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ABSTRACT                                          

 

Catalytic wet air oxidation (CWAO) using heterogeneous catalyst is a promising advanced 

oxidation process (AOP) for the treatment of complex industrial wastewaters. The drastic 

operating conditions during CWAO are disadvantageous as maintaining the process at extreme 

conditions is not favourable. Catalysis research to develop the economical, active and stable 

catalyst is a key factor in the development of CWAO at mild operating conditions. 

CeO2 containing materials attracted a lot of interest due to their wide range of applications. 

Oxygen storage capacity (OSC) of ceria is the most important property which makes it an 

excellent catalytic material. Despite of its widespread applications, pure CeO2 has poor thermal 

stability and it sinters at high temperature, leading to its deactivation. In recent years, a lot of 

efforts are devoted in designing the CeO2-based mixed oxide systems, with enhanced thermal 

stability. The mixed oxides of ceria with transition metals have attracted great attention in 

various heterogeneous catalytic applications. The redox properties of ceria based mixed oxides 

are dependent on particle size, lattice defects and chemical nonstoichiometry. The high specific 

surface area and porosity can be attained by tuning the particle size in nanometer scale.  

The aim of this work was to study the activity of Ce-Fe, Ce-Cu, Ce-Co, Ce-Zn and Ce-Ni 

mixed oxide nanoparticles in CWAO of industrial wastewater. A facile co-precipitation method 

was adopted for the preparation of mixed oxides. The physicochemical properties of prepared 

samples were studied by various characterization techniques, i.e, X-ray diffraction (XRD), 

Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), 

Raman spectroscopy (RS), N2-adsorption/desorption, Field emission scanning electron 

microscopy (FE-SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray 

spectroscopy (EDX).  

XRD indicated the successful preparation of nanosized mixed oxides with high lattice 

defects. FT-IR confirmed the interaction between metal oxides in mixed phases. XPS and 

Raman studies revealed the oxygen storage capacity of mixed oxides due to high oxygen 

vacancies and Ce
3+

 content. FE-SEM and TEM micrographs indicated the decrease in particle 

size with increasing transition metal oxide content. High surface area and porosity of catalysts 

was assured by N2-adsorption/desorption analysis. Thus characterization results indicated the 

suitability of these nanocatalysts for the oxidation application. 
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The prepared mixed oxides were used in CWAO of paper industry wastewater at 

atmospheric pressure. The efficiency of catalysts was quantified in terms of Chemical oxygen 

demand (COD), Total organic carbon (TOC), Biological oxygen demand (BOD), Color, 

Adsorbable organic halides (AOX) and Chlorophenolics (CHPs) removal. The optimized 

process variables i.e., initial pH of wastewater, catalyst dose, treatment time and treatment 

temperatures were found to be pH 4, 1 gL
-1

, 2 h and 90°C, respectively. These process 

variables were optimized for Ce-Fe mixed oxides, and same conditions were utilized for the 

removal study over other mixed oxides. The catalyst was recovered from the treated wastewater 

and supernatant was analyzed for the leaching of metal ions. 

Fe-Ce mixed oxides were found to be most efficient with 74% COD, 82% color, 72% 

TOC, 68% AOX and 71% CHPs reduction. Co-Ce and Cu-Ce mixed oxides presented 

comparable removal efficiency in terms of COD, Color, TOC and AOX removal. In term of 

CHPs, higher removal was observed over Cu-Ce mixed oxide. Zn-Ce and Ni-Ce mixed oxides, 

exhibited comparable removal of COD, color and AOX. In terms of TOC and CHPs removal, 

higher efficiency was attained for Zn-Ce mixed oxides. The removal efficiency of mixed oxides 

was found to follow the order of Fe-Ce > Co-Ce ≈ Cu-Ce > Zn-Ce > Ni-Ce. The leaching study 

indicated that the mixed oxides are stable catalysts. 

The efficiency of mixed oxides was in good agreement with their structural and textural 

properties. High removal efficiency of Fe-Ce mixed oxide was related to its high specific 

surface area, uniform pores and high oxygen storage capacity (Ce
3+

 content). The efficiency of 

Co-Ce and Cu-Ce mixed oxides was also in accordance with their characterization results. The 

low efficiency of Zn-Ce mixed oxides may be attributed to the presence of single oxidation 

state of Zn (i.e., 2+). While others exhibit the multiple oxidation states, like Fe (3+, 2+), Co 

(3+, 2+), Cu (2+, 1+) which can increase the oxidation property of catalyst. 
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Chapter 1 

Introduction                                          

 

1.1. Background and Motivation 

Water is the most abundant resource in nature, and is essential to sustain all the livings. The 

global demand of water has been on a continuous rise and perpetual provision of clean water is a 

grand challenge of 21st century [1-4]. Huge amount of wastewaters are generated in several 

industries like, chemical, pharmaceutical, petrochemical, paper industry etc. Rapid pace of 

industrialization has put water environment on stake, by the discharge of wastewaters [5-7]. The 

industrial wastewaters are complex and highly variable mixture of numerous compounds [8,9]. The 

presence of hazardous and toxic pollutants in industrial wastewaters is well reported [10-12]. 

These pollutants are posing threatening effect to all living beings [13,14]. The increasing 

environmental concerns and more stringent regulations has awaken the industries to minimize the 

menacing effects of discharged wastewater [15,16]. This has lead to increased interest in 

wastewater treatment technologies. 

Various methods have been adopted for the industrial wastewater treatment. Conventional 

treatment techniques applied for the removal of pollutants are physicochemical, thermal and 

biological methods. Sludge generation is the main drawback associated with the physicochemical 

techniques such as coagulation, precipitation and flocculation [17-19]. Incineration is very energy 

consuming and further leads to environmental issues due to emission of hazardous dioxins and 

furans [20]. Biological treatment is generally the widely employed secondary method for 

wastewater treatment. But, the presence of non-biodegradable, toxic and hazardous pollutants in 

wastewater limits its applicability, as they can inhibit the microbial activity [21-24]. 

Advanced oxidation processes (AOPs) emerged as more promising treatment methods. 

Various AOPs have been studied, including; ozonation, fenton oxidation and photocatalysis etc. 

[25-28]. Main drawbacks associated with AOPs is the use of high energy oxidants, like H2O2, 

ozone and/or photons, for the generation of ·OH radicals. Ozonation require ozone-off gas 

treatment and turbidity can absorb UV in photochemical treatments [29]. These limitations forced 

the researchers to develop an efficient technology able to work with mild oxidant.  
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1.2. Catalytic wet air oxidation (CWAO) 

Catalytic wet air oxidation (CWAO) is an advancement of the wet air oxidation (WAO) 

process originally developed by Zimmermann [30,31]. CWAO received a considerable interest in 

the research field of wastewater treatment as it utilizes the mild oxidant, i.e., air or oxygen. It 

mineralize the organic contaminants present in wastewater into biodegradable intermediates or 

innocuous compounds like CO2 and H2O [32,33]. In CWAO the operating temperature is typically 

190°C to 310°C and pressure is 0.5-5.5 MPa [34,35].  

Although, CWAO has dominating space, but successful commercialization of this technology 

at large scale is still a problem due to extreme operating conditions, confronted with the need of 

special equipment resulting in high operational costs [36-38].  

1.3. Heterogeneous catalysts for CWAO 

In order to decrease the cost and to increase the rate of reaction, both homogeneous and 

heterogeneous catalysts have been tried in CWAO of industrial wastewaters. Initial studies on 

CWAO were mainly centered on homogeneous catalysts, but the need of posterior separation step 

limited its applicability. Now days, research in the field of CWAO is mainly centered on 

heterogeneous catalysts, due to their easy separation without secondary pollution [39,40]. Various 

noble metals, metal oxides and their combinations are being extensively studied as heterogeneous 

catalysts in CWAO [41-43].  

1.3.1. Noble Metals 

The noble metals (Pt, Pd, Ru, Rh, and Ir) have been conventionally utilized in CWAO. Noble 

metal catalysts are found to exhibit the higher activities than base metal catalysts towards the 

oxidation of organic pollutants [44-47]. Still, the practical application of noble metals is limited as 

they are quite expensive materials. Therefore, several transition metal oxides are being tested as a 

cheaper alternative. 
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1.3.2. Metal Oxides 

Metal oxides are the most widely employed class of solid catalysts. Among these, oxides of 

Cu, Mn, Co, Ni, Fe, Bi and Ce are the most prospective species to compete with the noble metals 

[48-50]. The metal oxides are inexpensive, but their catalytic activity is relatively low, also the 

leaching of the active components is the main problem associated with these materials [51-53].  

1.4. Reaction mechanism of heterogeneous CWAO  

The Langmuir-Hinshelwood-Hougen-Watson (LHHW) adsorption model is the most accepted 

surface catalysis models for CWAO [54,55]. According to this model the reactants get absorbed on 

the catalyst surface, where the oxidation reaction takes place and products i.e. intermediates, CO2 

and H2O gets desorbed by reoxidizing the catalyst’s surface. 

CWAO takes place through radical mechanism [55,56]. In initiation step, catalyst (denoted by 

M) forms the free radical by electron transfer as shown in Equation 1.1. During propagation, 

peroxy radicals (ROO•) are generated by the reaction between (R•) radical and oxygen (Equation  

1.2-1.5). The free-radical reaction continues until free radicals (R•)  and (ROO•)   form stable 

compounds in termination step (Equation (1.6-1.7)).  

RH + M(	
�)
 → R• +  M	
 +  H
            (1.1) 

R• +  O� → ROO•                         (1.2) 

ROO• +  RH → ROOH +  R•                        (1.3) 

ROOH +  M	
  → RO• + M(	
�)
+ HO�                              (1.4) 

ROOH +  M(	
�)
  → ROO• +  M	
+ H
                      (1.5) 

R• + R•  → R − R                                            (1.6) 

R•  +  ROO•  → ROOR                             (1.7) 
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1.5. Literature review of heterogeneous CWAO 

Several studies have been reported on CWAO of complex industrial wastewaters and model 

compounds. This review discusses about the type of wastewater, catalyst, operating conditions and 

treatment efficiencies from various studies.  

1.5.1. CWAO of industrial wastewaters 

 Zhang et al. [57] investigated the Pd-Pt-Ce/Al2O3 catalyst for CWAO of pulp mill wastewater 

at 170°C and 1.5 MPa, where 99% color and 65% TOC were removed. There was no leaching of 

Pt and Ce, but Pd (0.14 mg l-1) and Al (41.1 mg l-1) leaching was detected. Pintar et al. [58] studied 

the CWAO of alkaline and acidic kraft bleaching plant effluents in presence of Ru/TiO2 and 

Ru/ZrO2 at 190°C, 5.5 MPa of air, and achieved 79% and 88% TOC removal, respectively. The 

rate of TOC decrease was related to the increase in specific surface area of oxides, additionally no 

leaching of Ru, Ti or Zr was detected. Goi et al. [59] attempted SiO2-dopped CeO2 (Si 6 wt.%) in 

CWAO of halogenated liquid wastes, i.e. pulp and paper bleaching liquor (BL), landfill leachate 

(LL) and heavily organic halogen polluted industrial wastewater (IW). The results indicated, up to 

80% COD and 90% AOX abatement from BL at 187 °C (pressure 2-3.5 MPa). For IW, the COD 

and AOX removal was 50% at 227°C. For LL, the COD removal was 40%, while there was a 

slight increase in AOX during reaction at 227°C. Belkacemi et al. [60] studied 1% Pt/Al2O3, 

Cu(II)-exchanged NaY zeolite and Mn/Ce oxides for CWAO of alcohol-distillery wastewater. The 

catalysts were found to exhibit about 55-75% TOC removal in temperature ranges of 180 to 250oC 

and pressure ranges from 0.5 to 2.5 MPa. Gomes et al. [61] tried the effectiveness of CWAO for 

olive oil mill wastewater over carbon supported Pt and Ir (1 wt.% Pt, 5 wt.% Ir) catalysts at 200 °C 

and 0.69 MPa of O2. After 8 h treatment time complete TOC and color removal was achieved. 

Minh et al. [62] tested the Ru and Pt supported on TiO2 and ZrO2 in CWAO of different olive oil 

mill wastewaters at 190 °C and 7 MPa. For Italian effluent (MIB) 96% TOC abatement was 

obtained with 3%Ru/ZrO2 catalyst, while 76% conversion was attained with 3%Pt/TiO2. In CWAO 

of Tunisian effluent (KD100), low TOC abatement (77%) was obtained with 3%Pt/TiO2, than 

3%Ru/TiO2 (87%) and 3%Ru/ZrO2 (90%). Yang et al. [63] reported 96% COD removal efficiency 

of eggshell like Ru/TiO2 catalysts during the CWAO of coke-plant wastewater at 250 °C and 4.8 

MPa. Han et al. [64] studied the Ce-Cu (1:2) catalyst loaded on carrier γ-Al2O3/TiO2 in CWAO of 

organic coking wastewater at 180°C and 1.2 MPa. The catalyst exhibited 95% COD removal with 
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copper ion leaching of 5.81 mg l-1. Chen et al. [65] reported the CWAO of low-biodegradable 

coking wastewater (raw and NH3-stripped) in presence of aminated activated carbon (AC) at 1 

MPa. The untreated raw coking wastewater presented low biodegradability with BOD/COD of 

0.29, while CWAO treatment at 150°C enhanced the ratio to 0.53. After treatment of NH3-stripped 

coking wastewater at 160°C, the BOD/COD ratio of 0.78 was achieved. Rodriguez et al. [66] 

tested 3 wt.% Cu/CNFs (carbon nanofibers) in CWAO of washing textile wastewater at 140°C, 

0.87 MPa. The catalyst achieved up to 97% color, 74% TOC and 43% toxicity reduction. Liu et al. 

[67] reported 96% phenol and 92% COD removal during the CWAO of resin effluent in presence 

of Ru supported (3 wt.%) on active carbon (AC)-ceramic sphere at 200 °C and 1.5 MPa. Hosseini 

et al. [68] studied the Ru/Ir oxide coated Ti monolith in CWAO of real pharmaceutical wastewater 

at 230 °C and 5 MPa. The catalyst achieved >95% COD and TOC removal during treatment.  

1.5.2. CWAO of model compounds 

Keav et al. [69] reported complete removal of phenol at 160˚C and 2 MPa over Pt/CeO2 

catalyst. Pintar et al. [70] reported 100% removal of phenol during CWAO at 130˚C and 1 MPa in 

presence of CuO(42 wt.%)-ZnO(47wt.%)-Al2O3(10%) catalyst. Hussain et al. [71] achieved the 

complete destruction of phenolic synthetic wastewater over potassium doped Mn-Ce-O mixed 

oxide at of 110 oC and 0.5 MPa. The catalyst presented very low leaching of Mn (0.6 mgL-1), Ce 

(<0.1 mgL-1), K (0.5 mgL-1). Stüber et al. [72] reported almost complete removal of phenol during 

CWAO in the presence of activated carbon at 160˚C and 0.71 MPa. Ovejero et al. [73] investigated 

the CWAO of phenol over Platinum supported on multiwalled carbon nanotubes (MWCNTs), and 

reported 94% phenol and 80% TOC conversion at 2 MPa and 200˚C. Yang et al. [74] utilized the 

CeO2-TiO2 (1/1) mixed oxides during CWAO of phenol in batch as well as packed-bed reactor. In 

batch reactor 100% and 77% removal of COD and TOC was achieved at 150˚C and 3 MPa. In 

packed-bed reactor 91% COD and 80% TOC removal were achieved at 140˚C and 3.5 MPa. The 

leaching of Ce and Ti ions was found to be very low, i.e., < 0.2 and 0.04 mgL-1, respectively. 

Rocha et al. [75] achieved upto 96% oxidation of phenol at 160˚C and 1 MPa over Pt/TiO2-Ce 

catalyst. Yang et al. [76] reported complete removal of phenol at 155°C and 2.5 MPa over 

MWCNTs functionalized by O3. Morales-Torres et al. [77] tested the Pt/ACs in the CWAO of 

aniline, and achieved complete removal at 200˚C and 5 MPa. The catalysts exhibited high stability 

with no Pt leaching. Levi et al. [78] reported the CWAO of aniline solution over nanocasted Mn-

Ce-oxide. The mineralization of aniline, TOC and nitrogen at 140°C and 1MPa was 100% 80% 
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and 90%, respectively. The catalyst was stable even after six runs with <1 mgL-1 Ce and 13 mgL-1 

Mn leaching. Hua et al. [79] investigated the CWAO of azo dye with CuO/γ-Al2O3 catalyst at 

80˚C, and achieved 100%, 80%, 70%, removal of color, COD and TOC. Presence of Ce in 

catalysts was found to increase the oxygen storage capacity (OSC), and to prevent the deactivation 

of the catalyst. Yang et al. [80] studied the complete degradation of succinic acid over 0.5 wt% 

Ru/Ce0.9Zr0.1O2 mixed oxide during CWAO at 190˚C and 5 MPa. There was no Ru or Zr leaching, 

while Ce leaching was 0.50 mgL-1.  

1.6. Catalyst selection criterion 

In spite of extensive research in the field of CWAO, still there is the need of a cost-effective, 

active and stable catalyst for the treatment of industrial wastewater at mild reaction conditions. It is 

well documented that during CWAO high temperature enhances the reaction rate, while high 

pressure improves the oxygen solubility in water [81,82]. Therefore, the catalyst with high 

reactivity and high oxygen buffering can be a good option. Followings are the criteria for selecting 

a catalyst for CWAO:  

(i) High surface area: Surface area of catalyst has a vital effect on the reaction rate. High surface 

area can be attained by decreasing the particles size up to nanometer scale. 

(ii) Porosity: Presence of porous channels provides high access to active sites. 

(iii) Oxygen storage capacity (OSC): Presence of oxygen vacancies has a decisive role as they 

increase the availability of oxygen during oxidation reaction. 

(iv) Thermal stability: Stability of material is an important parameter which limits the leaching of 

active species during high temperature operation. 

(v) Low cost: The catalyst material must be of low cost for the industrial application.   

(vi) Facile catalyst preparation: The catalyst preparation procedure should not be much 

complicated, time-consuming and expensive.  

Recently, Lafaye et al. [83] reported that nano-CeO2 with high surface area is an excellent support, 

due to its high oxygen storage capacity (OSC). Therefore, CeO2 based nanomaterials can be 

thought as a suitable candidate for the above addressed problem. 
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1.7. Cerium dioxide: structure and properties 

Cerium is most abundant among the rare earth elements or lanthanides. Around 50% of the 

rare earth raw material contains cerium in its oxide form. Cerium dioxide (CeO2, ceria) is the most 

stable oxide of cerium. It is most widely explored rare earth oxide [83,84], with important 

applications in the field of ceramics [85], gas sensors [86], fuel cell [87], solid state electrolyte 

[88], solar cell [89] and catalysis [90,91] etc. It crystallizes in the face-centered cubic (fcc) type 

structure where each cerium cation is bonded to eight oxygen anions and each oxygen atom is 

tetrahedrally coordinated by four cations [92]. The crystal structure of CeO2 is graphically 

presented in Figure 1.1. 

 

Fig.1.1. Crystal structure of CeO2  

CeO2 gained much attention due to its unique ability of shifting between two ionic states i.e., 

ceric ion (Ce4+) to cerous ion (Ce3+) or vice versa. This reversible transformation leads to the 

formation of non-stoichiometric oxide, i.e. CeO2-x. The oxygen storage capacity (OSC) of ceria 

depends on the reversible addition and removal of oxygen due to interchange of oxidation states 

(equation 1.8). Thus, it can respond to lack or excess of oxygen, either by loss/gain of oxygen 

to/from the surrounding [93-95]. 

−Ce�
 − O�� − Ce�
− →  −Ce�
 − □−Ce�
 − + �

�
O�             (1.8)  

The presence of oxygen vacancies is the intrinsic property for its potential applications. The 

density of oxygen vacancies is directly related to the Ce3+ fraction, which is quantified by the 
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Ce3+/(Ce3++Ce4+) ratio [96-98]. The defects in ceria are dynamic and may change spontaneously or 

due to some physical parameters like, temperature, electrical field, surface stresses and doping with 

other ions [99-102]. Ceria-based materials have been widely studied in environmental oxidation 

applications where the oxygen defects were found to promote the production of active radicals 

[103,104].  

1.7.1. Mixed metal oxides of CeO2 

Although CeO2 has widespread applications but, it suffers from the drawback of sintering at 

high temperature [105-106]. Therefore, much focus is given in developing its mixed metal oxides 

(MMOs). MMOs are the combination of two or more metallic oxides with more active sites, 

recyclability, high surface area and high thermal stability than the component oxides [107-109].  

MMOs are the largest family of heterogeneous catalysts for industrial applications [110-113]. The 

MMOs of ceria can be prepared either by doping [114,115] or mixing [116-118] with other metal 

oxides. Among metal oxides, the transition metals have dominating space due to their low cost, 

abundance and easy regeneration. Over the past several years, ceria-transition metal MMOs have 

attracted researchers in the field of environmental catalysis. The Fenton degradation of phenolic 

wastewaters for toxicity removal and biodegradability enhancement was studied over Fe-Ce solid 

catalysts [119]. FeIII supported on ceria was an effective catalyst in heterogeneous photo-oxidation 

of basic orange 2 [120]. The Mn-Co-Ce mixed oxides were selective catalysts during CO 

preferential oxidation reaction [121].  

Ceria-transition metal MMOs are reported to exhibit high O2-buffering capacity, which is 

attributed to the extended redox property of ceria-transition metal in comparison to pure CeO2. The 

redox property of transition metal oxide plays a crucial role in increasing the O2-buffering of 

MMOs and enables it to act as an oxygen reservoir. From the fundamental point of view, presence 

of more than one metal element in a common structure permits better alteration of local electronic 

properties [122-123]. The catalytic activity of CeO2 based MMOs can also be enhanced markedly 

by decreasing the particle size, thereby increasing the coordinatively unsaturated Ce active sites 

[124]. 
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1.8. Nanomaterials in wastewater treatment 

The rapid growth of nanotechnology offer great opportunity to develop the next-generation 

catalyst for wastewater treatment [125-126]. The capability behind nanotechnology was first 

envisioned as a talk entitled “There’s Plenty of Room at the Bottom” by physicist Richard 

Feynman at an American Physical Society meeting [127]. Nanomaterials have gained enormous 

interest as an alternative to the conventional materials [128-130]. They are excellent catalysts due 

to their high reactivity, specific surface areas and pore networks [131-134]. Their mobility in 

solution is remarkably high, which makes the scanning of whole volume possible in a very short 

time [135]. 

 

Fig.1.2. Role of Nanocatalyst in oxidation 
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Porous structure is an important feature of nanomaterials. The pores may exist between 

crystallites or between agglomerates. IUPAC has defined three types of pores, Micropores (with 

pore diameters < 2 nm), Mesopores (pore diameters 2 to 50 nm) and Macropores (pore diameters 

>50 nm). Out of these, mesopores of 5-20 nm are most significant as they can allow an even 

diffusion of reactants and products. The nanomaterials have been successfully applied in the fields 

of biochemical sensors [136], spintronics [137], catalysis [138-139] and energy [140], etc. A few 

nanomaterials have also been studied in CWAO of some model compounds at mild conditions 

[141,142]. The role of CeO2 based nanomaterials in oxidation is graphically presented in Figure 

1.2. 

1.9. Problem statement 

CWAO is a promising technique for industrial wastewater treatment. The drastic operating 

conditions during CWAO are disadvantageous as maintaining the process at extreme conditions is 

not favorable. Also the segregation of active species can take place during high temperature 

treatment. The catalyst able to exhibit good activity at mild conditions can be a good solution to 

this problem.  

Ceria is widely studied rare earth metal for numerous applications. Oxygen storage capacity 

(OSC) of ceria is the key property which makes it an excellent catalytic material. The oxidation 

property of ceria is dependent on oxygen vacancies. One way to induce the oxygen vacancies is the 

formation of mixed oxide with lower valent elements. In the present study, the transition metal 

oxides i.e., Iron (Fe), Copper (Cu), Cobalt (Co), Zinc (Zn) and Nickel (Ni) were utilized for the 

formation of ceria-transition metal mixed oxides. CeO2-based mixed oxide systems are reported  to 

have high thermal stability. Additionally the tuning of particle size in nanometer scale results in 

increased specific surface area and porosity, providing a larger number of active sites. 

The present work aims to evaluate the performance of Ce-Fe, Ce-Co, Ce-Cu, Ce-Zn, Ce-Ni 

mixed oxide nanoparticles for the removal of recalcitrant organic compounds in industrial 

wastewater through CWAO. 
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1.10. Objectives of the study 

In view of the above, following objectives were formulated:  

1. The primary objective was to prepare the nanosized ceria-transition metal mixed oxide, 

namely; Ce-Fe, Ce-Co, Ce-Cu, Ce-Zn, Ce-Ni, by co-precipitation method.  

 

2. The intensive physicochemical characterization of the structural, microstructural and 

textural properties of catalysts by various spectroscopic and non-spectroscopic techniques, 

i.e., X-ray diffraction (XRD), N2-adsorption-desorption, Fourier Transform Infrared 

Spectroscopy (FT-IR), Raman spectroscopy (RS), X-ray photoelectron spectroscopy 

(XPS), Scanning electron microscopy (FE-SEM), Transmission electron microscopy 

(TEM) and Energy dispersive X-ray spectrometer (EDX). 

 

3. To study the activity of catalysts towards CWAO of wastewater, in terms of chemical 

oxygen demand (COD), biochemical oxygen demand (BOD), color, total organic carbon 

(TOC), biodegradability index (BI = BOD/COD), adsorbable organic halides (AOX) and 

chlorophenolics (CHPs). 

 

4. To study the metal leaching and reusability of catalysts. 
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THESIS OUTLINE 

On the basis of work being done, this thesis has been organized into nine chapters. A brief 

description of the work is presented as follows:    

Chapter 1 throws light on the literature of heterogeneous catalysts for catalytic wet air oxidation 

(CWAO). The significance of cerium oxide is discussed with special emphasis on nanosized mixed 

metal oxides. This chapter gives an overview of the objectives of the research work presented in 

this thesis.  

Chapter 2 presents the experimental procedures adopted for the synthesis and application of 

catalysts. It also deals with the background of various environmental parameters of wastewater. A 

detailed discussion of the techniques used for characterization of catalysts is also included.  

Chapter 3 covers the results and discussion on the structural and textural characteristics of Ce1-

xFexO2 mixed oxides. The activity of Ce1-xFexO2 catalysts in CWAO of wastewater along with the 

optimization of operating variables is discussed.   

Chapter 4 describes the characterization results of Ce1-xCoxOy mixed oxides by various 

techniques. The chapter also presents the activity studies of Ce1-xCoxOy nanocatalysts in CWAO of 

wastewater. 

Chapter 5 enlightens the characterization results of CuO-CeO2 nanoparticles, followed by their 

application in the oxidation of organic pollutants present in wastewater by CWAO. 

Chapter 6 presents the results and discussion on the structural and textural characteristics of NiO-

CeO2 catalysts. The application NiO-CeO2 nanocatalyst for CWAO of wastewater is also explored.  

Chapter 7 is focused on the discussion of characterization results of ZnO-CeO2 nanoparticles, 

followed by their activity studies in CWAO of wastewater. 

Chapter 8 compares the characteristics and activity of catalysts (Ce-Fe, Ce-Co, Ce-Cu, Ce-Zn, 

Ce-Ni), also a correlation between property and activity of catalysts is discussed.  

Chapter 9 concludes this thesis with the main conclusions. Some recommendations and future 

work are also discussed, based on the conclusions drawn from the work presented. 
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Chapter 2 

Material and Methods                                          

 

2.1. Reagents and chemicals 

 The chemicals used for catalyst preparation i.e., Fe(NO3)3.9(H2O), Cu(NO3)2.3H2O, 

Co(NO3)2.6H2O, Zn(NO3)2.6H2O, Ni(NO3)2.6H2O, Ce(NO3)3.6H2O and NaOH were of analytical 

grade. The standard compounds of chlorophenols (CP) were supplied by Aldrich, (Milwaukee, WI, 

USA). Chlorovanillin (CV), Chloroguaiacols (CG), Chlorocatechols (CC), chlorosyringaldehyde 

(CSA), chlorosyringol (CS) were purchased from Helix Biotech (Richmond, BC, Canada). The 

solvents like acetone and n-hexane were of HPLC grade, ethanol and diethyl ether were of LR 

grade. Acetic anhydride (analytical-grade) was used after double distillation. The stock solutions of 

chlorophenolics were prepared in acetone:water (10:90) solution.  

2.2. Wastewater sample 

The wastewater sample was procured from after primary clarifier outlet of a paper industry, 

located in India (Figure 2.1). 1M H2SO4 solution was used to adjust the pH of wastewater. 

2.2.1 Paper industry wastewater 

Paper industry wastewater is highly polluted due to high COD (chemical oxygen demand), 

color, BOD (biological oxygen demand), TOC (total organic carbon), AOX (adsorbable organic 

halides) and CHPs (chlorophenolics) [1-3]. Approximately 700 inorganic and organic compounds 

have been detected in paper industry wastewater, which includes; chlorinated compounds, fatty 

acids, tannins, stilbenes, resin acids, lignin and its derivatives, sulfur and its compounds etc. [4,5]. 

Bleach plant alone accounts for 60-70% of BOD and 80-90% of color loads [6]. The dark brown 

color of wastewater is due to lignin and its derivatives formed during beaching [7,8].  

The chlorinated compounds present in paper industry wastewater are toxic in nature. 

Approximately, 200 chlorinated organic compounds are reported to be present in paper industry 

wastewater, which are collectively estimated as AOX [4,9]. These chlorinated compounds are 

chloro-hydrocarbons, chloro-phenolics, chloro-resins and fatty acids, chloro-furans and dioxins, 
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chloroform, chlorate etc. [10,11]. Some of the compounds listed above have been classified as 

priority pollutants by EPA, US [12]. The toxic effects of these compounds are well reported on the 

daphnia, planktons and fish [13-15].  

 

Fig. 2.1. Paper industry wastewater sample before treatment 

2.3. Catalyst Synthesis  

The metal oxide nanoparticles were synthesized by co-precipitation method in the following 

steps [16-18]:   

1.  Metal nitrate solutions (1M stock solution) were mixed according to the required ratios.  

2. Solution was stirred for 15 min for homogeneous mixing.  

3. To this solution, drop-wise addition of 0.5 M NaOH was done at 70 °C, till the pH value of 10 

was attained.  

4. After 2 h ageing, the obtained precipitates were thoroughly washed with ethanol and deionized 

water mixture (1:1). 

5. The precipitate was dried overnight at 110
 
°C to obtain the hydroxide precursor.  

6. Hydroxide precursor was calcined at 400 °C for 3 h, in presence of air. 
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2.4. Catalyst Characterization techniques 

2.4.1. X-ray diffraction (XRD) 

The crystal structure, phase composition, crystallite size, lattice parameters and structural 

imperfections of catalysts were studied from XRD analysis. The XRD analysis was performed on 

Bruker AXS D8 diffractometer (Figure 2.2) equipped with CuKα radiation (λ= 0.154 nm). The 

diffractograms were collected in the 2θ range 20-80°, at a scanning rate of 2° min
-1

.  

XRD is based on the unique diffraction pattern of each crystalline phase [19-21]. The obtained 

diffraction patterns were matched with the standard JCPDS files, published by American society 

for testing materials. The crystallite size was determined by the Scherrer equation:  

D��� =
�.�λ

β	
�

cosθ           (2.1) 

Where, Dhkl is crystallite size, λ is wavelength of Cu Kα radiation, βhkl is full width at half 

maximum (FWHM) and θ is Bragg diffraction angle 

Lattice parameter (a) of cubic unit cell was calculated from the equation: 

a = d (h� + k� + l�)�/�    (2.2) 

Where; a is lattice constant, d is distance between two lattice planes and h, k, l are Miller indices 

2.4.2. Fourier Transform-Infrared Spectroscopy (FT-IR) 

FT-IR was employed as an additional tool for the identification of inorganic species [22,23]. 

The Infrared induced vibrations were recorded on a Perkin Elmer C91158 spectrometer at a scan 

speed of 4 cm
-1

 (Figure 2.3). The samples for FT-IR were first evacuated and then prepared by 

KBr pellet procedure.  

 



 

Fig. 2.2. X-ray diffractometer

Fig. 2.3. Fourier Transform-

2.4.3. Raman Spectroscopy (RS) 

Raman spectroscopy was carried out 

nanocrystals due to formation of mixed oxides

with the oxygen lattice vibrations [24,25

spectrometer (invia Raman Microscope

nm line of Ar ion laser.  
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ray diffractometer (Bruker AXS D8) 

 

-Infrared Spectrometer (Perkin Elmer C91158) 

Raman spectroscopy was carried out to understand the structural changes 

nanocrystals due to formation of mixed oxides and to characterize the oxygen vacancies

24,25]. The Raman analysis was performed on a Renishaw 

(invia Raman Microscope, Figure 2.4), where samples were excited using the 514 

 

changes in CeO2 

to characterize the oxygen vacancies, as it deals 

a Renishaw 

were excited using the 514 



 

Fig. 2.4

Fig. 2.5. X-ray photoelectron spectroscope

 

2.4.4. X-ray photoelectron spectroscopy (XPS)

XPS was utilized to 

spectra was recorded on a PHI 5000 Versa Probe II

source (hν = 1486.6 eV). The binding energy (BE) scale was 

line (284.6 eV) as a reference 

 

31 

Fig. 2.4. Raman Microscope (Renishaw, invia Raman)

 

ray photoelectron spectroscope (PHI 5000 Versa Probe II

ray photoelectron spectroscopy (XPS) 

to identify the oxidation states of metals in catalyst [

recorded on a PHI 5000 Versa Probe II (Figure 2.5) using a monochromatized 

 = 1486.6 eV). The binding energy (BE) scale was calibrated by applying the carbon 1s 

line (284.6 eV) as a reference charge.  

 

invia Raman)  

 

Versa Probe II) 

in catalyst [26-28]. The XPS 

using a monochromatized Al-Kα 

calibrated by applying the carbon 1s 



 

2.4.5. N2-adsorption/desorption  

Gas sorption is a prominent method t

[29,30]. The adsorption isotherms were 

a function of relative pressures. Desorption isotherms wer

as the pressure is reduced. The shape of 

N2 sorption was performed on a Quantachrome ASiQwin™

nitrogen temperature of -196°C. The sample was degassed under high vacuum at 

Specific surface area was calculated by applying

relative adsorbate pressures (p/po) data

Density functional theory (DFT). Both BET

Total pore volume of samples was estimated from the volume of 

Fig. 2.6. Gas sorption

2.4.6. Field emission scanning electron microscopy (FE

The surface morphology of samples was 

was carried out using a Quanta 200F microscope

kV.  Prior to analysis, samples were subjected to gold sputtering 

60 sec in order to create a conductive layer on their surface. 
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Gas sorption is a prominent method to study the specific surface area and porosity 

 obtained by measuring the amount of adsorbed nitrogen as 

esorption isotherms were obtained by measuring the removed gas 

as the pressure is reduced. The shape of sorption isotherms assures the porous texture of 

Quantachrome ASiQwin™ instrument (Figure 2.6

The sample was degassed under high vacuum at 120 °

area was calculated by applying the Brunauer, Emmett and Teller (BET

) data, and the pore size distribution (PSD) was obtained by 

BET and DFT were included within the ASiQwin

Total pore volume of samples was estimated from the volume of adsorbed nitrogen.  

 

Gas sorption analyzer (Quantachrome ASiQwin™) 

2.4.6. Field emission scanning electron microscopy (FE-SEM) 

The surface morphology of samples was studied by FE-SEM technique [31]. FE-

Quanta 200F microscope (Figure 2.7) with an accelerating voltage of 20 

kV.  Prior to analysis, samples were subjected to gold sputtering at argon pressure of 10

conductive layer on their surface. The elemental composition of catalyst 

 of material 

amount of adsorbed nitrogen as 

e obtained by measuring the removed gas 

the porous texture of catalyst. 

6) at liquid 

°C for 12 h. 

BET) theory to 

he pore size distribution (PSD) was obtained by 

ASiQwin software. 

-SEM study 

with an accelerating voltage of 20 

argon pressure of 10
−2

 mbar for 

composition of catalyst 



 

was confirmed by Energy

1005) coupled with the FE-

Fig. 2.7. Field emission scanning

2.4.7. Transmission Electron Microscopy (TEM) 

The detailed study of particle size

[32,33]. TEM micrographs were recorded on a 

(Figure 2.8) was. The samples were prepared by 

depositing them over a thin carbon film supported on a standard copper grid.

2.5. CWAO treatment assembly

The batch oxidative degradation 

pressure. The reactor (Figure 2.

(to limit the loss of reaction mixture

controlled water bath was used for heating the reactor. 

catalyst was loaded into the reactor followed by oxygen 

CWAO experiments were performe

by the following expression:

RE =
��� !�� 

��� 
" 100          

Where; RE is the removal efficiency

33 

by Energy-dispersive X-ray spectrometer (EDX, Oxford Instruments, 51 XMX 

-SEM chamber. 

Field emission scanning electron microscope coupled with EDX

.7. Transmission Electron Microscopy (TEM)  

study of particle size and pore structure of samples was

micrographs were recorded on a Tecnai G
2
 STWIN microscope,

amples were prepared by ultrasonically dispersi

depositing them over a thin carbon film supported on a standard copper grid.

reatment assembly 

The batch oxidative degradation experiments were carried out in a glass reactor at 

Figure 2.9) was equipped with a gas inlet (for oxygen supply

to limit the loss of reaction mixture) and a stirrer (for good mass transfer

controlled water bath was used for heating the reactor. The wastewater and weighed amount of 

catalyst was loaded into the reactor followed by oxygen (O2) introduction through gas inlet.

experiments were performed in duplicate. The percent removal efficiency was quantified 

by the following expression: 

    (2.3) 

e; RE is the removal efficiency(%); Co and C, are initial and final concentration of pollutants.

Oxford Instruments, 51 XMX 

 

electron microscope coupled with EDX (Quanta 200F) 

as done by TEM analysis 

microscope, operating at 200 kV 

dispersion in ethanol and then 

depositing them over a thin carbon film supported on a standard copper grid.  

glass reactor at atmospheric 

for oxygen supply), a condenser 

good mass transfer). A temperature 

The wastewater and weighed amount of 

introduction through gas inlet. All 

d in duplicate. The percent removal efficiency was quantified 

and C, are initial and final concentration of pollutants. 



 

 

Fig. 2.8. Transmission 

                              

Fig. 2.9. Schematic diagram of
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Transmission Electron Microscope (Tecnai G
2
 STWIN) 

 

Schematic diagram of experimental set-up for CWAO 
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2.6. Analytical methods for wastewater characterization 

The physicochemical analysis of wastewater before and after CWAO experiments was 

performed according to the standard methods for wastewater analysis [34].  

2.6.1. Chemical oxygen demand (COD)  

COD indicates the equivalent amount of oxygen, which is required to chemically oxidize the 

organic compounds [35]. COD was measured by closed reflux titrimetric method, where the 

sample was refluxed in a mixture of chromic (K2Cr2O7) and sulfuric acids, using a block heater 

operating at 150 ± 2 °C. After digestion, the amount of consumed K2Cr2O7 was determined by 

titrating the unreduced K2Cr2O7 with ferrous ammonium sulfate (FAS) in presence of ferroin 

indicator. COD was calculated using following expression:  

COD as mg O� L!� =
(*!+) " , " -���

./ 01.2�3
             (2.4)    

Where; A is FAS used for blank (mL), B is FAS used for sample (mL), M is molarity of FAS and 

8000 is milli-equivalent weight of oxygen × 1000 ml L
-1 

2.6.2. Biological Oxygen Demand (BOD)  

BOD measures the biodegradable fraction of organic load in wastewater [36]. BOD5 was 

determined by measuring the dissolved oxygen (DO) before and after incubation of samples at 20 

°C for 5 days using following expression:     

BOD5 mg L!� =
(67!68)!9:

;
            (2.5) 

Where; D1 is DO of sample before incubation, D2 is DO of sample after 5 day incubation, Vs is 

volume of seed and P is decimal volumetric fraction of sample 

2.6.3. Color  

Paper industry wastewater is highly colored [37]. The color values of wastewater were 

assessed by UV-Visible spectrophotometer (SPEKOL 2000, Analytic Jena) at a wavelength of 465 

nm. Before color measurement, the pH of wastewater was adjusted to 7.6 followed by 

centrifugation at 1500 rpm. The color values were calculated from the calibration curve made 

between absorbance and color units for different concentrations of standard Pt-Co solution [38]. 



 

2.6.4. Total Organic Carbon (TOC)  

TOC is an important collective parameter for the organic load of 

was determined by the Shimadzu TOC

combustion oxidation of organic carbon to 

method, where the difference between total carbon 

TOC value. 

2.6.5. Adsorbable organic halogen (AOX) 

AOX was analyzed by a Dextar AOX analyzer

(Figure 2.11). For AOX analysis, sample was firstly subjected to the activated charcoal column, 

where halogens get adsorbed. Halogen

stream of pure oxygen at a temperature of 900 °C

absorbed in acetic acid through the exhaust gas of 

titration (electrochemical method) was utilized for the 

Fig. 2.10. TOC 
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parameter for the organic load of wastewater [39]. 

the Shimadzu TOC-L CPH TOC analyzer (Figure 2.10) based on 

of organic carbon to CO2. The analysis was carried out through 

total carbon (TC) and total inorganic carbon (IC)

Adsorbable organic halogen (AOX)  

a Dextar AOX analyzer based on combustion ion chromatography

sample was firstly subjected to the activated charcoal column, 

Halogen loaded charcoal was then offered to combustion 

stream of pure oxygen at a temperature of 900 °C. After combustion, the halogen atoms 

exhaust gas of incineration furnace. The microcoulometric 

was utilized for the quantification of halogens as AOX

 

 analyzer (Shimadzu TOC-L CPH) 

. TOC value 

based on catalytic 

analysis was carried out through difference 

(IC) gives the 

combustion ion chromatography 

sample was firstly subjected to the activated charcoal column, 

loaded charcoal was then offered to combustion in the 

alogen atoms were 

icrocoulometric 

as AOX. 
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Fig. 2.11. AOX analyzer (Thermo Electron Corporation, Dextar AOX analyzer) 

2.6.6. Gas Chromatography Mass Spectrometry (GC-MS)  

 The qualitative and quantitative analysis of chlorophenolic compounds (CHPs) was done by 

GC-MS. For this analysis, CHPs were first extracted from wastewater by liquid-liquid extraction 

method.  

2.6.6.1. Extraction and Derivatization of CHPs 

CHP’s were extracted by following the procedure outlined by Lindstrom et al. [40]. The pH of 

wastewater (1 L) was adjusted to 2 with dilute H2SO4. 400 mL of diethyl ether/acetone (90/10) 

mixture was added to the acidic wastewater, and was kept for 48 h. The emulsion formed in the 

ether layer was broken by a heat gun. After 48 h, the whole ethereal extract of the sample was 

transferred into another separating funnel, and shaken with 0.5 M NaHCO3 (5 mL) solution to 

remove the acidic impurities. Then the ether layer was shaken with 0.5 M NaOH (5 mL) of 

solution. The aqueous NaOH layer (containing CHPs) was separated and washed with diethyl ether 

(10 mL) for the removal of neutral impurities. Before injection into GC-MS, the extracted CHPs 

were converted to readily volatilized acetyl derivatives through acetylation reaction. 

Acetylation was done by the procedure suggested by Abrahamsson and Xie et al. [41]. After 

extraction of 1 L wastewater, around 4 mL extract was obtained. Total effluent extract (4 mL) was 

diluted to 4.5 mL using distilled water. 0.5 M Na2HPO4 (0.5 mL) buffer solution was added to the 

diluted sample, and shaken for 2 min. Then acetic anhydride (0.5 mL) was added, and the solution  
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Figure 2.12. Schematic diagram for extraction of Chlorophenolic compounds from wastewater 

 

Aqueous Layer Ether Layer 

Discard 

Washing with 0.5 M 

NaHCO  

Aqueous Layer 

Aqueous Layer 

(CHP’s) 
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Acetyl derivatives of CHP’s 

Qualitative and quantitative analysis by GC-MS 

Discard 

Ether Layer 

Effluent Sample (pH 2) 

Extraction with 400 mL of 

acetone & diethyl ether mixture 

Discard 

Washing with 10 mL diethyl ether 

+ 

Acetylation 
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Table 2.1. GC-MS conditions for analysis of Chlorophenolic compounds 

Gas Chromatography 

Parameter                 Condition 

Mass Spectrometer 

Parameter                         Condition 

Column Capillary column 

(TR-5) 

Ionization mode Electron Impact 

(EI)  

Column dimension 30 m x 0.25 mm  Ionising energy (eV) 70  

Detector Mass Spectrometer Scan range (m/z)  42 to 336 

Film thickness 0.25 µm Scan speed (amu/sec)  216.7 

Sample injection 

volume  

1 µL Fore pressure (mTorr)  38 to 45 

Sample injection 

mode 

Split less Ion source temperature 

(°C) 

200 

Carrier gas (Flow 

rate) 

Helium (1mL/min) Mass transfer line (°C) 280 

Injector temperature 

(°C) 

210   

Column temperature 

(°C) 

45 for 1 min  

45 to 280 at  6°C 

min
-1

 

280 for 25 min
-1

 

- - 

 

 

was shaken for 5 minutes for the derivatization of CHPs. The acetyl derivatives of CHPs were 

extracted in 1 mL of n-hexane [42]. The acetyl derivatives from n-hexane layer were injected into 

GC column by an auto sampler (AI 3000, Thermo Electron Corporation). A schematic flow sheet 

of detailed procedure followed for CHP’s extraction and derivatization is presented in Figure 2.12. 
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2.6.6.2.GC-MS conditions 

GC-MS analysis was done by a Trace GC Ultra-DSQ, Thermo Electron Corporation 

instrument (Figure 2.13), equipped with a TR-5 capillary column, containing 5% phenyl methyl 

polysiloxane. The CHPs in wastewater (as acetyl derivative) were first identified by matching their 

mass spectrum with the NIST library. Once the compounds were identified, retention time (RT) 

was determined by injecting the pure standard solutions of respective CHP.  The GC and MS 

conditions used are presented in Table 2.1. 

 

 

Figure 2.13. Gas Chromatograph-Mass Spectrometer (Thermo 

Electron Corporation, Trace GC Ultra-DSQ) 

2.6.6.3.Quantitative analysis of CHPs 

The quantitative analysis of CHPs was carried out with the help of calibration curve and 

extraction efficiency. For calibration curve, the standard solutions of CHPs were injected at 

different concentrations. For extraction efficiency, the standard solution (1 mL) of particular CHP 

was diluted to 1 L, followed by extraction and derivatization by the above mentioned procedure 

(section 2.6.6.1.). The derivatized sample (1 µL) was injected and the peak area was determined in 

order to find out the quantity of CHP in extracted sample, as outlined by Choudhary et al. [43]. 

 

 



 

2.6.7. Inductively Coupled Plasma Optical Emission Spectrometry (

The amount of leached metal in wastewater after CWAO was studied by 

emission spectrophotometric technique

(atoms) in presence of plasma energy.

energy at multiple wavelengths. The intensity of the emitted radiation at 

indicates the concentration of element

Labs, ICP-OES, Prodigy Spec, 3043 equipment

were prepared by diluting the

water (using 5% HNO3). 

Fig. 2.14. ICP-OES
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. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES

The amount of leached metal in wastewater after CWAO was studied by 

emission spectrophotometric technique, which is based on the excitation

plasma energy. When these excited atoms return to gro

energy at multiple wavelengths. The intensity of the emitted radiation at 

the concentration of element [44,45]. ICP-OES analysis was done on a 

OES, Prodigy Spec, 3043 equipment (Figure 2.14). The working standard solutions 

ing the standard solution (VHG Labs, LGC Standards, USA) with deionized 

OES spectrophotometer (Leeman Labs, ICP-OES, Prodigy Spec

OES)  

The amount of leached metal in wastewater after CWAO was studied by ICP-OES. It is an 

ation of component elements 

When these excited atoms return to ground state, they emit 

energy at multiple wavelengths. The intensity of the emitted radiation at particular wavelength 

was done on a Teledyne Leeman 

orking standard solutions 

standard solution (VHG Labs, LGC Standards, USA) with deionized 

 

OES, Prodigy Spec) 
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Chapter 3 

Fe-Ce Nanocatalysts: Characterization and Application in CWAO    

 

Fe2O3 is gaining remarkable interest in many scientific and industrial fields, as it is cheap, 

abundant, easy to synthesize and environmentally benign [1]. Fe2O3 based materials are 

particularly appealing in the field of oxidation catalysis [2,3]. A number of studies indicated the 

environmental applications of Fe2O3 based materials. The yolk-shell Fe2O3@mesoporous SiO2 

nanoreactors achieved 90% degradation of methylene blue through Fenton-like reaction [4]. 

Graphene oxide-Fe2O3 (GO-Fe2O3) hybrid material exhibited 99% discoloration and 76% TOC 

removal during the photo-Fenton degradation of Rhodamine B [5]. Iron-cerium mixed oxide was 

efficient photocatalyst in degradation of phenol (13%), methylene blue (93%) and congo red 

(100%) [6]. Fe2O3/SBA-15 achieved 66% TOC conversion of phenolic effluent through catalytic 

wet peroxide oxidation (CWPO) [7].  Ce1-xFexO2 solid solution was also efficient in the oxidation 

of CO [8,9].  

Based on these oxidation applications of Fe2O3, it was selected for the formation of mixed 

oxide with CeO2. A series of Ce1-xFexO2 mixed oxides (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1) were 

synthesized by co-precipitation method (discussed in Chapter 2) and characterized by various 

techniques. Present chapter deals with the result and discussions related to the structural and 

textural characteristics of Ce1-xFexO2 mixed oxides, followed by their activity towards CWAO of 

wastewater. 

3.1. Characterization of Ce1-xFexO2 mixed oxides 

3.1.1. XRD analysis 

The phase composition, crystal structure, crystallite sizes, lattice parameters and structural 

imperfections of catalysts were studied from X-ray diffraction (XRD) analysis. XRD patterns of 

Ce1-xFexO2 mixed oxides are presented in Figure 3.1 (a). XRD patterns illustrated the effect of 

incorporation of Fe ions into ceria matrix with varied composition. The diffraction pattern for CeO2 

match well with the characteristic cubic peaks at 2θ values of 28.5°, 33°, 47.4°, 56.3°, 

corresponding to (111), (200), (220), (311) crystal planes, respectively (JCPDS 81-0792).  
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Fig.3.1. (a) XRD pattern of samples (b) low angle region from 27-30°  
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For Fe2O3, all the reflections were characteristic of tetragonal hematite structure with peaks at 2θ 

values of 33.1°, 35.6°, 49.4°, 54°, 62.4°, 64°, corresponding to (104), (110), (024), (116), (214), 

(300) crystal planes, respectively (JCPDS 86-0550). In mixed oxides, no peak corresponding to 

Fe2O3 phase was found upto x≤0.6. A weak diffraction peak at 2θ value of 35.4° corresponding to 

(110) crystal plane of Fe2O3 was obtained in Ce0.2Fe0.8O2 mixed oxide. It showed the successful 

incorporation of Fe into ceria lattice upto x=0.6, while in case of Ce0.2Fe0.8O2 precipitation of Fe2O3 

takes place as a separate phase. For mixed oxides the characteristic ceria peaks (111) were shifted 

to higher angles (28.5 to 28.7°), indicating the decrease in lattice parameter and hence increased 

lattice deformation [9]. The shifting is shown in the low angle region from 27 to 30° (Figure 

3.1(b)). Similar findings have also been reported by Sirichaipraserta et al. [10].   

The average crystallite size and lattice parameters are presented in Table 3.1. As expected, the 

crystallite size of CeO2 was smaller in mixed oxides. There was no significant change in the 

crystallite size of Fe2O3, indicating the formation of CeO2-like solid solution. This decrease in 

crystallite size was related to the presence of dopant ions (Fe), which inhibited the grain growth 

[11,12]. As expected, the lattice parameter of CeO2 was decreased for mixed oxides. This decrease 

was due to the small ionic radii of Fe ions, which contributed to CeO2 lattice contraction [13,9]. 

The overall trend of decrease in lattice parameters was in accordance with the previous studies [14-

16]. This lattice contraction indicated the presence of oxygen vacancies in mixed oxides [17,18].  

3.1.2. FTIR analysis 

The interaction between two phases was ascertained by FT-IR study. FTIR spectra of CeO2, 

Ce0.4Fe0.6O2 and Fe2O3 catalysts are presented in Figure 3.2. CeO2 showed a broad band at 560 cm-

1, corresponding to Ce-O vibrations [19]. Fe2O3 exhibited two strong bands at 540 cm-1 and 464 

cm-1, which can be assigned to Fe-O bonds in the internal structure of  Fe2O3 [20]. For Ce0.4Fe0.6O2 

mixed oxide, Fe-O band at 540 cm-1 was shifted to 510 cm-1 and second band at 464cm-1 was 

decreased to 430cm-1. This red shift (decrease in frequency) was due to increase in lattice 

parameter from Fe2O3 (5.043 Å) to Ce0.4Fe0.6O2 (5.069 Å), which is in agreement with the results 

reported by Harish et al. [21]. Decreased band intensity for Ce0.4Fe0.6O2 mixed oxide supported the 

interaction between CeO2 and Fe2O3 phases. 
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Fig.3.2. FTIR spectra of catalysts 

 

3.1.3. Raman analysis 

Raman spectroscopy was carried out to characterize the oxygen vacancies, as it is sensitive to 

the crystal symmetry and deals with the oxygen lattice vibrations. Raman spectra of Ce1-xFexO2 

catalysts are presented in Figure 3.3 (a). CeO2 exhibited a prominent F2g peak at 460 cm-1, 

corresponding to symmetric breathing mode of oxygen atoms around cerium ions (Ce4+) [22,23]. 

For Ce1-xFexO2 mixed oxides, a weak and less-prominent broad band was observed at 530 to 740 

cm-1.  This broad band was deconvoluted in two bands centred at 600 cm-1 and 675 cm-1.  First 

band at 600 cm-1 was due to the Raman inactive LO mode caused by relaxation of symmetry 

selection rules [24-26]. 
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Fig.3.3. (a) Raman spectra of catalysts (b) variation of I600/I460 with Fe content 

In particular, this band was attributed to the intrinsic oxygen vacancies which are formed due to 

the presence of Ce3+. Second weak band at 675 cm-1 indicated the presence of small amount of 

Fe3O4 in the surface layer of mixed oxide. The shifting of Raman peaks was related to the 

structural changes in mixed oxides, as suggested by XRD analysis. The concentration of oxygen 

vacancies was compared by calculating the intensity ratio of bands at 600 and 460 cm-1 [27]. 

Figure 3.3 (b) shows the variation of I600/I460 as a function of Fe concentration. The I600/I460 was 
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increased with increasing Fe content and reached a maximum for Ce0.4Fe0.6O2 mixed oxide. The 

value of I600/I460 was significantly higher than the previous reports [28,29], indicating appreciably 

high concentration of oxygen vacancies. Fe2O3 exhibited the Raman peaks at 225, 245, 292, 408 

and 497 cm-1, corresponding to α-Fe2O3 [30]. 

3.1.4. XPS analysis 

The oxidation state of metal ions in Ce0.4Fe0.6O2 mixed oxide was confirmed by XPS 

spectra deconvoluted using a peak fitting process. Ce 3d spectra (Figure 3.4 (a)) exhibited three 

main 3d5/2 features at the binding energies of 881.8 eV, 887.6 eV, 897.4 eV corresponding to v, v′′, 

v′′′ components, respectively. The 3d3/2 feature corresponding to u, u′′ and u′′′ component were 

observed at 899.9 eV, 906.1 eV and 915.7 eV. The v, v′′, v′′′, u, u′′ and u′′′ peaks are characteristic 

of Ce4+ oxidation state (CeO2), with v and u splitting of 18.4 eV. Additional peaks corresponding 

to v′ (884 eV), u′ (902 eV), vo (880.8 eV) and uo (899 eV) components indicated the presence of 

Ce3+ [31]. These results are in good accordance with the previous studies [32,33]. The atomic 

fraction of Ce3+ was calculated from the integrated peak areas according to the following 

equations: 

Ce�� = v� + v′ + u� + u′       (3.1) 

Ce�� = v + v′′ + v′′′ + u + u′′ + u′′′    (3.2) 

% Ce�� =
����

���������             (3.3)  

Ce3+ percentage was found to be 28%, confirming the under stoichiometric ceria. This percentage 

indicates the significant oxygen vacancies as stated in earlier reports [34-36]. Some theoretical 

studies have related the presence of Ce3+ to the formation of oxygen vacancies [37,38]. Figure 3.4 

(b) presents the Fe 2p core level binding energy spectra for Ce0.4Fe0.6O2 mixed oxide. The peak 

profile indicated strong binding energies centered at around 709.4 eV and 723 eV assigned to Fe2+. 

The peaks centered at about 711.5 and 725 eV can be ascribed to Fe3+ in the spinal structure. The 

spectra also exhibited well-defined shake-up satellite peaks at 716.8 eV and 731.7 eV [39-41]. O 

1s spectra (Figure 3.4 (c)) exhibited three components, the relative percentage of each component 

is provided in parenthesis. The peak centered at 528.5 eV was related to the lattice oxygen/ 

structural oxygen (69.5%). The peak at 531.4 eV indicated the presence of adsorbed surface 
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oxygen in the form of OH ions (9.4%). The additional peak at 530.2 eV was related to the 

supercharged oxygen (O�
� ) near oxygen vacant sites at the surface (21%) [42]. This particular peak 

evidenced the oxygen storage/release capacity of the nanocatalyst [43,44]. Thus XPS analysis 

indicated the presence of oxygen vacancies accompanied with Ce4+ reducing to Ce3+ in presence of 

Fe3+ and Fe2+ ions. 
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Fig.3.4. Fitted XPS spectra of Ce0.4Fe0.6O2 mixed oxide (a) Ce 3d (b) Fe 2p (c) O 1s 
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3.1.5. N2-adsorption/desorption analysis  

The adsorption-desorption isotherm of CeO2, Ce0.4Fe0.6O2 and Fe2O3 catalysts are presented in 

Figure 3.5 (a). The inflection in adsorption isotherm at high relative pressure indicated the 

presence of secondary pores. The desorption isotherms gave rise to the narrow hysteresis, 

indicating the irregular shape of pores [45]. Pore size distribution (PSD) confirmed the presence of 

pores with wide distribution for CeO2 and Fe2O3 (Figure 3.5 (b). Ce0.4Fe0.6O2 mixed oxide 

presented relatively uniform pores of 3-5 nm. The BET specific surface areas of catalysts along 

with pore volume are listed in Table 3.1. Pure CeO2 exhibited low specific surface area of 20 m2/g 

and pore volume of 0.0897 cc/g. Surface areas and pore volume were found to increase with 

increasing Fe content and reached the maximum (149 m2g-1, 0.283 ccg-1) for Ce0.4Fe0.6O2 mixed 

oxide. The surface area and pore volume of Ce1-xFexO2 mixed oxides are appreciably higher than the 

previous reports on Ce-Fe mixed oxides synthesized by sol-gel [46], chemical looping [47] and co-

precipitation method [8,9]. The surface area of Ce1-xFexO2 catalysts was comparable to the study 

by Liang et al. [48], where synthesis was carried out by impregnation method using the carbon 

material as a template (3234 m2 g-1, 1.78 ccg-1). Thus, N2-sorption measurements indicated the 

suitability of Fe-Ce mixed oxides for catalytic applications [49]. 

Table 3.1. Structural and textural parameters of Ce1-xFexO2 mixed oxides 

         aCalculated from (111) peak of CeO2, 
b (110) peak of Fe2O3, 

c FE-SEM images, d N2-adsorption/desorption 

 

Sample Crystallite 

size  

(nm)a 

Lattice 

parameter 

(Å)a 

Average 

particle size 

(nm)c 

Specific 

surface area 

(m2/g)d 

Total pore 

volume  

(cc/g) d 

CeO2 10.6 5.416 45 ± 4 20 0.089 

Ce0.8Fe0.2O2 7.1 5.385 28 ± 2 94 0.256 

Ce0.6Fe0.4O2 6.7 5.355 23 ± 3 97 0.269 

Ce0.5Fe0.5O2 6 5.347 20 ± 3 109 0.256 

Ce0.4Fe0.6O2 5.5 5.332 17 ± 1 149 0.283 

Ce0.2Fe0.8O2 5, 8.5b 5.229, 5.047b 14 ± 2, 37 ± 3 135 0.252 

Fe2O3 9.5b      5.043b 35 ± 5 35 0.176 
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Fig.3.5. (a) N2 adsorption-desorption isotherm (b) Pore size distribution 

 



 

3.1.6. FE-SEM and TEM analysis 

The microstructures of Ce1-xFexO2

analysis. Figure 3.6 shows the FE-SEM micrographs of all samples and the particle size ranges are 

mentioned in Table 3.1. The micrographs clearly illustrated that all these samples were aggregated 

nanoparticles. The average particle size of CeO

Ce0.8Fe0.2O2 mixed oxide. Further increase in Fe content resulted in considerably decreased particle 

size. These results are in good agreement with XRD analysis.

presented in Figure 3.7, and the expected as well as obtained values of Ce/Fe mole ratio

provided in Table 3.2. EDX analysis confirmed that the obtained mole ratio of Ce/Fe was close to 

the expected values, confirming the presence of 

More detailed characterization of particle size and pore structure 

by TEM analysis (Figure 3.8). TEM micrographs revealed the presence of disordered pores, which 

is in accordance with N2-sorption analysis. Statistical analysis of micrographs revealed that the 

mean diameter of CeO2, Ce0.4Fe0.6O2 and Fe

pattern of Ce0.4Fe0.6O2 confirmed its polycrystalline

to (111), (220), (220), (311) planes of cubic CeO

 

    

    

Fig.3.6. FE-SEM micrograph of (a) CeO

(e) Ce0.4

 
56 

2 mixed oxides were investigated by FE-SEM and TEM 

SEM micrographs of all samples and the particle size ranges are 

The micrographs clearly illustrated that all these samples were aggregated 

cles. The average particle size of CeO2 was 45 nm which decreased to 28 nm for 

mixed oxide. Further increase in Fe content resulted in considerably decreased particle 

size. These results are in good agreement with XRD analysis. EDX spectra of mixed oxides

and the expected as well as obtained values of Ce/Fe mole ratio

confirmed that the obtained mole ratio of Ce/Fe was close to 

the expected values, confirming the presence of Ce and Fe with required mole ratio. 

More detailed characterization of particle size and pore structure of catalysts was performed 

. TEM micrographs revealed the presence of disordered pores, which 

on analysis. Statistical analysis of micrographs revealed that the 

and Fe2O3 particles was 16, 8 and 6 nm, respectively

lycrystalline nature as the diffraction rings were attributable 

to (111), (220), (220), (311) planes of cubic CeO2 and (104), (116) planes of Fe2O3. 

        

    

of (a) CeO2 (b) Ce0.8Fe0.2O2 (c) Ce0.6Fe0.4O2 (d) Ce

0.4Fe0.6O2 (f) Ce0.2Fe0.8O2 (g) Fe2O3 

SEM and TEM 

SEM micrographs of all samples and the particle size ranges are 

The micrographs clearly illustrated that all these samples were aggregated 

was 45 nm which decreased to 28 nm for 

mixed oxide. Further increase in Fe content resulted in considerably decreased particle 

mixed oxides are 

and the expected as well as obtained values of Ce/Fe mole ratio are 

confirmed that the obtained mole ratio of Ce/Fe was close to 

was performed 

. TEM micrographs revealed the presence of disordered pores, which 

on analysis. Statistical analysis of micrographs revealed that the 

16, 8 and 6 nm, respectively. SAED 

as the diffraction rings were attributable 

 

(d) Ce0.5Fe0.5O2  



 

                               

 

                     

           Fig.3.7. EDX spectra of 
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EDX spectra of catalysts               Table 3.2. Ce/Fe mole ratio 

Sample      Ce/Fe Mole ratio

Expected

Ce0.8Fe0.2O2 

Ce0.6Fe0.4O2 1.5

Ce0.5Fe0.5O2 

Ce0.4Fe0.6O2 0.66

Ce0.2Fe0.8O2 0.25

 

 

 

 

Ce/Fe mole ratio from EDX 

Ce/Fe Mole ratio 

Expected Obtained 

4 4.1 

1.5 1.6 

1 0.93 

0.66 0.63 

0.25 0.25 



 

 

Fig.3.8. TEM micrograph and SAED pattern (a) CeO

3.2. Optimization of operating parameter

The paper industry wastewater exhibited high organic load i

AOX and CHPs (Table 3.3). The influence

temperature (40-90°C), reaction time (0.5

efficiency was studied and the results are presented below.

3.2.1. Effect of pH  

The pH of solution is an important parameter for catalysis, as it affects 

[50]. Influence of initial pH was studied 

for 2 h. The results are presented in Fig

(80%) was obtained at pH 3, which decreased slightly at 

that the removal efficiency dropped significantly

to the positive charge of catalyst surface 

facilitates the adsorption of anionic organic pollut

Therefore, pH 4 was selected as optimum value for further studies. 

3.2.2. Effect of temperature 

The effect of temperature was studied in

pH 4 for 2 h. Figure 3.9 (b) presents the removal of COD and color with increas

temperature. The raise of temperature from 40 to 50

efficiencies. After that removal efficiency increased 

attained at 90°C. This increase can be 
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and SAED pattern (a) CeO2 (b) Ce0.4Fe0.6O2 (c) Fe2O

arameters  

exhibited high organic load in terms of COD, color

influence of various reaction variables i.e. pH (3.0-8.0), reaction 

C), reaction time (0.5-2.5 h) and catalyst dose (0.5-2 g/L) on treatment 

the results are presented below.  

is an important parameter for catalysis, as it affects the catalyst charge 

was studied in the range of 3.0 to 8.0, using 1 gL-1 Ce0.4Fe0.6

Figure 3.9 (a). Maximum removal of COD (65%) and color 

3, which decreased slightly at pH 4 (COD 63% and color 78%); after 

significantly. High efficiency in acidic medium can be related 

to the positive charge of catalyst surface (isoelectric point of CeO2=6.7; Fe2O3=8.4)

the adsorption of anionic organic pollutants present in paper industry wastewater

4 was selected as optimum value for further studies.  

was studied in the range of 40 to 90°C, using 1 gL-1 Ce

presents the removal of COD and color with increasing

temperature. The raise of temperature from 40 to 50°C produces only a slight increase in removal 

efficiencies. After that removal efficiency increased steadily and the maximum removal was 

be related to the accelerated oxygen supercharging of small 
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color, TOC, 
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aximum removal of COD (65%) and color 
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High efficiency in acidic medium can be related 
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wastewater [51]. 
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ing reaction 

C produces only a slight increase in removal 

maximum removal was 

supercharging of small 
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particles with increasing temperature [52]. Therefore 90°C was selected as optimum temperature 

for further studies. 

Table 3.3. Average value of environmental parameters of wastewater 

Parameter Value 

Color (mg Pt-Co/L) 2768 ± 114.46 

COD (mg/L) 865 ± 32.14 

TOC (mg L-1) 172.3 ± 4.8 

AOX(mg L-1) 16.2 ± 0.35 

CHPs(µg L-1) 485 ± 4.45 

BOD5 (mg/L) 234 ± 12.84 

BOD5/COD 0.27 

 

3.2.3. Effect of reaction time 

The reaction time was optimized within time interval of 0.5 to 2.5 h under the treatment 

conditions; 1 gL-1 Ce0.4Fe0.6O2 catalyst, 90°C, pH 4. A rapid decrease in COD and color was 

attained with increase in treatment time up to 2 h and thereafter reached a nearly constant value 

(Figure 3.9 (c)). The wastewater contains large amount of organic pollutants and decrease in the 

rate of degradation after 2 h may be due to the adsorption of organic matter on catalyst surface, 

which hinders the oxidation process by decreasing the oxygen supply to catalyst surface and 

increasing competition for active sites between the reaction intermediates and organic matter 

[53,54]. Hence, a 2 h reaction time was selected as optimum for further experiments.  

3.2.4. Effect of catalyst dose 

The influence of catalyst dose was studied by varying the Ce0.4Fe0.6O2 dose from 0.5 to 2 gL-1 

at 90°C, pH 4 for 2 h. The removal efficiency increased rapidly with increasing catalyst 

concentration upto 1 gL-1 (Figure 3.9 (d)). Further increase in amount of catalyst resulted in a 

slight increase in removal efficiency. Therefore catalyst dose of 1 gL-1 was chosen as optimum. 
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Fig.3.9. Effect of operating variables (a) pH  (b) Temperature (c) Time (d) Dose 

3.3. CWAO study over Ce1-xFexO2 nanocatalysts 

Figure 3.10 shows the percent removal of COD, color TOC and AOX as a function of Ce/Fe 

mole ratio. Pure CeO2 demonstrated very low removal efficiency. The catalytic activity augmented 

with increasing Fe content and attained a maximum value of 74% COD, 82% color, 72% TOC and 

68% AOX reduction with Ce0.4Fe0.6O2 mixed oxide under optimum conditions (90°C, pH 4, 1 gL-1, 

2 h). High removal efficiency of Ce0.4Fe0.6O2 mixed oxide was consistent with the above 

characterization results. Thus Ce0.4Fe0.6O2 mixed oxide was selected for further study. The initial 

biodegradability index (BOD/COD ratio) of wastewater was low, i.e. 0.27. According to literature, 
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the biodegradability index should be at least 0.40 for complete biodegradation [55]. After CWAO, 

the biodegradability index was increased to 0.47, indicating the substantial improvement in the 

biodegradability of wastewater. 
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Fig.3.10. Effect of mole ratio on COD, color, TOC and AOX removal 

Chlorophenolics removal 

The Chlorophenolic compounds (CHPs) in wastewater were identified by GC-MS analysis. 

The gas chromatogram of mixtures of 25 reference CHPs (Acetyl derivatives) is shown in Figure 

3.11. The corresponding retention time (RT) and base peak mass/charge ratio (m/z) values are 

listed in Table 3.4. These results are in accordance with the earlier findings [56,57]. Figure 3.12 

shows the gas chromatogram of CHPs in paper industry wastewater, before and after CWAO. GC-

MS analysis of wastewater (Table 3.5), revealed the presence of total 25 compounds falling under 

six categories (chemical family): chlorophenols (CP), chloroguaiacols (CG), chlorocatechols (CC), 

chlorovanilin (CV), chlorosyringols (CS) and chlorosyringaldehydes (CSA). The structure of 

CHPs by their chemical family is depicted in Figure 3.13, and their proportions in wastewater 

before CWAO are shown in Figure 3.14 (a). 
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Fig.3.11. Chromatogram showing separation of a mixture of pure Chlorophenolic compounds  

 

              

 

Fig.3.12. Gas chromatogram of CHPs in paper industry wastewater (a) before (b) after CWAO 
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Table 3.4. Retention time (RT) and m/z of Chlorophenolic reference compounds  

S. No. Compound RT (min) m/z 

1. 3-Chlorophenol (3-CP) 14.20 127.9 

2. 4-Chlorophenol (4-CP) 14.36 127.9 

3. 2,6-Dichlorophenol (2,6-DCP) 16.52 161.9 

4. 2,5-Dichlorophenol (2,5-DCP) 16.96 161.9 

5. 2,4-Dichlorophenol (2,4-DCP) 16.98 161.8 

6. 2,3-Dichlorophenol (2,3-DCP) 17.69 161.8 

7. 3,4-Dichlorophenol (3,4-DCP) 18.27 161.9 

8. 4-Chloroguaiacol (4-CG) 18.70 157.9 

9. 2,4,5-Trichlorophenol (2,4,5-TCP) 19.07 195.8 

10. 2,3,6-Trichlorophenol (2,3,6-TCP) 20.01 195.8 

11. 2,3,5-Trichlorophenol (2,3,5-TCP) 20.17 195.9 

12. 2,4,6-Trichlorophenol (2,4,6-TCP) 20.31 195.8 

13. 4,5-Dichloroguaiacol (4,5-DCG) 21.19 191.9 

14. 2,3,4-Trichlorophenol (2,3,4-TCP) 21.23 195.8 

15. 4,6-Dichloroguaiacol (4,6-DCG) 22.27 191.9 

16. 3,6-Dichlorocatechol (3,6-DCC) 22.50 177.9 

17. 3,5-Dichlorocatechol (3,5-DCC) 22.77 177.9 

18. 3,4,6-Trichloroguaiacol (3,4,6-TCG) 23.16 225.9 

19. 3,4,5-Trichloroguaiacol (3,4,5-TCG) 24.40 225.8 

20. 4,5,6-Trichloroguaiacol (4,5,6-TCG) 25.07 225.9 

21. 5,6-Dichlorovanillin (5,6-DCV) 25.85 219.9 

22. Pentachlorophenol (PCP) 26.22 265.7 

23. 2,3,5,6-Tetrachloroguaiacol (Tet-CG) 26.66 261.8 

24. Trichlorosyringol (TCS) 26.96 255.8 

25. 2,6-Dichlorosyringaldehyde (2,6-DCSA) 28.59 249.9 
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Table 3.5. Concentration of CHPs in paper industry wastewater  

S.No. Compound Initial Conc. 

(µg/L) 

Final Conc. 

(µg/L) 

% Removal 

1.  3-CP 14.9 ±  10.98 7.5 ± 1.52 49.8 

2.  4-CP 6.2 ± 4.55 2.5 ± 0.31 59.0 

3.  2,3-DCP 0.8 ± 0.01 0.1 ± 0.10 86.9 

4.  2,4-DCP 26.5 ± 0.47 10.8 ± 0.78 59.2 

5.  2,5-DCP 62.4 ± 0.78 26.2 ± 1.15 57.9 

6.  2,6-DCP 22.9 ± 4.45 6.3 ± 1.09 72.3 

7.  3,4- DCP 0.6 ± 0.08 0.02 ± 0.03 95.9 

8.  2,3,4- TCP 3.3 ± 0.10 0.4 ± 0.13 87.4 

9.  2,3,5- TCP 2.5 ± 0.03 1.8 ± 0.10 26.0 

10.  2,3,6- TCP 1.2 ± 0.01 0.9 ± 0.16 24.7 

11.  2,4,5- TCP 132.9 ±19.7 49.5 ±1.33 62.8 

12.  2,4,6- TCP 0.4 ± 0.03 0.05 ±0.02 85.7 

13.  3,4,5- TCG 0.6 ± 0.11 0.4 ±0.42 33.2 

14.  4-CG 83.6 ±19.45 13.3 ±1.20 84.1 

15.  4,5-DCG 103 ±1.92 11.6 ±1.89 88.7 

16.  4,6-DCG 2.6 ± 0.52 1.2 ±0.04 55.9 

17.  3,4,6-TCG 0.5 ± 0.19 ND 100 

18.  4,5,6-TCG 0.7 ± 0.10 0.1 ±0.02 81.3 

19.  Tet-CG 1.8 ± 0.22 0.3 ±0.05 85.7 

20.  3,5- DCC 2.9 ± 0.21 2.3 ±0.59 20.8 

21.  3,6- DCC 8.5 ± 0.05 5.2 ±2.05 38.8 

22.  5,6-DCV 0.3 ± 0.19 0.2 ±0.04 35.9 

23.  TCS 5.9 ± 0.89 0.3 ±0.02 94.2 

24.  PCP 0.4 ± 0.02 ND 100 

25.  2,6-DCSA 0.1 ±0.02 0.07±0.03 21.4 

Total 485±65.63 141±13.1 71 

*ND- Not Detected 
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The data exhibits highest contribution of CP (56.6%), followed by CG (39.7%), CC (2.3%), 

CS (1.21%), CV (0.06%) and CSA (0.02%). Based on chlorine atom substitution, di-

chlorophenolics (DCHPs) exhibited highest share of 47.5%, followed by tri-chlorophenolics 

(TCHPs, 30.5%), mono-chlorophenolics (MCHPs, 21.6%), tetra-chlorophenolics (TeCHPs, 

0.37%) and penta- chlorophenolics (PCHPs, 0.08%) (Figure 3.14(b)). The data indicate that about 

99.5% of identified CHPs are MCHPs, DCHPs and TCHPs. Among all CHPs, 2,4,5-TCP 

contributed maximum share of 27.4% followed by 4,5-DCG (21.2%), 4-CG (17.2%), 2,5-DCP 

(12.8%), 2,4-DCP (5.5%), 2,6-DCP (4.7%) and 3-Chlorophenol (3%), while rest of CHPs are 

present in relatively lower quantities. 

 

 

 

 

 

 

 

 

 

 

 

Under optimum conditions 71% of CHPs were removed in presence of Ce0.4Fe0.6O2 mixed 

oxide. The removal of individual CHPs are given in Table 3.5. The removal of most of the 

compounds was from 20% to 100%. The compounds like PCP and 3,4,6-TCG were completely 

removed or not detected. 3,4-DCP was removed up to 95.9%, followed by TCS (94.2%), 4,5-DCG 

(88.7%), 2,3,4-TCP (87.4), 2,3-DCP (86.9%), 2,4,6-TCP (85.7%), 2,3,5,6-TeCG (85.7%), 4-CG 

(84.1%), 4,5,6-TCG (81.2) and 2,6-DCP (72.3%). The rest of the compounds were removed up to 

20-63% only. 2,4,5-TCP, 2,4-DCP, 4-CP, 2,5-DCP and 4,6-DCG were removed only 62.8%, 

59.2%,  59%, 57.9% and 55.9% respectively. Treatment data (Figure 3.15(a)) revealed 61.4%, 

86%, 34.2%, 36%, 94.2% and 21.4% removal of CP, CG, CC, CV, CS and CSA, respectively. 

Fig.3.13. Structure of Chlorophenolic compounds 
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According to attached Cl atom, highest degradation was achieved for PCHPs (100%) and TeCHPs 

(85.7%). MCHPs, DCHPs and TCHPs were reduced by 77.7%, 72.2% and 63.8%, respectively 

(Figure 3.15(b)). The removal of high chlorinated CHPs was higher as compared to low 

chlorinated CHPs. This may be due to the higher negative charge on highly chlorinated CHPs, 

which favors their adsorption on positively charged metal ions on catalyst surface. Removal of 

high chlorinated CHPs by CWAO also reduces the toxicity of paper industry wastewater as these 

compounds are more toxic in comparison to low chlorinated CHPs [58]. 
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CP CG CC CV CS CSA
0

20

40

60

80

100

 

 

%
 R

e
m

o
v

a
l

 

 

(a) Chemical family

MCHPs DCHPs TCHPs TeCHPs PCHPs
0

20

40

60

80

100

 

 

%
 R

e
m

o
v

a
l

 

 

(b) Attached Chlorine atom

 

Fig.3.15. Percent removal of CHPs 
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3.4. Role of catalyst in oxidation 

Based on the above characterization results and the mechanisms suggested in literature [59-

61], it can be concluded that Ce4+ and Fe3+ in catalyst are easily reduced to Ce3+ and Fe2+, 

respectively. Ce3+ and Fe2+ ions are the main active sites, where reactant molecule (R-H) gets 

attached. The reactant is oxidized by the interface lattice oxygen, generating oxygen vacancy at the 

interface; in next, the gaseous O2 fills up the oxygen vacancy, forming adsorbed active oxygen 

species which can react with another reactant molecule. Guzman et al. [62] confirmed these 

species to be superoxide anion (O�
˙�), which are formed when an electron trapped at reduced ceria 

surface (Ce3+ site) gets transferred to an adsorbed O2 molecule. Therefore, Ce1-xFexO2 mixed 

oxides can be considered as an “oxygen buffer” which responds to excess or lack of oxygen in the 

environment. The role of Ce1-xFexO2 catalyst in CWAO is graphically illustrated in Figure 3.16. 

Here are some factors, which can be related to the high efficiency of Ce1-xFexO2 mixed oxides 

in CWAO at mild conditions:  

1. High surface area and porosity provide high number of active sites, which facilitate the 

contact between reactant molecules and catalyst surface [63,64]. 

2. The interaction of Fe ions with CeO2 lattice generates oxygen vacancies (confirmed by 

Raman and XPS). Increased oxygen vacancies directly increase the oxygen buffering 

capacity of catalyst.  

3. Interaction of Fe cation with ceria lattice resulted in decreased particle size, which is 

evidenced by XRD, FE-SEM and TEM analysis. Small particles are known to increase the 

availability of oxygen vacancies during reaction [65].  

4. Ce1-xFexO2 mixed oxides can be interpreted in terms of bivalent catalytic centers such as 

(Ce4+-Fe3+ and Ce3+-Fe2+) beside the one component sites (Ce4+-Ce3+ and Fe3+-Fe2+). The 

dispersion of Fe ions can be directly related to the formation of ion pairs via following 

synergistic mechanism (Equation 3.4-3.6): 

2FeO�  →  Fe�O� +  O     (3.4) 

Fe�O� +  2CeO� → 2FeO� +  Ce�O�    (3.5) 

Ce�O� +  
�

�
O�  → 2CeO�                                            (3.6)                 
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The co-existence of Fe2O3 and FeO2 can further increase the oxidation property of catalyst. 

The oxygen generated by Equation 3.4 may be more active and easy to access. Also, the oxygen 

transfer from CeO2 to Fe2O3 may improve the oxidation reactions [66,67].  

           

            Fig.3.16. Graphical illustration for role of catalyst 

1 2 3 4 5
50

60

70

80

90

100

 

 

%
 R

e
m

o
v

a
l

Cycle

COD

 Color

 

        Fig.3.17. Effect of catalyst recycling on COD and color removal 

3.5. Reusability and leaching studies 

To test the reusability of Ce0.4Fe0.6O2 catalyst, 5 treatment cycles were conducted with the 

same catalyst. The used catalyst was removed, dried and calcined before each run. After three 

cycles the COD removal efficiency decreased from 74 to 69%, while color removal efficiency 

declined from 82 to 77% and after that the removal efficiency decreased considerably (Figure 
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3.17). Results depicted that after being reused thrice, the Ce0.4Fe0.6O2 mixed oxide still retained 

satisfactory activity. 

The dissolved Ce and Fe concentration in treated wastewater was determined using the ICP-

OES, where the most sensitive lines of Ce IV (418.6 nm) and Fe III (259.9 nm) were measured. 

The results showed that Ce concentrations in supernatant ranged from 0.12 to 0.132 ppm and Fe 

concentration ranged from 0.339-0.512 ppm. The values of metal leaching was appreciably low 

[68-70], indicating the stability of catalyst during treatment. This low leaching can be related to the 

operation of process at low temperature.   

3.6. Kinetic studies 

The reaction kinetics of CWAO was studied in order to understand the rate of reaction during 

oxidation. Paper industry wastewater contains mixture of various compounds with different 

reactivity. Therefore, it is quite difficult to study a detailed analysis of individual compound. To 

study such a complicated process, the rate of reaction can be studied in terms of a collective 

parameter (i.e. COD). The experimental data obtained with time-dependent COD removal in 

presence of Ce0.4Fe0.6O2 catalyst was modelled on the assumption of first-order kinetics, where the 

progressive disappearance of COD can be presented as follows [71]: 

−
�[���]

�!
= k�[COD]         (3.7) 

−
�[���]

[���]
= k�dt          

By integrating both sides of equation: 

− &
�[���]

[���]

[���]

[���]'
= k� & dt

!

(
                                         

ln
[���]'

[���]
= k�+                                                          (3.8) 

The experimental data fitted well for first order kinetics, as straight line with R2 values of 0.99 was 

obtained in the plot constructed between  ln[COD]�/[COD] and time (t) (Figure 3.18). Thus the 

CWAO of wastewater in presence of Ce1-xFexO2 was found to follow the first order kinetics. 
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Fig.3.18. Plot of ln[COD]�/[COD] as a function of reaction time 

3.7. Summary 

1. The mixed oxides exhibited improved structural, textural and catalytic property than the 

single metal oxides. 

2. Ce0.4Fe0.6O2 nanocatalyst presented high surface area (149 m2g-1), pore volume (0.283 ccg-

1) and uniform pore size distribution (3-5 nm). 

3. Raman analysis confirmed the increase in oxygen vacancies with increasing Fe content. 

4. XPS analysis indicated the presence of high and low oxidation states for Ce (4+, 3+) and Fe 

(3+, 2+) metal ions. Ce3+ concentration was found to be 28%. 

5. The optimum conditions for CWAO were found to be: temperature 90°C, pH 4, catalyst 

dose 1 gL-1 and treatment time of 2 h. 

6. Ce0.4Fe0.6O2 nanocatalyst exhibited maximum COD (74%), color (82%), TOC (72%) AOX 

(68%) and CHPs (71%) removal under optimum experimental conditions.  

7. Biodegradability index increased appreciably from 0.27 to 0.47 after treatment. 

8. CWAO was found to follow the first order kinetics with R2 values of 0.99. 

9. The catalysts exhibited low leaching values for Ce (0.12 to 0.132 ppm) and Fe (0.339-0.512 

ppm) metals. 
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Chapter 4 

Co-Ce Nanocatalysts: Characterization and application in CWAO                                 

 

Co3O4 based materials are widely studied oxidation catalysts [1,2]. A number of studies have 

been carried out on their environmental applications. Co3O4 nanorods exhibited 82% removal of 

phenol in microwave-enhanced catalytic degradation [3]. Co-Fe3O4 nanoparticles attained 97.9% 

degradation during CWAO of phenol [4]. Nanosized Co3O4/SiO2 was found to be highly active in 

sulphate radical generation from oxone, during the phenol degradation [5]. Nanosized Co3O4-CeO2 

catalysts were efficient in CO oxidation [6]. Porous Co3O4 nanorods-reduced graphene oxide 

(PCNG) hybrid material attained 97% degradation of methylene blue through CWPO [7]. Co3O4 

nanoparticles have also been studied as water-oxidation catalyst [8]. The mesoporous Co3O4-

supported gold nanocatalyst (Au/meso-Co3O4) was found to be efficient for the oxidation of 

different organics, i.e., CO, benzene, toluene and o-xylene [9].  

In the prospect of these oxidation applications of Co3O4, it was chosen for the formation of 

mixed oxide with CeO2. A series of Ce1-xCoxOy mixed oxides (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1) 

was synthesized by co-precipitation method (discussed in Chapter 2), and characterized by variety 

of techniques. Present chapter deals with the result and discussion on the structural and textural 

characteristics of Ce1-xCoxOy mixed oxides, followed by their activity study in CWAO of 

wastewater. 

4.1. Characterization of Ce1-xCoxOy mixed oxides 

4.1.1. XRD analysis 

The XRD pattern of Ce1-xCoxOy mixed oxides are shown in Figure 4.1(a). The diffraction 

pattern for CeO2 was consistent with JCPDS file 81-0792, as discussed in Chapter 3. The peaks for 

pure cobalt oxide at 2θ = 31.2 (220), 36.8 (311), 44.8 (400), 59.3 (511), 65.2 (440) represented the 

cubic phase of Co3O4 (JCPDS 74-2120). In mixed oxides, the CeO2 diffraction peaks were 

broadened and shifted to higher diffraction angle (Figure 4.1(b)). No diffraction peaks 

corresponding to cobalt oxide were observed up to x ≤ 0.5, indicating the incorporation of Co3O4 
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within the ceria lattice. Further augmentation in Co content exhibited peaks for Co3O4 phase. The 

average crystallite size and lattice parameter calculated from the (111) diffraction of CeO2 and  
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Fig.4.1. (a) XRD pattern of catalysts (b) low angle region from 27 to 30° 
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(311) diffraction of Co3O4 are reported in Table 4.1. Average crystallite sizes of catalysts were 

linearly decreased with increasing Co content. The ceria lattice parameter was also decreased with 

increasing Co content up to x=0.5, and then increased at x>0.5, indicating that the solid solubility 

of cobalt in ceria up to x=0.5. The decrease in lattice parameter was higher than the earlier 

studieson Co-Ce system [10-12], indicating high degree of lattice deformation. 

4.1.2. FT-IR analysis 

Formation of CeO2, Co3O4 and Ce0.5Co0.5Oy mixed catalysts was further verified from their 

FTIR spectra (Figure 4.2). CeO2 exhibited the characteristic absorption band at 560 cm
-1

. The IR 

spectrum of Co3O4 showed two distinct bands at 569 and 664 cm
-1 

assigned to Co-O stretching 

vibrations [13,14]. In Ce0.5Co0.5Oy mixed catalyst the peaks for Co3O4 at 569 and 664 cm
-1

 were 

shifted to 561 and 657 cm
-1

, respectively. This red shift indicated the increasing lattice parameter 

of Co3O4 for the Ce1-xCoxOy mixed oxides (Table 4.1). The decreased band intensity confirmed the 

interaction between CeO2 and Co3O4 phases in mixed oxide. 
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Fig.4.2. FT-IR of catalysts 
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4.1.3. Raman analysis 

The Raman spectrum of CeO2, Co3O4 and Ce1-xCoxOy catalysts are shown in Figure 4.3. CeO2 

exhibited the characteristic band at 462 cm
-1

. For Ce1-xCoxOy mixed oxides, the characteristic band 

of intrinsic oxygen vacancies was also observed at 600 cm
-1

. The I600/I462 (Figure 4.3 (b)) ratio was 

increased with increasing Co content, indicating the increasing amount of oxygen vacancies.  
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Fig.4.3. (a) Raman spectra of catalysts (b) variation of I600/I460 with Co content 
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Co3O4 spectra showed the peaks at 483, 521, 620, and 690 cm
−1

, corresponding to four Raman-

active modes i.e., A1g, Eg, and 2F2g of Co3O4, caused by the lattice vibrations of the spinal 

structure, where Co
2+

 and Co
3+

 cations are situated at tetrahedral and octahedral sites in the cubic 

lattice [15,16]. 

Ce0.2Fe0.8O2 

4.1.4. XPS analysis 

The XPS spectra of Ce0.5Co0.5Oy mixed oxide is presented in Figure 4.4. Ce 3d spectra 

(Figure 4.4 (a)) exhibited three main 3d5/2 features at 881.3 eV, 888.5 eV, 897.2 eV corresponding 

to v, v′′, v′′′ components, respectively. The 3d3/2 feature corresponding to u, u′′ and u′′′ component 

were observed at 899.5 eV, 906.5 eV and 915.8 eV. These peaks are characteristic of Ce
4+

 

oxidation state with the v and u splitting of 18.1 eV. Additional peaks for v
o
 (880.4 eV), v′ (886 

eV), u
o
 (898.1 eV) and u′ (901.4 eV) components were also observed.  These peaks are 

characteristic of Ce
3+ 

oxidation state. The atomic fraction of Ce
3+

 was found to be 28%, which is 

comparable to the value reported by Konsolakis et al. [17]. Figure 4.4(b) shows the Co2p spectra 

of Ce0.5Co0.5Oy mixed oxide. The prominent Co2p3/2 peak was composed of two peaks at 779.4 and 

780.9 eV corresponding to Co
3+

 and Co
2+

, respectively. Also there were peaks corresponding to 

Co
3+

 (794.3 eV) and Co
2+

 (795.8 eV) in the 2p1/2 spin orbit component. Additionally, the weak 

satellite structures were found in the high binding energy side of 2p3/2 and 2p1/2 transitions at 785.4 

eV and 801.6 eV. These results confirmed the formation of Co3O4 with Co
3+

 and Co
2+

 species 

[18,19]. The O 1s spectra (Figure 4.4(c)) of Ce0.5Co0.5Oy mixed oxide exhibited three components 

corresponding to lattice oxygen/ structural oxygen (528.1 eV, 70.9%), supercharged oxygen (O�
�) 

near oxygen vacant sites at the surface (530.1 eV, 19.3%) and adsorbed surface oxygen in the form 

of OH ions (531.2 eV, 9.7%). The peak at 530.1 eV evidenced the oxygen storage/release capacity 

of the nanocatalyst. Thus XPS analysis confirmed the presence of oxygen vacancies accompanied 

with Ce
4+

 reducing to Ce
3+

 in presence of Co
3+

 and Co
2+

 ions. 



84 

 

880 890 900 910 920

 

In
te

n
s

it
y

 (
a

.u
)

Binding energy (eV)

 

 

u'''

u''
v

o

u
o

v

v'
v''

v''' u

u'

(a) Ce 3d

 

775 780 785 790 795 800 805

 

In
te

n
s

it
y

 (
a

.u
)

(b) Co 2p

Binding energy (eV)

 

 

526 528 530 532

 Binding energy (eV)

In
te

n
s

it
y

 (
a

.u
)

 

(c) O1s

 

Fig.4.4. XPS spectra of Ce0.5Co0.5Oy (a) Ce 3d (b) Co 2p (c) O 1s  

4.1.5. N2-adsorption/desorption analysis 

The N2-adsorption/desorption isotherm and pore size distribution of CeO2, Ce0.5Co0.5Oy and 

Co3O4 catalysts are presented in Figure 4.5(a). For adsorption isotherms the inflection at higher 

relative pressure indicated the presence of secondary pores. The desorption isotherm resulted in a 
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narrow hysteresis, indicating the irregular shape of pores. PSD (Figure 4.5(b)) confirmed the 

presence of disordered and wide pores for CeO2 and Co3O4 catalysts (3-15 nm). While, 

Ce0.5Co0.5Oy was found to have the narrow pores (3-8 nm).  
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Fig.4.5. (a) N2-adsorption/desorption isotherms (b) Pore size distribution 



 

Table.4.1. Structural and textural parameters of Ce

Samples Crystallite size 

(nm)a
 

Lattice 

parameter 

CeO2 Co3O4 CeO2

CeO2 10.6 -- 5.416

Ce0.8Co0.2Oy 8.55 -- 5.399

Ce0.6Co0.4Oy 6.15 -- 5.324

Ce0.5Co0.5Oy 4.74 -- 5.314

Ce0.4Co0.6Oy 4.59 10.75 5.347

Ce0.2Co0.8Oy 3.63 10.3 5.368

Co3O4 -- 9.8 -- 

a Calculated from XRD; b FE-SEM; c N2-adsorption/desorptio

  

   

Fig.4.6. FE-SEM micrograph of (a) CeO

Ce0.4Co0.6O

The textural properties of catalysts are listed in 

xCoxOy catalysts presented high BET surface area 

cc g
-1

, than that of single metal oxides (CeO

volume for x>0.5 can be related to the formation of more agglomerates (indicated by FE
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Structural and textural parameters of Ce1-xCoxOy nano-catalysts 

Lattice 

parameter (Å)a
 

Average 

particle size 

(nm)b
 

Specific 

surface area 

(m2g-1)c
 

Total pore 

2 Co3O4 

5.416 -- 45 ± 1.4 20 

5.399 -- 39.5 ± 3.5 92 

5.324 -- 25 ± 1.4 100 

5.314 --- 22.5 ± 1.1 109 

5.347 8.220 16.5 ± 0.7 99 

5.368 8.089 15.5 ± 2.1 70 

8.090 18 ± 1.4 34 

adsorption/desorption 

    

   

(a) CeO2 (b) Ce0.8Co0.2Oy (c) Ce0.6Co0.4Oy (d) Ce0.5Co

Oy (f) Ce0.2Co0.8Oy (g) Co3O4 

The textural properties of catalysts are listed in Table 4.1. The data indicated that the 

presented high BET surface area of 70-109 m
2 

g
-1

 and pore volume of 0.233

CeO2 and Co3O4). The lower value of surface area and pore 

0.5 can be related to the formation of more agglomerates (indicated by FE

 

Total pore 

volume 

(ccg-1)c
 

0.089 

0.233 

0.248 
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0.233-0.416 

face area and pore 

0.5 can be related to the formation of more agglomerates (indicated by FE-SEM 



 

analysis). The surface area and pore volume of 

the previous reports, where

impregnation [17] and therma

       

   Fig.4.7. EDX spectra of 
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The surface area and pore volume of Ce1-xCoxOy catalysts were significantly higher than 

previous reports, where samples were fabricated by sol-gel [10

thermal combustion method [20]. 

 

EDX spectra of catalysts              Table 4.2. Ce/Co mole ratio 

Sample    Ce/Co Mole ratio

Expected

Ce0.8Co0.2Oy 4 

Ce0.6Co0.4Oy 1.5 

Ce0.5Co0.5Oy 1 

Ce0.4Co0.6Oy 0.66 

Ce0.2Co0.8Oy   0.25 

catalysts were significantly higher than 

10], hydrothermal [12], 

 

 

 

Ce/Co mole ratio from EDX 

Ce/Co Mole ratio 

Expected Obtained 

3.8 

1.5 

1 

0.67 

0.24 



 

4.1.6. FE-SEM and TEM analysis      

Figure 4.6(a-g) shows the SEM micrographs 

correspondingly their particle size ranges are mentioned in 

particle size of CeO2 was 45±1.4 nm which decreased to 39.5±3.5 nm for x=0.2, further increase in 

Co content resulted in considerable decrease in average particle size. These results were in good 

agreement with XRD analysis. Micrographs clearly illustrated the high

for x>0.5. EDX spectra of mixed oxides

obtained values of Ce/Co mole ratio are provided in 

obtained mole ratio values were close to the expected values

Co with required mole ratio. The TEM micrographs 

presented in Figure 4.8. The presence of 

micrographs. Statistical analysis of micrographs illustrated 

Ce0.5Co0.5Oy and Co3O4 was 16, 5 and 7 nm, respectively. 

Ce0.5Co0.5Oy were attributable to (111), (311) 

Co3O4, indicating its polycrystalline nature

   

Fig.4.8. TEM micrograph and SAED pattern of (a) CeO

4.2. CWAO study over Ce1-xCoxOy nanocatalysts

The treatment efficiency of Ce1-xCo

removal is presented in Figure 4.9. Results indicated t

oxides in comparison to single oxides. The 

68% COD, 79% color, 59% AOX and 66% TOC

of wastewater was enhanced up to 0.45

component.  
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shows the SEM micrographs of Ce1-xCoxOy mixed oxides and 

correspondingly their particle size ranges are mentioned in Table 4.1. As depicted in table, average 

was 45±1.4 nm which decreased to 39.5±3.5 nm for x=0.2, further increase in 

Co content resulted in considerable decrease in average particle size. These results were in good 

Micrographs clearly illustrated the high agglomeration of particles 

mixed oxides are presented in Figure 4.7, and the expected as well as 

are provided in Table 4.2. EDX analysis confirmed that the 

close to the expected values, confirming the presence of Ce and 

The TEM micrographs of CeO2, Ce0.5Co0.5Oy and Co3O4 catalysts are 

resence of disordered pores was further confirmed by

Statistical analysis of micrographs illustrated that the mean diameter of CeO

16, 5 and 7 nm, respectively. The diffraction rings in SAED pattern

(111), (311) planes of CeO2 and (220), (311), (400)

nature. 

   

and SAED pattern of (a) CeO2 (b) Ce0.5Co0.5Oy (c) Co

nanocatalysts 

CoxOy catalysts in terms of COD, color, AOX and TOC 

Results indicated the high efficiency of Ce1-xCo

The Ce0.5Co0.5Oy catalyst was found to be most 

79% color, 59% AOX and 66% TOC removal. Additionally, the biodegradability index 

was enhanced up to 0.45, indicating the appreciable removal of non-biodegradable 

mixed oxides and 

As depicted in table, average 

was 45±1.4 nm which decreased to 39.5±3.5 nm for x=0.2, further increase in 

Co content resulted in considerable decrease in average particle size. These results were in good 

gglomeration of particles 

and the expected as well as 

confirmed that the 

, confirming the presence of Ce and 

catalysts are 

disordered pores was further confirmed by TEM 

the mean diameter of CeO2, 

in SAED pattern of 

and (220), (311), (400) planes of 

 

(c) Co3O4  

, color, AOX and TOC 

CoxOy mixed 

 active with 

Additionally, the biodegradability index 

biodegradable 
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Fig.4.9. Effect of mole ratio on COD, color, AOX and TOC removal 

 

 

 

 

Fig. 4.10. GC chromatogram of CHPs after CWAO  
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Chlorophenolics removal 

CWAO in presence of Ce0.5Co0.5Oy catalyst resulted in 62% removal of CHPs. GC 

chromatogram of CHPs after treatment is shown in Figure 4.10, and the removal of individual 

CHPs are listed in Table 4.3. The removal of CHPs was from 28% to 100%. The compounds like 

PCP, 3,4-DCP, 2,4,6-TCP and 2,6-DCSA were completely removed or not detected. 3,4,5-TCGU 

was removed up to 95.8%, followed by 4,5-DCG (95.6%), TCS (93%), 2,3-DCP (90.3), 4-CG 

(89.6%), 2,3,6-TCP (87.9%), 2,3,5-TCP (86.5%), 2,3,5,6-TeCG (81.9%), 4,5,6-TCG (72.8%), 

3,4,6-TCG (70.3%), 2,6-DCP (65.9%) and 2,3,4-TCP (65.1%). The rest of the compounds were 

removed up to 28-59%. The removal of CP, CG, CC, CV, CS and CSA was 40.9%, 92.1%, 52.6%, 

28.7%, 92.99% and 100%, respectively (Figure 4.11(a)). The removal of PCHPs was highest 

(100%) followed by TeCHPs (81.8%), MCHPs (79.9%), DCHPs (72.2%) and TCHPs (33.7%) 

(Figure 4.11(b)).  
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Fig.4.11. Percent removal of CHPs  
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Table 4.3. Concentration of CHPs with percent removal 

S.No Name of compound Initial (µg/L) Final (µg/L) % Removal 

1. 3-CP 14.93 ± 10.91 9.09 ± 1.01 39.1 

2. 4-CP 6.16 ± 4.55 3.31 ± 0.14 46.3 

3. 2,3-DCP 0.81 ± 0.01 0.08 ± 0.01 90.3 

4. 2,4-DCP 26.54 ± 0.47 13.59 ± 1.13 48.8 

5. 2,5-DCP 62.41 ± 0.78 31.21 ± 2.02 49.9 

6. 2,6-DCP 22.92 ± 4.45 7.8 ± 1.16 65.9 

7. 3,4-DCP 0.56 ± 0.08 ND 100 

8. 2,3,4-TCP 3.31 ± 0.10 1.15 ± 0.07 65.1 

9. 2,3,5-TCP 2.45 ± 0.03 0.33 ± 0.04 86.5 

10. 2,3,6-TCP 1.15 ± 0.01 0.14 ± 0.07 87.9 

11. 2,4,5-TCP 132.87 ± 19.69 95.7 ± 2.1 28.0 

12. 2,4,6-TCP 0.36 ± 0.03 ND 100 

13. PCP 0.40 ± 0.02 ND 100 

14. 4-CG 83.64 ± 19.45 8.69 ± 0.31 89.6 

15. 4,5-DCG 102.98 ± 1.92 4.49 ± 0.13 95.6 

16. 4,6-DCG 2.6 ± 0.52 1.35 ± 0.16 48.1 

17. 3,4,5-TCG 0.64 ± 0.11 0.03 ± 0.05 95.8 

18. 3,4,6-TCG 0.53 ± 0.19 0.16 ± 0.01 70.3 

19. 4,5,6-TCG 0.71 ± 0.10 0.19 ± 0.02 72.8 

20. 2,3,5,6-TeCG 1.81 ± 0.22 0.33 ± 0.07 81.9 

21. 3,5-DCC 2.93 ± 0.21 1.92 ± 0. 08 34.5 

22. 3,6-DCC 8.47 ± 0.05 3.48 ±0.13 58.9 

23. 5,6-DCV 0.28 ± 0.19 0.20 ± 0.01 28.7 

24. TCS 5.87 ± 0.89 0.41 ± 0.05 93.0 

25. 2,6-DCSA 0.09 ± 0.02 ND 100 

Total 485  183.6 62.3% 

                     *ND- Not Detected 
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4.3. Reusability and leaching studies  

The reusability experiments of Ce0.5Co0.5Oy mixed oxide (calcined) were carried out up to 5 

treatment cycles. After being reused thrice, the Ce0.5Co0.5Oy mixed oxide still retained satisfactory 

activity, with 63% COD and 74% color removal (Figure 4.12). The dissolved concentration of Ce 

IV (418.6 nm) in treated wastewater ranged from 0.121 to 0.126 ppm and Co II (228.6 nm) 

concentration ranged from 0.346-0.595 ppm. The metal leaching values were low [21], indicating 

the negligible leaching. 
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Fig.4.12. Effect of catalyst recycling on COD and color removal 

 

4.4. Kinetic studies 

The kinetic study on time-dependent COD removal indicated the first order kinetics as straight 

line with R
2
 values of 0.952 was obtained in the plot constructed between  ln�COD
�/�COD
 on x-

axis versus time (t) on y-axis (Figure 4.13).  
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Fig.4.13. Linear fitting of ln�COD
�/�COD
 as a function of reaction time 

4.5. Summary 

1. The Ce1-xCoxOy mixed oxides exhibited improved structural, textural and catalytic property 

than the single metal oxides. 

2. Ce0.5Co0.5Oy presented high surface area (109 m
2
g

-1
) and pore volume (0.416 ccg

-1
). The 

pore size was found to be 3-8 nm. 

3. Raman analysis confirmed the presence of O-vacancies in mixed oxides. 

4. XPS analysis indicated the presence of high and low oxidation states for Ce (4+, 3+) and 

Co (3+, 2+) metal ions. Ce
3+ 

concentration was found to be 28% 

5. Ce0.5Co0.5Oy exhibited maximum COD (68%), color (79%), TOC (66%), AOX (59%) and 

CHPs (62%) removal.  

6. Biodegradability index increased from 0.27 to 0.45. 

7. The first order kinetics was ascertained with R
2
 values of 0.952. 

8. The low leaching values of Ce (0.121 to 0.126 ppm) and Co (0.346-0.595 ppm) metals was 

obtained. 

 

 

 



94 

 

References 

[1] Alvarez, A., Ivanova, S., Centeno, M.A. and Odriozola, J.A., 2012. Sub-ambient CO oxidation 

over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic 

performance. Applied Catalysis A: General, 431, pp.9-17. 

[2] Ma, C.Y., Mu, Z., Li, J.J., Jin, Y.G., Cheng, J., Lu, G.Q., Hao, Z.P. and Qiao, S.Z., 2010. 

Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace 

ethylene. Journal of the American Chemical Society, 132(8), pp.2608-2613. 

[3] Lai, T.L., Lai, Y.L., Lee, C.C., Shu, Y.Y. and Wang, C.B., 2008. Microwave-assisted rapid 

fabrication of Co3O4 nanorods and application to the degradation of phenol. Catalysis 

Today, 131(1), pp.105-110. 

[4] Song, X.C., Zheng, Y.F. and Yin, H.Y., 2013. Catalytic wet air oxidation of phenol over Co-

doped Fe3O4 nanoparticles. Journal of nanoparticle research, 15(8), pp.1-9. 

[5] Shukla, P., Sun, H., Wang, S., Ang, H.M. and Tadé, M.O., 2011. Nanosized Co3O4/SiO2 for 

heterogeneous oxidation of phenolic contaminants in waste water. Separation and Purification 

Technology, 77(2), pp.230-236. 

[6] Luo, J.Y., Meng, M., Li, X., Li, X.G., Zha, Y.Q., Hu, T.D., Xie, Y.N. and Zhang, J., 2008. 

Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts: synthesis, characterization and 

mechanistic study of their catalytic properties for low-temperature CO oxidation. Journal of 

Catalysis,254(2), pp.310-324. 

[7] Zhang, Z., Hao, J., Yang, W., Lu, B., Ke, X., Zhang, B. and Tang, J., 2013. Porous Co3O4 

nanorods-reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the 

degradation of methylene blue. ACS applied materials & interfaces, 5(9), pp.3809-3815. 

[8] Blakemore, J.D., Gray, H.B., Winkler, J.R. and Müller, A.M., 2013. Co3O4 nanoparticle water-

oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catalysis, 3(11), pp.2497-

2500. 

[9] Liu, Y., Dai, H., Deng, J., Xie, S., Yang, H., Tan, W., Han, W., Jiang, Y. and Guo, G., 2014. 

Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon 

monoxide, benzene, toluene, and o-xylene. Journal of Catalysis, 309, pp.408-418. 



95 

 

[10] Li, H., Lu, G., Qiao, D., Wang, Y., Guo, Y. and Guo, Y., 2011. Catalytic Methane 

Combustion over Co3O4/CeO2 Composite Oxides Prepared by Modified Citrate Sol-Gel 

Method. Catalysis letters, 141(3), pp.452-458. 

[11] Liu, B., Liu, Y., Hou, H., Liu, Y., Wang, Q. and Zhang, J., 2015. Variation of redox activity 

and synergistic effect for improving the preferential oxidation of CO in H2-rich gases in porous 

Pt/CeO2-Co3O4 catalysts. Catalysis Science & Technology, 5(12), pp.5139-5152. 

[12] Varshney, M., Sharma, A., Verma, K.D. and Kumar, R., 2012. Structural and magnetic 

properties of Ce1-xCoxO2 (0⩽x⩽0.1) nanocrystalline powders.Physica Scripta, 86(1), p.015605. 

[13] Xu, J., Gao, P. and Zhao, T.S., 2012. Non-precious Co3O4 nano-rod electrocatalyst for oxygen 

reduction reaction in anion-exchange membrane fuel cells. Energy & Environmental 

Science, 5(1), pp.5333-5339. 

[14] Farhadi, S., Safabakhsh, J. and Zaringhadam, P., 2013. Synthesis, characterization, and 

investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. Journal 

of Nanostructure in Chemistry, 3(1), pp.1-9. 

[15] Hadjiev, V.G., Iliev, M.N. and Vergilov, I.V., 1988. The Raman spectra of Co3O4. Journal of 

Physics C: Solid State Physics, 21(7), p.L199. 

[16] Pal, J. and Chauhan, P., 2010. Study of physical properties of cobalt oxide (Co3O4) 

nanocrystals. Materials characterization, 61(5), pp.575-579. 

[17] Konsolakis, M., Sgourakis, M. and Carabineiro, S.A., 2015. Surface and redox properties of 

cobalt-ceria binary oxides: On the effect of Co content and pretreatment conditions. Applied 

Surface Science, 341, pp.48-54. 

[18] Wang, X., Chen, X., Gao, L., Zheng, H., Zhang, Z. and Qian, Y., 2004. One-dimensional 

arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical 

properties. The Journal of Physical Chemistry B, 108(42), pp.16401-16404. 

[19] Tiwari, A., Bhosle, V.M., Ramachandran, S., Sudhakar, N., Narayan, J., Budak, S. and Gupta, 

A., 2006. Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a 

high Curie temperature.Applied Physics Letters, 88(14), pp.142511-142511. 

[20] Yan, C.F., Chen, H., Hu, R.R., Huang, S., Luo, W., Guo, C., Li, M. and Li, W., 2014. 

Synthesis of mesoporous Co-Ce oxides catalysts by glycine-nitrate combustion approach for 



96 

 

CO preferential oxidation reaction in excess H2. International Journal of Hydrogen 

Energy, 39(32), pp.18695-18701. 

[21] Gruttadauria, M., Liotta, L.F., Di Carlo, G., Pantaleo, G., Deganello, G., Meo, P.L., Aprile, C. 

and Noto, R., 2007. Oxidative degradation properties of Co-based catalysts in the presence of 

ozone. Applied Catalysis B: Environmental, 75(3), pp.281-289. 

 

 

 

 

 

 

 

 



97 

 

Chapter 5 

Cu-Ce Nanocatalysts: Characterization and application in CWAO 

 

CuO have been reported to exhibit appreciable activity in various oxidation processes [1,2]. 

Various studies indicated the environmental applications of CuO based materials. CuO/Al2O3 

catalyst achieved 93% degradation of p-nitrophenol in microwave assisted Fenton-like process [3]. 

CuO-MoO3-P2O5 catalyst attained 99.65% degradation of methylene blue and 55% degradation of 

methyl orange during CWAO [4]. The petals like CuO nanostructures achieved 95% and 85% 

removal of methylene blue in presence of H2O2 [5]. CuMn2O4 catalyst achieved 95% conversion of 

CO to CO2 at 200°C [6]. Cu0.1Ce0.9O2-y catalyst exhibited 100% CO conversion at 155 °C [7]. 

Based on these oxidation applications of CuO based materials, CuO was chosen for the 

formation of mixed oxide with CeO2. The CuO-CeO2 nano-catalysts (0, 20, 40, 50, 60, 80, 100 at% 

Cu) were prepared by co-precipitation route (discussed in Chapter 2) and characterized by various 

techniques. This chapter describes the characterization results of CuO-CeO2 mixed oxides, 

followed by their activity study towards CWAO of wastewater.  

5.1. Characterization of CuO-CeO2 mixed oxides 

5.1.1. XRD analysis 

XRD patterns of CuO-CeO2 catalysts are presented in Figure 5.1 (a). The diffraction pattern 

for CeO2 was consistent with JCPDS file 81-0792, as discussed in Chapter 3. CuO exhibited the 

diffractions at 2θ= 35.4° (002), 38.7° (111), 48.8° (2�02), 58.1° (202), 61.5° (1�13), 66.3° (3�11) and 

68.1° (220) (JCPDS file, 80-0076). There were no diffraction peaks corresponding to CuO with Cu 

content upto 20 at %, suggesting the incorporation of CuO within the ceria lattice. For CuO-CeO2 

mixed catalysts, the CeO2 diffractions were broadened (Figure 5.1(b)), demonstrating the 

decreased crystallite size than pure CeO2. The crystallite sizes and lattice parameters are listed in 

Table 5.1. As expected the crystallite size of CeO2 was smaller in mixed phases, while there was 

no significant change in the crystallite size of CuO, indicating the formation of CeO2-like solid 

solution. The lattice parameter of CeO2 was decreased from 5.416 to 5.407, indicating the 

incorporation of Cu into ceria lattice. This decreased lattice parameter was in accordance with the 

study by Qin et al [8].  



98 

 

20 30 40 50 60 70 80

--(202) (220)
(311)

(202) CuO

Ce
20

Cu
80

Ce
40

Cu
60

Ce
50

Cu
50

Ce
60

Cu
40

Ce
80

Cu
20

 

(113)

(002)(111)

(311)(220)(200)

 

 

In
te

n
s

it
y

 (
a

.u
.)

Diffraction Angle (Degree)

(111)

CeO
2

-

 

27 28 29 30

 

 

 

(b)

 

Fig.5.1. (a) XRD pattern (b) low angle region from 27 to 30° 
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5.1.2. FT-IR analysis 

The FT-IR spectra of CeO2, CuO and Ce40Cu60 catalysts are shown in Figure 5.2. CeO2 

presented the characteristic band. CuO exhibited three characteristic infrared peaks bands at 420, 

498 and 612 cm
-1

 [9,10]. The decreased band intensity for Ce40Cu60 supported the interaction 

between CuO and CeO2 phases.  
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Fig.5.2. FTIR spectra of catalysts  

5.1.3. Raman analysis 

Raman spectrum of CeO2, Ce80Cu20 and CuO nanocatalysts are shown in Figure 5.3. CeO2 

presented the characteristic peak at 462 cm
-1

. In Ce80Cu20 mixed oxide, a less-prominent broad 

band was observed at 600 cm
-1

. This particular peak was attributable to the oxygen vacancies in 

mixed oxide. The I600/I462 for Ce80Cu20 nanocatalyst was found to be 0.06. CuO exhibited three 

Raman peaks at 278, 323, and 610 cm
-1

 derived from the Ag, B1g, and B2g modes of bulk CuO 

crystals, respectively [11,12].  
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Fig.5.3. Raman spectra of catalysts 

5.1.4. XPS analysis 

The Ce 3d XPS spectra of Ce40Cu60 nanocatalyst (Figure 5.4(a)) exhibited three main 3d5/2 

features at the binding energies of 881.1, 887.3, 897 eV corresponding to v, v′′, v′′′ components, 

respectively. The 3d3/2 feature corresponding to u, u′′ and u′′′ components were observed at 899.4 

eV, 906.6 eV and 915.8 eV. The v and u splitting was found to be 18.3 eV. The components 

corresponding to Ce
3+ 

were
 
present at

 
879.9 eV (v

o
), 885.3 eV (v′), 898 eV (u

o
), and 900.7 eV (u′). 

Ce
3+

 percentage of 27% indicated the under stoichiometry of ceria. Figure 5.4(b) presents the Cu 

2p core level binding energy spectra of the Ce40Cu60 nanocatalysts. The Cu 2p3/2 peak profile 

indicated strong fitting peaks at around 931.2 eV for Cu
+
 and 932.3 eV for Cu

2+
 peaks. The well-

defined shake-up satellite peaks at 940.2 and 942.3 eV are also typical of Cu
2+

 species, generated 

due to multiplet splitting of fully oxidized CuO [13,14]. The O 1s spectra (Figure 5.4(c)) of 

Ce40Cu60 mixed oxide exhibited three components corresponding to lattice oxygen/ structural 

oxygen (528.1 eV, 74.2%), supercharged oxygen (O�
�) near oxygen vacant sites at the surface 

(529.9 eV, 17.2%) and adsorbed surface oxygen in the form of OH ions (530.8 eV, 8.5%). The 

peak at 529.9 eV evidenced the oxygen storage/release capacity of nanocatalyst. Thus XPS 
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analysis also confirmed the presence of oxygen vacancies accompanied with Ce
4+

 reducing to Ce
3+

 

in presence of Cu
2+

 and Cu
+
 ions. 
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Fig.5.4. XPS spectra of Ce40Cu60 catalyst (a) Ce 3d (b) Cu 2p (c) O1s 
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5.1.5. N2-adsorption/desorption analysis  

N2-adsorption isotherm of CeO2, CuO and Ce40Cu60 catalysts presented the inflection at high 

relative pressure (Figure 5.5(a)), indicating the filling of secondary pores. Desorption isotherm 

resulted in a narrow hysteresis. The shape of hysteresis suggested the non-uniform distribution of 

pores. The pore size distributions are presented in (Figure 5.5(b)), which further confirmed the 

presence of disordered pores. The pores for Ce40Cu60 mixed oxide were found to be relatively 

uniform (3-7 nm). The textural properties i.e., BET surface area (SA) and pore volume (PV) of all 

samples are summarized in Table 5.1. The data indicate that CuO-CeO2 nanocatalysts possess high 

BET surface area and pore volume, than the single metal oxides. Ce40Cu60 nanocatalyst exhibited 

the maximum  SA of 143 m
2 

g
-1

 and PV of 0.386 cc g
-1

, which is quite larger than the earlier 

reports by Shan et al. (SA-92 m
2 

g
-1

, PV-0.1 cc g
-1

) [15], Rao et al. (SA-60 m
2 

g
-1

) [16], Sun et al. 

(SA-11 m
2 

g
-1

) [17]  and Pokrovski et al. (SA-53.7 m
2 

g
-1

) [18]. The SA and PV of CuO-CeO2 

nanocatalysts were comparable to the recent study by He et al. [19] and Wang et al. [20], where the 

samples were fabricated by fast-microwave assisted and  hard template (mesoporous KIT-6) 

method, respectively. 

 

Table 5.1. Structural and textural parameters of CuO-CeO2 nano-catalysts  

 

Sample 

a
Crystallite 

size (nm)
 

CeO2      CuO 

a
Lattice 

Parameter  

CeO2 

b
Particle 

size range 

(nm) 

c
BET 

surface area 

(m
2
/g)

 
 

c
Total pore 

volume  

(cc/g) 

CeO2 10.6 -- 5.416 44-46 20 0.089 

Ce80Cu20 5.5 -- 5.407 34-36 64 0.201 

Ce60Cu40 4.7 9.7 5.407 12-14, 21-24 90 0.105 

Ce50Cu50 4.3 10 5.407 16-20 114 0.382 

Ce40Cu60 4 10.5 5.407 18-20 143 0.386 

Ce20Cu80 3.5 10.6 5.416 16-18 104 0.204 

CuO -- 11  36-40 32 0.076 

       aCalculated from Scherrer equation , bFE-SEM micrographs, cN2 sorption isotherms 
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Fig.5.5. (a) N2-adsorption/desorption isotherm (b) Pore size distribution  



 

5.1.6. FE-SEM and TEM analysis 

Figure 5.6 presents the FE-SEM micrographs of catalysts. The particle size ranges assessed 

from micrographs are reported in Table 

was 45 nm which decreased to 35 nm for 

in considerable decrease in particle size.

EDX spectra of mixed oxides are presented in 

values of Ce/Cu mole ratio are provided in 

mole ratio values were close to the expected values, confirming the presence of Ce and Cu with 

required mole ratio. 

The TEM micrographs of CeO2, Ce

are shown in Figure 5.8. The presence of disordered pores 

micrographs. The average particle sizes (from

catalysts were found to be 16, 4 and 8 nm, respectively. The diffraction rings in SAED patterns of 

Ce40Cu60 coincide with the (111), (220) planes of CeO

CuO, confirming its polycrystalline nature

  

    

Fig.5.6. FE-SEM micrographs of catalysts (a) CeO

(e) Ce40
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SEM micrographs of catalysts. The particle size ranges assessed 

Table 5.1. As depicted in table, average particle size of CeO

was 45 nm which decreased to 35 nm for Ce80Cu20 catalyst, further increase in Cu content resulted 

in considerable decrease in particle size. These results were in good agreement with XRD analysis

are presented in Figure 5.7, and the expected as well as obtained 

values of Ce/Cu mole ratio are provided in Table 5.2. EDX analysis confirmed that the obtained 

mole ratio values were close to the expected values, confirming the presence of Ce and Cu with 

, Ce40Cu60 and CuO catalysts along with their SAED patterns 

he presence of disordered pores was further confirmed by TEM 

The average particle sizes (from TEM micrographs) of CeO2, Ce40Cu60

catalysts were found to be 16, 4 and 8 nm, respectively. The diffraction rings in SAED patterns of 

coincide with the (111), (220) planes of CeO2 and (111), (111), (202), (202) planes of 

ming its polycrystalline nature.  

    

   

SEM micrographs of catalysts (a) CeO2 (b) Ce80Cu20 (c) Ce60Cu40 (d) Ce

40Cu60 (f) Ce20Cu80 (g) CuO 

SEM micrographs of catalysts. The particle size ranges assessed 

As depicted in table, average particle size of CeO2 

catalyst, further increase in Cu content resulted 

These results were in good agreement with XRD analysis. 

and the expected as well as obtained 

confirmed that the obtained 

mole ratio values were close to the expected values, confirming the presence of Ce and Cu with 

and CuO catalysts along with their SAED patterns 

was further confirmed by TEM 

60 and CuO 

catalysts were found to be 16, 4 and 8 nm, respectively. The diffraction rings in SAED patterns of 

2), (202) planes of 

 

(d) Ce50Cu50   



 

      

Fig.5.7. EDX spectra
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EDX spectra of catalysts           Table 5.2. Ce/Cu mole ratio 

Sample      Ce/Cu Mole ratio

Expected

Ce80Cu20 4 

Ce60Cu40 1.5 

Ce50Cu50 1 

Ce40Cu60 0.66 

Ce20Cu80 0.25 

 

 

 

Ce/Cu mole ratio from EDX 

Ce/Cu Mole ratio 

Expected Obtained 

4 

1.5 

0.97 

0.63 

0.23 



 

   

     Fig.5.8. TEM micrographs and SAED pattern of (a) CeO

5.2. CWAO study over CuO-CeO2 nanocatalysts

The treatment efficiency of CuO-CeO

removal is presented in Figure 5.9. The mixed catalysts exhibited high removal efficiency, which 

increased with increasing Cu content and reached maximum with 

81% color, 61% AOX and 64% TOC abatement). 

after CWAO over Ce40Cu60 nanocatalyst.
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     Fig.5.9. Effect of mole ratio on COD, color, AOX and TOC removal 
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TEM micrographs and SAED pattern of (a) CeO2 (b) Ce40Cu60 (c) CuO

 

nanocatalysts 

CeO2 catalysts in terms of COD, color, AOX and TOC 

he mixed catalysts exhibited high removal efficiency, which 

increased with increasing Cu content and reached maximum with Ce40Cu60 catalyst (

abatement). The BI of wastewater was enhanced up to 0.45

nanocatalyst. 

40 Cu 50 Cu 60 Cu 80 Cu 100 Cu

 

 

 COD

 Color

 AOX

 TOC

  

Effect of mole ratio on COD, color, AOX and TOC removal  

   

 

(c) CuO  

, color, AOX and TOC 

he mixed catalysts exhibited high removal efficiency, which 

(67% COD, 

enhanced up to 0.45 
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Chlorophenolics removal 

GC chromatogram of CHPs after CWAO in presence of Ce40Cu60 catalyst is shown in Figure 

5.10. After CWAO treatment total 19 CHPs (Table 5.3) were detected with overall removal of 

66%.  The removal of most of CHPs was from 47% to 100%. The compounds like PCP, 2,3-DCP, 

3,4-DCP, 2,4,6-TCP, 3,4,6-TCG and 2,6-DCSA were completely removed or their concentration  

fallen below the detection limit of instrument. TCS was removed up to 93.5%, followed by 2,3,5,6-

TeCGU (84.3%), 2,3,4-TCP (80.3%), 4,5-DCG (78.1%), 3,4,5-TCG (77.2%), 4,5,6-TCG (76.6%), 

4-CG (75.6%), 2,4,5-TCP (67.2%), 2,6-DCP (66%) and 2,5-DCP (62.9%). The rest of the 

compounds were removed up to 14-50%, whereas 4-CP was reduced only by 8 %. Analysis of 

treatment data according to chemical family showed 60.5%, 76.7%, 93.5% and 100% removal of 

CP, CG, CS and CSA, respectively (Figure 5.11 (a)). Low removal efficiencies were achieved for 

CC (17.5%) and CV (14.4%). The removal of PCHPs was highest (100%) followed by TeCHPs 

(84.3%), TCHPs (68%), DCHPs (66.2%) and MCHPs (63.7%), (Figure 5.11 (b)).  

 

 

Fig.5.10. GC-MS chromatogram of CHPs after treatment 
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Table 5.3. Concentration of CHPs with percent removal  

S.No. Name of compound Initial (µg/L) Final(µg/L) % Removal 

1.  3-CP 14.9 ± 10.91 11.9 ± 2.08 19.9 

2.  4-CP 6.2 ± 4.55 5.7 ± 0.12 8.1 

3.  2,3-DCP 0.8 ± 0.01 ND 100 

4.  2,4-DCP 26.5 ± 0.47 13.4 ± 0.67 49.5 

5.  2,5-DCP 62.4 ± 0.78 23.1 ± 1.21 62.9 

6.  2,6-DCP 22.9 ± 4.45 7.8 ± 1.16 66 

7.  3,4-DCP 0. 6 ± 0.08 ND 100 

8.  2,3,4-TCP 3.3 ± 0.10 0.6 ± 0.09 80.3 

9.  2,3,5-TCP 2.5 ± 0.03 1.7 ± 0.43 32.1 

10.  2,3,6-TCP 1.2 ± 0.01 0.8 ± 0.13 34.2 

11.  2,4,5-TCP 132.9 ± 19.69 43.6 ± 0.42 67.2 

12.  2,4,6-TCP 0.4 ± 0.03 ND 100 

13.  PCP 0.4 ± 0.02 ND 100 

14.  4-CG 83.6 ± 19.45 20.4 ± 0.83 75.6 

15.  4,5-DCG 103 ± 1.92 22.6 ± 0.3 78.1 

16.  4,6-DCG 2.6 ± 0.52 1.4 ± 0.3 47.4 

17.  3,4,5-TCG 0.6 ± 0.11 0.15 ± 0.05 77.2 

18.  3,4,6-TCG 0.5 ± 0.19 ND 100 

19.  4,5,6-TCG 0.7 ± 0.10 0.2 ± 0.08 76.6 

20.  2,3,5,6-TeCG 1.8 ± 0.22 0.3 ± 0.07 84.3 

21.  3,5-DCC 2.9 ± 0.21 2.4 ± 1.02 17.4 

22.  3,6-DCC 8.5 ± 0.05 7 ± 2.0 17.5 

23.  5,6-DCV 0.3 ± 0.09 0.2 ± 0.05 14.5 

24.  TCS 5.9 ± 0.89 0.4 ± 0.13 93.5 

25.  2,6-DCSA 0.09 ± 0.02 ND 100 

Total 485  164 66 

                             *ND- Not Detected 
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Fig.5.11. Percent removal of CHPs  

5.3. Reusability and leaching studies 

The reusability of Ce40Cu60 nanocatalyst was studied up to 4 treatment cycles. Catalytic run 

over the used catalyst (calcined) indicated that after two cycles the COD and color removal was 

still satisfactory i.e., 64% and 77%, respectively (Figure 5.12).  

The Ce IV (418.6 nm) concentrations in treated wastewater ranged from 0.104 to 0.133 ppm 

and Cu II (324.7 nm) concentrations ranged from 0.346-0.636 ppm. The leaching value of metals 

was comparably lower than the previous reports, [21,22] indicating the stability of catalyst.  

5.4. Kinetic studies   

The kinetic study on time-dependent COD removal indicated the first order kinetics as straight 

line with R
2
 values of 0.972 was obtained in the plot constructed between  ln�COD��/�COD� and 

time (t) (Figure 5.13).  
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          Fig.5.12. COD and color removal during reuse cycles 
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Fig.5.13. The linear fitting of ln�COD��/�COD� as a function of reaction time  
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5.5. SUMMARY 

1. Addition of Cu resulted in positive modifications on structural, textural and catalytic 

properties of CeO2 nanocatalyst. 

2. Ce40Cu60 nanocatalyst presented high surface area of 143 m
2
g

-1
 and pore volume of 0.386 

ccg
-1

. The pore size was found to be 3-7 nm. 

3. Raman analysis also confirmed the presence of O-vacancies in mixed oxide. 

4. XPS analysis indicated the presence of high and low oxidation states for Ce (4+, 3+) and 

Cu (2+, 1+) metal ions in Ce40Cu60 nanocatalyst. Ce
3+ 

concentration was found to be 27%. 

5. Ce40Cu60 nanocatalyst exhibited maximum COD (67%), color (81%), TOC (64%), AOX 

(61%) and CHPs (66%) removal.  

6. Biodegradability index increased from 0.27 to 0.45 after treatment. 

7. CWAO was found to follow the first order kinetics with R
2
 values of 0.972. 

8. The catalyst exhibited low leaching values for Ce (0.104 to 0.133 ppm) and Cu (0.346-

0.636 ppm) metals. 
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Chapter 6 

Ni-Ce Nanocatalysts: Characterization and application in CWAO  

 

NiO based materials have been investigated in oxidation catalysis [1-3]. Ni/MgAlO catalyst 

achieved 98% degradation with 71.4% TOC conversion in CWAO of Crystal Violet [4]. NiO 

supported on mesoporous silica monoliths (NiO/HOM-9) presented complete oxidation of o-

aminophenols in heterogeneous oxidation reaction [5]. Different Ce1-xNixO2 mixed oxides have 

been studied in complete oxidation of CO [6-8].  

Therefore, NiO was selected for the formation of mixed oxides with CeO2. This chapter 

describes the results and discussion pertaining to the structural and textural characteristics of 

nanosized NiO-CeO2 oxides, followed by their activity in CWAO of wastewater. 

6.1. Characterization of NiO-CeO2 mixed oxides 

6.1.1. XRD analysis 

The diffraction pattern of NiO-CeO2 nanocatalysts are shown in Figure 6.1(a). CeO2 

diffraction pattern was consistent with JCPDS file 81-0792, as discussed in Chapter 3. NiO 

exhibited reflections at 2θ = 37.3°, 43.3° and 62.9° corresponding to (111), (200) and (220) crystal 

planes (JCPDS 75-0197. Absence of NiO peaks in Ce80Ni20 manifested that Ni species entered into 

the lattice of ceria. Other mixed oxides displayed the diffraction peaks for both CeO2 and NiO. 

This indicated that with increasing NiO content, a part of Ni+2 was incorporated into ceria lattice 

and a part of Ni+2 was crystallized onto its surface. The diffraction peaks for mixed phases were 

broadened Figure 6.1(b), indicating smaller crystallite size than pure CeO2 [9]. The crystallite size 

and lattice parameter of samples are listed in Table 6.1. Results indicated that the crystallite size 

decreased significantly with increasing Ni content. The lattice parameter of CeO2 was decreased 

from 5.416Å to 5.401Å which was in accordance with the previous studies [6,8].   

6.1.2. FTIR analysis 

The FTIR spectra of CeO2, Ce40Ni60 and NiO catalysts are presented in Figure 6.2. CeO2 

exhibited the characteristic band at 560 cm-1. NiO showed a strong absorption band at 413 cm-1, 

attributable to Ni-O bond vibration [10]. The characteristic Ni-O band in Ce40Ni60 catalyst was 
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shifted from 413 to 395 cm-1which could be related to increase in lattice parameter from NiO 

(4.176 Å) to Ce40Ni60 (4.184 Å). Decreased intensity of bands for Ce40Ni60 catalyst supported the 

interaction between CeO2 and NiO in mixed phase. 
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Fig.6.1. (a) XRD pattern of samples (b) low angle region from 27-30°  
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Fig.6.2. FT-IR of catalysts 

6.1.3. N2 adsorption-desorption 

N2 adsorption-desorption isotherms for CeO2, Ce40Ni60 and NiO are presented in Figure 

6.3(a). The inflection at higher relative pressure indicated the presence of secondary pores. The 

desorption isotherms gave rise to the narrow hysteresis, corresponding to the complex shape of 

pores. Pore size distribution (PSD) confirmed the presence of pores with wide distribution for 

CeO2 and NiO (Figure 3.5 (b). Ce40Ni60 mixed oxide presented relatively uniform pores of 3-11 

nm. The specific surface areas and pore volume of catalysts are summarized in Table 6.1. Pure 

CeO2 and NiO exhibited the low surface area (CeO2, 20 m2 g-1; NiO, 17 m2 g-1) and pore volume 

(CeO2, 0.0897 cc g-1; NiO, 0.092 cc g-1). For mixed oxides, the surface area and pore volume were 

augmented with increasing Ni content and reached a maximum of 90 m2 g-1 and 0.275 cc g-1 for 

Ce40Ni60 nanocatalyst. The surface area was larger than the previous report by Sun et al. [10] 

(29m2 g-1) and Liu et al. [14] (69.3 m2 g-1), where hydrothermal method was employed for the 

synthesis. The surface area values were comparable to the study by Solsona et al. [11]. 
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Fig.6.3. (a) N2 adsorption-desorption isotherms (b) pore size distribution  

 

 

 



 

Table.6.1. Structural and textural 

Sample aCrystallite size 

(nm)

CeO2        

CeO2 10.6 

Ce80Ni20 6.3 

Ce60Ni40 5.6 

Ce50Ni50 4.7 

Ce40Ni60 4.1 

Ce20Ni80 3.2 

NiO -- 

aCalculated from XRD, bFE-SEM micrographs, 

 

                       

Fig.6.4. FE-SEM (a-g) micrograph
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and textural parameters of CeO2-NiO nanocatalysts 

Crystallite size 

(nm) 

2        NiO 

aLattice 

parameter 

(Å) 

bAverage 

particle size 

(nm) 

cSurface 

area 

(m

-- 5.416 44-46 20

-- 5.415 39-43 50

7.8 5.412 24-26 75

8.5 5.407 21-24 81

8.2 5.401 16-17 90

6.7 5.413 14-17 57

8.6 -- 17-19 17

SEM micrographs, c N2-sorption isotherms 

                                                  

  

micrographs of catalysts: (a) CeO2 (b) Ce80Ni20 (c) Ce

Ce40Ni60 (f) Ce20Ni80 (g) NiO 

 

Surface 

area 

(m2/g) 

cTotal pore 

volume 

(cc/g) 

20 0.089 

50 0.148 

75 0.242 

81 0.255 

90 0.275 

57 0.261 

17 0.092 

                 

 

(c) Ce60Ni40 (d) Ce50Ni50 (e) 



 

    

                Fig.6.5. EDX spectra of catalysts                   
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talysts                   Table 6.2. Ce/Ni mole ratio from EDX

Sample      Ce/Ni Mole ratio

Expected Obtained

Ce80Ni20 4 

Ce60Ni40 1.5 1.5

Ce50Ni50 1 1.1

Ce40Ni60 0.66 0.

Ce20Ni80 0.25 0.25

 

 

 

from EDX 

Mole ratio 

Obtained 

4 

1.5 

1.1 

0.65 

0.25 



 

6.1.4. FE-SEM and TEM analysis

FE-SEM micrographs of catalysts are

micrographs displayed the 

observations are consistent with XRD results. 

Figure 6.5, and the expected as well as obtained values of Ce/

6.2. EDX analysis confirmed that the obtained mole ratio values were close to the 

confirming the presence of Ce and 

micrographs together with 

sizes of these catalysts were found to be 16, 13 and 11 nm, respectively. 

Ce40Ni60 confirmed its polycrystalline

(220), (311), (422) planes of cubic CeO

 

 

Fig.6.6. TEM image and SAED pattern of (a) CeO

6.2. CWAO study over NiO

 The NiO-CeO2 nano

investigate the effect of molar proportion between Ni/Ce on CWAO of wastewater. 

compares the percent removal efficiency of

(50/50), Ni-Ce-O (60/40), Ni

high removal efficiency than the single oxides and it 

content. The catalyst with Ni/Ce ratios of 60/40 reached the maximum

75% color, 59% TOC and

nanocatalystS was in correlation with 

of wastewater was enhancement 
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SEM and TEM analysis 

SEM micrographs of catalysts are presented in Figure 6.4. 

 decrease in particle size with increasing NiO content 

observations are consistent with XRD results. EDX spectra of mixed oxides

and the expected as well as obtained values of Ce/Ni mole ratio are provided in 

confirmed that the obtained mole ratio values were close to the 

presence of Ce and Ni with required mole ratio. Figure 6.6

micrographs together with SAED pattern of CeO2, Ce40Ni60 and NiO catalysts. 

sizes of these catalysts were found to be 16, 13 and 11 nm, respectively. 

lycrystalline nature as the diffraction rings were attributable

(220), (311), (422) planes of cubic CeO2 and (111), (200), (220), (311) planes of NiO.

    

TEM image and SAED pattern of (a) CeO2 (b) Ce40Ni

CWAO study over NiO-CeO2 nanocatalysts 

nano-catalysts with different Ni contents were evaluated in order to 

investigate the effect of molar proportion between Ni/Ce on CWAO of wastewater. 

removal efficiency of CeO2, Ni-Ce-O (20/80), Ni-

O (60/40), Ni-Ce-O (80/20) and NiO nano-catalysts. The mixed catalysts exhibited 

high removal efficiency than the single oxides and it progressively increased with increasing Ni 

content. The catalyst with Ni/Ce ratios of 60/40 reached the maximum activity 

59% TOC and 55%AOX abatement. Highest removal efficiency of Cu

was in correlation with the characterization results. The biodegradability index (BI) 

of wastewater was enhancement up to 0.42.  

. Statistical analysis of 

decrease in particle size with increasing NiO content (Table 6.1). These 

mixed oxides are presented in 

mole ratio are provided in Table 

confirmed that the obtained mole ratio values were close to the expected values, 

Figure 6.6 represents the TEM 

and NiO catalysts. Average particle 

sizes of these catalysts were found to be 16, 13 and 11 nm, respectively. SAED patterns of 

were attributable to (200), 

(200), (220), (311) planes of NiO. 

 

Ni60 (c) NiO   

catalysts with different Ni contents were evaluated in order to 

investigate the effect of molar proportion between Ni/Ce on CWAO of wastewater. Figure 6.7 

-Ce-O (40/60), Ni-Ce-O 

he mixed catalysts exhibited 

increased with increasing Ni 

activity with 62% COD, 

. Highest removal efficiency of Cu60Ce40 

The biodegradability index (BI) 
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     Fig.6.7. Effect of Ce/Ni mole ratio on COD, color, TOC and AOX removal 

 

                        

                   Fig. 6.8. GC-MS chromatogram of CHPs in wastewater after CWAO 
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Table 6.3. Concentration of CHPs with percent removal 

S. No. Compound Initial (µg/L) Final(µg/L) % Removal 

1.  3-CP 14.9 ±10.98 10.3 ± 0.08 31.2 

2. 4-CP 6.2 ± 4.55 5.6 ± 0.25 9.4 

3. 2,3-DCP 0.8 ± 0.01 ND 100 

4. 2,4-DCP 26.5 ± 0.47 14.5 ± 0.60 45.3 

5. 2,5-DCP 62.4 ± 0.78 34.5 ±1.23 44.7 

6. 2,6-DCP 22.9 ± 4.45 7.8 ±1.87 65.9 

7. 3,4- DCP 0.6 ± 0.08 ND 100 

8. 2,3,4-TCP 3.3 ± 0.10 0.8 ±0.02 77.0 

9. 2,3,5-TCP 2.5 ± 0.03 1.4 ±0.32 43.5 

10. 2,3,6- TCP 1.2 ± 0.01 0.7 ±0.07 42.9 

11. 2,4,5-TCP 132.9 ± 19.69 97.9 ±5.99 26.3 

12. 2,4,6-TCP 0.4 ± 0.03 ND 100 

13. 4-CG 83.6 ± 19.45 21.4 ±1.02 74.5 

14. 4,5-DCG 102.9 ±1.92 20.7 ±2.03 79.9 

15. 4,6-DCG 2.6 ± 0.52 1.4 ± 0.06 48.0 

16. 3,4,5-TCG 0.6 ± 0.11 0.3 ± 0.10 55.5 

17. 3,4,6-TCG 0.5 ± 0.19 0.2 ± 0.03 60.6 

18. 4,5,6-TCG 0.7 ± 0.10 0.2 ± 0.04 75.7 

19. 2,3,5,6-TCG 1.8 ± 0.22 0.3 ± 0.05 83.2 

20. 3,5- DCC 2.9 ± 0.21 2.7 ± 0.13 8.9 

21. 3,6- DCC 8.5 ± 0.05 2.4 ± 0.45 72.2 

22. 5,6-DCV 0.3 ± 0.19 0.2 ± 0.06 32.5 

23. TCS 5.9 ± 0.89 2.2 ± 0.43 61.9 

24. 2,6-DCSA 0.09 ± 0.02 ND 100 

25. PCP 0.4 ± 0.02 ND 100 

                   Total 485 225  54% 

        *ND- Not detected  
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Chlorophenolics removal 

GC chromatogram of CHPs after CWAO in presence of Ce40Cu60 catalyst is shown in Figure 

6.8. After CWAO treatment, total 20 CHPs (out of 25) were detected with overall removal 

efficiency of 54% (Table 6.3). The removal of most of CHPs was from 30-100%. Compounds like 

2,3-DCP, 3,4- DCP, 2,4,6-TCP, 2,6-DCSA and PCP  were completely removed or concentration 

fall below the detection limit of the instrument. 2,3,5,6-TCG was removed up to 83.20 % followed 

by 4,5-DCG (79.9%), 2,3,4-TCP (77%), 4,5,6-TCG (75.7%), 4-CG (74.5%), 3,6-DCC (72.2%), 

2,6-DCP (65.9%), TCS (61.9%), 3,4,6-TCG (60.6%) and 3,4,5-TCG (55.5%). The rest of the 

compounds were removed up to 26-48% only. 4,6-DCG, 2,4-DCP, 2,5-DCP, 2,3,5-TCP and 2,3,6-

TCP were removed only 48%, 45.3%, 44.7%, 43.5% and 42.9%, respectively. 4-CPand 3,5-DCC 

were removed by 9.4% and 8.9%, only. According to chemical family, complete removal was 

achieved for CSA, followed by CG (77%), CS (61.9%), CC (55.9%), CP (36.9%) and CV (32.5%) 

(Figure 6.9(a)). According to attached Cl atom, highest degradation was achieved for PCHPs and 

TeCHPs with 100% and 83.2% removal, respectively. MCHPs, DCHPs and TCHPs were reduced 

by 64.8%, 63.6% and 29.9%, respectively (Figure 6.9(b)). 
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Fig. 6.9. Percent removal of CHPs  
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6.3. Reusability and Leaching studies  

The reusability experiments of Ce40Ni60 nanocatalyst were carried out up to 4 treatment cycles 

(Figure 6). The activity of calcined catalyst was found to be 59% COD and 71% color after two 

reuse cycles, and further reuse of catalyst lead to considerably decreased activity (Figure 6.10).  

The dissolved Ce concentrations in treated wastewater ranged from 0.12 mg/L to 0.16 

mg/L and Ni concentration ranged from 0.218-0.643 mg/L for NiO-CeO2 nano-catalysts. The 

values of metal leaching was very low [12,13], indicating the negligible leaching. 
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              Fig.6.10. COD and color removal during reuse cycles 

 

6.4. Kinetic studies  

The first order kinetics was confirmed by the straight line with R2 values of 0.959 obtained in 

the plot constructed between  ln�COD�	/�COD� on x-axis versus time (t) on y-axis (Figure 6.11).  
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Fig.6.11. The linear fitting of ln�COD�	/�COD� as a function of reaction time 

 

6.5. Summary 

1. NiO-CeO2 resulted in improved structural, textural and catalytic property than the single 

metal oxides. 

2. Ce40Ni60 mixed oxide presented the surface area of 90 m2g-1 and pore volume of 0.275 ccg-

1.  The pore size was found to be 3-11 nm. 

3. Ce40Zn60 mixed oxide exhibited maximum COD (62%), color (75%), AOX (55%), TOC 

(59%) and CHPs (54%) removal.  

4. Biodegradability index increased from 0.27 to 0.42. 

5. The first order kinetics was ascertained with R2 values of 0.957. 

6. The low leaching values of Ce (0.12- 0.16 ppm) and Ni (0.218-0.64 ppm) metals was 

obtained. 
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Chapter 7 

Zn-Ce Nanocatalysts: Characterization and application in CWAO  

 

ZnO is a widely studied photocatalyst [1-3], but there are relatively few reports on the 

oxidation application of ZnO. The acid treated ZnO catalyst was found to remove 68% Rhodamine 

B in wet oxidation [4]. ZnO exhibited the promotional effect in water oxidation catalyzed by 

Co3O4 [5]. CeO2-ZnO composite hollow microspheres attained 100% oxidation of CO [6].  

On the basis of these oxidation applications of ZnO based materials, ZnO was selected for the 

formation of mixed oxide with CeO2. The ZnO-CeO2 nano-catalysts (0, 20, 40, 50, 60, 80, 100 at% 

Zn) were prepared by the co-precipitation method (discussed in Chapter 2) and characterized by 

various techniques. This chapter deals with the discussion on the characteristics of nanosized ZnO-

CeO2 oxides and their application in CWAO of wastewater. 

7.1. Characterization of ZnO-CeO2 mixed oxides 

7.1.1. XRD analysis 

Figure 7.1(a) shows the XRD pattern of CeO2-ZnO mixed oxides. The diffraction pattern for 

CeO2 was consistent with JCPDS file 81-0792, as discussed in Chapter 3. ZnO exhibited the 

tetragonal reflections at 31.8, 34.5, 36.3, 47.6, 56.7, 63, 66.5, 68.1, 69.2, 72.8 and 77.2 

corresponding to (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202) 

respectively (JCPDS 79-0205). No diffraction peaks corresponding to zinc oxide were observed up 

to zinc content of 20 at%, indicating the incorporation of ZnO within the ceria lattice, which was 

further evidenced by shifting of characteristic ceria peaks towards higher angle (27o to 30o; Figure 

7.1(b)). Further augmentation in Zn content exhibited peaks for ZnO phase, suggesting the 

formation of solid solution. In mixed catalysts, the peaks were broad and less intense, indicating 

the decreased crystallite size [7]. The average crystallite size and lattice parameter  
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Fig.7.1. (a) XRD pattern of samples (b) low angle region from 27 to 30°  

 

are listed in Table 7.1. Average crystallite size of CeO2 was significantly decreased with 

increasing Zn content. The lattice parameter of CeO2 was 5.417Å, which decreased by 0.06 (5.357 
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Å) for Ce80Zn20 catalyst. This decrease was in accordance with the previous theoretical study by 

Vanpoucke et al. [8], where a decrease of 0.07 Å was obtained for Ce0.75Zn0.25O2 using DFT 

calculations. The overall trend of decrease in lattice parameter was in good correlation with the 

experimental study by Ramasamy et al. [9]. 

7.1.2. FT-IR analysis 

The FT-IR spectra of CeO2, Ce40Zn60 and ZnO catalysts are presented in Figure 7.2. For 

CeO2, a characteristic band was observed at 560 cm-1. ZnO showed strong absorption band at 438 

cm-1 assigned to Zn-O stretching vibration [10]. For Ce40Zn60 catalyst, broadened band with 

decreased intensity confirmed the interaction between CeO2 and ZnO phases in mixed oxide.      
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              Fig.7.2. FT-IR of catalysts 

7.1.3. Raman analysis 

The Raman spectrum of CeO2, Ce80Zn20 and ZnO nanocatalysts are presented in Figure 7.3. 

CeO2 showed the characteristic peak at 462 cm-1. For Ce80Zn20 mixed oxide, a characteristic band 

of oxygen vacancies at 600 cm-1 was also observed. The I600/I462 ratio was found to be 0.07. ZnO 

exhibited the bands at 330 cm-1 (E2 high- E2 low), 437 cm-1 (E2 high), and 658 cm-1 (E2 low + B1 

high). Small peaks at 380 cm-1 and 583 cm-1 were the characteristic of high density of common 
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oxygen defects in ZnO [11]. Raman study concluded that the interaction of ZnO with CeO2 

introduces the oxygen vacancies.            
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     Fig.7.3. Raman spectra of catalysts 

7.1.4. XPS analysis 

Figure 7.4 depicts the XPS spectra of Ce40Zn60 catalyst. Ce 3d spectra exhibited six main 

components characteristic of Ce4+ at the binding energies of 880.6 eV, 887.3 eV, 896.5 eV, 899 

eV, 906.7 eV and 915.7 eV corresponding to v, v′′, v′′′, u, u′′ and u′′′ respectively. Peaks for vo 

(879.6 eV), v′ (884.4 eV), uo (897 eV) and u′ (900.7 eV) components evidenced the presence of 

Ce3+. Atomic fraction of Ce3+ was found to be 26%.  Zn 2p3/2 spectra presented a peak at 1020.9, 

corresponding to the presence of Zn2+ in ZnO lattice [12,13]. O 1s spectra exhibited three peaks. 

The relative percentage of peak corresponding to structural/lattice oxygen (528.8 eV), adsorbed 

surface oxygen as OH ions (531.6 eV) and supercharged oxygen (O�
� ) near oxygen vacant sites 

(530.5 eV) was 63.9%, 12.7% and 23.3%, respectively.  

 

 



133 

 

880 890 900 910 920

Binding energy (eV)

In
te

n
s
it

y
 (

a
.u

)

 

u'''

u''v
o

u
o

v

v' v''

v''' u

u'

(a) Ce 3d

 

1016 1018 1020 1022 1024

  

 Binding energy (eV)

In
te

n
s
it

y
 (

a
.u

)

(b) Zn 2p

526 528 530 532 534

 Binding energy (eV)

In
te

n
s

it
y

 (
a

.u
)

 

 

(c) O1s

 

           Fig.7.4. XPS spectra of Ce40Zn60 catalyst (a) Ce3d (b) Zn 2p (c) O 1s 
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Table 7.1. Structural and textural properties of ZnO-CeO2 catalysts 

Sample Crystallite size 

(nm) 
a 

Lattice 

parameter 
a 

Average 

particle size 

(nm) 
b 

Specific 

surface area 

(m
2
/g) 

c 

Total pore 

volume 

(m
3
/g) 

c 
CeO2 ZnO CeO2 

CeO2 10.6 -- 5.417 45 ± 1.4 20 0.089 

Ce80Zn20 6.8 -- 5.357 41± 1.7 54 0.204 

Ce60Zn40 6.2 10.5 5.382 30 ± 5.4 65 0.105 

Ce50Zn50 6.1 10.7 5.387 18 ± 2.3 90 0.110 

Ce40Zn60 5.6 9.9 5.373 16 ± 2.1 104 0.247 

Ce20Zn80 5.3 10.4 5.393 18 ± 0.9 106 0.202 

ZnO -- 11.1 -- 40 ± 1.9 35 0.164 

a XRD,  
b FE-SEM micrographs, c N2-sorption 

7.1.5. N2-adsorption/desorption analysis 

Figure 7.5(a) presents the adsorption-desorption curve for CeO2, Ce40Zn60 and ZnO catalysts.  

Adsorption isotherm of all samples showed an inflection at relative high pressure, indicating the 

presence of secondary pores. A narrow hysteresis due to desorption was the characteristic of 

irregular pore structure. PSD (Figure 7.5(b)) confirmed the presence of disordered pores with 

wide pore size of 3-12 nm for CeO2 and 3-7 nm for Ce40Zn60 and ZnO catalyst. The textural 

properties (BET surface areas and pore volume) of all samples are summarized in Table 1. From 

the table, it was observed that the mixed catalysts possessed high BET surface area (54-106 m2/g) 

and pore volume (0.105-0.247 cc g-1). Surface area was higher than the previous reports by Lin et 

al. [14] (63 m2 g−1) and Anandan et al. [15] (80 m2 g−1), where the catalysts were prepared by co-

precipitation and hydrothermal methods, respectively. 
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Fig.7.5. (a) N2-adsorption-desorption isotherms (b) Pore size distribution  

 

 



 

7.1.6. FE-SEM and TEM analysis 

Figure 7.6 shows the detailed view of 

correspondingly their particle size ranges are mentioned in 

CeO2 was 45 nm which decreased to 41 nm for sample with 20 

content resulted in considerable decrease in average particle size. 

presented in Figure 7.7, and the expected as well as obtained values of Ce/

provided in Table 7.2. EDX analysis confirmed that the obtained mole ratio values were close to 

the expected values, confirming the presence of Ce and 

micrographs of CeO2, Ce40Zn60 and ZnO catalysts

Figure 7.8. TEM micrographs confirmed

CeO2, Ce40Zn60 and ZnO particles was 16, 9 and 14 nm

confirmed its polycrystalline nature as the 

planes of cubic CeO2 and (100), (002), (102

  

  

Fig.7.6. FE-SEM micrographs of (a) CeO
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shows the detailed view of FE-SEM micrographs of all samples and 

correspondingly their particle size ranges are mentioned in Table 7.1. The average particle size of 

was 45 nm which decreased to 41 nm for sample with 20 at% Zn. Further increase in Zn 

e decrease in average particle size. EDX spectra of mixed oxides

and the expected as well as obtained values of Ce/Zn mole ratio are 

confirmed that the obtained mole ratio values were close to 

the expected values, confirming the presence of Ce and Zn with required mole ratio.

and ZnO catalysts along with their SAED patterns are presented in 

confirmed the presence of disordered pores.  The mean diameter of 

16, 9 and 14 nm, respectively. SAED pattern of 

as the diffraction rings were attributable to (111), (220), (311) 

and (100), (002), (102), (110) planes of ZnO. 

    

      

SEM micrographs of (a) CeO2 (b) Ce80Zn20 (c) Ce60Zn40 (d) Ce50Zn50 (e) Ce

Ce20Zn80 (g) ZnO 

SEM micrographs of all samples and 
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             Fig.7.7. EDX spectra of 
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Sample      Ce/Zn Mole ratio

Expected 

Ce80Zn20 4 

Ce60Zn40 1.5 

Ce50Zn50 1 

Ce40Zn60 0.66 

Ce20Zn80 0.25 

EDX spectra of catalysts             Table 7.2. Ce/Zn mole ratio from EDX

 

 

Ce/Zn Mole ratio 

 Obtained 

4.1 

1.3 

1.1 

0.65 

0.23 

Ce/Zn mole ratio from EDX 



 

Fig.7.8. TEM micrographs of (a) CeO

7.2. CWAO study over ZnO-CeO2 nanocatalysts

The physicochemical parameters of paper industry wastewater are presented in 

efficiency of ZnO-CeO2 nanocatalysts in terms of percent abatement of COD, color, AOX and 

TOC is presented in Figure 7.9. As the figure depicts, ZnO exhibited the low abatement profile 

with 26% COD, 44% color, 32% AOX and 27% TOC abatement. CeO

active with 28% COD, 48% color, 21% AOX and 23% TOC abatement. Introduction of Zn ions 

was found to improve the catalytic efficiency

(i.e., 64% COD, 72% color, 55% AOX and 63% TOC). 

which enhanced up to 0.423 after CWAO

Table 7.3. Average value of 

Parameter

Color (mg Pt

COD (mg L

TOC (mg L

AOX(mg L

CHPs(

BOD5 (mg L

BOD5
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TEM micrographs of (a) CeO2 (b) Ce40Zn60 (c) ZnO 

nanocatalysts 

of paper industry wastewater are presented in Table 7.3

catalysts in terms of percent abatement of COD, color, AOX and 

. As the figure depicts, ZnO exhibited the low abatement profile 

with 26% COD, 44% color, 32% AOX and 27% TOC abatement. CeO2 was also found to be less 

28% COD, 48% color, 21% AOX and 23% TOC abatement. Introduction of Zn ions 

mprove the catalytic efficiency with highest being achieved for Ce40Zn

2% color, 55% AOX and 63% TOC). The initial BI of wastewater was

CWAO. 

Average value of environmental parameters of wastewater 

Parameter Value 

Color (mg Pt-Co L-1) 3004 ± 76.85 

COD (mg L-1) 914 ± 29.38 

TOC (mg L-1) 188.3 ± 3.97 

AOX(mg L-1) 17.4 ± 0.57 

CHPs(µg L-1) 472 ± 5.64 

(mg L-1) 242 ± 9.47 

5/COD 0.264 

   

Table 7.3. The 

catalysts in terms of percent abatement of COD, color, AOX and 

. As the figure depicts, ZnO exhibited the low abatement profile 

was also found to be less 

28% COD, 48% color, 21% AOX and 23% TOC abatement. Introduction of Zn ions 

Zn60 catalyst 

of wastewater was 0.264, 
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Fig.7.9. Effect of mole ratio of catalyst on COD, color, AOX and TOC removal 

 

Chlorophenolics removal 

Figure 7.10 presents the GC chromatogram of CHPs in paper industry wastewater before and 

after CWAO. GC-MS analysis of wastewater revealed the presence of total 25 CHPs (Table 7.4). 

According to chemical family CP contributed to the highest share of 80.75%, followed by CG 

(18.03%), CC (0.77%), CS (0.25%) and CSA (0.21%) (Figure 7.11(a)). On the basis of chlorine 

atom substitution TCHPs presented the highest share of 46.54%, followed by DCHPs (40.21%), 

MCHPs (13.21%), PCHPs (0.05%) and TeCHPs (0.01%) (Figure 7.11(b)). Among all the CHPs, 

2,4,5-TCP contributed maximum share of 45.06%.  

After CWAO treatment, total of 21 CHPs were detected with overall removal efficiency of 

59%. The removal of most of CHPs was from 30-100%. The compounds like PCP, 2,4,6-TCP, 2,3-

DCP and 2,6-DCSA were completely removed or their concentration  fallen below the detection 

limit of instrument. 2,4,5-TCP was removed up to 74%, followed by 4,5,6-TCG (58.2%), 2,3,5-

TCP (57.6%), 2,5-DCP (56.4%), 2,4-DCP (56.3%) and TCS (54.1%). The rest of compounds were 

removed up to 15-47%, whereas 4,6-DCG was reduced only by 3%. Treatment data reveals 62.7%, 

43.9%, 22.1%, 54.1% and 100% removal of CP, CG, CC, CS and CSA, respectively (Figure 
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7.12(a)). The removal of MCHPs, DCHPs, TCHPs, TeCHPs and PCHPs was up to 33.2%, 38%, 

73.3%, 32.3% and 100%, respectively (Figure 7.12(b)).  

 

 

 

 

 

Fig.7.10. GC chromatogram of CHPs (a) before (b) after CWAO 
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Fig.7.11. Percentage of CHPs  
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Fig.7.12. Percent removal of CHPs  
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Table 7.4. Concentration of CHPs with percent removal 

S. No Name of compound Initial (µg/L) Final (µg/L) % Removal 

1. 3-CP 14.5 ± 3.85 11.9 ± 2.1 17.2 

2. 4-CP 5.9 ± 0.34 5.1 ± 0.09 15.1 

3. 2,6-DCP 29.9 ± 1.01 18.3 ± 0.52 39.0 

4. 2,5-DCP   78.8 ± 2.25 34.4 ±1.17 56.4 

5. 2,4-DCP 33.4 ± 1.54 14.6 ± 1.02 56.3 

6. 3,4-DCP 0.3 ± 0.03 0.2± 0.04 29.8 

7. 2,3-DCP 0.2 ± 0.08 ND 100 

8. 2,4,5-TCP  212.7 ± 17.48 55.3 ± 7.83 73.9 

10. 2,3,5-TCP 3.6 ± 0.23 1.5 ± 0.12 57.6 

11. 2,4,6-TCP 0.08 ± 0.01 ND 100 

12. 2,3,4-TCP 1.4 ± 0.22 0.8 ± 0.07 39.7 

13. PCP 0.2 ± 0.10 ND  100 

14. 4-CG 41. 9 ± 3.61 24.6 ± 0.5 41.3 

15. 4,5-DCG 41.6± 4.37 22.1 ± 1.04 47.0 

16. 4,6-DCG 0.5 ± 0.09 0.5 ± 0.06 3.2 

17. 3,4,6-TCG 0.3 ± 0.02 0.8 ± 0.05 35.9 

18. 3,4,5-TCG 0.1 ± 0.01 0.06 ± 0.02 31.1 

19. 4,5,6-TCG 0.3± 0.05 0.1 ± 0.03 58.2 

20. TeCG 0.4 ± 0.02 0.3 ± 0.04 32.3 

22. 3,5-DCC 3.6 ± 0.39 2.8 ± 0.13 22.1 

24. TCS 1.2 ± 0.06 0.5 ± 0.07 54.1 

25. 2,6-DCSA 1.0 ± 0.02 ND 100 

Total 471.9 193.3 59 

        *ND- Not detected  
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7.3. Recycling and leaching studies  

The recycling study over used catalyst indicated that after two recycles, the Ce40Zn60 mixed 

oxide retained satisfactory catalytic activity with 59% COD and 68% color removal (Figure 7.13). 

The dissolved Ce IV (418.6 nm) concentrations in supernatant ranged from 0.102 to 0.133 ppm 

and Zn II (213.8 nm) concentration ranged from 0.396 to 0.773 ppm. The metal leaching value was 

comparably low to the previous reports [16,17], indicating the negligible leaching. 
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Fig.7.13. Effect of catalyst recycling on COD and color removal 

 

7.4. Kinetic study 

The kinetic study on time-dependent COD removal confirmed the first order kinetics as 

straight line with R2 values of 0.959 was obtained in the plot constructed between  ln�COD
�/

�COD
 and time (t) (Figure 7.14).  
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Fig.7.14. Linear fitting of ln�COD
�/�COD
 as a function of reaction time 

 

7.5. Summary 

1. The ZnO-CeO2 mixed oxides exhibited improved structural, textural and catalytic property 

than the single metal oxides. 

2. Ce40Zn60 mixed oxide presented the surface area of 104 m2g-1 and pore volume of 0.247 

ccg-1. The pore size was found to be 3-7 nm. 

3. Raman analysis confirmed the presence of O-vacancies in mixed oxides. 

4. XPS analysis indicated the presence of 4+, 3+ oxidation states for Ce and 2+ for Zn metal 

ions. Ce3+ concentration was found to be 26%. 

5. Ce40Zn60 mixed oxide exhibited maximum COD (64%), color (72%), AOX (55%), TOC 

(63%) and CHPs (59%) removal.  

6. Biodegradability index increased from 0.27 to 0.42. 

7. The first order kinetics was ascertained with R2 values of 0.959. 

8. The low leaching values of Ce (0.102-0.133 ppm) and Zn (0.396-0.773 ppm) metals was 

obtained. 
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Chapter 8 

Comparison of Results 

 

This chapter presents the comparison of physicochemical properties and removal efficiency of 

the different catalysts. The relation between activity and properties of catalyst is also discussed.  

8.1. Comparison of structural and textural properties of catalysts 

8.1.1. Surface area 

All mixed oxides exhibited the small crystallite size ranging from 4-6 nm. The Fe-Ce mixed 

oxides exhibited maximum surface area (SA) of 149 m
2
g

-1
, which was comparable to the Cu-Ce 

mixed oxide (143 m
2
g

-1
). A slight decrease in SA was observed for Co-Ce (109 m

2
g

-1
) and Zn-Ce 

(104 m
2
g

-1
) mixed oxides, while for Ni-Ce the SA was significantly lower with the value of 90 

m
2
g

-1 
(Table 8.1).   

8.1.2. Pore volume and pore size distribution 

Co-Ce mixed oxide exhibited the maximum pore volume of 0.416 ccg
-1 

followed by Cu-Ce 

mixed oxide (0.386 ccg
-1

).  Fe-Ce, Zn-Ce and Ni-Ce mixed oxides presented the pore volume of 

0.283 ccg
-1

, 0.247 ccg
-1 

and 0.275 ccg
-1

, respectively. Fe-Ce mixed oxide exhibited the most 

uniform pores with pore size of 3-5 nm. Co-Ce, Cu-Ce and Zn-Ce mixed oxides were found to 

have relatively non-uniform and wider pores of around 3-8 nm. Ni-Ce mixed oxide presented the 

widest pores of 3-11 nm (Table 8.1).  

8.1.2. Oxygen vacancies 

All mixed oxides indicated the under stoichiometry of ceria due to the presence of Ce
3+

. The 

atomic fraction of Ce
3+

 was found to be 28% for both Fe-Ce and Co-Ce mixed oxides. Ce
3+

 

percentage was 27% and 26% for Cu-Ce and Zn-Ce mixed oxides, respectively. Highest oxygen 

vacancies were found for the Zn-Ce mixed oxide (23.3%). Fe-Ce mixed oxide showed 21% 

oxygen vacancies. Co-Ce and Cu-Ce mixed oxides presented 19.3% and17.2% oxygen vacancies, 

respectively (Table 8.1).  
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Table 8.1. Structural and textural properties of mixed oxides 

Property Nanocatalysts 

Fe-Ce Co-Ce Cu-Ce Zn-Ce Ni-Ce 

Crystallite size (nm)  5.5 4.7 4 5.6 4.1 

Surface area (m
2
g

-1
)  149 109 143 104 90 

Pore volume  (ccg
-1

)  0.283 0.416 0.386 0.247 0.275 

Pore size (nm)  3-5 3-8 3-7 3-7 3-11 

Ce
3+

 percentage (%) 28 28 27 26 -- 

Supercharged oxygen (%) 21 19.3 17.2 23.3 -- 

Total oxygen defect (%) 30.4 29 25.7 36 -- 

 

8.2. Comparison of treatment efficiency of catalysts 

The efficiency of catalysts in CWAO of wastewater was studied in terms of COD, Color, 

TOC, AOX and CHPs removal. Out of all the studied catalysts, Fe-Ce mixed oxide presented the 

maximum efficiency with 74% COD, 82% color, 72% TOC, 68% AOX and 71% CHPs reduction. 

The efficiency towards Color, TOC and AOX removal were comparable for Co-Ce and Cu-Ce 

mixed oxides, but efficiency of Cu-Ce mixed oxide towards CHPs removal was higher (66%) than 

the Co-Ce mixed oxide (62%). For Zn-Ce and Ni-Ce mixed oxides, comparable removal of COD, 

color and AOX was observed, while TOC and CHPs removal was higher for Zn-Ce mixed oxide. 

Thus the removal efficiency of mixed oxides was observed in the order of Fe-Ce > Co-Ce ≈ Cu-Ce 

> Zn-Ce > Ni-Ce (Table 8.2). 
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   Table 8.2. Removal efficiency of Nanocatalysts 

Parameter Percent removal over Nanocatalysts (%) 

Fe-Ce Co-Ce  Cu-Ce Zn-Ce Ni-Ce 

COD  74 68 67 64 62 

Color  82 79 81 72 75 

TOC  72 66 64 63 59  

AOX  68 59 61 55 55 

CHPs  71 62 66 59 54 

BOD/COD  0.47 0.45 0.45 0.42 0.42 

Regression factor (R
2
)  0.99 0.952 0.972 0.959 0.957 

Leaching of metals 

(ppm)  

Ce: 0.12-

0.132 

Fe: 0.339-

0.512 

Ce: 0.121-

0.126  

Co: 0.346-

0.595 

Ce: 0.104-

0.133 

Cu: 0.346-

0.636 

Ce: 0.102 

-0.133  

Zn: 0.396-

0.773 

Ce: 0.12- 

0.16 

Ni: 0.218-

0.64 

 

8.3. Relation between activity and properties of catalyst 

Highest removal efficiency of Fe-Ce mixed oxide can be attributed to its high surface area, 

uniform pores and high Ce
3+

 content. Oxygen vacancies play a crucial role during the oxidation 

process as they activate the oxygen species on catalyst surface. Thus high removal efficiency was 

expected from Zn-Ce mixed oxide as it presented more oxygen vacancies (23.3%) in comparison 

to Fe-Ce mixed oxide (21%). Low removal efficiency of Zn-Ce mixed oxide can be attributed to 

its low surface area, pore volume and wider pores in comparison to the Fe-Ce mixed oxide. 

Additionally, the presence of two oxidation states for Fe2O3 (3+,2+) may contribute more towards 

the redox reaction, in comparison to the ZnO with single oxidation state (2+). In case of other 

mixed oxides, the efficiency was in good agreement with their structural and textural properties. 

Thus, the efficiency of mixed oxides towards CWAO of wastewater is a cumulative outcome of all 

the physicochemical properties. 
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Chapter 9 

  Conclusion and Recommendation 

 

9.1. Conclusion  

Based on the present study, the following conclusions can be drawn: 

1. Nanosized ceria based mixed oxides are efficient in CWAO of wastewater at mild 

conditions.  

2. Appreciable removal of COD, color, TOC, AOX and CHPs, along with increased 

biodegradability is achieved.  

3. The surface area, uniform pore size distribution and percent Ce
3+

 content, are of most 

significance for  the catalytic property of ceria based mixed oxide systems. 

4. The metal leaching is negligible and the process follows first order rate kinetics. 

9.2. Recommendation and future work 

1. The ordered porous materials can be tried. One can study the SBA-15, MCM-41, KIT-6 

based materials. 

2. Different morphologies of nanomaterials, like, nanorods, nanowire, nanoplate, nanoflower 

etc. can also be studied. 

3. More extensive efforts are required for operation of CWAO at ambient temperature. The 

activated catalysts can be investigated for this purpose. 

4. Operation at acidic pH is still a challenging issue. More efforts are required towards the 

investigation of catalyst able to work in the neutral pH range. 

 


