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ABSTRACT 

Annual production of paper, paperboard and newsprint in India is 10.11 million tonnes 

while consumption of paper, paperboard and newsprint in the country is 11.15 million tonnes/ 

annum till 2012. Indian pulp and paper industry will require 22.0 million tonnes of paper and 

paperboard till 2025 with an average growth rate of 7.8% per annum. In, India the major raw 

materials for paper, paperboard and newsprint production were forest-based (31%), agricultural 

residues (22%) and secondary fibres (47%) in year 2011. There is an acute shortage of forest-

based raw materials globally. Natural forests, planted timberlands and agro-residues are the 

main sources of lignocellulosic raw materials for paper production. Due to increased demand of 

pulp products, there will be more harvesting pressure on these resources. To mitigate the gap 

between demand and supply, various fast-growing and high yielding annual and perennial, non-

conventional and cellulosic raw materials have been identified and assessed for their suitability 

for pulp production.  

The process of papermaking from virgin fibre requires pulping and bleaching chemicals 

for delignification of raw material. Due to growing environmental concerns and legislative 

pressures the pulp and paper industry is forced to modify its current pulping, bleaching and 

effluent treatment technologies. Today, the pulp and paper industry is adopting the eco-friendly 

technologies to reduce the pollution and to meet the challenges of globalization. It is evident 

that about 20 to 25% degradation of carbohydrates occurs during pulping and chlorine-based 

bleaching technologies exerted an impact to our eco-system. Therefore, efforts should be made 

to develop such pulping technologies which mitigate the carbohydrate degradation during 

pulping. The selection of molecular chlorine free bleaching sequences, substitution of 

molecular chlorine with less hazardous bleaching chemicals or mitigation of total chlorine 

demand during bleaching by extended delignification should be the aim of future studies. With 

these goals, ethanol-soda pulping process for E. binata was developed to minimize 

carbohydrate degradation during pulping and compared with other conventional pulping 

methods suitable for non-woods or grasses. Similarly, all the three major bleaching processes 

like conventional, ECF and TCF bleaching sequences were studied and effect of enzymes on 

pulp yield, optical properties, mechanical strength properties and effluent characteristics were 

studied. 
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Enzymes are the biocatalysts which can offer potential advantages to paper industry like 

in biopulping, biobleaching, biorefining, biodeinking, and effluent treatment. Enzymes can 

serve as a promising biotechnological tool being the best alternative to polluting chemical 

technologies. Xylanases are gaining popularity as the catabolic agent for delignification in the 

bleaching process.  

This work depicted the production of xylanase by under solid-state fermentation (SSF) 

conditions using various agro-waste materials as the carbon sources. Morphological and 

proximate chemical studies of Eulaliopsis binata were carried out to evaluate its papermaking 

potential. Pulping conditions were optimized to obtain maximum pulp yield with better optical 

and physical strength properties. The enzyme produced in crude form was used for 

prebleaching of ethanol-soda E. binata pulp.  

In this work, out of 20 isolates obtained after screening for xylanase activity, two 

isolates namely ARC-11 and ARC-12 were selected for further studies. Xylanase producing 

fungi were identified as Schizophyllum commune ARC-11 and Aspergillus flavus ARC-12 

isolated from wood and soil samples, respectively. The efforts were made to find out the 

optimum fermentation conditions for enhanced production of xylanase. Recent studies are 

focused on SSF with special reference to enzyme production using different agro-industrial 

wastes. Eleven agro-residues were tested as the carbon sources for xylanase production for both 

the fungal strains. In case of Schizophyllum commune ARC-11, the best carbon source for 

enzyme production was rice straw (4288.36 IU/gds) while pearl millet stover (1345.44 IU/gds) 

for Aspergillus flavus ARC-12. Depending on the fungal growth, incubation time range tested 

for Schizophyllum commune ARC-11 was 1-12 days and 12-96 hours for Aspergillus flavus 

ARC-12. Xylanase production was found to be the maximum (5199.02 IU/gds) after 8
th

  day of 

incubation for Schizophyllum commune ARC-11 and 2
nd

  day of incubation for Aspergillus 

flavus ARC-12 (1424.69 IU/gds). To optimize the incubation temperature, both the fungal 

strains were tested under different temperature ranging from 26-46°C keeping at an interval of 

4°C. An incubation temperature of 30°C resulted maximum xylanase production for 

Schizophyllum commune ARC-11 (5358.93 IU/gds) and Aspergillus flavus ARC-12 (1431.19 

IU/gds). An Initial pH of 7.0 was found to be the optimum for Schizophyllum commune ARC-

11 (6340.71 IU/gds) and 6.0 for Aspergillus flavus ARC-12 (1663.72 IU/gds). Initial moisture 
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content of 70% was observed to be the optimum for Schizophyllum commune ARC-11 

(6721.96 IU/gds) and 77.5% for Aspergillus flavus ARC-12 (1699.50 IU/gds). The nature and 

amount of nitrogen sources affects the enzyme production. Ammonium sulphate (0.08% N) for 

Schizophyllum commune ARC-11 and beef extract (1.2%, w/v) for Aspergillus flavus ARC-12, 

gave maximum xylanase production of 8591.38 and 2219.85 IU/gds, respectively. Among 

various surfactants tested for xylanase production Tween-20 (0.10% w/v) produced maximum 

xylanase activity, 10196.53 IU/gds for Schizophyllum commune ARC-11 and Tween-60 

(0.10%) produced maximum xylanase activity (2539.54 IU/gds) for Aspergillus flavus ARC-

12. Characterization of the xylanase of Schizophyllum commune ARC-11 clearly showed the 

activity in a wide range of pH 4.0-7.0 (optimum 5.0) and temperature range of 35-60°C 

(optimum at 55 °C). Xylanase from Aspergillus flavus ARC-12 was observed to have a broad 

pH range from 4.0 to 8.0 (optimum pH 6.0) and temperature range from 35-65°C (optimum 

50°C). The fraction of 50-70% ammonium sulphate precipitation gave a yield of 41.86% with 

2.75 fold purification for xylanase from Schizophyllum commune ARC-11. With the same 

fraction of 50-70% ammonium sulphate precipitation xylanase from Aspergillus flavus ARC-12 

gave a yield of 45.05% with 2.85 fold purification.  

The detailed morphological and anatomical features of E. binata were determined. The 

results of proximate chemical analysis revealed that E. binata contain higher holocellulose 

(73.1%) and α-cellulose contents (46.0%) respectively, which are directly related to good 

strength and high pulp yield for papermaking. Optimization studies were performed for alkali 

charge (active alkali as Na2O), cooking temperature, time and moisture content and its effects 

on unscreened pulp yield, screened pulp yield, kappa number and rejects were studied. E. 

binata produced a screened pulp yield of 43.58% with kappa number 17.38, and rejects 0.88% 

at optimum cooking conditions like active alkali charge 12% (as Na2O)), maximum cooking 

time 120 min and temperature 130 °C. A comparative study of soda, ethanol-soda and bio-soda 

pulping was carried out. Addition of ethanol (30%), along with alkali at optimum conditions 

gave maximum screened pulp yield (47.48%) compared to 42.76 and 43.58% for bio-soda and 

soda pulping respectively. The kappa number was reduced by 7.19 and 7.24% during ethanol-

soda and bio-soda pulping of E. binata compared to soda pulping. Mechanical strength 

properties were determined for all the three types of pulps at a beating level of 35±1 °SR. 
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Improvement in strength properties was observed in case of ethanol-soda and bio-soda pulping 

processes compared to soda pulping. The addition of 30% ethanol, improved pulp brightness 

(6.6%), tensile index (32.18%), burst index (35.40%) and double fold numbers (77.31%) 

compared to soda pulping. Tear index decreased by 9.95% in ethanol-soda pulping of E. binata 

compared to soda pulping.  

The main objective of bleaching is to make all the chemical pulps whiter or brighter 

without compromising the strength of the pulps. The major source of dioxins in the pulp and 

paper industry is the bleaching process in which Cl2 is used as chemical of choice. Lignin 

removal is more selective in the chlorination and extraction stages than in the pulping process. 

The crude xylanases produced by Schizophyllum commune ARC-11 and Aspergillus flavus 

ARC-12 were successfully used in bio-bleaching of E. binata ethanol-soda pulp. A xylanase 

dose of 10 IU/g (OD pulp basis), reaction time 120 min and consistency 10% were found 

optimum for pre-bleaching treatment by xylanases from Schizophyllum commune ARC-11 and 

Aspergillus flavus ARC-12. Xylanase pretreated pulps showed an improvement in brightness 

during all the bleaching sequences, compared to untreated pulps. In conventional bleaching, 

chlorine demand mitigated by 23.50 and 24.50% using xylanases from Aspergillus flavus ARC-

12 and Schizophyllum commune ARC-11 respectively in X1ECEHH and X2ECEHH bleaching 

sequences compared to CEHH. Due to reduction in chemical demand release of AOX in 

effluents reduced by 21.49 and 28.50% using xylanase from Aspergillus flavus ARC-12 and 

Schizophyllum commune ARC-11 respectively compared to control. Brightness and tear index 

improved in case X1DEPP and X2DEPP compared to DEPP at the same chemical dose. 

Brightness was improved by 2.8 and 1.4% (ISO) during X1QOPP and X2QOPP bleaching 

sequences compared to QOPP in TCF bleaching. Finally we it is concluded that the sequence 

X1DEDP was found most effective in bleaching of pulp of E. binata. 
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CHAPTER 1 

INTRODUCTION 

Paper plays a vital role in the socio-economical development of any country. Increasing 

paper consumption due to growth of the world’s population along with enlarging diversity of 

paper applications are putting more harvesting pressure on limited natural resources of the 

planet. World consumption of paper and paperboard in 1963 was 165 million tonnes which 

went up approximately 253 million tonnes in 1993. Global production of paper and paperboard 

in 2013 was 397 million tonnes. Figure 1.1 shows, trend in the production of fibre furnishes 

(paper and paperboard) in last five years. The production of fibre furnish in year 2010 

increased up to 397 million tonnes compared to 377 million tonnes in 2009. Over a period of 

2010-2013 production of fibre furnish was quite stable at the level about 400 million tonnes [1-

3]. 

Annual production of paper, paperboard and newsprint in India is 10.11 million tonnes 

while consumption of paper, paperboard and newsprint in the country is 11.15 million tonnes/ 

annum till 2012. Indian pulp and paper industry will require 22.0 million tonnes of paper and 

paperboard till 2025 with an average growth rate of 7.8% per annum [4]. In, India the major 

raw materials for paper, paperboard and newsprint production were forest (31%), agricultural 

residues (22%) and secondary fibres (47%) in year 2011 (Figure 1.2) [5].  

There is an acute shortage of forest-based and conventional raw materials globally. 

Natural forests, planted timberlands and agro-residues are the main sources of lignocellulosic 

raw materials for paper production [6, 7]. Due to increased demand of pulp products, there will 

be more harvesting pressure on these resources. Wood-based segment of the paper industry has 

considerably shrunk, as in 1970, forest-based segment of Indian paper industry was 84% which 

had been reduced to 31% in 2011 [5]. 67.8 million hectare of forest cover in India is reported 

which is  20.6% of the country's surface area and it translates into a per capita forest area of 

only 0.8 ha/person, one of the lowest in the world [8]. The per capita consumption of paper and 

paperboard and newsprint in India was 9.3 kg in 2010 as against the world average of 56.7 kg 

(Figure 1.3). In India the paper consumption is predominantly domestic and the demand is 

driven by GDP growth [9]. There are 759 pulp and paper mills with have an installed capacity 

of 12.7 million tonnes and producing 10.11 million tonnes of paper and paperboards which is 
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2.52% of the total world production (Table 1.1) [9]. Severe exploitation of forests may be 

detrimental for environment. Moreover, cost of available wood is increasing due to higher 

demand, higher cost of harvesting and increasing stumpage fee. The question is how to meet 

the increasing global demand of 2-3% for paper and paperboard [3]. Therefore, inadequate 

supply of wood fibre due to rapid depletion of forest wealth, forces the dependence of paper 

industry on other alternatives. Non-woody plants, agricultural residues and waste paper are 

such alternatives which may meet the demand for pulp and paper industry [10-13]. 

However, paper making from recovered fibre requires less energy in comparison to 

virgin fibre [14] and every metric tonne of recycled fibre saves trees, water, electricity and 

reduce air pollution [15-18]; but, fibre length and strength properties decreases at every time of 

recycling therefore, recycled fibre can’t replace the need of virgin fibre completely. The 

utilization of recycled fibre for paper, paperboard and newsprint production increases rapidly 

but recycled fibre has limited recyclability (average 2.4 times worldwide). Therefore, virgin 

fibre always requires to fulfill the demand of paper, paperboard and newsprint [19, 20]. 

Due to global shortage of forest based raw materials non-wood fibres have become the 

one of the potential alternatives in 21
st
 century. Non-wood fibres are the cellulosic plant 

materials which can be utilized for the production of pulp for paper making. There are several 

non-wood plants such as wheat straw, rice straw, bagasse, bamboo, kenaf, hemp, jute, sisal, 

abaca, cotton linter, cotton stalk etc have been used for paper making all over the world [21-

26]. Average agricultural residues contain 19–27% hemicellulose, 32–47% cellulose, 10–24% 

lignin, and 10–24 % ash content [27]. India produces large quantity of agro-residues and annual 

potential of agro-fibres in India is given in Table 1.2. Agro-residues are also used for animal 

feed, biomass fuel production, and composting which competes with pulp and paper industry 

for availability the availability of agro-residues [28]. The need of good quality of fibre compels 

the paper industry to search other alternate resources of fibre. Many fast growing annual and 

perennials plants have been identified, cultivated and studied for their suitability for pulp and 

paper industry [29]. Different grasses such as Arundo donax [30], Ipomea carnea and Cannabis 

sativa  [31], dogs tooth grass (Chenopodium album) [29], Lemon grass (Cymbopogon 

flexuosus) and  Sofia grass (Cymbopogon martini) [32], Phragmites karka [33], Switchgrass 

and Elephant grass [34] have assessed for pulp and paper production.  
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Kenaf (Hibiscus cannabinus) is used as raw material for papermaking in both 

developing as well as developed countries. Pulp extracted from kenaf has desirable properties 

for paper making and strength properties of kenaf are comparable to coniferous wood pulps. 

Kenaf plant gives an excellent average annual yield which is twice compared to fast growing 

softwoods (Table 1.3). Kenaf can be harvested for several months and pulp yield is also high 

for this plant [3, 35-37]. Sugarcane bagasse is another suitable raw material for pulp and paper 

production. Sugarcane bagasse is one of the best alternatives because of its low cost, longer 

fiber than straw, low refining energy consumption, good sheet formation [38-40]. At present 

only 10 million tonnes of sugarcane bagasse is available as surplus for the pulp and paper 

industry out of 50 million tonnes of bagasse generated in the country per annum. It is difficult 

to increase the availability of this surplus bagasse to pulp and paper due to present operating 

circumstances of the sugar industry [41]. Wheat straw is also abundantly available agricultural 

residue, which is utilized for paper making in India. Approximately, 125 and 170 million 

tonnes of wheat straw are produced every year in North America and Europe respectively and 

India produces 131 million tonnes of wheat straw annually. Utilization of wheat straw for paper 

production is increasing in developing countries such as India and China where there is a lack 

of good quality of wood and bamboo [42, 43].  

Eulaliopsis binata is a perennial grass belonging to family Gramineae which is widely 

distributed in India and Southern and Central China abundantly. In India, Eulaliopsis binata is 

distributed in Uttar Pradesh, Uttrakhand, Bihar, Madhya Pradesh, Haryana, Punjab and 

Himachal Pradesh [44, 45]. Eulaliopsis binata (Sabai grass) is an excellent raw material for 

pulp and paper manufacture due to its some unique properties. Eulaliopsis binata shows open 

and loose anatomical structure with lower lignin content which makes it suitable for easy 

extraction of pulp using milder pulping conditions. Eulaliopsis binata fibers are longer that 

have good strength properties and toughness [44, 46] 

There are some advantages in papermaking from non-wood fibres compared to woody 

plants. The cellulose content in most of the non-wood fibres is comparable to woods that are 

commonly used for papermaking. The lignin content in non-wood fibres is comparatively low 

which reduces the chemical consumption and energy during pulping for papermaking [3, 35, 

47]. The bleaching of pulp produced from non-wood fibre sources is easier than wood pulp and 

it also requires lower chemical consumptions with short bleaching sequences [47]. Non-wood 
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fibres are produced at short growth cycle and they require the moderate irrigation and 

fertilization during cultivation. The constant availability of substrate throughout the year is 

primary concern for paper industry. Most of the non-wood fibre comes from annual plants 

therefore, a storage capacity should sufficiently large which may ensure proper supply of raw 

materials. Furthermore, most of the non-wood fibre are low density materials and have higher 

volume compared to wood which makes the situation more complicated [3, 35]. High silica 

content in non-wood plant fibres is a problem associated with chemical recovery (Table 1.4). 

During cooking, silica is dissolved, enters the black liquor and creates several problems in 

chemical recovery. Generally, the number of mills using non-wood fibre is small and they 

don’t have proper chemical recovery system to handle large amount of silica [3, 47]. 

The pulp and paper industry is one of the most polluting industries and comes under red 

category of industries [48]. Due to stringent rules of the government, it faces a constant 

pressure to reduce and modify environmental emissions to air and water. In the process of 

paper making, chemical pulping of raw material is the first step in which fibers are broken 

apart and most of the lignin and hemicelluloses are removed. After chemical pulping, residual 

lignin is removed by the process of bleaching having several stages [49]. Residual lignin after 

pulping is removed during chlorination stage. Chlorine is added in different forms as molecular 

chlorine during chlorination stage and hypochlorite during hypochlorite stage. In developing 

countries, elemental chlorine is used in the majority of the mills while it is banned in developed 

countries. In developed world, chlorine dioxide, oxygen, ozone, and hydrogen peroxide are 

used as bleaching chemicals. Elemental chlorine reacts with lignin and other organic 

compounds in pulp and forms chlorinated compound which are extracted with alkali [49]. 

Higher chlorine demand during pulp bleaching improves the brightness of pulp but the increase 

in total chlorine demand adversely affects the strength properties of pulp, stability of 

brightness, and pollution load. Some of the pollutants such as tannins, resin acid, and stilbenes 

are the part of extractives present in raw materials. Other compounds are xenobiotic 

compounds that are generated during different processes like pulping and bleaching of pulp 

[49]. These compounds include chlorinated lignins, dioxins, furans, resin acids and phenol. 

Chemical pulp bleaching has become an issue of great concern due to release of adsorable 

organic halides (AOX). AOX contains more than 300 different organochlorines and some of 

them are toxic, mutagenic, persistent and bio-accumulating due to their lipophilic nature which 
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cause numerous harmful disturbances in biological systems [50, 51]. Some chlorinated 

compounds such as are dioxins, furans are able to induce genetic changes in exposed organisms 

[49]. C-stage during pulp bleaching is the first point where 2,3,7,8- TCDD, 2,3,7,8-TCDF and 

1,2,7,8-TCDF congeners are always present [52-54]. The chlorinated organic compounds 

generated during the chemical bleaching of pulp have attracted most attention in the recent 

years. Several absorbable organic halides (AOX) are generated by chlorine-based bleaching 

and many of them are harmful to health or the environment [55, 56]. Animal carcinogens such 

as dioxins and furans are produced in chlorination stage of bleaching. Use of such chemically 

treated paper for different purposes such as baby diapers and packaging of edible products like 

bread and biscuits, sweetmeat and crystallized fruits, and tea bags is of great concern [55]. The 

filtrate from E-stage contains the highest concentrations of dioxins which is well known for 

changing the blood chemistry and causing liver damage, skin disorders, lung lesions and tumor 

types at numerous sites within the body, including liver and thyroid [52, 57, 58]. The industry 

is hence looked upon as a notorious pollution maker and unfortunately the truth can’t be 

denied. 

The environmental protection regulations were made strict through the world to limit 

the effluent discharge in environment. Due to growing environmental concerns and legislative 

pressures on pulp and paper industry is forced to modify its current pulping, bleaching and 

effluent treatment technologies. To reduce the pollution load, the remedial action can classified 

in to two approaches that are preventive strategy and curative strategy. In preventive measures 

cleaner technologies are adopted to reduce the emission of toxic substances during different 

processes of papermaking. The effluent treatment technologies come under curative methods 

[49]. It is better to avoid the generation of pollutants compared to perform the treatment of 

effluent. 

The pulping process plays a key role in the formation of pollutants during paper 

making. During pulping, the removal of lignin as much as possible, reduce the residual lignin 

in unbleached pulp which can significantly reduce the volume of bleaching chemicals. The 

targeted brightness can be achieved with lower bleaching chemicals cost and effluent treatment 

cost. Therefore, various processes were applied to achieve maximum delignification without 

pulp yield losses during pulping [49, 59-62]. Different methods were utilized to improve the 

degree of delignification. The degree of delignification improves by extended cooking method 
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and volume of bleaching chemicals may reduce up to 35% [49, 63, 64]. In oxygen 

delignification elemental O2, sodium hydroxide and magnesium hydroxide is used under 

pressure and it is an expensive method. Oxygen delignification can result reduction in residual 

lignin up to 50% [59, 65, 66]. Ozone has been proved as efficient competitive bleaching 

chemical in terms of delignification ability, cost and environmental impact. It has been utilized 

successfully for variety of raw materials from woods and non-woods [67, 68]. The pretreatment 

of raw material with microorganisms or enzyme prior to pulping is defined as bio-pulping. 

Lignin degrading white-rot fungi or enzymes such as ligninases and xylanases have been used 

for bio-pulping which removes lignin and hemicelluloses. Bio-pulping reduces the 

consumption of chemical during chemical pulping and it can also reduce the mechanical energy 

up to 30% during subsequent mechanical pulping. Bio-pulping shows superior physical 

strength properties compared to conventional methods [69-72]. Organosolve pulping has also 

been utilized to decrease the residual lignin before bleaching. The use of organic solvent during 

pulping is known as organosolve pulping. Organic solvents are used either alone or in 

combination with soda or kraft cooking chemicals. The solvent increases the selectivity of 

alkali towards lignin and improves the pulp yield and strength properties significantly along 

with reduced residual lignin [73-75]. Many researchers have used different methods for the 

reduction of kappa number in kraft pulp in order to reduce the bleaching chemical 

consumption. These methods include, high sulphidity cooking, leveling out alkali profile 

throughout the cook, using wood chips from trees of suitable age and temperature decrease 

throughout the cooking cycle [76]. 

Residual lignin in pulp imparts dark colour and it is removed by several stages of 

bleaching. In the conventional method of bleaching chlorine is used which generates the AOX 

which makes effluent discharge highly toxic. The focus is on the alternatives of conventional 

bleaching technologies which can reduce the AOX and total organic chlorides (TOCl) in 

effluent discharge. Organic chlorides in bleach plant effluents can be mitigated by modifying 

the conventional bleaching processes. Therefore, several cleaner bleaching sequences are used 

such as use of cooking additives like anthraquinone and surfactant [77], elemental chlorine free 

(ECF), total chlorine free (TCF), and enzymatic bleaching [49, 78]. ECF bleaching uses the 

chlorine dioxide in place of chlorine, resulting lower AOX in effluent discharge with 

acceptable quality of high brightness of pulp [79]. Bleaching without elemental chlorine or 
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chlorine containing compounds is termed as totally chlorine free (TCF) bleaching process. 

These bleach techniques exploit the oxidative agents such as oxygen, ozone and peroxide, etc. 

which degrade lignin by oxidation, thereby decreasing the molecular size and increasing its 

water and alkali solubility [80]. These alternatives are, however, quite expensive to adopt since, 

they require a lot of changes in the infrastructure and hence, are only viable to large paper mills 

[81]. For agro residue pulp mills, with production capacity less than 100 tonnes per day, these 

alternate bleaching technologies may not be feasible on techno-economical grounds in 

developing countries like India [82]. Moreover, the risk of loss of pulp viscosity and strength is 

always there [83]. Therefore, switching over to biobleaching has proven to be the most 

promising alternative for eliminating chlorine based chemicals in the pulp bleaching [78].  

Enzymes can serve as a promising biotechnological tool being the best alternative to 

polluting chemical technologies. Various enzymes such as cellulases, xylanases, lipases, and 

amylases etc. are used in different processes in pulp and paper industry [84-86]. Xylanases are 

gaining popularity as a catabolic agent for delignification in the bleaching process [87-91]. The 

use of enzymes in bleaching is known as biobleaching. The positive effect of xylanases on 

delignification is attributed due to removal of xylan by breaking the link between cellulose and 

lignin. During subsequent bleaching stages lignin is eliminated effectively with bleaching 

chemicals. It is well established that xylan re-deposit on the surface of fibre and acts as 

physical barrier for bleaching chemicals. Re-deposited xylan increases the chemical 

consumption during bleaching and it also entraps the lignin which affects the fibre swelling 

[78, 92, 93]. Therefore, the elimination of the re-deposited xylans by xylanases facilitates the 

penetration of bleaching chemicals. Xylanases are also commonly used for biobleaching of 

non-wood pulps [55, 78].   

The microbial producers of xylanase are bacteria, actinomycetes and fungi. Enzyme 

production can be achieved through fermentation techniques such as solid-state fermentation 

(SSF) and submerged state fermentation (Smf). SSF showed several technical benefits with 

high product yield [94, 95]. 

The major objectives of the thesis are as under:  

1. Isolation, screening and selection of xylanase producing fungi with minimum cellulase 

activity. 
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2. To enhance xylanase production by optimizing the cultural parameters and partial 

purification and characterization of xylanases from selected fungal isolates. 

3. Morphological and proximate chemical studies of Eulaliopsis binata to check its suitability 

and potential for production of chemical grade pulps. 

3. Optimization of soda pulping process in order to reduce the kappa number prior to bleaching 

and escalate the pulp yield of Eulaliopsis binata and effect of ethanol-soda and bio-soda 

pulping on pulp yield, optical and strength properties of Eulaliopsis binata pulp. 

4. To enhance optical and strength properties of Eulaliopsis binata pulp by using fungal 

xylanase during bleaching experiments and to reduce the toxicity of effluents generated 

during conventional, ECF and TCF bleaching sequences of the respective pulps to make the 

process eco-friendly and cost effective. 
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Table-1.1: Growth of per capita consumption and paper mills in India [9] 

 

Table-1.2: Gross crop residue biomass potential in India [96] 

Crop group Crop Gross potential 

(MT) 

Cereals Bajra 24.3 

Barley 1.6 

Jowar 17.6 

Maize 35.8 

Ragi 2.7 

Rice 154.0 

Small millet 0.6 

Wheat 131.1 

Oilseeds Groundnut  17.0 

Linseed 0.3 

Mustard and 

rapeseed 

12.7 

Niger 0.1 

Saflower 0.6 

Sesame 0.8 

Soybean 13.5 

Sunflower 3.8 

Pulses Gaur 2.6 

Gram 6.4 

Lentil 1.7 

Tur (arhar) 7.2 

Sugarcane Sugarcane 110.6 

Horticulture Arecanut 1.5 

Banana 41.9 

Coconut 18.0 

Others Cotton 75.9 

Jute 3.9 

Total (MT)  686.0 
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Table-1.3: Average annual yields of different papermaking raw materials [97] 

S. No. Plant Fibre yield 

(tonnes/year/ha) 

Pulp yield 

(tonnes/year/ha) 

1 Bagasse 9 4.2 

2 Bamboo 4 1.6 

3 Canary grass 8 4.0 

4 Elephant grass 12 5.7 

5 Fast growing hardwood 15. 7.4 

6 Fast growing softwood 8.6 4.0 

7 Hemp 15 6.7 

8 Kenaf 15 6.5 

9 Rice straw 3 1.2 

10 Scandinavian softwood 1.5 0.7 

11 Temperate softwood 3.4 1.7 

12 Wheat straw 4. 1.9 

 

 

Table-1.4: Chemical compositions of different papermaking raw materials [71, 98] 

Lignocellulosic 

materials 

α-Cellulose 

(%) 

Lignin (%) Inorganic 

elements (%) 

Silica (%) 

Hardwoods 38-48 23-30 0-1 0 

Kenaf  31-39 14-19 2-5 NA 

Maize stalk NA 22-24 5-6 3-5 

Oats straw 31-37 16-19 6-8 4-7 

Oil palm frond 49.8 20.5 - - 

Rice straw 28-36 12-16 15-20 9-14 

Rice husk 38-40 22-24 20-22 19-20 

Softwoods 40-45 26-34 0-1 0 

Sugarcane bagasse 32-44 19-24 2-5 3-7 

Wheat straw 38-46 16-21 5-9 3-7 
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Figure-1.1: Global fibre furnish production (2009-2013) [2] 
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Figure 1.2 Major raw materials for paper, paperboard and newsprint in India [5] 
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Figure-1.3: Per capita consumption of paper and paperboard in Asia [99] 
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CHAPTER 2 

XYLANASE PRODUCTION  

2.1: Introduction 

Biocatalysis offers the green and clean solution to chemical processes and it is 

emerging as a challenging and revered alternative to chemical technology. Enzymes are the 

proteins which considered as potential biocatalysts for a large number of reactions. In living 

system, enzymes function in transformation of macromolecules to energy and new materials, 

besides for their growth, repair and maintenance of cells. Enzymes are derived from plants, 

animals and microorganisms, but microorganisms are preferred for commercial production of 

enzymes due to ease of growth, nutritional requirement and downstream processing. 

Furthermore, microbes produce higher quantity of enzymes in comparison to plants and 

animals sources. Most of the microbial enzymes are inducible and therefore, their production 

can be enhanced significantly with the addition of inducers in the production media [1, 2]. 

Xylanases are hydrolases which depolymerize the xylan and is the second most 

abundantly available polysaccharide [3]. Xylanases are synthesized by many microorganisms, 

like fungi, bacteria and actinomycetes. However, fungi are the most interesting sources of 

xylanases due to higher yield of extracellular xylanase production. The extracellular xylanases 

act on hemicelluloses to release xylose which is assimilated by organisms to grow 

heterotrophically on xylan [4-6]. Extracellular enzymes are advantageous because of their easy 

extraction procedure [7]. Ascomycetes have been studied most extensively for xylanases 

production. The different species from three genera namely Trichoderma, Aspergilli and 

Penicillia dominates in literature for xylanase production [8]. Several species of genus 

Aspergillus including A. niger, A. oryzae, A. fumigatus, A. terreus, A. awamori, A. nidulans 

have been extensively studied for xylanases [9, 10]. Different species of Tricoderma has been 

widely studied for xylanase production.  Trichoderma species such as Trichoderma reesei, T. 

viride, T. harzianum, T. lignorum, T. longibrachiatum, T. koningii and T. pseudokoningii have 

been reported for xylanase production [11]. Different species of genus Penicillium such as P. 

brasilianum, P. chrysogenum, P. citrinum, P. oxalicum, P. notatum, P. chrysogenum, P. 

funiculosum, P. hirsutum, P. janthinellum, P. pinophilum, P. verruculosum etc. have been 
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studied for xylanase production [8, 12, 13]. Along with these fungi some other fungi such as 

Chaetomium, Fusarium, Humicola, Talaromyces, and many others have been proved effective 

for xylanase production [7, 14, 15]. 

Hemicelluloses are branched heteropolymer which consists of pentoses (D-xylose and 

D-arabinose) and hexoses (D-mannose, D-glucose and D-galactose). The biodegradation of 

hemicelluloses requires a set of esterases and glycanases. These enzymes act synergistically on 

hemicelluloses for its complete hydrolysis [16, 17].  These enzymes are: 

 Endo-1,4-β-xylanases (E.C. 3.2.1.8.) randomly act on homopolymeric xylan chain to 

produce the mixture of xylooligosacchaides. 

 β-Xylosidases (E.C. 3.2.1.37.) release xylose from non-reducing end of small 

oligosaccharides or xylobiose.  

 α-L-Arabinofuranosidases (E.C. 3.2.1.55.) acts on L-arabinofuranose side chains. 

 α-D-Glucuronidases (E.C. 3.2.1.139.) hydrolyze methyl glucuronate residue. 

 Acetyl xylan esterase (3.1.1.72) removes acetate groups from main chain. 

 Feruloyl (E.C. 3.1.1.73) and coumaryl esterases act on respective aromatic acids to 

arabinofuranoside residues. 

Among these enzymes endo-1,4-β-xylanase and β- xsylosidases (collectively xylanases) 

are the two main enzymes which are responsible for the xylan hydrolysis [8, 18-20]. Xylanases 

have wide biotechnological applications such as saccharification of lignocellulosic biomass 

[21, 22], improving digestibility of animal feed [23], and clarification of wines and fruit juices 

[24, 25], desizing of cotton and micropoly fabrics in textile industry and improving bakery 

products [4, 24]. Xylanases are the dominating enzymes in pulp and paper industry due to their 

several applications. Xylanases have been utilized in pulp and paper industry for different 

process such as pre-bleaching of pulp for reducing the consumption of bleaching chemicals 

[26, 27], deinking of waste paper [28-30], and energy reduction and improving hydrogen 

bonding during refining and improvement in drainage at wet-end part of paper machine [31, 

32]. Xylanases hydrolyze the relocated and precipitated hemicelluloses on the surface of 

cellulosic fibre which increases the permeability for oxidizing agents by attacking the lignin-

carbohydrate complexes [10]. Few xylanases preparations have contamination of cellulases 

which can adversely affect the strength of pulp. Therefore, cellulase-free xylanases are required 

for the pre-bleaching of pulp. 
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Figure 2.1: Site of action for different xylanases [20] 

 

The major limitation for industrial applications of xylanases is their production cost. 

The use of purified xylan as substrate makes the xylanase production costly. Therefore, simple 

and inexpensive carbon sources are required for the production of xylanase at commercial scale 

[7]. The utilization of abundantly available and low cost agricultural residue as the carbon 

sources can be employed to decrease the xylanase production cost. Wheat bran, wheat straw, 

corn cob, rice straw, rice husk, sugarcane bagasse etc. have been reported as efficient substrates 

for xylanase production [7, 33]. Production of xylanase has been studied in both solid-state 

fermentation (SSF) and submerged fermentation (SmF) conditions. Further, cost reduction for 

xylanase production can be attained by using SSF technique for xylanase production. SSF 

involves the growth of microorganism on a wet solid substrate in absence or near absence of 

free water. SSF gains interest due to a number economic and engineering advantages including 

simplicity of equipment, low energy consumption and the lower moisture content which 

prevents the bacterial contamination [34-36]. The advantages of SSF compared to traditional 
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SmF are higher yields, easier products recovery and use of lesser amount of solvent for enzyme 

extraction which reduces the downstream processing cost significantly [34-38].   

Present work aims at isolation, screening and selection of xylanase producing fungi 

from the wood decaying samples, decomposing manure and soil samples from diverse habitat. 

Different agro-residues were tested for the production of xylanolytic enzymes by selected 

fungal strains under solid-state fermentation. Optimization of various cultural physiochemical 

parameters was carried out to achieve maximum enzyme production from the screened fungal 

strains. Biochemical characterization of xylanases was carried out to check their temperature 

and pH optima for their successful utilization in pre-bleaching studies.  

2.2: Materials and methods 

2.2.1: Materials 

Chemical used throughout the study were of analytical grade. Sodium salt of 

carboxymethylcellulose (CMC) of medium viscosity and birch wood xylan were procured from 

Sigma Chemical Co. St Louis, MO, USA. Ammonium chloride, diammonium phosphate, 

ammonium sulphate, sodium nitrate, urea, D-glucose, D-xylose, di-nitrosalisylic acid (DNS), 

sodium nitrate, potassium sodium tartarate, p-nitro phenyl-β-D glucopyranoside (p-NPG), p-

nitrophenol, Tween-80, Tween-60, Tween-40, Tween-20, Triton-X-100, and bovine serum 

albumin (BSA) were purchased from HiMedia Chemicals (India). Ammonium nitrate was 

purchased from Qualigens Fine Chemicals Pvt., Ltd., India. Whatman filter paper no.1 was 

purchased from GE Whatman. Agar-agar, beef extract, malt extract, peptone, potato carrot 

agar, tryptone, yeast extract, and other media ingredients were purchased from HiMedia 

Biosciences, India. Soya bean meal (defatted) was purchased from Loba Chemie, Laboratory 

reagents and fine Chemicals, India.  

2.2.2: Isolation of xylan degrading fungi  

The various samples containing microbes were collected from different locations of 

three states namely Uttar Pradesh, Uttarakhand and Rajasthan situated at northern part of India. 

Different samples of decomposing manures, dead and decaying wood and soil enriched with 

lignocellulose were collected using sterilized spatula and polythene bags. Isolation of fungal 

isolates was carried out using dilution plate method. One gram of each sample was 

homogenized manually and transferred to test tube containing ten milliliter of sterilized 
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distilled water. It was shaken vigorously and the suspension was subjected to serial dilution up 

to 10
-7

. After serial dilution, plating was carried out from dilutions ranging from 10
-4

 to 10
-7

. 

Primary screening for xylanase producing fungi was carried out on xylan agar medium 

composed of various constituents expressed as g/l: 5.0 xylan, 5.0 peptone, 5.0 NaCl, 3.0 yeast 

extract and 15.0 agar. Chloramphenicol (20 µg/ml) and Rose Bengal (30 ppm) were also added 

to medium to prevent bacterial growth [18]. Petri-plates were incubated at 30 ºC and examined 

after 2-3 days regularly and growing colonies were selected for further xylanase detection. The 

selected colonies were isolated, purified on potato dextrose agar (PDA) and maintained over 

PDA slants at 4 ºC.  

2.2.3: Screening for xylanase producing fungi 

Isolated fungal strains were analyzed for zone assay and potential xylanase producer 

were selected. Zone assay performed on xylan-agar medium, composed of various constituents 

expressed as g/l: 5.0 xylan, 5.0 peptone, 5.0 yeast extract, 1.0 K2HPO4, 0.2 MgSO4.7H2O and 

15.0 agar [39]. For zone assay xylan-agar plates were flooded with an aqueous solution of 

Congo red consisting of 0.5% Congo red and 5% (v/v) ethanol in distilled water and incubated 

for 15 min. To enhance the visibility of clear zone the excess of dye was removed by destaining 

with 1 M NaCl. [51].  

2.2.4: Xylanase production under solid-state fermentation 

Xylanase production was carried out under solid-state fermentation (SSF) using wheat 

bran as the substrate. Wheat bran (5 g) was moistened with Mandel Weber medium (77.5 % 

initial moisture content) with following composition expressed as g/l: 1.4 (NH4)2SO4, 2.0 

KH2PO4, 0.3 CaCl2, 0.3 MgSO4.7H2O, 0.02 Tween-80 and trace elements: 0.005 FeSO4.7H2O, 

0.0016 MnSO4.7H2O, 0.0014 ZnSO4.7H2O, 0.002 CoCl2.6H2O. The initial pH of Mandel 

Weber medium for enzyme production was maintained to 5.5 with 1.0 N HCl or 1.0 N NaOH. 

Flasks were inoculated with 10
6
 spores/gds or five discs of actively growing fungi for spores 

producing and spores lacking fungi respectively and incubated at 30 ºC for 6 days [37, 40, 41]. 

For enzyme extraction 50 ml of distilled water was added the fermented wheat bran and shaken 

for 60 min at 150 rpm and 30 °C temperature in an rotator incubator shaker. 
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2.2.5: Enzyme assays 

Xylanase activity was determined by estimating the reducing sugars released by 1% 

(w/v) of birch wood xylan (Sigma Chemical Co. St Louis, MO, USA) in 50 mM citrate buffer 

at pH 5.5 according to Bailey method [42]. ]. Xylanase activity was determined by incubating 

the 1.6 ml of xylan solution with 0.4 ml of appropriately diluted enzyme at 50 ºC for 15 min. 

Quantification of reducing sugars was done at 540 nm using UV-Vis spectrophotometer 

(SHIMADZU, UV-1800) by dinitrosalicylic acid (DNS) method [43]. One unit of xylanase 

activity is defined as the amount of enzyme that releases 1 µmole of xylose per min per ml 

under reaction conditions. Xylanase activity was expressed as activity units per mass of initial 

dry solid substrates (IU/gds). 

Cellulase activity was determined by standard method recommended by International 

Union of Pure and Applied Chemistry (IUPAC). Cellulase activity was determined by 

incubating 0.5 ml of 2% (w/v) carboxymethyl cellulose of medium viscosity (Sigma Chemical 

Co. St Louis, MO, USA) with 0.5 ml of appropriately diluted crude enzyme for 30 min [44]. 

Cellulase activity was determined at temperature 50 ºC using citrate buffer of 50mM and pH 

5.5. Quantification of reducing sugars was done at 540 nm using UV-Vis spectrophotometer 

(SHIMADZU, UV-1800) by dinitrosalicylic acid (DNS) method [43]. One unit of cellulase 

activity is defined as the amount of enzyme required to liberate 1 µmole of glucose per min per 

ml under reaction conditions. 

Laccase activity was estimated using ABTS (2, 2’-azino-bis-3-ethylbenz-thiazoline-6- 

sulphonic acid) as the substrate [45]. In the reaction mixture 0.6 mL of 100 mM citric acid 

buffer of pH 5.5 was taken and 1.0 mL of enzyme extract, 0.2 mL of 1.0 mM ABTS and 0.2 

mL of distilled water were added. The reaction was monitored using UV-Vis 

spectrophotometer (SHIMADZU, UV-1800) at 420 nm at room temperature. Enzyme activity 

was expressed as the amount of enzyme, which produced an increase of 1.0 absorbance unit per 

30 s. 

2.2.6: Estimation of protein concentration 

Protein content was determined using bovine serum albumin (BSA) as the standard 

according to the Lowry method as described below: 
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Reagents 

Reagent-A: 2 % Na2CO3 in 0.1 N NaOH 

Reagent-B: 1 % CuSO4.5H2O in distilled water 

Reagent-C: 2 % Sodium potassium tartarate in distilled water 

Lowry solution- Reagents A+B+C in the ratio of 100:1:1  

200 µl of protein sample was added into 2 ml of Lowry solution and mixed well. After 

that, it was allowed to stand for 10 min at room temperature. After 10 min, 200 µl of Folin–

Ciocalteu′s phenol reagent (1 N) was added and incubated for 30 min at room temperature. 

Absorbance of sample was taken at 550 nm with UV-Vis spectrophotometer (SHIMADZU, 

UV-1800). The protein content of samples was determined by comparing the absorbance of 

protein samples with that of a standard curve of bovine serum albumin [46, 47]. 

2.2.7: Identification of selected fungal strains 

The fungal isolates ARC-11 and ARC-12 were selected for xylanase production. Both 

the isolates were sent to National Fungal Culture Collection of India, Agharkar Research 

Institute, Pune for ITS sequencing and identification. ITS1-5.8S-ITS2 sequencing of both the 

fungal strains was carried out for phylogenetic analysis and morphological features were also 

analyzed for both the fungal strains.  

2.2.8: FE-SEM analysis of selected fungal strains 

Morphological features of both the fungal strains were analyzed using FE-SEM 

(MIRA3 TESCAN). Fungal mat was treated with 3% glutaraldehyde (v/v) and 2% 

formaldehyde (4:1) for 6 h for fixation. The samples were washed thrice with distilled water 

after fixation and then treated with ethanol gradients of 30-90% with a difference of 10% for 15 

min.  In the next step of dehydration, samples were treated with absolute ethyl alcohol (99.9%) 

for 30 min. After dehydration, samples were air-dried and coated with gold by a standard 

sputtering technique for 30 s. Electron photomicrographs were taken at suitable voltage and 

magnifications.  
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2.2.9: Agro-residues as the substrate for enzyme production 

For xylanase production different agro-residues such as corn cob, corn stover, congress 

grass, maize bran, pearl millet stover, rice straw, rice husk, sabai grass, sugarcane bagasse, 

sugarcane tops, sun hemp residue, wheat bran and wheat straw were collected from 

Muzaffarnagar district in Uttar Pradesh, India. All the agro-residues were washed to remove 

dirt particles and dried in sunlight. The agro-residues were chopped in to 1-2 cm pieces by 

using fodder cutter machine. After chopping, all the residues ground in a Wiley mill in the 

particle size range of 250 to 1400 µm and they were used as the substrates for xylanase 

production. To select the suitable carbon source for xylanase production these ago-residues 

were utilized as the substrate under SSF conditions. 

2.2.10: Optimization of physiochemical parameters for xylanase production 

Effect of different physiochemical parameters on xylanase production was tested by 

using one factor at a time (OFAT) approach [37, 48]. For the selection of best carbon source, 

eleven different agro-residues were utilized for xylanase production under SSF conditions.  

2.2.10.1: Effect of incubation time   

To optimize incubation time for xylanase production, Erlenmeyer flasks (250 ml) 

containing five gram of suitable substrate were prepared. Xylanase was harvested up to 96 h 

with a gap of 12 h for fungal strain ARC-12 while for fungal strain ARC-11 xylanase was 

harvested up to 12 days with a difference of one day. Initial pH and moisture content were 

adjusted to 5.5 and 77.5% respectively and incubated at 30 °C. The estimation of xylanase 

activity and protein content was carried out as per methods described in subsection 2.2.5. 

2.2.10.2: Effect of temperature  

 The effect of incubation temperature on xylanase production was studied by incubating 

the inoculated flasks at different temperatures (26-42 ºC) at an interval of 4 ºC. Enzyme 

harvesting was carried out at an optimum incubation time as determined previously while 

keeping the other fermentation conditions constant as described above.  
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2.2.10.3: Effect of initial pH 

For optimization of pH, xylanase production was carried out an optimum incubation 

time and temperature as determined previously. The effect of initial pH on enzyme production 

was assessed by adjusting the initial pH of production medium at 4.0, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 

9.0 and 10.0 with 1.0 N HCl or 1.0 N NaOH.  

2.2.10.4: Effect of moisture content  

The effect of moisture content on xylanase production was assessed by varying the 

initial moisture contents i.e. 55.0, 65.0, 70.0, 75.0, 77.5, 80.0, 82.5, and 85 % while 

maintaining the nutrients concentration constant at optimum cultural conditions. The estimation 

of xylanase activity and protein content was carried out as described in section 2.2.5. 

2.2.10.5: Effect of nitrogen sources 

The influence of nitrogen sources on xylanase production was studied at optimum 

cultural conditions such as incubation time (8
th

 day), temperature (30 ºC), initial pH (7.0) and 

initial moisture content (70.0%) for fungal strain ARC-11. For fungal strain ARC-12, influence 

of nitrogen sources on xylanase production was studied at optimum cultural conditions such 

incubation time (48 h), temperature (30 ºC), initial pH (6.0) and initial moisture content 

(77.5%). The effect of nitrogen sources on enzyme production was studied by replacing 

(NH4)2SO4 in Mandel Weber medium with different nitrogen sources such as NH4Cl, NH4NO3, 

(NH4)2PO4, (NH4)2SO4, NaNO3, HN2CONH2 (simple nitrogen sources) and beef extract, malt 

extract, peptone, soybean meal, tryptone, and yeast extract (complex nitrogen sources). All the 

nitrogen sources were tested at four different concentration levels i.e. 0.04, 0.08, 0.12, and 0.16 

% (as available nitrogen basis) for simple nitrogen sources while the complex organic nitrogen 

sources were supplemented as 0.4, 0.8, 1.2, and 1.6 % (as w/v basis).  

2.2.10.6: Effect of surfactants 

In order to observe the effect of surfactant on enzyme production, various surfactants 

(Tween-20, Tween-40, Tween-60, Tween-80, Triton-x-100, SDS and EDTA) were added at 

concentrations like 0.05, 0.10, and 0.20 and 0.30 % (w/v) to the NSS solution.  
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2.2.11: Bio-chemical characterization of crude xylanase 

2.2.11.1: Partial purification of xylanase by ammonium sulphate precipitation 

The cell free supernatant of crude extract was subjected to fractional ammonium 

sulphate precipitation. Finely powdered AR-grade ammonium sulphate was added to 200 ml of 

crude extract at different saturation levels of 10% to 100% w/v.  Ammonium sulphate was 

added slowly to crude enzyme with continuous stirring at 4 C and incubated overnight at 4 C. 

The precipitate was collected after centrifugation at 9,000x g for 30 min and dissolved in 

minimal amount of citrate buffer (concentration 50 mM) of pH 5.5.  Protein content and 

xylanase activities were determined for each fraction. The fractions which showed significantly 

higher xylanase activities were pooled together and dialyzed to remove ammonium sulphate 

from xylanase solution. Dialysis was performed against the same buffer (pH 5.5 and 50 mM) 

with dialysis membrane at 6 C for 24 h. During dialysis process buffer was changed 

frequently till no more ammonium sulphate was detected. The undissolved dialysate in 

xylanase enzyme solution was removed after centrifugation at 9,000x g for 20 min at 4 C. 

2.2.11.2: Optimum pH and temperature 

Optimum pH for xylanase activities from fungal strains ARC-11 and ARC-12 were 

determined by assaying their activities at different pH (3.0 to 9.0) and fixed temperature i.e. 50 

°C. Different buffers at fixed concentration (50 mM) such as sodium citrate buffer for a pH 

range of 3.0 to 6.0, sodium phosphate buffer for a pH range of 6.5 to 8.0 and glycine-NaOH 

buffer for a pH of 9.0 were used to maintain desired pH. Similarly, xylanase assays were 

determined at different reaction temperatures varying from 40 to 75 °C with difference of 5 °C 

using sodium citrate buffer maintaining their respective pH at 5.0 and 6.0 for both the fungal 

strains i.e. ARC-11 and ARC-12 respectively. 

2.2.11.3: Thermo-stability of xylanases  

Thermo-stabilities of xylanases from fungal strains ARC-11 and ARC-12 were 

determined at temperature 45, 50, 55, and 60 °C. Thermo-stabilities of xylanases were 

estimated by pre-incubating the enzymes at different holding times ranging from 0 to 180 min 

at optimum pH. After holding the enzyme preparation at different temperature and time, 

xylanase assays were performed at respective optimum temperature and pH given in subsection 

2.2.11.2. 
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2.2.11.4: Effect of cations on partially purified xylanases 

The influence of metal ions on xylanase activity was studied at two different 

concentrations (1 and 10 mM). Different metal ions such as Na
+
, K

+
, Al

+++
, Ca

++
, Cd

++
, Co

++
, 

Cu
++

, Fe
++

, Hg
++

, Mn
++

, Mg
++

, Ni
++

, Pb
++

, and Zn
++

 were incubated with xylanase for a period 

of hour at room temperature and then analyzed for their respective xylanase activities 

(subsection 2.2.5).The residual xylanase activities were measured in presence of salt of each 

ion. Xylanase activity in absence of metal ions (control) was taken as 100%. 

2.2.12: Statistical analysis 

All the experiments were carried out in triplicate independently and experimental 

results were represented as the mean ± standard deviation of three identical values. 

 

2.3: Results and discussion 

2.3.1. Isolation and screening of fungi   

A total of 112 fungal isolates were obtained after primary screening and showed growth 

on xylan-agar medium. After plate assay (secondary screening), 20 fungal isolates were 

selected as potent xylanase producer. Xylanase and cellulase activities were determined for all 

the fungal strains. Out of 20, only two isolates namely ARC-11 and ARC-12 were selected 

based on maximum xylanase and minimal cellulase activities (Table 2.1).  

2.3.2. Identification of selected fungal isolates 

ITS1-5.8S-ITS2 sequencing of fungal strains ARC-11 and ARC-12 was carried out at 

National Fungal Culture Collection of India, Agharkar Research Institute, Pune (India). Fungal 

strains ARC-11 and ARC-12 were identified as Schizophyllum commune and Aspergillus flavus 

based on the comparison of ITS rDNA gene sequences and morphological characteristics. 

Identified fungal strains were designated as Schizophyllum commune ARC-11 and Aspergillus 

flavus ARC-12 and deposited with accession numbers NFCCI 3029 and NFCCI 3028 

respectively at the same centre. 
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ITS1-5.8S-ITS2 sequences of Schizophyllum commune and Aspergillus flavus 

 

 

S. commune ARC-11 showed white and floccose colonies on Sabouraud dextrose agar 

(SDA) medium and showed growth up to 32x32 mm in diameter on 6
th

 day of incubations. The 

mycelium of the fungal strain S. commune ARC-11 contained two types of hyphae that were 

thick and thin up to 5 µm but sometimes might be coiled. Sclerotia were globose, olivaceous 

brown and 9-11x5-11 µm in size. A. flavus ARC-12 showed colonies on dull herbage green 

(yellowish green center), sulcate, floccose white on SDA medium. The fungi was fast growing 

and grown upto 38x38mm diameter on 6
th

 day of incubation. The reverse of plate was 

yellowish to buff. A. flavus ARC-12 showed colourless and roughened conidiophores. Vesicles 

were globose to sub-globose, flask shaped and hyaline. Sterigmata were uniseriate and biseriate 

with separate heads. The uniseriate sterigmata were ampulliform, olivaceous to sub-hyaline and 

8-12.5x4.5-5 µm in size. The biseriate sterigmata were spatulate. Vesicles were fertile and 

17.5x7.5 µm in size. Spores were olivaceous to sub-hyaline, rough walled, globose to oval to 

sub-globose and measured the size upto 6.5-2.5x5-2.5 µm. 

>Schizophyllum commune (ARC 11)

CGGTTGACTACGTCTACCTCACACCTTAAAGTATGTTAACGAATGTAATCATGGTCTTGA

CAGACCCTAAAAAGTTAATACAACTTTCGACAACGGATCTCTTGGCTCTCGCATCGATGA

AGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCT

TTGAACGCACCTTGCGCCCTTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCATTAAA

TACCATCAACCCTCTTTTGACTTCGGTCTCGAGAGTGGCTTGGAAGTGGAGGTCTGCTGG

AGCCTAACGGAGCCAGCTCCTCTTAAATGTATTAGCGGATTTCCCTTGCGGGATCGCGTC

TCCGATGTGATAATTTCTACGTCGTTGACCATCTCGGGGCTGACCTAGTCAGTTTCAATA

GGAGTCTGCTTCTAACCGTCTCTTGACCGAGACTAGCGACTTGTGCGCTAACTTTTGACT

TGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATAT-AATAA

>Aspergillus flavus (ARC 12)

TTTGCGTTCGGCAAGCGCCGGCCGGGCCTACAGAGCGGGTGACAAAGCCCCATACGCTCG

AGGATCGGACGCGGTGCCGCCGCTGCCTTTGGGGCCCGTcccccccGGAGAGGGGACGAC

GACCCAACACACAAGCCGTGCTTGATGGGCAGCAATGACGCTCGGACAGGCATGCCCCCC

GGAATACCAGGGGGCGCAATGTGCGTTCAAAGACTCGATGATTCACGGAATTCTGCAATT

CACACTAGTTATCGCATTTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGATCCATTG

TTGAAAGTTTTAACTGATTGCGATACAATCAACTCAGACTTCACTAGATCAGACAGAGTT

CGTGGTGTCTCCGGCGGGCGCGGGCCCGGGGCTGAGAGCCCCCGGCGGCCATGAATGGCG

GGCCCGCCGAAGCAACTAAGGTACAGTAAACACGGGTGGGAGGTTGGGCTCGCTAGGAAC

CCTACACTCGGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGT
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2.3.3. Selection of agro-residue for maximum xylanase production 

Different agro-residues such as corn cob, corn stover, congress grass, maize bran, pearl 

millet stover, rice straw, rice husk, sabai grass, sugarcane bagasse, sugarcane tops, sun hemp 

residue, wheat bran and wheat straw were used as the carbon sources for xylanase production. 

The maximum xylanase production from S. commune ARC-11 was found with rice straw 

(4288.36 IU/gds) as the carbon source under SSF conditions (Figure 2.2). S. commune ARC-11 

was found efficient producer of xylanase which produced fairly high xylanase activity 

compared to other agro-residues tested for xylanase production under SSF conditions. Agro-

residues such as maize bran, wheat straw, sabai grass and sugarcane bagasse gave xylanase 

yield by 92.33, 87.95, 85.85 and 84.93% respectively compared to rice straw (Table 2.2). 

Compared to other agro-residues such as congress grass, wheat bran, maize bran, and rice 

straw, pearl millet stover showed maximum production of xylanase (1345.44 IU/gds) by A. 

flavus ARC-12. Rice straw (1215.03 IU/gds) and maize bran (1216.00 IU/gds) showed the 

second highest xylanase activity showed with A. flavus ARC-12 (Figure 2.3). However, the 

difference between xylanase activities of A. flavus ARC-12 using rice straw and maize bran as 

the carbon source was insignificant. Rice straw and pearl millet stover was selected as the 

carbon sources for maximum xylanase production from S. commune ARC-11 and A. flavus 

ARC-12 respectively. The use of agro-residues as the source of carbon for xylanase production 

has been studied in several reports [49, 50]. The cost, availability and physicochemical 

characteristics of substrates are the main factors during their selection as the substrates for 

enzyme production [51]. Enzyme production is dependent on the nature of carbon source, 

favorable degradability, bare chemical composition, physical associations, accessibility of 

substrate, and presence of some nutrients [52]. Rice straw is rich in hemicelluloses (19-27%) 

and hence found to be the suitable carbon source for xylanase production [7, 49]. A substrate 

with higher content of xylan induces the higher xylanase production [50]. During SSF, 

moisture is absorbed by the substrate particles and microorganisms utilize moisture for their 

growth and metabolic activities. The degree of hydration of substrate particles affects the 

microbial growth as well as enzyme production. Water absorption capacity of different 

substrates varies from one substrate to another. This may be the another possible reason for 

variation in xylanase production by different substrates as the carbon source during SSF 

conditions [53, 54]. Xylanase production was carried out using rice straw as the substrate under 
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SSF by several fungal strains such as Aspergillus fumigatus [55], Fusarium solani F7 [7], 

Trichoderma reesei Rut C-30 [56], Myceliophthora sp. IMI 387099 [57]. Few reports were 

available on xylanase production by the white-rot fungus, Schizophyllum commune [58, 59]. 

Kolenova et al. [58] observed maximum xylanase activity (71.3 U/ml) by Schizophyllum 

commune under submerged fermentation after 11
th

  day of cultivation on cellulose containing 

medium. de Souza et al. [60] reported maximum xylanase (190 U/ml) and β-xylosidase (35 

U/ml) production by Aspergillus flavus using corn cob as the carbon source. Guimaraes et al. 

[61] found maximum xylanase (8.03 and 8.70 U/mg of protein) production using different 

concentrations of wheat bran (1 and 0.5%) as the carbon source under submerged fermentation 

conditions by Aspergillus flavus. Several species of genus Aspergillus were studied extensively 

for xylanase production using different agro-residues as the carbon sources. Aspergillus 

awamori [35], Aspergillus fumigatus [62], Aspergillus lentulus , Aspergillus niger [63], and 

Aspergillus foetidus [64] produced maximal xylanase production using different agro-residues 

as the carbon sources such as grape pomace, rice straw, wheat bran, and corn cob. 

2.3.4. Effect of physiochemical parameters for xylanase production  

The effect of different physiochemical parameters such as composition of fermentation 

medium, fermentation duration, pH, incubation temperature, and moisture content during SSF 

of both the strains to get enhanced production of xylanase was studied. 

2.3.4.1: Effect of incubation time on xylanase production 

The effect of incubation time on xylanase production by S. commune ARC-11 and A. flavus 

ARC-12 using rice straw and pearl millet stover as the substrates under SSF has shown in 

Figures 2.4 & 2.5. The xylanase activity of S. commune ARC-11 enhanced gradually with 

increasing incubation period and reached at the highest level on 8
th

 day of incubation at 30 °C 

i.e. 5199.02 IU/gds. Further increase in the incubation time i.e. after 8
th

 day, xylanase activity 

started to decrease (Table 2.3). A. flavus ARC-12 was fast growing fungus therefore, xylanase 

production was monitored after every 12 h. For A flavus ARC-12, maximal xylanase (1424.69 

IU/gds) production was observed after 48 h of incubation time at 30 °C and beyond that 

xylanase activity was declined (Table 2.4). The relatively shorter incubation time for maximum 

production of xylanase minimizes the risk of contamination and makes the process economic 

for industrial production of xylanase [65, 66]. For A. flavus ARC-12, protein concentration 
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increased from 12 h to 60 h and slightly decreased thereafter. For S. commune ARC-11, protein 

content increased up to 9
th

 day of incubation and beyond that it became almost constant. 

Enzyme production reaches to maximum level in stationary phase and declines during death 

phase in various microorganisms. Depletion of nutrient concentration and cellular 

fragmentation is very common in death phase which results release of intracellular material and 

proteases in fermentation broth [67, 68]. Increase in toxic waste results a decrease in growth 

and inactivation of secretary machinery of enzymes [53, 69].  The maximal xylanase 

production was observed after an incubation time of 2
nd

 day in Aspergillus fumigatus F-993 

[65] using white corn flour as the substrate under SSF conditions and Aspergillus flavus [61] 

also showed maximal production of xylanase on 2
nd

 day of incubation using 0.5% wheat bran 

as the substrate under SmF conditions. Pal and Khanum [70] found an incubation time of 6
th

  

day for maximal xylanase production (2596 IU/gds) by Aspergillus niger using wheat bran as 

the substrate at 40 °C under SSF conditions. Maximal xylanase production was observed after 

an incubation period of 7
th

 day for Coprinellus disseminatus [71], 8
th

 day for Volvariella 

diplasia [72], and 11
th

 day for Schizophyllum commune [58]. 

2.3.4.2: Effect of incubation temperature on xylanase production 

The effect of temperature on maximal xylanase production from both the fungal strains 

was studied by varying the temperature from 26 to 46°C with a gap of 4°C while keeping other 

variables constant as shown in Table 2.5. An incubation temperature of 30°C was found 

optimum to produce maximal xylanase production form S. commune ARC-11 (5358.93 IU/gds) 

and A. flavus ARC-12 (1431.19 IU/gds). A deviation from a temperature of 30 °C affected the 

xylanase production adversely (Figures 2.6 & 2.7). The fungal strain S. commune ARC-11 was 

not able to grow beyond a temperature of 42 °C. Similarly, A. flavus ARC-12 showed growth at 

a temperature of 46 °C and it retained 32.38 and 25.21% of xylanase activity at 42 and 46 °C 

respectively. Likewise, protein concentration followed the same trend as observed in case of 

xylanase production for both the fungal strains. At lower temperature, xylanase production 

decreases due to lower transport of substrates through the cell membrane [70]. The higher 

temperature leads poor growth due to thermal denaturation of enzymes for metabolic pathways 

which results the higher maintenance energy for cellular growth and lower metabolites 

production [71, 73]. de Souza et al. [60] reported the maximum xylanase production by 

Aspergillus flavus at 30 °C using corncob as the substrate under SmF conditions. Shah and 
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Madamwar [64] also found maximal xylanase production (2701 U/gds) by Aspergillus foetidus 

at 30 °C under SSF conditions after 4
th

 day of incubation. Saleem et al. [74] reported maximal 

xylanase production at 30 °C by various white-rot fungi such as Phanerochaete sordida MRL3 

(272.74 IU/ml), Lentinus pigrinus MRL6 (278.52 IU/ml) and Poliporus caliatus MRL7 

(292.86 IU/ml). 

2.3.4.3: Effect of initial pH on xylanase production 

pH affects the microbial enzyme secretary machinery and therefore, enzyme 

production. Table 2.6 revealed the effect of initial pH on xylanase production by S. commune 

ARC-11 and A. flavus ARC-12. The xylanase activity of S. commune ARC-11 increased with 

increasing initial pH from 4.0 to 7.0 and maximal xylanase production (6340.71 IU/gds) was 

attained at initial pH of 7.0. Beyond a pH of 7.0, xylanase activity started to decrease (Figure 

2.8). For A. flavus ARC-12, maximum xylanase activity (1663.72 IU/gds) was found at initial 

pH of 6.0 and on either side of optimum pH (6.0) xylanase activity started to decline (Figure 

2.9). The initial pH is found to affect the transport of enzymes across the cell membrane [75]. 

An increase or decrease in pH, by adjusting to values other than the optimal value, the 

production of xylanase is found to decrease gradually. In view of the fact that enzymes are 

proteins, the ionic character of the amino and carboxylic acid groups on the protein surface are 

liable to be influenced by pH changes and the catalytic properties of the enzymes were 

strikingly affected. [71]. Most of the xylanase producing fungi grow at a wide pH range 

varying from 5.0-8.0 [5, 40, 64, 76]. Bhushan et al. [76] reported a pH of 6.0 for maximum 

xylanase production by Aspergillus flavus MTCC9390.  Agnihotri et al. [71] observed 6.4 as 

the optimum pH for xylanase production by a white-rot fungi Coprinellus disseminatus under 

SSF conditions. Muthezhilan et al. [77] found maximum xylanase production (3.72 U/ml) at 

initial pH of 8.0 by Penicillium oxalicum using wheat bran as the carbon source under SSF.      

2.3.4.4: Effect of initial moisture content on xylanase production 

Table 2.7 revealed the effect of moisture content on xylanase production by S. 

commune ARC-11 and A. flavus ARC-12. For S. commune ARC-11, xylanase production 

increased with increasing moisture content from 55 to 70%, and reached to its maximum value 

(6721.96 IU/gds) at 70% moisture contents. Further increase in moisture content (beyond 70%) 

resulted into poor xylanase production (Figure 2.10). The xylanase activity of 93.16% was 
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retained at 75% moisture level. For A. flavus ARC-12, the maximum xylanase production 

(1699.50 IU/gds) was observed at a moisture level of 77.5%. For A. flavus ARC-12, xylanase 

activity of 89.90% was retained at 80% moisture content, and beyond that a sharp decline in 

xylanase activity was observed (Figure 2.11). Microbial growth and product synthesis depends 

on physical characteristics of substrate which is affected by moisture content during SSF. 

Moisture content causes the swelling of substrate and makes the substrate suitable for microbial 

utilization and growth. The appropriate moisture content results the faster microbial growth and 

early initiation of enzyme production [53, 64, 78, 79]. The moisture content higher than 

optimum level causes the decreased porosity, alteration in particle structure, and gummy 

texture which limits the oxygen transfer into the substrate [53, 64, 80]. Moreover, the risk of 

microbial contamination increases due to sticking of substrate particles to the wall of the 

reactor or conglomeration of substrate [64, 81]. If the moisture content is lower than optimum 

level then water tension becomes high and solubility of nutrients in substrate as well as degree 

of swelling of substrate starts to decline [53, 82]. Ghanem et al. [83] studied the effect of 

moisture content (25 to 85%) on xylanase production by Aspergillus terreus and reported 

optimum xylanase activity at 75% of moisture content. Similar observations were made by Pal 

and Khanum [70] who tested the effect moisture content on xylanase production varied from 55 

to 80% and found maximum xylanase production (more than 1650 IU/gds) by Aspergillus 

niger at 70% moisture content under SSF conditions. Maciel et al. reported maximum xylanase 

production (3099 IU/g) at a moisture level of 84% by Aspergillus niger LPB326 under SSF 

conditions [84]. 

2.3.4.5: Effect of nitrogen sources on xylanase production 

Among simple nitrogen sources, ammonium sulphate (0.08% as available N) followed 

by urea (0.08% as available N) were found most effective nitrogen sources for xylanase 

production by S. commune ARC-11 (Figure 2.12). Among simple nitrogen sources, ammonium 

sulphate produced maximum xylanase activity of 8591.38 IU/gds and followed by urea 

(8123.20 IU/gds) using rice straw as the source of carbon under SSF conditions (Table 2.8). 

Among complex nitrogen sources, maximum xylanase production was found with beef extract 

(8221.60 IU/gds) and followed by peptone (7787.82 IU/gds) at a concentration of 0.8% (w/v) 

(Figure 2.13). Likewise, ammonium sulphate (0.08% as available N) was found to produce 

maximum xylanase activity (2014.85 IU/gds) in case of A. flavus ARC-12 using pearl millet 
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stover as the source of carbon under SSF conditions (Table 2.9 & Figure 2.14). For A. flavus 

ARC-12, beef extract (1.2%, w/v) was observed to produce maximum xylanase activity 

(2219.85 IU/gds) compared to other complex nitrogen sources as well as all the simple nitrogen 

sources (Figure 2.15). Production of xylanases is known to be sensitive to nature of nitrogen 

source used and the percentage of available nitrogen used in production medium [85]. 

Ammonium sulphate was used as the best and cost effective nitrogen source for xylanase 

production by S. commune ARC-11 [79]. Ammonium sulphate was also reported to produce 

maximum xylanase production by some other fungi such as Aspergillus terreus [83], and 

Thermoascus aurantiacus [79].  Laxmi et al. [86] found 1% beef extract as the most suitable 

nitrogen source for maximum xylanase production (6248 IU/ml) by Aspergillus sp. RSP6. 

Kumar [87] also observed maximum xylanase production (687.97 IU/mL) by Coprinus 

cinereus using beef extract (1.0 g/l) as the source of complex nitrogen under SSF conditions on 

wheat bran medium. 

2.3.4.6: Effect of surfactants on xylanase production 

Among various surfactants tested, S. commune ARC-11 produced maximum xylanase 

production ((10196.53 IU/gds)) with Tween-20 (0.10%, w/v) which was followed by other 

surfactants in descending order i.e. Tween-80 (0.10%, w/v), Tween-60 (0.10%, w/v), Tween-

40 (0.10%, w/v) and Triton-x-100 (0.05%, w/v) for (Table 2.10 & Figure 2.16). Similarly, for 

A. flavus ARC-12, Tween-60 (0.10%, w/v) produced maximum xylanase activity (2539.54 

IU/gds) which was followed in descending order by Tween-80 (0.10%, w/v), Tween-40 

(0.10%, w/v) and Triton-x-100 (0.05%, w/v) (Figure 2.17). EDTA and SDS showed inhibitory 

effect on xylanase production for both the fungal strains S. commune ARC-11 and A. flavus 

ARC-12. The stimulatory effect of surfactants on enzyme production is well established [88-

91]. Surfactants promote the water penetration into the solid substrate matrix which improves 

available surface area due to swelling for microbial growth [88, 89, 92]. Surfactants are also 

found to enhance the permeability of microbial cell membrane which affects the secretion of 

certain proteins. Surfactants also assist the release of cell-bound enzymes into the fermentation 

broth [90, 93]. Similar results were observed by Pandya et al. [90] who reported improvement 

in xylanase production by Aspergillus tubingensis JP-1 using different surfactants such as 

Triton-x-100, Tween-80, Tween-60, Tween-40, and Tween-20. Improvement in xylanase 

production by various microorganisms was also reported with different surfactants such as 
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Tween-20 for Cellulosimicrobium cellulans CKMX1 [94], Tween-80 for Trichoderma viride-

IR05 [91], Aspergillus niger NRC 107 [95], Fusarium oxysporum [96], and Triton-x-100 

for Aspergillus tubingensis JP-1 [90]. 

S. commune ARC-11 produced maximum xylanase (1147.11 IU/ml), cellulase (1.47 

IU/ml) and laccase (28.65 U/ml) activities at optimum cultural conditions such as incubation 

time 8
th

 day, temperature 30 °C, pH 7.0, moisture content 70.0%, nitrogen source (ammonium 

sulphate, 0.08% as available nitrogen), and surfactant (Tween-20, 0.10% (w/v)) using rice 

straw as the carbon source under SSF conditions. A. flavus ARC-12 produced maximum 

xylanase production (234.26 IU/ml) at optimum cultural conditions such as incubation time 48 

h, temperature 30 °C, pH 6.0, moisture content 77.5%, nitrogen source (beef extract, 1.2% 

(w/v)), and surfactant (Tween-60, 0.10% (w/v)) using pearl millet stover as the carbon source 

under SSF conditions (Table 2.11). Cellulase and laccase activities were not detected in the 

crude enzyme from A. flavus ARC-12. 

2.3.5. Bio-chemical characterization of xylanases 

2.3.5.1. Partial purification of xylanases 

Xylanases produced at optimum cultural conditions by S. commune ARC-11 and A. 

flavus ARC-12 were subjected to ammonium sulphate precipitation for partial purification. The 

maximum xylanase activity was recorded at 50-70% ammonium sulphate fraction by both the 

fungal strains S. commune ARC-11 and A. flavus ARC-12. For S. commune ARC-11, a yield of 

41.86% with 2.75 fold purification was obtained (Table 2.12). For A. flavus ARC-12, a yield of 

45.05% with fold purification of 2.85 was achieved. Ammonium sulphate precipitation which 

is a low cost technique for partial purification of proteins has been used widely for partial 

purification of xylanases [83, 97, 98]. Bhushan et al. [98] performed ammonium sulphate 

precipitation for xylanase purification from Aspergillus flavus MTCC 9390 and attained the 

yield of 23.6% with fold purification of 3.89 by 30-70% of ammonium sulphate. Ghanem et al. 

[83] studied xylanase purification from Aspergillus terreus and purified xylanase 1.5 times 

with the yield of 34.5% by ammonium sulphate precipitation. 

2.3.5.2. Effect of pH on xylanase activities 

For S. commune ARC-11, the maximum xylanase activity was found at pH 5.0 for and 

results clearly showed the xylanase was active at a broad pH range of 4.0-7.0. The xylanase 
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activities of 84.17 and 55.24% were retained at pH 6.0 and 7.0 respectively while at pH 8.0 

only 26.66% of xylanase activity was retained (Table 2.13).  Xylanase from A. flavus ARC-12 

was also active at a broad range of pH (3.0-9.0) and 30.02% of xylanase activity was retained 

at pH 3.0. The xylanase from A. flavus ARC-12 was found stable in alkaline pH range, showing 

the alkali-tolerant nature of enzyme. 92.30, 52.69 and 40.64% of xylanase activities were 

retained at pH 7.0, 8.0 and 9.0 respectively (Figure 2.18). The stability of xylanase in alkaline 

pH range made it suitable for bio-bleaching of pulp in alkaline conditions. Kolenova et al. [58] 

studied the effect of pH on xylanase from Schizophyllum commune and reported similar 

observation. The xylanase from Schizophyllum commune was stable at a pH range of 4.0-7.0 

with optimum activity at pH 5.5. Bhushan et al. [98] reported the optimum pH of 5.0 for 

xylanase obtained from Aspergillus flavus and 75% of its activity was retained at pH 7.0 and 

after that xylanase activity declined sharply. Chidi et al. [99] also reported the xylanase 

obtained from Aspergillus terreus UL 4209 which was most active at pH 6.0 and activity 

decreased significantly towards alkaline pH.  

2.3.5.3. Effect of temperature on xylanase activities 

Xylanases from S. commune ARC-11 and A. flavus ARC-12 exhibited activity over a 

broad temperature range of 30-65 °C (Table 2.14). Xylanase from S. commune ARC-11 

showed maximal activity at 55 °C and retained 47.06, 47.25, and 24.78% of maximum 

xylanase activity at 30, 65, and 70 °C respectively. Xylanases from A. flavus ARC-12 was 

found thermo-tolerant with optimum xylanase activity at 50 °C. Xylanases activity from A. 

flavus ARC-12 increased with increasing temperature up to 50 °C, but beyond that declined 

progressively and retained 43.62% of xylanase activity at 70 °C (Figure 2.19). The maximum 

activity of xylanase at 50 °C was reported for several fungi such as Schizophyllum commune 

[58], Aspergillus terreus [83], Aspergillus ochraceus [100], and Fusarium verticillioides [101]. 

The maximum activity of xylanase at 55 °C was reported for fungal strains like Aspergillus 

versicolor [102], Rhizopus oryzae [103], and Acrophialophora nainiana [104]. 

2.3.5.4. Thermo-stability of xylanase  

Thermo-stability xylanases from S. commune ARC-11 and A. flavus ARC-12 were 

studied at different temperatures, holding times and optimum pH (Table 2.15). Xylanase from 

S. commune ARC-11 was stable at temperature 45 and 50 °C for 180 min while at 55 °C 

(optimum temperature) xylanase activity decreased slightly after 120 min. At temperature 60 
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°C xylanase activity decreased drastically and only 24.29% of activity was retained after 180 

min of holding time. For A. flavus ARC-12, xylanase was stable at temperature 45 and 50 °C 

up to 180 min while at 55 and 60 °C temperature xylanase activity declined drastically after 60 

min of holding time. Xylanases from S. commune ARC-11 and A. flavus ARC-12 stability for a 

longer time at their respective optimum temperatures was important for their application in 

prebleaching studies. Guimaraes et al. [61] observed a half life of more than 75 and 45 min for 

xylanase from Aspergillus flavus at 50 and 55 °C temperature respectively. Chidi et al. [99] 

studied the thermo-stability of xylanase from Aspergillus terreus UL 4209 and found half life 

of 5.8 h at 50 °C. 

2.3.5.5. Effect of metal ions on partially purified xylanase 

There are different sources of metal ions entering in the pulp and paper manufacturing 

process i.e. water, lime and white liquor which may affect the enzyme activity during pre-

bleaching of pulp [105]. With this consideration, the effect of metal ions on xylanase activities 

was also studied at two different concentration levels i.e. 1 and 10 mM. Metal ions including 

Na
+
 and K

+
 showed stimulatory effect on xylanase activity whereas other metal ions had 

inhibitory effect on xylanase activity from S. commune ARC-11 (Figure 2.20). For A. flavus 

ARC-12, metal ions such as Na
+
, K

+
, Al

+++
, Ca

++
, Co

++
, Mg

++
, and Zn

++
 showed stimulatory 

effect on xylanase activity (Table 2.16). Xylanase activity was increased by 66.03, 62.19, and 

39.69% by the addition of Na
+
, K

+
 and Zn

++
 respectively at 10 mM concentration. Cu

++
, Fe

++
, 

Mn
++

, and Pb
++

 were found to inhibit the xylanase activity for A. flavus ARC-12 (Figure 2.21). 

Hg
++

 (1 and 10 mM) strongly inhibited the xylanase activity for both the fungal strains S. 

commune ARC-11 and A. flavus ARC-12. These results go with the findings of Ghanem et al. 

[83] who reported inhibition in xylanase activity obtained from Aspergillus terreus by the 

addition of metal ions like Hg
++

, Co
++

, Cu
++

, Fe
+++

, and Pb
++

. In earlier studies, Hg
++

 was 

reported as the strong inhibitor of xylanase activity and metal ions such as Cd
++

, Cu
++

, Fe
++

, 

Mn
++

, and Pb
++

 were also commonly cited as inhibitors of xylanases production [83, 98, 106]. 

Enzyme activity is probably inhibited through attack on certain groups at the active sites of 

enzymes. Inactivation of xylanases by Cu
++

 and Hg
++

 probably indicated the presence of thiol 

and histidine as the active site residues [100, 107]. Stimulatory effect of Ca
++ 

on xylanase 

activity from A. flavus ARC-12 indicated its possible role as co-factor in enzyme–substrate 

reaction and showed the stabilizing effect [83, 108]. 
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Table-2.1: Screening of xylanase producing fungi 

Fungal 

isolate Source Site of isolation 

Xylanase 

activity (IU/ml) 

Cellulase 

activity (IU/ml) 

ARC-2 Dead and 

decaying wood 

Saharanpur, Uttar 

Pradesh 

95.33±4.92 1.26±0.05 

ARC-3 Dead and 

decaying wood 

Saharanpur, Uttar 

Pradesh 

118.44±4.85 2.28±0.10 

ARC-5 Lignocellulose 

rich soil 

Paonta Sahib, Himachal 

Pradesh 

152.88±5.27 2.65±0.12 

ARC-6 Lignocellulose 

rich soil   

Paonta Sahib, Himachal 

Pradesh 

41.71±2.14 0.63±0.03 

ARC-9 Lignocellulose 

rich soil   

Paonta Sahib, Himachal 

Pradesh 

63.55±2.28 1.30±0.07 

ARC-10 Dead and 

decaying wood 

Paonta Sahib, Himachal 

Pradesh 

118.20±3.55 2.60±0.13 

ARC-11 Dead and 

decaying wood 

Paonta Sahib, 

Himachal Pradesh 

386.44±8.76 1.05±0.05 

ARC-12 Soil rich in 

lignocellulose Jaipur, Rajasthan 

102.66±4.19 ND* 

ARC-16 Lignocellulose 

rich soil   Jaipur, Rajasthan 

127.42±5.11 2.54±0.11 

ARC-20 Dead and 

decaying wood Jaipur, Rajasthan 

114.20±4.22 2.66±0.13 

ARC-22 Dead and 

decaying wood Jaipur, Rajasthan 

57.86±1.34 1.71±0.06 

ARC-24 Soil rich in 

lignocellulose Dehradun, Uttarakhand 

47.04±2.37 1.85±0.07 

ARC-25 Soil rich in 

lignocellulose Dehradun, Uttarakhand 

146.66±4.86 3.35±0.16 

ARC-30 Soil rich in 

lignocellulose Dehradun, Uttarakhand 

218.42±8.40 6.43±0.22 

ARC-33 Soil rich in 

lignocellulose Dehradun, Uttarakhand 

121.57±5.28 2.14±.08 

ARC-37 Soil rich in 

lignocellulose Dehradun, Uttarakhand 

95.60±3.92 1.82±0.07 

ARC-38 Soil rich in 

lignocellulose 

Muzaffarnagar, Uttar 

Pradesh 

48.55±2.88 0.81±0.03 

ARC-39 Dead and 

decaying wood 

Muzaffarnagar, Uttar 

Pradesh 

86.33±3.77 1.74±0.09 

ARC-42 Dead and 

decaying wood 

Muzaffarnagar, Uttar 

Pradesh 

74.22±3.60 1.05±0.04 

ARC-44 Dead and 

decaying wood 

Muzaffarnagar, Uttar 

Pradesh 

115.10±3.52 2.24±0.10 

*Not detected 

± refers standard deviation 
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Table-2.2: Effect of carbon sources for xylanase production by S. commune ARC-11 

and A. flavus ARC-12 

S. No.  Carbon sources  Xylanase activity (IU/gds) 

  S. commune ARC-11 A.  flavus ARC-12 

1 Corn cob 2812.80±88.32 704.32±16.20 

2 Corn stover 2848.36±69.50 632.12±13.08 

3 Congress grass 3235.56±80.89 1187.17±54.49 

4 Maize bran 3962.40±141.46 1216.00±48.40 

5 Pearl millet stover 2955.02±109.34 1345.44±57.72 

6 Sabai grass 3681.96±138.07 888.40±25.76 

7 Sugarcane bagasse 3642.40±150.07 836.36±22.83 

8 Sugarcane leaves 3460.71±79.60 1238.66±46.57 

9 Rice straw 4288.36±143.66 1215.03±42.16 

10 Wheat bran 3587.11±118.02 1161.15±37.16 

11 Wheat straw 3771.82±112.40 767.96±16.20 

± refers standard deviation 

 

 

 

Table-2.3: Effect of incubation time on xylanase production by S. 

commune ARC-11  

Incubation 

time 

(days) 

Xylanase 

activity (IU/gds) 

Protein content 

(mg/ml) 

2 256.00±7.99 0.85±0.03 

3 338.93±10.85 0.97±0.04 

4 1389.07±35.42 1.11±0.03 

5 1490.93±40.85 1.44±0.05 

6 4262.76±153.46 1.69±0.06 

7 4556.98±212.36 1.73±0.06 

8 5199.02±132.06 1.86±0.08 

9 4039.91±148.67 1.99±0.06 

10 2898.93±93.93 1.96±0.08 

11 1747.73±44.39 1.95±0.07 

12 1472.80±33.87 1.90±0.06 

± refers standard deviation 
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Table-2.4: Effect of incubation time on xylanase production by A. flavus 

ARC-12 

Incubation 

time 

Xylanase activity 

(IU/gds) 

Protein content 

(mg/ml) 

12 298.23±10.56 0.57±0.03 

24 597.00±25.79 1.03±0.05 

36 1190.53±34.88 1.15±0.06 

48 1424.69±64.82 1.18±0.06 

60 1385.66±65.40 1.22±0.05 

72 1326.14±68.96 1.19±0.04 

84 1136.32±49.88 1.17±0.05 

96 1039.73±38.47 1.15±0.04 

± refers standard deviation 

 

 

Table-2.5: Effect of temperature on xylanase production by S. commune ARC-11 and 

A. flavus ARC-12 

Temperatur

e (°C) 
S. commune ARC-11 A. flavus ARC-12 

 Xylanase activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

Xylanase activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

26 4001.96±158.08 1.53±0.09 1305.22±56.52 1.02±0.06 

30 5358.93±253.48 1.88±0.09 1431.19±54.53 1.20±0.05 

34 3689.87±143.17 1.58±0.07 1020.98±42.88 1.14±0.06 

38 1829.07±88.89 1.50±0.08 609.46±24.01 1.06±0.07 

42 ─ ─ 463.55±18.45 0.93±0.05 

46 ─ ─ 360.89±17.32 0.72±0.04 

± refers standard deviation 
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Table-2.6: Effect of initial pH on xylanase production by S. commune ARC-11 and A. 

flavus ARC-12 

Initial pH S. commune ARC-11 A. flavus ARC-12 

 Xylanase 

activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

Xylanase 

activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

4.0 5242.40±144.69 1.65±0.09 1291.24±48.68 1.12±0.05 

5.0 5299.73±171.18 1.92±0.09 1491.68±67.13 1.18±0.06 

5.5 5459.73±191.09 1.98±0.12 1589.03±81.04 1.33±0.09 

6.0 5661.16±157.38 2.17±0.11 1663.72±77.03 1.48±0.08 

6.5 5973.33±221.01 2.24±0.10 1547.62±59.74 1.55±0.08 

7.0 6340.71±207.34 2.25±0.12 1456.99±57.41 1.46±0.09 

8.0 5424.18±227.82 2.12±0.11 1408.86±64.10 1.40±0.08 

9.0 4934.31±188.49 1.94±0.10 1369.83±64.79 1.22±0.06 

10.0 4811.82±188.62 1.90±0.12 1259.91±61.74 1.20±0.06 

± refers standard deviation 

 

Table-2.7: Effect of initial moisture content on xylanase production by S. commune 

ARC11 and A. flavus ARC12 

Initial 

moisture 

content (%) 

S. commune ARC-11 A. flavus ARC-12 

 Xylanase activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

Xylanase activity 

(IU/gds) 

Protein 

content 

(mg/ml) 

55.0 3026.13±86.24 1.32±0.07 960.70±40.54 1.05±0.05 

60.0 4118.49±130.14 1.56±0.08 1021.41±38.30 1.11±0.05 

65.0 5459.73±177.44 1.83±0.10 1097.95±29.97 1.36±0.07 

70.0 6721.96±235.27 2.14±0.10 1321.59±54.85 1.44±0.07 

75.0 6262.67±180.36 2.30±0.12 1599.55±70.06 1.48±0.07 

77.5 4428.62±217.00 2.21±0.12 1699.50±56.59 1.51±0.08 

80.0 2054.31±87.51 2.15±0.11 1528.00±55.62 1.40±0.07 

82.5 1619.73±51.83 1.92±0.10 1283.76±53.92 1.26±0.06 

85.0 1303.64±49.80 1.87±0.09 1041.36±33.22 1.22±0.06 

± refers standard deviation 

 

 

 

 

 

 

 

 

 



48 

 

Table-2.8: Effect of nitrogen sources on xylanase production by S. commune ARC-11 
 Particulars Nitrogen sources (as percent  available nitrogen) 

Simple nitrogen sources 0.04 % N 0.08 % N 0.12 % N 0.16 % N 

NH4Cl Xylanase 6814.76±175.82 7141.87±267.11 6513.78±276.84 6437.87±227.26 

Protein content 3.30±0.16 3.43±0.15 4.18±0.19 4.32±0.16 

NH4NO3 Xylanase 5304.89±222.27 5859.56±246.10 5262.22±178.92 4930.31±192.28 

Protein content 3.25±0.11 3.49±0.10 3.55±0.14 3.64±0.15 

(NH4)2PO4 Xylanase 6013.60±247.16 6994.96±225.94 7552.00±311.14 6872.89±267.36 

Protein content 3.0±0.10 3.69±0.15 3.89±0.17 4.15±0.19 

(NH4)2SO4 Xylanase 7414.49±235.78 8591.38±358.26 7781.87±309.72 7354.04±325.78 

Protein content 3.35±0.14 3.65±0.12 3.67±0.14 4.26±0.20 

NaNO3 Xylanase 6193.78±261.38 6926.22±248.65 6684.44±282.75 5641.42±233.55 

Protein content 2.63±0.11 2.89±0.10 2.80±0.14 2.66±0.14 

Urea Xylanase 7594.04±349.33 8123.20±311.12 7982.76±344.86 7720.27±339.69 

Protein content 3.17±0.14 3.16±0.12 3.70±0.16 3.45±0.17 

Complex nitrogen sources Nitrogen sources, (w/v) 

0.4 % 0.8 % 1.2 % 1.6 % 

Beef Xylanase 7396.62±181.96 8221.60±305.84 7688.27±323.68 5707.20±215.16 

Protein content 3.32±0.15 4.40±0.14 4.06±0.17 4.10±0.17 

Malt Xylanase 5377.16±266.71 5840.53±412.93 5718.49±196.72 5028.71±288.15 

Protein content 3.09±0.09 3.13±0.14 3.19±0.13 3.56±0.17 

Peptone Xylanase 7222.49±252.06 7787.82±379.27 7741.60±305.02 7559.11±271.37 

Protein content 3.03±0.14 3.49±0.11 3.49±0.15 4.14±0.20 

Soyabean Xylanase 5056.00±173.93 6180.71±259.59 5868.98±255.30 4871.11±203.13 

Protein content 3.04±0.14 3.17±0.12 3.56±0.17 2.89±0.14 

Tryptone Xylanase 4901.87±225.98 5935.38±235.04 6030.22±233.37 5979.82±263.11 

Protein content 2.66±0.14 3.53±0.13 4.17±0.19 4.70±0.21 

Yeast Xylanase 6602.67±283.91 7412.09±329.10 7985.78±391.30 7687.11±282.12 

Protein content 3.48±0.11 4.45±0.19 4.70±0.19 4.83±0.21 

Control Xylanase 4954.04±216.99 

Protein content 2.06±0.11 

± refers standard deviation 
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Table-2.9: Effect of nitrogen sources on xylanase production by A. flavus ARC-12 
 Particulars Nitrogen sources (as percent  available nitrogen) 

Simple nitrogen sources 0.04 % N 0.08 % N 0.12 % N 0.16 % N 

NH4Cl Xylanase 1562.47±54.37 1772.89±82.62 1743.84±83.36 1475.64±54.75 

Protein content 2.45±0.11 2.95±0.12 3.27±0.14 2.69±0.14 

NH4NO3 Xylanase 1537.86±65.05 1829.91±97.72 1683.13±83.31 1662.21±77.46 

Protein content 2.42±0.14 2.93±0.09 3.05±0.15 2.84±0.14 

(NH4)2PO4 Xylanase 1457.42±69.37 1688.55±74.97 1609.95±56.51 1599.22±72.28 

Protein content 2.73±0.12 2.77±0.16 3.45±0.15 3.37±0.14 

(NH4)2SO4 Xylanase 1806.71±40.11 2014.85±106.18 1866.12±83.04 1734.84±57.77 

Protein content 2.26±0.13 2.47±0.12 2.91±0.16 2.93±0.17 

NaNO3 Xylanase 1378.94±54.33 1515.53±63.34 1411.68±71.14 1156.27±56.07 

Protein content 2.33±0.10 2.84±0.11 3.02±0.16 2.45±0.13 

Urea Xylanase 1708.28±79.09 1978.86±87.27 1722.15±63.38 1695.92±59.70 

Protein content 2.63±0.12 3.41±0.15 3.68±0.13 3.22±0.14 

Complex nitrogen sources Nitrogen sources, (w/v) 

0.4 % 0.8 % 1.2 % 1.6 % 

Beef Xylanase 1876.63±64.37 2042.82±96.01 2219.85±116.32 1912.73±83.97 

Protein content 3.51±0.20 3.77±0.17 3.83±0.15 3.23±0.17 

Malt Xylanase 1392.38±65.72 1511.63±47.77 1347.83±36.93 1131.77±43.35 

Protein content 3.41±0.16 3.48±0.13 3.55±0.17 3.53±0.16 

Peptone Xylanase 1841.62±84.16 2021.14±70.74 1872.95±45.51 1709.15±84.77 

Protein content 3.21±0.16 3.29±0.14 3.85±0.19 3.51±0.17 

Soybean Xylanase 1221.31±28.58 1563.45±64.26 1302.08±54.17 1307.39±49.42 

Protein content 2.48±0.11 3.70±0.22 4.02±0.17 4.05±0.23 

Tryptone Xylanase 1663.40±74.02 1675.43±59.14 1921.19±94.91 1801.94±85.59 

Protein content 3.21±0.18 3.24±0.15 3.13±0.18 2.91±0.13 

Yeast Xylanase 1650.17±71.45 1865.79±90.86 1785.03±57.48 1685.08±54.09 

Protein content 2.06±0.11 2.33±0.10 3.24±0.11 3.45±0.15 

Control Xylanase 1312.92±46.61 

Protein content 1.58±0.07 

± refers standard deviation 
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Table-2.10: Effect of surfactants on xylanase production by S. commune ARC-11 and A. 

flavus ARC-12 

Surfactants Surfactants at different doses (%, w/v) 

 0.05 0.10 0.20 0.30 

S. commune ARC-11 

T-20                 9163.38±286.81 10196.53±444.57 10131.29±33.28 9430.04±308.36 

T-40                 8714.04±318.06 8755.556±302.07 8015.733±19.38 7670.04±243.91 

T-60                 8697.24±367.02 9033.067±351.39 8356.533±28.45 8072.17±305.13 

T-80                 8971.82±281.72 9272.089±358.83 8999.467±27.88 8568.88±349.61 

T-x-100            8643.91±376.01 8481.956±371.51 8173.778±31.69 8039.46±253.24 

SDS                  5795.56±199.37 5718.489±205.87 5673.067±22.65 5566.40±181.46 

EDTA                6032.53±183.99 5825.156±186.40 5056.711±19.17 4389.06±170.30 

Control            6680.44±225.80 

A. flavus ARC-12 

T-20                 1918.81±54.88 2030.79±92.81 1789.37±61.91 1838.58±77.04 

T-40                 2012.04±88.53 2327.07±88.66 2275.79±89.89 1977.35±72.96 

T-60                 2363.92±89.36 2539.54±78.22 2476.02±77.75 2245.44±73.87 

T-80                 2102.34±101.96 2372.60±88.26 2279.37±98.01 2071.98±77.70 

T-x-100            2022.12±77.65 1905.04±64.58 1537.86±58.44 1480.08±54.47 

SDS                  1626.11±59.52 1600.09±58.72 1498.84±50.96 927.96±35.36 

EDTA                1767.69±84.14 1665.13±62.78 1641.93±53.69 1477.15±58.35 

Control            1910.35±62.47 

± refers standard deviation 

 

 

Table-2.11: Optimized conditions for xylanase production S. commune ARC-11 

and A. flavus ARC-12 

Particulars S. commune ARC-11 A. flavus ARC-12 

Cultural parameters 

Carbon source  Rice straw Pearl millet stover 

Incubation time 

(days) 

8 2 

Temperature (°C) 30 30 

pH 7.0 6.0 

Moisture content (%) 70.0 77.5 

Nitrogen source (%) Ammonium sulphate 

(0.08 % N) 

Beef extract (1.2 % 

W/V) 

Surfactant (%) Tween-20 (0.10 % 

w/v) 

Tween-60 (0.10 % 

w/v) 
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Table-2.12: Partial purification of xylanases from S. commune ARC-11 and A. flavus 

ARC-12 

Fungal 

strains 

Steps Volume 

(ml) 

Activity 

(IU/ml) 

Total 

activity 

(IU) 

Protein 

(mg/ml) 

Total 

protein 

(mg) 

Specific 

activity 

(IU/mg) 

Yield 

(%) 

Fold 

purific

ation 

S.commune 

ARC-11  
Crude 

enzyme 
200.0 

1169.60 233920.0 5.09 1018.00 229.78 100 1 

 (NH4)2SO4 

(50-70%) 
17.0 

5760.50 97928.50 9.11 154.90 632.18 41.86 2.75 

A.flavus  

ARC-12 
Crude 

enzyme 
200.0 

224.82 44964.00 2.62 524.00 85.80 100 1 

 (NH4)2SO4 

(50-70%) 
8.5 

2383.52 20259.92 9.74 82.83 244.59 45.05 2.85 

 

 

Table-2.13: Effect of pH on xylanase activity from S. commune ARC-11 

and A. flavus ARC-12 

pH Relative xylanase activity (%) 

 S. commune ARC-11 A. flavus ARC-12 

3.0 29.58±2.16 30.02±2.56 

4.0 58.63±3.80 61.09±3.05 

5.0 100.00±3.26 92.64±3.28 

5.5 88.14±3.48 95.56±3.64 

6.0 84.17±2.65 100.00±3.25 

6.5 64.60±2.77 93.04±2.70 

7.0 55.24±3.52 92.30±2.61 

8.0 26.66±2.18 52.69±2.12 

9.0 24.19±2.09 40.64±2.10 

± refers standard deviation 

 

 

Table-2.14: Effect of temperature on xylanase from S. commune ARC-11 

and A. flavus ARC-12 

Temperature 

(ºC) 

Relative xylanase activity (%) 

S. commune ARC-11 A. flavus ARC-12 

30 47.06±2.82 45.90±2.73 

35 55.41±3.10 51.60±2.26 

40 67.84±2.96 56.59±3.18 

45 82.96±3.38 91.13±2.85 

50 97.05±3.45 100.00±2.64 

55 100.00±3.19 93.58±3.14 

60 71.27±2.94 74.75±2.82 

65 47.25±2.90 59.29±3.55 

70 24.78±2.43 43.62±2.44 

± refers standard deviation 
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Table-2.15: Thermo-stability of xylanases from S. commune ARC-11 and A. flavus 

ARC-12 at optimum pH 

Holding time (min) Relative xylanase activities at different temperature (°C) 

45 50 55 60 

S. commune ARC-11 

0 100.00 100.00 100.00 100.00 

30 100.00 98.72 98.18 85.63 

60 99.47 98.36 97.45 71.94 

90 98.24 96.84 93.73 53.16 

120 96.73 94.35 89.26 38.75 

180 95.28 92.19 84.38 24.29 

A. flavus ARC-12 

0 100.00 100.00 100.00 100.00 

30 99.34 98.78 86.43 77.14 

60 97.72 95.27 72.27 58.33 

90 96.11 90.25 60.56 36.78 

120 94.35 87.66 44.43 24.39 

180 92.56 84.75 38.83 15.54 

 

 

Table-2.16: Effect of metal ions on xylanase activity from S. commune ARC-11 and 

A. flavus ARC-12 

Metal 

ions 

Relative xylanase activity (%) 

S. commune ARC-11 A. flavus ARC-12 

1 mM 10 mM 1 mM 10 mM 

Na
+
 124.91±3.75 124.29±3.52 168.69±3.10 166.03±2.22 

K
+
 115.95±2.90 123.36±3.57 163.66±3.18 162.19±2.10 

Al
+++

 90.98±3.66 62.30±2.88 158.94±2.33 148.84±2.36 

Ca
++

 102.22±3.17 100.56±3.16 154.80±2.45 139.59±3.05 

Cd
++

 59.89±2.98 44.38±2.55 94.09±3.68 46.51±2.68 

Co
++

 95.24±3.50 67.06±2.93 136.93±3.22 133.68±3.47 

Cu
++

 95.86±2.85 63.78±2.84 95.42±3.25 52.73±2.39 

Fe
++

 46.85±2.09 33.31±2.02 94.67±3.15 40.47±3.27 

Hg
++

 0 0 9.16±1.85 0 

Mn
++

 47.34±2.44 43.39±2.19 66.54±2.62 32.50±2.18 

Mg
++

 97.65±3.53 52.90±2.58 115.21±3.40 111.23±3.51 

Ni
++

 96.35±3.77 55.50±2.86 94.09±2.75 88.48±3.35 

Pb
++

 57.91±2.95 55.75±3.05 82.57±3.89 79.62±3.20 

Zn
++

 74.17±3.11 58.84±3.12 161.74±3.25 139.69±3.24 

Control 100±2.42 100±3.44 100±3.14 100±3.26 

± refers standard deviation 
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Figure-2.2: Effect of carbon sources on xylanase production by S. commune ARC-
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Figure-2.3: Effect of carbon sources on xylanase production by A. flavus ARC-12 
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Figure 2.4 Effect of incubation time on xylanase production by S. commune-ARC-

11 

 

Figure-2.5: Effect of incubation time on xylanase production by A. flavus ARC-12 
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Figure-2.6: Effect of temperature on xylanase production by S. commune ARC-11 

 

 

Figure 2.7: Effect of temperature on xylanase production by A. flavus ARC-12 
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Figure-2.8: Effect of initial pH on xylanase production by S. commune ARC-11 

 

 

Figure-2.9: Effect of initial pH on xylanase production by A. flavus ARC-12 
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Figure-2.10: Effect of initial moisture content on xylanase production by S. 

commune ARC-11 

 

Figure-2.11: Effect of initial moisture content on xylanase production by A. 

flavus ARC-12 
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Figure-2.12: Effect of simple nitrogen sources on xylanase production by S. 

commune ARC-11 

 
Figure-2.13: Effect of complex nitrogen sources on xylanase production by S 

commune ARC-11 
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Figure-2.14: Effect of simple nitrogen sources on xylanase production by A. flavus 

ARC-12 

 
Figure-2.15: Effect of complex nitrogen sources on xylanase production by A. 

flavus ARC-12 
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Figure-2.16: Effect of surfactants on xylanase production by S. commune ARC-11 

 

 

Figure-2.17: Effect of surfactants on xylanase production by A. flavus ARC-12 
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Figure-2.18: Effect of initial pH on xylanase production by S. commune ARC-11 

and A. flavus ARC-12 

 

Figure-2.19: Effect of temperature on xylanase production by S. commune ARC-11 

and A. flavus ARC-12 
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Figure-2.20: Effect of metal ions on xylanase activity from S. commune ARC-11  
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Figure-2.21: Effect of metal ions on xylanase activity from A. flavus ARC-12 
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Plate-2.1: Fungal strains- 1=ARC-2, 2=ARC-5, 3=ARC-6, 4=ARC-9, 5=ARC-10, 6=ARC-

16, 7=ARC-11, 8=ARC-12, 9=ARC-22  
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Plate-2.2: 1=bagasse, 2=congress grass, 3=corn cob, 4=maize bran, 5=millet stover, 6= 

sugarcane tops, 7=sabai grass, 8= wheat bran, 9=wheat straw  
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Plate-2.3: Fruiting body of Schizophyllum commune ARC-11: (A) after 3 days, (B) after 9 

days  

 

 

Plate-2.4: SEM images of spores of Aspergillus flavus ARC-12  
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CHAPTER 3 

MORPHOLOGICAL, CHEMICAL AND PULPING 

STUDIES OF EULALIOPSIS BINATA 

3.1:  Introduction 

Paper is a network of cellulosic fibers which may be defined as felted sheet of fibers 

formed on a fine screen from a fiber-water suspension or pulp slurry. Fiber is the basic 

component in paper manufacturing which governs the properties of paper. Morphological 

characteristics of fiber play a decisive role for assessing the suitability of any raw material for 

pulp and paper manufacturing. The most important fiber characteristic is the fibre length which 

controls the strength properties of paper. Fibre length influences the tearing strength positively 

[1, 2]. However, longer fibers tend to give a more open and less uniform sheet structure. Fiber 

diameter and wall thickness governs the fiber flexibility. Paper made from thin walled fibers 

will be dense and well formed. Fiber lumen width affects the beating behavior of pulp [2-5]. 

Except fiber length, the other morphological features of fibres are fibre width, and cell wall 

thickness which vary significantly within the wood species, annual growth rings, different parts 

of stem, and growing conditions of the plant [6]. 

Physical strength properties of paper like tensile strength, bursting strength and folding 

endurance are affected mainly by the way in which individual fibres are bonded together. The 

bonding among fibres largely depends on fibre flexibility and compressibility [1]. Other 

derived morphological factors of importance are flexibility coefficient, rigidity coefficient, 

Runkel ratio, slenderness ratio, wall fraction and Luce’s shape factor. The higher fibre 

flexibility increase the chance of formation of well bonded paper sheet. Likewise, in increase in 

fibre rigidity results in a decrease in fibre bonding. Runkel ratio and fiber to vessel ratio 

influences the basic density of wood [1, 2, 7]. If Runkel raio of fibre is higher, than fibres are 

stiffer, less flexible and forms bulkier paper with lower bonded area. The lower Runkel ratio 

and higher average fibre length results the good strength properties of paper [8, 9]. Runkel ratio 

is also related to paper conformability, pulp yield and fibre density [2]. The influence of fiber 

morphological properties on paper strength is summarized in Table 3.1.  
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Cellulose is the main component of chemical pulp and amount of cellulose in raw 

material directly reflects the variation in pulp yield and economy in pulp production. Paper 

strength also depends on cellulose content of the pulp and, mechanical strength of the pulp 

(especially tensile strength) is directly proportional to the cellulose content [10]. Cellulose is a 

long chain polymer of glucose while hemicelluloses have much lower molecular weight and 

degree of polymerization. During chemical pulping, hemicelluloses dissolve to a large extent 

along with lignin and a substantial quantity of hemicelluloses remains associated with the pulp. 

The content of hemicelluloses in pulp affects the swelling behavior of the pulp fiber [11]. The 

charge on fibre also affects the swelling of fibre. The water molecules bind the hydroxyl groups 

present in cellulose and hemicelluloses [6].   

The need of good quality of fibre compels the paper industry to search other alternative 

fibre. Along with the search of new fibrous raw materials, it is also necessary to develop the 

environmental friendly and cost effective processes for paper making. Pulping is the process 

which converts wood or any other raw material into fibrous mass for paper making by breaking 

the bonds within substrate. The chemical pulping processes includes sulfite, kraft and soda 

pulping processes. Sulfite pulping process was formerly favored but now it is in a steady 

decline due to inferior pulp properties, inability of utilizing all types of wood and non-wood 

materials, and environmental concerns [12-14]. Kraft and soda pulping methods have been 

utilized commonly for the delignification of raw materials and production of pulp for 

papermaking. One major drawback for these pulping methods is lower pulp yield due low 

delignification selectivity [12, 15, 16]. Most of chemical pulp is produced by kraft pulping that 

shows better physical strength properties [12-14, 17]. In contrast, during kraft pulping process 

the total reduced compounds, hydrogen sulphide, and suspended solids creates environmental 

problem [13]. 

Therefore, some modified pulping processes with higher selectivity towards lignin may 

be more useful to obtain the high yield of pulp with better properties. Addition of organic 

solvent to kraft or soda pulping process enhances the selective delignification. Organic solvents 

such as ethanol, methanol, acetone, acetic acid, formic acid, ethylene glycol, ethanolamine etc. 

have been used in organosolve pulping [12, 13, 15]. The addition of solvent to soda liquor may 

be the important alternative to kraft pulping for eliminating the sulfur compounds. The soda 

pulping process is less polluting and more environmental friendly compared to other 
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conventional pulping methods like kraft and sulfite pulping processes. The delignification of 

cellulosic raw materials by soda pulping process causes the degradation of cellulose and 

hemicelluloses. The addition of suitable organic solvent such as ethanol enhances the 

selectivity of liquor towards lignin and protects carbohydrates against degradation which 

improves the pulp yield and strength properties [12, 13, 18, 19]. Sahin [12] studied the ethanol-

soda pulping of jute and reported more selective and rapid delignification of jute, resulting 

marked improvement in pulp yield and strength properties. Martinez and Sanjuan [20] 

compared ethanol–water–soda pulping of chihuahua pine with kraft pulping process and 

reported that the strength properties of organosolv pulps comparable with kraft pulps. Ethanol 

and methanol are the frequently used organic solvents in organosolve pulping process. The 

behavior of ethanol and methanol during the delignification of Eucalyptus globulus shows 

better dissolution of lignin with methanol. However, at high-intensity cooking conditions 

ethanol pulping process produces the pulp with less lignin. The higher screened pulp yield can 

be obtained by the ethanol pulping process limiting the kappa number range between 20-30 

units. Furthermore, the use of methanol may be hazardous due to its highly flammable and 

toxic nature [13, 21, 22]. The higher pulp yield with lower residual lignin, higher brightness 

and better strength properties can be obtained with ethanol-soda pulping process compared to 

soda pulping process [12, 23]. 

Solvents after organosolve pulping are recovered by evaporation and distillation 

methods. Lignin is precipitated after evaporation by decreasing the pH of the liquor and can be 

collected after centrifugation. The recovery system of organosolve pulping process is simpler 

to kraft pulping process [13, 23, 24]. During organosolve pulping, high quality of 

hemicelluloses and lignin degradation by-products are obtained [13, 23].  Lignin is an 

important by-product of pulping and sulfur-free lignin is obtained in organosolve pulping. 

Furthermore, low molecular weight and higher purity of lignin with higher number of reactive 

groups make it suitable for the production of lignin based adhesives and other products [23, 25, 

26].  

Bio-pulping is another approach which has been proved to be environment friendly and 

cost effective method for delignification of cellulosic raw materials. Pretreatment of raw 

material with white-rot fungi prior to pulping is called as bio-pulping. White-rot fungi produce 

the lignin degrading enzymes such as lignin peroxidase, laccase and manganese peroxidase 
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during bio-pulping process. The aim of bio-pulping is to remove or loosen lignin in wood 

matrix without decomposition of cellulose. During bio-pulping, lignin and hemicelluloses are 

removed by the action of different enzymes [27]. White rot fungi such as Ceriporiopsis 

subvermispora, Phanerochates chrysosporium, Phlebiopsis gigantean, Physisporinus 

rivulosus, Trametes versicolor etc. are most suitable for bio-pulping process [12, 27-30]. Bio-

pulping improves the quality of pulp, properties of paper and reduces the energy costs and 

environmental impact compared to other traditional pulping processes [27, 31, 32].  

This chapter was focused to study the anatomical and morphological characteristics of 

Eulaliopsis binata and assessed for its suitability to manufacture pulp for writing and printing 

grades. The effect of various cooking parameters was evaluated in terms of kappa number, 

screened pulp yield and rejects during soda pulping of E. binata. A comparison among soda, 

ethanol-soda and bio-soda pulping of E. binata was also carried out.  

3.2:  Materials and methods 

3.2.1:  Collection of raw material 

Fresh E. binata grass was collected from Behat, Saharanpur district, located in the 

foothills of Shivalik Hills at the end of rainy season (Figure 1). The fresh grass was washed 

with water, chopped into small pieces of 4-6 cm manually. The chopped grass was dried in 

sunlight and stored in polythene bags for further use. 

3.2.2:  Morphological studies of E. binata  

Anatomical and morphological features of E. binata were studied by light and scanning 

electron microscopy. Small slivers were obtained for fibre length determination and macerated 

with 10 ml of 67% HNO3 and boiled on a water bath (100±2 °C) for 10 min. After that, the 

slivers were washed with distilled water and placed in small amount of distilled water. The 

fibre bundles were separated with a small mixer having a plastic end to avoid fibre breaking. 

Cross sections were cut on a Leitz base sledge microtome 1300 for fibre diameter, lumen 

diameter and cell was thickness determination. To enhance the visibility of cell wall, aniline 

sulphate-glycerine mixture (1:1) was used for staining of cross-sections of fibre. A total of 100 

randomly chosen fibres were analyzed under a calibrated microscope. The derived wood 

properties such as flexibility coefficient [(fibre length/fibre diameter)×100], Luce’s shape 

factor [(fibre diameter
2
 - lumen diameter

2
)/(fibre diameter

2
 + lumen diameter

2
)] [33], Runkel 
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ratio [(2×cell wall thickness)/ lumen diameter] [34], rigidity coefficient [2 × cell wall thickness/ 

fibre diameter], slenderness ratio [fibre length/fibre diameter], solid factor [(fibre diameter
2
 - 

lumen diameter
2
) × fibre length] [35] and wall fraction [(2 × cell wall thickness/ fibre diameter) 

×100] were determined using fibre dimensions [2]. 

3.2.3:  Proximate chemical analysis 

For the proximate chemical analysis, E. binata was milled in a Wiley mill (Weverk, A-

47054, Sweden) and the portion passed through ‒40 size mesh and retained on +80 size mesh 

was used for proximate analysis. The powdered fractions were subjected to water solubility 

(TAPPI T 207 cm-99), 1% caustic soda solubility (TAPPI T 212 om-98), and alcohol-benzene 

solubility (TAPPI T 204 cm-97). Extractives were removed from E. binata using Soxhlet 

apparatus and mixture of ethanol-benzene (1:2 v/v) before compositional analysis as per TAPPI 

test method (TAPPI T 264 cm-97). Extractive free sample of E. binata air-dried and subjected 

to chemical composition analysis such as: ash (TAPPI T 211 om-93 “Ash in wood”), α-

cellulose (TAPPI T 203 cm-99 “α-, β- and γ-cellulose in pulp), holocellulose (TAPPI T 249 

cm-00 “Holocellulose in wood”), lignin (TAPPI T 222 om-02 “Lignin in wood”), pentosan 

(TAPPI T 223 cm-01) as per TAPPI Standard Test Methods 2007 [36].   

3.2.4:  Pulping studies  

The cooking of chopped E. binata was performed in an electronically heated WEVERK 

rotary digester of 0.02 m
3 

capacity having four bombs of one liter capacity each. During soda 

pulping of E. binata, alkali dose was varied from 8 to 12% (as Na2O) while keeping other 

variables constant as mentioned in Table 3.3. Similarly, the maximum cooking temperature 

was varied from 120 to 160 °C with an interval of 10 °C while keeping other conditions 

constant as shown in Table 3.4. The cooking time was varied from 60 to 210 min with an 

interval of 30 min keeping other conditions constant as in Table 3.5. The biomass to moisture 

ratio was varied from 1:1 to 1:5 at optimized cooking conditions. After optimizing the 

parameters associated with soda pulping, the effect of ethanol to soda pulping process at 

concentration ranging from 20 to 35% (w/v) was also tested. 

Biological pretreatment of E. binata was carried out with a white-rot fungus 

Schizophyllum commune ARC-12. During fungal pretreatment, initial moisture content of was 

adjusted to 70% and incubated at 30 °C for 12 days. After pretreatment, the pulping of E. 
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binata was carried out at optimum cooking conditions.  After completion of E. binata 

digestion, residual cooking chemicals were removed by washing with tap water on a laboratory 

flat stationary screen of 300 size mesh. The washed pulp was disintegrated and screened in a 

laboratory Weverk vibratory flat screen having a slot size of 0.15 mm. The screened pulp was 

washed with tap water, pressed, crumbled and air-dried. All the pulp samples were evaluated 

for screened pulp yield, rejects and kappa number (TAPPI T 236 cm-85 “Kappa number of 

pulp”) according to TAPPI Test Standards 2007 [36]. Reducing sugars in black liquor were 

determined as per DNS method (Miller 1959) [37]. 

3.2.5:  Pulp beating, laboratory handsheets preparation and testing 

Unbleached pulp samples were beaten in a PFI mill (TAPPI T 248 sp-00 “Laboratory 

beating of pulp”) at fixed beating level of 35 °SR. Laboratory handsheets of 60 g/m
2 

were 

prepared using British sheet former (TAPPI T 205 sp-2 “Forming handsheets for physical tests 

of pulp”). The handsheets were preconditioned at a temperature of 27±2 °C and relative 

humidity of 65±2% and evaluated for physical strength properties such as burst index (TAPPI 

T-403 om-02 “Bursting strength of paper”), tensile index (TAPPI T-404 wd-03 “Tensile 

breaking strength and elongation of paper and paperboard”), double fold (TAPPI T-423 cm-98 

“Folding endurance of paper”) and tear index (TAPPI T 414 om-04 “Internal tearing resistance 

of paper”). Thick pads of 4±0.2 g were prepared (TAPPI T 218 sp-02 “Forming handsheets for 

reflectance testing of pulp” (Büchner funnel procedure)) of unbleached soda, ethanol soda and 

bio-soda pulps for brightness determination according to TAPPI Test Standard TAPPI T 452 

om-02 (Brightness of pulp, paper, and paperboard (directional reflectance at 457 nm)). All the 

pulps were also tested for viscosity according to TAPPI Test standards (TAPPI T 230 om-04 

“Viscosity of pulp (capillary viscometer method)) [36].  

3.2.6:  FE-SEM analysis 

FE-SEM analysis was carried out to study the anatomical features of E. binata. 

Morphological studies of soda, ethanol-soda and bio-soda pulps were carried out by FE-SEM 

(Leo 435 VP, England). The cross-sections of E. binata grass were subjected to fixation by 

using 3% glutaraldehyde (v/v) and 2% formaldehyde (4:1) for 6 h. The samples were washed 

thrice with distilled water after primary fixation and treated with ethanol gradients of 30-90 

with a difference of 10% and absolute ethyl alcohol (99.9%) for dehydration. The samples were 
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kept for 15 min in 30 to 90% ethanol and for 30 min in absolute ethyl alcohol. After 

dehydration, samples were air-dried and examined under FE-SEM. Before injecting the sample 

in a sample chamber, samples were coated with gold by a standard sputtering technique for 30 

s. Electron photomicrographs were taken at suitable voltage and magnifications. 

3.2.7:  XRD analysis of pulp samples 

XRD analysis was carried out to determine the crystallinities of soda, ethanol-soda and 

bio-soda pulps by a Ultima IV Rigaku X-Ray Diffractometer using Cu Kα radiation (λ=1.5405 

Å) at 40 kV and 40 mA. Samples were scanned at angle 2θ ranging from 5 to 60º with a speed 

of 2º/ min
-1

 and a step size of 0.02º. Crystallinity index was calculated as a ratio between the 

area of the crystalline contribution and total area by using XRD amorphous subtraction method 

[38] 

3.2.8:  Statistical analysis 

All the experiments were carried out in triplicate and experimental results were 

represented as the mean ± standard deviation of values. 

3.3:  Results and discussion 

3.3.1:  Morphological studies of E. binata 

The role of morphological characteristics and their derived values such as flexibility 

coefficient, slenderness ratio, rigidity coefficient, wall fraction, Runkel ratio and Luce’s shape 

factor of E. binata [2, 3] and reported in Table 3.1. Fibre length for E. binata was 2.20 mm 

which was higher compared to other grasses such as bamboo (1.91 mm), lemon grass (1.09 

mm) and sofia grass (0.87 mm). Fibre diameter for E. binata (10.85 µm) was less than bamboo 

(16.8 µm), lemon grass (16.3 µm) and sofia grass (14.7 µm) respectively. A higher fibre length 

showed higher tearing strength of paper [2, 8].  The fibre diameter and cell wall thickness 

controlled the fibre flexibility. The thickness of cell wall affects most of the paper properties 

such as tensile strength, burst strength and folding endurance. The paper made of thick-walled 

fibres has low tensile strength, burst strength and folding endurance. The laboratory handsheets 

would be bulky, coarse-surfaced and had higher void volume. Paper formed by thin-walled 

fibre would be dense, and well formed [2, 8]. E. binata showed higher slenderness ratio 

(202.76) compared to bamboo (114), lemon grass (66.9) and sofia grass (59.2). Slenderness 

ratio (fibre length/fibre diameter) affects the paper properties positively. Generally, it is 
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considered that if the slenderness ratio for the fibre is less than 70 than pulp would have poor 

strength [8, 9]. Lumen diameter for E. binata fibre was 5.86 µm which was less than lemon 

grass (6.73 µm) and higher than sofia grass (5.07 µm) and bamboo (3.31 µm). Lumen diameter 

is an important parameter during pulp beating; a higher lumen diameter facilitates the 

penetration of liquid during pulp beating [2]. The Runkel ratio of E. binata (1.41) was less than 

bamboo (4.08), lemon (1.45) and sofia grasses (1.52). If Runkel ratio of fibre is higher, than 

fibres are stiffer, less flexible and forms bulkier paper with lower bonded area. The lower 

Runkel ratio and higher average fibre length results the good strength properties of paper [8, 9]. 

Runkel ratio was also related to paper conformability, pulp yield and fibre density [2]. Luce’s 

shape factor of E. binata (0.54) was less than lemon grass (0.71) and sofia grass (0.79). Luce’s 

shape factor and solid factor are related to paper sheet density and could be significantly 

correlated to breaking length of paper [39]. Solid factor of E. binata was 183.45 less than 

lemon (240.24) and higher than sofia grass (165.63). Burst strength and breaking length are 

determined by collapsibility of fibres to double walled ribbons on pressing. Thick walled, 

narrow lumen and higher fibre length is attributed to maximum solid factor. 

3.3.2:  Proximate chemical analysis of E. binata 

Cold water solubility of E. binata is more than bamboo and less than lemon and sofia 

grasses while hot water solubility for E. binata is higher than bamboo and sofia grass and lower 

than lemon grass. The cold water treatment removes a part of extraneous components like 

tannins, gums, sugars, inorganic matter and colored compounds present in lignocellulosic 

biomass whereas hot water treatment removes, in addition, starches. The higher water 

solubility adversely affects the pulp yield [3].  Ethanol-benzene solubility of E. binata was 

3.9% compared to bamboo (2.3%), lemon grass (4.3%) and sofia grass (5.9%). Ethanol-

benzene extractives include waxes, fats, resins, low-molecular weight carbohydrates, photo-

sterols, non-volatile hydrocarbons, salts and other water-soluble substances. Ethanol-benzene 

extractable content precipitates and adversely affects the runnability of process equipment due 

to blocking of openings in Fourdrinier wire. It also affects the quality of paper because of 

shadow marking and paper manufactured from such type of fibrous material might show 

reduced water absorbency [3]. 1% NaOH solubility of E. binata (38%) was higher compared to 

bamboo (24.7%), lemon grass (30.6%) and sofia grass (28.2%) while it was lower compared to 

rice straw (57.7%), and sunflower stalks (50.4%) [40, 41]. The higher NaOH solubility of E. 
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binata was possibility due to the presence of low molar mass of carbohydrates and other alkali 

soluble materials. Holocellulose and α-cellulose contents were 73.1% and 46.0% in E. binata 

which were comparable to bamboo, lemon grass and sofia grass (Table 3.2). Lignocellulosic 

materials with 34% or higher cellulose content are regarded as pulp and paper production from 

a chemical composition point of view [42, 43]. Holocellulose and α-cellulose contents in plant 

biomass positively influence the yield of pulp during chemical pulping methods. The cellulose 

content of cellulosic raw materials also determines physical strength properties of paper. [43]. 

Lignin content of E. binata was 21.2% compared to bamboo (24.7%), lemon grass (17.4%) and 

sofia grass (17.0%). Lignin is undesirable polymer for paper production and the removal of 

lignin during pulping requires the high amount of energy and chemicals. Lower lignin content 

of raw materials makes them suitable for delignification at milder pulping conditions (lower 

temperatures and chemical charges) to reach a desirable kappa number [43, 44]. Ash content of 

E. binata was found lower compared to lemon grass and higher than bamboo and sofia grass. 

The mineral components of lignocellulosic biomass represented as ash content. Higher ash 

content is undesirable during refining and recovery of cooking liquor. It is well established that 

transition metals such as Mn, Fe and Cu negatively affects pulp bleachability (hydrogen 

peroxide and oxygen) and bleaching selectivity [8, 44]. 

3.3.3:  Effect of cooking parameters on pulp yield, rejects and kappa number 

Morphological characteristics and proximate chemical analysis of E. binata indicated 

that, the raw material has the potential to produce good quality of pulp with low active alkali 

and milder cooking conditions. Lower lignin content and higher 1% NaOH solubility of the 

material indicated that low active alkali may results satisfactory separation of cell wall to 

produce the pulp of acceptable quality. FE-SEM analysis of E. binata revealed the loose and 

open anatomy of substrate which facilitates penetration the cooking liquor throughout the raw 

material (Figure 3.2). 

Soda pulping of E. binata was carried out using 8 to 16% of active alkali (as Na2O) 

while keeping other conditions constant like pulping temperature, pulping time and bath ratio. 

The screened pulp yield increased up to 12% of active alkali (as Na2O) and declined thereafter. 

Maximum screened pulp yield (40.21%) of kappa number 17.25 was obtained at an alkali dose 

of 12% (as Na2O) (Figure 3.3). Kappa number and screening rejects declined sharply up to 

12% of active alkali charge and became almost constant thereafter. 12% of active alkali was 
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found optimum for the delignification of E. binata (Table 3.3). Active alkali is one of the major 

factors which affect the degree of delignification and breaking down of carbohydrates 

significantly in the process of soda pulping. Another set of experiments showed that E. binata 

produced screened pulp yield of kappa number and screening rejects by 36.76%, 23.23 and 

6.34% respectively at a pulping temperature of 120 °C (Table 3.4). Further, increase in 

temperature from 120 to 130 °C, screening rejects reduced to 0.9% and screened pulp yield 

improved to 41.12% (Figure 3.4). Beyond a cooking temperature of 130 °C, screened pulp 

yield decreased while delignification increased slightly. The temperature of 130 °C was found 

optimum to produce maximum pulp yield with acceptable kappa number. The dissolution of 

lignin and cellulose accelerated by increasing the temperature [18]. Figure 3.5 shows the effect 

of cooking time on delignification of E. binata during soda pulping, while keeping other 

variables constant. The maximum screened pulp yield (42.36%) with kappa number (17.27) 

was obtained at cooking time of 120 min and further increase in cooking time decreased the 

screened pulp yield significantly while change in kappa number was insignificant (Table 3.5). 

Therefore, an optimum cooking time for soda pulping of E. binata was 120 min. The increase 

in solid to liquor ratio 1:1 to 1:4 at optimum pulping conditions improved the screened pulp 

yield from 38.57 to 43.58% while kappa number dropped from 24.74 to 17.38 units. Further 

increase in solid to liquor ratio adversely affected the screened pulp yield (Figure 3.6). Finally, 

it was concluded that maximum pulp yield (43.58%) of kappa number 17.38 with 0.9% 

screening rejects was obtained at 12% of active alkali (as Na2O) pulping temperature 140 °C, 

cooking time 120 min and solid to liquor ratio 1:4 (Table 3.6). Kaur et al. [45] studied the soda 

pulping of Sofia and lemon grass reported a maximum pulp yield of 43.5% during soda pulping 

of Sofia grass with 14% active alkali (as Na2O) at pulping temperature 160 °C and pulping time 

90 min. Likewise, a maximum pulp yield of 41.4% was obtained during soda pulping of lemon 

grass at the similar conditions except temperature (150 °C). 

3.3.4:  Ethanol-soda and bio-soda pulping of E. binata  

E. binata was delignified by ethanol-soda and bio-soda pulping processes and compared 

with soda pulping process in terms of screened pulp yield, kappa number, brightness and 

physical strength properties. Ethanol was mixed with soda liquor varying the doses from 20 to 

35 % (v/w) with a gap of 5% and delignified as per optimum conditions maintained during 

soda pulping of E. binata. The maximum pulp yield of 47.48% with a kappa number of 16.13 
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was obtained using 30% ethanol during soda pulping. The pulp yield was improved by 3.9 and 

4.72% compared to soda and bio-soda pulping processes respectively while kappa number 

reduced by 1.25 units compared to soda pulping process and bio-soda pulping process did not 

show any significant reduction in kappa number (Table 3.7). It is well established that cleavage 

of α-O-4 and β-O-4 linkages in the lignin is necessary for lignin dissolution during pulping. 

After cleaving of these linkages, lower molecular weight and solvent soluble fragments of 

lignin are formed. Addition of ethanol to soda cooking liquor may cause improvement in the 

solubility of lignin in the liquor. Depolymerized lignin fragments that are larger than pore size 

of substrate cell wall solubilized in cooking liquor and removal occurred through cell wall [12, 

15]. Hilder-brand’s solubility of the solvent is an important parameter for the polymer 

solubility. A solvent should have the solubility parameter close to 11 (as much as possible) for 

higher solubility of lignin and the solubility parameter of ethanol is 12.7 whereas solubility 

parameter for water is 23.4 [15, 46, 47]. Soda pulping showed the higher yield losses due to 

degradation of carbohydrates and less selective delignification. On the other hand,  addition of 

ethanol to soda liquor improved the selective delignification [12, 15]. The addition of ethanol 

to soda liquor reduced the dissolving power of liquor which protected the cellulosic fibre 

against degradation, thereby improving the pulp yield [12, 18, 23]. Several researchers have 

reported improvement in pulp yield up to 10% by ethanol-soda pulping compared to soda 

pulping [12, 18, 48]. The amount of reducing sugars released in black liquor during soda 

pulping (2.27 mg/ml) was higher compared to 1.92 and 1.62 mg/ml for bio-soda and ethanol-

soda pulping of E. binata respectively. Crystallinity index of ethanol-soda was 46.21% 

compared to 43.39 and 42.54% for soda and bio-soda pulps respectively (Figure 3.8). During 

soda pulping cellulose and hemicelluloses undergoes peeling reactions in which single 

monosaccharide units sequentially are removed from the reducing end of carbohydrate chain. 

The higher crystallinity index in ethanol-soda pulping can be due to the fact that ethanol 

protects the carbohydrates against reactions during cooking processes and recrystallization of 

amorphous glucan occurred concurrently during pulping [12, 48]. The results of viscosity also 

validated the increased pulp yield during ethanol-soda pulping of E. binata. Ethanol-soda pulp 

showed maximum pulp viscosity (29.22 cps) compared to 23.16 and 21.54 cps for bio-soda and 

soda pulps respectively (Table 3.8). Similar findings were also reported by Akgul et al. [49], 

who observed 14.4 and 17% increase in viscosity during with the addition of 40 and 50% of 

ethanol to soda pulping of cotton stalk compared to soda pulping. Pulp yield of ethanol-soda of 
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cotton stalk was also increased by 13.5 and 14% with the addition of 40 and 50% of ethanol to 

soda pulping [49]. Gumuskaya et al. [48] reported an increase of 9.85% in pulp yield and 

during ethanol-soda pulping of cotton linters at 160 °C compared to soda pulping at the same 

cooking conditions. Higher pulp viscosity of ethanol pulp with higher pulp yield was also 

reported by Sridach [13].  

Pulp brightness (ISO) after ethanol-soda and bio-soda pulping of E. binata was 

improved by 6.6 and 4.1% respectively compared to soda pulping. The improvement in pulp 

brightness was due to selective removal of lignin fragments during ethanol-soda and bio-soda 

pulping processes. A comparison among physical strength properties were done for all the three 

types of pulps at a fixed beating level of 35±1 °SR. An improvement in physical strength 

properties was observed in case of ethanol-soda and bio-soda compared to soda pulping. 

Addition of 30% ethanol during soda pulping of E. binata, improved the pulp brightness by 

6.6%, tensile index 32.18%, burst index 35.40% and double fold numbers 77.31% compared to 

soda pulping (Table 3.9). On contrary to this, tear index of ethanol-soda pulp decreased by 

9.95% compared to soda pulp. Similarly, bio-soda pulp showed an improvement in tensile 

index, burst index and double fold numbers by 24.94, 48.45 and 14.03% respectively compared 

to soda pulp. Following the same pattern, tear index of bio-soda pulp decreased by 12.86% 

compared to soda pulping. SEM analysis showed higher bonding among the fibres of ethanol-

soda and bio-soda pulps compared to soda pulp (Figure 3.7). The bonding of fibres is an 

important factor for paper properties. The bonding among fibres depends on hydrophilic nature 

of fibre surface, and consequently on hydrogen bond formation ability of fibres. The presence 

of hemicelluloses favors the hydrogen bond formation ability and bonding of fibres which in 

turn improves the paper properties. The hydrophobic nature of lignin in fibre may directly 

affect the properties of paper. During delignification by soda pulping, lignin condensation and 

precipitation on fibre surface occurs which may affect the hydrogen bonding of fibres. 

Moreover, pulps with higher lignin content show slow beating and poor inter-fibre bonding 

which results into low sheet density and inferior strength properties [12, 50, 51]. In ethanol-

soda pulping, the selective lignin removal and retention of hemicelluloses and less degradation 

of cellulose chains resulted into superior physical strength properties of paper. The fibre 

strength and degree of bonding between fibres govern the tensile strength of paper. Tear 

strength depends upon fibre length as well as on fibre boding.  The tear strength starts to 
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decline due to an increase in bonding strength beyond a certain level [2, 12, 50, 51]. The 

necessary work that has to be done to pull the fibers loose depends on the length of the fibers as 

well as the bond strength. At higher levels of beating the inter fiber bond strength will be 

higher and fibers start to break instead of being pulled out intact. It takes less work to break a 

fiber than to pull it out (at least for long fibers) and the tear strength goes through a maximum 

as bond strength increases.  The higher strength properties for ethanol-soda pulp compared to 

soda pulp have been reported by various researchers [12, 13].   Sahin [12] observed 34.88 and 

11.84% improvement in burst and tensile strength after ethanol-soda pulping of jute compared 

to soda pulping. Akgul and Tozluolu  [49] reported, 56.52 and 44.71% enhancement in burst 

and tensile index of ethanol-soda pulp respectively (40% ethanol and 18% NaOH) compared to 

soda pulp delignified at 18% active alkali and at a fixed beaten time of  one min.  
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Table-3.1: Morphological characteristics of E. binata 

Particulars E. 

binata 

Bamboo 

[3] 

Lemon 

grass [2] 

Sofia 

grass [2] 

Fibre length, (L) mm 2.20 1.91 1.09±0.43 0.87 

Fibre width, (D) µm 10.85 16.8 16.3±1.6 14.7 

Lumen diameter (d), µm 5.86 3.31 6.73±0.4 5.07 

Cell wall thickness (w), µm 4.14 6.75 4.62±0.2 3.86 

Flexibility coefficient [(d/D)×100] 54.00 19.70 31.1 30.0 

Slenderness ratio (L/D) 202.76 114 66.9 59.2 

Rigidity coefficient (2w/D) 0.76 0.80 0.57 0.53 

Wall fraction (2w/D) ×100 76 80 57 53 

Runkel ratio (2w/d) 1.41 4.08 1.45 1.52 

Luce’s shape factor [(D
2
-

d
2
)/(D

2
+d

2
)] 

0.54 0.92 0.71 0.79 

Solid factor (D
2
-d

2
)×L 183.45 - 240.24 165.63 

 

 

                         

 

 Table-3.2: Proximate chemical analysis of Eulaliopsis binata 

S. 

No. 

Particulars (%) E. 

binata 

Bamboo 

[3] 

Lemon 

grass [2] 

Sofia 

grass [2] 

1 Cold water solubility 5.8 3.7 10.9 8.6 

2 Hot water solubility 9.3 6.7 12.1 7.4 

3 NaOH solubility 38.0 24.7 30.6 28.2 

4 Ethanol-benzene 

solubility 

3.9   2.3 4.3 5.9 

5 *Holocellulose  73.1 73.8 72.1 72.2 

6 *α-Cellulose 46.0 45.1 44.2 45.6 

7 *Pentosan 21.4 16.0 25.6 21.9 

8 *
ӝ
Lignin 21.2 24.7 17.4 17.0 

9 Ash content 6.1 2.6 7.05 5.1 

            Note: *Extractive free basis, 
ӝ 

Corrected for ash 
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Table-3.3: Effect of alkali dose on pulp yield, kappa number and rejects 

Alkali dose 

(%) 

Unscreened 

pulp yield 

Screened pulp yield 

(%) 

Kappa no. Rejects (%) 

8 44.72 36.42±1.14 37.52±1.78 8.30±0.18 

10 43.39 38.50±1.06 24.90±1.02 4.89±0.12 

12 40.96 40.21±0.82 17.25±0.51 0.75±0.08 

14 37.75 37.23±0.96 14.20±0.73 0.52±0.06 

16 35.45 35.04±0.85 12.14±0.52 0.41±0.07 

Pulping conditions: 

Time from ambient temperature to 105 
0
C   = 45 min 

Time from 105 
0
C to 150 

0
C                         = 45 min 

Time at 150 
0
C                                              = 150 min 

Bath ratio                                                      = 1:5 

Temperature                                                 = 150 °C 

Alkali dose                                                   = Varied (8-12%, as Na2O) 

 

 

 

 

Table-3.4: Effect of temperature on pulp yield, kappa number and rejects 

Temperature 

(°C) 

Unscreened 

pulp yield 

Screened pulp 

yield (%) 

Kappa no. Rejects (%) 

110  

120 43.10 36.76±1.16 23.23±0.31 6.34±0.13 

130 42.00 41.12±0.56 17.91±0.58 0.88±0.04 

140 41.50 40.74±0.58 17.56±0.41 0.76±0.03 

150 40.82 40.10±0.82 17.33±0.36 0.72±0.02 

160 39.50 38.85±0.52 16.12±0.48 0.65±0.02 

Pulping conditions: 

Time from ambient temperature to 105 
°
C   = 45 min 

Time from 105 
0
C to 135 

0
C                         = 35 min 

Time at 130 
0
C                                              = 150 min 

Bath ratio                                                       = 1:5 

Temperature                                                  = Varied (110-150 °C) 

Alkali dose                                                    = 12% (as Na2O) 
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Table-3.5: Effect of cooking time on pulp yield, kappa number and rejects 

Cooking 

time (min) 

Unscreened 

pulp yield (%) 

Screened pulp 

yield (%) 

Kappa no. Rejects (%) 

60 44.49 39.17±1.24 26.52±1.34 5.32±0.18 

90 43.59 41.14±0.75 19.16±0.79 2.45±0.10 

120 43.18 42.36±0.94 17.27±0.50 0.82±0.04 

150 41.68 41.25±1.04 17.14±0.33 0.43±0.02 

180 37.90 37.66±0.96 16.23±0.73 0.24±0.01 

210 35.55 35.32±0.53 15.55±0.40 0.23±0.01 

Pulping conditions: 

Time from ambient temperature to 105 
0
C   = 45 min 

Time from 105 
0
C to 135 

0
C                         = 35 min 

Time at 130 
0
C                                              = Varied (60-210 min) 

Bath ratio                                                       = 1:5 

Temperature                                                  = 130 °C 

Alkali dose                                                    = 12% (as Na2O) 

 

 

 

 

Table-3.6: Effect of moisture content on pulp yield, kappa number and rejects 

Solid to 

liquor ratio 

Unscreened 

pulp yield (%) 

Screened pulp 

yield (%) 

Kappa no. Rejects (%) 

1:1 44.46 38.57±0.56 24.74±0.77 5.89±0.16 

1:2 44.12 41.15±1.16 21.33±0.65 2.97±0.08 

1:3 44.19 42.27±0.72 19.55±0.52 1.92±0.04 

1:4 44.46 43.58±0.60 17.38±0.45 0.88±0.03 

1:5 42.96 42.25±0.48 16.94±0.48 0.71±0.03 

Pulping conditions: 

Time from ambient temperature to 105 
0
C   = 45 min 

Time from 105 
0
C to 135 

0
C                         = 35 min 

Time at 130 
0
C                                              = 120 min 

Bath ratio                                                       = Varied (1:1 to 1.5) 

Temperature                                                  = 130 °C 

Alkali dose                                                    = 12% (as Na2O) 
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Table-3.7: Comparison of soda, ethanol-soda and bio-soda pulping of E. binata 

Alkali dose 

(%) 

Addition of 

ethanol (%) 

Screened pulp 

yield (%) 

Kappa no. Rejects (%) 

Ethanol-soda pulping 

12 20 43.02±0.83 17.52±0.45 0.82±0.03 

12 25 44.50±0.86 16.68±0.39 0.79±0.03 

12 30 47.48±0.72 16.13±0.34 0.65±0.02 

12 35 45.66±0.62 15.84±0.25 0.53±0.01 

Bio-soda pulping 

12 ─ 42.76±0.57 16.12±0.54 0.75±0.02 

Soda pulping 

12 ─ 43.58±0.75 17.38±0.40 0.88±0.04 

 

 

 

Table-3.8: Comparison of crystallinity index and viscosity of pulp after soda pulping, 

organosolve pulping and bio-pulping 

Types of 

pulping 

Kappa 

number 

Yield* 

(%) 

Crystallinity 

index (%) 

Pulp 

viscosity 

(cps) 

Reducing 

sugars (mg/ml 

of black liquor) 

Soda 17.38±0.37 43.58±0.76 43.39±0.42 21.54±0.19 2.27±0.07 

Bio-soda 16.12±0.40 42.76±0.68 42.30±0.54 23.16±0.21 1.94±0.05 

Ethanol-soda 16.13±0.33 47.48±0.72 46.21±0.47 28.22±0.28 1.62±0.03 

         *Oven dry basis 

 

 

 

Table-3.9: Comparison of brightness and strength properties after soda, ethanol-soda and 

bio-soda pulping of E. binata 

Alkali 

dose 

(%) 

Addition 

of ethanol 

(%) 

Brightness 

(%) ISO 

Tensile 

index 

(Nm/g) 

Double 

fold 

(Numbers) 

Burst 

index 

(kPam
2
/g) 

Tear 

index 

(mNm
2
/g) 

Ethanol-soda pulping 

12 20 41.3±0.3 68.56±2.14 293±4 6.53±0.17 12.41±.27 

12 25 43.2±0.2 85.56±2.18 326±6 6.86±0.16 11.76±0.23 

12 30 43.9±0.4 89.24±2.25 344±7 8.49±0.15 11.76±0.19 

12 35 43.9±0.4 81.62±1.94 302±5 7.18±0.18 10.38±0.18 

Bio-soda pulping 

12 ─ 41.4±0.3 84.35±1.96 288±4 7.15±0.13 11.38±0.20 

Soda pulping 

12 ─ 37.3±0.5 67.51±2.07 194±3 6.27±0.14 13.06±0.22 

Note: All the pulps were beaten at 35±1 
°
SR, +/- refers standard deviation, +/- shows      

percentage variations at optimum conditions 
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Figure-3.1: Showing the image of E. binata 

 

 

Figure-3.2: SEM image of transverse section of E. binata, (A) at 100 magnification, (B) at 

500 magnification  
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Figure-3.3: Effect of active alkali charge on screened pulp yield and kappa number 

 

 

 
Figure-3.4: Effect of pulping temperature on screened pulp yield and kappa number 
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Figure3.5: Effect of cooking time on screened pulp yield and kappa number 

 

 
 

 

Figure-3.6: Effect of moisture ratio on screened pulp yield and kappa number 
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Figure-3.7: SEM image of (A) soda pulps and (B) bio-soda pulp (C) ethanol-soda pulp 
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CHAPTER 4 

BLEACHING STUDIES OF ETHANOL-SODA PULP OF  

E. BINATA 

4.1:  Introduction 

The fibrous material obtained after pulping, consisting mainly of cellulose, is defined as 

pulp. Cellulose and hemicelluloses are inherently white and do not contribute towards colour. 

The colour of pulp is mainly contributed by chromophoric groups present in lignin. Although, 

most of lignin is removed during bulk delignification phase of chemical pulping processes and 

remainder lignin associated with secondary wall layers of the fibers (residual lignin) is 

removed during multi-stages bleaching sequences. The complete removal of residual lignin 

from pulp is carried out by using different oxidative agents for manufacturing of white varieties 

of paper [1, 2].  In general, the paper used for wrapping and packaging purposes and certain 

varieties of absorbent grades need not bleaching because optical properties are less important. 

The chemicals generally used for bleaching include oxidants like chlorine, chlorine dioxide, 

sodium hypochlorite, hydrogen peroxide, oxygen and ozone and alkali (sodium hydroxide) is 

used as in extraction stage of pulp. Sodium hydrosulfite (sodium dithionite), a reducing agent 

have been used in the brightening of mechanical pulps [1, 3, 4] i.e. conversion of chromophoric 

groups into leucochromophoric groups. The effectiveness of a reaction is measured in terms of 

pulp brightness, residual lignin content and residual chemical. To achieve sufficient removal of 

lignin by the use of any one of the chemicals in a single stage is not feasible. Therefore, bleach 

chemicals are used consecutively with intermediate washing steps in between the stages for 

primary objective of obtaining highest brightness. The secondary objectives are high brightness 

stability and high cellulose content and these objectives must be met without any significant 

loss in strength properties [3].  

Elemental chlorine free (ECF) and total chlorine free (TCF) bleaching have brought 

about a major technological revolution in the pulp and paper industry which has led to the 

production of environmentally benign paper and mitigation of environmental emissions [1, 5]. 

Chlorine dioxide is the most widely used chemical to replace the chlorine in bleach plant. In 

ECF bleaching, Cl2 is replaced with ClO2 which reduces the formation and discharge of 
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chlorinated organic materials into the aquatic environment [6]. ClO2 is 2.5 times more powerful 

oxidizer compared to Cl2, and that it preserves cellulose and attacks on lignin more selectively. 

Therefore, pulp produced by ClO2 bleaching is brighter and stronger than that produced by Cl2 

bleaching itself [7]. By substituting chlorine dioxide at levels of 70 to 100%, an apparent 

decrease of 80 to 90% in the level of chlorinated organic was found in mill effluent along with 

the reduction in dioxins to "non-detect” levels [7]. The first chlorine dioxide and alkaline 

extraction stages together account approximately 90% of lignin removal [6].  

In TCF bleaching, oxygen, ozone and hydrogen peroxide appear to be advantageous 

from environmental point of view related to traditional chlorine free bleaching. Oxygen 

delignification stage is used after pulping and washing to remove additional lignin before 

bleaching. In oxygen delignification, molecular oxygen reacts with pulp in alkaline conditions  

and allows extended delignification of chemical pulp without a serious loss in pulp yield and 

with positive environmental impacts in presence of Epsom salt (MgSO4), which is a 

carbohydrate stabilizer [6, 8, 9]. Oxygen delignification stage before bleaching reduces the 

amount of bleaching chemicals and the NaOH required during the first extraction stage. It also 

protects the pulp against degradation [10, 11], because an effort in greater reduction in kappa 

number is expected to lead to degradation of carbohydrates in the pulp and loss of pulp strength 

[12]. Oxygen delignification results higher brightness with equivalent amount of chemicals, 

lower rejects and lower water consumption and subsequent effluent discharge due to the greater 

recycling potential of oxygen stage effluents [13]. The drawback of oxygen delignification is 

that its effectiveness is limited to 50% of delignification. Beyond this level, severe degradation 

of cellulose occurs, causing deterioration of pulp viscosity and physical strength properties [3, 

13-15]. 

Hydrogen peroxide (H2O2) is well known for bleaching of high lignin wood pulp and it 

reacts with lignin under alkaline conditions. Hydroperoxide anion (HOO
─
) is the active species 

which is formed in alkaline conditions and is responsible for bleaching action of hydrogen 

peroxide.  Hydroperoxide anion reacts with coloured ethylenic or carbonyl-containing 

structures in lignin [16, 17]. 

H2O2 + HO
─ 

↔ HOO
─   

+ H2O 

Where pKa = 11.6 at 25 °C 
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Hydrogen peroxide has a major role in ECF and TCF bleaching approaches of chemical 

and mechanical pulps [18-20], being used both as an alkaline bleaching stage and as 

reinforcement for alkaline extraction. H2O2 acts as a true bleaching agent. Compared with 

oxygen delignification, H2O2 delignification appears to provide better color reduction because 

of its specific action on chromophores [3]. Meeting the tough environmental demands of Best 

Available Technology (BAT), set up by the European commission seems to be quite possible 

through these modern bleaching sequences of ECF and TCF [21]. Hydrogen peroxide activity 

is adversely affected by presence of transition metals therefore, a chelating agent is required to 

use before P-stage [22]. 

Enzymatic bleaching can be a simple and economic alternative for cleaner pulp 

production [23]. The pretreatment of pulp with xylanase is known as “prebleaching” or “bleach 

boosting” since, it improves the penetration of bleaching chemicals by breaking the xylan 

network, which help in removing the trapped lignin from pulp fibre rather than removing lignin 

directly or attacking the lignin-based chromophores [23, 24]. Use of xylanase in bleaching is 

cost effective alternative for paper industry which offers various benefits in bleaching. 

Xylanase bleaching can significantly improves the final pulp brightness of bleached pulp along 

with reduction in bleaching cost, when it is used with ozone and hydrogen peroxide (total 

chlorine free bleaching) [23, 25]. Xylanase is very effective in decreasing the bleaching 

chemicals like chlorine or chlorine dioxide which can also lower the AOX in effluent discharge 

up to 25% [23, 26-28]. 

The present study aims at using crude enzyme preparations from Aspergillus flavus 

ARC-12 and Schizophyllum commune ARC-11 in pre-bleaching of ethanol-soda pulp of E. 

binata and to study its effect on conventional, ECF, and TCF bleaching sequences in terms of 

pulp brightness, viscosity, physical strength properties and pollution load. 

4.2:  Materials and methods 

4.2.1:  Optimization of various operating parameters for enzymatic pre-bleaching  

Unbleached ethanol-soda pulp of E. binata was pre-bleached by xylanase and various 

operating parameters such as enzyme dose, consistency and reaction time were optimized. Pre-

bleaching was performed with xylanases from A. flavus ARC-12 and S. commune ARC-11 and 
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their impact on kappa number of pulp, viscosity [29] and releases of chromophores [30] as well 

as reducing sugars [31] in filtrate were analyzed. 

4.2.1.1:  Enzyme dose 

The ethanol-soda pulp from E. binata was treated with different doses of xylanase from 

A. flavus ARC-12 and S. commune ARC-11 at enzyme dose ranging from 0 to 14 IU/g while 

keeping other variables constant like, consistency 8% and reaction time 120 min. For A. flavus 

ARC-12, reaction temperature and pH were 6.0 and 50 °C respectively while for S. commune 

ARC-11 reaction temperature and pH were taken 55 °C and 5.0 respectively. Xylanase treated 

pulp was extracted with 1.2% NaOH (as such in E-stage) as per conditions shown in Table 4.1. 

4.2.1.2:  Reaction time  

In the similar way, the unbleached ethanol-soda pulp of E. binata was treated with 

xylanases from A. flavus ARC-12 and S. commune ARC-11 at different reaction time varying 

from 30 to 180 min while keeping other parameters constant like, enzyme dose (as optimized in 

subsection 4.2.1.1) and consistency of 8%. For A. flavus ARC-12, reaction temperature and pH 

were 6.0 and 50 °C respectively while for S. commune ARC-11 reaction temperature and pH 

were taken 55 °C and 5.0 respectively. 

4.2.1.3:  Consistency 

In an another set of experiment, the unbleached ethanol-soda pulp of E. binata was 

treated with xylanases from A. flavus ARC-12 and S. commune ARC-11 at different pulp 

consistency ranging from 2 to 12% with a difference of two units while keeping other 

parameters constant. Optimum values of xylanase dose and reaction temperature (as optimized 

previously) were used during optimization of consistency. For A. flavus ARC-12, reaction 

temperature and pH were 6.0 and 50 °C respectively while for S. commune ARC-11 reaction 

temperature and pH were taken 55 °C and 5.0 respectively. 

4.2.1.4:  Enzymatic pre-bleaching of pulp in bulk  

Unbleached ethanol-soda pulp of E. binata was pre-bleached in bulk with crude 

enzymes from A. flavus ARC-12 and S. commune ARC-11 under optimized conditions as 

described in Table 4.5 & 4.6. For A. flavus ARC-12, reaction temperature and pH were 50 °C 

and 6.0 respectively while for S. commune ARC-11 reaction temperature and pH were taken 55 
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°C and 5.0 respectively. In each case, controls were repeated in the similar manner using buffer 

in place of crude xylanase preparation. After enzymatic treatment, extraction of pulp samples 

was carried out with 1.2% NaOH (on as such basis). Pulp samples were filtered through a four-

layered muslin cloth and washed with tap water. The pulp filtrates were analyzed for 

chromophores and reducing sugars released and pulp samples after XE-stage were analyzed for 

kappa number, pulp brightness and viscosity. 

4.2.2:  Application of xylanase in multistage bleaching process  

4.2.2.1:  Conventional bleaching of pulp  

Unbleached ethanol-soda pulp of E. binata was bleached by CEHH, X1ECEHH, and 

X2ECEHH bleaching sequences. In conventional bleaching sequence ‘X1’ represented for 

xylanase from A. flavus ARC-12 and X2 represented xylanase from S. commune ARC-11. ‘C’ 

stood for chlorination, ‘E’ for alkaline extraction, ‘H1’ for hypochlorite 1
st
 stage, ‘H2’ for 

hypochlorite 2
nd

 stage. The xylanase pre-bleaching was carried out at optimized conditions 

(Table 4.5 & 4.6). The disintegrated pulp slurry was diluted with tap water to maintain a 

consistency of 3%. 50% of the total chlorine demand was charged in the form of molecular 

chlorine in ‘C’ stage and remaining 50% was charged in hypochlorite 1
st
 and 2

nd
 stages 

respectively i.e. 50% in ‘H1’ and 50% in ‘H2’ stage. The chlorination (‘C’ stage) was carried 

out at 3% consistency and pH 2.0 adjusted with dilute H2SO4 at ambient temperature. The 

plastic bottles were capped tightly to avoid leakage of molecular chlorine and contents were 

mixed well. After 30 min of chlorination, the pulp samples were filtered through a four-layered 

muslin cloth. The rest of the filtrate was preserved at 4 °C for further analysis. Whereas, 

hypochlorite 1
st
 and 2

nd
  stages were conducted at following bleaching conditions: consistency 

10%, temperature 45 °C, pH 11.5 and reaction time 60 min. Extraction stage (E) was conducted 

with NaOH (as such) on o.d. pulp basis at consistency 10% and temperature 60±2 °C for 60 

min. Residual chlorine in the filtrate after chlorination stage and hypochlorite 1
st
  and 2

nd
 stages 

was calculated as per method described for analysis of bleach liquor except the volume of spent 

bleach liquor was increased to 100 ml and titrated with 0.1N Na2S2O3 solution [32] 

4.2.2.2:  Elemental chlorine free (ECF) bleaching 

 Unbleached ethanol-soda pulp of E. binata was bleached by DEDP, X1DEDP, and 

X2DEDP bleaching sequences where stands ‘X1’ represented xylanase from A. flavus ARC-12 



108 
 

and X2 represented xylanase from S. commune ARC-11, ‘D1’ and ‘D2’ stood for chlorine 

dioxide 1
st
 and 2

nd
 stages respectively, ‘E’ for alkaline extraction stage, ‘P’ for hydrogen 

peroxide stage. The xylanase pre-treatment stage was carried out under optimized conditions 

(Table 4.5 & 4.6). After E-stage, samples were treated with 2% chlorine dioxide in ‘D1’ and 

‘D2’ stages (o.d. pulp basis) (1.34% in ‘D1’ and 0.66% in ‘D2’ stage) at a consistency of 10% at 

70 °C for 180 min and pH 4.2. In E-stage NaOH (as such) was conducted at 10% consistency, 

60 °C for 60 min and pH 11.7. In DEDP bleaching sequence, the final stage i.e. peroxide (P) 

stage was carried out at 10% consistency, temperature 90 °C, pH 10.3 and reaction time 60 min 

in polythene bag with 0.5% H2O2, 0.1% MgSO4 (as a carbohydrate stabilizer) and 0.5% EDTA 

(to mask the activities of d-block elements/transition metals). All the chemicals were added on 

o.d. pulp basis. The strength of H2O2 was determined by the method of Vogel’s [33]. 

4.2.2.3:  Total chlorine free (TCF) bleaching 

Ethanol-soda pulp of E. binata were bleached using QOPP, X1QOPP and X2QOPP 

bleaching sequences where ‘X1’ stood for xylanase from A. flavus ARC-12 and X2 represented 

xylanase from S. commune ARC-11, ‘Q’ for chelating stage, ‘O’ for oxygen delignification and 

‘P’ for hydrogen peroxide stage. Ethanol-soda pulp samples were treated with 0.2% DTPA at a 

pulp consistency of 3% and pH 4.5 for 30 min at ambient temperature [34]. After xylanase and 

DTPA treatments, the pulp was subjected to O2 delignification in a WEVERK rotary digester. 

The pulp samples were mixed with 0.1% MgSO4, 0.2% EDTA, 2% NaOH and 10% 

consistency and placed in a vessel at following conditions, oxygen pressure 5.0 kg/cm
2
, 

temperature 90 °C, reaction time 45 min and pH 12.0. In peroxide stage, 1.5% peroxide charge 

was given with 2% NaOH and 0.1% MgSO4 at consistency 10%, temperature 90 °C for 60 min 

and pH 11.8. In final stage, 1.5% H2O2 was applied on o.d. pulp basis at conditions described 

in Table 5.7. All the chemicals were added on o.d. pulp basis. 

4.2.3:  Preparation of laboratory hand sheets and evaluation of paper properties 

 The ethanol-soda bleached pulp samples of E. binata were evaluated for bleaching 

losses, viscosity (TAPPI T 230 om-08) and copper number (TAPPI T 430 om-88) as per 

TAPPI Standard Test Methods. The pulp pads were prepared on Büchner funnel (TAPPI T 218 

sp-11) and tested for brightness (TAPPI T 452 om-08). Laboratory handsheets of 60 g/m
2
 were 

prepared (TAPPI T 205 sp-02) and conditioned at a temperature of 27±2 °C and a relative 
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humidity of 65±2%. These laboratory handsheets were tested for various physical strength 

properties such as tear index (TAPPI T 414 om-98), tensile index (TAPPI T 494 om-01), burst 

index (TAPPI T 403 om-97), double fold (TAPPI T 423 cm-98) [29]. 

4.2.4:  Analysis of bleach effluent  

The effluent generated after each stage of bleaching sequence was collected and mixed 

in equal amounts and were analyzed for COD (closed reflux titrimetric method using 

Thermoreactor CR2010) [35] colour (Test method No-204A) as per standard methods for the 

examination of water and waste water, American Public Health Association, 1985 [36] and 

AOX by column method [37] with AOX Analyzer Dextar ECS 1200. 

4.2.5:  Statistical analysis  

All the experiments were carried out in triplicate and experimental results were 

represented as the mean ± standard deviation of three experimental values. 

4.3:  Results and discussion 

4.3.1. Optimization of various operating parameters for enzymatic pre-bleaching  

4.3.1.1: Effect of xylanase doses 

Tables 4.1 & 4.2 revealed the prebleaching studies by xylanase doses varying from 0-14 

IU/g, keeping other variables constant. Xylanases from two fungal strains A. flavus ARC-12 

and S. commune ARC-11 were utilized for prebleaching studies. The curves could be 

approximated by two straight lines. Up to an enzyme dose of 10 IU/g, the curves with steeper 

slope pertained to rapid release of sugars whereas the part of curve with gentler slope pertained 

to the slow release of sugars. Both parts of the curves were having different velocity constants. 

The reducing sugars released increased with increasing xylanase dose during enzymatic pre-

bleaching of pulp. Reducing sugars released at an enzyme dose of 10 IU/g were 4.57 and 2.52 

mg/g for xylanase from A. flavus ARC-12 and S. commune ARC-11 respectively beyond that, 

there were slight increments in reducing sugars (Figures 4.1 & 4.3). The released of 

chromophores were also measured during prebleaching at three different wavelengths i.e. 237 

and 280 and 465 nm with spectrophotometer. The release of chromophores during prebleaching 

might be correlated with reduction in kappa number [30]. Xylanase hydrolyze the xylan and 
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soluble oligosaccharides during bleaching therefore, release of reducing sugars and 

chromophores were found to increase on increasing the xylanase doses [38]. 

Tables 4.1 & 4.2 showed that the absorbance at a wave length of 237 nm increased up 

to a xylanase dose of 10 IU/g from both the fungal strains, it was because of release of phenolic 

compounds or chromophores and beyond that increase in enzyme did not show any significant 

increase in absorbances (Figure 4.2 & 4.4). At a wave length of 465 nm, absorbance increased 

up to an enzyme dose of 10 IU/g, which was due to the release of hydrophobic compounds [39-

41]. This confirms that xylanase acts on lignin carbohydrate complex (LCC) and degrades 

lignin-hemicellulose linkages [42], consequently degraded chromophores releases into the 

effluent [41, 43].  

The extraction with 1.5% NaOH was performed after pretreatment of ethanol-soda pulp 

with xylanases from both the fungal strains and its effect on kappa number, brightness and 

viscosity were observed. The maximum decrease in kappa number of ethanol-soda pulp of E. 

binata was at an enzyme dosage of 10 IU/g of xylanase from both fungal strains A. flavus 

ARC-12 and S. commune ARC-11. The decrease in kappa number was 18.51 and 14.81% by 

xylanases (10 IU/g) from A. flavus ARC-12 and S. commune ARC-11 respectively compared to 

control. Further increase in enzyme dose did not affect kappa number significantly. Similarly, 

pulp brightness improved by 4.2 and 2.9% (ISO) compared to control, at an enzyme dosage of 

10IU/g from A. flavus ARC-12 and S. commune ARC-11 respectively. Further, there were no 

major changes in brightness on increasing enzyme dose above 10 IU/g. Lignin-carbohydrate 

complexes were loosened and dissolved due to the action of xylanases. Alkali extraction was 

carried out to wash out the trapped LCC in the pulp [44, 45]. The maximum increase in pulp 

viscosity was 4.96 and 3.90% respectively with enzymes from A. flavus ARC-12 and S. 

commune ARC-11 at enzyme dose of 10 IU/g. Xylanase hydrolyzed xylan which is a polymer 

with low degree of polymerization and its removal resulted an improvement in average 

molecular weight of polymer system which increased the pulp viscosity [21, 46]. Ragauskas et 

al. [47] concluded that improvement in the pulp viscosity resulted by accumulation of high 

molecular weight polysaccharides, which occurred when xylan was eliminated selectively. 

Paice et al. [46] reported an improvement of 17.41% in pulp viscosity of hardwood kraft pulp 

after pretreatment by xylanase from E. coli at an enzyme dose of 5 U/ml. Garg et al. [48] 

studied prebleaching of wheat straw pulp by xylanase from Bacillus stearothermophilus SDX 
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and reported 7.14% reduction in kappa number, 4.75% improvement in brightness at  60 °C, 

pH 9.0 and reaction time of 120 min. 

4.3.1.2: Effect of reaction time 

Tables 4.3 & 4.4 showed the effect of reaction time on prebleaching of ethanol-soda 

pulp of E. binata by xylanases from A. flavus ARC-12 and S. commune ARC-11 respectively. 

Reaction time varied from 0 to 180 min with a difference of 30 min while keeping other 

variables constant like an enzyme dose 10IU/g, temperature 50 °C, consistency 10% and pH 

6.0 for A. flavus ARC-12 and an enzyme dose 10IU/g, temperature 55 °C, consistency 10% and 

pH 5.0 for S. commune ARC-11 during pre-bleaching of ethanol-soda pulp of E. binata. On 

increasing reaction time up to 120 min release of reducing sugars was increased and release of 

reducing sugars continued after 120 min but at a comparatively lower level (Figures 4.5 & 4.7). 

The later phenomenon may be due to hydrolysis of soluble xylooligosaccharides which were 

released due to initial depolymerization of the xylan [18, 41]. 

 The majority of chromophores and colour were removed before a reaction time of 120 

min for xylanases from both the fungal strains A. flavus ARC-12 and S. commune ARC-11 

respectively and beyond that insignificant increase was observed (Figures 4.6 & 4.8). Thus, the 

released of chromophores in filtrate increased with decreasing kappa number of pulp [49]. 

Similar trends for release of chromophores in filtrate after xylanase pre-treatment were 

observed by various investigators [39, 41]. Beg et al. [39] reported maximum release of 

chromophores from eucalyptus kraft pulp at wavelengths 237 and 435 nm after 2 h of reaction 

time of xylanase from Streptomyces sp. QG-11-3. 

The maximum reduction in kappa number of ethanol-soda pulp of E. binata was 

observed at reaction time of 120 min for xylanase from A. flavus ARC-12 and S. commune 

ARC-11 respectively. Further, an increase in reaction time showed insignificant change in 

kappa number. The reduction in kappa number after reaction time 120 min was 15.82 and 

17.30% by xylanases from A. flavus ARC-12 and S. commune ARC-11 respectively. The 

maximum viscosity of ethanol-soda pulp of E. binata was 29.7 and 29.3 cps with xylanases 

from Aspergillus flavus ARC-12 and S. commune ARC-11 respectively at a reaction time of 

120 min. The improvement in pulp brightness was 4.4 and 3.3% with xylanases A. flavus ARC-

12 and S. commune ARC-11 respectively at 120 min of reaction time. Khandeparkar et al. [41] 
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studied the prebleaching of kraft pulp using xylanase from Arthrobacter sp. MTCC 5214 and 

reported 19.6% reduction in kappa number and 9.6% improvement in brightness after the 

reaction time of 2 h at an enzyme dose of 20 IU/g. Sanghi et al. [50] observed improvement in 

the brightness (3.3%) and reduction kappa number (4.62%) of kraft pulp by pretreatment with 

xylanase from Bacillus subtilis at an enzyme dose of 6 IU/g, 10% consistency, 55 °C 

temperature and reaction time of 2 h.  

4.3.1.3: Effect of consistency 

Tables 4.4 & 4.5 represented the effect of consistency on prebleaching of ethanol-soda 

pulp of E. binata by xylanases from A. flavus ARC-12 and S. commune ARC-11. The effect of 

consistency varying from 0 to 12% with a difference of 2% while maintaining while keeping 

other variables constant like an enzyme dose 10IU/g, temperature 50 °C, reaction time 120 min 

and pH 6.0 for A. flavus ARC-12 and an enzyme dose 10IU/g, temperature 55 °C, reaction time 

120 min and pH 5.0 for S. commune ARC-11 during pre-bleaching of ethanol-soda pulp of E. 

binata.  During pre-bleaching, the release in reducing sugars increased with increase in pulp 

consistency up to 10% and beyond that a slow increase was noticed (Figures 4.9 & 4.11). The 

filtrates were analyzed for chromophores at wavelengths of 237, 280 and 465 nm and 

maximum leaching of chromophores was observed at a consistency of 10% (Figures 4.10 & 

4.12). The maximum reduction in kappa number by 24.07 and 25.30% was observed for 

xylanases from A. flavus ARC-12 and S. commune ARC-11 at a consistency of 10%. The 

improvement in viscosity of ethanol-soda pulp of E. binata was found 7.80 and 6.73 % using 

xylanases from A. flavus ARC-12 and S. commune ARC-11 respectively at a consistency of 

10% compared to control. Similarly, maximum improvement in pulp brightness was 4.8 and 

4.4% (ISO) was achieved at a pulp consistency of 10% during prebleaching of ethanol-soda 

pulp of E. binata using xylanase from A. flavus ARC-12 and S. commune ARC-11 respectively. 

Cellulosic fibers contains mobile and immobile layers of water and the thickness of mobile 

layer gradually declines on increasing the consistency of pulp while only the thin immobile 

layer remains around the cellulosic fiber. Therefore, at higher consistency, the diffusion path 

length of reactant to the fiber declines [51-53]. Higher pulp consistency also assists the enzyme 

to stabilize and allowing it to remain active under more severe conditions, e.g. higher 

temperature and pH [54]. Pre-bleaching was performed at 10% consistency in several studies 
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such as kraft pulp [55-57], for non-woods such as bagasse soda-AQ pulp [58, 59] and wheat 

straw soda-AQ pulp [60, 61]. 

After optimization of variables, a xylanase dose of 10IU/g, reaction time of 120 min, 

and pulp consistency of 10% were found most suitable for prebleaching of ethanol-soda pulp of 

E. binata using xylanase from A. flavus ARC-12 and S. commune ARC-11 respectively. For A. 

flavus ARC-12, xylanase pretreatment reduced the kappa number from 16.2 to 12.3, improved 

brightness from 43.9 to 48.7% (ISO) and viscosity from 28.2 to 30.4 cps of unbleached 

ethanol-soda pulp of E. binata. For S. commune ARC-11, xylanase pretreatment reduced the 

kappa number from 16.2 to 12.1, improved brightness from 43.9 to 48.3% (ISO) and viscosity 

from 28.2 to 30.1 cps of unbleached ethanol-soda pulp of E. binata. 

4.3.2. Effect of xylanase pre-treatment on conventional bleaching 

Table 4.7 showed the results of CEHH, X1ECEHH, and X2ECEHH bleaching 

sequences for ethanol-soda pulp of E. binata. The brightness and viscosity of ethanol-soda pulp 

bleached by CEHH bleaching sequence were 81.2% (ISO) and 8.4 cps respectively.  

The brightness of ethanol-soda pulp of E. binata bleached by X1ECEHH and 

X2ECEHH bleaching sequences improved by 1.6 and 0.8% (ISO), viscosity by 4.76 and 3.57% 

compared to CEHH bleaching sequence. The improvement in brightness of ethanol-soda pulp 

of E. binata may be explained as enzymes improves the accessibility of bleaching chemicals by 

hydrolyzing the xylan chain which is responsible for close adherence of lignin to cellulose 

network and facilitates the easier removal of lignin during bleaching [23, 28, 62-64]. The 

degree of polymerization of xylan is lower compared cellulose, removal of xylan results an 

increase the ratio of high DP cellulose which increases the viscosity of pulp [46, 65]. Total 

chlorine demand was calculated by kappa number of pulp and xylanase pretreatment followed 

by alkali extraction declined the total chlorine demand by 23.5 and 24.5% for ethanol-soda 

pulp of E. binata during X1ECEHH and X2ECEHH. Bleached pulp yield of bleaching 

sequences CEHH, X1ECEHH and X2ECEHH were 43.34, 44.74 and 44.86% respectively. 

Table 4.8 revealed mechanical strength properties of pulps of E. binata bleached by 

CEHH, X1ECEHH and X2ECEHH bleaching sequences at a fixed beating level of 35 °SR. Tear 

index improved by 14.21 and 12.95% during X1ECEHH and X2ECEHH bleaching sequences 

compared to CEHH. Similarly, the increase in burst index was insignificant and tensile index, 
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and double fold numbers were improved marginally during X1ECEHH and X2ECEHH 

bleaching sequences compared to CEHH bleaching sequence. The copper numbers in 

X1ECEHH and X2ECEHH bleached pulps declined by 21.73 and 13.04% respectively 

compared to CEHH. The copper number is regarded as an index of impurities in paper, such as 

oxycellulose, hydrocellulose, lignin, and sugars, which have reducing properties. So, it is a 

useful criterion for the determination of changes associated with deterioration of pulp. 

Therefore, it may be considered as a factor having an indirect effect on the durability of the 

paper and it denotes the degree of damage to cellulose in paper [66, 67]. Xylanase pre-

treatment mitigated the AOX by 21.49 and 28.50% during X1ECEHH and X2ECEHH 

bleaching sequences compared to CEHH bleaching sequence. Pre-bleaching with crude 

xylanase preparation made the entire process economical in terms of reduced chemical/chlorine 

demand and reduced environmental load, which is being generated by the production of 

aromatic organic halides. Sharma et al. [68] reported 34% reduction in AOX generation in 

effluent obtained during prebleaching with xylanase and laccase. Senior and Hamilton [69] 

studied the prebleaching of hardwood pulp with xylanase and observed 35-40 and 24% 

reduction in chlorination charge and AOX in E-stage respectively while the BOD/COD ratio 

was increased under the same bleaching conditions. In some other studies, prebleaching of pulp 

with xylanases from different microbial sources saved chlorine by 20% as reported by Dhillon 

and Khanna [70], 28% Li et al. [60], and 18.7% Saleem et al. [64]. 

Combined bleach effluent was also analyzed for COD load and colour which were 

found to increase in effluents generated during X1ECEHH and X2ECEHH bleaching sequences 

compared to CEHH. COD load was increased by 16.56 and 22.89% during X1ECEHH and 

X2ECEHH bleaching sequences respectively compared to CEHH. The colour in combined 

bleach effluent was increased by 10.02 and 15.39% during X1ECEHH and X2ECEHH 

bleaching sequences compared to CEHH bleaching sequence. The COD and colour in bleach 

effluent increased due to increased concentration of residual lignin carbohydrate complexes 

(RLCC) by the hydrolytic action of enzyme. Several researchers made the similar observations 

[65, 71]. The high proportion of degraded xylan was confirmed in the effluent by Onysko [72], 

Senior and Hamilton [69]. When E. globulus pulp was pretreated with xylanase in a bleaching 

sequence OD1PD2, the bleaching effluent colour increased by 27.76% [65]. 
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4.3.3. Effect of xylanase pre-treatment on ECF bleaching 

Table 4.9 showed the results and bleaching conditions of DEDP, X1DEDP, and 

X2DEDP sequences of ethanol-soda pulp of E. binata and its effect on brightness, viscosity and 

bleached pulp yield. The brightness of ethanol-soda pulp by DEDP, X1DEDP, and X2DEDP 

bleaching sequences were 82.6, 85.8 and 84.5% and pulp viscosity were 8.8, 9.1 and 9.0% cps 

respectively. Bleached pulp yield was improved up to 45.24 and 45.57% in bleaching 

sequences X1DEDP, and X2DEDP compared to DEDP bleaching sequence (44.30%). 

Brightness and viscosity of DEDP ethanol-soda pulp improved by 1.4% (ISO) and 

4.76% respectively compared to CEHH bleaching sequence. An overall improvement in 

mechanical strength properties was also noticed after DEDP bleaching sequences compared to 

CEHH bleaching sequences due to the less damaging action of chlorine dioxide towards 

cellulose than chlorine [73]. The combined effluent generated during DEDP bleaching 

sequence of ethanol-soda pulp of E. binata showed a decrease in COD by 5.42%, colour by 

27.77%, and AOX by 80.37% respectively compared to CEHH bleaching sequence. Chlorine 

dioxide is a stronger bleaching agent than chlorine. During bleaching, the reactions with 

chlorine dioxide are highly oxidative, which reduce the amount of AOX generated. The atomic 

chlorine content of chlorine dioxide is lower than molecular chlorine, which also decreases 

AOX in effluent [21].  

The brightness of X1DEDP, and X2DEDP bleached ethanol-soda pulp of E. binata 

increased by 3.2 and 1.9% (ISO) respectively compared DEDP bleaching sequences at the 

same chlorine dioxide charge. Xylanase treatment enhances the porosity of pulp fibres and 

which subsequently improves the accessibility of bleaching chemicals into the pulp compared 

untreated pulp [74]. It allows the lignin fragments to remove from the pulp. Therefore, higher 

brightness of pulp can be obtained by xylanase treatment at the same bleaching dosage [75, 

76]. Pre-treatment of bagasse pulp with T. lanuginosus SSBP xylanase (DED bleaching 

sequence) increased the pulp brightness by 4.5% compared to control [77]. Pretreatment with a 

commercial enzyme (Xylanase-P) increased the brightness of bagasse pulp by 3.1% and 

softwood kraft pulp by 5.1% compared to control after ECF bleaching [59].  

The viscosity of X1DEDP, and X2DEDP bleached E. binata ethanol-soda pulp 

increased by 3.40 and 2.27% respectively compared to DEDP bleaching sequence. It is well 
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established that the crude xylanase hydrolyzes xylan only and not cellulose chains in pulp [22, 

65, 78]. Copper number decreased by 28.0 and 25.33% for E. binata ethanol-soda pulp after 

X1DEDP, and X2DEDP bleaching sequences compared to DEDP. Xylanase pre-treatment 

reduced the degree of damage to cellulose of the ethanol-soda pulp after full bleaching 

sequences in terms of reduction in copper number. 

Table 4.10 showed a comparison of mechanical strength properties for bleached by 

DEDP, X1DEDP, and X2DEDP bleaching sequences. Tear index improved by 20.29 and 

15.53% during X1DEDP and X2DEDP sequences compared to DEDP. While improvement in 

other mechanical strength properties like burst index and double fold numbers were 

insignificant except slight improvement in tensile index during bleaching sequences X1DEDP 

and X2DEDP compared to DEDP. The consumed ClO2 during X1DEDP and X2DEDP 

bleaching sequences were mitigated by 2.98 and 3.82% respectively. Xylanase pretreatment 

reduced AOX generation by 23.80 and 19.04% after X1DEDP, and X2DEDP bleaching 

sequences respectively compared to DEDP. 4-O-methylglucuronic acid side chain of 

hemicelluloses is converted in to hexenuronic acid (HexA) during pulp cooking. Some authors 

indicated that the formation of AOX during bleaching has close relationship with HexA content 

of pulp [28, 79, 80]. Various studies proposed that HexA will consume the chlorine dioxide 

during bleaching. It is primarily the in-situ generated hypochlorous acid that reacts with HexA 

to form AOX [81, 82].  Furthermore, when hemicelluloses and HexA were removed from the 

fibre due to xylanase action, the lignin could easily react with ClO2 and AOX generation 

decreased at the same dose of ClO2 [28]. Nie [28] studied the xylanase-aided chlorine dioxide 

bleaching of bagasse pulp and concluded that lignin and HexA were the main sources of AOX 

generation and xylanase pretreatment removed HexA, mitigated AOX formation by 21.4–

26.6% to achieve same level of brightness. 

On contrary to this, the COD showed an increase by 9.87 and 7.96% respectively in 

combined bleached effluent obtained from X1DEDP, and X2DEDP bleached pulps compared to 

DEDP. The increase in COD of combined bleach effluent of xylanase prebleaching sequences 

may be explained due to dissolution of xylan and lignin fragments with carbohydrates 

compared to control [83]. Pretreatment of pulp with xylanase and its subsequent bleaching with 

sequence CDED1D2 improved various physical properties of the pulp i.e. viscosity, tensile 

strength, breaking length, burst factor, and tear factor and by 44%, 32%, 21%, 6%, and, 7%  



117 
 

respectively, which greatly improves the quality of the paper  [55]. Lin et al. [74] studied 

prebleaching of wheat straw soda pulp with xylanase from Bacillus halodurans C-125 and 

reported reduction of ClO2 by 10% in ECF bleaching sequence while maintaining the 

brightness and physical strength properties such as tear index, burst index and tensile index at 

same level. 

4.3.4. Effect of xylanase pre-treatment on TCF bleaching 

Table 4.11 depicted the results and bleaching conditions of QOPP, X1QOPP and 

X2QOPP bleaching sequences of ethanol-soda pulp of E. binata. The brightness of QOPP, 

X1QOPP and X2QOPP bleached ethanol-soda pulp were 82.1, 84.6, and 83.5% respectively 

and their respective viscosity values were 9.0, 9.3, and 9.5 cps. The pulp viscosity of QOPP 

bleached pulp was higher compared to CEHH and DEDP bleached pulps because of the fact 

that no chlorine containing chemical was used during QOPP bleaching sequence. 

Brightness of E. binata ethanol-soda pulp increased by 2.5 and 1.4% (ISO) after 

X1QOPP and X2QOPP bleaching sequences respectively compared to QOPP bleaching 

sequence. Xylanase treatment improves the accessibility of bleaching chemicals into the pulp, 

which in turn enhances the brightness of the pulp after subsequent oxygen and hydrogen 

peroxide bleaching stages [74, 84]. The pulp viscosity of E. binata ethanol-soda pulp improved 

by 3.33 and 5.55% after X1QOPP and X2QOPP bleaching sequences compared to QOPP. The 

increase in pulp viscosity is due to removal of low molecular weight xylan by the action of 

xylanase [46, 78]. Bleached pulp yields were 42.94 and 42.65% after X1QOPP and X2QOPP 

bleaching sequences of ethanol-soda pulp of E. binata compared to QOPP (43.52%) bleaching 

sequence.  

Table 4.12 showed comparisons of mechanical strength properties and combined 

effluent characteristics of QOPP, X1QOPP and X2QOPP bleaching sequences. Copper number 

of ethanol-soda pulp of E. binata decreased by 22.22 and 33.33% in X1QOPP and X2QOPP 

bleached pulps respectively compared to QOPP bleached pulp. Tear index increased by 3.67 

and 3.25% after X1QOPP and X2QOPP bleaching sequences compared to QOPP bleaching 

sequence. Conversely, burst index remained almost constant. In the similar way, tensile index 

and double fold numbers were also decreased slightly after X1QOPP and X2QOPP bleaching 

sequences compared to QOPP bleaching sequence. Xylanase pretreatment of ethanol-soda pulp 
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of E. binata during X1QOPP and X2QOPP bleaching sequences increased the COD values by 

15.87 and 9.42% respectively compared to QOPP bleaching sequence. The colour of combined 

bleach effluent generated during X1QOPP and X2QOPP bleaching sequences increased by 

10.90 and 12.08% respectively compared to control. The increase in COD and colour of bleach 

effluent is due to the xylanase pre-treatment, since the hydrolytic action of xylanase leads to 

weakening of the carbohydrate bonds in the pulp and dissolution of lignin and hydrolyzed 

xylan into the media [65, 71]. 
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Table-4.1: Optimization of xylanase dose (A. flavus ARC-12) for prebleaching of E. 

binata ethanol-soda pulp 

Xylanase 

dose, 

IU/g 

* Kappa 

number 

Reducing  

sugars 

released, 

mg/g 

*Viscosity, 

cps 

Brightness, 

% (ISO) 

Chromophores released, 

Optical density 

237 nm 280 nm 465 nm 

0 16.2±0.42 ‒ 28.2±0.11 43.9±0.3 ‒ ‒ ‒ 

4 15.1±0.30 1.10±0.04 28.5±0.14 45.2±0.4 0.321±0

.012 

0.285±0

.008 

0.210±

0.004 

6 14.8±0.28 1.98±0.05 28.9±0.15 46.3±0.2 0.381±0

.011 

0.314±0

.009 

0.288±

0.009 

8 14.3±0.23 3.04±0.09 29.4±0.10 47.3±0.5 0.432±0

.017 

0.358±0

.016 

0.322±

0.010 

10 13.2±0.25 4.57±0.08 29.6±0.13 48.1±0.4 0.485±0

.016 

0.380±0

.013 

0.338±

0.011 

12 13.5±0.27 5.81±0.17 29.2±0.15 48.3±0.3 0.490±0

.019 

0.421±.

014 

0.354±

0.009 

14 13.3±0.19 6.24±0.25 28.5±0.16 48.5±0.3 0.502±0

.015 

0.434±0

.016 

0.360±

0.012 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70
0
C temperature for 90 min,  

X-stage= enzyme dose varied, reaction time 120 min, pH 6.0, temperature 50±2 
0
C , consistency 

8%                                                                                                                                                                                                         

 

Table-4.2: Optimization of xylanase dose (S. commune ARC-11) for prebleaching of E. 

binata ethanol-soda pulp 

Xylanase 

dose, 

IU/g 

* Kappa 

number 

Reducing  

sugars 

released, 

mg/g 

*Viscosity, 

cps 

Brightness, 

% (ISO) 

Chromophores released, 

Optical density 

237 

nm 

280 

nm 

465 

nm 

0 16.2±0.40 ‒ 28.2±0.14 43.9±0.5 ‒ ‒ ‒ 

4 15.2±0.32 0.52±0.04 28.4±0.15 44.4±0.4 0.243±

0.014 

0.202±

0.006 

0.141±

0.009 

6 14.8±0.31 0.95±0.05 28.7±0.10 44.9±0.3 0.207±

0.015 

0.243±

0.008 

0.167±

0.010 

8 14.3±0.21 1. 58±0.08 29.2±0.16 45.6±0.4 0.372±

0.018 

0.283±

0.015 

0.198±

0.008 

10 13.8±0.20 2.52±0.10 29.3±0.13 46.8±0.5 0.414±

0.019 

0.332±

0.016 

0.225±

0.010 

12 13.1±0.25 3.02±0.16 28.9±0.14 47.1±0.4 0.422±

0.015 

0.341±

0.009 

0.230±

0.012 

14 13.1±0.23 3.56±0.23 28.4±0.12 47.6±0.3 0.432±

0.016 

0.346±

0.010 

0.236±

0.015 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70
0
C temperature for 90 min,  

X stage= enzyme dose varied, reaction time 120 min, pH 5.0, temperature 55±2 
0
C,  consistency 

8% 
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Table-4.3: Optimization of reaction time (A. flavus ARC-12) for prebleaching of pulp 

of E. binata 

Reaction 

time, 

min. 

* Kappa 

number 

Reducing 

sugars 

released, 

mg/g 

*Viscosity

, cps 

Brightnes

s, %(ISO) 

Chromophores released, 

Optical density 

237 

nm 

280 

nm 

465   

nm 

30 15.8±0.17 
3.23±0.11 

28.6±0.10 45.3±0.4 0.324±

0.004 

0.220±

0.003 

0.106±

0.004 

60 15.1±0.12 
3.80±0.14 

28.8±0.14 46.8±0.4 0.421±

0.003 

0.302±

0.002 

0.179±

0.002 

90 14.4±0.13 
4.62±0.18 

29.2±0.11 48.0±0.5 0.463±

0.002 

0.346±

0.003 

0.262±

0.005 

120 13.3±0.09 
5.37±0.22 29.7±0.10 48.3±0.4 

0.489±

0.004 

0.386±

0.004 

0.328±

0.009 

150 13.1±0.08 
5.78±0.24 29.5±0.12 48.6±0.5 

0.494±

0.005 

0.398±

0.008 

0.345±

0.007 

180 12.8±0.08 
6.14±0.17 

29.4±0.14 48.9±0.3 0.507±

0.006 

0.411±

0.009 

0.346±

0.010 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70
0
C temperature for 90 min,  

X stage= enzyme dose 10 IU/g o.d. pulp , reaction time varied, pH 6.0, temperature 50±2 
0
C, 

consistency 8% 

 

 

 

Table-4.4: Optimization of reaction time (S. commune ARC-11) for prebleaching of 

pulp of E. binata 

Reaction 

time, 

min. 

* Kappa 

number 

Reducing 

sugars 

released, 

mg/g 

*Viscosity, 

cps 

Brightness, 

% (ISO) 

Chromophores released, 

Optical density 

237 

nm 
280 nm 

465   

nm 

30 15.6±0.19 
3.14±0.14 

28.5±0.12 44.8±0.3 0.203±

0.005 

0.164±0

.005 

0.102±0

.007 

60 14.9±0.16 
3.53±0.11 

28.8±0.09 45.1±0.5 0.276±

0.006 

0.231±0

.004 

0.143±0

.005 

90 14.5±0.11 
4.21±0.16 

28.9±0.11 46.6±0.4 0.352±

0.005 

0.311±0

.004 

0.185±0

.004 

120 12.9±0.08 
4.83±0.24 29.3±0.12 47.2±0.5 

0.425±

0.002 

0.340±0

.003 

0.228±0

.005 

150 13.1±0.09 
5.91±0.23 29.2±0.14 47.4±0.3 

0.434±

0.006 

0.348±0

.007 

0.231±0

.010 

180 12.9±0.10 
6.56±0.15 

29.0±0.09 47.7±0.3 0.439±

0.008 

0.354±0

.008 

0.239±0

.012 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70
0
C temperature for 90 min,  

X stage= enzyme dose 10 IU/g o.d. pulp , reaction time varied, pH 5.0, temperature 55±2 
0
C, 

consistency 8% 
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Table-4.5: Optimization of consistency for xylanase from A. flavus ARC-12 for 

prebleaching of pulp of E. binata 

Cy 

% 

*Kappa 

number 

Reducing 

sugars 

released, 

mg/g 

*Viscosity, 

cps 

Brightness, 

% (ISO) 

Chromophores released, 

Optical density 

237 

nm 

280 

nm 

465 

nm 

2 15.4±0.09  1.29±0.01 28.7±0.05 44.9±0.18 0.325±

0.004 

0.205±

0.003 

0.123±

0.004 

4 15.3±0.07 3.26±0.09 28.9±0.11 45.3±0.23 0.372±

0.004 

0.249±

0.004 

0.168±

0.003 

6 14.5±0.14  3.96±0.12 29.3±0.09 46.9±0.20 0.417±

0.002 

0.297±

0.005 

0.212±

0.006 

8 13.2±0.12 
4.70±0.18 29.7±0.08  47.5±0.35 

0.458±

0.005 

0.346±

0.008 

0.260±

0.004 

10 12.3±0.08 5.28±0.20 30.4±0.10 48.7±0.27 0.517±

0.006 

0.392±

0.009 

0.275±

0.007 

12 11.8±0.10 5.83±0.15 30.2±0.06 48.6±0.34 0.530±

0.004 

0.401±

0.012 

0.279±

0.011 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70
0
C temperature for 90 min,  

X stage= enzyme dose 10 IU/g o.d. pulp , reaction time 120 min, pH 6.0, temperature 

50±2 
0
C, consistency varied 2-12% 

 

 

 

Table-4.6: Optimization of consistency for xylanase from S. commune ARC-11 for 

prebleaching of pulp of E. binata 

Cy 

% 

*Kappa 

number 

Reducing 

sugars 

released, 

mg/g 

*Viscosity, 

cps 

Brightness, 

% (ISO) 

Chromophores released, 

Optical density 

237 

nm 

280 

nm 

465 

nm 

2 15.3±0.10  2.37±0.06 28.6±0.08 45.1±0.2 0.306±

0.005 

0.236±

0.005 

0.115±

0.005 

4 15.9±0.08 3.22±0.11 29.1±0.12 45.6±0.3 0.353±

0.006 

0.270±

0.003 

0.141±

0.004 

6 14.8±0.09  3.92±0.10 29.5±0.10 46.5±0.3 0.390±

0.007 

0.314±

0.007 

0.185±

0.008 

8 13.3±0.10 
4.83±0.15 29.7±0.09  47.3±0.4 

0.426±

0.008 

0.339±

0.005 

0.222±

0.007 

10 12.1±0.12 5.64±0.19 30.1±0.11 48.3±0.3 0.464±

0.004 

0.384±

0.004 

0.273±

0.006 

12 11.7±0.10 6.05±0.18 29.9±0.08 48.5±0.5 0.477±

0.003 

0.389±

0.010 

0.285±

0.010 

±  Refers to standard deviation 

Operational conditions: Extraction stage =1.2% NaOH at 70 
°
C temperature for 90 min,  

X stage= enzyme dose 10 IU/g o.d. pulp , reaction time 120 min, pH 5.0, temperature 55±2 
0
C, consistency varied, 2-12% 
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Table-4.7: Effect of conventional bleaching on, brightness and viscosity of pulp of E. 

binata 

Particulars  

Bleaching sequence 

CEHH X1ECEHH 
X2ECEH

H 

Unbleached pulp kappa number 16.1±0.3 16.1±0.3 16.1±0.3 

Unbleached pulp brightness, % (ISO) 43.9±0.2 43.9±0.2 43.9±0.2 

Unbleached pulp viscosity, cps 28.2±0.14 28.2±0.14 28.2±0.14 

Xylanase stage (X)   

Amount of xylanase added (on o.d. pulp basis), IU/g – 10 10 

 pH – 6.0 5.0 

Alkali extraction stage (E)    

NaOH applied, % (o.d. pulp basis) – 1.2 1.2 

Initial pH – 11.2 11.2 

Final pH – 10.6 10.5 

kappa number of  xylanase treated pulp – 12.3 12.1 

Chlorination stage (C)    

Cl2 applied, % (o.d. pulp basis) 2.0 1.53 1.51 

Cl2 consumed, % (o.d. pulp basis) 1.9 1.51 1.49 

Amount of Cl2 consumed, % 95 98.6 97.3 

Final pH 1.7 1.8 2.1 

Alkali extraction stage (E)    

NaOH applied, % (o.d. pulp basis) 0.76 0.581 0.581 

Initial pH 11.2 11.6 11.5 

Final pH 11.5 11.4 11.4 

Hypochlorite stage (H1)    

Hypo applied as available Cl2, % (o.d. pulp basis) 1.0 0.76 0.75 

Hypo consumed as available Cl2, % (o.d. pulp basis) 0.94 0.72 0.70 

Hypo consumed, % 96.0 96.0 94.6 

Final pH 11.3 11.2 11.3 

Hypochlorite stage (H2)    

Hypo applied as available Cl2, % (o.d. pulp basis) 1.0 0.76 0.75 

Hypo consumed as available Cl2, % (o.d. pulp basis) 0.94 0.72 0.70 

Hypo consumed, % 94.0 94.7 93.3 

Final pH 11.4 11.2 11.3 

Total Cl2 applied, % (o.d. pulp basis) 4.0 3.07 3.02 

Total Cl2 consumed, % (o.d. pulp basis) 3.8 2.96 2.90 

Total Cl2 consumed on Cl2 basis, % 95.0 96.41 96.02 

Bleached pulp yield, % 43.34±1.3 44.78±1.4 44.86±1.5 

Pulp brightness, % (ISO) 81.2±0.4 82.8±0.5 82.0±0.3 

Pulp viscosity, cps 8.4±0.013 8.9±0.010 8.7±0.012 

Bleaching conditions X1 X2 C E H 

Consistency, % 10 10 3 10 10 

Temperature, 
0
C 50±2 55±2 Ambient 60±2 45 

Time, min 120 120 30 60 60 

± refers standard deviation 
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Table-4.8: Comparison of mechanical strength properties and combined effluent 

characteristics generated during conventional bleaching of pulp of E. binata 

Sl. 

No 
Particulars CEHH X1ECEHH X2ECEHH 

1 Pulp brightness, (ISO), % 81.2±0.4 82.8±0.3 82.0±0.3 

2 Pulp viscosity, cps 8.4±0.12 8.9±0.10 8.7±0.09 

3 Copper number 0.23±0.003 0.18±0.004 0.20±0.004 

4 Beating level, 
0
SR 35±1 35±1 35±1 

5 Tear index, mNm
2
/g 10.34±0.19 11.81±0.17 11.68±0.16 

6 Burst index, kPam
2
/g 7.62±0.23 7.98±0.18 7.88±0.19 

7 Tensile index, Nm/g 80.34±2.1 83.38±1.6 83.14±1.8 

8 Double fold, number 299±6 310±7 308±6 

9 COD, mg/L 1328±26 1548±23 1632±32 

10 Color, PTU 2124±32 2337±35 2451±29 

11 AOX, kg/t 2.14±0.02 1.68±0.01 1.53±0.01 
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Table-4.9: Effect of xylanase pretreatment on, brightness and viscosity of pulp of E. 

binata 

Particulars 4.2.1.5:  Bleaching sequence 

 DEDP X1DEDP X2DEDP 

Unbleached pulp kappa number 16.1±0.3 16.1±0.3 16.1±0.3 

Unbleached pulp brightness, % (ISO) 43.9±0.2 43.9±0.2 43.9±0.2 

Unbleached pulp viscosity, cps 28.2±0.14 28.2±0.14 28.2±0.14 

Xylanase stage (X)    

Amount of xylanase added (on o.d. pulp basis), IU/g – 10 10 

pH – 6.0 5.0 

Chlorine dioxide stage (D1)    

ClO2 applied as available Cl2, % o.d. pulp basis) 1.34 1.34 1.34 

ClO2 consumed as available Cl2, % (o.d. pulp basis) 1.26 1.22 1.21 

ClO2 consumed on Cl2 basis, % 94.02 91.04 90.2 

Final pH 4.1 4.0 4.0 

Alkali extraction stage (E)    

NaOH applied, % (o.d. pulp basis) 1.2 1.2 1.2 

Initial pH 11.1 10.8 10.7 

Final pH 11.3 11.2 11.2 

Chlorine dioxide stage (D2)    

ClO2 applied as available Cl2, % (o.d. pulp basis) 0.660 0.660 0.660 

ClO2 consumed as available Cl2, % (o.d. pulp basis) 0.602 0.598 0.596 

ClO2 consumed, % 91.21 90.60 90.3 

Final pH 4.1 4.1 4.1 

Peroxide stage (P)    

H2O2 applied, % (o.d. pulp basis) 0.5 0.5 0.5 

EDTA applied, % (o.d. pulp basis) 0.5 0.5 0.5 

MgSO4 applied, % (o.d. pulp basis) 0.1 0.1 0.1 

Final pH 10.4 10.9 10.8 

Total ClO2 applied, % (o.d. pulp basis) 2.0 2.0 2.0 

Total ClO2consumed, % (o.d. pulp basis) 1.862 1.818 1.806 

Total ClO2consumed on Cl2 basis, %    93.1 90.9 90.3 

Bleached pulp yield, % 44.30±1.4 45.24±1.5 45.57±1.1 

Pulp brightness, % (ISO) 82.6±0.2 85.8±0.3 84.5±0.2 

Pulp viscosity, cps 8.8±0.008 9.1±0.016 9.0±0.012 

Bleaching conditions X1 X2 D1 E D2 P 

    Consistency, % 10 10 10 10 10 10 

    Temperature, 
0
C 50±2 55±2 70±2 60±2 70±2 90±2 

    Time, min 120 120 180 60 180 60 

± refers standard deviation 
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Table-4.10: Comparison of mechanical strength properties and combined 

effluent generated during ECF bleaching of E. binata pulp 

Sl. 

No. 
Particulars DEDP X1DEDP X2DEDP 

1 Pulp brightness, % (ISO) 82.6±0.4 85.8±0.2 84.5±0.4 

2 Pulp viscosity, cps 8.8±0.15 9.1±0.11 9.0±0.17 

3 Copper number 0.15±0.003 0.11±0.002 0.11±0.004 

4 Beating level, 
0
SR 35±1 35±1 35±1 

5 Tear index, mNm
2
/g 11.38±0.13 13.69±0.11 13.15±0.14 

6 Burst index, kPam
2
/g 7.76±0.16 7.93±0.15 7.85±0.17 

7 Tensile index, Nm/g 81.77±1.73 82.78±1.46 82.43±1.87 

8 Double fold, number 302±6 306±4 305±5 

9 COD, mg/L 1256±22 1380±19 1356±25 

10 Color, PTU 1534±34 1733±28 1629±37 

11 AOX, kg/t 0.42±0.008 0.32±0.007 0.34±0.007 

± refers standard deviation 
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Table-4.11: Effect of TCF bleaching on pulp shrinkage, brightness and viscosity of E. 

binata pulp 

4.2.2.4:  Particulars 
Bleaching sequence 

QOPP X1QOPP X2QOPP 

Unbleached pulp kappa number 16.1±0.3 16.1±0.3 16.1±0.3 

Unbleached pulp brightness, % (ISO) 43.9±0.2 43.9±0.2 43.9±0.2 

Unbleached pulp viscosity, cps 28.2±0.14 28.2±0.14 28.2±0.14 

Xylanase stage (X)    

Amount of xylanase added (on o.d. pulp 

basis), IU/g 

         – 

        

10 

 

10 

 

pH          – 6.0 5.0 

Chelating stage (Q)  

DTPA applied, % (o.d. pulp basis) 0.2 0.2 0.2 

Final pH 4.6 4.6 4.6 

Oxygen stage (O)    

O2 pressure, kg/cm
2
 5.0 5.0 5.0 

MgSO4 applied, % (o.d. pulp basis) 0.1 0.1 0.1 

EDTA applied, % (o.d. pulp basis) 0.2 0.2 0.2 

NaOH applied, % (o.d. pulp basis) 2.0 2.0 2.0 

Final pH 12.0 12.0 12.0 

Peroxide stage (P1)    

H2O2 applied, % (o.d. pulp basis) 1.5 1.5 1.5 

H2O2 consumed, % (o.d. pulp basis) 1.47 1.45 1.46 

DTPA applied, % (o.d. pulp basis) 0.5 0.5 0.5 

MgSO4 applied, % (o.d. pulp basis) 0.1 0.1 0.1 

Final pH 11.8 11.8 11.7 

Peroxide stage (P2)  

H2O2 applied, % (o.d. pulp basis) 1.5 1.5 1.5 

H2O2 consumed, % (o.d. pulp basis) 1.43 1.26 1.30 

DTPA applied, % (o.d. pulp basis) 0.5 0.5 0.5 

MgSO4 applied, % (o.d. pulp basis) 0.1 0.1 0.1 

Final pH 11.8 11.8 11.7 

Total H2O2 applied, % (o.d. pulp basis) 3.0 3.0 3.0 

Total H2O2 consumed, % (o.d. pulp basis) 2.90 2.71 2.76 

Bleached pulp yield, % 43.52±0.39 42.94 ±0.48 42.65±0.55 

Pulp brightness ,% (ISO) 82.1±0.3 84.6±0.4 83.5±0.3 

Pulp viscosity, cps 9.0±0.011 9.3±0.023 9.5±0.014 

Bleaching conditions X1 X2 Q O P 

Consistency, % 10 10 3 10 10 

Temperature, 
0
C 50±2 55±2 Ambient 90±2 90±2 

Time, min 120 120 30 45 60 

± refers standard deviation 
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Table-4.12: Comparison of mechanical strength properties and combined  

effluent generated during TCF bleaching of E. binata pulp 

Sl. 

No. 
Particulars QOPP X1QOPP X2QOPP 

1 Pulp brightness, %  (ISO) 82.1±0.4 84.6±0.3 83.5±0.3 

2 Pulp viscosity, cps 9.0±0.11 9.3±0.17 9.5±0.12 

3 Copper number 0.09±0.002 0.07±0.001 0.06±0.002 

4 Beating level, 
0
SR 35±1 35±1 35±1 

5 Tear index, mNm
2
/g 11.98±0.21 12.42±0.25 12.37±0.16 

6 Burst index, kPam
2
/g 7.70±0.19 7.45±0.17 7.38±0.15 

7 Tensile index, Nm/g 82.94±1.72 81.15±2.40 80.34±1.84 

8 Double fold, number 309±4 294±3 290±5 

9 COD, mg/L 1348±28 1562±31 1475±27 

10 Color, PTU 1862±30 2065±36 2087±31 

± refers standard deviation 
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Figure-4.1: Effect of xylanase dose (A. flavus ARC-12) on release of reducing sugars, 

kappa number, viscosity and brightness of pulp 

 

 

Figure-4.2: Effect of xylanase dose (A. flavus ARC-12) on release of chromophores 
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Figure-4.3: Effect of xylanase dose (S. commune ARC-11) on release of reducing sugars, 

kappa number, viscosity and brightness of pulp 

 

 

Figure-4.4: Effect of xylanase dose (S. commune ARC-11) on release of chromophores 
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Figure-4.5: Effect of xylanase reaction time (A. flavus ARC-12) on release of reducing 

sugars, kappa number, viscosity and brightness of pulp 

 

 

Figure-4.6: Effect of xylanase reaction time (A. flavus ARC-12) on release of 

chromophores 
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Figure-4.7: Effect of xylanase reaction time (S. commune ARC-11) on release of reducing 

sugars, kappa number, viscosity and brightness of pulp 

 

Figure-4.8: Effect of xylanase reaction time (S. commune ARC-11) on release of 

chromophores 
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Figure-4.9: Effect of consistency on release of reducing sugars, kappa number, viscosity 

and brightness of pulp during xylanase pretreatment (A. flavus ARC-12) 

 

Figure-4.10: Effect of consistency on release of chromophores during xylanase 
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Figure-4.11: Effect of consistency on release of reducing sugars, kappa number, viscosity 

and brightness of pulp during xylanase pretreatment (S. commune ARC-11) 

 

Figure-4.12: Effect of consistency on release of chromophores during xylanase 

pretreatment (S. commune ARC-11) 
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Bleaching sequences
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Figure-4.13: Comparison of mechanical strength properties during conventional 

bleaching of E. binata pulp 

 

Figure-4.14: Comparison of COD and colour of combined effluent generated during 

conventional bleaching of E. binata pulp 
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Bleaching sequences
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Figure-4.15: Comparison of mechanical strength properties during ECF bleaching of 

pulp of E. binata 

 

 

Figure-4.16: Comparison of COD and colour of combined effluent generated during ECF 

bleaching of E. binata pulp 
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Figure-4.17: Comparison of AOX generated during conventional and ECF bleaching of 

E. binata pulp 
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Figure-4.18: Comparison of mechanical strength properties during TCF bleaching of 

pulp of E. binata 
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Figure-4.19: Comparison of COD and colour of combined effluent generated during TCF 

bleaching of E. binata pulp 
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CHAPTER 5 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1: Conclusions 

Based on present investigations, the following conclusions were drawn: 

1. Isolation of xylanolytic fungal strains was carried out from diverse habitats such as manures, 

dead and decaying wood and soil samples. Two fungal isolates ARC-11 and ARC-12 were 

selected based on maximum xylanase and minimal cellulase activities. Fungal isolates ARC-

11 and ARC-12 were identified as Schizophyllum commune and Aspergillus flavus 

respectively based on molecular and morphological characteristics which were designated as 

Schizophyllum commune ARC-11 and Aspergillus flavus ARC-12 for further study. 

2. The maximum xylanase production from S. commune ARC-11 was found with rice straw 

(4288.36 IU/gds) as the carbon source under SSF conditions. Compared to other agro-

residues such as congress grass, wheat bran, maize bran, and rice straw, pearl millet stover 

showed maximum production of xylanase (1345.44 IU/gds) by A. flavus ARC-12. 

Therefore, rice straw and pearl millet stover was selected for xylanase production by S. 

commune ARC-11 and A. flavus ARC-12 respectively. 

3. S. commune ARC-11 produced maximum xylanase activity (1147.11 IU/ml) and cellulase 

activity (1.47 IU/ml) at optimum cultural conditions such as incubation time 8
th

 day, 

temperature 30 °C, pH 7.0, moisture content 70.0%, nitrogen source (ammonium sulphate, 

0.08% as available nitrogen), and surfactant (Tween-20, 0.10% (w/v)) using rice straw as the 

carbon source under SSF conditions. A. flavus ARC-12 produced maximum xylanase 

production (234.26 IU/ml) at optimum cultural conditions such as incubation time 48 h, 

temperature 30 °C, pH 6.0, moisture content 77.5%, nitrogen source (beef extract, 1.2% 

(w/v)), and surfactant (Tween-60, 0.10% (w/v)) using pearl millet stover as the carbon 

source under SSF conditions. Cellulase activity was not detected in the crude enzyme from 

A. flavus ARC-12.  

5. Optimum pH for xylanase activities were 5.0 and 6.0 for S. commune ARC-11 and A. flavus 

ARC-12 respectively while maximum xylanase activities were observed at temperature 55 

and 50 °C for S. commune ARC-11 and A. flavus ARC-12 respectively.  
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6. E. binata might be used as a blender for other short-fibered raw materials  for writing and 

printing grades due its morphological characteristics such as higher fibre length (2.20 mm), 

thin walled fibre, higher slenderness ratio (202.76), and other derived values. Proximate 

chemical analysis of E. binata also indicated the suitability of this grass for pulp and paper 

manufacture. Holocellulose and α-cellulose contents were 73.1% and 46.0% respectively. 

The higher 1% NaOH solubility (38.0%) of E. binata was possibility due to the presence of 

low molar mass of carbohydrates and other alkali soluble materials. Lower lignin content 

(21.2%) of E. binata was also a favourable factor the removal of lignin during pulping at 

milder pulping conditions (lower temperatures and chemical charges) to reach a desirable 

kappa number. 

7. During soda-pulping of E. binata, maximum pulp yield (43.58%) of kappa number 17.38 

with 0.9% screening rejects was obtained at 12% of active alkali (as Na2O) pulping 

temperature 140 °C, cooking time 120 min and solid to liquor ratio 1:4.  

8. The maximum pulp yield of 47.48% with a kappa number of 16.13 was obtained using 30% 

ethanol during soda pulping. The pulp yield was improved by 3.9 and 4.72% compared to 

soda and bio-soda pulping processes respectively while kappa number reduced by 1.25 units 

compared to soda pulping process. 

9. Physical strength properties were improved during ethanol-soda and bio-soda compared to 

soda pulping. Addition of 30% ethanol during soda pulping of E. binata at optimum 

conditions, improved the pulp brightness by 6.6%, tensile index 32.18%, burst index 35.40% 

and double fold numbers 77.31% compared to soda pulping. On contrary to this, tear index 

of ethanol-soda pulp decreased by 9.95% compared to soda pulp. Similarly, bio-soda pulp 

showed an improvement in tensile index, burst index and double fold numbers by 24.94, 

48.45 and 14.03% respectively compared to soda pulp. Following the same pattern, tear 

index of bio-soda pulp decreased by 12.86% compared to soda pulping. 

10. During optimization of prebleaching variables, a xylanase dose of 10IU/g, reaction time of 

120 min, and pulp consistency of 10% were found most suitable for prebleaching of ethanol 

soda pulp of E. binata using xylanases (as the prebleacging agent) from A. flavus ARC-12 

and S. commune ARC-11. For A. flavus ARC-12, xylanase pretreatment reduced the kappa 

number by 24.07, improved brightness by 4.8% (ISO) and viscosity by 7.80% for 

unbleached ethanol-soda pulp of E. binata. For S. commune ARC-11, xylanase pretreatment 
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mitigated the kappa number from 25.30%, improved brightness by 4.4% (ISO) and viscosity 

by 6.73% of unbleached ethanol-soda pulp of E. binata. 

11. Released chromophores also indicated the enzyme attack on the pulp as oligosaccharides 

were released by the initial de-polymerization of the xylan coating on the fibre surface. 

12. Xylanase pretreatment followed by alkali extraction declined the total chlorine demand by 

23.5 and 24.5% for ethanol-soda pulp of E. binata during X1ECEHH and X2ECEHH. AOX 

were mitigated by 21.49 and 28.50% during X1ECEHH and X2ECEHH bleaching sequences 

respectively compared to CEHH. The brightness of ethanol-soda pulp of E. binata bleached 

by X1ECEHH and X2ECEHH bleaching sequence improved by 1.6 and 0.8% (ISO) 

respectively along with slight improvement in physical strength properties compared to 

CEHH bleaching sequence. Pulp viscosity of ethanol-soda pulp of E. binata bleached by 

X1ECEHH and X2ECEHH bleaching sequence improved by 4.76 and 3.57% respectively 

compared to CEHH bleaching sequence. COD load in combined bleach effluent was 

increased by 16.56 and 22.89% and colour was increased by 10.02 and 15.39% respectively 

during X1ECEHH and X2ECEHH bleaching sequences respectively compared to CEHH.  

13. Brightness and viscosity of DEDP ethanol-soda pulp improved by 1.4% (ISO) and 4.76% 

respectively compared to CEHH bleaching sequence. The combined effluent generated 

during DEDP bleaching sequence of ethanol-soda pulp of E. binata showed a decrease in 

COD by 5.42%, colour by 27.77%, and AOX by 80.37% respectively compared to CEHH 

bleaching sequence. The brightness of X1DEDP, and X2DEDP bleached ethanol-soda pulp 

of E. binata increased by 3.2 and 1.9% (ISO) respectively compared DEDP bleaching 

sequences at the same chlorine dioxide charge. The viscosity of X1DEDP, and X2DEDP 

bleached E. binata ethanol-soda pulp increased by 3.40 and 2.27% respectively compared to 

DEDP bleaching sequence. The combined effluent generated during DEDP bleaching 

sequence of ethanol-soda pulp of E. binata showed a decrease in AOX by 80.37% compared 

to CEHH bleaching sequence. Xylanase pretreatment reduced AOX generation by 23.80 and 

19.04% after X1DEDP, and X2DEDP bleaching sequences respectively compared to DEDP. 

14. Brightness of E. binata ethanol-soda pulp was increased by 2.5 and 1.4% (ISO) as well as 

pulp viscosity by 3.33 and 5.55% during X1QOPP and X2QOPP bleaching sequences 

respectively compared to QOPP bleaching sequence. Tear index increased by 3.67 and 

3.25% while other physical strength properties such as burst index, tensile index and double 

fold number were decreased slightly during X1QOPP and X2QOPP bleaching sequences 
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compared to QOPP. The COD values were increased by 15.87 and 9.42% and colour of 

combined bleach effluent generated increased by 10.90 and 12.08% X1QOPP and X2QOPP 

bleaching sequences respectively compared QOPP bleaching sequence. 

15. Finally it can be concluded that ethanol-soda pulping process for E. binata was suitable to 

minimize carbohydrate degradation compared to other conventional pulping methods 

suitable for pulping of other non-woods or grasses. Similarly, all the three major bleaching 

processes like conventional, ECF and TCF bleaching sequences were studied and effect of 

enzymes on pulp yield, optical properties, mechanical strength properties and effluent 

characteristics were studied. Xylanases from A. flavus ARC-12 and S. commune ARC-11 

had tremendous potential not only for reducing the bleach chemical demand and toxicity of 

various bleaching effluents in terms of AOX but also for improving or maintaining some of 

the paper properties. Hence, the study brought about for the development of sequences that 

would be environment friendly in terms of AOX generation for ethanol-soda pulps of E. 

binata, indicating the effectiveness of xylanase biobleaching for improving environmental 

performance of the bleach plant.  

5.2: Future recommendations 

With reference to present work done, some important suggestions have been drawn for future 

study. The suggested work for future could not be done due to time constraints and limitation 

of the work plan for PhD studies. The following suggestions are made for the future work: 

1. Xylanase production by fungal strains S. commune ARC-11 and A. flavus ARC-12 further 

can be improved by using response surface methodology.    

2. Further, purification of enzymes is recommended for further characterization of enzymes and 

better understanding of their complex enzyme system and function of individual component 

of enzyme during enzymatic deinking mechanism. Purified enzymes may also be subjected 

to enzyme kinetics parameters.   

3. Xylanases from fungal strains S. commune ARC-11 and A. flavus ARC-12 may be effective 

for several other industrial applications such deinking of waste paper, and hydrolysis of 

xylan during bioconversion processes.  

4. A plant trial can be conducted with xylanases from S. commune ARC-11 and A. flavus ARC-

12 in a non-wood fibre-based pulp and paper industry using E. binata as the raw material to 

validate laboratory results and cost reduction studies must be carried out to calculate the 
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economic viability of crude enzyme. Xylanases from S. commune ARC-11 and A. flavus 

ARC-12 can be evaluated for prebleaching of different cellulosic raw materials. 

5. Chromatographic analysis can be carried out to study the change in molecular weight 

profiles of lignin and carbohydrates in the pulp filtrate for a better understanding of the 

attack of xylanase on lignin-carbohydrate complexes (LCC). 
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