, 128.79, 128.68, 128.66, 127.05, 118.96, 117.65, 117.05, 115.66, 76.13, 

74.32, 64.73, 58.90, 56.75, 27.95, 26.79, 25.45, 14.35; MS (EI, 70eV): m/z (%) = 

487[M]
+.

, C31H34ClNO2], 488[M+H]
+.

, for C31H35ClNO2, 489[M+2H]
+
; HRMS 

(ES-TOF) calcd for C31H34ClNO2 487.2278, found 487.2276. 

(E)-5-bromo-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-

hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (13ab):Light 

brown semi solid; Yield: (265mg, 55 %); IR νmax (KBr, cm
-1

): 3451 (OH 

str), 2952 (aromatic C-H str), 1588 (aromatic, C=C str), 1389, 1277, 1060, 

854;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.88 (dd, J = 8.0,  2.5 Hz, 2H), 

7.81 (d,  J = 8.5 Hz, 1H),  7.69-7.59 (m, 4H), 7.35-7.32 (m, 1H), 6.95(d, J = 

9 Hz, 3 H), 5.34 (s, 1H), 4.87  (d, J = 2.0 Hz, 1H), 4.48 (d,  J = 2.0 Hz, 1H), 4.26 (t, J = 2.5 Hz, 

2H), 3.52  (s, 1H), 2.74  (s, 6H),   2.58 (t,  J = 2.5 Hz, 2H),  2.12 (q,  J = 7.5, 1.5 Hz, 2H,), 1.04 

(t, J = 7.0 Hz, 3H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm): 163.14, 161.127, 159.41, 157.88, 

156.62, 140.112, 139.53, 136.28, 133.63, 131.54, 130.78, 129.62, 129.30, 124.37, 123.13, 

116.12, 115.11, 73.13, 68.13, 62.15, 52.12, 47.45, 27.45, 14.10; HRMS (ES-TOF) calcd for 

C28H30BrNO3 507.1409, found 507.1407. 

(E)-5-bromo-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-

2,3-dihydro-1H-inden-2-ol (13ac): Light yellow semi solid; Yield: 

(275mg, 52 %); IR νmax (KBr, cm
-1

): 3355 (OH str), 2955 (aromatic C-H 

str), 1570 (aromatic, C=C str), 1458, 1410, 1277, 1154, 1088, 1012, 915 

and 730;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.03 (d,  J = 8.0 Hz, 3H), 

7.82 (d,  J = 7.0 Hz, 2H), 7.76 (dd,  J = 2.0, 7.0  Hz, 4H), 7.49 (  d, J = 9.0 

Hz, 1H),7.12 (t, J = 7.5 Hz, 3H), 5.56  (s, 1H), 4.75 (d, J = 2.0 Hz, 1H),  

4.36 (d, J = 2.0 Hz, 1H),  4.14 (t, J = 2.5 Hz, 2H), 3.75 (s, 1H), 3.05(t, J = 2.5, 2H), 2.65(t, J = 

3.0 Hz, 4H), 2.33 (q,  J = 1.5, 9.0 Hz, 2H),  1.64-1.61 (m, 2 H), 1.51 (t, ,  J = 2.5 Hz, 2H ), 1.02 

(t, ,  J = 8.0 Hz, 3H); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm): 161.13, 157.13, 156.41, 142.62, 
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140.10, 139.54, 136.27, 133.63, 131.54, 130.78, 129.62, 129.30, 122.37, 122.13, 116.19, 

115.19, 73.13, 69.15, 58.10, 57.45, 52.81, 29.17, 25.14, 23.10, 12.56; HRMS (ES-TOF) calcd 

for C31H34BrNO3 547.1722, found 547.1724. 

(Z)-5-bromo-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-

hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (14ab): Light 

brown semi solid; Yield: (45mg, 8 %); IR νmax (KBr, cm
-1

): 3415 (OH str), 

2934, 2875 (aromatic C-H str), 1599 (aromatic, C=C str), 1265, 1081, 865, 

735; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.89-7.69 (m, 4H), 7.55-7.48 

(m, 2H), 6.97-6.81(m, 5H), 4.69 (d,  J = 2.5 Hz, 2H),  4.28  (d,  J = 2.5 Hz, 2H), 4.27 (t,  J = 

2.5 Hz, 2H), 2.93 (s, 6H), 2.87 (t,  J = 2.5 Hz, 2H),  1.78 (q,  J = 8.0, 2.5 Hz, 2H), 0.67 (t, J = 7 

Hz, 3H ); 
13

C- NMR (CDCl3, 125 MHz) δ (ppm): 163.14, 161.22, 159.42, 157.87, 156.62, 

140.12, 139.53, 136.27, 133.63, 132.54, 130.77, 129.62, 129.30, 124.37, 123.13, 116.12, 

115.10, 71.14, 66.13, 60.13, 50.17, 46.45, 25.45, 12.20; HRMS (ES-TOF) calcd for 

C28H30BrNO3 507.1409, found 507.1407. 

(Z)-5-bromo-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-

1-yl)ethoxy)phenyl)-2,3-dihydro-1H-inden-2-ol (14ac): Light yellow 

semi solid; Yield: (55mg, 10 %); IR νmax (KBr, cm
-1

): 3444 (OH str), 

2922 (aromatic C-H str), 1595 (aromatic, C=C str), 1412, 1333, 1235, 

1126(C-O-C, str), 1091; 
1
HNMR (CDCl3, 500 MHz): δ (ppm) 7.91-7.86 

(m, 3H), 7.71-7.51 (m, 1H), 7.49-7.26 (t,  J = 8.0 Hz, 4H), 7.12-6.85 (m, 4H), 5.59(s, 1H), 4.59 

(d, J = 2.0 Hz, 1H),  4.18 (d, J = 2.0 Hz, 1H), 2.98 (t, J = 2.5 Hz, 2H), 2.87(t, J = 2.5 Hz, 4H), 

4.02 (t, J = 2.5 Hz, 2H),  1.87 (q,  J = 1.5, 8.0 Hz, 2H), 1.34 (t, J = 2.5 Hz, 2H), 1.26 (t, J = 2.5 

Hz, 4H),  0.78  (t, J = 7.0 Hz, 3H)); 
13

CNMR (CDCl3, 125 MHz) δ (ppm): 161.124, 157.13, 

156.41, 142.63, 140.10, 139.54, 136.27, 133.63, 131.54, 130.77, 129.62, 129.30, 122.36, 

122.12, 116.19, 115.19, 73.11, 69.15, 58.48, 57.55, 52.81, 25.25, 23.14, 21.30, 10.77; HRMS 

(ES-TOF) calcd for C31H34BrNO3 547.1722, found 547.1724. 
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Part-B: Design, Synthesis of McMurry cross-coupled indanophen, analogs of Tamoxifen 

by novel SnCl4-Zn reagent and Anti-Proliferative Evaluation of Flavone-Estradiol adduct 

and Indanone based Ligands against Breast Cancer Cell Line 

5.1. INTRODUCTION 

Breast cancer remains a major cause of death for women in the western world ( 2-10 times 

higher than for oriental women) with the global incidence estimated at 1.15 million in 2002.[1] 

It is the second leading cause of cancer related deaths. More than 18000 women are diagnosed 

with breast cancer each year. Although breast cancer mainly affects women, data shows that 

men can also be affected as well; each year more than 1000 men are diagnosed with breast 

cancer.[2] Approximately 80% of breast cancer cases occurs in post-menopausal women whose 

ovarian estrogen production has ceased with remaining estrogens originating in extra-glandular 

tissues. Estrogen is a harmone that promotes the growth of breast cancer cells. As an 

antiestrogen drug, Tamoxifen was designed to slow and stop the growth of the cancer cells that 

are constantly being produced in every breast cancer patient. Estrogen receptors α and β (ERα 

AND ERβ) are transcription Factors that bind to specific hormone response  elements located 

near their target genes and regulate their expression in a ligand-dependent manner . Genistein 

and other flavonoids are phytoestrogens, i.e. they function as selective estrogen receptor 

modulators (SERMs).[3] It is hypothesized that these flavonoids modulate the endogenous 

activities of estrogen receptors to slow down or prevent the developments of breast and overian 

cancers.[4] The estrogen mimetic effects of dietary compounds are currently being explored to 

prevent the symptoms associated to estrogen deficiency in women during menopause.[5,6] The 

molecular basis of flavonoids estrogenicity is particularly difficult to elucidate, principally 

because of the 17β- estradiol (E2) mechanism of action which occurs via multiple pathways  

upon  E2 binding to estrogen receptor α and β (ERα and ERβ ) The estrogen receptor complex 

can dimerize and interact directly with the DNA at the estrogen response element (ERE), or in 

the activated protein pathway (AP1), the monomer can interact with two proteins (c-Jun and c-

Fos proto-oncogenes) to form a complex that binds to DNA.[7] 

Many naturally occurring steroid harmones [8] and non-steroidal [9] derivatives are 

recognized by steroid hormone receptors (SHRs) either as agonists or antagonists depending on 

their interaction with the SHR. Both agonists or antagonists are used for the treatment of 

hormone-dependent breast cancers (HDBCSs).[10,11] Acquired resistance to TAM or other 
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selective ER modulator (SERMs) is unique in that the growth of resistant tumours is dependent 

on SERMs.[12,13] Acquired TAM resistance during the treatment of metastatic breast cancer 

occurs within one or two years. Prolong adjuvant treatment with endocrine therapy markedly 

reduces the likelihood of breast cancer recurrence. Five years of tamoxifen, for example, 

reduces the risk of recurrence by 41% [14] However, the regimen duration and the various side 

effects combined with the prophylactic, and hence delayed, efficacy are likely to decrease 

adherence.  Indeed, despite the efficacy of endocrine therapy, nonadherence and premature 

discontinuation by up to 30% of women have been reported.[15-17] The clinical application of 

the laboratory strategy of long-term adjuvent antihormone therapy for the treatment of breast 

cancer has significantly improved breast cancer survival.[18] Selection of patients whose 

tumours express the oestrone receptor (ER) are more likely to respond to long-term adjuvent 

tamoxifen (TAM).[19] or aromatase inhibitors (AIs)[20] than those without ER. The evolution 

of acquired resistance to TAM treatment was discovered using MCF-7 tumours transplanted in 

athymic mice to mimic years of adjuvant treatment in patients.[21] The activity of TAM in the 

breasts has been illuminated by recent developments in the complex endocrinology of  breast 

cancer.[22] A second estrogen receptor, ERβ, was discovered in 1996.[23] Tumors which had 

been classified as ER-negative due to the lack of ERα have been shown to contain ERβ, which 

may be important in the proliferation of tamoxifen resistant tumors, although the role of  this 

receptor is still poorly understood.[24] 

Tamoxifen (TAM) and its congeners are widely used as a supplementary therapy to control 

cancers of the breast that test positive for the oestradiol receptor [25](ER). This series of 

molecules has a number of advantages in increasing the survival rate of patients, especially 

because they are relatively well tolerated over time. However, in the long run patients develop 

resistance to treatment with TAM. And in fact the development of certain tumours of the breast 

is eventually stimulated by TAM Research efforts aimed at finding new and effective anti-

estrogens, without the disadvantage of TAM  of clearly of great interest today, with this goal in 

mind, the company ICI has modified the 7 alpha position oestradiol, [26] Rousel-Uclaf, [27] 

(RU) has concentrated on 11beta position. 

In the carbon- carbon bonds formation, the McMurry reaction plays an important role to 

obtain homo and cross-coupled alkenes from aliphatic and aromatic aldehydes and ketones in 

the presence of in situ generated low valent titanium (LVT) reagents at reflux temperature.[28] 
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However, the reaction gave a moderate yield due to homo and cross-coupled products 

formation. To enhance the yield of cross-coupled products under mild reaction conditions, 

different reagents are explored for the McMurry reaction. For example, magnesium-mercury 

couple, NbCl5/NaAlH4, [29] zinc-copper couple,[30] LiAlH4,[31] dicyclopentadienyl  

titaniumdichloride,[32] trimethyl aluminium.[33] Although, these procedures have drawbacks 

like costly reagents, low yield, longer reaction time and/or less fuctional group tolerance. In 

recent years, tin tetrahalides (SnX4, X=Cl, Br) have been widely used as Lewis acids in 

numerous organic syntheses.[34] In many cases, these metal halides have been reported as 

efficient catalysts and easy to handle as compare to other metal halides such as TiX4 AlX3, 

ZnX2 and ZrX4.[35]   

Generally, metal alloy is used as reductive deoxygenating agent in the organic synthesis for 

coupling reactions. For example, zinc alloy is prepared by mixing of zinc and SnCl4 in 2:1 

ratio following the Rieck method.[36]
 
where metals like Zn involves reduction of an oxidized 

metal species by enhancing the reactivity of zinc at the surface of the alloy. The reductive 

deoxygenating reagents may also be generated in situ by reaction of two equivalent of zinc dust 

with one equivalent metal chloride under refluxing temperature in ether or hydrocarbon 

solvents.
  
In the case of

 
McMurry reaction reagent Ti (IV) reduced to Ti (II) with reducing agent 

Zn in THF, which generate a complex TiCl4 -Zn-(THF)2 in situ.[37,38] which is responsible for 

the coupling of aldehyde or ketone to pinacolate, followed by removal of TiO2 gave 

olefins.[39]  Likewise, it might be taking place in SnCl4-Zn and THF to form a complex SnCl4-

Zn-(THF)2 for the coupling of aldehydes or ketones. Initially Sn(IV) converted into Sn(II) by 

reduction of tin halide with Zn, Sn(II) converted carbonyl oxygen to pinacolate, followed by 

removal of SnO2 gave olefins.   

Therefore, in continuation of our interest to develop new methods in the organic synthesis 

and the acid catalysis reactions.[40] Herein, we report a novel and efficient reagent, SnCl4-Zn 

system for a selective cross McMurry coupling between various indanone derivative and 

propiophenone derivative was achieved. We now disclosed a novel one- step synthetic strategy 

for tamoxifen analog using selective cross McMurry coupling between two aromatic ketone in 

good yield within 4-4.5 h at reflux temperature.  

5.2. OBJECTIVE  

http://en.wikipedia.org/wiki/Copper(I)_chloride
http://en.wikipedia.org/wiki/Ether
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Breast cancer is a second most common cancer and second leading cause of death for 

women. In the western world (2-10 times higher than for oriental women) with the global 

incidence estimated at 1.15 million in 2002. Breast cancer is always caused by genetic 

abnormality. About 90% of breast cancers are due to genetic abnormalities and 5-10 % of 

cancers are due to abnormality inherited form mother or father. Hence our intention to 

synthesized the drug used for the treatment of breast cancer and we have synthesized some 

indanophen analog of Tamoxifen by novel SnCl4-Zn reagent and Flavone-Estradiol which 

shows Anti-Proliferative activity against Human cervical cancer cell line (HeLa) and Human 

Breast cancer cell lines (MCF-7& MDA-MB-231) . 

5.3. RESULTS AND DISCUSSION 

Initially, we performed the McMurry coupling of indanone 1r with propiophenone 2r, used 

in 1:1.5 ratio and varying the equivalents of SnCl4-Zn (prepared in 1:2 ratio). We obtained the 

cross-coupled product 3rr in 41% and 50% yields in 4h using 1 and 2 equivalent of SnCl4-Zn 

respectively (Table1, entries 1 & 2). When SnCl4-Zn was used in 3 equivalents, the yield was 

serendipitously improved up to 65% in 4h (Table1, entry 3). Further, increase in SnCl4-Zn 

equivalent decreased the yields of the cross-coupled product 3rr and increased the homo-

coupled products (Table 1, entries 4 & 5). Similarly, we optimized the reaction condition by 

reaction of 1r with 2s. We observed that the cross-coupled product 3rs gave 43-60 % yield. 

When SnCl4-Zn was used in 1, 2, 3.5 & 4 (Table1, entries 6, 7, 9 & 10). The yield was 

serendipitously improved up to 70% in 4h when we used 3 equivalents, (Table1, entry 8). 

We optimized the reaction time, by using optimized condition of table 1, we checked the 

progress of reaction from 1h-3h to get only 15 to 55 % of conversion at reflux temperature 

(Table 2, entries 1-3).Further increasing time from 3h to 4h  gave a very good yield up to 65 % 

(Table 2, entry 4). And further increase in time from 4 to 5h decreased in product yield to 45 % 

(Table 2, entry 5). We also determined the formation of E and Z isomers in the cross-coupled 

product where E-isomer and Z- isomer were found as major and minor products respectively. 

Due to the closed Rf -values of Z- isomers with byproducts, we were unable to separate the Z- 

isomers by the column chromatography However, the yields of Z- isomers were confirmed by 

GC analysis which is ranging between 2-5%. 
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Here, the optimal condition for cross McMurry couplings of substituted indanone 1r with 

propiophenone 2r-2s employed 3 equivalent of SnCl4-Zn with a 1:1.5 mol ratio of 1r to 2r-2s 

to give 3rr-3rs in very good yield in 4h. 

Table 1. Optimized condition for cross-coupling reaction by using different equivalent of 

SnCl4-Zn. 

 

Entry Ketones
a
 SnCl4-Zn Time(h) Yield(%)

b
 

1 1r+2r SnCl4-Zn (1 equiv.) 4 3rr  (41) 

2 1r+2r SnCl4-Zn (2 equiv.) 4 3rr (50) 

3 1r+2r SnCl4-Zn (3 equiv.) 4 3rr ( 65) 

4 1r+2r SnCl4-Zn (3.5 equiv.) 4 3rr (59) 

5 1r+2r SnCl4-Zn (4 equiv.) 4 3rr (55) 

6 1r+2s SnCl4-Zn (1 equiv.) 4 3rs (43) 

7 1r+2s SnCl4-Zn (2 equiv.) 4 3rs (52) 

8 1r+2s SnCl4-Zn (3 equiv.) 4 3rs (70) 

9 1r+2s SnCl4-Zn (3.5 equiv.) 4 3rs (60) 

10 1r+2s SnCl4-Zn (4 equiv.) 4 3rs (50) 

a
The mole ratios of 1r to 2r,2s were 1:1.5, 

b
Yield of isolated product 

Table 2. Optimized condition for cross-coupling reaction by varying reaction time. 

 

Entry SnCl4 –Zn Time (h) Yield (%)
a
 

1 SnCl4-Zn (3 equiv.) 1 15 

2 SnCl4-Zn (3 equiv.) 2 40 
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3 SnCl4-Zn (3 equiv.) 3 55 

4 SnCl4-Zn (3equiv.) 4 65 

5 SnCl4-Zn (3 equiv.) 5 45 

                                                                    a
Isolated yield of cross-product 

Under optimal reaction conditions, the efficiency of different McMurry reagents was 

compared (Table 3). Aluminium and Indium complexes gave poor products yield (15 %) at 

reflux in 14 h (Table 3, entries 1, 2). However, the titanium complex (TiCl4-Zn-THF) gave the 

yield (55 %) at reflux temperature in 6 h (Table 3, entry 3), while the tin complex (SnCl4-Zn-

THF) gave the optimal yield (70%) at reflux temperature within 4 h (Table 3, entry 4). 

Table 3. Comparison of McMurry reagents and solvents in McMurry cross- coupling of 

Indanone and propiophenone. 

 

Entry McMurry reagents 

 

Time (h) 

 

Yield (%)
a
 

1 AlCl3-Zn (3 equiv.) 14 15 

2 InCl3-Zn (3 equiv.) 14 15 

3 TiCl4-Zn (3 equiv.) 6 55 

4 SnCl4-Zn (3 equiv.) 4 70 

                                  a
 Isolated yield of cross-product at 64-66 

0
C. 

5.3.1. Synthesis of Tamoxifen Analogs by Cross -McMurry coupling reaction between 

indanone derivatives and propiophenone derivatives. 

To examine the scope and generality of the cross mcmurry coupling reaction we examine 

the reaction of substituted indanone12a-12u with substituted propiophenone 13b-13e (table 4) 

under optimized reaction condition describe in entry 4 & 9 of table 1, pleasingly all of these 

reaction proceeded as anticipated to give the corresponding cross mcmurry coupled 3ab-3au 

tamoxifen analog as well as homo coupled product 2aa-2tt and 4bb-4uu, but the cross 

mcmurry product 3ab-3au  with 52- 74% yields  dominant over homo-coupled products 2aa-

2tt and 4bb-4uu,  with 8-15% yields. (Table 4) 
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Table 3 reveals that the reaction of substrate 12a-12e with 1-(4-(2-

(dimethylamino)ethoxy)phenyl)propan-1-one in molar ratio 1:1.5 respectively, by using 6 

equivalent of low valent titanium  and 12 equivalent of Zn was heated at reflux in THF under 

nitrogen atmosphere, the reaction takes 6h to completion to yield dominant cross-coupling 

product 3ab-3af with 55-66% yields along with minor homo-coupled products 2aa-2ee and 

4bb-4ff with 8-12% yields. 

Similarly, the reaction of substrate 12f-12j with 1-(4-(2-(piperidin-1-

yl)ethoxy)phenyl)propan-1-one under same reaction condition as above to gave dominant 

cross-coupling product 3ag-3ak with 52-59% yields along with minor homo-coupled products 

2ff-2ll and 4gg-4kk with 8-14% yields, also the reaction of  12k-12o with 4-hydroxy 

propiophenone to gave 3al-3ap with 67-72% yields along with minor homo-coupled products 

2mm-2qq and 4ll-4pp with 8-14% and reaction of 12p-12t with propiophenone to gave 3aq-

3au with 65-74% yields along with minor homo-coupled products 2nn-2tt and 4mm-4uu with 

8-14% yields respectively (Table 4). we observed that the reaction of  12k to 12t  with 

unsubstituted propiophenone gave good yield  and reaction completed in a short time as 

compared to reaction of 12a-12j with 1-(4-(2-(dimethylamino)ethoxy)phenyl)propan-1-one and 

1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propan-1-one. 

The synthesized compounds were confirmed on the basis of their spectral data. In 
1
H NMR 

spectra, the characteristic doublet signal for –CH-CH- from indanone appeared for tamoxifen 

analog 3ab-3au in the range of δ 4.12- 5.12 ppm, whereas for compound 12a-12t in the range 

of δ 5.33- 5.20, also the characteristic quartet and triplet signal of –CH2CH3 appeared in 

between δ 0.90- 2.30 ppm, indicates the coupling of two molecule took place and products 

were formed. The structures of all the compounds were further confirmed by HRMS, ESI/MS 

and IR analysis. 

The geometrical isomer is easily ascertained by the H
1
NMR spectra. In the more mobile Z- 

isomer, indanone ring proton is significantly up field (0.3 ppm) relative to the corresponding 

resonance in the E-isomer.[17]
 
We observed that for E-isomer nmr signal for characteristic 

quartet and triplet signal of –CH2CH3 appeared downfield at  2.25 (q, J = 7.0, 2.5 Hz, 2H  

CH3CH2), 1.19 (t,  J = 7 Hz, 3H CH3CH2) than the minor Z-isomer 2.00 (q, J = 7.0, 2.5 Hz, 2H 

CH3CH2), 0.80 (t,  J = 7 Hz, 3H CH3CH2), also for -OCH2  at 4.14-4.10 δ indicates the 

formation of E-isomer as the major product. 
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Table 4. Synthesis of Tamoxifen Analogs by Cross -McMurry coupling reaction between 

indanone derivatives and propiophenone derivatives. 

 

Entry Indanone
a
 Propiophenone

a
 Ti 

(Eq.) 

Time 

(h) 

Yield (%)
b
 

R1 R2 R 2aa-2tt 3ab-3au
c
 4bb-4uu 

1 H H 

 

3 6 10 3ab (66) 9 

2 F H 

 

3 6 12 3ac (60) 8 

3 H F 

 

3 6 8 3ad (64) 12 

4 F F 

 

3 8 12 3ae (58) 9 

5 H Cl 

 

3 8 12 3af (55) 8 

6 H H 

 

3 9 12 3ag (58) 9 

7 F H 

 

3 9 12 3ah (59) 9 

8 H F 

 

3 9 10 3ai (58) 8 

9 F F 

 

3 11 14 3aj (55) 9 

10 H Cl 

 

3 11 14 3ak (52) 9 

11 H H OH 3 4 12 3al (70) 9 
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12 F H OH 3 4 8 3am (72) 8 

13 H F OH 3 4 14 3an (70) 10 

14 F F OH 3 5 10 3ao (68) 8 

15 H Cl OH 3 5 10 3ap (67) 9 

16 H H H 3 3 14 3aq (72) 12 

17 F H H 3 3 9 3ar (74) 10 

18 H F H 3 3 12 3as (70) 9 

19 F F H 3 4 8 3at (68) 8 

20 H Cl H 3 4 9 3au (65) 10 

a
The mole ratio of  12a-12s and propiophenone derivative 13b-13e  were 1:1.5. 

b
Isolated yield. 

c
E-isomer was 

confirmed by using H
1
 NMR . 

5.3.2. Synthesis of E and Z Tamoxifen analogs of indanone. 

In table 5 compounds 4ab-4ag and 5ab-5ag were synthesized as a mixture of E and Z 

isomers which can be separated by using column chromatography and by comparing their 

spectral values in the literature. We observed that the E isomer is the major isomer with 52-

55% yields and Z isomer is the minor product with 8-10% yields in 5 h, using SnCl4: Zn (1:2 

equiv.) in indanone and propiophenone (1: 1.5 equiv.). The 
1
HNMR chemical shift (δ) 1.0-1.3 

ppm for -CH3 and 2.0-2.3 ppm for -CH2  indicated the E isomer of products 4ab-4ag  and δ 0.6-

0.7 ppm for -CH3 and 1.6-1.9 ppm for -CH2 gave the Z isomer for products 5ab-5ag. Similarly, 

13
CNMR chemical shift (δ)13-15 ppm for -CH3  and 27-28 ppm for -CH2 indicated the E 

isomer for products 4ab-4ag  and δ 10-12 ppm for -CH3 and 23-25 ppm for -CH2 gave the Z 

isomer in 5ab-5ag. Similarly, products 3ab-3au was characterized as E-isomer. The NMR 

chemical shift (δ) values of –CH2CH3 in products 3ab-3ao is matches with the 4ab-4ac (E-

isomer) and not with 5ab-5ac (Z-isomer). We were unable to isolate the Z-isomer due to close 

Rf values with other byproducts. However, the yields of Z-isomers were confirmed by GC 

analysis which is ranging between 2-5%. 

Table 5.  Synthesis of E and Z-Tamoxifen analogs of indanone. 
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Entry Indanone E-Analog Z-Analog Time (h) 

 

 

1 

  
 

 

 

5 

 

 

2 

 

 

 

 

 

5 

 

 

3 

  
 

5 

 

 

4 

 

 

 

5 
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5 

  
 

5 

 

 

6 

 

 

 

5 

 

Mole ratio of  indanone  and  propiophenone  (1:1.5) and SnCl4-Zn (1:2) 

5.3.3. Synthesis of Flavone-Estradiols adduct 

Scheme 1 and scheme 2 to shows that the Flavones-estradiol were synthesized by stile 

coupling between tin Estradiol derivatives with flavones derivatives in presence of palladium 

catalyst and 3 crystals of 2,6-dirtetbutyl-4-methyl phenol in toluene at 100-110 
0
C to gave 

products 6ab to 6ag in good yield up to 70% and reaction takes 2 days for completion. 

Scheme 1. Synthesis of Flavone-Estradiols adduct by coupling at alpha to the carbonyl 

 

 

Scheme 2. Synthesis of flavone-Estradiols adduct by coupling at benzene ring 
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5.3.4. Pharmacology 

Anticancer evaluation 

The antiproliferative activities of all synthesized conjugate were determined against the 

human cervical cancer cell line HeLa and estrogen-responsive breast cancer cell lines MCF-7, 

as well as the estrogen-independent breast cancer cell line MDA-MB-231, using the MTT 

assay and the corresponding inhibitory concentration 50% (IC50s) value are enlisted in Table 6.  

As evident from Table 6 and Figure 1, For a preliminary SAR evaluation, the series of 

synthesized compounds (3ab to 3ao) was first evaluated against HeLa and MCF-7 & MDA-

MB-231 to investigate the effect of halogen, hydroxyl substituent on indanone moiety and side 

chain  2-methoxy-N,N-dimethylethanamine and 1-(2-methoxyethyl)piperidine on 

propiophenone moiety. The IC50 (half maximal inhibitory concentration) values of these 

compounds were determine as a measure of their respective cytotoxicity and are tabulated in 

Table 6.  The compounds 3ac, 3ad, 3ae, 3ao having R1, R2 = fluoro substituent and the R= 2-

methoxy-N,N-dimethylethanamine and hydroxyl group shows high activity as standard drug 

doxorubicin against Human cervical cancer cell line (HeLa) and Human Breast cancer cell 

lines (MCF-7 & MDA-MB-231). 

Among this series the compound 3ab with R1, R2 = H and R= 2-methoxy-N, N-

dimethylethanamine shows weak activity comparable to standard drug but by introducing the 

fluoro substituent on indanone moiety and 2-methoxy-N, N-dimethylethanamine on 

propiophenone moiety in compounds 3ac, showed the highest antiproliferative potency with 

IC50 values of 02.56 ± 0.028μM, 03.62 ± 0.219μM & 02.94 ± 0.084μM against HELA, MCF-7 
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& MDA-MB-231 cell line, respectively than the drug doxorubicin. Similarly in compounds 3ad 

& 3ae showed equally antiproliferative activity to standard drug having IC50 values of 02.56 ± 

0.028 µm, 03.57 ± 0.014µm, 03.62 ± 0.219µm, 3.26 ± 0.120µm and 02.94 ± 0.084µm, 03.05 ± 

0.215µm respectively. In compounds 3af having chloro substituent and 2-methoxy-N,N-

dimethylethanamine side chain showed comparable antiproliferative potency to drug 

doxorubicin with IC50 values 06.65 ± 0.197µm, 08.81 ± 0.176µm, 07.48 ± 0.283µm against 

HELA, MCF-7 & MDA-MB-231 respectively. Also the conjugate 3ao with R=OH   and R1, R2 

= F   showed most antiproliferative potency having IC50 values 02.88 ± 0.021µm, 02.24 ± 

0.176µm, 02.13 ± 0.134 µm respectively. 

By introducing the chain from R = 2-methoxy-n, n-dimethylethanamine to R = 1-(2-

methoxyethyl) piperidine in compounds 3ag-3ak seemed to have comparable activity displayed 

IC50s in the range 4.09- 13.05µm, 8.05-14.28µm, 5.68-12.08µm against HELA, MCF-7 and 

MDA-MB-231 respectively. If we change R=OH then the compounds 3al-3ap shows moderate 

activity displayed IC50s in the range 5.05-10.75µm against HELA, 6.47-9.72µm against MCF-7 

and 5.64-8.94µm against MDA-MB-231; by replacing R = H in compounds 3aq-3au shows 

weak activity comparable to standard drug displayed IC50s in the range 9.95-27.65µm against 

HELA, 13.06-26.60µm against MCF-7 and 8.46-24.00µm against MDA-MB-231. from Table 

6 it reveals that the compounds 3ao most potent with r=OH among all the synthesized 

compounds displayed IC50s 2.88µm against HELA, 2.24µm against MCF-7 and 2.13µm and 

3ac-3ae shows equally potent as that of standard drug doxorubicin displayed IC50s in the range 

2.56-3.81µm against HELA, 2.87-3.62µm against MCF-7 and 2.94-3.26 µm against MDA-

MB-231. 

Table 6. Showing anti-proliferative data (IC50 Values in μM) of all the synthesized tamoxifen 

analog drugs and standard drug against Human cervical cancer cell line (HeLa) and Human 

Breast cancer cell lines (MCF-7& MDA-MB-231). 
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Entry DRUG R1 

 

R2 

 

R HeLa MCF-7 MDA-MB-

231 

1 3ab H H 
 

23.55± 0.070 27.80 ± 1.272 25.43 ± 0.985 

2 3ac F H 
 

02.56 ± 0.028 03.62 ± 0.219 02.94 ± 0.084 

3 3ad H F 
 

03.57 ± 0.014 03.26 ± 0.120 03.05 ± 0.215 

4 3ae F F 
 

03.81 ± 0.049 02.87 ± 0.127 03.26 ± 0.321 

5 3af H Cl 
 

06.65 ± 0.197 08.81 ± 0.176 07.48 ± 0.283 

6 3ag H H 

 

04.09 ± 0.431 11.40 ± 0.332 10.85 ± 0.535 

7 3ah F H 

 

08.69 ± 0.233 14.28 ± 0.296 12.08 ± 0.372 

8 3ai H F 

 

13.05 ± 0.070 09.78 ± 0.431 09.12 ± 0.288 

9 3aj F F 

 

06.44 ± 0.395 06.95 ± 0.342 05.68 ± 0.431 

10 3ak H Cl 

 

09.35 ± 0.827 08.05 ± 0.521 09.85 ± 0.635 

11 3al H H OH 05.31 ± 0.134 06.47 ± 0.134 06.38 ± 0.512 

12 3am F H OH 05.05 ± 0.007 07.09 ± 0.339 05.64 ± 0.186 

13 3an H F OH 10.70 ± 0.141 07.53 ± 0.509 08.94 ± 0.543 

14 3ao F F OH 02.88 ± 0.021 02.24 ± 0.176 02.13 ± 0.134 

15 3ap H Cl OH 10.75 ± 0.212 09.72 ± 0.360 08.46 ± 0.482 

16 3aq H H H 11.50 ± 0.141 13.03 ± 0.381 12.73 ± 0.736 
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17 3ar F H H 12.80 ± 0.141 11.32 ± 0.346 12.16± 0. 538 

18 3as H F H 27.65 ± 0.355 23.82 ± 0.459 20.63 ± 0.689 

19 3at F F H 26.50 ± 0.420 26.60 ± 0.989 24.00 ± 1.290 

20 3au H Cl H 09.95 ± 0.205 19.12 ± 0.459 15.39 ± 0.984 

 
Doxoru

bicin
* 

   02.33 ± 0.035 02.51 ± 0.183 02.18 ± 0.127 

 

Figure 1. In vitro anti- cancer activity of a compounds 3ab-3au against Human cervical cancer 

cell line (HeLa) and Human Breast cancer cell lines (MCF-7& MDA-MB-231) 

 

As evident from Table 7 and Figure 2, the antiproliferative activities of Flavone-Estradiol 

adduct 6ab to 6ag were determined against the human cervical cancer cell line HeLa and 

estrogen-responsive breast cancer cell lines MCF-7, as well as the estrogen-independent breast 

cancer cell line MDA-MB-231. In Flavone-Estradiol adduct 6ad, the coupling reaction took 

place at 2-position of flavones  with 4’- methoxy substituent  on the flavones moiety, showed 

greater antiproliferative activity than the standard drug doxorubicin having IC50 Values 02.42 ± 

0.226μM, 02.93 ± 0.137μM, 02.56 ± 0.322μM against MCF-7, MDA-MB-231 and HeLa, 

respectively. Also compound 6ab with 3’, 4’ 5’ - trimethoxy substituent on flavone was equally 

potent as that of doxorubicin with IC50 02.85 ± 0.165μM, 03.64 ± 0.276μM, 02.17 ± 0.183μM 

against MCF-7, MDA-MB-231 & HeLa resp. and the compound 6ae and 6ag were moderately 

active with IC50 in between 07.27 ± 0.815μM to 08.42 ± 0.563μM, rest of the compounds 6ac 

and 6af shows poor activity having IC50 more than 10.28± 0.736μM. 
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Table 7. Showing anti-proliferative data (IC50S Values in μM) of all the synthesized Flavone-

Estradiol adduct and standard drug against Human Breast cancer cell lines (MCF-7& MDA-

MB-231) and Human Cervical cancer cell line (HeLa).  

S. No. Compounds 

code 

MCF-7 MDA-MB-231 HeLa 

1 6ab 02.85 ± 0.165 03.64 ± 0.276 02.17 ± 0.183 

2 6ac 17.38± 1.212 20.52± 1.388 22.44± 1.436 

3 6ad 02.42 ± 0.226 02.93 ± 0.137 02.56 ± 0.322 

4 6ae 07.72 ± 0.628 08.42 ± 0.563 07.27 ± 0.815 

5 6af 14.15± 0.825 13.54± 1.023 11.62± 0.794 

6 6ag 09.61± 1.019 10.28± 0.736 07.40 ± 0.655 

 Doxorubicin
* 

02.70 ± 0.185 03.14 ± 0.126 02.25 ± 0.095 

 

Figure 2. In vitro anti- cancer activity of a compounds 6ab-6ag against Human cervical cancer 

cell line (HeLa) and Human Breast cancer cell lines (MCF-7& MDA-MB-231). 

 

5.4. CONCLUSION 

In conclusion, we have developed a facile one-step synthetic strategy for tamoxifen analog. 

It involves selective cross McMurry coupling between a substituted indanone and substituted 

propiophenone. These compounds were screened for their anti proliferative activity against 

human cancer cell line. (Hela, MCF-7 & MDA-MB-231).  The compounds 3ac, 3ad, 3ae,3ao 

with an optimal combination of side chain at Para position of propiophenone and fluoro 

substituent on indanone moiety displayed the best activity among the test compounds having 

IC50 = 2.13 - 3.81µm of 3ac, 3ad, 3ae & 3ao  and  rest of the compounds also shows 
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comparable activity to the standard drug doxorubicin having  IC50 < 28µm. The flavones-

Estradiol adduct 6ab and 6ad shows excellent activity having IC50 Values in μM 02.85 ± 0.165 

& 02.42 ± 0.226 and 03.64 ± 0.276, 02.93 ± 0.137 against Human Breast cancer cell lines 

(MCF-7& MDA-MB-231) and 02.17 ± 0.183, 02.56 ± 0.322 against Human cervical cancer 

cell line (HeLa) respectively and rest of the compounds also shows moderate activity to the 

standard drug doxorubicin having IC50  < 10µm. 

5.5. EXPERIMENTAL DETAILS 

5.5.1. General procedure for the synthesis of tamoxifen analog 3ab-3au/4ab-4ac & 5ab-

5ac:  

Under N2 atmosphere, a three neck flask equipped with magnetic stirrer was charged with Zn-

powder (1.5gm, 12 mmol) and 50 mL THF solvent. The mixture was cooled at 0 
0
C and SnCl4 

(2.3mL, 6 mmol) was added drop wise at 0 
0
C. The suspension was warmed to room 

temperature and stirred for 15 min and then heated at 64-66 
0
C for 1.5 h. The solution of 

solution of indanone derivative 1a-1t and propiophenone derivative 2b-2e (1:1.5 molar ratio, 2 

mmol) dissolved in THF (30 mL) was added slowly at same temperature. TLC monitoring, the 

reaction mixture was stirred at same temperature until the carbonyl compound was consumed 

in the reaction. Then, the reaction mixture was cooled and quenched with 10% aqueous 

NaHCO3 solution and extracted in EtOAc. The organic layer was washed with brine solution, 

dried with anhydrous Na2SO4 and concentrated in vacuo. The crude material was purified by 

column chromatography to give the desired products 3ab-3au/4ab-4ac & 5ab-5ac in 52-72% 

% yields. 

General procedure for the synthesis of Flavone-Estradiol adducts analog 6ab-6ag: Under 

N2- atmosphere, a four necked flask equipped with magnetic stirrer was charged with 0.11 

mmol tin derivative and 0.1 mmol flavones derivative and three crystals of 2,6-ditert butyl-4-

methylphenol dissolve in dry toluene (2 ml), flushed the reaction mixture for 10 min under 

nitrogen atmosphere. Added 6 mg of palladium catalyst again flush with N2 gas for 5 min. 

Then, the reaction mixture was stirred for 2 days at 100-110 
0
C. After completion of reaction, 

the solvent was evaporated under reduced pressure and washed with hexane to remove excess 

tin derivative. The reaction mixture was purified using silica gel column chromatography in 

20:80 ethyl acetate/hexane to obtain flavones-estradiol adduct with 60-70% yields. 

5.5.2 Spectral data
 
of indanofen derivatives 
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(E)-1-(1-(4-(2-(dimethylamino)ethoxy)phenyl)propylidene)-3-phenyl-2,3-

dihydro-1H-inden-2-ol (3ab): Light yellow semi solid; Yield: 66 %;  IR νmax 

(KBr, cm
-1

): 3452 (OH str), 2963 (aromatic C-H str), 1599 (aromatic, C=C str), 

1451, 1419, 1262, 1021, 933, 868, 799 and 704; 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 7.92 (d, J = 8 Hz, 2H), 7.83 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7 Hz, 1H), 

7.49-7.45 (m, 2H), 7.41 (dd, J = 7.5, 2.5 Hz, 2H), 7.27-7.25 (m, 2H), 6.92 (d, J = 

7.5 Hz, 2H) 4.73 (d,  J = 3.5 Hz, 1H), 4.62 (d,  J = 3.5 Hz, 1H), 4.15 (t, J = 1.5 

Hz, 2H), 2.90 (s, 6H),  2.61 (t, J = 1.5 Hz, 2H),  2.25 (q, J = 8.0, 2.0  Hz, 2H), 1.18 (t, J = 7 Hz, 

3H) 3.60 (s, br, D2O exchangeable, 1 H);  
13

C-NMR (CDCl3, 125 MHz) δ (ppm): 160.25, 

157.05, 137.76, 132.57, 132.42, 131.77, 130.65, 130.49, 130.33, 129.65, 128.97, 128.68, 

128.66, 127.05, 116.56, 116.32, 114.65, 71.65, 67.73, 61.35, 52.65, 48.35, 28.27, 14.03; MS 

(EI, 70eV): m/z  = 413 [M
+.

, C28H31NO2]; HRMS (ES-TOF) calcd for C28H31NO2 413.2355, 

found 413.2354. 

(E)-1-(1-(4-(2-(dimethylamino)ethoxy)phenyl)propylidene)-5-fluoro-3-

phenyl-2,3-dihydro-1H-inden-2-ol (3ac): Light yellow semi solid; Yield: 60 

%; IR νmax (KBr, cm
-1

): 3408 (OH str), 2917 (aromatic C-H str), 1589 

(aromatic, C=C str), 1489, 1415, 1288, 1177, 1091, 1014, 929 and 701;  
1
H-

NMR (CDCl3, 500 MHz) δ (ppm): 7.88 (t, J = 8 Hz, 2H), 7.85 (t, J = 8 Hz, 

2H), 7.55-7.49 (m, 5H), 7.41-7.39 (m, 1H),  6.86 (t, J = 7.5 Hz, 2H), 4.58 (d,  J 

= 4.0 Hz, 1H),  4.41 (d,  J = 4.5 Hz, 1H),  4.15  (t, J = 2.0  Hz, 2H),  2.90 (s, 6H), 2.62 (t,  J = 

2.0 Hz, 2H),  2.25 (q,  J = 7.0, 2.5 Hz, 2H) 1.18 (t, J = 7.0 Hz, 3H), 3.42 (s, br, D2O 

exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 159.68, 158.55, 157.11, 137.93, 132.55, 

132.49, 131.65, 130.97, 130.77, 130.68, 129.65, 128.49, 128.47, 128.05, 127.66, 116.05, 

114.11, 71.75, 67.72, 61.55, 52.11, 47.32, 26.05, 12.98; MS (EI, 70eV): m/z (%) = 431[M
+.

, 

C28H30FNO2]; HRMS (ES-TOF) calcd for C28H30FNO2 431.2261, found 431.2259 

(E)-1-(1-(4-(2-(dimethylamino)ethoxy)phenyl)propylidene)-3-(4-fluorophenyl)-2,3-

dihydro-1H-inden-2-ol (3ad): Light yellow semi solid; Yield: 64 %; IR νmax (KBr, cm
-1

): 

3391 (OH str), 2951 (aromatic C-H str), 1577 (aromatic, C=C str), 1468, 1401, 1271, 1152, 

1084, 1002, 910 and 725;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.87 (t,  J = 7.5Hz, 2H), 

7.85 (t,  J = 7.5Hz, 2H), 7.55-7.49 (m, 5H), 7.41-7.39  (m, 1H), 6.86 (t, J = 7.5 Hz, 2H), 4.58 

(d, J = 4.0 Hz, 1H),  4.41 (d, J = 4.0 Hz, 1H),  4.14 (d,  J = 3.5 Hz, 1H), 2.90 (s, 6H), 2.62 (t, J 
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= 2.5, 2H), 2.25(q, J = 7.0, 2.5 Hz, 2H), 1.18 (t,  J = 8.0, Hz, 3H),  3.40 (s, br, D2O 

exchangeable, 1 H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 159.54, 158.66, 137.95, 

132.55, 132.49, 131.65, 130.49, 130.47, 130.05, 129.65, 128.97, 128.77, 128.68, 

127.66, 116.03, 114.05, 71.73, 67.72, 61.05, 52.32, 47.11, 26.05, 12.95; MS (EI, 

70eV): m/z (%) = 431[M
+.

, C28H30FNO2]; HRMS (ES-TOF) calcd for 

C28H30FNO2 431.2261, found 431.2259 

(E)-1-(1-(4-(2-(dimethylamino)ethoxy)phenyl)propylidene)-5-fluoro-3-(4-

fluorophenyl)-2,3-dihydro-1H-inden-2-ol (3ae): Light brown semi solid; 

Yield: 58 %; IR νmax (KBr, cm
-1

): 3426 (OH str), 2923 (aromatic C-H str), 

1591 (aromatic, C=C str), 1417, 1395, 1282, 1170, 1092; 
1
H-NMR (CDCl3, 

500 MHz) δ (ppm): 7.98 (t, J = 8.5 Hz, 2H),  7.79-7.76 (m, 2H),  7.70 (dd, J 

= 7.5, 1.5 Hz, 2H),  7.47 (dd, J = 8.5, 2.0 Hz, 1H), 7.25-7.36 (m, 2 H), 6.86 

(dd, J = 8.0, 3.0 Hz, 2H), 4.52 (d, J = 3.0, Hz, 1H),  4.44 (d,  J = 3.0 Hz, 1H),  

4.15 (t,  J = 2.0  Hz, 2H),  2.98 (s, 6H), 2.72 (t,  J = 2.0 Hz, 2H),  2.25 (q, J = 

7.0,  2.5 Hz, 2H), 1.19 (t,  J = 7 Hz, 3H),  3.52 (s, br, D2O exchangeable, 1 H); 

13
C- (CDCl3, 125 MHz) δ (ppm): 161.27, 160.55, 159.47, 158.77, 138.76, 138.54, 130.68, 

130.49, 130.05, 129.65, 128.97, 128.65, 127.66, 117.97, 117.66, 114.76, 70.72, 66.73, 61.35, 

52.32, 48.05, 26.95, 13.32; MS (EI, 70eV): m/z  = 449 [M
+.

, C28H29F2NO2]; 

HRMS (ES-TOF) calcd for C28H29F2NO2 449.2166, found 449.2168 

(E)-1-(4-chlorophenyl)-3-(1-(4-(2-(dimethylamino)ethoxy)phenyl) 

propylidene) -2,3-dihydro-1H-inden-2-ol (3af): Light brown semi solid; Yield: 

55 %; IR νmax (KBr, cm
-1

): 3449 (OH str), 2950 (aromatic C-H str), 1582 

(aromatic, C=C str), 1389, 1275, 1059, 854, 723 (C-Cl, str);  
1
H-NMR (CDCl3, 

500 MHz) δ (ppm): 8.08 (dd, J = 7.0,  2.0 Hz, 1H), 7.94 (d,  J = 8.5 Hz, 1H),  

7.83 (d, J = 8.5, Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.47(d, J = 8.5 Hz, 1 H), 7.27 (t, J = 7.0 Hz, 

2H), 7.16 (d,  J = 8.5 Hz, 1H),  6.89 (dd, J = 8.0,  2.5 Hz, 2H),  4.67 (d,  J = 3.0 Hz, 1H), 4.32 

(d, J = 3.0 Hz, 1H), 3.94 (d, J = 2.5 Hz, 2H),  3.00 (s, 6H),  2.81(t,  J = 3.0 Hz, 2H),  2.26 (q,  J 

= 8.0, 3.0 Hz, 2H,), 1.08 (t, J = 8.0 Hz, 3H),  3.41 (s, br, D2O exchangeable, 1 H); 
13

C- (CDCl3, 

125 MHz) δ (ppm): 159.55, 157.27, 137.76, 132.54, 132.47, 131.77, 130.65, 130.49, 130.05, 

129.65, 128.97, 128.68, 128.66, 127.03, 117.95, 115.76, 71.72, 67.73, 61.35, 52.32, 48.97, 
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28.95, 14.05; MS (EI, 70eV): m/z (%) = 447[M
+.

, C28H30ClNO2], 449[M
+2

]; HRMS (ES-

TOF) calcd for C28H30ClNO2 447.1965, found 447.1967. 

(E)-1-phenyl-3-(1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propylidene)-2,3-

dihydro-1H-inden-2-ol (3ag):Light yellow semi solid; Yield: 58 %; IR νmax 

(KBr, cm
-1

): 3420 (OH str), 2959, 2869 (aromatic C-H str), 1583 (aromatic, C=C 

str), 1253, 1063, 835; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.91(d,  J = 8.0 Hz, 

2H), 7.83 (d,  J = 8.5 Hz, 2H), 7.59 (t, J = 8.5 Hz, 1H), 7.48-7.45 (m, 2H), 7.42-

7.39 (m, 2H), 7.27-7.25 (m, 2H), 6.91 (d,  J = 8.0 Hz, 2H), 5.27 (d, J = 2.0 Hz, 1 

H), 5.12 (d,  J = 2.0 Hz, 1H),  4.14 (t,  J = 2.5 Hz, 2H), 2.92 (m, 2H), 2.76 (t, J = 6.0 Hz, 2H),  

2.49 (s, 4H), 1.59 (q, J = 7.5, 3.0 Hz, 2H), 1.44 (t, J = 6.0 Hz, 2H), 1.18 (t, J = 8.0 Hz, 3H), 

3.85 (s, br, D2O exchangeable, 1 H), 
13

C- (CDCl3, 125 MHz) δ (ppm): 158.27, 153.65, 137.77, 

132.54, 132.47, 131.77, 130.65, 130.49, 130.05, 129.65, 128.97, 128.68, 128.66, 127.03, 

118.95, 117.66, 117.05, 115.65, 76.16, 74.32, 63.73, 58.79, 56.95, 28.15, 26.97, 25.04, 13.05; 

MS (EI, 70eV): m/z  = 453[M
+.

, C31H35NO2]; HRMS (ES-TOF) calcd for C32H35NO2 

453.2668, found 453.2666. 

(E)-5-fluoro-3-phenyl-1-(1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propylidene)-

2,3-dihydro-1H-inden-2-ol (3ah): Light brown semi solid; Yield: 59 %; IR νmax 

(KBr, cm
-1

): 3415 (OH str), 2931, 2873 (aromatic C-H str), 1597 (aromatic, C=C 

str), 1263, 1081, 860, 737; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.88-7.84 (m, 

4H), 7.55-7.49 (m, 4H), 7.42-7.26 (m, 2H), 6.87 (t,  J = 7.5 Hz, 2H),  4.68  (d,  J 

= 3.5 Hz, 1H), 4.51 (d,  J = 3.0 Hz, 1H), 3.83 (d, J = 3.0 Hz, 2H), 3.84-3.80 (m, 2 

H), 2.77 (t,  J = 4.0 Hz, 2H),  2.39-2.36 (m, 4H), 1.49 (q,  J = 7.5, 1.5 Hz, 2H), 1.14 (t, J = 6 

Hz, 4H ), 0.97 (t,  J = 7.5 Hz, 3H),  3.83(s, br, D2O exchangeable, 1H),  
13

C- (CDCl3, 125 

MHz) δ (ppm): 161.15, 157.78, 153.62, 137.47, 132.74, 132.57, 131.65, 130.79, 130.45, 

130.05, 129.79, 128.93, 128.68, 128.66, 127.05, 117.00, 116.65, 116.08, 76.32, 74.16, 64.75, 

58.93, 56.70, 27.79, 26.95, 25.43, 14.55; MS (EI, 70eV): m/z (%) = 471[M
+.

, C31H34FNO2]; 

HRMS (ES-TOF) calcd for C31H34FNO2 471.2574, found 471.2571. 

(E)-1-(4-fluorophenyl)-3-(1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propylidene)-2,3-dihydro-

1H-inden-2-ol (3ai): Light yellow semi solid; Yield: 58 %; IR νmax (KBr, cm
-1

): 3429 (OH 

str), 2951, 2880 (aromatic C-H str), 1607 (aromatic, C=C str), 1271, 1107, 843, 729;  
1
H-NMR 

(CDCl3, 500 MHz) δ (ppm): 7.89-7.85 (m, 4H), 7.56-7.50 (m, 4H), 7.41-7.39 (m, 2H),  6.87 
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(t,  J = 7.5 Hz, 2H), 4.67 (d, J = 3.5 Hz, 1H), 4.50 (d, J = 4.0 Hz, H), 3.74 (t,  J = 6.5 Hz, 2H), 

3.85-3.80 (m, 2 H),  2.76 (t, J = 6.0 Hz, 2H),  2.40-2.39 (m, 4H), 1.48 (q,  J = 8.0, 

2.5 Hz, 2H), 1.14(t, J = 6.0 Hz, 4H), 0.97(t, J = 7.5 Hz, 3H), 3.45 (s, br, D2O 

exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 161.15, 157.62, 

153.78,137.47, 132.74, 132.57, 131.65, 130.93, 130.68, 130.66, 129.79, 128.45, 

128.16, 127.05, 117.00, 116.65, 116.05, 76.32, 74.08, 64.75, 58.93, 56.70, 27.87, 

26.95, 25.79, 14.43; MS (EI, 70eV): m/z (%) = 471[M
+.

, C31H34FNO2]; HRMS 

(ES-TOF) calcd for C31H34FNO2 471.2574, found 471.2571. 

(E)-5-fluoro-3-(4-fluorophenyl)-1-(1-(4-(2-(piperidin-1-yl)ethoxy) phenyl) 

propylidene)-2,3-dihydro-1H-inden-2-ol (3aj): Light yellow semi solid; Yield: 

55%; IR νmax (KBr, cm
-1

): 3382 (OH str), 2992, 2886 (aromatic C-H str), 1620 

(aromatic, C=C str), 1262, 1095, 860, 743;  
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 8.05 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 

1H), 7.53 (d, J = 8.5 Hz, 2H), 7.47(d, J = 8.5 Hz, 2H), 7.28 (t, J = 8.5 Hz, 2H), 

7.16 (d,  J = 8.5 Hz, 1H),  6.94 (d,  J = 8.5 Hz, 2H),  4.98 (d,  J = 3.5 Hz, 1H), 

4.71 (d,  J = 4.0 Hz, 1H),  3.94 (t, J = 6.0 Hz, 1H),  3.04-3.00 (m,  2H),  2.96 (t,  J = 6.0 Hz, 

2H), 2.49-2.48 (m, 2H), 1.69 (q,  J = 1.0, 7.5 Hz, 4H), 1.44 (t, J = 8.5 Hz, 3H), 4.42 (s, br, D2O 

exchangeable, 1 H); 
13

C- (CDCl3, 125 MHz) δ (ppm):161.25, 160.57, 159.44, 158.76, 138.77, 

138.57, 130.68, 130.49, 130.25, 129.65, 128.97, 128.65, 127.66, 117.97, 117.67, 114.76, 73.32, 

70.72, 66.73, 61.35, 51.32, 30.09, 27.15, 26.09, 13.05; MS (EI, 70eV): m/z (%) = 489[M
+.

, 

C31H33F2NO2]; HRMS (ES-TOF) calcd for C31H33F2NO2 489.2479, found 489.2477. 

(E)-1-(4-chlorophenyl)-3-(1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)propylidene)-2,3-dihydro-

1H-inden-2-ol (3ak): Light yellow semi solid; Yield: 52 %; IR νmax (KBr, cm
-1

): 

3440 (OH str), 2920 (aromatic C-H str), 1592 (aromatic, C=C str), 1406, 1336, 

1233, 1125(C-O-C, str), 1091, 771 (C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz) δ 

(ppm): 7.92 (d, J = 7.0 Hz, 2H), 7.83 (d, J = 7.5 Hz, 2H), 7.59 (d,  J = 7.0 Hz, 

1H), 7.48-7.45 (m, 1H), 7.41(dd, J = 7.0, 2.5 Hz, 1H), 7.27-7.25 (m, 2H),  6.91 

(d, J = 7.5 Hz, 1H),  5.27 (d, J = 2.0 Hz, 1H), 5.12 (d, J = 3.0 Hz, 1H), 4.14 (t, J 

= 3.0 Hz, 2H), 2.94-2.90 (m, 2H),  2.77 (t, J=6.0 Hz, 2H),  2.49-2.47 (m, 4H), 

1.59 (q,  J = 7.0, 2.0 Hz, 2H), 1.44 (t, J = 6.0 Hz, 4H), 1.19 (t, J = 7.0 Hz, 3H),  3.70 (s, br, D2O 

exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 157.78, 153.62, 137.74, 132.57, 132.47, 
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131.79, 130.65, 130.45, 130.05, 129.63, 128.79, 128.68, 128.66, 127.05, 118.96, 117.65, 

117.05, 115.66, 76.13, 74.32, 64.73, 58.90, 56.75, 27.95, 26.79, 25.45, 14.35; MS (EI, 70eV): 

m/z (%) = 487[M
+.

, C31H34ClNO2], 489[M
+2

]; HRMS (ES-TOF) calcd for C24H20F2O 

487.2278, found 487.2276. 

(E)-1-(1-(4-hydroxyphenyl) propylidene)-3-phenyl-2,3-dihydro-1H-inden-2-

ol (3al): Light brown semi solid; Yield: 70%; IR νmax (KBr, cm
-1

): 3429 (OH 

str), 2951, 2880 (aromatic C-H str), 1607 (aromatic, C=C str), 1271, 1107, 843, 

729;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.11(dd, J = 8.5, 2.0 Hz, 2H), 7.94 

(d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.47(d, J = 

8.5 Hz, 1H), 7.27 (t, J = 8.0 Hz, 2H), 7.16 (d,  J = 8.5 Hz, 2H),  6.88 (dd, J = 8.0, 2.0 Hz, 2H), 

4.67 (d, J = 4.0 Hz, 1H), 4.20 (d, J = 4.0 Hz, 1H),  2.19 (q,  J = 2.0, 8.0 Hz, 2H),  1.10 (t,  J = 

8.0 Hz, 3H),  3.68 (s, br, D2O exchangeable, 1H); 1.56 (s, br, D2O exchangeable, 1H) ; 
13

C- 

(CDCl3, 125 MHz) δ (ppm):159.60, 155.65, 142.65, 141.32, 138.52, 131.66, 130.97, 130.68, 

129.97, 129.58, 128.68, 127.97, 126.68, 121.97, 121.68, 116.66, 115.32, 71.08, 51.68, 26.12, 

13.03; MS (EI, 70eV): m/z (%) = 342[M
+.

, C24H22O2]; HRMS (ES-TOF) calcd for C24H22O2 

342.1620 [M+H]
+
, found 342.1617. 

(E)-5-fluoro-1-(1-(4-hydroxyphenyl)propylidene)-3-phenyl-2,3-dihydro-1H-

inden-2-ol (3am): Light brown semi solid; Yield: 72%; IR νmax (KBr, cm
-1

): 

3415 (OH str), 2931, 2873 (aromatic C-H str), 1597 (aromatic, C=C str), 1263, 

1081, 860, 737; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.99-7.86 (m, 2H), 

7.79-7.76 (m, 2H), 7.71 (dd, J = 1.5, 8.0 Hz, 2H), 7.49-7.44 (m, 2H), 7.34(dd,  J 

= 2.0, 8.0 Hz, 2H), 6.88 (dd, J = 2.0, 7.0 Hz, 2H), 4.49 (t, J = 3.0 Hz, 1H),  4.46 (d,  J = 3.0 Hz, 

1H),  2.29 (q, J = 2.0, 8.0 Hz, 2H), 1.28 (t, J = 8.0 Hz, 3H), 6.17 (s, br, D2O exchangeable, 1H),  

3.70 (s, br, D2O exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ (ppm):165.58, 158.32, 142.54, 

141.47, 138.35, 130.97, 130.66, 129.97, 129.68, 128.97, 127.97, 126.95, 116.66, 115.05, 

113.65, 73.05, 52.12, 28.03, 14.03; MS (EI, 70eV): m/z  = 360[M
+.

, C24H21FO2]; HRMS (ES-

TOF) calcd for C24H21FO2 360.1526, found 360.1529. 

(E)-1-(4-fluorophenyl)-3-(1-(4-hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol 

(3an): Light yellow semi solid; Yield:70%; IR νmax (KBr, cm
-1

): 3382 (OH str), 2992, 2886 

(aromatic C-H str), 1620 (aromatic, C=C str), 1262, 1095, 860, 743; 
1
H-NMR (CDCl3, 500 

MHz) δ (ppm): 7.88-7.84 (m, 4H), 7.55-7.50 (m, 4H), 7.42-7.39 (m, 2H),  6.87 (t,  J = 8.0 Hz, 
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2H),  4.88 (d, J = 3.5 Hz, 1H), 4.61 (d, J = 3.5 Hz, 1H),  2.38 (q, J = 2.0, 7.5 Hz, 2H), 1.37 (t,  J 

= 7.0 Hz, 3H),  3.65 (s, br, D2O exchangeable, 1H), 1.62 (s, br, D2O 

exchangeable, 1H), 
13

C- (CDCl3, 125 MHz) δ (ppm):162.32, 156.54, 142.47, 

141.58, 138.65, 130.97, 130.68, 129.97, 129.68, 128.68, 127.96, 126.67, 116.65, 

115.05, 113.66, 71.12, 55.08, 26.35, 14.35; MS (EI, 70eV): m/z (%) = 360[M
+.

, 

C24H21FO2]; HRMS (ES-TOF) calcd for C24H21FO2 360.1526, found 

360.1528. 

(E)-5-fluoro-3-(4-fluorophenyl)-1-(1-(4-hydroxyphenyl)propylidene)-2,3-dihydro-1H-

inden-2-ol (3ao): Light brown semi solid; Yield: 68%; IR νmax (KBr, cm
-1

): 

3405 (OH str), 2922, 2875 (aromatic C-H str), 1595 (aromatic, C=C str), 1266, 

1089, 858, 731; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.00-7.85 (m, 2H), 

7.80-7.77 (m, 2H), 7.76-7.69 (m, 2H), 7.47 (dd, J = 2.0, 8.0 Hz, 1H), 7.36 (dd, 

J = 2.0, 7.0 Hz, 2H), 6.89 (dd, J = 2.0, 8.0 Hz, 2H), 4.50 (d, J = 4.0 Hz, 1H),  

4.46 (d,  J = 3.5 Hz, 1H),  2.29 (q, J = 2.0, 8.0 Hz, 2H), 1.28 (t, J = 8.0 Hz, 3 

H), 6.10 (s, br, D2O exchangeable, 1H), 1.72 (s, br, D2O exchangeable, 1H); 
13

C- (CDCl3, 125 

MHz) δ (ppm):163.58, 158.32, 142.65, 141.47, 138.54, 130.97, 130.68, 129.97, 129.68, 

128.97, 127.68, 126.66, 116.65, 115.05, 113.66, 73.05, 52.12, 28.35, 14.59; MS (EI, 70eV): 

m/z (%) = 378[M
+.

, C24H20F2O2]; HRMS (ES-TOF) calcd for C24H20F2O2 378.1431, found 

378.1434. 

(E)-1-(4-chlorophenyl)-3-(1-(4-hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol 

(3ap): Light brown semi solid; Yield: 67%; IR νmax (KBr, cm
-1

): 3440 (OH str), 

2920 (aromatic C-H str), 1592 (aromatic, C=C str), 1406, 1336, 1233, 1091, 771 

(C-Cl, str);  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.09 (dd, J = 2.0, 7.5 Hz, 

2H), 7.94 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 

7.47 (d, J = 8.5 Hz, 1H), 7.27 (t,  J = 8.5 Hz, 1H), 7.16 (d,  J = 8.5Hz, 1H),  6.89 

(dd, J = 2.0, 8.0 Hz, 1H), 4.68 (d, J = 3.5 Hz, 1H), 4.21 (d, J = 4.5 Hz, 1H),  

2.19(q,  J = 2.0, 7.0 Hz, 2H), 1.19 (t,  J = 8.0 Hz, 3H),  3.67 (s, br, D2O exchangeable, 1H), 

1.65 (s, br, D2O exchangeable, 1H);  
13

C- (CDCl3, 125 MHz) δ (ppm):163.35, 142.68, 141.52, 

138.75, 131.52, 130.97, 130.68, 129.98, 129.65, 128.68, 127.78, 126.36, 116.62115.35, 113.66, 

70.13, 51.12, 26.66, 51.68, 15.68; MS (EI, 70eV): m/z (%) = 376[M
+.

, C24H21ClO2], 378[M
+2

]; 

HRMS (ES-TOF) calcd for C24H21ClO2 376.1230, found 376.1233. 
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(E)-1-phenyl-3-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (3aq): 

Light brown semi solid; Yield: 72%; IR νmax (KBr, cm
-1

): 3425 (OH str), 2935, 

2877 (aromatic C-H str), 1585 (aromatic, C=C str), 1266, 1088, 862, 733; 
1
H-

NMR (CDCl3, 500 MHz) δ (ppm): 7.91-7.66 (m, 4H), 7.6-7.54 (m, 1H), 7.54-

7.50 (m, 4H), 7.37-7.34 (m, 2H ), 7.33-7.32 (m, 1H ), 7.31-23 (m, 2H), 4.72 (d,  J 

= 2.0 Hz, 1H), 4.18 (d,  J = 2.0 Hz, 1H), 2.31 (q, J = 1.0, 7.5 Hz, 2H), 1.17 (t, J = 7.0 Hz, 3H ), 

3.30 (s, br, D2O exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ (ppm):157.60, 142.65, 141.32, 

138.58, 131.52, 130.97, 130.68, 129.97, 129.68, 128.68, 127.78, 126.35, 121.97, 121.68, 

116.66, 115.32, 71.12, 51.03, 26.66, 13.68; MS (EI, 70eV): m/z (%) = 326[M
+.

, C24H22O]; 

HRMS (ES-TOF) calcd for C24H22O 326.1671, found 326.1673. 

(E)-5-fluoro-3-phenyl-1-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (3ar): Light 

yellow semi solid; Yield: 74%; IR νmax (KBr, cm
-1

): 3449 (OH str), 2950 

(aromatic C-H str), 1682 (C=O str), 1582 (aromatic, C=C str), 1389, 1275, 

1059, 854; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.87-7.85 (m, 4H), 7.55-

7.49 (m, 4H), 7.41-7.39 (m, 2H), 6.87 (t,  J = 7.5 Hz, 2H), 4.58 (d, J = 3.5 Hz, 

1H), 4.31 (d, J = 4.0 Hz, 1H), 2.37 (q,  J = 2.5, 7.5 Hz, 2H), 1.38 (t,  J = 7.5 Hz, 

3H), 1.88 (s, br, D2O exchangeable, 1H);  
13

C- (CDCl3, 125 MHz) δ (ppm):160.54, 156.47, 

142.32, 141.58, 138.65, 130.97, 130.68, 129.97, 129.68, 128.66, 127.97, 126.68, 116.06, 

115.05, 113.65, 71.12, 51.08, 26.35, 13.95; MS (EI, 70eV): m/z (%) = 344[M
+.

, C24H21FO]; 

HRMS (ES-TOF) calcd for C24H21F2O 344.1576,  found 344.1574 

(E)-1-(4-fluorophenyl)-3-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (3as): Light 

yellow semi solid; Yield: 70 %; IR νmax (KBr, cm
-1

): 3439 (OH str), 2922 

(aromatic C-H str), 1670 (C=O str), 1594 (aromatic, C=C str), 1491, 1399, 1296, 

1095; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.88-7.85 (m, 4H), 7.56-7.50 (m, 

4H), 7.42-7.39 (m, 2H), 6.87 (t, J = 7.0 Hz, 2H), 4.88 (d, J = 3.5 Hz, 1H), 4.60 

(d, J = 3.5 Hz, 1H), 2.38 (q,  J = 2, 7.5 Hz, 2H), 1.38 (t, J = 6.5 Hz, 3H), 1.70 (s, 

br, D2O exchangeable, 1 H); 
13

C- (CDCl3, 125 MHz) δ (ppm):160.52, 156.44, 142.32, 141.58, 

138.65, 130.97, 130.68, 129.78, 129.68, 128.68, 127.97, 126.68, 116.66, 115.05, 113.65, 71.08, 

51.12, 26.35, 13.66; MS (EI, 70eV): m/z (%) = 344[M
+.

, C24H21FO]; HRMS (ES-TOF) calcd 

for C24H21F2O 344.1576, found 344.1574. 
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(E)-5-fluoro-3-(4-fluorophenyl)-1-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (3at): 

Light yellow semi solid; Yield: 68 %; IR νmax (KBr, cm
-1

): 3466 (OH str), 2920 

(aromatic C-H str), 1593 (aromatic, C=C str), 1398, 1281, 1095, 843; 
1
H-NMR 

(CDCl3, 500 MHz) δ (ppm): 7.99-7.86 (m, 2H), 7.80-7.76 (m, 2H), 7.71 (dd, J 

= 2.5, 8.5  Hz, 2H), 7.47 (dd,  J = 2, 7.5  Hz, 2H ), 7.37-7.34  (m, 2H), 6.89 (dd,  

J = 2.5, 7.5  Hz, 2H),  4.50 (d,  J = 4.5 Hz, 1H),  4.46 (d,  J = 4.5 Hz, 1 H),  2.29 

(q,  J = 2, 8  Hz, 2H), 1.28(t,  J = 8 Hz, 3H), 3.52 (s, br, D2O exchangeable, 1 H); 
13

C- (CDCl3, 

125 MHz) δ (ppm):164.58, 160.32, 142.54, 141.47, 138.65, 130.97, 130.68, 129.97, 129.68, 

128.66, 127.97, 126.95, 116.66, 115.05, 113.65, 73.12, 52.05, 28.35, 14.95; MS (EI, 70eV): 

m/z (%) = 362[M
+.

, C24H20F2O]; HRMS (ES-TOF) calcd for C24H20F2O 362.1482, found 

362.1482. 

(E)-1-(4-chlorophenyl)-3-(1-phenylpropylidene)-2,3-dihydro-1H-inden-2-ol (3au): Light 

brown semi solid; Yield: 65 %; IR νmax (KBr, cm
-1

): 3426 (OH str), 2923 

(aromatic C-H str), 1591 (aromatic, C=C str), 1417, 1395, 1282, 1170, 1092, 757 

(C-Cl, str); 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.08 (dd, J = 2, 8 Hz, 2H), 

7.94 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 7.5  Hz, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.47 

(d, J = 8.0 Hz, 1H), 7.27(t, J = 8.0 Hz, 2H), 7.16 (d,  J = 8.0 Hz, 1H),  6.87 (dd,  

J = 2.0, 7.5 Hz, 2H), 4.68 (d,  J = 3.5 Hz, 1H), 4.21 (d,  J = 3.5 Hz, 1H), 2.19 (q, J = 2, 8 Hz, 

2H), 1.10 (t, J = 8.5 Hz, 3H), 1.60 (s, br, D2O exchangeable, 1H); 
13

C- (CDCl3, 125 MHz) δ 

(ppm):156.60, 142.32, 141.58, 138.65, 131.52, 130.97, 130.68, 129.97, 129.68, 128.68, 127.7, 

126.35, 116.66, 115.32, 113.65, 71.03, 51.12, 26.68, 13.66; MS (EI, 70eV): m/z  = 360[M
+.

, 

C24H21ClO], 362[M
+2

]; HRMS (ES-TOF) calcd for C24H21ClO 360.1281, found 360.1283. 

(E)-5-bromo-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-hydroxy 

phenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (4ab): Yellow semi solid; 

Yield: 55%; IR νmax (KBr, cm
-1

): 3453 (OH str), 2957 (aromatic C-H str), 

1587 (aromatic, C=C str), 1385, 1274, 1064, 851;  
1
H-NMR (CDCl3, 500 

MHz) δ (ppm): 7.88 (dd, J = 8.0,  2.5 Hz, 2H), 7.81 (d,  J = 8.5 Hz, 1H),  

7.69-7.59 (m, 4H), 7.35-7.32 (m, 1H), 6.95(d, J = 9 Hz, 3 H), 5.34 (s, 1H), 

4.87  (d, J = 2.0 Hz, 1H), 4.48 (d,  J = 2.0 Hz, 1H), 4.26 (t, J = 2.5 Hz, 2H), 3.52  (s, 1H), 2.74  

(s, 6H),   2.58 (t,  J = 2.5 Hz, 2H),  2.12 (q,  J = 7.5, 1.5 Hz, 2H,), 1.04 (t, J = 7.0 Hz, 3H); 
13

C- 

(CDCl3, 125 MHz) δ (ppm): 163.14, 161.127, 159.41, 157.88, 156.62, 140.112, 139.53, 
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136.28, 133.63, 131.54, 130.78, 129.62, 129.30, 124.37, 123.13, 116.12, 115.11, 73.13, 68.13, 

62.15, 52.12, 47.45, 27.45, 14.10; HRMS (ES-TOF) calcd for C28H30BrNO3 507.1409, found 

507.1407. 

(E)-5-chloro-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-hydroxy 

phenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (4ac): Yellow semi solid; 

Yield: 52%; IR νmax (KBr, cm
-1

): 3408 (OH str), 2917 (aromatic C-H str), 

1589 (aromatic, C=C str), 1489, 1415, 1288, 1177, 1091, 1014, 929 and 701;  

1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.88 (t, J = 8 Hz, 2H), 7.85 (t, J = 8 

Hz, 2H), 7.88 -7.81 (m, 3H), 7.79 – 7.61 (m, 4H),  7.59 – 7.32 (m, 1H), 6.94 

(d,  J = 8.0 Hz, 3H), 5.34 (s, 1H),  4.87 (d,  J = 2.0 Hz, 1H),  4.48  (d, J = 2.0  Hz, 1H),  4.26 (t,  

J = 2.5 Hz, 2H),  3.52 (s, 1H), 2.74 (s, 6H),  2.58 (t,  J = 2.5 Hz, 2H), 2.12 (q, J = 7.5, 1.5 Hz, 

1H),   1.04 (t, J = 7.0 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 160.07, 159.62, 144.00, 

143.57, 137.30, 136.65, 133.00, 130.92, 129.62, 129.29, 128.66, 128.07, 122.30, 117.13, 

116.93, 73.13, 66.26, 61.16, 51.79, 46.79, 31.19, 14.92; HRMS (ES-TOF) calcd for 

C28H30ClNO3 463.1914, found 463.1915. 

(E)-3-(4-(2-(dimethylamino)ethoxy)phenyl)-5-fluoro-1-(1-(4-hydroxy 

phenyl) propylidene)-2,3-dihydro-1H-inden-2-ol (4ad): Light yellow semi 

solid; Yield:52%; IR νmax (KBr, cm
-1

): 3393 (OH str), 2953 (aromatic C-H 

str), 1575 (aromatic, C=C str), 1464, 1403, 1275, 1152, 1081, 1002, 911 and 

725;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.91 – 7.64 (m, 3H), 7.63 - 7.51  

(m, 3H), 7.37 – 7.33 (m, 2H), 7.32 – 7.21 (m, 3H),  5.75 (s, 1H), 4.79 (d, J = 

2.0 Hz, 1H), 4.18 (d, J = 2.0 Hz, 1H),  4.07 (d, J = 2.5 Hz, 2H),  3.6 (s, 1H), 3.12 (s, 6H), 2.50 

(t,  J = 2.5 Hz, 2H), 2.32(q, J = 8.5, 1.5 Hz, 2H), 1.17 (t,  J = 7.0, Hz, 3H); 
13

C- (CDCl3, 125 

MHz) δ (ppm): 163.14, 161.12, 159.41, 157.87, 156.62, 140.11, 139.52, 136.27, 133.62, 

131.54, 130.77, 129.62, 129.30, 124.36, 123.12, 116.12, 115.10, 73.13, 68.12, 62.14, 52.81, 

47.45, 27.45, 14.10; HRMS (ES-TOF) calcd for C28H30FNO3 447.2210, found 447.2209. 

(E)-5-bromo-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-

2,3-dihydro-1H-inden-2-ol (4ae): Yellow semi solid; Yield: 55%; IR νmax (KBr, cm
-1

): 3359 

(OH str), 2957 (aromatic C-H str), 1572 (aromatic, C=C str), 1458, 1412, 1278, 1156, 1088, 

1013, 915 and 732;  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 8.03 (d,  J = 8.0 Hz, 3H), 7.82 (d,  

J = 7.0 Hz, 2H), 7.76 (dd,  J = 2.0, 7.0  Hz, 4H), 7.49 (  d, J = 9.0 Hz, 1H),7.12 (t, J = 7.5 Hz, 
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3H), 5.56  (s, 1H), 4.75 (d, J = 2.0 Hz, 1H),  4.36 (d, J = 2.0 Hz, 1H),  4.14 (t, J = 2.5 Hz, 2H), 

3.75 (s, 1H), 3.05(t, J = 2.5, 2H), 2.65(t, J = 3.0 Hz, 4H), 2.33 (q,  J = 1.5, 

9.0 Hz, 2H),  1.64-1.61 (m, 2 H), 1.51 (t, ,  J = 2.5 Hz, 2H ), 1.02 (t, ,  J = 

8.0 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 161.13, 157.13, 156.41, 

142.62, 140.10, 139.54, 136.27, 133.63, 131.54, 130.78, 129.62, 129.30, 

122.37, 122.13, 116.19, 115.19, 73.13, 69.15, 58.10, 57.45, 52.81, 29.17, 

25.14, 23.10, 12.56; HRMS (ES-TOF) calcd for C31H34BrNO3 547.1722, found 547.1724. 

(E)-5-chloro-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-

2,3-dihydro-1H-inden-2-ol (4af): Brown semi solid; Yield: 55%; IR νmax 

(KBr, cm
-1

): 3419 (OH str), 2933, 2879 (aromatic C-H str), 1598 (aromatic, 

C=C str), 1262, 1083, 862, 739; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 

7.96 (t,  J = 9.0 Hz, 2H),   7.55-7.47 (m, 4H), 7.45-7.39 (m, 3H), 6.99-6.97 

(m, 2H), 5.77 (s, 1H),  4.64  (d,  J = 2.0 Hz, 1H), 4.21 (d,  J = 2.0 Hz, 1H), 

4.04 (t, J = 2.5 Hz, 2H), 3.75 (s, 1 H), 2.95 (t,  J = 2.5 Hz, 2H), 2.58 (t,  J = 2.5 Hz, 4H),    2.35 

(q,  J = 7.0, 1.5 Hz, 2H), 1.48 (t, J = 2.5 Hz, 4H ), 1.01 (t,  J = 7.5 Hz, 3H); 
13

C- (CDCl3, 125 

MHz) δ (ppm): 160.12, 158.41, 144.87, 144.62, 140.10, 139.54, 136.27, 133.63, 131.54, 

130.78, 129.62, 124.37, 124.13, 117.69, 117.19, 73.15, 69.13, 58.10, 57.45, 52.81, 27.17, 

25.14, 23.10, 13.13; HRMS (ES-TOF) calcd for C31H34ClNO3 503.2227, found 503.2227. 

(E)-5-fluoro-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-

yl)ethoxy)phenyl)-2,3-dihydro-1H-inden-2-ol (4ag): Yellow semi solid; 

Yield: 52%; IR νmax (KBr, cm
-1

): 3438 (OH str), 2953, 2882 (aromatic C-H 

str), 1609 (aromatic, C=C str), 1271, 1107, 846, 729;  
1
H-NMR (CDCl3, 500 

MHz) δ (ppm): 8.02 (d, J = 8.0 Hz, 2H), 7.77 (t, J = 7.0 Hz, 2H), 7.61 (t,  J 

= 7.0 Hz, 3H), 7.48 (d,  J = 8.0 Hz, 1H),  7.13 (t,  J = 8.0 Hz, 3H), 5.55 (s, 

1H), 4.74 (d, J = 2.0 Hz, 1H), 4.36 (d, J = 2.0 Hz, 1H), 4.14 (t, J = 2.5 Hz, 2H), 3.75 (s, 1H), 

3.048 (t, J = 2.5 Hz, 2H),  2.65 (t, J = 2.5 Hz, 4H), 2.33 (q, J = 2.5, 7.5 Hz, 2H), 1.65 – 161 (m, 

2H), 1.51 (t,  J = 2.5 Hz, 4H), 1.02 (t, J = 8.0 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 

161.12, 157.12, 156.41, 142.62, 140.10, 139.54, 136.27, 133.63, 131.54, 130.78, 129.62, 

129.30, 122.37, 122.13, 116.19, 115.19, 73.13, 69.15, 58.10, 57.45, 52.81,27.17, 25.14, 23.10, 

12.55; HRMS (ES-TOF) calcd for C31H34FNO3 487.2523, found 487.2524. 
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(Z)-5-bromo-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-

hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (5ab): Brown 

semi solid; Yield: 8%; IR νmax (KBr, cm
-1

): 3415 (OH str), 2934, 2875 

(aromatic C-H str), 1599 (aromatic, C=C str), 1267, 1085, 865, 635; 
1
H-

NMR (CDCl3, 500 MHz) δ (ppm): 7.89-7.69 (m, 4H), 7.55-7.48 (m, 2H), 

6.97-6.81(m, 5H), 4.69 (d,  J = 2.5 Hz, 2H),  4.28  (d,  J = 2.5 Hz, 2H), 4.27 (t,  J = 2.5 Hz, 

2H), 2.93 (s, 6H), 2.87 (t,  J = 2.5 Hz, 2H),  1.78 (q,  J = 8.0, 2.5 Hz, 2H), 0.67 (t, J = 7 Hz, 3H 

); 
13

C- (CDCl3, 125 MHz) δ (ppm): 163.14, 161.22, 159.42, 157.87, 156.62, 140.12, 139.53, 

136.27, 133.63, 132.54, 130.77, 129.62, 129.30, 124.37, 123.13, 116.12, 115.10, 71.14, 66.13, 

60.13, 50.17, 46.45, 25.45, 12.20; HRMS (ES-TOF) calcd for C28H30BrNO3 507.1409, found 

507.1407. 

(Z)-5-chloro-3-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(1-(4-

hydroxyphenyl)propylidene)-2,3-dihydro-1H-inden-2-ol (5ac): Brown 

semi solid; Yield: 10%; IR νmax (KBr, cm
-1

): 3451 (OH str), 2955 

(aromatic C-H str), 1584 (aromatic, C=C str), 1387, 1275, 1062, 855, 725 

(C-Cl, str);  
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.90 -7.85  (m, 2H), 

7.54 – 7.59 (m, 2H), 7.10 – 7.03 (m, 3H), 7.00- 6.93 (m, 4H),  5.52 (s, 1H),  4.52 (d, J = 2.0 

Hz, 1H), 4.18 (d, J = 2.0 Hz, 1H), 4.06 (t,  J = 2.5 Hz, 2H),  3.50 (s, 1H), 2.86 (s, 6H), 2.63 (t, J 

= 2.5 Hz, 2 H), 1.67 (q, J = 1.5, 7.5  Hz, 2H), 0.67 (t, J = 6.5 Hz, 3H); 
13

C- (CDCl3, 125 MHz) 

δ (ppm): 160.12, 159.62, 159.29, 144.01, 143.62, 137.12, 136.65, 133.09, 130.92, 129.87, 

129.29, 128.66, 128.07, 122.30, 117.29, 116.93, 72.33, 65.26, 61.17, 51.76, 45.69, 26.31, 

11.92; HRMS (ES-TOF) calcd for C28H30ClNO3 463.1914, found 463.1912. 

(Z)-3-(4-(2-(dimethylamino)ethoxy)phenyl)-5-fluoro-1-(1-(4-hydroxyphenyl)propylidene)-

2,3-dihydro-1H-inden-2-ol (5ad): Brown semi solid; Yield: 9%; IR νmax 

(KBr, cm
-1

): 3382 (OH str), 2992, 2886 (aromatic C-H str), 1620 (aromatic, 

C=C str), 1262, 1095, 860, 743; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 

7.91 – 7.71 (m, 4H), 7.70-7.42 (m, 4H), 6.96 (t,  J = 8.5 Hz, 1H),  6.86 (t, J 

= 8.5 Hz, 2H), 5.29 (s, 1H), 4.50 (d, J = 2.0 Hz, 1H), 4.18 (d, J = 2.0 Hz, 

1H), 4.03 (t, J = 2.5 Hz, 2H), 3.39 (s, 1H), 2.78 (s, 6H), 2.66 (t, J = 2.5 Hz, 

2H),  1.78 (q, J = 2.5, 6.0 Hz, 2H), 0.68 (t,  J = 6.5 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ 

(ppm):163.14, 161.12, 159.41, 157.87, 156.62, 140.11, 139.52, 136.27, 133.62, 131.54, 
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130.77, 129.62, 129.30, 124.36, 123.12, 116.17, 115.10, 71.13, 66.12, 60.13, 50.17, 46.45, 

25.45, 12.10; HRMS (ES-TOF) calcd for C28H30FNO3 447.2210, found 447.2209.. 

(Z)-5-bromo-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-

yl)ethoxy)phenyl)-2,3-dihydro-1H-inden-2-ol (5ae): Light yellow semi 

solid; Yield:10 %; IR νmax (KBr, cm
-1

): 3444 (OH str), 2922 (aromatic C-

H str), 1595 (aromatic, C=C str), 1418, 1328, 1235, 1129(C-O-C, str), 

1091; 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.91-7.86 (m, 3H), 7.71-

7.51 (m, 1H), 7.49-7.26 (t,  J = 8.0 Hz, 4H), 7.12-6.85 (m, 4H), 5.59(s, 1H), 4.59 (d, J = 2.0 

Hz, 1H),  4.18 (d, J = 2.0 Hz, 1H), 2.98 (t, J = 2.5 Hz, 2H), 2.87(t, J = 2.5 Hz, 4H), 4.02 (t, J = 

2.5 Hz, 2H),  1.87 (q,  J = 1.5, 8.0 Hz, 2H), 1.34 (t, J = 2.5 Hz, 2H), 1.26 (t, J = 2.5 Hz, 4H),  

0.78  (t, J = 7.0 Hz, 3H)); 
13

C- (CDCl3, 125 MHz) δ (ppm): 161.124, 157.13, 156.41, 142.63, 

140.10, 139.54, 136.27, 133.63, 131.54, 130.77, 129.62, 129.30, 122.36, 122.12, 116.19, 

115.19, 73.11, 69.15, 58.48, 57.55, 52.81, 25.25, 23.14, 21.30, 10.77; HRMS (ES-TOF) calcd 

for C31H34BrNO3 547.1722, found 547.1724. 

(Z)-5-chloro-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-

yl)ethoxy)phenyl)-2,3-dihydro-1H-inden-2-ol (5af): Light yellow semi 

solid; Yield: 8%; IR νmax (KBr, cm
-1

): 3431 (OH str), 2951, 2880 (aromatic 

C-H str), 1608 (aromatic, C=C str), 1271, 1109, 843, 729;  
1
H-NMR 

(CDCl3, 500 MHz) δ (ppm): 7.87 (t,  J = 8.0 Hz, 3H), 7.52-7.11 (m, 3H), 

7.01-6.92 (m, 5H), 5.61 (s, 1H),  4.67 (d,  J = 2.0 Hz, 1H), 4.23 (d, J = 2.0 Hz, 1H), 4.11 (t, J = 

2.5 Hz, 2H), 2.67-2.52  (m, 6 H),  1.86 (q,  J = 8.5, 1.5 Hz, 2H), 1.49-1.25 (m, 6H), 0.68 (t, J = 

7.0 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 160.12, 158.41, 144.87, 144.67, 140.10, 

139.54, 136.22, 133.62, 131.50, 130.77, 129.64, 129.32, 124.36, 123.12, 117.69, 117.10, 73.19, 

69.13, 58.10, 57.44, 52.85, 25.67, 23.83, 21.14, 11.10; HRMS (ES-TOF) calcd for 

C31H34ClNO3 503.2227, found 503.2228. 

(Z)-5-fluoro-1-(1-(4-hydroxyphenyl)propylidene)-3-(4-(2-(piperidin-1-

yl)ethoxy)phenyl)-2,3-dihydro-1H-inden-2-ol (5ag): Light yellow semi 

solid; Yield: 10%; IR νmax (KBr, cm
-1

): 3440 (OH str), 2920 (aromatic C-H 

str), 1592 (aromatic, C=C str), 1408, 1338, 1231, 1125(C-O-C, str), 1091, 

650 (C-F, str); 
1
H-NMR (CDCl3, 500 MHz) δ (ppm): 7.91-7.18 (m, 3H), 

7.70-7.42 (m, 4H), 6.96 (t, J = 8 Hz, 1H), 6.86 (t,  J = 8.0 Hz, 3H), 5.59 (s, 1H), 4.59 (d, J = 2 
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Hz, 1H),  4.18 (d, J = 2.0 Hz, 1H), 4.03 (t, J = 2.5 Hz, 3H), 3.45 (s, 1H), 2.98 (t, J=2.5 Hz, 2H),  

2.87 (t, J = 2.5 Hz , 4H), 1.87 (q,  J = 8.0, 1.0 Hz, 2H), 1.34 (t, J = 2.5 Hz, 4H), 1.26 (t, J = 2.5 

Hz, 4H), 0.78 (t, J = 7.0 Hz, 3H); 
13

C- (CDCl3, 125 MHz) δ (ppm): 161.12, 157.13, 156.41, 

142.62, 140.10, 139.54, 136.27, 133.62, 131.55, 130.77, 129.62, 129.30, 122.36, 122.12, 

116.19, 115.19, 73.10, 69.14, 58.45, 57.55, 52.81, 25.25, 23.14, 21.30, 10.77; HRMS (ES-

TOF) calcd for C31H34FNO3 487.2523, found 487.2525. 

(E)-6-(2-(3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-yl)vinyl)-2-(4-

methoxyphenyl)-4H-chromen-4-one (6ac): Cream color solid, yield: 

70%, 
1
H NMR(CDCl3, 500 MHz):  8.26 (s, 1H), 7.87 (d, J = 7Hz, 

2H), 7.70 (d, J= 8.5Hz, 1H), 7.50 (d, J = 8.5Hz, 2H), 7.08 (d, J = 

8.5Hz, 1H), 7.01 (d, J = 8.5Hz, 2H), 6.76 (s, 1H), 6.69-6.59 (m, 3H), 3.88 ( s, 3H), 3.70 (s, br, 

D2O exchangeable, 1H, OH ), 2.83-2.80 (m, 2H), 2.24-1.54 (m, 13H), 1.01 (s, 3H); HRMS 

(ES-TOF) calcd for C36H36NaO5 (M+Na) 571.2460, found 571.2481. 

(E)-3-(2-(3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-yl)vinyl)-2-(4-

methoxyphenyl)-4H-chromen-4-one (6ad): Cream color solid, yield: 

65%, 
1
H NMR(CDCl3, 500 MHz):  8.26 (s, 1H), 7.87 (d, J = 7Hz, 

2H), 7.70 (d, J= 8.5Hz, 1H), 7.50 (d, J = 8.5Hz, 2H), 7.08 (d, J = 

8.5Hz, 1H), 7.01 (d, J = 8.5Hz, 2H), 6.76 (s, 1H), 6.69-6.59 (m, 3H), 3.88 ( s, 3H), 3.70 (s, br, 

D2O exchangeable, 1H, OH ), 2.83-2.80 (m, 2H), 2.24-1.54 (m, 13H), 1.01 (s, 3H). IR νmax 

(KBr, cm
-1

):  3650, 3501, 1682, 1400, 1215, 1034; HRMS (ES-TOF) calcd for C36H36NaO5 

(M+Na) 571.2460, found 571.2481. 
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SeO2 in water: A mild and efficient promoter for deprotection of acetyl, methoxymethyl 

and tetrahydropyranyl ethers and sequel oxidation of carbonyl carbons 

6.1. INTRODUCTION    

 Protection and deprotection of the functional groups is the most frequent used strategies in 

the multi-steps organic syntheses. In particular, the protection and the deprotection of hydroxyl 

and phenolic groups is extremely important because of its presence of a number of compounds 

of natural products, biological and synthetic compounds such as carbohydrates, macrolides, 

peptides, steroids, nucleotides and polyethers.[1] The protection of hydroxyl groups with 3,4-

dihydro-2H-pyran (DHP) is the most common method because of the stability of the product, 

2-tetrahydropyranyl ethers (THPEs) in the strong basic conditions such as Grignard reagents, 

organolithium, metal hydrides, catalytic hydrogenation, alkylating and acylating conditions.[2]  

Similarly, methoxymethyl chloride (MOMCl) and acetyl chloride/acetic anhydride 

(CH3COCl/Ac2O) reagents are used for the hydroxyl and phenolic groups protection.[3]  

Deprotection of these groups (Acetyl, THP and MOM ethers) therefore required efficient 

methods to avoid the product decomposition and/or loss of other functional groups in the 

molecules. Several catalytic methods have been explored for the selective deacetylation of 

alcohols and phenols under acidic and basic conditions. For example, the deprotection of 

acetates such as NaOMe,[4a]
 
micelles,[4b]

 
Zn-MeOH,[4c] Cyclodextrins,[4d] enzymes,[4e] 

mettallo-enzyme,[4f] metal complexes,[4g] and antibodies,[4h] montmorillonite k-10,[4i] 

I2,[4j] NaBO3,[4k] and HCOONH4-SiO2,[4l] for the detetrahydropyranylation include protic 

acids,[5a-d] Lewis acids like BF3-etherate,[5e] LiBr,[5f] LiBF4,[5g] LiOTf,[5h] LiClO4,[5i]
 

Sc(OTf)3,[5j] In(OTf)3,[5k] I2,[5l] InCl3,[5m] ZrCl4,[5n] CuCl2,[5o] NH4Cl,[5p] graphite,[5q]
 

clay materials,[5r]
 

silica-supported sulfuric acid,[5s]
 

electrogenerated acids,[5t]
  

bis(trimethylsylyl)sulphate,[5u] Distannoxane,[5v] triphenylphosphine dibromide,[5w] 

DDQ,[5x] and heteropoly acids.[5y]
 
Similarly, for the demethoxymethylation include HCl,[6a]

 

BBr3,[6b] pyridinium p-toluene sulphonate under strong acidic condition,[6c] ZnBr2 and TiCl4 

in aprotic solvents,[6d] Me2BBr[6e] and (i-PrS)2BBr.[6f] Most of these methods have one or 

other drawbacks such as long reaction time, low yields, reflux at high temperature and tedious 

workup procedures.[7] Hence, there is still scope to develop mild and efficient methods in the 

deacetylation, detetrahydropyranylation and demethoxymethylation of hydroxyl of alcoholic 

and phenolic groups.   
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In the alpha carbonyl carbon (active methyl and methylene) oxidation to dicarbonyl 

molecule, various reagents and  reaction conditions have been explored that include ammonium 

chlorochromate,[8a] I2,[8b] CrO3-NH4Cl,[8c] HBr,[8d] MeSSMe-CuCl2-CuO,[8e] 

Cu(OAc)2.H2O,[8f] P-Me-sulphonic acid,[8g] SeO2-DMSO,[8h] KI+O2-t-BuNH2.[8i]
  

However, SeO2 is not reported for one-pot deprotection and alpha carbonyl carbons oxidation 

in eco-friendly environment. In continuation of our interest [9]
 
to develop new methods for the 

organic synthesis, herein, we report an efficient green protocol of deprotection of acetyl, 

tetrahydropyranyl and methoxymethyl ethers and sequel oxidation of alpha carbonyl carbons to 

dicarbonyl group using SeO2 in water as a novel reagent.  

6.2. OBJECTIVE 

Protection and deprotection is a most common conversion in multi step organic synthesis. 

The MOM, THP ethers and esters of hydroxyl group is a very frequently used strategy. These 

methods are attractive because they are easy to deprotect and stable enough in basic media and 

reaction involving acylating agent like Grignard, lithium alkyl. As a part of ongoing research 

program to developed the methods for the deprotection, our goal is to developed cheap, 

inexpensive, green protocol for the deprotection of hydroxyl group and we observed that the 

SeO2-water system provided an efficient one-pot green protocol for the deprotection of Acetyl, 

THP and MOM ethers in alcohols and phenols and sequel oxidation of alpha carbonyl carbons 

to dicarbonyl compound at 80 
0
C within 30-60 min. 

6.3. RESULTS AND DISSCUSSION 

6.3.1. Optimization reaction conditions by using different oxidizing agents 

We screened different oxidizing agents in water for the deprotection and sequel oxidation, 

where CrO3, DDQ and PCC in H2O failed to give the product (Table 1, entries 1, 3 & 6), OsO4 

and MnO2 gave a poor yield (5-10%) at 80 
0
C after 6h (Table 1, entry 2 & 7),while, 

substrate:SeO2 (1:3 ratio) in 1ml H2O gave the optimal yield (85-95%) in the one-pot 

deacetylation, detetrahydropyranylation and sequel oxidation of alpha carbonyl carbons to 

dicarbonyl group at 80 
0
C within 1h (Table 1, entry 5). When, we used substrate:SeO2 

(1:1ratio) in 1ml H2O gave only deprotection product in 95 % yields in 1h-3h (Table 1, entry 

4). The novel method also used for the one-pot demethoxymethylation and sequel oxidation of 

alpha carbon but gave moderate product yields (40%) at 80 
0
C in 1h. Therefore, substrate:SeO2 

(1:3 ratio) in 1ml H2O was selected as an optimized condition.   
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Table 1. Optimization of deprotection conditions for Ac, THP and MOM groups and sequel 

oxidation of alpha carbonyl carbon 

 

Entry Substrate.:Reagent 

(equiv.) 

Time 

(h) 

Yield
a
 (%) 

(deacetylation) 

Yield
b
 (%) 

(detetrahydropyranylation) 

1 Sub.:CrO3(1:1) 24 h No reaction No reaction 

2 Sub.:OsO4(1:1) 6 h 8 5 

3 Sub.:DDQ(1:1) 24 h No reaction No reaction 

4 Sub.:SeO2(1:1) 1h-3h Only 

deprotection 

Only deprotection 

5 Sub.:SeO2(1:3) 1 h 95 94 

6 Sub.:PCC(1:1) 6 h No reaction No reaction 

7 Sub.:MnO2(1:1) 6h 10 10 

6.3.2. Solvent effect  

In the case of low soluble or insoluble compounds, even under optimized conditions, the 

reaction gave moderate yield (35%). Therefore, 3-4 drops of organic solvents (THF, dioxane, 

DMF, DEE, ethanol, methanol, CHCl3 and DMSO) were used to improve the solubility, in 

which THF and dioxane gave maximum 60% and 94% yields respectively (Table 2, entries 1-

10). However, the SeO2 in organic solvents without H2O failed to give the product (Table 2, 

entry 2).  

Table 2. Solvents effects in deprotection of Ac, THP and MOM groups and sequel oxidation of 

alpha carbons.  

 

Entry H2O(1ml):Solvents Yield
a 

Yield
b 
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(3-4 drops) (%) (%) 

1 H2O 30 35 

2 Organic solvents* 0 0 

3 H2O:THF 65 60 

4 H2O:Dioxane 95 94 

5 H2O:DMF 50 40 

6 H2O:DEE 25 20 

7 H2O:Ethanol 0 0 

8 H2O:methanol 0 0 

9 H2O:CHCl3 0 0 

10 H2O:DMSO 50 40 

[a]
 
Yields of deacetylation,[b] Yields of 

detetrahydropyranylation, 
*
DMSO, Dioxane, THF, DMF 

6.3.3. Examples of the deprotection of acetyl, THP and MOM ethers  

Only deacetylation, detetrahydropyranylation and demethoxymethylation products were 

afforded using substrate:SeO2 (1:1ratio) in 1ml H2O at 80 
0
C (Table 3, entries 1-10). In the case 

of entry 11- 24 of chalcone, dihydrochalcone, epoxide only acetyl, THP and MOM removal 

were observed without sequel oxidation of alpha carbonyl carbon due to used of substrate:SeO2 

(1:1 ratio) in H2O system. The products were confirmed on the basis of their spectral data 

(supporting information). For example, product 15q, the 
1
H-NMR spectra showed the 

characteristic two triplet  peak  at δ 2.80 & 2.73 ppm, J= 6.0 - 6.5 Hz for -CH2-CH2- protons 

and broad peak at δ 5.45 ppm for hydroxyl group. IR value at   3425 cm
-1 

for –OH groups
 

indicates only deprotection without oxidation of alpha carbonyl carbon. In 
13

CNMR spectra, 

the characteristic peak at δ 199.12 ppm for one –CO- groups and peak at 45.81 & 30.17 of -

CH2-CH2- groups
 
indicates only deprotection. 

 Table 3. Examples of deprotection of Ac, THP and MOM groups in alcohols and phenols. 
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Entry ROAc/THP/MOM ROH Time 

(min) 

Yield
a 

(%) 

Yield
b
 

(%) 

Yield
c
 

(%) 

1 

 
 

 

30 

 

92 

 

89 

 

40 

2 

  

 

30 

 

92 

 

88 

 

40 

3 

 
 

 

60 

 

-- 

 

-- 

 

-- 

4 

 
 

 

30 

 

95 

 

85 

 

35 

5 

 
 

 

30 

 

94 

 

90 

 

32 

6 

 
 

 

30 

 

95 

 

92 

 

35 

7 

 
 

 

30 

 

90 

 

93 

 

40 

8 

  

 

30 

 

94 

 

92 

 

35 

9 

 
 

 

30 

 

93 

 

95 

 

40 

10 

 
 

 

30 

 

95 

 

95 

 

32 
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11 

  

30 

 

96 95 

 

35 

12 

  

30 

 

97 96 

 

40 

13 

  

30 

 

93 94 

 

32 

14 

  

30 

 

90 85 

 

30 

15 

  

 

30 

 

 

92 

 

85 

 

 

30 

16 

  

30 

 

90 87 

 

35 

17 

  

30 

 

93 95 

 

38 

18 

  

30 

 

96 94 

 

40 

19 

  

30 

 

94 94 

 

35 



________Chapter 4: Green protocol for the deprotection of hydroxyl group and sequel oxidation 

151 

 

20 

  

30 

 

92 90 

 

32 

21 

  

30 

 

95 90 

 

35 

22 

  

30 

 

94 95 

 

35 

23 

  

 

30 

 

 

95 

 

96 

 

40 

24 

  

30 

 

90 96 

 

35 

Yields (15a-15x) from [a] ROAc, [b] ROTHP and [c] ROMOM respectively. 

6.3.4. Examples of the deprotection of acetyl, THP and MOM ethers and sequel oxidation 

of alpha carbonyl carbon 

Under optimized reaction conditions using substrate:SeO2,1:3 ratio, the reaction gave the 

deprotection and sequel oxidation of methylene carbon alpha carbonyl carbon to carbonyl 

groups  in excellent yield (85-95%) for the deacetylation, detetrahydropyranylation and 

moderate yield 30-40% for demethoxymethylation (Table 4, entries 3-10) within 30-60 min at 

80 
0
C. Interestingly, acetyl and THP removal and sequel oxidation of methylene carbon alpha 

carbonyl carbon to carbonyl groups were observed in the protected hydroxyl acetophenone and 

dihydrochalcones to give the corresponding hydroxy dicarbonyl derivatives 16e-16j in 

excellent yield (85-95%). 

We used excess of substrate:SeO2, in1:4, 1:5 & 1:6 ratios, also altering the reaction time  

from 60-120 minutes to checked for the oxidation of another alpha carbon, but no further 

oxidation was observed, (Table 4, entries 11), also  under optimized condition we took 
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dicarbonyl compounds for further alpha carbon oxidation, but no change was observed. (Table 

4, entries 12)  

The reagent is also useful for the deprotection of methoxymethyl ether (MOM) of phenolic 

compounds like, chalcone and chalcone epoxides but the yield of the product was moderate 30-

40% (Table 4, entries 3-12). In demethoxymethylation we performed reaction for 1h-3h, but no 

further conversion were observed, reaction gave only 30-40 % product, and remaining starting 

material was recovered by column chromatography. 

The products were characterized on the basis of their spectral analysis 
1
H- and 

13
C-NMR, 

GC-MS (supporting information). For example, product 16e, the 
1
H-NMR spectra showed the 

characteristic singlet peak at δ 3.99 ppm for –CH2 and disappear the  charecteristic two triplet  

peak  at δ 2.80 and 2.72 ppm (J  = 5.5 - 6.5 Hz) of -CH2-CH2- and broad peak at δ 5.19 ppm for 

hydroxyl group, indicates oxidation of alpha carbonyl carbon. In 
13

C-NMR spectra, the 

characteristic peak at δ 197.12 and 191.10 ppm for two carbonyl ( –CO-CO-) groups and peak 

at δ 50.89 ppm for –CH2 confirms the oxidation of alpha carbonyl carbon, this confirmation 

also support by the disappearance of  peak at 46.35 and 30.51 ppm of -CH2-CH2- groups in 

dihydrochalcone. IR value at   3415 cm
-1 

for –OH groups, 1705 and 1715 cm
-1

  
 
for dicarbonyl 

indicates the deprotection and sequel oxidation of alpha carbonyl carbon. The structures of all 

other compounds were further confirmed by GCMS (supporting information). 

Table 4. Deprotection of Ac, THP and MOM groups and sequel oxidation of alpha carbonyl 

carbon.  

 

Entry Active methylene 

compounds 

Dicarbonyl Time 

(min) 

Yield
a 

(%) 

Yield
b 

(%) 

Yield
c 

(%) 

1 

 
 

 

60 

 

92 

 

95 

 

32 

2 

 
 

 

60 

 

90 

 

88 

 

32 
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3 

 
 

 

60 

 

93 

 

95 

 

40 

4 

 
 

 

30 

 

94 

 

94 

 

35 

5 

  

60 

 

91 85 

 

40 

6 

  

60 

 

93 88 

 

40 

7 

  

60 

 

90 87 

 

30 

8 

  

60 

 

95 85 

 

35 

9 

  

60 

 

94 82 

 

35 

10 

  

60 

 

95 

 

80 

 

30 

 

11
d
 

  

>120 - - - 
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12
e
 

  

>60 - - - 

a
Yields of deacetylation, 

b
Yields of detetrahydropyranylation, 

c
Yields of demethoxymethylation, Used 

substrate:SeO2, in1:4,1:5 & 1:6 ratios, also altering the reaction time but no further oxidation was observed, 
e
Under 

optimized condition we took dicarbonyl compounds for further alpha carbon oxidation, but no change was 

observed. 

6.4. PLAUSIBLE MECHANISM 

A plausible mechanism was proposed (Scheme 1). First, selenium dioxide and water reacts 

to form the selenous acid in situ which reacted with tetrahydropyranyl dihydrochalcone I to 

make complex II. Selenous acid ligated with oxygen of tetrahydropyranyl dihydochalcone II , 

followed by removal of DHP via intramolecular abstraction of proton with seloxide ion to give 

compound III. Further, complex III undergoes keto-enol tautomerization to get compound IV. 

The key step is the beta-ketoseleninic acid V formation by the attack of selenous acid 

electrophile on enol IV of dihydrochalcone and Pummerer like [10] reaction
 
to obtained 

compound VI. Then,  hydrolysis  gave the deprotected alpha-diketone VII of THP 

dihydochalcone. 

 

Scheme 1. Propose mechanism for the deprotection of THP Ethers and oxidation of active 

methylene in SeO2: Water. 

6.5. CONCLUSION 
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In conclusion, we have developed an efficient one-pot green protocol for the deprotection 

of alcoholic and phenolic acetyl, tetrahydropyranyl and methoxymethyl ethers and sequel 

oxidation of active alpha carbonyl carbons to dicarbonyl group using substrate: SeO2 (1:3 ratio) 

in H2O. The reaction gave excellent yield (85-95%) for acetyl and THP ethers and moderate 

yield (30-40%) at 80 
0
C within 30-60 min. However, using substrate: SeO2 (1:1 ratio) in H2O, 

selectively afforded only deprotection of alcoholic and phenolic acetyl, tetrahydropyranyl and 

methoxymethyl ethers. This methodology has advantages such as versatility of reagent, short 

reaction time, high yields, inexpensive reagents, environment friendly green protocol and easy 

workup procedures. 

6.6. EXPERIMENTAL DETAILS 

6.6.1. General Procedure for Deprotection of Acetyl esters, Tetrahydropyranyl and 

methoxymethyl ethers of Alcohol and Phenol: SeO2 (1 mmol) was added to a stirred solution 

of  Esters and ethers (1 mmol) in a water (1ml) and  3-4 drops of dioxane, suspension obtained, 

applied heating to 80 
0
C. After TLC monitoring, the resulting reaction mixture was poured in 

cold water and extracted with EtOAc. The organic layer was washed with brine, dried with 

anhyd.Na2SO4, and concentrated in vacuo to give the corresponding product which was 

purified by silica gel column chromatography with hexane- EtOAc eluent to obtain the 

products 15a to 15x (table 3) in excellent yield 85-95% and 30-40% for deacetylation, 

detetrahydropyranylation and demethoxymethylation respectively. Similarly,                           

General Procedure for Deprotection of Acetyl esters, Tetrahydropyranyl ethers and 

methoxymethyl ethers of Alcohols and Phenols and sequel oxidation of alpha carbonyl 

carbon: SeO2 (3 mmol) was added to a stirred solution of  Esters and ethers (1mmol) in a water 

(1ml) and  3 to 4 drops of dioxane, suspension obtained, applied heating to 80 
0C, gave 

products 16a to 16j (table 4) in  excellent yield 85-95% and 30-40% for deacetylation, 

detetrahydropyranylation and demethoxymethylation followed by sequel oxidation of alpha 

carbonyl carbon respectively.  

6.6.2. Characterization data for selected synthesized compounds. 

Cyclohexanol (15a):
 1

H NMR (CDCl3, 500 MHz) δ ppm: 3.75 (s,1H), 3.08-3.04 (m, 

1H), 2.32 (t, J = 6 Hz, 1H), 1.64-1.61 (m, 4H), 1.51 (t, J = 6 Hz, 2H); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm: 69.148, 36.270, 25.144, 23.100; GC-MS (m/z): 100 [M
+.

, 

C6H12O]. 
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Phenylmethanol (15b):
 1

H NMR (CDCl3, 500 MHz) δ ppm 7.46-7.41 (m,2H), 

7.37 (d, J = 8 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H) 4.79 (s, 1H), 
13

C NMR (CDCl3, 

125 MHz) δ ppm 142.62, 131.54, 130.71, 129.62, 69.13; GC-MS (m/z): 108 [M
+.

, C7H8O]. 

1-(3-hydroxyphenyl)ethanone (15e):
 1

H NMR (CDCl3, 500 MHz) δ ppm 7.53-

7.51 (m,2H), 7.35 (t, J = 10 Hz, 1H), 7.12-7.09 (m, 1H) 6.10 (s, 1H), 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 130.02, 121.23, 120.87, 114.75, 26.89; GC-MS (m/z): 

136 [M
+.

, C8H8O2]. 

4-bromophenol (15f):
 1

H NMR (CDCl3, 500 MHz) δ ppm 7.44 (d, J = 9 Hz, 2H), 

6.98 (d, J = 8.5 Hz, 2H), 5.31 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 157.12, 

133.61, 122.37, 115.19; GC-MS (m/z): 172 [M]
+.

, 174 [m+2] for C6H5BrO]. 

 

Phenol (15g):
 1

H NMR (CDCl3, 500 MHz) δ ppm 7.30-7.26 (m, 2H), 6.98 (dd, J = 

9, 1 Hz, 2H), 6.90-6.88 (m, 2H),  6.11 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

155.51, 129.85, 120.91, 115.51; GC-MS (m/z): 94 [M]
+.

 for C6H6O]. 

 

4-Hydroxy benzaldehyde (15h):
 1

H NMR (CDCl3, 500 MHz) δ ppm 9.86 (s, 1H), 

7.84-7.81 (m, 2H), 6.98 (t, J = 7 Hz, 2H), 6.25 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) 

δ ppm 191.34, 161.60, 132.61, 129.94, 116.08; GC-MS (m/z): 122 [M]
+.

 for 

C7H6O2]. 

2-Hydroxy benzaldehyde (15i):
 1

H NMR (CDCl3, 500 MHz) δ ppm 11.01 (s, 

1H), 9.88 (t, J = 4.5 Hz, 1H)), .52 (dd, J = 8.5 Hz, 2H), 6.98 (t, J = 10 Hz, 2H); 

13
C NMR (CDCl3, 125 MHz) δ ppm 194.36, 162.15, 136.27, 131.54, 122.37, 

122.13, 117.69; GC-MS (m/z): 124 [M]
+.

 for C7H8O2]. 

2-Naphthol (15j):
 1

H NMR (CDCl3, 500 MHz) δ ppm 7.76 (t, J = 8 Hz, 

2H)), 7.68 (d, J = 10 Hz, 1H),7.44 (d, J = 9 Hz, 1H), 7.34 (d, J = 9 Hz, 

1H),7.10-7.15 (m, 2H), 5.02 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

153.36, 134.65, 129.98, 129.03, 127.87, 126.65, 126.46, 123.75, 117.80, 109.58; GC-MS 

(m/z): 144 [M]
+.

 for C10H8O]. 

(E)-1-(4-fluorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (15k):
   1

H 

NMR (CDCl3, 500 MHz) δ  ppm 8.02( d, J =  8.5 Hz, 2H), 7.74 (d, J = 15.5 

Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 16 Hz, 1H), 7.39 (t, J = 8.5 
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Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 6.24 (s, 1H, br, D2O exchangeable); 
13

C NMR (CDCl3, 125 

MHz) δ ppm 187.50, 164.68, 162.67, 141.94, 132.02, 131.52, 131.45, 129.53, 122.46, 116.42, 

116.25.  IR νmax (KBr, cm
-1

): 3415 (OH str), 2931, 2873 (aromatic C-H str), 1681 (C=O str), 

1597 (aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z): 242 [M
+.

, C15H11FO2]. 

(E)-1-(4-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (15l): 
 1

H 

NMR (CDCl3, 500 MHz) δ ppm 8.02 (d, J =  9 Hz, 2H), 7.76 (d, J = 15.5 

Hz, 1H), 7.64-7.61 (m, 2H), 7.46 (d, J =15.5 Hz, 1H), 7.14-7.09 (m, 4H), 

5.54 (s, 1H, br, D2O exchangeable);
13

C NMR (CDCl3, 125 MHz) δ ppm 187.24, 162.41, 

141.68, 131.76, 131.26, 131.19, 129.27, 122.20, 116.16, 115.99; IR νmax (KBr, cm
-1

): 3408 

(OH str), 2928, 2876 (aromatic C-H str), 1684 (C=O str), 1598 (aromatic, C=C str), 1268, 

1085, 864, 735; GC-MS (m/z): 258 [M
+.

, C15H11ClO2]. 

(E)-1-(4-bromophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (16c):
 

1
H NMR (CDCl3, 500 MHz) δ ppm 8.01 ( t, J = 8.5 Hz, 2H), 7.73 (d, J = 

15.5 Hz, 1H), 7.55-7.44  (m, 3H), 7.47 (d, J = 15.5 Hz, 1H), 6.95 (d, J = 

7.5 Hz, 2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 186.98, 162.15, 

141.42, 131.51,131.00, 130.93, 129.02, 121.95, 115.91, 115.74, 115.31; IR νmax (KBr, cm
-1

): 

3410 (OH str), 2926, 2875 (aromatic C-H str), 1686 (C=O str), 1599 (aromatic, C=C str), 1265, 

1078, 862, 730; GC-MS (m/z): 302 [M
+.

, C15H11BrO2], 304 [M+2,]. 

1-(4-fluorophenyl)-3-(4-hydroxyphenyl)propan-1-one (16d):
  1

H NMR 

(CDCl3, 500 MHz) δ ppm 8.01 ( d, J = 9 Hz, 2H), 7.75 (d, J = 8 Hz, 1H), 

7.63 (dd, J = 8,  3 Hz, 2H), 7.45  (d, J = 8.5 Hz, 1H) .7.14-7.09 (m, 3H);
 

13
C NMR (CDCl3, 125 MHz) δ ppm 200.12, 165.89, 157.59, 133.27, 131.65, 131.57, 130.77, 

117.41, 116.20, 47.15, 30.49;  IR νmax (KBr, cm
-1

): 3419 (OH str), 2933, 2875 (aromatic C-H 

str), 1684 (C=O str), 1587 (aromatic, C=C str), 1266, 1087, 865, 739; GC-MS (m/z): 244 [M
+.

, 

C15H13FO2]. 

1-(4-chlorophenyl)-3-(4-hydroxyphenyl)propan-1-one (15o):
  1

H NMR 

(CDCl3, 500 MHz) δ ppm 7.73 ( d, J = 9 Hz, 1H), 7.57 (d, J = 8 Hz, 2H), 

7.52 (d, J = 8,  3 Hz, 1H), 7.39 (d, J = 8.5 Hz, 2H) , 6.98 (d, J = 8.5 Hz, 

2H), 5.54 (s, 1H), 2.80 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 7.0 Hz, 2H);
 13

C NMR (CDCl3, 125 

MHz) δ ppm 201.14, 157.88, 139.58, 136.23, 133.63, 131.54, 130.78, 129.62, 116.12, 115.10, 
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46.46, 31.17; IR νmax (KBr, cm
-1

): 3406 (OH str), 2930, 2877 (aromatic C-H str), 1685 (C=O 

str), 1598 (aromatic, C=C str), 1269, 1087, 865, 733;  GC-MS (m/z): 260 [M
+.

, C15H13ClO2]. 

1-(4-bromophenyl)-3-(4-hydroxyphenyl)propan-1-one (15p):
  1

H 

NMR (CDCl3, 500 MHz) δ ppm 8.02 ( d, J = 7.5 Hz, 2H), 7.74 (d, J = 

7.5 Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H) , 7.39 (d, J 

= 8.5 Hz, 2H), 5.45 (s, 1H), 2.80 (t, J = 6.5 Hz, 2H), 2.73 (t, J = 6.0 Hz, 

2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm  199.12, 157.13, 136.27, 133.63, 131.54, 130.78, 

129.62, 129.30, 115.19, 45.81, 30.17; IR νmax (KBr, cm
-1

): 3425 (OH str), 2928, 2885 

(aromatic C-H str), 1687 (C=O str), 1599 (aromatic, C=C str), 1265, 1079, 862, 725;  GC-MS 

(m/z): 304, 306  [M
+.

, C15H13BrO2]. 

(E)-3-(4-fluorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (15q): 

1
H NMR (CDCl3, 500 MHz) δ  ppm 8.00 ( d, J =  8.0 Hz, 2H), 7.76 (d, J 

= 15.5 Hz, 1H), 7.62 (dd, J = 6, 13.5 Hz, 2H), 7.46 (d, J = 14.5 Hz, 1H), 

7.10 (t, J = 8.5 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.24 (s, 1H, br, D2O exchangeable); 
13

C 

NMR (CDCl3, 125 MHz) δ ppm 187.50, 164.68, 162.67, 141.94, 132.02, 131.52, 131.45, 

129.53, 122.46, 116.42, 116.25; IR νmax (KBr, cm
-1

): 3419 (OH str), 2935, 2877 (aromatic C-H 

str), 1684 (C=O str), 1599 (aromatic, C=C str), 1268, 1087, 866, 731; GC-MS (m/z): 243 [M
+.

, 

C15H11FO2]. 

(E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (15r): 
 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.87 (d, J =  8.5 Hz, 2H), 7.54 (dd, J 

= 8.5, 5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H), 6.42 

(s, 1H, br, D2O exchangeable); 
13

C NMR (CDCl3, 125 MHz) δ ppm 187.20, 162.37, 141.64, 

131.72, 131.22, 131.15, 129.23, 122.16, 116.12, 115.95; IR νmax (KBr, cm
-1

): 3411 (OH str), 

2930, 2881 (aromatic C-H str), 1688 (C=O str), 1594 (aromatic, C=C str), 1270, 1089, 868, 

729; GC-MS (m/z): 258 [M
+.

, C15H11ClO2]. 

(E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (15s):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm 8.00 ( d, J = 8.5 Hz, 2H), 7.77 (d, J = 

15.5 Hz, 1H), 7.63 (t, J = 8Hz, 2H), 7.46 (d, J = 15.5 Hz, 1H), 7.09 (t, J = 

8.5 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 6.24 (s, 1H); 
13

C NMR (CDCl3, 125 
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MHz) δ ppm 186.88, 162.05, 141.32, 131.41, 130.90, 130.83, 128.92, 121.85, 115.81, 115.64, 

115.21; IR νmax (KBr, cm
-1

): 3409 (OH str), 2929, 2873 (aromatic C-H str), 1688 (C=O str), 

1591 (aromatic, C=C str), 1259, 1075, 865, 733; GC-MS (m/z):  302, 304 [M
+.

, C15H11BrO2]. 

3-(4-fluorophenyl)-1-(4-hydroxyphenyl)propan-1-one(15t):
 1

H NMR 

(CDCl3, 500 MHz) δ ppm  7.88 (d, J = 8.5 Hz, 2H), 7.55 (dd, J = 8.5, 5 

Hz, 2H), 7.06 (t, J = 8.5 Hz, 2H) , 6.96 (d, J = 9.0 Hz, 2H), 5.90 (s, 1H), 

2.80 (t, J = 5.0 Hz, 2H), 2.72 (t, J = 5.5 Hz, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 199.68, 

166.54, 156.47, 132.65, 130.97, 130.68, 129.97, 128.66, 116.66, 115.05, 46.35, 30.51; IR νmax 

(KBr, cm
-1

): 3421 (OH str), 2937, 2879 (aromatic C-H str), 1686 (C=O str), 1587 (aromatic, 

C=C str), 1262, 1089, 870, 727; GC-MS (m/z):  244 [M
+.

, C15H13FO2]. 

(3-(4-fluorophenyl)oxiran-2-yl)(4-hydroxyphenyl)methanone (15u):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  8.02(d, J = 8.5 Hz, 2H), 7.73 (dd, J = 

8.0 Hz, 1H), 7.57 (t, J = 8.5 Hz, 2H) , 7.52 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 

8.5 Hz, 2H),  5.62 (s, 1H), 4.22 (d, J = 2.0 Hz, 1H), 4.17 (d, J = 2.0 Hz, 1H); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 197.32, 156.54, 138.65, 130.97,  130.68, 129.97, 129.68, 128.68, 

127.96, 126.67, 116.65, 71.12, 59.35; IR νmax (KBr, cm
-1

): 3421 (OH str), 2937, 2879 

(aromatic C-H str), 1686 (C=O str), 1596 (aromatic, C=C str), 1267, 1088, 867, 733; GC-MS 

(m/z):  258 [M
+.

, C15H11FO3]. 

(4-fluorophenyl)(3-(4-hydroxyphenyl)oxiran-2-yl)methanone (15v):
 1

H NMR (CDCl3, 500 

MHz) δ ppm  8.01(d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 

8.0 Hz, 2H) , 7.13 (d, J = 8.5 Hz, 1H),  5.59 (s, 1H), 4.42 (d, J = 1.5 Hz, 

1H), 4.26 (d, J = 2.0 Hz, 1H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 

197.41, 167.14, 157.88, 131.54, 130.78, 129.62, 124.36, 116.12, 115.10, 72.13, 58.10; IR νmax 

(KBr, cm
-1

): 3417 (OH str), 2939, 2881 (aromatic C-H str), 1687 (C=O str), 1589 (aromatic, 

C=C str), 1263, 1091, 871, 729; GC-MS (m/z):  258 [M
+.

, C15H11FO3]. 

(4-chlorophenyl)(3-(4-hydroxyphenyl)oxiran-2-yl)methanone (15w): 

1
H NMR (CDCl3, 500 MHz) δ ppm  7.87 (d, J = 8.5 Hz, 2H), 7.54 (dd, J 

= 8.5, 5 Hz, 1H), 7.06 (t, J = 8.5 Hz, 2H) , 6.96 (d, J = 9.0 Hz, 1H),  5.65 

(s, 1H), 4.30 (d, J = 1.5 Hz, 1H), 4.23 (d, J = 2.0 Hz, 1H);
 13

C NMR (CDCl3, 125 MHz) δ 

ppm 198.20, 157.12, 139.53, 133.63,131.54, 130.78, 129.62, 124.42, 115.10, 71.46, 59.17; IR 
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νmax (KBr, cm
-1

): 3411 (OH str), 2930, 2881 (aromatic C-H str), 1688 (C=O str), 1594 

(aromatic, C=C str), 1270, 1089, 868, 729; GC-MS (m/z):  274 [M
+.

, C15H11ClO3]. 

(4-bromophenyl)(3-(4-hydroxyphenyl)oxiran-2-yl)methanone (15x): 
 

1
H NMR (CDCl3, 500 MHz) δ ppm  8.01(d, J = 9.0 Hz, 2H), 7.75 (d, J = 

8.0Hz, 1H),  7.63 (dd, J = 8.5, 5 Hz, 2H), 7.45 (d, J = 9.5 Hz, 1H) , 7.13 

(d, J = 9.0 Hz, 2H),  5.40 (s, 1H), 4.39 (d, J = 2.5 Hz, 1H), 4.28 (d, J = 2.5 Hz, 1H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 198.01, 159.07, 133.01, 130.92, 129.62, 129.29, 128.66, 128.07, 

117.13, 73.13, 60.17; IR νmax (KBr, cm
-1

): 3411 (OH str), 2933, 2879 (aromatic C-H str), 1689 

(C=O str), 1595 (aromatic, C=C str), 1275, 1079, 869, 725; GC-MS (m/z):  318, 320 [M
+.

, 

C15H11BrO3]. 

2-(4-hydroxyphenyl)-2-oxoacetaldehyde (16c):
 1

H NMR (CDCl3, 500 MHz) 

δ  ppm 9.50( s, 1H), 7.88-7.86 (m, 2H), 6.89-6.87 (m, 2H), 5.58 (s, 1H, br, D2O 

exchangeable); 
13

C NMR (CDCl3, 125 MHz) δ ppm 190.69, 187.73, 163.98, 

132.91, 130.67, 116.55; GC-MS (m/z): 150 [M]
+.

 for C8H6O3]. 

1-(4-hydroxyphenyl)propane-1,2-dione (16d):
 1

H NMR (CDCl3, 500 MHz) δ 

ppm  7.93-7.90  (m, 2H), 6.92-6.89 (m, 2H),  6.55 (s, 1H), 2.18 (s, 3H);
 13

C 

NMR (CDCl3, 125 MHz) δ ppm 197.85, 192.83, 164.85, 131.44, 124.80, 

117.22, 23.05; GC-MS (m/z):  164 [M
+.

, C9H8O3]. 

3-(4-fluorophenyl)-1-(4-hydroxyphenyl)propane-1,2-dione (16e): 
 1

H NMR (CDCl3, 500 

MHz) δ ppm  7.73(d, J = 9.0 Hz, 1H), 7.57 (d, J = 7.5 Hz, 2H),  7.53 (d, J 

= 9.0 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H) , 6.98 (d, J = 8.5 Hz, 2H),  5.19 (s, 

1H), 3.99 (s, 2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 197.12, 191.10, 

166.42, 163.17, 131.54, 130.71, 129.62, 129.30, 122.38, 117.19, 116.11, 

50.89; GC-MS (m/z): ; IR νmax (KBr, cm
-1

): 3415 (OH str), 2935, 2879 (aromatic C-H str), 

1685 (C=O str), 1593 (aromatic, C=C str), 1268, 1087, 865, 731; GC-MS (m/z):    258 [M
+.

, 

C15H11FO3]. 

3-(4-chlorophenyl)-1-(4-hydroxyphenyl)propane-1,2-dione(16f):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  8.02 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 

9.0 Hz, 1H),  7.57 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H) , 7.38 (d, 

J = 8.5 Hz, 2H),  5.45 (s, 1H), 3.79 (s, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 197.41, 

190.12, 157.13, 140.10, 133.63, 131.54, 130.78, 129.62, 129.30, 116.19, 50.81; IR νmax (KBr, 
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cm
-1

): 3407 (OH str), 2933, 2875 (aromatic C-H str), 1689 (C=O str), 1594 (aromatic, C=C 

str), 1270, 1090, 870, 729; GC-MS (m/z):  274 [M
+.

, C15H11ClO3]. 

3-(4-bromophenyl)-1-(4-hydroxyphenyl)propane-1,2-dione(16g):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  7.86 (d, J = 8.5 Hz, 2H), 7.54-7.52 (m, 

2H),  7.05 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H),  6.42 (s, 1H), 3.85 

(s, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 196.62, 191.12, 157.29, 133.01, 130.92, 129.87, 

129.29, 128.66, 128.07, 116.93, 51.77; IR νmax (KBr, cm
-1

): 3425 (OH str), 2928, 2885 

(aromatic C-H str), 1687 (C=O str), 1599 (aromatic, C=C str), 1265, 1079, 862, 725; GC-MS 

(m/z):  318, 320 [M
+.

, C15H11BrO3]. 

1-(4-fluorophenyl)-3-(4-hydroxyphenyl)propane-1,2-dione (16h):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  78.03-7.99  (m, 2H), 7.58 (d, J = 7.5 Hz, 

2H),  7.53-7.50 (m, 3H), 7.33 (t, J = 8.5 Hz, 1H) , 7.13 (d, J = 8.5 Hz, 2H),  

5.31 (s, 1H), 2.79 (s, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 197.65, 190.05, 168.52, 

156.60, 130.68, 129.97, 128.68, 127.78, 116.66, 115.32, 51.12; IR νmax (KBr, cm
-1

): 3417 (OH 

str), 2935, 2871 (aromatic C-H str), 1679 (C=O str), 1581 (aromatic, C=C str), 1267, 1088, 

867, 741; GC-MS (m/z):  258 [M
+.

, C15H11FO3]. 

1-(4-chlorophenyl)-3-(4-hydroxyphenyl)propane-1,2-dione (16i):
 1

H 

NMR (CDCl3, 500 MHz) δ ppm  7.97-7.94  (m, 3H), 7.55-7.43 (m, 3H), 

7.47 (t, J = 9.0 Hz, 1H) , 6.98 (dd, J = 8.5, 2.0 Hz, 1H),  5.31 (s, 1H), 2.73 

(s, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 197.27, 191.55, 157.77, 131.68, 130.49, 130.05, 

129.65, 128.97, 128.65, 127.66, 117.54, 48.52; IR νmax (KBr, cm
-1

): 3401 (OH str), 2931, 

28851 (aromatic C-H str), 1688 (C=O str), 1594 (aromatic, C=C str), 1275, 1091, 867, 729; 

GC-MS (m/z):  274 [M
+.

, C15H11ClO3]. 

1-(4-bromophenyl)-3-(4-hydroxyphenyl)propane-1,2-dione (16j): 
1
H 

NMR (CDCl3, 500 MHz) δ ppm  7.88-7.79  (m, 3H), 7.57 (d, J = 7.5 Hz, 

1H),  7.64-7.59 (m, 3H), 7.33 (t, J = 8.5 Hz, 1H) , 6.94 (d, J = 8.5 Hz, 

3H),  5.34 (s, 1H), 2.71 (s, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 196.68, 190.25, 157.05, 

141.35, 131.77, 130.65, 130.49, 129.65, 128.97, 116.56, 49.85; IR νmax (KBr, cm
-1

): 3405 (OH 

str), 2930, 2871 (aromatic C-H str), 1675 (C=O str), 1591 (aromatic, C=C str), 1259, 1071, 

865, 733; GC-MS (m/z):  318, 320 [M
+.

, C15H11BrO3]. 
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Part A: Mild and efficient reductive deoxygenation of epoxides to olefins with SnCl2/NaI 

as a novel reagent 

7.1. INTRODUCTION 

Epoxidation of organic compounds is well-known in organic and pharmaceutical syntheses 

to obtain a number of oxygen-containing intermediates.[1] In contrast, the reverse reaction 

(reductive deoxygenation) of epoxide to alkene is little-known with NaOH/n-BuNBr,[2] 

[Fe4S4(SC6H5)4]
2-

,[3] CpTiCl2/Mg,[4] PPh3,[5] Na/Hgb[6] and NaBH4.[7] However, these 

catalysts have some drawbacks such as low activity, low atom efficiency, tedious work up and 

moisture sensitive reaction conditions.  

The SnCl2 is used as a non-toxic, inexpensive and mild lewis acid catalyst in diverse 

organic synthesis. It was mainly used for the functional groups reduction such as nitrile and 

nitro groups and as a catalyst in ring cyclization reactions to yield heterocycles: benzoxzzoles, 

qinoxalines, benzimidazoles and allylation of carbonyl compounds.[8] It was also used as a 

Lewis acid catalyst for the C-C bond formation, Sonn-Muller reaction, Stephen reduction,[9]  

polymerization of L-lactide and trans-esterification reactions. Recent deoxygenation reactions 

of epoxides to olefins was reported using Co(salane)2/NaHg,[10] (EtO)2P(O)TeNa,[11] 

LiI/Amberlyst-15,[12] LReO3/PPh3,[13] MoO(Et2dtc)2[14] reagents but these methods have 

drawbacks like less functional group tolerance, less versatility, low yields, long reaction time 

and tedious workup. Therefore, the development of simple and efficient reductive 

deoxygenation methods is of high interest.  

   In continuation of our interest in Lewis acid/base catalysis [15]
 
and the importance of 

inexpensive, easily available, and stable catalysts in epoxide ring opening. Herein, we report a 

facile and eco-friendly protocol in the reductive deoxygenation of aliphatic and aromatic 

epoxides to olefins in the presence of SnCl2/NaI combination as a highly efficient catalyst to 

afford alkenes in excellent yields (96%) within 2-10 min. at reflux in ethanol.  

7.2. OBJECTIVE 

Deoxygenation of epoxide into alkene is well-known in organic synthesis and 

pharmaceutical industry. Several methods have been applied for this conversion but these 

methods have a drawback like tedious work-up, moisture sensetive reaction etc. In our 

continious efforts to obtain a facile and environment-friendly protocol in the eleminitive 

deoxygenation of aliphatic and aromatic epoxides to olefins. A highly efficient green protocol 
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was reported for the eliminative deoxygenation of organic epoxides to olefins using SnCl2/NaI 

as a novel reagent. The reaction gave an excellent yield (85-96%) at reflux in ethanol within 2-

10 mins without affecting other functional groups.  

7.3. RESULTS AND DISSCUSSION 

7.3.1. Optimization reaction conditions for deoxygenation of styrene epoxide by SnCl2/NaI 

We optimized the deoxygenation reaction conditions in the reaction of styrene oxide 

(1equiv.)  with novel  SnCl2/NaI reagent by varying molar ratios and different solvents 

(Table1).  The product was obtained in excellent yield (96%) in ethanol  at reflux using SnCl2 

(2 equiv.) and  NaI (3 equiv.)  within 5 min (Table1, entry 5). When, we increased or decreased 

molar ratios of SnCl2/NaI reagent and solvents, the reaction gave lower yields (Table 1).  

Table1. Optimization of deoxygenation reaction in styrene oxide with SnCl2/NaI. 

 

Entry NaI(eq.) SnCl2 (eq.) Solvent Time (min) 

 

Temp Yields (%)
a
 

 

1 3 2 DMF 5 Reflux 25 

2 3 2 THF 5 Reflux 10 

3 1 2 Ethanol 5 Reflux 50 

4 2 2 Ethanol 5 Reflux 60 

5 3 2 Ethanol 5 Reflux 96 

6 4 2 Ethanol 5 Reflux 70 

7 3 2 NMP 5 Reflux 20 

8 3 2 DMSO 5 Reflux 20 

a
Yields of  isolated products 

7.3.2. Comparison of the SnCl2/NaI reagent and recent reported methods of 

deoxygenation of epoxides to corresponding olefins  

Our method is expanded to overcome the drawbacks of the previous reported methods. In 

order to show the advantages of the method, we have compaired with other methods in the 

deoxygenation of epoxides to the corresponding olefins (Table 2).  
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Table 2. Comparison of the SnCl2/NaI reagent and recent reported methods of deoxygenation 

of epoxides to corresponding olefins  

Sub. SnCl2/NaI 

 

min.[yields%] 

Co(salane)2/ 

NaHg 

h[yields%] 

(EtO)2P(O) 

TeNa 

h[yields%] 

LiI/Ambe- 

rlyst 15 

h[yields%] 

LReO3/ 

PPh3 

h[yields%] 

MoO 

(Et2dtc)2 

h[yields%] 

 
2-5 [95] 6 [95] 42  [88] - - 36 [92] 

 

2-5 [95] 1 [95] - 3[85] 2 [32] - 

7.3.3. Examples of the deoxygenation of aliphatic and aromatic epoxides by SnCl2/NaI 

Under optimal condition, SnCl2/NaI reagent was explored for various aliphatic and 

aromatic epoxides (Table 3). As depicted in table 3, the SnCl2/NaI reagent surprisingly gave the 

products 17a -17l in excellent yield (85-96%) (Table 3, entries 1-12) within 2-5 minutes at  

reflux temperature. Various aromatic epoxides (Table 3, entries 1-3 & 9-11), alicyclic (Table 3, 

entry 4, 6 & 12) and aliphatic (Table 3, entries 5,7 & 8) were transformed to alkenes in 

excellent yield. The carbonyl, nitro, hydroxyl, esters and and ketones groups in the 

deoxygenation of alicyclic epoxides (Table 3, entries 4 & 12) and ether linkage in the aromatic 

and aliphatic epoxides (Table 3, entries 8 & 9) remained unaffected during the reaction. Our 

method is also highly stereospecific in nature. For example, deoxygenation of cis-stilbene 

oxide gave cis-stilbene and trans-stilbene oxide to trans-stilbene (Table 3, entry 10 & 11) and 

the chemoselectivity between epoxide ring and hydroxyl group (Table 3, entry 12). All products 

were characterized by comparing their physical and chemical properties with authentic 

samples.[16 ] 

Table 3. Deoxygenation of aliphatic and aromatic epoxide by SnCl2/NaI  

 

Entry Epoxides Product Time (min)
a
 Yield (%)

a
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1   

 

2 

 

96* 

 

2  
 

 

4 

 

92 

 

3  
 

 

5 

 

90 

 

4  

 

 

5 

 

88 

 

5 

 
 

 

2 

 

85 

 

6 
 

 

 

3 

 

85 

 

7 
 

 

 

2 

 

88 

 

8 

 
 

 

3 

 

86 

 

9   

 

5 

 

90 

 

10   

 

5 

 

85 

 

11   

 

2 

 

95 

 

12  
 

 

3 

 

88 
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a
Yields of Isolated products, all these product are characterized by comparing their physical and 

chemical properties with authentic samples [16]. *Volatile compounds isolated by fractional 

distilation (supporting information) 

7.3.4. Examples of the deoxygenation of chalcone epoxide by SnCl2/NaI 

Under optimal condition, we have converted various chalcone epoxides to chalcone 18a-

18q with novel reagent SnCl2/NaI in excellent yields (92-96%) within 5 minutes at reflux 

temperature in ethanol without affecting carbonyl, hydroxyl and halogen groups (Scheme 1). 

For example, product 18h, the 
1
H-NMR spectra showed two characteristic doublet peaks at δ 

4.25 & 4.06 ppm (J =1.5-2 Hz) of the corresponding epoxide (–CHOCH-) dissapeared and two 

protons peak of –CH=CH- appeared downfield in aromatic proton region between δ 6.5-8.0 

ppm. 
13

C-NMR spectra, the disappearance of  characteristic peak at δ 61.03 & 58.81 ppm of (–

CHOCH-) groups and that two protons peaks appeared in downfield region at δ 122.41 & 

116.20 ppm and carbonyl peak  somewhat shifted downfield compaired to corresponding 

epoxide, indicated deoxygenation of chalcone epoxide to chalcone. These compounds were 

further characterised by IR and GC-MS. 
  

Scheme 1. Deoxygenation of chalcone epoxide by SnCl2/NaI  
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7.3.5. Examples of the deoxygenation of styrene epoxide by SnCl2/NaI 

In Scheme 2, we performed deoxygenation of various nitro styrene epoxides with novel 

reagent SnCl2/NaI in ethanol to afford products 19a-19j  in excellent yields 85-93% within 5-7 

minutes at  reflux temperature (Scheme 2). The products were characterized on the basis of 

their spectral analysis. For example, product 19b,  
1
H-NMR spectra showed absence of  two 

characteristic doublet peaks at δ 5.41 & 3.87 ppm of –CHOCH-N- (J = 2.5 Hz) and appearance 

of –CH=CH-N in aromatic region. Similarlly, 
13

C-NMR spectra, the absence of two 

characteristic peaks at δ 100.18 & 89.26 ppm of –COC-N- carbon nitrostyrene epoxide, 

indicated deoxygenation of nitrostyrene epoxide to nitrostyrene. These compounds were further 

characterised by IR and GC-MS. 

Scheme 2. Deoxygenation of nitro styrene epoxide by SnCl2/NaI. 

 

 

7.3.6. Examples of the deoxygenation of nitrochromene epoxide by SnCl2/NaI 

We also carried out deoxygenation of hindered chromene epoxides with novel reagent 

SnCl2/NaI in ethanol (Scheme 3). It gave deoxygenation products 20a -20j  in excellent yield 

(85-90%) within 5-10 minutes at  reflux temperature. Spectral analysis for example, compound 

20b, 
1
H-NMR spectra showed the characteristic singlet peak at δ 6.86  ppm of –CH=CH-N- and 

absence of  peak at δ 3.82 ppm  of nitrochromene epoxide indicated deoxygenation product. 

Similarlly,  in 
13

C-NMR spectra, the characteristic peaks at δ 60.67 & 116.94 ppm of  –C=C-N- 

carbon indicated the deoxygenation to nitrochromene. These compounds were further 

characterised by IR and GC-MS. 
  
 

Scheme 3. Deoxygenation of nitrochromene epoxide by SnCl2/NaI  
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7.4. Plausible mechanism for the deoxygenation epoxide to olefin by SnCl2/NaI. 

In the deoxygenation reactions consistently brown color was observed due to the generation 

of molecular iodine, by taking into account this observation, we gave the plausible reaction 

mechanism, where a nucleophile attack of oxygen lone pair electrons of epoxide on tin 

dichloride liberates the chloride ion followed by epoxide ring opening by iodide ion and 

removal of the molecular iodine to give the corresponding olefins (Scheme 4). 

 

Scheme 4. Plausible mechanism for the deoxygenation epoxide to olefin by SnCl2/NaI. 

7.5. CONCLUSION 

In conclusion, we have reported SnCl2/NaI in ethanol as an efficient reagent during 

eliminative deoxygenation reaction for epoxides to olefins in excellent yield (85-96%) within 

2-10 mins. This method has advantages as inexpensive reagent, high yield, short reaction time, 

eco-friendly, green reaction and high functional group tolerance.  

7.6. EXPERIMENTAL DETAILS 
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Organic solvents were dried by standard methods; the reagents (chemicals) were purchased 

from commercial sources, and used without further purification. All reactions were monitored 

by TLC using precoated silica gel aluminum plates. Visualization of TLC plates was 

accomplished with an UV lamp. Column chromatography was performed using silica gel 60–

120 mesh size (RANKEM Limited) with EtOAc–hexanes as eluent. Melting points were 

recorded on Perfit apparatus and are uncorrected. All products were characterized by NMR, IR 

and MS spectra. 1H and 13C NMR spectra were recorded in deuterated chloroform (CDCl3) on 

a 500 MHz and 125 MHz spectrometer (Bruker), respectively. Chemical shifts were reported in 

parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are 

described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). 

7.6.1. General procedure for the synthesis of chromene epoxides (39-49): Aqueous NaOH 

(5M, 10 ml) was added drop wise to a stirred solution of chromines (18 mmol) in aq. THF (30 

ml, H2O: THF, 1:2 ratio) and further stirred for 10 min. Then, H2O2 (15 ml, 30% wt.%) was 

added drop wise and further stirred for 2 days at room temperature. TLC monitoring, the 

reaction mixture was poured in water. The resulting precipitate was filtered, washed with water 

and dried under reduced pressure. The product was recrystallized in EtOH or silica gel column 

chromatography in petroleum ether: CH2Cl2 (8:2) as eluent gave chromine epoxide (39-49) in 

60-70% yields.  

General procedure for Deoxygenation of aliphatic and aromatic epoxide, chalcone 

epoxide, nitro styrene epoxide and nitrochromene epoxide by novel SnCl2/ NaI reagent: 

To a solution epoxide (1mmol) and NaI (3mmol) in absolute alcohol (5ml), SnCl2 (2mmol) was 

added in a several portions. The mixture was stirred at reflux temperature and the progress of 

reaction was monitored by TLC. within 2-10 min the reaction mixture is poured in ice-water, 

precipitation obtained, stirred for 10 min and filtered the solid, dried to obtained pure products 

17a-17l/ 18a-18q/19a-19j and  20a- 20j with 85-96% yield. 2-(2-cholorophenyl)-3-nitro-2H-

chromene (20c): Yellow solid; Yield: 243 mg (85%); melting point-90-92°C;
 1

H NMR (CDCl3, 

500 MHz) δ ppm 8.15(s, 1H), 7.48 (dd, J = 1Hz, 9.5Hz, 1H), 7.34(dd, J= 2Hz, 8Hz, 1H), 7.32-

7.27 (m, 2H), 7.192 (dd, J = 2Hz, 8Hz, 1H), 7.07 (s, 1H), 7.0 (dt, J=1Hz, 1H), 6.82 (d, J=8Hz, 

1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 153.61, 146.74, 144.99, 139.94, 134.77, 129.92, 

128.99, 128.72, 128.59, 127.21, 122.34, 121.94, 116.91, 114.47, 79.59. 
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 I R (vmax, cm-1 ): 3069, 2923, 1644, 1511, 1327, 1107;GCMS (m/z) 287 [M
+
. C15H10 ClNO3] 

289, 287, 270, 257, 241, 205, 176, 146 (100%), 89, 76, 63.  

Note: Examples are same for the both sections therefore experimental section given in 

Part: B for all spectral data of synthesized compounds.  
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Part-B: Efficient and green protocol for the eliminative deoxygenation of aliphatic and 

aromatic epoxides to olefin with polyphosphoric acid as a novel catalyst  

8.1. INTRODUCTION 

Epoxidation of organic compounds is well-known in organic and pharmaceutical syntheses 

to obtain a number of oxygen-containing intermediates.[1] In contrast, the reverse reaction 

(reductive deoxygenation) of epoxides to alkenes is little-known with NaOH/n-BuNBr,[2] 

[Fe4S4(SC6H5)4]
2-

,[3] CpTICl2/Mg,[4] PPh3,[5] indium- metal, Na/Hg [6]
 

and NaBH4.[7]
 

However, these catalysts have some drawbacks such as low activity, low atom-economy, 

tedious work up and moisture sensitive reaction conditions.  

Polyphosphoric acid (PPA) has been used extensively in organic syntheses.[8] for example, 

in acylation, alkylation, cyclization, acid catalyzed reactions like dehydration, rearrangements 

and synthesis of polymer and N-containing heterocycles.[9-11] Epoxides are being potential 

precursors for a variety of molecules, recently, some methods for deoxygenation of epoxides to 

olefins were studied using LiI/Amberlyst-15,[12] LReO3/PPh3,[13] Co(salane)2/Na-Hg,[14]
 

(EtO)2P(O)-TeNa,[15] MoO(Et2dtc)2[16]
 
 but these reagents have drawbacks as less tolerance 

of functional groups, low yields, long reaction time and tedious workup with moisture sensitive 

reaction conditions. Therefore, the development of simple and efficient catalytic deoxygenation 

methods is of high interest. 

In continuation of our interest in Lewis acid/base catalysis [17] and the importance of 

inexpensive, easily available, and stable catalysts in epoxide ring opening. Herein, we report a 

facile and eco-friendly protocol in the eleminative deoxygenation of aliphatic and aromatic 

epoxides to olefins in the presence of PPA (30 mol% loading) as a highly efficient catalyst to 

afford alkenes in excellent yields (85-96%) within 5-15 min. at 50 
0
C under neat condition.  

8.2. OBJECTIVE 

Deoxygenation of epoxide into alkene is well-known in organic synthesis and 

pharmaceutical industry. Several methods have been applied for this conversion but these 

methods have a drawback like tedious work-up, moisture sensetive reaction etc. In our 

continious efforts to obtain a facile and environment-friendly protocol in the eleminitive 

deoxygenation of aliphatic and aromatic epoxides to olefins, herein, we demonstrate that 

phosphoric acid act as a highly efficient catalyst in 30 mol % loading to afford the alkenes in 
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excellent yields (85-96%) within 5-15 min. at 50 
0
C. This methodology is very good alternative 

to the known methods of deoxygenation of epoxides.  

8.3. RESULTS AND DISSCUSSION 

8.3.1. Optimization reaction conditions for deoxygenation of styrene epoxide by PPA 

We optimized the deoxygenation reaction conditions in the reaction of styrene oxide  (1 

equiv.) with  PPA by varying mol% and solvents (Table1). The product was obtained in 

excellent yield (95%) at 50 
0
C using PPA (30 mol%) within 5-10 min under neat condition  

(Table 1, entry 6). However, further increase or decrease in mol% of PPA and use of other 

organic solvents, gave lower yields (Table 1).  

Table 1. Optimized condition for the deoxygenation of styrene oxide by polyphosphoric acid 

 

Entry Mol % of PPA Solvent Time (min) Temp (
0
C) Yields

a 
(%) 

1 30 DMF 15 Reflux 15 

2 30 ACN 15 Reflux 20 

2 30 Ethanol 15 Reflux 30 

4 10 - 15 50 20 

5 20 - 15 50 50 

6 30 - 5-10 50 95 

7 40 - 10 50 85 

8 30 NMP 15 Reflux 15 

9 30 DMSO 10 Reflux 15 

                       a
Yield of isolated product 

8.3.2. Comparison of polyphosphoric acid system with erlier methods 

In order to show the advantages of our method, we have also compared the existing 

methods in the case of eliminative deoxygenation of epoxides to olefins (Table 2).  

Table 2. Comparison of the green PPA system with formerly reported systems for 

deoxygenation of epoxides to alkenes  
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Substrate 30 mol % 

 PPA 

 

min.[yields%] 

LiI/ 

Ambe- 

rlyst 15 

h[yields%] 

LReO3/ 

PPh3 

 

h[yields%] 

Co(salane)2/ 

NaHg 

 

h[yields%] 

(EtO)2P(O)- 

TeNa 

 

h [yields%] 

Mo 

(Et2dtc)2 

 

h[yields%] 

 
< 10 [96] - - 6 [95] 42  [88] 36 [92] 

 

< 10 [96] 3[85] 2 [32] 1 [95] - - 

With or 

without 

Solvent 

Without 

Solvent 

With 

Solvent 

With 

Solvent 

With 

Solvent 

With 

Solvent 

With 

Solvent 

8.3.3. Examples of the deoxygenation of aliphatic and aromatic epoxide by PPA 

Under optimal conditions, PPA catalyst was explored for various aliphatic and aromatic 

epoxides (Table 3) to afford alkenes 21a-21l in excellent yields 85-96% at 50 
0
C under neat 

condition (Table 3, entries 1-12) within 5-10 minutes. Like, aromatic (Table 3, entries 1-3 & 

9-11), alicyclic (Table 3, entry 4, 6 & 12), aliphatic (Table 3, entries 5,7 & 8) epoxides were 

transformed to alkenes in excellent yields. The carbonyl, nitro, hydroxyl, esters  and ketone 

groups in the deoxygenation of alicyclic epoxides (Table 3, entries 4 & 12) and ether linkage 

in the aromatic and aliphatic epoxides (Table 3, entries 8 & 9) remained unaffected during the 

reaction. Our method is also highly stereospecific in nature. For example, deoxygenation of Z-

stilbene oxide gave Z-stilbene and E-stilbene oxide to E-stilbene (Table 3, entry 10 & 11) and 

the chemoselectivity between epoxide ring and hydroxyl group (Table 3, entry 12). All 

products were characterized by comparing with their physical and chemical properties of 

authentic samples.
 
[18] 

Table 3. Deoxygenation of aliphatic and aromatic epoxide by polyphosphoric acid 
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Entry Epoxides Product Time (min) Yield (%)
a
 

 

1   

 

5 

 

95 

 

2   

 

5 

 

92 

 

3   

 

5 

 

90 

 

4  
 

 

5 

 

88 

 

5  
 

 

6 

 

93 

 

6  
 

 

5 

 

88 

 

7   

 

5 

 

85 

 

8   

 

6 

 

85 

 

9   

 

6 

 

88 

 

10   

 

10 

 

86 

11 

  

5 96 

12 

  

5 95 

a
 Yields of Isolated product, all these product are characterized by comparing their physical and 

chemical properties with authentic samples.[18]
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8.3.4. Examples of the deoxygenation of chalcone epoxide by PPA 

Under optimal condition, we have converted various chalcone epoxides to chalcone 22a-

22q with novel PPA catalyst in excellent yield (90-95%) within 5-10 minutes at 50 
0
C (Scheme 

1). As depicted in Scheme 1, PPA has transformed various chalcone epoxides into 

corresponding chalcones in excellent yield without affecting carbonyl, hydroxyl and halogen 

groups (Scheme 1). The products were characterized on the basis of their spectral analysis 
1
H- 

and 
13

C-NMR, GC-MS (see, supporting information). For example, product 22h, the 
1
H-NMR 

spectra showed two characteristic doublet peaks at δ 4.25  & 4.06 ppm (J =1.5-2 Hz) of 

corresponding epoxide (–CHOCH-) dissapeared and two protons peak of –CH=CH- appeared 

downfield in aromatic proton region between δ 6.5-8.0 ppm. 
13

C-NMR spectra, the 

disappearance of  characteristic peaks at δ 61.03 & 58.81 ppm of (–CHOCH-) groups and the 

two protons peak appeared in downfield region at δ 122.41 & 116.20 ppm and carbonyl peak 

somewhat shifted downfield compaired to the corresponding epoxide, indicated deoxygenation 

of chalcone epoxide to chalcone. These compounds were further characterised by IR and GC-

MS. 
  

Scheme 1. Deoxygenation of chalcone epoxide by polyphosphoric acid 
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8.3.5. Examples of the deoxygenation of styrene epoxide by PPA 

We also performed deoxygenation of various nitro styrene epoxides with PPA catalyst at 50 

0
C under neat condition to afford products 23a-23j in excellent yields 85-92 % within 5-10 

min. (Scheme 2). The products were characterized on the basis of their spectroscopic analysis. 

For example, product 23b,  
1
H-NMR spectra showed absence of two characteristic doublet 

peaks at δ 5.41 & 3.87  ppm  of –CHOCH-N- (J = 2.5 Hz) and appearance of –CH=CH-N in 

aromatic region. Similarlly, 
13

C-NMR spectra, the absence of two characteristic peaks at δ 

100.18 & 89.26 ppm of –COC-N- carbon nitrostyrene epoxide indicated deoxygenation of 

nitrostyrene epoxide to nitrostyrene. These compounds were further characterised by IR and 

GC-MS. 

Scheme 2. Deoxygenation of nitro styrene epoxide by polyphosphoric acid 

 

 

8.3.6. Examples of the deoxygenation of styrene epoxide by PPA 

We also carried out deoxygenation of hindered chromene epoxides with catalyst PPA 

(Scheme 3). It gave deoxygenation products 24a -24j  in excellent yield (85-90%) within 10-15 

minutes at  50 
0
C under neat condition. Spectral analysis for example, compound 24b, 

1
H-

NMR spectra showed the characteristic singlet peak at δ 6.86  ppm of –CH=CH-N- and absence 

of  peak at δ 3.82 ppm  of nitrochromene epoxide indicated the deoxygenation product. 

Similarlly,  in 
13

C-NMR spectra, the characteristic peaks at δ 60.67 & 116.94 ppm of –C=C-N- 

carbon indicated the deoxygenation to nitrochromene. These compounds were further 

characterised by IR and GC-MS. 
  

Scheme 3. Deoxygenation of nitrochromene epoxide by polyphosphoric acid 
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8.4. MECHANISM 

In scheme 4, we suggested a plausible reaction mechanism as SN2 nucleophilic attack of 

oxygen lone pair of epoxide on phosphorous of PPA (like Wittig and Horner- Wadsworth- 

Emmons reactions) followed by the reaction like [2+2] chelotropic pericyclic reaction gave the 

corresponding alkenes with removal of meta-phosphoric acid [19] (Scheme 4).  

Scheme 4. Plausible mechanism for the deoxygenation of epoxides to alkenes 

 

8.5. CONCLUSION 

In conclusion, we have reported polyphosphoric acid as an efficient catalyst in the 

eliminative deoxygenation reaction for epoxides to give olefins in excellent yield (85-96%) 

under neat condition. This method has advantages as inexpensive reagent, high yield, short 

reaction time, eco-friendly and green reaction.  

8.6. EXPERIMENTAL DETAILS 
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 8.6.1. General procedure for the synthesis of chromene epoxides (39-49): Aqueous NaOH 

(5M, 10 ml) was added drop wise to a stirred solution of chromines (18 mmol) in aq. THF (30 

ml, H2O: THF, 1:2 ratio) and further stirred for 10 min. Then, H2O2 (15 ml, 30% wt.%) was 

added drop wise and further stirred for 2 days at room temperature. TLC monitoring, the 

reaction mixture was poured in water. The resulting precipitate was filtered, washed with water 

and dried under reduced pressure. The product was recrystallized in EtOH or silica gel column 

chromatography in petroleum ether: CH2Cl2 (8:2) as eluent gave chromene epoxide (39-49) in 

60-70% yields. 

 General procedure for the Deoxygenation of aliphatic and aromatic epoxide, chalcone 

epoxide, nitro styrene epoxide and nitrochromene epoxide by novel Catalyst 

polyphosphoric acid: The PPA (30 mol%) was added to a epoxide (1mmole) and the mixture 

was heated under neat condition for 15 min at 50 
0
C, and the progress of reaction was 

monitored by TLC. After 15 min the reaction mixture was poured in ice-water, precipitation 

obtained, stirred for 10 min and filtered the solid, dried to gave pure products 21a-21l/ 22a-

22q/23a-23j and 24a- 24j with   85-96% yield. 2-(2-cholorophenyl)-3-nitro-2H-chromene 

(3d): Yellow solid; Yield: 258 mg (90%); melting point-90-92 
0
C;

 1
H NMR (CDCl3, 500 MHz) 

δ ppm 8.15(s, 1H), 7.48 (dd, J = 1Hz, 9.5Hz, 1H), 7.34(dd, J= 2Hz, 8Hz, 1H), 7.32-7.27 (m, 

2H), 7.192 (dd, J = 2Hz, 8Hz, 1H), 7.07 (s, 1H), 7.0 (dt, J=1Hz, 1H), 6.82 (d, J=8Hz, 1H); 
13

C 

NMR (CDCl3, 125 MHz) δ ppm 153.61, 146.74, 144.99, 139.94, 134.77, 129.92, 128.99, 

128.72, 128.59, 127.21, 122.34, 121.94, 116.91, 114.47, 79.59; I R (vmax, cm-1 ): 3069, 2923, 

1644, 1511, 1327, 1107;GCMS (m/z) 287 [M
+
. C15H10 ClNO3] 289, 287, 270, 257, 241, 205, 

176, 146 (100%), 89, 76, 63.  

8.6.2. Characterization data for selected synthesized compounds  

2-phenyloxirane (1): Colorless oily liquid; Yield: 115 mg (96%);
 
boiling point-145 

0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 7.34-7.24 (m, 5H), 3.83 (t, J = 4.0 Hz , 1H), 

3.12 (t, J = 5.0 Hz , 1H), 2.77 (dd, J = 7.0, 3.5 Hz , 1H); 
13

C NMR (CDCl3, 125 

MHz) δ ppm 137.68, 128.61, 128.29, 125.59, 52.48, 51.35; IR νmax (KBr, cm
-1

): 2994, 2888 

(aromatic C-H str), 1622 (aromatic, C=C str), 1263, 1096, 860, 745; GC-MS (m/z): 120 [M
+
., 

C8H8O]. 

(3-(4-chlorophenyl)oxiran-2-yl)(phenyl)methanone (20): White solid; Yield: 247 mg (96%);
 

melting point-155 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 8.01 ( d, J =  8.5,1.5 Hz, 2H), 7.62 
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(d, J = 7.5 Hz, 1H), 7.49 ( t, J = 8.5 Hz, 2H), 7.37( t, J = 7.0 Hz, 2H),  7.30 (dd, J = 8.5, 2.5 Hz, 

2H), 4.25 (d, J = 1.5 Hz, 2H), 4.06 (d, J = 1.5 Hz, 2H); 
13

C NMR (CDCl3, 125 

MHz) δ ppm 192.83, 135.44, 134.23, 134.11, 129.13, 129.04, 128.45, 127.22, 

61.03, 58.81; IR νmax (KBr, cm
-1

): 2933, 2877 (aromatic C-H str), 1598 

(aromatic, C=C str), 1266, 1085, 866, 731; GC-MS (m/z): 258 [M
+
., C15H11ClO2]. 

2-(4-chlorophenyl)-3-nitrooxirane (31): Yellow oily liquid; Yield: 189 mg, 

(95%);
 
boiling point-150-152 

0
C;

 1
H NMR (CDCl3, 500 MHz) δ ppm 7.44 (d, 

J = 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 5.41 (s, 1H), 3.87 (s, 1H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 136.00, 132.98, 128.93, 127.36, 100.18, 89.26; IR (vmax, cm
-1

): 

3118, 3057, 1516, 1339; GCMS (m/z): 199 [M
+
.C8H6ClNO3] . 

2-(4-chlorophenyl)-1a-nitro-2,7b-dihydro-1aH-oxireno[2,3-c]chromene 

(41):
 
Brown oily liquid; Yield: 196 mg (65%);

 
boiling point-160-163 

0
C; 

1
H 

NMR (CDCl3, 500 MHz) δ ppm 7.36 (dd, J = 7.0, 2.0 Hz, 2H), 7.21 (t, J= 7.5 

Hz, 1H), 7.11-6.97 (m, 3H), 6.94 (dd, J=6.5, 2.0 Hz, 1H), 5.29 (s, 1H), 3.82 (s, 1H); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 153.61, 134.77, 129.92, 128.99, 128.72, 128.59, 127.21, 122.34, 

121.94, 116.91, 111.47, 89.87, 60.67; I R (vmax, cm-1 ): 3070, 2925, 1642, 1513, 1329, 1108; 

GCMS (m/z): 303 [M
+
. C15H10 ClNO4]. 

styrene (21a): Colorless oily liquid; Yield: 99 mg (95%);
 
boiling point-145 

0
C;

 1
H 

NMR (CDCl3, 500 MHz) δ ppm 7.43-7.41 (m, 2H), 7.35-7.31 (m,2H), 7.27-7.24 

(m, 1H), 7.15-7.13 (m, 1H,), 6.73 (m,1H), 5.78 (d, J = 1.5, 1H), 5.26 (d, J = 1.5, 1H) ;
 13

C 

NMR (CDCl3, 125 MHz) δ ppm 137.63, 136.95, 128.61, 127.89, 126.29, 125.58, 113.91; IR 

(vmax, cm-1):3106, 2908, 2839, 1498, 1309; GCMS (m/z): 104 [M
+
.C8H8]. 

(E)-chalcone ( 22a): Yellow solid; Yield: 192 mg (94%);
 
melting point-55-57 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.99 ( d, J = 8.5 Hz, 2H), 7.38 (d, J = 

8.5 Hz, 4H), 7.30 (d, J = 8.5 Hz, 4H), 7.12 (d, J = 8.5 Hz, 2H); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 190.70, 144.98, 138.28, 134.96, 132.91, 130.67, 129.07, 128.73, 

128.61, 128.56, 122.15; IR νmax (KBr, cm
-1

): 2935, 2877 (aromatic C-H str), 1585 (aromatic, 

C=C str), 1266, 1088, 862, 733; GC-MS (m/z): 208 [M
+
., C15H12O]. 

(E)-1,3-bis(4-fluorophenyl)prop-2-en-1-one (22b): Yellow solid; Yield: 

224mg (92%);
 
melting point-56-58 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 

8.01 ( d, J =  8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 1H), 7.58-7.49 (m, 2H), 7.39 
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(d, J =  8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 190.47, 

165.40, 162.90, 143.65, 138.18, 132.98, 130.50, 130.41, 128.75, 128.57, 128.20, 121.82, 

116.35, 116.13; ; IR νmax (KBr, cm
-1

): 2922, 2875 (aromatic C-H str), 1595 (aromatic, C=C 

str), 1266, 1089, 858, 731; GC-MS (m/z): 244[M
+
., C15H10F2O].  

(E)-1,3-bis(4-chlorophenyl)prop-2-en-1-one (22c): Yellow solid; Yield:  

255 mg (92%);
 
melting point-56-57 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 

8.01 ( d, J =  8.5 Hz, 2H), 7.77-7.61 (m, 3H), 7.46 (d, J = 8.5 Hz, 1H), 7.14-

7.09 (m, 2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 188.66, 142.59, 136.27, 133.66, 131.56, 

130.77, 129.60, 129.29,122.41, 118.60, 118.19; IR νmax (KBr, cm
-1

): 2920 (aromatic C-H 

str), 1592 (aromatic, C=C str), 1406, 1336, 1233, 1091, 771 (C-Cl, str); GC-MS (m/z): 

276[M
+
., C

15
H10Cl2O], 278 [M

+2
] 

(E)-1,3-bis(4-bromophenyl)prop-2-en-1-one (22d): Yellow solid; Yield: 

334mg (90%);
 
melting point-55-59 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm  

8.00 ( d, J = 9.0 Hz, 2H), 7.75-7.61 (m, 3H), 7.45 (d, J = 9.0 Hz, 1H), 7.14-

7.08 (m, 4H) ; 
13

C NMR (CDCl3, 125 MHz) δ ppm 190.69, 144.98, 138.29, 134.96, 132.91, 

130.67, 129.07, 128.74, 128.61, 128.56, 122.16; IR νmax (KBr, cm
-1

): 2992, 2886 (aromatic 

C-H str), 1620 (aromatic, C=C str), 1262, 1095, 860, 743; GC-MS (m/z): 364[M
+
., 

C15H10Br2O], 366 [M
+2

]. 

(E)-3-(4-chlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (22e): Yellow 

solid; Yield: 239 mg (92%);
 
melting point-58-59 

0
C; 

1
H NMR (CDCl3, 500 

MHz) δ ppm 8.01 ( d, J =  7.5 Hz, 2H), 7.74 (d, J = 15.5 Hz, 1H), 7.57 ( d, J 

= 8.5 Hz, 2H), 7.51( d, J = 16.0 Hz, 2H),  7.38 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H); 

13
C NMR (CDCl3, 125 MHz) δ ppm 188.69, 161.14, 142.67, 134.07, 132.24, 131.54, 130.78, 

130.44, 129.82, 124.64, 122.49, 116.20; IR νmax (KBr, cm
-1

): 2931, 2873 (aromatic C-H str), 

1597 (aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z): 260 [M
+
., C15H10ClFO]. 

(E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (22f): Yellow 

solid; Yield: 285mg (94%);
 
melting point-60-62 

0
C; 

1
H NMR (CDCl3, 500 

MHz) δ ppm  8.02 ( d, J =  8.5 Hz, 2H), 7.93-7.75 (m, 1H), 7.74 (d, J =  

15.5 Hz, 2H), 7.57 (d, J =  8.5 Hz, 1H), 7.39-7.30 (m, 2H), 6.98 (d, J =  8.5 Hz, 2H); 
13

C NMR 

(CDCl3, 125 MHz) δ ppm 190.70, 160.07, 144.98, 138.28, 134.96, 132.91, 130.67, 129.07, 
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128.73, 128.61, 122.16; IR νmax (KBr, cm
-1

): 2951, 2880 (aromatic C-H str), 1607 (aromatic, 

C=C str), 1271, 1107, 843, 729; GC-MS (m/z): 304 [M
+
., C15H10BrFO], 306 [M

+2
]. 

(E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (22g): Yellow solid; Yield: 

214mg (95%);
 
melting point-60-62 

0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm  

8.01 (d, J =  7.0 Hz, 2H), 7.72 (d, J = 15.5 Hz, 1H),  7.55-7.49 (m, 5H), 7.26 

(d, J = 7.0 Hz, 1H), 6.98 (d, J = 7.0 Hz, 2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 188.66, 

161.13, 142.59, 136.27, 133.65, 131.56, 130.76, 129.60, 129.29, 122.40, 116.20; IR νmax 

(KBr, cm
-1

): 2920 (aromatic C-H str), 1592 (aromatic, C=C str), 1406, 1336, 1233, 1125(C-O-

C, str), 1091, 771 (C-Cl, str);  GC-MS (m/z): 226[M
+
., C15H11FO]. 

(E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (22h): Yellow solid; Yield: 

229 mg (95%);
 
melting point-56-57 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 

8.01 (d, J = 9.0 Hz , 2H), 7.78-7.56 (m, 4H ), 7.53-7.51 (m, 3H ), 7.48-7.26 (m, 

2H );
13

C NMR (CDCl3, 125 MHz) δ ppm 188.66, 142.59, 136.27, 133.65, 131.57, 130.77, 

129.60, 129.29, 122.41, 116.20; IR νmax (KBr, cm
-1

): 2992, 2886 (aromatic C-H str), 1620 

(aromatic, C=C str), 1262, 1095, 860, 743;  GC-MS (m/z): 242 [M
+
., C15H11ClO]. 

(E)-3-(4-bromophenyl)-1-phenylprop-2-en-1-one (22i): Yellow solid; Yield: 

265 mg (93%);
 
melting point-55-57 

0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 

8.02 (t, J = 8 Hz , 2H), 7.72 (d, J = 8 Hz, 2H ),  7.56-7.50 (m, 3H ), 7.27 (d, J = 

7.5 Hz, 1H ),6.99 (d, J = 7 Hz,2 H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 190.00, 143.45, 

138.09, 133.45, 133.05, 129.69, 129.35, 128.77, 128.59, 122.52, 120.35; IR νmax (KBr, cm
-

1
): 2951, 2880 (aromatic C-H str), 1607 (aromatic, C=C str), 1271, 1107, 843, 729; GC-MS 

(m/z): 286[M
+
., C15H11BrO], 288 [M

+2
]. 

(E)-1-(4-fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (22j): Yellow 

solid; Yield: 243 mg (95%);
 
melting point-59-61 

0
C; 

1
H NMR (CDCl3, 500 

MHz) δ ppm  8.01 (d, J = 8.5 Hz , 2H), 7.74 (d, J =15.5 Hz,1H), 7.58-7.49 

(m, 3H ), 7.38 (d, J = 8.5 Hz, 2H ), 6.98 (d, J = 8.5 Hz,2H), 3.88 (m,3H); 
13

C NMR (CDCl3, 

125 MHz) δ ppm 190.47, 165.40, 162.90, 143.65, 138.18, 132.98, 131.18, 130.50, 130.41, 

128.75, 128.57, 128.20, 121.82, 116.35, 116.33, 55.47; IR νmax (KBr, cm-1): 2931, 2873 

(aromatic C-H str), 1597 (aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z): 256[M
+
., 

C16H13FO2]. 
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(E)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (22k): 

Yellow solid; Yield: 255mg (94%);
 

melting point-58-60 
0
C; 

1
H NMR 

(CDCl3, 500 MHz) δ ppm 8.02 (d, J = 9.0 Hz , 2H), 7.73 (d, J = 9 Hz , 1H) 

7.57 (d, J = 8.5 Hz, 3H ), 7.50 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H ), 3.83 (s,3H); 
13

C 

NMR (CDCl3, 125 MHz) δ ppm 189.52, 161.94, 145.41, 137.29, 131.95, 130.46, 130.06, 

127.72, 127.45, 119.15, 114.55, 55.55; IR νmax (KBr, cm
-1

): 2950 (aromatic C-H str), 1582 

(aromatic, C=C str), 1389, 1275, 1059, 854, 723 (C-Cl, str); GC-MS (m/z): 272[M
+
., 

C16H13ClO2]. 

(E)-1-(4-bromophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (22l): 

Yellow solid; Yield: 222 mg (92%);
 
melting point-60-62 

0
C;  

1
H NMR 

(CDCl3, 500 MHz) δ ppm 8.001 ( d, J =  8 Hz, 2H), 7.775 (d, J = 15.5 Hz, 

1H), 7.633 (t, 2H), 7.471 (d, J =16 Hz, 1H), 7.11 (t, J = 8.5 Hz, 2H), 6.95 (d, J = 8.5 Hz, 1H); 

13
C NMR (CDCl3, 125 MHz) δ ppm 187.50, 164.68, 162.67, 141.94, 132.02, 131.52, 131.45, 

129.53, 122.46, 116.42, 116.25; IR νmax (KBr, cm-1): 3426 (OH str), 2923 (aromatic C-H 

str), 1591 (aromatic, C=C str), 1417, 1395, 1282, 1170, 1092; GC-MS (m/z): 242[M
+
., 

C15H11FO3]. 

 (E)-1-(4-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (22m): 

Yellow solid; Yield: 239 mg (93%);
 
melting point-58-62 

0
C;  

1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.992 ( d, J =  8.5 Hz, 2H), 7.766 (d, J = 15.5 

Hz, 1H), 7.636- 7.583 (m, 2H), 7.462 (d, J = 15.5 Hz, 1H), 7.102 (t, J = 8.5 Hz, 2H), 6.946 (d, 

J = 8.5 Hz, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 187.24, 162.41, 141.68, 131.76, 131.26, 

131.19, 129.27, 122.20, 116.16, 115.99; IR νmax (KBr, cm-1): 3452 (OH str), 2963 (aromatic 

C-H str), 1599 (aromatic, C=C str), 1451, 1419, 1262, 1021, 933, 868, 799 and 704; GC-MS 

(m/z): 258 [M+., C15H11ClO3]. 

 (E)-1-(4-bromophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (22n): 

Yellow solid; Yield: 286mg (95%);
 
melting point-60-63 

0
C;

1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.992 ( d, J =  8.5 Hz, 2H), 7.767 (d, J = 15.5 

Hz, 1H), 7.625 (m, 2H), 7.462 (d, J = 15.5 Hz, 1H), 7.102 (t, J = 8.5 Hz, 2H), 6.946 (d, J = 8.5 

Hz, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 186.98, 162.15, 141.42, 131.51, 131.00, 

130.93, 129.02, 121.95, 115.91, 115.74, 115.31; IR νmax (KBr, cm-1): 3408 (OH str), 2917 
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(aromatic C-H str), 1589 (aromatic, C=C str), 1489, 1415, 1288, 1177, 1091, 1014, 929 and 

701; GC-MS (m/z): 302[M
+
., C15H11BrO2], 304 [M

+2
]. 

 (E)-3-(4-fluorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (22o): 

Yellow solid; Yield: 222 mg (92%);
 
melting point-60-62 

0
C; 

1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.99( d, J =  8.5 Hz, 2H), 7.77 (d, J = 15.5 Hz, 

1H), 7.62 (dd, J = 6, 13.5 Hz, 2H), 7.46 (d, J = 15.5 Hz, 1H), 7.10 (t, J = 8 Hz, 2H), 6.95 (d, J 

= 8.5 Hz, 2H), 6.24 (s, 1H, br, D2O exchangeable); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

187.50, 164.68, 162.67, 141.94, 132.02, 131.52, 131.45, 129.53, 122.46, 116.42, 116.25; IR 

νmax (KBr, cm
-1

): 3415 (OH str), 2931, 2873 (aromatic C-H str), 1681 (C=O str), 1597 

(aromatic, C=C str), 1263, 1081, 860, 737; GC-MS (m/z): 242 [M
+
., C15H11FO2]. 

 (E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (22p): 

Yellow solid; Yield: 245 mg (95%);
 
melting point-61-64 

0
C; 

1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.99 (d, J =  8.5 Hz, 2H), 7.76 (d, J = 15.5 Hz, 

1H), 7.63-7.61 (m, 2H), 7.45 (d, J =16 Hz, 1H), 7.10 (t, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 

2H), 6.2 (s, 1H, br, D2O exchangeable); 
13

C NMR (CDCl3, 125 MHz) δ ppm 187.20, 162.37, 

141.64, 131.72, 131.22, 131.15, 129.23, 122.16, 116.12, 115.95; IR νmax (KBr, cm
-1

): 3408 

(OH str), 2928, 2876 (aromatic C-H str), 1684 (C=O str), 1598 (aromatic, C=C str), 1268, 

1085, 864, 735; GC-MS (m/z): 258 [M
+
., C15H11ClO2].                                         

 (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (22q): 

Yellow solid; Yield: 289 mg (90%);
 
melting point-61-63 

0
C;

1
H NMR 

(CDCl3, 500 MHz) δ ppm 7.99 ( d, J = 8 Hz, 2H), 7.77 (d, J = 15.5 Hz, 

1H), 7.63 (t, J = 8Hz, 2H), 7.46 (d, J = 15.5 Hz, 1H), 7.10 (t, J = 8.5 Hz, 2H), 6.95 (d, J = 8 Hz, 

2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 186.88, 162.05, 141.32, 131.41, 130.90, 130.83, 

128.92, 121.85, 115.81, 115.21; IR νmax (KBr, cm
-1

): 3410 (OH str), 2926, 2875 (aromatic C-

H str), 1686 (C=O str), 1599 (aromatic, C=C str), 1265, 1078, 862, 730; GC-MS (m/z): 302 

[M
+
., C15H11BrO2], 304 [M

+2
]. 

 (E)-1-(2-nitrovinyl) benzene (23a): Yellow Solid; Yield: 135 mg (91%); 

melting point - 55-57 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm  8.02 (d, J = 

14Hz, 1H), 7.59 (d, J =14Hz, 1H), 7.57-7.53 (m, 2H), 7.52-7.48 (m, 1H), 7.32-
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7.43 (m, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 139.54, 136.27, 131.54, 130.77, 129.62, 

124.36; IR (vmax, cm-1): 3106, 3042, 1508, 1341. GCMS (m/z): 149 [M
+
.C8H7NO2] 150, 

149(100%), 148, 132, 125, 104, 92, 74, 60. 

 (E)-1-choloro-4-(2-nitrovinyl) benzene (23b): Yellow solid; Yield: 170 mg 

(90%); melting point-115-116 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.99 

(d, J = 13.5 Hz, 1H), 7.58 (d, J = 13.5Hz, 1H), 7.52-7.51(m, 2H), 7.47-

7.45(m, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 137.30, 136.65, 133.00, 130.92, 129.62, 

129.29; IR(vmax, cm
-1

): 3099, 3025, 1590, 1398; GCMS (m/z): 183 [M
+
.C8H6ClNO2] 185, 

183, 149, 148, 136, 125, 102(100%), 74, 73. 

 (E)-1-choloro-2-(2-nitrovinyl) benzene (23c): Brown solid; Yield: 168 mg 

(92%); melting point-40-42 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 7.96 (d, J = 

13.6 Hz, 1H), 7.51 (d, J = 13.6Hz, 1H), 7.47-7.45 (m, 2H), 6.91-6.89 (m, 2H);
 

13
C NMR (CDCl3, 125 MHz) δ ppm 139.52, 136.27, 133.62, 131.54, 130.77, 129.62, 129.30, 

124.36; IR (vmax, cm
-1

): 3116, 3056, 1516, 1338; GCMS (m/z): 183 [M
+
.C8H6ClNO2] 185, 

183, 149, 148, 136, 125, 102(100%), 74, 73. 

 (E)-1-bromo-4-(2-nitrovinyl) benzene (23d): Light yellow solid; Yield: 

204 mg (90%); melting point-148-150 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ 

ppm 7.94 (d, J = 14 Hz, 1H), 7.60-7.58 (m, 2H), 7.57(d, J = 14 Hz),7.42-

7.40 (m, 2H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 139.54, 136.27, 133.61, 131.54, 130.71, 

129.62, 122.37; IR (vmax,cm
-1

): 3102, 3052, 1507, 1331; GCMS (m/z): 227 

[M
+
.C8H6ClNO2] 227, 229, 226, 228, 180, 182(100%), 178, 175. 

 (E)-1-methyl-4-(2-nitrovinyl) benzene (23e): Yellow solid; Yield: 146 mg 

(90%); melting point-100-102 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 7.99 (d, 

J = 13.5Hz, 1H), 7.57(d, J = 13.5Hz, 1H), 7.45-7.43 (m, 2H), 7.26-7.25 (m, 2H), 2.41(s, 3H);
 

13
C NMR (CDCl3, 125 MHz) δ ppm 140.10, 139.54, 136.27, 133.62, 131.54, 130.77, 129.62, 

23.10; IR (vmax, cm
-1

 ): 3110, 3056, 2916, 1496, 1336; GCMS (m/z): 163 [M
+
. C9H9NO2] 

168, 163, 146, 114, 102, 80 (100%). 

 (E)-1-methoxy-4-(2-nitrovinyl) benzene (23f) : Yellow solid; Yield: 155 mg 

(87%); melting-point-86-88 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 7.97 (d, J 

= 13.5Hz, 1H), 7.57(d, J = 13.5 Hz, 1H), 7.38-7.35 (m, 1H), 7.15-7.13 (m, 

1H,), 7.05-7.03(m, 2H), 3.853 (s, 3H) ;
 13

C NMR (CDCl3, 125 MHz) δ ppm 157.12, 139.54, 
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136.27, 130.77, 122.36, 115.19, 57.45; IR (vmax, cm-1): 3104, 2904, 2838, 1495, 1307; 

GCMS (m/z): 179 [M
+
.C9H9NO3] 179, 132, 118, 103, 89(100%). 

 (E)-1,2-dimethoxy-4-(2-nitrovinyl)benzene (23g): Yellow solid; Yield: 183 

mg (88%); melting point-138-140 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 

7.96 (d, J = 13.5Hz, 1H), 7.53(d, J = 13.5Hz, 1H), 7.18-7.16 (m, 1H), 7.00-

6.91 (m, 2H), 3.947 (s, 3H), 3.901(s, 3H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 149.87, 

149.10, 138.54, 135.27, 122.36, 121.12, 115.89, 115.06, 57.87; IR (vmax, cm
-1

): 3128, 2958, 

2923, 1500, 1334; GCMS (m/z): 209[M
+
.C10H11NO4] 209, 163, 162,147, 119, 77(100%). 

 (E)-1,2,3-trimethoxy-5-(2-nitrovinyl)benzene (23h): Yellow Solid; Yield: 

207 mg (87%); melting point-115-116 
0
C;

1
H NMR (CDCl3, 500 MHz) δ 

ppm 7.93 (d, J = 13.6Hz, 1H), 7.53(d, J = 13.6Hz, 1H), 6.75(s, 2H), 3.91(s, 

3H), 3.90(s, 6H);
 13

C NMR (CDCl3, 125 MHz) δ ppm 155.12, 143.62, 137.12, 136.65,129.87, 

106.00, 61.17, 55.76; IR (vmax, cm
-1

): 3104, 2935, 2832, 1503, 1323; GCMS (m/z): 239 [M
+
. 

C11H13NO5] 239, 191, 176, 149, 120, 63, (100%), 53. 

 (E)-4-(2-nitrovinyl) phenol (23i): Yellow solid; Yield: 148 mg (90%); 

melting point-162-164 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 7.96 (d, J = 

13.6Hz, 1H), 7.51 (d, J = 13.6Hz, 1H), 7.47-7.45(m, 2H), 6.91-6.89 (m, 2H);
 13

C NMR 

(CDCl3, 125 MHz) δ ppm 157.87, 140.11, 139.52, 130.77, 123.12, 115.10; IR (vmax, cm
-1

): 

3370, 3108, 1483, 1339; GCMS (m/z): 165 [M
+
. C 8H7NO3] 166, 165, 148, 118(100%), 91, 

65. 

 (E)-1-nitro-3-(2-nitrovinyl) benzene (23j): Light Brown solid; Yield: 178 mg, 

(92%); melting point-120-122 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.96 (d, 

J = 13.7Hz, 1H), 7.56 (d, J = 13.7 Hz, 1H), 7.50-7.48 (m, 2H), 7.44-7.43 (m, 

2H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 148.13, 140.10, 139.54, 136.27, 133.61, 130.71, 

122.35, 122.12; IR (vmax, cm-1): 3100, 2832, 1522, 1349; GCMS (m/z): 194 [M
+
. 

C8H6N2O4] 194, 147, 108, 102 (100%), 89, 76, 63. 

3-nitro-2-phenyl-2H-chromene (24a): Yellow solid; Yield: 222 mg (88%); 

melting point-98-100 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 8.05 (s, 1H), 

7.38-7.36 (m, 2H), 7.33-7.30 (m, 5H), 7.01-6.98 (m, 1H), 6.87-6.85 (m, 1H), 

6.58 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 153.61, 146.47, 141.96, 141.35, 134.47, 

130.03, 129.03, 128.85, 127.34, 127.12, 122.96, 122.60, 117.43, 107.37, 79.79; IR (vmax, cm
-
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1
): 3071, 1646, 1507, 1328, 1215; GCMS (m/z): 253 [M

+
. C15H11NO3] 253, 236, 207, 

178(100%), 152, 89, 77, 63. 

2-(4-cholorophenyl)-3-nitro-2H-chromene (24b):  Yellow solid; Yield: 252 

mg (88%); melting point-150 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 8.05 

(s, 1H), 7.35-7.27 (m, 6H), 6.99 (t, J = 7.5 Hz, 1H), 6.86(d, J = 8Hz, 1H), 

6.57 (s, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 156.96, 147.43, 145.11, 139.90,128.84, 

128.80, 127.33, 126.58, 122.91, 122.55, 117.43, 115.91, 79.47; IR (vmax, cm
-1

): 3076, 2923, 

1639, 1495, 1323, 1214; GCMS (m/z): 287 [M
+
. C15H10 ClNO3] 287, 270, 257, 241(100%), 

205, 178, 89, 77, 63. 

2-(2-cholorophenyl)-3-nitro-2H-chromene (24c): Yellow solid; Yield: 258 

mg (90%); melting point-90-92 
0
C;

 1
H NMR (CDCl3, 500 MHz) δ ppm 

8.15(s, 1H), 7.48 (dd, J = 1Hz, 9.5Hz, 1H), 7.34(dd, J= 2Hz, 8Hz, 1H), 7.32-

7.27 (m, 2H), 7.192 (dd, J = 2Hz, 8Hz, 1H), 7.07 (s, 1H), 7.0 (dt, J=1Hz, 1H), 

6.82 (d, J=8Hz, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 153.61, 146.74, 144.99, 139.94, 

134.77, 129.92, 128.99, 128.72, 128.59, 127.21, 122.34, 121.94, 116.91, 114.47, 79.59; IR 

(vmax, cm-1 ): 3069, 2923, 1644, 1511, 1327, 1107; GCMS (m/z): 287 [M
+
. C15H10 ClNO 3] 

289, 287, 270, 257, 241, 205, 176, 146 (100%), 89, 76, 63.  

2-(4-bromophenyl)-3-nitro-2H-chromene (24d): Yellow solid; Yield: 291 

mg (88%); melting point-162 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 8.23 (s, 

1H), 8.19 (d, J = 8.5Hz, 1H), 8.13 (s, 1H ), 7.71(d, J = 8Hz, 1H), 7.52(t, J = 8 

Hz, 1H), 7.36 (t, J = 7.5 Hz), 7.05 (t, J = 7.5Hz), 6.90 (d, J = 8.5Hz, 1H), 6.66 (s, 1H); 
13

C 

NMR (CDCl3, 125 MHz) δ ppm 153.36, 146.74, 144.02, 141.16, 133.48, 132.27, 128.94, 

128.72, 127.36, 124.24, 123.16, 122.48, 117.41, 79.11; IR (vmax, cm
-1

): 3078, 2923, 1639, 

1496, 1323, 1065; GCMS (m/z): 331 [M
+
. C15H10 Br NO3] 333, 331, 287, 285, 205 (100%), 

176, 146, 89, 76, 63. 

3-nitro-2-p-tolyl-2H-chromene (24e): Yellow solid; Yield: 226 mg (85%); 

meltingpoint-136-138 
0
C;

1
H NMR (CDCl3, 500 MHz) δ ppm 8.04 (s, 1H), 

7.32-7.28 (m, 2H), 7.25-7.24 (m, 2H),7.11(d, J = 8 Hz), 6.98 (dt, J = 1Hz, 1H), 

6.84 (dd, J = 1Hz, 7.5Hz), 6.54 (s, 1H),2.304 (s, 3H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

153.68, 148.83, 145.95, 140.06, 131.42, 129.70, 128.80, 127.32, 127.05, 122.86, 122.59, 
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117.42, 79.71; IR (vmax, cm
-1

): 3078, 2924, 1646, 1506, 1321, 1114; GCMS (m/z): 267 [M
+
. 

C16H13NO3] 267, 250, 237, 221(100%), 178, 146, 91, 77, 65. 

2-(4-methoxyphenyl)-3-nitro-2H-chromene (24f): Yellow solid; Yield: 240 mg (85%); 

melting point-158-160 
0
C;  

1
H NMR (CDCl3, 500 MHz) δ ppm 8.03 (s, 

1H), 7.31 (d, J = 7.5Hz, 2H), 7.30-7.28 (s, 2H), 7.02-6.96 (m, 1H), 6.85-6.80 

(m, 3H), 6.52 (s, 1H), 3.75 (s, 3H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

160.78, 153.74, 146.82, 143.94, 128.81, 128.55, 127.34, 126.41, 122.87, 

122.62, 117.43, 114.42, 107.42, 79.54; IR (vmax, cm
-1

): 2945, 1645 , 1507, 1326, 1179; 

GCMS (m/z): 283 [M
+
. C16H13NO4] 283, 266, 253, 237, (100%), 222, 194, 165, 91, 89, 69. 

2-(3,4-dimethoxyphenyl)-3-nitro-2H-chromene (24g): Yellow solid; Yield: 

269 mg (86%); melting point-86-88 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 

8.05 (s, 1H), 7.33-7.29 (m, 2H), 7.01-6.98 (m, 1H), 6.92 (d, J = 2.05 Hz, 1H), 

6.87-6.84 (m, 2H), 6.74 (d, J = 8.5Hz), 6.51 (s, 1H), 3.82 (s, 6H); 
13

C NMR (CDCl3, 125 

MHz) δ ppm 153.67, 150.27, 149.31, 144.79, 141.99, 128.84, 127.35, 126.69, 122.95, 122.61, 

119.97, 117.47, 111.20, 109.78, 107.35, 79.77;  IR (vmax, cm
-1

): 2931, 1645, 1517, 1334, 

1145; GCMS (m/z): 313 [M
+
. C17H15NO5] 314, 313, 267 (100%), 251, 223, 177, 122, 91, 77, 

63. 

3-nitro-2-(3,4,5-trimethoxyphenyl)-2H-chromene (24h): Yellow solid; 

Yield: 291 mg (85%); melting point-130-132 
0
C;

1
H NMR (CDCl3, 500 

MHz) δ ppm 8.05 (s, 1H), 7.34 (t, J = 7.5Hz, 1H), 7.01 (t, J = 7.5Hz, 1H), 

6.89 (d, J = 8 Hz, 1H), 6.56 (s, 2H), 6.51 (s, 1H), 3.79 (s, 6H), 3.75 (s, 3H); 
13

C NMR (CDCl3, 

125 MHz) δ ppm 153.59, 147.49, 145.59, 139.13, 129.75, 128.87, 127.33, 123.05, 122.55, 

117.46, 107.20, 104.11, 79.93; IR (vmax, cm
-1

): 2941, 2832, 1576, 1507, 1329, 1128; GCMS 

(m/z): 343 [M
+
. C18H17NO6] 344, 343, 313, 297, 207 (100%), 191, 168, 91, 77, 63. 

4-(3-nitro-2H-chromene-2-yl) phenol (24i): Yellow solid; Yield: 242 mg 

(90%); melting point-144-146 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 7.66 

(s, 1H), 7.64 (s, 1H), 7.60-7.57 (m, 2H), 7.34-7.32 (m, 2H), 7.29-7.26 (m, 

2H), 7.11-7.09 (m, 2H), 6.90-6.87 (m, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 153.38, 

147.18, 144.74, 142.09, 136.00, 132.98, 129.31, 128.93, 128.46, 127.36, 123.14, 122.49, 

117.40, 79.06;  IR (vmax, cm
-1

): 3069, 2954, 1650, 1515, 1391, 1187; GCMS (m/z): 269 [M
+
. 

C15H11NO4] 269, 252, 236, 223(100%), 165, 131, 89, 77, 65.  
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3-nitro-2-(3-nitrophenyl)-2H-chromene (24j): Yellow solid; Yield: 268 mg 

(90%); melting point-160-162 
0
C; 

1
H NMR (CDCl3, 500 MHz) δ ppm 8.42-

8.41 (m, 1H), 8.35-8.33 (m, 1H), 8.31 (s, 1H), 8.21 (dd, J = 1Hz, 8Hz, 1H), 

8.06-8.03 (m, 1H), 8.42-8.41(m, 1H), 7.88(d, J = 8Hz, 1Hz, 1H), 7.77 (d, J = 8Hz, 1H), 7.70-

7.66 (m, 2H), 7.61 (t, J = 8Hz), 6.90-6.87 (m, 1H); 
13

C NMR (CDCl3, 125 MHz) δ ppm 

153.00, 148.59, 144.68, 142.16, 136.67, 133.14, 130.15, 129.12, 127.40,124.89, 123.49, 

122.34, 122.13, 117.44, 78.56; IR (vmax, cm
-1

): 3074, 1649, 1520, 1395, 1070. GCMS (m/z) 

298 [M
+
. C15H10 N2O5] 299, 298, 283, 252, 205(100%), 176, 130, 102, 76, 63. 
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