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Abstract

Cognitive or environment aware radio has emerged as one of the major technologies to im-

prove the utilization of the limited communication spectrum. The cognition cycle proposed

in the literature for an environment aware radio entails the tasks of spectrum sensing, spec-

trum allocation and reliable transmission. Out of these, spectrum sensing has emerged as

an active area of research during the past decade. This involves the detection of primary

user or licensed user signals in order to determine the availability of a spectrum band for

transmission. Two major challenges faced by spectrum sensing algorithms are very low

SNRs of the order of −22 dB; and a limited knowledge about the signal to be sensed.

It is known that the energy detector is the optimal detector for random signals. How-

ever, this is known to fail under low SNRs when the noise power is not known correctly.

Therefore, it becomes important to look for alternative approaches for spectrum sensing.

Several spectrum sensing algorithms based on the cyclostationarity or spectral coherence

of the primary user signal have been proposed during the past years. It has been estab-

lished that cyclostationarity of a signal may be used to detect as well to as enhance it.

Optimal filters to enhance cyclostationary signals have also been derived. These filters are

observed to exhibit a FRESH (FREquency SHift) structure. Cyclostationarity has also

been employed for the purpose of antenna array beam-forming.

In the past, both FRESH filtering as well as cyclostationary beam-forming have been

used to enhance cyclostationary signals prior to detection. The first problem that we con-

sider in this thesis is a combination of these two approaches. We propose a Space-Time

FRESH filtering structure to enhance the primary user signal by exploiting its spatial, tem-

poral and spectral coherence. The proposed structure is made adaptive to adjust its weights

as per the primary signal of interest. The Adaptive Cross SCORE (ACS) algorithm put

forward in literature is modified to adapt the proposed structure, and a spectrum sensing

algorithm is subsequently developed. However, the resulting algorithm has a complexity of

the order of O((KLM)2) for K antennas, M frequency shift branches per antenna, and L

temporal taps per branch. This is observed to act as a bottleneck in the spectrum sensing

procedure. Therefore, we formulate the correlation maximization problem of the ACS al-

gorithm as a constrained MMSE problem to develop a constrained doubly adaptive LMS

(C2-LMS) algorithm. It is then shown, using simulation techniques, that the proposed

structure, adapted using the proposed algorithm, may result in gains of as much as 10 dB
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Abstract

over conventional Energy and Cyclostationarity detectors.

Following this, we study the performance enhancement achieved in conventional spec-

trum sensing systems by FRESH filtering the signal prior to the detection stage. A quasi-

analytical theory of spectrum sensing based on FRESH filtering is developed. A quasi-

analytical approach is required because the variance of the test statistics is found to have

an intractable form and should, therefore, be determined empirically. Bounds on this

variance have however been derived. It is shown that significant performance gains are

achievable in both energy detection and cyclostationarity detection via FRESH filtering of

the received signal prior to the detection step. It is observed that FRESH filtering may

reduce the number of samples required to achieve a given detection performance by more

than 90% in practice, thereby reducing the sensing time in a cognitive radio system. It

is also shown that the FRESH filtering before energy detection may reduce the effects of

SNR walls caused due to noise uncertainty. The validity of all the derived observations is

confirmed via simulations.

It has been shown that multi-path fading and shadowing may affect the performance

of a single-user spectrum sensing adversely. It is, however, possible to improve the sensing

performance in such cases by employing multi-user diversity, that is, collaboration among

multiple sensing nodes. It may be argued that if FRESH filtering leads to performance

improvement in a single-user, it should also enhance the detection performance of multiple

collaborating users. Hence, we consider the problem of spectrum sensing with multiple

collaborating users, each equipped with a FRESH filter. In this case, FRESH filtering or

Space-Time FRESH filtering may be used to boost the performance of each individual user,

thereby improving the overall detection performance of the system. Here, we consider three

models of collaboration viz. centralized, distributed and hierarchical. It is argued that the

performance of collaborative FRESH filter-based spectrum sensing can be improved further

if the collaborating users adapt their filter weights jointly. It is shown using simulations

that joint adaptation results in gains of as much as 2 dB over local adaptation in addition

to the gains offered by the FRESH filters. Simulation results are also used to compare the

performance of the different collaboration schemes and it is observed that there is a slight

degradation in the performance of the proposed sensing technique as the system moves

from a purely centralized setting to a purely distributed setting.

In all the problems discussed above, we assume a perfect knowledge of the cyclic fre-

quency at the spectrum sensor. However, this may not always be true. Phenomena such

as Doppler shift and sampling clock offset may cause an offset between the true cyclic fre-

quency of the primary user signal and the cyclic frequency known at the receiver. Cyclic

Frequency Offset (CFO) is reported to cause severe degradation in the performance of sys-

tems exploiting cyclostationarity. In our proposed FRESH filter-based spectrum sensing

systems, CFO may manifest at the adaptation stage as well as the sensing stage. In this

thesis, we consider these problems separately.
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Abstract

To study the effect of CFO on the sensing stage, we consider the problem of cyclo-

statioanry spectrum sensing of an OFDM signal with correlated pilots. Spectrum sensing

algorithms for OFDM signals are also important because of the popularity of OFDM as

a modulation standard as well as it being the most suitable candidate for cognitive radio

networks. A detector for the cyclostationary features introduced due to inter-pilot correla-

tion is developed. The performance of the proposed detector is derived and verified in case

of AWGN channels. Following this, the effect of an offset in the value of cyclic frequency

known at the spectrum sensor is found out, and it is shown that CFO may cause a sub-

stantial performance loss in the system. It is then argued that the true cyclic frequency of

the received signal may be estimated using the received samples. The Cramer-Rao bound

for the true cyclic frequency estimator is then derived. Based on this bound, it is observed

that the true cyclic frequency needs to be determined recursively. Therefore, two recursive

algorithms, viz. a gradient ascent algorithm and a greedy-search algorithm, to estimate

and compensate for the CFO are proposed. The performance of both these algorithms

is then evaluated via simulation techniques. It is observed that the proposed cyclic fre-

quency estimation algorithms may compensate the losses caused due to CFO by as much as

15 dB. Simulation results are also used to study the performance of the proposed detection

technique under Rayleigh fading both in the presence and the absence of CFO.

A single-branch FRESH filter is considered to study the effects of CFO on the adaptation

stage of a FRESH filtering-based spectrum sensor. It is shown that the performances of

both the energy detector and the cyclostationarity detector suffer in the presence of a CFO

in the adaptation stage. Following this, the greedy search algorithm developed previously

is modified to estimate the true cyclic frequency for FRESH filter adaptation. It is observed

via simulation techniques that the losses caused due to CFO are reduced by as much as 5

dB for an energy detector and 14 dB for a cyclostationary detector.
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Chapter 1

Introduction

The recent advances in wireless communication technologies have led to an increased de-

mand for the limited communication spectrum. This, under the current static spectrum

allocation scheme, has led to a crunch in the availability of the usable spectrum. At the

same time, recent studies done by the FCC(Federal Communications Commission) show

that the actual utilization of the currently allocated spectrum is less than 40% [39]. This

leads to the dual problem of spectrum shortage and underutilization, where on one hand

there is an acute shortage of communication spectrum for wireless services, on the other

hand the bands licensed to legacy services are unused most of the time.

In order to circumvent these problems, it has been proposed to let the unlicensed users

access the vacant licensed spectrum bands opportunistically. That is, a secondary (unli-

censed) user may access the primary (licensed) user’s band whenever the latter is inactive.

This is known as the “Opportunistic Spectrum Access” (OSA) model. However, it is to be

noted here that this opportunistic access of the spectrum bands should not be disruptive

to the primary users operating in the given bands. Also, the usage patterns of the licensed

user may be random and it may not always be possible to prepare a geo-location database

to predict the licensed user’s activity [16, 116]. Therefore, it becomes necessary for the

secondary users to ensure that the band is vacant before transmitting over it.

Cognitive or location aware radio, first proposed by Joseph Mitola, is a key enabling

technology for Opportunistic Spectrum Access [87]. A cognitive radio is defined by Haykin

in [59] as

A Cognitive Radio is an intelligent wireless communication system that is

aware of its surrounding environment and uses methodology of understanding

by building to learn from the environment and adapt its internal states to sta-

tistical variations in the incoming RF signal by making corresponding changes

in certain parameters in real time with two primary objectives in mind.

1. Highly reliable communication.

2. Efficient utilization of the radio spectrum.



The tasks required to be performed to accomplish these objectives may be identified as

1. Spectrum Sensing : Most of the licensed users allowing opportunistic access to their

bands are legacy users such as digital television and wireless microphones [59]. These

systems already have an infrastructure in place and cannot modify their transmission

schemes to ease opportunistic access of the bands in question. It is, therefore, the sole

responsibility of the secondary users to ensure that the primary user services remain

unaffected by OSA. In other words, the operation of the secondary users must be

totally transparent to the licensed or the primary users.

For this purpose, a secondary user must transmit only when the primary user is

quiet, thereby following a listen before talk approach. This requires efficient sensing

of the presence of a primary user’s signal. This task of the cognitive radio, known

as spectrum sensing, becomes challenging because of the fact that the primary user

signals to be detected may lie as much as 22 dB below the noise floor [60, 116, 121].

2. Spectrum Management and Allocation : It is observed that once a free spectrum

resource is detected, there will be multiple secondary users contending to utilize it.

Therefore, the design of medium access (MAC) protocols for these users is equally

necessary [89]. While designing these protocols, it is to be kept in mind that all

the contenders for a given resource are intelligent devices and may “lie” about their

requirements. Therefore, based on the nature of the users involved in the scheme,

spectrum allocation problems are modelled as collaborative or competitive games for

optimal allocation of resources.

Apart from this, it is also necessary that the secondary users, while transmitting do

not exceed certain “interference temperature” limits. Accordingly, it becomes essen-

tial to judiciously set a cap for the maximum transmit power in different bands [59].

This limit on the interference temperature is used as a constraint in the game theoretic

modeling of the spectrum access problem.

3. Transmission Schemes : After a spectrum band is identified by a cognitive user

for transmission, the next step is to identify a modulation scheme for the same.

While deciding on the modulation scheme, it must be kept in mind that the available

spectrum is irregular and may be dis-contiguous. It should also be noted that the

transmission by the cognitive user must not interfere with the services in the adjacent

bands [23, 84].

Orthogonal Frequency Division Multiplexing(OFDM), introduced in [12] is a suitable

modulation scheme for cognitive radio based systems because of its ease of imple-

mentation and flexibility. Also, most modern day wireless systems such as WiMAX

(IEEE 802.16) and LTE employ OFDM for transmission.

2



Chapter 1. Introduction

In this thesis, we focus on the problem of spectrum sensing for cognitive radios. As

discussed previously, it is the sole responsibility of the secondary user to prevent interfer-

ence with the legacy primary user systems and, therefore, it is necessary that it should be

sensitive to the presence of a primary user signal. At the same time, it is important that

the secondary user should transmit at all possible opportunities. Therefore, the absence of

a primary user should be detected as efficiently as its presence. Also, the spectrum sens-

ing operation should be performed before initiating transmission. Since spectrum sensing

shares the spectrum opportunity window with the opportunistic transmission operation, it

is necessary that the sensing time be minimized in order to maximize the secondary user

throughput.

From the above discussion, it is evident that spectrum opportunities may exist in space

as well as in time. That is, the secondary users may transmit whenever or wherever no

primary user is present. It has been proposed in [137] that transmission opportunities

for secondary users may exist in code and angle domains as well. That is, the unused

spreading codes as well as MIMO beam-forming directions of the primary user may be

used for opportunistic spectrum access. In this thesis, however, we consider only temporal

and spatial spectrum sensing.

Also, it may be inferred from the preceding discussion that the problem of spectrum

sensing may be viewed as a binary hypothesis testing problem with the null hypothesis

corresponding to the absence of a primary user signal and the alternate hypothesis to

its presence. It may be observed that a primary user will experience interference if the

detection of its presence fails. Therefore, the probability of missed detection for this model

may be used as a measure of the interference caused to the primary user. Similarly, the

secondary user will transmit only when no primary user is detected and the spectrum

sensing operation is over. That is, the throughput of the secondary user system depends

on the successful detection of a spectrum hole as well as the time required for sensing.

Therefore, the probability of false alarm and the number of samples required for sensing

may be used as a measure for the throughput of the cognitive radio system. In view of this,

the objective of a spectrum sensing algorithm is to maximize the probability of detection

of a primary user signal while minimizing the probability of false alarm and the number

of samples required for sensing. The IEEE 802.22 WRAN standards restrict both the

probabilities of missed detection and false alarm to 10%.

The simplest approach for spectrum sensing is to detect the energy of the band of interest

and compare it against the noise floor. This approach, though optimal for unknown signals,

fails if the noise floor is not known precisely [122]. Therefore, it becomes pertinent to look

for alternative features that are present in the primary user signal but absent in the ambient

noise so as to distinguish the former from the latter.

One such feature is cyclostationarity or spectral coherence [50]. It has been established

that most communication signals exhibit distinct cyclostationary signatures [50]. Accord-
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ingly, communication signals exhibiting spectral coherence may be enhanced [48] as well

as detected [31] by virtue of this property. During the past few years, several methods

exploiting the cyclostationary properties of the primary user signals have been proposed

for spectrum sensing [60, 92].

In [48], Gardener has shown that the optimal filters for cyclostationary signals have a

Linear Periodically Time Varying (LPTV) structure. It has also been shown that LPTV

filtering is equivalent to FRESH (FREquency SHift) filtering [50]. Adaptive algorithms for

FRESH filtering have been developed in [146] and [135]. It is shown in [105] that optimal

FRESH filtering of a sensed signal prior to detection results in significant improvement in

the detection performance. Such a spectrum sensor is divided into the FRESH filtering

stage and the sensing stage where any detector may be employed to sense the presence of

a primary signal after the filtering stage. However, [105] provides only a simulation based

study of the effects of FRESH filtering on the detection performance for a fixed length

FRESH filter. Cyclostationarity property in signals may also be used for beam-forming [2].

Recently, spectrum sensing methods based on adaptive cyclostationary beam-forming have

also been proposed [35].

It may happen that the cyclic frequency known to the cognitive receiver and the actual

frequency at which the primary signal embedded in noise exhibits cyclostationarity are

different. This difference, known as the cyclic frequency offset (CFO), may be caused due

to Doppler shifts in the channel, the inexactness of knowledge of the carrier frequency of

the primary user signal or due to an offset in the sampling clock at the receiver [73, 103,

138]. It has been demonstrated that CFO causes severe degradation in the performance of

cyclostationarity based systems.

As pointed out above OFDM is the likely modulation standard for cognitive radio based

systems owing to its ease of implementation and flexibility. Consequently, the sensing of

OFDM signals also becomes important [138, 144]. In this thesis, we explore the problem

of the sensing of OFDM signals with correlated pilots. It is shown that pilot correlation

in OFDM signals leads to cyclostationarity, which can be detected by the use of cyclosta-

tionary spectrum sensing methods. Thus use of cyclostationarity for spectrum sensing is

a topic of significant research interest. In the following section we present a brief review

of the recent work done in the area of spectrum sensing and in particular cyclostationary

spectrum sensing.

1.1 Review of Earlier Work

As stated earlier, the simplest approach for spectrum sensing is the measurement of the

energy in the band of interest [65,95]. It is shown in [69] that energy detector is the optimal

detector for detecting random signals. The standard energy detector involves band pass of

filtering the received signal in the band of interest and comparing its energy against the
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noise floor.

In [59] and [60], Haykin considered the problem of temporal windowing in energy de-

tectors. It is observed that due to rectangular windowing the energy contained in one

spectral band appears within another band, causing a bias in the observed energy within

a band. Also, if some form of windowing is applied then the variance of the detected en-

ergy increases. This problem is known as the Bias Variance dilemma in signal processing

literature. The author proposed the use of Thomson’s multi-taper method(MTM) [124]

to overcome this issue. The multitaper method employs the use of multiple windows for

estimation of energy and takes their weighted average as an estimate. The windows used

here correspond to the eigenvectors of the covariance matrix of the received data and are

known as Slepian sequences or Slepian tapers. It has been shown in [60] that Slapian tapers

are the optimal windows for energy detection.

An alternative derivation for the MTM is given in [38] and it is noted that MTM

is optimal at the cost of a high computational complexity. This implies that the multi-

taper method being unsuited for the hardware and timing constraints of cognitive radios.

Instead [38] describes a filter bank-based spectrum sensor that provides equally good com-

putationally feasible energy estimates using larger filter lengths. It is argued that if filter

bank based multicarrier modulation schemes are employed for transmission in cognitive

radio systems then the filter-banks may serve the dual purpose of reception of the cognitive

radio signal as well as spectrum sensing.

The authors in [28] and [88] independently proposed the use of a generalized ℓp norm

of the received signal instead of the more conventional ℓ2 norm for energy detection. This

detector has been referred to as the improved energy detector. It is shown in [28] that the

probabilities of detection and false alarm are a function of p and may be optimized in its

terms for a given number of samples and signal to noise ratio. The optimized value of p

is found out to be especially effective under low SNR regimes for the AWGN case. The

Rayleigh fading case is considered in [88] and it is shown that p may be optimized in this

case as well.

The energy detector, though simple, relies heavily on the knowledge of the ambient noise

variance which may not always be exactly available. The authors in [122] considered the

problem of energy detector based spectrum sensing under noise uncertainty at low SNRs. It

is argued that the spectrum sensing system should be robust to small modeling uncertainties

in the signal and noise variances. It is observed that these modeling uncertainties lead to

the phenomenon of SNR walls. SNR walls are described as SNRs below which the system

will require infinite samples to achieve a desired detection performance. The performance of

the improved energy detector under noise uncertainty has been studied in [67]. It is shown

that the performance of the energy detector under the worst case noise uncertainty [122]

is independent of the exponent p. It is also shown that the conventional energy detector

is the best choice under uniform noise uncertainty. Due to the problem of SNR walls in
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the energy detector, it becomes necessary to look for alternative detection strategies. It is

desirable here to use features present in the primary user signal but absent in the ambient

noise. These features mainly stem from the signal and channel properties associated with

the primary user.

In [57], the problem of spectrum sensing is formulated as a goodness of fit test against

the general class of noise distributions. The test statistic here is based on the number of

weighted zero-crossings in the observations. It is observed that this detector is robust to

noise uncertainties under the low SNR regime.

It is safe to assume that the primary user signal exhibits some form of temporal cor-

relation either due to the primary user signal structure or due to the multipath channel.

Therefore, while the covariance matrix of the received signal will be diagonal in the absence

of a primary signal, it will be non-diagonal in case of latter’s presence. This will affect the

distribution of the eigenvalues of the covariance matrix under the two hypotheses. Based

on this fact, several eigenvalue-based tests developed using the generalized likelihood ratio

test (GLRT) have been proposed to detect the presence of a primary user [76,140–142]. It

is proposed in [63] to modify the energy detector by using the temporal correlation infor-

mation about the signal. It is argued that a multipath channel will introduce correlation

to a primary user signal thereby improving the detection performance. However, in the

absence of temporal correlation in the signal, the standard energy detector performs better

in comparison to the modified energy detector.

The method in [143] uses the finite time covariance matrix of the received signal. The

authors assumed the channel to be time dispersive and the received signal to be either

oversampled or is received by multiple antennas. Oversampling is used to exploit the

correlation among the primary signal samples, if present. Again, in the absence of a primary

signal the sample covariance matrix becomes diagonal. The test statistic, therefore, is this

ratio of the sum of diagonal elements to that of the off-diagonal ones. It may be observed

that ideally in the absence of a primary signal the ratio will tend to be infinite. It is

observed in [86] that this method may not always perform better in comparison to the

energy detector. Therefore, it is proposed therein that the test statistic should be decided

based on the correlation properties of the primary user signal. Zeng and Liang put forward

in [142] and [141] a test based on eigenvalues of the finite time covariance matrix of the

received signal. The ratio of the maximum eigenvalue of this matrix to its minimum is

used as a test statistic. It is observed that this ratio will be close to unity in the absence

of a primary user signal while it will have a value greater than unity in the presence of a

primary user signal.

The idea of employing multiple antennas to detect the presence of a primary user is

discussed in [113]. A generalized likelihood ratio test based on the signals received by

multiple antennas was developed by the authors to detect the primary user’s signal. Only

a single primary user is assumed to be present over a time invariant fading channel. It is
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argued that the covariance matrix, across multiple receive antennas, would be a sum of a

rank-1 matrix with the noise covariance of the form σ2I. This will result in a difference

between the largest and the average eigenvalues of the received signal covariance matrix. It

is further shown that the GLRT reduces to a test of the ratio of the maximum eigenvalue

to the mean of all other eigenvalues. A major drawback of the GLRT based methods is

the requirement of a large number of samples. It has been observed that in case where

some prior information about the signal is available, the number of samples required may

be reduced considerably [41].

The above idea is extended in [6] to the case of primary user employing multiple transmit

antennas and using orthogonal space-time block codes for transmission. A test based on the

ratio of maximum and minimum eigenvalues of the covariance matrix is proposed and its

performance is evaluated. In [37], an optimal Bartlett detector-based sequential probability

ratio test is derived for use in multi-antenna array systems. This test is then extended to

a MIMO system.

The performance of an eigenvalue-based sensing technique in the presence of correlated

noise is analyzed in [111]. The ratio of the maximum to the minimum eigenvalue, known

as the standard condition number is used as the test statistic. Bounds on the test statistic

under both the hypotheses are derived. It is also shown that the eigenvalues of the sensed

signal covariance matrix may also be used to estimate the primary user SNR at the cognitive

terminal.

Axell and Larsson used a Bayesian approach in [5] to classify each received sample either

as a pure noise sample or as containing a primary user signal. This paper considers the

noise variance to be unknown. An optimal soft decision detector is developed for M inde-

pendent observations. Following this, it is shown that the complexity of this detector grows

exponentially with the number of samples. Subsequently, less complex approximations to

the detector discussed previously are also proposed.

Another feature of the primary signal that is used for the purpose of sensing is cyclosta-

tionarity or spectral coherence [43, 90]. It has been established that most communication

signals exhibit distinct cyclostationary signatures [50]and that the signals possessing spec-

tral coherence may be enhanced [48] as well as detected [31] by virtue of this property. The

statistical tests for detecting the presence of a cyclostationary signal, first formulated by

Dandwate and Giannakis in [31], are employed for the purpose of spectrum sensing by Oner

and Jondral in [92]. The authors proposed tests based on cyclostationarity which are used

to sense the presence of a GMSK modulated GSM signal for pooling with an OFDM-based

WLAN system.

In [104], the relative strengths and variances of the cyclic autocorrelation function at

different cyclic frequencies are taken into account. In this paper, weights are derived for

optimally combining the values of finite time cyclic autocorrelation function at different

cyclic frequencies. These optimal weights are then used to develop a deflection coefficient
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based detector [68]. The derived results are verified via simulation.

The eigenvalue properties of the cyclic covariance matrix of the received signal are used

for spectrum sensing in [131]. It is shown that all the eigenvalues of the cyclic covariance

matrix will tend to zero under the null hypothesis. However, they assume nonzero values

under the alternate hypothesis. This paper uses the cyclic correlation significance test to

ascertain the presence of a primary user signal. It is to be noted that this test will work in

the presence of correlated white noise, whereas the general eigenvalue-based detectors will

fail. It is also brought out that the detection threshold is independent of the number of

samples.

The problem of selection of cyclic frequencies and cyclic autocorrelation lags that max-

imize the probability of detection for a given primary signal exhibiting cyclostationarity

has been studied in [112]. It is shown that the fourth order cyclic moment of the received

signal is required to determine the optimal lags for a given cyclic frequency. Since this

knowledge may not always be available, a suboptimal method applicable at low SNRs is

also proposed in the paper. The derived results are applied to linearly modulated signals to

determine the optimal lag and cyclic frequency sets for these. It turns out, that in general,

an increase in the number of feature points being used for detection leads to an improved

detection performance.

It is established in [80] that the cyclostationary properties of the signal are preserved

if the sign function is used instead of the actual values. This fact is used to derive the

cyclostationary features of the sign function of a received signal. It has been shown that

tests similar to the ones used to detect the presence of cyclostationary signals may be

applied to detect the presence of the signal. The loss of information due to the signal

amplitudes is compensated for by the use of larger number of samples. Sequential and

cooperative techniques using this scheme have also been proposed in [80]. These detectors

are shown to be effective in non-Gaussain impulsive noise in [81].

Apart from detection, the cyclostationarity property of a signal may also be used to

enhance it. It was established in [48] that the optimal filter for a cyclostationary signal

has a linear periodically time varying structure. It is shown in [50] that a LPTV structure

may be interpreted as a FRESH (FREquency SHift) structure. Adaptive algorithms for

FRESH filtering have been developed in [146] and [135].

It is shown in [105] that optimal FRESH filtering a signal prior to detection results in

significant improvement in the detection performance. Such a spectrum sensor is divided

into the FRESH filtering stage and the sensing stage where any detector may be employed

to sense the presence of a primary signal after the filtering stage. However, [105] provides

only a simulation based study of the effects of FRESH filtering on the detection performance

for a fixed length FRESH filter. Hence a detailed analysis of the performance of spectrum

sensing aided by FRESH filtering is much required.

Cyclostationarity property in signals may also be used for beam-forming [2, 36, 134].

8
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The first among the cyclostationary beam forming algorithms is the SCORE (Spectral

COherence REstoral) class of algorithms presented in [2]. Recently, spectrum sensing

methods based on adaptive cyclostationary beam-forming have also been proposed [35].

It is observed that most communication signals exhibit cyclostationarity only for a pre-

defined set of discrete cyclic frequencies. The performance of a cyclostationarity detector,

therefore, is dependent on the correct knowledge of these frequencies. Unfortunately, it

cannot be ensured that the cyclic frequency known at the cognitive radio terminal and the

cyclic frequency of the primary signal are the same. An offset between the actual and the

known values of the cyclic frequencies may arise if the channel causes a significant Doppler

shift in the primary user signal, or if there is an offset in the sampling clock [72,73,103,138].

The effects of cyclic frequency offset (CFO) on the detection performance are severe as

described in [103]. The authors in [103] also proposed a mechanism to bypass the effects of

CFO by averaging the test statistics over smaller sample blocks. However, this technique

causes a loss in the number of features being used for detection, thereby compromising the

detection performance. Therefore, alternative methods for compensation of CFO effects

are desirable.

In [72], a recursive greedy search algorithm to find the optimal cyclic frequency max-

imizing the SCORE objective function is proposed. The performance of this algorithm

is studied via simulation and it is found that the proposed algorithm can compensate for

the effects of CFO. A gradient ascent based algorithm for cyclic frequency estimation is

proposed in [73]. The convergence properties of this algorithm are studied and it is shown

using simulation results that this algorithm can compensate for the effects of CFO.

Apart from temporal and spectral correlation, some authors have also advocated the

use of methods that rely heavily on the features of primary signals to be detected. These

methods include the signature-based methods and the radio access technology (RAT)-

based methods. The signature-based methods are employed when the cognitive user has

the exact knowledge of some signatures embedded in the primary user waveform. These

signatures may be preamble, midamble or the entire signal waveform (matched filtering). It

is seen that the matched filter-based methods are optimal for detection of signal waveforms.

RAT-based methods, on the other hand, use the knowledge obtained by identifying the

transmission technology being employed to access the spectrum. As an example, [136] uses

time frequency analysis to distinguish between WLAN and Bluetooth signals. However, the

exact knowledge of primary signal waveforms may not be readily available to the cognitive

users, thus limiting the use of these methods.

Corderio et. al. in [29] and Chen et. al. in [27] detected digital television signals

using signature-based spectrum sensing. They exploited the periodically occurring field

sync segments in DTV signals as signature sequences. The received signal is broken into

segments equaling the length of frame and correlated with the known pilot sequences.

The maximum value of the cross correlation is chosen as the test statistic. In [11], the

9
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performances of the energy detector, the matched filter detector and the cyclostationary

detector are compared in terms of their achievable detection rates.

Most of the detectors discussed previously do not take into account channel effects

such as fading and shadowing. It is, however, shown in [33] that the performance of

feature detectors may degrade considerably under the effect of fading. Also, if the channel

between the primary user and the cognitive terminal is in a deep fade then the primary

user may become undetectable. This is known as the hidden primary user problem. In

order to counter the effects of fading channels, it has been proposed that multiple primary

users should sense the spectrum collaboratively [53]. In [66], the authors proposed double

threshold based cooperative sensing for the improved energy detector. Here, the exponent

p is chosen so as to minimize the sum of probabilities of missed detection and false alarm.

The difference between the two thresholds is also optimized to maximize the probability of

detection. A k-out-of-N decision rule is used to fuse the decisions in a cooperative setting.

This paper also considers the effect of imperfect reporting channels.

The problem of decentralized detection in sensor networks was first considered in [24].

Here, a fusion centre communicating with a set of nodes over a multiple access channel

is considered and an optimal sensor configuration is derived. This idea is extended to

cognitive radios in [53] and [55].

It is proposed in [30] to perform cooperative sensing using cyclostationary features in

the presence of a fusion centre. Here, the cooperating users transmit their test statistics

for a single cyclic frequency. These are combined at the fusion centre using equal gain

combining. This idea is extended in [82] for a multi-cycle approach. Besides this, the

reporting channel constraints are also considered in [82] and a censoring scheme based on

the relevance of the data being transmitted by a coopering user is also proposed.

Under the scheme proposed in [149], multiple cognitive radios collaboratively detect the

spectrum holes through energy detection in the presence of a fusion centre. It is shown

here that reporting from a few and not all sensing nodes is sufficient to detect a primary

user in a large cognitive radio network. An optimal voting rule for the sensing nodes is

derived along with the optimal thresholds for energy detection-based sensing. This results

in the development of fast spectrum sensing algorithms for cognitive radios.

Deflection coefficients are used in [32] for a cooperative multicycle detector. In this pa-

per, multiple secondary users, each sensing a different cyclic frequency collaborate to detect

the presence of a primary user signal. The allocation of frequencies to different sensors is

either centralized or consensus-based. This paper studies both soft decision-based and hard

decision-based collaborations. As a trade-off between soft and hard decisions,quantized test

statistics are considered in this paper and the effects of quantization of test statistics on

the detection performance is studied.

The problem of limited control channel bandwidth for a large number of cooperating

users is considered in [118]. It is proposed here to censor the communication between

10



Chapter 1. Introduction

individual nodes and the fusion center in order to limit the control channel usage. It is

proposed that only the secondary users with strong decisions should report to the fusion

center (FC). The performance of this scheme is evaluated for both perfect and imperfect

reporting channels and it is seen that the saving in control channel bandwidth outweighs

the performance loss due to censoring.

The performance degradation in collaborative sensing techniques due to correlated log

normal fading channels is studied in [54]. The noise characteristics of the channel are used

to derive a lower bound on the false alarm rate, termed here as the missed opportunity

rate. The physical area spanned by the sensing network is taken into account and it is

shown that, under correlated fading, a sparse distribution of users over a large area is

advantageous as compared to a dense distribution over a small area.

The effects of the errors caused in the control channel are taken into account in [148]. It

is shown that errors in the reporting channel limit the performance of cooperative spectrum

sensing. As a solution to this problem, a transmit diversity-based cooperative sensing

technique is proposed. The different cooperating users are assumed to behave as an antenna

array and consequently, space-time and space-frequency codes are used to transmit the

sensed information to the fusion centre. Further, a relay-based scheme is also proposed for

the sensing nodes in a deep fade. Under this scheme, different sensing nodes act as relays

for the nodes whose links with the fusion centre are in a deep fade.

A joint evaluation of soft and hard combination strategies at the fusion center is done

in [3]. It is shown that for a small number of cooperating users soft decisions are preferable

while hard decisions tend to become a better choice as the number of cooperating users

increases. The effect of reporting channel errors on soft and hard combination schemes has

been studied in [26]. In this paper, a cooperative detection scheme with a fusion centre is

considered. It is assumed that the one-bit hard decisions as well as quantized soft decisions

are sent to the fusion centre over a channel that may cause reporting errors. The effects of

an improper reporting channel are interpreted in terms of its bit error probability (BEP).

The problem of combination of local test statistics from different cooperating users

is studied in [101]. Here, the spectrum sensing problem is remodelled as a constrained

non-linear optimization problem. The constraints, in this case, are on the probabilities

of detection and false alarm. Apart from algorithms to obtain an optimal solution to the

aforementioned problem, this paper also proposes a computationally less intensive solution.

In [108], it is assumed that K collaborating spectrum sensors forward their collected

samples to a fusion centre. These samples are used to construct the covariance matrix

of the received signal. Based on the covariance matrix, a unified generalized eigenvalue

based sensing framework, referred to as the generalized mean detector, is developed. The

eigenvalues of the received signal covariance matrix are used to propose three tests based

on the ratio of the maximum eigenvalue to the minimum eigenvalue, the arithmetic mean

and the geometric mean. Finally closed form expressions for the performance of these tests

11
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are derived.

A Quickest detection-based collaborative spectrum sensing framework is explored in [74].

This paper considers collaborative quickest detection without coordinated communication

among the sensing nodes. It is assumed that there exist fixed time slots during which the

secondary users can transmit. The cooperating users may transmit randomly during these

slots and there is no coordination among them to avoid collisions. Asymptotic analysis is

used to obtain the optimal broadcast probability of each sensing user. It is shown that

collisions may be avoided if the probability of broadcast at each user is kept proportional

to the magnitude of the likelihood function at the respective user.

In [151], a combination scheme minimizing the overall cost of the cooperative sensing

system is proposed. The scheme takes into account the time offsets of the local spectrum

sensors. The role of the prior probabilities of channel occupancy are taken into account

in [106]. This paper considers a fusion center-based cooperation approach with each indi-

vidual spectrum sensor using GLRT-based statistics. The number of samples required to

achieve a given detection performance is also calculated in terms of the instantaneous re-

ceived SNR. In [58], the individual sensors are assumed to use energy detectors and forward

their binary decisions to the FC. The control channel here is considered to be error-free and

the fusion center is assumed to use the k-out-of-N rule for combination. Error exponents

are introduced and are used as a measure of the system performance.

Collaborative Spectrum sensing based on sequential detection is studied in [152] and [70].

The objective in [152] is to reduce the average sensing time required to reach a decision.

In this case, each sensing node transmits its test statistics to the fusion center after each

measurement. Based on the accumulated statistics, the fusion center decides on when to

stop the detection process. It is assumed that the signal and noise powers are unknown

at the sensing nodes and it is shown that the proposed sensing technique is robust to the

knowledge of these parameters. The reduction in sensing time is illustrated analytically as

well as by the use of simulation results.

A censored truncated sequential cooperation approach has been studied in [85]. It

is argued that this approach results in considerable energy savings in the network. The

problem is modeled so as to minimize the average energy consumption per sensor subject

to constraints on the probabilities of missed detection and false alarm. Under the derived

approach, the sensing nodes sense the spectrum and transmit only if they reach a decision

before reaching a truncation limit on the number of collected samples.

Most of the cooperative spectrum sensing techniques assume Rayleigh fading channels.

As a generalized case, single tap Nakagami channels are considered in [4]. Five new detec-

tors viz. a Neyman Pearson detector, a locally optimum detector for weak signals, a weak

signal detector and two GLRT detectors, are proposed here. Optimal detectors are derived

when the signal and noise parameters are known. These detectors are then generalized for

cases where one or more of the presumed parameters are not known.

12
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Conventional cooperation schemes require a fusion center to arrive at a general decision

based on the statistics/decisions of the local nodes. This arrangement is susceptible to

node failure as well as requires a high communication overhead. It is also possible that

sensing nodes far from the fusion center may not be synchronized to stay silent during the

sensing periods. Therefore, it is important to develop distributed cooperation schemes for

spectrum sensing. Some of the significant works in this direction are listed below.

Peer-to-peer cooperation for spectrum sensing using distributed detection theory has

been discussed in [42]. The classification framework, in this case, is based on time-frequency

analysis of the received signal. The short time power spectrum of the signal is used as a

feature to detect the air interface of the transmitted signal. It is then shown that the

proposed algorithm can distinguish between Bluetooth and 802.11 WLAN operating in the

2.4 GHz ISM band.

A fully distributed and scalable cooperative sensing scheme is developed in [75]. The

decision in this case is based on the consensus arrived at by the cooperating users. The

test statistic is based on energy detection. This paper considers consensus over both fixed

as well as random graphs. The problem of consensus weight design under practical channel

conditions and link failures is studied in [147]. A new weighted soft measurement-based

combining scheme in the absence of a fusion centre is developed. Each node uses the

signal energy as the test statistic and exchanges this information with its local one hop

neighbours. The convergence of the weight selection algorithm is also proved in this paper.

A single spectrum slot may not be always available. Therefore, it is an attractive

proposition for a spectrum sensing system to monitor multiple primary user bands simul-

taneously. This can be done in two ways. Either all the primary user bands may be

monitored separately, or may be monitored as a single wide band. Under the first strategy,

known as multi-band sensing, the occupancy states of different bands are determined sepa-

rately. The simplest approach for this is presented in [40]. In this paper, it is assumed that

the occupancy of different bands is uncorrelated and for an M-band system the composite

hypothesis test may be decoupled as M number of independent hypothesis tests.

Hwang et. al. in [64] attempted to address the problem of multi-band sensing by

proposing an autoregressive model for the occupancy of different bands. A two-stage spec-

trum sensing procedure is proposed. The problem of cooperation among multiple secondary

users for spectrum sensing over a wideband is dealt with in [102]. The authors modeled the

problem as a convex optimization problem to find an optimal scheme called “multiband

joint detection”. The case of correlated subbands in multiband joint detection is considered

in [62] where a frequency coupled optimum linear energy combiner structure is proposed for

multiple users. In [40], Segura et. al. proposed the use of generalized likelihood ratio test

for the purpose of wideband spectrum sensing. Under the second strategy for wideband

spectrum sensing, the entire wide band is sensed as a whole. This also becomes necessary

when the primary user is employing a modulation scheme such as wideband OFDM.
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The approach discussed by Tian and Giannikis in [126] uses wavelet transforms to

separate out the different bands in the received wideband signal spectrum. The PSD of

the received signal is first determined using FFT. Following this, wavelet transform is used

to detect the edges that separate out the different bands. The PSDs of these bands may

then be used to determine their occupancy state.

It is observed that sampling a wideband spectrum band requires very high sampling

rate at the spectrum sensor. This leads to higher power consumption by the spectrum

sensing equipment. However, recent advances in sub-Nyquist sampling and compressed

sensing [34, 128] have led to the development of several compressed sensing-based spec-

trum sensing algorithms. The sparsity introduced due to the usage pattern of communi-

cation spectrum has beenexploited in [139]. It is proposed here to use a consensus-based

compressed sensing system to determine the usage pattern of a wideband spectrum. A

multi-rate sub-Nyquist spectrum detection system for cooperative wideband sensing is in-

troduced in [119]. The proposed sensing scheme uses only a few sub-Nyquist samples at

each cooperating user. It is also proposed to use different sampling rates to improve the

overall system efficiency. In [109], a group testing-based spectrum sensing algorithm is pro-

posed. The proposed algorithm tests a group of adjacent sub-bands in a single test, thereby

exploiting the inherent sparsity. In [125] and [127], the authors proposed to reconstruct

the wideband cyclic spectrum of the signal from the compressed samples. It is shown that

the covariance matrix of the channel may be recovered from the covariance matrix of the

compressed samples.

As discussed previously, OFDM is the most suitable modualtion scheme for cognitive

radio systems. Also, due to its popularity in the current modulation standards, it is neces-

sary for spectrum pooling systems to develop methods to successfully detect these signals.

Most of the methods developed for OFDM signal detection are based on the detection of

one or more inherent features, such as the cyclic prefix or the pilot tones.

In [25], the authors proposed to use the autocorrelation properties introduced due to

the cyclic prefix as features to detect the primary signal. The authors in [8] also used

the cyclic prefix as a distinguishing feature in the OFDM system and have developed

optimal and suboptimal detectors to detect the non-stationarity caused due to the cyclic

prefix. The cyclic autocorrelation function and the sign cyclic autocorrelation function

have, respectively, been used to detect the cyclostationary features introduced due to a

cyclic prefix in [123] and [130].

The authors in [27] used time-domain symbol cross-correlation to detect the correlation

introduced by the pilot tones. This property has also been exploited in [144] where finite

time autocorrelation function is used as a test statistic. The authors in [138] use the

empirical cyclic spectral density to detect cyclostationarity introduced due to correlated

pilots.

The difference in the statistical properties of the pilot and data subcarriers is exploited
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in [79] for primary user signal detection. Artificially induced cyclostationary features to as-

sist OFDM signal detection are proposed in [120] and have subsequently been used in [115].

For using the cyclostationary features of OFDM for detection, it is observed that the cy-

clostationarity introduced due to the cyclic prefix is weak and dependent on the length

of the cyclic prefix, whereas the induced cyclostationarity may only be used for detecting

secondary user systems.

1.2 Problem Statements and Descriptions

The problems considered in this thesis may be classified into two broad categories, viz. the

effect of FRESH filtering on the performance of conventional spectrum sensors, and the

effects of CFO on cyclostationary spectrum sensing systems and their prevention.

Under the first set of problems, the performance enhancement offered by the use of

FRESH filters in a spectrum sensing system is studied. Firstly, the ideas of cyclostationary

beam-forming and FRESH filtering for spectrum sensing are combined to propose a Space-

Time FRESH filtering structure for spectrum sensing. A major challenge in this case

is the selection of an appropriate algorithm for adapting this structure. Following this,

quasi-analytical expressions are derived for performance evaluation of a single-antenna,

single-user FRESH filter-based spectrum sensing system for both an energy detector and a

cyclostationary detector.

It is found that single user spectrum sensing is inadequate for channels with heavy

fading. Similar to conventional spectrum sensing schemes, the performance of FRESH filter

based sensing also deteriorates under fading and shadowing. It is, therefore, proposed that

multiple users should collaborate to detect the presence of a primary user [53]. Therefore,

it is essential to develop collaboration strategies for FRESH filter-based spectrum sensing

techniques.

Under the second set of problems, the effect of cyclic frequency offset on cyclostation-

arity based spectrum sensing systems is studied and methods to counter these effects are

proposed. It is observed that CFO may exist either at the filter adaptation stage or at the

sensing stage. To elaborate the effects of CFO at the sensing stage a cyclostationary detec-

tor for OFDM signals with correlated pilots is developed and the effect on its performance

is studied. Following this, methods to compensate for these effects are also developed.

The effect of CFO on the adaptation stage is studied for a single branch FRESH fil-

ter based system. The CFO compensation methods developed for the sensing stage are

modified for application to this case.
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1.3 Thesis Organization

The second chapter introduces the notion of cyclostationarity and reviews some important

results regarding cyclostationary signals. The chapter starts with the basic definitions of

cyclostationarity and re-develops the expressions for the cyclostationary properties of the

continuous-time and discrete-time signals. Following this, the effect of basic signal process-

ing operations on cyclostationary signals is reviewed and based on these, the cyclostationary

features of BPSK signals are re-visited.

In Chapter 3, a Space-Time FRESH filtering structure exploiting the spatial, temporal

and spectral coherence of the primary user signal is proposed. It is argued that preprocess-

ing the sensed signal using the proposed strucutre prior to the detection step results in an

improved primary user detection performance. Following this, the adaptive beam-forming

algorithm in [35] is modified to adapt the proposed structure. However, it is found that this

algorithm has a complexity of O((KML)2) for a K-antenna system with each antenna fol-

lowed by a FRESH filter containingM number of frequency shift branches and each branch

having a length L. This adaptation algorithm therefore acts as a bottleneck in the entire

spectrum sensing scheme. Consequently, a linear complexity constrained doubly adaptive

LMS algorithm (C2-LMS) is derived to adapt the proposed structure. The performance of

the proposed structures and algorithms are then evaluated via simulation.

The performance of FRESH filter-based spectrum sensing in [105] as well as in Chapter 3

is determined mainly on the basis of simulation results. In Chapter 4 we now attempt

to develop a mathematical explanation for the performance enhancement caused due to

FRESH filtering in a single-user single-antenna system. We derive the statistics for both

the energy detector and the cyclostationary detector to show that the performance in both

these cases improves significantly due to FRESH filtering. Following this, the number of

samples required to achieve a given detection performance are derived and it is shown that

FRESH filtering may reduce the number of samples required to achieve a given detection

performance by more than one order of magnitude. Further, the effect of noise uncertainty

on energy detection-based sensing is studied, and it is observed that FRESH filtering lowers

the SNR walls by as much as 14 dB. The validity of these results is then verified via

simulations.

In Chapter 5, the single user FRESH filter based spectrum sensors are extended to a

multiuser case for flat fading as well as dispersive fading channels. Here, multiple secondary

users, each equipped with a FRESH filter, are assumed to collaborate to detect the presence

of a primary user signal. All the three models of collaboration, viz. centralized, distributed

and hierarchical, are considered here. It is then argued that the performance of collaborative

FRESH filter-based spectrum sensing can be improved further if the collaborating users

adapt their filter weights jointly. For this purpose, joint adaption algorithms described

in [17] are modified to fit the given problem. The validity of these claims is then verified
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via simulation.

The problem of spectrum sensing for OFDM signals is considered in Chapter 6. For this

purpose, a cyclostationarity detector exploiting inter-pilot correlation in the OFDM signal

is developed. The effect of CFO on the performance of this detector is considered and it

is shown that the proposed detector fails in the presence of CFO. To counter the effects of

CFO, it is proposed to estimate the true cyclic frequency of the sampled signals from its

samples. In view of this, the Crammer-Rao bound for the true cyclic frequency estimator

is derived and it is argued that the true cyclic frequency should be estimated recursively.

Following this, two recursive algorithms, based on greedy search and gradient ascent are

developed for estimating the true cyclic frequency.

The effect of cyclic frequency offset on the adaptation stage of a FRESH filter is con-

sidered in Chapter 7. Following this, the greedy search algorithm developed in Chapter 6

is modified to estimate the true cyclic frequency for FRESH filter adaptation. The results

are again verified via simulation.

Finally, conclusions are drawn in Chapter 8 and directions for future work are identified.
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Chapter 2

Cyclostationarity: An Overview

Generation of primary user signal involves various periodic operations such as modulation,

sampling, multiplexing and coding. Therefore, the statistical characteristics of the primary

user signal determined by these operations are also periodic. Based on the nature and num-

ber of periodic phenomena affecting the statistical properties of the data, the parameters of

these processes may exhibit single or multiple periodicities. Such processes exhibiting single

or multiple periodicities in their statistical parameters are known as cyclostationary pro-

cesses [47,90]. Owing to the periodic variation in the statistical properties, the correlation

function of a cyclostationary random process will also exhibit periodicity. Cyclostationary

processes, are, therefore also referred to as periodically correlated processes. Periodically

time varying random processes also find application in biology, radio astronomy and eco-

nomics. Consequently, starting from the first contributions in Russian literature in 1959,

cyclostationarity in random signals has been well researched over the past five and a half

decades [46, 51].

This chapter introduces some basic notions of cyclostationarity in communication sig-

nals to provide a background for the chapters that follow. The formal definitions of cy-

clostationary processes and their properties are stated in the first section. The second

section looks at the effect of some common signal processing operations on cyclostationary

signals. The cyclostationary properties of a BPSK signal are derived in the third section.

In the fourth section, linear periodically time-varying filtering is introduced as a method

for generating cyclostationary signals.

2.1 Cyclostationarity
A continuous-time real-valued stochastic process x(t), which is a collection of sample func-

tions {x(t, ω) t ∈ ℜ, ω ∈ Ω}, over the sample space Ω, is said to be Nth-order strict-sense

cyclostationary if its distribution function

Fx(t), x(t+τ1),..., x(t+τN−1)(ξ0, ξ1, . . . , ξn−1) = Pr{x(t) ≤ ξ0, x(t+τ1) ≤ ξ1, . . . x(t+τN−1) ≤ ξN−1}
(2.1)
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is periodic in t with a period T0, that is,

Fx(t+T0), x(t+τ1+T0),..., x(t+τN−1+T0)(ξ0, ξ1, . . . , ξN−1) = Fx(t), x(t+τ1),..., x(t+τN−1)(ξ0, ξ1, . . . , ξN−1)

(2.2)

Relaxing this definition, x(t) is said to be second-order wide-sense cyclostationary with

a period T0 if its mean and autocorrelation function are periodic in time with period T0.

That is,

E[x(t + T0)] = E[x(t)]

Rxx(t, τ) = E
[

x
(

t+ τ
2

)

x
(

t− τ
2

)]

= Rxx(t+ T0, τ)

(2.3)

For a complex-valued continuous-time process x(t), the above conditions take the form

E[x(t+ T0)] = E[x(t)]

Rxx(t, τ) = E
[

x
(

t+ τ
2

)

x∗
(

t− τ
2

)]

= Rxx(t+ T0, τ)

(2.4)

If the process x(t) is cyclo-ergodic [15], then

x(t + ωT0) = x(t, ω) (2.5)

The mean and the autocorrelation function of x(t) may be defined as

E[x(t)] = 1
|Ω|
∑

ω∈Ω x(t+ ωT0) 0 ≤ t < T0

Rxx(t, τ) = E
[

x
(

t+ τ
2

)

x∗
(

t− τ
2

)]

= 1
|Ω|
∑

ω∈Ω
(

x
(

t+ τ
2
+ ωT0

)

x∗
(

t− τ
2
+ ωT0

))

0 ≤ t < T0

(2.6)

Due to this periodicity, Rxx(t, τ) may be decomposed in the form of a Fourier series as

Rxx(t, τ) =

∞
∑

k=−∞
R

k
T0
xx (τ)e

j2πkt
T0 (2.7)

where R
k
T0
xx (τ) is the kth Fourier coefficient, defined as

R
k
T0
xx (τ) = lim

T0→∞

1

T0

∫
T0
2

−T0
2

Rxx(t, τ)e
−j2πkt

T0 dt (2.8)

This is also known as the cyclic autocorrelation function at the cyclic frequency k
T0
.

As stated earlier, the random process x(t) may be generated due to a plurality of periodic

phenomena. The periodicities of these phenomena may or may not be integer multiples of

each other. It is, therefore, convenient to define the process as almost cyclostationary. A

random process is said to be almost cyclostationary in the wide-sense if its autocorrelation
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function is an almost periodic function of t. That is, there exists a countable set A of cyclic

frequencies α such that its autocorrelation function may be expressed in the form

Rxx(t, τ) =
∑

α∈A
Rα

xx(τ)e
j2παt (2.9)

where

Rα
xx(τ) = lim

Tα→∞

1

Tα

∫ Tα
2

−Tα
2

Rxx(t, τ)e
−j2παtdt (2.10)

and

Tα =
1

α
(2.11)

Substituting (2.6) into (2.10) and interchanging the order of integration and summation,

we get,

Rα
xx(τ) = lim

Tα→∞

1

Tα|Ω|
∑

ω∈Ω

∫ Tα
2

−Tα
2

(

x
(

t+
τ

2
+ ωTα

)

x∗
(

t− τ

2
+ ωTα

))

e−j2παtdt (2.12)

It may be observed that for Tα → ∞ the integral spans the entire real line. Therefore, it may

safely be assumed to have accommodated all the integer shifts of x
(

t+ τ
2

)

x∗
(

t− τ
2

)

e−j2παt

and consequently the above equation may be simplified as

Rα
xx(τ) = lim

Tα→∞

1

Tα

∫ Tα
2

−Tα
2

(

x
(

t+
τ

2

)

x∗
(

t− τ

2

))

e−j2παtdt (2.13)

Therefore, Rα
xx(τ) may be viewed as the strength of a sinusoid with frequency α hidden

in the lag product z(t, τ) = x
(

t+ τ
2

)

x∗
(

t− τ
2

)

. More generally, a stochastic process

x(t) is said to exhibit second-order wide-sense cyclostationarity at a cyclic frequency α if

Rα
xx(τ) 6≡ 0.

It may be noted that the cyclic autocorrelation function for a cyclostationary random

process is independent of time. In other words, said that the random process zα(t, τ) :=

{zα(t, τ, ω)t, τ ∈ ℜ, ω ∈ Ω}, derived out of x(t) as

zα(t, τ) = x
(

t +
τ

2

)

x∗
(

t− τ

2

)

e−j2παt, (2.14)

is ergodic. Consequently, the cyclic autocorrelation function at lag τ may also be defined

as the mean value of the frequency shifted lag product zα(t) as

Rα
xx(τ) = E [zα(t, τ)] (2.15)

Substituting the definition of z(t) in the above, cyclic autocorrelation function may be
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2.1 Cyclostationarity

defined as

Rα
xx(τ) = E

[

x
(

t+
τ

2

)

x∗
(

t− τ

2

)

e−j2παt
]

(2.16)

Defining the signal xα(t) as

xα(t) = x(t)e−j2παt, (2.17)

the cyclic autocorrelation function may also be written as [50]

Rα
xx(τ) = E

[

x
α
2

(

t+
τ

2

)

x−
α
2
∗
(

t− τ

2

)]

(2.18)

The right side of this equation is the cross correlation between the signals x
α
2 (t) and x

−α
2 (t)

at lag τ . The cyclic autocorrelation function at a cyclic frequency α may, therefore, be

seen as the cross correlation function between two frequency shifted versions of the signals

separated by a frequency α. This implies that any signal exhibiting cyclostationarity will

be correlated to its frequency shifted version for some discrete frequency shifts α ∈ A.

Consequently, a cyclostationary signal also exhibits spectral coherence [90].

As the autocorrelation function and the power spectral density form a Fourier transform

pair, the time-varying power spectral density of x(t) may be expressed as

Sxx(t, f) =

∫ ∞

−∞
Rxx(t, τ)e

−j2πfτdτ (2.19)

Using the above equation, (2.9) and the linearity property of Fourier transform, the peri-

odically time-varying power spectral density of x(t) may be expressed as

Sxx(t, f) =
∑

α∈A
Sα
xx(f)e

j2παt (2.20)

where Sα
xx(τ) is defined as

Sα
xx(τ) = limTα→∞

1
Tα

∫
Tα
2

−Tα
2

Sxx(t, f)e
−j2παtdt

=
∫∞
−∞Rα

xx(τ)e
−j2πfτdτ

= E
[

X(f + α
2
)X∗(f − α

2
)
]

(2.21)

Here X(f) is the Fourier transform of x(t) defined as

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt (2.22)

Thus, the cyclic spectral density may be viewed as the cross-spectral density between

two frequency shifted versions of X(f). It may be observed that for a signal exhibiting

cyclostationarity at a frequency α, the cyclic spectral density at that frequency must not

be uniformly zero.

A wide-sense stationary process may be seen as a special case of a cyclostationary
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Chapter 2. Cyclostationarity: An Overview

process with α = 0. It may be noted that for α = 0, the cyclic spectral density and

the cyclic autocorrelation function reduce to the conventional power spectral density and

autocorrelation function, respectively.

2.1.1 Conjugate Cyclostationarity

A complex valued random process x(t) is said to be second-order conjugate almost cyclo-

stationary in the wide-sense when its conjugate autocorrelation function, defined as

Rxx∗(t, τ) = E
[

x
(

t+
τ

2

)

x
(

t− τ

2

)]

, (2.23)

is an almost periodic function of t. Consequently, the conjugate cyclic autocorrelation

function and the conjugate cyclic spectral density may be defined as

Rα
xx∗(τ) = E

[

x
(

t+
τ

2

)

x
(

t− τ

2

)

ej2παt
]

(2.24)

Sα
xx∗(f) = E

[

X
(

f +
α

2

)

X
(

f − α

2

)]

(2.25)

2.1.2 Discrete Time Cyclostationary Random Process

A complex-valued discrete time random process x[n] := {x[n, ω], n ∈ Z, ω ∈ Ω} is said to

be Nth order strict-sense cyclostationary with a period N0 if

Fx[n+N0], x[n+τ1+N0],..., x[n+τN−1+N0](ξ0, ξ1, . . . , ξN−1) = Fx[n], x[n+τ1],..., x[n+τN−1](ξ0, ξ1, . . . , ξN−1)

(2.26)

Alternatively, It may be said to be wide-sense almost cyclostationary with a cyclic frequency

α if its cyclic autocorrelation function Rα
xx[τ ], defined as

Rα
xx[τ ] = E[x[n]x∗[n− τ ]e−j2παn], (2.27)

is nonzero for some τ ∈ Z. It may be noted that the definition of the cyclic autocorrelation

function for a discrete-time random process is slightly different from that for a continuous-

time random process. The cyclic autocorrelation function may, therefore, be interpreted as

a cross-correlation between xα[n] and x[n− τ ], where

xα[n] = x[n]e−j2παn (2.28)

Considering x[n] to be cyclo-ergodic, it may be shown that

Rα
xx[n, τ ] = lim

N→∞

1

2N + 1

N
∑

n=−N

x[n]x∗[n− τ ]e−j2παn (2.29)
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2.2 Processing of Cyclostationary Signals

The cyclic spectral density, in this case, is defined as

Sα
xx(f) = E

[

X
(

f +
α

2

)

X∗
(

f − α

2

)]

(2.30)

where

X(f) =
∞
∑

n=−∞
x[n]e−j2πfn (2.31)

Similarly, the conjugate cyclic autocorrelation function and the conjugate cyclic spectral

density may be defined as

Rα
xx∗ [τ ] = E[x[n]x[n − τ ]e−j2παn] (2.32)

Sα
xx∗(f) = E

[

X
(

f +
α

2

)

X
(

f − α

2

)]

(2.33)

It may be noted that for a discrete-time random process, both the frequency f and

the cyclic frequency α are normalized to lie between −1
2
and 1

2
. Furthermore, discussions

pertaining to the effects of sampling on a cyclostationary random process, along with some

other standard signal processing operations, is considered in the next section.

2.2 Processing of Cyclostationary Signals

In this section, effects of some simple signal processing operations, viz. convolution, product

modulation, and sampling on cyclostationary signals, are discussed. The effects on the

cyclic autocorrelation function and the cyclic spectral density in case of both continuous-

time and discrete-time random process are considered here.

2.2.1 Linear Convolution

Consider a continuous-time signal x(t) which is a sample function of a cyclostationary

process. This signal is passed through a linear time-invariant filter with a known impulse

response h(t). The output of this system y(t) may be written as

y(t) =

∫ ∞

−∞
x(u)h(t− u)du (2.34)

The cyclic autocorrelation function of the filtered signal is given as,

Rα
yy(τ) = E

[

y
(

t− τ
2

)

y∗
(

t− τ
2

)

e−j2παt
]

= E
[

∫∞
−∞
∫∞
−∞ h(u)x(t + τ

2
− u)h∗(v)x∗(t− τ

2
− v)dudve−j2παt

]

=
∫∞
−∞
∫∞
−∞ h(u)E

[

x(t + τ
2
− u)x∗(t− τ

2
− v)e−j2παt

]

h∗(v)dudv

=
∫∞
−∞
∫∞
−∞ h(u)Rα

xx(v − u+ τ)h∗(v)dudv

(2.35)
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Since the Fourier transform of the filtered signal is

Y (f) = X(f)H(f), (2.36)

the cyclic spectral density of y(t) may be written as

Sα
yy(f) = E

[

Y (f + α
2
)Y ∗(f + α

2
)
]

= H
(

f + α
2

)

E
[

X(f + α
2
)X∗(f − α

2
)
]

H∗ (f − α
2

)

= H
(

f + α
2

)

Sα
xx(f)H

∗ (f − α
2

)

(2.37)

Similarly, for a discrete time signal y[n] obtained by passing x[n] through an LTI filter with

an impulse response h[n], defined as

y[n] =

∞
∑

l=−∞
h[k]x[n − k], (2.38)

the cyclic autocorrelation at cyclic frequency α and lag τ may be written as

Rα
yy[τ ] =

∞
∑

p=−∞

∞
∑

q=−∞
h[p]Rα

xx[τ − p+ q]h∗[q] (2.39)

and the cyclic spectral density as

Sα
xx(f) = H

(

f +
α

2

)

Sα
xx(f)H

∗
(

f − α

2

)

(2.40)

2.2.2 Product Modulation

Consider a signal y(t) defined as

y(t) = x(t)w(t) (2.41)

with a Fourier transform

Y (f) =

∫ ∞

−∞
X(φ)W (f − φ)dφ (2.42)

where x(t) and w(t) are independent random signals exhibiting cyclostationarity for cyclic

frequencies β ∈ B and γ ∈ Γ. The time-varying autocorrelation function of y(t) is given

as [50]

Ryy(t, τ) = E
[

y
(

t + τ
2

)

y∗(t− τ
2
)
]

= E
[

x
(

t+ τ
2

)

x∗(t− τ
2
)w
(

t+ τ
2

)

w∗(t− τ
2
)
] (2.43)

By virtue of the independence of x(t) and w(t), it may be shown that

Ryy(t, τ) = Rxx(t, τ)Rww(t, τ) (2.44)
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2.2 Processing of Cyclostationary Signals

Now,

Rxx(t, τ) =
∑

β∈B
Rβ

xx(τ)e
j2πβt (2.45)

and

Rww(t, τ) =
∑

γ∈Γ
Rγ

ww(τ)e
j2πγt (2.46)

Therefore,

Ryy(t, τ) =
∑

β∈B

∑

γ∈Γ
Rγ

ww(τ)R
β
xx(τ)e

j2π(β+γ)t (2.47)

Defining α = β + γ and A = B + Γ, the above may be written as

Ryy(t, τ) =
∑

α∈A

∑

γ∈Γ
Rγ

ww(τ)R
α−γ
xx (τ)ej2παt (2.48)

Therefore,

Rα
yy(τ) =

∑

γ∈Γ
Rγ

ww(τ)R
α−γ
xx (τ) ∀α ∈ A (2.49)

where

A = {α = β + γ, (β ∈ B); (γ ∈ Γ)} (2.50)

Invoking the relation between the cyclic spectral density and the cyclic autocorrelation

function, we have

Sα
yy(f) =

∫ ∞

−∞

∑

γ∈Γ
Rγ

ww(τ)R
α−γ
xx (τ)e−j2πfτdτ ∀α ∈ A (2.51)

This may be simplified as

Sα
yy(f) =

∫ ∞

−∞

∑

γ

Sγ
ww(φ)S

α−γ
xx (f − φ)dφ (2.52)

Similarly, for a discrete time signal y[n] defined as the product of two discrete time cy-

clostationary signals x[n] and w[n] and exhibiting cyclostationarity at β ∈ B and γ ∈ Γ,

respectively, the cyclic autocorrelation function Rα
yy[τ ] is defined for all α ∈ A = B + Γ as

Rα
yy[τ ] =

∑

γ∈Γ
Rγ

ww[τ ]R
α−γ
xx [τ ] (2.53)

and the cyclic spectral density is given as

Sα
yy(f) =

∫ 1
2

− 1
2

∑

γ

Sγ
ww(φ)S

α−γ
xx (f − φ)dφ (2.54)
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2.2.3 Sampling of Continuous-time Signals

Uniform periodic sampling of a continuous time signal x(t) is equivalent to its multiplication

with a periodic impulse train w(t) defined as

w(t) =
∑∞

n=−∞ δ(t− nTs)

= 1
Ts

∑∞
k=−∞ ej

2πkt
Ts

(2.55)

The effect of sampling on the second-order cyclostationary properties of a signal x(t) may

therefore, be determined by substituting the cyclic autocorrelation function and the cyclic

spectral density of w(t) in equations (2.52) and (2.49), respectively. To determine the

cyclostationary properties of w(t), consider an almost periodic signal p(t) represented in

the form of a Fourier series as

p(t) =
∑

η

Pηe
j2πηt (2.56)

Using (2.13), the cyclic autocorrelation function of p(t) at cyclic frequency α and lag τ is

defined as
Rα

pp(τ) =
∫
∑

η

∑

ν PηP
∗
ν dte

j2πη(t+ τ
2
)e−j2πν(t− τ

2
)e−j2παt

dt

=
∑

η

∑

ν PηP
∗
ν e

jπ(η+nu)τ
∫

e−j2π(α−η+ν)tdt

=
∑

η

∑

ν PηP
∗
ν e

jπ(η+nu)τδ(η − α + ν)

(2.57)

This may be simplified as [50]

Rα
pp(τ) =

∑

ν

PνP
∗
α−νe

jπ(2ν−α)τ (2.58)

The cyclic spectral density of p(t) takes the form

Sα
pp(f) =

∑

ν

PνP
∗
α−νδ

(

f − ν +
α

2

)

(2.59)

Consequently, the cyclic autocorrelation function and the cyclic spectral density of the

sampling wave w(t) may be written as

Rα
ww(τ) =

1

T 2
s

∑

ν

ejπ(2ν−α) (2.60)

Sα
ww(f) =

1

T 2
s

∑

ν

δ
(

f − ν +
α

2

)

(2.61)

Substituting the expression for cyclic spectral density into (2.52) and simplifying the same,

the cyclic spectral density of the signal y(t) = x(t)w(t) may be written as [50]

Sα
yy(f) =

1

T 2
s

∑

m

∑

n

S
α+ m

Ts
xx

(

f − m

2Ts
− n

Ts

)

(2.62)
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Hence, it is observed that sampling leads to a repetition of the cyclic spectrum of the signal

and, therefore, care must be taken to avoid aliasing of cyclic frequencies.

For a purely stationary x(t) the cyclic spectral density of y(t) will take the form

Syyα(f) =

{

∑∞
m=−∞ Sxx

(

f + α
2
− m

Ts

)

α = n
T0

0 otherwise
(2.63)

Therefore, sampling a wide-sense stationary signal results in a wide-sense cyclostationary

signal.

2.3 Cyclostationarity in BPSK Signals

In this thesis, all the problems involving FRESH filtering use a BPSK signal for simulation-

based performance evaluation. In view of this, the cyclostationary characteristics of a BPSK

signal [44, 45] are discussed herein. A complex BPSK signal may be defined as

x(t) = s(t)ej2πfct (2.64)

with s(t) being the modulating signal, defined as

s(t) =
∑

n

znp(t− nT0) (2.65)

where 1
T0

is the baud-rate of the BPSK signal and zn is the nth information bit. This may

be viewed as

s(t) = p(t) ∗
∑

n

znδ(t− nT0) (2.66)

where p(t) is the pulse shaping function and the term
∑

n znδ(t− nT0) corresponds to the

sampled version of a continuous time stationary process z(t). Defining

ž(t) =
∑

n znδ(t− nT0)

= z(t)
∑

n δ(t− nT0)
(2.67)

for a wide sense stationary z(t), the cyclic spectral density of z̃(t) is given as

Sα
žž(f) =

{

1
T0

∑∞
m=−∞ Szz

(

f + α
2
− m

Ts

)

α = n
T0

0 otherwise
(2.68)

The cyclic spectral density of s(t) may be written as [47]

Sα
ss(f) = P

(

f +
α

2

)

Sα
žž(f)P

∗
(

f − α

2

)

(2.69)
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which may in turn be written as

Sα
ss(f) =

{

1
T 2
0

∑∞
m=−∞ P

(

f + α
2

)

Szz

(

f + α
2
− m

Ts

)

P ∗ (f − α
2

)

α = n
T0

0 otherwise
(2.70)

This implies that, the baseband component of a BPSK signal exhibits cyclostationarity

at multiples of the baud-rate. Accordingly, the cyclic autocorrelation function for the

baseband component of a BPSK signal may be written as [47]

Rα
ss(τ) =

{

1
T 2
0

∑∞
m=−∞Rzz (mTs) r

α
p (τ −mTs) α = n

T0

0 otherwise
(2.71)

where

rαp (τ −mTs) =

∫ ∞

−∞
p
(

t+
τ

2

)

p∗
(

t− τ

2

)

ej2παtdt (2.72)

The cyclic autocorrelation function of the modulated signal is given as

Rα
xx = E[x

(

t+ τ
2

)

x∗
(

t+ τ
2

)

e−j2παt]

= E[s
(

t + τ
2

)

s∗
(

t+ τ
2

)

e−j2παt]

= Rα
ss(τ)

(2.73)

which is same as the cyclic autocorrelation function of the baseband signal. The conjugate

cyclic autocorrelation function may be written as

Rα
xx∗ = E[s

(

t + τ
2

)

s
(

t+ τ
2

)

ej2παne−j4πfct]

= E[s
(

t + τ
2

)

s
(

t+ τ
2

)

e−j2π(α−2fc)t]
(2.74)

As the signal s[n] is real,

Rα
xx∗ = Rα−2fc

ss (τ) (2.75)

That means, a BPSK signal exhibits cyclostationarity at k
T0

and conjugate cyclostationarity

at 2fc ± k
T0
.

2.4 Linear Periodically Time Variant Filtering

In this section, it is shown that the second-order cyclostationarity may be generated by

passing a purely stationary signal through a Linear Periodically Time-Variant(LPTV) sys-

tem [47]. It is also seen that many operations such as carrier and pulse modulation may be

modeled in the form of equivalent LPTV filters [44, 45]. Therefore, the analysis of LPTV

systems helps in determining the cyclostationary characteristics of signals generated via

these processes.

For a general linear system, the impulse response h(t, u) is defined as the response of
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the system at time t to a time-shifted impulse δ(t− u). The output y(t) of the system for

an input x(t) is given as

y(t) =

∫ ∞

−∞
h(t, u)x(u)du (2.76)

The system is said to be LPTV if there exists a period T0 such that for k ∈ Z

h(t, u) = h(t + kT0, u+ kT0) (2.77)

It may be observed that the above function may also be written as h(t + τ, t) which is

periodic in t for all τ . This may, therefore, be expanded in the form of a Fourier series as

h(t+ τ, t) =
∞
∑

k=−∞
hk(τ)e

j 2πkt
T0 (2.78)

Generalizing this to a Linear Almost Periodic Time Variant (LAPTV) filter, we have

h(t + τ, t) =
∑

η

hη(τ)e
j2πηt (2.79)

Substituting (2.79) in (2.76) the output of a LAPTV filter may be given as

y(t) =
∫∞
−∞
∑

η hη(t− u)ej2πηux(u)du

=
∑

η

∫∞
−∞ hη(t− u)x(u)ej2πηudu

(2.80)

Taking Fourier transform on both sides, we have

Y (f) =
∑

η

Hη(f)X(f − η) (2.81)

The cyclic spectral density of y(t) at a cyclic frequency α may therefore be written as [50]

Sα
yy(f) =

∑

η

∑

ν

Hη

(

f +
α

2

)

Sα+ν−η
xx

(

f − η + ν

2

)

Hν

(

f − α

2

)

(2.82)

Also, (2.80) may be re-written as

y(t) =
∑

η

hη(t) ∗ x−η(t) (2.83)

where ∗ denotes the convolution operation. Therefore, it may be observed that LAPTV

filtering of a signal is equivalent to LTI filtering of frequency shifted versions of that signal.

Thus LPTV (or LAPTV) filtering is also known as Frequency shift (FRESH) filtering.

30



Chapter 2. Cyclostationarity: An Overview

Substituting (2.83) in (2.35), the cyclic autocorrelation function of y(t) takes the form

Rα
yy(τ) =

∑

η

∑

ν

∫ ∞

−∞

∫ ∞

−∞
hη(u)R

α+ν−η
xx (τ − u+ v)h∗ν(v)dudv (2.84)

For the discrete time case, the impulse response of a general LAPTV system may be

written as

h[n + k, n] =
∑

η

hη[k]e
j2πηn (2.85)

The output y[n] for an input signal x[n] will therefore be given as

y[n] =
∑

η

∞
∑

k=−∞
x−η[k]hη[n− k] (2.86)

Consequently, the cyclic autocorrelation function of y[n] may be written as

Rα
yy[τ ] =

∑

η

∑

ν

∞
∑

l=−∞

∞
∑

k=−∞
hη[l]R

α+ν−η
xx [τ − l + k]h∗ν [k] (2.87)

and the cyclic spectral density may be written as

Sα
yy(f) =

∑

η

∑

ν

Hη

(

f +
α

2

)

Sα+ν−η
xx

(

f − η + ν

2

)

Hν

(

f − α

2

)

(2.88)

From the above expressions it is observed that if the input signal is purely stationary,
then the cyclic spectral density of the output signal is non-zero whenever α + ν − η = 0.

Therefore, the output is cyclostationary for α = η − ν. Thus, LAPTV filtering of a

purely stationary signal results in the generation of a cyclostationary signal. As stated

earlier, most modulation systems can be modeled as equivalent LPTV/LAPTV filters and,

therefore, the communication signals generated by passing a wide sense stationary (WSS)

data signal through these may also be modeled as cyclostationary.
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Chapter 3

Space-Time FRESH Filter Based

Spectrum Sensing

It has been shown that cyclostationary features may be used to sense the presence of a

primary signal embedded in noise [91]. The cyclostationarity property of a signal may also

be used to derive an optimal FRESH filter to enhance it [48] as well as form a beam in

its direction [2]. The underlying idea in this chapter is to combine the optimal temporal

FRESH filter [48] with a cyclostationarity-based beam-former to obtain a generalized Space-

Time filtering structure for cyclostationary signals. It is proposed to use this structure,

called a Space-Time FRESH filtering structure, to enhance a cyclostationary signal prior to

detection. It is argued that the cyclostationary primary component in the received signal,

if present, will be enhanced by this process. This enhancement will further result in an

improved detection performance of the spectrum sensor.

However, it must be noted that the weights of the optimal space-time FRESH filter will

depend on the correlation structure of the primary signal and may not be known at the

spectrum sensor. Therefore, it becomes necessary to adapt the weights of this structure

so as to obtain the optimal set of weights. For this purpose, the ACS (Adaptive Cross

SCORE) beamforming algorithm developed in [36] is modified to adapt a Space-Time

structure. However, it is found that the modified ACS algorithm has a computational

complexity proportional to the square of the number of elements being adapted. This acts

as a bottleneck in the sensing process. To avoid this bottleneck, the correlation maximiza-

tion problem of the modified SCORE algorithms is reformulated as a constrained MMSE

(Minimum Mean Square Error) problem and a stochastic gradient-based algorithm called

the C2-LMS algorithm is developed to solve this. It is then shown that the C2-LMS algo-

rithm has a complexity linearly proportional to the number of taps being used for signal

enhancement.

Simulation results are used to determine the performance of the proposed structure for

1This work has been published in the July 2014 issue of IEEE Transactions on Wireless Communications
as “Spectrum Sensing for Cognitive Radios Based on Space-Time FRESH filtering”
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both the adaptation algorithms. It is observed that Space-Time FRESH filtering of the

received signal prior to energy detection and cyclostationary detection leads to gains of

more than 10 dB over the standard energy detector and the cyclostationary detector.

Section 3.1 provides a review of the work done in cyclostationary spectrum sensing,

optimal FRESH filtering and SCORE beam-forming, and develops the idea of a space-

time FRESH filtering structure. The theories on optimal FRESH filtering and SCORE

beam-forming are revisited in Sections 3.2 and 3.3 respectively. The primary signal model

along with the standard energy detector is described in Section 3.4. The standard energy

detector acts as a baseline to compare the detection performance of the FRESH filters.

Section 3.5 details the proposed Space-Time FRESH filtering structure, states the equiva-

lent hypotheses of the spectrum sensing problem for a signal filtered using it and describes

a method that may be used to sense the spectrum. Section 3.6 presents the lower complex-

ity constrained doubly adaptive LMS (C2-LMS) algorithm for adapting the filter weights

and the related spectrum sensing method. Simulation results in support of the proposed

Space-Time FRESH filtering for spectrum sensing are contained in Section 3.7. Finally,

the conclusions are drawn in Section 3.8.

3.1 Background and Motivation

In [49] Gardener proposed to use the cyclostationary features of signals for weak signal

detection. Here, the spectral correlation theory of cyclostationary detectors is used to

relate the different random signal detectors, viz. the spectral line re-generator, the cyclic-

spectral analyzer, the likelihood ratio detector and the ML detector. This is followed by

arguments in favor of the use of cyclostationary detection in comparison to the energy

detection.

Dandawate and Giannakis in [31] derived tests based on cyclic autocorrelation and

cyclic spectral density to check for the presence of cyclostationary signals. The proposed

method involves an exhaustive search over the possible cyclic frequency for which the cyclic

autocorrelation function of the signal of interest is non-zero. The CFAR (constant false

alarm rate) tests proposed here use both the cyclic autocorrelation function as well the

cyclic spectral density as the test statistics. These tests for the presence of second order

cyclostationarity are then extended to detect the presence of kth order cyclostationary

signals.

In [92], tests based on cyclostationarity are used to sense the presence of a GMSK

modulated GSM signal for spectrum pooling with an OFDM-based WLAN system. Both

the cyclic autocorrelation function and the cyclic spectral density are used as test statistics.

The performance of the proposed detector is evaluated at different SNRs for AWGN and

Rayleigh fading environments. This, however, considers SNRs greater than or equal to

−5dB, thereby leaving much scope for improvement in the detection performance.
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The single cyclic frequency and single secondary user approach of [91] and [92] is ex-

tended to a multiple secondary user, multi-cycle approach in [82]. In this paper, it is

proposed to use multiple cyclic frequencies for spectrum sensing. It is argued that the

statistics of the received signal at different cyclic frequencies will be independent of each

other. Therefore, the statistics derived out of multiple cyclic frequencies may be used to

improve the detection performance. The multicycle detector is then extended to a multiple

secondary user case where multiple secondary users report to a fusion center. The test

statistics are quantized to conserve the control channel bandwidth. The performance of

both the single user and the collaborative sensing schemes are studied in AWGN, Rayleigh

fading and log normal shadowing. It is shown that increasing the number of cyclic frequen-

cies in the test statistics improves the detection performance.

The work of [82] is further extended in [104]. Here, the relative strengths and variances

of the different cyclic frequencies are taken into account. In this paper, weights are derived

for optimally combining the finite time cyclic autocorrelation function at different cyclic

frequencies, based on its statistics at that given cyclic frequency. These optimal weights

are then used to develop a deflection coefficient-based detector [68]. The derived results

are verified via simulation.

The problem of cyclostationary spectrum sensing is generalized to a multi-antenna case

by Axell and Larsson in [7]. In this paper, the spatial as well as the temporal correlation of

the primary component of the received signal is exploited. A GLRT like approach using the

eigenvalues of the covariance matrix of the received signal is derived. The proposed method

is then used for the detection of an OFDM signal. A similar problem is studied in [131]

where the eigenvalues of the cyclic covariance matrix are used instead of the conventional

covariance matrix. They derived the expressions for the detection performance under both

spatially correlated and uncorrelated noise. This test statistic, similar to the one in [7],

requires only the cyclic frequency of the primary signal to develop a CFAR detector. It is

observed in both [7] and [131] that a multi-antenna system performs better in comparison

to a single-antenna system and the performance improves further with an increase in the

number of antennas.

It was shown in [48] that an optimal FRESH filter for cyclostationary signals may be

developed on similar lines as an optimal filter for a purely stationary signal. It is also

observed that owing to the recent advances in adaptive signal processing [20–22, 56, 93,

98, 99], the weights for these filters may be determined adaptively. It is observed in [145]

and [146] that the FRESH filter structure may be adapted blindly by using the original

signal as the reference signal and its frequency shifted version as the input to the filter. This

is known as the Blind Adpative FRESH (BAFRESH) filter. The convergence properties of

this structure have been derived in [146] for the LMS algorithm. The BAFRESH structure,

as illustrated in the sequel works for both LMS and the RLS algorithms.

The use of adaptive FRESH filters for BPSK signal was first proposed in [135]. In this
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paper, it is shown that adaptive FRESH filters are able to compensate for some amount of

error in the known cyclic frequency. This issue is discussed in more detail in the Chapter

7.

FRESH filters are employed for the purpose of spectrum sensing in [105]. It is shown

here via simulation results that blind adaptive FRESH filters adapted using both the LMS

and the RLS algorithms may be used to adapt the FRESH filter which may then be used

to enhance the primary component in a cyclostationary signal prior to detection. This

approach is studied only for the cyclostationary detector and it is shown that FRESH

filtering a signal prior to detection significantly improves the detection performance.

The cyclostationarity property of signals has also been exploited in [2, 36, 134] for

the purpose of beamforming in antenna arrays. These algorithms use the spectral auto-

coherence of the signal of interest to steer an antenna array in its direction. The first among

these is the SCORE (Spectral COherence REstoral) class of algorithms presented in [2]. In

this paper, three algorithms, viz. LS-SCORE, cross-SCORE and auto SCORE are devel-

oped. All of these algorithms solve the problem of spectral coherence maximization. That

is, the weight and control vectors are selected so as to maximize the spectral coherence of

the output signal.

The LS-SCORE algorithm derives the optimal steering vector for a fixed control vector.

It is shown that in this case the problem of finding an optimal steering vector may be

modelled as a least squares problem. In the cross-SCORE problem, both the optimal

steering vector and the optimal control vector are determined. It is found here that the

maximization problem needs to be solved separately for both these vectors. As a result a

recursive solution is obtained. In the auto-SCORE formulation of the SCORE problem,

only the optimal steering vector maximizing the cyclic autocorrelation of the filtered signal

is obtained. The resulting problem has similar form to Fisher’s linear discriminant and may

be solved as a generalized eigenvalue problem for the cyclic covariance and the covariance

matrices of the received signal.

The Cyclic Adaptive Beamforming (CAB) class of algorithms was proposed in [134] to

compensate for the slow convergence speed of the SCORE algorithms. Here again, both

the control vector and the steering vector of the antenna array are considered as adaptive

and are constrained to a unit norm. It is shown that the optimal steering and control

vectors may be obtained as the dominant singular vectors of the cross correlation matrix

of the input and control vectors. These are then used to determine the angles of arrival of

different signals.

Adaptive versions of both CAB and SCORE classes of algorithms are developed in [36].

It is shown here that recursive computations of the autocorrelation, cyclic autocorrelation

and cross correlation matrices of the input signals, and their inverses lead to adaptive im-

plementations of the aforementioned algorithms. The performances of these algorithms

are compared under various simulation conditions and it is found that the Adaptive Cross
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SCORE (ACS) algorithm outperforms the adaptive CAB algorithm under low SNR condi-

tions.

Cyclostationary beamforming is employed for the purpose of spectrum sensing in [35].

In this paper, both the ACS and the CAB algorithms are used to form a beam in the

direction of the signal exhibiting cyclostationarity. The directivity of the resulting beam-

pattern is then used as a test statistic. It is seen that in this case the detectors based on the

ACS algorithm outperform the detectors based on CAB algorithms. However, this paper

does not compare its proposed detector against the standard energy or cyclostationary

detectors, nor does it provide any details on the behaviour of the chosen test statistics.

In the past, Space-Time filtering has been used to improve the capacity, performance

and coverage of wireless communication systems [14,52,96,110,132]. The space-time struc-

tures exploit the spatial and temporal correlation in the signal to enhance the system

performance. It is observed that in multi-antenna cyclostationary spectrum sensing, all

three forms of correlation, viz. spatial, temporal, and spectral, will exist. Therefore, in

this chapter, we extend the works cited above and propose a Space-Time FRESH filtering

structure to enhance and consequently ease the detection of cyclostationary signals.

3.2 Optimal FRESH filtering

If a discrete-time signal x[n] exhibits regular cyclostationarity at cyclic frequencies

α1, α2, . . . αM1 ∈ A and conjugate spectral coherence at a cyclic frequencies

β1, β2, . . . βM1 ∈ B then it may be represented as

x[n] =
∑

α∈A

Lα−1
∑

l=0

aα[l]x
α[n− l] +

∑

β∈B

Lα−1
∑

l=0

aβ [l]x
∗β [n− l] + ζ [n] (3.1)

where ζ [n] is the innovation component and, aα[l] and aβ [l] are the regression coefficients

at the given cyclic frequencies and lags. Also, x[n] may be estimated using its optionally

conjugated time and frequency shifted versions. For a cyclostationary signal corrupted with

wide sense stationary noise, this property may be used to denoise it. A linear combination

of the time and frequency shifted versions of the noisy signal may be used to enhance the

cyclostationary component contained within it. The problem in this case is to find an

optimal set of linear combination weights that minimizes the error between the signals of

interest and its estimate. In view of this, the problem of optimal FRESH filtering may be

stated as, “Given a signal x[n] exhibiting cyclostationarity atM1 frequencies α1, α2, . . . , αM1

and conjugate cyclostationarity at M2 frequencies β1, β2, . . . , βM2, find the optimal set of

weights wαm,p and wβm,q so that the mean square value of the error e[n], as defined below,

is minimized. [48]” .

e[n] = x[n]− v[n] (3.2)
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where v[n] is the FRESH filtered output, given as

v[n] =
M1
∑

m=1

Lαm−1
∑

p=0

w∗
αm,px

αm [n− p] +
M2
∑

m=1

Lβm−1
∑

q=0

w∗
βm,qx

∗βm [n− q] (3.3)

where Lαm and Lβm are the filter lengths corresponding to the frequency shifts αm and βm,

respectively [48, 105].

Defining

w = [wT
α1
. . .wT

αM1
wT

β1
. . .wT

βM2
]T (3.4)

u[n] =
[

xα1T [n] . . .xαM1
T [n] xβ1T [n] . . .xβM2

T [n]
]T

(3.5)

where
wαi

= [wαi,1 . . . wαi,Lαi
]T

wβi
= [wβi,1 . . . wβi,Lβi

]T
(3.6)

and

xαi [n] =
[

xαi [n] . . . xαi [n− Lαi
+ 1]

]T

xβi[n] =
[

x∗βi [n] . . . x∗βi [n− Lβi
+ 1]

]T

(3.7)

equation (3.3) may be rewritten in the form

v[n] = wHu[n] (3.8)

Mean square value of e[n] may be written as

J = E|e[n]|2
= E

[

(x[n]−wH)(x[n]−wH)∗
]

= σ2
x −wHrux − ruxw

H +wHRuuw

(3.9)

where
Ruu = E

[

u[n]uH [n]
]

rux = E [u[n]x∗[n]]

(3.10)

This may be solved to obtain

w = R−1
uurux (3.11)

In an adaptive setting for FRESH filtering, the original signal may be used as a reference

signal to adapt the weight vectorw to their optimal values. This leads to the Blind Adaptive

FRESH (BA-FRESH) filtering approach, as described in [145]. The corresponding structure

for a BA-FRESH filter is shown in Figure 3.1.
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Figure 3.1: The blind adaptive FRESH filtering structure as proposed in [145].
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3.3 SCORE Beamforming

It is a well established fact that the use of antenna arrays results in increased directivity as

compared to single-antenna systems. Apart from this, it is also known that the direction

of the main lobe of an antenna array may be steered electronically. Techniques have been

devised to adaptively steer the main lobe of an array, based on the direction of the signal

of interest. It has been observed that cyclostationarity exhibited by the signal of interest

may also be used to form a beam in the direction of the signal of interest [2].

To describe this technique, consider a signal s[n], exhibiting regular or conjugate cy-

clostationarity for some cyclic frequency α, incident at an angle θ on an antenna array

consisting of K antennas, as shown in Figure 3.2. Also, consider a(θ) to be the steering

vector of the array for the direction θ and ν[n] to be the additive zero mean stationary white

noise vector whose each component is i.i.d. white circularly symmetric complex Gaussian.

Then, the received signal x[n] may be written as

x[n] = a(θ)s[n] + ν[n] (3.12)

where

a(θ) = [1e
j2πdsinθ

λ . . . e
j(K−1)2πdsinθ

λ ] (3.13)

ν[n] = [ν1[n] . . . νK [n]]

νk[n] ∼ Nc (0, σ
2
ν)

(3.14)

where d is the spacing between two adjacent elements of the antenna array. It is desired

here to steer the main lobe of this array in the direction of s[n]. The spatial and spec-

tral coherence of the signal s[n] may be used for this purpose [2]. From the structure in

Figure 3.2, the signals v[n] and y[n] may be defined as

v[n] = wHu[n]

y[n] = hHx[n]

(3.15)

where
u[n] = [u1[n]u2[n] . . . uK [n]]

T

uk[n] = x
(∗)
k [n]ej2παn

(3.16)

and
w = [w1, w2, . . . , wK ]

T

h = [h1, h2, . . . , hK ]
T

(3.17)

The outputs of the antenna elements xk[n] and their frequency shifted versions uk[n] are

linearly combined using weights h1, h2, . . . , hK and w1, w2, . . . , wK . Due to the presence of

cyclostationarity in s[n], y[n] is correlated to v[n] and there exist h and w maximizing the

absolute value of the cross-correlation coefficient ρvy between v[n] and y[n]. The SCORE
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Figure 3.2: The structure for cyclostationary beamforming as used in [2].
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beam-forming problem is to find the weight vectors h and w maximizing ρvy defined as

|ρvy|2 =
|rvy(0)|2
σ2
vσ

2
y

=
|wHRuxh|2

wHRuuwhHRxxh
(3.18)

where
Rxx = E

[

x[n]xH [n]
]

Rux = E
[

u[n]xH [n]
]

(3.19)

This is a generalized eigenvalue problem and may be solved separately for w and h to

obtain [2]

w ∝ R−1
uuRuxh

h ∝ R−1
xxRxuw

(3.20)

A recursive procedure, the Adaptive Cross SCORE (ACS) algorithm, has been developed

in [36] to solve this system of equations.

3.4 The Signal Model and Detectors

The problem of spectrum sensing for a primary signal s[n] in the presence of a noise ν[n]

for a received signal x[n] may be written in the form of a binary hypothesis test as

x[n] =

{

ν[n] H0

s[n] + ν[n] H1

(3.21)

where the null hypothesis H0 corresponds to the absence of a primary signal and the

alternative hypothesis, H1 to its presence. Both the primary signal and the noise may be

assumed to be zero mean complex Gaussian with variances σ2
s and σ2

ν respectively. If both

the primary signal and the noise variances are known, then the presence of the primary user

signal may be detected simply by measuring the energy of x[n] and comparing it against

the noise variance [59]. The test statistic in this case for N samples of x[n] becomes

Ex =
1

N

N−1
∑

n=0

|x[n]|2 (3.22)

This is the sum square of N number of i.i.d. complex Gaussian terms and, therefore, is Chi-

Square distributed with 2N degrees of freedom and a scaling factor equal to the variance

of x[n]. The distribution of Ex may, therefore, be written as

Ex ∼
{

σ2
νχ

2
2N H0

(σ2
s + σ2

ν)χ
2
2N H1

(3.23)
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Using these distributions and a detection threshold λ, the probabilities of detection and

false alarm may be written as

Pfa = Pr{Ex > λ|H0} =
Γ
(

2N,
√

λ
2

)

Γ(2N)
(3.24)

Pd = Pr{Ex > λ|H1} =
Γ
(

2N,
√

(σ2
ν+σ2

s )λ
2σ2

ν

)

Γ(2N)
(3.25)

where Γ(.) and Γ(., .) are, respectively, the complete and incomplete Γ functions.

Alternatively, as the samples of x[n] are i.i.d. Gaussian, therefore, the central limit

theorem may be used on Es [122] for a large N , such that the distribution of the test

statistic under the two hypotheses may be approximated as

Ex ∼







Nc

(

σ2
ν ,

σ4
ν

N

)

H0

Nc

(

(σ2
s + σ2

ν),
(σ2

s+σ2
ν)

2

N

)

H1

(3.26)

In view of this, the probabilities of detection and of false alarm for a threshold λ may be

written as

Pfa = Q





λ− σ2
ν

√

1
N
σ2
ν



 (3.27)

Pd = Q





λ− (σ2
ν + σ2

s)
√

1
N
(σ2

ν + σ2
s)



 (3.28)

It may be observed that for any given values of σ2
ν and σ2

s the probabilities of detection

and false alarm are functions of the number of samples of x[n]. It is therefore possible

to determine the number of samples required to achieve a given detection and false alarm

performance. Equations (3.27) and (3.28) may be solved to find N as

N =
[Q−1(Pfa)−Q−1(Pd)(1 + γi)]

2

γ2i
(3.29)

where γi =
σ2
s

σ2
ν
is the signal to noise ratio at the input of the spectrum sensor.

3.4.1 Noise Uncertainty and SNR walls

The results for the energy detector derived previously correspond to an ideal scenario where

the signal and noise variances are exactly known to the spectrum sensor. This may not

always be the case.

To explain the effect of noise uncertainty in energy detection, let us assume that the

noise variance σ̂2
ν known at the spectrum sensor is an estimate of the true noise variance σ2

ν .
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Let us also assume that there exists uncertainty in the noise variance by a factor ρ(ρ > 1)

that is the value of σ̂2
ν may lie anywhere in the interval [σ

2
ν

ρ
, ρσ2

ν ].

Considering the worst case while calculating the probabilities of detection and false

alarm, i.e. σ̂2
ν = ρσ2

ν when calculating the probability of false alarm and σ̂2
ν = σ2

ν

ρ
when

calculating the probability of detection, these may be written as

Pfa = Q





λ− ρσ2
ν

√

1
N
σ2
n



 (3.30)

Pd = Q





λ− (σ
2
ν

ρ
+ σ2

s )
√

1
N
(σ

2
ν

ρ
+ σ2

s )



 (3.31)

Solving these, the number of samples required to achieve a given detection performance

may be written as

N =
[Q−1(Pfa)−Q−1(Pd)(1 + γi)]

2

(

γi −
(

ρ− 1
ρ

))2 (3.32)

It may be observed that as γ →
(

ρ− 1
ρ

)

, N → ∞. In other words, as the uncertainty in

noise variance tends to the signal variance, upper bound on the number of samples required

to detect a primary user signal will vanish. It may be observed that at an SNR of −20 dB

an error as small as 1% may lead to such effects. This phenomenon of the inability of the

spectrum sensor to detect a primary user signal at low SNRs was first discusses by Tandra

and Sahai in [122] and is known as SNR walls.

3.4.2 The Cyclostationarity Detector

Cyclostationary features of a signal may also be used to distinguish it fromWSS-AWGN. To

describe this consider the finite time cyclic autocorrelation function of x[n] for N samples

at cyclic frequency α and lag τ

R̂α
xx[N, τ ] =

1

N − τ

N
∑

n=τ

x[n]x∗[n− τ ]ej2παn (3.33)

It may be seen that this is the sum of (N − τ) frequency shifted lag products of x[n], and

ξαxx[n, τ ] may be defined as

ξα[n, τ ] = x[n]x∗[n− τ ]ej2παn (3.34)

The samples of x[n] may be assumed to be to be identically distributed Gaussian and,

therefore the terms ξαxx[n, τ ] may also be assumed to be identically distributed. Hence,

R̂α
xx[N, τ ] is a sum of a large number of random variables and by the central limit theorem
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may be assumed to be Gaussian distributed.

E
[

R̂α
xx[N, τ ]

]

=
1

N − τ
E

[

N−1
∑

n=τ

ξ̂αxx[n, τ ]

]

(3.35)

Changing the order of summation and expectation and using the fact that ξαxx[n, τ ] are

identically distributed we have,

E
[

R̂α
xx[N, τ ]

]

= E
[

ξ̂αxx[n, τ ]
]

(3.36)

Considering this separately under the two hypotheses, we have

ξ̂αxx[n, τ ]|H0 = ν[n]ν∗[n− τ ]ej2παn (3.37)

Therefore,

E[ξ̂αxx[n, τ ]|H0] = σ2
νδ[τ ]δ(α) (3.38)

where δ[.] is the Kronecker delta function and δ(.) is the Dirac delta function. Also,

ξ̂αxx[n, τ ]|H1 = (s[n] + ν[n])(s[n − τ ] + ν[n− τ ])∗ej2παn (3.39)

The primary user signal and noise may be assumed to be independent, therefore,

E[ξ̂αxx[n, τ ]]|H1 = E[s[n]s∗[n− τ ]ej2παn] + E[ν[n]ν∗[n− τ ]ej2παn]

= Rα
ss[τ ] + σ2

νδ[τ ]δ(α)
(3.40)

To determine the variance of Rα
xx[N, τ ] under the two hypotheses, its mean square value is

required. Considering the null hypothesis, we get

E
[

|Rα
xx[N, τ ]|2

∣

∣H0] =
1

(N − τ)2
E

[

N−1
∑

m=τ

N−1
∑

n=τ

(

ν[m]ν∗[m− τ ]ej2παm
) (

ν∗[n]ν[n− τ ]e−j2παn
)

]

(3.41)

This may be simplified to

E
[

|Rα
xx[N, τ ]|2|H0

]

=
1

N − τ
σ4
ν + σ4

νδ[τ ]δ(α) (3.42)

The variance Rα
xx[N, τ ] under the null hypothesis becomes [31]

var (Rα
xx[N, τ ]|H0) =

1

N − τ
σ4
ν (3.43)

Similarly it may be shown that

var (Rα
xx[N, τ ]|H1) =

1

N − τ
(σ2

ν + σ2
s )

2 (3.44)
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The distribution of R̂α
xx[N, τ ] under the two hypotheses for α 6= 0, therefore, is

R̂α
xx[N, τ ] ∼







Nc

(

0, σ2
ν

N−τ

)

H0

Nc

(

Rα
xx[τ ],

σ2
ν

N−τ

)

H1

(3.45)

It may be observed that the mean of R̂α
xx[N, τ ] is a complex number and the knowledge

of its phase is necessary in order to use the finite time cyclic autocorrelation function for

detection. If the phase of the cyclic autocorrelation function is known then ℜ{R̂α
xx[τ ]e

−jφ}
with φ being the said phase, will be a real positive number and may be used as test statistic.

The distribution of this test statistic may be given as

ℜ{R̂α
xx[τ ]e

jφ} ∼







N
(

0, σ4
ν

2(N−τ)

)

H0

N
(

|Rα
xx[τ ]|, (σ

2
s+σ2

ν)
2

2(N−τ)

)

H1

(3.46)

The probabilities of detection and false alarm for a detection threshold λ will be given as

Pd = Q

(

√

2(N − τ)
λ− |Rα

xx[τ ]|
σ2
s + σ2

ν

)

(3.47)

Pfa = Q

(

√

2(N − τ)
λ

σ2
ν

)

(3.48)

In case the phase information of the cyclic autocorrelation function is not available, then

absolute value of the finite time cyclic autocorrelation function may be used as a test

statistic. The distribution of this test statistic under the two hypotheses is given as [69]

|R̂α
xx[τ ]e

jφ| ∼















Rice

(

0, σ2
ν√

2(N−τ)

)

H0

Rice

(

|Rα
xx[τ ]|, σ2

s+σ2
ν√

2(N−τ)

)

H1

(3.49)

In this thesis, both these test statistics have been used for detecting a primary cyclo-

stationary signal embedded in noise

3.5 Proposed Spectrum Sensing Technique

It was earlier shown that if the received signal x[n] contains a primary component s[n]

exhibiting regular or conjugate spectral coherence at one or more cyclic frequencies, then it

may be estimated as a linear combination of its time and frequency shifted, and conjugated

(optional) versions. This estimate of the signal may be used to enhance the cyclostationary

component and reduce the noise. Optimal FRESH filtering may, therefore, be used to

enhance a primary signal prior to detection.
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Similarly, if a primary signal is present and the spectrum sensor consists of multiple

antennas then the signal received at different antennas will be correlated. If this signal of

interest exhibits cyclostationarity then the spectral coherence properties of the signal may

be used to form a beam in the direction of interest.

In view of these, consider the structure shown in Figure 3.3 where each antenna output,

in addition to being fed to the linear combiner as in the SCORE beamforming structure,

is also fed to an adaptive FRESH filter. Assume that each FRESH filter incorporates M1

unconjugated and M2 conjugated frequency shift branches. That is, each FRESH filter

has a total of M(= M1 +M2) FRESH branches with each branch consisting of an FIR

filter containing L delay taps. The number L for each FIR filter is assumed to be same for

simplicity, though this may be different for different frequency shifts. The maximum value

that L may take is equal to the maximum lag for which the cyclic autocorrelation function

is nonzero and/or is limited by the maximum feasible system complexity. Further, it is

assumed that the number of frequency shifts that follow each antenna and their values are

same. The associated filter weights are, however, assumed to be adaptive. If a signal s[n]

exhibiting spectral autocoherence at frequencies α1 . . . αM1 and conjugate spectral autoco-

herence at β1 . . . βM2 is incident on this array from an angle θ, then the output of the kth

antenna may be written as

xk[n] = ak(θ)s[n] + νk[n] (3.50)

Here ak(θ) is the array response of the kth element for the incoming signal incident at an

angle θ to the normal, and νk[n] is the additive stationary noise component. Defining

u[n] =
[

uT
1 [n], . . . ,u

T
K [n]

]T

(3.51)

and
x[n] =

[

x1[n], . . . , xK [n]
]T

(3.52)

where

uk[n] =
[

uT
k1[n], . . . ,u

T
kM [n]

]T

ukm[n] =
[

ukm[n], . . . , ukm[n− L+ 1]
]T

ukm[n] = x
(∗)
k [n]ej2παmn

(3.53)

In Figure 3.3,

v[n] = wHu[n]

y[n] = hHx[n]
(3.54)

Here, ukm[n] is the optionally conjugated and frequency shifted version of the received

signal at the kth antenna for the mth branch. ukm[n] is the vector containing the input
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Figure 3.3: The proposed Space-Time FRESH filtering structure.
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to the mth FRESH branch of the kth antenna. uk[n] is a concatenation of the inputs to

the different FRESH branches of the kth antenna and u[n] is the overall regression vector

being fed to the adaptation structure. Similarly, x[n] is the reference signal vector. The

weight vectors maximizing the cross-covariance of the regression and the reference signal

vector may be obtained using the optimal Wiener filtering solution as derived in [36]. It

may be noted that unlike the case in [36] the dimensions of x[n] and u[n] are different. In

view of this, the ACS algorithm given in [36] is modified, as follows:

1. Initialize Ruu[1] = δ−1I, Rxx[1] = δ−1I, Rux[1] = 0 and h[1] to any K-dimensional

non-zero vector, δ is any arbitrarily small constant.

2. For the kth iteration, update Ruu[k], Rxx[k], Rux[k], Rxu[k], w[k] and h[k] as

Rux[k] =
1

k

[

(k − 1)Rux[k − 1] + u[k]xH [k]
]

(3.55a)

R−1
xx [k] =

k

k − 1

[

R−1
xx [k − 1] (3.55b)

− R−1
xx [k − 1]x[k]xH [k]R−1

xx [k − 1]

(k − 1) + xH [k]R−1
xx [k − 1]x[k]

]

(3.55c)

R−1
uu [k] =

k

k − 1

[

R−1
uu [k − 1] (3.55d)

− R−1
uu [k − 1]u[k]uH [k]R−1

uu [k − 1]

(k − 1) + uH [k]R−1
uu [k − 1]u[k]

]

(3.55e)

Rxu[k] =RH
ux[k] (3.55f)

w[k] = R−1
uu [k]Rux[k]h[k − 1] (3.55g)

h[k] = R−1
xx [k]Rxu[k]w[k] (3.55h)

Assume that the weight attached to the lth delay tap of the mth frequency shift of the k

th antenna is represented as w∗
k,m,1. Then, the output of the filter v[n] may be represented

as
v[n] =

∑K
k=1

∑M
m=1

∑L
l=1w

∗
k,m,lum,k[n− l]

=
∑K

k=1

∑M1

m=1

∑L
l=1w

∗
k,m,lxk[n− l]ej2παm[n−l]

+
∑K

k=1

∑M2

m=1

∑L
l=1w

∗
k,m,lx

∗
k[n− l]ej2π(−βm)[n−l]

(3.56)

The cyclic autocorrelation function of v[n] at cyclic frequency α and lag τ takes the

form

Rα
vv[τ ] = wHRα

uu[τ ]w (3.57)
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where
w = [w1, . . . ,wK ]

T

wk = [wk,1 . . . ,wk,M ]T

wk,m = [wk,m,1, . . . , wk,m,L]
T

(3.58)

and

Rα
uu[τ ] =









Rα
uu;11[τ ] . . . Rα

uu;1K[τ ]
...

. . .
...

Rα
uu;K1[τ ] . . . Rα

uu;KK[τ ]









(3.59)

Rα
uu;ik[τ ] =









Rα
uu;β1η1;ik

[τ ] . . . Rα
uu;β1ηM ;ik[τ ]

...
. . .

...

Rα
uu;β1η1;ik

[τ ] . . . Rα
uu;β1ηM ;ik[τ ]









(3.60)

Rα
uu;βη;ik[τ ] =









(rαuu;βη;ik[τ ])1,1 . . . (rαuu;βη;ik[τ ])1,L
...

. . .
...

(rαuu;βη;ik[τ ])L,1 . . . (rαuu;βη;ik[τ ])L,L









(3.61)

where each element of the matrix in (3.61) is defined as

(rαuu;βη;ik[τ ])p,q = (r̃αuu;βη;ik[τ ])p,qe
j2π(ητ−αp) (3.62)

(r̃αuu;βη;ik[τ ])p,q =
〈

uβ,k[n− p]u∗η,i[n− q − τ ]e−j2παn
〉

=
〈

xi[n− p]ej2πβ(n−p)x∗k[n− q − τ ]e−j2πη(n−q−τ)e−j2παn
〉

= Rα+η−β
xixk

[p− q − τ ] (3.63)

The received signal vector x[n] in the presence of a primary signal consists of two

components; one because of the primary signal a(θ)s[n] and the other due to the noise ν[n].

Similarly, the vector u[n] may also be seen as a linear combination of terms originating

due to the primary signal z[n] and noise ξ[n]. Since the terms corresponding to the signal

and noise are assumed to be uncorrelated, the terms corresponding to z[n] and ξ[n] are

separated in the cyclic-autocorrelation function of v[n]. The hypothesis test may be written

as
Rα

vv[τ ] =

{

wHRα
ξξ[τ ]w H0

wHRα
zz[τ ]w +wHRα

ξξ[τ ]w H1

(3.64)

These estimates assume averaging over infinite samples of the received signal. In practical

situations where only a finite number of samples are considered, the estimate of the cyclic

autocorrelation function for N samples may be expressed as [31]

R̂α
vv[N, τ ] = Rα

vv[τ ] + ǫ̂αvv [N, τ ] (3.65)
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where ǫ̂αvv[N, τ ] is the estimation error due to the finite number of samples. It is shown

in [31] that ǫ̂αvv[N, τ ] may be assumed to be asymptotically normal. That is

lim
N→∞

ǫ̂αvv[N, τ ] ∼ N
(

0,
σ2
ǫ

N

)

(3.66)

Consequently, the binary hypothesis test in (3.64) may be modified for a finite number of

samples to

R̂α
vv[N, τ ] =

{

wHRα
ξξ[τ ]w + ǫ̂αvv[N, τ ] H0

wHRα
zz[τ ]w +wHRα

ξξw + ǫ̂αvv[N, τ ] H1

(3.67)

It is intuitively satisfying to select α and τ such that the strength of the cyclic autocorrela-

tion function of the component due to the primary signal is maximized, thereby making it

easier to discriminate between the two hypotheses. From the results derived in [50], it may

be seen that the strongest peak of the cyclic autocorrelation function of any cyclostationary

signal occurs at α = 0 and τ = 0. Detecting this as a feature is same as employing an

energy detector at the output of the FRESH filter. In this case, however, the signal is

enhanced by virtue of its cyclostationarity. The detection thresholds for the signals filtered

by the proposed structure may be determined by the use of the Neyman Pearson criterion

via simulation. For a given false alarm rate and a known noise variance, these may also

be determined theoretically, as detailed in the next section. The spectrum sensing method

based on the proposed adaptive Space-Time FRESH filtering structure may, hence, be

summarized as follows.

1. Reset the filter weights.

2. For the nth sample x[n], n = 1, 2, · · · , N , adapt the filter weights using the modified

ACS algorithm.

3. After adapting for all the N samples, filter the stored samples using the adapted

weights to generate v[n].

4. Calculate the cyclic autocorrelation function for a known cyclic frequency and lag

and use it as the test statistic T .

5. Compare T with a pre-determined threshold λ and declare the primary signal as

present when T > λ.

We now give an analysis of the computational complexity of our proposed modified ACS

algorithm. Consider that K antennas, each with M branches of the FRESH filter, are to

be adapted. Let the length of each branch of the FRESH filter be L. Accordingly, by

inspection, the computation of equations (3.55a), (3.55c), (3.55e), (3.55g), (3.55h) require

(K2LM), (2K2 +K + 1), (2(KLM)2 +KLM + 1), ((KLM)2 +K2 LM) and (K2LM +

K2) complex multiplications, respectively. Therefore, the order of overall computational
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complexity of the proposed modified ACS algorithms is O((K LM)2). If N samples are

used for adaptation then the order of computational complexity of the adaptation stage

becomes O(N(K LM)2). Further, the filtering stage requires (K LM) multiplications for

each sample and therefore, a total of (N K LM) multiplications for N samples. If a simple

energy detector is employed then N complex multiplications will be required for calculation

of the test statistic. On the other hand, for a cyclostationary detector sensing M cyclic

frequencies, the number of complex multiplications required for the calculation of the M

dimensional test vector is 2MN [31]. Consequently, the entire sensing procedure has a

complexity O(N(K LM)2). For L = 1 and M = 1, our proposed structure in Figure 3.3

reduces to that developed in [36]. Accordingly, the order of computational complexity

turns out to be O(N K2), same as that of the standard ACS algorithm. As we observe,

the bottleneck of this procedure is the computationally expensive adaptation algorithm.

This calls for the developement of a lower complexity adaptation algorithm so as to make

the proposed spectrum sensing approach more effective. The next section describes our

proposed approach for reducing the computational cost of the adaptation algorithm.

3.6 A low complexity C2-LMS algorithm for the pro-

posed structure

The ACS and the modified ACS algorithms are designed to maximize the correlation be-

tween the filter outputs of the original signal y[n] and its frequency shifted version v[n].

Alternatively, the MMSE criterion may be used, minimizing the mean square difference

between y[n] and v[n]. Here, if the values of h and w are optimized separately [2], then

it may be shown that the optimal solution for the weight vectors that satisfies the MMSE

criterion has a form similar to the optimal solution that maximizes the cross correlation

between v[n] and y[n] this has been shown in appendix B. The optimal values wo and ho

of w and h that minimize the mean square difference between the respective filter outputs

are given as

[wo,ho] = argmin
w,h

〈

|hHx(n)−wHu(n)|2
〉

(3.68)

A similar function has been considered as the objective function for the least squares

SCORE beamforming problem in [2] and [36]. However, the methods proposed therein

assume either h or w to be fixed and not having a null in the direction of incidence of the

signal of interest. Here, since only one of the two adaptable weight vectors is being adapted

to form a beam that minimizes the MSE, this approach to cyclostationary beamforming is

suboptimal. Therefore, it is desired to adapt both h and w to achieve an optimal solution

to the filtering problem described by (3.68). It may be observed that the global minimum

of this function exists at the origin, forcing both the weight vectors to zero. It may also

be seen that either of the two weight vectors must always be non-zero to force the other to
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take a non-zero value and, consequently, force the system towards a non-trivial solution.

The Euclidian norm of either of the two weight vectors may, thus, be constrained to a

non-zero constant in order to stop it from converging towards a null vector.

Constraining the Euclidian norm of h to a constant value g, and invoking the method of

Lagrange multipliers, the optimal weight vectors become the ones to minimize the function

J(w,h) =
〈

|hHx(n)−wHu(n)|2
}

+ λ
〈

‖h‖22 − g2
〉

(3.69)

Analogous to the approach followed in [2], this may be optimized separately for w and

h. Using the method of steepest descent and applying suitable constraints, the weight

update equations may be obtained. The adaptation algorithm employing these equations

is presented below and its detailed derivation is given in the Appendix A. It is important

to note that this algorithm is being derived for applications to very low signal to noise

ratio environments. In such cases, it is desired that the step size be dependent on the error

variance in order to minimize misadjustment. Accordingly, it is intuitively satisfying to

normalize the step size with respect to the norm square of the input signal.

By use of the facts stated above the resulting constrained doubly adaptive LMS algo-

rithm (the C2-LMS algorithm) is given as follows.

1. For input signals u[n] and x[n] having weight vectors w[n] and h[n], initialize w[n] =

0 and h[n] = gi[k] where i[k] is the kth column of the identity matrix. This choice of

the initial antenna pattern ensures the absence of nulls in the direction from which

the primary signal is incident.

2. For the nth iteration update w and h as

w[n+ 1] = w[n] + µwu[n]e
∗[n] (3.70)

and

h[n + 1] = k[n]h[n]− µhx[n]e
∗[n] (3.71)

where

e[n] = y[n]− v[n] (3.72)

with

v[n] = wH [n]u[n] (3.73)

y[n] = hH [n]x[n] (3.74)

and
µh =

µ
∥

∥

∥
x[n]

∥

∥

∥

2

2

, µw =
µ

∥

∥

∥
u[n]

∥

∥

∥

2

2

(3.75)

b[n] = µhℜ{y∗[n]e[n]} (3.76)
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c[n] = µ2
h

∥

∥

∥
x[n]

∥

∥

∥

2

2

∣

∣

∣
e[n]
∣

∣

∣

2

− g2 (3.77)

k[n] = b[n] +
√

(b[n])2 − c[n] (3.78)

In the above, the symbol ℜ denotes the real part of a complex number and the step size

µ is normalized w.r.t the inputs x[n] and u[n] to accommodate large variations in their

values.

Here, the computation of the filtered signal at each stage involves K complex multipli-

cations for y[n] and K LM complex multiplications for v[n]. The calculations of c[n], µh

and µw require K , K + 1 and K LM + 1 multiplications, respectively. All these steps are

repeated N times for N samples thereby resulting in computational complexity of order

O(N K LM). Thus, the proposed algorithm provides computational gain compared to the

weight adaptation algorithm in [36] (for L = 1 and M = 1) and that given in the previous

section.

3.6.1 Performance of the proposed Spectrum Sensing method

based on energy detector

If, after the adaptation stage, the final weight vector is w[N ] then the nth sample of the

filtered output is given as

v[n] = wH [N ]u[n]

The distribution of v[n] under the two hypotheses will be

v[n] ∼
{

Nc(0, σ
2
ν‖w[N ]‖2) H0

Nc(0,w
H [N ]Rzz[n]w[N ] + σ2

ν‖w[N ]‖2) H1

(3.79)

In the presence of a primary user signal, the output signal to noise ratio (γo) is given as

γo =
wH [N ]Rzz[n]w[N ]

σ2
ν‖w[N ]‖2 (3.80)

As the signal is correlated with itself in time, space and frequency, , Rzz[n] ≻ σ2
sI, where

σ2
s is the signal variance. Defining

κ =
wH[N ]Rzz[n]w[N ]

σ2
s‖w[N ]‖2 > 1 (3.81)

If the noise variance at the receiver has an uncertainty factor ρ, at an input SNR γi, then,

according to [122], the detector will exhibit SNR walls. Now, as the space-time FRESH

filtering will increase the effective SNR of the primary signal, then, for an uncertainty by
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a factor ρ in the noise variance the SNR walls are lowered to

γi =

(

ρ− 1
ρ

)

κ
(3.82)

for an input SNR of γ0.

If the weights w[N ] are normalized such that ‖w[N ]‖2 = 1 then, under the null hy-

pothesis, the variance of v[n] will equal the noise variance. In this case, the distribution

of the test statistic (T ) for the energy detector, defined as T = 1
N

∑N
n=1 |v[n]|2, may be

approximated as [122]

T |H0 ∼ N (σ2
ν , σ

2
T ) (3.83)

where,

σ2
T = var

(

|∑N−1
n=0 wH [N ]ξ[n]|2

)

;

= E[
∑N−1

n=0

∑N−1
p=0 |w[N ]ξ[n]|2|w[N ]ξ[p]|2]− σ2

ν

= σ4
ν

N

(

∑MKL−1
p=0

(

∑MKL
l=1 E

[

wl[N ]w∗
l−p[N ]

]

)2
)

(3.84)

where ξ[n] is the regression vector of the proposed structure under the null hypothesis. In

view of these, the probability of false alarm (PFA), given a threshold λ, may be written as

PFA = Q

(

λ− σ2
ν

√

σ2
T

)

(3.85)

whereQ denotes the MarcumQ function [122]. It may however be observed that the value of

the variance σ2
T depends on the values of the adapted filter weightsw[N ]. Therefore, it is not

possible to predict a threshold for a given probability of false alarm and consequently, the

detection thresholds need to be determined using simulation. Due to the replacement of the

deterministic gradient by the stochastic gradient in the adaption algorithm, misadjustments

will occur in the weight vectors. These misadjusted weight vectors w[N ] and h[N ] will limit

the SNR gain offered by the FRESH filtering structure and hence the performance of the

proposed structure. If the weight vectors w[n] and h[n] take their optimal values, ho and

wo respectively, then the error at the nth instant is

eo[n] = hH
o x[n]−wH

o u[n] (3.86)

However, in the presence of misadjustment, this will be

e[n] = hH [n]x[n]−wH [n]u[n]

= eo[n] + h̃H [n]x[n]− w̃H [n]u[n]
(3.87)

where h̃[n] = ho − h[n] and w̃[n] = wo − w[n]. As the two weight error vectors will be

55



3.7 Simulation Results

uncorrelated with each other as well as to eo[n], we have

E [|e[n]|2] = E [|eo[n]|2] + E
[

h̃H [n]Rxxh̃
H [n]

]

+E
[

w̃H [n]Ruuw̃
H [n]

]

(3.88)

where E[.] is the expectation operation. This is done under the assumption that the

variations of the weight vectors are slow as compared to those of the signal vectors [61].

Further, writing J [n] = E [|e[n]|2] and Jmin = E [|eo[n]|2] the above equation reduces to

J [n] = Jmin + tr (RxxQh[n]) + tr (RuuQw[n]) (3.89)

where Qh[n] = E
[

h̃[n]h̃H [n]
]

and Ψw = E
[

w̃[n]w̃H [n]
]

. The excess error may, therefore,

be given as

Jex = tr (RxxΨh[n]) + tr (RuuΨw[n]) (3.90)

In this case,

w̃[n+ 1] = wo −w[n+ 1]

= wo −w[n]− µwu[n](h
H [n]x[n]−wH[n]u[n])∗

= w̃[n]− µwu[n]e
∗
o[n] + µwu[n]u

H [n]w̃[n]−
µwu[n]x

H [n]h̃[n]

= (I− µwu[n]u
H [n])w̃[n][n] + µwu[n]e

∗
o[n]

+µwu[n]x
H [n]h̃[n]

(3.91)

A similar expression may be derived for h̃[n] as

h̃[n+ 1] = (I− µhx[n]x
H [n])h̃[n] + µhx[n]e

∗
o[n]

+µhx[n]u
H [n]w̃[n]− µλh[n]

(3.92)

It may be observed that the two weight error vectors at any instant are inter-dependent and

will increase each other’s variance. Therefore, it may be concluded that the mean square

value of the excess error will be lower bounded by the sum of the mean square values of

the excess errors caused when h and w are unknown individually.

3.7 Simulation Results

In this section, simulation results using randomly generated signal are presented. The

primary user signal is assumed to be BPSK modulated with a carrier frequency fc =

125 kHz and a baud rate f0 = 10 kbps. For the purpose of these experiments, the primary

user signal variance is kept constant at unity and the variance of the additive noise is varied

to achieve input SNRs in the range −22 dB to −2 dB. The sampling rate at the cognitive
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receiver is assumed to be 1 MHz. The FRESH filters are assumed to have a single branch

at a conjugate frequency shift of 2fc. The inter antenna spacing for systems with multiple

antennas is fixed at half the wavelength of the input signal. In all the experiments, 500

samples are used to adapt the filter structure using either of the two algorithms discussed

earlier. The samples used to adapt the filters are stored and then passed through the

adapted filters to obtain a filtered signal. The filtered signal is then subject either to

energy detection or to cyclostationary detection.

The performance of the spectrum sensor is evaluated in terms of the probability of

detection for different input SNRs. The detection thresholds are set to give a constant false

alarm rate PFA of 0.1. For this purpose, test statistics are calculated for 750 independent

runs of the system based on the modified ACS algorithm and 1000 independent runs of

the system trained by the C2-LMS algorithm. To test the performance of these algorithms

1500 independent trials are run for the modified ACS algorithm-based system and 2000 for

the C2-LMS-based system.

3.7.1 Improvement using Space-Time FRESH filter based on the

modified ACS algorithm employing energy detection

Figure 3.4 illustrates the performance of the proposed structure adapted using the modified

ACS algorithm. Different configurations of the proposed structure are considered and the

detection performance is evaluated for the FRESH filter. It may be observed that for a

90% probability of detection a gain of nearly 6.5 dB is achieved over the standard energy

detector (mentioned as the ‘no enhancement’ case) with increase in the detector complexity.

The gains achieved by the proposed structure over the energy detector for a successful

detection rate of 95% are summarized in Table 3.1. It may be seen that a proper config-

uration of the space-time FRESH filter may yield gains as large as 8.5 dB. However, the

improvement offered by the structure tends to saturate as the number of antennas and the

FRESH filter length is increased.

3.7.2 Improvement using Space-Time FRESH filter adapted us-

ing the C2-LMS algorithm with energy detection

In Figure 3.5, we compare the performance of an energy detector-based system for different

configurations of the FRESH filter structure adapted using the C2-LMS algorithm. It is

observed from Figure 3.5 that for a detection probability of 0.9, gains as much as 9 dB may

be achieved by using an appropriate FRESH filter configuration.

The complimentary ROC for different configurations employing two antennas at an

SNR of −14 dB is shown in Figure 3.6. It may be observed that in this case, an increase
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Figure 3.4: Performance using the modified ACS algorithm and the energy detector for
different filter lengths for a single-antenna system

Table 3.1: Gains (in decibels) over a simple energy detector for different configurations
using the modified ACS algorithm

L=1 2 4 8 16
K=1 0 0.98 2.19 2.93 3.31
2 1.98 3.10 4.32 4.77 5.12
4 4.02 5.09 5.87 6.5 6.5
8 5.83 6.97 7.76 7.83 7.5
16 6.92 8.57 8.82 8.50 8.45
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Figure 3.5: Performance using the C2-LMS algorithm and energy detector for different
filter configurations
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Figure 3.6: Complementary ROC using the C2-LMS algorithm and the energy detector for
different FRESH filter lengths in a 2 antenna system at SNR=-14 dB
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in FRESH filter length from 1 to 16 reduces the probability of missed detection at a false

alarm rate of 1% by more than one order of magnitude. A summary of the gains offered

by the C2-LMS algorithm over a standard energy detector for 500 samples and a successful

detection rate of 95% is provided in Table 3.2.

3.7.3 The choice of a filter configuration

The performance of different structures having the same value of (K × L) and hence the

same computational complexity is compared in Figure 3.7. For the signal being considered,

the correlation coefficient of the signal at two different antennas at the same instant is

always greater than the correlation coefficient of the signal and its delayed version at the

same antenna. Also, the temporal correlation coefficient of a signal tends to decrease with

increasing lag, therefore the additional performance offered by FRESH filters reduces as

the filter length increases. On the other hand, as long as the propagation delay between

different antennas remains insignificant in comparison to the sampling time, the spatial

correlation coefficient will remain unaffected, and therefore the gains offered by increasing

the number antennas will be larger. However, more antennas will tend to increase the

physical dimensions of the spectrum sensor and also the cost of the sensing node. Therefore,

the choice of the space-time configuration for a given computational complexity is also

constrained by the physical dimensions of the sensing node.

3.7.4 The lowering of SNR walls

As stated earlier, for the purpose of the simulation experiments, the input signal variance

is kept constant and the noise variance is varied according to the input SNR. Therefore,

the noise variance may be randomized by adding a random variable with to the input

SNR. Consequently, for the purpose of these simulations, a random variable uniformly dis-

tributed in the range [−1, 1] is added to the input SNR, thereby introducing a maximum

noise uncertainty ±1 dB relative to the signal variance. In this case as well, the detection

performance is calculated by averaging the performance over 2000 independent trials. The

effect of noise uncertainty so introduced on the performance of the proposed detector is

illustrated in Figure 3.8. It may be seen that under noise uncertainty, the detector per-

formance remains unaffected by the number of samples being used. However, the use of

different configurations of the FRESH filter does lower the SNR walls, as predicted by

equation (3.82).

3.7.5 Cyclic feature Detector

As a remedy to the effects caused by noise uncertainty, the performance of a cyclostation-

ary detector in conjunction with the proposed filter structure adapted using the C2-LMS
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Table 3.2: Gains (in decibels) over a simple energy detector for different configurations
using the C2-LMS algorithm for 500 samples

L=1 2 4 8 16 32
K=1 0 1.038 2.29 3.37 4.7 4.79
2 1.58 2.86 4.2 5.06 6.05 6.6
4 3.05 4.5 5.66 6.66 7.57 7.8
8 4.81 5.89 7.14 7.83 8.58 9.1
16 6.022 7.11 8.1 9.03 9.74 9.96
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Figure 3.7: Performance using the C2-LMS algorithm and the energy detector for different
configurations of the same computational complexity (K × L = 16)

.
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algorithm is tested. The cyclostationary detector is used to detect the conjugate cyclic

autocorrelation peak at 2fc. The performances of the proposed spectrum sensing struc-

ture in conjunction with a cyclostationary detector under different situations are plotted

in Figure 3.9. It is observed that the detector performance does not degrade due to noise

uncertainty, as expected. It is also observed that an increase in the number of samples,

as well as the detector complexity lead to an improvement in the detector performance.

The gains in dB for different configurations of the space-time FRESH filter over a simple

cyclostationary detector at a detection rate of 0.95 are listed in Table 3.3.

3.7.6 Discussion and summary of results

An increase in both the FRESH filter lengths and the number of antennas is observed

to cause an improvement in the detector performance. However, as discussed previously,

the relative gain offered by more number of antennas is more than that offered by larger

filter lengths. The slight degradation in performance of the system based on the C2-LMS in

comparison to the spectrum sensor based on the modified ACS algorithm may be attributed

to the misadjustment caused due to incorporation of the stochastic gradient in the weight

update algorithm instead of the deterministic gradient. Comparing Tables 3.2 and 3.3,

we observe that employing FRESH filters with a cyclostationary detector results in gains

similar to those obtained by employing FRESH filters along with energy detectors.

It may be noted here, that the modified ACS algorithm reduces to the standard ACS

algorithm for a single delay tap (L = 1) and in this case the method becomes similar to the

one used in [35]. Similarly, for a single-antenna (K = 1) the C2-LMS algorithm reduces to

the standard LMS algorithm and the resultant method is identical to the one used in [105].

3.8 Conclusion

The performance enhancement achieved using the Space-Time FRESH filtering structure

with regard to spectrum sensing in cognitive radios is studied in this chapter. A novel blind

Space-Time FRESH filtering structure has been proposed for the purpose of enhancing a

primary cyclostationary signal embedded in noise. It has been shown that this structure

may be used in conjunction with the energy detector to improve its detection performance.

The ACS algorithm for cyclostationary beamforming is modified in order to adapt the

proposed structure, following which a method to sense the spectrum based on the proposed

structure is proposed. Keeping in view the high computational complexity of the modified

ACS algorithm, a low complexity stochastic gradient algorithm is derived and its application

to spectrum sensing is studied.
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Figure 3.8: Performance using the C2-LMS algorithm and the energy detector for different
configurations under noise uncertainity

.

Table 3.3: Gains (in Decibel) offered by the proposed algorithm at N = 500
L=1 2 4 8 16 32

K=1 0 0.9 2.49 3.722 4.58 5.16
2 1.69 3.02 3.96 5.21 5.95 6.54
4 3.22 4.43 5.54 6.52 7.43 8.72
8 4.66 5.61 6.85 7.68 8.5 8.82
16 5.87 6.81 7.85 8.73 9.52 9.67
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Figure 3.9: Performance using the C2-LMS algorithm and the cyclostationary detector for
different filter configurations under noise uncertainity.
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Chapter 4

Performance Analysis of FRESH

filter based Spectrum Sensing

In the previous chapter, it was demonstrated via simulation that sapce-time FRESH fil-

tering of the sampled signal prior to detection results in gains of as much as 10 dB over

standard single-antenna energy detector. In this chapter, the single-antenna based spec-

trum sensor is studied in more detail. Here, performance results are derived for a single-user

single-antenna FRESH filter-based system. The performance enhancements in the cases of

both the energy detector as well as the cyclostationarity detector are considered. Follow-

ing this, the performance of FRESH filter based spectrum sensors in the presence of noise

uncertainty is also evaluated. It is shown that FRESH filtering the received signal prior to

detection improves the performance of the spectrum sensors in all these cases.

The signal, sensing and filtering models are introduced in Section 4.1. The performance

of the energy detector based on FRESH filtering is derived and verified using simulation

results in Section 4.2. The cyclostationary detector for a FRESH filter-based spectrum

sensor along with its performance is studied in 4.3. The performances of these detectors,

viz. FRESH filter-based energy detector and FRESH filter-based cyclostationary detector

under noise uncertainty, are studied in Section 4.4. The conclusions constitute Section 4.5.



4.1 The Signal, Filtering and Sensing Models

4.1 The Signal, Filtering and Sensing Models

4.1.1 The Signal and Filtering Model

The primary signal s[n] is assumed to be zero mean complex Gaussian with a variance

σ2
s . It is assumed, as discussed in Chapter 2, that s[n] exhibits cyclostationarity at cyclic

frequencies α1, α2, . . . , αM1 ∈ A and conjugate cyclostationarity at β1, β2, . . . , βM2 ∈ B and,

therefore, may be expressed as

s[n] =
∑

α∈A

Lα−1
∑

l=0

aα[l]s
α[n− l] +

∑

β∈B

Lβ−1
∑

l=0

aβ [l]s
∗β [n− l] + ζ [n] (4.1)

where ζ [n] is the innovation component and sα[n] and s∗β[n] are respectively the frequency

shifted and the conjugate frequency shifted versions of the signal s[n] defined as

sα[n] = s[n]e−j2παn (4.2)

s∗β [n] = s∗[n]e−j2πβn (4.3)

The cyclic autocorrelation function at cyclic frequency α and lag τ , defined earlier may

be written as

Rα
ss[τ ] = E [sα[n]s∗[n− τ ]] , (4.4)

and the conjugate cyclic autocorrelation function as

R
β∗
ss∗[τ ] = E

[

s∗β [n]s∗[n− τ ]
]

, (4.5)

It was observed in the previous chapter that the optimal filter for a cyclostationary sig-

nal may be represented as a FRESH filter. It was also shown that the problem of opti-

mal FRESH filtering for a signal x[n] exhibiting cyclostationarity at M1 number of cyclic

frequencies (α ∈ A) and conjugate cyclostationarity at M2 number of cyclic frequencies

(β ∈ B) may be considered as the problem of finding the optimal weight vector wo such

that the mean square value of the error signal, defined as

e[n] = x[n]−wH
o u[n]

= x[n]− v[n],
(4.6)

is minimized.

Here u[n] is the filter input vector, defined as

u[n] =
[

xα1T [n] . . .xαM1
T [n]x∗β1T [n] . . .x∗βM2

T [n]
]T

xα = [xα[n], . . . , xα[n− Lα + 1]]T

x∗β =
[

x∗β [n], . . . , x∗β [n− Lβ + 1]
]T
,

(4.7)
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and Lα is the filter length corresponding to the frequency shift α. Here, for the sake of

simplicity, the length of the FIR filters attached to each of the M (M =M1 +M2) number

of FRESH branches is assumed to be fixed to L. The overall length of the regression vector

u[n], therefore, becomes ML.

It was observed in the previous chapter that the optimal FRESH filter weights may be

determined adaptively without the need for a reference signal, thus resulting in a Blind

Adaptive FRESH (BA-FRESH) filter, as shown in Figure 4.1. Here, this structure is

assumed to be adapted using either the FRESH-LMS or the FRESH-RLS algorithms.

These adaptation algorithms are described in Algorithms 1 and 2, respectively [61,105]. In

Algorithm 1, µL is the adaptation step size while µR is the forgetting factor in Algorithm

2 [61].

4.1.2 The Sensing Model

It is assumed that the spectrum sensor collects N samples of the signal x[n] from the

environment. This signal, under the two hypotheses, may be written as

x[n] =

{

ν[n] H0

s[n] + ν[n] H1

(4.8)

where ν[n] is the wide sense stationary, zero mean complex Gaussian noise having zero mean

and a variance σ2
ν , s[n] is the primary user signal, the null Hypothesis H0 corresponds to

the absence of a primary signal and the alternate hypothesis H1 to its presence.

It has been proposed in the previous chapter to use these samples to adapt the filter

weights to obtain the weight vector w[N ]. The samples used to adapt the filter are stored

and then passed through the adapted filter to obtain the signal y[n] such that

y[n] = wH [N ]u[n] (4.9)

where w[N ] is the adapted filter weight vector. The filtered signal y[n] is then used to

detect the presence of a primary signal. For this purpose, y[n] may be fed to an energy

detector or a cyclostationary detector, as described in the previous chapter. The detection

statistics and the performances of these detectors in the case of AWGN channel are detailed

in the following sections.

4.2 Performance of the Energy Detector

The noise component ν[n] of the signal x[n] does not exhibit cyclostationarity and therefore,

will not be enhanced due to FRESH filtering. On the other hand, the cyclostationary

component of the received signal, if present, will be enhanced by FRESH filtering. The
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Figure 4.1: Blind Adaptive FRESH filter structure, as proposed in [145]

Algorithm 1 The FRESH-LMS algorithm

Initialize the weight vector w[0] = 0
For the nth sample, calculate e[n] = x[n]−wH [n]u[n]
Update w[n+ 1] = w[n] + µL

‖u[n]‖2u[n]e
∗[n]

Algorithm 2 The FRESH-RLS algorithm

Initialize the weight vector w[0] = 0 and P[0] = δ−1I
For the nth sample, calculate :
e[n] = x[n]−wH [n− 1]u[n]
π[n] = P[n− 1]u[n]

k[n] = π[n]
µR+uH [n]π[n]

Update
w[n+ 1] = w[n] + k[n]e∗[n]
P[n] = µ−1

R P[n− 1]− µ−1
R k[n]uH [n]P[n− 1]
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simplest strategy for the detection of this enhanced component is to compare the finite-time

energy of the filtered signal against the noise floor. The test statistic in this case, therefore,

becomes
TE = 1

N

∑N−1
n=0 |y[n]|2

= 1
N

∑N−1
n=0 wH[N ]u[n]uH [n]w[N ]

(4.10)

It may be observed that both u[n] and w[N ] are random vectors. Consequently, for a large

number of samples, the test statistic TE may be assumed to have a normal probability

density function (pdf) [122]. In order to determine the performance of this detector, the

mean and variance of the test statistics under the two hypotheses are required.

Taking expectation on both sides of (4.10)

E[TE] =
1

N

N−1
∑

n=0

E
[

wH [N ]u[n]uH [n]w[N ]
]

(4.11)

Assuming that the adapted weights and the regression vectors are independent [61] we

have,

E[TE ] = 1
N

∑N−1
n=0 E

[

wH [N ]E
[

u[n]uH [n]
]

w[N ]
]

= 1
N

∑N−1
n=0 E

[

wH [N ]Ruuw[N ]
]

= E
[

wH [N ]Ruuw[N ]
]

(4.12)

where Ruu = E
[

u[n]uH [n]
]

is the covariance matrix of the regression vector u[n]. Under

the null hypothesis H0

Ruu = σ2
νI. (4.13)

where, I is the ML dimensional identity matrix and the weight vector w[N ] is normalized

such that ‖w[N ]‖22 = 1

Therefore,

E[TE|H0] = E
[

‖w[N ]‖22σ2
ν

]

= σ2
ν . (4.14)

On the other hand under the alternate hypothesis H1, where the primary signal is present,

x[n] = s[n] + ν[n] and consequently,

Ruu = Rss + σ2
νI (4.15)
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where,

Rss = E
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here Rαi−αk
ss [τ ] is the cyclic autocorrelation matrix of the primary signal at cyclic frequency

αi − αk and lag τ .

Rαi−αk
ss [τ ] = E[sαi [n]sαkH [n− τ ]] (4.17)

This matrix will be non-zero only if s[n] exhibits cyclostationarity at αi − αk. The weight

vector w[N ] may be decomposed as w[N ] = wo + w̃[N ], with wo being the optimal weight

vector and w̃[N ] = wo −w[N ] the weight error vector.

Defining

Q[N ] = E[w̃[N ]w̃H [N ]], (4.18)

the mean of the test statistic under the alternative hypothesis may be written as [61]

E[TE |H1] = σ2
ν +wH

o Rsswo + tr(Q[N ]Rss) (4.19)

It may be observed that the weight error vector consists of two terms. An exponentially

decaying term due to the weight error and a fixed term, proportional to the step size.

Therefore, for a sufficiently large N and sufficiently small adaptation step size, the last

term in the above expression due to the weight error vector will be negligibly small [61] in

comparison to the first term and may be ignored. Therefore,

E[TE |H1] ≈ σ2
ν +wH

o Rsswo (4.20)

It may be observed that the optimal weight vector is defined as

wH
o = R

−1
ss rss[0] (4.21)

where

rss[0] = [rα1
ss , . . . , r

βM2
ss ]T (4.22)
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and

rαss[0] = [Rα1
ss [0], . . . , r

α
ss[L− 1]]T (4.23)

Therefore,

E[TE |H1] ≈ σ2
ν + r

H
ssR

−1
ss rss (4.24)

The second moment of the test statistic, required to determine its variance, may be calcu-

lated as,

E[|TE |2] = E

[

1
N

(

∑N−1
n=0 |y[n]|2

)2
]

= E
[

1
N2

∑N−1
n=0

∑N−1
m=0 w

H [N ]u[m]uH [m]w[N ]wH [N ]u[n]uH [n]w[N ]
]

= E
[

1
N2

∑N−1
m=0

∑N−1
n=0

∑ML
i=1

∑ML
k=1

∑ML
p=1

∑ML
q=1w

∗
iwkwpw

∗
qui[m]u∗k[m]u∗p[n]uq[n]

]

= 1
N2

∑N−1
m=0

∑N−1
n=0

∑ML
i=1

∑ML
k=1

∑ML
p=1

∑ML
q=1E[w

∗
iwkwpw

∗
q ]E[ui[m]u∗k[m]u∗p[n]uq[n]]

(4.25)

where wi represents the ith element of the weight vector w[N ] and ui[n] represents the

ith element of the regression vector u[n]. Invoking the Isserlis’ Theorem [97], the term

E[ui[m]u∗k[m]u∗p[n]uq[n]] may be written as

E[ui[m]u∗k[m]u∗p[n]uq[n]] = E[ui[m]u∗k[m]]E[u∗p[n]uq[n]] + E[ui[m]uq[n]]E[u
∗
k[m]u∗p[n]]

+E[ui[m]u∗p[n]]E[u
∗
k[m]uq[n]]

(4.26)

In the absence of the primary signal, this term reduces to

E[ui[m]u∗k[m]u∗p[n]uq[n]|H0] = σ4
ν (δ[i− k]δ[p− q] + δ[(m− n)− (i− p)]δ[(m− n)− (k − q)])

(4.27)

where δ[.] represents the Kronecker Delta function. Substituting (4.27) in (4.25) and using

‖w[N ]‖ = 1, we have,

E[|TE |2|H0] = σ4
ν +

σ4
ν

N





∑

p

(

ML
∑

i=1

E[w∗
iwi−p]

)2


 (4.28)

The first term in this expression corresponds to (E[TE |H0])
2 and the second term is the

variance of the test statistic. That is,

var(TE|H0) =
σ2
E0

N
=
σ4
ν

N





∑

p

(

ML
∑

i=1

E[w∗
iwi−p]

)2


 (4.29)

Here, the term σ2
E0

is introduced for notational convenience. The optimal weight vector,

under the null hypothesis, is the null vector. Therefore, the variance of the test statistic

under the null hypothesis is entirely a function of the weight error vector. It may be seen
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that the term within the brackets corresponds to the sum of the elements of the weight

error covariance matrix. Therefore, it is not possible to determine a closed form expression

for this term.

However, it may be observed that this term will be minimized when the individual

weight error terms are independent of each other, resulting in a diagonal weight error

covariance matrix. Also, it may be shown that this term will be maximized when all the

entries in the weight error covariance matrix are equal. Based on these, the variance of the

test statistic may be observed to be bounded as

σ4
ν ≤ σ2

E0
≤MLσ4

ν (4.30)

In the presence of a primary user signal, the simplification of (4.25) and subsequent

subtraction of the term corresponding to the square of the mean of the test statistic yields

var(TE |H1) = σ4

N

∑

p

(

(

∑ML
i=1 E[wiw

∗
i−p]
)2

+2γi
∑ML

i=1

∑ML
j=1

∑ML
k=1E[wiw

∗
jw

∗
kwk−p]ρss[p− (i− j)]

)

+γ2i
σ4
ν

N2

∑N−1
m=0

∑N−1
n=0

∑ML
i=1

∑ML
j=1

∑ML
k=1

∑ML
l=1 E[wiw

∗
jw

∗
kwl]

(ρss((n−m)− (i− j))ρss((n−m)− (k − l))

ρss((n−m)− (i− l))ρss((n−m)− (k − j)))

(4.31)

where γi denotes the SNR at the input of the FRESH filter defined as γi =
σ2
s

σ2
ν
. It may

be observed that the last term may be ignored under low SNR conditions and the above

expression may be approximated as

var(TE|H1) = σ4

N

∑

p

(

(

∑ML
i=1 E[wiw

∗
i−p]
)2

+2γi
∑ML

i=1

∑ML
j=1

∑ML
k=1E[wiw

∗
jw

∗
kwk−p]ρss[p− (i− j)]

)
(4.32)

This function again becomes analytically indeterminable due to its dependence on the

weight correlation matrices. However, in this case, due the weight error being negligible in

comparison to the optimal weights, we can discard the expectation operation. Also, this

expression will be maximized when the correlation coefficient is uniformly 1 and all the

weights are equal so as to maximize the individual cross terms. The variance of the test

statistic under the alternate hypothesis may then be bounded as

var(TE|H1) ≤
σ2
ν

N

∑

p





(

ML
∑

i=1

1

ML

)2

+ 2γi

ML
∑

i=1

ML
∑

j=1

ML
∑

k=1

(

1

ML

)2


 (4.33)

This may be simplified to

var(TE|H1) =
σ2
E1

N
≤ σ4

ν

N
ML(1 + 2γiML) (4.34)
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Consequently, the distribution of the test statistic under the two hypotheses may be

written as

TE ∼







N
(

σ2
ν ,

σ2
E0

N

)

H0

N
(

σ2
ν +wH

o Rsswo,
σ2
E1

N

)

H1

(4.35)

The probability of false alarm for a threshold λ is

Pfa = Q

(√
N(λ− σ2

ν)

σE0

)

(4.36)

where Q(.) is the Marcum-Q function [69]. Accordingly, the detection threshold for a

constant false alarm rate (CFAR) detector takes the form

λ =
σE0Q

−1(Pfa)√
N

+ σ2
ν (4.37)

Probability of detection for a fixed threshold, is

Pd = Q

(√
N
λ− (σ2

ν +wH
o Rsswo)

σT1

)

(4.38)

Substituting (4.37) into (4.38) and simplifying we get,

Pd = Q





Q−1(Pfa)−
√
N

wH
o Rsswo

σE0
σE1

σE0



 (4.39)

Defining the output SNR of the FRESH filter as

γo = wH
o Rsswo

σE0

= γi
wH

o Rsswo

σ2
s

σ2
s

σ2
E0

(4.40)

The term wH
o Rsswo

σ2
s

may be defined as the FRESH filter gain for the primary signal.

The detection performance is expected to improve with the FRESH filter length as long

as the term wH
o Rsswoσ2

ν

σ2
sσ

2
E0

is greater than unity. In this term, both the numerator and the

denominator are non-decreasing functions of the number of FRESH filter branches (M)

and lengths (L). This expression may be solved to find the optimal values of M and L.

Also, (4.39) may be solved to find the number of samples (N) required to obtain a given

detection rate (Pd) for a pre-defined false alarm rate (Pfa) as

N =

(

Q−1(Pfa)− σE0

σE1
Q−1(Pd)

γo

)2

(4.41)
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It may be observed that the number of samples required varies as the inverse square of

the output SNR which in turn depends on the FRESH filter configuration. Therefore, the

sensing time for a FRESH filter-based spectrum sensing system also depends on the FRESH

filter configuration. It is observed in the simulation results that appropriate FRESH filter

configurations may reduce the sensing time by more than one order of magnitude.

4.2.1 Evaluation of Variances

It is observed that variances of the test statistic under both the hypotheses depend on the

filter and the primary user structure and cannot be determined in a closed form. However,

bounds on their values along with simulation experiments may be used to determine em-

pirical approximates. For the purpose of these simulation experiments, the primary user

signal is considered to be BPSK modulated with a data rate (fb) 10 kilo bits per second, a

carrier frequency (fc) 100 kHz. The spectrum sensor is assumed to take samples at 1 MHz.

It is known that a BPSK signal exhibits conjugate cyclostationarity at 2fc [50]. Therefore,

the FRESH filter consists of a single conjugate frequency (M = M2 = 1) shift branch at

200 kHz. The length of the FRESH filter attached to this branch is varied and takes values

between 1 and 32.

In all the experiments, the FRESH filter is first adapted using the sensed signal. These

samples are saved and passed through the adapted filter to generate a filtered signal which

is then used to generate the test statistic. The test statistics are generated for different

noise variances and different numbers of samples. These trials are repeated using both the

FRESH-LMS and the FRESH-RLS algorithms to ensure that the obtained test statistics

are independent of the algorithm used for adaptation. Ten thousand independent test

statistics are generated for each combination of noise variance and FRESH filter length

under both the hypotheses. It is verified in all the experiments that the variance of the test

statistic in all the aforementioned cases is simply inversely proportional to the number of

samples being used, and follows the bounds determined earlier. The variances of the test

statistic for different filter lengths, at an SNR of −10 dB are listed in Table 4.1.

It may be observed that the variance of the test statistic under the null hypothesis stays

close to the lower bound, but cannot be approximated by it. It may also be observed that

it is not possible to derive a tighter bound due to the dependence of this term on the weight

error covariance matrix. Therefore, the test statistic variance under the null hypothesis has

to be determined empirically. It may be observed that in the absence of a primary user

signal, the weight error vector will depend only on the filter configuration. Consequently,

the variance of the test statistic under the null hypothesis will also be a function of the

filter configuration and is given by

var(TE|H0) =
σ4
ν

N
(1 + g0(M,L))2 =

σ2
E0

N
(4.42)
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where g0(M,L) is an empirically determinable function ofM and L. In the present case, as

M = 1 this function may be reduced to g0(L). From the simulation results, it is observed

that the term g0(L) in (4.42) may be plotted against the filter length (L) as shown by

the black dots in Figure 4.2. These points are obtained by averaging the experimentally

determined value of g0(L) over different noise variances, with different number of samples

and for both the adaptation algorithms described in the previous section. It is observed

from the plot that the function g0(L) is an increasing function of the filter length L and

may be approximated as

g0(L) = c1 ln(1 + c2(L− 1)) (4.43)

The parameters c1 and c2 are determined using MATLAB curve fitting toolbox and c1 =

.07857, and c2 = 8.89. The fit using these values in (4.43) is shown in Figure 4.2 by the

solid line.

Alternatively, the cross correlation coefficient of the weight vector may safely be assumed

to be inversely proportional to the lag parameter factor, p. That is,

E[w∗
iwi−p] ∝

1

p
(4.44)

We may therefore write the summation term as

(

ML
∑

i=1

E[w∗
iwi−p]

)2

= g1(p) (4.45)

with g1(.) as a decreasing function of the argument. Taking g1(p) = p−c2, for simplicity we

may write the test statistic variance under the null hypothesis as

σ2
E0

N
=
σ4
ν

N

ML
∑

p=1

p−c3 (4.46)

Yet again, in the absence of any knowledge about the correlation structure of the weight

error vector, the term c3 has to be determined empirically. The value of this parameter

was found out to be c3 = 1.6. Figure 4.3 plots the predicted and experimental values of

the null hypothesis variance of the test statistics against the FRESH filter length.

Figure 4.4 compares the variance of the test statistic evaluated using simulation under

the hypothesis H1 against the derived upper bound at different SNRs. It is observed that

for SNRs below −5 dB, the simulated test statistic variance closely follows the upper bound

and, therefore, may be approximated as

σ2
E1

≈ σ4
νML(1 + 2γiML) (4.47)

Hence, it may be concluded that the variance of the test statistic lies close to the lower
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Table 4.1: Test statistic variance under the null hypothesis compared against the bounds
Filter Length 1 2 4 8 16 32
Lower Bound 0.100 0.100 0.100 0.100 0.100 0.100
Simulated Value 0.100 0.130 0.159 0.180 0.194 0.204
Upper Bound 0.100 0.200 0.400 0.800 1.600 3.200
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Figure 4.2: Empirical determination of the energy detector standard deviation in the ab-
sence of a primary signal for different filter lengths

78



Chapter 4. Performance Analysis of FRESH filter based Spectrum Sensing

5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Filter Lenght(L)

σ
E

0

2

 

 

Simulated
Predicted

Figure 4.3: Empirical determination of the energy detector standard deviation in the ab-
sence of a primary signal for different filter lengths
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Figure 4.4: Test statistic variance for different SNRs under the alternate hypothesis
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bound under the null hypothesis but has to be determined empirically. It may be noted that

this variance is independent of the primary user signal structure. Therefore, this may be

calculated offline for a given FRESH filter configuration. Also, either of the two empirical

estimates may be used to determine this. However, the test statistic variance under the

alternate hypothesis can be closely approximated by the derived upper bound in equation

(4.34).

4.2.2 Performance Evaluation

Here, simulation results using randomly generated signals for the theory developed above,

are presented. For this purpose, the primary user signal and the FRESH filtering system

are assumed to be same as those used for the determination of empirical parameters. In

all these experiments, the primary user variance is fixed at unity and the variance of the

additive noise is varied to achieve different SNRs as per the requirement of the experiment.

The system performance is evaluated in terms of the detection rate for input SNRs varying

from −20 dB to 0 dB for 500 samples, and in terms of the number of samples required to

achieve a successful detection performance at an input SNR of −14 dB. The false alarm

rate in all these experiments is fixed at 1%. For theoretical evaluation, the test statistic

variance under the null hypothesis is approximated using (4.42). This is used to calculate

the threshold for a given false alarm rate as derived in equation (4.36). The variance of the

test statistic under the alternate hypothesis is approximated as in (4.47). The detection

threshold, and the two variances are then used to determine the detection performance by

the use of (4.38). For simulation based evaluation, 1000 independent trials in the absence

of a primary user signal are conducted to fix the detection threshold corresponding to

a false alarm rate of 1%. Following this, 2000 independent trials, with the presence of

a primary user signal controlled by a random variable, are conducted to determine the

detection performance.

Figure 4.5 illustrates the performance of the FRESH filter-based spectrum sensor fol-

lowed by an energy detector for different filter lengths. This experiment considers weights

adapted using both the LMS and the RLS algorithms. It is observed that the FRESH-RLS

algorithm-based system performs marginally better than the FRESH-LMS-based system at

the cost of increased computational complexity. It may also be observed that increasing the

FRESH filter length from 1 to 32 results in a gain of nearly 6 dB for a successful detection

rate of 90%. In the figure, the no enhancement case refers to a FRESH filter length of 1

which essentially is the standard energy detector.

It was observed during the experiments that the number of samples required for the

FRESH filter weights to converge is much larger than the number of samples being used

for detection. Consequently, the predicted results differ significantly from the simulation

results. This is because the predicted results assume the filter weights to be optimal.

To alleviate this discrepancy, the knowledge about the optimal FRESH filter weights was

81



4.2 Performance of the Energy Detector

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

P
D

 

 

No Enhancement
L=2 RLS
L=4 RLS
L=8 RLS
L=16 RLS
L=32 RLS
L=2 LMS
L=4 LMS
L=8 LMS
L=16 LMS
L=32 LMS

Figure 4.5: Performance of a FRESH filter based energy detector for different filter lengths
and adaptation algorithms
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assumed at the spectrum sensor and the signal samples were passed through a FRESH

filter having optimal weights. The optimal filter weights are determined by first allowing

the FRESH filters to converge by using a large number of samples for adaptation and then

averaging these weights over 2000 independent realizations.

Figure 4.6 compares the predicted detection rate at different SNRs with the detection

rate achieved using optimal and adapted (using the RLS algorithm) filter weights for dif-

ferent filter lengths. It may be observed that the plots for the cases where the optimal

weights are known closely follow the behavior of the system predicted by (4.38) and (4.36).

It may also be observed that if the correlation structure of the primary signal, and hence

the optimal FRESH filter weights, are known then gain of 6 dB is achieved by increasing

the filter length from 1 to 8.

In Figure 4.7 the number of samples required to achieve 90% detection rate and 10 %

false alarm rate obtained using (4.41) is compared against the number of samples required to

achieve this performance for the following cases: weights adapted using the LMS algorithm,

weights adapted using the RLS algorithm, and optimal weights known to the system. It

is seen that the required number of samples drops by more than two orders of magnitude

when the FRESH filter weights are known at the spectrum sensor. Also, in case the FRESH

filter weights are not known apriori, then an increase in the FRESH filter length from 1 to

32 may reduce the number of required samples by more than one order of magnitude.

The energy detector for a FRESH filtered signal is simple, but suffers from the same

problems as encountered in the standard energy detector [122]. It is shown in Section 4.4

that the phenomenon of SNR walls occurs in an energy detector-based spectrum sensor

because of an uncertainty in the mean of the test statistics under both the hypotheses.

In order to avoid the phenomenon of SNR walls due to noise uncertainty, the mean of

the test statistic under both the hypotheses should be independent of the ambient noise

variance. It is, therefore, desired to develop an alternative detector such that its test

statistics are independent of the ambient noise variance. It is shown in the next section

that a cyclostationarity detector may be designed to achieve these requirements.

4.3 The Cyclostationarity Detector

The finite-time cyclic autocorrelation function of the filtered signal y[n] at a cyclic frequency

η and lag τ for N samples is defined as

R̂η
yy[N, τ ] =

1

N − τ

N−1
∑

n=τ

y[n]y∗[n− τ ]e−j2πηn (4.48)
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Figure 4.6: Comparison of predicted and actual performances of a FRESH filter based
energy detector for different filter lengths
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Similarly, the finite-time conjugate cyclic autocorrelation function at cyclic frequency η and

lag τ may be defined as

R̂
η
yy∗ [N, τ ] =

1

N − τ

N−1
∑

n=τ

y[n]y[n− τ ]e−j2πηn (4.49)

Depending on the cyclostationary properties of the signal, either of these may be used as a

test statistic. In this section, only the cyclic autocorrelation function is considered. Similar

steps may be followed to determine the behavior of the conjugate cyclic autocorrelation

function as a test statistic

Using the definition of y[n], (4.48) may also be written as

R̂η
yy[τ ] =

1

N − τ

N−1
∑

n=τ

wH [N ]u[n]uH [n− τ ]w[N ]e−j2πηn (4.50)

Again, this may be assumed to have a Gaussian pdf under both the hypotheses. The

characteristics of this distribution may be obtained in a manner similar to that of the

energy detector. Taking the expectation of (4.48) and considering the independence of the

weight (w[N ]) and the regression (u[n]) vectors, we have

E
[

R̂η
yy[N, τ ]

]

=
1

N − τ

N−1
∑

n=τ

E
[

wH [N ]E
[

u[n]uH [n− τ ]e−j2πηn
]

w[N ]
]

(4.51)

It may be shown via simple manipulation that

E[xαp [n]xαq∗[n− τ ]e−j2πηn] = Rαp−αq+η
xx [n− τ ] (4.52)

Note that xα∗[n] is different from x∗α[n], where the former is the conjugate of a frequency

shifted version of x[n], while the latter is the conjugate frequency shifted version of x[n] such

that xα∗[n] = x∗−α[n]. Consequently, the cyclic autocorrelation matrix at cyclic frequency

αp − αq + η and lag τ may be written as

Rαp−αq+η
xx [τ ] = E[xαp [n]xαqH [n− τ ]e−j2πηn] (4.53)

In view of this, the block cyclic correlation matrix of the regression vector Rη
uu[τ ] at cyclic

frequency η and lag τ may be defined as

Rη
uu[τ ] = E

[

u[n]uH [n− τ ]e−j2πηn
]

=









Rη
xx[τ ] . . . R

α1+βM2
+η

xx [τ ]
...

. . .
...

R
−βM2

−α1+η
ss [τ ] . . . Rη

ss[τ ]









(4.54)
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Therefore,

E
[

R̂η
yy[τ ]

]

= E
[

wH [N ]Rη
uu[τ ]w[N ]

]

(4.55)

If there exist αp, αq ∈ {A ∪ −B }, such that η = αp − αq, then R
η+αp−αq
xx [τ ] = Rxx[τ ]. In

this case for, τ < L, the matrix Rxx[τ ] will contain the term Rxx[0]. This will result in

the mean of the test statistic being dependent on the ambient noise variance which in turn

will deteriorate the detector performance when the value of the ambient noise variance is

uncertain. Hence, the choice of A,B and η becomes important. Now, in the absence of the

primary signal and due to the whiteness and stationarity of the noise, Rη
νν [τ ] = O, with O

being a null matrix having the same dimensions as Rη
νν [τ ]. Therefore,

E
[

R̂η
yy[N, τ ]|H0

]

= 0 (4.56)

whereas, under the alternate hypothesis H1, this becomes

E
[

R̂η
yy[N, τ ]|H1

]

= wH
o R

η
sswo + tr(Rη

ss[τ ]Q[N ]) (4.57)

where Q[N ] is as defined in (4.18). It may be noted that the matrix Rη
ss[τ ] is not Hermitian

and hence the term wH
o R

η
ss[τ ]wo will in general be complex-valued and may be written in

the form

wH
o R

η
ss[τ ]wo = ξejφ (4.58)

similar to the finite-time energy. The variance of R̂η
yy[N, τ ], under the two hypotheses, may

be expressed as

σ4
ν

N − τ
≤ var

(

R̂η
yy[N, τ ]|H0

)

=
σ2
C0

N − τ
≤ML

σ4
ν

N − τ
(4.59)

var
(

R̂η
yy[N, τ ]|H1

)

=
σ2
C1

N − τ
≤ σ4

ν

N − τ
ML(1 + 2γiML) (4.60)

The distribution of R̂η
yy[N, τ ] under the two hypotheses may therefore, be written as

R̂η
yy[N, τ ] ∼







Nc

(

0,
σ2
C0

N−τ

)

H0

Nc

(

ξejφ,
σ2
C1

N−τ

)

H1

(4.61)

The phase φ in the term ξejφ depends on the correlation structure of the primary user

signal. If φ is known, then ℜ{R̂η
yy[N, τ ]e

−jφ} will have a real positive mean which may be

used as a test statistic for the detection of a primary signal, as follows

ℜ{R̂η
yy[N, τ ]e

−jφ} ∼







N
(

0,
σ2
C0

2(N−τ)

)

H0

N
(

ξ,
σ2
C1

2(N−τ)

)

H1

(4.62)
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For a detection threshold λ, the probabilities of detection and false alarm may, respectively,

be expressed as

Pd = Q

(

√

2(N − τ)(λ− ξ)

σC1

)

(4.63)

Pfa = Q

(

√

2(N − τ)λ

σC0

)

(4.64)

The threshold for a constant false alarm rate therefore is derived as

λ =
σC0Q

−1(Pfa)
√

2(N − τ)
(4.65)

Based on this, the number of samples required to obtain a desired detection rate is obtained

as

N = τ +
1

2

(

σC0Q
−1(Pfa)− σC1Q

−1(Pd)

ξ

)2

(4.66)

However, in the absence of the knowledge of φ, the absolute value of the finite-time cyclic

autocorrelation function may be used as the test statistic which will be distributed as

|R̂η
yy[N, τ ]| ∼







Rice
(

0,
σC0√
N−τ

)

H0

Rice
(

ξ,
σC1√
N−τ

)

H1

(4.67)

The false alarm rate for a given detection threshold λ for this test statistic will be

Pfa = e
− (N−τ)λ2

σ2
C0 (4.68)

This may be used to determine the threshold to achieve a given false alarm rate. However,

a closed form expression is not available for its cumulative distribution function. The

performance of this detector must therefore be determined via simulation. The robustness

of this detector to uncertainty in noise variance is shown in the next section.

4.3.1 Evaluation of Variances

Similar to the treatment in case of energy detector discussed in the previous section , the

primary user signal here is considered to be BPSK modulated with a data rate (fb) 10

kilobits per second, a carrier frequency (fc) 100 kHz, and sampled at 1 MHz. The FRESH

filter structure is also assumed to be similar to the one used for energy detector. Here, the

conjugate cyclic autocorrelation function at twice the carrier frequency is used for detection.

It is assumed that the phase of the resultant cyclic autocorrelation function is known.

Following this, the test statistic ℜ{R̂η
yy∗e

jφ} is calculated under both the hypotheses, for

different filter lengths and different noise variances. Similar to the energy detector, 10000

independent test statistics are generated for each possible case. Using these, the parameters
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for the distribution of ℜ{R̂η
yy∗e

jφ} are determined via curve fitting. The variance of the

test statistics across all the cases is again found to be inversely proportional to the number

of samples used.

It is again found that the variance under the null hypothesis needs to be determined

empirically, whereas that under the alternate hypothesis may be approximated by the upper

bound. It is observed from the shape of the plot that both the approximations of the test

statistic variance developed for the energy detector will be applicable here. Considering

the logarithmic approximation, the constants c1 and c2 are found out to be c1 = 0.1754

and c2 = 0.901.

Taking the functional form of the variance of the cyclostationarity detector similar

to series summation described in the previous section, the factor c3 is found out to be

approximately 1.55.

4.3.2 Performance Evaluation

The experimental setup is similar to the one used in case of energy detector. Here, the

variances of the test statistics under the two hypotheses may be determined as described

in the previous section. Following this, equation (4.64) and is used to determine the de-

tection threshold for a false alarm rate of 1% and (4.63) is used to determine probability

of detection. In simulation-based experiments, 1000 independent trials, with the primary

signal absent, are used to determine the detection thresholds and 2000 independent trials

being used for the determination of the detection performance. The number of samples to

evaluate the detection performance is again fixed at 500.

Figure 4.9 compares the predicted detection performance obtained in (4.63) with the

simulation results for different filter lengths at different SNRs when the phase of the primary

user cyclic autocorrelation function and the optimal filter weights are known. It is again

observed that the simulation results closely follow the predicted behaviour. Moreover, in

this case as well, a gain of more than 8 dB is achieved by increasing the FRESH filter

length from 1 to 16.

The effect of the knowledge of the phase of the cyclic autocorrelation function of the

primary signal component in the filtered signal is studied in Figure 4.10. The figure plots

the performances under different cases for an 8-tap FRESH filter-based spectrum sensor. It

is seen that with the optimal weights being known, the performance of the spectrum sensor

is marginally improved due to the knowledge of the phase of the cyclic autocorrelation

function. However, there is no visible effect of this knowledge when adapted weights are

used.

The number of samples required to achieve a 90% detection rate for different cases is

plotted in Figure 4.11. It is observed that, similar to an energy detector, the number of

samples the spectrum sensor reduces by approximately two orders of magnitude as the filter
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Figure 4.8: Empirical determination of the standard deviation of the test statistic for the
cyclostationary detector in the absence of a primary signal for different filter lengths
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Figure 4.9: Comparison of predicted and actual performances of a FRESH filter based
cyclostationary detector for different filter lengths
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length is increased from 1 to 32, when the knowledge of optimal FRESH filter weights is

available at. On the other hand, if these weights are adapted, then the number of samples

required for a FRESH filter length of 32 is less than one-tenth of those required without

any enhancement.

4.4 Performance in the Presence of Impairments

4.4.1 Noise Uncertainty

It may be noted that the statistical properties of both the test statistics discussed earlier

depend on the ambient noise variance and the values of these parameters become uncertain

when there is some uncertainty in the noise variance. This uncertainty in parameters

will, therefore, have a direct impact on the detection performance of the spectrum sensor.

Consider now that the known noise variance σ2
ν is an estimate of the true noise variance

σ2
0. If the noise component of the average input SNR has an uncertainty of ρdB dB then

the noise variance estimate may be said to have an uncertainty by a factor ρ > 1. The

noise variance estimate (σ2
ν) may be thought of as uniformly distributed in the interval

[

1
ρ
σ2
0, ρσ

2
0

]

[122], where σ2
0 is the true ambient noise variance.

Considering the worst case scenario, i.e. σ2
ν = ρσ2

0 in the absence of a primary signal

and σ2
ν = 1

ρ
σ2
0 when it is present the statistics of an energy detector may be written as

TE ∼







N
(

ρσ2
0,

ρ2σ4
0(1+g0(M,L))2

N

)

H0

N
(

σ2
0

ρ
+wH

o Rsswo,
σ4
0ML(1+2γiML)

ρ2N

)

H1

(4.69)

From these, the number of samples required to achieve a given detection performance may

be obtained as

N =





(

(ML(1+2γiML))1/2

ρ
Q−1(PD)−Q−1(Pfa)(ρ(1 + g0(M,L)))

)

(

ρ− 1
ρ
− wH

o Rsswo

σ2
0

)





2

(4.70)

The number of samples N tends to infinity as the term wH
o Rsswo

σ2
0

tends to
(

ρ− 1
ρ

)

. There-

fore, the phenomenon of SNR walls, for energy detector as described in [122], also exists in

this case. As reported in [122], the phenomenon of SNR walls occurs in a standard energy

detector if γi →
(

ρ− 1
ρ

)

. However, if the FRESH filter gain, as defined in Section 4.2, is

greater than unity, then the FRESH filter-based spectrum sensor will work for input SNRs

smaller than
(

ρ− 1
ρ

)

. In other words, it may be stated that the use of FRESH filters

lowers the SNR wall.

Similarly, the statistics of a cyclostationary detector with the phase φ known, may be
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Figure 4.11: Number of samples required to achieve a 90% detection rate in a cyclostation-
ary detector based spectrum sensor
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written as

ℜ{R̂η
yy[N, τ ]e

−jφ} ∼







N
(

0,
ρ2σ4

0(1+g2(M,L))2

2(N−τ)

)

H0

N
(

wH
o R

α
ss[τ ]wo,

σ4
0ML(1+2γiML)

ρ2(N−τ)

)

H1

(4.71)

The number of samples required to achieve a desired detection performance, hence, takes

the form

N = τ +
1

2





σ2
0(1 + g2(M,L))− σ2

0(ML(1+2γiML))1/2

ρ
Q−1(PD)

ξ





2

(4.72)

It may be seen that, in this case also the number of samples required to achieve a desired

performance will increase but will not tend to infinity as in the case of an energy detector.

The performance comparison of a cyclostationary detector and an energy detector for

different number of samples and filter lengths under noise uncertainty is shown in Fig-

ure 4.13. It may be observed that in the presence of noise uncertainty, an increase in the

number of samples improves the performance of a cyclostationary detector, whereas the

performance of the energy detector is largely unaffected. However, an increase in the filter

length still improves the detection performance of the energy detector.

4.4.2 Simulation Based Performance Evaluation

The performance of FRESH filter-based spectrum sensors in the presence of noise uncer-

tainty is presented in Figs. 4.12 and 4.13. In Figure 4.12, the solid lines plot the number

of samples required to achieve a detection rate of 90% under ±1 dB noise uncertainty for

different filter lengths. The dotted lines depict the values of input SNRs, as predicted by

(4.70), at which an SNR wall exists for the given filter lengths. It is observed that increas-

ing the FRESH filter length from 1 to 32 lowers the SNR wall by approximately 14dB,

thereby making the energy detector more robust to noise uncertainty.

4.5 Conclusion

The performance enhancement achievable in spectrum sensors by the use of FRESH fil-

tering is studied in this chapter. It is shown quasi analytically that the use of a FRESH

filter improves the detection performance of both the energy detector and the cyclostation-

ary detector. It is also shown that the increase in filter length, in general, improves the

detection performance of the spectrum sensor. It has been shown that in the presence of

the knowledge of the primary user correlation structure, the number of samples required

to achieve a given detection performance may be reduced by around 99%. It is also shown

that if the exact correlation structure is not known in practice, then the required number

of samples may still be reduced by one order of magnitude. This results in smaller sensing
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times thereby increasing the secondary user throughput. Here, empirical and simulation

results are derived only for BPSK signals; this can be extended to other modulation classes

as well.

Apart from this, the performance of the FRESH filter-based spectrum sensor under

impairments has been studied. It has been found that the use of FRESH filtering may

lower the SNR wall arising due to noise uncertainty by as much as 14 dB.
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Chapter 5

Collaborative FRESH filter based

Spectrum Sensing

It was shown in the previous chapters that enhancing the received signal using FRESH

filters, prior to the detection step, results in improved performance for both the energy

detector as well the cyclostationary detector in single as well as multi-antenna systems.

This was shown for single-user systems in AWGN channels. However, as discussed earlier,

single-user systems are susceptible to performance degradation due to fading, shadowing

and the hidden terminal problem [9]. Accordingly, it has been proposed earlier that multiple

secondary users should collaborate to counter these effects [10, 32, 53]. Based on this idea,

it is proposed in this chapter 1 to extend the framework of FRESH filter-based spectrum

sensing from a single-user to multiple collaborating users. The FRESH filter or the Space-

Time FRESH filter may be used here to boost the performance of each individual user,

hence improving the overall detection performance of the system.

It is assumed in this chapter that all the secondary users collaborate to sense the pres-

ence of the same primary user signal. Therefore, the optimal FRESH filter weights for

different users must either be same or be correlated. Recent works in statistical signal pro-

cessing [1,17,107] show that the convergence rate of multiple adaptive filters estimating the

same set of weights may be improved by the use of joint adaptation. The joint adaptation

techniques may therefore be employed to improve the performance of collaborative FRESH

filter-based spectrum sensors as well.

The contribution of this chapter is twofold. First, FRESH filter-based spectrum sensing

is extended to a collaborative system and the effect of increase in filter length is studied.

Here, each user is assumed to adapt its filter weights individually. Following this, algorithms

for joint adaptation of filter weights at different nodes are considered and it is proposed to

use these to jointly adapt the filter weights at different nodes. Using simulation techniques,

it is demonstrated that joint adaptation may lead to a better sensing performance as

1The work related to centralized cooperation has been published in the proceedings of the 2015 National
Conference on Communications(NCC-2015) under the title “ Cooperative Spectrum Sensing for Cognitive
Radios using Jointly Adaptive FRESH Filters”



5.1 Background and Motivation

compared to localized adaptation.

The need for collaborative spectrum sensing along with the motivation to use FRESH

filters in such a setting is given in Section 5.1. The signal model under the flat fading and

the dispersive fading cases is detailed in Section 5.2. The spectrum sensing models for the

cooperative, the distributed and the general multi-antenna multi-user cases are presented

in Section 5.3. The FRESH filter adaptation algorithms for the flat fading channels are

developed in Section 5.4 and those for the dispersive fading channels are developed in

Section 5.5. The simulation results are presented in Section 5.6. Finally, the conclusions

are drawn in Section 5.7.

5.1 Background and Motivation

Ghasemi and Sousa in [53] showed that for log-normal shadowing the performance of a

single energy detector deteriorates considerably. It has been argued that the situation

worsens if the channel between the cognitive terminal and the primary transmitter is going

through a deep fade during the time of sensing. In this case, it is virtually impossible for

the cognitive user to detect the presence of a primary user. As a solution to this problem,

the authors propose cooperation among different secondary users.

It is proposed in [53] to use multiple sensing (energy detecting) nodes reporting to a

fusion center to decide on the presence of a primary user. The nodes sense the spectrum

locally and send their individual decisions to the fusion center over a control channel. The

fusion center after receiving these decisions declares a primary signal to be present if even

a single sensing node reports so.

This is the simplest method for cooperative spectrum sensing and other methods may

be developed by varying one or more of its design parameters. The parameters for collab-

oration among multiple sensing users, in general, may be listed as follows.

• Test Statistics at individual secondary users : The scheme discussed earlier

uses the energy detector at different nodes to sense the spectrum. Due to its simplic-

ity, the energy detector has been the most popular choice for cooperative spectrum

sensing [55]. However, other test statistics have also been used with encouraging

results [82, 114].

• Information shared by the cooperating users : The example discussed pre-

viously uses transmission of the binary decisions taken by the sensing nodes. It is

reported in [83] that significant performance improvement results if two-bit quantized

statistics are transmitted instead of one-bit decisions. It has been shown that higher

performance enhancement may be achieved by increasing the number of quantizations

bits. These systems perform still better if the collaborating users transmit their test
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statistics. It may be noted that this improvement in the system performance comes

at the cost of control channel bandwidth.

The effect of reporting channel errors on soft and hard combination schemes is stud-

ied in [26]. In this pape,r a cooperative detection scheme with a fusion center is

considered. It is assumed that the one-bit hard decisions as well as quantized soft

decisions are sent to the fusion center over a channel that may cause reporting errors.

The effects of an improper reporting channel are interpreted in terms of its bit error

probability (BEP). A combination rule for soft decisions under erroneous channels is

then derived where the K out of N rule is used for hard decisions. It is shown that

soft-decision-based cooperation always outperforms hard-decision-based cooperation.

It is further shown that if the BEP of the reporting channel is more than a certain

fixed limit, then the required detection and false alarm rates can never be achieved.

This effect is similar to the effect of noise uncertainty and is termed as a BEP wall. It

is then shown that soft-decision schemes are more robust to BEP walls as compared

to hard-decision-based schemes.

• Combination Rules While the aforementioned simple OR rule-based detection im-

proves the protection to the primary user, it also increases the probability of false

alarm resulting in reduced throughput. Consequently other combination rules such

as AND and K out of N may as well be applied [10]. For nodes transmitting soft

decisions techniques such as equal gain combining and maximal ratio combining may

be used for decision fusion.

• Existence of a fusion center The example discussed previously involved the use of

a fusion center to globally decide the presence or absence of a primary signal. This is

susceptible to node failure and also requires a high communication overhead. It is also

possible that sensing nodes far from the fusion center may not be synchronized to stay

silent during the sensing periods. Therefore, it is important to develop distributed

cooperation schemes for spectrum sensing. Another method here might be to use a

hierarchical structure in the form of clusters [9] so that the nodes within each cluster

report to the respective cluster heads which in turn report to the fusion center.

Peer-to-peer cooperation for spectrum sensing was first considered in [42] using dis-

tributed detection theory. The classification framework is based on time-frequency

analysis and the short-time power spectrum is used as a feature. Here multiple de-

vices cooperate to sense the spectrum and classify the overlapping air interfaces. The

proposed algorithm employed to distinguish between Bluetooth and 802.11 WLAN

serves as an example for the same.

Any combination of these parameters may be used to design a collaboration scheme.

However, it must be noted that any collaborative sensing scheme must take care of the

following requirements

101



5.1 Background and Motivation

Firstly, similar to all dynamic access systems, all cooperative sensing schemes must en-

sure minimal interference to the primary user transmission while maximizing the through-

put of the secondary users. Secondly, the power and computational constraints of sensing

nodes must be considered and it should be seen that the sensing time is minimized so

as to maximize the overall throughput of the system.Thirdly, it must be noted that the

cognitive users communicate with each other over a control channel. The characteristics

of the control channel i.e. the bandwidth and BER of this should also be considered while

designing a cooperative sensing scheme.

It should be noted that while the problem of spectrum sensing is a detection problem,

the problem of FRESH filtering is essentially an optimal weight estimation problem. During

the past few years, similar to distributed detection approaches discussed above and also in

the first chapter, much activity has been reported in distributed estimation techniques as

well. Therefore, distributed adaptation algorithms may be used to improve the convergence

performance of the FRESH filters in the collaborating users. A brief review of distributed

adaptation techniques is presented in the sequel.

The problem of distributed linear estimation is introduced in [77]. In this paper, it is

assumed that each node is able to derive local estimates and share them with its pre-defined

neighbors. The objective here is to arrive at an estimate of the parameters of interest which

would have otherwise resulted from each node having information possessed by every other

node in the network. For this purpose, a distributed estimation problem is formulated and

a distributed version of the LMS algorithm is proposed to solve it.

A cooperative strategy for adaptation is studied in [78]. In the proposed peer-to-peer

diffusion adaptation protocol, one-hop neighbors are allowed to communicate with each

other for each iteration. The communication involves exchange of the local node estimates.

These local estimates are then fused to improve the estimation accuracy. The fusion oper-

ation ensures that the estimates at each node are functions of the observations across the

entire network. This paper also studies the reliability of different nodes in terms of the

data supplied by them.

More variations of the diffusion LMS algorithm are proposed in [17]. These are shown to

outperform the previously proposed techniques both analytically as well as via simulations.

It is shown that the algorithm discussed in [78] is a special case of the algorithms discussed

here. A global formulation of the estimation problem, resulting in the global-LMS algorithm

is also proposed here. The performance of the global-LMS algorithm acts as a baseline for

assessing the performance of other distributed adaptation algorithms.

The diffusion strategies discussed above are extended to Kalman filtering in [18]. Here,

the problems of Kalman filtering, fixed lag smoothing and fixed point smoothing for dis-

tributed networks are studied. Different diffusion algorithms are proposed for each of these

problems. Here again, each individual node shares its state estimate with its immediate

neighbors. The mean and mean-square performance of the resulting algorithm is derived.
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As an example, this algorithm is applied to the estimation and tracking of a projectile.

Distributed detection based on estimation techniques is studied in [19]. Here, the

adapted weight vector is correlated with the optimal weight vector and the correlation

coefficient is used as a test statistic. A sequential version of this test statistic is also pro-

posed. The resulting detection algorithms are inherently adaptive and can track changes

in the active hypothesis. This technique allows each node to have its own decision on the

presence of a primary user signal. It is important to note that in this case a consensus on

the presence of the signal of interest is not reached among the sensing nodes.

In [71], in addition to sharing information with its neighbouring nodes, each node

is allowed to filter and process past estimates so as to improve the overall estimation

accuracy. The resulting adaptation algorithms consist of three stages viz. adaptation,

spatial processing and temporal processing. Each node is provided with a local memory

for the purpose of temporal processing. It is shown that temporal processing may be used

to counter the effects of noise over communication channels. In [150], the mean-square

performance of different diffusion LMS strategies is analyzed. It is shown that diffusion

strategies result in a lower excess-mean-square-error in comparison to centralized solutions.

In [107] it is assumed that a subset of nodes, known as bridge nodes, arrives at a con-

sensus regarding the filter weights. It is assumed that each sensor node is connected to

at-least one bridge sensor via a single hop communication link. Here, the nodes commu-

nicate with each other after each adaptation step and update the connected bridge nodes

about the local estimates. The bridge nodes on receiving these estimates arrive at a consen-

sus regarding the weights and start the next adaptation step. It is important to note that

while consensus-based techniques try to make the nodes agree on a single value, diffusion

adaptation does not require the convergence to a single value. Therefore, while consensus

is necessary in deciding on the presence of a primary user, diffusion adaptation techniques

may be used to estimate the filter weights at each node [129].

Consequently, in this chapter, we propose to adapt the filter weights at different nodes

by using diffusion adaptation while the decision is taken only after the cooperating nodes

reach a consensus regarding the presence of a primary user signal.

5.2 The Primary Signal and Channel Models

Consider a primary user signal s(t) exhibiting cyclostationarity at cyclic frequencies

α1, α2, . . . αM1 ∈ A and conjugate cyclostationarity at β1, β2, . . . βM2 ∈ B. This signal,

due to its spectral coherence [48, 50], may be expressed in the form

s(t) =
∑

α∈A
∫ Vα

0
aα(v)s

α(t− v)dv

+
∑

β∈B
∫ Vβ

0
aβ(v)s

∗β(t− v)dv + ζ(t)
(5.1)
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where ζ(t) is the innovation process, sα(t) = s(t)e−j2παt and s∗β(t) = s∗(t)e−j2πβt are, re-

spectively, the frequency shifted and the conjugate frequency shifted versions of the signal

s(t) with aα(t) and aβ(t) as their respective weighting functions. This signal, after passing

through a multipath channel, is sensed by K sensing nodes, each equipped with a single an-

tenna. Consequently, for the signal xk(t) received at the kth secondary user, the hypothesis

test may be written as

xk(t) =

{

νk(t) H0

ϕk(t) ∗ s(t) + νk(t) H1

(5.2)

where νk(t) is the additive noise with zero mean and variance σ2
ν at the kth sensing node

and ϕk(t) is the impulse response of the channel between the primary user and the kth

secondary user. It may be assumed that the sensing nodes are placed sufficiently apart so

that there exists no correlation between the impulse responses of different channels. If the

kth sensing node samples the channel at a frequency Fs, then the following two cases may

arise.

Case 1 : The delay spread, of all the channels is smaller than the inter-sample interval

Ts = 1
Fs
. In this case, the discrete-time equivalent channel will be memoryless and the

received signal sample under the alternate hypothesis will take the form

xk[n] = ϕks[n] + νk[n] (5.3)

Substituting (5.1) in (5.3), we obtain

xk[n] = ϕk

(

∑

α∈A
∑Pα−1

l=0 aα[l]s
α[n− l]

+
∑

β∈B
∑Pβ−1

l=0 aβ [l]s
∗β [n− l] + ζ [n]

)

+ νk[n]
(5.4)

where the noise νk[n] may be assumed to be wide sense stationary. It follows that

xk[n] =
∑

α∈A
∑Pα−1

l=0 aα[l]x
α
k [n− l]

+
∑

β∈B
∑Pβ−1

l=0 aβ [l]x
∗β
k [n− l] + ζ [n] + νk[n]

(5.5)

The regression coefficients aα[n] are same for all the sensing users. The signals received at

different antennas may, therefore, be viewed as different realizations of the same spectrally

correlated process. The optimal weights for these may hence be estimated at the same

time. This is discussed in more detail in the next section.

Case 2 : The delay spread of some or all of the channels is greater than the inter-sample

interval. In this case, the received samples of the signal under the alternate hypothesis will

take the form

xk[n] =

T−1
∑

τ=0

ϕk[τ ]s[n− τ ] + νk[n] (5.6)
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where ϕk[τ ] is the discrete-time equivalent of the channel between the primary user and

the kth spectrum sensor, and T is the delay spread of the discrete-time equivalent of the

channel. Consequently,

xk[n] =
∑T

τ=0 ϕk[τ ]
(

∑

α∈A
∑Pα−1

l=0 aα[l]s
α[n− l]

+
∑

β∈B
∑Pβ−1

l=0 aβ[l]s
∗β [n] + ζ [n]

)

+ νk[n]

=
∑

α∈A
∑Pα−1

l=0 bα,k[l]x
α[n− l]

+
∑

β∈B
∑Pβ−1

l=0 bβ,k[l]x
∗β [n] + ξk[n] + νk[n]

(5.7)

where ξk[n] is the innovation component of the signal sampled at the kth spectrum sensor.

Therefore, the optimal weights of the FRESH filters at different sensing nodes will be

different. However, the signals received at different nodes will still be correlated and may

be estimated jointly.

5.3 Spectrum Sensing Models

This chapter considers three different setups, viz. the Centralized model, the Distributed

model and the Hierarchical model, as illustrated in Figure 5.1. The Centralized detection

model assumes the existence of a fusion center and also assumes that all the cooperating

users forward all their sensed data to the fusion center. The distributed detection model

does not assume a fusion center and assumes that all the nodes are capable of sensing the

spectrum as well as processing the sensed data. It is assumed that these nodes form a fully

connected graph. The hierarchical model assumes the existence of two different forms of

nodes in the network, viz. the sensing and the processing nodes. The sensing nodes simply

sense the spectrum and forward it to the associated processing nodes and are incapable

of processing the sensed data. The processing nodes on the other hand, being incapable

of sensing the spectrum themselves, can only process the data forwarded by the sensing

nodes.

5.3.1 Centralized Detection

In this model, a total of K sensing nodes, each equipped with a single antenna followed

by a FRESH filter consisting of M frequency shifts (M1 non-conjugate frequency shifts

and M2 conjugate frequency shifts, M = M1 +M2) and length L are assumed. It is also

assumed that all the sensing nodes report to a single processing node or a fusion center via

an unrestricted communication link. It is further assumed that each secondary user collects

N samples of the sensed signal. These samples are used for adaptation of the FRESH filters

as well as for sensing. Let, the regression vector at the kth user be defined as

uk[n] = [uk1[n], . . . ,ukM [n]]T (5.8)
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Figure 5.1: Different models for Collaborative Spectrum Sensing
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where
ukm[n] = [ukm[n], . . . , ukm[n− L+ 1]]T

ukm[n] = x
(∗)αm

k [n]
(5.9)

Here, ukm[n] denotes the vector containing the input to the mth FRESH branch of the kth

user, and ukm[n] is the optionally conjugated and frequency shifted version (for the mth

FRESH branch) of the signal received by the kth user at the nth instant. Considering xk[n]

as the reference signal for the kth user, the weight vector wk may be determined so that

the mean square error defined by the following equation is minimized [145].

Jk(wk) = E
[

∣

∣xk[n]−wH
k uk[n]

∣

∣

2
]

(5.10)

The optimal weights may also be determined adaptively using the method described in [61].

Let the final weights after adaptation at the kth user be given as wk[N ]. Then the filtered

signal yk[n] at the kth user is given as

yk[n] = wH
k [N ]uk[n] (5.11)

and distributed as

yk[n] ∼











Nc(0, σ
2
ν‖wk[N ]‖2) H0

Nc(0, (‖ϕk‖2)wk[N ]HRkwk[N ] + σ2
ν‖wk[N ]‖2) H1

(5.12)

where ϕk is the tap vector (scalar for a flat fading channel) of the channel between the

primary user and the kth secondary user and Rk is defined as

Rk = E[uk[n]u
H
k [n]] (5.13)

If the energy of the filtered signal is used as the test statistic then the test statistic at the

kth user will take the form

zk =
N−1
∑

n=0

|yk[n]|2 (5.14)

and will be distributed as

zk ∼
{

N (σ2
ν ,

σ2
z0

N
) H0

N (µz1(ϕk),
σ2
z1

N
(ϕk)) H1

(5.15)

where

µz1(ϕk) = ‖ϕk‖2wH
k [N ]Rkwk[N ] + σ2

ν (5.16)

σz0 and σz1 are functions of the adapted filter weights as discussed in the previous chapter

It is assumed that the collaborating users report their statistics to the fusion center.
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The fusion center in the absence of the knowledge of the individual channel coefficients

averages them such that

T =
1

K

K
∑

k=1

zk, (5.17)

Normalizing the adapted weights to a unit norm ‖w[N ]‖ = 1, the distribution of T under

the two hypotheses may be derived as

T ∼







N (σ2
ν ,

σ2
T0

N
) H0

N (µT1(ϕ),
σ2
T1

N
(ϕ)) H1

(5.18)

where

σ2
T0

=
σ2
z0

K
(5.19)

µT1(ϕk) =

∑K
k=1‖ϕk‖2wH

k [N ]Rkwk[N ]

K
+ σ2

ν (5.20)

σ2
T1

=

∑K
k=1 σ

2
z1
(ϕk)

K2
(5.21)

and ϕ is the joint channel vector for all the users, defined as

ϕ = [ϕT
1 ,ϕ

T
2 , . . . ,ϕ

T
K ]

T (5.22)

It may also be observed that the mean and variance of the test statistic under the alternate

hypothesis are dependent on ϕ. Therefore, for a given channel vector ϕ and detection

threshold λ, the test statistic distributions, as described in, (5.18) may be used to derive

the probabilities of detection and false alarm as

Pd|ϕ = Q

(

λ− µT1(ϕ)

σT1(ϕ)

)

(5.23)

Pfa = Q

(

λ− σν

σT0

)

(5.24)

5.3.2 Distributed Detection

This model considers K FRESH filter-equipped single-antenna nodes. Each node is as-

sumed to be connected to its immediate neighbors via a single hop link. Let the nodes

lying in the neighborhood of the kth node be contained in the index set Ik. It is also as-

sumed that these nodes form a fully connected network, i.e. there exists a finite-hop path

between any two nodes and the connected nodes can share information among themselves.

This information may be the observed data as well as the test statistic. In the absence of a

fusion center, the nodes must form a consensus among themselves regarding the presence

of a primary signal.
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It is assumed that each collaborating node collects N samples of the sensed signal which

are to be used for adaptation as well as for sensing. The adapted weight vector wk[N ] at

the kth node is used to generate the filtered signal yk[n], defined as

yk[n] = wH
k [N ]uk[n] (5.25)

where

uk[n] = [uk1[n], . . . ,ukM [n]]T (5.26)

Each node uses the local finite time energy of the filtered signal as the local test statistic

calculated at the kth user as

zk[0] =
∑

n

|yk[n]|2 (5.27)

and may be shown to be distributed as

zk[0] ∼
{

N (σ2
ν ,

σ2
z0

N
) H0

N (µz1(ϕk),
σ2
z1

(ϕk)

N
) H1

(5.28)

where

µz1(ϕk) = ‖ϕk‖2wH
k [N ]Rkwk[N ] + σ2

ν (5.29)

σz0 and σz1 are also empirical functions of the adapted weights. After each node calculates

its initial local test statistic defined here as zk[0], it tries to reach a consensus with the

neighboring nodes [75]. In the qth consensus iteration, the test statistic at the kth node is

updated as

zk[q] =
∑

i∈Ik

cikzi[q − 1] (5.30)

where cik is the weight assigned to the observation of the ith node by the kth node. If the

nodes i and k are not directly connected then cik = 0 otherwise 0 < cik ≤ 1. Also, for

ck = [c1k, c2k, . . . , cKk]
T , 1Tck = 1 that is the sum of the elements of ck is unity. Here 1 is

the the K dimensional all one vector such that 1 = [1, 1, . . . , 1]T

Defining

z[q] = [z1, z2, . . . , zK ]
T (5.31)

and

C = [c1, c2, . . . , cK ] (5.32)

the qth consensus step may be written as

z[q] = Cz[q − 1] (5.33)
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and, therefore, for a total of Q consensus steps

z[Q] = CQz[0] (5.34)

Decomposing C as

C = PDP−1 (5.35)

z[Q] may be written as

z[Q] = PDQP−1z[0] (5.36)

It may be observed that the matrix C is a Markov matrix with all the eigenvalues lying

between zero and one [117]. If C is fully connected then only one eigenvalue will be equal

to 1 and all others will have smaller values. Therefore, for a sufficiently large Q it may be

shown that DQ converges to a rank one matrix such that [117],

DQ =













1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0













(5.37)

and

z[Q] = p1(P
−1)1z[0] (5.38)

where (P−1)1 is the first row of P−1 and p1 is the dominant eigenvector of C. It is observed

that CT1 = 1, and therefore 1 is the dominant eigenvector of C. Hence, all the elements

of p1 are equal. This results in all the elements of z[Q] being equal. Therefore, for all k

and a large enough Q,

zk[Q] = c̃Tz[0] (5.39)

where

c̃ =
1

K
(P−1)1. (5.40)

The final weight vector c̃ will, therefore, depend on the structure of C. On the other hand

the speed of convergence will depend on the second largest eigenvalue of C.

The final test statistic on all the nodes may therefore be written as

Z =

K
∑

k=1

c̃kzk[0] (5.41)

which is distributed as

Z ∼







N (σ2
ν ,

σ2
Z0

N
) H0

N (µZ1(ϕ),
σ2
Z1

(ϕ)

N
) H1

(5.42)
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where ϕ is the joint channel vector defined previously,

σ2
Z0

= σ2
z0

K
∑

k=1

c̃2k (5.43)

such that 1
K

≤∑K
k=1 c̃

2
k ≤ 1 and

µZ1(ϕk) =
K
∑

k=1

c̃k‖ϕk‖2wH
k [N ]Rkwk[N ] + σ2

ν (5.44)

σ2
Z1

=

K
∑

k=1

c̃2kσ
2
z1
(ϕk) (5.45)

In this case, for a given channel vector ϕ and detection threshold λ, the probabilities

of detection and false alarm may be derived as

Pd|ϕ = Q

(

λ− µZ1(ϕ)

σZ1(ϕ)

)

(5.46)

Pfa = Q

(

λ− σ2
ν

σZ0

)

(5.47)

It may be observed that the probabilities of detection and false alarm depend on the

structure of the network matrix.

5.3.3 The Generalized Hierarchical Model

Under this model, the network is assumed to consist of two types of nodes, viz. the sensing

and the processing nodes. As discussed before, the sensing nodes are devoid of any signal

processing any capabilities and hence simply forward the collected samples to the connected

processing node(s). On the other hand, the processing nodes cannot sense the spectrum

by themselves but can only process the data supplied to them by the sensing nodes. In

a centralized detection scheme, the cooperating users may be thought of as sensing nodes

and the fusion center as the processing node. Similarly, in a purely distributed case, each

sensing node may be considered as attached to a processing node.

Let, the secondary user network in this case consist of KS sensing and KP processing

nodes. It is assumed that each sensing node is connected to at least one processing node

and vice versa. Multiple processing nodes, whenever present, are assumed to share the

test statistics among themselves. It is also assumed that the processing nodes form a fully

connected graph.

Let the indices of the sensing nodes connected to the pth processing node be contained

in the index set Ip and those of the connected processing nodes be contained in the index

set Pp. It is again assumed that each sensing node collects N samples and forwards these
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to each of its connected processing nodes. The attached processing nodes use these samples

to adapt the associated filter weights and calculate the local test statistics. The finite time

energy Ekp, defined for the kth sensing node at the pth processing node, may be written as

Ekp =
1

N

N−1
∑

n=0

|ykp[n]|2 (5.48)

where ykp is the signal sensed by the kth sensing node, filtered by the pth processing node

given as

ykp[n] = wH
kp[N ]ukp[n] (5.49)

where wH
kp[N ] and ukp[n] are, respectively, the adapted weight vector and the regression

vector for the kth sensing node at the pth processing node. Ekp may be shown to be

distributed as

Ekp ∼







N (σ2
ν ,

σ2
E0

N
) H0

N (µE1(ϕk),
σ2
E1

(ϕk)

N
) H1

(5.50)

where

µE1(ϕk) = ‖ϕk‖2wH
k [N ]Rkwk[N ] + σ2

ν (5.51)

with σE0 and σE1 again being empirical functions of the adapted weights.

The initial test statistic at the pth processing node is then calculated as

zp[0] =
1

|Ip|
∑

k∈Ip

Ekp (5.52)

Based on this and the results derived earlier, the distribution of zp[0] under the two hy-

potheses takes the form

zp[0] ∼
{

N (σ2
ν ,

σ2
z0,p

N
) H0

N (µz1,p(ϕp),
σ2
E1

(ϕp)

N
) H1

(5.53)

where ϕp is the joint channel vector for the sensing nodes reporting to the given processing

node,

σ2
z0,p =

σ2
z0

|Ip|
(5.54)

µz1,p(ϕp) =

∑

k∈Ip‖ϕk‖2wH
k,p[N ]Rk,pwk,p[N ]

|Ip|
+ σ2

ν (5.55)

and

σ2
z1,p =

∑

k∈Ip σ
2
z1,k

|Ip|2
(5.56)

Following this, the different processing nodes arrive at a consensus among themselves such

112



Chapter 5. Collaborative FRESH filter based Spectrum Sensing

that the final test statistic at each node is given as

Z =

KP
∑

p=1

c̃pzp[0] (5.57)

where c̃p is the weight of the pth cognitive user in the consensus mechanism described in

the previous subsection. Therefore, Z is distributed as

Z ∼







N (σ2
ν ,

σ2
Z0

N
) H0

N (µZ1(ϕ),
σ2
Z1

N
(ϕ)) H1

(5.58)

where ϕ is the joint channel vector and

σ2
Z0

=

KP
∑

p=1

σ2
z0,pc̃

2
p (5.59)

µZ1(ϕ) =

KP
∑

p=1

c̃p

∑

k∈Ip‖ϕk‖2wH
k,p[N ]Rk,pwk,p[N ]

|Ip|
+ σ2

ν (5.60)

σ2
T0

=

KP
∑

p=1

c̃2pσ
2
z1(ϕp) (5.61)

Therefore, for a given channel vector ϕ and detection threshold λ, the probabilities of

detection and false alarm may be obtained as

Pd|ϕ = Q

(

λ− µZ1(ϕ)

σZ1(ϕ)

)

(5.62)

Pfa = Q

(

λ− σ2
ν

σZ0

)

(5.63)

It may be noted that the performance depends on the structure of C and needs to

be determined using simulation techniques. It may also be noted that the performance

of these structures depends on the adapted FRESH filter weights. The adaptation error

in the LMS algorithm is a function of the instantaneous SNR of the training signal [61]

and, hence, the filter weights of the users experiencing a deep fade may be misadjusted.

Consequently, it is desired to have cooperation for the weight adaptation stage to improve

the overall detection performance. The adaptation algorithms for the three cooperation

strategies discussed in this section are detailed in the following two sections.

113



5.4 Adaptation Algorithms for Flat Fading

5.4 Adaptation Algorithms for Flat Fading

5.4.1 Centralized Adaptation

For this structure, the optimal weight vector wk at the kth user may be determined by

minimizing the cost function Jk(wk), defined as

Jk(wk) = E
[

∣

∣xk[n]−wH
k uk[n]

∣

∣

2
]

(5.64)

From (5.5) it may be observed that as the primary signal exhibits cyclostationarity and

the additive noise does not, the optimal wk is independent of k. Therefore, the problem

may equivalently be stated as minimizing

J(w) = E





∣

∣

∣

∣

∣

K
∑

k=1

(xk[n]−wHuk[n])

∣

∣

∣

∣

∣

2


 (5.65)

This is similar to the global cost function for filter weight adaptation, as presented in [17].

The solutions developed in [17] may, therefore, be extended to joint FRESH filter adaptation

case. In a centralized detection scheme, this may be done in the following two ways

1. All the secondary users forward their sensed data to the fusion center which globally

adapts the filter weights.

2. Each node adapts its own filter weights and after each adaptation step exchanges

information with the fusion center so as to arrive at a consensus on the weight values.

Following the first approach, the Global-LMS algorithm, as presented in [17], may be

modified as follows

1. Initialize w[0] = 0

2. For the nth iteration, update w[n] as

w[n+ 1] = w[n] + µ

K
∑

k=1

1

‖uk[n]‖2
uk[n](xk[n]−wH [n]uk[n])

∗ (5.66)

where, µ is the adaptation step size. It may be noted that the data from all the nodes,

though normalized by the norm squared of the instantaneous regression vector, are given

equal weights. This is due to the absence of knowledge about the channel coefficients at

different nodes. However, if the fading coefficients of the different secondary users are

known to the fusion center, then the data from the secondary users with greater fading

coefficient may be allotted more weight to improve the adaptation performance.

114



Chapter 5. Collaborative FRESH filter based Spectrum Sensing

The case where different secondary users average their weights after each step may be

considered similar to the ATC (Adapt Then Combine)-LMS algorithm derived in [17]. This

may be described as

1. Initialize the weight vector at each secondary user as wk[0] = 0 and the global weight

vector as ψ[0] = 0.

2. For the nth iteration, update w[n] at each secondary user as

wk[n + 1] = ψ[n] + µ
1

‖uk[n]‖2
uk[n](xk[n]−ψH [n]uk[n])

∗ (5.67)

3. Update ψ[n+ 1] as

ψ[n + 1] =
1

K

K
∑

k=1

wk[n+ 1] (5.68)

Under this setting, the regression coefficient vector of each secondary user is assigned equal

weight due to the lack of knowledge about the channel coefficients. These weights, however,

may be modified if the instantaneous fading coefficients at different users are known.

In the global LMS-based solution, all the computation may be performed at the fusion

center. However this requires storage capability at the fusion center. In this case, as each

node needs to send a sample at every sampling instant, there are K transmissions per

sampling instant and a total of (KN) transmissions for N samples. The fusion center, in

this case, needs to perform (KML) complex multiplications per received sample. Therefore,

the total number of complex multiplications required is (NKML).

On the other hand, the ATC-Diffusion LMS-based model does not require any storage

capability at the fusion center. Instead, each secondary user adapts its (ML) weights and

transmits them to the fusion center. Consequently, there are (2KML) transmissions per

sampling instant and a total of (2NKML) transmissions. Here, every individual sensing

node separately requires (ML) complex multiplications per sampling instant and therefore,

(NML) complex multiplications are required at each secondary user.

Also, as in the case of the Global LMS-based scheme, the data sensed by all the nodes

are available at the fusion center. Therefore, the sensing nodes need not transmit their

statistics separately. However, in the ATC-Diffusion LMS-based scheme, an additional K

transmissions will be required to report the statistics to the fusion center.

5.4.2 Distributed Adaptation

In this case, it is not possible to use global adaptation due to the absence of a fusion center.

Here, each node communicates only with its immediate neighbors. Therefore, if the data

generating model at different nodes is same, then each node may utilize the data sensed by
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its neighbors to adapt its local weight vector. The local cost function Jk may be defined as

Jk(wk) = E





∣

∣

∣

∣

∣

∑

i∈Ik

cik(xi[n]−wkui[n])

∣

∣

∣

∣

∣

2


 (5.69)

where cik is the weight assigned to the observation of the ith user as assigned by the kth

user. This is similar to the local cost function defined in [17]. Different strategies are

proposed in [17] for the solution of this problem and it has been shown that the ATC-LMS

algorithm results in the best convergence performance. Consequently, we use this algorithm

as described below for joint adaptation of the FRESH filters at different sensing nodes.

1. Initialize the weight vector wk, and the intermediate weight vector ψk at each sec-

ondary user as wk[0] = 0 and ψk = 0

2. For the nth iteration update ψk[n] at each secondary user as

ψk[n + 1] = wp[n] + µ
∑

i∈Ik

cik
1

‖ui[n]‖2
ui[n](xi[n]−wH

k [n]ui[n])
∗ (5.70)

3. Update wk[n+ 1] as

wk[n+ 1] =
∑

i∈Ik

cikψi[n + 1] (5.71)

The weights may depend on the knowledge of the channel, in the absence of which the con-

nectivity of the nodes may be used to decide their values. It is shown in [17] that assigning

a higher weight to more connected nodes results in a better convergence performance.

As for the communication and computational complexity of this setup, it may be ob-

served that for each adaptation step, each node needs to transmit its data as well as its

adapted filter weights. That is, a total of (K(1+ML)) transmissions are required per sam-

pling instant. However, if the combination step, that is Step 3 of the above algorithm, is

ignored then onlyK transmissions per step are needed. Also, a total of (K(3+ML)
∑

k |Ik|)
complex multiplications are required for the above algorithm while (K(2 +ML)

∑

k |Ik|)
complex multiplications are required if the combination step of the adaptation algorithm

is ignored.

5.4.3 The General Hierarchical Case

In this case, it is assumed that a processing node receives data only from the sensing nodes

connected to it. However, the connected processing nodes may be used for achieving a

consensus on weights. Therefore, the optimal weight vector at the pth processing node
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may be obtained by minimizing the function Jp defined as

Jp(wp) = E





∣

∣

∣

∣

∣

∣

∑

i∈Ip

cip(xi[n]−wpui[n])

∣

∣

∣

∣

∣

∣

2

 (5.72)

Using the neighboring nodes for consensus on weights, the ATC algorithm described

earlier, may be modified as

1. Initialize the weight vector wp, and the intermediate weight vector ψp at each sec-

ondary user as wp[0] = 0 and ψp = 0

2. For the nth iteration, update ψp[n] at each processing node as

ψp[n+ 1] = wp[n] + µ
∑

i∈Ip

cip
1

‖ui[n]‖2
ui[n](xi[n]−wH

p [n]ui[n])
∗ (5.73)

3. Update wp[n + 1] as

wp[n+ 1] =
∑

i∈Pp

aipψi[n+ 1] (5.74)

In this algorithm, aip and cjp are, respectively, the weights assigned by the pth processing

node to the data reported by the ith processing node and the jth sensing node.

For this algorithm, a total of (K+PML) transmissions are required per adaptation step.

At the same time, there will be a total of (ML
∑

p |Ip|+
∑

p |Pp|) complex multiplications

per adaptation step. In case the processing nodes do not combine their adapted weights,

then there will be a total of K transmissions and (ML
∑

p |Ip|) complex multiplications

per adaptation step.

5.5 Adaptation Algorithms for Dispersive Fading

5.5.1 Centralized Adaptation

It is observed that if the inter-sample interval is smaller than the channel delay spread

then the cyclic regression coefficients of the signal received at different secondary users will

be different. Hence, it may not be possible for the secondary user to estimate them via

either of the algorithms described in the previous section. However, the samples received

at different secondary users are still correlated, and in case all the samples are available at

the fusion center, the weights for the signals received at different secondary users may be

adapted jointly. Defining the vectors x[n] and u[n] as

x[n] = [x1[n], x2[n], . . . , xK [n]]
T

u[n] =
[

uT
1 [n],u

T
2 [n], . . . ,u

T
K [n]

]T (5.75)
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Weight vectors w and h minimizing the following cost function may be determined in a

manner similar to Space-Time FRESH filtering discussed in the third chapter

J(w,h) = E
[

∣

∣hHx[n]−wHu[n]
∣

∣

2
]

(5.76)

As a solution to this problem, the C2-LMS algorithm derived in the third chapter may be

modified as follows.

1. Initialize w[0] = 0 and h[0] = gi[k] where i[k] is the kth column of the identity matrix

and g is an arbitrary constant.

2. For the nth iteration, update w and h as

w[n+ 1] = w[n] + µwu[n]e
∗[n] (5.77)

and

h[n+ 1] = k[n]h[n] − µhx[n]e
∗[n] (5.78)

where

e[n] = y[n]− v[n] (5.79)

It may be noted that

v[n] = wH [n]u[n] (5.80)

y[n] = hH [n]x[n] (5.81)

and
µh =

µ
∥

∥

∥
x[n]

∥

∥

∥

2

2

, µw =
µ

∥

∥

∥
u[n]

∥

∥

∥

2

2

(5.82)

b[n] = µhℜ{y∗[n]e[n]} (5.83)

c[n] = µ2
h

∥

∥

∥
x[n]

∥

∥

∥

2

2

∣

∣

∣
e[n]
∣

∣

∣

2

− g2 (5.84)

k[n] = b[n] +
√

(b[n])2 − c[n] (5.85)

The symbol ℜ denotes the real part of a complex number and the step size µ is normalized

w.r.t the inputs x[n] and u[n] so as to accommodate large variations in their values.

This algorithm also requires the transmission of all the sensed samples to the fusion

center and, therefore, requires a total of (KN) transmissions. A total of (2K + KLM +

2) multiplications are required per iteration step, thereby resulting in a requirement of

(N(2K +KLM + 2)) multiplications at the fusion center.
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5.5.2 Distributed Adaptation

In a distributed setting, each node may treat the inputs from the connected nodes as if

they are coming from different antennas connected to it. Therefore, input or the reference

vector in this case may be written in the form

xk[n] = [xi[n]]i∈Ik (5.86)

i.e. xk[n] is a concatenation of all the inputs arriving at the kth node. Note that the index

set Ik contains the indices of the nodes connected to the kth node. Similarly, the regression

vector at the kth node may be written as

uk[n] = [ui[n]]i∈Ik (5.87)

The optimal weight vectors at the kth node, hk and wk will minimize the objective function

defined as

Jk(wk,hk) = E
[

∣

∣hH
k xk[n]−wH

k uk[n]
∣

∣

2
]

(5.88)

Therefore, the C2-LMS algorithm may be used at each node to adapt the weight vectors

h and w. In this case again, K transmissions and ML
∑

k|Ik| complex multiplications are

required per adaptation step.

5.5.3 The General Hierarchical Case

Here, each processing node may treat each sensing node connected to it as a different

antenna and construct the regression vector and reference vectors as

up[n] = [ui[n]]i∈Ip (5.89)

and

xp[n] = [xi[n]]i∈Ip (5.90)

The C2-LMS algorithm for finding the weights wp and hp minimizing the cost function

Jp defined at the pth user as

Jp(wp,hp) = E
[

∣

∣hH
p xp[n]−wH

p up[n]
∣

∣

2
]

(5.91)

subject to

‖h‖ = g (5.92)

A total of K transmissions and (ML
∑

p|Ip|) complex multiplications are required per

adaptation step.
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5.6 Simulation Results

This section presents simulation results obtained with randomly generated signals. It is

assumed that each user in the secondary network samples the environment at a rate of

1 MHz. It is further assumed that the FRESH filter attached to each of these users has a

similar structure with a single conjugate frequency shift branch at 2fc. The primary signal

is assumed to be BPSK modulated with a carrier frequency fc = 100 kHz. The average

power of the primary signal is fixed at unity while the variance of the additive noise is varied

to achieve different values of the average input SNR. The fading coefficients are assumed

to be Rayleigh distributed and a 4-tap channel is assumed for the dispersive case. In all

the experiments, 500 samples are used to adapt the FRESH filter. The samples used to

adapt the filters are stored and then passed through the adapted filters to obtain a filtered

signal. This filtered signal is then subjected to energy detection to test for the presence of

a primary signal.

The performance of the spectrum sensor is evaluated in terms of the probability of

detection with different SNRs for a fixed false alarm rate of 1%. 1000 independent trials

in the absence of a primary signal are conducted to determine the detection thresholds.

Following this, the detection performance is tested using 2000 independent trials.

5.6.1 Centralized Detection

Figure 5.2 plots the performance of the proposed cooperative spectrum sensing scheme for

16 cooperating users with different filter lengths. The system is adapted using the Global-

LMS algorithm. The ‘no enhancement’ case represents a single-tap FRESH filter (L=1)

which is equivalent to a standard energy detector. A gain of nearly 5 dB is observed as the

FRESH filter length is increased from 1 to 32 for a successful detection rate of 90%.

The performances of the three adaptation algorithms with different filter configurations

are compared in Figure 5.3. It is observed that the systems based on ATC-LMS and Global-

LMS behave almost identically offering a gain of more than 2 dB over the Local-LMS-based

system, for a successful detection rate of 90%.

The gains achieved by different adaptation algorithms for a successful detection rate of

90% with different filter configurations are summarized in Table 5.1. Trends similar to the

ones seen in Figure 5.3 are observed for different filter lengths.

The performance improvement by increasing the number of cooperating users for a

fixed filter length (L=8) is shown in Figure 5.4. It is seen that increasing the number of

cooperating users from 1 to 16 leads to performance improvement of nearly 8 dB.

Figure 5.5 depicts the performance of the proposed system in case of 8 cooperating

users in a dispersive fading environment. It is again observed that increasing the FRESH

filter length from 1 to 32 results in gains more than 4 dB for a successful detection rate of

90%.
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Figure 5.2: Performance using the Global LMS algorithm and the energy detector for 16
users and different filter lengths

.

Table 5.1: Gains (in Decibel) offered by the different algorithms for N = 500 and K = 16
for a flat fading channel

Filter Length 1 2 4 8 16 32
Local LMS 0 0.16 1 1.85 2.4 2.81
Diffusion LMS 0 0.67 1.83 3.13 4.14 5
Global LMS 0 0.85 1.95 3.2 4 5
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Figure 5.3: Comparison of the different adaptation algorithms for different user/filter con-
figurations
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Figure 5.6 illustrates the performance comparison for different adaptation algorithms

in a dispersive multipath channel. In this case, for a successful detection rate of 90%, joint

adaptation leads to gain of nearly 1 dB over the conventional adaptation methods. Similar

trends are observed in Table 5.2 which summarizes the gains achieved by two algorithms

with different filter lengths in a 16-user system.

It is demonstrated that an increase in the FRESH filter length causes the detector

performance to improve, regardless of the adaptation algorithm. However, joint adaptation

of the FRESH filters at different secondary users leads to better gains as compared to their

independent adaptations. This improved performance comes at the cost of communication

requirements within the secondary user network. It is also seen that both the Global-

LMS and the ATC-LMS algorithms offer similar gains. However, in the present case, the

ATC-LMS algorithm has greater communication requirements. Hence, the Global-LMS

algorithm should be preferred over the ATC-Diffusion-LMS algorithm.

5.6.2 Distributed Detection

The performance of a fully distributed sensing system for 16 users and different filter lengths

in a flat fading case is shown in Fig 5.7. The increase in filter length is again shown to

improve the detection performance by nearly 6 dB.

The effect of the choice of adaptation algorithm on the system performance for a fully

distributed system under flat fading is illustrated in Figure 5.8. Similar to the centralized

case, it is observed that the ATC-LMS algorithm improves the detection performance by

as much as 1 dB in comparison to the local LMS algorithm.

Fig 5.9 illustrates the effect of the number of consensus steps on the performance of

a fully distributed system comprising of 8 users each equipped with a a FRESH filter of

length 8 adapted using the ATC-LMS algorithm. It is observed that in general, a K-user

system arrives at a consensus in log2K consensus steps.

The performance of the C2-LMS algorithm-based system under dispersive fading for an 8

user system with different filter lengths is plotted in Figure 5.10. Performance enhancement

of nearly 4 dB may be observed as a result of increasing the filter length from 1 to 32.

5.6.3 The Hierarchical Case

The effect of the choice of adaptation algorithms on a collaborative sensing system consist-

ing of 16 sensing and 8 processing nodes for a FRESH filter length of 16 in a flat fading

channel is illustrated in Figure 5.11. It may be observed that the detection performance

for the ATC-LMS algorithm with inter processing node cooperation outperforms both local

LMS as well as ATC-LMS without node cooperation. Therefore, it may be inferred that

an increase in the communication cost results in an improved detection performance. The

effect of increasing the FRESH filter length in a flat fading case the same number of nodes
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Figure 5.4: Performance using the C2LMS algorithm and the energy detector for a FRESH
filter length of 8 and different number of users in a dispersive channel

Table 5.2: Gains (in Decibel) offered by the different algorithms for N = 500 and K = 16
for a dispersive Channel

Filter Length 1 2 4 8 16 32
Local LMS 0 0.1 0.835 1.817 2.76 3.32
C2LMS 0 0.98 2.32 2.97 3.54 4.07
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Figure 5.5: Performance using the C2LMS algorithm and the energy detector for 8 users
and different filter lengths in a dispersive channel
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Figure 5.6: Comparison of different adaptation algorithms for different user/filter configu-
rations in a dispersive channel
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Figure 5.7: Performance of a 16 antenna fully distributed system for different filter lengths
adapted using the ATC-LMS algorithm
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Figure 5.8: The effect of the choice of adaptation algorithm on a fully distributed system
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Figure 5.9: The effect of the number of consensus steps on the performance of a fully
distributed system
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Figure 5.10: Performance of the distributed sensing setup for an 8 user system for different
filter lengths under dispersive fading
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Figure 5.11: Comparison of performance of different adaptation algorithms for 16 sensing
and 8 processing nodes for a FRESH filter length of 16
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Figure 5.12: Comparison of performance of different filter lengths for 16 sensing and 8
processing nodes adapted using the ATC-LMS algorithm
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Figure 5.13: Comparison of performance for different number of processing nodes for 16
sensing nodes for a FRESH filter of length 8
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is shown in Figure 5.12. Yet again a gain of more than 8 dB for a successful detection rate

of 90% is observed here.

The effect of increasing the number of processing nodes for a 16 sensing node network

with a FRESH filter of length 8 is shown in Figure 5.13. A slight performance degradation

at the lower SNRs is observed as the system moves from purely centralized to purely

distributed. This may also be viewed as a comparison of the three approaches for spectrum

sensing. Here, the single active node case is equivalent to the purely centralized setup and

the 16 active node case is similar to the purely distributed setup.

5.7 Conclusions

The performance enhancement achieved using FRESH filters in a multiple secondary users

case, as well as the performance enhancement introduced due to joint adaptation of these

filters, are studied in this chapter. It is shown that the optimal FRESH filter weights

for a spectrum sensor depend on the channel conditions and the inter sample interval

at the spectrum sensor. Based on this fact, different algorithms to adapt the FRESH

filters present at different secondary users have been proposed. This is considered for three

different cooperation scenarios viz. centralized, distributed and hierarchical.

Simulation results show that the performance of FRESH filter-based collaborative sens-

ing algorithms depend on the filter length, structure of the sensing network as well as the

adaptation algorithm being employed. It is further shown that in the case of a flat fading

channel joint adaptation offers significant gains at the cost of a higher communication re-

quirement. Similar results are observed for a dispersive channel although the gains in this

case are not as significant as those in the flat fading case.
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Chapter 6

Cyclosatationary Spectrum Sensing

for OFDM Signals in the Presence of

Cyclic Frequency Offset

In this chapter, a detector for the cyclostationarity induced due to correlation in pilot tones

of OFDM signals is proposed1. This detector uses the cyclic autocorrelation function of

the received signal at different cyclic frequencies and lags as features and it is shown that

the detector performance improves with an increase in the number of features being used.

As noted in the previous chapters, the performance of this detector depends on the

correct knowledge of the cyclic frequency of the primary signal. The performance of this

detector in the presence of a cyclic frequency offset is derived and hence seen to degrade

considerably under the effects of CFO and must be compensated for. As an alternative to

the method proposed in [103], it is proposed to estimate the correct cyclic frequency from

the received samples. The Crammer-Rao bound on the variance of the true cyclic frequency

estimator is derived and it is found that the variance of the cyclic frequency estimate is

directly proportional to the magnitude of the CFO. As a consequence, recursive algorithms

to estimate the true cyclic frequency of the primary signal are developed.

A brief review of the state of the art in the spectrum sensing techniques for OFDM

signals is given in Section 6.1. The detector for cyclostationary features introduced due

to correlated pilots has been derived along with its performance in Section 6.2. The effect

of CFO on the detector performance is derived and the necessity for CFO estimation are

explained in Section 6.3. Section 6.4 contains the Cramer-Rao bound on the performance

of a CFO estimator. Using this bound, Section 6.5 proposes a recursive CFO estimation

algorithm based on gradient ascent while Section 6.6 proposes a higher complexity CFO

estimation algorithm based on the greedy search approach. Simulation results are presented

1A part of this work has been published in International Conference on Signal Processing and Communi-
cations (SPCOM 2014) as “Cyclostationary Spectrum Sensing for OFDM Signals in the Presence of Cyclic
Frequency Offset” and the complete work has been communicated to IEEE Transactions on Vehicular
Technology
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in Section 6.7 following which the conclusions are drawn in Section 6.8.

6.1 Background and Motivation

Most of the methods developed for OFDM signal sensing are based on the detection char-

acteristics introduced due to one or more of its inherent features, such as the cyclic prefix

or the pilot tones. These characteristics include temporal and spectral correlation within

an OFDM symbol. It is shown in [133] that OFDM signals lose their cyclostationarity

properties due to the subcarrier orthogonality. It is also shown in this paper, that the

cyclic prefix reintroduces cyclostationarity in an OFDM signal because of the periodicity

introduced due to symbol repetition.

In [25], the authors proposed to use the autocorrelation properties introduced due to the

cyclic prefix as features. It is observed that the cyclic prefix inserted in an OFDM symbol

in order to avoid multipath effects introduces temporal correlation in the symbol, and may

be used to distinguish it from white noise. It is shown that the log likelihood ratio test

reduces to a function of the length of the cyclic prefix. Also the detection performance of

this detector is shown to be directly proportional to the cyclic prefix length. This method is

then extended to a collaborative scheme and its performance is tested under various fading

channels. Further, a sequential detection scheme based on the proposed test statistic is

developed and its performance is evaluated and compared against the fixed sample size

scheme.

Another method that exploits the correlation introduced due to the cyclic prefix in an

OFDM system was given by Axell and Larsson in [8]. The authors in this case developed

optimal and sub optimal detectors for an OFDM system containing cyclic prefixes of known

lengths. The first case is when the signal and noise variances are known to the cognitive

user. In this case the optimal likelihood ratio test is a function of the length of the cyclic

prefix and reduces to the energy detector when the cyclic prefix is absent. In case the signal

and noise variances are unknown at the secondary user terminal, the authors also proposed

a GLRT based test for the presence of the primary signal. This test uses the fact that the

presence of a cyclic prefix causes the primary signal to have a time varying autocorrelation

function and hence becomes non=stationary. The test statistic in this case is based on the

variation of the autocorrelation function at a fixed lag with time.

It is shown in [13] that the performance of the standard cyclic prefix based sensing

algorithms may degrade in a rich multipath fading environment. As a remedy to this a

constrained GLRT-based sensing algorithm is proposed to detect the primary user signal

under such environments. It is further shown that Cyclic Prefix Correlation-based detector

is a special case of the proposed constrained GLRT detector. Following this, a GLRT-based

detection algorithm is developed for unsynchronized OFDM signals.

A coexistence scheme between OFDM-based WiMAX and ultra-wideband (UWB) sys-
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tems is studied in [123]. The proposed method exploits cyclostationarity introduced due

to the cyclic prefix. Since a cyclostationary signal has a nonzero cyclic autocorrelation

function only at certain fixed values of the cyclic frequencies, the test statistic is the ratio

of the absolute value of the cyclic ACF of the received signal at a known cyclic frequency

to its value at an arbitrary cyclic frequency. The presence of a primary signal will result

in a high value of this test statistic whereas in its absence this ratio will be close to unity.

It is observed in [105] that the cyclostationarity induced due to cyclic prefix is weak

and performs much worse in comparison to an energy detector except at very low signal

to noise ratios. Alternatively, it is proposed to allow excess bandwidth while designing

the OFDM symbol in the frequency domain. Raised cosine pulse shaping is used for this

purpose. However, this too does not improve the detection performance much.

Pilots are inserted in OFDM symbols for various purposes such as synchronization and

channel estimation. However, the pilots being repeated across different OFDM symbols,

these may be correlated to each other, and introduce certain correlation properties in the

primary user signal which may be used to detect its presence. The use of pilot tones

for detection of an OFDM symbol was first proposed in [27]. It is assumed that the

locations and values of the pilot tones remain unchanged across different OFDM symbols

and, therefore, the pilot components of these symbols will also remain constant. As a result,

different OFDM symbols are correlated. The empirical symbol correlation may be used as

a test statistic. The performance of this technique is tested for the DTV-B standard and

is compared against various cyclic prefix-based methods.

Pilot induced temporal correlation has also been exploited in [144]. This paper considers

OFDM signals using both continuous as well as scattered pilots. A likelihood ratio test

based on the statistical properties of the finite time autocorrelation function is derived.

Practical approximations of different parameters required for this test are then proposed

and a GLRT like method is developed. It is also shown that the autocorrelation function

may as well be used to estimate the Carrier Frequency Offset in the concerned system.

It is observed in [138] that correlated pilots may result in spectral correlation among

OFDM symbols and, therefore, a primary signal using OFDM for modulation will exhibit

cyclostationarity.In this paper the cyclic spectral density of the received signal is used as a

feature. The test statistic is obtained as the empirical correlation between the short time

Fourier transform of the received signal. This method requires symbol level synchronisation

between the primary and the secondary users. It is shown that the loss of synchronization

results in performance degradation. Following this, the performance of this detector is

studied under various impairments, viz. Carrier Frequency Offset, I/Q imbalance, Phase

Noise and Sampling Clock Frequency Offset. Methods to compensate for the performance

loss caused due to these impairments are also described in detail.

It is observed that the received signal amplitude varies drastically in the presence of

fading and shadowing. The variation in amplitudes will also affect the strength of the
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cyclic autocorrelation peaks which will reduce the reliability of the detector. A method

to circumvent this problem is given in [80]. The authors here proposed the use of the

cyclic autocorrelation of the sign function of the complex envelop received signal. The sign

function for a complex number z is defined as

sign(z) =
z

|z|

It is shown in [80] that the cyclostationary properties of the signal are preserved if the sign

function is used instead of the actual values. This fact is used to derive the cyclostationary

features of the sign function of a received signal. It has been shown that tests similar

to the ones used to detect the presence of cyclostationary signals may be applied here to

detect the presence of the signal. The loss of information due to the signal amplitudes

is compensated for by the use of larger number of samples. Sequential and cooperative

techniques using this scheme have also been proposed in [80]. It is observed in [130] that

the angle of the sign cyclic autocorrelation function is uniformly distributed in the absence

of a primary signal. This property was used by the authors in [130] to develop a test for

the presence of the primary OFDM signal.

Artificially induced cyclostationarity to assist OFDM signal detection are proposed

in [120]. The proposed method involves artificially correlating different subcarriers of the

transmitted signal so as to introduce a spectral coherence in the signal. This may be done

at one or more frequency differences as per the requirement for features. It is seen that if

multiple cyclic frequencies are introduced then the effect of frequency selective fading upon

the detector performance can be overcome. An optimal detector for detecting induced

cyclostationary signatures has been developed in [105].

Induced cyclostationarity-based methods for OFDM signal detection have also been

considered in [115]. It is argued in this paper that the cyclostationary signatures should

not affect the capacity of the system. Consequently, methods that introduce cyclostationary

signatures in the symbol while trying to maximize its capacity are derived. It is proposed

in this paper to use the higher order statistics of the recieved signal to detect the presence

of these signatures. However, the methods based on induced cyclostationarity require

changing the primary user signal structure and, therefore, may only be used for detecting

secondary user signals.

In this chapter, we use the correlated pilot induced cyclostationarity to develop a de-

tector for OFDM signals. The finite time cyclic autocorrelation function at different lags

is used as a test statistic. The performance of this detector is also studied under cyclic

frequency offset. It is found that the effects caused due to CFO agree with those reported

in [103]. However, the technique proposed in [103] causes a loss in the number of features

being used for detection, thereby compromising the detection performance. Therefore, as

an alternative, it is proposed in this chapter to first estimate the true cyclic frequency of
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received signal and then use it to detect the presence of the primary signal.

We develop a recursive greedy search algorithm to find the optimal cyclic frequency

maximizing the SCORE objective function as proposed in [73]. The performance of this

algorithm is studied via simulation and it is found that the proposed algorithm can compen-

sate for the effects of CFO. A gradient ascent algorithm for Cyclic Frequency estimation is

proposed in [73]. The convergence properties of this algorithm are studied and it is shown

using simulation results that this algorithm can compensate for the effects of CFO.

6.2 Signal Model and The Proposed Detector

6.2.1 The Primary User Signal Model

Let the primary user OFDM signal consist of Nd data subcarriers. Out of these, let Np be

uniformly spaced pilot subcarriers whose locations are given by the elements of the index

set Π. Let, the OFDM symbol use a cyclic prefix of length Nc resulting in a total OFDM

symbol length Ns = Nc +Nd. If the symbol being sent over the mth subcarrier of the kth

OFDM symbol is given as s̃k[m] then, as in [138], the following two conditions are assumed

to be true. First, the magnitudes and phases of the pilots remain constant over all OFDM

symbols, i.e. for m ∈ Π,

s̃k[m] = p[m] =
√

Esejθm ∀k (6.1)

where Es is the average subcarrier energy of the OFDM symbol and θm is the phase associ-

ated with the mth subcarrier. Secondly, it is assumed that correlation exists between the

pilot values which is purely a function of the difference in pilot locations, i.e. for m, l ∈ Π

E [p[m]p∗[l]] = Esejθm−l (6.2)

The primary signal transmitted at the nth instant of time may be written in the form

s[n] =
∑

k

sk[n−KNs](u[n−KNs]− u[n− (k + 1)Ns + 1]) (6.3)

where sk[n] is the nth sample of the kth OFDM symbol, defined as

sk[n] =

{

1√
Nd

∑Nd

m=1 sk[m]e
j2πmn

Nd 0 ≤ n ≤ Ns − 1

0 otherwise
(6.4)
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For 0 ≤ n < Ns this may be re written as

sk[n] = 1√
Nd

∑Nd

m=1 s̃k[m]e
j2πmn

Nd

= 1√
Nd

∑

m∈Π s̃k[m]e
j2πmn

Nd + 1√
Nd

∑

m/∈Π s̃k[m]e
j2πmn

Nd

= 1√
Nd

∑

m∈Π p[m]e
j2πmn

Nd + 1√
Nd

∑

m/∈Π s̃k[m]e
j2πmn

Nd

= s
(p)
k [n] + s

(d)
k [n]

(6.5)

The pilot locations and values remain unchanged over different OFDM symbols. Therefore,

we have

s(p)[n] = s(p)[n + kN ] (6.6)

6.2.2 The Spectrum Sensing Model

The task of the spectrum sensor is to decide the presence of a primary signal based on the

received samples. It is assumed that the sensing receiver knows the transmitting signal

parameters and the received signal is down-converted to baseband while maintaining the

sampling rate of the primary user. Thus, the received signal x[n] under the two hypotheses

may be written as

x[n] =

{

ν[n] H0

s[n] + ν[n] H1

(6.7)

where ν[n] is the zero mean complex Gaussian noise having a variance σ2
ν , H0 is the null hy-

pothesis corresponding to the absence of a primary signal andH1 is the alternate hypothesis

corresponding to its presence.

Let R̂α
xx[N, τ ] be the time-averaged frequency-shifted lag product at lag τ and frequency

shift α, defined for N received samples as

R̂α
xx[N, τ ] = 1

N−τ

∑N−1
n=τ ξ

α
xx[n, τ ] (6.8)

where

ξαxx[n, τ ] = x[n]x∗[n− τ ]e−2παn (6.9)

is the frequency shifted lag product of x[n]. The signals s[n] and ν[n] may both be assumed

to be independent of each other. Also, the individual samples of both s[n] and ν[n] may

be assumed as identically distributed Gaussian. Therefore, the samples of x[n] and, hence,

ξαxx[n− τ ] may be assumed to be identically distributed. Further, as R̂α
xx[N, τ ] is a sum of

a large number of random variables, it may be assumed to have a complex Gaussian pdf

under both the hypotheses.

Now,

E
[

R̂α
xx[N, τ ]

]

= 1
N−τ

∑N−1
n=τ E [ξαxx[n, τ ]]

= E [ξαxx[n, τ ]]
(6.10)
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In the absence of the primary user signal, we have

ξαxx[τ ] |H0 = ν[n]ν∗[n− τ ]e−j2παn (6.11)

Since the noise is assumed to be zero mean wide sense stationary i.i.d.,

E [ξαxx[τ ] |H0 ] = σ2
νδ(α)δ[τ ] (6.12)

where δ(.) represents the Dirac Delta function and δ[.] represents the Kronekar Delta func-

tion

In case the primary user signal is present then, we get

ξαxx[τ ] |H1 = (s(p)[n] + s(d)[n] + ν[n])(s(p)∗[n− τ ] + s(d)∗[n− τ ] + ν∗[n− τ ])e−j2παn

(6.13)

Since s(d)[n], s(p)[n] and ν[n] are zero mean and independent of each other [144],we have

E [ξαxx[τ ] |H1 ] = E
[

s(d)[n]s∗(d)[n− τ ]e−j2παn
]

+ E
[

s(p)[n]s∗(p)[n− τ ]e−j2παn
]

+E [ν[n]ν∗[n− τ ]e−j2παn]
(6.14)

It may be shown that

E
[

s(p)[n]s∗(p)[n− τ ]e−j2παn
]

=

{

Np

Nd
Esejθα α = m−l

Nd
, m, l ∈ Π, τ = kN

0 otherwise
(6.15)

E
[

s(d)[n]s∗(d)[n− τ ]e−j2παn
]

=











Nc

Ns
Es α = 0, τ = ±Nd

Es α = 0, τ = 0

0 otherwise

(6.16)

It may also be shown that for α 6= 0

var
(

R̂α
xx[τ ] |H0

)

=
1

N − τ
σ4
ν (6.17)

var
(

R̂α
xx[τ ]|H1,

)

=
1

N − τ

(

Es + σ2
ν

)2
(6.18)

Therefore, the distributions of R̂α
xx[N, τ ] for α = m 1

Nd
, m ∈ {1, 2, . . . , Np} and τ = kNs, k ∈

{

1, 2, . . . ,
⌊

N
Ns

⌋}

under the two hypotheses are

R̂α
xx[N, τ ] ∼











Nc

(

0, σ4
ν

N−τ

)

H0

Nc

(

Np

Nd
Esejθα, (

Es+σ2
ν)

2

N−τ

)

H1

(6.19)
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It may also be noted here that in addition to the correlated pilots, the cyclic prefix will

also cause x[n] to exhibit cyclostationarity. However, as discussed previously these cyclo-

stationary features are weak and are dependent on the length of the cyclic prefix, which is a

function of the channel conditions. Therefore, we consider only the effects of pilot induced

cyclostationarity. Now, R̂α
xx[N, τ ] may be assumed to be independent for different values of

α and τ . Hence, the values of the time averaged frequency shifted lag product, also known

as the finite time cyclic autocorrelation function [50], at different values of α and τ may

be used to detect the presence of the primary user. Thus, the performance of the detector

depends on the correct knowledge of the noise variance σ2
ν , the primary signal energy at

the spectrum sensor Es, and the phase θα. However, while the knowledge of σ2
ν and θα at

the spectrum sensor may be assumed, the exact knowledge of Es may not be available at

the spectrum senor. Nevertheless, as shown subsequently, detectors without the knowledge

of these parameters may still be designed but at the cost of detection performance. For a

cyclic frequency α the feature vector rα may be defined as

rα = [ℜ{R̂α
xx[N,Ns]e

−jθα},ℜ{R̂α
xx[N, 2Ns]e

−jθα}, . . . ,ℜ{R̂α
xx[N,PNs]e

−jθα}]T (6.20)

where P is the total number of lags being used as features and ℜ{.} denotes the real

part of a complex number. Since the variances of different elements of rα are different,

maximal ratio combining is preferred to obtain their optimal combination [100]. The vec-

tor w = [
√

(N −Ns),
√

(N − 2Ns), . . . ,
√

(N − PNs)]
T , is defined as the weight vector

to combine the cyclostationary features at different lags. These weights are chosen such

that the weight assigned to a feature in the final test statistic is inversely proportional to

its variance [100, 144]. Consequently, the test statistic detecting the presence of a signal

exhibiting cyclostationarity at a cyclic frequency α may be written as

Zα = wT rα =

P
∑

k=1

√

(N − kNs)ℜ{R̂α
xx[N, kNs]e

−jθα} (6.21)

It may be observed that if the primary user signal exhibits cyclostationarity at more than

one cyclic frequencies then Zα for different cyclic frequencies are i.i.d. Gaussian. Let, a

total of A cyclic frequencies may be used for signal detection and A be the set of the

possible cyclic frequencies such that |A| = A. Using all α ∈ A, the test statistic becomes

Z =
∑

α∈A
Zα =

∑

α∈A

P
∑

k=1

√

(N − kNs)ℜ{R̂α
xx[N, kNs]e

−jθα} (6.22)

From this, it becomes evident that

Z ∼







Ns

(

0, APσ4
ν

2

)

H0

Ns

(

A
Np

Nd
Es
∑P

k=1

√

(N − kNs),
AP (Es+σ2

ν)
2

2

)

H1

(6.23)
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If the above is used as a test statistic then the probabilities of false alarm and successful

detection for a given threshold λ are given as

Pfa = Q





λ

σ2
ν

√

AP
2



 (6.24)

Pd(λ) = Q





λ− A
Np

Nd
Es
∑P

k=1

√

(N − kNs)

(Es + σ2
ν)
√

AP
2



 (6.25)

It may be observed that the correct knowledge of Es is essential for this detector. It is,

however ,possible to design a constant false alarm rate (CFAR) detector even in the absence

of this knowledge. If σ2
ν is unknown at the spectrum sensor then it may be approximated

as [144]

σ̂2
ν =

1

N

N−1
∑

n=0

|y[n]|2 (6.26)

In case θα is not known at the spectrum sensor, then the feature vector may alternatively

be given as rα = [R̂α
xx[N,Ns], R̂

α
xx[N, 2Ns], . . . , R̂

α
xx[N,KNs]}]T and the test statistic may

be defined as

Z =

∣

∣

∣

∣

∣

∑

α

wHrα

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

α∈A

P
∑

k=1

√

(N − kNs)R̂
α
xx[N, kNs]

∣

∣

∣

∣

∣

(6.27)

Consequently,

Z ∼







Rice
(

0, σ2
ν

√

AP
2

)

H0

Rice
(

A
Np

Nd
Es
∑P

k=1

√

(N − kNs), (Es + σ2
ν)
√

AP
2

)

H1

(6.28)

where Rice(p, q) represents a Rician distribution with a shifting factor p and a scaling factor

q [94]. Therefore, in this case, the probability of false alarm for a given threshold λ will

take the form

Pfa(λ) = e
−λ2

APσ4
ν (6.29)

Alternatively, the detection threshold may be determined via simulation using the Neyman-

Pearson criterion.
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6.3 Effects of Cyclic Frequency Offset on a Cyclosta-

tionarity Detector

For a cyclostationary signal x[n], the finite time approximation of the cyclic autocorrelation

function, may be written as [72, 73, 103]

R̂α
xx[N, τ ] = 1

N−τ

∑N−1
n=τ x[n]x

∗[n− τ ]e−j2παn

= 1
N−τ

∑∞
n=−∞ x[n]x∗[n− τ ]e−j2παn (u[n− τ ]− u[n−N + 1])

= 1
N−τ

∑∞
n=−∞ x[n]x∗[n− τ ]e−j2παn ∗∑∞

n=−∞ (u[n− τ ]− u[n−N + 1]e−j2παn)

= Rα
xx[τ ] ∗

(

e−jπα(N−τ−1) sin(π(N−τ)α)
(N−τ)sin(πα)

)

.

(6.30)

where Rα
xx[τ ] is the true value of the cyclic autocorrelation function and ∗ denotes convo-

lution over cyclic frequency. If the signal x[n] exhibits cyclostationarity at certain discrete

cyclic frequencies whose values are contained in the set Γ, then the cyclic autocorrelation

function may be written as

Rα
xx[τ ] =

∑

γ∈Γ
Rγ

xx[τ ]δ(α− γ) (6.31)

Substituting (6.31) in (6.30), we have

R̂α
xx[N, τ ] =

∑

γ∈Γ
Rγ

xx[τ ]

(

ejπ(α−γ)(N−τ−1) sin(π(N − τ)(α− γ))

(N − τ) sin(π(α− γ))

)

(6.32)

Now, for αm ∈ Γ, if the cyclic frequency known at the receiver is α = αm + ∆, where

∆ is the CFO introduced due to one or more reasons as described earlier, (6.32) may be

re-written as

R̂α
xx[N, τ ] = Rαm

xx [τ ]
(

ejπ(∆)(N−τ−1) sin(π(N−τ)(∆))
(N−τ) sin(π(∆))

)

+
∑

γ∈Γ,γ 6=αm
Rγ

xx[τ ]
(

ejπ(α−γ)(N−τ−1) sin(π(N−τ)(α−γ))
(N−τ) sin(π(α−γ))

) (6.33)

For small ∆, the second term in (6.33) may be ignored leading to

R̂α
xx[N, τ ] ≈ Rαm

xx [τ ]
(

ejπ(∆)(N−τ−1) sin(π(N−τ)(∆))
(N−τ) sin(π(∆))

)

= Rαm
xx [τ ]g(∆, N − τ)

(6.34)

where

g(∆, N − τ) = ejπ(∆)(N−τ−1) sin(π(N − τ)(∆))

(N − τ) sin(π(∆))
(6.35)

It may be observed that, for a fixed ∆, the value of g(∆, N) decreases with an increas-

ing N , weakening the features and consequently degrading the detector performance. To

avoid this behavior of the detector, Rebeiz et. al. in [103] proposed to divide the received
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samples into Q non overlapping blocks each of length L (QL < N), followed by calculating

the finite time approximation of the cyclic autocorrelation function for each of these blocks,

and finally averaging these estimates. The feature Řα
ss[Q,L, τ ] used for detection is thus

defined as

Řα
xx[Q,L, τ ] = 1

Q

∑Q−1
i=0

1
L−τ

∑i+1
iL+τ x[n]x

∗[n− τ ]ej2πα((n))L (6.36)

where ((.))L is the modulo L operator. In this case, a trade-off is required between the

values of the block length (L) and the number of blocks (Q). It is proposed in [103] to

arrive at an optimal combination of L and Q using convex optimization. However, it

may be observed that τ ≤ L and, hence, it is not possible to use the values of the cyclic

autocorrelation function at lags greater than the block length as features, thereby limiting

the detector performance. This is significant in cases such as the detector proposed in

the previous section where the features exist only for large values of τ . This necessitates

to look for alternative methods that avoid the effects of CFO while keeping the number

of usable features unaltered. Accordingly, it is proposed that the CFO be first estimated

from the available data and then compensated for. Approaches towards improving the

performance of adaptive cyclostationary structures by compensating for the CFO have

earlier been reported in [72,73,135]. However, to the best of our knowledge, no bounds on

the performance of a CFO estimator have been reported in the literature so far. Motivated

by this, the next section derives the Cramer Rao lower bound on the performance of a CFO

estimator.

6.4 Cramer-Rao Bound for the CFO Estimator

Assume that N samples of a cyclostationary signal s[n] corrupted by additive noise ν[n]

are received by the spectrum sensor. If s[n] exhibits cyclostationarity at a cyclic frequency

αm with the value of the cyclic autocorrelation function being Rαm
ss = ηejφ then for a CFO

∆, the finite time approximate of the cyclic autocorrelation function at a cyclic frequency

α and lag τ will be

R̂α
xx[N, τ ] = ηejφg(∆, N − τ) + ζ [N − τ ] (6.37)

where ζ [N − τ ] is the error introduced due to finite averaging and ζ [N − τ ] ∼ Nc(0, σ
2
ζ,N−τ)

and σ2
ζ,N−τ ≈ σ4

ν

N−τ
for low SNRs. Based on this, the probability density function (pdf) of

R̂α
xx[N, τ ] may be obtained as

p
(

R̂α
xx[N, τ ]|η, φ,∆

)

=
1

πσζ,N−τ
e
−
(

R̂α
xx[N,τ ]−ηejφg(∆,N−τ)

σζ,N−τ

)2

(6.38)
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Defining

r =
[

ℜ
{

R̂α
xx[N,Ns]e

−jφ
}

,ℜ
{

R̂α
xx[N, 2Ns]e

−jφ
}

, . . . ,ℜ
{

R̂α
xx[N,PNs]e

−jφ
}]T

(6.39)

the pdf of r may then be obtained as

p (r|ηφ∆) =

P
∏

k=1

1
√
πσζ,N−kNs

e
−
(

R̂α
xx[N,τ ]−ηejφg(∆,N−kNs)

σζ,N−kNs

)2

(6.40)

Defining,

l(r|∆) = log (p (r|η, φ,∆)) (6.41)

and substituting (6.40), we get

l (r|∆) =

P
∑

k=1

log
(

πσ2
ζ,N−kNs

)

−
P
∑

k=1

(

R̂α
xx[N, τ ]− ηejφg(∆, N − kNs)

σζ,N−kNs

)2

(6.42)

Defining fxi
(x1, x2, . . . , xn) as the partial derivative of the function f (x1, x2, . . . , xn), with

respect to xi, we may write the partial derivative of l(r|∆) with respect to ∆ as

l∆ (r|∆) = 2ℜ







P
∑

k=1

ηejφg∆(∆, N − kNs)
(

R̂α
xx[N, τ ]− ηejφg(∆, N − kNs)

)

σ2
ζ,N−kNs







(6.43)

Since E [l∆ (r|∆)] = 0, therefore, the Cramer-Rao bound on the variance of the estimation

error of ∆ exists [68].

Therefore, the variance of any arbitrary estimator ∆̂ of ∆ must satisfy the following

inequality.

var
(

∆̂
)

≥ 1

I(∆)
(6.44)

where I(∆) is the Fisher information about ∆ contained in r, defined as I(∆) = −E[l∆∆ (r|∆)].

where

l∆∆ (r|∆) = 2ℜ
{

∑P
k=1

ηejφg∆∆(∆,N−kNs)(R̂α
xx[N,kNs]−ηejφg(∆,N−kNs))

σ2
ζ,N−kNs

}

−2ℜ
{

∑P
k=1

η2|g∆(∆,N−kNs)|2
σ2
ζ,N−kNs

}
(6.45)

As

E
[

R̂α
xx[N, τ ]− ηejφg(∆, N − kNs)

]

= 0 (6.46)

we have

E [l∆∆ (r|∆)] = E

[

2ℜ
{

P
∑

k=1

η2 |g∆(∆, N − kNs)|2
σ2
ζ,N−kNs

}]

(6.47)
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Now

|g∆(∆, N − kNs)|2 = π2

sin2(π∆)

[

1− 2sin(π∆(N−kNs))[cot(π∆)cos((N−kNs)π∆)+sin((N−kNs)π∆)]
N−kNs

+ sin2((N−kNs)π∆)csc2(π∆)]
(N−kNs)2

]

(6.48)

For N − kNs >> 1 we have

|g∆(∆, N − kNs)|2 ≈
π2

sin2(π∆)
(6.49)

Substituting this in the definition of I(∆) and simplifying

I(∆) =
Pη2π2

σ2
νsin

2(π∆)

[

N − (P + 1)Ns

2

]

(6.50)

Further substituting (6.50) into (6.44), the Cramer-Rao bound on the variance of an

estimate ∆̂ of ∆ may be written as

var(∆̂) ≥ σ4
νsin

2(π∆)

2η2π2P
[

N − (P+1)Ns

2

] (6.51)

It is assumed for the purpose of this derivation that both η and φ are known. However, if

these parameters are unknown then the estimator variance will naturally be greater than

the case where they are known. This implies that (6.51) provides the lower bound on the

CFO estimator variance for all cases.

It is observed that there exists no function h(r) such that the following equation can

be satisfied
dl(r|∆)

d∆
= I(∆)(h(r)−∆) (6.52)

This implies that the minimum variance unbiased estimator cannot be found directly by

the use of (6.52) [68]. Therefore, it becomes necessary to devise some alternative estimators

for ∆.

It may also be observed from (6.51) that the minimum variance of ∆̂ depends on ∆

and that ∆ should be minimized in order to minimize the variance of ∆̂. It is evident that

α = αm +∆ where αm is a fixed bias. Therefore (6.51) also gives the Cramer-Rao bound

for an estimator of the true cyclic frequency of the signal of interest.

If the true cyclic frequency α of the SOI is estimated recursively, then ideally the

magnitude of ∆ should decrease with each successive estimation, thereby reducing the

variance of the estimator. Consequently, it is desired to have a recursive estimate of α.

The following sections propose two methods which attempt to obtain a recursive estimate

of the actual value of the cyclic frequency of the signal of interest from the given samples.
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6.5 The Gradient Ascent Algorithm

It may be seen that the primary signal component of each element rk of r is individually

maximized when α = αm and therefore, a linear combination of the same will also be

maximized for α = αm. Now, the function |g(∆, N)| is concave within the window
[−1
N
, 1
N

]

and hence may be maximized by moving along the gradient. Since each element of r

corresponds to g(∆, N) with a different N , all of which are maximized at the same point.

Maximizing a linear combination of different elements of r is equivalent to maximizing the

individual g(∆, N) for each N . Further if the weights of the different components of r are

assigned in inverse proportion to their variances, then the linear combination of the elements

of r to be maximized is wHr. Now, r can be both real as well as complex, depending on the

knowledge of the phase of the cyclic autocorrelation function. Accordingly, maximization

of the objective function J = |wHr|2 is considered here.

The objective function may be rewritten as

J = rHWr (6.53)

where W = wwH. Differentiating it w.r.t. α, we get,

∇αJ = ∇αr
HWr+ rHW∇αr = 2ℜ

{

∇αr
HWr

}

(6.54)

Considering the more general case where φ is not known, we have

rk =
1

N − kNs

n=N−1
∑

n=kN

x[n]x∗[n−KNs]e
−j2παn (6.55)

and

bk = ∇αrk =
1

N − kNs

n=N−1
∑

n=kN

x[n]x∗[n−KNs]e
−j2παn(−j2πn) (6.56)

If it is assumed that there is only a small change in α̂, the estimate of α, from one iteration

to another, then both rk and bk can be computed recursively. These may then be used

to update α̂, which may again be used to update rk and bk. Consequently, the recursive

estimation procedure for α based on gradient ascent may be summarized as follows.

1. Initialize

• The number of samples to be used for the initial estimate as B,

• The cyclic frequency estimate α̂[B] = α0 as the apriori known value of the cyclic

frequency,

• The initial length of feature and the gradient vectors P =
⌊

B
Ns

⌋

.

Based on this, for 1 ≤ k ≤ P initialize the following
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• rk[B] = 1
B−kN

∑n=B
n=kN x[n]x

∗[n−KNs]e
−j2πα̂[B]n

• bk[B] = 1
B−kN

∑n=B
n=kN x[n]x

∗[n−KNs]e
−j2πα̂[B]n(−j2πn)

• wk[B] = B − kNs

2. For the nth step, B < n < N , update

• P =
⌊

B
Ns

⌋

Then for 1 ≤ k ≤ P update

• rk[n] =
n−kNs−1
n−kNs

rk[n− 1] + 1
n−kNs

x[n]x∗[n− kNs]e
−j2πα̂[n]n

• bk[n] =
n−kNs−1
n−kNs

bk[n− 1] + 1
n−kNs

x[n]x∗[n− kNs]e
−j2πα̂[n]n(−j2πn)

• wk = n− kNs

3. Based on this, update

α̂[n+ 1] = α̂[n] + 2µ[n]ℜ{bHWr} (6.57)

where

µ[n] =
µ

‖b[n]‖2

and µ is the step size for adaptation, normalized at each step w.r.t. the instantaneous

norm squared value of the gradient. At low SNRs, the contribution of noise to the

instantaneous estimates of both the cyclic autocorrelation function as well as gradient

will be quite large and the amplitudes of both will depend mainly on the noise power.

This will result in larger steps at lower SNRs which may lead to erroneous adaptations.

Therefore, in order to avoid such a possibility, the step size is normalized w.r.t. the

norm square of the instantaneous gradient.

It is observed that each step requires P 2 complex multiplications. If the value of P

is fixed or capped to a maximum then the overall computational complexity of the

adaptive algorithm for N samples may be expressed as O(NP 2).

6.6 The Greedy Approach

An alternative approach to find α̂ that maximizes the test statistic is to search for it

from among all the available cyclic frequencies. As the search for the optimal α̂ is being

constrained within the main lobe of g(∆, N), the size of the search window is inversely

proportional to the number of samples being used. Hence, it is preferred to use a smaller

number of samples during the search operation so as to keep the optimum α̂ within the

search window. However, on the other hand, the error introduced due to averaging over a

smaller number of samples will be large, thereby reducing the reliability of the estimate.
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Keeping this in view, an iterative procedure that starts with a large search window but

gradually shrinks in size may be a good compromise. It may be a good option here to use a

greedy approach which selects α̂ that maximizes the value of the objective function within

a given search window and then builds the new search window centred around the previous

best. Here, if the value of φ is known, then the optimal α̂ for a given window will satisfy

α̂o = argmax
α̂

{

ℜ
{

P
∑

k=1

(N − kNs)(R̂
α̂
xx[N,Ns]e

−jφ)

}}

(6.58)

In case φ is not known, then the optimal α̂ satisfies

α̂o = argmax
α̂

{∣

∣

∣

∣

∣

P
∑

k=1

(N − kNs)(R̂
α̂
xx[N,Ns])

∣

∣

∣

∣

∣

}

(6.59)

Based on this and following an approach similar to [73], the greedy approach to find the

optimum value of α̂ may be described as follows.

1. Divide the N number of received samples into smaller blocks of length LB each.

2. Initialize

• The number of sample blocks B to be considered for the initial estimate of α̂ so

that the initial length of the sample block becomes QB = BLB .

• The initial estimate of the cyclic frequency, βB = α

• The iteration counter q = B

3. For B ≤ q ≤
⌊

N
LB

⌋

• Define

– The number of lags to be considered for the estimate Pq =
⌊

Qq

Ns

⌋

– The normalized width of the cyclic frequency search window WQ = 1
Qq

• Split the search window from βq −Wq to βq +Wq into S search points,

• For each point γqp around βq, calculate R̂
γqp
xx [qLB, kNs] for 1 ≤ k ≤ Pq.

• Based on the information available about φ, set βq+1 as the cyclic frequency that

maximizes (6.58) or (6.59).

4. Assign Qq+1 = Qq + LB and q = q + 1

The cyclic frequency to be used for sensing is taken to be the one obtained in the final

step of iterations. It may be observed that the calculation of the cyclic autocorrelation

function for the qth block with a given lag kNs requires qLB complex multiplications and

therefore, the search in each window requires qLP complex multiplications. As there are a
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total of qmax blocks, the total number of multiplications will be summation over q from 1 to

qmax. Thus, with B = 1 the entire greedy search operation will require qmax(qmax+1)LP =

(q2max + qmax)LP complex multiplications, where qmax =
⌊

N
LB

⌋

. Consequently, the overall

order of complexity of the proposed algorithm for a fixed P turns out to be O(PN2).

6.6.1 Performance of the CFO estimators

The performance of the cyclostationary detector is based directly on the strength of the

cyclostationary features being detected which depends on the residual CFO. It may be

observed from the nature of g(∆, N) that the spectrum sensing operation will fail if the

absolute value of the residual CFO lies above a certain threshold, beyond which the strength

of the cyclic autocorrelation function becomes negligible. The 3 dB point in the function

g(∆, N) may be considered as one such threshold. Therefore, the performance metric for

any CFO may be formulated as a hit/miss function, with the residual CFO lying within the

3 dB window of g(∆, N) counted as a hit, and that outside it as a miss. The performance

of the CFO estimator may, therefore, be determined in terms of the probability of hit that

is the probability of the residual CFO lying within the 3 dB window of g(∆, N) for a given

number of samples, or the probability of miss which is the probability of the residual CFO

lying outside the said window.

Another important factor to consider here is the computational complexity of the CFO

estimation algorithm. Ideally, it is desired that the computational complexity of the spec-

trum sensing algorithm should be linear in the number of samples being used as well as the

number of features being employed for detection. However, it is seen that the addition of

a CFO estimator to the spectrum sensor results in an additional computational complex-

ity for the spectrum sensor. In case the greedy search approach is followed, the order of

complexity of the CFO estimator is O(N2) for N samples. On the other hand, in case the

gradient ascent approach, the order of complexity of the CFO estimator is O(N). It will

be shown in the following section that this reduced complexity comes at the cost of CFO

estimation performance.

6.7 Simulation Results

In this section, simulation results using randomly generated signals are presented. The

primary user OFDM signal is assumed to be consisting of 2048 data subcarriers out of

which 256 are pilots subcarriers. A cyclic prefix of length 256 is added to the signal,

making the total length of the OFDM symbol equal to 2304. The signal is assumed to

be sampled at 9 MHz and the sampling duration, unless specified, is assumed to be 5 ms,

resulting in a total of 45000 samples being used. For the purpose of these experiments, the

primary user signal variance is kept constant at unity and the variance of the additive noise
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is varied to achieve SNRs in the range −20 dB to 0 dB. Also, it is assumed that the phase

of the cyclic autocorrelation function is known at the spectrum sensor. For the experiments

involving CFO estimators, the cyclic autocorrelation function at a single cyclic frequency

and all the possible lags is considered. It is assumed that the known cyclic frequency

is offset by 1% from its true value. The performance of a spectrum sensing algorithm

is evaluated in terms of the probability of successful detection at different input SNRs.

Unless specified, the detection thresholds are set to give a constant false alarm rate of 1%.

Here, 2000 independent trials are conducted to determine the detection performance of the

algorithm and 1000 trials are conducted to determine its CFO estimation performance.

6.7.1 Performance of the proposed detector without any CFO

Figure 6.1 illustrates the performance of the proposed detector in the absence of any CFO

for different number of lags and cyclic frequencies. It is observed that the simulation results

agree with that expected as per the theory derived in equations (6.24) and (6.25) . Also, it

is observed that the derived performance improves considerably as the number of features

being used is increased. A gain of nearly 5 dB for a successful detection probability of 90%

is observed as the number of features being used is increased from 1 to 19 for a single cyclic

frequency. It is also observed that increasing the number of cyclic frequencies from 1 to

2 results in an additional gain of 1.5dB. This implies that, if for a given number of cyclic

frequencies, the number of temporal features are limited then the detector performance will

suffer.

6.7.2 Performance of the gradient ascent algorithm in the pres-

ence of CFO

Figures 6.2 and 6.3 depict the performance of the gradient ascent algorithm at different

SNRs with different step sizes. The number of samples for the initial estimates (Bs) in

these experiments was fixed at 10000. Figure 6.2 shows the plots for the probability of

the estimated cyclic frequency lying outside the 3 dB point of the main lobe of the sinc

function window around the true cyclic frequency for different SNRs. Figure 6.3 plots the

probability of detection for the given signal after the CFO is estimated. In both the cases

discussed above, the initial CFO is assumed to be 1% of the true cyclic frequency.

It is observed that the performance of the gradient ascent-based CFO estimation algo-

rithm is dependent on the step size. Smaller step size means that the system is more likely

to ascend the correct gradient. It also results in slower convergence thereby limiting the

performance of the estimator as well as the detector. It may be observed from Figure 6.2

that a small step size results in a greater probability of miss, thereby indicating that the

number of samples required by the algorithm for convergence to the true cyclic frequency

is larger than the available number of samples. On the other hand, larger step size results
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Figure 6.1: Performance of the proposed detector for different number of features in the
absence of any CFO
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Figure 6.2: CFO estimation performance of the gradient ascent algorithm for different step
sizes at different SNRs
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Figure 6.3: Detection performance of the gradient ascent algorithm for different step sizes
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in faster convergence of the algorithm but yields a larger residual CFO, again limiting the

detector performance. In the present case, it is found via simulation that a step size in the

range (1− 1.5)× 10−3 is a good choice for the given number of samples. The performance

loss due to CFO in this case is nearly 7 dB. It may be noted here that smaller step sizes

will work better for larger number of samples and vice versa.

6.7.3 Performance of the greedy search algorithm in the presence

of CFO

In this set of experiments, the variation in the performance of a spectrum sensor with a

CFO estimator based on greedy search algorithm for different signal to noise ratios and

block sizes is studied. The number of blocks (B) for the initial estimate is given B =
⌊

10000
LB

⌋

for a block size LB . Figure 6.4 shows the probability of the estimated cyclic frequency

lying outside the 3 dB point of the main lobe of the sinc function window cantered around

the true cyclic frequency for different SNRs. Figure 6.5 shows the plots for the probability

of detection after the CFO is estimated in an AWGN channel. It may be seen that reducing

the size of the search block from 3Ns

2
to Ns

2
results in gains of upto 4 dB. However, this

improvement in the performance comes at the cost of additional computational complexity.

Figure 6.6 plots the detection performance of the spectrum sensor using a greedy search

based CFO estimator when the phase of the cyclic autocorrelation function is unknown in

different cases. The detection threshold in this case is determined via simulation. 1000

independent trials in the absence of a primary signal are conducted so as to determine the

detection threshold for a fixed false alarm rate of 1%. It is observed that the performance

in the case of no-CFO is slightly degraded in comparison to the case where the phase is

known. It is observed that smaller block sizes tend to improve the detection performance

by as much as 2 dB for a successful detection rate of 90%. This, however, still shows a loss

of more than 2 dB in comparison to the no-CFO case.

Figure 6.7 shows the complimentary ROCs of spectrum sensor with a greedy search-

based CFO estimator at an SNR of −10 dB. Yet again, it is observed that smaller block

sizes result in better detection performances at the spectrum sensor.

6.7.4 Comparison with the existing method

Figure 6.8 compares the performance of different CFO compensation schemes at different

SNRs. It is found that the algorithm proposed in [103] performs best for a block size Ns

2

and hence those results may be used as benchmarks for comparison with other methods. It

is observed that for a successful detection rate of 90%, the gradient ascent-based approach

provides a gain of nearly 1 dB while the greedy search approach results in a gain of nearly

6 dB in comparison to the method proposed in [103].
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In Figure 6.9, the performances of different CFO compensation methods are plotted

against different values of the CFO. It is observed that the gradient ascent algorithm

provides good performance for smaller values of the CFO but its performance degrades as

the CFO increases. It is also observed that the greedy search algorithm outperforms other

methods by a large margin but at the cost of increased computational complexity.

6.7.5 Performance under Fading Channels

In the case of a fading channel, the received signal under the two hypotheses will be given

as

x[n] =

{

ν[n] H0

ϕ[n] ∗ s[n] + ν[n] H1

(6.60)

where ϕ[n] is the channel impulse response. This may be represented as a scaler ϕ for a

flat fading channel and a vector ϕ, with a length equal to the channel length in the case of

a frequency selective channel. In view of this, the distribution of the test statistics under

the two hypotheses for a fading channel will take the form [50, 144]

Z ∼







Ns

(

0, APσ4
ν

2

)

H0

Ns

(

‖ϕ‖2ANp

Nd
Es
∑P

k=1 (N − kNs),
AP (‖ϕ‖2Es+σ4

ν)
2

2

)

H1

(6.61)

Consequently, the expression for the probability of false alarm remains unchanged as given

by (6.24), but the probability of detection, conditioned on ϕ becomes

Pd(λ|ϕ) = Q





λ− A
Np

Nd
‖ϕ‖2Es

∑P
k=1

√

(N − kNs)

(‖ϕ‖2Es + σ4
ν)
√

AP
2



 (6.62)

The overall probability of detection for a fading channel may be obtained by averaging

the above over ϕ. This may not be possible analytically and numerical integration may

be required, as in [33]. However, detection thresholds for a constant false alarm rate

may be obtained by using (6.24). In this case, the thresholds are determined to keep

the false alarm rate fixed at 1%. These thresholds may then be used to determine the

corresponding detection rates via simulation. For the purpose of these simulations, the

primary signal component in the received signal, when present, is convolved with a channel

vector having Rayleigh distributed elements with an exponentially decaying power profile.

Following this, the cyclic autocorrelation function of the received signal is calculated for

different lags. These are then combined to form the test statistics to be compared against a

detection threshold determined by (6.24). Further, 2000 independent trials are conducted

to determine the detection performance. This is done both in the absence and the presence

of a 1% CFO. When present, the CFO is corrected by the greedy search algorithm for

different block sizes. The performance of the spectrum sensor using a greedy search-based
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6.8 Conclusion

CFO estimation for different block sizes under flat fading is compared against the no-CFO

case and the no-correction case as shown in Figure 6.10. It may again be observed that for

a detection rate of 90%, reducing the search block size from 3Ns

2
to Ns

2
results in gains of

as much as 4 dB. The perofrmance of a greedy search system under a 128 tap frequency

selective fading channel is shown in Figure 6.11. It may again be observed that reducing

the search block size from 3Ns

2
to Ns

2
improves the detection performance by 4 dB.

6.8 Conclusion

This chapter considers the problem of sensing OFDM signals using correlated pilots. It is

observed that the inter-pilot correlation causes the OFDM signal to exhibit cyclostation-

arity which may be used to detect its presence. A feature detector for detecting cyclosta-

tionarity at multiple cyclic frequencies and temporal lags is proposed and its performance

is derived in case of an AWGN channel. Following this, the effect of any deviation from the

known value of the cyclic frequency on the system performance is evaluated. It is observed

that for large number of samples, even for a small offset in the cyclic frequency, it may

cause severe degradation in the detector performance. The method for compensating the

effects of the CFO, as proposed in [103] is studied and is found to be inadequate in case of

the proposed detector, where the features to be detected are placed far apart.

Alternatively, it is proposed to estimate and then compensate for the effects of CFO,

thereby enabling the use of all possible features. The Cramer-Rao bound on the perfor-

mance of the CFO estimator is derived and it is observed that the variance of the CFO

estimator depends on the actual value of the CFO. As a result, it is proposed to esti-

mate the CFO recursively. Following this, two iterative algorithms are proposed for the

purpose. The first is the less complex gradient ascent-based algorithm which works only

for small values of CFO. The second approach is based on greedy search which works for

larger offsets in the cyclic frequency as well, but at the cost of increased computational

complexity. These methods are compared with the algorithm in [103] and it is observed

that the greedy search algorithm provides an advantage of more than 6 dB over the method

proposed therein but at the cost of computational complexity.
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Chapter 7

FRESH Filter based spectrum

sensing in the presence of Cyclic

Frequency Offset

FRESH filter-based spectrum sensors considered so far assume accurate knowledge of the

cyclic frequencies of the signal. This cyclic frequency is used to provide an appropriate

frequency shift to the sensed signal so as to adapt the FRESH filter weights. However, as

discussed in the previous chapter, the knowledge of the cyclic frequency at the spectrum

sensor may be flawed and may lead to incorrect adaptation of the filter weights. Similar

to the detection stage, an offset in the cyclic frequency at the adaptation stage may nullify

the gains offered by FRESH filtering.

In the previous chapter, the effects of CFO on cyclostationarity-based spectrum sensing

were discussed. It was observed that even a small error in the cyclic frequency of the

primary signal leads to significant loss in the performance of the system in question. It was

also observed that the received samples may be used to estimate the true cyclic frequency.

In the previous chapter, two algorithms viz. the gradient ascent algorithm and the greedy

search algorithm, were proposed for this purpose.

In this chapter, we study the effects of CFO on the adaptation stage of a FRESH filter-

based spectrum sensor. The effects of CFO on the adaptation stage of a FRESH filter-based

spectrum sensor are derived for both the energy detector and the cyclostationary detector.

In order to compensate for these effects, it is proposed to determine the true cyclic frequency

of the cyclostationary component in the received signal prior to the filter adaptation stage.

Here, the greedy search algorithm developed in the previous chapter is modified to suit the

purpose.

The system and sensing model is introduced and the performances of the energy and the

cyclostationarity detector are presented in Section 7.1. The effects of CFO in the adaptation

stage for both the detectors are derived in Section 7.2. The compensation mechanism for

CFO along with the modified greedy algorithm is presented in Section 7.3. The simulation



7.1 The Signal and Sensing Models

results using this algorithm are presented in Section 7.4 and the conclusions are presented

in Section 7.5.

7.1 The Signal and Sensing Models

Consider a primary user signal s[n] exhibiting cyclostationarity or conjugate cyclostation-

arity at a cyclic frequency α. A single-user, single-antenna spectrum sensor is used to

decide on the presence of this signal in the presence of AWGN noise ν[n] with a variance

σ2
ν . The sensed signal x[n] under the two hypotheses may be written as

x[n] ∼
{

ν[n] H0

s[n] + ν[n] H1

(7.1)

The spectrum sensor is assumed to be equipped with a FRESH filter consisting of a single

L-tap frequency shift branch for introducing a frequency shift α. It is assumed that the

spectrum sensor works in two stages; the adaptation stage and the sensing stage. During

the adaptation stage, the spectrum sensor collects NA samples in the presence of a primary

user signal and uses these to adapt the weight vector w[n].

Following this, during each sensing stage, the spectrum sensor collects N samples of

x[n] and passes these through the adapted filter so as to generate the filtered signal y[n]

defined as,

y[n] = wH [NA]u[n] (7.2)

where

u[n] = [xα[n], xα[n− 1], . . . , xα[n− L+ 1]]T (7.3)

and

xα[n] = x[n]e−j2παn. (7.4)

The filtered signal y[n] is then subjected to either energy detection or to cyclostationary

detection to detect the presence of a primary signal component within it.

For energy detection, the finite time energy of the filtered signal, defined as follows, is

used as the test statistic.

TE =

N−1
∑

n=0

|y[n]|2 (7.5)

The distribution of this test statistic under the two hypotheses may be written as [122]

TE ∼







N
(

σ2
ν ,

σ2
E0

N

)

H0

N
(

σ2
ν +wH

o Rsswo,
σ2
E1

N

)

H1

(7.6)

where wo is the optimal weight vector, Rss is the correlation matrix of s[n], and σ2
E0

and
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σ2
E1
, are the variances of the test statistic under the two hypotheses, that are empirically

determinable functions. The related detection and false alarm rates are derived as

Pd = Q

(√
N
λ− (σ2

ν +wH
o Rsswo)

σT1

)

(7.7)

Pfa = Q

(√
N(λ− σ2

ν)

σE0

)

(7.8)

The finite time cyclic autocorrelation function of y[n] at a cyclic frequency η and lag τ

is defined as

R̂η
yy =

N−1
∑

n=0

y[n]y∗[n− τ ]e−j2πηn (7.9)

This is distributed as [31]

R̂η
yy[N, τ ] ∼







Nc

(

0,
σ2
C0

N−τ

)

H0

Nc

(

ξejφ,
σ2
C1

N−τ

)

H1

(7.10)

where ξejφ = wH
o R

α
sswo is a complex number, and σ2

C0
and σ2

C1
are empirically determinable

functions. The cyclic autocorrelation matrix of s[n], Rα
ss being non-Hermitian results in

R̂η
yy[N, τ ] to be complex-valued. It may be observed that based on the knowledge of the

phase φ, either ℜ{R̂η
yy[N, τ ]e

−jφ} or |R̂η
yy[N, τ ]| may be used as a test statistic. In this

chapter, no prior knowledge about the phase φ is assumed and the absolute value of the

finite time cyclic autocorrelation function is used as a test statistic. This is shown to be

distributed as

|R̂η
yy[N, τ ]| ∼







Rice
(

0,
σC0√
N−τ

)

H0

Rice
(

ξ,
σC1√
N−τ

)

H1

(7.11)

The false alarm rate for a given detection threshold λ is then derived as

Pfa = e
− (N−τ)λ2

σ2
C0 (7.12)

It has been shown that the cyclostationary detector unlike the energy detector, is robust

to uncertainty in noise variance [105,122]. However, as shown in the following section, both

these methods are prone to CFO during the adaptation stage.

7.2 Effect of CFO on the adaptation Stage

To explain the effect of CFO on the adaptation stage, assume that the cyclic frequency

known at the spectrum sensor α is different from the true cyclic frequency α0 of the signal

169



7.2 Effect of CFO on the adaptation Stage

of interest s[n] by a random offset ∆ such that α = α0 +∆.

It may be observed that the noise component, ν[n] is wide sense stationary. Therefore

the optimal weight vector under the null hypothesis is always the null vector. Hence, the

behavior of the test statistics under the null hypothesis, regardless of the presence of CFO,

remains same as described in the previous section.

Under the alternate hypothesis, H1 ,as neither the primary signal nor the noise compo-

nent exhibit cyclostationarity at α, both the cyclic autocorrelation vector and the optimal

weight vector wo are null vectors. In view of this, the adapted weight vector w[NA] should

also converge to a null vector. However, due to the adaptive nature of the weights, there

will be a finite random error present in the converged weight vector [61]. It may be noted

that the accumulated error vector is the sum of a large number of terms and hence, it

may be assumed to be Gaussian distributed. Constraining ‖w[NA]‖ = 1, the weight vector

w[NA] may be assumed to be distributed as

w[NA] ∼ Nc (0,Q[NA]) (7.13)

where tr(Q[NA]) = 1

For an energy detector, the mean of the test statistic under H1 will be given as

E[TE ] = σ2
ν + E[wH [NA]Rssw[NA]] (7.14)

It may be noted that the matrix Rss is positive definite and therefore, second term will

be a positive real number. Also, Rss being Hermitian, it may be written in the form

Rss = PDPH , with P being the eigenvector matrix of Rss and D being a diagonal matrix

containing its eigenvalues. Therefore,

E[wH [NA]Rssw[NA]] = E

[

L
∑

l=1

dl|w̄l[NA]|2
]

(7.15)

where dl is the lth eigenvalue of Rss and w̄l is the lth element of w̄[NA] such that w̄[NA] =

PHw[NA]. This summation depends on the behavior of the filter weights. Therefore,

both the mean and the variance of the test statistics under the alternative hypothesis are

functions of the adaptive filter weights. Due to the adaptive nature of the filter weights, it

is not possible to write the overall detection performance in closed form. The performance

of this detector must, therefore, be determined experimentally.

For a cyclostationarity detector the mean of the finite-time cyclic autocorrelation func-

tion under the alternative hypothesis will be given as

E
[

R̂η
yy[τ ]

]

= E
[

wH [NA]R
η
ss[τ ]w[NA]

]

(7.16)

Here, the matrix Rss is not Hermitian and w[NA] is random. Therefore, the entire term
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inside the expectation will have a random phase. It is, therefore, not possible to use the

knowledge of the phase as a part of the test statistic. Consequently, the absolute value of

the finite time cyclic autocorrelation function should be used as a test statistic.

7.3 Compensation of the CFO effect

It was observed in the previous chapter that the received signal samples may be used

to determine the true cyclic frequency of the cyclostationary component of the signal of

interest. It is therefore proposed to estimate the cyclic frequency of the primary component

in the signal prior to filter adaptation. The overall spectrum sensing system may be given

as illustrated in Figure 7.1.

In the adaptation stage, which in this case is offline, the collected samples are used to

recursively determine the true cyclic frequency and related FRESH filter weights. During

the online sensing stage, the adapted cyclic frequency and filter weights are used to sense

the presence of the primary user signal.

It has been assumed that the primary signal s[n] is present during the adaptation

stage. Therefore, for a FRESH filter of length L, it may safely be assumed that the cyclic

autocorrelation function Rα0
xx[τ ] of the received signal x[n], at the true cyclic frequency α0

is non-zero, at least for 0 ≤ τ ≤ L− 1.

It was shown earlier that the finite time cyclic autocorrelation function of x[n] at a

cyclic frequency α = α0 +∆ and lag τ may be written as

R̂α
xx[NA, τ ] ≈ Rα0

xx[τ ]
(

ejπ(∆)(NA−τ−1) sin(π(NA−τ)(∆))
(NA−τ) sin(π(∆))

)

= Rα0
xx[τ ]g(∆, NA − τ)

(7.17)

where

g(∆, NA − τ) = ejπ(∆)(NA−τ−1) sin(π(NA − τ)(∆))

(NA − τ) sin(π(∆))
(7.18)

The optimal estimate of the true cyclic frequency α̂o will, therefore, satisfy

α̂o = argmax
α̂

{

L−1
∑

τ=0

∣

∣

∣

√

NA − τ (R̂α̂
xx[NA, τ ])

∣

∣

∣

}

(7.19)

Based on this, the greedy search algorithm to obtain α̂o may be written as

1. Divide the NA received samples into smaller blocks of length LB each.

2. Initialize

• The number of sample blocks B to be considered for the initial estimate of α̂ so

that the initial length of the sample block becomes QB = BLB.

• The initial estimate of the cyclic frequency, βB = α
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Figure 7.1: (a) Block Schematic of the proposed sensing scheme (b) The CFO estimation
stage (c) Weight Adaptation Stage
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• The iteration counter q = B

3. For B ≤ q ≤
⌊

NA

LB

⌋

• Define the normalized width of the cyclic frequency search window WQ = 1
Qq

• Split the search window from βq −Wq to βq +Wq into P search points,

• For each point γqp around βq, calculate R̂
γqp
yy [qLB, τ ] for 0 ≤ τ ≤ L.

• Set βq+1 as the cyclic frequency that maximizes equation (7.19).

4. Assign Qq+1 = Qq + LB and q = q + 1

The cyclic frequency obtained after the final iteration may be used to adapt the filter

weights. The adaptation stage may therefore be assumed to consist of two sub-stages

where the received samples are first used to estimate the true value of the cyclic frequency

and are then used to adapt the filter weights.

7.4 Simulation Results

In these experiments, the primary user signal is assumed to be BPSK modulated with a

data rate (fb) 10 kilo bits per second and a carrier frequency (fc) 100 kHz. It is assumed

that the spectrum sensor samples at 1 MHz. The FRESH filter is assumed to consist of a

single varible length conjugate frequency shift branch at 200 kHz. In all these experiments

the primary user variance is fixed at unity and the variance of the additive noise is varied to

achieve different SNRs as per the requirement of the experiment. The system performance

is evaluated in terms of the detection rate for input SNRs varying from −20 dB to 0

dB. The number of samples being used for adaptation (NA) is assumed to be 2000 while

the number of samples being used for detection (N) is 500. The false alarm rate for all

these experiments is fixed at 1%. In each case, 2000 independent trials are conducted to

determine the detector performance.

7.4.1 The Effects of CFO

The performance of the energy detector for different FRESH filter lengths with 1% CFO

of the true cyclic frequency is shown in Figure 7.2. It may be observed that the detection

performance is severely degraded due to the presence of CFO. Still, it is observed that

an increase in the filter length improves the detection performance. However, the gain

at a detection rate of 90% due to a length-32 FRESH filter reduces to less than 1 dB as

compared to 6 dB as shown in the fourth chapter.

The performance of the cyclostationary detector in the presence of CFO is inspected in

Figure 7.3. Here again it is observed that an increase in the FRESH filter length improves
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the detection performance. However, in this case, the performance of the length-16 filter

with CFO is still 7 dB worse as compared to a length-1 filter with no CFO.

7.4.2 The Performance of the Greedy Search Algorithm

The probability of a miss, that is the probability of the estimated cyclic frequency lying

outside the 3dB point of the main lobe of the resulting sinc function window is plotted in

Figure 7.4 for different filter lengths. In this case, the search block size LB is fixed at 200.

It may be observed that the performance improves with an increase in the FRESH filter

length that is the number of feature points included in the objective function described by

equation (7.19). It may also be observed that increasing the number of feature points from

4 to 32 improves the performance of the algorithm by nearly 3dB.

Figure 7.5 plots the probability of miss at different SNRs for a FRESH filter length of

8 for different sized search blocks. The initial CFO in this case is taken to be 0.5% of the

true cyclic frequency. The probability of miss increases marginally as the size of the search

block is increased. This is consistent with the observations in the previous chapter.

The performance of an energy detector following a FRESH filter, whose true cyclic

frequency is determined using the greedy search algorithm at different SNRs and filter

lengths, is plotted in Figure 7.6. It may be observed that the use of greedy-search-based

algorithm for cyclic frequency estimation reduces the loss due to CFO by more than 5 dB.

The performance of a cyclostationary detector following a FRESH filter whose true

cyclic frequency is determined using the greedy search algorithm at different SNRs and

filter lengths is plotted in Fig 7.7. Here, the performance loss due to CFO may be recovered

by as much as 14 dB for all filter lengths.

The performance of a cyclostationary detector following a FRESH filter of length 8,

whose true cyclic frequency is determined using the greedy search algorithm at an SNR of

−12, dB is plotted against the CFO for different search block sizes in Fig 7.8. It is observed

that an appropriate choice of the search block size, LB, compensates the effects of CFO as

large as 3% of the true cyclic frequency.

7.5 Conclusions

The effect of CFO (Cyclic Frequency Offset) on the performance of a FRESH filter-based

spectrum sensor is analyzed in this chapter. It is shown that the performance of both the

energy detector and the cyclostationary detector is severely degraded by the presence of a

CFO during the adaptation stage. However, it is observed in the simulation results that

an increase in the FRESH filter length still improves the detection performance.

As a solution, it is proposed to use the collected samples to estimate the true value of

the cyclic frequency and then use this estimate for the adaptation of FRESH filter weights.
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Figure 7.2: Performance of the energy detector in the presence of 1% CFO for different
FRESH filter lengths
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Figure 7.3: Performance of the energy detector in the presence of 1% CFO for different
FRESH filter lengths

176



Chapter 7. FRESH Filter based Sensing with CFO

−20 −18 −16 −14 −12 −10 −8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

P
m

is
s

 

 

L=4
L=8
L=16
L=32

Figure 7.4: Performance of the greedy algorithm for a block size LB = 200 for different
FRESH filter lengths in the presence of 0.5% error in the cyclic frequency
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Figure 7.5: Performance of the greedy algorithm for a different block sizes for a FRESH
filter length 8 in the presence of 0.5% error in the cyclic frequency
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Figure 7.6: Performance of the energy detector with the greedy algorithm for a block size
200 for different FRESH filter lengths in the presence of 1% error in the cyclic frequency

179



7.5 Conclusions

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

P
D

 

 

No Error L=8
No Error L=16
No Error L=32
No Correction L=8
No Correction L=16
No Correction L=32
Greedy Search, L

B
=200, L=8

Greedy Search, L
B
=200, L=16

Greedy Search ,L
B
=200, L=32

Figure 7.7: Performance of the cyclostationary detector with the greedy algorithm for a
block size 200 for different FRESH filter lengths in the presence of 1% error in the cyclic
frequency
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Figure 7.8: Performance of the cyclostationary detector with the greedy algorithm for a
block size 200 for a FRESH filter length 8 at −12 dB for different values of the cyclic
frequency offset
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For this purpose, the greedy search algorithm developed in the previous chapter is modified

to fit the present case. The performance of the proposed algorithm in conjunction with

FRESH filter-based spectrum sensing is studied by using simulation experiments. It is

observed in these experiments that the proposed method may reduce the loss by as much

as 5 dB for an energy detector and 14 dB for a cyclostationary detector.
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Chapter 8

Conclusions

In this thesis, we have studied the problems of FRESH filter-based spectrum sensing of

cylcostationary signals, and the detection of cyclostationary signals in the presence of a

Cyclic Frequency Offset. Adaptive techniques for both these problems have been developed.

In the following sections, we list the key conclusions drawn in this thesis and identify some

open problems for future research in this area.

8.1 Conclusions

In the third chapter, it is proposed to combine the ideas of FRESH filtering [105] and

SCORE beam-forming [35] for the purpose of sensing cyclostationary signals. A Space-

Time FRESH filtering structure is proposed to exploit the spatial, temporal and spectral

redundancy in the primary user signal. The ACS algorithm proposed in [35] for adapt-

ing cyclostationarity based beam forming arrays is modified to adapt the proposed struc-

ture. It is found that the modified ACS algorithm, with a computational complexity of

O(N(KLM)2) for anN -antennaM-branch L-tap filter, acts as a bottleneck in the proposed

sensing scheme.

In order to reduce the computational complexity, the correlation maximization problem

of the ACS algorithm is remodeled as a constrained Mean Squared Error (MSE) minimiza-

tion problem. The constraints are placed so as to avoid a trivial solution of the MMSE

problem. A stochastic gradient based C2-LMS algorithm with a linear complexity is de-

veloped as an adaptive solution to this problem. It is shown that the performance of the

sensing algorithm depends on the adapted filter weights and should be determined via

simulation.

It is observed that an increase in the number of filter taps as well as an increase in the

number of taps results in an improved detection performance. It is also observed that a

suitable Space-Time FRESH filtering configuration may lead to gains of as much as 10 dB

in the detection performance for both the energy detector and the cyclostationary detector.

If the computational complexity of the structure is fixed then it is observed that using more
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antennas leads to better gains as compared to the use of a larger number of filter taps. A

16-antenna length-2 configuration is observed to perform 2 dB better than a single-antenna

system with a FRESH filter of length 32. Further, it is observed that increasing the FRESH

filter length in a 2 antenna configuration reduces the probability of missed detection for a

given false alarm rate by more than one order of magnitude. It is also shown via simulations

that the effects of noise uncertainty in an energy detector may be mitigated to some extent

by the use of a Space-Time FRESH filters.

A model for the performance of a single-antenna single-user FRESH filter-based spec-

trum sensor is developed in the fourth chapter. Here, the effect of FRESH filtering prior

to detection is studied on both the energy detector as well as the cyclostationarity detec-

tor. It is observed that for normalized filter weights, the mean of the finite time energy

under the null hypothesis equals the noise variance. Under the alternative hypothesis, the

mean of the test statistic is observed to depend on the adapted filter weights and hence

the primary user signal correlation structure. The variance of the test statistic under both

the hypotheses is found to be analytically intractable, and therefore bounds on its value

under both the hypotheses are derived. It is shown that the test statistic variance under

the null hypothesis depends purely on the filter structure. Similarly, the variance of the

signal under the alternative hypothesis is found to be an empirical function of the input

SNR and the filter structure. Using the distributions of the test statistics under the two

hypotheses, the expressions for the probabilities of detection and false alarm are derived.

These expressions are then used to derive the number of samples required to achieve given

detection and false alarm rates.

Randomly generated signals are used to determine the empirical parameters via curve

fitting. The derived results are then verified by the use of simulation experiments. It is

observed that the number of samples required for convergence of filter weights is much

greater than the number of samples being used for detection and hence filter adaptation.

Therefore, the spectrum sensing scheme behaves differently for optimal and adapted filter

weights. For example, increasing the FRESH filter length from 1 to 8 leads to a gain of

nearly 4 dB for adapted filter weights and more than 6 dB for optimal filter weights. It is

also observed that in case of the filter weights being unknown, the detection performance

also depends on the adaptation algorithm being used. It is observed that FRESH filters

based on the RLS algorithm perform marginally better than the systems based on the

LMS algorithms. Further, the number of samples required to achieve a given detection

performance for a fixed false alarm rate are determined via simulation. It is observed

that using optimal filter weights reduces the number of samples required to achieve a 90%

probability of detection for 1% false alarm rate by as much as two orders, of magnitude as

predicted by the derived results. In the absence of this knowledge the number of samples

required to achieve these detection and false alarm rates reduces by more than one order

of magnitude. For a cyclostationarity detector, it is observed that the finite time cyclic
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autocorrelation function is a complex number. Therefore, the test statistic is decided based

on the knowledge of its phase. Similar to the energy detector it is found that the mean of the

test statistic under the alternative hypothesis depends on the correlation structure of the

primary user signal. The variances under the two hypotheses are empirically determinable

functions.

The derived performances are again verified for randomly generated signals. It is ob-

served that the knowledge of the phase of the cyclic autocorrelation function does not affect

the performance much, whereas the knowledge of the optimal filter weights again has a sig-

nificant impact on the detection performance. In the case of an eight-tap FRESH filter,

the knowledge of predicted weights is observed to give an advantage of more than 2 dB

over the adapted weights. Increasing the length of the FRESH filter from 1 to 16 improves

the detection performance by as much as 8 dB when the optimal filter weights are known.

Analogous to the energy detector, the number of samples required for a cyclostationary

detector to achieve 90% successful detection rate for a false alarm rate of 1% is reduced by

two orders of magnitude when the filter weights are known and by one order of magnitude

when they are adapted. The performance of the energy detector under noise uncertainty

is then derived and it is found that FRESH filtering helps in lowering the SNR walls. It is

observed that a length 32 FRESH filter may lower the SNR walls by as much as 14 dB.

Collaboration schemes for FRESH filter based spectrum sensing are considered in the

fifth chapter. All the three collaboration models, i.e. centralized, distributed, and hierar-

chical, are considered. It is first shown that in case multiple secondary users are sensing

signals from a single primary user, then,based on the sensing time and the channel delay

spread, the optimal FRESH filter weights at each secondary user can be either same or

correlated. Following this, the statistics of the energy detector, derived in the previous

chapter are extended to the three collaborative settings. For the centralized setting, the

existence of a fusion center having unrestricted access to all the sensed data is assumed.

No fusion center is assumed for purely distributed collaboration. However in this case it

is assumed that the collaborating nodes can communicate among themselves to arrive at a

consensus on the presence of a primary user signal. It is shown that for the sensing nodes

forming a fully connected graph, the system eventually converges to a consensus. Under

the hierarchical model, the system is assumed to consist of two types of nodes, the sensing

and the processing nodes. Each sensing node is assumed to be connected to one or more

processing nodes and vice versa. The sensing nodes simply forward their sensed data to the

processing nodes. The processing nodes then use these data to calculate the test statistics

and collaborate among themselves to reach a consensus on the final decision.

If the channel delay spread at all the sensing nodes is less than the inter-sample interval,

then the optimal filter weights at these nodes will also be the same. Therefore, joint

adaptation algorithms may be used to estimate these. Hence, the global-LMS algorithm

developed in [17] is used for adaptation in the centralized case whereas the ATC-LMS [17]
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algorithm is used for adaptation in purely distributed and hierarchical cases. In case the

delay spread of all the channels is not less than the inter-sample interval, then the optimal

weights for different FRESH filters will still be correlated though unequal. The C2-LMS

algorithm developed in the third chapter is, therefore, modified so as to handle this case.

For a centralized setting, it is observed that increasing the FRESH filter length from 1

to 32 in a 16-user setting results in a gain of 3 dB for local LMS-based adaptation. Here,

joint adaptation using the global-LMS algorithm leads to an additional gain of 2 dB while

the use of C2-LMS algorithm under dispersive fading results in an additional gain of 1 dB.

In a purely distributed setting, increasing the filter length from 1 to 32 results in a gain of

4 dB with local adaptation and an additional 1 dB with joint adaptation for both the flat

fading and dispersive fading cases. It is also shown that an N -node network arrives at a

consensus in a maximum of log2(N) steps. It is observed that the detection performance

falls by nearly 1 dB as the system moves from a purely centralized setting to a purely

distributed setting.

The sixth chapter addresses the problem of cyclic frequency offset in the sensing stage of

a cyclostationarity-based detector. In this chapter, the problem of sensing an OFDM signal

with correlated pilots is studied. It is shown that correlated pilots in an OFDM signal lead

to spectral coherence in the signal of interest. It is then shown that this cyclostationarity

may be detected by the use of the finite-time cyclic autocorrelation function as a test

statistic. Following this, it is argued that the detection performance can be improved by

combining the cyclic autocorrelation function at different frequencies and lags. For 45000

samples and a false alarm rate of 1%, it is observed that increasing the number of temporal

features from 1 to 19 improves the detection performance by 5 dB. At the same time, using

two cyclic frequencies, instead of one, further improves this performance by more than 1

dB.

Following this, it is shown that a cyclic frequency offset causes the detector performance

to deteriorate as the number of samples being used for detection increases. Based on this, it

is proposed to use the collected samples to estimate the true cyclic frequency of the sensed

signal. The Crammer-Rao bound for the true cyclic frequency estimator is derived and it is

found that the variance of the estimator depends on the magnitude of CFO. Therefore, it is

proposed to estimate the true cyclic frequency recursively. For this purpose, two recursive

algorithms based on gradient ascent and greedy search are proposed.

The gradient ascent algorithm is based on the fact that the main lobe of the sinc function

is concave and can be maximized by moving in the direction of the gradient. The resulting

algorithm has a linear complexity in terms of the number of samples being used. However,

the performance of this algorithm depends on the adaptation step size being chosen. It is

observed that a small step size leads to a better estimate of the true cyclic frequency at

the cost of convergence time. Whereas, a larger step size will result in faster convergence

but will result in an increased variance of the final estimate. A proper choice of the step
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size parameter may mitigate the loss due to CFO by more than 8 dB.

The greedy search algorithm divides the received signal samples into blocks. Here, the

cyclic frequency maximizing the cyclic autocorrelation function is selected for each block.

A smaller block size leads to more precise estimates at the cost of computation time. The

complexity of this algorithm is O(M2) for M samples. This provides an additional 4 dB

gain over the gradient ascent algorithm for a successful detection rate of 90%. As compared

with the algorithm in [103], the greedy search algorithm provides a gain of nearly 6 dB

and the gradient ascent algorithm a gain of more than 1 dB for a 90% rate of successful

detection at a 1% probability of false alarm. Similar trends are observed for fading channels

as well.

In the seventh chapter, the problem of CFO in the adaptation stage of a FRESH filter-

based spectrum sensor is studied. The derived results show that a CFO in the adaptation

stage will result in the optimal weight vector being a null vector. This results in a degraded

performance for both the energy and the cyclostationarity detectors. The greedy search

algorithm developed in the previous chapter is, therefore, modified to estimate the true

cyclic frequency of the adaptation stage of a FRESH filter-based spectrum sensor. It is

shown via simulation that the loss due to CFO in a FRESH filter-based sensor followed by

an energy detector is reduced to 2 dB from 8 dB and for a cyclostationarity detector it is

reduced from 16 dB to 1 dB.

8.2 Directions for Future Work

In this thesis, we have used the energy detector and the cyclostationarity detector for

FRESH filter-based spectrum sensing. However, it is possible to use other detectors as

well. The estimator correlator introduced in [69] is one such detector. Here, the cross

correlation of the output of the FRESH filter with the input signal can be used as a test

statistic. It is to be noted that due to the absence of spectral coherence in the ambient

noise, the mean value of this test statistic under the null hypothesis will be zero. However,

this will take a non-zero value under the alternative hypothesis.

Alternatively, a non-parametric detector, comparing the ratio of the energy of the fil-

tered signal to that of the unfiltered signal may also be developed. It was shown in the

fourth chapter that the energies of the filtered signal and the unfiltered signal will be ap-

proximately equal when the primary user signal is absent. However, the energy of the

filtered signal will be much greater than that of the unfiltered signal in case a primary user

signal is present. Therefore, a detector using the ratio of the energies of the filtered and the

unfiltered signal may as well be developed. It may also be interesting to look at the energy

of the filtered signal in terms of the eigenvalues of the covariance matrix of the sensed

signal. The performance of this detector can then be compared with other non-parametric

detectors based on the eigenvalues of the received signal covariance matrix.
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It was mentioned in the fourth chapter that the detection performance may be improved

if the correlation structure of the primary signal and hence the optimal weights are known.

In case these weights are known ,a FRESH filter-bank-based detector similar to the ap-

proach in [38] may be developed to detect the presence of a primary user signal. Further, a

sequential detection approach based on the FRESH filter-bank-based detector may also be

developed. The sequential detector may use energy detection, cyclostationary detection,

the estimator correlator or the non-parametric detector discussed above.
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Derivation of the C2LMS algorithm

The function to be minimized, as given in (3.69), may be written in the form

J(w,h) = hHRxxh− hHRxuw−wHRuxh

+wHRuuw + λ {‖h‖22 − g2}
(A.1)

and it may be shown that

∇hJ = 2 〈x[n](e∗(n))〉+ 2λh (A.2)

∇wJ = 2 〈u[n](−e∗(n))〉 (A.3)

Using the method of steepest descent, the update equations for the weight vectors may be

written as
h[n+ 1] = h[n]− µ

2
∇hJ

= h[n]− µ〈x[n]e∗[n]〉 − µλh[n]

= (1− µλ)h[n]− µ〈x[n]e∗[n]〉
(A.4)

w[n+ 1] = w[n]− µ
2
∇wJ

= w[n] + µ〈u[n]e∗[n]〉
(A.5)

Replacing the deterministic gradient in the above equations with the stochastic gradient,

the following update equations are obtained.

h[n+ 1] = (1− µλ)h[n]− µx[n]e∗[n] (A.6)

w[n+ 1] = w[n]− µu[n]e∗[n] (A.7)

Invoking the constraint ‖h[n+ 1]‖2 = g , we have

‖(1− µλ)h[n]− µx[n]e∗[n]‖22 = g2 (A.8)

or

(1− µλ)2 − 2 ∗ (1− µλ)µℜ{e∗[n]y[n]}+ µ2‖x[n]‖22|e[n]|2 − g2 = 0 (A.9)

189



By substituting

z = (1− µλ)

b = µℜ{e∗[n]y[n]}
c = µ2‖x[n]‖22|e[n]|2 − g2

(A.10)

the above equation reduces to a quadratic equation yielding two solutions z = b±
√
b2 − c.

Using only the solution corresponding to z = b +
√
b2 − c the adaptation algorithm, as

described in Chapter 3, may be obtained.
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Equivalence of the MMSE and the

Maximum Correlation Solutions

Assume that a zero-mean cyclostationary signal s[n] is incident on a K-antenna array from

a direction θ such that the signal received vector x[n] is given as

x[n] = a(θ)s[n] + ν[n]

where a[θ] is the array response vector for the direction θ and ν[n] the zero mean additive

noise noise vector. It is known that the signal of interest (SOI) exhibits non-conjugate

spectral coherence at frequencies A = {α1, α2, . . . , αM1} and conjugate spectral coherence

at B = {β1, β2, . . . , βM2}, M1 +M2 =M .

The signal x[n] will, therefore exhibits spatial, temporal and spectral correlation. That

is, if we define

ukm[n− l] = [xk[n− l]](∗)e−j2παmn

with an optional conjugation and αm ∈ A ∪ B; then by virtue of these properties, any

element xp[n] of x[n] may be expressed as

xp[n] = ckpmlukm[n− l] + ηkpml[n]

where ckpml is the regression coefficient and ηkpml[n] is the innovation component. Each

element of u[n] may, hence, be expressed as a linear combination of time and frequency

shifted version of all the elements of u[n].

Now, if we define

ukm[n] = [xk[n]]
(∗)e−j2παmn

then,

ukm[n] = [ukm[n], ukm[n− 1], ukm[n− 2], . . . , ukm[n− L+ 1]]T

and

uk[n] = [uT
u1[n],x

T
u2[n], . . . ,u

T
kM [n]]T
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B.1 Solution to the MMSE Problem

u[n] = [uT
1 [n],u

T
2 [n], . . . ,u

T
K [n]]

T

then there exist nonzero vectors w,h such that

wHu[n] = hHx[n] + η[n]

Defining

r[n] = hHx[n]

and

y[n] = wHu[n]

we may find the weight vectors wo and ho such that mean square error defined as

J(w,h) = E
[

|wHu[n]− hHx[n]|2
]

is minimized.

Also, there will exist vectors w′
o,h

′
o that will maximize the cross-correlation coefficient

of y[n] and r[n], defined as

F (w,h) =
[E[y[n]r∗[n]]]2

E[|y[n]|2]E[|r[n]|2] (B.1)

In the following sections we show that the solutions to these two problems take identical

forms.

B.1 Solution to the MMSE Problem

The MMSE problem for the objective function J(w,h) may be written as,

[wo,ho] = argminw,h J(w,h)

= argminw,h [w
Hx[n]− hHu[n]][wHx[n]− hHu[n]]∗

= argminw,h [w
HRuuw −wHRuxh− hHRxuw + hHRxxh

(B.2)

Differentiating this separately w.r.t w and h [2], we have

∇wJ = Ruuw−Ruxh (B.3)

and

∇hJ = Rxxh−Rxuh (B.4)
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where Rux = RH
ux. Now, the objective function will be minimized in terms of w and h

when equations (B.3) and (B.4) are, respectively, equated to zero.

Equating (B.3) to zero, we have

∇wJ = Rxxw −Rxuh = 0

or

Ruuw = Ruxh

Therefore,

wo = R−1
uuRuxh (B.5)

Similarly

ho = R−1
xxRxuw (B.6)

B.2 Solution to the Maximum Cross Correlation Prob-

lem

This solution has been presented by Schell and Gardner in [2]. Looking at (B.1) it may

be observed that the two weight vectors should be selected such that the cross correlation

coefficient of y[n] and r[n] is maximized. That is,

[w′
o,h

′
o] = argmaxw,hF (w,h)

= argmaxw,h
[wHRxu[n]h]

2

[wHRxu[n]h][hHRux[n]w]

(B.7)

For the objective function F , we may define FN and FD as

FN =
[

wHRux[n]h
]2

= wHRux[n]hh
HRxu[n]w

FD =
[

wHRuu[n]w
] [

hHRxx[n]h
]

We may write F = FN

FD
therefore

∇wF =
∇wFN .FD −∇wFD.FN

F 2
D

and

∇hF =
∇hFN .FD −∇hFD.FN

F 2
D

Equating the numerators of these terms to zero, we get

∇wFN .FD −∇wFD.FN = 0 (B.8)
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∇hFN .FD −∇hFD.FN = 0 (B.9)

Now

∇wFN = Rux[n]hh
HRxu[n]w

∇hFN = Rxu[n]wwHRux[n]h

∇wFD = Ruu[n]whHRxx[n]h

∇hFD = Rxx[n]hw
HRuu[n]w

Substituting these values into (B.8) and (B.9), we have

[Rux[n]hh
HRux[n]w][wHRux[n]h]

[

hHRxu[n]w
]

= Ruu[n]whHRxx[n]h

wHRux[n]hh
HRxu[n]w

(B.10)

Or

[Rux[n]h][w
HRuuw] = wHRuxhRuuw

and

[Rxx[n]h][h
HRxuw] = hHRxxhRxuw

It may be observed that for optimal weight vectors, [wHRxuh] will correspond to the largest

singular value of the matrix Rxu.

The equations thus reduce to

w′
o = d1R

−1
xxRxuh (B.11)

and similarly

h′
o = d2R

−1
uuRuxw (B.12)

It may be observed that the solutions to the two problems are scaled versions of each other.
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