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Abstract 
 

The queueing models with reattempts or returning customers are realistic and 

robust in formulating many real world congestion situations. Retrial queues which deal 

with repeated attempts are characterized by the phenomenon that whenever, a customer 

finds the server busy or blocked, then he is obliged to join another queue or a virtual pool 

of blocked customers called ‘orbit’. The applications of retrial queues can also be realized 

in other industrial scenarios including manufacturing and production processes, 

telecommunication systems, transportation and service systems, etc. The customer 

deprived of service may make reattempts in order to get served as visible in telephone 

systems. A telephone subscriber, who finds a busy route usually repeats the call until the 

connection is made, such subscribers form retrial queues. 

Performance modeling plays a vital role in the design, development and analysis 

of a variety of real time practical systems. Queueing models are often used for the 

performance and reliability modeling of these systems where retrial queues are often built 

up. The queueing analysis based on Markovian or non-Markovian processes provides 

valuable insight to the decision makers for the improvement of retrial queueing systems 

in different frameworks. Our study on retrial queues is basically motivated by their 

abundant applications with the advancement of technology in the area of communication 

and computer networks.  

It is significant to study how the phenomenon of making reattempts by the 

customer affect the performance of various queueing systems. In the present thesis work, 

we investigate retrial queueing models in different frameworks applicable to various real 

life congestion scenarios. The noble features of the present investigation are the modeling 

as well as the analysis of retrial queueing systems by incorporating several practical 

features like vacation, balking, reneging, bulk, priority, unreliable server, etc. Using 

different techniques, several performance measures namely queue length, waiting time, 

server utilization, long run probabilities, etc. have been obtained for the retrial models 

under consideration. Some cost optimization problems are also framed so as to obtain 

optimal parameters and optimum cost incurred on the system. The whole thesis devoted 

to retrial queueing models is structured in ten chapters. Some retrial models have been 

developed including various features like phase service, phase repair, priority, vacation, 

control policy, discouragement, etc. and analyzed using suitable techniques. The 
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sensitivity analysis has been carried out to examine the validity of performance indices 

evaluated using analytical methods. At the end of the thesis, conclusions and future scope 

of the present research work has been added to highlight the contributions and 

significance of present doctoral work. The relevant references have been listed in 

alphabetical order in the end of this work.  The brief outlines of the thesis work are as 

follows: 

Chapter 1 is devoted to an overview of the conceptual aspects along with 

motivational factors to study the retrial queueing systems in different frameworks. The 

related literature review has been briefly presented by classifying the retrial queues based 

on modeling and methodological aspects. The contents of the thesis and concluding 

remarks are also given. 

Chapter 2 is concerned with the analysis of unreliable retrial queue with impatient 

customers. Using supplementary variable technique (SVT) and probability generating 

function (PGF); the queue size distributions of the orbit and system size and other 

performance indices have been obtained. Further, the maximum entropy principle (MEP) 

has been used to determine the approximate results for the steady state probabilities of the 

system states, queue length and expected waiting time.  

Chapter 3 deals with a batch arrival general retrial queue with multioptional 

services, vacation and impatient customers. The study extends the work presented in 

chapter 2 by incorporating the features of phase repair and Bernoulli vacation schedule. 

To obtain queue size distribution and various performance measures, SVT and PGF have 

been used. The neuro fuzzy approach has also been used to provide the computational 

results for some performance measures. 

Bulk arrival M/G/1 retrial queue with impatient customers and modified vacation 

policy has been analysed in chapter 4. The service is provided in k compulsory phases 

and the repair of broken down server is performed in d compulsory phases. As soon as the 

orbit becomes empty, the server goes for vacation and takes at most J vacations until at 

least one customer is noticed in the system. Using SVT and PGF approach, the queue size 

distributions of the number of customers in the orbit and system have been obtained. The 

maximum entropy principle is also employed to obtain the approximate results for the 

queue length and expected waiting time.  

The performance analysis of bulk arrival retrial queue with priority customers, 

unreliable server, balking, multi essential service, multi phase repair has been presented 

in chapter 5. Using queue theoretic approach based on SVT and PGF, the queue size 
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distributions of priority and non-priority customers and other performance indices have 

been established.  

In chapter 6, the bulk arrival retrial queue with negative customers and multi-

services subject to server breakdowns has been considered. The system allows the arrival 

of two types of customers; positive customers and negative customers in the system. 

Moreover, the customers may renege from the system out of impatience. The server has 

the provision to initiate the service when there are N customers accumulated in the 

system. The SVT has been used to analyze the model under consideration. 

Chapter 7 is concerned with the performance prediction of a batch arrival retrial 

queue with multioptional services and phase repair under Bernoulli vacation schedule. 

The customers arrive in batches and are admitted to join the system following Bernoulli 

admission control policy. By applying the embedded Markov chain method, the 

ergodicity condition for the stability and various queueing measures are established.  

Chapter 8 deals with two finite capacity retrial queueing models with threshold 

recovery. The first model deals with Markovian retrial queues with unreliable server and 

geometric arrivals. The second model is concerned with the finite capacity retrial 

queueing model with F-policy. The numerical approach based on the Runge Kutta 

method of fourth order has been employed to study the transient behavior of  both the 

models.  

The unreliable server retrial queue with the provision of additional temporary 

server in the context of application in web faction has been investigated in chapter 9. The 

primary server can serve a maximum of ‘K’ customers in the system. The additional 

server is turned on if the number of customers exceeds this limit. The matrix geometric 

approach is employed to obtain the steady state probabilities of the system states and 

other performance measures. 

In chapter 10, we consider the arrival of two types of customers known as priority 

and non priority customers which have the facility of different waiting spaces i.e. orbits. 

The double orbit finite capacity retrial queue with unreliable server has been taken into 

consideration from modeling point of view. Both transient as well as steady state analysis 

has been done using matrix method. The numerical simulation has been carried out by 

taking an illustration with an application to cellular radio network.  

The modeling and analysis of retrial queueing systems in different frameworks 

consistent with various real life scenarios have been presented in the present research 

work. The models developed can be successfully used in abundant congestion problems 
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ranging from day-to-day to telecommunication networks. Keeping in mind the 

significance of retrial queues a variety of problems have been explored using different 

methodologies. A variety of prominent features namely additional server, double orbits, 

finite capacity, phase service, vacation, phase repair etc. have been incorporated to frame 

versatile retrial queueing models applicable to different real life congestion scenarios. 

Different cost functions have been structured corresponding to different retrial models 

and optimal parameters have also been obtained to determine the optimal cost of the 

concerned queueing systems. The numerical simulation has been done to examine the 

computational tractability of analytical results using various classical queueing 

methodologies. It is hoped that the performance and analysis of retrial queueing systems 

presented in this work may be helpful in improving the grade of the service of many 

existing systems and may provide valuable insight to the system designers, developers 

and practitioners to frame more optimal and efficient models which will be more suitable 

in various real life congestion situations.  
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CHAPTER 1 

Introduction  

 

1.1 MOTIVATION 

Queues are essential phenomenon of real life congestion situations and are visible 

everywhere from reservation counters to admission counters, from supermarkets to 

doctor’s clinic, etc. Queueing theory deals with the waiting line models to predict the 

behavior of the queueing systems which provide service for the randomly arising 

demands of the customers. The earliest studied queueing problem was that of telephone 

traffic congestion. There are many other notable applications of queueing theory, most of 

which have been well documented in the literature on the probability theory, stochastic 

processes, operations research, management science, and industrial engineering, etc. 

Some common examples of queueing scenarios are traffic flow (vehicles, aircraft, people, 

communications), scheduling (patients in hospitals, jobs on machines, programs on a 

computer), and service facility (banks, post offices, amusement parks, fast-food 

restaurants), etc. 

In many queueing situations, the customer instead of waiting in the queue may 

prefer to do some other work and would like to try again for the service with a hope to 

find the server free on his next attempt. Such situations give rise to special queues known 

as retrial queues. Retrial queue is a special type of queueing situation, which is 

characterized by the phenomenon of reattempts. In retrial queues, a customer who is 

deprived of immediate service due to breakdown or unavailability of the server is obliged 

to wait in the virtual pool known as retrial orbit so as to try its chance of getting service 

again after a random interval of time. The classical queueing systems work with the 

assumption that the arriving customer on finding the server occupied or unavailable either 

joins the waiting line or leaves the system forever. In real life situations, this is however 

not true always and thus classical queueing models lack the fact that a customer is not lost 

forever while it returns back after some random amount of time for the service. All of us 

have experienced the tone ‘call back when free’; ‘call waiting’ etc. while dialing 

telephone; which represents the retrial queues. The flow of calls circulating in a telephone 

network consists of two parts (i) the flow of primary calls and (ii) flow of repeated calls. 

For the analysis of such queueing systems, queues with returning customers form a new 
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class of queueing systems known as retrial queueing systems. The repeating calls cannot 

be ignored and thus classical queueing models are not applicable here. Due to the 

associated retrial phenomenon, there are many such cases where standard queueing 

models and their structures are not suitable for the performance prediction and thus 

concept of retrial queues came into existence.  

Performance evaluation of retrial queues plays a vital role in the design, 

development and analysis of real time systems including the computer and 

telecommunication systems. Queueing models are often used for the performance 

prediction of such systems, and retrial queues are frequently applied to a special type of 

queueing situations as discussed above. The concept of reattempts plays a significant role 

in many queueing systems. It is realized that in many practical applications, queueing 

models with retrials are more appropriate whereas in other cases, it has a little negative 

effect on the performance measures. The mathematical study on the retrial queues 

originated with an idea to study the behavior of retrying customers in the context with 

their competition to primary customers who join the queue to attain the service. The 

motivation for studying retrial queueing systems is due to their numerous applications in 

various telecommunication processes, call centres, computer systems, shopping 

complexes and many more industrial and management situations wherein retrial 

phenomenon takes place.  

The concept of retrial queues is not only limited to the theoretical investigations 

and mathematical modeling, but finds a very significant and prestigious place in depicting 

various real life congestion situations. The application of retrial queues is extended from 

the applicability in telecommunication systems to manufacturing and production 

processes. The working of call centres is completely based on the study of retrial queues. 

It is realized that the mathematical version of retrial queues came into existence after the 

development of telecommunication systems, where the waiting calls or voice beeps like 

ring back when free forced mathematicians to think of a special type of queueing system 

which is now known as retrial queueing system. No area of our daily routine activities 

seems to be untouched with the formation of retrial queues wherein either forcefully or 

wishfully we return back to get served after some random amount of time. We discuss 

here two significant applications of retrial queues that can be easily realized in the 

working of call centres and cellular mobile networks.  

The working of call centers can be considered as an analogue to the application of 

retrial queues. Call centres are basically set either by private companies or government to 
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deal with the queries or problems related to a particular issue by means of telephone. 

Most major companies use call centres to communicate with their clients. A large volume 

of calls are received and transmitted every day, also a call dialed may find the server 

busy/waiting and may receive the signal ring back later on (formation of retrial queues). 

In call centres, there is usually call blending of incoming and outgoing calls. Markovian 

retrial queueing models are commonly developed for the study of blocking and delay 

situations encountered at the working of call centres but depending on their usage and 

situations other models have also been developed by many researchers working in the 

area of queueing theory.  

Retrial queues find direct applications in the area of wireless communication 

system and particularly in cellular radio networks. Actually, a cellular network is a radio 

network in which the whole geographical area is divided into cells and in each cell there 

is a base station. Each cell uses a different set of frequencies from neighboring cells, to 

avoid interference and provide guaranteed bandwidth within each cell. These cells when 

joined together provide radio coverage over the whole area which further enables our 

mobiles or other wireless devices to connect and communicate with each other via base 

stations. A retrial queueing formulation of cellular radio networks provides valuable 

insight. A number of distinguished researchers have put forward their views and 

investigations on the performance analysis of cellular radio networks.  

The main objective of our investigation in the present thesis is to develop 

queueing models with retrial attempts by incorporating more realistic features namely 

unreliable server, vacation policy, bulk arrivals, discouragement behavior of the 

customers, etc. The present introductory chapter provides an overview of the basic 

concepts that hold important place in the field of retrial queueing systems with respect to 

both modeling and methodological view points. The rest of the chapter is organized in the 

following manner. Section 1.2 describes some aspects of the retrial queueing system. 

Some specialized queueing models in the context of retrial phenomenon have been 

described in section 1.3. The techniques used for the analysis of retrial models have been 

discussed in section 1.4. The literature review of retrial queues has been presented in 

section 1.5. The objectives of our investigation in the thesis have been discussed in 

section 1.6. Section 1.7 provides an overview of the work presented in the thesis. Finally, 

conclusions are drawn in section 1.8.  
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1.2 RETRIAL QUEUES 

Retrial queueing systems are used at a large scale for the stochastic modeling of 

many real life congestion situations mainly in telecommunication systems including local 

and wide area networks with random multiple access protocols, call centres, etc. The 

existence of a retrial queueing model is mainly attributed to the unavailability of the 

server at the particular moment when the customer demands for the service and the 

customer’s resistance to wait in the queue either due to impatience or any other reason. 

Such situations give rise to retrial queues and thus customer is not lost forever but repeats 

its attempt to attain service at its own convenience and availability of the server. For 

fundamental concepts and mathematical analysis of retrial queueing systems we refer 

books by Gross and Harris (1985), Falin and Templeton (1997), Artalejo and Gomez-

Gomez-Corral (2008). 

The main characteristics of a basic retrial queueing system are (see fig. 1.1): 

i. The new incoming fresh customers arrive in the system to seek service. An arrival 

is served if the server is free otherwise it may leave the service area or retry back 

after some random amount of time. 

ii. The customers deprived of the service are assumed to wait in the orbit which is a 

virtual pool of customers, from where they can make reattempts for the service. 

iii. The customers in the orbit cannot monitor the current status of the server while 

waiting in the orbit. They have the only option to come and check for the status of 

the server or make reattempts so as to avail the service. Due to this reason there 

may be a difference in the time when the server becomes free and the reattempts 

made by orbit customers.  

iv. Moreover, customers from the orbit are served in a random order as it depends on 

the chance. Hence, orbit can be called as a queue with random service discipline. 

 A retrial queueing system in its basic form consists of two nodes: 

I. Main (primary) node: In this node blocking is possible. The customers arrive in 

the system and are blocked if server is either busy or unavailable for the service. 

Thus, customers are not served and are forced to wait. 

II. Secondary node: This node is also known as delay node for repeated trials. The 

blocked customers waiting in the orbit retry for the service randomly after some 

interval of time.  
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A variety of queueing models including various prominent features like bulk arrival, 

priority customers, negative customers, vacation, and impatient customers have been 

studied by eminent researchers using different techniques. These models seem to be of 

keen interest for the practitioners and the system analysts for the performance evaluation 

of many real life and congestion situations.  

The significance of such retrial queues is reflected from the existence of a series 

of international workshops on retrial queues which began with an aim to explore new 

ideas and thoughts in the development of retrial queues all over the world. Our study on 

retrial queues is basically motivated by its abundant applications with the advancement of 

technology in the area of communication and computer networks. 

 

 

 

 

      

 

 

                     

Fig. 1.1: Schematic diagram for the basic retrial queueing system 

The modeling of retrial queues can be broadly classified in two main categories as 

markovian retrial queueing models and non-markovian retrial queueing models. 

Markovian retrial models are those models in which all the associated probability 

distributions follow markovian property. In these cases, we assume that the arrival 

process, service process, retrial process and any other phenomenon (if present) deals with 

markovian class of distributions. In probability theory and statistics, the term Markov 

property refers to the memoryless property of a stochastic process. A stochastic process is 

said to possess the Markov property if the conditional probability distribution  of future 

states of the process (conditional on both past and present values) depends only upon the 

present state and is independent of other sequence of previous events.  

Basically, markov property is used in reference to the exponential distribution and 

often with the geometric distribution (cf. Trivedi, 2001). For markovian retrial queueing 

models, we assume that a customer arrives in the system following Poisson process and is 

served following exponential discipline. It is worth noting that the inter arrival times 

Orbit 
station 
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Primary 
Service 
Station 

 

Served 
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Retrials 
 

http://en.wikipedia.org/wiki/Probability_theory
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follow exponential distribution if arrivals occur in Poisson fashion. Moreover, the retrial 

attempts are also assumed to follow exponential discipline. Much works have been done 

on markovian retrial queues in the recent past. For recent research articles on markovian 

retrial queues, we refer Sherman and Kharoufeh (2006), Artalejo (2010), Wang and 

Zhang (2013) etc. Various techniques namely probability generating functions, product 

type solution, and numerical approach based on Runge Kutta method are widely used to 

obtain the solutions of markovian systems.  

In queueing theory, it is not always possible to present every real life situation in 

the form of markovian model. There exist situations which are complex enough to be 

sufficiently fit with the distributions holding markov property. Hence, a variety of 

complex situations are formulated as non-markovian retrial queueing models wherein at 

least one or more than one process say service, arrival, vacation, retrial, lifetime, repair 

etc. follow non-markovian distribution. Such models are categorized as non-markovian 

models. Enormous work has been done in the direction of solution and modeling of non-

markovian retrial queues. The vast literature can be found in the survey articles by 

Artalejo (1999 a, b) and Artalejo and Falin (2002). The classical techniques namely 

supplementary variables technique, embedded markov chain etc. are basically used to 

obtain analytical solutions of such models.  

The performance modeling and analysis of retrial queues can be done to determine 

various significant performance measures which can add meaning to the practical utility 

of the model. A variety of performance indices are used to judge the efficiency and 

validity of the model. It is worthwhile to give a brief account of various measures that can 

be evaluated to study the retrial queueing system. These measures are of significant 

importance to the system designers and analysts to design more efficient system from the 

performance point of view. Some of the prominent indices are listed below as: 

 Queue length: The queue length is the most important key feature associated with 

any queueing model. The number of customers that can be accommodated in the 

queue or system under various constraints is of high interest for the engineers to frame 

more appropriate models in terms of the queue length. 

 Waiting time: The customer usually needs to wait in the queue so as to get served. 

The amount of time he spends for waiting in the queue or in the system is termed as 

average waiting time in the queue or in the system. 

 Long run probabilities: The stable state of the queueing model can basically be 

judged after a long run of time. Therefore, we can say that long run probabilities refer 
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to the probability with which the server remains in a particular state after a long run of 

time. 

 Reliability: In many real life congestion situations, the server is unreliable and is 

prone to breakdowns. This property of unreliable server affects the performance of the 

system as far as queueing and reliability indices are concerned. Hence, reliability of 

the server is usually measured to account for the significance of the model. 

 Availability: It corresponds to the probability of server being available in the system 

to serve the customers. Hence, the term availability measures the extent to which the 

formation of retrial queues can be controlled by providing better service.  

 Failure Frequency: It refers to the probability with which the server fails while 

servicing the customers.  

 Throughput: It measures the number of effective services given to the customers. 

 Hazard rate: It is the instantaneous (conditional) rate of distribution and is defined as 

the ratio of pdf to the complement of cdf. 

  The above mentioned indices can be determined or computed to have an idea of 

the applicability of the modeling of queueing systems. In the present thesis, we have 

established various performance measures in terms of system state probabilities for the 

retrial queueing models in different frameworks. These measures are then computed 

numerically so as to have a better idea of the sensitivity and computational tractability of 

the concerned models. 

 

1.3 SOME SPECIFIC QUEUEING MODELS 

Queueing theory has been a subject of deep interest in recent years because of its 

theoretical structure as well as its applicability in various real life congestion situations. 

The pioneer investigator in the field of queueing theory was the Danish mathematician  

A. K. Erlang, who, in 1909, published “The Theory of Probabilities and Telephone 

Conversations”. Queueing theory originated as a very practical subject, but much of the 

literature up to the middle 1980s was of little direct practical value. However, queueing 

theorists became concerned about the applications of the sophisticated theory that has 

largely arisen since the close of World War II. Numerous models with a variety of distinct 

features like vacation, impatience, bulk arrival, phase services, repair, control parameters 

etc. have been investigated by the queue theorists. Here, in this section we present a brief 
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account of some queueing models developed by eminent researchers from time to time 

which are closely related to our study done in the present thesis. 

1.3.1 Bulk Queueing Models 

The concept of bulk arrivals and bulk services has gained tremendous significance 

in present situations. Bulk queueing models are associated with the phenomenon that 

either service or arrival of the customers or both the processes occurs in batches (i.e. bulk 

or group). In the present scenario, we may find that some studies are devoted to the bulk 

queues in combination to other prominent features like vacation, priority, N-policy, retrial 

process etc. Bulk queues can be categorized in three main categories (see fig. 1.2).    

                        

Fig. 1.2: Classification of bulk queueing models 

In most of the queueing literature, it is assumed that the customers arrive singly at 

a service facility. But this assumption is violated in many real-world queueing situations; 

for example letters arriving at a post office, ships arriving at a port in convoy, people 

coming to restaurant, election campaigning and so on, are some of the examples of 

queueing situations in which the customers do not arrive singly, but in bulk or groups 

which represents bulk arrival queues. Also, the size of an arriving group may be a 

random variable or a fixed number. Mathematically and also from the practical point of 

view, the cases when the size of an arriving group is a random variable, are more 

common, and also more difficult to handle.  

Bulk service queueing models can be visualized in traffic signal systems, in 

loading and unloading of cargo at seaport, in many congestion situations, etc. Bailey 

(1954) introduced the concept of bulk service and the same was later studied by a number 

of researchers while developing a variety of queueing models.  
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1.3.2 Queueing Models with Vacation 

Vacation models with the feature of reattempts have been the area of interest for 

the researchers since recent past. It usually happens that the server may go for some 

recreation activities or may get involved in some other work and may not be available to 

serve the next customer. This is usually considered as the vacation of the server of some 

finite or random length. During this period, the server is not available for servicing and 

alternates between busy and idle states. During the busy period, the server works at a full 

speed while during the idle period it does not process any work. In case of working 

vacation, the server may render service with a lower speed during vacation period.  

The applications of vacation models can be realized in almost all congestion 

scenarios. The study on retrial queues with vacations is motivated due to its numerous 

applications in real life scenarios from the bank counters to shopping malls, where the 

concepts of reattempts as well as vacations exist simultaneously. Enormous works has 

been done on different types of vacation policies keeping in mind the applications of such 

models to real life scenarios. On the basis of nature of vacation taken by the server in any 

queueing system, we broadly classify them in the following categories (cf. fig. 1.3)  

Fig. 1.3: Classification of various types of vacations 

Exhaustive Service System: In this type of system, the server takes vacation only if no 

customers are available in the system for the service. This can be further categorized as:    

(i) single vacation system and (ii) multiple vacation system, depending on the number of 

vacations permitted to the server. If a server can take at most one vacation between two 

successive busy periods then it is termed as single vacation system. If on coming back 

from the vacation, the server finds no customers waiting for the system then it may go for 

another vacation in case of multiple vacation system. 

Vacation 

Exhaustive 
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Modified 
vacation 
policy 
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Limited 
service 
system 
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 Non-Exhaustive Service system: In this type of service system, the server may go for 

vacation even if some customers are present in the system.  

Different vacation policies namely Bernoulli vacation schedule, modified J 

vacation policy have been proposed and studied from time to time to develop more 

realistic vacation models. Different vacation policies which we have incorporated in 

our thesis work can be summarized as follows: 

 Bernoulli vacation schedule: According to this policy, the server after completing 

service of a customer, has the option either to go for a vacation with some probability 

say ‘p’ (0 1)p  or continue serving the next customer with probability (1 )p . As 

this vacation schedule works like Bernoulli distribution and is hence termed as 

Bernoulli vacation schedule.  

 Working vacation: Sometimes, instead of taking completely off from the service, the 

server prefers to do another job or service at slower rate; such queueing situations are 

known as working vacation. In this case, the service of the system is not completely 

switched off and the server is allowed to serve the customers with slower rate.  

 Modified J vacation policy: Modified vacation policy states that when no customers 

are recorded in the system, the server may go for at most J vacations repeatedly until at 

least one customer is recorded in the orbit on returning back from the vacation. In case 

no customer is found even after J
th

 vacation, then the server will remain with the 

system in the dormant state.  

1.3.3 Unreliable Server Queueing Models 

The researches on retrial queueing theory also realized the need of development of 

more realistic models with respect to the reliability of the server. Earlier classical retrial 

queueing models were developed under the assumption that the server providing service 

to the customers is reliable. But this concept of reliable server is not quite true in the 

context of realistic application of the model as no server is ideally reliable. The server is 

subject to breakdowns while serving the customers and can be repaired. Some studies 

appeared in the area of performance analysis of unreliable server retrial queueing system 

by considering different repair criteria. The repair of the server can either be completed in 

a single step or in a series of some essential or optional steps. Sometimes, the repair 

process is also completed following threshold based recovery.  
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1.3.4 Phase Type Queueing Models 

The classical queueing models were developed with the fact that a job/service is 

completed in only single phase. But this is not true in regard to all the various queueing 

situations which require more than one phase of service. Queueing models with phase 

service and phase repair play a vital role in depicting and analyzing many queueing 

situations. For example, the repair process of the broken down of two-wheeler vehicle can 

either be completed in a single step if minor problem is detected. But in case when the 

vehicle is damaged to a greater extent, then it may require more than one step repair. 

Moreover, the owner of two-wheeler may demand for extra repair like new gears, new 

body paint of the vehicle which may add some optional repair demands. We can broadly 

classify phase type service queueing systems as shown in fig. 1.4. 

 

Fig. 1.4: Classification of phase service queueing models 

 Two-phase essential service: In this type of the retrial queueing models, the service 

process is completed in two compulsory phases. Here, the customer is provided two 

essential services one-by-one by the server. These types of situations usually arise in 

manufacturing and industrial process where the work is completed in two compulsory 

sequential steps. 

 Two-phase optional service: There exist situations in which a customer after 

completing the first phase of service opts for the second phase of service; for example 

we cite the case of ATM transactions in which a customer may opt for second 

preceding services like withdrawal, balance enquiry etc.  
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 Multi-phase essential service: A variety of real life congestion situations are 

associated with the fact that the service is completed in a series of a finite number of 

compulsory phases rather than in a single phase. For example, medical checkup at 

doctor’s clinic can be completed via a number of compulsory phases like blood 

pressure checkup, ECG test, X-rays, etc. Such type of situations motivate queue 

theorists to model retrial queueing systems in which the service is assumed to be 

completed in more than one essential/optional phases and customers retry for their 

server again and again on finding the service busy with some other customer.  

 Multi-optional phase service:  These models are associated with the fact that after 

completing first essential phase of the service, the customer has the option to demand 

for other available services with some probability or can leave the system without 

taking the optional service. The food orders at restaurants, shopping at malls, etc. are 

some situations where after getting the first essential service, the probability to avail 

other optional service depends on customer’s choice.  

1.3.5 Priority Queueing Models 

In the classical queueing models associated with the congestion situations, the 

customers are assumed to be served on the basis of first come first serve (FCFS) criterion. 

But there may be queueing situations in which the customers/jobs are assigned or 

classified according to some priority index.  

    

Fig. 1.5: Classification of priority queueing models 

The retrial queues with priority also find a variety of applications in many realistic 

queueing scenarios including the admission at hospitals, data transmission, etc. For 

example, a critical patient is handled prior to other patients having minor problems or 
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injuries. The related literature on priority queue can be found in the book by Jaiswal 

(1968). The priority queueing models can be categorized as preemptive priority models 

and non-preemptive priority models (see fig. 1.5).  

The preemptive priority models are associated with the fact that when a priority 

customer enters the system then the service of non-priority customer is immediately 

stopped and the service of priority customer is started. This fact can be further 

categorized whether the service of non-priority customer will be resumed or it will start 

from the initial stage. On the other hand, in case of non-preemptive priority, the priority 

customer is served after the completion of the service of the customer already with the 

server (priority or non-priority). 

1.3.6 Queueing Models with Negative Customers 

It usually happens that the computers and other electronic devices are affected by 

the attack of virus or malwares which affect the normal functioning of the system. These 

unwanted arrivals are termed as negative customers and usually enter the system either 

while accessing internet, pairing our own devices with already affected devices, etc. 

Negative customers are like unwanted arrivals which affect the normal working of the 

system either by stopping the service process or by lowering down the rate of service 

process. The arrivals of negative customers affect the system in a variety of ways, i.e., 

either they may damage the system completely or may remove the customer at the 

end/head of the queue waiting for the service. Unlike positive customers, the negative 

customers are not accumulated in the queue to get served. The concept of negative 

customers finds various applications in communication systems, computer protocols, 

neural networks modeling, etc. where the system gets destroyed or failed with the arrival 

of unwanted customers like virus in the computers or extra order of some inventory items, 

etc. The queueing models with negative customers are also known as G-queues after the 

name of Gelenbe (1989) who introduced the concept of negative customers in queueing 

theory.  

1.3.7 Queueing Models with Discouragement  

To wait in the queue for the service is the unwanted job for the customers. The 

customers waiting in the queue for their turn may become impatient and may act in 

different manners. These situations of impatience behavior of the customers can be 

realized in almost every real life congestion situations from registration counters at 

doctor’s clinic where the patients get discouraged due to delay in service. Being 
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motivated from such realistic situations, the queue theorists also developed a variety of 

retrial queueing models enriched with the phenomenon of discouragement behavior of the 

customers. A customer waiting in the queue may behave in the following manners due to 

discouragement: 

 Balking: The customer on seeing a long queue of the customers waiting for the 

service may decide not to join the queue and leaves the system without joining the 

queue. 

 Reneging:  The customer waiting for the service in the queue may get tired of waiting 

and gets impatient. In this behavior, the customer leaves the system after waiting 

sometime in the queue and before the start of the service, and is said to be reneged. 

 Jockeying:  This behavior of impatience is visible at those situations where there are 

multi server systems. Jockeying can be described as the movement of a waiting 

customer from one queue to another (of shorter length or which appears to be moving 

faster, etc.) so as to get served at an earlier stage. 

1.3.8 Control Policies for Queueing Models  

Optimal control is one of the main issues behind the mathematical modeling of 

queueing systems. The problem of admission/service control is of great importance due to 

its applicability in inventory, telecommunication process, production processes, etc. In 

case if the admission in the queues are not controlled, then it may result in the bursting of 

the system and situation may become out of control of the authorities. The congestion in 

the queueing system is controlled by various ways either by closing the gate, or by 

charging an extra fee to some event or so on. Control policies are applied to many real life 

situations; for example we refer an exhibition of newly launched cars wherein the 

provision of entrance passes/fees is done for the audience/spectators to control the rush. 

In case no restriction is imposed on the arrival of the spectators to exhibition then it 

would have been irresistible to control the crowd. The control policies are not only aimed 

to control the number of customers in the system but also to make the system more 

productive and economic. The control policies which are incorporated in the concerned 

models in our thesis are as follows: 

 N-policy: According to this policy, the server starts servicing only if N customers are 

accumulated in the system otherwise system is said to be in build up state. Once 

service is initiated, the server renders service to the customers till the system becomes 

empty.  
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 Threshold based recovery: This kind of control policy is used to frame more economic 

system by applying control policy on the repair process. As per this policy, the broken 

down server is repaired after a threshold (pre-decided) customers are accumulated in 

the system. This is done to optimize the time and money spent on the repair process.  

 Bernoulli admission mechanism:  Bernoulli admission mechanism can be used to 

control the admission or arrival of the customers in the queues with reattempts or 

retrials. Artalejo and Atencia (2004) and Artalejo et al. (2005) proposed this policy for 

the admission control in continuous and discrete queueing systems respectively. It is 

reasonable to assume that the arrival of the new customers is controlled in such a way 

that each individual blocked customer is admitted or allowed to join the system with 

probability say (0 1)   . If the arriving customer/batch finds the server in idle state, 

then one of the admitted customers joins the server whereas rest of the customers join 

the retrial group; otherwise if the server is busy, the whole batch joins the orbit. This 

mechanism which is known as Bernoulli admission policy can be considered as an 

admission control rule to reduce the congestion at the initial stage.  

 F-policy: The arrival in the system can be controlled using F-policy also. According to 

this policy, no more customers will be allowed to enter the system if the capacity of the 

system is full but again the arrival process will be initiated at the later stage if a 

sufficient number of customers served is less than threshold value (say F).  

 

1.4 METHODOLOGICAL ASPECTS 

With the advancement of stochastic modeling of retrial queueing systems, the 

classical techniques required to solve such complicated systems also grew with time. As 

the retrial queueing systems became more complex due to their applicability to real life 

congestion scenarios, the methodologies required for their solutions also developed 

simultaneously. A variety of techniques both analytic and numerical methods have been 

used to obtain the solutions for different retrial queueing systems. For detailed 

understanding of different techniques and methodologies used for the analysis of retrial 

queues, we refer monographs by Artalejo and Gomez-Corral (2008).The use of 

methodology depends on the nature of the retrial queueing problem under consideration. 

A large number of techniques have been used for the mathematical analysis of retrial 

queueing systems. Here, we discuss in brief only those techniques which have been used 
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in our thesis work in order to predict the performance measures of concerned retrial 

queueing models.  

1.4.1 Probability Generating Function (PGF) 

The tool of generating functions as developed by Euler is widely used to obtain 

solution for those stochastic processes which involve non-negative random variables. The 

importance of using generating functions lies in the fact that a single function can easily 

be the representative of whole set of values involved. Let {ak} be a sequence of real 

numbers then using a new variable say ‘z’, we may define a function  

    
0

( ) k

k

r

A z a z




                                                                                                             (1.1) 

If power series given by (1.1) converges in interval say 0 0z z z   , then A(z) is called 

the generating function of the sequence {ak} (cf. Medhi, 1991). To understand it clearly, 

we refer mathematical results obtained by Sherman and Kharoufeh (2006) and Krishna 

Kumar et al. (2010) who employed this technique of probability generating function to 

obtain performance indices of interest for the concerned queueing systems. Brandwajn 

and Begin (2008) used conditional probability approach to study M/G/1 like queues. 

1.4.2 Supplementary Variable Technique (SVT) 

The non-markovian retrial queueing models depict more realistic congestion 

situations as they are not restricted to the statistical distributions having memoryless 

property. The supplementary variable technique (SVT) is a very elegant and classical 

technique which is used for the solution of such non-markovian systems. The literature on 

retrial queueing models has abundance evidences in support of the use of supplementary 

variables technique for the solution purpose of non-markovian systems. By using this 

technique, non-markovian process in continuous time is made markovian by introducing 

one or more supplementary variables (cf. Cox, 1955). This particular technique has been 

widely used in the literature for the analysis of a variety of non-markovian retrial 

queueing systems. The mathematical models using supplementary variables technique can 

be developed in two manners either using elapsed process time or the remaining process 

time corresponding to non-markovian random variable. 

In our investigations on retrial queues with unreliable server, we have used SVT 

along with generating function (cf. chapters 2-6). It is worthwhile to describe the retrial 

queueing model with unreliable server (cf. Wang et al., 2001). In this model, the service 
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process and the repair process are general distributed and thus the model is non-

markovian. Therefore, supplementary variables are introduced corresponding to service 

and repair process and markovian model is obtained. Let us consider that the customers 

arrive in Poisson fashion with rate λ and are served according to general distribution with 

rate µ. Further, we assume that the retrial duration is exponential distributed with rate θ. 

The unreliable server may break down exponentially with rate α and is repaired following 

general distribution with rate β. Let N(t) be the number of customers in the system at time 

t. Now, we introduce random variables X(t) and Y(t) corresponding to the elapsed service 

time and elapsed repair time of the server at any time t. The state probabilities are as: 

  , ,1( , )W iP t x dx : Joint probability that at time t, there are i customers in the retrial group 

and the elapsed service time of the customer lies between x and x+dx. 

, ,1( , , )R iP t x y dy : Joint probability that at time t, there are i customers in the retrial group, a 

customer is being served with elapsed service time x and elapsed repair 

time of the server being under repair lies between y and y+dy. 

           , ,0( )I iP t : Probability that the server is idle at time t and there are i customers in the 

retrial group. 

Using supplementary variable technique, following governing equations can be framed: 

, ,0 , ,1

0

( ) ( , ) ( )I i W i

d
i P t P t x x dx

dt
  


 

   
 

                                                                             (1.2) 

, ,1 , ,1 , 1,1

0

( ) ( , ) ( , , ) ( ) ( , )W i R i W ix P t x P t x y y dy P t x
t x

    




  
        

                      (1.3) 

, ,1 , 1,1( ) ( , , ) ( , , )R i R iy P t x y P t x y
t y

   

  
    

  
                                                       (1.4) 

The boundary conditions are: 

, ,1 , ,1( , ,0) ( , )R i W iP t x P t x                                                                                                (1.5) 

, ,1 , ,0 , 1,0( ,0) ( ) ( 1) ( )W i I i I iP t P t i P t                                                                              (1.6) 

The normalizing condition is given by 

, ,0 , ,1 , ,1

0 0 0 0

( ) ( , ) ( , , ) 1I i W i R i

i

P t P t x dx P t x y dxdy

  



  
   

  
                                         (1.7)             

The above set of equations (1.2)-(1.7) can be further solved by using probability 

generating function technique as discussed in section 1.4.1. Various performance 

measures can be further determined by using required probabilities. 
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1.4.3 Embedded Markov Chain Technique (EMC) 

In queueing literature, embedded markov chain is widely used to obtain the 

stationary probability distribution of the continuous time markov chain. Embedded 

markov chain is actually a regular discrete time markov process, and each element in the 

one-step transition probability represents the conditional probability of transferring from 

one state to another. This classical technique is widely used to analyze the queueing 

model where the distributions of the inter arrival time or the service time do not possess 

the memoryless property, i.e. are not exponential. For more details on embedded markov 

chain analysis of the retrial queueing models, we refer book by Falin and Templeton 

(1997).  

In chapter 7, we analyze the steady-state behavior of a batch arrival retrial 

queue with multioptional services and phase repair under Bernoulli vacation by using 

EMC. To explain this method in brief we describe the model investigated by Artalejo and 

Atencia (2004). They considered a batch arrival retrial queueing system wherein 

customers arrive following Poisson process with rate λ and the probability that a batch of 

k customers arrive is ( 1).kc k  The customers are admitted in the system following 

Bernoulli admission policy; therefore let ‘p’ be the probability of admission of each 

individual customer. Hence, ( 0)na n  is the probability that a group of n customers is 

allowed in the system is as follows: 

0
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



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 
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 

 .                                                          (1.8) 

If the server is free, then one of the customers from the batch is served and remaining 

customers join the retrial orbit. However, all the arriving customers are forced to join the 

orbit if the server is busy. The customers from the retrial group make reattempts 

following exponential law with rate ,0(1 )j n n       where n is the number of 

customers in the orbit, ,0n is the Kronecker’s delta function and   is the retrial rate, 

respectively. Let n
th

 service completion or departure occurs at any time instant say 
n

  and 

Cn =C (
n

 -) be the state of the server before the time instant
n

 . Also, let Nn = N ( n +) 

denotes the number of retrying customers present in the system just before
n

 . We have the 

sequence Nn=N ( n +) which is embedded Markov renewal process corresponding to 

continuous time Markov process Z (t). Then we have the following transition- 
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(Nn / Nn-1=J) =

1  with probability 

V -1+  with probability 
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                                        (1.9)                                                 

where, Bn is the number of customers that arrive during the n
th

 service time and Vn is the 

number of customers allowed to join the system if the n
th

 customer proceeds from a batch 

arrival. Also, 0(1 )a   due to Bernoulli admission mechanism involved. 

1.4.4 Matrix Geometric Method (MGM) 

Sometimes, it is not possible to obtain analytical solution of the queueing system 

under consideration. Here comes the requirement of some numerical procedures to obtain 

the solution for the system. Matrix geometric method (MGM) is one of the powerful 

numerical techniques that permit us to deal with the models whose activities are 

performed in phases. The advantage of this method lies in the fact that it can be used to 

solve a large number of equations at a time. Basically, MGM can be applied for the 

analysis of queueing problems for which the system states can be divided into two 

categories (i) initial portion which acts as boundary condition and (ii) repetitive structure 

which acts as a base to form rate matrix. The matrix geometric method to determine the 

probability vector is applicable for the system of equations whose transition matrices have 

special block structure with repetition of elements of sub matrices. The concerned model 

can be structured as a square matrix of infinite dimension that converges to finite 

dimension matrix using the minimal matrix to get recursive relation of the probability 

vectors. 

Neuts (1978, 1981) deserves the credit to develop the matrix geometric method 

and provided a number of solutions to a variety of queueing problems using matrix 

geometric approach. Several queue theorists developed repetitive matrix block structured 

model to obtain solutions of various queueing problems using matrix geometric approach. 

This method requires tridiagonal block matrix structure as follows:                                                                          

Q

 
 
 
 
 
 
 
 
 
 

0 1

2 1 2

0 1 2

0 1 2

0 1 2

F F

F G G

G G G

G G G

G G G

                                                                         (1.10) 

where, F0, F1, F2, G0, G1 and G2 are sub-matrices of appropriate dimension.  
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Using probability vector 1 2 3π = [π ,π ,π , ...] , the balance equations can be constructed as 

follows: 

0 1 2 0  0F F                                                                                                       (1.11) 

0 1 1 1 2 0 0    F G G                                                                                             (1.12) 

1 2 1 0 0, 2i i i i      1G G G                                                                                  (1.13) 

The sub vectors are related to each other as 

1
1

i
i   R ,                                                                                                             (1.14) 

where R is the constant matrix known as rate matrix or Neut’s rate matrix. Using (1.14), 

the equations (1.11)-(1.13) can be written as: 

 0 1 (0,0) 
 

 
 

0 1

2 1 0

F F

F G + RG
                                                                                                  (1.15) 

which can be further used to solve for  0 1   and other sub vectors. 

1.4.5 Maximum Entropy Principle (MEP) 

Entropy defines the degree of randomness or unevenness of any system or 

probabilistic distribution. It also measures the expected value of information contained in 

any message. The maximum entropy principle (MEP) was introduced by Shannon (1948) 

to study the problems of information theory as the measurement of uncertainty. This 

principle is applicable to select the appropriate probability distributions for the queueing 

situation (cf. Kapur, 1989; Karmeshu, 2003).  

In many queueing scenarios, sometimes it happens that all the information 

available is not sufficient to estimate the distribution. For queueing models solved 

analytically or numerically, the available information may either be present in the form of 

explicit expressions for the queue length, waiting time, long run probabilities etc. in the 

form of constraints. But there may be a wide range of distributions which satisfy those 

constraints. In many realistic problems, the question arises about the best or right 

distribution which fits the queueing situation. Here, arises the role of maximum entropy 

principle which helps in providing the best suited distribution based on available 

information which can be treated as constraints.  

To understand the applicability of the maximum entropy approach, we cite the 

unreliable M
x
/G/1 model which has been extended by incorporating many realistic 

features in chapters 2 and 4. Let us define, 

P0 = Probability that there are no customers in the system  
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P1(n) = Probability that there are n ( ≥1) customers in the system when the server is in 

operation. 

P2(n) = Probability that there are n ( ≥1) customers in the system when the server is 

broken down. 

The entropy function Y of the queueing system under N-policy is framed as: 

0 0 1 1 2 2

0 1

log ( ) log ( ) ( ) log ( )
n n

Y n n n n
 

 

                                                          (1.16) 

subject to the constraints as- 
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where,  ,  (  ) denote the probability of server being busy, failure rate (repair rate) of 

the server, respectively. 

The entropy function (1.16) subject to constraints (1.17) – (1.19) can be further solved 

using Lagrange’s function to find the steady state probabilities of various states of the 

server. 

 

1.5 SURVEY OF LITERATURE 

Queueing theory was developed to predict the behaviour of the congestion 

systems in different frameworks. Due to abundant applications, a plethora of literature is 

available on the performance analysis of retrial queueing models. Since the pioneering 

works on retrial queues published in 1950’s, retrial queues have been widely used to 

provide probabilistic solution to the problems arising in cellular mobile networks, 

manufacturing and production processes, computer networks and many other real life 

congestion scenarios. In the present thesis, we have developed many retrial queueing 

models which are enriched with various prominent features like unreliable server, bulk 

arrival, vacation, impatient customers, optional service, optimal control policy etc. In this 

section we give literature review of the prominent researches that took place in the field 

of retrial queues related to our study. We have reported important contributions of recent 

years especially in the last decade. The review presented here has been divided into 
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various subsections dealing with retrial models incorporating different features and 

variety of methodologies used for their solution. The notable contributions by various 

researchers in the field of retrial queues related to our research works are as follows: 

1.5.1 Bulk Retrial Queueing Models 

Many real life congestion situations deal with the fact that the arrival or service of 

the customers may take place in batches. This fact has motivated researchers working in 

retrial queues to incorporate this practical feature in their investigations so as to frame 

more general models which are consistent enough with the real life situations. Nobel and 

Tijms (1999) studied M
x
/G/1 queue with optimal control. For the review on bulk retrial 

models we refer survey articles by Artalejo (1999 a, b), Artalejo and Falin (2002), and 

Artalejo (2010). It is worthwhile to mention the significant contributions in the area of 

bulk arrival retrial queues using supplementary variables technique by Choudhury and 

Deka (2009), Ke and Chang (2009a), Choudhury et al. (2010). Choudhury (2007) and 

Falin (2010) investigated non-markovian bulk queues using embedded markov chain 

technique. Arrar et al. (2012) investigated the asymptotic behavior of M/G/1 retrial queue 

wherein arrival process takes place in batches using embedded markov chain. Nobel 

(2013) investigated batch arrival queueing model with retrials and a tolerant server using 

generating function.  

Apart from bulk arrival retrial queueing situations, service may also be rendered 

in batches. Initially, Borthakur and Medhi (1974) have studied a queueing system with 

arrival and service in batches of variable size. Laxmi and Gupta (1999) investigated finite 

buffer bulk service queue. Sikdar and Gupta (2005), Goswami et al. (2006), Banik et al. 

(2007), Sikdar et al. (2009) and many more have contributed significantly to the study of 

bulk service queues. A very few papers are available on the bulk service retrial queues. 

Cordeau and Chaudhry (2009) gave a complete solution to bulk arrival bulk service queue 

and obtained average queue length of the system. Chaudhry et al. (2010) provided results 

for the number of customers for bulk service queues. Haridass et al. (2012) obtained cost 

analysis of bulk service retrial queue and also obtained probability generating function of 

queue size distribution. Claeys et al. (2011, 2013) analyzed versatile batch service 

queueing model with correlation in the arrival process. 

1.5.2 Retrial Queueing Models with Vacation 

Vacation is a key feature of queueing models in a variety of real life congestion 

scenarios. The unavailability of the server in the system when no more customers are 
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available for the service can be realized in many queueing situations including the bank 

counters, manufacturing systems with machine breakdown and processor schedules in 

computer and switching systems, etc. The first investigation on the queues when the 

server is unavailable for some times i.e. on vacation was done by Miller (1964). For 

notable works on vacation queues in recent past we refer Doshi (1986, 1990), Takagi 

(1986, 1991) and Medhi (1991). Numerous works has been done in the direction of retrial 

queues with different types of vacation. It is to be worth noting that several researchers 

have paid their attention to the study on retrial queues with single/ multiple vacation, 

modified vacation, working vacation and Bernoulli vacation schedule. For notable 

researches in this area we refer significant works done by Krishna Kumar and 

Arivudainambi (2002), Wenhui (2005), Choudhury (2007), Boualem et al. (2009), 

Aissani (2009), Banik (2009, 2010) etc. They all studied single server retrial queues with 

Bernoulli vacation schedule using embedded markov chain technique. Ke and Chang 

(2009a) investigated bulk arrival retrial queue with using supplementary variable 

technique. Recently, Choudhury and Ke (2012, 2014) analyzed batch arrival retrial queue 

with Bernoulli schedule using embedded markov chain and obtained important 

performance characteristics of the queueing system.  

Li et al. (2009) investigated non-markovian queue with working vacations using 

matrix analytic approach. Goswami and Selvaraju (2010), Arivudainambi et al. (2013),  

and Aissani et al. (2014) did the performance analysis of retrial queues with working 

vacation by considering the general distributed service process. Tao et al. (2014) 

investigated M/M/1 retrial queue with working vacation and feedback under N-policy 

using matrix analytical methods.  

Ke and Chang (2009b) and Jain and Bhargava (2009) studied non-markovian 

retrial queues with modified vacation policy using supplementary variable technique and 

obtained queue size distribution.  

1.5.3 Unreliable Retrial Queueing Models 

The modeling for unreliable retrial queueing systems has been done by many 

queue theorists and a considerable amount of literature is also available in this direction. 

For literature on unreliable queues we refer a recent survey article by Krishnamoorthy et 

al. (2014). A variety of unreliable retrial queueing models incorporating various 

prominent features like vacation, bulk queues, impatience etc. has been investigated by 

researchers in recent past. The worth mentioning contributions in the area of unreliable 
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retrial queues are due to Sherman and Kharoufeh (2006), Atencia et al. (2006a), 

Mokaddis et al. (2007), Atencia et al. (2008), Jain and Agarwal (2009), etc. Krishna 

Kumar et al. (2010), Krishna Kumar et al. (2011) and Krishnamoorthy et al. (2012) 

investigated retrial queues in different contexts.  

More advanced repairable queueing models have also been studied by queue 

theorists using a variety of mathematical techniques. Dimitriou and Langaris (2010), 

Choudhury et al. (2010) and Choudhury and Deka (2012), Jain et al. (2013) analyzed 

repairable retrial queueing model and provided performance indices to study the effect of 

breakdown of the server on the queueing and reliability indices of the system. Zhang and 

Wang (2013) obtained performance analysis of unreliable retrial queues with finite 

number of sources. Recently, single server retrial queues with server breakdown is 

studied by Boualem (2014), and Lakshmi and Ramnath (2014). Choudhury and Ke (2014) 

investigated the steady state behavior of the unreliable retrial queue with Bernoulli 

schedule and delaying repair.  

1.5.4 Retrial Queueing Models with Priority 

Retrial queues with priority finds significant place in the literature of retrial 

queueing theory. Some notable results on single server priority retrial queues can be 

found in the articles by Langaris and Moutzoukis (1995), Choi and Chang (1999). Choi 

and Park (1990) investigated a single server M/G/1 retrial queue with two types of 

customers and obtained joint distribution of the queue lengths. Krishna Kumar et al. 

(2002) studied retrial queue with preemptive resume priority where two types of 

customers arrive following markovian arrival process. Two class priority markovian 

queueing systems were investigated by Tarabia (2007a, 2007b). The other prominent 

contributions in the field of retrial queues with priority are due to Atencia et al. (2006b), 

Jain and Bhargava (2008) and Wang (2008). Goswami and Selvaraju (2013) investigated 

working vacation queue with priority and breakdowns. Dimitriou (2013a) studied batch 

arrival priority retrial queue with admission control and repeated demands. Peng et al. 

(2014) obtained results for the non-markovian retrial queue with break downs and 

preemptive resume priority using probability generating function technique. Recently, 

Vadivu et al. (2014) investigated non-Markovian loss system with priority and 

breakdowns. The multi server retrial queueing system with random number of servers and 

priority has been studied by Vinayak et al. (2014).  
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1.5.5 Retrial Queueing Models with Negative Customers 

Some papers on the study of negative customers have appeared in the queueing 

literature. The remarkable contributions of Gelenbe (1989, 1991, and 2000) opened ways 

for the future research on the queues with negative customers known as G-queues. 

Harrison (1993, 1996) investigated queues with negative customers using a new 

technique and paved a new dimension to the modeling of unreliable queues with negative 

customers. Shin (2007) analyzed multiserver G-queues with disasters and reattempts. The 

recent articles on G-queues can be found in the bibliography on negative customers by Do 

(2011a). Liu et al. (2009) and Dimitriou (2013b) studied negative arrival retrial queues 

with unreliable server and pre emptive resume and gave interesting mathematical results 

for non-markovian queues. Wu and Yin (2011), Wu and Lian (2013a, 2013b) and Krishna 

Kumar et al. (2013) investigated single server retrial G-queue with priority and 

breakdowns. The queueing and reliability analysis of non-markovian retrial G-queue has 

been done by Gao and Wang (2014). Recently, Berdjoudj and Aissani (2014) analysed 

M/G/1 retrial queue with negative arrivals using martingale technique.  

1.5.6 Retrial Queueing Models with Discouragement 

The significance of the retrial queues with discouragement can be felt from the 

research done by a number of researchers in this area. The impatient nature of customers 

was mathematical structured by Li and Zhao (2005) who studied retrial queue with 

constant retrial rate and impatient customers.  Ke and Chang (2009b) investigated M/G/1 

retrial queue with modified vacation policy by incorporating balking and reneging 

concepts. Wang and Li (2009) developed a queueing model with impatient customers and 

second phase of service. The transient as well as steady state analysis of M/M/1 queue 

with impatient customers and failures has been done by Tarabia (2011). 

For more recent articles, it is worthwhile to mention the significant contributions 

by Economou et al. (2011), Zhang et al. (2013), and Selvaraju and Goswami (2013) who 

studied equilibrium balking strategies of Markovian queues.  

1.5.7 Phase Type Retrial Queueing Models  

Phase service queueing models have been studied extensively by many eminent 

researchers for improving the grade of service in many industrial problems. Different type 

of phase service, viz. compulsory phases, homogenous optional phases, heterogeneous 

phase service etc. have been explored by many researchers in the literature. There is a 
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significant literature available on the queue with different types of phase type service. We 

mention some recent prominent works on various types of phase service retrial queueing 

models as given in table 1.1. 

Table 1.1: Contributions to phase service retrial queueing models 

Type of phase service Research Contributions on retrial queues 

Two-phase essential service 

Dimitriou and Langaris (2008), Choudhury (2008a), Choudhury 

and Deka (2008), Wang and Li (2009), Dimitriou and Langaris 

(2010), Senthil and Arumuganathan (2010), Choudhury and Deka 

(2013) 

Two-phase optional service 
Choudhury and Deka (2009), Maraghi et al. (2010), Ke et al. 

(2011) 

Multi-phase essential service Langaris and Dimitriou (2010), Kim et al. (2012), Dudina (2013) 

Multi-optional phase service Jain and Upadhyaya (2010), Lakshmi and Ramnath (2014) 

 

Table 1.2: Contributions to various control policy for retrial queueing models 

Type of control policy Research Contributions 

N-policy Choudhury et al. (2009), Liu et al. (2009) 

Threshold based recovery Efrosinin and Winkler (2011), Yang et al. (2013) 

Bernoulli admission 

mechanism 

Artalejo and Atencia (2004), Artalejo et al. (2005), Choudhury 

(2007), Choudhury and Deka (2013) 

F-policy Wang et al. (2007a), Wang et al. (2008a), Wang and Yang (2009) 

 

1.5.8 Retrial Queueing Models with Variant Control Policies 

   Many prominent researchers contributed to the study of retrial queueing models 

under different control policies. The implementation of one or more control policies acts 

as the golden rule so as to reduce the congestion in the system. The optimal control 

models find a special importance in many real life scenarios; therefore several authors 

have contributed in this area. The optimal control of a queueing system with set up costs 

has been done by Nobel and Tijms (2000). The pioneering works on various control 

policies for retrial queueing systems have been summarized in table 1.2. 
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1.5.9 Finite Retrial Queueing Models 

With the growth of queueing literature and its applications, scientists also realized 

the need of more specific models for finite queueing systems. The systems with finite 

capacity and finite population have been studied by a few researchers in recent past. 

Such models find enormous applications in machine repair problems, hospitals, institutes 

etc. where either the calling population or capacity of the system is finite. Ramalhoto and 

Gomez-Corral (1998), Falin (1999), Alfa and Isotupa (2004), Almasi et al. (2005), Zhong 

et al. (2007, 2008), Sharma and Karmeshu (2009) etc. analyzed finite retrial queues. 

Zhang and Wang (2012) did stochastic analysis of a finite source retrial queue with 

orbital search. Shin and Moon (2013) investigated M/M/s/K retrial queue with non-

persistent customers. Ponomarov and Lebedev (2013) studied the finite source retrial 

queue with state dependent service rates. 

1.5.10 Methodological Perspective  

In this sub-section, we present literature review for the analysis of retrial queueing 

systems based on the methodological aspects which form the basis of our analysis used in 

this thesis. Various techniques have been used for the modeling and solution of retrial 

queueing systems. However, some contributions which are important from 

methodological view point are listed in table 1.3.  

1.5.11 Retrial Queueing Models Applicable in Call Centres and Cellular Radio 

Networks 

The concept of retrial queues is not only limited to the theoretical investigations 

and mathematical modeling, but finds a very significant and prestigious place in various 

real life congestion situations. The working of call centres can be interpreted as an 

example of retrial queues. We may also claim that the mathematical version of retrial 

queues came into existence after the development of telecommunication systems, where 

the waiting calls or voice beeps like ring back. The significant contributions by various 

prominent researchers in the area of call centres and cellular radio networks in recent 

years are mentioned in table 1.4.  
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Table 1.3: Contributions on retrial queueing models using different techniques 

Technique used Research Contributions 

Probability Generating Function 
Atencia and Moreno (2006), Krishna Kumar et al. (2010), Jain et 

al. (2011) 

Supplementary Variable Technique 

Wang et al. (2001), Choudhury and Deka (2008), Ke and Chang 

(2009a), Wu and Yin (2009), Chang and Ke (2009), Liu et al. 

(2009), Choudhury and Deka (2009), Choudhury et al. (2010), 

Dimitriou and Langaris (2010), Jain and Upadhyaya (2012), Wu 

and Lian (2013a) 

Embedded Markov Chain 

Technique 

Atencia and Moreno (2005), Wenhui (2005), Choudhury (2007), 

Choudhury (2008b),  Boualem et al. (2009), Falin (2010a, 2010b), 

Wu and Lian (2013b), Choudhury and Deka (2013), Choudhury 

and Ke (2014), Gao and Wang (2014) 

Matrix Geometric Method 

Neuts (1978, 1981), Zhang and Tian (2003), Li and Tian (2007), 

Tian et al. (2008), Lin and Ke (2009), Jain and Jain (2010) , Jain et 

al. (2010), Luh (2010), Bhargava and Jain (2014), Lakshmi and 

Ramanath (2013) 

Maximum Entropy Approach 
(2007b), Wang and Huang (2009), Wang et al. (2011), Jain et al. 

(2012a).  

 

Table 1.4: Contributions to applications of retrial queueing models 

Application area Research Contributions 

Call centres 

Bernett et al. (2002), Bhulai and Koole (2003), Deslauriers 

(2007), Begin et al. (2010), Phung-Duc and Kawanishi (2011), 

Artalejo and Phung-Duc (2013), Phung-Duc and Kawanishi 

(2014) 

Cellular mobile networks 

Tran-Gia and Mandjes (1997), Choi et al. (1999), Marsan et al. 

(2001), Trivedi et al. (2003), Roszik et al. (2005), Liu and 

Fapojuwo (2006), Dharamraja et al. (2008), Brandwajn and 

Begin (2009), Economou and Herrero (2009), Xu et al. (2009), 

Phung-Duc et al. (2009), Wang and Luh (2011), Do (2010, 

2011b), Karmeshu  and Khandelwa (2013), Kajiwara and 

Phung-Duc (2014)  
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1.6 OBJECTIVE OF THE THESIS 

Modeling and analysis of retrial queueing models is significant not only in 

mathematical terms but also to study practically the effect of various sensitive parameters 

on the performance measures of the system. Enormous literature is available on the 

performance analysis of retrial queueing models. But still much more work can be done 

in this direction because of change in technology and its ever growing day-to-day as well 

as industrial applications in teletraffic, computer and communication networks, etc. The 

primary goal of our research work is the modeling and analysis of more practical and 

general retrial models which are consistent enough to deal with more realistic congestion 

situations. Using various queueing techniques, a variety of retrial problems has been 

studied. All the retrial queueing models are developed under the assumption of unreliable 

server so as deal with more realistic situations. The main objective of present thesis work 

is to develop new retrial models which are applicable to real life congestion situations and 

incorporate a number of features altogether. Some of the retrial models investigated are as 

follows: 

Queues with discouragement: Discouragement is a common phenomenon of any 

individual who seeks for the service and it affects the queue length and the efficiency of 

the system. It is realized that the limited literature is available on retrial queues with 

reneging. Therefore, to analyze retrial queues with impatient customers, it is worthwhile 

to study how impatient (i.e. reneging) behavior affects the performance of the system in 

various situations dealing with retrial attempts of the customers. In chapters 2, 3, 4 and 6, 

the concept of discouragement of the customers along with noble other features like 

Bernoulli vacation schedule, modified vacation policy, negative customers etc. have been 

taken into account.  

Threshold recovery for unreliable queues: It is noticed that an extensive work has 

been done in the direction of retrial queues considering the reliable of the server. But 

every server is not ideally reliable; therefore there is a need to develop more realistic 

models dealing with the unreliability of the server. The unreliable servers may breakdown 

during any course of service and hence need to be repaired. Since repair of the server is 

an essential component of the server, therefore in order to provide service to the 

customers there is a need to develop models that can provide repair in an optimal manner. 

The concept of threshold based recovery can be used to provide repair of the broken 

down server in the optimal sense. In this case, the repairman is usually called upon when 
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a threshold number of customers are already accumulated in the system so as to save time 

and money. In chapters, 8 and 10, the repair process has been taken into account using 

threshold based recovery and optimal parameters have been obtained wherever possible. 

Control policy queues: It is evident from the literature that a limited work has 

been done in the direction of retrial queues with F-policy; therefore we have developed 

the Markovian models operating under F-policy to analyze retrial queues so as to design 

optimal control policies by constructing the cost function. Chapter 8 deals with the finite 

retrial queue model using F-policy and threshold recovery. 

Phase type queues: There is a limited literature available on the retrial queues 

with phase type models wherein either service or repair or both are processed in series. 

Therefore, from modeling point of view there is a need to frame new models which take 

into consideration the feature of multi-phases service/repair along with other features 

namely vacation, discouragement, unreliable, bulk, set up and many more simultaneously. 

In chapters 3-6, the modeling of retrial queues is done by incorporating either multi-phase 

service or phase repair or both. 

To analyze retrial queues in the broader sense, we have also considered the concept 

of finite double orbits instead of single orbit. Moreover, retrial model with additional 

server has also been developed so as to study the effect of additional server on the 

performance of the system.  

The research work under consideration is not only limited to the modeling of new 

models incorporated with a number of practical features altogether; it is also aimed to 

analyze and provide analytical solution for these models. Stochastic processes namely 

markovian and non-markovian processes are used for the problem formulation. The 

solutions of mathematical models on retrial queueing system have been obtained by 

employing one or more of the following methods: 

 Generating Functions 

 Embedded Markov Chain 

 Supplementary variables technique 

 Matrix method 

 Matrix geometric method 

 Maximum Entropy Principle 

In our study, we have been interested to derive various performance measures 

which are important enough to judge the efficiency and validity of the model to practical 

situations. Some important measures evaluated are queue size, long run probabilities, 
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expected queue length, throughput, carried load, server’s utilization, reliability/ 

availability, failure frequency, total cost incurred, etc. To validate the analytical results, 

some numerical examples and graphs are facilitated. The numerical simulation and 

sensitivity analysis are also carried out which will be helpful in examining the effect of 

various parameters on the system performance.  

 

1.7 OVERVIEW OF THE THESIS  

The modeling and analysis of retrial queueing systems in different frameworks 

consistent with various real life scenarios is the main objective of present research work. 

Retrial queueing models are successfully used in abundant congestion problems ranging 

from day-to-day to many industrial scenarios. Therefore, keeping in mind the significance 

of retrial queues a variety of queueing problems with retrial attempts are explored using 

suitable approaches. The present thesis can be broadly classified into two categories; non-

markovian retrial queues and markovian queues. The whole thesis work has been 

structured into ten chapters. Chapters 2-7 deal with non-markovian retrial queues while 

chapters 8-10 are devoted to markovian retrial queues. For solution purpose, various 

methodologies like supplementary variable technique, embedded markov chain, matrix 

geometric method, matrix method, generating function, R-K method etc. are used. To 

validate the analytic results obtained in various chapters, numerical illustrations are also 

given for the better understanding of real life queueing problems where retrial attempts 

are common feature of the system. For some models dealing with complex problems the 

approximate results of various system performance indices have been obtained using 

matrix entropy principle (MEP). For illustration purpose we have coded the computer 

programs in MATLAB software so as to provide performance measures of retrial 

queueing models. The chapter wise brief outlines of the thesis work are as follows: 

In this ongoing chapter 1, entitled Introduction, we present the overview of the 

works done, methodology and some preliminaries concepts related to retrial queues. The 

related literature has been briefly discussed by classifying the retrial queues based on 

modeling and methodological aspects. 

In chapter 2 we investigate M
x
/G/1 retrial queue with unreliable server and 

general retrial times. The server is subject to breakdowns and takes some setup time 

before starting the repair. The server renders first essential phase of service (FES) to all 

the arriving customers whereas second optional phase services (SOS) are provided after 
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FES to only those customers who opt for it. The impatient customers are allowed to balk 

depending upon the server’s status; they may also renege after waiting sometime in the 

queue. By incorporating the supplementary variables corresponding to service time, repair 

time, retrial time and setup time and using generating function method, the queueing 

analysis has been done to obtain the queue size and orbit size distributions. Using 

maximum entropy approach, a comparative analysis has been performed between exact 

analytic results and those obtained by using maximum entropy approach.  

In chapter 3 a batch arrival general retrial queue with multioptional services, 

vacation and impatient customers undergoing reneging has been considered. The study of 

chapter 2 is extended in chapter 3 by incorporating the feature of phase repair and 

Bernoulli vacation schedule. The server may go for vacation if he finds no customer 

waiting for the service and returns back to the service center again as soon as the 

customer approaches for the service. The server is unreliable and subject to breakdowns 

during the service; as soon as the server fails, it is immediately sent for the repair so as to 

restore its functionality as before failure. The repairman assigned for the repair of the 

server also takes some setup time before commencing the repair process. We employ 

supplementary variables technique and probability generating function method to obtain 

the explicit expressions for the queue size distribution and other performance measures. 

Also, the neuro fuzzy approach has been used to approximate the analytical results. 

 Bulk arrival M/G/1 retrial queue with impatient customers and modified vacation 

policy has been analysed in chapter 4. The service is provided in k essential phases to all 

the customers by the single server which may breakdown while rendering service to the 

customers. The broken down server is sent to a repair facility wherein the repair is 

performed in d compulsory phases. As soon as the orbit becomes empty, the server goes 

for vacation and takes at most J vacations until at least one customer is noticed. The 

incoming customers are impatient and may renege on seeing a long queue of the 

customers for the service. The probability generating functions and queue length for the 

number of customers in the orbit and queue have been obtained using supplementary 

variable technique. Various system characteristics viz. average number of customers in 

the queue and orbit, long run probabilities of the system states etc. are obtained. Using 

maximum entropy approach, a comparative analysis has been performed between exact 

analytic results and that obtained by using maximum entropy approach. The effects of 

several parameters on the system performance are examined numerically by taking an 

illustration. 
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The steady state analysis of bulk arrival retrial queue with unreliable server and 

multi essential services has been taken into account in chapter 5. The server renders 

service to two types of customers; the type 1(2) customers are considered as priority 

(ordinary) customers. The ordinary customers are forced to join the orbit if they find the 

server in busy or broken down condition on their arrival whereas priority customers join 

the queue in front of the server so as to get served. The service is provided in k essential 

phases for both types of customers. The server is unreliable and may break down during 

any phase of service. As soon as the server fails it is sent for repair to restore it so as to 

make it as good as before failure. The broken down server is repaired in d essential 

phases. Also, the customers are affected by the traffic and may balk at seeing the long 

queue. In the present investigation, the supplementary variable technique and the method 

of generating function have been used to derive the explicit expressions for the average 

queue length of the system. Moreover, application of the model to healthcare system has 

also been discussed. 

A bulk arrival retrial queue with negative customers and multi-services subject to 

server breakdowns has been considered in chapter 6. The system allows the arrival of two 

types of customers; positive customers and negative customers in the system. The 

negative customers make the server fail if they find the server in busy state, whereas 

positive customers are served; otherwise if the server is idle they join the virtual pool of 

customers called orbit. The customers from the retrial orbit try their chance again for the 

service. The customers have the option of obtaining more than one service. Moreover, the 

customers are impatient and may renege from the system with probability ‘r’. The server 

is sent for the repair as soon as it breakdowns; after repair, the service process starts 

again. Also, the server has the provision to initiate the service when there are N customers 

accumulated in the system. Using supplementary variables technique and generating 

functions, various performance measures like reliability and queueing indices have been 

obtained.  

In chapter 7 the steady-state behavior of a batch arrival retrial queue with 

multioptional services and phase repair under Bernoulli vacation schedule is studied. The 

customers arrive in batches and are admitted to join the system following Bernoulli 

admission control policy. The incoming customers are forced to join the retrial group if 

they find the server busy, broken down or on vacation. The customers are served in two 

phases i.e. the first essential service (FES) followed by second optional services (SOS). 

The server is unreliable and is repaired in d- compulsory phases so as to become as good 
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as earlier. After each service completion, the server may go for a vacation following 

Bernoulli vacation schedule or continue to serve the next customer. By applying the 

embedded Markov chain method, we first obtain the ergodicity condition for the stability 

of the system and then obtain steady-state results to examine some queueing measures.  

 Chapter 8 deals with two finite retrial queueing models with threshold recovery. 

The first model deals with the finite capacity Markovian retrial queues with unreliable 

server wherein the customers arrive following geometric distribution while the service 

pattern follows exponential distribution. The customer occupies the server if it is idle, 

otherwise he is forced to join the orbit and retry for the service later. The customers are 

served in two stages i.e.  first essential service (FES) and second optional service (SOS) 

which depends on the customer’s demand. The repair process follows threshold recovery 

according to which the repair starts when a minimum number of customers say q (≥1) has 

been accumulated in the system. The transient state solution of the equations governing 

the model has been obtained using Runge Kutta method of fourth order.  

The second model is concerned with the finite capacity retrial queueing model 

with F-policy. The server is unreliable and may break down while providing service to 

the customers. The failed server is sent to the repair facility where after required setup 

time, the repair is done as per pre-specified rule known as threshold recovery policy for 

the repair.  The arrival of the customers to the system is controlled by using F-policy. The 

numerical approach based on Runge Kutta method of fourth order has been employed to 

study the transient behavior of the system. Various performance measures like expected 

queue length, waiting time, failure frequency, availability, throughput, etc. have been 

obtained. The cost optimization and sensitivity analysis have been done to explore the 

effect of different parameters on various performance indices. 

The unreliable server retrial queue with the provision of additional temporary 

server in the context of application in web faction has been investigated in chapter 9. In 

order to reduce the load consumption and memory usage, a temporary server is usually 

installed when primary server is overloaded. The secondary server which is temporary 

one, is turned on when the work load reaches its maximum value i.e., a fixed queue length 

of ‘K’ customers including the customer with the primary server, has been build up. The 

system has the facility of retrial orbit where customers can wait for their service when 

they find the server in busy state. Using matrix geometric approach, we determine the 

steady probabilities of the system states. The cost function has also been structured to 

determine the optimal cost of running the system.  
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In chapter 10, double orbit finite capacity retrial queue with unreliable server has 

been taken into consideration. The system facilitates the arrival of two type of customers 

known as priority and non priority customers and can hold a maximum of L priority 

customers and K non-priority customers as per its capacity. The priority customers are 

served prior to the non-priority customers. Moreover, the server is unreliable which may 

breakdown while servicing either priority or non-priority customer. The failed server is 

sent for repair following threshold recovery policy to become as good as earlier. Both 

transient as well as steady state analysis of the model has been done using matrix method. 

The application of the model to cellular radio network has been discussed by taking an 

illustration.  

Overall conclusions and future scope of the models investigated has been 

presented at the end of the thesis to highlight the contributions of the carried out research 

works and its importance to real life congestion situations.  

 

1.8 CONCLUDING REMARKS 

Retrial queues due to their numerous applications in manufacturing processes, 

industries, production systems, telecommunication systems have forced queue theorists to 

develop new models which can be suited to real life situations. The literature on retrial 

queues has widely grown since past few decades which clearly exhibit their significance 

in research due to their abundance applications. In the present chapter, a brief account 

about the modeling and techniques used for the solution of retrial queues has been 

presented.  

The ongoing chapter provides an overview of the researches that took place in the 

field of retrial queueing models in different frameworks. Numerous research papers have 

been cited on the basis of modeling as well as methodological concepts for the analysis of 

concerned retrial models. The design, development and configuration of retrial queueing 

systems can be well understood in terms of various performances measures viz., queue 

size distribution, long run probabilities, average queue length, etc. The queueing analysis 

of such systems can provide valuable insight to the system designers and decision makers 

for the improvement and enhancement of retrial queueing models studied in different 

frameworks by incorporating more realistic features. 
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CHAPTER 2 

Unreliable Retrial Queue with 

impatient customers  
 

2.1 INTRODUCTION 

Retrial queueing models are significantly used for the performance analysis of many 

telecommunication processes, including local and wide area networks, switching systems, 

shared bus local area networks, etc. This is due to the fact that the return of customer is 

usually a non-neglectable part in many practical situations. An extensive survey on retrial 

queues can be found in the notable survey articles by Artalejo (1999 a, b), Artalejo and Falin 

(2002) and Artalejo (2010).  

In the real life congestion situations, the server may be unreliable and easily prone to 

breakdowns. Krishna Kumar and Madheshwari (2003) investigated M
x
/G/1 retrial queueing 

model with starting failures. Atencia et al. (2006a) studied M/G/1 retrial queue with active 

breakdowns and Bernoulli schedule. Mokaddis et al. (2007) considered the M/G/1 retrial 

queue with Bernoulli feedback and single vacation where the server is subject to starting 

failures. In many real time unreliable server queueing situations, the server may take some 

time called setup time to start the repair. Jain et al. (2007) studied the M/G/1 retrial 

queueing model with set up, server breakdown and repair. Xu et al. (2009) obtained 

distribution for the additional queue length for M/M/1 queue with working vacation and set 

up times. 

In recent past, queues with an optional second phase of service have also attracted 

the attention of many researchers working in the field of queueing theory. In such queueing 

scenario, after completing the first essential phase of service (FES), the customer has the 

option either to go for any of the secondary services of his choice (SOS) provided by the 

same server or quits the system. Madan (2000) studied an M/G/1 queue with second 

optional service with service time of FES being governed by general distribution whereas 

the second optional service is exponentially distributed. The M
x
/G/1 unreliable retrial queue 

with two phases of service and Bernoulli admission mechanism was further explored by 

Choudhury and Deka (2009). Jain and Upadhyaya (2010) investigated M
x
/G/1 queue with 

multi-optional services and Bernoulli vacation. Moreover, Senthil and Arumuganathan 

(2010) analysed bulk arrival retrial queues with optional services.  
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The retrial queueing models with bulk arrival are always in demand as they depict 

many practical queueing situations in a better way; to cite we refer a group of people 

arriving at restaurants. Jain and Bhargava (2009a) studied bulk arrival retrial queue with 

unreliable server and priority subscribers. Chang and Ke (2009) considered a batch retrial 

model where the server can take at most J vacations. Maraghi et al. (2010) investigated bulk 

arrival queues with Bernoulli vacation. Other work in this series has been done by 

Choudhury et al. (2010) by considering a batch arrival retrial queueing system with two 

phases of service and server interruption. Moreover, Balasubramanian and Arumuganathan 

(2011) discussed steady state analysis of a bulk arrival and general bulk service queueing 

system. Recently, Choudhury and Ke (2012) analyzed a batch arrival retrial queue with 

delaying repair and Bernoulli vacation schedule.  

               Due to numerous applications in computer communication systems, the retrial 

queues with impatient customers have now-a-days become the point of attraction for the 

queue theorists. Sometimes, the customers may get discouraged on seeing the long queue 

ahead, therefore either the customers would not join the queue i.e. would like to balk or 

leave the queue after waiting for some time i.e. renege. Both reneging and balking can be 

visualized in day-to-day congestion situations where some impatient customers quit the 

system without getting the service; such a scenario is prevalent at supermarkets, reservation 

counters, call centres etc. Ke and Chang (2009b) investigated M/G/1 retrial queue with 

modified vacation policy by incorporating balking and reneging concepts. Using 

supplementary variable technique, Arrar et al. (2012) investigated asymptotic behaviour of 

M/G/1 retrial queues with batch arrivals and impatience phenomenon.  

The maximum entropy principle (MEP) was introduced by Shannon to study the 

problems of information theory as the measurement of uncertainty. This principle is 

applicable to select the appropriate probability distributions for the queueing situation. It 

was also used by many researchers to obtain the queue size distribution of various queueing 

systems. Wang et al. (2002) used the maximum entropy principle to examine the M/G/1 

queueing system in different frameworks. Further, Wang et al. (2007b) carried out the 

maximum entropy analysis of M
x
/M/1 queueing system with multiple vacations. Moreover, 

Wang and Huang (2009) made a comparative study between the exact analytical results and 

approximate results obtained using MEP. Maximum entropy principle has also been used 

for discrete time unreliable server queue with working vacation by Jain et al. (2012a). 

  The present chapter aims to investigate the retrial queues with impatient customers 

and batch arrival. The results of Wang and Li (2009) have been extended by incorporating 
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the concept of bulk arrival and setup time. In this chapter, we apply the MEP to analyze the 

various system characteristics for a bulk arrival retrial queueing model with second optional 

services, balking, reneging and setup times. Section 2.2 describes the assumptions required 

to formulate the model. The generating functions of the queue size distribution are obtained 

in section 2.3. Various performance indices are computed in section 2.4. Section 2.5 deals 

with special cases deduced from our analytical results by setting different parameters. In 

section 2.6, the approximate results for the various performance measures have been 

obtained by implementing the principle of maximum entropy. A comparative analysis is 

performed between the exact results and the approximate result obtained by using maximum 

entropy principle. To validate the analytical results, numerical results are presented in 

section 2.7. Finally, in section 2.8 we wind up our investigation by highlighting the noble 

features of the work done. 

 

2.2. MODEL DESCRIPTION 

Consider M
x
/G/1 single server retrial queueing system with impatient customers. The 

following assumptions have been made to formulate the mathematical model to be 

investigated: 

 Arrival Process: The customers arrive in batches according to the Poisson process with 

rate  . Let X be the random variable denoting the batch size defined by 

Pr{ } ; 1mX m c m    such that 


1m

mc =1. 

 Retrial Process: The incoming customers are served if they find the server idle otherwise 

they are forced to join the virtual pool of customers called orbit from where they can try 

again for the service. The customers waiting in the retrial orbit are known as retrial 

customers and they retry after a random interval of time with exponential distributed rate 

γ.  

 Reneging: In context of the retrial customer, it can be explained as follows. As soon as 

the server becomes free, both primary as well as orbit customers try for the service. If a 

primary customer arrives earlier as compared to the retrial customer, then either retrial 

customer cancels its attempt for the service and returns to its initial position with 

probability r or quits the system forever with probability (1-r). 

 Service Process: If an incoming batch of the customers finds the server in idle state, then 

a customer at the head of the batch joins the server to get served. The customers are 

served in two stages, the first essential service (FES) with service rate μ0 which is 
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compulsory for all the customers and second optional services (SOS) with service rate μi 

(1 )i k  ,which depends on the customer’s choice to avail it or not. After completing 

FES, the customer may opt for any one of the ‘k’ different optional services with 

probability pi  (1 )i k   or quits the system with probability
0

1

(1 )
k

i

i

p p


  . The service 

times of FES and all phases of SOS are i.i.d. and general distributed. 

 Balking: Sometimes, the customer may get discouraged on seeing a long queue and may 

decide to leave the queue without joining it i.e. balks with  probability b1, b2 and b3 in case 

for the server being in busy state, breakdown state, setup state, respectively. 

 Breakdown and Setup Process: The server under consideration is unreliable which can 

breakdown during any course of service. The server’s lifetime is exponentially distributed 

with mean α0
-1

 during FES and αi
-1

 during SOS of i
th

 (1 )i k  type. But before starting 

the repair process, the server takes some time called setup time with rate ξi (1 )i k  to 

make some preliminary settings i.e. there is delay-in-repair. The setup time and repair 

time are i.i.d. and general distributed. 

 Repair Process: The repair process is assumed to be i.i.d. and general distributed and is 

completed with rate βi for the server broken during i
th

 (0 )i k  phase of service.  

 

2.3 QUEUE SIZE DISTRIBUTION 

To analyze the retrial queueing system, we need to construct the mathematical 

equations for the system state probabilities. The retrial process, service process and repair 

process are assumed to be general distributed; therefore the model under consideration is 

non-markovian. In order to formulate the equations for the present non-markovian system, 

we use supplementary variable technique to analyze the model. 

Let N(t) represents number of customers in the system and 1S ( ) {0,1,2,..., }t k  denotes the 

phase of the service at any time t. 

The state of the server at any time t is given by 

 

1, server is in idlestate

2, server is busyin providing FES to thecustomers

Y(t) = 3, server is busyin providing SOS to thecustomers

4, server is broken down and under setup before repair

5, server is broken down and under repair









 

In the steady state, the joint distributions of the server state and queue size are defined as- 
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       limPr ( ) 1, ( ) , 0n
t

D Y t N t n n


     

       0, 1( ) limPr ( ) 2, ( ) , ( ) ,0, ( ) 0 , 0n
t

P x Y t x t x dx N t n S t n


          

         , 1( ) limPr ( ) 3, ( ) , ( ) , ( ) , 0,(1 )i n
t

P x Y t x t x dx N t n S t i n i k


                      

 , 1( , ) limPr ( ) 4, ( ) , ( ) , ( ) , ( ) ,

0, (0 )

i n
t

S x y Y t t x y t y dy N t n S t i

n i k

 


       

  

 , 1( , ) limPr ( ) 5, ( ) , ( ) , ( ) , ( ) ,

0, (0 )

i n
t

R x y Y t t x y t y dy N t n S t i

n i k

 


       

  
 

2.3.1 Mathematical Formulation 

Before constructing the governing equations, we give below the proposition stating 

the stability condition for the model. 

Proposition 2.1: The necessary and sufficient condition for the system to be stable is 

1 (1 ( ))r a     

where, 3 32 2
0 1 0 1

10 0

(1)
k

i i i

i i i

b bb b
C b p b    

   

       
               

        
 . 

Proof: To study the steady state behaviour of the system, we require the stability condition 

before formulating the governing equations. Wang et al. (2001) discussed the proof for the 

establishment of stability condition for M/G/1 model. Following the same approach, we 

derive stability condition for our model as- 

        
3 32 2

0 1 0 1

10 0

1 (1 ( ) (1)
k

i i i

i i i

b bb b
r a C b p b    

   

       
                 

        
  

Governing Equations 

1 0 0 0, 1 0, 0, 0
1 0

( ) ( ) ( ) ( , ) ( )
n

mn n m n
m

d
b x P x b c P x R x y y dy

dx
    






 
 
 

                       (2.1) 

, , ,1 1
1 0

( ) ( ) ( ) ( , ) ( )
n

mi i i n i n m i n i
m

d
b x P x b c P x R x y y dy

dx
    






 
 
 

                      (2.2) 

              

                          

0 0,0 0 ,0

10 0

(0) ( ) ( ) ( ) ( ) , (1 )
k

n i i

i

D p P x x dx P x x dx i k  
 



                                                (2.3)

( ) ( ) 0;n

d
w D w

dw
 

 
   

 
 1n                                                                                 (2.4)    
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2 0 0, 2 0,

1

( ) ( , ) ( , ), 0
n

n m n m

m

b y R x y b c R x y n
y

   



 
    

 


                                          

(2.5)

                               

   2 , 2 ,

1

( ) ( , ) ( , ), 0
n

i i n m i n m

m

b y R x y b c R x y n
y

   



 
    

 
                                            (2.6)    

  0 3 0, 3 0,

1

( ) ( , ) ( , ), 0
n

n m n m

m

y b S x y b c S x y n
y

   



 
    

 
                                             (2.7)                                      

   3 , 3 ,

1

( ) ( , ) ( , ), 0
n

i i n m i n m

m

y b S x y b c S x y n
y

   



 
    

 
                                             (2.8)                                          

 Boundary Conditions 

0 0, 0 ,

10 0

(0) ( ) ( ) ( ) ( ) , 1
k

n n i n i

i

D p P x dx x dx P x x dx n 
 



   

                                             

(2.9)

                                

        

0,0 1 1 0

0 0

(0) ( ) ( ) (1 ) ( )P D w w dw r D w dw D  
 

    

                                                     

(2.10)

 

0, 1 1

0 0 0

(0) ( ) ( ) (1 ) ( ) ( ) , 1n n n nP D w w dw r D w dw r D w dw n  
  

       
                      

(2.11)

                   

, 0, 0

0

(0) ( ) ( ) 1
i n i n

P p P x x dx n



 
                                                                                  

(2.12)

                        

 

0, 0, 0

0

( ,0) ( , ) ( )n nR x S x y y dy


                                                                                         (2.13) 

   , ,

0

( ,0) ( , ) ( ) , 1i n i n iR x S x y y dy n


    (1 )i k                                                            (2.14)                  

0, 0 0,( ,0) ( )n nS x P x                                                                                                        (2.15)   

   , ,( ,0) ( ), 1, (1 )i n i i nS x P x n i k                                                                      (2.16)          

 Normalizing Condition  

0 , , ,

1 0 0 0 0 0 00 0 0 0 0 0

( ) ( ) ( , ) ( , ) 1
k k k

n i n i n i n

n n i n i n i

D D w dw P x dx R x y dxdy S x y dxdy

        

      

                                                                

(2.17)    

2.3.2 Probability Generating Function 

We use probability generating functions (PGF) corresponding to different states of 

the server to solve the set of differential difference equations so as to obtain the steady state 
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solution of the retrial queueing model.  The probability generating functions corresponding 

to different states are defined as follows: 

Retrial state : 

1

( , ) ( )
n

n

n

D w z D w z




 ; 1z   

Busy state   : 
,

0

( , ) ( ) ;
n

i i n

n

P x z P x z




 1z   

Repair state : 
,

0

( , , ) ( , )
n

i i n

n

R x y z R x y z




 ; 1z   

Set up state : 
,

0

( , , ) ( , ) ;
n

i i n

n

S x y z S x y z




 1z   

Batch size  : 

1

( ) m

m

ncC z z




 ; 1z   

The hazard rates corresponding to the different states are as follows: 

Retrial state ( )
( )

( )1

w
w

w

a

A
 


 

Busy state for the server being in  ith (1 )i k  phase of service ( )
( )

( )1

i
i

i

x
x

x

b

B
 


 

Repair state for the server broken during ith (1 )i k  phase of 

service 

( )
( )

( )1

i
i

i

x
y

x

g

G
 


 

Set up state  before repair process for the server broken during ith 

(1 )i k  phase of service 

( )

( )
( )

1

i
i

i

y

y
y

N


 


 

Now, we give our results for the partial generating functions and marginal generating 

functions for the different states of the system in the form of theorems as follows: 

Theorem 2.1: At random epochs, the partial probability generating functions of the joint 

distribution of the server being in idle state, FES state, i
th

 (1 )i k   SOS busy state, under 

repair while broken down states during FES and i
th

 (1 )i k   SOS, during setup while 

broken down during FES and i
th

 (1 )i k   SOS, respectively are given by 

 ( , ) (0, )exp ( )D w z D z w A w 
                                                                                        (2.18)  

0 0 0 0( , ) (0, )exp{ ( ) } ( )P x z P z H z x B x                                                                                (2.19) 

0 0 0( , ) ( ( )) (0, )exp{ ( ) } ( )i i i iP x z p b H z P z H z x B x                                                               (2.20) 

0 0 0 0 3 2 0( , , ) ( , ) { (1 ( ))}exp{ (1 ( ))} ( )R x y z P x z b C z b y C z G y      
                             

 (2.21)

3 2( , , ) ( , ) { (1 ( ))}exp{ (1 ( ))} ( )i i i i iR x y z P x z b C z b y C z G y      
                                  

(2.22) 
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   
0 0 0 3 0( , , ) ( , )exp{ 1 ( ) }S x y z P x z b y C z N y   

                                                         

(2.23) 

   3( , , ) ( , )exp{ 1 ( ) }i i i iS x y z P x z b y C z N y                                                               (2.24) 

 where,  

   1 01 ( ) (1 ( )), (0 )i iH z b C z M z i k      
                                                            

(2.25)
             

 

3 2( ) { (1 ( ))} ( (1 ( ))),i i iM z b C z g b C z    
  

(0 )i k 
                                                 

(2.26)
          

 

0 0 0 0 0 0

1

0 0 0 0 0

1

[1 ( ( )) ( ( )) ( ( ))]

D (0, z) =

[ ( ( )) ( ( )) ( ( ))][1 ( 1)(1 ( ))]

k

i i i

i

k

i i i

i

D z p b H z p b H z b H z

p b H z p b H z b H z r z a z









 

    




               

(2.27) 

0
0

0 0 0 0 0

1

(1 )(1 ( ))
(0, )

[ ( ( )) ( ( )) ( ( ))][1 ( 1)(1 ( ))]
k

i i i

i

D z r ra
P z

p b H z p b H z b H z r z a z
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     (2.29) 

 

Proof: Multiplying eqs (2.1)-(2.16) by the appropriate powers of z and summing over n=0, 

1, 2, 3, 4,... and then solving, we get eqs (2.18)-(2.28). Here, D0 can be determined by using 

normalizing condition (2.17). 

Theorem 2.2: The marginal probability generating functions at random epochs when the 

server is in idle state, busy with i
th 

(0 )i k   phase service, under repair while breakdown 

during  i
th 

(0 )i k  phase service, under set up state while broken down during FES and i
th

 

(1 )i k   SOS, respectively are given by  
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Proof: The marginal probability generating functions for different states of the server given 

in equations (2.30)-(2.36) can be determined by using 

0
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Theorem 2.3:  The generating function for the number of customers in the retrial queue is 

given by 
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where, 
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where,  
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Also, using (2.39) and (2.40a)-(2.40c), we obtain generating function for the number of 

customers in the retrial group as given by (2.38). 

Theorem 2.4: The generating function for the number of customers in the system is given by 
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Proof:  The generating function for the number of customers in the system can be obtained 

by using results from (2.40a)-(2.40c) in the following equation
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2.4 PERFORMANCE MEASURES 

Various performance measures like long run probabilities, queue length, availability 

as well as the failure frequency during different states are required for the analysis of any 

unreliable server queueing model. Some of them are obtained as follows:  

(A) Long Run Probabilities  

The long run probabilities of the system states are the probabilities with which the 

server remains at different states after attaining the steady state. These probabilities can be 

established as follows: 

Theorem 2.5: The long run probabilities of the server at different states are obtained as: 

 (i) The probability that the server is idle and the system is empty, is  

      I1= D0                                                                                                                          
(2.43a) 

 (ii) The probability that the server is idle but the system is not empty, is  

     I2 = 0(1 ( )) / (1 (1 ( ))D a r a                                                                              (2.43b)                                     

(iii) The probability of the server being in busy state, is                
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                                                 (2.43c)                                      

(iv) The probability of the server being under repair, is  
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(v) The probability that the server is under setup, is  
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Proof: Various long run probabilities given in (2.43a)-(2.43e), respectively are obtained by 

considering the following limiting behaviour of the server at various levels. 
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(B) Queueing Measures  

The applicability of any queueing model depends on its mean performance measures 

such as mean queue length and mean size of the orbit. Now, we establish mean queue 

lengths of the orbit and system, and expected waiting time under investigation in the 

following theorem: 

Theorem 2.6: The mean queue length of the retrial orbit ( RL ) and mean queue length of the 

system ( SL )
 
are respectively given by                  
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where, 1N ac D b 
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2 2 0[1 ( (1 ( ))], ( [ ] / ),i i iL g b C z L b E X       

(2) 2 2

2 2 0[( [ ]) ( [ ] / )]i iL g b E X b E X    

 
2

2 2 2(1 ( )), [ ], [ ]i i iU b C z U b E X U b E X          

2

3 3 3(1 ( )), [ ], [ ]i i iQ b C z Q b E X Q b E X        
 

Proof: The mean queue length of the retrial orbit can be obtained by using
                         

1
lim ( ),R
z

L P z


  where P(z) is the generating function of retrial orbit. Similarly, the mean 

queue length of the system can be obtained by using
1

lim ( )s
z

L L z


 , where L(z) is the 

generating function of the system size. Here, L - Hospital rule has been used six times to 

evaluate the limiting value when    . 

Theorem 2.7: The expected waiting time can be determined as: 

[ ]

s
s

eff

L
W

E X
                                                                                                          (2.47) 
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 where,  2 1 2 3eff B R SI b P b P b P         

Proof: The exact expected waiting time Ws is obtained using Little’s formula (cf. Gross and     

Harris, 1985).                                                             

(C) Reliability Measures 

The reliability indices of unreliable server give an idea of the availability and 

reliability of the server to perform its job successfully without any breakdowns.  

Theorem 2.8:  The steady state availability ( vA ) and failure frequency (Ff) of the server are 

obtained using 

 vA  0
0

1

(1 ( )) 1 ( ) (1 ( ))
k

i i

i

D
r a a r ra p     

 

  
        

  
                                    (2.48) 

 0
0 0

1

(1 ( ))
k

f i i i

i

D
F r ra p    

 

  
      

  
                                                                 (2.49)                                                     

Proof: To derive above results (2.48) and (2.49), we have used  

           
0 0

10 0 0

( ,1) ( ,1) ( ,1)
k

v i

i

A D D w dw P x dx P x dx

  



     
                                            

(2.50) 

            0 0

10 0

( ,1) ( ,1)
k

f i i

i

F P x dx P x dx 
 



  
                                                                  

(2.51) 

2.5 SPECIAL CASES 

Now, we consider some special cases of our model. The model under consideration 

can be reduced to various existing models available in the literature by setting some 

appropriate parameters as follows:  

 M/G/1 retrial queue with impatient customers and multi optional services 

By relaxing the assumptions of setup before repair and bulk arrival, we get this particular 

case. The eq. (2.41) of our model coincides with the eq. (60) of Wang and Li (2009) if 

1 2 3b =b =b =b, C (z) =z, ( ) 1,C z   i =1 (0 )i k  . 

 M/G/1 retrial queue with single phase optional service, no setup and without 

impatient customers 

On substituting, 

 i=1, 1 2 3b =b =b =1, C (z) = z, ( )C z  1, r=0, i =1 (0 1)i  , 0i  (0 1)i   

 eq. (2.41) coincides with eq. (4.13) of Wang et al. (2001).  

 M/G/1 queue with single phase optional service and server breakdowns 
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Using, i=1, 0  , 1 2 3b =b =b =1, C (z) =z, ( )C z  1, r = 0, i =1 , 0i   (2 )i k    

and second optional service as exponentially distributed, we get the same results as 

obtained by Wang (2004). 

 M/G/1 queue with Poisson input and optional service with general service 

distributions 

For the specific deduction of our model, we consider both the services being general 

distributed and other parameters suitably adjusted as i =1, 1 2 3b =b =b =1, C (z) =z, ( )C z 

1, r = 0, i =1, 0i  (0 ),i k  0.   In this case, we get the results compatible with that 

obtained by Medhi (2002). 

 M/G/1 queue with second optional service and no breakdowns 

For this case, we set i=1, 0  , 1 2 3b =b =b =1, C (z) =z, ( )C z 1, r=0, i =1 , 0i 

(0 )i k   in our model. Furthermore, if the distribution of FES being general distributed 

and SOS as exponentially distributed, we get the results as obtained by Madan (2000). 

 

2.6 MAXIMUM ENTROPY PRINCIPLE 

The principle of maximum entropy (MEP) can be used for estimating the 

probabilistic information measures which can be further used to obtain queue size 

distribution of queueing systems in different frameworks. In this section, we employ 

maximum entropy principle for the M
[x]

/G/1 retrial queueing system with impatient 

customers in order to determine the steady state probabilities of n customers in the system 

when the server being in i
th 

busy state , (0 )i nP i k  , in repair state , (0 )i nR i k  , in setup 

state , (0 )i nS i k   and being in idle state Dn. For the analysis purpose, we adopt the 

following procedure (cf. Wang et al., 2007b): 

(i) The construction of Lagrange’s function H using the method of Lagrange’s 

multipliers subject to a set of constraints in the terms of known indices. 

(ii) Partial differentiation of Lagrange’s function H w.r.t. ,i nP , ,i nR  , ,i nS , and Dn and 

setting the results to zero. 

(iii) Finally, solving the equations obtained in (ii) to derive results for the required 

probabilities. 
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The maximum entropy function Y (cf. El-Affendi and Kouvatos, 1983) is formulated 

in order to evaluate the steady state probabilities by using several known constraints in terms 

of performance characteristics as follows: 

                                                                                                                  

                                                                                                                                        (2.52) 

subject to the constraints                                                      

 (i)                                            

  

(ii)                          

                                                                                   

(iii)                                          

(iv) 

 (v)   , , ,

1 0 0 0

k k k

i n i n i n n S

n i i i

n R S D L


   

 
     

 
     ;  (0 )i k    

Lagrange’s Function 

To determine the maximum value of entropy function, we construct Lagrange’s 

function , , ,( , , , )i n i n i n nH P R S D by introducing the Lagrange’s multipliers i (0≤ i≤ k), i (0 ≤ 

i≤ k), 1k  and i  (0 ≤ i≤ k+ ) corresponding to the known information i.e. constraints 

available in the form of derived analytical results. Thus, we have 

, , ,

2

, , , , , , ,
1 0 1 0 1 0 1 0 0

, ,1
1 0 0 0 0

( , , , )

log log log log

i n i n i n n

B

R S

k k k k k

i n i n i n i n i n i n n n i i n
n i n i n i n i i

k k k k

n i i n i i nk
n i i i i

H P R S D

P P R R S S D D P P

D I R P S P



  

   

        




    



 
 
 

    
    

     

     

     



     

    

, , ,1
1 0 0 0

k k k

i n i n i n n Sk
n i i i

n R S D L



   

  
  
   

       

                                                                                                                 

(2.53)

          

 

Using MEP, we summarize our results for the approximate probabilities of different states in 

the form of following theorem: 

Theorem 2.9: The maximum entropy solutions for approximate values of probabilities               

, (0 )i nP i k  , , (0 )i nR i k  , , (0 )i nS i k  and Dn subject to the constraints are  

,
1

i n B
n

P P






,
1

i n R
n

R P






, , , , , ,

1 0 1 0 1 0 1

log log log log
k k k

i n i n i n i n i n i n n n

n i n i n i n

Y R R S S D D
   

      

         

2

1

n

n

D I






,

1

i n S

n

S P





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                                                                                       (2.54)

            

 

                                      

where,                                                                                                      

Proof:  By following the procedure as stated above, we get 

 1 1(1 )
, 0k kn

nD e e n
    

                                                                                              (2.55) 

 ,

(1 ) 1 , 0i n

ni ke eP n
                                                                                                                        (2.56)     

(1 ) 1
,

, 0
ni kS e e

i n
n

                                                                                                                     (2.57) 

1(1 )
, , 0,(0 )i kn

i nR e e n i k
                                                                                   (2.58)                                                    

For brevity, we use the following notations: 

(1 )ie
i




 
                                                                                                                                              (2.59) 

(1 )
, (0 1)i

ie i k



 

                                                                                                                       (2.60)  

(1 )
,i

ie



 

                                                                                                                                                (2.61) 

1
1
,(0 )ke d

k
i k

 



                                                                                                     (2.62) 

Using eqs (2.59)-(2.62), eqs (2.55)-(2.58) reduce to- 

, 1

n

i n i kP d   ,                                                                                                                                           (2.63) 

, 1

n

i n i kR d  ,                                                                                                                                           (2.64) 

, 1

n

i n i kS d  ,                                                                                                                                            (2.65) 

1 1

n

n k kD d  
                                                                                                                                          

(2.66)
                                                                                                                                                

 

Now, using results from eqs (2.63)-(2.66) in constraints, we get results for the long run 

probabilities of the server being in different states as- 

1

11

i k
B

k

d
P

d
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
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,                                                                                                                             (2.67) 
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d
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


,                                                                                                                                          (2.68) 

1

11

i k
S

k

d
P

d
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




,                                                                                                                                          (2.69) 
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1 1
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1

, (0 )
1

k k

k

d
I i k

d

  


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

                                                                                                 (2.70) 

Now, in order to determine the approximate queue length of the system, we substitute eqs 

(2.63)-(2.66) in  

, , ,

1 0 0 0

k k k

i n i n i n n S

n i i i

n R S D L

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 
     

 
      

and get 

 

1
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0 0 0
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1

ˆ
1
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k i i i

i i i

s
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d

L
d

  



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

 
  

 


  

                                                                                    

(2.71)

                                           

We denote 2B R SP P P I    
  

and using eqs (2.67) - (2.71), we have 

    
11

s

k

L
d








                                                                                                                                            (2.72) 

1
s

k

s

L
d

L





                                                                                                                                           (2.73)                                                                                                  

Further, using (2.67)-(2.71) and (2.72)-(2.73), we get 

 B
i

s

P

L





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
                                                                                                                                           (2.74) 

R
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






                                                                                                                                             (2.75) 

S
i

s

P
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






                                                                                                                                              (2.76) 

2
1 , (0 )k

s

I
i k

L





   


                                                                                                                    (2.77) 

Finally, substituting results from eqs (2.72)-(2.77) in (2.63)-(2.66), we get expressions given 

in eq. (2.54). 

Theorem 2.10:  By using the maximum entropy principle, the approximate expected waiting 

time in the system is 
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Proof: Following Wang et al. (2007b), maximum entropy principle can be used to obtain the 

approximate expected waiting time in the system. We proceed as follows: 

Let us consider that a tagged customer say ‘U’ when arrives in the system, finds n customers 

preceding him in the queue. The server can be in any of the states i.e. idle, busy, under repair 

or under setup when customer ‘U’ arrives. These following cases may arise- 

1. Idle state: If on the arrival, the customer ‘U’ finds the server in idle state then the 

incoming batch will be immediately served. The expected waiting time for a customer in this 

case includes the time taken by the additional customers in the batch preceding him to be 

served and is given as- 

2

1 0

1 [ ]
1

2 [ ]

k

I

n i i

E X
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E X



 

  
   

  
                                                                                          (2.79) 

2. Busy state:  If the server is in busy state, then the incoming batch joins the orbit and the 

customers in the batch wait for their turn. For this case, the waiting time of the customer ‘U’ 

includes the serving time 
0

k

i i

n



 of those n customers already present in the queue  plus the 

waiting time 
2

0

1 [ ]
1

2 [ ]

k

i i

E X

E X

 
 

 
 of those who precedes ‘U’ in the batch. The total expected 

waiting time in the busy state is given by- 
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                                                                           (2.80) 

3. Setup State:  When the server breaks down, it is sent for repair; but before repair, it is 

required for the repairman to make some preliminary settings before starting the repair. If the 

incoming customer finds the server under set up state when broken down during any i
th

 

(0 )i k   state of servicing, then it has to wait for the server to complete set up procedure 

with remaining set up time

(2)

(1)
0

, (0 )
2

k
i
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
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  , repair time
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  as well as the 

service time 
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 of n customers already present in the system. Moreover, the customers 

preceding ‘U’ will also take some time 
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 to get served. The mean waiting 

time in the set up state is  
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4. Repair state: When the server is in the repair state, the incoming batch will be served after 

completion of the repair of the server plus the servicing of those n customers already waiting 

in the queue. The mean remaining repair time is given by

(2)
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0 2

k
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g
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  when the server breaks 

down during i
th

 (0 )i k  state of the servicing, the waiting time for the servicing of n 

customers is
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Therefore, approximate expected waiting time in the queue given by (2.78) can be obtained 

by adding all the above expressions (2.79)-(2.82) for the waiting time obtained for different 

cases. 

 

2.7 NUMERICAL ILLUSTRATION 

           The numerical results of the retrial queueing model under consideration are obtained 

by coding program in ‘MATLAB’ software. We have divided our numerical illustration in 

two sub parts; (A) sensitivity analysis and (B) maximum entropy results. All the numerical 

computations have been done by considering only two optional services i.e. k=2. Moreover, 

the retrial time, repair time and setup time are also assumed to be exponentially distributed.  

(A) Sensitivity Analysis 

To study the effect of various parameters on different performance indices, we 

consider default parameters for computational purpose as- 

0 1 2 0 1 2 0 1 2 0

1 2 0 1 2

0.5, 0.1, 0.2, 0.1, 0.5 , 0.1, 5, 0.4,

0.2, 0.4, 0.1, 0.7.

p

p p r

           

  

            

     

At some stages of simulation, homogenous breakdown rate is also used 

0 1 2( 0.1).      

 
 Effect on reliability indices: Reliability indices basically give an idea of the availability, 

failure frequency and reliability of the server. Table 2.1 clearly indicates that the availability 
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of the server decreases with an increase in the value of mean batch size (E[X]) for fixed 

values of other parameters like r, α and γ. Also, an increase in λ results in the decrement of 

availability and increment of failure frequency. We notice that an increase in r also decreases 

the availability of the server. However, failure frequency increases with the increase in 

breakdown rate (α). 

 Table 2.2 presents the variation in the reliability indices with varying values of 

service rate (µ) and other parameters. The increment in service rate with fixed values of r, α 

and γ results in the increment (decrement) of the availability (failure frequency) of the server 

due to the speeding up of the servicing of the customers. But for fixed value of μ and on 

increasing r, availability (failure frequency) decreases (increases).  

 Effect on Queue length: The effect of parameters α, λ, γ, r, µ on the number of customers 

in the system (Ls) is presented by means of figs 2.1-2.4. The service pattern has been 

considered as Erlangian, exponential and gamma distributed for computational purpose. Fig. 

2.1 exhibits the trend of Ls with respect to the arrival rate for different values of E[X] for 

Erlangian, exponential and gamma service time distributions. It is observed that the length of 

the system increases with the an increase in the mean batch size E[X] which is quite obvious 

as more and more customers in a batch will increase the number of customers in the system. 

Fig. 2.2 depicts the variation in the Ls with retrial rate γ. As the value of γ increases, Ls 

seems to increase; this may be due to fact that as more and more customers retry for the 

service, the accumulation of the customers increases.  

On comparing the results for all the concerned distributions, we notice that Ls attains 

its highest value in the case of gamma distribution. The effect of variation with ‘r’ on Ls has 

been demonstrated in fig. 2.3. The variation in Ls also follows the increasing pattern with an 

increase in the values of r. An increase in the breakdown rate (α) interrupts in the servicing 

procedure, thereby increasing the queue length of the system. Fig. 2.4 depicts the effect of 

variation of α on Ls. The graphs plotted in fig. 2.4 show that Ls increases with an increase in 

the breakdown rate. This is because, simultaneous effect of increase in α as well as in λ 

increases the number of customers at a faster rate and the longer queue might build up in 

such a situation. 

(B) Exact Results vs. Maximum Entropy Results 

 In this section, we perform numerical experiment to facilitate a comparison between 

the exact average queue length (Ls) and approximate average queue length ( ˆ
sL ), exact  
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Table 2.1: Effect of λ on AV and Ff for M
 [x] 

/M/1 retrial queueing model  

   AV    Ff  

λ (r, γ, α) E[X]=3 E[X]=4 E[X]=5  E[X]=3 E[X]=4 E[X]=5 

 (0.1,0.2,0.1) 0.6312 0.6056 0.5761  0.0163 0.0177 0.0194 

 (0.2,0.2,0.1) 0.6251 0.5962 0.5625  0.0160 0.0172 0.0187 

0.5 (0.3,0.2,0.1) 0.6177 0.5846 0.5452  0.0157 0.0168 0.0181 

 (0.1,0.3,0.1) 0.6083 0.5697 0.5226  0.0167 0.0184 0.0204 

 (0.1,0.2,0.2) 0.5790 0.5418 0.4973  0.0313 0.0341 0.0374 

 (0.1,0.2,0.3) 0.5458 0.4873 0.4116  0.0338 0.0382 0.0438 

         

 (0.1,0.2,0.1) 0.3728 0.3289 0.2785  0.0268 0.0286 0.0308 

 (0.2,0.2,0.1) 0.3602 0.3096 0.2503  0.0273 0.0295 0.0320 

1.0 (0.3,0.2,0.1) 0.3442 0.2845 0.2127  0.0280 0.0305 0.0336 

 (0.1,0.3,0.1) 0.3230 0.2503 0.1601  0.0289 0.0320 0.0359 

 (0.1,0.2,0.2) 0.3098 0.2508 0.1807  0.0514 0.0558 0.0610 

 (0.1,0.2,0.3) 0.2517 0.1766 0.0849  0.0741 0.0816 0.0907 

 

Table 2.2: Effect of μ on AV and Ff for M
 [x] 

/M/1 retrial queueing model  

   AV    Ff  

μ (r, γ, α) E[X]=3 E[X]=4 E[X]=5  E[X]=3 E[X]=4 E[X]=5 

 (0.1,0.2,0.1) 0.3728 0.3289 0.2785  0.0268 0.0286 0.0308 

 (0.2,0.2,0.1) 0.3602 0.3096 0.2503  0.0273 0.0295 0.0320 

5.0 (0.3,0.2,0.1) 0.3442 0.2845 0.2127  0.0280 0.0305 0.0336 

 (0.1,0.3,0.1) 0.3230 0.2503 0.1601  0.0289 0.0320 0.0359 

 (0.1,0.2,0.2) 0.3098 0.2508 0.1807  0.0514 0.0558 0.0610 

 (0.1,0.2,0.3) 0.2517 0.1766 0.0849  0.0741 0.0816 0.0907 

         

 (0.1,0.2,0.1) 0.5301 0.5059 0.4790  0.0201 0.0211 0.0222 

 (0.2,0.2,0.1) 0.5230 0.4955 0.4645  0.0204 0.0215 0.0229 

7.0 (0.3,0.2,0.1) 0.5142 0.4822 0.4456  0.0207 0.0221 0.0237 

 (0.1,0.3,0.1) 0.5027 0.4645 0.4200  0.0212 0.0229 0.0248 

 (0.1,0.2,0.2) 0.4776 0.4445 0.4069  0.0389 0.0414 0.0442 

 (0.1,0.2,0.3) 0.4283 0.3855 0.3358        0.0566    0.0609     0.0658 
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                                                        (c)                                                                        (c) 

           Fig. 2.1:  Effect of λ and E[X] on Ls for       Fig. 2.2:  Effect of λ and γ on Ls for  
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(a) (a) 
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                                            (c)                                                     (c) 

           Fig. 2.3:  Effect of λ and r on Ls for        Fig. 2.4:  Effect of λ and α on Ls for  
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waiting time (Ws) and approximate waiting time ( ˆ
SW ) obtained by applying maximum 

entropy principle. To examine how close are the approximate results obtained by MEP to 

exact results; we calculate absolute percentage error APE1 for the waiting time and APE2 for  

the queue length for different service time distributions. The default parameters for the 

computational purpose are fixed as  

0 1 2 0 1 2 0 1 2

0 1 2 1 2 3

0.11, 0.2, 0.02, 1, , 0.4, 0.2, 0.4, 0.1,

1, 0.1, 9.

p p p r      

      

         

      
  

It is noticed from table 2.3 that when the service time is Erlangian-2 distributed and repair 

time is exponentially distributed, the absolute percentage error for the average waiting time 

(APE1) increases with an increase r whereas it decreases with an increase in the retrial rate (

 ). On the other hand absolute percentage error (APE2) for the average queue length 

exhibits opposite behaviour. It decreases with an increase in both r and  . APE1 increases 

significantly with an increase in r. The effects of r and   on APE1 and APE2 for M
x
/M/1 

retrial model have been displayed in table 2.4. The waiting time increases with an increase in 

r.  However, APE2 gives exactly the same value as obtained for Erlangian distributed service 

time but queue lengths differ significantly. 

 

Table 2.3: Maximum entropy results for M
x
/E2/1 retrial model  

r Ws 
ˆ

S
W  APE1 (%) Ls 

ˆ
s

L  APE2 (%) 

0.10 269.35 253.67 5.82 538.71 531.73 1.29 

0.12 274.89 253.69 7.71 549.78 543.19 1.19 

0.14 280.49 253.74 9.53 560.99 554.80 1.10 

0.16 286.18 253.83 11.30 572.37 566.57 1.01 

0.18 291.96 253.95 13.01 583.92 578.52 0.92 

0.20 297.82 254.10 14.68 595.65 590.65 0.83 

γ  Ws 
ˆ

S
W  APE1 (%) Ls 

ˆ
s

L  APE2 (%) 

0.05 

0.10 

261.93 

269.35 

247.00 

253.67 

5.70 

5.82 

523.87 

538.71 

516.49 

531.73 

1.40 

1.29 

0.15 276.44 260.09 5.91 552.88 546.29 1.19 

0.20 283.21 266.27 5.98 556.42 560.23 1.09 

0.25 289.68 272.23 6.02 579.37 573.58 1.00 

0.30 295.89 277.97 6.05 591.78 586.37 0.91 
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Table 2.4: Maximum entropy results for M
x
/M/1 retrial model  

r Ws 
ˆ

S
W  APE1 (%) Ls 

ˆ
s

L  APE2 (%) 

0.10 354.31 292.17 17.53 708.63 699.45 1.29 

0.12 361.55 292.69 19.04 723.10 714.44 1.19 

0.14 368.88 293.23 20.50 737.76 729.61 1.13 

0.16 376.31 293.80 21.92 752.62 745.00 1.01 

0.18 383.84 294.39 23.30 767.69 760.60 0.92 

0.20 391.50 295.00 24.64 783.00 776.43 0.83 

γ  Ws 
ˆ

S
W  APE1 (%) Ls 

ˆ
s

L  APE2 (%) 

0.05 344.44 283.79 17.60 688.89 679.19 1.40 

0.10 354.31 292.17 17.53 708.63 699.45 1.29 

0.15 363.74 300.24 17.45 727.48 718.81 1.19 

0.20 372.74 308.02 17.36 745.49 737.35 1.09 

0.25 381.36 315.52 17.26 762.73 755.10 1.00 

0.30 389.61 322.76 17.15 779.23 772.11 0.91 

 

Table 2.5: Maximum entropy results for M
x
/ /1 retrial model  

r Ws 
ˆ

S
W  APE1 (%) Ls ˆ

s
L  APE2 (%) 

0.10 291.83 263.85 9.58 583.66 576.10 1.29 

0.12 297.82 264.01 11.35 595.65 588.52 1.19 

0.14 303.90 264.20 13.06 607.81 601.10 1.10 

0.16 310.06 264.42 14.71 620.13 613.85 1.01 

0.18 316.32 264.67 16.32 632.64 626.79 0.92 

0.20 322.67 264.95 17.88 645.35 639.94 0.83 

γ  Ws 
ˆ

S
W  APE1 (%) Ls ˆ

s
L  APE2 (%) 

0.05 283.79 256.74 9.53 567.59 559.59 1.40 

0.10 291.83 263.85 9.58 583.66 576.10 1.25 

0.15 299.50 270.70 9.61 599.01 591.88 1.19 

0.20 306.84 277.29 9.63 613.68 606.98 1.09 

0.25 313.86 283.64 9.62 627.72 621.44 1.00 

0.30 320.58 289.77 9.61 641.16 635.30 0.91 

The minimum % error for the queue length has been obtained by varying the values of both r 

and . It is found that the results obtained by using maximum entropy are reasonably close 

with that obtained by the analytic technique at higher reneging and higher retrial rates. The 

data captured in table 2.5 has been calculated for a queueing model dealing with service time 
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as gamma distributed and repair time as exponentially distributed. Table 2.5 exhibits the 

effect of r and   on the waiting time and queue length. The variation in absolute % error for 

queue length is also reported for all the cases with a chosen set of default parameters. 

2.8 DISCUSSION 

The performance analysis of unreliable bulk arrival retrial models with impatient 

customers and optional services is studied. We can summarise our findings in the present 

study as follows: 

 Ls increases significantly with an increase in the values of arrival rate λ, mean batch size 

E[X] and reneging probability. The system performance is also sensitive to the minor 

changes in the values of retrial rate γ and server breakdown rate α. Simultaneous 

increment in both α and λ contributes significantly to the increase in Ls.  

 As expected, reliability indices viz. availability (failure frequency) is also affected by the 

related parameters. The availability of the server can be increased by improving the repair 

rate which will also help in reducing the failure frequency. 

 It is noticed that out of the three distributions namely exponential, gamma and Erlangian 

for service pattern, gamma distribution gives maximum queue length while Erlangian, 

which is phase type distribution, gives minimum queue length of the system. The least 

absolute percentage error for waiting time is obtained in the case when the service time is 

Erlangian distributed and repair time is exponentially distributed.  

 
The absolute percentage error for waiting time increases significantly with the increase in 

r and increases gradually with an increase in . Of all the three cases involving repair 

process as exponential process, higher percentage errors are obtained when both service as 

well as repair process are exponential distributed while minimum errors are obtained in 

case of Erlangian-2 service time distribution. 
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CHAPTER 3 

Retrial Queue with Bernoulli 

vacation schedule 
 

3.1 INTRODUCTION 

Vacation retrial queueing models find a significant place in the mathematical 

modeling of a variety of congestion situations where server may opt for vacation of 

random length due to the non-availability of the customers to be served. The recent past 

comprehensive study on queueing systems with server vacations was due to Doshi (1986) 

and Takagi (1993).  

Adaptive Neuro Fuzzy Inference System (ANFIS) can be used along with the 

traditional classical techniques to analyze the complex queueing systems in a more 

efficient manner. Jang and Sun (1995) opened new ways to the study of ANFIS by 

suggesting algorithms of adaptive network based fuzzy inference systems. A detailed 

description of ANFIS can be found in the articles by Tettamanzi and Tomassini (2001). 

Lin and Liu (2009) also studied ANFIS technique to predict the CMP manufacturing 

parameters. Moreover, queueing network modeling of flexible manufacturing system 

using mean value analysis has also been done by Jain et al. (2008). Jain and Upadhyaya 

(2009) analysed threshold N-policy for degraded machining system using ANFIS 

approach. Bhargava and Jain (2014) studied unreliable multiserver queueing system with 

modified vacation policy and compared the results using ANFIS approach. 

A bulk arrival retrial queue with vacation and impatient customers is studied in 

this chapter by using generating function and supplementary variables technique. Various 

features incorporated in this investigation are (i) retrial queue (ii) bulk arrival (iii) 

vacation (iv) multioptional services (v) phase repair and (vi) impatient customers. The 

rest of the chapter is organized in the following manner. Section 3.2 describes the 

mathematical assumptions and requisite notations to develop the model under 

consideration. The governing equations and generating functions of the queue size 

distribution are obtained in sections 3.3 and 3.4 respectively. Some special cases of our 

model are discussed in section 3.5. The performance measures are derived in section 3.6 

to characterize the queueing and reliability characteristics. Section 3.7 is devoted to the 



 

66 
 

sensitivity analysis by taking numerical illustration and using ANFIS approach. Finally, 

we wind up our investigation with conclusions in section 3.8. 

 

3.2 MODEL DESCRIPTION  

We consider a bulk arrival M
[x]

/G/1 retrial queueing system with multioptional 

services and reneging. The customers arrive in Poisson manner with arrival rate   in 

batches. The service is provided to the customer if the server is idle; otherwise he is 

forced to join the virtual pool (i.e. retrial orbit) of the customers, from where he tries 

again and again for the service after a random interval of time which is exponential 

distributed with rate γ. The service process is general distributed and is performed in the 

same manner as described in chapter 2.2. The server is unreliable and may breakdown in 

Poisson fashion during any course of service. The other new assumptions in this model 

are as follows:  

 Repair Process: The repair process is assumed to be general distributed and completed 

in d compulsory phases with rate  , (1 )j j d    for the server broken during i
th

 

(0 )i k  phase service and at thj   phase repair. But before starting the repair process, 

the server takes some time called setup time with rate ξ to make some preliminary 

settings i.e. there is delay-in-repair. The setup time and repair time of thj  (1 )j d   

repair phase are considered to be i.i.d. and general distributed. 

 Bernoulli Vacation Schedule: After each service completion, the server may also go 

for a vacation of random length with probability θ or may continue to serve the next 

customer with complementary probability (1-θ). The vacation time is assumed to be 

general distributed with rate . 

 

3.3 QUEUE SIZE DISTRIBUTION 

In order to formulate the equations for the present non-markovian system, the 

supplementary variable technique has been employed by introducing the supplementary 

variables for elapsed service time, elapsed vacation time, the elapsed repair time and 

elapsed set up time.  

Let N(t) represents the number of customers in the system and S1(t) and S2(t) 

denote the phase of the service and phase of repair respectively, at any time t. 

The state of the server at any time t is given by
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1, server is in idlestate

2, server is busyin providing FES to thecustomers

3, server is busyin providing SOS to thecustomers
Y(t) =

4, server is broken down and under setup before repair

5, server is broken down and under repair

6, server is under vacation











 

In the steady state, the joint distributions of the server state and queue size are defined as-

 limPr ( ) 1, ( ) , 0n
t

D Y t N t n n


     

 0, 1( ) limPr ( ) 2, ( ) , ( ) , ( ) 0 , 0n
t

P x Y t x t x dx N t n S t n


            

 , 1( ) limPr ( ) 3, ( ) , ( ) , ( ) , 0,(1 )i n
t

P x Y t x t x dx N t n S t i n i k


              

 ( , ) limPr ( ) 4, ( ) , ( ) , ( ) , 0n
t

S x y Y t t x y t y dy N t n n 


       

 , , 2( , ) limPr ( ) 4, ( ) , ( ) , ( ) , ( ) ,

0, (0 ), (1 )

i j n
t

R x y Y t t x y t y dy N t n S t j

n j k j d

 


       

    
             

 ( ) limPr ( ) 6, ( ) , ( ) , 0n
t

V x Y t x t x dx N t n n


        

Below we construct a set of steady state Kolomogorov forward equations after 

introducing the supplementary variables as follows: 

0 0,0 0 ,0

10 0 0

(0) ( ) ( ) ( ) ( ) ; (1 )( ) ( )
k

n i i

i

nD p P x x dx P x x dx i kV x x dx     
 





                  (3.1)

( ) ( ) 0; 1n

d
w D w n

dw
 

 
    

                                                                                     
(3.2)

                                                                                                            

0 0 0, 0, 0, ,

1 0
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n

n m n m d n d

m

d
x P x c P x R x y y dy
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





 
     

 
 
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d
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

 
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 
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i

nD p P x dx x dx P x x dx nV x x dx    
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     
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 
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0 0 1 1 0,

0 0

(0) ( ) ( ) (1 ) ( )P D w w dw r D w dw D  
 

                                                          (3.9)

0, 1 1

0 0 0

(0) ( ) ( ) (1 ) ( ) ( ) ; 1n n n nP D w w dw r D w dw r D w dw n  
  

                          (3.10)  

, 0, 0

0

(0) ( ) ( ) ; 1, (1 )
i n i n

P p P x x dx n i k



   
                                                                  

(3.11)

 

,
( ,0) ( ), (0 ); 1

n i i n
S x P x i k n   

                                                                              
(3.12)

,1,

0

( ,0) ( , ) ( ) ; (0 ), 1i n nR x S x y y dy i k n


   
                                                            

(3.13)
 

, , , 1, 1

0

( ,0) ( , ) ; 1, (0 ), (2 )i j n i j n jR x R x y dy n i k j d


      
                                  

(3.14)
 

0 0, 0 ,

10 0

(0) (1 ) ( ) ( ) (1 ) ( ) ( )
k

n n i n i

i

V p P x x dx P x x dx   
 



     
                                      

(3.15)
 

 The normalizing condition is given by 

0 0, ,

1 0 10 0 0

, ,

0 0 1 0 00 0 0 0 0
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   

  

      

    

 
   

 

   

    

     
                          

(3.16)

 

 

3.4 PROBABILITY GENERATING FUNCTION 

As considered in chapter 2, here also we use probability generating function 

technique to obtain the steady state solution of the retrial queueing model. The generating 

function corresponding to the service time and batch size is same as considered in chapter 

2. The generating function corresponding to phase-repair, vacation and setup time, 

respectively for this analysis are defined as: 

, , ,
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

0

( , , ) ( , ) ; 1n
n

n

S x y z S x y z z
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

  .                                                                              (3.17) 

The hazard rate corresponding to phase repair, vacation and set up time are respectively, 

defined as  
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Now, we establish some results expressed in the form of theorems as stated below: 

Theorem 3.1: The partial generating functions for the server being in idle state, FES state, 

i
th

 (1 )i k  SOS busy state, under j
th

 (1 )j d   phase
 
repair while broken down in i

th
 

(1 )i k   phase service, under setup and on vacation at random epoch respectively, are  

 ( , ) (0, )exp ( )D w z D z w A w                                                                                      (3.18)                                                                                     

0 0 0 0( , ) (0, )exp{ ( ) } ( )P x z P z M z x B x                                                                           (3.19)                                                                                                

0 0( , ) ( ( ))exp{ ( ) } ( ) (0, )i i j i iP x z p b M z M z x B x P z    ,  1 i k                                     (3.20)                                                                      

   , , ,( , , ) ( , )exp{ (1 ( )) } ( ) ( ); 0 , 1i j i i i i j i jR x y z p P x z C z y H z G y i k j d       
    

(3.21)
                      

            

 ( , , ) ( , )exp{ (1 ( )) } ( ), 0i i iS x y z p P x z C z y N y i k     

                                        

(3.22)

 

0

0

( , ) (1 ) (0, ) ( ( )) ( )exp{ (1 ( )) }
k

i i i

i

V x z p P z b M z W x C z x 


                                      (3.23)  

And, 

0
[1 ( ) (1 ) ( )]

D(0,z) =
[1 ( 1)(1 ( ))][ ( ) (1 ) ( )]

D X z Y z

r z a X z Y z z

  

  

  
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(3.24)  

0

0

[1 ( 1)(1 ( )) ]
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 

  

   


                                                         
(3.25)

 

where, 

   
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Note:  For the brevity, we use the product 
1

,

1

( (1 ( )))
j

i r

r

g C z




 
  

 
  in our results. 

However, the value of 
1

,

1

( (1 ( )))
j

i r

r

g C z




 
  

 
 =1 when j=1. 

Proof: The proof follows on the lines of theorem 2.1. 
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Theorem 3.2: At random epochs, the marginal probability generating functions when the 

server is in idle state, busy with FES, busy with i
th (0 )i k   phase service, under j

th
 

(1 )j d  phase repair while broken down during i
th

 (0 )i k   phase service, under set 

up and on vacation respectively, are  

(0, )(1 ( ))
( )

D z a
D z






                                                                                                (3.30) 

0 0 0
0

0

(0, )(1 ( ( ))
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( )

P z b M z
P z

M z


                                                                                         (3.31) 

 0 0 0 1
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p b M z P z b M z

P z
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
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, ,

,

( ) ( )(1 ( (1 ( )))
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( (1 ( )))

i i i j i j

i j

P z H z g C z
R z i k j d

C z

 



 
    
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( )(1 ( (1 ( )))
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S z i k
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  



 
  


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 0

0

[1 ( (1 ( )))]
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w C z
V z p b M z P z
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




 
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
                                                (3.35) 

Proof:  The proof follows on the lines of theorem 2.2. 

Theorem 3.3: The generating function for the number of customers in the retrial queue is 

                                                                                                                                               

 

 

 

 

   

                                                                                                                                      (3.36)              

Proof: The probability generating function for the number of customers in the retrial orbit 

is obtained using 

0 0 ,

1 0 1
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k k d

i i j

i i j

K z D D z P z P z R z S z V z
  

                                       (3.37) 

Theorem 3.4: The generating function for the number of customers present in the system, 

is 
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0 0 0
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(3.38)

                                                                                                         

 

Proof: The generating function of the number of customers in the system is obtained by 

using results of marginal generating functions given by 

0 0 ,

1 0 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
k k d

i i j

i i j

L z D D z zP z z P z z R z zS z V z
  

       
                                         

(3.39)

          

                                     

3.5 SPECIAL CASES 

In the present section, we deduce some special cases by setting appropriate 

parameters. Now some special cases are deduced as: 

 (i) Bulk arrival M/G/1 queue with unreliable server and single vacation 

    On setting, γ=0, r =0, αi=0 (1≤ i≤ k), d=1, pi=0,
 

1, 
 

    our model reduces to that investigated by Haridass and Arumuganathan (2008). 

(ii) M/G/1 retrial queue with impatient customers and multi optional services
 

On setting, C (z) =z, ( ) 1, 1, 1, 1, 0,C z w d      
 
our results coincide with the 

results obtained by Wang and Li (2009). 

  (iii) M/G/1 unreliable retrial queueing system with two phase service without 

vacation and impatient customers 

By substituting, C (z) =z, ( ) 1, 1, 1, 1, 0, 0, 1,C z w d r k          our results 

correspond to those of Choudhury and Deka (2008). 

(iv)  M/M/1 reliable queue without vacation and single service 

On substituting,  0, 0, 0, 0, 0, 0, 1, 1, ( ) , ( ) 1,i j ip r w C z z C z                

the explicit results for the queue length coincide with the results for classical M/M/1 

model of Gross and Harris (1985). 

(v) M/G/1 queue with second optional service and no breakdowns 
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On setting i=1,γ=0, C (z) =z, ( ) 1, 1, 1, 0,C z w      r=0, 0i   (0≤ i≤ k) in our 

model and considering FES being general distributed and SOS as exponentially 

distributed, we get the results as obtained by Madan (2000). 

 

3.6 PERFORMANCE MEASURES 

Some performance indices characterizing the queue size, long run probabilities 

and reliability issues are derived below in various categories as follows: 

(A) Queueing Measures 

The computation of performance measures namely average system size and queue 

length of the orbit are the key indices which determine the effectiveness and validity of 

any retrial system.  

Theorem 3.5: The mean queue length of the retrial orbit (LR) and mean queue length of 

the system (LS) are 
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Proof: The mean queue length of the retrial orbit and mean queue length of the system are 

derived by using 

            1
lim ( )R
Z

L K z


 , 
1

lim ( ).S
Z

L L z


  

Theorem 3.6: The mean waiting time (WT) of the customers in the system is 

                          sL
WT


  

Proof: The mean waiting time is evaluated by using Little’s formula  

Mean queue length = Mean waiting time  Effective arrival rate 

(B) Long Run Probabilities 

Here, we derive the explicit expressions for the long run probabilities of the server 

being in different states. To evaluate the status of the server, we employ the corresponding 

generating function and results are given in the following theorem. 

Theorem 3.7: The long run probabilities of the server being in idle (PI), busy (PB), under 

set up (PS), repair (PR), and vacation (PV) states respectively, are given below as- 
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Proof:  The proof follows on the lines of theorem 2.5. 

(C) Reliability Measures 

The reliability indices of interest viz. availability and failure frequency are given in the 

following theorem: 

Theorem 3.8: The steady state availability ( vA ) and failure frequency (Ff) of the server are   
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Proof: The results given in equations (3.45) and (3.46) are obtained in the similar manner 

as in theorem 2.8. 

 

3.7 NUMERICAL ILLUSTRATION 

The present section deals with the numerical results of our model to examine the 

effects of various parameters on the performance indices. The batch size, retrial time, 

repair time and setup time have been assumed to be exponentially distributed. The 

computational work has been done by considering two optional services i.e. k=2 and two 

phase repair system i.e. d=2. The numerical simulation has been performed by assuming 

service distribution to be Erlangian-5 (E5) distributed. The numerical results have been 

summarized in tables 3.1-3.3 and displayed in figures 3.1-3.4. The sensitivity of 

performance indices with respect to different parameters are explained below. 

(A) Effect of Key Parameters on the Performance Indices 

The default parameters for evaluating the computational results are taken as follows:

0 1 2 0 1 2 0 1 2 0

1 2

0.5, 0.01, 0.08 , 0.1, 5, 0.4,

0.2, 0.4, 0.1, 0.3, 0.3, 0.8.

p

p p r

           

  

            

     
 

  Table 3.1 shows the effect of µ on the performance indices for varying values of 

set up rate (ξ) and repair rate (β). The data shown in table 3.1 clearly indicates that PI, PB,  
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Table 3.1: Effect of µ with varying values of (ξ, β) on various performance indices 

µ (ξ, β) PI PB PR PS PV WT Ff 

5 

 

(0.1,0.04) 0.0780 0.0121 0.0628 0.0024 1.4046 52.41 0.0013 

(0.1,0.06) 0.0808 0.0165 0.0407 0.0024 1.4544 42.63 0.0013 

(0.1,0.08) 0.0820 0.0187 0.0301 0.0024 1.4806 38.14 0.0013 

(0.1,0.10) 0.0827 0.0199 0.0239 0.0024 1.4968 35.57 0.0013 

(0.2,0.10) 0.1022 0.0246 0.0295 0.0029 0.7484 14.51 0.0016 

(0.3,0.10) 0.1093 0.0263 0.0316 0.0032 0.4989 9.68 0.0017 

(0.5,0.10) 0.1152 0.0278 0.0333 0.0033 0.2994 6.61 0.0018 

7 

 

(0.1,0.04) 0.0782 0.0090 0.0665 0.0017 1.3663 49.75 0.0010 

(0.1,0.06) 0.0806 0.0124 0.0435 0.0017 1.3996 40.76 0.0010 

(0.1,0.08) 0.0817 0.0140 0.0323 0.0017 1.4168 36.28 0.0010 

(0.1,0.10) 0.0823 0.0150 0.0257 0.0017 1.4274 33.63 0.0010 

(0.2,0.10) 0.1024 0.0187 0.0320 0.0022 0.7137 13.72 0.0012 

(0.3,0.10) 0.1098 0.0200 0.0343 0.0023 0.4758 9.10 0.0013 

(0.5,0.10) 0.1159 0.0212 0.0362 0.0025 0.2855 6.12 0.0014 

9 

 

(0.1,0.04) 0.0781 0.0072 0.0687 0.0014 1.3459 48.33 0.0008 

(0.1,0.06) 0.0802 0.0099 0.0452 0.0014 1.3709 39.80 0.0008 

(0.1,0.08) 0.0811 0.0112 0.0336 0.0014 1.3837 35.33 0.0008 

(0.1,0.10) 0.0817 0.0120 0.0268 0.0014 1.3915 32.65 0.0008 

(0.2,0.10) 0.1020 0.0150 0.0334 0.0017 0.6958 13.33 0.0009 

(0.3,0.10) 0.1095 0.0161 0.0359 0.0019 0.4638 8.82 0.0010 

(0.5,0.10) 0.1158 0.0171 0.0380 0.0020 0.2783 5.89 0.0011 

                 

Table 3.2: Effect of α with varying values of (r, γ) on various performance indices 

α (r, γ) PI PB PR PS PV WT Ff 

0.01 

 

(0.08,0.1) 0.1077 0.0246 0.0401 0.0031 0.4893 10.83 0.0017 

(0.1,0.1) 0.1084 0.0246 0.0398 0.0031 0.4935 10.97 0.0017 

(0.3,0.1) 0.1133 0.0249 0.0359 0.0032 0.5526 12.95 0.0017 

(0.5,0.1) 0.1110 0.0253 0.0296 0.0032 0.6804 17.20 0.0018 

(0.1,0.08) 0.1114 0.0245 0.0395 0.0031 0.4943 10.98 0.0017 

(0.1,0.3) 0.0851 0.0260 0.0424 0.0033 0.4883 10.86 0.0018 

(0.1,0.5) 0.0700 0.0268 0.0440 0.0034 0.4854 10.80 0.0019 

0.02 

 

(0.08,0.1) 0.1002 0.0135 0.0840 0.0062 0.4587 10.98 0.0034 

(0.1,0.1) 0.1010 0.0135 0.0835 0.0062 0.4619 11.12 0.0034 

(0.3,0.1) 0.1085 0.0136 0.0770 0.0062 0.5052 13.10 0.0034 

(0.5,0.1) 0.1123 0.0138 0.0665 0.0063 0.5925 16.98 0.0035 

(0.1,0.08) 0.1040 0.0134 0.0829 0.0061 0.4625 11.15 0.0034 

(0.1,0.3) 0.0784 0.0141 0.0880 0.0064 0.4580 10.92 0.0035 

(0.1,0.5) 0.0641 0.0145 0.0908 0.0066 0.4557 10.80 0.0036 

0.03 

 

(0.08,0.1) 0.0904 0.0019 0.1315 0.0091 0.4317 14.32 0.0050 

(0.1,0.1) 0.0913 0.0019 0.1309 0.0091 0.4340 14.62 0.0050 

(0.3,0.1) 0.1006 0.0019 0.1229 0.0092 0.4653 18.52 0.0050 

(0.5,0.1) 0.1090 0.0019 0.1102 0.0092 0.5246 25.20 0.0051 

(0.1,0.08) 0.0941 0.0019 0.1301 0.0090 0.4345 14.67 0.0050 

(0.1,0.3) 0.0702 0.0020 0.1366 0.0094 0.4312 14.26 0.0052 

(0.1,0.5) 0.0569 0.0020 0.1401 0.0096 0.4295 14.04 0.0053 
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Table 3.3: Effect of λ with varying values of (ψ, β) on various performance indices 

λ (ψ, β) PI PB PR PS PV WT Ff 

0.1 

(0.1,0.06) 0.0532 0.0009 0.0172 0.0024 0.0776 5.01 0.0004 

(0.1,0.08) 0.0539 0.0011 0.0129 0.0024 0.0778 4.63 0.0004 

(0.1,0.1) 0.0543 0.0012 0.0103 0.0024 0.0779 4.41 0.0004 

(0.2,0.1) 0.0347 0.0013 0.0107 0.0012 0.0728 2.68 0.0004 

(0.3,0.1) 0.0273 0.0014 0.0109 0.0008 0.0712 2.21 0.0004 

(0.5,0.1) 0.0209 0.0014 0.0110 0.0005 0.0700 1.88 0.0004 

0.3 

(0.1,0.06) 0.1174 0.0074 0.0311 0.0066 0.3531 13.05 0.0012 

(0.1,0.08) 0.1177 0.0087 0.0231 0.0066 0.3577 11.74 0.0012 

(0.1,0.1) 0.1179 0.0095 0.0184 0.0066 0.3605 11.06 0.0012 

(0.2,0.1) 0.1012 0.0106 0.0236 0.0032 0.2700 6.82 0.0012 

(0.3,0.1) 0.0866 0.0109 0.0252 0.0021 0.2492 5.83 0.0012 

(0.5,0.1) 0.0711 0.0112 0.0265 0.0012 0.2347 5.21 0.0011 

0.5 

(0.1,0.06) 0.0782 0.0181 0.0223 0.0099 1.2314 24.34 0.0018 

(0.1,0.08) 0.0758 0.0212 0.0160 0.0099 1.2894 21.84 0.0018 

(0.1,0.1) 0.0743 0.0231 0.0125 0.0099 1.3270 20.70 0.0018 

(0.2,0.1) 0.1138 0.0256 0.0270 0.0048 0.5912 11.47 0.0018 

(0.3,0.1) 0.1093 0.0263 0.0316 0.0032 0.4989 9.68 0.0017 

(0.5,0.1) 0.0973 0.0269 0.0352 0.0019 0.4436 8.61 0.0017 

PV increase with the increase in repair rate (β) while other performance indices show 

decreasing trend. The failure frequency Ff remains almost constant for the increased values 

of β. The waiting time decreases with the increase in service rate µ. We notice that as set 

up rate (ξ) increases, long run probabilities PI, PB, PR and PS show an increasing trend 

while WT and PV decrease.  

Table 3.2 displays the effect of breakdown rate (α) for varying values of r and 

retrial rate (γ) by keeping fixed values of other key parameters. It can be noticed that an 

increment in breakdown rate (α) causes an increase in the values of WT, PR, PS and Ff 

whereas PI, PB and PV decrease. We observe that PI, PB and PV increase whereas PR 

decreases as we increase r. Even for the varying values of γ, the long run probabilities PI, 

PR and waiting time decrease whereas other performance indices show the opposite 

behavior.  

The effect of arrival rate λ for the varying values of vacation rate (ψ) and repair 

rate (β) is displayed in table 3.3. As the arrival rate increases from 0.1 to 0.5, the long run 

probabilities PB, PS, Ff, PV and waiting time increase while PI and PR show the fluctuating 

trend. An increase in the vacation rate (ψ) for constant λ leads to an increase in PB and PR 

whereas PB, PV and WT show decreasing pattern. The waiting time increases drastically 

with an increase in the arrival rate λ. This is due to the fact that an increase in the arrival 

rate leads to an increase in the number of customers in the system which automatically 

increases the waiting time.  
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                                     (a)                                                                         (b) 

      

                                                  (c)                                                                              (d) 

Fig. 3.1: Effect of r on the queue length (Ls) 

The simultaneous increase in both ψ and λ reveal that PR, PB and PS increase while 

PV decreases. Moreover an increase in β leads to an increment in PB. But simultaneous 

increase in λ and β increases PB manifold; the reason for this fact is that an increase in λ 

keeps the server more occupied due to the arrival of more customers. It is observed that the 

waiting time decreases with an increase in β which is quite obvious, as an increase in the 

repair rate makes the server available for the servicing of the customers and hence reduces 

the waiting time. 

(B) Average Queue Length (Ls) 

Now we demonstrate the effect of reneging probability (1-r) on the average queue 

length (Ls) of the system with respect to other key parameters. Figs 3.1(a-d) exhibit the 

trends for Ls with respect to r to judge the sensitivity. The analytical result of the queue 

length has been simulated numerically for this purpose. Fig. 3.1 (a) illustrates the effect of 

retrial rate γ for the increasing values of r. It is quite interesting to note that Ls increases 

abruptly as r increases and γ decreases. It is very obvious that with an increase in r, 

probability (1-r) decreases which in turn increases the number of customers.  
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Fig. 3.1(b) depicts the effect of r with varying values of vacation rate ψ on Ls. The 

queue length decreases as the vacation rate increases; the reason behind this is that when a 

server goes for vacation, there is no customer in the system which implies the reduction in 

the number of customers in the system. Figs 3.1(c) and 3.1(d) depict the behavior of the 

expected batch size E[X] and service rate µ respectively on the Ls by varying r. Ls 

increases with an increase (decrease) in batch size E[X] (µ).  

 (C) ANFIS Results of Ls 

For complex queueing models, it is difficult to obtain exact results in explicit form which 

are computationally manageable. In the present section, the analytical results are compared 

with the approximate results obtained by developing the Adaptive Network Based Fuzzy 

Inference System (ANFIS) using Neuro-fuzzy tool in MATLAB. The Gaussian function 

has been used to depict the membership function of the fuzzy parameters. The ANFIS is 

trained for 5 epochs and the results are computed by considering 5 linguistic values (say 

very low, low, average, high, and very high) for the input parameter λ. The Gaussian 

membership function for λ is shown in fig. 3.2. To compare the numerical results obtained 

using analytical queue length (Ls), various graphs have been plotted against different key 

parameters. Fig. 3.3 depicts the sensitivity of Ls towards different parameters. ANFIS 

results plotted are shown by discrete lines in figs. 3.3 (a-d). To compare these results with 

the exact results, we have plotted the analytical results by continuous lines in the same 

figures.  

 

Fig. 3.2: Membership Function 

Fig 3.3(a) demonstrates the effect of batch size E[X] on Ls which increases 

considerably by increasing E[X]. This is quite obvious as the number of customers will 
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increase if the batch size increases. Figs 3.3(b)-3.3(d) illustrate the behavior of Ls with the 

other significant parameters like set up rate (ξ), repair rate (β) and vacation rate (ψ). It is 

noticed from fig. 3.3(b) that Ls decreases as the set up rate (ξ) increases; an increase in ξ 

speeds up the repair process which automatically decreases the number of customers in the 

system. Also, an increase in the repair rate β reduces Ls as shown by fig. 3.3(c).  

Similarly, an increase in the vacation rate (ψ) decreases the number of customers 

in the system; this may be due to frequent visits of the server for vacation. Along with the 

exact results, the results obtained by neuro fuzzy technique namely ANFIS are also plotted 

in figures 3.3(a- d). It is found that the continuous and discrete curves almost overlap 

which demonstrates that exact analytical results are in good agreement with that of ANFIS 

results. 

  
                                         (a)                                                                          (b) 

  

                                        (c)                                                                          (d) 

Fig. 3.3: Variation in Ls with λ for various parameters 
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(D) ANFIS Results of AV 

One of the important reliability measure namely availability (AV) of the server has been 

plotted using the ANFIS approach. Various figures have been drawn to display the 

availability vs. λ for both exact (continuous lines) and neuro fuzzy (discrete lines) 

approach for different values of parameters viz. α, E[X], γ and r in fig. 3.4(a-d), 

respectively. The availability of the server decreases as the breakdown rate α increase as 

shown in fig. 3.4(a).  Figs 3.4(b) and 3.4(d) display that an increment in E[X] and r lead 

to the decrement in the availability of the server. From fig. 3.4(c), it is clear that as the 

retrial rate (γ) increases, more and more customers try for the service which in turn 

reduces the availability of the server to all the customers. It can be observed that the plots 

for Ls as well as Av obtained by ANFIS are very close (almost overlapping) with that 

obtained by using analytical explicit expressions. 

 

       

                                       (a)                                                                            (b) 

      

                                           (c)                                                                           (d) 

Fig. 3.4: Variation in Av with λ for various parameters 
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3.8 DISCUSSION 

The retrial queueing model developed in this paper depicts the queueing scenario 

dealing with the impatient customers, phase repair and multioptional services. Now based 

on numerical simulation and experience with ANFIS approach, we can conclude that- 

 The total number of customers in the system increases (decreases) with an increase in 

the ‘r’ and batch size (repair rate, vacation rate and set up rate). The queue length of 

the concerned queueing model can be controlled by reducing the batch size and 

increasing the repair rate. 

 As expected, the availability of the server decreases by increasing the breakdown rate 

α, batch size and retrial rate γ. It is found that the control over the parameters like 

repair rate and γ can make the server more available to serve the incoming customers.  

 It is noticed that both analytical and ANFIS results are in strong agreement with each 

other which demonstrates that computing approach based on ANFIS can be 

successfully employed for the prediction of the queueing and reliability indices in 

many real time complex systems. The numerical simulation done by using the classical 

SVT approach are consistent with those obtained by soft computing approach based on 

ANFIS approach.  
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CHAPTER 4 

Modified Vacation Policy for 

Bulk Retrial Queue  
 

4.1 INTRODUCTION 

A variety of vacation policies have been developed by the queue theorists during 

the course of their research since long. This is due to the fact that different real life 

congestion situations are dealt by the server in different manners. In chapter 3, we dealt 

with Bernoulli vacation schedule policy of the server. Another vacation policy namely 

modified vacation policy has been studied in this chapter. The server can avail only a 

fixed number of vacations of random length in case no customer is present in the system 

for the service. Chang and Ke (2009) considered a batch retrial model where the server 

can take at most J vacations; the customer can go for a series of continuous J vacations if 

no customers/jobs are available in the orbit. Ke and Chang (2009b) investigated modified 

vacation policy for M/G/1 retrial queue and obtained various performance measures. 

Bhargava and Jain (2014) investigated unreliable multiserver queueing system with 

modified vacation policy. 

The pattern of servicing also plays a significant role in the modeling of retrial 

queues. In the queue literature, various kinds of services like single service, optional 

services, multioptional services, phase services have been studied. Choudhury and Tadj 

(2011) studied the optimal control of bulk arrival M/G/1 unreliable server with two 

phases of service and Bernoulli vacation schedule. The servicing in phases clearly relates 

to many realistic day-to-day situations. The admission in any institute requires a number 

of formalities and filling of a number of forms. This process is completed in various 

compulsory phases from getting the form to the submission of completed application 

form. Various intermediate steps like submission of medical fitness certificates, previous 

educational qualifications proof, completion of admit card, fees deposition, etc. are also 

involved in the completion of the process. All these are compulsory phases and admission 

cannot be completed if any of these compulsory steps is skipped. Jain and Agrawal 

(2010) analyzed a batch arrival queueing system with N-policy and Bernoulli vacation 

schedule wherein the customer undergoes l-essential stage service procedure to avail the 

service.  
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In this chapter, bulk arrival retrial vacation queue with unreliable server has been 

studied. Both service process and repair process are done in fixed compulsory phases in 

succession. Moreover, the server takes some time to start the repair so as to make some 

preliminary settings, known as setup time. Moreover, the concept of modified vacation 

has been incorporated along with the discouragement behavior of the customers. Section 

4.2 describes the requisite assumptions to formulate the model. The governing equations 

along with the boundary conditions and generating functions of the queue size 

distribution are obtained in section 4.3. The performances measures are derived in section 

4.4. Section 4.5 deals with the maximum entropy analysis of the retrial model. Section 4.6 

is devoted to the sensitivity analysis which is carried out by taking numerical illustration. 

Finally, the conclusions have been drawn in section 4.7. 

 

4.2 MODEL DESCRIPTION 

Consider bulk arrival M/G/1 retrial queue model with unreliable server, reneging 

and vacation policy. The server is unreliable and may breakdown in an exponential 

manner while providing service to the customers. The broken down server is repaired 

following general distribution in d-compulsory phases as considered in chapter 3. The 

other assumptions underlying the model are as follows: 

 Arrival Process 

The customers arrive in batches in the system following Poisson distribution with state 

dependent arrival rate I depending on the server’s status; ‘I’ takes value 1, 2, 3, 4 and 5 

when the server is in retrial state, busy state, setup state, repair state and in vacation state, 

respectively. The incoming customers are served if they find the server idle otherwise 

they are forced to join the virtual pool of the customers called orbit from where they can 

try again for the service with exponential retrial rate γ. 

 Service Process 

If an incoming batch of the customers finds the server in idle state, then a customer at the 

head of the batch joins the server to get served. All the customers are served in k essential 

phases with service rate i  (1 )i k  for a customer availing i
th

 phase of service. 

 Vacation Policy 

If no more customers are present in the system, then the server takes at most J vacations 

repeatedly with rate l  (1 )l J  for l
th

 vacation and returns back if at least one job is 

found in the orbit after returning from the vacation. This process repeats again if no more 
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jobs are available in the system i.e. the server may reactivate at the end of l
th 

(1≤ l ≤ J) 

vacation if any customer/job is available in the system. But the server remains dormant in 

the system if no job is present in the system at the end of J
th

 vacation.  

 

4.3 QUEUE SIZE DISTRIBUTION 

Let N(t) represents the number of customers in the system and S1(t), S2(t)  and 

S3(t) denote the phase of the service, phase of repair and state of vacation respectively, at 

any time t. 

The state of the server at any time t is given by 

 

1, server is in idlestate

2, server is busyin providingservice to thecustomers

Y(t) = 3, server is broken down and under setup before repair

4, server is broken down and under repair

5, server is in vacation state









 

In the steady state, the joint distributions of the server state and the queue size are defined 

as- 

   
 limPr ( ) 1, ( ) , 0n

t
D Y t N t n n


       

 , 1( ) limPr ( ) 2, ( ) , ( ) , ( ) , 0,(1 )i n
t

P x Y t x t x dx N t n S t i n i k


                     

 , 1 2( , ) limPr ( ) 3, ( ) , ( ) , ( ) , ( ) , ( ) , 0,

(1 ), (1 )

i n
t

S x y Y t t x y t y dy N t n S t i S t j n

i k j d

 


         

   

 , , 1 2( , ) limPr ( ) 4, ( ) , ( ) , ( ) , ( ) , ( ) ,

0, (1 ), (1 )

i j n
t

R x y Y t t x y t y dy N t n S t i S t j

n i k j d

 


        

    

 , 1 2 3( ) limPr ( ) 5, ( ) , ( ) , ( ) , ( ) , ( ) ,

0, (1 ), (1 ), (1 )

l n
t

V x Y t x t x dx N t n S t i S t j S t l

n i k j d l J




        

      
 

4.3.1 Mathematical Formulation  

Before framing the governing equations for the model, we give the proposition 

stating the stability condition for the model as follows: 

Proposition 4.1: The necessary and sufficient condition for the system to be stable is 

                                       1(1 ( )) 1r a Y     

where, (1)

1

(1),
k

q q

q

Y b H


   
2

( ) (1) (1),
i i i

H z C M        



 

86 
 

(1) (1)

3 , 4

1

( ) ( (1)) ( (1))
j

i i i r

r

M z C g C  


       

Proof: The above result is proved in the same manner as in proposition 2.1.  

Now, we formulate the set of equations along with the boundary conditions governing the 

model by using the supplementary variables technique as follows: 

Governing Equations 

1 0 ,0

0

( ) ( )J JD V x x dx 


                                                                                                         (4.1)

                                                                                                            

1 ( ) ( ) 0; 1n

d
w D w n

dw
 

 
 
 

   
                                                                                              

(4.2)

 

, ,2 2 , , ,
1 0

( ) ( ) ( ) ( , ) ( ) ;

(1 )

n

i i i n m i n m i d n i d
m

d
x P x c P x R x y y dy

dx

i k

    





 
 
 

    

 

 
             

(4.3)
                 

, ,3 3
1

( ) ( , ) ( , );
n

i i n m i n m
m

y S x y c S x y
y

   


 
 
 


  


 (1 ), 0i k n  

                            

(4.4)
 

4 , , , 4 , ,

1

( ) ( , ) ( , ); (1 ), (1 ), 0
n

i j i j n m i j n m

m

y R x y c R x y i k j d n
y

   



 
        

 


       

(4.5)
   

5 ,0
0( ) ( ) ; (1 )

l l

d
x V x l J

dx
 

 
 
 

    
                                                                  

(4.6)

 

5 5, ,
1

( ) ( ) ( ); (1 ), 1
n

ml l n l n m
m

d
x V x c V x l J n

dx
  




 
 
 

     
                               

(4.7)        

Boundary Conditions 

, ,

1 0 0

(0) ( ) ( ) ( ) ( )
k

J

n l n l k n

l

D V x x dx P x x dx 
 



  
                                                                   

(4.8)

 

, 1, 1

0

(0) ( ) ( ) ; (1 ), 1i n i n iP P x x dx i k n


    
                                                                       

(4.9)

                                                           

, ,( ,0) ( ), (1 ); 1i n i i nS x P x i k n   

    

                                                                                    (4.10)

,1, ,

0

;( ,0) ( , ) ( )i in i nR x S x y y dy


    (1 )i k  , 1n                                                                 (4.11)

, , , , 1 , 1

0

( ,0) ( , ) ; (1 )i j n i j n i jR x R x y dy j d


    , (1 )i k  1n                                           (4.12)  
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0,0 1 1 1 1 0

0 0

(0) ( ) ( ) (1 ) ( )P D w w dw r D w dw D  
 

    
                                                   

(4.13)

1, 1 1 1 1

0 0 0

(0) ( ) ( ) (1 ) ( ) ( ) ; 1n n n nP D w w dw r D w dw r D w dw n  
  

       
                 

(4.14)  

1,0 1

1,0 0

( ) ( ) , 0
(0)

0, 1

P x x dx n
V

n





 





                                                                                        

(4.15)

                                              

1,0 1

,0 0

( ) ( ) , 0 2,3,..,
(0)

0, 1 2,3,..,

l l

l

V x x d n l J
V

n l J




 


 

 


 


                                                            

(4.16)

     
 

Also, the normalizing condition is given as follows
 

0 , , ,

1 0 1 0 1 10 0 0 0

, ,

0 1 0 10 0 0

( ) ( ) ( , )

( , ) ( ) 1

kk k d

n i n i j n

n n i n i j

k J

i n l n

n i n l

D D w dw P x dx R x y dxdy

S x y dxdy V x dx

    

     

   

   

  

  

     

  
                           

(4.17)  

4.3.2 Probability Generating Function 

As used in chapters 2 and 3, here also we use probability generating functions 

(pgf) corresponding to different states of the server to solve the set of differential 

difference equations so as to obtain the steady state solution of the retrial queueing model. 

The generating functions and hazard rates corresponding to service process and setup 

process are same as considered in chapter 2; the generating function and hazard rate for 

repair process are same as taken in chapter 3. The generating function for the vacation 

state is expressed as ,
0

( , ) ( ) ;l

n
l n

n

V x z V x z




 1,z  (1 )l J  . Also, the hazard function 

corresponding to vacation state is given by
( )

( )
( ) ,

1

l
l

l

x

x

w
x

W
 


(1 )l J  .  

Now, we establish some theorems to present queue size distributions as follows: 

Theorem 4.1: The partial generating functions for the server being in idle state, busy with 

i
th

 (1 )i k  phase of service, under j
th

 (1 )j d  repair state while broken down during 

i
th

 (1 )i k  phase of service, during set up state, in l
th

  vacation (1 )l J  at random 

epoch respectively, are  
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 1( , ) (0, )exp ( )D w z D z w A w 
                                                                                             (4.18)                                                                                    

                                                                                     

1

1

1

( , ) (0, ) ( ( )) exp{ ( ) } ( )
i

i q q i i

q

P x z P z b H z H z x B x




 
  

 
                                              (4.19)                                                                      

1

, 1 3

1

1

, 4 4 ,

1

( , , ) (0, ) ( ( )) exp{ ( ) } ( ) ( ( ( )))

( ( ( ))) exp{ ( ( )) } ( ), (1 ), (1 )

i

i j i q q i i i

q

i r i j

r

j

R x y z P z b H z H z x B x C z

g C z C z y G y i k j d

  

 









 
   

 

 
       
 




           

(4.20)
                              

            

1

1 3

1

( , , ) (0, ) ( ( )) exp{ ( ) } ( )exp{ ( ( )) } ( ),

(1 )

i

i i q q i i i

q

S x y z P z b H z H z x B x C z y N y

i k

 




 
   

 

 



   

(4.21)

 

5( , ) (0, )exp{ ( ( )) } ( )l l lV x z V z C z x U x                                                                      (4.22)  

where, 

 
1 0

1

5

(0, )
( )

l J l
V z

D

w




 

 ,     for l=1, 2,.., J                                                                      (4.23)  
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 
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
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
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
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








    
       

    

 
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(4.25)
                                               

 

3 , 4

1

( ) ( ( ( ))) ( ( ( )))
d

i i i r

r

M z C z g C z  
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 
                                                                       

(4.26)  

 2
( ) ( ( )) (1 ( ))

i i i
H z C z M z   

                                                                                  
(4.27)  

Note:  For the brevity, we use the product 

1

, 4
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( ( ( )))
j
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g C z



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1

1
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q

b H z




 
 
 
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our results. However, the value of 

1

, 4

1

( ( ( )))
j

i r

r

g C z




 
 
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q q
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b H z




 
 
 
 =1 when i=1. 
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Proof: The proof of the theorem is obtained in the same manner as done in theorem 2.1. 

Theorem 4.2: The marginal probability generating functions at random epochs, when the 

server is in idle state, busy with i
th 

(1 )i k   phase service, under j
th

 (1 )j d   phase 

repair while breakdown during i
th 

(1 )i k   phase service, under set up before repair and 

under l
th 

(1 )l J   vacation are respectively, given by 

1

1

(0, )(1 ( ))
( )

D z a
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




                                                                                             (4.28)                                                                             
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Proof:  The proof is done on the lines of theorem 2.2.  

Theorem 4.3: The generating function for the number of customers in the retrial queue is  
1
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(4.33)  

Proof: We can obtain the probability generating function for the number of customers in 

the retrial queue by using 
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Theorem 4.4: The generating function for the number of customers present in the system 

is  
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(4.35)  

Proof: The generating function of the number of customers in the system is obtained by 

using the results of marginal generating functions and is obtained by 
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(4.36)

    

     

4.4 PERFORMANCE INDICES 

Some of the important performance indices are derived by using generating 

functions in various categories as follows: 

(A) Long Run Probabilities 

The long run probabilities of the server being in idle (PI), busy (PB), repair (PR), set up 

(PS) and vacation (PV) states respectively, are given below in the form of following 

theorem. 

Theorem 4.5:  

(i) Long run probability of the server being in the idle state, is  
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(ii) Long run probability of the server being in the busy state, is  
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(iii) Long run probability of the server being in the repair state, is 
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(iv) Long run probability of the server being under set up state, is  
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(v) Long run probability of the server being in the vacation state, is  
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Proof: For proof, we follow the procedure as used for the proof of theorem 2.5. 

(B) Queueing Measures 

The analytic expressions for the queue lengths of both system and retrial orbit is obtained 

in the following theorem: 

Theorem 4.6: The mean queue length of the retrial orbit (LR) and that of the system (LS) 

are 
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(4.43)

 

Proof:  The mean queue length of the retrial orbit and mean queue length of the system 

are obtained in eqs (4.42) and (4.43) respectively, by using  

                 1
lim ( )R
z

L K z


  and 
1

lim ( )s
z

L L z


  

Here, L - Hospital rule has been used six times to evaluate the limiting value when    . 
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Theorem 4.7: The exact expected waiting time for a customer in the system is given by 

                   s
s

eff

L
W


                                                                                                     (4.44) 

where,  1 2 3 4 5 [ ]eff I B S R VP P P P P E X          . 

Proof: The exact expected waiting time Ws is obtained by using Little’s formula (cf. 

Gross and Harris, 1985) as given by eq. (4.44). 

(C) Reliability Measures 

In this section, we derive some important reliability measures namely availability 

and failure frequency. 

Theorem 4.8: The steady state availability ( vA ) and failure frequency (Ff) of the server 

are 
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Proof: The availability and failure frequency for the system given in eqs (4.45) and (4.46) 

are obtained using  
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4.5 MAXIMUM ENTROPY PRINCIPLE 

In this section, we employ maximum entropy approach in order to determine the 

steady state probabilities
, (1 )i nP i k  ,

, , (1 ),(1 )i j nR i k j d    ,
, (1 )i nS i k  , 

, (1 )l nV l J  and Dn for the concerned M
[x]

/G/1 retrial queueing system with modified 

vacation policy. For the analysis purpose, we follow the following procedure (cf. Wang et 

al., 2007b) as used in section 2.6 and frame maximum entropy function as: 

                                                                                                                                            

                                                  

(4.47) 

 

subject to the constraints 

(i)                                         (4.48) 

, , , , , , , ,

1 1 1 1 1 1 1

, ,

1 1 1

log log log

log log

k k d k

i n i n i j n i j n i n i n

n i n i j n i

J

n n l n l n

n n l

Y R R S S

D D V V

  

      

 

  

     

 

  

 

, , , ,

1 1 1 1 1 1 1

, ,
k k d k

i n B i j n R i n S

n i n i j n i

P P R P S P
  

      

    



 

94 
 

 

(ii)                                                                                                                                 (4.49) 

(iii)
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Lagrange’s Function

                                                                                                                                                                                                                                                                           

 

To determine the maximum value of entropy function, we construct Lagrange’s 

function , , , ,( , , , , )i n i n i n n l nH P R S D V  by introducing the Lagrange’s multipliers i (1 ≤ i≤ k), 
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(4.51) 

The results obtained for approximate probabilities of different states of the server are 

presented in the form of following theorem.

 

Theorem 4.9: The maximum entropy solutions for the approximate values of 

probabilities  i,n i,j,n n , ,nP , R ,D , andV ,(1 ),(1 ),(1 ), 1 i n lS i k j d l J n        subject to 

the constraints are 

             

  

   

                                                                               (4.52)

 

                         

 where, 

                                                                                          (4.53) 

Proof:  The proof of this theorem is done on the lines of theorem 2.9. 

Theorem 4.10: Using the principle of maximum entropy, the approximate expected 

waiting time in the system is  
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                 (4.54) 

Proof: The approximate expected waiting time is obtained by following the same 

procedure as used for the proof of theorem 2.10. 

  4.6. NUMERICAL ILLUSTRATION 

The present section deals with the sensitivity analysis of the performance indices 

of queueing model with respect to the various parameters.  

(A) Queue Length (Ls) 

To study the sensitivity of queue length towards various parameters, figures 4.1-

4.6 have been plotted corresponding to three service time distributions namely Erlangian-

2, exponential and gamma distributions. The vacation time, retrial process, set up process 

as well as repair process is assumed to follow exponential distribution. The set of default 

parameters assumed for the numerical illustration are as follows- 

1 2 3 4 5 1 2 1 2

11 12 21 22

0.5, 1, 5, 0.01, 0.1, 2,

0.1, 0.9.r

              

    

              

     

 The effect of parameters namely breakdown rate (α) and repair rate (β) on the 

queue length of the system have been demonstrated in figs 4.1 and 4.2. It is clear from the 

figs 4.1(a-c) that the queue length increases as the breakdown rate increases from 0.008 

units to 0.01 units for all the service time distributions. The maximum number of 

customers or queue length is observed in the fig. 4.1(c), when the service time is 

supposed to be gamma distributed. On the other hand in fig. 4.2 wherein graphs are 

plotted for different values of repair rate β (0.6, 0.8 and 1), LS decreases with an increase 

in the repair rate. This is due to the fact that an increase in the breakdown rate forces the 

customers to accumulate in the system due to the non-working condition of the server, 

and hence increases the queue length. 

In figs 4.3 (a-c) queue lengths have been plotted for various values of service rate 

µ for (a) Erlangian-2 (b) exponential and (c) gamma service time distributions. The 
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graphs plotted in figures 4.3 (a-c) clearly demonstrate that the queue length of the system 

decreases with an increase in the service rate for all the three service time distributions.  

Figs 4.4 (a-c) depict the sensitivity of ‘r’ on the queue length of the system. The number 

of customers in the system increases as r increases from 0.1 to 0.3 units. The variations of 

the queue length with the vacation rate  and setup rate ξ are explored through figures 4.5 

and 4.6.  

Moreover, the set up rate also affects the system size; an increase in the setup rate 

decreases the number of customers in the system as demonstrated by figs 4.6 (a-c). This 

pattern is due to the fact that an increase in the setup rate improves the repair process of 

the server which in turn increases the availability of the server and thus a reduction in the 

number of customers in the system is observed. 

(B) Comparison of Exact and Approximate Average Waiting Time 

In the present subsection, a comparison between exact average waiting time (Wq) 

and approximate average waiting time has been presented in tables 4.1- 4.2. Table 4.1 

shows the comparison between exact and approximate average waiting time for two types 

of service time distributions namely exponential and gamma distributions. The absolute 

percentage error (APE %) has been obtained for variation in different parameters namely 

(i) setup rate ξ, (ii) retrial rate γ and (iii) breakdown rate α=α1=α2. An increase in the set 

up rate ξ from 1.0 unit to 2.5 units affects the waiting time of the customer in the queue.  

APE decreases with the increase in retrial rate for both exponential as well as 

gamma distributions with maximum % error as 16.20 % for exponential distribution and 

15.92 % for gamma distribution in Case 2. The data captured in Case 3 depicts the effect 

of breakdown rate α on the waiting time of the customer in the system. Both exact and 

approximate waiting time increases with the increase in break down rate from 0.006 units 

to 0.01 units. Table 4.2 displays the data for the average waiting time for a queueing 

model with Erlangian-2 and deterministic distributed service time. With an increase in 

retrial rate γ and breakdown rate α, APE as well as average waiting time decreases. 
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                                 (a)                                                           (a) 

  

                                      (b)                                                                     (b)

 

  

                                      (c)                                                                                    (c) 

      Fig. 4.1: Effect of α on Ls for                            Fig. 4.2: Effect of β on Ls for  

(a) Erlangian-2                                                   (a) Erlangian-2                                   

(b) Exponential                                                   (b) Exponential 

(c) Gamma distributed service time                 (c) Gamma distributed service time  
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                                         (a)                                                                      (a)              

   
                                         (b)                                                                      (b)                                           

  

(c)                                                                       (c)

     Fig. 4.3: Effect of µ on Ls for                            Fig. 4.4: Effect of r on Ls for  

(a) Erlangian-2                                                   (a) Erlangian-2                                   

(b) Exponential                                                   (b) Exponential 

(c) Gamma distributed service time                 (c) Gamma distributed service time  
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(a)                                                                         (a) 

   

        (b)                                                        (b) 

   

        (c)                                                                           (c) 

     Fig. 4.5: Effect of ψ on Ls for                            Fig. 4.6: Effect of ξ on Ls for  

(a) Erlangian-2                                                   (a) Erlangian-2                                   

(b) Exponential                                                   (b) Exponential 

(c) Gamma distributed service time                 (c) Gamma distributed service time  
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Table 4.1: Comparison of exact and approximate average waiting time for 

Exponential   and Gamma distributed service time 

 

Service time as Exponential 

distributed 

 

 

 

 

distributed distributed 

distributeddistributed 

Service time as Gamma distributed 

Case 1 Case 1 

ξ Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

1.0 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592 

1.8 4.1718 4.2041 0.7755 3.8460 3.8577 0.3066 

2.0 4.1685 4.2098 0.9900 3.8430 3.8624 0.5062 

 Case 2 Case 2 

γ Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

0.080 4.2578 4.9479 16.2072 3.9054 4.5272 15.9205 

0.090 4.2195 4.5384 7.5560 3.8795 4.1622 7.2858 

0.10 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592 

 Case 3 Case 3 

α Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

0.006 4.1146 3.6017 12.4659 3.7856 3.3029 12.7513 

0.008 4.1498 3.8788 6.5305 3.8210 3.5611 6.8004 

0.01 4.1838 4.1969 0.3143 3.8552 3.8575 0.0592 

 

4.7 COST ANALYSIS 

In the present section, we construct the expected total cost function (ETC) for the 

retrial queueing model with modified vacation policy under consideration. The cost 

function is formulated as: 

h s b B s s R R V V I IETC C L C P C P C P C P C P       

where, 

hC = Holding cost per unit customer 

bC = Cost per unit time while servicing the customers 

sC = Cost per unit time for making pre repair settings 

RC = Cost per unit time for providing repair to the broken down server  

VC = Cost per unit time in the system when the server is on vacation  

IC = Cost per unit time when the customer retry for the service  
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Table 4.2: Comparison of exact and approximate average waiting time for  

Erlangian-2 and Deterministic distributed service time

 

 
Service time as Erlangian-2 

distributed 

Service time as Deterministic 

distributed 

 

 

 

 Case 1 Case 1 

ξ Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

1.0 4.2248 4.2393 0.3434 4.2659 4.2818 0.3720 

1.8 4.2125 4.2474 0.8290 4.2533 4.2907 0.8815 

2.0 4.2092 4.2532 1.0452 4.2499 4.2966 1.0994 

 Case 2 Case 2 

γ Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

0.080 4.3019 5.0005 16.2398 4.3459 5.0531 16.2716 

0.090 4.2621 4.5854 7.5868 4.3046 4.6324 7.6169 

0.10 4.2248 4.2393 0.3434 4.2659 4.2818 0.3720 

 Case 3 Case 3 

α Wq 
ˆ

qW

 

APE (%) Wq 
ˆ

qW

 

APE (%) 

0.006 4.1969 3.6764 12.4015 4.1558 3.6391 12.4333 

0.008 4.2320 3.9582 6.4696 4.1909 3.9185 6.4998 

0.01 4.2659 4.2818 0.3720 4.2248 4.2393 0.3434 

 

The effect of various parameters on the total cost of the system has been examined 

so as to visualize the nature of the cost function towards various parameters. The set of 

default cost elements are taken as CI =10, CR =50, Ch =5, Cb =50, CV=20, Cs =20. Figures 

4.7 (a-d) display the effect of various parameters namely reneging probability (r), retrial 

rate (γ), arrival rate (λ) and breakdown rate (α1) respectively, on the total cost (ETC) of 

the system. The graphs are plotted with ETC on the y-axis and service rate µ (=µ1= µ2) on 

the x-axis. The sensitivity of cost with respect to service rate (µ) for different values of r 

is displayed in fig. 4.7 (a).  

The total cost of the system increases with an increase in the reneging probability 

for both exponential and gamma service time distributions. It is seen that the total cost of 

the system decreases with the increase in retrial rate (γ) from 0.1 units to 0.3 units for the 

fixed values of other parameters as displayed in fig. 4.7(b) for both types of distributions. 

The sensitivity of total cost with varying values of arrival rate (λ) and breakdown rate (α1) 

has been depicted in figs 4.7(c) and 4.7 (d), respectively. Fig. 4.7(d) displays the effect of  
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                                  (a)                                                                            (b) 

     

                                          (c)                                                                            (d) 

Fig. 4.7: Effect of (a) reneging probability r (b) retrial rate γ (c) arrival rate λ and 

(d)  break  down rate α1 on ETC of the system 

 

breakdown rate and service rate on ETC; it is quite interesting to observe that the total cost 

values for different service time distributions namely exponential and gamma service time 

are quite close enough.  

 4.8 DISCUSSION 

The bulk arrival retrial queueing model with discouragement and modified 

vacation has been analyzed. The concepts of phase service and phase repair incorporated 

along with the delaying repair makes the present model close to many real life queueing 

scenarios. Overall, we may conclude that- 

 The maximum queue length is observed in case of a system with gamma service time 

distribution as compared to the system following exponential and Erlangian-2 service 

time distributions.  
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 The queue length decreases as the vacation rate increases; this is due to the fact that a 

server goes for vacation only when there is no customer in the system which implies 

reduction in the number of customers in the system. 

 APE increases with an increase in the setup rate (ξ) for both Erlangian-2 and 

deterministic distributed service process. Hence, the choice of appropriate service 

distribution may help in reducing the waiting time of the customers in the system. 

 As expected, the total cost increases with an increase in r, retrial rate (γ), arrival rate 

(λ), breakdown rate (α1) and service rate (µ). 
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CHAPTER 5 

priority retrial queue with 

multiple phase service  
 

5.1 INTRODUCTION   

The formation of retrial queues can also be visualized in many systems which 

allow the arrivals of different class of customers. One such example of real life 

congestion situations is the working of hospitals where variety of patients are admitted 

and are treated depending on the injury/problem with which they are suffering. The 

emergency patients with major injuries are obviously treated earlier than the patients with 

minor problems and thus later are forced to wait for their turn in the orbit. Such retrial 

queues are said to be retrial queues with priority customers.  

In the queues associated with the real life congestion situations, the customers are 

basically served on the basis of first come first serve (FCFS) criterion. But there may be 

queueing situations in which jobs are assigned or classified according to some priority 

index. Some notable results on single server priority retrial queues can be found in the 

article by Choi and Chang (1993). Gomez-Coral (2002) analysed single server retrial 

queue with non-preemptive priority. Wang (2008) analyzed the single server retrial queue 

with priority customers where service times for both the customers are assumed to be 

general distributed. Dimitriou (2013) studied priority retrial queue with negative arrivals, 

unreliable server and multiple vacations. 

The objective of our study in this chapter is to investigate the batch arrival retrial 

queues with two types of customers viz. non-preemptive priority and ordinary customers. 

The service of the customers is completed in multi essential phases. Further, we assume 

that the repair of the failed server is also done  in multi essential phases. The present 

chapter is organized in the following manner. Section 5.2 deals with the description of the 

model. Section 5.3 presents the queue size distribution of the model and the methodology 

used to solve the model. The probability generating functions associated with the various 

states of the server are obtained in section 5.4 while several performance measures for the 

analysis of the system are established in section 5.5. The numerical simulation and 

sensitivity analysis of the model have been facilitated in section 5.6. Finally, we wind up 

our investigation with the discussion in the section 5.7 at the end. 
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5.2  MODEL DESCRIPTION 

Let us consider a single server unreliable bulk retrial queue with multi essential 

services and two types of customers. The basic assumptions for the formulation of the 

model are as follows: 

 Arrival Process: The single server renders service to two types of customers, (i) non-

preemptive priority customers and (ii) ordinary customers. Both types of customers 

arrive in batches according to a Poisson process with arrival rate λ1 (λ2) for the type 1 

(2) customers. The priority is assigned to type 1 customers whereas type 2 customers 

are known as ordinary customers. Let X1 and X2 be the random variables denoting the 

batch sizes defined by Pr {X1=m} = cm; m ≥1 such that 
1

m

m

c




 =1 and Pr {X2=n} = cn;  

n ≥1 such that 
1

n
n

c




 =1 for priority and ordinary customers, respectively.  

 Non Preemptive Priority and Retrial Process: The type 1 customers are served on 

arrival if they find the server idle or free otherwise they join the queue of priority 

customers. Moreover, type 2 customers are forced to join the retrial orbit if they find 

the server unavailable or busy with type 1 customers. Also, if an incoming priority 

customer finds that the server is busy with the ordinary customer, then he waits for the 

completion of service of that particular ordinary customer and cannot interrupt in 

between. This is known as non-preemptive priority scheme. But an incoming fresh 

ordinary customer can try for the service only when all the priority customers are 

served. The ordinary customers retry for their service with retrial rate γ to get served. 

The retrial process is assumed to be exponentially distributed.  

 Balking: The customers may balk on seeing a long queue waiting for the service. The 

priority and ordinary incoming customers may balk with balking probability (1-b1) and  

(1-b2), respectively. 

 Service Process: The priority customers are served earlier than the ordinary 

customers. For both priority as well as ordinary customers, the service is provided in k 

(k ≥1) essential phases. The priority (ordinary) customer after completing first essential 

phase of a service moves to second phase with rate μ1,1 (μ2,1). Similarly, a priority and 

ordinary customer after being served in the i
th

 (1 ≤ i ≤ k-1) phase move to (i+1)
th

 phase 

with rate μ1,i and μ2,i , respectively. The service for all the customers are assumed to be 
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general distributed. The pdf, cdf , LST of  pdf of the service pattern are 
,v ib (t) , 

,v iB (t) 

and
, ( )v ib s  respectively (v =1 for priority customers and v =2 for ordinary customers). 

 Repair Process: The server may break down exponentially with rate αi (1≤ i≤ k) while 

providing any phase of service to the either type of customer (priority or ordinary). The 

broken down server is sent for repair immediately and the repair is completed in ‘d’ 

compulsory phases for a server brokendown during any phase of service. The repair 

process is general distributed with repair rate β1,i,j (β2,i,j), (1≤ i≤ k), (1≤ j ≤ d) for the 

priority (ordinary customers). The  pdf, cdf , LST of  pdf for repair time are given as

, ,v i jg (t), 
, ,v i jG (t) and 

, , ( )v i jg s  respectively where (1≤ i ≤k), (1≤ j ≤ d) (v=1 for priority 

customers and v =2 for ordinary customers).
        

 

Application to Healthcare Departments 

The application of the present queueing model can be realized in healthcare 

centers. The working of healthcare centers involves a number of medical and non-medical 

steps starting from the admission of the patient to the discharge of the patient after 

required treatment. There are several departments in the health care units where queues 

are built up; as such their performance and working can be assessed quantitatively via 

queue theoretic approach by developing suitable model based on the realistic 

assumptions. It may happen that a variety of patients arrive at the hospitals/healthcare 

departments for the treatment; some of them have ordinary health problems (like minor 

injuries, viral fever, routine checkup, etc.) whereas others may have severe problems (like 

major accidents, dengue fever, cancer, etc.).  

The emergency patients with severe problems need treatment early as compared to 

those patients who are suffering with mild problems. There might be a group of patients 

waiting in the hospitals to seek doctors to have their test reports or to have some other 

type of consultations. The patients arriving in the group can be categorized in two broad 

categories on the basis of priority of treatments required. When there is no emergency 

patient in the system, the treatment to the ordinary patient is provided.  

In our model we consider two types of customers arriving in batches, (i) critical 

patients (i.e. priority customers) and (ii) ordinary patients who can be treated only when 

there are no emergency/critical patients. In case an emergency patient arrives and the 

doctor is free, then he immediately starts the medical treatment to the priority patient; 

however if the concerned doctor is occupied, then the priority customer has to wait for his 
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turn in the queue as the life of the patient under treatment can’t be risked over the arrival 

of a new patient. In case when the doctor is busy and ordinary patients arrive, they have 

to wait in the waiting room (i.e. retrial orbit) for their turn; the patients from the orbit may 

try again and again for the treatment by checking whether the doctor is free or not.  

The treatment of a patient is usually completed in a series of compulsory steps 

from the admission of patient, filling of forms, various tests, observation and many more 

and end with the discharge of patient. Various phases of compulsory services vary from 

patient to patient depending upon the treatment required. On arrival, a patient may balk 

on seeing many patients waiting for the treatment and can move to other hospitals with a 

hope to get faster treatment without waiting for a longer time.  

It may happen that the appliances used to examine the patients are unavailable/ 

not in working state due to technical faults. But to continue the treatment smoothly, the 

broken down appliance/machine is to be repaired at once so as to continue the treatment.  

From the description of application in health care organization as mentioned above and 

shown by block diagram in Figure 5.1, it is clear that the working of hospitals is a very 

close real life application of the retrial queueing model with priority. 

   

 

        

 

 

 

  

 

Fig. 5.1: Block diagram of the application of model in health care organization 

 

5.3 QUEUE SIZE DISTRIBUTION 

Let N1(t) and N2(t) represent the number of priority and ordinary customers 

respectively, in the system and  S1(t) and S2(t) denote the phase of service and repair 

respectively, at time t. 

The state of the server at any time t is given by 

Health 

care 

Systems 

Is 

doctor 

free? 

Minor 

injuries 

(ordinary) 

Priority customer is treated and 

ordinary patient waits in the orbit till 

all emergency cases are treated 

Emergency patient waits in the 

queue and ordinary patient waits in 

the orbit 

YES 

Major 

accidents 
(priority) 

NO 
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0, server is in idlestate

1, server is busyin providingservice to theprioritycustomers

Y(t)= 2, server is busyin providingservice to theordinarycustomers

3, server is brokendown and under repair while servicing prioritycustomers

4, server is brokendown and under repair while servicing ordinarycustomers









 

In the steady state, the joint distributions of the server state and queue size are defined as- 

 
 0, , 1 2limPr ( ) 0, ( ) , ( ) , 0, 0m n

t
P Y t N t m N t n m n


       

 1, , , 1 2 1( ) limPr ( ) 1, ( ) , ( ) , ( ) , ( ) ,

0, 0, (1 )

m n i
t

P x Y t x t x dx N t m N t n S t i

m n i k




       

   

 2, , , 1 2 1( ) limPr ( ) 2, ( ) , ( ) , ( ) , ( ) ,

0, 0, (1 )

m n i
t

P x Y t x t x dx N t m N t n S t i

m n i k




       

   

 1, , , , 1 2 1 2( , ) limPr ( ) 3, ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,

0, 0,1 ,1

m n i j
t

R x y Y t t x y t y dy N t m N t n S t i S t j

m n i k j d

 


         

     

 1, , , , 1 2 1 2( , ) limPr ( ) 4, ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,

0, 0,1 ,1

m n i j
t

R x y Y t t x y t y dy N t m N t n S t i S t j

m n i k j d

 


         

     

 

Before framing the equations, the stability condition for the retrial model under 

consideration is established in the form of proposition as follows: 

Proposition 5.1: The necessary and sufficient condition for the system to be stable is 

1 2
11 21

1 11,1, 2,1,

1 1 1
d d

j jj j

 
 

  

   
         

   
   

where,   1 1 1
11

1,1

[ ]E X b



 and 2 2 2

21

2,1

[ ]E X b



  

Proof: The proof is done on the pattern similar to that of proposition 2.1. 

Now, using the approach based on supplementary variable technique, we formulate the 

equations for the model under consideration as follows: 

Governing Equations  

The set of governing equations and boundary conditions for different states of the server 

after introducing the supplementary variables are constructed as follows:  
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1 1

1

1 1

1

1 1 2 2 1, 1, , , 1, , , , 1, , 1 1 1 1, , ,
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


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 
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 







        (5.2)  

 

                               (5.3)                 
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

                                      (5.4)
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1
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1
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   











 
    

 







                                     (5.5)  

Boundary Conditions

1 1

1

1

1, , ,1 1 1 1 0,0, 1 ,0 1, 1, ,1 1,1 2, 1, ,1 2,1

1 0 0

(0) ( ) ( ) ( ) ( )
m

m n m m m i m n m n
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 

   



    
       

(5.6)
      

1 1

1

1

2, , ,1 2 2 2 0,0, 1 0,0, 1

1

(0) ( 1) , if 0
n

m n m n m n

m

P b c P n P m 


  



   
                                             

(5.7)
                                                    

2, , ,1(0) 0, 1m nP if m 
                                                                                                    

(5.8)

1, , , 1, , , 1 1, 1

0

(0) ( ) ( ) , (2 )m n i m n i iP P x x dx i k


   
                                                              

(5.9)

2, , , 2, , , 1 2, 1

0

(0) ( ) ( ) , (2 )m n i m n i iP P x x dx i k


                                                                (5.10)                                                             

1, , , ,1 1, , ,(0) ( ), (1 )m n i i m n iR P x i k  
                                                                                         

(5.11) 

2, , , ,1 2, , ,(0) ( ), (1 )m n i i m n iR P x i k  
                                                                                        

(5.12)  
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0 0
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 
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1, , , , 1 1, , 1

0
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
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(5.15)  

Following the procedure as used in chapters 2 and 3, we define the probability generating 

functions corresponding to the various states as: 
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Here 1for priortyand v=2 for non-priortycustomers; 1 ,1 .v i k j d      

The hazard rates corresponding to the the service state and repair state are as follows: 
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Multiplying equations (5.1)-(5.15) by z1
m

. z2
n
 and summing over all values of m and n; 

and then using generating functions, the above set of equations (5.1)-(5.15) converts to  
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Now, we give our results for the partial generating functions and marginal generating 

functions for the different states of the system in the form of theorems as follows: 

Theorem 5.1: The partial probability generating functions for the server being in idle 

state, busy in servicing  priority customers, busy in servicing  ordinary customers, under 

repair when failed while servicing the priority and ordinary respectively, are:
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1 1 2 2 1 1 1 1 2,1 2 2 2

2

1, 1, 1 2

1

( ( ), ) ( )
( ( )) ( , )

( , )
( , ) ( )

( ) ( ( ), )

( , )

i

s s

s

k h z z b C z
b b b C h z k z z z

z
P z z x

k z z b C z
b b b C z k h z z z

z

b N z z


  


  



   
      

    
  

  
         

  

     
1

1, 1 2 1,

1 1

1 1,1 2 2 2,1 2 2 2 0 2

exp ( , ) ( )

( ( ), ) ( ( ), ) ( ) (1 )

i

i iN z z x B x

z k h z z k h z z z P z i k



 

   

          


(5.30)

                                             

 
 1 1 2 2 1 1 1 2 2 2 2 2

2, 1 2, 2, 1 2 2,

2,1 2 2 2

1

2, 2, 1 2 0 2

1

( ( )) ( )
( , ) exp ( , ) ( )

( ( ), )

( , ) ( ) (1 )

i i i

i
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s

b b b C h z b C z
P z z x N z z x B x

k h z z z

b N z z P z i k

   





   
         

    

  

(5.31)
                                                   

 
1

1, , 1 2 1, 1 2 1, , 1 2 1 2 1, ,

1

( , , , ) ( , , ) ( ( , ))exp ( , ) ( ) ,

(1 ), (1 )

j

i j i i i r i j

r

R z z x y P z z x g M z z M z z y G y

i k j d






   

   


          

(5.32)

 
1

2, , 1 2 2, 1 2 2, , 1 2 1 2 2, ,

1

( , , , ) ( , , ) ( ( , )) exp ( , ) ( )

(1 ), (1 )

j

i j i i i r i j

r

R z z x y P z z x g M z z M z z y G y

i k j d






   

   


                     

(5.33)
                               

where,

 
1 2 1 1 1 1 2 2 2 2( , ) (1 ( )) (1 ( ))M z z b C z b C z    

                                                                             (5.34)                                                                                      

 1, 1 1 2 1 2 1 1, 1, 1 2

1

( , ) ( , ) 1 ( , )
d

i i i r

r

N z z M z z g M z z  



 
   

 
                                                        (5.35)                                                     

 2, 1 1 2 1 2 1 2, 1, 1 2

1

( , ) ( , ) 1 ( , )
d

i i i r

r

N z z M z z g M z z  



 
   

 
                                                      (5.36)     

   1,1 2,11,1 1 2 1,1 1 2 2,1 1 2 2,1 1 2( , ) ( , ) ( , ) ( , )b bN z z k z z and N z z k z z 
           

Note: For the brevity, we use the product 
1

1, , 1 2

1

( ( , ))
j

i r

r

g M z z




 
 
 
 and  

1

2, , 1 2

1

( ( , ))
j

i r

r

g M z z




 
 
 
  in our results. However, the value of these products equals 1 when 

j=1.
                  

 

Proof: To obtain the probability generating functions we proceed as: 

 On solving equations (5.19) and (5.20), we get 
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  1, , 1 2 1, , 1 2 1 2 1, ,
( , , , ) ( , , ,0)exp ( , ) ( )

i j i j i j
R z z x y R z z x M z z y G y 

                                         
(5.37)

  1 2 1 2 1 2 2, ,2, , 2, ,( , , , ) ( , , ,0)exp ( , ) ( )
i ji j i jR z z x y R z z x M z z y G y                                            (5.38)

 

 Using eqs (5.25)-(5.26) in (5.37)-(5.38), we get results given in (5.32) and (5.33). 

 Further, using  eqs (5.32)-(5.33) and (5.16)-(5.17), we get  

 1, 1 2, 1, 1 2 1 2 1, 0 21, 1( , ) ( , ,0)exp ( , ) ( ) ( )
i i iiP z z x P z z N z z x B x P z   

                                                

(5.39) 

 2, 1 2, 1 2 1 2 2, 0 22 2, 1( , ) ( , ,0)exp ( , ) ( ) ( ),
i i iiP z z x P z z N z z x B x P z                                                  (5.40) 

substituting i= (i-1) in eq.(5.39) and using it in eq. (5.22), we obtain

1, 1 2, 1, 1 1 2, 1, 1 1 21, 10( , ) ( , 0) ( , ) , (2 )i i iiP z z P z z N z z i kb                                                   (5.41) 

using eqs (5.39)-(5.40) for i=1 and (5.18) and (5.21), we obtain 

1 1,1 1 2 1 1 1 1 1 0 2 1,1 1 2 1,1 1,1 1 2

2,1 1 2 2,1 2,1 1 2 1 1 2 2 0 2 2 0 2

( , ,0) ( ) ( ) ( , ,0) ( , )

( , ,0) ( , ) ( ) ( ) ( )

z P z z z b C z P z P z z b N z z

P z z b N z z b b P z z P z



  

 
 

 
 

 

   
               

(5.42) 

Further using eqs (5.23) and (5.42), we get

  
  

  

2 2 2 2 2 ,1 1 2

0 2 2 ,1 1 2 2 1 1 2 2 1 1 1 1 0 2

2

1,1 1 2

1

2,1

2,1

1,1 1,1 1 2

( ) ( , )
( ) ( , ) ( ) ( )

( , , 0)
( , )

b C z N z z
P z N z z z b b b C z P z

z
P z z

z

b
b

b N z z


        




 
 
 

   

   1,1 2,11,1 1 2 1,1 1 2 2,1 1 2 2,1 1 2Let b bN (z ,z ) k (z ,z )and N (z ,z ) k (z ,z ) 
      

 

Thus, 

2 2 2 2 2,1 1 2

0 2 2,1 1 2 2 1 1 2 2 1 1 1 1 0 2

2

1 2

1 1,1 1 2

1,1

( ) ( , )
( ) ( , ) ( ) ( )

( , , 0)
( , )

b C z k z z
P z k z z z b b b C z P z

z
P z z

z k z z


   


 



 
    

 

  

   



0 2 0 1 2Also,P (z ) P (z ,z ).  

1 1,1 1 2If ( , ) 0,z k z z    then
 

 
2 2 2 2 2,1 1 2

0 2 2,1 1 2 2 1 1 2 2 1 1 1 1 0 2

2

( ) ( , )
( ) ( , ) ( ) ( ) 0

b C z k z z
P z k z z z b b b C z P z

z


   


   

 
    

 
  

 

which is a first order linear differential equation and on solving gives eq. (5.29). 

Mathematically, the above differential equation has a unique root 
1 2z h(z )  in the 1z   

[cf. Falin and Templeton, 1997].
 
Hence, we obtain partial probability generating functions 

in the above manner. Further,we denote 1 2( )z h z  so as to obtain probability generating 
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function. Here, 1 2( )z h z  is defined as the generating function of the number of ordinary 

jobs that arrive during the busy period formed by the priority customers. 

Theorem 5.2: The marginal probability generating functions at random epochs when the 

server is busy with i
th

 (1≤ i≤ k) phase service of priority and ordinary customers and 

under j
th

 (1≤ j≤ d) phase repair while brokendown either during servicing of priority or 

ordinary customers respectively, are 

  1 1 2 2 1 1 1 2 2,1 2 2 2 2 2 2 2,1 1 2 2

1, 1 2 0 2 2,1 1 2 2 2 2 2

1 1 2 2 1 1 1 1 2,1 2 2 2

2

1

1 1,1 2 2 2,1 2

( ( )) ( ( ), ) ( ) ( , )

( , ) ( ) ( , ) ( )
( ) ( ( ), )

( ( ), ) ( ( )

i

b b b C h z k h z z b C z k z z z
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z
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   


  



   


    

 

   
 
  

     
  

  

 
 

1

2 2

1
1, 1, 1 2

1, 1, 1 2
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1 ( , )
( , ) , (1 )

( , )

i
i i

s s
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z z

b N z z
b N z z i k

N z z










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  

   
 
  



 (5.43)  

 

 
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1 1 2 2 1 1 1 2 2 2 2 2

2, 1 2 0 2

2,1 2 2 2

1
2, 2,1 1 2
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( , ) , (2 )
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k h z z z

b N z z
b N z z i k

N z z

   





  





  

 
 

   

   
 
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    (5.44)

1, , 1 2

1, , 1 2 1, 1 2

1 2

1

1, , 1 2

1

1 ( ( , ))
( , ) ( , ) ,

( , )

(1 ) and (1 )

( ( , ))
i j

i j i i

j

i r

r

g M z z
R z z P z z

M z z

i k j d

g M z z







   

  


                           

(5.45)
 

2, , 1 2

2, , 1 2 2, 1 2

1 2

1

2, , 1 2

1

1 ( ( , ))
( , ) ( , ) ,

( , )

(1 ) and (1 )

( ( , ))
i j

i j i i

j

i r

r

g M z z
R z z P z z

M z z

i k j d

g M z z







   

  


                                 (5.46)  

Note: For the brevity, we use the product  
1

1, 1, 1 2

1

( , )
i

s s

s

b N z z




 and   
1

2, 2, 1 2

1

( , )
i

s s

s

b N z z




 as 

notations in our results. However, the value of these products equals 1 when i=1.
                  

 

Proof: The marginal generating functions for various states of the server are obtained as- 

1, 1, 1 2 2, 2, 1 2

0 0

1 2 1 2( ) ( , ) ( ) ( , ), , , , , , (1 )i i i iP z z P z z dx P z z P z z dxx x i k
 

    
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1, , 1 2 1, , 1 2
0 0

2, , 1 2 2, , 1 2
0 0

( , ) ( , , , ) ,

( , ) ( , , , ) ,(1 )and(1 )

i j i j

i j i j

R z z R z z x y dxdy

R z z R z z x y dxdy i k j d






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 

 

 

Theorem 4.3: The generating function for the queue size distribution under steady state 

is 

 

 
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
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
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(5.47)

                 

 

Proof: The queue size distribution is obtained using 

1 2 0 2 1, 1 2 2, 1 2 1, , 1 2 2, , 1 2

1 1 1 1 1 1

( , ) ( ) ( , ) ( , ) ( , ) ( , ),

(1 )and (1 )

k k k d k d

i i i j i j

i i i j i j

L z z P z P z z P z z R z z R z z

i k j d

     

    

   

   
 

5.4 PERFORMANCE MEASURES 

The key performance measures which are of interest for the analysis of unreliable 

server queueing system are long run probabilities, queue length, availability as well as 

failure frequency which are determined as follows: 

(A) Long Run Probabilities 

The probability measures characterizing the server status over a long run of time 

are obtained in the following theorem:  

Theorem 4.4: The various long run probabilities of the server are as follows: 

 Long run probability of the server being in idle state is 
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0( ) (1)P I P

                                                                                                              

(5.48)

           

 

 Long run probability of the server being busy in rendering service to the  priority 

customer  

     

11 11
1 0

1 1
1 1

11 21
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1( ) (1), (1 )

1 1 1
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 
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(5.49)
 

 Long run probability of the server being busy in rendering service to the ordinary 

customer  
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(5.50)
 

 Long run probability that the server is broken down while rendering service to the 

priority customer and under repair is 
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   (5.51)
 

 Long run probability that the server is broken down while rendering service to the 

ordinary customer and under repair is 
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    (5.52)
 

Proof: The above expressions (5.29)-(5.33) for the long run probabilities are obtained by 

using 
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(B) Reliability Measures 

The present section deals with the reliability indices of the retrial model under 

consideration. The reliability measures are established in the following theorem. 

Theorem 5.5:  The steady state availability ( vA ) and failure frequency (Ff) of the server 

are obtained using 
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Proof:  The above results (5.34) and (5.35) for the steady state availability and failure 

frequency respectively, are derived using 
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(C) Queue Length 

The results for the average queue length of the system for both priority and 

ordinary customers are presented below in the form of the theorem. For brevity, the 

various notations used in the explicit expressions for the queue length are described here 

as- 
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Theorem 5.6(a): The expected number of  priority customers in the system is given by 
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where dash (  ) denotes the partial differentiation of the terms w.r.t ‘ 1z ’
  

Proof:  The expected number of customers in the priority queue is obtained by using  
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where, 1 2( , )L z z is the generating function of the queue size distribution.  
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where dash (  ) denotes the partial differentiation of the terms w.r.t ‘ 2z ’  

Proof:  The expected number of customers in the priority queue is obtained by using  
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where, 1 2( , )L z z is the generating function of the queue size distribution.  

 

5.5 NUMERICAL ILLUSTRATION 

The present section deals with the numerical simulation of our model to examine 

the effects of various parameters on the performance indices. ‘MATLAB’ software has 

been used to develop the code for computer program to study the sensitivity analysis 

under consideration. For the computational purposes, the batch size, retrial time as well as 

repair time have been taken to be exponentially distributed. Further, numerical results 

have been obtained by assuming two phase service system i.e.k=2 and two phase repair 

system i.e. d=2. The different distributions namely exponential, Erlangian-5 and gamma 

have been considered for the service time. The numerical results have been displayed by 

means of tables and figures by assuming the values of default parameters as λ1=1.5, 

λ2=0.5, γ=0.1, b1=b2=0.5, β111 = β112 =β121= β122 =β11=1, β211 = β212 =β221= β222 =β21=0.5, 

µ11= µ12= µ1=4, µ21= µ22= µ2=3, α1=0.02, α2=0.1, E[X1]= E[X2]= E[X]=2. 
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Tables 5.1 and 5.2 display the effect of service rates µ2 and µ1 on the long run 

probabilities of the server at different states. It is noted from the tables 5.1 and 5.2 that the 

long run probabilities for the idle state P(I) decreases with the increase in breakdown rate 

α1 (α2) for a fixed value of service rate. The  P(B1) and P(B2) show almost constant values 

with small variations in α1 while it increases with the increase in α2. The long run 

probabilities P(R1) and P(R2) increase with the increase in α1 (α2) for fixed service rates 

for both types of customers. With an increase in the service rate the long run probabilities, 

P(I), P(B1) and P(R1) increase whereas P(B2) and P(R2) decrease for fixed breakdown 

rates. 

Tables 5.3 and 5.4 demonstrate the effect of  service rates on the long run 

probabilities of the system states for the varying values of joining probabilities b1 and b2. 

With an increase in joining probability b1, the long run probabilities P(I), P(B2) and P(R2) 

decrease whereas P(B1) and P(R1) increase. On the other hand,  P(I), P(B1) and P(R1) 

show a decreasing trend whereas  P(B2) and P(R2) exhibit increasing behavior  for the  

increasing values of b2.The effects of arrival rates λ1 and λ2 with varying values of the 

repair rates (β11, β21) on the long run probabilities are  shown in tables 5.5 and 5.6. With 

an increase in arrival rate λ1 for priority customers, the long run probabilities  P(B1) and 

P(R1) increase whereas P(I), P(B2) and P(R2) decrease which is quite obvious. This is due 

to the fact that an increase in arrival rate for priority customers, has an adverse effect on 

the idleness of the server and as such increases the probability of the server being in a 

busy state.  

Similarly, with an increase in arrival rate λ2, P(B2) and P(R2) increase whereas 

P(I), P(B1) and P(R1) show a decreasing trend for the fixed values of both λ1 and λ2. It is 

observed that, P(R1) decreases with an increase in breakdown rate β11 for constant value 

of β21, whereas other long run probabilities increase. It is also seen from the tables 5.5 and 

5.6 that P(R2) decreases with an increase in β21 while other long run indices increase with 

an increase in β21. Tables 5.7-5.8 depict the effect of breakdown rate (α1) and repair rate 

(β11) with arrival rate (λ1) and service rate (µ1) on the availability (Av) and failure 

frequency (Ff) of the server. We note that as λ1 increases, the availability (Av) decreases 

whereas failure frequency (Ff) increases. Table 5.7 demonstrates that an increase in 

breakdown rate (α1) reduces the availability of the server whereas a slight increment is 

observed in the values of Ff with decrease in α1. The variation in repair rate (β11) on the 

reliability indices is shown in table 5.8. A slight increment is observed in the availability 
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as well as failure frequency of the server with an increase in β1 for fixed values of other 

parameters.  

 

Table  5.1: Effect of µ2  and (α1,α2) on the long run probabilities of the server states 

µ2 (α1,α2) P(I)   P(B1)             P(B2)    P(R1) P(R2) 

 (0.02,0.1) 0.2130 0.3522 0.3993 0.0101 0.0256 

 (0.03,0.1) 0.2057 0.3522 0.3993 0.0126 0.0303 

3 (0.04,0.1) 0.1984 0.3522 0.3993 0.0151 0.0351 

 (0.02,0.2) 0.2086 0.3449 0.3911 0.0148 0.0407 

 (0.02,0.3) 0.2044 0.3380 0.3832 0.0193 0.0552 

 (0.02,0.1) 0.2982 0.3815 0.2919 0.0109 0.0175 

 (0.03,0.1) 0.2916 0.3815 0.2919 0.0136 0.0214 

4 (0.04,0.1) 0.2849 0.3815 0.2919 0.0163 0.0253 

 (0.02,0.2) 0.2937 0.3758 0.2876 0.0161 0.0268 

 (0.02,0.3) 0.2894 0.3702 0.2833 0.0212 0.0359 

 (0.02,0.1) 0.3522 0.3968 0.2267 0.0113 0.0130 

 (0.03,0.1) 0.3462 0.3968 0.2267 0.0142 0.0162 

5 (0.04,0.1) 0.3401 0.3968 0.2267 0.0170 0.0194 

 (0.02,0.2) 0.3480 0.3920 0.2240 0.0168 0.0192 

 (0.02,0.3) 0.3439 0.3874 0.2213 0.0221 0.0253 

 

Table 5.2: Effect of µ1  and (α1,α2) on the long run probabilities of the server states 

µ1 (α1,α2)   P(I)  P(B1)  P(B2)  P(R1)     P(R2) 

      (0.02,0.1) 0.2130 0.3522 0.3993 0.0101 0.0256 

 (0.03,0.1) 0.2057 0.3522 0.3993 0.0126 0.0303 

5 (0.04,0.1) 0.1984 0.3522 0.3993 0.0151 0.0351 

 (0.02,0.2) 0.2086 0.3449 0.3911 0.0148 0.0407 

 (0.02,0.3) 0.2044 0.3380 0.3832 0.0193 0.0552 

      (0.02,0.1) 0.2643 0.2888 0.4126 0.0079 0.0264 

 (0.03,0.1) 0.2571 0.2888 0.4126 0.0101 0.0314 

6 (0.04,0.1) 0.2643 0.2888 0.4126 0.0079 0.0264 

 (0.02,0.2) 0.2590 0.2831 0.4044 0.0113 0.0421 

 (0.02,0.3) 0.2540 0.2776 0.3966 0.0146 0.0571 

 (0.02,0.1) 0.3019 0.2436 0.4211 0.0065 0.0269 

 (0.03,0.1) 0.2949 0.2436 0.4211 0.0084 0.0320 

7 (0.04,0.1) 0.2880 0.2436 0.4211 0.0103 0.0371 

 (0.02,0.2) 0.2961 0.2389 0.4130 0.0090 0.0429 

 (0.02,0.3) 0.2905 0.2344 0.4052 0.0115 0.0584 
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Table 5.3: Effect of µ1  and  (b1, b2) on the long run probabilities of the server states 

µ1 (b1, b2)   P(I)  P(B1)  P(B2)  P(R1)  P(R2) 

 
(0.4,0.5) 0.2700 0.2878 0.4079 0.0082 0.0261 

 (0.5,0.5) 0.2130 0.3522 0.3993 0.0101 0.0256 

5 (0.6,0.5) 0.1583 0.4138 0.3910 0.0118 0.0250 

 (0.5,0.4) 0.2724 0.3650 0.3310 0.0104 0.0212 

 (0.5,0.6) 0.1576 0.3402 0.4629 0.0097 0.0296 

 
(0.4,0.5) 0.3132 0.2346 0.4189 0.0065 0.0268 

 (0.5,0.5) 0.2643 0.2888 0.4126 0.0079 0.0264 

6 (0.6,0.5) 0.2168 0.3414 0.4064 0.0094 0.0260 

 (0.5,0.4) 0.3276 0.2997 0.3425 0.0082 0.0219 

 (0.5,0.6) 0.2053 0.2787 0.4778 0.0077 0.0306 

 
(0.4,0.5) 0.3445 0.1971 0.4259 0.0053 0.0273 

 (0.5,0.5) 0.3019 0.2436 0.4211 0.0065 0.0269 

7 (0.6,0.5) 0.2603 0.2890 0.4163 0.0077 0.0266 

 (0.5,0.4) 0.3681 0.2530 0.3498 0.0067 0.0224 

 (0.5,0.6) 0.2404 0.2349 0.4872 0.0063 0.0312 

 

Table 5.4: Effect of µ2  and (b1, b2) on the long run probabilities of the server states 

µ2 (b1,b2)     P(I)    P(B1)    P(B2)    P(R1)  P(R2) 

 
(0.4,0.5) 0.2700 0.2878 0.4079 0.0082 0.0261 

3 (0.5,0.5) 0.2130 0.3522 0.3993 0.0101 0.0256 

 (0.6,0.5) 0.1583 0.4138 0.3910 0.0118 0.0250 

 (0.5,0.4) 0.2724 0.3650 0.3310 0.0104 0.0212 

 (0.5,0.6) 0.1576 0.3402 0.4629 0.0097 0.0296 

 
(0.4,0.5) 0.3620 0.3123 0.2988 0.0089 0.0179 

 (0.5,0.5) 0.2982 0.3815 0.2919 0.0109 0.0175 

4 (0.6,0.5) 0.2372 0.4475 0.2854 0.0128 0.0171 

 (0.5,0.4) 0.3461 0.3898 0.2387 0.0111 0.0143 

 (0.5,0.6) 0.2523 0.3735 0.3430 0.0107 0.0206 

 
(0.4,0.5) 0.4200 0.3251 0.2322 0.0093 0.0133 

 (0.5,0.5) 0.3522 0.3968 0.2267 0.0113 0.0130 

5 (0.6,0.5) 0.2876 0.4650 0.2214 0.0133 0.0127 

 (0.5,0.4) 0.3915 0.4025 0.1840 0.0115 0.0105 

 (0.5,0.6) 0.3141 0.3912 0.2682 0.0112 0.0153 
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Table 5.5: Effect of λ1  and (β11, β21) on the long run probabilities of the server states 

λ1 (β11, β21)  P(I)  P(B1)  P(B2)  P(R1)  P(R2) 

3.0 
 

(1.0,0.5) 0.1961 0.5795 0.1947 0.0185 0.0111 

(1.5,0.5) 0.1992 0.5818 0.1955 0.0124 0.0112 

(2.0,0.5) 0.2007 0.5829 0.1958 0.0093 0.0112 

(1.0,1.0) 0.1994 0.5811 0.1953 0.0186 0.0056 

(1.0,1.5) 0.2006 0.5817 0.1954 0.0186 0.0037 

3.5 

(1.0,0.5) 0.1317 0.6497 0.1871 0.0208 0.0107 

(1.5,0.5) 0.1348 0.6526 0.1879 0.0139 0.0107 

(2.0,0.5) 0.1364 0.6540 0.1883 0.0105 0.0108 

(1.0,1.0) 0.1347 0.6515 0.1876 0.0208 0.0054 

(1.0,1.5) 0.1357 0.6521 0.1878 0.0209 0.0036 

4.0 

(1.0,0.5) 0.0720 0.7147 0.1801 0.0229 0.0103 

(1.5,0.5) 0.0753 0.7181 0.1810 0.0153 0.0103 

(2.0,0.5) 0.0769 0.7198 0.1814 0.0115 0.0104 

(1.0,1.0) 0.0748 0.7165 0.1806 0.0229 0.0052 

(1.0,1.5) 0.0757 0.7172 0.1807 0.0229 0.0034 

 

Table 5.6: Effect of λ2  and (β11, β21) on the long run probabilities of the server states 

λ2 (β11,β21)      P(I)    P(B1)   P(B2)      P(R1)  P(R2) 

1.0 

(1.0,0.5) 0.2769 0.5978 0.1004 0.0191 0.0057 

(1.5,0.5) 0.2804 0.6002 0.1008 0.0128 0.0058 

(2.0,0.5) 0.2822 0.6014 0.1010 0.0096 0.0058 

(1.0,1.0) 0.2787 0.5987 0.1006 0.0192 0.0029 

(1.0,1.5) 0.2793 0.5989 0.1006 0.0192 0.0019 

2.0 

(1.0,0.5) 0.1961 0.5795 0.1947 0.0185 0.0111 

(1.5,0.5) 0.1992 0.5818 0.1955 0.0124 0.0112 

(2.0,0.5) 0.2007 0.5829 0.1958 0.0093 0.0112 

(1.0,1.0) 0.1994 0.5811 0.1953 0.0186 0.0056 

(1.0,1.5) 0.2006 0.5817 0.1954 0.0186 0.0037 

3.0 

(1.0,0.5) 0.1201 0.5623 0.2834 0.0180 0.0162 

(1.5,0.5) 0.1228 0.5644 0.2845 0.0120 0.0163 

(2.0,0.5) 0.1242 0.5655 0.2850 0.0090 0.0163 

(1.0,1.0) 0.1247 0.5646 0.2846 0.0181 0.0081 

(1.0,1.5) 0.1262   0.5654 0.2849 0.0181 0.0054 
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Table 5.7: Effect of α1 on Availability and Failure frequency 

α1 λ1 
Av Ff 

µ1=4 µ1=5 µ1=6 µ1=4 µ1=5 µ1=6 

0.02 

1.5 0.9851 0.9868 0.9878 0.1159 0.0993 0.0885 

2.0 0.9831 0.9853 0.9866 0.1379 0.1171 0.1032 

2.5 0.9813 0.9838 0.9854 0.1587 0.1342 0.1176 

3.0 0.9795 0.9824 0.9843 0.1784 0.1507 0.1316 

0.04 

1.5 0.9789 0.9811 0.9825 0.1232 0.1055 0.0940 

2.0 0.9761 0.9788 0.9806 0.1465 0.1244 0.1097 

2.5 0.9734 0.9767 0.9788 0.1686 0.1425 0.1249 

3.0 0.9709 0.9745 0.9770 0.1896 0.1601 0.1398 

0.06 

1.5 0.9728 0.9755 0.9772 0.1304 0.1117 0.0996 

2.0 0.9691 0.9724 0.9747 0.1552 0.1317 0.1161 

2.5 0.9656 0.9695 0.9722 0.1785 0.1509 0.1323 

3.0 0.9623 0.9667 0.9698 0.2007 0.1695 0.1480 

 

Table 5.8: Effect of β11 on Availability and Failure frequency 

β11 λ1 
Av Ff 

µ1=4 µ1=5 µ1=6 µ1=4 µ1=5 µ1=6 

1.0 

1.5 0.9851 0.9868 0.9878 0.1159 0.0993 0.0885 

2.0 0.9831 0.9853 0.9866 0.1379 0.1171 0.1032 

2.5 0.9813 0.9838 0.9854 0.1587 0.1342 0.1176 

3.0 0.9795 0.9824 0.9843 0.1784 0.1507 0.1316 

1.5 

1.5 0.9875 0.9885 0.9892 0.1161 0.0994 0.0886 

2.0 0.9862 0.9876 0.9884 0.1382 0.1172 0.1033 

2.5 0.9851 0.9866 0.9877 0.1590 0.1344 0.1177 

3.0 0.9840 0.9857 0.9869 0.1789 0.1509 0.1317 

2.0 

1.5 0.9887 0.9894 0.9899 0.1162 0.0995 0.0886 

2.0 0.9878 0.9887 0.9893 0.1383 0.1173 0.1034 

2.5 0.9870 0.9881 0.9888 0.1592 0.1344 0.1178 

3.0 0.9862 0.9874 0.9882 0.1791 0.1510 0.1318 

 

Figures  5.2- 5.5 are plotted  to display the effect of various varying parameters on the 

queue length of the customers for both priority and ordinary customers. The service time 

distribution  has been considered as Erlangian-5, exponential and gamma respectively for 

all the figures. Figures 5.2 and 5.3 exhibit the effect of arrival rate for both types of 

customers on their respective queue lengths for varying values of mean batch sizes. It is 

quite clear from the graphs plotted in figs 5.2(5.3) that the queue length for priority 

(ordinary) customers increases with the increase in the arrival rate and batch size, which 

is quite obvious. The average queue length obtained for the priority customers is higher 

than that of ordinary customers for all the three service time distributions under 
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consideration. However, Erlangian-5 distribution reveals the maximum queue length for 

both types of customers. 
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 Fig. 5.2: Effect of λ1 and E[X] on LP for          Fig. 5.3:  Effect of λ2 and E[X] on LNP 
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(c)                                                                (c) 

  Fig. 5.4:  Effect of λ1 and β11  on LP for         Fig. 5.5: Effect of λ2 and α1  on LNP for  
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2.5 units, the LP also builds up which can be realized in realistic queueing situations. 

Moreover, it is clear from the figure that as the repair rate increases for fixed (λ1), the 

number of customers decreases; this is due to the fact that an increase in repair rate, 

speeds up the servicing of the customers thus reducing the queue length. The figure 5.5 

demonstrates the effect of arrival rate (λ2) along with  breakdown rate (α1) of the priority 

customers on LNP. This particular case has been examined because the breakdowns of the 

server for priority customers also affects the queue length (LNP) of ordinary customers. 

The number of customers increases with an increase in the breakdown rate α1 for all the 

three distributions under consideration as depicted by figs 5.5 (a-c). It is quite obvious 

that an increase in the breakdown rate for priority customers keeps the priority customers 

in the waiting queue for a long period and thereby increases the queue length of ordinary 

customers which cannot be served prior to priority customers.  

 

5.6  DISCUSSION 

The bulk arrival non-Markovian system with two types of customers have 

investigated by assuming different distributions for the service time. The queueing 

analysis of the retrial model with priority doneto establish explicit expressions for the 

queue length and other performance measures. Overall, we can conclude that- 

 The queue lengths for both types of customers increase with an increase in the arrival 

rate and mean batch size.  

 LNP increases  with an increase in breakdown rate α1, as an increase in the breakdown 

rate of priority customers indirectly increases the queue length of ordinary customers 

by delaying the service. Hence, a control over repair of the server can help in reducing 

the queue length. 

 The long run probabilities of server states are affected to a great extent with the 

service rate and arrival rates. 
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CHAPTER 6 

Retrial G-queue with preemptive 

resume  
 

6.1 INTRODUCTION 

The attack of malware or virus on the computer system is a very common 

phenomenon. Almost every computer system is affected by the attack of 

malwares/cookies/virus arrived independently either by using internet services or 

unprotected web sites or affected external drives. These virus/malwares in queueing 

theory are termed as negative customers, which not only destroy the normal functioning 

of the system but also make the system under repair. Mathematical queues with the 

arrival of negative customers are known as G-queues. Performance modeling of such 

queues holds a significant place in the queueing theory. G-queues or queues with negative 

customers were first analyzed by Gelenbe (1989). The arrival of negative customers 

usually affects the normal working of the system either by stopping the service process or 

by lowering down the working process. The concept of negative customers finds various 

applications in communication systems, computer protocols, neural networks modeling, 

etc. where the system get destroyed or failed with the arrival of unwanted customers like 

virus in the computers. 

The concept of negative customers can also be considered as a step towards study 

of new control policy as negative customers usually reduce the congestion in the system 

by removing the customers. The remarkable contributions of Gelenbe (1991, 2000) 

opened ways for the future research on G-queues. Harrison (1993, 1996) investigated 

queues with negative customers using a new technique and paved a new dimension to the 

modeling of unreliable queues with negative customers. Shin (2007) analyzed multiserver 

G-queues with disasters and reattempts. The recent articles on G-queues can be found in 

the bibliography on negative customers by Do (2011a). Liu et al. (2009) and Dimitriou 

(2013a, b) studied negative arrival retrial queues with pre emptive resume with 

breakdowns and gave interesting mathematical results for the non-markovian queues.  

In the present chapter, we develop the semi Markov model for the unreliable 

retrial G-queue wherein the customers can renege due to impatience. The server renders 

service in multi-phases and may breakdown while providing service to the customers. 
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The concept of bulk arrival and impatience customers seeking for more optional services 

has been incorporated to study the effect of negative customers on the performance 

indices of the concerned retrial queueing system. The rest of the chapter has been 

organized in the following manner. Section 6.2 presents the mathematical description and 

various assumptions underlying the model. The generating functions corresponding to 

various server states have been obtained in section 6.3. By setting appropriate parameters, 

some special cases have been deduced in section 6.4. Section 6.5 describes various 

performance measures for the model. Finally, the conclusions are drawn in section 6.6. 

 

6.2 MODEL DESCRIPTION 

The semi-Markov model is developed to analyze a bulk arrival retrial queue with 

negative customers and reneging. The server allows the service of every customer in 

essential as well as in optional phases. The basic assumptions describing the model are as 

follows: 

Assumptions  

We consider M
x
/G/1 retrial queue wherein the service is interrupted due to the 

arrival of negative customers. The server is affected by the negative customer only when 

it is in idle state or busy state. The assumptions underlying the model are as follows: 

 Arrival Process The system allows the arrival of two types of customers; positive 

customers and negative customers according to the Poisson process with arrival rates 

λ
+
 and λ

-
 respectively s.t. λ = λ

+
+ λ

-
.  

 Retrial Process: If an arriving customer finds the server busy or in non-working 

condition then he joins the retrial orbit so as to wait in order to retry for the service. 

The customers retry with constant retrial rate γ so as to get served. Moreover, there is a 

competition between retrying customers and new arrivals to obtain the service. In case 

a retrial customer fails to get service while competing with the new primary customer 

then either it leaves the system forever with probability (1-r) (i.e. reneges) or returns 

back to the orbit with probability ‘r’ to get the service. 

 Service Process: The incoming customers are served in two phases with general 

distributed service time; first phase corresponds to the compulsory phase known as 

first phase of service (FPS) with mean service rate µ0. After completing FPS, the 

interested customers may go for second phase of service (SPS) with probability op or 

may enter the orbit with probability 1- op  which is further completed in ‘k’ 
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compulsory phases with service rate i (1 ≤i≤ k), to make retrials until successful 

services are achieved.  

 Pre-emptive resume: The server follows the policy of pre-emptive resume of service; 

according to which the customer under FES may be forced to move to the orbit with 

probability p so as to make retrials after some time to new incoming positive customer 

or continue the service with probability (1-p) of the customer already in service. 

 N-policy: In case no more customers are available in the system then server moves to 

the dormant state and comes back to the working state only after the accumulation of N 

customers in the system. This can be considered as N-policy for the optimal control of 

service rendered by the server. 

 Repair Process: The server under consideration is unreliable and may fail due to the 

arrival of negative customers in the system. The server is affected by the arrival of 

negative customer when it is in idle state or busy state. The system remains unaffected 

if it is in dormant or repair state. The server breakdown may occur in Poisson fashion 

with failure rate αi (0≤ i≤ k, i=0 for FES).The repair process is completed in d-

compulsory phases with repair rate βij (0 ≤i≤ k), (1≤ j≤ d) to bring the system back to 

its original state. 

To highlight the novelty of the model, we cite its application in computer system 

which is prone to the attack of malware or virus. The negative customers (viruses etc.) 

and positive customers (files to be worked on) are available in the system independent of 

each other in batches. The work files (positive customers) can be served in various phases 

of service; there may be a series of work procedure which have to be performed 

depending on the requirement of the file currently under work. The arrival of negative 

customer destroys the normal functioning of the system and makes the system under 

repair. The repair process is usually completed in a series of compulsory phases starting 

from the booting or restarting of the system, to launch the start up of the computer (in 

case it is damaged) and finally moving through other mandatory steps to the scanning of 

the system so as to stop the attack of further malwares in the system. 

 

6.3 THE ANALYSIS 

In this section, we present mathematical formulation and analysis of the concerned 

retrial model based on certain notations and assumptions as stated in section 6.2. The 

system state probabilities, construction of governing Chapman-Kolmogorov equations 
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and methodology based on generating function and supplementary variables technique 

has been used to solve the model.  

State Probabilities 

The model under consideration is non-markovian as service process and repair 

process are assumed to follow general distribution. We define the state of the server at 

any time t as follows:  

V, server is in dormant period at time t

0, server is busyin providing FPSat time t

Y(t)= 1, server is busyin providing SPSat time t

2, server is in idlestateat time t

3, server is brokendown and under repair at time t

(1 i k)thi










   

Let N(t) denotes the number of customers in the system at any time t and               

1 2S ( ) {0,1,2,..., }, S ( ) {1,2,..., }t k t d  represent
 
the phase of service and repair process 

respectively, at any time t.  

In the steady state, the joint distributions of the system states and corresponding 

probabilities are defined as- 

 
 limPr ( ) , ( ) ,1 1n

t
V Y t V N t n n N


       

 0, 1( ) limPr ( ) 0, ( ) , ( ) ,S ( ) 0 , 0n
t

P x Y t x t x dx N t n t n


                     

 , 1( ) limPr ( ) 1, ( ) , ( ) ,S ( ) , 0,(1 )i n
t

P x Y t x t x dx N t n t i n i k


                                  

 limPr ( ) 2, ( ) , 1n
t

D Y t N t n n


   

 , , 1 2( , ) limPr ( ) 3, ( ) , ( ) ,S ( ) 0 ,S ( ) 0 , ( ) ,

0, (0 ), (1 )

i j n
t

R x y Y t t x y t y dy t i t j N t n

n i k j d

 


          
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Governing Equations 

Now, we construct Chapman-Kolmogorov equations using supplementary 

variables technique which are as follows: 

1, 1n nV V n N  

                                                                                                   (6.1) 

0 ,0 , ,0 ,

00 0

( ) ( ) ( , ) ( )
k

k k i d i d

i

V P x x dx R x y y dy  
 





                                                         (6.2)

 0,

0 0, 0, ,0

1

( )
( ) ( ) ( )(1 ), 0

n
n

n m n m n

m

dP x
x P x c pP x n

dx
   





                                       (6.3)
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 ,
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Normalizing Condition 
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To obtain the steady state solution of the system of differential equations (6.1)-(6.12), we 

use probability generating function technique. The probability generating functions and 

hazard rates for the batch size, idle state, busy state and repair state are same as defined in 

chapter 3. The generating function corresponding to the dormant period is considered as 

1

0

( ) ;
N

n

n

n

V z V z




   1z  .               

Partial Generating Functions (PGFs) corresponding to dormant state, idle state, busy 

with first service (i=0), busy with i
th

 (1 ≤ i≤ k) service, under j
th

 (1 ≤ j≤ d) repair state 

respectively, are given in the following equations (6.13)-(6.20). 
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4 ( )

4 1

0 0

( ) (0) exp ( ) ( )

z z
T u du

D z D T u du A t e dt
       

  
                                                          (6.13) 

1 1 1

0 0 0 ,

00 1 1

( (1 ) ) 1
( ) (0)

1

( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

N

k i ik

o r k o r o r i i d

ir r r

r z
V z D

z

p b b b p b b p b b b g

 




        







  


  

   
  

 

  
      

  
  

       (6.14)                                                     

0 0 0( , ) (0, )exp(( ( ) ) ) ( )P x z P z pC z x B x                                                               (6.15) 

1

0 0

1

( , ) (0, ) ( ( )) ( ( ))

exp(( ( ) ) ) ( ), (1 )

i

i o r

r

i

P x z p P z b pC z b C z

C z x B x i k

   

 


 





 
     

 

   


                                       (6.16) 

, ,( , , ) ( ,0, )exp(( ( ) ) ) ( ), (0 ), (1 )i j i j ijR x y z R x z C z y G y i k j d                   (6.17) 

where, 

3 1 4 3

0

0

(0)( ( )) ( (1 ) ) ( ) ( ( ) ( ) ( ))
(0, )

( ) ( ( ))

D pC z z rz r A z z A z T z A z
P z

z pC z z p z pB pC z

     

     

   

   

        
     

    (6.18) 

,1 0 0

1

0 0

1

( ,0, ) (0, ) ( ( )) ( )

(0, ) ( ( )) ( ( )) ( ( )) , (0 )

i

i

o r i

r

R x z P z B pC z D z

p P z b C z b pC z B C z i k

   

      

  


   



  

  
          

  


    (6.19) 

1

, , ,

1

( ,0, ) ( ( )) ( ,0, ), (2 ), (0 )
j

i j i s i j

s

R x z g C z R x z j d i k 


 



                               (6.20) 

  

 1

3 2 5 0 7 5 , 6 5

0 1

1
(0)

(1) (1) (1)(1 ( )) (1) (1) (1) (1)
k d

i j

i j

D

A A T b p T T T T     

 

 
 

      
 



  

To derive expressions (6.13)-(6.20), we proceed as follows: 

Multiplying eq. (6.1) by the appropriate powers of z and summing over n=0, 1, 2, 3, 4…, 

we get 

      0 (1 )
( )

(1 )

NV z
V z

z





                                                                                                 (6.21) 

Now, multiplying eqs (6.3), (6.4) and (6.6) by appropriate powers of z and summing over 

n=0, 1, 2, 3, 4…, we get 

0 0 0( , ) (0, )exp ( ( ) ) ( )P x z P z pC z x B x                                                               (6.22) 

( , ) (0, )exp ( ( ) ) ( ); (1 )i i iP x z P z C z x B x i k                                                 (6.23) 
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( , , ) ( ,0, )exp ( ( ) ) ( ); (0 ),(1 )ij ij ijR x y z R x z C z y G y i k j d                       (6.24) 

Using generating functions for the boundary conditions (6.7)-(6.11) respectively, we get 

0 0

0

(1 )
(0, ) ( ) ( ) ( , )

r
z r D z D z z p x z dx

z
P P


   



  
    

 
 
 

                                  (6.25) 

1 0 0

0

(0, ) ( ) ( , )
o

z p x P x z dxP 



                                                                                         (6.26) 

1 1

0

(0, ) ( ) ( , ) ; (2 )
i i i

z x P x z dx i kP 



 
                                                                        (6.27) 

,1 0

0 0

( ,0, ) ( , ) ( , ) ( ) ; (0 )i iR x z P x z dx P x z dx D z i k
 


 

     
 
                                (6.28) 

, 1 , 1

0

( ,0, ) ( ) ( , , ) ; (0 ), (2 )i j j i jR x z y R x y z dy i k j d


                                      (6.29) 

Using (6.22) in (6.26) and (6.23) in (6.27), we obtain  

1 0 0(0, ) (0, ) ( ( ))oP z p P z b pC z                                                                             (6.30) 

1 1(0, ) (0, ) ( ( ))i i iP z P z b C z 

                                                                               (6.31) 

Solving (6.30) and (6.31) for different values of i, in general we get  

1

0 0

1

(0, ) (0, ) ( ( )) ( ( ))
i

i o r

r

P z p P z b C z b pC z   


 



 
   

 
                                         (6.32) 

Using generating function, from (6.10) and (6.11), we get 

,1 0 0

1

0 0

1

( ,0, ) (0, ) ( ( )) ( )

(0, ) ( ( )) ( ( )) ( ( ))

i

i

o r i

r

R x z P z B pC z D z

p P z b C z b pC z B C z

  

      

 


   



   
 

 
    

 


         (6.33) 

1

, , ,1

1

( ,0, ) ( ( )) ( ,0, ) , (0 ), (2 )
j

i j i s i

s

R x z g C z R x z i k j d 


 



                             (6.34) 

Using (6.22) and (6.26), we have 

                                                                                                                                                        

(6.35)      

For n=0, we get 

                                                                                                 

 

0

0

( ( )) ( (1 ) ) ( ) ( )
(0, )

( ) ( ( ))

pC z z r z r D z z D z
P z

z pC z z p z pB pC z

     

     

    

    

      
    
 

, ,0 , ,0( , ) ( ,0,0)exp( ) ( ), (0 ),(1 )i j i j ijR x y R x y G y i k j d     
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Therefore, , ,0 , ,0 , ,

0 0

( , ) ( ) ( ,0,0)exp( ) ( ) ( )i d d i d i d i dR x y y dy R x y G y y dy  
 

                   (6.36) 

1

, ,0 0 0 0

1

( ,0,0) (0,0) 1 ( ) ( ) ( )(1 ( ))
i

i d o r i

r

R x P b p b b b


   


 



 
    

 
                               (6.37) 

 where,
0
(0,0) (1 ) (0)r DP  

                                                                                 (6.38) 

Therefore, , ,0 , , ,0 ,

0

( , ) ( ) ( ,0,0) ( )i d i d i d i dR x y y dy R x g 


                                                (6.39) 

Similarly,
1

,0

00

( ) ( ) ( (1 ) ) (0) ( ) ( )
k

k k o r k

r

P x x dx p r D b b    
 





                                  (6.40) 

Using (6.39) and (6.40) in (6.2), we get 

0

1 1

0 0 ,

00 1

( (1 ) ) (0)

( ) ( ) 1 ( ) ( ) ( )(1 ( )) ( )
k ik

o r k o r i i d

ir r

r D
V

p b b b p b b b g

 




      







 


 

 


  
      

  
 

                    (6.41)    

Further, using (6.41) in (6.21), we get the expression for the partial generating function 

for the server in dormant state V(z) as given by (6.14). 

Now, solving (6.1), (6.2) and (6.5), we get 

0 0

, ,

0

( ) ( ) ( ) ( ) (0, ) ( ( )) (0, ) ( ( ))

( ,0, ) ( ( ))

o k k

k

i d i d

i

z V z D z zD z zp P z b pC z P z b C z

R x z g C z

       

 

   





      

 
    (6.42) 

which on further algebraic manipulation yields 

3 4( ) ( ) ( ) ( )D z T z T z D z                                                                                                (6.43) 

where, 

 
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1

1

0
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( )
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r

pC z zp p b C z b pC z
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z pC z z p z pB pC z
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 
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                         (6.44)                   

 
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                   (6.46)
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                                                                                                                                      (6.47)                        

Now (6.43) yields 

4 4

0 0
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3

0
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
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Computation of D (0)  

Now, we proceed to compute the value of (0)D . Here, 

3 1 3 1

2 2

3 3
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Hence,
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To obtain (0)D , we use generating function approach on the normalizing condition as 

given by eq. (6.12). Thus, 
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where, 
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Hence, partial generating functions for different states of the server obtained in the above 

manner and are given by expressions (6.13) - (6.20).      

Corollary: The necessary and sufficient condition for the system to be stable is 
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Proof: In order to find the stability condition, we follow the approach of Wang et al. 

(2001).  

Theorem 6.1: The marginal generating functions corresponding to the idle state, dormant 

state, busy with first service, busy with i
th

 (1 ≤ i≤ k) service, under j
th

 (1 ≤ j≤ d) repair 

state are  
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Proof: The marginal probability generating functions for the different states of the server 

given in equations (6.60)-(6.64) can be determined by using 
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 Here, D (z) and V(z) are same as obtained earlier in theorem 6.1.  

Theorem 6.2:  The generating function for the number of customers in the orbit is  
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where,
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Proof: The generating function for the number of customers in the orbit is obtained as 
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Theorem 6.3: The generating function for the number of customers in the system is  
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Proof: The generating function for the number of customers in the system is obtained by 

using  
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6.4. SPECIAL CASES   

In order to justify the general framework of our model, we discuss here some 

special cases by setting appropriate parameters as discussed below:  

(a) If
2( ) 1, ( ) 0, 1, 1, 0,E X E X k d r      then the present model reduces to M/G/1 

retrial queue with single repair without discouragement. In this case our model 

matches with the model studied by Liu et al. (2009). 

(b) On substituting, 
2( ) 1, ( ) 0, 0, 0, 0, 0, (1 ) 0,E X E X r N p i i k         1,d 

1,op  our model deals with the non-markovian retrial queue with breakdowns; the 

same model was studied by Falin (2010a). 

(c) If 2( ) 1, ( ) 0, 0, 0, 0, 0, 1, (1 ) 0,E X E X r N p d i i k          (1)

0

1
,b


  (2)

2

0

1
,

2
b




then the present model reduces to M/M/1 retrial queue with breakdowns studied by 

Sherman and Kharoufeh (2006).  

(d) If 0, 0, 0, 1, (2 ) 0, 0, 0,(0 ),(1 ),i ijr p d i i k i k j d                 then 

we come across the model dealing with bulk retrial queue with additional service 

under N-policy which was also studied by Choudhury and Paul (2004). 

(e) If
2( ) 1, ( ) 0, 0, 0, 0, 1, (1 ) 0,E X E X r N p d i i k         then our model provides 

results for M/G/1 retrial queue with disasters and failures. Here, if we consider the 

arrival of negative customers as the arrival or attack rate of catastrophes, then our 

model portrays the same queueing problem as explored by Wang et al. (2008b). 

 

6.5. PERFORMANCE MEASURES 

The significant performance indices are derived as follows: 

(A) Long Run Probabilities  

The long run probabilities of the system states are determined by using the 

probability generating functions as follows: 

Theorem 6.4: The long run probabilities corresponding to various states of the server are: 

 The probability of the server being idle, is 
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 The probability that the server being in dormant state, is 
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V
P D A                                                                                                        (6.71) 

  The probability that the server being busy with first essential service, is 
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 The probability that the server being busy with i
th

 (1 ≤i≤ k) phase optional service, is 
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 The probability that the broken down server being under first phase of repair, is 
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 The probability that the broken down server is under j
th

 (2 )j d   phase of repair, is 
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Proof: The proof follows on the lines of theorem 2.5. 

(B) Queue Length  

The average number of customers waiting for the service in the queue and in the 

orbit is the key metrics which are obtained as follows: 

Theorem 6.5: The average queue length of the retrial orbit ( RL ) and average queue 

length of the system ( SL ) are given by: 
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and,
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Proof: The average queue length of the retrial orbit and the system are obtained by using 

             1
1

lim ( )R
z

L K z


  and 2
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L K z


 , respectively. 
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(C) Reliability Measures 

Here, we derive explicit expressions for the reliability indices namely availability 

and failure frequency of the system as given in the following theorem:  

Theorem 6.6: The steady state availability ( vA ) and failure frequency (Ff) of the server 

are given by 

 1 1

, 2 6
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Proof: The availability of the server can be determined by using   

            1 , (1 )
jv RA P j d                                                                                         (6.81) 
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6.6 DISCUSSION 

The negative arrival retrial queue with preemptive resume investigated in this 

chapter incorporates many realistic features viz. bulk arrival and impatient behavior of the 

customers. The explicit expressions derived for the generating functions and various 

performance indices including queue length, reliability indices etc. make our investigation 

applicable for the quantitative prediction of delay metrics which can be further used for 

the improvement of many real time systems wherein the working of such system is not 

only degraded but also stopped due to the attack of negative customers. The model under 

consideration depicts many real life congestion situations as it involves the feature of 

availing extra services as per choice of the customers. Our model can be easily 

implemented for present day computer communication congestion situations to obtain 

cost optimal solution for specified grade of service for various practical situations under 

technical constraints. 
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CHAPTER 7 

EMBEDDED MARKOV CHAIN Analysis 

of RETRIAL QUEUE WITH VACATION  
 

7.1 INTRODUCTION 

 In this chapter, we incorporate the concept of Bernoulli admission mechanism to 

vacation retrial queue. Bernoulli admission mechanism can be used to control the 

admission or arrival of the customers in the queues with reattempts or retrials. Artalejo 

and Atencia (2004) and Artalejo et al. (2005) proposed this policy for the admission 

control in continuous and discrete queueing systems, respectively. It is reasonable to 

assume that the arrival of the new customers is controlled in such a way that each 

individual blocked customer is admitted or allowed to join the system with probability

(0 1)   . If the arriving customer/batch finds the server in idle state, then one of the 

admitted customers joins the server whereas rest of the customers join the retrial group; 

otherwise if the server is busy, the whole batch joins the orbit. This mechanism which is 

known as Bernoulli admission policy can be considered as a control device to reduce the 

congestion at the initial stage.  

 Three important retrial policies namely classical retrial policy, constant retrial 

policy and linear retrial policy have been proposed in the literature by the researchers 

from time to time. In classical retrial policy, the customer make reattempts with 

exponentially distributed rate n where n is the number of customers present in the retrial 

group. The reattempts are allowed with retrial rate 
,0(1 )n  during constant retrial policy 

with the intervals between successive retrial attempts following exponential distribution; 

here 
,0n  denotes the Kronecker’s delta.  The linear retrial policy deals with the fact that 

the customers retry from the orbit with retrial rate ,0(1 )n n    , where n is the number 

of customers in the orbit, ,0n is the Kronecker’s delta function and   is the retrial rate, 

respectively.  

 The objective of our investigation in the present chapter is to analyze M/G/1 bulk 

arrival retrial queue with admission control using embedded markov chain technique. In 

comparison to earlier existing models, the queueing model under consideration is 

developed by keeping more versatile congestion scenarios  in the sense that it includes 
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various noble features altogether such as (i) multi-optional services, (ii) phase repair, (iii) 

Bernoulli vacation schedule, (iv) Bernoulli admission policy, (v) unreliable server and 

(vi) bulk arrival. The rest of the investigation has been organized as follows. Section 7.2 

is devoted to the description of the model with various assumptions and notations 

describing the model. The limiting distribution of the queue size using embedded markov 

technique has been obtained in section 7.3. Section 7.4 presents the distribution of the 

number of customers in the orbit and queue at equilibrium. Section 7.5 explains the 

stochastic decomposition property for the model. Various performance indices are 

obtained in section 7.6. Some special cases of our model are deduced by setting some 

appropriate parameters in section 7.7. Further, cost function for the model has been 

framed in section 7.8. The numerical simulation of obtained analytical results has been 

done in section 7.9. Finally, we wind up our investigation by highlighting the noble 

features of the work done in section 7.10. 

 

7.2. DESCRIPTION OF THE MODEL 

 A single server retrial queueing system with bulk arrival and Bernoulli vacation 

schedule has been considered. The incoming customers are admitted in the system 

following Bernoulli admission mechanism. The various assumptions and notations 

describing the model are stated as follows: 

 Arrival Process and Bernoulli Admission Mechanism 

The customers arrive in batches of m customers with probability cm ; m ≥1. Let an be the 

probability with which a batch of n customers joins the system following Poisson process 

with arrival rate λ. Thus, 
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 (r ≥2) factorial moment of 
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
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 Retrial Process and Bernoulli Vacation Schedule 

On finding the server busy or in non-working state, the customers admitted to the system 

wait in the orbit from where they can retry for the service.  

The server may go for a vacation of random interval after each service completion with 

probability 
1( )i  during FES (i

th
 SOS, 2≤ i≤ k) or it may continue to serve new 

incoming customers with complementary probability
1( )i  .  

 Service and Repair Processes 

The customers admitted to the system are served in multi-optional phases where first 

phase being compulsory phase for all the customers and is known as first essential service 

(FES). The customer after completing FES may avail ‘i’ (2≤ i≤ k) number of second 

optional services (SOS) in succession out of total ‘k-1’ optional services available. After 

completing first optional service, the customer may opt for the next second optional 

service and so on. In general after completing (i-1)
th 

optional service, the customer may 

go for the i
th

 (2≤ i≤ k) optional service with probability pi-1 (2≤ i≤ k) or may move out of 

the system with complementary probability (1- pi-1). After completion of k
th

 service, it 

departs from the system.  

  The server is unreliable and may breakdown in Poisson fashion with breakdown 

rate , (1 )
i

i k    during any state of service. The repair process is completed in‘d’ 

compulsory phases with repair rate , (1 )(1 )ij i k j d     . The cdf, pdf, LST of pdf, 

mean and r
th

 (≥ 2) moments for the i
th

 (1 )i k   phase service process are respectively 

given by ( )iB t , ( )ib t , ( )ib s , bi and ( )r

ib . The cdf, pdf, LST of pdf, mean and r
th

 (≥ 2) 

moments for the repair process are given by ( )ijG t , ( )ijg t , ( ),ijg s ijg  and ( )r

ijg , 

respectively.  

 Generalized Service Time 

The generalized service time Hi (t) (1 )i k  of i
th

 (1 )i k  phase service can be defined 

as the total time taken to complete i
th

 phase service including both service time and repair 

time. Now, LST for the distribution function of the generalized service time of Hi (t) is 

   
0 10

1

( )
( ) ( ) ( )

!

( (1 ( ))

i

n
n d

tst i
i ij i

n j

d

i i ij

j

t
H s e e g s dB t

n

b s g s

 






 



  
   

   

  

 



                                                        (7.1)  



 

150 

 

The first and second moment of i
th

 phase generalized service time respectively, are given 

as: 

1

(1 )
d

i i ij

j

ih b g


   and (2) (2) 2 (2)

1 1

(1 ) ( )
d d

i i ij i ij

j j

i ih b g b g 
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     

Let N(t) represents the number of customers in the orbit at any time t and the phase of 

service and phase of repair, respectively at any time t are given as 

1 2( ) {1,2,..., }, ( ) {1,2,..., }S t k S t d  . The state of the server at any time t is given by- 

        

0, when theserver is in idlestate

1, when theserver is busy with essential phase of  service
Y(t) =

k , when theserver is busy with k optional  service, (2 k k)

k+1, when theserver is in vacation state





   



 

If, ( ) (2,3,..., )Y t k , then we define ( )t as the elapsed service time. So, the state of the 

system at any time t can be stated as
1 2( ) ( ( ), ( ), ( ), ( ), ( )).Z t Y t S t S t N t t  

 Modified Service Time 

The modified service time, as introduced by Keilson and Servi (1986) can be defined as 

the time required for completing a service cycle. It is defined as the time taken by a 

customer from the start of its service until the moment he exits from the system. Thus, the 

modified service time includes the service time, repair time and vacation time for the 

model under consideration. For our model, we define the modified service time B as: 
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Here k  is the last optional service availed by the customer starting continuously from 2 to

k   2 k k  . Here, Hi  1 i k  is the cdf for the i
th 

generalized service time, 
kV 

 2 k k  corresponds to the cdf for vacation after availing thk optional service. 

 

7.3 EMBEDDED MARKOV CHAIN  

 Let n
th

 service completion or departure occurs at any time instant say 
n

  and        

C(
n

 -) = Cn be the state of the server before the time instant
n

 . Also, let N(
n +) = Nn 
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denotes the number of retrying customers present in the system just after
n

 . Also, we 

have the sequence Nn=N(
n +) which is embedded Markov renewal process 

corresponding to continuous time Markov process Z(t). Then we have the following 

transition- 

(Nn / Nn-1=J) =

1  with probability 

-1+  with probability 

,

,

J

n

J

n n

J

J B

J W B
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 
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
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



                                           (7.2)                                                 

where, Bn is the number of customers that arrive during the n
th

 modified service time and 

Wn is the number of customers allowed to join the system if the n
th

 customer proceeds 

from a batch arrival. Also, 
0(1 )a   due to Bernoulli admission mechanism involved 

in our model. 

7.3.1 Ergodicity of the Embedded Markov Chain 

 Now, we proceed to determine the condition that lead to a stationary process 

being ergodic. We know that a markov chain is said to be ergodic if it is possible to go 

from every state to every other state, may be in one move or more than one moves or if a 

single realization of the process can make all the conclusions about the probability law 

that generate the process. To check the ergodicity of the markov chain Nn, we have the 

following theorem: 

Theorem 7.1: The embedded markov chain is ergodic iff 
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Proof:  In order to investigate the ergodicity of the sequence Nn, we use classical theory 

of Lyapunov function (see Artalejo and Gomez Corral, 1997; Sennott et al., 1983) which 

is based on mean drift criteria. Further, we employ Foster’s criterion (cf. Pakes, 1969), 

according to which an irreducible and aperiodic Markov chain Nn with state space Z
+
 is 

ergodic if there exists a non negative function f(n), n Z


 ,  >0 and if the mean drift 

1
[ | ],

n n n n
E N N N n


    

is finite for all n Z  except perhaps a finite number. 

Let us choose f (n) = n as test function or Lyapunov function. Then we have, 
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For ,n   we have the following stability conditions- 

(i) If 0and 0   , then 
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(ii) If  0 0and   , then 1.   

Therefore, it can be said that the embedded markov chain  :nN n Z  is ergodic. Also, 

sequence  
1n n

N



 is positive recurrent so as to guarantee that the limiting probabilities

lim { }J n
n

P N J


  , J ≥0 exists and are positive. 

7.3.2. Limiting Distribution 

 Let us assume that 
, ,, (1 )

i ii n i ne r i k  are the probabilities of admission of 
in

customers in the system during (1 )
th

i i k  phase service time and during the vacation 

after the completion of (1 )thi i k  phase service, respectively. Therefore, we have 
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Here ( )

0{ }n

m ma 


 denotes the n-fold convolution of the sequence

0{ }m ma 


.  Let us assume 

that the ‘n’ customers arrive with probabilities (1)

1,n ne e , ( ) ,k

ne


 (1)

nl  and ( )k

nl


during the time 

intervals (H1), (H1+
2

k

i

i

H




 ), (H1+V1), and   (H1+
2

k

i

i

H




 +
kV  ), respectively s.t.  2 k k  , 
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then
1

k

i

i

n n


 . Now, the required probabilities are determined using

1

1 2
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m
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n
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m

l e r
 

 



  2 .k k   

7.3.3 Transition matrix 

 The one step transition matrix is P= (puv), where puv =Pr (Nn+1=v/ Nn=u) 

associated with Markov chain  
1n n

N



 is obtained as  
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                                                                                                                                 (7.5)  

Now, using π= π P, the Kolmogorov equation associated with Markov chain can be 

written as- 
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                                                                                                                               (7.6) 

Now, we multiply equation (7.6) by z
v
 and then summing it over v  0, we get 
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7.3.4 Generating Function 

In this sub-section, we define generating functions as follows: 

0

( ) n

n

n

z z




  ,
0

( )
( )

n

n

n J

z
z




 








 , (1)

1

0

( ) n

n

n

L z l z




 , ( )

0

( ) k n

k n

n

L z l z








 ,  

(1)

1

0

( ) n

n

n

E z e z




 , 
,

0

( ) ( )
i

n

i i n

n

E z e z




 , ( )

( )

0 1

( ) ( )
k

k n

k n i

n i

E z e z E z






 

   ,  1 k k   

,

0

( ) n

i i n

n

P z P z




 ,
0

( ) i n

i n

n

R z r z




  (1 )i k  , 
1 1 1 ( )( ) ( ) ( ), ( ) ( ) ( )k k kL z E z R z L z E z R z     

Using (7.3), we have   ( ) 1 ( ) ,i iE z H a z   1 k k  . Also, using (7.1), we have  
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Now, consider 
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We consider the case of linear retrial policy, as for ν=0 the obtained results reduces to 

that for classical retrial policy and for  =0, we can get results for constant retrial policy. 

Therefore, we have 
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Following Choudhury (2009) equation (7.8) reduces to 
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 This can be written as 
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where,                                                                                                                                                                     

                                                                                                                           (7.13)          

 

Solving (7.8) and (7.12), we get 
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Computation of (1)  

Using the arguments of normalizing condition i.e. the sum of probabilities as unity, we 

have   (1) 1  . Hence, using normalizing condition in equation (7.15) and applying L-

Hospital’s rule, we find  
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Theorem 7.2: The probability generating function ( )z for the stationary queue size 

distribution for (i) Linear retrial policy (>0,  >0) (ii) Classical retrial policy (=0,     

 >0) and (iii) Constant retrial policy (> 0 and  =0) are respectively, given by 
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           1 1
0 0 2(1 ) 1a                                                                         (7.22b)                                                                                                                                          

Proof: The probability generating function can be obtained by solving the linear 

differential equation (7.14) under different retrial schemes. We initially consider the case 

for linear retrial policy. On solving differential equation (7.14), we get the generating 

function of the stationary queue size distribution given by (7.19). Further, by putting z=0 

in equation (7.19), we get the value of 0.  

 For classical retrial policy, the differential equation (7.14) reduces to homogenous 

equation and directly gives the result as given by (7.21a). The value of 0 as specified in 

equation (7.21b) for classical retrial policy is obtained by using the relation
0

(0)  . 

Now we turn our attention for the constant retrial policy. For this case we set  =0 in 

equation (7.14) and get 
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(7.22c) 

On further simplifying (7.22c), we get result (7.22a). The value of 0 as given in equation 

(7.22b) is obtained by taking the limit z1 in equation (7.22a) and then using L-hospital 

rule. 

 

7.4. JOINT DISTRIBUTION AND EMBEDDED MARKOV RENEWAL 

PROCESS 

 In order to investigate the joint distribution of the state of the server and the 

number of customers in the retrial group, we employ Markov regenerative process 

(MRGP). The similar approach is used by Jain et al. (2012b); Choudhury (2013), and 

many more to analyze queueing models in different frameworks. MRGP is a continuous-

time stochastic process associated with more general conditions of regeneration than 
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regenerative processes and can be used for determining the limiting behavior of some 

queues with general distributions. Let us assume that the limiting distribution of the 

system and the number in the retrial group is  

 , limPr ( ) ( , ) , ( , ) { ( ), ( )}.l s
t

P Z t l s l s Y t N t


                                                                                                  

 It is evident from Burke’s theorem (cf. Cooper, 1981) that stationary probabilities 

 , : ( ), ( )l sP l Y t s N t  exist and are positive for embedded Markov chain. For brevity, 

we consider the following notations: 

   
(1 ( )) ( ))

( )
( ( ) )

a y Q y
y

Q y y


 


,

1
( ) /     and 2

(1 )

( )E X







                                        (7.23) 

7.4.1 Embedded Markov Renewal Process 

 In order to determine the limiting distribution we use some existing results 

established by Cinlar (1975). Let us assume that, 

( , )n l s = Expected time spent by the process  ( ), 0Z t t  in the state (l, s) during a 

service cycle.  

       
n  = Expected length of the service cycle where service cycle can be referred as the 

span of time between two consecutive completion epochs by considering the 

fact that n customers are present in the retrial orbit at the beginning of this 

interval. 

Therefore, 0
,

0

( , )n n

n
l s

n n

n

l s

P

 

 













                                                                                      (7.24)                                                                                                        

Further, for model under consideration, 
n  is obtained as: 

1
, 0n

n

n
a




  
  


  

 and the mean service cycle is given by 

1

0

( )n n

n

a  






                                                                                                            (7.25) 

Theorem 7.3: The limiting probabilities for the queue size distribution are obtained as 

follows:  
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
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                                                                                                                                  (7.28)     

1 1

1, 1 1 , 1 1, 1, 1

1 1

11 1 1
( 1)

1 1 1, 1, 1 , 1 1, 1

1 1 11

1

( ( ))[ (1 )

( )(1 )

(

s n s n m

k s s n m i s n i m

m in

ks n s n s n m
kn

i s n i i k s n m i k s n i m

i m iin n

k
n

i k

in

P E X p a e u

p e u p a e u

p


  

 

 
  

   




 

    

     

 

      


        

  







 


  
 




 

  

11 1
( 1)

1, 1

1 1

) ] , 0, 0, (2 )
s s n

k

i k s n i n

n i

e u n s k k
  



   

 

    

   (7.29)                                         

where, 
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and,  

           
0

, ( )

1 0

(1 ( )) , 0

exp( )( ) (1 ( ))
, 1, (1 )

!

t

i

i n n n

m i

n

e V t dt n

u
t t a V t dt

n i k
n



 










 


 

    







                          

Proof:  The limiting probabilities for the various states of the server can be obtained in 

the following manner: 

Case 1: When Y(t) = 0, and N(t)=s.  

In this case the server is in idle state with s customers in the retrial orbit at any time t and 

n retrial customers at the beginning of this interval. Then, we have 

,

1
(0, ) , 0, 0n s n
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                                                                                  (7.30) 

where, ,

1, if

0, if .
s n

s n

s n



 


 

 

 

1 1 1
( 1)

, , 1 , 1
1 11

1 11 1
( 1)

, 1
1 11 1

( ) ( ) (1 )

( ) ( ) ( ) , 0, 0, (2 )

k s n s n m
kn

k s i s n m k s n i mi
n m ii

k ks s n
kn n

i i k s n ii
nn ii i

P E X p a e f

E X p p e f n s k k


 

 

 


 

     


     
 

    


   
  

 
    

 
       

 

  



 

159 

 

Using, (7.30) in (7.24), we have 
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
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Case 2: When Y(t)=1. 

In this case, the server is busy with the essential generalized service of the customer. 

Thus time spent by the process in the state (1, s) is given by 

1 1

, 1 1, 1 1, 1

1 1

(1, ) (1 ) , 0, 0
s n s

n
n s n m s n m s n

m nn n

s a f f n s


 
   

  

     

 

    
 

                      (7.31) 

Therefore, using (7.31) in (7.24), we get (7.27).  

Case 3: When Y(t) = ; (2 )k k k    

During this state, the server provides optional services to the customer. A customer 

undergoing service can utilize k   (2 )k k  successive optional services. Then, the 

expected amount of time spent by the Markov process is: 
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( 1)

, 1 , 1

1 11

11 1
( 1)

, 1

1 11

( , ) ( )(1 )

( ) , 0, 0

k s n s n m
k

n i s n m i k s n i m

m iin

ks s n
kn

i i k s n i

n iin

k s p a e f

p e f n s


 

 



 

     


    

 

  


   

 

  


  


 

 

                                 (7.32) 

and, thus using (7.32) in (7.24), we have (7.28). 

Case 4: When Y(t) = 1.k    

The server undergoes vacation during this state and returns back after a random interval 

of time to serve the next customer if any. Here, we have 
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(7.33)                                                                                                                                       

Therefore, limiting distribution (7.29) for vacation state can be obtained by solving (7.24) 

and (7.33). 

Theorem 7.4: The generating functions for the various states of the server are expressed 

as:                                                                                                       

   0( ) ( ) ( )P z E X z                                                                                               (7.34) 
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Proof:  We define 
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Now, the partial generating functions for various states can be obtained by multiplying 

equations (7.26)-(7.29) by required powers of z followed by summation of s for s ≥0. 

Thus, we get (7.34)-(7.37).   

Theorem 7.5: The generating function defining probability of the number of customers 

in the orbit is given by 

 
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Proof: The generating function for the number of customers in the orbit is obtained by 

using 
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Theorem 7.6: The generating function defining probability of the number of customers 

in the system is given by 
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Proof: It can be obtained by using  
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7.5 STOCHASTIC DECOMPOSITION 

 The stochastic decomposition property of the queue with vacation has been 

studied by a number of researchers (Yang and Templeton, 1987; Fuhramann, 1985). 

Stochastic decomposition for retrial queues with vacation can be established easily.  

According to this decomposition, the generating function for the queue length of the 

system for the retrial queues with vacations can be stochastically decomposed as the 

product of the stationary distribution of retrial queues without vacations and additional 

term due to vacations. In this section, we present the stochastic decomposition of retrial 

queues with multi-optional services with Bernoulli vacations and multi-essential repair. 

From theorem 7.6, we have  
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The above expression for the generating function of the system size can also be written as 

(cf. Choudhury and Deka, 2013): 
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Here, 
1( )T z represents the system size distribution of bulk arrival non-markovian retrial 

queue equipped with phase service and Bernoulli admission mechanism under Bernoulli 

vacation schedule. The second term, 
2 ( )T z gives the distribution of the average number of 

customers in the retrial group under the condition that the server is in idle state.  

 

7.6 PERFORMANCE INDICES 

 In the present section, we derive some performance measures of interest in 

theorem form as follows: 
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(a) Long Run Probabilities 

   The long run probabilities are given in the following theorem: 

Theorem 7.7: The long run probabilities of the server in various states are 

 (i) When the server is in idle state: 

   (1 )
I

P                                                                                                                    (7.40) 

 (ii) When the server is busy with first essential phase of generalized service: 
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 (iii) When the server is busy with k', (2≤ k'≤ k) optional phase of generalized service: 
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  (iv) When the server is under vacation state: 
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Proof: The long run probabilities can be obtained by using 
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(b) Average Queue Length and Average Waiting Time 

 The average queue lengths of the number of customers in the retrial orbit and in 

the system are established in the following theorems: 

Theorem 7.8: The average queue length of the customers in the retrial orbit E [No] and 

average queue length of the system E [Ns] are given by  

   
2

o

( ) ( ) (1) (1)
E [N ]=

( ) (1 ) 2(1 )

E X E X Q

E X

  

 

  
  

  
                                                       (7.44) 

   
sE [N ]=E[N ]o                                                                                                       (7.45) 

   where, 

(i) If 0, 0   , then 

                     
1

0 0(1) ( ) ( ) 1 (1 )( 1) ( )E X E X a E X        


           

(ii) If 0, 0   , then 

                   
1

0(1) ( ) (1 )( 1) ( )E X a E X     


      
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(iii) If 0, 0   , then 
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Proof: The average queue lengths for the retrial orbit and system are obtained (cf.  

Choudhury, 2008) as: 

 
o
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dK ( )
E [N ]= lim o
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dz
  and 

1

dK ( )
E [N ]= lim E [N ]s

s o
z

z

dz



   

Theorem 7.9: The average waiting time (Ws) spend by a customer in the system is      

21 ( ) ( ) (1) (1)

( ) (1 ) 2(1 )

E X E X Q

E X

  


  

  
   

  
                                                              (7.46) 

Proof: The mean time spend by a customer for the service is determined using Little’s 

formula (Gross and Harris, 1985) as: 

                                      
sW  = [ ]sE N  .      

                                                                                                                                

7.6 SPECIAL CASES 

 In order to validate our model, we deduce some special cases of our study by 

assigning some specific values to various parameters. Some such cases are listed below: 
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a) If 1, 2, 1,k d    then our model reduces to model analyzed by Jain et al. (2012b). 

b) If 0, 0, 2, 1, (1 ) 1, (1 1) 0,i i i ik d p i k i k             then the present model 

reduces to model analyzed by Choudhury and Deka (2013). 

c) If 2( ) 1, ( ) 0, 2, 1, (1 ) 1, (1 1) 0, 1,i iE X E X k d p i k i k             then the 

present model coincides with the model studied by Choudhury (2009). 

d) If 2, 1, (1 ) 1, (1 1) 0, 1, 0, 0,i i ik d p i k i k               then our model is 

same as studied by Choudhury (2007). 

e) If 2( ) 1, ( ) 0, 1, 1, 1, 0,iE X E X k d        then the model developed provides 

results obtained by Falin (2010a). 

f) If 0, 0, 2, 1, (1 ) 1, (1 1) 0, 1, ( ) 1,i i i ik d p i k i k E X                then 

our model coincides with queueing model studied by Choudhury (2008b). 

g) If 1, 1, (1 ) 0, (1 ) 0, 0,i i ik d i k p i k          then our model deduces to the 

queueing model analyzed by Artalejo and Atencia (2004). 

h) If ( ) 1, 0, 0, 2, 1, (1 ) 1, (1 1) 0, 1,i i i iE X k d p i k i k                then 

the model under consideration yields performance measures obtained by Artalejo 

and Choudhury (2004). 

i) If 0, 0, 1, 1, (1 ) 0, (1 1) 0, 1,i i i ik d p i k i k               present model 

coincides with that studied by Falin (2010b). 

  

7.8  COST FUNCTION 

In the present section, we frame the function which provides the analytical 

formula for the expected total cost (ETC) for the concerned retrial queueing model. The 

cost function is formulated by considering service rate (µ1) and admission probability (ζ) 

as decision variables.  

The cost function has been formulated in the following manner as: 

11 1(µ , ) ; (2 )
k kh s b E b O V V I IETC C L C C P C P C P C P k k 
 

                             (7.48) 

where, 

hC = Holding cost per unit customer; 

1C = Fixed cost incurred when a customer is admitted to join the system according to 

admission policy; 

1bC = Cost per unit time while providing first essential service; 
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kbC

= Cost per unit time while providing thk (2 )k k  optional service; 

VC = Cost per unit time in the system when the server is on vacation;  

IC = Cost per unit time when the customer retry for the service.  

Here, our aim is to find out the optimal expected total cost of the system by determining 

optimal decision variables µ1* and ζ*. Since the cost function framed is non-linear in 

nature, so we first check the convexity of the function and then find out corresponding 

optimal expected cost.  

The following procedure has been adopted to find optimal decision variables µ1* and ζ*: 

Step 1:  Initialize ζ= ζ0. 

Step 2:  Vary µ1 in predefined range say (a ≤ µ1 ≤ b) and obtain total cost corresponding 

to different values of µ1 and fixed ζ0.  

Step 3:  Search for the optimal value of µ1 (say µ1*), such that ETC (µ1*
-
, ζ) ≤ ETC (µ1*, 

ζ) ≤ ETC (µ1*
+
, ζ) is satisfied. 

Step 4:  Now, fix µ1 = µ1* and vary ζ within the prescribed limits and similar to step 2 

find total costs corresponding to different values of ζ and fixed µ1*. 

Step 5:  Search for the optimal value of ζ (say ζ*) such that such that ETC (µ1*, ζ*
-
) ≤ 

ETC (µ1*, ζ*
-
) ≤ ETC (µ1*, ζ*

-
) is satisfied. 

Step 6: Record (µ1*, ζ*) and ETC (µ1*, ζ*), which provide optimal parameters and 

corresponding optimal cost.  

 

7.9 NUMERICAL RESULTS AND SENSITIVITY ANALYSIS 

 The efficiency of any retrial queueing model is best deciphered by means of the 

numerical analysis of derived analytic results. In this section, we provide the sensitivity 

analysis to examine various performance indices towards variation in different 

parameters. The numerical tractability of the present generalized queueing model will 

provide insight for the validation of the real time queueing system in a much better way. 

The numerical results are obtained by coding computer program in ‘MATLAB’ software. 

The batch size has been assumed to follow geometric distribution while retrial process, 

vacation process and repair process are assumed to be exponentially distributed for 

numerical purposes. Different distributions namely exponential and gamma are 

considered for the service time. For illustration, the computational results have been 
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obtained for a total 3 phase services (1 essential and 2 optional) by setting the set of 

default parameters as: 

1 2 3

1 2 3 1 2 3 2 3 1

2 3 1 1 1

1

0.5, 0.2, 0.2, 0.2, 0.8, 1.2, 1, 5, 4, 0.4,

0.2, 0.4, [ ] 1, 0.2, 0.4, 0.7, 0.4, 0.2, $5,

$5, $20, $35, $52, $10, $50.

h

b b b V I
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p p E X C

C C C C C C

        

    

         

        

     

 

 Figs 7.1-7.2 are plotted to compute the expected total cost and optimal values of 

µ1 and ξ for the assumed set of default parameters. Figs 7.1(a-b) depict the model M
x
/M/1 

when service pattern is exponentially distributed service while figs 7.2 (a-b) are plotted 

for gamma distributed service time. For M
x
/M/1 model, we proceed as follows: 

(i) Fix ζ as 0.4 units and vary µ1 from 1 to 5 units to search for the corresponding 

optimal cost as shown in fig. 7.1(a).  

(ii) It is noticed that min. ETC (µ1, ξ) is $40 at µ1=2.3 units and ζ =0.4 units so 

that µ1*=2.3 and ETC (µ1*, ξ) = $40. 

(iii) Now, we fix µ1=2.3 units and vary ζ as 0.01: 0.01: 0.4 units and check the 

corresponding minimum expected total cost. 

(iv) The optimal minimum cost ETC (µ1, ζ ) = $37.65 which is attained at ζ *=0.2 

units when µ1*=2.3 units as shown in fig. 7.1(b). 

(v) Now, (µ1*, ζ*) = (0.2, 2.3) and ETC (µ1*, ζ*) = $ 37.65. 

 Similarly, we proceed to find out (µ1*, ζ *) when service time distribution is 

assumed to follow gamma distribution. In this case minimum expected total cost ETC 

(µ1*, ζ*) = $37.39 is achieved at (µ1*, ζ*) = (0.2, 0.21). On comparing the cost for two 

different service time distributions, we claim that the minimum optimal cost is obtained 

when service time follows exponential distribution.  

  

   Fig. 7.1(a): ETC (µ1, ζ) vs.  µ1 for             

M
x
/M/1 retrial queue 

Fig. 7.1(b):  ETC (µ1, ζ) vs.  ζ for                     

           M
x
/M/1 retrial queue 
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Fig. 7.2(a):  ETC (µ1, ζ) vs. µ1 for              Fig. 7.2(b): ETC (µ1, ζ) vs.  ζ for   

                    M
x
/γ/1 retrial queue                                     M

x
/γ/1   retrial queue 

However, ζ* is higher for gamma distributed service time and on the contrary µ1*
 
is 

higher for exponentially distributed service pattern. 

 The sensitivity of various parameters towards performance indices is detailed in 

the following subsections. The default parameters for computational purpose are fixed as:   

1 2 3 1 2 3 1 2 3

1 2 3 1 1 1

0.5, 0.2, 0.2, 0.2, 0.8, 1.2, 1, 2, 5, 4,

0.4, 0.2, 0.4, [ ] 1, 0.2, 0.6, 0.4, 0.7, 0.4, 0.2.p p p E X

         

     

         

         
  

 (A) Long Run Probabilities: The sensitivity of long run probabilities and waiting time 

of the system towards various parameters viz. λ, , µ1, µ2, σ1, β1 for different values of ζ 

have been displayed by means of tables 7.1-7.3. It is clear from the data given in tables 

7.1-7.3 that PI decreases with an increase in arrival rate (λ), vacation probability (σ1) 

while it increases with an increase in service rates (µ1, µ2) and repair rate (β1). On the 

other hand, the probabilities of the server being busy with essential service (PE) and being 

busy with optional services (
koP

) increase with an increase in λ, ζ, and their 

corresponding service rates µ1 and µ2 but decreases with an increase in repair rate β1.  

(B) Queue Length: The effects of various parameters on the number of customers in 

both system and the orbit are displayed by means of figures 7.3-7.4. In figs 7.1(a-c), the 

queue length of the system E[Ns] and orbit E[No] have been plotted against varying 

values of λ, µ1, µ2, σ1, ζ for M
x
/M/1 model. The solid lines (

___
) in the graphs 7.3(a-c) 

correspond to E[Ns] where as dashed lines  (---) are plotted for E[No]. It is quite clear 

from the figs 7.3(a-c) that both E[Ns] and E [No] increase with an increase in the arrival 

rate (λ), vacation probability (σ1), admission probability (ζ) as well as with breakdown 

rate (α1) which is quite obvious. The effects of various parameters like ζ, β1 and γ with λ 
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Table 7.1: Effect of λ, γ and ζ on the long run probabilities 

 ζ = 0.6 ζ = 0.4 

λ γ PI PE PO3 PV Ws PI PE PO3 PV Ws 

0.5 0.2 0.4944 0.2371 0.0249 0.1992 4.98 0.6630 0.1580 0.0166 0.1328 0.77 

0.7 0.2 0.2922 0.3319 0.0349 0.2789 8.54 0.5281 0.2213 0.0233 0.1859 1.13 

0.9 0.2 0.0900 0.4267 0.0449 0.3586 31.21 0.3933 0.2845 0.0299 0.2390 2.20 

0.5 0.3 0.4944 0.2371 0.0249 0.1992 4.46 0.6630 0.1580 0.0166 0.1328 1.27 

0.7 0.3 0.2922 0.3319 0.0349 0.2789 6.62 0.5281 0.2213 0.0233 0.1859 1.37 

0.9 0.3 0.0900 0.4267 0.0449 0.3586 21.60 0.3933 0.2845 0.0299 0.2390 2.00 

0.5 0.4 0.4944 0.2371 0.0249 0.1992 4.19 0.6630 0.1580 0.0166 0.1328 1.52 

0.7 0.4 0.2922 0.3319 0.0349 0.2789 5.66 0.5281 0.2213 0.0233 0.1859 1.49 

0.9 0.4 0.0900 0.4267 0.0449 0.3586 16.79 0.3933 0.2845 0.0299 0.2390 1.90 

 

Table 7.2: Effect of µ1, µ2 and ζ on the long run probabilities 

 ζ = 0.6 ζ = 0.4 

µ1 µ2 PI PE PO3 PV Ws PI PE PO3 PV Ws 

2 5 0.3759 0.3556 0.0249 0.1992 7.13 0.5839 0.2371 0.0166 0.1328 1.34 

3 5 0.4944 0.2371 0.0249 0.1992 4.98 0.6630 0.1580 0.0166 0.1328 0.77 

4 5 0.5537 0.1778 0.0249 0.1992 4.21 0.7025 0.1185 0.0166 0.1328 0.53 

2 5.5 0.3809 0.3556 0.0239 0.1992 7.02 0.5873 0.2371 0.0160 0.1328 1.31 

3 5.5 0.4995 0.2371 0.0239 0.1992 4.91 0.6663 0.1580 0.0160 0.1328 0.75 

4 5.5 0.5587 0.1778 0.0239 0.1992 4.15 0.7058 0.1185 0.0160 0.1328 0.51 

2 6 0.3851 0.3556 0.0231 0.1992 6.92 0.5901 0.2371 0.0154 0.1328 1.29 

3 6 0.5037 0.2371 0.0231 0.1992 4.85 0.6691 0.1580 0.0154 0.1328 0.73 

4 6 0.5037 0.2371 0.0231 0.1992 4.85 0.7086 0.1185 0.0154 0.1328 0.49 

 

Table 7.3: Effect of σ1, β1 and   on the long run probabilities 

 ζ = 0.6 ζ = 0.4 

σ1 β1 PI PE PO3 PV Ws PI PE PO3 PV Ws 

0.3 1.4 0.3855 0.3556 0.0249 0.1896 6.91 0.5903 0.2371 0.0166 0.1264 1.28 

0.5 1.4 0.2655 0.3556 0.0249 0.3096 10.70 0.5103 0.2371 0.0166 0.2064 2.01 

0.7 1.4 0.1455 0.3556 0.0249 0.4296 20.26 0.4303 0.2371 0.0166 0.2864 2.92 

0.3 1.0 0.3544 0.3850 0.0256 0.1896 7.64 0.5696 0.2567 0.0170 0.1264 1.43 

0.5 1.0 0.2344 0.3850 0.0256 0.3096 12.25 0.4896 0.2567 0.0170 0.2064 2.20 

0.7 1.0 0.1144 0.3850 0.0256 0.4296 25.92 0.4096 0.2567 0.0170 0.2864 3.19 

0.3 0.8 0.3192 0.4188 0.0261 0.1896 8.63 0.5461 0.2792 0.0174 0.1264 1.61 

0.5 0.8 0.1992 0.4188 0.0261 0.3096 14.58 0.4661 0.2792 0.0174 0.2064 2.45 

0.7 0.8 0.0792 0.4188 0.0261 0.4296 37.66 0.3861 0.2792 0.0174 0.2864 3.53 
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(a)                                                       (a)   

  

 (b)                                                            (b) 

  

     (c)                                                           (c) 

      Fig.7.3: Queue length vs. λ for 

M
x
/M/1 retrial model for 

(a) ξ, (b) α1 (c) σ1 

   Fig.7.4:  E[No] vs. λ for M
x
/γ/1             

retrial model for   

                  (a) ζ, (b) β1  (c) γ 

 

on E [No] by varying arrival rate for gamma distributed service pattern, have been shown 

in figs 7.4(a-c). It is clear from the graphs plotted in fig. 7.4(a) that the number of 

customers in the orbit increases as ζ increases, which is same as we expect. On the other 
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hand, E[No] decreases with an increase in repair rate (β1) and retrial rate (γ), as an 

increase in repair rate helps in fast servicing of the customers and thus reduces the queue 

length. If we increase γ, then obviously the number of customers retrying for the service 

from orbit increases which in turn reduces the queue length of the orbit.  

 

7.10 DISCUSSION 

The unreliable retrial queue with bulk input, multi-optional services and phase 

repair has been investigated using embedded Markov chain technique. Overall based on 

numerical simulation, we can conclude that- 

 An increase in the service rate speeds up the servicing of the customers thereby 

waiting time reduces while an increase in the vacation probability builds up the queue 

length as such results in the increment in the waiting time of the customers.  

 An increase in the vacation probability and admission probability builds up the queue 

length of the customers. A control over the customers in both orbit and the system can 

be maintained by increasing the repair rate and service rate. Thus, an increase in repair 

rate and service rate can help in reducing the customers in both orbit and the system. 

 The average time spend by a customer while waiting (Ws) increases with more arrivals 

in the system and vacation probability (σ1) but decreases with the increase in service 

rates (µ1, µ2) and repair rate (β1). 

 Optimal Bernoulli admission control parameter ζ* is higher for gamma distributed 

service time and on the contrary optimal service rate µ1*
 
is higher for exponentially 

distributed service pattern. 

 The developed cost function is convex w.r.t. service rate µ1 and admission control 

parameter ζ for retrial queueing model under consideration. The optimal cost 

computed can be useful for the system designers and decision makers to have a better 

idea to trade off between cost and delay of the system.  
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CHAPTER 8 

RETRIAL QUEUE WITH THRESHOLD 

RECOVERY  
 

8.1 INTRODUCTION 

Enormous real life congestion situations deal with the systems where either capacity 

or population is finite. The systems with finite capacity as well as finite population have 

been studied in recent past. Such models find numerous applications in machine repair 

problems, hospitals, educational institutes, telecommunication systems, inventory etc. where 

either the calling population or capacity of the system is finite.  

In previous chapters 2-7, the steady state behavior of non-markovian retrial queues 

has been analyzed using classical techniques namely supplementary variable technique and 

embedded markov chain technique, etc. This chapter is devoted to study the transient 

behavior of the finite capacity retrial queues with threshold based recovery using numerical 

approach based on Runge-Kutta method. Two different finite models have been explored in 

this chapter. Section 8.2 deals with the finite capacity retrial queueing model with geometric 

arrivals. Section 8.3 is concerned with the F-policy finite retrial queueing model. Finally, 

conclusions are drawn in section 8.4. 

 

       8.2 FINITE CAPACITY RETRIAL QUEUEING MODEL WITH THRESHOLD 

RECOVERY 

In this model, we consider unreliable Geo/M/1 retrial queueing model with finite 

capacity K. Let N(t) be the number of customers in the system at time t and X(t) denote the 

status of the server s.t. X (t) = {0, 1, 2, 3, 4} for idle, FES, SOS, failure during FES, broken 

down during SOS, respectively. We define our state space as X= {(x, n): n € N, x € (0, 1, 2, 

3, 4)}. To formulate the model, the assumptions made are as follows:  

 Retrial Process: The customers in the orbit retry for the service with a constant retrial 

rate γ and compete with the external customers for the service.  

 Arrival Process: The customers arrive in the system following geometric distribution 

with state dependent arrival rate . The arrival rate follows geometric distribution with 
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probability defined by
1Pr{ ( ) ; 1} iN t n n     , 1i  . The arrival rates are described 

here as: 

 

 

 

 

 Service Process: The servicing of a customer is basically completed in two stages; first 

essential service (FES) and second optional service (SOS). The service process follows 

exponential distribution with parameter e oμ }for FES and{μ }forSOS . All the incoming 

customers at the first stage are served with rate ep . After completing the FES, the 

customer may either go to SOS with rate o  or leave the system with rate ep . 

 Breakdown Process: The server is unreliable and subject to unpredictable breakdowns. 

It may breakdown during FES (SOS) according to Poisson process with rate e ( o ). 

 Repair Process: As soon as the server breakdowns, it is immediately sent for repair and 

after repair it becomes as good as before failure. The repair process follows threshold 

recovery; the repairing starts only when a sufficient number say q (threshold) customers 

have been accumulated in the system. The repair rates are defined as- 

                                
e

o

β ,when theserver isbrokendownduringFES
β

β ,when theserver isbrokendownduringSOS


 


 

8.2.1 The Governing Equations 

Chapman Kolmogorov equations governing the model have been constructed for the 

finite capacity model which can accommodate K number of customers in the system.  

(i)  Idle state 

 
0,0 1,1 2,1 0,0( ) ( ) ( ) ( )e oP t p P t P t P t     

                                                                                   
(8.1)

                                  
1

0, 1, 1 2, 1 0,( ) ( ) ( ) ( ) ( ); 1 1i

i e i o i iP t p P t P t P t i K   

 
       

                                        
(8.2)

                                                

0, 0,( ) ( )K KP t P t  
                                                                                                                      

(8.3)
     

  (ii) First essential service

 

 
1,1 0,1 1,1 0,0( ) ( ) ( ) ( ) ( )e e e eP t P t p p P t P t           

                                                         
(8.4)
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 


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(8.5)
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2 1
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(iii) Second optional service 

2,1 1,1 2,1( ) ( ) ( ) ( )e o o oP t p P t P t       
                                                                                    

(8.8)
                                                                 

 

2 1

2, 1, 2, 1 2, 1( ) ( ) ( ) ( ) ( ); 2 1i i

i e i o o i o o o o iP t p P t P t P t i q       

 
        

                       
(8.9)

           
 

2 1

2, 1, 2, 1 2, 1

4,

( ) ( ) ( ) ( ) ( )

( ); 1

i i

i e i o o i o o o o i

o i

P t p P t P t P t

P t q i K

      



 

 
     

                                                
(8.10)

             
 

2

2, 1, 2, 1 2, 4,( ) ( ) ( ) ( ) ( ) ( )K

K e K o o K o o K o KP t p P t P t P t P t     


     

                                     
(8.11)

            
 

 (iv) Repair state for the failure during FES 
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(v) Repair state for the failure during SOS 
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8.2.2 Performance Indices 

Various performance measures such as the expected number of customers during idle 

state, busy state and repair state and other indices have been formulated in terms of transient 

state probabilities as follows:.

 
 Expected number of customers in the system at any time t is  

         

4

,

1 0

[ ( )] ( )
K

i n

n i

E N t nP t
 


                                                                                           (8.20)  

 Expected number of customers in the queue at any time t is  
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 Throughput at any time t is  
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 Reliability of the server at any time t is 
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                                                                            (8.23)  

 Failure frequency of the system is  
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1 1

( ) ( ) ( )
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                                                                            (8.24)                     

 The expected delay time is  

       
 

[ ( )]
( )

( )

E N t
E D t

TP t


                                                                                                  (8.25)  

The long run probabilities of the system depicting the status of the server at different levels 

namely idle, busy, repair, etc.  are established as 

 The long run probability of the server being idle, is 
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 The long run probability of the server being busy, is 
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 The long run probability of the server being in broken down state and waiting for the 

repair due to threshold policy, is 
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 The long run probability of the server being broken-down and under repair, is 

     2 3, 4,( ) ( )
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(8.29)   

8.2.3 Cost Function  

To study the effect of sensitiveness of different parameters on the total cost, we 

construct the cost function involving costs incurred in different activities of the system (cf. 

Jaggi and Arneja (2010, 2011 a, 2011b). Firstly, we describe here various cost elements 

associated with different stages of the system as: 
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CI       :  Cost per unit time when the server is idle 

CB      :  Cost per unit time when the server is busy with either during FES or SOS 

CH      :  Holding cost per unit time of each customer present in the system 

CR      :  Repair cost incurred per unit time for a broken down server 

The cost function can be constructed in terms of above defined cost elements. The expected 

total cost per unit time is 

I B H R 1 2E[TC(t)] = C ( ) C ( ) C [ ( )] C [ ( ) ( )]I B R RP t P t E N t P t P t            

8.2.4 Numerical Illustration 

The present section provides numerical simulation for the finite retrial model. Here 

we employ R-K method of fourth order using “ode45” function of MATLAB software to 

solve the set of differential equations (8.1)- (8.19).  

The effect of various parameters on the performance measures has been displayed by means 

of tables as well as graphs. For tables, the time span of [5-15] with an interval of 5 units has 

been taken so as to know the sensitivity of performance measures with respect to different 

parameters. The figures 8.1-8.4 depict the effect of various parameters on the queue length, 

throughput and reliability on a vast time span of 0 to 200 units.  

For computational purpose, we have assign default values as p=0.6, γ=0.1, 

0.5, 0.8, 0.8, 0.001, 0.002, 0.01, 0.01.o e re ro e o e o e o                      

Tables 8.1-8.3 have been constructed to explore the transient results using heterogeneous 

arrival rate on various performance measures. The heterogeneous arrival rates are taken as  

0.7 , 0.8 , 0.5 , 0.4 .e o re ro            

The default cost elements are fixed as 

50, 10, 10, 10I B H DC C C C   
 

 It is noticed from table 8.1 that the failure frequency Ff(t) is affected to a very less 

extent with the variation in the arrival rate. However, E[D(t)], PI(t), PR(t) and PB(t) show 

significant increment in their values with the growth of time and arrival rate λ. The cost 

E[TC(t)] is also affected with the growth of time and arrival rate. As the arrival rate 

increases, the system cost increase which is quite obvious. The effect of retrial rate γ has 

been displayed in table 8.2. As the retrial rate γ increases, the number of customers in the 

queue increases. This is so because with the increase in retrial rate, the customers from the 

orbit try for the service rapidly, which
 
further builds up larger queue in the system. The cost 

is affected to a lesser extent with the increase in arrival rate. 



 

 

176 
 

 
Table 8.1: Effect of heterogeneous λ on various performance indices 

λ t E[TC(t)] ED(t) PI(t) PB(t) PR(t) Ff(t) 

0.3 5 24.78 1.98 0.6562 0.3426 0.0012 0.0004 

 10 29.13 2.93 0.6390 0.3575 0.0035 0.0005 

 15 32.54 3.69 0.6336 0.3607 0.0057 0.0005 

0.5 5 29.08 2.44 0.5301 0.4682 0.0018 0.0006 

 10 36.85 3.85 0.5353 0.4600 0.0047 0.0006 

 15 42.10 4.98 0.5530 0.4396 0.0075 0.0006 

0.7 5 32.95 2.79 0.4517 0.5462 0.0022 0.0007 

 10 41.83 4.48 0.5004 0.4942 0.0055 0.0006 

 15 46.54 5.76 0.5471 0.4447 0.0083 0.0006 

Table 8.2: Effect of retrial rate γ on various performance indices 

 

 

Table 8.3: Effect of breakdown rate α on various performance indices 

α t E[TC(t)] ED(t) PI(t) PB(t) PR(t) Ff(t) 

0.001 5 30.76 2.73 0.5295 0.4690 0.0015 0.0005 

 10 39.20 4.31 0.5390 0.4574 0.0037 0.0005 

 15 44.25 5.45 0.5599 0.4344 0.0058 0.0004 

0.004 5 30.95 2.75 0.5278 0.4663 0.0059 0.0019 

 10 39.75 4.39 0.5336 0.4518 0.0149 0.0018 

 15 45.18 5.61 0.5509 0.4265 0.0230 0.0017 

0.007 5 31.15 2.78 0.5262 0.4637 0.0102 0.0032 

 10 40.30 4.47 0.5283 0.4462 0.0258 0.0031 

 15 46.08 5.78 0.5421 0.4187 0.0398 0.0029 

 

The probability for the server being in idle state decreases adversely whereas delay time 

increases with an increase in the values of γ and t. The variation in various indices with 

breakdown rate (α) is displayed in table 8.3. It is observed that Ff(t) and PR(t) show a 

tremendous growth as the system stops working due to the server failure. 
 

γ t E[TC(t)] ED(t) PI(t) PB(t) PR(t) Ff(t) 

0.2 5 30.57 2.66 0.5190 0.4792 0.0018 0.0006 

 
10 38.20 3.92 0.5080 0.4873 0.0048 0.0006 

 
15 42.34 4.68 0.5140 0.4784 0.0077 0.0006 

0.3 5 30.39 2.59 0.5100 0.4882 0.0018 0.0006 

 
10 37.37 3.64 0.4846 0.5105 0.0050 0.0007 

 
15 40.86 4.20 0.4820 0.5101 0.0080 0.0007 

0.4 5 30.24 2.54 0.5022 0.4960 0.0018 0.0006 

 
10 36.70 3.44 0.4663 0.5287 0.0050 0.0007 

 
15 39.72 3.87 0.4584 0.5335 0.0082 0.0007 
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(a)                                                                               (b) 

Fig. 8.1: Variation in R(t) with (a) α and (b) γ 

         
                                           (a)                                                                               (b)                                                                   

Fig. 8.2: Variation in TP (t) with (a) e  (b) o  

The sensitivity of various affecting parameters has also been demonstrated by means 

of graphs as shown in figs 8.1-8.4. To exhibit the long run effect on the performance indices, 

the time span of 0-200 units has been taken into consideration. Fig. 8.1 reveals the variation 

in R(t) for varying values of breakdown rate (α) and retrial rate (γ). It is clear that the 

reliability decreases as the value of α increases. With an increase in γ, we notice that R(t) 

decreases exponentially. Fig. 8.2 graphically displays the effect of service rates ( eμ and
 oμ )

 

on the throughput TP(t) with time.  

It is clear from the figures that TP(t) increases sharply for initial values of t with 

varying values of service rates and then decreases till asymptotic constant value is achieved.  

Fig. 8.3 demonstrates the effect of heterogeneous arrival rate and breakdown rate (αe) on the 

expected number of customers in the system E[N(t)]. The number of customers in the system 
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increases with the increase in both arrival rate and breakdown rate. The effect of other 

parameters namely retrial rate (γ) and service rate (μe) are shown by means of graphs plotted  

        

(a)                                                                                   (b) 

           Fig. 8.3: Variation in EN(t) with (a) λ (b) αe    

        

                                   (a)                                                                                     (b) 

Fig. 8.4: Variation in EN(t) with (a) γ (b) μe                        

  

(a)                                                                         (b) 

 

Fig 8.5: Variation in E[TC(t)] with varying parameters 

0 

1 

2 

3 

0 40 80 120 160 200 

E
N

(t
) 

t 

λ=0.5 
λ=0.6 
λ=0.7 

0 

1 

2 

3 

4 

0 40 80 120 160 200 

E
N

(t
) 

t 

αe=0.001 
αe=0.004 
αe=0.007 

0 

1 

2 

3 

0 50 100 150 200 

E
N

(t
) 

t 

γ=0.1 

γ=0.2 

γ=0.3 

0 

1 

2 

3 

4 

0 40 80 120 160 200 

E
N

(t
) 

t 

µe=0.6 
µe=0.8 
µe=1.0 

0.4

0.5

0.6

0246810
38

40

42

44

46

48

50



t

E
T

C

0

0.005

0.01

0246810
38

40

42

44

46

48

50



t

E
T

C



 

 

179 
 

in fig. 8.4. As the service rate increases, the number of customers decreases due to fast 

servicing to the customers, thereby reducing the length of the system with an increased rate. 

To explore the effect of various parameters on the cost of the system the surface 

graphs have been plotted for varying values of t to exhibit E[TC(t)] as shown in fig. 8.5. Fig. 

8.5(a) displays the variation in E[TC(t)] with homogenous arrival rate λ with increasing 

values of t. It can be easily interpreted that the cost decreases with the increase in λ and t. 

Similarly, fig. 8.5 (b) shows variation in the E[TC(t)] with the increasing values of α. The 

curve follows initial decrease and further increase in the cost with time.  

 

8.3 F- POLICY FINITE CAPACITY RETRIAL QUEUE 

In previous section 8.2, we dealt with the finite retrial queues with threshold recovery 

and unreliable server. Besides threshold based recovery, other control policies can also be 

used to reduce congestion in the system. The present investigation incorporates F-policy to 

control the arrivals in the system. According to F-policy, no more customers will be allowed 

to enter the system if the capacity of the system is full but again the arrival process will be 

initiated at the later stage if a sufficient number of customers are served so as the number of 

customers in the system ceases to a threshold value ‘F’. In the present section, an unreliable 

server retrial queueing model with control policy namely F-policy to control the arrivals of 

the customers in the system has been studied.  

8.3.1 Model Description 

Consider a finite M/M/1 retrial queue with unreliable server. As soon as K customers 

are accumulated in the system, further incoming customers may wait in the retrial orbit, from 

where they retry later on for the service with retrial rate γ. Let N(t) be the number of 

customers in the system at any time t. Further, ( )t denotes the status of the server such that 

  

1, if theserver is busy in rendering service when the arrivals are allowed

2, if theserver is busy but the arrivals are not allowed

3, retrial state

(t) 4, setupstate before repair of the brokendown server when the arrivals are allowed

5, r

 

epair state of theserver when the arrivals are allowed

6, setupstate before repair of the brokendown server when the arrivals are not allowed

7, repair state of theserver when the arrivals are not allowed












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Therefore, the state space for the system at time t can be defined as  ( ) ( ), ( )t t N t   . 

Moreover 
i,nP (t)  denotes the transient state probability of n customers in the system at time t 

when the server being in i
th

 state and i Θ(t) . 

The basic assumptions underlying the model are:  

 Arrival Process: The arrival pattern of the customers follows a Poisson distribution with 

the state dependent arrival rate  (t). The arrival of the customers is continued in the 

system until K customers have been accumulated and the arrival is controlled using F-

policy. At this stage, the arrival of the customers is allowed after a start up time following 

an exponential distribution with rate ξ. The arrival rate is defined by 

 

 

 

    where b1 (b2) denotes the joining probabilities of the customers. 

 Service Process: The customer who finds the server in the idle state is served 

immediately with service rate  1 2μ μ  if Θ(t)=1(2).  

  Breakdown Process: The server is unreliable and is prone to breakdowns while 

servicing; the server may fail according to Poisson distribution with rate 1 2( )   while 

servicing when the maximum strength of the system is not full (full). 

 Repair Process and Set up before Repair: Before starting the repair process some 

preparation time known as setup time is required before starting the repair; and the set up 

time is exponentially distributed with rate . The process of repair is assumed to be 

exponentially distributed and starts immediately for the server failed while servicing when 

the arrivals are allowed i.e.Θ(t)=2.On the other hand, the repair process follows the 

concept of threshold recovery for the server failed when Θ(t)=1.  The repair starts only 

when a minimum number of customers (threshold value) say, q (≥1) has been 

accumulated in the system. The failed system gets repaired with repair rate β1 (or β2) 

while it is failed in case when the arrivals are allowed (or when the maximum strength has 

been achieved).  

8.3.2 Governing Equations 

We describe the system by constructing the differential equations for all system state 

probabilities by using the rates of inflow and outflow. The transient equations for different 

states of the server are constructed below as: 

1

2

, if ( )=1and 3

( ) , if ( )= 4

, if ( )= 5

t

t b t

b t









  








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 (i) The server is busy and the arrivals are allowed. 

1,0 2,0 3,1 1 1,1 1 1,0( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t         
                                                               

(8.30)   

1, 2, 3, 1 1 1, 1 1, 1 1 1 1,( ) ( ) ( ) ( ) ( ) ( ) ( ),

1,2,..., 1

n n n n n nP t P t P t P t P t P t

n q

        
       

 
                    (8.31)

                                 
 

1, 2, 3, 1 1 1, 1 1, 1 1 5,

1 1 1,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ), , 1,..,

n n n n n n

n

P t P t P t P t P t P t

P t n q q F

    

  

  
     

                                                     
(8.32)  

1, 3, 1 1 1, 1 1, 1 1 5, 1 1 1,( ) ( ) ( ) ( ) ( ) ( ) ( ),

, 1,..., 2

n n n n n nP t P t P t P t P t P t

n F F K

        
       

                               
(8.33)  

1, 1 3, 1, 2 1 5, 1 1 1 1, 1( ) ( ) ( ) ( ) ( ) ( )K K K K KP t P t P t P t P t        
      

                                        
(8.34)  

(ii) The server is busy and the arrivals are not allowed.  

2,0 2 2,1 2 7,0 2 2,0( ) ( ) ( ) ( ) ( )P t P t P t P t       
                                                                            

(8.35)   

2, 2 2, 1 2 7, 2 2 2,( ) ( ) ( ) ( ) ( ), 1,2...., 1, ,...n n n nP t P t P t P t n q q F    
       

                       
(8.36)

2, 2 2, 1 2 7, 2 2 2,( ) ( ) ( ) ( ) ( ), 1,..., 1n n n nP t P t P t P t n F K   
       

                                   
(8.37)  

2, 2 2, 1 2 7, 2 2 2,( ) ( ) ( ) ( ) ( ), 1,..., 1n n n nP t P t P t P t n F K   
       

                                    
(8.38)  

 (iii) The server is under retrial state. 

3,0 3,0( ) ( )P t P t                                                                                                                            (8.39)  

3, 3, 1 3,( ) ( ) ( ) ( ), 1,2,..., ( 1)n n nP t P t P t n K  
                                                                  (8.40)  

3, 3, 1 3,( ) ( ) ( )K K KP t P t P t 
                                                                                                          (8.41)  

(iv) The server is under set up before starting the repair process of the broken down server      

that failed while servicing when new customers were allowed in the system.

4,1 1 1,1 1 4,1( ) ( ) ( ) ( )P t P t b P t                                                                                                         (8.42)  

4, 1 1, 1 4, 1 1 4,( ) ( ) ( ) ( ) ( ) ( ), 2,...., ( 1)n n n nP t P t b P t b P t n q  
                                                 (8.43)

4, 1 1, 1 4, 1 1 4,( ) ( ) ( ) ( ) ( ) ( ), ,...., ( 1)n n n nP t P t b P t b P t n q K   
                                         (8.44)  

(v) The repair state of the failed server, broken down while servicing when new customers 

were allowed in the system. 

  
5,1 2 5,1( ) ( )P t b P t                                                                                                                           

5, 2 5, 1 2 5,( ) ( ) ( ) ( ), 2,...., ( 1)n n nP t b P t b P t n q 
                                                                     (8.46)

5, 2 5, 1 4, 2 1 5,( ) ( ) ( ) ( ) ( ), , 1,...., ( 1)n n n nP t b P t P t b P t n q q K   
                                     (8.47)  
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 (vi) The server is under set up before starting the repair process of the broken down server 

that failed while servicing when no more customers were allowed in the system. 

6, 2 2, 6,( ) ( ) ( ), 1,2,...,n n nP t P t P t n K                                                                                    (8.48)  

(vii) The repair state of the failed server, which break down while servicing when no more 

customers were allowed to enter the system. 

7, 6, 2 7,( ) ( ) ( ), 1,2,...,n n nP t P t P t n K                                                                                 (8.49)  

 

 

Fig. 8.6: State transition rate diagram for retrial queueing system 

8.3.4 Performance Measures 

In the present sub-section, we derive analytic expressions for the various performance 

measures namely queue length, reliability, throughput, failure frequency, waiting time etc., 

in terms of the transient probabilities.  

(A) Server State Probabilities  

Various probabilities for the different states of the server at time t are established as 

follows: 

 The probability that the server being busy in providing service to the customers, is 

             
1

1, 2,

1 1

( ) ( ) ( )
K K

B n n

n n

P t P t P t


 

                                                                                 (8.50)                                                                                                   

 The probability that the server starts to allow the customers to enter the system, is 
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2,n

0

( ) P ( )
F

s

n

P t t


                                                                                                   (8.51)   

 The probability that the system is blocked, is 

         
2, 6, 7,

0 0 0

( ) ( ) ( ) ( )
K K K

L n n n

n n n

P t P t P t P t
  

                                                                    (8.52)                                            

 The probability that the broken down server is under setup before repair, is 

               
1

4, 6,

0 0

( ) ( ) ( )
K K

T n n

n n

P t P t P t


 

                                                                               (8.53)      

 The probability that the server starts the repair, is 

1

5, 7,

1 1

( ) ( ) ( )
K K

R n n

n q n q

P t P t P t


   

  
                                                                            

(8.54)
    

 The probability that the customer retry for the service, is 

             
3,

1

( ) ( )
K

RE n

n

P t P t



                                                                                                         

(8.55)
 

(B) Queueing Measures 

Below we describe some of the transient queueing measures related to our model. 

 Expected queue length at time t, is 

   

7 1

, ,

1 1 2,3,6,7

( ) ( ) ( )
K

s i n i K

i n i

L t nP t K P t


  

  
                                                                           

(8.56)
                                                                                           

                                                             

 Expected waiting time in the system at time t, is 

   ( ) ( ) / ( )s s effW t L t t                                                                                                    (8.57)                

          where, the effective arrival rate ( )eff t  at time t  is obtained by using                         

1

1, 3, 1 4, 2 5,

0

( ) ( ) ( ) ( ) ( )
K

eff n n n n

n

t P t P t b P t b P t 




          

 Throughput at time t is obtained by using 

1

1 1, 2 2,

1 1

( ) ( ) ( )
K K

n n

n n

TP t P t P t 


 

  
                                                                                  (8.58)                                                       

 
(C) Reliability Measures

 

        Some of the reliability indices are as follows: 

 Availability of the server at time t, is 

     
1 3

1, ,

1 2 1

( ) ( ) ( )
K K

v n i n

n i n

A t P t P t


  

                                                                                      (8.59)     



 

 

184 
 

 Failure frequency, is 

 
1

1 1, 2 2,

0 0

( ) ( ) ( )
K K

f n n

n n

F t P t P t 


 

                                                                                     (8.60)   

(D) Cost Function 

We construct the cost function for the finite retrial model under consideration. The 

cost function is framed as: 

B h R 1 1 2 2( , ) C ( ) C ( ) C ( ) ( ) ( ) ( )B s R L L S RE SETTC F q P t L t P t C P t C t C t C C C                  (8.61)  

where, 

CL       :  Cost for every lost customer when the arrivals are not allowed; 

CB       :  Cost per unit time when the server is busy;  

Ch        :  Holding cost per unit time of each customer present in the system; 

CR       :  Repair cost incurred per unit time for a broken down server; 

C1        :  Cost for providing the service to the customer when the arrivals are allowed; 

C2        :  Cost for providing the service to the customer when the arrivals are not allowed; 

             Cs         :  Fixed cost for startup process per unit customer when the customers are allowed to 

enter; 

CRE     :  Fixed cost incurred for each retrial customer at each time; 

CSET    :  Fixed cost for setup process before starting the repair process. 

8.3.5 Numerical Results and Cost Analysis 

To evaluate the optimal values of decision parameters ‘F’ and ‘q’, we consider the 

cost function given by (8.61). We find the optimal values of decision variables F and q by 

numerical computation based on discrete allocation. Three cost sets are taken into 

consideration to find out the best value for ‘F’ and ‘q’ with pre-assigned values of other 

parameters. We mathematically formulate the optimization problem as- 

                           ( *, *) Minimize ( , )TC F q TC F q  

subject to            1 1 and 1 1F K q F       

For discrete optimization, we use the inequalities 

( 1, 1) ( *, *), ( 1, 1) ( *, *) and ( 1, 1) ( *, *)TC F q TC F q TC F q TC F q TC F q TC F q          

The various cost sets under consideration are: 

Set 1:  Ch=5, Cb= 200, CL=300, C1=70, C2=70, Cs= 250, CSET = 100, CR=20,CRE = 200 

Set 2:  Ch=50, Cb= 30, CL=150, C1=40, C2=70, Cs= 300, CSET = 150, CR=100,CRE = 15 

Set 3: Ch=100, Cb= 200, CL=200, C1=50,C2=50, Cs= 400, CSET = 50, CR=200,CRE = 200 
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In the present cost optimization problem as structured in (8.61), the cost parameters are 

assumed to be linear in nature. It is difficult to obtain the analytic solution, therefore we use 

numerical approach based on Runge Kutta method to find out the system state probabilities  

 

Table 8.4: Effect of (λ, µ2) on optimal (F
*
, q

*
) for different cost sets 

(λ, µ2) 

 (1,3)
 

(2,3)
 

(2.5,3)     (1,5)    (2,5)   (2.5,5)     (1,7)    (2,7) 

 

(2.5,7) 

 

Cost Set 1 

 

F
*
 

 

9 

 

9 

 

3 

 

9 

 

5 

 

3 

 

9 

 

5 

 

3 

q
*
 8 8 2 8 4 2 8 4 2 

TC(F
*
, q*) 

 

1061.00 

 

 

1129.30 

 

 

1333.50 

 

 

1201.70 

 

 

1266.90 

 

 

1439.70 

 

 

1341.70 

 

 

1405.10 

 

 

1563.70 

 

Cost Set 2 

 

F
*
 

9 4 2 9 4 2 9 3 2 

q
*
 8 3 1 8 3 1 8 2 1 

TC(F
*
, q*) 

 

1033.90 

 

 

1088.90 

 

 

1275.00 

 

 

1173.90 

 

 

1225.20 

 

 

1387.80 

 

 

1313.90 

 

 

1363.50 

 

 

1515.10 

 

Cost Set 3 

 

F
*
 

9 3 2 9 3 2 9 3 2 

q
*
 8 2 1 8 2 1 8 2 1 

  TC(F
*
, q*) 

 

1308.30 

 

 

1453.70 

 

 

1863.80 

 

 

1408.30 

 

 

1546.70 

 

 

1918.20 

 

 

1508.30 

 

 

1643.50 

 

 

1996.50 

 

                 

Table 8.5: Effect of (λ, β1) on optimal (F
*
, q

*
) for different cost sets 

(λ, β1) 

 (1,0.1)
 

(2,0.1)
 

(3,0.1) (1,0.3) (2,0.3) (3,0.3) (1,0.5) (2,0.5) 

 

(3,0.5) 

 

Cost Set 1 

 

F
* 

 

8 

 

5 

 

2 

 

9 

 

5 

 

2 

 

9 

 

5 

 

2 

q
* 7 4 1 8 4 1 8 4 1 

TC(F
*
, q

*
) 

 

1202.20 

 

 

1266.90 

 

 

2276.90 

 

 

1201.90 

 

 

1268.30 

 

 

2282.30 

 

 

1202.10 

 

 

1269.20 

 

 

2286.70 

Cost Set 2 

 

F
* 

 

9 

 

4 

 

2 

 

2 

 

4 

 

2 

 

9 

 

4 

 

2 

q
* 8 3 1 1 3 1 1 3 1 

 

TC(F
*
, q

*
) 

 

 

1173.90 

 

 

1225.20 

 

 

2136.10 

 

 

1173.70 

 

 

1226.70 

 

 

2141.20 

 

 

1173.00 

 

 

1227.60 

 

 

2145.30 

 

Cost Set 3 

 

F
* 

 

9 

 

3 

 

2 

 

9 

 

3 

 

2 

 

9 

 

3 

 

2 

q
* 8 2 1 8 2 1 1 2 1 

TC(F
*
, q

*
) 1408.30 1546.70 3524.80 1408.90 1550.80 3538 1405.70 1553.10 

 

3547.70 
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and further employ direct search approach based on discrete allocation to find out the 

optimal threshold values of ‘F’ and ‘q’.  

The optimal control parameters ‘F’ and ‘q’ are determined using direct search 

approach by computing the cost. For this purpose, time t is fixed as 200 units and all the 

performance measures involved in the determination of total cost have been calculated at that 

particular time. Tables 8.4 and 8.5 display the values of optimal parameters F
*
 and q

*
 for 

three different costs sets and varying values of other parameters namely arrival rate (λ), 

service rate (µ2) and repair rate (β1). The capacity of the system is fixed as K=10 and we vary 

the values of F and q in their permissible range to obtain the minimum expected cost.  It is 

observed from table 8.4 that the total minimum cost increases as arrival rate λ increases. In 

table 8.5, various sets of optimal (F
*
, q

*
) are summarized corresponding to different sets of 

(λ, β1).  

Now, using R-K method we examine various transient state performance measures 

under various conditions from sensitivity analysis view point. The default parameters for this 

purpose are fixed as: 

1 2 1 2 1 2 1 2
1, 0.1, 4, 5, 0.1, 0.01, 0.06, 2, 1b b                         . 

The effect of sensitive parameters on various performance indices viz. server state 

probabilities, reliability indices and queue length of the system are examined by varying 

different parameters as given below. 

(A) Server State Probabilities  

 These probabilities of the server can be interpreted as the proportion of time for which 

the system/server remains at a particular state. Table 8.6 demonstrates the sensitivity of these 

measures towards arrival rate (λ). With an increase in time t, probabilities PB(t), PT(t) and 

PR(t) decrease while PL(t) and PS(t) increase. It is quite clear from the table 8.6 that as the 

arrival rate λ increases from 1 unit to 2 units, the system probabilities of the server being in 

busy state (PB(t)), the probability that the server starts to allow the customers to enter in the 

system (PS(t)) and the probability of blocked customer (PL(t)), increase whereas probability 

of the server under setup state before repair (PT(t)) decreases. 

(B) Reliability Indices 

 Table 8.7 displays the effect of arrival rate (λ) and repair rate (β) on the reliability 

indices namely availability of the server (Av(t)) and failure frequency (Ff(t)) of the system at  

time t.  The failure frequency decreases with the increase in λ from 1 unit to 1.5 units but 

increases with the increase in λ from 1.5 units to 2 units. The effects of other parameters on  
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the Av(t) are demonstrated by means of graphs as shown in figs 8.7(a-d). Fig. 8.7 (a) shows 

the effect of λ on the availability of the server. The effect of breakdown rate (α) on Av(t) at  

 

Table 8.6:  Effect of λ on the server state probabilities 

λ t PB(t) PS(t) PL(t) PT(t) PR(t) Ws(t) 

1 

10 0.22577 0.00004 0.00015 0.06919 0.05506 0.98 

20 0.20725 0.00008 0.00027 0.06749 0.05329 1.04 

30 0.18977 0.00008 0.00027 0.06179 0.05041 1.04 

40 0.17375 0.00007 0.00026 0.05658 0.04617 1.04 

50 0.15909 0.00006 0.00024 0.05181 0.04228 1.04 

1.5 

10 0.34091 0.00030 0.00097 0.04968 0.05655 0.84 

20 0.31306 0.00029 0.00100 0.04572 0.05223 0.85 

30 0.28738 0.00027 0.00097 0.04200 0.04800 0.85 

40 0.26382 0.00025 0.00093 0.03857 0.04410 0.85 

50 0.24219 0.00023 0.00087 0.03541 0.04050 0.85 

2 

10 0.48513 0.00280 0.00903 0.03794 0.10002 0.89 

20 0.47835 0.00287 0.00985 0.03762 0.09972 0.90 

30 0.47137 0.00284 0.01020 0.03730 0.09875 0.90 

40 0.46459 0.00281 0.01035 0.03689 0.09762 0.90 

50 0.45795 0.00278 0.01038 0.03644 0.09641 0.90 

 

Table 8.7: Effect of λ on the availability and failure frequency 

λ t 
Av(t) Ff(t) 

β1=0.1 β1 =0.5 β1 =0.9 β1=0.1 β1 =0.5 β1 =0.9 

1.0 

 

10 0.9069 0.9041 0.9061 0.0091 0.0090 0.0091 

20 0.8291 0.8480 0.8557 0.0083 0.0085 0.0086 

30 0.7587 0.7899 0.8022 0.0076 0.0079 0.0080 

40 0.6943 0.7358 0.7520 0.0069 0.0074 0.0075 

50 0.6855 0.6855 0.7049 0.0069 0.0069 0.0070 

1.5 

 

10 0.9081 0.9134 0.9161 0.0091 0.0091 0.0092 

20 0.8279 0.8434 0.8502 0.0083 0.0084 0.0085 

30 0.7549 0.7788 0.7892 0.0075 0.0078 0.0079 

40 0.6883 0.7192 0.7325 0.0069 0.0072 0.0073 

50 0.6276 0.6641 0.6799 0.0063 0.0066 0.0068 

2.0 

 

10 0.9176 0.9228 0.9256 0.0092 0.0092 0.0093 

20 0.8473 0.8607 0.8673 0.0085 0.0086 0.0087 

30 0.7823 0.8023 0.8128 0.0078 0.0078 0.0081 

40 0.7224 0.7488 0.7617 0.0072 0.0075 0.0076 

50 0.6671 0.6985 0.7139 0.0067 0.0070 0.0071 
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time t is displayed in fig. 8.7(b). The effects of repair rate (β1) and capacity (K) of the system 

on Av(t) are displayed by means of figs 8.7(c) and 8.7(d), respectively.  As the repair rate 

(β1) increases, the availability of the server also increases because faster repair rate makes 

the server more available for the customers.  

          

                                              (a)                                                                                 (b) 

 

          

                                                 (c)                                                                                  (d) 

Fig. 8.7: Effect of various parameters on A
v
(t) with time t 

 (C) Queueing Indices  

The effects of various parameters on the waiting time Ws(t) have been displayed in 

table 8.6. The waiting time Ws(t) increases with an increase in time while it decreases with 

the growth of arrival rate from 1 unit to 1.5 units but increases as λ grows upto 2 units. Figs 

8.8 (a-b) are plotted so as to examine the sensitiveness of the queue length towards other 

parameters. The effect of service rate µ1 on the queue length is shown in fig. 8.8(a). The 

number of customers in the system reduces as the service rate increases which is obvious. On 

the other hand, reverse effects are observed on the queue length (Ls(t)) with respect to λ. 

  Figs 8.9(a-b) display the effect of service rate (µ1) and arrival rate (λ) on the 

throughput TP(t) of the system. Fig. 8.9(a) reveals the effect of service rate (µ1) on TP(t) by 
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varying time t. As µ1 increases, TP(t) increases which corresponds to higher number of 

successful services at any instant of time. The reverse trends are seen when TP(t) is plotted 

against t as demonstrated by figure 8.9 (b).  

       

(a)                                            (a)                                                                                            (b)   

(b) Fig. 8.8: Effect of µ1 and λ on the queue length Ls(t) of the system 

       

                                             (a)                                                                     (b)                    

Fig. 8.9: Effect of µ1 and λ on the Throughput TP(t) of the system 

Here, we deal with the sensitivity analysis of total expected cost TC(t) towards various 

parameters for cost set 1 for finite capacity system. The surface graphs are plotted as shown 

in figs 8.10(a-d) to explore the effect of parameters on the cost TC(t). A range of 200 units 

i.e. 100-300 time span is taken on the y-axis with total cost TC(t) taken on z-axis. Fig. 

8.10(a) is plotted for varying values of capacity K of the system with maximum cost of 1513 

units. A smooth convex curve is obtained for varying values of K. As K increases from K=6 

to around K=9, TC(t) decreases and then increases upto K=12. 

Similarly, fig. 8.10 (b) shows the variation in the cost of the system with threshold 

parameter q and time t. A smooth convex surface graph is plotted with minimum cost at 

q*=4 for this case. Hence, a model with fixed capacity K=10 and F=5 gives optimal 
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threshold parameter as q*=4. Figs 8.10(c) and 8.10(d) demonstrate the effect of arrival rate 

(λ) and breakdown rate (α1) on the cost function. In fig. 8.10(c), TC(t) decreases with an 

increase in λ upto λ=1 (approx.) and then increases hereby proving the convexity of the  

 

                                                                 

           

                              (c)                                                                  (d) 

Fig. 8.10: Effect of (a) Capacity K, (b) threshold parameter q, (c) arrival rate λ and (d) 

breakdown rate α1 on the total cost  

function. Furthermore, in fig. 8.10(d) a continuous decreasing function is noticed with the 

increasing values of α1, implying that the total cost decreases as the breakdown rate increases 

for these parameters. 

 

8.4 DISCUSSION 

Two finite capacity retrial queueing models with threshold recovery have been 

investigated using numerical approach based on Runge-Kutta method. Overall, we can 

conclude that- 
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 The threshold based recovery parameter q* determined by using heuristic search 

approach plays an important role in various real life congestion situations like 

telecommunication systems, traffic systems wherein the server needs to control the 

arrivals of messages/jobs so as to maintain the efficiency of the system and enhance the 

capability and reliability. 

 The optimized cost function can be utilized in order to determine the optimal threshold 

parameters and minimum cost to design optimal and more efficient systems.  

 The total number of customers in the system increases (decreases) with an increase in the 

arrival rate and breakdown rate (service rate and retrial rate). 

 Reliability decreases with the increase in breakdown rate which is consistent with the 

realistic situations. As the arrival rate increases, the availability of the server in the 

working state Av(t) decreases at any instant. 

 The state probabilities of the server states, queueing measures including the queue length 

and reliability measures of a system can also be maintained by controlling various 

parameters. 

 It is noticed that the efficiency of the system can be improved by increasing the service 

rate so as to reduce the accumulation of the customers in the system and hence reduction 

in the waiting time of the customers in the system.  
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CHAPTER 9 

Retrial queue with additional 

server  
   

9.1 INTRODUCTION 

In the retrial queueing systems, the server load can sometimes be lowered by the 

provision of additional server to serve the customers. It is usually observed in day to day 

routine activities that the provision of temporary servers in the case when the server load 

increases, can play a significant role to improve the efficiency of the system. The 

provision of additional temporary server is basically done to reduce the load on a single 

server; this may also be helpful in reducing the waiting time of the customers. The 

concept of installing temporary server finds several applications in real life congestion 

problems such as telecommunication systems, web servers, computer protocols, message 

transmission, admission counters, dispensaries and many other situations. Web faction is 

one of the key areas where temporary server can be installed in the case when the server 

load crosses a threshold value. The secondary server is usually installed with an aim to 

reduce the waiting time of the customers and to increase the efficiency of the system in 

terms of faster service rendered.  

In this chapter, we study a retrial queueing system in which the primary server is 

prone to breakdowns and can serve only a limited number of customers. There is 

provision of temporary server which is switched on only when the load on the first server 

crosses the pre specified threshold load in terms of the number of customers in the 

system. The main objective of the investigation presented in this chapter is to obtain the 

server state probabilities and various performance measures using matrix geometric 

approach. The rest of the chapter is organized in the following manner. Section 9.2 deals 

with the detailed description of the model including various assumptions, applications and 

equations governing the model. Section 9.3 contains the methodology used and provides 

the analysis of the queueing model under consideration. Sections 9.4 and 9.5 respectively, 

present the various performance measures and cost function of the system under 

consideration. The numerical illustration and sensitivity analysis has been carried out in 

section 9.6 and 9.7, respectively. Finally conclusions are drawn in section 9.8. 
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9.2 THE MATHEMATICAL MODEL 

Consider a retrial queue with unreliable primary server in which the system has 

the provision of installing a second temporary server which is turned on when the number 

of customers with the first server exceeds a pre-specified level. The various features of 

the model are discussed in the following subsections. 

9.2.1 Model Description 

The retrial model under consideration has the provision of two servers, out of 

which second temporary server is activated only when the work load with the primary 

server crosses a threshold level. The various assumptions and notations underlying the 

model are as follows: 

 Arrival Process: The arrivals of the customers in the system follow Poisson pattern 

with arrival rate λ. There is a provision of two servers; the first primary server and 

second temporary server. The second temporary server is installed only if ‘K’ 

customers are already queued up before the primary server including the one in the 

service. If an arriving customer finds less than ‘K’ customers with the primary server, 

then either he waits for his turn in the queue with the primary server or may join the 

waiting space i.e. orbit. But if on arrival, the primary server’s buffer is fully occupied 

with ‘K’ customers, then the new arrival has no other option rather than to join the 

buffer of the secondary server. 

 Retrial Process: The customers accumulated in the orbit retry with exponentially 

distributed retrial rate γ and compete for the service with the primary customers as 

soon as they find the server idle. 

 Service Process: The customers are served following exponential distribution with 

rate µi, if queued before i
th

 server (i=1 for primary server and i=2 for secondary 

server). The number of customers joining the secondary server is unlimited. Both the 

servers have their own independent queues but the formation of second queue takes 

place when the buffer of primary server is full. No queue shifting is permitted to the 

customers once they join it.  

 Breakdown and Repair Process: The primary server is unreliable and may 

breakdown while serving the customers; the broken down server is sent for the repair 

immediately and after repair, it becomes as good as before failure. However, the 

temporary second server is considered as reliable server. The life time and repair time 
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of the primary server follow the exponential distribution with rates α1 and β1, 

respectively. 

9.2.2 State of the Server 

To describe the state of the server at any instant, we consider the following three 

random variables that describe the system completely: 

 (i) ( )t , represents the state of the server and takes values 0,1 or 2 when the server is in 

retrial, busy or broken down state/under repair states, respectively. 

(ii) 1( )N t , denotes the number of customers with the first server, such that 1( )N t i ,   

(0 )i K   

(iii) 2 ( )N t , denotes the number of customers with the second server, such that 2( ) ,N t j

0.j   

Now, the state space of stochastic process of concerned model is completely specified as 

              1 2 1 2{( ( ), N (t) , N (t) ) : ( ) (0,1,2), N (t) (0 ), N (t)= ( 0)}.t t i K j            

Also, the probability of the server at any instant of time is denoted as 
, ,k i jP for

(0,1,2);(0 ); 0k i K j    .     

9.2.3 Application of the Model to Web Faction 

There are enormous applications of the present retrial queueing model. Here, we 

cite a useful real life application in case of web faction which can be explained as 

follows. Web faction is a system which provides a complete web hosting service, with 

everything required to set up and run web services. It provides rights and powers to run 

basic blogs to advanced web applications in which heavy load are shared by multiple 

servers. Web faction conducts daily backup of all home directories, email accounts and 

this backup is usually retained for a maximum of ten days. It has a key tool known as 

control panel which helps us in linking to all the portions of clients account together. The 

account and data can also be accessed in two other ways either by using File Transfer 

Protocol (FTP) or by working with each machine remotely with Secure Shell (SSH). 

While working with web faction, all the data base and customer activities are stored under 

the umbrella of an account which runs by unique username and password which is 

provided by the web server. 

This unique combination of username and password is identified by the control 

panel while logging in any account. An individual while accessing internet, is able to 
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access websites in its own domain only. A domain name is a unique and human-readable 

label and all browsers can use that label to locate a particular web device on internet. 

Most of the time, the web faction accounts use a single server, where all the applications, 

databases and files are safely stored and served from a single assigned server. However, 

in case of heavy load, the new temporary server is also installed so as to distribute the 

load consumption and memory usage. This installation of new reliable temporary server 

helps in balancing the load in particular when the traffic to a particular server exceeds a 

threshold level. Moreover, some applications on server also demand more memory usage 

which can be completed by the installation of the new server. 

 

 

Fig. 9.1: Pictorial presentation of addition of temporary servers in the web faction 

system 

 Each incoming request is directed to the new server, if buffer of first server is 

already full with the maximum number of requests. Also, some requests are directed to 

buffer (orbit) so as to retry if first server is in busy state. The pictorial representation of 

web server supported by additional temporary server is shown in fig. 9.1. 

9.2.4 Governing Equations 

We frame steady state equations governing the model by using appropriate 

transition rates of birth-death process. Chapman-Kolmogorov equations corresponding to 

different system states are formulated as: 

Retrial state 

 
0,1,0( ) 0P                                                                                                               (9.1) 
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0, ,0 0, 1,0( ) , (1 1)i iP P i K                                                                                   (9.2) 

 
0, ,0 0, 1,0K KP P                                                                                                            (9.3) 

Busy State 

1 1,0,0 1 1,1,0 1 2,0,0 2 1,0,1( )P P P P                                                                             (9.4) 

1 1 1, ,0 1 1, 1,0 1 2, ,0 2 1, ,1 1, 1,0 0, ,0( ) , (1 1)i i i i i iP P P P P P i K                               (9.5) 

1 1 1, ,0 1 2, ,0 2 1, ,1 1, 1,0 0, ,0( ) K K K K KP P P P P                                                          (9.6) 

1 2 1,0, 1 1,1, 1 2,0, 2 1,1, 1( ) , 1j j j jP P P P j                                                               (9.7) 

1 1 2 1, , 1 1, 1, 1 2, , 2 1, , 1 1, 1,( ) , (1 1), 1i j i j i j i j i jP P P P P i K j                          (9.8) 

1 1 2 1, , 1 2, , 1, , 1 1 1, 1,( ) , 1K j K j K j K jP P pP P j                                                  (9.9) 

Repair State 

1 2,0, 1 1,0,( ) , 0j jP P j                                                                                            (9.10) 

1 2, , 1 1, , 2, 1,( ) ,(1 1), 0i j i j i jP P P i K j                                                             (9.11) 

1 2, , 1 1, , 2, 1,( ) , 0K j K j K jP P P j                                                                             (9.12)  

In order to determine the solution of eqs (9.1) - (9.12), we employ matrix geometric 

method as explained in the next section 9.3. 

 

9.3 THE ANALYSIS 

The matrix geometric method (cf. Neuts, 1981) can be used to solve the stationary 

state probabilities for the vector space Markov process with repetitive structure. 

Therefore, in order to find the solution for the system of equations constructed in section 

9.2.4, we employ this technique to determine the associated state probability vector.  

Matrix Geometric Method 

The matrix geometric method to determine the probability vector is applicable for 

the system of equations whose transition matrices have special block structure with 

repetition of elements of sub matrices. The concerned model can be structured as a square 

matrix of infinite dimension that converges to finite dimension matrix using the minimal 

matrix to get recursive relation of probability vectors. The above set of eqs (9.1)-(9.12) 

can be written in matrix form as πQ 0 , where Q is the infinitesimal generator of the 

continuous time Markov chain and ‘0’ is a zero column vector of suitable dimension. 

Also, let  0 1 2 3
π = π ,π ,π ,π , ... be the vector defining the steady state probabilities of all 
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the governing   states of the retrial queueing system under consideration. The matrix Q 

can be given in partition form as           

 
5

5

5

 
 
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 
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where, 
( 1)nI  is the identity matrix of order (n+1). The normalizing condition is 

represented by 1πe , where ‘e’ is a column vector of suitable dimension with all its 



 

199 
 

entries as 1. In order to determine the probability vector, we partition vector π

conformably with the blocks of matrix Q as 

0 0,0,0 1,0,0 0,1,0 1,1,0 0, ,0 1, ,0 0,0,0( , ; , ;...; , ); 0K KP P P P P P P π                                                   (9.14) 

 
2,0, 1 1,0, 2,1, 1 1,1, 2, , 1 1, ,( , ; , ;...; , ); 1j j j j j K j K jP P P P P P j   π                                                   (9.15) 

Using matrix geometric approach (cf. Neuts, 1981), we have 

1, ( 2)j j 
j 1

π = π R                                                                                                        (9.16) 

where, R is the minimal non-negative matrix known as rate matrix.  

The balance equation for the repeating states is  

 ; 2,3,4,...j 
j-1 4 j 3 j+1 5

π F +π F +π F = 0                                                                      (9.17)                                         

The   balance equations for the boundary states are 

0 0 1 2
π F +π F = 0                                                                                                              (9.18) 

0 1 1 3 2 5
π F +π F +π F = 0                                                                                                   (9.19) 

The value of , ( 2)j j π  is a probability function of the transition between the states with 

j-1 queued customers and states with j queued customers.  Using (9.16) and (9.17), we 

have 

; 2,3,4,...j 



j-2 j-1 j+1

1 4 1 3 1 5

2

4 3 5

π R F + π R F + π R F = 0

F + RF + R F = 0
                                                        (9.20) 

On solving (9.20), we get the rate matrix R, which can be further used to compute steady 

state probabilities for the repeating states. Now, using (9.16) for j=2 in (9.19), we get 

 ( )R
0 1 1 3 5
π F +π F + F = 0                                                                                              (9.21) 

Eqs (9.18) and (9.21) can be further written in matrix form as  0 1 0 
 

 
 

0 2

1 3 5

F F

F F + RF
  

In order to find 0
π , we use normalizing condition                                                                                                                                             

0

1j

j

e




 
  

 
0 1π π R e  .                                                                                                (9.22) 

The eigenvalues of R lie inside the unit circle which means that (I-R) is non-singular and 

hence we have 

   
1

0

( )j

j

I






 
  

 
R R .                                                                                                (9.23) 
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Since, it is not an easy job to obtain rate matrix and steady state probabilities using huge 

algebraic manipulations. Therefore, in order to obtain steady state probabilities for 

various states of the server, we use numerical approach based on MGM. For this purpose, 

we first obtain the rate matrix R by iterative procedure as R (0) =0, and move further with 

successive approximation using 

        2 1

4 5 3( 1) [ ] , 0n n    R F R F F                                                                   (9.24) 

Since, –F3
-1

 is a non-negative matrix, therefore it can be concluded that the sequence 

 ( )
n

nR  is a non-decreasing sequence which converges monotonically to a non-negative 

matrix R. The stage when ( 1) ( )n n   R R ( is a constant) is satisfied, we terminate 

the solution process and obtain R which helps further in determining the steady state 

probabilities numerically. 

 

9.4 PERFORMANCE MEASURES 

In this section, we derive various performance measures in terms of steady state 

probabilities as follows: 

(A) Server State Probabilities 

The probabilities of the server being present in different states are expressed as: 

  Probability of the primary server being in retrial state is framed as: 

   
0, ,0

0

K

r n

n

P P


                                                                                                           (9.25) 

 Probability of the primary server being busy is: 

   
1 1, ,0

1

K

B n

n

P P


                                                                                                          (9.26) 

 Probability that both primary and temporary servers are busy in servicing is: 

    
2 1, ,

1 1

K

B n j

j n

P P


 

                                                                                                      (9.27) 

 Probability of the primary server being in broken down state is: 

   2, ,

0 0

q

D n j

j n

P P


 

                                                                                                       (9.28) 

(B) Queue Length 

The expected number of customers at various states of the server can be obtained 

in terms of steady state probabilities as follows: 
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 The expected number of customers in the retrial orbit, is: 

    
0, ,0

1

[ ]
K

r n

n

E N nP


                                                                                                  (9.29) 

 The expected number of customers in the busy state when primary server is on, is: 

1 1, ,0

1

[ ]
K

n

n

E N nP


                                                                                                  (9.30) 

 The expected number of customers in the busy state when both the servers are busy 

in rendering the service to the customers, is: 

     2 1, , 1, ,

1 1 1

[ ] , 1
K

n j K j

j n j

E N nP jP j
 

  

                                                                     (9.31) 

 The expected number of customers when primary server is in the broken state, is: 

    
2, ,

0

[ ] , 0
K

d n j

n

E N nP j


                                                                                        (9.32) 

 The expected number of customers in the system, is: 

   1 2[ ] [ ] [ ] [ ] [ ]r dE N E N E N E N E N                                                                   (9.33) 

 (C) Throughput 

       In terms of steady state probabilities, throughput is given by 

      1 1, ,0 1 2 1, ,

0 1 0

( )
K K

n n j

n j n

TP P P  


  

                                                                       (9.34) 

(D) Expected Delay 

      The expected delay experienced by the customers in the system is  

     [ ][ ] E NE D
TP

                                                                                                       (9.35) 

(E) Waiting Time 

      The average waiting time of the customers in the system is expressed as 

     
[ ]

[ ]
E N

E W


                                                                                                         (9.36) 

 

9.5 COST FUNCTION 

We evaluate here the cost function in terms of various performance measures and 

associated cost elements so as to study the system in monetary terms. The cost function is 

constructed as: 

1 21 2 h 1 1 2 1 2 d r( , ) [ ] ( )B B DTC C E N C P C P C P C                                              (9.37) 

where, 
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     C1          :  Fixed cost per unit time when the first server is busy;  

     C2          :  Fixed cost per unit time when the both the servers are busy; 

     Ch         :  Holding cost per unit time for each customer present in the system; 

     Cd         :  Repair cost incurred per unit time when the primary server is broken down; 

     Cr          :  Fixed cost incurred per unit time when a customer from the orbit retries for 

the service. 

We further aim to find total optimal cost by determining the optimal service rates for both 

the servers using ‘Direct search approach’. The optimization problem is mathematically 

formulated as:                

   (OP): 1 2 1 2( ) ( ), Minimize ,TC TC                                                                     (9.38) 

In order to analyze the nature and sensitivity of the cost function towards various 

parameters, we give illustrations as given further in sections 9.6 and 9.7. 

 

9.6 NUMERICAL ILLUSTRATION 

In this section, we perform numerical simulation so as to compute the rate matrix 

and other performance indices. The computer program for this purpose is executed in 

MATLAB software using the set of default parameters as 

1 2 1 10.5, 4, 5, 0.5, 0.1, 1, 5.K            Various sub matrices and rate matrix 

R are computed as: 

-1 0.5 0 0 0 0.5 0 0 0

0 -1 0.5 0 0 0 0.5 0 0

0 0 -1 0.5 0 0 0 0.5 0

0 0 0 -0.5 0 0 0 0 0.5

0 0 0 0 -0.6 0.5 0 0 0

0 0 0 0 4 -4.6 0.5 0 0
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4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0 0 0 0

0.1 0 0 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0 0 0

0 0 0 0.1 0 0 0 0 0 0

0 0 0 0 0.1 0 0 0 0 0

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

F

,

5

0    0 0 0 0 1 0 0 0 0

0    0 0 0 0 0 1 0 0 0

0    0 0 0 0 0 0 1 0 0

0    0 0 0 0 0 0 0 1 0

0    0 0 0 0 0 0 0 0 1

0    0 0 0 0 5 0 0 0 0

0    0 0 0 0 0 5 0 0 0

0    0 0 0 0 0 0 5 0 0

0    0 0 0 0 0 0 0 5 0

0    0 0 0 0 0 0 0 0 5

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

F

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.33 0 0 0 0 0

0.33 0.11 0.037 0.012 0.004 0 0 0 0 0

0 0.33 0.11 0.037 0.012 0 0 0 0 0

0 0 0.33 0.11 0.037 0 0 0 0 0

0 0 0 0.33 0.11 0 0 0 0 0

0 0 0 0 0.33 0 0 0 0 0

0 0 0 0 0 0 4 -10 0.5 0

0 0 0 0 0 0 0 4 -10 0.5

0 0 0 0 0 0 0 0 4 -10









R





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

The various performance indices are obtained as: 

E[N] = 4.60, E[W]=9.21, TP=10.12, Pr= 0.2759, PD=0.4568, E[D]=0.44, TC=270.82 

units. 

 

9.7 SENSITIVITY ANALYSIS 

In the present section, the sensitivity of various performance indices towards 

different parameters has been analyzed. To study the system performance measures, we 

set the default parameters as:  1 2 1 10.5, 4, 5, 0.5, 0.1, 1, 5.K             Based 

on the computational results obtained, the effects of parameters on various measures are 

interpreted as follows: 

(A) Queue Length of the System 

The first server can serve ‘K’ number of customers and the rest of the customers 

who arrive in the system have to accept services from the second server. The sensitivity 

of E [N] towards arrival rate λ and service rate µ1 is shown in figs 9.2(a-b). We notice that 

the queue length of the system increases (decreases) with an increase in λ (µ1). This is due 

to the fact that an increase in the arrival rate automatically increases the customers in the 

system and thus the need of installing second server increases proportionally. 
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                                     (a)                                                     (b) 

  

                                (c)                                                                            (d) 

Fig. 9.2: Effect of various parameters on the expected number of customers in the 

system E[N] 

     

(a)                                                                  (b) 

Fig. 9.3: Effect of various parameters on the throughput TP of the system 
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Table 9.1: Effect of µ2 and λ on the system performance indices 

However, on the other hand as per our expectation, the number of customers in the system 

reduces on speeding up the service rate. In fig. 9.2(c), we see that an increase in the 

breakdown rate of first server (α1) highly affects the number of customers in the system. 

An increase in the breakdown rate is highly responsible for the installation of 

second server due to increased congestion in the system. But, on the other hand an increase 

in the repair rate β1 (see fig. 9.2(d)) helps in reducing the congestion in the system as seen 

from decrement in the queue length.  

(B) Throughput 

Throughput is a direct measure to study the efficiency of any queueing model. Figs 

9.3(a-b) exhibit the effect of service rate (µ1) on the throughput (TP) of the system. An 

increase in µ1 results in an increase in the throughput. Moreover, an increase in the repair 

rate also increases the number of served customers while the TP decreases with an increase 

in the breakdown rate of the server. The effect of µ2 on TP is tabulated in table 9.1. 

 (C) Waiting Time and Expected Delay 

The total time that a customer spends in the system and expected delay in the 

service are the key factors that affect the performance and efficiency of any waiting system. 

Table 9.1 depicts the effect of parameters λ, α1, β1 and µ2 on the waiting time E[W] and 

   µ2=4 µ2=6 

λ α1 β1 E[D] E[N] E[W] TP E[D] E[N] E[W] TP 

0.5 

0.2 
0.8 0.40 3.41 6.82 8.46 0.34 3.44 6.89 10.09 

1.0 0.36 3.03 6.07 8.33 0.31 3.05 6.11 9.90 

1.2 0.34 2.78 5.56 8.21 0.29 2.80 5.59 9.73 

0.4 
0.8 0.53 4.73 9.46 8.99 0.44 4.79 9.59 10.89 

1.0 0.47 4.18 8.37 8.84 0.40 4.23 8.46 10.66 

1.2 0.44 3.80 7.60 8.68 0.37 3.83 7.67 10.42 

0.7 

0.2 
0.8 0.40 3.68 5.26 9.32 0.33 3.75 5.36 11.23 

1.0 0.35 3.25 4.64 9.33 0.29 3.30 4.71 11.22 

1.2 0.32 2.97 4.24 9.30 0.27 3.01 4.31 11.16 

0.4 

0.8 0.53 5.06 7.23 9.55 0.45 5.21 7.44 11.63 

1.0 0.46 4.42 6.31 9.64 0.39 4.53 6.48 11.71 

1.2 0.42 4.00 5.71 9.63 0.35 4.09 5.84 11.67 

0.9 

0.2 
0.8 0.41 3.98 4.42 9.80 0.35 4.11 4.57 11.89 

1.0 0.35 3.44 3.83 9.96 0.29 3.55 3.95 12.07 

1.2 0.31 3.13 3.48 10.02 0.27 3.22 3.58 12.13 

0.4 
0.8 0.56 5.44 6.04 9.65 0.48 5.71 6.35 11.79 

1.0 0.46 4.64 5.15 9.98 0.40 4.85 5.39 12.18 

1.2 0.41 4.15 4.61 10.13 0.35 4.33 4.82 12.34 
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expected delay E[D], expected number of customers E[N] and throughput TP of the system. 

It is noticed that E[D], E[N] and E[W] decrease with the increase in repair rate (β1) but 

increase with an increase in the breakdown rate α1. However, E[D] and E[W] reveal lower 

values for the higher values of service rates.  

(D) Effect of Service Rates on the Cost of the System 

In our model, as the customers load in the system increases beyond a pre-specified 

limit (K), the second server is installed so as to serve the customers. The service rate of 

second server significantly influences the performance of the system as well as the total 

cost spent on the system for the servicing of the customers. To visualize the nature of cost 

function towards the service rate of both the servers, we consider the following 

illustrations:  

Illustration 9.1: Consider the additional server retrial queueing system that can 

accommodate a queue length of maximum K = 5 customers with the first server. The 

system works under the set of default parameters assumed as

1 1 1 h r 1 2 d0.5, 1.5, 0.5, 0.1, 1, =10, C =40, C =10, C =25, C =20.C           

To obtain the optimal service rate ( 2 * ), we vary 2  for feasible range say (0.5: 0.05: 

2.0) and search for the optimal point.  

 

Fig. 9.4: Convexity of TC with µ2  

Table 9.2(a): Effect of arrival rates (λ) on µ2* and TC (µ1, µ2*) 

 λ= 0.5     λ= 0.7   λ= 0.9 

α1 0.1 0.3 0.5 0.1 0.3      0.5 0.1 0.3 0.5 

µ2* 0.85 1.17 1.5 1.77 1.49 1.88 1.68 2.21 2.75 

TC(µ1, µ2*) 115.51 133.53 149.96 132.47 151.48 168.09 129.70 153.57 173.54 

TP 3.44 3.24 3.10 4.85 3.55 3.29 4.53 4.64 4.70 

E[N] 2.50 3.68 4.56 2.52 3.91 4.77 1.87 3.32 4.40 
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Table 9.2(b): Effect of breakdown rate α1 on µ2* and TC (µ1, µ2*) 

 µ1= 1     µ1= 2       µ1= 3   

α1 0.1 0.3 0.5 0.1 0.3      0.5 0.1 0.3 0.5 

µ2* 0.76 1.13 1.54 0.89 1.20 1.50 0.93 1.25 1.54 

TC(µ1,µ2*) 110.29 128.40 146.01 118.40 137.45 154.04 122.12 144.01 162.16 

TP 2.65 2.53 2.44 4.00 3.73 3.53 4.95 4.54 4.24 

E[N] 2.70 3.91 4.80 2.34 3.51 4.39 2.14 3.31 4.19 

It is clear from the fig. 9.4 that the cost function is convex in nature as well as unimodular 

within the pre-specified range of µ2. The minimum cost is obtained at µ2*=0.85 units with 

TC (µ1, µ2*) = 115.51 units. Tables 9.2(a-b), display the optimal service rate (µ2*) with the 

variation in various parameters. The effects of arrival rate (λ), service rate (µ1) and 

breakdown rate (α1) have been presented in tables 9.2(a-b) on the optimal service rate (µ2*) 

of the second server and other corresponding metrics namely TC (µ1, µ2*), TP and E[N]. It 

is noticed that the µ2* is sensitive to the variation in λ with α1; an increase in λ  affects the 

optimal µ2* as well as increases the total cost of the server. An increment in µ1 also 

significantly affects the optimal µ2* and increases the total cost of the system which is quite 

obvious. 

Illustration 9.2: Consider the retrial queueing system with two servers in the system with 

1 1 h r 1 2 d0.5, 0.5, 0.5, 1, =10, C =40, C =10, C =25, C =20, K=5.C        Now, we 

need to find optimal service rates (µ1*, µ2*) and the corresponding optimal cost TC (µ1*, 

µ2*). As shown in fig. 9.5, we vary µ1 for interval (1.8≤ µ1≤ 2.6) and µ2 for interval (1≤ µ2 

≤ 2.5) and search for the optimal pair (µ1*, µ2*).  

 

Fig. 9.5: Determination of optimal pair (µ1*, µ2*) and TC (µ1*, µ2*) 
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The optimal cost is obtained as TC (µ1*, µ2*) = 152.40 units at (µ1*, µ2*) = (1.85, 

1.51). 

(E) Effect of Retrial Rate γ on the Total Cost  

          The retrial rate is one of the key system descriptor that significantly affects the 

system performance indices and total cost of the system. The number of customers in 

the retrial orbit and the rate with which they retry also affects the system expenses. We 

study the sensitivity of total cost TC (µ1*, µ2*) towards retrial rate by considering the  

 

      

Fig. 9.6 (a):  Variation in TC with α1 and γ 

 

Fig. 9.6 (b):  Variation in TC with λ and γ 

optimal service rates as obtained in illustration 9.2. For the set of default parameters as 

taken in illustration 9.2 with 1 21.85, 1.51   , we plot total cost of the system in 
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figures 9.6(a-b) to explore the combined effect of retrial rate γ along with 1  and 1 . 

The total cost TC of the system increases continuously with an increment in both retrial 

rate and repair rate as displayed in fig. 9.6(a). This is due to the fact that with every 

reattempt performed by the customer, a cost is incurred. It is noticed that the TC also 

increases with an increase in the breakdown rate. 

    

    

9.8 DISCUSSION 

           In this chapter, markovian retrial queueing system is analyzed using matrix 

geometric approach. The cost function formulated has been further used to compute the 

optimal values of service rates for both the servers by taking numerical illustrations. The 

model under consideration seems to be applicable to a variety of real life congestion 

situations where usually second server is installed depending on the increase in the load 

of primary server. The application of the model to web faction has also been discussed 

with the view point of requirement of the additional temporary server due to load 

increment. Overall, we can conclude that 

 An increase in the breakdown rate and the arrival rate is responsible for the increase 

in the congestion in the system as such single server is not sufficient to serve the 

customers.  

 TP increases with the high values of µ2 and λ. Hence, the higher values of service 

rates of both the servers may be helpful in maintaining a highly efficient system.  

 A speedy service and higher repair rate results in the reduction in the waiting and 

delay experienced by the customers in the system. 

 The total cost TC of the system increases continuously with an increment in both 

retrial rate and repair rate. 

 This study may be useful for the system designers and decision makers to have a 

better idea to trade off between cost and delay of the system in particular when traffic 

load in the system is sufficiently high.  
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CHAPTER 10 

DOUBLE ORBIT RETRIAL QUEUES 

WITH PRIORITY  
 

10.1 INTRODUCTION 

The majority of research in retrial queues deals with the systems with 

homogenous customers. There exist systems which allow the arrival of heterogeneous 

customers with variable rates and are even served with different service rates. In this 

chapter, we focus on the formation of double orbits by different class of customers. In 

previous chapters, we have studied single class of customers in the retrial queue. Here, we 

consider broader class of customers with different priorities and hence different waiting 

spaces (i.e. retrial orbits).   Domenech-Benlloch et al. (2009) investigated retrial queueing 

model with two types of orbits for different class of customers using extrapolation. They 

considered both the orbits of infinite capacity. Following this work, Avreachenkov et al. 

(2010) considered single server retrial queueing model where two types of customers join 

different class of orbits if server is not available. They considered two orbits in which one 

orbit was of infinite capacity and other one of finite capacity. Since all the algorithmic 

schemes assume truncations in deriving the approximate results, therefore we consider a 

system in which different class of customers arrive with different arrival rates and are 

kept in separate buffers of fixed capacity. 

The present chapter deals with finite double orbits retrial queue along with 

unreliable server and priority customers. Moreover, the broken down server is repaired 

following threshold recovery for both priority as well as non priority customers. Non 

priority customers are served only if no priority customers are present in the system. The 

transient solution of the model has been explored using matrix method. The cost function 

has been optimized to determine the optimal parameters. The rest of the chapter is 

organized in the following manner. Section 10.2 presents the description of the model 

along with underlying assumptions and notations. The governing equations are framed in 

section 10.3. Various performance measures have been obtained in section 10.4. An 

application on cellular mobile network has been developed in section 10.5. The numerical 

simulation has been carried out in section 10.6. Section 10.7 is devoted to the cost 
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optimization of the concerned retrial queueing system. Finally, the results and findings 

are discussed in section 10.8. 

 

10.2 MODEL DESCRIPTION 

We consider an unreliable single server finite retrial queueing model with two 

types of customers; priority and non-priority customers with double orbits. The basic 

operation of the model can be described as:  

(i) Arrival and Retrial Process: Two class of customers namely priority and non-

priority customers arrive in the system. The priority (non-priority) customers follow 

Poisson process with mean arrival rate λ1 (λ2). On finding the server idle or unavailable 

for the service, the customers on their arrival may either join the queue in the front of the 

server or they can wait for their turn in their respective retrial orbits. The queue in the 

front of server can hold a maximum of L priority and K non-priority customers. Further, 

we assume that the capacity of retrial orbit 1(orbit 2) is of L-1 (K-1) priority (non-

priority) customers.  

The priority (non priority) customers retry for their service from their respective 

orbits; the retrial time is exponentially distributed with rate γ1 (γ2). The retrial process 

occurs only when single type of customers (either priority or non-priority) is present in 

the system. However, if both types of customers are present in the system then the 

priority customers are served like a classical queue and no retrial phenomenon takes place 

in such case. 

(ii) Service Process: All the customers are served following the first come first serve 

(FCFS) service discipline. The priority and non priority customers are served according to 

exponential distribution with rates 
1 2 ,μ andμ respectively. The priority customers are 

served prior to the non-priority customers. The server after serving the last priority 

customer present in the queue automatically starts the servicing of non-priority customers 

waiting for the service. There is no retrial mechanism in this case. 

(iii) Breakdown state: The server is unreliable and may break down while serving the 

customers. The server failures occur in Poisson fashion with rates α1 (α2) while servicing 

priority (non priority) customers. The server failures occur while the server is busy in 

serving either type of the customer. No break down occurs during retrial and idle states. 

In case when the server breakdown occurs, the service of the customer already in the 

service is resumed and continued as soon as the repair process of the server is completed. 
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Moreover, the system transition from repair state is allowed only into the busy state and 

not in the retrial state.  

(iv) Repair process: The server may breakdown while serving either priority or non-

priority customers. The broken down server is sent for the repair so as to regain its 

functionality. The repair process is completed according to the following threshold 

recovery policy: 

a) If the server breakdown occurs while serving the priority customers, then the repair 

process starts if a sufficient number of priority customers say q1 (1≤ q1≤ L-1) are 

already present in the system. 

b) If the server breakdown occurs while serving the non- priority customers, then the 

repair process starts if a threshold number of non- priority customers say q2 (1≤ q2≤ 

K-1) are available in the system. 

The various notations used to formulate the model are summarized below: 

λ1 (λ2):  Arrival rate for priority (non priority) customers 

1μ ( 2μ ):  Service rate for priority (non priority) customers 

γ1 (γ 2):  Retrial rate for priority (non priority) customers 

α1 (α2):  Breakdown rate for the server while servicing priority (non priority) customers 

q1 (q2):  Threshold limit on the number of priority (non-priority) customers for the repair 

β1 (β2): Repair rate for the server broken down during the service of priority (non priority) 

customers. 

 

10.3 MATHEMATICAL FORMULATION OF THE MODEL 

The retrial queueing model under consideration is Markovian. In order to obtain 

the solution of the system we first develop mathematical model for the system using 

notations and assumptions discussed in previous section 10.2. Chapman Kolmogorov 

equations are established to obtain the transient solution of the system. These are further 

explained in subsections 10.3.1 and 10.3.2. 

10.3.1 Transient State Probabilities 

Let ‘n’ and ‘m’ represent the number of priority and non priority customers 

present in the system at any time t, respectively. The transient state probabilities of the 

system states are denoted as: 



 

 

214 
 

0,0 ( )P t  = Probability of the server being in idle or inactive state with no customers in the 

system at time t. 

, ( )n mP t  = Probability that the server is in busy state with n (0≤ n ≤ L) priority and m (0≤ 

m ≤ K) non- priority customers in the system at time t (except n=m=0). 

(1) ( )nQ t = Probability that there are n (1≤ n ≤ L-1) priority customers in the retrial orbit 1 

at time t. In this state, there is no service however, the server is ready to work 

and the corresponding orbit is not empty. 

(2) ( )mQ t = Probability that there are m (1≤ m≤ K-1) non priority customers in the retrial 

orbit 2 at time t, there is no service and the server is ready to work and the 

corresponding orbit is not empty. 

, ( )n mR t = Probability that the server is under repair state with n (n≥0) priority and m 

(m≥0) non- priority customers in the system at time t (except n=m=0). 

The steady state probabilities are given as: 

(1) (1) (2) (2)
, , , ,lim ( ); ( ) lim ( ) ; ( ) lim ( ); lim ( )n m n m n n m m n m n m

t t t t
P P t Q t Q t Q t Q t R R t

   
   

 

Also, we denote ,
,

( )
( )

n m
n m

dP t
P t

dt
  . 

10.3.2 Governing Equations 

Chapman-Kolmogorov equations for the different states of the model are 

constructed as written below. The following indicator functions are used for the 

formulation of the equations governing the model:     

        
1

1

1, (0 1), (0 1)

0, ( 1), (0 1)
A

if n q m K
I

if q n L m K

     
 

     
 

        
2

2

1, (0 1), (0 1)

0, ( 1), (0 1)
B

if m q n L
I

if q m K n L

     
 

     
 

(i) Inactive state 

This state corresponds to the idle state of the server when neither priority nor non-priority 

customer is present in the system. The equation in this case is: 

0,0 1 2 0,0 1 1,0 2 0,1( ) ( ) ( ) ( )( )t t t tP P P P       
                                                       (10.1)  
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Fig. 10.1: State Transition Diagram 

(ii) Busy state  

The present state corresponds to that state of the server when it is busy in rendering 

service to the customers. Depending on the number of customers present in the system, 

various cases can be framed as: 

(a) When there is no non-priority customer in the system. 

(1)
1,0 1 1 1,01 2 1 1 1,0 1 0,0 1( ) ( ) ( ) ( ) (1 ) ( )( ) At t t Q t I R tP P P                           (10.2)  

(1) (1)
,0 1 2 1 1 ,0 1 1,0 1 1

1 ,0

1( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ), (2 1)

n n n n n

A n

P t P t P t Q t Q t

I R t n L

     



 
        

    
                     (10.3)                                  

(1)
,0 2 1 1 ,0 1 1,0 1 1 1 ,0( ) ( ) ( ) ( ) ( ) ( )L L L L LP t P t P t Q t R t      
                                  (10.4)  

(b) When both priority and non-priority customers are present in the system. 
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1 ,

, ,1 2 1 1 1 1, 2 , 1

1 1,

( ) ( ) ( ) ( )

( ) (1 ( ))

( )

, (1 1), (1 1)n mA

n m n m n m n m

n m

t t t t

t I tR

P P P P

P n L m K

     



 



 

 

    

      
           (10.5)  

, 2 1 1 , 1 1, 2 , 1 1 ,( ) ( ) ( ) ( ) ( ) ( ),

(1 1)

L m L m L m L m L mP t P t P t P t R t

m K

      
       

  
                      (10.6)  

, , ,1 1 1 1, 2 , 1 1( ) ( ) ( ) ( ) ( ) ( )L K L K L KL K L KP t P t P t P t R t                                 (10.7)

1

, ,1 1 1 1 1, 2 , 1

,1 1,

( ) ( ) ( ) ( )

( ) ( ))

( )

(1 , (1 1)A

n K n K n K n K

L K n K

t t t t

t tR

P P P P

I P n L 

     







    

    
                                  (10.8)    

 (c)  When there is no priority customer in the system. 

(2)
1

2 0,1

0,1 1 2 2 2 0,1 2 0,0 2 1 1,1( ) ( ) ( ) ( ) ( )

(1 ) ( )

( )

B

t t t Q t t

I R t

P P P P



      

 

       
                    (10.9)  

(2) (2)
10, 1 2 2 2 0, 2 0, 1 2 2

1 1, 2 0,

( ) ( ) ( ) ( ) ( )

( ) ) ( ), (2 1)

( )

(1

m m

B

m m m

m m

t t t Q t Q t

t R t m K

P P P

P I

      

 

 

  

      

  
           (10.10)  

(2)
1

1 1,

0, 1 2 2 0, 2 0, 1 2

2 0,

( ) ( ) ( ) ( )

( ) ( )

( ) K

K

K K K

K

t t t t

t t

Q

P R

P P P



    



     

 
                                     (10.11)  

(iii) Repair State  

The server is unreliable and may break down while serving either the priority or non-

priority customers. Therefore, the governing equations of the states corresponding to the 

repair process of the broken down server in various situations are given below: 

(a) When there is no non priority customers i.e. m=0 and priority customers n ≥ 1. 

1,0 1 2 1,0 1 1,0( ) ( ) ( ) ( )R t R t P t                                                                             (10.12)  

,0 1 2 1 ,0 1 ,0 1 1,0)( ) ( (1 ) ( ) ( ) ( ),(2 1)An n n nR Rt I R t P t t n L                   (10.13)  

,0 2 1 ,0 1 ,0 1 1,0( ) ( ) ( ) ( ) ( )L L L LR Rt R t P t t         
                                             (10.14)  

 (b) When the number of non priority customer m≥ 1 and priority customers n≥ 1. 

, , ,1 2 1 1 1 1, 2 , 1)( ) ( (1 ) ( ) ( ) ( ) ( ),

(1 1),(1 1)

An m n m n m n m n mR R Rt I R t P t t t

n L m K

              

     
  (10.15)  

, , ,1 1 1 1 1, 2 , 1)( ) ( (1 ) ( ) ( ) ( ) ( ),

(1 1)

An K n K n K n K n KR R Rt I R t P t t t

n L

            

          (10.16)  

, 2 1 , 1 , 1 1, 2 , 1( ) ( (1 ) ) ( ) ( ) ( ) ( ),

(1 1)

L m A L m L m L m L mR t I R t P t R t R t

m K

     
       

  
           (10.17)  

, , ,1 1 2 , 1 1 1,( ) ( ) ( ) ( ) ( )L K L K L K L K L KR R R Rt t P t t t         
                              (10.18)  
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(c) When the number of priority customers n=0 and non priority customers m≥ 1. 

0,1 1 2 0,1 2 0,1( ) ( ) ( ) ( )R t R t P t                                                                            (10.19)  

0, 1 2 2 0, 2 0, 2 0, 1)( ) ( (1 ) ( ) ( ) ( ),(2 1)Am m m mR Rt I R t P t t m K                (10.20)      

(d) When the number of non priority customers m= K and priority customers n= 0. 

                                      (10.21)

(iv) For Retrial Orbit 1 

(1) (1)
1 1 1 1,0( ) ( )( ) ( ) for n 1,2,3,..., 1n n nQ t Q t P t L   

                              (10.22)  

(v) For Retrial Orbit 2  

(2) (2)
2 2 2 0, 1( ) ( ) ( ) ( ) for m 1,2,3,..., 1m m mQ Qt t P t K  

                        (10.23)  

Normalization Condition is 

1 1
(1) (2)

1 1 0 0 0 0

, ,( ) ( ) ( ) ( ) 1
L K L K L K

n m

n m n m n m

n m n mQ Q Rt t P t t
 

     

                                        (10.24) 

 

10.4 MATRIX METHOD 

The present section deals with the transient solution of the system of equations by 

using the ‘Matrix method’. At the initial stage, Laplace transforms of the equations are 

taken to convert them in differential free form. The obtained new set of equations is then 

arranged in the form of block matrix so as to obtain transient state probabilities in terms 

of eigenvalues of the determinant of coefficient matrix. The block matrix developed can 

be solved by a number of numerical techniques to obtain the eigen values of the 

coefficient matrix. The transient state probabilities are obtained in terms of the 

eigenvalues which can be further used to find the performance indices. Before proceeding 

further, we define transient state probabilities as: 

1 2 1 2 3( ) [ ( ), ( ),..., ( ), ( ), ( ), ( )] ;T
K K K Kt t t t t t t           

where, 

(2) (2)
0,0 0,1 0, (2 ) (1)1 -1( ) ( ), ( ),..., ( ), ( ),..., ( ) T

K KKt P t Q t Q t P t P t1 [ ]   ; 

(1) (1)

0,1 0, 1 -1 ( -1) (1)( ) ( ),..., ( ), ( ),..., ( ) ;
T

K L K Lt R t R t Q t Q t
2

[ ]                                                                          

1, , 1, 1, (2 ) (1)( ) [ ( ),..., ( ), ( ),..., ( )] (0 )
T

l l L l l l Lt P t P t R t R t l K
+3      

For the sake of convenience, we define transient state probabilities in terms of ( )t  as- 

1 2 2( ) ( ), ( ),..., ( ) T
Kt t t t  1 [ ]   

0, 1 2 0, 2 0, 2 0, 1( ) ( ) ( ) ( ) ( )K K K KR Rt R t P t t         
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2 1 2 2 3 1( ) ( ), ( ),..., ( ) T
K K K Lt t t t  2 [ ]    

3 ( 2 ) 3 1 ( 1) 2 )( ) (0 )[ ( ),..., ( )]l
T

K L l L K L l Lt l Kt t +3                                (10.25)  

The Laplace transforms of  i t , ( ), ( )i t t   are denoted by  i s , ( ), ( )i s s 

respectively. 

 In terms of Laplace transform, the above transient state probabilities reduces to 

1 2 3 1 2 3( ) [ ( ), ( ), ( ),..., ( ), ( ), ( )]T
K K Ks s s s s s s         

 

1 2 2
( ) ( ), ( ),..., ( )

K
Tt t t t  

1
[ ]   

2 1 2 2 3 1( ) ( ), ( ),..., ( ) T
K K K Lt t t t  2 [ ]                                                                 (10.26)  

3 ( 2 ) 3 1 ( 1) 2 ) (0 )( ) [ ( ),..., ( )]T
K L l L K L l Ll l Kt t t +3            

Noting that initially at time t=0, the system is empty i.e.  

0,0 ,(0) 1, (0) 0 0, 0.n mP P n m    
                                                                         (10.27) 

The initial vector can be defined as, 

(2 3 3 1) 1(0) [1,0,0,...,0] KL K L                                                                                    (10.28) 

After taking Laplace transforms, the set of differential equations (10.1)-(10.23) can be 

written in matrix form as: 

                                                       
A(s) (s) = (0) 

                                               (10.29)  

where, 

(2 3 -1) (2 3 -1)LK K LK K

0 0 1 1 2 3 K-1 K

0 1 1

1 2

1 1 2 3

2 2 2 3

3 3 2 3

K-1 K-1 2 3

K K 2 4

A B B C C C … C C

D A G 0 0 0 … 0 0

G D A 0 0 0 … 0 0

E F D A 0 0 … 0 0

A(s) = E F 0 D A 0 … 0 0

E F 0 0 D A … 0 0

0 0

E F … D A 0

E F 0 0 … 0 D A
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(2 )
1 1 11( -1) (2 ) (2 )(2 )K K L L LL

0

0 1 2 3 4

M MH 0 S M V MC B
A = , A = , A = , A = , A =

0 I M U M WD E M U


       
       

        

 

1

( -1) (2 ) ( -1) (2 )(2 ) (2 ) (2 ) (2 )

, ,

K L K K L KK L L K

1 1

0 1

J 0 T 00 0 0 0
B = B = G = ,G =

F 0 Z 00 0 0 0
    

      
      

      
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2

( -1) (2 ) (2 ) ( -1)K L K L K L

1

0 1

0 M 0 K
D = ,D =

0 0 0 0
   

   
   
   

 

(2 ) (2 ) (2 ) (2 ) (2 ) ( 1)

, , 1,2,...
l

l l l
l l

K L L K L K L

l K
0 0 0 T 0 0

C = E = F =
J 0 T 00 0

    

     
     

     
 

The various sub matrices can be further defined as: 

2 ( ) ,KB I 2 ( ) ,K0R I 1 1 1 ( 1)[ ( )] ,Ls  Ι I     1 1 ( ) ,LM I 2 2 (2 )( ) LD I  

where, ( )mI  is the identity matrix of order m. 

( )

1

[ ]

; 1,

0;

l ij L K

ij

t

for i j l
t

otherwise



T 

 
 


                                 

( )

2 2

[ ]

;

0;

ij K K

ij

f

for i j and q j K
f

otherwise



F 

  
 


 

( ( 1))

1

1

[ ]

;

; 1 1 1

ij L L

ij

k

for i j
k

for i j and j L





1K  


 

    

       

( )

1

[ ]

; 1

0;

l ij K L

ij

j

for i l and j
j

otherwise



J 

 
 


 

( )

1 1

[ ]

;

0;

ij L L

ij

m

for i j and q j L
m

otherwise



M 

  
 


         

( 1)

1

[ ]

; 1 1 1

0;

ij L L

ij

z

for i L and j i
z

otherwise



Z  

    
 
  

( )

1 2

2 2

[ ]

( ); 1

( ); 2

ij K K

ij

a

s for i j
a

s for i j and i K

 

 

C 

    
 

     

( )

2

2

[ ]

; ,1

; 1 1 1

ij K K

ij

d

for i j i K
d

for j i and i K





D 

  
 

    

 

( )

1 2 2 2

2 2 2

2

[ ]

( ); 1 1

( );

; 1 1 1

ij K K

ij

e

s for i j and i K

e s for i j and i K

for i j and j K

   

  



E 

        


      
     

    

0 ( )

1 2 1 1

2 1 1

1

[ ]

( ); 1 1

( );

; 1 1 1

ij L L

ij

s for i j and i L

s for i j and i L

for i j and j L

   

  



M  

        


       
     
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Now, we aim to find out the probability of the system at any time t. At the initial stage, 

we use Cramer’s rule so as to determine the transient probabilities of the server at 

different states on matrix ( )sA . From equation (10.29), we obtain  
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where,   det A s  is the determinant of the matrix A(s) and  det[A ]i s  is the 

determinant of matrix which has been obtained by replacing the respective i
th

 column 

vector, ( 1, 2,3,4,........., (2 3 3 1))i LK L K    of  sA with initial vector  0 . Now, 

in order to obtain the explicit expression for the equation (10.30), we proceed as follows: 
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It is clear that s=0 is a root of  det A s   =0. Now substituting s= -δ, we obtain 

                                             ( ) ( ) A B I                                                             (10.31) 

where,  B=A 0  is a square matrix of order (2 3 3 1)LK L K    and I is the identity 

matrix of order (2 3 3 1)LK L K   . Using equations (10.29) and (10.31), we obtain 

                                          0s s A B I                                            (10.32) 

Now, we find other distinct eigenvalues  0, 1,2,......, (2 3 3 2)x x x LK L K        of 

the matrix B I . For this purpose, we equate its determinant equals to zero. The 

eigenvalues are either, real (excluding zero) or complex. We assume that there are x real 

and y pairs of distinct conjugate complex eigenvalues which we denote by

     1 2 1 1 2 2, ,............., , , , ,................., ,x x x x x x y x yand              respectively. 

Moreover, 2 (2 3 3 2)x y LK L K      and thus, we have 
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Using equations (10.30) and (10.33), we get 

           
 

    2

1 1

det[A ]i
i yx

k x k x k x k x k

k k

s
s

s s s s



       

 


  

     
   
 

,  

                                                                  ( 1, 2,3,4,........., (2 3 3 1))i LK L K     (10.34) 

On expanding by partial fractions, we get 
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where 0a and  1,2,............,ma m x  are real numbers and are obtained as  
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m=1,2,…,y               (10.38) 

On taking inverse Laplace transformation of equation (10.35), the probability of the 

system state at any time t, are given by 
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                                                    (1 (2 3 3 1))i LK L K                                        

(10.39) 

where, 0 , , , , ,m m m m ma a b c v w  are real numbers. 

              

10.5 MATRIX RECURSIVE APPROACH 

In the previous section, we have used matrix method to obtain transient state 

probabilities of the system in terms of eigenvalues of the determinants. Now, to obtain the 

steady state probabilities of the system we use ‘Matrix Recursive Approach’. This method 

is widely used to deal with various queueing models for exact steady state solutions.  

The steady state probabilities are denoted by: 
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Eq. (10.29) can be written as: 
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Therefore we have the following set of equations: 

3

1

1,
K

i i

i

0 1 0 2 1 3A +B +B + C =



                                                                      (10.40) 

00 1 1 2 1 3D +A +G =     (10.41)

01 1 2 2 3G +D +A =  
                                     (10.42) 

2 3 0, (1 1)i i i i i K1 2 2 + 3 +E +F +D +A =                    (10.43) 

0K 1 K 2 2 K+2 4 K+3E +F +D +A =   
                                     (10.44) 

On solving (10.41) and (10.42), we get 

   1
-1 -1

3 1 0 1 1 2 2 1 1 2= -G D +A = -A G +D                                                    (10.45a) 

and,    
-1

-1 -1 -1 -1
2 1 1 2 1 2 1 0 1= G A - A D A G -G D                                                       (10.45b) 

Using the value of  2 in ,-1
3 1 0 1 1 2= -G D +A    we get 

    -1
-1 -1 -1 -1 -1

3 1 0 1 1 2 1 2 1 0 1= -G D + G A - A D A G -G D                                             (10.46) 

Proceeding in a similar pattern, we can obtain a general result for equations (10.43) in the 

following form: 
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      (10.47) 

Equation (10.48) yields,  4
-1

K+3 K 1 K 2 2 K+2= A E +F +D                              (10.48) 

By using the values of unknowns from 2 2to K  in equation (10.40), i.e. we can get

1
 . 

 

10.5 PERFORMANCE MEASURES 

The validity of any retrial queueing model can be best deciphered in terms of its 

performance indices. Various indices namely average queue length, system state 

probabilities, throughput etc. can be determined so as to judge the efficiency of the 

system.  
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10.5.1 Server State Probabilities  

The probabilities of the different states of the server are important in deciding the 

efficiency and other metrics of the system. The various server state probabilities for the 

different states of the server at time t are established as follows: 

(a) Busy state: 

The probability that the server is busy in providing service to the customers at time t, is 

      
, ,0 0,
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                                                             (10.49)                                                                                                                          

(b) Broken down state: 

 The probability that the server being in broken down state at time t, is 
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(c) Repair State: 

   (i) The probability that the server is under repair of the server when failed while 

servicing the non- priority customers at time t, is 
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                                                                                                (10.51)                                                                                       

  (ii) The probability that the server is under repair when failed while servicing the 

priority customers at time t, is 
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  (iii) The probability that the server is under repair at time t, is 

             1 2( ) ( ) ( )R R RP t P t P t                                                                                      (10.53)  

  (iv) The probability that the server is in broken down state but repair is not started at 

time t 
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(d) Retrial State:                                                                              

     (i) The probability that the priority customer retry for the service at time t, is 
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     (ii) The probability that the non-priority customer retry for the service at time t, is 
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10.5.2 Queueing Indices 

The computation of queueing indices of any system is the most significant and 

promising measure to upgrade any system. It really helps the system designers for better 

management of delay situations and efficient functioning of the queueing systems. 

(a) Queue Length 

The assessment of queue length is the primary objective of any queueing model. 

Here we give some indices which are related to the queue length of the concerned model. 

(i) Expected number of priority customers in the system at time t, is 
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(ii) Expected number of non-priority customers in the system at time t, is 
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(iii) Expected number of customers in the system at time t, is 

          1 2( ) ( ) ( )E E EN t N t N t                                                                          (10.59)  

(iv) Expected number of customers waiting in the retrial orbits at any time t, is 

       
1 1

(1) (2)

1 1

( ) ( ) ( )
L K

r n m
n m

E N t nQ t mQ t
 

 

                                                                      (10.60)  

(v)  Expected number of customers in the breakdown state at any time t, is
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(b) Throughput 

Throughput can be considered as the average rate of successful services rendered 

to the customers by the server in a queueing system and can be expressed as: 
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 (c) Carried load 

The carried load at time t is given by:                                                                                                                               
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10.5.3 Reliability measures 

The reliability indices also play a major role in improving the availability and 

efficiency of the concerned unreliable server queueing system. These indices can be 

further used to improve the system during design and development phases at time t.  

(i) Availability of the server at any time t. 

It measures the probability of the server being available in the system at time t and is 

given by 
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(ii) Failure Frequency 

The rate of failure of the server at different states is used to obtain the failure frequency 

of   the system. Thus, the failure frequency at any time t is expressed as: 
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10.5 APPLICATION TO CELLULAR RADIO NETWORK  

We illustrate the real life application of queueing model under consideration in 

cellular radio network wherein the whole geographical area is divided into cells and in 

each cell there is a base station. We consider the radio transmission via base station by 

considering a single channel in the microcell to serve the incoming calls which are 

generated in the Poisson fashion.  

It is assumed that before arrival of any call in the system, ‘n’ handoff calls and 

‘m’ new calls are already present in the system. The arriving calls are of two types i.e. (i) 

new calls which are assumed to be originated in the coverage area of the cell and (ii) 

handoff calls which are transferred from the neighboring cell due to mobility of the 

subscribers. The traffic flow in cellular radio network is depicted in figure 10.2. A cutoff 

priority is given to the handoff calls. Once the connection is established, the call should 

be continued till completion by reserving some channels called guard channels for them 

but not at the cost of new calls. New call requests are allowed to be queued in the buffer 

whenever no channel is available at the arrival instant; in such a case the handover calls 

are treated as the blocked calls. The interruption in the transmission due to unavailability 

of the channel is managed by providing the buffer of capacity L (K) for handover (new) 

attempts. If any handover call is present in the cell, the new call is not served. If the 
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channel is busy, the new as well as handover calls wait in the orbits from where they retry 

for the service. The channel is subject to breakdown and repair. The repairing of the 

channel is permissible only when a pre-specified number of calls are accumulated in the 

buffer of coverage area. Here, we consider that handover calls arrive with rate 1 and new 

calls arrive with arrival rate 2 . The handover (new) calls are served with rate 1 2( )  . 

Excluding the call being served at the moment by the channel, extra handover and new 

calls present in the queue retry for the service with retrial rate
1 2( )  . A handoff call can 

retry for the service only if no new calls are present in the system, i.e. the retrials cannot 

be made by handoff calls at the loss or cost of new (non-priority) calls. Based upon above 

discussion, it be realized that the congestion problem in cellular radio network can be 

considered as the direct implication of our retrial queueing model.  

 

 Fig. 10.2: Flow chart of traffic in cellular radio network 

 

10.6 NUMERICAL RESULTS 

In this section, we perform numerical experiment by taking the illustration of the 

cellular mobile network as explained in above section 10.5. To study the effect of various 

parameters on the sensitivity of the system performance, the values for default parameters 

are taken as 1 2 1 2 1 2 1 2 1 25, 6, 0.5, 1, 8, 7, 1, 2, 0.5, 0.5.                   
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(A) Queue Length  

The single channel (server) can serve only one call at a time, therefore rest of the 

incoming calls either handoff or incoming form queue in the system. The queue length of 

either type of calls is affected by various parameters namely service rate, arrival rate of 

calls and many other factors. To examine the effect of system parameters we consider 

following numerical example.  

Illustration 10.1: We consider the set of default parameters and vary q1 from 1 to 5 at a 

time range of 1 to 10 units and find the corresponding queue length of priority customers.  

Table 10.1: Variation in E [N1(t)] with q1 and t 

 

 

 

 

 

 

 

 

 

To minimize the congestion in the system, we intend to compute the optimal threshold 

recovery parameter q1 which minimizes the queue length of priority customers (handover 

calls). Table 10.1 displays the value of queue length of priority customers (handover 

calls) i.e. E[N1(t)] corresponding to different threshold parameters q1 and time t. It is 

noticed from the table that at every time t, the minimum queue length is obtained for 

q1=2. In fig. 10.3, it is observed that the number of calls increases with an increase in time 

t. However, E[N1(t)] decreases from q1=1 to q1=2 and then increases up to q1=5. It is very 

clear from the data given in table 10.1 that q1=2 seem to be the optimal threshold 

recovery point where minimum queue length is observed. 

Figs 10.4(a)-10.4(b) depict the trends of queue length of handoff calls i.e. priority 

customers w.r.t. arrival rate 1( ) and breakdown rate 1( ) on E[N1(t)]. An increase in the 

arrival rate (breakdown rate) increases the accumulation of handoff calls in the system 

(make the system more prone to failures). Figs 10.5(a)-10.5(c) exhibit the variation in the 

queue length of both handoff calls (priority customers) and new calls (non-priority 

t q1=1 q1=2 q1=3 q1=4 q1=5 

1 1.1776 0.9441 0.9587 0.9564 0.6970 

2 1.2986 1.2763 1.3742 1.4676 1.5244 

3 1.4899 1.4380 1.5810 1.7348 1.8711 

4 1.8354 1.5015 1.6631 1.8437 2.0183 

5 2.2537 1.5256 1.6941 1.8842 2.0727 

6 2.7402 1.5353 1.7061 1.8999 2.0942 

7 3.3142 1.5393 1.7111 1.9065 2.1038 

8 3.9983 1.5411 1.7133 1.9095 2.1085 

9 4.8169 1.5420 1.7143 1.9108 2.1109 

10 5.7985 1.5424 1.7148 1.9115 2.1121 
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customers) with time t and other parameters. The variation in the queue length of new 

incoming calls (non-priority customers) with time t and parameters q2 and K has been 

demonstrated in Figs 10.5(b)-10.5(c). The queue length E[N2(t)] of the incoming calls 

(non-priority customers) increases with an increase in time t as well as with q2 and K.  

 

Fig. 10.3: Effect of q1 on E[N1(t)] with time t 

  

Fig. 10.4(a): Effect of 1 on E [N1(t)]               Fig. 10.4(b): Effect of 1 on E[N1(t)]  

 

Fig. 10.5(a): Effect of L on E[N1(t)] with t 
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Fig. 10.5(b): Effect of q2 on E[N2(t)] with t 

 

Fig. 10.5(c): Effect of K on E[N2(t)] with time t 

 

 

(B) Throughput 

Figs 10.6(a-b) display the effect of service rate (µ1) and arrival rate (λ1) 

respectively, on the throughput TP(t). At a particular instant, TP(t) is maximum in both 

the graphs 10.6(a-b) when µ1= λ1. However, in fig. 10.6(a) we can see that at t=2 units 

and onwards, TP(t) shows a steady state behavior even on increasing the service rate µ1. 

In fig. 10.6(b), TP(t) increases with the growth of λ1; this is due to the fact that growth in 

the number of new calls automatically increases TP (t). 

(C) Reliability Indices 

Tables 10.2 and 10.3 present the effect of various parameters on the reliability 

indices; namely availability and failure frequency on the system. 
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     Fig. 10.6(a): Effect of µ1 on TP(t) with t       Fig. 10.6(b): Effect of λ1on TP(t) with t 

Both availability Av(t) and failure frequency (Ff(t)) of the system decrease as time 

t grows. From data depicted in table 10.2, it is clear that Av(t) increases but Ff(t) decreases 

with the growth of service rate µ1 from 6 units to 8 units. This is due to the fact that an 

increase in the service rate of the server makes the server more available for the service. 

Further, Av(t) (Ff(t)) exhibits decreasing (increasing) trend with the growth of arrival rates  

λ1 and λ2. An increase in the arrival rate makes the server busier with the customers and 

thus it becomes less available for new incoming calls.  

(D) Server state probabilities 

Tables 10.3 and 10.4, display the variation in the server state probabilities with 

varying values of service rates  (µ1,µ2) and retrial rates (γ1, γ2), respectively. The long run  

 

Table 10.2:  Effect of λ1 on Av(t) and Ff(t) 

λ1 t 
Av(t) Ff(t) 

µ1=6 µ1 =7 µ1 =8 µ1=6 µ1 =7 µ1 =8 

3 

1 0.7837 0.7901 0.7966 0.2718 0.2680 0.2628 

3 0.6894 0.6974 0.7041 0.2490 0.2404 0.2338 

5 0.6852 0.6936 0.7009 0.2545 0.2445 0.2369 

3.5 

1 0.7802 0.7860 0.7915 0.2796 0.2780 0.2723 

3 0.6884 0.6962 0.7031 0.2613 0.2514 0.2436 

5 0.6832 0.6915 0.6990 0.2663 0.2550 0.2462 

4 

1 0.7743 0.7830 0.1059 0.2762 0.2858 0.2219 

3 0.6869 0.6946 0.6872 0.2727 0.2618 0.2314 

5 0.6810 0.6891 0.6963 0.2771 0.2649 0.2547 
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Table 10.3:  Effect of λ2 on Av(t) and Ff(t) 

λ2 t 
Av(t) Ff(t) 

β1=0.8 β1=1.2 β1=1.4 β1=0.8 β1=1.2 β1=1.4 

4 

1 0.7913 0.8163 0.8415 0.1194 0.2766 0.3044 

3 0.6781 0.7369 0.7575 0.2427 0.2666 0.2744 

5 0.6685 0.7361 0.7585 0.2431 0.2674 0.2751 

5 

1 0.7869 0.7987 0.8046 0.2790 0.2762 0.2770 

3 0.6710 0.7299 0.7509 0.2505 0.2746 0.2829 

5 0.6593 0.7278 0.7505 0.2505 0.2763 0.2845 

6 

1 0.7765 0.7909 0.7968 0.2951 0.3059 0.3100 

3 0.6640 0.7236 0.7449 0.2564 0.2813 0.2900 

5 0.6516 0.7210 0.7440 0.2563 0.2833 0.2920 

 

probabilities PB(t), Pf(t), PR(t) and PRE2(t) increase with the growth of time t whereas 

PR3(t) and PRE1(t) exhibit decreasing pattern. The long run probability of the server being 

in busy state i.e. PB(t) increases with the rise in service rate and retrial rates. This is so 

because an increase in service rates makes the server more available to serve and 

increases its busy behavior. An increase in retrial rates for both types of calls also 

increases PB(t).  

 

10.7 COST OPTIMIZATION 

The present section is devoted to the cost optimization. The cost function is  

1 2 B h a b 3 1 2( , , , ) C ( ) C [ ( )] C ( ) C ( )B R R c dTC L K q q P t E N t P t P t C C                      (10.66)  

where, 

CB       :  Cost per unit time when the channel is busy;  

Ch        :  Holding cost per unit time of each call present in the system; 

Ca        :  Repair cost incurred per unit time for a broken down channel; 

Cb     :  Cost incurred per unit time for the channel being in broken down state but the 

repair is not yet started; 

Cc      :  Fixed cost incurred when handoff calls (priority customer) retry for the service 

each time; 

Cd     : Fixed cost incurred when new calls (non-priority customer) retry for the service 

each time. 
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Table 10.4:  Effect of (µ1, µ2) on the server state probabilities 

(µ1,µ2) t PB(t) Pf(t) PR(t) PR3(t) PRE1(t) PRE2(t) 

(6,7) 1 0.5182 0.1872 0.1243 0.0721 0.0182 0.0541 

 3 0.5844 0.3095 0.2768 0.0398 0.0003 0.0986 

 5 0.5906 0.3171 0.2882 0.0351 0.0000 0.0861 

(6.5,7) 1 0.5323 0.2135 0.1469 0.0863 0.0209 0.2003 

 3 0.5723 0.3049 0.2698 0.0433 0.0004 0.1140 

 5 0.5778 0.3124 0.2806 0.0391 0.0000 0.1025 

(8,7) 1 0.5021 0.2000 0.1392 0.0767 0.0253 0.1397 

 3 0.5408 0.2915 0.2516 0.0512 0.0008 0.1555 

 5 0.5436 0.2982 0.2605 0.0483 0.0000 0.1476 

(6,8) 1 0.4854 0.2266 0.1665 0.0800 0.0203 0.2339 

 3 0.5761 0.3047 0.2725 0.0393 0.0004 0.1116 

 5 0.5834 0.3130 0.2844 0.0347 0.0000 0.0975 

(6,9) 1 0.5522 0.2086 0.1469 0.0775 0.0214 0.1857 

 3 0.5686 0.3002 0.2684 0.0388 0.0004 0.1237 

 5 0.5763 0.3091 0.2808 0.0343 0.0000 0.1085 

Table 10.5:  Effect of (γ1, γ2) on the server state probabilities 

(γ1, γ2) t PB(t) Pf(t) PR(t) PR3(t) PRE1(t) PRE2(t) 

(1,0.5) 1 0.5162 0.2016 0.1365 0.0851 0.0216 0.2250 

 3 0.5341 0.2878 0.2484 0.0506 0.0005 0.1664 

 5 0.5375 0.2947 0.2574 0.0478 0.0000 0.1574 

(1.5,0.5) 1 0.5188 0.2021 0.1369 0.0852 0.0188 0.2243 

 3 0.5339 0.2880 0.2484 0.0507 0.0003 0.1666 

 5 0.5374 0.2947 0.2574 0.0478 0.0000 0.1574 

(2,0.5) 1 0.5203 0.2025 0.1371 0.0854 0.0164 0.2243 

 3 0.5338 0.2880 0.2485 0.0507 0.0002 0.1667 

 5 0.5374 0.2947 0.2574 0.0478 0.0000 0.1574 

(2,2) 1 0.5897 0.2066 0.1421 0.0827 0.0170 0.1473 

 3 0.5509 0.2984 0.2574 0.0525 0.0004 0.1385 

 5 0.5538 0.3040 0.2656 0.0492 0.0000 0.1314 

(2,2.5) 1 0.5929 0.2082 0.1429 0.0839 0.0174 0.1411 

 3 0.5553 0.3011 0.2598 0.0529 0.0004 0.1311 

 5 0.5581 0.3065 0.2678 0.0495 0.0000 0.1246 

In order to obtain the optimal values of capacity and threshold recovery parameters                

(L, K, q1, q2), we minimize the total cost of the system. The non-linear optimization 

problem is solved by using direct search approach based on discrete allocation.  

The optimization problem (OP) is formulated mathematically as: 

                            (OP):   
* * *

1 2 1 2( , ) ( , ), , Minimize , ,TC L q q TC L q qK K
  

                    subject to:      11 1q L     

                             and,      21 1q K    

For numerical computations, the default values of different cost parameters are taken as   

CB=20, Ch=15, Ca=25, Cb=10, Cc=40, Cd=40. The default values for other parameters are 

considered as 1 2 1 25, 6, 0.5, 1,      1 2 1 2 1 28, 7, 1, 2, 0.5, 0.5           . 
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Also, we fix t as 2 units and determine the optimal values of (L, K, q1, q2) using direct 

search approach. 

10.7.1 Determination of optimal set (q1*, q2*) 

Now, we proceed to find out the optimal set of threshold parameters (q1*, q2*) that 

produces minimum cost for the concerned queueing system. 

Illustration 10.2: Let us consider the double orbit retrial queueing model with the 

following features: 

(a) The system can accommodate a maximum of 6 (i.e. L=6) handoff calls and 8 (i.e. 

K=8) new calls. 

(b) The threshold parameters are q1 and q2 such that 11 1q L   ; 21 1q K   . 

(c) The values of other default parameters are fixed as:     

1 2 1 2 1 2 1 2 1 25, 6, 0.5, 1, 6, 7, 1, 2, 0.5, 0.5                  

In order to find the optimal values, we use “Direct Search Approach”. In table 10.6(a), 

we vary q1 and q2 within permissible limits and search for that optimal set of threshold 

parameters (q1*, q2*) that produces minimum cost for the queueing system. Table 10.6(a) 

displays the numerical result for illustration 10.2. The optimal values for (q1*, q2*) are 

obtained as (2, 2) as shown by bold digits with their corresponding optimal cost, average 

queue length and throughput. Tables 10.6(b)-10.6(d) display the optimal parameters 

obtained for different values of arrival rates (λ1, λ2), retrial rates (γ1, γ2) and repair rates  

(β1, β2), respectively.  

Table 10.6(a): Effect of arrival rates (λ1, λ2) on the optimal parameters (q1*, q2*) 

q1 q2 TC(t) E[N(t)] TP(t) q1 q2 TC(t) E[N(t)] TP(t) 

1 1 269.78 11.935 5.2523 3 4 226.88 9.8972 3.6198 

1 2 253.55 11.121 5.0683 3 5 227.36 9.9351 3.5720 

1 3 253.95 11.141 5.0843 3 6 227.33 9.9319 3.5622 

1 4 254.28 11.158 5.0996 3 7 227.94 9.969 3.5730 

1 5 254.48 11.167 5.1081 4 1 242.07 10.735 3.7173 

1 6 254.56 11.17 5.1078 4 2 227.7 9.9826 3.4739 

1 7 254.85 11.185 5.1123 4 3 227.62 9.9765 3.4661 

             2 
 

1 239.71 10.503 3.9798 4 4 228.31 10.02 3.4594 

2 2 224.94 9.7637 3.7011 4 5 228.68 10.045 3.4382 

2 3 225.22 9.7811 3.6982 4 6 228.66 10.044 3.4248 

2 4 225.52 9.7996 3.6912 4 7 229.46 10.087 3.4775 

2 5 225.78 9.8159 3.6814 5 1 242.6 10.812 3.5632 

2 6 225.69 9.8087 3.6725 5 2 228.62 10.076 3.3167 

2 7 226.32 9.8476 3.6756 5 3 225.54 9.8734 3.4303 

3 1 257.31 11.782 2.6954 5 4 227.66 10.009 3.4261 

3 2 226.45 9.8784 3.5984 5 5 229.62 10.14 3.2812 

3 3 225.7 9.823 3.6143 5 6 229.57 10.136 3.2689 

     5 7 230.2 10.18 3.2716 
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Table 10.6(b): Effect of arrival rates (λ1, λ2) on the optimal parameters (q1*, q2*) 

(λ1, λ2) (4,5) (4,6) (5, 5) (5,6) (5,7) (6,5) (6,6) (6,7) 

q1* 4 5 4 2 5 2 3 3 

q2* 4 2 6 2 2 2 7 3 

TC(q1*,q2*) 184.86 180.02 153.25 224.94 220.95 231.49 171.75 222.79 

E[N(t)] 7.4692 7.231 5.46 9.76 9.65 10.15 6.20 9.55 

TP(t) 1.1814 5 0.96 3.70 2.78 3.79 3.56 3.79 

Table 10.6(c): Effect of retrial rates (γ1, γ2) on the optimal parameters (q1*, q2*) 

(γ1, γ2) (0.5,0.5) (0.5,1.0) (0.5,1.5) (1.0,0.5) (1.0,1.0) (1.0,1.5) (1.5,0.5) (1.5,1.0) 

q1* 2 2 5 2 2 5 3 2 

q2* 1 2 4 1 2 4 1 2 

TC(q1*,q2*) 218.93 224.94 175.49 218.69 244.92 196.66 228.94 264.85 

E[N(t)] 10.46 9.76 5.74 9.13 9.76 5.8192 8.51 9.7574 

TP(t) 3.93 3.70 0.15 3.71 3.70 0.17534 3.60 3.7029 

Table 10.6(d): Effect of repair rates (β1, β 2) on the optimal parameters (q1*, q2*) 

(β1, β 2)           (1,2) (2,2) (3,2) (4,2) (1,3) (1,4) (2,3)   (2,4) 

q1* 2 2 2 2 4 4 3 5 

q2* 2 2 1 1 6 3 1 1 

TC(q1*,q2*) 224.94 220.21 185.76 196.1 214.62 223.95 88.737 172.11 

E[N(t)] 9.76 9.4885 6.9324 7.6528 9.1293 9.6608 0.34043 5.9801 

TP(t) 3.70 4.1921 5.1593 5.1652 3.3621 4.5583 6.3451 5.4462 

 

 

Fig. 10.7: Determination of optimal parameter (q1*, L*)  

Illustration 10.3: Consider the default parameters 
1 2 1 2

5, 6, 0.5, 1,        

1 2 1 2 1 2
6, 7, 1, 2, 0.5, 0.5            for the retrial queueing system with double 

orbits having fixed capacity of new calls as 8 units and threshold parameter for new calls 



 

 

236 
 

as 4 units with the set of default parameters. Moreover, we vary the capacity of handover 

calls (L) from one base station to another base station from 2 to 6 and the corresponding 

threshold recovery parameter (q1) from 1 to 5 (i.e. L-1). Figure 10.7 displays the variation 

in the optimal cost of the system with different values of ‘L’ by ‘q1’at constant t=2 units. 

It is clear from the figure that a change point i.e. dip is visible corresponding to q1=2. 

However, the cost increases with the increment in L.  

10.7.2 Determination of optimal parameter set (L*, q1*, K*, q2*)  

In the previous subsection, we have computed the optimal parameter set (q1*, q2*) 

and further corresponding optimal cost of the queueing model by keeping L and K as 

constant. Now, we determine optimal parameter set (L*, q1*, K*, q2*) corresponding to 

the minimum cost using direct search approach by varying L, q1, K and q2 within the 

assumed bounds. The various bounds are as: 

(a) Capacity of the handover calls (L): 2 6L   

(b) Capacity of the new calls (K): 2 8K   

(c) Threshold to start the repair of channel for handover calls (q1): 11 1q L    

(d) Threshold to start the repair of channel for new calls (q2): 21 1q K    

Different sets of optimal parameters (L*, q1*, K*, q2*) are obtained corresponding to 

various sets of default parameters.  

We fix 1 6and 8  for tables 10.7(a) and 10.7(b), respectively. The set of other 

parameters taken are: 1 2 1 2 2 1 2 1 25, 6, 0.5, 1, 7, 1, 2, 0.5, 0.5.                 

Tables 10.7(a-b) summarizes the various optimal set for (L*, q1*, K*, q2*) for different 

set of (λ1, λ2) and (γ1, γ 2).  

Illustration 10.4: From table 10.6(c), we consider the case when (γ1, γ2) = (1.0, 1.5) and 

corresponding optimal threshold parameters (q1*, q2*) as (5, 4). We vary the capacity size 

of handover calls (L) from 6 to 12 and capacity parameter of new calls i.e. K from 5 to 8   

(minimum value of L and K must be greater than their corresponding threshold repair 

parameters i.e. q1 =5 and q2=4). Figure 10.8 shows the variation in the total cost TC (t) of 

the system with varying values of L and K. It is observed from the figure as well from the 

data depicted in table 10.8 that the minimum cost (shown by bold letters) 92 units 

approximately is obtained for (L*, K*) = (8, 7).  
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Table 10.7(a):  Effect of (λ1, λ2) on optimal parameters (L*, q1*, K*, q2*) 

Optimal parameters λ1=2, λ2=3 λ1=4, λ2=6 λ1=5, λ2=5 λ1=3, λ2=4 

L* 5 6 4 6 

q1* 3 5 2 1 

K* 6 3 8 8 

q2* 4 2 1 2 

TC (L*,q1*,K*,q2*) 21.50 135.29 81.53 48.14 

 

Table 10.7(b): Effect of (γ1, γ 2) on optimal parameters (L*, q1*, K*, q2*) 

Optimal parameters γ1=1.0, γ2=1.0 γ1=1.5, γ2=1.0 γ1=2,γ2=3 γ1=0.5,γ2=0.5 

L* 2 3      3          4 

q1* 1 2      2          2 

K* 2 3      3          3 

q2* 1 2      2         2 

TC (L*,q1*,K*,q2*) 85.46 175.47 276.36 120.38 

 

Table 10.8: Total cost of the system corresponding to different values of L and K 

L\K 5 6 7 8 

6 220 233 243 253 

7 219 231 242 252 

8 190 166 92 262 

9 231 244 255 264 

10 233 245 257 266 

11 235 249 258 268 

12 236 247 260 275 

 

Fig. 10.8: Determination of optimal parameter (L*, K*) 

The optimal parameters (L*, q1*, K*, q2*) determined can be used for the design of 

optimal systems by setting the buffer capacity of orbit size. A cellular mobile network 
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with optimal capacity for both types of calls and optimal threshold parameters can be 

designed which may prove economical to deal with the dropping of calls in real time 

system. 

10.7.3 Determination of optimal service rates 

In sub sections 10.7.1 and 10.7.2 we have computed optimal cost TC (L*, K*, q1*, 

q2*) by using the optimal parameters. Now, we intend to determine optimal service rates 

(µ1
*
, µ2*) so as to know the optimal service rate at which calls must be served at the 

minimum cost. 

  

Fig. 10.9: Determination of optimal parameter (µ1*, µ2*) 

Illustration 10.5: From table 10.7(a), we consider optimal parameters (L*,K*,q1*,q2*) = 

(6,5,3,2) with default parameters as
1 2 1 2 1 2

4, 6, 0.5, 1, 1, 2,         

1 2
0.5, 0.5    and vary service rates µ1 from 4 to 9 units and µ2 from 5 to 9 units. Now, 

proceed to find out the optimal values of both service rates which provide minimum cost. 

In figure 10.9, we display the TC(t) corresponding to different service rates and cost 

values. 

We can easily observe from the table 10.7(a) that corresponding to this particular 

set of optimal parameters (L*, K*, q1*, q2*) = (6, 5, 3, 2) we have obtained optimal 

service rates µ1=8 and µ2=7 and the corresponding cost was TC (t) = 135.29 units. But it 

is remarkable to observe from the fig. 10.9 that with the variation in service rates 

minimum cost is obtained as TC (t) = 110.52 units at µ1= µ2=7.5 units. By taking 

illustration, we have demonstrated that the system can be made more economical by 
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serving the calls or customers at optimal service rates. This gives optimal decision 

parameters as L*=6, K*=5, q1*=3, q2*=2, µ1= µ2=7.5. 

 

10.8 DISCUSSION 

In this chapter, the double orbit finite retrial queue with two types of customers 

had been investigated. The cost optimization of the system had been proposed to 

determine the optimal parameters. The work presented in this chapter seems to be useful 

for the construction of optimal system designs wherein priority to one kind of traffic is 

given in comparison to other type of traffic. The model can be applicable to various 

congestion situations encountered in telecommunication systems, hospitals, banks, 

manufacturing systems which involve servicing of two types of customers under certain 

priority rule. The sensitivity analysis demonstrates the tractability of proposed model in 

context of its applications to the cellular mobile network. Overall, we can conclude that: 

 We infer that the availability of the server can be increased by controlling the arrival 

rate of the new incoming calls. Moreover, the system can be made more efficient by 

enhancing the service rate, which in turn reduces the failure frequency of the server. 

 The determination of optimal threshold recovery parameters (q1*, q2*) can be of 

interest in order to initiate the start of the repair of broken down server. On this basis, 

cellular mobile network can handle the breakdown of the channel and its repair by 

choosing optimal threshold parameters which may prove economical in terms of both 

time and money.  
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Conclusions  
 

Stochastic modeling of congestion problems with reattempts holds a significant 

place in the area of queueing theory in the form of retrial queues. Due to the abundant 

applications of such queues in day-to-day activities as well as in various industrial 

scenarios including manufacturing and production systems, computer and 

telecommunication systems, etc. have forced queue theorists to develop new models 

which can be well suited to real life congestion situations. In the present doctoral work, 

an attempt is made to develop and analyze retrial queueing models enriched with various 

prominent features like unreliable server, vacation, bulk arrival, impatience behavior, 

threshold recovery, priority, etc. so as to study the complex queueing systems arising out 

of a variant of congestion phenomenon. The highlights of the noble features of the work 

done in the present doctoral thesis are as follows:  

 The reliability of the server greatly affects the performance and efficiency of any 

queueing model. Therefore, unreliability of the server cannot be neglected and 

thus retrial queueing models with unreliable server are more consistent enough 

with the real life situations. We have developed retrial queueing models by 

incorporating the assumption of unreliable server which has wide applicability in 

many areas such as in computer and communication systems. It is worth noting 

that the concept of unreliability of the server is taken into account in all the 

models studied in chapters from 2-10.  

 Vacation retrial queueing models are examined in chapters 2 and 3, which may 

be useful for the queueing scenarios with re-attempts. The concept of Bernoulli 

vacation schedule is incorporated in chapter 3 where the server may go for 

vacation after each service or may continue to serve the customers with 

complementary probability. Modified vacation policy discussed in chapter 4 

allows the server to go for a maximum of J vacations in case no customers are 

present in the system.   

 Priority retrial queueing models considered in chapter 4, 5 and 10 have numerous 

applications in many real life situations encountered in computer networks, 

communication systems, transportation and many others.  

 The repair of the broken down server is a key issue in order to continue the service 

of the customers waiting in the queue. Threshold based recovery can be used by 
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the technicians and maintenance engineers to repair the broken down server. The 

repair of the server should be done in optimized manner so as to save both time 

and money. This policy is incorporated in chapters 7 and 8 in order to determine 

the optimal threshold parameter and corresponding optimal cost. 

 Bulk arrivals have significant impact on the behavior of the queueing systems 

with reattempts and have a variety of applications in queueing situations 

encountered in computer sharing systems, communication traffic, manufacturing 

processes, etc. The bulk arrival retrial queueing models investigated in chapters 2- 

7 also include other prominent features like vacation, N-policy, optional services, 

etc.  

 The service pattern usually differs from one system to another; it may be single 

phase service pattern, multi-phase service or a series of some optional services. 

Due to its wide applicability to numerous systems, the concept of multi 

services/repairs is incorporated in chapters 3-5.  

 The incorporation of discouragement behavior (i.e. balking and reneging) in the 

modeling of most of the retrial queueing systems is done in chapters 2- 6. The 

balking or reneging behavior of the customers is common and realistic, which 

arises due to impatience of the customers on seeing a long queue or server being 

busy. The customer’s satisfaction is the main goal of any service sector 

 Sometimes, the system designer is more interested in knowing the behavior of the 

server at a particular instant of time instead of judging the long run or steady state 

behavior of the system. The transient state solution is thus required to have a idea 

of the server’s status and provides more realistic characteristics of the queueing 

systems (cf. chapters 8, 9 and 10). 

  Optimal control of the queue is also a major key concern of the queue theorists 

and system designers. This is basically useful in optimizing the cost or to prevent 

the queueing system from bursting due to excessive crowd in the system. Various 

control policies namely N-policy (cf. chapter 6), F-policy (cf. chapter 8), threshold 

recovery (cf. chapters 8 and 10) have incorporated in our study to frame retrial 

queueing systems so as to determine the optimal system parameters. 

 The retrial queueing models investigated in this doctoral work are not limited to 

the concepts considered in this research work; they can be further enhanced by adding 

more realistic assumptions so as to model more complex real life situations. The 

stochastic modeling and performance analysis of retrial queueing models can also be done 
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by using real time data for some industry rather than using heuristic data. The future 

extensions of present work can be done in the following directions: 

 There is a wide scope of bulk service retrial models. Various retrial queueing 

models developed can be further extended by incorporating bulk service concept 

but analytical results will become more cumbersome to derive.  

 Various control policies namely N-policy, F-policy, threshold recovery can be 

established by combining together with fuzzy parameters. The genetic algorithm 

based optimization and fuzzy logic may be of great advantage to the system 

organizers and industrial engineers to design the concerned queueing systems in 

an optimized manner. 

 Retrial queueing model with finite double orbits and priority investigated in our 

research work (chapter-10) can be further extended by adding more orbits for 

multi-class customers. 

The retrial queues find applications in almost every sphere of life from daily 

routine activities to various complex real life situations. Most of the queueing 

situations can be modeled as retrial queueing problem and our study can be utilized to 

suggest the means and ways for improving the grade of service in terms of trade-off 

between delay and cost. Keeping this in view, cost optimization Markov models to 

study the performance analysis of retrial queues are developed. It is hoped that the 

investigations presented in the present thesis may be helpful in upgrading the many 

existing queueing systems with retrials. The research work done provides valuable 

insight to the system managers and decision makers for the quantitative assessment of 

the performance of the concerned systems. The performance measures obtained may 

be helpful to the system designers and decision makers in improving the efficiency of 

the systems. The study done will be of great importance not only from theoretical 

point of view but will strongly reflect the practical and managerial implementation.  
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