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Abstract 
 

In recent years, millimeter wave (MMW) frequency (30GHz-300GHz) has received tremendous 

interest among researchers pertaining to its unique favorable features in contrast to the over 

flooded microwave frequency band, such as, finer resolution, higher data rate and size reduction. 

This makes it an ideal spectrum for applications, like, personal screening, medical imaging, 

quality monitoring, wireless communication etc. [183]. MMW frequency offers interesting 

applications in stand-off imaging because of its non-ionizing radiation in contrast to ionizing X-

rays; its ability to penetrate through packaged materials in contrast to visible and IR systems; its 

higher resolution capability in contrast to microwave imaging. Thereby, MMW imaging has 

emerged as a preferable modality for finding fine details of the targets which may be useful to 

identify different target’s characteristics, like, crack, void, delamination, corrosion, moisture 

content & porosity etc. For all these reasons, MMW technique is becoming increasingly 

important in different industrial, scientific and military applications.  

Antenna is an indispensable component of any RF based system. At MMW frequency, 

design of a simple, compact and cost effective antenna is quite challenging because of metallic 

losses, dielectric losses, higher order/ surface wave modes loss, resonances as well as radiations 

in transmission line structures. Planar antenna technologies are worthwhile owing to its low 

profile, light weight, low cost, conformable and rigid characteristics [86]. Recently, the 

increasing demand of miniaturized and multi-tasking systems has excel the need for dual resonant 

MMW antennas that provide concurrency as well as redundancy [18]. However, dual band 

antenna at MMW frequency is still the least explored with few reported works using split ring 

resonator (SRR) [128], flip-chip assembly [285] and movable plate [184] techniques etc. Most 

of these reported antennas require sophisticated and high precision fabrication techniques, which 

make them complex and cost inefficient. Hence, major effort is needed to be paid in this direction 

for a simple, compact and cost-effective MMW dual band antenna design. 
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MMW imaging is one of the fascinating and rapidly expanding area for object’s 

identification for security applications and for quality monitoring for industrial applications. 

Henceforth, critical investigation of digital image processing techniques in context to MMW 

imaging is currently becoming a new focused area of research. Various research works are carried 

out and going on for stand-off target’s detection and its shape identification using different 

imaging techniques [52, 337, 352]. However, more focus is still required in this direction to 

develop an efficient MMW imaging methodology for accurate, non-invasive target’s detection, 

shape identification and material classification.  

In addition, target’s recognition process can be made more robust by employing size and 

rotation invariant capability for correct target’s shape identification in a real scenario. To enable 

reliable recognition of target’s shape, the essential information in the form of unique, invariant 

features is extracted, like, scale invariant feature transform (SIFT), wavelet transforms, Harris 

corner detector, discrete Fourier descriptors etc. [215]. However, these algorithms are not fully 

adaptive and still significant research is required to develop a robust methodology which can be 

applied successfully to reconstruct target’s images towards varying orientation, scale and 

translation errors due to non-uniform illumination and target’s deformations.  

Non-invasive inspection of different goods towards fatigue, wear and tear without 

hampering its utility and efficacy is also constantly desired. Since, MMW has the capability to 

penetrate through opaque material and can extract target’s characteristic information, it provides 

a good solution towards non-invasive, easy and accurate quality inspection [144]. Quality 

monitoring of packaged goods (packaged ceramic tiles) for industrial applications is one of the 

fascinating domain, which needs special attention for a competent and cost efficient 

manufacturing. Thereby, a critical investigation of different image post-processing techniques 

towards their accurate crack detection capability requires special emphasis. In addition, a robust 

methodology is needed to be developed for an automatic, adaptive quality monitoring (i.e., fault 

detection) of packaged goods for industrial applications.  

As per aforementioned research gaps, following tasks have been carried out in this thesis 

work: (i) Design of a simple, cost-effective and compact MMW dual frequency planar antenna, 

(ii) Stand-off target’s shape identification and its material classification using MMW imaging 

system, (iii) Development of size and rotation invariant target’s shape identification algorithm 

for MMW imaging system, (iv) Development of an adaptive quality monitoring algorithm to 

detect fault (crack) in packaged ceramic tiles for industrial applications with MMW imaging 
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system. This thesis consists of seven chapters. Chapter 1 presents the introduction which consists 

of motivation, scope and objectives of the thesis. Chapter 2 provides a brief literature review for 

the considered objective(s), their limitations and research gaps.  

Chapter 3 explores the design for MMW concurrent dual frequency planar antenna. 

Designing of an antenna at MMW is a quite challenging task because of several limitations, 

which are needed to be undertaken, for an optimal antenna performance, like, choice of suitable 

substrate: since at MMW frequency, surface waves are more likely to be excited which reduces 

antenna radiation efficiency; fabrication constraint: commonly used techniques at lower 

microwave frequencies, viz., slot, notch, spur, multiple stacked patches, metamaterials etc. needs 

stringent fabrication and alignment accuracies (due to correspondingly low wavelength λ/2≈1.5 

mm to 2.5 mm), so a relatively simpler technique is needed to be used without complicating the 

fabrication procedure or raising the cost. Therefore, in this chapter, a single layer, simple, 

compact and conformable antenna structure has been proposed operating concurrently at the two 

MMW frequencies 60 GHz and 85 GHz, which are having future commercial, strategic and 

industrial applications. The technique investigated for concurrent MMW antenna operation is 

stub loaded rectangular patch because of its simple and feasible fabrication. The proposed 

MMW antenna design was firstly simulated and analyzed using 3D full wave EM solver HFSS 

on Rogers RT5880 substrate (ɛr = 2.2, h = 5 mil (0.127 mm), tanδ = 0.002). Further, fabrication 

and measurement of MMW antenna prototype was performed and measured results were found 

in close approximation with that of simulated ones, giving fractional bandwidth 1% /6.4 % and 

measured gain 8.95 dBi/5.37 dBi, at 60/85 GHz, respectively. At MMW, in order to maintain 

measurement compatibility with GSG probe, a 50Ω coplanar waveguide (CPW) feedline and a 

wideband CPW to microstrip transition structure were separately designed and later on integrated 

into the antenna structure in order to couple maximum power from CPW feed to the radiating 

patch. The designed antenna structure is simple, cost-effective and compact having 3.7 mm2 

cross-sectional area.  

Chapter 4 explores the capability of MMW frequency towards standoff target’s shape 

identification and its material classification. For this, a stepped frequency continuous wave 

(SFCW) active imaging radar system was ingeniously designed at our MISTA lab, IIT Roorkee, 

India using vector network analyzer (VNA) operating in V band (60 GHz) [6]. For complete 

target’s data acquisition, C-scan (horizontal and vertical scanning) methodology was used, which 

gives us target’s information in terms of length and width. The data acquired undergoes several 
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signal pre-processing steps, such as, frequency to time domain (IFFT) conversion, time to spatial 

domain conversion, relative calibration and windowing for generating C-scan images. This C-

scan image is known as raw C-scan image. The main aim of this chapter is to identify the shape 

and classify the material of the targets. So, raw C-scan image undergoes several post-processing 

steps, viz, clutter removal, thresholding, edge detection and classification. One of the major 

problem for this type of radar images is the clutter. To remove clutter, we have applied singular 

value decomposition (SVD) technique, which has the advantage of improved image quality, 

compressibility and is better in preserving edge details as compared to other techniques, like, 

Principle Component Analysis (PCA), Factor analysis (FA) and Independent Component 

Analysis (ICA) [46]. After removing the clutter, thresholding based image segmentation was 

carried out because of its simplicity of implementation. The image statistics based mean and 

standard deviation global thresholding has been used. Edges are useful features for segmentation 

and object identification in images, which characterize object boundaries. Criterion relevant to 

edge detector’s optimum performance is good detection, good localization and single response. 

The common edge detection algorithms were critically analyzed and it was found that canny 

based edge detector is better than the other techniques, like, sobel, prewitt, roberts, laplace [210]. 

Therefore, canny based edge detector has been used after thresholding to identify the shape of 

the respective targets, i.e., triangle, square, circle, rectangle. Various models, like, estimation of 

dielectric is one of the way to identify and classify the target’s material. But in this work an image 

analysis based technique, i.e., probability density function (pdf) based approach has been 

proposed to classify the target’s materials (we have considered wood and metal only). It has been 

observed that this pdf based approach has a good potential to classify the target’s materials. 

Chapter 5, proposes a novel artificial neural network (ANN) based scale and rotation 

invariant image reconstruction model. Neural network has been used as an effective signal 

processing technique for classification/recognition of targets for various applications, like, 

speech recognition, character recognition, pattern recognition etc. Correct shape identification is 

one of the challenging problems because it suffers from orientation and size deformations in any 

practical environment. In chapter 4, while target’s shape identification; we have not considered 

orientation and size effect. Whereas, in this chapter we have proposed a pattern recognition based 

neural network algorithm to identify target’s shape, which has the capability to minimize any 

orientation and size variations. For algorithm development, we have used four different regular 

target’s shapes (i.e., rectangle, square, triangle, and circle). A single shape has been considered 
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in different sizes and is put into different orientation angles (randomly ranging from 0° to 90°), 

thereby, experimental data set of total 33 samples of C-scan data is captured using the MMW 

imaging system having varying combinations of orientations and sizes of different considered 

regular shaped targets. As we want to recognize shape, the output training data was generated in 

accordance to the input target’s size and was in binary (0, 1) matrix form. For image recognition 

problem formulation, a multilayer feed-forward neural network has been used. Any independent 

target’s data when fed as the input to the ANN model, the output generated will be the correct 

target’s shape and size irrespective of its orientation. The proposed methodology, thus, has the 

capability to identify the target’s shape by minimizing size and orientation error. 

Chapter 6 deals in non-invasive undercover fault detection methodology for industrial 

quality control applications using the ingeniously designed MMW radar system. Accurate 

monitoring and classification of packaged ceramic tiles (cracked/non-cracked) is quite important, 

which could otherwise result in financial/ repute loss to the company, besides it is particularly 

challenging because of non-uniform illumination, alignment errors and insufficient contrast in 

practical industrial scenario. Our main purpose is the fault detection, and here, we have 

considered crack as a fault. Therefore, large number of packaged ceramic tile targets with 

different crack and non-crack configurations were used for algorithm development and its 

validation. For this purpose, two approaches have been proposed. First: feature extraction based 

classification approach. Second: Spatial statistical based approach. In the first approach, critical 

investigation of different commonly used feature extraction techniques has been done for 

accurate model development with minimum false alarm. For this, an automatic feature based 

neural network classifier model has been proposed by investigating five different commonly used 

feature extraction techniques, i.e., discrete fourier transform (DFT), Daubechies wavelet 

transform (WT), texture features, principal component analysis (PCA) features and histogram of 

oriented gradient (HOG) based features. Out of these, the optimal classification accuracy has 

been achieved by HOG-NN classifier model because HOG feature has an advantage of 

developing the training sample on a cell/ window basis, which has more information than the 

whole tile based feature techniques. This has been validated using an independent set of packaged 

ceramic tiles. It is a quantitative approach, which tells whether the packaged tile is cracked or 

non-cracked. Further, to visualize the crack location, we have also developed a spatial statistics 

based model, which is based on image reconstruction approach and provides information about 

location of the crack also. The statistical parameters (maxima, minima, median, and standard 
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deviation) of target’s image play an important role in determining particular target’s 

characteristics, and also vary largely even for similar type of targets owing to non-uniform 

illumination, clutter, different multipath reflections, etc. Hence, it is quite essential to develop a 

statistics based generalized, adaptive crack classification and localization algorithm to make it 

more robust and adjustable as per frequent changes in image parameters in real scenario. Since, 

crack could be anywhere on the ceramic tile and of any random type, a window based statistical 

pattern search model has been proposed to scan the complete tile sequentially and to detect 

cracked locations, apart from just the crack/ non-crack classification. A mathematical 

formulation has also been developed for achieving user defined performance goals of accuracy 

and false alarm and an optimum threshold value is searched through GA optimization for crack/ 

non-crack location estimation. Here, while algorithm development main emphasis was to achieve 

near to zero false alarm for non-cracked full packaged ceramic tiles so as to avoid any unwanted 

loss and to further improve industry quality production. The developed proposed algorithm was 

also validated through independent packaged ceramic tile targets and was found to perform quite 

well. 

In chapter 7, the contributions made in the thesis are summarized and scope of future 

work is outlined. The proposed MMW robust target’s shape identification and adaptive quality 

monitoring model for ceramic tiles will be certainly helpful to make a complete automated 

system for industry.            
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Chapter 1          

Introduction 
 

In recent years, millimeter wave (MMW) frequency (30GHz-300GHz) has received tremendous 

interest among researchers pertaining to its unique and favorable features in contrast to the over 

flooded microwave frequency band [50, 235]. MMW encounters higher atmospheric attenuation 

which favors higher frequency re-use over very short distances, thus, allowing high throughput 

secured network applications. Moreover, due to the large available bandwidth and associated 

lower wavelength, it supports multi-gigabit data rate (WPAN-IEEE 802.15.3c, IEEE 802.11ad) 

as well as miniaturized systems. Additionally, MMW’s lend themselves as an excellent candidate 

for high resolution, stand-off imaging applications, like, non-invasive target’s shape 

identification and its quality estimation. The capabilities and applications of the MMW’s are vast 

and diverse, thereby, presently getting tremendous attention among researchers around the globe.  

Along with these fascinating applications, MMW experiences certain technological 

challenges due to correspondingly small sizes of the resonant structures, henceforth, it is quite 

challenging to realize components, systems without elevating the complexity. Additionally, with 

the increasing demand for multi-tasking, portable devices, techniques for dual band MMW 

systems are more stringent. In any MMW system, antenna is an element responsible for routing 

the EM traffic from transmission line to free space and vice-versa. Presently, different techniques 

are being practiced for dual band MMW antenna design, but still it is a quiet challenging task to 

design such an antenna having simple, compact and cost-effective design.  

Efforts to capture visions beyond the range of human eye have long fascinated scientists 

and engineers. Nowadays, imaging devices have been used as a precious tool in many fields of 

security, meteorological, military, medical and space exploration, etc., and have effect in all 

aspects of our life [99, 305, 324]. Particularly, radar imaging has become the most ubiquitous 
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technologies for non-invasive and non-destructive imaging. An EM wave incident on a medium 

is scattered in all directions when it encounters a change in electric or magnetic properties of the 

medium. A careful analysis of scattered EM waves leads to a better understanding of the 

characteristics of the medium in a holistic way. Today, imaging radars are massively used in 

various fields ranging from mapping the earth and weather patterns, to creating images of objects 

buried in the ground, or hidden behind obstructions [89, 144]. One of the major concerns of 

imaging radar that has recently received great significance is the target’s shape identification and 

its material classification apart from just detection in order to capture more realistic, complete 

information and the proper threat level estimation of the targets. Another, increasingly 

demanding area is the quality monitoring of packaged goods for industrial applications for an 

automated, prompt and non-invasive fault inspection system. Any such type of technique will 

significantly improve the throughput of company as well as the quality of the final output 

products. 

1.1.  Motivation 

There are several imaging modalities available having different resolution capabilities and unique 

spectral characteristics. State-of-the-art EM based imaging techniques suffer from several 

limitations, like, microwave imaging languish from lower resolution, hence, difficult to provide 

target’s shape identification; X-ray imaging generates harmful ionizing radiation, hence, not safe 

for human exposure, and visible/IR imaging has the incapability to penetrate through concealed 

objects, hence, inapplicable for non-destructive testing [109]. Hereafter, in the surge of an 

efficient imaging spectrum, MMW frequency (30 GHz - 300GHz) is presently receiving 

considerable attention, which offers interesting and favorable features because of its ability to 

penetrate through clothing in contrast to visible and IR systems limitations; its higher resolution 

capability in contrast to microwave imaging; and its non-ionizing radiation (MMW radiates 

power up to 5mW/cm2 with shallow penetration depth (<0.5 mm), hence, medically safe to the 

human body) in contrast to ionizing X-rays [110, 351]. Resolution is a property of an image that 

describes the level of fine details which can be discerned from it. MMW imaging systems provide 

sufficiently high spatial resolution and can be realized using comparably small antenna sizes 

needed for a practical and deployable system. MMW finds its use in different practical areas 

related to personal screening, military applications, concealed objects/weapons, medical 
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imaging, quality monitoring, moisture content and material characterization, etc. [136, 196, 270]. 

There exist many challenges for the development of a successful imaging radar system. The 

system performance should be robust to minimize the ambiguities and inaccuracies in targets and 

it should be able to function properly under inhomogeneity and non-stationary in the sensing 

environment.  

The science of radar imaging is based on spatial mapping of the distribution of target’s 

image contrast in a scene. In passive imaging, this contrast is a function of temperature and 

emissivity distribution of the background and the reflectance distribution of the target. However, 

in an indoor environment, this temperature contrast adversely affects the quality of the image 

formed, hence poses the limitation for passive imaging systems. Active imaging uses artificially 

generated radiation to illuminate the target. Here, the formed image is dominated by the target’s 

reflectance distribution and is independent of surrounding temperature. The RADAR (Radio 

Detection and Ranging) sensor transmits EM waves towards a target (or object), and then 

receives the scattered EM waves back from it. The two-way travel time (τ) of the EM wave is 

associated with the range (R) of the target, and is defined as 𝑅 = 𝑐𝜏/2, where, c is the speed of 

light in free space [288]. The radar system should also have high range and cross-range 

resolutions, which could be required for different system applications. To be a high-resolution 

radar (HRR) sensor, shortened pulse width τ or higher bandwidth (B) of the pulse is needed. The 

higher bandwidth of the pulse is restricted by available technologies [127]. According to the 

waveform used for transmission, the radar sensor can be categorized as a pulsed or Continuous -

Wave (CW). The pulsed radar sensor typically transmits a short pulse train at very low power 

levels and is cost effective and simple. However, it cannot support both high range resolution 

and deep penetration simultaneously [288]. The Frequency Modulated Continuous Wave 

(FMCW) radar sensor uses a beat frequency (fd) to seek the range (R) information of a target, 

where the beat frequency accounts for the relative time delay (τ) of the transmitted signal to the 

returned signal [223]. Wide bandwidth of the FMCW radar sensor degrades the receiver’s 

sensitivity and results in reducing penetration depth and degree of accuracy. A stepped frequency 

continuous wave radar (SFCW) radar sensor provides the range resolution of wideband systems 

with the advantages of narrowband systems [78]. It is a contemporary technology that can be 

implemented with off-the-shelf components. This makes step-frequency radar cost effective and 

an attractive technique to achieve high range resolution, particularly in an era of declining 

defense expenditures towards the development of new radars. 
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One of the main components of any imaging radar system is an antenna which determines 

how efficiently a radio device can transfer EM waves from a transmission line to free space and 

vice versa. At MMW frequencies, the short wavelength enables integration of antenna for 

monolithic integrated circuits (MIC’s), which favors the choice of using a planar antenna [122, 

341]. Further, demands of multiprocessing and multitasking applications have accelerated the 

need for dual frequency antennas and systems [168, 277]. Nevertheless, designing of a dual 

frequency antenna at MMW frequency is quiet challenging due to associated low dimensions and 

higher precision requirements. Moreover, parasitic and higher order mode losses need special 

attention to design a simple, compact and cost-effective MMW dual frequency antenna [172, 

238]. 

In context to imaging, for accurate identification of the targets, its sufficient spatial details 

have to be extracted for its image formation from the reflectivity data of the targets as recorded 

by the MMW imaging radar system. These fine target’s details would help to estimate the correct 

target’s information in terms of its shape, size which can be useful to the end user for its 

interpretation [272, 325]. To meet these challenges, research in MMW imaging is mainly directed 

in areas of signal processing, pattern analysis techniques and adaptive algorithm development, 

which could facilitate automatic target’s shape identification without human intervention. The 

identification of targets becomes more challenging in the presence of strong clutter. The signal 

received from radar consists of addition of the desired response of targets with other signals 

arising mainly from radar system parameters, background reflections, environment and multiple 

reflections. These undesired components in the received signal are referred to as clutter. 

Researchers have developed various clutter reduction techniques to enhance target detection/ 

identification accuracy and reduce false alarms, viz, factor analysis, principal component 

analysis, singular value decomposition and factor analysis [2, 46]. In addition, in order to enable 

the user to discriminate between the object and the background as well as to differentiate between 

different objects, several image enhancement and segmentation processing steps are applied. For 

extracting relevant target’s information, thresholding and edge detection techniques have been 

proposed [14, 321, 353]. However, due to varying intensity levels in target/ background and non-

uniform illumination, investigations on optimum target’s image enhancement technique for 

MMW imaging requires special devotion. Merely target’s identification in terms of its shape and 

size does not facilitate proper discrimination between simple innocuous items, such as, glasses, 

belt buckles, keys, toy items, etc., and actual threats, because of possible shape similarities among 
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them. This may lead to a rather higher number of nuisance alarms. A fundamentally different 

security measure is required to handle these threat situations, possibly in terms of target’s 

material classification apart from just identification [164, 333]. Thereby, appropriate research is 

required in order to develop a technique for target’s material information extraction.  

In many practical, real world imaging scenarios, target’s shape identification becomes 

quiet challenging due to distortions in the target’s image, which may occur due to randomly 

varying target’s sizes and its orientations. In practical applications, we cannot expect the target’s 

to be imaged will be in the exact position, angle and will be of fixed size. Hence, any fixed 

methodology may not provide accurate target’s shape identification for varying conditions. An 

invariant and robust methodology is essentially required which could adaptively read the target’s 

changes related to size and orientation and provide the correct target’s shape identification. 

Different invariant feature extraction techniques are available for different applications [178, 

215], but in the context of MMW imaging there is a need to develop an adaptive and robust 

algorithm, which can be applied successfully to reconstruct the target’s images defying varying 

distortion levels, i.e., orientation, scale and translation errors due to noise, non-uniform 

illumination [6]. 

Moreover, MMW frequency has the capability to penetrate through an opaque material/ 

clothing and can extract target’s characteristic information [117, 182]. MMW, thereby, offers a 

good imaging tool for inspection of quality and condition of industry goods/ materials towards 

fatigue, wear and tear without hampering its utility and efficacy. Research works for various non-

destructive testing and estimation (NDT& E) applications include wafer inspection for 

delamination [136], surface crack detection [219, 240], corrosion, void [148, 356], moisture 

content [194] etc. In addition, it may also provide a good solution towards non-invasive quality 

inspection of packaged ceramic tiles for industry applications. In view of these possible 

fascinating MMW features, a critical investigation of different image processing and computer 

vision techniques towards their fault detection capability is essentially required and a robust 

methodology is needed to be developed for an automatic crack scanning for the quality check of 

packaged goods. Henceforth, MMW based imaging systems could provide a good choice towards 

non-invasive, easy and accurate quality assessment. 
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1.2.  Problem Statement 

The present research work aims to utilize MMW frequency for providing a compact, simple and 

cost-effective dual frequency planar antenna design and a fully adaptive, promising MMW radar 

imaging solution to the target’s shape identification and its material classification. Additionally, 

objectives of the research work are to explore the applicability of different image processing 

techniques to develop novel algorithms for devising simple and adaptive solution for concealed 

target’s fault detection/ localization for industrial quality monitoring applications. Some of the 

key challenges and issues inherent in the development of antenna design and the algorithms 

include: 

1) At MMW frequency, radiated power encounters much higher losses due to surface wave 

and higher order mode propagation and thereby, reduces antenna efficiency. Further, 

fabrication and measurement constraints are more stringent due to correspondingly much 

lower dimensions at MMW. 

2) It is very difficult to extract the desired target’s information, i.e., its shape identification 

and target’s material classification due to lack of proper methodology in terms of different 

post-processing techniques.  

3) Accurate target’s shape identification may be adversely affected due to distortions in the 

image in real situations in terms of improper target’s orientation and size variations. 

4) Quality monitoring of concealed objects may produce false alarms in practical industrial 

scenario owing to non-uniform illumination, background noise and unwanted multipath 

reflections.   

Different tasks that were accomplished keeping in mind the above-said challenges and limitations 

are: 

i. Task 1:  Design of a simple, cost-effective and compact MMW dual frequency planar 

antenna. 

ii. Task 2: Stand-off target’s shape identification and its material classification using MMW 

imaging system. 

iii. Task 3: Development of size and rotation invariant target’s shape identification algorithm 

for MMW imaging system. 

iv. Task 4: Development of an adaptive quality monitoring algorithm to detect fault (crack) in 

packaged ceramic tiles for industrial applications with MMW imaging system. 
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1.3.  Framework of the Research 

The complete framework of the proposed research work is presented in Figure 1.1 which is 

categorized mainly as: (i) A simple, compact and cost-effective concurrent dual frequency MMW 

antenna design, and (ii) Development of fully adaptive and automatic algorithm for target’s shape 

and fault (crack) detection. Following subtasks have been performed for completing the 

considered four tasks discussed in section 1.2: 

 The Critical review of related literature to the problems corresponding to each task and 

identify the limitations of the exiting solutions.  

Task 1 deal with the design of a simple, cost-effective and compact MMW dual frequency 

planar antenna that includes following subtasks: 

 Development of an appropriate methodology for achieving dual frequency MMW planar 

antenna design.  

 Keeping in view of measurement compatibility, the design of a coplanar transmission line 

and a CPW-to –microstrip line transition structure. 

 Simulation and modelling of different antenna sub-sections and the complete antenna 

structure using EM wave solver HFSS. 

 Fabrication of designed dual frequency antenna on Rogers RT5880 substrate and 

measurement of antenna parameters, viz., resonant frequency, fractional bandwidth, gain. 

Task 2 emphasizes on stand-off target’s shape identification and its material classification 

using MMW imaging system which includes following subtasks: 

 To ingeniously design the MMW SFCW imaging radar setup for target’s imaging.  

 Target’s preparation for its shape identification and observations.  

 Critical analysis of different signal post processing techniques, viz., clutter reduction, 

thresholding and edge detection in order to have target’s shape information. 

 Development of target’s material classification algorithm. 

Task 3 focuses on the development of size and rotation invariant target’s shape identification 

algorithm for MMW imaging system that includes following subtasks: 

 Target’s preparation, i.e., targets of four regular shapes, viz., square, rectangle, triangle 

and circle were taken in different sizes and mounted in different orientation angles 

between 0° to 90°.  
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 Development of size and rotation invariant algorithm for target’s shape identification for 

MMW imaging system.  

 Validation of the developed algorithm using the independent targets of random sizes and 

orientations of the four regular shapes. 

Task 4 deals with the development of an adaptive quality monitoring algorithm to detect fault 

(crack) in packaged ceramic tiles for industrial applications, which is accomplished by 

following subtasks: 

 Target’s preparation for non-invasive concealed fault (crack) detection by considering 

packaged ceramic tiles in different crack/ non-crack configurations. 

 Investigations on different feature extraction techniques in view of developing an 

automatic optimum feature-based-fault classification model. 

 Development of an adaptive algorithm for fault (crack) localization in packaged ceramic 

tiles using target’s image spatial statistical parameters.  

 

A brief insight to the basics of the two broad objectives of the research work, i.e., (i) MMW 

dual frequency planar antenna design, and (ii) MMW imaging radar system design is given 

below: 
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Target detection: Signal pre-

processing

Experiment set up design and 

target preparation for MMW 

imaging

Fully adaptive spatial statistical 

approach for undercover fault 

detection and localization

Quantitative approach for 
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packaged ceramic tiles

Adaptive ANN model for 

rotataion and size invariant 

target image reconstruction

Target identification: Signal 

post-processing

 MMW dual frequency 

planar antenna design

MMW target’s shape 

and fault detection

Validation of developed algorithm for 

correct target’s shape identification 

and its fault classification

Estimation of dual frequency 

MMW antenna design 

prerequisites

Characterization and performance 

validation of fabricated antenna with 

simulated results

 EM modeling of CPW line, 

microstrip line, transition structure 

and complete integrated antenna

 MMW  prototype antenna 

fabrication

 

Figure 1.1. Flowchart for research framework. 

 

1.4.  Basics of Antenna Design and SFCW Based Imaging 

1.4.1.  Dual Frequency Planar Antenna Design Prerequisites  

One of the important constituents of a successful MMW imaging system, is an efficient antenna 

design, which should provide simplicity of fabrication, integration for MMIC implementation 

and should be commercially competent. In this context, planar antennas find natural charm due 

to their features of low profile, simple, conformable, rigid and robust characteristics [27, 86].  
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1.4.1.1.  Planar Antenna Design Equations 

The basic structure of microstrip antenna consists of a rectangular conducting patch of 

length (𝐿)  and width (𝑊) as shown in Figure 1.2(a). The microstrip antenna can be represented 

by two radiating slots along the length of the patch (each of width W and height h) due to the 

fringing fields as shown in Figure 1.2(b). For the dominant TM010 mode, the resonant 

frequency (𝑓𝑟) of microstrip antenna depends on its length (𝐿) and given by [27], 

(𝑓𝑟)010 =
1

2𝐿𝑒𝑓𝑓√𝜀𝑒𝑓𝑓√𝜇0𝜀0
                                                      (1.1) 

 

 

                                (a)                                                                      (b) 

Figure 1.2. (a) Rectangular microstrip planar antenna, (b) effective length of antenna and 

fringing of field [27].  

 

Here, 𝐿𝑒𝑓𝑓 is the effective length due to fringing electric fields present at the radiating 

edges, 𝜇0 is the free space permeability and 𝜀0 is the free space permittivity, 𝜀𝑒𝑓𝑓 is the effective 

dielectric constant, given by [239]: 

𝜀𝑒𝑓𝑓 =
𝜀𝑟+1

2
+
𝜀𝑟−1

2
[1 + 12

ℎ

𝑊
]
−1/2

                                     (1.2) 

Here, 𝜀𝑟 is the substrate relative permittivity, ℎ is the height of the substrate and 𝑊is the 

patch width. The actual patch length 𝐿 can be calculated by taking into account fringing field 

effect, given by [27], 

𝐿 = 𝐿𝑒𝑓𝑓 − 2∆𝐿 =
1

2𝑓𝑟√𝜀𝑒𝑓𝑓√𝜇0𝜀0
− 2∆𝐿                              (1.3) 
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∆𝐿

ℎ
= 0.412

(𝜀𝑒𝑓𝑓+0.3)(
𝑊

ℎ
+0.264)

(𝜀𝑒𝑓𝑓−0.258)(
𝑊

ℎ
+0.8)

                                          (1.4) 

  where, ∆L is the extension length due to fringing. The width of radiating patch is given by [27], 

   𝑊 =
1

2𝑓𝑟√𝜇0𝜀0
√

2

𝜀𝑟+1
                                                          (1.5) 

In this design, microstrip feedline is used to excite the patch. For a given characteristic 

impedance 𝑍0, 𝑊 ℎ⁄  can be found by the standard formula [27] as follows: 

 
𝑊

ℎ
=

{
 
 

 
 

8𝑒𝐴

𝑒2𝐴−2
                                                                 𝑓𝑜𝑟 𝑊 ℎ⁄ < 2

2

𝜋
[𝐵 − 1 − ln(2𝐵 − 1) +

𝜀𝑟−1

2𝜀𝑟
{ln(𝐵 − 1) + 0.39 −

0.61

𝜀𝑟
}]

𝑓𝑜𝑟 𝑊 ℎ⁄ > 2

                    (1.6) 

Where,    𝐴 =
𝑍0

60
√
𝜀𝑟+1

2
+
𝜀𝑟−1

𝜀𝑟+1
(0.23 +

0.11

𝜀𝑟
)𝐵 =

377𝜋

2𝑍0√𝜀𝑟
 

 

1.4.1.2.  Basic Antenna Parameters 

The performance of the antenna is evaluated using some basic parameters for all kinds of 

antennas regardless of its structure or frequency. A brief description of parameters is given below 

that will be later on used: 

 Return Loss  

It is a measure of the effectiveness of power delivery from a transmission line to a load, 

i.e., antenna. If the power incident on the antenna is 𝑃𝑖𝑛 and power reflected back to the source 

is 𝑃𝑟𝑒𝑓, the degree of mismatch between incident and reflected power is given by ratio 
𝑃𝑖𝑛

𝑃𝑟𝑒𝑓
⁄ . 

The higher is the power ratio, better the load and line are matched. Return loss is defined as [31]:                            

      𝑅𝐿 = 𝑆11 =  10 log10 (
𝑃𝑖𝑛

𝑃𝑟𝑒𝑓
) 𝑑𝐵                                                 (1.7) 

Which is a positive quantity since, 𝑃𝑟𝑒𝑓< 𝑃𝑖𝑛. Expressing the power in terms of voltage 

(or, field strength) in a transmission line, then Equation (1.7) becomes 
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  𝑅𝐿 = 10 log10 |
1

Γ2
| 𝑑𝐵 = −20 log10|Γ| 𝑑𝐵                                        (1.8) 

where, Γ is the complex reflection coefficient at the input of the antenna. That is, return loss is 

the negative of the reflection coefficient expressed in decibels. As a rule of thumb, return loss > 

10 dB is considered to be good for an antenna, which means 90% of incident power is radiated, 

however, only 10% power is reflected back to the source. 

 Bandwidth  

Antennas are based on a resonance phenomenon and hence they have a certain impedance 

bandwidth (BW). The impedance bandwidth is usually defined as a frequency range, in which the 

absolute value of the reflection coefficient remains below a certain predefined level. Typically, 

|Γ|2 ≤ −10 dB is used as a matching criteria for integrated planar antennas. 

 Gain  

One of the parameters defining the radiation properties of an antenna is the gain of the 

antenna 𝐺(𝜃, 𝜙), which is a product of 𝐷(𝜃, 𝜙) and radiation efficiency 𝜂𝑟. Radiation efficiency 

is a ratio of the radiated power Prad and the power accepted by the antenna Pin. Directivity 𝐷(𝜃, 𝜙), 

is the power density radiated to a certain direction (𝜃, 𝜙) in the standard spherical coordinate 

system divided by the average power density. Thereby, realized gain includes the matching losses 

as well, and is defined as [27]   

𝐺(𝜃, 𝜙) = 𝜂𝑟𝐷(𝜃, 𝜙)                                                    (1.9) 

 Radiation Pattern 

 It is the graphical representation of antenna’s radiation properties as a function of space 

coordinates, in the far-field region of the antenna. It describes how the antenna radiates energy 

out into space (or how it receives energy). Since, the antenna radiates energy in all directions, at 

least to some extent, so the antenna pattern is actually three-dimensional as shown in Figure 

1.3(a). However, antenna radiation can be easily visualized using two principal planar patterns, 

viz., azimuth plane pattern and elevation plane pattern. The term azimuth refers to “the horizon” 

or “the horizontal” whereas the term elevation refers to “the vertical”. In Figure 1.3(b), the x-y 

plane (θ = 90°) is the azimuth plane. The elevation plane is orthogonal to the x-y plane, say the 

y-z plane (𝜙 = 90°) [116].  
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(a)                                                          (b) 

 Figure 1.3. Antenna radiation pattern: (a) 3D graphical representation, (b) 2D Principal plane 

patterns [27]. 

 

The radiation pattern of a patch antenna is characterized by a single main lobe of moderate 

beamwidth. The two radiating slots form a two-element array with a spacing of λ/2 between 

them. The components of the field in the two slots add in-phase, in a direction perpendicular to 

the ground plane, giving a maximum radiation normal to the patch, therefore, microstrip patch is 

a broadside radiating antenna [27]. 

 

1.4.1.3.  Dual Resonance Techniques 

Increasing demand of miniaturized and multi-tasking communication devices, has excel 

the design of dual band RF systems and hence there is a need for dual resonant MMW antennas 

that could provide concurrency as well as redundancy. Typically used techniques are: 

 Orthogonal Mode Dual-Frequency Patch Antennas [181, 304]  

It uses the first resonance of two orthogonal dimensions of the patch, i.e., TM10 and TM01 

modes and can be achieved by using single feed or dual feed as shown in Figure 1.4 by the 

example antenna configurations. The obvious limitation of this approach is that the two different 

frequencies excite two orthogonal polarizations. However, this is a simple method and very useful 

in low-cost, short-range applications. 
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           (a)                                      (b)                                    (c)                             (d) 

 Figure 1.4. Orthogonal-mode dual frequency patch antenna: (a) single feed-using probe, (b) 

single feed- using aperture coupling, (c) dual feed-using probe, (d) dual feed- using aperture 

coupling [157]. 

 

 Multi-Patch Dual Frequency Antennas [3, 7, 177, 275, 314]  

It uses multiple radiating elements placed as co-planar patches or vertically stacked 

patches as shown in Figure 1.5(a) and (b), respectively. It can operate with the same polarization 

at the two frequencies, as well as with a dual polarization. It allows only a limited value of the 

frequency ratio also high precision and sophisticated fabrication techniques poses a limitation 

towards its use as a MMW dual frequency antenna.  

 

              

                                        (a)                                                                      (b)                                     

 Figure 1.5. Multiple-patch dual frequency antennas, (a) co-planar patches, (b) vertically stacked 

patches [157]. 

 

 Reactively Loaded Dual Frequency Patch Antennas [8, 19, 64, 66, 119, 193]  

It is one of the popular techniques for obtaining a dual-frequency behavior by introducing 

reactive loading to a single patch by including notches, pins, capacitors, slots, and shorting vias 

etc. Few of the example dual band antenna configurations are shown in Figure 1.6. Here, the 

higher mode resonant frequency is modified by altering the current distribution path. However, 

at MMW frequency, special attention is required for the choice of proper technique for the dual 

frequency operation in view cost effectiveness and simplicity of fabrication. 
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                   (a)                                (b)                                (c)                             (d) 

 Figure 1.6. Reactively loaded dual frequency patch antenna using: (a) notch, (b) shorting pin, 

(c) square slot, (d) stub [157]. 

 

1.4.2.  SFCW Imaging Radar System Design and Imaging Parameters 

SFCW radars, transmit and receive consecutive trains of N frequencies changed by the 

incremental frequency step (Δf) [288]. Instead of using a linear FM signal for a high time-

bandwidth product signal, we can obtain similar results by stepping through a number of discrete 

frequencies as shown in Figure 1.7, such that,  

fn = f0 + (N − 1) x Δf                                                  (1.10) 

Each pulse is τ seconds wide, and the time interval T between the pulses is adjusted for 

unambiguous range. Note that the frequency stays constant within each pulse. If the reference 

signal for the Nth pulse is 

𝐴1𝑐𝑜𝑠2𝜋(𝑓0 + 𝑁∆𝑓)𝑡                                                       (1.11) 

Then, the target signal after a round trip delay of 2R/c can be represented as 

𝐴2𝑐𝑜𝑠2𝜋(𝑓0 + 𝑁∆𝑓) (𝑡 −
2𝑅

𝑐
)                                               (1.12) 

The phase detector output for the nth pulse is  cos nA  , where 

04 2
2 .n

f R f R
nT

c T c


 

 
   

 
     (1.13) 

The first term represents a constant phase shift, which is not of any practical significance. 

The second term is the multiplication of the rate of change of frequency /f T  with the round-

trip time 2𝑅/𝑐. Thus, the range (or the round-trip time) is converted into a frequency shift. 
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Therefore, it is possible to resolve and measure the range by resolving the frequency, by taking 

the discrete IFFT of the received signal from N frequency-stepped pulses. 

 

f0 f0+∆f f0+2∆f f0+(N-1)∆f

Ʈ 

T

 

Figure 1.7. Step frequency increment of the transmitted SFCW radar waveform 

  

The advantages of SFCW radar sensors are [13]: (1) a narrow instantaneous bandwidth 

that significantly improves the receiver’s sensitivity while maintaining the average power, (2) a 

high average transmit power, resulting in a deeper penetration, due to the use of CW signals, (3) 

since the system transmits only one frequency at a particular instant of time, the received signals 

propagated through dispersive media can be accurately compensated, (4) enables greater 

precision and ease in designing the circuits. On the flip side, a few disadvantages of the SFCW 

radar sensors include their high complexity and cost. Detection of moving targets with SFCW 

radar is not as straightforward as in conventional radars. Range resolution (or pulse compression) 

cannot be achieved with a single pulse. It would require transmission, reception, and processing 

of a group of pulses, hence, SFCW approach has a limitation of acquisition time.  

1.4.2.1.  SFCW Radar Parameters 

 Bandwidth 

 In SFCW radar, pulses of typical time duration have narrow bandwidths, thus making the 

instantaneous bandwidth of the radar narrow. However, effective large bandwidth can be realized 

by appropriately processing the N pulses, i.e., BW = N.∆f over the complete duration. 

 Unambiguous Range 

The frequency step (∆f) of SFCW waveforms should be kept small enough such that 

unambiguous range (Rmax) is larger than the maximum expected target’s range. In the SFCW 

radar, because of quadrature mixing at the receiver, the baseband spectrum becomes single-sided. 

Thereby, the Nyquist sampling criterion for SFCW radar reduces to [288]: 
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     (1.14) 

By specifying the start and stop frequencies, f0 and fmax, and the number of frequencies 

Nf, we can easily derive the frequency step 

max 0

1f

f f
f

N


 


     (1.15) 

 Range Resolution  

 The absolute bandwidth (B) of the transmitted EM waves determines the range (or 

vertical) resolution ΔR, which shows the radar ability to distinguish closely spaced targets within 

a specific range R [123].  

2 2eff

c c
R

B N f
  


      (1.16) 

The SFCW radar resolution does not depend on the instantaneous bandwidth, and the 

resolution can be increased arbitrarily by increasing N∆f, which is significantly advantageous.  

 Number of Points  

 There is a constraint on selection of ∆f (i.e., 1/f   ); however, N can be increased to 

realize very high range resolution irrespective of waveform and compression method used, but 

fine range resolution does require large bandwidth. For the step-frequency radar, large bandwidth 

is obtained sequentially over many pulses by inter-pulse frequency modulation. 

1.4.2.2.  MMW SFCW Radar Experimental Setup Design  

 Figure 1.8 shows the experimental setup for MMW active imaging radar system. MMW 

radar in stepped frequency continuous wave (SFCW) mode has been assembled using vector 

network analyzer (make: Agilent N5247A (10 MHz-67 GHz) PNA-X), pyramidal horn antenna 

(make: MESA MW-HF-907V) and VNA cable (make: MMW-N4697F (DC to 67 GHz) –

1.85mm).  
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 Figure 1.8. Experiment setup for MMW active imaging radar with the target mounted on a 2D 

scanning frame. 

 

Typical specifications of designed SFCW based MMW active radar are given in Table 

1.1. Horn antenna in the mono-static mode was fixed and a movable target was kept at a stand-

off distance of 110 cm from the antenna. 

 

Table 1.1. Specifications for SFCW based active MMW imaging radar 

S. 

No. 
MMW Active Radar Parameter Typical Value 

1 Operating frequency 60 GHz 

2 BW 2GHz (59-61GHz) 

3 No. of frequency points 201 

4 Transmitted Power 10dBm 

5 frequency step size  10 MHz 

6 Antenna type Pyramidal Horn 

7 Beamwidth ( E, H Plane) 9.1°, 10.4° 

8 Gain 25dBi 

 Scanning for Imaging 

Targets were mounted on a two dimensional (2-D) scanning wooden frame such that it 

can slide smoothly in cross-range as well as in upwards and downwards direction. The MMW 
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radar system with a single horn antenna has been used to transmit and receive the SFCW signal 

at one fixed location and then the target is moved to the next horizontal position at a regular 

interval, until the whole of the target is scanned horizontally. Next, the target is moved upwards 

and again horizontal scanning process is repeated at this vertical target location, until the whole 

target is covered laterally. The same procedure is repeated for other vertical target positions, until 

the complete target is scanned. Using this scanning methodology, the target is scanned fully by 

the finite narrow beamwidth horn antenna from one edge of the target to the other edge 

sequentially. The scanning position at any particular target location is denoted by (x, y) as shown 

in Figure 1.8, where x denotes lateral (or cross range) point (ranging from 1 to X) and y denotes 

vertical (or height) point, (ranging from 1 to Y). Spacing between two consecutive scan positions 

is kept 0.02 m in both vertical and horizontal directions.  

 

 Cross-Range Resolution 

Cross-range resolution is the radar system’s ability to successfully discriminate two 

closely spaced objects laterally. According to synthetic aperture theory, it is given by [335]: 

∆𝐶𝑅 =
𝜆𝑅

𝐷
               (1.17) 

where, ∆𝐶𝑅 is the lateral resolution of the radar, 𝜆 is the wavelength, 𝑅 is the distance of the 

target from the synthetic aperture and  𝐷 is the lateral dimension of synthetic aperture.  

 Data Acquisition 

 In order to have full imaging information, the target is scanned in two orthogonal 

directions, i.e., horizontal (along the width) and vertical (along the height), such that, the target 

is covered completely. Readings of all three types of scans viz. A-scan, B-scan, C-scan were 

taken [46].  

 A-scan (Range Profile)  

A-scan is a plot, in which the reflected signal received from any fixed target position is 

represented as a function of signal strength vs downrange distance and is also termed as range 

profile. As shown in Figure 1.8, for any fixed target position (x, y), the plot of reflection parameter 

vs down-range distance will be the A-scan. A-scan gives the information related to target 
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presence or absence as well as target’s exact location in downrange. A symbolic demonstration 

of the A-scan plot for stand-off target detection is given in Figure 1.9. Here, the first peak in the 

range profile corresponds to the maximum reflection due to antenna-air impedance mismatch. 

Any second peak in range profile, signifies presence of the target at that particular down-range 

index. The exact target’s location can be found by converting it to the corresponding round trip 

distance as discussed in the start of section 1.3.2. Since, we have taken N = 201 discrete frequency 

steps, hence, the size of the A-scan matrix will be a vector of dimension (1, 201). 

 

 

 Figure 1.9. A-scanning at a fixed antenna location. 

 

 B-Scan  

It is an ensemble of multiple A-scans taken along different horizontal scanning positions. 

B-scan provides information related to the target’s horizontal extent, i.e., width of the target. 

With simple B-scan, the height of the target cannot be found. Figure 1.10 shows the 

demonstration for accomplishing B-scan. Here, multiple A-scans are taken along horizontal 

scanning positions, viz., x = (1, 2, ., ., X), hence, the size of B-scan matrix will be a 2D matrix of 

size (X, 201), where, X represents the total number of horizontal scanning locations. 
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Figure 1.10. B-scanning at different horizontal scanning positions. 

 C-Scan  

C-scan signal is obtained from stacking of multiple B-scans taken along different vertical 

scanning positions, viz, y = (1, 2, …..,Y). C-scan provides the target’s vertical extent, i.e., height 

of the target apart from its lateral length. Figure 1.11 gives the pictorial demonstration for 

performing C-scan by scanning the target in two orthogonal directions, i.e., along x-axis (x = 1, 

2, …, X) and along y-axis (y = 1, 2, …., Y).  

 

Y

X

Z

C-Scan

D
ow

n 
ra

ng
e

V
er

ti
ca

l 
S

ca
n

n
in

g

Horizontal Scanning

Target location 

in down-range

(1,1,1)

(X,Y,N)

(1,1,n)

(1,1,N)

(1,Y,N)

(X,1,1)

(1,Y,1)

(x,y,n)

 

 Figure 1.11. Representation for 3D C-scan by stacking multiple B-scans at different vertical 

scanning positions. 
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  The complete C-scan is a 3D matrix, where, each cell entry represents intensity values as 

a function of cross range location, vertical location and downrange index, thereby, giving 3D C-

scan matrix of size = (X, Y, N). The total C-scan provides essential valuable information for the 

complete target’s shape identification. However, in order to have the target’s shape information, 

2D C-scan matrix is extracted from the 3D matrix, at particular target downrange index 

corresponding to peak intensity reflection as discussed in the A-scan plot in Figure 1.9. The 

extracted 2D vertical slice of the target’s image at the downrange index ‘n’ is shown in the Figure 

1.11 and will be of size (X, Y). 

1.5.  Organization of the Thesis 

The organization of the thesis is as following. Chapter 2 gives a brief introduction with review 

on the existing MMW dual frequency antenna design techniques, MMW imaging for target’s 

shape identification and its material classification, and non-invasive quality monitoring 

applications. Contributions of different digital image processing techniques in radar image 

analysis have been also briefly discussed. In chapter 3, we propose the design of a MMW simple, 

compact and cost-efficient concurrent dual frequency planar antenna. Chapter 4 describes the 

proposed methodology for accurate target’s shape identification using different signal processing 

techniques, like, clutter reduction, thresholding, edge detection, and target’s material 

classification using probability density function approach. Chapter 5 deals with the exploration 

of developing an effective solution for distortions in target’s image in terms of orientation and 

size variations. Thereby, a novel, rotation and size invariant target’s shape reconstruction 

methodology has been proposed employing artificial neural network model. Chapter 6 

investigates non-invasive quality monitoring of concealed objects for industrial applications 

using MMW radar imaging. Our main purpose is the fault detection, here, we have considered 

cracks in ceramic tiles as a fault and for this purpose, two approaches have been proposed. In the 

first approach, an image feature extraction technique-based-neural network classification model 

has been developed, which is a quantitative approach. Whereas, in the second approach, a spatial 

image statistics based adaptive pattern search algorithm has been proposed which facilitates 

crack detection as well as its particular location estimation. In chapter 7, a summary of the 

contribution of research work and future scope of work is presented. 
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Chapter 2           

Literature Review 
 

This chapter starts with the brief review of the characteristics of the millimeter wave (MMW) 

frequency spectrum, its peculiarities and different applications supported by it. MMWs lend 

themselves as an excellent modality for the application of non-invasive personnel screening, 

surveillance, medical and industry applications owing to its high resolution with relatively small, 

physical or synthetic aperture [23, 48]. Additionally, due to the large available bandwidth and 

associated lower wavelength, it also delivers miniaturized, high data rate communication systems 

and devices. The fields and applications of MMW are vast; therefore, during literature survey 

focus has been given only to the relevant tasks commenced in the thesis. 

Firstly, literature review related to dual frequency planar antenna designs at lower 

microwave frequency has been discussed. Further, advancements in MMW dual resonant antenna 

design have been discussed and their limitations have been outlined with an emphasis towards 

simple and cost-effective antenna design. Secondly, literature review of the MMW stand-off 

imaging applications for target’s shape identification and non-destructive target’s fault 

estimation have been presented. Digital image analysis techniques are being used widely for 

extracting meaningful information from camera/radar images for further processing. Thereby, an 

investigation of different digital image processing (DIP) techniques has also been reviewed for 

applications, like, clutter reduction, image segmentation, image enhancement, image 

classification, image feature extraction etc. Further, relevance of these techniques w.r.t. MMW 

images, their treatment and limitations has been discussed. Thereafter, based on the review of 

aforementioned MMW applications, this chapter has been concluded for further scope of 

research. 
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2.1.  Millimetre Wave Frequency Features and its Applications 

MMW’s principal advantages are its related characteristics of miniaturized system size and high 

resolution that follows from its short wavelengths. However, these performance improvement 

comes at the cost of greater atmospheric attenuation, limiting the propagation ability of MMW 

frequency [21, 32, 233]. The free space propagation loss at 60 GHz is 28 dB more than the loss 

at 2.4 GHz [53, 214]. Figure 2.1 shows the attenuation curve at MMW frequency. 

Advantageously, the effective interference levels for MMW are less severe, which favors higher 

frequency re-use over very short distances, thus allowing the high throughput network. Thereby, 

MMW communications are mainly used for indoor environments, small cell access and backhaul 

with cell sizes on the order of 200 m.  

 

 

Figure 2.1. Atmospheric and molecular absorption at MMW frequency [214]. 

 

The interactions between the MMW and the human body, characterization of dielectric 

properties of human tissues is essentially desired for wireless body-centric applications and body 

area networks (BANs) [15, 39, 40, 84]. Additionally, small distributed integrated circuits, 

components at MMW are difficult to physically realize and fabricate, which are a fraction of the 

wavelength [53, 191]. A number of MMW applications related to security control and imaging 

require propagation through different materials e.g., building, packaging and cloth material. The 

dielectric properties at MMW’s have been measured for different materials, but still much 

information is lacking [5, 76, 259]. Concealed target detection is greatly influenced by the 

transmission property of clothing on the contraband. Hence, transmissivity values of clothing 

with different materials and different thickness, like, cotton cloth, plastic, terylene and woolen 
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sweater, etc. are required to be known at MMW [32, 163, 349]. In addition, the quality of MMW 

images is not only affected by the antenna beam angle with object, but also on the smoothness 

and non-uniform thickness of the clothing covering the object. Thereby, techniques to deal with 

these challenges are being investigated, to make MMW’s available for promising new 

applications.  

Various research works have been going on around the world exploiting the vast number 

of applications that MMW offers, like, stand-off concealed target detection, active or passive 

imaging sensor [21, 38, 61, 274], precise measurements of air and sea surface temperature using 

60 GHz rotating radiometer [296], non-destructive moisture monitoring and disinfestations of 

artworks at 150 GHz [194], non-contact vital sign detection at 94 GHz [26, 121], collision-

predicting sensors for automatic braking systems for automobiles at 35 GHz and 60 GHz [45], 

detection of cracks, void, surface anomalies [90, 143, 280, 334], an  distance measurement of the 

target with sub-millimeter accuracy [102, 160], soil backscattering using a 60 GHz scatterometer 

[329], millimeter-wave identification (MMID) for short-range, low-power, high data-rate 

applications (WPAN-IEEE 802.15.3c, IEEE 802.11ad) [242], etc. With such a diversity of 

interesting applications, MMW is now gaining tremendous research interest globally among the 

intellectuals.  

2.2.  Review of Work Related to MMW Dual Resonant Planar 

Antenna Design 

The current research trend has now moved towards the design of MMW dual band antennas 

keeping up with the commercial demand of miniaturized and multi-tasking systems/ applications. 

In this section, first we elucidate different techniques used for designing a MMW planar antenna. 

Then, we discuss different prevailing methodologies for achieving dual resonant antennas at 

microwave frequencies. Later on, contributions made in the field of MMW dual band antennas 

and the challenges faced will be outlined. 

At MMW frequency, microstrip antenna design is quite a challenging task because of 

concomitant higher losses, unavailability of transmission line models and relatively small 

dimensional constraints [56]. However, different methodologies have been proposed to reduce 

these shortcomings and to enhance the antenna efficiency by prohibiting unwanted lossy modes 

to propagate. Some of these techniques are thin, low dielectric substrate (Teflon / quartz) [197, 
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211, 260, 339], multilayer or micromachining in high index substrate (Si/GaAs) [19, 231, 257, 

282, 341], superstrates [345], substrate integrated waveguide (SIW) [347], low temperature co-

fired ceramic (LTCC) [10, 135], and photonic band-gap (PBG) substrates [190, 330, 331].  

Artificial periodically loaded substrate electromagnetic bandgap technique has the 

forbidden frequency range for surface waves around the desired antenna operative frequency, 

which, therefore, increases the radiated power coupled to space and in-turn, increases its gain 

and bandwidth, for example: G.W. Burns et. al. [34] reported a 3D-woodpile PBG crystal for a 

co-planar waveguide (CPW) fed slot dipole antenna at W-band (94 GHz), J. B. Muldavin et. al. 

[208] designed 30 GHz and 94 GHz slot antennas on synthesized low dielectric constant 

substrates (ɛr = 2.2). Surface or bulk micromachining [9, 30, 125, 245] of high index silicon is 

another technique to combat losses, whereby, an air cavity is selectively etched out so as to reduce 

effective dielectric constant and inhibit any surface wave propagation. For example: an air-

dielectric cavity-backed patch antennas at 94 GHz with a 10-dB bandwidth of 3.25 GHz and gain 

18 dB [220], 3-D micromachined elevated patch antenna for G-band [70], an aperture-coupled 

micromachined microstrip antenna at 94 GHz, having 10% bandwidth and 58% efficiency [88], 

have been reported which also favors easy integration for MMIC’s. Likewise, other variants of 

planar and quasi-planar antenna structures reported are; slot type [47, 208, 338, 339, 346], leaky 

wave type (dielectric rod, NRD guide) [186, 227, 290, 310], high gain reflector type [212], planar 

yagi-uda type [16], log-periodic [341], etc.  

However, different techniques have been proposed and are being used for design of 

MMW frequency planar antennas, but, keeping in account the more pronounced effects of 

surfaces wave and higher order losses, dimensional constraints, and other factors at MMW, still 

it is quiet challenging to design a simple as well as cost-competent MMW planar antenna. 

2.2.1.  Dual Band Antenna Techniques at Microwave Frequency 

Principally, dual-frequency antennas should operate with nearly similar features at two separate 

frequencies, both in terms of radiation properties and impedance matching. Obtaining these 

features by using planar technologies is not a straightforward matter, particularly when the 

intrinsic structural and technological simplicity, typical of patch antennas is needed to be 

preserved. Generally, the dual band antenna techniques employed are changing the physical size 

of the antenna and modifying the radiator shape to allow current paths to travel at longer distances 
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which, sometime increases the antenna size [67, 72, 119, 152, 255, 277, 313]; adding additional 

parts such as multilayers [307] or gaps, which makes the antenna structure larger and complex 

[140, 156]; and appropriately using single or dual feeding to excite the dual band, which adds 

complicacy to the feed design [12, 304]. Other reported dual band antenna designs using 

combination of techniques are  slotted, co-planar dual patch elements for dual band and PIN 

diodes switches with the feedline for additional re-configurability [3], parasitic patch with 

reactively loaded driven patch for improved performance [18], notch loaded shorted microstrip 

patch antenna [199], shorted, quarter-wave U-shaped patch antenna with two unequal arms [342].  

Enormous research work has been already carried out for the dual frequency antenna at 

microwave frequency [4, 18, 66, 119, 315, 342]. However, at MMW frequency different 

proposed dual resonant techniques demand a high level of precision, may be in terms of modified 

antenna structure design (slot, notch, spur), proper positioning of feeding section (shorting pin, 

proximity coupling), alignment accuracy for multiple patches and dual feeds, etc. Thereby, direct 

extension of these dual resonance techniques for MMW’s is not straightforward because of 

several limitations, like, higher losses due to surface wave, conductor, and dielectric losses, and 

technological challenges, like, stringent dimensional constraints, specifically when we aim 

towards a simple, compact and cost-efficient antenna design. 

2.2.2.  Review of Work on MMW Dual Frequency Antennas 

With the incorporation of dual band techniques in MMW systems, it will tremendously raise its 

capability with added multi-processing and redundancy, making it more commercially attractive, 

while equivalently maintaining the system size compact. Being a new research field and 

technological limitations at high frequency, there is need of extensive research in this domain. 

Very less literature is available for achieving dual resonance at MMW. Some of the works that 

have been reported, where researchers have used micro-electro-mechanical system (MEMS) 

[173, 184], low temperature co-fired ceramic (LTCC) [135], metamaterial resonator [128], 

multilayer [257], C-shape slot on cavity [285] and photonic bandgap (PBG) [320] designed for 

particular application. However, these investigated techniques pose various limitations in terms 

of complex and non-planar antenna structure for the dual frequency MMW operation as well as 

it demands for the higher level of fabrication and alignment accuracies. 
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L. Marnat et. al. [184] proposed a movable plate concept based vertical antenna utilizing 

MEMS post-processing, thus, isolating the antenna structure from lossy substrate and hence 

better antenna efficiency has been achieved as compared to the horizontal position. The designed 

bowtie antenna has been matched to resonate at 60 / 77 GHz, having gain 3.5/4.8 dBi in vertical 

position as compared to -3 /-2.1 dBi horizontal position. Further, the antenna supports 

polarization diversity by providing both horizontal and vertical polarizations. However, the 

structure proposed is non-planar, thereby, limiting its use for planar and conformable 

applications. I. K. Kim et. al. [128] proposed a dual frequency meta-resonator antenna that uses 

a pair of split ring resonators (SRR) as the radiating element. The two SRR’s support two 

different frequencies, hence, the antenna operates as the dual band antenna. Here, feeding was 

through inductive/capacitive coupling, hence, no matching network was used. The simulated 

antenna has efficiency 76% / 85% and gain 2.5 dB / 1.8 dB at 46 GHz / 51.6 GHz, respectively. 

The limitation of this proposed antenna is the involvement of the complex fabrication of SRR 

structure, which is of much lower dimensions. Moreover, the antenna performance has not been 

validated by the measured results. A micro-electro-mechanical system (MEMs) based 38/ 60 

GHz slot antenna was proposed by G. Liu [173]. The designed antenna resonant frequency is 

switched between 38 GHz and 60 GHz, depending upon whether the MEMS switch is ‘on’ or 

‘off’. The antenna was designed on the micromachined GaAs substrate to improve efficiency. 

The limitation of this design is that it does not support concurrent dual frequency operation.  D. 

S. Hemhdez et. al. [257] proposed two different dual-band MMW antenna designs with antenna 

1 using a stacked patch configuration and antenna 2 using a spur-line technique. Multilayer 

stacked patch showed the bandwidth of 3.5% (f01 = 35.65 GHz) and 1.67% (f02 = 38.9 GHz) and 

with spur-line technique, the measured bandwidth was found to be 0.45% (f01 = 33.75 GHz) and 

0.55% (fo2 = 36.75 GHz). The multilayer antenna configuration is sensitive to misalignments of 

the two resonators and in spur-line structure the small spur dimensions makes the fabrication 

process complicated. Thereby, both the antenna designs make the dual band structure quite 

complex and thus raise the fabrication cost.  

After reviewing the related literature for MMW dual frequency antenna, it was found that 

most of these available methods utilize complex dual band techniques rendering the structure 

complicated. These methodologies also suffer from complicated fabrication procedure and thus, 

are expensive. Considering the aforementioned limitations, more research and investigations are 
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required in order to make a simple, compact and cost-effective solution to the MMW dual band 

antenna.  

2.3.  Review of Work Related to MMW Imaging 

MMW radar sensors have been used as an accurate and effective technique for the variety of 

stand-off imaging applications in security screening for concealed weapon detection, baggage 

inspection [11, 73, 96, 108, 112, 250, 287, 328, 335], medical diagnostics [40, 138, 216], 

nondestructive characterization of surface and subsurface in detecting and localizing buried 

mines or archeological sites, measuring distances, displacements, thicknesses or moisture 

contents, profiling the surface or subsurface of pavement, and quality monitoring of packaged 

goods [192, 195, 250, 352],  and polarimetric SAR Imaging for extraction of power line maps at 

35 GHz [258], indoor navigation and mapping at 215 GHz [204] etc. Using mm-wave radar, the 

object of interest is first illuminated by MMW’s and then the scattered field is measured and 

processed in order to reconstruct the object. The image resolution is determined by the radar 

center frequency, its bandwidth, and its aperture size [11, 198, 219]. For accurate identification 

of the targets, its sufficient spatial details have to be extracted for image formation and further 

its shape and size estimation. In view of our commenced research tasks, we have narrowed 

ourselves specifically to two major MMW radar application areas, i.e., target’s shape/ size 

identification and non-destructive, non-invasive concealed fault detection.  

2.3.1.  Review of Works Related to Target’s Shape/ Size Identification  

Different techniques have been reported for an accurate target identification using MMW 

imaging, like, compressed sensing [24, 185, 250], matched filter algorithm [334], holographic 

imaging [73, 272, 352], tomography Imaging [303], cylindrical imaging [270, 287], polarimetric 

imaging technique [204, 272, 274], envelope phase detection [115], synthetic aperture imaging 

[117, 258]. Each of these techniques has their advantages, as well as limitations. For example: 

compressed sensing technique, however, reduces the number of sensors, thus simplifying the 

system design, but it has the limitation of large computational time [250]. Polarimetric techniques 

can improve detection and enhance the image by highlighting raised objects, edges, and corners, 

but suffers from reducing the reflection from smooth surfaces [274].  
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A. Hirose [115] proposed an active near-field shape extraction method using envelope 

phase detection, where the envelope phase of the amplitude modulated wave was used to obtain 

a three dimensional shape of the targets including stacked round cans, plastic bottle filled with 

water at 76.5 GHz. However, the technique performs better for near field applications. 

Harmer et.al. [108] demonstrated the decomposition of late time and transient response 

of metallic objects into damped sinusoidal signals and characterized by aspect-independent poles. 

This pole information has been utilized for detection and discrimination of threat items 

(handguns) from the non-threatening items, such as, mobile phone handsets, cameras, keys and 

pens. The problem with the aforesaid decomposition method is that, it provides only target 

classification, but not the target’s shape information.  

Image reconstruction of any target can also be accomplished by putting projections taken 

at different angles. Algorithms proposed for this are backprojection [61, 118], filtered 

backprojection [350], bistatic fast-factorized back-projection [206], etc. In [303] MMW inverse 

SAR imaging has been used for image formation of the concealed metallic gun beneath clothing 

using near-field backprojection algorithm. Bi-static fast-factorized backprojection image 

reconstruction of a 75 mm wide metal block, from a stand-off distances of 7 m has been shown 

using a 300 GHz synthetic aperture array [206]. However, the technique is limited by the high 

demand of processing time and memory usage.  

Artificial neural network has also proved to be an effective signal processing technique 

for classification/ recognition of target in a noisy environment for various applications, like, 

speech recognition, character recognition, pattern recognition, face recognition, etc. [43, 54, 59, 

251, 311]. S. Watanabe [312] combined an existing acoustical holography with neural networks 

to reduce the vagueness of reconstruction of the acoustical images from ultrasonic sound waves 

in air. Moreover, later on he demonstrated image recognition and reconstruction of objects 

obtained from an active MMW (60 GHz) Yagi Uda array antenna imaging system with 98% 

recognition rate for ten dissimilar alphabetical letters used as objects and 80% accuracy for 

distorted images [311]. 

After reviewing the related literature, it is observed that retrieving target’s shape 

information is still challenging and requires contemplative study. Further, there is a need to 

develop an adaptive image reconstruction technique, which should be robust towards target’s 

orientation and size variations in view of practical considerations. 
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2.3.2.  Review of Work Related to Non-Destructive Testing and Fault 

Estimation 

Nondestructive testing  & evaluation (NDT & E) is the examination of an object with technology 

that does not affect the object’s future usefulness [232]. The role of nondestructive testing (NDT) 

methods is found in manufacturing, power, construction, and maintenance industries, as well as 

in basic research and development. However, general concepts and uses of NDT not only exist 

in industry but also in our everyday lives. For example: at the fruit stall, selection of melon by 

looking over it for any flaws is –visual NDT, while, tapping its surface or listening for the hollow 

sound is –acoustic NDT. Finally, depending upon response to these tests and as per our perceived 

criterion, we decide to take or leave the melon. Almost, all melons at the stall will eventually be 

sold and there is the problem in NDT; inspector’s standards change. Ideally, once the quality 

standards are set, the inspection should be independent of human perception and should always 

give the same result. The basic principle of NDT is simple, i.e., to determine the quality or 

integrity of an item nondestructively, simply to find a physical phenomenon (the interrogating 

parameter) that will interact with and be influenced by the test specimen (the interrogated 

parameter) without altering the specimen’s function. 

There are a wide variety of proven and standard Non-destructive testing (NDT) 

techniques, like, radiography, ultrasound, dye penetrant, eddy current, visual testing and 

magnetic particle testing etc. [58, 62, 236, 278, 356]. However, each method has its own 

application area, advantages and limitations. For example: ultrasonic signals cannot interact with 

the inner structure of porous materials because of its inability to penetrate. Eddy current methods 

do not support inspection of lossless dielectric materials in which eddy currents cannot be 

induced [58, 146]. Also, many times non-contact inspection is required without hampering the 

material efficacy and usability. In addition, with the advancement of material technology a new 

range of lighter, durable and electrically insulating composites are now replacing metals in many 

applications, thereby, standard NDT techniques may not be applicable to inspect them.  

Hence, microwave/ MMW techniques provide an accurate and viable NDT solution, 

where EM signals at these frequencies can easily penetrate the dielectric materials and provide 

their inner structure information [25, 225, 355]. The depth of penetration is dictated by the loss 

factor of the dielectric material (ability to absorb microwave energy) and the frequency of 

operation. Measurements can be conducted in the contact or non-contact fashion while operating 
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on one side of a material or using its both sides (reflection or transmission techniques). 

Additionally, measurement/ instrument parameters, like, bandwidth, frequency, polarization, 

sweep points, phase, and magnitude information can be optimized depending upon particular 

application. Microwave NDT techniques are sensitive to geometrical and dimensional variations 

of a medium or a defect. Polarization properties of microwave signals can be used to increase 

measurement sensitivity of defects of a certain orientation [262, 356]. Areas that may be 

benefited using EM based NDT are disbond, delamination and void detection, thickness 

evaluation, porosity in dielectrics, impact damage detection, constituent characterization in 

dielectric mixtures, detection of surface cracks in metals or cracks covered with various dielectric 

coatings [91, 94, 101, 136, 144, 153].   

Research work related to microwave/MMW NDT imaging broadly employ two 

measurement techniques: (1) near-field probe imaging which uses open ended rectangular probes 

and coaxial probes, where the target surface under investigation is in the close proximity of the 

probe [91, 136, 145, 209, 356, 357] and (2) synthetic aperture imaging employing antenna and 

scanning array [90, 153]. The probe based crack detection uses surface current perturbation, 

whereby any crack present inside waveguide aperture disturbs the surface current and causes 

properties of the reflected wave to change. Few examples are surface-breaking fatigue cracks 

detection of metal plates using W-band probe and the processed image was formed using gradient 

filtering [145], crack inspection in cement based civil structure at X band [209], detection of 

corrosion precursor pitting under paint at V band [92]. Near field probe technique is although 

non-destructive, easy to perform and provides high resolution (tenth of the wavelength), but it 

requires extreme sensitivity in terms of constant distance between probe and the target under 

investigation, and any changes/ non-uniformity during the experiment may severely affect the 

system detection performance [93, 101]. Moreover, there are different practical applications 

where near field imaging cannot be used, like, non-planar structure/ surface inspection (aircraft 

panel joints, industrial applications, etc.). [35, 261].  

Hence, radar imaging operated at MMW frequency provides a good alternative towards 

efficient high resolution imaging. A 30 GHz 1D, linear, 150 mm long imaging array has been 

demonstrated for NDT applications [90]. It is based on a switched RF multiplexed system and a 

PIN diode-loaded switchable resonant slot antennas as its array elements. The imaging is done 

in quasi mono-static reflection mode capable of successfully detecting/ imaging a pair of scissors, 

square shaped rubber (10 mm x 10 mm x 1 mm) inserted between two (6.5 mm-thick) balsawood 
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composite panels. A far-field airborne radar operated at X-band was used on the glass fiber 

reinforced polymer (GFRP) enclosed concrete cylinder targets followed by backprojection 

imaging algorithm to reconstruct the improved images for its condition assessment [348]. 

Thereby, MMW imaging radar scanning systems provide fascinating features for non-destructive 

testing as a non-contact, reliable, high resolution and adaptable (parameter tuning as per required 

application) technique.  

Henceforth, it is required for renewed vigor in applying MMW techniques to new non-

invasive inspection problems and a fresh sustained effort in this area should bare many facts.  

2.3.3.  Review of DIP Techniques for MMW Imaging 

In this section, we elucidate the contribution of digital image processing techniques for MMW 

image analysis. Although, DIP techniques are being used for camera based images as well as 

microwave radar imaging for uses, like, ground penetrating radar [2, 334] and through wall 

imaging [68, 123, 161, 318] but, these techniques have not been fully utilized in analyzing MMW 

images for different applications of image enhancement, feature extraction, image segmentation 

and material classification etc.  

Target’s reflected signal intercepted by MMW imaging radar, in its unprocessed raw form 

may not infer useful target information. This is because, the intercepted reflected EM waves 

many times not only contains desired target reflections, but additional undesired signals viz., 

reflection and refractions due to multipath propagation/ background and due to system noise, etc. 

Hereby, in order to enable the user to discriminate between the object and the background as well 

as to differentiate between different objects, several image enhancement and segmentation steps 

are applied. A brief survey of these techniques is given below: 

2.3.3.1.  Review of Clutter Reduction Techniques 

Any unwanted reflection signal in line of sight of the desired target signal is termed as 

the "clutter". Clutter is a collection of those signals that are not related to the target but occur in 

the same target sample time window [81]. In radar imaging, reflected target’s signal many times 

consist of the desired response of the target along with additions of other signals arising from 

radar system parameters, background and multiple reflections, etc. which is known as clutter. 

These unwanted signal errors must be removed in order to improve the image quality. 

Researchers have developed various clutter reduction techniques to enhance target’s detection 
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accuracy and for the reduction of false alarm. One of the commonly used methods for clutter 

reduction is background subtraction [2], where two images taken with and without target are 

subtracted. But, this technique has the drawback that data should be collected at exactly the same 

antenna positions in both cases. In addition, it is not possible in real scenarios to collect data 

without target. Time gating is another method used to reduce clutter. The prevalent unsupervised 

statistical based clutter reduction techniques are principal component analysis (PCA) [141], 

independent component analysis (ICA) [175, 302], iterative subspace projections [301], singular 

value decomposition (SVD) [46, 151], block-based-nonlinear filtering [151], etc. A comparison 

of different clutter reduction techniques has been given in [2, 46, 302]. In PCA, clutter is reduced 

by reconstructing from the most significant eigen vectors [141] and SVD uses generalized 

singular value decomposition for separating clutter and signal spaces [263]. In PCA, performance 

is limited by the correlation between the components and suffers adversely in case, the un-

correlation between signal and clutter is not enough. In ICA, the subspace formed is not 

orthogonal as in PCA and the independent components (ICs) are statistically independent 

providing a stronger measure for clutter removal [302]. In addition, SVD based clutter filtering 

is better in preserving edge details of any target shape [151]. 

However, applicability and efficacy of the image enhancement techniques is still to be 

analysed in view of MMW radar imaging application of stand-off target’s shape identification. 

2.3.3.2.  Review of Image Segmentation Techniques - Thresholding, Edge Detection 

Image segmentation is a technique useful in discriminating objects from the background 

in many classes of scenes, including printed or written documents, concealed objects, blur and 

non-uniform illumination [139, 321]. Segmentation subdivides an image into its constituent 

regions or objects. Image segmentation algorithms generally are based on one of two basic 

properties of intensity values, i.e., discontinuity and similarity. It is important in picture 

processing to select an adequate threshold of gray level for extracting objects from their 

background. It is not only important as a standard technique in picture processing, but also 

essential for unsupervised decision problems in pattern recognition. A variety of thresholding 

techniques have been proposed in this regard, like, histogram based [221], clustering based [97], 

entropy based thresholding [353], locally adaptive thresholding [14, 267], hidden markov model 

(HMM) [111], and the mixture of gaussian densities with iso-counters evolution [328]. The 

performance of any thresholding operation largely depends on various factors, such as, 



Literature Review 

35 

 

nonstationary and correlated clutter, ambient illumination, mixing of gray levels within the object 

and its background, inadequate contrast and in addition to this object sizes not commensurate 

with the scene complicate the segmentation procedure [166, 253]. For example: histogram based 

technique performs better when the object and background is largely separated and have the 

distinct bimodal valley point, markov and gaussian models although are noise resistant but are 

computationally inconsistent, entropy method performs fair in uniform images but it is complex 

because of logarithmic calculations involved [222]. Thereby, the selection of an appropriate 

segmentation technique largely depends on the type of images and application areas and no single 

algorithm can be uniformly top-ranked across all test images and performance criteria [354]. 

Therefore, only one evaluation method would not be enough to judge all properties of an 

algorithm and different methods should be incorporated.  

Debes et. al. [60] demonstrated segmentation of metal dihedral images through a wooden 

wall using an iterated conditional mode  (ICM) method and level set method (LSM). ICM proves 

to be an effective and computationally attractive method when pdf classes for the different 

segments are known. LSM is a contour-based approach and is a highly attractive tool in 

volumetric data reconstruction, e.g., in medical image processing. LSM theory holds for arbitrary 

dimensions and can directly be applied to 3D TWRI images. The key idea of the LSM is to fit a 

contour in a higher dimensional space. Further, it was noted that the LSM algorithm performs 

slightly better than the ICM. However, for ICM implementation prior knowledge of target’s pdf 

is the prerequisite and for LCM contour an initial suitable threshold value is need to be known 

for better target’s shape. C. H. Fosgate [75] used multiresolution segmentation and enhancement 

of anomalies in MMW SAR images for different terrain classifications (i.e., grass and forest) 

utilizing the characteristic statistical differences in imagery of different terrain types. However, 

the technique has not been investigated for its capability towards stand-off target applications. 

P. E. Keller [142] proposed a MMW weapons screening system by proposing a privacy algorithm 

which automatically segment concealed threats and innocuous items from the imagery. To locate 

plastic items, a pulse-coupled neural network (PCNN) model was proposed for object 

segmentation and edge detection. The implementation of algorithm was not much successful and 

additional development and understanding of the technique was therefore required. In [300], a 

2.5D volume integral equation (VIE) technique using spatial fourier transform and the galerkin 

method of moments was used for enhancing/ detecting MMW scattering by large inhomogeneous 

2D objects, i.e., dielectric or strongly conducting object hidden underneath clothing. The 
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proposed technique has been implemented through EM simulations only, and hence, its 

performance is needed to be validated on real targets. 

Thresholding is a technique where target’s image is better visualized when implemented 

in conjunction with edge detection. The edge detection process serves to simplify the analysis of 

images by drastically reducing the amount of data to be processed, while at the same time 

preserving useful structural information about object boundaries. Edges characterize boundaries 

and are therefore considered as prime importance in image processing and target’s identification 

[37]. Many varied edge detection techniques have been proposed in the literature [95, 158, 162, 

189, 210]. Different edge detectors present distinct and different responses to the same image, 

showing different details. Commonly used edge detectors are iteratively refined regularization 

[95], canny edge detector [37], statistical classifier [159], local threshold and boolean function 

[14], color edge detection using euclidean distance and vector angle [319], depth edge detection 

using multi-flash imaging [210], etc. Edge detectors: sobel, prewitt and roberts implement 

gradient method and are simple to implement, but they are sensitive to noise and suffer from poor 

localization. Laplacian detector implements zero order crossing and is simpler than gradient 

method, however, it is more sensitive to noise, poor detection and also does not provide 

information about edge direction [37]. The boolean function approach is better, but it is somehow 

complex [14]. 

M. Moallem [204] demonstrated rectilinear patterns of walls and doors in interior corridor 

images using Hough transform for line edge detection on the backscatter data from the 

instrumentation radar operating at 215 GHz. Modified Stripe Hough transform (SHT) for road 

edge recognition in 77 GHz MMW radar images has been proposed in [158]. The main advantage 

of the line detection using Hough transform is that it is relatively unaffected by gaps in lines and 

by noise. All weather automotive vision enhancement for MMW near ground-level positioned 

radar images for straight and parallel road edge detection problem has been formulated using 

bayesian approach [137, 162]. However, for more complicated road scenes, such as, slanted 

roads, curved roads, multiple roads, modifications in the image model and edge detection 

problem is required. 

With the thorough study of existing methodologies, it is proven that the DIP techniques 

are quite helpful in extracting meaningful information from radar images. Therefore, 

contemplative studies are needed to resolve any target’s ambiguity. 
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2.3.3.3.  Review of Feature Extraction Techniques  

Features are invariable descriptors of any image that consists of relevant and unique 

information that could help to detect any relevant target information, viz, shape, irregularity, 

fault, crack, texture, etc. A number of different feature extraction techniques have been reported 

in literature and can be broadly classified as; shape based feature, texture based feature, colour 

based feature [63, 215, 299]. Texture features are important in many applications of computer 

image analysis for classification, detection, or segmentation of images, which are based on local 

spatial variations of intensity or colour. Important applications include industrial and biomedical 

surface inspection for defects and disease [33, 154], ground classification and segmentation of 

satellite or aerial imagery [114], segmentation of textured regions in document analysis [218], 

and content-based access to image databases [281]. Any image consists of spatial local gray tone 

variations, i.e., texture depending upon the image type. Texture analysis techniques can be 

classified as statistical, structural, filter based and model based approaches [327]. Statistical 

texture analysis methods measure the spatial distribution of pixel values and have been 

extensively applied to various computer vision based tasks. A number of statistical texture 

features have been proposed, ranging from first order statistics to higher order statistics. Few of 

them are: histogram statistics [33, 240], co-occurrence matrices [234], autocorrelation [343], and 

local binary patterns (LBP) [207, 218], morphology [48, 188]. The first order statistical features 

include mean, median, variance, standard deviation, lacunarity, weighted rank fill ratio etc [44, 

97]. The second order statistical measures are characterized by gray level co-occurrence matrix 

(GLCM) [107, 234]. The efficacy of different statistical textural measures may vary depending 

upon the particular application, hence, choice of suitable texture features is a critical step for the 

design of any classification model. Despite the fact histogram techniques are simple, low level 

approach, invariant to translation and rotation, and insensitive to the exact spatial distribution, 

but it requires fairly separable intensity values between defective and normal regions for optimal 

performance, which is not always true for practical images [327]. Co-occurrence features also 

suffer from the shortcomings, like, in order to keep the size of the co-occurrence matrix 

manageable, reduced number of gray levels is needed, which implies dedicated feature selection 

procedures. Also, its performance is poor in comparison to other statistical techniques [343]. 

Autocorrelation function is generally considered as unsuitable for random textures with 

irregularly arranged textural elements. LBP is relatively invariant w.r.t. changes in illumination 
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image rotation and computationally simple, however, it has considerably lower performance than 

co-occurrence matrix and other filtering based approaches [218, 327].  

Apart from texture feature, shape based feature extraction techniques are also popular in 

computer vision based image processing applications [284, 332]. Size and scope of these modern 

computer vision techniques is enormous, some of which include scale invariant feature transform 

(SIFT) [178, 179]; speeded up robust features (SURF) which provide a low-dimensional 

representation of visual images for instance matching with images [28]; (HMMs) to detect and 

classify landmine responses based on statistical representation of their characteristic hyperbolic 

shape [205, 243]; histogram of oriented gradients (HOG) which has been successfully used for 

pedestrian detection, traffic surveillance with occlusion handling [55, 323]; wavelet transform 

(Harr, Gabor, Hough) having varying scope [22, 189]. Disadvantage of HMM model is that, it is 

slow in training as well as in the operation, because of more parameters and computation. 

Additionally, very large database is used to insure the algorithm’s robustness [205]. SURF and 

SIFT features provide automatic matching between images, but require dense grid of uniformly 

spaced cells and are therefore computationally complex [55]. Performance of Hough transform 

is limited due to the significant storage and high computational requirements [215]. HOG 

features are fairly robust to moderate changes in the object’s location, but its performance is need 

to be further investigated for radar imaging. The Harris corner feature is very sensitive to changes 

in image scale, so it does not provide a good basis for matching images of different sizes [178].  

The computer vision based feature extraction techniques have also been tested by various 

researchers for active imaging radar based applications, like; T. wang in [297] investigated 

magnitude and local-contrast features, co-polarization and cross-polarization signals, and 

polarimetric decomposition features for GPR based land mine detection. Performance of EHD 

[79] and gabor feature based HMM model [79, 82] were compared for different type of metal 

land mines [203]. It was shown in [316] that sparse signal decomposition outperforms wavelet 

decomposition for better GPR signal classification. Additionally,  statistical features [74, 248], 

time–frequency features [263, 317], 3-D Haar-like features [149] and texture features [293] were 

also examined for GPR based land mine, anti-tank mine subsurface target’s detection and 

classification. However, these said feature extraction techniques have not been investigated for 

MMW radar imaging applications, like, stand-off target’s shape identification or non-destructive 

quality testing applications, etc. 
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Similarly, S. Hang and M. Moallem proposed an advance path measurement for 

automotive radar applications for collision warning and collision avoidance using Hough 

transform [204, 276]. Further, an improved stripe Hough transform (HT) model was developed 

by K.Y. Guo [158] for more accurate road feature recognition using 77 GHz MMW imaging 

radar. K. B. EOM [71] used discrete Fourier transform (DFT) feature and maximum likelihood 

(ML) approach for modeling and classification of high range resolution (HRR) radar signatures 

with classification accuracy of around 93% at 35 GHz. Accurate power line map information 

with improved signal ratio and reduced false alarm has been achieved using statistical 

polarimetric detection algorithm on the MMW polarimetric SAR images at 35 GHz [258]. Other 

feature extraction techniques are correlogram for pattern matching [161], diffraction tomography 

(DT) for 3D real-time through-the-wall radar imaging  [318], statistical and geometrical features 

for target’s classification in the image-domain in through wall radar imaging [60]. Many of these 

different feature extraction techniques report the results based on numerical EM simulations only, 

as well as their applicability still has to be investigated for MMW NDT like applications. 

Henceforth, in context to MMW active imaging, computer vision based feature extraction 

techniques show tremendous scope for correct target’s classification/ recognition. Hence, 

focused research is needed in this context to find application specific optimal features.  

2.3.3.4.  Target Classification Techniques  

Further, for many applications, it is essential to know the specific target material types 

such as, metal, paper,  plastic,  clothing,  etc., in addition to identifying the target’s shape because 

from the security viewpoint it is important to measure how significant is the undercover object 

towards any possible threat and also to reduce excessive false alarms [153, 187]. Target’s 

classification has been realized using the maximum likelihood estimation of EM based statistical 

measures for different classes [164]. A number of distribution models were tested and a single/ 

mixture of two models can be assigned to any particular class depending upon target’s 

characteristics [111, 112]. E. Pasolli [224] proposed a pattern-recognition system to classify 

buried objects from GPR using Gaussian kernel function and SVM classifier. Three different 

type of materials classified were limestone (εr = 8, σ = 0.1 S/m), metal (perfect electric conductor) 

and air (free space) having classification accuracy of 74%, 75%, and 94%, respectively. 

However, robustness of this Gaussian kernel feature for material classification was not 
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investigated in the presence of clutter signal, which is very much likely to be present in the natural 

GPR work environment.  

M. S. E. Mahallawy [69] introduced underground utility material identification from 

noisy GPR images degraded with speckle noise utilizing discrete cosine transform (DCT) 

coefficient features and support vector machine (SVM) classifier. Six different material types 

buried under dry sand were taken for algorithm testing including; ductile iron (DI) (εr = 14, μr = 

481, σ = 2.23 × 107 S/m), mild steel (MS) (εr = 3.1, μr = 150, σ = 1.334 × 105 S/m), clay (εr = 2.5, 

μr = 2, σ = 2.5 × 10−2 S/m), medium density polyethylene (MDPE) (εr = 2.3, μr = 2.39, σ = 10−5 

S/m) in addition to perfect conductor and air voids. The presented approach shows recognition 

accuracy around 100% in clean environment and 78% in severely degraded environment. H. 

Zhang [103] utilized dielectric spectrum of GPR data in different frequency bands to identify the 

buried geo-electric structure depth, thickness, and permittivity parameters. The proposed 

algorithm can be applied for the target’s classification of GPR signals. In addition, it offers 

advantages of low time complexity and strong anti-noise ability. C. D. Haworth [112] showed 

tracking of multiple metallic objects concealed on moving people in MMW images. Probability 

statistical model and hypothesis density filter has been used to track a variable number of targets. 

The two-component mixture model Laplacian and Rayleigh showed good fit as compared to 

Gaussians pdf. These reported material’s classification techniques have been investigated on 

GPR data only, which operates at much lower frequencies (few GHz) as well as the reflected 

signal quality is fairly high, which supports comparatively easy discrimination among different 

target’s materials.  

Although, for the proposed MMW radar imaging applications, it will be interesting to 

check their applicability towards the correct material classification, where, the received signal 

will be of very low strength and primarily absorbed by the dielectric material itself and the 

surrounding. Additionally, due to the lack of correct permittivity models of different dielectric 

materials at MMW frequency, it will be quiet challenging to differentiate target materials from a 

stand-off distance, which may be kept in close proximity. 

2.4.  Conclusion 

In this chapter, review of recent advances made in the field of MMW frequency and state-of-the-

art MMW dual frequency antenna design and its imaging applications have been discussed. After 
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doing comprehensive study and critical analysis of the existing methodologies, following 

conclusions are drawn: 

 MMW dual frequency antenna is the new emerging constituent for the dual band MMW 

systems that facilitates multi-tasking and miniaturized systems. However, at MMW 

several design challenges arise in terms of higher losses and very low dimensions. 

Thereby, there is a need to design a simple, compact and cost-efficient antenna. 

 MMW imaging has emerged as one of the most favourable imaging modality as compared 

to the prevalent x-ray, microwave, visible/ IR imaging. It offers the features of high 

resolution as well as safe imaging.  

 DIP techniques have demonstrated their significance in investigating computer vision 

images as well as are being used for microwave imaging. However, the capabilities of 

these techniques have to be examined for MMW images for different applications of 

image enhancement, image segmentation and material classification.  

 There has been an increasing demand for an accurate non-destructive fault detection 

system, for various applications of material’s quality estimation and its characterization. 

Numerous studies have been carried out, but very less amount of work has been done for 

quality monitoring of packaged goods for industrial applications. Hence, there is a need 

to develop an automatic fault/ non-fault classification model. 

 Further, for the practical industrial scenario, in order to withstand the system noise and 

varying target contrast/ illumination, there is a need to develop an adaptive model which 

can take care of varying target’s statistics and provide a correct concealed crack/ non-

crack classification with minimum false alarm. 

 Different machine intelligent techniques (ANN, fuzzy, SVM, etc.) are being extensively 

used for analysis of computer vision/ satellite image for classification/ recognition but the 

employment of these techniques for MMW imaging applications is still a major research 

area which needs to be investigated.
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Chapter 3                

Design of Simple, Cost-Effective and 

Compact Millimeter Wave Dual 

Frequency Planar Antenna 
 

The strength of MMW is in the innovative solutions which, it offers in the fields of sensor 

technologies and image processing with favorable features of high resolution and safe imaging.  

In addition, MMW frequency offers portable, light weight systems due to the associated much 

lower wavelength (order of few mm) [120, 183]. In recent years, with the over-demanding use 

of the spectrum, number of consumers, and simultaneous applications (like, Bluetooth, GPS, 

voice/video call, etc.), researchers are moving towards concurrent dual band MMW systems 

having the capability of multi-tasking and multi-processing. In design of any transceiver system, 

antenna is an indispensable element, that acts as a transitional structure between the free-space 

and the guiding device (like, coax line, transmission line or waveguide). A dual frequency system 

is equipped with a dual frequency antenna, in which a single radiating structure is capable of 

concurrently resonating at two different frequencies. Different techniques are being used for this 

at microwave frequency. In spite of this, still the major challenge at MMW frequency is to have 

a simple and cost-effective dual resonant antenna. Therefore, in this chapter a concurrent 60 

GHz/85 GHz microstrip antenna has been proposed taking care of higher losses and dimensional 

constraints.  

3.1.  Introduction 

The field of antenna is vigorous and dynamic having a variety of antenna structures ranging from 

simple dipole, loop, slot or planar antennas to complex array structures [266]. However, the 
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choice of a particular MMW antenna type depends upon the specific application and system 

requirements [134]. Different high performance application domains, like, aircrafts, satellites, 

mobiles, radios, etc. have constraints of size, weight, cost, ease of installation, conformity and 

thus require low-profile antenna types. The low profile antenna design is appealing due to ease 

of fabrication, and such a design has the potential to be built at low cost. Furthermore, the planar 

structures can be lighter than reflector antennas of similar performance and are also easier to 

install. With this concern, planar microstrip antennas lend themselves as a natural choice posing 

features of compactness, simplicity, mechanically robust, conformity, and compatibility with 

MMIC designs [27, 283]. Additionally, advantages offered by it overshadow its limitations, such 

as, narrower bandwidth and low-power capacity.  

At MMW frequency, the design of microstrip antenna exhibits several challenges, such 

as, limited gain, increased noise, higher order mode losses, conductor/dielectric loss and 

unavailability of transmission line models [56]. However, different substrates (bulk or artificially 

synthesized) and techniques have been proposed to reduce losses at MMW frequency, such as, 

low dielectric substrate (Teflon/quartz) [197, 211, 260, 339], high index substrate (Si/GaAs) [19, 

231, 257, 282, 341], bulk micromachining [70, 88, 125, 245], synthesized low dielectric substrate 

[208, 331], superstrates [345], substrate integrated waveguide (SIW) [347], low-temperature co-

fired ceramic (LTCC) [10, 135]. Making use of any of these different techniques to combat losses 

at MMW, a number of planar and quasi-planar MMW antenna structures have been reported in 

the literature, like, slot type antenna [47, 208, 338, 339, 346], leaky wave type antenna (dielectric 

rod, NRD guide) [186, 227, 290, 310], high gain reflector type antenna [212], planar yagi-uda 

type antenna [16], log-periodic antenna [341], and many others for different applications. 

At microwave frequency, various techniques are being used for achieving dual frequency 

antenna design, that includes orthogonal mode dual-frequency patch antennas using single or 

dual feed that excites dual mode (TM10, TM01) resonance with orthogonal polarization [181]; 

reactive loading by placing shorting pins [199], slots [41, 65, 165], stubs [152, 255], spur [104, 

256] etc., that excites dual resonance with the varying frequency ratio depending on their relative 

positions [8, 174, 193]; multiple coplanar [3, 156, 244, 254]/vertically stacked patches [18, 307, 

314] providing same or dual polarization; artificially structured metamaterials - split-ring 

resonators (SRRs) [67, 130, 168, 241], which offer high quality factor; capacitive coupling [119, 

140, 167], etc. However, design of MMW dual band antenna has been given less attention, 

despite the fact it offers advantages of size and cost reduction. Few of the reported works are: 
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58/77 GHz antenna using flip-chip assembly [285], fractal bowtie antenna using movable plate 

for 60/77 GHz [184], 38/60 GHz switchable MEMS antenna [173], 40/60 GHz split ring 

resonator (SRR) based antenna [128] and 24/60 GHz antenna using 0.1μm standard CMOS 

process [133], 33.75/36.75 GHz spur based antenna on multilayer GaAs substrate [257]. Most of 

these reported techniques require high precision fabrication and have the complex structure, 

making them commercially cost inefficient. Whereas, the need is a simple designed compact 

antenna, i.e., antenna should be as minimum as possible with a cost-effective substrate. Hence, 

it will be of great importance to design a simple, cheap and compact, dual resonant MMW 

antenna. Here, the dual frequencies 60 GHz (V band) and 85 GHz (E band) are selected because 

of their commercial competency for future communication systems as well as imaging systems. 

60 GHz technology is attractive and of significant interest due to the huge unlicensed ISM 

(Industrial, Scientific and Medical) band of 7 GHz (57 - 64 GHz), which, offers gigabit WPAN 

(802.15.3c) applications. Similarly, the other resonant frequency 85 GHz lies within the E band 

(81 - 86 GHz) allocated for 10 Gbps outdoor network future applications. Henceforth, in this 

chapter, we have proposed a design for 60 GHz/85 GHz concurrent dual frequency microstrip 

antenna supported by the fabricated prototype measured results. 

This chapter is further divided into following sections: section 3.2 discusses theoretical 

background, section 3.3 gives methodology for MMW dual frequency planar antenna design, 

section 3.4 details simulation results, section 3.5 details fabricated prototype antenna and 

measurement results, and finally section 3.6 gives the conclusion. 

3.2.  Theoretical Background 

At MMW frequency, microstrip printed antennas are gaining particular interest due to their 

planar profile and ease of integration for single chip millimeter monolithic integrated circuit 

(MMIC) design [3, 7, 135, 344]. Planar antenna performance at high frequencies is severely 

affected by substrate parameters, conductor/dielectric losses, and higher order mode losses. 

Several challenges are need to be considered, while designing an optimal antenna at MMW 

frequency, like:  



Chapter 3 

46 

 

3.2.1.  Choice of Suitable Substrate  

For a good planar antenna performance low dielectric and thick substrate is desired since this 

provides better efficiency, due to the loosely bound fields, higher bandwidth and efficiency [27, 

322]. Although, on the low index substrate, antenna require larger physical antenna size for the 

fundamental mode (TM10) depending upon 𝐿 = 𝑐/2𝑓(√𝜀𝑟), (𝜀𝑟) = substrate relative 

permittivity [134]. Antenna on high index substrates are not desirable because tightly bound 

fields result in reduced radiated power, higher losses, less efficiency and less bandwidth. In 

addition, patch antenna stops resonating for thickness (H) > 0.11λ0, since antenna impedance 

becomes purely inductive [238]. This poses an upper limit on the thickness of the substrate w.r.t. 

resonant frequency. Thereby, the low index, thin substrate will be an optimal choice for MMW 

microstrip antenna design. Additionally, for 60/85 GHz operating frequencies the limit of 

substrate thickness (H) comes to be; H < 0.388 mm. 

3.2.2.  Power Loss Due to Surface Waves 

At MMW, TE and TM surface waves are more likely to be excited on a grounded substrate. 

Surface waves give rise to end fire radiation, leading to unwanted coupling between elements 

and can leak through bends or discontinuities, resulting in loss of radiated power, reduced 

antenna efficiency and degraded polarization. The cut-off frequency of these modes is given by 

[238]: 

𝑓𝑐 =
𝑛𝑐

4𝐻
√(𝜀𝑟 − 1)                                                   (3.1) 

Where, c = speed of light, H = height of substrate, n = 0, 1, 2, 3....for TM0, TE1, TM2, 

TE3...surface mode. TM0 mode has zero cut-off frequency and can occur in any substrate 

thickness. For thinner substrates, its effect can be ignored. However, for thicker substrate, it 

causes more surface waves and thereby, loss of radiated power and antenna efficiency. A suitable 

substrate needs to be chosen for MMW antenna design, for which, cut off frequency of higher 

order mode is well above the operating frequency. 

For the proposed 60/85 GHz dual band antenna, maximum limit of substrate thickness 

(H) comes to be; H < 0.966 mm corresponding to TM10 surface mode.  
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3.2.3.  Conductor and Dielectric Losses 

Dielectric behaviour of a substrate can be defined by the complex dielectric constant (𝜀) = 𝜀′ −

𝑗𝜀′′, with 𝜀′ = real part of 𝜀  and 𝜀′′ = imaginary part of 𝜀. This gives relative permittivity 𝜀𝑟 =

𝜀′
𝜀0⁄ , here, 𝜀0= free space permittivity and dielectric loss tangent 𝑡𝑎𝑛𝛿 = 𝜀

′′

𝜀′⁄  (or 𝑄 =

1
tan𝛿⁄ ) [172]. Loss tangent accounts for losses of power and hence gives reduction in antenna 

radiation efficiency. Conductor loss is defined as 1/(𝐻√𝜋𝑓𝜇𝜎), σ is the conductivity of the patch, 

μ is the substrate permittivity and 𝐻 is the height of the substrate [131]. Substrate permittivity 

and loss tangent varies with frequency, which is termed as frequency dispersion.  

 Henceforth, dielectric and conductor loss increases at MMW frequency and can be taken 

care off by choosing substrate of lower loss tangent and higher thickness, respectively. 

Thereby, for being in the safe operating limit without exciting surface wave mode and 

without causing reduction in radiated power (conductor/dielectric loss), we considered the 

optimal substrate: Rogers RT5880 with specifications: εr = 2.2, H = 5 mil (0.127 mm), tanδ = 

0.002, metallization (t) = 0.017mm for simulation as well as realization of MMW prototype 

antenna. 

3.2.4.  Probe Measurement Feasibility 

 At MMW frequency, fabricated prototype device characterization is done by using coplanar 

ground-signal-ground waveguide (GSG-CPW) probe measurement, where ground and signal 

lines are coplanar [170]. However, in the microstrip based circuits ground is in the lower side of 

the substrate opposite to that of the conductor line, and therefore, on-wafer measurements of 

microstrip circuits typically require an interface between the device under the test (DUT) and the 

input CPW probes [308]. Firstly, a 50Ω CPW line operating in the fundamental CPW mode is 

needed to be designed according to the dimensions of available measurement probe pitch for 

proper probe contact. Further, to couple maximum RF power from CPW feed line to the 

microstrip line, an efficient CPW-to-microstrip transition is needed to be designed for 

minimizing the overall reflection and maximizing the transmission.  
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3.2.5.  Fabrication Constraint  

Most of the reported dual resonance antenna techniques, such as, cutting slots, shorting pins, 

closely placed multiple patches, metamaterials etc., that are commonly used at microwave 

frequencies require stringent fabrication and alignment accuracies at MMW (due to 

correspondingly low resonant dimensions λ/2 ≈ 1.5 to 2.5 mm). But, in order to make the MMW 

antenna design cost-effective and extendable, a simpler design technique is essentially desired 

without complicating the fabrication procedures or raising the cost.  

Therefore, in this chapter an attempt has been made to consider all these challenges and 

hereby, we propose a simple, single layer, compact and cost-effective 60 GHz/85 GHz dual 

frequency MMW antenna design. 

3.3.  Methodology for MMW Dual Frequency Planar Antenna 

Design 

Geometry of the proposed MMW dual frequency planar antenna is shown in the Figure 3.1(b). 

Here, we have used microstrip line based planar antenna design and further to ensure the proper 

measurement feasibility, a coplanar feeding line has been integrated into it. The complete antenna 

design can be subdivided into three major sections depending upon their operating principle, viz, 

(1) radiating patch, (2) feed section, (3) matching network. The behavior and importance of each 

section will be discussed separately.  

3.3.1.  Section 1: Dual frequency Radiating Patch Geometry 

3.3.1.1.  Single Frequency- Basic Patch 

The initial antenna structure is a rectangular microstrip patch as shown in Figure 3.1(a). 

The resonant frequency of the Microstrip antenna (MSA) can be tuned by changing its resonant 

dimension. For a rectangular MSA, resonant frequency is given by [27]: 

                      𝑓𝑟 =
𝑐

2√𝜀𝑟
√(

𝑚

𝐿
)
2
+ (

𝑛

𝑊
)
2

                                            (3.2) 

Where, 𝐿 is the length and W is the width of the radiating patch, 𝑐 is the speed of light. 

Here, m, n represent the number of half-cycle field variations along length and width of the patch. 
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For the fundamental TM10 mode excitation, length of the conducting patch 𝐿 = 𝜆𝑔/2, where, 

𝜆𝑔 = 𝜆0/√𝜀𝑟 , 𝜆0 corresponds to the free space wavelength. So, initial dimensions for single 

frequency(𝑓1) microstrip antenna can be found by taking the fringing field effect into account 

as per design equations given in chapter 1, section 1.3.1.1.  

3.3.1.2.  Dual Frequency- Modified Patch 

Further, in order to achieve the dual resonant frequencies using the single radiating patch, 

a slight modification in the basic geometry has been done by reactively loading one of the 

radiating edges of the patch. Here, for obtaining dual band from basic MSA, an open circuited 

stub has been introduced [66, 249]. Input impedance (Zoc) of the open circuit stub is given by, 

             𝑍𝑜𝑐 = 𝑍0
𝑍𝐿+𝑗𝑍0𝑡𝑎𝑛(𝛽𝑙)

𝑍0+𝑗𝑍𝐿𝑡𝑎𝑛(𝛽𝑙)
 = −𝑗𝑍𝑠𝑡𝑢𝑏 cot(𝛽𝑙)                                (3.3) 

here,(𝑍𝐿 = ∞, 𝑍0 = stub impedance(𝑍𝑠𝑡𝑢𝑏), 𝑙 = length of stub, β = propagation constant).  

Input impedance of the open circuited stub is capacitive or inductive around the resonant 

frequency of the patch depending upon the stub length [239]. When the length of the stub is 

small, it yields tunability, whereas when it is comparable to λ/4 (βl = П/2), it excites the other 

higher order mode (TM11) resonant frequency (𝑓2) and yields dual frequency operation [64]. 

Henceforth, as shown in Figure 3.1(b), to achieve a MMW dual band antenna, an open circuited 

λg/4 stub at the radiating edge of the patch has been placed. Here, short circuit stub was not used 

due to the associated complexities in shorting the stub to the ground. Further, our main objective 

was to propose a simple and cost-effective dual resonant antenna, hence, we tried to keep our 

design as simple as possible on an inexpensive substrate, which can be fabricated using 

conventional photolithography technique without raising the fabrication cost.  
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Figure 3.1. CPW fed MMW dual resonant antenna geometry- 60/85 GHz (dimensions not to 

scale). (a) Antenna 1: single frequency antenna, (b) Antenna 2: dual frequency antenna. 

 

3.3.1.3.  Surface Current Distribution  

Figure 3.2 shows the surface current distribution of dual band radiating antenna at two 

resonant frequencies viz., 60 GHz and 85 GHz. As already stated, inclusion of the tuning stub 

changes the fundamental and higher order mode surface current distribution and thus supports 

dual resonance.  

 

 

                                (a)                                                (b) 

Figure 3.2. Surface current distribution for dual band MMW antenna at: (a) 60 GHz and (b) 85 

GHz. 
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As seen from Figure 3.2(a), the surface current distribution shows one half wavelength 

variations along the length of the patch, however, along the width there is no change in the 

direction of current distribution. This signifies fundamental mode TM10 propagation at 60 GHz 

resonant frequency. Further, from Figure 3.2(b), the surface current distribution shows one half 

wavelength variations along the patch length as well as along the patch width. This signifies, 

higher order TM11 mode propagation at 85 GHz resonant frequency. By adjusting the tuning stub 

length and width, current distribution direction in the stub and the patch can be varied, and 

thereby, this structure supports two different resonant frequencies using a single radiating 

modified patch structure. 

3.3.1.4.  Effect of Parametric Variations on Antenna Performance 

The effect of varying stub length was also investigated on antenna resonance and it was 

observed that stub modifies the fundamental and higher order mode resonant frequencies of the 

patch and thereby, realizing dual response. Variation in the two resonant frequencies f1 and f2 

with varying stub length for different fixed stub widths is shown in Figure 3.3.  

On increasing the stub length (LS), f1 and f2 decreases for any fixed stub width (WS), 

however, frequency variation is more pronounced for higher stub length values as compared to 

lower values of stub length as shown in Figure 3.3(a). Frequency ratio (f2/f1) increases with 

increasing stub length (LS) for any fixed stub width (WS). Further, frequency ratio increases, with 

increasing stub width (WS) for any fixed stub length (LS), as shown in Figure 3.3(b).    

 

 

0.2 0.4 0.6 0.8

1.3

1.4

1.5

1.6

1.7

1.8

F
re

q
u
en

cy
 R

at
io

 (
f 2

/f
1
)

Stub Length L
s
 (mm)

 W
s
 = 0.2mm    W

s
 = 0.4mm

 W
s
 = 0.6mm    W

s
 = 0.8mm

 

                              (a)                                                                       (b) 

Figure 3.3. Effect of varying stub length (Ls) and stub width (Ws) on: (a) the two dual resonant 

frequencies f1and f2 and (b) on the frequency ratio (f2/f1) characteristic. 



Chapter 3 

52 

 

3.3.2.  Section 2: Feeding Section  

The radiating patch feeding has been done through the microstrip line as shown in Figure 3.1. 

Instead of probe feeding, inline microstrip feeding has been used, since coaxial probe pin at 

MMW band is approximately of the same cross-section as of MMW planar antenna. So, it is 

practically infeasible to drill a hole to provide a proper contact between the two, i.e., antenna and 

the feed. At MMW frequency, device measurement is through on-wafer coplanar probes [170]. 

The use of probes to measure microstrip circuits is difficult, since the probes could not contact 

the ground plane of the microstrip transmission line. In this case, it is highly desirable to have a 

coplanar waveguide (CPW)-to-microstrip transition. The feeding section consists of following 

three subsections in order to ensure maximum power transfer from the coplanar GSG probe to 

microstrip patch antenna: 

3.3.2.1.  Finite Ground-Conductor Backed CPW Line 

A coplanar waveguide (CPW) may be viewed as the two symmetrically coupled slot lines 

as shown in Figure 3.4 [291]. An important feature of the CPW line is that signal line and ground 

plane lie on one side of the substrate, thus providing a relative ease for passive and active device 

connection, without requiring a via hole. A CPW line may have a lower ground plane or not, 

however, the conductor backed CPW line is preferred to provide mechanical strength, since 

substrates used at MMW frequency are relatively thin and fragile. Additionally, here CPW has 

to be built on the same microstrip antenna substrate, which consists of a lower ground plane to 

suppress any backward radiation, so the design preferred to use comes out to be conductor 

backed-CPW line (CBCPW). Further, upper side ground plane is generally of finite width, for 

easy analysis, which gives rise to the finite ground conductor backed CPW line (FG-CBCPW) 

configuration as shown in Figure 3.4. Here, GW is the side ground plane width, S is the conductor 

width and G is the spacing between conductor and side ground plane line.  

FG-CBCPW may also be viewed alternatively as a system of three coupled microstrip 

lines. Normalized side ground plane width (GW/(S+2G)) should be less than λg/8, to keep the 

radiation losses and dispersion small, and it should be greater than twice the conductor width (S) 

so as to reduce attenuation due to conductor losses of the signal line [237]. The limiting frequency 

for FG-CBCPW line for single CPW mode operation corresponds to the maximum frequency, 
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for which phase constants of the CPW mode and the first lateral higher order mode intersect, 

beyond which it shows highly dispersive behavior and higher order mode propagation. 

t

GW S
G

H

 

(a)                                                                               (b) 

Figure 3.4. Geometry of finite ground conductor backed (FG-CBCPW) transmission line: (a) 

perspective view, (b) cross-sectional and top view. 

 

This maximum frequency depends upon both lateral line dimensions (𝑊𝑡𝑜𝑡) and substrate 

thickness (𝐻) and is given by [265]: 

𝑓𝑔(𝑊𝑡𝑜𝑡) =
2

𝑊𝑡𝑜𝑡√2𝜇0𝜀0(𝜀𝑟−1)
  𝑤ℎ𝑒𝑟𝑒,𝑊𝑡𝑜𝑡 = 𝑆 + 2𝐺 + 2𝐺𝑊            (3.4) 

                                  𝑓𝑔(𝐻) =
1

𝐻.√𝜇0𝜀0(𝜀𝑟−1)
                                                          (3.5) 

This means that both substrate thickness (𝐻) and total line width (𝑊𝑡𝑜𝑡) have to be kept 

small enough to maintain the desired single-mode CPW behavior at the desired frequency of 

operation. Since, FG-CBCPW resembles a system of three coupled microstrip lines, length of 

FG-CBCPW should be kept much less than half wavelength of microstrip line (MSL) mode, i.e., 

𝐿 ≪ (𝜆0/√𝜀𝑟)/2, to avoid excessive cross-talk or possible resonance [291]. 

3.3.2.2.  Microstrip Line  

Microstrip line consists of a conducting strip printed over the grounded dielectric 

substrate. The conductor strip resides in an inhomogeneous region having an abrupt dielectric 
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interface, since the region above is air, whereas lower portion is filled with the dielectric. 

Microstrip line has most of its field lines in the dielectric region, concentrated between the strip 

conductor and the ground plane, and some fraction in the air region above the substrate. For this 

reason, the microstrip line cannot support a pure TEM wave [239]. The phase velocity of EM 

fields in the dielectric region would be 𝑐/√𝜀𝑟, but the phase velocity of EM fields in the air 

region would be ‘𝑐’ only, due to this phase mismatch quasi TEM mode is generated. 

The geometry of microstrip line is shown in Figure 3.5, which consists of a conductor 

strip of finite width (WM) on a grounded dielectric substrate (ɛr), having thickness (H). Figure 

3.5(b) shows the cross-sectional and top view of microstrip line and Figure 3.5(c) shows the E-

field distribution of fundamental quasi TEM mode propagating in the microstrip line.  

 

 

WM

H

t

 

         (a)                                                                             (b) 

 

(c) 

Figure 3.5. Microstrip line: (a) perspective view, (b) cross-sectional and top view, (c) E-field 

distribution vector of quasi TEM mode. 
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3.3.2.3.  CPW to Microstrip Transition 

An effective transition is desired between two different transmission line configurations 

(CPW & microstrip) in order to transform the EM fields from CPW mode to the microstrip mode 

[308]. Primarily, there are two types of transitions, one that uses via hole and the second type 

uses via less transition. Via hole, however, provides broadband transition, but adds complexities 

in fabrication. Therefore, via less transitions are preferably used [247]. The key idea while 

designing the transition is to maintain the uniform, gradual change in the characteristic 

impedances. This approach helps in minimizing the overall reflection and maximizing the 

transmission. 

3.3.3.  Section 3: Matching Network 

Since, edge impedance of the rectangular patch antenna is different from the feeding 50Ω 

microstrip line, a proper impedance matching network is needed to interconnect the two 

structures, in order to ensure maximum power transfer from feedline to the antenna. Thereby, for 

impedance matching between patch and the microstrip line, a quarter wave transformer has been 

used as an impedance matching network. The quarter-wave transformer has a length equal to 

quarter wave in microstrip and its width is determined by the characteristic impedance Zλ/4, given 

by [239]:    

                                                       Zλ 4⁄ = √Z0Zin       (3.6) 

where, Z0 is the characteristic impedance of the feedline and Zin is the input impedance of the 

radiating patch. Demonstration of matching network is shown in Figure 3.6.  
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Z0 Zλ/4 Zin

Zresultant=Z0

λ/4τ

 

Figure 3.6. The quarter-wave matching transformer. 

 

3.4.  Simulation Results 

The antenna structure and different transmission line sections were firstly simulated and 

optimized using 3D full wave EM solver HFSS before going for simulation/fabrication of 

complete antenna prototype. Since, at MMW frequency no proper closed form expression is 

available for planar structure design, hence, different sections, viz, microstrip transmission line, 

co-planar waveguide transmission line (CPW) and transition structure (CPW-to- microstrip line) 

were separately modeled in terms of characteristic impedance (Z0) and effective dielectric 

constant (ɛeff) w.r.t. frequency using HFSS. 

3.4.1.  Microstrip Line Characterization at MMW Frequency 

Microstrip line at MMW was characterized, i.e., dependence of characteristic impedance (Z0) 

and effective dielectric constant (ɛeff) on conductor width and frequency was plotted.  Figure 

3.7(a) shows Z0 vs (WM/H) and ɛeff vs (WM/H) plot at 60 GHz, where, (WM/H) = normalized 

conductor width. As seen in figure, on increasing conductor width, characteristic impedance (Z0) 

of the microstrip line reduces and varies in the range of Z0 = 20 to 120 Ω. However, on increasing 

normalized conductor width, there is only a slight increase in ɛeff for a fixed frequency (say, f = 

60 GHz). From these plots, one can easily find microstrip conductor width corresponding to the 

given microstrip line impedance, and vice versa. For example, for a 50 Ω microstrip line 

impedance, the conductor width is WM = 0.38 mm. 
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(a)                                                                         

     

(b) (c) 

Figure 3.7.   Microstrip line characteristic plots: (a) characteristic impedance (Z0) and effective 

dielectric constant (ɛeff) vs conductor normalized width (WM/H) plot at a fixed frequency (f = 

60 GHz), dispersion in microstrip line characteristics with frequency for a fixed 50 Ω conductor 

width: (b) variation in Z0 and (c) variation in reflection/ transmission loss. 

 

The frequency dependence of microstrip line is shown in Figure 3.7(b), (c). In Figure 

3.7(b) dispersion of characteristic impedance w.r.t. frequency is shown for a fixed conductor 

width, which shows nearly constant line impedance over the full frequency range of operation. 

Figure 3.7(c) shows the reflection/insertion loss characteristic w.r.t. frequency, which shows 

maximum transmission and nearly zero reflection, of the designed MMW microstrip line in full 

frequency range of interest, i.e., 60 GHz to 100 GHz. 
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3.4.2.  FG-CBCPW Transmission Line Simulation 

In order to provide measurement compatibility with coplanar 50 Ω GSG probe (i.e., ground-

signal-ground), a 50 Ω CPW feedline is separately designed and later on integrated to the antenna 

structure on the same substrate.  

Keeping in view of the single CPW mode propagation as discussed in section 3.3.2.1, and 

the dimensional constraints of our available GSG probe pitch 150 μm, i.e., (S+2G) < 150 μm, the 

dimensions of 50 Ω FG-CBCPW line comes out to be, GW/G/S = 0.4mm/0.03mm/0.2mm as 

shown in Figure 3.8Figure 3.4(b). However, initial dimensions of the CPW line was computed 

using Agilent’s advanced design system (ADS) - Linecalc tool. The E-field distribution of the 

fundamental CPW mode propagating in the simulated CPW line is shown in Figure 3.8(a).  

 

 

(a) 

    

(b)                                                                      (c) 

Figure 3.8. FG-CBCPW transmission line characteristics: (a) E-field vector distribution of 

fundamental CPW mode, (b) characteristic impedance vs frequency, (c) reflection/transmission 

characteristic plot vs frequency. 
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Further, Figure 3.8(b) shows FG-CBCPW line characteristic impedance vs frequency 

plot, which shows nearly constant Z0 within the frequency range of our interest. Also, 

transmission/reflection vs frequency plot in Figure 3.8(c) signifies good transmission line 

behavior of the simulated coplanar transmission line in the considered complete MMW range of 

operation. 

3.4.3.  Design of CB-FGCPW to Microstrip Line Transition Structure 

A good matching transition is required to effectively propagate the RF signal from the coplanar 

feed to the antenna. Since, the width of 50 Ω microstrip line (WM = 0.38 mm) and the width of 

50Ω FG-CBCPW line centre conductor (S = 0.2 mm) are not the same, hence, a smooth transition 

structure is required such that to avoid any mismatch between microstrip and CPW line. A back 

to back CPW to microstrip transition has been simulated as shown in Figure 3.9(a) in order to 

initially analyse its behaviour, before incorporating it with the antenna. The smooth taper 

connecting centre conductor of the CPW line to the microstrip line provides gradual change in 

the impedance and the field lines, minimizing overall reflection and maximizing the 

transmission. The length of transition is ≈ λg/4, where λ is the operating wavelength [170]. 

Bandwidth of CPW-to-microstrip transition depends upon CPW feed line length, due to the 

propagation of coplanar microstrip mode (CPM) along the CPW feed-line [247].  

 

WM

S

GW

G

LT LMLCPW

 

(a)                                                                      (b) 

Figure 3.9. A back to back transition of finite ground conductor backed coplanar waveguide 

(FG-CBCPW) to microstrip transmission line: (a) Geometric structure and (b) Simulated 

reflection/transmission loss vs frequency plot. 
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Hereby, by keeping CPW pad length small, a wide bandwidth CPW-to-microstrip 

transition has been achieved covering the full MMW frequency of interest. Figure 3.9(b) shows 

the simulated insertion loss and return loss plot of the transition structure. It shows maximum 

insertion loss of 0.5 dB and return loss lower than -16 dB for the frequency range of 1 GHz to 

110 GHz. The designed transition is wide band and via-less, hence, makes the fabrication process 

relatively less expensive and less complicated. 

 

3.5.  Fabrication and Measurement of Designed MMW Dual 

Resonant Planar Antenna  

Once different sections of CPW fed MMW dual frequency planar antenna were separately 

analyzed, i.e., CPW line, microstrip line, transition structure, matching network, radiating patch; 

in the next step, the complete integrated antenna structure was simulated. Further, antenna design 

parameters were optimized using HFSS, to achieve the required dual resonant response at the 

two respective frequencies 60 GHz (V band) and 85 GHz (E band).  

 

Table 3.1. Final dimensions of the designed dual frequency MMW planar antenna. 

S. No. Design parameter (notation used) Value (in mm) 

1 Microstrip patch length (LP) 1.25 

2 Microstrip patch width (WP) 2 

3 Matching network length (LQ) 0.6 

4 Matching network width (WQ) 0.1 

5 Microstrip line length (LM) 0.94 

6 Microstrip line width (WM) 0.38 

7 Stub length (LS) 0.48 

8 Stub width (WS) 0.5 

9 Transition length (LT) 0.3 

10 CPW feedline length (LCPW) 0.1 

 

Actual photograph of the fabricated MMW dual frequency antenna prototype and its 

scanning electron microscope (SEM) image is shown in Figure 3.10. The substrate dimensions 
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were taken to be SL X SW = 5 mm X 5 mm. The final optimized dimensions of dual frequency 

MMW antenna are given in Table 3.1. The cross-sectional area of the dual frequency antennas is 

3.7 mm2. 

 

 

Figure 3.10. Fabricated prototype of designed MMW dual frequency-60/85 GHz antenna & its 

SEM image (70x-zoom SEM). 

 

Figure 3.11 shows comparative (simulated vs measured) reflection coefficient plot of dual 

band MMW antenna. The measured S11 values are -15.2 dB and -48.15 dB and fractional 

bandwidths are 1% and 6.4%, at the two respective resonant frequencies.  

 

 

Figure 3.11. Comparative (measured vs simulated) reflection coefficient vs frequency plot for 

the designed dual band (60/85 GHz) MMW antenna. 
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Thus, the overall optimized structure provides dual frequency operation with an excellent 

interband rejection, while simultaneously maintaining low profile characteristic of the antenna. 

However, there is a slight shift in measured and simulated resonant frequencies viz, 2%, 0.7% 

corresponding to 60 GHz, 85 GHz that can be accounted for fabrication tolerances, imperfect 

contact of probe pins to CPW feed-line and parasitic impedance at the feeding point caused due 

to the three point GSG probe [19, 358]. The fabricated prototype antenna shows good broadside 

radiation characteristic at the two resonant frequencies concurrently as given in Table 3.2. At f1= 

61.2 GHz measured gain values are 8.49 dBi and 8.95 dBi in E and H planes, respectively. At f2 

= 85.6 GHz measured gain values are 5.13 dBi and 5.37 dBi in E and H planes, respectively.  

 

Table 3.2. Measured values of fabricated dual frequency MMW antenna prototype. 

S. No. Resonant frequency 

(GHz) 

Fractional 

bandwidth  

Gain (dBi) 

1 61.2 1% 8.49 (E-plane), 8.95 (H-plane) 

2 85.6 6.4% 5.13 (E-plane), 5.37 (H-plane) 

 

A comparison of the designed antenna with other reported works is given in Table 3.3. It 

can be inferred from the table that our proposed MMW dual frequency antenna operates quite 

well at the two concurrent dual frequencies with appreciably good gain and is of compact size as 

compared to the other reported MMW dual band antenna techniques.  

 

Table 3.3. Comparison of the performance of reported MMW dual frequency antennas with our 

designed MMW dual frequency antenna. 

S. No. Parameters Ref [128] Ref [184] Ref [285] Proposed Dual 

Band Antenna 

1. Frequency (GHz) 41/52.2 60/77 58/77 60/85 

2. B.W (%) 2/ -- -- 6.1/5.8 1/6.4 

3. Gain (dBi) 3.8/ 4.2 3.5/4.8 -2/0.3 8.95/5.37 

4. Fabrication 
Complex 

(SRR) 

Complex 

(MEMS) 

Complex  

(flipchip) 

Simple  

(stub) 

5. Size ---- 4.6 mm2 14 mm2 3.7 mm2 
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Further, the antenna design is kept simple to achieve our objective of fabrication 

simplicity and cost efficiency, which is, very much needed for its commercial usability with 

concurrent multi-gigabit wireless communication systems at V band (60 GHz) and E band (85 

GHz). 

3.6.  Conclusion 

In this chapter, a MMW CPW-fed concurrent dual band antenna design has been proposed and 

validated through fabricated prototype measurement results. The measured results show 

fractional bandwidths 1% / 6.4% and E-plane (H-plane) gain 8.49 dBi (8.95 dBi)/5.13 dBi (5.37 

dBi) at the two respective frequencies 60 GHz/85 GHz. The designed antenna is having the cross-

sectional area of 3.7 mm2 and in comparison to available literatures it is lesser in size which 

reflects its compactness. The proposed MMW dual frequency antenna design does not require 

any complex fabrication step, like, slot, via hole, notch, etc. and employs only a single, planar 

radiating structure. This simple design favors easy and user-friendly fabrication using 

conventional photolithography techniques. Additionally, the substrate used is cheap and 

commonly available, which, reduces the overall cost of the antenna. Therefore, we have 

successfully fulfilled our objectives of a simple, compact, and cost effective dual frequency 

MMW antenna structure design. As a future scope, its extension as an array antenna will provide 

the high gain and the low cost solution for the concurrent multiple applications as well as 

additional redundancy in applications related to MMW imaging.



 

 

 



 

65 

 

 

 

 

 

Chapter 4                

Stand-off Target’s Shape Identification 

and its Material Classification Using 

Millimeter Wave Imaging System 
 

Current electromagnetic based screening technologies, such as, metal detectors, microwave 

imaging, visible/IR and x-ray backscatter are restricted in their stand-off capability, coverage, 

efficacy, and flexibility they afford. Alternately, MMW has emerged as a remarkable imaging 

modality pertaining to its unique, favorable features of high resolution capability, non-ionizing 

radiation and ability to penetrate through clothing/ packaging [50, 110, 235, 351]. A prerequisite 

of a good imaging system is its ability to form an image with an appreciable contrast between 

the targets and the background so as to easily discriminate it. Another important requirement is 

that the image formed should have sufficient spatial details for its correct shape identification 

and further material classification. Keeping in view of these challenges, a MMW radar system 

based target’s shape identification and its material classification methodology has been proposed 

in this chapter. Applicability of different pre-processing and post-processing techniques has been 

investigated in view of the stand-off target’s information estimation, i.e., shape identification and 

material classification. An extensive number of targets with four different regular shapes, viz., 

rectangle, square, triangle and circle have been used for development and validation of the 

proposed algorithm. 

4.1.  Introduction 

Very few works have been reported related to MMW based target’s detection and identification 

employing different image processing techniques [85, 121, 271, 311]. A MMW target’s detection 
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system for vehicular collision warning has been discussed using segmented range detection 

(SRD) at 60 GHz in [337]. A non-destructive crack inspection of civil structures at 94 GHz has 

been demonstrated in [219, 334]. Concealed weapon detection application at 35 GHz is presented 

in [51] using physical optics based modeling. Target’s identification for standoff personal 

screening has been reported at 100 GHz/ 350 GHz using cylindrical/ polarimetric imaging 

technique in [273], at 200 GHz using heterodyne transceiver method in [325], and at 95 GHz 

using microwave holographic processing technique in [352]. A. Hirose et.al. [115] proposed an 

active near-field shape extraction method using an envelope phase detection for the targets, like, 

stacked round cans, plastic bottle filled with water at 76.5 GHz. Harmer et.al. [108] demonstrated 

the decomposition of late time and the transient response of metallic objects and characterized 

them by aspect-independent poles, for detection and discrimination of threat items (handguns) 

from the non-threatening items, such as, mobile phone handsets, cameras, keys and pens. On 

reviewing literature related to MMW imaging, it was found that most of the reported work at 

MMW has emphasized on target’s detection and very less attention has been given for target’s 

identification and target material classification. Target’s identification and classification plays a 

crucial role in acquiring correct target’s information, which may be of vital importance for 

different strategic, public safety and commercial applications.  

MMW radar imaging uses artificially generated radiation to illuminate the scene of 

interest. Here, the quality of the formed image is dominated by the scene’s reflectance 

distribution and is sensitive to the target’s surrounding reflectance property, multipath reflection, 

non-uniform illumination and other factors. Thereby, there is a need to apply different suitable 

pre-processing and post-processing techniques for useful target information extraction from the 

radar reflectance data. At microwave frequencies for applications, like, ground penetrating radar 

(GPR) [2, 334] and through wall imaging (TWI) [68, 123] different image processing techniques 

are being used for enhancing the target’s image quality and estimating target material. However, 

the significance of these techniques has still not been investigated for MMW radar imaging for 

the stand-off target’s identification.  

Any unwanted signal reflections (background/ oblique reflection, multipath propagation) 

in the line of sight of the target’s reflection are collectively termed as ‘clutter’ and may degrade 

the resultant image quality. Different prevalent image enhancement and clutter reduction 

techniques are available that are commonly known as averaging, background subtraction, 

statistical clutter reduction using principal component analysis (PCA), independent component 
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analysis (ICA), singular value decomposition (SVD) etc. [2, 46, 301, 302]. These different 

techniques have their different working principles and their performance depends upon the 

particular application type. Hence, there is a need to find a suitable image enhancement technique 

for the target’s identification application at MMW.  

Image segmentation is a technique useful in discriminating objects from the background, 

like, printed or written documents, concealed objects, blur and non-uniform illumination [321]. 

Segmentation subdivides an image into its constituent regions or objects. Image segmentation 

algorithms are generally based on the basic properties of intensity values, i.e., discontinuity and 

similarity. It is important in image processing to select an adequate threshold of gray level for 

extracting objects from their background. As well as it is an essential step for unsupervised 

decision problems in pattern recognition. A variety of thresholding techniques are being used 

like, histogram [221, 328], clustering [97], entropy [353], multi-level expectation maximization 

[164], and locally adaptive thresholding [14, 267]. However, the choice of any particular 

thresholding technique will solely depend upon particular image types for better target’s 

identification.  

Edges characterize target’s boundaries and are of prime importance in image processing 

for target’s identification [37]. Edge detection serves to simplify the analysis of images by 

drastically reducing the amount of data to be processed, while at the same time preserves useful 

structural information about object boundaries. Commonly used edge detector techniques are 

iteratively refined regularization [95], canny edge detector [37], statistical classifier [159], local 

threshold and Boolean function [14], color edge detection using Euclidean distance and vector 

angle [319], depth edge detection using multi-flash imaging [210], etc. Different edge detectors 

present distinct and different responses to the same image, showing different details. Hence, there 

is a need to find an optimum edge detector for accurate shape and size identification for the 

MMW target’s image application.  

Apart from mere target’s shape identification, many times, it is essential to know the type 

of the target’s material, like, whether the distant target is metal, wood, cardboard, plastic, 

ceramic, Teflon or any other material. From security viewpoint, it is important to measure how 

significant is the object towards any possible threat (say, the concealed gun shape object is of 

metal or it is just a plastic toy gun) and also target’s material information is helpful in reducing 

excessive false alarms [187]. Target’s classification can be realized using maximum likelihood 

estimation of EM based statistical measures for different classes [164]. A number of distribution 
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models with single or mixture of two models can be assigned to any particular class depending 

upon the target’s characteristics [111, 112]. Other classification techniques include discrete 

cosine transform (DCT) coefficient features [69], Gaussian kernel function in conjunction with 

SVM classifier [224], etc. However, at MMW it is still a challenging task for accurate stand-off 

target’s classification in view of low signal to noise ratio (SNR). Henceforth, in this chapter we 

have proposed and developed an algorithm for MMW stand-off imaging for target’s shape 

identification and its material classification by using different digital image processing 

techniques, like, image enhancement (background subtraction, windowing, singular value 

decomposition), image segmentation (thresholding, edge detection), classification (probability 

density function). 

 This chapter is organized as follows: section 4.2 discusses theoretical background for 

target’s shape identification and target’s material classification, section 4.3 details the targets 

data used, section 4.4 presents methodology used for development and implementation of MMW 

SFCW radar. Section 4.5 discusses experimental results and section 4.6 presents the validation 

of the proposed algorithm using targets of a different regular shape. In section 4.7 an inclusive 

list of different image processing steps with results is discussed. Finally, section 4.8 presents the 

conclusion. 

4.2.  Theoretical background  

Data received from MMW radar is the spatial distribution of reflectivity of the stand-off target 

and its surroundings. Different challenges are needed to be considered for generation of a good 

quality image w.r.t. target’s correct shape and its material information estimation. Thereby, the 

present chapter embodies different signal pre-processing and post-processing techniques for the 

target’s image formation and its analysis for shape identification and material classification. 

Figure 4.1 shows the flowchart that describes different signal processing steps for complete 

target’s detection, identification and classification. 

4.2.1.  Signal pre-processing 

Data acquired through experiments is in complex, frequency domain form, therefore, before 

applying different image processing techniques following pre-processing steps are used in order 

to convert data into the desired form: 
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1) Frequency to time domain conversion (IFFT) 

2) Time to spatial domain conversion 

3) Calibration 

4) Windowing 

Details of each of these pre-processing steps will be discussed in section 4.4.1. After pre-

processing steps, we will be having two important information related to the stand-off targets, 

i.e., (1) whether there is any target present in the down-range or not, (2) If target is present, then 

it’s exact downrange location. The target’s location detection information can be found by the 

range profile plot, which will be discussed in detail in the section 4.5.1.  

4.2.2.  Signal post-processing 

In this chapter, our main objective is target’s shape identification and classification, therefore, 

after detection of the targets there is a need to apply different post-processing techniques to 

extract complete target’s information. For this, the raw 2D C-scan image of the target is extracted 

in accord to the section 1.3.2.2, i.e., vertical slice of 3D C-scan matrix is taken at that downrange 

location where reflection peak in the range profile plot is obtained. The extracted 2D C-scan 

image is the function of target’s reflectivity w.r.t. height and cross-range co-ordinates.  

The C-scan data is collected as the reflected signal from the object, however, has the 

capability to reconstruct target’s image, but in its unprocessed raw form it is not possible to do 

so. This is because, the intercepted reflected EM waves not only contain desired target’s 

information but additional undesired signals, viz., reflection and refractions due to multipath 

propagation, background reflection and due to non-uniform illumination etc. Hereby, different 

post-processing techniques are needed to be applied in order to extract relevant and significant 

target’s information. In order to enable the user to discriminate between object and the 

background as well as to obtain its shape, size and material information, following post 

processing steps have been applied:  

1) Subtask 1: Target’s shape identification 

a. Image enhancement – background subtraction and clutter reduction 

b. Image segmentation – thresholding, edge detection 

2) Subtask 2: Target’s material classification 
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Details of implementation and significance of each of the post-processing steps is given in the 

section 4.4.2. 
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Figure 4.1. Flowchart showing different signal processing steps for stand-off target’s image 

identification and its material classification 
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4.3.  Data used 

For the experimental observations of stand-off target’s shape identification and its material 

classification, a large metal (Al) sheet (35cm x 43.6cm) was mounted on the 2D-scanning 

wooden frame as shown in Figure 4.2. Different wooden regular shaped targets (as given in Table 

4.1) were placed at the center of metal sheet at a standoff distance from the antenna. Figure 4.2 

shows the pictorial view of few of the physical target’s arrangements used.  

 

          

                   (a)                                   (b)                                   (c)                             (d) 

Figure 4.2. Different target shapes mounted on a 2D-scanning wooden frame enabling 

horizontal and vertical movement for complete C-scan (a) T1: rectangle, (b) T2: triangle, (c) 

T3: circle, (d) T4: square. 

 

Here, background material is the metallic sheet having high reflectivity and over which 

wooden targets are mounted, which have the low reflectivity towards the incident EM waves. 

Wooden targets of four different regular shapes, viz., rectangle, square, triangle and circle have 

been considered for our target’s identification algorithm development. Details of different targets 

used, i.e., their shape, and size information is summarized in Table 4.1.  

 

Table 4.1. Different regular shaped targets used for target’s identification algorithm 

development 

S. No. 
Target’s shape 

(symbol used) 
Size 

Number of target samples 

taken for each shape 

1 Rectangle (T1) 8 cm X 20 cm 5 

2 Triangle (T2) Equilateral (20 cm) 5 

3 Circle (T3) radius 10 cm 5 

4 Square (T4) 20 cm x 20 cm 5 
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This type of target’s arrangement acquaint us with the multi-fold target’s information, viz, 

detection based on dielectric contrast (low and high index material), target’s location estimation 

as well as discrimination of target’s materials using classification.   

4.4.  Methodology used for development and implementation of 

target’s identification algorithm 

The ingeniously assembled MMW imaging radar setup for identification and classification of 

targets is the same as shown in Figure 1.8, and the SFCW radar design specifications are the 

same as given in Table 1.1. The one port S-parameters (S11) were collected at 201 frequency 

points, after calibrating PNA using 2-port standard calibration process Through Open Short 

Matched (TOSM). Image parameters of the designed SFCW radar, i.e., range resolution and 

cross-range resolution are 7.5 cm and 8.59 mm, respectively as obtained from the corresponding 

equations (1.16) and (1.17). The stand-off target under investigation has been kept at a distance 

of 110 cm from the antenna and scanned along 32 horizontal and 24 vertical scanning positions 

with the inter-element spacing of 2 cm, in order to completely image the targets. The full A, B 

and C-scan has been performed as discussed in section 1.3.2.2. Data thus, acquired undergoes 

different signal processing steps as discussed in section 4.2, in order to have the required target’s 

information, i.e., detection, shape identification and its material classification.  

4.4.1.  Signal pre-processing 

Different signal pre-processing steps mentioned in the section 4.2.1 are discussed here in detail, 

outlining their need and the significance. At the end of signal pre-processing, we will be able to 

know the presence or absence of the target as well as its exact location in downrange by the range 

profile plot, i.e., an intensity vs distance plot. Application of signal pre-processing steps on the 

experimental data will be discussed in the next section.  

4.4.1.1.  Frequency to Spatial Domain Conversion (Step 1) 

  The SFCW radar measures magnitude and phase of received signal corresponding to the 

transmitted signal at each stepped frequency. Signal transmitted at the discrete frequency step fn 

is, 𝐸𝑡(𝑓𝑛) =  𝐸0𝑒
𝑗2𝜋𝑓𝑛𝑡. Received signal reflected from the target at a distance z from radar is in 
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complex scattering coefficient form 𝑠(𝑧), with reference to transmitted signal and is given by 

[78],  

𝑆(𝑓𝑛) =
𝐸𝑟(𝑓𝑛)

𝐸𝑡(𝑓𝑛)
=

1

𝑧0
∫ 𝑠(𝑧)𝑒

−𝑗2𝜋𝑓𝑛(
2𝑧

𝑐
)
𝑑𝑧

𝑍0
0

    (4.1) 

𝑍0 = 𝑐/2∆𝑓, is the unambiguous range of the radar. Equation (4.1) is in form of Fourier 

transform. Here, 𝑆(𝑓𝑛) is the received reflected signal in frequency domain at the discrete 

frequency step (𝑓𝑛). Hence, SFCW radar measures reflected signal at discrete frequencies, i.e., 

𝑓𝑛 = 𝑓0 + 𝑛∆𝑓 where, 𝑛 = 0, 1, 2, ……𝑀 − 1. Here, 𝑀 is the total number of frequency points 

in SFCW signal which, in our case is 𝑀 = 201. The received signal is converted into time domain 

using Inverse Fast Fourier Transform (IFFT) and is represented as: 

𝑆(𝑡) = ∑ 𝑆(𝑓𝑛)𝑒
𝑗2𝜋𝑓𝑛𝑡𝑁−1

𝑛=0      (4.2) 

Now, in order to have range estimation of the target, time domain signal is converted into spatial 

domain by converting signal propagation time to the corresponding round trip distance (𝑧). 

𝑡 =
2𝑧

𝑐
       (4.3) 

Received signal in spatial domain is termed as the range profile as discussed in section 1.3.2.2, 

which is a plot of reflection intensity vs down range distance z and is given by, 

𝑆(𝑧) = ∑ 𝑆(𝑓𝑛)𝑒
𝑗2𝜋𝑓𝑛(2𝑧/𝑐)𝑁−1

𝑛=0          0 < 𝑧 < 𝑍0    (4.4) 

4.4.1.2.  Calibration Using Metal Sheet (Step 2) 

Reflection peak in the range profile plot gives an initial estimate of target’s location in 

down-range as discussed in section 1.3.2.2. Although, VNA cable and antenna system also add 

some delay to the received signal, which shifts the target’s location in downrange from its true 

position. Hence, in order to get correct downrange distance of the targets, delay calibration is 

done by placing a large metal sheet (reference) at the flare of horn antenna. Then, range profile 

of the reflected signal is plotted, in which, dominant intensity peak corresponds to the antenna-

air interference point analogous to the delay due to the antenna system [213]. This delay is to be 

noted and must be subtracted in further calculations, to have the exact target’s position. Say, 

𝑡𝑟𝑒𝑓, 𝑧𝑟𝑒𝑓 represents time delay and distance due to metal sheet at antenna flare, respectively. 

Then, the corrected signal incorporating shift due to antenna system is, 
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𝑆(𝑧) = ∑ 𝑆(𝑓𝑛)𝑒
𝑗2𝜋𝑓𝑛(

2𝑧
𝑐⁄ −
2𝑧𝑟𝑒𝑓

𝑐⁄ )𝑁−1
𝑛=0    (4.5) 

4.4.1.3.  Windowing (Step 3) 

Window function is applied on received scattered signal. It helps in eliminating any 

oblique surface reflections and background reflections. Windowing function is not applied on 

transmitted signal so as not to limit the transmitted power, rather it is applied on the received 

signal. When windowing is applied, the side lobes are reduced which will help to reduce false 

alarm rate and will improve dynamic range of detection. However, windowing slightly 

deteriorates range resolution of the radar system. Different available windowing function, like, 

rectangular, triangular, hanning, hamming, blackman-harris, B-spline, etc. have been tested and 

it was found that hamming window gives optimal performance w.r.t. better side lobe suppression 

and smoothing operation [169]. 

Once stand-off target’s presence has been detected and its location is known from the 

range profile plot, the raw C-scan image of the target is obtained by extracting the 2D slice at 

peak reflection intensity point in the downrange as discussed in section 1.3.2.2. Further, 

information related to target’s shape, size and its material type can be inferred by applying 

suitable post-processing techniques (image enhancement, segmentation and target’s material 

classification) on the raw C-scan image as discussed in section 4.2.2. The detailed description of 

each of these post-processing techniques is given below: 

4.4.2.  Signal post-processing for Target’s Shape Identification (Subtask 1) 

For target’s correct shape identification, there should be an appreciable contrast between the 

target and the background, which necessitates the use of image enhancement and segmentation 

techniques as described below:  

4.4.2.1.  Image Enhancement 

 Background subtraction (Step 5) 

  The received reflected signal from target contains unwanted signals due to air–antenna 

mismatch, background reflection and interference between transmitting and receiving signal. To 

eliminate these unwanted signals, mean subtraction approach has been applied because of its 
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simplicity of implementation. Here, mean vector of each B-scan is calculated, followed by mean 

vector of all these B scans. This mean vector value is subtracted from each individual A-scan [2]. 

𝑋𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑘 −
1

𝐽
∑ (

1

𝐼
∑ 𝐴𝑖𝑗𝑘
𝑖
1 )

𝑗
1    (4.6) 

Here, i = 1, 2 . . I (no. of downrange locations), 𝑗 = 1,2… . 𝐽(𝑛𝑜. 𝑜𝑓𝐵𝑠𝑐𝑎𝑛𝑠) ,

𝑘 = 1,2, …… .𝐾 (𝑛𝑜. 𝑜𝑓𝐶𝑠𝑐𝑎𝑛𝑠) 

𝐴𝑖𝑗𝑘 is the signal received at particular downrange location (𝑖) and 𝑋𝑖𝑗𝑘 is the resultant signal 

after background subtraction. 

 Clutter reduction (Step 6) 

 After mean based background subtraction, clutter reduction technique has been applied 

so as to further improve signal to noise ratio and enhance target’s image. Clutter reduction is a 

signal processing technique, where, the desired target’s signal is separated from mixture of 

reflected signals without any knowledge of mixing background signals. Reflected signal mainly 

comprises of desired target’s reflection, and clutter signal due to oblique and multiple reflections. 

As compared to the different available clutter reduction techniques, like, Principle Component 

Analysis (PCA), Factor analysis (FA), singular value decomposition (SVD) and Independent 

Component Analysis (ICA), SVD proves to be a robust and reliable orthogonal matrix 

decomposition technique with added advantages of improved image quality, compressibility and 

is better in preserving edge details [151]. SVD decomposes received signal into target and clutter 

signal. Let, we take a single B scan image represented by 𝑋𝑖𝑗, with dimension M x N (M > N), 

Here, i is the index in downrange (𝑖 = 1,2, … . .𝑀) and j is the number of antenna positions in 

horizontal direction (𝑗 = 1,2, … .𝑁). SVD of 𝑋 is given by [2, 306], 

𝑋 = 𝑈𝑆𝑉𝑇     (4.7) 

where, U and V are unitary matrices, S = diagonal (𝜎1, 𝜎2, … . 𝜎𝑟), with 𝜎1, 𝜎2, … . 𝜎𝑟 > 0, U is a 

MxM matrix and V is a NxN matrix. The columns of U and V are called the left and right singular 

vectors, respectively.  The matrix S is an M x N matrix, where non-diagonal elements vanish.  

The diagonal elements of S are called the singular values. SVD of X is    

𝑋 = ∑ 𝜎𝑘𝑢𝑘𝑣𝑘
𝑇𝑁

𝑘=1          (4.8) 
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or,     𝑋 = 𝐷1 + 𝐷2 + …+ 𝐷𝑁 

where, Dk are matrices of the same dimensions as X and are called X's modes. This representation 

of X, as a series of matrices representing the various modes, is one of the most important aspects 

of SVD. Now let us assume that the data matrices D, can be divided into two parts, 𝐷 =

[𝐷1→𝑝|𝐷𝑝→𝑁], where 𝐷1→𝑝 is associated with the target’s signal and 𝐷𝑝→𝑁 is associated with the 

clutter. The optimum value of p is found where the target is present which corresponds to higher 

eigen values as compared to noise / clutter signal [1]. On applying SVD on our experimental data 

and analyzing eigen values, it was found that, eigen mode 𝐷1 (𝑝 = 1) represents target and 

𝐷2→𝑁represents noise. Hence, target’s signal can be extracted as,  

                           𝑆 = 𝜎1𝑢1𝑣1
𝑇 = 𝐷1     (4.9) 

4.4.2.2.  Image Segmentation 

 Thresholding (Step 7) 

After, image enhancement, our prime objective in process of target’s image identification 

is to extract target’s information from background for successful target’s shape recognition. For 

this, thresholding based image segmentation becomes an intuitive choice because of its simplicity 

of implementation. Thresholding involves a test against a function T of the form 

                              𝑇 = 𝑇(𝑥, 𝑦, 𝑝(𝑥, 𝑦), 𝑓(𝑥, 𝑦))    (4.10) 

Where, 𝑓(𝑥, 𝑦) corresponds to gray level image at point (𝑥, 𝑦), and 𝑝(𝑥, 𝑦) denotes some local 

property of this point, for example, the average gray level of a neighborhood centered on (𝑥, 𝑦). 

After thresholding, image 𝑔(𝑥, 𝑦)is defined as: 

                        𝑔(𝑥, 𝑦) = {
1  𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇

0 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇
    (4.11) 

When, T depends only on 𝑓(𝑥, 𝑦), i.e., only on grey level values, it is called global 

thresholding. If T depends on both 𝑓(𝑥, 𝑦) and 𝑝(𝑥, 𝑦), it is called local thresholding. In addition, 

if T depends on the spatial co-ordinates x and y, the threshold is called dynamic or adaptive 

threshold [97]. Global thresholding is successful for bimodal image histogram, where, a single 

threshold value can clearly partition the histogram. Here, we have used statistical analysis based 

mean and standard deviation global thresholding and the threshold T is defined as,       
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                         𝑇 = 𝜇 + 𝑛 ∗ 𝜎      (4.12) 

where µ and 𝜎 are the image mean and standard deviation, respectively and n is a scaling constant 

dependent upon particular image type and is selected after number of iterations [46]. Since, we 

have a single wooden target on metal sheet background and not any multiple, irregular shaped 

targets, so a simple global thresholding will solve the purpose of target’s shape identification, 

instead of using any complex approach, and to have a better interpretation of the threshold value, 

we used image statistics based threshold criterion. 

4.4.2.3.  Edge detection (Step 8) 

 Thresholding segments target and the background distinctly, but, for an improved target’s 

shape/ size visibility, the target’s boundaries are need to be known. Thereby, edge detection is 

an image processing technique for finding the boundaries of objects within images. Edges 

characterize object boundaries and are useful features for segmentation and object identification 

in images. It works by detecting discontinuities in brightness. Common edge detection algorithms 

include Sobel, Canny, Prewitt, Roberts etc. Criterion relevant to edge detector optimum 

performance are [36]: (1) Good detection: low probability of failing to mark real edge points, 

and low probability of falsely marking non-edge points, hence, this criterion corresponds to 

maximizing signal-to-noise ratio.(2) Good localization: points marked as edge points by the 

operator should be as close as possible to the center of the true edge (3) only one response to a 

single edge. There are broadly two methods used for edge detection: (1) Gradient method (first 

order derivative) (2) Zero order crossing (second order derivative). Sobel, prewitt and roberts 

implement gradient method and are simple to implement, but they are sensitive to noise and 

suffer from poor localization [37]. Laplacian detector implements zero order crossing and is 

simpler than gradient method, however, it is more sensitive to noise, poor detection and also does 

not provide information about edge direction.  

In view of these limitations, canny [36] proposed an optimal edge detector that has a 

simple implementation, where, edges are marked at maxima in gradient magnitude of a Gaussian-

smoothed image. It employs special features, like, adaptive thresholding with hysteresis to 

eliminate streaking (broken edges) of edge contours, ability to cope with varying image signal-

to-noise ratios. Canny detector performs well in noisy conditions, provides better localization 

and improved signal-to-noise ratio [37].  
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4.4.3.   Signal post-processing for Target’s Material classification (Subtask 2) 

After application of image segmentation techniques, the stand-off target’s shape can be identified 

in the C-scan image. However, apart from having only the target’s shape information, many times 

it becomes vital to accurately classify target’s material also, in view of varying threat level of 

different materials (metal, wood, plastic, ceramic, etc.). Different techniques are being 

investigated for target’s material classification, like, gaussian kernel, discrete cosine features, 

statistical approaches, probability density function etc. [69, 112, 224]. However, due to the 

dielectric difference between the wooden shape target and the metal background, we preferred 

to use probability density function (pdf) based approach for our target’s material classification 

because it has the advantage of separating different target’s materials based on their varying 

reflection intensity values.  

4.4.3.1.  Selection of Suitable Pdf for Target’s Material Classification (Step 9) 

For target’s material classification, image data is grouped into different parts depending 

upon their pixel intensity variation, i.e., pixels representing different target’s materials are 

separated. These set of pixels are used for analyzing distribution of pixels corresponding to each 

of the two classes:  metal and wood. Commonly used distribution models i.e., Normal, Rayleigh, 

Cauchy and Weibull were applied on the obtained image data. The respective pdf's of these 

distributions for x as the pixel intensity are [228]: 

 Normal pdf function 
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Where,  is continuous scale parameter (>0) and  is continuous location parameter. 

 Rayleigh pdf function 
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Where,  is continuous scale parameter (>0) and  is continuous location parameter.  
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 Cauchy pdf function 
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Where,  is continuous scale parameter (>0) and  is continuous location parameter.  

 Weibull pdf function 
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where, α is shape parameter and β is scale parameters. Both α and β must be greater than zero.  

The best-fit density function for each class may be identified using Chi-Squared goodness 

of fit (GoF) test. The Chi-squared statistics is defined as:  
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                               (4.17) 

Where, O is observed frequency for bin i, E is expected frequency for bin i and k is total number 

of bins.  

Chi-squared statistics (χ2) is compared with the critical value for all distributions and 

distribution having lesser chi-square statistics is chosen. If the statistic value is less than the 

critical value and the p-value is greater than the level of significance (5%), then hypothesis will 

not be rejected. Thus chi-squared statistics, which is a function of data value, reflects in some 

way the level of agreement between the data and the hypothesis. For discrimination between 

different target’s material classes (metal and wood), range of scale and location parameters was 

determined for each class using the best-fit pdf function obtained. Maximum likelihood decision 

rule is used to discriminate the material classes. For this, mean and standard deviation of both 

the scale and location parameters were calculated for each class. The upper and lower boundaries 

of each class (metal and wood) were found by calculating the range of location and scale 

parameters for the best found pdf function.  
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4.5.  Experimental results and discussion 

The proposed MMW SFCW imaging radar based stand-off target’s identification and 

classification algorithm has been implemented and tested on number of test targets of varying 

shapes. Experimental results of different pre- and post-processing steps are discussed in this 

section supported by the outcomes of test targets of two different shapes, viz, triangle (T2) and 

circle (T3). Further, validation of the proposed methodology has been done using targets of a 

different shape ‘rectangle (T1)’ in section 4.6.  

4.5.1.  Target’s location detection (steps 1-3) 

For locating the target’s position, A-scan (or range profile) plot in terms of intensity vs 

downrange distance is plotted for any fixed target’s position (x, y) in front of antenna as shown 

in Figure 1.8. The input data is in frequency domain form and is converted to time domain using 

IFFT and then to corresponding equivalent distance according to equation (4.4). As shown in 

Figure 4.3(a), the range profile (for target T2) shows the first dominant reflection peak 

corresponding to antenna air interface impedance mismatch. The second reflection peak shows 

presence or absence of the target. Here, the second peak is at 1.28 meter distance with normalized 

intensity 0.24. However, the targets were placed at 1.10 meter distance. So, a metal sheet 

calibration was done to exactly determine target’s downrange distance. Here, delay due antenna 

and cable system is subtracted as per equation (4.5). This gives nearly exact target’s distance i.e., 

1.125 meter as depicted in Figure 4.3(b). Further, B-scan plot (down-range vs cross-range) is 

shown in Figure 4.3(c), which presents the lateral extent of the target, as discussed in section 

1.3.2.2. Here, peak intensity is observed at distance 1.125 meter (taking into account delay 

correction) with lateral extent 0.14m to 0.57m i.e., net lateral length = 0.43 meter, which is nearly 

equal to the width of the background metal sheet, i.e., 43.6 cm, as mentioned in section 4.3.  
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(a)                                                                                    (b) 

 

(c) 

Figure 4.3. (a) Range profile plot, (b) target’s downrange distance after sheet calibration, (c) B-

scan image of background metal sheet. 

 

4.5.2.  Implementation for Target’s Shape Identification (Subtask 1) 

4.5.2.1.  C-Scan Image Formation (Step 4) 

Figure 4.4 shows vertical slices at the three different downrange locations for the two test 

targets, triangle (T2) and circle (T3) (Table 1.3) in the 3-D co-ordinate axis. As seen in the figure 

4.4, only the middle vertical slice shows appreciable reflection intensity due to the presence of 

target at that downrange index which also agrees with the maximum reflection intensity point in 

the range profile plot in Figure 4.3. Y plane slices at two other downrange positions are also 

plotted, which shows zero peak intensity at these down-range locations, which, signifies absence 

of any target there. Figure 4.5 shows the surface intensity distribution plot of the extracted C-

scan image. Maximum intensity is received by metal sheet reflection and lower intensity 

corresponds to the different wood shape targets present in the respective images.  
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(a)                                                                       (b) 

Figure 4.4. 3D view (slicing) of C-scan images at target’s downrange position: (a) T2, (b) T3. 

 

  

(a)                                                                        (b)                                    

Figure 4.5. Surface distribution plot for pixel intensity of 2D C-scan image: (a) T2, (b) T3. 

 

4.5.2.2.  Image Enhancement (Steps 5-6) 

The obtained raw C-scan image undergoes image enhancement step, i.e., background 

subtraction and SVD (clutter reduction), and the resulting image plot shows improvement in 

target’s image intensity as well as its visibility. Figure 4.6 shows the comparison of raw C-scan 

image and the C-scan image obtained after image enhancement for two sample targets T2 and 

T3. Major improvement is seen in the image of triangular shape wooden target (T2) on the metal 

background sheet after image enhancement.  
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                                    T2 (a)                                                                  T2 (b) 

        

T3 (a)                                                                                 T3 (b) 

Figure 4.6. Comparison of two test target’s C-scan images; (a) raw image,(b) image after 

applying image enhancement technique (background subtraction and singular value 

decomposition). 

 

4.5.2.3.  Image Segmentation  

 Thresholding (Step 7) 

Thresholding segments image pixels as 0 or 1, relative to their intensity values w. r. t. 

threshold value (T) as discussed in section 4.4.2.2. In order to implement statistical thresholding 

model, target’s image obtained after the image enhancement step is firstly normalized as:  

         𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑝𝑚𝑎𝑥−𝑝

𝑝𝑚𝑎𝑥+𝑝𝑚𝑖𝑛
     (4.18) 

where, p is the pixel intensity of image at any arbitrary point,  𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized pixel 

intensity and 𝑝𝑚𝑎𝑥, 𝑝𝑚𝑖𝑛 are the maximum, minimum intensity values of any image. As per 
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equation (4.12), the value of threshold depends upon image statistics: mean & standard deviation 

as well as on the scaling factor (n). On varying the value of n = 0.05 to 0.95 with the step 

increments of 0.05, the optimal performance was found for the scaling factor n = 0.25 for both 

the test targets T2 and T3. Hence, statistics based thresholding equation (T) comes out to be: 

𝑇 = 𝑚𝑒𝑎𝑛(𝜇) + 0.25 𝑋 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜎)  (4.19) 

 

                  

(a)                                                                                 (b) 

Figure 4.7. 2-D C-scan image of the two test target’s after applying mean and standard 

deviation based global thresholding (a) T2, (b) T3. 

 

As per equation (4.19), threshold values for test targets T2 and T3 are: T (T2) = 0.368 

and T (T3) = 0.340, respectively. C-scan images after thresholding is shown in Figure 4.7. As 

seen in the figure, two targets T2 & T3 are nearly identified as triangle and circle, respectively, 

as were our original wooden targets. 

 Edge detection (Step 8) 

 After thresholding, stand-off target’s shape is identifiable, but the discovered shapes are 

not accurate enough, i.e., shapes identified are not truly triangular and circular. Therefore, as per 

our correct target’s shape identification objective, edge detection technique has been applied on 

the C-scan images obtained after thresholding. Thereby, canny based edge detector has been used 

for finding edges of the respective targets, T2 and T3.  Figure 4.8 shows the respective images 

obtained after canny edge detector [36]. Boundaries of the test target’s shapes T2 and T3 are now 

easily and more correctly identifiable as triangle and circle, respectively.  
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(a)                                                                 (b)                   

Figure 4.8. 2-D C-scan image of the two test targets obtained after canny edge detection (a) T2 

(b) T3. 

 

4.5.3.  Implementation for Target’s material classification (Subtask 2) 

After target’s shape identification, next objective is the target’s material classification. For 

target’s material classification normalized C-scan images obtained after pre-processing were 

used for finding probability density function (pdf) of different materials (metal, wood). Firstly, 

chi square goodness of fit test for all the four pdf functions (Cauchy, Normal, Weibull and 

Rayleigh) were performed as discussed in section 4.4.3, in order to find the most suitable pdf 

function to successfully discriminate the two classes under test, i.e., metal and wood. Targets T2 

and T3 were used to formulate the classification criterion and the decision boundaries.  

4.5.3.1.  Selection of Suitable Pdf Function (Step 9) 

Figure 4.9 shows comparative plot of the two target material classes for the four 

considered probability density functions, i.e., Cauchy, Normal, Weibull, Rayleigh for target T2 

(triangle shape). Similar plots were achieved by other test target’s shape T3 also. As shown in 

the Figure 4.9, the considered pdf’s have the capability to classify the two classes because of 

their highly separated pdf plots, however, there is an ambiguity in the results upto the 5% 

significance level. Now, in order to find the best pdf function for a generalized and robust 

material classification model, chi square test has been performed, i.e., statistic value should be 

less than critical value and p- value is greater than the level of significance (5%). 
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(a)                                                                         (b) 

          

(c)                                                                               (d) 

Figure 4.9. Comparative probability density function plots for the two target’s material classes 

metal and wood: (a) Cauchy pdf, (b) Normal pdf, (c) Weibull pdf, (d) Rayleigh pdf, for test 

targets of triangle shape T2. 
 

Results of chi square test are shown in Table 4.2, which signifies: 

 

for Rayleigh pdf: χ2 < critical value for target T2 (metal class) => test not satisfied. 

 

for normal pdf: χ2 < critical value for target T3 (metal class) => test not satisfied. 

 

 for Weibull pdf: χ2 < critical value for target T3 (metal class) and target T2 (wood class) => test 

not satisfied.  

 

This shows, chi square test does not satisfy for the three pdf functions: Rayleigh, normal 

and weibull. Moreover, results suggests that only Cauchy pdf passes the chi square test for both 
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the target shapes T2, T3 and for both the classes metal, wood and hence, demonstrates the best 

fit characteristics having higher p-values from 5% significance level. This proves that Cauchy 

pdf is the most suitable for classification of both metal and wood classes effectively. 

 

Table 4.2. Chi Square best fit test for various distribution functions on different test targets T2 

and T3 

CLASS METAL WOOD 

Targets Parameter Cauchy Normal Weibull Rayleigh Cauchy Normal Weibull Rayleigh 

T2 χ2 4.5208 9.9229 5.5972 18.472 1.3605 5.6377 11.261 6.4442 

p-value 0.6066 0.1279 0.4698 0.00515 0.7148 0.2279 0.0465 0.09189 

Critical 

value 

12.592 12.592 12.592 12.592 7.8147 9.4877 11.07 7.8147 

T3 χ2 8.6629 16.129 16.774 10.295 1.8573 7.091 5.4618 4.4015 

p-value 0.1934 0.0131 0.0102 0.11278 0.9323 0.3125 0.4861 0.62251 

Critical 

value 

12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.592 

 

Now, for identifying the boundaries between the two classes, range of scale and location 

parameter were estimated for the best fit Cauchy pdf by calculating its mean and standard 

deviation, as shown in Table 4.3.  

 

Table 4.3. Determining range of parameters of Cauchy pdf for classification 

 Continuous scale parameter (μ) Continuous location parameter (σ) 

Data set  Mean  Std. 

Dev.  

Max.  Min.   Mean 

 

Std. 

Dev.  

Max.  Min. 

Metal 1 0.0872 0.081 

 

0.0089 

 

0.0899 0.0721 

 

0.6678 0.6161 0.0732 0.6893 0.5429 

Metal 2 0.0747 0.5643 

Wood 1 0.0426 0.0478 0.0072 0.0549 0.0405 0.2723 0.2182 0.0765 0.2948 0.1417 

Wood 2 0.0529 0.1641 
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Target’s material classification boundary for the two classes: wood and metal for any 

stand-off target can be found using the range of continuous location parameter (σ) of the Cauchy 

pdf function, as shown in Table 4.3 (in italics), which comes out to be:  

For Metal→ 0.54< σ<0.69; 

                               For Wood→ 0.14< σ<0.29.                               (4.20) 

Hence, using the above discussed image post-processing techniques (image enhancement, 

segmentation and classification), we can achieve target’s identification (shape estimation) and 

its material classification for the targets placed at a stand-off distance from MMW imaging 

system.  

4.6.  Validation 

The developed target’s identification and classification methodology has been further validated 

using a different 'rectangular' shaped target T1 towards optimal performance of different post-

processing steps, viz., image enhancement, image segmentation and target’s material 

classification for complete target’s information.  Figure 4.10 shows validation results after each 

of the signal processing step. Figure 4.10(a) and (b) shows the C-scan image plot using slicing 

and surface distribution plots, respectively. Figure 4.10(c) shows the comparison of initial c-scan 

image with Figure 4.10(d) which is the image obtained after applying image enhancement 

technique. Further, segmentation has been performed using mean and standard deviation 

thresholding (threshold value = 0.434) and canny edge detector as shown in Figure 4.10(e) and 

(f), respectively. Finally, shape of the stand-off targets has been correctly identified as of 

rectangular shape, which is in accordance to our actual physical wooden target T1 on the metal 

sheet background.  
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(a)                                                                       (b) 

    

(c)                                                                    (d) 

        

(e)                                                                (f) 

Figure 4.10. Validation results of the developed methodology for stand-off target’s complete 

information (shape and size estimation): (a) 3D C-scan plot, (b) surface distribution plot, (c) 

raw C-scan image plot, (d) image after clutter reduction, (e) image after thresholding, (f) image 

after edge detection. 

 

For target’s material classification, the developed Cauchy distribution pdf based 

classification methodology is applied on T1 target’s image data and its results are shown in Table 

4.4. The Cauchy pdf function’s location and scale parameter values were calculated for both the 
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material classes, i.e., wooden target and metal background. The location parameter values fall 

well within the stipulated range for both metal and wood as given in equation (4.20). Hence, we 

can conclude that proposed methodology can successfully differentiate between high index 

(metal) and low index (wood) material.  

 

Table 4.4. Validation Results for target’s material classification 

Cauchy  Distribution 
Metal Wood 

σ μ σ μ 

T1 0.6511 0.0719 0.2839 0.0662 

 

4.7.  Overall Results of Fully Developed Target’s Shape 

Identification and Material Classification Technique 

A target’s shape identification and its material classification methodology has been proposed 

using most commonly used image processing techniques for an ingeniously designed MMW 

imaging radar. A comprehensive list including the step by step results at each of the signal 

processing step is shown in Table 4.5, using an example target’s shape, i.e., triangular shape 

wooden target on the metal sheet background. 
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Table 4.5. Different Signal processing steps and their outcomes for target’s shape identification 

and target’s material classification 

Input Technique Result Interpretation/ Explanation 

Target under test 

 

Wooden triangular target on the 

metal background sheet undergoes 

C-scanning (horizontal scan and 

vertical scan) for complete target 

data acquisition. 

Range profile plot 

 

It gives information related to 

target’s presence and its location 

in downrange, corresponding to 

the reflection intensity peak. 

C-scan target’s 

image 

 

2D raw C-scan image [24, 32] of 

the detected target is extracted at a 

downrange index, which is the 

representation of target’s spatial 

intensity values as a function of 

cross-range and height co-

ordinates. 

Subtask 1: Target’s shape Identification 

Image 

enhancement 

(Background 

subtraction, SVD) 

 

It improves the target’s raw image 

quality in order to facilitate correct 

target’s shape identification.  

Thresholding 

(Mean & Standard 

deviation based 

global thresholding) 

 

It segments the target from the 

background, as a result, triangle 

target’s shape is visible. 

Edge detection 

(Canny detector) 

 

This outlines the target’s edges, so 

as to better visualize the targets. 

Here, triangle shaped target is now 

correctly and clearly identified. 

Subtask 2: Target’s Material Classification 

Cauchy 

Probability 

distribution 

function 
 

Cauchy pdf successfully classifies 

the two target’s material classes, 

i.e., wooden triangle and metal 

background sheet separately. 
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4.8.  Conclusion 

A SFCW radar based millimeter wave (60GHz) imaging system has been indigenously designed 

for stand-off target’s identification and its material classification applications. Here, C-scanning 

technique has been used for complete target’s 2D information. Different post-processing 

techniques have been proposed for stand-off target’s image enhancement (background 

subtraction, SVD), image segmentation (mean & standard deviation thresholding, canny edge 

detector) and its material classification (Cauchy probability distribution function). As a proof-of-

concept, performance of different signal processing techniques has been tested and validated 

using an extensive number of targets of four different regular shapes, viz., rectangle, square, 

circle and triangle. The test and validation results suggest successful target’s identification w.r.t. 

its location, shape and target’s material classification. Thereby, MMW imaging may provide a 

good alternative for stand-off complete target’s information retrieval when used in conjunction 

with appropriate image processing techniques. 



 

93 

 

 

 

 

 

Chapter 5           

Development of Size and Rotation 

Invariant Target’s Shape Identification 

Algorithm for Millimeter Wave Imaging 

System 
 

In the preceding chapter, we have proposed a stand-off target’s identification methodology using 

an ingeniously designed MMW SFCW imaging radar system, where, different signal pre-

processing and post-processing techniques have been dealt, in order to identify the target’s shape 

accurately. However, the targets considered there were nearly ideal, in the sense that they won’t 

undertake any sort of orientation or size variations. The performance of target’s identification 

methodology can be made more generalized and adaptive by taking into account target’s size and 

rotation effect. An invariant system of such type will be more robust in practical imaging 

situations and will be able to withstand real target’s deformations, like, orientation or size 

mismatches. The goal of a typical computer vision/ radar imaging system is to analyze images 

of a given scene and recognize the content of the scene. Such systems are needed in a variety of 

fields, like, robotics, military reconnaissance, remote sensing, document processing, and 

industrial automation. In many instances, the same image in the respective scenes, is not always 

perfectly aligned and of the identical size. Therefore, there is a need to develop a pattern 

identification methodology that should be robust towards any such variations in the image. A 

solution to this is ANN based approach, which provides an adaptive pattern recognition solution 

as compared to the fixed threshold based classification/ recognition techniques. ANN deals with 

target’s actual image data, and henceforth, it is more flexible and versatile. Therefore in this 

chapter, target’s rotation and size invariant artificial neural network (ANN) based algorithm has 
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been proposed, which would automatically take care of any such variations and reconstruct the 

correct target’s shape and size irrespective of its orientation discrepancies. 

5.1.  Introduction 

The invariant-object recognition has emerged as a topic of utmost importance, with an aim to 

identify/ recognize any object independent of its position (translated or rotated) and size (larger 

or smaller). Artificial intelligence techniques have the capability to develop a system for 

complex, real world data based on the system's own experiences with data, under a unified model 

or mathematical framework. The developed model then, can be formally characterized, analyzed 

and can generalize and adapt across different data and domains [147]. Machine intelligent 

techniques (viz., ANN, SVM, fuzzy-ANN) have the advantage over simple threshold (fixed or 

statistically adaptive) based methods that they are capable of learning from experience and 

performing analytical observation resulting in a system that can continuously self-improve and 

thereby offer increased efficiency and effectiveness [132, 278, 324, 326]. Researchers are using 

these soft computing techniques as powerful tools for finding patterns in data and discovering 

solutions to difficult problems in a wide range of fields, for example: computer vision [171], 

speech recognition [49], text analysis [147] information extraction [180], and face matching [29, 

251] etc.  

A. Khotanzad et. al. [147] considered two feature types: geometrical invariant moments, 

and Zernike moments and compared the performance of neural network classifier with the three 

other traditional classifiers; Bayes, nearest neighbor, and minimum-mean-distance for the 

classification of noiseless as well as noisy binary images of English characters (26 classes). It 

was found that neural network outperforms the other three classifiers. Also, Zernike moment 

features showed better classification accuracy compared to geometrical moments. However, they 

have not investigated towards size invariance capability as well as it deals with mere 

classification but not with pattern reconstruction. L. A. T. Mendez et. al. [292] proposed a 

holographic nearest-neighbor algorithm (HNN) in conjunction with invariant normalized 

moment of inertia for translation, rotation, and scale-invariant character recognition, using the 

26 upper case letters of the alphabet. Only four different orientations and one size for each letter 

was taken and 98% correct recognition was achieved. However, the algorithm does not explore 

the size variations and only pattern classification was explored. S. J. Perantonis et. al. [230] 
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demonstrated pattern recognition of typed and handwritten numerals independently of their 

position, size, and orientation using higher order neural networks and image features extracted 

by the method of moments. L. Shao et. al. [171] developed an evolutionary learning methodology 

to automatically generate domain-adaptive global feature descriptors for image classification 

using multi-objective genetic programming (MOGP). Although, it takes quite a long time for 

evolving or training.  

Most of the existing studies make use of these intelligent techniques in image 

segmentation and classification. The learning algorithm develops a model from the training data 

provided and which is then used to classify new examples into the correct category. The accuracy 

of a particular model can be assessed by applying it to unseen examples and comparing the 

classifications to the “correct” classifications given by a human expert. So far, most of the work 

is related to pattern classification using neural network model [42, 278], however, capability of 

ANN for adaptive image reconstruction has not been explored well. Use of neural network for 

character recognition and reconstruction has been reported in [311] using an active MMW 

imaging system. A recognition rate of 98% has been obtained for ten dissimilar alphabetical 

letters used as objects. The success rate of reconstruction of distorted MMW images was 80% 

when five dissimilar letters were used for the reconstruction. However, orientation and size 

variation effect of alphabets has not been considered while developing the ANN model. 

Thereby, the center of attention of this chapter is the fact that the target’s identification 

methodology developed in the previous chapter, can be enhanced significantly with the 

exploitation of machine level artificially intelligent neural network technique. The idea here is, 

if the artificial neural network (ANN) model can be made intelligent by training it towards 

random target sizes and orientations, the target’s image recognition can be immensely enhanced 

with the use of that learned knowledge while reconstructing the target’s image. Therefore, in this 

chapter, our aim is to reconstruct the respective target shapes (i.e., square, rectangle, triangle and 

circle), and, for this purpose we have proposed a methodology based on neural network which 

can take care of rotation and size variations, by which correct target’s shape can be recognized.  

This chapter is organized as follows: section 5.2 gives the theoretical background, section 

5.3 presents the description of target data set used, the methodology used to develop size and 

orientation invariant ANN image reconstruction model is given in section 5.4, and section 5.5 

presents validation of the developed model. The final remarks and conclusions are given in 

section 5.6. 
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5.2.  Theoretical Background 

Pattern recognition is an essential part of any high-level image analysis system. Machine 

intelligent soft techniques provide pattern recognition/ classification by adaptively calculating 

the threshold as compared to the fixed threshold classifiers, like, PCA, K-means, Euclidean 

distance etc. Additionally, Neural Network’s (NNs) learn through experiments and thus, 

continuously evolves their capabilities towards interpreting random variations in the target’s 

shapes and sizes. Recent developments in the field of NN’s have provided new potential 

alternatives to the traditional techniques of pattern recognition. The neural networks are inspired 

from studies of biological nervous systems and are composed of many simple nonlinear 

computational elements (neurons or nodes) which are connected by links with variable weights. 

The inherent parallelism of these networks allows rapid pursuit of many hypotheses in parallel, 

resulting in high computation rates. Moreover, they provide a greater degree of robustness or 

fault tolerance than conventional techniques because of the many processing nodes, each of 

which is responsible for a small portion of the task. Neural networks can perform different tasks, 

one of which is in the context of a supervised pattern recognition. The stand-off target’s 

recognition process can be made more robust by employing size, rotation, and location invariant 

capability to the target’s identification methodology. This may be accomplished by extracting a 

suitable set of features with the desired invariance properties from the training patterns given for 

classification. These unique features help to provide distinct decision boundaries to the neural 

network classifier model [54, 230].  

Pattern recognition using neural network is basically composed of four building blocks: 

 Step 1- data acquisition, i.e., converting any scene/image into a matrix of numbers.  

 Step 2- pre-processing, this involves image enhancement, so that scene can be easily 

analysed.  

 Step 3- feature extraction, where the image is represented by a set of numerical 

‘features’ [281, 324]. The selected feature set possesses useful information (in the 

sense of discrimination ability) present in the original data. Moreover, a robust 

recognition system must be able to recognize an object irrespective of its orientation 

and size as well. This requirement necessitates rotation and scale invariance 

properties for the extracted features [28, 126, 230].  
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 Step 4- classification, where a class/label is assigned to the unknown image/object 

depending on its extracted features and comparing them with class representations 

that neural network has learned during its training stage [147].  

 

It is the invariant property of extracted features that enables the neural network to become 

invariant and classify the objects correctly irrespective of their sizes and orientations. Moreover, 

in this chapter, instead of using generally used feature extraction process (Step 3) as mentioned 

above, we have used a different methodology to achieve the invariance property. As well as, 

instead of doing pattern classification, we aim for a pattern recognition approach.  

Therefore, in order to make the stand-off target’s identification system more robust 

towards distortions in target’s images, we aim to design a rotation and scale invariant image 

recognition technique based on artificial neural network (ANN) that will be fully adaptive 

towards the orientation errors and scaling variations of different targets under test. For 

developing the proposed ANN model, four regular shape targets, viz., square, rectangle, triangle 

and circle were considered and each of the target’s shapes was taken with varying sizes and was 

put in random orientations. Thereby, a total of 33 target data sample was generated for training 

and developing our proposed orientation and size invariant image reconstruction artificial neural 

network model. 

5.3.  Data set used  

The experimental arrangement of the MMW SFCW imaging radar system as shown in Figure 

1.8 has also been used for target’s data generation for our ANN model development. The data 

set for training and developing the proposed ANN model was formed using four considered 

regular target shapes, viz., rectangle, square, circle, triangle, having randomly varying sizes and 

orientations.  

Any single target’s shape has been considered in different sizes and is put into different 

orientation angles (randomly ranging from 0° to 90°) on a large metal (Al) sheet mounted on the 

2D scanning frame, thereby, creating an experimental data set for each of the wooden target 

shapes as shown in Table 5.1, for example: for a square shape target, a data set of nine samples 

(i31 – i39) is formed comprising four different sizes (varying between 4 cm2 to 20 cm2) and four 

different orientation angles (varying from 0° to 90°).  
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Table 5.1. Different target’s shape, size and orientation variations undertaken for size and 

rotation invariant target’s image recognition ANN model development 

S. No. Shape Data Set Size Orientation 

1. Square i31 – i39 
4 cm2 -20 cm2   

(5 samples) 

0° – 90° 

(4 samples) 

2. 
Rectangle 

(2:1) 
i21 – i210 

8x4 cm2 - 24x12 cm2  

 (5 samples) 

0° – 90° 

(5 samples) 

3. 
Triangle 

(equilateral) 
i41 – i48 

Each side 10 cm to 

24 cm  (4 samples) 

0° – 90° 

(4 samples) 

4. Circle i11 – i16 
Radius 4 – 14 cm  

 (6 samples) 
-- 

Total samples 33  

 

Likewise, for other three regular shaped targets, the data set was formed. A complete list 

of input targets used is shown in Table 5.2. Here, target’s notation used is of three digits, where 

first digit is an alphabet, such that, ‘i’ signifies the input target data and ‘o’ signifies output data; 

the second digit correspond to particular shape, such that, 1 for circle, 2 for rectangle, 3 for 

square, 4 for triangle; and the third digit signifies particular size and angle of the considered 

target’s shape. For total 33 target samples, experimental data is captured by the MMW radar 

system using the complete C-scan, i.e., taking 32 horizontal scans (B-scans) and 24 vertical scans 

(C-scans) in order to fully cover the target area as discussed in section 4.4. Thereby, the 2D 

target’s image matrix will be of size 24 x 32 (row x column), as extracted at the downrange 

location corresponding to the reflection peak in the range profile, as discussed earlier in section 

1.3.2.2. Moreover, a detailed description of each of the target sample used, its shape, size, 

orientation and their corresponding training output binary notations are shown in Table 5.2. The 

description of generation of binary teaching matrix corresponding to the input matrix is given in 

section 5.4.2.3. 
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Table 5.2. Complete detailed list of different target samples undertaken with varying sizes and 

orientations 

S. 

No. 
Shape 

I/P Target 

Matrix ID 
Size 

Angle 

(degrees) 

O/P Binary 

Teaching 

Matrix ID 

1 

Triangle 

(Isosceles) 

i41 10 cm x 10 cm x 10 cm 0 o41 

2 i42 10 cm x 10 cm x 10 cm 29 o41 

3 i43 16 cm x 16 cm x 16 cm 0 o42 

4 i44 16 cm x 16 cm x 16 cm 12 o42 

5 i45 20 cm x 20 cm x 20 cm  0 o43 

6 i46 20 cm x 20 cm x 20 cm  67 o43 

7 i47 24 cm x 24 cm x 24 cm 0 o44 

8 i48 24 cm x 24 cm x 24 cm 84 o44 

9 

Rectangle 

(2:1) 

i21 8 cm x 4 cm 0 o21 

10 i22 8 cm x 4 cm 38 o21 

11 i23 12 cm x 6 cm 0 o22 

12 i24 12 cm x 6 cm 23 o22 

13 i25 16 cm x 8 cm 0 o23 

14 i26 16 cm x 8 cm 18 o23 

15 i27 20 cm x 10 cm 0 o24 

16 i28 20 cm x 10 cm 44 o24 

17 i29 24 cm x 12 cm 0 o25 

18 i210 24 cm x 12 cm 56 o25 

19 

Square (1:1) 

i31 4 cm x 4 cm 0 o31 

20 i32 8 cm x 8 cm 0 o32 

21 i33 8 cm x 8 cm 58 o32 

22 i34 12 cm x 8 cm 0 o33 

23 i35 12 cm x 8 cm 34 o33 

24 i36 16 cm x 16 cm 0 o34 

25 i37 16 cm x 16 cm 42 o34 

26 i38 20 cm x 20 cm 0 o35 

27 i39 20 cm x 20 cm 23 o35 

28 

Circle 

i11 8 cm Radius 

-- 

o11 

29 i12 12 cm Radius o12 

30 i13 16 cm Radius o13 

31 i14 20 cm Radius o14 

32 i15 24 cm Radius o15 

33 i16 28 cm Radius o16 
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5.4.  Methodology used to develop size and rotation invariant 

artificial neural network model  

In order to develop our proposed automatic, size and rotation invariant target’s image 

reconstruction model, ANN based soft computing technique has been used due to its proven 

versatility and capability to learn and evolve itself accordingly. Once trained, ANN will have the 

ability to predict the output for any unknown input target sample with least mean square error 

when compared to the actual desired output. The inherent parallelism of the ANN allows for 

rapid pursuit of many hypotheses in parallel, resulting in high computation rates.  

5.4.1.  Introduction to the ANN model 

A neural network topology is also known as multilayer perceptron (MLP) [147]. A MLP is a 

feed-forward network with one or more layers of nodes between the input and output nodes. 

These in-between layers are called hidden layers. A NN model with one hidden layer is shown 

in Figure 5.1. Connections within a layer or from higher to lower layers are not permitted. Each 

node in a layer is connected to all the nodes in the layer above it.  

 

 

Input
Output

Input 

layer

Hidden 

layer
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layer

unit i

unit j

Weight wji

 

Figure 5.1. A multilayer perceptron neural network model with one hidden layer, input layer 

and output layer. 
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Training of NN is equivalent to finding proper weights for all the connections such that 

a desired output is generated for a corresponding input. Training is done through an iterative 

gradient procedure known as the back-propagation algorithm, in which for each pattern in the 

training set, learning of proper weights is conducted by: 1) computing the discrepancy between 

the desired and actual outputs and 2) feeding back this error signal level by level to the inputs, 

changing the connection weights in such a way as to modify them in proportion to their 

minimizing responsibility for the output error. The major steps of any ANN model training are 

as follows [312]: 

 

Step I: Initialize weight 𝑤𝑗𝑖 's to small random values, where 𝑤𝑗𝑖 is the value of the connection 

weight between unit i and unit j in any layer.  

Step II: The output yj of each unit j is defined as: 

               𝑦𝑗 = 𝑓(𝑛𝑒𝑡𝑗)     (5.1) 

              𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑜𝑖𝑖 + 𝜃𝑗    (5.2) 

where, 𝑜𝑖 is the output of unit i, 𝑤𝑗𝑖 is the weight of the connection from unit i to unit j, 𝜃𝑗is the 

bias of unit j, 𝑛𝑒𝑡𝑗 is a summation of every unit i whose output flows into unit j, and f (𝑛𝑒𝑡𝑗) is a 

monotonously increasing training function. For example, for non-linear sigmoid function output 

can be written as: 

𝑦𝑗 =
1

1+𝑒𝑥𝑝(−∑ 𝑦𝑖𝑤𝑗𝑖𝑖 )
     (5.3) 

Step III: Now, specify the desired output class m for every input pattern. The desired output is 

zero for all the output nodes except the mth node, which is one. 

Step IV: Find an error term, δj for all the nodes. If dj and yj stand for the desired and actual value 

of any node, respectively, then for an output node,  

                            𝛿𝑗 = 𝑦𝑗(𝑑𝑗 − 𝑦𝑗)(1 − 𝑦𝑗)    (5.4) 

and for a hidden layer node,  
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                          𝛿𝑗 = 𝑦𝑗(1 − 𝑦𝑗) ∑ 𝛿𝑘𝑤𝑗𝑘𝑘     (5.5) 

where k is over all nodes in the layer above node j. 

Step V: Adjust weights by  

𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + 𝛼𝛿𝑗𝑦𝑖 + 𝜁 (𝑤𝑖𝑗(𝑛) − 𝑤𝑖𝑗(𝑛 − 1))  (5.6) 

where, (𝑛 + 1), (𝑛), and (𝑛 − 1) are index next, present, and previous, respectively. The 

parameter α is a learning rate similar to step size in gradient search algorithms, and ζ is a constant 

between 0 and 1 which determines the effect of past weight changes on the current direction of 

movement in weight space. This provides a kind of momentum that effectively filters out high 

frequency variations of the error surface.  

Step VI: Now, present other input training patterns to the ANN model and repeat the process 

again from step II onwards, so that neural network may learn different possible changes in the 

input data. All the training inputs are presented cyclically until weights stabilize or converge to 

user-defined minimum error value. The purpose is to make 𝐸 = ∑ 𝐸𝑝𝑝  small enough for all the 

patterns by choosing appropriate 𝑤𝑗𝑖 and 𝜃𝑗 . The squared error pattern 𝐸𝑝 for a pattern p is defined 

as: 

        𝐸𝑝 =
1

2
∑ (𝑑𝑝𝑗 − 𝑦𝑝𝑗)

2
𝑗 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟    (5.7) 

Summarily, the ANN backpropagation algorithm is an iterative gradient descent 

procedure in the weight space which minimizes the total error between the desired and actual 

outputs of all the nodes in the system so as to adapt it towards possible random changes in the 

given input patterns. 

5.4.2.  ANN model development for rotation and size invariant target’s image 

reconstruction 

In order to formulate our invariant image recognition problem, out of the total 33 experimental 

target data samples, 25 randomly selected samples (75%) have been used for neural network 

configuration setup and training. The remaining 8 random samples (25%), were further used to 

perform independent test on the trained neural network and check its performance. The complete 
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flow-chart for generation of neural network model for rotation and size invariant target’s image 

recognition is shown in Figure 5.2. The designed neural network configuration consists of: 

 

Obtain training data sample for four 

regular shaped targets (rectangle, 

square, circle, triangle)

Data pre-processing & 

normalization 

Define output binary training 

matrix for  each of 

corresponding I/p target type

Divide training data into 

train set and test data set

Train ANN

Extract the trained ‘net’ 

function for any independent 

target image recognition

Is accuracy 

acceptable?

Yes

No

 Increase no. of hidden 

nodes/ try using different 

training function

 

Figure 5.2. Flow chart describing generation of rotation and size invariant neural network 

model. 

 

5.4.2.1.  Input Layer:  

For ANN input layer formation, each of the C-scan image matrices (24, 32) is first 

transformed to the column vector (24x32, 1). Accordingly, for all the considered 25 input target 

samples, the respective C-scan matrices are stacked as column vectors to form a complete 2-D 

input matrix (24x32, 25) of the ANN model as shown in   Figure 5.3. This input matrix is used 

as the input layer to the neural network model. Here, we have not used the complex feature 

extraction process, to achieve size and orientation invariant, distinct features of different target’s 

shapes as discussed in section 5.2. Instead, we have generated a randomly varying target’s data 

set and will train the neural network to learn the random target’s image variations as per method, 

which will be discussed in section 5.4.3. This will enable the trained neural network model to 
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correctly recognize the image of any size and orientation, for the considered target’s shapes, 

without requiring any feature extraction step. 

5.4.2.2.  Hidden Layer:   

Hidden neurons influence the error at the output nodes and the stability of neural network. 

In our proposed NN model, the middle hidden layer consists of 30 neurons. Here, numbers of 

neurons are iteratively chosen keeping the balance between minimizing the output error as well 

as ANN system complexity. Moreover, excessive hidden neurons will cause over fitting of the 

NN by overestimating the problem complexity, which may render its ability to correctly 

reconstruct any unknown target [269].  

5.4.2.3.  Output Layer:  

In the output layer, instead of applying pattern classification labels to different shapes 

and classifying the targets in terms of class labels, we have used image recognition approach so 

as to reconstruct the correct target’s shape. As we want to recognize the target’s shape, the output 

matrix for training the NN was generated in accordance to the input target’s size and is in binary 

(0,1) matrix form as shown in Table 5.3 column b.  

For example: for the rectangle shape, five different sizes starting from 8x4 cm2 upto 

24x12 cm2 have been taken (Table 5.1). Five different binary matrices have been assigned to 

each of the five sizes of rectangle shape, where, each binary image has been taken of same size 

as of corresponding rectangular target size. Now, these rectangle targets of five sizes have been 

oriented at varying angles from 0° to 90° generating other five samples of varying orientations, 

and for each orientation, the binary image assigned is same as of corresponding size, because our 

aim is to recognize the correct shape. As shown in Table 5.3, for target id - i26 (rectangle size 

16x8 cm2), the binary image assigned is shown in column b, which will be same for any 

orientation of the same size. Hence, for one size, one binary matrix is assigned whatever be the 

orientation.  

A detailed nomenclature of assigned binary matrices in correlation to respective input 

image matrices is given in Table 5.2 (last column). Likewise, complete output layer matrix for 

the proposed ANN model will be of size (24x32, 25) corresponding to the 25 input target’s data 

samples. Figure 5.3 shows the network configuration of the proposed rotation and scale invariant 

neural network system.  
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Figure 5.3. Configuration of rotation and scale invariant neural network for target’s image 

recognition. It consists of (24 x 32, 25) input units, 30 hidden units and (24 x 32, 25) outputs 

units [280]. 

 

5.4.3.  Training of the developed Neural Network Model 

For image recognition problem formulation, a multilayer feed-forward neural network has been 

used, which consists of a pattern recognition network with trainscg training function and sigmoid 

transfer functions in both the hidden layer and the output layer [113]. Trainscg is a network 

training function that updates weight and bias values according to the scaled conjugate gradient 

method. Sigmoid transfer function constrains the outputs of a network between 0 and 1 as 

required for pattern recognition/ reconstruction problem. Learning algorithm used for training of 

the neural network is based on mean squared error (mse) criterion defined as the average squared 

error between the network outputs ‘a’ and the target’s outputs ‘t’ [252].  

 𝑚𝑠𝑒 =
1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖=1 =

1

𝑁
∑ (𝑡𝑖 − 𝑎𝑖)

2 𝑁
𝑖=1    (5.8) 

The system first uses the input vector to produce its own output vector ‘a’ and then 

compares this with the desired output or target’s vector ‘t’. If there is no difference, then, no 

learning takes place. Otherwise the weights are adjusted to reduce the difference. Lower the value 

of mean squared error better is the performance of the trained network. In order to enable our 

32

24

25

25

24 x 32

Input 

Layer

30 

Hidden 

Layer Output 

Layer

Reconstructed 

image
Block of 2D C-scan 

millimetre wave 

images 

25

24 x 32

32

24

Feedforward neural network



Chapter 5 

106 

 

designed neural network to be rotation and scale invariant for the considered shapes, it is trained, 

validated and tested as per following methodology: 

o The total 25 input samples of the ANN input matrix are randomly divided into three different 

parts for training, validation, and testing in a ratio of 80%, 15% and 5%, respectively. Hence, 

20 samples have been used for training the neural network, which were randomly selected 

and represents considered shapes with different random sizes and orientations. Random 

training data set = (i21, i31, i11, i42, i35, i27, i13, i43, i37, i34, i22, i47, i210, i16, i26, i36, 

i41, i23, i46, i32, i29),  here notations used are given in Table 5.2. Result of few training data 

samples is shown in table 5.3. 

o Rest of 15% (4 samples) data samples have been used as the validation data to measure the 

mean squared error and retrain the neural network till the mean squared error converged and 

minimized below 0.01 for optimum performance. Random validation data set = (i25, i15, i45, 

i38), here notations used are given in Table 5.2. 

o Once, the neural network has been trained and validated, a network function has been 

generated for further use. Any independent test data can be used as the input to this network 

function and the output generated will help to recognise the correct target’s shape and size 

irrespective of its random orientation and size. Resulting mean square error of the test data 

output and its reconstructed output image determines the accuracy of trained proposed neural 

network model.  

o Here, we have used independent test data samples to check the performance and practicality 

of the trained neural network model function. These test samples were earlier never been 

used in the neural network in any form. Random independent test data set = (i28, i33, i14, 

i48, i44, i24, i39, i12), here notations used are given in Table 5.2. Results of some independent 

test samples are shown in section 5.5 (Table 5.4). 

Hereby, this designed neural network approach enables us to recognize and visualize the 

actual target’s shape nullifying any rotation or size variations for the considered regular shapes. 

5.4.4.  Developed ANN Model Testing 

Table 5.3 shows results of the reconstructed images implemented through neural network for few 

of the training data samples, i.e., i26, i35, i16, i46 (notations as per Table 5.2). Actual 

photographs of the corresponding targets are also shown for the reference. Neural network has 
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been trained using corresponding binary matrices; o23, o33, o16, o43, respectively as shown in 

Table 5.3 (symbol notations as per Table 5.2).  

 

 Table 5.3. Tabular presentation of proposed neural network model for four different regular 

shape targets, viz, rotated rectangle: i26, rotated square: i35, Circle: i16, tilted triangle: i46. 

S. 

No. 

Actual target’s 

photograph 

Binary training 

matrix as per I/P 

shape and size 

Output reconstructed 

image 

Mean Square 

Error (MSE) 

 (a) (b) (c) (d) 

1 

Target’s Id - i26

 
 

 

o23 

 

 

 

0.0028 

2 

Target’s Id - i35

 

 

o33 

 

 

 

0.0134 

3 

Target’s Id - i16 

 

 

o16 

 

 

 

0.0082 

4 

Target’s Id - i46

 

 

o43 

 

 

 

0.0152 

 

Once trained, neural network successfully reconstructs the image for respective different 

target’s shapes rectifying any rotation variation, with nearly exact shape and size, and appreciably 

low mean square error values, viz., 0.0028, 0.0134, 0.0082, 0.0152, respectively. 
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5.5.  Validation of the developed ANN model 

After training, performance of the proposed neural network model needs to be verified through 

independent data for its usefulness and practicality. For this, the trained network performance 

was validated using completely different test data set, which were earlier never been used as 

input to the network. With these independent test samples, the trained neural network shows 

fairly good performance as well. As an example, Table 5.4 shows results from trained neural 

network for the two independent test targets, i.e., i48 and i39. As shown, tilted triangular and 

tilted square shape inputs, are recognized with correct shape, size and orientation, as a true 

triangle and rectangle output images, with mean square error of 0.1029, 0.0776, respectively. 

 

Table 5.4. Results of the proposed trained neural network model using a different independent 

set of test samples, i48 - tilted triangle, i39 - tilted square. 

S. No. Test Targets Output reconstructed image 
Mean Square 

Error (MSE) 

1 

Target’s Id - i48

 

 

 

 

0.1029 

2 

Target’s Id - i39

 

 

 

 

0.0776 

 

Thus, the results verify the capability of proposed rotation and scale invariant neural 

network for image recognition for the considered four regular target shapes. Further, the proposed 

neural network methodology can also be trained and applied for other different irregular target 

shapes. 
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5.6.  Conclusion  

In this chapter, a novel neural network based algorithm for rotation and size invariant target’s 

image reconstruction has been developed for the four regular shaped targets, viz., rectangle, 

square, triangle and circle. As a proof-of-concept, reconstructed rotation corrected images as 

implemented through the trained neural network model have been shown for the independent 

validation targets. This neural network based signal processing methodology can be applied for 

identification and reconstruction for any orientation and size deformed MMW radar image. 

Further, using the proposed ANN based algorithm, more sophisticated and practical target’s 

shapes may be considered for accurate target’s identification once neural network has been 

trained towards these irregular shapes. 
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Chapter 6              

Development of an Adaptive Quality 

Monitoring Algorithm to Detect fault 

(Crack) in Packaged Ceramic Tiles for 

Industrial Applications with MMW 

Imaging System 
 

MMW frequency also offers a good imaging tool for inspection of quality and condition of 

industry goods/ materials towards fatigue, wear and tear without hampering its utility and value. 

In recent years, there has been a good development of techniques for screening persons, objects 

etc. from a distance, which could carry variety of weapons beneath their clothing [17, 325]. 

Likewise, screening of variety of goods beneath the packaging in view of quality control is 

constantly desired [144, 357]. Currently used different EM based imaging techniques pose 

several limitations in terms of their target’s detection and identification capabilities [110]. For a 

good non-invasive quality testing system the prerequisites are its capability to provide 

appreciable contrast between targets and any confined irregularity for discrimination as well as 

reflected signal should not attenuate much before being received by the imaging system. These 

preconditions are very well met at MMW spectrum, and hence, it may prove an effective 

modality for non-invasive quality monitoring [183]. In view of these possible fascinating MMW 

features, a critical investigation of different computer vision based techniques towards their fault 

detection capability is essentially desired. A robust methodology is needed to be developed for 

an automatic fault monitoring for quality check of packaged goods for industrial applications. 

Our main purpose for non-invasive quality monitoring is the fault detection, and for this, we have 
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considered crack as a fault. Henceforth, in this chapter a MMW imaging system based non-

destructive, non-invasive quality inspection methodology has been proposed to monitor the 

cracks in packaged ceramic tiles.  

6.1.  Introduction 

Nondestructive testing & evaluation (NDT & E) is the analysis of an object with technology that 

does not affect the object’s future usefulness and its efficacy. MMW techniques provide an 

accurate and viable NDT solution, where EM signals at these frequencies can easily penetrate 

dielectric materials and provide their inner structure information. MMW NDT techniques are 

sensitive to geometrical and dimensional variations of a medium or a defect [62, 356].  Research 

works for various NDT applications are available which are employing different frequencies and 

techniques, like, defects in aircraft lap joints using multi-modal structural analysis process that 

includes intra and inter-modal NDT data fusion based on eddy current, MMW and ultrasonic 

technique [58], surface crack detection of stress induced fatigue crack in metals using open-ended 

rectangular probe at 24 GHz and using coaxial probes at 90 GHz  [145, 357], wafer inspection 

for de-lamination in IC packages using coax line sensor at 20 GHz [136, 340], structural health 

monitoring for hidden wall cracks by near-field inspection of reflected EM wave dispersion at 

W band [219]. A far-field airborne radar operated at X-band was used on the glass fiber 

reinforced polymer (GFRP) enclosed concrete cylinder targets followed by backprojection 

imaging algorithm to reconstruct the improved images for its condition assessment [348]. A 30 

GHz linear, 150 mm long imaging array has been demonstrated for NDT applications capable of 

successfully detecting/ imaging a pair of scissors, square shaped rubber (10 mm x 10 mm x 1 

mm) inserted between two (6.5 mm-thick) balsawood composite panels [90]. Apart from these 

fascinating applications, several important areas are still left to explore in which, one is the 

quality monitoring of packaged goods for industrial applications. The high demand of quality 

and reliability of products require a precise detection of defects for a competent and cost efficient 

manufacturing without causing any damage.  

One of the major requirements for non-invasive, robust crack classification is to have a 

set of unique and relevant numerical features that will conveniently describe a region/ image. 

Features are invariable descriptors of any image that could help to detect any type of irregularity 

or crack in the image [28, 178, 286]. A number of different feature extraction techniques have 
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been reported in literature and are broadly classified as shape based feature, texture based feature, 

color based feature [63, 215, 299]. A number of texture features have been reported in the 

literature, having first order and higher order statistics, for example, histogram statistics, co-

occurrence matrices [106], local binary patterns (LBP) [217], and morphology [268]. Apart from 

texture feature, shape based feature extraction techniques are also popular in computer vision 

based image processing, like, scale invariant feature transform (SIFT) [299], speeded up robust 

features (SURF) [28] which provide a low-dimensional representation of visual images for 

instance matching with images, Hidden Markov models (HMMs) to detect and classify landmine 

responses based on statistical representation of their characteristic hyperbolic shape [49], 

histogram of oriented gradients (HOG) which has been successfully used for pedestrian 

detection, traffic surveillance with occlusion handling [124], wavelet transform (Haar, Gabor) 

[286] having varying scope. Upon extracting the features, it is further applied to a classifier model 

in order to associate it with a particular class label out of possible class types. Different prevailing 

classifiers are K-nearest neighbor, Euclidean distance, support vector machine (SVM), self-

organizing map (SOM), fuzzy neural network, backpropagation neural network, etc. [278, 311, 

336]. However, applicability of these computer vision based feature extraction techniques for 

MMW imaging radar has not been explored, and hence, there is a need to carefully investigate 

and find an optimal feature for non-invasive concealed crack monitoring. Moreover, it is a quiet 

challenging task to non-invasively detect as well as locate the crack point accurately with 

minimum false alarm, in which image statistics based methodology, may be an alternate approach 

for accurate localization of cracked windows in the packaged ceramic tiles. Because, image 

statistics has the maximum spatial information and it can be helpful to develop an adaptive 

approach for crack monitoring in a more generalized way. Thereby, in this chapter an attempt 

has been made to investigate the undercover crack detection capability of the ingeniously 

designed MMW imaging radar system where packaged ceramic tiles are considered as a 

concealed object for classifying it as a crack or non-crack tile. Two different approaches for this 

have been proposed, i.e., feature-based-ANN crack classification model and spatial statistics 

based adaptive crack localization model. 

This chapter is further organized as follows: section 6.2 discusses theoretical background 

for non-invasive concealed crack classification, section 6.3 outlines the design for MMW 

imaging system and concealed targets for non-invasive quality monitoring application, section 

6.4 details subtask 1, i.e., methodology used for feature-based-ANN crack classification model, 
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section 6.5 discusses subtask 2, i.e., development of an adaptive statistical model for crack 

localization based on image reconstruction. Finally, section 6.6 presents the conclusion.  

6.2.  Theoretical Background 

Non-destructive quality check of packaged goods is an important step in industrial process 

monitoring as well as from the consumer satisfaction point of view. Keeping in view of this need 

and automated, accurate inspection in order to classify the defective items, in this chapter we 

have attempted to develop a MMW imaging radar based methodology. This proposed objective 

has been accomplished by executing the following two subtasks, i.e., quantitative basis and image 

reconstruction basis where localization of crack is identified. 

6.2.1.  Sub Task 1- Feature Extraction-Based-ANN Classification Model: A 

Quantitative Approach 

Detecting crack in any concealed item is a challenging task because of its varying appearances 

and positions in the target’s image. Different computer vision based image processing techniques 

are available in literature for different crack detection applications reporting variety of features 

having different working principles as discussed above and also in chapter 2 (section 2.3.3.3).  

Therefore, after critical analysis, we have proposed a feature-based-crack-detection and 

classification methodology for the designed MMW imaging system. Following steps have been 

executed to develop the proposed methodology: 

 For the development of a feature-based-crack-classification model, prerequisite is the 

target’s image features, therefore, feature extraction would be the starting point. There 

are different types of feature extraction techniques available, as discussed in section 6.1. 

However, for an accurate crack classification model, features are needed that could 

correctly detect cracks even in the conditions of non-uniform illumination and target’s 

deformations. Hence, features that are invariant to any slight deformation in the target’s 

image in the sense of rotation, size or non-uniform contrast are to be considered for further 

analysis.  

 Since, there are varieties of invariant features each having a different procedure for 

extracting unique image characteristics. Thereby, invariant features of different classes 

have been considered, i.e., Statistical based, Spectral and series expansion based, and 
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Contextual based features. Out of which the best feature should be selected through 

feature selection step. The description of different considered features is given in section 

6.4.1.  

 The next crucial step is the feature selection, i.e., out of the different extracted features, 

we need to find the best feature for the proposed non-invasive crack classification model. 

Also, the selected feature would fulfil the basic requirement of robustness towards 

target’s slight deformations and non-uniform target’s contrast for the optimal crack 

classification performance. Selection of an optimal feature would depend upon its 

maximum classification accuracy. 

 For classifier model neural network has been preferably used since, ANN is an adaptive 

model, which would continuously evolve its decision criterion for crack/non-crack 

classification through learning. Thereby, it proves to be a better and robust alternative as 

compared to other fixed threshold based classification techniques, viz., K-nearest 

neighbor, Euclidean distance, PCA, Bayes classifier, histogram, etc. [44, 49, 278]. 

 Moreover, cracks in the ceramic tile could be of any random nature, hence, while training 

any of the feature-based-NN classifier model, random experimental values of possible 

crack/non-crack tile configurations should be used to improvise the performance.  

 Henceforth, the respective feature-based-NN classifier models would be developed and 

critically analyzed and their performances will be checked on the basis of their crack/non-

crack classification accuracy and false alarm. 

The detailed implementation and analysis of feature-based-ANN crack classification 

model is given in section 6.4. 

6.2.2.  Subtask 2- Image Spatial Statistics Based Crack Localization Model: An 

Approach for Localization of Cracks  

The image spatial statistics based methodology apart from giving packaged ceramic tile crack 

information also focusses on the particular crack location estimation, which may be many times 

helpful to provide insight information to estimate the reason of the crack in the packaged tile as 

well as many times in case of large tiles instead of discarding the whole item, the defected portion 

may only be cutout. Therefore, following methodology has been adopted for crack localization 

with MMW imaging system: 
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 For the development of image reconstruction based spatial statistical model, the respective 

target’s image quality should be enhanced, and therefore, some form of filtering is required 

before any further signal analysis.  

 Since, we know that image characteristics largely depends upon its statistical behaviors, like, 

mean, median, standard deviation, maximum and minima, etc. Thereby, image’s statistical 

measures will prove to be vital for development our proposed non-invasive crack 

localization methodology. 

 Further, the crack could be anywhere on the ceramic tile and of any random type, hence, a 

window based pattern search model may be a good way to scan the complete tile sequentially 

and detect particular cracked locations, apart from just the crack classification. 

 Moreover, for the similar targets types also, the image statistics vary largely owing to 

different aspects of non-uniform illumination, background clutter, different multipath 

reflections, etc. [87, 201]. Therefore, for a generalized and automatic non-invasive crack 

localization model, tunability should be included which will take care of any such target’s 

image deformations in practical industrial environment. 

  Instead of designing a fixed condition for the test of crack/ non-crack window, an adaptive 

formulation should be modeled utilizing user defined accuracy and false alarm which will 

depend upon the image statistics of the particular tile under examination, because, statistical 

measures can uniquely characterize the different target’s images. 

 Different types of crack/ non-crack packaged tile configurations should be taken for 

validation of the proposed algorithm. 

Thereby, a novel adaptive, spatial statistics based non-invasive crack localization 

algorithm has been developed and proposed as the subtask 2, under section 6.5. 

6.3.  Observations for Non-Invasive Concealed Crack 

Detection/ Localization of Ceramic Tiles with MMW 

Imaging Radar 

Figure 6.1 shows the pictorial demonstration of the MMW SFCW radar setup for non-invasive 

packaged ceramic tile crack detection, classification and localization application. The similar 

SFCW radar setup has been used as shown in Figure 1.8 and only the target’s arrangement is 

changed, so as to facilitate non-destructive testing of the concealed objects. Total of 45 ceramic 
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tiles considered as targets in different crack/non-crack configurations have been used and a 

detailed description of which is given in section 6.3.1. The typical radar parameters are the same 

as given in Table 1.1. Further, in order to completely scan the target, 2D C-scanning technique 

has been used as discussed in section 1.3.2.2, in which N = 30 horizontal scanning steps and M 

= 18 vertical scanning steps were taken with the inter-element spacing of 2 cm. Thereby, the 

image parameters of the designed MMW SFCW imaging radar, i.e., range resolution and cross-

range resolution comes out to be 7.5 cm and 8.59 mm, respectively as obtained from the 

corresponding equations (1.16) and (1.17). 
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Figure 6.1. Experimental demonstration of ingeniously configured MMW imaging radar system 

for non-invasive packaged ceramic tile crack estimation. 

 

6.3.1.  Data Used: Packaged Ceramic Tile 

While designing the targets, care has been taken to make the respective target’s optically invisible 

in view of proposed concealed crack detection application. The pictorial demonstration for 

concealed tile arrangement is shown in Figure 6.2(a). Firstly, a large wooden sheet of size = 35 

cm x 43.6 cm and thickness (t1) = 5mm has been mounted on the 2D-scanning frame and over to 

which a thick polystyrene sheet thickness (t2) = 2.6 cm was placed in order to avoid any 

reflections from the surrounding background, since polystyrene will absorb maximum of incident 
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EM waves and suppress any reflection. On this polystyrene sheet, the target under test was 

placed, i.e., commercially available and commonly used ceramic tiles having thickness (t3) = 7 

mm and size = 30.48 cm x 30.48 cm.  

 

t2t3 t1

Wood

Polystyrene

Tile

Packing cupboard

      

                                      (a)                                           (b)                                   (c) 

Figure 6.2. Target arrangement for concealed crack detection in packaged ceramic tiles: (a) 

pictorial demonstration, (b) ceramic tile mounted on the scanning frame, (c) ceramic tile 

covered with the packaging cardboard. 

 

The respective tiles were covered with commonly used packaging cardboard, so that, by 

the visual inspection, it will be completely unknown that the undercover target tile is whether 

cracked or non-cracked. Now, for our concealed crack detection application we have selected 

tiles such that systematic crack has been introduced, like, horizontally cracked (hc), vertically 

cracked (vc), diagonally cracked (dc) and randomly cracked (rc) tiles. Therefore, it presents 

various possible cracks in the packaged ceramic tile. Apart from this ceramic tiles without any 

crack, i.e., full tiles (f) were also taken. An extensive 45 number of observations were performed 

using different concealed target’s arrangements of cracked and non-cracked tiles as shown in 

Table 6.1.  

In Table 6.1, first column signifies different considered crack/ non-crack ceramic tile 

configurations, second and third column represents training and validation targets, respectively 

and the last column gives the total number of target samples taken for each of the crack/non-

crack ceramic tile configurations. Some of the test target tiles with varying crack configurations 

are shown in Figure 6.3.  
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Table 6.1. Different crack/ non-crack target tile configuations and their notations used  

Target’s type (cracked/ 

non-cracked) 
Training / Test target’s id's 

Independent 

validation target’s 

Id's 

Data 

set/target’s 

crack  type 

Non-cracked full Tile f1, f2, f3, f4, f5, f7 f6, f8, f9, f10, f11 11 

Horizontally cracked tile hc1,hc2, hc3, hc4, hc6, hc8, hc5, hc7 08 

Vertically cracked tile vc1, vc2, vc3, vc4, vc7,vc8 vc5, vc6, vc9, vc10 10 

Diagonally cracked tile dc1,dc2,dc5, dc6, dc7, dc8, dc3, dc4 08 

Randomly cracked tile rc1, rc2, rc3, rc4, rc6, rc7 rc8, rc5 08 

Total target’s data set 30 15 45 

 

In each of the respective targets in Figure 6.3, the inset picture shows fully covered view 

of target’s after covering them with the packaging cardboard, in which, the underneath target’s 

configuration is completely unknown. However, the enlarged uncovered respective targets in the 

Figure 6.3 show different considered crack/non-crack tile configurations, like, f1, hc3, vc3, dc5, 

rc7. 

 

            

    (a)                                      (b)                                    (c)                                               

      

       (d)                                    (e)                                                                             

Figure 6.3. Actual photographs of some test targets used for concealed crack detection of 

ceramic tiles: Final complete covered view of any target is shown in inset (lower left corner), 

the undercover ceramic tile target’s configuration (crack/non-crack) is zoomed in: (a) full non-

cracked (f1), (b) horizontally cracked (hc3), (c) vertically cracked (vc3), (d) diagonally cracked 

(dc5), (e) randomly cracked (rc7).  
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6.3.2.  Signal Pre-Processing and C-Scan Image Formation 

One-port complex scattering coefficients (S11) reflected from the stand-off concealed targets 

were recorded using PNA-computer interface assembly in real time. The acquired data then 

undergoes different signal pre-processing steps as discussed earlier in section 4.4.1 in order to 

retrieve useful target’s information [78, 272]. Once pre-processing is carried out, C-scan image 

of the packaged ceramic tile at the target’s downrange location corresponding to reflection peak 

in the range profile is retrieved as discussed in section 1.3.2.2. As per the total number of vertical 

and lateral scanning positions mentioned earlier in section 6.3, the C-scan image will be of size 

[18x30] for different targets. Figure 6.4 shows C-scan images for different packaged test target 

tiles with different crack /non-crack configurations, i.e., hc3, f3, f2, f5, hc3, vc3, dc5, rc7, f1, rc2, 

vc8, as per the notation given in Table 6.1 (column 2), such that Figure 6.4(a), (b), (c), (e) are for 

full non-cracked tiles; Figure 6.4(f), (g) correspond to the Horizontal crack tiles; Figure 6.4(j), 

(k) correspond to Vertical crack tiles; Figure 6.4(d) represent diagonal crack and Figure 6.4(h), 

(i) represent random crack tiles. 

 

 

       (a)                        (b)                                (c)                                 (d)                      

 

                                     (e)                             (f)                            (g)                            (h) 

 

                                               (i)                         (j)                         (k) 

Figure 6.4. 2D C scan image at the target’s downrange distance for different tile configurations, 

(a) f1, (b) f2, (c) f5, (d) dc5, (e) f3, (f) hc6, (g) hc3, (h) rc7, (i) rc2, (j) vc3, (k) vc8. 
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6.3.3.  Critical Investigations on the Need of an Adaptive and Automatic Crack 

Detection Model 

As seen in Figure 6.4, cracks in few of the packaged cracked tiles are visible, i.e., dc5, hc3, rc7, 

although for few cracked target tiles it is not clearly visible, i.e., hc6, rc2, vc3 (due to low contrast 

between crack and non-crack pixels). Moreover, for few non-cracked full tiles in Figure 6.4, it 

shows ambiguity in intensity values, i.e., f1, f2, f5 with slight visible crack points. These 

ambiguities in respective images could lead to any false decision by simply image comparisons. 

Further, visual inspection of each tile image may be more liable to human error and time 

consuming. Hence, it is quite challenging to accurately distinguish cracked and non-cracked 

packaged tile images, because any slight visible crack points even in the non-cracked full tile 

will cause unnecessary disposal of good tiles and will lead to major fiscal and repute loss to the 

company. Therefore, an adaptive, robust and automatic crack detection methodology is 

essentially needed to be developed for non-invasive, non-destructive crack detection for the 

packaged ceramic tiles. Furthermore, here our main emphasis is to achieve near minimum (close 

to zero) false alarm for non-cracked full packaged tiles to avoid any unwanted loss and reduced 

false alarm for cracked packaged tiles to avoid any quality degradation at dispatch end, which is 

also of vital importance. Thereby, in this chapter we have proposed two methodologies, i.e., 

feature-based-ANN model for crack classification and spatial statistics based adaptive model for 

crack localization.    

6.4.  Methodology for Feature-Based-ANN Crack Classification 

Model (Subtask 1) 

As for the reasons mentioned in the preceding section 6.3.3, it is quiet obligatory to correctly 

detect and classify cracked/ non-cracked packaged ceramic tiles non-destructively. Hence, an 

optimal feature based classification model has been attempted under this subtask 1, which could 

help to classify cracked and non-cracked tiles separately. Thereby, in order to recognize target's 

distinct characteristics, suitable descriptors are extracted from target’s image, i.e., in present case 

ceramic tile targets. More importantly, invariance towards scaling, translation and rotation in 

target’s image is desirable for robust and accurate classification under non-uniform practical 
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environment. Thereby, choice of suitable feature is a determining step for an optimal crack 

classification model as mentioned in the theoretical background in section 6.2.1.  

6.4.1.  Feature Selection 

Radar line of sight is an important aspect to image any target. Since, our proposed industrial 

application is aimed towards non-destructive quality scanning of packaged ceramic tiles placed 

at a stand-off distance. Hence, it may be possible that the packaged tile is not in the correct radar 

line of sight and is slightly shifted, or having alignment errors. In any of such cases, the radar 

will treat it in a different way and will have a problem in imaging the targets correctly, henceforth, 

we have preferred to use features that are least affected by any slight translation, rotation and 

scaling of the observed object.  

Thereby, out of the different available state-of-the-art features conferred in section 6.1, 

we have used five relatively invariant feature extraction techniques, broadly classified among 

three different classes, Statistical based features, i.e., Principal component analysis (PCA) [279], 

histogram of oriented gradient (HOG) features [39]; Spectral and series expansion features, i.e., 

Discrete Fourier transform (DFT) descriptors [34], Daubechies wavelet transform (DWT) [35, 

40]; and Contextual features, i.e., gray level co-occurance matrix texture features (GLCM) [107]. 

Statistical based features [155, 295] may be global or regional, and are derived from the statistical 

distribution of image points globally or window based, for example; PCA is global statistical 

feature, although HOG is region/ window based feature. Spectral features describe the image 

intensity variations in various bands of the portion of an electromagnetic spectrum [107, 155], 

and image signal is decomposed as a linear combination of a series of simpler well defined 

functions, for example; exponential basis function or wavelet basis function. Coefficients of this 

series expansion provide a more compact encoding for feature extraction. Additionally, these 

features are invariant to global deformations, like, translation and rotations. Another third 

category feature considered is the contextual features [83, 309] based on contextual information 

in images, i.e., it focuses on the relationship of the nearby pixels of image while feature 

extraction. The context based features deals with co-occurrence relationship among the images 

or within the image. For example: Gray level co-occurance matrix based texture features are the 

contextual features that depends on positional and angular inter-relationships among the 

neighboring pixels [107]. 
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These techniques have been commonly used in computer vision based applications, 

however, applicability of them is less reconnoitered for radar imaging. A brief description of the 

considered feature extraction techniques is as follows: 

6.4.1.1.  Discrete Fourier Descriptors (DFT) 

Discrete Fourier descriptors (DFT) are based on the well-developed theory of Fourier 

transformation which has found vast applications, viz, speech recognition, human action 

classification and image compression [49, 229]. The Fourier transform maps a time domain 

signal to frequency domain using complex exponential basis functions. Here, for image feature 

extraction, their 2D discrete Fourier transform (DFT) were evaluated, as given by [246]: 

𝐹(𝑢, 𝑣) =
1

𝑁𝑀
∑ ∑ 𝑓(𝑚, 𝑛)𝑒−𝑖2𝜋(

𝑥𝑢

𝑁
+
𝑦𝑣

𝑀
)𝑀−1

𝑦=0
𝑁−1
𝑥=0   (6.1) 

where, f(m,n) represents the C-scan image (M x N = 18 x 30) and is a function of two discrete 

spatial variables m and n. The variables u and v are frequency variables. The information 

contained in the Fourier transform can be represented in terms of the magnitude and phase spectra 

given by, 

|𝐹(𝑢, 𝑣)| = [𝑅𝑒2(𝐹(𝑢, 𝑣)) + 𝐼𝑚2(𝐹(𝑢, 𝑣))]
1/2

 

            θ(𝑢, 𝑣) = 𝑡𝑎𝑛−1[𝐼𝑚(𝐹(𝑢, 𝑣))/𝑅𝑒(𝐹(𝑢, 𝑣))]   (6.2) 

Since, the obtained magnitude and phase spectra are two-dimensional in nature, hence 

first converted into 1D feature vector prior to use for feature based classification. This is achieved 

by concatenating the magnitude and phase spectra of the image to extract final Fourier descriptor 

(n=2 x M x N). Since, DFT captures the global characteristics depending upon intensity values 

of dynamic pixels, hence to realize the scaling invariance, normalization is done prior to feature 

computation. This feature invariance may be required when the target’s criterion is not correct. 

Finally, in order to make the image’s Fourier descriptor compact and to avoid redundancy, we 

iteratively selected first k < n coefficients from magnitude and phase descriptors without losing 

target’s relevant information, for example, in case of our target’s image, we chose only 60% of 

the total fourier descriptors. A detailed description of this is given in section 6.4.2.3 [229].   



Chapter 6 

124 

 

6.4.1.2.  Discrete Wavelet Transform (DWT) 

Discrete wavelet transform (DWT) is another important imaging technique having 

benefits of multi-resolution, compression and de-noising, finding applications in large quantities 

of information storage and faster transmission [20, 202]. DWT captures both the spatial and 

frequency information of a signal in contrast to discrete Fourier transform which gives only 

frequency data of any signal. DWT analyzes the image by decomposing it into sub-bands via 

low-pass filtering (coarse approximation coefficient) and via high-pass filtering (detail 

information coefficients) as shown in Figure 6.5. Figure 6.5(a) shows the flow diagram for 2D 

DWT decomposition for any image [202].  
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Figure 6.5. Discrete wavelet transform of image matrix using single level Daubechies 

decomposition (db2): (a) 2D wavelet transform computation flowchart, (b) Four sub-band 

image decomposition coefficients: approximation, vertical, horizontal, diagonal [289]. 
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The image decomposition is performed iteratively on low-pass approximation 

coefficients at each level, until the necessary compression is reached. The discrete wavelet 

transform of any image function f (x,y) of size M x N is [57]:  

𝑊∅(𝑗0, 𝑚, 𝑛) 
1

√𝑀𝑁
∑ ∑𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

∅𝑗0,𝑚,𝑛(𝑥, 𝑦)    

𝑀−1

𝑥=0

 

 𝑊Ψ
𝑖 (𝑗0,𝑚, 𝑛) =

1

√𝑀𝑁
∑

∑ 𝑓(𝑥, 𝑦)𝑁−1
𝑦=0 Ψ𝑗,𝑚,𝑛

𝑖 (𝑥, 𝑦),

𝑖 = {𝐻, 𝑉, 𝐷}                      
𝑀−1
𝑥=0   (6.3) 

Wϕ(j0, m, n) defines an approximation coefficients of f(x, y) at scale j0. The Wi
ψ(j, m, n) 

coefficients provide horizontal, vertical, and diagonal details for scale j. Here, scaling function 

ϕj,m,n and directional sensitive wavelet functions ψi
j,m,n is given by, 

𝜙𝑗,𝑚,𝑛(𝑥, 𝑦) = 2
𝑗
2⁄ 𝜙(2𝑗𝑥 −𝑚, 2𝑗𝑦 − 𝑛) 

  Ψ𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) = 2

𝑗
2⁄ Ψ𝑖(2𝑗𝑥 −𝑚, 2𝑗𝑦 − 𝑛), 𝑖 = {𝐻, 𝑉, 𝐷}  (6.4) 

For DWT based image feature extraction, we have considered Daubechies complex 

wavelet (db2) which are discrete, asymmetric, orthogonal wavelets having the advantages of shift 

invariance and better directional selectivity as compared to real-valued wavelet transforms, 

which is beneficial in case of target’s misalignment. Using the one level db2 wavelet transform, 

the respective test target’s images [18, 30] were decomposed into four coefficient vectors: Wapp, 

WH, WD, WV as shown in Figure 6.5(b). For example: In case of our target’s image of size [18, 

30], the one level db2 wavelet decomposition will generate four (high and low) coefficients 

matrices, each of size = [9, 15]. A detailed description of this is given in section 6.4.2.3.  

6.4.1.3.  Principal Component Analysis (PCA) 

Principal component analysis is a method of renovating a number of correlated variables 

into a smaller number of uncorrelated, independent variables and finds variety of applications in 

feature selection [286], feature extraction [100, 268], image visualization, classification [77, 298] 

and noise rejection. PCA can be used for image recognition/ classification by converting the 

pixels of an image into a number of eigen vector features, which can later on be used to compare 
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the similarity between two image classes. PCA decomposes any signal/ image into a set of 

orthogonal basis vectors or eigenvectors, in contrast to Fourier descriptor’s orthogonal sinusoids 

of varying frequencies [176]. First, the image matrix X (M x N) is normalized to zero mean, 

which centers and scales the data. This makes the extracted PCA feature vector invariant towards 

translation errors, which may be needed, in case the targets are not correctly aligned. Then, find 

eigenvectors and eigenvalues of image co-variance matrix; order the eigenvectors in their 

corresponding decreasing eigenvalues, which gives principal components in order of their 

significance.  The main advantage of PCA is that one can hold only those eigenvectors having 

largest eigenvalues (i.e. principal components) so as to compress feature vector size without loss 

of any image information.                 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 = [𝑒𝑖𝑔1, 𝑒𝑖𝑔2, 𝑒𝑖𝑔3……𝑒𝑖𝑔𝑘]  (6.5) 

In case of our target’s image of size [18, 30], a total 30 principal components (PCs) were 

generated, out of which only 33%, i.e., 10 PCs were chosen because of their major contribution 

to the eigen values. A detailed description of this is given in section 6.4.2.3. 

6.4.1.4.  Texture Features 

The textural properties of an image appear to carry useful information for discrimination 

purposes [327], hence, it is inevitable to use it for non-invasive crack classification of packaged 

ceramic tiles. Here, textural features used are based on the contextual information of an image 

[80], which is contained in the overall or "average" spatial relationship which the gray tones in 

the image hold with one another as described in the starting of section 6.4.1. This property of 

contextual texture feature makes it invariant, which may be advantageous, in case target is not in 

correct line of sight of the radar. Context information, based on the interaction among the pixels 

can help to successfully disambiguate concealed target’s characteristics for crack/no-crack 

classification. Texture features considered here, are the first order and second order gray tone 

statistical measures and are briefly discussed as: 

 Second Order Spatial Statistics (Gray Level Co-Occurrence Matrix GLCM) 

The gray tone spatial dependence approach characterizes texture by the co-occurrence of 

its gray tones. More specifically, the texture information is adequately specified by a set of gray-

tone spatial-dependence matrices which are computed for various angular relationships and 

distances between neighboring resolution cell pairs on the image, as shown in Figure 6.6 for the 



Adaptive Quality Monitoring Algorithm for Fault Detection 

127 

 

central image pixel ‘*’. The second order textural features are derived from these nearest 

neighbor gray tone spatial dependence matrices [107].  

 

* 1

3

876

5

4 2

0°

45°
90°

135°

 

Figure 6.6. Demonstration of nearest neighbour cells orientation with respect to any central 

resolution cell entry. Cells 1 & 5 are 0° nearest neighbours and cells 2 & 6 are 135° nearest 

neighbours to resolution cell (*) and so on [107]. 

 

The power of the co-occurrence approach is that it characterizes the spatial 

interrelationships of the gray tones in a textural pattern and can do so in a way that is invariant 

under monotonic gray tone transformations. Its weakness is that it does not capture the shape 

aspects. Although these features contain information about the textural characteristics of the 

image, it is hard to identify which specific textural characteristic is represented by each of these 

features. The different GLCM features can be defined as [107]: 

gN                                →   Number of distinct gray levels in the quantized image. 

   , , /p i j P i j R  → (i,j)th entry in a normalized gray-tone spatial-dependence matrix. 

 
1

( ) ,
gN

x

j

p i P i j


  →   ith entry in  the marginal-probability matrix obtained by summing 

rows of p(i,j). 

   
1

,
gN

y

i

p j p i j


  → jth entry in marginal-probability matrix obtained by summing columns 

of p(i,j). 
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Angular Second-Moment (ASM) / Homogeneity (f1): 

    
  

2

1 ,
i j

f p i j    (6.6) 

Contrast (f2):  
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Correlation Feature (f3):    
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Entropy (f4):

   

    4 , log ,
i j
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                                  (6.9)

 

Sum entropy (f5):  
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Sum average (f6):    
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Sum variance (f7):       
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Inverse Difference Moment (f8): 
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Difference Entropy (f9):      
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Information Measure Correlation (f10 & f11): 
 10

1

max ,
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f
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                                 (6.15)
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11 1 exp 2 2f HXY HXY                                      (6.16)
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      1 , log x y

i j

HXY p i j p i p j 
       

        2 logx y x y

i j

HXY p i p j p i p j   

 First order Statistical Parameters 

 Apart from second order statistical GLCM features, the first order image statistical 

parameters viz., mean, standard deviation, variance and lacunarity etc. are also used as a valuable 

image features to characterize the textural properties of any target. Thereby, in conjunction to 

second order statistical measures, first order features were also investigated, in order to develop 

a better classification model. 

Mean( ): Mean computes average intensity of the image. It helps in discriminating varying 

textured areas according to their backscattering coefficient, given by [98] 

,

ij

i j

x

n
 



μ =
∑ xiji,j

n⁄         (6.17) 

where, xij is the intensity of pixel at location (i,j), n is the number of pixels over which mean is 

computed. 

Variance: The best option to capture boundaries and edges is by computing variance. Value of 

variance corresponds to the level of heterogeneity. Variance may help in locating boundary 

regions of smooth textured areas and classifying various textured areas on the basis of their 

heterogeneity [98] and is given by 

                                              

2

,2

( )

( 1)

ij

i j

x

n












            (6.18) 

where xij  is the intensity of pixel at location (i,j), n is the number of pixels over which variance 

2 is computed. 

Standard Deviation: It is a measure that is used to quantify the amount of variation 

or dispersion of a set of data values. A high value of standard deviation indicates that the data 

points are spread out over a wider range of values. A useful property of the standard deviation is 

that, unlike the variance, it is expressed in the same units as the data. The standard deviation of 

experimental data reports the effects that fall much farther away from what would have been 

expected and is considered statistically significant. Variation in the measurement is in this way 

distinguished from causal variation [98]. 

http://en.wikipedia.org/wiki/Statistically_significant
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                (6.19) 

Lacunarity: It is a multi-scaled method for describing patterns of spatial dispersion. Lacunarity 

reflects the spatial distribution of gap sizes in texture images. This measure is immensely helpful 

in the image classification that contain rich textures. Lacunarity is dependent on the mean 

intensity as well as the variation of pixel values from the mean in the image. Therefore, lacunarity 

can be used for discriminating both smooth and coarse textures and is defined as [44]    

                      Λ = (
δ

μ
)
2
+ 1                 (6.20) 

where   is the mean and   is the standard deviation.  

6.4.1.5.  Histogram of Oriented Gradient (HOG) 

HOG descriptors provide significant image feature information that may be used for 

different radar imaging applications, as recently been explored for practical GPR applications 

and traffic monitoring [294, 323]. In order to recognize the target's distinct characteristics, the 

suitable descriptors were extracted from the region of interest (ROI) of the image, i.e., in our case 

test tiles. Features from one type of tile are then compared with other target tiles for classification. 

Practically, HOG feature extraction is performed by dividing the whole image detection window 

into small spatial regions, called 'cells' comprising, n pixels x n pixels. The key processing steps 

for efficient HOG feature vector generation are: 

 Gradient Computation 

HOG features are based on gradient angle and magnitude distributions, and in any visual 

image data they are robust due to the gradient’s natural invariance to slight changes in ambient 

lighting and color variations, which may be required when the target’s criterion is not correct. 

HOG feature performance is highly dependent on the way by which gradient of the image is 

computed. For gradient computation, each image pixel is convolved using a 1 D centered, point 

derivative mask  [−1, 0, 1], in contrast to other higher order derivatives (2D, cubic, diagonal, 

sobel, etc.), which, could lead to large size masks resulting in coarsening of image and loss of 

significant feature information. Thus, gradient magnitude (𝐺) and gradient angle (𝜃) are 
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computed for each pixel in the image detection window [55, 295]. Let gx and gy represent the 

gradient images obtained after convolution of initial image I with hx and hy, respectively [295]: 

𝑔𝑥 = 𝐼 ∗ ℎ𝑥;     ℎ𝑥 = [−1, 0, 1],      (6.21a) 

𝑔𝑦 = 𝐼 ∗ ℎ𝑦;     ℎ𝑦 = [−1, 0, 1]
𝑇 ,    (6.21b) 

Hence, Gradient magnitude:      2 2, , ,x yG i j g i j g i j 
                                     (6.22a) 

Gradient angle:    
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,
, tan

,

y

x

g i j
i j

g i j
 

 
   

                           (6.22b) 

Since, individual G(i, j) and θ(i, j) are highly variable and subject to significant variations 

across nearby (i, j) locations, even for very similar images, therefore some aggregate statistics of 

the spatial distribution of the gradient angles and magnitudes over small regions of the images 

will provide quite robust descriptors of those regions. Thereby, gradient based histogram has 

been computed for a combination of neighboring pixels called cells. 

 Gradient Oriented Histogram 

Each pixel's gradient magnitude and angle contribute to the oriented histogram generation 

of each cell. Histogram bins are evenly distributed over 0° to 180° for unsigned gradient (or 0° 

to 360° for signed gradient). Here, each pixel's weighted vote is determined by its gradient 

magnitude at the corresponding histogram orientation bin. Further, pixel votes are aggregated in 

the spatial neighborhood, referred to as cells. Cell is a combination of number of pixels and can 

be of rectangular or radial nature [55]. 

 Block Normalization 

Further, there are large local variations in the gradient strength through neighborhood 

cells due to varying illumination and foreground-background contrast. Hence, in order to achieve 

invariant characteristic feature, a local contrast normalization is essentially sought. This is 

achieved by grouping cells into larger spatial regions, "blocks" and accumulating local histogram 

"energy", which is used for normalizing all the cells of that block. Thereby, each of the block is 

contrast normalized, separately. An overlapping of blocks is also done so that each cell response 



Chapter 6 

132 

 

contributes to number of different block normalizations. This seems redundant but it adds 

significant improvement to the performance. The final descriptor of any image detection window 

is thus formed, as a feature vector comprising normalized cell responses contributed from 

different overlapping blocks. In contrast to center-surround global normalization, local contrast 

normalization is an essential component that histogram of oriented gradient (HOG) feature 

extraction technique owes leading to major performance improvement. Figure 6.7 shows an 

illustration of HOG feature generation criterion for considered target’s image [18, 30]. Here, 

ROI, i.e., extracted tile image matrix = [12 pixels, 12 pixels], which is subdivided into 4 cells x 

4 cells with each cell is a square matrix of [3 pixels, 3 pixels]. The HOG features are then 

calculated for each of these cells. Additionally, to add robustness to the HOG features block level 

local normalization has been performed. A detailed description of this is given in section 6.4.2.3.  

 

Cell Cell Cell
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Cell Cell

Cell

Image detection 

window

3 pixels

Block

3
 p

ix
el

s

 

Figure 6.7. Diagram illustrating division of cell and overlapping of blocks in the extracted 

image detection window for histogram-of-oriented-gradient (HOG) feature calculation for the 

tile image of size [12 pixels x 12 pixels], cell size = [3 pixels x 3 pixels], block size = [2 cells x 

2 cells]. 

 

6.4.2.  Implementation of Feature-Based-ANN Model for Crack Classification 

Flow chart in Figure 6.8 shows the algorithm used to develop optimal feature-based-ANN 

classifier model. Crack and non-crack packaged ceramic tile classification through neural 

network requires feature descriptors of the target’s image as a precursor. Output of the flowchart 

will be the optimum feature-based-NN crack/non-crack tile classifier. Steps for implementing 

feature-based-ANN classification model are: 
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 First, for all of the 30 test targets (as given in Table 6.1 column 2), feature vectors using the 

five considered feature extraction techniques, i.e., DFT, WT, PCA, Texture and HOG were 

calculated as per method discussed in section 6.4.1. 

 Taking one feature vector at a time for all the 30 test targets an ANN input matrix and the 

corresponding output matrix were formed. Thereby, one feature-based-ANN classification 

model has been generated. 

 Similarly, for rest of the feature vectors the respective feature-based-ANN models were 

developed.  

 Thus, for each of the five feature vectors, we have the five respective feature-based-ANN 

models for crack classification.  

 Now, in order to find the optimal feature-based-ANN model, their performances have been 

compared using similar independent target tiles, by observing their respective crack/non-

crack tile classification accuracy. 

A detail description of formation and implementation for each of the feature-based-ANN 

model are given below: 

 

Data Acquisition

Signal pre-processing

2D C-scan image 

Averaging/ 

normalization

Feature Extraction

Discrete fourier transform features (DFT) ANN classifier

Histogram of oriented gradient features (HOG)

Texture (First & second order statistics) features 

Discrete wavelet transform features (DWT)

Principal component analysis features (PCA)

Comparison of respective 

feature-based-NN 

classifier models  

ANN classifier

ANN classifier

ANN classifier

ANN classifier

Best detection accuracy/ low 

false alarm rate for crack/no-

crack classification
 

Figure 6.8. Flow Chart for the proposed feature-based-ANN classifier model for non-invasive 

crack tile classification. 
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6.4.2.1.  Configuration of the Feature-Based-ANN Model 

Backpropagation feed-forward neural network (NN) classifier model has been used due 

to its simpler and speeded implementation. Figure 6.9 shows the configuration of one of the 

feature-based-neural network model developed for undercover ceramic tile crack classification, 

which consists of:  

 Input Layer  Input matrix for training the respective neural network models is of size: 

Input matrix = [row x column] = [feature vector length x 30 test target samples]. 

Here, for the respective ANN model’s input matrix, the number of rows will depend upon 

the respective feature vector length and there are 30 number of columns corresponding to the 

30 test samples with different cracked/ non-cracked packaged tile configurations as given in 

Table 6.1 column 2.  

 Hidden Layer   It consists of 50 number of neurons for training the neural network model.  

 Output Layer   The output matrix for training will be of size [2 x 30]. Here, the two rows 

correspond to the two output classes, i.e., class 1: Full tile without any crack and class 2: 

Cracked tile. The number of columns are 30 with each column corresponding to the 

output of the respective input test targets in the input matrix. The output vector 

corresponding to any input target is thus defined as [1,0] for full tile and [0,1] for cracked 

tile.  

 

 

Figure 6.9. Configuration of neural network for target’s classification. It consists of input layer 

(feature vector length x 30 I/p samples), 50 hidden layer neurons, and 2 output layer. 

 

6.4.2.2.  Training of the ANN Model 

For training the NN towards different possible crack configurations that could occur in 

any packaged ceramic tile, we have used comprehensively a total of 30 test packaged ceramic 
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tile targets consisting of full non-cracked tile, horizontally cracked tile, vertically cracked tile, 

diagonally cracked tile and randomly cracked tile, with each configuration having 6 different 

data sets as given in Table 6.1 (column 2).  

The developed neural network model is trained using 'trainscg' training function and 

'sigmoid' transfer functions in both the hidden layer and output layer [6]. Output of the ANN is 

the sigmoid function, which generates output between 0 and 1, required for pattern classification. 

Learning of neural network is through minimizing the mean squared error criterion between 

predicted and expected output. For training of the respective feature-based-NN classifier models, 

the input data of 30 targets is randomly divided into three parts, viz., training, validation and test 

data samples, so as neural network could learn the random variations of crack and non-crack 

features in different types of target’s configurations. Thereby, we have randomly divided the 30 

input data set into training, validation and testing samples in the ratio of 70% (20 samples), 15% 

(5 samples) and 15% (5 samples), respectively. This ANN configuration has been used for all 

feature extraction techniques in order to have uniformity while comparing each one’s 

performance. Feature based ANN model once trained, should be capable of any independent 

accurate classification towards concealed cracked or non-cracked ceramic tiles with minimum 

false alarm. 

6.4.2.3.  Critical Investigations of Feature Extraction Techniques towards Accurate Crack 

Classification Using ANN Model 

 DFT-NN Classifier Implementation 

Fourier descriptors were extracted from the target’s image (M x N = 18 x 30), using 2D 

discrete Fourier transform in terms of magnitude and phase feature vectors as given in equation 

(6.2). To make a complete feature vector, both magnitude and phase Fourier features were 

concatenated giving size n = [1080,1]. However, only k = 0.6n = 648, Fourier descriptors were 

considered, giving feature vector of size = [648,1] for any particular target’s image. The reduced 

feature vector size was iteratively selected so as to reduce I/P matrix size, complexity of ANN 

model and redundancy in data without losing any significant target’s information. The extracted 

Fourier descriptors for 30 test targets were then formed as the input matrix = [648, 30] to DFT-

NN classifier. While training the DFT-NN model, 15% of total 30 targets (i.e., five targets) were 

randomly selected as the test targets, which includes: hc3, dc5, f3, f5, vc4 (notation as per Table 

6.1). The trained DFT-NN model showed 60% (=3/5) classification accuracy, since two test 
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targets: f3, f5 were incorrectly classified as cracked tiles. The detailed classification output is 

shown in Table 6.2 below: 

 

Table 6.2. DFT-NN classifier model result using test targets 

S. No. 
Test target’s  

types- id's 

ANN classifier 

output  
Remark 

1 Horizontal crack -hc3 Cracked tile Correct 

2 Diagonal crack-dc5 Cracked tile Correct 

3 Full tile-f3 Cracked tile Not-correct 

4 Full tile -f5 Full tile Not-correct 

5 Vert. crack-vc4 Cracked tile Correct 

Fourier descriptor classification accuracy 60% 

 

 Wavelet Transform (WT) Features 

2D discrete daubechies orthogonal wavelet (db2) transform with one level decomposition 

on the target’s data matrix [18, 30] is performed. The four sub-band coefficients: approximate, 

horizontal, vertical, and diagonal each having matrix size = [9, 15] were extracted for 30 different 

test targets as per equation (6.3) and (6.4). Thus, the WT feature vector were formed by 

concatenating the high and low frequency components of the image giving feature vector length 

[540,1]. The extracted db2 wavelet descriptors for 30 test targets were then fed as input matrix 

of size = [540, 30] to the WT-NN classifier model. While training the WT-NN model, 15% of 

total 30 targets (i.e., five targets) were randomly selected as the test targets, which include: rc6, 

vc7, f4, dc2, f5. The trained WT-NN showed 60% (=3/5) classification accuracy, since two 

targets: dc2, f5 were incorrectly classified. The detailed classification output is shown in Table 

6.3 below: 

 

Table 6.3. WT-NN classifier model result using test targets 

S. No. 
Test target’s  

types- id's 

ANN classifier 

output  
Remark 

1 Random crack - rc6 Cracked tile Correct 

2 Vertical crack -vc7 Cracked tile Correct 

3 Full tile -f4 Full tile Correct 

4 Diagonal crack - dc2 Full tile Not -Correct 

5 Full tile - f5 Cracked tile Not-Correct 

Wavelet descriptor classification accuracy 60% 
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 Principal Component Analysis (PCA) Feature  

Based on the PCA analysis as discussed in section 6.4.1.3, for the target’s 2D data matrix 

[18, 30], the principal components = [30, 30] were found with columns indicating uncorrelated 

30 principal components (PCs) as derived from the eigen matrix [268, 279]. However, we have 

extracted only first ten principal components = [30, 10], without losing the target’s unique 

characteristic, since, it contributes major portion of eigen values ~ 96%. Thus, the formed PCA 

feature vector was of length = [300,1], and the input matrix for all 30 target samples was of size 

= [300, 30]. While training the PCA-NN model, 15% of total 30 targets (i.e., five targets) were 

randomly selected as the test targets, which includes: rc6, dc6, f3, dc7, hc8. The trained PCA-

NN model classification accuracy was 80% (=4/5), since one target: hc8 was incorrectly 

classified. The detailed classification output is shown in Table 6.4 below: 

 

Table 6.4. PCA-NN classifier model result using test targets 

S. No. 
Test target’s  

types- id's 

ANN classifier 

output  
Remark 

1 Random crack-rc6 Cracked tile Correct 

2 Diagonal crack - dc6 Cracked tile Correct 

3 Full tile - f3 Full tile Correct 

4 Diagonal crack -dc7 Cracked tile Correct 

5 Horizontal crack - hc8 Full tile Not-Correct 

PCA descriptor classification accuracy 80% 

 

 Texture Features  

Texture features as discussed in section 6.4.1.4, were calculated for the eleven second 

order spatial statistical features using equation (6.6) to equation (6.16), and for the four first order 

statistical features using equation (6.17) to equation (6.20). Thereby, total 15 texture features 

were extracted for each of the 30 different test targets, which gives ANN input matrix of size [15 

x 30] for Texture-NN classifier model development. While training the Texture-NN model, 15% 

of total 30 targets (i.e., five targets) were randomly selected as the test targets, which includes: 

vc8, f1, vc7, f4, vc3. The Texture-NN model showed classification accuracy of 60% (=3/5) on 

the test targets, since two targets: f1, f4 were incorrectly classified. The detailed classification 

output is shown in Table 6.5 below: 
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Table 6.5. Texture-NN classifier model result using test targets 

S. No. 
Test target’s types- 

id's 

ANN classifier 

output  
Remark 

1 Vertical crack-vc9 Cracked tile Correct 

2 Full tile -f1 Cracked tile Not-correct 

3 Vertical crack - vc7 Cracked tile Correct 

4 Full tile - f4 Cracked tile Not-correct 

5 Verticcal crack - vc3 Cracked tile Correct 

Texture descriptor classification accuracy 60% 

 

 Histogram of Oriented Gradient (HOG) Feature 

For HOG feature extraction, region of interest (ROI) of the target’s C-scan image [30x18] 

was extracted, i.e., in our case ceramic tile image under test is extracted from the background, 

which forms the target’s detection window of size 12 pixels x 12 pixel. After investigating 

different cell sizes, viz., 2x2, 3x3 and 4x4, it was found that cell size 3 pixels x 3 pixels gives 

better feature information with reduced feature vector size for our considered target types. 

Further, block size of 2 cells x 2 cells (i.e., 36 pixels) was taken, with block overlap of one cell 

(i.e., 9 pixels). This gives the final HOG feature vector of length [324 x1]. The HOG features of 

different types of target tiles in different crack and non-crack configurations (as per Table 6.1, 

column 2) were calculated as discussed in section 6.4.1.5, i.e., image cell based gradient 

magnitude and angle calculation using equation (6.22) and gradient histogram generation 

followed by the normalization. Figure 6.10 shows the typical HOG feature vector demonstration 

for a full tile and for a cracked tile.  

 

 

(a)                                                    (b) 

Figure 6.10. HOG feature descriptor representation for different cells of the extracted target’s 

image detection window for: (a) Non-cracked full tile, (b) Cracked tile. 
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The oriented histogram shows uniform alignment for non-cracked full tiles due to the 

nearly equal weight contribution from neighborhood cells of blocks, however, for cracked tile it 

shows varying random orientations due to difference in gradient weight contribution from the 

cracked cells, while aggregate feature vector calculation.  

Thereby, the input matrix was of size = [324, 30] for HOG-NN classifier. While training 

the HOG-NN model, 15% of total 30 targets (i.e., five targets) were randomly selected as the test 

targets, which includes: vc2, dc7, hc4, f4, rc3. The trained HOG-NN classifier model gives 100% 

(=5/5) classification accuracy, since no tile is incorrectly classified. The detailed classification 

output is shown in Table 6.6. 

 

Table 6.6. HOG-NN classifier model result using test targets 

S. No. 
Test target’s  

types- id's 

ANN classifier 

output 
Remark 

1 Vertical crack- vc2  Faulty tile Correct 

2 Diagonal crack- dc7  Faulty tile Correct 

3 Horizontal crack -hc4  Faulty tile Correct 

4 Full till - f4  Full tile Correct 

5 Random crack- rc3  Faulty tile Correct 

HOG descriptor classification accuracy 100% 

 

6.4.3.  Validation  

Once the feature-based-neural network classifier model is trained towards different types of 

possible cracks in the packaged ceramic tiles, it is expected to correctly classify any independent 

packaged tile targets. Hence, in order to find the optimal feature-based-ANN model for robust 

and accurate non-invasive crack classification, a comparison of all the respective five features 

(FT, WT, PCA, texture and HOG) based NN classifiers was carried out as given in Table 6.7, 

using the fifteen different independent validation targets with different crack/non-crack 

configurations (as per Table 6.3, column 3).  

For all the fifteen considered targets, the five features (FT, WT, PCA, texture and HOG) 

were extracted, and applied to their respective trained NN models, and their typical classification 

performances were analyzed and compared. The output of the NN classifier will be in binary 

vector form as discussed in section 6.4.2.1, i.e., for cracked tile output vector will be [0, 1] and 
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for non-cracked tile output vector will be [1, 0]. The number of incorrect target classifications 

for respective feature extraction techniques are; one (f6), four (f6, f8, f11, dc3), two (f10, f11), 

three (vc6, vc9, f10) and four (f8, f9, f10, f11), giving corresponding classification accuracies of: 

93.33%, 73.33%, 86.67%, 80%, 73.33% for HOG, PCA, WT, DFT, GLCM feature based ANN 

classifier models, respectively.  

On comparing the performance of different feature-based-ANN classifier models, viz, 

FT-NN, WT-NN, PCA-NN, Texture-NN and HOG-NN, it was found that HOG-NN classifier 

shows an optimal performance in terms of maximum correct crack classification accuracy, i.e., 

93.33%, which may be attributed to its cell based feature extraction in contrast to whole image 

feature extraction techniques. Further, HOG features employ local normalization and block level 

redundancy so as to withstand varying and non-uniform illumination. 
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Table 6.7. Classification accuracy assessment of proposed feature-based-ANN model using independent validation target samples by 

comparing DFT-NN, DWT-NN, PCA-NN, texture-NN, HOG-NN classifier models 

S.No. Independent 

validation 

targets 

DFT- NN DWT- NN PCA- NN GLCM- NN HOG-NN 

ANN 

classifier 

output  

Remark 

ANN 

classifier 

output 

Remark 

ANN 

classifier 

output 

  Remark Class 1 Remark 

ANN 

classifier 

output 

Remark 

1 Rand crack-rc8 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

2 Rand crack-rc9 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

3 Vert. crack-vc5 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

4 
Vert. crack-vc6 

Non-

cracked 
Not-

correct 
Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

5 
Vert. crack-vc9 

Non-

cracked 
Not-

correct 
Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

6 Vert. crack-vc10 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

7 
Full tile-f6 

Non-

cracked 
Correct 

Non-

cracked 
Correct Cracked 

Not-

correct 
Cracked Correct 

Non-

cracked 
Not-

correct 

8 
Full tile-f8 

Non-

cracked 
Correct 

Non-

cracked 
Correct Cracked 

Not-

correct 

Non-

cracked 
Not-

correct 
Cracked Correct 

9 
Full tile-f9 

Non-

cracked 
Correct 

Non-

cracked 
Correct 

Non-

cracked 
Correct 

Non-

cracked 
Not-

correct 
Cracked Correct 

10 
Full tile-f10 Cracked 

Not-

correct 
Cracked 

Not-

correct 

Non-

cracked 
Correct 

Non-

cracked 
Not-

correct 
Cracked Correct 

11 
Full tile-f11 

Non-

cracked 
Correct Cracked 

Not-

correct 
Cracked 

Not-

correct 

Non-

cracked 
Not-

correct 
Cracked Correct 

12 
Diag. crack-dc3 Cracked Correct Cracked Correct 

Non-

cracked 
Not-

correct 
Cracked Correct Cracked Correct 

13 Diag. crack-dc4 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

14 Horz. crack-hc5 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

15 Horz. crack-hc7 Cracked Correct Cracked Correct Cracked Correct Cracked Correct Cracked Correct 

Total accuracy 12/15 = 80% 13/15 = 86.67% 11/15 = 73.33% 11/15 = 73.33% 14/15 = 93.33% 
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6.4.4.  Concluding Remarks (for subtask 1)  

Here, our main focus was to develop such a technique for MMW imaging radar system, which 

should have the capability to detect cracked/ non-cracked undercover ceramic tiles non-

destructively, with minimum false alarms. Now, as per the experimental observations on an 

extensive number of targets, it was found that HOG-NN classifier outperformance as compared 

to other techniques where there were more number of false alarms. This indicates that HOG 

feature has better classification accuracy than others for non-invasive undercover quality testing. 

However, location of the crack in the concealed target remains completely unknown in this 

methodology. Thereby, in order to explore the possibility of exact crack location estimation apart 

from just crack detection, we have designed our next subtask such that, we have attempted to 

propose a spatial statistics based adaptive crack localization methodology based on image 

reconstruction.  

6.5.  Development of an Adaptive Statistical Model for Crack 

Localization Based on Image Reconstruction (Subtask 2) 

So far, in section 6.4, we have investigated feature extraction technique based NN classifier 

model for classifying packaged ceramic tiles as cracked or non-cracked, which is a quantitative 

approach. Now, in order to visualize crack locations within the concealed targets, a spatial 

statistical based adaptive approach has been investigated in this subtask 2. An adaptive pattern 

search based crack detection/ localization model has been proposed for detection of cracked 

targets as well as localization of particular crack windows within the targets. Moreover, a 

generalized optimization model has been formulated to achieve maximum user defined accuracy 

and minimum false alarm.  

6.5.1.  Undercover Target’s Image Enhancement: Discrete Convolution 

Target’s C-scan image obtained after signal pre-processing may also include undesirable 

reflections due to background scattering, multipath propagation and non-uniform illumination 

etc. (as discussed in section 6.3.3). Hence, for the proposed image reconstruction based spatial 

statistical model development, firstly, image enhancement has been performed as discussed in 
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the section 6.2.2, through linear filtering. Here, filtering has been achieved using discrete 

convolution, because it preserves fine image details while simultaneously enhancing the image 

quality, and is computed as [129, 215]: 

ℎ(𝑡) =  ∑ 𝑓(𝜏)𝑔(𝑡 − 𝜏) 𝜏      (6.23) 

where, the function 𝑓(𝑡) correspond to the image and 𝑔(𝑡) is the filter kernel. Convolution is a 

neighborhood operation in which each output pixel is the weighted sum of neighboring input 

pixels. The matrix of weights is called convolution kernel, or filter mask. There is a tradeoff 

between image sharpness and pixel noise, since, excessive smoothing will reduce the signal-to-

noise ratio and could distort the image. Gaussian kernel has been used for optimal image 

smoothing as compared to direct averaging or box filter kernel [129, 215, 264]. The filter mask 

at any co-ordinate position (x, y) of the image is determined by gaussian weighing coefficients 

given by: 

𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
(− 

𝑥2+𝑦2

2𝜎2
)
    (6.24) 

The value of the filter function at discrete points is controlled by variance 𝜎2. Gaussian 

function essentially removes the influence of points at radial distance greater than 3σ from the 

center of the template, such that, the template weights drop near to zero at the edges [215]. Figure 

6.11 shows test target’s filtered images obtained after gaussian kernel. The filtered, enhanced 

image is further normalized so that the brightness levels are uniformly distributed. When 

compared with respective raw C-scan images in Figure 6.4, an appreciable improvement in the 

image quality is observed in Figure 6.11. However, still it is difficult to accurately observe crack 

and no-crack tiles, because of slight visible crack points even in the non-cracked full tile images, 

like, Figure 6.11(a), (c) gives an impression of cracked tiles, although it is a non-crack full tile 

beneath the packaging as shown in Figure 6.3(a). Further, visual inspection of each tile image 

may be liable to human error and may be time consuming. Therefore, an adaptive, robust and 

automatic crack detection methodology has been proposed for non-invasive crack detection/ 

localization in the packaged ceramic tiles. 
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                (a)                                    (b)                              (c)                                        (d)                      

 

                (e)                                   (f)                                 (g)                                     (h) 

 

(i)                                (j)              

Figure 6.11. Test target’s images obtained after enhancement for different tile configurations: 

(a) f1, (b) f2, (c) f5, (d) dc5, (e) f3, (f) hc6, (g) hc3, (h) rc7, (i) vc3, (j), vc8. 
 

6.5.2.  Proposed Statistical Methodology for Crack Localization 

Since, our main aim is to avoid any false alarm for non-cracked packaged ceramic tiles because 

this could lead to unnecessary fiscal loss to the business. Therefore, we have tried to develop an 

adaptive statistical algorithm so as to detect and identify cracked and non- cracked packaged 

ceramic tiles non-invasively. Following steps have been performed while developing the pattern 

based spatial statistical algorithm as discussed in section 6.2.2: 

6.5.2.1.  Step 1: Image Statistics 

For developing a robust model, it is important to have fewer false alarms for packaged 

cracked tile and no (or very less) false alarm for packaged non-cracked tile. For this purpose, an 

image spatial statistics based adaptive model has been proposed, since, statistical parameters play 

a vital role in determining unique image characteristics. Henceforth, four statistical parameters 
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viz., Maxima, Minima, Median and Standard deviation of the image have been used to design 

proposed adaptive crack detection model. An adaptive pattern search technique is aimed to be 

developed, in which location of crack can be detected by scanning the full image matrix of 

packaged ceramic tile sequentially using a 3x3 window matrix and checking it towards cracked 

and non-cracked window condition. For this, we have developed a database by comparing 

original actual test tiles (as given in Table 6.1 column 3) with their corresponding images. In the 

image of any test ceramic tile, the actual cracked and non-cracked window locations have been 

marked by comparing each of the matrix windows with the corresponding actual ceramic tile 

configuration beneath the packaging, which was known to us.  

6.5.2.2.  Step 2: Window Based Detection 

Through exhaustive inspection on number of different packaged ceramic tiles with 

varying crack configurations, the optimal test condition for detecting crack/ no-crack in any 

selected window matrix of the given tile image was found as: 

(𝑀𝑥 −𝑀𝑛) > [𝑀 − 𝑆];     𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥 (6.25a) 

(𝑀𝑥 −𝑀𝑛) < [𝑀 − 𝑆];     𝑁𝑜𝑛 − 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥 (6.25b) 

where,   
𝑀𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑎,𝑀𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑎

𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛, 𝑆 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
} 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [3𝑥3] 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥 

In equation (6.25), the right side term [𝑀 − 𝑆] shows the difference between median and 

standard deviation and left side term (𝑀𝑥 −𝑀𝑛) signifies difference between maximum and 

minimum intensity pixels; for any [3x3] window matrix. The selected window matrix can be 

cracked or non-cracked depending upon the characteristic of packaged ceramic tile under test 

and the sequential scanning position.  

If there is no crack in the selected [3x3] window, all nine pixels will be of nearly same 

intensity values. Hence, difference between max. and min. intensity pixels (𝑀𝑥 −𝑀𝑛) will be 

very less and therefore,   (𝑀𝑥 −𝑀𝑛)< [𝑀 − 𝑆] as given in equation (6.25a). This behavior of 

non-cracked window matrix has been demonstrated by plotting the two statistical terms, 

(𝑀𝑥 −𝑀𝑛) and [𝑀 − 𝑆], for four undercover ceramic tile test targets (viz., hc3, vc3, dc5, rc7) 

with different crack configurations as shown in Figure 6.12(a). From Figure 6.12(a), it is clearly 
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seen that (𝑀𝑥 −𝑀𝑛) is less than [𝑀 − 𝑆] for the non- cracked window matrices of the different 

considered ceramic tile test targets.  

Next, if there lies any crack in the selected [3x3] window, the pixels at the cracked 

locations will be of low intensity values (near to zero) and pixels at the non- cracked locations 

will be of high intensity values, therefore, difference between max. and min. intensity values, 

i.e., (𝑀𝑥 −𝑀𝑛) will be large and in turn, likely to be greater than [𝑀 − 𝑆] of that cracked 

window matrix. In Figure 6.12(b), the behavior of cracked window matrices for packaged 

ceramic tile test targets (viz., hc3, vc3, dc5, rc7) with different crack configurations has been 

demonstrated. As seen in Figure 6.12(b), the cracked window matrix condition (𝑀𝑥 −𝑀𝑛) > 

[𝑀 − 𝑆] is satisfied for few cracked windows, however, for some cracked windows this condition 

is not met resulting in (𝑀𝑥 −𝑀𝑛) < [𝑀 − 𝑆] even for cracked window matrices, which could 

lead to misclassification as non-cracked windows.  
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Figure 6.12. Graph showing relative behavior of window matrix based statistical measures; 

([Mx-Mn] = [Maxima-Minima] and [𝑀 − 𝑆] = [Median - Standard deviation]) for (a) non-

cracked window matrices and (b) cracked window matrices; of different packaged ceramic tile 

test targets: hc3, vc3, dc5, rc7. 

 

The reason for this discrepancy may be attributed to variation in reflection intensity of 

different target’s images, contrast and brightness difference between cracked and non-cracked 

pixels of the window, etc. Hence, this initial proposed relation can be true for certain cracked 

matrix windows, but it cannot be a generalized formulation for accurate cracked window 
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detection in the packaged ceramic tiles. Thereby, there is a need to add some modification / 

adaptation to make it a valid comprehensive test condition. 

6.5.2.3.  Step 3: Statistical Analysis and Formulation 

In order to resolve the aforementioned problem and to make the test more adaptive and 

robust towards intensity variations, an unknown term, “n” has been included in the spatial 

statistics based mathematical expression by which the segregation of cracked window from the 

non- cracked ones can be successfully done. Hence, the cracked / non-cracked window matrix 

test condition can now be modified as given in equation (6.26). The effect of inclusion of term 

'n' on enhancing detection of cracked windows has been analyzed for different packaged ceramic 

tile test targets. However, for the sake of representation simplicity it has been illustrated using 

one of the ceramic tile i.e., test target 'hc3' in Figure 6.13; 

(𝑀𝑥 −𝑀𝑛) > [𝑀 − (𝑛 − 1)𝑆]   𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥  (6.26a) 

(𝑀𝑥 −𝑀𝑛) < [𝑀 − (𝑛 − 1)𝑆]   𝑛𝑜𝑛 − 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥  (6.26b) 

As shown in Figure 6.13(b), for the cracked window matrix plot: on increasing the value 

of 'n', the term [𝑀 − (𝑛 − 1)𝑆] reduces and attains a value less than (𝑀𝑥 −𝑀𝑛) for all the 

cracked windows of the packaged ceramic tile 'hc3'. Similar behavior has been obtained for other 

considered test tiles also. This, now hereby, satisfies the modified proposed test condition given 

in equation (6.26a) and enables successful crack window identification after a certain value of 'n' 

is reached. This value of 'n' may be different for different ceramic tile targets depending upon 

their image statistics.  

Now, as shown in Figure 6.13(a), for the non-cracked window matrix plot: On increasing 

'n', the value of [𝑀 − (𝑛 − 1)𝑆] for non-cracked windows also reduces and after certain threshold 

value of 'nT' is reached, it would reduce down below the (𝑀𝑥 −𝑀𝑛) value for some non-cracked 

window matrices and starts detecting them as a false cracked window locations. So, an optimum 

value of 'nT' is needed to be calculated so as to correctly detect and classify the cracked and non-

cracked windows in any ceramic tile image and minimize the possibility of any false alarm.  
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(a)                                                                                     (b) 

Figure 6.13. Plots showing the effect of varying scaling parameter 'n' on the behavior of two 

statistical metrics [𝑀𝑥 −𝑀𝑛]𝑎𝑛𝑑[𝑀 − (𝑛 − 1)𝑆], for ceramic tile test target- hc3 for; (a) non-

cracked windows, and (b) cracked windows of a test target tile. 

 

 As the expression [𝑀 − (𝑛 − 1)𝑆] is used in equation (6.26) for creating the decision 

boundary for classification of cracked and non-cracked window matrix in any ceramic tile image, 

likewise, other similar expressions; [𝑀 − 𝑛𝑆], [𝑀 − (𝑛 − 2)𝑆], [𝑀 − (𝑛 − 3)𝑆].... can be used 

equi-probably giving satisfactory results. However, we have selected the expression[𝑀 −

(𝑛 − 1)𝑆]. Moreover, (𝑛 − 1) or (𝑛 − 2) or (𝑛 − 3).... can also be taken in the formulation, 

because the decision criterion to segregate the class (cracked / non- cracked) will always be 

obtained at a certain value of 'nT' for any particular ceramic tile target. For example, if maximum 

accuracy is obtained at n= 3.5, then, maximum accuracy is obtained at n = 4.5 by using 

(𝑛 − 1) and at n = 5.5 by using (𝑛 − 2) in the expressions and so on. Nevertheless, we have 

considered the term (𝑛 − 1) here. Similar, statistical approaches have been used by some other 

researchers to discriminate the two class types in an image [87, 200]. 

6.5.2.4.  Step 4: Accuracy Assessment and Algorithm: 

The proposed statistics based algorithm should behave such that it maximizes the 

accuracy of crack window detection, while, simultaneously, minimizing any false alarm. Hence, 

our main goal is that there should not be any false alarm for non-cracked packaged ceramic tiles 

and for this we need to achieve optimum value of 'n'. In order to achieve the above said 

performance goal, we firstly computed the overall accuracy (OA) and false alarm (FA), defined 

as: 
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 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑂𝐴) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑦 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
𝑥 100%    (6.27a) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 (𝐹𝐴) =  
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠−𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑦 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
 𝑥 100% (6.27b) 

At different values of n for different ceramic tile test targets. Total numbers of cracked 

windows were determined from the known ceramic tile test target’s crack configurations. These 

performance parameters, i.e., accuracy (𝑂𝐴) and false alarm (𝐹𝐴) were plotted w. r. t. scaling 

parameter 'n' as shown in Figure 6.14 for ceramic tile test targets; hc3, vc3, dc5, rc7 with varying 

crack patterns. It is observed that, on increasing n accuracy increases and after a certain critical 

value of 'n', accuracy approaches maximum, i.e., 100%. This critical value nT will be different 

for different ceramic tile targets (hc3, vc3, dc5, rc7), as seen in Figure 6.14(a).  
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(a)                                                                                     (b) 

Figure 6.14. Performance plot of the proposed window based statistical algorithm showing (a) 

Overall Accuracy vs n; and (b) False alarm vs n, for different ceramic tile targets: hc3, vc3, dc5, 

rc7. 

 

Further, increase in the value of 'n' also increases the false alarm as shown by the plot in 

Figure 6.14(b). This trade off in the behavior of overall accuracy and false alarm is needed to be 

balanced, and hence, there should be an optimum value of 'n' satisfying maximum accuracy as 

well as minimum false alarm. 

Now, in order to make the proposed algorithm more robust and adaptive in nature, its 

performance parameters have to be dependent on image spatial statistics. Therefore, the unknown 

term 'n' has to be related to the image statistics. Thereby, a variable 𝑥 is introduced such that:  
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𝑥 = 𝑀 − (𝑛 − 1)𝑆     (6.28) 

The direct dependency between overall accuracy and x is hard to relate. However, overall 

accuracy (OA) and false alarm (FA) in relation to unknown parameter 'n' may be correlated as 

shown in Figure 6.16. For each respective values of 'n', the corresponding values of 𝑥 can be 

obtained from equation (6.28). Having known the values of 𝑥, accuracy and false alarm can be 

correlated to the variable 𝑥 directly. A plot of accuracy (OA) vs 𝑥 and false alarm (FA) vs 𝑥 is 

shown in Figure 6.15 for different ceramic tile test targets; hc3, vc3, dc5, rc7. 
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(a)                                                                                     (b) 

Figure 6.15. Plot of (a) Overall accuracy vs x and, (b) False alarm vs x, for different ceramic tile 

test targets (hc3, vc3, dc5, rc7). 

 

6.5.2.5.  Step 6: Formulation for Automatic Crack Detection:  

An empirical relationship has been developed for overall accuracy vs x and false alarm vs 

x using curve fitting approach. Ten randomly selected ceramic tile test targets with different crack 

configurations viz., vc1, dc5, hc2, hc3, rc4, dc1, hc4, vc3, vc8, rc7, were used and following 

empirical relation was obtained with R2 (coefficient of determination) values close to 0.9 for both 

cases: 

𝑂𝐴(𝑥) = 𝑎1 + 𝑏1𝑒
−0.5(

𝑥−𝑐1
𝑑1

)
2

    (6.29a) 

𝐹𝐴(𝑥) = 𝑎2 + 𝑏2𝑒
−0.5(

𝑥−𝑐2
𝑑2

)
2

    (6.29b) 
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Here, a1, b1, c1, d1, a2, b2, c2 ,d2 are the constants. As shown in Table 6.8, R2 values are 

close to 0.9 for all the ceramic tile samples for 𝑂𝐴(𝑥) and 𝐹𝐴(𝑥), hence, the two mathematical 

expressions are quite acceptable. Further, goodness of fit of the obtained expressions was also 

tested using Kolmogorov-Smirnov (KS) test with 5% significance level. The obtained p values 

were greater than the significant level (0.05) and the KS value was lower than the critical value 

(0.294) for all the ceramic tile test samples. This meant that the obtained relationships of 𝑂𝐴(𝑥) 

and 𝐹𝐴(𝑥) are highly significant and statistically justified.     

 

Table 6.8. Mathematical formulations of OA(x) and FA(x) with corresponding R2 values for 

different ceramic tile test targets 

S. No. 
Target  

id's 
𝑶𝑨 = 𝒂𝟏 + 𝒃𝟏𝒆

−𝟎.𝟓(
𝒙−𝒄𝟏
𝒅𝟏

)
𝟐

  𝑭𝑨 = 𝒂𝟐 + 𝒃𝟐𝒆
−𝟎.𝟓(

𝒙−𝒄𝟐
𝒅𝟐

)
𝟐

 

a1 b1 c1 d1 R2 a2 b2 c2 d2 R2 

1 vc1 -2.4e+5 2.4e+5 0.31 15.09 0.92 50.29 -53.17 0.56 0.22 0.89 

2 hc3 -3.0e+5 3.0e+5 0.36 14.75 0.85 1.3e+5  -1.3e+5 0.55 19.89 0.87 

3 hc4 -49.02 1.5e+2 0.15 0.38 0.96 -0.32 51.31 0.10 0.19 0.97 

4 vc3 10.59 98.73 0.39 0.11 0.91 11.77 -12.80 0.64 0.17 0.83 

5 hc2 93.72 -97.47 0.64 0.11 0.95 9.6e+4 -9.6e+4 0.66 16.13 0.87 

6 dc1 -23.68 1.2e+2 0.21 0.43 0.97 9.3e+4 -9.3e+4 0.50 17.73 0.88 

7 rc4 -9.04 1.1e+3 0.18 0.28 0.98 1.7e+5 -1.7e+5 0.47 23.68 0.92 

8 dc5 -4.5e+5 4.5e+5 0.33 15.92 0.87 34.89 -38.85 0.54 0.14 0.92 

9 vc8 -3.3e+5 3.3e+5 0.32 21.12 0.87 1.4e+5 -1.4e+5 0.59 17.13 0.96 

10 rc7 -2.9e+5 2.9e+5 0.21 18.36 0.95 9.4e+4 -9.4e+4 0.44 20.78 0.81 

     

6.5.2.6.  Step 6: Genetic Algorithm (GA) Optimization for User Defined Goal Achievement: 

After having mathematical formulation of 𝑂𝐴(𝑥) and 𝐹𝐴(𝑥), the next step is to find the 

optimum value of 'n' such that OA is maximized and FA is minimized. In order to make our 

proposed algorithm more adaptive and robust, the performance parameters viz. 𝑂𝐴(𝑥) and 𝐹𝐴(𝑥) 

need to be dependent directly on the image spatial statistics. So, we replace 𝑥 in equation (6.29), 

with the expression in equation (6.28) to achieve our final expression for optimization. Thus, the 

final performance equations are dependent on image statistics, i.e., median (M) and standard 

deviation (S) as well as on the function of 'n', defined as: 

𝑂𝐴(𝑛) = 𝑎1 + 𝑏1𝑒
−0.5(

𝑀−(𝑛−1)𝑆−𝑐1
𝑑1

)
2

   (6.30a) 
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𝐹𝐴(𝑛) = 𝑎2 + 𝑏2𝑒
−0.5(

𝑀−(𝑛−1)𝑆−𝑐2
𝑑2

)
2

   (6.30b) 

Here, values of constants a1, b1, c1, d1; a2, b2, c2, d2 are -1.63e5, 1.63e5, 0.31, 8.66; 7.34e4, 

-7.34e4, 0.51, 11.61, respectively as obtained by averaging the values of ceramic tile test targets 

for OA and FA from Table 6.8. Now, we have two performance metrics accuracy and false alarm 

as a function of image spatial statistics; median and standard deviation and an unknown term 'n' 

that is to be optimized. There is a trade-off between the two (OA and FA), i.e., on maximizing 

accuracy, false alarm also increases and on minimizing false alarm, accuracy also reduces. This 

type of optimization problem can be formulated as a multi-objective optimization with bound 

constraints, i.e., 'n' will be constraint between 1.25 < n < 6, the range for which mathematical 

formulations of OA and FA using curve fitting have been developed. For optimization, we 

preferred to use Genetic Algorithm (GA) which is a globally iterative numerical optimization 

technique [105, 150, 226]. In the multi-objective optimization, 𝐹(𝑛) is a two valued vector 

function of  𝑓1(𝑛) and 𝑓2(𝑛) such as:     

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑛) =  [𝑓1(𝑛), 𝑓2(𝑛)]   ;   1.25 < 𝑛 < 6 

                       Such that,     𝑓1(𝑛) = −𝑂𝐴(𝑛),         𝑓2(𝑛) = 𝐹𝐴(𝑛)         (6.31) 

Our objective is to maximize 𝑂𝐴 and minimize 𝐹𝐴. However, since, multi-objective 

optimization concerns with the minimization of a set of objectives simultaneously, hence, a 

negative sign is introduced to define  𝑓1(𝑛), which is a function of 𝑂𝐴. The optimum value of n 

must satisfy user defined performance goals i.e., 𝑂𝐴 should be greater than user defined lower 

bound (𝑙𝑏𝑂𝐴) and 𝐹𝐴 should be less than user defined upper bound (𝑢𝑏𝐹𝐴) in order to ensure 

correct cracked window detection of the extracted ceramic tile image. The goal vector is of same 

length as the number of objectives and is defined as: 

                                      𝐺𝑜𝑎𝑙 =  [−𝑙𝑏𝑂𝐴, 𝑢𝑏𝐹𝐴]                                                     (6.32) 

      𝑓𝑜𝑟 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛    𝐹(𝑛) =  [𝑓1(𝑛), 𝑓2(𝑛)]             
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This will give the final optimized solution of the multi-objective problem in terms of 

optimum value of 𝑛 for which  𝑂𝐴 > 𝑙𝑏𝑂𝐴 and 𝐹𝐴 < 𝑢𝑏𝐹𝐴. A complete flow chart depicting 

different signal processing steps for the proposed non-invasive, adaptive concealed crack 

detection methodology is shown in Figure 6.16. 

 

C scan image at target downrange

Preprocessing- IFFT, calibration

Data Acquisition

Image enhancement -discrete convolution

Image Statistics (window based Maxima, 

minima, median, std. deviation)

Mathematical formulation for accuracy 

and false alarm in terms of image statistics 

using curve fitting

Test for cracked and non-cracked windows in 

terms of spatial statistics and unknown term ’n’

GA optimization to achieve nopt
Cracked Tile

Check for crack window 

locations of the target 

image

Non-cracked Tile

No Yes

 

Figure 6.16. Flow chart showing different implementation steps of the proposed statistical 

based non-destructive undercover crack detection methodology. 

 

6.5.2.7.  Step 7:  Testing of the Developed Adaptive Cracked Detection Algorithm  

The developed concealed crack detection methodology was tested using different ceramic 

tiles viz., f1, f3, hc3, vc3, dc5, rc7 for detection of cracked and non-cracked tiles, as well as, 

detection of particular cracked window locations in the ceramic tile. For this, window based 

target’s image statistics (median and Std. deviation) were calculated and averaged to get 

complete target’s window based spatial statistical values: median and standard deviation. For the 

different considered test targets, these values are shown in Table 6.9 in column third and fourth.  

Next, GA was performed on the fitness function given in equation (6.31) and solved 

towards user defined goals: OA >= 100 & FA≤ 2 (no. of cracked windows) and bound 

constraints: 1.25 < n < 6 for finding the optimized value 'nopt'. For the considered test targets, nopt 



Chapter 6 

154 

 

values are shown in Table 6.9 in column V, which, are different for different ceramic tile targets 

depending on their particular image statistics. 

Table 6.9. Proposed GA Optimized statistical algorithm performance results for few test targets 

S.No. 
Target’s 

Id 

Median 

(M) 

Std. 

Dev.(S) 
nopt OA (%) 

FA (False 

alarm windows) 

1 f1 0.8101 0.06034 5.04 100 0 

2 vc3 0.697 0.102 4.57 100 1 

3 f3 0.7924 0.0423 5.4 100 0 

4 hc3 0.7004 0.101 4.64 100 2 

5 dc7 0.681578 0.098454 5.38 100 1 

6 rc7 0.675193 0.124534 4.41 100 0 

 

Next, these nopt values for respective test targets are put in equation (6.26) and checked 

towards cracked/ non-cracked window detection. The test target’s results are shown in Table 6.9. 

The results show successful detection of non-cracked ceramic tiles (f1, f3) with 100% accuracy 

(~ zero false alarm), which was our main aim of the proposed crack detection algorithm to 

achieve nearly zero false alarm for non-cracked packaged tiles. Further, for cracked tile targets 

(hc3, vc3, dc5, rc7), the algorithm detects them as the cracked ones (~100% accuracy) as well as 

provide accurate localization of cracked windows w.r.t. actual physical packaged ceramic tile 

crack configuration. However, for few test tiles; vc3, hc3, dc7, it also detects some (max. upto 

two) non-cracked windows of the tile as the cracked ones and thereby, gives the false alarm. 

Some of few test results are shown in Figure 6.17. Figure 6.17(a), shows detected full non-

cracked tile (f1) image with no crack. Figure 6.17(b), (c), (d) shows detected cracked tile images: 

hc3, vc3, dc7, respectively, in which white patches signifies detected cracked windows.  

 

 

(a)                                    (b)                                    (c)                                 (d) 

Figure 6.17. Detection of cracked tile windows using proposed adaptive statistical crack 

localization algorithm for different test tile targets: (a) f1, (b) hc3, (c) vc3, (d) dc7. 
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Figure 6.17(b) and (d) shows detection of few false alarm windows, which were actually 

not present in the physical targets hc3 and dc7, respectively. Hence, this developed methodology 

provides a generalized and adaptive optimization technique for non-destructive detection of 

undercover cracked and non-cracked ceramic tiles as well as estimation of accurate cracked 

window locations in the cracked ceramic tiles, with appreciably low false alarm. 

6.5.3.  Validation of Proposed Adaptive Algorithm  

Further, independent validation of the developed non-destructive crack detection algorithm has 

been checked on number of packaged ceramic tile targets with different crack (hc5, hc7, vc5, 

vc6, dc3, dc4, rc8, rc5) and non-crack (f6, f8) configurations (as given in Table 6.1, column 3), 

which were earlier not used while mathematical formulation and algorithm development. 

Following processing steps were performed for crack/non-crack ceramic tile detection and 

particular crack window localization in any packaged ceramic tile under test: 

i. The spatial statistical parameter values, i.e., median and std. deviation were calculated 

from the tile image under test.  

ii. The GA optimization goals were set as per user requirements of accuracy and false alarm. 

Here, we have considered OA >= 100 & FA≤ 2 (no. of cracked windows). 

iii. The optimum value nopt was computed through GA optimization using mathematical 

formulation as given in equation (6.30), under the bound constraints: 1.25 < n < 6.  

iv. Now, the obtained values of nopt were put in equation (6.26) and the respective ceramic 

tile target's quality is checked towards any crack present.  

v. If there is no crack present in the packaged tile, the output tile image is displayed as a 

plane uniform rectangle, however, if any crack is present, it is displayed by the small 

white patch at the corresponding crack location in the output tile image.  

 

 Table 6.10 shows validation results obtained after applying proposed adaptive statistical 

crack detection algorithm for ceramic tile targets: hc7, f6, rc5 with different crack/non- crack 

configurations. For tile target id: f6; there were no crack windows marked in the output tile 

image, hence, the undercover packaged tile will be a non-cracked full tile, which is correct as per 

our actual physical target’s knowledge.  
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Table 6.10. Output results of the proposed statistical algorithm for non-destructive undercover crack detection using independent validation 

target tiles. 

S. No. Target’s id Actual tile targets 
Statistical 

measures 
nopt 

Undercover target’s crack 

detection output 

OA 

(%) 

False alarm 

windows 

1. hc7 

 

Median = 0.7033 

Std. dev. = 0.0805 
5.2 

 

100 02 

2. f6 

 

Median = 0.8499 

Std. dev. = 0.0625 
5.5 

 

100 00 

3. rc5 

 

Medain = 0.675 

Std. dev. =0.124 
4.0 

 

90 02 
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Further, for tile target id's: hc7, rc5; there were white patches present at different locations 

in the output tile image, which signifies corresponding crack locations, and hence, the undercover 

tile would be cracked one, which is again true as per our target’s knowledge. However, few false 

cracked windows were also detected in the resulting tile image, but, overall accuracy and false 

alarm for both the cracked tiles is appreciably good and within acceptable limit. Hence, 

performance of the developed statistical concealed crack detection algorithm on different types 

of target tiles confirms its adaptivity, practicality and usefulness. The ingeniously designed 60 

GHz active imaging radar system and the proposed methodology provides an image dependent 

and generalized approach towards non-destructive undercover target’s crack detection and 

localization. 

6.5.4.  Concluding Remarks (for Subtask 2) 

In this subtask 2, our main focus was to develop such a technique using MMW imaging radar, 

which should have the capability to detect as well as locate particular crack points in the packaged 

ceramic tiles non-invasively. Moreover, it can adaptively and automatically adjust its threshold 

criterion for the classification boundary of cracked and non-cracked windows depending upon 

the image’s spatial statistics and user defined goals of accuracy and false alarm. Hence, as per 

the validation results, it can be inferred that our proposed image statistics based crack localization 

algorithm performs quiet well and is in accordance with our set design goals of 100% 

classification accuracy in detecting crack/ non-crack tiles and less than two false alarm windows 

in case of cracked packaged tiles. 

6.6.  Conclusion 

In this chapter, MMW imaging radar application for non-invasive fault (crack) detection of 

packaged ceramic tiles has been investigated for automatic quality check of packaged goods at 

industry dispatch end. However, we have considered crack as a fault. Further, applicability of 

different image and signal processing techniques has also been critically analyzed for undercover 

crack classification and its localization. In the first approach, feature based ANN crack 

classification model is proposed, where, histogram oriented gradient feature-based-NN model 

showed optimum classification accuracy. HOG features perform optimal, since it extracts target’s 

characteristics on cell/ window basis, involves local normalization and is fairly robust to 
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moderate changes in illumination and orientation. However, it is a quantitative approach, which 

provides only cracked / non-cracked tile information. 

However, in second approach, a generalized, adaptive image statistics based undercover 

crack detection as well as localization algorithm was developed using closed form mathematical 

formulation and multi-objective genetic algorithm optimization. This is an image reconstruction 

approach, which also provides particular crack window estimation apart from just crack/non-

crack classification. For the statistical algorithm, the fitness function adaptively generates the 

optimized value of unknown term 'n' maintaining the constraints of accuracy and false alarm as 

defined by the end user, depending upon target’s image statistics. The two proposed algorithms 

were tested and validated using a number of different packaged ceramic tile targets with varying 

crack and non-crack configurations. The appreciably good accuracy of results suggest that the 

proposed algorithms can be used as a generalized technique for an automatic crack scanner (using 

MMW imaging) for quality monitoring of different packaged goods at the industry dispatch end. 
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Chapter 7            

Conclusions and Future Scope 
 

The main objective of this thesis was to project the advantages of MMW spectrum, its potential 

applications and challenges. With the current advancements of technologies, MMW can be 

efficiently modeled with extreme accuracy for different areas. MMW provides high resolution 

imaging as well as compact systems because of its correspondingly lower wavelength. In view 

of the associated higher losses and dimensional limitations at MMW frequency, a simple and 

cost-effective planar antenna design has been investigated in this thesis. Additionally, the 

motivation behind this research work was to develop a digital image processing based framework 

which addresses the challenges related to the correct target’s shape identification and non-

invasive fault (crack) estimation from stand-off distances. An adaptive solution for the automatic 

target’s shape information and its quality monitoring has been developed. This chapter concludes 

the contributions made in the thesis followed by recommendations for further scope of research. 

7.1.  Contributions of the Thesis 

Thesis has the main emphasis on development of MMW dual frequency planar antenna design 

with a simple, cost-effective and compact structure and SFCW based MMW radar imaging 

applications which consists of an algorithm development for target’s shape identification and its 

material classification; an automatic ANN based model for target’s rotation and size invariant 

image reconstruction; and development of a non-invasive concealed target’s fault (crack) 

detection model. 

Chapter three, contributes to the field of dual resonant MMW microstrip antenna design. 

A simple solution towards the design of the dual resonant MMW antenna has been proposed in 

the form of reactive loading to the antenna. The designed antenna supports two different MMW 

bands concurrently, viz, V band (60 GHz) and E band (85 GHz). These frequencies are 
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commercially attractive and have been allocated for unlicensed high data rate communications. 

The contributions made in this chapter are as follows: 

 The prototype antenna showed fractional bandwidths of 1% / 6.4% and broadside E (H) 

plane gains 8.49 dBi (8.95 dBi)/ 5.13 dBi (5.37 dBi), at the two respective resonant 

frequencies 60 GHz/85 GHz.  

 The designed antenna is of compact size (i.e., cross-sectional area of only 3.7 mm2) in 

comparison to available antennas and does not require any complex fabrication step 

which favours easy and simple fabrication using conventional photolithographic 

procedures. 

 Moreover, the substrate used is low-cost and easily available, which makes the proposed 

antenna design cost competent. 

Chapter four, presents MMW imaging application for stand-off targets using an 

ingeniously designed SFCW radar operating at centre frequency 60 GHz with the bandwidth of 

2 GHz. For target’s shape identification and its material classification, four regular shaped targets 

were considered, viz, rectangle, square, triangle and circle. The main contributions of this chapter 

are as following: 

 A critical analysis for various steps for pre-processing has been carried out for imaging 

the targets and it is found that for clutter reduction, image enhancement techniques, like, 

background subtraction and singular value decomposition proved to be efficient in 

improving the target’s image quality for an ingeniously developed MMW imaging 

system.  

 On investigating different image segmentation techniques, it was found that mean and 

standard deviation based global thresholding in conjunction with the canny based edge 

detection technique performed fairly well for target correct shape identification. 

 The results suggest that the different DIP techniques being used for microwave radar/ 

camera imaging can be used equiprobably for MMW radar imaging with an appreciably 

good performance. 

 Moreover, a target’s material classification algorithm utilizing the Cauchy probability 

distribution function has been proposed for discriminating the two target’s material 

classes, i.e., metal and wood, in the MMW radar image. 
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Chapter five, addresses the problem of target’s orientation and its size variation for 

identification of its shapes. The radar line of sight is one of the very important aspects to image 

any targets. So, it may be possible that all the time, targets may not be in the same line of sight, 

i.e., misaligned and of different sizes. Therefore, there is a need to develop such a technique that 

will take care of these issues and recognizes the correct shape and size of targets. Following 

inferences have been drawn in this chapter: 

 An automatic ANN based image reconstruction model has been proposed which can identify 

different regular shape targets, viz., rectangle, square, triangle and circle, irrespective of their 

size and orientation. The obtained results are quite encouraging. 

 

Thereby, as per investigations made in chapter 4 and 5, a complete framework has been 

outlined for extracting target’s comprehensive information, i.e., target’s shape, size and target’s 

material type. The flow chart in Figure 7.1 shows the key processing steps of the complete 

developed algorithm, which utilizes ANN model for target’s shape identification and Cauchy pdf 

model for target’s material classification. For example, the triangle shape wooden target on the 

metal background is kept at a stand-off distance from the antenna. By C-scan imaging its 

complete reflection data is recorded. After signal pre-processing, the target’s image is fed as an 

input to the developed ANN model and Cauchy pdf model. The resultant output is the 

reconstructed triangle shape with the correct orientation and the Cauchy pdf classifies the 

triangular target as wood and the background as the metal correctly.  
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Figure 7.1. Complete flow chart for estimating target’s shape and target’s material information 

in any practical environment using the ingeniously designed MMW imaging radar system.  

 

Chapter six, contributes to the field of non-destructive, non-invasive quality testing 

application using MMW imaging radar. A high demand of quality and reliability of products 

require a precise detection of defects for the competent and cost effective manufacturing. For the 

concealed target, packaged ceramic tiles have been used and placed at a distance from the 

antenna. Total 45 numbers of ceramic tiles in different crack/ non-crack configurations have been 

taken, i.e., horizontally crack tile, vertically crack tile, diagonally crack tile, random crack tile 

and full tile without any crack. An attempt has been made to develop automatic, non-invasive 

crack detection/ localization methodology for the quality check of packaged ceramic tiles for 

industrial applications and two approaches have been proposed for this. The contributions made 

in this chapter are as follows: 

 A target’s feature-based-ANN crack classification model has been proposed for 

quantitative estimation of crack / non-crack packaged ceramic tiles and to localize the actual 
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crack position for visual interpretation an adaptive statistical approach with the help of GA 

optimization approach has been proposed.  

 Both the proposed models have the good capability to detect crack / non-crack 

packaged tiles and localize the crack position with good accuracy and minimum false alarm 

which may be quite useful for industrial quality monitoring applications. 

 

Overall, it can be concluded that the present research work covers applications of MMW 

frequency with an emphasis on simple, dual frequency MMW planar antenna design as well as 

development of novel target’s shape and fault (crack) estimation methodology. 

7.2.  Future scope 

Overall, the future is bright for MMW’s. The performance capabilities that come with short 

wavelengths enable many new applications, only a few of which have been covered here. The 

present thesis work has the scope and possibilities to extend it further in which, some of them are 

listed as following: 

 The present research work provides the simple design for the dual frequency planar antenna 

at MMW which can be utilized for future compact, multi-tasking dual band MMW systems. 

The proposed antenna can be fabricated using conventional photolithography procedures, 

hence, provides a commercially competent cost-effective choice. Using the proposed design 

strategy, it would be possible to design microstrip antenna arrays with adequate gain, good 

pattern quality, low VSWR and acceptable efficiency. Hence, very good electrical 

performance combined with very reasonable size/ weight would make these antennas 

excellent candidates for future MMW applications of communications, precision radar, radio 

astronomy and remote sensing systems, including, secure communications systems, 

meteorological monitoring, aircraft-to-satellite communication and imaging array antennas. 
 As per developed algorithm for target’s detection and identification for MMW radar imaging, 

it is further possible to extend the image enhancement/ segmentation techniques by taking 

into account adaptive nature. Additionally, the proposed pdf approach for material 

classification can be extended to discriminate more different type of target’s materials, viz., 

teflon, plastic, wood, ceramic etc., since, for many applications knowledge of exact target’s 

material is important from strategic and commercial viewpoint.  
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 Based on the proposed ANN pattern recognition model in this thesis, a rotation and size 

invariant target’s identification support system can be extended for different irregular target 

shapes which provide automated image reconstruction irrespective of target’s orientation and 

size. This system will take input as the raw deformed image and will provide the desired 

correct target’s image.  

 The present research work provides a solution for an adaptive and automatic classification of 

different types of packaged goods especially ceramic titles for their quality monitoring. The 

implementation of the concept will certainly enhance the productivity of the industry using 

the fast and accurate surveying approach. Additionally, the applications and capabilities of 

MMW imaging are vast and new. By properly choosing the image processing techniques a 

better classification/ identification system can be modelled. 

 Fusion of different feature extraction techniques will provide more parameters for 

discrimination of different target’s types and classes. Therefore, proposed classification 

algorithm can be generalized to make it a target and a sensor independent. 

 The design strategies of proposed imaging algorithm can be utilized for applications based 

on different MMW radar sensors operating at different frequencies. 

 MMW NDT is finding a prominent place in a wide realm of applications and its scope can 

be extended for other fields, like, material permittivity estimation, IC inspection, moisture 

content in plants, multilayer thickness measurement, composite material characterization, 

and many more. The advantages of MMW can be used to extract improved and more 

authentic target’s information.  

 The Figure 7.2 shows the artistic view of our future proposed industrial application model. 

Our idea of the practical industrial quality monitoring application is to scan the packaged 

ceramic tile placed on the conveyor belt moving with the constant speed and the antenna will 

be mounted on the mechanical frame at a stand-off vertical distance from the packaged tile, 

such that it is focusing and scanning each of the underneath passing packaged tile on the 

moving conveyor belt for quality monitoring. 
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Figure 7.2. Pictorial demonstration of the proposed non-invasive, non-destructive packaged 

ceramic tile’s fault classification model for industrial quality monitoring applications. 
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