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ABSTRACT 

It is widely believed that the impact of climate change on agriculture has become 

one of the important issues in water resource management. The available water resource 

would be altered by change in rainfall pattern and rate of evaporation. Further, higher 

evapotranspiration (ET) would result in greater amount of irrigation water requirement 

(IWR). Despite availability of a number of ET estimation methods in literature, the accurate 

assessment of ET/IWR is a complicated task due to the limitations and assumptions 

associated with different methods. It is understood that the climate change may alter the 

demand for irrigation water in future on regional and the global scale. Hence, there is a need 

to study long term change in the key climatic variables (rainfall, minimum and maximum 

temperature, relative humidity, wind speed) which affect the ETo/CWR/IWR. Very few 

studies have been carried out in India on long term changes in irrigation water requirement. 

Present study is taken up to enhance the understanding of region specific changes in IWR on 

long term basis. Earlier studies have focused on assessment of climatic variables and crop 

water requirement based on perturbation method for scenario generation with GCM. With 

the development of statistical downscaling model (LS-SVM), the regional climate change 

assessment studies are becoming more accepted. Therefore, this study proposes to use LS-

SVM model to study the impact of climate change on IWR. This study has focus on 

quantification of future irrigation requirements on long term basis, which is necessary for 

sustainable management of basin water resources.  

This study has been carried out in the Seonath river basin (area = 30,860 sq. km), 

falling in Chhattisgarh State (India), is the longest (380 km) tributary of Mahanadi Basin, 

comprising 25% of the basin area. Agriculture is the main occupation of the people in the 

sub-basin. There are two cropping seasons viz, kharif (mid June to October) and rabi 

(November to mid April). The mean annual rainfall in the basin varies from 1005 mm to 

1255 mm. The major part of rainfall occurs only within 3 monsoon months (July-

September). It is also reported that the study area faces adverse effects of frequent droughts 

and thus crop production is adversely affected in drought years. 

The trends in annual and seasonal rainfall time series from 1960-2010 have been 

analyzed using Mann–Kendall test and the Sen’s Slope estimator for 24 stations in the 

Seonath river basin. The analysis has revealed that there is a significant decreasing trend in 
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annual rainfall (-2.4 mm/yr) at 75% of the stations (northern part of basin) and non-

significant decreasing trend in annual rainfall at 17% of the stations (southern part of basin). 

Moreover, the decreasing trends in seasonal rainfall are found significant for most of the 

stations. Decrease in monsoon rainfall at the rate of 2.79 mm/yr is likely to have significant 

adverse impact on rainfed agriculture in future. The conventional approach of planning for 

Rabi crop irrigation needs to be critically examined. Also, there is a need to examine 

supplemental irrigation requirements for Kharif (monsoon) season crops in the region. 

Rising trend has been observed in mean maximum temperature for monsoon and 

winter whereas there is decreasing trend in mean maximum temperature for summer season. 

The mean minimum temperature in monsoon, winter and summer seasons shows rising 

trend all over the basin. Few stations located in Northern part of the basin show non-

significant rising trend in mean seasonal temperature. The minimum temperature has 

increased more as compared to maximum temperature over 51 years period of analysis. The 

percentage change in minimum temperature is highest for the month of November followed 

by December and January. The variability is observed to be more pronounced in minimum 

temperature ranging from 1.69% to 2.78%. For annual maximum and minimum 

temperature, the upper half of the basin shows more variability. The results of study indicate 

that the mean annual temperature is likely to increase by 1.98°C in next 100 years. Further, 

winter temperature may increase by 2.06°C, monsoon temperature may increase by 4.73°C 

and summer temperature may decrease by -0.528°C over the study area.  

The temperature changes may have significant impacts on rainfed crop cultivation 

due to increase in evapotranspiration. In the study area, the monsoon temperature is 

expected to increase by 4.73°C over 100 years. This rise in temperature may cause 

significant increase in the irrigation water requirements and may cause water shortages. 

Therefore conventional irrigation planning procedures for Rabi as well as Kharif crops need 

to be revised.   

Monthly trend analysis of Relative Humidity (RH) shows significant decreasing 

trend for months of July, September, October and November. Whereas, from March to June 

insignificant increasing trends are observed. The highest change in magnitude of RH is 

observed for July, September, October and November months. The inter-annual variability 

in RH of the basin ranges from 0.9 to 2.2%.  
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The monthly and seasonal assessment of trend in wind speed (WS) and its variability 

is significant in order to quantify its effect on ET. On seasonal basis, significant increasing 

trend is obtained for WS in monsoon and winter season all over the basin. On monthly time 

scale, the highest rate of change is seen in August followed by July, June and September. 

The percentage change is highest for the entire basin ranging from 38% to 61%.  The inter-

annual variability (23%) is observed in monthly WS in northern part of the basin. Overall, 

there is increasing trend in monthly and seasonal WS for the entire basin. 

To measure the consistency and accuracy of ETo methods, the estimates obtained 

from six different methods (Hargreaves, Thornthwaite, Blaney-Criddle Method, Priestley-

Taylor Method, Penman-Monteith Method and Turc Method) have been compared with pan 

evaporation data (Ep). According to statistical performance evaluation Penman-Monteith, 

Hargreaves and Thornthwaite methods have performed well. The radiation-based Priestley-

Taylor and temperature based Blaney-Criddle method indicate lowest correlation values. 

The pan coefficient (Kp) has been estimated for the study region. The study 

illustrates that the Kp varies significantly from month to month (0.56 to 0.89) for the study 

area. The highest and lowest Kp value have been obtained for the month of July and 

November, respectively. Thus, if the standard average value of Kp (0.70) is used for 

assessment of ETo, it will provide erroneously large variation in ETo ranging from 11.8% to 

56.3%. 

According to sensitivity analysis temperature is the most important driving 

parameter which effects ETo and next to that is relative humidity. Bilaspur station shows 

highest sensitivity coefficient of 1.77 in relation to temperature. It means ETo would 

increase by 17.7% in response to the 10% rise in maximum temperature if other 

meteorological variables remain constant. However Rajnandgaon station shows the highest 

value of sensitivity coefficient in relation to RH (-1.28) which means 10% decrease in RH 

causes increase in ETo by 12.8%. Hargreaves and Thornthwaite methods are therefore not 

recommended for this study area as these methods donot take into consideration the RH 

parameter. 

In this study, the Kc values recommended by FAO paper No. 56 have been adjusted 

according to climatic conditions of the study area. The average Kc values for major crops 

(kharif paddy, rabi wheat and summer paddy) for four crop growth stages viz, initial, 
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development, mid and late season have been computed. For Kharif paddy, percentage 

change in adjusted Kc value with respect to FAO recommended Kc values during different 

crop growth stages varies from -1% to -15% whereas for rabi crops (Wheat and Summer 

paddy) it range from -2% to -16% and -9% to -23% respectively.  The CWR computed 

using FAO-56 Kc values gives significantly different (higher) values due to sub-humid 

climate of the basin. It is therefore, decided to use the adjusted Kc values for precise 

estimation of CWR and subsequently IWR. 

Trend and variability of annual and monthly ETo time series have been analyzed for 

8 stations for which data are available. The increase in ETo is estimated as 13.4 mm/yr on 

annual time scale. On the seasonal scale, summer ETo trend is decreasing by -10.4 mm/yr. 

The winter and monsoon ETo show increase at the rate of 21 mm/yr and 22 mm/yr, 

respectively. The estimates of ETo for the months of December, January, February, July and 

August show non-significant increasing trend. However significant increasing ETo trend 

have emerged for the months of September October and November. The highest (3.4-3.6%) 

variability in annual ETo is seen in the stations located at southern part of the basin while 

rest of the stations exhibits inter-annual variability ranging from 1.0%-1.8%. The results of 

this study will be useful for the reliable estimation of supplemental irrigation water 

requirements. 

 In order to detect trends in IWR, the MK-test and Sen's slope have been used for 

the 51-year period. For Kharif season increasing trend is detected at 88% of the stations, and 

remaining 12% of the stations show non-significant increasing trend. Further, significant 

positive slopes are dominant for wheat crop, (with 63% of the stations). For summer paddy, 

50% of the stations show significant increasing trend and rest 50% shows non-significant 

increasing trend. The IWR for Kharif and Rabi seasons are increasing at the rate of 3.627 

mm/yr and 1.264 mm/yr respectively. These changes are characterized by a relative increase 

in Kharif IWR by 47%, while Rabi IWR by 23%.  

Overall, the results of the study show an increase in IWR for agricultural crops it 

may be due to high variability of rainfall pattern, rise in temperature, wind speed and 

decrease in RH. These findings shall be helpful in more realistic planning and efficacious 

utilization of basin water resources. 
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In a recent study by Mishra et al., (2014), developed a relationship between Soil 

Conservation Service Curve Number (SCS-CN) and ETo. Since ETo is a important 

parameter in estimation of IWR, therefore an attempt has been made to develop a 

relationship between IWR and CN. In this study, the CN derived from rainfall-runoff data 

on seasonal scale (Kharif and Rabi season) has been related to IWR of same scale and high 

R2 values of 0.970 and 0.926 for Kharif and Rabi seasons are found for calibration period. 

The results are validated with R2 values of 0.957 and 0.954 for Kharif and Rabi seasons, 

respectively; indicating the existence of a strong IWR-CN relationship.  

The supportive results of the proposed model assume to be a good substitute for 

complex IWR assessment, particularly in the area where meteorological parameters are not 

easily obtainable.  

The four statistical downscaling models viz., Artificial Neural Network (RBF), 

Multilayer Perception (MLP), Multiple Linear Regression (MLR), Model Tree (MT), Least 

Square Support Vector Machine (LS-SVM) are used for comparative study. The results of 

analysis indicate that for each climatic variable, LS-SVM model is performing best followed 

by MT and ANN (MLP).  

The annual rainfall is projected for the period of 2011-2100 and it is expected to 

increase from year 2020s upto 2090 in range varying from 2.74 mm/decade to 18 

mm/decade. The annual rainfall is predicted to decrease for the period of 2091-2100. 

However for maximum temperature the increasing trend is predicted for the entire projected 

period and the highest temperature change is predicted for two decades i.e, 2021-2030 and 

2031-2040. The rate of change may vary from 0.1°C/decade to 0.5°C/decade for monsoon 

and 0.01°C/decade to 0.3°C/decade for post monsoon season. For the minimum and mean 

temperature the overall increasing trend is observed but for Tmin the highest temperature 

rise is expected in the period of 2061-2070. The change in magnitude for minimum 

temperature for monsoon season is varies from 0.2°C/decade to 0.7°C/decade, whereas for 

post-monsoon season the minimum temperature may vary from 0.02°C/decade to 

0.5°C/decade. It can be inferred that warming is expected to be more pronounced during the 

night than day. The relative humidity forecasts represent a significant decreasing trend for 

Kharif season and non-significant decreasing trend for rabi season for two decades i.e., 

2020s and 2090s period. The projected wind speed shows non-significant increasing trend 
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for the entire basin. Wind speed projections are highly uncertain with extremes in 2090s 

during Kharif season whereas for rabi season the uncertainty is for 2020s and 2050s period.  

The ETo have been predicted to increase in future for all months. Particularly, the 

change in ETo is more in the months of May to August due to the large projected changes in 

Tmax and Tmin variables. The peak is observed for the month of June 25 mm over 100 

years. 

The monthly IWR in future have been estimated using the projections of rainfall 

(downscaled from LS-SVM model) and CWR projections. The IWR for Kharif paddy crop 

is projected to increase by 84%, 71% and 32% in the 2020s, 2050s and 2090s respectively 

whereas, for Rabi wheat crop IWR is predicted to increase by 201%, 163%, and 91%, for 

the three decades (2020s, 2050s, and 2090s). However for summer paddy the IWR may 

increase by 184%, 215% and 90% for 2020s, 2050s and 2090s periods respectively.  

Keywords: SCS Curve Number method, Reference Evapotranspiration, Irrigation Water 

Requirement, Crop Water Requirement, Trend Analysis. 
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CHAPTER 1 

INTRODUCTION 

1.1       GENERAL 

It is generally believed that climate change would have adverse impact on rainfed as 

well as irrigated agriculture. Presently, about 90% of the global water utilization is for 

irrigation purpose, and over 40% of the crops are produced under irrigated conditions (Doll 

and Siebert, 2002). Further climate change may alter the spatial and temporal pattern of 

sectoral water demand (irrigation, industrial, domestic, environmental etc.) on global and 

regional scale. With the world’s growing population, it is expected that irrigated agriculture 

would have to be extended in future on large scale. However, it is not yet known whether 

there will be sufficient water available for the necessary extension. Thus, it is important to 

reliably quantify the future changes in irrigation water requirement (IWR) especially for 

those areas where agriculture is the primary activity in various river basins in India. 

  Surface irrigation schemes comprise of i) surface storage and/or diversion structures, 

ii) irrigation water distribution, iii) drainage network, iv) on farm development works etc. 

These schemes involve huge investment of capital and other resources. Irrigation schemes 

are planned to serve the purpose of providing adequate, timely and reliable water supply for 

the crops to meet their irrigation water requirement (IWR) over the life of project (usually 

50 to 100 years). Irrigation water requirements of crops are based on average fortnightly or 

monthly climatic data. Over the year variability is not considered in the irrigation schemes 

and also, it is assumed that irrigation water requirements shall be same over the years.  

 Planning horizon of irrigation schemes typically range from 50 years to 100 years. 

During this length of period, changes may occur in climatic variables of a given region and 

therefore irrigation water requirements may also change significantly. On supply side, water 

availability for irrigation may also get adversely affected. 

1.2  BACKGROUND OF THE STUDY 

Water resources management is of major concern in India, where agriculture is the 

key and most important activity playing a key role in sustainable development. Climate 

change affects agriculture due to higher temperature and rainfall variability. The available 

water resource may be altered due to change in rainfall pattern and increase in rate of 
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evaporation. It is of common knowledge that, higher evapotranspiration (ET) due to 

temperature rise demands greater amount of water for irrigation and, at the same time, a 

higher temperature causes change in crop physiology and shortens the crop growing period, 

which in turn reduces the irrigation days. These contradictory phenomena may, however, 

change the total irrigation water demand. Since water utilization in agriculture sector far 

exceeds water requirement in any other sectors, the knowledge of rain water and irrigation 

water utilization for agriculture becomes the key component in managing the water 

resources efficiently. Number of research studies have been carried out to investigate the 

impact of climate change in terms of trend and variability analysis of climatic factors such 

as temperature, rainfall, reference evapotranspiration (ETo) and pan evapotranspiration 

(ETp) (Schwartz and Randall, 2003; Garbrecht et al., 2004; Hegerl et al., 2007; Fu et al., 

2009; Saghravani et al., 2009; Hakan et al., 2010; Tekwa and Bwade, 2011). Scrutiny of 

literature indicates that there have been large number of studies to investigate possible 

changes in climatic variables like temperature and rainfall. Therefore, the studies analyzing 

climate change impacts on agriculture water demand are very important and need 

comprehensive investigations (Doll, 2002).  

Most of the current hydrologic models, water-management model, and crop growth 

models require an accurate estimation of reference evapotranspiration (ETo) for reliable 

assessment of crop water requirement (CWR) and irrigation water requirement (IWR). The 

accurate assessment of ETo is a key component for the quantification of supplemental 

irrigation water requirement of different crops during their critical growth periods. A large 

number of methods ranging from simple empirical to complex physical methods are 

available in literature to estimate ETo. The important and widely used methods are Penman, 

(1948); FAO-24 Penman, (1977); Priestley-Taylor, (1972); Hargreaves-Samani (1982); 

Turc, (1961); Jensen-Haise (1963); FAO-56 Penman-Monteith, (1965) etc. The above 

methods have been developed and tested for varying geographic and climatic conditions. 

Since empirical and semi-empirical methods have been developed for particular sets of 

conditions, their use is restricted to specific conditions only (Beven, 2001). Physical 

methods are based on physical processes between plant and atmosphere, and therefore, 

represent only point estimation of ETo, therefore, all such methods must be calibrated and 

validated with field data (lysimeter data) before use (Vorosmarty et al., 1998). The 

International Commission for Irrigation and Drainage (Allen et al., 1994) and the Food and 

Agricultural Organization (FAO-56) (Allen et al., 1998) have recommended the use of 
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physically based Penman-Monteith (PM) method for computation of reference/potential 

evapotranspiration using climatic data, specifically when sufficient meteorological data are 

available to ensure reliable estimates.  

Soil moisture condition (SMC) generally represents the moisture contained in the 

root zone depth of a soil profile (normally 1-2 m top layer) which can potentially evaporate 

and/or take active part in transpiration. Therefore, evapotranspiration (ET) is directly 

influenced by SMC. ET as such affects the land surface energy dynamics, climatology, 

hydrology, and ecology (Vinnikov et al., 1999; Moran et al., 2004). SMC depends on the 

water holding capacity that depends on the soil type. Furthermore, it is closely related with 

the potential maximum retention (or curve number), only parameter of the popular Soil 

Conservation Service Curve Number (SCS-CN) method, for a watershed can be 

characterized by a particular set of curve numbers with three distinct antecedent moisture 

conditions (AMC). Since these curve numbers are derived from the real rainfall-runoff data 

of a watershed (Mishra et al., 2008), they represent both watershed and its hydro-

meteorological characteristics. The CN parameter of SCS-CN method and ET has been 

investigated by Mishra et al., (2014). The linking of these two different concepts supported 

by the argument that the watershed characteristics (land use/treatment, soil type, climate 

etc.) which affect CN also influence the ET mechanism, albeit differently. Despite 

availability of number of models in literature, the accurate assessment of ET is a 

complicated task as it involves spatial and temporal heterogeneity in meteorological and 

climatic parameters, soil moisture status, surface cover type, soil classes and plant water 

availability etc. (Makkeasorn et al., 2006).  As per the knowledge ET is a major component 

in estimation of IWR and it is function of ET. Therefore, SCS-CN method and IWR 

relationship has to be investigated for simpler, yet reliable assessment of IWR at seasonal 

and watershed scales if rainfall runoff data of the basin is available. 

On a global scale, numbers of studies have been carried out to study the impact of 

climate change on irrigation water requirement (Elgaali et al., 2007; Rodriguez Diaz et al., 

2007; Yano et al., 2007; Sahid, 2011; Rehana and Majumdar, 2012). The aforesaid studies 

have focused on the estimation of projected irrigation water requirement using either of the 

following approaches (i) use of perturbation method for the generation of climate change 

scenario by GCM outputs, (ii) applying available downscale data for the generation of 

climate change scenario, (iii) employing modeling software for future prediction of IWR. 

Further some studies may provide erroneous estimation of future IWR (CWR-effective 
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rainfall) as this account for total rainfall instead of using effective rainfall. IWR is extremely 

sensitive to change in some of the climatic variables. Thus, more accurate climate change 

scenario for predictions of meteorological parameters (evapotranspiration, temperature, 

wind speed, relative humidity and rainfall) would be needed. It is necessary to consider all 

those climatic variables which affect the ETo/CWR/IWR in order to understand the changes 

in the future irrigation water demand. The downscaling model (LS-SVM) is well accepted in 

the climate change impact assessment studies in the recent years by the research community 

(Tripathi et al., 2006)  

The study has been carried out for Seonath river basin which is part of the Mahandi 

river system in Chhattisgarh State, India. The study area falls in dry sub-humid climatic 

regions of India. The average annual rainfall in Seonath river basin varies from 1000 mm to 

1255 mm. Nearly 85% of the mean annual rainfall occur in monsoon period (June to 

September). Rainfall in remaining part of the year is very little and therefore, most of the 

tributaries of Seonath River get dried by mid-winter season (i.e., end of December month). 

The pattern of water utilization for agriculture has also changed over the years. Therefore, 

assessment of irrigation water requirement (IWR) at the micro-regional level and its impact 

on agriculture is necessary for developing strategies for mitigation of water stress in the 

basin. In the light of literature review and emerging facts in the respect of irrigation water 

supply and demand imbalance, present study has been taken up to assess long-term changes 

in IWR  

1.3  RESEARCH OBJECTIVES 

Based on the above discussion, specific objectives for the present research work are 

stated below: 

1. Assessment of temporal trends and spatial variability of key meteorological variables 

in the study area. 

2. Estimation of region specific pan coefficient (Kp) on monthly basis to compute 

reference evapotranspiration (ETo). Inter-comparison of available models for 

estimation of ETo and conducting sensitivity analysis of ETo with respect to key 

climatic variables. 
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3. Assessment of region specific crop coefficient for different crop growth stages, crop 

water requirement (CWR) and irrigation water requirement (IWR) for major crops 

and long term trend analysis in ETo and IWR.  

4. Development of relationship between Soil Conservation Service Curve number 

(SCS-CN) and IWR. 

5. Application of different statistical downscaling models, their inter-comparison for 

future prediction of climatic variables and its impact on irrigation water requirement 

(IWR). 

1.4  ORGANIZATION OF THESIS  

The thesis is organized in nine chapters as follows:  

Chapter One: The first chapter briefly describes the importance and problems related to 

IWR, the present state-of-the-art knowledge, and outline the research objectives.  

Chapter Two: The second chapter describes the review of relevant literature on different 

components of study such as i) long term trends in climatic variables, ii) ET estimation 

methods, their relative merits and impact of climatic variables, iii) application of SCS-CN 

methodology in hydrological studies and iv) impact of climate change on irrigation water 

requirement.  

Chapter Three: This chapter presents description of the study area and data used to carry 

out the study.  

Chapter Four: This chapter presents the details of study, methodology and result of long 

term trends in hydro-meteorological variables in the Seonath river basin.  

Chapter Five: This chapter deals with comparative study of various methods for estimation 

of reference evapotranspiration (ETo), seasonal variability of pan coefficient, and sensitivity 

analysis of ETo with different climatic variables. 

Chapter Six: Chapter six presents the detailed procedure used for estimation of crop 

coefficient, CWR and subsequently IWR of major crops in the basin. Further the monthly 

ETo is corrected with crop coefficients for each crop to compute CWR which in turn are 

used to compute the IWR of the crop. Furthermore, detailed procedure to estimate trend and 

abrupt changes in ETo and IWR is discussed. 
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Chapter Seven: This chapter presents the mathematical rationale developed to propose the 

relationship between irrigation water requirement and curve number (IWR-CN). 

Furthermore, the chapter also discusses the results of developed model, its validation and 

criteria for model evaluation.   

Chapter Eight: This chapter deals with downscaling of National Centers for Environmental 

Prediction (NCEP) data and prediction of future hydro meteorological data using Hadley 

Centre Coupled Model, version 3 (HadCM3) data by different downscaling methods and 

identification of best prediction model for the study area. The results obtained have been 

used to determine the long term trend and variability in climatic variables and its effect on 

IWR for future years. 

Chapter Nine: Important results of the research work are synthesized in this chapter. 

Certain conclusions are drawn and scope for future research work is also mentioned in this 

chapter. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

This chapter deals with the review of literature on important aspects of the present 

study. In the light of major objectives of the present research work, the literature review is 

covered in four sections. The first section presents the review of literature on studies of 

trends in climatic variables in India. Second section includes commonly employed reference 

evapotranspiration (ETo) estimation methods, their limitations and impact of climatic 

variables in ETo computation. The third section deals with the concept of popular SCS-CN 

method and its numerous applications in different areas of hydrology. Last section 

incorporates climate change and its impact on irrigation water requirement.  

2.1  GENERAL 

Studies on Irrigation Water Requirement (IWR) are one of the most important 

components for regional water budget for planning and management of water resources. 

IWR refers to the depth of irrigation water, excluding rainfall, stored as soil moisture or 

ground water that is required consumptively for crop production (USDA, 1970). It is the 

amount of water required during the cropping period for successful crop cultivation and it is 

estimated by subtracting the amount of water available to the crop through natural 

precipitation, i.e., rainfed irrigation, and available soil moisture from the crop 

evapotranspiration. Therefore, IWR includes estimation of reference evapotranspiration 

(ETo), crop water requirement (CWR), soil moisture and effective precipitation. Complete 

methodology for estimation of IWR has been summarized in the flowchart presented in 

Figure 2.1.  
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Figure 2.1 Flowchart describing methods and climatic variables involved in the assessment of IWR 
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The first important parameter in IWR assessment is ETo, which can be calculated by 

numerous methods available in literature. The next important parameter in IWR estimation 

is crop water requirement. It is an empirical estimate of the total amount of water required 

for a crop growing in a given area under known climatic conditions so that crop production 

is not limited by lack of water. The CWR is computed using ETo and a crop coefficient 

(Kc). The third and one of the most significant parameters in IWR assessment is effective 

rainfall (ER). It is defined as a part of actual rainfall that is available to meet the potential 

transpiration of cropped area. The amount of effective rainfall depends and varies just as 

total rainfall varies (FAO, 1975). Several methods are reported in literature for the 

estimation of ER, such as i) nomograph suggested by Hershfield (1964); ii) Renfro Equation 

method by Chow (1964); iii) U.S. Bureau of Reclamation method (USBR) given by Stamm 

(1967); iv) empirical table given by Brouwer and Heibloem, 1986; and v)  a soil–water 

balance model (Patwardhan et al. 1990). Yet another method of ER estimation is USDA-

SCS method recommended by the United States Department of Agriculture (USDA, 1967). 

It is one of the widely used and accepted methods for ER estimation (Cuenca 1989; Jensen 

et al. 1990; Kuo et al. 2006).  

Global warming due to emission of green house gases such as CO2 causes changes 

and variability in meteorological factors such as air temperature, relative humidity, solar 

radiation and rainfall (IPCC 2007). Due to these changes in meteorological variables the 

evapotranspiration is potentially affected and thus causes the changes in irrigation water 

requirement of crops in different regions (Elgaali et al., 2007; Rodriguez Diaz et al., 2007; 

Yano et al., 2007; Sahid, 2011; Rehana and Majumdar, 2012).  

2.2  STUDIES ON CLIMATIC TREND AND VARIABILITY IN I NDIA 

2.2.1  Temperature Trend 

 In India, numerous studies have been carried out to detect and quantify long term 

changes in temperature. The temperature trend and variability have been better estimated 

using long-term data series. A study conducted by Hingane et al. (1985) has shown 

increasing trend in mean annual temperature. During 20th century, an analysis of long term 

temperature data for 73 stations (1901-1982) has shown increasing trend in mean annual 

surface air temperatures over India. It has been observed that about 0.4 °C increase in 

temperature has taken place on country scale during the period of 8 decades. The study 

carried out by Sinha Ray et al. (1997) has shown that the changes in mean annual 
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temperature are partly due to rise in the minimum temperature related to enhanced extent of 

urbanization. Examination of long-term variation in the annual mean temperature of highly 

industrial and densely populated cities such as  Mumbai and Kolkata have shown increasing 

trend in annual mean temperature with change of 0.84°C and 1.39°C over 100 years, 

respectively (Hingane, 1995). These warming rates are much higher than the values reported 

for the country as a whole. Rupa Kumar et al. (1994) have shown that the countrywide mean 

maximum temperature had risen by 0.6°C and mean minimum temperature had decreased 

by 0.1°C. Pant and Kumar (1997) analyzed trends in annual and seasonal air temperatures 

from 1881 to 1997 and reported that there has been increasing trend in mean annual 

temperature with increase of  0.57°C over 100 years. However, as the trend of mean 

minimum temperature is not statistically significant, they concluded that most of the 

increase in mean surface air temperature over India is due to the increase in daytime 

temperature. The trend and change in magnitude of temperatures over India/Indian sub-

continent for last century has been noticed to be mostly consistent with the global trend and 

magnitude. In India, increasing trend in temperature is mainly found in winter and post-

monsoon seasons. The non-significant trend is found in monsoon temperatures in many part 

of country except for Northwest India which shows significant decreasing trend. Bhutiyani 

et al. (2007) concluded that North West Himalayas (NWH) of India has shown rise in air 

temperature due to increases in maximum and minimum air temperatures, and warming is 

more pronounced in maximum temperature. They have accomplished that there were inter-

connection between the precipitation and temperature variation in the NWH till late 1960s. 

However, after 1970s, these connections appear to become weaker. It may be due to 

presence of other factors like increase in greenhouse gases in the atmosphere. Mall et al. 

(2007) concluded that all India mean annual temperature showed significant warming trend 

of 0.05°C/10 year during the period 1901-2003. The recent period from 1971 to 2003 has 

seen a relatively accelerated warming of 0.22°C/10 year, which is largely due to 

unprecedented warming during the last decade. Dhorde et al. (2009) reported air 

temperature trends of densely populated cities of India (Delhi, Kolkata, Mumbai and 

Chennai). They reported a significant increasing trend in maximum temperature during 

winter and monsoon at Mumbai city whereas remaining cities recorded significant increase 

in minimum temperature during winter. They reported that the negative change in air 

temperature is due to increase in population.  
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2.2.2  Rainfall Trend 

Several studies have been conducted to detect the trend and variability in rainfall 

over India. These studies do not show clear rising or falling trend in mean annual rainfall 

over India (Sarkar and Thapliyal, 1988; Thapliyal and Kulshrestha, 1991). The trend 

analysis of mean annual rainfall has shown that five year running mean has deviated from 

normal rainfall within ±1 standard deviation (Thapliyal and Kulshreshtha, 1991). However 

the monsoon rainfall shows no significant trend on a long term basis, mostly for overall 

India (Mooley and Parthasarathy, 1984), but few parts of India shows significant long term 

trends in rainfall observed by different researchers (Raghavendra, 1974; Chaudhary and 

Abhyankar, 1979). A study has been carried out by Rupa Kumar et al. (1992) to show trends 

in monthly rainfall records of 306 stations falling in India. They found that area of north-

east India, north-west peninsula and north-east peninsula show falling trend in summer and 

monsoon rainfall over India. However, they also reported a rising trend in monsoon rainfall 

for north-west, west coast and central peninsular India. The decreasing percentage change 

varies between -6 to -8% over 100 years whereas the increasing percentage change ranges 

from 10 to 12% over 100 years. Though these trends are statistically significant, but they 

account for a relatively small part of the total variance in the rainfall. Srivastava et al. (1998) 

reported the existence of a definite trend in rainfall over smaller spatial scale. Mirza et al., 

(1998) carried out trend and persistence analysis for Ganges, Brahmaputra and Meghna river 

basins. They found that precipitation in Ganges basin is by and large stable. Precipitation in 

one sub division in the Brahmaputra basin shows a decreasing trend and another shows an 

increasing trend. One of three subdivision of the Brahmaputra basin shows a decreasing 

trend while another shows an increasing trend. Sinha Ray and De (2003) summarized the 

existing information on climate change and trends in the occurrence of extreme events with 

special reference to India. They concluded that all India rainfall and surface pressure show 

no significant trend except some periodic behaviour. The frequency of heavy rain events 

during the south-west monsoon has shown an increasing trend over certain parts of the 

country. On the other hand, decreasing trend has been observed during winter, pre-monsoon 

and post-monsoon seasons. Lal (2001) and MOEF (2004) reported a large random variation 

in rainfall over India, with no regular trend is noticeable on annual and seasonal scales. 

However, rising trend in the seasonal rainfall have been found in North Andhra Pradesh, 

West Coast, and Northwest India and decreasing trend has been found for Orissa, East 

Madhya Pradesh and Northeast India during recent years. Kumar et al. (2010) also studied a 

rainfall trend on monthly, annual and seasonal scales for the period of 135 years (1871-



12 

 

2005) for 30 sub-regions of India. They found a rising trend in annual rainfall for half of the 

sub-divisions, but only Coastal Karnataka, Punjab and Haryana shows statistically 

significant trend. Likewise, only one sub-region viz., Chhattisgarh shows a significant 

falling trend. Overall, on an Indian scale no significant trend has been detected for annual, 

seasonal and monthly rainfall. 

2.2.3  Relative Humidity Trend 

Very few studies have been reported on relative humidity (RH) trend over India. A 

study has been carried out by Singh et.al, 2008 to detect long term trend in rainfall and 

relative humidity for nine river basins located in northwest and central India (viz., Lower 

Indus, Ganga, Brahamani and Subarnarekha, Mahanadi, Tapi, Narmada, Mahi, Sabarmati, 

Luni) over 90-100 years. They found an increasing trend in rainfall and relative humidity for 

almost all the river basins. The maximum increase in rainfall is observed for lower Indus 

followed by Tapi river basin. Further, an increasing trend in relative humidity has been 

reported on seasonal and annual scale for majority of river basins. An increase in annual 

mean relative humidity for six river basins (Western river basins) has been found in the 

range of 1–18% of mean per 100 years, while a decrease for two river basins (Brahamani 

and Subaranrekha river basin) 1-13% of mean per 100 years has been observed. The net 

increase in RH is by 2.4% of mean per 100 years. 

2.2.4  Reference Evapotranspiration Trend 

Bandyopadhyay et al. (2009) has analyzed the temporal trend of evapotranspiration 

(ET) along with its region wise spatial variation for 32 years (1971–2002) for 133 selected 

stations over different agro-ecological regions of India. Reference evapotranspiration (ETo) 

has been estimated by the globally accepted FAO Penman Monteith method. These ETo 

values have been then analyzed by a nonparametric Mann–Kendall test with modified 

effective sample size approach for serially correlated data and Sen’s slope to determine the 

existence and magnitude of any statistically significant trend over the time period 

considered in the study. They found a significant decreasing trend in ETo for all over India 

during the study period, which may be mainly caused by a significant increase in the relative 

humidity and a consistent significant decrease in the wind speed throughout the country. 

Duhan et al., 2012 also analysed a trend in ETo for Tons river basin, Madhya Pradesh over 

the period of 34 years (1969-2003). They found a decreasing trend in ETo on annual and 
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seasonal scales over the years. This is mainly due to increase in air temperature and net solar 

radiation. The annual ETo is decreased at the rate of -1.75 to -8.98 mm/year. 

Mishra et al. (2009) examined the affect of climate change on rainfall in the 

Kansabati basin, West Bengal, India. They studied trends in future rainfall based on annual, 

wet and dry periods using global climate model (GCM) and scenario uncertainty. They 

found that there is probable increase in annual and monsoon rainfall trend during 2051–2100 

for A2 scenario and a decreasing trend in dry period rainfall for B2 scenario. The 

persistence in dry period rainfall has been observed to be highest for north-west part of the 

basin. Patra et al. (2012) studied temporal variation in monthly, seasonal and annual rainfall 

for Orissa state, India during 1871 to 2006. Long term changes in rainfall characteristics 

have been determined by both parametric and non-parametric tests. The analysis revealed 

non-significant decreasing trend in annual as well as monsoon rainfall, whereas increasing 

trend in post-monsoon rainfall over the state of Orissa. Rainfall during winter and summer 

seasons showed a rising trend. Based on departure from mean, rainfall analysis also showed 

an increased number of dry years compared to wet years after 1950. They found that 

changing rainfall trend during monsoon months is a major concern for the rainfed 

agriculture and also this will affect hydro power generation and reservoir operation in the 

region. The studies relevant to the study area of present research are summarized and 

presented in Table 2.1. 

2.2.5  Remarks  

The studies reviewed above pertain to different basins and regions of India including 

climate change studies of Mahanadi river basin. The several studies on Mahanadi basin dealt 

with trend analysis of rainfall and relative humidity only. Number of studies have been 

carried out to detect trend in rainfall and temperature in India, however studies on trend 

analysis of other meteorological variables (relative humidity and wind speed) are limited. 

Therefore, trend and variability analysis of relative humidity and wind speed also need to be 

analysed. As long  term changes in climatic variables viz., rainfall, temperature, relative 

humidity and wind speed may lead to changes in evapotranspiration and in turn irrigation 

water requirement on long term basis. Therefore, it is important to carry out detailed 

analysis of changes in climatic variables and their impact on regional irrigation water 

requirement. 
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Table 2.1 Studies on Climatic Variability in India 

Authors Study Area and period Climatic 
Variable 

Major Findings/Remarks 
 

Kumar et al., 

(2010) 

36 meteorological sub-

divisions of India,  

(1871-2005) 

Rainfall Coastal Karnataka, Punjab and Haryana 

show statistically significant trend and 

Chhattisgarh shows a significant falling 

trend. Overall for India, no significant 

trend has been observed for annual, 

seasonal and monthly rainfall. 

Singh et al., 

(2008) 

Nine river basin located 

in north west and central 

part of India (Lower 

Indus, Ganga, 

Brahamani and 

Subarnarekha, 

Mahanadi, Tapi, 

Narmada, Mahi, 

Sabarmati, Luni) 

Rainfall and 

Relative Humidity 

Increasing trend in rainfall and relative 

humidity for almost all the river basins. 

The maximum increase in rainfall is 

observed in lower Indus basin followed 

by Tapi river basin. Increasing trend in 

relative humidity has been reported on 

seasonal and annual scale for majority 

of river basins. 

Mall et.al, 

(2007) 

India, (1901-2003) Temperature Significant increasing trend in mean 

annual temperature at the rate of 

0.05°C/10 year during the period 1901-

2003. The recent period from 1971 to 

2003 has seen a relatively accelerated 

warming of 0.22°C/10 year, which is 

largely due to unprecedented warming 

during the last decade. 

Bandyopadhyay 

et al. (2009) 

Agro-ecological regions 

of India, (1971-2002)  

Reference 

evapotranspiration 

Significant decreasing trend in ETo for 

all over India during the study period, 

mainly caused by a significant increase 

in the relative humidity and a constant 

significant decrease in the wind speed. 
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2.3 EVAPOTRANSPIRATION (ET) 

Evapotranspiration (ET), the major component of the hydrologic cycle, is important 

for planning and operation of irrigation systems. ET depends on several climatological 

factors, such as temperature, humidity, wind speed, radiation, and type and growth stage of 

the crop. ET can be either directly measured using lysimeter, catchment water balance, and 

Pan evaporation approaches or indirectly by using climatological data. Lysimeter, a popular 

instrument for measuring ET, is often expensive in terms of its construction, and its 

operation requires skill. It is, however, most accurate if surface cover condition of the 

catchment perfectly matches the inside cover conditions of the lysimeter. However, exact 

simulation of prototype field condition in lysimeter is practically not possible and hence the 

results obtained may not be very accurate. Furthermore, the lysimeter experiment needed 

extensive care, longer time and high cost for its operation which is normally not practicable. 

Nevertheless, the water balance method yields the best estimates of mean long-term 

evaporation from large (plain) river basin (Gidrometeoizdat, 1967). However, the estimation 

of ET using water balance method is often limited due to inconvenience and inaccuracy in 

measurement of ground water inflow and outflow especially at shorter time span. 

Furthermore, pan evaporation method is one of the simplest and least time consuming 

method of irrigation scheduling and has been used successfully in most parts of the world 

(Prestt, 1986). However, the common problem is the selection of accurate pan factor which 

depends on the surrounding of the pan. Further, crop coefficients, which depend on the crop 

characteristics and local conditions, are used to convert evapotranspiration (ET) to crop ET. 

Evapotranspiration (ET) is defined as “the rate of evapotranspiration from a hypothetical 

crop with an assumed crop height (0.12 m) and a fixed canopy resistance (70 s/m) and 

albedo (0.23) which would closely resemble to evapotranspiration from an extensive surface 

of green grass cover of uniform height, actively growing, totally shading the ground and 

under unlimited water condition” (Allen et al., 1998).  

A large number of methods varying from simple empirical to complex physically 

based have been developed for different parts of the world. These methods utilize the 

climatological data and can be grouped into three broad categories i.e. temperature based, 

radiation based, and combination theory based methods. Since solar radiation provides the 

energy required for the phase change of water, several methods (Makkink, 1957; Turc, 

1961; Priestley and Taylor, 1972; Doorenbos and Pruitt, 1977) have been developed for ET 
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estimation. The radiation based methods show good results in humid climates where the 

aerodynamic term is relatively small, but the performance in arid condition are erratic and 

normally underestimate evapotranspiration. Turc (1960) developed a formula based on solar 

radiation and mean air temperature for 10 days period which was later modified by Turc 

(1961). Turc radiation method is the best method for ET estimation for humid locations. 

Priestley-Taylor (1972) method is the approximation of Penman method based on the fact 

that for very large areas the second term of the Penman equation is approximately thirty 

percent that of the first. Jensen-Haise (1963) method is often classified as a solar radiation 

method, however air temperature is also used and the coefficients used in the model are 

based on other inputs such as elevation and long term mean temperature (Burman et al., 

1983). 

In temperature based ET method, a relationship has been developed between air 

temperature and ET. Hargreaves, Thornthwaite, and Blaney-Criddle etc. are the few 

examples of temperature-based ET estimation methods. However, temperature-based 

methods are empirical and require local calibration in order to achieve satisfactory results. 

Thornthwaite (1948) correlated mean monthly temperature with ET for the east-central US 

and developed an equation which is widely used throughout the world. Thornthwaite 

method usually underestimates ET. However, simplicity in generating the seasonal 

distribution of ET is one of the strengths of the method (Jensen et al., 1990). A formula 

developed by Makkink (1957) for estimation of ET based on solar radiation and air 

temperature is still employed in Western Europe. Makkink formula used the energy term of 

the Penman equation, solar radiation, and a constant (negative and small in magnitude). The 

Blaney and Criddle (1950) procedure for estimating ET is well known in the western USA 

and has been used extensively elsewhere (Singh, 1989). The method uses temperature as 

well as daily sunshine duration, minimum daily relative humidity, and the day-time wind 

speed at 2 m height. The model is quite sensitive to the wind speed variable and somewhat 

insensitive to the estimate of relative humidity. Christiansen (1968) and Christiansen and 

Hargreaves (1969) reduced weather data requirements up to only estimated extraterrestrial 

radiation, air temperature and calculated the difference between maximum and minimum air 

temperatures to predict the effects of relative humidity and cloudiness. These efforts resulted 

in a very simple and accurate Hargreaves and Samani (1985) method for ET estimation. 

This method is most suitable for both arid and humid locations, if only maximum and 

minimum temperatures are available. The combination methods have been developed by 
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combining the energy balance and mass transfer approaches. These methods combine 

fundamental physical principles and empirical concepts based on standard meteorological 

observations and have been widely used for estimation of ET from climatic data. Penman 

(1948) first derived the combination equation by combining components of energy balance 

and aerodynamics. Later, many scientists modified the Penman equation by incorporating 

stomatal resistance, modifying the wind function and vapor pressure deficits (Penman, 1963; 

Monteith, 1965; Wright and Jensen, 1972; Doorenbos and Pruitt, 1977; Wright, 1982). 

Penman-Monteith, FAO-24 Penman, 1982 Kimberly-Penman, and FAO-24 corrected 

Penman are the few examples of combination methods. An ASCE Committee (Jensen et al., 

1990) evaluated the performance of 20 different methods against the measured ET for 11 

stations around the world under different climatic conditions. The Penman-Monteith method 

has ranked as the best method for all climatic conditions. However, the subsequent ranking 

of other methods varied with climatic condition. A user friendly Decision Support System 

(DSS) was developed for ET estimation by George et al. (2002) which helps the user to 

decide the best ET method following ASCE ranking based on the data availability and the 

prevailing climatic condition. 

As discussed above, several empirical, semi-empirical, and physically based 

methods are available and these differ from each other based on input data availability, 

accuracy and use over the last 50 years in different parts of the world. The applicability of 

ET estimation methods are well documented in the text books related to hydrology and 

meteorology. The following text discusses some major uncertainties in ET methods. The 

available ET methods have been shown to produce inconsistent results, as much high as 500 

mm/yr (Amatya et al., 1995; Federer et al., 1996; Lu et al., 2005). In ET estimation by using 

remote sensing, an uncertainty of 20-30% in western riparian corridors of cottonwood has 

been reported (Nagler et al., 2005). Study of Cleugh et al. (2007) revealed that most 

sophisticated Penman-Monteith method using MODIS remote sensing data and surface 

meteorology as input also encountered an error between 20 and 25%. However, this 

uncertainty is due to inaccuracy in measurement of input parameters. It is worth noting here 

that the methods like Penman-Monteith are high data demanding and are also sensitive to 

data. Furthermore, the simple methods like Blaney-Criddle (1950), Thornthwaite (1948) and 

Hargreaves (1982), employing only temperature data, are not very accurate especially under 

extreme climatic conditions. These methods underestimated (up to 60%) ET in windy, dry, 

and sunny areas, while in calm, humid, and cloudy areas, the ET is overestimated (up to 
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40%). Brutsaert (1982) reported that in the case of evaporation besides sampling; there is 

also the problem of determining it at a point location. However, in many situations, a single 

meteorological station data represents the climate of a large catchment, a poor spatial 

representation. This problem is frequently encountered in ET calculation using formulae 

requiring large data input. Xu and Singh (2002) compared the performance of the five best 

ET estimation methods from each category, viz., Hargreaves and Blaney-Criddle 

(temperature-based category), Makkink and Priestley-Taylor (radiation-based category), and 

Rohwer (mass-transfer-based category) with respect to Penman-Monteith (Allen et al., 

1998), and found their acceptable performance when the parameters are locally determined. 

They also concluded that the differences of performance between these best methods 

selected from each category are smaller than the differences between the different methods 

within each category as reported in earlier studies (for example, Xu and Singh, 2000, 2001). 

Though the Penman-Monteith method is usually considered as a standard method, it 

performs well on saturated surfaces, and specifically, when its assumptions are met and 

reliable input data are available. However, several researchers raise an important question: 

Is the Penman model the most relevant ET model for catchment modelling? (Qudin et al., 

2005). Morton (1994) critically states on Penman’s approach as follows: “The use of the 

Penman-Monteith equation to estimate evaporation from hydrologically significant areas has 

no real future, being merely an attempt to force reality to conform to preconceived concept 

derived from small wet regions”. Therefore the above mentioned studies give the 

performance of different ET estimation methods in extreme situations. 

2.3.1  Impact of meteorological variables on Evapotranspiration 

Evapotranspiration (ET) estimates from cropped field are essential in studies related 

to climate, hydrology and agricultural water management. The accurate assessment of 

reference evapotranspiration (ETo) is essential where water resources are limited. There are 

numbers of climatic variables which effect ET estimates viz., temperature, relative humidity, 

sunshine duration, solar radiation and wind speed. When the required set of climatological 

data is available for a location, ETo is often calculated using combination method. This 

method might be used to assess the validity of the coefficients in other ETo models, but the 

calibration and validation of the coefficients requires that the sensitivity of ETo to climate 

variables are determined (Doorenbos and Pruitt, 1975; Jensen et al., 1990; Steiner et al., 

1991). To understand the relative role of each climate variable in calculation of ETo, 

sensitivity analysis is required (Saxton, 1975). By definition, sensitivity analysis is the study 
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of how the variation in the model input parameters affects the output of a model (Saltelli et 

al., 2004). A sensitivity analysis shows the effect of change of one factor on another 

(McCuen, 1973). If the change of the dependent variable of an equation is studied with 

respect to change in each of several independent variables, the sensitivity coefficients will 

show the relative importance of each of the variables to the model solution. Saxton (1975) 

derived sensitivity coefficients by differentiating the combination terms for the Penman 

(1948) method with respect to each variable. Results showed that the equation is most 

sensitive to net radiation. Smajstrla et al. (1987) defined the sensitivity coefficient as the 

slope of the curve of ETo versus the climatic variable being studied. Piper (1989) reported 

that the faulty measurement of wet bulb temperature, sunshine hours and wind speed causes 

the similar relative effect on ETo estimates. In the same context, Ley et al. (1994) performed 

sensitivity analysis for Penman-Wright ETo model (Penman-Kimberly) to found inaccuracy 

in parameters and climatic data by a factor perturbation simulation approach for Washington 

State. This model is mainly sensitive to maximum and minimum temperatures. Rana and 

Katerji (1998) analyzed the sensitivity of the Penman-Monteith method for semi-arid 

climate for a reference grass surface, grain sorghum, and sweet sorghum in Italy. They 

found reference grass surface is sensitive to available energy and aerodynamic resistance 

whereas sweet sorghum, model is sensitive to vapour pressure deficit and for grain sorghum 

under water stress condition, model is mostly responsive to canopy resistance. Recently, 

Irmak et al. (2006) found sensitivity coefficient of the standardized daily ASCE-Penman-

Monteith equation for different climates of the United States. However, various researchers 

reported the significant climatic variables which effects ETo are solar radiation in Russia 

and United States (Peterson et al., 1995), in China (Gao et al., 2006; Liu et al., 2004; 

Thomas, 2000) and in Israel (Cohen et al., 2002) while others factor effects the ETo 

estimates is wind speed in Australia (Rayner, 2007; Roderick et al., 2007), in Tibetan 

Plateau (Chen et al., 2006; Zhang et al., 2007), in Canadian Prairies (Burn and Hesch, 

2007), in Iran (Dinpashoh et al., 2011) and North East India (Jhajharia et al., 2011), and 

relative humidity is most sensitive to ETo in India (Chattopadhyay and Hulme, 1997), as 

well as to maximum temperature in China (Cong and Yang, 2009) and in western half of 

Iran (Tabari et al., 2011a). The investigation by Yu et al. (2002) concluded that solar 

radiation and wind speed are the most sensitive and the least sensitive variables of the 

modified Penman formula, respectively and the relative humidity has the property that 

increasing their values will decrease the evapotranspiration estimates. A sensitivity analysis 

of Penman–Monteith method has been performed by Bois et al. (2005) showed that wind 
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speed and solar radiation temporal variability have a great impact on potential 

evapotranspiration computation. Therefore, wind speed omission in empirical formulae can 

thus be an important source of uncertainties for ET estimation (possible maximum 

evapotranspiration or potential ET), especially under Mediterranean conditions. Radiation 

based methods, using remotely sensed solar radiation from satellites images, are more 

accurate than temperature based methods in Oceanic and Mediterranean climates. Gong et 

al., 2006 calculated the spatial variations of long-term mean monthly and yearly sensitivity 

coefficients. They found relative humidity to be most sensitive climatic variable, followed 

by solar radiation, temperature and wind speed. They also reported that the middle and 

lower regions of the basin shows large spatial variability of the sensitivity coefficients for all 

the climatic variables. The above literature review is summarized in Table 2.2. 

Table 2.2 Various methods of ETo estimation and their sensitivity to climatic variables 
 

Author Study Area and period Major Findings 

Inter-comparison of ET estimation methods 

Tabari et al. 
(2011a) 

Rasht station in northern Iran. Radiation-based Irmak and Ritchie methods, the 
temperature-based Blaney–Criddle method, 
Hargreaves-M4 method and the Snyder’s pan 
evapotranspiration method are best suitable methods 
for humid climate of Iran. 

Praveen et al. 
(2011) 

Ponnampet, South Kodagu, 
India (2009) 

The Penman-Monteith, Blaney-Criddle and Pan 
evapotranspiration methods are the best methods to 
estimate evapotranspiration in the study area. The 
Penman method can be used to get somewhat 
reasonable estimates though it overestimates the 
evapotranspiration a little. 

Lu et al. 
(2005) 

39 forested watersheds 
in the southeastern United States 
(1961-1990) 

Based on the availability of input data and 
correlations with AET values, the Priestley-Taylor, 
Turc, and Hamon methods have been recommended 
for regional applications in the southeastern United 
States. 

Sensitivity of ET with climatic variables 

Cleugh et al. 
(2007) 

Virginia Park, northern 
Queensland and Tumbarumba, 
south east New South Wales 

ETo estimated using Penman-Monteith method gives 
an error between 20 and 25% if MODIS remote 
sensing data and surface meteorology data are used as 
input. The uncertainty is due to inaccuracy in 
measurement of input parameters.  

Gong et al. 
(2006) 

Changjiang (Yangtze River) 
basin, China, (1960-2000) 

They found relative humidity to be most sensitive 
climatic variable, followed by solar radiation, 
temperature and wind speed. Also the middle and 
lower regions of the basin are highly sensitive to 
climatic variables. 
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2.3.2  Remarks 

Over the last 50 years, several empirical, semi-empirical, and physically based 

methods have been developed for the estimation of ETo in different parts of the world 

considering availability of meteorological data. According to past studies Penman-Monteith 

method is usually recommended as standard method for ETo estimation. The Penman-

Monteith method is a combination of energy balance and mass transfer approach for 

estimation of ETo. This method is high data demanding and accuracy of this method is 

dependent on the accuracy of recorded meteorological variables which forms the major 

drawback of this method. Accurate observations of all the meteorological variables may not 

be available on long term basis in many regions of the world; particularly in India. Thus, the 

application of temporally varying ET (estimated from complex methods) is nothing but to 

increase the complexity in calculation of irrigation water requirement. Choice of a method 

for ETo estimation depends on the following factors: availability of reliable long term 

climatic data, the intended use, and the regional climatic condition.  
 

2.4  SCS-CN METHOD 

The SCS-CN method is a well accepted and widely practiced technique in applied 

hydrology because it is simple, easy to understand and applicable to watersheds with 

minimum of hydrologic information requirements. Beside the task for which method was 

originally intended, various advanced applications of the methodology have also been 

reported, and the existence of potential to extend the method in other areas advocated. 

The SCS-CN method is based on the water balance equation along with two basic 

assumptions. The first assumption associates the ratio of actual direct surface runoff (Q) to 

the total rainfall (P) (or maximum potential surface runoff) to the ratio of actual infiltration 

(F) to the amount of the potential maximum retention (S). The second assumption relates the 

initial abstraction (Ia) to S and also described as potential post initial abstraction retention 

(McCuen, 2002). Expressed mathematically: 

(a) Water balance equation 

P = Ia + F + Q          (2.1) 
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(b) Proportional equality (First hypothesis) 

�

����
=

�

�
          (2.2) 

(c) Ia-S relationship (Second hypothesis) 

Ia =λS           (2.3) 

The values of P, Q, and S are in depth dimensions, while the initial abstraction 

coefficient (λ) is dimensionless. Though the original method was developed in U.S. 

customary units (inch), an appropriate conversion to SI units (cm) is possible (Ponce, 1989). 

In a typical case, a certain amount of rainfall is initially abstracted as interception, 

infiltration, and surface storage before runoff begins. A sum of these three at initiation of 

surface runoff is usually termed as “initial abstraction”. 

The first hypothesis (Eq. 2.2) is primarily a proportionality theory (Figure 2.2). This 

proportionality concept incorporated three major envelopes of interpretation, viz., (i) 

reconciles the popular concept of partial area contributing with the curve number (Hawkins, 

1979); (ii) undermines the source area concept (Steenhuis et al., 1995), allowing runoff 

generation only from saturated or wetted fractions of the watersheds; and (iii) ignores the 

statistical theory (Moore and Clarke, 1981; Moore, 1983; 1985), based on the runoff 

production from only saturated (independent or interacting) storage element. The parameter 

S of the SCS-CN method depends on soil type, land use, hydrologic condition, and 

antecedent moisture condition (AMC). Similarly, the initial abstraction coefficient λ is 

frequently recognized as a regional parameter depending on geologic and climatic factors 

(Boszany, 1989; Ramasastry and Seth, 1985). The existing SCS-CN method assumes λ to be 

equal to 0.2 for practical applications which has been frequently questioned for its validity 

and applicability (Hawkins et al., 2001), invoking many researchers for a critical 

examination of the Ia–S relationship for pragmatic applications. More recently, Zhi-Hua Shi 

(2009) examined Ia-S relationship using six years of rainfall and runoff event data from 

three gorges area of China. They reported that the Ia/S values computed with rainfall-runoff 

event data ranges from 0.010 to 0.154, with a median value of 0.048. The second hypothesis 

(Eq. 2.3) is a linear relationship between initial abstraction Ia and potential maximum 

retention S. Coupling Eqs.  (2.1) and (2.2), the expression for Q can be written as: 

          

         (2.4) SIP
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Eq. (2.4) is the general form of the popular SCS-CN method and is valid for P ≥ Ia; Q = 

0otherwise. For λ = 0.2, the coupling of Eqs. (2.3) and (2.4) results into 

	 =  
(���.��)�

���.��
                (2.5) 

Eq. (2.5) is well recognized as popular form of the existing SCS-CN method. Thus, the 

existing SCS-CN method with λ = 0.2 is a one-parameter model for computing surface 

runoff from daily storm rainfall, having versatile importance, utility and vast untapped 

potential. The potential maximum retention (S) ranges from 0 ≤ S ≤ ∞, and dimensionless 

curve number (CN) varies from 0 ≤ CN ≤ 100, as: 

� =  
�����

��
− 254              (2.6) 

 Where, S is in mm. The difference between S and CN is that the former is a dimensional 

quantity (L) whereas the latter is non-dimensional. In an ideal situation, the value of CN 

=100 represents a condition of zero potential maximum retention (S= 0), that is, an 

impermeable watershed. Conversely, CN = 0 depicts a theoretical upper bound to potential 

maximum retention (S = ∞) that is an infinitely abstracting watershed.  

Many researchers attempted towards the practical design values validated by experience 

lying in realistic range (40, 98) (Van-Mullem, 1989). It is proper and appropriate to 

 

 

 

 

 

 

 

Fig. 2.2 Proportionality concept of the existing SCS-CN method (after Mishra and  

Singh, 2003a) 
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explicitly mention here that CN has no intrinsic meaning; it is only a convenient 

transformation of S to establish a 0-100 scale (Hawkins, 1978). 

2.4.1  Application of SCS-CN Method in Hydrology 

Since its development, the SCS-CN method has witnessed myriad applications all 

over the world (Mishra and Singh, 2003a). Rallison (1980) provided detailed information 

about the origin and evaluation of the methodology and highlighted major concerns to its 

application to hydrology and water resources problems it was designed to solve and 

suggested future research areas. A significant amount of literature has been published on the 

SCS-CN method in the recent past and several recent articles have reviewed the method at 

length. For example, McCuen (1982) provided guidelines for practical application of the 

method to hydrologic analysis. Ponce and Hawkins (1996) critically examined this method; 

discussed its empirical basis; delineated its capabilities, limitation and uses; and identified 

the areas of research in SCS-CN methodology. Hjelmfelt (1991), Hawkins (1993), Bonta 

(1997), McCuen (2002), Bhunya et al (2003), and Schneider and McCuen (2005) suggested 

procedures for determining curve numbers for a watershed using field data. Yu (1998) 

derived the SCS-CN method analytically assuming the exponential distribution for the 

spatial and temporal variation of the infiltration capacity and rainfall rate, respectively. 

Mishra and Singh (1999a, 2002a) derived the method from the Mockus (1949) method and 

from linear and non-linear concepts, respectively. Mishra and Singh (2003b) presented a 

state-of-the-art account and mathematical treatment of the SCS-CN methodology, and its 

application to several areas. Originally, the method has been intended for event based 

rainfall-runoff modeling but the method has been extended for long-term hydrologic 

simulation (Williams and LaSeur, 1976; Hawkins, 1978; Knisel, 1980; Pandit and 

Gopalakrishnan, 1996; Mishra and Singh, 2004a; and Geetha et al., 2007). SCS-CN method 

is also constructed as an infiltration model (Aron et al., 1977; Mishra and Singh, 2002, 

2004b). Hielmefelt (1980) proposed an SCS-CN based infiltration equation comparable with 

Holtan and Overton infiltration equations to compute infiltration rate from uniform rainfall 

intensity. Mishra (1998) and Mishra and Singh (2002) introduced a term for steady state 

infiltration rate and proposed an infiltration equation by expressing the SCS-CN method in 

the form of Horton method assuming constant rainfall intensity. Jain et al. (2006) applied 

existing SCS-CN method, its variant, and the modified Mishra and Singh (2002) model to a 

large set of rainfall-runoff data from small to large watersheds and concluded that the 

existing SCS-CN method is more suitable for high runoff producing agricultural watersheds 
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than to watersheds showing pasture/range land use and sandy soil. Gaur and Mathur (2003) 

suggested synthetic SCS unit pulse hydrographs for generating overland roughness 

predictive equations for facilitating their application to kinematic wave modeling in 

ungauged situations. It indicated SCS-CN potential for hydrological evaluation of ungauged 

catchments. Yuan et al. (2001) modified the SCS-CN method to estimate subsurface 

drainage for five drainage monitoring stations. The method has also been successfully 

applied to distributed watershed modeling (White, 1988; Moglen, 2000; and Mishra and 

Singh, 2003a). 

Mishra et al. (2006) coupled the SCS-CN method with the universal soil loss 

equation (USLE) to develop a new model for assessment of the rainstorm-generated lumped 

sediment yield from a watershed. The proposed model is based on three assumptions: (1) the 

potential maximum retention (S) is presented in terms of the USLE parameters, (2) the 

runoff coefficient (C) is equal to the degree of saturation, and (3) the sediment delivery ratio 

is equal to the runoff coefficient. Furthermore, Tyagi et al. (2008) extended the sediment 

yield model to estimate the temporal rates of sediment yield from rainfall events for a 

watershed. The proposed model uses SCS-CN based infiltration model for calculation of 

rainfall-excess rate and the SCS-CN based proportionality concept for assessment of 

sediment-excess. Besides above application, the SCS-CN method has also been used, in 

association with erosion models for computation of sediment yield. Modified Universal Soil 

Loss Equation (MUSLE) (Williams, 1975), Agricultural Non-Point Source model (AGNPS) 

(Young, et al., 1989), Soil and Water Assessment Tool, SWAT (Arnold et al., 1993), 

Erosion-Productivity Impact Calculator, EPIC (Williams et al., 1983) are but a few 

examples. Also in a recent study Mishra et al. (2014) developed a linkage between PET and 

CN using SCS-CN methodology. The various application of SCS-CN methodology in 

hydrology is listed in Table 2.3. 

2.4.2  Remarks 

The SCS-CN method is a widely accepted technique applied in hydrology because it 

is simple, easy to understand and applicable to watersheds with minimum hydrologic 

information requirements. Beside the task for which method has been originally proposed, 

various advanced applications of the methodology have also been reported. Now with the 

modified SCS-CN methodology long term hydrologic simulations can be made with 

reasonable accuracy. There is a scope to extend the SCS-CN methodology to relate Curve 

Number (CN) with irrigation water requirement (IWR) to evolve a simple approach for field 

applications. 
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Table 2.3 Application of SCS-CN methodology in different hydrological studies 

 

Authors Broad 
category 

Study area and period Major Findings 

Mishra et 

al. (2014) 

SCS-CN 

based 

Potential 

evapotrans-

piration 

estimation 

Eight river basins viz., Hemavati, 

Manot, Haridaynagar, Mohegaon, 

Kalu, Ghodahado, Ramganga and 

Seonath of India 

The proposed PET-CN relationship 

based on SCS-CN concept performs 

well for eight different agro-climatic 

river basins in India. The high 

correlation values support the usefulness 

of the relationship 

Tyagi et 

al.  

(2008) 

SCS-CN 

based 

Sediment 

yield model 

Seven watersheds viz., Karso, 

Bihar; Banha, Bihar; Mansara, U.P; 

W2 Treynor, USA; W6 Goodwin 

Creek, USA; W7 Goodwin Creek, 

USA; W14 Goodwin Creek, USA; 

The proposed model uses SCS-CN 

based infiltration model for calculation 

of rainfall-excess rate and the SCS-CN 

based on proportionality concept for 

assessment of sediment-excess. 

Mishra et 

al. (2006) 

SCS-CN 

based 

Sediment 

yield model 

Twelve  watersheds viz., Nagwa, 

Bihar; Karso, Bihar; Mansara, U.P; 

W2 Treynor, USA; W6 Goodwin 

Creek, USA; W7 Goodwin Creek, 

USA; W14 Goodwin Creek, USA; 

Cincinnati Asphalt pavement at 

milestone, USA; 123  NAEW, 

USA; 129  NAEW, USA; 

Coshocton, USA; 182 NAEW, USA 

The proposed model has been coupled 

the SCS-CN methodology with the 

universal soil loss equation (USLE) to 

develop a new model for assessment of 

the rainstorm-generated lumped 

sediment yield from a watershed. 

Jain et al. 

(2006) 

 US. Department of Agriculture- 

Agricultural Research Service 

(USDA-ARS) Water Database 

The reported SCS-CN methodology is 

applicable to a large set of rainfall-

runoff data from small to large 

watersheds and it is concluded that the 

existing SCS-CN method has been more 

suitable for high runoff producing 

agricultural watersheds than to 

watersheds showing pasture/range land  

Mishra 

and Singh 

(2004a) 

SCS-CN 

based 

infiltration 

model 

Waco and Amicalola Creek 

watersheds 

The results of the study are found 

relevant when the total rainfall is equal 

to or greater than half of the potential 

maximum retention (S). The extended 

SCS-CN methodology is tested, the 

simulated and observed infiltration and 

rainfall excess rates are found to be in 

good agreement. 
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2.5  CLIMATE CHANGE AND ITS IMPACT ON IRRIGATION WA TER 

REQUIREMENT 

2.5.1  Climate Change Models 

It is well known that GCMs, is a significant tool for the assessment of climate 

change. GCMs represent several earth systems comprising of atmosphere, oceans, sea ice 

and land surface and have substantial potential for assessment of climate change. At large 

scales, GCMs which have been increasingly evolving over several decades are able to 

predict reliably the most crucial features of global climate. On the other hand, these same 

models perform poorly at smaller spatial and temporal scales related to regional impact 

analyses (Grotch and MacCracken, 1991; Wilby and Wigley, 1997). The major cause is that 

the spatial resolution of GCM grids is too coarse to resolve many vital sub-grid scale 

processes and GCM outputs are then often unreliable at individual grid and sub-grid box 

scales (Wilby et al., 1999; Xu, 1999). To solve this problem two downscaling techniques 

viz., dynamic downscaling and statistical downscaling have been proposed. In the dynamic 

downscaling approach a Regional Climate Model (RCM) is embedded into GCM. The RCM 

is essentially a numerical model in which GCMs are used to fix boundary conditions 

(Fowler et al., 2007). The major disadvantage of RCM model is its complex design and high 

computational cost, which limits its application in climate change impact assessment 

studies. Moreover, RCM is rigid in terms of expanding the region or moving to a somewhat 

different region needs rebuilding of complete test (Crane and Hewitson, 1998). Statistical 

downscaling processes seek to represent empirical relationships that transform large-scale 

features of GCM (predictors) to regional-scale climatic variables (predictands), such as 

rainfall and temperature etc. (Tripathi et al., 2006). The three implicit hypotheses 

incorporated in statistical downscaling (Hewitson and Crane, 1996) are the predictors are 

variables of significance and are rationally modeled by the horde GCM. Secondly, the 

empirical correlation is valid also under changed climatic conditions. And thirdly, the 

predictors used totally signify the climate change signal. The statistical downscaling 

methods are commonly categorised into three groups: weather model system (Conway et al., 

1996; Fowler et al., 2000; Bardossy et al., 2005), weather generators (WGs) (Kilsby et al., 

2007) and regression models (Wilby et al., 1999; Zorita and Storch, 1999; Tripathi et al., 

2006; Ghosh and Mujumdar, 2007). Among the statistical downscaling methods, regression 

models, are perhaps the most popular methods, which are employed to directly estimate a 

relationship between the predictor and predictand. The examples of regression model 

comprises of artificial neural networks (ANNs) (e.g., Cavazos, 1997; Crane and Hewitson, 
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1998; Zorita and Storch, 1999; Schoof and Pryor, 2001; Cannon and Whitfield, 2002; 

Olsson et al., 2004; Coulibaly et al., 2005), multiple regression models (MRMs) (Wilby et 

al., 1999), canonical correlation analysis (CCA) (von Storch et al., 1993) and singular value 

decomposition (SVD) (Huth, 1999). MRMs and ANNs have been applied widely due to 

strong capability in regression analysis and forecasting. It has been extensively used in a 

variety of physical science applications, including hydrology (Govindaraju and Rao, 2000; 

Raghuwanshi, 2006). Despite a number of advantages, the traditional neural network models 

have several disadvantages including possibility of getting trapped in local minima and 

subjectivity in the choice of model architecture (Suykens, 2001). Vapnik (1998) developed 

the Support Vector Machine (SVM) a novel machine learning algorithm and provided 

remedy to the aforementioned problems. Recently, SVM has been broadly employed in the 

fields of classification and regression analysis (Tripathi et al., 2006; Ghosh and Mujumdar, 

2007). Tripathi et al. (2006) developed a SVM approach for statistical downscaling of 

monthly rainfall and the result gives a good substitute to ANNs. Also, SVM has been widely 

used in several fields (Yu and Liong, 2007; Geol Arun, 2012). Beside numerous advantages 

the SVM model has some limitations such as low implementation efficiency, inflexibility to 

noise and outliers, slow simulation speed, problem in handling large samples set. To 

overcome this problem of handling large data samples improved algorithms have been 

developed (Joachims, 1999; Mangasarian and Musicant, 1999; Platt, 1998; Lee et al., 2005). 

Lee et al. (2005) developed a new model for solving the regression of large-scale training 

data called the Smooth Support Vector Machine (SSVM). Chen et al., 2012 reported results 

obtained using SSVM have been compared with those from an artificial neural network 

(ANN). The comparisons showed that SSVM is appropriate for performing climate change 

impact assessment studies as a statistical downscaling tool in the region. The temporal 

trends for future rainfall is decrease during the period of 2011–2040 in the upper half of the 

basin and increasing trend in rainfall after 2071 in the whole of Hanjiang Basin. The 

projected rainfall is estimated using SSVM model for A2 scenario for two GCM outputs 

viz., CGCM2 and HadCM3. More recently, downscaling has found wide application in  

hydro-climatology for scenario construction and simulation/ prediction of (i) regional 

precipitation (Kim et al., 2004); (ii) low-frequency rainfall events (Wilby et al, 1998) (iii) 

mean, minimum and maximum air temperature (Kettle and Thompson, 2004); (iv) soil 

moisture (Georgakakos and Smith, 2001; Jasper et al., 2004); (v) runoff (Arnell et al., 2003) 

and streamflows (Cannon and Whitfield, 2002); (vi) wind speed (Faucher et al., 1999) and 

potential evaporation rates (Weisse and Oestreicher, 2001); (vii) soil erosion and crop yield 
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(Zhang et al., 2004); (viii) landslide occurrence (Buma and Dehn, 2000; Schmidt and Glade, 

2003) and (ix) water quality (Hassan et al., 1998). 

It is now widely believed that climate change will have impacts on water resources 

availability and management throughout the world. The urban sectors, irrigated agriculture 

and hydropower production are the major sectors which are affected by climate change 

(IPCC, 2007). The global warming leads to changes in seasonality of river flows with prior 

spring peak flows, rising winter and falling summer flows in eastern North America (Barnett 

et al., 2005; Dibike and Coulibaly, 2005). Recently, number of hydrological impact studies 

has been carried out to study the impact of climate change on water quality variation in river 

basin (Deng and Patil, 2011).  According to Wilby (2008), the uncertainty is related to 

downscaling method, global climate model (GCM) structure and climate change scenario 

(which is associated with future civilization). To this end, very few recent studies have been 

attempted to address the above mentioned uncertainties. McAlpine et al. (2007) reported 

impact of regional climate change on vegetative cover. They found major changes in 

regional climate, with a shift from humid and cooler condition to warmer and drier 

conditions, particularly in southeast Australia. These changes in Australia’s regional climate 

advocated that land cover change is probably a contributing factor to the observed trends in 

temperature and rainfall at the regional scale. Kay et al. (2009) studied the impact of climate 

change impact on flood frequency for two river basins in England. In this study, four 

scenarios viz., SRES A1F1, B2, B1 and A2 (IPCC, 2000) have been considered also five 

GCMs outputs have been used along with the delta change approach to estimate GCM 

uncertainty. A single GCM has been used with both the RCM and a delta change approach 

to examine uncertainty in downscaling method. They reported that the majority of the 

uncertainty is due to climate modelling, i.e. selected GCM and RCM structures. Other 

research studies have also investigated the different arrangements of the above stated 

sources of uncertainty, the work by Wilby and Harris (2006); Minville (2008); Jiang et al. 

(2007) and Wilby (2005). Ludwig et al. (2009) examine the climate change based on the 

comparison of two physically based models and one conceptual model. They reported that 

the differences in model structure complexities can play an important role in the assessment 

of model outcome. Finally, Poulin et al. 2011 presented the consequences of model structure 

and parameter equifinality associated to hydrological modeling in climate change impact 

studies. This study reveals that the impact of hydrological model structure uncertainty is 

more important than the effect of parameter uncertainty, under past and recent climate as 

well as future climate change scenario.  
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2.5.2  Importance of Bias Correction in Climate Change Scenario Generation 

The climate change impact assessment study is of increasing interest due to its 

adverse impact on various fields. The GCMs is used for the projections of future climate 

change caused by natural variability or anthropogenic activities (Intergovernmental Panel on 

Climate Change (IPCC), 2007). Despite continuous efforts to improve GCM’s capability of 

simulating historical climates, the use of bias correction methods is essential for the impact 

assessment studies of climate change for more improved projections. The significance of 

bias correction methods has been described in the special report of the IPCC (Seneviratne et 

al., 2012). In estimating probable hydrologic impacts of climate change (e.g., Arnell, 2004; 

Oki and Kanae, 2006), a suitable bias correction has been applied to projected temperature 

(T) and precipitation (P) for error free estimation of projections. Dettinger et al. (2004) 

carried out the climate change impact assessment study in the Sierra Nevada of California to 

study the climate change impact on river flow by using bias-corrected on GCM projected 

temperature and precipitation data. Lehner et al. (2006) also predict the risk of flood and 

drought due to climate change by applying a hydrologic model embedded with the bias-

corrected atmospheric data. In addition, bias correction has also been applied to the 

Regional Climate Model (RCM) simulations such as the studies conducted in four basins of 

the United States (Hay et al., 2002) and Ireland (Steele-Dunne et al., 2008).  Number of bias 

correction methods has been used to improve the regional climate downscaling simulation. 

Wu and Lynch (2000) examined the impact of climate change on seasonal carbon cycle in 

Alaska through a dynamical downscaling approach in which they constructed the linear bias 

correction (LBC) of an RCM by adding projected changes of temperature and specific 

humidity in a GCM simulation to reanalysis climate. A similar technique has been applied 

by Sato et al. (2007) to examine the affect of global warming on regional rainfall over 

Mongolia. The bias correction has also been applied to correct the projected wind speed, 

temperature, geo potential height, specific humidity, and sea surface temperature. The result 

of the study reveals that the rainfall intensity predicted with the new method has been closer 

to observations than the traditional method. Patricola and Cook (2010) also employed a 

similar method as applied by Sato et al. (2007). The climatological LBCs in the above 

mentioned studies maintain deviations on the seasonal time scale but eliminate the diurnal 

and synoptic effects. Holland et al. (2010) proposed a complex bias correction method for 

hurricane simulation. The bias correction developed by Holland et al. (2010) maintained the 

diurnal, synoptic effects and the inter-annual variations in the LBC by correcting GCM 
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climatological mean bias with 6-hourly National Centers for Environmental Prediction 

(NCEP)–National Center for Atmospheric Research (NCAR) reanalysis data and GCM 

outputs. They recommended that the dynamical downscaling prediction with GCM bias 

correction can generate realistic tropical cyclone frequency because the bias correction 

reduced the impracticable high vertical wind shear over the tropical North Atlantic. Jin et al. 

(2011) proposed a statistical regression model between GCM and reanalysis data to reduce 

the GCM climatological bias, and then the bias-corrected GCM output data have been used 

to force an RCM to predict winter precipitation over the western United States. 

2.5.3  Impact of Climate Change on Irrigation Water Requirement 

There are various studies having focus on assessment of changes in crop productivity 

due to climate change (e.g. Easterling et al., 1993; Rosenzweig and Parry, 1994; Singh et al., 

1998; Brown and Rosenberg, 1999; Parry et al., 2004; Harmsen et al., 2009; Liu et al., 

2010). The studies focusing on the impacts of climate change on irrigation demands using 

general circulation model (GCM) outputs are becoming more accepted in recent years. Yano 

et al. (2007) analysed the impact of climate change on crop growth and irrigation water 

requirement for a wheat–maize cropping pattern in Mediterranean environment of Turkey. 

The projected temperature and precipitation have been obtained by superimposing projected 

anomalies of GCMs on observed climate variables of the baseline period. Elgaali et al. 

(2007) studied the regional impact of climate change on irrigation water requirement by 

taking rainfall and evapotranspiration into consideration for Arkansas River Basin in 

southeastern Colorado. In this study assumption is made that there is no alteration in crop 

phenology and they found an overall increasing water demand for crops due to climate 

change. Similar  study by Rodriguez Diaz et al. (2007) reported the increase in irrigation 

water demand ranging from 15% and 20% by 2050 in the Guadalquivir river basin in Spain 

with disturbed climate change scenarios of temperature, solar radiation, rainfall, wind speed 

(U2) and relative humidity (RH). Shahid (2011) estimated the changes of irrigation water 

requirement for dry-season Boro rice in northwest Bangladesh with respect to climate 

change, with projected changes in rainfall and temperatures predicted using the weather 

generator software named SCENario GENerator (SCENGEN). De Silva et al. (2007) 

reported an increase in irrigation water requirement of 13% to 23% depending on climate 

change scenarios. The projected temperature, radiation, wind speed and relative humidity 

have been estimated by applying the percentage changes of GCM to the baseline dataset. 

Rehana and Majumdar (2012) reported that the monthly rainfall is increased in the Bhadra 
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reservoir command area. From the study RH, Tmax and Tmin are projected to increase with 

small changes in wind speed. Consequently, the reference evapotranspiration estimated by 

the Penman–Monteith equation, has been predicted to increase. The irrigation requirements 

have been projected to increase due to projected increase/change in other meteorological 

variables (viz., Tmax and Tmin, solar radiation, RH and U2) but not effected by increase in 

projected rainfall. The Table 2.4 summarises the various impact assessment studies related 

to irrigation water demand. 

Table 2.4 Impact of climate change on irrigation water requirement 
 

Author  Study Area and period Broad Category Findings  

Rodriguez Diaz et 
al. (2007)  

Guadalquivir river basin, 
Spain  

Irrigation water requirement Increase of irrigation demand between 
15% and 20% in seasonal irrigation by 
2050 

 

Elgaali et al, 
(2007)  

Arkansas River Basin, 
Southeastern Colorado, 
1960–1990  

Irrigation water requirement Increase in irrigation water demand  in 
HAD  and CCC climate change 
scenarios  

 

Shamsuddin 
Shahid (2011)  

Bangaldesh, 1998–2002  Irrigation water requirement Increase in daily use of water for 
irrigation due to increase in temperature 

 

Rehana and 
Majumdar (2012)  

Bhadra command area, 
Karnataka, India  

Irrigation water requirement The annual IWR for paddy, sugarcane, 
permanent garden and semidry crops 
are predicted to increase 

 

Yano et al. (2007) Mediterranean 
environment of Turkey 

Crop growth and Irrigation 
water demand 

The irrigation water demand for wheat 
is increased due to projected decrease 
in rainfall and for maize crop irrigation 
water requirement is decreased by 15% 
for future period. 

 

De Silva et al. 
(2007) 

Sri Lanka  Climate change impact study 
on paddy irrigation water 
requirement 

Increase in irrigation water requirement 
for paddy by 13% to 23% depending on 
climate change scenarios. The climatic 
variables have been estimated by 
applying the percentage changes of 
GCM to the baseline dataset. 

 

2.5.4  Remarks 

The above mentioned studies have focused on the estimation of projected irrigation 

water requirement using following methods/approach: 

i) Use of perturbation method for the construction of climate change scenario generated 

with GCM outputs. In this method average change in GCM outputs is applied to 

baseline period (observed climatic data) for projection of climatic variables. The 

major drawbacks of this method are: it is based on the assumption that the change in 

climate is relatively stable over space, the results are sensitive to the selected 

baseline period, and the method produces transient climate change scenarios. The 

aforesaid limitations of the method may often lead to incorrect assessment of IWR.  
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ii)  Using globally available downscale data for the generation of climate change 

scenario may provide erroneous assessment of projected climatic data. 

iii)  Use of climate change modeling software viz., SCENGEN for future prediction of 

IWR. The SCENGEN model only gives temperature and rainfall projections. Other 

climatic variables are ignored in the impact assessment study of future irrigation 

water demand.  

iv)  In some of the studies, estimation of future IWR is erroneous as total rainfall is 

considered instead of using effective rainfall to find IWR. The effective rainfall 

computation incorporates the percolation and soil water retention. It is one of the key 

components in the assessment of projected IWR.  

The review of literature reveals that the IWR is extremely sensitive to variability and 

changes in climatic factors. Thus more accurate climate change scenario for predictions of 

meteorological factors (evapotranspiration, temperature, wind speed, relative humidity and 

rainfall) would be needed. The LS-SVM downscaling model appears to be widely used and 

accepted in the climate change impact assessment studies in the recent years by the research 

community.  

Based on the literature review, background and objectives for the present research 

work have been formulated as given in chapter 1. The next chapter analyses the 

characteristics of the study area and availability of long term temporal data used in the 

analysis. 
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CHAPTER 3 

 STUDY AREA AND DATA 

This chapter is divided into two sections viz., study area and data. The first section 

gives a concise geographic description about Seonath River Basin. It includes location and 

extent of the basin, hydrological issues faced by the population. A brief depiction of climate, 

physiography, soils, agriculture and land use is also included. The later section (data) deals 

with the description of various datasets used in the study and elaborates the step by step 

methodology of the data processing and map making.  

3.1  STUDY AREA 

3.1.1  Location and Extent of the Basin 

The Seonath river basin (area = 30,860 sq. km) (Figure 3.1), in Chhattisgarh State 

(India), is the longest tributary sub basin of River Mahanadi, comprising 25% of the 

Mahanadi basin area. The river traverses a length of 380 km. It originates near village 

Panabaras in the Rajnandgaon district and drains area of three districts of Chhattisgarh state 

namely Durg, Rajandgaon, and Bilaspur. The basin is located between latitudes 20°16' N to 

22°41' N and Longitudes 80°25' E to 82°35' E. Its main tributaries are Tandula, Arpa, 

Kharun, Agar, Hamp, and Maniyari streams. The average elevation of the basin is 329 m 

above mean sea level with minimum and maximum elevation of 204 m and 1058 m 

respectively.  

3.1.2  Water Scarcity in the Basin  

The study area (Seonath river basin) falling in Chhattisgarh State faces frequent 

droughts. Most of the tributaries of Seonath River get dried by mid-winter season and both 

rural and urban areas are subjected to severe water crisis during the summer season due to 

erratic and skewed nature of rainfall. Multipurpose water demand has increased with growth 

in population and the pattern of water availability and utilization has also changed with time. 

Sustainability has become a challenging issue in water resources development and 

management. 
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Figure 3.1 Index map of Seonath River Basin (study area) 
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3.1.3    Climate 

 The river basin experiences a sub-humid type of climate. The geographical factors 

such as distance from the sea and altitude have influenced the basin climate. The mean 

annual rainfall in the basin varies from 1005 mm to 1255 mm. The major part of rainfall 

occurs only within three monsoon months (July-September). It experiences higher humidity 

levels during monsoon season. The summer season prevails from April to middle of June. 

The climatic condition during summer is hot and gusts of dry wind blow; the temperature 

varies from 40°C to 45.5°C. The mean daily maximum temperature varies from 42°C to 

45.5°C for the hottest month of May. During winter the temperature varies between 10°C 

and 25 °C. 

3.1.4    Agriculture and Land use 

 Agriculture is the main occupation of people in this sub-basin. About 76% of the 

basin area is under cultivation. There are two cropping seasons namely, monsoon (kharif) 

season from mid-June to October and post-monsoon (rabi) season from November to middle 

of April. Rice is the major crop of monsoon season covering 94% of the cultivated basin 

area (Figure 3.2 a). During rabi season, wheat, summer paddy, pulses and oilseed are grown. 

The kharif rice, wheat and summer paddy are the main crops covering an area of about 

22679 sq. km i.e., 98% of the basin cultivated area (Figure 3.2 b). 

  

(a) Kharif Season Crops (b) Rabi Season Crops 

Figure 3.2 Crops and cropping pattern of Seonath river basin (Source: Directorate of 

Economics and Statistics, Chhattisgarh)  
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The land use map of the basin is shown in Figure 3.3. The land use map of the basin is 

prepared by using LANDSAT images downloaded from GLCF site. Detailed procedure is 

described in section 3.2.3. 

3.1.5   Soil Type  

The main soil types found in the basin are sandy clay covering 72.28% of the basin 

area followed by silt loam 17.29% of the basin area (Figure 3.4). Sandy clay predominates 

in the middle whereas loam and silt loam are found in lower reaches of the drainage 

channels and in the upstream channel sandy loam are also found.  
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                                 Figure 3.3 Land use of Seonath river basin 
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                             Figure 3.4 Soil map of Seonath River Basin 

 3.1.6   Socio-Economic Aspects 

 The indigenous tribal population constitutes the major portion of the population in 

the state. All the developmental activities which have taken place have more or less 

bypassed them and they remain marginalized and outside the mainstream. This is a 

significant developmental challenge each in terms of economic progress and, additionally 

from socio-cultural point of view. The major urban centres in the basin are Raipur and Durg. 

Seonath basin, because of its rich mineral reserve and adequate power resource has a 

favorable industrialized ambiance. The important industries currently accessible in the basin 

are iron & steel plant at Bhilai which produces 20% of the country's steel output. Mining of 

iron, coal, and manganese are other industrial activities. 

 Following photographs depicting land use land cover of the study area have been 

taken during the field visit (Figure 3.5).  
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Paddy Fields at different locations in the Seonath basin 

Barren land                                                                        Industrial Area (BSP) 

Forest Land                                                                           Outlet of the basin: Nandghat 

Figure 3.5 Field photographs showing landuse/cover types in the  Seonath basin and 

basin runoff outlet 

3.2      DATA USED AND PROCESSING 

Hydro-meteorological data have been collected from India Meteorological 

Department (IMD), Pune, and State Data Centre (SDC) Raipur, as detailed below: 

3.2.1    Hydro-Meteorological Data 

The daily meteorological data [Rainfall, Temperature (maximum, minimum and 

mean)] of 24 stations have been collected from IMD, Pune for 51 years (1960-2010). 

Observed data on wind speed and relative humidity is available only for eight stations. The 

pan evaporation data is available only for one station viz., Raipur. The location of the 
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stations is shown in Figure 3.6. Also, the discharge data for the same period at the single 

outlet namely Nandghat, has been obtained from State Data Centre, Department of Water 

Resources, Raipur (Chhattisgarh).  

[

[

[

[ [

[

[

[

#

Durg

Patan
Balod

Champa

Kanker

Mohala

Gandai

Raipur

Chhatti

Damtari

Admabad

Bilaspur

Kawardha

Chirpani

Gudhiyari
Gunderdehi

Dongargaon

Chuikhaddan

Rajnandgaon

Balod bazar

Doundilohara

Ambagarh Chowki

Seonath_Nandghat

82°0'0"E

82°0'0"E

81°0'0"E

81°0'0"E

23
°0

'0
"N

23
°0

'0
"N

22
°0

'0
"N

22
°0

'0
"N

21
°0

'0
"N

21
°0

'0
"N

®

0 20 40 60 8010
Kilometers

# Discharge Station

[ Meteorological Stations (Wind Speed & RH)

Meterlogical Stations (Rainfall & Temperature)

river_area

Seonath_Boundary

 

                Figure 3.6 Location of Meteorological stations in Seonath basin 

3.2.2   Ancillary Data 

NBSSLUP Soil Map 

 The soil map of the basin at 1:50,000 scale has been obtained from NBSSLUP 

(National Bureau of Soil Survey and Land Use Planning), Nagpur. It has been carefully 

scanned and exported to ArcGIS. Different soils have been carefully traced and the 

polygons representing various soils are filled with different colours for proper identification. 

The areas under different soils have been identified.  
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Toposheets 

 The study area is covered in Survey of India topographical maps (Toposheets 

numbered 64C, 64D, 64F, 64G, 64H at 1:50,000 scale). These maps have been acquired 

from Survey of India (SOI) for boundary digitisation of the basin. The maps have been 

scanned and saved in tiff format and imported in ERDAS 9.2 for further processing. The 

latitude and longitude of the ground control points are converted to actual ground co-

ordinate. The boundary of the Seonath Basin is then carefully digitised. 

3.2.3   Remote Sensing Data  

LANDSAT data 

The IRS-P6 AWiFs (56 resolution) images which cover the study area have been 

used to prepare the land cover maps for the year 2003. The images are pre processed and 

mosaiced to create a seemless image of the whole basin. The images have been classified 

using unsupervised classification (Isodata clustering) technique into several classes (200) 

and they are merged based on their spectral signatures into seven land cover types. The 

preliminary classified layer is then improved with Visual Interpretation Technique and 

Ground control points (GCP). Thus, landuse/cover map has been prepared by using an 

integrated digital and visual classification method. 

Digital Elevation Model (DEM)  

The Shuttle Radar Topography Mission (SRTM) data are digital elevation data on a 

horizontal grid spacing of 1 arc seconds (approximately 30m resolution). Further the 

downloaded images have been used for the preparation of digital elevation model (DEM) 

and drainage network using Arc GIS software version 9.3. The data is acquired from the 

URL: (http://glcfapp.glcf.umd.edu:8080/esdi/) for basin delineation and drainage network 

extraction. The DEM of the basin is illustrated in Figure 3.7. 
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                      Figure 3.7 Digital Elevation Model of Seonath River Basin 

3.2.4  Characteristics of Meteorological Stations 

The composite map (Figure 3.8 and Table 3.1) has been prepared to illustrate the 

attributes of different meteorological stations located within Seonath River Basin. Figure 

3.8a and Table 3.1 col.6 shows the elevation of different stations. The Gandai station (in 

kawardha district ) is located at highest elevation (525 m) whereas Gudhiyari station (in 

Durg district) is located at lowest elevation (226 m). The major land use of the basin is for 

agriculture except in Raipur district which shows major settlement; therefore the basin is 

described as an agriculture basin (Figure 3.8c, Table 3.1 col.4). The soil type is almost same 

at all the locations i.e, sandy clay except few locations viz, Mohala, Gandai and Admabad 

which have silty loam type soil (Figure 3.8b, Table 3.1 col.5).  
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 Table 3.1 Characteristics of Meteorological Stations located in Seonath river basin 

Station District Area 

(Sq.km) 

Land Use Soil Type Elevation 

Column 1 Column 2 Column 3 Column 4 Column 5     Column 6 

Ambagarh Chowki Rajnandgaon 

 

5688.63 Agricultural 

Land 

Sandy Clay 337 

Chuikhaddan Sandy Clay 337 

Dongargaon Sandy Clay 255 

Mohala Silt Loam 330 

Rajnandgaon Sandy Clay 316 

Balod Bazar Raipur 

 

3877.25 Settlement 

and 

Barren land 

Sandy Clay 254 

Raipur Sandy Clay 287 

Simga Sandy Clay 285 

Chhatti Dhamtari 

 

533.15 Agricultural 

Land 

Sandy Clay 430 

Damtari Sandy Clay 326 

Chirapani Kawardha 3525.13 Agricultural 

Land and 

Dense Forest 

Sandy Clay 353 

Kawardha Sandy Clay 357 

Gandai Silt Loam 525 

Doundi Lohara Durg 

 

8474.67 Agricultural 

Land and 

Barren Land 

Sandy Clay 317 

Durg Sandy Clay 288 

Patan Sandy Clay 332 

Admabad Silt Loam 314 

Balod Sandy Clay 324 

Gudhiyari  226 

Gondly Sandy Clay 312 

Dongaragaon Sandy Clay 324 

Gunderdehi Sandy Clay 313 

Bilaspur Bilaspur 6916.18 Agricultural 

Land 

Sandy Clay 272 

Champa Jhanjgir-

Champa 

553.2 Agricultural 

Land 

Sandy Clay 232 
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    Figure 3.8 Physical characteristics at locations of meteorological stations in Seonath basin 
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CHAPTER 4 

ASSESSMENT OF TRENDS IN CLIMATIC VARIABLES 

Global warming and intensified human activities, coupled with the harsh natural 

conditions and a fragile ecosystem, have caused great changes in the eco environment in 

various parts of the world.  

This Chapter deals with the investigation of long term trend and variability in 

climatic variables in the Seonath River basin. Statistical tests for trend of major climatic 

variables have been made in this study. 

4.1 INTRODUCTION 

Indian agriculture primarily depends on monsoon (June-October) rainfall. Rainfed 

agriculture has a distinct place in Indian agriculture, occupying 68 per cent of the total 

cultivated area and supporting 40 percent of human and 60 percent of livestock population 

(Sharma and Soni, 2006). Study of significant climatic changes especially changes in 

occurrence and distribution of rainfall is necessary in the sustainable management of 

irrigation schemes and planning of irrigated agriculture. The random and/or systematic 

variation of annual rainfall has great consequences in the planning of irrigation schemes 

(Gadgil, 1986) and therefore, identification and quantification of climatic change need to be 

factored in sustainable development of irrigated agriculture in India. 

A study has shown a decline in intensity distribution of spring and summer rainfall 

in one part of United Kingdom whereas the reverse changes have been observed in other 

zones of United Kingdom (Osborn et al. 2000). Downward rainfall trends with 20% 

decrease in rainy days have been observed in Bologna agro-meteorological station, Italy 

(Ventura et al. 2002). Similarly, Karpouzos et al. (2010) found an overall non significant 

decreasing trend in annual rainfall for the period from 1974 to 2007 in Pieira Region of 

Greece. Several researchers (Byun et al., 1992a, b; Byun and Han, 1994; Byun, 1996; Byun 

and Lee, 2002) have found that there is a period of increased rainfall in spring season for 

Korea. In India, Kumar et al. (2010) has reported large spatial and temporal variations in 

rainfall trend. Out of 30 sub-divisions in the country, half of the regions have shown rising 

trend in mean annual rainfall with significant increasing trends in Haryana, Punjab, and 

Coastal Karnataka. Also, a significant rising trend in mean annual rainfall in most of the 
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districts of Chhattisgarh region is reported (Kumar et al., 2010). Based on the long term 

average of monthly and annual rainfall of Coimbatore district, Rathod and Aruchamy (2010) 

found that the central and northern parts of the district have the highest annual rainfall 

variability. On the other hand, the eastern and south western parts of the district have 

evidence of declining variability. Nearly similar trends in precipitation time series for 96 

stations in Turkey have been reported by Partal and Kahya (2006). Vennila (2007) reported 

declining trends in monthly and seasonal rainfall including its intensity and frequency for 

Vattamalaikarai river basin in Tamil Nadu.  

Thus, the changing pattern of rainfall and its impact on water resource availability is 

an important climatic problem for the water resource and irrigation planners today. In 

relation to global warming, strong evidence indicates that rainfall changes are already taking 

place on both the global (Bradley et al., 1987; Hulme et al., 1998) and regional scales 

(Maheras, 1988; Yu and Neil, 1993; Rodriguez-Puebla et al., 1998). Future climate changes 

may involve modifications in climatic variability as well as changes in average occurrences 

of annual and seasonal rainfall (Rind et al., 1989; Katz and Brown, 1992; Mearns et al., 

1997).  

Inter-annual variability is a better (than mean value) and one of the most important 

indicators of the reliability of rainfall (Semenov and Porter, 1994; Corte-Real et al., 1998). 

Ayanlade et al. (2009) evaluated the variation in climatic parameters using Kriging 

interpolation and concluded that the rainfall varies with time and space in Guinea Savanna 

of Nigeria. Recently, Dash et al. (2009) applied the IMD criteria of rainy day (i.e. rainfall ≥ 

2.5 mm per day) to identify variability of wet and dry events across India. Thus, 

understanding of rainfall trend from past data at the regional level is important for 

agriculture. Success or failure of rainfed crops is closely linked with rainfall pattern. 

Therefore, assessing rainfall variability has been an integral part of water resources planning 

and management. 

Temperature also plays an important role in detecting climatic change brought about 

by urbanization and industrialization. According to IPCC (2007) report, the warming has 

been increased by 0.74°C during the period 1901-2005. According to the recent 

approximation by IPCC (2007) the temperature has increased by 0.74°C during the period 

1901-2005. Dhorde et al. (2009) has reported a rising trend in annual and seasonal 

temperature for four major cities of India (Kolkata, Mumbai, Delhi, Chennai). One of the 
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effects of urbanization is rise in minimum temperature of the cities. However for Meghalaya 

similar results of rising trend for temperature have been obtained with increase in maximum 

temperature by +0.086 °C/year while minimum temperature decreasing by -0.011°C/year 

(Choudhury et al., 2012). In addition trends in Relative Humidity were investigated for 

India. Singh et.al, 2008a have found an increase in annual mean relative humidity (1-18% of 

mean per 100 years) for six river basins (Lower Indus, Ganga, Tapi, Narmada, Mahi, 

Sabarmati and Luni). While a decrease in trend has been observed for three river basins 

(Brahamani, Mahanadi and Subarnarekha) from 1 to 13% of mean per 100 years.  

In the light of above the trend and variability analysis of rainfall, temperature, 

relative humidity and wind speed has been carried out using the methodology presented 

below. 

4.2  DATA 

The daily data of rainfall, maximum and minimum temperature, relative humidity 

and wind speed have been collected from India Meteorological Department (IMD), Pune, 

and State Data Centre, Department of Water Resources, Raipur (Chhattisgarh) from 1960-

2010 (51 years). For rainfall, maximum temperature and minimum temperature data is 

available for 24 stations whereas for wind speed and relative humidity, data is only available 

for eight stations. The detail information about the stations has been presented in Chapter 3. 

These data has been used to check the trend and variability on annual and seasonal time 

scale viz. summer (March-May), winter (November to January) and monsoon (late June to 

October) for Seonath River Basin falls in Chhattisgarh State.   

4.3  METHODOLOGY 

4.3.1  Homogeneity Test 

Double Mass Curve analysis has been carried out to check the homogeneity in the 

annual and monthly data series. 

4.3.2  Dependency Test (Autocorrelation coefficient) 

The dependency of different meteorological parameters has been computed using 

lag-1 serial correlation coefficient. Presence of positive or negative autocorrelation affects 

the detection of trend in a series (Hamed and Rao, 1998; Yue et al., 2002, 2003; Cunderlik 

and Burn, 2004; Novotny and Stefan, 2007). With a positively auto-correlated series, there 
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are more chances of a series being detected as having trend while there may be actually 

none. If the r1 value fall within the confidence interval, the data are assumed to be serially 

independent otherwise the sample data are considered to be significant serially correlated. 

Lag-1 autocorrelation coefficient is used to detect the presence of serially correlation in data 

series. In this study, almost all the series are found to be non-correlated except few of the 

series are correlated (Figure 4.1). 
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Figure 4.1 Percentage of Stations correlated for different climatic parameters (Annual 
and Seasonal ) 

4.3.3  Statistical Test for Trend and Variability Analysis 

4.3.3.1 Mann–Kendall Test (Non-parametric) 

The Mann-Kendall test (Yu and Neil, 1993; Douglas et al., 2000; Yue et al., 2003; 

Burn et al., 2004, Singh et al., 2008a, b) is used to detect monotonic (increasing or 

decreasing) trends and is widely used for detecting trends in time series because it is simple, 

robust, accommodates missing values, and the data need not conform to any statistical 

distribution (Libiseller and Grimvall, 2002; Gilbert, 1987). Since there are chances of 

outliers to be present in the dataset, the non-parametric Mann–Kendall test is useful because 
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its statistic is based on the (+ or -) signs, rather than the values of the random variable, and 

therefore, the trends determined are less affected by the outliers (Helsel and Hirsch, 1992; 

Birsan et al., 2005).  The Mann-Kendall test is based on the statistic S. Each pair of 

observed values yi, yj (i >j) of the random variable is inspected to find out whether yi > yj or 

yi < yj. Let the past category of pairs be P, and the later type of pairs be M. Then S is 

described as the difference between former and later pairs.  

S = P –M           (4.2) 

For n > 10, the sampling distribution of S is as follows. Z follows the standard normal 

distribution  

where; 

 

          

         (4.3) 

 

 

(4.4) 

 

The trend is said to be decreasing if Z is negative and the computed probability is 

greater than the significance level. The trend is supposed to be rising if the Z value is 

positive and the computed probability is greater than the significance level. If the estimated 

probability is smaller than the significance level, there is no trend.  

 4.3.3.2 Modified Mann Kendall Test 

Pre-whitening has been used to detect a trend in a time series in presence of 

autocorrelation (Cunderlik and Burn, 2004). However, pre-whitening is reported to reduce 

the detection rate of significant trend in the MK test (Yue et al., 2003). Therefore, the MMK 

test (Hamed and Rao, 1998; Rao et al., 2003; Basistha et al., 2009) has been employed for 

trend detection of an autocorrelated series. In this, the autocorrelation between ranks of the 

observations ρk are evaluated after subtracting a non-parametric trend estimate such as Theil 
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and Sen’s median slope from the data. Only significant values of ρk are used to calculate the 

variance correction factor n/n∗
s, as the variance of S is underestimated when the data are 

positively autocorrelated. 

�

�∗�
= 1 +

�

���	����	��
∗ ∑ �� − ���� − � − 1��� − � − 2���

�	�
�!�        (4.5) 

where n is the actual number of observations, n∗
s is considered as an ‘effective’ number of 

observations to account for autocorrelation in the data and ρk is the autocorrelation function 

of the ranks of the observations. To account only for significant autocorrelation in data, 

number of lags can be limited to 3 (Rao et al., 2003). The corrected variance is then 

computed as 

"∗�#� =  "�#��
�

�∗�
�                (4.6) 

Where; V (S) is from Equation (4.4). The rest is as in the MK test. 

4.3.3.3 Theil-Sen’s Slope Estimator 

In addition to recognize whether a trend exists, the trend magnitude has been 

assessed by Sen’s Slope Estimator (β), and expanded by Hirsch et al. (1982). To estimate 

trend magnitude Theils-Sen’s slope (β) approach is used in this study.  In other words, the 

slope estimator β is the median over all possible combinations of pairs for the whole data set 

(Hirsch et al., 1982). A positive value of β indicates an ‘upward trend’ (increasing values 

with time), while a negative value of β indicates a ‘downward trend’ (Xu et al. 2007, 

Karpouzos et al. 2010). The slope estimates of N pairs of data are first computed by 

$ =  
�%& 	%'�

�( 	 )� 
         (4.7) 

for i = 1, . . . N, where, xj and xk are data values at times j and k (j > k), respectively. The 

median of these N values of β is Sen’s estimator of slope. 

4.3.3.4 Percentage Change  

Some trends may not be evaluated to be statistically significant while they might be 

of practical interest and vice versa. For the present study, change percentage has been 

computed by approximating it with a linear trend. That is change percentage equals median 

slope multiplied by the period length divided by the corresponding mean, expressed as 
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percentage (Pc) followed by Yue and Hashino (2003).  The percentage change is estimated 

by following formula. 

*+ =  
,∗-

.
         (4.8) 

Where, Pc = Percentage Change, β = Slope Magnitude, L = Length of the year and µ = 

Corresponding mean 

4.3.4  Statistical Procedure for Rainfall Variability Analysis (Coefficient of Variation) 

The coefficient of variation (CV) is a statistical measure of how the individual data 

points vary about the mean value. A greater value of CV is the indicator of larger spatial 

variability, and vice versa. In this study, annual variability of the time series of rainfall, 

temperature, relative humidity and wind speed have been analyzed for Seonath River basin 

using CV (Landsea and Gray, 1992). 

4.3.5  Spatial Analysis 

The Spatial interpolation technique (Singh and Chowdhury, 1986; Lebel et al., 1987) 

is employed to determine the spatial pattern of meteorological variables using Arc GIS 9.3. 

The geographic information systems (GIS) tool is widely used in the processing of spatially 

distributed hydrological modeling (Maidment, 1991; Eldho et al., 2006; Jat et al., 2009; 

Pandey et al., 2011). In recent times, GIS interpolation method has been widely used to 

show the spatial distribution of evapotranspiration, temperature and rainfall (Haberlandt 

2007; Cheng et al., 2007) and it provides the layout and drawing tools essential to present 

the outcomes visually. GIS technique assist researchers to understand the natural 

environment (Jang et al., 2007). The application of interpolation technique in 

evapotranspiration have been reported by several researchers (Dinpashoh, 2006, Iran; Zhao 

et al,. 2004, Zuli River Basin in China; and Bai et al., 2006, Shanxi Province, China) with 

inverse distance weight (IDW) technique. Thus, it is significant to identify spatial and 

temporal variations as it will affect crop water requirement. The overall methodology for the 

analysis used in this Chapter is presented in the form of flowchart in Figure 4.2. 
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Figure 4.2 Flowchart presenting methodology for trend and variability analysis of 

meteorological variables 

4.4  RESULTS AND DISCUSSION 

4.4.1  Trend Analysis of Rainfall 

4.4.1.1 Trend Analysis 

 To analyze the causal mechanism behind the rainfall trends, the trend analysis is 

performed. The results of the spatial distribution of the annual and seasonal trends at 95% 

significance level in Seonath River basin are shown in Figure 4.3. All four seasons have 

been characterized by decreasing rainfall at most stations except few stations falling in the 

districts of Rajnandgaon, Durg, Raipur and Damtari which shows non-significant decreasing 
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trend. (Fig. 4.3 b, c and d). Decreasing trends for the annual rainfall are mainly observed in 

the overall study area of Seonath River basin. The majority of the rainfall time series of 

different stations shows negative values whereas few stations in southern Seonath river 

basin shows non-significant decreasing trend (Figure 4.3). Additionally, Table 4.1 presents 

Sen’s slopes for annual and seasonal rainfall for the study basin. However the weighted 

rainfall time series for Seonath basin as a whole shows insignificant decreasing trend for all 

the seasons (Table 4.1, Column 1). However rate of decrease in rainfall was estimated as -

2.79 mm/year for monsoon season followed by -2.4 mm/year for annual series. The rate of 

change for summer season is negligible (i.e. -0.5 mm/year) and it is zero for winter season 

(Pl. see Table 4.1, Column 2). The percentage variability was highest for monsoon season 

43.95% followed by annual rainfall variability of 30.78% (Table 4.1, Column 4).  Table 4.2 

presents the rate of change for annual and seasonal rainfall in different stations of Seonath 

basin over 100 years. It is evident from Table 4.2 that the winter season shows negligible or 

no change whereas monsoon season shows the highest rate of change of rainfall over 100 

years followed by summer season. Significant decreasing rate of change has been found in 

annual rainfall too. The annual and monsoon seasons shows highest rate of change for the 

stations falling in Rajnandgaon and Durg district. Figure 4.4 shows the percentage of 

stations with increasing/decreasing trends for different seasons. The winter season has the 

greatest percentage of stations showing a decreasing trend (87%), followed by monsoon and 

summer with 83%. On average, the annual rainfall time series shows that the 83% of 

stations in the basin have decreasing trend (Figure 4.4). Overall decreasing trends in rainfall 

were observed for the entire river basin for all the seasons. The above results are found in 

conformity with the results of past studies for rainfall in Mahanadi river Basin (Singh et al., 

2008a; Jain and Kumar, 2012). 
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(a) (b) 

  

(c) (d) 

Figure 4.3 Trend in annual and seasonal rainfall in Seonath river basin over the period 
of 1960-2010 (a) Annual (b) Monsoon (c) Summer (d) Winter 
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Table 4.1 Results of regional average annual and seasonal rainfall for entire Seonath 

River Basin. 

 

Entire 

Seonath 

River Basin 

Rainfall 

 

Z-values 

MK 

Sen’s Slope 

(β) 

% Change 

over 51 year 

% Variability over 

51 year 

(Col.1) (Col.2) (Col.3) (Col.4) 

Annual -0.529 -2.4 -12.33 30.78 

Summer -0.472 -0.5 -9.0 6.95 

Winter -0.444 0.0 -1.7 17.19 

Monsoon -0.994 -2.79 -21.64 43.95 

 

Table 4.2 Rate of change in annual and seasonal rainfall for Seonath river basin over 

100years   

Station District Annual Summer Winter Monsoon 

Ambagarh Chowki 

Rajnandgaon 

 

-56.081 -52.37479 No Change -56.3299 

Chuikhaddan -95.9808 -56.6814 -2.2957 -61.5019 

Dongargaon -58.3605 -41.2496 No Change -61.803 

Mohala -62.2027 -46.128 No Change -87.5889 

Rajnandgaon -54.9545 -79.587 3.65294 -72.2979 

Balod Bazar 
Raipur 

 

-5.3532 -18.2782 No Change -30.9181 

Raipur -6.76718 13.3452 1.95 -34.5968 

Simga -1.18462 -15.1031 No Change -32.1889 
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Chhatti Dhamtari 

 

-31.7827 -30.8291 -0.93006 -17.6468 

Dhamtari -25.9212 -33.702 -2.1509 -15.0018 

Chirapani 

Kawardha 

-26.5177 -2.5292 -0.88248 -15.9326 

Kawardha -29.6049 -3.18103 -1.4399 -17.6366 

Gandai -23.7458 -2.7566 -1.38889 -29.0365 

Doundi Lohara 

 

Durg 

 

-61.7549 -44.099 -0.33559 -70.645 

Durg -63.5321 -40.2784 No Change -62.771 

Doundi -64.26535 -44.9623 No Change -74.7478 

Admabad -72.6222 -16.000 No Change -71.5982 

Balod -68.98445 -36.38131 No Change -74.5104 

Gudhiyari -73.6222 -37.70391 No Change -74.656 

Gondly -72.1357 -42.45 No Change -75.382 

Gurur 74.22222 

No 

Change No Change -73.651 

Gunderdehi -78.69531 60.6955 -3.59688 -73.071 

Bilaspur 
Bilaspur 

-37.137 -32.098 No Change -45.683 

Champa 

Jhanjgir-

Champa -27.2342 -23.332 -1.2241 -32.2432 
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Figure 4.4 Temporal Trends of Annual and Seasonal Rainfall  

 

4.4.1.2 Analysis of Annual Rainfall Variability Pattern (Coefficient of Variation) 

The rainfall variability was determined using Coefficient of Variation (CV). A 

decrease in rainfall trend and increase in its variability is seen in Northern parts of the basin 

(Figure 4.5). The highest variability is experiences in Bilaspur and Korba, and it is lowest in 

Durg and Rajnadgaon districts.  
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                           Figure 4.5 Inter-annual Variability of Rainfall Variable  

4.4.2 Trend Analysis of Temperatures (Maximum, Mean and Minimum)  

The Mann-Kendall statistics is used to estimate the trends of maximum temperature 

(Tmax), minimum temperature (Tmin) and mean temperature (Tmean) at 95% significant 

level. The rising trend was observed in Tmax for all the seasons except for summer which 

shows decreasing trend for all the stations (Figure 4.6). The monsoon season shows 

significant increasing trend for all the stations (Figure 4.7). On the contrary, Tmax for 

summer season at all the stations showed non-significant decreasing trend. However, annual 

Tmax in 80% of the stations showed insignificant increasing trend (Figure 4.7).  However 

minimum and average temperature reveals rising trend in annual and seasonal scale for the 

entire basin. The annual Tmin shows significant increasing trend for all the stations except 

Bilaspur and Champa districts which fall in the Northern part of the basin (Figure 4.8 a). 

Again the Champa and Bilaspur districts have non-significant increasing trend (Figure 4.8 
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a). Tmax for summer season reveals non-significant increasing trend for all the stations 

(Figure 4.8 b). It can be seen from Figure 4.8 c and Figure 4.8 d that all the stations have 

significant increasing trend for winter and monsoon season. Figure 4.9 presents the 

percentage of stations with rising/falling trend of annual and seasonal Tmin.  

For Tmean rising trend was obtained for entire basin except few stations located in 

the Northern region of the basin for all the seasons (Figure 4.10). The Monsoon season 

exhibits significant rising trend followed by winter and annual average temperature (Figure 

4.10). The summer average temperature reveals that the 33% of stations have decreasing 

trend (Figure 4.11). The Sen’s slope is used to estimate percentage change in Tmax, Tmin 

and Tmean. The Tmin has increased more as compared to Tmax. The percentage change 

was increasing for all months except for March to June (Figure 4.12). The percentage 

change of rise in Tmin was highest for the month of November followed by December and 

January (Figure 4.12). The inter-annual variability for Tmax and Tmin is depicted in (Figure 

4.13). The variability was observed to be more pronounced in Tmin ranges from 1.69% to 

2.78% (Figure 4.13 b). The analysis of maximum and minimum temperature has indicated 

that the northern parts have faced relatively more variability than the southern part of the 

basin. Similarly variability in Tmax has been found more in the northern parts with highest 

variability of 1.93% (Figure 4.13 a). Interestingly, increasing trends of maximum 

temperature occurred for all months except March, April, May and June i.e., for summer 

season (Table 4.3).  The Tmax and Tmin during November month have higher significant 

increase in the order of 2.75 °C/100 years and 4.31 °C/100 years, respectively. From Table 

4.3 it can be seen that the magnitude of increasing trend of Tmin has been higher compared 

to the Tmax. It reveals that the evaporation in day time could have been more and 

consequently, it could lead to higher water requirement for crops (Table 4.3). Overall highly 

significant increasing trend in mean, maximum and minimum temperature for Seonath river 

basin was observed. The above results are well supported by the findings of studies 

conducted by Rao et al. (1993) for Mahanadi river basin and by Subash and Sikka (2013) for 

Chhattisgarh state. 
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(a) Annual (b) Summer 

(c) Monsoon (d) Winter 

Figure 4.6 Spatial distribution of annual and seasonal trends in maximum temperature 
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Figure 4.7 Percentage of station with significant trend for Seonath River Basin 
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(c) (d) 

Figure 4.8 Spatial map of minimum temperature trend in Seonath river basin over 51 
years (a) Annual (b) Summer (c) Winter (d) Monsoon 

 

Figure 4.9 Percentage of stations with trend exist in the entire basin 
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(a) Annual (b) Summer 

  

(c) Winter (d) Monsoon 

Figure 4.10 Spatial trend analysis of average temperature on annual and seasonal 

timescales 
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Figure 4.11 Temporal trend in average temperature at annual and seasonal scale 

 

 

Figure 4.12 Percentage change in maximum and minimum temperature over 51 years 
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(a) Tmax (b) Tmin 

Figure 4.13 Inter-annual variability of maximum and minimum temperature 
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Table 4.3 Sen Slope estimator (°C/100 years) for maximum, minimum, mean 

temperature for different months 
 

Seasons Sens Slope (β) 

Maximum 

Temperature 

Minimum 

Temperature 

Mean 

Temperature 

January 0.423 1.407 0.947 

February 0.021 0.766 0.471 

March -0.619 0.476 0.068 

April -0.273 0.256 0.018 

May -0.152 0.402 0.239 

June -1.026 0.895 1.092 

July 0.956 1.126 1.140 

August 0.288 0.341 0.234 

September 1.438 1.444 1.359 

October 2.028 1.787 1.919 

November 2.750 4.307 3.545 

December 0.598 1.611 1.048 

 

4.4.3  Trend Analysis of Relative Humidity 

The temporal trend in Relative Humidity (RH) is shown in Figure 4.14. It shows that 

significantly decreasing RH has been observed for the months of July, September, October 

and November. Whereas, from March to June non-significant increasing trend have been 

observed. The MK results indicate that the annual mean RH for all the seasons are in 

significant decreasing trends. For the overall basin the percentage of stations showing 

significant decreasing/ increasing trend is depicted in Figure 4.15. For annual trend the 
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entire river basin shows significant decreasing trend except few stations located in the north 

western region of the study area (Figure 4.16 a). For monsoon season strongly significant 

decreasing trend has been observed for the entire basin (Figure 4.16 b). Whereas for winter 

the non significant decreasing trend and for summer season increasing trend has been 

observed (Figure 4.16 c, d). The decrease in RH is mainly due rise in temperature of the 

river basin already discussed in previous section. The RH for annual, winter and monsoon 

are decreasing whereas for summer it is increasing. The Tmax for summer is decreasing 

therefore RH is increasing because there is inverse relation exist between the two variables. 

The results are in conformity with the past study on RH in Mahanadi basin (Singh et.al, 

2008a). The Sen’s slope is applied to detect the trend magnitude and percentage change. The 

monthly rate of change over 51 years of period has been presented in Figure 4.17. From 

Figure 4.17 the larger changing magnitude has been observed for the months of July, 

September, October and November. The relative percentage of change for the entire basin is 

spatially presented in Figure 4.18. From this figure it was depicted that the highest 

percentage change was observed for the entire basin except for northwestern region of the 

study area which shows the lowest change.  The inter-annual variability in relative humidity 

for the basin ranges from 0.9% to 2.2% (Figure 4.19).  

 

  

Figure 4.14 Temporal Monthly Relative Humidity Trend at Seonath River  
Basin over 51 years 
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Figure 4.15 Percentage of Stations with significant Trend at Annual and Seasonal Scale 
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(c) Winter (d) Summer 
Figure 4.16 Spatial distribution of Annual and Seasonal Relative Humidity Trend 

 

 

Figure 4.17 Monthly Rate of Change in Relative Humidity over 51 years (1960-2010) 
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    Figure 4.18 Spatial Distribution of Percentage Change in Annual Relative Humidity 

 

Figure 4.19 Spatial Distribution of Inter-annual Variability in Annual Relative 
Humidity 
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4.4.4  Trend Analysis of Wind Speed 

The monthly trend statistics by MK test is presented in Figure 4.20 which clearly 

indicates a significant increasing trend for all the months. The trend in seasonal wind speed 

is depicted in Figure 4.21. From seasonal analysis of time series for wind speed, strong 

significant increasing trend has been obtained for monsoon and winter season (Figure 4.21 a 

and 4.21 b). In summer season some stations located in southwest shows an insignificant 

increasing trend (Figure 4.21 c). The percentage of stations with rising trend has been 100% 

for all the seasons (Figure 4.22). The Sen’s slope estimates the magnitude of change in wind 

speed. The monthly change in rate of wind speed over 51 years is shown in Figure 4.23. It is 

clear from the figure that there is increasing rate of change over the years. It is also depicted 

from figure that August is having highest rate of change followed by July, June and 

September. The percentage change is shown spatially (Figure 4.24). From this figure the 

highest percentage change has been highlighted for the entire basin ranges from 34% to 

61%.  The highest change has been obtained for Kawardha and lowest for Korba. The 

spatial variability in wind speed was shown in Figure 4.25. The stations in the northern part 

of the basin show the highest variability of 23%. 

 

 

Figure 4.20 Temporal Trend of Wind Speed over 51 years in Seonath river  basin 
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(a) Monsoon (b) Summer 

 

 

(c) Winter  

Figure 4.21 Spatial trend distribution of wind speed for (a) Monsoon (b) Summer (c) Winter 
over entire Seonath river basin 
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Figure 4.22 Percentage of Stations shows trends in seasonal wind speed 

 

Figure 4.23 Monthly Wind Speed Trend Magnitudes over 51 years 
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Figure 4.24 Percentage change in Wind Speed over 51 years  

 

Figure 4.25 Spatial Variability of wind speed in Seonath river basin 
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4.5  SUMMARY 

The application of trend detection techniques in meteorological variables viz., 

maximum, mean and minimum temperature, rainfall, wind speed and relative humidity in 

Seonath River Basin has resulted in the detection of long-term trends appearing in the study 

area during the past several decades. The direction of trends for temperature and wind speed 

is upward, whereas the direction of trends for rainfall and relative humidity is in general, 

downward.  

On the basis of the analysis for temperature, rainfall, relative humidity and wind speed 

over the 51 year period, a few general, but important, conclusions can be drawn. First, 

temperature in the Seonath River Basin has increased, especially during the Monsoon and 

winter seasons. Second, rainfall has changed during past 51 years, and analysis of the slopes 

indicated decreasing trend for annual and monsoon season in the study area. Although, there 

have been significant decrease in relative humidity and increase in wind speed. The results 

of the trend and variability analysis of climatic variables may lead to develop better 

understanding for water resources management in the study area.  
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CHAPTER 5 

INTER-COMPARISON OF REFERENCE EVAPOTRANSPIRATION 

ASSESSMENT METHODS 

This chapter deals with comparative study of various methods commonly used for 

assessment of reference evapotranspiration (ETo). Six methods have been selected for 

comparison of ET estimates. Also sensitivity analysis of ETo with different meteorological 

variables (viz. maximum and minimum temperature, relative humidity and wind speed) has 

been carried out in order to identify key variable(s) having relatively greater influence on 

ETo. Variation in Class A pan coefficient (Kp) over different months in a year has been 

studied for more realistic estimation of ETo using pan evaporation data. 

5.1  INTRODUCTION 

The term evapotranspiration (ET) describes the total evaporation and plant 

transpiration from the surface to the atmosphere. It is a very important parameter in 

hydrological cycle and in agriculture (rainfed as well as irrigated). It plays a significant role 

for the assessment of irrigation water requirement (Mohan and Arumugam, 1996; Tukimat 

et al., 2012). Therefore, realistic assessment of ET is vital for water budgeting and planning. 

It has been projected that effect of climate change on water resources will be mainly due to 

ET. Increase in temperature will provoke higher evapotranspiration which in turn will affect 

the hydrological system and water resources (Shahid, 2011). Thus, reliable and accurate 

estimation of ET due to climate change is very important for the long-term water resources 

management.  

There are several methods available in literature for estimation of ETo. Each method 

is based on certain perception, and has been developed for specific climatic conditions. 

However, the major concern in estimating ET is the reliability and accuracy of the methods 

(Burnash, 1995). As some of the methods have been developed for given purposes and for 

specific climate conditions, they may provide poor estimates of ET for other climatic 

conditions. From various studies conducted in India (Praveen et.al, 2011) it is established 

that, Penman-Monteith (Monteith, 1965) method provides relatively more reliable estimates 

over a broad climatic region. Also, the researchers have studied the accuracy and reliability 

of this method in other parts of the world and have reported that ETo estimated using 

Penman-Monteith is relatively more reliable and acceptable (Racz et al., 2013). Some of the 
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ET estimation methods (including Penman-Monteith method) need measurements of many 

meteorological variables whereas others require fewer only. Therefore, the selection of ET 

estimation method depends on availability of meteorological data in respect of different 

variables. Table 5.1 shows the meteorological variables which are required to be considered 

in various methods.  

Table 5.1 Climatic variables involved in selected methods for ETo estimation   

Methods T RH Rs WS n P Ep 

Pan Method --- √ --- √ --- --- √ 

Penman-Monteith √ √ √ √ --- √ --- 

Priestley-Taylor √ --- √ --- --- --- --- 

Turc Method √ √ √ --- --- --- --- 

Hargreaves Method √ --- --- --- --- --- --- 

Thornthwaite Method √ --- --- --- --- --- --- 

Blaney-Criddle Method √ --- --- --- --- --- --- 

Abbreviations: T = Temperature, RH = Relative Humidity, Rs = Solar Radiation, WS = Wind Speed, n 

= Sunshine hours, P = Atmospheric Pressure, Ep = Pan evaporation 
 

Pan evaporation data are widely used all over the world (Irmak et al., 2002) for the 

estimation of ETo using pan coefficient values. The pan evaporation (Ep) presents a 

measurement of the combined effect of climatic variables (i.e., air temperature, relative 

humidity, wind speed and solar radiation) on the evaporation. Therefore pan evaporation 

data may provide reliable estimates of ETo, provided realistic values of pan coefficients are 

used in different months.  

To understand the relative role of climatic variables in accurate assessment of ETo, 

sensitivity analysis of ETo with different meteorological variables (viz., maximum and 

minimum temperature, relative humidity and wind speed) is required. ETo estimated using 

Penman-Monteith method is considered for the sensitivity analysis as this method provides 

relatively more accurate assessment of ETo and involves consideration of the measured 

values of maximum and minimum temperature, relative humidity and wind speed 
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This chapter presents comparison of performance of six widely used ETo estimation 

methods, viz., Hargreaves Method, Thornthwaite Method, Blaney-Criddle Method, 

Priestley-Taylor Method, Penman-Monteith Method and Turc Method. The performance of 

these ETo estimation methods have been compared with pan evapotranspiration (ETp) 

estimates for the corresponding period as it is one of the most reliable method for  ETo 

estimation (Irmak et al., 2002 and Rahimikhoob, 2009).  

5.2  DATA 

The climatic data used in this study consisted of daily maximum and minimum 

temperature (Tmax and Tmin), relative humidity (RH), wind speed (WS), sunshine hours (n) 

for eight stations and Class A pan evaporation data for one station (Raipur). Pan 

Evaporation (Ep) is measured daily at 7.00 AM. 

5.3  METHODOLOGY 

Various methods for estimation of ETo are presented below and these methods are 

summarized in the form of flowchart in Figure 5.1. 

5.3.1  Estimation of Pan Coefficient (Kp) and Evapotranspiration (ETp) 

In this method reference evapotranspiration (ETo) is estimated by multiplying 

observed pan evaporation (Ep) data with a pan coefficient (Kp). A non-linear regression 

equation has been developed by Orang (1998) to estimate Kp for Class A pan with green 

vegetation surrounding condition. The developed equation performs well and accuracy is 

similar to Allen-Pruitt (1989) equation. The ETo computed using Kp values obtained from 

Orang method gives more accurate daily, monthly and annual ETo estimates compared to 

other empirical methods viz., Allen and Pruitt, 1991; Cuenca, 1989; and Snyder, 1992 

(Rahimikhoob, 2009). Therefore, for accurate assessment of Kp values Orang method is 

used for our study area. The pan evapotranspiration (ETp) is obtained by following formula 

ETp = Ep x Kp          (5.1) 

Where; ETp = Reference evapotranspiration (mm); Ep = Observed Pan evaporation data for 

class A pan (mm); Kp = Pan coefficient for class A pan. 

Further, pan coefficient has been determined by following formula 

Kp = 0.5126-0.000321U + 0.002889H + 0.031886 ln(F)     (5.2) 



79 

 

Where, U = Wind speed (km/day), H= relative humidity (%) and F= upwind fetch distance 

around the pan. As the pan area is surrounded by dry fallow land, the value of F is taken as 

50 m. 

5.3.2  Penman-Monteith equation 

The Penman-Monteith method is a combination method developed by Penman 

(1948). It combines the energy balance with mass transfer method and proposes an equation 

to estimate ETo on daily basis using climatic variables viz. temperature, sunshine hours, 

relative humidity and wind speed.  It is expressed as below: 

��� = �.��� ∆
��  ���γ ���
�������
�� ���

∆ � γ
� � �.�����        (5.3) 

where, ETo is reference evapotranspiration(mm day−1); ∆ is the slope vapor curve (kPa 

°C−1); Rn is the net radiation of the crop surface (MJm−2 day−1); G is the soil heat flux 

density (MJm−2 day−1); T is the air temperature at 2m height (°C); U2 is the wind speed at 

2m height (m s−1); ρs is the saturation vapour (kPa); ρa is the actual vapour pressure (kPa); 

and γ is the psychrometric constant (kPa °C−1). 

5.3.3  Priestley-Taylor method 

Priestley-Taylor method (Priestley and Taylor, 1972) is a radiation based method to 

estimate reference evapotranspiration (ETo). They establish that the potential evaporation is 

1.26 times lesser than the actual evaporation and thus they replace the aerodynamic terms 

with constant (1.26). Therefore, the method needs only long-wave radiation and temperature 

for the assessment of ETo. The equation for calculating ETo is given below: 

��� = 1.26 "
"� # $Rn –  G) �

*        (5.4) 

where, ∆ is the slope vapor curve (kPa °C−1); γ is the psychrometric constant (kPa °C−1); Rn 

is the net radiation of the crop surface (MJm−2 day−1); G is the soil heat flux density (MJm−2 

day−1); and λ is the latent heat of vapour (MJ kg−1). 

5.3.4  Turc Method 

Turc method (Turc, 1961) provides an easy equation for calculating ETo by using 

only few climatic variables (relative humidity, solar radiation and mean temperature). The 
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Turc method gives reliable estimates of ETo under humid conditions (Jensen et al., 1990) 

which is similar to our study area (Seonath river basin). The equation is given as follows: 

When, RH < 50% 

��� = 0.0133 -.
-.��/ 
01 + 50�       (5.5a) 

When, RH > 50% 

��� = 0.0133 -.
-.��/ 
01 + 50�
1 + /�45

6� �     (5.5b) 

where, Tm is mean temperature (°C); Rs is the solar radiation of the crop surface (MJm−2 

day−1); and RH is the relative humidity (%). 

5.3.5  Hargreaves Method 

Hargreaves is temperature based method proposed by Hargreaves and Samani in 

1982. The equation is given as: 

��� = 0.0023
�789 − �7;<�0.5
�7 + 17.8�08     (5.6) 

where, Tmax, Tmin and Tm denotes maximum, minimum and mean temperatures (°C); and 

Ra is the extra terrestrial radiation of the crop surface (MJm−2 day−1). 

5.3.6  Thornthwaite Method 

The Thornthwaite equation is proposed by Thornthwaite (1948). It is based on the 

empirical correlation between changes in evapotranspiration and mean air temperature. The 

equation is given as follows: 

��� = 16 ? @
��A ? B

��A ?��-C
D AE

        (5.7a) 

Where ETo is the monthly potential evapotranspiration (mm/month), Ta is the average daily 

temperature (°C; if this is negative, use 0) of the month being calculated, N is the number of 

days in the month being calculated, L is the average day length (hours) of the month being 

calculated. Where, I is the monthly heat index; and it is estimated by the formula given 

below: 

α = 
0.675x106�I� − 
7.71X10/�I� + 
1.792X10��I + 0.49239  (5.7b) 
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L = ∑ 
�CN��NO� / 5��./��         (5.7c) 

5.3.7  Blaney-Criddle Method 

The Blaney-Criddle is the simple temperature based method for the assessment of 

ET. It is widely method applied before Penman-Monteith method. This equation only 

considers changes in temperature for specific condition for estimating ETo. The Blaney-

Criddle equation is given below: 

��� = Q
0.46�7 + 8�        (5.8) 

where, p = percentage of average daily annual day time hours due to the latitude of region; 

and Tm = mean temperature (°C). 

5.3.8  Model Evaluation Statistics 

The inter-comparison of the ETo estimation methods are estimated using the 

following statistical measures 

5.3.8.1 Mean absolute error (MAE, Johnson et al., 2003), given as 

RS� = 1 − ∑ |UNVN|WXYZ
∑ |UNU[\\\|WXYZ

        (5.9) 

5.3.8.2 Root mean square error (RMSE), defined as 

0R]� =  ^{�
B ∑ 
`; − �;BNO� �}       (5.10) 

5.3.8.3 Sum of squares of errors (SSE), defined as 

]]� =  ∑ 
`; − �;��BNO�         (5.11) 

 

5.3.8.4 Coefficient of determination (R2) is defined as the degree of collinearity between 

observed and predicted data. The value of R2 lies between 0 and 1. 

0� = 1 − ∑ 
UNVN��WXYZ
∑ 
UNU[�\\\\\�WXYZ

              (5.12) 
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5.3.9  Sensitivity Analysis 

To carry out sensitivity analysis of ETo with climatic variables, partial correlation 

method is employed. It gives the correlation coefficient (CC) between the variable y and its 

factors (Wang et al., 2011). Correlation provides a measure of the strength of a linear 

association between a variable and its effecting parameter. Though, when the effecting 

parameters are strongly correlated with each other, ordinary correlation technique cannot 

give the accurate association between the variable and its factors (Janssen et al., 1992). The 

partial correlation method has been proposed by Iman and Helton (1988) to address this 

problem by removing the influences of other correlative factors. The partial correlation 

coefficient (PCC) describes a linear relationship between the variable y and its factors xj 

after discounting the linear effects on y of the remaining factors. The sensitivity coefficient 

(S) is also calculated in order to determine the response of calculated ETo to selected 

meteorological variables. Changes of model outputs and their variability induced by change 

in climatic variables (X) have been also evaluated. Mean values of climatic variables and 

ETo values of each model have been calculated. Then we calculate the deviation (∆) from 

these means for the daily data of these variables and the ETo values, respectively. In order 

to reach the best comparability between the effects of changes in all climatic variables, ∆ 

values of each variable and ETo have been converted to percentage changes. The Sensitivity 

Coefficient (S) has been calculated by the formula given below: 

] =  ∆V-c
∆d × d

V-c        (5.13) 

    

Where, ∆X is the relative change of model input value X and ∆ETo is the relative change in 

ETo induced by ∆X. The coefficient of S represents changes in ETo induced by changing 

meteorological variable (X). If S is 0.4, then a 10 % increase of X would cause a 4 % 

increase in ETo, while other climatic variables are remain unchanged. 



83 

 

 

 

 

Figure 5.1 Flowchart describing methodology for the present study 

5.4       RESULTS 

5.4.1  Estimation of Pan Coefficient (Kp) 

The ETo computed using Kp values obtained from Orang method. As this method of 

Kp estimation gives more precise estimates of ETo compared to other empirical methods 

viz., Allen and Pruitt, 1991; Cuenca, 1989; and Snyder, 1992 (Rahimikhoob, 2009). A non-

linear regression equation has been developed by Orang (1998) to estimate Kp for Class A 

pan with green vegetation surrounding condition. Therefore, pan coefficient values for the 

study area have been estimated using Orang method. The study shows that the monthly Kp 

values vary significantly from month to month (0.56 to 0.89) for the study area (Figure 5.2). 

The highest Kp value is obtained for the month of July whereas it is lowest for the month of 

November. The estimated monthly pan coefficient values for the study area are considered 

to be more appropriate than the Kp values (0.60-0.80) for Class A pan mentioned in FAO-24 

document (Doorenbos and Pruitt, 1977). The pan coefficient values differ by -6% to 21% 

when compared with FAO-24 tabulated Kp values. 
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The estimates of ETo using tabulated FAO-24 Kp values and 

Kp values are plotted in Figure 5.3. Use of the FAO recommended 

estimation of the monthly ETo values by 11.8% to 56.3

he Kp values given in FAO-24 are based on general climatic 

accurate estimation of ETo from pan evaporation data, the estimated Kp values considering 

local climatic conditions should used for the study area.  

Monthly variation of pan coefficients  

Monthly variation of ETo using recommended and estimated Kp values

24 Kp values and those using Orang 

FAO recommended values of 

11.8% to 56.3% (Figure 5.3). 

climatic conditions. Thus for 

accurate estimation of ETo from pan evaporation data, the estimated Kp values considering 

 

 
of ETo using recommended and estimated Kp values 
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5.4.2  Comparison of ETo Methods 

 To measure the consistency and accuracy of ETo methods, the estimates 

obtained from different methods have been compared with pan evapotranspiration values 

(ETp). Performance evaluation of ETo methods has been done using four statistical 

parameters viz., Mean absolute error, Root mean square error, Sum of Square Error (SSE) 

and coefficient of determination (R2). Figure 5.4 shows the monthly average reference 

evapotranspiration values using different methods for the study area. Almost all the methods 

show the same trend throughout the year. The Penman-Monteith estimates the higher 

reference evapotranspiration in all the months followed by Hargreaves and Thronthwaite 

method. Figure 5.5 shows the mean daily reference evapotranspiration and annual 

evapotranspiration values estimated by different methods for the study area. The annual 

reference evapotranspiration values reveal the similar prototype. The Penman-Monteith 

method based ETo values are close to pan evapotranspiration (ETp) values. Whereas the 

estimates of ETo using Preistly-Tyalor and Blaney-Criddle methods give relatively lower 

values than pan evapotranspiration values (Figure 5.5). The estimates indicate that the 

values of ETo in the Seonath River Basin range from 1330.43 mm/year to 1819.33 mm/year. 

Among the six methods, the Penman-Monteith, Hargreaves, Thornthwaite and Turc, 

methods illustrate high correlation with reasonable errors (Table 5.2). However, Penman-

Monteith method is found to be suitable for estimating ETo in the study area as it gave the 

closest estimate followed by Hargreaves, Thornthwaite and Turc methods. Penman-

Monteith method showed the highest correlation and fewer errors among all the methods 

used in the present study. Thus estimates of evapotranspiration obtained using Penman-

Monteith method are considered more accurate and reliable. If the records of relative 

humidity and wind speed are not available then Hargreaves and Thornthwaite models can be 

applied because the capability of both the methods in estimating ETo is more or less similar 

for the study area. These is in agreement with the results of the study by Toriman et al. 

(2009) for North Kedah, Malaysia indicated that the Thornthwaite method provides 

reasonable estimates of  ETo in absence of relative humidity and wind speed data. Thus, 

from Table 5.2, it can be seen that the pan evapotranspiration values show reasonable 

correlation coefficient with Penman-Monteith, Hargreaves, Thornthwaite and Turc methods 

indicating that the estimates are reliable. Therefore, considering the pan evapotranspiration 

(ETp) values, the Penman-Monteith, Hargreaves and Thornthwaite methods performed well 

with low value of RMSE, MAE, SSE and high correlation coefficient. Further, the analysis 
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revealed that the estimates of ETo obtained using Blaney-Criddle and Priestly-Taylor 

methods are comparatively poor. Further to study the impact of key climatic variables in 

calculation of ETo, sensitivity analysis is required. 

 

 

Figure 5.4 Monthly average reference evapotranspiration (ETo) for the study area 

 

Figure 5.5 Mean and Annual Reference Evapotranspiration for Seonath basin 
Abbreviations 
P= Pan evaporation method; PM= Penman- Monteith method; H= Hargreaves method; PT= Priestley Taylor 
method; Bl-Cr= Blanney-criddle method; Turc= Turc Method; Thron=Throntwaite Method 
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Table 5.2 Errors and correlation between Pan ET and other ET models for Seonath 

basin 
 

Methods R2 RMSE MAE SSE 

PM 0.962 0.803 0.647 0.659 

H 0.878 1.194 1.077 1.137 

PT 0.614 1.228 0.932 0.985 

Bl-Cr 0.406 1.237 0.981 0.159 

Turc 0.776 1.062 0.750 0.922 

Thron 0.857 1.393 1.362 1.279 

 

5.4.3  Sensitivity to Climatic Parameters 

The partial correlation method is employed to investigate the correlation between 

ETo and major meteorological variables (Maximum and Minimum Temperature, Relative 

Humidity and Wind Speed) in the Seonath River Basin. Table 5.3 provides a summary of 

the correlations between ETo and major meteorological variables on annual and seasonal 

scales in the Seonath river basin. The negative and positive partial correlation coefficients 

indicate that positive and negative relationships exist between ETo and the meteorological 

variables. The larger the values of coefficient, the stronger correlations exist between ETo 

and the meteorological variables, and the larger the influence of the corresponding 

meteorological variable on ETo. In the Seonath river basin maximum temperature is 

dominating factor in estimation of ETo at seasonal and annual scales. As temperature 

increases, ETo also increases due to low humidity in the atmosphere, large amount of water 

would be lost from the surface and from plant cells or tissues. Relative Humidity followed 

by wind speed is another important driving variable for ETo during the year and in all the 

seasons (Table 5.3).  The overall result indicates that the temperature has major effect on 

ETo and it is least effected by rainfall. Figure 5.6 represents the results of sensitivity 

analysis of monthly ETo with key climatic variables. The analysis shows that the maximum 

temperature has maximum effect on the estimation of ETo followed by relative humidity 

and wind speed. The minimum temperature is found least significant compared to above 
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variables. On monthly time scale, sensitivity coefficient (S) shows large variation during a 

year for all the months. The similar results have also been reported by Hupet and 

Vanclooster, 2001; Gong et al., 2006 and Liqiao et al., 2008. The maximum temperature has 

the highest sensitivity coefficient (S) during August followed by September and July. The 

similar patterns of sensitivity coefficients for relative humidity, wind speed and minimum 

temperature have also been obtained. On annual scale, the spatial distribution of sensitivity 

coefficients for key climatic variables has been presented in Figure 5.7. The sensitivity of 

ETo to maximum temperature is highest with S of 1.77 for Bilaspur station which indicate 

that ETo would increase by 17.7 % in response to the 10 % rise in maximum temperature if 

other meteorological variables remain constant. Similarly, the sensitivity of ETo to 

maximum temperature is notably highest for all the stations the value ranges from 1.54 to 

1.77 (Figure 5.7). However the next variable which effects ETo the most is relative humidity 

(RH). The value of S is highest for Rajnandgaon station (-1.28) which means 10% decrease 

in RH causes ETo to increase by 12.8%. Therefore omission of relative humidity and wind 

speed (eg. Temperature based methods) in empirical formulae can thus be important reason 

of uncertainty in ETo estimation. From the previous section Penman-Monteith is best suited 

method for our study area followed by Hargreaves and Thronthwaite methods. But from the 

results of sensitivity analysis the ETo is sensitive to relative humidity and wind speed also. 

Therefore, it is recommended not use these two methods as they donot taken into 

consideration the relative humidity and wind speed parameters for ETo calculation.   

Table 5.3 Correlation Analysis of ETo with Meteorological Variables (Temperature, 

Rainfall, Relative Humidity and Wind Speed) in Seonath River Basin 

 

Parameters Annual Monsoon Winter Summer 

Temperature (Max,°C) 0.9501 0.9373 0.9839 0.7141 

Temperature (Min,°C) 0.5874 0.6289 0.8121 0.6438 

Rainfall (mm) 0.1086 0.0816 -0.0501 -0.0353 

Relative Humidity (%) -0.8117 -0.8169 -0.8916 -0.7303 

Wind Speed (km/hr) 0.7324 0.7298 0.7015 0.7346 
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Figure 5.6 Mean monthly sensitivity coefficients for each climate variable in Seonath 

Basin 

 

 

Figure 5.7 Average yearly sensitivity (a) Spatial pattern of % change in ETo with 10% 

rise in climatic variables (b) Sensitivity coefficient for each climatic variable in Seonath 

River Basin 
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5.5  SUMMARY 

The complexity and inaccuracies in ETo estimation often appear as major constraints 

in developing effective water management strategies for maintaining crop water 

requirement. Therefore in the present study, six ETo estimation methods have been 

compared with pan evapotranspiration (ETp) values to show the reliability of different ETo 

estimation methods. The analysis revealed that there are significant variation in the ET 

estimates obtained using different methods. The Penman-Monteith method is found to be 

suitable for estimating ETo in the study area as it gave the closest estimate with ETp 

followed by Hargreaves, Thornthwaite and Turc methods. 

The monthly Kp values have also been estimated for the study area. The Kp values 

vary from -6% to 21% when compared with the average values of Kp values given in the 

FAO-24 table for Class A pan. Thus for accurate assessment of ETo using observed pan 

evaporation (Ep) data the computed Kp values for the study area have been used. 

The analysis indicates that the estimation ETo is sensitive to maximum temperature 

followed by relative humidity and wind speed. The estimates of ETo are found least 

sensitive to minimum temperature in Seonath river basin. Therefore Hargreaves and 

Thornthwaite methods may not be reliable for estimation of ETo for the study area though 

they have good correlation values with pan evapotranspiration (ETp) values. The present 

study is considered to be useful in selection of method for estimation of ETo according to 

the desired accuracy of estimated ETo for specific purpose and availability of observed 

meteorological data. 

Keeping in the view of research objectives, the next chapter deals with study of Crop 

Water Requirement (CWR) and Irrigation Water Requirement (IWR) for major crops in 

Kharif and Rabi seasons in Seonath basin and analysis of trends in ETo and IWR.  
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CHAPTER 6 

LONG TERM TREND ANALYSIS TO DETECT CHANGE IN 

IRRIGATION WATER REQUIREMENT (IWR) 

 Surface irrigation schemes comprise of i) surface storage and/or diversion 

structures, ii) irrigation water distribution, iii) drainage  network, iv) on farm development 

works etc. These schemes involve huge investment of capital and other resources. Irrigation 

schemes are planned to serve the purpose of providing adequate, timely and reliable water 

supply for the crops to meet their irrigation water requirement over the life of project 

(usually 50 to 100 years). Irrigation water requirements of crops are based on average 

fortnightly or monthly climatic data. Over the year variability is not considered in the 

irrigation schemes and also, it is assumed that irrigation water requirements shall be same 

over the years. 

 Planning horizon of such schemes typically range from 50 years to 100 years 

during this period change may occur in the regional climate and therefore irrigation water 

requirements may also change. On supply side, water availability for irrigation may also be 

adversely affected. 

 This Chapter presents the study of long term trends in Irrigation Water 

Requirement (IWR) of Seonath River Basin. The chapter is divided into two sections. First 

section presents estimation of reference evapotranspiration (ETo), crop coefficient, crop 

water requirement (CWR) and irrigation water requirement (IWR) and the second section 

focuses on the long term trend and variability analysis of ETo and IWR. 

6.1       INTRODUCTION 

Water resources management plays a key role in stable agriculture and sustainable 

environment. Reliable assessment of evapotranspiration is important for managing the water 

resources efficiently in agriculture. Evapotranspiration is a key climatic factor for proper 

irrigation scheduling and appropriate water allocation for various uses (Al-Ghobari, 2000; 

George et al., 2002; Dinpashoh, 2006). ETo is a function of climatic variables thus, it may 

be affected by changes in climatic variables. Several region specific studies have been 

conducted in various parts of the world to determine trends and variability of meteorological 

variables.  
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In Chhattisgarh State of India, 80% of the population depends on agriculture for 

livelihood. Crop production in the region is often adversely affected due to randomness in 

spatial distribution and magnitude of rainfall, and hence in water availability for crops. Due 

to changes in pattern of rainfall and evapotranspiration (ET), the paddy cultivation in the 

basin comes under water stress from time to time which ultimately affects the crop yield. 

Therefore, understanding ETo dynamics will be critical for managing local water resources 

and food security issues. Hence, assessment of irrigation water requirement (IWR) at the 

micro-regional level and its impact on agriculture is necessary for developing strategies for 

mitigation of water stress in the basin. Keeping this in view, an analysis is carried out to 

determine the long-term changes, in ETo and IWR due to changes in climatic variables. 

6.2  METHODOLOGY 

6.2.1  Estimation of ETo 

 The Penman-Monteith (PM, 1965) method suggested by FAO is one of the widely 

used methods for determining ETo (Tabari et al., 2011; Wang et al., 2011). From the 

discussion presented in previous Chapter (Chapter 5) it has emerged that the Penman-

Monteith method is most suited for our study area. Further, this method has added 

advantage of being physically based and explicitly incorporates both physiological and 

aerodynamic parameters (Xu et al., 2006). The ETo has been estimated using records of 

meteorological variables for eight stations viz, Bilaspur, Rajnandgaon, Korba, Durg, Raipur, 

Kanker, Dhamtari and Jhanjgir-Champa. The long term data for the period from 1960 to 

2010 has been used to estimate ETo. 

6.2.2  Determination of CWR/IWR 

 IWR is the amount of water stored as soil moisture which is essential 

consumptively for crop production (USDA, 1970). It is estimated by subtracting the quantity 

of water available to the crop through rainfall, i.e. rainfed irrigation, from the crop 

evapotranspiration. Thus, IWR includes assessment of reference evapotranspiration (ETo), 

crop water requirement (CWR), and effective precipitation. CWR is an empirical estimate of 

the total quantity of water required for a crop growth in an area under known climatic 

conditions so that crop production is not limited by lack of water. CWR is calculated using 

ETo and a crop coefficient (Kc), as follows (USDA, 1993; Doorenbos and Pruitt, 1977): 

CWR = Kc x ETo         (6.1) 
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Where, CWR = rate of crop evapotranspiration in mm, Kc = crop coefficient relating actual 

crop evapotranspiration, ETo = reference evapotranspiration for reference crop in mm. Kc is 

a factor that relates ETo to CWR. Here, the growing season for a particular crop is divided 

into four stages and crop coefficients are determined at defined increments throughout the 

growing stage.  

 The crop coefficient (Kc) is defined as the ratio of the crop evapotranspiration to 

the reference evapotranspiration when the soil surface is dry but transpiration is occurring at 

a potential rate, i.e. water is not limiting transpiration (Allen, 2000). Therefore, Kc 

represents primarily the transpiration component of the crop evapotranspiration (ETc). The 

Kc given in FAO-56 include only single values for each stage i.e., Kc mid and Kc end. The 

Kc values associated with a standard sub-humid climate consider the minimum average 

daytime relative humidity (RHmin) of 45% and wind speed ranges from 1–3 m/s and average 

value of 2 m/s. In FAO-56, Table No. 12 Kc values of about 80 crops are listed. FAO-56 

table No. 12 represents the recommended values. For the region where average minimum 

relative humidity is different from 45% and wind speed is different from 2.0 m/s, the Kc 

values given in FAO-56 for mid season and late season values must be adjusted according to 

the local climatic conditions. The Kc values for the mid-season and late season stages are 

adjusted using the following equation: 

����� = ����	
������� + �0.04��� − 2� − 0.04������ − 45�� � 
!"

#.!
  (6.2) 

 Where, Kcrecommended is the recommended Kc value by FAO-56 (Allen et al., 1998), 

U2 the wind speed at 2 m height (m/s), RHmin the minimum relative humidity, and h the 

mean height of crop during the mid-season or late season stage (m). After adjustment, the 

daily Kc value is determined by assuming Kc to be constant during the initial and mid-

season stages and assuming linear relationship between the Kc value at the end of the 

previous stage (Kc, prev) and the Kc value at the beginning of the next stage (Kc, next) 

during the crop development and late season stages. The daily Kc values during the crop 

development and late season stages could be calculated as: 

��� = ��$��% + ��&∑()*+,-.
)/012,

������34 − ��$��%�     (6.3) 
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Where, i is the day number within the growing season (1, 2, 3 ... length of the growing 

season), Kci the crop coefficient on day i, Lstage the length of the stage under consideration 

(days), and (Lprev) the sum of the lengths of all previous stages (days). 

Effective Precipitation (Pe) is the amount of precipitation that is available to meet the 

evapotranspiration requirements of crops and it is estimated as (USDA, 1970): 

Pe = R / 125 * (125 - 0.2 * R)  (R < 250 mm)     (6.4a) 

Pe = 125 + 0.1 * R    (R> 250 mm)     (6.4b) 

Where, Pe = monthly effective precipitation during the crop duration in mm and R = 

monthly precipitation in mm. IWR is computed as follows (USDA, 1970). The effective 

rainfall for crop growing period (Pe) has been estimated on pro rata basis. 

IWR = CWR – Pe         (6.5) 

Where, Pe = Total effective rainfall for a growing period for a given crop, in mm.  

6.2.3  Statistical Test for Trend and Variability Analysis 

 The non parametric Mann-Kendall test is used to detect the trend and Theil–Sen’s 

Slope Estimator is used to estimate the trend magnitude. The variability in climatic 

parameters has been detected by statistical measure named coefficient of variation (CV). 

The detailed procedure and formulae of above mentioned statistical methods are described 

in Chapter 4. The procedure of the present study has been summarized in flowchart given in 

Figure 6.1. 



95 
 

 

6.3  RESULTS 

6.3.1  Computation of ETo, Kc, CWR, IWR 

 The ETo has been computed with the Penman-Monteith (PM) method using the 

CROPWAT 8.0 software employing daily temperature (maximum and minimum values), 

solar radiation, wind speed and relative humidity (RH) data of eight meteorological stations 

located over the Seonath River Basin. Table 6.1 describes the statistics of hydro-

meteorological variables.  

 Daily data series of meteorological variables during cropping period have been 

used to compute CWR. The major part of the basin is covered by agriculture (76%), it can 

be described as an agricultural basin figure depicted in Chapter 3. The major crops of the 

 

Figure 6.1 Flowchart represent methodology of the study 
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basin are Paddy in Kharif season and wheat and summer paddy in Rabi season as shown in 

Figure 3.2 in Chapter 3. CWR is computed for each stage of crop growth period, and then 

summed up to compute total crop water requirement for major Paddy crop of Kharif season. 

Similarly, CWR for wheat and summer paddy of Rabi season have been estimated for the 

period from 1960-2010. The effective rainfall (Pe) in the study basin has been computed for 

all the eight stations using Eq. 6.4a and b. Finally, the IWR is computed for both the seasons 

separately as a difference of CWR and Pe (IWR= CWR-Pe). Monthly rainfall, ETo and 

estimates of effective rainfall and details of various growth stages of major Kharif and Rabi 

season crops are presented in Table 6.2. 

 In order to estimate CWR, the crop characteristics need to be considered. The crop 

characteristics are represented in the form of crop coefficient (Kc). The Kc is different for 

different growth stages i.e. the initial stage, development stage, midseason stage, and the 

late season stage. The average Kc values for paddy, wheat, summer paddy have been 

estimated for different growth stages and compared with typical ranges of Kc values 

reported by the FAO-56 under the standard conditions (Doorenbos and Kassam, 1979). The 

Kc values suggested in FAO document (Paper No. 56, Table No. 12) for paddy, wheat and 

summer paddy are 1.10, 1.20 and1.05; 0.3, 1.15, and 0.3; 0.50, 1.05 and 0.70 for the initial, 

mid-season, and late season stages, respectively. The above Kc values have been adjusted 

using Eq. 6.2 for the climatic conditions of the study area. After adjustment, the Kc values 

of Kharif paddy, wheat and summer paddy in the initial, midseason, and late season stages 

are used to determine daily Kc values. The daily Kc values are determined using Eq. 6.3, 

and the crop coefficient curve could then be drawn as given in Figure 6.2. 

 Figure 6.2 presents the average Kc values for different crops compared with FAO-

56 recommended Kc values. For Kharif paddy, Kc value for different crop growth stages 

differs by -1% to -15% with respect to FAO recommended Kc values whereas for Wheat 

and Summer paddy (rabi crops) difference ranges from -2% to -16% and -9% to -23% 

respectively with respect to FAO recommended Kc values (Table 6.3). In case of Kharif 

paddy, the Kc value considerably differs from FAO recommended Kc value for initial stage 

only. The value of Kcini is affected by the evaporating power of atmosphere, magnitude of 

wetting event and time interval between wetting event. The wide variation in Kc values 

during initial stage of Kharif paddy is due to the fact that during this period (i.e., 15th June to 

10th July) decreasing evapotranspiration rate for the entire basin (discussed in Chapter 4) 

cause lower value of Kcini than the FAO recommended Kc values. During this period 
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decrease in evapotranspiration is observed for the entire Seonath basin due to low 

temperature and low wind speed magnitude and increase in relative humidity (Table 6.1) 

compared to FAO standard climatic condition. The estimated values of crop coefficients for 

rabi wheat and summer paddy at developmental stage differ significantly from those 

suggested by FAO. These differences can be attributed to factors such as higher 

temperature, lower relative humidity, different cultivars, and increased soil evaporation 

(FAO-56). Also the Kc values for rabi wheat and summer paddy during crop developmental 

stage are lower than the FAO Kc values, because the actual field conditions are drier than 

the standard conditions referred in FAO document. The actual field conditions (Seonath 

river basin) are drier due to rise in winter temperature, decrease in relative humidity and in 

turn increase in evapotranspiration of the basin.  Thus, the dry condition during this stage 

corresponds to the decrease in Kc value. 

 The adjusted Kc values are lower than those suggested by FAO-56 for each crop 

during the different crop growth stages. This is mainly due to humid climate of Seonath 

river basin and lower mean wind speed (1.7-1.0 m/s) and higher mean minimum relative 

humidity (79-41%) during Kharif and rabi season. Therefore, it is recommended to use 

adjusted Kc values for accurate estimation crop water requirement. 

6.3.2  Implication for Irrigation Planning 

 The CWR estimated using FAO recommended Kc values are significantly higher 

as compared to CWR estimated by region specific Kc values (Figure 6.3). This 

overestimation of CWR implies lower irrigation area compared to the area which can be 

realistically brought under irrigation.  For eg. if 650 mm of CWR which is estimated using 

FAO recommended Kc values irrigates 1 ha of rice field. However with the same depth of 

CWR (650 mm) more area would be under irrigation and increase in aggregate returns if 

CWR is estimated using site specific Kc values. Therefore region specific Kc values play an 

important role for better use of existing irrigation facilities and economic planning and 

management of any irrigation project.  

6.3.3  Effect of Climate Change on Kc Values 

 Since Kc value can vary significantly with the change in meteorological variables 

therefore estimates of Kc values under climate change scenario have been determined for 

the study area. The Kc values for three crops viz., Kharif rice, rabi wheat and summer paddy 
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have been calculated for future period of 2011-2100 (Figure 6.4). As seen in Figure 6.4 a, b 

and c, the Kc values for future period are close to FAO recommended Kc values. The future 

Kc values are relatively higher when compared with present estimated Kc values. This is 

because increase in precipitation in the future scenario would cause increase in wetness 

condition of soil surface (Figure 6.5). Therefore for future years, FAO-56 recommended Kc 

values are well suited for the study area. 

 Figure 6.6 depicts the monthly variation of average rainfall and evapotranspiration 

(ETo) in the basin. In this Figure, ETo is seen to be higher than rainfall during January to 

June and during October to December, indicating water requirements for irrigation, that is, 

IWR, during these periods. However, during the remaining period (i.e., from the beginning 

of July to September) the monthly rainfall is more than ETo and therefore, IWR may be low 

or negligible during this period, or it may be needed for prolonged dry spells during 

monsoon season, if any. 

Table 6.1 Statistic of (seasonal) meteorological variables used for the computation of ETo, 

CWR, IWR 

Meteorological 

Variables/Parameters 

Kharif Season (Late June to October) Rabi Season (November to April) 

Max Min Average SD Skew Max Min Mean SD Skew 

Rainfall (mm) 1303.6 599.67 879.93 168.42 0.64 184.53 11.16 79.64 42.6 0.23 

Minimum Relative 

Humidity (%) 

72.97 69.01 71.44 0.84 -0.82 50.51 48.05 49.28 0.62 -0.13 

Temp (Max, °C) 33.05 31.20 32.18 0.46 -0.10 31.73 29.76 30.69 0.47 -0.13 

Temp (Min, °C) 24.34 22.57 23.34 0.38 0.35 16.81 15.03 16.06 0.46 -0.14 

Sunshine (hrs) 9.50 0.30 5.25 3.03 0.11 10.10 4.50 8.73 1.26 -1.81 

Wind Speed (km/hr) 16.40 1.33 6.14 2.09 0.51 25.07 0.78 3.59 3.45 5.95 

Effective Rainfall(mm) 693.56 395.84 547.75 61.94 0.12 174.59 11.08 75.96 40.6 0.18 

 



99 
 

Table 6.2 Average monthly values of rainfall, Pe and ETo for the computation of CWR/IWR 

 

Months Rainfall 

(mm) 

Effective 

Rainfall 

(Pe, mm) 

Reference 

Evapotranspiration 

(ETo, mm) 

Cropping Season 

June 175.509 114.772 202.777  

 

Kharif Season 

(Mid June-Oct) 

July 268.483 141.227 131.125 

August 255.545 137.429 117.659 

September 139.842 97.766 121.764 

October 43.123 36.779 138.993 

November 10.008 9.182 121.302  

Rabi Season 

(Nov-Mid Apr) 

December 8.939 8.271 108.062 

January 12.791 11.814 111.575 

February 13.809 12.787 126.117 

March 16.560 15.223 184.881 

April 19.191 17.697 213.835 Non Cropping season (Mid 

Apr-May) May 35.556 31.633 241.238 

 

Table 6.3 Percentage change in computed Average crop coefficient (Kc) values with FAO 

recommended Kc values at different growth stages of major crops in Seonath River Basin. 
 

Major 

Crops of 

Seonath 

Basin 

Percentage change in Computed Kc value and FAO Kc values 

 

Percentage Change 

in Kc ini compared 

with Kc recom 

Percentage Change in 

Kcdev compared with 

Kcrecom 

Percentage Change 

in Kcmid compared 

with Kc recom 

Percentage Change 

in Kcend compared 

with Kc recom 

Paddy -15.25 -2.30 -4.80 -1.31 

Wheat -2.43 -16.31 -3.39 -3.42 

Summer 
Paddy 

-9.38 -23.22 -15.25 -15.47 

 



Figure 6.2(a) Crop coefficient (Kc) curve for Rice using growth stage lengths of 31, 32, 52, 

and  25 days 

Figure 6.2(b) Crop coefficient (Kc) curve for wheat using growth stage lengths of 30, 30, 40, 

and 30 days 
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Figure 6.2(a) Crop coefficient (Kc) curve for Rice using growth stage lengths of 31, 32, 52, 

 

Figure 6.2(b) Crop coefficient (Kc) curve for wheat using growth stage lengths of 30, 30, 40, 

 

Figure 6.2(a) Crop coefficient (Kc) curve for Rice using growth stage lengths of 31, 32, 52,  

 

Figure 6.2(b) Crop coefficient (Kc) curve for wheat using growth stage lengths of 30, 30, 40,  



Figure 6.2(c) Crop coefficient (Kc) curve for summer paddy using growth stage lengths 

of 20, 30, 40, and 30 days 

 

a) Kharif Season 
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Figure 6.2(c) Crop coefficient (Kc) curve for summer paddy using growth stage lengths 

 

Figure 6.2(c) Crop coefficient (Kc) curve for summer paddy using growth stage lengths  

 



b) Rabi Season 

Figure 6.3 Monthly variation of CWR estimated using FAO recommended and region 

specific Kc values. The hatched area shows the amount of crop water requirement
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Figure 6.3 Monthly variation of CWR estimated using FAO recommended and region 

The hatched area shows the amount of crop water requirement

(a) Kharif Rice 

 

Figure 6.3 Monthly variation of CWR estimated using FAO recommended and region 

The hatched area shows the amount of crop water requirement 
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(b) Rabi Wheat 

 

(c) Summer Paddy 

Figure 6.4 Kc values under climate change scenario 



a) Kharif Season 
 

b) Rabi Season 

Figure 6.5 Monthly variation of future CWR estimated using FAO recommended and 

region specific Kc values. 
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Monthly variation of future CWR estimated using FAO recommended and 

region specific Kc values. The hatched area shows the amount of crop water requirement

 

 

Monthly variation of future CWR estimated using FAO recommended and 

The hatched area shows the amount of crop water requirement 
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6.3.4 Reference Evapotranspiration Trend 

   The Mann-Kendall’s test is applied to detect trends in reference evapotranspiration (ETo) 

for all the selected stations falling in Seonath River basin, Chhattisgarh. The spatial distribution of 

trends in annual and seasonal ETo is shown in Figure 6.7. From Figure 6.7 the increasing trend is 

observed for all the seasons except for summer season which shows non-significant decreasing 

trend. For annual series significant increasing trend has been observed in the stations located in 

Southwest part of the study area. However non-significant increasing trend of ETo are found in 

other parts of the study area. On the seasonal scale large differences are found in the spatial 

distribution of trends in ETo. For the summer season the most of the stations shows non-significant 

decreasing trend (Figure 6.7 d). The summer ETo has decreasing trend because of decrease in 

maximum temperature and increase in relative humidity over Seonath basin during summer season 

(discussed in Chapter 4). For the winter months increasing trends of ETo have been observed for 

stations located at Raipur, Kawardha, Jhajgir-Champa and Damtari (Figure 6.7 c). The rest of the 

stations showed non-significant increasing trend. The monsoon season exhibits significant 

increasing trend of ETo. However, the trends at Bilaspur district are found to be non-significant 

 

Figure 6.6 Monthly Variations of ET and Rainfall 
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increasing (Figure 6.7 b). The monsoon season showed the similarities in the spatial pattern with 

respect to annual ETo. The percentage of stations in the study area exhibiting rising and falling 

trend using MK test are presented in Figure 6.8. In the monsoon season, significant rising trends of 

ETo exhibits in 92% of the stations. However non-significant increasing trend of annual and winter 

ETo values are found in 67% and 58% of the stations, respectively. Non significant decreasing 

trends in 87% of the stations could be noticed in summer ETo values (Figure 6.8). Overall annual, 

winter and monsoon ETo values have increasing trends in the basin. However, ETo in summer 

season showed decreasing trend. 

The monthly ETo trend for each month are given in Table 6.4. Both upward and downward 

trends are evident in different stations and months. Almost all the stations exhibit significant 

increasing trends from September to November except for Bilaspur station. The estimates of ETo 

for the months of December, January, February, July and August show non-significant increasing 

trend. However significant increasing ETo trend have emerged for the months of August, 

September and October. The Kharif crops have maximum growth (developmental stage) during the 

month of August and therefore more water is transpired from the plant canopy. In summary, the 

results show that the average monthly ETo for the period of 51 years has significant increasing 

trend for September, October, November (Table 6.4). 

Figure 6.9 shows trend magnitude of monthly estimates of ETo. The decreasing trend 

magnitude is noticed for March, April and June and rest of the months show increasing trend with 

highest magnitude for the month of August followed by September and October. Figure 6.10 

shows the percentage change in ETo over 51years. The percentage change is highest for two 

districts viz., Rajnandgaon and Kanker. However, Bilaspur district has emerged with lowest 

percentage change in ETo with the magnitude ranging between 0.91% to 4.61%. Overall result 

indicates that the ETo value have increased in Seonath River Basin over the period of 51years. 

The overall trend and percentage change for annual and seasonal ETo of the basin have 

been summarized in Table 6.5. The increasing trend magnitude and percentage change on annual 

and seasonal ETo have emerged very clearly except for summer season which show decreasing 

trend. This may be due to decreasing trend in summer maximum temperature in study basin 

(discussed in detail in Chapter 4). The significant increasing trends in ETo values have been 

observed for monsoon and winter season (Table 6.5, Column 2). The percentage variability in ETo 

values have been found highest for monsoon followed by winter season (Table 6.5, Column 4). 
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(a) (b) 

  

(c) (d) 

Figure 6.7 Plots of Kendall Z statistic for the annual and seasonal ETo trend during 1960-
2010 (a) Annual; (b) Monsoon; (c) Winter; (d) Summer  
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Figure 6.8 Percentage of stations showing increasing and decreasing trend for the Seonath 
river basin 
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Table 6.4 Monthly ETo trends by Mann–Kendall test (Bold value indicates significant level) 

Months Raipur Bilaspur Durg Dhamtari  Kanker  Kawardha Korba  Rajnandgaon 

Jan 0.31 0.16 0.75 0.90 0.83 0.82 1.31 0.19 

Feb 0.10 0.52 0.22 0.27 0.59 0.04 0.67 0.35 

Mar -0.88 -0.91 -0.86 -0.53 0.02 -1.00 -1.41 -0.48 

Apr -0.40 -0.31 -0.56 -0.25 0.03 -0.79 -0.94 -0.64 

May -0.36 -1.45 -0.04 -0.04 0.34 -0.24 -0.49 -0.03 

Jun -0.17 -3.22 -0.60 -0.31 -0.24 -0.91 -0.81 -0.72 

Jul 2.06 1.31 1.23 1.66 1.84 0.37 0.10 1.42 

Aug 2.35 1.53 2.60 2.79 3.28 2.15 1.86 2.97 

Sep 3.24 0.91 3.15 3.38 3.29 3.23 2.89 3.04 

Oct 2.69 2.10 2.10 2.03 2.00 2.14 2.23 1.91 

Nov 0.73 1.70 0.74 0.40 0.38 1.26 1.03 0.73 

Dec 0.61 0.84 0.15 0.33 0.66 0.05 0.41 0.05 
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Figure 6.9 Percentage change in annual (ETo) for the Seonath river basin 

 

 

 
Figure 6.10 Monthly ETo trend slope values over 51 years (1960–2010) for the Seonath  
river basin 
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Table 6.5 Results of regional average annual and seasonal ETo for entire Seonath Basin 

 

Seonath River 

Basin 

Z-values 

MK 

Sen’s Slope 

(β) 

% Change over 

51 year 

% Variability over 51 

year 

Col. 1 Col.2 Col.3 Col.4 

Annual 1.56 13.14 1.43 1.17 

Summer -0.43 -10.51 -0.78 2.01 

Winter 1.96 21.02 3.08 2.77 

Monsoon 2.37 22.0 3.07 2.88 

Bold value indicates significant increasing/decreasing trend 

6.3.5  Analysis of Annual ETo Variability Pattern 

Knowledge on the variation in ETo is essential from agricultural point of view for precise 

estimation of supplemental water requirements. The study of ETo variability pattern using 

Coefficient of Variation (CV) for a period of 1960-2010 (51 years) for Seonath river basin 

indicates that the inter-annual variability is highest for the entire river basin (Figure 6.11). The 

highest (3.4-3.6%) annual ETo variability is seen in stations located at southern part of the basin 

while rest of the stations exhibits almost same inter-annual variability ranges from 1.0%-1.8%. 

Overall it can be stated that high variation in ETo is observed for the entire Seonath River Basin. 
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6.3.6  Trends in Irrigation Water Requirement (IWR)  

 The estimated annual IWR is shown in Figure 6.12. It can be seen from the figure that 

IWR has generally increased for the entire study period. The IWR of the Kharif Paddy is 

relatively higher for the later stage of the crop growth period. For Rabi cropping season (wheat 

and summer paddy) it has been found that the required Irrigation Water Requirement (IWR) is 

of the same order throughout the growing season, but marginally higher during the 

developmental stage. The overall IWR at annual time steps indicated the irrigation requirement 

to be more for Rabi crops (Figure 6.13). Overall, the analysis of long term IWR has revealed 

that the water requirement for agricultural crops in most parts of the study area have shown 

increasing trend. 

 

Figure 6.11 Spatial distribution of inter-annual variability of annual ETo (CV) 
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Figure 6.12 Trends in Irrigation Water Requirement for Seonath river basin

Figure 6.13 Total IWR. The hatched area shows the amount of Irrigation requirements
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Trends in Irrigation Water Requirement for Seonath river basin

Total IWR. The hatched area shows the amount of Irrigation requirements

1960 1965 1970 1975 1980 1985 19901995

Year

 

Trends in Irrigation Water Requirement for Seonath river basin 

 

Total IWR. The hatched area shows the amount of Irrigation requirements 

1995 2000 2005 2010



113 
 

6.3.7  Changes in IWR over the period 1960–2010 

In order to detect changes in IWR, the MK-test and Sen's slope have been used for the 

51-year period (1961-2010). Changes in IWR are investigated for Kharif (Paddy) and Rabi 

(wheat and summer paddy) cropping seasons using meteorological data for eight weather 

stations within the basin. The estimates of IWR for Kharif Paddy growing season in all the 

stations have increasing trend except for Korba station. The estimates of IWR for Korba basin 

have indicated non-significant decreasing trend (Figure 6.14a).For the Rabi season IWR trend 

is indentified for two crops wheat and summer paddy. For wheat crop, significant increasing 

trends of IWR have been found for five stations (viz., Bilaspur, Raipur, Durg, Dhamtari and 

Rajnandgaon) and the increasing trends have been found non-significant for three stations 

(Korba, Kawardha and Champa). Similarly for summer paddy significant increasing trend have 

emerged for upper half (northern parts) of the basin whereas the estimates of IWR for lower 

half (southern part) of the basin show non-significant increasing trend (Figure 6.14 b, c). The 

percentage of stations with rising and falling trend is shown in Figure 6.15. For Kharif season 

positive trend have been detected in 88% of the stations, and remaining 12% of the stations 

showed decreasing trend. For rabi wheat crop analysis revealed that the significant increasing 

trend are dominant, (with 63% of the stations). Whereas, for summer paddy 50% of the stations 

show significant increasing trend and rest 50% stations shows non-significant increasing trend 

(Figure 6.15).The IWR for Kharif and Rabi seasons are increasing at the rate of 3.627 mm/yr 

and 1.264 mm/yr respectively. These changes are characterized by a relative increase in IWR 

by 47%, while rabi IWR by 23%. The change in magnitude of IWR for Kharif and Rabi crops 

for each station are presented in Table 6.6. Among the crop growing seasons, the highest 

absolute maximum values of percentage change have emerged during Kharif season. This 

highest percentage change in Kharif IWR is likely to have significant adverse impact on 

rainfed agriculture in future. This may necessitate shifting the existing focus from irrigation in 

Rabi season to supplemental irrigation in Kharif (monsoon) season crops. 



(a) Kharif IWR trend(Paddy)

(c) Rabi IWR (Summer Paddy)

Figure 6.14 Trend in Irrigation Water Requirements (a) Kharif C rop (Paddy) (b) Rabi 

Crop (Wheat) (c) Rabi Crop (Summer Paddy)
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Kharif IWR trend(Paddy)  (b) Rabi IWR trend (wheat)

 

(c) Rabi IWR (Summer Paddy)  

Trend in Irrigation Water Requirements (a) Kharif C rop (Paddy) (b) Rabi 

Crop (Wheat) (c) Rabi Crop (Summer Paddy) 

 

Rabi IWR trend (wheat)  

  

 

Trend in Irrigation Water Requirements (a) Kharif C rop (Paddy) (b) Rabi  



115 
 

Table 6.6 Sen’s Slope of Monsoon and Post Monsoon IWR over the period of 1960-2010 
 

Station 

Kharif IWR Rabi IWR (Wheat) 
Rabi IWR  

(Summer Paddy) 

Sen’s 

Slope (β) 

(mm/yr) 

% 

Change 

Sen’s 

Slope (β) 

 

% 

Change 

 

Sens Slope 

(β) 

(mm/yr) 

% Change 

 

Raipur 0.869 30.973 0.565 9.299 0.567 6.438 

Bilaspur 1.726 23.087 0.0156 0.289 0.003 0.0386 

Durg 3.627 7.313 0.0570 0.869 0.048 0.515 

Damtari 0.366 48.371 0.597 9.807 0.628 7.121 

Champa 1.894 28.406 0.218 3.487 0.258 2.842 

Kawardha 1.082 29.533 0.190 3.563 0.201 2.542 

Korba 0.460 10.699 0.429 9.608 0.417 6.138 

Rajnandgaon 3.671 47.092 1.264 22.853 1.236 15.099 
 

  

 

Figure 6.15 Percentage of station with increasing/decreasing trend 
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6.4  SUMMARY 

 This chapter presents the estimates of ETo, CWR and IWR including determination of 

region specific crop coefficients and effective rainfall. The ETo has been computed using FAO-56 

Penman-Monteith method. The crop coefficients during crop growing season and CWR have been 

computed for major crops viz. Kharif Paddy, wheat and summer paddy. The climatic condition of 

Seonath river basin (study area) differs from the standard climate considered in FAO paper-56 

(Allen et al., 1998) because of lower mean wind speed (1.7-1.0 m/s) and higher mean minimum 

relative humidity (79-41%) during Kharif and rabi season. Hence, the adjusted Kc values are lower 

than those suggested by FAO-56 for each crop during the different crop growth stages. The CWR 

computed using Kc in FAO-56 gives significantly different (higher) values. It is therefore 

recommended to use adjusted Kc values for accurate estimation crop water requirement.   

 The Mann-Kendall (MK) and Modified Mann-Kendall (MMK) tests are applied to detect 

the trend in annual, seasonal and monthly ETo and IWR estimates over 51 years (1960–2008) in 

the Seonath River Basin, Chhattisgarh (India). The slopes of trend lines are computed using the 

Theil–Sen’s slope estimator. The increasing tends in ETo have been found for winter and monsoon 

season except for summer season which shows non-significant decreasing trend. Annual analysis 

of ETo series indicated that the increasing trend. On the monthly time scale, increasing trends have 

been identified in ETo values in majority of the months. The significant positive trend magnitude 

is found for the months of September, October and November. The Coefficient of Variability (CV) 

revealed that inter-annual variability of ETo has been high in the whole river basin. The southern 

part of the basin shows highest variability (3.4-3.6%). 

 The analysis has revealed that IWR has increasing trends for Kharif Paddy crop as well as 

for Rabi season crops (wheat and summer paddy). Overall, the results of this study showed an 

increase in irrigation water requirement, because of increase/change in meteorological variables 

(viz., rainfall, Tmax and Tmin, relative humidity and wind speed). Therefore, changing irrigation 

requirement appraisals presented in this study would be useful for future irrigation management 

systems for the Seonath River Basin. 

In the next chapter an attempt has been made to correlate the Curve Number (CN) 

parameter of the SCS-CN methodology with IWR in order to investigate a simple methodology for 

determination of CWR and IWR using rainfall runoff records. To this end, a model is explored 

between potential maximum retention (S) and ETo, and the dependence of ETo on S will be used 

for correlating S with IWR. 
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CHAPTER 7 

 RELATIONSHIP BETWEEN IRRIGATION WATER REQUIREMENT 

AND SCS-CURVE NUMBER  

This chapter presents the development of simple model for estimation of Irrigation 

Water Requirement (IWR) and Soil Conservation Service-Curve Number (CN). To this end 

the proposed model is validated using large rainfall-runoff dataset of Seonath river basin. 

7.1  INTRODUCTION 

Irrigation Water Requirement (IWR) is one of the most important components for 

regional water budget and one of the key measurements for planning and management of 

water resources. It is of significance to assess the amount and changes of IWR especially for 

those areas where the conflicts between water demands and supply are serious. The study 

site is Seonath Rivers Basin falling in Chhattisgarh State of India. Nearly, the livelihood of 

80% population in the study basin depends on agriculture. The basin receives an average 

annual rainfall of the order of 1255 mm. Nearly 88% of annual rainfall is received in 

monsoon period i.e., June-September. The average rainfall in non rainy season (October-

May) is insignificant and it is only 12% of the annual rainfall. Therefore the basin often 

faces dry conditions during winter and summer seasons. It often encounters with water 

shortage in rural and urban areas and the problem becomes more adverse in summer season 

in low rainfall years. It is reported that the study area faces frequent droughts and thus crop 

production is adversely affected from time to time. Due to uneven and erratic distribution of 

rainfall, the pattern of water utilization in agriculture has also changed. It is reported that the 

water utilization in the basin has increased with time. Thus, it is essential to study the 

changes in ET is to work out the supplemental water requirement of different crops during 

their critical growth periods.  

Thus, for the assessment of future water and crop production, it is necessary to 

estimate the water requirement of irrigated agriculture. For estimation of IWR, reference 

evapotranspiration (ETo) forms to be the key component. Despite availability of a number 

of models in literature, the assessment of evapotranspiration (ET) is a complex task as it 

involves spatial and temporal heterogeneity in meteorological and climatic parameters, soil 
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moisture status, plant water availability, surface cover type, soil classes etc. (Makkeasorn et 

al., 2006).  

In field, it is widely believed that the lysimeter provides the most reliable assessment 

of ET if surface cover condition of the catchment perfectly matches its inside cover 

condition. It is however expensive in terms of its installation and requires high operational 

skills. Therefore, the measurement using lysimeter is not very common for routine 

measurements. Consequently, several empirical and semi-empirical approaches have been 

suggested from time to time for different regions based on available meteorological data. 

However, a few or sometimes only one meteorological station represents the climate of the 

entire watershed. All empirical methods however work in a certain range of conditions and 

none can be recommended as the best one due to their limitations and complexity. 

Therefore, care should be taken not to use them outside the prescribed range (Beven, 2001).  

ET can be estimated using energy balance, mass transfer, combination of energy 

balance and mass transfer based empirical and semi-empirical approaches (Brutsaert, 1982; 

Allen et al., 1989; Jensen et al., 1990; Morton, 1994; Xu and Singh, 2002). The simple 

methods like Blaney-Criddle (1950), Thornthwaite (1948), and Hargreaves (1982) used only 

temperature data, are not very accurate especially under extreme climatic conditions. These 

methods underestimate (up to 60%) ET in windy, dry, and sunny areas, while in calm, 

humid, and cloudy areas, they overestimate (up to 40%) (Brutsaert, 1982). The combined 

approach (Penman, 1948) is however considered as the most physically satisfying approach 

(Jensen et al., 1990; Smith et al., 1991; Shuttleworth, 1993; Beven, 2001). The Penman-

Monteith (PM) model recommended by FAO (Allen et al., 1998) is commonly used for 

estimation of reference evapotranspiration (ETo). It is however more data demanding and 

data sensitive compared to other methods. There are situations when more data demanding 

complex ET estimation methods cannot be used due to non availability of accurate and long 

term data. Thus, there is need to investigate simpler methods to derive irrigation water 

requirement on seasonal scale and also be compatible with the available complex methods. 

To this end, Mishra et al. (2014) suggested there are strong relationships between the SCS-

CN (SCS, 1971) runoff curve number (CN) (for a watershed at any time scale including the 

seasonal (Mishra et al., 2008) and potential evapotranspiration (PET). It is obvious that the 

popular SCS-CN method is simple and easy to use. As ET is prime component for the 

estimation of IWR. Accordingly, an attempt has been made in this study to establish 

relationship between IWR and CN. 
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7.2  METHODOLOGY 

 For the derivation of IWR and CN relationship the values of ETo, CWR, IWR and 

CN for Kharif and Rabi season crops for each year are required. The estimates of ETo, 

CWR and IWR are discussed in detail in previous Chapter. The methodology used in this 

chapter is summarized in flowchart given in Figure 7.1. 

7.2.1  Determination of Curve Number (CN) 

The SCS-CN method (SCS, 1956) employs the water balance equation and two 

fundamental hypotheses described, respectively, as follows: 

QFIP a ++=
                            (7.1) 

The first hypothesis states that the ratio of direct runoff to potential maximum runoff is 

equal to the ratio of infiltration to potential maximum retention and, according to the second 

hypothesis; the initial abstraction is some fraction of the potential maximum retention. 

These are respectively expressed as: 

S

F

IP

Q

a

=
−

                   (7.2) 

λSIa =
                    (7.3)                                  

Where, P = total precipitation (mm), Ia = initial abstraction (mm), F = cumulative 

infiltration (mm), Q = direct runoff (mm), and S = potential maximum retention (mm), and λ 

= initial abstraction coefficient (= 0.2, a standard value). A combination of Eqs. 7.1 and 7.2 

leads to the popular form of the SCS-CN method:  

λ)S(1P

λS)(P

SIP

)I(P
Q

2

a

2
a

−+
−=

+−
−=                                                         (7.4) 

Here, P ≥ Ia, Q = 0 otherwise. From the observed rainfall-runoff data, the SCS-CN 

parameter S can be determined as follows (Hawkins 1993) with λ=0.2:   

]5P)  +  Q(4Q  -  2Q)  +  5[(P = S                                                                     (7.5)       
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S can be transformed to CN scale using the following empirical relation: 

254S

25400
CN

+
=                                                                                         (7.6)  

where, S (mm) and CN is a non-dimensional parameter. A detailed description of the 

application procedure is available elsewhere (McCuen, 1982; Ponce, 1989; Mishra and 

Singh, 2003a; Michel et al., 2005).  

Originally, the event-based SCS-CN methodology was developed for small 

ungauged agricultural watersheds. Ponce and Hawkins (1996) suggested the methodology to 

be suitable for areas less than 250 km2. Eq. 7.4 however does not restrict its applicability 

based on watershed size and rain duration (Mishra et al., 2008, 2014). Its capabilities, 

limitations, uses, and its revisions are reported elsewhere (McCuen, 1982; Steenhuis et al., 

1995; Ponce and Hawkins, 1996; Bonta, 1997; Yu, 1998; Mishra and Singh, 1999, 2002, 

2003a, b, Mishra et al., 2004a, 2006; and Michel et al., 2005). Williams and Laseur (1976), 

Soni and Mishra (1985), Mishra and Singh (2004b), Geetha et al. (2008), Mishra et al. 

(2008) and several others have employed the SCS-CN methodology for long-term 

hydrologic simulation in catchments of a few thousand sq.kms. 

7.2.2  Relationship between CN and IWR 

Mishra et al. (2014) suggested CN-PET relationship based on the water balance 

equation (Eq. 7.1) and the proportionality hypothesis (Eq. 7.2). The maximum amount of 

moisture available as rainfall (P) can be lost only when the direct surface runoff (Q) is equal 

to zero. In other words, P = Ia + S. Here, the maximum infiltration losses F will equal S (in 

magnitude) which includes the initial moisture (Mishra and Singh, 2002). From Eq. 7.2, as 

Q→ (P-Ia), F→ S. Since Ia = 0.2S, the maximum water loss = 1.2S. In terms of antecedent 

moisture condition (AMC), it is equal to 1.2SI. For longer time scale reasons, the subscript I 

here is taken to refer to AMC condition (fully dry condition) of the watershed. Alternatively, 

SI corresponds to the capacity of the fully saturated condition. Since, by definition, PET 

corresponds to unlimited amount of moisture supply to vegetation. Due to certain limitations 

PET concept has been gradually replaced by the terms, such as reference crop 

evapotranspiration (Jensen et al., 1990), or surface dependent evapotranspiration (Federer et 

al., 1996). The assumption in the proposed ETo computation is that the rainfall (P) is always 

greater than or equal to 1.2SI during the whole period. Here, Ia accounts for all such initial 

water losses, for example, interception, evaporation, surface detention, and infiltration, 
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describable in terms of evaporation and not available for either plant use or runoff 

generation (Mishra and Singh, 2003a). The water that can transpire through vegetation 

during the storm duration can be equal to SI, if the moisture is fully available. Thus, the sum 

of Ia and S (or CN) for dry condition describes the potential amount of evapotranspiration 

that can occur in a watershed during the period of consideration. Mathematically, the 

relation between ET and S has been described as follows (Mishra et al., 2014) 

The governing equations for the root-zone soil moisture W and evapotranspiration E 

(ET) by Mintz and Walker, 1993 are given as follows: 

( )IST,ST E*EβEE −=+                                                                                  (7.6a) 

 
*ST, W

W
β =                                                                                                           (7.6b) 

 SEEEET TI ++=                                                                                               (7.6c) 

where ET is the transpiration (moisture transferred from the soil to the atmosphere 

through the root-stem-leaf system of vegetation); Es is the soil evaporation (moisture 

transferred from the soil to the atmosphere by hydraulic diffusion through the pores of the 

soil); EI is the interception loss (water evaporated from the wet surface of the vegetation and 

wet surface of the soil) during rain storm; ES is the coefficient of transpiration plus soil 

evaporation, taken as a function of soil wetness; E* is the potential evapotranspiration; W is 

the root-zone moisture at the end of the day; and W* is the  root-zone storage capacity. 

From Eqs. 7.6a and 7.6c, 

I

I
ST, E*E

EET
β

−
−

=                                                                                                           (7.7) 

Combination of Eqs. 7.6b and 7.7 gives 

*
I

I

W

W

E*E

EET
=

−
−

                                                                                           (7.8) 

The right hand term of Eq. 7.8 represents, by above definition, the ratio of F (= W) to S (= 

W*). Thus, Eq. 7.8 states that, similar to the SCS-CN proportionality hypothesis (Eq. 7.2), 

the ratio of actual evapotranspiration to the reference evapotranspiration is equal to the ratio 



122 
 

of actual infiltration (or moisture retention) to the potential maximum retention. A 

substitution of Eq. 7.2 into Eq. 7.8 leads to  

aI

I

IP

Q

S

F

E*E

EET

−
==

−
−

                                                                                               (7.9) 

When further coupled with Eq. 7.4, Eq. 7.9 yields the following: 

 
SIP

)E)(EToI(P
EET

a

Ia
I +−

−−
+=                                                                                    (7.10) 

Here, EI, by definition, represents the interception loss (water evaporated from the wet 

surface of the vegetation and wet surface of the soil) during the rain storm. It is however a 

representation of the above described SCS-CN initial abstraction (Ia) that includes not only 

interception losses but also surface detention, initial infiltration, and evaporation. This is the 

water loss abstracted initially and not contributing to either direct runoff or infiltration. On 

the other hand, ET and ES are the water losses occurring during the whole period of rain 

storm. Thus, within the frame-work of SCS-CN terminology, EI can be taken as to represent 

Ia. Therefore, Eq. 7.10 can be recast as: 

  
SIP

)I*)(EI(P
IET

a

aa
a +−

−−
+=                                                                                            (7.11) 

Where, P > ETo > Ia, ET = 0 otherwise. Taking Ia = 0.2S allows determination of ET from 

known P, E*, and S (or CN). Eq. 15 also exhibits an implicit relationship between ET and Ia 

and S and, in turn, CN.  

 In Equation (7.11), S is a function of ET/ETo. IWR is a function of CWR which, in 

turn, is a function of ET. Expressed mathematically,  

S (or CN) = f (ET, ETo)                     (7.12) 

CWR = f (ETo) = f (S or CN)                                                                                      (7.13) 

 

Therefore, 

IWR = f (CWR) = f (S or CN)            (7.14) 
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The sum of Ia and S multiplied with suitable crop coefficient value describes amount 

of water required to compensate the evapotranspiration loss from the cropped field.  The net 

irrigation water requirement of each crop is calculated by subtracting the effective rainfall 

from the actual crop evapotranspiration. Thus, a mathematical relation is also developed 

between IWR and S, as described below: 

P = Ia + S (if, Q →0, F→ S)         (7.15) 

ETo = Ia + S = 1.2SI          (7.16) 

Pe = P – Ia = S          (7.17) 

IWR = CWR-Pe          (7.18) 

Substituting, the value of ETo and Pe in Eqs 7.18 we get Eq. 7.19 which can be described in 

the form described below:  

 IWR = Kc x (1.2 S) – S = S (1.2Kc -1)       (7.19) 

7.2.3  Performance Evaluation  

7.2.3.1 Nash-Sutcliffe efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the 

relative magnitude of the residual variance (“noise”)  compared to the measured data 

variance (“information”) (Nash and Sutcliffe, 1970). NSE is computed as shown in Eq 7.20: 

��� = 1 − �∑ (
���)�����
∑ (
������)�����

�         (7.20) 

7.2.3.2 Coefficient of determination (R2) 

The coefficient of determination (R2) (Moriasi et al., 2007; Krause et al., 2005) is 

used to evaluate the model performance. R2 describes the proportion of the variance in 

measured data explained by the model. R2 ranges from 0 to 1, with higher values indicating 

less error variance, and typically values greater than 0.5 are considered acceptable (Santhi et 

al., 2001, Van Liew et al., 2003). Although R2 have been widely used for model evaluation, 

these statistics are oversensitive to high extreme values (outliers) and insensitive to additive 

and proportional differences between model predictions and measured data (Legates and 

McCabe, 1999). 
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7.2.3.3 Index of agreement (d) 

The index of agreement (d) has been developed by Willmott (1981) as a standardized 

measure of the degree of model prediction error and varies between 0 and 1. A computed 

value of 1 indicates a perfect agreement between the measured and predicted values, and 0 

indicates no agreement at all (Willmott, 1981). The index of agreement represents the ratio 

between the mean square error and the “potential error” (Willmott, 1984). The index of 

agreement can detect additive and proportional differences in the observed and simulated 

means and variances; however, d is overly sensitive to extreme values due to the squared 

differences (Legates and McCabe, 1999). Legates and McCabe (1999) suggested a modified 

index of agreement (d1) that is less sensitive to high extreme values because errors and 

differences are given appropriate weighting by using the absolute value of the difference 

instead of using the squared differences.  

7.2.3.4 Percent bias (PBIAS) 

Percent bias (PBIAS) measures the average tendency of the simulated data to be 

larger or smaller than their observed counterparts (Gupta et al., 1999). The optimal value of 

PBIAS is 0.0, with low-magnitude values indicating accurate model simulation. Positive 

values indicate model underestimation bias, and negative values indicate model 

overestimation bias (Gupta et al., 1999). PBIAS is calculated with Eq. 7.21 

����� = 1 − ∑ (
���)∗�������
∑ (
�)����

         (7.21) 

7.2.3.5 Root Mean Square Error (RMSE) 

RMSE is an error index used in model evaluation. RMSE values of 0 indicate a 

perfect fit. Singh et al. (2004) state that RMSE values less than half the standard deviation 

of the measured data may be considered low and that either is appropriate for model 

evaluation. 

���� =   {�
" ∑ (#$ − �$"�%� )}        (7.22) 
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 7.3  RESULTS 

For derivation of CN-IWR relationship, the 50 years of dataset is divided into two 

parts. The first 30 years of data (1960-1989) have been used for deriving the relationship, 

and the remaining 20 years of data (1990-2010) for its validation. Also validation is done for 

datasets of four different periods (i.e., 1990-1994, 1995-1999, 2000-2004 and 2005-2010) in 

order to avoid the effect of trend in the data series. To this end, yearly IWR and CN values 

for major crops in Kharif (Paddy) and Rabi seasons (Wheat and Summer Paddy) in Seonath 

basin have been computed as follows. 

 

 

Figure 7.1 Flowchart describing methodology to establish IWR-CN relationship 

 

Estimation of Curve 
Number (CN) & 

Potential Maximum 
Retention (S) 

Development of ET- CN 
relationship 

 

Development of linkage 
between CN and 
CWR/IWR/IWD 

SCS CN Method 

Performance Evaluation 

Nash-Sutcliffe 
efficiency 

(NSE) 

Percent bias 

(PBIAS) 

 

Index of agreement 

(d) 

 

Coefficient of 

determination (R2) 

 



126 
 

7.3.1  Determination of CN 

CN values have been derived from Eqs. 7.5 and 7.6 using seasonal rainfall-runoff 

data for both monsoon and post-monsoon seasons separately. To this end, base flow has 

been excluded from the total daily runoff values. Then annual series of (accumulated) 

seasonal rainfall-runoff data for each year has been prepared for both seasons separately. It 

provides the estimates of S or CN values for rainy season and non rainy season for every 

year. Since the seasonal rainfall generated runoff represents the characteristics of whole 

watershed, CN values derived also represent the seasonal watershed characteristic. For 

derivation of CN-IWR relationship, two separate series of rainfall-runoff data for both 

seasons have been prepared to determine corresponding CN values (Eqs. 7.5 and 7.6) for 

each season.  

Here instead of using daily rainfall runoff data to derive CN, seasonal values are 

used. As IWR is calculated on seasonal basis for two seasons viz. monsoon and post-

monsoon. To follow the same scale seasonal CN is derived and used in the study to derive a 

relationship between IWR-CN. 

7.3.2  Relationship between CN and IWR 

 For derivation of CN-IWR relationship, the CWR have been computed for crop 

growth stage (Table 7.1) for deriving the values of IWR. The CN-values derived from 30 

years (1960-1989) rainfall-runoff data for each monsoon and post-monsoon season have 

been plotted against the corresponding IWR values (Table 7.2a and 7.2b), yielding a relation 

in power form.  

 βαSIWR =                                                                  (7.23) 

Where, α and β are the coefficient and exponent, respectively. Since there exists an inverse 

relationship between S and CN (Eq. 7.6), Eq. 7.16 suggests IWR to be high for the 

watershed of low CN, and vice versa. When S approaches zero, IWR also approaches zero 

and it is physically describable in terms of IWR being nil for the fully saturated (wet) 

watershed. On the other hand, when S approaches infinity, IWR also approaches infinity as 

the soil is able to absorb the whole amount of rain water supplied. The range of IWR and 

CN is presented in Table 7.3. As seen from Figures. 7.2 a and 7.2 b, the values of α and β 

are 0.007 and 2.984 and 96.56 and 0.431 for monsoon and post-monsoon seasons, 
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respectively. The above value indicates that α is inversely proportional to β. The value of α 

increase as the value of S is increasing. Thus, α is an indicator of S. As IWR is a function of 

S, therefore with the increase of IWR the value of α will be more. Eq. 7.23 is fitted with R2 

of 0.970 and 0.926 for monsoon and non-monsoon seasons, respectively. These reasonably 

high values of R2 indicate that there is a strong relationship between CN and IWR for both 

the seasons.  

Table 7.1 Computation of CWR for Kharif Paddy (P), Rabi Wheat (W) and Summer  

Paddy (SP) for each stages of crop growth period (1960-1989, calibration period) 

Year 
 

Crop Water Requirement (CWR, mm) 

Initial Stage Development Stage Mid Season Stage Late Season Stage 
P W SP P W SP P W SP P W SP 

1960 353.2 53.8 57.35 142.1 109.9 106.03 107.6 53.46 84.710 79.53 67.79 119.74 

1961 350.8 53.4 57.14 141.0 109.5 110.18 107.6 55.46 88.264 81.86 70.91 115.64 

1962 333.7 51.9 56.17 139.3 107.6 108.18 104.4 53.74 84.531 79.63 67.93 120.71 

1963 353.1 52.8 58.33 141.8 111.8 107.25 109.8 54.18 85.608 84.97 68.30 114.86 

1964 364.4 54.0 56.98 145.9 109.2 105.42 107.4 52.05 82.512 82.25 66.88 120.55 

1965 348.3 54.0 58.6 135.9 112.4 106.15 105.3 54.00 84.493 83.25 66.69 117.74 

1966 351.0 54.7 56.40 136.9 108.1 107.49 110.1 54.02 83.962 81.72 66.46 115.56 

1967 339.3 52.7 55.26 141.0 105.9 102.93 104.4 53.51 85.480 83.32 67.56 118.30 

1968 349.5 53.4 58.21 141.7 111.5 109.36 106.3 54.88 86.721 81.77 69.47 117.33 

1969 346.0 51.6 55.9 138. 107.1 105.7 107.8 53.4 85.339 83.0 68.5 113.95 

1970 345.2 54.2 56.52 136.2 108.3 109.00 108.7 54.16 83.967 83.53 66.82 119.37 
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1971 353.9 53.0 55.82 147.3 106.9 106.47 108.4 54.67 86.963 84.23 69.03 114.32 

1972 370.3 53.0 57.31 145.6 109.8 104.44 110.2 53.97 85.131 85.14 66.94 119.29 

1973 365.1 54.3 57.47 134.2 110.1 106.31 109.2 54.69 86.211 80.93 67.93 116.84 

1974 352.6 55.9 56.93 137.9 109.1 106.03 114.5 53.78 84.657 80.74 67.20 113.52 

1975 353.1 54.2 55.42 139.5 106.2 104.77 104.4 53.76 86.655 83.18 69.42 121.39 

1976 340.9 52.7 57.00 139.7 109.2 105.25 106.6 53.21 83.521 84.74 66.32 118.84 

1977 323.1 54.4 57.45 140.0 110.1 102.87 113.7 53.25 85.385 83.49 67.84 115.39 

1978 383.5 54.5 56.70 144.7 108.6 110.26 112.5 54.79 85.401 82.30 68.20 117.89 

1979 362.7 54.0 57.35 150.6 109.9 106.72 114.1 54.08 85.779 80.37 68.49 125.64 

1980 362.1 51.4 57.89 159.1 110.9 108.22 124.3 54.43 87.791 84.81 71.19 121.79 

1981 350.5 53.5 55.56 146.3 106.5 105.74 102.8 54.21 87.220 85.21 69.82 120.03 

1982 346.4 53.2 57.89 138.4 110.9 105.78 106.9 53.62 84.647 86.30 67.36 116.09 

1983 340.9 52.8 57.12 137.5 109.4 107.17 107.7 54.95 88.076 82.63 70.33 117.12 

1984 338.7 54.1 56.75 130.9 108.7 103.46 104.8 52.83 84.991 81.95 68.20 114.59 

1985 352.4 51.5 56.93 144.1 109.1 107.57 104.2 54.97 85.947 85.49 67.62 116.49 

1986 323.5 52.4 58.12 137.8 111.4 110.14 105.7 55.20 85.344 81.84 67.42 119.43 

1987 346.1 53.5 57.86 137.1 110.9 107.69 107.4 54.41 85.953 87.09 68.57 114.38 

1988 359.1 52.8 57.21 134.5 109.6 107.98 117.5 53.49 85.033 84.25 68.92 116.73 

1989 367.0 52.6 57.70 144.3 110.6 105.91 109.9 53.13 85.108 79.53 68.80 115.64 
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Table 7.2(a) Computation of ETo, CWR, IWR, CN for derivation of CN-IWR relation for 
monsoon season 

Year 
Rainfall 

(mm) 
Runoff 
(mm) 

Potential 
Maximum 
Retention 
(S, mm) 

Curve 
Number 

(CN) 

ETo 
(mm) 

CWR 
(mm) 

Effective 
Rainfall    
(Pe, mm) 

IWR 
(mm) 

1960 1159.25 1127.16 27.262 90.307 718.09 682.60 621.844 167.9 

1961 669.995 635.705 29.628 89.553 725.22 681.35 485.508 179.1 

1962 599.676 575.704 20.547 92.515 689.99 657.20 395.845 62.09 

1963 1130.05 1094.24 30.517 89.274 731.83 689.68 633.165 192.2 

1964 1303.64 1275.71 23.626 91.489 707.07 700.13 638.041 102.9 

1965 777.316 748.050 25.042 91.025 708.07 672.85 535.742 120.6 

1966 855.541 828.930 22.665 91.807 702.89 679.88 549.109 88.56 

1967 1205.51 1182.82 19.164 92.984 676.89 668.18 579.621 20.74 

1968 1045.90 1011.82 29.051 89.736 724.59 679.43 598.538 176.3 

1969 893.751 862.613 26.592 90.522 712.65 675.01 590.295 139.7 

1970 854.939 828.349 22.647 91.813 702.50 673.88 526.093 87.56 

1971 978.033 951.629 22.423 91.887 700.82 693.92 580.225 81.18 

1972 811.557 780.367 26.704 90.486 714.19 711.35 568.479 142.8 

1973 883.923 844.289 34.091 88.166 757.04 689.59 624.914 261.3 

1974 685.644 655.476 25.932 90.736 712.14 685.87 509.573 137.1 

1975 1122.70 1083.54 33.438 88.366 748.09 680.36 659.620 205.9 
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1976 918.059 891.541 22.551 91.845 700.89 672.06 532.291 84.72 

1977 945.746 915.854 25.469 90.886 708.56 660.43 572.872 130.7 

1978 976.073 953.086 19.474 92.879 682.79 723.11 539.451 56.51 

1979 732.016 703.635 24.306 91.266 707.35 707.94 534.371 113.7 

1980 1046.50 1009.57 31.547 88.951 738.45 730.44 627.533 195.4 

1981 958.650 926.735 27.225 90.319 715.91 684.99 575.562 147.7 

1982 742.990 716.178 22.917 91.724 705.50 678.22 510.275 96.33 

1983 899.952 867.921 27.369 90.272 720.73 668.82 572.494 173.5 

1984 836.975 811.172 21.973 92.037 696.73 656.55 535.918 80.89 

1985 961.764 926.978 29.735 89.519 725.26 686.43 605.257 183.6 

1986 870.922 846.926 20.386 92.570 684.87 648.97 534.989 60.76 

1987 658.691 629.716 24.907 91.069 707.67 677.89 471.908 113.9 

1988 688.988 660.840 24.142 91.320 707.07 695.54 503.344 109.4 

1989 736.983 711.526 21.735 92.117 695.67 700.89 521.719 64.67 

Table 7.2(b) Computation of ETo, CWR, IWR, CN for derivation of CN-IWR relation for 

post monsoon season 

Year Rainfall  Runoff  S (mm) CN ETo CWR   Pe (mm)  IWR 

1960 26.527 6.340 37.787 87.049 584.848 652.857 26.116 611.5 

1961 111.696 75.516 39.033 86.679 585.685 660.572 106.482 473.3 

1962 57.902 12.368 89.439 73.957 601.236 650.925 55.935 551.4 
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1963 26.957 6.668 37.405 87.163 584.735 653.230 26.405 619.7 

1964 34.598 13.247 31.894 88.844 580.532 647.693 33.672 586.8 

1965 13.767 1.561 30.313 89.338 578.531 654.240 13.650 630.2 

1966 24.567 6.042 34.241 88.121 581.720 646.733 24.163 607.8 

1967 92.179 53.899 45.131 84.912 590.046 641.720 86.415 476.8 

1968 75.795 39.617 45.557 84.791 590.375 661.025 73.724 526.1 

1969 28.385 6.689 40.862 86.142 586.571 641.788 27.937 595.6 

1970 44.681 14.173 50.101 83.524 591.066 652.407 43.908 580.3 

1971 130.333 69.968 74.848 77.239 595.101 647.320 123.415 455.4 

1972 131.357 92.863 40.381 86.282 586.353 649.987 122.122 488.4 

1973 85.955 35.995 71.179 78.111 593.244 653.970 82.830 530.2 

1974 81.812 44.402 46.092 84.640 590.480 647.265 79.884 513.5 

1975 121.677 67.311 66.237 79.316 593.090 651.888 116.249 458.4 

1976 103.193 69.517 36.413 87.461 582.378 646.214 99.305 479.5 

1977 110.888 65.683 52.884 82.767 591.244 646.772 106.879 482.3 

1978 139.232 98.542 42.654 85.621 587.327 656.471 133.081 423.1 

1979 114.430 69.029 52.532 82.862 591.157 662.059 110.178 476.5 

1980 123.513 60.745 81.842 75.631 597.137 663.739 117.769 479.4 

1981 127.535 89.543 40.029 86.385 585.820 652.672 121.696 439.5 

1982 131.249 90.784 43.037 85.511 588.624 649.586 126.061 427.6 

1983 128.062 88.295 42.378 85.701 587.231 657.082 122.997 446.9 

1984 154.437 89.589 76.816 76.779 596.464 643.769 145.409 397.4 
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1985 75.974 42.099 41.230 86.034 586.970 650.246 73.981 526.1 

1986 184.536 126.031 62.722 80.196 592.555 659.492 174.596 355.0 

1987 125.911 94.530 31.681 88.910 579.230 653.322 120.384 469.3 

1988 60.376 27.993 43.643 85.336 589.425 651.900 58.665 560.1 

1989 53.617 24.173 40.300 86.306 586.003 649.547 52.502 565.4 

 

 

Table 7.3 Range of IWR and CN for Seonath River Basin 

 

Factors Monsoon Season Post Monsoon 

Coefficient (α) 0.007 96.56 

Exponent (β) 2.984 0.431 

IWR range (mm) 57-192 423-620 

Range of CN 89-93 76-89 
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(a) Monsoon 

 

(b) Post-Monsoon 

Fig. 7.2 Development of a relationship between IWR and S for (a) Monsoon (b) Post-monsoon 

seasons. 
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7.3.3  Validation of the Proposed Relationship  

The above derived relation is validated using the data of 20 years (from 1990-2010) 

and the results are shown in Figs. 7.3 a and 7.3 b for monsoon and non-monsoon seasons, 

respectively. The developed model is evaluated with statistical measures and errors (Table 

7.4). The PBIAS values for calibration period is -2.37% for monsoon and for post-monsoon 

period, it is 0.26% whereas 3.22% and 0.52% for validation period respectively. However 

highest values of NSE and R2 values indicate the very good performance rating. The 

calculated values of Index of agreement (d) for monsoon and post-monsoon season is 0.99 

which is close to 1 which indicates perfect agreement between the measured and simulated 

values. A close match with R2 of 0.957 for monsoon season and R2 of 0.954 for non-

monsoon season warrants the applicability of the CN-IWR relationship to the studied basin. 

Again shorter period of dataset is used to validate the relationship. The 4 datasets (1990-

1994, 1995-1999, 2000-2004 and 2005-2010) have been used to assess the accuracy of the 

proposed model. The values of R2 and NSE ranging from 0.965-0.975, 0.948-0.963 and 

0.915-0.964, 0.867-0.969 have been achieved for monsoon and post-monsoon season 

respectively except for the period (2000-2004, Figures 7.4 a and b). The lower values of 

R2and NSE have been observed during the period (2000-2004) because there are few severe 

drought years. In the years 2000-2004 there are exceptionally dry conditions which led to 

very high estimates of IWR and consequently there is crop failure. It is noticed that the 

seasonal rainfall is less than corresponding mean rainfall in the order of -43.86%, -45.41 and 

-48.15% in the post-monsoon season of 2000, 2001 and 2002 respectively. The values of 

percentage departure for monsoon season in above years were -33.12%, -34.58% and 

35.47% respectively. The details of percentage deviation of rainfall for monsoon and post-

monsoon seasons are presented in Table 7.5. Therefore the proposed relationship is having 

low R2 values for drought years forms the major limitation of the proposed model.  

To show the existence of relationship between CN and IWR the major factors which 

affect CN are considered in order to evaluate their impact on IWR. It is obvious that the CN 

value is low for sandy soil (group A) and high for clayey (soil group D). However, the water 

holding of the sandy soil is low compared to clayey soil. Therefore comparatively, less 

water is available for crop in sandy soil.  Thus the irrigation requirement for crops grown in 

sandy soil would be more as compared to clayey soil.  This indicates that the CN and IWR 

have inverse relationship. Further, a soil with greater salt content often leads to  clogging of 

soil pores resulting in reduction of hydraulic conductivity and, in turn, infiltration and 
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consequently leads to more CN values. On the other hand presence of salts cause low 

evaporation from soil under given meteorological conditions due to inclusion of one more 

resistance caused by salt crust.  Thus, ET reduces with increase in salt content and would 

result lesser IWR. This again supports strong inverse relationship between IWR and CN.  

 

(a) Monsoon 

 

(b) Post Monsoon 

Figure 7.3 Validation of IWR-S relationship for (a) monsoon and (b) non-monsoon seasons 
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Figure 7.4 Validation of proposed model for 4 datasets (1990

for (a) Monsoon (b) Post-Monsoon seasons
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(a) Monsoon 

(b) Post-Monsoon 

of proposed model for 4 datasets (1990-94, 1995-99, 2000

Monsoon seasons 

 

 

99, 2000-04, 2005-10) 
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Table 7.4 Performance Evaluation of Developed Model 

 

Evaluation 
Statistics 

Seasons 
Monsoon Post Monsoon 

Calibration Validation Calibration Validation 

Coefficient of 
Determination (R2) 

0.970 0.956 0.925 0.953 

Nash-Sutcliffe 
efficiency (NSE) 

0.984 0.936 0.839 0.961 

Index of agreement 
(d) 

0.999 0.998 0.998 0.999 

Percent bias 
(PBIAS) 

-2.376 3.217 0.261 0.522 

Root Mean Square 
Error (RMSE) 

6.769 7.438 2.107 6.185 

Table 7.5 Rainfall deviation for monsoon and post-monsoon season 

 

Year 

Monsoon Post Monsoon 

Rainfall Deviation 

(%) 
Drought Type 

Rainfall Deviation 

(%) 

Drought 

Type 

2000 -33.12 Mild -43.86 Moderate 

2001 -34.56 Moderate -45.41 Severe 

2002 -35.47 Moderate -48.15 Severe 

2003 -13.65 No Drought -25.86 Mild 

2004 -15.30 No Drought -24.47 No Drought 
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7.3.4  Advantages and Limitations of Proposed Model 

The proposed model provides very good relationship between IWR and CN. 

Therefore, it may be reasonable substitute for complex IWR assessment, particularly in the 

area where meteorological parameters are not easily available.  In addition, the model is able 

to make quick assessment of water requirement for the crops in a given region and therefore 

it may be useful in the design and management of irrigation systems. The use of model may 

be limited to sub humid climatic regions of India. Further studies are required for 

assessment of its applicability to other regions. In addition, since parameter λ is a regional 

parameter that depends on geological and climatic factors and hence a vital parameter in 

ET/CWR/IWR estimation, results may be improved by using value other than the standard 

value of 0.2 for other climatic regions. Moreover, it is feasible to quantitatively study the 

effect of climate change on hydrologic systems employing CN-IWR relationship. The basin 

used in this study is an agricultural basin with slight or no alteration in land use, and thus, 

the efficiency of the proposed model need to be examined in future. 

7.4  SUMMARY 

In this chapter, the results of analysis have been discussed and a relationship 

between IWR and SCS-CN parameter i.e. potential maximum retention (S) has been 

proposed. Mathematical and physical justification of IWR-CN rationale invokes the 

existence of a relationship between the seasonal IWR and runoff curve numbers (or potential 

maximum retention). The proposed model of relationship was calibrated and verified by 

employing a large set of hydro-meteorological data of Seonath river basin in Chhattisgarh 

State in India. Subsequently, the curve numbers derived from rainfall-runoff data exhibit a 

strong correlation (of power form) with IWR derived using standard method. High R2 and 

NSE values support a strong relationship to exist and work satisfactorily. Thus, IWR-CN 

relationship is very useful especially for field engineers in irrigation planning and water 

resource management. 
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CHAPTER 8 

STATISTICAL DOWNSCALING OF CLIMATIC VARIABLES, THEI R 

FUTURE PREDICTION AND IMPACT ON IRRIGATION WATER 

REQUIREMENT 

This Chapter is divided into two sections. First part presents downscaling of daily 

climatic variables viz., precipitation, maximum temperature (Tmax), minimum temperature 

(Tmin), relative humidity (RH) and wind speed (WS) for Seonath River Basin in 

Chhattisgarh State of India  using different downscaling methods. The inter-comparison of 

statistical downscaling methods has been carried out to identify best prediction model for 

the study area. The study compares four statistical downscaling methods using results from 

Global Circulation Models (GCMs). The climatic variables are generated for the period 

2011–2100 under climate change projections for a future scenario A2. The second part of 

the chapter presents projected climate change scenarios of rainfall as well as other 

meteorological variables which influence the evapotranspiration (viz., RH, WS, Tmax and 

Tmin). Subsequently, the projected estimates of above climatic variables have been used to 

assess the impacts of climate change on irrigation water requirement (IWR) in Seonath 

Basin. 

8.1  INTRODUCTION 

Global Circulation Models (GCM) is used to project the changes in atmospheric 

variables under the climate change scenarios defined by the Intergovernmental Panel for 

Climate Change (IPCC). These climate projections are defined at a coarse grid 

(approximately 150–300 km) and are often biased and hence cannot be used directly in 

hydrological models for climate change impact assessments (Fowler et al., 2007). Thus there 

is a need for downscaling of GCM data. More recently, downscaling has found wide 

application in hydro-climatology for scenario generation and simulation/ prediction of 

regional precipitation, low-frequency rainfall events, mean, minimum and maximum air 

temperature, soil moisture, runoff and streamflow, water quality and many more. 

There are two main downscaling approaches i) dynamic and, ii) statistical 

downscaling. In the dynamic downscaling method a Regional Climate Model (RCM) is 

embedded into GCM. The RCM is essentially a numerical model in which GCMs are used 
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to fix boundary conditions. The major disadvantage of RCM, which limits its use in climate 

impact studies, is due to its high computational cost and complex design. Furthermore, 

RCM is rigid in terms of expanding the region or moving to a somewhat different region 

needs rebuilding of complete experiment (Crane and Hewitson, 1998). The second approach 

to downscaling, termed statistical downscaling, involves deriving empirical relationships 

that transform large-scale features of the GCM (Predictors) to regional-scale variables 

(predictands) such as precipitation, temperature and streamflow. There are three implicit 

assumptions involved in statistical downscaling (Hewitson and Crane, 1996). First, the 

predictors are variables of relevance and are realistically modeled by the host GCM. Second, 

the empirical relationship is valid also under altered climatic conditions. Third, the 

predictors employed fully represent the climate change signal. 

A large number of techniques have been developed for statistical downscaling. 

These can be categorised into three main classes: i) weather typing schemes, ii) weather 

generators and, iii) regression models (Fowler et al., 2007). The Regression models directly 

calculate a correlation between the regional climatic variable (e.g. rainfall) and large-scale 

atmospheric variables. Stochastic weather generators (WG) are statistical methods that 

predict climatic variables based on statistical characteristics of the variable (Burton et al., 

2008; Kilsby et al., 2007; Semenov and Stratonovitch, 2010). Weather typing includes 

grouping days into a finite number of distinct weather category or “states” based on their 

synoptic resemblance (Wilby et al., 2004). GCM or RCM are then used to estimate the 

change in the frequency of weather types in order to estimate climate change (Fowler et al., 

2007).  

In the past studies, hydro-meteorological variables were downscaled using linear 

regression (Benestad et al., 2007; Cannon and Whitfield, 2002; Cheng et al., 2008; Goyal 

and Ojha, 2010; Najafi et al., 2011), PCA (Tolika et al., 2006; Wetterhall et al., 2006), CCA 

(Tolika et al., 2006), ANN (Goyal and Ojha, 2012; Tisseuil et al., 2010; Tripathi et al., 

2006), and SVM (Anandhi et al., 2009; Chen et al., 2008; Ghosh and Mujumdar, 2008; 

Najafi et al., 2011; Tripathi et al., 2006). Among them, ANN based downscaling techniques 

have gained wide recognition owing to their ability to capture nonlinear relationships 

between predictors and predictand (Cannon and Whitfield, 2002; Tisseuil et al., 2010). 

Despite a number of advantages, the traditional neural network methods have numerous 

disadvantages including the possibility of getting trapped in local minima and subjectivity in 

the choice of model architecture (Suykens, 2001). Recently, Vapnik (1998) developed a 
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novel machine learning algorithm, called SVM, which provides an elegant solution to these 

problems. The SVM has theoretically proved better than other techniques in transfer 

functions in climate impact studies in hydrology (Tripathi et al., 2006).  

The rising CO2 and climate change due to global warming directly affect both 

rainfall and evapotranspiration, consequently the irrigation water requirement. Moreover, 

the irrigation water requirements of the crops change as a function of climate change. 

Several authors have focused on assessing the impacts of climate change on agriculture, 

over the past decade. Most of these studies concentrated on estimating the changes in crop 

productivity. Assessment studies focusing on the impacts of climate change on irrigation 

requirement using GCM outputs are becoming more accepted in recent years. This study is 

undertaken to examine and compare four statistical downscaling methods and identify the 

best model for future prediction. Further, the predicted climatic variables viz., Tmax, Tmin, 

RH and WS have been used to estimate changes in reference evapotranspiration (ETo) and 

to assess their impact on IWR for major crops in Seonath Basin. 

8.2  MATERIAL AND METHODS 

In this chapter four models have been selected viz, ANN, Model Tree, Multiple 

linear Regression (MLR) and Least Square Support Vector Machine (LS-SVM) to 

downscale  the climatic variables. The methodology of the present study is presented in the 

form of flowchart (Figure 8.1). 

8.2.1  Dataset 

In this study to forecast the rainfall, Tmax, Tmin, RH and WS the daily data of eight 

meteorological stations have been used. In this study, the outputs of Hadley Center’s GCM 

(HadCM3) have been utilized for A2 Scenario. A2 scenario is based on the assumption that 

the atmospheric CO2 concentrations will reach 850 ppm in the year 2100 in a world 

characterized by high population growth, medium GDP growth, high energy use, 

medium/high land-use changes, low resource availability and slow introduction of new and 

efficient technologies, which matches with the Indian condition. Therefore, in the present 

study, only A2 scenario data of HadCM3 are used. Large-scale NCEP reanalysis 

atmospheric data have been used as the model predictors. Spatial resolution (dimensions of 

grid box) of HadCM3 outputs is 3.75◦ (long.) × 2.5◦ (lat.), whereas it is 2.5◦ (long.) × 2.5◦ 

(lat.) for NCEP data. Therefore, projected large-scale predictors of NCEP on HadCM3 

computational grid box have been used. These data and HadCM3 daily simulations are 
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supported and distributed by the Canadian Climate Change Scenarios Network (CCCSN) 

(http://www.cccsn.ec.gc.ca) and also the Canadian Climate Impacts Scenarios (CCIS) 

website (www.cics.uvic.ca/scenarios/sdsm/select.cgi). There are 26 different predictors for 

each grid box in this database. For each station, nine boxes covering the study area have 

been selected. 

8.2.2  Methodology 

The various steps involved in the estimation of future daily meteorological variables 

are as follows: 1) Both predictors and predictands (1961−2001) are normalized using their 

respective means and standard deviations for further analysis. 2) The physical relationship 

and cross correlation method is used to select appropriate predictors at different pressure 

level and grid point 3) Performed Principal Component Analysis (PCA) to reduce the 

dimensions of the standardized predictor data, i.e. NCEP/NCAR reanalysis climate data set, 

pertaining to the study area and preserve the eigen vectors obtained therein. The 

dimensionally-reduced climate variables represent a large fraction of the variability 

contained in the original data. 4) Training of the model(s) i.e, calibration (1961-1990) to 

establish relationship between the input data containing current day standardized and 

dimensionally-reduced climate predictors along with previous day(s) rainfall state and the 

output data containing the current day rainfall state. 5) Obtained principal components of 

GCM data by performing PCA of the GCM data with the help of principal directions (eigen 

vectors) obtained during PCA of NCEP/NCAR reanalysis data. 6) Used the trained model to 

derive present day rainfall state of the river basin with the help of principal components 

obtained from GCM output and rainfall state of the previous day. 7) Applied bias correction 

for the predicted output data to obtain bias-corrected future data. The various models 

employed in this study are described in next section. 8) Validated the results with remaining 

set of data i.e., 1991-2001. 

8.2.2.1 Least Square Support Vector Machine (LS-SVM) 

The Least Square Support Vector Machine (LS-SVM), which has been used in this 

study. It provides a computational advantage over standard SVM by converting quadratic 

optimization problem into a system of linear equations (Suykens, 2001). The LS-SVM 

optimization problem for function estimation is formulated by minimizing the cost function 

ψL(w,e). 



143 
 

 �L�w, e� =  
�  w�w +  
� C ∑ ei����
  

subjected to the equality constraint 

�� − ��� = �� i= 1 . . . N         (8.1) 

Important differences with standard SVMs are the equality constraints and the quadratic loss 

term e2i , which greatly simplifies the problem. The solution of the optimization problem is 

obtained by considering the Lagrangian as 

L�w, b, e, α� =  
�  w�w +  
� C ∑ ei����
 − ∑ α� {���
 y�� + e� − y�}    (8.2) 

where αi are Lagrange multipliers. The conditions for optimality are given by 

 !!
"!
!# $%$& = ' −  ∑ (�)�*�� = 0,��
$%$- =  ∑ ∝�,��
 = 0$%$/� = (� −  0�1 = 0  1 = 1, … 4$%$5� = �� � + �� − �� = 0   1 = 1, … 46!!

7!
!8

       (8.3) 

The above conditions of optimality can be expressed as the solution to the following 

set of linear equations after elimination of w and ei. 

90 1:;;;;<1;< = + 0>
?@ AB∝C = 90�@ , 
Where, y = D�
��⋮�,

F ; 1 ;;;< = D11⋮1F
,×,

 ; α = D∝
∝�⋮∝,
F ; ? = D10⋮0

   0   1  ⋮   0  ⋯ ⋯  ⋮  ⋯
   0  0  ⋮  1F

,×,
  (8.4) 

In Eq. (8.5), Ω is obtained from the application of Mercer’s theorem. 

Ωi. j =  K�xi, xj� =  ϕ �xi�T ϕ�xj�∀i, j     (8.5)  

The resulting LS-SVM model for function estimation is 

R�*� =  ∑ (� S�*1, *� + B∗         (8.6) 

where αi and b* are the solutions to Eq. (8.5). It is worth mentioning that developing LS-

SVM with RBF kernel involve selection of RBF kernel width r and parameter C. 
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8.2.2.2 Artificial Neural Network Model 

Artificial neural network is simply understood as a nonlinear statistical data 

modeling tool that presents complex relationships between predictors (input layer) and 

predictants (output layer) through a synapse system (hidden layers) connecting predictors 

with predictants, or the so-called required outputs. As a result, ANN has demonstrated its 

wide range of application to solve complicated problems in many fields, for instance, 

engineering and environment. 

The RBF network consists typically of two layers, where the hidden layer nodes 

contain prototype vectors (or basis centres), which are in effect hidden layer weights. The 

distance between the input and the prototype vector determines the activation level of the 

hidden layer with the non-linearity provided by a basis function. The activation function in 

the output layer can be non-linear, however, training is considerably faster if an ordinary 

linear weighted sum of these activations are performed, and this approach is consequently 

adopted. The main parameter that needs to be set is the number of nodes in the hidden layer. 

In this study 30 nodes have been used for the prediction. 

The MLP network is not necessarily restricted to one hidden layer, although it has 

been demonstrated that any continuous function can be mapped to an arbitrary degree of 

accuracy by a single hidden layer (Hornik et al., 1989). The configuration used in this 

investigation is a single hidden layer. The ANN model has been trained using MLP back-

propagation algorithm network with simple structure, four nodes in the input layer, single 

hidden layer with seven nodes and one node in the output layer. Input to the model is the 

present-day rainfall data (t) and the 3-day lagged rainfall [(t-1)(t-2)(t-3)], while the output is 

rainfall of the next day (t+1). The transfer function used is the sigmoid function with 500 

numbers of epochs. 

8.2.2.3 Multiple Linear Regression (MLR) 

The most common and basic linear transfer function is the MLR. A predictand, y, 

from an observation site in a local region can be downscaled using the following MLR 

equation (von Storch, 1999; Hessami et al., 2008) 

y = Xβ +ε;           (8.7) 



145 
 

where, ε [n x 1] is a residual vector of MLR and the parameter vector β [q x 1] can be 

estimated by the ordinary least squares estimation method below (Chatterjee and Price, 

1977) 

UV = �W:W�>
W:�          (8.8) 

The variance–covariance matrix for the vector of coefficients of the MLR with OLS 

estimate, UV is given by the following 

XYZ�U�[ =  \��W:W�>
         (8.9) 

Where, σ2 is the variance of the error term of the MLR model. 

From Eq. 8.9, the standard error of an estimate parameter, UV (m= 1, 2,…, q) is given by 

(Chatterjee and Price, 1977) 

se�U^�[ =  _`∑ �abc>ab�ddddddefcgh �
>ibe �          (8.10) 

where, σ is the standard error of the predictand y from the MLR model, and C2m is the R2 

(coefficient of determination, the square of the correlation coefficient between the model 

outcomes and predictand values) of the regression when Xm is a dependent variable and the 

other Xjs (j ≠ m) are independent variables. If Xm is correlated to the other independent 

variables, C2m becomes larger and that increases the standard error of U[̂ : However, several 

factors influence se�U^�[  other than C2m . For example, increased standard error (σ) of the 

MLR model because of poor accuracy also increases the standard error of �U^�[ : 

Furthermore, the variability of independent variable Xm, as given by ∑(Xmi -W^�ddddd2 , is 

inversely related to se�U^�[ . Therefore, if the new Xmi ≠ W^dddd; including new records of Xmi 

by increasing the sample size increases the variability and decreases se�U^�[ . 

8.2.2.4 Model Tree Method 

Model tree is a method of language change described by an analogy with the concept 

of family tree. It has originally developed by Quinlan (1992). Model trees combine a 

conventional decision tree with the possibility of generating linear regression functions at 

the leaves. Only few papers in water-related applications are present, for example, Kompare 

et al. (1997) and Solomatine and Dulal (2003) for rainfall-runoff modelling and 

Bhattacharya and Solomatine (2002) for modelling the stage discharge relationship. 
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If the tree model which is generated has an excess quantity of leaves, it may lead to 

be an overfit model. The model can then be made more robust by pruning the leaves. 

Pruning, in a general sense, means to cut off or remove dead or living parts or branches of a 

plant, to improve shape or growth. Thus, in a similar way here the lower sub-trees are 

merged into a single node. 

The Smoothing process is used to compensate for the sharp discontinuities that will 

inevitably occur between adjacent linear models at the leaves of the pruned trees. Smoothing 

is accomplished by producing linear models for each internal node, as well as for the leaves 

at the time the tree is built (Witten and Frank, 2000). It has been observed experimentally 

that smoothing increases the accuracy of prediction. In this study the model tree with 

pruning and with smoothing (MTPS) is employed for future prediction.  

For all above described downscaling models the programming is written in MATLAB 

R2009a. 

8.2.2.5 Bias Correction 

In this study non-linear correction method suggested by Leander and Buishand 

(2007) have been used. Using this method GCM simulated daily climatic variables are bias 

corrected by a power law relationship P* = aPb. In this method statistics such as mean, 

standard deviation and coefficient of variation have been matched with corresponding value 

calculated from observed values. Therefore this method is used in the study as consider all 

the statistics for bias correction.   

The constant “a” and “b” are calculated by in the following steps. i) the exponent “b” 

is calculated by iteration, so that the coefficient of variation of the predicted time series 

(daily climatic variables) matches with observed dataset. It is obtained by Brent’s method 

(Press et al., 1986). The exponent “b” is the only function of coefficient of variation; (ii) the 

coefficient “a” is calculated so that the average of the simulated values is equal to the 

average observed value. This aforesaid method of power law relationship is not applicable 

for the correction of climatic factors viz., temperature, relative humidity and wind speed 

because these climatic variables are considered to be normally distributed. Therefore, 

correction of normally distributed data set using power law relationship gives the data set 

which is not normally distributed. For this reason we use another method for correcting 

these climatic variables. The correction of climatic factors (temperature, relative humidity 
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and wind speed) only involves shifting and scaling to adjust the mean and variance (Leander 

and Buishand, 2007). The formula for correction is given below: 

                                         (8.11) 

 

Where, SDcorrP = Bias Corrected Climatic variables; obsP  = Mean daily observed climatic 

variables; gcmP = Mean daily predicted climatic variables obtained from GCM; ( )obsPσ = 

Standard Deviation of the observed climatic variables; ( )gcmPσ = Standard Deviation of the 

predicted climatic variables obtained from GCM;iP= uncorrected daily or monthly climatic 

variables from HadCM3 data. The above mentioned method for bias correction is widely 

acceptable and used by many researchers in the recent years (Terink et al., 2010; Raneesh 

and Thampi, 2013). 

8.2.2.6 Model Evaluation Statistics 

The inter-comparison of the models is evaluated using the following statistical 

measures. 

1) Coefficient of Determination (R2) 

It is defined as the degree of collinearity between simulated and observed data. 

The value of R2 lies between 0 and 1. The value tends to 1 represents the highest correlation. 

j� = 1 − ∑ �k�>l��efcgh∑ �k�>k��dddddefcgh          (8.12) 

2) Nash-Sutcliffe efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the 

relative magnitude of the residual variance (“noise”)  compared to the measured data 

variance (“information”) (Nash and Sutcliffe, 1970). NSE indicates how well the plot of 

observed versus simulated data fits the 1:1 line. NSE is computed as shown in Eq 7.20: 

  4mn = 1 − o∑ �k�>l��efcgh∑ �k�>l�ddd�efcgh o            (8.13) 

The better suited model for the study area could thus be obtained and it has been 

employed to estimate the climatic variables for future years (2011-2100) for each station. 

Subsequently, the above predicted meteorological variables have been used in estimation of 

ETo and IWR for major crops have been computed. Further, long term changes in IWR have 

been computed to investigate the impacts of climate change on IWR in the study area. 
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Figure 8.1 Statistical downscaling framework 
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8.3  RESULTS AND DISCUSSION 

8.3.1  Inter-comparison of Statistical Downscaling Models 

The four statistical downscaling methods previously described have been applied to 

eight stations of different climatic variables viz, Tmax, Tmin, Tmean, Rainfall, Relative 

Humidity, Wind Speed. The NSE and R2 values for the calibration sets of meteorological 

variables are shown in Fig. 8.2 and the validation results are shown in Fig. 8.3. The calibration 

and validation results clearly indicate that for each climatic variable LS-SVM is performing best 

followed by MT and ANN (MLP). Lower values of NSE and R2 are obtained for ANN (RBF) 

method for almost all the meteorological variables. The station-wise performance indexes for 

each model of different climatic variables are presented in Appendix A. 
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(e) Relative Humidity (f) Wind Speed 

Fig. 8.2. NSE and R2 calibration values for four downscaling methods 
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(e) Relative Humidity (f) Wind Speed 

Fig. 8.3. NSE and R2 validation values for four downscaling methods 

Therefore from overall study it is clear that LS-SVM method is most suitable for our 

study area (also reported by Sachindra et al., 2013). The MT technique was also perform better 

and gives higher R2 values above 0.90. The least performing model for the study area is ANN 

using RBF kernel which gives the lowest values of R2 and NSE. 

The climatic variables (Tmax, Tmin, Tmean, rainfall, RH and WS) are estimated using 

LS-SVM method. As from the above section it is clear from the results that LS-SVM method is 

most suitable method for our study area. The prediction of climatic variables has been done by 

the LS-SVM method explained in section 8.2.  

8.3.2  Selection of Predictor Variables 

The selection of suitable predictor variables is the most significant step for downscaling 

of various predictands (meteorological variables). The selection of predictors varies from 

region to region based on the type of predictand and the characteristics of the large-scale 

atmospheric circulation. Wetterhall et al. (2005) reported that any type of predictor variables 

can be used if, a physical relationship exists between the predictor and the predictand. Wibly et 

al. (2004) suggested that predictors should be selected using the following criteria: (1) the 

large-scale predictors should be physically relevant to the local-scale features and realistically 

simulated by GCMs, (2) the predictors are readily available from the archives of GCM output 

and reanalysis datasets, and (3) strongly correlated with the predicted. The predictor variables 
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are selected on the basis of physical relationship with predictands i.e., temperature, rainfall, 

wind speed and relative humidity (Table 8.1). The abbreviation of predictor variables are also 

presented in Table 8.2. The physical basis for selection of the listed predictor variables in table 

8.2 is described as follows.  

The suitable predictor variables for temperature prediction are selected based on 

physical processes. The temperature at any place depends upon circulation variables (i.e., 

represented by geopotential, or the wind component) and other variables such as temperature 

(through geopotential heights at various levels and precipitable water content in the 

atmosphere). Further, the temperature that occurs at any location is a result of the net radiation 

available and the way that radiation is budgeted. The net radiation (latent heat, sensible heat 

and horizontal heat transfer) depends on gains of solar and terrestrial energy. The available 

energy is then used for sensible heat transfer and evaporation. Therefore, in the present study, 

the potential predictors selected are air temperature (°C), geopotential height (meter), 

precipitable water content (kg/m2), zonal and meridional wind velocities (m/s) at different 

pressure levels.  

Likewise for rainfall suitable predictors are selected based on physical processes. The 

total rainfall at a place and its form depend upon a number of meteorological factors, such as the 

wind, temperature, humidity and pressure in the volume region enclosing the clouds and the 

ground surface at a given place. The occurrence of rainfall is a convection process and he 

physical features that dominate convective processes are: (1) changes in the pressure fields as 

proxied with the geo-potential height fields, (2) a transport mechanism, either the meridional or 

zonal winds that can advect moisture into the region, (3) a moisture mechanism as measured 

through specific humidity and (4) air temperature at various height levels. Therefore, in the 

present study, the probable predictors extracted from the NCEP and HadCM3 are air 

temperature, geo-potential height, specific humidity, zonal and meridional wind velocities at 

different pressure levels, precipitable water content and surface pressure (Table 8.2).  

The selection of probable predictor variables is based on the physical relationship with 

the predictand (relative humidity). Humidity signifies the amount of water vapor present in the 

atmosphere. The relative humidity at any place is strongly related to temperature (Wypych, 

2010). At a given location moisture-holding capacity of the atmosphere and the pressure varies 
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with temperature. The pressure gradient influences the circulation, which consecutively affects 

the moisture holding capacity of atmosphere and thus affects humidity. At the pressure height of 

925 mb, the boundary layer (near surface effect) is significant. The latent heat signifies the 

amount of moisture leaving from the surface to the air. Therefore in the present study the 

probable predictors selected are surface air temperature (°C), air temperature (°C) at 925 mb, 

specific humidity (925 mb) and latent heat flux (Table 8.1).  

For downscaling of wind speed, predictor variables viz., zonal and meridional velocities 

at 925 mb are selected as suitable predictors also reported by Anandhi (2010). The correlation 

coefficients between suitable predictor variables and predictands have been presented in 

Annexure B for each station. The predictor with high correlation values are selected for 

downscaling. Further PCA method is applied to selected predictors to extract principal 

components (PCs) which are orthogonal.  A feature vector is formed for each record using PCs. 

The feature vector is used as an input to the LS-SVM model, whereas, predictands (rainfall, 

Tmax, Tmin, relative humidity and wind speed) constitutes the output of the model. 

Table 8.1 Selected Predictor Variables for downscaling of predictands 
 

S.No. Selected predictor variables from NCEP and HadCM3 

daily datasets 

Predictands 

 

1. Prw, Ua 200, Ua 925, Va 200, Va 925, Zg 200, Zg 500, 

Zg 925, Ta 200, Ta 500, Ta 700, Ta 925, LH 

Temperature 

2. Prw, Ua 200, Ua 925, Va 200, Va 925, Zg 200, Zg 500, 

Zg 925, Ta 200, Ta 500, Ta 700, Ta 925, Hus 850, Hus 

925, Ps 

Rainfall 

3. Ta 925, Hus 925, Ta sur, and LH Relative Humidity 

4. Ua 925 and Va 925 Wind Speed 

 

 



154 
 

Table 8.2 Abbreviation of selected predictor variables 
 

S.No. Abbreviation Description 

1. Hus 850  Specific humidity at 850 hPa 

2. Hus 925 Specific humidity at 925 hPa 

3. Prw Precipitable water content 

4. Ps Surface pressure 

5. Ta 200 Air temperature at 200 hPa 

6. Ta 500 Air temperature at 500 hPa 

7. Ta 700 Air temperature at 700 hPa 

8. Ta 925 Air temperature at 925 hPa 

9. Ta sur Surface air temperature 

10. Zg 200 Geopotential height at 200 hPa 

11. Zg 500 Geopotential height at 500 hPa 

12. Zg 925 Geopotential height at 925 hPa 

13. Ua 200 Zonal wind at 200 hPa 

14. Ua 925 Zonal wind at 925 hPa 

15. Va 200 Meridional wind at 200 hPa 

16. Va 925 Meridional wind at 925 hPa 

17. LH Latent Heat Flux 

 

8.3.3  Impact of Climate Change on Meteorological Variables 

Here the dataset is divided into two sections one for training (1961-1990) and 

other for testing (1991-2001). Figure 8.4 shows the comparison of observed vs predicted 

variables. The highest values of R2 (0.98) and NSE (0.99) for rainfall shows the good 

correlation between predicted and observed data. Whereas for temperature the R2 value 

of 0.98 for Tmax and Tmin and for Tmean its values is 0.93. For RH the R2 value is 0.97 

and for WS its value is 0.98. All the meteorological variables are well simulated by LS-

SVM downscaling method (Figure 8.4) for the training period of 1961 to 1991. The 

station wise downscaling results are presented in Annexure C. 



 

(a) Rainfall

(c) Minimum Temperature (Tmin)

(e) Relative Humidity (RH)

Figure 8.4 Downscaling results of meteorological variables for the entire basin
 

All future projections are for the A2 scenario 

2021-2030, 2031-2040, 2041

2100) have been represented in box

all the meteorological variables. 
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(a) Rainfall (b) Maximum Temperature (Tmax)

 

(c) Minimum Temperature (Tmin)  (d) Mean Temperature (Tmean)

 

(e) Relative Humidity (RH) (f) Wind Speed (WS)

Figure 8.4 Downscaling results of meteorological variables for the entire basin

All future projections are for the A2 scenario and divided into nine decades
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represented in box-plot format. Figure 8.5 represents the future projections for 

meteorological variables. The projected rainfall is started increasin

(b) Maximum Temperature (Tmax) 

(d) Mean Temperature (Tmean) 
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Figure 8.4 Downscaling results of meteorological variables for the entire basin 

and divided into nine decades (2011-2020, 

2080, 2081-2090, and 2091-

. Figure 8.5 represents the future projections for 

started increasing from 2020s and 
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increased upto 2050. The rainfall is started decreasing from 2071 period. There is decrease in 

rainfall for the period of 2091-2100 (Figure 8.5 a).  For the maximum temperature the 

increasing trend has been observed for the entire projected period but the highest temperature 

change is observed for two decades i.e., 2021-2030 and 2031-2040 (Figure 8.5 b).  For the 

minimum and mean temperature the overall increasing trend has been observed but for Tmin the 

highest temperature rise is for the period of 2061-2070 (Figure 8.5 c, d). The projected RH is 

higher for during the period of 2011 to 2040. From 2041 to 2070 the RH is comparatively lower 

then again increase in RH after year 2071 (Figure 8.5 e) whereas for WS shows a decreasing 

trend (Figure 8.5 f).  

The trend and change in magnitude for temperature, rainfall, wind speed and relative 

humidity for the future scenarios are shown in Table 8.3. For the projected rainfall there is 

generally little change over the future periods. The changes in precipitation are highest for 

2020s and 2050s period whereas 2090s will have little impact for both rabi and Kharif seasons 

(Table 8.3, Col. 1). For 2020s and 2050s periods rainfall show significant increasing trend 

whereas for 2090s period shows non-significant increasing trend. The predicted decadal rate of 

change in rainfall during Kharif and rabi varies from 2.74 to 7 mm/decade and 5mm to 12 

mm/decade for 2020s and 2050s periods respectively. The maximum temperature (Tmax) 

shows a significant increasing trend for 2020s and 2050s period during both Kharif and rabi 

season whereas for 2090s period, non-significant increasing trend has been obtained (Table 8.3, 

Col. 3). The rate of change for Tmax varies from 0.1°C/decade to 0.5°C/decade for kharif and 

0.01°C/decade to 0.3°C/decade for rabi season. The change in magnitude for minimum 

temperature for kharif season is varies from 0.2°C/decade to 0.75°C/decade, whereas for rabi 

season the rate of change varies from 0.02°C/decade to 0.57°C/decade. It can be inferred that 

warming is more pronounced during the night (when temperature is lower) than day. The 

relative humidity forecasts represent a significant decreasing trend for Kharif season, whereas 

for rabi season non-significant decreasing trend have been observed for two decades i.e., 2020s 

and 2090s period. There is very little change in projected RH for the entire growth period 

(Table 8.3, Col. 8). The projected wind speed shows non-significant increasing trend for the 

entire basin. Wind speed projections are highly uncertain with extremes in 2090s during Kharif 

season whereas for rabi season the uncertainty is for 2020s and 2050s period. No significant 

trend is observed for wind speed (Table 8.3, Col. 10). The monthly change factors for 
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temperature, rainfall, wind speed and relative humidity for the future scenarios are presented in 

Annexure D. 

  
(a) Rainfall (b) Maximum Temperature (Tmax) 

  
(c) Minimum Temperature (Tmin)   (d)Mean Temperature (Tmean) 

  
(e) Relative Humidity (RH) (f) Wind Speed (WS) 

Figure 8.5 Future projections of climatic variables from HadCM3 GCM output with A2 scenario 
for entire basin 
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Table 8.3 Seasonal trends in climatic variables for future (2011-2100)  

 

Seonath River 
Basin 

Rainfall Tmax Tmin Relative 
Humidity 

Wind Speed 

MK 
Test 

β 
(mm/dec) 

MK 
Test 

β 
(°C/dec) 

MK 
Test 

β 
(°C/dec) 

MK 
Test 

β 
(%/dec) 

MK 
Test 

β  
(%/dec) 

Col.1 Col.2 Col.3 Col. 4 Col.5 Col.6 Col.7 Col.8 Col.9 Col.10 

Kharif 
Season 

2020s 2.55 2.74 1.96 0.263 3.75 0.44 -3.87 -0.55 1.96 0.2 

2050s 4.16 6.97 2.06 0.520 1.96 0.75 -3.89 -0.48 1.56 0.2 

2090s 1.26 0.11 0.21 0.149 1.63 0.20 -4.72 -0.57 1.05 0.6 

Rabi 
Season 

2020s 3.33 4.84 3.66 0.13 6.40 0.20 -0.35 -0.08 1.58 0.7 

2050s 4.35 11.85 3.83 0.33 5.94 0.57 -4.14 -0.53 1.30 0.8 

2090s 1.70 0.85 1.21 0.01 3.30 0.10 -1.69 -0.23 1.17 0.13 

8.3.4  Impact of Climate Change on Reference Evapotranspiration (ETo) 

 The ETo is a key factor for estimating irrigation water requirement. Thus, the trend of 

projected ETo is necessary to evaluate for the assessment of IWR. The reference 

evapotranspiration estimated from the projections of Tmax and Tmin, RH and WS using the 

evapotranspiration method (Penman-Monteith) and observed meteorological data for the period 

of 1960 to 2010 is shown in Figure 8.6. The future projections of reference evapotranspiration 

predicted to increase for all months. Particularly, the change of evapotranspiration is more in 

the months of May to August due to the large projected changes of Tmax and Tmin variables. 

The rate of change is increasing from May to September. The peak ETo is observed for the 

month of June 25 mm/100 years (Figure 8.7). The rate of change on annual and seasonal scales 

for two decades 2011-2054 and 2055-2100 are spatially shown in Figure 8.8. From Figure 8.8 

(a) the annual ETo trend is significantly increasing for the northern part of the study area 

whereas other parts of the basin show non-significant increasing trend. From Figure 8.8 b the 

lower region of the basin shows a significant increasing trend. Monsoon ETo for the period of 

2011-2054 shows non-significant increasing trend for all the stations exception has been 

observed for bilaspur and kanker stations, which show significant increasing trend (Figure 8.8 

c). However for the period of 2055-2099 the entire basin shows significant increasing trend 

except bilaspur station, which shows non-significant increasing trend (Figure 8.8 d). In post 
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monsoon season overall significant increasing trend was obtained for the first decade i.e., 2011-

2054 (Figure 8.8 e). Whereas for second decade form 2055-2099 non-significant increasing 

trend have been obtained for the entire basin except for Bilaspur station which shows 

significant increasing trend (Figure 8.8 f). 

 
Figure 8.6 Monthly reference evapotranspiration for Seonath River Basin estimated 
from HadCM3 GCM output for A2 scenario 

 
Figure 8.7 Rate of Change in Reference Evapotranspiration over 100 years 
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(a) Annual (2011-2054) (b) Annual (2055-2099) 

  
(c) Monsoon (2011-2054) (d) Monsoon (2055-2099) 
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(e) Post Monsoon (2011-2054) (f) Post Monsoon (2055-2099) 

Figure 8.8 Reference Evapotranspiration trend on annual and seasonal scales for two 
decades 

8.3.5  Impact of Climate Change on Irrigation Water Requirement (IWR) 

The irrigation water requirements are computed for Paddy (Kharif), Wheat and summer 

paddy (Rabi crops) at eight locations of the river basin. The monthly ETo is corrected with crop 

coefficients for each crop to compute the Crop Water Requirement (CWR) which in turn can be 

used to compute the irrigation water requirement of the crop. The monthly IWR have been 

estimated from the projections of rainfall at each of the location downscaled from LS-SVM 

model and CWR projections (The calculation of CWR and crop coefficient is detailed in 

Chapter 6). The projected percentage variations of IWR for eight locations are shown in Figures 

8.9 a, b and c respectively, for Kharif paddy, wheat and summer paddy. The projected 

percentage variations of IWR for Kharif paddy during three decades i.e., 2020s, 2050s and 

2090s for eight locations are also shown in Figures 8.10 a, b, c in the form of bar chart. It is 

clear from the figure that for Kharif paddy percentage change is highest for 2020s period for all 

the stations then 2050s and variation has been decreased in last decades (2090s) (Figure 8.9 a). 

For wheat crop the variability is highest for 2020s and 2050s period and least variation has been 
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observed for 2090s period (Figure 8.9 b).  Whereas for summer paddy 2020s and 2050s period 

show highest variability (Figure 8.9 c). The predicted change in IWR at each location is a 

function of rainfall at that location and the ETo. 

  
a)  Kharif Paddy b) Rabi Wheat 

 

 

c) Summer Paddy  

Figure 8.9 Percentage Change in IWR for Kharif Paddy, Wheat and Summer Paddy 
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8.3.5.1 Kharif Irrigation Water Requirement (Paddy) 

The crop growing period of Kharif paddy in Chhattisgarh state is from mid July to 

October. (Details of crop growth period are given in Chapter 6). The trends in irrigation water 

requirement is presented in three decades 2020s, 2050s, 2090s for eight location in Seonath 

River Basin depicted in Figure (8.10).  It is clear from the figure that IWR is increasing in 

future years when compared with present IWR. The highest IWR has been observed for 2090s 

as for the same decade the rainfall is decreasing. In 2050 IWR is comparatively least. The 

spatial distribution of rate of change in IWR for paddy is shown in Figure 8.11 a. For the upper 

half of the basin experiences the significant increased IWR. Whereas rest of the regions show 

non-significant increasing trend. As the temperature of the basin is increasing thereby ETo of 

the basin is high for monsoon period hence IWR for paddy crop is increasing for the future 

scenario.  

8.3.5.2 Rabi Irrigation Water Requirement (Wheat) 

The IWR for wheat crop is estimated and projected IWR for wheat crop is compared 

with present day water requirement. From the figure it is clear that water requirement is highest 

for the period of 2050s and 2090s. 2020s require least IWR compared to 2050s and 2090s but 

increase in IWR has been observed for all the three decades (Figure 8.12). The change in IWR 

is spatially shown in Figure 8.11 b. The central and southern part of basin shows the increasing 

IWR trend. From the figure 8.11 b in 2020s the change varies from 3 mm to 14 mm. However 

for 2050s period the rate of change varies from 0 to 16 mm/year. The highest change is 

observed for the lower half of the basin. Overall a non-significant increasing trend has been 

observed for the entire basin.  For last decade i.e., 2090s period IWR trend is increasing for five 

of the stations the range varies from 5 mm to 12 mm.  

8.3.5.3 Rabi Irrigation Water Requirement (summer paddy) 

The comparative IWR for summer paddy with present and projected IWR is shown in 

figure 8.13. From Figure 8.13 the water requirement is highest for 2050s period for all the 

locations. The next highest decade for IWR is 2090s. Little increase 2020s IWR when compared 

with present day IWR for summer paddy. The spatial variation of IWR for three decades 

(2020s, 2050s and 2090s) is depicted in Figure 8.10 c. From Figure 8.10 c for 2020s period the 
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rate of change in IWR has been varied from 1.5 mm to 15.5 mm. The southern and central half 

of the basin show significant increasing trend in IWR. However for 2050s period the upper half 

of the basin shows no change whereas rest of the parts shows significant increasing trend. The 

maximum change in this period was 16 mm/year which is in the lower part of the basins. For 

2090s period the change in IWR for different locations varies from 2 mm to 17 mm/year. But 

highest change has been observed for lower half of the basin. Overall basin show a significant 

increasing trend.  

  

Figure 8.10 Irrigation Water Requirement of Kharif Paddy  
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(b) 

  
(c) 

Figure 8.11 Spatial distribution of Future Irrigati on Water Requirement for (a) Kharif 
(Paddy) (b) Rabi (Wheat) (c) Rabi (Summer Paddy) 

 

Figure 8.12 Irrigation Water Requirement of Rabi Wheat 
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Figure 8.13 Irrigation Water Requirement of Rabi Summer Paddy 
 

8.4  SUMMARY 

In the present study inter-comparison of four statistical downscaling models have been 
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However for summer paddy the increase in IWR ranges from 184% (44-287%), 215% (103-

319%) and 90% (21-181%) for 2020s, 2050s and 2090s periods respectively. This projected 

change in irrigation requirement will be helpful in planning of irrigation projects. In this study 

estimation of future irrigation water requirement by using single GCM output (HadCM3) and a 

single scenario (A2 scenario). It is reported by various researchers (Simonovic and Davies, 

2006; Ghosh and Mujumdar, 2007) that the variation between different GCMs over regional 

climate change projections indicates a major cause of uncertainty. Further studies are essential 

for assessment of future irrigation requirement using different GCMs with scenarios to 

understand the underlying GCM and scenario uncertainty. The results of this study provide 

guidelines for the decision makers to accommodate sufficient amount of water in those months 

when rainfall only will not be adequate to fulfill the water requirements for crops.  
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

The accessibility of abundant water resources to meet agriculture water demand is 

globally a challenging issue due to change in climate. It is widely believed that the 

variability of meteorological factors and climate change are leading to change in irrigation 

water demand. There is a need to critically assess variation in Irrigation Water Requirement 

(IWR) over the years to plan agricultural water management and irrigation scheduling 

policies to cope with climate change. Seonath river basin is the longest tributary of Mahandi 

river system. It is located between latitudes 20°16' N to 22°41' N and Longitudes 80°25' E to 

82°35' E. The total drainage area of the basin is 30,860 sq. km. The mean annual rainfall in 

the basin varies from 1005 mm to 1255 mm. The major part of annual rainfall occurs during 

three months i.e., July-September. The river gets dried by mid-winter season and both rural 

and urban areas in the basin are often subjected to severe water crisis during the summer 

season due to erratic nature of rainfall. The pattern of water utilization for agriculture has 

also changed over the years due to change in climatic variables. Hence there is a need to 

understand the region specific alteration in irrigation water requirement due to climatic 

variability for development and management of sustainable water resources.  

This study has been undertaken to evaluate the impact of climate change on 

Irrigation Water Requirement in Seonath River Basin located in Chhattisgarh state of India. 

The specific objectives of the study are 1) Analysis of temporal trends and spatial variability 

of climatic variables viz., maximum, minimum and mean temperature (Tmax, Tmin, 

Tmean), relative humidity, rainfall and wind speed in the study area. 2) Estimation of region 

specific pan coefficient (Kp) on monthly basis to compute reference evapotranspiration 

(ETo). Inter-comparison of available models for estimation of ETo and conducting 

sensitivity analysis of ETo with respect to key climatic variables. 3) Analysis of site specific 

crop coefficients, crop water requirement (CWR) and Irrigation Water Requirement (IWR) 

for major crops using the observed agro-climatic data and analysis of long term trend in ETo 

and IWR. 4) Development of relationship between curve number (CN) parameter of Soil 

Conservation Service Curve Number (SCS-CN) methodology and CWR/IWR. 5) 

Application of different statistical downscaling models and their inter-comparison to predict 

future climatic variability and its impact on IWR. Summary conclusions on various aspects 

of the study and major contribution of this research work are presented below. 
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9.1  SPATIAL AND TEMPORAL TRENDS IN CLIMATIC VARIABLES 

 Scientific assessment of spatial variability and temporal trends in climatic variables 

are needed for sustainable planning and management of irrigated agriculture.  The analysis 

and results of the study are summarized below 

9.1.1  Rainfall Trend  

The trends in annual and seasonal rainfall time series from 1960-2010 have been 

analyzed using Mann–Kendall test and the Sen’s Slope estimator for 24 stations in the 

Seonath river basin. The analysis indicated a decreasing trend in the annual rainfall series. 

The results of the annual rainfall series show that there is a significant decreasing trend in 

annual rainfall at 75% of the stations located in northern part of basin and non-significant 

decreasing trend in annual rainfall at 17% of the stations located in southern part of basin. 

Moreover, the decreasing trends in seasonal rainfall for most of the stations are significant 

according to the statistical tests, in the winter (87%), monsoon (83%) seasons and summer 

(83%).  

The magnitude of decreasing trends in annual rainfall is -2.4 mm/year and for 

monsoon it is -2.79 mm/year. Decrease in monsoon rainfall at the rate of 2.74 mm/year is 

likely to have significant adverse impact on rainfed agriculture in future. 

9.1.2  Temperature Trend 

Rising trend over the years has been observed in mean seasonal maximum 

temperature for monsoon and winter, whereas, there is decreasing trend over the years in 

mean summer maximum temperature. However, mean seasonal minimum and mean 

seasonal average temperatures show rising trend for the entire basin. Few stations located in 

Northern part of the basin show non-significant rising trend in mean seasonal temperature. 

The minimum temperature has increased more as compared to maximum temperature over 

51 years period of analysis. The percentage change in minimum temperature is highest for 

the month of November followed by December and January. The variability is observed to 

be more pronounced in minimum temperature ranging from 1.69% to 2.78%. For annual 

maximum and minimum temperature, the upper half of the basin shows more variability 

with highest magnitude of variability 1.93%. The study shows that the mean annual 

temperature is likely to increase by 1.98°C in next 100years. However winter temperature 

may increase by 2.06°C, monsoon temperature may increase by 4.73°C and summer 
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temperature may decrease by -0.528°C over the study area. Overall there is an increase in 

Tmax on annual and seasonal scale except for summer whereas for Tmin and Tmean, 

overall significant increasing trend is observed for the entire Seonath River basin.  

The monsoon temperature is expected to increase by 4.73°C over 100 years. This 

rise in temperature may cause significant increase in the irrigation water requirements and 

rainfed agriculture may get adversely affected. Therefore irrigation planning for Rabi as 

well as for Kharif crops need to be analyzed for the study area. 

9.1.3  Relative Humidity (RH) Trend 

Monthly trend analysis of Relative Humidity (RH) shows significant decreasing 

trend in RH for months of July, September, October and November. Whereas, from March 

to June insignificant increasing trends are observed. All stations show significant decreasing 

trend in annual RH except few stations in the north western part of the study area which 

shows non-significant decreasing trend. For monsoon season, strongly significant decreasing 

trend is observed for the entire basin. Whereas for winter season, non-significant decreasing 

trend and for summer season increasing trend have been observed. The highest change in 

magnitude of RH has been observed for July, September, October and November months. 

The inter-annual variability in RH of the basin ranges from 0.9 to 2.2%.  

9.1.4  Wind Speed (WS) Trend 

The wind speed is one of the key variable which cause water vapour transpiration 

from plant leaves into atmosphere. Thus, monthly and seasonal assessment of trends in wind 

speed and its variability is important in order to quantify its effect on ET. On seasonal basis, 

strongly significant increasing trend is obtained for wind speed in monsoon and winter 

season all over the basin. On monthly time scale, the highest rate of change is seen in 

August followed by July, June and September. The percentage change is highest for the 

entire basin ranging from 38% to 61%.  

Highest inter-annual variability (23%) is observed in monthly wind speed in northern 

part of the river basin. Overall there is increasing trend in monthly and seasonal wind speed 

for the entire basin. 
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9.2  INTER-COMPARISON OF ETo ASSESSMENT METHODS 

Evapotranspiration is directly related to crop water requirement and is an important 

parameter in hydrological studies. Therefore, accurate estimation of ETo is of significant 

importance. To measure the consistency and accuracy of ETo methods, the estimates 

obtained from six different methods (Hargreaves, Thornthwaite, Blaney-Criddle Method, 

Priestley-Taylor Method, Penman-Monteith Method and Turc Method) have been compared 

with pan evaporation data (Ep). The following inferences could be drawn from this analysis 

1. The pan coefficient (Kp) have been estimated as the ratio between ETo and pan 

evaporation (Ep) for the study area. The study shows that the Kp varies significantly 

from month to month (0.56 to 0.89) for the study area. The estimated monthly pan 

coefficients values for the study area are considered to be more appropriate than the 

Kp values (0.60-0.80) given in literature for Class A pan. The highest Kp value is 

obtained for July month whereas it is lowest for the month of November. Thus, use 

of the FAO recommended values of Kp result in over estimation of the monthly ETo 

values by 11.8% to 56.3%. Thus for accurate estimation of ETo from pan 

evaporation data, the estimated Kp values considering local climatic conditions 

should be used for the study area.  

2. According to statistical performance evaluation of six ETo estimated methods, 

Penman-Monteith, Hargreaves and Thornthwaite methods have performed well with 

low value of RMSE, MAE, SSE and high correlation coefficient. The radiation-

based Priestley-Taylor and temperature based Blaney-Criddle method indicate 

lowest correlation values. 

3. Sensitivity analysis of ETo to different meteorological variables viz, Tmax, Tmin, 

RH and WS has been performed. The temperature is found to be the most important 

driving parameter which affects ETo and followed by relative humidity. In the 

Seonath river basin maximum temperature is dominating factor in estimation of ETo 

at seasonal and annual scales. As temperature increases, ETo also increases. Bilaspur 

station shows highest sensitivity coefficient of 1.77 in relation to temperature. It 

means ETo would increase by 17.7% in response to the 10% rise in maximum 

temperature if other meteorological variables remain constant. However 

Rajnandgaon station shows the highest value of sensitivity coefficient in relation to 

RH (-1.28) which means 10% decrease in RH causes ETo to increase by 12.8%. 
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Hargreaves and Thornthwaite methods are therefore not recommended for this study 

area as these donot take into consideration the RH parameter. 

9.3  ASSESSMENT OF CROP COEFFICIENT, CWR, IWR AND THERE LONG 

TERM TREND 

9.3.1  Assessment of Crop Coefficient (Kc) 

In order to estimate CWR, the crop characteristics in the form of crop coefficient 

(Kc) need to be considered. The value of Kc varies for different growth stages i.e. the initial 

stage, development stage, midseason stage, and the late season stage. In this study, the Kc 

values recommended by FAO paper No. 56 have been adjusted according to climatic 

conditions of the study area. The average Kc values for major crops (Kharif Paddy, Wheat 

and Summer paddy) for crop growth stages viz, initial, development, mid and late season are 

computed. These average Kc values for different crops are then compared with 

recommended Kc values in FAO-56. For Kharif paddy, percentage change in adjusted Kc 

value  with respect to FAO recommended Kc values during different crop growth stages 

varies from -1% to -15% whereas for rabi crops (Wheat and Summer paddy) it range from -

2% to -16% and -9% to -23% respectively.  The adjusted Kc values are lower than those 

suggested in FAO-56 for each crop during the different crop growth stages. This is mainly 

due to humid climate of Seonath river basin and lower mean wind speed (1.7-1.0 m/s) and 

higher mean minimum relative humidity (79-41%) during Kharif and rabi season. The CWR 

computed using FAO approach (FAO, paper No-56) gives significantly different (higher) 

values. It is therefore recommended to use the adjusted Kc values for our study area for 

precise estimation of CWR and subsequently for computation of supplemental water 

requirement. 

9.3.2  Trend Analysis of Reference Evapotranspiration (ETo) 

Trend and variability of annual and monthly ETo time series have been analyzed for 

8 stations for which data are available. The increase in ETo is 13.4 mm/year on annual time 

scale. On the seasonal scale, summer ETo trend is decreasing (-10.4 mm/year). The winter 

and monsoon ETo show increase at the rate of 21 mm/year and 22 mm/year respectively. 

The estimates of ETo for the months of December, January, February, July and August 

show non-significant increasing trend. However significant increasing ETo trend has 

emerged for the months of September October and November. The highest (3.4-3.6%) 

variability in annual ETo is seen in the stations located at southern part of the basin while 
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rest of the stations exhibits almost same inter-annual variability ranges from 1.0%-1.8%. 

Overall a high variation in ETo is observed for the entire Seonath river basin. The results of 

this study will be useful for the reliable estimation of irrigation water requirement. 

9.3.3    Trend Analysis of Irrigation Water Requirement (IWR) 

 IWR of the Kharif Paddy is relatively higher for the later stage of the crop growth 

period compared to previous crop growth period. For Rabi cropping season (wheat and 

summer paddy) it has been found that the irrigation water requirement is of the same order 

throughout the growing season, but marginally higher during the developmental stage. In 

order to detect trends in IWR, the MK-test and Sen's slope have been used to analyze the 

time series for the 51-year period. There is increasing trend in IWR for both Kharif and Rabi 

seasons. For Kharif season increasing trend is detected at 88% of the stations, and remaining 

12% of the stations show non-significant increasing trend. Further, significant positive 

slopes are dominant for wheat crop, (with 63% of the stations). For summer paddy, 50% of 

the stations show significant increasing trend and rest 50% shows non-significant increasing 

trend. The IWR for Kharif and Rabi seasons are increasing at the rate of 3.627 mm/yr and 

1.264 mm/yr respectively. These changes are characterized by a relative increase in Kharif 

IWR by 47%, while Rabi IWR by 23%.  

9.4  IWR-CN RELATIONSHIP 

Over the last 50 years several empirical and semi-empirical methods for ETo 

estimation have been developed in different parts of the world but none can be suggested as 

the best one for any area or any season in terms of its accuracy. In this study, the curve 

numbers derived from rainfall-runoff data on seasonal scale (Kharif and Rabi season) is 

related to IWR of same scale. High R2 values of 0.970 for Kharif season and 0.926 for Rabi 

season are found for calibration period. The results are validated with R2 values of 0.957 and 

0.954 for Kharif and Rabi seasons, respectively; indicating the existence of a strong CN-

IWR relationship.  

The supportive results of the proposed model assume to be a good substitute for 

complex IWR assessment, particularly in the area where meteorological parameters are not 

easily obtainable. In addition, the developed model can be utilised for the crop water use 

studies, and especially in the design and management of irrigation systems.  
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9.5  PREDICTION OF CLIMATE CHANGE IN FUTURE 

1. The four statistical downscaling models viz., Artificial Neural Network (RBF), 

Multilayer Perception (MLP), Multiple Linear Regression (MLR), Model Tree 

(MT), Least Square Support Vector Machine (LS-SVM) are used for comparative 

study. The best prediction model for the study area is LS-SVM. The results indicate 

that for each climatic variable, LS-SVM is performing best followed by MT and 

ANN (MLP). Lower values of NSE and R2 are obtained for ANN (RBF) method for 

almost all the meteorological variables therefore not recommended for our study 

area. 

2. Increase in annual rainfall is statistically predicted from year 2020s upto 2090. The 

annual rainfall is predicted to decrease for the period of 2091-2100. The predicted 

decadal change in rainfall varies from 2.74 to 7 mm/decade for 2020s and 2050s 

period. However for maximum temperature, the increasing trend is predicted for the 

entire projected period but the highest temperature change predicted for two decades 

i.e., 2021-2030 and 2031-2040. The rate of change varies from 0.1°C/decade to 

0.5°C/decade for monsoon and 0.01°C/decade to 0.3°C/decade for post monsoon 

season. For the minimum and mean temperature the overall increasing trend is 

observed but for Tmin the highest temperature rise is expected in the period of 2061-

2070. The change in magnitude for minimum temperature for monsoon season varies 

from 0.2°C/decade to 0.7°C/decade, whereas for post monsoon season the minimum 

temperature varies from 0.02°C/decade to 0.5°C/decade. It can be inferred that 

warming is more pronounced during the night (when temperature is lower) than day. 

The relative humidity forecasts represent a significant decreasing trend for Kharif 

season, whereas for rabi season non-significant decreasing trend have been observed 

for two decades i.e., 2020s and 2090s period. The projected wind speed shows non-

significant increasing trend for the entire basin. Wind speed projections are highly 

uncertain with extremes in 2090s during Kharif season whereas for rabi season the 

uncertainty is for 2020s and 2050s period.  

3. The reference evapotranspiration are predicted to increase in future for all months. 

Particularly, the change in evapotranspiration is more in the months of May to 

August due to the large projected changes in Tmax and Tmin variables. The rate of 

change in ETo is increasing from May to September. There could be an increase of 

25 mm in ETo in June month over a period of 100 years 
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4. The monthly irrigation water requirement in future has been estimated from the 

projections of rainfall at each of the location downscaled from LS-SVM model and 

CWR projections. The annual irrigation water requirements for Kharif paddy, wheat 

and summer paddy are predicted to increase in the entire river basin. The IWR for 

Kharif crops (Monsoon season) is projected to increase by an average (and range) of 

84% (8-168%), 71% (39-82%) and 32% (5–57%) in the 2020s, 2050s and 2090s 

respectively whereas for Rabi crops (Winter season) wheat crop IWR is predicted to 

increase by 201% (67-262%), 163% (6-307%) and 91% (50-150%) for the three 

decades (2020s, 2050s, 2090s). However for summer paddy the increase in IWR 

ranges from 184% (44-287%), 215% (103-319%) and 90% (21-181%) for 2020s, 

2050s and 2090s periods respectively. Knowledge on future change in irrigation 

requirements will be useful in sustainable improvement and management of basin 

water resources and in developing adaptive policies for operation of irrigation 

schemes.  

9.6  CONCLUSIONS 

The following conclusion could be drawn from the study: 

1.  The analysis indicated that decrease in monsoon rainfall (2.79 mm/yr) is likely to 

have significant adverse impact on rainfed agriculture. This may necessitate to focus 

for supplemental irrigation planning in Kharif season crops too. 

2.  Investigation of results revealed that the temperature changes may have significant 

impacts on rainfed crop cultivation due to increase in evapotranspiration. Monsoon 

temperature is expected to increase by 4.73°C over 100 years and it may cause 

significant increase in the IWR and water shortages.  

3.  Use of monthly value of pan coefficient (Kp) leads to more precise assessment of 

evapotranspiration compared to single value for all months (0.70). Estimates of ETo 

using  monthly Kp values indicated large variation in ETo from month to month 

ranging from -6% to 21%. 

4.  The analysis revealed that there is increase in IWR for Kharif and rabi crops in most 

of the region due to high variability of rainfall pattern, rise in temperature, wind 

speed and decrease in RH. These results shall be helpful in more realistic planning 

and effectual utilization of basin water resources. 
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5.  A relationship between SCS-CN and IWR has been developed. It may provide a 

simple substitute to the complex procedure for IWR estimation.  CN based IWR 

estimation would be simple and useful. 

6.  Four statistical downscaling methods have been taken for comparative study. The 

results of analysis indicated that for each climatic variable, LS-SVM is performing 

best. The monthly IWR in future have been predicted using the projections of 

rainfall (downscaled from LS-SVM model) and CWR projections. 

7.   The future projection (2001-2100) of IWR for Kharif and rabi crops derived from 

LS-SVM models show increasing trend. This knowledge on future change in IWR 

shall be useful for sustainable development and management of water resources and 

in developing adaptive policies for operation of irrigation schemes. 

9.7  MAJOR RESEARCH CONTRIBUTIONS 

The major research contributions of the present study are summarized below: 

1. Long term spatial trends in spatially distributed climatic variables have been 

established. 

2. Estimation of monthly pan coefficients (Kp) values for easy and perfect assessment 

of ETo using available pan evaporation data in the study area.  

3. Inter-comparison of ETo estimation methods and identification of best suitable 

model for the study area and its sensitivity to different climatic variables. 

4. Estimation of crop coefficients of major crop for the study area for accurate 

estimation of CWR and subsequently IWR of the study area. 

5. Exploration of trend and variability in ETo and IWR in context of long term changes 

in climatic variables of the study area. 

6. Development of relationship between SCS-CN and IWR which could substitute the 

complex procedure for IWR. CN based IWR estimation is simple, reliable and 

particularly useful in areas where data on a number of meteorological parameters 

may not be available. 

7. Inter-comparison of four downscaling models and identification of model. Future 

prediction of rainfall, maximum and minimum temperature, relative humidity and 

wind speed by LS-SVM downscaling models by HadCM3 GCM data for A2 

scenario. Estimation of ETo using climatic variables and in turn CWR for future 

assessment of IWR for the study area.  
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9.8  SCOPE FOR FUTURE RESEARCH 

1. For an accurate estimation of the IWR, the soil moisture dynamics of individual 

crops also need to be considered in the impact assessment studies. 

2. This study may be extended to study impact of climate change on spatial distribution 

of drought vulnerability and IWR during drought years. 

3. Further studies are required for assessment of applicability of the proposed IWR-CN 

relation to other regions. In addition, since parameter λ is a regional parameter that 

depends on geological and climatic factors and hence an important parameter in 

ET/CWR/IWR estimation, results may be improved with the use of a value other 

than the standard value of 0.2 for other climatic regions.  

4. In this study, only one GCM data i.e., HadCM3 has been used. It is suggested to 

apply different GCMs data to make a comparison between different models to check 

inter-models consistency. Hence, this work may be extended in the future by 

including different GCMs data and for different scenarios for future estimation of 

climatic variables. 

  

 

 



178 
 

BIBLIOGRAPHY 

1. Al-Ghobari HM, 2000. Estimation of reference evapotranspiration for southern region of 

Saudi Arabia. Irrig Sci., 19, pp: 81–86. 

2. Allen R, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration: guidelines for 

computing crop water requirements. Irrigation and Drainage Paper, 56. FAO, Rome, 

Italy, pp: 300. 

3. Allen RG, Jensen ME, Wright JL, Burman, RD. 1989. Operational estimates of reference 

evapotranspiration. Agron. J. 81: 650–662. 

4. Allen RG, Pruitt WO. 1991. FAO-24 reference evapotranspiration factors. J Irrig Drain 

Eng 117(5), pp: 758–773. 

5. Allen RG, Smith M, Pereira LS, Perrier A. 1994. An Update for the Calculation of 

Reference Evapotranspiration. ICID Bulletin. 43(2), pp: 35-92. 

6. Allen RG. 2000. Using the FAO-56 Dual Crop Coefficient Method over an Irrigated 

Region as Part of an Evapotranspiration Intercomparison Study. J. of Hydrol. 229, pp: 

27-41. 

7. Amatya DM, Skaggs RW, Gregory JD. 1995. Comparison of methods for Ref-ET. J. Irrig. 

Drain. Eng. 121, pp: 427–435. 

8. Anandhi A, Srinivas VV, Nagesh Kumar D, Nanjundiah RS. 2009. Role of predictors in 

downscaling surface temperature to river basin in India for IPCC SRES scenarios using 

support vector machine, Int. J. Climatol. 29, pp: 583-603. 

9. Anandhi A. 2010. Assessing impact of climate change on season length in Karnataka for 

IPCC SRES scenarios. J. Earth Syst. Sci. 119(4), pp: 447–460 

10. Arnell NW, Hudson DA, Jones RG.  2003. Climate change 256scenarios from a regional 

climate model: Estimating change in runoff 257 in southern Africa, J. Geophys. Res., 

108(D16), 4519, doi:10.1029/ 258 2002JD002782. 



179 
 

11. Arnell NW. 2004. Climate change and global water resources: SRES emissions and 

socio-economic scenarios, Global Environ. Change, 14(1), pp: 31–52, 

doi:10.1016/j.gloenvcha.2003.10.006. 

12. Arnold JG, Allen PM, Bernhardt G. 1993. A comprehensive surface-groundwater flow 

model. J. Hydrology.142, pp: 47-69. 

13. Aron G, Miller AC Jr, Lakatos DF. 1977. Infiltration formula based on SCS curve 

number. Journal of the Irrigation and Drainage Division, American Society of Civil 

Engineers 103(IR4), pp: 419–427.  

14. Ayanlade A, Odekunle OT. 2009. GIS Approach in Assessing Seasonal Rainfall 

Variability in Guinea Savanna Part of Nigeria. 7th FIG Regional Conference Spatial Data 

Serving People: Land Governance and the Environment – Building the Capacity Hanoi, 

Vietnam. 

15. Bai W, Feng S, Kang S. 2006. Reference crop evapotranspiration in Shanxi Province 

based on GIS. Transactions of the CSAE, 2210, pp: 57–61 in Chinese. 

16. Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R 2009. Temporal Trends in 

Estimates of Reference Evapotranspiration over India, J. Hydrologic Engineering, 14(5), 

pp: 508–515. 

17. Bardossy A, Bogardi I, Matyasovszky I. 2005. Fuzzy rule-based downscaling of 

precipitation. Theor. Appl. Climatol., 82, pp: 119-129. 

18. Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on 

water availability in snow-dominated regions, Nature 438 (7066), pp: 303-309. 

19. Basistha A, Arya DS, Goel NK. 2009. Analysis of historical changes in rainfall in the 

Indian Himalayas. Int. J. Climatol., 29, pp: 555–572. 

20. Benestad R. 2007. Novel methods for inferring future changes inextreme rainfall over 

Northern Europe, Clim. Res., 34, pp: 195–210, doi:10.3354/cr00693. 

21. Beven KJ. 2001. Rainfall–runoff modelling: the primer. Wiley, New York. 360. 



180 
 

22. Bhattacharya B, Solomatine DP. 2002. Application of artificial neural networks and M5 

model trees to modelling stage-discharge relationship. Proc., 2nd Int. Symp. on Flood 

Defence, Beijing, China, B. S. Wu, Z. Y. Wang, G. Q. Wang, G. H. Huang, H. W. Fang, 

and J. C. Huang, eds., Science Press New York. 

23. Bhunya PK Mishra SK, Berndtsson R. 2003. Simplified 2PGD for derivation of SUH, 

JHE, ASCE, 8(4), pp: 226-230. 

24. Bhutiyani MR, Kale VS, Pawar NJ. 2007. Long term trends in maximum, minimum and 

mean annual air temperatures across the Northwestern Himalaya during the twentieth 

century, Climatic Change, 85, pp:159-177. 

25. Birsan M, Molnar P, Burlando P, Pfaundler M. 2005. Streamflow trends in Switzerland. 

J. Hydrol. 314, pp: 312-329. 

26. Blaney HF, Criddle WP. 1950. Determining water requirements in irrigated areas from 

climatological and irrigation data. USDA (SCS) TP-96, 48. 

27. Bois B, Pieri P, Van Leeuwen C, Gaudillere JP. 2005: XIV International GESCO 

Viticulture Congress, Geisenheim, Germany, 23–27 August, 2005, pp: 187–193.  

28. Bonta JV. 1997. Determination of watershed curve number using derived distributions. J.  

Irrig Drain Engg., ASCE, 123 (1), pp: 234-238. 

29. Bosznay M. 1989. Generalization of the SCS curve number method. Journal of Irrigation 

and Drainage Engineering Division, ASCE, 115(IR1), pp: 139-144. 

30. Bradley RS, Diaz HF, Eischeid JK, Jones PD, Kelly PM, Goodess CM. 1987. 

Precipitation fluctuations over northern hemisphere land areas since the mid-19th 

century. Science, 237, pp: 171-175. 

31. Brouwer C, Heibloem M (1986) Irrigation water needs. Irrigation Water Management 

Training Manual 3, Food and Agriculture Organization of the United Nations, Rome. 

32. Brown RA, Rosenberg NJ. 1999. Climate change impacts on the potential productivity of 

corn and winter wheat in their primary United States growing regions. Climate Change 

41, pp: 73–107. 



181 
 

33. Brutsaert W. 1982. Evaporation into the Atmosphere: Theory, History, and applications. 

Reidel, Hingham, MA, pp: 229. 

34. Buma J, Dehn M. 2000. Impact of climate change on a landslide in South East France, 

simulated using different GCM scenarios and downscaling methods for local 

precipitation. Clim. Res., 2000, 15, pp: 69–81. 

35. Burman RD, Laramie WY, Nixon PR, Wright JL, Pruitt WO. 1983. Water Requirements. 

In: Jensen, M.E. (ed.) 1983. Design and operation of farm Irrigation Systems, Chapter 6, 

ASAE Monograph No.3. USA. 

36. Burn DH, Cunderlik JM, Pietroniro A. 2004. Hydrological trends and variability in the 

Liard river basin. Hydrolo. Sci. J. 49, pp: 53–67. 

37. Burn DH, Hesch NM. 2007. Trends in evaporation for the Canadian Prairies. J. Hydrol., 

336, pp: 61-73. 

38. Burnash RJC. 1995. The NWS River forecast system - catchment modeling. In V. P. 

Singh (Ed.), Computer Models of Watershed Hydrology (pp. 311–366). Water Resources 

Publications, Highlands Ranch, CO. 

39. Burton A, Kilsby CG, Fowler HJ, Cowpertwait PSP, O’Connell PE. 2008. Rain Sim: A 

spatio temporal stochastic rainfall modeling system. Environmental Modeling and 

Software, 23, pp: 1356-1369. 

40. Byun HR, Han YH. 1994. On the existence of the seasonal drought in the Korean 

peninsula. Journal of Korean Meteorological Society, 30, pp: 457-467. (In Korean with 

English abstract). 

41. Byun HR, Lee DK, Jeong CH. 1992a. A study on the atmospheric circulation during the 

dry period before the Changma. Part I: existence and characteristics. Journal of Korean 

Meteorological Society 28, pp: 72-85. (In Korean with English abstract). 

42. Byun HR, Lee DK, Jeong CH. 1992b. A study on the atmospheric circulation during the 

dry period before the Changma. Part II: compared with those before and after the period. 



182 
 

Journal of Korean Meteorological Society, 28, pp: 86-102. (In Korean with English 

abstract). 

43. Byun HR, Lee DK. 2002. Defining three rainy seasons and the hydrological summer 

monsoon in Korea using available water resources index. Journal of the Meteorological 

Society of Japan, 80(1), pp: 33-44. 

44. Byun HR. 1996. On the atmospheric circulation caused the drought in Korea. Journal of 

Korean Meteorological Society, 32, pp: 455-469. (In Korean with English abstract). 

45. Cannon AJ, Whitfield PH. 2002. Downscaling recent stream-flow conditions in British 

Columbia Canada using ensemble neural network models. Journal of Hydrology 259, pp: 

36–151. 

46. Cavazos T. 1997. Downscaling large-scale circulation to local winter rainfall in north-

eastern Mexico. International Journal of Climatology 17, pp: 1069–1082. 

47. Chatterjee S, and Price B. 1977. Regression Analysis by Example. New York: Wiley. 

(Section 3.7, p.68ff of 2nd ed.(1991).). 

48. Chattopadhyay, N. and Hulme, M. (1997). Evaporation and potential evapotranspiration 

in India under conditions of recent and future climate change, Agricultural and Forest 

Meteorology, 87, pp: 55-73. 

49. Chaudhary A, Abhyankar VP. 1979. Does precipitation pattern foretell Gujarat climate, 

becoming arid, Mausam, 30, pp: 85-90. 

50. Chen H, Xu CY, Guo SL. 2012. Comparison and evaluation of multiple GCMs, 

statistical downscaling and hydrological models in the study of climate change impacts 

on runoff, Journal of Hydrology 434–435, pp: 36–45. 

51. Chen S, Liu Y, Thomas A. 2006. Climatic change on the Tibetan Plateau: potential 

evapotranspiration trend from 1961–2006. Climatic Change 76, pp: 291–319. DOI: 

10.1007/s10584-006-9080-z.  

52. Chen X, Li Y, Harrison R, Zhang YQ. 2008. Type-2 fuzzy logic-based classifier fusion 

for support vector machines. Applied Soft Computing, 8(3), pp: 1222–1231. 



183 
 

53. Cheng C, Li G, Li Q, Auld H. 2008. Statistical downscaling of hourly and daily climate 

scenarios for various meteorological variables in South Central Canada. Theoretical and 

Applied Climatology. 9(1), pp: 129-147. 

54. Cheng J, Shi Z, Zhu Y. 2007. Assessment and mapping of environmental quality in 

agricultural soils of Zhejiang Province. J. Environ. Sci., 191, pp: 50–54. 

55. Choudhury BU, Das A, Ngachan SV, Slong A, Bordoloi LJ Chowdhury P. 2012. Trend 

Analysis of Long Term Weather Variables in Mid Altitude Meghalaya, North-East India. 

Journal of Agricultural Physics, 12(1), pp: 12-22. 

56. Chow VT. 1964. Handbook of applied hydrology. McGraw Hill Book Co, New York. 

57. Christiansen JE, Hargreaves GH. 1969. Irrigation requirements from evaporation. Trans. 

Int. Comm. On Irrig. and Drain., Vol. III, 23, pp: 569-596.  

58. Christiansen JE. 1968. Pan evaporation and evapotranspiration from climatic data. J.Irrig. 

and Drain. Div., 94, pp: 243-256. 

59. Cleugh HA, Leuning R, Mu Q, Running SW. 2007. Regional evaporation estimates from 

flux tower and MODIS satellite data. Remote Sensing of Environment 106 (3), pp: 285–

304. 

60. Cohen S, Stanhill G. 2002. Evaporative climate changes at Bet-Dagan Israel, 1964–1998. 

Agricultural and Forest Meteorology 111, pp: 83–91. DOI: 10.1016/S0168-

1923(02)00016-3. 

61. Cong ZT, Yang DW. 2009. Does evaporation paradox exist in China? Hydrology and 

Earth System Sciences 13, pp: 357–366. DOI: 10.5194/hessd-5-2111-2008. 

62. Conway D, Wilby RL, Jones PD. 1996. Precipitation and air flow indices over the British 

Isles. Climate Research, 7, pp: 169-183. 

63. Corte-Real J, Qian B, Xu H. 1998. Regional climate change in Portugal: precipitation 

variability associated with large-scale atmospheric circulation. International Journal of 

Climatology 18, pp: 619–635. 



184 
 

64. Coulibaly P, Dibike YB, Anctil F. 2005. Downscaling Precipitation and Temperature 

with Temporal Neural Networks, J. Hydrometeor, 6, 483–496, doi:  

http://dx.doi.org/10.1175/JHM409.1. 

65. Crane RG, Hewitson BC. 1998. Doubled CO2 precipitation changes for the Susquehanna 

basin: downscaling from GENESIS general circulation model. International Journal of 

Climatology, 18, pp: 65-76. 

66. Cuenca RH. 1989. Irrigation system design: an engineering approach. Prentice-Hall, 

Englewood Cliffs,  pp: 133 

67. Cuenca RH. 1989. Irrigation system design: an engineering approach. Prentice-Hall, 

Englewood Cliffs, New Jersey. 

68. Cunderlik JM, Burn DH. 2004. Linkages between regional trends in monthly maximum 

flows and selected climatic variables. ASCE J.of  Hydrol. Engg., 9(4), pp: 246–256. 

69. Das DC, Sarkar TK, Mukhopadhaya DP. 2009. Drought in Chhattisgarh. J. Soil Water 

Conserv. 8(1), pp: 25-32. 

70. Dash SK, Kulkarni MA, Mohanty UC, Prasad K. 2009. Changes in the characteristics of 

rain events in India, J. Geophy. Res., 114, D10109, doi: 10.1029/2008JD010572. 

71. De Silva CS, Weatherhead EK, Knox JW, Rodriguez-Diaz JA. 2007. Predicting the 

impacts of climate change—a case study on paddy irrigation water requirements in Sri 

Lanka. Agricultural Water Management 93(1–2), pp: 19–29. 

72. Deng ZQ, Patil A. 2011. Assessment of water quality variation in Amite River watershed 

under changing climate and land use. Water quality: current trends and expected climate 

change impacts. IAHS Publ; pp: 348. 

73. Dettinger MD, Cayan DR, Meyer MK, Jeton AE. 2004. Simulated hydrologic responses 

to climate variations and change in the Merced, Carson, and American river basins, 

Sierra Nevada, California, pp: 1900–2099, Clim. Change, 62(1–3), 283–

3doi:10.1023/B:CLIM. 0000013683.13346.4f. 



185 
 

74. Dhorde A, Dhorde A, Gadgil AS. 2009. Long-term Temperature Trends at Four Largest 

Cities of India during the Twentieth Century, J. Ind. Geophys. Union, 13(2), pp: 85-97. 

75. Dibike YB, Coulibaly P. 2005. Hydrologic impact of climate change in the Saguenay 

watershed: comparison of downscaling methods and hydrologic models, Journal of 

Hydrology 307 (1-4), pp: 145-163. 

76. Dinpashoh Y, Jhajharia D, Fard AF, Singh VP, Kahya E. 2011. Trends in reference crop 

evapotranspiration over Iran. J. of Hydrol. 399, pp: 422–433. 

77. Dinpashoh Y. 2006. Study of reference crop evapotranspiration in I.R of Iran. Agric. 

Water Manage., 84, pp: 123–129.  

78. Doll P, Siebert S. 2002. Global modeling of irrigation water requirements. Water 

Resources Research, 38(4), pp: 1-8 

79. Doll P. 2002. Impact of climate change and variability on irrigation requirements: A 

global perspective. Climatic Change. Kluwer Academic Publishers. Printed in the 

Netherlands. 54, pp: 269–293.  

80. Doorenbos J, Kassam AH. 1979. Yield Response to Water. FAO, Irrig. Drain. Paper No. 

33, FAO, Rome, Italy, pp: 193. 

81. Doorenbos J, Pruitt WO. 1975. Guidelines for predicting crop water requirements, 

Irrigation and Drainage Paper no. 24, FAO-ONU, Rome, Italy, pp: 168.  

82. Doorenbos J, Pruitt WO. 1977. Guidelines for predicting crop water requirements. FAO, 

Rome, Irrig. Drain. Paper No. 24, pp: 144. 

83. Douglas EM; Vogel R.M. Knoll, C.N., 2000. Trends in flood and low flows in the United 

States: impact of spatial correlation. J. Hydrol. 240, 90–105. 

84. Duhan D, Pandey A, Pandey RP. 2012. Analysing trends in reference evapotranspiration 

and weather variables in the Tons River Basin in Central India. Stoch Environ Res Risk 

Assess, DOI 10.1007/s00477-012-0677-7. 



186 
 

85. Easterling WE, Crosson PR, Rosenberg NJ, McKenney MS, Katz LA, Lemon KM. 1993. 

Agricultural impacts of and response to climate change in the Missouri-Iowa-Nebraska- 

Kansas (MINK) region. Climate Change 24, pp: 23–61. 

86. Elgaali E, Garcia LA, Ojima DS. 2007. High resolution modeling of the regional impacts 

of climate change on irrigation water demand. Climate Change 84, pp: 441–461. 

87. FAO, 1975. Production vegetale et protection des plantes. Surveillance 

agromrteorologique pour la prevision des recoltes, N°117. 

88. Faucher M, Burrows WR, Pandolfo L. 1999. Empirical-statistical reconstruction of 

surface marine winds along the western coast of Canada. Clim. Res., 11, pp: 173-190. 

89. Federer CA, Vorosmarty C, Fekete B. 1996. Intercomparison of Methods for Calculating 

Potential Evaporation in Regional and Global Water Balance Models. Water Resour. 

Res, 32, pp: 2315-2321. 

90. Fowler HJ, Kilsby CG, O’Connell PE. 2000. A stochastic rainfall model for assessment 

of regional water resource systems under changed climatic conditions. Hydrological and 

Earth Systems Science, 4, pp: 263-282. 

91. Fowler, HJ, Blenkinsopa S, Tebaldib C.2007. Linking climate change modelling to 

impacts studies: recent advances in downscaling techniques for hydrological modeling. 

Int. J. Climatol. 27, pp: 1547–1578. 

92. Fu G, Stephen CP, Yu J. 2009. A critical overview of pan evaporation trends over the last 

50 years. Climatic Change, 97, pp: 193-214. 

93. Gadgil A. 1986. Annual and weekly analysis of rainfall and temperature for Pune: A 

multiple time series approach. Inst. Indian Geographers, 8(1). 

94. Gao G, Chen DL, Ren GY, Chen Y, Liao YM. 2006. Spatial and temporal variations and 

controlling factors of potential evapotranspiration in China: 1956–2000. Journal of 

Geographical Sciences 16, pp: 3–12. DOI: 10.1007/s11442-006-0101-7. 



187 
 

95. Garbrecht J, Van Liew M, Brown GO. 2004. Trends in precipitation, streamflow and 

evapotranspiration in the great plains of the United States. Journal of Hydrologic 

Engineering, 9, pp: 360-367. 

96. Gaur ML, Mathur BS. 2003. Modeling event-based temporal variability of flow 

resistance coefficient. J. Hydrologic Engg.8 (5), pp: 266-277.  

97. Geeta K, Mishra SK, Eldho TI, Rastogi AK, Pandey RP. 2008. SCS-CN-based 

continuous simulation model for hydrologic forecasting. Water Res. Manage., 22, pp: 

165-190. 

98. Geetha K, Mishra SK, Eldho TI, Rastogi AK, Pandey RP 2007. Modifications to SCS-

CN Method for Long-Term Hydrologic Simulation. Journal of Irrigation and Drainage 

Engineering, 133(5), pp: 475-486. 

99. Georgakakos KP, Smith DE. 2001. Soil Moisture Tendencies into the Next Century for 

the Conterminous United States. Journal of Geophysical Research-Atmospheres, 

106(D21), pp: 27367-27382. 

100. George BA, Reddy BRS, Raghuwanshi NS, Wallender WW. 2002. Decision support 

system for estimating reference evapotranspiration. J. Irrig Drain. Eng. 128, pp: 1–10. 

101. George BA, Reddy BRS, Raghuwanshi NS, Wallender WW. 2002. Decision support 

system for estimating reference evapotranspiration. J. Irrig Drain. Eng. 128, pp: 1–10. 

102. Ghosh S, Mujumdar PP.  2007. Nonparametric Methods for Modeling GCM and 

Scenario Uncertainty in Drought Assessment, Water Resources Research, 43, W07405, 

doi:10.1029/2006WR005351.  

103. Ghosh S, Mujumdar PP. 2008. Statistical downscaling of GCM simulations to 

streamflow using relevance vector machine. Advances in Water Resources 31, pp: 132-

146. 

104. Gidrometeoizdat. 1967. The water resources and water balance of the territory of the 

Soviet Union, Leningrad, Russia, 199. 



188 
 

105. Gilbert RO. 1987. Statistical methods for environmental pollution monitoring. Van 

Nostrand Reinhold, New York, 336. 

106. Goel Arun. 2012. Application of support vector machine techniques for prediction of 

discharge in triangular weir, Water and Energy International, 69(9), pp: 45-51. 

107. Gong LB, Xu CY, Chen DL, Halldin S, Chen YQD. 2006. Sensitivity of the Penman-

Monteith reference evapotranspiration to key climatic variables in the Changjiang 

(Yangtze River) basin. Journal of Hydrology, 329 (3-4), pp: 620–629. 

DOI:10.1016/j.jhydrol.2006.03.027. 

108. Govindaraju RS, Rao AR. (eds.). 2000. Artificial neural networks in hydrology, Kluwer 

Academic Publishers, Dordrecht. 

109. Goyal MK, Ojha CSP. 2010. Evaluation of linear regression methods as downscaling 

tools in temperature projections over the Pichola Lake Basin in India. Hydrological 

Processes. 25( 9), pp: 1453–1465. 

110. Goyal MK, Ojha CSP. 2012. Downscaling of Surface Temperature for Lake Catchment 

in Arid Region in India using Linear Multiple Regression and Neural Networks. 

International Journal of Climatology, Wiley InterScience on behalf of Royal 

Meteorological Society (RMetS), 32( 4), pp: 552–566. 

111. Grotch S, MacCracken M. 1991. The use of general circulation models to predict 

regional climatic change. J Clim 4, pp: 286–303. 

112. Gupta HV, Sorooshian S, Yapo PO. 1999. Status of automatic calibration for hydrologic 

models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2), pp: 135-

143. 

113. Haberlandt U. 2007. Geostatistical interpolation of hourly precipitation from rain gauges 

and radar for a large-scale extreme rainfall event. J. Hydrol., 332, pp: 144–157. 

114. Hakan A. 2010. Trend analysis of hydro-meteorological parameters in climate regions of 

Turkey. Conference on Water Observation and Information System for Decision Support, 

May, 25-29, BALWOIS, Republic of Macedonia, pp: 1- 11. 



189 
 

115. Hamed KH, Rao AR. 1998. A modified Mann-Kendall trend test for auto correlated data. 

J. of Hydrol. 204, pp: 182–196. 

116. Hargreaves GH, Samani ZA. 1982. Estimating of potential evapotranspiration. J. Irrig. 

Drain. Engg-ASCE 108, pp: 223-230. 

117. Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from temperature. 

Applied Engrg. in Agr., Am. Soc. Agr. Engr, 1(2), pp: 96-99. 

118. Harmsen EW, Miller NL, Schlegel NJ, Gonzalez JE. 2009. Seasonal climate change 

impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. 

Agricultural Water Management 96, pp: 1085–1095. 

119. Hassan H, Aramaki T, Hanaki K, Matsuo T, Wilby RL. 1998. Lake stratification and 

temperature profiles simulated using downscaled GCM output. J. Water Sci. Technol. 38, 

pp: 217–226.  

120. Hawkins RH. 1978. Runoff curve numbers with varying site moisture. J Irrig Drain Eng 

104(4), pp: 389–398. 

121. Hawkins RH. 1979. Runoff curve numbers from partial area watersheds, J. Irrig. Drain. 

Div., 105(4), pp: 375-389. 

122. Hawkins RH. 1993. Asymptotic determination of runoff curve numbers from data. J Irrig 

Drain Engg. 119(2), pp: 334–345. 

123. Hawkins RH. 2001. Discussion of Another look at SCS-CN method by  Mishra S.K. and 

Singh V.P., Journal of Hydrologic Engineering,  ASCE, 6(5), pp: 451. 

124. Hay LE, Clark MP, Wilby RL, Gutowski WJ, Leavesley GH, Pan Z, Arritt RW. 2002. 

Use of regional climate model output for hydrologic simulations, J. Hydrometeorol., 

3(5), pp: 571–590, doi: 10.1175/ 1525-7541(2002)003<0571: UORCMO>2.0.CO; 2. 

125. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y. 2007. Understanding and 

Attributing Climate Change. In: Climate Change 2007: The Physical Science Basis, 

Solomon, S., (Ed.). IPCC, New York, pp: 663-746. 



190 
 

126. Helsel DR, Hirsch RM. 1992. Statistical Methods in Water Resources. Elsevier, 

Amsterdams, the Netherlands, Elsevier Publishers, pp: 529. 

127. Hershfield DM. 1964. Effective rainfall and irrigation water requirement. Proceedings of 

the ASCE. J Irrig Drain Div 90, pp: 33–37. 

128. Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire, A. 2008. Automated regression-based 

statistical downscaling tool. Environmental Modelling & Software. 23(6), pp: 813-834. 

doi>10.1016/j.envsoft.2007.10.004 

129. Hewitson BC, Crane RG. 1996. Climate downscaling: techniques and application. Clim 

Res 7, pp: 85–95. 

130. Hingane LS, Rupa Kumar K, Ramana Murthy BV. 1985. Long-term trends of surface air 

temperature in India, J. Climatology, 5, pp:  521-528. 

131. Hingane LS. 1995. Is a signature of socio-economic impact written on the climate?, 

Climatic Change, pp: 91-101. 

132. Hirsch RM, Slack JR, Smith RA. 1982. Techniques of trend analysis for monthly water 

quality data. Water Resour. Res. 18 (1), pp: 107–121. 

133. Hjelmfelt AT. 1980. Curve number procedure as infiltration method, Journal of the 

Hydraulics Division, 106(6), pp: 1107-1110.  

134. Hjelmfelt AT. 1991. Investigation of curve number procedure. J Hydraul Eng 117(6), 

pp:725–737.doi:10.1061/(ASCE)0733-9429(1991)117:6(725). 

135. Holland GJ, Done J, Bruyere C, Cooper C, Suzuki A. 2010. Model investigations of the 

effects of climate variability and change on future Gulf of Mexico tropical cyclone 

activity. OTC Metocean.   

136. Hornik K, Stinchcombe MB, White H. 1989. Multilayer feed forward network are 

universal approximators. Neural Networks, 2(5), pp: 359-366. 



191 
 

137. Hulme M, Osborn TJ, Johns TC. 1998. Precipitation sensitivity to global warming: 

comparison of observations with HadCM2 simulations. Geophys Res Lett 25(17), pp: 

3379-3382. 

138. Huth R. 1999. Statistical downscaling in central Europe: evaluation of methods and 

potential predictors. Climate Research, 13, pp: 91-101. 

139. Iman RL, Helton JC, 1988. An investigation of uncertainty and sensitivity analysis 

techniques for computer models.”Risk Analysis, 8(1), pp: 71–90. 

140. IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, 

II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change. [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, 

Switzerland, pp: 104. 

141. Irmak S, Haman D, Jones W. 2002. Evaluation of Class A pan coefficients for estimating 

reference evapotranspiration in humid location. J. Irrig Drain Engg. 128(3), pp:153–159 

142. Irmak S, Payero JO, Martin DL, Irmak A, Howell TA. 2006. Sensitivity Analyses and 

Sensitivity Coefficients of Standardised daily ASCE- Penman-Monteith Equation. J. 

Irrig. Drain. Eng., ASCE, 132(6), pp: 564-578. 

143. Jain MK, Mishra SK Babu PS, Venugopal K, Singh VP. 2006. Enhanced runoff curve 

number model incorporating storm duration and a nonlinear Ia-S relation. J. Hydrol. Eng. 

11(6), pp: 631-635. 

144. Jain SK, Kumar V. 2012. Trend analysis of rainfall and temperature data for India. 

Current Science, 102(1), pp: 37-49. 

145. Jang M, Choi J, Lee J. 2007. A spatial reasoning approach to estimating paddy rice water 

demand in Hwanghaenam-do, North Korea. Agric. Water Manage., 893, pp:185–198. 

146. Janssen PHM, Heuberger PSC, and Sanders, R., 1992. “UNCSAM 1.1: A software 

package for sensitivity and uncertainty analysis.” Rep. No. 959101004, National Institute 

of Public Health and Environmental Protection, Bilthoven, The Netherlands. 



192 
 

147. Jasper K, Calanca PL, Gyalistras D, Fuhrer J. 2004. Differential impacts of climate 

change on the hydrology of two alpine river basis. Clim Res, 26, pp: 113–129. 

148. Jat MK, Khare D, Garg PK, Shankar V. 2009. Remote sensing and GIS-based assessment 

of urbanisation and degradation of watershed health. Urban Water Journal, 6(3), pp: 251-

263, doi: 10.1080/15730620801971920. 

149. Jensen ME, Burman RD, Allen RG. 1990. Evapotranspiration and irrigation water 

requirements, ASCE- Manuals and Reports on Engineering Practice 70, New York, 

USA, pp: 332. 

150. Jensen ME, Haise HR. 1963. Estimating evapotranspiration from solar radiation. Proc. J. 

Irrig. and Drain. Div., Am. Soc. Civ. Engr., 89(IR4):15-41, Closure, 91(IR1),pp: 203-

205. 

151. Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Fard A. 2011. Trends in 

reference evapotranspiration in the humid region of northeast India. Hydrological 

Processes. DOI: 10.1002/hyp.8140 Burn DH, Hesch NM. 2007. Trends in evaporation 

for the Canadian Prairies. J Hydrol, 336, pp: 61-73. 

152. Jiang T, Chen YD, Xu C, Chen X, Chen X, Singh VP. 2007. Comparison of hydrological 

impacts of climate change simulated by six hydrological models in the Dongjiang Basin, 

South China. J. Hydrol. 336, 316–333. 

153. Jin JM, Wang SY, Gillies RR. 2011. An Improved Dynamical Downscaling for the 

Western United States, Climate Change - Research and Technology for Adaptation and 

Mitigation, Juan Blanco and Houshang Kheradmand (Ed.), ISBN:  978-953-307-621-8, 

InTech, pp: 23-38.  

154. Joachims T, 1999. Making large scale support vector machine learning practical. 

Advances in Kernel Methods-Support Vector Learning, Scholkopf et al., Eds. MIT Press, 

Cambridge, MA, pp: 169-184. 

 



193 
 

155. Johnson MS, Coon WF, Mehta VK, Steenhuis TS, Brooks ES, Boll J. 2003. Application 

of two hydrologic models with different runoff mechanisms to a hillslope dominated 

watershed in the northeastern US: a comparison of HSPF and SMR. Journal of 

Hydrology, 284, pp: 57–76, DOI:10.1016/j.jhydrol.2003.07.005. 

156. Karpouzos DK, Kavalieratou S, Babajimopoulos C. 2010. Trend analysis of precipitation 

data in Pieira Region (Greece). European Water. E.W. Publications. 30, pp: 31-40. 

157. Katz RW, Brown BG. 1992. Extreme events in a changing climate: variability is more 

important than averages. Climatic Change 21, pp: 289-302. 

158. Kay AL, Davies HN, Bell VA, Jones RG. 2009. Comparison of uncertainty sources for 

climate change impacts: flood frequency in England. Clim. Change 92, pp: 41–63. 

159. Kettle H, Thompson R. 2004. Empirical modeling of summer lake surface temperatures 

in southwest Greenland. Limnol. Oceanogr. American Society of Limnology and 

Oceanography, Inc, 49(1), 2004, 271–282. 

160. Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, 

Wilby RL. 2007. A daily Weather Generator for use in climate change studies. 

Environmental Modelling and Software, 22, pp: 1705–1719. 

161. Kim MK, Kang IS, Park CK, Kim KM. 2004. Super ensemble prediction of regional 

precipitation over Korea, Int. J. Climatol., 24(6), pp: 777 – 790. 

162. Knisel WG (ed). 1980. CREAMS. A field scale model chemical, runoff and erosion from 

agricultural management systems. Conservation Research Report, No. 26. USDA, 

Washington, DC.  

163. Kompare B, Steinman F, Cerar U, Dzeroski S. 1997. Prediction of rainfall runoff from 

catchment by intelligent data analysis with machine learning tools within the artificial 

intelligence tools. Acta Hydrotechnica, 16, 16 (in Slovene). 

164. Krause P, Boyle DP, Base F. 2005. Comparison of different efficiency criteria for 

hydrological model assessment. Adv. in Geosci., 5, pp: 89–97. 



194 
 

165. Kumar V, Jain SK, Singh Y. 2010. Analysis of Long-term rainfall trends in India. 

Hydrol. Sci. J. 55(4), pp:  484–496. 

166. Kuo SF, Ho SS, Liu CW (2006) Estimation irrigation water requirements with derived 

crop coefficients for upland and paddy crops in ChiaNan irrigation association, Taiwan. 

Agric Water Manage 82, pp: 433–451. 

167. Lal M. 2001. Climatic change Implications for India’s water resources, J. Indian Water 

Resources Society, 21, pp: 101-119. 

168. Landsea CW, Gray WM. 1992. The strong association between western sahelian 

monsoon rainfall and intense Atlantic hurricanes. A merucan Meteorological society, 5, 

pp: 435- 453. 

169. Leander R, Buishand TA. 2007. Resampling of regional climate model output for the 

simulation of extreme river flows. Journal of Hydrology, 332, pp: 487-496. 

170. Lebel TG, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall 

estimation: a case study. Water Resour. Res. 23, pp: 2123–2134. 

171. Lee Y, Hsieh W, Huang C. 2005. SSVR: A smooth support vector machine for 

insensitive regression. IEEE Transactions on Knowledge and Data Engineering, 17, pp: 

678-685. 

172. Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness-of-fit” measures in 

hydrologic and hydro-climatic model validation. Water Resources Res. 35(1), pp: 233-

241. 

173. Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F. 2006. Estimating the impact of global 

change on flood and drought risks in Europe: A continental, integrated analysis, Clim. 

Change, 75(3), pp: 273–299, doi: 10.1007/s10584-006-6338-4. 

174. Ley TW, Hill RW, Jensen DT. 1994. Errors in Penman-Wright Alfalfa Reference 

Evapotranspiration Estimates: Effects of Weather Sensor Measurement Variability. 

Trans. ASAE, 37(6), pp: 1863-1870.  



195 
 

175. Libiseller C, Grimval A. 2002. Performance of partial Mann-Kendall test for trend 

detection in the presence of covariates. Environmetr. 13, pp: 71–84. 

176. Liu BH, Xu M, Henderson M, Gong WG. 2004. A spatial analysis of pan evaporation 

trends in China, 1955–2000. Journal of Geographical Sciences 109:D15102. DOI: 

15110.11029/12004JD004511. 

177. Liu S, Mo X, Lin Z, Xu Y, Ji J, Wen G, Richey J. 2010. Crop yield response to climate 

change in the Huang-Huai-Hai plain of China. Agricultural Water Management 97(8), 

pp: 1195–1209. 

178. Lu J, Sun G, McNulty SG, Amatya DM. 2005. A comparison of six potential 

evapotranspiration methods for regional use in the South eastern United States, Journal 

American Water Resources Association 41, pp: 621-633. 

179. Ludwig R. et al. 2009. The role of hydrological model complexity and uncertainty in 

climate change impact assessment. Adv. Geosci.21, pp: 63–71. 

180. Maheras P. 1988. Changes in precipitation conditions in the Western Mediterranean over 

the last century. Journal of Climatology 8, pp: 179–189. 

181. Maidment DR. 1991. GIS and Hydrologic modeling, Proc., 1st Int. Conference on GIS 

and Envir. Modeling, Boulder, Colorado, USA, pp: 147–167 

182. Makkeasorn A, Chang NB, Beaman M, Wyatt C, Slater C. 2006. Soil moisture 

estimation in a semiarid watershed using RADARSAT-1 satellite imagery and genetic 

programming. Water Resources Research, 44, doi: 10.1029/2005WR004033. 

183. Makkink GF. 1957, Testing the Penman Formula by Means of Lysimeters, J. Instit. 

Water Engineers 11, pp: 277–288. 

184. Mall RK, Bhatia R, Pandey SN. 2007. Water resources in India and impact of climate 

change, Jalvigyan Sameeksha, 22, pp: 157–176. 

185. Mangasarian OL, Musicant DR. 1999. Successive over relaxation for support vector 

machines. IEEE Transactions on Neural Networks, 10(5), pp: 1032-1037. 



196 
 

186. McAlpine CA, Syktus J, Deo RC, Lawrence P J, McGowan HA, Watterson IG, Phinn S 

R. 2007. Modeling the impact of historical land cover change on Australia’s regional 

climate, Geophysical Research Letters, Vol. 34, L22711, pp: 1-6 

doi:10.1029/2007GL031524. 

187. McCuen R. 1973. The role of sensitivity analysis in hydrologic modelling., J. Hydrol., 18, 

pp: 37–53. 

188. McCuen RH. 1982. Hydrologic Analysis and Design. Prentice Hall Inc., Englewood 

Cliffs, New Jersey07632, USA. 

189. McCuen RH. 2002. Approach to confidence interval estimation for curve numbers. 

Journal of Hydrologic Engineering, 7(1), pp: 43-48. 

190. Mearns LO, Rosenzweig C, Goldberg R. 1997. Mean and variance change in climate 

scenarios: methods, agricultural applications, and measures of uncertainty. Climatic 

Change 35, pp: 367–396. 

191. Michel C, Vazken A, Charles P. 2005. Soil Conservation Service number method: How 

to mend among soil moisture accounting procedure. Water Resour. Res 41(2). 

192. Mintz Y, Walker GK. 1993. Global fields of soil moisture and land surface 

evapotranspiration derived from observed precipitation and surface air temperature. 

Journal of Applied Meteorology, 32, pp: 1305-1334. 

193. Minville M, Krau S, Brissette F, Leconte R. 2008. Behaviour and performance of a 

Nordic water-resource system under adapted operating policies in a climate change 

context. Water Resour. Manage. 24 (7), pp: 1333–1352. 

194. Mirza MQ, Warrick RA, Ericksen NJ, Kenny GJ. 1998. Trends and persistence in 

precipitation in Ganges, Brahmaputra and Meghna river basins, Hydrological Sciences, 

43, pp: 845-858. 

195. Mishra AK, Ozger M, Singh VP. 2009. Trend and persistence of precipitation under 

climate change scenarios for Kansabati basin, India, Hydrological Processes, 23, pp: 

2345–2357. 



197 
 

196. Mishra SK, Pandey RP, Jain MK, Singh VP. 2008. A rain duration and modified AMC-

dependent SCS-CN procedure for long rainfall-runoff events. Water Resour. Res. 22 (7), 

pp: 861-876. 

197. Mishra SK, Rawat SS, Chakraborty S, Pandey RP, Jain MK. 2014. Relation between 

Runoff Curve Number and PET. J. of Hydrolog. Engg., 19(2), pp: 355-365. 

198. Mishra SK, Singh VP. 1999. Behaviour of SCS-CN method in C- -λ spectrum,’ 

Submitted to Int. Conf. Water, Environment, Ecology, Socio-economics, and Health 

Engineering, Oct. 18-21, Korea. 

199. Mishra SK, Singh VP. 2002. SCS-CN method: Part-I: Derivation of SCS-CN based 

models. Acta Geophysica Polonica 50 (3), pp: 457-477. 

200. Mishra SK, Singh VP. 2003b. SCS-CN method Part-II: Analytical treatment, Acta 

Geophysica Polonica 51(1), pp: 107-123.  

201. Mishra SK, Singh VP. 2004a. Validity and extension of the SCS-CN method for 

computing infiltration and rainfall-excess rates. Hydrol. Processes 18(17), pp: 3323-

3345.  

202. Mishra SK, Singh VP. 2004b. Long-term hydrologic simulation based on the Soil 

Conservation Service curve number. Hydrol. Processes 18, pp: 1291-1313.  

203. Mishra SK, Singh, VP. 2003a. Soil conservation Service Curve Number (SCS-CN) 

Methodology, Kluwer Academic Publishers, P. O. Box 17, 3300 AA Dordrecht, The 

Netherlands. 

204. Mishra SK, Tyagi JV, Singh VP, Singh R. 2006. SCS-CN-based modeling of sediment 

yield. J. of Hydrol. 324, pp: 301-322. 

205. Mishra SK. 1998. Operation of a multipurpose reservoir. Unpublished PhD thesis, 

University of Roorkee, India. 

206. Mockus V. 1949. Estimation of total (and peak rates of) surface runoff for individual 

storms. Interim Survey Rep. Grand (Neosho) River Watershed, Exhibit A in Appedix B, 

US. Department of Agriculture, Washington, D.C. 



198 
 

207. MOEF. 2004. India’s initial national communication to the United Nations framework 

convention on climate change, Executive Summary, New Delhi. 

208. Moglen GE. 2000. Effect of orientation of spatially distributed curve numbers in runoff 

calculations. Journal of the American Water Resources Association 36(6), pp: 1391–

1400. 

209. Mohan S, Arumugam N. 1996. Relative importance of meteorological variables in 

evapotranspiration: Factor analysis approach. Water Resources Management, 10 (1), pp: 

1–20. 

210. Monteith, J. L. (1965). Evaporation and environment. In G. E. Fogg (Ed.), Symposium of 

the Society for Experimental Biology, The State and Movement of Water in Living 

Organisms, Vol. 19. Academic Press, Inc., NY, pp: 205–234. 

211. Mooley DA, Parthasarthy B. 1984. Fluctuations of all India summer monsoon rainfall 

during 1871-1978, Climatic Change, 6, pp: 287-301. 

212. Moore RJ, Clarke RT. 1981. A distribution function approach to rainfall–runoff 

modeling. Water Resources Research 17(5), pp: 1367–1382. 

213. Moore RJ. 1983. The Probability-Distributed Approach to Spatial Conceptual Rainfall–

Runoff Modeling, Report to Flood Protection Commission, Ministry of Agriculture, 

Fisheries and Food, Institute of Hydrology: Wallingford. 

214. Moore RJ. 1985. The probability-distributed principle and runoff production at point and 

basin scales. Journal of Hydrological Sciences 30(2), pp: 273–297. 

215. Moran MS, Peters-Lidard CD, Watts JM, McElroy S. 2004. Estimating soil moisture at 

the watershed scale with satellite-based radar and land surface models. Canadian Journal 

of Remote Sensing, 30(5), pp: 805−826. 

216. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. 

Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed 

Simulations, American Society of Agricultural and Biological Engineers. ISSN 

0001−2351, Vol. 50(3), pp: 885−900. 



199 
 

217. Morton FI. 1994. Evaporation research- A critical review and its lessons for the 

environmental sciences. Critical Reviews in Environmental Science and Technology 24 

(3), pp: 237–280.  

218. Nagler P, Scott R, Westenberg C, Cleverly J, Glenn E, Huete A. 2005. 

Evapotranspiration on western U.S. rivers estimated using the enhanced vegetation index 

from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote 

Sensing of Environment 97, pp: 337–351. 

219. Najafi MR, Moradkhani H, Wherry SA. 2011. Statistical Downscaling of Precipitation 

using Machine Learning with Optimal Predictor Selection. Journal of Hydrologic 

Engineering 16, pp: 650–664. 

220. Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I-A 

discussion of principles, Journal of Hydrology, 10 (3), pp: 282–290. 

221. Novotny EV, Stefan HG. 2007. Stream flow in Minnesota: indicator of Climate Change. 

J. of Hydrol. 334, pp: 319–333. 

222. Oki T, Kanae S. 2006. Global hydrological cycles and world water resources, Science, 

313(5790), pp: 1068–1072, doi:10.1126/science.1128845.  

223. Olsson J. et al. 2004. Neural Networks for rainfall forecasting by atmospheric 

downscaling. J. Hydrol. Engg., 9(1), pp: 1-12. 

224. Orang M (1998) Potential accuracy of the popular non-linear regression equations for 

estimating pan coefficient values in the original and FAO-24 tables. Unpublished Report, 

California Department of Water Resources, Sacramento, CA. 

225. Osborn TJ, Hulme M, Jones PD, Basnett TA. 2000. Observed trends in daily intensity of 

United Kingdom precipitation. International Jornal of Climatology; 20; pp: 347-364. 

226. Pandey VK, Tirkey G, Tripathi MP. 2011. Watershed parameterization using geographic 

information system and satellite remote sensing. In ‘Engineering Interventions in 

Agriculture’, NSAE-2011, pp: 360-368. 



200 
 

227. Pandit A, Gopalakrishnan G. 1996. Estimation of Annual Storm Runoff Coefficients by 

Continuous Simulation. ASCE Journal of Drainage and Irrigation Engineering, 122(4), 

pp: 211-220.  

228. Pant GB, Kumar KR. 1997. Climates of South Asia, John Wiley & Sons Ltd., West 

Sussex, UK. 

229. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G. 2004. Effects of climate 

change on global food production under SRES emissions and socio-economic scenarios. 

Global Environmental Change 14(1), pp: 53–67. 

230. Partal T, Kahya E. 2006. Trend analysis in Turkish precipitation data. Hydrol. Processes 

20, pp: 2011–2026. 

231. Patra JP, Mishra A, Singh R, Raghuwanshi NS. 2012. Detecting rainfall trends in 

twentieth century (1871–2006) over Orissa State, India, Climatic Change, 111, pp: 801–

817. 

232. Patricola CM, Cook KH. 2010. Northern African climate at the end of the  twenty-first 

century: an integrated application of regional and global climate  models. Climate Dyn., 

35, pp: 193–212.  

233. Patwardhan AS, Nieber JL, Johns EL. 1990. Effective rainfall estimation methods. J Irrig 

Drain Eng 116(2), pp: 182–193. 

234. Penman HL. 1948.  Natural evaporation from open water, bare soil, and grass.  Proc.  

Roy. Soc. London A193, pp: 120-146. 

235. Penman HL. 1963. Vegetation and Hydrology. Tech. Common. 53, Commonwealth 

Bureau of Soils, Harpenden, England. 

236. Peterson TC, Golubev VS, Groisman PY. 1995. Evaporation losing its strength. Nature 

377, pp: 687–688. DOI: 10.1038/377687b0. 

237. Piper B. 1989. Sensitivity of Penman Estimates of Evaporation to Errors in Input Data. 

Agri. Water Manag., 15, pp: 279-300. 



201 
 

238. Platt J. 1998. Fast training of support vector machines using sequential minimal 

optimization. Scholkopf et al., Eds. Advances in Kernel Methods-Support Vector 

Learning, MIT Press, Cambridge, MA, pp: 185-208. 

239. Ponce VM, Hawkins RH. 1996. Runoff curve number: Has it reached maturity. J. of 

Hydrolog. Engg., ASCE 1(1), pp: 11-19. 

240. Ponce VM. 1989. Engineering Hydrology: Principles and practices. Prentice Hall Inc., 

Englewood Cliffs, New Jersey 07632, USA. 

241. Poulin A, Brissette F, Leconte R, Arsenault R, Malo JS. 2011. Uncertainty of 

hydrological modelling in climate change impact studies in a Canadian, snow-dominated 

river basin, Journal of Hydrology 409, pp: 626–636. 

242. Praveen P, Sachin Kumar MD, Puttaswamy H, Patil VM, Kumar R. 2011. Estimation of 

Evapotranspiration Rate by Different Methods for Paddy Crop in South Kodagu, Central 

Western Ghats. Plant Sciences Feed. 1 (1) pp: 1- 5. 

243. Prestt AJ. 1986. Irrigation Scheduling by Evaporation Pan. Zimbabwe Agric. Journal 

83(2), pp: 67-72 

244. Priestley CHB, Taylor RJ. 1972. On the assessment of surface heat flux and evaporation 

using large scale parameters. Monthly Weather Review, 100, pp: 81–92. 

245. Qudin L., et al. 2005. Which potential evapotranspiration input for a lumped rainfall-

runoff model? Part 2-Towards a simple and efficient potential evapotranspiration model 

for rainfall-runoff modeling. J. Hydrol., 303(1–4), pp: 290–306. 

246. Quinlan JR. 1992. Learning with continuous classes. Proceedings 5th Australian Joint 

Conference on Artificial Intelligence. World Scientific, Singapore, pp: 343-348. 

247. Racz C, Nagy J, Dobos AC. 2013. Comparison of Several Methods for Calculation of 

Reference Evapotranspiration. Acta Silv. Lign. Hung., Vol. 9, pp: 9–24. 

248. Raghavendra VK. 1974. Trends and periodicities of rainfall in sub-divisions of 

Maharashtra state. Indian J. Met. Geophys., 25,  pp: 197–210. 



202 
 

249. Raghuwanshi NS, Singh R, Reddy LS. 2006. Runoff and Sediment Yield Modeling 

Using Artificial Neural Networks: Upper Siwane River, India. J. Hydrol. Eng., 11(1), pp: 

71–79. 

250. Rahimikhoob A. 2009. An evaluation of common pan coefficient equations to estimate 

reference evapotranspiration in a subtropical climate (north of Iran). Irrig. Sci., 27, pp: 

289–296. 

251. Rallison RE. 1980. Origin and evolution of the SCS runoff equation. In: Proceedings of 

symposium on watershed management. ASCE, New York, pp: 912–924. 

252. Ramasastry KS, Seth SM. 1985. Rainfall runoff relationships. Rep. RN-20, National 

Institute of Hydrology, Roorkee, Uttrakhand, India. 

253. Rana G, Katerji N. 1998. A  Measurement Based Sensitivity Analysis of the Penman-

Monteith Actual Evapotranspiration Model for Crops of Different Height and in 

Contrasting Water Status. Theoret. Appl. Climatol., 60, pp: 141-149. 

254. Raneesh KY, Thampi SG. 2013. Bias Correction for RCM Predictions of Precipitation 

and Temperature in the Chaliyar River Basin. J Climatol Weather Forecasting, 1(2), pp: 

1-6. 

255. Rao AR, Hamed KH, Chen HL. 2003. Nonstationarities in Hydrologic and 

Environmental Time Series. Kluwer Academic Publishers: The Netherlands, pp: 362. 

256. Rao PG. 1993. Climate changes and trends over a major river basin in India. Clim. Res., 

2, pp: 215-223. 

257. Rathod IM, Aruchamy S. 2010. Spatial analysis of rainfall variation in Coimbatore  

District, Tamil Nadu using GIS, International Journal of Geomatics and Geoscience, 

1(2), pp: 106-118. 

258. Rayner DP. 2007. Wind run changes: the dominant factor affecting pan evaporation 

trends in Australia. Journal of Climate 20, pp: 3379–3394. DOI:10.1175/JCLI4181.1. 

259. Rehana S, Mujumdar PP. 2012. Regional impacts of climate change on irrigation water 

demands. Hydrol. Process., DOI: 10.1002/hyp.9379. 



203 
 

260. Rind D, Goldberg R, Ruedy R. 1989. Change in climate variability in the 21st century. 

Climatic Change 14, pp: 5–37. 

261. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT. 2007. On the attribution of 

changing pan evaporation. Geophysical Research Letters 34: L17403. DOI: 

17410.11029/12007GL031166. 

262. Rodriguez Diaz JA, Weatherhead EK, Knox JW, Camacho E. 2007. Climate change 

impacts on irrigation water requirements in the Guadalquivir river basin in Spain. 

Regional Environmental Change 7, pp: 149–159. 

263. Rodriguez-Puebla C, Encinas AH, Nieto S, Garmendia J. 1998. Spatial and temporal 

patterns of annual precipitation variability over the Iberian Peninsula. International 

Journal of Climatology 18, pp: 299–316. 

264. Rosenzweig C, Parry ML. 1994. Potential impact of climate change on world food 

supply. Nature 367, pp: 133–138. 

265. Rupa Kumar K, Krishna Kumar K, Pant GB. 1994. Diurnal asymmetry of surface 

temperature trends over India, Geophysical Research Letters, 21, pp: 677–680. 

266. Rupa Kumar K, Pant GB, Parthasarathy B, Sontakke NA. 1992. Spatial and sub seasonal 

patterns of the long term trends of Indian summer monsoon rainfall, International J. 

Climatology, 12, pp: 257-268. 

267. Sachindra DA, Huang F, Barton A, Perera BJC. 2013. Least square support vector and 

multi-linear regression for statistically downscaling general circulation model outputs to 

catchment streamflows. Int. J. Climatol., 33, pp: 1087-1106. 

268. Saghravani SR, Mustapha S, Ibrahim S, Randjbaran E. 2009. Comparison of daily and 

monthly results of three evapotranspiration models in tropical zone: A case study. 

American Journal of Environmental Sciences, 5, pp: 698-705. 

269. Saltelli A, Chan K, Scott M. 2004. Sensitivity Analysis. John Wiley and Sons Publishers, 

N. Y. 



204 
 

270. Santhi C, Arnold JG, Williams JR, Dugas WA Srinivasan R, Hauck, LM. 2001. 

Validation of the SWAT model on a large river basin with point and nonpoint sources. J. 

American Water Resources Assoc. 37(5), pp: 1169-1188. 

271. Sarkar RP. Thapliyal V. 1988. Climate change and variability, Mausam, 39, pp: 127- 

138. 

272. Sato T, Kimura F, Kitoh A.2007. Projection of global warming onto regional 

precipitation over Mongolia using a regional climate model, J. Hydrol., 333, 

doi:10.1016/j.jhydrol.2006.07. 023. 

273. Saxton KE. 1975. Sensitivity Analysis of the Combination Evapotranspiration Equation. 

Agric. Meterol., 15, pp: 343-353.  

274. Schmidt M, Glade T. 2003. Linking global circulation model outputs to regional 

geomorphic models: a case study of landslide activity in New Zealand. Clim. Res., 25, 

pp: 135-150. 

275. Schneider LE, McCuen RH. 2005. Statistical guidelines for curve number generation. 

Journal of Drainage and Irrigation Engineering. 131(3), pp: 282-290.  

276. Schoof JT, Pryor SC. 2001. Downscaling temperature and precipitation: A comparison of 

regression-based methods and artificial neural networks. International Journal of 

Climatology 21, pp: 773–790. 

277. Schwartz P, Randall D. 2003. An abrupt climate change scenario and its implications for 

United States national security. 1st Edn., Diane Publishing Co., USA., pp: 22. 

278. Semenov MA, Porter JR. 1994. The implications and importance of non-linear responses 

in modelling of growth and development of wheat. In Predictability and Non-linear 

Modelling in Natural Sciences and Economics, Grasman J, van Straten G (eds). Pudoc: 

Wageningen. 

279. Semenov MA, Stratonovitch P. 2010. The use of multi-model ensembles from global 

climate models for impact assessments of climate change. Clim. Res. 41, pp: 1-14. 



205 
 

280. Seneviratne SI., et al. 2012. Changes in climate extremes and their impacts on the natural 

physical environment, in Managing the Risks of Extreme Events and Disasters to 

Advance Climate Change Adaptation: A Special Report of Working Groups I and II of 

the Intergovernmental Panel on Climate Change (IPCC), edited by C. B. Field et al., pp: 

109–230, Cambridge Univ. Press, Cambridge, U. K. 

281. Shahid S. 2011. Impact of climate change on irrigation water demand of dry season Boro 

rice in northwest Bangladesh. Climate Change 105, pp: 433–453. 

282. Sharma KD, Soni B. 2006. (editors), Land Use Diversification for Sustainable Rainfed  

Agriculture, Atlantic Publishers and Distributors, New Delhi, 410027. 

283. Shuttleworth WJ. 1993. Evaporation, in: Maidment DR. (Ed.), Handbook of Hydrology. 

McGraw-Hill, New York. 

284. Simonovic SP, Davies EGR. 2006. Are we modelling impacts of climatic change 

properly?, Hydrological Processes 20, pp:  431-433. 

285. Singh B, Maayar ME, André P, Bryant CR, Thouez JP. 1998. Impacts of a GHG-induced 

climate change on crop yields: Effects of acceleration in maturation, moisture stress, and 

optimal temperature. Climate Change 38, pp: 51–86. 

286. Singh J, Knapp HV, Demissie M. 2004. Hydrologic modeling of the Iroquois River 

watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State 

Water Survey. Available at: www.sws.uiuc.edu/pubdoc/CR/ ISWSCR2004-08.pdf. 

287. Singh P, Kumar V, Thomas T, Arora M. 2008a. Changes in rainfall and relative humidity 

in different river basins in the northwest and central India. Hydrol. Processes 22, pp: 

2982–2992. 

288. Singh P, Kumar V, Thomas T, Arora M. 2008b. Basin-wise assessment of temperature 

variability and trends in the northwest and central India. Hydrolo. Sci. J. 53, pp: 421–

433. 

289. Singh VP, Chowdhury PK. 1986. Comparing some methods of estimating mean areal 

rainfall. Water Resour. Bull. 22, pp: 275–282. 



206 
 

290. Singh VP.1989, Hydrologic Systems, Vol. II, Watershed Modelling, Prentice-Hall, Inc. 

291. Sinha Ray KC, De US. 2003. Climate change in India as evidenced from instrumental 

records, WMO Bulletin, 52(1), pp: 53-58. 

292. Sinha Ray KC, Mukhopadhayay RK, Chowdhury SK. 1997. Trends in maximum 

minimum temperatures and sea level pressure over India, INTROPMET-97, IIT New 

Delhi, pp: 2-5. 

293. Smajstrla AG, Zazueta FS, Schmidt GM. 1987. Sensitivity of Potential 

Evapotranspiration to Four Climatic Variables in Florida. Soil and Crop Sci. Soc. of 

Florida, 46, pp: 21-26.  

294. Smith MR, Allen RG, Monteith JL, Pereira LS, Segeren A. 1991. Rep. on the Expert 

Consultation on Procedures for Revision of FAO Guidelines for Predicting Crop Water 

Requirements. FAO, Land and Water Devel. Div., Food and Agricultural Organization of 

the United Nations, Rome. 

295. Snyder RL. 1992. Equation for evaporation pan to evapotranspirationconversions. J Irrig 

Drain Eng 118(6), pp: 977–980. 

296. Soil Conservation Services, 1956. National Engineering Handbook, Supplement A, 

Section 4, Chapter 10, Hydrology, Soil Conservation Service, USDA, Washington, D.C. 

297. Solomatine DP, Dulal KN. 2003. Model tree as an alternative to neural network in 

rainfall-runoff modelling. Hydrological Sciences J. 48(3), pp: 399–411. 

298. Soni B, Mishra GC. 1985. Soil water accounting using SCS hydrologic soil 

classification, case study. National Institute of Hydrology, Roorkee (India). 

299. Srivastava HN, Sinha Ray KC, Dikshit SK, Mukhopadhaya RK. 1998. Trends in rainfall 

and radiation over India, Vayu Mandal, Jan-Jun, pp: 41-45. 

300. Stamm GG. 1967. Problems and procedures in determining water supply requirements 

for irrigation projects. Chap. 40 in irrigation. 



207 
 

301. Steele-Dunne S, Lynch P, Mcgrath R, Semmler T, Wang S, Hanafin J, Nolan P. 2008. 

The impacts of climate change on hydrology in Ireland, J. Hydrol., 356(1–2), pp: 28–45, 

doi:10.1016/j.jhydrol.2008.03.025. 

302. Steenhuis TS, Winchell M, Rossing J, Zollweg JA, Walter MF. 1995. SCS runoff 

equation revisited for variable-source runoff areas. J. Irrig. Drain. Eng., 

10.1061/(ASCE)0733-9437(1995)121:3(234), pp: 234–238. 

303. Steiner L, Howell TA, Schneider AD. 1991. Lysimetric Evaluation of Daily Potential 

Evapotranspiration Models for Grain Sorghum. Agron. J., 83, pp: 240-247. 

304. Subash N, Sikka AK. 2013. Trend analysis of rainfall and temperature and its 

relationship over India. Theor Appl Climatol., DOI 10.1007/s00704-013-1015-9. 

305. Suykens JAK. 2001. Non linear modeling and support vector machine, IEEE 

Instrumentation and Measurement Technology Conference, Budapest, Hungary, pp: 287-

294. 

306. Tabari H, Aeini A, Talaee PH, Some’e S. 2011. Spatial distribution and temporal 

variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol. 

Process. DOI: 10.1002/hyp.8146. 

307. Tabari H, Grismer EM, Trajkovic S (2011a) Comparative analysis of 31 reference 

evapotranspiration methods under humid conditions. Irrig. Sci. DOI: 10.1007/s00271-

011-0295-z. 

308. Tekwa, IJ, Bwade EK. 2011. Requirement of Maize (Zea mays) using Pan Evaporation 

Model in Maiduguri, Northeastern Nigeria. Agricultural Engineering International. The 

CIGR E-Journal. Manuscript No. 1552. 13(1), pp: 7.  

309. Terink W, Hurkmans RTWL, Torfs PJJF, Uijlenhoet R. 2010. Evaluation of a bias 

correction method applied to downscaled precipitation and temperature reanalysis data 

for the Rhine basin. Hydrol. Earth Syst. Sci., 14, pp: 687–703. 

310. Thapliyal V, Kulshreshtha SM. 1991. Climate changes and trends over India, Mausam, 

42, pp: 333-338. 



208 
 

311. Thomas A. 2000. Spatial and temporal characteristics of potential evapotranspiration 

trends over China. International Journal of Climatology 20(4), pp: 381–396. DOI: 

10.1002/(SICI)1097-0088 (20000330)20:4<381::AID-JOC477>3.0.CO;2-K. 

312. Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr. 

Rev. 38, pp: 55-94. 

313. Tisseuil C, Vrac M, Lek S, Wade AJ. 2010. Statistical downscaling of river flows. J 

Hydrol, 385, pp: 279–291. 

314. Tolika K, Maheras P, Vafiadis M, Flocas HA, Arseni-Papadimitriou A. 2006. An 

evaluation of a General Circulation model (GCM) and the NCEP-NCAR Reanalysis data 

for winter precipitation in Greece, International Journal of Climatology, 26, pp: 935-955. 

315. Toriman, M. E., Mokhtar, M., Gasim, M. B., Abdullah, S. M. S., Jaafar, O. & Aziz, N. A. 

A. (2009). Water resources study and modeling at North Kedah: a case of Kubang Pasu 

and Padang Terap water supply schemes. Research journal of earth sciences, 1 (2), 35–

42. 

316. Tripathi S, Srinivas VV, Nanjundiah RS. 2006. Downscaling of precipitation for climate 

change scenarios: a support vector machine approach. Journal of Hydrology 330(3–4), 

pp: 621–640. 

317. Tukimat NNA, Harun S, Shahid S. 2012. Comparison of different methods in 

estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. J. Agr. 

Rural Develop. Trop. Subtrop. 113 - 1 (2012) 77–85. 

318. Turc L. 1961. Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle,  

formulation simplifié et mise à jour. Ann. Agron., 12, pp: 13-49 ( in French). 

319. Tyagi JV, Mishra SK, Sing R, Singh VP. 2008. SCS-CN based time-distributed 

sediment yield model. Journal of Hydrology 352, pp: 388–403. 

320. U.S. Department of Agriculture. 1970. Soil Conservation Service, Irrigation Water 

Requirements, Technical Release no. 21 88. 



209 
 

321. U.S. Department of Agriculture. 1993. Natural Engineering Handbook, Part 623, 

Irrigation water requirement, Chapter 2: Natural Resources Conservation Service, pp: 

284. 

322. USDA, the United States Department of Agriculture. 1967. Irrigation water 

requirements. Technical Release 21. USDA Soil Conservation Service, Washington DC. 

323. Van Liew, Michael W, Garbrecht J. 2003. Hydrologic simulation of the little Wachita 

river experimental watershed using SWAT. J American Water Resources Association 39 

(2), pp: 413-426. 

324. Van Mullem JA. 1989. Applications of the Green Ampt infiltration model to watersheds 

in Montana and Wyoming. MS thesis, Montana State University, Bozeman MT.  

325. Vapnik V. 1998. Statistical Learning Theory, John Wiley, New York, NY. 

326. Vennila G, Subramani T, Elango L. 2007. Rainfall Variation Analysis of 

Vattamalaikarai Sub-basin, Tamil Nadu, India, Journal Of Applied Hydrology, Vol. XX, 

No.3, pp: 50-59. 

327. Ventura F, Rossi Pisa P, Ardizzoni E. 2002. Temperature and precipitation trends in 

Bologna (Italy) from 1952 to 1999. Atmospheric Research; 61; pp: 203-214. 

328. Vinnikov KY, Robock A, Qiu S, Entin JK, Owe M, Choudhury BJ, et al. 1999. Satellite 

remote sensing of soil moisture in Illinois, USA. Journal of Geophysical Research, 104, 

pp:  4145−4168. 

329. Von Storch H. 1999. On the use of ‘inflation’ in statistical downscaling. J Clim (in 

press). 

330. Vorosmarty CJ, Federer CA, Schloss AL. 1998. Potential evapotranspiration functions 

compared on US watersheds: Possible implications for global-scale water balance and 

terrestrial ecosystem modeling, Journal of Hydrology, 207, pp: 147-169. 

331. Wang W, Peng S, Yang T, Shao Q, Xu J, Xing W. 2011. Spatial and Temporal 

Characteristics of Reference Evapotranspiration Trends in the Haihe River Basin, China. 

J. Hydrolo. Engg. DOI: 10.1061/(ASCE)HE.1943-5584.0000320., pp: 239-252. 



210 
 

332. Weisse R, Oestreicher R. 2001. Reconstruction of potential evaporation for water 

balance studies. Clim. Res.,16, pp: 123-131. 

333. Wetterhall F, Bardossy A, Chen D, Halldin S, Xu CY. 2006. Daily precipitation-

downscaling techniques in three Chinese regions.Water Resour Res 42, W11423. DOI 

10.1029/2005WR004573. 

334. Wetterhall F, Halldin S, Xu CY. 2005. Statistical precipitation downscaling in central 

Sweden with the analogue method, J. Hydrol., 360, pp: 174–190. 

335. White D. 1988. Grid-based Application of Runoff Curve number, Journal of Water 

Resources Planning and Management, ASCE 114(6), pp: 601-612. 

336. Wilby RL, 2005. Uncertainty in water resource model parameters used for climate 

change impact assessment. Hydrol. Process. 19 (16), pp: 3201–3219. 

337. Wilby RL, Harris I. 2006. A framework for assessing uncertainties in climate change 

impacts: low-flow scenarios for the River Thames, UK. Water Resour. Res. 42, 

W02419. doi:10.1029/2005WR004065. 

338. Wilby RL, Hay LE, Leavesley GH. 1999. A comparison of downscaled and raw GCM 

output: Implications for climate change scenarios in the San Juan River basin, Colorado. 

Journal of Hydrology 225, pp: 67-91. 

339. Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS. 1998. 

Statistical downscaling of general circulation model output:  A comparison of methods. 

Water Resources Research, 34(11), pp: 2995-3008. 

340. Wilby RL, Wigley TML. 1997. Downscaling general circulation model output: a review 

of methods and limitations. Prog. Phys. Geogr. 21, pp: 530–548. 

341. Wilby RL. 2008. Water, Hydropower and Climate Change. Water Management 2008: 

Climate Change Impacts on Hydroelectric Water Resource Management, CEATI, 

Montreal, Canada, October, pp: 8–9. 



211 
 

342. Wilby, R.L., S.P. Charles, E. Zorita, B. Timbal, P. Whetton, and L.O. Mearns. 2004. 

Guidelines for use of climate scenarios developed from statistical downscaling methods. 

Available from the DDC of IPCC TGCIA, 27 pp. 

343. Williams JR, Dyke, PT, Jones CA. 1983. EPIC: a model for assessing the effects of 

erosion on soil productivity. In. Laurenroth WK et al (eds) Analysis ecological systems. 

State-of-the-Art in ecological modelling, pp: 553-572, Amsterdam. 

344. Williams JR, Laseur WV. 1976. Water yield model using SCS curve numbers. J. 

Hydraulics Division, ASCE, 102, (HY9), Proc. Paper 12377, pp: 1241-1253. 

345. Williams JR. 1975. Sediment routing for agricultural watersheds, Water Resources 

Bulletin, 11(5), pp: 965-974. 

346. Willmott CJ. 1981. On the validation of models. Physical Geography. 2, pp: 184-194. 

347. Willmott CJ. 1984. On the evaluation of model performance in physical geography. In 

G. L. Gaile and C. J. Willmott (eds.). Spatial Statistics and Models, Dordrecht, Holland: 

D. Reidel, pp: 443-460.  

348. Witten IH, Frank E. 2000. Data mining, Morgan Kaufmann, San Francisco. 

349. Wright JL. 1982. New evapotranspiration crop coefficients. J. Irrig. and Drain. Div., 

108(IR1), pp: 57-74. 

350. Wright, J.L., Jensen, M.E., 1972. Peak water requirements of crops in Southen Idaho. J. 

Irrig. Drain. Div. ASCE 98 (IR1), pp: 193–201. 

351. Wu W, Lynch AM. 2000. Response of the seasonal carbon cycle in high latitudes to 

climate anomalies. Journal of Geophysical Research, 105, D18, pp: 22,897-22,908. 

352. Wypych A. 2010. Twentieth century variability of surface humidity as the climate 

change indicator in Kraków (Southern Poland). Theor Appl Climatol 101(3), pp: 475–

482. doi:10.1007/s00704-009-0221-y 

353. Xu 1999. From GCMs to river flow: a review of downscaling methods and hydrologic 

modeling approaches. Progress in Phys. Geogr. 23, 2, pp: 229-249. 



212 
 

354. Xu CY, Gong L, Jiang T, Chen D, Singh VP. 2006. Analysis of spatial distribution and 

temporal trend of reference evapotranspiration and pan evaporation in Changjiang 

(Yangtze River) catchment. J. of Hydrol. 327, pp: 81-93. 

355. Xu CY, Singh VP. 2000. Evaluation and Generalization of Radiation-based Methods for 

Calculating Evaporation, Hydrolog. Processes, 14, pp: 339–349. 

356. Xu CY, Singh VP. 2001. Evaluation and Generalization of Radiation-based Methods for 

Calculating Evaporation. Hydrolog. Processes. 15, pp: 305–319. 

357. Xu CY, Singh VP. 2002. Cross comparison of empirical equations for calculating 

potential evapotranspiration with data from Switzerland. Water Resour. Manage.16 (3), 

pp: 197–219. 

358. Xu ZX, Li JY, Liu CM. 2007. Long-term trend analysis for major climate variables in 

the Yellow River basin. Hydrol. Process. 21, pp: 1935–1948. 

359. Yano T, Aydin M, Haraguchi T. 2007. Impact of climate change on irrigation demand 

and crop growth in a Mediterranean environment of Turkey. Sensors 7, pp: 2297–2315. 

360. Young RA, Onstad CA, Bosch DD, Anderson WP. 1989. AGNPS: a nonpoint source 

pollution model for evaluating agricultural watersheds. J. Soil and Water Conserv. 

44(2), pp: 168-173. 

361. Yu B, Neil DT. 1993. Long-term variations in regional rainfall in the south-west of 

Western Australia and the difference between average and high intensity rainfalls. Int. J. 

Climatol. 13, pp: 77-88. 

362. Yu B. 1998. Theoretical justification of SCS-CN method for runoff estimation. J. Irrig. 

Drain. Division, ASCE, 124(6), pp: 306–310. 

363. Yu PS, Yang TC, Chou CC. 2002. Effects of climate on evapotranspiration from paddy 

fields in southern Taiwan. Climate Change, 54(1-2), pp: 165-179. 

364. Yu XY, Liong SY. 2007. Forecasting of Hydrologic Time Series with Ridge Regression 

in Feature Space,” Journal of Hydrology, Vol 332, pp: 290 - 302. 



213 
 

365. Yuan Y, Mitchell JK, Hirschi MC, Cooke RA. 2001. Modified SCS Curve Number 

Method for predicting subsurface drainage flow, Trans. ASAE, 44 (6), pp: 1673–1682. 

366. Yue S, Hashino M. 2003. Long term trends of annual and monthly precipitation in 

Japan. J. American Water Resour. Assoc. 39(3), pp: 587–596. 

367. Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the 

Ability to detect trend in hydrological series. Hydrological Processes 16, pp: 1807-1829. 

368. Yue S, Pilon P, Phinney B. 2003. Canadian streamflow trend detection: impacts of serial 

and cross-correlation. Hydrolo. Sci. J. 48, pp: 51–63. 

369. Zhang XC, Nearing MA, Garbrecht JD, Steiner JL. 2004. Downscaling monthly 

forecasts to simulate impacts of climate change on soil erosion and wheat production. 

Soil Sci Soc Am J 68, pp: 1376–1385. 

370. Zhang Y, Liu C, Tang Y, Yang Y. 2007. Trends in pan evaporation and actual 

evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. of 

Geophysical Research 112; D1210, doi: 10.1029/2006jd008161. 

371. Zhao C, Nan Z, Feng Z. 2004. GIS-assisted spatially distributed modeling of the 

potential evapotranspiration in semi-arid climate of the Chinese Loess Plateau. Journal 

of Arid Environments, 58, pp: 387–403.  

372. Zhi-Hua Shi, Li-Ding Chenb, Nu-Fang Fang, De-Fu Qinc, Chong-Fa Cai. 2009. 

Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in 

the Three Gorges Area, China, Catena 77, pp: 1–7. 

373. Zorita E, von Storch H. 1999. The analog method as a simple statistical downscaling 

technique: comparison with more complicated methods. J. Clim., 12, pp: 2474–2489. 



214 
 

ANNEXURES 

ANNEXURE A 

 

 

 

Table A1  Performance Evaluation Statistics for Evapotranspiration 

S.No. Parameters 

MLR ANN (RBF) ANN (MLP) M5P 
LS-SVM  
 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur 

RMSE 18.34 11.73 29.58 18.55 13.02 7.97 9.20 5.91 5.91 4.03 
NMSE 7.11 2.97 18.49 7.42 3.58 1.37 1.79 0.75 0.74 0.35 
NSE 0.85 0.82 0.61 0.56 0.92 0.92 0.96 0.96 0.98 0.98 
MAE 0.62 0.57 0.32 0.25 0.74 0.73 0.85 0.83 0.92 0.92 
CC 0.92 0.91 0.78 0.75 0.97 0.97 0.98 0.98 0.99 0.99 

2. Damtari 

RMSE 16.84 10.60 41.97 25.32 12.85 8.10 8.16 5.85 4.58 1.68 
NMSE 6.48 2.61 40.28 14.87 3.78 1.52 1.52 0.80 0.48 0.07 
NSE 0.85 0.83 0.08 0.05 0.91 0.90 0.97 0.95 0.99 1.00 

MAE 0.64 0.64 0.07 0.07 0.74 0.74 0.88 0.86 0.94 0.95 
CC 0.92 0.91 0.28 0.23 0.96 0.96 0.98 0.98 0.99 1.00 

3. 
 
Durg 

RMSE 18.79 11.81 44.26 26.81 14.29 8.78 9.14 6.48 5.75 2.51 
NMSE 7.59 3.03 42.12 15.60 4.39 1.67 1.80 0.91 0.71 0.14 
NSE 0.84 0.82 0.09 0.07 0.91 0.90 0.96 0.95 0.98 0.99 
MAE 0.63 0.63 0.08 0.08 0.73 0.74 0.87 0.85 0.93 0.94 

CC 0.91 0.91 0.30 0.27 0.96 0.96 0.98 0.97 0.99 1.00 

 
4. 

 
Kanker 

RMSE 17.21 10.80 41.79 25.36 13.05 8.05 8.41 6.02 4.78 2.60 
NMSE 6.76 2.68 39.85 14.77 3.89 1.49 1.62 0.83 0.52 0.16 
NSE 0.85 0.83 0.09 0.07 0.91 0.91 0.96 0.95 0.99 0.99 
MAE 0.64 0.64 0.08 0.08 0.74 0.74 0.88 0.85 0.94 0.94 
CC 0.92 0.91 0.30 0.26 0.96 0.96 0.98 0.97 0.99 1.00 

 
5. 

 
Kawardha 

RMSE 19.74 12.43 45.31 27.66 14.27 8.80 9.51 6.59 7.37 1.95 
NMSE 8.09 3.22 42.65 15.94 4.23 1.62 1.88 0.90 1.13 0.08 
NSE 0.83 0.82 0.11 0.09 0.91 0.91 0.96 0.95 0.98 1.00 

MAE 0.62 0.62 0.09 0.08 0.75 0.75 0.87 0.86 0.93 0.95 
CC 0.91 0.91 0.33 0.30 0.96 0.96 0.98 0.97 0.99 1.00 

 
6. 

 
Korba 

RMSE 18.64 11.81 43.70 26.60 15.03 9.81 9.11 6.38 5.79 2.81 
NMSE 7.40 3.00 40.70 15.19 4.81 2.07 1.77 0.88 0.71 0.17 
NSE 0.99 0.82 0.92 0.10 0.99 0.88 1.00 0.95 1.00 0.99 
MAE 0.66 0.62 0.17 0.09 0.76 0.72 0.88 0.86 0.94 0.94 

CC 0.92 0.91 0.36 0.32 0.96 0.95 0.98 0.97 0.99 1.00 

 
7. 

 
Raipur 

RMSE 17.65 10.98 42.43 25.47 13.54 8.403 9.09 6.31 5.62 3.58 
NMSE 6.98 2.76 40.32 14.86 4.11 1.616 1.85 0.91 0.71 0.29 

NSE 0.92 0.83 0.53 0.07 0.95 0.898 0.98 0.94 0.99 0.98 
MAE 0.66 0.67 0.15 0.18 0.75 0.759 0.87 0.86 0.93 0.94 
CC 0.92 0.91 0.30 0.26 0.96 0.955 0.98 0.97 0.99 0.99 

8. Rajnandgaon 

RMSE 19.62513 12.32 45.06 27.36 14.52 8.94 9.43 6.65 5.58 2.46 
NMSE 8.066385 3.20 42.52 15.79 4.41 1.69 1.86 0.93 0.65 0.13 
NSE 0.830589 0.81 0.11 0.08 0.91 0.90 0.96 0.95 0.99 0.99 

MAE 0.895909 0.62 0.75 0.08 0.93 0.74 0.97 0.85 0.98 0.95 
CC 0.911387 0.90 0.33 0.29 0.96 0.96 0.98 0.97 0.99 1.00 
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Table A2  Performance Evaluation Statistics for Rainfall 

S.No. Parameters 
MLR ANN (RBF) ANN (MLP) M5P 

LS-SVM  

 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur 

RMSE 85.10 54.65 118.97 62.12 84.39 54.48 68.34 53.02 32.74 20.68 

NMSE 49.30 25.68 96.35 33.17 48.48 25.51 31.79 24.16 7.30 3.68 

NSE 0.66 0.39 0.34 0.22 0.66 0.40 0.78 0.43 0.95 0.91 

MAE 0.52 0.27 0.33 0.14 0.54 0.27 0.73 0.51 0.87 0.85 

CC 0.82 0.68 0.59 0.53 0.84 0.72 0.89 0.74 0.97 0.96 

2. Damtari 

RMSE 100.46 66.55 105.37 76.22 105.8 66.18 86.19 55.07 45.78 23.77 

NMSE 79.04 29.40 86.96 38.57 87.67 29.08 58.18 20.13 16.41 3.75 

NSE 0.37 0.46 0.32 0.30 0.31 0.47 0.54 0.63 0.87 0.93 

MAE 0.28 0.37 0.31 0.29 0.21 0.35 0.57 0.63 0.80 0.84 

CC 0.62 0.70 0.56 0.55 0.66 0.79 0.74 0.85 0.93 0.97 

3. 
 

Durg 

RMSE 86.67 34.51 106.11 53.71 86.36 36.35 75.34 29.07 38.01 12.34 

NMSE 58.11 10.47 87.09 25.35 57.70 11.61 43.91 7.43 11.18 1.34 

NSE 0.54 0.74 0.32 0.39 0.55 0.72 0.66 0.82 0.91 0.97 

MAE 0.47 0.55 0.32 0.34 0.46 0.48 0.67 0.75 0.84 0.89 

CC 0.74 0.86 0.57 0.62 0.78 0.90 0.82 0.91 0.96 0.98 

 

4. 

 

Kanker 

RMSE 74.03 33.10 104.82 51.31 71.71 30.45 63.59 23.59 25.59 13.91 

NMSE 42.57 10.46 85.35 25.14 39.95 8.86 31.41 5.32 5.09 1.85 

NSE 0.66 0.72 0.34 0.34 0.68 0.77 0.76 0.86 0.96 0.95 

MAE 0.53 0.51 0.33 0.33 0.57 0.61 0.71 0.77 0.88 0.88 

CC 0.81 0.85 0.58 0.60 0.84 0.88 0.87 0.93 0.98 0.98 

 

5. 

 

Kawardha 

RMSE 79.24 32.69 104.53 50.59 83.99 33.93 69.26 23.69 32.40 15.24 

NMSE 51.20 10.11 89.10 24.21 57.52 10.89 39.11 5.31 8.56 2.20 

NSE 0.58 0.73 0.27 0.37 0.53 0.72 0.68 0.86 0.93 0.94 

MAE 0.46 0.54 0.23 0.29 0.43 0.55 0.64 0.77 0.83 0.87 

CC 0.76 0.85 0.52 0.62 0.77 0.87 0.83 0.93 0.96 0.97 

 

6. 

 

Korba 

RMSE 80.66 36.46 107.30 53.25 76.39 35.93 66.92 29.92 32.88 12.19 

NMSE 49.97 12.34 88.44 26.32 44.82 11.98 34.40 8.31 8.30 1.38 

NSE 0.73 0.684 0.52 0.33 0.75 0.69 0.81 0.79 0.96 0.96 

MAE 0.41 0.519 0.16 0.33 0.48 0.57 0.66 0.75 0.84 0.89 

CC 0.78 0.832 0.56 0.58 0.83 0.85 0.86 0.89 0.97 0.98 

 

7. 

 

Raipur 

RMSE 75.57 36.62 112.12 59.97 81.28 38.85 67.45 25.58 32.19 14.16 

NMSE 40.16 10.34 88.41 27.74 46.46 11.64 32.00 5.05 7.29 1.55 

NSE 0.80 0.780 0.56 0.41 0.77 0.75 0.84 0.89 0.96 0.97 

MAE 0.48 0.535 0.24 0.27 0.50 0.52 0.67 0.78 0.86 0.87 

CC 0.84 0.885 0.61 0.64 0.86 0.91 0.88 0.95 0.97 0.98 

8. Rajnandgaon 

RMSE 121.90 68.13 126.19 71.04 140.3 81.92 106.4 60.53 42.18 34.66 

NMSE 99.14 35.12 106.23 38.17 131.4 50.77 75.53 27.72 11.87 9.09 

NSE 0.33 0.269 0.29 0.21 0.12 -0.06 0.494 0.42 0.92 0.81 

MAE 0.12 0.260 0.12 0.24 0.054 0.07 0.456 0.52 0.80 0.71 

CC 0.58 0.526 0.54 0.47 0.62 0.62 0.717 0.68 0.96 0.90 
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Table A3  Performance Evaluation Statistics for Relative Humidity 

 

S.No. Parameters 
MLR ANN (RBF) ANN (MLP) M5P 

LS-SVM  

 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur 

RMSE 5.97 3.90 11.50 7.35 4.34 2.48 3.04 1.97 1.63 0.85 

NMSE 3.06 1.25 11.37 4.45 1.62 0.51 0.79 0.32 0.23 0.06 

NSE 0.74 0.72 0.02 -0.01 0.86 0.88 0.93 0.93 0.98 0.99 

MAE 0.52 0.48 0.01 0.00 0.66 0.68 0.81 0.80 0.90 0.91 

CC 0.86 0.86 0.15 0.04 0.94 0.95 0.97 0.96 0.99 0.99 

2. Damtari 

RMSE 6.14 3.87 17.40 10.08 4.82 2.66 3.36 1.95 1.75 1.41 

NMSE 2.07 0.84 16.60 5.71 1.27 0.40 0.62 0.21 0.17 0.11 

NSE 0.89 0.87 0.09 0.12 0.93 0.94 0.97 0.97 0.99 0.98 

MAE 0.68 0.67 0.01 0.03 0.76 0.78 0.90 0.88 0.94 0.93 

CC 0.94 0.93 0.30 0.34 0.97 0.97 0.98 0.98 1.00 0.99 

3. 
 

Durg 

RMSE 7.55 4.71 19.25 11.24 4.95 3.00 4.05 2.30 2.26 1.31 

NMSE 2.87 1.14 18.66 6.52 1.23 0.47 0.82 0.27 0.26 0.09 

NSE 0.86 0.84 0.06 0.08 0.94 0.93 0.96 0.96 0.99 0.99 

MAE 0.65 0.64 -0.01 0.00 0.80 0.79 0.89 0.88 0.95 0.94 

CC 0.92 0.92 0.24 0.28 0.97 0.97 0.98 0.98 0.99 0.99 

 

4. 

 

Kanker 

RMSE 6.79 4.14 17.23 10.04 4.45 2.50 3.69 2.01 1.80 1.42 

NMSE 2.58 0.99 16.66 5.82 1.11 0.36 0.76 0.23 0.18 0.12 

NSE 0.85 0.84 0.06 0.08 0.94 0.94 0.96 0.96 0.99 0.98 

MAE 0.65 0.65 -0.01 0.01 0.79 0.80 0.89 0.88 0.94 0.94 

CC 0.92 0.92 0.25 0.28 0.97 0.97 0.98 0.98 0.99 0.99 

 

5. 

 

Kawardha 

RMSE 8.12 5.06 20.75 12.17 5.36 3.21 4.31 2.39 1.87 1.33 

NMSE 3.09 1.22 20.14 7.06 1.34 0.49 0.87 0.27 0.16 0.08 

NSE 0.86 0.84 0.05 0.07 0.94 0.94 0.96 0.96 0.99 0.99 

MAE 0.65 0.63 -0.02 0.00 0.80 0.79 0.89 0.89 0.95 0.95 

CC 0.92 0.92 0.23 0.27 0.97 0.97 0.98 0.98 1.00 0.99 

 

6. 

 

Korba 

RMSE 6.32 4.14 18.40 17.93 4.63 2.76 3.28 2.09 1.95 1.06 

NMSE 2.08 0.91 17.60 17.05 1.12 0.40 0.56 0.23 0.20 0.06 

NSE 0.99 0.87 0.91 -1.48 0.99 0.94 1.00 0.97 1.00 0.99 

MAE 0.68 0.64 0.00 -0.72 0.78 0.79 0.89 0.88 0.94 0.94 

CC 0.94 0.93 0.28 -0.23 0.97 0.97 0.99 0.98 0.99 1.00 

 

7. 

 

Raipur 

RMSE 6.59 3.99 17.4 16.83 5.18 2.97 4.24 2.49 2.28 1.41 

NMSE 2.35 0.89 16.5 15.92 1.46 0.50 0.97 0.35 0.28 0.11 

NSE 0.87 0.86 0.1 -1.46 0.92 0.92 0.95 0.95 0.99 0.98 

MAE 0.67 0.65 0.0 -0.62 0.75 0.74 0.84 0.83 0.92 0.92 

CC 0.93 0.93 0.3 -0.22 0.96 0.96 0.97 0.97 0.99 0.99 

8. Rajnandgaon 

RMSE 8.66 5.28 19.92 3.06 5.24 3.06 4.54 2.52 2.07 0.53 

NMSE 3.68 1.41 19.52 0.47 1.35 0.47 1.01 0.32 0.21 0.01 

NSE 0.82 0.81 0.04 0.93 0.93 0.93 0.95 0.96 0.99 1.00 

MAE 0.88 0.61 0.69 0.80 0.94 0.80 0.97 0.89 0.98 0.96 

CC 0.90 0.90 0.19 0.97 0.97 0.97 0.97 0.98 0.99 1.00 
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Table A4  Performance Evaluation Statistics for Maximum Temperature (Tmax) 

 

S.No. Parameters 

MLR ANN (RBF) ANN (MLP) M5P LS-SVM  

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur 

RMSE 2.32 1.34 3.33 2.01 2.20 1.28 1.21 0.77 0.64 0.39 

NMSE 0.81 0.28 1.65 0.63 0.72 0.26 0.22 0.09 0.06 0.02 

NSE 0.88 0.88 0.75 0.73 0.89 0.89 0.97 0.96 0.99 0.99 

MAE 0.68 0.69 0.51 0.47 0.69 0.69 0.86 0.86 0.94 0.93 

CC 0.94 0.94 0.87 0.86 0.97 0.97 0.98 0.98 1.00 1.00 

2. Damtari 

RMSE 1.81 1.10 3.92 2.32 1.48 0.83 1.06 0.67 0.63 0.28 

NMSE 0.77 0.30 3.63 1.32 0.52 0.17 0.27 0.11 0.09 0.02 

NSE 0.82 0.80 0.14 0.11 0.88 0.89 0.94 0.93 0.98 0.99 

MAE 0.59 0.58 0.06 0.07 0.67 0.73 0.81 0.80 0.90 0.92 

CC 0.90 0.90 0.38 0.33 0.94 0.94 0.97 0.96 0.99 0.99 

3. 
 

Durg 

RMSE 1.93 1.19 4.10 2.46 1.52 0.91 1.14 0.73 0.58 0.42 

NMSE 0.82 0.32 3.72 1.37 0.51 0.19 0.29 0.12 0.07 0.04 

NSE 0.82 0.80 0.18 0.14 0.89 0.88 0.94 0.92 0.98 0.98 

MAE 0.59 0.58 0.07 0.09 0.69 0.71 0.81 0.80 0.91 0.90 

CC 0.90 0.89 0.42 0.38 0.94 0.94 0.97 0.96 0.99 0.99 

 

4. 

 

Kanker 

RMSE 1.79 1.10 3.94 2.37 1.46 0.83 1.06 0.67 0.56 0.45 

NMSE 0.75 0.29 3.65 1.35 0.50 0.16 0.26 0.11 0.07 0.05 

NSE 0.82 0.81 0.14 0.11 0.88 0.89 0.94 0.93 0.98 0.97 

MAE 0.60 0.59 0.05 0.07 0.69 0.73 0.81 0.81 0.90 0.88 

CC 0.91 0.90 0.38 0.34 0.94 0.95 0.97 0.96 0.99 0.98 

 

5. 

 

Kawardha 

RMSE 2.02 1.23 4.13 2.51 1.53 0.95 1.19 0.73 0.62 0.39 

NMSE 0.88 0.33 3.66 1.37 0.50 0.20 0.30 0.11 0.08 0.03 

NSE 0.81 0.80 0.22 0.18 0.89 0.88 0.93 0.93 0.98 0.98 

MAE 0.58 0.58 0.08 0.10 0.70 0.70 0.80 0.81 0.91 0.90 

CC 0.90 0.90 0.46 0.43 0.95 0.95 0.97 0.97 0.99 0.99 

 

6. 

 

Korba 

RMSE 2.03 1.23 4.07 2.46 1.53 0.89 1.20 0.72 0.60 0.41 

NMSE 0.87 0.32 3.50 1.30 0.49 0.17 0.30 0.11 0.08 0.04 

NSE 1.00 0.81 0.98 0.23 1.00 0.90 1.00 0.93 1.00 0.98 

MAE 0.69 0.58 0.33 0.11 0.78 0.72 0.85 0.81 0.93 0.90 

CC 0.90 0.90 0.51 0.48 0.95 0.95 0.97 0.97 0.99 0.99 

 

7. 

 

Raipur 

RMSE 1.85 1.14 3.95 2.34 1.49 0.84 1.10 0.66 0.51 0.42 

NMSE 0.79 0.31 3.57 1.31 0.51 0.17 0.28 0.11 0.06 0.04 

NSE 0.91 0.80 0.58 0.14 0.94 0.89 0.97 0.93 0.99 0.97 

MAE 0.67 0.68 0.25 0.30 0.74 0.79 0.85 0.86 0.93 0.92 

CC 0.90 0.89 0.42 0.38 0.94 0.95 0.97 0.97 0.99 0.99 

8. Rajnandgaon 

RMSE 1.93 1.19 4.12 2.48 1.51 0.91 0.78 0.73 0.62 0.31 

NMSE 0.82 0.32 3.75 1.39 0.50 0.19 0.15 0.12 0.08 0.02 

NSE 0.82 0.80 0.17 0.14 0.89 0.88 0.90 0.93 0.98 0.99 

MAE 0.95 0.59 0.89 0.08 0.96 0.71 0.82 0.80 0.99 0.92 

CC 0.90 0.90 0.41 0.38 0.95 0.94 0.95 0.96 0.99 0.99 
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Table A5  Performance Evaluation Statistics for Minimum Temperature (Tmin) 

 

S.No. Parameters 

MLR ANN (RBF) ANN (MLP) M5P 
LS-SVM  

 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur 

RMSE 1.73 0.98 2.80 1.66 1.69 1.01 1.14 0.65 0.69 0.33 

NMSE 0.39 0.13 1.02 0.37 0.37 0.14 0.17 0.06 0.06 0.01 

NSE 0.95 0.95 0.87 0.87 0.95 0.95 0.98 0.98 0.99 0.99 

MAE 0.80 0.80 0.67 0.67 0.80 0.80 0.89 0.90 0.94 0.94 

CC 0.97 0.98 0.93 0.93 0.98 0.98 0.99 0.99 1.00 1.00 

2. Damtari 

RMSE 1.58 0.97 2.40 1.48 1.41 0.79 0.98 0.59 0.56 0.34 

NMSE 0.53 0.21 1.23 0.48 0.43 0.14 0.21 0.08 0.07 0.03 

NSE 0.89 0.88 0.74 0.71 0.91 0.92 0.96 0.95 0.99 0.98 

MAE 0.69 0.67 0.50 0.52 0.73 0.75 0.85 0.84 0.91 0.91 

CC 0.94 0.94 0.86 0.85 0.96 0.96 0.98 0.98 0.99 0.99 

3. 
 

Durg 

RMSE 1.65 1.02 2.51 1.57 1.47 0.84 1.03 0.65 0.62 0.31 

NMSE 0.55 0.21 1.27 0.50 0.44 0.14 0.21 0.09 0.08 0.02 

NSE 0.89 0.88 0.74 0.72 0.91 0.92 0.96 0.95 0.98 0.99 

MAE 0.69 0.68 0.50 0.52 0.73 0.75 0.85 0.84 0.91 0.93 

CC 0.94 0.94 0.86 0.85 0.96 0.96 0.98 0.98 0.99 0.99 

 

4. 

 

Kanker 

RMSE 1.55 0.96 2.39 1.50 1.39 0.77 0.99 0.60 0.54 0.25 

NMSE 0.52 0.20 1.24 0.49 0.42 0.13 0.21 0.08 0.06 0.01 

NSE 0.89 0.88 0.73 0.71 0.91 0.92 0.95 0.95 0.99 0.99 

MAE 0.69 0.68 0.49 0.51 0.73 0.76 0.84 0.84 0.91 0.93 

CC 0.94 0.94 0.86 0.84 0.96 0.96 0.98 0.98 0.99 1.00 

 

5. 

 

Kawardha 

RMSE 1.67 1.01 2.49 1.57 1.46 0.83 1.53 0.90 0.62 0.33 

NMSE 0.54 0.20 1.21 0.48 0.41 0.13 0.46 0.16 0.07 0.02 

NSE 0.89 0.89 0.76 0.74 0.92 0.93 0.91 0.91 0.99 0.99 

MAE 0.70 0.70 0.53 0.54 0.75 0.77 0.75 0.76 0.91 0.92 

CC 0.95 0.95 0.87 0.86 0.96 0.97 0.96 0.96 0.99 0.99 

 

6. 

 

Korba 

RMSE 1.65 0.99 2.47 1.55 1.39 0.83 1.03 0.62 0.60 0.37 

NMSE 0.53 0.19 1.18 0.47 0.37 0.13 0.20 0.07 0.07 0.03 

NSE 0.99 0.90 0.99 0.75 1.00 0.93 1.00 0.96 1.00 0.99 

MAE 0.82 0.71 0.73 0.55 0.86 0.77 0.91 0.86 0.95 0.92 

CC 0.95 0.95 0.88 0.87 0.96 0.97 0.98 0.98 0.99 0.99 

 

7. 

 

Raipur 

RMSE 1.61 0.98 2.44 1.50 1.45 0.81 0.99 0.58 0.57 0.28 

NMSE 0.54 0.21 1.24 0.48 0.44 0.14 0.20 0.07 0.07 0.02 

NSE 0.96 0.88 0.92 0.72 0.97 0.92 0.99 0.96 1.00 0.99 

MAE 0.82 0.82 0.72 0.74 0.84 0.86 0.92 0.92 0.95 0.96 

CC 0.94 0.94 0.86 0.85 0.96 0.96 0.98 0.98 0.99 1.00 

8. Rajnandgaon 

RMSE 1.64 1.00 2.50 1.57 1.45 0.82 1.04 0.65 0.64 0.25 

NMSE 0.54 0.21 1.26 0.50 0.43 0.14 0.22 0.09 0.08 0.01 

NSE 0.89 0.89 0.74 0.72 0.91 0.92 0.96 0.95 0.98 0.99 

MAE 0.94 0.69 0.90 0.52 0.95 0.76 0.97 0.84 0.98 0.93 

CC 0.94 0.94 0.86 0.85 0.96 0.96 0.98 0.98 0.99 1.00 
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Table A6  Performance Evaluation Statistics for Mean Temperature (Tmean) 
 

S.No. Parameters MLR ANN (RBF) ANN (MLP) M5P LS-SVM 

 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

1. Bilaspur RMSE 1.94 1.12 2.84 1.72 1.83 1.07 1.10 0.69 0.70 0.27 

NMSE 0.53 0.18 1.14 0.43 0.48 0.17 0.17 0.07 0.07 0.01 

NSE 0.92 0.93 0.84 0.83 0.93 0.93 0.98 0.97 0.99 1.00 

MAE 0.76 0.76 0.64 0.61 0.76 0.77 0.88 0.89 0.94 0.95 

CC 0.96 0.96 0.92 0.91 0.98 0.98 0.99 0.99 1.00 1.00 

2. Damtari RMSE 1.64 1.02 3.02 1.82 1.45 0.81 0.99 0.61 0.60 0.35 

NMSE 0.65 0.26 2.20 0.83 0.51 0.16 0.24 0.09 0.09 0.03 

NSE 0.84 0.82 0.47 0.42 0.88 0.89 0.94 0.94 0.98 0.98 

MAE 0.59 0.57 0.17 0.21 0.64 0.69 0.80 0.80 0.89 0.89 

CC 0.92 0.91 0.68 0.66 0.95 0.94 0.97 0.97 0.99 0.99 

3.  

Durg 

RMSE 1.74 1.08 3.17 1.94 1.49 0.87 1.04 0.66 0.58 0.30 

NMSE 0.69 0.27 2.27 0.87 0.50 0.17 0.25 0.10 0.08 0.02 

NSE 0.84 0.83 0.48 0.45 0.89 0.89 0.94 0.94 0.98 0.99 

MAE 0.59 0.58 0.19 0.23 0.66 0.69 0.81 0.80 0.89 0.91 

CC 0.92 0.91 0.70 0.67 0.95 0.95 0.97 0.97 0.99 0.99 

 

4. 

 

Kanker 

RMSE 1.62 1.01 3.03 1.86 1.44 0.80 1.00 0.62 0.62 0.29 

NMSE 0.64 0.25 2.24 0.86 0.51 0.16 0.24 0.09 0.09 0.02 

NSE 0.84 0.83 0.45 0.42 0.88 0.89 0.94 0.94 0.98 0.99 

MAE 0.59 0.59 0.17 0.21 0.64 0.70 0.80 0.80 0.88 0.90 

CC 0.92 0.91 0.67 0.65 0.95 0.95 0.97 0.97 0.99 0.99 

 

5. 

 

Kawardha 

RMSE 1.79 1.10 3.17 1.97 1.47 0.88 1.07 0.67 0.59 0.27 

NMSE 0.70 0.26 2.19 0.85 0.47 0.17 0.25 0.10 0.07 0.02 

NSE 0.85 0.84 0.52 0.49 0.90 0.90 0.95 0.94 0.98 0.99 

MAE 0.60 0.60 0.22 0.25 0.68 0.70 0.81 0.81 0.89 0.92 

CC 0.92 0.92 0.72 0.70 0.95 0.95 0.97 0.97 0.99 1.00 

 

6. 

 

Korba 

RMSE 1.77 1.90 3.12 1.66 1.44 1.78 1.04 1.84 0.58 1.95 

NMSE 0.67 0.78 2.08 0.59 0.44 0.69 0.23 0.73 0.07 0.82 

NSE 1.00 0.54 0.99 0.65 1.00 0.59 1.00 0.57 1.00 0.51 

MAE 0.61 0.29 0.25 0.37 0.70 0.35 0.82 0.32 0.90 0.28 

CC 0.93 0.75 0.74 0.81 0.95 0.80 0.98 0.78 0.99 0.75 

 

7. 

 

Raipur 

RMSE 1.68 1.75 3.05 1.56 1.44 1.63 1.00 1.70 0.59 1.79 

NMSE 0.66 0.74 2.17 0.59 0.49 0.64 0.23 0.69 0.08 0.77 

NSE 0.84 0.51 0.49 0.61 0.89 0.58 0.95 0.54 0.98 0.49 

MAE 0.59 0.27 0.19 0.33 0.65 0.32 0.81 0.29 0.90 0.24 

CC 0.92 0.74 0.70 0.79 0.95 0.79 0.97 0.77 0.99 0.74 

8. Rajnandgaon RMSE 2.27 1.36 3.54 2.15 2.18 1.34 1.27 0.79 0.80 0.34 

NMSE 0.98 0.36 2.39 0.89 0.91 0.35 0.31 0.12 0.12 0.02 

NSE 0.81 0.81 0.54 0.52 0.83 0.82 0.94 0.94 0.98 0.99 

MAE 0.94 0.58 0.89 0.31 0.94 0.59 0.97 0.81 0.98 0.92 

CC 0.90 0.90 0.74 0.73 0.92 0.92 0.97 0.97 0.99 0.99 
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ANNEXURE B 
Table B1 Probable predictors for Tmax, Tmin, Rainfall, RH and WS and their correlation 

Stations Rainfall Minimum 
Temperature 

(Tmin) 

Maximum 
Temperature 

(Tmax) 

Relative 
Humidity 

Wind Speed 

Selected 
Predictors 

R2 Selected 
Predictors 

R2 Selected 
Predictors 

R2 Selected 
Predictors 

R2 Selected 
Predictors 

R2 

Korba Prw 0.80 Ta200 0.80 Ta700 
 

0.85 Ta925 
 

0.88 Ua925 0.87 
Ua200 0.76 Ta500 0.82 
Ua925 0.85 Ta700 0.87 Zg925 

 
-0.94 

Va200 0.84 Ta925 0.92 Tasur 0.82 
Va925 0.89 Zg200 0.86 Ua925 

 
0.87 

Zg200 0.67 Zg500 0.89 
Zg500 0.89 Zg925 -0.84 Va925 

 
0.88 LH 0.87 Va925 0.90 

Zg925 0.82 Ua200 0.67 
Ta200 0.88 Ua925 -0.92 Prw 

 
0.81 

Hus850 0.81 Va925 0.72 Hus925 0.83 
Hus925 0.83 Prw 0.81 LH 0.80 
Ps 0.86 LH 0.75 

Rajnandgaon Prw 0.81 Ta200 0.82 Ta700 0.81 Ta925 
 

0.92 Ua925 0.88 
Ua200 0.84 Ta500 0.83 
Ua925 0.84 Ta700 0.82 Ta925 0.83 
Va200 0.82 Ta925 0.87 Tasur 0.76 
Va925 0.88 Zg200 0.89 Zg925 -0.86 
Zg200 0.71 Zg500 0.91 
Zg500 0.82 Zg925 -0.86 LH 0.78 Va925 0.87 
Zg925 0.62 Ua200 0.71 Ua925 0.88 
Ta200 0.84 Ua925 -0.89 
Ta925 0.86 Va925 0.77 Va925 0.81 Hus925 0.89 
Hus925 0.89 Prw 0.80 Prw 0.83 
Ps 0.85 LH 0.76 LH 0.85 

Raipur Prw 0.85 Ta200 0.79 Ta700 0.86 Ta925 
 

0.82 Ua925 0.82 
Ua200 0.86 Ta500 0.80 
Ua925 0.87 Ta700 0.86  

Tasur 
0.85 

Va200 0.85 Ta925 0.85 Zg925 -0.87 
Va925 0.82 Zg500 0.83 
Zg200 0.81 Zg925 -0.85  

LH 
0.75  

Va925 
0.85 

Zg500 0.80 Ua200 0.85 Ua925 0.82 
Zg925 0.88 Ua925 -0.79 
Ta200 0.87 Va925 0.82 Va925 0.86 Hus925 0.80 
Ta925 0.80 Prw 0.72 Prw 0.85 
Hus850 0.86 
Hus925 0.89 
Ps 0.81 

Damtari Prw 0.82 Ta500 0.89 Ta700 0.86 Ta925 
 

0.89 Ua925 0.86 
Ua200 0.84 Ta700 0.82 
Ua925 0.83 Ta925 0.85 
Va200 0.85 Zg200 0.85 Zg925 -0.85 Tasur 0.83 
Va925 0.80 Zg925 -0.84 
Zg200 0.87 Ua200 0.87 Va925 0.87 
Zg500 0.82 Ua925 -0.89 Ua925 0.87 LH 0.78 
Zg925 0.86 Va925 0.83 Va925 0.88 
Ta200 0.81 Prw 0.85 Prw 0.87 Hus925 0.89 
Ta500 0.87 LH 0.81 LH 0.89 
Ta925 0.84 
Hus850 0.80 
Hus925 0.84 
Ps 0.84 

Kawardha Prw 0.89 Ta200 0.78 Ta700 0.91 Ta925 0.90 Ua925 0.82 
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Ua200 0.83 Ta500 0.83  
Ua925 0.85 Ta700 0.86 Ta925 0.86 
Va200 0.86 Ta925 0.88 Zg925 -0.88 Tasur 0.75 
Va925 0.87 Zg200 0.87 
Zg500 0.88 Zg500 0.86 
Zg925 0.84 Zg925 -0.82 LH 0.84 Va925 0.89 
Ta500 0.89 Ua200 0.84 Ua925 0.87 
Ta925 0.82 Ua925 -0.86 
Hus850 0.89 Va925 0.80 Va925 0.85 Hus925 0.89 
Hus925 0.85 Prw 0.85 Prw 0.86 
Ps 0.88 LH 0.78 LH 0.89 

Durg Prw 0.89 Ta200 0.86 Ta700 0.86 Ta925 
 

0.89 Ua925 0.89 
Ua200 0.85 Ta500 0.83 
Ua925 0.81 Ta700 0.84 
Va200 0.84 Ta925 0.82 Ta925 0.88 Tasur 

 
0.81 

Va925 0.85 Zg200 0.85 Zg925 -0.87 Va925 0.87 
Zg500 0.83 Zg500 0.89 
Zg925 0.87 Zg925 -0.86 
Ta500 0.84 Ua200 0.86 Ua925 0.85 LH 0.89 
Ta925 0.83 Ua925 -0.86 
Hus850 0.82 Va925 0.87 Va925 0.85 Hus925 0.87 
Hus925 0.81 Prw 0.90 Prw 0.89 

Bilaspur Prw 0.83 Ta200 0.81 Ta700 0.85 Ta925 
 

0.88 Ua925 0.80 
Ua200 0.81 Ta500 0.86 
Ua925 0.84 Ta700 0.87 
Va200 0.85 Ta925 0.88 Ta925 0.89 
Va925 0.81 Zg200 0.87 Zg925 -0.85 Tasur 

 
0.87 

Zg925 0.88 Zg500 0.88 Va925 0.85 
Ta500 0.89 Zg925 -0.86 
Ta925 0.85 Ua200 0.81 Ua925 0.89 LH 0.85 
Hus850 0.83 Ua925 -0.89 
Hus925 0.81 Va925 0.84 Va925 0.84 Hus925 0.82 
Ps 0.86 Prw 0.89 Prw 0.88 

Champa Prw 0.87 Ta200 0.84 Ta700 0.89 Ta925 
 

0.88 Ua925 0.88 
Ua925 0.88 Ta500 0.85 
Va925 0.87 Ta700 0.88 
Zg200 0.83 Ta925 0.89 Ta925 0.86 
Zg500 083 Zg200 0.85 Zg925 -0.75 Tasur 

 
0.78 

Zg925 0.82 Zg500 0.84 Va925 0.89 
Ta200 0.85 Zg925 -0.85 
Ta500 0.81 Ua925 -0.80 Ua925 0.85 LH 0.89 
Ta925 0.91 Va925 0.86 Va925 0.87 
Hus925 0.80 Prw 0.83 Prw 0.88 Hus925 0.91 
Ps 0.89 LH 0.86 LH 0.85 

 

 

 

 

 

 

 



 

ANNEXURE C  

Figure C1 Station-wise 

Evapotranspiration 

Raipur 

Kanker 

Bilaspur 

Kawardha 
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wise downscaling results of meteorological variables

 

SSE
MSE
RMSE
NMSE
NSE
MAE
CC 

 

 

SSE
MSE
RMSE
NMSE
NSE
MAE
CC 

 

 

SSE
MSE
RMSE
NMSE
NSE
MAE
CC 

 

 

SSE
MSE
RMSE
NMSE
NSE
MAE
CC 

 

variables 

SSE 39520.86 
MSE 109.7802 
RMSE 10.48 
NMSE 2.51 
NSE 0.84 
MAE 0.78 

 0.92 

SSE 31196.53 
MSE 86.65703 
RMSE 9.31 
NMSE 1.99 
NSE 0.87 
MAE 0.77 

 0.94 

SSE 39469.45 
MSE 109.6374 
RMSE 10.47 
NMSE 2.36 
NSE 0.86 
MAE 0.74 

 0.93 

SSE 43200.52 
MSE 120.0014 
RMSE 10.95 
NMSE 2.50 
NSE 0.86 
MAE 0.77 

 0.93 



 

Durg 

Korba 

 
Damtari 

Rajnandgaon 
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SSE 36099.5
MSE 100.2764
RMSE 10.01
NMSE 2.18
NSE 0.87
MAE 0.79
CC 0.93

 

 

SSE 33348.41
MSE 92.63446
RMSE 9.62
NMSE 1.99
NSE 0.88
MAE 0.79
CC 0.94

 

SSE 35575.76
MSE 98.82157
RMSE 9.94
NMSE 2.29
NSE 0.85
MAE 0.76
CC 0.92

 

 

SSE 45659.38
MSE 126.8316
RMSE 11.26
NMSE 2.68
NSE 0.84
MAE 0.75
CC 0.92

 

36099.5 
100.2764 

10.01 
2.18 
0.87 
0.79 
0.93 

33348.41 
92.63446 

9.62 
1.99 
0.88 
0.79 
0.94 

35575.76 
98.82157 

9.94 
2.29 
0.85 
0.76 
0.92 

45659.38 
126.8316 

11.26 
2.68 
0.84 
0.75 
0.92 



 

Relative Humidity 

Raipur 

Kanker 

Bilaspur 

Kawardha 
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SSE 
MSE 
RMSE
NMSE
NSE 
MAE
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 4411.241 
 12.25345 

RMSE 3.50 
NMSE 0.69 

 0.89 
MAE 0.75 

0.95 

 6599.151 
 18.33097 

RMSE 4.28 
NMSE 1.06 

 0.83 
MAE 0.72 

0.91 

 2547.278 
 7.075773 

RMSE 2.66 
NMSE 0.58 

 0.87 
MAE 0.71 

0.93 

9517.243 
26.43679 

 5.14 
 1.26 

0.83 
0.73 
0.91 



 

Durg 

Korba 

 
Damtari 

Rajnandgaon 
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SSE 7026.234
MSE 19.51732
RMSE 4.42
NMSE 1.01
NSE 0.86
MAE 0.75
CC 0.93

 

 

SSE 6837.8
MSE 18.99389
RMSE 4.36
NMSE 1.01
NSE 0.85
MAE 0.73
CC 0.92

 

SSE 5242.17
MSE 14.56158
RMSE 3.82
NMSE 0.82
NSE 0.87
MAE 0.75
CC 0.93

 

 

SSE 9549.518
MSE 26.52644
RMSE 5.15
NMSE 1.34
NSE 0.82
MAE 0.72
CC 0.90

 

7026.234 
19.51732 

4.42 
1.01 
0.86 
0.75 
0.93 

6837.8 
18.99389 

4.36 
1.01 
0.85 
0.73 
0.92 

5242.17 
14.56158 

3.82 
0.82 
0.87 
0.75 
0.93 

9549.518 
26.52644 

5.15 
1.34 
0.82 
0.72 
0.90 



 

Maximum Temperature (Tmax)

Raipur 

Kanker 

Bilaspur 

Kawardha 
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Maximum Temperature (Tmax) 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

462.2329 
 1.28398 

RMSE 1.13 
NMSE 0.31 

0.80 
 0.77 

0.89 

302.8336 
 0.841204 

RMSE 0.92 
NMSE 0.20 

0.87 
 0.73 

0.93 

786.84 
 2.185667 

RMSE 1.48 
NMSE 0.34 

0.86 
 0.73 

0.93 

406.6659 
 1.129627 

RMSE 1.06 
NMSE 0.25 

0.85 
 0.70 

0.92 



 

Durg 

Korba 

Damtari 

Rajnandgaon 
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SSE 439.3679
MSE 1.220466
RMSE 1.10
NMSE 0.28
NSE 0.83
MAE 0.69
CC 0.91

 

 

SSE 413.65
MSE 1.149028
RMSE 1.07
NMSE 0.25
NSE 0.85
MAE 0.70
CC 0.92

 

 

SSE 305.9662
MSE 0.849906
RMSE 0.92
NMSE 0.21
NSE 0.86
MAE 0.73
CC 0.93

 

 

SSE 541.0691
MSE 1.50297
RMSE 1.23
NMSE 0.34
NSE 0.79
MAE 0.69
CC 0.89

 

439.3679 
1.220466 

1.10 
0.28 
0.83 
0.69 
0.91 

413.65 
1.149028 

1.07 
0.25 
0.85 
0.70 
0.92 

305.9662 
0.849906 

0.92 
0.21 
0.86 
0.73 
0.93 

541.0691 
1.50297 

1.23 
0.34 
0.79 
0.69 
0.89 



 

Minimum Temperature (Tmin)

Raipur 

Kanker 

Bilaspur 

Kawardha 
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Minimum Temperature (Tmin) 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE
NMSE
NSE 
MAE 
CC 

 

261.5543 
 0.72654 

RMSE 0.85 
NMSE 0.15 

0.91 
 0.88 

0.95 

496.4111 
 1.37892 

RMSE 1.17 
NMSE 0.30 

0.82 
 0.71 

0.91 

642.5947 
 1.784985 

RMSE 1.34 
NMSE 0.24 

0.91 
 0.79 

0.96 

426.5849 
 1.184958 

RMSE 1.09 
NMSE 0.23 

0.87 
 0.75 

0.94 



 

Durg 

Korba 

Damtari 

Rajnandgaon 
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SSE 533.2298
MSE 1.481194
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 492.8465
MSE 1.369018
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 273.0318
MSE 0.758422
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 593.3856
MSE 1.648293
RMSE 
NMSE 
NSE 
MAE 
CC 

 

533.2298 
1.481194 

1.22 
0.30 
0.83 
0.71 
0.91 

492.8465 
1.369018 

1.17 
0.27 
0.86 
0.76 
0.93 

273.0318 
0.758422 

0.87 
0.17 
0.90 
0.77 
0.95 

593.3856 
1.648293 

1.28 
0.34 
0.81 
0.71 
0.90 



 

Mean Temperature (Tmean)

Raipur 

Kanker 

Bilaspur 

Kawardha 
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Mean Temperature (Tmean) 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

396.571 
0.712697 

 2.17 
 1.02 

0.80 
0.22 
0.88 

284.1201 
0.789223 

 0.89 
 0.19 

0.87 
0.69 
0.93 

967.8613 
2.688504 

 1.64 
 0.39 

0.84 
0.72 
0.92 

574.5484 
1.595968 

 1.26 
 0.35 

0.89 
0.64 
0.90 



 

Durg 

Korba 

Damtari 

Rajnandgaon 
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SSE 322.9416
MSE 0.89706
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 361.0099
MSE 1.002805
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 281.0114
MSE 0.780587
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 1704.335
MSE 4.734263
RMSE 
NMSE 
NSE 
MAE 
CC 

 

322.9416 
0.89706 

0.95 
0.21 
0.87 
0.70 
0.93 

361.0099 
1.002805 

1.00 
0.19 
0.90 
0.75 
0.95 

281.0114 
0.780587 

0.88 
0.20 
0.86 
0.69 
0.93 

1704.335 
4.734263 

2.18 
1.14 
0.84 
0.12 
0.86 



 

Rainfall 

Ambagarh Chowki 

Balod Bazar 

Bodala 

Chhatti 
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SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

449680.2 
1249.112 

35.34 
10.74 

0.75 
0.69 
0.86 

131041.6 
364.0045 

19.08 
3.48 
0.91 
0.81 
0.95 

179074.5 
497.4291 

22.30 
4.62 
0.88 
0.78 
0.94 

404465.4 
1123.515 

33.52 
7.83 
0.85 
0.75 
0.92 



 

Chuikhaddan 

Chirapani 

Damtari 

Doundi Lohara 
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SSE 296517.3
MSE 823.6591
RMSE 28.70
NMSE 7.63
NSE 0.81
MAE 0.74
CC 0.90

 

 

SSE 135932.2
MSE 377.5895
RMSE 19.43
NMSE 3.90
NSE 0.89
MAE 0.76
CC 0.94

 

 

SSE 350308.9
MSE 973.0802
RMSE 31.19
NMSE 6.46
NSE 0.88
MAE 0.78
CC 0.94

 

 

SSE 558454.7
MSE 1551.263
RMSE 39.39
NMSE 11.25
NSE 0.78
MAE 0.70
CC 0.90

 

296517.3 
823.6591 

28.70 
7.63 
0.81 
0.74 
0.90 

135932.2 
377.5895 

19.43 
3.90 
0.89 
0.76 
0.94 

350308.9 
973.0802 

31.19 
6.46 
0.88 
0.78 
0.94 

558454.7 
1551.263 

39.39 
11.25 

0.78 
0.70 
0.90 



 

Durg 

Dongargaon 

Doundi 

Raipur 
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SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

206214.6 
572.8183 

23.93 
5.03 
0.88 
0.73 
0.94 

289668.6 
804.635 

28.36609 
6.27363 

0.865578 
0.777622 
0.936529 

423171.8 
1175.477 

34.29 
8.32 
0.84 
0.66 
0.92 

401248.8 
1114.58 

33.39 
8.60 
0.82 
0.68 
0.90 



 

Admabad 

Balod 

Mohala 

Kawardha 
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SSE 382330.9
MSE 1062.03
RMSE 32.59
NMSE 8.01
NSE 0.83
MAE 0.72
CC 0.91

 

 

 

SSE 230144.8
MSE 639.2911
RMSE 25.28
NMSE 5.41
NSE 0.87
MAE 0.77
CC 0.94

 

 

 

SSE 477302.8 
MSE 1325.841 
RMSE 36.41 
NMSE 11.86 
NSE 0.71 
MAE 0.66 
CC 0.84 

 

 

 

SSE 149710.4
MSE 415.8621
RMSE 20.39
NMSE 3.93
NSE 0.90
MAE 0.80
CC 0.95

 

 

382330.9 
1062.03 

32.59 
8.01 
0.83 
0.72 
0.91 

230144.8 
639.2911 

25.28 
5.41 
0.87 
0.77 
0.94 

 
 
 
 
 
 
 

149710.4 
415.8621 

20.39 
3.93 
0.90 
0.80 
0.95 



 

Gandai 

Patan 

Gudhiyari 

Gondly 
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SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

 

SSE 
MSE 
RMSE 
NMSE 
NSE 
MAE 
CC 

 

 

180922.8 
502.5633 

22.42 
4.71 
0.88 
0.78 
0.94 

207761.2 
577.1145 
24.02321 
3.791326 
0.931553 

0.8068 
0.966501 

379961.8 
1055.449 

32.49 
8.48 
0.81 
0.71 
0.90 

403680.4 
1121.334 

33.49 
9.11 
0.80 
0.71 
0.89 



 

Gurur 

Simga 

Rajnandgaon 

Gunderdehi 
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SSE 647581.8 
MSE 1798.838 
RMSE 42.41 
NMSE 15.03 
NSE 0.65 
MAE 0.68 
CC 0.84 

 

 

 

SSE 375376.8
MSE 1042.713
RMSE 32.29
NMSE 7.13
NSE 0.87
MAE 0.74
CC 0.93

 

 

 

SSE 237673.2 
MSE 660.2033 
RMSE 25.69 
NMSE 4.99 
NSE 0.90 
MAE 0.76 
CC 0.95 

 

 

 

SSE 284793 
MSE 791.0915 
RMSE 28.13 
NMSE 6.22 
NSE 0.87 
MAE 0.78 
CC 0.93 

 

 

 
 
 
 
 
 
 

375376.8 
1042.713 

32.29 
7.13 
0.87 
0.74 
0.93 
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ANNEXURE D 

Figure D1 Boxplots for monthly growing season (a) rainfall, (b) Tmax (c) Relative 
Humidity and (d) wind speed 
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