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Abstract

The concept of ”smart” or intelligent materials, systems and structures has been

around for many years. A great deal of progress has been made recently in the

development of structures that continuously and actively monitor and optimize

themselves and their performance through emulating biological systems with their

adaptive capabilities and integrated designs.

Piezoelectric materials are the most widely used smart materials as sensors/actuators

and transducers in smart structures, automotives, aerospace, and other industries

to measure vibration and shock. These materials have some unique properties and

functions such as improved dynamic response, high sensitivity to weak hydrostatic

waves, damage resistance and control, which can be used to tailor or tune the overall

performance of a smart structural system.

However, defects (e.g. voids, inclusions, faults and cracks) have the disadvan-

tages because they often induce the failure of materials and structures. Failure phe-

nomenon naturally arises from their inherent brittle characteristics in piezoelectric

materials. Consequently, a better understanding of cracking behavior of piezoelec-

tric materials may provide some fundamental knowledge to improve the performance

of piezoelectric devices.

To study their electromechanical behaviors, suitable mathematical modeling be-

comes important. Since the expanded Stroh formalism for piezoelectric materials

preserves most essential features of Stroh formalism, it becomes a popular tool for

the study of piezoelectric anisotropic elasticity.

In this thesis, the Stroh formalism and complex variable technique are applied

for the mathematical modeling of crack problems in 2D infinite piezoelectric plate.

The effect of permittivity of crack gap media is observed for two equal collinear
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cracks cuts in an infinite piezoelectric plate under applied electromechanical loading.

For this numerical case study is also presented on various fracture parameters such

as intensity factors and energy release rate.

A strip-saturation model is proposed for an infinite piezoelectric plate weakened

by two equal collinear cracks. The saturation zones developed are arrested by dis-

tributing over them the cohesive saturation limit electric displacement. A qualitative

analysis is carried out to find the behavior of load required to close the saturation

zones.

A strip-saturation model with coalesced interior saturation zones for a piezoelec-

tric plate is proposed. The other rims of two saturation zones, each developed at

the remaining tip of the two cracks, and the coalesced saturation zone are subjected

to saturation limit electric displacement to arrest crack opening.

A strip-electro-mechanical yield model is proposed for an infinite piezoelectric

plate weakened by two equal collinear cracks. Developed mechanical and electric

strip zones are arrested by prescribing over their rims uniform, normal, cohesive yield

point stress and saturation limit electric displacement. Three different situations are

investigated when developed electrical saturation zone is bigger/smaller or equal to

the developed mechanical yield zone. It has been found that for all the three cases

the energy release rate is higher at the inner tip as compare to that at outer tip.

This is because of the mutual influences of two cracks when they are closely located.

The effect of permittivity of crack gap media is observed for a strip-electro-

mechanical yield model for an infinite piezoelectric plate weakened by two equal

collinear cracks. Developed mechanical and electric strip zones are arrested by

prescribing over their rims uniform, normal, cohesive yield point stress and satu-

ration limit electric displacement. Three different situations are investigated when

developed electrical saturation zone is bigger/smaller or equal to the developed me-

chanical yield zone. It is observed that opening of cracks is maximum for case when

developed zones are equal and little less for the case when saturation zone is smaller

and least for the case when saturation zone is biggest.

The effect of change in poling direction on a strip-electro-mechanical yield model

is observed for an infinite piezoelectric plate weakened by two equal collinear cracks

iv



with semi-permeable crack face electric boundary conditions prevailing on crack

faces. The study shows that poling direction perpendicular to crack length opens

the crack maximum. And when poling direction axis moved towards the length of

the crack, the crack opening is reduced. Consequently the poling direction may also

assist in crack arrest.

v



vi



Table of Contents

Acknowledgements i

Abstract iii

Table of Contents vii

List of Figures xiii

List of Tables xix

Nomenclature and Acronyms xxi

List of Publications xxv

1 Introduction to Smart Materials and Fracture Mechanics 1

1.1 Smart Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Modes of Crack Deformation . . . . . . . . . . . . . . . . . . . 9

1.2.3 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Different Fracture Criterion . . . . . . . . . . . . . . . . . . . 11

1.2.4.1 Energy release rate (ERR), G . . . . . . . . . . . . . 12

1.2.4.2 Stress intensity factor (SIF) . . . . . . . . . . . . . . 12

1.2.4.3 J-integral . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4.4 Crack opening displacement (COD) . . . . . . . . . . 13

1.2.4.5 Crack opening potential drop (COP) . . . . . . . . . 13

1.2.5 Crack Arrest Model . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



1.2.5.1 Strip-yield model . . . . . . . . . . . . . . . . . . . . 14

1.2.5.2 Strip-saturation Model . . . . . . . . . . . . . . . . . 15

2 Fundamentals of Piezoelectric Ceramics and an Overview of Devel-

opment 17

2.1 Curie Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Poling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Piezoelectric Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Dielectric constants . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Piezoelectric voltage constant . . . . . . . . . . . . . . . . . . 21

2.4 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Gradient equations . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Equilibrium equations . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Crack Face Boundary Conditions . . . . . . . . . . . . . . . . . . . . 23

2.6 Material Constants for Piezoelectric Ceramics . . . . . . . . . . . . . 24

2.7 Fundamental Formulation and Solution Methodology . . . . . . . . . 25

2.7.1 Complex Representation of Stress . . . . . . . . . . . . . . . . 27

2.7.2 Sectionally Holomorphic Function . . . . . . . . . . . . . . . . 27

2.7.3 Hilbert Problem (Problem of Linear Relationship) . . . . . . . 27

2.7.3.1 Case I: G(t) = 1 . . . . . . . . . . . . . . . . . . . . 28

2.7.3.2 Case II: G(t) = −1 . . . . . . . . . . . . . . . . . . . 29

2.7.4 Problem for Plane cut along Straight Cracks . . . . . . . . . . 30

2.8 Overview of the Subject Development . . . . . . . . . . . . . . . . . . 31

2.9 Objective of the Present Work . . . . . . . . . . . . . . . . . . . . . . 45

3 A Study on Semi-permeable Cracks in a Piezoelectric Plate 49

3.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Mathematical Model of the Problem . . . . . . . . . . . . . . . . . . 51

3.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Crack opening displacement (COD) . . . . . . . . . . . . . . . 53

viii



3.4.2 Crack opening potential drop (COP) . . . . . . . . . . . . . . 53

3.4.3 Stress intensity factor (SIF) . . . . . . . . . . . . . . . . . . . 54

3.4.4 Electric displacement intensity factor (EDIF) . . . . . . . . . 54

3.4.5 Energy release rate (ERR) . . . . . . . . . . . . . . . . . . . . 55

3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Effect of inter-crack distance . . . . . . . . . . . . . . . . . . . 58

3.6.2 Effect of prescribed electric displacement load . . . . . . . . . 62

3.6.3 Effect of prescribed loadings . . . . . . . . . . . . . . . . . . . 64

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Strip-saturation Model for a Piezoelectric Plate 69

4.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Mathematical Model of the Problem . . . . . . . . . . . . . . . . . . 71

4.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Saturation zone size . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Crack opening displacement (COD) . . . . . . . . . . . . . . . 74

4.4.3 Crack opening potential drop (COP) . . . . . . . . . . . . . . 75

4.4.4 Stress intensity factor (SIF) . . . . . . . . . . . . . . . . . . . 76

4.4.5 Energy release rate (ERR) . . . . . . . . . . . . . . . . . . . . 76

4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Strip-saturation Model with Coalesced Interior Zones 85

5.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Mathematical Model of the Problem . . . . . . . . . . . . . . . . . . 86

5.3 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Saturation zone size . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Crack opening displacement (COD) . . . . . . . . . . . . . . . 90

ix



5.4.3 Crack opening potential drop (COP) . . . . . . . . . . . . . . 90

5.4.4 Stress intensity factor (SIF) . . . . . . . . . . . . . . . . . . . 90

5.4.5 Energy release rate (ERR) . . . . . . . . . . . . . . . . . . . . 91

5.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Strip-electro-mechanical Yielding Model for a Piezoelectric Plate 95

6.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Mathematical Model and Solution of the Problem . . . . . . . . . . . 96

6.2.1 Case I: When saturation zones are bigger than developed yield

zones (|b| < |d1| and |a| > |c1|) . . . . . . . . . . . . . . . . . . 96

6.2.1.1 Solution of the Problem . . . . . . . . . . . . . . . . 98

6.2.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1.3 Case I: Results and Discussions . . . . . . . . . . . . 103

6.2.2 Case II: When saturation zones are smaller than developed

yield zones (|c1| > |a| and |b| > |d1|) . . . . . . . . . . . . . . . 107

6.2.2.1 Solution of the Problem . . . . . . . . . . . . . . . . 108

6.2.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2.3 Case II: Results and Discussions . . . . . . . . . . . 111

6.2.3 Case III: When saturation and yield zones are equal (|c1| = |a|

and |b| = |d1|) . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3.1 Solution of the Problem . . . . . . . . . . . . . . . . 115

6.2.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . 116

6.2.3.3 Case III: Results and Discussion . . . . . . . . . . . 118

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Strip-electro-mechanical Yielding Model for Semi-permeable Cracks123

7.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Mathematical Model and Solution of the Problem . . . . . . . . . . . 124

7.2.1 Case I: When saturation zones are bigger than developed yield

zones (|b| < |d1| and |a| > |c1|) . . . . . . . . . . . . . . . . . . 124

7.2.1.1 Solution of the Problem . . . . . . . . . . . . . . . . 126

x



7.2.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1.3 Case I: Results and Discussions . . . . . . . . . . . . 132

7.2.2 Case II: When saturation zones are smaller than developed

yield zones (|c1| > |a| and |b| > |d1|) . . . . . . . . . . . . . . . 135

7.2.2.1 Solution of the Problem . . . . . . . . . . . . . . . . 136

7.2.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . 137

7.2.2.3 Case II: Results and Discussions . . . . . . . . . . . 139

7.2.3 Case III: When saturation and yield zones are equal (|c1| = |a|

and |b| = |d1|) . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.3.1 Solution of the Problem . . . . . . . . . . . . . . . . 143

7.2.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . 144

7.2.3.3 Case III: Results and Discussions . . . . . . . . . . . 146

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 A Study on Influence of Poling Direction for Semi-permeable Strip-

electro-mechanical yield Model 151

8.1 Fundamental Formulation and Solution Methodology . . . . . . . . . 152

8.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3 Mathematical Model and Solution of the Problem . . . . . . . . . . . 154

8.3.1 Solution for Case I: When saturation zones are bigger than

developed yield zones (|b| < |d1| and |a| > |c1|) . . . . . . . . . 155

8.3.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . 157

8.3.1.2 Case I: Results and Discussions . . . . . . . . . . . . 161

8.3.2 Solution for Case II: When saturation zones are smaller than

the developed yield zones (|c1| > |a| and |b| > |d1|) . . . . . . 166

8.3.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . 167

8.3.2.2 Case II: Results and Discussions . . . . . . . . . . . 169

8.3.3 Solution for Case III: When saturation and yield zones are

equal (|c1| = |a| and |b| = |d1|) . . . . . . . . . . . . . . . . . . 174

8.3.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . 175

8.3.3.2 Case III: Results and Discussions . . . . . . . . . . . 177

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xi



Scope of Future Work 183

Bibliography 185

xii



List of Figures

1.1 Electricity generated from force . . . . . . . . . . . . . . . . . . . . . 2

1.2 A stent made by Nitinol wire . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Electrochromic glass . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Chemochromic tape for Hydrogen leak detection . . . . . . . . . . . . 3

1.5 Photochromic glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Pressure sensitive paint on aeroplane model . . . . . . . . . . . . . . 5

1.7 Thermochromic ink . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 Future force warrior infantry combat suite using ER fluid . . . . . . . 6

1.9 MR fluid (a) without magnetic field (b) under magnetic field . . . . 7

1.10 Biomimetic robot of butterfly . . . . . . . . . . . . . . . . . . . . . . 7

1.11 Crack in the wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.12 Modes of crack deformation . . . . . . . . . . . . . . . . . . . . . . . 10

1.13 Bone crack leading to fracture . . . . . . . . . . . . . . . . . . . . . . 10

1.14 Ductile fracture of Copper metal . . . . . . . . . . . . . . . . . . . . 11

1.15 Brittle fracture in Aluminum crank arm . . . . . . . . . . . . . . . . 11

1.16 J-integral around a crack in two-dimensions . . . . . . . . . . . . . . 13

1.17 Dugdale crack arrest model for Mode-I . . . . . . . . . . . . . . . . . 14

1.18 Strip-saturation model for Mode-I . . . . . . . . . . . . . . . . . . . 16

2.1 The direct piezoelectric effect . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The reverse piezoelectric effect . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Tetragonal unit cell of PZT . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Polarizing a piezoelectric ceramic . . . . . . . . . . . . . . . . . . . . 19

2.5 Directions of forces affecting a piezoelectric material . . . . . . . . . . 20

2.6 Different crack-face boundary conditions in piezoelectric ceramics . . 24

xiii



3.1 Schematic representation of the problem . . . . . . . . . . . . . . . . 50

3.2 COD profile over the crack surface for different inter-crack distance . 56

3.3 COD profile over the crack surface for different piezoelectric materials 56

3.4 COP drop over the crack surface for different inter-crack distance . . 57

3.5 COP drop over the crack surface for different piezoelectric materials . 57

3.6 KI versus inter-crack distance for different electric boundary conditions 58

3.7 KI versus inter-crack distance for different piezoelectric ceramics . . . 58

3.8 KIV versus inter-crack distance for different electric boundary condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 KIV versus inter-crack distance for different piezoelectric ceramics . . 60

3.10 GM versus inter-crack distance for different electric boundary conditions 60

3.11 GM versus inter-crack distance for different piezoelectric ceramics . . 61

3.12 GT versus inter-crack distance for different electric boundary conditions 61

3.13 GT versus inter-crack distance for different piezoelectric ceramics . . . 62

3.14 KI versus prescribed electric displacement load for different mechan-

ical load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 KIV versus prescribed electric displacement load for different mechan-

ical load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 GM versus prescribed electric displacement load for different mechan-

ical load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.17 COD profile over the crack surface for different electro-mechanical loads 65

3.18 COP drop over the crack surface for different electro-mechanical loads 65

3.19 KI versus inter-crack distance for different electro-mechanical loads . 66

3.20 KIV versus inter-crack distance for different electro-mechanical loads 66

3.21 GM versus inter-crack distance for different electro-mechanical loads . 66

3.22 GT versus inter-crack distance for different electro-mechanical loads . 67

4.1 Schematic representation of the problem . . . . . . . . . . . . . . . . 70

4.2 Normalized saturation zone length versus electric displacement load

ratio for PZT-4 ceramic . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 COD profile over the crack surface for different piezoelectric ceramics 78

4.4 COP at (a) inner and (b) outer saturation zones for PZT-4 ceramic . 79

xiv



4.5 KI versus inter-crack distance for different piezoelectric ceramics . . . 79

4.6 KI versus electric displacement for different piezoelectric ceramics . . 80

4.7 LERR (J) versus inter-crack distance for different piezoelectric ceramics 81

4.8 KI versus inter-crack distance for different electro-mechanical loads . 82

4.9 LERR (J) versus inter-crack distance for different electro-mechanical

loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 Normalized GERR versus applied electric displacement load for dif-

ferent inter-crack distance and PZT-4 ceramic . . . . . . . . . . . . . 83

5.1 Schematic representation of the problem . . . . . . . . . . . . . . . . 86

5.2 Variations of normalized outer zone length versus D∞2 /Ds for PZT-4

ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Variations of normalized SIF versus a0/c0 for PZT-4 ceramic . . . . . 92

5.4 Variations of normalized SIF versus D∞2 . . . . . . . . . . . . . . . . 93

5.5 Variations of normalized GERR versus Ds . . . . . . . . . . . . . . . 93

6.1 Schematic representation of the configuration of problem for Case I,

when saturation zones are bigger than developed yield zones . . . . . 97

6.2 Normalized saturation zone length versus D∞2 /Ds . . . . . . . . . . . 104

6.3 COD profile at (a) interior and (b) exterior yield zones . . . . . . . . 104

6.4 COD versus D∞2 for different mechanical loads . . . . . . . . . . . . . 105

6.5 COP drop at (a) interior and (b) exterior saturation zones . . . . . . 105

6.6 COP versus D∞2 for different mechanical loads . . . . . . . . . . . . . 106

6.7 ERR versus D∞2 for different mechanical loads . . . . . . . . . . . . . 106

6.8 ERR versus D∞2 for different piezoceramics . . . . . . . . . . . . . . . 107

6.9 Schematic representation of the configuration of problem for Case II,

when saturation zones are smaller than developed yield zones . . . . . 107

6.10 Normalized mechanical zone length versus load ratio σ∞22/σs . . . . . 111

6.11 COP drop over the saturation zones . . . . . . . . . . . . . . . . . . . 112

6.12 COP versus D∞2 for different σ∞22 . . . . . . . . . . . . . . . . . . . . . 112

6.13 Behavior of COD over yield zones . . . . . . . . . . . . . . . . . . . . 113

6.14 COD versus D∞2 for different σ∞22 . . . . . . . . . . . . . . . . . . . . 113

xv



6.15 ERR versus D∞2 for different σ∞22 . . . . . . . . . . . . . . . . . . . . . 114

6.16 ERR versus D∞2 for different piezoceramics . . . . . . . . . . . . . . . 114

6.17 Schematic representation of the configuration of problem for Case III,

when saturation and yield zones are equal . . . . . . . . . . . . . . . 115

6.18 Yield-saturation zone length versus load ratio . . . . . . . . . . . . . 118

6.19 Variation of COD over the inner and outer yield-saturation zone . . . 119

6.20 Variation of COP drop over the inner and outer yield-saturation zone 119

6.21 ERR versus D∞2 for different σ∞22 . . . . . . . . . . . . . . . . . . . . . 120

6.22 ERR versus D∞2 for different piezoceramics . . . . . . . . . . . . . . . 120

7.1 Schematic representation of the configuration of problem for Case I,

when saturation zones are bigger than developed yield zones . . . . . 125

7.2 COD profile over the interior and exterior yield zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 COD versus D∞2 for different mechanical loads . . . . . . . . . . . . . 133

7.4 COP drop over the interior and exterior saturation zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 COP versus D∞2 for different mechanical loads . . . . . . . . . . . . . 134

7.6 ERR versus D∞2 for different mechanical loads . . . . . . . . . . . . . 134

7.7 ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3 . . . . . . . . . . . 135

7.8 Schematic representation of configuration of the problem for Case II,

when saturation zones are smaller than developed yield zones . . . . . 136

7.9 COP drop over the interior and exterior saturation zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 139

7.10 COP versus D∞2 for different mechanical loads . . . . . . . . . . . . . 140

7.11 COD profile over the interior and exterior yield zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 140

7.12 COD versus D∞2 for different mechanical loads . . . . . . . . . . . . . 141

7.13 ERR versus D∞2 for different mechanical loads . . . . . . . . . . . . . 141

7.14 ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3 ceramics . . . . . . 142

7.15 Schematic representation of configuration of the problem for Case III,

when saturation and yield zones are equal . . . . . . . . . . . . . . . 143

xvi



7.16 COD profile over the interior and exterior yield zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 146

7.17 COD versus D∞2 for different mechanical loads . . . . . . . . . . . . . 147

7.18 COP drop over the interior and exterior saturation zones for different

electric boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 147

7.19 COP versus D∞2 for different mechanical loads . . . . . . . . . . . . . 148

7.20 ERR versus D∞2 for different mechanical loads . . . . . . . . . . . . . 148

7.21 ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3 . . . . . . . . . . . 149

8.1 Schematic representation of the configuration of problem for Case I,

when saturation zones are bigger than developed yield zones . . . . . 156

8.2 Variation of COD versus angle of polarization for different σ∞22 . . . . 162

8.3 Variation of COD versus D∞2 for different angle of polarization . . . . 162

8.4 Variation of COD versus angle of polarization for different piezoceramics163

8.5 COP versus θ for different σ∞22 . . . . . . . . . . . . . . . . . . . . . . 163

8.6 COP versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . . 164

8.7 COP versus θ for different piezoceramics . . . . . . . . . . . . . . . . 164

8.8 ERR versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . . 165

8.9 ERR versus θ for different piezoceramics . . . . . . . . . . . . . . . . 165

8.10 Schematic representation of configuration of the problem for Case II,

when saturation zones are smaller than the developed yield zones . . 166

8.11 COD versus θ for different σ∞22 . . . . . . . . . . . . . . . . . . . . . . 170

8.12 COD versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . 170

8.13 COD versus poling angles for different piezoceramics . . . . . . . . . 171

8.14 COP versus θ for different σ∞22 . . . . . . . . . . . . . . . . . . . . . . 171

8.15 COP versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . . 172

8.16 COP versus θ for different piezoceramics . . . . . . . . . . . . . . . . 172

8.17 ERR at inner tip x1 = d versus D∞2 for different θ . . . . . . . . . . . 173

8.18 ERR at outer tip x1 = c versus D∞2 for different θ . . . . . . . . . . . 173

8.19 ERR versus θ for different piezoceramics . . . . . . . . . . . . . . . . 174

8.20 Schematic representation of configuration of the problem for Case III,

when saturation and yield zones are equal . . . . . . . . . . . . . . . 175

xvii



8.21 COD versus θ for different σ∞22 . . . . . . . . . . . . . . . . . . . . . . 178

8.22 COD versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . . 178

8.23 COD versus D∞2 for different piezoceramics . . . . . . . . . . . . . . . 179

8.24 COP versus θ for different σ∞22 . . . . . . . . . . . . . . . . . . . . . . 179

8.25 COP versus D∞2 for different θ . . . . . . . . . . . . . . . . . . . . . . 180

8.26 COP versus D∞2 for different piezoceramics . . . . . . . . . . . . . . . 180

8.27 ERR at inner tip x1 = d versus D∞2 for different θ . . . . . . . . . . . 181

8.28 ERR at outer tip x1 = c versus D∞2 for different θ . . . . . . . . . . . 181

8.29 ERR versus θ for different piezoceramics . . . . . . . . . . . . . . . . 182

xviii



List of Tables

2.1 Material parameters of various piezoelectric ceramics . . . . . . . . . 25

4.1 Components of Irwin’s matrix HR and inverse matrix Λ = [HR]−1 for

different piezoelectric ceramics . . . . . . . . . . . . . . . . . . . . . . 80

xix



xx



Nomenclature and Acronyms

NOMENCLATURE

Symbol Notation

Ci(i = 1, 2) Cracks

Cijks Elastic constants

D Electric flux

Ds Saturation limit electric displacement

Di Electric displacement vector

D∞2 Electric displacement prescribed at infinity

E Modulus of elasticity

Ei Electric field vector

E(k) Complete elliptic integral of second kind

F (z) Holomorphic function

F (k) Complete elliptic integral of first kind

E(ψ, k) Elliptic integral of second kind

F (ψ, k) Elliptic integral of first kind

G Energy release rate

Gc Critical energy release rate

GM Mechanical energy release rate

GT Total energy release rate

HR Irwin’s matrix

J Local energy release rate

Ja Global energy release rate

KI Open mode stress intensity factor

KIV Electric displacement intensity factor

Li(i = 1, 2) Cracks length

N1, N2 Principal stresses

xxi



Pn(z) Polynomial of nth degree in z

Tc Curie temperature

Ti Traction vector

W Strain energy density

Z1(z), Z2(z) Westergaard functions

ao Half crack length

d, c End points of C2

−c, −d End points of C1

eij Piezoelectric coefficient

k Modulus of Jacobian elliptic functions and integrals

ui Mechanical displacement vector

x1, x2 Rectangular co-ordinates

z Complex variable

ACRONYMS

Symbol Notation

COD Crack opening displacement

COP Crack opening potential drop

CTOD Crack tip opening displacement

EDIF Electric displacement intensity factor

ER Electrorhelogical

ERR Energy release rate

GERR Global energy release rate

IFs Field intensity factors

LEFM Linear elastic fracture mechanics

LERR Local energy release rate

MEE Magneto-electro-elastic

MERR Mechanical energy release rate

MR Magnetorheological

PSP Pressure sensitive paint

PZT Lead zirconium titanate

Re Real part of complex quantity

SIF Stress intensity factor

xxii



SMA Shape memory alloys

TERR Total energy release rate

UV Ultraviolet radiation

GREEK SYMBOLS

Symbol Notation

Ψ(z), χ(z) Complex potentials

Λ Inverse of Irwin’s matrix

Λij Components of Irwin’s matrix

Ω(z) Generalized stress function

Ω2(z) Stress function

Ω4(z) Electric displacement function

Γi Saturation zone

Γ′i Yield zone

Υ Continuous curve enclosing crack-tip in a counter

clockwise sense

β Angle between N1 and x1-axis

θ Polarization angle with crack length

εij Mechanical strain tensor

κa Relative permittivity

κij Dielectric permittivity

σ Stress

σc Critical stress

σf Failure stress

σs Yield stress

σij Mechanical stress tensor

σ∞22 Normal stress prescribed at infinity

φ Electric potential

xxiii



xxiv



List of Publications

List of papers published/accepted in International Refereed Journals

1. Bhargava, R. R. and Jangid, K. (2013), Strip-saturation model for piezoelectric

plane weakened by two collinear cracks with coalesced interior zones, Applied

Mathematical Modelling, Vol 37, 4093-4102.

2. Bhargava, R. R. and Jangid, K. (2014), A mathematical strip-saturation model

for piezoelectric plate weakened by two collinear equal cracks, Mathematics and

Mechanics of Solids, Vol 19, 714-725.

3. Bhargava, R. R. and Jangid, K. (2013), Strip electro-mechanical yielding

model for piezoelectric plate cut along two equal collinear cracks, Applied

Mathematical Modelling, Vol 37, 9101-9116.

4. Bhargava, R. R. and Jangid, K. (2013), Strip-electromechanical model solution

for piezoelectric plate cut along two semi-permeable collinear cracks, Archive

of Applied Mechanics, Vol 83, 1469-1491.

5. Bhargava, R. R. and Jangid, K. (2013), A study on influence of poling direction

on piezoelectric plate weakened by two collinear semi-permeable cracks, Acta

Mechanica, Vol 225, 109-129.

6. Bhargava, R. R., Jangid, K. and Verma, P.R. (2013), Two semi-permeable

equal collinear cracks weakening a piezoelectric plate ∼ A study using complex

variable technique, ZAMM-Journal of Applied Mathematics and Mechanics,

Wiley (Accepted).

7. Bhargava, R. R. and Jangid, K. (2014), Closed form solution for two unequal

xxv



collinear semi-permeable straight cracks in a piezoelectric media, Archive of

Applied Mechanics, Vol 84, 833-849.

8. Bhargava, R. R. and Jangid, K. (2014), Strip-coalesced interior zone model for

two unequal collinear cracks weakening a piezoelectric media, Applied Mathe-

matics and Mechanics (English Edition), Vol 35, 1249-1260.

Research papers presented/published in International Conferences

1. Bhargava, R. R., Jangid, K. (2012), Strip-electromechanical model for two

collinear cracks in piezoelectric plate, ICCMS-2012, International Congress

on Computational Mechanics and Simulation, Hyderabad, India.

2. Bhargava, R. R., Jangid, K. (2013), A study on influence of changing in poling

direction on piezoelectric plate cut along two unequal cracks, ECM-2013, The

Second International Conference on Engineering and Computational Mathe-

matics, Hong Kong.

3. Bhargava, R. R., Jangid, K. (2014), Effect of change in poling direction for two

equal collinear semi-permeable cracks in a piezoelectric media, USNCTAM-

2014, 17th U.S. National Congress on Theoretical and Applied Mechanics,

Michigan, USA.

xxvi



Chapter 1

Introduction to Smart Materials
and Fracture Mechanics

1.1 Smart Materials

Smart materials are materials having extra ordinary characteristics in comparison

to the traditional materials. Such materials are defined as materials whose proper-

ties are altered inevitably in response to external stimuli viz. stress, temperature,

moisture, pH and electric field etc.

There are many group of smart materials, each offer different properties that can

be changed. Smart materials have widespread applications in materials science, sen-

sors/actuator, microelectronics, medical treatment, safety engineering and military

engineering etc. Some of them are described below.

(i). Piezoelectric Materials

The materials which generate voltage when mechanical stress is applied are known

as piezoelectric materials and the phenomenon is known as direct piezoelectric ef-

fect. The phenomenon of direct piezoelectric effect is reversible i.e. when voltage

is applied, then deformation takes place. This reverse effect is known as converse

piezoelectric effect or electrostriction. The piezoelectric materials are widely used as

sensors, transducers and actutators. Piezoelectric generator as an example is shown

in Fig. 1.1, which generates electricity from force. This electricity can be stored

and used to power street lights, traffic signals etc.

1



2

Figure 1.1: Electricity generated from force

(ii). Shape Memory Alloys (SMA)

A shape memory alloy (SMA) possesess the property to ”remember” its original

shape and that when deformed returns to its pre-deformed shape when heated above

their transition temperature. These materials show two unique properties: supere-

lasticity and shape memory effect, which ordinary metals and alloys do not have.

Superelasticity allows SMAs to undergo large deformation upon loading at high

temperatures and to recover their original shape when unloaded. Shape memory

effect is the ability to maintain a deformed shape up to heat induced recovery of the

original shape.

Figure 1.2: A stent made by Nitinol wire

Shape memory have found a large number of applications in aerospace, medicine
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and the leisure industry. The shape memory alloys are Ni-Ti, CU-Zn-S, Cu-Al-Ni,

Cu-Zn etc.

Fig. 1.2 shows the medical use of Nitinol (Ni-Ti) stents in which rings of SMA

wire hold open a polymer tube to open up a blocked vein blood filter.

(iii). Electrochromics

Figure 1.3: Electrochromic glass

The materials which change color when electric voltage is applied are known as

electrochromic materials. As an example of these materials, electrochromic glass is

shown in Fig. 1.3.

(iv). Chemochromics

Figure 1.4: Chemochromic tape for Hydrogen leak detection
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The materials which change color when exposed to specific environment are known

as chemochromics materials.

As an example chemochromic tape is shown in Fig. 1.4. Chemochromic tape is

conveniently used for leak detection of Hydrogen at unions, valves, or outlets.

(v). Photochromics

Figure 1.5: Photochromic glasses

The materials which change color when exposed to light are known as photochromic

materials.

Example of photochromic glasses is shown in Fig. 1.5, which get darken on

exposure to UV radiation. Once the UV is removed, the glasses will gradually

return to their clear state as could be noted from Figs. 1.5(a, b, c).

(vi). Mechanochromics

The materials which change color when exposed to stresses and/or strains are known

as mechanochromic materials. Pressure-sensitive paint (PSP) is an example of these

materials. PSP is a method for measuring local oxygen concentration, usually in

aerodynamic settings. PSP is paint-like coating as shown in Fig. 1.6, which fluo-

resces under a specific illumination wavelength in differing intensities depending on

the local Oxygen concentration being applied to its surface.
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Figure 1.6: Pressure sensitive paint on aeroplane model

(vii). Thermochromics

Figure 1.7: Thermochromic ink

The materials which change color due to temperature change are called thermochromic

materials.

Thermochromic ink as an example of these materials is shown in Fig. 1.7. When

the wall papers impregnated with thermochromic ink is touched by a person the

wallpaper changes color due to body heat. It changes back to the original color

after it is no longer touched.
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(viii). Electrorheological (ER)

Figure 1.8: Future force warrior infantry combat suite using ER fluid

The materials which change stiffness/viscosity when electric voltage is applied are

known as electrorheological materials.

Future Force Warrior Infantry Combat Suite made of ER fluids is shown in

Fig. 1.8. US army’s made Future Force Warrior Infantry Combat Suite to create

bulletproof vests using an ER fluid. ER fluid has the ability to soak the fluid into

cloth. Thus creates the potential for a very light vest that can change from a normal

cloth into a hard covering almost instantaneously.

(ix). Magnetorheological (MR)

The materials which change stiffness/viscosity when exposed to magnetic field are

known as magnetorheological materials.

As shown in Fig. 1.9, the mixture remains liquid (a) until a magnet is brought

close to it. The material reverts back to its original liquid state once the magnetic

field is removed.
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Figure 1.9: MR fluid (a) without magnetic field (b) under magnetic field

(x). Biomimetics

Figure 1.10: Biomimetic robot of butterfly

Biomimetic is the human-made processes, substances, devices that imitate nature.

The art and science of designing and building biomimetic apparatus is called biomimet-

ics.

The goal of biomimetic is to develop a new class of biological inspired robots to

perform in unstructured environment, able to respond to change in environmental

factors. Shown above is a biomimetic robot mimicking the butterfly movements,

Fig. 1.10(a) shows the biomimetic robot of butterfly while Fig. 1.10(b) shows the

real butterfly.
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1.2 Fracture Mechanics

Fracture mechanics is the field of solid mechanics concerned with the study of

mechanical behavior of cracked materials subjected to the applied load. It uses

methods of analytical mechanics to calculate the driving force for crack propagation

and those of experimental mechanics to characterize the resistance of materials to

crack extension.

In modern materials science, fracture mechanics is an importnant tool in im-

proving the mechanical performance of mechanical components.

Griffith [48] proposed the first fracture problem in 1920. He proposed an energy

balance approach for brittle materials and found that crack will propagate if the

potential energy of the system is decreased with crack propagation. Griffith’s model

correctly gave the relationship between srtength and flaw size in glass. Griffith

approach only applied to ideally brittle solids. A modification to Griffith’s model

that made it applicable to metals did not came until 1948.

The first milestone as a modification to Griffith’s model came for ductile mate-

rials in 1950s, when Irwin [55, 56] included the energy dissipation by local plastic

flow, after studying the work of Inglis [54], Griffith [48]. Orowan [91] independently

proposed a similar modification to the Griffith theory. Later, Irwin [57] replaced the

concept of the energy release rate by the stress intensity factor.

After the fundamentals of linear elastic fracture mechanics (LEFM) were estab-

lished around 1960, researchers and scientists turned their attention to the crack

tip plasticity. Irwin [58], Dugdale [24], Barenblatt [1] and Wells [129] developed

analyses to correct for yielding at the crack tip.

Wells [129] proposed the crack tip opening displacement (CTOD) as an alter-

native fracture criterion when significant plasticity precedes failure. In 1968, Rice

[105] modeled the plastic deformation as nonlinear elastic behavior and extended

the method of energy release rate to nonlinear materials. He showed that the en-

ergy release rate can be expressed as a path-independent line integral, called the

J-integral.

Thereafter, many experiments were conducted to verify the accuracy of the mod-

els of fracture mechanics [44, 62, 86–88, 96, 97, 100, 113].
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1.2.1 Crack

A crack may be defined as an inner material surface split into two unconnected faces.

Fig. 1.11 shows crack occurring in the wall.

Figure 1.11: Crack in the wall

1.2.2 Modes of Crack Deformation

Crack opening is categorised in three different modes as follows:

Mode I (Opening mode)

A tensile stress applied normal to the plane of the crack which opens the crack rims

perpendicular to each other is called Mode I or Opening mode.

Mode II (Sliding mode)

A shear stress acting parallel to the plane of the crack and perpendicular to the

crack front is applied which slides the crack rims on each other. This is called Mode

II or Sliding mode.

Mode III (Tearing mode)

A shear stress acting parallel to the plane of the crack and parallel to the crack front

opens the crack rims out of plane sliding is known as Mode III or Tearing mode.
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Mode-I
opening mode

Mode-II
sliding mode

Mode-III
tearing mode

Figure 1.12: Modes of crack deformation

1.2.3 Fracture

Figure 1.13: Bone crack leading to fracture

Separation of material in two or more parts under the action of stresses is known as

fracture. Fig. 1.13 shows the fracture in bone.

Fractures are categoried in following two categories:

Ductile Fracture

Ductile fracture is defined as the fracture which takes place by a slow propagation

of crack with considerable amount of plastic deformation. Ductile fractures are
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associated with overload of the structure or large discontinuities. Fig. 1.14 shows

the ductile fracture of Copper metal.

Figure 1.14: Ductile fracture of Copper metal

Brittle Fracture

Brittle fracture takes place by a rapid propagation of crack with low energy release

and without significant plastic deformation. Fig. 1.15 depicts brittle fracture in

Aluminum crank arm.

Figure 1.15: Brittle fracture in Aluminum crank arm

1.2.4 Different Fracture Criterion

There are various approaches for fracture analysis for fracture parameters and are

explained below:
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1.2.4.1 Energy release rate (ERR), G

The energy release rate, G, is the rate of change in potential energy with crack area

for a linear elastic material. At the moment of fracture, G = Gcr, the critical energy

release rate, which is a measure of fracture toughness.

For a crack of length 2a in an infinite plate subjected to a remote tensile stress

σ the energy release rate is given by

G =
πσ2a

E
. (1.2.1)

At fracture, G = Gcr, so the critical energy release rate for the fracture is

Gcr =
πσ2

fac

E
, (1.2.2)

where σf is failure stress and ac is critical crack size at which crack propagates.

1.2.4.2 Stress intensity factor (SIF)

In an elastic material, near the tip of the crack, each stress component is proportional

to a constant K. And if this constant is known then the state of stress at the tip

of crack can be determined. This constant is known as stress intensity factor. The

magnitude of K depends on sample geometry, the size and location of the crack.

For a crack of length 2a in an infinite plate subjected to a uniform tensile stress

σ, the stress intensity is given by

KI = σ
√
πa. (1.2.3)

At the moment of fracture, KI = Kc, which implies Kc = σf
√
πac.

Comparing Equations (1.2.1 and 1.2.3), one can obtain the relationship

G =
K2
I

E
. (1.2.4)

Thus both the above approaches are equivalent for linear elastic materials.

1.2.4.3 J-integral

J-integral is applicable to elastic, non-linear elastic and materials exhibiting elastic-

plastic behavior near the crack-tip. J-integral was first applied to fracture mechanics
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by Rice [105] in 1968 for plane problems. It is defined as

J =

∫
Υ

(
Wdx2 − Ti

∂ui
∂xi

ds

)
, (1.2.5)

where, Υ is an arbitrary contour around the tip of the crack. Ti = σijnj is the

traction vector, n is the unit vector normal to Υ; σ, ε, and u are the stress, strain,

and displacement field, respectively. W is the strain energy density and defiened as

W =

∫
σijdεij. (1.2.6)

crack
crack tip

 path

Figure 1.16: J-integral around a crack in two-dimensions

Fig. 1.16 shows J-integral contour around a crack tip for two-dimensional case.

1.2.4.4 Crack opening displacement (COD)

Crack opening displacement is the relative crack face opening between the two sur-

faces of the crack. Crack opening displacement can be used as a measure of the

toughness of the materials under mode-I deformation.

1.2.4.5 Crack opening potential drop (COP)

Crack opening potential drop is the electric potential difference between the two

surfaces of the crack. Same as COD, COP is used to measure the fracture and

fatigue of materials.
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1.2.5 Crack Arrest Model

For better understanding of material failure behavior in both macroscopic and mi-

croscopic sense, analysis at the crack tip is necessary. In case of ductile materials

crack initiation, stable crack growth and the instability are the three main stages

of fracture. While, nucleation, growth and coalescence of microcrack is involved in

the case of brittle materials. During large deformation Irwin’s approach of crack tip

singularity is not useful as it is concerned with linear elastic fracture mechanics. To

present the plastic deformation at the crack tip, Dugdale developed a macroscopic

plasticity model for ductile materials in 1960.

1.2.5.1 Strip-yield model

2 a

2 ( )a 

s


s


2 2




2 2




1
x

2
x

Figure 1.17: Dugdale crack arrest model for Mode-I

The strip-yield model is given by Dugdale [24] for mode-I fracture mechanics problem

of an infinite plate containing straight cut with a far field uniform tensile stress.

The rationale behind the Dugdale model is that the infinite stress of the purely

elastic solution is physically unrealistic. The stresses should not become infinite,

as observed empirically also. The only way to counter the stress generated at the

crack tips by the remote stress at infinity is to generate opposing stresses with the

same order of singularity and magnitude, thus arresting the collapse of structure

instantaneously.



15

For the above problem shown in Fig. 1.17, the Westergaard function Z(z) is

obtained by superposition of Westergaard functions Z1(z) and Z2(z) as described

below:

(i) For a crack of length 2(a + ρ) in an infinite plate subjected to a uniform stress

σ∞22 at infinite boundary, the Westergaard function Z1(z) is given (taken from Broek

[15]) by

Z1(z) =
σ∞22z√

z2 − (a+ ρ)2
. (1.2.7)

(ii) For a crack of length 2(a + ρ) in an infinite plate subjected to a uniform stress

σs at yield zone ρ, the Westergaard function Z2(z) is given by

Z2(z) =
2σs
π

{
σ∞22z√

z2 − (a+ ρ)2
cos−1

(
a

a+ ρ

)
− cot−1

(
a

z

√
z2 − (a+ ρ)2

(a+ ρ)2 − a2

)}
.

(1.2.8)

The Westergaard function Z(z) is the superimposition of Z1(z), Z2(z) and given by

Z(z) = Z1(z)− Z2(z). (1.2.9)

On making zero the singular term, according to Dugdale’s [24] hypothesis of stresses

remain finite at every point of the body, involved in Westergaard function Z(z), the

length of plastic zone is obtained using

a+ ρ

a
= sec

(
πσ∞22

2σs

)
. (1.2.10)

1.2.5.2 Strip-saturation Model

Motivated by Dugdale’s [24] model, Gao et al. [43] developed a strip-saturation

model to understand the effect of electric saturation in piezoelectric ceramics as

a class of mechanically brittle and electrically ductile solids. In this model the

electrical saturation accounted, was based on a generalization of the Dugdale [24]

approach. The concept of local and global energy release rates were defined and

discussed. It was found that the local energy release rate gave predications in broad

agreement with experimental observations.



16

2 a

2 ( )a 

s
D

2 2




2 2




1
x

2
x

s
D

2
D



Figure 1.18: Strip-saturation model for Mode-I

For the above problem shown in Fig. 1.18, the desired complex potential function

Ω4(z) is given (taken from Wang [126]) by

Ω4(z) =− Λ42

Λ44

Ω2(z) +
D∞2
2Λ44

{
z√

z2 − (a+ ρ)2
− 1

}

+
Ds

πΛ44

{
cot−1

(
a

z

√
z2 − (a+ ρ)2

(a+ ρ)2 − a2

)
− z√

z2 − (a+ ρ)2
cos−1

(
a

a+ ρ

)}
(1.2.11)

where

Ω2(z) =
1

2

σ∞22Λ44 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

{
z√

z2 − a2
− 1

}
, and Λ22, Λ24, Λ42, Λ44 are the

components of inverse of Irwin’s matrix HR. The Irwin’s matrix HR depends only

on the material properties and defined in Chapter 3.

And saturation zone length is determined from

a+ ρ

a
= sec

(
πD∞2
2Ds

)
. (1.2.12)



Chapter 2

Fundamentals of Piezoelectric
Ceramics and an Overview of
Development

Piezoelectricity stems from the Greek word ”piezo” for pressure. It follows that

a piezoelectric material develops a potential across its boundaries when subjected to

a mechanical stress, and vice versa, when an electric field is applied to the material,

a mechanical deformation ensues.

Piezoelectricity is a linear effect that is related to the microscopic structure of the

solid. Some ceramic materials become electrically polarized when they are strained,

this linear and reversible phenomenon is referred to as the direct piezoelectric effect

and shown in Fig. 2.1. The direct piezoelectric effect is normally accompanied by

the converse piezoelectric effect shown in Fig. 2.2 where a solid becomes strained

when placed in an electric field. The microscopic origin of the piezoelectric effect

is the displacement of ionic charges within a crystal structure. In the absence of

external strain, the charge distribution within the crystal is symmetric and the net

electric dipole moment is zero. However when an external stress is applied, the

charges are displaced and the charge distribution is no longer symmetric. A net

polarization develops and results in an internal electric field.

Piezoelectricity is a property possessed by a group of materials, discovered in

1880 by Pierre and Jacques Curie. In 1881, the term ”piezoelectricity” was first

suggested by W. Hankel, and the converse effect was deduced by Lipmann from

thermodynamics principles.

17
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Figure 2.1: The direct piezoelectric effect

Figure 2.2: The reverse piezoelectric effect

2.1 Curie Temperature

Figure 2.3: Tetragonal unit cell of PZT
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The Curie temperature (Tc) in piezoelectric materials describes the temperature

above which crystal structure changes from non-symmetrical (piezoelectric) to a

symmetrical (non piezoelectric) form, expressed in degree Celsius. Hence, material

loses its spontaneous polarization and piezoelectric characteristics.

Fig. 2.3 shows tetragonal unit cell of PZT above and below Curie tempera-

ture. Above the Curie temperature, the crystals are centrosymmetric but below this

temperature the crystals are non-centrosymmetric.

2.2 Poling

Dipoles in the piezoelectric materials are permanently aligned with another for a

useful macroscopic response through a process called poling. In poling process,

material is heated above Curie temperature and inducing a DC voltage across the

material. The direction of the field is the polarization direction, and dipoles shift

into alignment with it. The material is then cooled below its Curie temperature

while the poling field is maintained, with the result that alignment of the dipoles is

permanently fixed. Material is now said to be poled.

unpoled piezoelectric ceramic during poling  after poling 

Figure 2.4: Polarizing a piezoelectric ceramic

When poled ceramic is maintained below Curie temperature and subjected to

electric field than dipoles respond collectively to produce a macroscopic expansion
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along the poling axis and contraction perpendicular to it. The development of pol-

ing process in which randomly oriented crystal axes are suitably aligned by the

application of a strong electric field (smaller than one used in poling) at elevated

temperature give rise to better and stable piezoceramics. Fig. 2.4 shows the direc-

tion of dipoles during polarizing process in piezoelectric ceramic.

For example, hard lead zirconium titanate (PZT) have Curie temperature above

3000C and are not easily poled except at high temperatures. While soft PZT have

Curie temperature below 2000C and are readily poled or depoled at room tempera-

ture with strong electric fields.

2.3 Piezoelectric Constants

Piezoelectric ceramic being anisotropic, physical constants (elasticity, permittivity,

etc.) relate to both the direction of the applied mechanical or electric loads and the

direction perpendicular to the applied loads. Consequently, each constant generally

has two subscripts that indicate the direction of the related quantities.

Figure 2.5: Directions of forces affecting a piezoelectric material

The direction of positive polarization is usually made to coincide with z-axis of a

right handed rectangular system of x, y and z axes (Fig. 2.5). Direction x, y or z

is represented by subscript 1, 2 or 3, respectively, and shear about one of these axes

is represented by subscript 4, 5 or 6, respectively. The various constants may be

written with subscript referring to these.
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2.3.1 Dielectric constants

The permittivity or dielectric constants, κij , for a piezoelectric ceramic material is

the dielectric displacement per unit electric field. The first subscript indicate the

direction of dielectric displacement; the second is the direction of electric field.

• κ11 permittivity for dielectric displacement and electric field in direction 1.

• κ33 permittivity for dielectric displacement and electric field in direction 3.

• κ13 permittivity for dielectric displacement in direction 1 and electric field in

direction 3.

2.3.2 Piezoelectric voltage constant

The piezoelectric voltage constant, eij, is the electric field generated by a piezo-

electric material per unit of mechanical stress applied to it. Alternatively, it is the

mechanical strain experienced by the material per unit electric displacement applied

to it. The first subscript refers to the direction of the electric field generated in the

material or to the applied electric displacement, the second refers respectively to the

direction of the applied stress or to the direction of the induced strain.

• e33 denotes induced electric field in direction 3 per unit stress applied in direc-

tion 3 or induced strain in direction 3 per unit electric displacement applied

in direction 3.

• e31 denotes induced electric field in direction 3 per unit stress applied in direc-

tion 1 or induced strain in direction 1 per unit electric displacement applied

in direction 3.

• e15 denotes induced electrical field in direction 1 per unit shear stress applied

about direction 2 or induced shear strain about direction 2 per unit electric

displacement applied in direction 1.

2.4 Fundamental Equations

The basic fundamental equations for piezoelectric ceramic are given below.
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2.4.1 Constitutive equations

For transversely isotropic piezoelectric materials, constitutive equations are fully

combined by electrical and mechanical material properties as

σij = Cijksεks − esijEs, (2.4.1)

Di = eiksεks + κisEs. (2.4.2)

Generally, two-index notations for elastic and piezoelectric constants are considered

by replacing ij by p and ks by q i.e. Cijks = Cpq and eiks = eiq, where p, q assumes

the values 1 to 6 according to following replacements 11 → 1, 22 → 2, 33 → 3, 23

or 32→ 4, 13 or 31→ 5, 12 or 21→ 6.

2.4.2 Gradient equations

(i) Strain-displacement relations are given as

εij =
1

2
(ui,j + uj,i) . (2.4.3)

(ii) Relation between electric field and electric potential may be written as

Ei = −φ,i. (2.4.4)

2.4.3 Equilibrium equations

(i) Stress equilibrium equations in absence of body force may be written as

σij,j = 0. (2.4.5)

(ii) Electric displacement equilibrium equation in absence of charge may be written

as

Di,i = 0. (2.4.6)

The constitutive equations for a poled transversely isotropic piezoelectric ceramic

with x3 in the poling direction may be written as
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

σxx

σyy

σzz

σyz

σxz

σxy


=



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66





εxx

εyy

εzz

εyz

εxz

εxy


−



0 0 e31

0 0 e31

0 0 e33

0 e15 0

e15 0 0

0 0 0




Ex

Ey

Ez

 ,

(2.4.7)


Dx

Dy

Dz

 =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0





εxx

εyy

εzz

εyz

εxz

εxy


+


κ11 0 0

0 κ11 0

0 0 κ33




Ex

Ey

Ez

 ,

(2.4.8)

where c66 = (c11 − c12)/2.

2.5 Crack Face Boundary Conditions

The boundary conditions on crack face are categorized as impermeable, permeable

and semi-permeable. These crack face boundary conditions may be represented

mathematically as

(i) Impermeable boundary conditions

Impermeable crack-face boundary condition was proposed by Deeg [23] may be

expressed as,

Dn(x, 0+) = Dn(x, 0−) = 0. (2.5.1)

Here the superscripts + and − denote the value of function at the top and bottom

crack faces.

(ii) Permeable boundary conditions

Permeable boundary condition was proposed by Parton [99] and mathematically
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be written as,

φ(x, 0+) = φ(x, 0−), Dn(x, 0+) = Dn(x, 0−). (2.5.2)

(iii) Semi-permeable boundary conditions

Semi-permeable boundary conditions proposed by Hao and Shen [50] for piezoelec-

tric ceramics are more realistic boundary conditions and may be given as

Dn(x, 0+) = Dn(x, 0−), Dn(x, 0+)[u(x, 0+)− u(x, 0−)] = −κa[φ(x, 0+)− φ(x, 0−)].

(2.5.3)

Semi-permeable boundary conditions can be reduced into impermeable when κa = 0,

and to permeable when the jump in mechanical displacement vanishes. The pictorial

representation of these boundary conditions is depicted in Fig. 2.6.

Figure 2.6: Different crack-face boundary conditions in piezoelectric ceramics

2.6 Material Constants for Piezoelectric Ceram-

ics

Material constants for various piezoelectric ceramics considered for the analysis in

the thesis is taken from Ou and Chen [92] and tabulated in Table 2.1.
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Table 2.1: Material parameters of various piezoelectric ceramics

Material constants PZT-5H PZT-4 PZT-6B PZT-7A BaTiO3

c11(1010N/m2) 12.6 13.9 16.8 14.8 15

c12(1010N/m2) 7.95 7.78 6.00 7.62 6.60

c13(1010N/m2) 8.41 7.43 6.00 7.42 6.60

c33(1010N/m2) 11.7 11.3 16.3 13.1 14.6

c44(1010N/m2) 2.30 2.56 2.71 2.54 4.4

e13(C/m2) -6.50 -6.98 -0.90 -2.10 -4.34

e33(C/m2) 23.3 13.8 7.10 9.50 17.5

e15(C/m2) 17.44 13.4 4.60 9.70 11.4

κ11[10−10C/(V.m)] 150.3 60.0 36.0 81.1 98.7

κ33[10−10C/(V.m)] 130 54.7 34.0 73.5 112

2.7 Fundamental Formulation and Solution Method-

ology

The methodology presented here is recapitulated from Zhang and Gao [138] for the

self-sufficiency of the thesis.

For a two-dimensional problems all the field variables depend on x1 and x2.

Therefore, we introduced the generalized displacement vector, u, from Barnett and

Lothe [2] as

u = [u1, u2, u3, φ]T = af(x1 + px2), (2.7.1)

where f(x1 +px2) is an analytic function, p is a complex number and a is a constant

four element column vector. Equations (2.4.1 to 2.4.6) satisfy Equation (2.7.1) for

an arbitrary function f(x1 + px2) if

[W + p(R + RT ) + p2Q]a = 0, (2.7.2)

which has non-trivial solution only if

|W + p(R + RT ) + p2Q| = 0. (2.7.3)
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The matrices W, R and Q are given by

W =

[
ci1k1 e11i

eT11i −κ11

]
, R =

[
ci1k2 e21i

eT12i −κ12

]
, Q =

[
ci2k2 e22i

eT22i −κ22

]
, i, k = 1, 2, 3.

(2.7.4)

Equation (2.7.3) has eight roots which are denoted by pα and pα (α = 1, 2, 3, 4). The

conditions of positive definiteness of the strain energy and electrical energy densities

give that pα is not real. To determine pα the following standard eigen-equations are

solved

Nζ = pζ, (2.7.5)

where, N =

(
N1 N2

N3 NT
1

)
, ζ =

(
a

b

)
, N1 = −Q−1RT , N2 = Q−1 = NT

2 ,

N3 = RQ−1RT −W = NT
3 .

According to Stroh formalism [117] the general solution of Equations (2.4.1 to 2.4.6)

may be given as

u,1 = AF(z) + AF(z), (2.7.6)

Φ,1 = BF(z) + BF(z), (2.7.7)

where, A = (a1, a2, a3, a4), B = (b1,b2,b3,b4), F(z) = df(z)
dz

, zα = x1 + pαx2,

f(zα) = [f1(z1), f2(z2), f3(z3), f4(z4)]T .

The column vector of matrix B = (b1,b2,b3,b4) is related to the column vector of

matrix A = (a1, a2, a3, a4) in the following form

bk = (RT + pkQ)ak, k = 1, 2, 3, 4.

and Φ is the generalized stress function such that

σ2 = [σ2j, D2]T = Φ,1, σ1 = [σ1j, D1]T = −Φ,2. (2.7.8)

The problem is completely solved if we know the values of Φ and u. To find the values

of Φ and u a complex variable formulation for crack problems are recapitulated

below.
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2.7.1 Complex Representation of Stress

As is well-known the stress component, σ22, may be expressed in terms of two

complex potentials Ψ(z) and χ(z) as

σ22 = Ψ(z) + χ(z)− (z − z)Ψ′(z), (2.7.9)

where bar over the function represents their complex conjugate.

Crack problems discussed in the thesis are mathematically modeled and reduce to

the Hilbert problems and methodology to solve these Hilbert problems is discussed in

details below. Consequently the next sections are devoted to the concepts required

for Hilbert problem.

2.7.2 Sectionally Holomorphic Function

Let S denote the plane cut along L(=
n⋃
i=1

Li), where Li are simple non-intersecting

arcs in complex z-plane. The end points of Li, if any, are denoted by ai and bi(i =

1, 2....n), respectively.

The function F (z) defined on S, except on L, is said to be sectionally holomor-

phic, if it satisfies the following conditions:

(i) The function F (z) is holomorphic everywhere in S.

(ii) The function F (z) is continuous from the left and from the right at all points

on L, other than the end points ak, bk of Lk(k = 1, 2...n).

(iii) Near the end points ak and bk,

|F (z)| < A
|z−d|µ , 0 ≤ µ < 1,

where d is any one of the ends ak, bk and µ is a positive constant satisfying

above stated conditions.

2.7.3 Hilbert Problem (Problem of Linear Relationship)

Statement: To find the sectionally holomorphic function F (z), with line of disconti-

nuity L, the boundary values of which from the left F+(t) and from the right F−(t)

satisfy the condition

F+(t) = G(t)F−(t) + f(t), on L, (2.7.10)
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except at the end points, G(t) and f(t) are the known functions on L and G(t) 6= 0,

everywhere on L.

If f(t) = 0, everywhere on L the problem is called homogeneous Hilbert problem.

From the point of view of this thesis the cases (I) G(t) = 1 and (II) G(t) = −1 are

important and solutions for these cases are described below.

2.7.3.1 Case I: G(t) = 1

The Hilbert problem described above in this case may be stated as follows: find the

sectionally holomorphic function F (z), with line of discontinuity L, the boundary

values of which from the left and from the right satisfy the condition

F+(t)− F−(t) = f(t), on L, (2.7.11)

except at the end points and f(t) is the known function on L.

The solution of Equation (2.7.11) may be written using Cauchy’s Integral formula

and Liouville’s theorem as

F (z) =
1

2πi

∫
L

f(t)

t− z
dt+ C, (2.7.12)

where C is an arbitrary constant.

If it is assumed that the sectionally holomorphic function F (z), to be determined,

may have pole of order not greater than m at infinity, then the solution of Equation

(2.7.11) may be written as

F (z) =
1

2πi

∫
L

f(t)

t− z
dt+ Pm(z), (2.7.13)

where Pm(z) = C0z
m + C1z

m−1 + C2z
m−2 + .......... + Cm, and Ci(i = 0, 1, 2....m)

are arbitrary constants to be determined by the boundary conditions of the problem

under consideration.

According to Muskhelishvili [85] most general solution of Equation (2.7.11), when

F (z) is assumed to have poles of order not greater than m1,m2.....mn and m at the

given points z1, z2.....zn and ∞ may be written as

F (z) =
1

2πi

∫
L

f(t)

t− z
dt+R(z), (2.7.14)
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where,

R(z) =
l∑
i=j

{
Dj1

(z − zj)
+

Dj2

(z − zj)2
+ .......+

Djmj

(z − zj)mj

}
+ Pm(z), (2.7.15)

and Dij(i, j = 1, 2....n) are arbitrary constants.

2.7.3.2 Case II: G(t) = −1

The Hilbert problem in this case may be stated as follows: find the sectionally

holomorphic function F (z), with line of discontinuity L, the boundary values of

which from the left and from the right satisfy the condition

F+(t) + F−(t) = f(t), on L, (2.7.16)

except at the end points and f(t) is the known function on L.

To obtain the complete solution of the above problem, the general solution is

found first for the homogeneous case when

F+(t) + F−(t) = 0, on L, (2.7.17)

The general solution of the Equation (2.7.17) may be written as

F (z) = X0(z)Pn(z), (2.7.18)

where Pn(z) = C0z
n+C1z

n−1 +C2z
n−2 + ..........+Cn and Ci(i = 0, 1, 2...n) are arbi-

trary constants to be determined by using the boundary conditions of the problem

under consideration. And

X0(z) =
n∏
j=1

(z − aj)−1/2(z − bj)−1/2. (2.7.19)

We now find out the particular solution for

F+(t)− gF−(t) = f(t), on L, (2.7.20)

where g =
X+

0 (t)

X−0 (t)
, on L. (2.7.21)

For present case g = G(t) = −1 and hence using the relation (2.7.21), X+
0 (t) =

−X−0 (t), satisfied between the left hand and right hand values of X0(z) on L.



30

The Equation (2.7.20) may be re-written as

F+(t)

X+
0 (t)

− F−(t)

X−0 (t)
=

f(t)

X+
0 (t)

, on L. (2.7.22)

The particular solution of which may be written as

F (z) =
X0(z)

2πi

∫
L

f(t)

X+
0 (t)(t− z)

dt. (2.7.23)

The general solution of Equation (2.7.16) may now be written combining solutions

obtained in Equations (2.7.18 and 2.7.23) as

F (z) =
X0(z)

2πi

∫
L

f(t)

X+
0 (t)(t− z)

dt+X0(z)Pn(z). (2.7.24)

Finally, most general solution for the case when F (z) has poles of order not greater

than m1,m2.....mn and m at the points z1, z2.....zn and ∞ may be written as

F (z) =
X0(z)

2πi

∫
L

f(t)

X+
0 (t)(t− z)

dt+X0(z)R(z), (2.7.25)

where R(z) is a rational function of the form

R(z) =
l∑
i=j

{
Dj1

(z − zj)
+

Dj2

(z − zj)2
+ .......+

Djmj

(z − zj)mj

}
+ Pn(z). (2.7.26)

2.7.4 Problem for Plane cut along Straight Cracks

Consider a plate occupying the x1ox2 plane and cut along n-collinear straight cracks

Li(i = 1, 2....n), with end points ai, bi, lying on ox1-axis.

The rims of the cracks are subjected to uniform constant stress, σ22, then Equa-

tion (2.7.9) yields, following Hilbert problems, under the assumption lim
x2→∞

x2Ψ′(t+

ix2) = 0, where t being any point on Li(i = 1, 2....n)

Ψ+(t) + χ−(t) = σ+
22; Ψ−(t) + χ+(t) = σ−22. (2.7.27)

The superscripts + and − denote the value of the function as it is approached from

x2 > 0 or x2 < 0, respectively.

Adding and subtracting above two Hilbert problems, they may be re-written as

[Ψ(t) + χ(t)]+ + [Ψ(t) + χ(t)]− = σ22, (2.7.28)

[Ψ(t)− χ(t)]+ − [Ψ(t)− χ(t)]− = 0. (2.7.29)
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The solutions of Equations (2.7.28 and 2.7.29) may directly be written using Equa-

tions (2.7.12 and 2.7.24) as

Ψ(t) + χ(t) =
1

2πiX(z)

∫
L

X(t)σ22

t− z
dt+

2Pn(z)

X(z)
, (2.7.30)

Ψ(t)− χ(t) = −Γ
′
, (2.7.31)

respectively, where

X(z) =
n∏
j=1

(z − aj)1/2(z − bj)1/2, (2.7.32)

Pn(z) = C0z
n + C1z

n−1 + C2z
n−2 + ..........+ Cn, (2.7.33)

Γ
′
= −1

2
(N1 −N2)e−2βi, (2.7.34)

and N1, N2 being the values of principal stresses prescribed at infinity, β is the angle

between N1 and ox1-axis. The constant C0 is determined using a boundary condition

at infinity, and constants Ci(i = 1, 2....n) are determined using the condition of

single-valuedness of displacements on crack rims.

2.8 Overview of the Subject Development

By now composite piezoceramics have made an active research group because of

their great utility in sensors/actuators/transducers. Many types of attire of these

materials have drawn the attention of researchers depending upon their probable

use. One such aspect is cracking of piezoceramics. Much work has been done on

cracking of piezoceramics. The work on cracking of piezoelectric media was started

back in 1980.

Parton [99] initiated the work on crack problems for piezoelectric materials by

considering the problem of a finite conducting crack at the interface of a piezoelectric

material and subjected to a far-field uniform tension.

Deeg [23] implemented the Green’s function and dislocation method to study a

more general defect mechanics of piezoelectric material. He considered impermeable

crack face boundary conditions for this study.

Sosa and Pak [116] performed three dimensional analysis for a semi-infinite crack

embedded in an unbounded transversely isotropic piezoelectric medium using eigen-

function expansion method.
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Pak [94] studied a crack problem under out-of-plane deformation and in-plane

electric loads. It was found that crack extension force is always negative in absence

of mechanical load. It was also analyzed that for a given mechanical load, presence

of electrical load could either promote or retard the crack growth, depending on

magnitude and direction of electric load.

Pak [95] generalized the concept of linear elastic fracture mechanics and dislo-

cation method to study the influence of the electric field on fracture behavior of

piezoelectric materials. The study of crack tip singular stress field and the expres-

sions for energy release rate were also presented.

Sosa [115] studied a center crack problem in an infinite two-dimensional piezo-

electric medium using complex potential formulation. And derived the asymptotic

expressions for the electromechanical fields in the vicinity of the crack.

Suo et al. [118] employed extended Stroh formalism to study the crack either in

piezoelectric material, or at the interface between piezoelectric materials.

Tobin and Pak [120] performed the Vicker’s indentation tests in poled piezo-

electric material with a high electric field. It was found that its apparent fracture

toughness may either decrease or increase, depending on the direction of applied

electric field.

Hao and Shen [50] proposed a new electric boundary condition in which electric

permeability of air in a crack gap was considered. It was found that electric per-

meability of air in a crack gap reduce the value of electric displacement intensity

factor than impermeable crack. The effect of different crack face electric boundary

conditions on the fracture mechanics of piezoelectric solids was studied by many

researchers [25, 71, 127, 128] etc.

Park and Sun [98] used Stroh formalism to solve the problem of fracture for an

infinite piezoelectric medium containing a center crack subjected to electromechan-

ical loads. Closed form analytic expressions were derived for strain energy release

rate, total energy release rate and mechanical energy release rate, and suitability of

these fracture criterion were also discussed.

Liang and Hwu [76] solved the problem of holes, cracks and interface cracks in an

infinite piezoelectric medium using the extended Stroh formalism. Special boundary
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element method was used to solve the problem of finite piezoelectric plates containing

holes and cracks.

Gao and Fan [40] analyzed the two-dimensional problem of an infinite piezo-

electric material containing a center crack using Stroh formalism technique. It was

found that the impermeable crack assumption is not valid in analyzing the fracture

mechanics of piezoelectric materials.

Gao and Wang [36] gave a solution of the total energy release rate in piezoelectric

media with a crack. The effect of electric field inside the crack on total energy release

rate was computed. Finally, the total energy release rate was found by respective

contribution of energy in the media and inside the crack.

McMeeking [82] summarized the fracture mechanics theory for brittle piezoelec-

tric materials consistent with standard features of elasticity and dielectricity. The

influence of electromechanical loads was considered in this approach and Griffith’s

style energy balance was used to establish the relevant energy release rates.

Shindo et al. [109] solved the plane strain electroelastic crack problem of an

orthotropic piezoelectric ceramic strip. The central crack was situated symmetrically

and oriented in a direction normal to the strip edges. Numerical values of intensity

factors and energy release rate for some piezoelectric ceramics were obtained to

display electroelastic interactions.

Kwon and Lee [65] employed Fourier transform and Fourier sine series to study

the rectangular piezoelectric ceramic body containing a Griffith center crack under

anti-plane shear loading. Numerical values of stress intensity factor and the energy

release rate are obtained to show the influence of electric field.

Xu and Rajapakse [133] employed Lekhnitskii’s complex potential and distributed

dislocation method to study the plane problem of a brittle piezoelectric material with

an arbitrary oriented branch crack. It was found that the branch length, branch an-

gle, crack orientation and the type of loading affect asymptotic electroelastic fields

at a branch tip.

Sih and Zuo [111] explored a multiscale nature of cracking in ferroelectric ce-

ramics vis-a-vis the crack growth enhancement and retardation behavior when the

direction of applied electric field was reversed with reference to that of poling by
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application of energy density criterion.

Gao and Wang [38] employed Stroh’s formalism to solve the problem of a perme-

able interface crack between two dissimilar piezoelectric media. The fundamental

solutions for the Green’s function and the field intensity factors were also presented.

Xu and Rajapakse [134] also investigated the influence of electric boundary condi-

tions and crack orientation on fracture mechanics parameters by solving an elliptical

crack problem in a piezoelectric plane using the approach of Lekhnitskii’s complex

potential function.

Wang and Mai [121] studied a cracked piezoelectric strip under combined me-

chanical and electrical loads using Fourier integral transform technique. The three

benchmark problems namely an edge-cracked, double edge-cracked and a center-

cracked strip were considered and numerical solution under both permeable and

impermeable crack face electric boundary conditions were obtained.

Beom and Atluri [5] investigated the effect of electric fields on fracture behav-

ior of ferroelectric ceramics subjected to combined electric and mechanical loading

considering a semi-infinite crack lying perpendicular to the poling direction in a

ferroelectric ceramic. Relations between the crack tip stress intensity factor and the

applied intensity factors of stress and electric displacement were obtained.

Beom et al. [6] studied the problem of subinterface crack lying parallel to an

interface between two dissimilar piezoelectric solids. Relations between the intensity

factors for subinterface crack and interface crack were obtained for conducting and

insulating crack.

Li and Tang [72] studied the problem of anti-plane permeable crack situated in

the interface between two bonded dissimilar piezoelectric layers subjected to lon-

gitudinal shear stress and electric loading. The field intensity factors and energy

release rate were obtained in terms of auxiliary function.

Li [68] proposed a mode III permeable crack model to analyse the crack growth

in a piezoelectric ceramic. Both local and global energy release rates were derived

based on permeable crack solution. It was found that global energy release rate

derived for permeable crack was in broad agreement with some known experimental

observations [98]. Thus it might be considered as a fracture criterion for piezoelectric
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materials in general.

Huang and Kuang [53] presented a mixed boundary value problem for a 2D

crack, in the sense that the crack face was partially conducting and partially imper-

meable. They found that the electric field and electric displacement were singular

not only at the crack tips but also at the junctures between the conducting part and

impermeable parts.

Zhang and Gao [138] presented theoretical and experimental analyses of the fail-

ure and fracture behaviors of piezoelectric materials. A charge-free zone model for

conducting cracks in the depoled lead zirconate titanate was considered to under-

stand the failure behavior under electrical and/or mechanical loads.

Gao et al. [39] examined the energy release rate and the J-integral of an elec-

trically insulated crack in an infinite piezoelectric medium under remotely uniform

combined electro-mechanical loads. It was found that the energy release rate is the

sum of the J-integral around the crack tip and the average driving force produced

by the electric field on the entire crack surface.

Chen et al. [17] solved the physical problem of semi-infinite crack interacting

with a line dislocation under the loading of a line force and a line charge in 2D

infinite anisotropic piezoelectric medium. It was found that the image force always

attracted the dislocation to the crack tip in the case of a conventional crack, while

it always repelled the dislocation for the anti-crack case.

Jelitto et al. [59] presented an experimental method to measure all the compo-

nents of the total energy release rate in a piezoelectric material under conditions

of control crack growth in a four-point-bending device. They concluded that to-

tal energy release rate, almost vanish and could not be taken as a valid fracture

criterion.

Gao et al. [35] used Stroh formalism to study the interaction of an electric

dipole with an interface crack between two dissimilar piezoelectric materials. Three

crack models, the electrically impermeable, permeable and conducting cracks were

studied. Numerical calculations were performed to investigate the effect of the

dipole’s rotation on energy release rate at the crack tip. It was found that the

energy release rate for all the three crack models reach their maximum values when
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the direction of dipole was perpendicular to the crack surface.

Huang and Wang [52] investigated the dynamic behavior of a piezoelectric layer

bonded to an elastic medium containing multiple interfacial cracks subjected to

steady state mechanical loads. The effect of the geometry of the cracks, the material

constants and the loading frequency of the incident Love wave upon the dynamic

SIF is examined and discussed.

Chen and Ou [18] investigated the problem of a center crack in an infinite piezo-

electric material to evaluate electric potential drop across the crack. It was found

that, under moderate mechanical loadings the crack opened less, the electric po-

tential drop was very high under highly applied electric field, which might lead to

electric discharge.

Li and Chen [67] studied the semi-permeable interface crack problem between dis-

similar piezoelectric materials for accounting the permittivity of the medium inside

the crack gap. The model showed more physically reasonable features than either

the impermeable interface crack model or the permeable interface crack model.

Mukherjee and Das [84] analyzed the interaction of three interfacial Griffith

cracks between bonded dissimilar orthotropic half-planes. Also, Das et al. [21, 22]

determined the stress intensity factor around a moving interfacial Griffith crack

between an elastic orthotropic half-plane and a dissimilar orthotropic layer.

Sills et al. [112] examined a conservative M-integral for calculating intensity

factors of impermeable cracks in piezoelectric materials. The accuracy of this inte-

gral was examined for various loading situations in which the crack may be parallel,

perpendicular or at some angle to the poling direction.

Rao and Kuna [102–104] used the interaction integrals for computation of the

stress and electric displacement intensity factors for cracks in functionally graded

piezoelectric/piezoelectromagnetic materials.

Motola et al. [83] presented fracture test on four-point bend specimens for poled

and unpoled PZT-5H ceramic. The crack faces were parallel to the poling direction.

Fracture tests on four-point bend PIC-151 specimens with the crack faces perpen-

dicular to the poling directions were also analyzed. Excellent agreement was found

between the fracture curve and the experimental results of the specimens with the
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crack faces perpendicular to the poling direction.

Beom et al. [7] presented electrical fracture tests to study the influence of the

directions of poling and electrical loading for a piezoelectric ceramic with a con-

ductive crack under purely electrical loading. It was observed that positive electric

field could decrease the breakdown resistance of piezoelectric materials, whereas a

negative electric field could increase the breakdown resistance of piezoelectric mate-

rials. Also the poling direction could effect the breakdown resistance of piezoelectric

materials.

Kuna [63] gave a detailed survey of different techniques to solve piezoelectric

fracture mechanics problems and present status of the work done in piezoelectric

materials. Cracks under static, cyclic and dynamic loading by electrical and me-

chanical fields were taken into account.

Fan and Zhao [27] studied the influence of an arbitrary poling direction and elec-

tric boundary conditions on fracture behavior for a finite crack in two-dimensional

infinite piezoelectric medium.

Guo et al. [49] solved the problem of a semi-infinite crack in a piezoelectric strip

under the anti-plane shear stress and the in-plane electric field via complex function

method and the conformal mapping technique. The analytic closed form expressions

were derived for the field intensity factors and mechanical strain energy release rate.

Numerical case study was also given to show the influence of the loaded crack length,

height of the strip and prescribed mechanical/electrical loads on mechanical strain

energy release rate.

Li et al. [74] solved the problem of center mode-I crack in a piezoelectric strip

based on real fundamental solution. Mixed boundary value conditions of the crack

were transformed into Cauchy singular integral equations, which were then solved

numerically to get the fracture parameters including the energy release rate and

intensity factors.

Due to the tendency of developing multiple cracks in piezoelectric ceramics, the

interaction among these cracks played an important role in the fracture behavior of

these type of materials.

Gao and Wang [41] employed the Stroh formalism to solve the generalized 2D
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problem in piezoelectric media with N -collinear cracks subjected to uniform loads

at infinity. It was found that the stress intensity factor remained the same as that

of an isotropic material when uniform loads were applied. While the intensity factor

of electric displacement depended on both the material properties and mechanical

loads, but not on the applied electric loads. Also, it was shown that the electric

field inside any crack was not equal to zero.

Gao and Wang [37] studied the generalized 2D problem of collinear interfacial

permeable cracks, between two dissimilar piezoelectric media subjected to piecewise

uniform loads at infinity, by means of the Stroh formalism. Explicit, closed from

expressions were derived for the electric field inside cracks, complex potentials in

piezoelectric media and field intensity factors near the crack tips.

Zhou et al. [141] investigated the problem of two collinear impermeable anti-

plane shear cracks in a piezoelectric layer bonded to two half spaces, using the

Fourier transform and Schmidt method. It was noted that stress intensity factor

depended on the geometry of the interacting cracks as well as piezoelectric constants

of the material.

Li [70] analyzed the anti-plane problem of two collinear cracks of equal length and

normal to the strip boundaries in an infinitely long piezoelectric strip of finite width,

using the Fourier series method. Closed form analytic expressions were derived for

the electro-elastic field.

Gao and Balke [33] investigated the anti-plane problem of N arc-shaped interfa-

cial permeable cracks between a circular piezoelectric inhomogeneity and an infinite

piezoelectric matrix, by means of the complex variable method. Explicit expressions

were presented for the electric field on the crack faces, complex potentials in media

and the intensity factors near the crack-tips.

Zhong and Li [140] used the Fourier transform technique to investigate the prob-

lem of two collinear permeable anti-plane cracks lying at the mid-plane of a piezo-

electric strip. Numerical case study was presented for PZT-5H piezoelectric ceramic,

and the results revealed that the effect of electric field on crack growth in piezoelec-

tric materials strongly depended on applied elastic displacement.

Zhou and Wu [143] employed the Schmidt method to solve the problem of two
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parallel cracks or four parallel cracks in the piezoelectric materials for the permeable

crack face electric boundary conditions. The effects of the distance between two

parallel cracks as well as two collinear cracks on the stress and electric intensity

factors were analyzed.

Xiao et al. [131] studied the interaction between a screw dislocation and collinear

rigid lines along the interface of two dissimilar piezoelectric media using complex

variable and perturbation techniques under remote anti-plane mechanical and in-

plane electrical loads. The rigid lines were either conducting or dielectric. The

influence of the angular position of the dislocation, material properties and elec-

tromechanical coupling factor on the force was studied.

Liang [75] applied the non-local theory and Fourier integral transform to obtain

the solution of two collinear cracks in a piezoelectric plane subjected to uniform

tension load. Numerical case study were presented to show the effects of interaction

of two cracks, the material constants and the lattice parameters on the stress field

and the electric displacement field near the crack tips.

Li and Lee [73] presented the problem of two unequal collinear cracks in a piezo-

electric plane under mode-I electromechanical loads via a new approach. Parametric

studies were conducted to reveal the effects of crack space, crack length, electric

loading and remanent electric displacement on energy release rate. It was found

that negative electric displacement loading could decrease both the total energy re-

lease rate (TERR) and the mechanical strain energy release rate (MSERR). Positive

electric displacement loading could enhance MSERR, but it could reduce TERR.

Lu et al. [81] solved the fracture problem of two semi-infinite collinear imper-

meable cracks in a piezoelectric strip under the anti-plane shear stress and in-plane

electrical loads, by means of complex function method and conformal technique.

Analytical expressions of the field intensity factors and the mechanical strain energy

release rate were derived. Numerical case study were presented to show the influence

of loaded crack length, the width of the strip, the distance between the two crack

tips, and the prescribed electro-mechanical loads on the mechanical strain energy

release rate.
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Feng et al. [31] investigated the problem of multiple cracks on the interface be-

tween a piezoelectric layer and an orthotropic substrate. The method of dislocation

simulation and singular integral equation were used to solve the crack problem. The

theoretical derivation was verified by the classical result for a special case.

Analysis based on a linear piezoelectric model predicts that an electric field

does not produce any stress intensity factor and positive driving force for a crack.

However, experimental observations [94, 98, 125] suggested that crack growth could

be enhanced or retarded by prescribed electric field. In order to explain experimental

observations, a simplified model of perfect electrical displacement saturation had

been used to cracks for piezoelectric materials.

Gao et al. [43] proposed a strip saturation model for a finite crack in an infinite

poled piezoelectric plate. In this model the electrical saturation accounted was based

on a generalization of the Dugdale [24] approach. The concept of local and global

energy release rates were defined and discussed. It was found that the local energy

release rate gave predications in broad agreement with experimental observations.

Further, it was observed that the local energy release rate is independent of strength

and size of the electrical yielding.

Gao and Barnett [42] provided the proof of an interesting result coming out of

the simplified analysis in the paper of Gao et al. [43] that the local energy release

rate was independent of strength and size of the electrical yielding. Further, the

significance of local energy release rate based on linear piezoelectric crack analysis

proved that it could be used as a fracture criterion.

Ru [106] proposed a strip saturation model for a finite crack in a piezoelectric

medium of limited electrical polarization and evaluated stress intensity factor in-

duced by electric field. The effect of saturation condition on crack tip field and the

stress intensity factor was examined.

Ru and Mao [107] proposed a strip saturation model for a conducting cracks

in a poled ferroelectric of limited electric polarization. The complete solution was

obtained for conducting cracks perpendicular or parallel to the poling axis. It was

found that only electric-field applied parallel to the poling axis did not induce any

stress intensity factor.
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Wang [126] presented a fully anisotropic analysis of a strip electric saturation

model proposed by Gao et al. [43] for piezoelectric materials. And derived the

relationship between the size of the strip saturation zone ahead of a crack tip and

the electric displacement. It was revealed that the critical fracture stresses (for

a crack perpendicular to the poling axis) linearly decreased/increased with the in-

crease/decrease of the positive and negative applied electric field, respectively. More-

over, the failure stress was not affected by the parallel applied electric field for a

crack parallel to the poling axis.

Li [69] re-examined the strip saturation model for piezoelectric crack in a per-

meable environment to analyse the fracture toughness of a piezoelectric ceramic.

And found that the global energy release depended on several different parameters,

namely, saturation, charge distribution, and permeability.

Kwon [64] used strip saturation model to analyze the electrical nonlinear behavior

of an anti-plane shear crack in a functionally graded piezoelectric strip. The mixed

boundary value problem was solved and near tip field solutions were obtained by

using the integral transform techniques.

Jeong et al. [61] analyzed a crack problem in a ferroelectric ceramic with perfect

saturation under electric loading. The electric displacement saturation zone ahead of

the crack tip was assumed to be elliptical. The stress intensity factor was numerically

obtained as a function of electric saturation zone parameter and the ratio of the

coercive electric field to the yield electric field.

Govorukha et al. [47] examined a plane strain problem for an interface crack

along the fixed edges of a semi-infinite piezoelectric strip under concentrated elec-

tromechanical loads. The model of an interface crack with an artificial contact zone

near its tips was considered. Fourier integral transform technique was employed to

solve the physical problem. Influence of the permeability of the crack on electrical

and mechanical fields near the crack tip was discussed.

Wang and Zhang [123, 124] proposed an electric field saturation concept to pre-

dict the fracture behavior of piezoelectric materials containing impermeable cracks.

Closed form expressions were derived for stress intensity factor and energy release

rate. It was found that crack propagation could either be enhanced or be retarded
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depending on the direction of the electric field.

Zhang and Gao [138] proposed a strip dielectric breakdown model to estimate the

effect of electrical non-linearity on the piezoelectric fracture of electrically insulated

cracks, by the use of Stroh formalism.

Further, Zhang [137] presented a strip dielectric breakdown (DB) model for a

finite impermeable crack in a piezoelectric material. Total energy release rate and

local energy release rate were calculated. It was found that under the small yielding

conditions, local energy release rate could be used as a fracture criterion as it gives a

linear relationship between the applied stress intensity factor and the applied electric

intensity factor.

Zhang et al. [139] presented the DB model for a finite impermeable crack in

a piezoelectric medium based on the general linear constitutive equations. The

obtained results were compared with the PS model proposed by Wang [126]. It was

found that the PS model gives higher value of the local energy release rate than that

derived from the DB model.

Gao et al. [34] used the strip dielectric breakdown (DB) model proposed by

Zhang and Gao [138] to study the generalized problem of a conductive crack and

an electrode in an infinite piezoelectric medium. The energy release rate and stress

intensity factors were derived based on Stroh formalism.

Beom et al. [8] analyzed a crack with an electric displacement saturation zone in

an electrostrictive material under purely electric loading. Complex function theory

was used to obtain the closed from expressions of electric and elastic fields for the

crack with strip saturation zone. It was found that KI - dominant region was very

small as compared to the strip saturation zone.

Bhargava and Setia [13, 14] proposed a strip saturation model for a semi-infinite

piezoelectric strip of finite width weakened by a crack parallel to edges of the strip.

The piezoelectric strip edges were prescribed out-of-plane shear stress and in-plane

electric displacement. Consequently, the rims of the crack yield electrically forming

saturation zones ahead each tip of the crack. To arrest the crack from further opening

the rims of the saturation zones were subjected to normal cohesive saturation limit

electric displacement. The expressions for different intensity factors and energy



43

release rate were derived and the case study showed that proposed model is capable

to arrest strip-saturation zone.

Fan and Zhao [26] studied the difference between the polarization saturation (PS)

model and dielectric breakdown (DB) model in piezoelectric ceramics via dislocation

theory. Closed form analytical expressions were derived for the saturation zone,

extended displacement discontinuity, extended intensity factors and local J-integrals

based on these two models. Numerical case study demonstrated that the DB model

gives almost the same results as the PS model for fracture load.

Fan et al. [28] presented the nonlinear hybrid extended displacement discontinuity-

fundamental solution method (NLHEDD-FSM) for numerical analysis of both the

PS and DB models for 2D finite piezoelectric media under impermeable and semi-

permeable electric boundary conditions. Numerical case study was presented for the

electric yielding zone and local J-integral. It was found that the DB model gives the

same results as the PS model for a crack in an infinite or a finite medium.

Zhang and Gao [136] studied the 2D problem for a conductive crack in an infi-

nite electrostrictive material based on the strip dielectric breakdown (DB) model via

complex variable method. Explicit solutions were obtained for electric and electroe-

lastic fields. Finally, all the solutions were extended to the case of a soft electrode

in an infinite electrostrictive material. It was found that for a conducting crack,

prescribed electric field parallel to the crack retards its growth before DB, but it

might enhance its growth once DB takes place ahead of the conductive crack.

Linder and Miehe [77] investigated the effect of electric displacement saturation

on problems related to the hysteretic behavior of ferroelectric ceramics and the

initiation and propagation of cracks in piezoelectric ceramics.

Fan et al. [29] analyzed a polarization saturation model for a non-linear semi-

permeable crack in a piezoelectric plane. Closed form expressions were derived for

various fracture parameters. Numerical case study showed that the effect of different

boundary conditions on the electric yielding zone and the stress intensity factor is

significant and should not be ignored. Also, the influence of the saturated electric

displacement on the stress intensity factor was demonstrated.
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In electromechanical devices, piezoelectric materials with identical physical prop-

erties could be connected by means of a very thin ductile interlayer. Cracks occured

either in this layer or at one of the interfaces between this interlayer and one of the

substrates. Taking into account that the interlayer was usually much softer and had

a smaller yield stress than the adjacent materials, considerable zones of mechanical

and electrical nonlinearity could appear in this interlayer at the crack continuations.

Shen et al. [108] analyzed a strip-electric-saturation and mechanical yielding

model for a interfacial crack between ferroelectric-plastic bimaterials. They assumed

that the electric polarization reaches a saturation limit and shear stress reaches a

yield stress along a line segment in front of the crack. The energy release rate and

crack opening displacement were also obtained, which indicates the possibility of

fracture criterion based on crack opening displacement.

Narita and Shindo [90] proposed a yield strip model for a finite crack in a narrow

transversely isotropic piezoelectric ceramic body under tensile loading by the use of

integral transform technique. The crack was situated in the mid-plane and was

parallel to the edges of the body.

Bhargava and Saxena [11] proposed a strip-electro-elastic yielding model for a

poled piezoelectric plate weakened by a finite crack under mode-I deformation using

complex variable technique. Two cases were investigated: when crack lie perpendic-

ular to the poling axis and when crack lie parallel to the poling axis. Further, they

[12] proposed a strip-electro-elastic yielding model for a poled piezoelectric plate

weakened by a finite crack under mode III deformation employing Fourier integral

transform technique. Two cases were investigated when (i) the saturation zone was

bigger than the developed yield zone, and (ii) saturation zone was smaller than the

developed yield zone. Closed form analytical expressions were derived for developed

zones, crack opening displacement, crack opening potential drop and energy release

rate.

Bhargava and Kumar [10] studied the arrest of opening of a finite crack for a

transversely isotropic piezoelectric ceramic under mode III deformation by the use of

Fourier integral transform technique. The developed yield zone rims were subjected

to quadratically varying yield point cohesive anti-plane shear stress to arrest the
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crack from further opening. Closed form analytical expressions were derived for the

length of slide zone, crack opening displacement and crack growth rate.

Loboda et al. [78] proposed a strip-electro-elastic yielding model for a crack in

a thin ductile layer between two piezoelectric materials which were under remote

electromechanical loadings. Problem was solved by complex variable technique.

The closed form analytical expressions were derived for zones length, crack opening

and electric potential jumps. Further, Lapusta and Loboda [66] analyzed the same

physical problem for a limited permeable crack in a thin ductile layer between two

piezoelectric materials.

Loboda et al. [80] proposed a strip-electro-elastic yielding model for a semi-

permeable crack in two identical semi-infinite piezoelectric spaces adhered by means

of a thin isotropic interlayer. They assumed that two distinct zones of different

lengths- a zone of mechanical yielding and a zone of electrical saturation developed

by the application of prescribed combined electromechanical loads. Closed form

analytical expressions were derived for crack opening displacement, crack opening

potential drop and energy release rate.

Xue et al. [135] proposed a electro-elastic yielding model for a crack in piezoelec-

tric materials. Closed form expressions were obtained for mechanical crack opening

displacement (MCOD) and electrical crack tip opening displacement (ECOD). Nu-

merical case study showed that the MCOD was in agreement with experiments,

while ECOD was contradictory to the experiments in piezoelectric ceramics.

Cui et al. [20] proposed a strip saturation model for periodic collinear cracks in

an infinite piezoelectric body. Analytical closed form expressions were derived for

the stress intensity factors and the saturation strip size. The effect of periodicity on

the stress intensity factors and the size of saturation strip of cracks was studied.

2.9 Objective of the Present Work

The problems investigated in the present thesis explore the possibilities of crack

arrest under various conditions for a poled transversely isotropic piezoelectric plate.

The plate is weakened by two equal collinear hairline straight cracks. The cracks rims

open on account of combined in-plane mechanical stress and electric displacement
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applied at infinite boundary of the plate. Consequently, a yield zone/saturation zone

or both protrudes ahead each tip of the cracks. The thesis includes the following

eight chapters.

Chapter 1 is introductory in nature. The smart materials, their categories,

utility and applications are discussed at length. Basics of crack and fracture are

also introduced.

Chapter 2, gives introduction to piezoelectric materials, their fundamental for-

malism. The Stroh formalism and complex variable methodology are also discussed

for piezoelectric materials. Current status of the field, objective of work done and

layout of the thesis is also presented in this chapter.

Chapter 3 provides analytical solution for two equal collinear cuts in an infinite

piezoelectric plate with semi-permeable crack face electric boundary conditions pre-

vailing on crack faces. The numerical study is also presented for PZT-4, PZT-5H,

PZT-7A and BaTiO3 poled ceramic plates to show the effect of prescribed mechan-

ical stress and electric displacement on various fracture parameters. Also, intensity

and energy analysis for PZT-4 ceramic are specially studied under three different

conditions: (i) the electrically impermeable crack, (ii) the crack gap is filled with

air or vacuum, and (iii) the electrically permeable crack. Detailed comparisons are

performed among the three cases.

In Chapter 4, strip-saturation model is proposed for an infinite piezoelectric

plate weakened by two equal collinear cracks. The saturation zones developed are

arrested by distributing over them the cohesive saturation limit electric displace-

ment. A qualitative analysis is carried out to find the behavior of load required to

close the saturation zones.

In Chapter 5, the problem of two equal collinear hairline straight cracks weak-

ening a plate is discussed. In-plane mechanical stress and electric displacement

applied at infinity causes coalesces of each saturation zone developed at the interior

tips of two cracks. The other rims of two saturation zones, each developed at the

remaining tip of the two cracks, and the coalesced saturation zone are subjected to

saturation limit electric displacement Ds to arrest crack opening.

In Chapter 6, strip-electro-mechanical yield model is proposed for an infinite
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piezoelectric plate weakened by two equal collinear cracks. Developed mechanical

and electric strip zones are arrested by prescribing over their rims uniform, nor-

mal, cohesive yield point stress and saturation limit electric displacement. Three

different situations are investigated when developed electrical saturation zone is big-

ger/smaller or equal to the developed mechanical yield zone.

In Chapter 7, strip-electro-mechanical yield model is proposed for an infinite

piezoelectric plate weakened by two equal collinear cracks with semi-permeable crack

face electric boundary conditions prevailing on crack faces. Developed mechanical

and electric strip zones are arrested by prescribing over their rims uniform, nor-

mal, cohesive yield point stress and saturation limit electric displacement. Three

different situations are investigated when developed electrical saturation zone is

bigger/smaller or equal to the developed mechanical yield zone. It is observed that

COD is maximum for case when developed zones are equal and little less for the

case when saturation zone is smaller and least for the case when saturation zone is

biggest.

In Chapter 8, the effect of change in poling direction on a strip-electro-mechanical

yield model is proposed for an infinite piezoelectric plate weakened by two equal

collinear cracks with semi-permeable crack face electric boundary conditions pre-

vailing on crack faces. The study shows that poling direction perpendicular to crack

length opens the crack maximum. And when poling direction axis moved towards

the length of the crack, the crack opening is reduced. Consequently the poling

direction may also assist in crack arrest.
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Chapter 3

A Study on Semi-permeable
Cracks in a Piezoelectric Plate

In the theoretical study of cracked piezoelectric bodies, the issue of assigning

consistent electric boundary conditions on the crack faces is of central importance,

as pointed out by many researchers. Because cracks are usually filled with some

media (air, water etc.), the properties of this media should not be ignored. Three

different boundary conditions on crack faces are commonly accepted in literature; the

permeable crack model proposed by Parton [99], the impermeable model assumed by

Deeg [23], and the semi-permeable (limited-permeable) model, proposed by Hao and

Shen [50]. The permeable and impermeable crack models are the limiting cases of a

semi-permeable crack model full of a dielectric with a finite dielectric permittivity.

Numerous literatures are available on permeable and impermeable crack models, see

e.g. Sosa [114], Fang et al. [30], Qi et al. [101], Beom and Atluri [4], Zhou et al.

[142], Beom et al. [3], Chue and Weng [19], Chen et al. [16] and Jelitto et al. [60]

etc. While less work is available on semi-permeable crack face conditions, which

accounts for the dielectric permittivity of the crack medium. Dunn [25], McMeeking

[82], Xu and Rajpakse [134], Wang and Mai [122] and Wippler et al. [130] applied

these boundary conditions to solve the crack problems.

Mostly, reported semi-permeable crack problems have been investigated for sin-

gle crack case only. Therefore, in this chapter, we considered the two equal collinear

crack in an infinite piezoelectric plate with semi-permeable crack face electric bound-

ary conditions prevailing on crack faces. The plate being subjected to combined

This chapter is published in ZAMM-Journal of Applied Mathematics and Me-
chanics (Wiley publication), DOI: 10.1002/zamm.201300109
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in-plane mechanical stress and electric displacement. Problem is formulated using

Stroh formalism and solved using complex variable technique. Closed form analyt-

ical expressions are derived for crack opening displacement (COD), crack opening

potential drop (COP), field intensity factors (IFs), mechanical energy release rates

(MERR) and total energy release rates (TERR). Theoretical derivations are val-

idated by exact solutions existing in literature. Some interesting conclusions are

observed.

The numerical study is also presented for PZT-4, PZT-5H, PZT-7A and BaTiO3

poled ceramic plates to show the effect of prescribed mechanical stress and elec-

tric displacement on IFs, MERR and TERR. Also, intensity and energy analysis

for PZT-4 ceramic are specially studied under three different conditions: (i) the

electrically impermeable crack, (ii) the crack gap is filled with air, and (iii) the

electrically permeable crack. Detailed comparisons are performed among the three

cases. Moreover, the effect of inter-crack distance on IFs, MERR and TERR is

presented graphically and discussed.

3.1 Statement of the Problem

d c-d-c

1
L

2
L

1
x

2
x

2 2




2 2




2
D



D D

o

Figure 3.1: Schematic representation of the problem
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An infinite transversely isotropic piezoelectric plate occupies the x1ox2 plane and

is poled along ox2 direction. The plate is cut along two equal collinear straight

cracks L1 and L2 which occupy, respective, intervals [−c,−d] and [d, c] on ox1-

axis. The crack surfaces are assumed to be mechanically traction free and dielectric

medium inside the cracks gap is finite. The plate being subjected to combined

in-plane mechanical stress σ∞22 and electric displacement load D∞2 . The schematic

representation of the problem is given in Fig. 3.1.

3.2 Mathematical Model of the Problem

Mathematically the boundary conditions, prescribed in section 3.1, may be trans-

lated as

(i) σ+
22 = σ−22 = 0, D2 = D, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,

(iii) u+
2 = u−2 , σ+

22 = σ−22, D+
2 = D−2 , φ+ = φ−, for |x1| > c,

(iv) Φ+
,1 = Φ−,1 = −V, V = [0, σ∞22, 0, D

∞
2 ]T , for d < |x1| < c,

where D is the electric flux through the crack regions (−c,−d) and (d, c) which can

be determined using Equation (2.5.3).

A mathematical model is obtained with the help of above mentioned boundary

conditions as follows:

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BF(x1)−BF(x1)]+ − [BF(x1)−BF(x1)]− = 0. (3.2.1)

The solution of which may directly be written using Equation (2.7.31) as

BF(z) = BF(z) = h(z) (say) (3.2.2)

Using principal of superposition, boundary condition (i) and (iv) together with

Equations (3.2.2 and 2.7.7) leads to following vector Hilbert problem

h+(x1) + h−(x1) = V0 −V, V0 = [0, 0, 0, D]T , d < |x1| < c. (3.2.3)
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Introducing a complex function vector Ω(z) = [Ω1(z),Ω2(z),Ω3(z),Ω4(z)]T as

Ω(z) = HRBF(z), (3.2.4)

which using Equation (3.2.2) gives the relation

h(z) = ΛΩ(z), (3.2.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (3.2.3) second and fourth components give scalar Hilbert

problem in potentials Ω2(z) and Ω4(z) as

Λ22[Ω+
2 (x1) + Ω−2 (x1)] + Λ24[Ω+

4 (x1) + Ω−4 (x1)] = −σ∞22, d < |x1| < c, (3.2.6)

Λ42[Ω+
2 (x1) + Ω−2 (x1)] + Λ44[Ω+

4 (x1) + Ω−4 (x1)] = D −D∞2 , d < |x1| < c. (3.2.7)

3.3 Solution of the Problem

Eliminating Ω+
4 (x1) + Ω−4 (x1) from Equations (3.2.6 and 3.2.7), one obtains

Ω+
2 (x1) + Ω−2 (x1) = −Λ44σ

∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

, d < |x1| < c. (3.3.1)

The general solution of Equation (3.3.1) using Equation (2.7.30) is written as

Ω2(z) =
P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

, (3.3.2)

where X1(z) =
√

(z2 − d2)(z2 − c2) and P1(z) = C0z
2 + C1z + C2.

Constant

C0 =
Λ44σ

∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

is determined using condition lim
z→∞

Ω2(z) = 0.

The condition of single-valuedness around the cracks i.e.,∫
Li

[Ω+
2 (x1)− Ω−2 (x1)]dx1 =

∫
Li

P1(x1)

X1(x1)
dx1 = 0, i = 1, 2, (3.3.3)

gives C1 = 0 and C2 = −C0c
2E(k)/F (k), where F (k) and E(k) are the complete

elliptic integrals of first and second kind, respectively.
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Thus the desired stress function Ω2(z) may be written as

Ω2(z) =
1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2λ2

X1(z)
− 1

}
, (3.3.4)

where k2 = 1− (d/c)2, λ2 = E(k)/F (k).

Analogously Ω4(z) is determined by solving Equation (3.2.7), the solution may be

written as

Ω4(z) = −1

2

Λ42σ
∞
22 + (D −D∞2 )Λ22

Λ22Λ44 − Λ24Λ42

{
z2 − c2λ2

X1(z)
− 1

}
. (3.3.5)

3.4 Applications

In this section the expressions for crack opening displacement, crack opening poten-

tial drop, intensity factors, mechanical and total energy release rates are derived.

We introduced the jump displacement vector ∆u,1, using Equations (2.7.6 and 3.2.4)

as

i∆u,1 = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−1,1, φ+ − φ−]T = HR[BF+(x1)−BF−(x1)],

(3.4.1)

where the symbol ∆ indicates the difference between the values on the upper and

lower crack surfaces.

3.4.1 Crack opening displacement (COD)

The relative crack face opening displacement, ∆u2(x1) is obtained using second

component from Equation (3.4.1) and substituting the value of Ω2(x1) from Equation

(3.3.4) and integrating, we obtain

∆u2(x1) = −cΛ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

{
λ2F (ψ, k)− E(ψ, k)

}
, (3.4.2)

where ψ = sin−1

√
c2−x21
c2−d2 .

3.4.2 Crack opening potential drop (COP)

Comparing the fourth component from Equation (3.4.1) and using the value of

Ω4(x1) from Equation (3.3.5) and integrating, one obtains COP drop, ∆φ(x1), be-

tween the two faces of the crack

∆φ(x1) = −cΛ42σ
∞
22 + (D −D∞2 )Λ22

Λ22Λ44 − Λ24Λ42

{
λ2F (ψ, k)− E(ψ, k)

}
. (3.4.3)
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The value of electric flux D is obtained by substituting the required values from

Equations (3.4.2 and 3.4.3) into Equation (2.5.3) simplifying and solving the quadratic

equation

η1D
2 + η2D + η3 = 0, (3.4.4)

where η1 = Λ24, η2 = Λ44σ
∞
22 −D∞2 Λ24 − κaΛ22, η3 = −κa(Λ42σ

∞
22 −D∞2 Λ22).

The value of D is chosen for which ∆u2(x1) is positive.

3.4.3 Stress intensity factor (SIF)

Stress intensity factor, KI , at the tips x1 = d and x1 = c are defined as

KI(d) = lim
x1→d−

√
2π(d− x1)σ22(x1), (3.4.5)

KI(c) = lim
x1→c+

√
2π(x1 − c)σ22(x1). (3.4.6)

Substituting σ22(x1) obtained from Equations (2.7.7, 3.2.5 and 3.3.4) into above

equations and simplifying, one obtains

KI(d) = −
[
σ∞22 + (D −D∞2 )

Λ24

Λ44

]√
π

d(c2 − d2)
(d2 − c2λ2), (3.4.7)

KI(c) =

[
σ∞22 + (D −D∞2 )

Λ24

Λ44

]√
π

c(c2 − d2)
(c2 − c2λ2). (3.4.8)

3.4.4 Electric displacement intensity factor (EDIF)

The electric displacement intensity factor, KIV , at the tips x1 = d and x1 = c are

defined as

KIV (d) = lim
x1→d−

√
2π(d− x1)D2(x1), (3.4.9)

KIV (c) = lim
x1→c+

√
2π(x1 − c)D2(x1). (3.4.10)

And substituting D2(x1) obtained from Equations (2.7.7, 3.2.5 and 3.3.5) into above

Equations (3.4.9 and 3.4.10) and simplifying, one obtains

KIV (d) =

[
(D −D∞2 ) + σ∞22

Λ42

Λ22

]√
π

d(c2 − d2)
(d2 − c2λ2), (3.4.11)

KIV (c) = −
[
(D −D∞2 ) + σ∞22

Λ42

Λ22

]√
π

c(c2 − d2)
(c2 − c2λ2). (3.4.12)
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3.4.5 Energy release rate (ERR)

Mechanical energy release rate (MERR), GM , and total energy release rate (TERR),

GT , at the inner and outer crack tips x1 = d and x1 = c are calculated using formulae

GM =
1

2

3∑
i=1

4∑
k=1

HR
ikKiKk, (3.4.13)

GT =
1

2
KHRKT , K = (KII , KI , KIII , KIV ). (3.4.14)

Since for fracture opening mode-I, KII = 0 and KIII = 0, therefor we obtain

GM =
1

2
(HR

22K
2
I +HR

24KIKIV ), (3.4.15)

GT =
1

2
(HR

22K
2
I + 2HR

24KIKIV +HR
44K

2
IV ), (3.4.16)

taken from Jelitto et al. [60].

3.5 Validation

The case of a single semi-permeable straight crack occupying the interval [−c, c] on

ox1-axis is obtained directly making d→ 0. The Equations (3.3.4, 3.3.5, 3.4.2, 3.4.3,

3.4.8 and 3.4.12) reduce to

Ω2(z) =
1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

{
z√

z2 − c2
− 1

}
, (3.5.1)

Ω4(z) = −1

2

Λ42σ
∞
22 + (D −D∞2 )Λ22

Λ22Λ44 − Λ24Λ42

{
z√

z2 − c2
− 1

}
, (3.5.2)

∆u2(x1) = −cΛ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

√
x2

1 − c2, (3.5.3)

∆φ(x1) = −cΛ42σ
∞
22 + (D −D∞2 )Λ22

Λ22Λ44 − Λ24Λ42

√
x2

1 − c2, (3.5.4)

KI(c) =

[
σ∞22 + (D −D∞2 )

Λ24

Λ44

]√
πc, (3.5.5)

KIV (c) = −
[
(D −D∞2 ) + σ∞22

Λ42

Λ22

]√
πc, (3.5.6)

which validates with results of Ou and Chen [93].

3.6 Case Study

An illustrative example is presented for PZT-4 piezoelectric ceramic plate weakened

by two equal collinear semi-permeable cracks. The material constants are given in
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Table 2.1.

We assume that cracks are electrically semi-permeable with permeability κa =

κrκo (κo = 8.85 × 10−12C/V m). The value of κa = 10−10κo corresponds to an

electrically impermeable crack, κa = κo to the air and κa = 4000κo can be considered

as corresponding to an electrically permeable crack. And the length of equal collinear

cracks, prescribed mechanical load and electric displacement is 10mm each, σ∞22 =

1MPa and D∞2 = 0.001C/m2, respectively, till specified otherwise.
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Figure 3.2: COD profile over the crack surface for different inter-crack
distance
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Figure 3.3: COD profile over the crack surface for different piezoelectric
materials

The COD profile over the crack rims for a fixed crack length as the distance between

two cracks is increased can be noted from Fig. 3.2. It is observed that if distance
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between two cracks is much more than the crack length then crack opens symmet-

rically. While if the cracks are brought close to each other then the crack opening

shifts more towards the interior crack tip side and the symmetry of crack opening

is disturbed. Also, the dependency of COD over the material constants is shown in

Fig. 3.3. It is observed that COD is maximum for PZT-4 while lowest for BaTiO3

ceramic. This study assists for making a choice of correct ceramic depending on the

specific task.
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Figure 3.4: COP drop over the crack surface for different inter-crack distance
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Figure 3.5: COP drop over the crack surface for different piezoelectric
materials

Fig. 3.4 depicts the variation of COP over crack rims for different inter-crack dis-

tance. It is to be noted that COP remains negative although the behavior is opposite
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to that of COD. COP is maximum for 2d = 1mm and tilted towards inner tip of

the crack. And as the inter-crack distance is increased the COP becomes more sym-

metric about the mid point of the crack. Moreover, the effect of material constants

over the COP is shown in Fig. 3.5. It shows the same variation as like that of COD,

COP drop is maximum for PZT-4 ceramic and minimum for PZT-7A ceramic. This

assists the designer/metallurgist to correctly select piezoelectric ceramic for specific

job.

3.6.1 Effect of inter-crack distance
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Figure 3.6: KI versus inter-crack distance for different electric boundary
conditions
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Fig. 3.6 depicts the variation of open mode stress intensity factor, KI , (at inner and

outer tips of the crack) with respect to inter-crack distance to crack length ratio,

d/a0, (a0 = c−d
2

). It may be noted that stress intensity factor is much higher at

inner tip of the crack as compared to that at outer tip, as expected. However, for

this case when inter-crack distance is bigger than the crack length, the KI at inner

and outer tips of the cracks coincides. It may also be noted from Fig. 3.6 that for

impermeable crack boundary conditions the SIF, KI , is higher at both exterior and

interior crack tips vis-a-vis permeable/semi-permeable crack case conditions. While

for the semi-permeable and permeable boundary conditions, KI , is almost equal and

variation is similar at both the tips of the crack.

Fig. 3.7 shows the variation of KI versus normalized inter-crack distance for dif-

ferent piezoelectric ceramics, PZT-4, PZT-5H, PZT-7A and BaTiO3. It is observed

that KI is maximum for PZT-4 piezoelectric ceramic at both the crack tips and

minimum for PZT-7A piezoelectric ceramic.
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Figure 3.8: KIV versus inter-crack distance for different electric boundary
conditions

Figs. 3.8(a, b, c) show the variation of electric displacement intensity factor, KIV

versus d/a0, at inner and outer tips of the cracks for impermeable, semi-permeable

and permeable electric boundary conditions. It may be noted from Figs. 3.8(a, b,

c) that KIV is maximum for impermeable case and also there is a marked difference

in value of KIV at inner and outer tips of the crack. The behavior of reduction for
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KIV for semi-permeable case Fig. 3.8(b) remains the same as in case of Fig. 3.8(a)

i.e., impermeable case. For permeable boundary condition, KIV , further reduces as

compared to semi-permeable/impermeable case.
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Figure 3.9: KIV versus inter-crack distance for different piezoelectric ceramics

Variation of KIV versus inter-crack distance for different piezoelectric ceramics is

plotted in Fig. 3.9. It shows that KIV is maximum for PZT-5H piezoelectric ceramic

at both the crack tips and minimum for PZT-7A piezoelectric ceramic.

Next, we analyze the influence of three well defined crack-face electric boundary

conditions as well as different piezoelectric materials variation on MERR and TERR

with respect to normalized inter-crack distance at both inner and outer crack tips.
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Figure 3.10: GM versus inter-crack distance for different electric boundary
conditions
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Variation of MERR vis-a-vis d/a0 for impermeable, semi-permeable and permeable

cases are plotted in Figs. 3.10(a, b, c). As expected the MERR is maximum for

impermeable case. While MERR is almost equal for semi-permeable and permeable

cases. The difference in MERR for the three electric boundary conditions, ascertains

that the crack gap medium could not be ignored.
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Figure 3.11: GM versus inter-crack distance for different piezoelectric
ceramics

0 0.5 1 1.5 2

0.5

0.6

0.7

0.8

0.9

1

1.1

d/a
0

    (c)    

G
T
 (

N
/m

)

 

 

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

d/a
0

    (b)    

G
T
 (

N
/m

)

 

 

0 0.5 1 1.5 2

2

2.5

3

3.5

4

4.5

d/a
0

   (a)    

G
T
 (

N
/m

)

 

 

tip d
tip c

tip d
tip c

tip d
tip c

Impermeable
Semi−permeable Permeable

Figure 3.12: GT versus inter-crack distance for different electric boundary
conditions

Fig. 3.11 shows the variation of MERR for different piezoceramics, PZT-4, PZT-5H,

PZT-7A and BaTiO3 at inner and outer tips of cracks with respect to inter-crack

distance. It shows that BaTiO3 has a lower MERR vis-a-vis PZT-4.
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Figs. 3.12(a, b, c) depict the variation of TERR versus d/a0 for different crack-face

electric boundary conditions. Same behavior is observed for TERR versus d/a0 as

in MERR versus d/a0 case. Also it may be pointed that for impermeable crack

condition the TERR at both interior and exterior tips of the crack diminishes as

compared to that for MERR. While for permeable and semi-permeable crack face

conditions it remains the same as in case of MERR.
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Figure 3.13: GT versus inter-crack distance for different piezoelectric ceramics

In Fig. 3.13 variation of TERR for different piezoceramics, PZT-4, PZT-5H and

PZT-7A is plotted at inner and outer tips of cracks with respect to inter-crack

distance. It shows that PZT-5H and PZT-7A show a lower TERR vis-a-vis PZT-4.

This may assist the designer to select the proper ceramic for the specific utility.

3.6.2 Effect of prescribed electric displacement load

In Fig. 3.14 the variation of KI is plotted versus prescribed electric displacement,

D∞2 , for different prescribed mechanical load σ∞22. It is observed as the D∞2 is in-

creased the KI increases linearly although the increase is not much and KI remains

more at inner tip as compared to that at outer tip. It is also to be noted that an

increase in the prescribed mechanical load, steps up the KI , as uniformly as one

increases the mechanical load.
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Figure 3.14: KI versus prescribed electric displacement load for different
mechanical load
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Figure 3.15: KIV versus prescribed electric displacement load for different
mechanical load

In Fig. 3.15 the variation of KIV , electric displacement intensity factor, is presented

with increasing prescribed D∞2 . It is observed that as the D∞2 is increased KIV

also increases but it is more steep and shows a more fan like increase starting from

almost zero value. Further when prescribed mechanical load is increased then KIV ,

increases but behavior remains the same.

Fig. 3.16 depicts the variation of GM versus dimensionless electric displacement

loading factor λd{= (c33/e33)(σ∞22/D
∞
2 )}, for different prescribed mechanical load
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σ∞22. It shows the same variation as shown in Fig. 3.14.
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Figure 3.16: GM versus prescribed electric displacement load for different
mechanical load

3.6.3 Effect of prescribed loadings

Three cases of prescribed loadings are considered in this section when

(i) σ∞22 = 0MPa, D∞2 = 0.001C/m2,

(ii) σ∞22 = 1MPa, D∞2 = 0C/m2,

(iii) σ∞22 = 1MPa, D∞2 = 0.001C/m2,

and their effect on COD, COP, KI , KIV , GM and GT are studied. It is noted

for σ∞22 = 0MPa all above parameters remain zero and for non-zero prescribed

mechanical loading the variations are observed.

Fig. 3.17 shows the variation of COD on crack face. It may be noted from curved

graph drawn that for prescribed zero and non-zero electric displacement load there

is not much difference.

COP gets most affected and it drops further when non-zero electric loading is

prescribed as compared to the case when electric displacement loading is zero as

shown in Fig. 3.18.

There is not much effect seen on KI behaviors for zero and non-zero value of

electrical loading as may be noted in Fig. 3.19.
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A similar behavior is seen for KIV , from Fig. 3.20 KIV versus inter-crack distance

is plotted. It is seen that for non-zero prescribed electrical loading the electric

displacement intensity factor increases but the behavior remains the same as that

in case of zero electrical loading.

Figs. 3.21 and 3.22 show the variation of GM and GT versus normalized inter-

crack distance, respectively. There is almost negligible difference in the variation for

zero and non-zero prescribed electrical displacement.
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Figure 3.17: COD profile over the crack surface for different
electro-mechanical loads
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Figure 3.18: COP drop over the crack surface for different electro-mechanical
loads



66

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

d / a
0

K
I (

10
5  N

m
−

3/
2 )

 

 

σ
22
∞ =0 MPa, D

2
∞=0.001 C/m2

σ
22
∞ =1 MPa, D

2
∞=0 C/m2

σ
22
∞ =1 MPa, D

2
∞=0.001 C/m2

solid line : K
I
 at tip d

dashed line : K
I
 at tip c 

Figure 3.19: KI versus inter-crack distance for different electro-mechanical
loads
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Figure 3.20: KIV versus inter-crack distance for different electro-mechanical
loads
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Figure 3.21: GM versus inter-crack distance for different electro-mechanical
loads
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Figure 3.22: GT versus inter-crack distance for different electro-mechanical
loads

3.7 Conclusions

• The problem of two equal collinear semi-permeable cracks embedded in a piezo-

electric plate is proposed. Closed form expressions are derived for COD, COP,

SIF, EDIF, MERR and TERR using Stroh formalism and complex variable

techniques.

• The effect of cracks on KI , KIV , GM and GT strongly depends on the distance

between the cracks. The effect of cracks on each other weakens when the

distance between the cracks is greater than or equal to the length of the crack.

• Opening of relative crack faces also strongly depends on the dielectric per-

mittivity of crack gap media i.e., crack-face electric boundary conditions. As

the permeability of the medium increases the opening of relative crack faces

decreases, that is the permittivity in the crack gap media can not be ignored.

• The dependence of KI , KIV , GM and GT on material constants is shown

graphically. It assist the designer/metallurgist to correctly select piezoelectric

ceramic for specific job.
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Chapter 4

Strip-saturation Model for a
Piezoelectric Plate

Piezoelectric ceramic being sensitive to both mechanical and electrical loading

conditions has found utility in a wide variety of mechanical and electronic equip-

ments. For these materials, there were unexplained discrepancies between theory

and experiments.

In order to explain experimental observations, Gao et al. [43] proposed a strip sat-

uration model for a finite crack in an infinite poled piezoelectric plate. In this model

the electrical saturation accounted was based on a generalization of the Dugdale

[24] approach. Wang [126] presented a fully anisotropic analysis of a strip-saturation

model proposed by Gao et al. [43] for piezoelectric materials. A relationship between

the size of the saturation zone ahead of a crack tip and the electric displacement

was derived. Bhargava and Setia [13, 14] proposed a strip-saturation model for a

semi-infinite piezoelectric strip of finite height weakened by a crack parallel to the

strip edges.

Most of the reported strip-saturation models that have been proposed are for

single crack only. Therefore, a strip-saturation model is proposed in this chapter

for a poled transversely isotropic piezoelectric plate cut along two equal collinear

straight cracks. The Stroh formalism and complex variable technique are adopted to

obtain the analytical solution of the problem. Closed-form expressions are derived

for the developed saturation zone length, crack opening displacement (COD), crack

opening potential drop (COP), stress intensity factors (SIFs) and the energy release

This chapter is published in Mathematics and Mechanics of Solids (SAGE publi-
cation), Vol. 19 (2014), pp. 714-725.
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rate (ERR). Theoretical derivations are validated by exact solutions existing in

literature.

A qualitative numerical case study is presented for ceramics PZT-4, PZT-5H,

PZT-7A and BaTiO3 to study the effects of various parameters as follows: developed

saturation zone length and prescribed load, stress intensity factor, energy release

rate and crack opening displacement on crack growth resistance. The energy release

rate and the stress intensity factor variations are investigated with respect to the

inter-crack distance. The results obtained are presented graphically and discussed.

4.1 Statement of the Problem
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Figure 4.1: Schematic representation of the problem

A transversely isotropic piezoelectric plate occupying entire x1ox2 plane, poled along

ox2-direction is considered. The plate is cut along two equal collinear hairline

straight cracks, L1 and L2. The cracks L1 and L2 occupy, the respective, intervals

[−c,−d] and [d, c] on x1-axis. The cracks faces are mechanically traction free and

electrically impermeable. Uniform constant normal stress σ22 = σ∞22 and electrical

displacement D2 = D∞2 are prescribed at remote boundary of the plate, consequently

cracks open in self-similar fashion forming a strip-saturation zone ahead each tip of
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the cracks. The respective saturation zones Γ1, Γ2, Γ3 and Γ4 developed at each

tip −c, −d, d and c occupies the respective intervals [−a,−c], [−d,−b], [b, d] and

[c, a] on x1-axis. The developed saturation zones are arrested by a normal cohesive

saturation limit electric displacement D2 = Ds. The schematic configuration of the

problem is depicted in Fig. 4.1.

4.2 Mathematical Model of the Problem

The boundary conditions of the problem may mathematically be written as

(i) σ+
22 = σ−22 = 0, D2 = 0, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,

(iii) u+
2 = u−2 , σ+

22 = σ−22, D2 = Ds, on Γ =
4⋃
i=1

Γi,

(iv) Φ+
,1 = Φ−,1 = −V, V = [0, σ∞22, 0, D

∞
2 ]T for d < |x1| < c,

(v) Φ+
,1 = Φ−,1, u+

2 = u−2 , D+
2 = D−2 = Ds −D∞2 , on Γ =

4⋃
i=1

Γi.

A mathematical model is obtained with the help of above mentioned boundary

conditions as follows:

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BF(x1)−BF(x1)]+ − [BF(x1)−BF(x1)]− = 0. (4.2.1)

The solution of which may directly be written using Equation (2.7.31) as

BF(z) = BF(z) = h(z) (say) (4.2.2)

Boundary condition (iv) together with Equations (4.2.2 and 2.7.7) leads to following

vector Hilbert problem

h+(x1) + h−(x1) = −V, d < |x1| < c. (4.2.3)

Introducing a complex function vector Ω(z) = [Ω1(z),Ω2(z),Ω3(z),Ω4(z)]T as

Ω(z) = HRBF(z), (4.2.4)
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which on using Equation (4.2.2) gives the relation

h(z) = ΛΩ(z), (4.2.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (4.2.3) may be written in component form for Ω2(z) and

Ω4(z), yield following scalar Hilbert problem

Λ22[Ω+
2 (x1) + Ω−2 (x1)] + Λ24[Ω+

4 (x1) + Ω−4 (x1)] = −σ∞22, d < |x1| < c, (4.2.6)

Λ42[Ω+
2 (x1) + Ω−2 (x1)] + Λ44[Ω+

4 (x1) + Ω−4 (x1)] = −D∞2 , d < |x1| < c. (4.2.7)

4.3 Solution of the Problem

Eliminating Ω+
4 (x1) + Ω−4 (x1) from Equations (4.2.6 and 4.2.7), one obtains

Ω+
2 (x1) + Ω−2 (x1) = −σ

∞
22Λ44 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

, d < |x1| < c. (4.3.1)

The general solution of Equation (4.3.1) using Equation (2.7.30) may be written as

Ω2(z) =
P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

, (4.3.2)

where X1(z) =
√

(z2 − d2)(z2 − c2) and P1(z) = C0z
2 + C1z + C2.

Constant

C0 =
Λ44σ

∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

is determined using condition lim
z→∞

Ω2(z) = 0.

The condition of single-valuedness around the cracks i.e.,∫
Li

[Ω+
2 (x1)− Ω−2 (x1)]dx1 =

∫
Li

P1(x1)

X1(x1)
dx1 = 0, i = 1, 2, (4.3.3)

gives C1 = 0 and C2 = −C0c
2E(k)/F (k), where F (k) and E(k) are the complete

elliptic integrals of first and second kind, respectively.

Thus the desired stress function Ω2(z) may be written as

Ω2(z) =
1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2λ2

X1(z)
− 1

}
, (4.3.4)

where k2 = 1− (d/c)2, λ2 = E(k)/F (k).
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Analogously to determine Ω4(z), Equation (4.2.7) is solved using the boundary con-

dition (iii) and Equation (2.7.30), the solution may be written as

Ω4(z) =
1

2πiΛ44X2(z)

∫
Γ

DsX2(t)

t− z
dt+

P2(z)

2Λ44X2(z)
− D∞2

2Λ44

− Λ42

Λ44

Ω2(z), (4.3.5)

where X2(z) =
√

(z2 − a2)(z2 − b2) and P2(z) = A0z
2 + A1z + A2.

Again constant A0 = D∞2 is determined using condition lim
z→∞

Ω4(z) = 0. Also A1 and

A2 are determined from the condition of single-valuedness of displacement around

cracks i.e., ∫
C′

[Ω+
4 (x1)− Ω−4 (x1)]dx1 = 0, C ′ = [−a,−b] ∪ [b, a]. (4.3.6)

Finally, evaluating the integral in Equation (4.3.5) and substituting the values of

constants A0, A1 and A2, the required potential Ω4(z), may be written as

Ω4(z) = − Ds

πΛ44

{
(z2 − a2λ2

1)
(π

2
− ψd + ψc

)
− πD∞2

2Ds

(z2 − a2λ2
1)

}
1

X2(z)

+
Ds

πΛ44

(π
2
− θd + θc

)
− Ds

πΛ44X2(z)
a2R1 −

D∞2
2Λ44

− Λ42

Λ44

Ω2(z), (4.3.7)

where,

k2
1 =

a2 − b2

a2
, λ2

1 = E(k1)/F (k1), sin2 ψd =
a2 − d2

a2 − b2
, sin2 ψc =

a2 − c2

a2 − b2
,

θd = tan−1

√
(a2 − z2)(d2 − b2)

(b2 − z2)(a2 − d2)
, θc = tan−1

√
(a2 − z2)(c2 − b2)

(b2 − z2)(a2 − c2)
,

R1 =
d

a

{
E(ψd, k1)− λ2

1F (ψd, k1)
}
− c

a

{
E(ψc, k1)− λ2

1F (ψc, k1)
}

− k2
1 (sinψd cosψd − sinψc cosψc) .

4.4 Applications

In this section closed form analytic expressions are derived for developed saturation

zones size, crack opening displacement, crack opening potential drop, stress intensity

factor and energy release rate.

4.4.1 Saturation zone size

The electric displacement ahead of crack tip is determined using

D2(x1) = Λ42[Ω+
2 (x1) + Ω−2 (x1)] + Λ44[Ω+

4 (x1) + Ω−4 (x1)]. (4.4.1)



74

Substituting the values of Ω2(x1) and Ω4(x1) from Equations (4.3.4 and 4.3.7) and

simplifying one obtains

D2(x1) = −2Ds

π

{
(x2

1 − a2λ2
1)
(π

2
− ψd + ψc

)
+ a2R1

} 1

X2(x1)

+
2Ds

π

(π
2
− θd + θc

)
+D∞2

{
x2

1 − a2λ2
1

X2(x1)
− 1

}
. (4.4.2)

Extending Dugdale’s hypothesis [43] for electric displacement to remain finite at

every point of a piezoelectric ceramic under linear piezoelectricity theory assumption,

one obtains two non-linear equations

at the tip x1 = b (
b2

a2
− λ2

1

)(
πD∞2
2Ds

− π

2
+ ψd − ψc

)
−R1 = 0, (4.4.3)

and at the tip x1 = a

(
1− λ2

1

)(πD∞2
2Ds

− π

2
+ ψd − ψc

)
−R1 = 0. (4.4.4)

These results enable one to determine a and b, and the saturation zone is than

determined by (a− c) and (d− b), respectively.

4.4.2 Crack opening displacement (COD)

We introduced the jump displacement vector ∆u,1, with the aid of Equations (2.7.6

and 4.2.4) as

i∆u,1 = HR[BF+(x1)−BF−(x1)] = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−1,1, φ+ − φ−]T .

(4.4.5)

The relative crack face opening displacement, ∆u2(x1) is obtained using second

component from Equation (4.4.5) and substituting the value of Ω2(x1) from Equation

(4.3.4) and integrating we obtain

∆u2(x1) =
2c(σ∞22Λ44 −D∞2 Λ24)

Λ22Λ44 − Λ24Λ42

{
E(ϕ, k)− λ2F (ϕ, k)

}
, d < |x1| < c (4.4.6)

where, sin2 ϕ = (c2 − x2
1)/(c2 − d2).
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4.4.3 Crack opening potential drop (COP)

The COP at the crack tips d and c, are obtained using fourth component of Equation

(4.4.5) and required value from Equation (4.3.7) as

at the tip x1 = d

∆u4(d) = − Ds

πΛ44

{
R3 −

πaD∞2
Ds

R4

}
, (4.4.7)

and at the tip x1 = c

∆u4(c) =
Ds

πΛ44

R5 −
aD∞2
Λ44

{
E(ψc, k1)− λ2

1F (ψc, k1)
}
, (4.4.8)

where,

R2 = aλ2
1

(π
2
− ψd + ψc

)
− aR1, sin2 ϑd =

a2(d2 − b2)

d2(a2 − b2)
,

G(d, c) = −d ln

(√
(d2 − b2)(a2 − c2) +

√
(a2 − d2)(c2 − b2)√

(d2 − b2)(a2 − c2)−
√

(a2 − d2)(c2 − b2)

)

+
2b2

a

√
a2 − c2

c2 − b2
II(ϑd,

c2k2
1

c2 − b2
, k1),

H(c, d) = c ln

(√
(c2 − b2)(a2 − d2) +

√
(a2 − c2)(d2 − b2)√

(c2 − b2)(a2 − d2)−
√

(a2 − c2)(d2 − b2)

)

− 2

a

√
(d2 − b2)(a2 − d2)

{
F (ψc, k1) +

d2

a2 − d2
II(ψc,

a2 − b2

a2 − d2
, k1)

}
,

R3 =
2b2

a

√
a2 − d2

d2 − b2

{
F (ϑd, k1)− II(ϑd,

d2 − b2

d2
, k1)

}
− d ln

(
a2 − d2

a2 − b2
+
a2(d2 − b2)

d2(a2 − b2)

)
+2a

(π
2
− ψd + ψc

){
E(ϑd, k1)− k2

1 sinϑd cosϑd√
1− k2

1 sin2 ϑd

}
− 2R2F (ϑd, k1)−G(d, c),

R4 = E(ϑd, k1)− λ2
1F (ϑd, k1)− k2

1 sinϑd cosϑd√
1− k2

1 sin2 ϑd
,

R5 = −c ln

(
(a2 − c2)(c2 − b2)

c2(a2 − b2)
+ 1

)
+

2

a

√
c2 − b2

a2 − c2

{
a2F (ψc, k1)− c2II(ψc,

a2 − c2

a2
, k1)

}
+ 2a

(π
2
− ψd + ψc

)
E(ψc, k1)− 2R2F (ψc, k1) +H(c, d).
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4.4.4 Stress intensity factor (SIF)

The stress intensity factor KI , at the crack tips x1 = d and x1 = c, is determined

using the definition

KI(d) = lim
x1→d−

√
2π(d− x1)σ22(x1), (4.4.9)

KI(c) = lim
x1→c+

√
2π(x1 − c)σ22(x1). (4.4.10)

Evaluating σ22(x1) using Equations (2.7.7, 4.2.5 and 4.3.4) substituting in Equations

(4.4.9 and 4.4.10) and simplifying one obtains

KI(d) = −
√

π

d(c2 − d2)

(
σ∞22 −D∞2

Λ24

Λ44

)
(d2 − c2λ2), (4.4.11)

KI(c) =

√
π

c(c2 − d2)

(
σ∞22 −D∞2

Λ24

Λ44

)
(c2 − c2λ2). (4.4.12)

4.4.5 Energy release rate (ERR)

The local energy release rate (LERR) at the actual crack tips x1 = d and x1 = c is

calculated using definition of Gao et al. [34]

at the tip x1 = d

J(d) =
π(d2 − c2λ2)2

2d(c2 − d2)
[VTHRV− 1

Λ44

(D∞2 )2]

=
π(d2 − c2λ2)2

2d(c2 − d2)

{
HR(2, 2)(σ∞22)2 + 2HR(2, 4)σ∞22D

∞
2 +

(HR(2, 4))2

HR(2, 2)
(D∞2 )2

}
,

(4.4.13)

and at the tip x1 = c

J(c) =
π(c2 − c2λ2)2

2c(c2 − d2)
[VTHRV− 1

Λ44

(D∞2 )2]

=
π(c2 − c2λ2)2

2c(c2 − d2)

{
HR(2, 2)(σ∞22)2 + 2HR(2, 4)σ∞22D

∞
2 +

(HR(2, 4))2

HR(2, 2)
(D∞2 )2

}
.

(4.4.14)

The global energy release rate (GERR), Ja, at the inner and outer crack tips is

calculated using

Ja(d) = J(d) +Ds∆u4(d), (4.4.15)

Ja(c) = J(c) +Ds∆u4(c). (4.4.16)
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4.5 Validation

The case of a strip-saturation model for a single crack occupying the interval [−c, c]

on ox1-axis is obtained directly making b = d → 0. The Equations (4.3.4, 4.3.7,

4.4.2, 4.4.4 and 4.4.12) reduce to

Ω2(z) =
1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

{
z√

z2 − c2
− 1

}
, (4.5.1)

Ω4(z) = −Λ42

Λ44

Ω2(z) +
D∞2
2Λ44

(
z√

z2 − a2
− 1

)
+

Ds

πΛ44

{
π

2
− 1

2i
ln

z
c

√
a2−c2√
z2−a2 + i

z
c

√
a2−c2√
z2−a2 − i

− z√
z2 − a2

cos−1(
c

a
)

}
, (4.5.2)

D2(x1) =

(
D∞2 −

2

π
Ds cos−1(

c

a
)

)
x1√
x2

1 − a2
−D∞2 +

2Ds

π

{
π

2
− 1

2i
ln

z
c

√
a2−c2√
z2−a2 + i

z
c

√
a2−c2√
z2−a2 − i

}
,

(4.5.3)

c

a
= cos

(
π

2

D∞2
Ds

)
, (4.5.4)

KI(c) =
√
πc

(
σ∞22 −

Λ24

Λ44

D∞2

)
. (4.5.5)

which validates with results of Wang [126].

4.6 Case Study

A case study is presented to investigate the behavior of parameters affecting viz.

saturation zone size, stress intensity factor, crack opening displacement, energy re-

lease rate, as the applied load is increased resisting the crack opening. The material

constants are given in Table 2.1.

We assume the lengths of the cracks are 10mm each and saturation limit electric

displacement, Ds = 0.03C/m2.

Fig. 4.2, depicts the saturation zone sizes for PZT-4 ceramic at the interior and

exterior tips of the crack when electric load ratio D∞2 /Ds, is increased. It is observed

that the zone developed at the interior tip is bigger than that at exterior tip for the

same applied load D∞2 /Ds. Further the prescribed load is increased then developed

zone sizes also increases at both interior and exterior tips, as expected. Also the

zone size is more when the two cracks are situated close to each other.
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Figure 4.2: Normalized saturation zone length versus electric displacement
load ratio for PZT-4 ceramic
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Figure 4.3: COD profile over the crack surface for different piezoelectric
ceramics

COD over the rims of the cracks is plotted in Fig. 4.3. The dotted line shows

the COD for a single center crack problem for BaTiO3 ceramic. It may be noted

that the crack rims open symmetrically with respect to middle point of the crack.

The COD for two symmetrically situated cracks shows a shift in COD toward the

internal crack tip. Also the COD is more in this case as compared to single center

crack, as expected. It may also be noted from the Fig. 4.3 that PZT-4 ceramic

shows maximum opening and for BaTiO3 ceramic the crack opens less.
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Figure 4.4: COP at (a) inner and (b) outer saturation zones for PZT-4
ceramic

Variation of COP drop versus normalized inner and outer saturation zones is drawn

in Figs. 4.4(a) and 4.4(b) for PZT-4 ceramic, respectively. It is observed that

potential drop is more at inner zone than that at outer zone, as expected. As the

inter crack distance 2d/(c − d), is increased than the COP decreases at both the

crack tips, but drop in COP is higher at inner tip as compared to that at outer tip.
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Figure 4.5: KI versus inter-crack distance for different piezoelectric ceramics

Variation of SIF, KI , versus normalized inter-crack distance is plotted in Fig. 4.5 for

different piezoelectric ceramics and prescribed D∞2 = 0.005C/m2, σ∞22 = 10MPa.

It is observed that KI at interior crack tip is higher than that at exterior tip. It is
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to be noted that when the two cracks are nearer to each other there is higher stress

singularity at the interior tips, this is because of the mutual interactions of the two

cracks on each other and as the inter-crack distance increases the stress singularity

decreases, stabilizes and coincides with the results of single center crack problem.

It is also observed that KI is maximum for the ceramic PZT-4 as compared to the

other ceramics PZT-5H, PZT-7A and BaTiO3, this is because of the dependence

of KI on the components of Irwin’s material constant matrix HR and the ratio

Λ24

Λ44
. It is maximum for PZT-4 and minimum for PZT-7A. The numerical values of

components of Irwin’s matrix HR are given in Table 4.1 for all the four ceramics.

Table 4.1: Components of Irwin’s matrix HR and inverse matrix Λ = [HR]−1

for different piezoelectric ceramics

Material HR
22 HR

24 HR
44 Λ24 Λ44

PZT-4 3.4989× 10−11 0.0443 −1.7486× 108 5.4817 −4.3303× 10−9

PZT-5H 3.2131× 10−11 0.0256 −0.9156× 108 7.1078 −8.9384× 10−9

PZT-7A 3.8232× 10−11 0.0300 −2.0031× 108 3.5024 −4.4682× 10−9

BaTiO3 3.8303× 10−11 0.0244 −1.4642× 108 5.1534 −5.9695× 10−9

Units: HR
22, N−1m2; HR

24, C−1m2; HR
44, C−1(V.m); Λ24, N(V.m)−1; Λ44,

C(V.m)−1.
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Figure 4.6: KI versus electric displacement for different piezoelectric ceramics

SIF, KI , is plotted against increasing value of prescribed electric displacement in Fig.

4.6 for different piezoelectric ceramics. It is observed that as the load is increased



81

the KI also increases at both inner and outer tips of the crack. It is to be noted that

KI is considerably higher at the inner tip vis-a-vis that at exterior tip of the crack

for all the ceramics considered. PZT-4 ceramic shows a higher stress concentration

and PZT-7A ceramic shows the least concentration.
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Figure 4.7: LERR (J) versus inter-crack distance for different piezoelectric
ceramics

Fig. 4.7 depicts the variation of the LERR at the inner and outer crack tips versus

normalized inter-crack distance for different piezoelectric ceramics. It can be seen

from the Fig. 4.7 that the LERR is more at the inner crack tip compared to that

at outer crack tip. It is also observed that with increase in inter-crack distance;

the local energy release rate at the inner and the outer tips becomes equal. This

is because the mutual influence of cracks on each other decreases as the distance

between them is increased. Also as the LERR depends on factor VTHRV. It is

maximum for ceramic PZT-4 and minimum for BaTiO3 ceramic, therefore LERR is

maximum for PZT-4 and minimum for BaTiO3.

Fig. 4.8 shows the variation of open mode stress intensity factor versus inter-

crack distance at both inner and outer tips of the crack for following mechanical and

electrical loading conditions

case (i) σ∞22 = 0MPa, D∞2 = 0.005C/m2,

case (ii) σ∞22 = 10MPa, D∞2 = 0C/m2,

case (iii) σ∞22 = 10MPa, D∞2 = 0.005C/m2.
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It is noted that for case (i) (i.e., mechanical loading is zero) the open mode stress

intensity factor, KI , is minimum at both the crack tips. It stabilizes for d
a0
≥ 1.5. It

increases but shows the same behavior when electrical loading is zero and mechanical

loading is non-zero i.e. case (ii). It further increases almost 2.6 times of that in case

(i) with same behavior for case (iii) loading.
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Figure 4.8: KI versus inter-crack distance for different electro-mechanical
loads
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Figure 4.9: LERR (J) versus inter-crack distance for different
electro-mechanical loads

Fig. 4.9 depicts the LERR variation with respect to inter-crack distance for above

stated three cases. LERR is minimum for case (i) implying the crack arrest is more

effective in this case. The LERR stabilizes for d
a0
≥ 2. For case (ii) when electrical
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loading is zero the energy release rate increases by four times but with the same

behavior as in case (i) at both the tips of the crack. For case (iii) the LERR further

increases and stabilizes for d
a0
≥ 2.
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Figure 4.10: Normalized GERR versus applied electric displacement load for
different inter-crack distance and PZT-4 ceramic

Fig. 4.10 shows the variation of normalized GERR versus applied electric loading

D∞2 for PZT-4 ceramic and different inter-crack distance. It shows that normalized

GERR decreases as the applied electric displacement loading increases.

4.7 Conclusions

• A strip-saturation model is proposed for a poled piezoelectric plate cut along

two equal collinear hairline straight cracks under in-plane mechanical and elec-

tric loads.

• Closed-form expressions are derived for the SIF, ERR, COD and COP drop.

Two non-linear simultaneous equations are obtained to determine the satura-

tion zone length.

• The crack effect on the SIF and ERR’s depends on the distance between them.

The effect of cracks on each other weakens when the distance between the

cracks increases.
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Chapter 5

Strip-saturation Model with
Coalesced Interior Zones

It is observed that if the piezoelectric plate is weakened by two or more cracks

and the plate is subjected to electro-mechanical loading which causes opening of the

faces of the cracks then a saturation zone developed ahead each of the tip of the

cracks. If the load applied is increased, size of developed saturation zones becomes

bigger and the saturation zone developed at the two adjacent tips of the two cracks

get coalesced. This type of effect for ordinary elastic materials was first studied by

Theocaris [119] for an infinite plate weakened by two collinear straight cracks with

unified interior plastic zone. The model was modified by Bhargava and Agrawal [9]

for the case when developed plastic zone were closed by variable loads, for the case

of two equal straight cracks with coalesced plastic zone weakening a plate. Also, Xu

et al. [132] studied the problem of two equal length collinear cracks in an infinite

sheet using weight function method. While this type of effect is not studied for

piezoelectric materials. Therefore to address this paucity a strip-saturation model

for a transversely isotropic piezoelectric plate weakened by two equal collinear cracks

with coalesced interior saturation zones is proposed.

5.1 Statement of the Problem

Let a poled transversely isotropic piezoelectric plate occupy the x1ox2 plane and

the polling direction for it is parallel to x2-axis. It is cut along two equal collinear

This chapter is published in Applied Mathematical Modelling (Elsevier publica-
tion), Vol. 37 (2013), pp. 4093-4102.
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hairline straight cracks, L1 and L2. The cracks L1 and L2 occupy, the respective,

intervals [−c,−d] and [d, c] on x1-axis. The cracks surfaces are traction free and

electrically impermeable. Unidirectional, normal, uniform constant stress σ∞22 and

electric displacement D∞2 prescribed at remote boundary open the cracks in self-

similar fashion forming a strip- saturation zone ahead of each tip of the two cracks.

The loads are increased to the limit that the saturation zones developed at the

interior tip of the two cracks get coalesced. The developed three saturation zones

are denoted by Γ1, Γ2 and Γ3. These occupy, respective, intervals [−a,−c], [−d, d]

and [c, a] on x1-axis. To stop the crack from further opening the developed saturation

zones are subjected to normal, cohesive saturation-limit electric displacement D2 =

Ds. Schematically the configuration of the problem is depicted in Fig. 5.1.
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Figure 5.1: Schematic representation of the problem

5.2 Mathematical Model of the Problem

The boundary conditions of the problem may mathematically be expressed as

(i) σ+
22 = σ−22 = 0, D2 = 0, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,



87

(iii) u+
2 = u−2 , σ+

22 = σ−22, D2 = Ds, on Γ =
3⋃
i=1

Γi,

(iv) Φ+
,1 = Φ−,1 = −V, V = [0, σ∞22, 0, D

∞
2 ]T , for d < |x1| < c,

(v) Φ+
,1 = Φ−,1, u+

2 = u−2 , D+
2 = D−2 = Ds −D∞2 , on Γ =

3⋃
i=1

Γi.

A mathematical model is obtained with the help of above mentioned boundary

conditions as follows:

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BF(x1)−BF(x1)]+ − [BF(x1)−BF(x1)]− = 0. (5.2.1)

The solution of which may directly be written using Equation (2.7.31) as

BF(z) = BF(z) = h(z) (say) (5.2.2)

Boundary condition (iv) together with Equations (5.2.2 and 2.7.7) leads to following

vector Hilbert problem

h+(x1) + h−(x1) = −V, d < |x1| < c. (5.2.3)

Introducing a complex function vector Ω(z) = [Ω1(z),Ω2(z),Ω3(z),Ω4(z)]T as

Ω(z) = HRBF(z), (5.2.4)

which on using Equation (5.2.2) gives the relation

h(z) = ΛΩ(z), (5.2.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (5.2.3) may be written in component form for Ω2(z) and

Ω4(z), yield following scalar Hilbert problem

Λ22[Ω+
2 (x1) + Ω−2 (x1)] + Λ24[Ω+

4 (x1) + Ω−4 (x1)] = −σ∞22, d < |x1| < c, (5.2.6)

Λ42[Ω+
2 (x1) + Ω−2 (x1)] + Λ44[Ω+

4 (x1) + Ω−4 (x1)] = −D∞2 , d < |x1| < c. (5.2.7)
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5.3 Solution of the Problem

Eliminating Ω+
4 (x1) + Ω−4 (x1) from Equations (5.2.6 and 5.2.7), one obtains

Ω+
2 (x1) + Ω−2 (x1) = −σ

∞
22Λ44 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

, d < |x1| < c. (5.3.1)

The general solution of Equation (5.3.1) using Equation (2.7.30) may be written as

Ω2(z) =
P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

, (5.3.2)

where X1(z) =
√

(z2 − d2)(z2 − c2) and P1(z) = C0z
2 + C1z + C2.

Constant

C0 =
Λ44σ

∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

is determined using condition lim
z→∞

Ω2(z) = 0.

The condition of single-valuedness around the cracks i.e.,∫
Li

[Ω+
2 (x1)− Ω−2 (x1)]dx1 =

∫
Li

P1(x1)

X1(x1)
dx1 = 0, i = 1, 2, (5.3.3)

gives C1 = 0 and C2 = −C0c
2E(k)/F (k), where F (k) and E(k) are the complete

elliptic integrals of first and second kind, respectively.

Thus the desired stress function Ω2(z) may be written as

Ω2(z) =
1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2λ2

X1(z)
− 1

}
, (5.3.4)

where k2 = 1− (d/c)2, λ2 = E(k)/F (k).

Analogously to determine Ω4(z), Equation (5.2.7) is solved using the boundary con-

dition (iii) and Equation (2.7.30), the solution may be written as

Ω4(z) =
1

2πiΛ44X2(z)

∫
Γ

DsX2(t)

t− z
dt+

P2(z)

2Λ44X2(z)
− D∞2

2Λ44

− Λ42

Λ44

Ω2(z), (5.3.5)

where X2(z) =
√
z2 − a2 and P2(z) = A0z + A1.

Again constant A0 = D∞2 is determined using condition lim
z→∞

Ω4(z) = 0. Also A1 = 0

is determined from the condition of single-valuedness of displacement around cracks

i.e., ∫ a

−a
[Ω+

4 (x1)− Ω−4 (x1)]dx1 = 0. (5.3.6)
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Finally, evaluating the integral in Equation (5.3.5) and substituting the values of

constants A0 and A1, the required potential Ω4(z), may be written as

Ω4(z) =
Ds

πΛ44

{
π

2
− tan−1

(
c

z

√
z2 − a2

a2 − c2

)
+ tan−1

(
d

z

√
z2 − a2

a2 − d2

)}
− Λ42

Λ44

Ω2(z)

− Ds

πΛ44

(
π

2
− sin−1 c

a
+ sin−1 d

a

)
z√

z2 − a2
+
D∞2
2Λ44

(
z√

z2 − a2
− 1

)
.

(5.3.7)

5.4 Applications

In this section the closed form analytical expressions are derived for developed sat-

uration zone length at the exterior crack tips, crack opening displacement, crack

opening potential drop, stress intensity factor and energy release rate.

5.4.1 Saturation zone size

The electric displacement ahead of crack tip is determined using

D2(x1) = Λ42[Ω+
2 (x1) + Ω−2 (x1)] + Λ44[Ω+

4 (x1) + Ω−4 (x1)]. (5.4.1)

Substituting the values of Ω2(x1) and Ω4(x1) from Equations (5.3.4 and 5.3.7) and

simplifying we obtain

D2(x1) = Ds

1− 2

π

tan−1 c

x1

√
x2

1 − a2

a2 − c2
− tan−1 d

x1

√
x2

1 − a2

a2 − d2

−D∞2
+

{
D∞2 −Ds +

2Ds

π

(
sin−1 c

a
− sin−1 d

a

)}
x1√
x2

1 − a2
, |x1| > a. (5.4.2)

Extending Dugdale’s hypothesis [43] for electric displacement to remain finite at

every point of a piezoelectric ceramic under linear piezoelectricity theory assumption,

one obtains non-linear equation

a

d
=

[
1 +

{
c

d
sec

(
πD∞2
2Ds

)
− tan

(
πD∞2
2Ds

)}2
]1/2

. (5.4.3)

Determining a from Equation (5.4.3), the saturation zone is determined using |c−a|.
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5.4.2 Crack opening displacement (COD)

We introduced the jump displacement vector ∆u,1, with the aid of Equations (2.7.6

and 5.2.4) as

i∆u,1 = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−1,1, φ+ − φ−]T = HR[BF+(x1)−BF−(x1)].

(5.4.4)

The relative crack face opening displacement, ∆u2(x1) is obtained using second

component from Equation (5.4.4) and substituting the value of Ω2(x1) from Equation

(5.3.4) and integrating we obtain

∆u2(x1) =
2c(σ∞22Λ44 −D∞2 Λ24)

Λ22Λ44 − Λ24Λ42

{
E(ϕ, k)− λ2F (ϕ, k)

}
, d < |x1| < c (5.4.5)

where, sin2 ϕ = (c2 − x2
1)/(c2 − d2).

5.4.3 Crack opening potential drop (COP)

The COP, ∆u4(x1) is obtained using fourth component of Equation (5.4.4) substi-

tuting required value from Equation (5.3.7) and noting that ∆u4 = 0 at x1 = ±a

one obtains,

∆u4(x1) = − 2Ds

πΛ44

[(c− x1)ω(x1, a, c) + (c+ x1)ω(−x1, a, c)− (d− x1)ω(x1, a, d)

−(d+ x1)ω(−x1, a, d)]− Λ42

Λ44

∆u2(x1), |x1| < a

(5.4.6)

where, ω(x1, c, a) = cosh−1 | a2−c2
a(c−x1)

+ c
a
|, ω(x1, d, a) = cosh−1 | a2−d2

a(d−x1)
+ d

a
|.

5.4.4 Stress intensity factor (SIF)

The stress intensity factor KI , at the crack tips x1 = d and x1 = c, is determined

using the definition

KI(d) = lim
x1→d−

√
2π(d− x1)σ22(x1), (5.4.7)

KI(c) = lim
x1→c+

√
2π(x1 − c)σ22(x1). (5.4.8)
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Evaluating σ22(x1) using Equations (2.7.7, 5.2.5 and 5.3.4) and substituting in Equa-

tions (5.4.7 and 5.4.8) and simplifying one obtains

KI(d) = −
√

π

d(c2 − d2)

(
σ∞22 −D∞2

Λ24

Λ44

)
(d2 − c2λ2), (5.4.9)

KI(c) =

√
π

c(c2 − d2)

(
σ∞22 −D∞2

Λ24

Λ44

)
(c2 − c2λ2). (5.4.10)

5.4.5 Energy release rate (ERR)

The local energy release rate (LERR) at the actual crack tips x1 = d and x1 = c is

calculated using definition given by Gao et al. [34]

at the tip x1 = d

J(d) =
π(d2 − c2λ2)2

2d(c2 − d2)
[VTHRV− 1

Λ44

(D∞2 )2]

=
π(d2 − c2λ2)2

2d(c2 − d2)

{
HR(2, 2)(σ∞22)2 + 2HR(2, 4)σ∞22D

∞
2 +

(HR(2, 4))2

HR(2, 2)
(D∞2 )2

}
,

(5.4.11)

and at the tip x1 = c

J(c) =
π(c2 − c2λ2)2

2c(c2 − d2)
[VTHRV− 1

Λ44

(D∞2 )2]

=
π(c2 − c2λ2)2

2c(c2 − d2)

{
HR(2, 2)(σ∞22)2 + 2HR(2, 4)σ∞22D

∞
2 +

(HR(2, 4))2

HR(2, 2)
(D∞2 )2

}
.

(5.4.12)

The global energy release rate (GERR), Ja, at the inner and outer crack tips is

calculated using

Ja(d) = J(d) +Ds∆u4(d), (5.4.13)

Ja(c) = J(c) +Ds∆u4(c). (5.4.14)

5.5 Case Study

An illustrative example for PZT-4, PZT-5H, PZT-7A and BaTiO3 cracked un-

bounded piezoceramic plates is presented to study the capability of crack arrest

of the model proposed.

The crack length, prescribed mechanical stress and electric displacement are

respectively, taken as 10mm, 100MPa and 0.003C/m2.
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Fig. 5.2 depicts the behavior of normalized outer saturation zone length to electric

displacement load ratio. It is observed when more load is prescribed then a bigger

saturation zone develops, as expected.

Variation of normalized SIF, K∗I (= KI/
√
πa0σ

∞
22) versus a0/c0, (a0 = (c −

d)/2, c0 = (c + d)/2) is plotted in Fig. 5.3. It may be noted as a0/c0 ratio is

increased the SIF also increases. The normalized SIF at the inner crack tip of the

crack is always higher than that at outer crack tip i.e., the inner tip of the crack is

more stressed, as could also be inferred from Fig. 5.3.
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Figure 5.2: Variations of normalized outer zone length versus D∞2 /Ds for
PZT-4 ceramic
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Figure 5.3: Variations of normalized SIF versus a0/c0 for PZT-4 ceramic
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Normalized SIF, K∗I (= KI/
√
πa0σ

∞
22) study versus prescribed electric displacement

load D∞2 is plotted in Fig. 5.4 for PZT-4, PZT-5H, PZT-7A and BaTiO3 ceramics.

For all the ceramics as D∞2 is increased the SIF increase linearly, as expected. Also

it may be noted that the SIF at inner tip is higher as compared to that at outer

tips of the cracks. It is also observed that SIF is the least for PZT-7A ceramic while

highest for the case of PZT-4 ceramic.
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Figure 5.5: Variations of normalized GERR versus Ds

The crack arrest study vis-a-vis distributed saturation-limit electric displacement

load Ds, on the developed saturation zones is presented in Fig. 5.5 for D∞2 =

0.003C/m2 and σ∞22 = 100MPa. It is observed that normalized GERR, J∗a(=
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Ja/πa0H
R(2, 2)(σ∞22)2) for all ceramics reduce (amounting to the arrest of crack

opening) as Ds value increased.

5.6 Conclusions

• A strip-saturation model for a transversely isotropic piezoelectric plate weak-

ened with coalesced interior saturation zones is proposed.

• Analytic closed form expressions are obtained to determine the saturation

zone length, open mode stress intensity factor, crack opening displacement

and energy release rate.

• The results for saturation zone length, stress intensity factor, and energy re-

lease rate with respect to prescribed load ratio, inter crack distance show that

if the cracks are brought close to each other then the interior tips of the cracks

are more stressed as compared to exterior tips. If the cracks are moved far

apart the effect on each other reduces.

• The energy release rate reduction concludes that model proposed is capable of

crack arrest under small-scale electric saturation.



Chapter 6

Strip-electro-mechanical Yielding
Model for a Piezoelectric Plate

Very few papers which consider both mechanical and electrical yielding of piezo-

electric plate are available in literature. Shen et al. [108] was first to address the

problem of mechanical and electrical yielding for a cracked piezoelectric plate under

anti-plane shear mechanical loading and in-plane electrical loading. Bhargava and

Saxena [12] further investigated the problem under different loading conditions and

different mechanical and electrical yielding. Also Loboda et al. [78] investigated

a crack problem in a thin ductile layer between two piezoelectric material under

remote in-plane electric and mechanical loading. They too considered both electric

and mechanical yielding.

Most of the reported strip-electro-mechanical yield models that have been pro-

posed are for single crack case only. We propose a strip-electro-mechanical yielding

model for a piezoelectric plate weakened by two equal collinear cracks with electri-

cal polarization reaching a saturation limit and normal stress reaching a yield stress

along a line segment in front of the cracks. Three different situations are investi-

gated when developed electrical saturation zones are bigger/smaller or equal to the

developed mechanical yield zones.

This chapter is published in Applied Mathematical Modelling (Elsevier publica-
tion) Vol. 37 (2013), pp. 9101-9116.

95
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6.1 Statement of the Problem

An unbounded transversely isotropic piezoelectric plate occupies the plane x1ox2 and

poled along ox2-direction is weakened by two equal collinear cracks L1 and L2, which

occupy respective, intervals [−c,−d] and [d, c] on x1-axis. In-plane unidirectional,

normal, uniform constant tension σ22 = σ∞22 and electric displacement D2 = D∞2 are

prescribed at remote boundary of the plate. Consequently the cracks yield open

in self-similar fashion forming an electric saturation and a mechanical yield zone

ahead of each tip of the cracks. These developed strip saturation Γi(i = 1, 2, 3, 4)

and mechanical yield zones Γ′i(i = 1, 2, 3, 4) occupy respective, intervals [−a,−c],

[−d,−b], [b, d], [c, a], and [−c1,−c], [−d,−d1], [d1, d] and [c, c1] on x1-axis. The

crack opening is stopped by distributing on the saturation zone rims a saturation-

limit electric displacement D2 = Ds and a yield point stress σ22 = σs, on the yield

zone rims, respectively. Three cases are considered

Case I: when saturation zones are bigger than developed yield zones,

Case II: when saturation zones are smaller than developed yield zones,

Case III: when saturation and yield zones are equal.

6.2 Mathematical Model and Solution of the Prob-

lem

6.2.1 Case I: When saturation zones are bigger than devel-
oped yield zones (|b| < |d1| and |a| > |c1|)

Schematically the configuration of the problem is depicted in Fig. 6.1.

Mathematically the boundary conditions of the problem may be written as

(i) σ+
22 = σ−22 = 0, D2 = 0, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,

(iii) σ+
22 = σ−22 = σs, for Γ′ =

4⋃
i=1

Γ′i,
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(iv) D+
2 = D−2 = Ds, for Γ =

4⋃
i=1

Γi,

(v) ΦI+
,1 = ΦI−

,1 = −VI , for d < |x1| < c,

where VI = [0, σ∞22, 0, D
∞
2 ]T , and superscript I denotes that quantity refers to the

Case I.
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Figure 6.1: Schematic representation of the configuration of problem for Case
I, when saturation zones are bigger than developed yield zones

A mathematical model obtained with the help of above mentioned boundary condi-

tions is solved as follows:

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BFI(x1)−BFI(x1)]+ − [BFI(x1)−BFI(x1)]− = 0. (6.2.1)

The solution of which may directly be written using Equation (2.7.31) as

BFI(z) = BFI(z) = hI(z) (say) (6.2.2)

Boundary condition (v) together with Equations (6.2.2 and 2.7.7) leads to following

vector Hilbert problem

hI+(x1) + hI−(x1) = −VI , d < |x1| < c. (6.2.3)



98

Introducing a complex function vector ΩI(z) = [ΩI
1(z),ΩI

2(z),ΩI
3(z),ΩI

4(z)]T as

ΩI(z) = HRBFI(z), (6.2.4)

which on using Equation (6.2.2) gives the relation

hI(z) = ΛΩI(z), (6.2.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (6.2.3) may be written in component form for ΩI
2(z) and

ΩI
4(z), yield following scalar Hilbert problem

Λ22[ΩI+
2 (x1) + ΩI−

2 (x1)] + Λ24[ΩI+
4 (x1) + ΩI−

4 (x1)] = −σ∞22, d < |x1| < c, (6.2.6)

Λ42[ΩI+
2 (x1) + ΩI−

2 (x1)] + Λ44[ΩI+
4 (x1) + ΩI−

4 (x1)] = −D∞2 , d < |x1| < c. (6.2.7)

6.2.1.1 Solution of the Problem

Eliminating ΩI+
4 (x1) + ΩI−

4 (x1) from Equations (6.2.6 and 6.2.7) and then solving

using Equation (2.7.30) together with boundary condition (iii) one obtains

ΩI
2(z) =

Λ44σs −DsΛ24

2πiX1(z)Σ

∫
Γ′

X1(t)

t− z
dt+

P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

(6.2.8)

where

P1(z) = C0z
2 + C1z + C2, X1(z) =

√
(z2 − d2

1)(z2 − c2
1) and Σ = Λ22Λ44 − Λ24Λ42.

Constant

C0 =
Λ44σ

∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

is determined using condition lim
z→∞

ΩI
2(z) = 0. Also C1 and C2 are determined from

the condition of single-valuedness of displacement around cracks i.e.,∫
C′i

[ΩI+
2 (x1)− ΩI−

2 (x1)]dx1 = 0, i = 1, 2, (6.2.9)

C ′1 and C ′2 denote the respective intervals [−c1,−d1] and [d1, c1] on x1-axis.

Finally, evaluating the integral in Equation (6.2.8) and substituting the values of

constants C0, C1 and C2, the required potential ΩI
2(z), may be written as

ΩI
2(z) =

1

2

Λ44σ
∞
22 −D∞2 Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

Λ44σs − Λ24Ds

πΣ

(π
2
− ϕd + ϕc

)
−Λ44σs − Λ24Ds

πΣX1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
,

(6.2.10)
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where,

k2
1 =

c2
1 − d2

1

c2
1

, λ2
1 = E(k1)/F (k1), sin2 ψd =

c2
1 − d2

c2
1 − d2

1

, sin2 ψc =
c2

1 − c2

c2
1 − d2

1

,

ϕd = tan−1

√
(d2

1 − z2)(d2 − c2
1)

(c2
1 − z2)(d2

1 − d2)
, ϕc = tan−1

√
(d2

1 − z2)(c2 − c2
1)

(c2
1 − z2)(d2

1 − c2)
,

R1 = dc1

{
E(ψd, k1)− λ2

1F (ψd, k1)
}
− cc1

{
E(ψc, k1)− λ2

1F (ψc, k1)
}

− k2
1c

2
1 (sinψd cosψd − sinψc cosψc) .

Analogously to determine ΩI
4(z), Equation (6.2.7) is solved using the boundary con-

dition (iv) and Equation (2.7.30), the solution may be written as

ΩI
4(z) =

1

2πiΛ44X2(z)

∫
Γ

DsX2(t)

t− z
dt+

P2(z)

2Λ44X2(z)
− D∞2

2Λ44

− Λ42

Λ44

ΩI
2(z), (6.2.11)

where P2(z) = A0z
2 + A1z + A2 and X2(z) =

√
(z2 − a2)(z2 − b2).

Again constant A0 = D∞2 is determined using condition lim
z→∞

ΩI
4(z) = 0. Also A1 and

A2 are determined from the condition of single-valuedness of displacement around

cracks i.e.,∫
C′′i

[ΩI+
4 (x1)− ΩI−

4 (x1)]dx1 = 0, i = 1, 2, C ′′1 = [−a,−b], C ′′2 = [b, a] on x1 − axis.

(6.2.12)

Finally, evaluating the integral in Equation (6.2.11) and substituting the values of

constants A0, A1 and A2, the required potential ΩI
4(z), may be written as

ΩI
4(z) = −Λ42

Λ44

ΩI
2(z) +

D∞2
2Λ44

{
z2 − a2λ2

2

X2(z)
− 1

}
+

Ds

πΛ44

(π
2
− υd + υc

)
− Ds

πΛ44X2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
, (6.2.13)

where,

k2
2 = 1− (b/a)2, λ2

2 = E(k2)/F (k2), sin2 ϑd =
a2 − d2

a2 − b2
, sin2 ϑc =

a2 − c2

a2 − b2
,

υd = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − d2)

(d2 − b2)
, υc = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − c2)

(c2 − b2)
,

R2 = da
{
E(ϑd, k2)− λ2

2F (ϑd, k2)
}
− ca

{
E(ϑc, k2)− λ2

2F (ϑc, k2)
}

− a2k2
2 (sinϑd cosϑd − sinϑc cosϑc) .
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6.2.1.2 Applications

In this section the expressions are derived for length of saturation zone, yield zone,

crack opening displacement, crack opening potential drop and energy release rate.

Saturation zone

The electric displacement is determined using Equations (2.7.7 and 6.2.5) as

ΦI
,1(x1) = BFI+(x1) + BFI−(x1) = ΛΩI+(x1) + ΛΩI−(x1), |x1| > a. (6.2.14)

Taking the fourth component of above Equation (6.2.14), we get

DI
2(x1) = Λ42

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ44

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (6.2.15)

Substituting values of ΩI
2(x1) and ΩI

4(x1) from Equations (6.2.10 and 6.2.13) and

simplifying one finally arrives at

DI
2(x1) =

2Ds

π

(π
2
− υd + υc

)
+D∞2

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2Ds

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (6.2.16)

The saturation zones lengths are now obtained by extending Dugdale [43] hypothesis

to the electric displacement to remain finite at every point of the plate. This leads

to the determination of two non-linear equations(
b2

a2
− λ2

2

)(
πD∞2
2Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (6.2.17)

(
1− λ2

2

)(πD∞2
2Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (6.2.18)

to determine a and b. Hence saturation zone length at the tips c and d are calculated

from (a− c) and (d− b), respectively.

Yield zone

To calculate yield zones lengths the required stress component is obtained by writing

second component of Equation (6.2.14),

σI22(x1) = Λ22

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ24

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (6.2.19)
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Substituting values from Equations (6.2.10 and 6.2.13) and simplifying, we get

σI22(x1) =
2

π

(
σs −

Λ24

Λ44

Ds

)(π
2
− ϕd + ϕc

)
+

(
σ∞22 −

Λ24

Λ44

D∞2

){
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
− 2

πX1(x1)

(
σs −

Λ24

Λ44

Ds

){
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
.

(6.2.20)

Using Dugdale’s [24] hypothesis that the stress remain finite at every point of the

plate consequently at the points x1 = d1 and x1 = c1 also we get the following

transcendental equations, respectively(
d2

1

c2
1

− λ2
1

)(
π

2

Λ44σ
∞
22 − Λ24D

∞
2

Λ44σs − Λ24Ds

− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (6.2.21)

(
1− λ2

1

)(π
2

Λ44σ
∞
22 − Λ24D

∞
2

Λ44σs − Λ24Ds

− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (6.2.22)

These enable us to determine c1 and d1 for prescribed loads. The yield zone lengths

are than calculated from (c1 − c) and (d− d1).

Crack opening displacement (COD)

The jump displacement vector ∆uI,1 is determined as

i∆uI,1(x1) = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−3,1, E−1 − E+

1 ]T = HR[BFI+(x1)−BFI−(x1)].

(6.2.23)

The jump displacement component ∆uI2 at the crack tips d and c are obtained by

remembering that ∆uI2 = 0 at the tips x1 = ±d1,±c1

at the inner crack tip x1 = d

∆uI2(d) =− (Λ44σs − Λ24Ds)

πΣ

{
2d2

1

c1

√
c2

1 − d2

d2 − d2
1

R3 − d ln(A) + 2F (τd, k1)
R1

c1

}

− (Λ44σs − Λ24Ds)

πΣ

{
G(d, c) + 2c1

(π
2
− ψd + ψc

)
R4

}
+
c1

Σ
(Λ44σ

∞
22 − Λ24D

∞
2 )R4, (6.2.24)

at the outer crack tip x1 = c

∆uI2(c) =
(Λ44σs − Λ24Ds)

πΣ

{
2c1

(π
2
− ψd + ψc

)
R5 +H(c, d)− c ln(B)

}
+

(Λ44σs − Λ24Ds)

πΣ

{
2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
− c1

Σ
(Λ44σ

∞
22 − Λ24D

∞
2 )R5, (6.2.25)
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where,

ln(A) = ln

(
c2

1 − d2

c2
1 − d2

1

+
c2

1(d2
1 − d2)

d2(c2
1 − d2

1)

)
, ln(B) = ln

(
(c2

1 − c2)(c2 − d2
1)

c2(c2
1 − d2

1)
+ 1

)
,

sin2 τd = c2
1(d2 − d2

1)/
(
d2(c2

1 − d2
1)
)
, R3 =

(
F (τd, k1)− II (τd,

d2 − d2
1

d2
, k1)

)
,

R4 =

(
E(τd, k1)− k2

1 sin τd cos τd√
1− k2

1 sin2 τd
− λ2

1F (τd, k1)

)
,

R5 =
(
E(ψc, k1)− λ2

1F (ψc, k1)
)
, R6 =

(
c2

1F (ψc, k1)− c2II (ψc,
c2

1 − c2

c2
1

, k1)

)
,

G(d, c) = d ln

(√
(d2 − d2

1)(c2
1 − c2) +

√
(c2

1 − d2)(c2 − d2
1)√

(d2 − d2
1)(c2

1 − c2)−
√

(c2
1 − d2)(c2 − d2

1)

)

− 2d2
1

c1

√
c2

1 − c2

c2 − d2
1

II (τd,
c2k2

1

c2 − d2
1

, k1),

H(c, d) = c ln

(√
(c2 − d2

1)(c2
1 − d2) +

√
(c2

1 − c2)(d2 − d2
1)√

(c2 − d2
1)(c2

1 − d2)−
√

(c2
1 − c2)(d2 − d2

1)

)

− 2

c1

√
(d2 − d2

1)(c2
1 − d2)

(
F (ψc, k1) +

d2

c2
1 − d2

II (ψc,
c2

1 − d2
1

c2
1 − d2

, k1)

)
.

Crack opening potential drop (COP)

COP is calculated by taking fourth component from Equation (6.2.23) and substi-

tuting from Equation (6.2.13) and integrating, one gets

at the inner crack tip x1 = d

∆uI4(d) =− Ds

πΛ44

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c) +

2b2

a

√
a2 − d2

d2 − b2
R7

}
− 2aDs

πΛ44

(π
2
− ϑd + ϑc

)
R8 +

aD∞2
Λ44

R8 −
Λ42

Λ44

∆uI2(d), (6.2.26)

and at the outer crack tip x1 = c

∆uI4(c) =
Ds

πΛ44

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a
+

2

a

√
c2 − b2

a2 − c2
R9

}
+

2aDs

πΛ44

(π
2
− ϑd + ϑc

)
R10 −

aD2
∞

Λ44

R10 −
Λ42

Λ44

∆uI2(c), (6.2.27)

where,

ln(C) = ln

(
a2 − d2

a2 − b2
+
a2(b2 − d2)

d2(a2 − b2)

)
, ln(D) = ln

(
(a2 − c2)(c2 − b2)

c2(a2 − b2)
+ 1

)
,

sin2 ξd = a2(d2 − b2)/
(
d2(a2 − b2)

)
, R7 =

(
F (ξd, k2)− II(ξd,

d2 − b2

d2
, k2)

)
,
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R8 =

(
E(ξd, k2)− k2

2 sin ξd cos ξd√
1− k2

2 sin2 ξd
− λ2

2F (ξd, k2)

)
,

R9 =

(
a2F (ϑc, k2)− c2II(ϑc,

a2 − c2

a2
, k2)

)
, R10 =

(
E(ϑc, k2)− λ2

2F (ϑc, k2)
)
,

G1(d, c) = d ln

(√
(d2 − b2)(a2 − c2) +

√
(a2 − d2)(c2 − b2)√

(d2 − b2)(a2 − c2)−
√

(a2 − d2)(c2 − b2)

)

− 2b2

a

√
a2 − c2

c2 − b2
II(ξd,

c2k2
2

c2 − b2
, k2),

H1(c, d) = c ln

(√
(c2 − b2)(a2 − d2) +

√
(a2 − c2)(d2 − b2)√

(c2 − b2)(a2 − d2)−
√

(a2 − c2)(d2 − b2)

)

− 2

a

√
(d2 − b2)(a2 − d2)

(
F (ϑc, k2) +

d2

a2 − d2
II(ϑc,

a2 − b2

a2 − d2
, k2)

)
.

Energy release rate (ERR)

Energy release rate is calculated at the interior tip x1 = d and x1 = c exterior tip

using the formulae

J Ia (d) = σs∆u
I
2(d) +Ds∆u

I
4(d), (6.2.28)

J Ia (c) = σs∆u
I
2(c) +Ds∆u

I
4(c). (6.2.29)

6.2.1.3 Case I: Results and Discussions

A qualitative study is presented for a PZT-4 ceramic plate. The material constants

used for different ceramics are listed in Table 2.1.

The crack length, prescribed mechanical stress and electric displacement are

respectively, taken as 10mm, 10MPa and 0.01C/m2.

Fig. 6.2 depicts the variation of saturation zone to crack length ratio vis-a-vis

electric load ratio D∞2 /Ds. It is observed that as prescribed electric load is increased

a bigger saturation zone develops, as expected. It may be noted that for the same

load saturation zone at the inner tip is bigger than that at the outer tip. Also

when two cracks are nearer the difference in crack zone length of the saturation

zone at interior and exterior tip is remarkable but as the distance between two

cracks is increased the variation in size of saturation zone at interior and exterior

tips decreases. This is because the effect of one crack on other reduces.



104

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
2
∞ / D

s

Sa
tu

ra
ti

on
 z

on
e 

le
ng

th
 / 

cr
ac

k 
le

ng
th

 

 

tip d
tip c
tip d
tip c

2b=0.005m

2b=0.001m

Figure 6.2: Normalized saturation zone length versus D∞2 /Ds
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Figure 6.3: COD profile at (a) interior and (b) exterior yield zones

The profile of COD over the yield zone length at interior and exterior tips is plotted

in Figs. 6.3(a and b), respectively. The yield zone opens more at the interior tip

while less COD is shown at the outer yield zone, as expected.

Variation of COD, ∆uI2 with respect to prescribed electric load at the inner and

outer tips x1 = d and x1 = c are respectively plotted in Figs. 6.4(a and b). It is

noted that COD at each of the tips increases linearly. And it is more at inner tip

than that at outer tip. It is also noted that as mechanical loading is increased the

cracks open more, as expected.
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Figure 6.4: COD versus D∞2 for different mechanical loads
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Figure 6.5: COP drop at (a) interior and (b) exterior saturation zones

Variation of COP, ∆uI4 versus normalized inner and outer saturation zones is drawn

in Figs. 6.5(a and b), respectively. It is observed that potential drop is more at the

inner zone than that at outer zone, as expected. Also as the distance 2b is increased

than the difference of COP at inner tip is more as compared to that at outer tip.

Figs. 6.6(a and b) show that COP decreases with increase in mechanical loading

although COP increases with increase in electric loading. Potential drop is higher

at the interior tip, as expected.
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Figure 6.6: COP versus D∞2 for different mechanical loads
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Figure 6.7: ERR versus D∞2 for different mechanical loads

Energy release rate at inner and outer tips versus prescribed electric load for various

values of prescribed mechanical load σ∞22 = 10MPa, 20MPa, 30MPa are plotted

in Figs. 6.7(a and b), respectively. The results show that the energy release rate

decreases as the electric load is increased, which assures the crack arrest. It is also

observed as the prescribed mechanical load is increased the value of energy release

rate increases.

Figs. 6.8(a, b) depict the energy release rate variation vis-a-vis prescribed electric

load for PZT-4, PZT-5H, PZT-7A and BaTiO3 ceramics. It is observed that BaTiO3

ceramic has minimum energy release rate and it is maximum for PZT-4 ceramic.
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This may help designers to select the appropriate ceramic as desired.
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Figure 6.8: ERR versus D∞2 for different piezoceramics

6.2.2 Case II: When saturation zones are smaller than de-
veloped yield zones (|c1| > |a| and |b| > |d1|)

Schematically the configuration of the problem is depicted in Fig. 6.9.
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Figure 6.9: Schematic representation of the configuration of problem for Case
II, when saturation zones are smaller than developed yield zones

The boundary conditions from (i) to (iv) remain the same as in Case I. And the
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boundary condition (v) is replaced by condition (vi) as

(vi) ΦII+
,1 = ΦII−

,1 = −VII , for d < |x1| < c

where, VII = [0, σ∞22, 0, D
∞
2 ]T , and superscript II represents that the quantity refers

to Case II.

6.2.2.1 Solution of the Problem

Carrying out calculations analogous to Case I with the boundary condition (vi) for

this case yield the following two dual Hilbert problems for potentials ΩII
2 (z) and

ΩII
4 (z) as

Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)] = −σ∞22, d < |x1| < c,

(6.2.30)

Λ42[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ44[ΩII+
4 (x1) + ΩII−

4 (x1)] = −D∞2 , d < |x1| < c.

(6.2.31)

The solution of which may be written, carrying the similar calculation as in Case I,

as

ΩII
4 (z) =

Λ22D
∞
2 − Λ42σ

∞
22

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
+

Λ22Ds − Λ42σs
πΣ

(π
2
− υd + υc

)
− Λ22Ds − Λ42σs

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
, (6.2.32)

ΩII
2 (z) =− Λ42

Λ22

ΩII
4 (z) +

σ∞22

2Λ22

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

σs
πΛ22

(π
2
− ϕd + ϕc

)
− σs
πΛ22X1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
. (6.2.33)

6.2.2.2 Applications

As in Case I here we obtain the expression for calculations of yield zone, saturation

zone length, crack opening displacement, crack opening potential drop and energy

release rate.

The stress and electric displacement for this case are obtained using

ΦII
,1 (x1) = BFII+(x1) + BFII−(x1) = ΛΩII+(x1) + ΛΩII−(x1), |x1| > c1. (6.2.34)
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Comparing second and fourth components from above equation, we get

σII22(x1) = Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)], (6.2.35)

DII
2 (x1) = Λ42[ΩII+

2 (x1) + ΩII−
2 (x1)] + Λ44[ΩII+

4 (x1) + ΩII−
4 (x1)]. (6.2.36)

Substituting the values of ΩII
2 (x1) and ΩII

4 (x1) from Equations (6.2.32 and 6.2.33)

and simplifying one obtains

σII22(x1) =
2σs
π

(π
2
− ϕd + ϕc

)
+ σ∞22

{
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
− 2σs
πX1(x1)

{
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
, (6.2.37)

DII
2 (x1) =

2(Λ22Ds − Λ42σs)

πΛ22

(π
2
− υd + υc

)
+

(Λ22D
∞
2 − Λ42σ

∞
22)

Λ22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2(Λ22Ds − Λ42σs)

πΛ22X2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (6.2.38)

Yield zone

Using Dugdale’s [24] hypothesis that the stress remains finite at every point of the

body, consequently at the tips x1 = d1 and x1 = c1 of the yield zones, one obtains

non-linear equations to determine d1 and c1 from(
d2

1

c2
1

− λ2
1

)(
πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (6.2.39)

(
1− λ2

1

)(πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (6.2.40)

Saturation zone

Assuming Dugdale’s hypothesis to be true for electric displacement as well hence the

condition of finiteness of electrical displacements at every point of the plate yields

the following two equations(
b2

a2
− λ2

2

)(
π

2

Λ22D
∞
2 − Λ42σ

∞
22

Λ22Ds − Λ42σs
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (6.2.41)

(
1− λ2

2

)(π
2

Λ22D
∞
2 − Λ42σ

∞
22

Λ22Ds − Λ42σs
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (6.2.42)

Crack opening potential drop (COP)

The crack opening potential drop for this case is determined analogous to Equation

(6.2.23) as

i∆uII,1 (x1) = Λ[ΩII+(x1)−ΩII−(x1)]. (6.2.43)
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Comparing the fourth component of the above equation and substituting value of

ΩII
4 (x1) from Equation (6.2.32) one obtains potential drop at the crack tips x1 = d

and x1 = c as

∆uII4 (d) =− (Λ22Ds − Λ42σs)

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
− (Λ22Ds − Λ42σs)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
a(Λ22D

∞
2 − Λ42σ

∞
22)

Σ
R8, (6.2.44)

∆uII4 (c) =
(Λ22Ds − Λ42σs)

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
+

(Λ22Ds − Λ42σs)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

− a(Λ22D
∞
2 − Λ42σ

∞
22)

Σ
R10. (6.2.45)

Crack opening displacement (COD)

The COD at the crack tips x1 = d and x1 = c are obtained comparing second

component of Equation (6.2.43) and substituting value of ΩII
2 (x1) from Equation

(6.2.33) and simplifying, one obtains

∆uII2 (d) =− σs
πΛ22

{
−d ln(A) +

2d2
1

c1

√
c2

1 − d2

d2 − d2
1

R3 + 2F (τd, k1)
R1

c1

+G(d, c)

}
− 2c1σs
πΛ22

(π
2
− ψd + ψc

)
R4 +

c1σ
∞
22

Λ22

R4 −
Λ24

Λ22

∆uII4 (d), (6.2.46)

∆uII2 (c) =
σs
πΛ22

{
−c ln(B) +H(c, d) + 2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
+

2c1σs
πΛ22

(π
2
− ψd + ψc

)
R5 −

c1σ
∞
22

Λ22

R5 −
Λ24

Λ22

∆uII4 (c). (6.2.47)

Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

formulae

J IIa (d) = σs∆u
II
2 (d) +Ds∆u

II
4 (d), (6.2.48)

J IIa (c) = σs∆u
II
2 (c) +Ds∆u

II
4 (c). (6.2.49)
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6.2.2.3 Case II: Results and Discussions

A similar study as in Case I is carried for Case II as well.
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Figure 6.10: Normalized mechanical zone length versus load ratio σ∞22/σs

Fig. 6.10 shows the variation of developed yield zone versus the applied load ratio

σ∞22/σs. As expected, as the prescribed load is increased the yield zone increases in

size. It may be noted that for the same load, a bigger yield zone develops at the

inner tip than that at the outer tip. Also when two cracks are nearer the difference of

the yield zone at interior and exterior tip is remarkable but as the distance between

two cracks is increased the variation in size of yield zones at interior and exterior

tips decreases. This is because the effect of one crack on other reduces.

Variation of COP at the interior and exterior saturation zones is plotted in Figs.

6.11(a and b). Comparing the Figs. 6.5 and 6.11 the difference between two cases

may easily be noted. Also it is to be pointed out that COP is much smaller in this

Case as compared to the Case I.

Figs. 6.12(a and b) show that COP decreases with increase in mechanical loading

although COP increases with increase in electric loading. Potential drop is higher

at the interior tips, as expected.
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Figure 6.11: COP drop over the saturation zones

0.01 0.015 0.02 0.025 0.03
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

D
2
∞ (C/m2)

(a)

−
 1

04  ∆
 u

4 II
 (

d)
 (

V
)

 

 

0.01 0.015 0.02 0.025 0.03
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

D
2
∞ (C/m2)

(b)

−
10

4  ∆
 u

4 II
 (

c)
 (

V
)

 

 

σ
22
∞ =10MPa

σ
22
∞ =20MPa

σ
22
∞ =30MPa

σ
22
∞ =10MPa

σ
22
∞ =20MPa

σ
22
∞ =30MPa

Figure 6.12: COP versus D∞2 for different σ∞22

Figs. 6.13(a and b) depict the opening of interior and exterior yield zones. It may be

observed from Fig. 6.13(a) that the inner yield zone opens more and as the distance

2d1, between two interior yield zone is increased the crack opening reduces. Also

when the variation is compared with that in Fig. 6.3(a) one can note that the inner

distance 2d1, has more effect in Case II.

Figs. 6.14(a, b) depict the variation of COD at the inner and outer crack tips

for different prescribed mechanical loads. It is noted that COD at each of the tips

increases linearly. It is more at inner tip than that at outer tip.
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Figure 6.13: Behavior of COD over yield zones
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Figure 6.14: COD versus D∞2 for different σ∞22

Variation of ERR at the inner and outer crack tips versus D∞2 for different values of

prescribed mechanical stress σ∞22 is shown in Figs. 6.15(a, b). The results show that

the energy release rate decreases as the electric load is increased, which assures the

crack arrest. It is also observed that as the prescribed mechanical load is increased

the value of energy release rate increases.

Figs. 6.16(a, b) depict the ERR for various ceramics as the prescribed electric

load D∞2 is increased. It is observed that BaTiO3 ceramic has minimum energy

release rate and it is maximum for PZT-4 ceramic.
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Figure 6.15: ERR versus D∞2 for different σ∞22

0.01 0.015 0.02 0.025 0.03
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

D
2
∞ (C/m2)

                  (a)                     

10
3  J

a II
 (

d)
 (

N
/m

)

 

 

0.01 0.015 0.02 0.025 0.03
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

D
2
∞ (C/m2)

                   (b)                     

10
3  J

a II
 (

c)
 (

N
/m

)

 

 

PZT−4
PZT−5H
PZT−7A
BaTiO

3PZT−4
PZT−5H
PZT−7A
BaTiO

3

Figure 6.16: ERR versus D∞2 for different piezoceramics

6.2.3 Case III: When saturation and yield zones are equal
(|c1| = |a| and |b| = |d1|)

Schematically the configuration of the problem is depicted in Fig. 6.17.

The boundary conditions form (i) to (iv) remain the same as in Case I. And the

boundary condition (v) is replaced by condition (vii) as

(vii) ΦIII+
,1 = ΦIII−

,1 = −VIII , for d < |x1| < c

where, VIII = [0, σ∞22, 0, D
∞
2 ]T and superscript III represents that the quantity refers

to Case III.
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6.2.3.1 Solution of the Problem

Carrying out calculations analogous to Case I with the boundary condition (vii) for

this case yield the following two dual Hilbert problems for potentials ΩIII
2 (z) and

ΩIII
4 (z) as

Λ22[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ24[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = −σ∞22, d < |x1| < c,

(6.2.50)

Λ42[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ44[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = −D∞2 , d < |x1| < c.

(6.2.51)

The solution of which, carrying the similar calculation as in Case I, may be written

as

ΩIII
2 (z) =− Λ44σs − Λ24Ds

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
+

Λ44σ
∞
22 − Λ24D

∞
2

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
+

Λ44σs − Λ24Ds

πΣ

(π
2
− υd + υc

)
, (6.2.52)
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ΩIII
4 (z) =

Λ42σs − Λ22Ds

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 − Λ22D

∞
2

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ42σs − Λ22Ds

πΣ

(π
2
− υd + υc

)
, (6.2.53)

6.2.3.2 Applications

Expressions for crack opening displacement, crack opening potential drop, energy

release rate and developed zones are derived in this section.

Zone size

As in Case II, the stress and electric displacement for this case are obtained using

ΦIII
,1 (x1) = BFIII+(x1) + BFIII−(x1) = Λ[ΩIII+(x1) + ΩIII−(x1)], |x1| > a.

(6.2.54)

Comparing second and fourth components and substituting ΩIII
2 (z) and ΩIII

4 (z) from

Equations (6.2.52 and 6.2.53) and simplifying one obtains

σIII22 (x1) =
2σs
π

(π
2
− υd + υc

)
+ σ∞22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2σs
πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
, (6.2.55)

DIII
2 (x1) =

2Ds

π

(π
2
− υd + υc

)
+D∞2

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2Ds

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (6.2.56)

Applying Dugdale’s hypothesis of stresses and electric displacement remain finite

at the tips x1 = b and x1 = a of the zones, one obtains non-linear equations to

determine b and a from(
b2

a2
− λ2

2

)(π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (6.2.57)

(
1− λ2

2

) (π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (6.2.58)

where, R = σ∞22/σs or D∞2 /Ds.
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Crack opening displacement (COD)

The crack opening displacement for this case is determined using

i∆uIII,1 (x1) = Λ[ΩIII+(x1)−ΩIII−(x1)]. (6.2.59)

Comparing the second component of the above equation and substituting value of

ΩIII
2 (z) from Equation (6.2.52) one obtains COD at tips x1 = d and x1 = c, as

∆uIII2 (d) =− (Λ44σs − Λ24Ds)

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
− (Λ44σs − Λ24Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
a(Λ44σ

∞
22 − Λ24D

∞
2 )

Σ
R8, (6.2.60)

∆uIII2 (c) =
(Λ44σs − Λ24Ds)

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)
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}
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− a(Λ44σ
∞
22 − Λ24D

∞
2 )

Σ
R10. (6.2.61)

Crack opening potential drop (COP)

COP at the tips x1 = d and x1 = c are obtained, comparing fourth component

of Equation (6.2.59) and substituting value of ΩIII
4 (x1) from Equation (6.2.53) and

simplifying, as

∆uIII4 (d) =
(Λ42σs − Λ22Ds)

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
+

(Λ42σs − Λ22Ds)
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d2 − b2
R7
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− a(Λ42σ
∞
22 − Λ22D

∞
2 )

Σ
R8, (6.2.62)

∆uIII4 (c) =− (Λ42σs − Λ22Ds)

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
− (Λ42σs − Λ22Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

+
a(Λ42σ

∞
22 − Λ22D

∞
2 )

Σ
R10. (6.2.63)
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Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

J IIIa (d) = σs∆u
III
2 (d) +Ds∆u

III
4 (d), (6.2.64)

J IIIa (c) = σs∆u
III
2 (c) +Ds∆u

III
4 (c). (6.2.65)

6.2.3.3 Case III: Results and Discussion

A study similar to that in the Case I and Case II is carried for this case too.
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Figure 6.18: Yield-saturation zone length versus load ratio

Fig. 6.18 depicts the variation of yield-saturation zone length versus electric/mechanical

load ratio for a fixed crack length. It is observed from the Fig. 6.18 that as the

load ratio is increased the size of the yield-saturation zone also increases. A bigger

zone develops at the interior tips of the two cracks as compared to that at exterior

tips. It is due to the fact that when two cracks are close to each other their presence

affects the stress concentration. It is to be further noted that if the interior distance

between the two cracks is increased the developed zone size decreases at the interior

and exterior tips, as expected.

Crack opening displacement profile at the interior and exterior yield-saturation

zones is depicted in Figs. 6.19(a, b). It may be noticed from Fig. 6.19(a) that

COD has maximum value at the interior crack tip and becomes zero at the tip of

yield-saturation zone. When the two cracks are close to each other the crack opens

more and as the distance between the cracks is increased, COD is less at developed
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interior zone, as expected. Fig. 6.19(b) depicts variation of COD profile at the

exterior yield-saturation zone. Here too it is observed that COD is more when two

cracks are close but in this case when distance between the cracks is increased COD

reduces but this reduction is smaller as compared to that at the interior zone.
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Figure 6.19: Variation of COD over the inner and outer yield-saturation zone
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Figure 6.20: Variation of COP drop over the inner and outer yield-saturation
zone

Electric potential drop at the interior and exterior yield-saturation zone is plotted

in Figs. 6.20(a, b). It is observed that COP is more when distance between the two

cracks is decreased at both interior and exterior yield-saturation zone. This effect

is more at interior zone as compared to that at exterior zone.
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Figs. 6.21(a, b) depict energy release rate at the interior and exterior crack tips.

Graphs are drawn between the prescribed electric displacement variations for differ-

ent values of prescribed stress. It may be noted that energy release rate is slightly

lower at exterior tip than that at interior tips.

Figs. 6.22(a, b) depict the energy release rate variation vis-a-vis prescribed

electric load for PZT-4, PZT-5H, PZT-7A and BaTiO3 ceramics. It is observed that

BaTiO3 ceramic has minimum energy release rate and it is maximum for PZT-4

ceramic.
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Figure 6.21: ERR versus D∞2 for different σ∞22
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6.3 Conclusions

• Strip-electro-mechanical yield model is proposed and solved analytically using

Stroh formalism and complex variable technique. Three cases are considered

when saturation zones are bigger/smaller or equal to the developed yield zones.

• Analytical expressions are obtained for saturation and yield zones, crack open-

ing displacement, crack opening potential drop and energy release rate.

• It has been found that for all the three cases the energy release rate is higher

at the inner tip as compared to that at outer tip. This is because the mutual

influences of two cracks when they are closely located.

• The reduction of energy release rate for increased prescribed load ensures the

arrest of crack opening.
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Chapter 7

Strip-electro-mechanical Yielding
Model for Semi-permeable Cracks

Crack arrest problems in piezoelectric media have attracted a lot of attention

and have been investigated by many researchers. A lot of crack arrest problems [32,

43, 45, 46, 51, 61, 79, 89, 90] have been investigated for single crack in piezoelectric

media. But there is no study available for crack arrest problems in piezoelectric

media weakened by two or more cracks. Therefore to address this paucity a strip-

electro-elastic model is proposed for piezoelectric media weakened by two collinear

impermeable cracks in Chapters 4, 5 and 6 under different conditions. Also as we

have studied the effect of different crack face electric boundary conditions on various

fracture parameters in Chapter 3. It is found that the dielectric permittivity of the

crack gap media could not be ignored.

In this chapter, a strip-electric-saturation and mechanical yielding model solution

is proposed for a piezoelectric plate cut along two equal collinear semi-permeable

mode-I cracks with electrical polarization reaching a saturation-limit electric, dis-

placement and normal stress reaching a yield stress along a line segment in front

of the cracks. Three different situations are investigated when developed electri-

cal saturation zones are bigger/smaller or equal to the developed mechanical yield

zones.

Numerical results show that the effect of different electric boundary conditions on

the crack opening displacement and crack opening potential drop is significant. The

influence of electric displacement load on the energy release rate is also investigated

This chapter is published in Archive of Applied Mechanics (Springer publication)
Vol. 83 (2013), pp. 1469-1491.
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for PZT-4, PZT-5H and BaTiO3 ceramics, it may assist for the correct choosing of

ceramic for specific job.

7.1 Statement of the Problem

A transversely isotropic piezoelectric plate occupies entire x1ox2 plane. The plate

is poled along ox2-direction. The plate is cut along two horizontal collinear semi-

permeable cracks L1 and L2, these occupy the respective, intervals [−c,−d] and [d, c]

on x1-axis. The crack rims are free of any mechanical load and electrically semi-

permeable. The in-plane unidirectional, normal, uniform constant tension σ22 = σ∞22

and electric displacement D2 = D∞2 are prescribed at remote boundary of the plate.

Consequently the cracks open in self-similar fashion forming an electric saturation

and a mechanical yield zone ahead of each tip of the cracks. The developed strip

saturation Γi(i = 1, 2, 3, 4) and mechanical yield zones Γ′i(i = 1, 2, 3, 4) occupy

respective, intervals [−a,−c], [−d,−b], [b, d], [c, a], and [−c1,−c], [−d,−d1], [d1, d]

and [c, c1] on x1-axis. The crack opening is arrested by distributing on the saturation

zone rims a saturation-limit electric displacement D2 = Ds and a yield point stress

σ22 = σs, on the developed yield zone rims, respectively. Following three cases are

considered

Case I: when saturation zones are bigger than developed yield zones,

Case II: when saturation zones are smaller than developed yield zones,

Case III: when saturation and yield zones are equal.

7.2 Mathematical Model and Solution of the Prob-

lem

7.2.1 Case I: When saturation zones are bigger than devel-
oped yield zones (|b| < |d1| and |a| > |c1|)

Schematically the configuration of the problem is depicted in Fig. 7.1.
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Figure 7.1: Schematic representation of the configuration of problem for Case
I, when saturation zones are bigger than developed yield zones

Mathematically the boundary conditions of the problem may be written as

(i) σ+
22 = σ−22 = 0, D2 = D, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,

(iii) σ+
22 = σ−22 = σs − σ∞22, for Γ′ =

4⋃
i=1

Γ′i,

(iv) D+
2 = D−2 = Ds −D∞2 , for Γ =

4⋃
i=1

Γi,

(v) ΦI+
,1 = ΦI−

,1 = −VI , for d < |x1| < c,

where, D is the electric flux through the crack regions (−c,−d) and (d, c) determined

from the Equation (2.5.3) and VI = [0, σ∞22, 0, D
∞
2 ]T , where superscript I denotes

that quantity refers to the Case I.

A mathematical model is obtained with the help of above mentioned boundary

conditions as follows:

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BFI(x1)−BFI(x1)]+ − [BFI(x1)−BFI(x1)]− = 0. (7.2.1)
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The solution of which may directly be written using Equation (2.7.31) as

BFI(z) = BFI(z) = hI(z) (say) (7.2.2)

Using principal of superposition, boundary conditions (i) and (v) together with

Equations (7.2.2 and 2.7.7) leads to following vector Hilbert problem

hI+(x1) + hI−(x1) = V0 −VI , V0 = [0, 0, 0, D]T , d < |x1| < c. (7.2.3)

Introducing a complex function vector ΩI(z) = [ΩI
1(z),ΩI

2(z),ΩI
3(z),ΩI

4(z)]T as

ΩI(z) = HRBFI(z), (7.2.4)

and using Equation (7.2.2) gives the relation

hI(z) = ΛΩI(z), (7.2.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (7.2.3) may be written in component form for ΩI
2(z) and

ΩI
4(z), yield following scalar Hilbert problem

Λ22[ΩI+
2 (x1) + ΩI−

2 (x1)] + Λ24[ΩI+
4 (x1) + ΩI−

4 (x1)] = −σ∞22, d < |x1| < c, (7.2.6)

Λ42[ΩI+
2 (x1) + ΩI−

2 (x1)] + Λ44[ΩI+
4 (x1) + ΩI−

4 (x1)] = D −D∞2 , d < |x1| < c.

(7.2.7)

7.2.1.1 Solution of the Problem

Eliminating ΩI+
4 (x1) + ΩI−

4 (x1) from Equations (7.2.6 and 7.2.7) and solving with

the help of Equation (2.7.30) together with boundary condition (iii) one obtains

ΩI
2(z) =

Λ44σs + (D −Ds)Λ24

2πiX1(z)Σ

∫
Γ′

X1(t)

t− z
dt+

P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

,

(7.2.8)

where

P1(z) = C0z
2 + C1z + C2, X1(z) =

√
(z2 − d2

1)(z2 − c2
1) and Σ = Λ22Λ44 − Λ24Λ42.

Constant

C0 =
Λ44σ

∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42
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is determined using condition lim
z→∞

ΩI
2(z) = 0. Also C1 and C2 are determined from

the condition of single-valuedness of displacement around cracks i.e.,∫
C′i

[ΩI+
2 (x1)− ΩI−

2 (x1)]dx1 = 0, i = 1, 2, C ′1 = [−c1,−d1], C ′2 = [d1, c1]. (7.2.9)

Finally, evaluating the integral in Equation (7.2.8) and substituting the values of

constants C0, C1 and C2, the required potential ΩI
2(z), may be written as

ΩI
2(z) =− Λ44σs + Λ24(D −Ds)

πΣX1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
+

1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

Λ44σs + Λ24(D −Ds)

πΣ

(π
2
− ϕd + ϕc

)
, (7.2.10)

where,

k2
1 =

c2
1 − d2

1

c2
1

, λ2
1 = E(k1)/F (k1), sin2 ψd =

c2
1 − d2

c2
1 − d2

1

, sin2 ψc =
c2

1 − c2

c2
1 − d2

1

,

ϕd = tan−1

√
(d2

1 − z2)(d2 − c2
1)

(c2
1 − z2)(d2

1 − d2)
, ϕc = tan−1

√
(d2

1 − z2)(c2 − c2
1)

(c2
1 − z2)(d2

1 − c2)
,

R1 = dc1

{
E(ψd, k1)− λ2

1F (ψd, k1)
}
− cc1

{
E(ψc, k1)− λ2

1F (ψc, k1)
}

− k2
1c

2
1 (sinψd cosψd − sinψc cosψc) .

Analogously to determine ΩI
4(z), Equation (7.2.7) is solved using the boundary con-

dition (iv) and Equation (2.7.30), the solution may finally be written as

ΩI
4(z) = − D −Ds

2πiΛ44X2(z)

∫
Γ

X2(t)

t− z
dt+

P2(z)

2Λ44X2(z)
+
D −D∞2

2Λ44

− Λ42

Λ44

ΩI
2(z), (7.2.11)

where P2(z) = A0z
2 + A1z + A2 and X2(z) =

√
(z2 − a2)(z2 − b2).

Again constant A0 = −D +D∞2 is determined using condition lim
z→∞

ΩI
4(z) = 0. Also

A1 and A2 are determined from the condition of single-valuedness of displacement

around cracks as before i.e.,∫
C′′i

[ΩI+
4 (x1)− ΩI−

4 (x1)]dx1 = 0, i = 1, 2, C ′′1 = [−a,−b], C ′′2 = [b, a]. (7.2.12)

Finally, evaluating the integral in Equation (7.2.11) and substituting the values of
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constants A0, A1 and A2, the required potential ΩI
4(z), may be written as

ΩI
4(z) = −Λ42

Λ44

ΩI
2(z)− (D −D∞2 )

2Λ44

{
z2 − a2λ2

2

X2(z)
− 1

}
− (D −Ds)

πΛ44

(π
2
− υd + υc

)
+

(D −Ds)

πΛ44X2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
,

(7.2.13)

where,

k2
2 = 1− (b/a)2, λ2

2 = E(k2)/F (k2), sin2 ϑd =
a2 − d2

a2 − b2
, sin2 ϑc =

a2 − c2

a2 − b2
,

υd = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − d2)

(d2 − b2)
, υc = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − c2)

(c2 − b2)
,

R2 = da
{
E(ϑd, k2)− λ2

2F (ϑd, k2)
}
− ca

{
E(ϑc, k2)− λ2

2F (ϑc, k2)
}

− a2k2
2 (sinϑd cosϑd − sinϑc cosϑc) .

7.2.1.2 Applications

The important parameters affecting the crack arrest are obtained in this section.

Saturation zone

The electric displacement is determined using Equations (2.7.7 and 7.2.5) as

ΦI
,1(x1) = BFI+(x1) + BFI−(x1) = ΛΩI+(x1) + ΛΩI−(x1), |x1| > a. (7.2.14)

Taking the fourth component of above equation, we get

DI
2(x1) = Λ42

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ44

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (7.2.15)

Substituting values of ΩI
2(x1) and ΩI

4(x1) from Equations (7.2.10 and 7.2.13) and

simplifying one finally arrives at

DI
2(x1) = −2(D −Ds)

π

(π
2
− υd + υc

)
− (D −D∞2 )

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
+

2(D −Ds)

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (7.2.16)

The saturation zones lengths are now obtained by extending Dugdale’s [43] hypoth-

esis to the electric displacement to remain finite at every point of the plate. This

leads to the determination of two non-linear equations(
b2

a2
− λ2

2

)(
π

2

D −D∞2
D −Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (7.2.17)
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(
1− λ2

2

)(π
2

D −D∞2
D −Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (7.2.18)

to determine a and b. Hence saturation zone length at the tip c and d are calculated

from (a− c) and (d− b), respectively.

Yield zone

To calculate yield zones lengths the required stress component is obtained by writing

second component of Equation (7.2.14),

σI22(x1) = Λ22

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ24

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (7.2.19)

Substituting values from Equations (7.2.10 and 7.2.13) and simplifying, we get

σI22(x1) =− 2

πX1(x1)

(
σs +

Λ24

Λ44

(D −Ds)

){
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
+

(
σ∞22 +

Λ24

Λ44

(D −D∞2 )

){
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
+

2

π

(
σs +

Λ24

Λ44

(D −Ds)

)(π
2
− ϕd + ϕc

)
. (7.2.20)

Using Dugdale’s [24] hypothesis that the stress remain finite at every point of the

plate consequently at the points x1 = d1 and x1 = c1 also, we get the following

transcendental equations(
d2

1

c2
1

− λ2
1

)(
π

2

Λ44σ
∞
22 + Λ24(D −D∞2 )

Λ44σs + Λ24(D −Ds)
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (7.2.21)

(
1− λ2

1

)(π
2

Λ44σ
∞
22 + Λ24(D −D∞2 )

Λ44σs + Λ24(D −Ds)
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (7.2.22)

These enable us to determine c1 and d1 for prescribed loads. The yield zone lengths

are than calculated from (c1 − c) and (d− d1).

Crack opening displacement (COD)

The jump displacement vector ∆uI,1 is determined as

i∆uI,1(x1) = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−3,1, E−1 − E+

1 ]T = HR[BFI+(x1)−BFI−(x1)].

(7.2.23)

The jump displacement component ∆uI2 at the crack tips d and c are obtained by

remembering that ∆uI2 = 0 at the tips x1 = ±d1,±c1,
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at the inner crack tip x1 = d

∆uI2(d) =− Λ44σs + Λ24(D −Ds)

πΣ

{
2d2

1

c1

√
c2

1 − d2

d2 − d2
1

R3 − d ln(A) + 2F (τd, k1)
R1

c1

}

− Λ44σs + Λ24(D −Ds)

πΣ

{
G(d, c) + 2c1

(π
2
− ψd + ψc

)
R4

}
+
c1

Σ
(Λ44σ

∞
22 + Λ24(D −D∞2 ))R4, (7.2.24)

and at the outer crack tip x1 = c

∆uI2(c) =
Λ44σs + Λ24(D −Ds)

πΣ

{
2c1

(π
2
− ψd + ψc

)
R5 +H(c, d)− c ln(B)

}
+

Λ44σs + Λ24(D −Ds)

πΣ

{
2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
− c1

Σ
(Λ44σ

∞
22 + Λ24(D −D∞2 ))R5, (7.2.25)

where,

ln(A) = ln

(
c2

1 − d2

c2
1 − d2

1

+
c2

1(d2
1 − d2)

d2(c2
1 − d2

1)

)
, ln(B) = ln

(
(c2

1 − c2)(c2 − d2
1)

c2(c2
1 − d2

1)
+ 1

)
,

sin2 τd = c2
1(d2 − d2

1)/
(
d2(c2

1 − d2
1)
)
, R3 =

(
F (τd, k1)− II (τd,

d2 − d2
1

d2
, k1)

)
,

R4 =

(
E(τd, k1)− k2

1 sin τd cos τd√
1− k2

1 sin2 τd
− λ2

1F (τd, k1)

)
,

R5 =
(
E(ψc, k1)− λ2

1F (ψc, k1)
)
, R6 =

(
c2

1F (ψc, k1)− c2II (ψc,
c2

1 − c2

c2
1

, k1)

)
,

G(d, c) = d ln

(√
(d2 − d2

1)(c2
1 − c2) +

√
(c2

1 − d2)(c2 − d2
1)√

(d2 − d2
1)(c2

1 − c2)−
√

(c2
1 − d2)(c2 − d2

1)

)

− 2d2
1

c1

√
c2

1 − c2

c2 − d2
1

II (τd,
c2k2

1

c2 − d2
1

, k1),

H(c, d) = c ln

(√
(c2 − d2

1)(c2
1 − d2) +

√
(c2

1 − c2)(d2 − d2
1)√

(c2 − d2
1)(c2

1 − d2)−
√

(c2
1 − c2)(d2 − d2

1)

)

− 2

c1

√
(d2 − d2

1)(c2
1 − d2)

(
F (ψc, k1) +

d2

c2
1 − d2

II (ψc,
c2

1 − d2
1

c2
1 − d2

, k1)

)
.

Crack opening potential drop (COP)

COP is calculated by taking fourth component from Equation (7.2.23) and substi-

tuting value from Equation (7.2.13) and integrating, one arrives
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at the inner crack tip x1 = d

∆uI4(d) =
(D −Ds)

πΛ44

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c) +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
2a(D −Ds)

πΛ44

(π
2
− ϑd + ϑc

)
R8 −

a(D −D∞2 )

Λ44

R8 −
Λ42

Λ44

∆uI2(d),

(7.2.26)

and at the outer crack tip x1 = c

∆uI4(c) =− (D −Ds)

πΛ44

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a
+

2

a

√
c2 − b2

a2 − c2
R9

}

− 2a(D −Ds)

πΛ44

(π
2
− ϑd + ϑc

)
R10 +

a(D −D2
∞)

Λ44

R10 −
Λ42

Λ44

∆uI2(c),

(7.2.27)

where,

ln(C) = ln

(
a2 − d2

a2 − b2
+
a2(b2 − d2)

d2(a2 − b2)

)
, ln(D) = ln

(
(a2 − c2)(c2 − b2)

c2(a2 − b2)
+ 1

)
,

sin2 ξd = a2(d2 − b2)/
(
d2(a2 − b2)

)
, R7 =

(
F (ξd, k2)− II(ξd,

d2 − b2

d2
, k2)

)
,

R8 =

(
E(ξd, k2)− k2

2 sin ξd cos ξd√
1− k2

2 sin2 ξd
− λ2

2F (ξd, k2)

)
,

R9 =

(
a2F (ϑc, k2)− c2II(ϑc,

a2 − c2

a2
, k2)

)
, R10 =

(
E(ϑc, k2)− λ2

2F (ϑc, k2)
)
,

G1(d, c) = d ln

(√
(d2 − b2)(a2 − c2) +

√
(a2 − d2)(c2 − b2)√

(d2 − b2)(a2 − c2)−
√

(a2 − d2)(c2 − b2)

)

− 2b2

a

√
a2 − c2

c2 − b2
II(ξd,

c2k2
2

c2 − b2
, k2),

H1(c, d) = c ln

(√
(c2 − b2)(a2 − d2) +

√
(a2 − c2)(d2 − b2)√

(c2 − b2)(a2 − d2)−
√

(a2 − c2)(d2 − b2)

)

− 2

a

√
(d2 − b2)(a2 − d2)

(
F (ϑc, k2) +

d2

a2 − d2
II(ϑc,

a2 − b2

a2 − d2
, k2)

)
.

As for semi-permeable crack model, the electric displacement, D (defined by Equa-

tion (2.5.3)) inside the crack gap media is related to the crack opening displacement

and the potential drop. Thus the value of electric flux D, is obtained from the

quadratic Equation (3.4.4) for two-collinear cracks problem.

Energy release rate (ERR)

Energy release rate is calculated at the interior tip x1 = d and exterior tip x1 = c
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using the formulae

J Ia (d) = σs∆u
I
2(d) +Ds∆u

I
4(d), (7.2.28)

J Ia (c) = σs∆u
I
2(c) +Ds∆u

I
4(c). (7.2.29)

7.2.1.3 Case I: Results and Discussions

The variation of crack opening displacement, crack opening potential drop, energy

release rate with respect to crack closure affecting parameters are presented in this

section for PZT-4, PZT-5H and BaTiO3 ceramics. The material constants are given

in Table 2.1.

We assumed that the lengths of the collinear cracks, saturation limit electric

displacement and yield stress are 10mm, Ds = 0.1C/m2 and σs = 200MPa, respec-

tively.
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Figure 7.2: COD profile over the interior and exterior yield zones for different
electric boundary conditions

Figs. 7.2(a, b) present COD variation over the interior and exterior yield zones for

the cases of impermeable, semi-permeable and permeable cracks. It may be noted

from the Fig. 7.2(a) that COD is zero at the tips of the yield zone and increases

non-linearly as the ratio (x1 − d1)/(c − d) is increased. It is also observed that

the COD is higher for impermeable crack than those for the permeable ones. At

the considered loading levels the semi-permeable results are closer to the permeable

ones. A similar variation is observed for COD at exterior yield zone.
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Variation of COD, ∆uI2 with respect to prescribed electric displacement load at the

inner and outer tips x1 = d and x1 = c is plotted in Figs. 7.3(a and b), respectively.

It is noted that COD at each of the tips increases almost linearly. It is more at inner

tip than that at outer tip. It is also noted that as mechanical loading is increased

the cracks open more.
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Figure 7.3: COD versus D∞2 for different mechanical loads
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Figure 7.4: COP drop over the interior and exterior saturation zones for
different electric boundary conditions

Variation of COP over the interior and exterior saturation zones is depicted in

Figs. 7.4(a, b). It may be pointed out that COP drop is maximum at the interior

saturation zone as compared to that at exterior saturation zone, this is because of
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the mutual interactions of the collinear cracks. The kink in both the Figs. 7.4(a, b)

is the tip of yield zone.
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Figure 7.5: COP versus D∞2 for different mechanical loads

Figs. 7.5(a and b) show that COP decreases with increase in mechanical loading

although COP increases with increase in electric loading. Potential drop is higher

at the interior tip, as expected.
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Figure 7.6: ERR versus D∞2 for different mechanical loads

Figs. 7.6(a, b) depict the variation of ERR at the interior and exterior tips of

the crack for increasing value of prescribed electric displacement load, for different

prescribed mechanical load. It may be seen that ERR at the interior tip of the

crack drops continuously as D∞2 is increased. As the prescribed mechanical load is
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increased a higher ERR is observed but it decreases with increasing D∞2 . It is also

seen that ERR is much less at exterior tip as compared to that at interior tip, this

is because of the mutual interactions of two closely located cracks.
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Figure 7.7: ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3

Figs. 7.7(a, b) show the ERR for PZT-4, PZT-5H and BaTiO3 ceramics versus D∞2 ,

all the ceramics show ERR drop at the interior and exterior tips of the cracks. These

results may assist the designer to select the appropriate ceramic.

7.2.2 Case II: When saturation zones are smaller than de-
veloped yield zones (|c1| > |a| and |b| > |d1|)

The boundary conditions from (i) to (iv) in subsection (7.2.1), remain the same as

in Case I and the boundary condition (v) is replaced by (vi) as

(vi) ΦII+
,1 (x1) = ΦII−

,1 (x1) = −VII , for d < |x1| < c

where, VII = [0, σ∞22, 0, D
∞
2 ]T , and superscript II represents that the quantity refers

to Case II.

Schematically the configuration of the problem is depicted in Fig. 7.8.
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Figure 7.8: Schematic representation of configuration of the problem for Case
II, when saturation zones are smaller than developed yield zones

7.2.2.1 Solution of the Problem

Carrying out calculations analogous to Case I the boundary condition (vi) for this

case yields the following two dual Hilbert problems for potentials ΩII
2 (z) and ΩII

4 (z)

as

Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)] = −σ∞22, d < |x1| < c,

(7.2.30)

Λ42[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ44[ΩII+
4 (x1) + ΩII−

4 (x1)] = D −D∞2 , d < |x1| < c.

(7.2.31)

The solution of which may be written, carrying the similar calculation as in Case I,

as

ΩII
4 (z) =

Λ42σs + Λ22(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ42σs + Λ22(D −Ds)

πΣ

(π
2
− υd + υc

)
, (7.2.32)
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ΩII
2 (z) =− Λ42

Λ22

ΩII
4 (z) +

σ∞22

2Λ22

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

σs
πΛ22

(π
2
− ϕd + ϕc

)
− σs
πΛ22X1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
. (7.2.33)

7.2.2.2 Applications

In this section closed form expressions are derived for developed zones lengths, crack

opening displacement, crack opening potential drop and energy release rate.

The stress and electric displacement for this case are obtained using

ΦII
,1 (x1) = BFII+(x1) + BFII−(x1) = ΛΩII+(x1) + ΛΩII−(x1), |x1| > c1. (7.2.34)

Comparing second and fourth components of the above vector equation, we get

σII22(x1) = Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)], (7.2.35)

DII
2 (x1) = Λ42[ΩII+

2 (x1) + ΩII−
2 (x1)] + Λ44[ΩII+

4 (x1) + ΩII−
4 (x1)]. (7.2.36)

Substituting the values of ΩII
2 (x1) and ΩII

4 (x1) from Equations (7.2.33 and 7.2.32)

and simplifying one obtains

σII22(x1) =
2σs
π

(π
2
− ϕd + ϕc

)
+ σ∞22

{
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
− 2σs
πX1(x1)

{
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
, (7.2.37)

DII
2 (x1) =

2(Λ42σs + Λ22(D −Ds))

πΛ22X2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

Λ22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2(Λ42σs + Λ22(D −Ds))

πΛ22

(π
2
− υd + υc

)
. (7.2.38)

Yield zone

Using Dugdale’s assumption that the stress remains finite at every point of the

body, consequently at the tips x1 = d1 and x1 = c1 of the yield zones, one obtains

non-linear equations to determine d1 and c1 from(
d2

1

c2
1

− λ2
1

)(
πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (7.2.39)
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(
1− λ2

1

)(πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (7.2.40)

Saturation zone

Assuming Dugdale’s hypothesis to be true for electric displacement as well hence the

condition of finiteness of electrical displacements at every point of the plate yields

the following two equations(
b2

a2
− λ2

2

)(
π

2

Λ42σ
∞
22 + Λ22(D −D∞2 )

Λ42σs + Λ22(D −Ds)
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (7.2.41)

(
1− λ2

2

)(π
2

Λ42σ
∞
22 + Λ22(D −D∞2 )

Λ42σs + Λ22(D −Ds)
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (7.2.42)

Crack opening potential drop (COP)

The crack opening potential drop for this case is determined using analogous equa-

tion to Equation (6.2.23) as

i∆uII,1 (x1) = Λ[ΩII+(x1)−ΩII−(x1)]. (7.2.43)

Comparing the fourth component of the above equation and substituting value of

ΩII
4 (x1) from Equation (7.2.32) one obtains potential drop at the crack tips x1 = d

and x1 = c as

∆uII4 (d) =
Λ42σs + Λ22(D −Ds)

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
+

Λ42σs + Λ22(D −Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

− a(Λ42σ
∞
22 + Λ22(D −D∞2 ))

Σ
R8, (7.2.44)

∆uII4 (c) =− Λ42σs + Λ22(D −Ds)

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
− Λ42σs + Λ22(D −Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

+
a(Λ42σ

∞
22 + Λ22(D −D∞2 ))

Σ
R10. (7.2.45)

Crack opening displacement (COD)

The COD at the crack tips x1 = d and x1 = c are obtained comparing second
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component of Equation (7.2.43) and substituting value of ΩII
2 (x1) from Equation

(7.2.33) and simplifying, one obtains

∆uII2 (d) =− σs
πΛ22

{
−d ln(A) +

2d2
1

c1

√
c2

1 − d2

d2 − d2
1

R3 + 2F (τd, k1)
R1

c1

+G(d, c)

}
− 2c1σs
πΛ22

(π
2
− ψd + ψc

)
R4 +

c1σ
∞
22

Λ22

R4 −
Λ24

Λ22

∆uII4 (d), (7.2.46)

∆uII2 (c) =
σs
πΛ22

{
−c ln(B) +H(c, d) + 2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
+

2c1σs
πΛ22

(π
2
− ψd + ψc

)
R5 −

c1σ
∞
22

Λ22

R5 −
Λ24

Λ22

∆uII4 (c). (7.2.47)

Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

formulae

J IIa (d) = σs∆u
II
2 (d) +Ds∆u

II
4 (d), (7.2.48)

J IIa (c) = σs∆u
II
2 (c) +Ds∆u

II
4 (c). (7.2.49)

7.2.2.3 Case II: Results and Discussions

Variations of COP, COD and ERR vis-a-vis parameters affecting the crack closure

namely saturation zone length, yield zone, prescribed mechanical and electrical loads

are presented in this section for PZT-4, PZT-5H and BaTiO3 ceramics.
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Figure 7.9: COP drop over the interior and exterior saturation zones for
different electric boundary conditions
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Figs. 7.9(a, b) show the variation of COP drop with respect to zone length to

crack length ratio. It may be noted from Figs. 7.9(a, b), that the COP drops

more at the interior zone as compared to that at exterior zone. Also the COP drop

decreases when we move from impermeable crack to permeable crack face boundary

conditions.
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Figure 7.10: COP versus D∞2 for different mechanical loads

Figs. 7.10(a and b) show that COP decreases with increase in mechanical loading

although COP increases with increase in electric loading. Potential drop is higher

at the interior tip, as expected. It may also be noted that there is a steep decrease

in COP at both the crack tips when mechanical loading is 40MPa.
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Figure 7.11: COD profile over the interior and exterior yield zones for
different electric boundary conditions
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Crack opening displacement over the developed interior and exterior yield zones are

plotted in Figs. 7.11(a, b). The COD is more at interior zone as compared to that

at exterior zone. The permeability/impermeability does not have much significant

effect on COD in this case.
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Figure 7.12: COD versus D∞2 for different mechanical loads

Variation of COD, ∆uII2 with respect to prescribed electric displacement at the inner

and outer tips x1 = d and x1 = c is respectively, plotted in Figs. 7.12(a and b). It

is noted that COD at each of the tips increases almost linearly. It is more at inner

tip than that at outer tip. It is also noted as mechanical loading is increased the

cracks open more.
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Figure 7.13: ERR versus D∞2 for different mechanical loads
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Energy release rate at the interior and exterior tips of the cracks shown in Figs.

7.13(a, b) depict that even with the increase in prescribed electric displacement

the energy release rate drops. This confirms the crack arrest. Also as expected, the

energy release rate is higher at inner tip that’s how the crack opens more at the inner

tip and there is a chance of coalesce if the cracks are nearer to each other. However

as prescribed mechanical load is increased the ERR also increases, as expected.
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Figure 7.14: ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3 ceramics

Figs. 7.14(a, b) show the ERR at the inner and outer tips of the crack versus

prescribed electrical load for different ceramics. It is observed that ERR is less for

BaTiO3 ceramic and maximum for PZT-4 ceramic. Also the ERR shows a slow

reduction rate nevertheless it gives a clue for correctly choosing of the ceramic for

appropriate purpose.

7.2.3 Case III: When saturation and yield zones are equal
(|c1| = |a| and |b| = |d1|)

The boundary conditions form (i) to (iv) remain the same as in Case I and boundary

condition (v) is replaced by following condition (vii)

(vii) ΦIII+
,1 (x1) = ΦIII−

,1 (x1) = −VIII , for d < |x1| < c,

where, VIII = [0, σ∞22, 0, D
∞
2 ]T , and superscript III represents that the quantity refers

to Case III.
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Schematically the configuration of the problem is depicted in Fig. 7.15.

d c a-d-c-a

1


2


3
1

L
2

L

1
x

2
x

2 2




2 2




2
D



s
D

s
Ds

Ds
D

b-b

4


s


s
s


s

 DD

o

Figure 7.15: Schematic representation of configuration of the problem for
Case III, when saturation and yield zones are equal

7.2.3.1 Solution of the Problem

Analogous to Case I the boundary condition (vii) for this case yield the following

two dual Hilbert problems for potentials ΩIII
2 (z) and ΩIII

4 (z)

Λ22[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ24[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = −σ∞22, d < |x1| < c,

(7.2.50)

Λ42[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ44[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = D −D∞2 , d < |x1| < c.

(7.2.51)

The solution of which, carrying out the similar calculation as in Case I, may be

written as

ΩIII
2 (z) =− Λ44σs + Λ24(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
+

Λ44σ
∞
22 + Λ24(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
+

Λ44σs + Λ24(D −Ds)

πΣ

(π
2
− υd + υc

)
, (7.2.52)
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ΩIII
4 (z) =

Λ42σs + Λ22(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ42σs + Λ22(D −Ds)

πΣ

(π
2
− υd + υc

)
. (7.2.53)

7.2.3.2 Applications

Expressions for crack opening displacement, crack opening potential drop, energy

release rate and developed zones are derived in this section.

Zone size

As in Case II, the stress and electric displacement for this case are obtained using

ΦIII
,1 (x1) = BFIII+(x1) + BFIII−(x1) = Λ[ΩIII+(x1) + ΩIII−(x1)], |x1| > a.

(7.2.54)

Comparing second and fourth components and substituting ΩIII
2 (z) and ΩIII

4 (z) from

Equations (7.2.52 and 7.2.53) and simplifying one obtains

σIII22 (x1) =
2σs
π

(π
2
− υd + υc

)
+ σ∞22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2σs
πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
, (7.2.55)

DIII
2 (x1) =− 2(D −Ds)

π

(π
2
− υd + υc

)
− (D −D∞2 )

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
+

2(D −Ds)

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (7.2.56)

Applying Dugdale’s hypothesis of stresses and electric displacement to remain finite

at the tips x1 = b and x1 = a of the zones, one obtains non-linear equations to

determine b and a from(
b2

a2
− λ2

2

)(π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (7.2.57)

(
1− λ2

2

) (π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (7.2.58)

where, R = σ∞22/σs or (D − D∞2 )/(D − Ds). The zone lengths are then obtained

from (d− b) and (a− c).
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Crack opening displacement (COD)

The crack opening displacement for this case is determined using

i∆uIII,1 (x1) = Λ[ΩIII+(x1)−ΩIII−(x1)]. (7.2.59)

Comparing the second component of the above equation and substituting value of

ΩIII
2 (z) from Equation (7.2.52) one obtains COD at tips x1 = d and x1 = c, as

∆uIII2 (d) =− (Λ44σs + Λ24(D −Ds))

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
− (Λ44σs + Λ24(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
a(Λ44σ

∞
22 + Λ24(D −D∞2 ))

Σ
R8, (7.2.60)

∆uIII2 (c) =
(Λ44σs + Λ24(D −Ds))

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
+

(Λ44σs + Λ24(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

− a(Λ44σ
∞
22 + Λ24(D −D∞2 ))

Σ
R10. (7.2.61)

Crack opening potential drop (COP)

COP at the tips x1 = d and x1 = c is obtained, comparing fourth component of

Equation (7.2.59) and substituting value of ΩIII
4 (x1) from Equation (7.2.53) and

simplifying, as

∆uIII4 (d) =
(Λ42σs + Λ22(D −Ds))

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
+

(Λ42σs + Λ22(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

− a(Λ42σ
∞
22 + Λ22(D −D∞2 ))

Σ
R8, (7.2.62)

∆uIII4 (c) =− (Λ42σs + Λ22(D −Ds))

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
− (Λ42σs + Λ22(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

+
a(Λ42σ

∞
22 + Λ22(D −D∞2 ))

Σ
R10. (7.2.63)
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Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

J IIIa (d) = σs∆u
III
2 (d) +Ds∆u

III
4 (d), (7.2.64)

J IIIa (c) = σs∆u
III
2 (c) +Ds∆u

III
4 (c). (7.2.65)

7.2.3.3 Case III: Results and Discussions

A similar study as in the Case I and Case II is carried out for this Case too.

The COD profile over the interior and exterior yield zones versus zone length to

crack length ratio is shown in Figs. 7.16(a, b) for a fixed inter crack distance. The

crack opening is reduced as we move from impermeable case to permeable case.
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Figure 7.16: COD profile over the interior and exterior yield zones for
different electric boundary conditions

Figs. 7.17(a, b) depict the variation of COD at the interior and exterior tips of the

cracks versus D∞2 for different prescribed mechanical loads. It is noted that COD is

increased as prescribed electrical load increases and it is more at interior crack tip

as compared to that at exterior crack tip, as expected. Also COD at both the crack

tips increases as mechanical load increases.
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Figure 7.17: COD versus D∞2 for different mechanical loads

Figs. 7.18(a, b) depict the COP drop over interior and exterior saturation zones. It

is noted that COP drop is almost 1.5 times more at the interior zone as compared

to that at exterior zone. The COP drop decreases as one goes from impermeable to

permeable crack.
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Figure 7.18: COP drop over the interior and exterior saturation zones for
different electric boundary conditions

Variation of COP at the inner and outer crack tips of the cracks versus electric

displacement for different mechanical loads is shown in Figs. 7.19(a and b). COP

decreases with increase in mechanical loading although COP increases with increase

in electric loading, as expected.
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Figure 7.19: COP versus D∞2 for different mechanical loads
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Figure 7.20: ERR versus D∞2 for different mechanical loads

Energy release rate at interior and exterior tips versus prescribed electric load is

plotted in Figs. 7.20(a, b). It is observed that energy release rate decreases as

prescribed electric load is increased. Also on increasing mechanical loading higher

energy release rate is observed.

Figs. 7.21(a, b) depict the energy release rate variation vis-a-vis prescribed

electric load for PZT-4, PZT-5H and BaTiO3 ceramics. It is observed that BaTiO3

ceramic has minimum energy release rate and it is maximum for PZT-4 ceramic.



149

0.01 0.015 0.02 0.025 0.03
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

D
2
∞ (C/m2)

(a)

10
4  J

a II
I
 (

d)
 (

N
/m

)

 

 

0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

D
2
∞ (C/m2)

(b)

10
4  J

a II
I
 (

c)
 (

N
/m

)

 

 

PZT−4
PZT−5H
BaTiO

3

PZT−4
PZT−5H
BaTiO

3

Figure 7.21: ERR versus D∞2 for PZT-4, PZT-5H and BaTiO3

7.3 Conclusions

• A strip-electro-mechanical yield model is proposed for a piezoelectric plate

weakened by two semi-permeable collinear straight cracks. Three cases are

considered when saturation zones are bigger/smaller or equal to developed

yield zones.

• Interesting results are seen that the COD is maximum for case when developed

zones are equal and little less for the case when saturation zones are smaller

and least for the case when saturation zone are bigger. This indicates that

crack will open maximum for equal zones and least for case of bigger saturation

zone.

• An interesting phenomenon is observed for COP for case when saturation zones

are bigger, the COP shows a kink in COP drop at the distance where tip of

strip-yield zone crossed. This occurs at both interior and exterior zones.

• ERR for poled piezoceramics PZT-4, PZT-5H and BaTiO3, drawn for pre-

scribed electric displacement load may assist for the correctly choosing of ce-

ramic for specific job. Also less ERR in Case I (when saturation zones are

bigger than developed yield zones) affirms the less opening of crack. In Case
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III ( when saturation and yield zones are equal) ERR is higher as compared

to that in Cases I and II, so crack opens more in this case.



Chapter 8

A Study on Influence of Poling
Direction for Semi-permeable
Strip-electro-mechanical yield
Model

It is well-known that a wide range of poled piezoelectric ceramics retain their

aligned electric dipole field in the material microstructure below Curie temperature.

This electric poling direction affects the material properties and fracture behavior.

Numerous studies have demonstrated that crack orientation as well as electric poling

direction greatly influences crack growth, which can be enhanced or retarded for

mode I, II and III cracks [27, 83, 110–112] in 2D piezoelectric media. Simultaneously,

the boundary condition, such as impermeable, permeable, and semi-permeable, on

the crack faces also impact the solution as observed in Chapter 3.

Therefore in this chapter, the influence of change in poling direction on a piezo-

electric medium cut along two equal collinear straight semi-permeable cracks under

mode-I type of electrical and mechanical loads is studied. The cracks yield both

electrically and mechanically ahead of the tips of the cracks. Three different situa-

tions are investigated when developed electrical saturation zones are bigger/smaller

or equal to the developed mechanical yield zones.

An illustrative numerical example is presented to study the effect of change in

poling direction on crack opening displacement, crack opening potential drop and

energy release rate.

This chapter is published in Acta Mechanica (Springer publication), Vol. 225
(2014), pp. 109-129.
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8.1 Fundamental Formulation and Solution Method-

ology

For a transversely isotropic medium, occupying ox1x2x3 orthogonal coordinate sys-

tem, with x1ox3 being considered as plane of isotropy, the constitutive equations

may be written as

Ξij = Cijkluk,j, (8.1.1)

where,

Ξij =

{
σij, i, j = 1, 2, 3 ,

Dj, i = 4,

and [Cijkl] material constant matrix. And σij, Dj, respectively denote stress and

electric displacement. uk = [u1, u2, u3, u4 = φ]T , ui(i = 1, 2, 3) denote mechanical

displacement and φ is the electric potential. Comma in subscript denotes the partial

differentiation with respect to the argument following it. Superscript T denotes

transpose of the matrix.

For the case when poling direction is oriented at an angle ’θ’ with x1-axis, the

constitutive equations can be expressed as

Ξij = cijkluk,l, (8.1.2)

where, cijkl = mCijklm
T , m =

(
m1 0

0 m2

)
,

[Cijkl] =



c11 c13 c12 0 0 0 0 e31 0

c13 c33 c13 0 0 0 0 e33 0

c12 c13 c11 0 0 0 0 e31 0

0 0 0 c44 0 0 0 0 e15

0 0 0 0 c66 0 0 0 0

0 0 0 0 0 c44 e15 0 0

0 0 0 0 0 e15 −κ11 0 0

e31 e33 e31 0 0 0 0 −κ33 0

0 0 0 e15 0 0 0 0 −κ11



,
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m1 =



sin2 θ cos2 θ 0 0 0 sin 2θ

cos2 θ sin2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0

0 0 0 sin θ − cos θ 0

0 0 0 cos θ sin θ 0

−1
2

sin 2θ 1
2

sin 2θ 0 0 0 − cos 2θ


, m2 =


sin θ cos θ 0

− cos θ sin θ 0

0 0 1

 .

Continuity equations for stress and electric displacement in absence of body force

and electric charge may be expressed as

σij,j = 0, Di,i = 0, i, j = 1, 2, 3 (or x1, x2, x3). (8.1.3)

The gradient equations are given as

εij =
1

2
(ui,j + uj,i), Ei = −φi, (8.1.4)

The general solution satisfying Equations (8.1.2, 8.1.3 and 8.1.4) according to Stroh

formalism, may be written as given by Equations (2.7.6 and 2.7.7).

8.2 Statement of the Problem

A transversely isotropic piezoelectric plate occupies entire x1ox2 plane. The poling

direction makes an angle ’θ’ with x1-axis. The plate is cut along two equal collinear

hairline straight semi-permeable cracks L1 and L2. These occupy the respective

intervals [−c,−d] and [d, c] on x1-axis. The crack rims are free of any mechanical

load and electrically semi-permeable. The remote boundary of the plate is subjected

to in-plane normal, uniform constant tension σ22 = σ∞22 and electrical displacement

D2 = D∞2 , consequently cracks open in self-similar fashion forming a strip-yield and

a saturation zone ahead of each tip of the cracks. The saturation zones develop at

the cracks tips −c, −d, d and c, occupy the respective intervals [−a,−c], [−d,−b],

[b, d] and [c, a], on x1-axis. And the strip-yield zone developed at these tips occupy

the intervals [−c1,−c], [−d,−d1], [d1, d] and [c, c1], respectively. To stop the crack

from further opening the rims of the developed yield zones are subjected to uniform

constant normal cohesive yield point stress σ22 = σs and saturation zones rims are
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subjected to saturation limit in-plane electric displacement D2 = Ds. Three cases

are considered when

Case I: saturation zones are bigger than developed yield zones,

Case II: saturation zones are smaller than developed yield zones,

Case III: saturation and yield zones are equal.

8.3 Mathematical Model and Solution of the Prob-

lem

Mathematically the boundary conditions of the problem may be written as

(i) σ+
22 = σ−22 = 0, D2 = D, on L =

2⋃
i=1

Li,

(ii) σ22 = σ∞22, D2 = D∞2 , for |x2| → ∞,

(iii) σ+
22 = σ−22 = σs − σ∞22, for Γ′ =

4⋃
i=1

Γ′i,

(iv) D+
2 = D−2 = Ds −D∞2 , for Γ =

4⋃
i=1

Γi,

(v) Φj+
,1 = Φj−

,1 = −Vj, for d < |x1| < c,

where, D is the electric flux through the crack regions (−c,−d) and (d, c) determined

from the Equation (2.5.3) and Vj = [0, σ∞22, 0, D
∞
2 ]T , where superscript j=I, II, III

denote that quantity refers to the Case I, Case II and Case III, respectively.

The above boundary conditions and following Hilbert problem give mathematical

model.

The continuity of Φ,1 (defined by Equation (2.7.7)) on x1-axis yields

[BFj(x1)−BFj(x1)]+ − [BFj(x1)−BFj(x1)]− = 0. (8.3.1)

The solution of which may directly be written using Equation (2.7.31) as

BFj(z) = BFj(z) = hj(z) (say) (8.3.2)
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Using principal of superposition, boundary conditions (i) and (v) together with

Equations (8.3.2 and 2.7.7) leads to following vector Hilbert problem

hj+(x1) + hj−(x1) = V0 −Vj, d < |x1| < c. (8.3.3)

where V0 = [0, 0, 0, D]T .

Introducing a complex function vector Ωj(z) = [Ωj
1(z),Ωj

2(z),Ωj
3(z),Ωj

4(z)]T as

Ωj(z) = HRBFj(z), (8.3.4)

which on using Equation (8.3.2) gives the relation

hj(z) = ΛΩj(z), (8.3.5)

where Λ = [HR]−1, HR = 2ReY, Y = iAB−1.

Consequently Equation’s (8.3.3) may be written in component form for Ωi
2(z) and

Ωi
4(z), yield following scalar Hilbert problem

Λ22[Ωj+
2 (x1) + Ωj−

2 (x1)] + Λ24[Ωj+
4 (x1) + Ωj−

4 (x1)] = −σ∞22, d < |x1| < c, (8.3.6)

Λ42[Ωj+
2 (x1) + Ωj−

2 (x1)] + Λ44[Ωj+
4 (x1) + Ωj−

4 (x1)] = D −D∞2 , d < |x1| < c.

(8.3.7)

8.3.1 Solution for Case I: When saturation zones are bigger
than developed yield zones (|b| < |d1| and |a| > |c1|)

Schematically the configuration of the problem is depicted in Fig. 8.1.

Eliminating ΩI+
4 (x1) + ΩI−

4 (x1) from Equations (8.3.6 and 8.3.7) and then solved

using Equation (2.7.30) together with boundary condition (iii) one obtains

ΩI
2(z) =

Λ44σs + (D −Ds)Λ24

2πiX1(z)Σ

∫
Γ′

X1(t)

t− z
dt+

P1(z)

2X1(z)
− 1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

,

(8.3.8)

where

P1(z) = C0z
2 + C1z + C2, X1(z) =

√
(z2 − d2

1)(z2 − c2
1) and Σ = Λ22Λ44 − Λ24Λ42.
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Figure 8.1: Schematic representation of the configuration of problem for Case
I, when saturation zones are bigger than developed yield zones

Constant

C0 =
Λ44σ

∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

is determined using condition lim
z→∞

ΩI
2(z) = 0. Also C1 and C2 are determined from

the condition of single-valuedness of displacement around cracks i.e.∫
C′i

[ΩI+
2 (x1)− ΩI−

2 (x1)]dx1 = 0, i = 1, 2, C ′1 = [−c1,−d1], C ′2 = [d1, c1]. (8.3.9)

Finally, evaluating the integral in Equation (8.3.8) and substituting the values of

constants C0, C1 and C2, the required potential ΩI
2(z), may be written as

ΩI
2(z) =− Λ44σs + Λ24(D −Ds)

πΣX1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
+

1

2

Λ44σ
∞
22 + (D −D∞2 )Λ24

Λ22Λ44 − Λ24Λ42

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

Λ44σs + Λ24(D −Ds)

πΣ

(π
2
− ϕd + ϕc

)
, (8.3.10)

where,

k2
1 =

c2
1 − d2

1

c2
1

, λ2
1 = E(k1)/F (k1), sin2 ψd =

c2
1 − d2

c2
1 − d2

1

, sin2 ψc =
c2

1 − c2

c2
1 − d2

1

,
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ϕd = tan−1

√
(d2

1 − z2)(d2 − c2
1)

(c2
1 − z2)(d2

1 − d2)
, ϕc = tan−1

√
(d2

1 − z2)(c2 − c2
1)

(c2
1 − z2)(d2

1 − c2)
,

R1 = dc1

{
E(ψd, k1)− λ2

1F (ψd, k1)
}
− cc1

{
E(ψc, k1)− λ2

1F (ψc, k1)
}

− k2
1c

2
1 (sinψd cosψd − sinψc cosψc) .

Analogously to determine ΩI
4(z), Equation (8.3.7) is solved using the boundary con-

dition (iv) and Equation (2.7.30), the solution may be written as

ΩI
4(z) = − D −Ds

2πiΛ44X2(z)

∫
Γ

X2(t)

t− z
dt+

P2(z)

2Λ44X2(z)
+
D −D∞2

2Λ44

− Λ42

Λ44

ΩI
2(z), (8.3.11)

where P2(z) = A0z
2 + A1z + A2 and X2(z) =

√
(z2 − a2)(z2 − b2).

Again constant A0 = −D +D∞2 is determined using condition lim
z→∞

ΩI
4(z) = 0. Also

A1 and A2 are determined from the condition of single-valuedness of displacement

around cracks i.e.,∫
C′′i

[ΩI+
4 (x1)− ΩI−

4 (x1)]dx1 = 0, i = 1, 2, C ′′1 = [−a,−b], C ′′2 = [b, a]. (8.3.12)

Finally, evaluating the integral in Equation (8.3.11) and substituting the values of

constants A0, A1 and A2, the required potential ΩI
4(z), may be written as

ΩI
4(z) = −Λ42

Λ44

ΩI
2(z)− (D −D∞2 )

2Λ44

{
z2 − a2λ2

2

X2(z)
− 1

}
− (D −Ds)

πΛ44

(π
2
− υd + υc

)
+

(D −Ds)

πΛ44X2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
,

(8.3.13)

where,

k2
2 = 1− (b/a)2, λ2

2 = E(k2)/F (k2), sin2 ϑd =
a2 − d2

a2 − b2
, sin2 ϑc =

a2 − c2

a2 − b2
,

υd = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − d2)

(d2 − b2)
, υc = tan−1

√
(b2 − z2)

(a2 − z2)

(a2 − c2)

(c2 − b2)
,

R2 = da
{
E(ϑd, k2)− λ2

2F (ϑd, k2)
}
− ca

{
E(ϑc, k2)− λ2

2F (ϑc, k2)
}

− a2k2
2 (sinϑd cosϑd − sinϑc cosϑc) .

8.3.1.1 Applications

Expressions for crack opening displacement, crack opening potential drop, energy

release rate and developed zones are derived in this section.
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Saturation zone

The electric displacement is determined using Equations (2.7.7 and 8.3.5) as

ΦI
,1(x1) = BFI+(x1) + BFI−(x1) = ΛΩI+(x1) + ΛΩI−(x1), |x1| > a. (8.3.14)

Taking the fourth component of above equation, we get

DI
2(x1) = Λ42

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ44

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (8.3.15)

Substituting values of ΩI
2(x1) and ΩI

4(x1) from Equations (8.3.10 and 8.3.13) and

simplifying one finally arrives at

DI
2(x1) = −2(D −Ds)

π

(π
2
− υd + υc

)
− (D −D∞2 )

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
+

2(D −Ds)

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (8.3.16)

The saturation zones lengths are now obtained by extending Dugdale’s hypothesis

to the electric displacement to remain finite at every point of the plate. This leads

to the determination of two non-linear equations(
b2

a2
− λ2

2

)(
π

2

D −D∞2
D −Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (8.3.17)

(
1− λ2

2

)(π
2

D −D∞2
D −Ds

− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (8.3.18)

to determine a and b. Hence saturation zone length at the tip c and d are calculated

from (a− c) and (d− b), respectively.

Yield zone

To calculate yield zone length the required stress component is obtained by writing

second component of Equation (8.3.14) as

σI22(x1) = Λ22

[
ΩI+

2 (x1) + ΩI−
2 (x1)

]
+ Λ24

[
ΩI+

4 (x1) + ΩI−
4 (x1)

]
. (8.3.19)

Substituting values from Equations (8.3.10 and 8.3.13) and simplifying, we get

σI22(x1) =− 2

πX1(x1)

(
σs +

Λ24

Λ44

(D −Ds)

){
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
+

(
σ∞22 +

Λ24

Λ44

(D −D∞2 )

){
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
+

2

π

(
σs +

Λ24

Λ44

(D −Ds)

)(π
2
− ϕd + ϕc

)
. (8.3.20)
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Using Dugdale’s hypothesis that the stress remain finite at every point of the plate

consequently at the points x1 = d1 and x1 = c1 we get the following transcendental

equations

(
d2

1

c2
1

− λ2
1

)(
π

2

Λ44σ
∞
22 + Λ24(D −D∞2 )

Λ44σs + Λ24(D −Ds)
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (8.3.21)

(
1− λ2

1

)(π
2

Λ44σ
∞
22 + Λ24(D −D∞2 )

Λ44σs + Λ24(D −Ds)
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (8.3.22)

These enable us to determine c1 and d1 for prescribed loads. The yield zone lengths

are than calculated as (c1 − c) and (d− d1).

Crack opening displacement (COD)

The jump displacement vector ∆uI,1 is determined as

i∆uI,1(x1) = i[u+
1,1 − u−1,1, u+

2,1 − u−2,1, u+
3,1 − u−3,1, E−1 − E+

1 ]T . (8.3.23)

The jump displacement component ∆uI2 at the crack tips d and c are obtained by

remembering that ∆uI2 = 0 at the tips x1 = ±d1,±c1,

at the inner crack tip x1 = d

∆uI2(d) =− Λ44σs + Λ24(D −Ds)

πΣ

{
2d2

1

c1

√
c2

1 − d2

d2 − d2
1

R3 − d ln(A) + 2F (τd, k1)
R1

c1

}

− Λ44σs + Λ24(D −Ds)

πΣ

{
G(d, c) + 2c1

(π
2
− ψd + ψc

)
R4

}
+
c1

Σ
(Λ44σ

∞
22 + Λ24(D −D∞2 ))R4, (8.3.24)

at the outer crack tip x1 = c

∆uI2(c) =
Λ44σs + Λ24(D −Ds)

πΣ

{
2c1

(π
2
− ψd + ψc

)
R5 +H(c, d)− c ln(B)

}
+

Λ44σs + Λ24(D −Ds)

πΣ

{
2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
− c1

Σ
(Λ44σ

∞
22 + Λ24(D −D∞2 ))R5, (8.3.25)
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where,

ln(A) = ln

(
c2

1 − d2

c2
1 − d2

1

+
c2

1(d2
1 − d2)

d2(c2
1 − d2

1)

)
, ln(B) = ln

(
(c2

1 − c2)(c2 − d2
1)

c2(c2
1 − d2

1)
+ 1

)
,

sin2 τd = c2
1(d2 − d2

1)/
(
d2(c2

1 − d2
1)
)
, R3 =

(
F (τd, k1)− II (τd,

d2 − d2
1

d2
, k1)

)
,

R4 =

(
E(τd, k1)− k2

1 sin τd cos τd√
1− k2

1 sin2 τd
− λ2

1F (τd, k1)

)
,

R5 =
(
E(ψc, k1)− λ2

1F (ψc, k1)
)
, R6 =

(
c2

1F (ψc, k1)− c2II (ψc,
c2

1 − c2

c2
1

, k1)

)
,

G(d, c) = d ln

(√
(d2 − d2

1)(c2
1 − c2) +

√
(c2

1 − d2)(c2 − d2
1)√

(d2 − d2
1)(c2

1 − c2)−
√

(c2
1 − d2)(c2 − d2

1)

)

− 2d2
1

c1

√
c2

1 − c2

c2 − d2
1

II (τd,
c2k2

1

c2 − d2
1

, k1),

H(c, d) = c ln

(√
(c2 − d2

1)(c2
1 − d2) +

√
(c2

1 − c2)(d2 − d2
1)√

(c2 − d2
1)(c2

1 − d2)−
√

(c2
1 − c2)(d2 − d2

1)

)

− 2

c1

√
(d2 − d2

1)(c2
1 − d2)

(
F (ψc, k1) +

d2

c2
1 − d2

II (ψc,
c2

1 − d2
1

c2
1 − d2

, k1)

)
.

Crack opening potential drop (COP)

COP is calculated by taking fourth component from Equation (8.3.23) and substi-

tuting from Equation (8.3.13) and integrating, one gets

at the inner crack tip x1 = d

∆uI4(d) =
(D −Ds)

πΛ44

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c) +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
2a(D −Ds)

πΛ44

(π
2
− ϑd + ϑc

)
R8 −

a(D −D∞2 )

Λ44

R8 −
Λ42

Λ44

∆uI2(d),

(8.3.26)

and at the outer crack tip x1 = c

∆uI4(c) =− (D −Ds)

πΛ44

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a
+

2

a

√
c2 − b2

a2 − c2
R9

}

− 2a(D −Ds)

πΛ44

(π
2
− ϑd + ϑc

)
R10 +

a(D −D2
∞)

Λ44

R10 −
Λ42

Λ44

∆uI2(c),

(8.3.27)
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where,

ln(C) = ln

(
a2 − d2

a2 − b2
+
a2(b2 − d2)

d2(a2 − b2)

)
, ln(D) = ln

(
(a2 − c2)(c2 − b2)

c2(a2 − b2)
+ 1

)
,

sin2 ξd = a2(d2 − b2)/
(
d2(a2 − b2)

)
, R7 =

(
F (ξd, k2)− II(ξd,

d2 − b2

d2
, k2)

)
,

R8 =

(
E(ξd, k2)− k2

2 sin ξd cos ξd√
1− k2

2 sin2 ξd
− λ2

2F (ξd, k2)

)
,

R9 =

(
a2F (ϑc, k2)− c2II(ϑc,

a2 − c2

a2
, k2)

)
, R10 =

(
E(ϑc, k2)− λ2

2F (ϑc, k2)
)
,

G1(d, c) = d ln

(√
(d2 − b2)(a2 − c2) +

√
(a2 − d2)(c2 − b2)√

(d2 − b2)(a2 − c2)−
√

(a2 − d2)(c2 − b2)

)

− 2b2

a

√
a2 − c2

c2 − b2
II(ξd,

c2k2
2

c2 − b2
, k2),

H1(c, d) = c ln

(√
(c2 − b2)(a2 − d2) +

√
(a2 − c2)(d2 − b2)√

(c2 − b2)(a2 − d2)−
√

(a2 − c2)(d2 − b2)

)

− 2

a

√
(d2 − b2)(a2 − d2)

(
F (ϑc, k2) +

d2

a2 − d2
II(ϑc,

a2 − b2

a2 − d2
, k2)

)
.

As for semi-permeable crack model, the electric displacement, D (defined in Equa-

tion (2.5.3)) inside the crack gap media is related to the crack opening displacement

and the potential drop. Thus the value of electric flux D, is obtained from the

quadratic Equation (3.4.4) for two-collinear cracks problem.

Energy release rate (ERR)

Energy release rate is calculated at the interior tip x1 = d and x1 = c exterior tip

from the formulae

J Ia (d) = σs∆u
I
2(d) +Ds∆u

I
4(d), (8.3.28)

J Ia (c) = σs∆u
I
2(c) +Ds∆u

I
4(c). (8.3.29)

8.3.1.2 Case I: Results and Discussions

An illustrative example is presented for a poled PZT-5H ceramic. The material

constants are given in Table 2.1.

We assume that the lengths of the collinear cracks, saturation-limit electric

displacement and yield stress are 10mm, Ds = 0.05C/m2 and σs = 200MPa, re-

spectively. And also the prescribed mechanical and electric loads are σ∞22 = 20MPa,

D∞2 = 0.001C/m2, respectively.
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Figure 8.2: Variation of COD versus angle of polarization for different σ∞22

Variation of COD versus increase in angle of polarization ’θ’ is plotted in Figs. 8.2(a,

b) for a fixed prescribed electric displacement. It is seen that as θ increases, the

mechanical COD increases parabolically both at inner and outer crack tips. It is

higher at the inner tip of the crack, as expected, although the behavior remains the

same at both the tips. Also it may be noted that as the prescribed mechanical load

is increased the crack opens more, as expected.
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Figure 8.3: Variation of COD versus D∞2 for different angle of polarization

Figs. 8.3(a) and (b), respectively, depict the variation of COD at the interior and

exterior tips of the crack versus D∞2 for different angle of polarization. It is noted

that COD at each of the tips increases linearly. It is more at inner tip than that at
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outer tip. It is also noted as θ is increased the cracks open more.
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Figure 8.4: Variation of COD versus angle of polarization for different
piezoceramics

Figs. 8.4(a, b) show the variation of crack opening for different piezoelectric ceramics

against θ. It may be noted that crack opens more at the inner tip than that at the

outer tip. Also these variations assist in choosing the correct piezoelectric ceramic,

depending on the usage. It may be noted that PZT-5H opens the least and PZT-

4 opens more, for higher values of θ and for lower values of θ it opens less than

PZT-7A.
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Figure 8.5: COP versus θ for different σ∞22

In Figs. 8.5(a, b) variation of COP vis-a-vis θ is depicted for different σ∞22. It shows
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an inverted bell shaped decrease in COP drop as D∞2 is increased. At outer tip of

crack little variation is seen as σ∞22 is increased. But very little effect is seen at the

inner tip due to increase of σ∞22.
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Figure 8.6: COP versus D∞2 for different θ

Figs. 8.6(a, b) depict the variation of COP versus D∞2 for different polarization angle

θ. COP drop is higher at inner tip. The increase is slightly non-linear. An interesting

variation is observed at the outer tip of the crack, the COP shows steep slightly

non-linearly increase for different polarization angle and becomes independent of

polarization for D∞2 = 0.03C/m2.
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Figure 8.7: COP versus θ for different piezoceramics

Figs. 8.7(a, b) show COP variation vis-a-vis θ for different piezoceramics. At both
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the inner and outer crack tips COP has similar variation for PZT-6B and PZT-5H.

It is maximum for PZT-6B and minimum for PZT-5H. And for PZT-7A and PZT-4

COP variations are almost equal and more close to that for PZT-5H.
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Figure 8.8: ERR versus D∞2 for different θ

Energy release rate with respect to prescribed D∞2 at inner and outer tip is drawn in

Figs. 8.8(a) and (b), respectively. It is seen that the ERR reduces as the prescribed

D∞2 is increased. Although as polarization angle θ is increased the ERR increases

but its decreasing trend continues as D∞2 is increased. Also it may be noted from

Fig. 8.8 that ERR is higher at inner tip as compared to that at outer tip of the

crack, as expected.
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Figure 8.9: ERR versus θ for different piezoceramics
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Variation of ERR versus θ for different piezoceramics is shown in Figs. 8.9(a, b). It

is seen that as poling angle θ is increased the ERR increases quadratically. PZT-5H

ceramic shows the maximum variation as, θ is increased, while PZT-4, PZT-6B and

PZT-7A show the similar quadratic variation for ERR.

8.3.2 Solution for Case II: When saturation zones are smaller
than the developed yield zones (|c1| > |a| and |b| > |d1|)

The boundary conditions from (i) to (iv) in subsection (8.3), remain the same as in

Case I and the boundary condition (v) is replaced by (vi) as

(vi) ΦII+
,1 (x1) = ΦII−

,1 (x1) = −VII , for d < |x1| < c

where, VII = [0, σ∞22, 0, D
∞
2 ]T , and superscript II represents that the quantity refers

to Case II.

Schematically the configuration of the problem is depicted in Fig. 8.10.
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Figure 8.10: Schematic representation of configuration of the problem for
Case II, when saturation zones are smaller than the developed yield zones

Carrying out calculations analogous to Case I the boundary condition (vi) for this

Case yield the following two dual Hilbert problems for potentials ΩII
2 (z) and ΩII

4 (z)
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as

Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)] = −σ∞22, d < |x1| < c,

(8.3.30)

Λ42[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ44[ΩII+
4 (x1) + ΩII−

4 (x1)] = D −D∞2 , d < |x1| < c.

(8.3.31)

The solution of which may be written as, carrying out the similar calculation as in

Case I, as

ΩII
4 (z) =

Λ42σs + Λ22(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ42σs + Λ22(D −Ds)

πΣ

(π
2
− υd + υc

)
, (8.3.32)

ΩII
2 (z) =− Λ42

Λ22

ΩII
4 (z) +

σ∞22

2Λ22

{
z2 − c2

1λ
2
1

X1(z)
− 1

}
+

σs
πΛ22

(π
2
− ϕd + ϕc

)
− σs
πΛ22X1(z)

{
(z2 − c2

1λ
2
1)
(π

2
− ψd + ψc

)
+R1

}
. (8.3.33)

8.3.2.1 Applications

As in Case I here we obtain the expression for calculations of yield zone, saturation

zone length, crack opening displacement, crack opening potential drop and energy

release rate.

The stress and electric displacement for this case are obtained using

ΦII
,1 (x1) = BFII+(x1) + BFII−(x1) = ΛΩII+(x1) + ΛΩII−(x1), |x1| > c1. (8.3.34)

Comparing second and fourth components from above equation, we get

σII22(x1) = Λ22[ΩII+
2 (x1) + ΩII−

2 (x1)] + Λ24[ΩII+
4 (x1) + ΩII−

4 (x1)], (8.3.35)

DII
2 (x1) = Λ42[ΩII+

2 (x1) + ΩII−
2 (x1)] + Λ44[ΩII+

4 (x1) + ΩII−
4 (x1)]. (8.3.36)

Substituting the values of ΩII
2 (x1) and ΩII

4 (x1) from Equations (8.3.33 and 8.3.32)

and simplifying one obtains

σII22(x1) =
2σs
π

(π
2
− ϕd + ϕc

)
+ σ∞22

{
x2

1 − c2
1λ

2
1

X1(x1)
− 1

}
− 2σs
πX1(x1)

{
(x2

1 − c2
1λ

2
1)
(π

2
− ψd + ψc

)
+R1

}
, (8.3.37)
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DII
2 (x1) =

2(Λ42σs + Λ22(D −Ds))

πΛ22X2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

Λ22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2(Λ42σs + Λ22(D −Ds))

πΛ22

(π
2
− υd + υc

)
. (8.3.38)

Yield zone

Using Dugdale’s hypothesis that the stress remains finite at every point of the body,

consequently at the tips x1 = d1 and x1 = c1 of the yield zones, one obtains non-

linear equations to determine d1 and c1 from(
d2

1

c2
1

− λ2
1

)(
πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0, (8.3.39)

(
1− λ2

1

)(πσ∞22

2σs
− π

2
+ ψd − ψc

)
− R1

c2
1

= 0. (8.3.40)

Saturation zone

Assuming Dugdale’s hypothesis to be true for electric displacement as well hence the

condition of finiteness of electrical displacements at every point of the plate yields

the following two equations(
b2

a2
− λ2

2

)(
π

2

Λ42σ
∞
22 + Λ22(D −D∞2 )

Λ42σs + Λ22(D −Ds)
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (8.3.41)

(
1− λ2

2

)(π
2

Λ42σ
∞
22 + Λ22(D −D∞2 )

Λ42σs + Λ22(D −Ds)
− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (8.3.42)

to determine a and b.

Crack opening potential drop (COP)

The crack opening potential drop for this case is determined using analogous equa-

tion to Equation (8.3.23) as

i∆uII,1 (x1) = Λ[ΩII+(x1)−ΩII−(x1)]. (8.3.43)

Comparing the fourth component of the above equation and substituting value of

ΩII
4 (x1) from Equation (8.3.32) one obtains potential drop at the crack tips x1 = d

and x1 = c as

∆uII4 (d) =
Λ42σs + Λ22(D −Ds)

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
+

Λ42σs + Λ22(D −Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

− a(Λ42σ
∞
22 + Λ22(D −D∞2 ))

Σ
R8, (8.3.44)
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∆uII4 (c) =− Λ42σs + Λ22(D −Ds)

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
− Λ42σs + Λ22(D −Ds)

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

+
a(Λ42σ

∞
22 + Λ22(D −D∞2 ))

Σ
R10. (8.3.45)

Crack opening displacement (COD)

The COD at the crack tips x1 = d and x1 = c is obtained comparing second

component of Equation (8.3.43) and substituting value of ΩII
2 (x1) from Equation

(8.3.33) and simplifying, one obtains

∆uII2 (d) =− σs
πΛ22

{
−d ln(A) +

2d2
1

c1

√
c2

1 − d2

d2 − d2
1

R3 + 2F (τd, k1)
R1

c1

+G(d, c)

}
− 2c1σs
πΛ22

(π
2
− ψd + ψc

)
R4 +

c1σ
∞
22

Λ22

R4 −
Λ24

Λ22

∆uII4 (d), (8.3.46)

∆uII2 (c) =
σs
πΛ22

{
−c ln(B) +H(c, d) + 2F (ψc, k1)

R1

c1

+
2

c1

√
c2 − d2

1

c2
1 − c2

R6

}
+

2c1σs
πΛ22

(π
2
− ψd + ψc

)
R5 −

c1σ
∞
22

Λ22

R5 −
Λ24

Λ22

∆uII4 (c). (8.3.47)

Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

J IIa (d) = σs∆u
II
2 (d) +Ds∆u

II
4 (d), (8.3.48)

J IIa (c) = σs∆u
II
2 (c) +Ds∆u

II
4 (c). (8.3.49)

8.3.2.2 Case II: Results and Discussions

For this Case II too material ceramics are same as in Table 2.1.

We assume that the saturation-limit electric displacement and yield point stress

are Ds = 0.06C/m2 and σs = 200MPa, respectively. And also the prescribed

mechanical and electric loads are same as in Case I.
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Figure 8.11: COD versus θ for different σ∞22

Figs. 8.11(a, b) depict the variation of COD with respect to θ for different σ∞22.

COD shows a linear increase as poling direction angle is changed from 00 to 900.

The COD is maximum when poling direction is perpendicular to crack length. It

may be noted from the Figs. 8.11(a, b) that COD is more at the inner tip than that

at the outer tip.
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Figure 8.12: COD versus D∞2 for different θ

Figs. 8.12(a) and (b), respectively, depict the variation of COD at the interior and

exterior crack tips of the crack versus D∞2 for different angle of polarization. It is

noted that COD at both the tips increases linearly. And it is more at inner tip than

that at outer tip. It is also noted as θ is increased the cracks open more.
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Figure 8.13: COD versus poling angles for different piezoceramics

Figs. 8.13(a, b) depict the crack opening of different piezoelectric ceramics with

respect to poling direction for a fixed prescribed mechanical and electric loads. It

shows that PZT-6B opens the least. The ceramics PZT-6B, PZT-5H and PZT-7A

show a parabolic increase as θ is increased from 00 to 900 from length of the crack.

These ceramics show continuous slight increase but PZT-4 shows a steep parabolic

increase. The variation in these Figs. 8.13(a, b) assists the designer to select the

correct piezoelectric ceramic.
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Figure 8.14: COP versus θ for different σ∞22

In Figs. 8.14(a, b) variation of COP vis-a-vis θ is depicted for different σ∞22. It shows

an inverted bell shaped decrease in COP drop as σ∞22 is increased. At outer tip of
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crack little variation is seen as σ∞22 is increased. But very little effect is seen at the

inner tip due to increase of σ∞22.
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Figure 8.15: COP versus D∞2 for different θ

Figs. 8.15(a, b) depict the variation of COP with respect to prescribed electric

loadings. It is seen that the COP drop increases linearly as the prescribed electric

load is increased for various values of θ. But as θ is increased from 00 to 900 the

COP drops although the increasing trend is maximum with respect to D∞2 .
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Figure 8.16: COP versus θ for different piezoceramics

For different piezoceramics COP drop is plotted versus θ in Figs. 8.16(a, b). It may

be noted that at both inner and outer tips COP drop shows a parabolic variation
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as θ is increased. It is observed that COP is highest for PZT-6B and minimum for

PZT-5H.
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Figure 8.17: ERR at inner tip x1 = d versus D∞2 for different θ
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Figure 8.18: ERR at outer tip x1 = c versus D∞2 for different θ

Figs. (8.17, 8.18) (a to h) show the ERR vis-a-vis prescribed electric loads for a

fixed prescribed mechanical load (σ∞22 = 20MPa). It is observed from all Figs. (8.17,

8.18) (a to h) that ERR decreases in every case. Also it may be noted that ERR is

maximum for θ = 900 i.e., the poling direction is perpendicular to crack length, and

it is minimum when θ = 00 i.e., poling direction is along crack length.
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Figure 8.19: ERR versus θ for different piezoceramics

Figs. 8.19(a, b) show the ERR with respect to poling angle, θ, for different piezoce-

ramics. It is seen from both the Figs. 8.19(a, b) that as poling angle is increased the

ERR increases quadratically. PZT-4 ceramic shows the maximum variation as, θ is

increased, while PZT-6B, PZT-5H and PZT-7A show the similar quadratic variation

for ERR.

8.3.3 Solution for Case III: When saturation and yield zones
are equal (|c1| = |a| and |b| = |d1|)

Schematically the configuration of the problem is depicted in Fig. 8.20.

The boundary conditions form (i) to (iv) remain the same as in Case I and boundary

condition (v) is replaced by following condition (vii)

(vii) ΦIII+
,1 (x1) = ΦIII−

,1 (x1) = −VIII , for d < |x1| < c

where, VIII = [0, σ∞22, 0, D
∞
2 ]T , and superscript III represents that the quantity refers

to Case III.

Analogous to Case I the boundary condition (vii) for this case yield the following

two dual Hilbert problems for potentials ΩIII
2 (z) and ΩIII

4 (z) as

Λ22[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ24[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = −σ∞22, d < |x1| < c,

(8.3.50)

Λ42[ΩIII+
2 (x1) + ΩIII−

2 (x1)] + Λ44[ΩIII+
4 (x1) + ΩIII−

4 (x1)] = D −D∞2 , d < |x1| < c.

(8.3.51)
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Figure 8.20: Schematic representation of configuration of the problem for
Case III, when saturation and yield zones are equal

The solution of which, carrying out the similar calculation as in Case I, may be

written as

ΩIII
2 (z) =− Λ44σs + Λ24(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
+

Λ44σ
∞
22 + Λ24(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
+

Λ44σs + Λ24(D −Ds)

πΣ

(π
2
− υd + υc

)
, (8.3.52)

ΩIII
4 (z) =

Λ42σs + Λ22(D −Ds)

πΣX2(z)

{
(z2 − a2λ2

2)
(π

2
− ϑd + ϑc

)
+R2

}
− Λ42σ

∞
22 + Λ22(D −D∞2 )

2Σ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ42σs + Λ22(D −Ds)

πΣ

(π
2
− υd + υc

)
. (8.3.53)

8.3.3.1 Applications

Expressions for crack opening displacement, crack opening potential drop, energy

release rate and developed zones are derived in this section.
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Zone size

As in Case II, the stress and electric displacement for this case are obtained using

ΦIII
,1 (x1) = BFIII+(x1) + BFIII−(x1) = Λ[ΩIII+(x1) + ΩIII−(x1)], |x1| > a.

(8.3.54)

Comparing second and fourth components and substituting ΩIII
2 (z) and ΩIII

4 (z) from

Equations (8.3.52 and 8.3.53) and simplifying one obtains

σIII22 (x1) =
2σs
π

(π
2
− υd + υc

)
+ σ∞22

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
− 2σs
πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
, (8.3.55)

DIII
2 (x1) =− 2(D −Ds)

π

(π
2
− υd + υc

)
− (D −D∞2 )

{
x2

1 − a2λ2
2

X2(x1)
− 1

}
+

2(D −Ds)

πX2(x1)

{
(x2

1 − a2λ2
2)
(π

2
− ϑd + ϑc

)
+R2

}
. (8.3.56)

Applying Dugdale’s hypothesis of stresses and electric displacement remain finite

at the tips x1 = b and x1 = a of the zones, one obtains non-linear equations to

determine b and a from(
b2

a2
− λ2

2

)(π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0, (8.3.57)(

1− λ2
2

) (π
2
R− π

2
+ ϑd − ϑc

)
− R2

a2
= 0. (8.3.58)

where, R = σ∞22/σs or (D −D∞2 )/(D −Ds).

Crack opening displacement (COD)

The crack opening displacement for this case is determined using

i∆uIII,1 (x1) = Λ[ΩIII+(x1)−ΩIII−(x1)]. (8.3.59)

Comparing the second component of the above equation and substituting value of

ΩIII
2 (z) from Equation (8.3.52) one obtains COD at tips x1 = d and x1 = c, as

∆uIII2 (d) =− (Λ44σs + Λ24(D −Ds))

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
− (Λ44σs + Λ24(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

+
a(Λ44σ

∞
22 + Λ24(D −D∞2 ))

Σ
R8, (8.3.60)
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∆uIII2 (c) =
(Λ44σs + Λ24(D −Ds))

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
+

(Λ44σs + Λ24(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

− a(Λ44σ
∞
22 + Λ24(D −D∞2 ))

Σ
R10, (8.3.61)

respectively.

Crack opening potential drop (COP)

COP at the tips x1 = d and x1 = c are obtained, comparing fourth component

of Equation (8.3.59) and substituting value of ΩIII
4 (x1) from Equation (8.3.53) and

simplifying, as

∆uIII4 (d) =
(Λ42σs + Λ22(D −Ds))

πΣ

{
−d ln(C) + 2F (ξd, k2)

R2

a
+G1(d, c)

}
+

(Λ42σs + Λ22(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R8 +

2b2

a

√
a2 − d2

d2 − b2
R7

}

− a(Λ42σ
∞
22 + Λ22(D −D∞2 ))

Σ
R8, (8.3.62)

∆uIII4 (c) =− (Λ42σs + Λ22(D −Ds))

πΣ

{
−c ln(D) +H1(c, d) + 2F (ϑc, k2)

R2

a

}
− (Λ42σs + Λ22(D −Ds))

πΣ

{
2a
(π

2
− ϑd + ϑc

)
R10 +

2

a

√
c2 − b2

a2 − c2
R9

}

+
a(Λ42σ

∞
22 + Λ22(D −D∞2 ))

Σ
R10. (8.3.63)

Energy release rate (ERR)

Energy release rate at the interior and exterior tips of the crack is calculated using

J IIIa (d) = σs∆u
III
2 (d) +Ds∆u

III
4 (d), (8.3.64)

J IIIa (c) = σs∆u
III
2 (c) +Ds∆u

III
4 (c). (8.3.65)

8.3.3.2 Case III: Results and Discussions

A similar study as in the Case I and Case II is carried out for this Case too.

We assume that the saturation-limit electric displacement and yield point stress

are Ds = 0.06C/m2 and σs = 200MPa, respectively. And also the prescribed

mechanical and electric loads are same as in Case I and Case II.
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Figure 8.21: COD versus θ for different σ∞22

Figs. 8.21(a, b) respectively, depict the variation of COD at the interior and exterior

crack tips versus θ for different σ∞22. COD shows a linear increase as poling direction

angle is changed from 00 to 900 from x1-axis. Also opening increases at both the

crack tips as σ∞22 increases.
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Figure 8.22: COD versus D∞2 for different θ

Figs. 8.22(a, b) show the variation of COD versus D∞2 for different θ. It is observed

that COD increases linearly at both the crack tips as D∞2 increases. It is more at

inner tip than that at outer tip. It is also noted that θ is increased the cracks open

more.
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Figure 8.23: COD versus D∞2 for different piezoceramics

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

θ (in degree)
(a)

−
 ∆

u 4 II
I
 (

d)
 (

10
4  V

)

 

 

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

θ (in degree)
(b)

−
 ∆

u 4 II
I
 (

c)
 (

10
4  V

)

 

 

σ
22
∞ =10MPa

σ
22
∞ =20MPa

σ
22
∞ =30MPa

σ
22
∞ =10MPa

σ
22
∞ =20MPa

σ
22
∞ =30MPa

Figure 8.24: COP versus θ for different σ∞22

Variation of COD at the interior and exterior crack tips versus θ for different piezo-

ceramics is shown in Figs. 8.23(a, b). These show the same variation as shown in

Figs. 8.21(a, b). It shows that PZT-5H opens the least.

Effect of change in poling direction θ on COP drop is shown in Figs. 8.24(a, b)

for different σ∞22. It shows that COP drop increases as θ is increased.

Figs. 8.25(a, b) depict the variation of COP with respect to prescribed electric

loadings. It is seen that the COP drop increases linearly as the prescribed electric

load is increased for various values of θ.
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Figure 8.25: COP versus D∞2 for different θ

0 20 40 60 80
0

2

4

6

8

10

12

14

16

18

θ (in degree)
(a)

−
 ∆

u 4 II
I
 (

d)
 (

10
4  V

)

 

 

0 20 40 60 80
0

2

4

6

8

10

12

14

θ (in degree)
(b)

−
 ∆

u 4 II
I
 (

c)
 (

10
4  V

)

 

 

PZT−4
PZT−5H
PZT−6B
PZT−7A

PZT−4
PZT−5H
PZT−6B
PZT−7A

Figure 8.26: COP versus D∞2 for different piezoceramics

COP is plotted versus D∞2 in Figs. 8.26(a, b) for different piezoceramics. It may be

noted that at both inner and outer tips, COP drop shows a parabolic variation as

D∞2 is increased. It is observed that COP is highest for PZT-6B and minimum for

PZT-5H.

Figs. 8.27(a to d) depict the variation of ERR versus prescribed electrical dis-

placement, D∞2 , for PZT-5H ceramic at the interior tip d. It may be noted that

ERR decreases even as D∞2 is increased for all poling angles. However the ERR is

minimum when poling is along the length of the crack. While it is maximum when
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poling direction is perpendicular to crack length. A similar variation is plotted in

Figs. 8.28(e to h) at the exterior tip c. It is important to note the ERR is less

vis-a-vis that at interior.
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Figure 8.27: ERR at inner tip x1 = d versus D∞2 for different θ
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Figure 8.28: ERR at outer tip x1 = c versus D∞2 for different θ

Figs. 8.29(a, b) show the ERR variation with respect to poling direction angle for

different poled piezoceramics at the interior and exterior crack tips. This variation

is useful for the selection of desired ceramic for the specific work.
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Figure 8.29: ERR versus θ for different piezoceramics

8.4 Conclusions

• Closed form analytical expressions are derived for COD, COP, developed zones

and ERR for a piezoelectric plate weakened by two equal collinear semi-

permeable cracks.

• An illustrative example presented shows that longer saturation zone vis-a-vis

yield zone assists better in crack arrest. Also study presented for COD, COP

and ERR for different piezoceramics may assist the designers for correct choice

of ceramic for desired purpose for all the cases.

• The interesting phenomenon are observed that COD, COP and ERR are max-

imum for Case III as compare to Case I and Case II.

• The study shows that poling direction perpendicular to crack length opens the

crack maximum. And when poling direction axis moved towards the length

of the crack, the crack opening is reduced. Consequently the poling direction

may also assist in crack arrest.



Scope of Future Work

Future plan is to investigate the following important topics.

• Strip-electro-elastic yielding model for piezoelectric media weakened by two

unequal collinear cracks may be proposed.

• Similar to piezoelectric media a mathematical model solution may be pro-

posed for magnetoelectroelastic (MEE) media weakened by two equal collinear

cracks.

• Similar to piezoelectric media a study of arbitrary polarization for magneto-

electroelastic (MEE) media weakened by two equal collinear cracks could be

done.

• Strip magneto model may be proposed for MEE media weakened by two equal

collinear cracks.

• Strip-electro-elastic-magneto yielding model may be proposed for MEE media

weakened by two equal collinear cracks.
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